From 4aab4087dc97906d0b9890035401175cdaab32d4 Mon Sep 17 00:00:00 2001 From: blackhao <13851610112@163.com> Date: Fri, 22 Aug 2025 02:51:50 -0500 Subject: 2.0 --- .../python3.12/site-packages/numpy/__config__.py | 170 + .../python3.12/site-packages/numpy/__config__.pyi | 102 + .../site-packages/numpy/__init__.cython-30.pxd | 1241 +++ .../python3.12/site-packages/numpy/__init__.pxd | 1154 ++ .../lib/python3.12/site-packages/numpy/__init__.py | 928 ++ .../python3.12/site-packages/numpy/__init__.pyi | 5387 ++++++++++ .../numpy/__pycache__/__config__.cpython-312.pyc | Bin 0 -> 5102 bytes .../numpy/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 27561 bytes .../__pycache__/_array_api_info.cpython-312.pyc | Bin 0 -> 11098 bytes .../numpy/__pycache__/_configtool.cpython-312.pyc | Bin 0 -> 1671 bytes .../__pycache__/_distributor_init.cpython-312.pyc | Bin 0 -> 660 bytes .../__pycache__/_expired_attrs_2_0.cpython-312.pyc | Bin 0 -> 4296 bytes .../numpy/__pycache__/_globals.cpython-312.pyc | Bin 0 -> 3895 bytes .../__pycache__/_pytesttester.cpython-312.pyc | Bin 0 -> 6728 bytes .../numpy/__pycache__/conftest.cpython-312.pyc | Bin 0 -> 10515 bytes .../numpy/__pycache__/dtypes.cpython-312.pyc | Bin 0 -> 1540 bytes .../numpy/__pycache__/exceptions.cpython-312.pyc | Bin 0 -> 8735 bytes .../numpy/__pycache__/matlib.cpython-312.pyc | Bin 0 -> 11962 bytes .../numpy/__pycache__/version.cpython-312.pyc | Bin 0 -> 549 bytes .../site-packages/numpy/_array_api_info.py | 346 + .../site-packages/numpy/_array_api_info.pyi | 207 + .../python3.12/site-packages/numpy/_configtool.py | 39 + .../python3.12/site-packages/numpy/_configtool.pyi | 1 + .../site-packages/numpy/_core/__init__.py | 186 + .../site-packages/numpy/_core/__init__.pyi | 2 + .../_core/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 5672 bytes .../_core/__pycache__/_add_newdocs.cpython-312.pyc | Bin 0 -> 200245 bytes .../_add_newdocs_scalars.cpython-312.pyc | Bin 0 -> 13221 bytes .../_core/__pycache__/_asarray.cpython-312.pyc | Bin 0 -> 4282 bytes .../numpy/_core/__pycache__/_dtype.cpython-312.pyc | Bin 0 -> 13470 bytes .../__pycache__/_dtype_ctypes.cpython-312.pyc | Bin 0 -> 4844 bytes .../_core/__pycache__/_exceptions.cpython-312.pyc | Bin 0 -> 8291 bytes .../_core/__pycache__/_internal.cpython-312.pyc | Bin 0 -> 34878 bytes .../_core/__pycache__/_machar.cpython-312.pyc | Bin 0 -> 11687 bytes .../_core/__pycache__/_methods.cpython-312.pyc | Bin 0 -> 11439 bytes .../__pycache__/_string_helpers.cpython-312.pyc | Bin 0 -> 3292 bytes .../__pycache__/_type_aliases.cpython-312.pyc | Bin 0 -> 3758 bytes .../__pycache__/_ufunc_config.cpython-312.pyc | Bin 0 -> 16595 bytes .../_core/__pycache__/arrayprint.cpython-312.pyc | Bin 0 -> 72498 bytes .../_core/__pycache__/cversions.cpython-312.pyc | Bin 0 -> 632 bytes .../_core/__pycache__/defchararray.cpython-312.pyc | Bin 0 -> 42062 bytes .../_core/__pycache__/einsumfunc.cpython-312.pyc | Bin 0 -> 50073 bytes .../_core/__pycache__/fromnumeric.cpython-312.pyc | Bin 0 -> 150475 bytes .../__pycache__/function_base.cpython-312.pyc | Bin 0 -> 20803 bytes .../_core/__pycache__/getlimits.cpython-312.pyc | Bin 0 -> 28447 bytes .../numpy/_core/__pycache__/memmap.cpython-312.pyc | Bin 0 -> 13331 bytes .../_core/__pycache__/multiarray.cpython-312.pyc | Bin 0 -> 58659 bytes .../_core/__pycache__/numeric.cpython-312.pyc | Bin 0 -> 91193 bytes .../_core/__pycache__/numerictypes.cpython-312.pyc | Bin 0 -> 17689 bytes .../_core/__pycache__/overrides.cpython-312.pyc | Bin 0 -> 7902 bytes .../_core/__pycache__/printoptions.cpython-312.pyc | Bin 0 -> 941 bytes .../_core/__pycache__/records.cpython-312.pyc | Bin 0 -> 39474 bytes .../_core/__pycache__/shape_base.cpython-312.pyc | Bin 0 -> 34456 bytes .../_core/__pycache__/strings.cpython-312.pyc | Bin 0 -> 59926 bytes .../numpy/_core/__pycache__/umath.cpython-312.pyc | Bin 0 -> 2010 bytes .../site-packages/numpy/_core/_add_newdocs.py | 6967 ++++++++++++ .../site-packages/numpy/_core/_add_newdocs.pyi | 3 + .../numpy/_core/_add_newdocs_scalars.py | 390 + .../numpy/_core/_add_newdocs_scalars.pyi | 16 + .../site-packages/numpy/_core/_asarray.py | 134 + .../site-packages/numpy/_core/_asarray.pyi | 41 + .../python3.12/site-packages/numpy/_core/_dtype.py | 366 + .../site-packages/numpy/_core/_dtype.pyi | 58 + .../site-packages/numpy/_core/_dtype_ctypes.py | 120 + .../site-packages/numpy/_core/_dtype_ctypes.pyi | 83 + .../site-packages/numpy/_core/_exceptions.py | 162 + .../site-packages/numpy/_core/_exceptions.pyi | 55 + .../site-packages/numpy/_core/_internal.py | 958 ++ .../site-packages/numpy/_core/_internal.pyi | 72 + .../site-packages/numpy/_core/_machar.py | 355 + .../site-packages/numpy/_core/_machar.pyi | 55 + .../site-packages/numpy/_core/_methods.py | 255 + .../site-packages/numpy/_core/_methods.pyi | 22 + ...ultiarray_tests.cpython-312-x86_64-linux-gnu.so | Bin 0 -> 141888 bytes ...ultiarray_umath.cpython-312-x86_64-linux-gnu.so | Bin 0 -> 10808937 bytes ...rand_flag_tests.cpython-312-x86_64-linux-gnu.so | Bin 0 -> 16800 bytes ..._rational_tests.cpython-312-x86_64-linux-gnu.so | Bin 0 -> 59592 bytes .../_core/_simd.cpython-312-x86_64-linux-gnu.so | Bin 0 -> 2882368 bytes .../python3.12/site-packages/numpy/_core/_simd.pyi | 25 + .../site-packages/numpy/_core/_string_helpers.py | 100 + .../site-packages/numpy/_core/_string_helpers.pyi | 12 + ...uct_ufunc_tests.cpython-312-x86_64-linux-gnu.so | Bin 0 -> 16936 bytes .../site-packages/numpy/_core/_type_aliases.py | 119 + .../site-packages/numpy/_core/_type_aliases.pyi | 97 + .../site-packages/numpy/_core/_ufunc_config.py | 489 + .../site-packages/numpy/_core/_ufunc_config.pyi | 32 + .../_umath_tests.cpython-312-x86_64-linux-gnu.so | Bin 0 -> 50312 bytes .../site-packages/numpy/_core/arrayprint.py | 1775 ++++ .../site-packages/numpy/_core/arrayprint.pyi | 238 + .../site-packages/numpy/_core/cversions.py | 13 + .../site-packages/numpy/_core/defchararray.py | 1427 +++ .../site-packages/numpy/_core/defchararray.pyi | 1135 ++ .../site-packages/numpy/_core/einsumfunc.py | 1498 +++ .../site-packages/numpy/_core/einsumfunc.pyi | 184 + .../site-packages/numpy/_core/fromnumeric.py | 4269 ++++++++ .../site-packages/numpy/_core/fromnumeric.pyi | 1750 +++ .../site-packages/numpy/_core/function_base.py | 545 + .../site-packages/numpy/_core/function_base.pyi | 278 + .../site-packages/numpy/_core/getlimits.py | 748 ++ .../site-packages/numpy/_core/getlimits.pyi | 3 + .../numpy/_core/include/numpy/__multiarray_api.c | 376 + .../numpy/_core/include/numpy/__multiarray_api.h | 1622 +++ .../numpy/_core/include/numpy/__ufunc_api.c | 54 + .../numpy/_core/include/numpy/__ufunc_api.h | 341 + .../include/numpy/_neighborhood_iterator_imp.h | 90 + .../numpy/_core/include/numpy/_numpyconfig.h | 33 + .../_core/include/numpy/_public_dtype_api_table.h | 86 + .../numpy/_core/include/numpy/arrayobject.h | 7 + .../numpy/_core/include/numpy/arrayscalars.h | 196 + .../numpy/_core/include/numpy/dtype_api.h | 480 + .../numpy/_core/include/numpy/halffloat.h | 70 + .../numpy/_core/include/numpy/ndarrayobject.h | 304 + .../numpy/_core/include/numpy/ndarraytypes.h | 1950 ++++ .../numpy/_core/include/numpy/npy_2_compat.h | 249 + .../_core/include/numpy/npy_2_complexcompat.h | 28 + .../numpy/_core/include/numpy/npy_3kcompat.h | 374 + .../numpy/_core/include/numpy/npy_common.h | 977 ++ .../numpy/_core/include/numpy/npy_cpu.h | 124 + .../numpy/_core/include/numpy/npy_endian.h | 78 + .../numpy/_core/include/numpy/npy_math.h | 602 ++ .../_core/include/numpy/npy_no_deprecated_api.h | 20 + .../numpy/_core/include/numpy/npy_os.h | 42 + .../numpy/_core/include/numpy/numpyconfig.h | 182 + .../numpy/_core/include/numpy/random/LICENSE.txt | 21 + .../numpy/_core/include/numpy/random/bitgen.h | 20 + .../_core/include/numpy/random/distributions.h | 209 + .../numpy/_core/include/numpy/random/libdivide.h | 2079 ++++ .../numpy/_core/include/numpy/ufuncobject.h | 343 + .../numpy/_core/include/numpy/utils.h | 37 + .../site-packages/numpy/_core/lib/libnpymath.a | Bin 0 -> 54312 bytes .../numpy/_core/lib/npy-pkg-config/mlib.ini | 12 + .../numpy/_core/lib/npy-pkg-config/npymath.ini | 20 + .../numpy/_core/lib/pkgconfig/numpy.pc | 7 + .../python3.12/site-packages/numpy/_core/memmap.py | 363 + .../site-packages/numpy/_core/memmap.pyi | 3 + .../site-packages/numpy/_core/multiarray.py | 1762 ++++ .../site-packages/numpy/_core/multiarray.pyi | 1285 +++ .../site-packages/numpy/_core/numeric.py | 2760 +++++ .../site-packages/numpy/_core/numeric.pyi | 882 ++ .../site-packages/numpy/_core/numerictypes.py | 633 ++ .../site-packages/numpy/_core/numerictypes.pyi | 192 + .../site-packages/numpy/_core/overrides.py | 183 + .../site-packages/numpy/_core/overrides.pyi | 48 + .../site-packages/numpy/_core/printoptions.py | 32 + .../site-packages/numpy/_core/printoptions.pyi | 28 + .../site-packages/numpy/_core/records.py | 1089 ++ .../site-packages/numpy/_core/records.pyi | 333 + .../site-packages/numpy/_core/shape_base.py | 998 ++ .../site-packages/numpy/_core/shape_base.pyi | 175 + .../site-packages/numpy/_core/strings.py | 1823 ++++ .../site-packages/numpy/_core/strings.pyi | 511 + .../tests/__pycache__/_locales.cpython-312.pyc | Bin 0 -> 3576 bytes .../tests/__pycache__/_natype.cpython-312.pyc | Bin 0 -> 8145 bytes .../__pycache__/test__exceptions.cpython-312.pyc | Bin 0 -> 5481 bytes .../tests/__pycache__/test_abc.cpython-312.pyc | Bin 0 -> 4457 bytes .../tests/__pycache__/test_api.cpython-312.pyc | Bin 0 -> 39732 bytes .../__pycache__/test_argparse.cpython-312.pyc | Bin 0 -> 5156 bytes .../test_array_api_info.cpython-312.pyc | Bin 0 -> 6002 bytes .../test_array_coercion.cpython-312.pyc | Bin 0 -> 52255 bytes .../test_array_interface.cpython-312.pyc | Bin 0 -> 8236 bytes .../__pycache__/test_arraymethod.cpython-312.pyc | Bin 0 -> 5077 bytes .../__pycache__/test_arrayobject.cpython-312.pyc | Bin 0 -> 4185 bytes .../__pycache__/test_arrayprint.cpython-312.pyc | Bin 0 -> 74163 bytes ...st_casting_floatingpoint_errors.cpython-312.pyc | Bin 0 -> 9300 bytes .../test_casting_unittests.cpython-312.pyc | Bin 0 -> 39301 bytes .../test_conversion_utils.cpython-312.pyc | Bin 0 -> 12983 bytes .../test_cpu_dispatcher.cpython-312.pyc | Bin 0 -> 1550 bytes .../__pycache__/test_cpu_features.cpython-312.pyc | Bin 0 -> 20368 bytes .../__pycache__/test_custom_dtypes.cpython-312.pyc | Bin 0 -> 21319 bytes .../tests/__pycache__/test_cython.cpython-312.pyc | Bin 0 -> 18827 bytes .../__pycache__/test_datetime.cpython-312.pyc | Bin 0 -> 174850 bytes .../__pycache__/test_defchararray.cpython-312.pyc | Bin 0 -> 64382 bytes .../__pycache__/test_deprecations.cpython-312.pyc | Bin 0 -> 31575 bytes .../tests/__pycache__/test_dlpack.cpython-312.pyc | Bin 0 -> 12981 bytes .../tests/__pycache__/test_dtype.cpython-312.pyc | Bin 0 -> 122350 bytes .../tests/__pycache__/test_einsum.cpython-312.pyc | Bin 0 -> 78324 bytes .../__pycache__/test_errstate.cpython-312.pyc | Bin 0 -> 8694 bytes .../__pycache__/test_extint128.cpython-312.pyc | Bin 0 -> 10344 bytes .../__pycache__/test_function_base.cpython-312.pyc | Bin 0 -> 29345 bytes .../__pycache__/test_getlimits.cpython-312.pyc | Bin 0 -> 13842 bytes .../tests/__pycache__/test_half.cpython-312.pyc | Bin 0 -> 38233 bytes .../__pycache__/test_hashtable.cpython-312.pyc | Bin 0 -> 1766 bytes .../__pycache__/test_indexerrors.cpython-312.pyc | Bin 0 -> 12910 bytes .../__pycache__/test_indexing.cpython-312.pyc | Bin 0 -> 86408 bytes .../test_item_selection.cpython-312.pyc | Bin 0 -> 10641 bytes .../__pycache__/test_limited_api.cpython-312.pyc | Bin 0 -> 4733 bytes .../__pycache__/test_longdouble.cpython-312.pyc | Bin 0 -> 23323 bytes .../tests/__pycache__/test_machar.cpython-312.pyc | Bin 0 -> 1769 bytes .../__pycache__/test_mem_overlap.cpython-312.pyc | Bin 0 -> 49249 bytes .../__pycache__/test_mem_policy.cpython-312.pyc | Bin 0 -> 20028 bytes .../tests/__pycache__/test_memmap.cpython-312.pyc | Bin 0 -> 14628 bytes .../__pycache__/test_multiarray.cpython-312.pyc | Bin 0 -> 678288 bytes .../test_multithreading.cpython-312.pyc | Bin 0 -> 14978 bytes .../tests/__pycache__/test_nditer.cpython-312.pyc | Bin 0 -> 185737 bytes .../test_nep50_promotions.cpython-312.pyc | Bin 0 -> 17904 bytes .../tests/__pycache__/test_numeric.cpython-312.pyc | Bin 0 -> 280511 bytes .../__pycache__/test_numerictypes.cpython-312.pyc | Bin 0 -> 41326 bytes .../__pycache__/test_overrides.cpython-312.pyc | Bin 0 -> 52364 bytes .../tests/__pycache__/test_print.cpython-312.pyc | Bin 0 -> 11602 bytes .../__pycache__/test_protocols.cpython-312.pyc | Bin 0 -> 3258 bytes .../tests/__pycache__/test_records.cpython-312.pyc | Bin 0 -> 39462 bytes .../__pycache__/test_regression.cpython-312.pyc | Bin 0 -> 176141 bytes .../__pycache__/test_scalar_ctors.cpython-312.pyc | Bin 0 -> 13993 bytes .../test_scalar_methods.cpython-312.pyc | Bin 0 -> 17146 bytes .../__pycache__/test_scalarbuffer.cpython-312.pyc | Bin 0 -> 9471 bytes .../__pycache__/test_scalarinherit.cpython-312.pyc | Bin 0 -> 6196 bytes .../__pycache__/test_scalarmath.cpython-312.pyc | Bin 0 -> 73753 bytes .../__pycache__/test_scalarprint.cpython-312.pyc | Bin 0 -> 21426 bytes .../__pycache__/test_shape_base.cpython-312.pyc | Bin 0 -> 50651 bytes .../tests/__pycache__/test_simd.cpython-312.pyc | Bin 0 -> 70235 bytes .../__pycache__/test_simd_module.cpython-312.pyc | Bin 0 -> 7046 bytes .../__pycache__/test_stringdtype.cpython-312.pyc | Bin 0 -> 94845 bytes .../tests/__pycache__/test_strings.cpython-312.pyc | Bin 0 -> 85552 bytes .../tests/__pycache__/test_ufunc.cpython-312.pyc | Bin 0 -> 222129 bytes .../tests/__pycache__/test_umath.cpython-312.pyc | Bin 0 -> 342735 bytes .../test_umath_accuracy.cpython-312.pyc | Bin 0 -> 8685 bytes .../__pycache__/test_umath_complex.cpython-312.pyc | Bin 0 -> 42942 bytes .../tests/__pycache__/test_unicode.cpython-312.pyc | Bin 0 -> 18959 bytes .../site-packages/numpy/_core/tests/_locales.py | 72 + .../site-packages/numpy/_core/tests/_natype.py | 205 + .../numpy/_core/tests/data/astype_copy.pkl | Bin 0 -> 716 bytes .../tests/data/generate_umath_validation_data.cpp | 170 + .../numpy/_core/tests/data/recarray_from_file.fits | Bin 0 -> 8640 bytes .../tests/data/umath-validation-set-README.txt | 15 + .../tests/data/umath-validation-set-arccos.csv | 1429 +++ .../tests/data/umath-validation-set-arccosh.csv | 1429 +++ .../tests/data/umath-validation-set-arcsin.csv | 1429 +++ .../tests/data/umath-validation-set-arcsinh.csv | 1429 +++ .../tests/data/umath-validation-set-arctan.csv | 1429 +++ .../tests/data/umath-validation-set-arctanh.csv | 1429 +++ .../_core/tests/data/umath-validation-set-cbrt.csv | 1429 +++ .../_core/tests/data/umath-validation-set-cos.csv | 1375 +++ .../_core/tests/data/umath-validation-set-cosh.csv | 1429 +++ .../_core/tests/data/umath-validation-set-exp.csv | 412 + .../_core/tests/data/umath-validation-set-exp2.csv | 1429 +++ .../tests/data/umath-validation-set-expm1.csv | 1429 +++ .../_core/tests/data/umath-validation-set-log.csv | 271 + .../tests/data/umath-validation-set-log10.csv | 1629 +++ .../tests/data/umath-validation-set-log1p.csv | 1429 +++ .../_core/tests/data/umath-validation-set-log2.csv | 1629 +++ .../_core/tests/data/umath-validation-set-sin.csv | 1370 +++ .../_core/tests/data/umath-validation-set-sinh.csv | 1429 +++ .../_core/tests/data/umath-validation-set-tan.csv | 1429 +++ .../_core/tests/data/umath-validation-set-tanh.csv | 1429 +++ .../cython/__pycache__/setup.cpython-312.pyc | Bin 0 -> 1273 bytes .../numpy/_core/tests/examples/cython/checks.pyx | 373 + .../numpy/_core/tests/examples/cython/meson.build | 43 + .../numpy/_core/tests/examples/cython/setup.py | 39 + .../limited_api/__pycache__/setup.cpython-312.pyc | Bin 0 -> 813 bytes .../tests/examples/limited_api/limited_api1.c | 17 + .../tests/examples/limited_api/limited_api2.pyx | 11 + .../examples/limited_api/limited_api_latest.c | 19 + .../_core/tests/examples/limited_api/meson.build | 59 + .../_core/tests/examples/limited_api/setup.py | 24 + .../numpy/_core/tests/test__exceptions.py | 90 + .../site-packages/numpy/_core/tests/test_abc.py | 54 + .../site-packages/numpy/_core/tests/test_api.py | 621 ++ .../numpy/_core/tests/test_argparse.py | 92 + .../numpy/_core/tests/test_array_api_info.py | 113 + .../numpy/_core/tests/test_array_coercion.py | 911 ++ .../numpy/_core/tests/test_array_interface.py | 222 + .../numpy/_core/tests/test_arraymethod.py | 84 + .../numpy/_core/tests/test_arrayobject.py | 75 + .../numpy/_core/tests/test_arrayprint.py | 1328 +++ .../tests/test_casting_floatingpoint_errors.py | 154 + .../numpy/_core/tests/test_casting_unittests.py | 817 ++ .../numpy/_core/tests/test_conversion_utils.py | 206 + .../numpy/_core/tests/test_cpu_dispatcher.py | 49 + .../numpy/_core/tests/test_cpu_features.py | 432 + .../numpy/_core/tests/test_custom_dtypes.py | 315 + .../site-packages/numpy/_core/tests/test_cython.py | 351 + .../numpy/_core/tests/test_datetime.py | 2710 +++++ .../numpy/_core/tests/test_defchararray.py | 825 ++ .../numpy/_core/tests/test_deprecations.py | 454 + .../site-packages/numpy/_core/tests/test_dlpack.py | 190 + .../site-packages/numpy/_core/tests/test_dtype.py | 1995 ++++ .../site-packages/numpy/_core/tests/test_einsum.py | 1317 +++ .../numpy/_core/tests/test_errstate.py | 131 + .../numpy/_core/tests/test_extint128.py | 217 + .../numpy/_core/tests/test_function_base.py | 503 + .../numpy/_core/tests/test_getlimits.py | 205 + .../site-packages/numpy/_core/tests/test_half.py | 568 + .../numpy/_core/tests/test_hashtable.py | 35 + .../numpy/_core/tests/test_indexerrors.py | 125 + .../numpy/_core/tests/test_indexing.py | 1455 +++ .../numpy/_core/tests/test_item_selection.py | 167 + .../numpy/_core/tests/test_limited_api.py | 102 + .../numpy/_core/tests/test_longdouble.py | 369 + .../site-packages/numpy/_core/tests/test_machar.py | 30 + .../numpy/_core/tests/test_mem_overlap.py | 930 ++ .../numpy/_core/tests/test_mem_policy.py | 452 + .../site-packages/numpy/_core/tests/test_memmap.py | 246 + .../numpy/_core/tests/test_multiarray.py | 10563 +++++++++++++++++++ .../numpy/_core/tests/test_multithreading.py | 292 + .../site-packages/numpy/_core/tests/test_nditer.py | 3498 ++++++ .../numpy/_core/tests/test_nep50_promotions.py | 287 + .../numpy/_core/tests/test_numeric.py | 4247 ++++++++ .../numpy/_core/tests/test_numerictypes.py | 622 ++ .../numpy/_core/tests/test_overrides.py | 791 ++ .../site-packages/numpy/_core/tests/test_print.py | 200 + .../numpy/_core/tests/test_protocols.py | 46 + .../numpy/_core/tests/test_records.py | 544 + .../numpy/_core/tests/test_regression.py | 2670 +++++ .../numpy/_core/tests/test_scalar_ctors.py | 207 + .../numpy/_core/tests/test_scalar_methods.py | 246 + .../numpy/_core/tests/test_scalarbuffer.py | 153 + .../numpy/_core/tests/test_scalarinherit.py | 105 + .../numpy/_core/tests/test_scalarmath.py | 1176 +++ .../numpy/_core/tests/test_scalarprint.py | 403 + .../numpy/_core/tests/test_shape_base.py | 891 ++ .../site-packages/numpy/_core/tests/test_simd.py | 1341 +++ .../numpy/_core/tests/test_simd_module.py | 103 + .../numpy/_core/tests/test_stringdtype.py | 1807 ++++ .../numpy/_core/tests/test_strings.py | 1454 +++ .../site-packages/numpy/_core/tests/test_ufunc.py | 3313 ++++++ .../site-packages/numpy/_core/tests/test_umath.py | 4916 +++++++++ .../numpy/_core/tests/test_umath_accuracy.py | 124 + .../numpy/_core/tests/test_umath_complex.py | 626 ++ .../numpy/_core/tests/test_unicode.py | 368 + .../python3.12/site-packages/numpy/_core/umath.py | 60 + .../python3.12/site-packages/numpy/_core/umath.pyi | 197 + .../site-packages/numpy/_distributor_init.py | 15 + .../site-packages/numpy/_distributor_init.pyi | 1 + .../site-packages/numpy/_expired_attrs_2_0.py | 79 + .../site-packages/numpy/_expired_attrs_2_0.pyi | 62 + .../lib/python3.12/site-packages/numpy/_globals.py | 96 + .../python3.12/site-packages/numpy/_globals.pyi | 17 + .../site-packages/numpy/_pyinstaller/__init__.py | 0 .../site-packages/numpy/_pyinstaller/__init__.pyi | 0 .../__pycache__/__init__.cpython-312.pyc | Bin 0 -> 195 bytes .../__pycache__/hook-numpy.cpython-312.pyc | Bin 0 -> 938 bytes .../site-packages/numpy/_pyinstaller/hook-numpy.py | 36 + .../numpy/_pyinstaller/hook-numpy.pyi | 13 + .../numpy/_pyinstaller/tests/__init__.py | 16 + .../tests/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 568 bytes .../__pycache__/pyinstaller-smoke.cpython-312.pyc | Bin 0 -> 2613 bytes .../__pycache__/test_pyinstaller.cpython-312.pyc | Bin 0 -> 1963 bytes .../numpy/_pyinstaller/tests/pyinstaller-smoke.py | 32 + .../numpy/_pyinstaller/tests/test_pyinstaller.py | 35 + .../site-packages/numpy/_pytesttester.py | 201 + .../site-packages/numpy/_pytesttester.pyi | 18 + .../site-packages/numpy/_typing/__init__.py | 148 + .../_typing/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 5113 bytes .../__pycache__/_add_docstring.cpython-312.pyc | Bin 0 -> 4800 bytes .../__pycache__/_array_like.cpython-312.pyc | Bin 0 -> 5802 bytes .../__pycache__/_char_codes.cpython-312.pyc | Bin 0 -> 7075 bytes .../__pycache__/_dtype_like.cpython-312.pyc | Bin 0 -> 3919 bytes .../_extended_precision.cpython-312.pyc | Bin 0 -> 784 bytes .../_typing/__pycache__/_nbit.cpython-312.pyc | Bin 0 -> 966 bytes .../_typing/__pycache__/_nbit_base.cpython-312.pyc | Bin 0 -> 3876 bytes .../__pycache__/_nested_sequence.cpython-312.pyc | Bin 0 -> 3411 bytes .../_typing/__pycache__/_scalars.cpython-312.pyc | Bin 0 -> 1426 bytes .../_typing/__pycache__/_shape.cpython-312.pyc | Bin 0 -> 531 bytes .../_typing/__pycache__/_ufunc.cpython-312.pyc | Bin 0 -> 372 bytes .../site-packages/numpy/_typing/_add_docstring.py | 153 + .../site-packages/numpy/_typing/_array_like.py | 106 + .../site-packages/numpy/_typing/_callable.pyi | 366 + .../site-packages/numpy/_typing/_char_codes.py | 213 + .../site-packages/numpy/_typing/_dtype_like.py | 114 + .../numpy/_typing/_extended_precision.py | 15 + .../site-packages/numpy/_typing/_nbit.py | 19 + .../site-packages/numpy/_typing/_nbit_base.py | 94 + .../site-packages/numpy/_typing/_nbit_base.pyi | 40 + .../numpy/_typing/_nested_sequence.py | 79 + .../site-packages/numpy/_typing/_scalars.py | 20 + .../site-packages/numpy/_typing/_shape.py | 8 + .../site-packages/numpy/_typing/_ufunc.py | 7 + .../site-packages/numpy/_typing/_ufunc.pyi | 941 ++ .../site-packages/numpy/_utils/__init__.py | 95 + .../site-packages/numpy/_utils/__init__.pyi | 30 + .../_utils/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 4182 bytes .../__pycache__/_convertions.cpython-312.pyc | Bin 0 -> 836 bytes .../_utils/__pycache__/_inspect.cpython-312.pyc | Bin 0 -> 9433 bytes .../_utils/__pycache__/_pep440.cpython-312.pyc | Bin 0 -> 18748 bytes .../site-packages/numpy/_utils/_convertions.py | 18 + .../site-packages/numpy/_utils/_convertions.pyi | 4 + .../site-packages/numpy/_utils/_inspect.py | 192 + .../site-packages/numpy/_utils/_inspect.pyi | 71 + .../site-packages/numpy/_utils/_pep440.py | 486 + .../site-packages/numpy/_utils/_pep440.pyi | 121 + .../site-packages/numpy/char/__init__.py | 2 + .../site-packages/numpy/char/__init__.pyi | 111 + .../char/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 285 bytes .../lib/python3.12/site-packages/numpy/conftest.py | 258 + .../site-packages/numpy/core/__init__.py | 33 + .../site-packages/numpy/core/__init__.pyi | 0 .../core/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 1163 bytes .../numpy/core/__pycache__/_dtype.cpython-312.pyc | Bin 0 -> 621 bytes .../core/__pycache__/_dtype_ctypes.cpython-312.pyc | Bin 0 -> 642 bytes .../core/__pycache__/_internal.cpython-312.pyc | Bin 0 -> 961 bytes .../__pycache__/_multiarray_umath.cpython-312.pyc | Bin 0 -> 2125 bytes .../numpy/core/__pycache__/_utils.cpython-312.pyc | Bin 0 -> 1175 bytes .../core/__pycache__/arrayprint.cpython-312.pyc | Bin 0 -> 633 bytes .../core/__pycache__/defchararray.cpython-312.pyc | Bin 0 -> 639 bytes .../core/__pycache__/einsumfunc.cpython-312.pyc | Bin 0 -> 633 bytes .../core/__pycache__/fromnumeric.cpython-312.pyc | Bin 0 -> 636 bytes .../core/__pycache__/function_base.cpython-312.pyc | Bin 0 -> 642 bytes .../core/__pycache__/getlimits.cpython-312.pyc | Bin 0 -> 630 bytes .../core/__pycache__/multiarray.cpython-312.pyc | Bin 0 -> 851 bytes .../numpy/core/__pycache__/numeric.cpython-312.pyc | Bin 0 -> 676 bytes .../core/__pycache__/numerictypes.cpython-312.pyc | Bin 0 -> 639 bytes .../core/__pycache__/overrides.cpython-312.pyc | Bin 0 -> 630 bytes .../numpy/core/__pycache__/records.cpython-312.pyc | Bin 0 -> 624 bytes .../core/__pycache__/shape_base.cpython-312.pyc | Bin 0 -> 633 bytes .../numpy/core/__pycache__/umath.cpython-312.pyc | Bin 0 -> 618 bytes .../python3.12/site-packages/numpy/core/_dtype.py | 10 + .../python3.12/site-packages/numpy/core/_dtype.pyi | 0 .../site-packages/numpy/core/_dtype_ctypes.py | 10 + .../site-packages/numpy/core/_dtype_ctypes.pyi | 0 .../site-packages/numpy/core/_internal.py | 27 + .../site-packages/numpy/core/_multiarray_umath.py | 57 + .../python3.12/site-packages/numpy/core/_utils.py | 21 + .../site-packages/numpy/core/arrayprint.py | 10 + .../site-packages/numpy/core/defchararray.py | 10 + .../site-packages/numpy/core/einsumfunc.py | 10 + .../site-packages/numpy/core/fromnumeric.py | 10 + .../site-packages/numpy/core/function_base.py | 10 + .../site-packages/numpy/core/getlimits.py | 10 + .../site-packages/numpy/core/multiarray.py | 25 + .../python3.12/site-packages/numpy/core/numeric.py | 12 + .../site-packages/numpy/core/numerictypes.py | 10 + .../site-packages/numpy/core/overrides.py | 10 + .../site-packages/numpy/core/overrides.pyi | 7 + .../python3.12/site-packages/numpy/core/records.py | 10 + .../site-packages/numpy/core/shape_base.py | 10 + .../python3.12/site-packages/numpy/core/umath.py | 10 + .../site-packages/numpy/ctypeslib/__init__.py | 13 + .../site-packages/numpy/ctypeslib/__init__.pyi | 33 + .../ctypeslib/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 456 bytes .../__pycache__/_ctypeslib.cpython-312.pyc | Bin 0 -> 22404 bytes .../site-packages/numpy/ctypeslib/_ctypeslib.py | 603 ++ .../site-packages/numpy/ctypeslib/_ctypeslib.pyi | 245 + .../numpy/doc/__pycache__/ufuncs.cpython-312.pyc | Bin 0 -> 5610 bytes .../python3.12/site-packages/numpy/doc/ufuncs.py | 138 + .venv/lib/python3.12/site-packages/numpy/dtypes.py | 41 + .../lib/python3.12/site-packages/numpy/dtypes.pyi | 631 ++ .../python3.12/site-packages/numpy/exceptions.py | 247 + .../python3.12/site-packages/numpy/exceptions.pyi | 25 + .../site-packages/numpy/f2py/__init__.py | 86 + .../site-packages/numpy/f2py/__init__.pyi | 6 + .../site-packages/numpy/f2py/__main__.py | 5 + .../f2py/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 3134 bytes .../f2py/__pycache__/__main__.cpython-312.pyc | Bin 0 -> 257 bytes .../f2py/__pycache__/__version__.cpython-312.pyc | Bin 0 -> 238 bytes .../f2py/__pycache__/_isocbind.cpython-312.pyc | Bin 0 -> 1904 bytes .../f2py/__pycache__/_src_pyf.cpython-312.pyc | Bin 0 -> 9034 bytes .../f2py/__pycache__/auxfuncs.cpython-312.pyc | Bin 0 -> 39134 bytes .../f2py/__pycache__/capi_maps.cpython-312.pyc | Bin 0 -> 31112 bytes .../f2py/__pycache__/cb_rules.cpython-312.pyc | Bin 0 -> 22505 bytes .../numpy/f2py/__pycache__/cfuncs.cpython-312.pyc | Bin 0 -> 49018 bytes .../f2py/__pycache__/common_rules.cpython-312.pyc | Bin 0 -> 7404 bytes .../f2py/__pycache__/crackfortran.cpython-312.pyc | Bin 0 -> 150449 bytes .../f2py/__pycache__/diagnose.cpython-312.pyc | Bin 0 -> 6594 bytes .../numpy/f2py/__pycache__/f2py2e.cpython-312.pyc | Bin 0 -> 34136 bytes .../f2py/__pycache__/f90mod_rules.cpython-312.pyc | Bin 0 -> 12356 bytes .../f2py/__pycache__/func2subr.cpython-312.pyc | Bin 0 -> 11598 bytes .../numpy/f2py/__pycache__/rules.cpython-312.pyc | Bin 0 -> 52771 bytes .../f2py/__pycache__/symbolic.cpython-312.pyc | Bin 0 -> 79042 bytes .../f2py/__pycache__/use_rules.cpython-312.pyc | Bin 0 -> 4266 bytes .../site-packages/numpy/f2py/__version__.py | 1 + .../site-packages/numpy/f2py/__version__.pyi | 1 + .../site-packages/numpy/f2py/_backends/__init__.py | 9 + .../numpy/f2py/_backends/__init__.pyi | 5 + .../_backends/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 569 bytes .../_backends/__pycache__/_backend.cpython-312.pyc | Bin 0 -> 1376 bytes .../__pycache__/_distutils.cpython-312.pyc | Bin 0 -> 3560 bytes .../_backends/__pycache__/_meson.cpython-312.pyc | Bin 0 -> 13395 bytes .../site-packages/numpy/f2py/_backends/_backend.py | 44 + .../numpy/f2py/_backends/_backend.pyi | 46 + .../numpy/f2py/_backends/_distutils.py | 76 + .../numpy/f2py/_backends/_distutils.pyi | 13 + .../site-packages/numpy/f2py/_backends/_meson.py | 231 + .../site-packages/numpy/f2py/_backends/_meson.pyi | 63 + .../numpy/f2py/_backends/meson.build.template | 55 + .../site-packages/numpy/f2py/_isocbind.py | 62 + .../site-packages/numpy/f2py/_isocbind.pyi | 13 + .../site-packages/numpy/f2py/_src_pyf.py | 247 + .../site-packages/numpy/f2py/_src_pyf.pyi | 29 + .../site-packages/numpy/f2py/auxfuncs.py | 1004 ++ .../site-packages/numpy/f2py/auxfuncs.pyi | 264 + .../site-packages/numpy/f2py/capi_maps.py | 811 ++ .../site-packages/numpy/f2py/capi_maps.pyi | 33 + .../site-packages/numpy/f2py/cb_rules.py | 665 ++ .../site-packages/numpy/f2py/cb_rules.pyi | 17 + .../python3.12/site-packages/numpy/f2py/cfuncs.py | 1563 +++ .../python3.12/site-packages/numpy/f2py/cfuncs.pyi | 31 + .../site-packages/numpy/f2py/common_rules.py | 143 + .../site-packages/numpy/f2py/common_rules.pyi | 9 + .../site-packages/numpy/f2py/crackfortran.py | 3725 +++++++ .../site-packages/numpy/f2py/crackfortran.pyi | 258 + .../site-packages/numpy/f2py/diagnose.py | 149 + .../site-packages/numpy/f2py/diagnose.pyi | 1 + .../python3.12/site-packages/numpy/f2py/f2py2e.py | 786 ++ .../python3.12/site-packages/numpy/f2py/f2py2e.pyi | 76 + .../site-packages/numpy/f2py/f90mod_rules.py | 269 + .../site-packages/numpy/f2py/f90mod_rules.pyi | 16 + .../site-packages/numpy/f2py/func2subr.py | 329 + .../site-packages/numpy/f2py/func2subr.pyi | 7 + .../python3.12/site-packages/numpy/f2py/rules.py | 1629 +++ .../python3.12/site-packages/numpy/f2py/rules.pyi | 43 + .../python3.12/site-packages/numpy/f2py/setup.cfg | 3 + .../site-packages/numpy/f2py/src/fortranobject.c | 1436 +++ .../site-packages/numpy/f2py/src/fortranobject.h | 173 + .../site-packages/numpy/f2py/symbolic.py | 1516 +++ .../site-packages/numpy/f2py/symbolic.pyi | 221 + .../site-packages/numpy/f2py/tests/__init__.py | 16 + .../tests/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 560 bytes .../test_abstract_interface.cpython-312.pyc | Bin 0 -> 1935 bytes .../test_array_from_pyobj.cpython-312.pyc | Bin 0 -> 42830 bytes .../__pycache__/test_assumed_shape.cpython-312.pyc | Bin 0 -> 3327 bytes .../test_block_docstring.cpython-312.pyc | Bin 0 -> 1468 bytes .../__pycache__/test_callback.cpython-312.pyc | Bin 0 -> 14755 bytes .../__pycache__/test_character.cpython-312.pyc | Bin 0 -> 35665 bytes .../tests/__pycache__/test_common.cpython-312.pyc | Bin 0 -> 2114 bytes .../__pycache__/test_crackfortran.cpython-312.pyc | Bin 0 -> 25614 bytes .../tests/__pycache__/test_data.cpython-312.pyc | Bin 0 -> 6759 bytes .../tests/__pycache__/test_docs.cpython-312.pyc | Bin 0 -> 3551 bytes .../tests/__pycache__/test_f2cmap.cpython-312.pyc | Bin 0 -> 1018 bytes .../tests/__pycache__/test_f2py2e.cpython-312.pyc | Bin 0 -> 43300 bytes .../tests/__pycache__/test_isoc.cpython-312.pyc | Bin 0 -> 2737 bytes .../tests/__pycache__/test_kind.cpython-312.pyc | Bin 0 -> 3061 bytes .../tests/__pycache__/test_mixed.cpython-312.pyc | Bin 0 -> 2012 bytes .../tests/__pycache__/test_modules.cpython-312.pyc | Bin 0 -> 4612 bytes .../__pycache__/test_parameter.cpython-312.pyc | Bin 0 -> 9268 bytes .../tests/__pycache__/test_pyf_src.cpython-312.pyc | Bin 0 -> 1550 bytes .../test_quoted_character.cpython-312.pyc | Bin 0 -> 1301 bytes .../__pycache__/test_regression.cpython-312.pyc | Bin 0 -> 11898 bytes .../test_return_character.cpython-312.pyc | Bin 0 -> 3042 bytes .../test_return_complex.cpython-312.pyc | Bin 0 -> 4797 bytes .../test_return_integer.cpython-312.pyc | Bin 0 -> 3470 bytes .../test_return_logical.cpython-312.pyc | Bin 0 -> 4412 bytes .../__pycache__/test_return_real.cpython-312.pyc | Bin 0 -> 5920 bytes .../__pycache__/test_routines.cpython-312.pyc | Bin 0 -> 1987 bytes .../test_semicolon_split.cpython-312.pyc | Bin 0 -> 2764 bytes .../tests/__pycache__/test_size.cpython-312.pyc | Bin 0 -> 3149 bytes .../tests/__pycache__/test_string.cpython-312.pyc | Bin 0 -> 5723 bytes .../__pycache__/test_symbolic.cpython-312.pyc | Bin 0 -> 32197 bytes .../test_value_attrspec.cpython-312.pyc | Bin 0 -> 1030 bytes .../f2py/tests/__pycache__/util.cpython-312.pyc | Bin 0 -> 18149 bytes .../f2py/tests/src/abstract_interface/foo.f90 | 34 + .../tests/src/abstract_interface/gh18403_mod.f90 | 6 + .../f2py/tests/src/array_from_pyobj/wrapmodule.c | 235 + .../f2py/tests/src/assumed_shape/.f2py_f2cmap | 1 + .../f2py/tests/src/assumed_shape/foo_free.f90 | 34 + .../numpy/f2py/tests/src/assumed_shape/foo_mod.f90 | 41 + .../numpy/f2py/tests/src/assumed_shape/foo_use.f90 | 19 + .../f2py/tests/src/assumed_shape/precision.f90 | 4 + .../numpy/f2py/tests/src/block_docstring/foo.f | 6 + .../numpy/f2py/tests/src/callback/foo.f | 62 + .../numpy/f2py/tests/src/callback/gh17797.f90 | 7 + .../numpy/f2py/tests/src/callback/gh18335.f90 | 17 + .../numpy/f2py/tests/src/callback/gh25211.f | 10 + .../numpy/f2py/tests/src/callback/gh25211.pyf | 18 + .../numpy/f2py/tests/src/callback/gh26681.f90 | 18 + .../numpy/f2py/tests/src/cli/gh_22819.pyf | 6 + .../site-packages/numpy/f2py/tests/src/cli/hi77.f | 3 + .../numpy/f2py/tests/src/cli/hiworld.f90 | 3 + .../numpy/f2py/tests/src/common/block.f | 11 + .../numpy/f2py/tests/src/common/gh19161.f90 | 10 + .../f2py/tests/src/crackfortran/accesstype.f90 | 13 + .../tests/src/crackfortran/common_with_division.f | 17 + .../f2py/tests/src/crackfortran/data_common.f | 8 + .../f2py/tests/src/crackfortran/data_multiplier.f | 5 + .../f2py/tests/src/crackfortran/data_stmts.f90 | 20 + .../tests/src/crackfortran/data_with_comments.f | 8 + .../numpy/f2py/tests/src/crackfortran/foo_deps.f90 | 6 + .../numpy/f2py/tests/src/crackfortran/gh15035.f | 16 + .../numpy/f2py/tests/src/crackfortran/gh17859.f | 12 + .../numpy/f2py/tests/src/crackfortran/gh22648.pyf | 7 + .../numpy/f2py/tests/src/crackfortran/gh23533.f | 5 + .../numpy/f2py/tests/src/crackfortran/gh23598.f90 | 4 + .../f2py/tests/src/crackfortran/gh23598Warn.f90 | 11 + .../numpy/f2py/tests/src/crackfortran/gh23879.f90 | 20 + .../numpy/f2py/tests/src/crackfortran/gh27697.f90 | 12 + .../numpy/f2py/tests/src/crackfortran/gh2848.f90 | 13 + .../f2py/tests/src/crackfortran/operators.f90 | 49 + .../f2py/tests/src/crackfortran/privatemod.f90 | 11 + .../f2py/tests/src/crackfortran/publicmod.f90 | 10 + .../f2py/tests/src/crackfortran/pubprivmod.f90 | 10 + .../tests/src/crackfortran/unicode_comment.f90 | 4 + .../numpy/f2py/tests/src/f2cmap/.f2py_f2cmap | 1 + .../f2py/tests/src/f2cmap/isoFortranEnvMap.f90 | 9 + .../numpy/f2py/tests/src/isocintrin/isoCtests.f90 | 34 + .../numpy/f2py/tests/src/kind/foo.f90 | 20 + .../site-packages/numpy/f2py/tests/src/mixed/foo.f | 5 + .../numpy/f2py/tests/src/mixed/foo_fixed.f90 | 8 + .../numpy/f2py/tests/src/mixed/foo_free.f90 | 8 + .../numpy/f2py/tests/src/modules/gh25337/data.f90 | 8 + .../f2py/tests/src/modules/gh25337/use_data.f90 | 6 + .../gh26920/two_mods_with_no_public_entities.f90 | 21 + .../gh26920/two_mods_with_one_public_routine.f90 | 21 + .../tests/src/modules/module_data_docstring.f90 | 12 + .../numpy/f2py/tests/src/modules/use_modules.f90 | 20 + .../f2py/tests/src/negative_bounds/issue_20853.f90 | 7 + .../f2py/tests/src/parameter/constant_array.f90 | 45 + .../f2py/tests/src/parameter/constant_both.f90 | 57 + .../f2py/tests/src/parameter/constant_compound.f90 | 15 + .../f2py/tests/src/parameter/constant_integer.f90 | 22 + .../tests/src/parameter/constant_non_compound.f90 | 23 + .../f2py/tests/src/parameter/constant_real.f90 | 23 + .../numpy/f2py/tests/src/quoted_character/foo.f | 14 + .../numpy/f2py/tests/src/regression/AB.inc | 1 + .../f2py/tests/src/regression/assignOnlyModule.f90 | 25 + .../numpy/f2py/tests/src/regression/datonly.f90 | 17 + .../numpy/f2py/tests/src/regression/f77comments.f | 26 + .../f2py/tests/src/regression/f77fixedform.f95 | 5 + .../f2py/tests/src/regression/f90continuation.f90 | 9 + .../numpy/f2py/tests/src/regression/incfile.f90 | 5 + .../numpy/f2py/tests/src/regression/inout.f90 | 9 + .../tests/src/regression/lower_f2py_fortran.f90 | 5 + .../tests/src/regression/mod_derived_types.f90 | 23 + .../numpy/f2py/tests/src/return_character/foo77.f | 45 + .../f2py/tests/src/return_character/foo90.f90 | 48 + .../numpy/f2py/tests/src/return_complex/foo77.f | 45 + .../numpy/f2py/tests/src/return_complex/foo90.f90 | 48 + .../numpy/f2py/tests/src/return_integer/foo77.f | 56 + .../numpy/f2py/tests/src/return_integer/foo90.f90 | 59 + .../numpy/f2py/tests/src/return_logical/foo77.f | 56 + .../numpy/f2py/tests/src/return_logical/foo90.f90 | 59 + .../numpy/f2py/tests/src/return_real/foo77.f | 45 + .../numpy/f2py/tests/src/return_real/foo90.f90 | 48 + .../f2py/tests/src/routines/funcfortranname.f | 5 + .../f2py/tests/src/routines/funcfortranname.pyf | 11 + .../numpy/f2py/tests/src/routines/subrout.f | 4 + .../numpy/f2py/tests/src/routines/subrout.pyf | 10 + .../numpy/f2py/tests/src/size/foo.f90 | 44 + .../numpy/f2py/tests/src/string/char.f90 | 29 + .../numpy/f2py/tests/src/string/fixed_string.f90 | 34 + .../numpy/f2py/tests/src/string/gh24008.f | 8 + .../numpy/f2py/tests/src/string/gh24662.f90 | 7 + .../numpy/f2py/tests/src/string/gh25286.f90 | 14 + .../numpy/f2py/tests/src/string/gh25286.pyf | 12 + .../numpy/f2py/tests/src/string/gh25286_bc.pyf | 12 + .../numpy/f2py/tests/src/string/scalar_string.f90 | 9 + .../numpy/f2py/tests/src/string/string.f | 12 + .../f2py/tests/src/value_attrspec/gh21665.f90 | 9 + .../numpy/f2py/tests/test_abstract_interface.py | 26 + .../numpy/f2py/tests/test_array_from_pyobj.py | 678 ++ .../numpy/f2py/tests/test_assumed_shape.py | 50 + .../numpy/f2py/tests/test_block_docstring.py | 20 + .../numpy/f2py/tests/test_callback.py | 263 + .../numpy/f2py/tests/test_character.py | 641 ++ .../site-packages/numpy/f2py/tests/test_common.py | 23 + .../numpy/f2py/tests/test_crackfortran.py | 421 + .../site-packages/numpy/f2py/tests/test_data.py | 71 + .../site-packages/numpy/f2py/tests/test_docs.py | 64 + .../site-packages/numpy/f2py/tests/test_f2cmap.py | 17 + .../site-packages/numpy/f2py/tests/test_f2py2e.py | 964 ++ .../site-packages/numpy/f2py/tests/test_isoc.py | 56 + .../site-packages/numpy/f2py/tests/test_kind.py | 53 + .../site-packages/numpy/f2py/tests/test_mixed.py | 35 + .../site-packages/numpy/f2py/tests/test_modules.py | 83 + .../numpy/f2py/tests/test_parameter.py | 129 + .../site-packages/numpy/f2py/tests/test_pyf_src.py | 43 + .../numpy/f2py/tests/test_quoted_character.py | 18 + .../numpy/f2py/tests/test_regression.py | 187 + .../numpy/f2py/tests/test_return_character.py | 48 + .../numpy/f2py/tests/test_return_complex.py | 67 + .../numpy/f2py/tests/test_return_integer.py | 55 + .../numpy/f2py/tests/test_return_logical.py | 65 + .../numpy/f2py/tests/test_return_real.py | 109 + .../numpy/f2py/tests/test_routines.py | 29 + .../numpy/f2py/tests/test_semicolon_split.py | 75 + .../site-packages/numpy/f2py/tests/test_size.py | 45 + .../site-packages/numpy/f2py/tests/test_string.py | 100 + .../numpy/f2py/tests/test_symbolic.py | 495 + .../numpy/f2py/tests/test_value_attrspec.py | 15 + .../site-packages/numpy/f2py/tests/util.py | 442 + .../site-packages/numpy/f2py/use_rules.py | 99 + .../site-packages/numpy/f2py/use_rules.pyi | 9 + .../python3.12/site-packages/numpy/fft/__init__.py | 215 + .../site-packages/numpy/fft/__init__.pyi | 43 + .../numpy/fft/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 8405 bytes .../numpy/fft/__pycache__/_helper.cpython-312.pyc | Bin 0 -> 8086 bytes .../fft/__pycache__/_pocketfft.cpython-312.pyc | Bin 0 -> 64761 bytes .../numpy/fft/__pycache__/helper.cpython-312.pyc | Bin 0 -> 923 bytes .../python3.12/site-packages/numpy/fft/_helper.py | 235 + .../python3.12/site-packages/numpy/fft/_helper.pyi | 45 + .../site-packages/numpy/fft/_pocketfft.py | 1693 +++ .../site-packages/numpy/fft/_pocketfft.pyi | 138 + ...pocketfft_umath.cpython-312-x86_64-linux-gnu.so | Bin 0 -> 539072 bytes .../python3.12/site-packages/numpy/fft/helper.py | 17 + .../python3.12/site-packages/numpy/fft/helper.pyi | 22 + .../site-packages/numpy/fft/tests/__init__.py | 0 .../fft/tests/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 192 bytes .../tests/__pycache__/test_helper.cpython-312.pyc | Bin 0 -> 9021 bytes .../__pycache__/test_pocketfft.cpython-312.pyc | Bin 0 -> 47477 bytes .../site-packages/numpy/fft/tests/test_helper.py | 167 + .../numpy/fft/tests/test_pocketfft.py | 589 ++ .../python3.12/site-packages/numpy/lib/__init__.py | 97 + .../site-packages/numpy/lib/__init__.pyi | 44 + .../numpy/lib/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 3010 bytes .../__pycache__/_array_utils_impl.cpython-312.pyc | Bin 0 -> 2161 bytes .../lib/__pycache__/_arraypad_impl.cpython-312.pyc | Bin 0 -> 28978 bytes .../__pycache__/_arraysetops_impl.cpython-312.pyc | Bin 0 -> 43158 bytes .../__pycache__/_arrayterator_impl.cpython-312.pyc | Bin 0 -> 9627 bytes .../lib/__pycache__/_datasource.cpython-312.pyc | Bin 0 -> 25647 bytes .../lib/__pycache__/_format_impl.cpython-312.pyc | Bin 0 -> 35982 bytes .../_function_base_impl.cpython-312.pyc | Bin 0 -> 207985 bytes .../__pycache__/_histograms_impl.cpython-312.pyc | Bin 0 -> 40778 bytes .../__pycache__/_index_tricks_impl.cpython-312.pyc | Bin 0 -> 36311 bytes .../numpy/lib/__pycache__/_iotools.cpython-312.pyc | Bin 0 -> 35190 bytes .../__pycache__/_nanfunctions_impl.cpython-312.pyc | Bin 0 -> 76016 bytes .../lib/__pycache__/_npyio_impl.cpython-312.pyc | Bin 0 -> 96608 bytes .../__pycache__/_polynomial_impl.cpython-312.pyc | Bin 0 -> 53606 bytes .../lib/__pycache__/_scimath_impl.cpython-312.pyc | Bin 0 -> 18335 bytes .../__pycache__/_shape_base_impl.cpython-312.pyc | Bin 0 -> 44015 bytes .../_stride_tricks_impl.cpython-312.pyc | Bin 0 -> 19596 bytes .../__pycache__/_twodim_base_impl.cpython-312.pyc | Bin 0 -> 38482 bytes .../__pycache__/_type_check_impl.cpython-312.pyc | Bin 0 -> 22208 bytes .../__pycache__/_ufunclike_impl.cpython-312.pyc | Bin 0 -> 7270 bytes .../__pycache__/_user_array_impl.cpython-312.pyc | Bin 0 -> 16244 bytes .../lib/__pycache__/_utils_impl.cpython-312.pyc | Bin 0 -> 25608 bytes .../numpy/lib/__pycache__/_version.cpython-312.pyc | Bin 0 -> 6643 bytes .../lib/__pycache__/array_utils.cpython-312.pyc | Bin 0 -> 350 bytes .../numpy/lib/__pycache__/format.cpython-312.pyc | Bin 0 -> 788 bytes .../lib/__pycache__/introspect.cpython-312.pyc | Bin 0 -> 3290 bytes .../numpy/lib/__pycache__/mixins.cpython-312.pyc | Bin 0 -> 8977 bytes .../numpy/lib/__pycache__/npyio.cpython-312.pyc | Bin 0 -> 271 bytes .../lib/__pycache__/recfunctions.cpython-312.pyc | Bin 0 -> 64014 bytes .../numpy/lib/__pycache__/scimath.cpython-312.pyc | Bin 0 -> 411 bytes .../lib/__pycache__/stride_tricks.cpython-312.pyc | Bin 0 -> 299 bytes .../lib/__pycache__/user_array.cpython-312.pyc | Bin 0 -> 262 bytes .../site-packages/numpy/lib/_array_utils_impl.py | 62 + .../site-packages/numpy/lib/_array_utils_impl.pyi | 26 + .../site-packages/numpy/lib/_arraypad_impl.py | 890 ++ .../site-packages/numpy/lib/_arraypad_impl.pyi | 89 + .../site-packages/numpy/lib/_arraysetops_impl.py | 1260 +++ .../site-packages/numpy/lib/_arraysetops_impl.pyi | 444 + .../site-packages/numpy/lib/_arrayterator_impl.py | 224 + .../site-packages/numpy/lib/_arrayterator_impl.pyi | 46 + .../site-packages/numpy/lib/_datasource.py | 700 ++ .../site-packages/numpy/lib/_datasource.pyi | 31 + .../site-packages/numpy/lib/_format_impl.py | 1036 ++ .../site-packages/numpy/lib/_format_impl.pyi | 26 + .../site-packages/numpy/lib/_function_base_impl.py | 5844 ++++++++++ .../numpy/lib/_function_base_impl.pyi | 985 ++ .../site-packages/numpy/lib/_histograms_impl.py | 1085 ++ .../site-packages/numpy/lib/_histograms_impl.pyi | 50 + .../site-packages/numpy/lib/_index_tricks_impl.py | 1067 ++ .../site-packages/numpy/lib/_index_tricks_impl.pyi | 196 + .../python3.12/site-packages/numpy/lib/_iotools.py | 900 ++ .../site-packages/numpy/lib/_iotools.pyi | 114 + .../site-packages/numpy/lib/_nanfunctions_impl.py | 2024 ++++ .../site-packages/numpy/lib/_nanfunctions_impl.pyi | 52 + .../site-packages/numpy/lib/_npyio_impl.py | 2596 +++++ .../site-packages/numpy/lib/_npyio_impl.pyi | 301 + .../site-packages/numpy/lib/_polynomial_impl.py | 1465 +++ .../site-packages/numpy/lib/_polynomial_impl.pyi | 316 + .../site-packages/numpy/lib/_scimath_impl.py | 642 ++ .../site-packages/numpy/lib/_scimath_impl.pyi | 93 + .../site-packages/numpy/lib/_shape_base_impl.py | 1301 +++ .../site-packages/numpy/lib/_shape_base_impl.pyi | 235 + .../site-packages/numpy/lib/_stride_tricks_impl.py | 549 + .../numpy/lib/_stride_tricks_impl.pyi | 74 + .../site-packages/numpy/lib/_twodim_base_impl.py | 1201 +++ .../site-packages/numpy/lib/_twodim_base_impl.pyi | 438 + .../site-packages/numpy/lib/_type_check_impl.py | 699 ++ .../site-packages/numpy/lib/_type_check_impl.pyi | 350 + .../site-packages/numpy/lib/_ufunclike_impl.py | 207 + .../site-packages/numpy/lib/_ufunclike_impl.pyi | 67 + .../site-packages/numpy/lib/_user_array_impl.py | 299 + .../site-packages/numpy/lib/_user_array_impl.pyi | 225 + .../site-packages/numpy/lib/_utils_impl.py | 779 ++ .../site-packages/numpy/lib/_utils_impl.pyi | 10 + .../python3.12/site-packages/numpy/lib/_version.py | 154 + .../site-packages/numpy/lib/_version.pyi | 17 + .../site-packages/numpy/lib/array_utils.py | 7 + .../site-packages/numpy/lib/array_utils.pyi | 12 + .../python3.12/site-packages/numpy/lib/format.py | 24 + .../python3.12/site-packages/numpy/lib/format.pyi | 66 + .../site-packages/numpy/lib/introspect.py | 95 + .../site-packages/numpy/lib/introspect.pyi | 3 + .../python3.12/site-packages/numpy/lib/mixins.py | 180 + .../python3.12/site-packages/numpy/lib/mixins.pyi | 75 + .../python3.12/site-packages/numpy/lib/npyio.py | 1 + .../python3.12/site-packages/numpy/lib/npyio.pyi | 9 + .../site-packages/numpy/lib/recfunctions.py | 1681 +++ .../site-packages/numpy/lib/recfunctions.pyi | 435 + .../python3.12/site-packages/numpy/lib/scimath.py | 13 + .../python3.12/site-packages/numpy/lib/scimath.pyi | 30 + .../site-packages/numpy/lib/stride_tricks.py | 1 + .../site-packages/numpy/lib/stride_tricks.pyi | 6 + .../site-packages/numpy/lib/tests/__init__.py | 0 .../lib/tests/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 192 bytes .../__pycache__/test__datasource.cpython-312.pyc | Bin 0 -> 20906 bytes .../__pycache__/test__iotools.cpython-312.pyc | Bin 0 -> 18619 bytes .../__pycache__/test__version.cpython-312.pyc | Bin 0 -> 3482 bytes .../__pycache__/test_array_utils.cpython-312.pyc | Bin 0 -> 2544 bytes .../__pycache__/test_arraypad.cpython-312.pyc | Bin 0 -> 72097 bytes .../__pycache__/test_arraysetops.cpython-312.pyc | Bin 0 -> 59087 bytes .../__pycache__/test_arrayterator.cpython-312.pyc | Bin 0 -> 2637 bytes .../tests/__pycache__/test_format.cpython-312.pyc | Bin 0 -> 55254 bytes .../__pycache__/test_function_base.cpython-312.pyc | Bin 0 -> 301287 bytes .../__pycache__/test_histograms.cpython-312.pyc | Bin 0 -> 51401 bytes .../__pycache__/test_index_tricks.cpython-312.pyc | Bin 0 -> 35518 bytes .../lib/tests/__pycache__/test_io.cpython-312.pyc | Bin 0 -> 176840 bytes .../tests/__pycache__/test_loadtxt.cpython-312.pyc | Bin 0 -> 67059 bytes .../tests/__pycache__/test_mixins.cpython-312.pyc | Bin 0 -> 12707 bytes .../__pycache__/test_nanfunctions.cpython-312.pyc | Bin 0 -> 92780 bytes .../__pycache__/test_packbits.cpython-312.pyc | Bin 0 -> 23174 bytes .../__pycache__/test_polynomial.cpython-312.pyc | Bin 0 -> 22348 bytes .../__pycache__/test_recfunctions.cpython-312.pyc | Bin 0 -> 57938 bytes .../__pycache__/test_regression.cpython-312.pyc | Bin 0 -> 15294 bytes .../__pycache__/test_shape_base.cpython-312.pyc | Bin 0 -> 56388 bytes .../__pycache__/test_stride_tricks.cpython-312.pyc | Bin 0 -> 30055 bytes .../__pycache__/test_twodim_base.cpython-312.pyc | Bin 0 -> 29332 bytes .../__pycache__/test_type_check.cpython-312.pyc | Bin 0 -> 31613 bytes .../__pycache__/test_ufunclike.cpython-312.pyc | Bin 0 -> 6034 bytes .../tests/__pycache__/test_utils.cpython-312.pyc | Bin 0 -> 4174 bytes .../numpy/lib/tests/data/py2-np0-objarr.npy | Bin 0 -> 258 bytes .../numpy/lib/tests/data/py2-objarr.npy | Bin 0 -> 258 bytes .../numpy/lib/tests/data/py2-objarr.npz | Bin 0 -> 366 bytes .../numpy/lib/tests/data/py3-objarr.npy | Bin 0 -> 325 bytes .../numpy/lib/tests/data/py3-objarr.npz | Bin 0 -> 453 bytes .../site-packages/numpy/lib/tests/data/python3.npy | Bin 0 -> 96 bytes .../numpy/lib/tests/data/win64python2.npy | Bin 0 -> 96 bytes .../numpy/lib/tests/test__datasource.py | 352 + .../site-packages/numpy/lib/tests/test__iotools.py | 360 + .../site-packages/numpy/lib/tests/test__version.py | 64 + .../numpy/lib/tests/test_array_utils.py | 32 + .../site-packages/numpy/lib/tests/test_arraypad.py | 1415 +++ .../numpy/lib/tests/test_arraysetops.py | 1074 ++ .../numpy/lib/tests/test_arrayterator.py | 46 + .../site-packages/numpy/lib/tests/test_format.py | 1054 ++ .../numpy/lib/tests/test_function_base.py | 4573 ++++++++ .../numpy/lib/tests/test_histograms.py | 855 ++ .../numpy/lib/tests/test_index_tricks.py | 568 + .../site-packages/numpy/lib/tests/test_io.py | 2848 +++++ .../site-packages/numpy/lib/tests/test_loadtxt.py | 1101 ++ .../site-packages/numpy/lib/tests/test_mixins.py | 215 + .../numpy/lib/tests/test_nanfunctions.py | 1438 +++ .../site-packages/numpy/lib/tests/test_packbits.py | 376 + .../numpy/lib/tests/test_polynomial.py | 320 + .../numpy/lib/tests/test_recfunctions.py | 1052 ++ .../numpy/lib/tests/test_regression.py | 231 + .../numpy/lib/tests/test_shape_base.py | 813 ++ .../numpy/lib/tests/test_stride_tricks.py | 656 ++ .../numpy/lib/tests/test_twodim_base.py | 559 + .../numpy/lib/tests/test_type_check.py | 473 + .../numpy/lib/tests/test_ufunclike.py | 97 + .../site-packages/numpy/lib/tests/test_utils.py | 80 + .../site-packages/numpy/lib/user_array.py | 1 + .../site-packages/numpy/lib/user_array.pyi | 1 + .../site-packages/numpy/linalg/__init__.py | 98 + .../site-packages/numpy/linalg/__init__.pyi | 73 + .../linalg/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 2340 bytes .../linalg/__pycache__/_linalg.cpython-312.pyc | Bin 0 -> 126143 bytes .../linalg/__pycache__/linalg.cpython-312.pyc | Bin 0 -> 903 bytes .../site-packages/numpy/linalg/_linalg.py | 3681 +++++++ .../site-packages/numpy/linalg/_linalg.pyi | 482 + .../_umath_linalg.cpython-312-x86_64-linux-gnu.so | Bin 0 -> 231833 bytes .../site-packages/numpy/linalg/_umath_linalg.pyi | 61 + .../lapack_lite.cpython-312-x86_64-linux-gnu.so | Bin 0 -> 30001 bytes .../site-packages/numpy/linalg/lapack_lite.pyi | 141 + .../site-packages/numpy/linalg/linalg.py | 17 + .../site-packages/numpy/linalg/linalg.pyi | 69 + .../site-packages/numpy/linalg/tests/__init__.py | 0 .../tests/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 195 bytes .../__pycache__/test_deprecations.cpython-312.pyc | Bin 0 -> 1239 bytes .../tests/__pycache__/test_linalg.cpython-312.pyc | Bin 0 -> 144380 bytes .../__pycache__/test_regression.cpython-312.pyc | Bin 0 -> 10930 bytes .../numpy/linalg/tests/test_deprecations.py | 20 + .../numpy/linalg/tests/test_linalg.py | 2430 +++++ .../numpy/linalg/tests/test_regression.py | 181 + .../site-packages/numpy/ma/API_CHANGES.txt | 135 + .../lib/python3.12/site-packages/numpy/ma/LICENSE | 24 + .../python3.12/site-packages/numpy/ma/README.rst | 236 + .../python3.12/site-packages/numpy/ma/__init__.py | 53 + .../python3.12/site-packages/numpy/ma/__init__.pyi | 458 + .../numpy/ma/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 1681 bytes .../numpy/ma/__pycache__/core.cpython-312.pyc | Bin 0 -> 311706 bytes .../numpy/ma/__pycache__/extras.cpython-312.pyc | Bin 0 -> 83198 bytes .../numpy/ma/__pycache__/mrecords.cpython-312.pyc | Bin 0 -> 34170 bytes .../numpy/ma/__pycache__/testutils.cpython-312.pyc | Bin 0 -> 12731 bytes .../lib/python3.12/site-packages/numpy/ma/core.py | 8936 ++++++++++++++++ .../lib/python3.12/site-packages/numpy/ma/core.pyi | 1462 +++ .../python3.12/site-packages/numpy/ma/extras.py | 2344 ++++ .../python3.12/site-packages/numpy/ma/extras.pyi | 134 + .../python3.12/site-packages/numpy/ma/mrecords.py | 773 ++ .../python3.12/site-packages/numpy/ma/mrecords.pyi | 96 + .../site-packages/numpy/ma/tests/__init__.py | 0 .../ma/tests/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 191 bytes .../__pycache__/test_arrayobject.cpython-312.pyc | Bin 0 -> 2260 bytes .../ma/tests/__pycache__/test_core.cpython-312.pyc | Bin 0 -> 348758 bytes .../__pycache__/test_deprecations.cpython-312.pyc | Bin 0 -> 4829 bytes .../tests/__pycache__/test_extras.cpython-312.pyc | Bin 0 -> 128761 bytes .../__pycache__/test_mrecords.cpython-312.pyc | Bin 0 -> 30721 bytes .../tests/__pycache__/test_old_ma.cpython-312.pyc | Bin 0 -> 64345 bytes .../__pycache__/test_regression.cpython-312.pyc | Bin 0 -> 7501 bytes .../__pycache__/test_subclassing.cpython-312.pyc | Bin 0 -> 27748 bytes .../numpy/ma/tests/test_arrayobject.py | 40 + .../site-packages/numpy/ma/tests/test_core.py | 5886 +++++++++++ .../numpy/ma/tests/test_deprecations.py | 87 + .../site-packages/numpy/ma/tests/test_extras.py | 1998 ++++ .../site-packages/numpy/ma/tests/test_mrecords.py | 497 + .../site-packages/numpy/ma/tests/test_old_ma.py | 942 ++ .../numpy/ma/tests/test_regression.py | 100 + .../numpy/ma/tests/test_subclassing.py | 469 + .../python3.12/site-packages/numpy/ma/testutils.py | 294 + .venv/lib/python3.12/site-packages/numpy/matlib.py | 380 + .../lib/python3.12/site-packages/numpy/matlib.pyi | 582 + .../site-packages/numpy/matrixlib/__init__.py | 12 + .../site-packages/numpy/matrixlib/__init__.pyi | 5 + .../matrixlib/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 486 bytes .../__pycache__/defmatrix.cpython-312.pyc | Bin 0 -> 36117 bytes .../site-packages/numpy/matrixlib/defmatrix.py | 1119 ++ .../site-packages/numpy/matrixlib/defmatrix.pyi | 17 + .../numpy/matrixlib/tests/__init__.py | 0 .../tests/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 198 bytes .../__pycache__/test_defmatrix.cpython-312.pyc | Bin 0 -> 32981 bytes .../__pycache__/test_interaction.cpython-312.pyc | Bin 0 -> 21453 bytes .../__pycache__/test_masked_matrix.cpython-312.pyc | Bin 0 -> 16670 bytes .../__pycache__/test_matrix_linalg.cpython-312.pyc | Bin 0 -> 4291 bytes .../__pycache__/test_multiarray.cpython-312.pyc | Bin 0 -> 1614 bytes .../tests/__pycache__/test_numeric.cpython-312.pyc | Bin 0 -> 1426 bytes .../__pycache__/test_regression.cpython-312.pyc | Bin 0 -> 2833 bytes .../numpy/matrixlib/tests/test_defmatrix.py | 455 + .../numpy/matrixlib/tests/test_interaction.py | 360 + .../numpy/matrixlib/tests/test_masked_matrix.py | 240 + .../numpy/matrixlib/tests/test_matrix_linalg.py | 105 + .../numpy/matrixlib/tests/test_multiarray.py | 17 + .../numpy/matrixlib/tests/test_numeric.py | 18 + .../numpy/matrixlib/tests/test_regression.py | 31 + .../site-packages/numpy/polynomial/__init__.py | 187 + .../site-packages/numpy/polynomial/__init__.pyi | 25 + .../__pycache__/__init__.cpython-312.pyc | Bin 0 -> 6936 bytes .../__pycache__/_polybase.cpython-312.pyc | Bin 0 -> 48960 bytes .../__pycache__/chebyshev.cpython-312.pyc | Bin 0 -> 71846 bytes .../polynomial/__pycache__/hermite.cpython-312.pyc | Bin 0 -> 62595 bytes .../__pycache__/hermite_e.cpython-312.pyc | Bin 0 -> 59967 bytes .../__pycache__/laguerre.cpython-312.pyc | Bin 0 -> 59726 bytes .../__pycache__/legendre.cpython-312.pyc | Bin 0 -> 58298 bytes .../__pycache__/polynomial.cpython-312.pyc | Bin 0 -> 58203 bytes .../__pycache__/polyutils.cpython-312.pyc | Bin 0 -> 28866 bytes .../site-packages/numpy/polynomial/_polybase.py | 1191 +++ .../site-packages/numpy/polynomial/_polybase.pyi | 285 + .../site-packages/numpy/polynomial/_polytypes.pyi | 892 ++ .../site-packages/numpy/polynomial/chebyshev.py | 2003 ++++ .../site-packages/numpy/polynomial/chebyshev.pyi | 181 + .../site-packages/numpy/polynomial/hermite.py | 1740 +++ .../site-packages/numpy/polynomial/hermite.pyi | 107 + .../site-packages/numpy/polynomial/hermite_e.py | 1642 +++ .../site-packages/numpy/polynomial/hermite_e.pyi | 107 + .../site-packages/numpy/polynomial/laguerre.py | 1675 +++ .../site-packages/numpy/polynomial/laguerre.pyi | 100 + .../site-packages/numpy/polynomial/legendre.py | 1605 +++ .../site-packages/numpy/polynomial/legendre.pyi | 100 + .../site-packages/numpy/polynomial/polynomial.py | 1616 +++ .../site-packages/numpy/polynomial/polynomial.pyi | 89 + .../site-packages/numpy/polynomial/polyutils.py | 759 ++ .../site-packages/numpy/polynomial/polyutils.pyi | 423 + .../numpy/polynomial/tests/__init__.py | 0 .../tests/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 199 bytes .../__pycache__/test_chebyshev.cpython-312.pyc | Bin 0 -> 38472 bytes .../tests/__pycache__/test_classes.cpython-312.pyc | Bin 0 -> 33620 bytes .../tests/__pycache__/test_hermite.cpython-312.pyc | Bin 0 -> 34381 bytes .../__pycache__/test_hermite_e.cpython-312.pyc | Bin 0 -> 34560 bytes .../__pycache__/test_laguerre.cpython-312.pyc | Bin 0 -> 33118 bytes .../__pycache__/test_legendre.cpython-312.pyc | Bin 0 -> 35352 bytes .../__pycache__/test_polynomial.cpython-312.pyc | Bin 0 -> 41009 bytes .../__pycache__/test_polyutils.cpython-312.pyc | Bin 0 -> 6720 bytes .../__pycache__/test_printing.cpython-312.pyc | Bin 0 -> 31522 bytes .../tests/__pycache__/test_symbol.cpython-312.pyc | Bin 0 -> 12638 bytes .../numpy/polynomial/tests/test_chebyshev.py | 623 ++ .../numpy/polynomial/tests/test_classes.py | 618 ++ .../numpy/polynomial/tests/test_hermite.py | 558 + .../numpy/polynomial/tests/test_hermite_e.py | 559 + .../numpy/polynomial/tests/test_laguerre.py | 540 + .../numpy/polynomial/tests/test_legendre.py | 571 + .../numpy/polynomial/tests/test_polynomial.py | 669 ++ .../numpy/polynomial/tests/test_polyutils.py | 128 + .../numpy/polynomial/tests/test_printing.py | 555 + .../numpy/polynomial/tests/test_symbol.py | 217 + .venv/lib/python3.12/site-packages/numpy/py.typed | 0 .../site-packages/numpy/random/LICENSE.md | 71 + .../site-packages/numpy/random/__init__.pxd | 14 + .../site-packages/numpy/random/__init__.py | 213 + .../site-packages/numpy/random/__init__.pyi | 124 + .../random/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 7507 bytes .../random/__pycache__/_pickle.cpython-312.pyc | Bin 0 -> 2923 bytes ...ounded_integers.cpython-312-x86_64-linux-gnu.so | Bin 0 -> 323168 bytes .../numpy/random/_bounded_integers.pxd | 29 + .../numpy/random/_bounded_integers.pyi | 1 + .../random/_common.cpython-312-x86_64-linux-gnu.so | Bin 0 -> 258912 bytes .../site-packages/numpy/random/_common.pxd | 107 + .../site-packages/numpy/random/_common.pyi | 16 + .../cffi/__pycache__/extending.cpython-312.pyc | Bin 0 -> 1670 bytes .../cffi/__pycache__/parse.cpython-312.pyc | Bin 0 -> 2297 bytes .../numpy/random/_examples/cffi/extending.py | 44 + .../numpy/random/_examples/cffi/parse.py | 53 + .../numpy/random/_examples/cython/extending.pyx | 77 + .../_examples/cython/extending_distributions.pyx | 118 + .../numpy/random/_examples/cython/meson.build | 53 + .../numba/__pycache__/extending.cpython-312.pyc | Bin 0 -> 3879 bytes .../extending_distributions.cpython-312.pyc | Bin 0 -> 2734 bytes .../numpy/random/_examples/numba/extending.py | 86 + .../_examples/numba/extending_distributions.py | 67 + .../_generator.cpython-312-x86_64-linux-gnu.so | Bin 0 -> 993240 bytes .../site-packages/numpy/random/_generator.pyi | 856 ++ .../_mt19937.cpython-312-x86_64-linux-gnu.so | Bin 0 -> 137960 bytes .../site-packages/numpy/random/_mt19937.pyi | 25 + .../random/_pcg64.cpython-312-x86_64-linux-gnu.so | Bin 0 -> 148272 bytes .../site-packages/numpy/random/_pcg64.pyi | 44 + .../random/_philox.cpython-312-x86_64-linux-gnu.so | Bin 0 -> 120808 bytes .../site-packages/numpy/random/_philox.pyi | 39 + .../site-packages/numpy/random/_pickle.py | 88 + .../site-packages/numpy/random/_pickle.pyi | 43 + .../random/_sfc64.cpython-312-x86_64-linux-gnu.so | Bin 0 -> 89648 bytes .../site-packages/numpy/random/_sfc64.pyi | 28 + .../bit_generator.cpython-312-x86_64-linux-gnu.so | Bin 0 -> 239072 bytes .../site-packages/numpy/random/bit_generator.pxd | 35 + .../site-packages/numpy/random/bit_generator.pyi | 124 + .../site-packages/numpy/random/c_distributions.pxd | 119 + .../site-packages/numpy/random/lib/libnpyrandom.a | Bin 0 -> 71702 bytes .../random/mtrand.cpython-312-x86_64-linux-gnu.so | Bin 0 -> 785752 bytes .../site-packages/numpy/random/mtrand.pyi | 703 ++ .../site-packages/numpy/random/tests/__init__.py | 0 .../tests/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 195 bytes .../tests/__pycache__/test_direct.cpython-312.pyc | Bin 0 -> 35400 bytes .../__pycache__/test_extending.cpython-312.pyc | Bin 0 -> 6181 bytes .../test_generator_mt19937.cpython-312.pyc | Bin 0 -> 178178 bytes ...t_generator_mt19937_regressions.cpython-312.pyc | Bin 0 -> 13530 bytes .../tests/__pycache__/test_random.cpython-312.pyc | Bin 0 -> 113339 bytes .../__pycache__/test_randomstate.cpython-312.pyc | Bin 0 -> 130399 bytes .../test_randomstate_regression.cpython-312.pyc | Bin 0 -> 15167 bytes .../__pycache__/test_regression.cpython-312.pyc | Bin 0 -> 10894 bytes .../__pycache__/test_seed_sequence.cpython-312.pyc | Bin 0 -> 3480 bytes .../tests/__pycache__/test_smoke.cpython-312.pyc | Bin 0 -> 57058 bytes .../numpy/random/tests/data/__init__.py | 0 .../data/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 200 bytes .../random/tests/data/generator_pcg64_np121.pkl.gz | Bin 0 -> 203 bytes .../random/tests/data/generator_pcg64_np126.pkl.gz | Bin 0 -> 208 bytes .../numpy/random/tests/data/mt19937-testset-1.csv | 1001 ++ .../numpy/random/tests/data/mt19937-testset-2.csv | 1001 ++ .../numpy/random/tests/data/pcg64-testset-1.csv | 1001 ++ .../numpy/random/tests/data/pcg64-testset-2.csv | 1001 ++ .../random/tests/data/pcg64dxsm-testset-1.csv | 1001 ++ .../random/tests/data/pcg64dxsm-testset-2.csv | 1001 ++ .../numpy/random/tests/data/philox-testset-1.csv | 1001 ++ .../numpy/random/tests/data/philox-testset-2.csv | 1001 ++ .../numpy/random/tests/data/sfc64-testset-1.csv | 1001 ++ .../numpy/random/tests/data/sfc64-testset-2.csv | 1001 ++ .../numpy/random/tests/data/sfc64_np126.pkl.gz | Bin 0 -> 290 bytes .../numpy/random/tests/test_direct.py | 592 ++ .../numpy/random/tests/test_extending.py | 127 + .../numpy/random/tests/test_generator_mt19937.py | 2804 +++++ .../tests/test_generator_mt19937_regressions.py | 207 + .../numpy/random/tests/test_random.py | 1757 +++ .../numpy/random/tests/test_randomstate.py | 2130 ++++ .../random/tests/test_randomstate_regression.py | 217 + .../numpy/random/tests/test_regression.py | 152 + .../numpy/random/tests/test_seed_sequence.py | 79 + .../site-packages/numpy/random/tests/test_smoke.py | 819 ++ .../python3.12/site-packages/numpy/rec/__init__.py | 2 + .../site-packages/numpy/rec/__init__.pyi | 23 + .../numpy/rec/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 279 bytes .../site-packages/numpy/strings/__init__.py | 2 + .../site-packages/numpy/strings/__init__.pyi | 97 + .../strings/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 283 bytes .../site-packages/numpy/testing/__init__.py | 22 + .../site-packages/numpy/testing/__init__.pyi | 102 + .../testing/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 885 bytes .../testing/__pycache__/overrides.cpython-312.pyc | Bin 0 -> 2720 bytes .../print_coercion_tables.cpython-312.pyc | Bin 0 -> 8113 bytes .../numpy/testing/_private/__init__.py | 0 .../numpy/testing/_private/__init__.pyi | 0 .../_private/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 199 bytes .../_private/__pycache__/extbuild.cpython-312.pyc | Bin 0 -> 9414 bytes .../_private/__pycache__/utils.cpython-312.pyc | Bin 0 -> 106874 bytes .../numpy/testing/_private/extbuild.py | 250 + .../numpy/testing/_private/extbuild.pyi | 25 + .../site-packages/numpy/testing/_private/utils.py | 2759 +++++ .../site-packages/numpy/testing/_private/utils.pyi | 499 + .../site-packages/numpy/testing/overrides.py | 84 + .../site-packages/numpy/testing/overrides.pyi | 11 + .../numpy/testing/print_coercion_tables.py | 207 + .../numpy/testing/print_coercion_tables.pyi | 27 + .../site-packages/numpy/testing/tests/__init__.py | 0 .../tests/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 196 bytes .../tests/__pycache__/test_utils.cpython-312.pyc | Bin 0 -> 118885 bytes .../numpy/testing/tests/test_utils.py | 1917 ++++ .../site-packages/numpy/tests/__init__.py | 0 .../tests/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 188 bytes .../tests/__pycache__/test__all__.cpython-312.pyc | Bin 0 -> 703 bytes .../__pycache__/test_configtool.cpython-312.pyc | Bin 0 -> 3723 bytes .../__pycache__/test_ctypeslib.cpython-312.pyc | Bin 0 -> 21993 bytes .../__pycache__/test_lazyloading.cpython-312.pyc | Bin 0 -> 1761 bytes .../tests/__pycache__/test_matlib.cpython-312.pyc | Bin 0 -> 4191 bytes .../__pycache__/test_numpy_config.cpython-312.pyc | Bin 0 -> 2869 bytes .../__pycache__/test_numpy_version.cpython-312.pyc | Bin 0 -> 2482 bytes .../__pycache__/test_public_api.cpython-312.pyc | Bin 0 -> 24556 bytes .../__pycache__/test_reloading.cpython-312.pyc | Bin 0 -> 3557 bytes .../tests/__pycache__/test_scripts.cpython-312.pyc | Bin 0 -> 2846 bytes .../__pycache__/test_warnings.cpython-312.pyc | Bin 0 -> 4317 bytes .../site-packages/numpy/tests/test__all__.py | 10 + .../site-packages/numpy/tests/test_configtool.py | 48 + .../site-packages/numpy/tests/test_ctypeslib.py | 377 + .../site-packages/numpy/tests/test_lazyloading.py | 38 + .../site-packages/numpy/tests/test_matlib.py | 59 + .../site-packages/numpy/tests/test_numpy_config.py | 46 + .../numpy/tests/test_numpy_version.py | 54 + .../site-packages/numpy/tests/test_public_api.py | 806 ++ .../site-packages/numpy/tests/test_reloading.py | 74 + .../site-packages/numpy/tests/test_scripts.py | 49 + .../site-packages/numpy/tests/test_warnings.py | 78 + .../site-packages/numpy/typing/__init__.py | 201 + .../typing/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 6501 bytes .../typing/__pycache__/mypy_plugin.cpython-312.pyc | Bin 0 -> 8502 bytes .../site-packages/numpy/typing/mypy_plugin.py | 195 + .../site-packages/numpy/typing/tests/__init__.py | 0 .../tests/__pycache__/__init__.cpython-312.pyc | Bin 0 -> 195 bytes .../tests/__pycache__/test_isfile.cpython-312.pyc | Bin 0 -> 1549 bytes .../tests/__pycache__/test_runtime.cpython-312.pyc | Bin 0 -> 5957 bytes .../tests/__pycache__/test_typing.cpython-312.pyc | Bin 0 -> 9466 bytes .../numpy/typing/tests/data/fail/arithmetic.pyi | 126 + .../typing/tests/data/fail/array_constructors.pyi | 34 + .../numpy/typing/tests/data/fail/array_like.pyi | 15 + .../numpy/typing/tests/data/fail/array_pad.pyi | 6 + .../numpy/typing/tests/data/fail/arrayprint.pyi | 16 + .../numpy/typing/tests/data/fail/arrayterator.pyi | 14 + .../numpy/typing/tests/data/fail/bitwise_ops.pyi | 17 + .../numpy/typing/tests/data/fail/char.pyi | 65 + .../numpy/typing/tests/data/fail/chararray.pyi | 62 + .../numpy/typing/tests/data/fail/comparisons.pyi | 27 + .../numpy/typing/tests/data/fail/constants.pyi | 3 + .../numpy/typing/tests/data/fail/datasource.pyi | 15 + .../numpy/typing/tests/data/fail/dtype.pyi | 17 + .../numpy/typing/tests/data/fail/einsumfunc.pyi | 12 + .../numpy/typing/tests/data/fail/flatiter.pyi | 20 + .../numpy/typing/tests/data/fail/fromnumeric.pyi | 148 + .../numpy/typing/tests/data/fail/histograms.pyi | 12 + .../numpy/typing/tests/data/fail/index_tricks.pyi | 14 + .../typing/tests/data/fail/lib_function_base.pyi | 62 + .../typing/tests/data/fail/lib_polynomial.pyi | 29 + .../numpy/typing/tests/data/fail/lib_utils.pyi | 3 + .../numpy/typing/tests/data/fail/lib_version.pyi | 6 + .../numpy/typing/tests/data/fail/linalg.pyi | 48 + .../numpy/typing/tests/data/fail/ma.pyi | 143 + .../numpy/typing/tests/data/fail/memmap.pyi | 5 + .../numpy/typing/tests/data/fail/modules.pyi | 17 + .../numpy/typing/tests/data/fail/multiarray.pyi | 52 + .../numpy/typing/tests/data/fail/ndarray.pyi | 11 + .../numpy/typing/tests/data/fail/ndarray_misc.pyi | 36 + .../numpy/typing/tests/data/fail/nditer.pyi | 8 + .../typing/tests/data/fail/nested_sequence.pyi | 16 + .../numpy/typing/tests/data/fail/npyio.pyi | 24 + .../numpy/typing/tests/data/fail/numerictypes.pyi | 5 + .../numpy/typing/tests/data/fail/random.pyi | 62 + .../numpy/typing/tests/data/fail/rec.pyi | 17 + .../numpy/typing/tests/data/fail/scalars.pyi | 87 + .../numpy/typing/tests/data/fail/shape.pyi | 6 + .../numpy/typing/tests/data/fail/shape_base.pyi | 8 + .../numpy/typing/tests/data/fail/stride_tricks.pyi | 9 + .../numpy/typing/tests/data/fail/strings.pyi | 52 + .../numpy/typing/tests/data/fail/testing.pyi | 28 + .../numpy/typing/tests/data/fail/twodim_base.pyi | 32 + .../numpy/typing/tests/data/fail/type_check.pyi | 13 + .../numpy/typing/tests/data/fail/ufunc_config.pyi | 21 + .../numpy/typing/tests/data/fail/ufunclike.pyi | 21 + .../numpy/typing/tests/data/fail/ufuncs.pyi | 17 + .../typing/tests/data/fail/warnings_and_errors.pyi | 5 + .../typing/tests/data/misc/extended_precision.pyi | 9 + .../site-packages/numpy/typing/tests/data/mypy.ini | 9 + .../pass/__pycache__/arithmetic.cpython-312.pyc | Bin 0 -> 12383 bytes .../__pycache__/array_constructors.cpython-312.pyc | Bin 0 -> 6985 bytes .../pass/__pycache__/array_like.cpython-312.pyc | Bin 0 -> 2422 bytes .../pass/__pycache__/arrayprint.cpython-312.pyc | Bin 0 -> 1400 bytes .../pass/__pycache__/arrayterator.cpython-312.pyc | Bin 0 -> 1043 bytes .../pass/__pycache__/bitwise_ops.cpython-312.pyc | Bin 0 -> 2400 bytes .../pass/__pycache__/comparisons.cpython-312.pyc | Bin 0 -> 6842 bytes .../data/pass/__pycache__/dtype.cpython-312.pyc | Bin 0 -> 2313 bytes .../pass/__pycache__/einsumfunc.cpython-312.pyc | Bin 0 -> 2288 bytes .../data/pass/__pycache__/flatiter.cpython-312.pyc | Bin 0 -> 938 bytes .../pass/__pycache__/fromnumeric.cpython-312.pyc | Bin 0 -> 12819 bytes .../pass/__pycache__/index_tricks.cpython-312.pyc | Bin 0 -> 3285 bytes .../__pycache__/lib_user_array.cpython-312.pyc | Bin 0 -> 1087 bytes .../pass/__pycache__/lib_utils.cpython-312.pyc | Bin 0 -> 885 bytes .../pass/__pycache__/lib_version.cpython-312.pyc | Bin 0 -> 687 bytes .../data/pass/__pycache__/literal.cpython-312.pyc | Bin 0 -> 2724 bytes .../tests/data/pass/__pycache__/ma.cpython-312.pyc | Bin 0 -> 5121 bytes .../data/pass/__pycache__/mod.cpython-312.pyc | Bin 0 -> 3488 bytes .../data/pass/__pycache__/modules.cpython-312.pyc | Bin 0 -> 2248 bytes .../pass/__pycache__/multiarray.cpython-312.pyc | Bin 0 -> 3483 bytes .../__pycache__/ndarray_conversion.cpython-312.pyc | Bin 0 -> 3478 bytes .../pass/__pycache__/ndarray_misc.cpython-312.pyc | Bin 0 -> 9652 bytes .../ndarray_shape_manipulation.cpython-312.pyc | Bin 0 -> 1749 bytes .../data/pass/__pycache__/nditer.cpython-312.pyc | Bin 0 -> 365 bytes .../data/pass/__pycache__/numeric.cpython-312.pyc | Bin 0 -> 4676 bytes .../pass/__pycache__/numerictypes.cpython-312.pyc | Bin 0 -> 1089 bytes .../data/pass/__pycache__/random.cpython-312.pyc | Bin 0 -> 87027 bytes .../pass/__pycache__/recfunctions.cpython-312.pyc | Bin 0 -> 12154 bytes .../data/pass/__pycache__/scalars.cpython-312.pyc | Bin 0 -> 11894 bytes .../data/pass/__pycache__/shape.cpython-312.pyc | Bin 0 -> 1204 bytes .../data/pass/__pycache__/simple.cpython-312.pyc | Bin 0 -> 5037 bytes .../pass/__pycache__/simple_py3.cpython-312.pyc | Bin 0 -> 327 bytes .../pass/__pycache__/ufunc_config.cpython-312.pyc | Bin 0 -> 3548 bytes .../pass/__pycache__/ufunclike.cpython-312.pyc | Bin 0 -> 2672 bytes .../data/pass/__pycache__/ufuncs.cpython-312.pyc | Bin 0 -> 1069 bytes .../warnings_and_errors.cpython-312.pyc | Bin 0 -> 554 bytes .../numpy/typing/tests/data/pass/arithmetic.py | 612 ++ .../typing/tests/data/pass/array_constructors.py | 137 + .../numpy/typing/tests/data/pass/array_like.py | 43 + .../numpy/typing/tests/data/pass/arrayprint.py | 37 + .../numpy/typing/tests/data/pass/arrayterator.py | 27 + .../numpy/typing/tests/data/pass/bitwise_ops.py | 131 + .../numpy/typing/tests/data/pass/comparisons.py | 315 + .../numpy/typing/tests/data/pass/dtype.py | 57 + .../numpy/typing/tests/data/pass/einsumfunc.py | 36 + .../numpy/typing/tests/data/pass/flatiter.py | 19 + .../numpy/typing/tests/data/pass/fromnumeric.py | 272 + .../numpy/typing/tests/data/pass/index_tricks.py | 60 + .../numpy/typing/tests/data/pass/lib_user_array.py | 22 + .../numpy/typing/tests/data/pass/lib_utils.py | 19 + .../numpy/typing/tests/data/pass/lib_version.py | 18 + .../numpy/typing/tests/data/pass/literal.py | 51 + .../numpy/typing/tests/data/pass/ma.py | 174 + .../numpy/typing/tests/data/pass/mod.py | 149 + .../numpy/typing/tests/data/pass/modules.py | 45 + .../numpy/typing/tests/data/pass/multiarray.py | 76 + .../typing/tests/data/pass/ndarray_conversion.py | 87 + .../numpy/typing/tests/data/pass/ndarray_misc.py | 198 + .../tests/data/pass/ndarray_shape_manipulation.py | 47 + .../numpy/typing/tests/data/pass/nditer.py | 4 + .../numpy/typing/tests/data/pass/numeric.py | 95 + .../numpy/typing/tests/data/pass/numerictypes.py | 17 + .../numpy/typing/tests/data/pass/random.py | 1497 +++ .../numpy/typing/tests/data/pass/recfunctions.py | 161 + .../numpy/typing/tests/data/pass/scalars.py | 248 + .../numpy/typing/tests/data/pass/shape.py | 19 + .../numpy/typing/tests/data/pass/simple.py | 168 + .../numpy/typing/tests/data/pass/simple_py3.py | 6 + .../numpy/typing/tests/data/pass/ufunc_config.py | 64 + .../numpy/typing/tests/data/pass/ufunclike.py | 47 + .../numpy/typing/tests/data/pass/ufuncs.py | 16 + .../typing/tests/data/pass/warnings_and_errors.py | 6 + .../numpy/typing/tests/data/reveal/arithmetic.pyi | 720 ++ .../typing/tests/data/reveal/array_api_info.pyi | 70 + .../tests/data/reveal/array_constructors.pyi | 249 + .../numpy/typing/tests/data/reveal/arraypad.pyi | 22 + .../numpy/typing/tests/data/reveal/arrayprint.pyi | 25 + .../numpy/typing/tests/data/reveal/arraysetops.pyi | 74 + .../typing/tests/data/reveal/arrayterator.pyi | 27 + .../numpy/typing/tests/data/reveal/bitwise_ops.pyi | 168 + .../numpy/typing/tests/data/reveal/char.pyi | 224 + .../numpy/typing/tests/data/reveal/chararray.pyi | 137 + .../numpy/typing/tests/data/reveal/comparisons.pyi | 264 + .../numpy/typing/tests/data/reveal/constants.pyi | 14 + .../numpy/typing/tests/data/reveal/ctypeslib.pyi | 81 + .../numpy/typing/tests/data/reveal/datasource.pyi | 23 + .../numpy/typing/tests/data/reveal/dtype.pyi | 136 + .../numpy/typing/tests/data/reveal/einsumfunc.pyi | 39 + .../numpy/typing/tests/data/reveal/emath.pyi | 54 + .../numpy/typing/tests/data/reveal/fft.pyi | 37 + .../numpy/typing/tests/data/reveal/flatiter.pyi | 47 + .../numpy/typing/tests/data/reveal/fromnumeric.pyi | 347 + .../numpy/typing/tests/data/reveal/getlimits.pyi | 51 + .../numpy/typing/tests/data/reveal/histograms.pyi | 25 + .../typing/tests/data/reveal/index_tricks.pyi | 70 + .../typing/tests/data/reveal/lib_function_base.pyi | 213 + .../typing/tests/data/reveal/lib_polynomial.pyi | 144 + .../numpy/typing/tests/data/reveal/lib_utils.pyi | 17 + .../numpy/typing/tests/data/reveal/lib_version.pyi | 20 + .../numpy/typing/tests/data/reveal/linalg.pyi | 132 + .../numpy/typing/tests/data/reveal/ma.pyi | 369 + .../numpy/typing/tests/data/reveal/matrix.pyi | 73 + .../numpy/typing/tests/data/reveal/memmap.pyi | 19 + .../numpy/typing/tests/data/reveal/mod.pyi | 180 + .../numpy/typing/tests/data/reveal/modules.pyi | 51 + .../numpy/typing/tests/data/reveal/multiarray.pyi | 194 + .../typing/tests/data/reveal/nbit_base_example.pyi | 21 + .../tests/data/reveal/ndarray_assignability.pyi | 77 + .../tests/data/reveal/ndarray_conversion.pyi | 85 + .../typing/tests/data/reveal/ndarray_misc.pyi | 247 + .../data/reveal/ndarray_shape_manipulation.pyi | 39 + .../numpy/typing/tests/data/reveal/nditer.pyi | 49 + .../typing/tests/data/reveal/nested_sequence.pyi | 25 + .../numpy/typing/tests/data/reveal/npyio.pyi | 83 + .../numpy/typing/tests/data/reveal/numeric.pyi | 134 + .../typing/tests/data/reveal/numerictypes.pyi | 51 + .../tests/data/reveal/polynomial_polybase.pyi | 220 + .../tests/data/reveal/polynomial_polyutils.pyi | 219 + .../typing/tests/data/reveal/polynomial_series.pyi | 138 + .../numpy/typing/tests/data/reveal/random.pyi | 1546 +++ .../numpy/typing/tests/data/reveal/rec.pyi | 171 + .../numpy/typing/tests/data/reveal/scalars.pyi | 191 + .../numpy/typing/tests/data/reveal/shape.pyi | 13 + .../numpy/typing/tests/data/reveal/shape_base.pyi | 52 + .../typing/tests/data/reveal/stride_tricks.pyi | 27 + .../numpy/typing/tests/data/reveal/strings.pyi | 196 + .../numpy/typing/tests/data/reveal/testing.pyi | 198 + .../numpy/typing/tests/data/reveal/twodim_base.pyi | 145 + .../numpy/typing/tests/data/reveal/type_check.pyi | 67 + .../typing/tests/data/reveal/ufunc_config.pyi | 30 + .../numpy/typing/tests/data/reveal/ufunclike.pyi | 31 + .../numpy/typing/tests/data/reveal/ufuncs.pyi | 123 + .../tests/data/reveal/warnings_and_errors.pyi | 11 + .../numpy/typing/tests/test_isfile.py | 32 + .../numpy/typing/tests/test_runtime.py | 102 + .../numpy/typing/tests/test_typing.py | 205 + .../lib/python3.12/site-packages/numpy/version.py | 11 + .../lib/python3.12/site-packages/numpy/version.pyi | 18 + 1302 files changed, 333572 insertions(+) create mode 100644 .venv/lib/python3.12/site-packages/numpy/__config__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/__config__.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd create mode 100644 .venv/lib/python3.12/site-packages/numpy/__init__.pxd create mode 100644 .venv/lib/python3.12/site-packages/numpy/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/__init__.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/__pycache__/__config__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/__pycache__/_array_api_info.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/__pycache__/_configtool.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/__pycache__/_distributor_init.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/__pycache__/_expired_attrs_2_0.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/__pycache__/_globals.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/__pycache__/_pytesttester.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/__pycache__/conftest.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/__pycache__/dtypes.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/__pycache__/exceptions.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/__pycache__/matlib.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/__pycache__/version.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_array_api_info.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_array_api_info.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_configtool.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_configtool.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__init__.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_add_newdocs.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_add_newdocs_scalars.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_asarray.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_dtype.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_dtype_ctypes.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_exceptions.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_internal.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_machar.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_methods.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_string_helpers.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_type_aliases.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_ufunc_config.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/arrayprint.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/cversions.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/defchararray.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/einsumfunc.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/fromnumeric.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/function_base.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/getlimits.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/memmap.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/multiarray.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/numeric.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/numerictypes.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/overrides.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/printoptions.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/records.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/shape_base.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/strings.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/__pycache__/umath.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs_scalars.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs_scalars.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/_asarray.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/_asarray.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/_dtype.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/_dtype.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/_dtype_ctypes.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/_dtype_ctypes.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/_exceptions.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/_exceptions.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/_internal.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/_internal.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/_machar.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/_machar.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/_methods.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/_methods.pyi create mode 100755 .venv/lib/python3.12/site-packages/numpy/_core/_multiarray_tests.cpython-312-x86_64-linux-gnu.so create mode 100755 .venv/lib/python3.12/site-packages/numpy/_core/_multiarray_umath.cpython-312-x86_64-linux-gnu.so create mode 100755 .venv/lib/python3.12/site-packages/numpy/_core/_operand_flag_tests.cpython-312-x86_64-linux-gnu.so create mode 100755 .venv/lib/python3.12/site-packages/numpy/_core/_rational_tests.cpython-312-x86_64-linux-gnu.so create mode 100755 .venv/lib/python3.12/site-packages/numpy/_core/_simd.cpython-312-x86_64-linux-gnu.so create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/_simd.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/_string_helpers.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/_string_helpers.pyi create mode 100755 .venv/lib/python3.12/site-packages/numpy/_core/_struct_ufunc_tests.cpython-312-x86_64-linux-gnu.so create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/_type_aliases.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/_type_aliases.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/_ufunc_config.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/_ufunc_config.pyi create mode 100755 .venv/lib/python3.12/site-packages/numpy/_core/_umath_tests.cpython-312-x86_64-linux-gnu.so create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/arrayprint.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/arrayprint.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/cversions.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/defchararray.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/defchararray.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/einsumfunc.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/einsumfunc.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/function_base.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/function_base.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/getlimits.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/getlimits.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__multiarray_api.c create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__multiarray_api.h create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__ufunc_api.c create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__ufunc_api.h create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/_neighborhood_iterator_imp.h create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/_numpyconfig.h create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/_public_dtype_api_table.h create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/arrayobject.h create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/arrayscalars.h create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/dtype_api.h create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/halffloat.h create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/ndarrayobject.h create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/ndarraytypes.h create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_2_compat.h create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_2_complexcompat.h create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_3kcompat.h create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_common.h create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_cpu.h create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_endian.h create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_math.h create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_no_deprecated_api.h create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_os.h create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/numpyconfig.h create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/LICENSE.txt create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/bitgen.h create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/distributions.h create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/libdivide.h create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/ufuncobject.h create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/include/numpy/utils.h create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/lib/libnpymath.a create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/lib/npy-pkg-config/mlib.ini create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/lib/npy-pkg-config/npymath.ini create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/lib/pkgconfig/numpy.pc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/memmap.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/memmap.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/multiarray.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/multiarray.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/numeric.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/numeric.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/numerictypes.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/numerictypes.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/overrides.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/overrides.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/printoptions.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/printoptions.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/records.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/records.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/shape_base.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/shape_base.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/strings.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/strings.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/_locales.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/_natype.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test__exceptions.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_abc.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_api.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_argparse.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_array_api_info.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_array_coercion.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_array_interface.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_arraymethod.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_arrayobject.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_arrayprint.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_casting_floatingpoint_errors.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_casting_unittests.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_conversion_utils.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_cpu_dispatcher.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_cpu_features.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_custom_dtypes.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_cython.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_datetime.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_defchararray.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_deprecations.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_dlpack.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_dtype.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_einsum.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_errstate.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_extint128.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_function_base.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_getlimits.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_half.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_hashtable.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_indexerrors.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_indexing.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_item_selection.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_limited_api.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_longdouble.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_machar.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_mem_overlap.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_mem_policy.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_memmap.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_multiarray.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_multithreading.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_nditer.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_nep50_promotions.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_numeric.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_numerictypes.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_overrides.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_print.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_protocols.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_records.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_regression.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalar_ctors.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalar_methods.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarbuffer.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarinherit.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarmath.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarprint.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_shape_base.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_simd.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_simd_module.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_stringdtype.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_strings.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_ufunc.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_umath.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_umath_accuracy.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_umath_complex.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_unicode.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/_locales.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/_natype.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/data/astype_copy.pkl create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/data/generate_umath_validation_data.cpp create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/data/recarray_from_file.fits create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-README.txt create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arccos.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arccosh.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arcsin.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arcsinh.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arctan.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arctanh.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-cbrt.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-cos.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-cosh.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-exp.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-exp2.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-expm1.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log10.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log1p.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log2.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-sin.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-sinh.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-tan.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-tanh.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/__pycache__/setup.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/checks.pyx create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/meson.build create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/setup.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/__pycache__/setup.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/limited_api1.c create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/limited_api2.pyx create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/limited_api_latest.c create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/meson.build create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/setup.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test__exceptions.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_abc.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_api.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_argparse.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_array_api_info.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_array_coercion.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_array_interface.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_arraymethod.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_arrayobject.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_arrayprint.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_casting_floatingpoint_errors.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_casting_unittests.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_conversion_utils.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_cpu_dispatcher.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_cpu_features.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_custom_dtypes.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_cython.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_datetime.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_defchararray.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_deprecations.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_dlpack.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_dtype.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_einsum.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_errstate.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_extint128.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_function_base.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_getlimits.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_half.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_hashtable.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_indexerrors.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_indexing.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_item_selection.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_limited_api.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_longdouble.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_machar.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_mem_overlap.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_mem_policy.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_memmap.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_multiarray.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_multithreading.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_nditer.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_nep50_promotions.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_numeric.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_numerictypes.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_overrides.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_print.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_protocols.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_records.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_regression.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalar_ctors.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalar_methods.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarbuffer.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarinherit.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarmath.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarprint.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_shape_base.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_simd.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_simd_module.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_stringdtype.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_strings.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_ufunc.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_umath.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_umath_accuracy.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_umath_complex.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/tests/test_unicode.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/umath.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_core/umath.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_distributor_init.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_distributor_init.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_expired_attrs_2_0.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_expired_attrs_2_0.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_globals.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_globals.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_pyinstaller/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_pyinstaller/__init__.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_pyinstaller/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_pyinstaller/__pycache__/hook-numpy.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_pyinstaller/hook-numpy.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_pyinstaller/hook-numpy.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_pyinstaller/tests/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_pyinstaller/tests/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_pyinstaller/tests/__pycache__/pyinstaller-smoke.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_pyinstaller/tests/__pycache__/test_pyinstaller.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_pyinstaller/tests/pyinstaller-smoke.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_pyinstaller/tests/test_pyinstaller.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_pytesttester.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_pytesttester.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_typing/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_add_docstring.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_array_like.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_char_codes.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_dtype_like.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_extended_precision.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_nbit.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_nbit_base.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_nested_sequence.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_scalars.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_shape.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_ufunc.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_typing/_add_docstring.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_typing/_array_like.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_typing/_callable.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_typing/_char_codes.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_typing/_dtype_like.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_typing/_extended_precision.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_typing/_nbit.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_typing/_nbit_base.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_typing/_nbit_base.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_typing/_nested_sequence.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_typing/_scalars.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_typing/_shape.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_typing/_ufunc.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_typing/_ufunc.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_utils/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_utils/__init__.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_utils/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_utils/__pycache__/_convertions.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_utils/__pycache__/_inspect.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_utils/__pycache__/_pep440.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/_utils/_convertions.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_utils/_convertions.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_utils/_inspect.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_utils/_inspect.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/_utils/_pep440.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/_utils/_pep440.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/char/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/char/__init__.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/char/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/conftest.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/__init__.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/__pycache__/_dtype.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/__pycache__/_dtype_ctypes.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/__pycache__/_internal.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/__pycache__/_multiarray_umath.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/__pycache__/_utils.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/__pycache__/arrayprint.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/__pycache__/defchararray.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/__pycache__/einsumfunc.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/__pycache__/fromnumeric.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/__pycache__/function_base.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/__pycache__/getlimits.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/__pycache__/multiarray.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/__pycache__/numeric.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/__pycache__/numerictypes.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/__pycache__/overrides.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/__pycache__/records.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/__pycache__/shape_base.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/__pycache__/umath.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/_dtype.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/_dtype.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/_dtype_ctypes.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/_dtype_ctypes.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/_internal.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/_multiarray_umath.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/_utils.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/arrayprint.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/defchararray.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/einsumfunc.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/fromnumeric.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/function_base.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/getlimits.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/multiarray.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/numeric.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/numerictypes.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/overrides.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/overrides.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/records.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/shape_base.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/core/umath.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/ctypeslib/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/ctypeslib/__init__.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/ctypeslib/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/ctypeslib/__pycache__/_ctypeslib.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/ctypeslib/_ctypeslib.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/ctypeslib/_ctypeslib.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/doc/__pycache__/ufuncs.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/doc/ufuncs.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/dtypes.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/dtypes.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/exceptions.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/exceptions.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/__init__.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/__main__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/__main__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/__version__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/_isocbind.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/_src_pyf.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/auxfuncs.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/capi_maps.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/cb_rules.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/cfuncs.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/common_rules.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/crackfortran.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/diagnose.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/f2py2e.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/f90mod_rules.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/func2subr.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/rules.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/symbolic.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/use_rules.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/__version__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/__version__.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/_backends/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/_backends/__init__.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/_backends/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/_backends/__pycache__/_backend.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/_backends/__pycache__/_distutils.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/_backends/__pycache__/_meson.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/_backends/_backend.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/_backends/_backend.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/_backends/_distutils.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/_backends/_distutils.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/_backends/_meson.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/_backends/_meson.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/_backends/meson.build.template create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/_isocbind.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/_isocbind.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/_src_pyf.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/_src_pyf.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/auxfuncs.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/auxfuncs.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/capi_maps.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/capi_maps.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/cb_rules.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/cb_rules.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/cfuncs.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/cfuncs.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/common_rules.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/common_rules.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/crackfortran.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/crackfortran.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/diagnose.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/diagnose.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/f2py2e.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/f2py2e.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/f90mod_rules.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/f90mod_rules.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/func2subr.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/func2subr.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/rules.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/rules.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/setup.cfg create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/src/fortranobject.c create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/src/fortranobject.h create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/symbolic.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/symbolic.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_abstract_interface.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_array_from_pyobj.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_assumed_shape.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_block_docstring.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_callback.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_character.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_common.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_crackfortran.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_data.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_docs.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_f2cmap.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_f2py2e.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_isoc.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_kind.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_mixed.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_modules.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_parameter.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_pyf_src.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_quoted_character.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_regression.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_return_character.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_return_complex.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_return_integer.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_return_logical.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_return_real.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_routines.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_semicolon_split.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_size.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_string.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_symbolic.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_value_attrspec.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/util.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/abstract_interface/foo.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/assumed_shape/foo_free.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/assumed_shape/foo_mod.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/assumed_shape/foo_use.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/assumed_shape/precision.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/block_docstring/foo.f create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/callback/foo.f create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/callback/gh17797.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/callback/gh18335.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/callback/gh25211.f create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/callback/gh25211.pyf create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/callback/gh26681.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/cli/gh_22819.pyf create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/cli/hi77.f create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/cli/hiworld.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/common/block.f create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/common/gh19161.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/accesstype.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/common_with_division.f create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/data_common.f create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/data_multiplier.f create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/data_stmts.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/data_with_comments.f create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/foo_deps.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh15035.f create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh17859.f create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh22648.pyf create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh23533.f create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh23598.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh23879.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh27697.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh2848.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/operators.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/privatemod.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/publicmod.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/pubprivmod.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/unicode_comment.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/f2cmap/.f2py_f2cmap create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/isocintrin/isoCtests.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/kind/foo.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/mixed/foo.f create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/mixed/foo_fixed.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/mixed/foo_free.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/modules/gh25337/data.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/modules/gh25337/use_data.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/modules/module_data_docstring.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/modules/use_modules.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/negative_bounds/issue_20853.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/parameter/constant_array.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/parameter/constant_both.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/parameter/constant_compound.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/parameter/constant_integer.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/parameter/constant_non_compound.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/parameter/constant_real.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/quoted_character/foo.f create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/AB.inc create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/assignOnlyModule.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/datonly.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/f77comments.f create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/f77fixedform.f95 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/f90continuation.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/incfile.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/inout.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/mod_derived_types.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_character/foo77.f create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_character/foo90.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_complex/foo77.f create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_complex/foo90.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_integer/foo77.f create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_integer/foo90.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_logical/foo77.f create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_logical/foo90.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_real/foo77.f create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_real/foo90.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/routines/funcfortranname.f create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/routines/funcfortranname.pyf create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/routines/subrout.f create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/routines/subrout.pyf create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/size/foo.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/char.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/fixed_string.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/gh24008.f create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/gh24662.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/gh25286.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/gh25286.pyf create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/gh25286_bc.pyf create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/scalar_string.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/string.f create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/src/value_attrspec/gh21665.f90 create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_abstract_interface.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_array_from_pyobj.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_assumed_shape.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_block_docstring.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_callback.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_character.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_common.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_crackfortran.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_data.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_docs.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_f2cmap.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_f2py2e.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_isoc.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_kind.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_mixed.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_modules.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_parameter.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_pyf_src.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_quoted_character.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_regression.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_return_character.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_return_complex.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_return_integer.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_return_logical.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_return_real.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_routines.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_semicolon_split.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_size.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_string.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_symbolic.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/test_value_attrspec.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/tests/util.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/use_rules.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/f2py/use_rules.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/fft/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/fft/__init__.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/fft/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/fft/__pycache__/_helper.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/fft/__pycache__/_pocketfft.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/fft/__pycache__/helper.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/fft/_helper.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/fft/_helper.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/fft/_pocketfft.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/fft/_pocketfft.pyi create mode 100755 .venv/lib/python3.12/site-packages/numpy/fft/_pocketfft_umath.cpython-312-x86_64-linux-gnu.so create mode 100644 .venv/lib/python3.12/site-packages/numpy/fft/helper.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/fft/helper.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/fft/tests/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/fft/tests/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/fft/tests/__pycache__/test_helper.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/fft/tests/__pycache__/test_pocketfft.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/fft/tests/test_helper.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/fft/tests/test_pocketfft.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__init__.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_array_utils_impl.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_arraypad_impl.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_arraysetops_impl.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_arrayterator_impl.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_datasource.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_format_impl.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_function_base_impl.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_histograms_impl.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_index_tricks_impl.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_iotools.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_nanfunctions_impl.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_npyio_impl.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_polynomial_impl.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_scimath_impl.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_shape_base_impl.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_stride_tricks_impl.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_twodim_base_impl.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_type_check_impl.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_ufunclike_impl.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_user_array_impl.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_utils_impl.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_version.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/array_utils.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/format.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/introspect.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/mixins.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/npyio.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/recfunctions.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/scimath.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/stride_tricks.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/__pycache__/user_array.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_array_utils_impl.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_array_utils_impl.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_arraypad_impl.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_arraypad_impl.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_arraysetops_impl.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_arraysetops_impl.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_arrayterator_impl.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_arrayterator_impl.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_datasource.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_datasource.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_format_impl.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_format_impl.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_function_base_impl.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_function_base_impl.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_histograms_impl.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_histograms_impl.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_index_tricks_impl.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_index_tricks_impl.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_iotools.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_iotools.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_nanfunctions_impl.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_nanfunctions_impl.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_npyio_impl.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_npyio_impl.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_polynomial_impl.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_polynomial_impl.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_scimath_impl.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_scimath_impl.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_shape_base_impl.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_shape_base_impl.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_stride_tricks_impl.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_stride_tricks_impl.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_twodim_base_impl.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_twodim_base_impl.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_type_check_impl.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_type_check_impl.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_ufunclike_impl.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_ufunclike_impl.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_user_array_impl.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_user_array_impl.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_utils_impl.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_utils_impl.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_version.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/_version.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/array_utils.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/array_utils.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/format.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/format.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/introspect.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/introspect.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/mixins.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/mixins.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/npyio.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/npyio.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/recfunctions.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/recfunctions.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/scimath.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/scimath.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/stride_tricks.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/stride_tricks.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test__datasource.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test__iotools.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test__version.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_array_utils.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_arraypad.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_arraysetops.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_arrayterator.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_format.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_function_base.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_histograms.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_index_tricks.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_io.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_loadtxt.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_mixins.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_nanfunctions.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_packbits.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_polynomial.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_recfunctions.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_regression.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_shape_base.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_stride_tricks.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_twodim_base.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_type_check.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_ufunclike.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_utils.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/data/py2-np0-objarr.npy create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/data/py2-objarr.npy create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/data/py2-objarr.npz create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/data/py3-objarr.npy create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/data/py3-objarr.npz create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/data/python3.npy create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/data/win64python2.npy create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/test__datasource.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/test__iotools.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/test__version.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/test_array_utils.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/test_arraypad.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/test_arraysetops.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/test_arrayterator.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/test_format.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/test_function_base.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/test_histograms.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/test_index_tricks.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/test_io.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/test_loadtxt.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/test_mixins.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/test_nanfunctions.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/test_packbits.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/test_polynomial.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/test_recfunctions.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/test_regression.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/test_shape_base.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/test_stride_tricks.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/test_twodim_base.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/test_type_check.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/test_ufunclike.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/tests/test_utils.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/user_array.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/lib/user_array.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/linalg/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/linalg/__init__.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/linalg/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/linalg/__pycache__/_linalg.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/linalg/__pycache__/linalg.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/linalg/_linalg.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/linalg/_linalg.pyi create mode 100755 .venv/lib/python3.12/site-packages/numpy/linalg/_umath_linalg.cpython-312-x86_64-linux-gnu.so create mode 100644 .venv/lib/python3.12/site-packages/numpy/linalg/_umath_linalg.pyi create mode 100755 .venv/lib/python3.12/site-packages/numpy/linalg/lapack_lite.cpython-312-x86_64-linux-gnu.so create mode 100644 .venv/lib/python3.12/site-packages/numpy/linalg/lapack_lite.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/linalg/linalg.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/linalg/linalg.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/linalg/tests/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/linalg/tests/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/linalg/tests/__pycache__/test_deprecations.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/linalg/tests/__pycache__/test_linalg.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/linalg/tests/__pycache__/test_regression.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/linalg/tests/test_deprecations.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/linalg/tests/test_linalg.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/linalg/tests/test_regression.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/API_CHANGES.txt create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/LICENSE create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/README.rst create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/__init__.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/__pycache__/core.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/__pycache__/extras.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/__pycache__/mrecords.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/__pycache__/testutils.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/core.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/core.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/extras.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/extras.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/mrecords.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/mrecords.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/tests/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_arrayobject.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_core.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_deprecations.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_extras.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_mrecords.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_old_ma.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_regression.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_subclassing.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/tests/test_arrayobject.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/tests/test_core.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/tests/test_deprecations.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/tests/test_extras.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/tests/test_mrecords.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/tests/test_old_ma.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/tests/test_regression.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/tests/test_subclassing.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/ma/testutils.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/matlib.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/matlib.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/matrixlib/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/matrixlib/__init__.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/matrixlib/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/matrixlib/__pycache__/defmatrix.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/matrixlib/defmatrix.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/matrixlib/defmatrix.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_defmatrix.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_interaction.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_masked_matrix.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_matrix_linalg.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_multiarray.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_numeric.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_regression.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_defmatrix.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_interaction.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_masked_matrix.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_matrix_linalg.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_multiarray.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_numeric.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_regression.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/__init__.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/_polybase.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/chebyshev.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/hermite.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/hermite_e.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/laguerre.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/legendre.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/polynomial.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/polyutils.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/_polybase.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/_polybase.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/_polytypes.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/chebyshev.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/chebyshev.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/hermite.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/hermite.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/hermite_e.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/hermite_e.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/laguerre.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/laguerre.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/legendre.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/legendre.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/polynomial.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/polynomial.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/polyutils.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/polyutils.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/tests/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_chebyshev.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_classes.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_hermite.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_hermite_e.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_laguerre.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_legendre.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_polynomial.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_polyutils.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_printing.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_symbol.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_chebyshev.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_classes.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_hermite.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_hermite_e.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_laguerre.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_legendre.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_polynomial.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_polyutils.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_printing.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_symbol.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/py.typed create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/LICENSE.md create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/__init__.pxd create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/__init__.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/__pycache__/_pickle.cpython-312.pyc create mode 100755 .venv/lib/python3.12/site-packages/numpy/random/_bounded_integers.cpython-312-x86_64-linux-gnu.so create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/_bounded_integers.pxd create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/_bounded_integers.pyi create mode 100755 .venv/lib/python3.12/site-packages/numpy/random/_common.cpython-312-x86_64-linux-gnu.so create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/_common.pxd create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/_common.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/_examples/cffi/__pycache__/extending.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/_examples/cffi/__pycache__/parse.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/_examples/cffi/extending.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/_examples/cffi/parse.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/_examples/cython/extending.pyx create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/_examples/cython/extending_distributions.pyx create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/_examples/cython/meson.build create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/_examples/numba/__pycache__/extending.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/_examples/numba/__pycache__/extending_distributions.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/_examples/numba/extending.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/_examples/numba/extending_distributions.py create mode 100755 .venv/lib/python3.12/site-packages/numpy/random/_generator.cpython-312-x86_64-linux-gnu.so create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/_generator.pyi create mode 100755 .venv/lib/python3.12/site-packages/numpy/random/_mt19937.cpython-312-x86_64-linux-gnu.so create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/_mt19937.pyi create mode 100755 .venv/lib/python3.12/site-packages/numpy/random/_pcg64.cpython-312-x86_64-linux-gnu.so create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/_pcg64.pyi create mode 100755 .venv/lib/python3.12/site-packages/numpy/random/_philox.cpython-312-x86_64-linux-gnu.so create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/_philox.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/_pickle.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/_pickle.pyi create mode 100755 .venv/lib/python3.12/site-packages/numpy/random/_sfc64.cpython-312-x86_64-linux-gnu.so create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/_sfc64.pyi create mode 100755 .venv/lib/python3.12/site-packages/numpy/random/bit_generator.cpython-312-x86_64-linux-gnu.so create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/bit_generator.pxd create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/bit_generator.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/c_distributions.pxd create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/lib/libnpyrandom.a create mode 100755 .venv/lib/python3.12/site-packages/numpy/random/mtrand.cpython-312-x86_64-linux-gnu.so create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/mtrand.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_direct.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_extending.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_generator_mt19937.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_generator_mt19937_regressions.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_random.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_randomstate.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_randomstate_regression.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_regression.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_seed_sequence.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_smoke.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/data/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/data/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/data/generator_pcg64_np121.pkl.gz create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/data/generator_pcg64_np126.pkl.gz create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/data/mt19937-testset-1.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/data/mt19937-testset-2.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/data/pcg64-testset-1.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/data/pcg64-testset-2.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/data/pcg64dxsm-testset-1.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/data/pcg64dxsm-testset-2.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/data/philox-testset-1.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/data/philox-testset-2.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/data/sfc64-testset-1.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/data/sfc64-testset-2.csv create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/data/sfc64_np126.pkl.gz create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/test_direct.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/test_extending.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/test_generator_mt19937.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/test_generator_mt19937_regressions.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/test_random.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/test_randomstate.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/test_randomstate_regression.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/test_regression.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/test_seed_sequence.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/random/tests/test_smoke.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/rec/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/rec/__init__.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/rec/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/strings/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/strings/__init__.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/strings/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/testing/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/testing/__init__.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/testing/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/testing/__pycache__/overrides.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/testing/__pycache__/print_coercion_tables.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/testing/_private/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/testing/_private/__init__.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/testing/_private/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/testing/_private/__pycache__/extbuild.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/testing/_private/__pycache__/utils.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/testing/_private/extbuild.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/testing/_private/extbuild.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/testing/_private/utils.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/testing/_private/utils.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/testing/overrides.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/testing/overrides.pyi create mode 100755 .venv/lib/python3.12/site-packages/numpy/testing/print_coercion_tables.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/testing/print_coercion_tables.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/testing/tests/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/testing/tests/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/testing/tests/__pycache__/test_utils.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/testing/tests/test_utils.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/tests/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/tests/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test__all__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_configtool.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_ctypeslib.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_lazyloading.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_matlib.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_numpy_config.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_numpy_version.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_public_api.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_reloading.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_scripts.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_warnings.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/tests/test__all__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/tests/test_configtool.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/tests/test_ctypeslib.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/tests/test_lazyloading.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/tests/test_matlib.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/tests/test_numpy_config.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/tests/test_numpy_version.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/tests/test_public_api.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/tests/test_reloading.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/tests/test_scripts.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/tests/test_warnings.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/__pycache__/mypy_plugin.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/mypy_plugin.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/__init__.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/__pycache__/__init__.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/__pycache__/test_isfile.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/__pycache__/test_runtime.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/__pycache__/test_typing.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/arithmetic.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/array_constructors.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/array_like.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/array_pad.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/arrayprint.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/arrayterator.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/bitwise_ops.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/char.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/chararray.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/comparisons.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/constants.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/datasource.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/dtype.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/einsumfunc.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/flatiter.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/fromnumeric.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/histograms.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/index_tricks.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/lib_function_base.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/lib_polynomial.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/lib_utils.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/lib_version.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/linalg.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/ma.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/memmap.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/modules.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/multiarray.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/ndarray.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/ndarray_misc.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/nditer.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/nested_sequence.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/npyio.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/numerictypes.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/random.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/rec.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/scalars.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/shape.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/shape_base.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/stride_tricks.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/strings.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/testing.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/twodim_base.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/type_check.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/ufunc_config.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/ufunclike.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/ufuncs.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/warnings_and_errors.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/misc/extended_precision.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/mypy.ini create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/arithmetic.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/array_constructors.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/array_like.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/arrayprint.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/arrayterator.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/bitwise_ops.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/comparisons.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/dtype.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/einsumfunc.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/flatiter.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/fromnumeric.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/index_tricks.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/lib_user_array.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/lib_utils.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/lib_version.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/literal.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ma.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/mod.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/modules.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/multiarray.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ndarray_conversion.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ndarray_misc.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ndarray_shape_manipulation.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/nditer.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/numeric.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/numerictypes.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/random.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/recfunctions.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/scalars.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/shape.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/simple.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/simple_py3.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ufunc_config.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ufunclike.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ufuncs.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/warnings_and_errors.cpython-312.pyc create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/arithmetic.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/array_constructors.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/array_like.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/arrayprint.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/arrayterator.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/bitwise_ops.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/comparisons.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/dtype.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/einsumfunc.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/flatiter.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/fromnumeric.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/index_tricks.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/lib_user_array.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/lib_utils.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/lib_version.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/literal.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ma.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/mod.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/modules.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/multiarray.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ndarray_conversion.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ndarray_misc.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ndarray_shape_manipulation.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/nditer.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/numeric.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/numerictypes.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/random.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/recfunctions.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/scalars.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/shape.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/simple.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/simple_py3.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ufunc_config.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ufunclike.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ufuncs.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/warnings_and_errors.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/arithmetic.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/array_api_info.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/array_constructors.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/arraypad.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/arrayprint.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/arraysetops.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/arrayterator.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/bitwise_ops.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/char.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/chararray.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/comparisons.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/constants.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ctypeslib.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/datasource.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/dtype.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/einsumfunc.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/emath.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/fft.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/flatiter.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/fromnumeric.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/getlimits.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/histograms.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/index_tricks.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/lib_function_base.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/lib_polynomial.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/lib_utils.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/lib_version.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/linalg.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ma.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/matrix.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/memmap.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/mod.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/modules.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/multiarray.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/nbit_base_example.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ndarray_assignability.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ndarray_conversion.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ndarray_misc.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/nditer.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/nested_sequence.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/npyio.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/numeric.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/numerictypes.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/polynomial_polybase.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/polynomial_polyutils.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/polynomial_series.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/random.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/rec.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/scalars.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/shape.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/shape_base.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/stride_tricks.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/strings.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/testing.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/twodim_base.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/type_check.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ufunc_config.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ufunclike.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ufuncs.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/warnings_and_errors.pyi create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/test_isfile.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/test_runtime.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/typing/tests/test_typing.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/version.py create mode 100644 .venv/lib/python3.12/site-packages/numpy/version.pyi (limited to '.venv/lib/python3.12/site-packages/numpy') diff --git a/.venv/lib/python3.12/site-packages/numpy/__config__.py b/.venv/lib/python3.12/site-packages/numpy/__config__.py new file mode 100644 index 0000000..c02dc19 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/__config__.py @@ -0,0 +1,170 @@ +# This file is generated by numpy's build process +# It contains system_info results at the time of building this package. +from enum import Enum +from numpy._core._multiarray_umath import ( + __cpu_features__, + __cpu_baseline__, + __cpu_dispatch__, +) + +__all__ = ["show_config"] +_built_with_meson = True + + +class DisplayModes(Enum): + stdout = "stdout" + dicts = "dicts" + + +def _cleanup(d): + """ + Removes empty values in a `dict` recursively + This ensures we remove values that Meson could not provide to CONFIG + """ + if isinstance(d, dict): + return {k: _cleanup(v) for k, v in d.items() if v and _cleanup(v)} + else: + return d + + +CONFIG = _cleanup( + { + "Compilers": { + "c": { + "name": "gcc", + "linker": r"ld.bfd", + "version": "14.2.1", + "commands": r"cc", + "args": r"", + "linker args": r"", + }, + "cython": { + "name": "cython", + "linker": r"cython", + "version": "3.1.2", + "commands": r"cython", + "args": r"", + "linker args": r"", + }, + "c++": { + "name": "gcc", + "linker": r"ld.bfd", + "version": "14.2.1", + "commands": r"c++", + "args": r"", + "linker args": r"", + }, + }, + "Machine Information": { + "host": { + "cpu": "x86_64", + "family": "x86_64", + "endian": "little", + "system": "linux", + }, + "build": { + "cpu": "x86_64", + "family": "x86_64", + "endian": "little", + "system": "linux", + }, + "cross-compiled": bool("False".lower().replace("false", "")), + }, + "Build Dependencies": { + "blas": { + "name": "scipy-openblas", + "found": bool("True".lower().replace("false", "")), + "version": "0.3.30", + "detection method": "pkgconfig", + "include directory": r"/opt/_internal/cpython-3.12.11/lib/python3.12/site-packages/scipy_openblas64/include", + "lib directory": r"/opt/_internal/cpython-3.12.11/lib/python3.12/site-packages/scipy_openblas64/lib", + "openblas configuration": r"OpenBLAS 0.3.30 USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell MAX_THREADS=64", + "pc file directory": r"/project/.openblas", + }, + "lapack": { + "name": "scipy-openblas", + "found": bool("True".lower().replace("false", "")), + "version": "0.3.30", + "detection method": "pkgconfig", + "include directory": r"/opt/_internal/cpython-3.12.11/lib/python3.12/site-packages/scipy_openblas64/include", + "lib directory": r"/opt/_internal/cpython-3.12.11/lib/python3.12/site-packages/scipy_openblas64/lib", + "openblas configuration": r"OpenBLAS 0.3.30 USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell MAX_THREADS=64", + "pc file directory": r"/project/.openblas", + }, + }, + "Python Information": { + "path": r"/tmp/build-env-cy0nuk24/bin/python", + "version": "3.12", + }, + "SIMD Extensions": { + "baseline": __cpu_baseline__, + "found": [ + feature for feature in __cpu_dispatch__ if __cpu_features__[feature] + ], + "not found": [ + feature for feature in __cpu_dispatch__ if not __cpu_features__[feature] + ], + }, + } +) + + +def _check_pyyaml(): + import yaml + + return yaml + + +def show(mode=DisplayModes.stdout.value): + """ + Show libraries and system information on which NumPy was built + and is being used + + Parameters + ---------- + mode : {`'stdout'`, `'dicts'`}, optional. + Indicates how to display the config information. + `'stdout'` prints to console, `'dicts'` returns a dictionary + of the configuration. + + Returns + ------- + out : {`dict`, `None`} + If mode is `'dicts'`, a dict is returned, else None + + See Also + -------- + get_include : Returns the directory containing NumPy C + header files. + + Notes + ----- + 1. The `'stdout'` mode will give more readable + output if ``pyyaml`` is installed + + """ + if mode == DisplayModes.stdout.value: + try: # Non-standard library, check import + yaml = _check_pyyaml() + + print(yaml.dump(CONFIG)) + except ModuleNotFoundError: + import warnings + import json + + warnings.warn("Install `pyyaml` for better output", stacklevel=1) + print(json.dumps(CONFIG, indent=2)) + elif mode == DisplayModes.dicts.value: + return CONFIG + else: + raise AttributeError( + f"Invalid `mode`, use one of: {', '.join([e.value for e in DisplayModes])}" + ) + + +def show_config(mode=DisplayModes.stdout.value): + return show(mode) + + +show_config.__doc__ = show.__doc__ +show_config.__module__ = "numpy" diff --git a/.venv/lib/python3.12/site-packages/numpy/__config__.pyi b/.venv/lib/python3.12/site-packages/numpy/__config__.pyi new file mode 100644 index 0000000..b59bdcd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/__config__.pyi @@ -0,0 +1,102 @@ +from enum import Enum +from types import ModuleType +from typing import Final, NotRequired, TypedDict, overload, type_check_only +from typing import Literal as L + +_CompilerConfigDictValue = TypedDict( + "_CompilerConfigDictValue", + { + "name": str, + "linker": str, + "version": str, + "commands": str, + "args": str, + "linker args": str, + }, +) +_CompilerConfigDict = TypedDict( + "_CompilerConfigDict", + { + "c": _CompilerConfigDictValue, + "cython": _CompilerConfigDictValue, + "c++": _CompilerConfigDictValue, + }, +) +_MachineInformationDict = TypedDict( + "_MachineInformationDict", + { + "host": _MachineInformationDictValue, + "build": _MachineInformationDictValue, + "cross-compiled": NotRequired[L[True]], + }, +) + +@type_check_only +class _MachineInformationDictValue(TypedDict): + cpu: str + family: str + endian: L["little", "big"] + system: str + +_BuildDependenciesDictValue = TypedDict( + "_BuildDependenciesDictValue", + { + "name": str, + "found": NotRequired[L[True]], + "version": str, + "include directory": str, + "lib directory": str, + "openblas configuration": str, + "pc file directory": str, + }, +) + +class _BuildDependenciesDict(TypedDict): + blas: _BuildDependenciesDictValue + lapack: _BuildDependenciesDictValue + +class _PythonInformationDict(TypedDict): + path: str + version: str + +_SIMDExtensionsDict = TypedDict( + "_SIMDExtensionsDict", + { + "baseline": list[str], + "found": list[str], + "not found": list[str], + }, +) + +_ConfigDict = TypedDict( + "_ConfigDict", + { + "Compilers": _CompilerConfigDict, + "Machine Information": _MachineInformationDict, + "Build Dependencies": _BuildDependenciesDict, + "Python Information": _PythonInformationDict, + "SIMD Extensions": _SIMDExtensionsDict, + }, +) + +### + +__all__ = ["show_config"] + +CONFIG: Final[_ConfigDict] = ... + +class DisplayModes(Enum): + stdout = "stdout" + dicts = "dicts" + +def _check_pyyaml() -> ModuleType: ... + +@overload +def show(mode: L["stdout"] = "stdout") -> None: ... +@overload +def show(mode: L["dicts"]) -> _ConfigDict: ... + +@overload +def show_config(mode: L["stdout"] = "stdout") -> None: ... +@overload +def show_config(mode: L["dicts"]) -> _ConfigDict: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd b/.venv/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd new file mode 100644 index 0000000..86c91cf --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/__init__.cython-30.pxd @@ -0,0 +1,1241 @@ +# NumPy static imports for Cython >= 3.0 +# +# If any of the PyArray_* functions are called, import_array must be +# called first. This is done automatically by Cython 3.0+ if a call +# is not detected inside of the module. +# +# Author: Dag Sverre Seljebotn +# + +from cpython.ref cimport Py_INCREF +from cpython.object cimport PyObject, PyTypeObject, PyObject_TypeCheck +cimport libc.stdio as stdio + + +cdef extern from *: + # Leave a marker that the NumPy declarations came from NumPy itself and not from Cython. + # See https://github.com/cython/cython/issues/3573 + """ + /* Using NumPy API declarations from "numpy/__init__.cython-30.pxd" */ + """ + + +cdef extern from "numpy/arrayobject.h": + # It would be nice to use size_t and ssize_t, but ssize_t has special + # implicit conversion rules, so just use "long". + # Note: The actual type only matters for Cython promotion, so long + # is closer than int, but could lead to incorrect promotion. + # (Not to worrying, and always the status-quo.) + ctypedef signed long npy_intp + ctypedef unsigned long npy_uintp + + ctypedef unsigned char npy_bool + + ctypedef signed char npy_byte + ctypedef signed short npy_short + ctypedef signed int npy_int + ctypedef signed long npy_long + ctypedef signed long long npy_longlong + + ctypedef unsigned char npy_ubyte + ctypedef unsigned short npy_ushort + ctypedef unsigned int npy_uint + ctypedef unsigned long npy_ulong + ctypedef unsigned long long npy_ulonglong + + ctypedef float npy_float + ctypedef double npy_double + ctypedef long double npy_longdouble + + ctypedef signed char npy_int8 + ctypedef signed short npy_int16 + ctypedef signed int npy_int32 + ctypedef signed long long npy_int64 + + ctypedef unsigned char npy_uint8 + ctypedef unsigned short npy_uint16 + ctypedef unsigned int npy_uint32 + ctypedef unsigned long long npy_uint64 + + ctypedef float npy_float32 + ctypedef double npy_float64 + ctypedef long double npy_float80 + ctypedef long double npy_float96 + ctypedef long double npy_float128 + + ctypedef struct npy_cfloat: + pass + + ctypedef struct npy_cdouble: + pass + + ctypedef struct npy_clongdouble: + pass + + ctypedef struct npy_complex64: + pass + + ctypedef struct npy_complex128: + pass + + ctypedef struct npy_complex160: + pass + + ctypedef struct npy_complex192: + pass + + ctypedef struct npy_complex256: + pass + + ctypedef struct PyArray_Dims: + npy_intp *ptr + int len + + + cdef enum NPY_TYPES: + NPY_BOOL + NPY_BYTE + NPY_UBYTE + NPY_SHORT + NPY_USHORT + NPY_INT + NPY_UINT + NPY_LONG + NPY_ULONG + NPY_LONGLONG + NPY_ULONGLONG + NPY_FLOAT + NPY_DOUBLE + NPY_LONGDOUBLE + NPY_CFLOAT + NPY_CDOUBLE + NPY_CLONGDOUBLE + NPY_OBJECT + NPY_STRING + NPY_UNICODE + NPY_VSTRING + NPY_VOID + NPY_DATETIME + NPY_TIMEDELTA + NPY_NTYPES_LEGACY + NPY_NOTYPE + + NPY_INT8 + NPY_INT16 + NPY_INT32 + NPY_INT64 + NPY_UINT8 + NPY_UINT16 + NPY_UINT32 + NPY_UINT64 + NPY_FLOAT16 + NPY_FLOAT32 + NPY_FLOAT64 + NPY_FLOAT80 + NPY_FLOAT96 + NPY_FLOAT128 + NPY_COMPLEX64 + NPY_COMPLEX128 + NPY_COMPLEX160 + NPY_COMPLEX192 + NPY_COMPLEX256 + + NPY_INTP + NPY_UINTP + NPY_DEFAULT_INT # Not a compile time constant (normally)! + + ctypedef enum NPY_ORDER: + NPY_ANYORDER + NPY_CORDER + NPY_FORTRANORDER + NPY_KEEPORDER + + ctypedef enum NPY_CASTING: + NPY_NO_CASTING + NPY_EQUIV_CASTING + NPY_SAFE_CASTING + NPY_SAME_KIND_CASTING + NPY_UNSAFE_CASTING + + ctypedef enum NPY_CLIPMODE: + NPY_CLIP + NPY_WRAP + NPY_RAISE + + ctypedef enum NPY_SCALARKIND: + NPY_NOSCALAR, + NPY_BOOL_SCALAR, + NPY_INTPOS_SCALAR, + NPY_INTNEG_SCALAR, + NPY_FLOAT_SCALAR, + NPY_COMPLEX_SCALAR, + NPY_OBJECT_SCALAR + + ctypedef enum NPY_SORTKIND: + NPY_QUICKSORT + NPY_HEAPSORT + NPY_MERGESORT + + ctypedef enum NPY_SEARCHSIDE: + NPY_SEARCHLEFT + NPY_SEARCHRIGHT + + enum: + NPY_ARRAY_C_CONTIGUOUS + NPY_ARRAY_F_CONTIGUOUS + NPY_ARRAY_OWNDATA + NPY_ARRAY_FORCECAST + NPY_ARRAY_ENSURECOPY + NPY_ARRAY_ENSUREARRAY + NPY_ARRAY_ELEMENTSTRIDES + NPY_ARRAY_ALIGNED + NPY_ARRAY_NOTSWAPPED + NPY_ARRAY_WRITEABLE + NPY_ARRAY_WRITEBACKIFCOPY + + NPY_ARRAY_BEHAVED + NPY_ARRAY_BEHAVED_NS + NPY_ARRAY_CARRAY + NPY_ARRAY_CARRAY_RO + NPY_ARRAY_FARRAY + NPY_ARRAY_FARRAY_RO + NPY_ARRAY_DEFAULT + + NPY_ARRAY_IN_ARRAY + NPY_ARRAY_OUT_ARRAY + NPY_ARRAY_INOUT_ARRAY + NPY_ARRAY_IN_FARRAY + NPY_ARRAY_OUT_FARRAY + NPY_ARRAY_INOUT_FARRAY + + NPY_ARRAY_UPDATE_ALL + + cdef enum: + NPY_MAXDIMS # 64 on NumPy 2.x and 32 on NumPy 1.x + NPY_RAVEL_AXIS # Used for functions like PyArray_Mean + + ctypedef void (*PyArray_VectorUnaryFunc)(void *, void *, npy_intp, void *, void *) + + ctypedef struct PyArray_ArrayDescr: + # shape is a tuple, but Cython doesn't support "tuple shape" + # inside a non-PyObject declaration, so we have to declare it + # as just a PyObject*. + PyObject* shape + + ctypedef struct PyArray_Descr: + pass + + ctypedef class numpy.dtype [object PyArray_Descr, check_size ignore]: + # Use PyDataType_* macros when possible, however there are no macros + # for accessing some of the fields, so some are defined. + cdef PyTypeObject* typeobj + cdef char kind + cdef char type + # Numpy sometimes mutates this without warning (e.g. it'll + # sometimes change "|" to "<" in shared dtype objects on + # little-endian machines). If this matters to you, use + # PyArray_IsNativeByteOrder(dtype.byteorder) instead of + # directly accessing this field. + cdef char byteorder + cdef int type_num + + @property + cdef inline npy_intp itemsize(self) noexcept nogil: + return PyDataType_ELSIZE(self) + + @property + cdef inline npy_intp alignment(self) noexcept nogil: + return PyDataType_ALIGNMENT(self) + + # Use fields/names with care as they may be NULL. You must check + # for this using PyDataType_HASFIELDS. + @property + cdef inline object fields(self): + return PyDataType_FIELDS(self) + + @property + cdef inline tuple names(self): + return PyDataType_NAMES(self) + + # Use PyDataType_HASSUBARRAY to test whether this field is + # valid (the pointer can be NULL). Most users should access + # this field via the inline helper method PyDataType_SHAPE. + @property + cdef inline PyArray_ArrayDescr* subarray(self) noexcept nogil: + return PyDataType_SUBARRAY(self) + + @property + cdef inline npy_uint64 flags(self) noexcept nogil: + """The data types flags.""" + return PyDataType_FLAGS(self) + + + ctypedef class numpy.flatiter [object PyArrayIterObject, check_size ignore]: + # Use through macros + pass + + ctypedef class numpy.broadcast [object PyArrayMultiIterObject, check_size ignore]: + + @property + cdef inline int numiter(self) noexcept nogil: + """The number of arrays that need to be broadcast to the same shape.""" + return PyArray_MultiIter_NUMITER(self) + + @property + cdef inline npy_intp size(self) noexcept nogil: + """The total broadcasted size.""" + return PyArray_MultiIter_SIZE(self) + + @property + cdef inline npy_intp index(self) noexcept nogil: + """The current (1-d) index into the broadcasted result.""" + return PyArray_MultiIter_INDEX(self) + + @property + cdef inline int nd(self) noexcept nogil: + """The number of dimensions in the broadcasted result.""" + return PyArray_MultiIter_NDIM(self) + + @property + cdef inline npy_intp* dimensions(self) noexcept nogil: + """The shape of the broadcasted result.""" + return PyArray_MultiIter_DIMS(self) + + @property + cdef inline void** iters(self) noexcept nogil: + """An array of iterator objects that holds the iterators for the arrays to be broadcast together. + On return, the iterators are adjusted for broadcasting.""" + return PyArray_MultiIter_ITERS(self) + + + ctypedef struct PyArrayObject: + # For use in situations where ndarray can't replace PyArrayObject*, + # like PyArrayObject**. + pass + + ctypedef class numpy.ndarray [object PyArrayObject, check_size ignore]: + cdef __cythonbufferdefaults__ = {"mode": "strided"} + + # NOTE: no field declarations since direct access is deprecated since NumPy 1.7 + # Instead, we use properties that map to the corresponding C-API functions. + + @property + cdef inline PyObject* base(self) noexcept nogil: + """Returns a borrowed reference to the object owning the data/memory. + """ + return PyArray_BASE(self) + + @property + cdef inline dtype descr(self): + """Returns an owned reference to the dtype of the array. + """ + return PyArray_DESCR(self) + + @property + cdef inline int ndim(self) noexcept nogil: + """Returns the number of dimensions in the array. + """ + return PyArray_NDIM(self) + + @property + cdef inline npy_intp *shape(self) noexcept nogil: + """Returns a pointer to the dimensions/shape of the array. + The number of elements matches the number of dimensions of the array (ndim). + Can return NULL for 0-dimensional arrays. + """ + return PyArray_DIMS(self) + + @property + cdef inline npy_intp *strides(self) noexcept nogil: + """Returns a pointer to the strides of the array. + The number of elements matches the number of dimensions of the array (ndim). + """ + return PyArray_STRIDES(self) + + @property + cdef inline npy_intp size(self) noexcept nogil: + """Returns the total size (in number of elements) of the array. + """ + return PyArray_SIZE(self) + + @property + cdef inline char* data(self) noexcept nogil: + """The pointer to the data buffer as a char*. + This is provided for legacy reasons to avoid direct struct field access. + For new code that needs this access, you probably want to cast the result + of `PyArray_DATA()` instead, which returns a 'void*'. + """ + return PyArray_BYTES(self) + + + int _import_array() except -1 + # A second definition so _import_array isn't marked as used when we use it here. + # Do not use - subject to change any time. + int __pyx_import_array "_import_array"() except -1 + + # + # Macros from ndarrayobject.h + # + bint PyArray_CHKFLAGS(ndarray m, int flags) nogil + bint PyArray_IS_C_CONTIGUOUS(ndarray arr) nogil + bint PyArray_IS_F_CONTIGUOUS(ndarray arr) nogil + bint PyArray_ISCONTIGUOUS(ndarray m) nogil + bint PyArray_ISWRITEABLE(ndarray m) nogil + bint PyArray_ISALIGNED(ndarray m) nogil + + int PyArray_NDIM(ndarray) nogil + bint PyArray_ISONESEGMENT(ndarray) nogil + bint PyArray_ISFORTRAN(ndarray) nogil + int PyArray_FORTRANIF(ndarray) nogil + + void* PyArray_DATA(ndarray) nogil + char* PyArray_BYTES(ndarray) nogil + + npy_intp* PyArray_DIMS(ndarray) nogil + npy_intp* PyArray_STRIDES(ndarray) nogil + npy_intp PyArray_DIM(ndarray, size_t) nogil + npy_intp PyArray_STRIDE(ndarray, size_t) nogil + + PyObject *PyArray_BASE(ndarray) nogil # returns borrowed reference! + PyArray_Descr *PyArray_DESCR(ndarray) nogil # returns borrowed reference to dtype! + PyArray_Descr *PyArray_DTYPE(ndarray) nogil # returns borrowed reference to dtype! NP 1.7+ alias for descr. + int PyArray_FLAGS(ndarray) nogil + void PyArray_CLEARFLAGS(ndarray, int flags) nogil # Added in NumPy 1.7 + void PyArray_ENABLEFLAGS(ndarray, int flags) nogil # Added in NumPy 1.7 + npy_intp PyArray_ITEMSIZE(ndarray) nogil + int PyArray_TYPE(ndarray arr) nogil + + object PyArray_GETITEM(ndarray arr, void *itemptr) + int PyArray_SETITEM(ndarray arr, void *itemptr, object obj) except -1 + + bint PyTypeNum_ISBOOL(int) nogil + bint PyTypeNum_ISUNSIGNED(int) nogil + bint PyTypeNum_ISSIGNED(int) nogil + bint PyTypeNum_ISINTEGER(int) nogil + bint PyTypeNum_ISFLOAT(int) nogil + bint PyTypeNum_ISNUMBER(int) nogil + bint PyTypeNum_ISSTRING(int) nogil + bint PyTypeNum_ISCOMPLEX(int) nogil + bint PyTypeNum_ISFLEXIBLE(int) nogil + bint PyTypeNum_ISUSERDEF(int) nogil + bint PyTypeNum_ISEXTENDED(int) nogil + bint PyTypeNum_ISOBJECT(int) nogil + + npy_intp PyDataType_ELSIZE(dtype) nogil + npy_intp PyDataType_ALIGNMENT(dtype) nogil + PyObject* PyDataType_METADATA(dtype) nogil + PyArray_ArrayDescr* PyDataType_SUBARRAY(dtype) nogil + PyObject* PyDataType_NAMES(dtype) nogil + PyObject* PyDataType_FIELDS(dtype) nogil + + bint PyDataType_ISBOOL(dtype) nogil + bint PyDataType_ISUNSIGNED(dtype) nogil + bint PyDataType_ISSIGNED(dtype) nogil + bint PyDataType_ISINTEGER(dtype) nogil + bint PyDataType_ISFLOAT(dtype) nogil + bint PyDataType_ISNUMBER(dtype) nogil + bint PyDataType_ISSTRING(dtype) nogil + bint PyDataType_ISCOMPLEX(dtype) nogil + bint PyDataType_ISFLEXIBLE(dtype) nogil + bint PyDataType_ISUSERDEF(dtype) nogil + bint PyDataType_ISEXTENDED(dtype) nogil + bint PyDataType_ISOBJECT(dtype) nogil + bint PyDataType_HASFIELDS(dtype) nogil + bint PyDataType_HASSUBARRAY(dtype) nogil + npy_uint64 PyDataType_FLAGS(dtype) nogil + + bint PyArray_ISBOOL(ndarray) nogil + bint PyArray_ISUNSIGNED(ndarray) nogil + bint PyArray_ISSIGNED(ndarray) nogil + bint PyArray_ISINTEGER(ndarray) nogil + bint PyArray_ISFLOAT(ndarray) nogil + bint PyArray_ISNUMBER(ndarray) nogil + bint PyArray_ISSTRING(ndarray) nogil + bint PyArray_ISCOMPLEX(ndarray) nogil + bint PyArray_ISFLEXIBLE(ndarray) nogil + bint PyArray_ISUSERDEF(ndarray) nogil + bint PyArray_ISEXTENDED(ndarray) nogil + bint PyArray_ISOBJECT(ndarray) nogil + bint PyArray_HASFIELDS(ndarray) nogil + + bint PyArray_ISVARIABLE(ndarray) nogil + + bint PyArray_SAFEALIGNEDCOPY(ndarray) nogil + bint PyArray_ISNBO(char) nogil # works on ndarray.byteorder + bint PyArray_IsNativeByteOrder(char) nogil # works on ndarray.byteorder + bint PyArray_ISNOTSWAPPED(ndarray) nogil + bint PyArray_ISBYTESWAPPED(ndarray) nogil + + bint PyArray_FLAGSWAP(ndarray, int) nogil + + bint PyArray_ISCARRAY(ndarray) nogil + bint PyArray_ISCARRAY_RO(ndarray) nogil + bint PyArray_ISFARRAY(ndarray) nogil + bint PyArray_ISFARRAY_RO(ndarray) nogil + bint PyArray_ISBEHAVED(ndarray) nogil + bint PyArray_ISBEHAVED_RO(ndarray) nogil + + + bint PyDataType_ISNOTSWAPPED(dtype) nogil + bint PyDataType_ISBYTESWAPPED(dtype) nogil + + bint PyArray_DescrCheck(object) + + bint PyArray_Check(object) + bint PyArray_CheckExact(object) + + # Cannot be supported due to out arg: + # bint PyArray_HasArrayInterfaceType(object, dtype, object, object&) + # bint PyArray_HasArrayInterface(op, out) + + + bint PyArray_IsZeroDim(object) + # Cannot be supported due to ## ## in macro: + # bint PyArray_IsScalar(object, verbatim work) + bint PyArray_CheckScalar(object) + bint PyArray_IsPythonNumber(object) + bint PyArray_IsPythonScalar(object) + bint PyArray_IsAnyScalar(object) + bint PyArray_CheckAnyScalar(object) + + ndarray PyArray_GETCONTIGUOUS(ndarray) + bint PyArray_SAMESHAPE(ndarray, ndarray) nogil + npy_intp PyArray_SIZE(ndarray) nogil + npy_intp PyArray_NBYTES(ndarray) nogil + + object PyArray_FROM_O(object) + object PyArray_FROM_OF(object m, int flags) + object PyArray_FROM_OT(object m, int type) + object PyArray_FROM_OTF(object m, int type, int flags) + object PyArray_FROMANY(object m, int type, int min, int max, int flags) + object PyArray_ZEROS(int nd, npy_intp* dims, int type, int fortran) + object PyArray_EMPTY(int nd, npy_intp* dims, int type, int fortran) + void PyArray_FILLWBYTE(ndarray, int val) + object PyArray_ContiguousFromAny(op, int, int min_depth, int max_depth) + unsigned char PyArray_EquivArrTypes(ndarray a1, ndarray a2) + bint PyArray_EquivByteorders(int b1, int b2) nogil + object PyArray_SimpleNew(int nd, npy_intp* dims, int typenum) + object PyArray_SimpleNewFromData(int nd, npy_intp* dims, int typenum, void* data) + #object PyArray_SimpleNewFromDescr(int nd, npy_intp* dims, dtype descr) + object PyArray_ToScalar(void* data, ndarray arr) + + void* PyArray_GETPTR1(ndarray m, npy_intp i) nogil + void* PyArray_GETPTR2(ndarray m, npy_intp i, npy_intp j) nogil + void* PyArray_GETPTR3(ndarray m, npy_intp i, npy_intp j, npy_intp k) nogil + void* PyArray_GETPTR4(ndarray m, npy_intp i, npy_intp j, npy_intp k, npy_intp l) nogil + + # Cannot be supported due to out arg + # void PyArray_DESCR_REPLACE(descr) + + + object PyArray_Copy(ndarray) + object PyArray_FromObject(object op, int type, int min_depth, int max_depth) + object PyArray_ContiguousFromObject(object op, int type, int min_depth, int max_depth) + object PyArray_CopyFromObject(object op, int type, int min_depth, int max_depth) + + object PyArray_Cast(ndarray mp, int type_num) + object PyArray_Take(ndarray ap, object items, int axis) + object PyArray_Put(ndarray ap, object items, object values) + + void PyArray_ITER_RESET(flatiter it) nogil + void PyArray_ITER_NEXT(flatiter it) nogil + void PyArray_ITER_GOTO(flatiter it, npy_intp* destination) nogil + void PyArray_ITER_GOTO1D(flatiter it, npy_intp ind) nogil + void* PyArray_ITER_DATA(flatiter it) nogil + bint PyArray_ITER_NOTDONE(flatiter it) nogil + + void PyArray_MultiIter_RESET(broadcast multi) nogil + void PyArray_MultiIter_NEXT(broadcast multi) nogil + void PyArray_MultiIter_GOTO(broadcast multi, npy_intp dest) nogil + void PyArray_MultiIter_GOTO1D(broadcast multi, npy_intp ind) nogil + void* PyArray_MultiIter_DATA(broadcast multi, npy_intp i) nogil + void PyArray_MultiIter_NEXTi(broadcast multi, npy_intp i) nogil + bint PyArray_MultiIter_NOTDONE(broadcast multi) nogil + npy_intp PyArray_MultiIter_SIZE(broadcast multi) nogil + int PyArray_MultiIter_NDIM(broadcast multi) nogil + npy_intp PyArray_MultiIter_INDEX(broadcast multi) nogil + int PyArray_MultiIter_NUMITER(broadcast multi) nogil + npy_intp* PyArray_MultiIter_DIMS(broadcast multi) nogil + void** PyArray_MultiIter_ITERS(broadcast multi) nogil + + # Functions from __multiarray_api.h + + # Functions taking dtype and returning object/ndarray are disabled + # for now as they steal dtype references. I'm conservative and disable + # more than is probably needed until it can be checked further. + int PyArray_INCREF (ndarray) except * # uses PyArray_Item_INCREF... + int PyArray_XDECREF (ndarray) except * # uses PyArray_Item_DECREF... + dtype PyArray_DescrFromType (int) + object PyArray_TypeObjectFromType (int) + char * PyArray_Zero (ndarray) + char * PyArray_One (ndarray) + #object PyArray_CastToType (ndarray, dtype, int) + int PyArray_CanCastSafely (int, int) # writes errors + npy_bool PyArray_CanCastTo (dtype, dtype) # writes errors + int PyArray_ObjectType (object, int) except 0 + dtype PyArray_DescrFromObject (object, dtype) + #ndarray* PyArray_ConvertToCommonType (object, int *) + dtype PyArray_DescrFromScalar (object) + dtype PyArray_DescrFromTypeObject (object) + npy_intp PyArray_Size (object) + #object PyArray_Scalar (void *, dtype, object) + #object PyArray_FromScalar (object, dtype) + void PyArray_ScalarAsCtype (object, void *) + #int PyArray_CastScalarToCtype (object, void *, dtype) + #int PyArray_CastScalarDirect (object, dtype, void *, int) + #PyArray_VectorUnaryFunc * PyArray_GetCastFunc (dtype, int) + #object PyArray_FromAny (object, dtype, int, int, int, object) + object PyArray_EnsureArray (object) + object PyArray_EnsureAnyArray (object) + #object PyArray_FromFile (stdio.FILE *, dtype, npy_intp, char *) + #object PyArray_FromString (char *, npy_intp, dtype, npy_intp, char *) + #object PyArray_FromBuffer (object, dtype, npy_intp, npy_intp) + #object PyArray_FromIter (object, dtype, npy_intp) + object PyArray_Return (ndarray) + #object PyArray_GetField (ndarray, dtype, int) + #int PyArray_SetField (ndarray, dtype, int, object) except -1 + object PyArray_Byteswap (ndarray, npy_bool) + object PyArray_Resize (ndarray, PyArray_Dims *, int, NPY_ORDER) + int PyArray_CopyInto (ndarray, ndarray) except -1 + int PyArray_CopyAnyInto (ndarray, ndarray) except -1 + int PyArray_CopyObject (ndarray, object) except -1 + object PyArray_NewCopy (ndarray, NPY_ORDER) + object PyArray_ToList (ndarray) + object PyArray_ToString (ndarray, NPY_ORDER) + int PyArray_ToFile (ndarray, stdio.FILE *, char *, char *) except -1 + int PyArray_Dump (object, object, int) except -1 + object PyArray_Dumps (object, int) + int PyArray_ValidType (int) # Cannot error + void PyArray_UpdateFlags (ndarray, int) + object PyArray_New (type, int, npy_intp *, int, npy_intp *, void *, int, int, object) + #object PyArray_NewFromDescr (type, dtype, int, npy_intp *, npy_intp *, void *, int, object) + #dtype PyArray_DescrNew (dtype) + dtype PyArray_DescrNewFromType (int) + double PyArray_GetPriority (object, double) # clears errors as of 1.25 + object PyArray_IterNew (object) + object PyArray_MultiIterNew (int, ...) + + int PyArray_PyIntAsInt (object) except? -1 + npy_intp PyArray_PyIntAsIntp (object) + int PyArray_Broadcast (broadcast) except -1 + int PyArray_FillWithScalar (ndarray, object) except -1 + npy_bool PyArray_CheckStrides (int, int, npy_intp, npy_intp, npy_intp *, npy_intp *) + dtype PyArray_DescrNewByteorder (dtype, char) + object PyArray_IterAllButAxis (object, int *) + #object PyArray_CheckFromAny (object, dtype, int, int, int, object) + #object PyArray_FromArray (ndarray, dtype, int) + object PyArray_FromInterface (object) + object PyArray_FromStructInterface (object) + #object PyArray_FromArrayAttr (object, dtype, object) + #NPY_SCALARKIND PyArray_ScalarKind (int, ndarray*) + int PyArray_CanCoerceScalar (int, int, NPY_SCALARKIND) + npy_bool PyArray_CanCastScalar (type, type) + int PyArray_RemoveSmallest (broadcast) except -1 + int PyArray_ElementStrides (object) + void PyArray_Item_INCREF (char *, dtype) except * + void PyArray_Item_XDECREF (char *, dtype) except * + object PyArray_Transpose (ndarray, PyArray_Dims *) + object PyArray_TakeFrom (ndarray, object, int, ndarray, NPY_CLIPMODE) + object PyArray_PutTo (ndarray, object, object, NPY_CLIPMODE) + object PyArray_PutMask (ndarray, object, object) + object PyArray_Repeat (ndarray, object, int) + object PyArray_Choose (ndarray, object, ndarray, NPY_CLIPMODE) + int PyArray_Sort (ndarray, int, NPY_SORTKIND) except -1 + object PyArray_ArgSort (ndarray, int, NPY_SORTKIND) + object PyArray_SearchSorted (ndarray, object, NPY_SEARCHSIDE, PyObject *) + object PyArray_ArgMax (ndarray, int, ndarray) + object PyArray_ArgMin (ndarray, int, ndarray) + object PyArray_Reshape (ndarray, object) + object PyArray_Newshape (ndarray, PyArray_Dims *, NPY_ORDER) + object PyArray_Squeeze (ndarray) + #object PyArray_View (ndarray, dtype, type) + object PyArray_SwapAxes (ndarray, int, int) + object PyArray_Max (ndarray, int, ndarray) + object PyArray_Min (ndarray, int, ndarray) + object PyArray_Ptp (ndarray, int, ndarray) + object PyArray_Mean (ndarray, int, int, ndarray) + object PyArray_Trace (ndarray, int, int, int, int, ndarray) + object PyArray_Diagonal (ndarray, int, int, int) + object PyArray_Clip (ndarray, object, object, ndarray) + object PyArray_Conjugate (ndarray, ndarray) + object PyArray_Nonzero (ndarray) + object PyArray_Std (ndarray, int, int, ndarray, int) + object PyArray_Sum (ndarray, int, int, ndarray) + object PyArray_CumSum (ndarray, int, int, ndarray) + object PyArray_Prod (ndarray, int, int, ndarray) + object PyArray_CumProd (ndarray, int, int, ndarray) + object PyArray_All (ndarray, int, ndarray) + object PyArray_Any (ndarray, int, ndarray) + object PyArray_Compress (ndarray, object, int, ndarray) + object PyArray_Flatten (ndarray, NPY_ORDER) + object PyArray_Ravel (ndarray, NPY_ORDER) + npy_intp PyArray_MultiplyList (npy_intp *, int) + int PyArray_MultiplyIntList (int *, int) + void * PyArray_GetPtr (ndarray, npy_intp*) + int PyArray_CompareLists (npy_intp *, npy_intp *, int) + #int PyArray_AsCArray (object*, void *, npy_intp *, int, dtype) + int PyArray_Free (object, void *) + #int PyArray_Converter (object, object*) + int PyArray_IntpFromSequence (object, npy_intp *, int) except -1 + object PyArray_Concatenate (object, int) + object PyArray_InnerProduct (object, object) + object PyArray_MatrixProduct (object, object) + object PyArray_Correlate (object, object, int) + #int PyArray_DescrConverter (object, dtype*) except 0 + #int PyArray_DescrConverter2 (object, dtype*) except 0 + int PyArray_IntpConverter (object, PyArray_Dims *) except 0 + #int PyArray_BufferConverter (object, chunk) except 0 + int PyArray_AxisConverter (object, int *) except 0 + int PyArray_BoolConverter (object, npy_bool *) except 0 + int PyArray_ByteorderConverter (object, char *) except 0 + int PyArray_OrderConverter (object, NPY_ORDER *) except 0 + unsigned char PyArray_EquivTypes (dtype, dtype) # clears errors + #object PyArray_Zeros (int, npy_intp *, dtype, int) + #object PyArray_Empty (int, npy_intp *, dtype, int) + object PyArray_Where (object, object, object) + object PyArray_Arange (double, double, double, int) + #object PyArray_ArangeObj (object, object, object, dtype) + int PyArray_SortkindConverter (object, NPY_SORTKIND *) except 0 + object PyArray_LexSort (object, int) + object PyArray_Round (ndarray, int, ndarray) + unsigned char PyArray_EquivTypenums (int, int) + int PyArray_RegisterDataType (dtype) except -1 + int PyArray_RegisterCastFunc (dtype, int, PyArray_VectorUnaryFunc *) except -1 + int PyArray_RegisterCanCast (dtype, int, NPY_SCALARKIND) except -1 + #void PyArray_InitArrFuncs (PyArray_ArrFuncs *) + object PyArray_IntTupleFromIntp (int, npy_intp *) + int PyArray_ClipmodeConverter (object, NPY_CLIPMODE *) except 0 + #int PyArray_OutputConverter (object, ndarray*) except 0 + object PyArray_BroadcastToShape (object, npy_intp *, int) + #int PyArray_DescrAlignConverter (object, dtype*) except 0 + #int PyArray_DescrAlignConverter2 (object, dtype*) except 0 + int PyArray_SearchsideConverter (object, void *) except 0 + object PyArray_CheckAxis (ndarray, int *, int) + npy_intp PyArray_OverflowMultiplyList (npy_intp *, int) + int PyArray_SetBaseObject(ndarray, base) except -1 # NOTE: steals a reference to base! Use "set_array_base()" instead. + + # The memory handler functions require the NumPy 1.22 API + # and may require defining NPY_TARGET_VERSION + ctypedef struct PyDataMemAllocator: + void *ctx + void* (*malloc) (void *ctx, size_t size) + void* (*calloc) (void *ctx, size_t nelem, size_t elsize) + void* (*realloc) (void *ctx, void *ptr, size_t new_size) + void (*free) (void *ctx, void *ptr, size_t size) + + ctypedef struct PyDataMem_Handler: + char* name + npy_uint8 version + PyDataMemAllocator allocator + + object PyDataMem_SetHandler(object handler) + object PyDataMem_GetHandler() + + # additional datetime related functions are defined below + + +# Typedefs that matches the runtime dtype objects in +# the numpy module. + +# The ones that are commented out needs an IFDEF function +# in Cython to enable them only on the right systems. + +ctypedef npy_int8 int8_t +ctypedef npy_int16 int16_t +ctypedef npy_int32 int32_t +ctypedef npy_int64 int64_t + +ctypedef npy_uint8 uint8_t +ctypedef npy_uint16 uint16_t +ctypedef npy_uint32 uint32_t +ctypedef npy_uint64 uint64_t + +ctypedef npy_float32 float32_t +ctypedef npy_float64 float64_t +#ctypedef npy_float80 float80_t +#ctypedef npy_float128 float128_t + +ctypedef float complex complex64_t +ctypedef double complex complex128_t + +ctypedef npy_longlong longlong_t +ctypedef npy_ulonglong ulonglong_t + +ctypedef npy_intp intp_t +ctypedef npy_uintp uintp_t + +ctypedef npy_double float_t +ctypedef npy_double double_t +ctypedef npy_longdouble longdouble_t + +ctypedef float complex cfloat_t +ctypedef double complex cdouble_t +ctypedef double complex complex_t +ctypedef long double complex clongdouble_t + +cdef inline object PyArray_MultiIterNew1(a): + return PyArray_MultiIterNew(1, a) + +cdef inline object PyArray_MultiIterNew2(a, b): + return PyArray_MultiIterNew(2, a, b) + +cdef inline object PyArray_MultiIterNew3(a, b, c): + return PyArray_MultiIterNew(3, a, b, c) + +cdef inline object PyArray_MultiIterNew4(a, b, c, d): + return PyArray_MultiIterNew(4, a, b, c, d) + +cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): + return PyArray_MultiIterNew(5, a, b, c, d, e) + +cdef inline tuple PyDataType_SHAPE(dtype d): + if PyDataType_HASSUBARRAY(d): + return d.subarray.shape + else: + return () + + +cdef extern from "numpy/ndarrayobject.h": + PyTypeObject PyTimedeltaArrType_Type + PyTypeObject PyDatetimeArrType_Type + ctypedef int64_t npy_timedelta + ctypedef int64_t npy_datetime + +cdef extern from "numpy/ndarraytypes.h": + ctypedef struct PyArray_DatetimeMetaData: + NPY_DATETIMEUNIT base + int64_t num + + ctypedef struct npy_datetimestruct: + int64_t year + int32_t month, day, hour, min, sec, us, ps, as + + # Iterator API added in v1.6 + # + # These don't match the definition in the C API because Cython can't wrap + # function pointers that return functions. + # https://github.com/cython/cython/issues/6720 + ctypedef int (*NpyIter_IterNextFunc "NpyIter_IterNextFunc *")(NpyIter* it) noexcept nogil + ctypedef void (*NpyIter_GetMultiIndexFunc "NpyIter_GetMultiIndexFunc *")(NpyIter* it, npy_intp* outcoords) noexcept nogil + + +cdef extern from "numpy/arrayscalars.h": + + # abstract types + ctypedef class numpy.generic [object PyObject]: + pass + ctypedef class numpy.number [object PyObject]: + pass + ctypedef class numpy.integer [object PyObject]: + pass + ctypedef class numpy.signedinteger [object PyObject]: + pass + ctypedef class numpy.unsignedinteger [object PyObject]: + pass + ctypedef class numpy.inexact [object PyObject]: + pass + ctypedef class numpy.floating [object PyObject]: + pass + ctypedef class numpy.complexfloating [object PyObject]: + pass + ctypedef class numpy.flexible [object PyObject]: + pass + ctypedef class numpy.character [object PyObject]: + pass + + ctypedef struct PyDatetimeScalarObject: + # PyObject_HEAD + npy_datetime obval + PyArray_DatetimeMetaData obmeta + + ctypedef struct PyTimedeltaScalarObject: + # PyObject_HEAD + npy_timedelta obval + PyArray_DatetimeMetaData obmeta + + ctypedef enum NPY_DATETIMEUNIT: + NPY_FR_Y + NPY_FR_M + NPY_FR_W + NPY_FR_D + NPY_FR_B + NPY_FR_h + NPY_FR_m + NPY_FR_s + NPY_FR_ms + NPY_FR_us + NPY_FR_ns + NPY_FR_ps + NPY_FR_fs + NPY_FR_as + NPY_FR_GENERIC + + +cdef extern from "numpy/arrayobject.h": + # These are part of the C-API defined in `__multiarray_api.h` + + # NumPy internal definitions in datetime_strings.c: + int get_datetime_iso_8601_strlen "NpyDatetime_GetDatetimeISO8601StrLen" ( + int local, NPY_DATETIMEUNIT base) + int make_iso_8601_datetime "NpyDatetime_MakeISO8601Datetime" ( + npy_datetimestruct *dts, char *outstr, npy_intp outlen, + int local, int utc, NPY_DATETIMEUNIT base, int tzoffset, + NPY_CASTING casting) except -1 + + # NumPy internal definition in datetime.c: + # May return 1 to indicate that object does not appear to be a datetime + # (returns 0 on success). + int convert_pydatetime_to_datetimestruct "NpyDatetime_ConvertPyDateTimeToDatetimeStruct" ( + PyObject *obj, npy_datetimestruct *out, + NPY_DATETIMEUNIT *out_bestunit, int apply_tzinfo) except -1 + int convert_datetime64_to_datetimestruct "NpyDatetime_ConvertDatetime64ToDatetimeStruct" ( + PyArray_DatetimeMetaData *meta, npy_datetime dt, + npy_datetimestruct *out) except -1 + int convert_datetimestruct_to_datetime64 "NpyDatetime_ConvertDatetimeStructToDatetime64"( + PyArray_DatetimeMetaData *meta, const npy_datetimestruct *dts, + npy_datetime *out) except -1 + + +# +# ufunc API +# + +cdef extern from "numpy/ufuncobject.h": + + ctypedef void (*PyUFuncGenericFunction) (char **, npy_intp *, npy_intp *, void *) + + ctypedef class numpy.ufunc [object PyUFuncObject, check_size ignore]: + cdef: + int nin, nout, nargs + int identity + PyUFuncGenericFunction *functions + void **data + int ntypes + int check_return + char *name + char *types + char *doc + void *ptr + PyObject *obj + PyObject *userloops + + cdef enum: + PyUFunc_Zero + PyUFunc_One + PyUFunc_None + # deprecated + UFUNC_FPE_DIVIDEBYZERO + UFUNC_FPE_OVERFLOW + UFUNC_FPE_UNDERFLOW + UFUNC_FPE_INVALID + # use these instead + NPY_FPE_DIVIDEBYZERO + NPY_FPE_OVERFLOW + NPY_FPE_UNDERFLOW + NPY_FPE_INVALID + + + object PyUFunc_FromFuncAndData(PyUFuncGenericFunction *, + void **, char *, int, int, int, int, char *, char *, int) + int PyUFunc_RegisterLoopForType(ufunc, int, + PyUFuncGenericFunction, int *, void *) except -1 + void PyUFunc_f_f_As_d_d \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_d_d \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_f_f \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_g_g \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_F_F_As_D_D \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_F_F \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_D_D \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_G_G \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_O_O \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_ff_f_As_dd_d \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_ff_f \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_dd_d \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_gg_g \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_FF_F_As_DD_D \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_DD_D \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_FF_F \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_GG_G \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_OO_O \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_O_O_method \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_OO_O_method \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_On_Om \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_clearfperr() + int PyUFunc_getfperr() + int PyUFunc_ReplaceLoopBySignature \ + (ufunc, PyUFuncGenericFunction, int *, PyUFuncGenericFunction *) + object PyUFunc_FromFuncAndDataAndSignature \ + (PyUFuncGenericFunction *, void **, char *, int, int, int, + int, char *, char *, int, char *) + + int _import_umath() except -1 + +cdef inline void set_array_base(ndarray arr, object base) except *: + Py_INCREF(base) # important to do this before stealing the reference below! + PyArray_SetBaseObject(arr, base) + +cdef inline object get_array_base(ndarray arr): + base = PyArray_BASE(arr) + if base is NULL: + return None + return base + +# Versions of the import_* functions which are more suitable for +# Cython code. +cdef inline int import_array() except -1: + try: + __pyx_import_array() + except Exception: + raise ImportError("numpy._core.multiarray failed to import") + +cdef inline int import_umath() except -1: + try: + _import_umath() + except Exception: + raise ImportError("numpy._core.umath failed to import") + +cdef inline int import_ufunc() except -1: + try: + _import_umath() + except Exception: + raise ImportError("numpy._core.umath failed to import") + + +cdef inline bint is_timedelta64_object(object obj) noexcept: + """ + Cython equivalent of `isinstance(obj, np.timedelta64)` + + Parameters + ---------- + obj : object + + Returns + ------- + bool + """ + return PyObject_TypeCheck(obj, &PyTimedeltaArrType_Type) + + +cdef inline bint is_datetime64_object(object obj) noexcept: + """ + Cython equivalent of `isinstance(obj, np.datetime64)` + + Parameters + ---------- + obj : object + + Returns + ------- + bool + """ + return PyObject_TypeCheck(obj, &PyDatetimeArrType_Type) + + +cdef inline npy_datetime get_datetime64_value(object obj) noexcept nogil: + """ + returns the int64 value underlying scalar numpy datetime64 object + + Note that to interpret this as a datetime, the corresponding unit is + also needed. That can be found using `get_datetime64_unit`. + """ + return (obj).obval + + +cdef inline npy_timedelta get_timedelta64_value(object obj) noexcept nogil: + """ + returns the int64 value underlying scalar numpy timedelta64 object + """ + return (obj).obval + + +cdef inline NPY_DATETIMEUNIT get_datetime64_unit(object obj) noexcept nogil: + """ + returns the unit part of the dtype for a numpy datetime64 object. + """ + return (obj).obmeta.base + + +cdef extern from "numpy/arrayobject.h": + + ctypedef struct NpyIter: + pass + + cdef enum: + NPY_FAIL + NPY_SUCCEED + + cdef enum: + # Track an index representing C order + NPY_ITER_C_INDEX + # Track an index representing Fortran order + NPY_ITER_F_INDEX + # Track a multi-index + NPY_ITER_MULTI_INDEX + # User code external to the iterator does the 1-dimensional innermost loop + NPY_ITER_EXTERNAL_LOOP + # Convert all the operands to a common data type + NPY_ITER_COMMON_DTYPE + # Operands may hold references, requiring API access during iteration + NPY_ITER_REFS_OK + # Zero-sized operands should be permitted, iteration checks IterSize for 0 + NPY_ITER_ZEROSIZE_OK + # Permits reductions (size-0 stride with dimension size > 1) + NPY_ITER_REDUCE_OK + # Enables sub-range iteration + NPY_ITER_RANGED + # Enables buffering + NPY_ITER_BUFFERED + # When buffering is enabled, grows the inner loop if possible + NPY_ITER_GROWINNER + # Delay allocation of buffers until first Reset* call + NPY_ITER_DELAY_BUFALLOC + # When NPY_KEEPORDER is specified, disable reversing negative-stride axes + NPY_ITER_DONT_NEGATE_STRIDES + NPY_ITER_COPY_IF_OVERLAP + # The operand will be read from and written to + NPY_ITER_READWRITE + # The operand will only be read from + NPY_ITER_READONLY + # The operand will only be written to + NPY_ITER_WRITEONLY + # The operand's data must be in native byte order + NPY_ITER_NBO + # The operand's data must be aligned + NPY_ITER_ALIGNED + # The operand's data must be contiguous (within the inner loop) + NPY_ITER_CONTIG + # The operand may be copied to satisfy requirements + NPY_ITER_COPY + # The operand may be copied with WRITEBACKIFCOPY to satisfy requirements + NPY_ITER_UPDATEIFCOPY + # Allocate the operand if it is NULL + NPY_ITER_ALLOCATE + # If an operand is allocated, don't use any subtype + NPY_ITER_NO_SUBTYPE + # This is a virtual array slot, operand is NULL but temporary data is there + NPY_ITER_VIRTUAL + # Require that the dimension match the iterator dimensions exactly + NPY_ITER_NO_BROADCAST + # A mask is being used on this array, affects buffer -> array copy + NPY_ITER_WRITEMASKED + # This array is the mask for all WRITEMASKED operands + NPY_ITER_ARRAYMASK + # Assume iterator order data access for COPY_IF_OVERLAP + NPY_ITER_OVERLAP_ASSUME_ELEMENTWISE + + # construction and destruction functions + NpyIter* NpyIter_New(ndarray arr, npy_uint32 flags, NPY_ORDER order, + NPY_CASTING casting, dtype datatype) except NULL + NpyIter* NpyIter_MultiNew(npy_intp nop, PyArrayObject** op, npy_uint32 flags, + NPY_ORDER order, NPY_CASTING casting, npy_uint32* + op_flags, PyArray_Descr** op_dtypes) except NULL + NpyIter* NpyIter_AdvancedNew(npy_intp nop, PyArrayObject** op, + npy_uint32 flags, NPY_ORDER order, + NPY_CASTING casting, npy_uint32* op_flags, + PyArray_Descr** op_dtypes, int oa_ndim, + int** op_axes, const npy_intp* itershape, + npy_intp buffersize) except NULL + NpyIter* NpyIter_Copy(NpyIter* it) except NULL + int NpyIter_RemoveAxis(NpyIter* it, int axis) except NPY_FAIL + int NpyIter_RemoveMultiIndex(NpyIter* it) except NPY_FAIL + int NpyIter_EnableExternalLoop(NpyIter* it) except NPY_FAIL + int NpyIter_Deallocate(NpyIter* it) except NPY_FAIL + int NpyIter_Reset(NpyIter* it, char** errmsg) except NPY_FAIL + int NpyIter_ResetToIterIndexRange(NpyIter* it, npy_intp istart, + npy_intp iend, char** errmsg) except NPY_FAIL + int NpyIter_ResetBasePointers(NpyIter* it, char** baseptrs, char** errmsg) except NPY_FAIL + int NpyIter_GotoMultiIndex(NpyIter* it, const npy_intp* multi_index) except NPY_FAIL + int NpyIter_GotoIndex(NpyIter* it, npy_intp index) except NPY_FAIL + npy_intp NpyIter_GetIterSize(NpyIter* it) nogil + npy_intp NpyIter_GetIterIndex(NpyIter* it) nogil + void NpyIter_GetIterIndexRange(NpyIter* it, npy_intp* istart, + npy_intp* iend) nogil + int NpyIter_GotoIterIndex(NpyIter* it, npy_intp iterindex) except NPY_FAIL + npy_bool NpyIter_HasDelayedBufAlloc(NpyIter* it) nogil + npy_bool NpyIter_HasExternalLoop(NpyIter* it) nogil + npy_bool NpyIter_HasMultiIndex(NpyIter* it) nogil + npy_bool NpyIter_HasIndex(NpyIter* it) nogil + npy_bool NpyIter_RequiresBuffering(NpyIter* it) nogil + npy_bool NpyIter_IsBuffered(NpyIter* it) nogil + npy_bool NpyIter_IsGrowInner(NpyIter* it) nogil + npy_intp NpyIter_GetBufferSize(NpyIter* it) nogil + int NpyIter_GetNDim(NpyIter* it) nogil + int NpyIter_GetNOp(NpyIter* it) nogil + npy_intp* NpyIter_GetAxisStrideArray(NpyIter* it, int axis) except NULL + int NpyIter_GetShape(NpyIter* it, npy_intp* outshape) nogil + PyArray_Descr** NpyIter_GetDescrArray(NpyIter* it) + PyArrayObject** NpyIter_GetOperandArray(NpyIter* it) + ndarray NpyIter_GetIterView(NpyIter* it, npy_intp i) + void NpyIter_GetReadFlags(NpyIter* it, char* outreadflags) + void NpyIter_GetWriteFlags(NpyIter* it, char* outwriteflags) + int NpyIter_CreateCompatibleStrides(NpyIter* it, npy_intp itemsize, + npy_intp* outstrides) except NPY_FAIL + npy_bool NpyIter_IsFirstVisit(NpyIter* it, int iop) nogil + # functions for iterating an NpyIter object + # + # These don't match the definition in the C API because Cython can't wrap + # function pointers that return functions. + NpyIter_IterNextFunc NpyIter_GetIterNext(NpyIter* it, char** errmsg) except NULL + NpyIter_GetMultiIndexFunc NpyIter_GetGetMultiIndex(NpyIter* it, + char** errmsg) except NULL + char** NpyIter_GetDataPtrArray(NpyIter* it) nogil + char** NpyIter_GetInitialDataPtrArray(NpyIter* it) nogil + npy_intp* NpyIter_GetIndexPtr(NpyIter* it) + npy_intp* NpyIter_GetInnerStrideArray(NpyIter* it) nogil + npy_intp* NpyIter_GetInnerLoopSizePtr(NpyIter* it) nogil + void NpyIter_GetInnerFixedStrideArray(NpyIter* it, npy_intp* outstrides) nogil + npy_bool NpyIter_IterationNeedsAPI(NpyIter* it) nogil + void NpyIter_DebugPrint(NpyIter* it) + +# NpyString API +cdef extern from "numpy/ndarraytypes.h": + ctypedef struct npy_string_allocator: + pass + + ctypedef struct npy_packed_static_string: + pass + + ctypedef struct npy_static_string: + size_t size + const char *buf + + ctypedef struct PyArray_StringDTypeObject: + PyArray_Descr base + PyObject *na_object + char coerce + char has_nan_na + char has_string_na + char array_owned + npy_static_string default_string + npy_static_string na_name + npy_string_allocator *allocator + +cdef extern from "numpy/arrayobject.h": + npy_string_allocator *NpyString_acquire_allocator(const PyArray_StringDTypeObject *descr) + void NpyString_acquire_allocators(size_t n_descriptors, PyArray_Descr *const descrs[], npy_string_allocator *allocators[]) + void NpyString_release_allocator(npy_string_allocator *allocator) + void NpyString_release_allocators(size_t length, npy_string_allocator *allocators[]) + int NpyString_load(npy_string_allocator *allocator, const npy_packed_static_string *packed_string, npy_static_string *unpacked_string) + int NpyString_pack_null(npy_string_allocator *allocator, npy_packed_static_string *packed_string) + int NpyString_pack(npy_string_allocator *allocator, npy_packed_static_string *packed_string, const char *buf, size_t size) diff --git a/.venv/lib/python3.12/site-packages/numpy/__init__.pxd b/.venv/lib/python3.12/site-packages/numpy/__init__.pxd new file mode 100644 index 0000000..eb07641 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/__init__.pxd @@ -0,0 +1,1154 @@ +# NumPy static imports for Cython < 3.0 +# +# If any of the PyArray_* functions are called, import_array must be +# called first. +# +# Author: Dag Sverre Seljebotn +# + +DEF _buffer_format_string_len = 255 + +cimport cpython.buffer as pybuf +from cpython.ref cimport Py_INCREF +from cpython.mem cimport PyObject_Malloc, PyObject_Free +from cpython.object cimport PyObject, PyTypeObject +from cpython.buffer cimport PyObject_GetBuffer +from cpython.type cimport type +cimport libc.stdio as stdio + + +cdef extern from *: + # Leave a marker that the NumPy declarations came from NumPy itself and not from Cython. + # See https://github.com/cython/cython/issues/3573 + """ + /* Using NumPy API declarations from "numpy/__init__.pxd" */ + """ + + +cdef extern from "Python.h": + ctypedef int Py_intptr_t + bint PyObject_TypeCheck(object obj, PyTypeObject* type) + +cdef extern from "numpy/arrayobject.h": + # It would be nice to use size_t and ssize_t, but ssize_t has special + # implicit conversion rules, so just use "long". + # Note: The actual type only matters for Cython promotion, so long + # is closer than int, but could lead to incorrect promotion. + # (Not to worrying, and always the status-quo.) + ctypedef signed long npy_intp + ctypedef unsigned long npy_uintp + + ctypedef unsigned char npy_bool + + ctypedef signed char npy_byte + ctypedef signed short npy_short + ctypedef signed int npy_int + ctypedef signed long npy_long + ctypedef signed long long npy_longlong + + ctypedef unsigned char npy_ubyte + ctypedef unsigned short npy_ushort + ctypedef unsigned int npy_uint + ctypedef unsigned long npy_ulong + ctypedef unsigned long long npy_ulonglong + + ctypedef float npy_float + ctypedef double npy_double + ctypedef long double npy_longdouble + + ctypedef signed char npy_int8 + ctypedef signed short npy_int16 + ctypedef signed int npy_int32 + ctypedef signed long long npy_int64 + + ctypedef unsigned char npy_uint8 + ctypedef unsigned short npy_uint16 + ctypedef unsigned int npy_uint32 + ctypedef unsigned long long npy_uint64 + + ctypedef float npy_float32 + ctypedef double npy_float64 + ctypedef long double npy_float80 + ctypedef long double npy_float96 + ctypedef long double npy_float128 + + ctypedef struct npy_cfloat: + pass + + ctypedef struct npy_cdouble: + pass + + ctypedef struct npy_clongdouble: + pass + + ctypedef struct npy_complex64: + pass + + ctypedef struct npy_complex128: + pass + + ctypedef struct npy_complex160: + pass + + ctypedef struct npy_complex192: + pass + + ctypedef struct npy_complex256: + pass + + ctypedef struct PyArray_Dims: + npy_intp *ptr + int len + + + cdef enum NPY_TYPES: + NPY_BOOL + NPY_BYTE + NPY_UBYTE + NPY_SHORT + NPY_USHORT + NPY_INT + NPY_UINT + NPY_LONG + NPY_ULONG + NPY_LONGLONG + NPY_ULONGLONG + NPY_FLOAT + NPY_DOUBLE + NPY_LONGDOUBLE + NPY_CFLOAT + NPY_CDOUBLE + NPY_CLONGDOUBLE + NPY_OBJECT + NPY_STRING + NPY_UNICODE + NPY_VSTRING + NPY_VOID + NPY_DATETIME + NPY_TIMEDELTA + NPY_NTYPES_LEGACY + NPY_NOTYPE + + NPY_INT8 + NPY_INT16 + NPY_INT32 + NPY_INT64 + NPY_UINT8 + NPY_UINT16 + NPY_UINT32 + NPY_UINT64 + NPY_FLOAT16 + NPY_FLOAT32 + NPY_FLOAT64 + NPY_FLOAT80 + NPY_FLOAT96 + NPY_FLOAT128 + NPY_COMPLEX64 + NPY_COMPLEX128 + NPY_COMPLEX160 + NPY_COMPLEX192 + NPY_COMPLEX256 + + NPY_INTP + NPY_UINTP + NPY_DEFAULT_INT # Not a compile time constant (normally)! + + ctypedef enum NPY_ORDER: + NPY_ANYORDER + NPY_CORDER + NPY_FORTRANORDER + NPY_KEEPORDER + + ctypedef enum NPY_CASTING: + NPY_NO_CASTING + NPY_EQUIV_CASTING + NPY_SAFE_CASTING + NPY_SAME_KIND_CASTING + NPY_UNSAFE_CASTING + + ctypedef enum NPY_CLIPMODE: + NPY_CLIP + NPY_WRAP + NPY_RAISE + + ctypedef enum NPY_SCALARKIND: + NPY_NOSCALAR, + NPY_BOOL_SCALAR, + NPY_INTPOS_SCALAR, + NPY_INTNEG_SCALAR, + NPY_FLOAT_SCALAR, + NPY_COMPLEX_SCALAR, + NPY_OBJECT_SCALAR + + ctypedef enum NPY_SORTKIND: + NPY_QUICKSORT + NPY_HEAPSORT + NPY_MERGESORT + + ctypedef enum NPY_SEARCHSIDE: + NPY_SEARCHLEFT + NPY_SEARCHRIGHT + + enum: + NPY_ARRAY_C_CONTIGUOUS + NPY_ARRAY_F_CONTIGUOUS + NPY_ARRAY_OWNDATA + NPY_ARRAY_FORCECAST + NPY_ARRAY_ENSURECOPY + NPY_ARRAY_ENSUREARRAY + NPY_ARRAY_ELEMENTSTRIDES + NPY_ARRAY_ALIGNED + NPY_ARRAY_NOTSWAPPED + NPY_ARRAY_WRITEABLE + NPY_ARRAY_WRITEBACKIFCOPY + + NPY_ARRAY_BEHAVED + NPY_ARRAY_BEHAVED_NS + NPY_ARRAY_CARRAY + NPY_ARRAY_CARRAY_RO + NPY_ARRAY_FARRAY + NPY_ARRAY_FARRAY_RO + NPY_ARRAY_DEFAULT + + NPY_ARRAY_IN_ARRAY + NPY_ARRAY_OUT_ARRAY + NPY_ARRAY_INOUT_ARRAY + NPY_ARRAY_IN_FARRAY + NPY_ARRAY_OUT_FARRAY + NPY_ARRAY_INOUT_FARRAY + + NPY_ARRAY_UPDATE_ALL + + cdef enum: + NPY_MAXDIMS # 64 on NumPy 2.x and 32 on NumPy 1.x + NPY_RAVEL_AXIS # Used for functions like PyArray_Mean + + ctypedef void (*PyArray_VectorUnaryFunc)(void *, void *, npy_intp, void *, void *) + + ctypedef struct PyArray_ArrayDescr: + # shape is a tuple, but Cython doesn't support "tuple shape" + # inside a non-PyObject declaration, so we have to declare it + # as just a PyObject*. + PyObject* shape + + ctypedef struct PyArray_Descr: + pass + + ctypedef class numpy.dtype [object PyArray_Descr, check_size ignore]: + # Use PyDataType_* macros when possible, however there are no macros + # for accessing some of the fields, so some are defined. + cdef PyTypeObject* typeobj + cdef char kind + cdef char type + # Numpy sometimes mutates this without warning (e.g. it'll + # sometimes change "|" to "<" in shared dtype objects on + # little-endian machines). If this matters to you, use + # PyArray_IsNativeByteOrder(dtype.byteorder) instead of + # directly accessing this field. + cdef char byteorder + # Flags are not directly accessible on Cython <3. Use PyDataType_FLAGS. + # cdef char flags + cdef int type_num + # itemsize/elsize, alignment, fields, names, and subarray must + # use the `PyDataType_*` accessor macros. With Cython 3 you can + # still use getter attributes `dtype.itemsize` + + ctypedef class numpy.flatiter [object PyArrayIterObject, check_size ignore]: + # Use through macros + pass + + ctypedef class numpy.broadcast [object PyArrayMultiIterObject, check_size ignore]: + cdef int numiter + cdef npy_intp size, index + cdef int nd + cdef npy_intp *dimensions + cdef void **iters + + ctypedef struct PyArrayObject: + # For use in situations where ndarray can't replace PyArrayObject*, + # like PyArrayObject**. + pass + + ctypedef class numpy.ndarray [object PyArrayObject, check_size ignore]: + cdef __cythonbufferdefaults__ = {"mode": "strided"} + + cdef: + # Only taking a few of the most commonly used and stable fields. + # One should use PyArray_* macros instead to access the C fields. + char *data + int ndim "nd" + npy_intp *shape "dimensions" + npy_intp *strides + dtype descr # deprecated since NumPy 1.7 ! + PyObject* base # NOT PUBLIC, DO NOT USE ! + + + int _import_array() except -1 + # A second definition so _import_array isn't marked as used when we use it here. + # Do not use - subject to change any time. + int __pyx_import_array "_import_array"() except -1 + + # + # Macros from ndarrayobject.h + # + bint PyArray_CHKFLAGS(ndarray m, int flags) nogil + bint PyArray_IS_C_CONTIGUOUS(ndarray arr) nogil + bint PyArray_IS_F_CONTIGUOUS(ndarray arr) nogil + bint PyArray_ISCONTIGUOUS(ndarray m) nogil + bint PyArray_ISWRITEABLE(ndarray m) nogil + bint PyArray_ISALIGNED(ndarray m) nogil + + int PyArray_NDIM(ndarray) nogil + bint PyArray_ISONESEGMENT(ndarray) nogil + bint PyArray_ISFORTRAN(ndarray) nogil + int PyArray_FORTRANIF(ndarray) nogil + + void* PyArray_DATA(ndarray) nogil + char* PyArray_BYTES(ndarray) nogil + + npy_intp* PyArray_DIMS(ndarray) nogil + npy_intp* PyArray_STRIDES(ndarray) nogil + npy_intp PyArray_DIM(ndarray, size_t) nogil + npy_intp PyArray_STRIDE(ndarray, size_t) nogil + + PyObject *PyArray_BASE(ndarray) nogil # returns borrowed reference! + PyArray_Descr *PyArray_DESCR(ndarray) nogil # returns borrowed reference to dtype! + PyArray_Descr *PyArray_DTYPE(ndarray) nogil # returns borrowed reference to dtype! NP 1.7+ alias for descr. + int PyArray_FLAGS(ndarray) nogil + void PyArray_CLEARFLAGS(ndarray, int flags) nogil # Added in NumPy 1.7 + void PyArray_ENABLEFLAGS(ndarray, int flags) nogil # Added in NumPy 1.7 + npy_intp PyArray_ITEMSIZE(ndarray) nogil + int PyArray_TYPE(ndarray arr) nogil + + object PyArray_GETITEM(ndarray arr, void *itemptr) + int PyArray_SETITEM(ndarray arr, void *itemptr, object obj) except -1 + + bint PyTypeNum_ISBOOL(int) nogil + bint PyTypeNum_ISUNSIGNED(int) nogil + bint PyTypeNum_ISSIGNED(int) nogil + bint PyTypeNum_ISINTEGER(int) nogil + bint PyTypeNum_ISFLOAT(int) nogil + bint PyTypeNum_ISNUMBER(int) nogil + bint PyTypeNum_ISSTRING(int) nogil + bint PyTypeNum_ISCOMPLEX(int) nogil + bint PyTypeNum_ISFLEXIBLE(int) nogil + bint PyTypeNum_ISUSERDEF(int) nogil + bint PyTypeNum_ISEXTENDED(int) nogil + bint PyTypeNum_ISOBJECT(int) nogil + + npy_intp PyDataType_ELSIZE(dtype) nogil + npy_intp PyDataType_ALIGNMENT(dtype) nogil + PyObject* PyDataType_METADATA(dtype) nogil + PyArray_ArrayDescr* PyDataType_SUBARRAY(dtype) nogil + PyObject* PyDataType_NAMES(dtype) nogil + PyObject* PyDataType_FIELDS(dtype) nogil + + bint PyDataType_ISBOOL(dtype) nogil + bint PyDataType_ISUNSIGNED(dtype) nogil + bint PyDataType_ISSIGNED(dtype) nogil + bint PyDataType_ISINTEGER(dtype) nogil + bint PyDataType_ISFLOAT(dtype) nogil + bint PyDataType_ISNUMBER(dtype) nogil + bint PyDataType_ISSTRING(dtype) nogil + bint PyDataType_ISCOMPLEX(dtype) nogil + bint PyDataType_ISFLEXIBLE(dtype) nogil + bint PyDataType_ISUSERDEF(dtype) nogil + bint PyDataType_ISEXTENDED(dtype) nogil + bint PyDataType_ISOBJECT(dtype) nogil + bint PyDataType_HASFIELDS(dtype) nogil + bint PyDataType_HASSUBARRAY(dtype) nogil + npy_uint64 PyDataType_FLAGS(dtype) nogil + + bint PyArray_ISBOOL(ndarray) nogil + bint PyArray_ISUNSIGNED(ndarray) nogil + bint PyArray_ISSIGNED(ndarray) nogil + bint PyArray_ISINTEGER(ndarray) nogil + bint PyArray_ISFLOAT(ndarray) nogil + bint PyArray_ISNUMBER(ndarray) nogil + bint PyArray_ISSTRING(ndarray) nogil + bint PyArray_ISCOMPLEX(ndarray) nogil + bint PyArray_ISFLEXIBLE(ndarray) nogil + bint PyArray_ISUSERDEF(ndarray) nogil + bint PyArray_ISEXTENDED(ndarray) nogil + bint PyArray_ISOBJECT(ndarray) nogil + bint PyArray_HASFIELDS(ndarray) nogil + + bint PyArray_ISVARIABLE(ndarray) nogil + + bint PyArray_SAFEALIGNEDCOPY(ndarray) nogil + bint PyArray_ISNBO(char) nogil # works on ndarray.byteorder + bint PyArray_IsNativeByteOrder(char) nogil # works on ndarray.byteorder + bint PyArray_ISNOTSWAPPED(ndarray) nogil + bint PyArray_ISBYTESWAPPED(ndarray) nogil + + bint PyArray_FLAGSWAP(ndarray, int) nogil + + bint PyArray_ISCARRAY(ndarray) nogil + bint PyArray_ISCARRAY_RO(ndarray) nogil + bint PyArray_ISFARRAY(ndarray) nogil + bint PyArray_ISFARRAY_RO(ndarray) nogil + bint PyArray_ISBEHAVED(ndarray) nogil + bint PyArray_ISBEHAVED_RO(ndarray) nogil + + + bint PyDataType_ISNOTSWAPPED(dtype) nogil + bint PyDataType_ISBYTESWAPPED(dtype) nogil + + bint PyArray_DescrCheck(object) + + bint PyArray_Check(object) + bint PyArray_CheckExact(object) + + # Cannot be supported due to out arg: + # bint PyArray_HasArrayInterfaceType(object, dtype, object, object&) + # bint PyArray_HasArrayInterface(op, out) + + + bint PyArray_IsZeroDim(object) + # Cannot be supported due to ## ## in macro: + # bint PyArray_IsScalar(object, verbatim work) + bint PyArray_CheckScalar(object) + bint PyArray_IsPythonNumber(object) + bint PyArray_IsPythonScalar(object) + bint PyArray_IsAnyScalar(object) + bint PyArray_CheckAnyScalar(object) + + ndarray PyArray_GETCONTIGUOUS(ndarray) + bint PyArray_SAMESHAPE(ndarray, ndarray) nogil + npy_intp PyArray_SIZE(ndarray) nogil + npy_intp PyArray_NBYTES(ndarray) nogil + + object PyArray_FROM_O(object) + object PyArray_FROM_OF(object m, int flags) + object PyArray_FROM_OT(object m, int type) + object PyArray_FROM_OTF(object m, int type, int flags) + object PyArray_FROMANY(object m, int type, int min, int max, int flags) + object PyArray_ZEROS(int nd, npy_intp* dims, int type, int fortran) + object PyArray_EMPTY(int nd, npy_intp* dims, int type, int fortran) + void PyArray_FILLWBYTE(ndarray, int val) + object PyArray_ContiguousFromAny(op, int, int min_depth, int max_depth) + unsigned char PyArray_EquivArrTypes(ndarray a1, ndarray a2) + bint PyArray_EquivByteorders(int b1, int b2) nogil + object PyArray_SimpleNew(int nd, npy_intp* dims, int typenum) + object PyArray_SimpleNewFromData(int nd, npy_intp* dims, int typenum, void* data) + #object PyArray_SimpleNewFromDescr(int nd, npy_intp* dims, dtype descr) + object PyArray_ToScalar(void* data, ndarray arr) + + void* PyArray_GETPTR1(ndarray m, npy_intp i) nogil + void* PyArray_GETPTR2(ndarray m, npy_intp i, npy_intp j) nogil + void* PyArray_GETPTR3(ndarray m, npy_intp i, npy_intp j, npy_intp k) nogil + void* PyArray_GETPTR4(ndarray m, npy_intp i, npy_intp j, npy_intp k, npy_intp l) nogil + + # Cannot be supported due to out arg + # void PyArray_DESCR_REPLACE(descr) + + + object PyArray_Copy(ndarray) + object PyArray_FromObject(object op, int type, int min_depth, int max_depth) + object PyArray_ContiguousFromObject(object op, int type, int min_depth, int max_depth) + object PyArray_CopyFromObject(object op, int type, int min_depth, int max_depth) + + object PyArray_Cast(ndarray mp, int type_num) + object PyArray_Take(ndarray ap, object items, int axis) + object PyArray_Put(ndarray ap, object items, object values) + + void PyArray_ITER_RESET(flatiter it) nogil + void PyArray_ITER_NEXT(flatiter it) nogil + void PyArray_ITER_GOTO(flatiter it, npy_intp* destination) nogil + void PyArray_ITER_GOTO1D(flatiter it, npy_intp ind) nogil + void* PyArray_ITER_DATA(flatiter it) nogil + bint PyArray_ITER_NOTDONE(flatiter it) nogil + + void PyArray_MultiIter_RESET(broadcast multi) nogil + void PyArray_MultiIter_NEXT(broadcast multi) nogil + void PyArray_MultiIter_GOTO(broadcast multi, npy_intp dest) nogil + void PyArray_MultiIter_GOTO1D(broadcast multi, npy_intp ind) nogil + void* PyArray_MultiIter_DATA(broadcast multi, npy_intp i) nogil + void PyArray_MultiIter_NEXTi(broadcast multi, npy_intp i) nogil + bint PyArray_MultiIter_NOTDONE(broadcast multi) nogil + npy_intp PyArray_MultiIter_SIZE(broadcast multi) nogil + int PyArray_MultiIter_NDIM(broadcast multi) nogil + npy_intp PyArray_MultiIter_INDEX(broadcast multi) nogil + int PyArray_MultiIter_NUMITER(broadcast multi) nogil + npy_intp* PyArray_MultiIter_DIMS(broadcast multi) nogil + void** PyArray_MultiIter_ITERS(broadcast multi) nogil + + # Functions from __multiarray_api.h + + # Functions taking dtype and returning object/ndarray are disabled + # for now as they steal dtype references. I'm conservative and disable + # more than is probably needed until it can be checked further. + int PyArray_INCREF (ndarray) except * # uses PyArray_Item_INCREF... + int PyArray_XDECREF (ndarray) except * # uses PyArray_Item_DECREF... + dtype PyArray_DescrFromType (int) + object PyArray_TypeObjectFromType (int) + char * PyArray_Zero (ndarray) + char * PyArray_One (ndarray) + #object PyArray_CastToType (ndarray, dtype, int) + int PyArray_CanCastSafely (int, int) # writes errors + npy_bool PyArray_CanCastTo (dtype, dtype) # writes errors + int PyArray_ObjectType (object, int) except 0 + dtype PyArray_DescrFromObject (object, dtype) + #ndarray* PyArray_ConvertToCommonType (object, int *) + dtype PyArray_DescrFromScalar (object) + dtype PyArray_DescrFromTypeObject (object) + npy_intp PyArray_Size (object) + #object PyArray_Scalar (void *, dtype, object) + #object PyArray_FromScalar (object, dtype) + void PyArray_ScalarAsCtype (object, void *) + #int PyArray_CastScalarToCtype (object, void *, dtype) + #int PyArray_CastScalarDirect (object, dtype, void *, int) + #PyArray_VectorUnaryFunc * PyArray_GetCastFunc (dtype, int) + #object PyArray_FromAny (object, dtype, int, int, int, object) + object PyArray_EnsureArray (object) + object PyArray_EnsureAnyArray (object) + #object PyArray_FromFile (stdio.FILE *, dtype, npy_intp, char *) + #object PyArray_FromString (char *, npy_intp, dtype, npy_intp, char *) + #object PyArray_FromBuffer (object, dtype, npy_intp, npy_intp) + #object PyArray_FromIter (object, dtype, npy_intp) + object PyArray_Return (ndarray) + #object PyArray_GetField (ndarray, dtype, int) + #int PyArray_SetField (ndarray, dtype, int, object) except -1 + object PyArray_Byteswap (ndarray, npy_bool) + object PyArray_Resize (ndarray, PyArray_Dims *, int, NPY_ORDER) + int PyArray_CopyInto (ndarray, ndarray) except -1 + int PyArray_CopyAnyInto (ndarray, ndarray) except -1 + int PyArray_CopyObject (ndarray, object) except -1 + object PyArray_NewCopy (ndarray, NPY_ORDER) + object PyArray_ToList (ndarray) + object PyArray_ToString (ndarray, NPY_ORDER) + int PyArray_ToFile (ndarray, stdio.FILE *, char *, char *) except -1 + int PyArray_Dump (object, object, int) except -1 + object PyArray_Dumps (object, int) + int PyArray_ValidType (int) # Cannot error + void PyArray_UpdateFlags (ndarray, int) + object PyArray_New (type, int, npy_intp *, int, npy_intp *, void *, int, int, object) + #object PyArray_NewFromDescr (type, dtype, int, npy_intp *, npy_intp *, void *, int, object) + #dtype PyArray_DescrNew (dtype) + dtype PyArray_DescrNewFromType (int) + double PyArray_GetPriority (object, double) # clears errors as of 1.25 + object PyArray_IterNew (object) + object PyArray_MultiIterNew (int, ...) + + int PyArray_PyIntAsInt (object) except? -1 + npy_intp PyArray_PyIntAsIntp (object) + int PyArray_Broadcast (broadcast) except -1 + int PyArray_FillWithScalar (ndarray, object) except -1 + npy_bool PyArray_CheckStrides (int, int, npy_intp, npy_intp, npy_intp *, npy_intp *) + dtype PyArray_DescrNewByteorder (dtype, char) + object PyArray_IterAllButAxis (object, int *) + #object PyArray_CheckFromAny (object, dtype, int, int, int, object) + #object PyArray_FromArray (ndarray, dtype, int) + object PyArray_FromInterface (object) + object PyArray_FromStructInterface (object) + #object PyArray_FromArrayAttr (object, dtype, object) + #NPY_SCALARKIND PyArray_ScalarKind (int, ndarray*) + int PyArray_CanCoerceScalar (int, int, NPY_SCALARKIND) + npy_bool PyArray_CanCastScalar (type, type) + int PyArray_RemoveSmallest (broadcast) except -1 + int PyArray_ElementStrides (object) + void PyArray_Item_INCREF (char *, dtype) except * + void PyArray_Item_XDECREF (char *, dtype) except * + object PyArray_Transpose (ndarray, PyArray_Dims *) + object PyArray_TakeFrom (ndarray, object, int, ndarray, NPY_CLIPMODE) + object PyArray_PutTo (ndarray, object, object, NPY_CLIPMODE) + object PyArray_PutMask (ndarray, object, object) + object PyArray_Repeat (ndarray, object, int) + object PyArray_Choose (ndarray, object, ndarray, NPY_CLIPMODE) + int PyArray_Sort (ndarray, int, NPY_SORTKIND) except -1 + object PyArray_ArgSort (ndarray, int, NPY_SORTKIND) + object PyArray_SearchSorted (ndarray, object, NPY_SEARCHSIDE, PyObject *) + object PyArray_ArgMax (ndarray, int, ndarray) + object PyArray_ArgMin (ndarray, int, ndarray) + object PyArray_Reshape (ndarray, object) + object PyArray_Newshape (ndarray, PyArray_Dims *, NPY_ORDER) + object PyArray_Squeeze (ndarray) + #object PyArray_View (ndarray, dtype, type) + object PyArray_SwapAxes (ndarray, int, int) + object PyArray_Max (ndarray, int, ndarray) + object PyArray_Min (ndarray, int, ndarray) + object PyArray_Ptp (ndarray, int, ndarray) + object PyArray_Mean (ndarray, int, int, ndarray) + object PyArray_Trace (ndarray, int, int, int, int, ndarray) + object PyArray_Diagonal (ndarray, int, int, int) + object PyArray_Clip (ndarray, object, object, ndarray) + object PyArray_Conjugate (ndarray, ndarray) + object PyArray_Nonzero (ndarray) + object PyArray_Std (ndarray, int, int, ndarray, int) + object PyArray_Sum (ndarray, int, int, ndarray) + object PyArray_CumSum (ndarray, int, int, ndarray) + object PyArray_Prod (ndarray, int, int, ndarray) + object PyArray_CumProd (ndarray, int, int, ndarray) + object PyArray_All (ndarray, int, ndarray) + object PyArray_Any (ndarray, int, ndarray) + object PyArray_Compress (ndarray, object, int, ndarray) + object PyArray_Flatten (ndarray, NPY_ORDER) + object PyArray_Ravel (ndarray, NPY_ORDER) + npy_intp PyArray_MultiplyList (npy_intp *, int) + int PyArray_MultiplyIntList (int *, int) + void * PyArray_GetPtr (ndarray, npy_intp*) + int PyArray_CompareLists (npy_intp *, npy_intp *, int) + #int PyArray_AsCArray (object*, void *, npy_intp *, int, dtype) + int PyArray_Free (object, void *) + #int PyArray_Converter (object, object*) + int PyArray_IntpFromSequence (object, npy_intp *, int) except -1 + object PyArray_Concatenate (object, int) + object PyArray_InnerProduct (object, object) + object PyArray_MatrixProduct (object, object) + object PyArray_Correlate (object, object, int) + #int PyArray_DescrConverter (object, dtype*) except 0 + #int PyArray_DescrConverter2 (object, dtype*) except 0 + int PyArray_IntpConverter (object, PyArray_Dims *) except 0 + #int PyArray_BufferConverter (object, chunk) except 0 + int PyArray_AxisConverter (object, int *) except 0 + int PyArray_BoolConverter (object, npy_bool *) except 0 + int PyArray_ByteorderConverter (object, char *) except 0 + int PyArray_OrderConverter (object, NPY_ORDER *) except 0 + unsigned char PyArray_EquivTypes (dtype, dtype) # clears errors + #object PyArray_Zeros (int, npy_intp *, dtype, int) + #object PyArray_Empty (int, npy_intp *, dtype, int) + object PyArray_Where (object, object, object) + object PyArray_Arange (double, double, double, int) + #object PyArray_ArangeObj (object, object, object, dtype) + int PyArray_SortkindConverter (object, NPY_SORTKIND *) except 0 + object PyArray_LexSort (object, int) + object PyArray_Round (ndarray, int, ndarray) + unsigned char PyArray_EquivTypenums (int, int) + int PyArray_RegisterDataType (dtype) except -1 + int PyArray_RegisterCastFunc (dtype, int, PyArray_VectorUnaryFunc *) except -1 + int PyArray_RegisterCanCast (dtype, int, NPY_SCALARKIND) except -1 + #void PyArray_InitArrFuncs (PyArray_ArrFuncs *) + object PyArray_IntTupleFromIntp (int, npy_intp *) + int PyArray_ClipmodeConverter (object, NPY_CLIPMODE *) except 0 + #int PyArray_OutputConverter (object, ndarray*) except 0 + object PyArray_BroadcastToShape (object, npy_intp *, int) + #int PyArray_DescrAlignConverter (object, dtype*) except 0 + #int PyArray_DescrAlignConverter2 (object, dtype*) except 0 + int PyArray_SearchsideConverter (object, void *) except 0 + object PyArray_CheckAxis (ndarray, int *, int) + npy_intp PyArray_OverflowMultiplyList (npy_intp *, int) + int PyArray_SetBaseObject(ndarray, base) except -1 # NOTE: steals a reference to base! Use "set_array_base()" instead. + + # The memory handler functions require the NumPy 1.22 API + # and may require defining NPY_TARGET_VERSION + ctypedef struct PyDataMemAllocator: + void *ctx + void* (*malloc) (void *ctx, size_t size) + void* (*calloc) (void *ctx, size_t nelem, size_t elsize) + void* (*realloc) (void *ctx, void *ptr, size_t new_size) + void (*free) (void *ctx, void *ptr, size_t size) + + ctypedef struct PyDataMem_Handler: + char* name + npy_uint8 version + PyDataMemAllocator allocator + + object PyDataMem_SetHandler(object handler) + object PyDataMem_GetHandler() + + # additional datetime related functions are defined below + + +# Typedefs that matches the runtime dtype objects in +# the numpy module. + +# The ones that are commented out needs an IFDEF function +# in Cython to enable them only on the right systems. + +ctypedef npy_int8 int8_t +ctypedef npy_int16 int16_t +ctypedef npy_int32 int32_t +ctypedef npy_int64 int64_t + +ctypedef npy_uint8 uint8_t +ctypedef npy_uint16 uint16_t +ctypedef npy_uint32 uint32_t +ctypedef npy_uint64 uint64_t + +ctypedef npy_float32 float32_t +ctypedef npy_float64 float64_t +#ctypedef npy_float80 float80_t +#ctypedef npy_float128 float128_t + +ctypedef float complex complex64_t +ctypedef double complex complex128_t + +ctypedef npy_longlong longlong_t +ctypedef npy_ulonglong ulonglong_t + +ctypedef npy_intp intp_t +ctypedef npy_uintp uintp_t + +ctypedef npy_double float_t +ctypedef npy_double double_t +ctypedef npy_longdouble longdouble_t + +ctypedef float complex cfloat_t +ctypedef double complex cdouble_t +ctypedef double complex complex_t +ctypedef long double complex clongdouble_t + +cdef inline object PyArray_MultiIterNew1(a): + return PyArray_MultiIterNew(1, a) + +cdef inline object PyArray_MultiIterNew2(a, b): + return PyArray_MultiIterNew(2, a, b) + +cdef inline object PyArray_MultiIterNew3(a, b, c): + return PyArray_MultiIterNew(3, a, b, c) + +cdef inline object PyArray_MultiIterNew4(a, b, c, d): + return PyArray_MultiIterNew(4, a, b, c, d) + +cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): + return PyArray_MultiIterNew(5, a, b, c, d, e) + +cdef inline tuple PyDataType_SHAPE(dtype d): + if PyDataType_HASSUBARRAY(d): + return d.subarray.shape + else: + return () + + +cdef extern from "numpy/ndarrayobject.h": + PyTypeObject PyTimedeltaArrType_Type + PyTypeObject PyDatetimeArrType_Type + ctypedef int64_t npy_timedelta + ctypedef int64_t npy_datetime + +cdef extern from "numpy/ndarraytypes.h": + ctypedef struct PyArray_DatetimeMetaData: + NPY_DATETIMEUNIT base + int64_t num + + ctypedef struct npy_datetimestruct: + int64_t year + int32_t month, day, hour, min, sec, us, ps, as + + # Iterator API added in v1.6 + # + # These don't match the definition in the C API because Cython can't wrap + # function pointers that return functions. + # https://github.com/cython/cython/issues/6720 + ctypedef int (*NpyIter_IterNextFunc "NpyIter_IterNextFunc *")(NpyIter* it) noexcept nogil + ctypedef void (*NpyIter_GetMultiIndexFunc "NpyIter_GetMultiIndexFunc *")(NpyIter* it, npy_intp* outcoords) noexcept nogil + +cdef extern from "numpy/arrayscalars.h": + + # abstract types + ctypedef class numpy.generic [object PyObject]: + pass + ctypedef class numpy.number [object PyObject]: + pass + ctypedef class numpy.integer [object PyObject]: + pass + ctypedef class numpy.signedinteger [object PyObject]: + pass + ctypedef class numpy.unsignedinteger [object PyObject]: + pass + ctypedef class numpy.inexact [object PyObject]: + pass + ctypedef class numpy.floating [object PyObject]: + pass + ctypedef class numpy.complexfloating [object PyObject]: + pass + ctypedef class numpy.flexible [object PyObject]: + pass + ctypedef class numpy.character [object PyObject]: + pass + + ctypedef struct PyDatetimeScalarObject: + # PyObject_HEAD + npy_datetime obval + PyArray_DatetimeMetaData obmeta + + ctypedef struct PyTimedeltaScalarObject: + # PyObject_HEAD + npy_timedelta obval + PyArray_DatetimeMetaData obmeta + + ctypedef enum NPY_DATETIMEUNIT: + NPY_FR_Y + NPY_FR_M + NPY_FR_W + NPY_FR_D + NPY_FR_B + NPY_FR_h + NPY_FR_m + NPY_FR_s + NPY_FR_ms + NPY_FR_us + NPY_FR_ns + NPY_FR_ps + NPY_FR_fs + NPY_FR_as + NPY_FR_GENERIC + + +cdef extern from "numpy/arrayobject.h": + # These are part of the C-API defined in `__multiarray_api.h` + + # NumPy internal definitions in datetime_strings.c: + int get_datetime_iso_8601_strlen "NpyDatetime_GetDatetimeISO8601StrLen" ( + int local, NPY_DATETIMEUNIT base) + int make_iso_8601_datetime "NpyDatetime_MakeISO8601Datetime" ( + npy_datetimestruct *dts, char *outstr, npy_intp outlen, + int local, int utc, NPY_DATETIMEUNIT base, int tzoffset, + NPY_CASTING casting) except -1 + + # NumPy internal definition in datetime.c: + # May return 1 to indicate that object does not appear to be a datetime + # (returns 0 on success). + int convert_pydatetime_to_datetimestruct "NpyDatetime_ConvertPyDateTimeToDatetimeStruct" ( + PyObject *obj, npy_datetimestruct *out, + NPY_DATETIMEUNIT *out_bestunit, int apply_tzinfo) except -1 + int convert_datetime64_to_datetimestruct "NpyDatetime_ConvertDatetime64ToDatetimeStruct" ( + PyArray_DatetimeMetaData *meta, npy_datetime dt, + npy_datetimestruct *out) except -1 + int convert_datetimestruct_to_datetime64 "NpyDatetime_ConvertDatetimeStructToDatetime64"( + PyArray_DatetimeMetaData *meta, const npy_datetimestruct *dts, + npy_datetime *out) except -1 + + +# +# ufunc API +# + +cdef extern from "numpy/ufuncobject.h": + + ctypedef void (*PyUFuncGenericFunction) (char **, npy_intp *, npy_intp *, void *) + + ctypedef class numpy.ufunc [object PyUFuncObject, check_size ignore]: + cdef: + int nin, nout, nargs + int identity + PyUFuncGenericFunction *functions + void **data + int ntypes + int check_return + char *name + char *types + char *doc + void *ptr + PyObject *obj + PyObject *userloops + + cdef enum: + PyUFunc_Zero + PyUFunc_One + PyUFunc_None + # deprecated + UFUNC_FPE_DIVIDEBYZERO + UFUNC_FPE_OVERFLOW + UFUNC_FPE_UNDERFLOW + UFUNC_FPE_INVALID + # use these instead + NPY_FPE_DIVIDEBYZERO + NPY_FPE_OVERFLOW + NPY_FPE_UNDERFLOW + NPY_FPE_INVALID + + object PyUFunc_FromFuncAndData(PyUFuncGenericFunction *, + void **, char *, int, int, int, int, char *, char *, int) + int PyUFunc_RegisterLoopForType(ufunc, int, + PyUFuncGenericFunction, int *, void *) except -1 + void PyUFunc_f_f_As_d_d \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_d_d \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_f_f \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_g_g \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_F_F_As_D_D \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_F_F \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_D_D \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_G_G \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_O_O \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_ff_f_As_dd_d \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_ff_f \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_dd_d \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_gg_g \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_FF_F_As_DD_D \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_DD_D \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_FF_F \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_GG_G \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_OO_O \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_O_O_method \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_OO_O_method \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_On_Om \ + (char **, npy_intp *, npy_intp *, void *) + void PyUFunc_clearfperr() + int PyUFunc_getfperr() + int PyUFunc_ReplaceLoopBySignature \ + (ufunc, PyUFuncGenericFunction, int *, PyUFuncGenericFunction *) + object PyUFunc_FromFuncAndDataAndSignature \ + (PyUFuncGenericFunction *, void **, char *, int, int, int, + int, char *, char *, int, char *) + + int _import_umath() except -1 + +cdef inline void set_array_base(ndarray arr, object base): + Py_INCREF(base) # important to do this before stealing the reference below! + PyArray_SetBaseObject(arr, base) + +cdef inline object get_array_base(ndarray arr): + base = PyArray_BASE(arr) + if base is NULL: + return None + return base + +# Versions of the import_* functions which are more suitable for +# Cython code. +cdef inline int import_array() except -1: + try: + __pyx_import_array() + except Exception: + raise ImportError("numpy._core.multiarray failed to import") + +cdef inline int import_umath() except -1: + try: + _import_umath() + except Exception: + raise ImportError("numpy._core.umath failed to import") + +cdef inline int import_ufunc() except -1: + try: + _import_umath() + except Exception: + raise ImportError("numpy._core.umath failed to import") + + +cdef inline bint is_timedelta64_object(object obj): + """ + Cython equivalent of `isinstance(obj, np.timedelta64)` + + Parameters + ---------- + obj : object + + Returns + ------- + bool + """ + return PyObject_TypeCheck(obj, &PyTimedeltaArrType_Type) + + +cdef inline bint is_datetime64_object(object obj): + """ + Cython equivalent of `isinstance(obj, np.datetime64)` + + Parameters + ---------- + obj : object + + Returns + ------- + bool + """ + return PyObject_TypeCheck(obj, &PyDatetimeArrType_Type) + + +cdef inline npy_datetime get_datetime64_value(object obj) nogil: + """ + returns the int64 value underlying scalar numpy datetime64 object + + Note that to interpret this as a datetime, the corresponding unit is + also needed. That can be found using `get_datetime64_unit`. + """ + return (obj).obval + + +cdef inline npy_timedelta get_timedelta64_value(object obj) nogil: + """ + returns the int64 value underlying scalar numpy timedelta64 object + """ + return (obj).obval + + +cdef inline NPY_DATETIMEUNIT get_datetime64_unit(object obj) nogil: + """ + returns the unit part of the dtype for a numpy datetime64 object. + """ + return (obj).obmeta.base + + +cdef extern from "numpy/arrayobject.h": + + ctypedef struct NpyIter: + pass + + cdef enum: + NPY_FAIL + NPY_SUCCEED + + cdef enum: + # Track an index representing C order + NPY_ITER_C_INDEX + # Track an index representing Fortran order + NPY_ITER_F_INDEX + # Track a multi-index + NPY_ITER_MULTI_INDEX + # User code external to the iterator does the 1-dimensional innermost loop + NPY_ITER_EXTERNAL_LOOP + # Convert all the operands to a common data type + NPY_ITER_COMMON_DTYPE + # Operands may hold references, requiring API access during iteration + NPY_ITER_REFS_OK + # Zero-sized operands should be permitted, iteration checks IterSize for 0 + NPY_ITER_ZEROSIZE_OK + # Permits reductions (size-0 stride with dimension size > 1) + NPY_ITER_REDUCE_OK + # Enables sub-range iteration + NPY_ITER_RANGED + # Enables buffering + NPY_ITER_BUFFERED + # When buffering is enabled, grows the inner loop if possible + NPY_ITER_GROWINNER + # Delay allocation of buffers until first Reset* call + NPY_ITER_DELAY_BUFALLOC + # When NPY_KEEPORDER is specified, disable reversing negative-stride axes + NPY_ITER_DONT_NEGATE_STRIDES + NPY_ITER_COPY_IF_OVERLAP + # The operand will be read from and written to + NPY_ITER_READWRITE + # The operand will only be read from + NPY_ITER_READONLY + # The operand will only be written to + NPY_ITER_WRITEONLY + # The operand's data must be in native byte order + NPY_ITER_NBO + # The operand's data must be aligned + NPY_ITER_ALIGNED + # The operand's data must be contiguous (within the inner loop) + NPY_ITER_CONTIG + # The operand may be copied to satisfy requirements + NPY_ITER_COPY + # The operand may be copied with WRITEBACKIFCOPY to satisfy requirements + NPY_ITER_UPDATEIFCOPY + # Allocate the operand if it is NULL + NPY_ITER_ALLOCATE + # If an operand is allocated, don't use any subtype + NPY_ITER_NO_SUBTYPE + # This is a virtual array slot, operand is NULL but temporary data is there + NPY_ITER_VIRTUAL + # Require that the dimension match the iterator dimensions exactly + NPY_ITER_NO_BROADCAST + # A mask is being used on this array, affects buffer -> array copy + NPY_ITER_WRITEMASKED + # This array is the mask for all WRITEMASKED operands + NPY_ITER_ARRAYMASK + # Assume iterator order data access for COPY_IF_OVERLAP + NPY_ITER_OVERLAP_ASSUME_ELEMENTWISE + + # construction and destruction functions + NpyIter* NpyIter_New(ndarray arr, npy_uint32 flags, NPY_ORDER order, + NPY_CASTING casting, dtype datatype) except NULL + NpyIter* NpyIter_MultiNew(npy_intp nop, PyArrayObject** op, npy_uint32 flags, + NPY_ORDER order, NPY_CASTING casting, npy_uint32* + op_flags, PyArray_Descr** op_dtypes) except NULL + NpyIter* NpyIter_AdvancedNew(npy_intp nop, PyArrayObject** op, + npy_uint32 flags, NPY_ORDER order, + NPY_CASTING casting, npy_uint32* op_flags, + PyArray_Descr** op_dtypes, int oa_ndim, + int** op_axes, const npy_intp* itershape, + npy_intp buffersize) except NULL + NpyIter* NpyIter_Copy(NpyIter* it) except NULL + int NpyIter_RemoveAxis(NpyIter* it, int axis) except NPY_FAIL + int NpyIter_RemoveMultiIndex(NpyIter* it) except NPY_FAIL + int NpyIter_EnableExternalLoop(NpyIter* it) except NPY_FAIL + int NpyIter_Deallocate(NpyIter* it) except NPY_FAIL + int NpyIter_Reset(NpyIter* it, char** errmsg) except NPY_FAIL + int NpyIter_ResetToIterIndexRange(NpyIter* it, npy_intp istart, + npy_intp iend, char** errmsg) except NPY_FAIL + int NpyIter_ResetBasePointers(NpyIter* it, char** baseptrs, char** errmsg) except NPY_FAIL + int NpyIter_GotoMultiIndex(NpyIter* it, const npy_intp* multi_index) except NPY_FAIL + int NpyIter_GotoIndex(NpyIter* it, npy_intp index) except NPY_FAIL + npy_intp NpyIter_GetIterSize(NpyIter* it) nogil + npy_intp NpyIter_GetIterIndex(NpyIter* it) nogil + void NpyIter_GetIterIndexRange(NpyIter* it, npy_intp* istart, + npy_intp* iend) nogil + int NpyIter_GotoIterIndex(NpyIter* it, npy_intp iterindex) except NPY_FAIL + npy_bool NpyIter_HasDelayedBufAlloc(NpyIter* it) nogil + npy_bool NpyIter_HasExternalLoop(NpyIter* it) nogil + npy_bool NpyIter_HasMultiIndex(NpyIter* it) nogil + npy_bool NpyIter_HasIndex(NpyIter* it) nogil + npy_bool NpyIter_RequiresBuffering(NpyIter* it) nogil + npy_bool NpyIter_IsBuffered(NpyIter* it) nogil + npy_bool NpyIter_IsGrowInner(NpyIter* it) nogil + npy_intp NpyIter_GetBufferSize(NpyIter* it) nogil + int NpyIter_GetNDim(NpyIter* it) nogil + int NpyIter_GetNOp(NpyIter* it) nogil + npy_intp* NpyIter_GetAxisStrideArray(NpyIter* it, int axis) except NULL + int NpyIter_GetShape(NpyIter* it, npy_intp* outshape) nogil + PyArray_Descr** NpyIter_GetDescrArray(NpyIter* it) + PyArrayObject** NpyIter_GetOperandArray(NpyIter* it) + ndarray NpyIter_GetIterView(NpyIter* it, npy_intp i) + void NpyIter_GetReadFlags(NpyIter* it, char* outreadflags) + void NpyIter_GetWriteFlags(NpyIter* it, char* outwriteflags) + int NpyIter_CreateCompatibleStrides(NpyIter* it, npy_intp itemsize, + npy_intp* outstrides) except NPY_FAIL + npy_bool NpyIter_IsFirstVisit(NpyIter* it, int iop) nogil + # functions for iterating an NpyIter object + # + # These don't match the definition in the C API because Cython can't wrap + # function pointers that return functions. + NpyIter_IterNextFunc* NpyIter_GetIterNext(NpyIter* it, char** errmsg) except NULL + NpyIter_GetMultiIndexFunc* NpyIter_GetGetMultiIndex(NpyIter* it, + char** errmsg) except NULL + char** NpyIter_GetDataPtrArray(NpyIter* it) nogil + char** NpyIter_GetInitialDataPtrArray(NpyIter* it) nogil + npy_intp* NpyIter_GetIndexPtr(NpyIter* it) + npy_intp* NpyIter_GetInnerStrideArray(NpyIter* it) nogil + npy_intp* NpyIter_GetInnerLoopSizePtr(NpyIter* it) nogil + void NpyIter_GetInnerFixedStrideArray(NpyIter* it, npy_intp* outstrides) nogil + npy_bool NpyIter_IterationNeedsAPI(NpyIter* it) nogil + void NpyIter_DebugPrint(NpyIter* it) + +# NpyString API +cdef extern from "numpy/ndarraytypes.h": + ctypedef struct npy_string_allocator: + pass + + ctypedef struct npy_packed_static_string: + pass + + ctypedef struct npy_static_string: + size_t size + const char *buf + + ctypedef struct PyArray_StringDTypeObject: + PyArray_Descr base + PyObject *na_object + char coerce + char has_nan_na + char has_string_na + char array_owned + npy_static_string default_string + npy_static_string na_name + npy_string_allocator *allocator + +cdef extern from "numpy/arrayobject.h": + npy_string_allocator *NpyString_acquire_allocator(const PyArray_StringDTypeObject *descr) + void NpyString_acquire_allocators(size_t n_descriptors, PyArray_Descr *const descrs[], npy_string_allocator *allocators[]) + void NpyString_release_allocator(npy_string_allocator *allocator) + void NpyString_release_allocators(size_t length, npy_string_allocator *allocators[]) + int NpyString_load(npy_string_allocator *allocator, const npy_packed_static_string *packed_string, npy_static_string *unpacked_string) + int NpyString_pack_null(npy_string_allocator *allocator, npy_packed_static_string *packed_string) + int NpyString_pack(npy_string_allocator *allocator, npy_packed_static_string *packed_string, const char *buf, size_t size) diff --git a/.venv/lib/python3.12/site-packages/numpy/__init__.py b/.venv/lib/python3.12/site-packages/numpy/__init__.py new file mode 100644 index 0000000..8fb2e74 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/__init__.py @@ -0,0 +1,928 @@ +""" +NumPy +===== + +Provides + 1. An array object of arbitrary homogeneous items + 2. Fast mathematical operations over arrays + 3. Linear Algebra, Fourier Transforms, Random Number Generation + +How to use the documentation +---------------------------- +Documentation is available in two forms: docstrings provided +with the code, and a loose standing reference guide, available from +`the NumPy homepage `_. + +We recommend exploring the docstrings using +`IPython `_, an advanced Python shell with +TAB-completion and introspection capabilities. See below for further +instructions. + +The docstring examples assume that `numpy` has been imported as ``np``:: + + >>> import numpy as np + +Code snippets are indicated by three greater-than signs:: + + >>> x = 42 + >>> x = x + 1 + +Use the built-in ``help`` function to view a function's docstring:: + + >>> help(np.sort) + ... # doctest: +SKIP + +For some objects, ``np.info(obj)`` may provide additional help. This is +particularly true if you see the line "Help on ufunc object:" at the top +of the help() page. Ufuncs are implemented in C, not Python, for speed. +The native Python help() does not know how to view their help, but our +np.info() function does. + +Available subpackages +--------------------- +lib + Basic functions used by several sub-packages. +random + Core Random Tools +linalg + Core Linear Algebra Tools +fft + Core FFT routines +polynomial + Polynomial tools +testing + NumPy testing tools +distutils + Enhancements to distutils with support for + Fortran compilers support and more (for Python <= 3.11) + +Utilities +--------- +test + Run numpy unittests +show_config + Show numpy build configuration +__version__ + NumPy version string + +Viewing documentation using IPython +----------------------------------- + +Start IPython and import `numpy` usually under the alias ``np``: `import +numpy as np`. Then, directly past or use the ``%cpaste`` magic to paste +examples into the shell. To see which functions are available in `numpy`, +type ``np.`` (where ```` refers to the TAB key), or use +``np.*cos*?`` (where ```` refers to the ENTER key) to narrow +down the list. To view the docstring for a function, use +``np.cos?`` (to view the docstring) and ``np.cos??`` (to view +the source code). + +Copies vs. in-place operation +----------------------------- +Most of the functions in `numpy` return a copy of the array argument +(e.g., `np.sort`). In-place versions of these functions are often +available as array methods, i.e. ``x = np.array([1,2,3]); x.sort()``. +Exceptions to this rule are documented. + +""" +import os +import sys +import warnings + +# If a version with git hash was stored, use that instead +from . import version +from ._expired_attrs_2_0 import __expired_attributes__ +from ._globals import _CopyMode, _NoValue +from .version import __version__ + +# We first need to detect if we're being called as part of the numpy setup +# procedure itself in a reliable manner. +try: + __NUMPY_SETUP__ # noqa: B018 +except NameError: + __NUMPY_SETUP__ = False + +if __NUMPY_SETUP__: + sys.stderr.write('Running from numpy source directory.\n') +else: + # Allow distributors to run custom init code before importing numpy._core + from . import _distributor_init + + try: + from numpy.__config__ import show_config + except ImportError as e: + msg = """Error importing numpy: you should not try to import numpy from + its source directory; please exit the numpy source tree, and relaunch + your python interpreter from there.""" + raise ImportError(msg) from e + + from . import _core + from ._core import ( + False_, + ScalarType, + True_, + abs, + absolute, + acos, + acosh, + add, + all, + allclose, + amax, + amin, + any, + arange, + arccos, + arccosh, + arcsin, + arcsinh, + arctan, + arctan2, + arctanh, + argmax, + argmin, + argpartition, + argsort, + argwhere, + around, + array, + array2string, + array_equal, + array_equiv, + array_repr, + array_str, + asanyarray, + asarray, + ascontiguousarray, + asfortranarray, + asin, + asinh, + astype, + atan, + atan2, + atanh, + atleast_1d, + atleast_2d, + atleast_3d, + base_repr, + binary_repr, + bitwise_and, + bitwise_count, + bitwise_invert, + bitwise_left_shift, + bitwise_not, + bitwise_or, + bitwise_right_shift, + bitwise_xor, + block, + bool, + bool_, + broadcast, + busday_count, + busday_offset, + busdaycalendar, + byte, + bytes_, + can_cast, + cbrt, + cdouble, + ceil, + character, + choose, + clip, + clongdouble, + complex64, + complex128, + complexfloating, + compress, + concat, + concatenate, + conj, + conjugate, + convolve, + copysign, + copyto, + correlate, + cos, + cosh, + count_nonzero, + cross, + csingle, + cumprod, + cumsum, + cumulative_prod, + cumulative_sum, + datetime64, + datetime_as_string, + datetime_data, + deg2rad, + degrees, + diagonal, + divide, + divmod, + dot, + double, + dtype, + e, + einsum, + einsum_path, + empty, + empty_like, + equal, + errstate, + euler_gamma, + exp, + exp2, + expm1, + fabs, + finfo, + flatiter, + flatnonzero, + flexible, + float16, + float32, + float64, + float_power, + floating, + floor, + floor_divide, + fmax, + fmin, + fmod, + format_float_positional, + format_float_scientific, + frexp, + from_dlpack, + frombuffer, + fromfile, + fromfunction, + fromiter, + frompyfunc, + fromstring, + full, + full_like, + gcd, + generic, + geomspace, + get_printoptions, + getbufsize, + geterr, + geterrcall, + greater, + greater_equal, + half, + heaviside, + hstack, + hypot, + identity, + iinfo, + indices, + inexact, + inf, + inner, + int8, + int16, + int32, + int64, + int_, + intc, + integer, + intp, + invert, + is_busday, + isclose, + isdtype, + isfinite, + isfortran, + isinf, + isnan, + isnat, + isscalar, + issubdtype, + lcm, + ldexp, + left_shift, + less, + less_equal, + lexsort, + linspace, + little_endian, + log, + log1p, + log2, + log10, + logaddexp, + logaddexp2, + logical_and, + logical_not, + logical_or, + logical_xor, + logspace, + long, + longdouble, + longlong, + matmul, + matrix_transpose, + matvec, + max, + maximum, + may_share_memory, + mean, + memmap, + min, + min_scalar_type, + minimum, + mod, + modf, + moveaxis, + multiply, + nan, + ndarray, + ndim, + nditer, + negative, + nested_iters, + newaxis, + nextafter, + nonzero, + not_equal, + number, + object_, + ones, + ones_like, + outer, + partition, + permute_dims, + pi, + positive, + pow, + power, + printoptions, + prod, + promote_types, + ptp, + put, + putmask, + rad2deg, + radians, + ravel, + recarray, + reciprocal, + record, + remainder, + repeat, + require, + reshape, + resize, + result_type, + right_shift, + rint, + roll, + rollaxis, + round, + sctypeDict, + searchsorted, + set_printoptions, + setbufsize, + seterr, + seterrcall, + shape, + shares_memory, + short, + sign, + signbit, + signedinteger, + sin, + single, + sinh, + size, + sort, + spacing, + sqrt, + square, + squeeze, + stack, + std, + str_, + subtract, + sum, + swapaxes, + take, + tan, + tanh, + tensordot, + timedelta64, + trace, + transpose, + true_divide, + trunc, + typecodes, + ubyte, + ufunc, + uint, + uint8, + uint16, + uint32, + uint64, + uintc, + uintp, + ulong, + ulonglong, + unsignedinteger, + unstack, + ushort, + var, + vdot, + vecdot, + vecmat, + void, + vstack, + where, + zeros, + zeros_like, + ) + + # NOTE: It's still under discussion whether these aliases + # should be removed. + for ta in ["float96", "float128", "complex192", "complex256"]: + try: + globals()[ta] = getattr(_core, ta) + except AttributeError: + pass + del ta + + from . import lib + from . import matrixlib as _mat + from .lib import scimath as emath + from .lib._arraypad_impl import pad + from .lib._arraysetops_impl import ( + ediff1d, + in1d, + intersect1d, + isin, + setdiff1d, + setxor1d, + union1d, + unique, + unique_all, + unique_counts, + unique_inverse, + unique_values, + ) + from .lib._function_base_impl import ( + angle, + append, + asarray_chkfinite, + average, + bartlett, + bincount, + blackman, + copy, + corrcoef, + cov, + delete, + diff, + digitize, + extract, + flip, + gradient, + hamming, + hanning, + i0, + insert, + interp, + iterable, + kaiser, + median, + meshgrid, + percentile, + piecewise, + place, + quantile, + rot90, + select, + sinc, + sort_complex, + trapezoid, + trapz, + trim_zeros, + unwrap, + vectorize, + ) + from .lib._histograms_impl import histogram, histogram_bin_edges, histogramdd + from .lib._index_tricks_impl import ( + c_, + diag_indices, + diag_indices_from, + fill_diagonal, + index_exp, + ix_, + mgrid, + ndenumerate, + ndindex, + ogrid, + r_, + ravel_multi_index, + s_, + unravel_index, + ) + from .lib._nanfunctions_impl import ( + nanargmax, + nanargmin, + nancumprod, + nancumsum, + nanmax, + nanmean, + nanmedian, + nanmin, + nanpercentile, + nanprod, + nanquantile, + nanstd, + nansum, + nanvar, + ) + from .lib._npyio_impl import ( + fromregex, + genfromtxt, + load, + loadtxt, + packbits, + save, + savetxt, + savez, + savez_compressed, + unpackbits, + ) + from .lib._polynomial_impl import ( + poly, + poly1d, + polyadd, + polyder, + polydiv, + polyfit, + polyint, + polymul, + polysub, + polyval, + roots, + ) + from .lib._shape_base_impl import ( + apply_along_axis, + apply_over_axes, + array_split, + column_stack, + dsplit, + dstack, + expand_dims, + hsplit, + kron, + put_along_axis, + row_stack, + split, + take_along_axis, + tile, + vsplit, + ) + from .lib._stride_tricks_impl import ( + broadcast_arrays, + broadcast_shapes, + broadcast_to, + ) + from .lib._twodim_base_impl import ( + diag, + diagflat, + eye, + fliplr, + flipud, + histogram2d, + mask_indices, + tri, + tril, + tril_indices, + tril_indices_from, + triu, + triu_indices, + triu_indices_from, + vander, + ) + from .lib._type_check_impl import ( + common_type, + imag, + iscomplex, + iscomplexobj, + isreal, + isrealobj, + mintypecode, + nan_to_num, + real, + real_if_close, + typename, + ) + from .lib._ufunclike_impl import fix, isneginf, isposinf + from .lib._utils_impl import get_include, info, show_runtime + from .matrixlib import asmatrix, bmat, matrix + + # public submodules are imported lazily, therefore are accessible from + # __getattr__. Note that `distutils` (deprecated) and `array_api` + # (experimental label) are not added here, because `from numpy import *` + # must not raise any warnings - that's too disruptive. + __numpy_submodules__ = { + "linalg", "fft", "dtypes", "random", "polynomial", "ma", + "exceptions", "lib", "ctypeslib", "testing", "typing", + "f2py", "test", "rec", "char", "core", "strings", + } + + # We build warning messages for former attributes + _msg = ( + "module 'numpy' has no attribute '{n}'.\n" + "`np.{n}` was a deprecated alias for the builtin `{n}`. " + "To avoid this error in existing code, use `{n}` by itself. " + "Doing this will not modify any behavior and is safe. {extended_msg}\n" + "The aliases was originally deprecated in NumPy 1.20; for more " + "details and guidance see the original release note at:\n" + " https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations") + + _specific_msg = ( + "If you specifically wanted the numpy scalar type, use `np.{}` here.") + + _int_extended_msg = ( + "When replacing `np.{}`, you may wish to use e.g. `np.int64` " + "or `np.int32` to specify the precision. If you wish to review " + "your current use, check the release note link for " + "additional information.") + + _type_info = [ + ("object", ""), # The NumPy scalar only exists by name. + ("float", _specific_msg.format("float64")), + ("complex", _specific_msg.format("complex128")), + ("str", _specific_msg.format("str_")), + ("int", _int_extended_msg.format("int"))] + + __former_attrs__ = { + n: _msg.format(n=n, extended_msg=extended_msg) + for n, extended_msg in _type_info + } + + # Some of these could be defined right away, but most were aliases to + # the Python objects and only removed in NumPy 1.24. Defining them should + # probably wait for NumPy 1.26 or 2.0. + # When defined, these should possibly not be added to `__all__` to avoid + # import with `from numpy import *`. + __future_scalars__ = {"str", "bytes", "object"} + + __array_api_version__ = "2024.12" + + from ._array_api_info import __array_namespace_info__ + + # now that numpy core module is imported, can initialize limits + _core.getlimits._register_known_types() + + __all__ = list( + __numpy_submodules__ | + set(_core.__all__) | + set(_mat.__all__) | + set(lib._histograms_impl.__all__) | + set(lib._nanfunctions_impl.__all__) | + set(lib._function_base_impl.__all__) | + set(lib._twodim_base_impl.__all__) | + set(lib._shape_base_impl.__all__) | + set(lib._type_check_impl.__all__) | + set(lib._arraysetops_impl.__all__) | + set(lib._ufunclike_impl.__all__) | + set(lib._arraypad_impl.__all__) | + set(lib._utils_impl.__all__) | + set(lib._stride_tricks_impl.__all__) | + set(lib._polynomial_impl.__all__) | + set(lib._npyio_impl.__all__) | + set(lib._index_tricks_impl.__all__) | + {"emath", "show_config", "__version__", "__array_namespace_info__"} + ) + + # Filter out Cython harmless warnings + warnings.filterwarnings("ignore", message="numpy.dtype size changed") + warnings.filterwarnings("ignore", message="numpy.ufunc size changed") + warnings.filterwarnings("ignore", message="numpy.ndarray size changed") + + def __getattr__(attr): + # Warn for expired attributes + import warnings + + if attr == "linalg": + import numpy.linalg as linalg + return linalg + elif attr == "fft": + import numpy.fft as fft + return fft + elif attr == "dtypes": + import numpy.dtypes as dtypes + return dtypes + elif attr == "random": + import numpy.random as random + return random + elif attr == "polynomial": + import numpy.polynomial as polynomial + return polynomial + elif attr == "ma": + import numpy.ma as ma + return ma + elif attr == "ctypeslib": + import numpy.ctypeslib as ctypeslib + return ctypeslib + elif attr == "exceptions": + import numpy.exceptions as exceptions + return exceptions + elif attr == "testing": + import numpy.testing as testing + return testing + elif attr == "matlib": + import numpy.matlib as matlib + return matlib + elif attr == "f2py": + import numpy.f2py as f2py + return f2py + elif attr == "typing": + import numpy.typing as typing + return typing + elif attr == "rec": + import numpy.rec as rec + return rec + elif attr == "char": + import numpy.char as char + return char + elif attr == "array_api": + raise AttributeError("`numpy.array_api` is not available from " + "numpy 2.0 onwards", name=None) + elif attr == "core": + import numpy.core as core + return core + elif attr == "strings": + import numpy.strings as strings + return strings + elif attr == "distutils": + if 'distutils' in __numpy_submodules__: + import numpy.distutils as distutils + return distutils + else: + raise AttributeError("`numpy.distutils` is not available from " + "Python 3.12 onwards", name=None) + + if attr in __future_scalars__: + # And future warnings for those that will change, but also give + # the AttributeError + warnings.warn( + f"In the future `np.{attr}` will be defined as the " + "corresponding NumPy scalar.", FutureWarning, stacklevel=2) + + if attr in __former_attrs__: + raise AttributeError(__former_attrs__[attr], name=None) + + if attr in __expired_attributes__: + raise AttributeError( + f"`np.{attr}` was removed in the NumPy 2.0 release. " + f"{__expired_attributes__[attr]}", + name=None + ) + + if attr == "chararray": + warnings.warn( + "`np.chararray` is deprecated and will be removed from " + "the main namespace in the future. Use an array with a string " + "or bytes dtype instead.", DeprecationWarning, stacklevel=2) + import numpy.char as char + return char.chararray + + raise AttributeError(f"module {__name__!r} has no attribute {attr!r}") + + def __dir__(): + public_symbols = ( + globals().keys() | __numpy_submodules__ + ) + public_symbols -= { + "matrixlib", "matlib", "tests", "conftest", "version", + "distutils", "array_api" + } + return list(public_symbols) + + # Pytest testing + from numpy._pytesttester import PytestTester + test = PytestTester(__name__) + del PytestTester + + def _sanity_check(): + """ + Quick sanity checks for common bugs caused by environment. + There are some cases e.g. with wrong BLAS ABI that cause wrong + results under specific runtime conditions that are not necessarily + achieved during test suite runs, and it is useful to catch those early. + + See https://github.com/numpy/numpy/issues/8577 and other + similar bug reports. + + """ + try: + x = ones(2, dtype=float32) + if not abs(x.dot(x) - float32(2.0)) < 1e-5: + raise AssertionError + except AssertionError: + msg = ("The current Numpy installation ({!r}) fails to " + "pass simple sanity checks. This can be caused for example " + "by incorrect BLAS library being linked in, or by mixing " + "package managers (pip, conda, apt, ...). Search closed " + "numpy issues for similar problems.") + raise RuntimeError(msg.format(__file__)) from None + + _sanity_check() + del _sanity_check + + def _mac_os_check(): + """ + Quick Sanity check for Mac OS look for accelerate build bugs. + Testing numpy polyfit calls init_dgelsd(LAPACK) + """ + try: + c = array([3., 2., 1.]) + x = linspace(0, 2, 5) + y = polyval(c, x) + _ = polyfit(x, y, 2, cov=True) + except ValueError: + pass + + if sys.platform == "darwin": + from . import exceptions + with warnings.catch_warnings(record=True) as w: + _mac_os_check() + # Throw runtime error, if the test failed + # Check for warning and report the error_message + if len(w) > 0: + for _wn in w: + if _wn.category is exceptions.RankWarning: + # Ignore other warnings, they may not be relevant (see gh-25433) + error_message = ( + f"{_wn.category.__name__}: {_wn.message}" + ) + msg = ( + "Polyfit sanity test emitted a warning, most likely due " + "to using a buggy Accelerate backend." + "\nIf you compiled yourself, more information is available at:" # noqa: E501 + "\nhttps://numpy.org/devdocs/building/index.html" + "\nOtherwise report this to the vendor " + f"that provided NumPy.\n\n{error_message}\n") + raise RuntimeError(msg) + del _wn + del w + del _mac_os_check + + def hugepage_setup(): + """ + We usually use madvise hugepages support, but on some old kernels it + is slow and thus better avoided. Specifically kernel version 4.6 + had a bug fix which probably fixed this: + https://github.com/torvalds/linux/commit/7cf91a98e607c2f935dbcc177d70011e95b8faff + """ + use_hugepage = os.environ.get("NUMPY_MADVISE_HUGEPAGE", None) + if sys.platform == "linux" and use_hugepage is None: + # If there is an issue with parsing the kernel version, + # set use_hugepage to 0. Usage of LooseVersion will handle + # the kernel version parsing better, but avoided since it + # will increase the import time. + # See: #16679 for related discussion. + try: + use_hugepage = 1 + kernel_version = os.uname().release.split(".")[:2] + kernel_version = tuple(int(v) for v in kernel_version) + if kernel_version < (4, 6): + use_hugepage = 0 + except ValueError: + use_hugepage = 0 + elif use_hugepage is None: + # This is not Linux, so it should not matter, just enable anyway + use_hugepage = 1 + else: + use_hugepage = int(use_hugepage) + return use_hugepage + + # Note that this will currently only make a difference on Linux + _core.multiarray._set_madvise_hugepage(hugepage_setup()) + del hugepage_setup + + # Give a warning if NumPy is reloaded or imported on a sub-interpreter + # We do this from python, since the C-module may not be reloaded and + # it is tidier organized. + _core.multiarray._multiarray_umath._reload_guard() + + # TODO: Remove the environment variable entirely now that it is "weak" + if (os.environ.get("NPY_PROMOTION_STATE", "weak") != "weak"): + warnings.warn( + "NPY_PROMOTION_STATE was a temporary feature for NumPy 2.0 " + "transition and is ignored after NumPy 2.2.", + UserWarning, stacklevel=2) + + # Tell PyInstaller where to find hook-numpy.py + def _pyinstaller_hooks_dir(): + from pathlib import Path + return [str(Path(__file__).with_name("_pyinstaller").resolve())] + + +# Remove symbols imported for internal use +del os, sys, warnings diff --git a/.venv/lib/python3.12/site-packages/numpy/__init__.pyi b/.venv/lib/python3.12/site-packages/numpy/__init__.pyi new file mode 100644 index 0000000..341fc49 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/__init__.pyi @@ -0,0 +1,5387 @@ +# ruff: noqa: I001 +import builtins +import sys +import mmap +import ctypes as ct +import array as _array +import datetime as dt +from abc import abstractmethod +from types import EllipsisType, ModuleType, TracebackType, MappingProxyType, GenericAlias +from decimal import Decimal +from fractions import Fraction +from uuid import UUID + +import numpy as np +from numpy.__config__ import show as show_config +from numpy._pytesttester import PytestTester +from numpy._core._internal import _ctypes + +from numpy._typing import ( + # Arrays + ArrayLike, + NDArray, + _SupportsArray, + _NestedSequence, + _ArrayLike, + _ArrayLikeBool_co, + _ArrayLikeUInt_co, + _ArrayLikeInt, + _ArrayLikeInt_co, + _ArrayLikeFloat64_co, + _ArrayLikeFloat_co, + _ArrayLikeComplex128_co, + _ArrayLikeComplex_co, + _ArrayLikeNumber_co, + _ArrayLikeObject_co, + _ArrayLikeBytes_co, + _ArrayLikeStr_co, + _ArrayLikeString_co, + _ArrayLikeTD64_co, + _ArrayLikeDT64_co, + # DTypes + DTypeLike, + _DTypeLike, + _DTypeLikeVoid, + _VoidDTypeLike, + # Shapes + _AnyShape, + _Shape, + _ShapeLike, + # Scalars + _CharLike_co, + _IntLike_co, + _FloatLike_co, + _TD64Like_co, + _NumberLike_co, + _ScalarLike_co, + # `number` precision + NBitBase, + # NOTE: Do not remove the extended precision bit-types even if seemingly unused; + # they're used by the mypy plugin + _128Bit, + _96Bit, + _64Bit, + _32Bit, + _16Bit, + _8Bit, + _NBitByte, + _NBitShort, + _NBitIntC, + _NBitIntP, + _NBitLong, + _NBitLongLong, + _NBitHalf, + _NBitSingle, + _NBitDouble, + _NBitLongDouble, + # Character codes + _BoolCodes, + _UInt8Codes, + _UInt16Codes, + _UInt32Codes, + _UInt64Codes, + _Int8Codes, + _Int16Codes, + _Int32Codes, + _Int64Codes, + _Float16Codes, + _Float32Codes, + _Float64Codes, + _Complex64Codes, + _Complex128Codes, + _ByteCodes, + _ShortCodes, + _IntCCodes, + _IntPCodes, + _LongCodes, + _LongLongCodes, + _UByteCodes, + _UShortCodes, + _UIntCCodes, + _UIntPCodes, + _ULongCodes, + _ULongLongCodes, + _HalfCodes, + _SingleCodes, + _DoubleCodes, + _LongDoubleCodes, + _CSingleCodes, + _CDoubleCodes, + _CLongDoubleCodes, + _DT64Codes, + _TD64Codes, + _StrCodes, + _BytesCodes, + _VoidCodes, + _ObjectCodes, + _StringCodes, + _UnsignedIntegerCodes, + _SignedIntegerCodes, + _IntegerCodes, + _FloatingCodes, + _ComplexFloatingCodes, + _InexactCodes, + _NumberCodes, + _CharacterCodes, + _FlexibleCodes, + _GenericCodes, + # Ufuncs + _UFunc_Nin1_Nout1, + _UFunc_Nin2_Nout1, + _UFunc_Nin1_Nout2, + _UFunc_Nin2_Nout2, + _GUFunc_Nin2_Nout1, +) + +from numpy._typing._callable import ( + _BoolOp, + _BoolBitOp, + _BoolSub, + _BoolTrueDiv, + _BoolMod, + _BoolDivMod, + _IntTrueDiv, + _UnsignedIntOp, + _UnsignedIntBitOp, + _UnsignedIntMod, + _UnsignedIntDivMod, + _SignedIntOp, + _SignedIntBitOp, + _SignedIntMod, + _SignedIntDivMod, + _FloatOp, + _FloatMod, + _FloatDivMod, + _NumberOp, + _ComparisonOpLT, + _ComparisonOpLE, + _ComparisonOpGT, + _ComparisonOpGE, +) + +# NOTE: Numpy's mypy plugin is used for removing the types unavailable to the specific platform +from numpy._typing._extended_precision import ( + float96, + float128, + complex192, + complex256, +) + +from numpy._array_api_info import __array_namespace_info__ + +from collections.abc import ( + Callable, + Iterable, + Iterator, + Mapping, + Sequence, +) + +if sys.version_info >= (3, 12): + from collections.abc import Buffer as _SupportsBuffer +else: + _SupportsBuffer: TypeAlias = ( + bytes + | bytearray + | memoryview + | _array.array[Any] + | mmap.mmap + | NDArray[Any] + | generic + ) + +from typing import ( + Any, + ClassVar, + Final, + Generic, + Literal as L, + LiteralString, + Never, + NoReturn, + Protocol, + Self, + SupportsComplex, + SupportsFloat, + SupportsInt, + SupportsIndex, + TypeAlias, + TypedDict, + final, + overload, + type_check_only, +) + +# NOTE: `typing_extensions` and `_typeshed` are always available in `.pyi` stubs, even +# if not available at runtime. This is because the `typeshed` stubs for the standard +# library include `typing_extensions` stubs: +# https://github.com/python/typeshed/blob/main/stdlib/typing_extensions.pyi +from _typeshed import Incomplete, StrOrBytesPath, SupportsFlush, SupportsLenAndGetItem, SupportsWrite +from typing_extensions import CapsuleType, TypeVar + +from numpy import ( + char, + core, + ctypeslib, + dtypes, + exceptions, + f2py, + fft, + lib, + linalg, + ma, + polynomial, + random, + rec, + strings, + testing, + typing, +) + +# available through `__getattr__`, but not in `__all__` or `__dir__` +from numpy import ( + __config__ as __config__, + matlib as matlib, + matrixlib as matrixlib, + version as version, +) +if sys.version_info < (3, 12): + from numpy import distutils as distutils + +from numpy._core.records import ( + record, + recarray, +) + +from numpy._core.function_base import ( + linspace, + logspace, + geomspace, +) + +from numpy._core.fromnumeric import ( + take, + reshape, + choose, + repeat, + put, + swapaxes, + transpose, + matrix_transpose, + partition, + argpartition, + sort, + argsort, + argmax, + argmin, + searchsorted, + resize, + squeeze, + diagonal, + trace, + ravel, + nonzero, + shape, + compress, + clip, + sum, + all, + any, + cumsum, + cumulative_sum, + ptp, + max, + min, + amax, + amin, + prod, + cumprod, + cumulative_prod, + ndim, + size, + around, + round, + mean, + std, + var, +) + +from numpy._core._asarray import ( + require, +) + +from numpy._core._type_aliases import ( + sctypeDict, +) + +from numpy._core._ufunc_config import ( + seterr, + geterr, + setbufsize, + getbufsize, + seterrcall, + geterrcall, + _ErrKind, + _ErrCall, +) + +from numpy._core.arrayprint import ( + set_printoptions, + get_printoptions, + array2string, + format_float_scientific, + format_float_positional, + array_repr, + array_str, + printoptions, +) + +from numpy._core.einsumfunc import ( + einsum, + einsum_path, +) + +from numpy._core.multiarray import ( + array, + empty_like, + empty, + zeros, + concatenate, + inner, + where, + lexsort, + can_cast, + min_scalar_type, + result_type, + dot, + vdot, + bincount, + copyto, + putmask, + packbits, + unpackbits, + shares_memory, + may_share_memory, + asarray, + asanyarray, + ascontiguousarray, + asfortranarray, + arange, + busday_count, + busday_offset, + datetime_as_string, + datetime_data, + frombuffer, + fromfile, + fromiter, + is_busday, + promote_types, + fromstring, + frompyfunc, + nested_iters, + flagsobj, +) + +from numpy._core.numeric import ( + zeros_like, + ones, + ones_like, + full, + full_like, + count_nonzero, + isfortran, + argwhere, + flatnonzero, + correlate, + convolve, + outer, + tensordot, + roll, + rollaxis, + moveaxis, + cross, + indices, + fromfunction, + isscalar, + binary_repr, + base_repr, + identity, + allclose, + isclose, + array_equal, + array_equiv, + astype, +) + +from numpy._core.numerictypes import ( + isdtype, + issubdtype, + ScalarType, + typecodes, +) + +from numpy._core.shape_base import ( + atleast_1d, + atleast_2d, + atleast_3d, + block, + hstack, + stack, + vstack, + unstack, +) + +from ._expired_attrs_2_0 import __expired_attributes__ as __expired_attributes__ + +from numpy.lib import ( + scimath as emath, +) + +from numpy.lib._arraypad_impl import ( + pad, +) + +from numpy.lib._arraysetops_impl import ( + ediff1d, + in1d, + intersect1d, + isin, + setdiff1d, + setxor1d, + union1d, + unique, + unique_all, + unique_counts, + unique_inverse, + unique_values, +) + +from numpy.lib._function_base_impl import ( + select, + piecewise, + trim_zeros, + copy, + iterable, + percentile, + diff, + gradient, + angle, + unwrap, + sort_complex, + flip, + rot90, + extract, + place, + asarray_chkfinite, + average, + digitize, + cov, + corrcoef, + median, + sinc, + hamming, + hanning, + bartlett, + blackman, + kaiser, + trapezoid, + trapz, + i0, + meshgrid, + delete, + insert, + append, + interp, + quantile, +) + +from numpy._globals import _CopyMode + +from numpy.lib._histograms_impl import ( + histogram_bin_edges, + histogram, + histogramdd, +) + +from numpy.lib._index_tricks_impl import ( + ndenumerate, + ndindex, + ravel_multi_index, + unravel_index, + mgrid, + ogrid, + r_, + c_, + s_, + index_exp, + ix_, + fill_diagonal, + diag_indices, + diag_indices_from, +) + +from numpy.lib._nanfunctions_impl import ( + nansum, + nanmax, + nanmin, + nanargmax, + nanargmin, + nanmean, + nanmedian, + nanpercentile, + nanvar, + nanstd, + nanprod, + nancumsum, + nancumprod, + nanquantile, +) + +from numpy.lib._npyio_impl import ( + savetxt, + loadtxt, + genfromtxt, + load, + save, + savez, + savez_compressed, + fromregex, +) + +from numpy.lib._polynomial_impl import ( + poly, + roots, + polyint, + polyder, + polyadd, + polysub, + polymul, + polydiv, + polyval, + polyfit, +) + +from numpy.lib._shape_base_impl import ( + column_stack, + row_stack, + dstack, + array_split, + split, + hsplit, + vsplit, + dsplit, + apply_over_axes, + expand_dims, + apply_along_axis, + kron, + tile, + take_along_axis, + put_along_axis, +) + +from numpy.lib._stride_tricks_impl import ( + broadcast_to, + broadcast_arrays, + broadcast_shapes, +) + +from numpy.lib._twodim_base_impl import ( + diag, + diagflat, + eye, + fliplr, + flipud, + tri, + triu, + tril, + vander, + histogram2d, + mask_indices, + tril_indices, + tril_indices_from, + triu_indices, + triu_indices_from, +) + +from numpy.lib._type_check_impl import ( + mintypecode, + real, + imag, + iscomplex, + isreal, + iscomplexobj, + isrealobj, + nan_to_num, + real_if_close, + typename, + common_type, +) + +from numpy.lib._ufunclike_impl import ( + fix, + isposinf, + isneginf, +) + +from numpy.lib._utils_impl import ( + get_include, + info, + show_runtime, +) + +from numpy.matrixlib import ( + asmatrix, + bmat, +) + +__all__ = [ # noqa: RUF022 + # __numpy_submodules__ + "char", "core", "ctypeslib", "dtypes", "exceptions", "f2py", "fft", "lib", "linalg", + "ma", "polynomial", "random", "rec", "strings", "test", "testing", "typing", + + # _core.__all__ + "abs", "acos", "acosh", "asin", "asinh", "atan", "atanh", "atan2", "bitwise_invert", + "bitwise_left_shift", "bitwise_right_shift", "concat", "pow", "permute_dims", + "memmap", "sctypeDict", "record", "recarray", + + # _core.numeric.__all__ + "newaxis", "ndarray", "flatiter", "nditer", "nested_iters", "ufunc", "arange", + "array", "asarray", "asanyarray", "ascontiguousarray", "asfortranarray", "zeros", + "count_nonzero", "empty", "broadcast", "dtype", "fromstring", "fromfile", + "frombuffer", "from_dlpack", "where", "argwhere", "copyto", "concatenate", + "lexsort", "astype", "can_cast", "promote_types", "min_scalar_type", "result_type", + "isfortran", "empty_like", "zeros_like", "ones_like", "correlate", "convolve", + "inner", "dot", "outer", "vdot", "roll", "rollaxis", "moveaxis", "cross", + "tensordot", "little_endian", "fromiter", "array_equal", "array_equiv", "indices", + "fromfunction", "isclose", "isscalar", "binary_repr", "base_repr", "ones", + "identity", "allclose", "putmask", "flatnonzero", "inf", "nan", "False_", "True_", + "bitwise_not", "full", "full_like", "matmul", "vecdot", "vecmat", + "shares_memory", "may_share_memory", + "all", "amax", "amin", "any", "argmax", "argmin", "argpartition", "argsort", + "around", "choose", "clip", "compress", "cumprod", "cumsum", "cumulative_prod", + "cumulative_sum", "diagonal", "mean", "max", "min", "matrix_transpose", "ndim", + "nonzero", "partition", "prod", "ptp", "put", "ravel", "repeat", "reshape", + "resize", "round", "searchsorted", "shape", "size", "sort", "squeeze", "std", "sum", + "swapaxes", "take", "trace", "transpose", "var", + "absolute", "add", "arccos", "arccosh", "arcsin", "arcsinh", "arctan", "arctan2", + "arctanh", "bitwise_and", "bitwise_or", "bitwise_xor", "cbrt", "ceil", "conj", + "conjugate", "copysign", "cos", "cosh", "bitwise_count", "deg2rad", "degrees", + "divide", "divmod", "e", "equal", "euler_gamma", "exp", "exp2", "expm1", "fabs", + "floor", "floor_divide", "float_power", "fmax", "fmin", "fmod", "frexp", + "frompyfunc", "gcd", "greater", "greater_equal", "heaviside", "hypot", "invert", + "isfinite", "isinf", "isnan", "isnat", "lcm", "ldexp", "left_shift", "less", + "less_equal", "log", "log10", "log1p", "log2", "logaddexp", "logaddexp2", + "logical_and", "logical_not", "logical_or", "logical_xor", "matvec", "maximum", "minimum", + "mod", "modf", "multiply", "negative", "nextafter", "not_equal", "pi", "positive", + "power", "rad2deg", "radians", "reciprocal", "remainder", "right_shift", "rint", + "sign", "signbit", "sin", "sinh", "spacing", "sqrt", "square", "subtract", "tan", + "tanh", "true_divide", "trunc", "ScalarType", "typecodes", "issubdtype", + "datetime_data", "datetime_as_string", "busday_offset", "busday_count", "is_busday", + "busdaycalendar", "isdtype", + "complexfloating", "character", "unsignedinteger", "inexact", "generic", "floating", + "integer", "signedinteger", "number", "flexible", "bool", "float16", "float32", + "float64", "longdouble", "complex64", "complex128", "clongdouble", + "bytes_", "str_", "void", "object_", "datetime64", "timedelta64", "int8", "byte", + "uint8", "ubyte", "int16", "short", "uint16", "ushort", "int32", "intc", "uint32", + "uintc", "int64", "long", "uint64", "ulong", "longlong", "ulonglong", "intp", + "uintp", "double", "cdouble", "single", "csingle", "half", "bool_", "int_", "uint", + "float96", "float128", "complex192", "complex256", + "array2string", "array_str", "array_repr", "set_printoptions", "get_printoptions", + "printoptions", "format_float_positional", "format_float_scientific", "require", + "seterr", "geterr", "setbufsize", "getbufsize", "seterrcall", "geterrcall", + "errstate", + # _core.function_base.__all__ + "logspace", "linspace", "geomspace", + # _core.getlimits.__all__ + "finfo", "iinfo", + # _core.shape_base.__all__ + "atleast_1d", "atleast_2d", "atleast_3d", "block", "hstack", "stack", "unstack", + "vstack", + # _core.einsumfunc.__all__ + "einsum", "einsum_path", + # matrixlib.__all__ + "matrix", "bmat", "asmatrix", + # lib._histograms_impl.__all__ + "histogram", "histogramdd", "histogram_bin_edges", + # lib._nanfunctions_impl.__all__ + "nansum", "nanmax", "nanmin", "nanargmax", "nanargmin", "nanmean", "nanmedian", + "nanpercentile", "nanvar", "nanstd", "nanprod", "nancumsum", "nancumprod", + "nanquantile", + # lib._function_base_impl.__all__ + "select", "piecewise", "trim_zeros", "copy", "iterable", "percentile", "diff", + "gradient", "angle", "unwrap", "sort_complex", "flip", "rot90", "extract", "place", + "vectorize", "asarray_chkfinite", "average", "bincount", "digitize", "cov", + "corrcoef", "median", "sinc", "hamming", "hanning", "bartlett", "blackman", + "kaiser", "trapezoid", "trapz", "i0", "meshgrid", "delete", "insert", "append", + "interp", "quantile", + # lib._twodim_base_impl.__all__ + "diag", "diagflat", "eye", "fliplr", "flipud", "tri", "triu", "tril", "vander", + "histogram2d", "mask_indices", "tril_indices", "tril_indices_from", "triu_indices", + "triu_indices_from", + # lib._shape_base_impl.__all__ + "column_stack", "dstack", "array_split", "split", "hsplit", "vsplit", "dsplit", + "apply_over_axes", "expand_dims", "apply_along_axis", "kron", "tile", + "take_along_axis", "put_along_axis", "row_stack", + # lib._type_check_impl.__all__ + "iscomplexobj", "isrealobj", "imag", "iscomplex", "isreal", "nan_to_num", "real", + "real_if_close", "typename", "mintypecode", "common_type", + # lib._arraysetops_impl.__all__ + "ediff1d", "in1d", "intersect1d", "isin", "setdiff1d", "setxor1d", "union1d", + "unique", "unique_all", "unique_counts", "unique_inverse", "unique_values", + # lib._ufunclike_impl.__all__ + "fix", "isneginf", "isposinf", + # lib._arraypad_impl.__all__ + "pad", + # lib._utils_impl.__all__ + "get_include", "info", "show_runtime", + # lib._stride_tricks_impl.__all__ + "broadcast_to", "broadcast_arrays", "broadcast_shapes", + # lib._polynomial_impl.__all__ + "poly", "roots", "polyint", "polyder", "polyadd", "polysub", "polymul", "polydiv", + "polyval", "poly1d", "polyfit", + # lib._npyio_impl.__all__ + "savetxt", "loadtxt", "genfromtxt", "load", "save", "savez", "savez_compressed", + "packbits", "unpackbits", "fromregex", + # lib._index_tricks_impl.__all__ + "ravel_multi_index", "unravel_index", "mgrid", "ogrid", "r_", "c_", "s_", + "index_exp", "ix_", "ndenumerate", "ndindex", "fill_diagonal", "diag_indices", + "diag_indices_from", + + # __init__.__all__ + "emath", "show_config", "__version__", "__array_namespace_info__", +] # fmt: skip + +### Constrained types (for internal use only) +# Only use these for functions; never as generic type parameter. + +_AnyStr = TypeVar("_AnyStr", LiteralString, str, bytes) +_AnyShapeT = TypeVar( + "_AnyShapeT", + tuple[()], # 0-d + tuple[int], # 1-d + tuple[int, int], # 2-d + tuple[int, int, int], # 3-d + tuple[int, int, int, int], # 4-d + tuple[int, int, int, int, int], # 5-d + tuple[int, int, int, int, int, int], # 6-d + tuple[int, int, int, int, int, int, int], # 7-d + tuple[int, int, int, int, int, int, int, int], # 8-d + tuple[int, ...], # N-d +) +_AnyTD64Item = TypeVar("_AnyTD64Item", dt.timedelta, int, None, dt.timedelta | int | None) +_AnyDT64Arg = TypeVar("_AnyDT64Arg", dt.datetime, dt.date, None) +_AnyDT64Item = TypeVar("_AnyDT64Item", dt.datetime, dt.date, int, None, dt.date, int | None) +_AnyDate = TypeVar("_AnyDate", dt.date, dt.datetime) +_AnyDateOrTime = TypeVar("_AnyDateOrTime", dt.date, dt.datetime, dt.timedelta) + +### Type parameters (for internal use only) + +_T = TypeVar("_T") +_T_co = TypeVar("_T_co", covariant=True) +_T_contra = TypeVar("_T_contra", contravariant=True) +_RealT_co = TypeVar("_RealT_co", covariant=True) +_ImagT_co = TypeVar("_ImagT_co", covariant=True) + +_CallableT = TypeVar("_CallableT", bound=Callable[..., object]) + +_DTypeT = TypeVar("_DTypeT", bound=dtype) +_DTypeT_co = TypeVar("_DTypeT_co", bound=dtype, default=dtype, covariant=True) +_FlexDTypeT = TypeVar("_FlexDTypeT", bound=dtype[flexible]) + +_ArrayT = TypeVar("_ArrayT", bound=ndarray) +_ArrayT_co = TypeVar("_ArrayT_co", bound=ndarray, default=ndarray, covariant=True) +_IntegralArrayT = TypeVar("_IntegralArrayT", bound=NDArray[integer | np.bool | object_]) +_RealArrayT = TypeVar("_RealArrayT", bound=NDArray[floating | integer | timedelta64 | np.bool | object_]) +_NumericArrayT = TypeVar("_NumericArrayT", bound=NDArray[number | timedelta64 | object_]) + +_ShapeT = TypeVar("_ShapeT", bound=_Shape) +_ShapeT_co = TypeVar("_ShapeT_co", bound=_Shape, default=_AnyShape, covariant=True) +_1DShapeT = TypeVar("_1DShapeT", bound=_1D) +_2DShapeT_co = TypeVar("_2DShapeT_co", bound=_2D, default=_2D, covariant=True) +_1NShapeT = TypeVar("_1NShapeT", bound=tuple[L[1], *tuple[L[1], ...]]) # (1,) | (1, 1) | (1, 1, 1) | ... + +_ScalarT = TypeVar("_ScalarT", bound=generic) +_ScalarT_co = TypeVar("_ScalarT_co", bound=generic, default=Any, covariant=True) +_NumberT = TypeVar("_NumberT", bound=number) +_RealNumberT = TypeVar("_RealNumberT", bound=floating | integer) +_FloatingT_co = TypeVar("_FloatingT_co", bound=floating, default=floating, covariant=True) +_IntegerT = TypeVar("_IntegerT", bound=integer) +_IntegerT_co = TypeVar("_IntegerT_co", bound=integer, default=integer, covariant=True) +_NonObjectScalarT = TypeVar("_NonObjectScalarT", bound=np.bool | number | flexible | datetime64 | timedelta64) + +_NBit = TypeVar("_NBit", bound=NBitBase, default=Any) # pyright: ignore[reportDeprecated] +_NBit1 = TypeVar("_NBit1", bound=NBitBase, default=Any) # pyright: ignore[reportDeprecated] +_NBit2 = TypeVar("_NBit2", bound=NBitBase, default=_NBit1) # pyright: ignore[reportDeprecated] + +_ItemT_co = TypeVar("_ItemT_co", default=Any, covariant=True) +_BoolItemT = TypeVar("_BoolItemT", bound=builtins.bool) +_BoolItemT_co = TypeVar("_BoolItemT_co", bound=builtins.bool, default=builtins.bool, covariant=True) +_NumberItemT_co = TypeVar("_NumberItemT_co", bound=complex, default=int | float | complex, covariant=True) +_InexactItemT_co = TypeVar("_InexactItemT_co", bound=complex, default=float | complex, covariant=True) +_FlexibleItemT_co = TypeVar( + "_FlexibleItemT_co", + bound=_CharLike_co | tuple[Any, ...], + default=_CharLike_co | tuple[Any, ...], + covariant=True, +) +_CharacterItemT_co = TypeVar("_CharacterItemT_co", bound=_CharLike_co, default=_CharLike_co, covariant=True) +_TD64ItemT_co = TypeVar("_TD64ItemT_co", bound=dt.timedelta | int | None, default=dt.timedelta | int | None, covariant=True) +_DT64ItemT_co = TypeVar("_DT64ItemT_co", bound=dt.date | int | None, default=dt.date | int | None, covariant=True) +_TD64UnitT = TypeVar("_TD64UnitT", bound=_TD64Unit, default=_TD64Unit) +_BoolOrIntArrayT = TypeVar("_BoolOrIntArrayT", bound=NDArray[integer | np.bool]) + +### Type Aliases (for internal use only) + +_Falsy: TypeAlias = L[False, 0] | np.bool[L[False]] +_Truthy: TypeAlias = L[True, 1] | np.bool[L[True]] + +_1D: TypeAlias = tuple[int] +_2D: TypeAlias = tuple[int, int] +_2Tuple: TypeAlias = tuple[_T, _T] + +_ArrayUInt_co: TypeAlias = NDArray[unsignedinteger | np.bool] +_ArrayInt_co: TypeAlias = NDArray[integer | np.bool] +_ArrayFloat64_co: TypeAlias = NDArray[floating[_64Bit] | float32 | float16 | integer | np.bool] +_ArrayFloat_co: TypeAlias = NDArray[floating | integer | np.bool] +_ArrayComplex128_co: TypeAlias = NDArray[number[_64Bit] | number[_32Bit] | float16 | integer | np.bool] +_ArrayComplex_co: TypeAlias = NDArray[inexact | integer | np.bool] +_ArrayNumber_co: TypeAlias = NDArray[number | np.bool] +_ArrayTD64_co: TypeAlias = NDArray[timedelta64 | integer | np.bool] + +_Float64_co: TypeAlias = float | floating[_64Bit] | float32 | float16 | integer | np.bool +_Complex64_co: TypeAlias = number[_32Bit] | number[_16Bit] | number[_8Bit] | builtins.bool | np.bool +_Complex128_co: TypeAlias = complex | number[_64Bit] | _Complex64_co + +_ToIndex: TypeAlias = SupportsIndex | slice | EllipsisType | _ArrayLikeInt_co | None +_ToIndices: TypeAlias = _ToIndex | tuple[_ToIndex, ...] + +_UnsignedIntegerCType: TypeAlias = type[ + ct.c_uint8 | ct.c_uint16 | ct.c_uint32 | ct.c_uint64 + | ct.c_ushort | ct.c_uint | ct.c_ulong | ct.c_ulonglong + | ct.c_size_t | ct.c_void_p +] # fmt: skip +_SignedIntegerCType: TypeAlias = type[ + ct.c_int8 | ct.c_int16 | ct.c_int32 | ct.c_int64 + | ct.c_short | ct.c_int | ct.c_long | ct.c_longlong + | ct.c_ssize_t +] # fmt: skip +_FloatingCType: TypeAlias = type[ct.c_float | ct.c_double | ct.c_longdouble] +_IntegerCType: TypeAlias = _UnsignedIntegerCType | _SignedIntegerCType +_NumberCType: TypeAlias = _IntegerCType +_GenericCType: TypeAlias = _NumberCType | type[ct.c_bool | ct.c_char | ct.py_object[Any]] + +# some commonly used builtin types that are known to result in a +# `dtype[object_]`, when their *type* is passed to the `dtype` constructor +# NOTE: `builtins.object` should not be included here +_BuiltinObjectLike: TypeAlias = ( + slice | Decimal | Fraction | UUID + | dt.date | dt.time | dt.timedelta | dt.tzinfo + | tuple[Any, ...] | list[Any] | set[Any] | frozenset[Any] | dict[Any, Any] +) # fmt: skip + +# Introduce an alias for `dtype` to avoid naming conflicts. +_dtype: TypeAlias = dtype[_ScalarT] + +_ByteOrderChar: TypeAlias = L["<", ">", "=", "|"] +# can be anything, is case-insensitive, and only the first character matters +_ByteOrder: TypeAlias = L[ + "S", # swap the current order (default) + "<", "L", "little", # little-endian + ">", "B", "big", # big endian + "=", "N", "native", # native order + "|", "I", # ignore +] # fmt: skip +_DTypeKind: TypeAlias = L[ + "b", # boolean + "i", # signed integer + "u", # unsigned integer + "f", # floating-point + "c", # complex floating-point + "m", # timedelta64 + "M", # datetime64 + "O", # python object + "S", # byte-string (fixed-width) + "U", # unicode-string (fixed-width) + "V", # void + "T", # unicode-string (variable-width) +] +_DTypeChar: TypeAlias = L[ + "?", # bool + "b", # byte + "B", # ubyte + "h", # short + "H", # ushort + "i", # intc + "I", # uintc + "l", # long + "L", # ulong + "q", # longlong + "Q", # ulonglong + "e", # half + "f", # single + "d", # double + "g", # longdouble + "F", # csingle + "D", # cdouble + "G", # clongdouble + "O", # object + "S", # bytes_ (S0) + "a", # bytes_ (deprecated) + "U", # str_ + "V", # void + "M", # datetime64 + "m", # timedelta64 + "c", # bytes_ (S1) + "T", # StringDType +] +_DTypeNum: TypeAlias = L[ + 0, # bool + 1, # byte + 2, # ubyte + 3, # short + 4, # ushort + 5, # intc + 6, # uintc + 7, # long + 8, # ulong + 9, # longlong + 10, # ulonglong + 23, # half + 11, # single + 12, # double + 13, # longdouble + 14, # csingle + 15, # cdouble + 16, # clongdouble + 17, # object + 18, # bytes_ + 19, # str_ + 20, # void + 21, # datetime64 + 22, # timedelta64 + 25, # no type + 256, # user-defined + 2056, # StringDType +] +_DTypeBuiltinKind: TypeAlias = L[0, 1, 2] + +_ArrayAPIVersion: TypeAlias = L["2021.12", "2022.12", "2023.12", "2024.12"] + +_CastingKind: TypeAlias = L["no", "equiv", "safe", "same_kind", "unsafe"] + +_OrderKACF: TypeAlias = L["K", "A", "C", "F"] | None +_OrderACF: TypeAlias = L["A", "C", "F"] | None +_OrderCF: TypeAlias = L["C", "F"] | None + +_ModeKind: TypeAlias = L["raise", "wrap", "clip"] +_PartitionKind: TypeAlias = L["introselect"] +# in practice, only the first case-insensitive character is considered (so e.g. +# "QuantumSort3000" will be interpreted as quicksort). +_SortKind: TypeAlias = L[ + "Q", "quick", "quicksort", + "M", "merge", "mergesort", + "H", "heap", "heapsort", + "S", "stable", "stablesort", +] +_SortSide: TypeAlias = L["left", "right"] + +_ConvertibleToInt: TypeAlias = SupportsInt | SupportsIndex | _CharLike_co +_ConvertibleToFloat: TypeAlias = SupportsFloat | SupportsIndex | _CharLike_co +_ConvertibleToComplex: TypeAlias = SupportsComplex | SupportsFloat | SupportsIndex | _CharLike_co +_ConvertibleToTD64: TypeAlias = dt.timedelta | int | _CharLike_co | character | number | timedelta64 | np.bool | None +_ConvertibleToDT64: TypeAlias = dt.date | int | _CharLike_co | character | number | datetime64 | np.bool | None + +_NDIterFlagsKind: TypeAlias = L[ + "buffered", + "c_index", + "copy_if_overlap", + "common_dtype", + "delay_bufalloc", + "external_loop", + "f_index", + "grow_inner", "growinner", + "multi_index", + "ranged", + "refs_ok", + "reduce_ok", + "zerosize_ok", +] +_NDIterFlagsOp: TypeAlias = L[ + "aligned", + "allocate", + "arraymask", + "copy", + "config", + "nbo", + "no_subtype", + "no_broadcast", + "overlap_assume_elementwise", + "readonly", + "readwrite", + "updateifcopy", + "virtual", + "writeonly", + "writemasked" +] + +_MemMapModeKind: TypeAlias = L[ + "readonly", "r", + "copyonwrite", "c", + "readwrite", "r+", + "write", "w+", +] + +_DT64Date: TypeAlias = _HasDateAttributes | L["TODAY", "today", b"TODAY", b"today"] +_DT64Now: TypeAlias = L["NOW", "now", b"NOW", b"now"] +_NaTValue: TypeAlias = L["NAT", "NaT", "nat", b"NAT", b"NaT", b"nat"] + +_MonthUnit: TypeAlias = L["Y", "M", b"Y", b"M"] +_DayUnit: TypeAlias = L["W", "D", b"W", b"D"] +_DateUnit: TypeAlias = L[_MonthUnit, _DayUnit] +_NativeTimeUnit: TypeAlias = L["h", "m", "s", "ms", "us", "μs", b"h", b"m", b"s", b"ms", b"us"] +_IntTimeUnit: TypeAlias = L["ns", "ps", "fs", "as", b"ns", b"ps", b"fs", b"as"] +_TimeUnit: TypeAlias = L[_NativeTimeUnit, _IntTimeUnit] +_NativeTD64Unit: TypeAlias = L[_DayUnit, _NativeTimeUnit] +_IntTD64Unit: TypeAlias = L[_MonthUnit, _IntTimeUnit] +_TD64Unit: TypeAlias = L[_DateUnit, _TimeUnit] +_TimeUnitSpec: TypeAlias = _TD64UnitT | tuple[_TD64UnitT, SupportsIndex] + +### TypedDict's (for internal use only) + +@type_check_only +class _FormerAttrsDict(TypedDict): + object: LiteralString + float: LiteralString + complex: LiteralString + str: LiteralString + int: LiteralString + +### Protocols (for internal use only) + +@type_check_only +class _SupportsFileMethods(SupportsFlush, Protocol): + # Protocol for representing file-like-objects accepted by `ndarray.tofile` and `fromfile` + def fileno(self) -> SupportsIndex: ... + def tell(self) -> SupportsIndex: ... + def seek(self, offset: int, whence: int, /) -> object: ... + +@type_check_only +class _SupportsFileMethodsRW(SupportsWrite[bytes], _SupportsFileMethods, Protocol): ... + +@type_check_only +class _SupportsItem(Protocol[_T_co]): + def item(self, /) -> _T_co: ... + +@type_check_only +class _SupportsDLPack(Protocol[_T_contra]): + def __dlpack__(self, /, *, stream: _T_contra | None = None) -> CapsuleType: ... + +@type_check_only +class _HasDType(Protocol[_T_co]): + @property + def dtype(self, /) -> _T_co: ... + +@type_check_only +class _HasRealAndImag(Protocol[_RealT_co, _ImagT_co]): + @property + def real(self, /) -> _RealT_co: ... + @property + def imag(self, /) -> _ImagT_co: ... + +@type_check_only +class _HasTypeWithRealAndImag(Protocol[_RealT_co, _ImagT_co]): + @property + def type(self, /) -> type[_HasRealAndImag[_RealT_co, _ImagT_co]]: ... + +@type_check_only +class _HasDTypeWithRealAndImag(Protocol[_RealT_co, _ImagT_co]): + @property + def dtype(self, /) -> _HasTypeWithRealAndImag[_RealT_co, _ImagT_co]: ... + +@type_check_only +class _HasDateAttributes(Protocol): + # The `datetime64` constructors requires an object with the three attributes below, + # and thus supports datetime duck typing + @property + def day(self) -> int: ... + @property + def month(self) -> int: ... + @property + def year(self) -> int: ... + +### Mixins (for internal use only) + +@type_check_only +class _RealMixin: + @property + def real(self) -> Self: ... + @property + def imag(self) -> Self: ... + +@type_check_only +class _RoundMixin: + @overload + def __round__(self, /, ndigits: None = None) -> int: ... + @overload + def __round__(self, /, ndigits: SupportsIndex) -> Self: ... + +@type_check_only +class _IntegralMixin(_RealMixin): + @property + def numerator(self) -> Self: ... + @property + def denominator(self) -> L[1]: ... + + def is_integer(self, /) -> L[True]: ... + +### Public API + +__version__: Final[LiteralString] = ... + +e: Final[float] = ... +euler_gamma: Final[float] = ... +pi: Final[float] = ... +inf: Final[float] = ... +nan: Final[float] = ... +little_endian: Final[builtins.bool] = ... +False_: Final[np.bool[L[False]]] = ... +True_: Final[np.bool[L[True]]] = ... +newaxis: Final[None] = None + +# not in __all__ +__NUMPY_SETUP__: Final[L[False]] = False +__numpy_submodules__: Final[set[LiteralString]] = ... +__former_attrs__: Final[_FormerAttrsDict] = ... +__future_scalars__: Final[set[L["bytes", "str", "object"]]] = ... +__array_api_version__: Final[L["2024.12"]] = "2024.12" +test: Final[PytestTester] = ... + +@type_check_only +class _DTypeMeta(type): + @property + def type(cls, /) -> type[generic] | None: ... + @property + def _abstract(cls, /) -> bool: ... + @property + def _is_numeric(cls, /) -> bool: ... + @property + def _parametric(cls, /) -> bool: ... + @property + def _legacy(cls, /) -> bool: ... + +@final +class dtype(Generic[_ScalarT_co], metaclass=_DTypeMeta): + names: tuple[builtins.str, ...] | None + def __hash__(self) -> int: ... + + # `None` results in the default dtype + @overload + def __new__( + cls, + dtype: type[float64] | None, + align: builtins.bool = ..., + copy: builtins.bool = ..., + metadata: dict[builtins.str, Any] = ... + ) -> dtype[float64]: ... + + # Overload for `dtype` instances, scalar types, and instances that have a + # `dtype: dtype[_ScalarT]` attribute + @overload + def __new__( + cls, + dtype: _DTypeLike[_ScalarT], + align: builtins.bool = ..., + copy: builtins.bool = ..., + metadata: dict[builtins.str, Any] = ..., + ) -> dtype[_ScalarT]: ... + + # Builtin types + # + # NOTE: Typecheckers act as if `bool <: int <: float <: complex <: object`, + # even though at runtime `int`, `float`, and `complex` aren't subtypes.. + # This makes it impossible to express e.g. "a float that isn't an int", + # since type checkers treat `_: float` like `_: float | int`. + # + # For more details, see: + # - https://github.com/numpy/numpy/issues/27032#issuecomment-2278958251 + # - https://typing.readthedocs.io/en/latest/spec/special-types.html#special-cases-for-float-and-complex + @overload + def __new__( + cls, + dtype: type[builtins.bool | np.bool], + align: builtins.bool = ..., + copy: builtins.bool = ..., + metadata: dict[str, Any] = ..., + ) -> dtype[np.bool]: ... + # NOTE: `_: type[int]` also accepts `type[int | bool]` + @overload + def __new__( + cls, + dtype: type[int | int_ | np.bool], + align: builtins.bool = ..., + copy: builtins.bool = ..., + metadata: dict[str, Any] = ..., + ) -> dtype[int_ | np.bool]: ... + # NOTE: `_: type[float]` also accepts `type[float | int | bool]` + # NOTE: `float64` inherits from `float` at runtime; but this isn't + # reflected in these stubs. So an explicit `float64` is required here. + @overload + def __new__( + cls, + dtype: type[float | float64 | int_ | np.bool] | None, + align: builtins.bool = ..., + copy: builtins.bool = ..., + metadata: dict[str, Any] = ..., + ) -> dtype[float64 | int_ | np.bool]: ... + # NOTE: `_: type[complex]` also accepts `type[complex | float | int | bool]` + @overload + def __new__( + cls, + dtype: type[complex | complex128 | float64 | int_ | np.bool], + align: builtins.bool = ..., + copy: builtins.bool = ..., + metadata: dict[str, Any] = ..., + ) -> dtype[complex128 | float64 | int_ | np.bool]: ... + @overload + def __new__( + cls, + dtype: type[bytes], # also includes `type[bytes_]` + align: builtins.bool = ..., + copy: builtins.bool = ..., + metadata: dict[str, Any] = ..., + ) -> dtype[bytes_]: ... + @overload + def __new__( + cls, + dtype: type[str], # also includes `type[str_]` + align: builtins.bool = ..., + copy: builtins.bool = ..., + metadata: dict[str, Any] = ..., + ) -> dtype[str_]: ... + # NOTE: These `memoryview` overloads assume PEP 688, which requires mypy to + # be run with the (undocumented) `--disable-memoryview-promotion` flag, + # This will be the default in a future mypy release, see: + # https://github.com/python/mypy/issues/15313 + # Pyright / Pylance requires setting `disableBytesTypePromotions=true`, + # which is the default in strict mode + @overload + def __new__( + cls, + dtype: type[memoryview | void], + align: builtins.bool = ..., + copy: builtins.bool = ..., + metadata: dict[str, Any] = ..., + ) -> dtype[void]: ... + # NOTE: `_: type[object]` would also accept e.g. `type[object | complex]`, + # and is therefore not included here + @overload + def __new__( + cls, + dtype: type[_BuiltinObjectLike | object_], + align: builtins.bool = ..., + copy: builtins.bool = ..., + metadata: dict[str, Any] = ..., + ) -> dtype[object_]: ... + + # Unions of builtins. + @overload + def __new__( + cls, + dtype: type[bytes | str], + align: builtins.bool = ..., + copy: builtins.bool = ..., + metadata: dict[str, Any] = ..., + ) -> dtype[character]: ... + @overload + def __new__( + cls, + dtype: type[bytes | str | memoryview], + align: builtins.bool = ..., + copy: builtins.bool = ..., + metadata: dict[str, Any] = ..., + ) -> dtype[flexible]: ... + @overload + def __new__( + cls, + dtype: type[complex | bytes | str | memoryview | _BuiltinObjectLike], + align: builtins.bool = ..., + copy: builtins.bool = ..., + metadata: dict[str, Any] = ..., + ) -> dtype[np.bool | int_ | float64 | complex128 | flexible | object_]: ... + + # `unsignedinteger` string-based representations and ctypes + @overload + def __new__(cls, dtype: _UInt8Codes | type[ct.c_uint8], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint8]: ... + @overload + def __new__(cls, dtype: _UInt16Codes | type[ct.c_uint16], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint16]: ... + @overload + def __new__(cls, dtype: _UInt32Codes | type[ct.c_uint32], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint32]: ... + @overload + def __new__(cls, dtype: _UInt64Codes | type[ct.c_uint64], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint64]: ... + @overload + def __new__(cls, dtype: _UByteCodes | type[ct.c_ubyte], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[ubyte]: ... + @overload + def __new__(cls, dtype: _UShortCodes | type[ct.c_ushort], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[ushort]: ... + @overload + def __new__(cls, dtype: _UIntCCodes | type[ct.c_uint], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uintc]: ... + # NOTE: We're assuming here that `uint_ptr_t == size_t`, + # an assumption that does not hold in rare cases (same for `ssize_t`) + @overload + def __new__(cls, dtype: _UIntPCodes | type[ct.c_void_p] | type[ct.c_size_t], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uintp]: ... + @overload + def __new__(cls, dtype: _ULongCodes | type[ct.c_ulong], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[ulong]: ... + @overload + def __new__(cls, dtype: _ULongLongCodes | type[ct.c_ulonglong], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[ulonglong]: ... + + # `signedinteger` string-based representations and ctypes + @overload + def __new__(cls, dtype: _Int8Codes | type[ct.c_int8], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int8]: ... + @overload + def __new__(cls, dtype: _Int16Codes | type[ct.c_int16], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int16]: ... + @overload + def __new__(cls, dtype: _Int32Codes | type[ct.c_int32], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int32]: ... + @overload + def __new__(cls, dtype: _Int64Codes | type[ct.c_int64], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int64]: ... + @overload + def __new__(cls, dtype: _ByteCodes | type[ct.c_byte], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[byte]: ... + @overload + def __new__(cls, dtype: _ShortCodes | type[ct.c_short], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[short]: ... + @overload + def __new__(cls, dtype: _IntCCodes | type[ct.c_int], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[intc]: ... + @overload + def __new__(cls, dtype: _IntPCodes | type[ct.c_ssize_t], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[intp]: ... + @overload + def __new__(cls, dtype: _LongCodes | type[ct.c_long], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[long]: ... + @overload + def __new__(cls, dtype: _LongLongCodes | type[ct.c_longlong], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[longlong]: ... + + # `floating` string-based representations and ctypes + @overload + def __new__(cls, dtype: _Float16Codes, align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[float16]: ... + @overload + def __new__(cls, dtype: _Float32Codes, align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[float32]: ... + @overload + def __new__(cls, dtype: _Float64Codes, align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[float64]: ... + @overload + def __new__(cls, dtype: _HalfCodes, align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[half]: ... + @overload + def __new__(cls, dtype: _SingleCodes | type[ct.c_float], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[single]: ... + @overload + def __new__(cls, dtype: _DoubleCodes | type[ct.c_double], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[double]: ... + @overload + def __new__(cls, dtype: _LongDoubleCodes | type[ct.c_longdouble], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[longdouble]: ... + + # `complexfloating` string-based representations + @overload + def __new__(cls, dtype: _Complex64Codes, align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[complex64]: ... + @overload + def __new__(cls, dtype: _Complex128Codes, align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[complex128]: ... + @overload + def __new__(cls, dtype: _CSingleCodes, align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[csingle]: ... + @overload + def __new__(cls, dtype: _CDoubleCodes, align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[cdouble]: ... + @overload + def __new__(cls, dtype: _CLongDoubleCodes, align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[clongdouble]: ... + + # Miscellaneous string-based representations and ctypes + @overload + def __new__(cls, dtype: _BoolCodes | type[ct.c_bool], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[np.bool]: ... + @overload + def __new__(cls, dtype: _TD64Codes, align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[timedelta64]: ... + @overload + def __new__(cls, dtype: _DT64Codes, align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[datetime64]: ... + @overload + def __new__(cls, dtype: _StrCodes, align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[str_]: ... + @overload + def __new__(cls, dtype: _BytesCodes | type[ct.c_char], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[bytes_]: ... + @overload + def __new__(cls, dtype: _VoidCodes | _VoidDTypeLike, align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[void]: ... + @overload + def __new__(cls, dtype: _ObjectCodes | type[ct.py_object[Any]], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[object_]: ... + + # `StringDType` requires special treatment because it has no scalar type + @overload + def __new__( + cls, + dtype: dtypes.StringDType | _StringCodes, + align: builtins.bool = ..., + copy: builtins.bool = ..., + metadata: dict[builtins.str, Any] = ... + ) -> dtypes.StringDType: ... + + # Combined char-codes and ctypes, analogous to the scalar-type hierarchy + @overload + def __new__( + cls, + dtype: _UnsignedIntegerCodes | _UnsignedIntegerCType, + align: builtins.bool = ..., + copy: builtins.bool = ..., + metadata: dict[builtins.str, Any] = ..., + ) -> dtype[unsignedinteger]: ... + @overload + def __new__( + cls, + dtype: _SignedIntegerCodes | _SignedIntegerCType, + align: builtins.bool = ..., + copy: builtins.bool = ..., + metadata: dict[builtins.str, Any] = ..., + ) -> dtype[signedinteger]: ... + @overload + def __new__( + cls, + dtype: _IntegerCodes | _IntegerCType, + align: builtins.bool = ..., + copy: builtins.bool = ..., + metadata: dict[builtins.str, Any] = ..., + ) -> dtype[integer]: ... + @overload + def __new__( + cls, + dtype: _FloatingCodes | _FloatingCType, + align: builtins.bool = ..., + copy: builtins.bool = ..., + metadata: dict[builtins.str, Any] = ..., + ) -> dtype[floating]: ... + @overload + def __new__( + cls, + dtype: _ComplexFloatingCodes, + align: builtins.bool = ..., + copy: builtins.bool = ..., + metadata: dict[builtins.str, Any] = ..., + ) -> dtype[complexfloating]: ... + @overload + def __new__( + cls, + dtype: _InexactCodes | _FloatingCType, + align: builtins.bool = ..., + copy: builtins.bool = ..., + metadata: dict[builtins.str, Any] = ..., + ) -> dtype[inexact]: ... + @overload + def __new__( + cls, + dtype: _NumberCodes | _NumberCType, + align: builtins.bool = ..., + copy: builtins.bool = ..., + metadata: dict[builtins.str, Any] = ..., + ) -> dtype[number]: ... + @overload + def __new__( + cls, + dtype: _CharacterCodes | type[ct.c_char], + align: builtins.bool = ..., + copy: builtins.bool = ..., + metadata: dict[builtins.str, Any] = ..., + ) -> dtype[character]: ... + @overload + def __new__( + cls, + dtype: _FlexibleCodes | type[ct.c_char], + align: builtins.bool = ..., + copy: builtins.bool = ..., + metadata: dict[builtins.str, Any] = ..., + ) -> dtype[flexible]: ... + @overload + def __new__( + cls, + dtype: _GenericCodes | _GenericCType, + align: builtins.bool = ..., + copy: builtins.bool = ..., + metadata: dict[builtins.str, Any] = ..., + ) -> dtype[generic]: ... + + # Handle strings that can't be expressed as literals; i.e. "S1", "S2", ... + @overload + def __new__( + cls, + dtype: builtins.str, + align: builtins.bool = ..., + copy: builtins.bool = ..., + metadata: dict[builtins.str, Any] = ..., + ) -> dtype: ... + + # Catch-all overload for object-likes + # NOTE: `object_ | Any` is *not* equivalent to `Any` -- it describes some + # (static) type `T` s.t. `object_ <: T <: builtins.object` (`<:` denotes + # the subtyping relation, the (gradual) typing analogue of `issubclass()`). + # https://typing.readthedocs.io/en/latest/spec/concepts.html#union-types + @overload + def __new__( + cls, + dtype: type[object], + align: builtins.bool = ..., + copy: builtins.bool = ..., + metadata: dict[builtins.str, Any] = ..., + ) -> dtype[object_ | Any]: ... + + def __class_getitem__(cls, item: Any, /) -> GenericAlias: ... + + @overload + def __getitem__(self: dtype[void], key: list[builtins.str], /) -> dtype[void]: ... + @overload + def __getitem__(self: dtype[void], key: builtins.str | SupportsIndex, /) -> dtype: ... + + # NOTE: In the future 1-based multiplications will also yield `flexible` dtypes + @overload + def __mul__(self: _DTypeT, value: L[1], /) -> _DTypeT: ... + @overload + def __mul__(self: _FlexDTypeT, value: SupportsIndex, /) -> _FlexDTypeT: ... + @overload + def __mul__(self, value: SupportsIndex, /) -> dtype[void]: ... + + # NOTE: `__rmul__` seems to be broken when used in combination with + # literals as of mypy 0.902. Set the return-type to `dtype` for + # now for non-flexible dtypes. + @overload + def __rmul__(self: _FlexDTypeT, value: SupportsIndex, /) -> _FlexDTypeT: ... + @overload + def __rmul__(self, value: SupportsIndex, /) -> dtype: ... + + def __gt__(self, other: DTypeLike, /) -> builtins.bool: ... + def __ge__(self, other: DTypeLike, /) -> builtins.bool: ... + def __lt__(self, other: DTypeLike, /) -> builtins.bool: ... + def __le__(self, other: DTypeLike, /) -> builtins.bool: ... + + # Explicitly defined `__eq__` and `__ne__` to get around mypy's + # `strict_equality` option; even though their signatures are + # identical to their `object`-based counterpart + def __eq__(self, other: Any, /) -> builtins.bool: ... + def __ne__(self, other: Any, /) -> builtins.bool: ... + + @property + def alignment(self) -> int: ... + @property + def base(self) -> dtype: ... + @property + def byteorder(self) -> _ByteOrderChar: ... + @property + def char(self) -> _DTypeChar: ... + @property + def descr(self) -> list[tuple[LiteralString, LiteralString] | tuple[LiteralString, LiteralString, _Shape]]: ... + @property + def fields(self,) -> MappingProxyType[LiteralString, tuple[dtype, int] | tuple[dtype, int, Any]] | None: ... + @property + def flags(self) -> int: ... + @property + def hasobject(self) -> builtins.bool: ... + @property + def isbuiltin(self) -> _DTypeBuiltinKind: ... + @property + def isnative(self) -> builtins.bool: ... + @property + def isalignedstruct(self) -> builtins.bool: ... + @property + def itemsize(self) -> int: ... + @property + def kind(self) -> _DTypeKind: ... + @property + def metadata(self) -> MappingProxyType[builtins.str, Any] | None: ... + @property + def name(self) -> LiteralString: ... + @property + def num(self) -> _DTypeNum: ... + @property + def shape(self) -> _AnyShape: ... + @property + def ndim(self) -> int: ... + @property + def subdtype(self) -> tuple[dtype, _AnyShape] | None: ... + def newbyteorder(self, new_order: _ByteOrder = ..., /) -> Self: ... + @property + def str(self) -> LiteralString: ... + @property + def type(self) -> type[_ScalarT_co]: ... + +@final +class flatiter(Generic[_ArrayT_co]): + __hash__: ClassVar[None] + @property + def base(self) -> _ArrayT_co: ... + @property + def coords(self) -> _Shape: ... + @property + def index(self) -> int: ... + def copy(self) -> _ArrayT_co: ... + def __iter__(self) -> Self: ... + def __next__(self: flatiter[NDArray[_ScalarT]]) -> _ScalarT: ... + def __len__(self) -> int: ... + @overload + def __getitem__( + self: flatiter[NDArray[_ScalarT]], + key: int | integer | tuple[int | integer], + ) -> _ScalarT: ... + @overload + def __getitem__( + self, + key: _ArrayLikeInt | slice | EllipsisType | tuple[_ArrayLikeInt | slice | EllipsisType], + ) -> _ArrayT_co: ... + # TODO: `__setitem__` operates via `unsafe` casting rules, and can + # thus accept any type accepted by the relevant underlying `np.generic` + # constructor. + # This means that `value` must in reality be a supertype of `npt.ArrayLike`. + def __setitem__( + self, + key: _ArrayLikeInt | slice | EllipsisType | tuple[_ArrayLikeInt | slice | EllipsisType], + value: Any, + ) -> None: ... + @overload + def __array__(self: flatiter[ndarray[_1DShapeT, _DTypeT]], dtype: None = ..., /) -> ndarray[_1DShapeT, _DTypeT]: ... + @overload + def __array__(self: flatiter[ndarray[_1DShapeT, Any]], dtype: _DTypeT, /) -> ndarray[_1DShapeT, _DTypeT]: ... + @overload + def __array__(self: flatiter[ndarray[Any, _DTypeT]], dtype: None = ..., /) -> ndarray[_AnyShape, _DTypeT]: ... + @overload + def __array__(self, dtype: _DTypeT, /) -> ndarray[_AnyShape, _DTypeT]: ... + +@type_check_only +class _ArrayOrScalarCommon: + @property + def real(self, /) -> Any: ... + @property + def imag(self, /) -> Any: ... + @property + def T(self) -> Self: ... + @property + def mT(self) -> Self: ... + @property + def data(self) -> memoryview: ... + @property + def flags(self) -> flagsobj: ... + @property + def itemsize(self) -> int: ... + @property + def nbytes(self) -> int: ... + @property + def device(self) -> L["cpu"]: ... + + def __bool__(self, /) -> builtins.bool: ... + def __int__(self, /) -> int: ... + def __float__(self, /) -> float: ... + def __copy__(self) -> Self: ... + def __deepcopy__(self, memo: dict[int, Any] | None, /) -> Self: ... + + # TODO: How to deal with the non-commutative nature of `==` and `!=`? + # xref numpy/numpy#17368 + def __eq__(self, other: Any, /) -> Any: ... + def __ne__(self, other: Any, /) -> Any: ... + + def copy(self, order: _OrderKACF = ...) -> Self: ... + def dump(self, file: StrOrBytesPath | SupportsWrite[bytes]) -> None: ... + def dumps(self) -> bytes: ... + def tobytes(self, order: _OrderKACF = ...) -> bytes: ... + def tofile(self, fid: StrOrBytesPath | _SupportsFileMethods, sep: str = ..., format: str = ...) -> None: ... + # generics and 0d arrays return builtin scalars + def tolist(self) -> Any: ... + def to_device(self, device: L["cpu"], /, *, stream: int | Any | None = ...) -> Self: ... + + @property + def __array_interface__(self) -> dict[str, Any]: ... + @property + def __array_priority__(self) -> float: ... + @property + def __array_struct__(self) -> CapsuleType: ... # builtins.PyCapsule + def __array_namespace__(self, /, *, api_version: _ArrayAPIVersion | None = None) -> ModuleType: ... + def __setstate__(self, state: tuple[ + SupportsIndex, # version + _ShapeLike, # Shape + _DTypeT_co, # DType + np.bool, # F-continuous + bytes | list[Any], # Data + ], /) -> None: ... + + def conj(self) -> Self: ... + def conjugate(self) -> Self: ... + + def argsort( + self, + axis: SupportsIndex | None = ..., + kind: _SortKind | None = ..., + order: str | Sequence[str] | None = ..., + *, + stable: bool | None = ..., + ) -> NDArray[Any]: ... + + @overload # axis=None (default), out=None (default), keepdims=False (default) + def argmax(self, /, axis: None = None, out: None = None, *, keepdims: L[False] = False) -> intp: ... + @overload # axis=index, out=None (default) + def argmax(self, /, axis: SupportsIndex, out: None = None, *, keepdims: builtins.bool = False) -> Any: ... + @overload # axis=index, out=ndarray + def argmax(self, /, axis: SupportsIndex | None, out: _BoolOrIntArrayT, *, keepdims: builtins.bool = False) -> _BoolOrIntArrayT: ... + @overload + def argmax(self, /, axis: SupportsIndex | None = None, *, out: _BoolOrIntArrayT, keepdims: builtins.bool = False) -> _BoolOrIntArrayT: ... + + @overload # axis=None (default), out=None (default), keepdims=False (default) + def argmin(self, /, axis: None = None, out: None = None, *, keepdims: L[False] = False) -> intp: ... + @overload # axis=index, out=None (default) + def argmin(self, /, axis: SupportsIndex, out: None = None, *, keepdims: builtins.bool = False) -> Any: ... + @overload # axis=index, out=ndarray + def argmin(self, /, axis: SupportsIndex | None, out: _BoolOrIntArrayT, *, keepdims: builtins.bool = False) -> _BoolOrIntArrayT: ... + @overload + def argmin(self, /, axis: SupportsIndex | None = None, *, out: _BoolOrIntArrayT, keepdims: builtins.bool = False) -> _BoolOrIntArrayT: ... + + @overload # out=None (default) + def round(self, /, decimals: SupportsIndex = 0, out: None = None) -> Self: ... + @overload # out=ndarray + def round(self, /, decimals: SupportsIndex, out: _ArrayT) -> _ArrayT: ... + @overload + def round(self, /, decimals: SupportsIndex = 0, *, out: _ArrayT) -> _ArrayT: ... + + @overload # out=None (default) + def choose(self, /, choices: ArrayLike, out: None = None, mode: _ModeKind = "raise") -> NDArray[Any]: ... + @overload # out=ndarray + def choose(self, /, choices: ArrayLike, out: _ArrayT, mode: _ModeKind = "raise") -> _ArrayT: ... + + # TODO: Annotate kwargs with an unpacked `TypedDict` + @overload # out: None (default) + def clip(self, /, min: ArrayLike, max: ArrayLike | None = None, out: None = None, **kwargs: Any) -> NDArray[Any]: ... + @overload + def clip(self, /, min: None, max: ArrayLike, out: None = None, **kwargs: Any) -> NDArray[Any]: ... + @overload + def clip(self, /, min: None = None, *, max: ArrayLike, out: None = None, **kwargs: Any) -> NDArray[Any]: ... + @overload # out: ndarray + def clip(self, /, min: ArrayLike, max: ArrayLike | None, out: _ArrayT, **kwargs: Any) -> _ArrayT: ... + @overload + def clip(self, /, min: ArrayLike, max: ArrayLike | None = None, *, out: _ArrayT, **kwargs: Any) -> _ArrayT: ... + @overload + def clip(self, /, min: None, max: ArrayLike, out: _ArrayT, **kwargs: Any) -> _ArrayT: ... + @overload + def clip(self, /, min: None = None, *, max: ArrayLike, out: _ArrayT, **kwargs: Any) -> _ArrayT: ... + + @overload + def compress(self, /, condition: _ArrayLikeInt_co, axis: SupportsIndex | None = None, out: None = None) -> NDArray[Any]: ... + @overload + def compress(self, /, condition: _ArrayLikeInt_co, axis: SupportsIndex | None, out: _ArrayT) -> _ArrayT: ... + @overload + def compress(self, /, condition: _ArrayLikeInt_co, axis: SupportsIndex | None = None, *, out: _ArrayT) -> _ArrayT: ... + + @overload # out: None (default) + def cumprod(self, /, axis: SupportsIndex | None = None, dtype: DTypeLike | None = None, out: None = None) -> NDArray[Any]: ... + @overload # out: ndarray + def cumprod(self, /, axis: SupportsIndex | None, dtype: DTypeLike | None, out: _ArrayT) -> _ArrayT: ... + @overload + def cumprod(self, /, axis: SupportsIndex | None = None, dtype: DTypeLike | None = None, *, out: _ArrayT) -> _ArrayT: ... + + @overload # out: None (default) + def cumsum(self, /, axis: SupportsIndex | None = None, dtype: DTypeLike | None = None, out: None = None) -> NDArray[Any]: ... + @overload # out: ndarray + def cumsum(self, /, axis: SupportsIndex | None, dtype: DTypeLike | None, out: _ArrayT) -> _ArrayT: ... + @overload + def cumsum(self, /, axis: SupportsIndex | None = None, dtype: DTypeLike | None = None, *, out: _ArrayT) -> _ArrayT: ... + + @overload + def max( + self, + /, + axis: _ShapeLike | None = None, + out: None = None, + keepdims: builtins.bool = False, + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = True, + ) -> Any: ... + @overload + def max( + self, + /, + axis: _ShapeLike | None, + out: _ArrayT, + keepdims: builtins.bool = False, + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = True, + ) -> _ArrayT: ... + @overload + def max( + self, + /, + axis: _ShapeLike | None = None, + *, + out: _ArrayT, + keepdims: builtins.bool = False, + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = True, + ) -> _ArrayT: ... + + @overload + def min( + self, + /, + axis: _ShapeLike | None = None, + out: None = None, + keepdims: builtins.bool = False, + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = True, + ) -> Any: ... + @overload + def min( + self, + /, + axis: _ShapeLike | None, + out: _ArrayT, + keepdims: builtins.bool = False, + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = True, + ) -> _ArrayT: ... + @overload + def min( + self, + /, + axis: _ShapeLike | None = None, + *, + out: _ArrayT, + keepdims: builtins.bool = False, + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = True, + ) -> _ArrayT: ... + + @overload + def sum( + self, + /, + axis: _ShapeLike | None = None, + dtype: DTypeLike | None = None, + out: None = None, + keepdims: builtins.bool = False, + initial: _NumberLike_co = 0, + where: _ArrayLikeBool_co = True, + ) -> Any: ... + @overload + def sum( + self, + /, + axis: _ShapeLike | None, + dtype: DTypeLike | None, + out: _ArrayT, + keepdims: builtins.bool = False, + initial: _NumberLike_co = 0, + where: _ArrayLikeBool_co = True, + ) -> _ArrayT: ... + @overload + def sum( + self, + /, + axis: _ShapeLike | None = None, + dtype: DTypeLike | None = None, + *, + out: _ArrayT, + keepdims: builtins.bool = False, + initial: _NumberLike_co = 0, + where: _ArrayLikeBool_co = True, + ) -> _ArrayT: ... + + @overload + def prod( + self, + /, + axis: _ShapeLike | None = None, + dtype: DTypeLike | None = None, + out: None = None, + keepdims: builtins.bool = False, + initial: _NumberLike_co = 1, + where: _ArrayLikeBool_co = True, + ) -> Any: ... + @overload + def prod( + self, + /, + axis: _ShapeLike | None, + dtype: DTypeLike | None, + out: _ArrayT, + keepdims: builtins.bool = False, + initial: _NumberLike_co = 1, + where: _ArrayLikeBool_co = True, + ) -> _ArrayT: ... + @overload + def prod( + self, + /, + axis: _ShapeLike | None = None, + dtype: DTypeLike | None = None, + *, + out: _ArrayT, + keepdims: builtins.bool = False, + initial: _NumberLike_co = 1, + where: _ArrayLikeBool_co = True, + ) -> _ArrayT: ... + + @overload + def mean( + self, + axis: _ShapeLike | None = None, + dtype: DTypeLike | None = None, + out: None = None, + keepdims: builtins.bool = False, + *, + where: _ArrayLikeBool_co = True, + ) -> Any: ... + @overload + def mean( + self, + /, + axis: _ShapeLike | None, + dtype: DTypeLike | None, + out: _ArrayT, + keepdims: builtins.bool = False, + *, + where: _ArrayLikeBool_co = True, + ) -> _ArrayT: ... + @overload + def mean( + self, + /, + axis: _ShapeLike | None = None, + dtype: DTypeLike | None = None, + *, + out: _ArrayT, + keepdims: builtins.bool = False, + where: _ArrayLikeBool_co = True, + ) -> _ArrayT: ... + + @overload + def std( + self, + axis: _ShapeLike | None = None, + dtype: DTypeLike | None = None, + out: None = None, + ddof: float = 0, + keepdims: builtins.bool = False, + *, + where: _ArrayLikeBool_co = True, + mean: _ArrayLikeNumber_co = ..., + correction: float = ..., + ) -> Any: ... + @overload + def std( + self, + axis: _ShapeLike | None, + dtype: DTypeLike | None, + out: _ArrayT, + ddof: float = 0, + keepdims: builtins.bool = False, + *, + where: _ArrayLikeBool_co = True, + mean: _ArrayLikeNumber_co = ..., + correction: float = ..., + ) -> _ArrayT: ... + @overload + def std( + self, + axis: _ShapeLike | None = None, + dtype: DTypeLike | None = None, + *, + out: _ArrayT, + ddof: float = 0, + keepdims: builtins.bool = False, + where: _ArrayLikeBool_co = True, + mean: _ArrayLikeNumber_co = ..., + correction: float = ..., + ) -> _ArrayT: ... + + @overload + def var( + self, + axis: _ShapeLike | None = None, + dtype: DTypeLike | None = None, + out: None = None, + ddof: float = 0, + keepdims: builtins.bool = False, + *, + where: _ArrayLikeBool_co = True, + mean: _ArrayLikeNumber_co = ..., + correction: float = ..., + ) -> Any: ... + @overload + def var( + self, + axis: _ShapeLike | None, + dtype: DTypeLike | None, + out: _ArrayT, + ddof: float = 0, + keepdims: builtins.bool = False, + *, + where: _ArrayLikeBool_co = True, + mean: _ArrayLikeNumber_co = ..., + correction: float = ..., + ) -> _ArrayT: ... + @overload + def var( + self, + axis: _ShapeLike | None = None, + dtype: DTypeLike | None = None, + *, + out: _ArrayT, + ddof: float = 0, + keepdims: builtins.bool = False, + where: _ArrayLikeBool_co = True, + mean: _ArrayLikeNumber_co = ..., + correction: float = ..., + ) -> _ArrayT: ... + +class ndarray(_ArrayOrScalarCommon, Generic[_ShapeT_co, _DTypeT_co]): + __hash__: ClassVar[None] # type: ignore[assignment] # pyright: ignore[reportIncompatibleMethodOverride] + @property + def base(self) -> NDArray[Any] | None: ... + @property + def ndim(self) -> int: ... + @property + def size(self) -> int: ... + @property + def real(self: _HasDTypeWithRealAndImag[_ScalarT, object], /) -> ndarray[_ShapeT_co, dtype[_ScalarT]]: ... + @real.setter + def real(self, value: ArrayLike, /) -> None: ... + @property + def imag(self: _HasDTypeWithRealAndImag[object, _ScalarT], /) -> ndarray[_ShapeT_co, dtype[_ScalarT]]: ... + @imag.setter + def imag(self, value: ArrayLike, /) -> None: ... + + def __new__( + cls, + shape: _ShapeLike, + dtype: DTypeLike = ..., + buffer: _SupportsBuffer | None = ..., + offset: SupportsIndex = ..., + strides: _ShapeLike | None = ..., + order: _OrderKACF = ..., + ) -> Self: ... + + if sys.version_info >= (3, 12): + def __buffer__(self, flags: int, /) -> memoryview: ... + + def __class_getitem__(cls, item: Any, /) -> GenericAlias: ... + + @overload + def __array__(self, dtype: None = None, /, *, copy: builtins.bool | None = None) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __array__(self, dtype: _DTypeT, /, *, copy: builtins.bool | None = None) -> ndarray[_ShapeT_co, _DTypeT]: ... + + def __array_ufunc__( + self, + ufunc: ufunc, + method: L["__call__", "reduce", "reduceat", "accumulate", "outer", "at"], + *inputs: Any, + **kwargs: Any, + ) -> Any: ... + + def __array_function__( + self, + func: Callable[..., Any], + types: Iterable[type], + args: Iterable[Any], + kwargs: Mapping[str, Any], + ) -> Any: ... + + # NOTE: In practice any object is accepted by `obj`, but as `__array_finalize__` + # is a pseudo-abstract method the type has been narrowed down in order to + # grant subclasses a bit more flexibility + def __array_finalize__(self, obj: NDArray[Any] | None, /) -> None: ... + + def __array_wrap__( + self, + array: ndarray[_ShapeT, _DTypeT], + context: tuple[ufunc, tuple[Any, ...], int] | None = ..., + return_scalar: builtins.bool = ..., + /, + ) -> ndarray[_ShapeT, _DTypeT]: ... + + @overload + def __getitem__(self, key: _ArrayInt_co | tuple[_ArrayInt_co, ...], /) -> ndarray[_AnyShape, _DTypeT_co]: ... + @overload + def __getitem__(self, key: SupportsIndex | tuple[SupportsIndex, ...], /) -> Any: ... + @overload + def __getitem__(self, key: _ToIndices, /) -> ndarray[_AnyShape, _DTypeT_co]: ... + @overload + def __getitem__(self: NDArray[void], key: str, /) -> ndarray[_ShapeT_co, np.dtype]: ... + @overload + def __getitem__(self: NDArray[void], key: list[str], /) -> ndarray[_ShapeT_co, _dtype[void]]: ... + + @overload # flexible | object_ | bool + def __setitem__( + self: ndarray[Any, dtype[flexible | object_ | np.bool] | dtypes.StringDType], + key: _ToIndices, + value: object, + /, + ) -> None: ... + @overload # integer + def __setitem__( + self: NDArray[integer], + key: _ToIndices, + value: _ConvertibleToInt | _NestedSequence[_ConvertibleToInt] | _ArrayLikeInt_co, + /, + ) -> None: ... + @overload # floating + def __setitem__( + self: NDArray[floating], + key: _ToIndices, + value: _ConvertibleToFloat | _NestedSequence[_ConvertibleToFloat | None] | _ArrayLikeFloat_co | None, + /, + ) -> None: ... + @overload # complexfloating + def __setitem__( + self: NDArray[complexfloating], + key: _ToIndices, + value: _ConvertibleToComplex | _NestedSequence[_ConvertibleToComplex | None] | _ArrayLikeNumber_co | None, + /, + ) -> None: ... + @overload # timedelta64 + def __setitem__( + self: NDArray[timedelta64], + key: _ToIndices, + value: _ConvertibleToTD64 | _NestedSequence[_ConvertibleToTD64], + /, + ) -> None: ... + @overload # datetime64 + def __setitem__( + self: NDArray[datetime64], + key: _ToIndices, + value: _ConvertibleToDT64 | _NestedSequence[_ConvertibleToDT64], + /, + ) -> None: ... + @overload # void + def __setitem__(self: NDArray[void], key: str | list[str], value: object, /) -> None: ... + @overload # catch-all + def __setitem__(self, key: _ToIndices, value: ArrayLike, /) -> None: ... + + @property + def ctypes(self) -> _ctypes[int]: ... + @property + def shape(self) -> _ShapeT_co: ... + @shape.setter + def shape(self, value: _ShapeLike) -> None: ... + @property + def strides(self) -> _Shape: ... + @strides.setter + def strides(self, value: _ShapeLike) -> None: ... + def byteswap(self, inplace: builtins.bool = ...) -> Self: ... + def fill(self, value: Any) -> None: ... + @property + def flat(self) -> flatiter[Self]: ... + + @overload # use the same output type as that of the underlying `generic` + def item(self: NDArray[generic[_T]], i0: SupportsIndex | tuple[SupportsIndex, ...] = ..., /, *args: SupportsIndex) -> _T: ... + @overload # special casing for `StringDType`, which has no scalar type + def item( + self: ndarray[Any, dtypes.StringDType], + arg0: SupportsIndex | tuple[SupportsIndex, ...] = ..., + /, + *args: SupportsIndex, + ) -> str: ... + + @overload # this first overload prevents mypy from over-eagerly selecting `tuple[()]` in case of `_AnyShape` + def tolist(self: ndarray[tuple[Never], dtype[generic[_T]]], /) -> Any: ... + @overload + def tolist(self: ndarray[tuple[()], dtype[generic[_T]]], /) -> _T: ... + @overload + def tolist(self: ndarray[tuple[int], dtype[generic[_T]]], /) -> list[_T]: ... + @overload + def tolist(self: ndarray[tuple[int, int], dtype[generic[_T]]], /) -> list[list[_T]]: ... + @overload + def tolist(self: ndarray[tuple[int, int, int], dtype[generic[_T]]], /) -> list[list[list[_T]]]: ... + @overload + def tolist(self, /) -> Any: ... + + @overload + def resize(self, new_shape: _ShapeLike, /, *, refcheck: builtins.bool = ...) -> None: ... + @overload + def resize(self, /, *new_shape: SupportsIndex, refcheck: builtins.bool = ...) -> None: ... + + def setflags(self, write: builtins.bool = ..., align: builtins.bool = ..., uic: builtins.bool = ...) -> None: ... + + def squeeze( + self, + axis: SupportsIndex | tuple[SupportsIndex, ...] | None = ..., + ) -> ndarray[_AnyShape, _DTypeT_co]: ... + + def swapaxes( + self, + axis1: SupportsIndex, + axis2: SupportsIndex, + ) -> ndarray[_AnyShape, _DTypeT_co]: ... + + @overload + def transpose(self, axes: _ShapeLike | None, /) -> Self: ... + @overload + def transpose(self, *axes: SupportsIndex) -> Self: ... + + @overload + def all( + self, + axis: None = None, + out: None = None, + keepdims: L[False, 0] = False, + *, + where: _ArrayLikeBool_co = True + ) -> np.bool: ... + @overload + def all( + self, + axis: int | tuple[int, ...] | None = None, + out: None = None, + keepdims: SupportsIndex = False, + *, + where: _ArrayLikeBool_co = True, + ) -> np.bool | NDArray[np.bool]: ... + @overload + def all( + self, + axis: int | tuple[int, ...] | None, + out: _ArrayT, + keepdims: SupportsIndex = False, + *, + where: _ArrayLikeBool_co = True, + ) -> _ArrayT: ... + @overload + def all( + self, + axis: int | tuple[int, ...] | None = None, + *, + out: _ArrayT, + keepdims: SupportsIndex = False, + where: _ArrayLikeBool_co = True, + ) -> _ArrayT: ... + + @overload + def any( + self, + axis: None = None, + out: None = None, + keepdims: L[False, 0] = False, + *, + where: _ArrayLikeBool_co = True + ) -> np.bool: ... + @overload + def any( + self, + axis: int | tuple[int, ...] | None = None, + out: None = None, + keepdims: SupportsIndex = False, + *, + where: _ArrayLikeBool_co = True, + ) -> np.bool | NDArray[np.bool]: ... + @overload + def any( + self, + axis: int | tuple[int, ...] | None, + out: _ArrayT, + keepdims: SupportsIndex = False, + *, + where: _ArrayLikeBool_co = True, + ) -> _ArrayT: ... + @overload + def any( + self, + axis: int | tuple[int, ...] | None = None, + *, + out: _ArrayT, + keepdims: SupportsIndex = False, + where: _ArrayLikeBool_co = True, + ) -> _ArrayT: ... + + # + @overload + def partition( + self, + /, + kth: _ArrayLikeInt, + axis: SupportsIndex = -1, + kind: _PartitionKind = "introselect", + order: None = None, + ) -> None: ... + @overload + def partition( + self: NDArray[void], + /, + kth: _ArrayLikeInt, + axis: SupportsIndex = -1, + kind: _PartitionKind = "introselect", + order: str | Sequence[str] | None = None, + ) -> None: ... + + # + @overload + def argpartition( + self, + /, + kth: _ArrayLikeInt, + axis: SupportsIndex | None = -1, + kind: _PartitionKind = "introselect", + order: None = None, + ) -> NDArray[intp]: ... + @overload + def argpartition( + self: NDArray[void], + /, + kth: _ArrayLikeInt, + axis: SupportsIndex | None = -1, + kind: _PartitionKind = "introselect", + order: str | Sequence[str] | None = None, + ) -> NDArray[intp]: ... + + # + def diagonal( + self, + offset: SupportsIndex = ..., + axis1: SupportsIndex = ..., + axis2: SupportsIndex = ..., + ) -> ndarray[_AnyShape, _DTypeT_co]: ... + + # 1D + 1D returns a scalar; + # all other with at least 1 non-0D array return an ndarray. + @overload + def dot(self, b: _ScalarLike_co, out: None = ...) -> NDArray[Any]: ... + @overload + def dot(self, b: ArrayLike, out: None = ...) -> Any: ... # type: ignore[misc] + @overload + def dot(self, b: ArrayLike, out: _ArrayT) -> _ArrayT: ... + + # `nonzero()` is deprecated for 0d arrays/generics + def nonzero(self) -> tuple[NDArray[intp], ...]: ... + + # `put` is technically available to `generic`, + # but is pointless as `generic`s are immutable + def put(self, /, indices: _ArrayLikeInt_co, values: ArrayLike, mode: _ModeKind = "raise") -> None: ... + + @overload + def searchsorted( # type: ignore[misc] + self, # >= 1D array + v: _ScalarLike_co, # 0D array-like + side: _SortSide = ..., + sorter: _ArrayLikeInt_co | None = ..., + ) -> intp: ... + @overload + def searchsorted( + self, # >= 1D array + v: ArrayLike, + side: _SortSide = ..., + sorter: _ArrayLikeInt_co | None = ..., + ) -> NDArray[intp]: ... + + def sort( + self, + axis: SupportsIndex = ..., + kind: _SortKind | None = ..., + order: str | Sequence[str] | None = ..., + *, + stable: bool | None = ..., + ) -> None: ... + + @overload + def trace( + self, # >= 2D array + offset: SupportsIndex = ..., + axis1: SupportsIndex = ..., + axis2: SupportsIndex = ..., + dtype: DTypeLike = ..., + out: None = ..., + ) -> Any: ... + @overload + def trace( + self, # >= 2D array + offset: SupportsIndex = ..., + axis1: SupportsIndex = ..., + axis2: SupportsIndex = ..., + dtype: DTypeLike = ..., + out: _ArrayT = ..., + ) -> _ArrayT: ... + + @overload + def take( # type: ignore[misc] + self: NDArray[_ScalarT], + indices: _IntLike_co, + axis: SupportsIndex | None = ..., + out: None = ..., + mode: _ModeKind = ..., + ) -> _ScalarT: ... + @overload + def take( # type: ignore[misc] + self, + indices: _ArrayLikeInt_co, + axis: SupportsIndex | None = ..., + out: None = ..., + mode: _ModeKind = ..., + ) -> ndarray[_AnyShape, _DTypeT_co]: ... + @overload + def take( + self, + indices: _ArrayLikeInt_co, + axis: SupportsIndex | None = ..., + out: _ArrayT = ..., + mode: _ModeKind = ..., + ) -> _ArrayT: ... + + @overload + def repeat( + self, + repeats: _ArrayLikeInt_co, + axis: None = None, + ) -> ndarray[tuple[int], _DTypeT_co]: ... + @overload + def repeat( + self, + repeats: _ArrayLikeInt_co, + axis: SupportsIndex, + ) -> ndarray[_AnyShape, _DTypeT_co]: ... + + def flatten(self, /, order: _OrderKACF = "C") -> ndarray[tuple[int], _DTypeT_co]: ... + def ravel(self, /, order: _OrderKACF = "C") -> ndarray[tuple[int], _DTypeT_co]: ... + + # NOTE: reshape also accepts negative integers, so we can't use integer literals + @overload # (None) + def reshape(self, shape: None, /, *, order: _OrderACF = "C", copy: builtins.bool | None = None) -> Self: ... + @overload # (empty_sequence) + def reshape( # type: ignore[overload-overlap] # mypy false positive + self, + shape: Sequence[Never], + /, + *, + order: _OrderACF = "C", + copy: builtins.bool | None = None, + ) -> ndarray[tuple[()], _DTypeT_co]: ... + @overload # (() | (int) | (int, int) | ....) # up to 8-d + def reshape( + self, + shape: _AnyShapeT, + /, + *, + order: _OrderACF = "C", + copy: builtins.bool | None = None, + ) -> ndarray[_AnyShapeT, _DTypeT_co]: ... + @overload # (index) + def reshape( + self, + size1: SupportsIndex, + /, + *, + order: _OrderACF = "C", + copy: builtins.bool | None = None, + ) -> ndarray[tuple[int], _DTypeT_co]: ... + @overload # (index, index) + def reshape( + self, + size1: SupportsIndex, + size2: SupportsIndex, + /, + *, + order: _OrderACF = "C", + copy: builtins.bool | None = None, + ) -> ndarray[tuple[int, int], _DTypeT_co]: ... + @overload # (index, index, index) + def reshape( + self, + size1: SupportsIndex, + size2: SupportsIndex, + size3: SupportsIndex, + /, + *, + order: _OrderACF = "C", + copy: builtins.bool | None = None, + ) -> ndarray[tuple[int, int, int], _DTypeT_co]: ... + @overload # (index, index, index, index) + def reshape( + self, + size1: SupportsIndex, + size2: SupportsIndex, + size3: SupportsIndex, + size4: SupportsIndex, + /, + *, + order: _OrderACF = "C", + copy: builtins.bool | None = None, + ) -> ndarray[tuple[int, int, int, int], _DTypeT_co]: ... + @overload # (int, *(index, ...)) + def reshape( + self, + size0: SupportsIndex, + /, + *shape: SupportsIndex, + order: _OrderACF = "C", + copy: builtins.bool | None = None, + ) -> ndarray[_AnyShape, _DTypeT_co]: ... + @overload # (sequence[index]) + def reshape( + self, + shape: Sequence[SupportsIndex], + /, + *, + order: _OrderACF = "C", + copy: builtins.bool | None = None, + ) -> ndarray[_AnyShape, _DTypeT_co]: ... + + @overload + def astype( + self, + dtype: _DTypeLike[_ScalarT], + order: _OrderKACF = ..., + casting: _CastingKind = ..., + subok: builtins.bool = ..., + copy: builtins.bool | _CopyMode = ..., + ) -> ndarray[_ShapeT_co, dtype[_ScalarT]]: ... + @overload + def astype( + self, + dtype: DTypeLike, + order: _OrderKACF = ..., + casting: _CastingKind = ..., + subok: builtins.bool = ..., + copy: builtins.bool | _CopyMode = ..., + ) -> ndarray[_ShapeT_co, dtype]: ... + + # + @overload # () + def view(self, /) -> Self: ... + @overload # (dtype: T) + def view(self, /, dtype: _DTypeT | _HasDType[_DTypeT]) -> ndarray[_ShapeT_co, _DTypeT]: ... + @overload # (dtype: dtype[T]) + def view(self, /, dtype: _DTypeLike[_ScalarT]) -> NDArray[_ScalarT]: ... + @overload # (type: T) + def view(self, /, *, type: type[_ArrayT]) -> _ArrayT: ... + @overload # (_: T) + def view(self, /, dtype: type[_ArrayT]) -> _ArrayT: ... + @overload # (dtype: ?) + def view(self, /, dtype: DTypeLike) -> ndarray[_ShapeT_co, dtype]: ... + @overload # (dtype: ?, type: type[T]) + def view(self, /, dtype: DTypeLike, type: type[_ArrayT]) -> _ArrayT: ... + + def setfield(self, /, val: ArrayLike, dtype: DTypeLike, offset: SupportsIndex = 0) -> None: ... + @overload + def getfield(self, dtype: _DTypeLike[_ScalarT], offset: SupportsIndex = 0) -> NDArray[_ScalarT]: ... + @overload + def getfield(self, dtype: DTypeLike, offset: SupportsIndex = 0) -> NDArray[Any]: ... + + def __index__(self: NDArray[integer], /) -> int: ... + def __complex__(self: NDArray[number | np.bool | object_], /) -> complex: ... + + def __len__(self) -> int: ... + def __contains__(self, value: object, /) -> builtins.bool: ... + + # NOTE: This weird `Never` tuple works around a strange mypy issue where it assigns + # `tuple[int]` to `tuple[Never]` or `tuple[int, int]` to `tuple[Never, Never]`. + # This way the bug only occurs for 9-D arrays, which are probably not very common. + @overload + def __iter__(self: ndarray[tuple[Never, Never, Never, Never, Never, Never, Never, Never, Never]], /) -> Iterator[Any]: ... + @overload # == 1-d & dtype[T \ object_] + def __iter__(self: ndarray[tuple[int], dtype[_NonObjectScalarT]], /) -> Iterator[_NonObjectScalarT]: ... + @overload # >= 2-d + def __iter__(self: ndarray[tuple[int, int, *tuple[int, ...]], dtype[_ScalarT]], /) -> Iterator[NDArray[_ScalarT]]: ... + @overload # ?-d + def __iter__(self, /) -> Iterator[Any]: ... + + # + @overload + def __lt__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co, /) -> NDArray[np.bool]: ... + @overload + def __lt__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co, /) -> NDArray[np.bool]: ... + @overload + def __lt__(self: NDArray[datetime64], other: _ArrayLikeDT64_co, /) -> NDArray[np.bool]: ... + @overload + def __lt__(self: NDArray[bytes_], other: _ArrayLikeBytes_co, /) -> NDArray[np.bool]: ... + @overload + def __lt__( + self: ndarray[Any, dtype[str_] | dtypes.StringDType], other: _ArrayLikeStr_co | _ArrayLikeString_co, / + ) -> NDArray[np.bool]: ... + @overload + def __lt__(self: NDArray[object_], other: object, /) -> NDArray[np.bool]: ... + @overload + def __lt__(self, other: _ArrayLikeObject_co, /) -> NDArray[np.bool]: ... + + # + @overload + def __le__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co, /) -> NDArray[np.bool]: ... + @overload + def __le__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co, /) -> NDArray[np.bool]: ... + @overload + def __le__(self: NDArray[datetime64], other: _ArrayLikeDT64_co, /) -> NDArray[np.bool]: ... + @overload + def __le__(self: NDArray[bytes_], other: _ArrayLikeBytes_co, /) -> NDArray[np.bool]: ... + @overload + def __le__( + self: ndarray[Any, dtype[str_] | dtypes.StringDType], other: _ArrayLikeStr_co | _ArrayLikeString_co, / + ) -> NDArray[np.bool]: ... + @overload + def __le__(self: NDArray[object_], other: object, /) -> NDArray[np.bool]: ... + @overload + def __le__(self, other: _ArrayLikeObject_co, /) -> NDArray[np.bool]: ... + + # + @overload + def __gt__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co, /) -> NDArray[np.bool]: ... + @overload + def __gt__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co, /) -> NDArray[np.bool]: ... + @overload + def __gt__(self: NDArray[datetime64], other: _ArrayLikeDT64_co, /) -> NDArray[np.bool]: ... + @overload + def __gt__(self: NDArray[bytes_], other: _ArrayLikeBytes_co, /) -> NDArray[np.bool]: ... + @overload + def __gt__( + self: ndarray[Any, dtype[str_] | dtypes.StringDType], other: _ArrayLikeStr_co | _ArrayLikeString_co, / + ) -> NDArray[np.bool]: ... + @overload + def __gt__(self: NDArray[object_], other: object, /) -> NDArray[np.bool]: ... + @overload + def __gt__(self, other: _ArrayLikeObject_co, /) -> NDArray[np.bool]: ... + + # + @overload + def __ge__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co, /) -> NDArray[np.bool]: ... + @overload + def __ge__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co, /) -> NDArray[np.bool]: ... + @overload + def __ge__(self: NDArray[datetime64], other: _ArrayLikeDT64_co, /) -> NDArray[np.bool]: ... + @overload + def __ge__(self: NDArray[bytes_], other: _ArrayLikeBytes_co, /) -> NDArray[np.bool]: ... + @overload + def __ge__( + self: ndarray[Any, dtype[str_] | dtypes.StringDType], other: _ArrayLikeStr_co | _ArrayLikeString_co, / + ) -> NDArray[np.bool]: ... + @overload + def __ge__(self: NDArray[object_], other: object, /) -> NDArray[np.bool]: ... + @overload + def __ge__(self, other: _ArrayLikeObject_co, /) -> NDArray[np.bool]: ... + + # Unary ops + + # TODO: Uncomment once https://github.com/python/mypy/issues/14070 is fixed + # @overload + # def __abs__(self: ndarray[_ShapeT, dtypes.Complex64DType], /) -> ndarray[_ShapeT, dtypes.Float32DType]: ... + # @overload + # def __abs__(self: ndarray[_ShapeT, dtypes.Complex128DType], /) -> ndarray[_ShapeT, dtypes.Float64DType]: ... + # @overload + # def __abs__(self: ndarray[_ShapeT, dtypes.CLongDoubleDType], /) -> ndarray[_ShapeT, dtypes.LongDoubleDType]: ... + # @overload + # def __abs__(self: ndarray[_ShapeT, dtype[complex128]], /) -> ndarray[_ShapeT, dtype[float64]]: ... + @overload + def __abs__(self: ndarray[_ShapeT, dtype[complexfloating[_NBit]]], /) -> ndarray[_ShapeT, dtype[floating[_NBit]]]: ... + @overload + def __abs__(self: _RealArrayT, /) -> _RealArrayT: ... + + def __invert__(self: _IntegralArrayT, /) -> _IntegralArrayT: ... # noqa: PYI019 + def __neg__(self: _NumericArrayT, /) -> _NumericArrayT: ... # noqa: PYI019 + def __pos__(self: _NumericArrayT, /) -> _NumericArrayT: ... # noqa: PYI019 + + # Binary ops + + # TODO: Support the "1d @ 1d -> scalar" case + @overload + def __matmul__(self: NDArray[_NumberT], other: _ArrayLikeBool_co, /) -> NDArray[_NumberT]: ... + @overload + def __matmul__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[np.bool]: ... # type: ignore[overload-overlap] + @overload + def __matmul__(self: NDArray[np.bool], other: _ArrayLike[_NumberT], /) -> NDArray[_NumberT]: ... # type: ignore[overload-overlap] + @overload + def __matmul__(self: NDArray[floating[_64Bit]], other: _ArrayLikeFloat64_co, /) -> NDArray[float64]: ... + @overload + def __matmul__(self: _ArrayFloat64_co, other: _ArrayLike[floating[_64Bit]], /) -> NDArray[float64]: ... + @overload + def __matmul__(self: NDArray[complexfloating[_64Bit]], other: _ArrayLikeComplex128_co, /) -> NDArray[complex128]: ... + @overload + def __matmul__(self: _ArrayComplex128_co, other: _ArrayLike[complexfloating[_64Bit]], /) -> NDArray[complex128]: ... + @overload + def __matmul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger]: ... # type: ignore[overload-overlap] + @overload + def __matmul__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger]: ... # type: ignore[overload-overlap] + @overload + def __matmul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating]: ... # type: ignore[overload-overlap] + @overload + def __matmul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co, /) -> NDArray[complexfloating]: ... + @overload + def __matmul__(self: NDArray[number], other: _ArrayLikeNumber_co, /) -> NDArray[number]: ... + @overload + def __matmul__(self: NDArray[object_], other: Any, /) -> Any: ... + @overload + def __matmul__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ... + + @overload # signature equivalent to __matmul__ + def __rmatmul__(self: NDArray[_NumberT], other: _ArrayLikeBool_co, /) -> NDArray[_NumberT]: ... + @overload + def __rmatmul__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[np.bool]: ... # type: ignore[overload-overlap] + @overload + def __rmatmul__(self: NDArray[np.bool], other: _ArrayLike[_NumberT], /) -> NDArray[_NumberT]: ... # type: ignore[overload-overlap] + @overload + def __rmatmul__(self: NDArray[floating[_64Bit]], other: _ArrayLikeFloat64_co, /) -> NDArray[float64]: ... + @overload + def __rmatmul__(self: _ArrayFloat64_co, other: _ArrayLike[floating[_64Bit]], /) -> NDArray[float64]: ... + @overload + def __rmatmul__(self: NDArray[complexfloating[_64Bit]], other: _ArrayLikeComplex128_co, /) -> NDArray[complex128]: ... + @overload + def __rmatmul__(self: _ArrayComplex128_co, other: _ArrayLike[complexfloating[_64Bit]], /) -> NDArray[complex128]: ... + @overload + def __rmatmul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger]: ... # type: ignore[overload-overlap] + @overload + def __rmatmul__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger]: ... # type: ignore[overload-overlap] + @overload + def __rmatmul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating]: ... # type: ignore[overload-overlap] + @overload + def __rmatmul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co, /) -> NDArray[complexfloating]: ... + @overload + def __rmatmul__(self: NDArray[number], other: _ArrayLikeNumber_co, /) -> NDArray[number]: ... + @overload + def __rmatmul__(self: NDArray[object_], other: Any, /) -> Any: ... + @overload + def __rmatmul__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ... + + @overload + def __mod__(self: NDArray[_RealNumberT], other: int | np.bool, /) -> ndarray[_ShapeT_co, dtype[_RealNumberT]]: ... + @overload + def __mod__(self: NDArray[_RealNumberT], other: _ArrayLikeBool_co, /) -> NDArray[_RealNumberT]: ... # type: ignore[overload-overlap] + @overload + def __mod__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[int8]: ... # type: ignore[overload-overlap] + @overload + def __mod__(self: NDArray[np.bool], other: _ArrayLike[_RealNumberT], /) -> NDArray[_RealNumberT]: ... # type: ignore[overload-overlap] + @overload + def __mod__(self: NDArray[float64], other: _ArrayLikeFloat64_co, /) -> NDArray[float64]: ... + @overload + def __mod__(self: _ArrayFloat64_co, other: _ArrayLike[floating[_64Bit]], /) -> NDArray[float64]: ... + @overload + def __mod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger]: ... # type: ignore[overload-overlap] + @overload + def __mod__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger]: ... # type: ignore[overload-overlap] + @overload + def __mod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating]: ... + @overload + def __mod__(self: NDArray[timedelta64], other: _ArrayLike[timedelta64], /) -> NDArray[timedelta64]: ... + @overload + def __mod__(self: NDArray[object_], other: Any, /) -> Any: ... + @overload + def __mod__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ... + + @overload # signature equivalent to __mod__ + def __rmod__(self: NDArray[_RealNumberT], other: int | np.bool, /) -> ndarray[_ShapeT_co, dtype[_RealNumberT]]: ... + @overload + def __rmod__(self: NDArray[_RealNumberT], other: _ArrayLikeBool_co, /) -> NDArray[_RealNumberT]: ... # type: ignore[overload-overlap] + @overload + def __rmod__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[int8]: ... # type: ignore[overload-overlap] + @overload + def __rmod__(self: NDArray[np.bool], other: _ArrayLike[_RealNumberT], /) -> NDArray[_RealNumberT]: ... # type: ignore[overload-overlap] + @overload + def __rmod__(self: NDArray[float64], other: _ArrayLikeFloat64_co, /) -> NDArray[float64]: ... + @overload + def __rmod__(self: _ArrayFloat64_co, other: _ArrayLike[floating[_64Bit]], /) -> NDArray[float64]: ... + @overload + def __rmod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger]: ... # type: ignore[overload-overlap] + @overload + def __rmod__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger]: ... # type: ignore[overload-overlap] + @overload + def __rmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating]: ... + @overload + def __rmod__(self: NDArray[timedelta64], other: _ArrayLike[timedelta64], /) -> NDArray[timedelta64]: ... + @overload + def __rmod__(self: NDArray[object_], other: Any, /) -> Any: ... + @overload + def __rmod__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ... + + @overload + def __divmod__(self: NDArray[_RealNumberT], rhs: int | np.bool, /) -> _2Tuple[ndarray[_ShapeT_co, dtype[_RealNumberT]]]: ... + @overload + def __divmod__(self: NDArray[_RealNumberT], rhs: _ArrayLikeBool_co, /) -> _2Tuple[NDArray[_RealNumberT]]: ... # type: ignore[overload-overlap] + @overload + def __divmod__(self: NDArray[np.bool], rhs: _ArrayLikeBool_co, /) -> _2Tuple[NDArray[int8]]: ... # type: ignore[overload-overlap] + @overload + def __divmod__(self: NDArray[np.bool], rhs: _ArrayLike[_RealNumberT], /) -> _2Tuple[NDArray[_RealNumberT]]: ... # type: ignore[overload-overlap] + @overload + def __divmod__(self: NDArray[float64], rhs: _ArrayLikeFloat64_co, /) -> _2Tuple[NDArray[float64]]: ... + @overload + def __divmod__(self: _ArrayFloat64_co, rhs: _ArrayLike[floating[_64Bit]], /) -> _2Tuple[NDArray[float64]]: ... + @overload + def __divmod__(self: _ArrayUInt_co, rhs: _ArrayLikeUInt_co, /) -> _2Tuple[NDArray[unsignedinteger]]: ... # type: ignore[overload-overlap] + @overload + def __divmod__(self: _ArrayInt_co, rhs: _ArrayLikeInt_co, /) -> _2Tuple[NDArray[signedinteger]]: ... # type: ignore[overload-overlap] + @overload + def __divmod__(self: _ArrayFloat_co, rhs: _ArrayLikeFloat_co, /) -> _2Tuple[NDArray[floating]]: ... + @overload + def __divmod__(self: NDArray[timedelta64], rhs: _ArrayLike[timedelta64], /) -> tuple[NDArray[int64], NDArray[timedelta64]]: ... + + @overload # signature equivalent to __divmod__ + def __rdivmod__(self: NDArray[_RealNumberT], lhs: int | np.bool, /) -> _2Tuple[ndarray[_ShapeT_co, dtype[_RealNumberT]]]: ... + @overload + def __rdivmod__(self: NDArray[_RealNumberT], lhs: _ArrayLikeBool_co, /) -> _2Tuple[NDArray[_RealNumberT]]: ... # type: ignore[overload-overlap] + @overload + def __rdivmod__(self: NDArray[np.bool], lhs: _ArrayLikeBool_co, /) -> _2Tuple[NDArray[int8]]: ... # type: ignore[overload-overlap] + @overload + def __rdivmod__(self: NDArray[np.bool], lhs: _ArrayLike[_RealNumberT], /) -> _2Tuple[NDArray[_RealNumberT]]: ... # type: ignore[overload-overlap] + @overload + def __rdivmod__(self: NDArray[float64], lhs: _ArrayLikeFloat64_co, /) -> _2Tuple[NDArray[float64]]: ... + @overload + def __rdivmod__(self: _ArrayFloat64_co, lhs: _ArrayLike[floating[_64Bit]], /) -> _2Tuple[NDArray[float64]]: ... + @overload + def __rdivmod__(self: _ArrayUInt_co, lhs: _ArrayLikeUInt_co, /) -> _2Tuple[NDArray[unsignedinteger]]: ... # type: ignore[overload-overlap] + @overload + def __rdivmod__(self: _ArrayInt_co, lhs: _ArrayLikeInt_co, /) -> _2Tuple[NDArray[signedinteger]]: ... # type: ignore[overload-overlap] + @overload + def __rdivmod__(self: _ArrayFloat_co, lhs: _ArrayLikeFloat_co, /) -> _2Tuple[NDArray[floating]]: ... + @overload + def __rdivmod__(self: NDArray[timedelta64], lhs: _ArrayLike[timedelta64], /) -> tuple[NDArray[int64], NDArray[timedelta64]]: ... + + @overload + def __add__(self: NDArray[_NumberT], other: int | np.bool, /) -> ndarray[_ShapeT_co, dtype[_NumberT]]: ... + @overload + def __add__(self: NDArray[_NumberT], other: _ArrayLikeBool_co, /) -> NDArray[_NumberT]: ... # type: ignore[overload-overlap] + @overload + def __add__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[np.bool]: ... # type: ignore[overload-overlap] + @overload + def __add__(self: NDArray[np.bool], other: _ArrayLike[_NumberT], /) -> NDArray[_NumberT]: ... # type: ignore[overload-overlap] + @overload + def __add__(self: NDArray[float64], other: _ArrayLikeFloat64_co, /) -> NDArray[float64]: ... + @overload + def __add__(self: _ArrayFloat64_co, other: _ArrayLike[floating[_64Bit]], /) -> NDArray[float64]: ... + @overload + def __add__(self: NDArray[complex128], other: _ArrayLikeComplex128_co, /) -> NDArray[complex128]: ... + @overload + def __add__(self: _ArrayComplex128_co, other: _ArrayLike[complexfloating[_64Bit]], /) -> NDArray[complex128]: ... + @overload + def __add__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger]: ... # type: ignore[overload-overlap] + @overload + def __add__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger]: ... # type: ignore[overload-overlap] + @overload + def __add__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating]: ... # type: ignore[overload-overlap] + @overload + def __add__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co, /) -> NDArray[complexfloating]: ... # type: ignore[overload-overlap] + @overload + def __add__(self: NDArray[number], other: _ArrayLikeNumber_co, /) -> NDArray[number]: ... # type: ignore[overload-overlap] + @overload + def __add__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co, /) -> NDArray[timedelta64]: ... + @overload + def __add__(self: _ArrayTD64_co, other: _ArrayLikeDT64_co, /) -> NDArray[datetime64]: ... + @overload + def __add__(self: NDArray[datetime64], other: _ArrayLikeTD64_co, /) -> NDArray[datetime64]: ... + @overload + def __add__(self: NDArray[bytes_], other: _ArrayLikeBytes_co, /) -> NDArray[bytes_]: ... + @overload + def __add__(self: NDArray[str_], other: _ArrayLikeStr_co, /) -> NDArray[str_]: ... + @overload + def __add__( + self: ndarray[Any, dtypes.StringDType], + other: _ArrayLikeStr_co | _ArrayLikeString_co, + /, + ) -> ndarray[tuple[Any, ...], dtypes.StringDType]: ... + @overload + def __add__(self: NDArray[object_], other: Any, /) -> Any: ... + @overload + def __add__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ... + + @overload # signature equivalent to __add__ + def __radd__(self: NDArray[_NumberT], other: int | np.bool, /) -> ndarray[_ShapeT_co, dtype[_NumberT]]: ... + @overload + def __radd__(self: NDArray[_NumberT], other: _ArrayLikeBool_co, /) -> NDArray[_NumberT]: ... # type: ignore[overload-overlap] + @overload + def __radd__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[np.bool]: ... # type: ignore[overload-overlap] + @overload + def __radd__(self: NDArray[np.bool], other: _ArrayLike[_NumberT], /) -> NDArray[_NumberT]: ... # type: ignore[overload-overlap] + @overload + def __radd__(self: NDArray[float64], other: _ArrayLikeFloat64_co, /) -> NDArray[float64]: ... + @overload + def __radd__(self: _ArrayFloat64_co, other: _ArrayLike[floating[_64Bit]], /) -> NDArray[float64]: ... + @overload + def __radd__(self: NDArray[complex128], other: _ArrayLikeComplex128_co, /) -> NDArray[complex128]: ... + @overload + def __radd__(self: _ArrayComplex128_co, other: _ArrayLike[complexfloating[_64Bit]], /) -> NDArray[complex128]: ... + @overload + def __radd__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger]: ... # type: ignore[overload-overlap] + @overload + def __radd__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger]: ... # type: ignore[overload-overlap] + @overload + def __radd__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating]: ... # type: ignore[overload-overlap] + @overload + def __radd__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co, /) -> NDArray[complexfloating]: ... # type: ignore[overload-overlap] + @overload + def __radd__(self: NDArray[number], other: _ArrayLikeNumber_co, /) -> NDArray[number]: ... # type: ignore[overload-overlap] + @overload + def __radd__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co, /) -> NDArray[timedelta64]: ... + @overload + def __radd__(self: _ArrayTD64_co, other: _ArrayLikeDT64_co, /) -> NDArray[datetime64]: ... + @overload + def __radd__(self: NDArray[datetime64], other: _ArrayLikeTD64_co, /) -> NDArray[datetime64]: ... + @overload + def __radd__(self: NDArray[bytes_], other: _ArrayLikeBytes_co, /) -> NDArray[bytes_]: ... + @overload + def __radd__(self: NDArray[str_], other: _ArrayLikeStr_co, /) -> NDArray[str_]: ... + @overload + def __radd__( + self: ndarray[Any, dtypes.StringDType], + other: _ArrayLikeStr_co | _ArrayLikeString_co, + /, + ) -> ndarray[tuple[Any, ...], dtypes.StringDType]: ... + @overload + def __radd__(self: NDArray[object_], other: Any, /) -> Any: ... + @overload + def __radd__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ... + + @overload + def __sub__(self: NDArray[_NumberT], other: int | np.bool, /) -> ndarray[_ShapeT_co, dtype[_NumberT]]: ... + @overload + def __sub__(self: NDArray[_NumberT], other: _ArrayLikeBool_co, /) -> NDArray[_NumberT]: ... # type: ignore[overload-overlap] + @overload + def __sub__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NoReturn: ... + @overload + def __sub__(self: NDArray[np.bool], other: _ArrayLike[_NumberT], /) -> NDArray[_NumberT]: ... # type: ignore[overload-overlap] + @overload + def __sub__(self: NDArray[float64], other: _ArrayLikeFloat64_co, /) -> NDArray[float64]: ... + @overload + def __sub__(self: _ArrayFloat64_co, other: _ArrayLike[floating[_64Bit]], /) -> NDArray[float64]: ... + @overload + def __sub__(self: NDArray[complex128], other: _ArrayLikeComplex128_co, /) -> NDArray[complex128]: ... + @overload + def __sub__(self: _ArrayComplex128_co, other: _ArrayLike[complexfloating[_64Bit]], /) -> NDArray[complex128]: ... + @overload + def __sub__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger]: ... # type: ignore[overload-overlap] + @overload + def __sub__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger]: ... # type: ignore[overload-overlap] + @overload + def __sub__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating]: ... # type: ignore[overload-overlap] + @overload + def __sub__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co, /) -> NDArray[complexfloating]: ... # type: ignore[overload-overlap] + @overload + def __sub__(self: NDArray[number], other: _ArrayLikeNumber_co, /) -> NDArray[number]: ... # type: ignore[overload-overlap] + @overload + def __sub__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co, /) -> NDArray[timedelta64]: ... + @overload + def __sub__(self: NDArray[datetime64], other: _ArrayLikeTD64_co, /) -> NDArray[datetime64]: ... + @overload + def __sub__(self: NDArray[datetime64], other: _ArrayLikeDT64_co, /) -> NDArray[timedelta64]: ... + @overload + def __sub__(self: NDArray[object_], other: Any, /) -> Any: ... + @overload + def __sub__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ... + + @overload + def __rsub__(self: NDArray[_NumberT], other: int | np.bool, /) -> ndarray[_ShapeT_co, dtype[_NumberT]]: ... + @overload + def __rsub__(self: NDArray[_NumberT], other: _ArrayLikeBool_co, /) -> NDArray[_NumberT]: ... # type: ignore[overload-overlap] + @overload + def __rsub__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NoReturn: ... + @overload + def __rsub__(self: NDArray[np.bool], other: _ArrayLike[_NumberT], /) -> NDArray[_NumberT]: ... # type: ignore[overload-overlap] + @overload + def __rsub__(self: NDArray[float64], other: _ArrayLikeFloat64_co, /) -> NDArray[float64]: ... + @overload + def __rsub__(self: _ArrayFloat64_co, other: _ArrayLike[floating[_64Bit]], /) -> NDArray[float64]: ... + @overload + def __rsub__(self: NDArray[complex128], other: _ArrayLikeComplex128_co, /) -> NDArray[complex128]: ... + @overload + def __rsub__(self: _ArrayComplex128_co, other: _ArrayLike[complexfloating[_64Bit]], /) -> NDArray[complex128]: ... + @overload + def __rsub__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger]: ... # type: ignore[overload-overlap] + @overload + def __rsub__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger]: ... # type: ignore[overload-overlap] + @overload + def __rsub__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating]: ... # type: ignore[overload-overlap] + @overload + def __rsub__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co, /) -> NDArray[complexfloating]: ... # type: ignore[overload-overlap] + @overload + def __rsub__(self: NDArray[number], other: _ArrayLikeNumber_co, /) -> NDArray[number]: ... # type: ignore[overload-overlap] + @overload + def __rsub__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co, /) -> NDArray[timedelta64]: ... + @overload + def __rsub__(self: _ArrayTD64_co, other: _ArrayLikeDT64_co, /) -> NDArray[datetime64]: ... + @overload + def __rsub__(self: NDArray[datetime64], other: _ArrayLikeDT64_co, /) -> NDArray[timedelta64]: ... + @overload + def __rsub__(self: NDArray[object_], other: Any, /) -> Any: ... + @overload + def __rsub__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ... + + @overload + def __mul__(self: NDArray[_NumberT], other: int | np.bool, /) -> ndarray[_ShapeT_co, dtype[_NumberT]]: ... + @overload + def __mul__(self: NDArray[_NumberT], other: _ArrayLikeBool_co, /) -> NDArray[_NumberT]: ... # type: ignore[overload-overlap] + @overload + def __mul__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[np.bool]: ... # type: ignore[overload-overlap] + @overload + def __mul__(self: NDArray[np.bool], other: _ArrayLike[_NumberT], /) -> NDArray[_NumberT]: ... # type: ignore[overload-overlap] + @overload + def __mul__(self: NDArray[float64], other: _ArrayLikeFloat64_co, /) -> NDArray[float64]: ... + @overload + def __mul__(self: _ArrayFloat64_co, other: _ArrayLike[floating[_64Bit]], /) -> NDArray[float64]: ... + @overload + def __mul__(self: NDArray[complex128], other: _ArrayLikeComplex128_co, /) -> NDArray[complex128]: ... + @overload + def __mul__(self: _ArrayComplex128_co, other: _ArrayLike[complexfloating[_64Bit]], /) -> NDArray[complex128]: ... + @overload + def __mul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger]: ... # type: ignore[overload-overlap] + @overload + def __mul__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger]: ... # type: ignore[overload-overlap] + @overload + def __mul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating]: ... # type: ignore[overload-overlap] + @overload + def __mul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co, /) -> NDArray[complexfloating]: ... # type: ignore[overload-overlap] + @overload + def __mul__(self: NDArray[number], other: _ArrayLikeNumber_co, /) -> NDArray[number]: ... + @overload + def __mul__(self: NDArray[timedelta64], other: _ArrayLikeFloat_co, /) -> NDArray[timedelta64]: ... + @overload + def __mul__(self: _ArrayFloat_co, other: _ArrayLike[timedelta64], /) -> NDArray[timedelta64]: ... + @overload + def __mul__( + self: ndarray[Any, dtype[character] | dtypes.StringDType], + other: _ArrayLikeInt, + /, + ) -> ndarray[tuple[Any, ...], _DTypeT_co]: ... + @overload + def __mul__(self: NDArray[object_], other: Any, /) -> Any: ... + @overload + def __mul__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ... + + @overload # signature equivalent to __mul__ + def __rmul__(self: NDArray[_NumberT], other: int | np.bool, /) -> ndarray[_ShapeT_co, dtype[_NumberT]]: ... + @overload + def __rmul__(self: NDArray[_NumberT], other: _ArrayLikeBool_co, /) -> NDArray[_NumberT]: ... # type: ignore[overload-overlap] + @overload + def __rmul__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[np.bool]: ... # type: ignore[overload-overlap] + @overload + def __rmul__(self: NDArray[np.bool], other: _ArrayLike[_NumberT], /) -> NDArray[_NumberT]: ... # type: ignore[overload-overlap] + @overload + def __rmul__(self: NDArray[float64], other: _ArrayLikeFloat64_co, /) -> NDArray[float64]: ... + @overload + def __rmul__(self: _ArrayFloat64_co, other: _ArrayLike[floating[_64Bit]], /) -> NDArray[float64]: ... + @overload + def __rmul__(self: NDArray[complex128], other: _ArrayLikeComplex128_co, /) -> NDArray[complex128]: ... + @overload + def __rmul__(self: _ArrayComplex128_co, other: _ArrayLike[complexfloating[_64Bit]], /) -> NDArray[complex128]: ... + @overload + def __rmul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger]: ... # type: ignore[overload-overlap] + @overload + def __rmul__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger]: ... # type: ignore[overload-overlap] + @overload + def __rmul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating]: ... # type: ignore[overload-overlap] + @overload + def __rmul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co, /) -> NDArray[complexfloating]: ... # type: ignore[overload-overlap] + @overload + def __rmul__(self: NDArray[number], other: _ArrayLikeNumber_co, /) -> NDArray[number]: ... + @overload + def __rmul__(self: NDArray[timedelta64], other: _ArrayLikeFloat_co, /) -> NDArray[timedelta64]: ... + @overload + def __rmul__(self: _ArrayFloat_co, other: _ArrayLike[timedelta64], /) -> NDArray[timedelta64]: ... + @overload + def __rmul__( + self: ndarray[Any, dtype[character] | dtypes.StringDType], + other: _ArrayLikeInt, + /, + ) -> ndarray[tuple[Any, ...], _DTypeT_co]: ... + @overload + def __rmul__(self: NDArray[object_], other: Any, /) -> Any: ... + @overload + def __rmul__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ... + + @overload + def __truediv__(self: _ArrayInt_co | NDArray[float64], other: _ArrayLikeFloat64_co, /) -> NDArray[float64]: ... + @overload + def __truediv__(self: _ArrayFloat64_co, other: _ArrayLikeInt_co | _ArrayLike[floating[_64Bit]], /) -> NDArray[float64]: ... + @overload + def __truediv__(self: NDArray[complex128], other: _ArrayLikeComplex128_co, /) -> NDArray[complex128]: ... + @overload + def __truediv__(self: _ArrayComplex128_co, other: _ArrayLike[complexfloating[_64Bit]], /) -> NDArray[complex128]: ... + @overload + def __truediv__(self: NDArray[floating], other: _ArrayLikeFloat_co, /) -> NDArray[floating]: ... + @overload + def __truediv__(self: _ArrayFloat_co, other: _ArrayLike[floating], /) -> NDArray[floating]: ... + @overload + def __truediv__(self: NDArray[complexfloating], other: _ArrayLikeNumber_co, /) -> NDArray[complexfloating]: ... + @overload + def __truediv__(self: _ArrayNumber_co, other: _ArrayLike[complexfloating], /) -> NDArray[complexfloating]: ... + @overload + def __truediv__(self: NDArray[inexact], other: _ArrayLikeNumber_co, /) -> NDArray[inexact]: ... + @overload + def __truediv__(self: NDArray[number], other: _ArrayLikeNumber_co, /) -> NDArray[number]: ... + @overload + def __truediv__(self: NDArray[timedelta64], other: _ArrayLike[timedelta64], /) -> NDArray[float64]: ... + @overload + def __truediv__(self: NDArray[timedelta64], other: _ArrayLikeBool_co, /) -> NoReturn: ... + @overload + def __truediv__(self: NDArray[timedelta64], other: _ArrayLikeFloat_co, /) -> NDArray[timedelta64]: ... + @overload + def __truediv__(self: NDArray[object_], other: Any, /) -> Any: ... + @overload + def __truediv__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ... + + @overload + def __rtruediv__(self: _ArrayInt_co | NDArray[float64], other: _ArrayLikeFloat64_co, /) -> NDArray[float64]: ... + @overload + def __rtruediv__(self: _ArrayFloat64_co, other: _ArrayLikeInt_co | _ArrayLike[floating[_64Bit]], /) -> NDArray[float64]: ... + @overload + def __rtruediv__(self: NDArray[complex128], other: _ArrayLikeComplex128_co, /) -> NDArray[complex128]: ... + @overload + def __rtruediv__(self: _ArrayComplex128_co, other: _ArrayLike[complexfloating[_64Bit]], /) -> NDArray[complex128]: ... + @overload + def __rtruediv__(self: NDArray[floating], other: _ArrayLikeFloat_co, /) -> NDArray[floating]: ... + @overload + def __rtruediv__(self: _ArrayFloat_co, other: _ArrayLike[floating], /) -> NDArray[floating]: ... + @overload + def __rtruediv__(self: NDArray[complexfloating], other: _ArrayLikeNumber_co, /) -> NDArray[complexfloating]: ... + @overload + def __rtruediv__(self: _ArrayNumber_co, other: _ArrayLike[complexfloating], /) -> NDArray[complexfloating]: ... + @overload + def __rtruediv__(self: NDArray[inexact], other: _ArrayLikeNumber_co, /) -> NDArray[inexact]: ... + @overload + def __rtruediv__(self: NDArray[number], other: _ArrayLikeNumber_co, /) -> NDArray[number]: ... + @overload + def __rtruediv__(self: NDArray[timedelta64], other: _ArrayLike[timedelta64], /) -> NDArray[float64]: ... + @overload + def __rtruediv__(self: NDArray[integer | floating], other: _ArrayLike[timedelta64], /) -> NDArray[timedelta64]: ... + @overload + def __rtruediv__(self: NDArray[object_], other: Any, /) -> Any: ... + @overload + def __rtruediv__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ... + + @overload + def __floordiv__(self: NDArray[_RealNumberT], other: int | np.bool, /) -> ndarray[_ShapeT_co, dtype[_RealNumberT]]: ... + @overload + def __floordiv__(self: NDArray[_RealNumberT], other: _ArrayLikeBool_co, /) -> NDArray[_RealNumberT]: ... # type: ignore[overload-overlap] + @overload + def __floordiv__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[int8]: ... # type: ignore[overload-overlap] + @overload + def __floordiv__(self: NDArray[np.bool], other: _ArrayLike[_RealNumberT], /) -> NDArray[_RealNumberT]: ... # type: ignore[overload-overlap] + @overload + def __floordiv__(self: NDArray[float64], other: _ArrayLikeFloat64_co, /) -> NDArray[float64]: ... + @overload + def __floordiv__(self: _ArrayFloat64_co, other: _ArrayLike[floating[_64Bit]], /) -> NDArray[float64]: ... + @overload + def __floordiv__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger]: ... # type: ignore[overload-overlap] + @overload + def __floordiv__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger]: ... # type: ignore[overload-overlap] + @overload + def __floordiv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating]: ... + @overload + def __floordiv__(self: NDArray[timedelta64], other: _ArrayLike[timedelta64], /) -> NDArray[int64]: ... + @overload + def __floordiv__(self: NDArray[timedelta64], other: _ArrayLikeBool_co, /) -> NoReturn: ... + @overload + def __floordiv__(self: NDArray[timedelta64], other: _ArrayLikeFloat_co, /) -> NDArray[timedelta64]: ... + @overload + def __floordiv__(self: NDArray[object_], other: Any, /) -> Any: ... + @overload + def __floordiv__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ... + + @overload + def __rfloordiv__(self: NDArray[_RealNumberT], other: int | np.bool, /) -> ndarray[_ShapeT_co, dtype[_RealNumberT]]: ... + @overload + def __rfloordiv__(self: NDArray[_RealNumberT], other: _ArrayLikeBool_co, /) -> NDArray[_RealNumberT]: ... # type: ignore[overload-overlap] + @overload + def __rfloordiv__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[int8]: ... # type: ignore[overload-overlap] + @overload + def __rfloordiv__(self: NDArray[np.bool], other: _ArrayLike[_RealNumberT], /) -> NDArray[_RealNumberT]: ... # type: ignore[overload-overlap] + @overload + def __rfloordiv__(self: NDArray[float64], other: _ArrayLikeFloat64_co, /) -> NDArray[float64]: ... + @overload + def __rfloordiv__(self: _ArrayFloat64_co, other: _ArrayLike[floating[_64Bit]], /) -> NDArray[float64]: ... + @overload + def __rfloordiv__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger]: ... # type: ignore[overload-overlap] + @overload + def __rfloordiv__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger]: ... # type: ignore[overload-overlap] + @overload + def __rfloordiv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating]: ... # type: ignore[overload-overlap] + @overload + def __rfloordiv__(self: NDArray[timedelta64], other: _ArrayLike[timedelta64], /) -> NDArray[int64]: ... + @overload + def __rfloordiv__(self: NDArray[floating | integer], other: _ArrayLike[timedelta64], /) -> NDArray[timedelta64]: ... + @overload + def __rfloordiv__(self: NDArray[object_], other: Any, /) -> Any: ... + @overload + def __rfloordiv__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ... + + @overload + def __pow__(self: NDArray[_NumberT], other: int | np.bool, mod: None = None, /) -> ndarray[_ShapeT_co, dtype[_NumberT]]: ... + @overload + def __pow__(self: NDArray[_NumberT], other: _ArrayLikeBool_co, mod: None = None, /) -> NDArray[_NumberT]: ... # type: ignore[overload-overlap] + @overload + def __pow__(self: NDArray[np.bool], other: _ArrayLikeBool_co, mod: None = None, /) -> NDArray[int8]: ... # type: ignore[overload-overlap] + @overload + def __pow__(self: NDArray[np.bool], other: _ArrayLike[_NumberT], mod: None = None, /) -> NDArray[_NumberT]: ... # type: ignore[overload-overlap] + @overload + def __pow__(self: NDArray[float64], other: _ArrayLikeFloat64_co, mod: None = None, /) -> NDArray[float64]: ... + @overload + def __pow__(self: _ArrayFloat64_co, other: _ArrayLike[floating[_64Bit]], mod: None = None, /) -> NDArray[float64]: ... + @overload + def __pow__(self: NDArray[complex128], other: _ArrayLikeComplex128_co, mod: None = None, /) -> NDArray[complex128]: ... + @overload + def __pow__( + self: _ArrayComplex128_co, other: _ArrayLike[complexfloating[_64Bit]], mod: None = None, / + ) -> NDArray[complex128]: ... + @overload + def __pow__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, mod: None = None, /) -> NDArray[unsignedinteger]: ... # type: ignore[overload-overlap] + @overload + def __pow__(self: _ArrayInt_co, other: _ArrayLikeInt_co, mod: None = None, /) -> NDArray[signedinteger]: ... # type: ignore[overload-overlap] + @overload + def __pow__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, mod: None = None, /) -> NDArray[floating]: ... # type: ignore[overload-overlap] + @overload + def __pow__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co, mod: None = None, /) -> NDArray[complexfloating]: ... + @overload + def __pow__(self: NDArray[number], other: _ArrayLikeNumber_co, mod: None = None, /) -> NDArray[number]: ... + @overload + def __pow__(self: NDArray[object_], other: Any, mod: None = None, /) -> Any: ... + @overload + def __pow__(self: NDArray[Any], other: _ArrayLikeObject_co, mod: None = None, /) -> Any: ... + + @overload + def __rpow__(self: NDArray[_NumberT], other: int | np.bool, mod: None = None, /) -> ndarray[_ShapeT_co, dtype[_NumberT]]: ... + @overload + def __rpow__(self: NDArray[_NumberT], other: _ArrayLikeBool_co, mod: None = None, /) -> NDArray[_NumberT]: ... # type: ignore[overload-overlap] + @overload + def __rpow__(self: NDArray[np.bool], other: _ArrayLikeBool_co, mod: None = None, /) -> NDArray[int8]: ... # type: ignore[overload-overlap] + @overload + def __rpow__(self: NDArray[np.bool], other: _ArrayLike[_NumberT], mod: None = None, /) -> NDArray[_NumberT]: ... # type: ignore[overload-overlap] + @overload + def __rpow__(self: NDArray[float64], other: _ArrayLikeFloat64_co, mod: None = None, /) -> NDArray[float64]: ... + @overload + def __rpow__(self: _ArrayFloat64_co, other: _ArrayLike[floating[_64Bit]], mod: None = None, /) -> NDArray[float64]: ... + @overload + def __rpow__(self: NDArray[complex128], other: _ArrayLikeComplex128_co, mod: None = None, /) -> NDArray[complex128]: ... + @overload + def __rpow__( + self: _ArrayComplex128_co, other: _ArrayLike[complexfloating[_64Bit]], mod: None = None, / + ) -> NDArray[complex128]: ... + @overload + def __rpow__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, mod: None = None, /) -> NDArray[unsignedinteger]: ... # type: ignore[overload-overlap] + @overload + def __rpow__(self: _ArrayInt_co, other: _ArrayLikeInt_co, mod: None = None, /) -> NDArray[signedinteger]: ... # type: ignore[overload-overlap] + @overload + def __rpow__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, mod: None = None, /) -> NDArray[floating]: ... # type: ignore[overload-overlap] + @overload + def __rpow__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co, mod: None = None, /) -> NDArray[complexfloating]: ... + @overload + def __rpow__(self: NDArray[number], other: _ArrayLikeNumber_co, mod: None = None, /) -> NDArray[number]: ... + @overload + def __rpow__(self: NDArray[object_], other: Any, mod: None = None, /) -> Any: ... + @overload + def __rpow__(self: NDArray[Any], other: _ArrayLikeObject_co, mod: None = None, /) -> Any: ... + + @overload + def __lshift__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[int8]: ... # type: ignore[misc] + @overload + def __lshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger]: ... # type: ignore[misc] + @overload + def __lshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger]: ... + @overload + def __lshift__(self: NDArray[object_], other: Any, /) -> Any: ... + @overload + def __lshift__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ... + + @overload + def __rlshift__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[int8]: ... # type: ignore[misc] + @overload + def __rlshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger]: ... # type: ignore[misc] + @overload + def __rlshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger]: ... + @overload + def __rlshift__(self: NDArray[object_], other: Any, /) -> Any: ... + @overload + def __rlshift__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ... + + @overload + def __rshift__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[int8]: ... # type: ignore[misc] + @overload + def __rshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger]: ... # type: ignore[misc] + @overload + def __rshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger]: ... + @overload + def __rshift__(self: NDArray[object_], other: Any, /) -> Any: ... + @overload + def __rshift__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ... + + @overload + def __rrshift__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[int8]: ... # type: ignore[misc] + @overload + def __rrshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger]: ... # type: ignore[misc] + @overload + def __rrshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger]: ... + @overload + def __rrshift__(self: NDArray[object_], other: Any, /) -> Any: ... + @overload + def __rrshift__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ... + + @overload + def __and__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[np.bool]: ... # type: ignore[misc] + @overload + def __and__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger]: ... # type: ignore[misc] + @overload + def __and__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger]: ... + @overload + def __and__(self: NDArray[object_], other: Any, /) -> Any: ... + @overload + def __and__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ... + + @overload + def __rand__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[np.bool]: ... # type: ignore[misc] + @overload + def __rand__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger]: ... # type: ignore[misc] + @overload + def __rand__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger]: ... + @overload + def __rand__(self: NDArray[object_], other: Any, /) -> Any: ... + @overload + def __rand__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ... + + @overload + def __xor__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[np.bool]: ... # type: ignore[misc] + @overload + def __xor__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger]: ... # type: ignore[misc] + @overload + def __xor__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger]: ... + @overload + def __xor__(self: NDArray[object_], other: Any, /) -> Any: ... + @overload + def __xor__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ... + + @overload + def __rxor__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[np.bool]: ... # type: ignore[misc] + @overload + def __rxor__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger]: ... # type: ignore[misc] + @overload + def __rxor__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger]: ... + @overload + def __rxor__(self: NDArray[object_], other: Any, /) -> Any: ... + @overload + def __rxor__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ... + + @overload + def __or__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[np.bool]: ... # type: ignore[misc] + @overload + def __or__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger]: ... # type: ignore[misc] + @overload + def __or__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger]: ... + @overload + def __or__(self: NDArray[object_], other: Any, /) -> Any: ... + @overload + def __or__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ... + + @overload + def __ror__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[np.bool]: ... # type: ignore[misc] + @overload + def __ror__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger]: ... # type: ignore[misc] + @overload + def __ror__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger]: ... + @overload + def __ror__(self: NDArray[object_], other: Any, /) -> Any: ... + @overload + def __ror__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ... + + # `np.generic` does not support inplace operations + + # NOTE: Inplace ops generally use "same_kind" casting w.r.t. to the left + # operand. An exception to this rule are unsigned integers though, which + # also accepts a signed integer for the right operand as long it is a 0D + # object and its value is >= 0 + # NOTE: Due to a mypy bug, overloading on e.g. `self: NDArray[SCT_floating]` won't + # work, as this will lead to `false negatives` when using these inplace ops. + @overload + def __iadd__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __iadd__(self: NDArray[integer], other: _ArrayLikeInt_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __iadd__(self: NDArray[floating], other: _ArrayLikeFloat_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __iadd__(self: NDArray[complexfloating], other: _ArrayLikeComplex_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __iadd__(self: NDArray[timedelta64 | datetime64], other: _ArrayLikeTD64_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __iadd__(self: NDArray[bytes_], other: _ArrayLikeBytes_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __iadd__( + self: ndarray[Any, dtype[str_] | dtypes.StringDType], + other: _ArrayLikeStr_co | _ArrayLikeString_co, + /, + ) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __iadd__(self: NDArray[object_], other: Any, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + + # + @overload + def __isub__(self: NDArray[integer], other: _ArrayLikeInt_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __isub__(self: NDArray[floating], other: _ArrayLikeFloat_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __isub__(self: NDArray[complexfloating], other: _ArrayLikeComplex_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __isub__(self: NDArray[timedelta64 | datetime64], other: _ArrayLikeTD64_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __isub__(self: NDArray[object_], other: Any, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + + # + @overload + def __imul__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __imul__( + self: ndarray[Any, dtype[integer | character] | dtypes.StringDType], other: _ArrayLikeInt_co, / + ) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __imul__(self: NDArray[floating | timedelta64], other: _ArrayLikeFloat_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __imul__(self: NDArray[complexfloating], other: _ArrayLikeComplex_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __imul__(self: NDArray[object_], other: Any, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + + @overload + def __ipow__(self: NDArray[integer], other: _ArrayLikeInt_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __ipow__(self: NDArray[floating], other: _ArrayLikeFloat_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __ipow__(self: NDArray[complexfloating], other: _ArrayLikeComplex_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __ipow__(self: NDArray[object_], other: Any, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + + # + @overload + def __itruediv__(self: NDArray[floating | timedelta64], other: _ArrayLikeFloat_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __itruediv__(self: NDArray[complexfloating], other: _ArrayLikeComplex_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __itruediv__(self: NDArray[object_], other: Any, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + + # keep in sync with `__imod__` + @overload + def __ifloordiv__(self: NDArray[integer], other: _ArrayLikeInt_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __ifloordiv__(self: NDArray[floating | timedelta64], other: _ArrayLikeFloat_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __ifloordiv__(self: NDArray[object_], other: Any, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + + # keep in sync with `__ifloordiv__` + @overload + def __imod__(self: NDArray[integer], other: _ArrayLikeInt_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __imod__(self: NDArray[floating], other: _ArrayLikeFloat_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __imod__( + self: NDArray[timedelta64], + other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]], + /, + ) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __imod__(self: NDArray[object_], other: Any, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + + # keep in sync with `__irshift__` + @overload + def __ilshift__(self: NDArray[integer], other: _ArrayLikeInt_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __ilshift__(self: NDArray[object_], other: Any, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + + # keep in sync with `__ilshift__` + @overload + def __irshift__(self: NDArray[integer], other: _ArrayLikeInt_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __irshift__(self: NDArray[object_], other: Any, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + + # keep in sync with `__ixor__` and `__ior__` + @overload + def __iand__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __iand__(self: NDArray[integer], other: _ArrayLikeInt_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __iand__(self: NDArray[object_], other: Any, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + + # keep in sync with `__iand__` and `__ior__` + @overload + def __ixor__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __ixor__(self: NDArray[integer], other: _ArrayLikeInt_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __ixor__(self: NDArray[object_], other: Any, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + + # keep in sync with `__iand__` and `__ixor__` + @overload + def __ior__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __ior__(self: NDArray[integer], other: _ArrayLikeInt_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __ior__(self: NDArray[object_], other: Any, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + + # + @overload + def __imatmul__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __imatmul__(self: NDArray[integer], other: _ArrayLikeInt_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __imatmul__(self: NDArray[floating], other: _ArrayLikeFloat_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __imatmul__(self: NDArray[complexfloating], other: _ArrayLikeComplex_co, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __imatmul__(self: NDArray[object_], other: Any, /) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + + # + def __dlpack__( + self: NDArray[number], + /, + *, + stream: int | Any | None = None, + max_version: tuple[int, int] | None = None, + dl_device: tuple[int, int] | None = None, + copy: builtins.bool | None = None, + ) -> CapsuleType: ... + def __dlpack_device__(self, /) -> tuple[L[1], L[0]]: ... + + # Keep `dtype` at the bottom to avoid name conflicts with `np.dtype` + @property + def dtype(self) -> _DTypeT_co: ... + +# NOTE: while `np.generic` is not technically an instance of `ABCMeta`, +# the `@abstractmethod` decorator is herein used to (forcefully) deny +# the creation of `np.generic` instances. +# The `# type: ignore` comments are necessary to silence mypy errors regarding +# the missing `ABCMeta` metaclass. +# See https://github.com/numpy/numpy-stubs/pull/80 for more details. +class generic(_ArrayOrScalarCommon, Generic[_ItemT_co]): + @abstractmethod + def __init__(self, *args: Any, **kwargs: Any) -> None: ... + def __hash__(self) -> int: ... + @overload + def __array__(self, dtype: None = None, /) -> ndarray[tuple[()], dtype[Self]]: ... + @overload + def __array__(self, dtype: _DTypeT, /) -> ndarray[tuple[()], _DTypeT]: ... + if sys.version_info >= (3, 12): + def __buffer__(self, flags: int, /) -> memoryview: ... + + @property + def base(self) -> None: ... + @property + def ndim(self) -> L[0]: ... + @property + def size(self) -> L[1]: ... + @property + def shape(self) -> tuple[()]: ... + @property + def strides(self) -> tuple[()]: ... + @property + def flat(self) -> flatiter[ndarray[tuple[int], dtype[Self]]]: ... + + @overload + def item(self, /) -> _ItemT_co: ... + @overload + def item(self, arg0: L[0, -1] | tuple[L[0, -1]] | tuple[()] = ..., /) -> _ItemT_co: ... + def tolist(self, /) -> _ItemT_co: ... + + def byteswap(self, inplace: L[False] = ...) -> Self: ... + + @overload + def astype( + self, + dtype: _DTypeLike[_ScalarT], + order: _OrderKACF = ..., + casting: _CastingKind = ..., + subok: builtins.bool = ..., + copy: builtins.bool | _CopyMode = ..., + ) -> _ScalarT: ... + @overload + def astype( + self, + dtype: DTypeLike, + order: _OrderKACF = ..., + casting: _CastingKind = ..., + subok: builtins.bool = ..., + copy: builtins.bool | _CopyMode = ..., + ) -> Any: ... + + # NOTE: `view` will perform a 0D->scalar cast, + # thus the array `type` is irrelevant to the output type + @overload + def view(self, type: type[NDArray[Any]] = ...) -> Self: ... + @overload + def view( + self, + dtype: _DTypeLike[_ScalarT], + type: type[NDArray[Any]] = ..., + ) -> _ScalarT: ... + @overload + def view( + self, + dtype: DTypeLike, + type: type[NDArray[Any]] = ..., + ) -> Any: ... + + @overload + def getfield( + self, + dtype: _DTypeLike[_ScalarT], + offset: SupportsIndex = ... + ) -> _ScalarT: ... + @overload + def getfield( + self, + dtype: DTypeLike, + offset: SupportsIndex = ... + ) -> Any: ... + + @overload + def take( # type: ignore[misc] + self, + indices: _IntLike_co, + axis: SupportsIndex | None = ..., + out: None = ..., + mode: _ModeKind = ..., + ) -> Self: ... + @overload + def take( # type: ignore[misc] + self, + indices: _ArrayLikeInt_co, + axis: SupportsIndex | None = ..., + out: None = ..., + mode: _ModeKind = ..., + ) -> NDArray[Self]: ... + @overload + def take( + self, + indices: _ArrayLikeInt_co, + axis: SupportsIndex | None = ..., + out: _ArrayT = ..., + mode: _ModeKind = ..., + ) -> _ArrayT: ... + + def repeat(self, repeats: _ArrayLikeInt_co, axis: SupportsIndex | None = None) -> ndarray[tuple[int], dtype[Self]]: ... + def flatten(self, /, order: _OrderKACF = "C") -> ndarray[tuple[int], dtype[Self]]: ... + def ravel(self, /, order: _OrderKACF = "C") -> ndarray[tuple[int], dtype[Self]]: ... + + @overload # (() | []) + def reshape( + self, + shape: tuple[()] | list[Never], + /, + *, + order: _OrderACF = "C", + copy: builtins.bool | None = None, + ) -> Self: ... + @overload # ((1, *(1, ...))@_ShapeT) + def reshape( + self, + shape: _1NShapeT, + /, + *, + order: _OrderACF = "C", + copy: builtins.bool | None = None, + ) -> ndarray[_1NShapeT, dtype[Self]]: ... + @overload # (Sequence[index, ...]) # not recommended + def reshape( + self, + shape: Sequence[SupportsIndex], + /, + *, + order: _OrderACF = "C", + copy: builtins.bool | None = None, + ) -> Self | ndarray[tuple[L[1], ...], dtype[Self]]: ... + @overload # _(index) + def reshape( + self, + size1: SupportsIndex, + /, + *, + order: _OrderACF = "C", + copy: builtins.bool | None = None, + ) -> ndarray[tuple[L[1]], dtype[Self]]: ... + @overload # _(index, index) + def reshape( + self, + size1: SupportsIndex, + size2: SupportsIndex, + /, + *, + order: _OrderACF = "C", + copy: builtins.bool | None = None, + ) -> ndarray[tuple[L[1], L[1]], dtype[Self]]: ... + @overload # _(index, index, index) + def reshape( + self, + size1: SupportsIndex, + size2: SupportsIndex, + size3: SupportsIndex, + /, + *, + order: _OrderACF = "C", + copy: builtins.bool | None = None, + ) -> ndarray[tuple[L[1], L[1], L[1]], dtype[Self]]: ... + @overload # _(index, index, index, index) + def reshape( + self, + size1: SupportsIndex, + size2: SupportsIndex, + size3: SupportsIndex, + size4: SupportsIndex, + /, + *, + order: _OrderACF = "C", + copy: builtins.bool | None = None, + ) -> ndarray[tuple[L[1], L[1], L[1], L[1]], dtype[Self]]: ... + @overload # _(index, index, index, index, index, *index) # ndim >= 5 + def reshape( + self, + size1: SupportsIndex, + size2: SupportsIndex, + size3: SupportsIndex, + size4: SupportsIndex, + size5: SupportsIndex, + /, + *sizes6_: SupportsIndex, + order: _OrderACF = "C", + copy: builtins.bool | None = None, + ) -> ndarray[tuple[L[1], L[1], L[1], L[1], L[1], *tuple[L[1], ...]], dtype[Self]]: ... + + def squeeze(self, axis: L[0] | tuple[()] | None = ...) -> Self: ... + def transpose(self, axes: tuple[()] | None = ..., /) -> Self: ... + + @overload + def all( + self, + /, + axis: L[0, -1] | tuple[()] | None = None, + out: None = None, + keepdims: SupportsIndex = False, + *, + where: builtins.bool | np.bool | ndarray[tuple[()], dtype[np.bool]] = True + ) -> np.bool: ... + @overload + def all( + self, + /, + axis: L[0, -1] | tuple[()] | None, + out: ndarray[tuple[()], dtype[_ScalarT]], + keepdims: SupportsIndex = False, + *, + where: builtins.bool | np.bool | ndarray[tuple[()], dtype[np.bool]] = True, + ) -> _ScalarT: ... + @overload + def all( + self, + /, + axis: L[0, -1] | tuple[()] | None = None, + *, + out: ndarray[tuple[()], dtype[_ScalarT]], + keepdims: SupportsIndex = False, + where: builtins.bool | np.bool | ndarray[tuple[()], dtype[np.bool]] = True, + ) -> _ScalarT: ... + + @overload + def any( + self, + /, + axis: L[0, -1] | tuple[()] | None = None, + out: None = None, + keepdims: SupportsIndex = False, + *, + where: builtins.bool | np.bool | ndarray[tuple[()], dtype[np.bool]] = True + ) -> np.bool: ... + @overload + def any( + self, + /, + axis: L[0, -1] | tuple[()] | None, + out: ndarray[tuple[()], dtype[_ScalarT]], + keepdims: SupportsIndex = False, + *, + where: builtins.bool | np.bool | ndarray[tuple[()], dtype[np.bool]] = True, + ) -> _ScalarT: ... + @overload + def any( + self, + /, + axis: L[0, -1] | tuple[()] | None = None, + *, + out: ndarray[tuple[()], dtype[_ScalarT]], + keepdims: SupportsIndex = False, + where: builtins.bool | np.bool | ndarray[tuple[()], dtype[np.bool]] = True, + ) -> _ScalarT: ... + + # Keep `dtype` at the bottom to avoid name conflicts with `np.dtype` + @property + def dtype(self) -> _dtype[Self]: ... + +class number(generic[_NumberItemT_co], Generic[_NBit, _NumberItemT_co]): + @abstractmethod + def __init__(self, value: _NumberItemT_co, /) -> None: ... + def __class_getitem__(cls, item: Any, /) -> GenericAlias: ... + + def __neg__(self) -> Self: ... + def __pos__(self) -> Self: ... + def __abs__(self) -> Self: ... + + __add__: _NumberOp + __radd__: _NumberOp + __sub__: _NumberOp + __rsub__: _NumberOp + __mul__: _NumberOp + __rmul__: _NumberOp + __floordiv__: _NumberOp + __rfloordiv__: _NumberOp + __pow__: _NumberOp + __rpow__: _NumberOp + __truediv__: _NumberOp + __rtruediv__: _NumberOp + + __lt__: _ComparisonOpLT[_NumberLike_co, _ArrayLikeNumber_co] + __le__: _ComparisonOpLE[_NumberLike_co, _ArrayLikeNumber_co] + __gt__: _ComparisonOpGT[_NumberLike_co, _ArrayLikeNumber_co] + __ge__: _ComparisonOpGE[_NumberLike_co, _ArrayLikeNumber_co] + +class bool(generic[_BoolItemT_co], Generic[_BoolItemT_co]): + @property + def itemsize(self) -> L[1]: ... + @property + def nbytes(self) -> L[1]: ... + @property + def real(self) -> Self: ... + @property + def imag(self) -> np.bool[L[False]]: ... + + @overload # mypy bug workaround: https://github.com/numpy/numpy/issues/29245 + def __init__(self: np.bool[builtins.bool], value: Never, /) -> None: ... + @overload + def __init__(self: np.bool[L[False]], value: _Falsy = ..., /) -> None: ... + @overload + def __init__(self: np.bool[L[True]], value: _Truthy, /) -> None: ... + @overload + def __init__(self: np.bool[builtins.bool], value: object, /) -> None: ... + + def __bool__(self, /) -> _BoolItemT_co: ... + @overload + def __int__(self: np.bool[L[False]], /) -> L[0]: ... + @overload + def __int__(self: np.bool[L[True]], /) -> L[1]: ... + @overload + def __int__(self, /) -> L[0, 1]: ... + def __abs__(self) -> Self: ... + + @overload + def __invert__(self: np.bool[L[False]], /) -> np.bool[L[True]]: ... + @overload + def __invert__(self: np.bool[L[True]], /) -> np.bool[L[False]]: ... + @overload + def __invert__(self, /) -> np.bool: ... + + __add__: _BoolOp[np.bool] + __radd__: _BoolOp[np.bool] + __sub__: _BoolSub + __rsub__: _BoolSub + __mul__: _BoolOp[np.bool] + __rmul__: _BoolOp[np.bool] + __truediv__: _BoolTrueDiv + __rtruediv__: _BoolTrueDiv + __floordiv__: _BoolOp[int8] + __rfloordiv__: _BoolOp[int8] + __pow__: _BoolOp[int8] + __rpow__: _BoolOp[int8] + + __lshift__: _BoolBitOp[int8] + __rlshift__: _BoolBitOp[int8] + __rshift__: _BoolBitOp[int8] + __rrshift__: _BoolBitOp[int8] + + @overload + def __and__(self: np.bool[L[False]], other: builtins.bool | np.bool, /) -> np.bool[L[False]]: ... + @overload + def __and__(self, other: L[False] | np.bool[L[False]], /) -> np.bool[L[False]]: ... + @overload + def __and__(self, other: L[True] | np.bool[L[True]], /) -> Self: ... + @overload + def __and__(self, other: builtins.bool | np.bool, /) -> np.bool: ... + @overload + def __and__(self, other: _IntegerT, /) -> _IntegerT: ... + @overload + def __and__(self, other: int, /) -> np.bool | intp: ... + __rand__ = __and__ + + @overload + def __xor__(self: np.bool[L[False]], other: _BoolItemT | np.bool[_BoolItemT], /) -> np.bool[_BoolItemT]: ... + @overload + def __xor__(self: np.bool[L[True]], other: L[True] | np.bool[L[True]], /) -> np.bool[L[False]]: ... + @overload + def __xor__(self, other: L[False] | np.bool[L[False]], /) -> Self: ... + @overload + def __xor__(self, other: builtins.bool | np.bool, /) -> np.bool: ... + @overload + def __xor__(self, other: _IntegerT, /) -> _IntegerT: ... + @overload + def __xor__(self, other: int, /) -> np.bool | intp: ... + __rxor__ = __xor__ + + @overload + def __or__(self: np.bool[L[True]], other: builtins.bool | np.bool, /) -> np.bool[L[True]]: ... + @overload + def __or__(self, other: L[False] | np.bool[L[False]], /) -> Self: ... + @overload + def __or__(self, other: L[True] | np.bool[L[True]], /) -> np.bool[L[True]]: ... + @overload + def __or__(self, other: builtins.bool | np.bool, /) -> np.bool: ... + @overload + def __or__(self, other: _IntegerT, /) -> _IntegerT: ... + @overload + def __or__(self, other: int, /) -> np.bool | intp: ... + __ror__ = __or__ + + __mod__: _BoolMod + __rmod__: _BoolMod + __divmod__: _BoolDivMod + __rdivmod__: _BoolDivMod + + __lt__: _ComparisonOpLT[_NumberLike_co, _ArrayLikeNumber_co] + __le__: _ComparisonOpLE[_NumberLike_co, _ArrayLikeNumber_co] + __gt__: _ComparisonOpGT[_NumberLike_co, _ArrayLikeNumber_co] + __ge__: _ComparisonOpGE[_NumberLike_co, _ArrayLikeNumber_co] + +# NOTE: This should _not_ be `Final` or a `TypeAlias` +bool_ = bool + +# NOTE: The `object_` constructor returns the passed object, so instances with type +# `object_` cannot exists (at runtime). +# NOTE: Because mypy has some long-standing bugs related to `__new__`, `object_` can't +# be made generic. +@final +class object_(_RealMixin, generic): + @overload + def __new__(cls, nothing_to_see_here: None = None, /) -> None: ... # type: ignore[misc] + @overload + def __new__(cls, stringy: _AnyStr, /) -> _AnyStr: ... # type: ignore[misc] + @overload + def __new__(cls, array: ndarray[_ShapeT, Any], /) -> ndarray[_ShapeT, dtype[Self]]: ... # type: ignore[misc] + @overload + def __new__(cls, sequence: SupportsLenAndGetItem[object], /) -> NDArray[Self]: ... # type: ignore[misc] + @overload + def __new__(cls, value: _T, /) -> _T: ... # type: ignore[misc] + @overload # catch-all + def __new__(cls, value: Any = ..., /) -> object | NDArray[Self]: ... # type: ignore[misc] + def __init__(self, value: object = ..., /) -> None: ... + def __hash__(self, /) -> int: ... + def __abs__(self, /) -> object_: ... # this affects NDArray[object_].__abs__ + def __call__(self, /, *args: object, **kwargs: object) -> Any: ... + + if sys.version_info >= (3, 12): + def __release_buffer__(self, buffer: memoryview, /) -> None: ... + +class integer(_IntegralMixin, _RoundMixin, number[_NBit, int]): + @abstractmethod + def __init__(self, value: _ConvertibleToInt = ..., /) -> None: ... + + # NOTE: `bit_count` and `__index__` are technically defined in the concrete subtypes + def bit_count(self, /) -> int: ... + def __index__(self, /) -> int: ... + def __invert__(self, /) -> Self: ... + + __truediv__: _IntTrueDiv[_NBit] + __rtruediv__: _IntTrueDiv[_NBit] + def __mod__(self, value: _IntLike_co, /) -> integer: ... + def __rmod__(self, value: _IntLike_co, /) -> integer: ... + # Ensure that objects annotated as `integer` support bit-wise operations + def __lshift__(self, other: _IntLike_co, /) -> integer: ... + def __rlshift__(self, other: _IntLike_co, /) -> integer: ... + def __rshift__(self, other: _IntLike_co, /) -> integer: ... + def __rrshift__(self, other: _IntLike_co, /) -> integer: ... + def __and__(self, other: _IntLike_co, /) -> integer: ... + def __rand__(self, other: _IntLike_co, /) -> integer: ... + def __or__(self, other: _IntLike_co, /) -> integer: ... + def __ror__(self, other: _IntLike_co, /) -> integer: ... + def __xor__(self, other: _IntLike_co, /) -> integer: ... + def __rxor__(self, other: _IntLike_co, /) -> integer: ... + +class signedinteger(integer[_NBit1]): + def __init__(self, value: _ConvertibleToInt = ..., /) -> None: ... + + __add__: _SignedIntOp[_NBit1] + __radd__: _SignedIntOp[_NBit1] + __sub__: _SignedIntOp[_NBit1] + __rsub__: _SignedIntOp[_NBit1] + __mul__: _SignedIntOp[_NBit1] + __rmul__: _SignedIntOp[_NBit1] + __floordiv__: _SignedIntOp[_NBit1] + __rfloordiv__: _SignedIntOp[_NBit1] + __pow__: _SignedIntOp[_NBit1] + __rpow__: _SignedIntOp[_NBit1] + __lshift__: _SignedIntBitOp[_NBit1] + __rlshift__: _SignedIntBitOp[_NBit1] + __rshift__: _SignedIntBitOp[_NBit1] + __rrshift__: _SignedIntBitOp[_NBit1] + __and__: _SignedIntBitOp[_NBit1] + __rand__: _SignedIntBitOp[_NBit1] + __xor__: _SignedIntBitOp[_NBit1] + __rxor__: _SignedIntBitOp[_NBit1] + __or__: _SignedIntBitOp[_NBit1] + __ror__: _SignedIntBitOp[_NBit1] + __mod__: _SignedIntMod[_NBit1] + __rmod__: _SignedIntMod[_NBit1] + __divmod__: _SignedIntDivMod[_NBit1] + __rdivmod__: _SignedIntDivMod[_NBit1] + +int8 = signedinteger[_8Bit] +int16 = signedinteger[_16Bit] +int32 = signedinteger[_32Bit] +int64 = signedinteger[_64Bit] + +byte = signedinteger[_NBitByte] +short = signedinteger[_NBitShort] +intc = signedinteger[_NBitIntC] +intp = signedinteger[_NBitIntP] +int_ = intp +long = signedinteger[_NBitLong] +longlong = signedinteger[_NBitLongLong] + +class unsignedinteger(integer[_NBit1]): + # NOTE: `uint64 + signedinteger -> float64` + def __init__(self, value: _ConvertibleToInt = ..., /) -> None: ... + + __add__: _UnsignedIntOp[_NBit1] + __radd__: _UnsignedIntOp[_NBit1] + __sub__: _UnsignedIntOp[_NBit1] + __rsub__: _UnsignedIntOp[_NBit1] + __mul__: _UnsignedIntOp[_NBit1] + __rmul__: _UnsignedIntOp[_NBit1] + __floordiv__: _UnsignedIntOp[_NBit1] + __rfloordiv__: _UnsignedIntOp[_NBit1] + __pow__: _UnsignedIntOp[_NBit1] + __rpow__: _UnsignedIntOp[_NBit1] + __lshift__: _UnsignedIntBitOp[_NBit1] + __rlshift__: _UnsignedIntBitOp[_NBit1] + __rshift__: _UnsignedIntBitOp[_NBit1] + __rrshift__: _UnsignedIntBitOp[_NBit1] + __and__: _UnsignedIntBitOp[_NBit1] + __rand__: _UnsignedIntBitOp[_NBit1] + __xor__: _UnsignedIntBitOp[_NBit1] + __rxor__: _UnsignedIntBitOp[_NBit1] + __or__: _UnsignedIntBitOp[_NBit1] + __ror__: _UnsignedIntBitOp[_NBit1] + __mod__: _UnsignedIntMod[_NBit1] + __rmod__: _UnsignedIntMod[_NBit1] + __divmod__: _UnsignedIntDivMod[_NBit1] + __rdivmod__: _UnsignedIntDivMod[_NBit1] + +uint8: TypeAlias = unsignedinteger[_8Bit] +uint16: TypeAlias = unsignedinteger[_16Bit] +uint32: TypeAlias = unsignedinteger[_32Bit] +uint64: TypeAlias = unsignedinteger[_64Bit] + +ubyte: TypeAlias = unsignedinteger[_NBitByte] +ushort: TypeAlias = unsignedinteger[_NBitShort] +uintc: TypeAlias = unsignedinteger[_NBitIntC] +uintp: TypeAlias = unsignedinteger[_NBitIntP] +uint: TypeAlias = uintp +ulong: TypeAlias = unsignedinteger[_NBitLong] +ulonglong: TypeAlias = unsignedinteger[_NBitLongLong] + +class inexact(number[_NBit, _InexactItemT_co], Generic[_NBit, _InexactItemT_co]): + @abstractmethod + def __init__(self, value: _InexactItemT_co | None = ..., /) -> None: ... + +class floating(_RealMixin, _RoundMixin, inexact[_NBit1, float]): + def __init__(self, value: _ConvertibleToFloat | None = ..., /) -> None: ... + + __add__: _FloatOp[_NBit1] + __radd__: _FloatOp[_NBit1] + __sub__: _FloatOp[_NBit1] + __rsub__: _FloatOp[_NBit1] + __mul__: _FloatOp[_NBit1] + __rmul__: _FloatOp[_NBit1] + __truediv__: _FloatOp[_NBit1] + __rtruediv__: _FloatOp[_NBit1] + __floordiv__: _FloatOp[_NBit1] + __rfloordiv__: _FloatOp[_NBit1] + __pow__: _FloatOp[_NBit1] + __rpow__: _FloatOp[_NBit1] + __mod__: _FloatMod[_NBit1] + __rmod__: _FloatMod[_NBit1] + __divmod__: _FloatDivMod[_NBit1] + __rdivmod__: _FloatDivMod[_NBit1] + + # NOTE: `is_integer` and `as_integer_ratio` are technically defined in the concrete subtypes + def is_integer(self, /) -> builtins.bool: ... + def as_integer_ratio(self, /) -> tuple[int, int]: ... + +float16: TypeAlias = floating[_16Bit] +float32: TypeAlias = floating[_32Bit] + +# either a C `double`, `float`, or `longdouble` +class float64(floating[_64Bit], float): # type: ignore[misc] + def __new__(cls, x: _ConvertibleToFloat | None = ..., /) -> Self: ... + + # + @property + def itemsize(self) -> L[8]: ... + @property + def nbytes(self) -> L[8]: ... + + # overrides for `floating` and `builtins.float` compatibility (`_RealMixin` doesn't work) + @property + def real(self) -> Self: ... + @property + def imag(self) -> Self: ... + def conjugate(self) -> Self: ... + def __getformat__(self, typestr: L["double", "float"], /) -> str: ... + def __getnewargs__(self, /) -> tuple[float]: ... + + # float64-specific operator overrides + @overload + def __add__(self, other: _Float64_co, /) -> float64: ... + @overload + def __add__(self, other: complexfloating[_64Bit, _64Bit], /) -> complex128: ... + @overload + def __add__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ... + @overload + def __add__(self, other: complex, /) -> float64 | complex128: ... + @overload + def __radd__(self, other: _Float64_co, /) -> float64: ... + @overload + def __radd__(self, other: complexfloating[_64Bit, _64Bit], /) -> complex128: ... + @overload + def __radd__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ... + @overload + def __radd__(self, other: complex, /) -> float64 | complex128: ... + + @overload + def __sub__(self, other: _Float64_co, /) -> float64: ... + @overload + def __sub__(self, other: complexfloating[_64Bit, _64Bit], /) -> complex128: ... + @overload + def __sub__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ... + @overload + def __sub__(self, other: complex, /) -> float64 | complex128: ... + @overload + def __rsub__(self, other: _Float64_co, /) -> float64: ... + @overload + def __rsub__(self, other: complexfloating[_64Bit, _64Bit], /) -> complex128: ... + @overload + def __rsub__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ... + @overload + def __rsub__(self, other: complex, /) -> float64 | complex128: ... + + @overload + def __mul__(self, other: _Float64_co, /) -> float64: ... + @overload + def __mul__(self, other: complexfloating[_64Bit, _64Bit], /) -> complex128: ... + @overload + def __mul__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ... + @overload + def __mul__(self, other: complex, /) -> float64 | complex128: ... + @overload + def __rmul__(self, other: _Float64_co, /) -> float64: ... + @overload + def __rmul__(self, other: complexfloating[_64Bit, _64Bit], /) -> complex128: ... + @overload + def __rmul__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ... + @overload + def __rmul__(self, other: complex, /) -> float64 | complex128: ... + + @overload + def __truediv__(self, other: _Float64_co, /) -> float64: ... + @overload + def __truediv__(self, other: complexfloating[_64Bit, _64Bit], /) -> complex128: ... + @overload + def __truediv__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ... + @overload + def __truediv__(self, other: complex, /) -> float64 | complex128: ... + @overload + def __rtruediv__(self, other: _Float64_co, /) -> float64: ... + @overload + def __rtruediv__(self, other: complexfloating[_64Bit, _64Bit], /) -> complex128: ... + @overload + def __rtruediv__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ... + @overload + def __rtruediv__(self, other: complex, /) -> float64 | complex128: ... + + @overload + def __floordiv__(self, other: _Float64_co, /) -> float64: ... + @overload + def __floordiv__(self, other: complexfloating[_64Bit, _64Bit], /) -> complex128: ... + @overload + def __floordiv__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ... + @overload + def __floordiv__(self, other: complex, /) -> float64 | complex128: ... + @overload + def __rfloordiv__(self, other: _Float64_co, /) -> float64: ... + @overload + def __rfloordiv__(self, other: complexfloating[_64Bit, _64Bit], /) -> complex128: ... + @overload + def __rfloordiv__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ... + @overload + def __rfloordiv__(self, other: complex, /) -> float64 | complex128: ... + + @overload + def __pow__(self, other: _Float64_co, mod: None = None, /) -> float64: ... + @overload + def __pow__(self, other: complexfloating[_64Bit, _64Bit], mod: None = None, /) -> complex128: ... + @overload + def __pow__( + self, other: complexfloating[_NBit1, _NBit2], mod: None = None, / + ) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ... + @overload + def __pow__(self, other: complex, mod: None = None, /) -> float64 | complex128: ... + @overload + def __rpow__(self, other: _Float64_co, mod: None = None, /) -> float64: ... + @overload + def __rpow__(self, other: complexfloating[_64Bit, _64Bit], mod: None = None, /) -> complex128: ... + @overload + def __rpow__( + self, other: complexfloating[_NBit1, _NBit2], mod: None = None, / + ) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ... + @overload + def __rpow__(self, other: complex, mod: None = None, /) -> float64 | complex128: ... + + def __mod__(self, other: _Float64_co, /) -> float64: ... # type: ignore[override] + def __rmod__(self, other: _Float64_co, /) -> float64: ... # type: ignore[override] + + def __divmod__(self, other: _Float64_co, /) -> _2Tuple[float64]: ... # type: ignore[override] + def __rdivmod__(self, other: _Float64_co, /) -> _2Tuple[float64]: ... # type: ignore[override] + +half: TypeAlias = floating[_NBitHalf] +single: TypeAlias = floating[_NBitSingle] +double: TypeAlias = floating[_NBitDouble] +longdouble: TypeAlias = floating[_NBitLongDouble] + +# The main reason for `complexfloating` having two typevars is cosmetic. +# It is used to clarify why `complex128`s precision is `_64Bit`, the latter +# describing the two 64 bit floats representing its real and imaginary component + +class complexfloating(inexact[_NBit1, complex], Generic[_NBit1, _NBit2]): + @overload + def __init__( + self, + real: complex | SupportsComplex | SupportsFloat | SupportsIndex = ..., + imag: complex | SupportsFloat | SupportsIndex = ..., + /, + ) -> None: ... + @overload + def __init__(self, real: _ConvertibleToComplex | None = ..., /) -> None: ... + + @property + def real(self) -> floating[_NBit1]: ... # type: ignore[override] + @property + def imag(self) -> floating[_NBit2]: ... # type: ignore[override] + + # NOTE: `__complex__` is technically defined in the concrete subtypes + def __complex__(self, /) -> complex: ... + def __abs__(self, /) -> floating[_NBit1 | _NBit2]: ... # type: ignore[override] + + @overload + def __add__(self, other: _Complex64_co, /) -> complexfloating[_NBit1, _NBit2]: ... + @overload + def __add__(self, other: complex | float64 | complex128, /) -> complexfloating[_NBit1, _NBit2] | complex128: ... + @overload + def __add__(self, other: number[_NBit], /) -> complexfloating[_NBit1, _NBit2] | complexfloating[_NBit, _NBit]: ... + @overload + def __radd__(self, other: _Complex64_co, /) -> complexfloating[_NBit1, _NBit2]: ... + @overload + def __radd__(self, other: complex, /) -> complexfloating[_NBit1, _NBit2] | complex128: ... + @overload + def __radd__(self, other: number[_NBit], /) -> complexfloating[_NBit1, _NBit2] | complexfloating[_NBit, _NBit]: ... + + @overload + def __sub__(self, other: _Complex64_co, /) -> complexfloating[_NBit1, _NBit2]: ... + @overload + def __sub__(self, other: complex | float64 | complex128, /) -> complexfloating[_NBit1, _NBit2] | complex128: ... + @overload + def __sub__(self, other: number[_NBit], /) -> complexfloating[_NBit1, _NBit2] | complexfloating[_NBit, _NBit]: ... + @overload + def __rsub__(self, other: _Complex64_co, /) -> complexfloating[_NBit1, _NBit2]: ... + @overload + def __rsub__(self, other: complex, /) -> complexfloating[_NBit1, _NBit2] | complex128: ... + @overload + def __rsub__(self, other: number[_NBit], /) -> complexfloating[_NBit1, _NBit2] | complexfloating[_NBit, _NBit]: ... + + @overload + def __mul__(self, other: _Complex64_co, /) -> complexfloating[_NBit1, _NBit2]: ... + @overload + def __mul__(self, other: complex | float64 | complex128, /) -> complexfloating[_NBit1, _NBit2] | complex128: ... + @overload + def __mul__(self, other: number[_NBit], /) -> complexfloating[_NBit1, _NBit2] | complexfloating[_NBit, _NBit]: ... + @overload + def __rmul__(self, other: _Complex64_co, /) -> complexfloating[_NBit1, _NBit2]: ... + @overload + def __rmul__(self, other: complex, /) -> complexfloating[_NBit1, _NBit2] | complex128: ... + @overload + def __rmul__(self, other: number[_NBit], /) -> complexfloating[_NBit1, _NBit2] | complexfloating[_NBit, _NBit]: ... + + @overload + def __truediv__(self, other: _Complex64_co, /) -> complexfloating[_NBit1, _NBit2]: ... + @overload + def __truediv__(self, other: complex | float64 | complex128, /) -> complexfloating[_NBit1, _NBit2] | complex128: ... + @overload + def __truediv__(self, other: number[_NBit], /) -> complexfloating[_NBit1, _NBit2] | complexfloating[_NBit, _NBit]: ... + @overload + def __rtruediv__(self, other: _Complex64_co, /) -> complexfloating[_NBit1, _NBit2]: ... + @overload + def __rtruediv__(self, other: complex, /) -> complexfloating[_NBit1, _NBit2] | complex128: ... + @overload + def __rtruediv__(self, other: number[_NBit], /) -> complexfloating[_NBit1, _NBit2] | complexfloating[_NBit, _NBit]: ... + + @overload + def __pow__(self, other: _Complex64_co, mod: None = None, /) -> complexfloating[_NBit1, _NBit2]: ... + @overload + def __pow__( + self, other: complex | float64 | complex128, mod: None = None, / + ) -> complexfloating[_NBit1, _NBit2] | complex128: ... + @overload + def __pow__( + self, other: number[_NBit], mod: None = None, / + ) -> complexfloating[_NBit1, _NBit2] | complexfloating[_NBit, _NBit]: ... + @overload + def __rpow__(self, other: _Complex64_co, mod: None = None, /) -> complexfloating[_NBit1, _NBit2]: ... + @overload + def __rpow__(self, other: complex, mod: None = None, /) -> complexfloating[_NBit1, _NBit2] | complex128: ... + @overload + def __rpow__( + self, other: number[_NBit], mod: None = None, / + ) -> complexfloating[_NBit1, _NBit2] | complexfloating[_NBit, _NBit]: ... + +complex64: TypeAlias = complexfloating[_32Bit, _32Bit] + +class complex128(complexfloating[_64Bit, _64Bit], complex): # type: ignore[misc] + @overload + def __new__( + cls, + real: complex | SupportsComplex | SupportsFloat | SupportsIndex = ..., + imag: complex | SupportsFloat | SupportsIndex = ..., + /, + ) -> Self: ... + @overload + def __new__(cls, real: _ConvertibleToComplex | None = ..., /) -> Self: ... + + # + @property + def itemsize(self) -> L[16]: ... + @property + def nbytes(self) -> L[16]: ... + + # overrides for `floating` and `builtins.float` compatibility + @property + def real(self) -> float64: ... + @property + def imag(self) -> float64: ... + def conjugate(self) -> Self: ... + def __abs__(self) -> float64: ... # type: ignore[override] + def __getnewargs__(self, /) -> tuple[float, float]: ... + + # complex128-specific operator overrides + @overload + def __add__(self, other: _Complex128_co, /) -> complex128: ... + @overload + def __add__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ... + def __radd__(self, other: _Complex128_co, /) -> complex128: ... + + @overload + def __sub__(self, other: _Complex128_co, /) -> complex128: ... + @overload + def __sub__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ... + def __rsub__(self, other: _Complex128_co, /) -> complex128: ... + + @overload + def __mul__(self, other: _Complex128_co, /) -> complex128: ... + @overload + def __mul__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ... + def __rmul__(self, other: _Complex128_co, /) -> complex128: ... + + @overload + def __truediv__(self, other: _Complex128_co, /) -> complex128: ... + @overload + def __truediv__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ... + def __rtruediv__(self, other: _Complex128_co, /) -> complex128: ... + + @overload + def __pow__(self, other: _Complex128_co, mod: None = None, /) -> complex128: ... + @overload + def __pow__( + self, other: complexfloating[_NBit1, _NBit2], mod: None = None, / + ) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ... + def __rpow__(self, other: _Complex128_co, mod: None = None, /) -> complex128: ... + +csingle: TypeAlias = complexfloating[_NBitSingle, _NBitSingle] +cdouble: TypeAlias = complexfloating[_NBitDouble, _NBitDouble] +clongdouble: TypeAlias = complexfloating[_NBitLongDouble, _NBitLongDouble] + +class timedelta64(_IntegralMixin, generic[_TD64ItemT_co], Generic[_TD64ItemT_co]): + @property + def itemsize(self) -> L[8]: ... + @property + def nbytes(self) -> L[8]: ... + + @overload + def __init__(self, value: _TD64ItemT_co | timedelta64[_TD64ItemT_co], /) -> None: ... + @overload + def __init__(self: timedelta64[L[0]], /) -> None: ... + @overload + def __init__(self: timedelta64[None], value: _NaTValue | None, format: _TimeUnitSpec, /) -> None: ... + @overload + def __init__(self: timedelta64[L[0]], value: L[0], format: _TimeUnitSpec[_IntTD64Unit] = ..., /) -> None: ... + @overload + def __init__(self: timedelta64[int], value: _IntLike_co, format: _TimeUnitSpec[_IntTD64Unit] = ..., /) -> None: ... + @overload + def __init__(self: timedelta64[int], value: dt.timedelta, format: _TimeUnitSpec[_IntTimeUnit], /) -> None: ... + @overload + def __init__( + self: timedelta64[dt.timedelta], + value: dt.timedelta | _IntLike_co, + format: _TimeUnitSpec[_NativeTD64Unit] = ..., + /, + ) -> None: ... + @overload + def __init__(self, value: _ConvertibleToTD64, format: _TimeUnitSpec = ..., /) -> None: ... + + # inherited at runtime from `signedinteger` + def __class_getitem__(cls, type_arg: type | object, /) -> GenericAlias: ... + + # NOTE: Only a limited number of units support conversion + # to builtin scalar types: `Y`, `M`, `ns`, `ps`, `fs`, `as` + def __int__(self: timedelta64[int], /) -> int: ... + def __float__(self: timedelta64[int], /) -> float: ... + + def __neg__(self, /) -> Self: ... + def __pos__(self, /) -> Self: ... + def __abs__(self, /) -> Self: ... + + @overload + def __add__(self: timedelta64[None], x: _TD64Like_co, /) -> timedelta64[None]: ... + @overload + def __add__(self: timedelta64[int], x: timedelta64[int | dt.timedelta], /) -> timedelta64[int]: ... + @overload + def __add__(self: timedelta64[int], x: timedelta64, /) -> timedelta64[int | None]: ... + @overload + def __add__(self: timedelta64[dt.timedelta], x: _AnyDateOrTime, /) -> _AnyDateOrTime: ... + @overload + def __add__(self: timedelta64[_AnyTD64Item], x: timedelta64[_AnyTD64Item] | _IntLike_co, /) -> timedelta64[_AnyTD64Item]: ... + @overload + def __add__(self, x: timedelta64[None], /) -> timedelta64[None]: ... + __radd__ = __add__ + + @overload + def __mul__(self: timedelta64[_AnyTD64Item], x: int | np.integer | np.bool, /) -> timedelta64[_AnyTD64Item]: ... + @overload + def __mul__(self: timedelta64[_AnyTD64Item], x: float | np.floating, /) -> timedelta64[_AnyTD64Item | None]: ... + @overload + def __mul__(self, x: float | np.floating | np.integer | np.bool, /) -> timedelta64: ... + __rmul__ = __mul__ + + @overload + def __mod__(self, x: timedelta64[L[0] | None], /) -> timedelta64[None]: ... + @overload + def __mod__(self: timedelta64[None], x: timedelta64, /) -> timedelta64[None]: ... + @overload + def __mod__(self: timedelta64[int], x: timedelta64[int | dt.timedelta], /) -> timedelta64[int | None]: ... + @overload + def __mod__(self: timedelta64[dt.timedelta], x: timedelta64[_AnyTD64Item], /) -> timedelta64[_AnyTD64Item | None]: ... + @overload + def __mod__(self: timedelta64[dt.timedelta], x: dt.timedelta, /) -> dt.timedelta: ... + @overload + def __mod__(self, x: timedelta64[int], /) -> timedelta64[int | None]: ... + @overload + def __mod__(self, x: timedelta64, /) -> timedelta64: ... + + # the L[0] makes __mod__ non-commutative, which the first two overloads reflect + @overload + def __rmod__(self, x: timedelta64[None], /) -> timedelta64[None]: ... + @overload + def __rmod__(self: timedelta64[L[0] | None], x: timedelta64, /) -> timedelta64[None]: ... + @overload + def __rmod__(self: timedelta64[int], x: timedelta64[int | dt.timedelta], /) -> timedelta64[int | None]: ... + @overload + def __rmod__(self: timedelta64[dt.timedelta], x: timedelta64[_AnyTD64Item], /) -> timedelta64[_AnyTD64Item | None]: ... + @overload + def __rmod__(self: timedelta64[dt.timedelta], x: dt.timedelta, /) -> dt.timedelta: ... + @overload + def __rmod__(self, x: timedelta64[int], /) -> timedelta64[int | None]: ... + @overload + def __rmod__(self, x: timedelta64, /) -> timedelta64: ... + + # keep in sync with __mod__ + @overload + def __divmod__(self, x: timedelta64[L[0] | None], /) -> tuple[int64, timedelta64[None]]: ... + @overload + def __divmod__(self: timedelta64[None], x: timedelta64, /) -> tuple[int64, timedelta64[None]]: ... + @overload + def __divmod__(self: timedelta64[int], x: timedelta64[int | dt.timedelta], /) -> tuple[int64, timedelta64[int | None]]: ... + @overload + def __divmod__(self: timedelta64[dt.timedelta], x: timedelta64[_AnyTD64Item], /) -> tuple[int64, timedelta64[_AnyTD64Item | None]]: ... + @overload + def __divmod__(self: timedelta64[dt.timedelta], x: dt.timedelta, /) -> tuple[int, dt.timedelta]: ... + @overload + def __divmod__(self, x: timedelta64[int], /) -> tuple[int64, timedelta64[int | None]]: ... + @overload + def __divmod__(self, x: timedelta64, /) -> tuple[int64, timedelta64]: ... + + # keep in sync with __rmod__ + @overload + def __rdivmod__(self, x: timedelta64[None], /) -> tuple[int64, timedelta64[None]]: ... + @overload + def __rdivmod__(self: timedelta64[L[0] | None], x: timedelta64, /) -> tuple[int64, timedelta64[None]]: ... + @overload + def __rdivmod__(self: timedelta64[int], x: timedelta64[int | dt.timedelta], /) -> tuple[int64, timedelta64[int | None]]: ... + @overload + def __rdivmod__(self: timedelta64[dt.timedelta], x: timedelta64[_AnyTD64Item], /) -> tuple[int64, timedelta64[_AnyTD64Item | None]]: ... + @overload + def __rdivmod__(self: timedelta64[dt.timedelta], x: dt.timedelta, /) -> tuple[int, dt.timedelta]: ... + @overload + def __rdivmod__(self, x: timedelta64[int], /) -> tuple[int64, timedelta64[int | None]]: ... + @overload + def __rdivmod__(self, x: timedelta64, /) -> tuple[int64, timedelta64]: ... + + @overload + def __sub__(self: timedelta64[None], b: _TD64Like_co, /) -> timedelta64[None]: ... + @overload + def __sub__(self: timedelta64[int], b: timedelta64[int | dt.timedelta], /) -> timedelta64[int]: ... + @overload + def __sub__(self: timedelta64[int], b: timedelta64, /) -> timedelta64[int | None]: ... + @overload + def __sub__(self: timedelta64[dt.timedelta], b: dt.timedelta, /) -> dt.timedelta: ... + @overload + def __sub__(self: timedelta64[_AnyTD64Item], b: timedelta64[_AnyTD64Item] | _IntLike_co, /) -> timedelta64[_AnyTD64Item]: ... + @overload + def __sub__(self, b: timedelta64[None], /) -> timedelta64[None]: ... + + @overload + def __rsub__(self: timedelta64[None], a: _TD64Like_co, /) -> timedelta64[None]: ... + @overload + def __rsub__(self: timedelta64[dt.timedelta], a: _AnyDateOrTime, /) -> _AnyDateOrTime: ... + @overload + def __rsub__(self: timedelta64[dt.timedelta], a: timedelta64[_AnyTD64Item], /) -> timedelta64[_AnyTD64Item]: ... + @overload + def __rsub__(self: timedelta64[_AnyTD64Item], a: timedelta64[_AnyTD64Item] | _IntLike_co, /) -> timedelta64[_AnyTD64Item]: ... + @overload + def __rsub__(self, a: timedelta64[None], /) -> timedelta64[None]: ... + @overload + def __rsub__(self, a: datetime64[None], /) -> datetime64[None]: ... + + @overload + def __truediv__(self: timedelta64[dt.timedelta], b: dt.timedelta, /) -> float: ... + @overload + def __truediv__(self, b: timedelta64, /) -> float64: ... + @overload + def __truediv__(self: timedelta64[_AnyTD64Item], b: int | integer, /) -> timedelta64[_AnyTD64Item]: ... + @overload + def __truediv__(self: timedelta64[_AnyTD64Item], b: float | floating, /) -> timedelta64[_AnyTD64Item | None]: ... + @overload + def __truediv__(self, b: float | floating | integer, /) -> timedelta64: ... + @overload + def __rtruediv__(self: timedelta64[dt.timedelta], a: dt.timedelta, /) -> float: ... + @overload + def __rtruediv__(self, a: timedelta64, /) -> float64: ... + + @overload + def __floordiv__(self: timedelta64[dt.timedelta], b: dt.timedelta, /) -> int: ... + @overload + def __floordiv__(self, b: timedelta64, /) -> int64: ... + @overload + def __floordiv__(self: timedelta64[_AnyTD64Item], b: int | integer, /) -> timedelta64[_AnyTD64Item]: ... + @overload + def __floordiv__(self: timedelta64[_AnyTD64Item], b: float | floating, /) -> timedelta64[_AnyTD64Item | None]: ... + @overload + def __rfloordiv__(self: timedelta64[dt.timedelta], a: dt.timedelta, /) -> int: ... + @overload + def __rfloordiv__(self, a: timedelta64, /) -> int64: ... + + __lt__: _ComparisonOpLT[_TD64Like_co, _ArrayLikeTD64_co] + __le__: _ComparisonOpLE[_TD64Like_co, _ArrayLikeTD64_co] + __gt__: _ComparisonOpGT[_TD64Like_co, _ArrayLikeTD64_co] + __ge__: _ComparisonOpGE[_TD64Like_co, _ArrayLikeTD64_co] + +class datetime64(_RealMixin, generic[_DT64ItemT_co], Generic[_DT64ItemT_co]): + @property + def itemsize(self) -> L[8]: ... + @property + def nbytes(self) -> L[8]: ... + + @overload + def __init__(self, value: datetime64[_DT64ItemT_co], /) -> None: ... + @overload + def __init__(self: datetime64[_AnyDT64Arg], value: _AnyDT64Arg, /) -> None: ... + @overload + def __init__(self: datetime64[None], value: _NaTValue | None = ..., format: _TimeUnitSpec = ..., /) -> None: ... + @overload + def __init__(self: datetime64[dt.datetime], value: _DT64Now, format: _TimeUnitSpec[_NativeTimeUnit] = ..., /) -> None: ... + @overload + def __init__(self: datetime64[dt.date], value: _DT64Date, format: _TimeUnitSpec[_DateUnit] = ..., /) -> None: ... + @overload + def __init__(self: datetime64[int], value: int | bytes | str | dt.date, format: _TimeUnitSpec[_IntTimeUnit], /) -> None: ... + @overload + def __init__( + self: datetime64[dt.datetime], value: int | bytes | str | dt.date, format: _TimeUnitSpec[_NativeTimeUnit], / + ) -> None: ... + @overload + def __init__(self: datetime64[dt.date], value: int | bytes | str | dt.date, format: _TimeUnitSpec[_DateUnit], /) -> None: ... + @overload + def __init__(self, value: bytes | str | dt.date | None, format: _TimeUnitSpec = ..., /) -> None: ... + + @overload + def __add__(self: datetime64[_AnyDT64Item], x: int | integer | np.bool, /) -> datetime64[_AnyDT64Item]: ... + @overload + def __add__(self: datetime64[None], x: _TD64Like_co, /) -> datetime64[None]: ... + @overload + def __add__(self: datetime64[int], x: timedelta64[int | dt.timedelta], /) -> datetime64[int]: ... + @overload + def __add__(self: datetime64[dt.datetime], x: timedelta64[dt.timedelta], /) -> datetime64[dt.datetime]: ... + @overload + def __add__(self: datetime64[dt.date], x: timedelta64[dt.timedelta], /) -> datetime64[dt.date]: ... + @overload + def __add__(self: datetime64[dt.date], x: timedelta64[int], /) -> datetime64[int]: ... + @overload + def __add__(self, x: datetime64[None], /) -> datetime64[None]: ... + @overload + def __add__(self, x: _TD64Like_co, /) -> datetime64: ... + __radd__ = __add__ + + @overload + def __sub__(self: datetime64[_AnyDT64Item], x: int | integer | np.bool, /) -> datetime64[_AnyDT64Item]: ... + @overload + def __sub__(self: datetime64[_AnyDate], x: _AnyDate, /) -> dt.timedelta: ... + @overload + def __sub__(self: datetime64[None], x: timedelta64, /) -> datetime64[None]: ... + @overload + def __sub__(self: datetime64[None], x: datetime64, /) -> timedelta64[None]: ... + @overload + def __sub__(self: datetime64[int], x: timedelta64, /) -> datetime64[int]: ... + @overload + def __sub__(self: datetime64[int], x: datetime64, /) -> timedelta64[int]: ... + @overload + def __sub__(self: datetime64[dt.datetime], x: timedelta64[int], /) -> datetime64[int]: ... + @overload + def __sub__(self: datetime64[dt.datetime], x: timedelta64[dt.timedelta], /) -> datetime64[dt.datetime]: ... + @overload + def __sub__(self: datetime64[dt.datetime], x: datetime64[int], /) -> timedelta64[int]: ... + @overload + def __sub__(self: datetime64[dt.date], x: timedelta64[int], /) -> datetime64[dt.date | int]: ... + @overload + def __sub__(self: datetime64[dt.date], x: timedelta64[dt.timedelta], /) -> datetime64[dt.date]: ... + @overload + def __sub__(self: datetime64[dt.date], x: datetime64[dt.date], /) -> timedelta64[dt.timedelta]: ... + @overload + def __sub__(self, x: timedelta64[None], /) -> datetime64[None]: ... + @overload + def __sub__(self, x: datetime64[None], /) -> timedelta64[None]: ... + @overload + def __sub__(self, x: _TD64Like_co, /) -> datetime64: ... + @overload + def __sub__(self, x: datetime64, /) -> timedelta64: ... + + @overload + def __rsub__(self: datetime64[_AnyDT64Item], x: int | integer | np.bool, /) -> datetime64[_AnyDT64Item]: ... + @overload + def __rsub__(self: datetime64[_AnyDate], x: _AnyDate, /) -> dt.timedelta: ... + @overload + def __rsub__(self: datetime64[None], x: datetime64, /) -> timedelta64[None]: ... + @overload + def __rsub__(self: datetime64[int], x: datetime64, /) -> timedelta64[int]: ... + @overload + def __rsub__(self: datetime64[dt.datetime], x: datetime64[int], /) -> timedelta64[int]: ... + @overload + def __rsub__(self: datetime64[dt.datetime], x: datetime64[dt.date], /) -> timedelta64[dt.timedelta]: ... + @overload + def __rsub__(self, x: datetime64[None], /) -> timedelta64[None]: ... + @overload + def __rsub__(self, x: datetime64, /) -> timedelta64: ... + + __lt__: _ComparisonOpLT[datetime64, _ArrayLikeDT64_co] + __le__: _ComparisonOpLE[datetime64, _ArrayLikeDT64_co] + __gt__: _ComparisonOpGT[datetime64, _ArrayLikeDT64_co] + __ge__: _ComparisonOpGE[datetime64, _ArrayLikeDT64_co] + +class flexible(_RealMixin, generic[_FlexibleItemT_co], Generic[_FlexibleItemT_co]): ... + +class void(flexible[bytes | tuple[Any, ...]]): + @overload + def __init__(self, value: _IntLike_co | bytes, /, dtype: None = None) -> None: ... + @overload + def __init__(self, value: Any, /, dtype: _DTypeLikeVoid) -> None: ... + + @overload + def __getitem__(self, key: str | SupportsIndex, /) -> Any: ... + @overload + def __getitem__(self, key: list[str], /) -> void: ... + def __setitem__(self, key: str | list[str] | SupportsIndex, value: ArrayLike, /) -> None: ... + + def setfield(self, val: ArrayLike, dtype: DTypeLike, offset: int = ...) -> None: ... + +class character(flexible[_CharacterItemT_co], Generic[_CharacterItemT_co]): + @abstractmethod + def __init__(self, value: _CharacterItemT_co = ..., /) -> None: ... + +# NOTE: Most `np.bytes_` / `np.str_` methods return their builtin `bytes` / `str` counterpart + +class bytes_(character[bytes], bytes): + @overload + def __new__(cls, o: object = ..., /) -> Self: ... + @overload + def __new__(cls, s: str, /, encoding: str, errors: str = ...) -> Self: ... + + # + @overload + def __init__(self, o: object = ..., /) -> None: ... + @overload + def __init__(self, s: str, /, encoding: str, errors: str = ...) -> None: ... + + # + def __bytes__(self, /) -> bytes: ... + +class str_(character[str], str): + @overload + def __new__(cls, value: object = ..., /) -> Self: ... + @overload + def __new__(cls, value: bytes, /, encoding: str = ..., errors: str = ...) -> Self: ... + + # + @overload + def __init__(self, value: object = ..., /) -> None: ... + @overload + def __init__(self, value: bytes, /, encoding: str = ..., errors: str = ...) -> None: ... + +# See `numpy._typing._ufunc` for more concrete nin-/nout-specific stubs +@final +class ufunc: + @property + def __name__(self) -> LiteralString: ... + @property + def __qualname__(self) -> LiteralString: ... + @property + def __doc__(self) -> str: ... + @property + def nin(self) -> int: ... + @property + def nout(self) -> int: ... + @property + def nargs(self) -> int: ... + @property + def ntypes(self) -> int: ... + @property + def types(self) -> list[LiteralString]: ... + # Broad return type because it has to encompass things like + # + # >>> np.logical_and.identity is True + # True + # >>> np.add.identity is 0 + # True + # >>> np.sin.identity is None + # True + # + # and any user-defined ufuncs. + @property + def identity(self) -> Any: ... + # This is None for ufuncs and a string for gufuncs. + @property + def signature(self) -> LiteralString | None: ... + + def __call__(self, *args: Any, **kwargs: Any) -> Any: ... + # The next four methods will always exist, but they will just + # raise a ValueError ufuncs with that don't accept two input + # arguments and return one output argument. Because of that we + # can't type them very precisely. + def reduce(self, /, *args: Any, **kwargs: Any) -> Any: ... + def accumulate(self, /, *args: Any, **kwargs: Any) -> NDArray[Any]: ... + def reduceat(self, /, *args: Any, **kwargs: Any) -> NDArray[Any]: ... + def outer(self, *args: Any, **kwargs: Any) -> Any: ... + # Similarly at won't be defined for ufuncs that return multiple + # outputs, so we can't type it very precisely. + def at(self, /, *args: Any, **kwargs: Any) -> None: ... + + # + def resolve_dtypes( + self, + /, + dtypes: tuple[dtype | type | None, ...], + *, + signature: tuple[dtype | None, ...] | None = None, + casting: _CastingKind | None = None, + reduction: builtins.bool = False, + ) -> tuple[dtype, ...]: ... + +# Parameters: `__name__`, `ntypes` and `identity` +absolute: _UFunc_Nin1_Nout1[L['absolute'], L[20], None] +add: _UFunc_Nin2_Nout1[L['add'], L[22], L[0]] +arccos: _UFunc_Nin1_Nout1[L['arccos'], L[8], None] +arccosh: _UFunc_Nin1_Nout1[L['arccosh'], L[8], None] +arcsin: _UFunc_Nin1_Nout1[L['arcsin'], L[8], None] +arcsinh: _UFunc_Nin1_Nout1[L['arcsinh'], L[8], None] +arctan2: _UFunc_Nin2_Nout1[L['arctan2'], L[5], None] +arctan: _UFunc_Nin1_Nout1[L['arctan'], L[8], None] +arctanh: _UFunc_Nin1_Nout1[L['arctanh'], L[8], None] +bitwise_and: _UFunc_Nin2_Nout1[L['bitwise_and'], L[12], L[-1]] +bitwise_count: _UFunc_Nin1_Nout1[L['bitwise_count'], L[11], None] +bitwise_not: _UFunc_Nin1_Nout1[L['invert'], L[12], None] +bitwise_or: _UFunc_Nin2_Nout1[L['bitwise_or'], L[12], L[0]] +bitwise_xor: _UFunc_Nin2_Nout1[L['bitwise_xor'], L[12], L[0]] +cbrt: _UFunc_Nin1_Nout1[L['cbrt'], L[5], None] +ceil: _UFunc_Nin1_Nout1[L['ceil'], L[7], None] +conj: _UFunc_Nin1_Nout1[L['conjugate'], L[18], None] +conjugate: _UFunc_Nin1_Nout1[L['conjugate'], L[18], None] +copysign: _UFunc_Nin2_Nout1[L['copysign'], L[4], None] +cos: _UFunc_Nin1_Nout1[L['cos'], L[9], None] +cosh: _UFunc_Nin1_Nout1[L['cosh'], L[8], None] +deg2rad: _UFunc_Nin1_Nout1[L['deg2rad'], L[5], None] +degrees: _UFunc_Nin1_Nout1[L['degrees'], L[5], None] +divide: _UFunc_Nin2_Nout1[L['true_divide'], L[11], None] +divmod: _UFunc_Nin2_Nout2[L['divmod'], L[15], None] +equal: _UFunc_Nin2_Nout1[L['equal'], L[23], None] +exp2: _UFunc_Nin1_Nout1[L['exp2'], L[8], None] +exp: _UFunc_Nin1_Nout1[L['exp'], L[10], None] +expm1: _UFunc_Nin1_Nout1[L['expm1'], L[8], None] +fabs: _UFunc_Nin1_Nout1[L['fabs'], L[5], None] +float_power: _UFunc_Nin2_Nout1[L['float_power'], L[4], None] +floor: _UFunc_Nin1_Nout1[L['floor'], L[7], None] +floor_divide: _UFunc_Nin2_Nout1[L['floor_divide'], L[21], None] +fmax: _UFunc_Nin2_Nout1[L['fmax'], L[21], None] +fmin: _UFunc_Nin2_Nout1[L['fmin'], L[21], None] +fmod: _UFunc_Nin2_Nout1[L['fmod'], L[15], None] +frexp: _UFunc_Nin1_Nout2[L['frexp'], L[4], None] +gcd: _UFunc_Nin2_Nout1[L['gcd'], L[11], L[0]] +greater: _UFunc_Nin2_Nout1[L['greater'], L[23], None] +greater_equal: _UFunc_Nin2_Nout1[L['greater_equal'], L[23], None] +heaviside: _UFunc_Nin2_Nout1[L['heaviside'], L[4], None] +hypot: _UFunc_Nin2_Nout1[L['hypot'], L[5], L[0]] +invert: _UFunc_Nin1_Nout1[L['invert'], L[12], None] +isfinite: _UFunc_Nin1_Nout1[L['isfinite'], L[20], None] +isinf: _UFunc_Nin1_Nout1[L['isinf'], L[20], None] +isnan: _UFunc_Nin1_Nout1[L['isnan'], L[20], None] +isnat: _UFunc_Nin1_Nout1[L['isnat'], L[2], None] +lcm: _UFunc_Nin2_Nout1[L['lcm'], L[11], None] +ldexp: _UFunc_Nin2_Nout1[L['ldexp'], L[8], None] +left_shift: _UFunc_Nin2_Nout1[L['left_shift'], L[11], None] +less: _UFunc_Nin2_Nout1[L['less'], L[23], None] +less_equal: _UFunc_Nin2_Nout1[L['less_equal'], L[23], None] +log10: _UFunc_Nin1_Nout1[L['log10'], L[8], None] +log1p: _UFunc_Nin1_Nout1[L['log1p'], L[8], None] +log2: _UFunc_Nin1_Nout1[L['log2'], L[8], None] +log: _UFunc_Nin1_Nout1[L['log'], L[10], None] +logaddexp2: _UFunc_Nin2_Nout1[L['logaddexp2'], L[4], float] +logaddexp: _UFunc_Nin2_Nout1[L['logaddexp'], L[4], float] +logical_and: _UFunc_Nin2_Nout1[L['logical_and'], L[20], L[True]] +logical_not: _UFunc_Nin1_Nout1[L['logical_not'], L[20], None] +logical_or: _UFunc_Nin2_Nout1[L['logical_or'], L[20], L[False]] +logical_xor: _UFunc_Nin2_Nout1[L['logical_xor'], L[19], L[False]] +matmul: _GUFunc_Nin2_Nout1[L['matmul'], L[19], None, L["(n?,k),(k,m?)->(n?,m?)"]] +matvec: _GUFunc_Nin2_Nout1[L['matvec'], L[19], None, L["(m,n),(n)->(m)"]] +maximum: _UFunc_Nin2_Nout1[L['maximum'], L[21], None] +minimum: _UFunc_Nin2_Nout1[L['minimum'], L[21], None] +mod: _UFunc_Nin2_Nout1[L['remainder'], L[16], None] +modf: _UFunc_Nin1_Nout2[L['modf'], L[4], None] +multiply: _UFunc_Nin2_Nout1[L['multiply'], L[23], L[1]] +negative: _UFunc_Nin1_Nout1[L['negative'], L[19], None] +nextafter: _UFunc_Nin2_Nout1[L['nextafter'], L[4], None] +not_equal: _UFunc_Nin2_Nout1[L['not_equal'], L[23], None] +positive: _UFunc_Nin1_Nout1[L['positive'], L[19], None] +power: _UFunc_Nin2_Nout1[L['power'], L[18], None] +rad2deg: _UFunc_Nin1_Nout1[L['rad2deg'], L[5], None] +radians: _UFunc_Nin1_Nout1[L['radians'], L[5], None] +reciprocal: _UFunc_Nin1_Nout1[L['reciprocal'], L[18], None] +remainder: _UFunc_Nin2_Nout1[L['remainder'], L[16], None] +right_shift: _UFunc_Nin2_Nout1[L['right_shift'], L[11], None] +rint: _UFunc_Nin1_Nout1[L['rint'], L[10], None] +sign: _UFunc_Nin1_Nout1[L['sign'], L[19], None] +signbit: _UFunc_Nin1_Nout1[L['signbit'], L[4], None] +sin: _UFunc_Nin1_Nout1[L['sin'], L[9], None] +sinh: _UFunc_Nin1_Nout1[L['sinh'], L[8], None] +spacing: _UFunc_Nin1_Nout1[L['spacing'], L[4], None] +sqrt: _UFunc_Nin1_Nout1[L['sqrt'], L[10], None] +square: _UFunc_Nin1_Nout1[L['square'], L[18], None] +subtract: _UFunc_Nin2_Nout1[L['subtract'], L[21], None] +tan: _UFunc_Nin1_Nout1[L['tan'], L[8], None] +tanh: _UFunc_Nin1_Nout1[L['tanh'], L[8], None] +true_divide: _UFunc_Nin2_Nout1[L['true_divide'], L[11], None] +trunc: _UFunc_Nin1_Nout1[L['trunc'], L[7], None] +vecdot: _GUFunc_Nin2_Nout1[L['vecdot'], L[19], None, L["(n),(n)->()"]] +vecmat: _GUFunc_Nin2_Nout1[L['vecmat'], L[19], None, L["(n),(n,m)->(m)"]] + +abs = absolute +acos = arccos +acosh = arccosh +asin = arcsin +asinh = arcsinh +atan = arctan +atanh = arctanh +atan2 = arctan2 +concat = concatenate +bitwise_left_shift = left_shift +bitwise_invert = invert +bitwise_right_shift = right_shift +permute_dims = transpose +pow = power + +class errstate: + def __init__( + self, + *, + call: _ErrCall = ..., + all: _ErrKind | None = ..., + divide: _ErrKind | None = ..., + over: _ErrKind | None = ..., + under: _ErrKind | None = ..., + invalid: _ErrKind | None = ..., + ) -> None: ... + def __enter__(self) -> None: ... + def __exit__( + self, + exc_type: type[BaseException] | None, + exc_value: BaseException | None, + traceback: TracebackType | None, + /, + ) -> None: ... + def __call__(self, func: _CallableT) -> _CallableT: ... + +# TODO: The type of each `__next__` and `iters` return-type depends +# on the length and dtype of `args`; we can't describe this behavior yet +# as we lack variadics (PEP 646). +@final +class broadcast: + def __new__(cls, *args: ArrayLike) -> broadcast: ... + @property + def index(self) -> int: ... + @property + def iters(self) -> tuple[flatiter[Any], ...]: ... + @property + def nd(self) -> int: ... + @property + def ndim(self) -> int: ... + @property + def numiter(self) -> int: ... + @property + def shape(self) -> _AnyShape: ... + @property + def size(self) -> int: ... + def __next__(self) -> tuple[Any, ...]: ... + def __iter__(self) -> Self: ... + def reset(self) -> None: ... + +@final +class busdaycalendar: + def __new__( + cls, + weekmask: ArrayLike = ..., + holidays: ArrayLike | dt.date | _NestedSequence[dt.date] = ..., + ) -> busdaycalendar: ... + @property + def weekmask(self) -> NDArray[np.bool]: ... + @property + def holidays(self) -> NDArray[datetime64]: ... + +class finfo(Generic[_FloatingT_co]): + dtype: Final[dtype[_FloatingT_co]] + bits: Final[int] + eps: Final[_FloatingT_co] + epsneg: Final[_FloatingT_co] + iexp: Final[int] + machep: Final[int] + max: Final[_FloatingT_co] + maxexp: Final[int] + min: Final[_FloatingT_co] + minexp: Final[int] + negep: Final[int] + nexp: Final[int] + nmant: Final[int] + precision: Final[int] + resolution: Final[_FloatingT_co] + smallest_subnormal: Final[_FloatingT_co] + @property + def smallest_normal(self) -> _FloatingT_co: ... + @property + def tiny(self) -> _FloatingT_co: ... + @overload + def __new__(cls, dtype: inexact[_NBit1] | _DTypeLike[inexact[_NBit1]]) -> finfo[floating[_NBit1]]: ... + @overload + def __new__(cls, dtype: complex | type[complex]) -> finfo[float64]: ... + @overload + def __new__(cls, dtype: str) -> finfo[floating]: ... + +class iinfo(Generic[_IntegerT_co]): + dtype: Final[dtype[_IntegerT_co]] + kind: Final[LiteralString] + bits: Final[int] + key: Final[LiteralString] + @property + def min(self) -> int: ... + @property + def max(self) -> int: ... + + @overload + def __new__( + cls, dtype: _IntegerT_co | _DTypeLike[_IntegerT_co] + ) -> iinfo[_IntegerT_co]: ... + @overload + def __new__(cls, dtype: int | type[int]) -> iinfo[int_]: ... + @overload + def __new__(cls, dtype: str) -> iinfo[Any]: ... + +@final +class nditer: + def __new__( + cls, + op: ArrayLike | Sequence[ArrayLike | None], + flags: Sequence[_NDIterFlagsKind] | None = ..., + op_flags: Sequence[Sequence[_NDIterFlagsOp]] | None = ..., + op_dtypes: DTypeLike | Sequence[DTypeLike] = ..., + order: _OrderKACF = ..., + casting: _CastingKind = ..., + op_axes: Sequence[Sequence[SupportsIndex]] | None = ..., + itershape: _ShapeLike | None = ..., + buffersize: SupportsIndex = ..., + ) -> nditer: ... + def __enter__(self) -> nditer: ... + def __exit__( + self, + exc_type: type[BaseException] | None, + exc_value: BaseException | None, + traceback: TracebackType | None, + ) -> None: ... + def __iter__(self) -> nditer: ... + def __next__(self) -> tuple[NDArray[Any], ...]: ... + def __len__(self) -> int: ... + def __copy__(self) -> nditer: ... + @overload + def __getitem__(self, index: SupportsIndex) -> NDArray[Any]: ... + @overload + def __getitem__(self, index: slice) -> tuple[NDArray[Any], ...]: ... + def __setitem__(self, index: slice | SupportsIndex, value: ArrayLike) -> None: ... + def close(self) -> None: ... + def copy(self) -> nditer: ... + def debug_print(self) -> None: ... + def enable_external_loop(self) -> None: ... + def iternext(self) -> builtins.bool: ... + def remove_axis(self, i: SupportsIndex, /) -> None: ... + def remove_multi_index(self) -> None: ... + def reset(self) -> None: ... + @property + def dtypes(self) -> tuple[dtype, ...]: ... + @property + def finished(self) -> builtins.bool: ... + @property + def has_delayed_bufalloc(self) -> builtins.bool: ... + @property + def has_index(self) -> builtins.bool: ... + @property + def has_multi_index(self) -> builtins.bool: ... + @property + def index(self) -> int: ... + @property + def iterationneedsapi(self) -> builtins.bool: ... + @property + def iterindex(self) -> int: ... + @property + def iterrange(self) -> tuple[int, ...]: ... + @property + def itersize(self) -> int: ... + @property + def itviews(self) -> tuple[NDArray[Any], ...]: ... + @property + def multi_index(self) -> tuple[int, ...]: ... + @property + def ndim(self) -> int: ... + @property + def nop(self) -> int: ... + @property + def operands(self) -> tuple[NDArray[Any], ...]: ... + @property + def shape(self) -> tuple[int, ...]: ... + @property + def value(self) -> tuple[NDArray[Any], ...]: ... + +class memmap(ndarray[_ShapeT_co, _DTypeT_co]): + __array_priority__: ClassVar[float] + filename: str | None + offset: int + mode: str + @overload + def __new__( + subtype, + filename: StrOrBytesPath | _SupportsFileMethodsRW, + dtype: type[uint8] = ..., + mode: _MemMapModeKind = ..., + offset: int = ..., + shape: int | tuple[int, ...] | None = ..., + order: _OrderKACF = ..., + ) -> memmap[Any, dtype[uint8]]: ... + @overload + def __new__( + subtype, + filename: StrOrBytesPath | _SupportsFileMethodsRW, + dtype: _DTypeLike[_ScalarT], + mode: _MemMapModeKind = ..., + offset: int = ..., + shape: int | tuple[int, ...] | None = ..., + order: _OrderKACF = ..., + ) -> memmap[Any, dtype[_ScalarT]]: ... + @overload + def __new__( + subtype, + filename: StrOrBytesPath | _SupportsFileMethodsRW, + dtype: DTypeLike, + mode: _MemMapModeKind = ..., + offset: int = ..., + shape: int | tuple[int, ...] | None = ..., + order: _OrderKACF = ..., + ) -> memmap[Any, dtype]: ... + def __array_finalize__(self, obj: object) -> None: ... + def __array_wrap__( + self, + array: memmap[_ShapeT_co, _DTypeT_co], + context: tuple[ufunc, tuple[Any, ...], int] | None = ..., + return_scalar: builtins.bool = ..., + ) -> Any: ... + def flush(self) -> None: ... + +# TODO: Add a mypy plugin for managing functions whose output type is dependent +# on the literal value of some sort of signature (e.g. `einsum` and `vectorize`) +class vectorize: + pyfunc: Callable[..., Any] + cache: builtins.bool + signature: LiteralString | None + otypes: LiteralString | None + excluded: set[int | str] + __doc__: str | None + def __init__( + self, + pyfunc: Callable[..., Any], + otypes: str | Iterable[DTypeLike] | None = ..., + doc: str | None = ..., + excluded: Iterable[int | str] | None = ..., + cache: builtins.bool = ..., + signature: str | None = ..., + ) -> None: ... + def __call__(self, *args: Any, **kwargs: Any) -> Any: ... + +class poly1d: + @property + def variable(self) -> LiteralString: ... + @property + def order(self) -> int: ... + @property + def o(self) -> int: ... + @property + def roots(self) -> NDArray[Any]: ... + @property + def r(self) -> NDArray[Any]: ... + + @property + def coeffs(self) -> NDArray[Any]: ... + @coeffs.setter + def coeffs(self, value: NDArray[Any]) -> None: ... + + @property + def c(self) -> NDArray[Any]: ... + @c.setter + def c(self, value: NDArray[Any]) -> None: ... + + @property + def coef(self) -> NDArray[Any]: ... + @coef.setter + def coef(self, value: NDArray[Any]) -> None: ... + + @property + def coefficients(self) -> NDArray[Any]: ... + @coefficients.setter + def coefficients(self, value: NDArray[Any]) -> None: ... + + __hash__: ClassVar[None] # type: ignore[assignment] # pyright: ignore[reportIncompatibleMethodOverride] + + @overload + def __array__(self, /, t: None = None, copy: builtins.bool | None = None) -> ndarray[tuple[int], dtype]: ... + @overload + def __array__(self, /, t: _DTypeT, copy: builtins.bool | None = None) -> ndarray[tuple[int], _DTypeT]: ... + + @overload + def __call__(self, val: _ScalarLike_co) -> Any: ... + @overload + def __call__(self, val: poly1d) -> poly1d: ... + @overload + def __call__(self, val: ArrayLike) -> NDArray[Any]: ... + + def __init__( + self, + c_or_r: ArrayLike, + r: builtins.bool = ..., + variable: str | None = ..., + ) -> None: ... + def __len__(self) -> int: ... + def __neg__(self) -> poly1d: ... + def __pos__(self) -> poly1d: ... + def __mul__(self, other: ArrayLike, /) -> poly1d: ... + def __rmul__(self, other: ArrayLike, /) -> poly1d: ... + def __add__(self, other: ArrayLike, /) -> poly1d: ... + def __radd__(self, other: ArrayLike, /) -> poly1d: ... + def __pow__(self, val: _FloatLike_co, /) -> poly1d: ... # Integral floats are accepted + def __sub__(self, other: ArrayLike, /) -> poly1d: ... + def __rsub__(self, other: ArrayLike, /) -> poly1d: ... + def __truediv__(self, other: ArrayLike, /) -> poly1d: ... + def __rtruediv__(self, other: ArrayLike, /) -> poly1d: ... + def __getitem__(self, val: int, /) -> Any: ... + def __setitem__(self, key: int, val: Any, /) -> None: ... + def __iter__(self) -> Iterator[Any]: ... + def deriv(self, m: SupportsInt | SupportsIndex = ...) -> poly1d: ... + def integ( + self, + m: SupportsInt | SupportsIndex = ..., + k: _ArrayLikeComplex_co | _ArrayLikeObject_co | None = ..., + ) -> poly1d: ... + +class matrix(ndarray[_2DShapeT_co, _DTypeT_co]): + __array_priority__: ClassVar[float] = 10.0 # pyright: ignore[reportIncompatibleMethodOverride] + + def __new__( + subtype, # pyright: ignore[reportSelfClsParameterName] + data: ArrayLike, + dtype: DTypeLike = ..., + copy: builtins.bool = ..., + ) -> matrix[_2D, Incomplete]: ... + def __array_finalize__(self, obj: object) -> None: ... + + @overload # type: ignore[override] + def __getitem__( + self, key: SupportsIndex | _ArrayLikeInt_co | tuple[SupportsIndex | _ArrayLikeInt_co, ...], / + ) -> Incomplete: ... + @overload + def __getitem__(self, key: _ToIndices, /) -> matrix[_2D, _DTypeT_co]: ... + @overload + def __getitem__(self: matrix[Any, dtype[void]], key: str, /) -> matrix[_2D, dtype]: ... + @overload + def __getitem__(self: matrix[Any, dtype[void]], key: list[str], /) -> matrix[_2DShapeT_co, _DTypeT_co]: ... # pyright: ignore[reportIncompatibleMethodOverride] + + # + def __mul__(self, other: ArrayLike, /) -> matrix[_2D, Incomplete]: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride] + def __rmul__(self, other: ArrayLike, /) -> matrix[_2D, Incomplete]: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride] + def __imul__(self, other: ArrayLike, /) -> Self: ... + + # + def __pow__(self, other: ArrayLike, mod: None = None, /) -> matrix[_2D, Incomplete]: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride] + def __rpow__(self, other: ArrayLike, mod: None = None, /) -> matrix[_2D, Incomplete]: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride] + def __ipow__(self, other: ArrayLike, /) -> Self: ... # type: ignore[misc, override] + + # keep in sync with `prod` and `mean` + @overload # type: ignore[override] + def sum(self, axis: None = None, dtype: DTypeLike | None = None, out: None = None) -> Incomplete: ... + @overload + def sum(self, axis: _ShapeLike, dtype: DTypeLike | None = None, out: None = None) -> matrix[_2D, Incomplete]: ... + @overload + def sum(self, axis: _ShapeLike | None, dtype: DTypeLike | None, out: _ArrayT) -> _ArrayT: ... + @overload + def sum(self, axis: _ShapeLike | None = None, dtype: DTypeLike | None = None, *, out: _ArrayT) -> _ArrayT: ... # pyright: ignore[reportIncompatibleMethodOverride] + + # keep in sync with `sum` and `mean` + @overload # type: ignore[override] + def prod(self, axis: None = None, dtype: DTypeLike | None = None, out: None = None) -> Incomplete: ... + @overload + def prod(self, axis: _ShapeLike, dtype: DTypeLike | None = None, out: None = None) -> matrix[_2D, Incomplete]: ... + @overload + def prod(self, axis: _ShapeLike | None, dtype: DTypeLike | None, out: _ArrayT) -> _ArrayT: ... + @overload + def prod(self, axis: _ShapeLike | None = None, dtype: DTypeLike | None = None, *, out: _ArrayT) -> _ArrayT: ... # pyright: ignore[reportIncompatibleMethodOverride] + + # keep in sync with `sum` and `prod` + @overload # type: ignore[override] + def mean(self, axis: None = None, dtype: DTypeLike | None = None, out: None = None) -> Incomplete: ... + @overload + def mean(self, axis: _ShapeLike, dtype: DTypeLike | None = None, out: None = None) -> matrix[_2D, Incomplete]: ... + @overload + def mean(self, axis: _ShapeLike | None, dtype: DTypeLike | None, out: _ArrayT) -> _ArrayT: ... + @overload + def mean(self, axis: _ShapeLike | None = None, dtype: DTypeLike | None = None, *, out: _ArrayT) -> _ArrayT: ... # pyright: ignore[reportIncompatibleMethodOverride] + + # keep in sync with `var` + @overload # type: ignore[override] + def std(self, axis: None = None, dtype: DTypeLike | None = None, out: None = None, ddof: float = 0) -> Incomplete: ... + @overload + def std( + self, axis: _ShapeLike, dtype: DTypeLike | None = None, out: None = None, ddof: float = 0 + ) -> matrix[_2D, Incomplete]: ... + @overload + def std(self, axis: _ShapeLike | None, dtype: DTypeLike | None, out: _ArrayT, ddof: float = 0) -> _ArrayT: ... + @overload + def std( # pyright: ignore[reportIncompatibleMethodOverride] + self, axis: _ShapeLike | None = None, dtype: DTypeLike | None = None, *, out: _ArrayT, ddof: float = 0 + ) -> _ArrayT: ... + + # keep in sync with `std` + @overload # type: ignore[override] + def var(self, axis: None = None, dtype: DTypeLike | None = None, out: None = None, ddof: float = 0) -> Incomplete: ... + @overload + def var( + self, axis: _ShapeLike, dtype: DTypeLike | None = None, out: None = None, ddof: float = 0 + ) -> matrix[_2D, Incomplete]: ... + @overload + def var(self, axis: _ShapeLike | None, dtype: DTypeLike | None, out: _ArrayT, ddof: float = 0) -> _ArrayT: ... + @overload + def var( # pyright: ignore[reportIncompatibleMethodOverride] + self, axis: _ShapeLike | None = None, dtype: DTypeLike | None = None, *, out: _ArrayT, ddof: float = 0 + ) -> _ArrayT: ... + + # keep in sync with `all` + @overload # type: ignore[override] + def any(self, axis: None = None, out: None = None) -> np.bool: ... + @overload + def any(self, axis: _ShapeLike, out: None = None) -> matrix[_2D, dtype[np.bool]]: ... + @overload + def any(self, axis: _ShapeLike | None, out: _ArrayT) -> _ArrayT: ... + @overload + def any(self, axis: _ShapeLike | None = None, *, out: _ArrayT) -> _ArrayT: ... # pyright: ignore[reportIncompatibleMethodOverride] + + # keep in sync with `any` + @overload # type: ignore[override] + def all(self, axis: None = None, out: None = None) -> np.bool: ... + @overload + def all(self, axis: _ShapeLike, out: None = None) -> matrix[_2D, dtype[np.bool]]: ... + @overload + def all(self, axis: _ShapeLike | None, out: _ArrayT) -> _ArrayT: ... + @overload + def all(self, axis: _ShapeLike | None = None, *, out: _ArrayT) -> _ArrayT: ... # pyright: ignore[reportIncompatibleMethodOverride] + + # keep in sync with `min` and `ptp` + @overload # type: ignore[override] + def max(self: NDArray[_ScalarT], axis: None = None, out: None = None) -> _ScalarT: ... + @overload + def max(self, axis: _ShapeLike, out: None = None) -> matrix[_2D, _DTypeT_co]: ... + @overload + def max(self, axis: _ShapeLike | None, out: _ArrayT) -> _ArrayT: ... + @overload + def max(self, axis: _ShapeLike | None = None, *, out: _ArrayT) -> _ArrayT: ... # pyright: ignore[reportIncompatibleMethodOverride] + + # keep in sync with `max` and `ptp` + @overload # type: ignore[override] + def min(self: NDArray[_ScalarT], axis: None = None, out: None = None) -> _ScalarT: ... + @overload + def min(self, axis: _ShapeLike, out: None = None) -> matrix[_2D, _DTypeT_co]: ... + @overload + def min(self, axis: _ShapeLike | None, out: _ArrayT) -> _ArrayT: ... + @overload + def min(self, axis: _ShapeLike | None = None, *, out: _ArrayT) -> _ArrayT: ... # pyright: ignore[reportIncompatibleMethodOverride] + + # keep in sync with `max` and `min` + @overload + def ptp(self: NDArray[_ScalarT], axis: None = None, out: None = None) -> _ScalarT: ... + @overload + def ptp(self, axis: _ShapeLike, out: None = None) -> matrix[_2D, _DTypeT_co]: ... + @overload + def ptp(self, axis: _ShapeLike | None, out: _ArrayT) -> _ArrayT: ... + @overload + def ptp(self, axis: _ShapeLike | None = None, *, out: _ArrayT) -> _ArrayT: ... # pyright: ignore[reportIncompatibleMethodOverride] + + # keep in sync with `argmin` + @overload # type: ignore[override] + def argmax(self: NDArray[_ScalarT], axis: None = None, out: None = None) -> intp: ... + @overload + def argmax(self, axis: _ShapeLike, out: None = None) -> matrix[_2D, dtype[intp]]: ... + @overload + def argmax(self, axis: _ShapeLike | None, out: _BoolOrIntArrayT) -> _BoolOrIntArrayT: ... + @overload + def argmax(self, axis: _ShapeLike | None = None, *, out: _BoolOrIntArrayT) -> _BoolOrIntArrayT: ... # pyright: ignore[reportIncompatibleMethodOverride] + + # keep in sync with `argmax` + @overload # type: ignore[override] + def argmin(self: NDArray[_ScalarT], axis: None = None, out: None = None) -> intp: ... + @overload + def argmin(self, axis: _ShapeLike, out: None = None) -> matrix[_2D, dtype[intp]]: ... + @overload + def argmin(self, axis: _ShapeLike | None, out: _BoolOrIntArrayT) -> _BoolOrIntArrayT: ... + @overload + def argmin(self, axis: _ShapeLike | None = None, *, out: _BoolOrIntArrayT) -> _BoolOrIntArrayT: ... # pyright: ignore[reportIncompatibleMethodOverride] + + #the second overload handles the (rare) case that the matrix is not 2-d + @overload + def tolist(self: matrix[_2D, dtype[generic[_T]]]) -> list[list[_T]]: ... # pyright: ignore[reportIncompatibleMethodOverride] + @overload + def tolist(self) -> Incomplete: ... # pyright: ignore[reportIncompatibleMethodOverride] + + # these three methods will at least return a `2-d` array of shape (1, n) + def squeeze(self, axis: _ShapeLike | None = None) -> matrix[_2D, _DTypeT_co]: ... + def ravel(self, /, order: _OrderKACF = "C") -> matrix[_2D, _DTypeT_co]: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride] + def flatten(self, /, order: _OrderKACF = "C") -> matrix[_2D, _DTypeT_co]: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride] + + # matrix.T is inherited from _ScalarOrArrayCommon + def getT(self) -> Self: ... + @property + def I(self) -> matrix[_2D, Incomplete]: ... # noqa: E743 + def getI(self) -> matrix[_2D, Incomplete]: ... + @property + def A(self) -> ndarray[_2DShapeT_co, _DTypeT_co]: ... + def getA(self) -> ndarray[_2DShapeT_co, _DTypeT_co]: ... + @property + def A1(self) -> ndarray[_AnyShape, _DTypeT_co]: ... + def getA1(self) -> ndarray[_AnyShape, _DTypeT_co]: ... + @property + def H(self) -> matrix[_2D, _DTypeT_co]: ... + def getH(self) -> matrix[_2D, _DTypeT_co]: ... + +def from_dlpack( + x: _SupportsDLPack[None], + /, + *, + device: L["cpu"] | None = None, + copy: builtins.bool | None = None, +) -> NDArray[number | np.bool]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/__pycache__/__config__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/__pycache__/__config__.cpython-312.pyc new file mode 100644 index 0000000..358cdea Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/__pycache__/__config__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..0ed281f Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/__pycache__/_array_api_info.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/__pycache__/_array_api_info.cpython-312.pyc new file mode 100644 index 0000000..e33e3c8 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/__pycache__/_array_api_info.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/__pycache__/_configtool.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/__pycache__/_configtool.cpython-312.pyc new file mode 100644 index 0000000..d278020 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/__pycache__/_configtool.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/__pycache__/_distributor_init.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/__pycache__/_distributor_init.cpython-312.pyc new file mode 100644 index 0000000..94ac405 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/__pycache__/_distributor_init.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/__pycache__/_expired_attrs_2_0.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/__pycache__/_expired_attrs_2_0.cpython-312.pyc new file mode 100644 index 0000000..ef9f35c Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/__pycache__/_expired_attrs_2_0.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/__pycache__/_globals.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/__pycache__/_globals.cpython-312.pyc new file mode 100644 index 0000000..fea8377 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/__pycache__/_globals.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/__pycache__/_pytesttester.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/__pycache__/_pytesttester.cpython-312.pyc new file mode 100644 index 0000000..4107cd4 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/__pycache__/_pytesttester.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/__pycache__/conftest.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/__pycache__/conftest.cpython-312.pyc new file mode 100644 index 0000000..7617f6d Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/__pycache__/conftest.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/__pycache__/dtypes.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/__pycache__/dtypes.cpython-312.pyc new file mode 100644 index 0000000..ff4a5d7 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/__pycache__/dtypes.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/__pycache__/exceptions.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/__pycache__/exceptions.cpython-312.pyc new file mode 100644 index 0000000..c04c7a6 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/__pycache__/exceptions.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/__pycache__/matlib.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/__pycache__/matlib.cpython-312.pyc new file mode 100644 index 0000000..c19c0c2 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/__pycache__/matlib.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/__pycache__/version.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/__pycache__/version.cpython-312.pyc new file mode 100644 index 0000000..d95593b Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/__pycache__/version.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_array_api_info.py b/.venv/lib/python3.12/site-packages/numpy/_array_api_info.py new file mode 100644 index 0000000..067e387 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_array_api_info.py @@ -0,0 +1,346 @@ +""" +Array API Inspection namespace + +This is the namespace for inspection functions as defined by the array API +standard. See +https://data-apis.org/array-api/latest/API_specification/inspection.html for +more details. + +""" +from numpy._core import ( + bool, + complex64, + complex128, + dtype, + float32, + float64, + int8, + int16, + int32, + int64, + intp, + uint8, + uint16, + uint32, + uint64, +) + + +class __array_namespace_info__: + """ + Get the array API inspection namespace for NumPy. + + The array API inspection namespace defines the following functions: + + - capabilities() + - default_device() + - default_dtypes() + - dtypes() + - devices() + + See + https://data-apis.org/array-api/latest/API_specification/inspection.html + for more details. + + Returns + ------- + info : ModuleType + The array API inspection namespace for NumPy. + + Examples + -------- + >>> info = np.__array_namespace_info__() + >>> info.default_dtypes() + {'real floating': numpy.float64, + 'complex floating': numpy.complex128, + 'integral': numpy.int64, + 'indexing': numpy.int64} + + """ + + __module__ = 'numpy' + + def capabilities(self): + """ + Return a dictionary of array API library capabilities. + + The resulting dictionary has the following keys: + + - **"boolean indexing"**: boolean indicating whether an array library + supports boolean indexing. Always ``True`` for NumPy. + + - **"data-dependent shapes"**: boolean indicating whether an array + library supports data-dependent output shapes. Always ``True`` for + NumPy. + + See + https://data-apis.org/array-api/latest/API_specification/generated/array_api.info.capabilities.html + for more details. + + See Also + -------- + __array_namespace_info__.default_device, + __array_namespace_info__.default_dtypes, + __array_namespace_info__.dtypes, + __array_namespace_info__.devices + + Returns + ------- + capabilities : dict + A dictionary of array API library capabilities. + + Examples + -------- + >>> info = np.__array_namespace_info__() + >>> info.capabilities() + {'boolean indexing': True, + 'data-dependent shapes': True, + 'max dimensions': 64} + + """ + return { + "boolean indexing": True, + "data-dependent shapes": True, + "max dimensions": 64, + } + + def default_device(self): + """ + The default device used for new NumPy arrays. + + For NumPy, this always returns ``'cpu'``. + + See Also + -------- + __array_namespace_info__.capabilities, + __array_namespace_info__.default_dtypes, + __array_namespace_info__.dtypes, + __array_namespace_info__.devices + + Returns + ------- + device : str + The default device used for new NumPy arrays. + + Examples + -------- + >>> info = np.__array_namespace_info__() + >>> info.default_device() + 'cpu' + + """ + return "cpu" + + def default_dtypes(self, *, device=None): + """ + The default data types used for new NumPy arrays. + + For NumPy, this always returns the following dictionary: + + - **"real floating"**: ``numpy.float64`` + - **"complex floating"**: ``numpy.complex128`` + - **"integral"**: ``numpy.intp`` + - **"indexing"**: ``numpy.intp`` + + Parameters + ---------- + device : str, optional + The device to get the default data types for. For NumPy, only + ``'cpu'`` is allowed. + + Returns + ------- + dtypes : dict + A dictionary describing the default data types used for new NumPy + arrays. + + See Also + -------- + __array_namespace_info__.capabilities, + __array_namespace_info__.default_device, + __array_namespace_info__.dtypes, + __array_namespace_info__.devices + + Examples + -------- + >>> info = np.__array_namespace_info__() + >>> info.default_dtypes() + {'real floating': numpy.float64, + 'complex floating': numpy.complex128, + 'integral': numpy.int64, + 'indexing': numpy.int64} + + """ + if device not in ["cpu", None]: + raise ValueError( + 'Device not understood. Only "cpu" is allowed, but received:' + f' {device}' + ) + return { + "real floating": dtype(float64), + "complex floating": dtype(complex128), + "integral": dtype(intp), + "indexing": dtype(intp), + } + + def dtypes(self, *, device=None, kind=None): + """ + The array API data types supported by NumPy. + + Note that this function only returns data types that are defined by + the array API. + + Parameters + ---------- + device : str, optional + The device to get the data types for. For NumPy, only ``'cpu'`` is + allowed. + kind : str or tuple of str, optional + The kind of data types to return. If ``None``, all data types are + returned. If a string, only data types of that kind are returned. + If a tuple, a dictionary containing the union of the given kinds + is returned. The following kinds are supported: + + - ``'bool'``: boolean data types (i.e., ``bool``). + - ``'signed integer'``: signed integer data types (i.e., ``int8``, + ``int16``, ``int32``, ``int64``). + - ``'unsigned integer'``: unsigned integer data types (i.e., + ``uint8``, ``uint16``, ``uint32``, ``uint64``). + - ``'integral'``: integer data types. Shorthand for ``('signed + integer', 'unsigned integer')``. + - ``'real floating'``: real-valued floating-point data types + (i.e., ``float32``, ``float64``). + - ``'complex floating'``: complex floating-point data types (i.e., + ``complex64``, ``complex128``). + - ``'numeric'``: numeric data types. Shorthand for ``('integral', + 'real floating', 'complex floating')``. + + Returns + ------- + dtypes : dict + A dictionary mapping the names of data types to the corresponding + NumPy data types. + + See Also + -------- + __array_namespace_info__.capabilities, + __array_namespace_info__.default_device, + __array_namespace_info__.default_dtypes, + __array_namespace_info__.devices + + Examples + -------- + >>> info = np.__array_namespace_info__() + >>> info.dtypes(kind='signed integer') + {'int8': numpy.int8, + 'int16': numpy.int16, + 'int32': numpy.int32, + 'int64': numpy.int64} + + """ + if device not in ["cpu", None]: + raise ValueError( + 'Device not understood. Only "cpu" is allowed, but received:' + f' {device}' + ) + if kind is None: + return { + "bool": dtype(bool), + "int8": dtype(int8), + "int16": dtype(int16), + "int32": dtype(int32), + "int64": dtype(int64), + "uint8": dtype(uint8), + "uint16": dtype(uint16), + "uint32": dtype(uint32), + "uint64": dtype(uint64), + "float32": dtype(float32), + "float64": dtype(float64), + "complex64": dtype(complex64), + "complex128": dtype(complex128), + } + if kind == "bool": + return {"bool": bool} + if kind == "signed integer": + return { + "int8": dtype(int8), + "int16": dtype(int16), + "int32": dtype(int32), + "int64": dtype(int64), + } + if kind == "unsigned integer": + return { + "uint8": dtype(uint8), + "uint16": dtype(uint16), + "uint32": dtype(uint32), + "uint64": dtype(uint64), + } + if kind == "integral": + return { + "int8": dtype(int8), + "int16": dtype(int16), + "int32": dtype(int32), + "int64": dtype(int64), + "uint8": dtype(uint8), + "uint16": dtype(uint16), + "uint32": dtype(uint32), + "uint64": dtype(uint64), + } + if kind == "real floating": + return { + "float32": dtype(float32), + "float64": dtype(float64), + } + if kind == "complex floating": + return { + "complex64": dtype(complex64), + "complex128": dtype(complex128), + } + if kind == "numeric": + return { + "int8": dtype(int8), + "int16": dtype(int16), + "int32": dtype(int32), + "int64": dtype(int64), + "uint8": dtype(uint8), + "uint16": dtype(uint16), + "uint32": dtype(uint32), + "uint64": dtype(uint64), + "float32": dtype(float32), + "float64": dtype(float64), + "complex64": dtype(complex64), + "complex128": dtype(complex128), + } + if isinstance(kind, tuple): + res = {} + for k in kind: + res.update(self.dtypes(kind=k)) + return res + raise ValueError(f"unsupported kind: {kind!r}") + + def devices(self): + """ + The devices supported by NumPy. + + For NumPy, this always returns ``['cpu']``. + + Returns + ------- + devices : list of str + The devices supported by NumPy. + + See Also + -------- + __array_namespace_info__.capabilities, + __array_namespace_info__.default_device, + __array_namespace_info__.default_dtypes, + __array_namespace_info__.dtypes + + Examples + -------- + >>> info = np.__array_namespace_info__() + >>> info.devices() + ['cpu'] + + """ + return ["cpu"] diff --git a/.venv/lib/python3.12/site-packages/numpy/_array_api_info.pyi b/.venv/lib/python3.12/site-packages/numpy/_array_api_info.pyi new file mode 100644 index 0000000..ee9f8a5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_array_api_info.pyi @@ -0,0 +1,207 @@ +from typing import ( + ClassVar, + Literal, + Never, + TypeAlias, + TypedDict, + TypeVar, + final, + overload, + type_check_only, +) + +import numpy as np + +_Device: TypeAlias = Literal["cpu"] +_DeviceLike: TypeAlias = _Device | None + +_Capabilities = TypedDict( + "_Capabilities", + { + "boolean indexing": Literal[True], + "data-dependent shapes": Literal[True], + }, +) + +_DefaultDTypes = TypedDict( + "_DefaultDTypes", + { + "real floating": np.dtype[np.float64], + "complex floating": np.dtype[np.complex128], + "integral": np.dtype[np.intp], + "indexing": np.dtype[np.intp], + }, +) + +_KindBool: TypeAlias = Literal["bool"] +_KindInt: TypeAlias = Literal["signed integer"] +_KindUInt: TypeAlias = Literal["unsigned integer"] +_KindInteger: TypeAlias = Literal["integral"] +_KindFloat: TypeAlias = Literal["real floating"] +_KindComplex: TypeAlias = Literal["complex floating"] +_KindNumber: TypeAlias = Literal["numeric"] +_Kind: TypeAlias = ( + _KindBool + | _KindInt + | _KindUInt + | _KindInteger + | _KindFloat + | _KindComplex + | _KindNumber +) + +_T1 = TypeVar("_T1") +_T2 = TypeVar("_T2") +_T3 = TypeVar("_T3") +_Permute1: TypeAlias = _T1 | tuple[_T1] +_Permute2: TypeAlias = tuple[_T1, _T2] | tuple[_T2, _T1] +_Permute3: TypeAlias = ( + tuple[_T1, _T2, _T3] | tuple[_T1, _T3, _T2] + | tuple[_T2, _T1, _T3] | tuple[_T2, _T3, _T1] + | tuple[_T3, _T1, _T2] | tuple[_T3, _T2, _T1] +) + +@type_check_only +class _DTypesBool(TypedDict): + bool: np.dtype[np.bool] + +@type_check_only +class _DTypesInt(TypedDict): + int8: np.dtype[np.int8] + int16: np.dtype[np.int16] + int32: np.dtype[np.int32] + int64: np.dtype[np.int64] + +@type_check_only +class _DTypesUInt(TypedDict): + uint8: np.dtype[np.uint8] + uint16: np.dtype[np.uint16] + uint32: np.dtype[np.uint32] + uint64: np.dtype[np.uint64] + +@type_check_only +class _DTypesInteger(_DTypesInt, _DTypesUInt): ... + +@type_check_only +class _DTypesFloat(TypedDict): + float32: np.dtype[np.float32] + float64: np.dtype[np.float64] + +@type_check_only +class _DTypesComplex(TypedDict): + complex64: np.dtype[np.complex64] + complex128: np.dtype[np.complex128] + +@type_check_only +class _DTypesNumber(_DTypesInteger, _DTypesFloat, _DTypesComplex): ... + +@type_check_only +class _DTypes(_DTypesBool, _DTypesNumber): ... + +@type_check_only +class _DTypesUnion(TypedDict, total=False): + bool: np.dtype[np.bool] + int8: np.dtype[np.int8] + int16: np.dtype[np.int16] + int32: np.dtype[np.int32] + int64: np.dtype[np.int64] + uint8: np.dtype[np.uint8] + uint16: np.dtype[np.uint16] + uint32: np.dtype[np.uint32] + uint64: np.dtype[np.uint64] + float32: np.dtype[np.float32] + float64: np.dtype[np.float64] + complex64: np.dtype[np.complex64] + complex128: np.dtype[np.complex128] + +_EmptyDict: TypeAlias = dict[Never, Never] + +@final +class __array_namespace_info__: + __module__: ClassVar[Literal['numpy']] + + def capabilities(self) -> _Capabilities: ... + def default_device(self) -> _Device: ... + def default_dtypes( + self, + *, + device: _DeviceLike = ..., + ) -> _DefaultDTypes: ... + def devices(self) -> list[_Device]: ... + + @overload + def dtypes( + self, + *, + device: _DeviceLike = ..., + kind: None = ..., + ) -> _DTypes: ... + @overload + def dtypes( + self, + *, + device: _DeviceLike = ..., + kind: _Permute1[_KindBool], + ) -> _DTypesBool: ... + @overload + def dtypes( + self, + *, + device: _DeviceLike = ..., + kind: _Permute1[_KindInt], + ) -> _DTypesInt: ... + @overload + def dtypes( + self, + *, + device: _DeviceLike = ..., + kind: _Permute1[_KindUInt], + ) -> _DTypesUInt: ... + @overload + def dtypes( + self, + *, + device: _DeviceLike = ..., + kind: _Permute1[_KindFloat], + ) -> _DTypesFloat: ... + @overload + def dtypes( + self, + *, + device: _DeviceLike = ..., + kind: _Permute1[_KindComplex], + ) -> _DTypesComplex: ... + @overload + def dtypes( + self, + *, + device: _DeviceLike = ..., + kind: ( + _Permute1[_KindInteger] + | _Permute2[_KindInt, _KindUInt] + ), + ) -> _DTypesInteger: ... + @overload + def dtypes( + self, + *, + device: _DeviceLike = ..., + kind: ( + _Permute1[_KindNumber] + | _Permute3[_KindInteger, _KindFloat, _KindComplex] + ), + ) -> _DTypesNumber: ... + @overload + def dtypes( + self, + *, + device: _DeviceLike = ..., + kind: tuple[()], + ) -> _EmptyDict: ... + @overload + def dtypes( + self, + *, + device: _DeviceLike = ..., + kind: tuple[_Kind, ...], + ) -> _DTypesUnion: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_configtool.py b/.venv/lib/python3.12/site-packages/numpy/_configtool.py new file mode 100644 index 0000000..db7831c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_configtool.py @@ -0,0 +1,39 @@ +import argparse +import sys +from pathlib import Path + +from .lib._utils_impl import get_include +from .version import __version__ + + +def main() -> None: + parser = argparse.ArgumentParser() + parser.add_argument( + "--version", + action="version", + version=__version__, + help="Print the version and exit.", + ) + parser.add_argument( + "--cflags", + action="store_true", + help="Compile flag needed when using the NumPy headers.", + ) + parser.add_argument( + "--pkgconfigdir", + action="store_true", + help=("Print the pkgconfig directory in which `numpy.pc` is stored " + "(useful for setting $PKG_CONFIG_PATH)."), + ) + args = parser.parse_args() + if not sys.argv[1:]: + parser.print_help() + if args.cflags: + print("-I" + get_include()) + if args.pkgconfigdir: + _path = Path(get_include()) / '..' / 'lib' / 'pkgconfig' + print(_path.resolve()) + + +if __name__ == "__main__": + main() diff --git a/.venv/lib/python3.12/site-packages/numpy/_configtool.pyi b/.venv/lib/python3.12/site-packages/numpy/_configtool.pyi new file mode 100644 index 0000000..7e7363e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_configtool.pyi @@ -0,0 +1 @@ +def main() -> None: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__init__.py b/.venv/lib/python3.12/site-packages/numpy/_core/__init__.py new file mode 100644 index 0000000..d0da7e0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/__init__.py @@ -0,0 +1,186 @@ +""" +Contains the core of NumPy: ndarray, ufuncs, dtypes, etc. + +Please note that this module is private. All functions and objects +are available in the main ``numpy`` namespace - use that instead. + +""" + +import os + +from numpy.version import version as __version__ + +# disables OpenBLAS affinity setting of the main thread that limits +# python threads or processes to one core +env_added = [] +for envkey in ['OPENBLAS_MAIN_FREE', 'GOTOBLAS_MAIN_FREE']: + if envkey not in os.environ: + os.environ[envkey] = '1' + env_added.append(envkey) + +try: + from . import multiarray +except ImportError as exc: + import sys + msg = """ + +IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE! + +Importing the numpy C-extensions failed. This error can happen for +many reasons, often due to issues with your setup or how NumPy was +installed. + +We have compiled some common reasons and troubleshooting tips at: + + https://numpy.org/devdocs/user/troubleshooting-importerror.html + +Please note and check the following: + + * The Python version is: Python%d.%d from "%s" + * The NumPy version is: "%s" + +and make sure that they are the versions you expect. +Please carefully study the documentation linked above for further help. + +Original error was: %s +""" % (sys.version_info[0], sys.version_info[1], sys.executable, + __version__, exc) + raise ImportError(msg) from exc +finally: + for envkey in env_added: + del os.environ[envkey] +del envkey +del env_added +del os + +from . import umath + +# Check that multiarray,umath are pure python modules wrapping +# _multiarray_umath and not either of the old c-extension modules +if not (hasattr(multiarray, '_multiarray_umath') and + hasattr(umath, '_multiarray_umath')): + import sys + path = sys.modules['numpy'].__path__ + msg = ("Something is wrong with the numpy installation. " + "While importing we detected an older version of " + "numpy in {}. One method of fixing this is to repeatedly uninstall " + "numpy until none is found, then reinstall this version.") + raise ImportError(msg.format(path)) + +from . import numerictypes as nt +from .numerictypes import sctypeDict, sctypes + +multiarray.set_typeDict(nt.sctypeDict) +from . import ( + _machar, + einsumfunc, + fromnumeric, + function_base, + getlimits, + numeric, + shape_base, +) +from .einsumfunc import * +from .fromnumeric import * +from .function_base import * +from .getlimits import * + +# Note: module name memmap is overwritten by a class with same name +from .memmap import * +from .numeric import * +from .records import recarray, record +from .shape_base import * + +del nt + +# do this after everything else, to minimize the chance of this misleadingly +# appearing in an import-time traceback +# add these for module-freeze analysis (like PyInstaller) +from . import ( + _add_newdocs, + _add_newdocs_scalars, + _dtype, + _dtype_ctypes, + _internal, + _methods, +) +from .numeric import absolute as abs + +acos = numeric.arccos +acosh = numeric.arccosh +asin = numeric.arcsin +asinh = numeric.arcsinh +atan = numeric.arctan +atanh = numeric.arctanh +atan2 = numeric.arctan2 +concat = numeric.concatenate +bitwise_left_shift = numeric.left_shift +bitwise_invert = numeric.invert +bitwise_right_shift = numeric.right_shift +permute_dims = numeric.transpose +pow = numeric.power + +__all__ = [ + "abs", "acos", "acosh", "asin", "asinh", "atan", "atanh", "atan2", + "bitwise_invert", "bitwise_left_shift", "bitwise_right_shift", "concat", + "pow", "permute_dims", "memmap", "sctypeDict", "record", "recarray" +] +__all__ += numeric.__all__ +__all__ += function_base.__all__ +__all__ += getlimits.__all__ +__all__ += shape_base.__all__ +__all__ += einsumfunc.__all__ + + +def _ufunc_reduce(func): + # Report the `__name__`. pickle will try to find the module. Note that + # pickle supports for this `__name__` to be a `__qualname__`. It may + # make sense to add a `__qualname__` to ufuncs, to allow this more + # explicitly (Numba has ufuncs as attributes). + # See also: https://github.com/dask/distributed/issues/3450 + return func.__name__ + + +def _DType_reconstruct(scalar_type): + # This is a work-around to pickle type(np.dtype(np.float64)), etc. + # and it should eventually be replaced with a better solution, e.g. when + # DTypes become HeapTypes. + return type(dtype(scalar_type)) + + +def _DType_reduce(DType): + # As types/classes, most DTypes can simply be pickled by their name: + if not DType._legacy or DType.__module__ == "numpy.dtypes": + return DType.__name__ + + # However, user defined legacy dtypes (like rational) do not end up in + # `numpy.dtypes` as module and do not have a public class at all. + # For these, we pickle them by reconstructing them from the scalar type: + scalar_type = DType.type + return _DType_reconstruct, (scalar_type,) + + +def __getattr__(name): + # Deprecated 2022-11-22, NumPy 1.25. + if name == "MachAr": + import warnings + warnings.warn( + "The `np._core.MachAr` is considered private API (NumPy 1.24)", + DeprecationWarning, stacklevel=2, + ) + return _machar.MachAr + raise AttributeError(f"Module {__name__!r} has no attribute {name!r}") + + +import copyreg + +copyreg.pickle(ufunc, _ufunc_reduce) +copyreg.pickle(type(dtype), _DType_reduce, _DType_reconstruct) + +# Unclutter namespace (must keep _*_reconstruct for unpickling) +del copyreg, _ufunc_reduce, _DType_reduce + +from numpy._pytesttester import PytestTester + +test = PytestTester(__name__) +del PytestTester diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__init__.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/__init__.pyi new file mode 100644 index 0000000..40d9c41 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/__init__.pyi @@ -0,0 +1,2 @@ +# NOTE: The `np._core` namespace is deliberately kept empty due to it +# being private diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..eee68ab Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_add_newdocs.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_add_newdocs.cpython-312.pyc new file mode 100644 index 0000000..7d03b1a Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_add_newdocs.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_add_newdocs_scalars.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_add_newdocs_scalars.cpython-312.pyc new file mode 100644 index 0000000..c22395e Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_add_newdocs_scalars.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_asarray.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_asarray.cpython-312.pyc new file mode 100644 index 0000000..79fc012 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_asarray.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_dtype.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_dtype.cpython-312.pyc new file mode 100644 index 0000000..1ff83ec Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_dtype.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_dtype_ctypes.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_dtype_ctypes.cpython-312.pyc new file mode 100644 index 0000000..434c6eb Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_dtype_ctypes.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_exceptions.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_exceptions.cpython-312.pyc new file mode 100644 index 0000000..37814af Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_exceptions.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_internal.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_internal.cpython-312.pyc new file mode 100644 index 0000000..3d1a0ec Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_internal.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_machar.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_machar.cpython-312.pyc new file mode 100644 index 0000000..b466096 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_machar.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_methods.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_methods.cpython-312.pyc new file mode 100644 index 0000000..6d03e14 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_methods.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_string_helpers.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_string_helpers.cpython-312.pyc new file mode 100644 index 0000000..54369a2 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_string_helpers.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_type_aliases.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_type_aliases.cpython-312.pyc new file mode 100644 index 0000000..202bc7f Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_type_aliases.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_ufunc_config.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_ufunc_config.cpython-312.pyc new file mode 100644 index 0000000..760cbab Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/_ufunc_config.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/arrayprint.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/arrayprint.cpython-312.pyc new file mode 100644 index 0000000..8117740 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/arrayprint.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/cversions.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/cversions.cpython-312.pyc new file mode 100644 index 0000000..532c821 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/cversions.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/defchararray.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/defchararray.cpython-312.pyc new file mode 100644 index 0000000..2d68f6a Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/defchararray.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/einsumfunc.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/einsumfunc.cpython-312.pyc new file mode 100644 index 0000000..b17224a Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/einsumfunc.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/fromnumeric.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/fromnumeric.cpython-312.pyc new file mode 100644 index 0000000..93f3f89 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/fromnumeric.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/function_base.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/function_base.cpython-312.pyc new file mode 100644 index 0000000..d45dcd3 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/function_base.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/getlimits.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/getlimits.cpython-312.pyc new file mode 100644 index 0000000..18b6fb6 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/getlimits.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/memmap.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/memmap.cpython-312.pyc new file mode 100644 index 0000000..05e2f99 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/memmap.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/multiarray.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/multiarray.cpython-312.pyc new file mode 100644 index 0000000..29266a5 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/multiarray.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/numeric.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/numeric.cpython-312.pyc new file mode 100644 index 0000000..e79b272 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/numeric.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/numerictypes.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/numerictypes.cpython-312.pyc new file mode 100644 index 0000000..8c2feac Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/numerictypes.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/overrides.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/overrides.cpython-312.pyc new file mode 100644 index 0000000..d4a3473 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/overrides.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/printoptions.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/printoptions.cpython-312.pyc new file mode 100644 index 0000000..f070192 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/printoptions.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/records.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/records.cpython-312.pyc new file mode 100644 index 0000000..ac0b55c Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/records.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/shape_base.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/shape_base.cpython-312.pyc new file mode 100644 index 0000000..6882a72 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/shape_base.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/strings.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/strings.cpython-312.pyc new file mode 100644 index 0000000..0ae9211 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/strings.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/umath.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/umath.cpython-312.pyc new file mode 100644 index 0000000..95fbac4 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/__pycache__/umath.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs.py b/.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs.py new file mode 100644 index 0000000..8f5de4b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs.py @@ -0,0 +1,6967 @@ +""" +This is only meant to add docs to objects defined in C-extension modules. +The purpose is to allow easier editing of the docstrings without +requiring a re-compile. + +NOTE: Many of the methods of ndarray have corresponding functions. + If you update these docstrings, please keep also the ones in + _core/fromnumeric.py, matrixlib/defmatrix.py up-to-date. + +""" + +from numpy._core.function_base import add_newdoc +from numpy._core.overrides import get_array_function_like_doc # noqa: F401 + +############################################################################### +# +# flatiter +# +# flatiter needs a toplevel description +# +############################################################################### + +add_newdoc('numpy._core', 'flatiter', + """ + Flat iterator object to iterate over arrays. + + A `flatiter` iterator is returned by ``x.flat`` for any array `x`. + It allows iterating over the array as if it were a 1-D array, + either in a for-loop or by calling its `next` method. + + Iteration is done in row-major, C-style order (the last + index varying the fastest). The iterator can also be indexed using + basic slicing or advanced indexing. + + See Also + -------- + ndarray.flat : Return a flat iterator over an array. + ndarray.flatten : Returns a flattened copy of an array. + + Notes + ----- + A `flatiter` iterator can not be constructed directly from Python code + by calling the `flatiter` constructor. + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(6).reshape(2, 3) + >>> fl = x.flat + >>> type(fl) + + >>> for item in fl: + ... print(item) + ... + 0 + 1 + 2 + 3 + 4 + 5 + + >>> fl[2:4] + array([2, 3]) + + """) + +# flatiter attributes + +add_newdoc('numpy._core', 'flatiter', ('base', + """ + A reference to the array that is iterated over. + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(5) + >>> fl = x.flat + >>> fl.base is x + True + + """)) + + +add_newdoc('numpy._core', 'flatiter', ('coords', + """ + An N-dimensional tuple of current coordinates. + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(6).reshape(2, 3) + >>> fl = x.flat + >>> fl.coords + (0, 0) + >>> next(fl) + 0 + >>> fl.coords + (0, 1) + + """)) + + +add_newdoc('numpy._core', 'flatiter', ('index', + """ + Current flat index into the array. + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(6).reshape(2, 3) + >>> fl = x.flat + >>> fl.index + 0 + >>> next(fl) + 0 + >>> fl.index + 1 + + """)) + +# flatiter functions + +add_newdoc('numpy._core', 'flatiter', ('__array__', + """__array__(type=None) Get array from iterator + + """)) + + +add_newdoc('numpy._core', 'flatiter', ('copy', + """ + copy() + + Get a copy of the iterator as a 1-D array. + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(6).reshape(2, 3) + >>> x + array([[0, 1, 2], + [3, 4, 5]]) + >>> fl = x.flat + >>> fl.copy() + array([0, 1, 2, 3, 4, 5]) + + """)) + + +############################################################################### +# +# nditer +# +############################################################################### + +add_newdoc('numpy._core', 'nditer', + """ + nditer(op, flags=None, op_flags=None, op_dtypes=None, order='K', + casting='safe', op_axes=None, itershape=None, buffersize=0) + + Efficient multi-dimensional iterator object to iterate over arrays. + To get started using this object, see the + :ref:`introductory guide to array iteration `. + + Parameters + ---------- + op : ndarray or sequence of array_like + The array(s) to iterate over. + + flags : sequence of str, optional + Flags to control the behavior of the iterator. + + * ``buffered`` enables buffering when required. + * ``c_index`` causes a C-order index to be tracked. + * ``f_index`` causes a Fortran-order index to be tracked. + * ``multi_index`` causes a multi-index, or a tuple of indices + with one per iteration dimension, to be tracked. + * ``common_dtype`` causes all the operands to be converted to + a common data type, with copying or buffering as necessary. + * ``copy_if_overlap`` causes the iterator to determine if read + operands have overlap with write operands, and make temporary + copies as necessary to avoid overlap. False positives (needless + copying) are possible in some cases. + * ``delay_bufalloc`` delays allocation of the buffers until + a reset() call is made. Allows ``allocate`` operands to + be initialized before their values are copied into the buffers. + * ``external_loop`` causes the ``values`` given to be + one-dimensional arrays with multiple values instead of + zero-dimensional arrays. + * ``grow_inner`` allows the ``value`` array sizes to be made + larger than the buffer size when both ``buffered`` and + ``external_loop`` is used. + * ``ranged`` allows the iterator to be restricted to a sub-range + of the iterindex values. + * ``refs_ok`` enables iteration of reference types, such as + object arrays. + * ``reduce_ok`` enables iteration of ``readwrite`` operands + which are broadcasted, also known as reduction operands. + * ``zerosize_ok`` allows `itersize` to be zero. + op_flags : list of list of str, optional + This is a list of flags for each operand. At minimum, one of + ``readonly``, ``readwrite``, or ``writeonly`` must be specified. + + * ``readonly`` indicates the operand will only be read from. + * ``readwrite`` indicates the operand will be read from and written to. + * ``writeonly`` indicates the operand will only be written to. + * ``no_broadcast`` prevents the operand from being broadcasted. + * ``contig`` forces the operand data to be contiguous. + * ``aligned`` forces the operand data to be aligned. + * ``nbo`` forces the operand data to be in native byte order. + * ``copy`` allows a temporary read-only copy if required. + * ``updateifcopy`` allows a temporary read-write copy if required. + * ``allocate`` causes the array to be allocated if it is None + in the ``op`` parameter. + * ``no_subtype`` prevents an ``allocate`` operand from using a subtype. + * ``arraymask`` indicates that this operand is the mask to use + for selecting elements when writing to operands with the + 'writemasked' flag set. The iterator does not enforce this, + but when writing from a buffer back to the array, it only + copies those elements indicated by this mask. + * ``writemasked`` indicates that only elements where the chosen + ``arraymask`` operand is True will be written to. + * ``overlap_assume_elementwise`` can be used to mark operands that are + accessed only in the iterator order, to allow less conservative + copying when ``copy_if_overlap`` is present. + op_dtypes : dtype or tuple of dtype(s), optional + The required data type(s) of the operands. If copying or buffering + is enabled, the data will be converted to/from their original types. + order : {'C', 'F', 'A', 'K'}, optional + Controls the iteration order. 'C' means C order, 'F' means + Fortran order, 'A' means 'F' order if all the arrays are Fortran + contiguous, 'C' order otherwise, and 'K' means as close to the + order the array elements appear in memory as possible. This also + affects the element memory order of ``allocate`` operands, as they + are allocated to be compatible with iteration order. + Default is 'K'. + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional + Controls what kind of data casting may occur when making a copy + or buffering. Setting this to 'unsafe' is not recommended, + as it can adversely affect accumulations. + + * 'no' means the data types should not be cast at all. + * 'equiv' means only byte-order changes are allowed. + * 'safe' means only casts which can preserve values are allowed. + * 'same_kind' means only safe casts or casts within a kind, + like float64 to float32, are allowed. + * 'unsafe' means any data conversions may be done. + op_axes : list of list of ints, optional + If provided, is a list of ints or None for each operands. + The list of axes for an operand is a mapping from the dimensions + of the iterator to the dimensions of the operand. A value of + -1 can be placed for entries, causing that dimension to be + treated as `newaxis`. + itershape : tuple of ints, optional + The desired shape of the iterator. This allows ``allocate`` operands + with a dimension mapped by op_axes not corresponding to a dimension + of a different operand to get a value not equal to 1 for that + dimension. + buffersize : int, optional + When buffering is enabled, controls the size of the temporary + buffers. Set to 0 for the default value. + + Attributes + ---------- + dtypes : tuple of dtype(s) + The data types of the values provided in `value`. This may be + different from the operand data types if buffering is enabled. + Valid only before the iterator is closed. + finished : bool + Whether the iteration over the operands is finished or not. + has_delayed_bufalloc : bool + If True, the iterator was created with the ``delay_bufalloc`` flag, + and no reset() function was called on it yet. + has_index : bool + If True, the iterator was created with either the ``c_index`` or + the ``f_index`` flag, and the property `index` can be used to + retrieve it. + has_multi_index : bool + If True, the iterator was created with the ``multi_index`` flag, + and the property `multi_index` can be used to retrieve it. + index + When the ``c_index`` or ``f_index`` flag was used, this property + provides access to the index. Raises a ValueError if accessed + and ``has_index`` is False. + iterationneedsapi : bool + Whether iteration requires access to the Python API, for example + if one of the operands is an object array. + iterindex : int + An index which matches the order of iteration. + itersize : int + Size of the iterator. + itviews + Structured view(s) of `operands` in memory, matching the reordered + and optimized iterator access pattern. Valid only before the iterator + is closed. + multi_index + When the ``multi_index`` flag was used, this property + provides access to the index. Raises a ValueError if accessed + accessed and ``has_multi_index`` is False. + ndim : int + The dimensions of the iterator. + nop : int + The number of iterator operands. + operands : tuple of operand(s) + The array(s) to be iterated over. Valid only before the iterator is + closed. + shape : tuple of ints + Shape tuple, the shape of the iterator. + value + Value of ``operands`` at current iteration. Normally, this is a + tuple of array scalars, but if the flag ``external_loop`` is used, + it is a tuple of one dimensional arrays. + + Notes + ----- + `nditer` supersedes `flatiter`. The iterator implementation behind + `nditer` is also exposed by the NumPy C API. + + The Python exposure supplies two iteration interfaces, one which follows + the Python iterator protocol, and another which mirrors the C-style + do-while pattern. The native Python approach is better in most cases, but + if you need the coordinates or index of an iterator, use the C-style pattern. + + Examples + -------- + Here is how we might write an ``iter_add`` function, using the + Python iterator protocol: + + >>> import numpy as np + + >>> def iter_add_py(x, y, out=None): + ... addop = np.add + ... it = np.nditer([x, y, out], [], + ... [['readonly'], ['readonly'], ['writeonly','allocate']]) + ... with it: + ... for (a, b, c) in it: + ... addop(a, b, out=c) + ... return it.operands[2] + + Here is the same function, but following the C-style pattern: + + >>> def iter_add(x, y, out=None): + ... addop = np.add + ... it = np.nditer([x, y, out], [], + ... [['readonly'], ['readonly'], ['writeonly','allocate']]) + ... with it: + ... while not it.finished: + ... addop(it[0], it[1], out=it[2]) + ... it.iternext() + ... return it.operands[2] + + Here is an example outer product function: + + >>> def outer_it(x, y, out=None): + ... mulop = np.multiply + ... it = np.nditer([x, y, out], ['external_loop'], + ... [['readonly'], ['readonly'], ['writeonly', 'allocate']], + ... op_axes=[list(range(x.ndim)) + [-1] * y.ndim, + ... [-1] * x.ndim + list(range(y.ndim)), + ... None]) + ... with it: + ... for (a, b, c) in it: + ... mulop(a, b, out=c) + ... return it.operands[2] + + >>> a = np.arange(2)+1 + >>> b = np.arange(3)+1 + >>> outer_it(a,b) + array([[1, 2, 3], + [2, 4, 6]]) + + Here is an example function which operates like a "lambda" ufunc: + + >>> def luf(lamdaexpr, *args, **kwargs): + ... '''luf(lambdaexpr, op1, ..., opn, out=None, order='K', casting='safe', buffersize=0)''' + ... nargs = len(args) + ... op = (kwargs.get('out',None),) + args + ... it = np.nditer(op, ['buffered','external_loop'], + ... [['writeonly','allocate','no_broadcast']] + + ... [['readonly','nbo','aligned']]*nargs, + ... order=kwargs.get('order','K'), + ... casting=kwargs.get('casting','safe'), + ... buffersize=kwargs.get('buffersize',0)) + ... while not it.finished: + ... it[0] = lamdaexpr(*it[1:]) + ... it.iternext() + ... return it.operands[0] + + >>> a = np.arange(5) + >>> b = np.ones(5) + >>> luf(lambda i,j:i*i + j/2, a, b) + array([ 0.5, 1.5, 4.5, 9.5, 16.5]) + + If operand flags ``"writeonly"`` or ``"readwrite"`` are used the + operands may be views into the original data with the + `WRITEBACKIFCOPY` flag. In this case `nditer` must be used as a + context manager or the `nditer.close` method must be called before + using the result. The temporary data will be written back to the + original data when the :meth:`~object.__exit__` function is called + but not before: + + >>> a = np.arange(6, dtype='i4')[::-2] + >>> with np.nditer(a, [], + ... [['writeonly', 'updateifcopy']], + ... casting='unsafe', + ... op_dtypes=[np.dtype('f4')]) as i: + ... x = i.operands[0] + ... x[:] = [-1, -2, -3] + ... # a still unchanged here + >>> a, x + (array([-1, -2, -3], dtype=int32), array([-1., -2., -3.], dtype=float32)) + + It is important to note that once the iterator is exited, dangling + references (like `x` in the example) may or may not share data with + the original data `a`. If writeback semantics were active, i.e. if + `x.base.flags.writebackifcopy` is `True`, then exiting the iterator + will sever the connection between `x` and `a`, writing to `x` will + no longer write to `a`. If writeback semantics are not active, then + `x.data` will still point at some part of `a.data`, and writing to + one will affect the other. + + Context management and the `close` method appeared in version 1.15.0. + + """) + +# nditer methods + +add_newdoc('numpy._core', 'nditer', ('copy', + """ + copy() + + Get a copy of the iterator in its current state. + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(10) + >>> y = x + 1 + >>> it = np.nditer([x, y]) + >>> next(it) + (array(0), array(1)) + >>> it2 = it.copy() + >>> next(it2) + (array(1), array(2)) + + """)) + +add_newdoc('numpy._core', 'nditer', ('operands', + """ + operands[`Slice`] + + The array(s) to be iterated over. Valid only before the iterator is closed. + """)) + +add_newdoc('numpy._core', 'nditer', ('debug_print', + """ + debug_print() + + Print the current state of the `nditer` instance and debug info to stdout. + + """)) + +add_newdoc('numpy._core', 'nditer', ('enable_external_loop', + """ + enable_external_loop() + + When the "external_loop" was not used during construction, but + is desired, this modifies the iterator to behave as if the flag + was specified. + + """)) + +add_newdoc('numpy._core', 'nditer', ('iternext', + """ + iternext() + + Check whether iterations are left, and perform a single internal iteration + without returning the result. Used in the C-style pattern do-while + pattern. For an example, see `nditer`. + + Returns + ------- + iternext : bool + Whether or not there are iterations left. + + """)) + +add_newdoc('numpy._core', 'nditer', ('remove_axis', + """ + remove_axis(i, /) + + Removes axis `i` from the iterator. Requires that the flag "multi_index" + be enabled. + + """)) + +add_newdoc('numpy._core', 'nditer', ('remove_multi_index', + """ + remove_multi_index() + + When the "multi_index" flag was specified, this removes it, allowing + the internal iteration structure to be optimized further. + + """)) + +add_newdoc('numpy._core', 'nditer', ('reset', + """ + reset() + + Reset the iterator to its initial state. + + """)) + +add_newdoc('numpy._core', 'nested_iters', + """ + nested_iters(op, axes, flags=None, op_flags=None, op_dtypes=None, \ + order="K", casting="safe", buffersize=0) + + Create nditers for use in nested loops + + Create a tuple of `nditer` objects which iterate in nested loops over + different axes of the op argument. The first iterator is used in the + outermost loop, the last in the innermost loop. Advancing one will change + the subsequent iterators to point at its new element. + + Parameters + ---------- + op : ndarray or sequence of array_like + The array(s) to iterate over. + + axes : list of list of int + Each item is used as an "op_axes" argument to an nditer + + flags, op_flags, op_dtypes, order, casting, buffersize (optional) + See `nditer` parameters of the same name + + Returns + ------- + iters : tuple of nditer + An nditer for each item in `axes`, outermost first + + See Also + -------- + nditer + + Examples + -------- + + Basic usage. Note how y is the "flattened" version of + [a[:, 0, :], a[:, 1, 0], a[:, 2, :]] since we specified + the first iter's axes as [1] + + >>> import numpy as np + >>> a = np.arange(12).reshape(2, 3, 2) + >>> i, j = np.nested_iters(a, [[1], [0, 2]], flags=["multi_index"]) + >>> for x in i: + ... print(i.multi_index) + ... for y in j: + ... print('', j.multi_index, y) + (0,) + (0, 0) 0 + (0, 1) 1 + (1, 0) 6 + (1, 1) 7 + (1,) + (0, 0) 2 + (0, 1) 3 + (1, 0) 8 + (1, 1) 9 + (2,) + (0, 0) 4 + (0, 1) 5 + (1, 0) 10 + (1, 1) 11 + + """) + +add_newdoc('numpy._core', 'nditer', ('close', + """ + close() + + Resolve all writeback semantics in writeable operands. + + See Also + -------- + + :ref:`nditer-context-manager` + + """)) + + +############################################################################### +# +# broadcast +# +############################################################################### + +add_newdoc('numpy._core', 'broadcast', + """ + Produce an object that mimics broadcasting. + + Parameters + ---------- + in1, in2, ... : array_like + Input parameters. + + Returns + ------- + b : broadcast object + Broadcast the input parameters against one another, and + return an object that encapsulates the result. + Amongst others, it has ``shape`` and ``nd`` properties, and + may be used as an iterator. + + See Also + -------- + broadcast_arrays + broadcast_to + broadcast_shapes + + Examples + -------- + + Manually adding two vectors, using broadcasting: + + >>> import numpy as np + >>> x = np.array([[1], [2], [3]]) + >>> y = np.array([4, 5, 6]) + >>> b = np.broadcast(x, y) + + >>> out = np.empty(b.shape) + >>> out.flat = [u+v for (u,v) in b] + >>> out + array([[5., 6., 7.], + [6., 7., 8.], + [7., 8., 9.]]) + + Compare against built-in broadcasting: + + >>> x + y + array([[5, 6, 7], + [6, 7, 8], + [7, 8, 9]]) + + """) + +# attributes + +add_newdoc('numpy._core', 'broadcast', ('index', + """ + current index in broadcasted result + + Examples + -------- + + >>> import numpy as np + >>> x = np.array([[1], [2], [3]]) + >>> y = np.array([4, 5, 6]) + >>> b = np.broadcast(x, y) + >>> b.index + 0 + >>> next(b), next(b), next(b) + ((1, 4), (1, 5), (1, 6)) + >>> b.index + 3 + + """)) + +add_newdoc('numpy._core', 'broadcast', ('iters', + """ + tuple of iterators along ``self``'s "components." + + Returns a tuple of `numpy.flatiter` objects, one for each "component" + of ``self``. + + See Also + -------- + numpy.flatiter + + Examples + -------- + + >>> import numpy as np + >>> x = np.array([1, 2, 3]) + >>> y = np.array([[4], [5], [6]]) + >>> b = np.broadcast(x, y) + >>> row, col = b.iters + >>> next(row), next(col) + (1, 4) + + """)) + +add_newdoc('numpy._core', 'broadcast', ('ndim', + """ + Number of dimensions of broadcasted result. Alias for `nd`. + + Examples + -------- + >>> import numpy as np + >>> x = np.array([1, 2, 3]) + >>> y = np.array([[4], [5], [6]]) + >>> b = np.broadcast(x, y) + >>> b.ndim + 2 + + """)) + +add_newdoc('numpy._core', 'broadcast', ('nd', + """ + Number of dimensions of broadcasted result. For code intended for NumPy + 1.12.0 and later the more consistent `ndim` is preferred. + + Examples + -------- + >>> import numpy as np + >>> x = np.array([1, 2, 3]) + >>> y = np.array([[4], [5], [6]]) + >>> b = np.broadcast(x, y) + >>> b.nd + 2 + + """)) + +add_newdoc('numpy._core', 'broadcast', ('numiter', + """ + Number of iterators possessed by the broadcasted result. + + Examples + -------- + >>> import numpy as np + >>> x = np.array([1, 2, 3]) + >>> y = np.array([[4], [5], [6]]) + >>> b = np.broadcast(x, y) + >>> b.numiter + 2 + + """)) + +add_newdoc('numpy._core', 'broadcast', ('shape', + """ + Shape of broadcasted result. + + Examples + -------- + >>> import numpy as np + >>> x = np.array([1, 2, 3]) + >>> y = np.array([[4], [5], [6]]) + >>> b = np.broadcast(x, y) + >>> b.shape + (3, 3) + + """)) + +add_newdoc('numpy._core', 'broadcast', ('size', + """ + Total size of broadcasted result. + + Examples + -------- + >>> import numpy as np + >>> x = np.array([1, 2, 3]) + >>> y = np.array([[4], [5], [6]]) + >>> b = np.broadcast(x, y) + >>> b.size + 9 + + """)) + +add_newdoc('numpy._core', 'broadcast', ('reset', + """ + reset() + + Reset the broadcasted result's iterator(s). + + Parameters + ---------- + None + + Returns + ------- + None + + Examples + -------- + >>> import numpy as np + >>> x = np.array([1, 2, 3]) + >>> y = np.array([[4], [5], [6]]) + >>> b = np.broadcast(x, y) + >>> b.index + 0 + >>> next(b), next(b), next(b) + ((1, 4), (2, 4), (3, 4)) + >>> b.index + 3 + >>> b.reset() + >>> b.index + 0 + + """)) + +############################################################################### +# +# numpy functions +# +############################################################################### + +add_newdoc('numpy._core.multiarray', 'array', + """ + array(object, dtype=None, *, copy=True, order='K', subok=False, ndmin=0, + like=None) + + Create an array. + + Parameters + ---------- + object : array_like + An array, any object exposing the array interface, an object whose + ``__array__`` method returns an array, or any (nested) sequence. + If object is a scalar, a 0-dimensional array containing object is + returned. + dtype : data-type, optional + The desired data-type for the array. If not given, NumPy will try to use + a default ``dtype`` that can represent the values (by applying promotion + rules when necessary.) + copy : bool, optional + If ``True`` (default), then the array data is copied. If ``None``, + a copy will only be made if ``__array__`` returns a copy, if obj is + a nested sequence, or if a copy is needed to satisfy any of the other + requirements (``dtype``, ``order``, etc.). Note that any copy of + the data is shallow, i.e., for arrays with object dtype, the new + array will point to the same objects. See Examples for `ndarray.copy`. + For ``False`` it raises a ``ValueError`` if a copy cannot be avoided. + Default: ``True``. + order : {'K', 'A', 'C', 'F'}, optional + Specify the memory layout of the array. If object is not an array, the + newly created array will be in C order (row major) unless 'F' is + specified, in which case it will be in Fortran order (column major). + If object is an array the following holds. + + ===== ========= =================================================== + order no copy copy=True + ===== ========= =================================================== + 'K' unchanged F & C order preserved, otherwise most similar order + 'A' unchanged F order if input is F and not C, otherwise C order + 'C' C order C order + 'F' F order F order + ===== ========= =================================================== + + When ``copy=None`` and a copy is made for other reasons, the result is + the same as if ``copy=True``, with some exceptions for 'A', see the + Notes section. The default order is 'K'. + subok : bool, optional + If True, then sub-classes will be passed-through, otherwise + the returned array will be forced to be a base-class array (default). + ndmin : int, optional + Specifies the minimum number of dimensions that the resulting + array should have. Ones will be prepended to the shape as + needed to meet this requirement. + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray + An array object satisfying the specified requirements. + + See Also + -------- + empty_like : Return an empty array with shape and type of input. + ones_like : Return an array of ones with shape and type of input. + zeros_like : Return an array of zeros with shape and type of input. + full_like : Return a new array with shape of input filled with value. + empty : Return a new uninitialized array. + ones : Return a new array setting values to one. + zeros : Return a new array setting values to zero. + full : Return a new array of given shape filled with value. + copy: Return an array copy of the given object. + + + Notes + ----- + When order is 'A' and ``object`` is an array in neither 'C' nor 'F' order, + and a copy is forced by a change in dtype, then the order of the result is + not necessarily 'C' as expected. This is likely a bug. + + Examples + -------- + >>> import numpy as np + >>> np.array([1, 2, 3]) + array([1, 2, 3]) + + Upcasting: + + >>> np.array([1, 2, 3.0]) + array([ 1., 2., 3.]) + + More than one dimension: + + >>> np.array([[1, 2], [3, 4]]) + array([[1, 2], + [3, 4]]) + + Minimum dimensions 2: + + >>> np.array([1, 2, 3], ndmin=2) + array([[1, 2, 3]]) + + Type provided: + + >>> np.array([1, 2, 3], dtype=complex) + array([ 1.+0.j, 2.+0.j, 3.+0.j]) + + Data-type consisting of more than one element: + + >>> x = np.array([(1,2),(3,4)],dtype=[('a','>> x['a'] + array([1, 3], dtype=int32) + + Creating an array from sub-classes: + + >>> np.array(np.asmatrix('1 2; 3 4')) + array([[1, 2], + [3, 4]]) + + >>> np.array(np.asmatrix('1 2; 3 4'), subok=True) + matrix([[1, 2], + [3, 4]]) + + """) + +add_newdoc('numpy._core.multiarray', 'asarray', + """ + asarray(a, dtype=None, order=None, *, device=None, copy=None, like=None) + + Convert the input to an array. + + Parameters + ---------- + a : array_like + Input data, in any form that can be converted to an array. This + includes lists, lists of tuples, tuples, tuples of tuples, tuples + of lists and ndarrays. + dtype : data-type, optional + By default, the data-type is inferred from the input data. + order : {'C', 'F', 'A', 'K'}, optional + Memory layout. 'A' and 'K' depend on the order of input array a. + 'C' row-major (C-style), + 'F' column-major (Fortran-style) memory representation. + 'A' (any) means 'F' if `a` is Fortran contiguous, 'C' otherwise + 'K' (keep) preserve input order + Defaults to 'K'. + device : str, optional + The device on which to place the created array. Default: ``None``. + For Array-API interoperability only, so must be ``"cpu"`` if passed. + + .. versionadded:: 2.0.0 + copy : bool, optional + If ``True``, then the object is copied. If ``None`` then the object is + copied only if needed, i.e. if ``__array__`` returns a copy, if obj + is a nested sequence, or if a copy is needed to satisfy any of + the other requirements (``dtype``, ``order``, etc.). + For ``False`` it raises a ``ValueError`` if a copy cannot be avoided. + Default: ``None``. + + .. versionadded:: 2.0.0 + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray + Array interpretation of ``a``. No copy is performed if the input + is already an ndarray with matching dtype and order. If ``a`` is a + subclass of ndarray, a base class ndarray is returned. + + See Also + -------- + asanyarray : Similar function which passes through subclasses. + ascontiguousarray : Convert input to a contiguous array. + asfortranarray : Convert input to an ndarray with column-major + memory order. + asarray_chkfinite : Similar function which checks input for NaNs and Infs. + fromiter : Create an array from an iterator. + fromfunction : Construct an array by executing a function on grid + positions. + + Examples + -------- + Convert a list into an array: + + >>> a = [1, 2] + >>> import numpy as np + >>> np.asarray(a) + array([1, 2]) + + Existing arrays are not copied: + + >>> a = np.array([1, 2]) + >>> np.asarray(a) is a + True + + If `dtype` is set, array is copied only if dtype does not match: + + >>> a = np.array([1, 2], dtype=np.float32) + >>> np.shares_memory(np.asarray(a, dtype=np.float32), a) + True + >>> np.shares_memory(np.asarray(a, dtype=np.float64), a) + False + + Contrary to `asanyarray`, ndarray subclasses are not passed through: + + >>> issubclass(np.recarray, np.ndarray) + True + >>> a = np.array([(1., 2), (3., 4)], dtype='f4,i4').view(np.recarray) + >>> np.asarray(a) is a + False + >>> np.asanyarray(a) is a + True + + """) + +add_newdoc('numpy._core.multiarray', 'asanyarray', + """ + asanyarray(a, dtype=None, order=None, *, device=None, copy=None, like=None) + + Convert the input to an ndarray, but pass ndarray subclasses through. + + Parameters + ---------- + a : array_like + Input data, in any form that can be converted to an array. This + includes scalars, lists, lists of tuples, tuples, tuples of tuples, + tuples of lists, and ndarrays. + dtype : data-type, optional + By default, the data-type is inferred from the input data. + order : {'C', 'F', 'A', 'K'}, optional + Memory layout. 'A' and 'K' depend on the order of input array a. + 'C' row-major (C-style), + 'F' column-major (Fortran-style) memory representation. + 'A' (any) means 'F' if `a` is Fortran contiguous, 'C' otherwise + 'K' (keep) preserve input order + Defaults to 'C'. + device : str, optional + The device on which to place the created array. Default: ``None``. + For Array-API interoperability only, so must be ``"cpu"`` if passed. + + .. versionadded:: 2.1.0 + + copy : bool, optional + If ``True``, then the object is copied. If ``None`` then the object is + copied only if needed, i.e. if ``__array__`` returns a copy, if obj + is a nested sequence, or if a copy is needed to satisfy any of + the other requirements (``dtype``, ``order``, etc.). + For ``False`` it raises a ``ValueError`` if a copy cannot be avoided. + Default: ``None``. + + .. versionadded:: 2.1.0 + + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray or an ndarray subclass + Array interpretation of `a`. If `a` is an ndarray or a subclass + of ndarray, it is returned as-is and no copy is performed. + + See Also + -------- + asarray : Similar function which always returns ndarrays. + ascontiguousarray : Convert input to a contiguous array. + asfortranarray : Convert input to an ndarray with column-major + memory order. + asarray_chkfinite : Similar function which checks input for NaNs and + Infs. + fromiter : Create an array from an iterator. + fromfunction : Construct an array by executing a function on grid + positions. + + Examples + -------- + Convert a list into an array: + + >>> a = [1, 2] + >>> import numpy as np + >>> np.asanyarray(a) + array([1, 2]) + + Instances of `ndarray` subclasses are passed through as-is: + + >>> a = np.array([(1., 2), (3., 4)], dtype='f4,i4').view(np.recarray) + >>> np.asanyarray(a) is a + True + + """) + +add_newdoc('numpy._core.multiarray', 'ascontiguousarray', + """ + ascontiguousarray(a, dtype=None, *, like=None) + + Return a contiguous array (ndim >= 1) in memory (C order). + + Parameters + ---------- + a : array_like + Input array. + dtype : str or dtype object, optional + Data-type of returned array. + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray + Contiguous array of same shape and content as `a`, with type `dtype` + if specified. + + See Also + -------- + asfortranarray : Convert input to an ndarray with column-major + memory order. + require : Return an ndarray that satisfies requirements. + ndarray.flags : Information about the memory layout of the array. + + Examples + -------- + Starting with a Fortran-contiguous array: + + >>> import numpy as np + >>> x = np.ones((2, 3), order='F') + >>> x.flags['F_CONTIGUOUS'] + True + + Calling ``ascontiguousarray`` makes a C-contiguous copy: + + >>> y = np.ascontiguousarray(x) + >>> y.flags['C_CONTIGUOUS'] + True + >>> np.may_share_memory(x, y) + False + + Now, starting with a C-contiguous array: + + >>> x = np.ones((2, 3), order='C') + >>> x.flags['C_CONTIGUOUS'] + True + + Then, calling ``ascontiguousarray`` returns the same object: + + >>> y = np.ascontiguousarray(x) + >>> x is y + True + + Note: This function returns an array with at least one-dimension (1-d) + so it will not preserve 0-d arrays. + + """) + +add_newdoc('numpy._core.multiarray', 'asfortranarray', + """ + asfortranarray(a, dtype=None, *, like=None) + + Return an array (ndim >= 1) laid out in Fortran order in memory. + + Parameters + ---------- + a : array_like + Input array. + dtype : str or dtype object, optional + By default, the data-type is inferred from the input data. + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray + The input `a` in Fortran, or column-major, order. + + See Also + -------- + ascontiguousarray : Convert input to a contiguous (C order) array. + asanyarray : Convert input to an ndarray with either row or + column-major memory order. + require : Return an ndarray that satisfies requirements. + ndarray.flags : Information about the memory layout of the array. + + Examples + -------- + Starting with a C-contiguous array: + + >>> import numpy as np + >>> x = np.ones((2, 3), order='C') + >>> x.flags['C_CONTIGUOUS'] + True + + Calling ``asfortranarray`` makes a Fortran-contiguous copy: + + >>> y = np.asfortranarray(x) + >>> y.flags['F_CONTIGUOUS'] + True + >>> np.may_share_memory(x, y) + False + + Now, starting with a Fortran-contiguous array: + + >>> x = np.ones((2, 3), order='F') + >>> x.flags['F_CONTIGUOUS'] + True + + Then, calling ``asfortranarray`` returns the same object: + + >>> y = np.asfortranarray(x) + >>> x is y + True + + Note: This function returns an array with at least one-dimension (1-d) + so it will not preserve 0-d arrays. + + """) + +add_newdoc('numpy._core.multiarray', 'empty', + """ + empty(shape, dtype=float, order='C', *, device=None, like=None) + + Return a new array of given shape and type, without initializing entries. + + Parameters + ---------- + shape : int or tuple of int + Shape of the empty array, e.g., ``(2, 3)`` or ``2``. + dtype : data-type, optional + Desired output data-type for the array, e.g, `numpy.int8`. Default is + `numpy.float64`. + order : {'C', 'F'}, optional, default: 'C' + Whether to store multi-dimensional data in row-major + (C-style) or column-major (Fortran-style) order in + memory. + device : str, optional + The device on which to place the created array. Default: ``None``. + For Array-API interoperability only, so must be ``"cpu"`` if passed. + + .. versionadded:: 2.0.0 + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray + Array of uninitialized (arbitrary) data of the given shape, dtype, and + order. Object arrays will be initialized to None. + + See Also + -------- + empty_like : Return an empty array with shape and type of input. + ones : Return a new array setting values to one. + zeros : Return a new array setting values to zero. + full : Return a new array of given shape filled with value. + + Notes + ----- + Unlike other array creation functions (e.g. `zeros`, `ones`, `full`), + `empty` does not initialize the values of the array, and may therefore be + marginally faster. However, the values stored in the newly allocated array + are arbitrary. For reproducible behavior, be sure to set each element of + the array before reading. + + Examples + -------- + >>> import numpy as np + >>> np.empty([2, 2]) + array([[ -9.74499359e+001, 6.69583040e-309], + [ 2.13182611e-314, 3.06959433e-309]]) #uninitialized + + >>> np.empty([2, 2], dtype=int) + array([[-1073741821, -1067949133], + [ 496041986, 19249760]]) #uninitialized + + """) + +add_newdoc('numpy._core.multiarray', 'scalar', + """ + scalar(dtype, obj) + + Return a new scalar array of the given type initialized with obj. + + This function is meant mainly for pickle support. `dtype` must be a + valid data-type descriptor. If `dtype` corresponds to an object + descriptor, then `obj` can be any object, otherwise `obj` must be a + string. If `obj` is not given, it will be interpreted as None for object + type and as zeros for all other types. + + """) + +add_newdoc('numpy._core.multiarray', 'zeros', + """ + zeros(shape, dtype=float, order='C', *, like=None) + + Return a new array of given shape and type, filled with zeros. + + Parameters + ---------- + shape : int or tuple of ints + Shape of the new array, e.g., ``(2, 3)`` or ``2``. + dtype : data-type, optional + The desired data-type for the array, e.g., `numpy.int8`. Default is + `numpy.float64`. + order : {'C', 'F'}, optional, default: 'C' + Whether to store multi-dimensional data in row-major + (C-style) or column-major (Fortran-style) order in + memory. + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray + Array of zeros with the given shape, dtype, and order. + + See Also + -------- + zeros_like : Return an array of zeros with shape and type of input. + empty : Return a new uninitialized array. + ones : Return a new array setting values to one. + full : Return a new array of given shape filled with value. + + Examples + -------- + >>> import numpy as np + >>> np.zeros(5) + array([ 0., 0., 0., 0., 0.]) + + >>> np.zeros((5,), dtype=int) + array([0, 0, 0, 0, 0]) + + >>> np.zeros((2, 1)) + array([[ 0.], + [ 0.]]) + + >>> s = (2,2) + >>> np.zeros(s) + array([[ 0., 0.], + [ 0., 0.]]) + + >>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype + array([(0, 0), (0, 0)], + dtype=[('x', '>> import numpy as np + >>> np.fromstring('1 2', dtype=int, sep=' ') + array([1, 2]) + >>> np.fromstring('1, 2', dtype=int, sep=',') + array([1, 2]) + + """) + +add_newdoc('numpy._core.multiarray', 'compare_chararrays', + """ + compare_chararrays(a1, a2, cmp, rstrip) + + Performs element-wise comparison of two string arrays using the + comparison operator specified by `cmp`. + + Parameters + ---------- + a1, a2 : array_like + Arrays to be compared. + cmp : {"<", "<=", "==", ">=", ">", "!="} + Type of comparison. + rstrip : Boolean + If True, the spaces at the end of Strings are removed before the comparison. + + Returns + ------- + out : ndarray + The output array of type Boolean with the same shape as a and b. + + Raises + ------ + ValueError + If `cmp` is not valid. + TypeError + If at least one of `a` or `b` is a non-string array + + Examples + -------- + >>> import numpy as np + >>> a = np.array(["a", "b", "cde"]) + >>> b = np.array(["a", "a", "dec"]) + >>> np.char.compare_chararrays(a, b, ">", True) + array([False, True, False]) + + """) + +add_newdoc('numpy._core.multiarray', 'fromiter', + """ + fromiter(iter, dtype, count=-1, *, like=None) + + Create a new 1-dimensional array from an iterable object. + + Parameters + ---------- + iter : iterable object + An iterable object providing data for the array. + dtype : data-type + The data-type of the returned array. + + .. versionchanged:: 1.23 + Object and subarray dtypes are now supported (note that the final + result is not 1-D for a subarray dtype). + + count : int, optional + The number of items to read from *iterable*. The default is -1, + which means all data is read. + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray + The output array. + + Notes + ----- + Specify `count` to improve performance. It allows ``fromiter`` to + pre-allocate the output array, instead of resizing it on demand. + + Examples + -------- + >>> import numpy as np + >>> iterable = (x*x for x in range(5)) + >>> np.fromiter(iterable, float) + array([ 0., 1., 4., 9., 16.]) + + A carefully constructed subarray dtype will lead to higher dimensional + results: + + >>> iterable = ((x+1, x+2) for x in range(5)) + >>> np.fromiter(iterable, dtype=np.dtype((int, 2))) + array([[1, 2], + [2, 3], + [3, 4], + [4, 5], + [5, 6]]) + + + """) + +add_newdoc('numpy._core.multiarray', 'fromfile', + """ + fromfile(file, dtype=float, count=-1, sep='', offset=0, *, like=None) + + Construct an array from data in a text or binary file. + + A highly efficient way of reading binary data with a known data-type, + as well as parsing simply formatted text files. Data written using the + `tofile` method can be read using this function. + + Parameters + ---------- + file : file or str or Path + Open file object or filename. + dtype : data-type + Data type of the returned array. + For binary files, it is used to determine the size and byte-order + of the items in the file. + Most builtin numeric types are supported and extension types may be supported. + count : int + Number of items to read. ``-1`` means all items (i.e., the complete + file). + sep : str + Separator between items if file is a text file. + Empty ("") separator means the file should be treated as binary. + Spaces (" ") in the separator match zero or more whitespace characters. + A separator consisting only of spaces must match at least one + whitespace. + offset : int + The offset (in bytes) from the file's current position. Defaults to 0. + Only permitted for binary files. + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + See also + -------- + load, save + ndarray.tofile + loadtxt : More flexible way of loading data from a text file. + + Notes + ----- + Do not rely on the combination of `tofile` and `fromfile` for + data storage, as the binary files generated are not platform + independent. In particular, no byte-order or data-type information is + saved. Data can be stored in the platform independent ``.npy`` format + using `save` and `load` instead. + + Examples + -------- + Construct an ndarray: + + >>> import numpy as np + >>> dt = np.dtype([('time', [('min', np.int64), ('sec', np.int64)]), + ... ('temp', float)]) + >>> x = np.zeros((1,), dtype=dt) + >>> x['time']['min'] = 10; x['temp'] = 98.25 + >>> x + array([((10, 0), 98.25)], + dtype=[('time', [('min', '>> import tempfile + >>> fname = tempfile.mkstemp()[1] + >>> x.tofile(fname) + + Read the raw data from disk: + + >>> np.fromfile(fname, dtype=dt) + array([((10, 0), 98.25)], + dtype=[('time', [('min', '>> np.save(fname, x) + >>> np.load(fname + '.npy') + array([((10, 0), 98.25)], + dtype=[('time', [('min', '>> dt = np.dtype(int) + >>> dt = dt.newbyteorder('>') + >>> np.frombuffer(buf, dtype=dt) # doctest: +SKIP + + The data of the resulting array will not be byteswapped, but will be + interpreted correctly. + + This function creates a view into the original object. This should be safe + in general, but it may make sense to copy the result when the original + object is mutable or untrusted. + + Examples + -------- + >>> import numpy as np + >>> s = b'hello world' + >>> np.frombuffer(s, dtype='S1', count=5, offset=6) + array([b'w', b'o', b'r', b'l', b'd'], dtype='|S1') + + >>> np.frombuffer(b'\\x01\\x02', dtype=np.uint8) + array([1, 2], dtype=uint8) + >>> np.frombuffer(b'\\x01\\x02\\x03\\x04\\x05', dtype=np.uint8, count=3) + array([1, 2, 3], dtype=uint8) + + """) + +add_newdoc('numpy._core.multiarray', 'from_dlpack', + """ + from_dlpack(x, /, *, device=None, copy=None) + + Create a NumPy array from an object implementing the ``__dlpack__`` + protocol. Generally, the returned NumPy array is a view of the input + object. See [1]_ and [2]_ for more details. + + Parameters + ---------- + x : object + A Python object that implements the ``__dlpack__`` and + ``__dlpack_device__`` methods. + device : device, optional + Device on which to place the created array. Default: ``None``. + Must be ``"cpu"`` if passed which may allow importing an array + that is not already CPU available. + copy : bool, optional + Boolean indicating whether or not to copy the input. If ``True``, + the copy will be made. If ``False``, the function will never copy, + and will raise ``BufferError`` in case a copy is deemed necessary. + Passing it requests a copy from the exporter who may or may not + implement the capability. + If ``None``, the function will reuse the existing memory buffer if + possible and copy otherwise. Default: ``None``. + + + Returns + ------- + out : ndarray + + References + ---------- + .. [1] Array API documentation, + https://data-apis.org/array-api/latest/design_topics/data_interchange.html#syntax-for-data-interchange-with-dlpack + + .. [2] Python specification for DLPack, + https://dmlc.github.io/dlpack/latest/python_spec.html + + Examples + -------- + >>> import torch # doctest: +SKIP + >>> x = torch.arange(10) # doctest: +SKIP + >>> # create a view of the torch tensor "x" in NumPy + >>> y = np.from_dlpack(x) # doctest: +SKIP + """) + +add_newdoc('numpy._core.multiarray', 'correlate', + """cross_correlate(a,v, mode=0)""") + +add_newdoc('numpy._core.multiarray', 'arange', + """ + arange([start,] stop[, step,], dtype=None, *, device=None, like=None) + + Return evenly spaced values within a given interval. + + ``arange`` can be called with a varying number of positional arguments: + + * ``arange(stop)``: Values are generated within the half-open interval + ``[0, stop)`` (in other words, the interval including `start` but + excluding `stop`). + * ``arange(start, stop)``: Values are generated within the half-open + interval ``[start, stop)``. + * ``arange(start, stop, step)`` Values are generated within the half-open + interval ``[start, stop)``, with spacing between values given by + ``step``. + + For integer arguments the function is roughly equivalent to the Python + built-in :py:class:`range`, but returns an ndarray rather than a ``range`` + instance. + + When using a non-integer step, such as 0.1, it is often better to use + `numpy.linspace`. + + See the Warning sections below for more information. + + Parameters + ---------- + start : integer or real, optional + Start of interval. The interval includes this value. The default + start value is 0. + stop : integer or real + End of interval. The interval does not include this value, except + in some cases where `step` is not an integer and floating point + round-off affects the length of `out`. + step : integer or real, optional + Spacing between values. For any output `out`, this is the distance + between two adjacent values, ``out[i+1] - out[i]``. The default + step size is 1. If `step` is specified as a position argument, + `start` must also be given. + dtype : dtype, optional + The type of the output array. If `dtype` is not given, infer the data + type from the other input arguments. + device : str, optional + The device on which to place the created array. Default: ``None``. + For Array-API interoperability only, so must be ``"cpu"`` if passed. + + .. versionadded:: 2.0.0 + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + arange : ndarray + Array of evenly spaced values. + + For floating point arguments, the length of the result is + ``ceil((stop - start)/step)``. Because of floating point overflow, + this rule may result in the last element of `out` being greater + than `stop`. + + Warnings + -------- + The length of the output might not be numerically stable. + + Another stability issue is due to the internal implementation of + `numpy.arange`. + The actual step value used to populate the array is + ``dtype(start + step) - dtype(start)`` and not `step`. Precision loss + can occur here, due to casting or due to using floating points when + `start` is much larger than `step`. This can lead to unexpected + behaviour. For example:: + + >>> np.arange(0, 5, 0.5, dtype=int) + array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) + >>> np.arange(-3, 3, 0.5, dtype=int) + array([-3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8]) + + In such cases, the use of `numpy.linspace` should be preferred. + + The built-in :py:class:`range` generates :std:doc:`Python built-in integers + that have arbitrary size `, while `numpy.arange` + produces `numpy.int32` or `numpy.int64` numbers. This may result in + incorrect results for large integer values:: + + >>> power = 40 + >>> modulo = 10000 + >>> x1 = [(n ** power) % modulo for n in range(8)] + >>> x2 = [(n ** power) % modulo for n in np.arange(8)] + >>> print(x1) + [0, 1, 7776, 8801, 6176, 625, 6576, 4001] # correct + >>> print(x2) + [0, 1, 7776, 7185, 0, 5969, 4816, 3361] # incorrect + + See Also + -------- + numpy.linspace : Evenly spaced numbers with careful handling of endpoints. + numpy.ogrid: Arrays of evenly spaced numbers in N-dimensions. + numpy.mgrid: Grid-shaped arrays of evenly spaced numbers in N-dimensions. + :ref:`how-to-partition` + + Examples + -------- + >>> import numpy as np + >>> np.arange(3) + array([0, 1, 2]) + >>> np.arange(3.0) + array([ 0., 1., 2.]) + >>> np.arange(3,7) + array([3, 4, 5, 6]) + >>> np.arange(3,7,2) + array([3, 5]) + + """) + +add_newdoc('numpy._core.multiarray', '_get_ndarray_c_version', + """_get_ndarray_c_version() + + Return the compile time NPY_VERSION (formerly called NDARRAY_VERSION) number. + + """) + +add_newdoc('numpy._core.multiarray', '_reconstruct', + """_reconstruct(subtype, shape, dtype) + + Construct an empty array. Used by Pickles. + + """) + +add_newdoc('numpy._core.multiarray', 'promote_types', + """ + promote_types(type1, type2) + + Returns the data type with the smallest size and smallest scalar + kind to which both ``type1`` and ``type2`` may be safely cast. + The returned data type is always considered "canonical", this mainly + means that the promoted dtype will always be in native byte order. + + This function is symmetric, but rarely associative. + + Parameters + ---------- + type1 : dtype or dtype specifier + First data type. + type2 : dtype or dtype specifier + Second data type. + + Returns + ------- + out : dtype + The promoted data type. + + Notes + ----- + Please see `numpy.result_type` for additional information about promotion. + + Starting in NumPy 1.9, promote_types function now returns a valid string + length when given an integer or float dtype as one argument and a string + dtype as another argument. Previously it always returned the input string + dtype, even if it wasn't long enough to store the max integer/float value + converted to a string. + + .. versionchanged:: 1.23.0 + + NumPy now supports promotion for more structured dtypes. It will now + remove unnecessary padding from a structure dtype and promote included + fields individually. + + See Also + -------- + result_type, dtype, can_cast + + Examples + -------- + >>> import numpy as np + >>> np.promote_types('f4', 'f8') + dtype('float64') + + >>> np.promote_types('i8', 'f4') + dtype('float64') + + >>> np.promote_types('>i8', '>> np.promote_types('i4', 'S8') + dtype('S11') + + An example of a non-associative case: + + >>> p = np.promote_types + >>> p('S', p('i1', 'u1')) + dtype('S6') + >>> p(p('S', 'i1'), 'u1') + dtype('S4') + + """) + +add_newdoc('numpy._core.multiarray', 'c_einsum', + """ + c_einsum(subscripts, *operands, out=None, dtype=None, order='K', + casting='safe') + + *This documentation shadows that of the native python implementation of the `einsum` function, + except all references and examples related to the `optimize` argument (v 0.12.0) have been removed.* + + Evaluates the Einstein summation convention on the operands. + + Using the Einstein summation convention, many common multi-dimensional, + linear algebraic array operations can be represented in a simple fashion. + In *implicit* mode `einsum` computes these values. + + In *explicit* mode, `einsum` provides further flexibility to compute + other array operations that might not be considered classical Einstein + summation operations, by disabling, or forcing summation over specified + subscript labels. + + See the notes and examples for clarification. + + Parameters + ---------- + subscripts : str + Specifies the subscripts for summation as comma separated list of + subscript labels. An implicit (classical Einstein summation) + calculation is performed unless the explicit indicator '->' is + included as well as subscript labels of the precise output form. + operands : list of array_like + These are the arrays for the operation. + out : ndarray, optional + If provided, the calculation is done into this array. + dtype : {data-type, None}, optional + If provided, forces the calculation to use the data type specified. + Note that you may have to also give a more liberal `casting` + parameter to allow the conversions. Default is None. + order : {'C', 'F', 'A', 'K'}, optional + Controls the memory layout of the output. 'C' means it should + be C contiguous. 'F' means it should be Fortran contiguous, + 'A' means it should be 'F' if the inputs are all 'F', 'C' otherwise. + 'K' means it should be as close to the layout of the inputs as + is possible, including arbitrarily permuted axes. + Default is 'K'. + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional + Controls what kind of data casting may occur. Setting this to + 'unsafe' is not recommended, as it can adversely affect accumulations. + + * 'no' means the data types should not be cast at all. + * 'equiv' means only byte-order changes are allowed. + * 'safe' means only casts which can preserve values are allowed. + * 'same_kind' means only safe casts or casts within a kind, + like float64 to float32, are allowed. + * 'unsafe' means any data conversions may be done. + + Default is 'safe'. + optimize : {False, True, 'greedy', 'optimal'}, optional + Controls if intermediate optimization should occur. No optimization + will occur if False and True will default to the 'greedy' algorithm. + Also accepts an explicit contraction list from the ``np.einsum_path`` + function. See ``np.einsum_path`` for more details. Defaults to False. + + Returns + ------- + output : ndarray + The calculation based on the Einstein summation convention. + + See Also + -------- + einsum_path, dot, inner, outer, tensordot, linalg.multi_dot + + Notes + ----- + The Einstein summation convention can be used to compute + many multi-dimensional, linear algebraic array operations. `einsum` + provides a succinct way of representing these. + + A non-exhaustive list of these operations, + which can be computed by `einsum`, is shown below along with examples: + + * Trace of an array, :py:func:`numpy.trace`. + * Return a diagonal, :py:func:`numpy.diag`. + * Array axis summations, :py:func:`numpy.sum`. + * Transpositions and permutations, :py:func:`numpy.transpose`. + * Matrix multiplication and dot product, :py:func:`numpy.matmul` :py:func:`numpy.dot`. + * Vector inner and outer products, :py:func:`numpy.inner` :py:func:`numpy.outer`. + * Broadcasting, element-wise and scalar multiplication, :py:func:`numpy.multiply`. + * Tensor contractions, :py:func:`numpy.tensordot`. + * Chained array operations, in efficient calculation order, :py:func:`numpy.einsum_path`. + + The subscripts string is a comma-separated list of subscript labels, + where each label refers to a dimension of the corresponding operand. + Whenever a label is repeated it is summed, so ``np.einsum('i,i', a, b)`` + is equivalent to :py:func:`np.inner(a,b) `. If a label + appears only once, it is not summed, so ``np.einsum('i', a)`` produces a + view of ``a`` with no changes. A further example ``np.einsum('ij,jk', a, b)`` + describes traditional matrix multiplication and is equivalent to + :py:func:`np.matmul(a,b) `. Repeated subscript labels in one + operand take the diagonal. For example, ``np.einsum('ii', a)`` is equivalent + to :py:func:`np.trace(a) `. + + In *implicit mode*, the chosen subscripts are important + since the axes of the output are reordered alphabetically. This + means that ``np.einsum('ij', a)`` doesn't affect a 2D array, while + ``np.einsum('ji', a)`` takes its transpose. Additionally, + ``np.einsum('ij,jk', a, b)`` returns a matrix multiplication, while, + ``np.einsum('ij,jh', a, b)`` returns the transpose of the + multiplication since subscript 'h' precedes subscript 'i'. + + In *explicit mode* the output can be directly controlled by + specifying output subscript labels. This requires the + identifier '->' as well as the list of output subscript labels. + This feature increases the flexibility of the function since + summing can be disabled or forced when required. The call + ``np.einsum('i->', a)`` is like :py:func:`np.sum(a) ` + if ``a`` is a 1-D array, and ``np.einsum('ii->i', a)`` + is like :py:func:`np.diag(a) ` if ``a`` is a square 2-D array. + The difference is that `einsum` does not allow broadcasting by default. + Additionally ``np.einsum('ij,jh->ih', a, b)`` directly specifies the + order of the output subscript labels and therefore returns matrix + multiplication, unlike the example above in implicit mode. + + To enable and control broadcasting, use an ellipsis. Default + NumPy-style broadcasting is done by adding an ellipsis + to the left of each term, like ``np.einsum('...ii->...i', a)``. + ``np.einsum('...i->...', a)`` is like + :py:func:`np.sum(a, axis=-1) ` for array ``a`` of any shape. + To take the trace along the first and last axes, + you can do ``np.einsum('i...i', a)``, or to do a matrix-matrix + product with the left-most indices instead of rightmost, one can do + ``np.einsum('ij...,jk...->ik...', a, b)``. + + When there is only one operand, no axes are summed, and no output + parameter is provided, a view into the operand is returned instead + of a new array. Thus, taking the diagonal as ``np.einsum('ii->i', a)`` + produces a view (changed in version 1.10.0). + + `einsum` also provides an alternative way to provide the subscripts + and operands as ``einsum(op0, sublist0, op1, sublist1, ..., [sublistout])``. + If the output shape is not provided in this format `einsum` will be + calculated in implicit mode, otherwise it will be performed explicitly. + The examples below have corresponding `einsum` calls with the two + parameter methods. + + Views returned from einsum are now writeable whenever the input array + is writeable. For example, ``np.einsum('ijk...->kji...', a)`` will now + have the same effect as :py:func:`np.swapaxes(a, 0, 2) ` + and ``np.einsum('ii->i', a)`` will return a writeable view of the diagonal + of a 2D array. + + Examples + -------- + >>> import numpy as np + >>> a = np.arange(25).reshape(5,5) + >>> b = np.arange(5) + >>> c = np.arange(6).reshape(2,3) + + Trace of a matrix: + + >>> np.einsum('ii', a) + 60 + >>> np.einsum(a, [0,0]) + 60 + >>> np.trace(a) + 60 + + Extract the diagonal (requires explicit form): + + >>> np.einsum('ii->i', a) + array([ 0, 6, 12, 18, 24]) + >>> np.einsum(a, [0,0], [0]) + array([ 0, 6, 12, 18, 24]) + >>> np.diag(a) + array([ 0, 6, 12, 18, 24]) + + Sum over an axis (requires explicit form): + + >>> np.einsum('ij->i', a) + array([ 10, 35, 60, 85, 110]) + >>> np.einsum(a, [0,1], [0]) + array([ 10, 35, 60, 85, 110]) + >>> np.sum(a, axis=1) + array([ 10, 35, 60, 85, 110]) + + For higher dimensional arrays summing a single axis can be done with ellipsis: + + >>> np.einsum('...j->...', a) + array([ 10, 35, 60, 85, 110]) + >>> np.einsum(a, [Ellipsis,1], [Ellipsis]) + array([ 10, 35, 60, 85, 110]) + + Compute a matrix transpose, or reorder any number of axes: + + >>> np.einsum('ji', c) + array([[0, 3], + [1, 4], + [2, 5]]) + >>> np.einsum('ij->ji', c) + array([[0, 3], + [1, 4], + [2, 5]]) + >>> np.einsum(c, [1,0]) + array([[0, 3], + [1, 4], + [2, 5]]) + >>> np.transpose(c) + array([[0, 3], + [1, 4], + [2, 5]]) + + Vector inner products: + + >>> np.einsum('i,i', b, b) + 30 + >>> np.einsum(b, [0], b, [0]) + 30 + >>> np.inner(b,b) + 30 + + Matrix vector multiplication: + + >>> np.einsum('ij,j', a, b) + array([ 30, 80, 130, 180, 230]) + >>> np.einsum(a, [0,1], b, [1]) + array([ 30, 80, 130, 180, 230]) + >>> np.dot(a, b) + array([ 30, 80, 130, 180, 230]) + >>> np.einsum('...j,j', a, b) + array([ 30, 80, 130, 180, 230]) + + Broadcasting and scalar multiplication: + + >>> np.einsum('..., ...', 3, c) + array([[ 0, 3, 6], + [ 9, 12, 15]]) + >>> np.einsum(',ij', 3, c) + array([[ 0, 3, 6], + [ 9, 12, 15]]) + >>> np.einsum(3, [Ellipsis], c, [Ellipsis]) + array([[ 0, 3, 6], + [ 9, 12, 15]]) + >>> np.multiply(3, c) + array([[ 0, 3, 6], + [ 9, 12, 15]]) + + Vector outer product: + + >>> np.einsum('i,j', np.arange(2)+1, b) + array([[0, 1, 2, 3, 4], + [0, 2, 4, 6, 8]]) + >>> np.einsum(np.arange(2)+1, [0], b, [1]) + array([[0, 1, 2, 3, 4], + [0, 2, 4, 6, 8]]) + >>> np.outer(np.arange(2)+1, b) + array([[0, 1, 2, 3, 4], + [0, 2, 4, 6, 8]]) + + Tensor contraction: + + >>> a = np.arange(60.).reshape(3,4,5) + >>> b = np.arange(24.).reshape(4,3,2) + >>> np.einsum('ijk,jil->kl', a, b) + array([[ 4400., 4730.], + [ 4532., 4874.], + [ 4664., 5018.], + [ 4796., 5162.], + [ 4928., 5306.]]) + >>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3]) + array([[ 4400., 4730.], + [ 4532., 4874.], + [ 4664., 5018.], + [ 4796., 5162.], + [ 4928., 5306.]]) + >>> np.tensordot(a,b, axes=([1,0],[0,1])) + array([[ 4400., 4730.], + [ 4532., 4874.], + [ 4664., 5018.], + [ 4796., 5162.], + [ 4928., 5306.]]) + + Writeable returned arrays (since version 1.10.0): + + >>> a = np.zeros((3, 3)) + >>> np.einsum('ii->i', a)[:] = 1 + >>> a + array([[ 1., 0., 0.], + [ 0., 1., 0.], + [ 0., 0., 1.]]) + + Example of ellipsis use: + + >>> a = np.arange(6).reshape((3,2)) + >>> b = np.arange(12).reshape((4,3)) + >>> np.einsum('ki,jk->ij', a, b) + array([[10, 28, 46, 64], + [13, 40, 67, 94]]) + >>> np.einsum('ki,...k->i...', a, b) + array([[10, 28, 46, 64], + [13, 40, 67, 94]]) + >>> np.einsum('k...,jk', a, b) + array([[10, 28, 46, 64], + [13, 40, 67, 94]]) + + """) + + +############################################################################## +# +# Documentation for ndarray attributes and methods +# +############################################################################## + + +############################################################################## +# +# ndarray object +# +############################################################################## + + +add_newdoc('numpy._core.multiarray', 'ndarray', + """ + ndarray(shape, dtype=float, buffer=None, offset=0, + strides=None, order=None) + + An array object represents a multidimensional, homogeneous array + of fixed-size items. An associated data-type object describes the + format of each element in the array (its byte-order, how many bytes it + occupies in memory, whether it is an integer, a floating point number, + or something else, etc.) + + Arrays should be constructed using `array`, `zeros` or `empty` (refer + to the See Also section below). The parameters given here refer to + a low-level method (`ndarray(...)`) for instantiating an array. + + For more information, refer to the `numpy` module and examine the + methods and attributes of an array. + + Parameters + ---------- + (for the __new__ method; see Notes below) + + shape : tuple of ints + Shape of created array. + dtype : data-type, optional + Any object that can be interpreted as a numpy data type. + buffer : object exposing buffer interface, optional + Used to fill the array with data. + offset : int, optional + Offset of array data in buffer. + strides : tuple of ints, optional + Strides of data in memory. + order : {'C', 'F'}, optional + Row-major (C-style) or column-major (Fortran-style) order. + + Attributes + ---------- + T : ndarray + Transpose of the array. + data : buffer + The array's elements, in memory. + dtype : dtype object + Describes the format of the elements in the array. + flags : dict + Dictionary containing information related to memory use, e.g., + 'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc. + flat : numpy.flatiter object + Flattened version of the array as an iterator. The iterator + allows assignments, e.g., ``x.flat = 3`` (See `ndarray.flat` for + assignment examples; TODO). + imag : ndarray + Imaginary part of the array. + real : ndarray + Real part of the array. + size : int + Number of elements in the array. + itemsize : int + The memory use of each array element in bytes. + nbytes : int + The total number of bytes required to store the array data, + i.e., ``itemsize * size``. + ndim : int + The array's number of dimensions. + shape : tuple of ints + Shape of the array. + strides : tuple of ints + The step-size required to move from one element to the next in + memory. For example, a contiguous ``(3, 4)`` array of type + ``int16`` in C-order has strides ``(8, 2)``. This implies that + to move from element to element in memory requires jumps of 2 bytes. + To move from row-to-row, one needs to jump 8 bytes at a time + (``2 * 4``). + ctypes : ctypes object + Class containing properties of the array needed for interaction + with ctypes. + base : ndarray + If the array is a view into another array, that array is its `base` + (unless that array is also a view). The `base` array is where the + array data is actually stored. + + See Also + -------- + array : Construct an array. + zeros : Create an array, each element of which is zero. + empty : Create an array, but leave its allocated memory unchanged (i.e., + it contains "garbage"). + dtype : Create a data-type. + numpy.typing.NDArray : An ndarray alias :term:`generic ` + w.r.t. its `dtype.type `. + + Notes + ----- + There are two modes of creating an array using ``__new__``: + + 1. If `buffer` is None, then only `shape`, `dtype`, and `order` + are used. + 2. If `buffer` is an object exposing the buffer interface, then + all keywords are interpreted. + + No ``__init__`` method is needed because the array is fully initialized + after the ``__new__`` method. + + Examples + -------- + These examples illustrate the low-level `ndarray` constructor. Refer + to the `See Also` section above for easier ways of constructing an + ndarray. + + First mode, `buffer` is None: + + >>> import numpy as np + >>> np.ndarray(shape=(2,2), dtype=float, order='F') + array([[0.0e+000, 0.0e+000], # random + [ nan, 2.5e-323]]) + + Second mode: + + >>> np.ndarray((2,), buffer=np.array([1,2,3]), + ... offset=np.int_().itemsize, + ... dtype=int) # offset = 1*itemsize, i.e. skip first element + array([2, 3]) + + """) + + +############################################################################## +# +# ndarray attributes +# +############################################################################## + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('__array_interface__', + """Array protocol: Python side.""")) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('__array_priority__', + """Array priority.""")) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('__array_struct__', + """Array protocol: C-struct side.""")) + +add_newdoc('numpy._core.multiarray', 'ndarray', ('__dlpack__', + """ + a.__dlpack__(*, stream=None, max_version=None, dl_device=None, copy=None) + + DLPack Protocol: Part of the Array API. + + """)) + +add_newdoc('numpy._core.multiarray', 'ndarray', ('__dlpack_device__', + """ + a.__dlpack_device__() + + DLPack Protocol: Part of the Array API. + + """)) + +add_newdoc('numpy._core.multiarray', 'ndarray', ('base', + """ + Base object if memory is from some other object. + + Examples + -------- + The base of an array that owns its memory is None: + + >>> import numpy as np + >>> x = np.array([1,2,3,4]) + >>> x.base is None + True + + Slicing creates a view, whose memory is shared with x: + + >>> y = x[2:] + >>> y.base is x + True + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('ctypes', + """ + An object to simplify the interaction of the array with the ctypes + module. + + This attribute creates an object that makes it easier to use arrays + when calling shared libraries with the ctypes module. The returned + object has, among others, data, shape, and strides attributes (see + Notes below) which themselves return ctypes objects that can be used + as arguments to a shared library. + + Parameters + ---------- + None + + Returns + ------- + c : Python object + Possessing attributes data, shape, strides, etc. + + See Also + -------- + numpy.ctypeslib + + Notes + ----- + Below are the public attributes of this object which were documented + in "Guide to NumPy" (we have omitted undocumented public attributes, + as well as documented private attributes): + + .. autoattribute:: numpy._core._internal._ctypes.data + :noindex: + + .. autoattribute:: numpy._core._internal._ctypes.shape + :noindex: + + .. autoattribute:: numpy._core._internal._ctypes.strides + :noindex: + + .. automethod:: numpy._core._internal._ctypes.data_as + :noindex: + + .. automethod:: numpy._core._internal._ctypes.shape_as + :noindex: + + .. automethod:: numpy._core._internal._ctypes.strides_as + :noindex: + + If the ctypes module is not available, then the ctypes attribute + of array objects still returns something useful, but ctypes objects + are not returned and errors may be raised instead. In particular, + the object will still have the ``as_parameter`` attribute which will + return an integer equal to the data attribute. + + Examples + -------- + >>> import numpy as np + >>> import ctypes + >>> x = np.array([[0, 1], [2, 3]], dtype=np.int32) + >>> x + array([[0, 1], + [2, 3]], dtype=int32) + >>> x.ctypes.data + 31962608 # may vary + >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32)) + <__main__.LP_c_uint object at 0x7ff2fc1fc200> # may vary + >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32)).contents + c_uint(0) + >>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint64)).contents + c_ulong(4294967296) + >>> x.ctypes.shape + # may vary + >>> x.ctypes.strides + # may vary + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('data', + """Python buffer object pointing to the start of the array's data.""")) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('dtype', + """ + Data-type of the array's elements. + + .. warning:: + + Setting ``arr.dtype`` is discouraged and may be deprecated in the + future. Setting will replace the ``dtype`` without modifying the + memory (see also `ndarray.view` and `ndarray.astype`). + + Parameters + ---------- + None + + Returns + ------- + d : numpy dtype object + + See Also + -------- + ndarray.astype : Cast the values contained in the array to a new data-type. + ndarray.view : Create a view of the same data but a different data-type. + numpy.dtype + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(4).reshape((2, 2)) + >>> x + array([[0, 1], + [2, 3]]) + >>> x.dtype + dtype('int64') # may vary (OS, bitness) + >>> isinstance(x.dtype, np.dtype) + True + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('imag', + """ + The imaginary part of the array. + + Examples + -------- + >>> import numpy as np + >>> x = np.sqrt([1+0j, 0+1j]) + >>> x.imag + array([ 0. , 0.70710678]) + >>> x.imag.dtype + dtype('float64') + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('itemsize', + """ + Length of one array element in bytes. + + Examples + -------- + >>> import numpy as np + >>> x = np.array([1,2,3], dtype=np.float64) + >>> x.itemsize + 8 + >>> x = np.array([1,2,3], dtype=np.complex128) + >>> x.itemsize + 16 + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('flags', + """ + Information about the memory layout of the array. + + Attributes + ---------- + C_CONTIGUOUS (C) + The data is in a single, C-style contiguous segment. + F_CONTIGUOUS (F) + The data is in a single, Fortran-style contiguous segment. + OWNDATA (O) + The array owns the memory it uses or borrows it from another object. + WRITEABLE (W) + The data area can be written to. Setting this to False locks + the data, making it read-only. A view (slice, etc.) inherits WRITEABLE + from its base array at creation time, but a view of a writeable + array may be subsequently locked while the base array remains writeable. + (The opposite is not true, in that a view of a locked array may not + be made writeable. However, currently, locking a base object does not + lock any views that already reference it, so under that circumstance it + is possible to alter the contents of a locked array via a previously + created writeable view onto it.) Attempting to change a non-writeable + array raises a RuntimeError exception. + ALIGNED (A) + The data and all elements are aligned appropriately for the hardware. + WRITEBACKIFCOPY (X) + This array is a copy of some other array. The C-API function + PyArray_ResolveWritebackIfCopy must be called before deallocating + to the base array will be updated with the contents of this array. + FNC + F_CONTIGUOUS and not C_CONTIGUOUS. + FORC + F_CONTIGUOUS or C_CONTIGUOUS (one-segment test). + BEHAVED (B) + ALIGNED and WRITEABLE. + CARRAY (CA) + BEHAVED and C_CONTIGUOUS. + FARRAY (FA) + BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS. + + Notes + ----- + The `flags` object can be accessed dictionary-like (as in ``a.flags['WRITEABLE']``), + or by using lowercased attribute names (as in ``a.flags.writeable``). Short flag + names are only supported in dictionary access. + + Only the WRITEBACKIFCOPY, WRITEABLE, and ALIGNED flags can be + changed by the user, via direct assignment to the attribute or dictionary + entry, or by calling `ndarray.setflags`. + + The array flags cannot be set arbitrarily: + + - WRITEBACKIFCOPY can only be set ``False``. + - ALIGNED can only be set ``True`` if the data is truly aligned. + - WRITEABLE can only be set ``True`` if the array owns its own memory + or the ultimate owner of the memory exposes a writeable buffer + interface or is a string. + + Arrays can be both C-style and Fortran-style contiguous simultaneously. + This is clear for 1-dimensional arrays, but can also be true for higher + dimensional arrays. + + Even for contiguous arrays a stride for a given dimension + ``arr.strides[dim]`` may be *arbitrary* if ``arr.shape[dim] == 1`` + or the array has no elements. + It does *not* generally hold that ``self.strides[-1] == self.itemsize`` + for C-style contiguous arrays or ``self.strides[0] == self.itemsize`` for + Fortran-style contiguous arrays is true. + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('flat', + """ + A 1-D iterator over the array. + + This is a `numpy.flatiter` instance, which acts similarly to, but is not + a subclass of, Python's built-in iterator object. + + See Also + -------- + flatten : Return a copy of the array collapsed into one dimension. + + flatiter + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(1, 7).reshape(2, 3) + >>> x + array([[1, 2, 3], + [4, 5, 6]]) + >>> x.flat[3] + 4 + >>> x.T + array([[1, 4], + [2, 5], + [3, 6]]) + >>> x.T.flat[3] + 5 + >>> type(x.flat) + + + An assignment example: + + >>> x.flat = 3; x + array([[3, 3, 3], + [3, 3, 3]]) + >>> x.flat[[1,4]] = 1; x + array([[3, 1, 3], + [3, 1, 3]]) + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('nbytes', + """ + Total bytes consumed by the elements of the array. + + Notes + ----- + Does not include memory consumed by non-element attributes of the + array object. + + See Also + -------- + sys.getsizeof + Memory consumed by the object itself without parents in case view. + This does include memory consumed by non-element attributes. + + Examples + -------- + >>> import numpy as np + >>> x = np.zeros((3,5,2), dtype=np.complex128) + >>> x.nbytes + 480 + >>> np.prod(x.shape) * x.itemsize + 480 + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('ndim', + """ + Number of array dimensions. + + Examples + -------- + >>> import numpy as np + >>> x = np.array([1, 2, 3]) + >>> x.ndim + 1 + >>> y = np.zeros((2, 3, 4)) + >>> y.ndim + 3 + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('real', + """ + The real part of the array. + + Examples + -------- + >>> import numpy as np + >>> x = np.sqrt([1+0j, 0+1j]) + >>> x.real + array([ 1. , 0.70710678]) + >>> x.real.dtype + dtype('float64') + + See Also + -------- + numpy.real : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('shape', + """ + Tuple of array dimensions. + + The shape property is usually used to get the current shape of an array, + but may also be used to reshape the array in-place by assigning a tuple of + array dimensions to it. As with `numpy.reshape`, one of the new shape + dimensions can be -1, in which case its value is inferred from the size of + the array and the remaining dimensions. Reshaping an array in-place will + fail if a copy is required. + + .. warning:: + + Setting ``arr.shape`` is discouraged and may be deprecated in the + future. Using `ndarray.reshape` is the preferred approach. + + Examples + -------- + >>> import numpy as np + >>> x = np.array([1, 2, 3, 4]) + >>> x.shape + (4,) + >>> y = np.zeros((2, 3, 4)) + >>> y.shape + (2, 3, 4) + >>> y.shape = (3, 8) + >>> y + array([[ 0., 0., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0.], + [ 0., 0., 0., 0., 0., 0., 0., 0.]]) + >>> y.shape = (3, 6) + Traceback (most recent call last): + File "", line 1, in + ValueError: cannot reshape array of size 24 into shape (3,6) + >>> np.zeros((4,2))[::2].shape = (-1,) + Traceback (most recent call last): + File "", line 1, in + AttributeError: Incompatible shape for in-place modification. Use + `.reshape()` to make a copy with the desired shape. + + See Also + -------- + numpy.shape : Equivalent getter function. + numpy.reshape : Function similar to setting ``shape``. + ndarray.reshape : Method similar to setting ``shape``. + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('size', + """ + Number of elements in the array. + + Equal to ``np.prod(a.shape)``, i.e., the product of the array's + dimensions. + + Notes + ----- + `a.size` returns a standard arbitrary precision Python integer. This + may not be the case with other methods of obtaining the same value + (like the suggested ``np.prod(a.shape)``, which returns an instance + of ``np.int_``), and may be relevant if the value is used further in + calculations that may overflow a fixed size integer type. + + Examples + -------- + >>> import numpy as np + >>> x = np.zeros((3, 5, 2), dtype=np.complex128) + >>> x.size + 30 + >>> np.prod(x.shape) + 30 + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('strides', + """ + Tuple of bytes to step in each dimension when traversing an array. + + The byte offset of element ``(i[0], i[1], ..., i[n])`` in an array `a` + is:: + + offset = sum(np.array(i) * a.strides) + + A more detailed explanation of strides can be found in + :ref:`arrays.ndarray`. + + .. warning:: + + Setting ``arr.strides`` is discouraged and may be deprecated in the + future. `numpy.lib.stride_tricks.as_strided` should be preferred + to create a new view of the same data in a safer way. + + Notes + ----- + Imagine an array of 32-bit integers (each 4 bytes):: + + x = np.array([[0, 1, 2, 3, 4], + [5, 6, 7, 8, 9]], dtype=np.int32) + + This array is stored in memory as 40 bytes, one after the other + (known as a contiguous block of memory). The strides of an array tell + us how many bytes we have to skip in memory to move to the next position + along a certain axis. For example, we have to skip 4 bytes (1 value) to + move to the next column, but 20 bytes (5 values) to get to the same + position in the next row. As such, the strides for the array `x` will be + ``(20, 4)``. + + See Also + -------- + numpy.lib.stride_tricks.as_strided + + Examples + -------- + >>> import numpy as np + >>> y = np.reshape(np.arange(2 * 3 * 4, dtype=np.int32), (2, 3, 4)) + >>> y + array([[[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]], + [[12, 13, 14, 15], + [16, 17, 18, 19], + [20, 21, 22, 23]]], dtype=np.int32) + >>> y.strides + (48, 16, 4) + >>> y[1, 1, 1] + np.int32(17) + >>> offset = sum(y.strides * np.array((1, 1, 1))) + >>> offset // y.itemsize + np.int64(17) + + >>> x = np.reshape(np.arange(5*6*7*8, dtype=np.int32), (5, 6, 7, 8)) + >>> x = x.transpose(2, 3, 1, 0) + >>> x.strides + (32, 4, 224, 1344) + >>> i = np.array([3, 5, 2, 2], dtype=np.int32) + >>> offset = sum(i * x.strides) + >>> x[3, 5, 2, 2] + np.int32(813) + >>> offset // x.itemsize + np.int64(813) + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('T', + """ + View of the transposed array. + + Same as ``self.transpose()``. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1, 2], [3, 4]]) + >>> a + array([[1, 2], + [3, 4]]) + >>> a.T + array([[1, 3], + [2, 4]]) + + >>> a = np.array([1, 2, 3, 4]) + >>> a + array([1, 2, 3, 4]) + >>> a.T + array([1, 2, 3, 4]) + + See Also + -------- + transpose + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('mT', + """ + View of the matrix transposed array. + + The matrix transpose is the transpose of the last two dimensions, even + if the array is of higher dimension. + + .. versionadded:: 2.0 + + Raises + ------ + ValueError + If the array is of dimension less than 2. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1, 2], [3, 4]]) + >>> a + array([[1, 2], + [3, 4]]) + >>> a.mT + array([[1, 3], + [2, 4]]) + + >>> a = np.arange(8).reshape((2, 2, 2)) + >>> a + array([[[0, 1], + [2, 3]], + + [[4, 5], + [6, 7]]]) + >>> a.mT + array([[[0, 2], + [1, 3]], + + [[4, 6], + [5, 7]]]) + + """)) +############################################################################## +# +# ndarray methods +# +############################################################################## + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('__array__', + """ + a.__array__([dtype], *, copy=None) + + For ``dtype`` parameter it returns a new reference to self if + ``dtype`` is not given or it matches array's data type. + A new array of provided data type is returned if ``dtype`` + is different from the current data type of the array. + For ``copy`` parameter it returns a new reference to self if + ``copy=False`` or ``copy=None`` and copying isn't enforced by ``dtype`` + parameter. The method returns a new array for ``copy=True``, regardless of + ``dtype`` parameter. + + A more detailed explanation of the ``__array__`` interface + can be found in :ref:`dunder_array.interface`. + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('__array_finalize__', + """ + a.__array_finalize__(obj, /) + + Present so subclasses can call super. Does nothing. + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('__array_wrap__', + """ + a.__array_wrap__(array[, context], /) + + Returns a view of `array` with the same type as self. + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('__copy__', + """ + a.__copy__() + + Used if :func:`copy.copy` is called on an array. Returns a copy of the array. + + Equivalent to ``a.copy(order='K')``. + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('__class_getitem__', + """ + a.__class_getitem__(item, /) + + Return a parametrized wrapper around the `~numpy.ndarray` type. + + .. versionadded:: 1.22 + + Returns + ------- + alias : types.GenericAlias + A parametrized `~numpy.ndarray` type. + + Examples + -------- + >>> from typing import Any + >>> import numpy as np + + >>> np.ndarray[Any, np.dtype[np.uint8]] + numpy.ndarray[typing.Any, numpy.dtype[numpy.uint8]] + + See Also + -------- + :pep:`585` : Type hinting generics in standard collections. + numpy.typing.NDArray : An ndarray alias :term:`generic ` + w.r.t. its `dtype.type `. + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('__deepcopy__', + """ + a.__deepcopy__(memo, /) + + Used if :func:`copy.deepcopy` is called on an array. + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('__reduce__', + """ + a.__reduce__() + + For pickling. + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('__setstate__', + """ + a.__setstate__(state, /) + + For unpickling. + + The `state` argument must be a sequence that contains the following + elements: + + Parameters + ---------- + version : int + optional pickle version. If omitted defaults to 0. + shape : tuple + dtype : data-type + isFortran : bool + rawdata : string or list + a binary string with the data (or a list if 'a' is an object array) + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('all', + """ + a.all(axis=None, out=None, keepdims=False, *, where=True) + + Returns True if all elements evaluate to True. + + Refer to `numpy.all` for full documentation. + + See Also + -------- + numpy.all : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('any', + """ + a.any(axis=None, out=None, keepdims=False, *, where=True) + + Returns True if any of the elements of `a` evaluate to True. + + Refer to `numpy.any` for full documentation. + + See Also + -------- + numpy.any : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('argmax', + """ + a.argmax(axis=None, out=None, *, keepdims=False) + + Return indices of the maximum values along the given axis. + + Refer to `numpy.argmax` for full documentation. + + See Also + -------- + numpy.argmax : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('argmin', + """ + a.argmin(axis=None, out=None, *, keepdims=False) + + Return indices of the minimum values along the given axis. + + Refer to `numpy.argmin` for detailed documentation. + + See Also + -------- + numpy.argmin : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('argsort', + """ + a.argsort(axis=-1, kind=None, order=None) + + Returns the indices that would sort this array. + + Refer to `numpy.argsort` for full documentation. + + See Also + -------- + numpy.argsort : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('argpartition', + """ + a.argpartition(kth, axis=-1, kind='introselect', order=None) + + Returns the indices that would partition this array. + + Refer to `numpy.argpartition` for full documentation. + + See Also + -------- + numpy.argpartition : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('astype', + """ + a.astype(dtype, order='K', casting='unsafe', subok=True, copy=True) + + Copy of the array, cast to a specified type. + + Parameters + ---------- + dtype : str or dtype + Typecode or data-type to which the array is cast. + order : {'C', 'F', 'A', 'K'}, optional + Controls the memory layout order of the result. + 'C' means C order, 'F' means Fortran order, 'A' + means 'F' order if all the arrays are Fortran contiguous, + 'C' order otherwise, and 'K' means as close to the + order the array elements appear in memory as possible. + Default is 'K'. + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional + Controls what kind of data casting may occur. Defaults to 'unsafe' + for backwards compatibility. + + * 'no' means the data types should not be cast at all. + * 'equiv' means only byte-order changes are allowed. + * 'safe' means only casts which can preserve values are allowed. + * 'same_kind' means only safe casts or casts within a kind, + like float64 to float32, are allowed. + * 'unsafe' means any data conversions may be done. + subok : bool, optional + If True, then sub-classes will be passed-through (default), otherwise + the returned array will be forced to be a base-class array. + copy : bool, optional + By default, astype always returns a newly allocated array. If this + is set to false, and the `dtype`, `order`, and `subok` + requirements are satisfied, the input array is returned instead + of a copy. + + Returns + ------- + arr_t : ndarray + Unless `copy` is False and the other conditions for returning the input + array are satisfied (see description for `copy` input parameter), `arr_t` + is a new array of the same shape as the input array, with dtype, order + given by `dtype`, `order`. + + Raises + ------ + ComplexWarning + When casting from complex to float or int. To avoid this, + one should use ``a.real.astype(t)``. + + Examples + -------- + >>> import numpy as np + >>> x = np.array([1, 2, 2.5]) + >>> x + array([1. , 2. , 2.5]) + + >>> x.astype(int) + array([1, 2, 2]) + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('byteswap', + """ + a.byteswap(inplace=False) + + Swap the bytes of the array elements + + Toggle between low-endian and big-endian data representation by + returning a byteswapped array, optionally swapped in-place. + Arrays of byte-strings are not swapped. The real and imaginary + parts of a complex number are swapped individually. + + Parameters + ---------- + inplace : bool, optional + If ``True``, swap bytes in-place, default is ``False``. + + Returns + ------- + out : ndarray + The byteswapped array. If `inplace` is ``True``, this is + a view to self. + + Examples + -------- + >>> import numpy as np + >>> A = np.array([1, 256, 8755], dtype=np.int16) + >>> list(map(hex, A)) + ['0x1', '0x100', '0x2233'] + >>> A.byteswap(inplace=True) + array([ 256, 1, 13090], dtype=int16) + >>> list(map(hex, A)) + ['0x100', '0x1', '0x3322'] + + Arrays of byte-strings are not swapped + + >>> A = np.array([b'ceg', b'fac']) + >>> A.byteswap() + array([b'ceg', b'fac'], dtype='|S3') + + ``A.view(A.dtype.newbyteorder()).byteswap()`` produces an array with + the same values but different representation in memory + + >>> A = np.array([1, 2, 3],dtype=np.int64) + >>> A.view(np.uint8) + array([1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, + 0, 0], dtype=uint8) + >>> A.view(A.dtype.newbyteorder()).byteswap(inplace=True) + array([1, 2, 3], dtype='>i8') + >>> A.view(np.uint8) + array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, + 0, 3], dtype=uint8) + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('choose', + """ + a.choose(choices, out=None, mode='raise') + + Use an index array to construct a new array from a set of choices. + + Refer to `numpy.choose` for full documentation. + + See Also + -------- + numpy.choose : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('clip', + """ + a.clip(min=None, max=None, out=None, **kwargs) + + Return an array whose values are limited to ``[min, max]``. + One of max or min must be given. + + Refer to `numpy.clip` for full documentation. + + See Also + -------- + numpy.clip : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('compress', + """ + a.compress(condition, axis=None, out=None) + + Return selected slices of this array along given axis. + + Refer to `numpy.compress` for full documentation. + + See Also + -------- + numpy.compress : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('conj', + """ + a.conj() + + Complex-conjugate all elements. + + Refer to `numpy.conjugate` for full documentation. + + See Also + -------- + numpy.conjugate : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('conjugate', + """ + a.conjugate() + + Return the complex conjugate, element-wise. + + Refer to `numpy.conjugate` for full documentation. + + See Also + -------- + numpy.conjugate : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('copy', + """ + a.copy(order='C') + + Return a copy of the array. + + Parameters + ---------- + order : {'C', 'F', 'A', 'K'}, optional + Controls the memory layout of the copy. 'C' means C-order, + 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous, + 'C' otherwise. 'K' means match the layout of `a` as closely + as possible. (Note that this function and :func:`numpy.copy` are very + similar but have different default values for their order= + arguments, and this function always passes sub-classes through.) + + See also + -------- + numpy.copy : Similar function with different default behavior + numpy.copyto + + Notes + ----- + This function is the preferred method for creating an array copy. The + function :func:`numpy.copy` is similar, but it defaults to using order 'K', + and will not pass sub-classes through by default. + + Examples + -------- + >>> import numpy as np + >>> x = np.array([[1,2,3],[4,5,6]], order='F') + + >>> y = x.copy() + + >>> x.fill(0) + + >>> x + array([[0, 0, 0], + [0, 0, 0]]) + + >>> y + array([[1, 2, 3], + [4, 5, 6]]) + + >>> y.flags['C_CONTIGUOUS'] + True + + For arrays containing Python objects (e.g. dtype=object), + the copy is a shallow one. The new array will contain the + same object which may lead to surprises if that object can + be modified (is mutable): + + >>> a = np.array([1, 'm', [2, 3, 4]], dtype=object) + >>> b = a.copy() + >>> b[2][0] = 10 + >>> a + array([1, 'm', list([10, 3, 4])], dtype=object) + + To ensure all elements within an ``object`` array are copied, + use `copy.deepcopy`: + + >>> import copy + >>> a = np.array([1, 'm', [2, 3, 4]], dtype=object) + >>> c = copy.deepcopy(a) + >>> c[2][0] = 10 + >>> c + array([1, 'm', list([10, 3, 4])], dtype=object) + >>> a + array([1, 'm', list([2, 3, 4])], dtype=object) + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('cumprod', + """ + a.cumprod(axis=None, dtype=None, out=None) + + Return the cumulative product of the elements along the given axis. + + Refer to `numpy.cumprod` for full documentation. + + See Also + -------- + numpy.cumprod : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('cumsum', + """ + a.cumsum(axis=None, dtype=None, out=None) + + Return the cumulative sum of the elements along the given axis. + + Refer to `numpy.cumsum` for full documentation. + + See Also + -------- + numpy.cumsum : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('diagonal', + """ + a.diagonal(offset=0, axis1=0, axis2=1) + + Return specified diagonals. In NumPy 1.9 the returned array is a + read-only view instead of a copy as in previous NumPy versions. In + a future version the read-only restriction will be removed. + + Refer to :func:`numpy.diagonal` for full documentation. + + See Also + -------- + numpy.diagonal : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('dot')) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('dump', + """ + a.dump(file) + + Dump a pickle of the array to the specified file. + The array can be read back with pickle.load or numpy.load. + + Parameters + ---------- + file : str or Path + A string naming the dump file. + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('dumps', + """ + a.dumps() + + Returns the pickle of the array as a string. + pickle.loads will convert the string back to an array. + + Parameters + ---------- + None + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('fill', + """ + a.fill(value) + + Fill the array with a scalar value. + + Parameters + ---------- + value : scalar + All elements of `a` will be assigned this value. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([1, 2]) + >>> a.fill(0) + >>> a + array([0, 0]) + >>> a = np.empty(2) + >>> a.fill(1) + >>> a + array([1., 1.]) + + Fill expects a scalar value and always behaves the same as assigning + to a single array element. The following is a rare example where this + distinction is important: + + >>> a = np.array([None, None], dtype=object) + >>> a[0] = np.array(3) + >>> a + array([array(3), None], dtype=object) + >>> a.fill(np.array(3)) + >>> a + array([array(3), array(3)], dtype=object) + + Where other forms of assignments will unpack the array being assigned: + + >>> a[...] = np.array(3) + >>> a + array([3, 3], dtype=object) + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('flatten', + """ + a.flatten(order='C') + + Return a copy of the array collapsed into one dimension. + + Parameters + ---------- + order : {'C', 'F', 'A', 'K'}, optional + 'C' means to flatten in row-major (C-style) order. + 'F' means to flatten in column-major (Fortran- + style) order. 'A' means to flatten in column-major + order if `a` is Fortran *contiguous* in memory, + row-major order otherwise. 'K' means to flatten + `a` in the order the elements occur in memory. + The default is 'C'. + + Returns + ------- + y : ndarray + A copy of the input array, flattened to one dimension. + + See Also + -------- + ravel : Return a flattened array. + flat : A 1-D flat iterator over the array. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1,2], [3,4]]) + >>> a.flatten() + array([1, 2, 3, 4]) + >>> a.flatten('F') + array([1, 3, 2, 4]) + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('getfield', + """ + a.getfield(dtype, offset=0) + + Returns a field of the given array as a certain type. + + A field is a view of the array data with a given data-type. The values in + the view are determined by the given type and the offset into the current + array in bytes. The offset needs to be such that the view dtype fits in the + array dtype; for example an array of dtype complex128 has 16-byte elements. + If taking a view with a 32-bit integer (4 bytes), the offset needs to be + between 0 and 12 bytes. + + Parameters + ---------- + dtype : str or dtype + The data type of the view. The dtype size of the view can not be larger + than that of the array itself. + offset : int + Number of bytes to skip before beginning the element view. + + Examples + -------- + >>> import numpy as np + >>> x = np.diag([1.+1.j]*2) + >>> x[1, 1] = 2 + 4.j + >>> x + array([[1.+1.j, 0.+0.j], + [0.+0.j, 2.+4.j]]) + >>> x.getfield(np.float64) + array([[1., 0.], + [0., 2.]]) + + By choosing an offset of 8 bytes we can select the complex part of the + array for our view: + + >>> x.getfield(np.float64, offset=8) + array([[1., 0.], + [0., 4.]]) + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('item', + """ + a.item(*args) + + Copy an element of an array to a standard Python scalar and return it. + + Parameters + ---------- + \\*args : Arguments (variable number and type) + + * none: in this case, the method only works for arrays + with one element (`a.size == 1`), which element is + copied into a standard Python scalar object and returned. + + * int_type: this argument is interpreted as a flat index into + the array, specifying which element to copy and return. + + * tuple of int_types: functions as does a single int_type argument, + except that the argument is interpreted as an nd-index into the + array. + + Returns + ------- + z : Standard Python scalar object + A copy of the specified element of the array as a suitable + Python scalar + + Notes + ----- + When the data type of `a` is longdouble or clongdouble, item() returns + a scalar array object because there is no available Python scalar that + would not lose information. Void arrays return a buffer object for item(), + unless fields are defined, in which case a tuple is returned. + + `item` is very similar to a[args], except, instead of an array scalar, + a standard Python scalar is returned. This can be useful for speeding up + access to elements of the array and doing arithmetic on elements of the + array using Python's optimized math. + + Examples + -------- + >>> import numpy as np + >>> np.random.seed(123) + >>> x = np.random.randint(9, size=(3, 3)) + >>> x + array([[2, 2, 6], + [1, 3, 6], + [1, 0, 1]]) + >>> x.item(3) + 1 + >>> x.item(7) + 0 + >>> x.item((0, 1)) + 2 + >>> x.item((2, 2)) + 1 + + For an array with object dtype, elements are returned as-is. + + >>> a = np.array([np.int64(1)], dtype=object) + >>> a.item() #return np.int64 + np.int64(1) + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('max', + """ + a.max(axis=None, out=None, keepdims=False, initial=, where=True) + + Return the maximum along a given axis. + + Refer to `numpy.amax` for full documentation. + + See Also + -------- + numpy.amax : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('mean', + """ + a.mean(axis=None, dtype=None, out=None, keepdims=False, *, where=True) + + Returns the average of the array elements along given axis. + + Refer to `numpy.mean` for full documentation. + + See Also + -------- + numpy.mean : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('min', + """ + a.min(axis=None, out=None, keepdims=False, initial=, where=True) + + Return the minimum along a given axis. + + Refer to `numpy.amin` for full documentation. + + See Also + -------- + numpy.amin : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('nonzero', + """ + a.nonzero() + + Return the indices of the elements that are non-zero. + + Refer to `numpy.nonzero` for full documentation. + + See Also + -------- + numpy.nonzero : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('prod', + """ + a.prod(axis=None, dtype=None, out=None, keepdims=False, + initial=1, where=True) + + Return the product of the array elements over the given axis + + Refer to `numpy.prod` for full documentation. + + See Also + -------- + numpy.prod : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('put', + """ + a.put(indices, values, mode='raise') + + Set ``a.flat[n] = values[n]`` for all `n` in indices. + + Refer to `numpy.put` for full documentation. + + See Also + -------- + numpy.put : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('ravel', + """ + a.ravel([order]) + + Return a flattened array. + + Refer to `numpy.ravel` for full documentation. + + See Also + -------- + numpy.ravel : equivalent function + + ndarray.flat : a flat iterator on the array. + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('repeat', + """ + a.repeat(repeats, axis=None) + + Repeat elements of an array. + + Refer to `numpy.repeat` for full documentation. + + See Also + -------- + numpy.repeat : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('reshape', + """ + a.reshape(shape, /, *, order='C', copy=None) + + Returns an array containing the same data with a new shape. + + Refer to `numpy.reshape` for full documentation. + + See Also + -------- + numpy.reshape : equivalent function + + Notes + ----- + Unlike the free function `numpy.reshape`, this method on `ndarray` allows + the elements of the shape parameter to be passed in as separate arguments. + For example, ``a.reshape(10, 11)`` is equivalent to + ``a.reshape((10, 11))``. + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('resize', + """ + a.resize(new_shape, refcheck=True) + + Change shape and size of array in-place. + + Parameters + ---------- + new_shape : tuple of ints, or `n` ints + Shape of resized array. + refcheck : bool, optional + If False, reference count will not be checked. Default is True. + + Returns + ------- + None + + Raises + ------ + ValueError + If `a` does not own its own data or references or views to it exist, + and the data memory must be changed. + PyPy only: will always raise if the data memory must be changed, since + there is no reliable way to determine if references or views to it + exist. + + SystemError + If the `order` keyword argument is specified. This behaviour is a + bug in NumPy. + + See Also + -------- + resize : Return a new array with the specified shape. + + Notes + ----- + This reallocates space for the data area if necessary. + + Only contiguous arrays (data elements consecutive in memory) can be + resized. + + The purpose of the reference count check is to make sure you + do not use this array as a buffer for another Python object and then + reallocate the memory. However, reference counts can increase in + other ways so if you are sure that you have not shared the memory + for this array with another Python object, then you may safely set + `refcheck` to False. + + Examples + -------- + Shrinking an array: array is flattened (in the order that the data are + stored in memory), resized, and reshaped: + + >>> import numpy as np + + >>> a = np.array([[0, 1], [2, 3]], order='C') + >>> a.resize((2, 1)) + >>> a + array([[0], + [1]]) + + >>> a = np.array([[0, 1], [2, 3]], order='F') + >>> a.resize((2, 1)) + >>> a + array([[0], + [2]]) + + Enlarging an array: as above, but missing entries are filled with zeros: + + >>> b = np.array([[0, 1], [2, 3]]) + >>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple + >>> b + array([[0, 1, 2], + [3, 0, 0]]) + + Referencing an array prevents resizing... + + >>> c = a + >>> a.resize((1, 1)) + Traceback (most recent call last): + ... + ValueError: cannot resize an array that references or is referenced ... + + Unless `refcheck` is False: + + >>> a.resize((1, 1), refcheck=False) + >>> a + array([[0]]) + >>> c + array([[0]]) + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('round', + """ + a.round(decimals=0, out=None) + + Return `a` with each element rounded to the given number of decimals. + + Refer to `numpy.around` for full documentation. + + See Also + -------- + numpy.around : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('searchsorted', + """ + a.searchsorted(v, side='left', sorter=None) + + Find indices where elements of v should be inserted in a to maintain order. + + For full documentation, see `numpy.searchsorted` + + See Also + -------- + numpy.searchsorted : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('setfield', + """ + a.setfield(val, dtype, offset=0) + + Put a value into a specified place in a field defined by a data-type. + + Place `val` into `a`'s field defined by `dtype` and beginning `offset` + bytes into the field. + + Parameters + ---------- + val : object + Value to be placed in field. + dtype : dtype object + Data-type of the field in which to place `val`. + offset : int, optional + The number of bytes into the field at which to place `val`. + + Returns + ------- + None + + See Also + -------- + getfield + + Examples + -------- + >>> import numpy as np + >>> x = np.eye(3) + >>> x.getfield(np.float64) + array([[1., 0., 0.], + [0., 1., 0.], + [0., 0., 1.]]) + >>> x.setfield(3, np.int32) + >>> x.getfield(np.int32) + array([[3, 3, 3], + [3, 3, 3], + [3, 3, 3]], dtype=int32) + >>> x + array([[1.0e+000, 1.5e-323, 1.5e-323], + [1.5e-323, 1.0e+000, 1.5e-323], + [1.5e-323, 1.5e-323, 1.0e+000]]) + >>> x.setfield(np.eye(3), np.int32) + >>> x + array([[1., 0., 0.], + [0., 1., 0.], + [0., 0., 1.]]) + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('setflags', + """ + a.setflags(write=None, align=None, uic=None) + + Set array flags WRITEABLE, ALIGNED, WRITEBACKIFCOPY, + respectively. + + These Boolean-valued flags affect how numpy interprets the memory + area used by `a` (see Notes below). The ALIGNED flag can only + be set to True if the data is actually aligned according to the type. + The WRITEBACKIFCOPY flag can never be set + to True. The flag WRITEABLE can only be set to True if the array owns its + own memory, or the ultimate owner of the memory exposes a writeable buffer + interface, or is a string. (The exception for string is made so that + unpickling can be done without copying memory.) + + Parameters + ---------- + write : bool, optional + Describes whether or not `a` can be written to. + align : bool, optional + Describes whether or not `a` is aligned properly for its type. + uic : bool, optional + Describes whether or not `a` is a copy of another "base" array. + + Notes + ----- + Array flags provide information about how the memory area used + for the array is to be interpreted. There are 7 Boolean flags + in use, only three of which can be changed by the user: + WRITEBACKIFCOPY, WRITEABLE, and ALIGNED. + + WRITEABLE (W) the data area can be written to; + + ALIGNED (A) the data and strides are aligned appropriately for the hardware + (as determined by the compiler); + + WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced + by .base). When the C-API function PyArray_ResolveWritebackIfCopy is + called, the base array will be updated with the contents of this array. + + All flags can be accessed using the single (upper case) letter as well + as the full name. + + Examples + -------- + >>> import numpy as np + >>> y = np.array([[3, 1, 7], + ... [2, 0, 0], + ... [8, 5, 9]]) + >>> y + array([[3, 1, 7], + [2, 0, 0], + [8, 5, 9]]) + >>> y.flags + C_CONTIGUOUS : True + F_CONTIGUOUS : False + OWNDATA : True + WRITEABLE : True + ALIGNED : True + WRITEBACKIFCOPY : False + >>> y.setflags(write=0, align=0) + >>> y.flags + C_CONTIGUOUS : True + F_CONTIGUOUS : False + OWNDATA : True + WRITEABLE : False + ALIGNED : False + WRITEBACKIFCOPY : False + >>> y.setflags(uic=1) + Traceback (most recent call last): + File "", line 1, in + ValueError: cannot set WRITEBACKIFCOPY flag to True + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('sort', + """ + a.sort(axis=-1, kind=None, order=None) + + Sort an array in-place. Refer to `numpy.sort` for full documentation. + + Parameters + ---------- + axis : int, optional + Axis along which to sort. Default is -1, which means sort along the + last axis. + kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional + Sorting algorithm. The default is 'quicksort'. Note that both 'stable' + and 'mergesort' use timsort under the covers and, in general, the + actual implementation will vary with datatype. The 'mergesort' option + is retained for backwards compatibility. + order : str or list of str, optional + When `a` is an array with fields defined, this argument specifies + which fields to compare first, second, etc. A single field can + be specified as a string, and not all fields need be specified, + but unspecified fields will still be used, in the order in which + they come up in the dtype, to break ties. + + See Also + -------- + numpy.sort : Return a sorted copy of an array. + numpy.argsort : Indirect sort. + numpy.lexsort : Indirect stable sort on multiple keys. + numpy.searchsorted : Find elements in sorted array. + numpy.partition: Partial sort. + + Notes + ----- + See `numpy.sort` for notes on the different sorting algorithms. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1,4], [3,1]]) + >>> a.sort(axis=1) + >>> a + array([[1, 4], + [1, 3]]) + >>> a.sort(axis=0) + >>> a + array([[1, 3], + [1, 4]]) + + Use the `order` keyword to specify a field to use when sorting a + structured array: + + >>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)]) + >>> a.sort(order='y') + >>> a + array([(b'c', 1), (b'a', 2)], + dtype=[('x', 'S1'), ('y', '>> import numpy as np + >>> a = np.array([3, 4, 2, 1]) + >>> a.partition(3) + >>> a + array([2, 1, 3, 4]) # may vary + + >>> a.partition((1, 3)) + >>> a + array([1, 2, 3, 4]) + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('squeeze', + """ + a.squeeze(axis=None) + + Remove axes of length one from `a`. + + Refer to `numpy.squeeze` for full documentation. + + See Also + -------- + numpy.squeeze : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('std', + """ + a.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True) + + Returns the standard deviation of the array elements along given axis. + + Refer to `numpy.std` for full documentation. + + See Also + -------- + numpy.std : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('sum', + """ + a.sum(axis=None, dtype=None, out=None, keepdims=False, initial=0, where=True) + + Return the sum of the array elements over the given axis. + + Refer to `numpy.sum` for full documentation. + + See Also + -------- + numpy.sum : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('swapaxes', + """ + a.swapaxes(axis1, axis2) + + Return a view of the array with `axis1` and `axis2` interchanged. + + Refer to `numpy.swapaxes` for full documentation. + + See Also + -------- + numpy.swapaxes : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('take', + """ + a.take(indices, axis=None, out=None, mode='raise') + + Return an array formed from the elements of `a` at the given indices. + + Refer to `numpy.take` for full documentation. + + See Also + -------- + numpy.take : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('tofile', + """ + a.tofile(fid, sep="", format="%s") + + Write array to a file as text or binary (default). + + Data is always written in 'C' order, independent of the order of `a`. + The data produced by this method can be recovered using the function + fromfile(). + + Parameters + ---------- + fid : file or str or Path + An open file object, or a string containing a filename. + sep : str + Separator between array items for text output. + If "" (empty), a binary file is written, equivalent to + ``file.write(a.tobytes())``. + format : str + Format string for text file output. + Each entry in the array is formatted to text by first converting + it to the closest Python type, and then using "format" % item. + + Notes + ----- + This is a convenience function for quick storage of array data. + Information on endianness and precision is lost, so this method is not a + good choice for files intended to archive data or transport data between + machines with different endianness. Some of these problems can be overcome + by outputting the data as text files, at the expense of speed and file + size. + + When fid is a file object, array contents are directly written to the + file, bypassing the file object's ``write`` method. As a result, tofile + cannot be used with files objects supporting compression (e.g., GzipFile) + or file-like objects that do not support ``fileno()`` (e.g., BytesIO). + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('tolist', + """ + a.tolist() + + Return the array as an ``a.ndim``-levels deep nested list of Python scalars. + + Return a copy of the array data as a (nested) Python list. + Data items are converted to the nearest compatible builtin Python type, via + the `~numpy.ndarray.item` function. + + If ``a.ndim`` is 0, then since the depth of the nested list is 0, it will + not be a list at all, but a simple Python scalar. + + Parameters + ---------- + none + + Returns + ------- + y : object, or list of object, or list of list of object, or ... + The possibly nested list of array elements. + + Notes + ----- + The array may be recreated via ``a = np.array(a.tolist())``, although this + may sometimes lose precision. + + Examples + -------- + For a 1D array, ``a.tolist()`` is almost the same as ``list(a)``, + except that ``tolist`` changes numpy scalars to Python scalars: + + >>> import numpy as np + >>> a = np.uint32([1, 2]) + >>> a_list = list(a) + >>> a_list + [np.uint32(1), np.uint32(2)] + >>> type(a_list[0]) + + >>> a_tolist = a.tolist() + >>> a_tolist + [1, 2] + >>> type(a_tolist[0]) + + + Additionally, for a 2D array, ``tolist`` applies recursively: + + >>> a = np.array([[1, 2], [3, 4]]) + >>> list(a) + [array([1, 2]), array([3, 4])] + >>> a.tolist() + [[1, 2], [3, 4]] + + The base case for this recursion is a 0D array: + + >>> a = np.array(1) + >>> list(a) + Traceback (most recent call last): + ... + TypeError: iteration over a 0-d array + >>> a.tolist() + 1 + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('tobytes', """ + a.tobytes(order='C') + + Construct Python bytes containing the raw data bytes in the array. + + Constructs Python bytes showing a copy of the raw contents of + data memory. The bytes object is produced in C-order by default. + This behavior is controlled by the ``order`` parameter. + + Parameters + ---------- + order : {'C', 'F', 'A'}, optional + Controls the memory layout of the bytes object. 'C' means C-order, + 'F' means F-order, 'A' (short for *Any*) means 'F' if `a` is + Fortran contiguous, 'C' otherwise. Default is 'C'. + + Returns + ------- + s : bytes + Python bytes exhibiting a copy of `a`'s raw data. + + See also + -------- + frombuffer + Inverse of this operation, construct a 1-dimensional array from Python + bytes. + + Examples + -------- + >>> import numpy as np + >>> x = np.array([[0, 1], [2, 3]], dtype='>> x.tobytes() + b'\\x00\\x00\\x01\\x00\\x02\\x00\\x03\\x00' + >>> x.tobytes('C') == x.tobytes() + True + >>> x.tobytes('F') + b'\\x00\\x00\\x02\\x00\\x01\\x00\\x03\\x00' + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('trace', + """ + a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None) + + Return the sum along diagonals of the array. + + Refer to `numpy.trace` for full documentation. + + See Also + -------- + numpy.trace : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('transpose', + """ + a.transpose(*axes) + + Returns a view of the array with axes transposed. + + Refer to `numpy.transpose` for full documentation. + + Parameters + ---------- + axes : None, tuple of ints, or `n` ints + + * None or no argument: reverses the order of the axes. + + * tuple of ints: `i` in the `j`-th place in the tuple means that the + array's `i`-th axis becomes the transposed array's `j`-th axis. + + * `n` ints: same as an n-tuple of the same ints (this form is + intended simply as a "convenience" alternative to the tuple form). + + Returns + ------- + p : ndarray + View of the array with its axes suitably permuted. + + See Also + -------- + transpose : Equivalent function. + ndarray.T : Array property returning the array transposed. + ndarray.reshape : Give a new shape to an array without changing its data. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1, 2], [3, 4]]) + >>> a + array([[1, 2], + [3, 4]]) + >>> a.transpose() + array([[1, 3], + [2, 4]]) + >>> a.transpose((1, 0)) + array([[1, 3], + [2, 4]]) + >>> a.transpose(1, 0) + array([[1, 3], + [2, 4]]) + + >>> a = np.array([1, 2, 3, 4]) + >>> a + array([1, 2, 3, 4]) + >>> a.transpose() + array([1, 2, 3, 4]) + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('var', + """ + a.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True) + + Returns the variance of the array elements, along given axis. + + Refer to `numpy.var` for full documentation. + + See Also + -------- + numpy.var : equivalent function + + """)) + + +add_newdoc('numpy._core.multiarray', 'ndarray', ('view', + """ + a.view([dtype][, type]) + + New view of array with the same data. + + .. note:: + Passing None for ``dtype`` is different from omitting the parameter, + since the former invokes ``dtype(None)`` which is an alias for + ``dtype('float64')``. + + Parameters + ---------- + dtype : data-type or ndarray sub-class, optional + Data-type descriptor of the returned view, e.g., float32 or int16. + Omitting it results in the view having the same data-type as `a`. + This argument can also be specified as an ndarray sub-class, which + then specifies the type of the returned object (this is equivalent to + setting the ``type`` parameter). + type : Python type, optional + Type of the returned view, e.g., ndarray or matrix. Again, omission + of the parameter results in type preservation. + + Notes + ----- + ``a.view()`` is used two different ways: + + ``a.view(some_dtype)`` or ``a.view(dtype=some_dtype)`` constructs a view + of the array's memory with a different data-type. This can cause a + reinterpretation of the bytes of memory. + + ``a.view(ndarray_subclass)`` or ``a.view(type=ndarray_subclass)`` just + returns an instance of `ndarray_subclass` that looks at the same array + (same shape, dtype, etc.) This does not cause a reinterpretation of the + memory. + + For ``a.view(some_dtype)``, if ``some_dtype`` has a different number of + bytes per entry than the previous dtype (for example, converting a regular + array to a structured array), then the last axis of ``a`` must be + contiguous. This axis will be resized in the result. + + .. versionchanged:: 1.23.0 + Only the last axis needs to be contiguous. Previously, the entire array + had to be C-contiguous. + + Examples + -------- + >>> import numpy as np + >>> x = np.array([(-1, 2)], dtype=[('a', np.int8), ('b', np.int8)]) + + Viewing array data using a different type and dtype: + + >>> nonneg = np.dtype([("a", np.uint8), ("b", np.uint8)]) + >>> y = x.view(dtype=nonneg, type=np.recarray) + >>> x["a"] + array([-1], dtype=int8) + >>> y.a + array([255], dtype=uint8) + + Creating a view on a structured array so it can be used in calculations + + >>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)]) + >>> xv = x.view(dtype=np.int8).reshape(-1,2) + >>> xv + array([[1, 2], + [3, 4]], dtype=int8) + >>> xv.mean(0) + array([2., 3.]) + + Making changes to the view changes the underlying array + + >>> xv[0,1] = 20 + >>> x + array([(1, 20), (3, 4)], dtype=[('a', 'i1'), ('b', 'i1')]) + + Using a view to convert an array to a recarray: + + >>> z = x.view(np.recarray) + >>> z.a + array([1, 3], dtype=int8) + + Views share data: + + >>> x[0] = (9, 10) + >>> z[0] + np.record((9, 10), dtype=[('a', 'i1'), ('b', 'i1')]) + + Views that change the dtype size (bytes per entry) should normally be + avoided on arrays defined by slices, transposes, fortran-ordering, etc.: + + >>> x = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int16) + >>> y = x[:, ::2] + >>> y + array([[1, 3], + [4, 6]], dtype=int16) + >>> y.view(dtype=[('width', np.int16), ('length', np.int16)]) + Traceback (most recent call last): + ... + ValueError: To change to a dtype of a different size, the last axis must be contiguous + >>> z = y.copy() + >>> z.view(dtype=[('width', np.int16), ('length', np.int16)]) + array([[(1, 3)], + [(4, 6)]], dtype=[('width', '>> x = np.arange(2 * 3 * 4, dtype=np.int8).reshape(2, 3, 4) + >>> x.transpose(1, 0, 2).view(np.int16) + array([[[ 256, 770], + [3340, 3854]], + + [[1284, 1798], + [4368, 4882]], + + [[2312, 2826], + [5396, 5910]]], dtype=int16) + + """)) + + +############################################################################## +# +# umath functions +# +############################################################################## + +add_newdoc('numpy._core.umath', 'frompyfunc', + """ + frompyfunc(func, /, nin, nout, *[, identity]) + + Takes an arbitrary Python function and returns a NumPy ufunc. + + Can be used, for example, to add broadcasting to a built-in Python + function (see Examples section). + + Parameters + ---------- + func : Python function object + An arbitrary Python function. + nin : int + The number of input arguments. + nout : int + The number of objects returned by `func`. + identity : object, optional + The value to use for the `~numpy.ufunc.identity` attribute of the resulting + object. If specified, this is equivalent to setting the underlying + C ``identity`` field to ``PyUFunc_IdentityValue``. + If omitted, the identity is set to ``PyUFunc_None``. Note that this is + _not_ equivalent to setting the identity to ``None``, which implies the + operation is reorderable. + + Returns + ------- + out : ufunc + Returns a NumPy universal function (``ufunc``) object. + + See Also + -------- + vectorize : Evaluates pyfunc over input arrays using broadcasting rules of numpy. + + Notes + ----- + The returned ufunc always returns PyObject arrays. + + Examples + -------- + Use frompyfunc to add broadcasting to the Python function ``oct``: + + >>> import numpy as np + >>> oct_array = np.frompyfunc(oct, 1, 1) + >>> oct_array(np.array((10, 30, 100))) + array(['0o12', '0o36', '0o144'], dtype=object) + >>> np.array((oct(10), oct(30), oct(100))) # for comparison + array(['0o12', '0o36', '0o144'], dtype='doc is NULL.) + + Parameters + ---------- + ufunc : numpy.ufunc + A ufunc whose current doc is NULL. + new_docstring : string + The new docstring for the ufunc. + + Notes + ----- + This method allocates memory for new_docstring on + the heap. Technically this creates a memory leak, since this + memory will not be reclaimed until the end of the program + even if the ufunc itself is removed. However this will only + be a problem if the user is repeatedly creating ufuncs with + no documentation, adding documentation via add_newdoc_ufunc, + and then throwing away the ufunc. + """) + +add_newdoc('numpy._core.multiarray', 'get_handler_name', + """ + get_handler_name(a: ndarray) -> str,None + + Return the name of the memory handler used by `a`. If not provided, return + the name of the memory handler that will be used to allocate data for the + next `ndarray` in this context. May return None if `a` does not own its + memory, in which case you can traverse ``a.base`` for a memory handler. + """) + +add_newdoc('numpy._core.multiarray', 'get_handler_version', + """ + get_handler_version(a: ndarray) -> int,None + + Return the version of the memory handler used by `a`. If not provided, + return the version of the memory handler that will be used to allocate data + for the next `ndarray` in this context. May return None if `a` does not own + its memory, in which case you can traverse ``a.base`` for a memory handler. + """) + +add_newdoc('numpy._core._multiarray_umath', '_array_converter', + """ + _array_converter(*array_likes) + + Helper to convert one or more objects to arrays. Integrates machinery + to deal with the ``result_type`` and ``__array_wrap__``. + + The reason for this is that e.g. ``result_type`` needs to convert to arrays + to find the ``dtype``. But converting to an array before calling + ``result_type`` would incorrectly "forget" whether it was a Python int, + float, or complex. + """) + +add_newdoc( + 'numpy._core._multiarray_umath', '_array_converter', ('scalar_input', + """ + A tuple which indicates for each input whether it was a scalar that + was coerced to a 0-D array (and was not already an array or something + converted via a protocol like ``__array__()``). + """)) + +add_newdoc('numpy._core._multiarray_umath', '_array_converter', ('as_arrays', + """ + as_arrays(/, subok=True, pyscalars="convert_if_no_array") + + Return the inputs as arrays or scalars. + + Parameters + ---------- + subok : True or False, optional + Whether array subclasses are preserved. + pyscalars : {"convert", "preserve", "convert_if_no_array"}, optional + To allow NEP 50 weak promotion later, it may be desirable to preserve + Python scalars. As default, these are preserved unless all inputs + are Python scalars. "convert" enforces an array return. + """)) + +add_newdoc('numpy._core._multiarray_umath', '_array_converter', ('result_type', + """result_type(/, extra_dtype=None, ensure_inexact=False) + + Find the ``result_type`` just as ``np.result_type`` would, but taking + into account that the original inputs (before converting to an array) may + have been Python scalars with weak promotion. + + Parameters + ---------- + extra_dtype : dtype instance or class + An additional DType or dtype instance to promote (e.g. could be used + to ensure the result precision is at least float32). + ensure_inexact : True or False + When ``True``, ensures a floating point (or complex) result replacing + the ``arr * 1.`` or ``result_type(..., 0.0)`` pattern. + """)) + +add_newdoc('numpy._core._multiarray_umath', '_array_converter', ('wrap', + """ + wrap(arr, /, to_scalar=None) + + Call ``__array_wrap__`` on ``arr`` if ``arr`` is not the same subclass + as the input the ``__array_wrap__`` method was retrieved from. + + Parameters + ---------- + arr : ndarray + The object to be wrapped. Normally an ndarray or subclass, + although for backward compatibility NumPy scalars are also accepted + (these will be converted to a NumPy array before being passed on to + the ``__array_wrap__`` method). + to_scalar : {True, False, None}, optional + When ``True`` will convert a 0-d array to a scalar via ``result[()]`` + (with a fast-path for non-subclasses). If ``False`` the result should + be an array-like (as ``__array_wrap__`` is free to return a non-array). + By default (``None``), a scalar is returned if all inputs were scalar. + """)) + + +add_newdoc('numpy._core.multiarray', '_get_madvise_hugepage', + """ + _get_madvise_hugepage() -> bool + + Get use of ``madvise (2)`` MADV_HUGEPAGE support when + allocating the array data. Returns the currently set value. + See `global_state` for more information. + """) + +add_newdoc('numpy._core.multiarray', '_set_madvise_hugepage', + """ + _set_madvise_hugepage(enabled: bool) -> bool + + Set or unset use of ``madvise (2)`` MADV_HUGEPAGE support when + allocating the array data. Returns the previously set value. + See `global_state` for more information. + """) + + +############################################################################## +# +# Documentation for ufunc attributes and methods +# +############################################################################## + + +############################################################################## +# +# ufunc object +# +############################################################################## + +add_newdoc('numpy._core', 'ufunc', + """ + Functions that operate element by element on whole arrays. + + To see the documentation for a specific ufunc, use `info`. For + example, ``np.info(np.sin)``. Because ufuncs are written in C + (for speed) and linked into Python with NumPy's ufunc facility, + Python's help() function finds this page whenever help() is called + on a ufunc. + + A detailed explanation of ufuncs can be found in the docs for :ref:`ufuncs`. + + **Calling ufuncs:** ``op(*x[, out], where=True, **kwargs)`` + + Apply `op` to the arguments `*x` elementwise, broadcasting the arguments. + + The broadcasting rules are: + + * Dimensions of length 1 may be prepended to either array. + * Arrays may be repeated along dimensions of length 1. + + Parameters + ---------- + *x : array_like + Input arrays. + out : ndarray, None, ..., or tuple of ndarray and None, optional + Location(s) into which the result(s) are stored. + If not provided or None, new array(s) are created by the ufunc. + If passed as a keyword argument, can be Ellipses (``out=...``) to + ensure an array is returned even if the result is 0-dimensional, + or a tuple with length equal to the number of outputs (where None + can be used for allocation by the ufunc). + + .. versionadded:: 2.3 + Support for ``out=...`` was added. + + where : array_like, optional + This condition is broadcast over the input. At locations where the + condition is True, the `out` array will be set to the ufunc result. + Elsewhere, the `out` array will retain its original value. + Note that if an uninitialized `out` array is created via the default + ``out=None``, locations within it where the condition is False will + remain uninitialized. + **kwargs + For other keyword-only arguments, see the :ref:`ufunc docs `. + + Returns + ------- + r : ndarray or tuple of ndarray + `r` will have the shape that the arrays in `x` broadcast to; if `out` is + provided, it will be returned. If not, `r` will be allocated and + may contain uninitialized values. If the function has more than one + output, then the result will be a tuple of arrays. + + """) + + +############################################################################## +# +# ufunc attributes +# +############################################################################## + +add_newdoc('numpy._core', 'ufunc', ('identity', + """ + The identity value. + + Data attribute containing the identity element for the ufunc, + if it has one. If it does not, the attribute value is None. + + Examples + -------- + >>> import numpy as np + >>> np.add.identity + 0 + >>> np.multiply.identity + 1 + >>> print(np.power.identity) + None + >>> print(np.exp.identity) + None + """)) + +add_newdoc('numpy._core', 'ufunc', ('nargs', + """ + The number of arguments. + + Data attribute containing the number of arguments the ufunc takes, including + optional ones. + + Notes + ----- + Typically this value will be one more than what you might expect + because all ufuncs take the optional "out" argument. + + Examples + -------- + >>> import numpy as np + >>> np.add.nargs + 3 + >>> np.multiply.nargs + 3 + >>> np.power.nargs + 3 + >>> np.exp.nargs + 2 + """)) + +add_newdoc('numpy._core', 'ufunc', ('nin', + """ + The number of inputs. + + Data attribute containing the number of arguments the ufunc treats as input. + + Examples + -------- + >>> import numpy as np + >>> np.add.nin + 2 + >>> np.multiply.nin + 2 + >>> np.power.nin + 2 + >>> np.exp.nin + 1 + """)) + +add_newdoc('numpy._core', 'ufunc', ('nout', + """ + The number of outputs. + + Data attribute containing the number of arguments the ufunc treats as output. + + Notes + ----- + Since all ufuncs can take output arguments, this will always be at least 1. + + Examples + -------- + >>> import numpy as np + >>> np.add.nout + 1 + >>> np.multiply.nout + 1 + >>> np.power.nout + 1 + >>> np.exp.nout + 1 + + """)) + +add_newdoc('numpy._core', 'ufunc', ('ntypes', + """ + The number of types. + + The number of numerical NumPy types - of which there are 18 total - on which + the ufunc can operate. + + See Also + -------- + numpy.ufunc.types + + Examples + -------- + >>> import numpy as np + >>> np.add.ntypes + 22 + >>> np.multiply.ntypes + 23 + >>> np.power.ntypes + 21 + >>> np.exp.ntypes + 10 + >>> np.remainder.ntypes + 16 + + """)) + +add_newdoc('numpy._core', 'ufunc', ('types', + """ + Returns a list with types grouped input->output. + + Data attribute listing the data-type "Domain-Range" groupings the ufunc can + deliver. The data-types are given using the character codes. + + See Also + -------- + numpy.ufunc.ntypes + + Examples + -------- + >>> import numpy as np + >>> np.add.types + ['??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', ... + + >>> np.power.types + ['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', ... + + >>> np.exp.types + ['e->e', 'f->f', 'd->d', 'f->f', 'd->d', 'g->g', 'F->F', 'D->D', 'G->G', 'O->O'] + + >>> np.remainder.types + ['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', 'll->l', ... + + """)) + +add_newdoc('numpy._core', 'ufunc', ('signature', + """ + Definition of the core elements a generalized ufunc operates on. + + The signature determines how the dimensions of each input/output array + are split into core and loop dimensions: + + 1. Each dimension in the signature is matched to a dimension of the + corresponding passed-in array, starting from the end of the shape tuple. + 2. Core dimensions assigned to the same label in the signature must have + exactly matching sizes, no broadcasting is performed. + 3. The core dimensions are removed from all inputs and the remaining + dimensions are broadcast together, defining the loop dimensions. + + Notes + ----- + Generalized ufuncs are used internally in many linalg functions, and in + the testing suite; the examples below are taken from these. + For ufuncs that operate on scalars, the signature is None, which is + equivalent to '()' for every argument. + + Examples + -------- + >>> import numpy as np + >>> np.linalg._umath_linalg.det.signature + '(m,m)->()' + >>> np.matmul.signature + '(n?,k),(k,m?)->(n?,m?)' + >>> np.add.signature is None + True # equivalent to '(),()->()' + """)) + +############################################################################## +# +# ufunc methods +# +############################################################################## + +add_newdoc('numpy._core', 'ufunc', ('reduce', + """ + reduce(array, axis=0, dtype=None, out=None, keepdims=False, initial=, where=True) + + Reduces `array`'s dimension by one, by applying ufunc along one axis. + + Let :math:`array.shape = (N_0, ..., N_i, ..., N_{M-1})`. Then + :math:`ufunc.reduce(array, axis=i)[k_0, ..,k_{i-1}, k_{i+1}, .., k_{M-1}]` = + the result of iterating `j` over :math:`range(N_i)`, cumulatively applying + ufunc to each :math:`array[k_0, ..,k_{i-1}, j, k_{i+1}, .., k_{M-1}]`. + For a one-dimensional array, reduce produces results equivalent to: + :: + + r = op.identity # op = ufunc + for i in range(len(A)): + r = op(r, A[i]) + return r + + For example, add.reduce() is equivalent to sum(). + + Parameters + ---------- + array : array_like + The array to act on. + axis : None or int or tuple of ints, optional + Axis or axes along which a reduction is performed. + The default (`axis` = 0) is perform a reduction over the first + dimension of the input array. `axis` may be negative, in + which case it counts from the last to the first axis. + + If this is None, a reduction is performed over all the axes. + If this is a tuple of ints, a reduction is performed on multiple + axes, instead of a single axis or all the axes as before. + + For operations which are either not commutative or not associative, + doing a reduction over multiple axes is not well-defined. The + ufuncs do not currently raise an exception in this case, but will + likely do so in the future. + dtype : data-type code, optional + The data type used to perform the operation. Defaults to that of + ``out`` if given, and the data type of ``array`` otherwise (though + upcast to conserve precision for some cases, such as + ``numpy.add.reduce`` for integer or boolean input). + out : ndarray, None, ..., or tuple of ndarray and None, optional + Location into which the result is stored. + If not provided or None, a freshly-allocated array is returned. + If passed as a keyword argument, can be Ellipses (``out=...``) to + ensure an array is returned even if the result is 0-dimensional + (which is useful especially for object dtype), or a 1-element tuple + (latter for consistency with ``ufunc.__call__``). + + .. versionadded:: 2.3 + Support for ``out=...`` was added. + + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the original `array`. + initial : scalar, optional + The value with which to start the reduction. + If the ufunc has no identity or the dtype is object, this defaults + to None - otherwise it defaults to ufunc.identity. + If ``None`` is given, the first element of the reduction is used, + and an error is thrown if the reduction is empty. + where : array_like of bool, optional + A boolean array which is broadcasted to match the dimensions + of `array`, and selects elements to include in the reduction. Note + that for ufuncs like ``minimum`` that do not have an identity + defined, one has to pass in also ``initial``. + + Returns + ------- + r : ndarray + The reduced array. If `out` was supplied, `r` is a reference to it. + + Examples + -------- + >>> import numpy as np + >>> np.multiply.reduce([2,3,5]) + 30 + + A multi-dimensional array example: + + >>> X = np.arange(8).reshape((2,2,2)) + >>> X + array([[[0, 1], + [2, 3]], + [[4, 5], + [6, 7]]]) + >>> np.add.reduce(X, 0) + array([[ 4, 6], + [ 8, 10]]) + >>> np.add.reduce(X) # confirm: default axis value is 0 + array([[ 4, 6], + [ 8, 10]]) + >>> np.add.reduce(X, 1) + array([[ 2, 4], + [10, 12]]) + >>> np.add.reduce(X, 2) + array([[ 1, 5], + [ 9, 13]]) + + You can use the ``initial`` keyword argument to initialize the reduction + with a different value, and ``where`` to select specific elements to include: + + >>> np.add.reduce([10], initial=5) + 15 + >>> np.add.reduce(np.ones((2, 2, 2)), axis=(0, 2), initial=10) + array([14., 14.]) + >>> a = np.array([10., np.nan, 10]) + >>> np.add.reduce(a, where=~np.isnan(a)) + 20.0 + + Allows reductions of empty arrays where they would normally fail, i.e. + for ufuncs without an identity. + + >>> np.minimum.reduce([], initial=np.inf) + inf + >>> np.minimum.reduce([[1., 2.], [3., 4.]], initial=10., where=[True, False]) + array([ 1., 10.]) + >>> np.minimum.reduce([]) + Traceback (most recent call last): + ... + ValueError: zero-size array to reduction operation minimum which has no identity + """)) + +add_newdoc('numpy._core', 'ufunc', ('accumulate', + """ + accumulate(array, axis=0, dtype=None, out=None) + + Accumulate the result of applying the operator to all elements. + + For a one-dimensional array, accumulate produces results equivalent to:: + + r = np.empty(len(A)) + t = op.identity # op = the ufunc being applied to A's elements + for i in range(len(A)): + t = op(t, A[i]) + r[i] = t + return r + + For example, add.accumulate() is equivalent to np.cumsum(). + + For a multi-dimensional array, accumulate is applied along only one + axis (axis zero by default; see Examples below) so repeated use is + necessary if one wants to accumulate over multiple axes. + + Parameters + ---------- + array : array_like + The array to act on. + axis : int, optional + The axis along which to apply the accumulation; default is zero. + dtype : data-type code, optional + The data-type used to represent the intermediate results. Defaults + to the data-type of the output array if such is provided, or the + data-type of the input array if no output array is provided. + out : ndarray, None, or tuple of ndarray and None, optional + Location into which the result is stored. + If not provided or None, a freshly-allocated array is returned. + For consistency with ``ufunc.__call__``, if passed as a keyword + argument, can be Ellipses (``out=...``, which has the same effect + as None as an array is always returned), or a 1-element tuple. + + Returns + ------- + r : ndarray + The accumulated values. If `out` was supplied, `r` is a reference to + `out`. + + Examples + -------- + 1-D array examples: + + >>> import numpy as np + >>> np.add.accumulate([2, 3, 5]) + array([ 2, 5, 10]) + >>> np.multiply.accumulate([2, 3, 5]) + array([ 2, 6, 30]) + + 2-D array examples: + + >>> I = np.eye(2) + >>> I + array([[1., 0.], + [0., 1.]]) + + Accumulate along axis 0 (rows), down columns: + + >>> np.add.accumulate(I, 0) + array([[1., 0.], + [1., 1.]]) + >>> np.add.accumulate(I) # no axis specified = axis zero + array([[1., 0.], + [1., 1.]]) + + Accumulate along axis 1 (columns), through rows: + + >>> np.add.accumulate(I, 1) + array([[1., 1.], + [0., 1.]]) + + """)) + +add_newdoc('numpy._core', 'ufunc', ('reduceat', + """ + reduceat(array, indices, axis=0, dtype=None, out=None) + + Performs a (local) reduce with specified slices over a single axis. + + For i in ``range(len(indices))``, `reduceat` computes + ``ufunc.reduce(array[indices[i]:indices[i+1]])``, which becomes the i-th + generalized "row" parallel to `axis` in the final result (i.e., in a + 2-D array, for example, if `axis = 0`, it becomes the i-th row, but if + `axis = 1`, it becomes the i-th column). There are three exceptions to this: + + * when ``i = len(indices) - 1`` (so for the last index), + ``indices[i+1] = array.shape[axis]``. + * if ``indices[i] >= indices[i + 1]``, the i-th generalized "row" is + simply ``array[indices[i]]``. + * if ``indices[i] >= len(array)`` or ``indices[i] < 0``, an error is raised. + + The shape of the output depends on the size of `indices`, and may be + larger than `array` (this happens if ``len(indices) > array.shape[axis]``). + + Parameters + ---------- + array : array_like + The array to act on. + indices : array_like + Paired indices, comma separated (not colon), specifying slices to + reduce. + axis : int, optional + The axis along which to apply the reduceat. + dtype : data-type code, optional + The data type used to perform the operation. Defaults to that of + ``out`` if given, and the data type of ``array`` otherwise (though + upcast to conserve precision for some cases, such as + ``numpy.add.reduce`` for integer or boolean input). + out : ndarray, None, or tuple of ndarray and None, optional + Location into which the result is stored. + If not provided or None, a freshly-allocated array is returned. + For consistency with ``ufunc.__call__``, if passed as a keyword + argument, can be Ellipses (``out=...``, which has the same effect + as None as an array is always returned), or a 1-element tuple. + + Returns + ------- + r : ndarray + The reduced values. If `out` was supplied, `r` is a reference to + `out`. + + Notes + ----- + A descriptive example: + + If `array` is 1-D, the function `ufunc.accumulate(array)` is the same as + ``ufunc.reduceat(array, indices)[::2]`` where `indices` is + ``range(len(array) - 1)`` with a zero placed + in every other element: + ``indices = zeros(2 * len(array) - 1)``, + ``indices[1::2] = range(1, len(array))``. + + Don't be fooled by this attribute's name: `reduceat(array)` is not + necessarily smaller than `array`. + + Examples + -------- + To take the running sum of four successive values: + + >>> import numpy as np + >>> np.add.reduceat(np.arange(8),[0,4, 1,5, 2,6, 3,7])[::2] + array([ 6, 10, 14, 18]) + + A 2-D example: + + >>> x = np.linspace(0, 15, 16).reshape(4,4) + >>> x + array([[ 0., 1., 2., 3.], + [ 4., 5., 6., 7.], + [ 8., 9., 10., 11.], + [12., 13., 14., 15.]]) + + :: + + # reduce such that the result has the following five rows: + # [row1 + row2 + row3] + # [row4] + # [row2] + # [row3] + # [row1 + row2 + row3 + row4] + + >>> np.add.reduceat(x, [0, 3, 1, 2, 0]) + array([[12., 15., 18., 21.], + [12., 13., 14., 15.], + [ 4., 5., 6., 7.], + [ 8., 9., 10., 11.], + [24., 28., 32., 36.]]) + + :: + + # reduce such that result has the following two columns: + # [col1 * col2 * col3, col4] + + >>> np.multiply.reduceat(x, [0, 3], 1) + array([[ 0., 3.], + [ 120., 7.], + [ 720., 11.], + [2184., 15.]]) + + """)) + +add_newdoc('numpy._core', 'ufunc', ('outer', + r""" + outer(A, B, /, **kwargs) + + Apply the ufunc `op` to all pairs (a, b) with a in `A` and b in `B`. + + Let ``M = A.ndim``, ``N = B.ndim``. Then the result, `C`, of + ``op.outer(A, B)`` is an array of dimension M + N such that: + + .. math:: C[i_0, ..., i_{M-1}, j_0, ..., j_{N-1}] = + op(A[i_0, ..., i_{M-1}], B[j_0, ..., j_{N-1}]) + + For `A` and `B` one-dimensional, this is equivalent to:: + + r = empty(len(A),len(B)) + for i in range(len(A)): + for j in range(len(B)): + r[i,j] = op(A[i], B[j]) # op = ufunc in question + + Parameters + ---------- + A : array_like + First array + B : array_like + Second array + kwargs : any + Arguments to pass on to the ufunc. Typically `dtype` or `out`. + See `ufunc` for a comprehensive overview of all available arguments. + + Returns + ------- + r : ndarray + Output array + + See Also + -------- + numpy.outer : A less powerful version of ``np.multiply.outer`` + that `ravel`\ s all inputs to 1D. This exists + primarily for compatibility with old code. + + tensordot : ``np.tensordot(a, b, axes=((), ()))`` and + ``np.multiply.outer(a, b)`` behave same for all + dimensions of a and b. + + Examples + -------- + >>> np.multiply.outer([1, 2, 3], [4, 5, 6]) + array([[ 4, 5, 6], + [ 8, 10, 12], + [12, 15, 18]]) + + A multi-dimensional example: + + >>> A = np.array([[1, 2, 3], [4, 5, 6]]) + >>> A.shape + (2, 3) + >>> B = np.array([[1, 2, 3, 4]]) + >>> B.shape + (1, 4) + >>> C = np.multiply.outer(A, B) + >>> C.shape; C + (2, 3, 1, 4) + array([[[[ 1, 2, 3, 4]], + [[ 2, 4, 6, 8]], + [[ 3, 6, 9, 12]]], + [[[ 4, 8, 12, 16]], + [[ 5, 10, 15, 20]], + [[ 6, 12, 18, 24]]]]) + + """)) + +add_newdoc('numpy._core', 'ufunc', ('at', + """ + at(a, indices, b=None, /) + + Performs unbuffered in place operation on operand 'a' for elements + specified by 'indices'. For addition ufunc, this method is equivalent to + ``a[indices] += b``, except that results are accumulated for elements that + are indexed more than once. For example, ``a[[0,0]] += 1`` will only + increment the first element once because of buffering, whereas + ``add.at(a, [0,0], 1)`` will increment the first element twice. + + Parameters + ---------- + a : array_like + The array to perform in place operation on. + indices : array_like or tuple + Array like index object or slice object for indexing into first + operand. If first operand has multiple dimensions, indices can be a + tuple of array like index objects or slice objects. + b : array_like + Second operand for ufuncs requiring two operands. Operand must be + broadcastable over first operand after indexing or slicing. + + Examples + -------- + Set items 0 and 1 to their negative values: + + >>> import numpy as np + >>> a = np.array([1, 2, 3, 4]) + >>> np.negative.at(a, [0, 1]) + >>> a + array([-1, -2, 3, 4]) + + Increment items 0 and 1, and increment item 2 twice: + + >>> a = np.array([1, 2, 3, 4]) + >>> np.add.at(a, [0, 1, 2, 2], 1) + >>> a + array([2, 3, 5, 4]) + + Add items 0 and 1 in first array to second array, + and store results in first array: + + >>> a = np.array([1, 2, 3, 4]) + >>> b = np.array([1, 2]) + >>> np.add.at(a, [0, 1], b) + >>> a + array([2, 4, 3, 4]) + + """)) + +add_newdoc('numpy._core', 'ufunc', ('resolve_dtypes', + """ + resolve_dtypes(dtypes, *, signature=None, casting=None, reduction=False) + + Find the dtypes NumPy will use for the operation. Both input and + output dtypes are returned and may differ from those provided. + + .. note:: + + This function always applies NEP 50 rules since it is not provided + any actual values. The Python types ``int``, ``float``, and + ``complex`` thus behave weak and should be passed for "untyped" + Python input. + + Parameters + ---------- + dtypes : tuple of dtypes, None, or literal int, float, complex + The input dtypes for each operand. Output operands can be + None, indicating that the dtype must be found. + signature : tuple of DTypes or None, optional + If given, enforces exact DType (classes) of the specific operand. + The ufunc ``dtype`` argument is equivalent to passing a tuple with + only output dtypes set. + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional + The casting mode when casting is necessary. This is identical to + the ufunc call casting modes. + reduction : boolean + If given, the resolution assumes a reduce operation is happening + which slightly changes the promotion and type resolution rules. + `dtypes` is usually something like ``(None, np.dtype("i2"), None)`` + for reductions (first input is also the output). + + .. note:: + + The default casting mode is "same_kind", however, as of + NumPy 1.24, NumPy uses "unsafe" for reductions. + + Returns + ------- + dtypes : tuple of dtypes + The dtypes which NumPy would use for the calculation. Note that + dtypes may not match the passed in ones (casting is necessary). + + + Examples + -------- + This API requires passing dtypes, define them for convenience: + + >>> import numpy as np + >>> int32 = np.dtype("int32") + >>> float32 = np.dtype("float32") + + The typical ufunc call does not pass an output dtype. `numpy.add` has two + inputs and one output, so leave the output as ``None`` (not provided): + + >>> np.add.resolve_dtypes((int32, float32, None)) + (dtype('float64'), dtype('float64'), dtype('float64')) + + The loop found uses "float64" for all operands (including the output), the + first input would be cast. + + ``resolve_dtypes`` supports "weak" handling for Python scalars by passing + ``int``, ``float``, or ``complex``: + + >>> np.add.resolve_dtypes((float32, float, None)) + (dtype('float32'), dtype('float32'), dtype('float32')) + + Where the Python ``float`` behaves similar to a Python value ``0.0`` + in a ufunc call. (See :ref:`NEP 50 ` for details.) + + """)) + +add_newdoc('numpy._core', 'ufunc', ('_resolve_dtypes_and_context', + """ + _resolve_dtypes_and_context(dtypes, *, signature=None, casting=None, reduction=False) + + See `numpy.ufunc.resolve_dtypes` for parameter information. This + function is considered *unstable*. You may use it, but the returned + information is NumPy version specific and expected to change. + Large API/ABI changes are not expected, but a new NumPy version is + expected to require updating code using this functionality. + + This function is designed to be used in conjunction with + `numpy.ufunc._get_strided_loop`. The calls are split to mirror the C API + and allow future improvements. + + Returns + ------- + dtypes : tuple of dtypes + call_info : + PyCapsule with all necessary information to get access to low level + C calls. See `numpy.ufunc._get_strided_loop` for more information. + + """)) + +add_newdoc('numpy._core', 'ufunc', ('_get_strided_loop', + """ + _get_strided_loop(call_info, /, *, fixed_strides=None) + + This function fills in the ``call_info`` capsule to include all + information necessary to call the low-level strided loop from NumPy. + + See notes for more information. + + Parameters + ---------- + call_info : PyCapsule + The PyCapsule returned by `numpy.ufunc._resolve_dtypes_and_context`. + fixed_strides : tuple of int or None, optional + A tuple with fixed byte strides of all input arrays. NumPy may use + this information to find specialized loops, so any call must follow + the given stride. Use ``None`` to indicate that the stride is not + known (or not fixed) for all calls. + + Notes + ----- + Together with `numpy.ufunc._resolve_dtypes_and_context` this function + gives low-level access to the NumPy ufunc loops. + The first function does general preparation and returns the required + information. It returns this as a C capsule with the version specific + name ``numpy_1.24_ufunc_call_info``. + The NumPy 1.24 ufunc call info capsule has the following layout:: + + typedef struct { + PyArrayMethod_StridedLoop *strided_loop; + PyArrayMethod_Context *context; + NpyAuxData *auxdata; + + /* Flag information (expected to change) */ + npy_bool requires_pyapi; /* GIL is required by loop */ + + /* Loop doesn't set FPE flags; if not set check FPE flags */ + npy_bool no_floatingpoint_errors; + } ufunc_call_info; + + Note that the first call only fills in the ``context``. The call to + ``_get_strided_loop`` fills in all other data. The main thing to note is + that the new-style loops return 0 on success, -1 on failure. They are + passed context as new first input and ``auxdata`` as (replaced) last. + + Only the ``strided_loop``signature is considered guaranteed stable + for NumPy bug-fix releases. All other API is tied to the experimental + API versioning. + + The reason for the split call is that cast information is required to + decide what the fixed-strides will be. + + NumPy ties the lifetime of the ``auxdata`` information to the capsule. + + """)) + + +############################################################################## +# +# Documentation for dtype attributes and methods +# +############################################################################## + +############################################################################## +# +# dtype object +# +############################################################################## + +add_newdoc('numpy._core.multiarray', 'dtype', + """ + dtype(dtype, align=False, copy=False, [metadata]) + + Create a data type object. + + A numpy array is homogeneous, and contains elements described by a + dtype object. A dtype object can be constructed from different + combinations of fundamental numeric types. + + Parameters + ---------- + dtype + Object to be converted to a data type object. + align : bool, optional + Add padding to the fields to match what a C compiler would output + for a similar C-struct. Can be ``True`` only if `obj` is a dictionary + or a comma-separated string. If a struct dtype is being created, + this also sets a sticky alignment flag ``isalignedstruct``. + copy : bool, optional + Make a new copy of the data-type object. If ``False``, the result + may just be a reference to a built-in data-type object. + metadata : dict, optional + An optional dictionary with dtype metadata. + + See also + -------- + result_type + + Examples + -------- + Using array-scalar type: + + >>> import numpy as np + >>> np.dtype(np.int16) + dtype('int16') + + Structured type, one field name 'f1', containing int16: + + >>> np.dtype([('f1', np.int16)]) + dtype([('f1', '>> np.dtype([('f1', [('f1', np.int16)])]) + dtype([('f1', [('f1', '>> np.dtype([('f1', np.uint64), ('f2', np.int32)]) + dtype([('f1', '>> np.dtype([('a','f8'),('b','S10')]) + dtype([('a', '>> np.dtype("i4, (2,3)f8") + dtype([('f0', '>> np.dtype([('hello',(np.int64,3)),('world',np.void,10)]) + dtype([('hello', '>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)})) + dtype((numpy.int16, [('x', 'i1'), ('y', 'i1')])) + + Using dictionaries. Two fields named 'gender' and 'age': + + >>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]}) + dtype([('gender', 'S1'), ('age', 'u1')]) + + Offsets in bytes, here 0 and 25: + + >>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)}) + dtype([('surname', 'S25'), ('age', 'u1')]) + + """) + +############################################################################## +# +# dtype attributes +# +############################################################################## + +add_newdoc('numpy._core.multiarray', 'dtype', ('alignment', + """ + The required alignment (bytes) of this data-type according to the compiler. + + More information is available in the C-API section of the manual. + + Examples + -------- + + >>> import numpy as np + >>> x = np.dtype('i4') + >>> x.alignment + 4 + + >>> x = np.dtype(float) + >>> x.alignment + 8 + + """)) + +add_newdoc('numpy._core.multiarray', 'dtype', ('byteorder', + """ + A character indicating the byte-order of this data-type object. + + One of: + + === ============== + '=' native + '<' little-endian + '>' big-endian + '|' not applicable + === ============== + + All built-in data-type objects have byteorder either '=' or '|'. + + Examples + -------- + + >>> import numpy as np + >>> dt = np.dtype('i2') + >>> dt.byteorder + '=' + >>> # endian is not relevant for 8 bit numbers + >>> np.dtype('i1').byteorder + '|' + >>> # or ASCII strings + >>> np.dtype('S2').byteorder + '|' + >>> # Even if specific code is given, and it is native + >>> # '=' is the byteorder + >>> import sys + >>> sys_is_le = sys.byteorder == 'little' + >>> native_code = '<' if sys_is_le else '>' + >>> swapped_code = '>' if sys_is_le else '<' + >>> dt = np.dtype(native_code + 'i2') + >>> dt.byteorder + '=' + >>> # Swapped code shows up as itself + >>> dt = np.dtype(swapped_code + 'i2') + >>> dt.byteorder == swapped_code + True + + """)) + +add_newdoc('numpy._core.multiarray', 'dtype', ('char', + """A unique character code for each of the 21 different built-in types. + + Examples + -------- + + >>> import numpy as np + >>> x = np.dtype(float) + >>> x.char + 'd' + + """)) + +add_newdoc('numpy._core.multiarray', 'dtype', ('descr', + """ + `__array_interface__` description of the data-type. + + The format is that required by the 'descr' key in the + `__array_interface__` attribute. + + Warning: This attribute exists specifically for `__array_interface__`, + and passing it directly to `numpy.dtype` will not accurately reconstruct + some dtypes (e.g., scalar and subarray dtypes). + + Examples + -------- + + >>> import numpy as np + >>> x = np.dtype(float) + >>> x.descr + [('', '>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))]) + >>> dt.descr + [('name', '>> import numpy as np + >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))]) + >>> print(dt.fields) + {'name': (dtype('|S16'), 0), 'grades': (dtype(('float64',(2,))), 16)} + + """)) + +add_newdoc('numpy._core.multiarray', 'dtype', ('flags', + """ + Bit-flags describing how this data type is to be interpreted. + + Bit-masks are in ``numpy._core.multiarray`` as the constants + `ITEM_HASOBJECT`, `LIST_PICKLE`, `ITEM_IS_POINTER`, `NEEDS_INIT`, + `NEEDS_PYAPI`, `USE_GETITEM`, `USE_SETITEM`. A full explanation + of these flags is in C-API documentation; they are largely useful + for user-defined data-types. + + The following example demonstrates that operations on this particular + dtype requires Python C-API. + + Examples + -------- + + >>> import numpy as np + >>> x = np.dtype([('a', np.int32, 8), ('b', np.float64, 6)]) + >>> x.flags + 16 + >>> np._core.multiarray.NEEDS_PYAPI + 16 + + """)) + +add_newdoc('numpy._core.multiarray', 'dtype', ('hasobject', + """ + Boolean indicating whether this dtype contains any reference-counted + objects in any fields or sub-dtypes. + + Recall that what is actually in the ndarray memory representing + the Python object is the memory address of that object (a pointer). + Special handling may be required, and this attribute is useful for + distinguishing data types that may contain arbitrary Python objects + and data-types that won't. + + """)) + +add_newdoc('numpy._core.multiarray', 'dtype', ('isbuiltin', + """ + Integer indicating how this dtype relates to the built-in dtypes. + + Read-only. + + = ======================================================================== + 0 if this is a structured array type, with fields + 1 if this is a dtype compiled into numpy (such as ints, floats etc) + 2 if the dtype is for a user-defined numpy type + A user-defined type uses the numpy C-API machinery to extend + numpy to handle a new array type. See + :ref:`user.user-defined-data-types` in the NumPy manual. + = ======================================================================== + + Examples + -------- + + >>> import numpy as np + >>> dt = np.dtype('i2') + >>> dt.isbuiltin + 1 + >>> dt = np.dtype('f8') + >>> dt.isbuiltin + 1 + >>> dt = np.dtype([('field1', 'f8')]) + >>> dt.isbuiltin + 0 + + """)) + +add_newdoc('numpy._core.multiarray', 'dtype', ('isnative', + """ + Boolean indicating whether the byte order of this dtype is native + to the platform. + + """)) + +add_newdoc('numpy._core.multiarray', 'dtype', ('isalignedstruct', + """ + Boolean indicating whether the dtype is a struct which maintains + field alignment. This flag is sticky, so when combining multiple + structs together, it is preserved and produces new dtypes which + are also aligned. + + """)) + +add_newdoc('numpy._core.multiarray', 'dtype', ('itemsize', + """ + The element size of this data-type object. + + For 18 of the 21 types this number is fixed by the data-type. + For the flexible data-types, this number can be anything. + + Examples + -------- + + >>> import numpy as np + >>> arr = np.array([[1, 2], [3, 4]]) + >>> arr.dtype + dtype('int64') + >>> arr.itemsize + 8 + + >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))]) + >>> dt.itemsize + 80 + + """)) + +add_newdoc('numpy._core.multiarray', 'dtype', ('kind', + """ + A character code (one of 'biufcmMOSTUV') identifying the general kind of data. + + = ====================== + b boolean + i signed integer + u unsigned integer + f floating-point + c complex floating-point + m timedelta + M datetime + O object + S (byte-)string + T string (StringDType) + U Unicode + V void + = ====================== + + Examples + -------- + + >>> import numpy as np + >>> dt = np.dtype('i4') + >>> dt.kind + 'i' + >>> dt = np.dtype('f8') + >>> dt.kind + 'f' + >>> dt = np.dtype([('field1', 'f8')]) + >>> dt.kind + 'V' + + """)) + +add_newdoc('numpy._core.multiarray', 'dtype', ('metadata', + """ + Either ``None`` or a readonly dictionary of metadata (mappingproxy). + + The metadata field can be set using any dictionary at data-type + creation. NumPy currently has no uniform approach to propagating + metadata; although some array operations preserve it, there is no + guarantee that others will. + + .. warning:: + + Although used in certain projects, this feature was long undocumented + and is not well supported. Some aspects of metadata propagation + are expected to change in the future. + + Examples + -------- + + >>> import numpy as np + >>> dt = np.dtype(float, metadata={"key": "value"}) + >>> dt.metadata["key"] + 'value' + >>> arr = np.array([1, 2, 3], dtype=dt) + >>> arr.dtype.metadata + mappingproxy({'key': 'value'}) + + Adding arrays with identical datatypes currently preserves the metadata: + + >>> (arr + arr).dtype.metadata + mappingproxy({'key': 'value'}) + + If the arrays have different dtype metadata, the first one wins: + + >>> dt2 = np.dtype(float, metadata={"key2": "value2"}) + >>> arr2 = np.array([3, 2, 1], dtype=dt2) + >>> print((arr + arr2).dtype.metadata) + {'key': 'value'} + """)) + +add_newdoc('numpy._core.multiarray', 'dtype', ('name', + """ + A bit-width name for this data-type. + + Un-sized flexible data-type objects do not have this attribute. + + Examples + -------- + + >>> import numpy as np + >>> x = np.dtype(float) + >>> x.name + 'float64' + >>> x = np.dtype([('a', np.int32, 8), ('b', np.float64, 6)]) + >>> x.name + 'void640' + + """)) + +add_newdoc('numpy._core.multiarray', 'dtype', ('names', + """ + Ordered list of field names, or ``None`` if there are no fields. + + The names are ordered according to increasing byte offset. This can be + used, for example, to walk through all of the named fields in offset order. + + Examples + -------- + >>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))]) + >>> dt.names + ('name', 'grades') + + """)) + +add_newdoc('numpy._core.multiarray', 'dtype', ('num', + """ + A unique number for each of the 21 different built-in types. + + These are roughly ordered from least-to-most precision. + + Examples + -------- + + >>> import numpy as np + >>> dt = np.dtype(str) + >>> dt.num + 19 + + >>> dt = np.dtype(float) + >>> dt.num + 12 + + """)) + +add_newdoc('numpy._core.multiarray', 'dtype', ('shape', + """ + Shape tuple of the sub-array if this data type describes a sub-array, + and ``()`` otherwise. + + Examples + -------- + + >>> import numpy as np + >>> dt = np.dtype(('i4', 4)) + >>> dt.shape + (4,) + + >>> dt = np.dtype(('i4', (2, 3))) + >>> dt.shape + (2, 3) + + """)) + +add_newdoc('numpy._core.multiarray', 'dtype', ('ndim', + """ + Number of dimensions of the sub-array if this data type describes a + sub-array, and ``0`` otherwise. + + Examples + -------- + >>> import numpy as np + >>> x = np.dtype(float) + >>> x.ndim + 0 + + >>> x = np.dtype((float, 8)) + >>> x.ndim + 1 + + >>> x = np.dtype(('i4', (3, 4))) + >>> x.ndim + 2 + + """)) + +add_newdoc('numpy._core.multiarray', 'dtype', ('str', + """The array-protocol typestring of this data-type object.""")) + +add_newdoc('numpy._core.multiarray', 'dtype', ('subdtype', + """ + Tuple ``(item_dtype, shape)`` if this `dtype` describes a sub-array, and + None otherwise. + + The *shape* is the fixed shape of the sub-array described by this + data type, and *item_dtype* the data type of the array. + + If a field whose dtype object has this attribute is retrieved, + then the extra dimensions implied by *shape* are tacked on to + the end of the retrieved array. + + See Also + -------- + dtype.base + + Examples + -------- + >>> import numpy as np + >>> x = np.dtype('8f') + >>> x.subdtype + (dtype('float32'), (8,)) + + >>> x = np.dtype('i2') + >>> x.subdtype + >>> + + """)) + +add_newdoc('numpy._core.multiarray', 'dtype', ('base', + """ + Returns dtype for the base element of the subarrays, + regardless of their dimension or shape. + + See Also + -------- + dtype.subdtype + + Examples + -------- + >>> import numpy as np + >>> x = np.dtype('8f') + >>> x.base + dtype('float32') + + >>> x = np.dtype('i2') + >>> x.base + dtype('int16') + + """)) + +add_newdoc('numpy._core.multiarray', 'dtype', ('type', + """The type object used to instantiate a scalar of this data-type.""")) + +############################################################################## +# +# dtype methods +# +############################################################################## + +add_newdoc('numpy._core.multiarray', 'dtype', ('newbyteorder', + """ + newbyteorder(new_order='S', /) + + Return a new dtype with a different byte order. + + Changes are also made in all fields and sub-arrays of the data type. + + Parameters + ---------- + new_order : string, optional + Byte order to force; a value from the byte order specifications + below. The default value ('S') results in swapping the current + byte order. `new_order` codes can be any of: + + * 'S' - swap dtype from current to opposite endian + * {'<', 'little'} - little endian + * {'>', 'big'} - big endian + * {'=', 'native'} - native order + * {'|', 'I'} - ignore (no change to byte order) + + Returns + ------- + new_dtype : dtype + New dtype object with the given change to the byte order. + + Notes + ----- + Changes are also made in all fields and sub-arrays of the data type. + + Examples + -------- + >>> import sys + >>> sys_is_le = sys.byteorder == 'little' + >>> native_code = '<' if sys_is_le else '>' + >>> swapped_code = '>' if sys_is_le else '<' + >>> import numpy as np + >>> native_dt = np.dtype(native_code+'i2') + >>> swapped_dt = np.dtype(swapped_code+'i2') + >>> native_dt.newbyteorder('S') == swapped_dt + True + >>> native_dt.newbyteorder() == swapped_dt + True + >>> native_dt == swapped_dt.newbyteorder('S') + True + >>> native_dt == swapped_dt.newbyteorder('=') + True + >>> native_dt == swapped_dt.newbyteorder('N') + True + >>> native_dt == native_dt.newbyteorder('|') + True + >>> np.dtype('>> np.dtype('>> np.dtype('>i2') == native_dt.newbyteorder('>') + True + >>> np.dtype('>i2') == native_dt.newbyteorder('B') + True + + """)) + +add_newdoc('numpy._core.multiarray', 'dtype', ('__class_getitem__', + """ + __class_getitem__(item, /) + + Return a parametrized wrapper around the `~numpy.dtype` type. + + .. versionadded:: 1.22 + + Returns + ------- + alias : types.GenericAlias + A parametrized `~numpy.dtype` type. + + Examples + -------- + >>> import numpy as np + + >>> np.dtype[np.int64] + numpy.dtype[numpy.int64] + + See Also + -------- + :pep:`585` : Type hinting generics in standard collections. + + """)) + +add_newdoc('numpy._core.multiarray', 'dtype', ('__ge__', + """ + __ge__(value, /) + + Return ``self >= value``. + + Equivalent to ``np.can_cast(value, self, casting="safe")``. + + See Also + -------- + can_cast : Returns True if cast between data types can occur according to + the casting rule. + + """)) + +add_newdoc('numpy._core.multiarray', 'dtype', ('__le__', + """ + __le__(value, /) + + Return ``self <= value``. + + Equivalent to ``np.can_cast(self, value, casting="safe")``. + + See Also + -------- + can_cast : Returns True if cast between data types can occur according to + the casting rule. + + """)) + +add_newdoc('numpy._core.multiarray', 'dtype', ('__gt__', + """ + __ge__(value, /) + + Return ``self > value``. + + Equivalent to + ``self != value and np.can_cast(value, self, casting="safe")``. + + See Also + -------- + can_cast : Returns True if cast between data types can occur according to + the casting rule. + + """)) + +add_newdoc('numpy._core.multiarray', 'dtype', ('__lt__', + """ + __lt__(value, /) + + Return ``self < value``. + + Equivalent to + ``self != value and np.can_cast(self, value, casting="safe")``. + + See Also + -------- + can_cast : Returns True if cast between data types can occur according to + the casting rule. + + """)) + +############################################################################## +# +# Datetime-related Methods +# +############################################################################## + +add_newdoc('numpy._core.multiarray', 'busdaycalendar', + """ + busdaycalendar(weekmask='1111100', holidays=None) + + A business day calendar object that efficiently stores information + defining valid days for the busday family of functions. + + The default valid days are Monday through Friday ("business days"). + A busdaycalendar object can be specified with any set of weekly + valid days, plus an optional "holiday" dates that always will be invalid. + + Once a busdaycalendar object is created, the weekmask and holidays + cannot be modified. + + Parameters + ---------- + weekmask : str or array_like of bool, optional + A seven-element array indicating which of Monday through Sunday are + valid days. May be specified as a length-seven list or array, like + [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string + like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for + weekdays, optionally separated by white space. Valid abbreviations + are: Mon Tue Wed Thu Fri Sat Sun + holidays : array_like of datetime64[D], optional + An array of dates to consider as invalid dates, no matter which + weekday they fall upon. Holiday dates may be specified in any + order, and NaT (not-a-time) dates are ignored. This list is + saved in a normalized form that is suited for fast calculations + of valid days. + + Returns + ------- + out : busdaycalendar + A business day calendar object containing the specified + weekmask and holidays values. + + See Also + -------- + is_busday : Returns a boolean array indicating valid days. + busday_offset : Applies an offset counted in valid days. + busday_count : Counts how many valid days are in a half-open date range. + + Attributes + ---------- + weekmask : (copy) seven-element array of bool + holidays : (copy) sorted array of datetime64[D] + + Notes + ----- + Once a busdaycalendar object is created, you cannot modify the + weekmask or holidays. The attributes return copies of internal data. + + Examples + -------- + >>> import numpy as np + >>> # Some important days in July + ... bdd = np.busdaycalendar( + ... holidays=['2011-07-01', '2011-07-04', '2011-07-17']) + >>> # Default is Monday to Friday weekdays + ... bdd.weekmask + array([ True, True, True, True, True, False, False]) + >>> # Any holidays already on the weekend are removed + ... bdd.holidays + array(['2011-07-01', '2011-07-04'], dtype='datetime64[D]') + """) + +add_newdoc('numpy._core.multiarray', 'busdaycalendar', ('weekmask', + """A copy of the seven-element boolean mask indicating valid days.""")) + +add_newdoc('numpy._core.multiarray', 'busdaycalendar', ('holidays', + """A copy of the holiday array indicating additional invalid days.""")) + +add_newdoc('numpy._core.multiarray', 'normalize_axis_index', + """ + normalize_axis_index(axis, ndim, msg_prefix=None) + + Normalizes an axis index, `axis`, such that is a valid positive index into + the shape of array with `ndim` dimensions. Raises an AxisError with an + appropriate message if this is not possible. + + Used internally by all axis-checking logic. + + Parameters + ---------- + axis : int + The un-normalized index of the axis. Can be negative + ndim : int + The number of dimensions of the array that `axis` should be normalized + against + msg_prefix : str + A prefix to put before the message, typically the name of the argument + + Returns + ------- + normalized_axis : int + The normalized axis index, such that `0 <= normalized_axis < ndim` + + Raises + ------ + AxisError + If the axis index is invalid, when `-ndim <= axis < ndim` is false. + + Examples + -------- + >>> import numpy as np + >>> from numpy.lib.array_utils import normalize_axis_index + >>> normalize_axis_index(0, ndim=3) + 0 + >>> normalize_axis_index(1, ndim=3) + 1 + >>> normalize_axis_index(-1, ndim=3) + 2 + + >>> normalize_axis_index(3, ndim=3) + Traceback (most recent call last): + ... + numpy.exceptions.AxisError: axis 3 is out of bounds for array ... + >>> normalize_axis_index(-4, ndim=3, msg_prefix='axes_arg') + Traceback (most recent call last): + ... + numpy.exceptions.AxisError: axes_arg: axis -4 is out of bounds ... + """) + +add_newdoc('numpy._core.multiarray', 'datetime_data', + """ + datetime_data(dtype, /) + + Get information about the step size of a date or time type. + + The returned tuple can be passed as the second argument of `numpy.datetime64` and + `numpy.timedelta64`. + + Parameters + ---------- + dtype : dtype + The dtype object, which must be a `datetime64` or `timedelta64` type. + + Returns + ------- + unit : str + The :ref:`datetime unit ` on which this dtype + is based. + count : int + The number of base units in a step. + + Examples + -------- + >>> import numpy as np + >>> dt_25s = np.dtype('timedelta64[25s]') + >>> np.datetime_data(dt_25s) + ('s', 25) + >>> np.array(10, dt_25s).astype('timedelta64[s]') + array(250, dtype='timedelta64[s]') + + The result can be used to construct a datetime that uses the same units + as a timedelta + + >>> np.datetime64('2010', np.datetime_data(dt_25s)) + np.datetime64('2010-01-01T00:00:00','25s') + """) + + +############################################################################## +# +# Documentation for `generic` attributes and methods +# +############################################################################## + +add_newdoc('numpy._core.numerictypes', 'generic', + """ + Base class for numpy scalar types. + + Class from which most (all?) numpy scalar types are derived. For + consistency, exposes the same API as `ndarray`, despite many + consequent attributes being either "get-only," or completely irrelevant. + This is the class from which it is strongly suggested users should derive + custom scalar types. + + """) + +# Attributes + +def refer_to_array_attribute(attr, method=True): + docstring = """ + Scalar {} identical to the corresponding array attribute. + + Please see `ndarray.{}`. + """ + + return attr, docstring.format("method" if method else "attribute", attr) + + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('T', method=False)) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('base', method=False)) + +add_newdoc('numpy._core.numerictypes', 'generic', ('data', + """Pointer to start of data.""")) + +add_newdoc('numpy._core.numerictypes', 'generic', ('dtype', + """Get array data-descriptor.""")) + +add_newdoc('numpy._core.numerictypes', 'generic', ('flags', + """The integer value of flags.""")) + +add_newdoc('numpy._core.numerictypes', 'generic', ('flat', + """A 1-D view of the scalar.""")) + +add_newdoc('numpy._core.numerictypes', 'generic', ('imag', + """The imaginary part of the scalar.""")) + +add_newdoc('numpy._core.numerictypes', 'generic', ('itemsize', + """The length of one element in bytes.""")) + +add_newdoc('numpy._core.numerictypes', 'generic', ('ndim', + """The number of array dimensions.""")) + +add_newdoc('numpy._core.numerictypes', 'generic', ('real', + """The real part of the scalar.""")) + +add_newdoc('numpy._core.numerictypes', 'generic', ('shape', + """Tuple of array dimensions.""")) + +add_newdoc('numpy._core.numerictypes', 'generic', ('size', + """The number of elements in the gentype.""")) + +add_newdoc('numpy._core.numerictypes', 'generic', ('strides', + """Tuple of bytes steps in each dimension.""")) + +# Methods + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('all')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('any')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('argmax')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('argmin')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('argsort')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('astype')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('byteswap')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('choose')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('clip')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('compress')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('conjugate')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('copy')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('cumprod')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('cumsum')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('diagonal')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('dump')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('dumps')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('fill')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('flatten')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('getfield')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('item')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('max')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('mean')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('min')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('nonzero')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('prod')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('put')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('ravel')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('repeat')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('reshape')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('resize')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('round')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('searchsorted')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('setfield')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('setflags')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('sort')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('squeeze')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('std')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('sum')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('swapaxes')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('take')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('tofile')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('tolist')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('tostring')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('trace')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('transpose')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('var')) + +add_newdoc('numpy._core.numerictypes', 'generic', + refer_to_array_attribute('view')) + +add_newdoc('numpy._core.numerictypes', 'number', ('__class_getitem__', + """ + __class_getitem__(item, /) + + Return a parametrized wrapper around the `~numpy.number` type. + + .. versionadded:: 1.22 + + Returns + ------- + alias : types.GenericAlias + A parametrized `~numpy.number` type. + + Examples + -------- + >>> from typing import Any + >>> import numpy as np + + >>> np.signedinteger[Any] + numpy.signedinteger[typing.Any] + + See Also + -------- + :pep:`585` : Type hinting generics in standard collections. + + """)) + +############################################################################## +# +# Documentation for scalar type abstract base classes in type hierarchy +# +############################################################################## + + +add_newdoc('numpy._core.numerictypes', 'number', + """ + Abstract base class of all numeric scalar types. + + """) + +add_newdoc('numpy._core.numerictypes', 'integer', + """ + Abstract base class of all integer scalar types. + + """) + +add_newdoc('numpy._core.numerictypes', 'signedinteger', + """ + Abstract base class of all signed integer scalar types. + + """) + +add_newdoc('numpy._core.numerictypes', 'unsignedinteger', + """ + Abstract base class of all unsigned integer scalar types. + + """) + +add_newdoc('numpy._core.numerictypes', 'inexact', + """ + Abstract base class of all numeric scalar types with a (potentially) + inexact representation of the values in its range, such as + floating-point numbers. + + """) + +add_newdoc('numpy._core.numerictypes', 'floating', + """ + Abstract base class of all floating-point scalar types. + + """) + +add_newdoc('numpy._core.numerictypes', 'complexfloating', + """ + Abstract base class of all complex number scalar types that are made up of + floating-point numbers. + + """) + +add_newdoc('numpy._core.numerictypes', 'flexible', + """ + Abstract base class of all scalar types without predefined length. + The actual size of these types depends on the specific `numpy.dtype` + instantiation. + + """) + +add_newdoc('numpy._core.numerictypes', 'character', + """ + Abstract base class of all character string scalar types. + + """) + +add_newdoc('numpy._core.multiarray', 'StringDType', + """ + StringDType(*, na_object=np._NoValue, coerce=True) + + Create a StringDType instance. + + StringDType can be used to store UTF-8 encoded variable-width strings in + a NumPy array. + + Parameters + ---------- + na_object : object, optional + Object used to represent missing data. If unset, the array will not + use a missing data sentinel. + coerce : bool, optional + Whether or not items in an array-like passed to an array creation + function that are neither a str or str subtype should be coerced to + str. Defaults to True. If set to False, creating a StringDType + array from an array-like containing entries that are not already + strings will raise an error. + + Examples + -------- + + >>> import numpy as np + + >>> from numpy.dtypes import StringDType + >>> np.array(["hello", "world"], dtype=StringDType()) + array(["hello", "world"], dtype=StringDType()) + + >>> arr = np.array(["hello", None, "world"], + ... dtype=StringDType(na_object=None)) + >>> arr + array(["hello", None, "world"], dtype=StringDType(na_object=None)) + >>> arr[1] is None + True + + >>> arr = np.array(["hello", np.nan, "world"], + ... dtype=StringDType(na_object=np.nan)) + >>> np.isnan(arr) + array([False, True, False]) + + >>> np.array([1.2, object(), "hello world"], + ... dtype=StringDType(coerce=False)) + Traceback (most recent call last): + ... + ValueError: StringDType only allows string data when string coercion is disabled. + + >>> np.array(["hello", "world"], dtype=StringDType(coerce=True)) + array(["hello", "world"], dtype=StringDType(coerce=True)) + """) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs.pyi new file mode 100644 index 0000000..b23c3b1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs.pyi @@ -0,0 +1,3 @@ +from .overrides import get_array_function_like_doc as get_array_function_like_doc + +def refer_to_array_attribute(attr: str, method: bool = True) -> tuple[str, str]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs_scalars.py b/.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs_scalars.py new file mode 100644 index 0000000..96170d8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs_scalars.py @@ -0,0 +1,390 @@ +""" +This file is separate from ``_add_newdocs.py`` so that it can be mocked out by +our sphinx ``conf.py`` during doc builds, where we want to avoid showing +platform-dependent information. +""" +import os +import sys + +from numpy._core import dtype +from numpy._core import numerictypes as _numerictypes +from numpy._core.function_base import add_newdoc + +############################################################################## +# +# Documentation for concrete scalar classes +# +############################################################################## + +def numeric_type_aliases(aliases): + def type_aliases_gen(): + for alias, doc in aliases: + try: + alias_type = getattr(_numerictypes, alias) + except AttributeError: + # The set of aliases that actually exist varies between platforms + pass + else: + yield (alias_type, alias, doc) + return list(type_aliases_gen()) + + +possible_aliases = numeric_type_aliases([ + ('int8', '8-bit signed integer (``-128`` to ``127``)'), + ('int16', '16-bit signed integer (``-32_768`` to ``32_767``)'), + ('int32', '32-bit signed integer (``-2_147_483_648`` to ``2_147_483_647``)'), + ('int64', '64-bit signed integer (``-9_223_372_036_854_775_808`` to ``9_223_372_036_854_775_807``)'), + ('intp', 'Signed integer large enough to fit pointer, compatible with C ``intptr_t``'), + ('uint8', '8-bit unsigned integer (``0`` to ``255``)'), + ('uint16', '16-bit unsigned integer (``0`` to ``65_535``)'), + ('uint32', '32-bit unsigned integer (``0`` to ``4_294_967_295``)'), + ('uint64', '64-bit unsigned integer (``0`` to ``18_446_744_073_709_551_615``)'), + ('uintp', 'Unsigned integer large enough to fit pointer, compatible with C ``uintptr_t``'), + ('float16', '16-bit-precision floating-point number type: sign bit, 5 bits exponent, 10 bits mantissa'), + ('float32', '32-bit-precision floating-point number type: sign bit, 8 bits exponent, 23 bits mantissa'), + ('float64', '64-bit precision floating-point number type: sign bit, 11 bits exponent, 52 bits mantissa'), + ('float96', '96-bit extended-precision floating-point number type'), + ('float128', '128-bit extended-precision floating-point number type'), + ('complex64', 'Complex number type composed of 2 32-bit-precision floating-point numbers'), + ('complex128', 'Complex number type composed of 2 64-bit-precision floating-point numbers'), + ('complex192', 'Complex number type composed of 2 96-bit extended-precision floating-point numbers'), + ('complex256', 'Complex number type composed of 2 128-bit extended-precision floating-point numbers'), + ]) + + +def _get_platform_and_machine(): + try: + system, _, _, _, machine = os.uname() + except AttributeError: + system = sys.platform + if system == 'win32': + machine = os.environ.get('PROCESSOR_ARCHITEW6432', '') \ + or os.environ.get('PROCESSOR_ARCHITECTURE', '') + else: + machine = 'unknown' + return system, machine + + +_system, _machine = _get_platform_and_machine() +_doc_alias_string = f":Alias on this platform ({_system} {_machine}):" + + +def add_newdoc_for_scalar_type(obj, fixed_aliases, doc): + # note: `:field: value` is rST syntax which renders as field lists. + o = getattr(_numerictypes, obj) + + character_code = dtype(o).char + canonical_name_doc = "" if obj == o.__name__ else \ + f":Canonical name: `numpy.{obj}`\n " + if fixed_aliases: + alias_doc = ''.join(f":Alias: `numpy.{alias}`\n " + for alias in fixed_aliases) + else: + alias_doc = '' + alias_doc += ''.join(f"{_doc_alias_string} `numpy.{alias}`: {doc}.\n " + for (alias_type, alias, doc) in possible_aliases if alias_type is o) + + docstring = f""" + {doc.strip()} + + :Character code: ``'{character_code}'`` + {canonical_name_doc}{alias_doc} + """ + + add_newdoc('numpy._core.numerictypes', obj, docstring) + + +_bool_docstring = ( + """ + Boolean type (True or False), stored as a byte. + + .. warning:: + + The :class:`bool` type is not a subclass of the :class:`int_` type + (the :class:`bool` is not even a number type). This is different + than Python's default implementation of :class:`bool` as a + sub-class of :class:`int`. + """ +) + +add_newdoc_for_scalar_type('bool', [], _bool_docstring) + +add_newdoc_for_scalar_type('bool_', [], _bool_docstring) + +add_newdoc_for_scalar_type('byte', [], + """ + Signed integer type, compatible with C ``char``. + """) + +add_newdoc_for_scalar_type('short', [], + """ + Signed integer type, compatible with C ``short``. + """) + +add_newdoc_for_scalar_type('intc', [], + """ + Signed integer type, compatible with C ``int``. + """) + +# TODO: These docs probably need an if to highlight the default rather than +# the C-types (and be correct). +add_newdoc_for_scalar_type('int_', [], + """ + Default signed integer type, 64bit on 64bit systems and 32bit on 32bit + systems. + """) + +add_newdoc_for_scalar_type('longlong', [], + """ + Signed integer type, compatible with C ``long long``. + """) + +add_newdoc_for_scalar_type('ubyte', [], + """ + Unsigned integer type, compatible with C ``unsigned char``. + """) + +add_newdoc_for_scalar_type('ushort', [], + """ + Unsigned integer type, compatible with C ``unsigned short``. + """) + +add_newdoc_for_scalar_type('uintc', [], + """ + Unsigned integer type, compatible with C ``unsigned int``. + """) + +add_newdoc_for_scalar_type('uint', [], + """ + Unsigned signed integer type, 64bit on 64bit systems and 32bit on 32bit + systems. + """) + +add_newdoc_for_scalar_type('ulonglong', [], + """ + Signed integer type, compatible with C ``unsigned long long``. + """) + +add_newdoc_for_scalar_type('half', [], + """ + Half-precision floating-point number type. + """) + +add_newdoc_for_scalar_type('single', [], + """ + Single-precision floating-point number type, compatible with C ``float``. + """) + +add_newdoc_for_scalar_type('double', [], + """ + Double-precision floating-point number type, compatible with Python + :class:`float` and C ``double``. + """) + +add_newdoc_for_scalar_type('longdouble', [], + """ + Extended-precision floating-point number type, compatible with C + ``long double`` but not necessarily with IEEE 754 quadruple-precision. + """) + +add_newdoc_for_scalar_type('csingle', [], + """ + Complex number type composed of two single-precision floating-point + numbers. + """) + +add_newdoc_for_scalar_type('cdouble', [], + """ + Complex number type composed of two double-precision floating-point + numbers, compatible with Python :class:`complex`. + """) + +add_newdoc_for_scalar_type('clongdouble', [], + """ + Complex number type composed of two extended-precision floating-point + numbers. + """) + +add_newdoc_for_scalar_type('object_', [], + """ + Any Python object. + """) + +add_newdoc_for_scalar_type('str_', [], + r""" + A unicode string. + + This type strips trailing null codepoints. + + >>> s = np.str_("abc\x00") + >>> s + 'abc' + + Unlike the builtin :class:`str`, this supports the + :ref:`python:bufferobjects`, exposing its contents as UCS4: + + >>> m = memoryview(np.str_("abc")) + >>> m.format + '3w' + >>> m.tobytes() + b'a\x00\x00\x00b\x00\x00\x00c\x00\x00\x00' + """) + +add_newdoc_for_scalar_type('bytes_', [], + r""" + A byte string. + + When used in arrays, this type strips trailing null bytes. + """) + +add_newdoc_for_scalar_type('void', [], + r""" + np.void(length_or_data, /, dtype=None) + + Create a new structured or unstructured void scalar. + + Parameters + ---------- + length_or_data : int, array-like, bytes-like, object + One of multiple meanings (see notes). The length or + bytes data of an unstructured void. Or alternatively, + the data to be stored in the new scalar when `dtype` + is provided. + This can be an array-like, in which case an array may + be returned. + dtype : dtype, optional + If provided the dtype of the new scalar. This dtype must + be "void" dtype (i.e. a structured or unstructured void, + see also :ref:`defining-structured-types`). + + .. versionadded:: 1.24 + + Notes + ----- + For historical reasons and because void scalars can represent both + arbitrary byte data and structured dtypes, the void constructor + has three calling conventions: + + 1. ``np.void(5)`` creates a ``dtype="V5"`` scalar filled with five + ``\0`` bytes. The 5 can be a Python or NumPy integer. + 2. ``np.void(b"bytes-like")`` creates a void scalar from the byte string. + The dtype itemsize will match the byte string length, here ``"V10"``. + 3. When a ``dtype=`` is passed the call is roughly the same as an + array creation. However, a void scalar rather than array is returned. + + Please see the examples which show all three different conventions. + + Examples + -------- + >>> np.void(5) + np.void(b'\x00\x00\x00\x00\x00') + >>> np.void(b'abcd') + np.void(b'\x61\x62\x63\x64') + >>> np.void((3.2, b'eggs'), dtype="d,S5") + np.void((3.2, b'eggs'), dtype=[('f0', '>> np.void(3, dtype=[('x', np.int8), ('y', np.int8)]) + np.void((3, 3), dtype=[('x', 'i1'), ('y', 'i1')]) + + """) + +add_newdoc_for_scalar_type('datetime64', [], + """ + If created from a 64-bit integer, it represents an offset from + ``1970-01-01T00:00:00``. + If created from string, the string can be in ISO 8601 date + or datetime format. + + When parsing a string to create a datetime object, if the string contains + a trailing timezone (A 'Z' or a timezone offset), the timezone will be + dropped and a User Warning is given. + + Datetime64 objects should be considered to be UTC and therefore have an + offset of +0000. + + >>> np.datetime64(10, 'Y') + np.datetime64('1980') + >>> np.datetime64('1980', 'Y') + np.datetime64('1980') + >>> np.datetime64(10, 'D') + np.datetime64('1970-01-11') + + See :ref:`arrays.datetime` for more information. + """) + +add_newdoc_for_scalar_type('timedelta64', [], + """ + A timedelta stored as a 64-bit integer. + + See :ref:`arrays.datetime` for more information. + """) + +add_newdoc('numpy._core.numerictypes', "integer", ('is_integer', + """ + integer.is_integer() -> bool + + Return ``True`` if the number is finite with integral value. + + .. versionadded:: 1.22 + + Examples + -------- + >>> import numpy as np + >>> np.int64(-2).is_integer() + True + >>> np.uint32(5).is_integer() + True + """)) + +# TODO: work out how to put this on the base class, np.floating +for float_name in ('half', 'single', 'double', 'longdouble'): + add_newdoc('numpy._core.numerictypes', float_name, ('as_integer_ratio', + f""" + {float_name}.as_integer_ratio() -> (int, int) + + Return a pair of integers, whose ratio is exactly equal to the original + floating point number, and with a positive denominator. + Raise `OverflowError` on infinities and a `ValueError` on NaNs. + + >>> np.{float_name}(10.0).as_integer_ratio() + (10, 1) + >>> np.{float_name}(0.0).as_integer_ratio() + (0, 1) + >>> np.{float_name}(-.25).as_integer_ratio() + (-1, 4) + """)) + + add_newdoc('numpy._core.numerictypes', float_name, ('is_integer', + f""" + {float_name}.is_integer() -> bool + + Return ``True`` if the floating point number is finite with integral + value, and ``False`` otherwise. + + .. versionadded:: 1.22 + + Examples + -------- + >>> np.{float_name}(-2.0).is_integer() + True + >>> np.{float_name}(3.2).is_integer() + False + """)) + +for int_name in ('int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', + 'int64', 'uint64', 'int64', 'uint64', 'int64', 'uint64'): + # Add negative examples for signed cases by checking typecode + add_newdoc('numpy._core.numerictypes', int_name, ('bit_count', + f""" + {int_name}.bit_count() -> int + + Computes the number of 1-bits in the absolute value of the input. + Analogous to the builtin `int.bit_count` or ``popcount`` in C++. + + Examples + -------- + >>> np.{int_name}(127).bit_count() + 7""" + + (f""" + >>> np.{int_name}(-127).bit_count() + 7 + """ if dtype(int_name).char.islower() else ""))) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs_scalars.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs_scalars.pyi new file mode 100644 index 0000000..4a06c9b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/_add_newdocs_scalars.pyi @@ -0,0 +1,16 @@ +from collections.abc import Iterable +from typing import Final + +import numpy as np + +possible_aliases: Final[list[tuple[type[np.number], str, str]]] = ... +_system: Final[str] = ... +_machine: Final[str] = ... +_doc_alias_string: Final[str] = ... +_bool_docstring: Final[str] = ... +int_name: str = ... +float_name: str = ... + +def numeric_type_aliases(aliases: list[tuple[str, str]]) -> list[tuple[type[np.number], str, str]]: ... +def add_newdoc_for_scalar_type(obj: str, fixed_aliases: Iterable[str], doc: str) -> None: ... +def _get_platform_and_machine() -> tuple[str, str]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_asarray.py b/.venv/lib/python3.12/site-packages/numpy/_core/_asarray.py new file mode 100644 index 0000000..613c5cf --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/_asarray.py @@ -0,0 +1,134 @@ +""" +Functions in the ``as*array`` family that promote array-likes into arrays. + +`require` fits this category despite its name not matching this pattern. +""" +from .multiarray import array, asanyarray +from .overrides import ( + array_function_dispatch, + finalize_array_function_like, + set_module, +) + +__all__ = ["require"] + + +POSSIBLE_FLAGS = { + 'C': 'C', 'C_CONTIGUOUS': 'C', 'CONTIGUOUS': 'C', + 'F': 'F', 'F_CONTIGUOUS': 'F', 'FORTRAN': 'F', + 'A': 'A', 'ALIGNED': 'A', + 'W': 'W', 'WRITEABLE': 'W', + 'O': 'O', 'OWNDATA': 'O', + 'E': 'E', 'ENSUREARRAY': 'E' +} + + +@finalize_array_function_like +@set_module('numpy') +def require(a, dtype=None, requirements=None, *, like=None): + """ + Return an ndarray of the provided type that satisfies requirements. + + This function is useful to be sure that an array with the correct flags + is returned for passing to compiled code (perhaps through ctypes). + + Parameters + ---------- + a : array_like + The object to be converted to a type-and-requirement-satisfying array. + dtype : data-type + The required data-type. If None preserve the current dtype. If your + application requires the data to be in native byteorder, include + a byteorder specification as a part of the dtype specification. + requirements : str or sequence of str + The requirements list can be any of the following + + * 'F_CONTIGUOUS' ('F') - ensure a Fortran-contiguous array + * 'C_CONTIGUOUS' ('C') - ensure a C-contiguous array + * 'ALIGNED' ('A') - ensure a data-type aligned array + * 'WRITEABLE' ('W') - ensure a writable array + * 'OWNDATA' ('O') - ensure an array that owns its own data + * 'ENSUREARRAY', ('E') - ensure a base array, instead of a subclass + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray + Array with specified requirements and type if given. + + See Also + -------- + asarray : Convert input to an ndarray. + asanyarray : Convert to an ndarray, but pass through ndarray subclasses. + ascontiguousarray : Convert input to a contiguous array. + asfortranarray : Convert input to an ndarray with column-major + memory order. + ndarray.flags : Information about the memory layout of the array. + + Notes + ----- + The returned array will be guaranteed to have the listed requirements + by making a copy if needed. + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(6).reshape(2,3) + >>> x.flags + C_CONTIGUOUS : True + F_CONTIGUOUS : False + OWNDATA : False + WRITEABLE : True + ALIGNED : True + WRITEBACKIFCOPY : False + + >>> y = np.require(x, dtype=np.float32, requirements=['A', 'O', 'W', 'F']) + >>> y.flags + C_CONTIGUOUS : False + F_CONTIGUOUS : True + OWNDATA : True + WRITEABLE : True + ALIGNED : True + WRITEBACKIFCOPY : False + + """ + if like is not None: + return _require_with_like( + like, + a, + dtype=dtype, + requirements=requirements, + ) + + if not requirements: + return asanyarray(a, dtype=dtype) + + requirements = {POSSIBLE_FLAGS[x.upper()] for x in requirements} + + if 'E' in requirements: + requirements.remove('E') + subok = False + else: + subok = True + + order = 'A' + if requirements >= {'C', 'F'}: + raise ValueError('Cannot specify both "C" and "F" order') + elif 'F' in requirements: + order = 'F' + requirements.remove('F') + elif 'C' in requirements: + order = 'C' + requirements.remove('C') + + arr = array(a, dtype=dtype, order=order, copy=None, subok=subok) + + for prop in requirements: + if not arr.flags[prop]: + return arr.copy(order) + return arr + + +_require_with_like = array_function_dispatch()(require) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_asarray.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/_asarray.pyi new file mode 100644 index 0000000..a4bee00 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/_asarray.pyi @@ -0,0 +1,41 @@ +from collections.abc import Iterable +from typing import Any, Literal, TypeAlias, TypeVar, overload + +from numpy._typing import DTypeLike, NDArray, _SupportsArrayFunc + +_ArrayT = TypeVar("_ArrayT", bound=NDArray[Any]) + +_Requirements: TypeAlias = Literal[ + "C", "C_CONTIGUOUS", "CONTIGUOUS", + "F", "F_CONTIGUOUS", "FORTRAN", + "A", "ALIGNED", + "W", "WRITEABLE", + "O", "OWNDATA" +] +_E: TypeAlias = Literal["E", "ENSUREARRAY"] +_RequirementsWithE: TypeAlias = _Requirements | _E + +@overload +def require( + a: _ArrayT, + dtype: None = ..., + requirements: _Requirements | Iterable[_Requirements] | None = ..., + *, + like: _SupportsArrayFunc = ... +) -> _ArrayT: ... +@overload +def require( + a: object, + dtype: DTypeLike = ..., + requirements: _E | Iterable[_RequirementsWithE] = ..., + *, + like: _SupportsArrayFunc = ... +) -> NDArray[Any]: ... +@overload +def require( + a: object, + dtype: DTypeLike = ..., + requirements: _Requirements | Iterable[_Requirements] | None = ..., + *, + like: _SupportsArrayFunc = ... +) -> NDArray[Any]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_dtype.py b/.venv/lib/python3.12/site-packages/numpy/_core/_dtype.py new file mode 100644 index 0000000..6a8a091 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/_dtype.py @@ -0,0 +1,366 @@ +""" +A place for code to be called from the implementation of np.dtype + +String handling is much easier to do correctly in python. +""" +import numpy as np + +_kind_to_stem = { + 'u': 'uint', + 'i': 'int', + 'c': 'complex', + 'f': 'float', + 'b': 'bool', + 'V': 'void', + 'O': 'object', + 'M': 'datetime', + 'm': 'timedelta', + 'S': 'bytes', + 'U': 'str', +} + + +def _kind_name(dtype): + try: + return _kind_to_stem[dtype.kind] + except KeyError as e: + raise RuntimeError( + f"internal dtype error, unknown kind {dtype.kind!r}" + ) from None + + +def __str__(dtype): + if dtype.fields is not None: + return _struct_str(dtype, include_align=True) + elif dtype.subdtype: + return _subarray_str(dtype) + elif issubclass(dtype.type, np.flexible) or not dtype.isnative: + return dtype.str + else: + return dtype.name + + +def __repr__(dtype): + arg_str = _construction_repr(dtype, include_align=False) + if dtype.isalignedstruct: + arg_str = arg_str + ", align=True" + return f"dtype({arg_str})" + + +def _unpack_field(dtype, offset, title=None): + """ + Helper function to normalize the items in dtype.fields. + + Call as: + + dtype, offset, title = _unpack_field(*dtype.fields[name]) + """ + return dtype, offset, title + + +def _isunsized(dtype): + # PyDataType_ISUNSIZED + return dtype.itemsize == 0 + + +def _construction_repr(dtype, include_align=False, short=False): + """ + Creates a string repr of the dtype, excluding the 'dtype()' part + surrounding the object. This object may be a string, a list, or + a dict depending on the nature of the dtype. This + is the object passed as the first parameter to the dtype + constructor, and if no additional constructor parameters are + given, will reproduce the exact memory layout. + + Parameters + ---------- + short : bool + If true, this creates a shorter repr using 'kind' and 'itemsize', + instead of the longer type name. + + include_align : bool + If true, this includes the 'align=True' parameter + inside the struct dtype construction dict when needed. Use this flag + if you want a proper repr string without the 'dtype()' part around it. + + If false, this does not preserve the + 'align=True' parameter or sticky NPY_ALIGNED_STRUCT flag for + struct arrays like the regular repr does, because the 'align' + flag is not part of first dtype constructor parameter. This + mode is intended for a full 'repr', where the 'align=True' is + provided as the second parameter. + """ + if dtype.fields is not None: + return _struct_str(dtype, include_align=include_align) + elif dtype.subdtype: + return _subarray_str(dtype) + else: + return _scalar_str(dtype, short=short) + + +def _scalar_str(dtype, short): + byteorder = _byte_order_str(dtype) + + if dtype.type == np.bool: + if short: + return "'?'" + else: + return "'bool'" + + elif dtype.type == np.object_: + # The object reference may be different sizes on different + # platforms, so it should never include the itemsize here. + return "'O'" + + elif dtype.type == np.bytes_: + if _isunsized(dtype): + return "'S'" + else: + return "'S%d'" % dtype.itemsize + + elif dtype.type == np.str_: + if _isunsized(dtype): + return f"'{byteorder}U'" + else: + return "'%sU%d'" % (byteorder, dtype.itemsize / 4) + + elif dtype.type == str: + return "'T'" + + elif not type(dtype)._legacy: + return f"'{byteorder}{type(dtype).__name__}{dtype.itemsize * 8}'" + + # unlike the other types, subclasses of void are preserved - but + # historically the repr does not actually reveal the subclass + elif issubclass(dtype.type, np.void): + if _isunsized(dtype): + return "'V'" + else: + return "'V%d'" % dtype.itemsize + + elif dtype.type == np.datetime64: + return f"'{byteorder}M8{_datetime_metadata_str(dtype)}'" + + elif dtype.type == np.timedelta64: + return f"'{byteorder}m8{_datetime_metadata_str(dtype)}'" + + elif dtype.isbuiltin == 2: + return dtype.type.__name__ + + elif np.issubdtype(dtype, np.number): + # Short repr with endianness, like '' """ + # hack to obtain the native and swapped byte order characters + swapped = np.dtype(int).newbyteorder('S') + native = swapped.newbyteorder('S') + + byteorder = dtype.byteorder + if byteorder == '=': + return native.byteorder + if byteorder == 'S': + # TODO: this path can never be reached + return swapped.byteorder + elif byteorder == '|': + return '' + else: + return byteorder + + +def _datetime_metadata_str(dtype): + # TODO: this duplicates the C metastr_to_unicode functionality + unit, count = np.datetime_data(dtype) + if unit == 'generic': + return '' + elif count == 1: + return f'[{unit}]' + else: + return f'[{count}{unit}]' + + +def _struct_dict_str(dtype, includealignedflag): + # unpack the fields dictionary into ls + names = dtype.names + fld_dtypes = [] + offsets = [] + titles = [] + for name in names: + fld_dtype, offset, title = _unpack_field(*dtype.fields[name]) + fld_dtypes.append(fld_dtype) + offsets.append(offset) + titles.append(title) + + # Build up a string to make the dictionary + + if np._core.arrayprint._get_legacy_print_mode() <= 121: + colon = ":" + fieldsep = "," + else: + colon = ": " + fieldsep = ", " + + # First, the names + ret = "{'names'%s[" % colon + ret += fieldsep.join(repr(name) for name in names) + + # Second, the formats + ret += f"], 'formats'{colon}[" + ret += fieldsep.join( + _construction_repr(fld_dtype, short=True) for fld_dtype in fld_dtypes) + + # Third, the offsets + ret += f"], 'offsets'{colon}[" + ret += fieldsep.join("%d" % offset for offset in offsets) + + # Fourth, the titles + if any(title is not None for title in titles): + ret += f"], 'titles'{colon}[" + ret += fieldsep.join(repr(title) for title in titles) + + # Fifth, the itemsize + ret += "], 'itemsize'%s%d" % (colon, dtype.itemsize) + + if (includealignedflag and dtype.isalignedstruct): + # Finally, the aligned flag + ret += ", 'aligned'%sTrue}" % colon + else: + ret += "}" + + return ret + + +def _aligned_offset(offset, alignment): + # round up offset: + return - (-offset // alignment) * alignment + + +def _is_packed(dtype): + """ + Checks whether the structured data type in 'dtype' + has a simple layout, where all the fields are in order, + and follow each other with no alignment padding. + + When this returns true, the dtype can be reconstructed + from a list of the field names and dtypes with no additional + dtype parameters. + + Duplicates the C `is_dtype_struct_simple_unaligned_layout` function. + """ + align = dtype.isalignedstruct + max_alignment = 1 + total_offset = 0 + for name in dtype.names: + fld_dtype, fld_offset, title = _unpack_field(*dtype.fields[name]) + + if align: + total_offset = _aligned_offset(total_offset, fld_dtype.alignment) + max_alignment = max(max_alignment, fld_dtype.alignment) + + if fld_offset != total_offset: + return False + total_offset += fld_dtype.itemsize + + if align: + total_offset = _aligned_offset(total_offset, max_alignment) + + return total_offset == dtype.itemsize + + +def _struct_list_str(dtype): + items = [] + for name in dtype.names: + fld_dtype, fld_offset, title = _unpack_field(*dtype.fields[name]) + + item = "(" + if title is not None: + item += f"({title!r}, {name!r}), " + else: + item += f"{name!r}, " + # Special case subarray handling here + if fld_dtype.subdtype is not None: + base, shape = fld_dtype.subdtype + item += f"{_construction_repr(base, short=True)}, {shape}" + else: + item += _construction_repr(fld_dtype, short=True) + + item += ")" + items.append(item) + + return "[" + ", ".join(items) + "]" + + +def _struct_str(dtype, include_align): + # The list str representation can't include the 'align=' flag, + # so if it is requested and the struct has the aligned flag set, + # we must use the dict str instead. + if not (include_align and dtype.isalignedstruct) and _is_packed(dtype): + sub = _struct_list_str(dtype) + + else: + sub = _struct_dict_str(dtype, include_align) + + # If the data type isn't the default, void, show it + if dtype.type != np.void: + return f"({dtype.type.__module__}.{dtype.type.__name__}, {sub})" + else: + return sub + + +def _subarray_str(dtype): + base, shape = dtype.subdtype + return f"({_construction_repr(base, short=True)}, {shape})" + + +def _name_includes_bit_suffix(dtype): + if dtype.type == np.object_: + # pointer size varies by system, best to omit it + return False + elif dtype.type == np.bool: + # implied + return False + elif dtype.type is None: + return True + elif np.issubdtype(dtype, np.flexible) and _isunsized(dtype): + # unspecified + return False + else: + return True + + +def _name_get(dtype): + # provides dtype.name.__get__, documented as returning a "bit name" + + if dtype.isbuiltin == 2: + # user dtypes don't promise to do anything special + return dtype.type.__name__ + + if not type(dtype)._legacy: + name = type(dtype).__name__ + + elif issubclass(dtype.type, np.void): + # historically, void subclasses preserve their name, eg `record64` + name = dtype.type.__name__ + else: + name = _kind_name(dtype) + + # append bit counts + if _name_includes_bit_suffix(dtype): + name += f"{dtype.itemsize * 8}" + + # append metadata to datetimes + if dtype.type in (np.datetime64, np.timedelta64): + name += _datetime_metadata_str(dtype) + + return name diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_dtype.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/_dtype.pyi new file mode 100644 index 0000000..6cdd77b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/_dtype.pyi @@ -0,0 +1,58 @@ +from typing import Final, TypeAlias, TypedDict, overload, type_check_only +from typing import Literal as L + +from typing_extensions import ReadOnly, TypeVar + +import numpy as np + +### + +_T = TypeVar("_T") + +_Name: TypeAlias = L["uint", "int", "complex", "float", "bool", "void", "object", "datetime", "timedelta", "bytes", "str"] + +@type_check_only +class _KindToStemType(TypedDict): + u: ReadOnly[L["uint"]] + i: ReadOnly[L["int"]] + c: ReadOnly[L["complex"]] + f: ReadOnly[L["float"]] + b: ReadOnly[L["bool"]] + V: ReadOnly[L["void"]] + O: ReadOnly[L["object"]] + M: ReadOnly[L["datetime"]] + m: ReadOnly[L["timedelta"]] + S: ReadOnly[L["bytes"]] + U: ReadOnly[L["str"]] + +### + +_kind_to_stem: Final[_KindToStemType] = ... + +# +def _kind_name(dtype: np.dtype) -> _Name: ... +def __str__(dtype: np.dtype) -> str: ... +def __repr__(dtype: np.dtype) -> str: ... + +# +def _isunsized(dtype: np.dtype) -> bool: ... +def _is_packed(dtype: np.dtype) -> bool: ... +def _name_includes_bit_suffix(dtype: np.dtype) -> bool: ... + +# +def _construction_repr(dtype: np.dtype, include_align: bool = False, short: bool = False) -> str: ... +def _scalar_str(dtype: np.dtype, short: bool) -> str: ... +def _byte_order_str(dtype: np.dtype) -> str: ... +def _datetime_metadata_str(dtype: np.dtype) -> str: ... +def _struct_dict_str(dtype: np.dtype, includealignedflag: bool) -> str: ... +def _struct_list_str(dtype: np.dtype) -> str: ... +def _struct_str(dtype: np.dtype, include_align: bool) -> str: ... +def _subarray_str(dtype: np.dtype) -> str: ... +def _name_get(dtype: np.dtype) -> str: ... + +# +@overload +def _unpack_field(dtype: np.dtype, offset: int, title: _T) -> tuple[np.dtype, int, _T]: ... +@overload +def _unpack_field(dtype: np.dtype, offset: int, title: None = None) -> tuple[np.dtype, int, None]: ... +def _aligned_offset(offset: int, alignment: int) -> int: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_dtype_ctypes.py b/.venv/lib/python3.12/site-packages/numpy/_core/_dtype_ctypes.py new file mode 100644 index 0000000..4de6df6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/_dtype_ctypes.py @@ -0,0 +1,120 @@ +""" +Conversion from ctypes to dtype. + +In an ideal world, we could achieve this through the PEP3118 buffer protocol, +something like:: + + def dtype_from_ctypes_type(t): + # needed to ensure that the shape of `t` is within memoryview.format + class DummyStruct(ctypes.Structure): + _fields_ = [('a', t)] + + # empty to avoid memory allocation + ctype_0 = (DummyStruct * 0)() + mv = memoryview(ctype_0) + + # convert the struct, and slice back out the field + return _dtype_from_pep3118(mv.format)['a'] + +Unfortunately, this fails because: + +* ctypes cannot handle length-0 arrays with PEP3118 (bpo-32782) +* PEP3118 cannot represent unions, but both numpy and ctypes can +* ctypes cannot handle big-endian structs with PEP3118 (bpo-32780) +""" + +# We delay-import ctypes for distributions that do not include it. +# While this module is not used unless the user passes in ctypes +# members, it is eagerly imported from numpy/_core/__init__.py. +import numpy as np + + +def _from_ctypes_array(t): + return np.dtype((dtype_from_ctypes_type(t._type_), (t._length_,))) + + +def _from_ctypes_structure(t): + for item in t._fields_: + if len(item) > 2: + raise TypeError( + "ctypes bitfields have no dtype equivalent") + + if hasattr(t, "_pack_"): + import ctypes + formats = [] + offsets = [] + names = [] + current_offset = 0 + for fname, ftyp in t._fields_: + names.append(fname) + formats.append(dtype_from_ctypes_type(ftyp)) + # Each type has a default offset, this is platform dependent + # for some types. + effective_pack = min(t._pack_, ctypes.alignment(ftyp)) + current_offset = ( + (current_offset + effective_pack - 1) // effective_pack + ) * effective_pack + offsets.append(current_offset) + current_offset += ctypes.sizeof(ftyp) + + return np.dtype({ + "formats": formats, + "offsets": offsets, + "names": names, + "itemsize": ctypes.sizeof(t)}) + else: + fields = [] + for fname, ftyp in t._fields_: + fields.append((fname, dtype_from_ctypes_type(ftyp))) + + # by default, ctypes structs are aligned + return np.dtype(fields, align=True) + + +def _from_ctypes_scalar(t): + """ + Return the dtype type with endianness included if it's the case + """ + if getattr(t, '__ctype_be__', None) is t: + return np.dtype('>' + t._type_) + elif getattr(t, '__ctype_le__', None) is t: + return np.dtype('<' + t._type_) + else: + return np.dtype(t._type_) + + +def _from_ctypes_union(t): + import ctypes + formats = [] + offsets = [] + names = [] + for fname, ftyp in t._fields_: + names.append(fname) + formats.append(dtype_from_ctypes_type(ftyp)) + offsets.append(0) # Union fields are offset to 0 + + return np.dtype({ + "formats": formats, + "offsets": offsets, + "names": names, + "itemsize": ctypes.sizeof(t)}) + + +def dtype_from_ctypes_type(t): + """ + Construct a dtype object from a ctypes type + """ + import _ctypes + if issubclass(t, _ctypes.Array): + return _from_ctypes_array(t) + elif issubclass(t, _ctypes._Pointer): + raise TypeError("ctypes pointers have no dtype equivalent") + elif issubclass(t, _ctypes.Structure): + return _from_ctypes_structure(t) + elif issubclass(t, _ctypes.Union): + return _from_ctypes_union(t) + elif isinstance(getattr(t, '_type_', None), str): + return _from_ctypes_scalar(t) + else: + raise NotImplementedError( + f"Unknown ctypes type {t.__name__}") diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_dtype_ctypes.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/_dtype_ctypes.pyi new file mode 100644 index 0000000..69438a2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/_dtype_ctypes.pyi @@ -0,0 +1,83 @@ +import _ctypes +import ctypes as ct +from typing import Any, overload + +import numpy as np + +# +@overload +def dtype_from_ctypes_type(t: type[_ctypes.Array[Any] | _ctypes.Structure]) -> np.dtype[np.void]: ... +@overload +def dtype_from_ctypes_type(t: type[ct.c_bool]) -> np.dtype[np.bool]: ... +@overload +def dtype_from_ctypes_type(t: type[ct.c_int8 | ct.c_byte]) -> np.dtype[np.int8]: ... +@overload +def dtype_from_ctypes_type(t: type[ct.c_uint8 | ct.c_ubyte]) -> np.dtype[np.uint8]: ... +@overload +def dtype_from_ctypes_type(t: type[ct.c_int16 | ct.c_short]) -> np.dtype[np.int16]: ... +@overload +def dtype_from_ctypes_type(t: type[ct.c_uint16 | ct.c_ushort]) -> np.dtype[np.uint16]: ... +@overload +def dtype_from_ctypes_type(t: type[ct.c_int32 | ct.c_int]) -> np.dtype[np.int32]: ... +@overload +def dtype_from_ctypes_type(t: type[ct.c_uint32 | ct.c_uint]) -> np.dtype[np.uint32]: ... +@overload +def dtype_from_ctypes_type(t: type[ct.c_ssize_t | ct.c_long]) -> np.dtype[np.int32 | np.int64]: ... +@overload +def dtype_from_ctypes_type(t: type[ct.c_size_t | ct.c_ulong]) -> np.dtype[np.uint32 | np.uint64]: ... +@overload +def dtype_from_ctypes_type(t: type[ct.c_int64 | ct.c_longlong]) -> np.dtype[np.int64]: ... +@overload +def dtype_from_ctypes_type(t: type[ct.c_uint64 | ct.c_ulonglong]) -> np.dtype[np.uint64]: ... +@overload +def dtype_from_ctypes_type(t: type[ct.c_float]) -> np.dtype[np.float32]: ... +@overload +def dtype_from_ctypes_type(t: type[ct.c_double]) -> np.dtype[np.float64]: ... +@overload +def dtype_from_ctypes_type(t: type[ct.c_longdouble]) -> np.dtype[np.longdouble]: ... +@overload +def dtype_from_ctypes_type(t: type[ct.c_char]) -> np.dtype[np.bytes_]: ... +@overload +def dtype_from_ctypes_type(t: type[ct.py_object[Any]]) -> np.dtype[np.object_]: ... + +# NOTE: the complex ctypes on python>=3.14 are not yet supported at runtim, see +# https://github.com/numpy/numpy/issues/28360 + +# +def _from_ctypes_array(t: type[_ctypes.Array[Any]]) -> np.dtype[np.void]: ... +def _from_ctypes_structure(t: type[_ctypes.Structure]) -> np.dtype[np.void]: ... +def _from_ctypes_union(t: type[_ctypes.Union]) -> np.dtype[np.void]: ... + +# keep in sync with `dtype_from_ctypes_type` (minus the first overload) +@overload +def _from_ctypes_scalar(t: type[ct.c_bool]) -> np.dtype[np.bool]: ... +@overload +def _from_ctypes_scalar(t: type[ct.c_int8 | ct.c_byte]) -> np.dtype[np.int8]: ... +@overload +def _from_ctypes_scalar(t: type[ct.c_uint8 | ct.c_ubyte]) -> np.dtype[np.uint8]: ... +@overload +def _from_ctypes_scalar(t: type[ct.c_int16 | ct.c_short]) -> np.dtype[np.int16]: ... +@overload +def _from_ctypes_scalar(t: type[ct.c_uint16 | ct.c_ushort]) -> np.dtype[np.uint16]: ... +@overload +def _from_ctypes_scalar(t: type[ct.c_int32 | ct.c_int]) -> np.dtype[np.int32]: ... +@overload +def _from_ctypes_scalar(t: type[ct.c_uint32 | ct.c_uint]) -> np.dtype[np.uint32]: ... +@overload +def _from_ctypes_scalar(t: type[ct.c_ssize_t | ct.c_long]) -> np.dtype[np.int32 | np.int64]: ... +@overload +def _from_ctypes_scalar(t: type[ct.c_size_t | ct.c_ulong]) -> np.dtype[np.uint32 | np.uint64]: ... +@overload +def _from_ctypes_scalar(t: type[ct.c_int64 | ct.c_longlong]) -> np.dtype[np.int64]: ... +@overload +def _from_ctypes_scalar(t: type[ct.c_uint64 | ct.c_ulonglong]) -> np.dtype[np.uint64]: ... +@overload +def _from_ctypes_scalar(t: type[ct.c_float]) -> np.dtype[np.float32]: ... +@overload +def _from_ctypes_scalar(t: type[ct.c_double]) -> np.dtype[np.float64]: ... +@overload +def _from_ctypes_scalar(t: type[ct.c_longdouble]) -> np.dtype[np.longdouble]: ... +@overload +def _from_ctypes_scalar(t: type[ct.c_char]) -> np.dtype[np.bytes_]: ... +@overload +def _from_ctypes_scalar(t: type[ct.py_object[Any]]) -> np.dtype[np.object_]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_exceptions.py b/.venv/lib/python3.12/site-packages/numpy/_core/_exceptions.py new file mode 100644 index 0000000..73b07d2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/_exceptions.py @@ -0,0 +1,162 @@ +""" +Various richly-typed exceptions, that also help us deal with string formatting +in python where it's easier. + +By putting the formatting in `__str__`, we also avoid paying the cost for +users who silence the exceptions. +""" + +def _unpack_tuple(tup): + if len(tup) == 1: + return tup[0] + else: + return tup + + +def _display_as_base(cls): + """ + A decorator that makes an exception class look like its base. + + We use this to hide subclasses that are implementation details - the user + should catch the base type, which is what the traceback will show them. + + Classes decorated with this decorator are subject to removal without a + deprecation warning. + """ + assert issubclass(cls, Exception) + cls.__name__ = cls.__base__.__name__ + return cls + + +class UFuncTypeError(TypeError): + """ Base class for all ufunc exceptions """ + def __init__(self, ufunc): + self.ufunc = ufunc + + +@_display_as_base +class _UFuncNoLoopError(UFuncTypeError): + """ Thrown when a ufunc loop cannot be found """ + def __init__(self, ufunc, dtypes): + super().__init__(ufunc) + self.dtypes = tuple(dtypes) + + def __str__(self): + return ( + f"ufunc {self.ufunc.__name__!r} did not contain a loop with signature " + f"matching types {_unpack_tuple(self.dtypes[:self.ufunc.nin])!r} " + f"-> {_unpack_tuple(self.dtypes[self.ufunc.nin:])!r}" + ) + + +@_display_as_base +class _UFuncBinaryResolutionError(_UFuncNoLoopError): + """ Thrown when a binary resolution fails """ + def __init__(self, ufunc, dtypes): + super().__init__(ufunc, dtypes) + assert len(self.dtypes) == 2 + + def __str__(self): + return ( + "ufunc {!r} cannot use operands with types {!r} and {!r}" + ).format( + self.ufunc.__name__, *self.dtypes + ) + + +@_display_as_base +class _UFuncCastingError(UFuncTypeError): + def __init__(self, ufunc, casting, from_, to): + super().__init__(ufunc) + self.casting = casting + self.from_ = from_ + self.to = to + + +@_display_as_base +class _UFuncInputCastingError(_UFuncCastingError): + """ Thrown when a ufunc input cannot be casted """ + def __init__(self, ufunc, casting, from_, to, i): + super().__init__(ufunc, casting, from_, to) + self.in_i = i + + def __str__(self): + # only show the number if more than one input exists + i_str = f"{self.in_i} " if self.ufunc.nin != 1 else "" + return ( + f"Cannot cast ufunc {self.ufunc.__name__!r} input {i_str}from " + f"{self.from_!r} to {self.to!r} with casting rule {self.casting!r}" + ) + + +@_display_as_base +class _UFuncOutputCastingError(_UFuncCastingError): + """ Thrown when a ufunc output cannot be casted """ + def __init__(self, ufunc, casting, from_, to, i): + super().__init__(ufunc, casting, from_, to) + self.out_i = i + + def __str__(self): + # only show the number if more than one output exists + i_str = f"{self.out_i} " if self.ufunc.nout != 1 else "" + return ( + f"Cannot cast ufunc {self.ufunc.__name__!r} output {i_str}from " + f"{self.from_!r} to {self.to!r} with casting rule {self.casting!r}" + ) + + +@_display_as_base +class _ArrayMemoryError(MemoryError): + """ Thrown when an array cannot be allocated""" + def __init__(self, shape, dtype): + self.shape = shape + self.dtype = dtype + + @property + def _total_size(self): + num_bytes = self.dtype.itemsize + for dim in self.shape: + num_bytes *= dim + return num_bytes + + @staticmethod + def _size_to_string(num_bytes): + """ Convert a number of bytes into a binary size string """ + + # https://en.wikipedia.org/wiki/Binary_prefix + LOG2_STEP = 10 + STEP = 1024 + units = ['bytes', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB'] + + unit_i = max(num_bytes.bit_length() - 1, 1) // LOG2_STEP + unit_val = 1 << (unit_i * LOG2_STEP) + n_units = num_bytes / unit_val + del unit_val + + # ensure we pick a unit that is correct after rounding + if round(n_units) == STEP: + unit_i += 1 + n_units /= STEP + + # deal with sizes so large that we don't have units for them + if unit_i >= len(units): + new_unit_i = len(units) - 1 + n_units *= 1 << ((unit_i - new_unit_i) * LOG2_STEP) + unit_i = new_unit_i + + unit_name = units[unit_i] + # format with a sensible number of digits + if unit_i == 0: + # no decimal point on bytes + return f'{n_units:.0f} {unit_name}' + elif round(n_units) < 1000: + # 3 significant figures, if none are dropped to the left of the . + return f'{n_units:#.3g} {unit_name}' + else: + # just give all the digits otherwise + return f'{n_units:#.0f} {unit_name}' + + def __str__(self): + size_str = self._size_to_string(self._total_size) + return (f"Unable to allocate {size_str} for an array with shape " + f"{self.shape} and data type {self.dtype}") diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_exceptions.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/_exceptions.pyi new file mode 100644 index 0000000..02637a1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/_exceptions.pyi @@ -0,0 +1,55 @@ +from collections.abc import Iterable +from typing import Any, Final, TypeVar, overload + +import numpy as np +from numpy import _CastingKind +from numpy._utils import set_module as set_module + +### + +_T = TypeVar("_T") +_TupleT = TypeVar("_TupleT", bound=tuple[()] | tuple[Any, Any, *tuple[Any, ...]]) +_ExceptionT = TypeVar("_ExceptionT", bound=Exception) + +### + +class UFuncTypeError(TypeError): + ufunc: Final[np.ufunc] + def __init__(self, /, ufunc: np.ufunc) -> None: ... + +class _UFuncNoLoopError(UFuncTypeError): + dtypes: tuple[np.dtype, ...] + def __init__(self, /, ufunc: np.ufunc, dtypes: Iterable[np.dtype]) -> None: ... + +class _UFuncBinaryResolutionError(_UFuncNoLoopError): + dtypes: tuple[np.dtype, np.dtype] + def __init__(self, /, ufunc: np.ufunc, dtypes: Iterable[np.dtype]) -> None: ... + +class _UFuncCastingError(UFuncTypeError): + casting: Final[_CastingKind] + from_: Final[np.dtype] + to: Final[np.dtype] + def __init__(self, /, ufunc: np.ufunc, casting: _CastingKind, from_: np.dtype, to: np.dtype) -> None: ... + +class _UFuncInputCastingError(_UFuncCastingError): + in_i: Final[int] + def __init__(self, /, ufunc: np.ufunc, casting: _CastingKind, from_: np.dtype, to: np.dtype, i: int) -> None: ... + +class _UFuncOutputCastingError(_UFuncCastingError): + out_i: Final[int] + def __init__(self, /, ufunc: np.ufunc, casting: _CastingKind, from_: np.dtype, to: np.dtype, i: int) -> None: ... + +class _ArrayMemoryError(MemoryError): + shape: tuple[int, ...] + dtype: np.dtype + def __init__(self, /, shape: tuple[int, ...], dtype: np.dtype) -> None: ... + @property + def _total_size(self) -> int: ... + @staticmethod + def _size_to_string(num_bytes: int) -> str: ... + +@overload +def _unpack_tuple(tup: tuple[_T]) -> _T: ... +@overload +def _unpack_tuple(tup: _TupleT) -> _TupleT: ... +def _display_as_base(cls: type[_ExceptionT]) -> type[_ExceptionT]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_internal.py b/.venv/lib/python3.12/site-packages/numpy/_core/_internal.py new file mode 100644 index 0000000..e00e1b2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/_internal.py @@ -0,0 +1,958 @@ +""" +A place for internal code + +Some things are more easily handled Python. + +""" +import ast +import math +import re +import sys +import warnings + +from numpy import _NoValue +from numpy.exceptions import DTypePromotionError + +from .multiarray import StringDType, array, dtype, promote_types + +try: + import ctypes +except ImportError: + ctypes = None + +IS_PYPY = sys.implementation.name == 'pypy' + +if sys.byteorder == 'little': + _nbo = '<' +else: + _nbo = '>' + +def _makenames_list(adict, align): + allfields = [] + + for fname, obj in adict.items(): + n = len(obj) + if not isinstance(obj, tuple) or n not in (2, 3): + raise ValueError("entry not a 2- or 3- tuple") + if n > 2 and obj[2] == fname: + continue + num = int(obj[1]) + if num < 0: + raise ValueError("invalid offset.") + format = dtype(obj[0], align=align) + if n > 2: + title = obj[2] + else: + title = None + allfields.append((fname, format, num, title)) + # sort by offsets + allfields.sort(key=lambda x: x[2]) + names = [x[0] for x in allfields] + formats = [x[1] for x in allfields] + offsets = [x[2] for x in allfields] + titles = [x[3] for x in allfields] + + return names, formats, offsets, titles + +# Called in PyArray_DescrConverter function when +# a dictionary without "names" and "formats" +# fields is used as a data-type descriptor. +def _usefields(adict, align): + try: + names = adict[-1] + except KeyError: + names = None + if names is None: + names, formats, offsets, titles = _makenames_list(adict, align) + else: + formats = [] + offsets = [] + titles = [] + for name in names: + res = adict[name] + formats.append(res[0]) + offsets.append(res[1]) + if len(res) > 2: + titles.append(res[2]) + else: + titles.append(None) + + return dtype({"names": names, + "formats": formats, + "offsets": offsets, + "titles": titles}, align) + + +# construct an array_protocol descriptor list +# from the fields attribute of a descriptor +# This calls itself recursively but should eventually hit +# a descriptor that has no fields and then return +# a simple typestring + +def _array_descr(descriptor): + fields = descriptor.fields + if fields is None: + subdtype = descriptor.subdtype + if subdtype is None: + if descriptor.metadata is None: + return descriptor.str + else: + new = descriptor.metadata.copy() + if new: + return (descriptor.str, new) + else: + return descriptor.str + else: + return (_array_descr(subdtype[0]), subdtype[1]) + + names = descriptor.names + ordered_fields = [fields[x] + (x,) for x in names] + result = [] + offset = 0 + for field in ordered_fields: + if field[1] > offset: + num = field[1] - offset + result.append(('', f'|V{num}')) + offset += num + elif field[1] < offset: + raise ValueError( + "dtype.descr is not defined for types with overlapping or " + "out-of-order fields") + if len(field) > 3: + name = (field[2], field[3]) + else: + name = field[2] + if field[0].subdtype: + tup = (name, _array_descr(field[0].subdtype[0]), + field[0].subdtype[1]) + else: + tup = (name, _array_descr(field[0])) + offset += field[0].itemsize + result.append(tup) + + if descriptor.itemsize > offset: + num = descriptor.itemsize - offset + result.append(('', f'|V{num}')) + + return result + + +# format_re was originally from numarray by J. Todd Miller + +format_re = re.compile(r'(?P[<>|=]?)' + r'(?P *[(]?[ ,0-9]*[)]? *)' + r'(?P[<>|=]?)' + r'(?P[A-Za-z0-9.?]*(?:\[[a-zA-Z0-9,.]+\])?)') +sep_re = re.compile(r'\s*,\s*') +space_re = re.compile(r'\s+$') + +# astr is a string (perhaps comma separated) + +_convorder = {'=': _nbo} + +def _commastring(astr): + startindex = 0 + result = [] + islist = False + while startindex < len(astr): + mo = format_re.match(astr, pos=startindex) + try: + (order1, repeats, order2, dtype) = mo.groups() + except (TypeError, AttributeError): + raise ValueError( + f'format number {len(result) + 1} of "{astr}" is not recognized' + ) from None + startindex = mo.end() + # Separator or ending padding + if startindex < len(astr): + if space_re.match(astr, pos=startindex): + startindex = len(astr) + else: + mo = sep_re.match(astr, pos=startindex) + if not mo: + raise ValueError( + 'format number %d of "%s" is not recognized' % + (len(result) + 1, astr)) + startindex = mo.end() + islist = True + + if order2 == '': + order = order1 + elif order1 == '': + order = order2 + else: + order1 = _convorder.get(order1, order1) + order2 = _convorder.get(order2, order2) + if (order1 != order2): + raise ValueError( + f'inconsistent byte-order specification {order1} and {order2}') + order = order1 + + if order in ('|', '=', _nbo): + order = '' + dtype = order + dtype + if repeats == '': + newitem = dtype + else: + if (repeats[0] == "(" and repeats[-1] == ")" + and repeats[1:-1].strip() != "" + and "," not in repeats): + warnings.warn( + 'Passing in a parenthesized single number for repeats ' + 'is deprecated; pass either a single number or indicate ' + 'a tuple with a comma, like "(2,)".', DeprecationWarning, + stacklevel=2) + newitem = (dtype, ast.literal_eval(repeats)) + + result.append(newitem) + + return result if islist else result[0] + +class dummy_ctype: + + def __init__(self, cls): + self._cls = cls + + def __mul__(self, other): + return self + + def __call__(self, *other): + return self._cls(other) + + def __eq__(self, other): + return self._cls == other._cls + + def __ne__(self, other): + return self._cls != other._cls + +def _getintp_ctype(): + val = _getintp_ctype.cache + if val is not None: + return val + if ctypes is None: + import numpy as np + val = dummy_ctype(np.intp) + else: + char = dtype('n').char + if char == 'i': + val = ctypes.c_int + elif char == 'l': + val = ctypes.c_long + elif char == 'q': + val = ctypes.c_longlong + else: + val = ctypes.c_long + _getintp_ctype.cache = val + return val + + +_getintp_ctype.cache = None + +# Used for .ctypes attribute of ndarray + +class _missing_ctypes: + def cast(self, num, obj): + return num.value + + class c_void_p: + def __init__(self, ptr): + self.value = ptr + + +class _ctypes: + def __init__(self, array, ptr=None): + self._arr = array + + if ctypes: + self._ctypes = ctypes + self._data = self._ctypes.c_void_p(ptr) + else: + # fake a pointer-like object that holds onto the reference + self._ctypes = _missing_ctypes() + self._data = self._ctypes.c_void_p(ptr) + self._data._objects = array + + if self._arr.ndim == 0: + self._zerod = True + else: + self._zerod = False + + def data_as(self, obj): + """ + Return the data pointer cast to a particular c-types object. + For example, calling ``self._as_parameter_`` is equivalent to + ``self.data_as(ctypes.c_void_p)``. Perhaps you want to use + the data as a pointer to a ctypes array of floating-point data: + ``self.data_as(ctypes.POINTER(ctypes.c_double))``. + + The returned pointer will keep a reference to the array. + """ + # _ctypes.cast function causes a circular reference of self._data in + # self._data._objects. Attributes of self._data cannot be released + # until gc.collect is called. Make a copy of the pointer first then + # let it hold the array reference. This is a workaround to circumvent + # the CPython bug https://bugs.python.org/issue12836. + ptr = self._ctypes.cast(self._data, obj) + ptr._arr = self._arr + return ptr + + def shape_as(self, obj): + """ + Return the shape tuple as an array of some other c-types + type. For example: ``self.shape_as(ctypes.c_short)``. + """ + if self._zerod: + return None + return (obj * self._arr.ndim)(*self._arr.shape) + + def strides_as(self, obj): + """ + Return the strides tuple as an array of some other + c-types type. For example: ``self.strides_as(ctypes.c_longlong)``. + """ + if self._zerod: + return None + return (obj * self._arr.ndim)(*self._arr.strides) + + @property + def data(self): + """ + A pointer to the memory area of the array as a Python integer. + This memory area may contain data that is not aligned, or not in + correct byte-order. The memory area may not even be writeable. + The array flags and data-type of this array should be respected + when passing this attribute to arbitrary C-code to avoid trouble + that can include Python crashing. User Beware! The value of this + attribute is exactly the same as: + ``self._array_interface_['data'][0]``. + + Note that unlike ``data_as``, a reference won't be kept to the array: + code like ``ctypes.c_void_p((a + b).ctypes.data)`` will result in a + pointer to a deallocated array, and should be spelt + ``(a + b).ctypes.data_as(ctypes.c_void_p)`` + """ + return self._data.value + + @property + def shape(self): + """ + (c_intp*self.ndim): A ctypes array of length self.ndim where + the basetype is the C-integer corresponding to ``dtype('p')`` on this + platform (see `~numpy.ctypeslib.c_intp`). This base-type could be + `ctypes.c_int`, `ctypes.c_long`, or `ctypes.c_longlong` depending on + the platform. The ctypes array contains the shape of + the underlying array. + """ + return self.shape_as(_getintp_ctype()) + + @property + def strides(self): + """ + (c_intp*self.ndim): A ctypes array of length self.ndim where + the basetype is the same as for the shape attribute. This ctypes + array contains the strides information from the underlying array. + This strides information is important for showing how many bytes + must be jumped to get to the next element in the array. + """ + return self.strides_as(_getintp_ctype()) + + @property + def _as_parameter_(self): + """ + Overrides the ctypes semi-magic method + + Enables `c_func(some_array.ctypes)` + """ + return self.data_as(ctypes.c_void_p) + + # Numpy 1.21.0, 2021-05-18 + + def get_data(self): + """Deprecated getter for the `_ctypes.data` property. + + .. deprecated:: 1.21 + """ + warnings.warn('"get_data" is deprecated. Use "data" instead', + DeprecationWarning, stacklevel=2) + return self.data + + def get_shape(self): + """Deprecated getter for the `_ctypes.shape` property. + + .. deprecated:: 1.21 + """ + warnings.warn('"get_shape" is deprecated. Use "shape" instead', + DeprecationWarning, stacklevel=2) + return self.shape + + def get_strides(self): + """Deprecated getter for the `_ctypes.strides` property. + + .. deprecated:: 1.21 + """ + warnings.warn('"get_strides" is deprecated. Use "strides" instead', + DeprecationWarning, stacklevel=2) + return self.strides + + def get_as_parameter(self): + """Deprecated getter for the `_ctypes._as_parameter_` property. + + .. deprecated:: 1.21 + """ + warnings.warn( + '"get_as_parameter" is deprecated. Use "_as_parameter_" instead', + DeprecationWarning, stacklevel=2, + ) + return self._as_parameter_ + + +def _newnames(datatype, order): + """ + Given a datatype and an order object, return a new names tuple, with the + order indicated + """ + oldnames = datatype.names + nameslist = list(oldnames) + if isinstance(order, str): + order = [order] + seen = set() + if isinstance(order, (list, tuple)): + for name in order: + try: + nameslist.remove(name) + except ValueError: + if name in seen: + raise ValueError(f"duplicate field name: {name}") from None + else: + raise ValueError(f"unknown field name: {name}") from None + seen.add(name) + return tuple(list(order) + nameslist) + raise ValueError(f"unsupported order value: {order}") + +def _copy_fields(ary): + """Return copy of structured array with padding between fields removed. + + Parameters + ---------- + ary : ndarray + Structured array from which to remove padding bytes + + Returns + ------- + ary_copy : ndarray + Copy of ary with padding bytes removed + """ + dt = ary.dtype + copy_dtype = {'names': dt.names, + 'formats': [dt.fields[name][0] for name in dt.names]} + return array(ary, dtype=copy_dtype, copy=True) + +def _promote_fields(dt1, dt2): + """ Perform type promotion for two structured dtypes. + + Parameters + ---------- + dt1 : structured dtype + First dtype. + dt2 : structured dtype + Second dtype. + + Returns + ------- + out : dtype + The promoted dtype + + Notes + ----- + If one of the inputs is aligned, the result will be. The titles of + both descriptors must match (point to the same field). + """ + # Both must be structured and have the same names in the same order + if (dt1.names is None or dt2.names is None) or dt1.names != dt2.names: + raise DTypePromotionError( + f"field names `{dt1.names}` and `{dt2.names}` mismatch.") + + # if both are identical, we can (maybe!) just return the same dtype. + identical = dt1 is dt2 + new_fields = [] + for name in dt1.names: + field1 = dt1.fields[name] + field2 = dt2.fields[name] + new_descr = promote_types(field1[0], field2[0]) + identical = identical and new_descr is field1[0] + + # Check that the titles match (if given): + if field1[2:] != field2[2:]: + raise DTypePromotionError( + f"field titles of field '{name}' mismatch") + if len(field1) == 2: + new_fields.append((name, new_descr)) + else: + new_fields.append(((field1[2], name), new_descr)) + + res = dtype(new_fields, align=dt1.isalignedstruct or dt2.isalignedstruct) + + # Might as well preserve identity (and metadata) if the dtype is identical + # and the itemsize, offsets are also unmodified. This could probably be + # sped up, but also probably just be removed entirely. + if identical and res.itemsize == dt1.itemsize: + for name in dt1.names: + if dt1.fields[name][1] != res.fields[name][1]: + return res # the dtype changed. + return dt1 + + return res + + +def _getfield_is_safe(oldtype, newtype, offset): + """ Checks safety of getfield for object arrays. + + As in _view_is_safe, we need to check that memory containing objects is not + reinterpreted as a non-object datatype and vice versa. + + Parameters + ---------- + oldtype : data-type + Data type of the original ndarray. + newtype : data-type + Data type of the field being accessed by ndarray.getfield + offset : int + Offset of the field being accessed by ndarray.getfield + + Raises + ------ + TypeError + If the field access is invalid + + """ + if newtype.hasobject or oldtype.hasobject: + if offset == 0 and newtype == oldtype: + return + if oldtype.names is not None: + for name in oldtype.names: + if (oldtype.fields[name][1] == offset and + oldtype.fields[name][0] == newtype): + return + raise TypeError("Cannot get/set field of an object array") + return + +def _view_is_safe(oldtype, newtype): + """ Checks safety of a view involving object arrays, for example when + doing:: + + np.zeros(10, dtype=oldtype).view(newtype) + + Parameters + ---------- + oldtype : data-type + Data type of original ndarray + newtype : data-type + Data type of the view + + Raises + ------ + TypeError + If the new type is incompatible with the old type. + + """ + + # if the types are equivalent, there is no problem. + # for example: dtype((np.record, 'i4,i4')) == dtype((np.void, 'i4,i4')) + if oldtype == newtype: + return + + if newtype.hasobject or oldtype.hasobject: + raise TypeError("Cannot change data-type for array of references.") + return + + +# Given a string containing a PEP 3118 format specifier, +# construct a NumPy dtype + +_pep3118_native_map = { + '?': '?', + 'c': 'S1', + 'b': 'b', + 'B': 'B', + 'h': 'h', + 'H': 'H', + 'i': 'i', + 'I': 'I', + 'l': 'l', + 'L': 'L', + 'q': 'q', + 'Q': 'Q', + 'e': 'e', + 'f': 'f', + 'd': 'd', + 'g': 'g', + 'Zf': 'F', + 'Zd': 'D', + 'Zg': 'G', + 's': 'S', + 'w': 'U', + 'O': 'O', + 'x': 'V', # padding +} +_pep3118_native_typechars = ''.join(_pep3118_native_map.keys()) + +_pep3118_standard_map = { + '?': '?', + 'c': 'S1', + 'b': 'b', + 'B': 'B', + 'h': 'i2', + 'H': 'u2', + 'i': 'i4', + 'I': 'u4', + 'l': 'i4', + 'L': 'u4', + 'q': 'i8', + 'Q': 'u8', + 'e': 'f2', + 'f': 'f', + 'd': 'd', + 'Zf': 'F', + 'Zd': 'D', + 's': 'S', + 'w': 'U', + 'O': 'O', + 'x': 'V', # padding +} +_pep3118_standard_typechars = ''.join(_pep3118_standard_map.keys()) + +_pep3118_unsupported_map = { + 'u': 'UCS-2 strings', + '&': 'pointers', + 't': 'bitfields', + 'X': 'function pointers', +} + +class _Stream: + def __init__(self, s): + self.s = s + self.byteorder = '@' + + def advance(self, n): + res = self.s[:n] + self.s = self.s[n:] + return res + + def consume(self, c): + if self.s[:len(c)] == c: + self.advance(len(c)) + return True + return False + + def consume_until(self, c): + if callable(c): + i = 0 + while i < len(self.s) and not c(self.s[i]): + i = i + 1 + return self.advance(i) + else: + i = self.s.index(c) + res = self.advance(i) + self.advance(len(c)) + return res + + @property + def next(self): + return self.s[0] + + def __bool__(self): + return bool(self.s) + + +def _dtype_from_pep3118(spec): + stream = _Stream(spec) + dtype, align = __dtype_from_pep3118(stream, is_subdtype=False) + return dtype + +def __dtype_from_pep3118(stream, is_subdtype): + field_spec = { + 'names': [], + 'formats': [], + 'offsets': [], + 'itemsize': 0 + } + offset = 0 + common_alignment = 1 + is_padding = False + + # Parse spec + while stream: + value = None + + # End of structure, bail out to upper level + if stream.consume('}'): + break + + # Sub-arrays (1) + shape = None + if stream.consume('('): + shape = stream.consume_until(')') + shape = tuple(map(int, shape.split(','))) + + # Byte order + if stream.next in ('@', '=', '<', '>', '^', '!'): + byteorder = stream.advance(1) + if byteorder == '!': + byteorder = '>' + stream.byteorder = byteorder + + # Byte order characters also control native vs. standard type sizes + if stream.byteorder in ('@', '^'): + type_map = _pep3118_native_map + type_map_chars = _pep3118_native_typechars + else: + type_map = _pep3118_standard_map + type_map_chars = _pep3118_standard_typechars + + # Item sizes + itemsize_str = stream.consume_until(lambda c: not c.isdigit()) + if itemsize_str: + itemsize = int(itemsize_str) + else: + itemsize = 1 + + # Data types + is_padding = False + + if stream.consume('T{'): + value, align = __dtype_from_pep3118( + stream, is_subdtype=True) + elif stream.next in type_map_chars: + if stream.next == 'Z': + typechar = stream.advance(2) + else: + typechar = stream.advance(1) + + is_padding = (typechar == 'x') + dtypechar = type_map[typechar] + if dtypechar in 'USV': + dtypechar += '%d' % itemsize + itemsize = 1 + numpy_byteorder = {'@': '=', '^': '='}.get( + stream.byteorder, stream.byteorder) + value = dtype(numpy_byteorder + dtypechar) + align = value.alignment + elif stream.next in _pep3118_unsupported_map: + desc = _pep3118_unsupported_map[stream.next] + raise NotImplementedError( + f"Unrepresentable PEP 3118 data type {stream.next!r} ({desc})") + else: + raise ValueError( + f"Unknown PEP 3118 data type specifier {stream.s!r}" + ) + + # + # Native alignment may require padding + # + # Here we assume that the presence of a '@' character implicitly + # implies that the start of the array is *already* aligned. + # + extra_offset = 0 + if stream.byteorder == '@': + start_padding = (-offset) % align + intra_padding = (-value.itemsize) % align + + offset += start_padding + + if intra_padding != 0: + if itemsize > 1 or (shape is not None and _prod(shape) > 1): + # Inject internal padding to the end of the sub-item + value = _add_trailing_padding(value, intra_padding) + else: + # We can postpone the injection of internal padding, + # as the item appears at most once + extra_offset += intra_padding + + # Update common alignment + common_alignment = _lcm(align, common_alignment) + + # Convert itemsize to sub-array + if itemsize != 1: + value = dtype((value, (itemsize,))) + + # Sub-arrays (2) + if shape is not None: + value = dtype((value, shape)) + + # Field name + if stream.consume(':'): + name = stream.consume_until(':') + else: + name = None + + if not (is_padding and name is None): + if name is not None and name in field_spec['names']: + raise RuntimeError( + f"Duplicate field name '{name}' in PEP3118 format" + ) + field_spec['names'].append(name) + field_spec['formats'].append(value) + field_spec['offsets'].append(offset) + + offset += value.itemsize + offset += extra_offset + + field_spec['itemsize'] = offset + + # extra final padding for aligned types + if stream.byteorder == '@': + field_spec['itemsize'] += (-offset) % common_alignment + + # Check if this was a simple 1-item type, and unwrap it + if (field_spec['names'] == [None] + and field_spec['offsets'][0] == 0 + and field_spec['itemsize'] == field_spec['formats'][0].itemsize + and not is_subdtype): + ret = field_spec['formats'][0] + else: + _fix_names(field_spec) + ret = dtype(field_spec) + + # Finished + return ret, common_alignment + +def _fix_names(field_spec): + """ Replace names which are None with the next unused f%d name """ + names = field_spec['names'] + for i, name in enumerate(names): + if name is not None: + continue + + j = 0 + while True: + name = f'f{j}' + if name not in names: + break + j = j + 1 + names[i] = name + +def _add_trailing_padding(value, padding): + """Inject the specified number of padding bytes at the end of a dtype""" + if value.fields is None: + field_spec = { + 'names': ['f0'], + 'formats': [value], + 'offsets': [0], + 'itemsize': value.itemsize + } + else: + fields = value.fields + names = value.names + field_spec = { + 'names': names, + 'formats': [fields[name][0] for name in names], + 'offsets': [fields[name][1] for name in names], + 'itemsize': value.itemsize + } + + field_spec['itemsize'] += padding + return dtype(field_spec) + +def _prod(a): + p = 1 + for x in a: + p *= x + return p + +def _gcd(a, b): + """Calculate the greatest common divisor of a and b""" + if not (math.isfinite(a) and math.isfinite(b)): + raise ValueError('Can only find greatest common divisor of ' + f'finite arguments, found "{a}" and "{b}"') + while b: + a, b = b, a % b + return a + +def _lcm(a, b): + return a // _gcd(a, b) * b + +def array_ufunc_errmsg_formatter(dummy, ufunc, method, *inputs, **kwargs): + """ Format the error message for when __array_ufunc__ gives up. """ + args_string = ', '.join([f'{arg!r}' for arg in inputs] + + [f'{k}={v!r}' + for k, v in kwargs.items()]) + args = inputs + kwargs.get('out', ()) + types_string = ', '.join(repr(type(arg).__name__) for arg in args) + return ('operand type(s) all returned NotImplemented from ' + f'__array_ufunc__({ufunc!r}, {method!r}, {args_string}): {types_string}' + ) + + +def array_function_errmsg_formatter(public_api, types): + """ Format the error message for when __array_ufunc__ gives up. """ + func_name = f'{public_api.__module__}.{public_api.__name__}' + return (f"no implementation found for '{func_name}' on types that implement " + f'__array_function__: {list(types)}') + + +def _ufunc_doc_signature_formatter(ufunc): + """ + Builds a signature string which resembles PEP 457 + + This is used to construct the first line of the docstring + """ + + # input arguments are simple + if ufunc.nin == 1: + in_args = 'x' + else: + in_args = ', '.join(f'x{i + 1}' for i in range(ufunc.nin)) + + # output arguments are both keyword or positional + if ufunc.nout == 0: + out_args = ', /, out=()' + elif ufunc.nout == 1: + out_args = ', /, out=None' + else: + out_args = '[, {positional}], / [, out={default}]'.format( + positional=', '.join( + f'out{i + 1}' for i in range(ufunc.nout)), + default=repr((None,) * ufunc.nout) + ) + + # keyword only args depend on whether this is a gufunc + kwargs = ( + ", casting='same_kind'" + ", order='K'" + ", dtype=None" + ", subok=True" + ) + + # NOTE: gufuncs may or may not support the `axis` parameter + if ufunc.signature is None: + kwargs = f", where=True{kwargs}[, signature]" + else: + kwargs += "[, signature, axes, axis]" + + # join all the parts together + return f'{ufunc.__name__}({in_args}{out_args}, *{kwargs})' + + +def npy_ctypes_check(cls): + # determine if a class comes from ctypes, in order to work around + # a bug in the buffer protocol for those objects, bpo-10746 + try: + # ctypes class are new-style, so have an __mro__. This probably fails + # for ctypes classes with multiple inheritance. + if IS_PYPY: + # (..., _ctypes.basics._CData, Bufferable, object) + ctype_base = cls.__mro__[-3] + else: + # # (..., _ctypes._CData, object) + ctype_base = cls.__mro__[-2] + # right now, they're part of the _ctypes module + return '_ctypes' in ctype_base.__module__ + except Exception: + return False + +# used to handle the _NoValue default argument for na_object +# in the C implementation of the __reduce__ method for stringdtype +def _convert_to_stringdtype_kwargs(coerce, na_object=_NoValue): + if na_object is _NoValue: + return StringDType(coerce=coerce) + return StringDType(coerce=coerce, na_object=na_object) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_internal.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/_internal.pyi new file mode 100644 index 0000000..3038297 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/_internal.pyi @@ -0,0 +1,72 @@ +import ctypes as ct +import re +from collections.abc import Callable, Iterable +from typing import Any, Final, Generic, Self, overload + +from typing_extensions import TypeVar, deprecated + +import numpy as np +import numpy.typing as npt +from numpy.ctypeslib import c_intp + +_CastT = TypeVar("_CastT", bound=ct._CanCastTo) +_T_co = TypeVar("_T_co", covariant=True) +_CT = TypeVar("_CT", bound=ct._CData) +_PT_co = TypeVar("_PT_co", bound=int | None, default=None, covariant=True) + +### + +IS_PYPY: Final[bool] = ... + +format_re: Final[re.Pattern[str]] = ... +sep_re: Final[re.Pattern[str]] = ... +space_re: Final[re.Pattern[str]] = ... + +### + +# TODO: Let the likes of `shape_as` and `strides_as` return `None` +# for 0D arrays once we've got shape-support + +class _ctypes(Generic[_PT_co]): + @overload + def __init__(self: _ctypes[None], /, array: npt.NDArray[Any], ptr: None = None) -> None: ... + @overload + def __init__(self, /, array: npt.NDArray[Any], ptr: _PT_co) -> None: ... + + # + @property + def data(self) -> _PT_co: ... + @property + def shape(self) -> ct.Array[c_intp]: ... + @property + def strides(self) -> ct.Array[c_intp]: ... + @property + def _as_parameter_(self) -> ct.c_void_p: ... + + # + def data_as(self, /, obj: type[_CastT]) -> _CastT: ... + def shape_as(self, /, obj: type[_CT]) -> ct.Array[_CT]: ... + def strides_as(self, /, obj: type[_CT]) -> ct.Array[_CT]: ... + + # + @deprecated('"get_data" is deprecated. Use "data" instead') + def get_data(self, /) -> _PT_co: ... + @deprecated('"get_shape" is deprecated. Use "shape" instead') + def get_shape(self, /) -> ct.Array[c_intp]: ... + @deprecated('"get_strides" is deprecated. Use "strides" instead') + def get_strides(self, /) -> ct.Array[c_intp]: ... + @deprecated('"get_as_parameter" is deprecated. Use "_as_parameter_" instead') + def get_as_parameter(self, /) -> ct.c_void_p: ... + +class dummy_ctype(Generic[_T_co]): + _cls: type[_T_co] + + def __init__(self, /, cls: type[_T_co]) -> None: ... + def __eq__(self, other: Self, /) -> bool: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride] + def __ne__(self, other: Self, /) -> bool: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride] + def __mul__(self, other: object, /) -> Self: ... + def __call__(self, /, *other: object) -> _T_co: ... + +def array_ufunc_errmsg_formatter(dummy: object, ufunc: np.ufunc, method: str, *inputs: object, **kwargs: object) -> str: ... +def array_function_errmsg_formatter(public_api: Callable[..., object], types: Iterable[str]) -> str: ... +def npy_ctypes_check(cls: type) -> bool: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_machar.py b/.venv/lib/python3.12/site-packages/numpy/_core/_machar.py new file mode 100644 index 0000000..b49742a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/_machar.py @@ -0,0 +1,355 @@ +""" +Machine arithmetic - determine the parameters of the +floating-point arithmetic system + +Author: Pearu Peterson, September 2003 + +""" +__all__ = ['MachAr'] + +from ._ufunc_config import errstate +from .fromnumeric import any + +# Need to speed this up...especially for longdouble + +# Deprecated 2021-10-20, NumPy 1.22 +class MachAr: + """ + Diagnosing machine parameters. + + Attributes + ---------- + ibeta : int + Radix in which numbers are represented. + it : int + Number of base-`ibeta` digits in the floating point mantissa M. + machep : int + Exponent of the smallest (most negative) power of `ibeta` that, + added to 1.0, gives something different from 1.0 + eps : float + Floating-point number ``beta**machep`` (floating point precision) + negep : int + Exponent of the smallest power of `ibeta` that, subtracted + from 1.0, gives something different from 1.0. + epsneg : float + Floating-point number ``beta**negep``. + iexp : int + Number of bits in the exponent (including its sign and bias). + minexp : int + Smallest (most negative) power of `ibeta` consistent with there + being no leading zeros in the mantissa. + xmin : float + Floating-point number ``beta**minexp`` (the smallest [in + magnitude] positive floating point number with full precision). + maxexp : int + Smallest (positive) power of `ibeta` that causes overflow. + xmax : float + ``(1-epsneg) * beta**maxexp`` (the largest [in magnitude] + usable floating value). + irnd : int + In ``range(6)``, information on what kind of rounding is done + in addition, and on how underflow is handled. + ngrd : int + Number of 'guard digits' used when truncating the product + of two mantissas to fit the representation. + epsilon : float + Same as `eps`. + tiny : float + An alias for `smallest_normal`, kept for backwards compatibility. + huge : float + Same as `xmax`. + precision : float + ``- int(-log10(eps))`` + resolution : float + ``- 10**(-precision)`` + smallest_normal : float + The smallest positive floating point number with 1 as leading bit in + the mantissa following IEEE-754. Same as `xmin`. + smallest_subnormal : float + The smallest positive floating point number with 0 as leading bit in + the mantissa following IEEE-754. + + Parameters + ---------- + float_conv : function, optional + Function that converts an integer or integer array to a float + or float array. Default is `float`. + int_conv : function, optional + Function that converts a float or float array to an integer or + integer array. Default is `int`. + float_to_float : function, optional + Function that converts a float array to float. Default is `float`. + Note that this does not seem to do anything useful in the current + implementation. + float_to_str : function, optional + Function that converts a single float to a string. Default is + ``lambda v:'%24.16e' %v``. + title : str, optional + Title that is printed in the string representation of `MachAr`. + + See Also + -------- + finfo : Machine limits for floating point types. + iinfo : Machine limits for integer types. + + References + ---------- + .. [1] Press, Teukolsky, Vetterling and Flannery, + "Numerical Recipes in C++," 2nd ed, + Cambridge University Press, 2002, p. 31. + + """ + + def __init__(self, float_conv=float, int_conv=int, + float_to_float=float, + float_to_str=lambda v: f'{v:24.16e}', + title='Python floating point number'): + """ + + float_conv - convert integer to float (array) + int_conv - convert float (array) to integer + float_to_float - convert float array to float + float_to_str - convert array float to str + title - description of used floating point numbers + + """ + # We ignore all errors here because we are purposely triggering + # underflow to detect the properties of the running arch. + with errstate(under='ignore'): + self._do_init(float_conv, int_conv, float_to_float, float_to_str, title) + + def _do_init(self, float_conv, int_conv, float_to_float, float_to_str, title): + max_iterN = 10000 + msg = "Did not converge after %d tries with %s" + one = float_conv(1) + two = one + one + zero = one - one + + # Do we really need to do this? Aren't they 2 and 2.0? + # Determine ibeta and beta + a = one + for _ in range(max_iterN): + a = a + a + temp = a + one + temp1 = temp - a + if any(temp1 - one != zero): + break + else: + raise RuntimeError(msg % (_, one.dtype)) + b = one + for _ in range(max_iterN): + b = b + b + temp = a + b + itemp = int_conv(temp - a) + if any(itemp != 0): + break + else: + raise RuntimeError(msg % (_, one.dtype)) + ibeta = itemp + beta = float_conv(ibeta) + + # Determine it and irnd + it = -1 + b = one + for _ in range(max_iterN): + it = it + 1 + b = b * beta + temp = b + one + temp1 = temp - b + if any(temp1 - one != zero): + break + else: + raise RuntimeError(msg % (_, one.dtype)) + + betah = beta / two + a = one + for _ in range(max_iterN): + a = a + a + temp = a + one + temp1 = temp - a + if any(temp1 - one != zero): + break + else: + raise RuntimeError(msg % (_, one.dtype)) + temp = a + betah + irnd = 0 + if any(temp - a != zero): + irnd = 1 + tempa = a + beta + temp = tempa + betah + if irnd == 0 and any(temp - tempa != zero): + irnd = 2 + + # Determine negep and epsneg + negep = it + 3 + betain = one / beta + a = one + for i in range(negep): + a = a * betain + b = a + for _ in range(max_iterN): + temp = one - a + if any(temp - one != zero): + break + a = a * beta + negep = negep - 1 + # Prevent infinite loop on PPC with gcc 4.0: + if negep < 0: + raise RuntimeError("could not determine machine tolerance " + "for 'negep', locals() -> %s" % (locals())) + else: + raise RuntimeError(msg % (_, one.dtype)) + negep = -negep + epsneg = a + + # Determine machep and eps + machep = - it - 3 + a = b + + for _ in range(max_iterN): + temp = one + a + if any(temp - one != zero): + break + a = a * beta + machep = machep + 1 + else: + raise RuntimeError(msg % (_, one.dtype)) + eps = a + + # Determine ngrd + ngrd = 0 + temp = one + eps + if irnd == 0 and any(temp * one - one != zero): + ngrd = 1 + + # Determine iexp + i = 0 + k = 1 + z = betain + t = one + eps + nxres = 0 + for _ in range(max_iterN): + y = z + z = y * y + a = z * one # Check here for underflow + temp = z * t + if any(a + a == zero) or any(abs(z) >= y): + break + temp1 = temp * betain + if any(temp1 * beta == z): + break + i = i + 1 + k = k + k + else: + raise RuntimeError(msg % (_, one.dtype)) + if ibeta != 10: + iexp = i + 1 + mx = k + k + else: + iexp = 2 + iz = ibeta + while k >= iz: + iz = iz * ibeta + iexp = iexp + 1 + mx = iz + iz - 1 + + # Determine minexp and xmin + for _ in range(max_iterN): + xmin = y + y = y * betain + a = y * one + temp = y * t + if any((a + a) != zero) and any(abs(y) < xmin): + k = k + 1 + temp1 = temp * betain + if any(temp1 * beta == y) and any(temp != y): + nxres = 3 + xmin = y + break + else: + break + else: + raise RuntimeError(msg % (_, one.dtype)) + minexp = -k + + # Determine maxexp, xmax + if mx <= k + k - 3 and ibeta != 10: + mx = mx + mx + iexp = iexp + 1 + maxexp = mx + minexp + irnd = irnd + nxres + if irnd >= 2: + maxexp = maxexp - 2 + i = maxexp + minexp + if ibeta == 2 and not i: + maxexp = maxexp - 1 + if i > 20: + maxexp = maxexp - 1 + if any(a != y): + maxexp = maxexp - 2 + xmax = one - epsneg + if any(xmax * one != xmax): + xmax = one - beta * epsneg + xmax = xmax / (xmin * beta * beta * beta) + i = maxexp + minexp + 3 + for j in range(i): + if ibeta == 2: + xmax = xmax + xmax + else: + xmax = xmax * beta + + smallest_subnormal = abs(xmin / beta ** (it)) + + self.ibeta = ibeta + self.it = it + self.negep = negep + self.epsneg = float_to_float(epsneg) + self._str_epsneg = float_to_str(epsneg) + self.machep = machep + self.eps = float_to_float(eps) + self._str_eps = float_to_str(eps) + self.ngrd = ngrd + self.iexp = iexp + self.minexp = minexp + self.xmin = float_to_float(xmin) + self._str_xmin = float_to_str(xmin) + self.maxexp = maxexp + self.xmax = float_to_float(xmax) + self._str_xmax = float_to_str(xmax) + self.irnd = irnd + + self.title = title + # Commonly used parameters + self.epsilon = self.eps + self.tiny = self.xmin + self.huge = self.xmax + self.smallest_normal = self.xmin + self._str_smallest_normal = float_to_str(self.xmin) + self.smallest_subnormal = float_to_float(smallest_subnormal) + self._str_smallest_subnormal = float_to_str(smallest_subnormal) + + import math + self.precision = int(-math.log10(float_to_float(self.eps))) + ten = two + two + two + two + two + resolution = ten ** (-self.precision) + self.resolution = float_to_float(resolution) + self._str_resolution = float_to_str(resolution) + + def __str__(self): + fmt = ( + 'Machine parameters for %(title)s\n' + '---------------------------------------------------------------------\n' + 'ibeta=%(ibeta)s it=%(it)s iexp=%(iexp)s ngrd=%(ngrd)s irnd=%(irnd)s\n' + 'machep=%(machep)s eps=%(_str_eps)s (beta**machep == epsilon)\n' + 'negep =%(negep)s epsneg=%(_str_epsneg)s (beta**epsneg)\n' + 'minexp=%(minexp)s xmin=%(_str_xmin)s (beta**minexp == tiny)\n' + 'maxexp=%(maxexp)s xmax=%(_str_xmax)s ((1-epsneg)*beta**maxexp == huge)\n' + 'smallest_normal=%(smallest_normal)s ' + 'smallest_subnormal=%(smallest_subnormal)s\n' + '---------------------------------------------------------------------\n' + ) + return fmt % self.__dict__ + + +if __name__ == '__main__': + print(MachAr()) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_machar.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/_machar.pyi new file mode 100644 index 0000000..02637a1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/_machar.pyi @@ -0,0 +1,55 @@ +from collections.abc import Iterable +from typing import Any, Final, TypeVar, overload + +import numpy as np +from numpy import _CastingKind +from numpy._utils import set_module as set_module + +### + +_T = TypeVar("_T") +_TupleT = TypeVar("_TupleT", bound=tuple[()] | tuple[Any, Any, *tuple[Any, ...]]) +_ExceptionT = TypeVar("_ExceptionT", bound=Exception) + +### + +class UFuncTypeError(TypeError): + ufunc: Final[np.ufunc] + def __init__(self, /, ufunc: np.ufunc) -> None: ... + +class _UFuncNoLoopError(UFuncTypeError): + dtypes: tuple[np.dtype, ...] + def __init__(self, /, ufunc: np.ufunc, dtypes: Iterable[np.dtype]) -> None: ... + +class _UFuncBinaryResolutionError(_UFuncNoLoopError): + dtypes: tuple[np.dtype, np.dtype] + def __init__(self, /, ufunc: np.ufunc, dtypes: Iterable[np.dtype]) -> None: ... + +class _UFuncCastingError(UFuncTypeError): + casting: Final[_CastingKind] + from_: Final[np.dtype] + to: Final[np.dtype] + def __init__(self, /, ufunc: np.ufunc, casting: _CastingKind, from_: np.dtype, to: np.dtype) -> None: ... + +class _UFuncInputCastingError(_UFuncCastingError): + in_i: Final[int] + def __init__(self, /, ufunc: np.ufunc, casting: _CastingKind, from_: np.dtype, to: np.dtype, i: int) -> None: ... + +class _UFuncOutputCastingError(_UFuncCastingError): + out_i: Final[int] + def __init__(self, /, ufunc: np.ufunc, casting: _CastingKind, from_: np.dtype, to: np.dtype, i: int) -> None: ... + +class _ArrayMemoryError(MemoryError): + shape: tuple[int, ...] + dtype: np.dtype + def __init__(self, /, shape: tuple[int, ...], dtype: np.dtype) -> None: ... + @property + def _total_size(self) -> int: ... + @staticmethod + def _size_to_string(num_bytes: int) -> str: ... + +@overload +def _unpack_tuple(tup: tuple[_T]) -> _T: ... +@overload +def _unpack_tuple(tup: _TupleT) -> _TupleT: ... +def _display_as_base(cls: type[_ExceptionT]) -> type[_ExceptionT]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_methods.py b/.venv/lib/python3.12/site-packages/numpy/_core/_methods.py new file mode 100644 index 0000000..21ad790 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/_methods.py @@ -0,0 +1,255 @@ +""" +Array methods which are called by both the C-code for the method +and the Python code for the NumPy-namespace function + +""" +import os +import pickle +import warnings +from contextlib import nullcontext + +import numpy as np +from numpy._core import multiarray as mu +from numpy._core import numerictypes as nt +from numpy._core import umath as um +from numpy._core.multiarray import asanyarray +from numpy._globals import _NoValue + +# save those O(100) nanoseconds! +bool_dt = mu.dtype("bool") +umr_maximum = um.maximum.reduce +umr_minimum = um.minimum.reduce +umr_sum = um.add.reduce +umr_prod = um.multiply.reduce +umr_bitwise_count = um.bitwise_count +umr_any = um.logical_or.reduce +umr_all = um.logical_and.reduce + +# Complex types to -> (2,)float view for fast-path computation in _var() +_complex_to_float = { + nt.dtype(nt.csingle): nt.dtype(nt.single), + nt.dtype(nt.cdouble): nt.dtype(nt.double), +} +# Special case for windows: ensure double takes precedence +if nt.dtype(nt.longdouble) != nt.dtype(nt.double): + _complex_to_float.update({ + nt.dtype(nt.clongdouble): nt.dtype(nt.longdouble), + }) + +# avoid keyword arguments to speed up parsing, saves about 15%-20% for very +# small reductions +def _amax(a, axis=None, out=None, keepdims=False, + initial=_NoValue, where=True): + return umr_maximum(a, axis, None, out, keepdims, initial, where) + +def _amin(a, axis=None, out=None, keepdims=False, + initial=_NoValue, where=True): + return umr_minimum(a, axis, None, out, keepdims, initial, where) + +def _sum(a, axis=None, dtype=None, out=None, keepdims=False, + initial=_NoValue, where=True): + return umr_sum(a, axis, dtype, out, keepdims, initial, where) + +def _prod(a, axis=None, dtype=None, out=None, keepdims=False, + initial=_NoValue, where=True): + return umr_prod(a, axis, dtype, out, keepdims, initial, where) + +def _any(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True): + # By default, return a boolean for any and all + if dtype is None: + dtype = bool_dt + # Parsing keyword arguments is currently fairly slow, so avoid it for now + if where is True: + return umr_any(a, axis, dtype, out, keepdims) + return umr_any(a, axis, dtype, out, keepdims, where=where) + +def _all(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True): + # By default, return a boolean for any and all + if dtype is None: + dtype = bool_dt + # Parsing keyword arguments is currently fairly slow, so avoid it for now + if where is True: + return umr_all(a, axis, dtype, out, keepdims) + return umr_all(a, axis, dtype, out, keepdims, where=where) + +def _count_reduce_items(arr, axis, keepdims=False, where=True): + # fast-path for the default case + if where is True: + # no boolean mask given, calculate items according to axis + if axis is None: + axis = tuple(range(arr.ndim)) + elif not isinstance(axis, tuple): + axis = (axis,) + items = 1 + for ax in axis: + items *= arr.shape[mu.normalize_axis_index(ax, arr.ndim)] + items = nt.intp(items) + else: + # TODO: Optimize case when `where` is broadcast along a non-reduction + # axis and full sum is more excessive than needed. + + # guarded to protect circular imports + from numpy.lib._stride_tricks_impl import broadcast_to + # count True values in (potentially broadcasted) boolean mask + items = umr_sum(broadcast_to(where, arr.shape), axis, nt.intp, None, + keepdims) + return items + +def _clip(a, min=None, max=None, out=None, **kwargs): + if a.dtype.kind in "iu": + # If min/max is a Python integer, deal with out-of-bound values here. + # (This enforces NEP 50 rules as no value based promotion is done.) + if type(min) is int and min <= np.iinfo(a.dtype).min: + min = None + if type(max) is int and max >= np.iinfo(a.dtype).max: + max = None + + if min is None and max is None: + # return identity + return um.positive(a, out=out, **kwargs) + elif min is None: + return um.minimum(a, max, out=out, **kwargs) + elif max is None: + return um.maximum(a, min, out=out, **kwargs) + else: + return um.clip(a, min, max, out=out, **kwargs) + +def _mean(a, axis=None, dtype=None, out=None, keepdims=False, *, where=True): + arr = asanyarray(a) + + is_float16_result = False + + rcount = _count_reduce_items(arr, axis, keepdims=keepdims, where=where) + if rcount == 0 if where is True else umr_any(rcount == 0, axis=None): + warnings.warn("Mean of empty slice.", RuntimeWarning, stacklevel=2) + + # Cast bool, unsigned int, and int to float64 by default + if dtype is None: + if issubclass(arr.dtype.type, (nt.integer, nt.bool)): + dtype = mu.dtype('f8') + elif issubclass(arr.dtype.type, nt.float16): + dtype = mu.dtype('f4') + is_float16_result = True + + ret = umr_sum(arr, axis, dtype, out, keepdims, where=where) + if isinstance(ret, mu.ndarray): + ret = um.true_divide( + ret, rcount, out=ret, casting='unsafe', subok=False) + if is_float16_result and out is None: + ret = arr.dtype.type(ret) + elif hasattr(ret, 'dtype'): + if is_float16_result: + ret = arr.dtype.type(ret / rcount) + else: + ret = ret.dtype.type(ret / rcount) + else: + ret = ret / rcount + + return ret + +def _var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, + where=True, mean=None): + arr = asanyarray(a) + + rcount = _count_reduce_items(arr, axis, keepdims=keepdims, where=where) + # Make this warning show up on top. + if ddof >= rcount if where is True else umr_any(ddof >= rcount, axis=None): + warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning, + stacklevel=2) + + # Cast bool, unsigned int, and int to float64 by default + if dtype is None and issubclass(arr.dtype.type, (nt.integer, nt.bool)): + dtype = mu.dtype('f8') + + if mean is not None: + arrmean = mean + else: + # Compute the mean. + # Note that if dtype is not of inexact type then arraymean will + # not be either. + arrmean = umr_sum(arr, axis, dtype, keepdims=True, where=where) + # The shape of rcount has to match arrmean to not change the shape of + # out in broadcasting. Otherwise, it cannot be stored back to arrmean. + if rcount.ndim == 0: + # fast-path for default case when where is True + div = rcount + else: + # matching rcount to arrmean when where is specified as array + div = rcount.reshape(arrmean.shape) + if isinstance(arrmean, mu.ndarray): + arrmean = um.true_divide(arrmean, div, out=arrmean, + casting='unsafe', subok=False) + elif hasattr(arrmean, "dtype"): + arrmean = arrmean.dtype.type(arrmean / rcount) + else: + arrmean = arrmean / rcount + + # Compute sum of squared deviations from mean + # Note that x may not be inexact and that we need it to be an array, + # not a scalar. + x = asanyarray(arr - arrmean) + + if issubclass(arr.dtype.type, (nt.floating, nt.integer)): + x = um.multiply(x, x, out=x) + # Fast-paths for built-in complex types + elif x.dtype in _complex_to_float: + xv = x.view(dtype=(_complex_to_float[x.dtype], (2,))) + um.multiply(xv, xv, out=xv) + x = um.add(xv[..., 0], xv[..., 1], out=x.real).real + # Most general case; includes handling object arrays containing imaginary + # numbers and complex types with non-native byteorder + else: + x = um.multiply(x, um.conjugate(x), out=x).real + + ret = umr_sum(x, axis, dtype, out, keepdims=keepdims, where=where) + + # Compute degrees of freedom and make sure it is not negative. + rcount = um.maximum(rcount - ddof, 0) + + # divide by degrees of freedom + if isinstance(ret, mu.ndarray): + ret = um.true_divide( + ret, rcount, out=ret, casting='unsafe', subok=False) + elif hasattr(ret, 'dtype'): + ret = ret.dtype.type(ret / rcount) + else: + ret = ret / rcount + + return ret + +def _std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, + where=True, mean=None): + ret = _var(a, axis=axis, dtype=dtype, out=out, ddof=ddof, + keepdims=keepdims, where=where, mean=mean) + + if isinstance(ret, mu.ndarray): + ret = um.sqrt(ret, out=ret) + elif hasattr(ret, 'dtype'): + ret = ret.dtype.type(um.sqrt(ret)) + else: + ret = um.sqrt(ret) + + return ret + +def _ptp(a, axis=None, out=None, keepdims=False): + return um.subtract( + umr_maximum(a, axis, None, out, keepdims), + umr_minimum(a, axis, None, None, keepdims), + out + ) + +def _dump(self, file, protocol=2): + if hasattr(file, 'write'): + ctx = nullcontext(file) + else: + ctx = open(os.fspath(file), "wb") + with ctx as f: + pickle.dump(self, f, protocol=protocol) + +def _dumps(self, protocol=2): + return pickle.dumps(self, protocol=protocol) + +def _bitwise_count(a, out=None, *, where=True, casting='same_kind', + order='K', dtype=None, subok=True): + return umr_bitwise_count(a, out, where=where, casting=casting, + order=order, dtype=dtype, subok=subok) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_methods.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/_methods.pyi new file mode 100644 index 0000000..3c80683 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/_methods.pyi @@ -0,0 +1,22 @@ +from collections.abc import Callable +from typing import Any, Concatenate, TypeAlias + +import numpy as np + +from . import _exceptions as _exceptions + +### + +_Reduce2: TypeAlias = Callable[Concatenate[object, ...], Any] + +### + +bool_dt: np.dtype[np.bool] = ... +umr_maximum: _Reduce2 = ... +umr_minimum: _Reduce2 = ... +umr_sum: _Reduce2 = ... +umr_prod: _Reduce2 = ... +umr_bitwise_count = np.bitwise_count +umr_any: _Reduce2 = ... +umr_all: _Reduce2 = ... +_complex_to_float: dict[np.dtype[np.complexfloating], np.dtype[np.floating]] = ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_multiarray_tests.cpython-312-x86_64-linux-gnu.so b/.venv/lib/python3.12/site-packages/numpy/_core/_multiarray_tests.cpython-312-x86_64-linux-gnu.so new file mode 100755 index 0000000..ce78182 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/_multiarray_tests.cpython-312-x86_64-linux-gnu.so differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_multiarray_umath.cpython-312-x86_64-linux-gnu.so b/.venv/lib/python3.12/site-packages/numpy/_core/_multiarray_umath.cpython-312-x86_64-linux-gnu.so new file mode 100755 index 0000000..8b2a78b Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/_multiarray_umath.cpython-312-x86_64-linux-gnu.so differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_operand_flag_tests.cpython-312-x86_64-linux-gnu.so b/.venv/lib/python3.12/site-packages/numpy/_core/_operand_flag_tests.cpython-312-x86_64-linux-gnu.so new file mode 100755 index 0000000..bf24fe0 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/_operand_flag_tests.cpython-312-x86_64-linux-gnu.so differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_rational_tests.cpython-312-x86_64-linux-gnu.so b/.venv/lib/python3.12/site-packages/numpy/_core/_rational_tests.cpython-312-x86_64-linux-gnu.so new file mode 100755 index 0000000..b9a7717 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/_rational_tests.cpython-312-x86_64-linux-gnu.so differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_simd.cpython-312-x86_64-linux-gnu.so b/.venv/lib/python3.12/site-packages/numpy/_core/_simd.cpython-312-x86_64-linux-gnu.so new file mode 100755 index 0000000..54bbb83 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/_simd.cpython-312-x86_64-linux-gnu.so differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_simd.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/_simd.pyi new file mode 100644 index 0000000..70bb707 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/_simd.pyi @@ -0,0 +1,25 @@ +from types import ModuleType +from typing import TypedDict, type_check_only + +# NOTE: these 5 are only defined on systems with an intel processor +SSE42: ModuleType | None = ... +FMA3: ModuleType | None = ... +AVX2: ModuleType | None = ... +AVX512F: ModuleType | None = ... +AVX512_SKX: ModuleType | None = ... + +baseline: ModuleType | None = ... + +@type_check_only +class SimdTargets(TypedDict): + SSE42: ModuleType | None + AVX2: ModuleType | None + FMA3: ModuleType | None + AVX512F: ModuleType | None + AVX512_SKX: ModuleType | None + baseline: ModuleType | None + +targets: SimdTargets = ... + +def clear_floatstatus() -> None: ... +def get_floatstatus() -> int: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_string_helpers.py b/.venv/lib/python3.12/site-packages/numpy/_core/_string_helpers.py new file mode 100644 index 0000000..87085d4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/_string_helpers.py @@ -0,0 +1,100 @@ +""" +String-handling utilities to avoid locale-dependence. + +Used primarily to generate type name aliases. +""" +# "import string" is costly to import! +# Construct the translation tables directly +# "A" = chr(65), "a" = chr(97) +_all_chars = tuple(map(chr, range(256))) +_ascii_upper = _all_chars[65:65 + 26] +_ascii_lower = _all_chars[97:97 + 26] +LOWER_TABLE = _all_chars[:65] + _ascii_lower + _all_chars[65 + 26:] +UPPER_TABLE = _all_chars[:97] + _ascii_upper + _all_chars[97 + 26:] + + +def english_lower(s): + """ Apply English case rules to convert ASCII strings to all lower case. + + This is an internal utility function to replace calls to str.lower() such + that we can avoid changing behavior with changing locales. In particular, + Turkish has distinct dotted and dotless variants of the Latin letter "I" in + both lowercase and uppercase. Thus, "I".lower() != "i" in a "tr" locale. + + Parameters + ---------- + s : str + + Returns + ------- + lowered : str + + Examples + -------- + >>> from numpy._core.numerictypes import english_lower + >>> english_lower('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_') + 'abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz0123456789_' + >>> english_lower('') + '' + """ + lowered = s.translate(LOWER_TABLE) + return lowered + + +def english_upper(s): + """ Apply English case rules to convert ASCII strings to all upper case. + + This is an internal utility function to replace calls to str.upper() such + that we can avoid changing behavior with changing locales. In particular, + Turkish has distinct dotted and dotless variants of the Latin letter "I" in + both lowercase and uppercase. Thus, "i".upper() != "I" in a "tr" locale. + + Parameters + ---------- + s : str + + Returns + ------- + uppered : str + + Examples + -------- + >>> from numpy._core.numerictypes import english_upper + >>> english_upper('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_') + 'ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_' + >>> english_upper('') + '' + """ + uppered = s.translate(UPPER_TABLE) + return uppered + + +def english_capitalize(s): + """ Apply English case rules to convert the first character of an ASCII + string to upper case. + + This is an internal utility function to replace calls to str.capitalize() + such that we can avoid changing behavior with changing locales. + + Parameters + ---------- + s : str + + Returns + ------- + capitalized : str + + Examples + -------- + >>> from numpy._core.numerictypes import english_capitalize + >>> english_capitalize('int8') + 'Int8' + >>> english_capitalize('Int8') + 'Int8' + >>> english_capitalize('') + '' + """ + if s: + return english_upper(s[0]) + s[1:] + else: + return s diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_string_helpers.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/_string_helpers.pyi new file mode 100644 index 0000000..6a85832 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/_string_helpers.pyi @@ -0,0 +1,12 @@ +from typing import Final + +_all_chars: Final[tuple[str, ...]] = ... +_ascii_upper: Final[tuple[str, ...]] = ... +_ascii_lower: Final[tuple[str, ...]] = ... + +LOWER_TABLE: Final[tuple[str, ...]] = ... +UPPER_TABLE: Final[tuple[str, ...]] = ... + +def english_lower(s: str) -> str: ... +def english_upper(s: str) -> str: ... +def english_capitalize(s: str) -> str: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_struct_ufunc_tests.cpython-312-x86_64-linux-gnu.so b/.venv/lib/python3.12/site-packages/numpy/_core/_struct_ufunc_tests.cpython-312-x86_64-linux-gnu.so new file mode 100755 index 0000000..10747a3 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/_struct_ufunc_tests.cpython-312-x86_64-linux-gnu.so differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_type_aliases.py b/.venv/lib/python3.12/site-packages/numpy/_core/_type_aliases.py new file mode 100644 index 0000000..de6c309 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/_type_aliases.py @@ -0,0 +1,119 @@ +""" +Due to compatibility, numpy has a very large number of different naming +conventions for the scalar types (those subclassing from `numpy.generic`). +This file produces a convoluted set of dictionaries mapping names to types, +and sometimes other mappings too. + +.. data:: allTypes + A dictionary of names to types that will be exposed as attributes through + ``np._core.numerictypes.*`` + +.. data:: sctypeDict + Similar to `allTypes`, but maps a broader set of aliases to their types. + +.. data:: sctypes + A dictionary keyed by a "type group" string, providing a list of types + under that group. + +""" + +import numpy._core.multiarray as ma +from numpy._core.multiarray import dtype, typeinfo + +###################################### +# Building `sctypeDict` and `allTypes` +###################################### + +sctypeDict = {} +allTypes = {} +c_names_dict = {} + +_abstract_type_names = { + "generic", "integer", "inexact", "floating", "number", + "flexible", "character", "complexfloating", "unsignedinteger", + "signedinteger" +} + +for _abstract_type_name in _abstract_type_names: + allTypes[_abstract_type_name] = getattr(ma, _abstract_type_name) + +for k, v in typeinfo.items(): + if k.startswith("NPY_") and v not in c_names_dict: + c_names_dict[k[4:]] = v + else: + concrete_type = v.type + allTypes[k] = concrete_type + sctypeDict[k] = concrete_type + +_aliases = { + "double": "float64", + "cdouble": "complex128", + "single": "float32", + "csingle": "complex64", + "half": "float16", + "bool_": "bool", + # Default integer: + "int_": "intp", + "uint": "uintp", +} + +for k, v in _aliases.items(): + sctypeDict[k] = allTypes[v] + allTypes[k] = allTypes[v] + +# extra aliases are added only to `sctypeDict` +# to support dtype name access, such as`np.dtype("float")` +_extra_aliases = { + "float": "float64", + "complex": "complex128", + "object": "object_", + "bytes": "bytes_", + "a": "bytes_", + "int": "int_", + "str": "str_", + "unicode": "str_", +} + +for k, v in _extra_aliases.items(): + sctypeDict[k] = allTypes[v] + +# include extended precision sized aliases +for is_complex, full_name in [(False, "longdouble"), (True, "clongdouble")]: + longdouble_type: type = allTypes[full_name] + + bits: int = dtype(longdouble_type).itemsize * 8 + base_name: str = "complex" if is_complex else "float" + extended_prec_name: str = f"{base_name}{bits}" + if extended_prec_name not in allTypes: + sctypeDict[extended_prec_name] = longdouble_type + allTypes[extended_prec_name] = longdouble_type + + +#################### +# Building `sctypes` +#################### + +sctypes = {"int": set(), "uint": set(), "float": set(), + "complex": set(), "others": set()} + +for type_info in typeinfo.values(): + if type_info.kind in ["M", "m"]: # exclude timedelta and datetime + continue + + concrete_type = type_info.type + + # find proper group for each concrete type + for type_group, abstract_type in [ + ("int", ma.signedinteger), ("uint", ma.unsignedinteger), + ("float", ma.floating), ("complex", ma.complexfloating), + ("others", ma.generic) + ]: + if issubclass(concrete_type, abstract_type): + sctypes[type_group].add(concrete_type) + break + +# sort sctype groups by bitsize +for sctype_key in sctypes.keys(): + sctype_list = list(sctypes[sctype_key]) + sctype_list.sort(key=lambda x: dtype(x).itemsize) + sctypes[sctype_key] = sctype_list diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_type_aliases.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/_type_aliases.pyi new file mode 100644 index 0000000..3c9dac7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/_type_aliases.pyi @@ -0,0 +1,97 @@ +from collections.abc import Collection +from typing import Final, TypeAlias, TypedDict, type_check_only +from typing import Literal as L + +import numpy as np + +__all__ = ( + "_abstract_type_names", + "_aliases", + "_extra_aliases", + "allTypes", + "c_names_dict", + "sctypeDict", + "sctypes", +) + +sctypeDict: Final[dict[str, type[np.generic]]] +allTypes: Final[dict[str, type[np.generic]]] + +@type_check_only +class _CNamesDict(TypedDict): + BOOL: np.dtype[np.bool] + HALF: np.dtype[np.half] + FLOAT: np.dtype[np.single] + DOUBLE: np.dtype[np.double] + LONGDOUBLE: np.dtype[np.longdouble] + CFLOAT: np.dtype[np.csingle] + CDOUBLE: np.dtype[np.cdouble] + CLONGDOUBLE: np.dtype[np.clongdouble] + STRING: np.dtype[np.bytes_] + UNICODE: np.dtype[np.str_] + VOID: np.dtype[np.void] + OBJECT: np.dtype[np.object_] + DATETIME: np.dtype[np.datetime64] + TIMEDELTA: np.dtype[np.timedelta64] + BYTE: np.dtype[np.byte] + UBYTE: np.dtype[np.ubyte] + SHORT: np.dtype[np.short] + USHORT: np.dtype[np.ushort] + INT: np.dtype[np.intc] + UINT: np.dtype[np.uintc] + LONG: np.dtype[np.long] + ULONG: np.dtype[np.ulong] + LONGLONG: np.dtype[np.longlong] + ULONGLONG: np.dtype[np.ulonglong] + +c_names_dict: Final[_CNamesDict] + +_AbstractTypeName: TypeAlias = L[ + "generic", + "flexible", + "character", + "number", + "integer", + "inexact", + "unsignedinteger", + "signedinteger", + "floating", + "complexfloating", +] +_abstract_type_names: Final[set[_AbstractTypeName]] + +@type_check_only +class _AliasesType(TypedDict): + double: L["float64"] + cdouble: L["complex128"] + single: L["float32"] + csingle: L["complex64"] + half: L["float16"] + bool_: L["bool"] + int_: L["intp"] + uint: L["intp"] + +_aliases: Final[_AliasesType] + +@type_check_only +class _ExtraAliasesType(TypedDict): + float: L["float64"] + complex: L["complex128"] + object: L["object_"] + bytes: L["bytes_"] + a: L["bytes_"] + int: L["int_"] + str: L["str_"] + unicode: L["str_"] + +_extra_aliases: Final[_ExtraAliasesType] + +@type_check_only +class _SCTypes(TypedDict): + int: Collection[type[np.signedinteger]] + uint: Collection[type[np.unsignedinteger]] + float: Collection[type[np.floating]] + complex: Collection[type[np.complexfloating]] + others: Collection[type[np.flexible | np.bool | np.object_]] + +sctypes: Final[_SCTypes] diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_ufunc_config.py b/.venv/lib/python3.12/site-packages/numpy/_core/_ufunc_config.py new file mode 100644 index 0000000..24abecd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/_ufunc_config.py @@ -0,0 +1,489 @@ +""" +Functions for changing global ufunc configuration + +This provides helpers which wrap `_get_extobj_dict` and `_make_extobj`, and +`_extobj_contextvar` from umath. +""" +import functools + +from numpy._utils import set_module + +from .umath import _extobj_contextvar, _get_extobj_dict, _make_extobj + +__all__ = [ + "seterr", "geterr", "setbufsize", "getbufsize", "seterrcall", "geterrcall", + "errstate" +] + + +@set_module('numpy') +def seterr(all=None, divide=None, over=None, under=None, invalid=None): + """ + Set how floating-point errors are handled. + + Note that operations on integer scalar types (such as `int16`) are + handled like floating point, and are affected by these settings. + + Parameters + ---------- + all : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional + Set treatment for all types of floating-point errors at once: + + - ignore: Take no action when the exception occurs. + - warn: Print a :exc:`RuntimeWarning` (via the Python `warnings` + module). + - raise: Raise a :exc:`FloatingPointError`. + - call: Call a function specified using the `seterrcall` function. + - print: Print a warning directly to ``stdout``. + - log: Record error in a Log object specified by `seterrcall`. + + The default is not to change the current behavior. + divide : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional + Treatment for division by zero. + over : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional + Treatment for floating-point overflow. + under : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional + Treatment for floating-point underflow. + invalid : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional + Treatment for invalid floating-point operation. + + Returns + ------- + old_settings : dict + Dictionary containing the old settings. + + See also + -------- + seterrcall : Set a callback function for the 'call' mode. + geterr, geterrcall, errstate + + Notes + ----- + The floating-point exceptions are defined in the IEEE 754 standard [1]_: + + - Division by zero: infinite result obtained from finite numbers. + - Overflow: result too large to be expressed. + - Underflow: result so close to zero that some precision + was lost. + - Invalid operation: result is not an expressible number, typically + indicates that a NaN was produced. + + .. [1] https://en.wikipedia.org/wiki/IEEE_754 + + Examples + -------- + >>> import numpy as np + >>> orig_settings = np.seterr(all='ignore') # seterr to known value + >>> np.int16(32000) * np.int16(3) + np.int16(30464) + >>> np.seterr(over='raise') + {'divide': 'ignore', 'over': 'ignore', 'under': 'ignore', 'invalid': 'ignore'} + >>> old_settings = np.seterr(all='warn', over='raise') + >>> np.int16(32000) * np.int16(3) + Traceback (most recent call last): + File "", line 1, in + FloatingPointError: overflow encountered in scalar multiply + + >>> old_settings = np.seterr(all='print') + >>> np.geterr() + {'divide': 'print', 'over': 'print', 'under': 'print', 'invalid': 'print'} + >>> np.int16(32000) * np.int16(3) + np.int16(30464) + >>> np.seterr(**orig_settings) # restore original + {'divide': 'print', 'over': 'print', 'under': 'print', 'invalid': 'print'} + + """ + + old = _get_extobj_dict() + # The errstate doesn't include call and bufsize, so pop them: + old.pop("call", None) + old.pop("bufsize", None) + + extobj = _make_extobj( + all=all, divide=divide, over=over, under=under, invalid=invalid) + _extobj_contextvar.set(extobj) + return old + + +@set_module('numpy') +def geterr(): + """ + Get the current way of handling floating-point errors. + + Returns + ------- + res : dict + A dictionary with keys "divide", "over", "under", and "invalid", + whose values are from the strings "ignore", "print", "log", "warn", + "raise", and "call". The keys represent possible floating-point + exceptions, and the values define how these exceptions are handled. + + See Also + -------- + geterrcall, seterr, seterrcall + + Notes + ----- + For complete documentation of the types of floating-point exceptions and + treatment options, see `seterr`. + + Examples + -------- + >>> import numpy as np + >>> np.geterr() + {'divide': 'warn', 'over': 'warn', 'under': 'ignore', 'invalid': 'warn'} + >>> np.arange(3.) / np.arange(3.) # doctest: +SKIP + array([nan, 1., 1.]) + RuntimeWarning: invalid value encountered in divide + + >>> oldsettings = np.seterr(all='warn', invalid='raise') + >>> np.geterr() + {'divide': 'warn', 'over': 'warn', 'under': 'warn', 'invalid': 'raise'} + >>> np.arange(3.) / np.arange(3.) + Traceback (most recent call last): + ... + FloatingPointError: invalid value encountered in divide + >>> oldsettings = np.seterr(**oldsettings) # restore original + + """ + res = _get_extobj_dict() + # The "geterr" doesn't include call and bufsize,: + res.pop("call", None) + res.pop("bufsize", None) + return res + + +@set_module('numpy') +def setbufsize(size): + """ + Set the size of the buffer used in ufuncs. + + .. versionchanged:: 2.0 + The scope of setting the buffer is tied to the `numpy.errstate` + context. Exiting a ``with errstate():`` will also restore the bufsize. + + Parameters + ---------- + size : int + Size of buffer. + + Returns + ------- + bufsize : int + Previous size of ufunc buffer in bytes. + + Examples + -------- + When exiting a `numpy.errstate` context manager the bufsize is restored: + + >>> import numpy as np + >>> with np.errstate(): + ... np.setbufsize(4096) + ... print(np.getbufsize()) + ... + 8192 + 4096 + >>> np.getbufsize() + 8192 + + """ + old = _get_extobj_dict()["bufsize"] + extobj = _make_extobj(bufsize=size) + _extobj_contextvar.set(extobj) + return old + + +@set_module('numpy') +def getbufsize(): + """ + Return the size of the buffer used in ufuncs. + + Returns + ------- + getbufsize : int + Size of ufunc buffer in bytes. + + Examples + -------- + >>> import numpy as np + >>> np.getbufsize() + 8192 + + """ + return _get_extobj_dict()["bufsize"] + + +@set_module('numpy') +def seterrcall(func): + """ + Set the floating-point error callback function or log object. + + There are two ways to capture floating-point error messages. The first + is to set the error-handler to 'call', using `seterr`. Then, set + the function to call using this function. + + The second is to set the error-handler to 'log', using `seterr`. + Floating-point errors then trigger a call to the 'write' method of + the provided object. + + Parameters + ---------- + func : callable f(err, flag) or object with write method + Function to call upon floating-point errors ('call'-mode) or + object whose 'write' method is used to log such message ('log'-mode). + + The call function takes two arguments. The first is a string describing + the type of error (such as "divide by zero", "overflow", "underflow", + or "invalid value"), and the second is the status flag. The flag is a + byte, whose four least-significant bits indicate the type of error, one + of "divide", "over", "under", "invalid":: + + [0 0 0 0 divide over under invalid] + + In other words, ``flags = divide + 2*over + 4*under + 8*invalid``. + + If an object is provided, its write method should take one argument, + a string. + + Returns + ------- + h : callable, log instance or None + The old error handler. + + See Also + -------- + seterr, geterr, geterrcall + + Examples + -------- + Callback upon error: + + >>> def err_handler(type, flag): + ... print("Floating point error (%s), with flag %s" % (type, flag)) + ... + + >>> import numpy as np + + >>> orig_handler = np.seterrcall(err_handler) + >>> orig_err = np.seterr(all='call') + + >>> np.array([1, 2, 3]) / 0.0 + Floating point error (divide by zero), with flag 1 + array([inf, inf, inf]) + + >>> np.seterrcall(orig_handler) + + >>> np.seterr(**orig_err) + {'divide': 'call', 'over': 'call', 'under': 'call', 'invalid': 'call'} + + Log error message: + + >>> class Log: + ... def write(self, msg): + ... print("LOG: %s" % msg) + ... + + >>> log = Log() + >>> saved_handler = np.seterrcall(log) + >>> save_err = np.seterr(all='log') + + >>> np.array([1, 2, 3]) / 0.0 + LOG: Warning: divide by zero encountered in divide + array([inf, inf, inf]) + + >>> np.seterrcall(orig_handler) + + >>> np.seterr(**orig_err) + {'divide': 'log', 'over': 'log', 'under': 'log', 'invalid': 'log'} + + """ + old = _get_extobj_dict()["call"] + extobj = _make_extobj(call=func) + _extobj_contextvar.set(extobj) + return old + + +@set_module('numpy') +def geterrcall(): + """ + Return the current callback function used on floating-point errors. + + When the error handling for a floating-point error (one of "divide", + "over", "under", or "invalid") is set to 'call' or 'log', the function + that is called or the log instance that is written to is returned by + `geterrcall`. This function or log instance has been set with + `seterrcall`. + + Returns + ------- + errobj : callable, log instance or None + The current error handler. If no handler was set through `seterrcall`, + ``None`` is returned. + + See Also + -------- + seterrcall, seterr, geterr + + Notes + ----- + For complete documentation of the types of floating-point exceptions and + treatment options, see `seterr`. + + Examples + -------- + >>> import numpy as np + >>> np.geterrcall() # we did not yet set a handler, returns None + + >>> orig_settings = np.seterr(all='call') + >>> def err_handler(type, flag): + ... print("Floating point error (%s), with flag %s" % (type, flag)) + >>> old_handler = np.seterrcall(err_handler) + >>> np.array([1, 2, 3]) / 0.0 + Floating point error (divide by zero), with flag 1 + array([inf, inf, inf]) + + >>> cur_handler = np.geterrcall() + >>> cur_handler is err_handler + True + >>> old_settings = np.seterr(**orig_settings) # restore original + >>> old_handler = np.seterrcall(None) # restore original + + """ + return _get_extobj_dict()["call"] + + +class _unspecified: + pass + + +_Unspecified = _unspecified() + + +@set_module('numpy') +class errstate: + """ + errstate(**kwargs) + + Context manager for floating-point error handling. + + Using an instance of `errstate` as a context manager allows statements in + that context to execute with a known error handling behavior. Upon entering + the context the error handling is set with `seterr` and `seterrcall`, and + upon exiting it is reset to what it was before. + + .. versionchanged:: 1.17.0 + `errstate` is also usable as a function decorator, saving + a level of indentation if an entire function is wrapped. + + .. versionchanged:: 2.0 + `errstate` is now fully thread and asyncio safe, but may not be + entered more than once. + It is not safe to decorate async functions using ``errstate``. + + Parameters + ---------- + kwargs : {divide, over, under, invalid} + Keyword arguments. The valid keywords are the possible floating-point + exceptions. Each keyword should have a string value that defines the + treatment for the particular error. Possible values are + {'ignore', 'warn', 'raise', 'call', 'print', 'log'}. + + See Also + -------- + seterr, geterr, seterrcall, geterrcall + + Notes + ----- + For complete documentation of the types of floating-point exceptions and + treatment options, see `seterr`. + + Examples + -------- + >>> import numpy as np + >>> olderr = np.seterr(all='ignore') # Set error handling to known state. + + >>> np.arange(3) / 0. + array([nan, inf, inf]) + >>> with np.errstate(divide='ignore'): + ... np.arange(3) / 0. + array([nan, inf, inf]) + + >>> np.sqrt(-1) + np.float64(nan) + >>> with np.errstate(invalid='raise'): + ... np.sqrt(-1) + Traceback (most recent call last): + File "", line 2, in + FloatingPointError: invalid value encountered in sqrt + + Outside the context the error handling behavior has not changed: + + >>> np.geterr() + {'divide': 'ignore', 'over': 'ignore', 'under': 'ignore', 'invalid': 'ignore'} + >>> olderr = np.seterr(**olderr) # restore original state + + """ + __slots__ = ( + "_all", + "_call", + "_divide", + "_invalid", + "_over", + "_token", + "_under", + ) + + def __init__(self, *, call=_Unspecified, + all=None, divide=None, over=None, under=None, invalid=None): + self._token = None + self._call = call + self._all = all + self._divide = divide + self._over = over + self._under = under + self._invalid = invalid + + def __enter__(self): + # Note that __call__ duplicates much of this logic + if self._token is not None: + raise TypeError("Cannot enter `np.errstate` twice.") + if self._call is _Unspecified: + extobj = _make_extobj( + all=self._all, divide=self._divide, over=self._over, + under=self._under, invalid=self._invalid) + else: + extobj = _make_extobj( + call=self._call, + all=self._all, divide=self._divide, over=self._over, + under=self._under, invalid=self._invalid) + + self._token = _extobj_contextvar.set(extobj) + + def __exit__(self, *exc_info): + _extobj_contextvar.reset(self._token) + + def __call__(self, func): + # We need to customize `__call__` compared to `ContextDecorator` + # because we must store the token per-thread so cannot store it on + # the instance (we could create a new instance for this). + # This duplicates the code from `__enter__`. + @functools.wraps(func) + def inner(*args, **kwargs): + if self._call is _Unspecified: + extobj = _make_extobj( + all=self._all, divide=self._divide, over=self._over, + under=self._under, invalid=self._invalid) + else: + extobj = _make_extobj( + call=self._call, + all=self._all, divide=self._divide, over=self._over, + under=self._under, invalid=self._invalid) + + _token = _extobj_contextvar.set(extobj) + try: + # Call the original, decorated, function: + return func(*args, **kwargs) + finally: + _extobj_contextvar.reset(_token) + + return inner diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_ufunc_config.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/_ufunc_config.pyi new file mode 100644 index 0000000..1a66131 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/_ufunc_config.pyi @@ -0,0 +1,32 @@ +from collections.abc import Callable +from typing import Any, Literal, TypeAlias, TypedDict, type_check_only + +from _typeshed import SupportsWrite + +from numpy import errstate as errstate + +_ErrKind: TypeAlias = Literal["ignore", "warn", "raise", "call", "print", "log"] +_ErrFunc: TypeAlias = Callable[[str, int], Any] +_ErrCall: TypeAlias = _ErrFunc | SupportsWrite[str] + +@type_check_only +class _ErrDict(TypedDict): + divide: _ErrKind + over: _ErrKind + under: _ErrKind + invalid: _ErrKind + +def seterr( + all: _ErrKind | None = ..., + divide: _ErrKind | None = ..., + over: _ErrKind | None = ..., + under: _ErrKind | None = ..., + invalid: _ErrKind | None = ..., +) -> _ErrDict: ... +def geterr() -> _ErrDict: ... +def setbufsize(size: int) -> int: ... +def getbufsize() -> int: ... +def seterrcall(func: _ErrCall | None) -> _ErrCall | None: ... +def geterrcall() -> _ErrCall | None: ... + +# See `numpy/__init__.pyi` for the `errstate` class and `no_nep5_warnings` diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/_umath_tests.cpython-312-x86_64-linux-gnu.so b/.venv/lib/python3.12/site-packages/numpy/_core/_umath_tests.cpython-312-x86_64-linux-gnu.so new file mode 100755 index 0000000..51212e8 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/_umath_tests.cpython-312-x86_64-linux-gnu.so differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/arrayprint.py b/.venv/lib/python3.12/site-packages/numpy/_core/arrayprint.py new file mode 100644 index 0000000..2a68428 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/arrayprint.py @@ -0,0 +1,1775 @@ +"""Array printing function + +$Id: arrayprint.py,v 1.9 2005/09/13 13:58:44 teoliphant Exp $ + +""" +__all__ = ["array2string", "array_str", "array_repr", + "set_printoptions", "get_printoptions", "printoptions", + "format_float_positional", "format_float_scientific"] +__docformat__ = 'restructuredtext' + +# +# Written by Konrad Hinsen +# last revision: 1996-3-13 +# modified by Jim Hugunin 1997-3-3 for repr's and str's (and other details) +# and by Perry Greenfield 2000-4-1 for numarray +# and by Travis Oliphant 2005-8-22 for numpy + + +# Note: Both scalartypes.c.src and arrayprint.py implement strs for numpy +# scalars but for different purposes. scalartypes.c.src has str/reprs for when +# the scalar is printed on its own, while arrayprint.py has strs for when +# scalars are printed inside an ndarray. Only the latter strs are currently +# user-customizable. + +import functools +import numbers +import sys + +try: + from _thread import get_ident +except ImportError: + from _dummy_thread import get_ident + +import contextlib +import operator +import warnings + +import numpy as np + +from . import numerictypes as _nt +from .fromnumeric import any +from .multiarray import ( + array, + datetime_as_string, + datetime_data, + dragon4_positional, + dragon4_scientific, + ndarray, +) +from .numeric import asarray, concatenate, errstate +from .numerictypes import complex128, flexible, float64, int_ +from .overrides import array_function_dispatch, set_module +from .printoptions import format_options +from .umath import absolute, isfinite, isinf, isnat + + +def _make_options_dict(precision=None, threshold=None, edgeitems=None, + linewidth=None, suppress=None, nanstr=None, infstr=None, + sign=None, formatter=None, floatmode=None, legacy=None, + override_repr=None): + """ + Make a dictionary out of the non-None arguments, plus conversion of + *legacy* and sanity checks. + """ + + options = {k: v for k, v in list(locals().items()) if v is not None} + + if suppress is not None: + options['suppress'] = bool(suppress) + + modes = ['fixed', 'unique', 'maxprec', 'maxprec_equal'] + if floatmode not in modes + [None]: + raise ValueError("floatmode option must be one of " + + ", ".join(f'"{m}"' for m in modes)) + + if sign not in [None, '-', '+', ' ']: + raise ValueError("sign option must be one of ' ', '+', or '-'") + + if legacy is False: + options['legacy'] = sys.maxsize + elif legacy == False: # noqa: E712 + warnings.warn( + f"Passing `legacy={legacy!r}` is deprecated.", + FutureWarning, stacklevel=3 + ) + options['legacy'] = sys.maxsize + elif legacy == '1.13': + options['legacy'] = 113 + elif legacy == '1.21': + options['legacy'] = 121 + elif legacy == '1.25': + options['legacy'] = 125 + elif legacy == '2.1': + options['legacy'] = 201 + elif legacy == '2.2': + options['legacy'] = 202 + elif legacy is None: + pass # OK, do nothing. + else: + warnings.warn( + "legacy printing option can currently only be '1.13', '1.21', " + "'1.25', '2.1', '2.2' or `False`", stacklevel=3) + + if threshold is not None: + # forbid the bad threshold arg suggested by stack overflow, gh-12351 + if not isinstance(threshold, numbers.Number): + raise TypeError("threshold must be numeric") + if np.isnan(threshold): + raise ValueError("threshold must be non-NAN, try " + "sys.maxsize for untruncated representation") + + if precision is not None: + # forbid the bad precision arg as suggested by issue #18254 + try: + options['precision'] = operator.index(precision) + except TypeError as e: + raise TypeError('precision must be an integer') from e + + return options + + +@set_module('numpy') +def set_printoptions(precision=None, threshold=None, edgeitems=None, + linewidth=None, suppress=None, nanstr=None, + infstr=None, formatter=None, sign=None, floatmode=None, + *, legacy=None, override_repr=None): + """ + Set printing options. + + These options determine the way floating point numbers, arrays and + other NumPy objects are displayed. + + Parameters + ---------- + precision : int or None, optional + Number of digits of precision for floating point output (default 8). + May be None if `floatmode` is not `fixed`, to print as many digits as + necessary to uniquely specify the value. + threshold : int, optional + Total number of array elements which trigger summarization + rather than full repr (default 1000). + To always use the full repr without summarization, pass `sys.maxsize`. + edgeitems : int, optional + Number of array items in summary at beginning and end of + each dimension (default 3). + linewidth : int, optional + The number of characters per line for the purpose of inserting + line breaks (default 75). + suppress : bool, optional + If True, always print floating point numbers using fixed point + notation, in which case numbers equal to zero in the current precision + will print as zero. If False, then scientific notation is used when + absolute value of the smallest number is < 1e-4 or the ratio of the + maximum absolute value to the minimum is > 1e3. The default is False. + nanstr : str, optional + String representation of floating point not-a-number (default nan). + infstr : str, optional + String representation of floating point infinity (default inf). + sign : string, either '-', '+', or ' ', optional + Controls printing of the sign of floating-point types. If '+', always + print the sign of positive values. If ' ', always prints a space + (whitespace character) in the sign position of positive values. If + '-', omit the sign character of positive values. (default '-') + + .. versionchanged:: 2.0 + The sign parameter can now be an integer type, previously + types were floating-point types. + + formatter : dict of callables, optional + If not None, the keys should indicate the type(s) that the respective + formatting function applies to. Callables should return a string. + Types that are not specified (by their corresponding keys) are handled + by the default formatters. Individual types for which a formatter + can be set are: + + - 'bool' + - 'int' + - 'timedelta' : a `numpy.timedelta64` + - 'datetime' : a `numpy.datetime64` + - 'float' + - 'longfloat' : 128-bit floats + - 'complexfloat' + - 'longcomplexfloat' : composed of two 128-bit floats + - 'numpystr' : types `numpy.bytes_` and `numpy.str_` + - 'object' : `np.object_` arrays + + Other keys that can be used to set a group of types at once are: + + - 'all' : sets all types + - 'int_kind' : sets 'int' + - 'float_kind' : sets 'float' and 'longfloat' + - 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat' + - 'str_kind' : sets 'numpystr' + floatmode : str, optional + Controls the interpretation of the `precision` option for + floating-point types. Can take the following values + (default maxprec_equal): + + * 'fixed': Always print exactly `precision` fractional digits, + even if this would print more or fewer digits than + necessary to specify the value uniquely. + * 'unique': Print the minimum number of fractional digits necessary + to represent each value uniquely. Different elements may + have a different number of digits. The value of the + `precision` option is ignored. + * 'maxprec': Print at most `precision` fractional digits, but if + an element can be uniquely represented with fewer digits + only print it with that many. + * 'maxprec_equal': Print at most `precision` fractional digits, + but if every element in the array can be uniquely + represented with an equal number of fewer digits, use that + many digits for all elements. + legacy : string or `False`, optional + If set to the string ``'1.13'`` enables 1.13 legacy printing mode. This + approximates numpy 1.13 print output by including a space in the sign + position of floats and different behavior for 0d arrays. This also + enables 1.21 legacy printing mode (described below). + + If set to the string ``'1.21'`` enables 1.21 legacy printing mode. This + approximates numpy 1.21 print output of complex structured dtypes + by not inserting spaces after commas that separate fields and after + colons. + + If set to ``'1.25'`` approximates printing of 1.25 which mainly means + that numeric scalars are printed without their type information, e.g. + as ``3.0`` rather than ``np.float64(3.0)``. + + If set to ``'2.1'``, shape information is not given when arrays are + summarized (i.e., multiple elements replaced with ``...``). + + If set to ``'2.2'``, the transition to use scientific notation for + printing ``np.float16`` and ``np.float32`` types may happen later or + not at all for larger values. + + If set to `False`, disables legacy mode. + + Unrecognized strings will be ignored with a warning for forward + compatibility. + + .. versionchanged:: 1.22.0 + .. versionchanged:: 2.2 + + override_repr: callable, optional + If set a passed function will be used for generating arrays' repr. + Other options will be ignored. + + See Also + -------- + get_printoptions, printoptions, array2string + + Notes + ----- + `formatter` is always reset with a call to `set_printoptions`. + + Use `printoptions` as a context manager to set the values temporarily. + + Examples + -------- + Floating point precision can be set: + + >>> import numpy as np + >>> np.set_printoptions(precision=4) + >>> np.array([1.123456789]) + [1.1235] + + Long arrays can be summarised: + + >>> np.set_printoptions(threshold=5) + >>> np.arange(10) + array([0, 1, 2, ..., 7, 8, 9], shape=(10,)) + + Small results can be suppressed: + + >>> eps = np.finfo(float).eps + >>> x = np.arange(4.) + >>> x**2 - (x + eps)**2 + array([-4.9304e-32, -4.4409e-16, 0.0000e+00, 0.0000e+00]) + >>> np.set_printoptions(suppress=True) + >>> x**2 - (x + eps)**2 + array([-0., -0., 0., 0.]) + + A custom formatter can be used to display array elements as desired: + + >>> np.set_printoptions(formatter={'all':lambda x: 'int: '+str(-x)}) + >>> x = np.arange(3) + >>> x + array([int: 0, int: -1, int: -2]) + >>> np.set_printoptions() # formatter gets reset + >>> x + array([0, 1, 2]) + + To put back the default options, you can use: + + >>> np.set_printoptions(edgeitems=3, infstr='inf', + ... linewidth=75, nanstr='nan', precision=8, + ... suppress=False, threshold=1000, formatter=None) + + Also to temporarily override options, use `printoptions` + as a context manager: + + >>> with np.printoptions(precision=2, suppress=True, threshold=5): + ... np.linspace(0, 10, 10) + array([ 0. , 1.11, 2.22, ..., 7.78, 8.89, 10. ], shape=(10,)) + + """ + _set_printoptions(precision, threshold, edgeitems, linewidth, suppress, + nanstr, infstr, formatter, sign, floatmode, + legacy=legacy, override_repr=override_repr) + + +def _set_printoptions(precision=None, threshold=None, edgeitems=None, + linewidth=None, suppress=None, nanstr=None, + infstr=None, formatter=None, sign=None, floatmode=None, + *, legacy=None, override_repr=None): + new_opt = _make_options_dict(precision, threshold, edgeitems, linewidth, + suppress, nanstr, infstr, sign, formatter, + floatmode, legacy) + # formatter and override_repr are always reset + new_opt['formatter'] = formatter + new_opt['override_repr'] = override_repr + + updated_opt = format_options.get() | new_opt + updated_opt.update(new_opt) + + if updated_opt['legacy'] == 113: + updated_opt['sign'] = '-' + + return format_options.set(updated_opt) + + +@set_module('numpy') +def get_printoptions(): + """ + Return the current print options. + + Returns + ------- + print_opts : dict + Dictionary of current print options with keys + + - precision : int + - threshold : int + - edgeitems : int + - linewidth : int + - suppress : bool + - nanstr : str + - infstr : str + - sign : str + - formatter : dict of callables + - floatmode : str + - legacy : str or False + + For a full description of these options, see `set_printoptions`. + + See Also + -------- + set_printoptions, printoptions + + Examples + -------- + >>> import numpy as np + + >>> np.get_printoptions() + {'edgeitems': 3, 'threshold': 1000, ..., 'override_repr': None} + + >>> np.get_printoptions()['linewidth'] + 75 + >>> np.set_printoptions(linewidth=100) + >>> np.get_printoptions()['linewidth'] + 100 + + """ + opts = format_options.get().copy() + opts['legacy'] = { + 113: '1.13', 121: '1.21', 125: '1.25', 201: '2.1', + 202: '2.2', sys.maxsize: False, + }[opts['legacy']] + return opts + + +def _get_legacy_print_mode(): + """Return the legacy print mode as an int.""" + return format_options.get()['legacy'] + + +@set_module('numpy') +@contextlib.contextmanager +def printoptions(*args, **kwargs): + """Context manager for setting print options. + + Set print options for the scope of the `with` block, and restore the old + options at the end. See `set_printoptions` for the full description of + available options. + + Examples + -------- + >>> import numpy as np + + >>> from numpy.testing import assert_equal + >>> with np.printoptions(precision=2): + ... np.array([2.0]) / 3 + array([0.67]) + + The `as`-clause of the `with`-statement gives the current print options: + + >>> with np.printoptions(precision=2) as opts: + ... assert_equal(opts, np.get_printoptions()) + + See Also + -------- + set_printoptions, get_printoptions + + """ + token = _set_printoptions(*args, **kwargs) + + try: + yield get_printoptions() + finally: + format_options.reset(token) + + +def _leading_trailing(a, edgeitems, index=()): + """ + Keep only the N-D corners (leading and trailing edges) of an array. + + Should be passed a base-class ndarray, since it makes no guarantees about + preserving subclasses. + """ + axis = len(index) + if axis == a.ndim: + return a[index] + + if a.shape[axis] > 2 * edgeitems: + return concatenate(( + _leading_trailing(a, edgeitems, index + np.index_exp[:edgeitems]), + _leading_trailing(a, edgeitems, index + np.index_exp[-edgeitems:]) + ), axis=axis) + else: + return _leading_trailing(a, edgeitems, index + np.index_exp[:]) + + +def _object_format(o): + """ Object arrays containing lists should be printed unambiguously """ + if type(o) is list: + fmt = 'list({!r})' + else: + fmt = '{!r}' + return fmt.format(o) + +def repr_format(x): + if isinstance(x, (np.str_, np.bytes_)): + return repr(x.item()) + return repr(x) + +def str_format(x): + if isinstance(x, (np.str_, np.bytes_)): + return str(x.item()) + return str(x) + +def _get_formatdict(data, *, precision, floatmode, suppress, sign, legacy, + formatter, **kwargs): + # note: extra arguments in kwargs are ignored + + # wrapped in lambdas to avoid taking a code path + # with the wrong type of data + formatdict = { + 'bool': lambda: BoolFormat(data), + 'int': lambda: IntegerFormat(data, sign), + 'float': lambda: FloatingFormat( + data, precision, floatmode, suppress, sign, legacy=legacy), + 'longfloat': lambda: FloatingFormat( + data, precision, floatmode, suppress, sign, legacy=legacy), + 'complexfloat': lambda: ComplexFloatingFormat( + data, precision, floatmode, suppress, sign, legacy=legacy), + 'longcomplexfloat': lambda: ComplexFloatingFormat( + data, precision, floatmode, suppress, sign, legacy=legacy), + 'datetime': lambda: DatetimeFormat(data, legacy=legacy), + 'timedelta': lambda: TimedeltaFormat(data), + 'object': lambda: _object_format, + 'void': lambda: str_format, + 'numpystr': lambda: repr_format} + + # we need to wrap values in `formatter` in a lambda, so that the interface + # is the same as the above values. + def indirect(x): + return lambda: x + + if formatter is not None: + fkeys = [k for k in formatter.keys() if formatter[k] is not None] + if 'all' in fkeys: + for key in formatdict.keys(): + formatdict[key] = indirect(formatter['all']) + if 'int_kind' in fkeys: + for key in ['int']: + formatdict[key] = indirect(formatter['int_kind']) + if 'float_kind' in fkeys: + for key in ['float', 'longfloat']: + formatdict[key] = indirect(formatter['float_kind']) + if 'complex_kind' in fkeys: + for key in ['complexfloat', 'longcomplexfloat']: + formatdict[key] = indirect(formatter['complex_kind']) + if 'str_kind' in fkeys: + formatdict['numpystr'] = indirect(formatter['str_kind']) + for key in formatdict.keys(): + if key in fkeys: + formatdict[key] = indirect(formatter[key]) + + return formatdict + +def _get_format_function(data, **options): + """ + find the right formatting function for the dtype_ + """ + dtype_ = data.dtype + dtypeobj = dtype_.type + formatdict = _get_formatdict(data, **options) + if dtypeobj is None: + return formatdict["numpystr"]() + elif issubclass(dtypeobj, _nt.bool): + return formatdict['bool']() + elif issubclass(dtypeobj, _nt.integer): + if issubclass(dtypeobj, _nt.timedelta64): + return formatdict['timedelta']() + else: + return formatdict['int']() + elif issubclass(dtypeobj, _nt.floating): + if issubclass(dtypeobj, _nt.longdouble): + return formatdict['longfloat']() + else: + return formatdict['float']() + elif issubclass(dtypeobj, _nt.complexfloating): + if issubclass(dtypeobj, _nt.clongdouble): + return formatdict['longcomplexfloat']() + else: + return formatdict['complexfloat']() + elif issubclass(dtypeobj, (_nt.str_, _nt.bytes_)): + return formatdict['numpystr']() + elif issubclass(dtypeobj, _nt.datetime64): + return formatdict['datetime']() + elif issubclass(dtypeobj, _nt.object_): + return formatdict['object']() + elif issubclass(dtypeobj, _nt.void): + if dtype_.names is not None: + return StructuredVoidFormat.from_data(data, **options) + else: + return formatdict['void']() + else: + return formatdict['numpystr']() + + +def _recursive_guard(fillvalue='...'): + """ + Like the python 3.2 reprlib.recursive_repr, but forwards *args and **kwargs + + Decorates a function such that if it calls itself with the same first + argument, it returns `fillvalue` instead of recursing. + + Largely copied from reprlib.recursive_repr + """ + + def decorating_function(f): + repr_running = set() + + @functools.wraps(f) + def wrapper(self, *args, **kwargs): + key = id(self), get_ident() + if key in repr_running: + return fillvalue + repr_running.add(key) + try: + return f(self, *args, **kwargs) + finally: + repr_running.discard(key) + + return wrapper + + return decorating_function + + +# gracefully handle recursive calls, when object arrays contain themselves +@_recursive_guard() +def _array2string(a, options, separator=' ', prefix=""): + # The formatter __init__s in _get_format_function cannot deal with + # subclasses yet, and we also need to avoid recursion issues in + # _formatArray with subclasses which return 0d arrays in place of scalars + data = asarray(a) + if a.shape == (): + a = data + + if a.size > options['threshold']: + summary_insert = "..." + data = _leading_trailing(data, options['edgeitems']) + else: + summary_insert = "" + + # find the right formatting function for the array + format_function = _get_format_function(data, **options) + + # skip over "[" + next_line_prefix = " " + # skip over array( + next_line_prefix += " " * len(prefix) + + lst = _formatArray(a, format_function, options['linewidth'], + next_line_prefix, separator, options['edgeitems'], + summary_insert, options['legacy']) + return lst + + +def _array2string_dispatcher( + a, max_line_width=None, precision=None, + suppress_small=None, separator=None, prefix=None, + style=None, formatter=None, threshold=None, + edgeitems=None, sign=None, floatmode=None, suffix=None, + *, legacy=None): + return (a,) + + +@array_function_dispatch(_array2string_dispatcher, module='numpy') +def array2string(a, max_line_width=None, precision=None, + suppress_small=None, separator=' ', prefix="", + style=np._NoValue, formatter=None, threshold=None, + edgeitems=None, sign=None, floatmode=None, suffix="", + *, legacy=None): + """ + Return a string representation of an array. + + Parameters + ---------- + a : ndarray + Input array. + max_line_width : int, optional + Inserts newlines if text is longer than `max_line_width`. + Defaults to ``numpy.get_printoptions()['linewidth']``. + precision : int or None, optional + Floating point precision. + Defaults to ``numpy.get_printoptions()['precision']``. + suppress_small : bool, optional + Represent numbers "very close" to zero as zero; default is False. + Very close is defined by precision: if the precision is 8, e.g., + numbers smaller (in absolute value) than 5e-9 are represented as + zero. + Defaults to ``numpy.get_printoptions()['suppress']``. + separator : str, optional + Inserted between elements. + prefix : str, optional + suffix : str, optional + The length of the prefix and suffix strings are used to respectively + align and wrap the output. An array is typically printed as:: + + prefix + array2string(a) + suffix + + The output is left-padded by the length of the prefix string, and + wrapping is forced at the column ``max_line_width - len(suffix)``. + It should be noted that the content of prefix and suffix strings are + not included in the output. + style : _NoValue, optional + Has no effect, do not use. + + .. deprecated:: 1.14.0 + formatter : dict of callables, optional + If not None, the keys should indicate the type(s) that the respective + formatting function applies to. Callables should return a string. + Types that are not specified (by their corresponding keys) are handled + by the default formatters. Individual types for which a formatter + can be set are: + + - 'bool' + - 'int' + - 'timedelta' : a `numpy.timedelta64` + - 'datetime' : a `numpy.datetime64` + - 'float' + - 'longfloat' : 128-bit floats + - 'complexfloat' + - 'longcomplexfloat' : composed of two 128-bit floats + - 'void' : type `numpy.void` + - 'numpystr' : types `numpy.bytes_` and `numpy.str_` + + Other keys that can be used to set a group of types at once are: + + - 'all' : sets all types + - 'int_kind' : sets 'int' + - 'float_kind' : sets 'float' and 'longfloat' + - 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat' + - 'str_kind' : sets 'numpystr' + threshold : int, optional + Total number of array elements which trigger summarization + rather than full repr. + Defaults to ``numpy.get_printoptions()['threshold']``. + edgeitems : int, optional + Number of array items in summary at beginning and end of + each dimension. + Defaults to ``numpy.get_printoptions()['edgeitems']``. + sign : string, either '-', '+', or ' ', optional + Controls printing of the sign of floating-point types. If '+', always + print the sign of positive values. If ' ', always prints a space + (whitespace character) in the sign position of positive values. If + '-', omit the sign character of positive values. + Defaults to ``numpy.get_printoptions()['sign']``. + + .. versionchanged:: 2.0 + The sign parameter can now be an integer type, previously + types were floating-point types. + + floatmode : str, optional + Controls the interpretation of the `precision` option for + floating-point types. + Defaults to ``numpy.get_printoptions()['floatmode']``. + Can take the following values: + + - 'fixed': Always print exactly `precision` fractional digits, + even if this would print more or fewer digits than + necessary to specify the value uniquely. + - 'unique': Print the minimum number of fractional digits necessary + to represent each value uniquely. Different elements may + have a different number of digits. The value of the + `precision` option is ignored. + - 'maxprec': Print at most `precision` fractional digits, but if + an element can be uniquely represented with fewer digits + only print it with that many. + - 'maxprec_equal': Print at most `precision` fractional digits, + but if every element in the array can be uniquely + represented with an equal number of fewer digits, use that + many digits for all elements. + legacy : string or `False`, optional + If set to the string ``'1.13'`` enables 1.13 legacy printing mode. This + approximates numpy 1.13 print output by including a space in the sign + position of floats and different behavior for 0d arrays. If set to + `False`, disables legacy mode. Unrecognized strings will be ignored + with a warning for forward compatibility. + + Returns + ------- + array_str : str + String representation of the array. + + Raises + ------ + TypeError + if a callable in `formatter` does not return a string. + + See Also + -------- + array_str, array_repr, set_printoptions, get_printoptions + + Notes + ----- + If a formatter is specified for a certain type, the `precision` keyword is + ignored for that type. + + This is a very flexible function; `array_repr` and `array_str` are using + `array2string` internally so keywords with the same name should work + identically in all three functions. + + Examples + -------- + >>> import numpy as np + >>> x = np.array([1e-16,1,2,3]) + >>> np.array2string(x, precision=2, separator=',', + ... suppress_small=True) + '[0.,1.,2.,3.]' + + >>> x = np.arange(3.) + >>> np.array2string(x, formatter={'float_kind':lambda x: "%.2f" % x}) + '[0.00 1.00 2.00]' + + >>> x = np.arange(3) + >>> np.array2string(x, formatter={'int':lambda x: hex(x)}) + '[0x0 0x1 0x2]' + + """ + + overrides = _make_options_dict(precision, threshold, edgeitems, + max_line_width, suppress_small, None, None, + sign, formatter, floatmode, legacy) + options = format_options.get().copy() + options.update(overrides) + + if options['legacy'] <= 113: + if style is np._NoValue: + style = repr + + if a.shape == () and a.dtype.names is None: + return style(a.item()) + elif style is not np._NoValue: + # Deprecation 11-9-2017 v1.14 + warnings.warn("'style' argument is deprecated and no longer functional" + " except in 1.13 'legacy' mode", + DeprecationWarning, stacklevel=2) + + if options['legacy'] > 113: + options['linewidth'] -= len(suffix) + + # treat as a null array if any of shape elements == 0 + if a.size == 0: + return "[]" + + return _array2string(a, options, separator, prefix) + + +def _extendLine(s, line, word, line_width, next_line_prefix, legacy): + needs_wrap = len(line) + len(word) > line_width + if legacy > 113: + # don't wrap lines if it won't help + if len(line) <= len(next_line_prefix): + needs_wrap = False + + if needs_wrap: + s += line.rstrip() + "\n" + line = next_line_prefix + line += word + return s, line + + +def _extendLine_pretty(s, line, word, line_width, next_line_prefix, legacy): + """ + Extends line with nicely formatted (possibly multi-line) string ``word``. + """ + words = word.splitlines() + if len(words) == 1 or legacy <= 113: + return _extendLine(s, line, word, line_width, next_line_prefix, legacy) + + max_word_length = max(len(word) for word in words) + if (len(line) + max_word_length > line_width and + len(line) > len(next_line_prefix)): + s += line.rstrip() + '\n' + line = next_line_prefix + words[0] + indent = next_line_prefix + else: + indent = len(line) * ' ' + line += words[0] + + for word in words[1::]: + s += line.rstrip() + '\n' + line = indent + word + + suffix_length = max_word_length - len(words[-1]) + line += suffix_length * ' ' + + return s, line + +def _formatArray(a, format_function, line_width, next_line_prefix, + separator, edge_items, summary_insert, legacy): + """formatArray is designed for two modes of operation: + + 1. Full output + + 2. Summarized output + + """ + def recurser(index, hanging_indent, curr_width): + """ + By using this local function, we don't need to recurse with all the + arguments. Since this function is not created recursively, the cost is + not significant + """ + axis = len(index) + axes_left = a.ndim - axis + + if axes_left == 0: + return format_function(a[index]) + + # when recursing, add a space to align with the [ added, and reduce the + # length of the line by 1 + next_hanging_indent = hanging_indent + ' ' + if legacy <= 113: + next_width = curr_width + else: + next_width = curr_width - len(']') + + a_len = a.shape[axis] + show_summary = summary_insert and 2 * edge_items < a_len + if show_summary: + leading_items = edge_items + trailing_items = edge_items + else: + leading_items = 0 + trailing_items = a_len + + # stringify the array with the hanging indent on the first line too + s = '' + + # last axis (rows) - wrap elements if they would not fit on one line + if axes_left == 1: + # the length up until the beginning of the separator / bracket + if legacy <= 113: + elem_width = curr_width - len(separator.rstrip()) + else: + elem_width = curr_width - max( + len(separator.rstrip()), len(']') + ) + + line = hanging_indent + for i in range(leading_items): + word = recurser(index + (i,), next_hanging_indent, next_width) + s, line = _extendLine_pretty( + s, line, word, elem_width, hanging_indent, legacy) + line += separator + + if show_summary: + s, line = _extendLine( + s, line, summary_insert, elem_width, hanging_indent, legacy + ) + if legacy <= 113: + line += ", " + else: + line += separator + + for i in range(trailing_items, 1, -1): + word = recurser(index + (-i,), next_hanging_indent, next_width) + s, line = _extendLine_pretty( + s, line, word, elem_width, hanging_indent, legacy) + line += separator + + if legacy <= 113: + # width of the separator is not considered on 1.13 + elem_width = curr_width + word = recurser(index + (-1,), next_hanging_indent, next_width) + s, line = _extendLine_pretty( + s, line, word, elem_width, hanging_indent, legacy) + + s += line + + # other axes - insert newlines between rows + else: + s = '' + line_sep = separator.rstrip() + '\n' * (axes_left - 1) + + for i in range(leading_items): + nested = recurser( + index + (i,), next_hanging_indent, next_width + ) + s += hanging_indent + nested + line_sep + + if show_summary: + if legacy <= 113: + # trailing space, fixed nbr of newlines, + # and fixed separator + s += hanging_indent + summary_insert + ", \n" + else: + s += hanging_indent + summary_insert + line_sep + + for i in range(trailing_items, 1, -1): + nested = recurser(index + (-i,), next_hanging_indent, + next_width) + s += hanging_indent + nested + line_sep + + nested = recurser(index + (-1,), next_hanging_indent, next_width) + s += hanging_indent + nested + + # remove the hanging indent, and wrap in [] + s = '[' + s[len(hanging_indent):] + ']' + return s + + try: + # invoke the recursive part with an initial index and prefix + return recurser(index=(), + hanging_indent=next_line_prefix, + curr_width=line_width) + finally: + # recursive closures have a cyclic reference to themselves, which + # requires gc to collect (gh-10620). To avoid this problem, for + # performance and PyPy friendliness, we break the cycle: + recurser = None + +def _none_or_positive_arg(x, name): + if x is None: + return -1 + if x < 0: + raise ValueError(f"{name} must be >= 0") + return x + +class FloatingFormat: + """ Formatter for subtypes of np.floating """ + def __init__(self, data, precision, floatmode, suppress_small, sign=False, + *, legacy=None): + # for backcompatibility, accept bools + if isinstance(sign, bool): + sign = '+' if sign else '-' + + self._legacy = legacy + if self._legacy <= 113: + # when not 0d, legacy does not support '-' + if data.shape != () and sign == '-': + sign = ' ' + + self.floatmode = floatmode + if floatmode == 'unique': + self.precision = None + else: + self.precision = precision + + self.precision = _none_or_positive_arg(self.precision, 'precision') + + self.suppress_small = suppress_small + self.sign = sign + self.exp_format = False + self.large_exponent = False + self.fillFormat(data) + + def fillFormat(self, data): + # only the finite values are used to compute the number of digits + finite_vals = data[isfinite(data)] + + # choose exponential mode based on the non-zero finite values: + abs_non_zero = absolute(finite_vals[finite_vals != 0]) + if len(abs_non_zero) != 0: + max_val = np.max(abs_non_zero) + min_val = np.min(abs_non_zero) + if self._legacy <= 202: + exp_cutoff_max = 1.e8 + else: + # consider data type while deciding the max cutoff for exp format + exp_cutoff_max = 10.**min(8, np.finfo(data.dtype).precision) + with errstate(over='ignore'): # division can overflow + if max_val >= exp_cutoff_max or (not self.suppress_small and + (min_val < 0.0001 or max_val / min_val > 1000.)): + self.exp_format = True + + # do a first pass of printing all the numbers, to determine sizes + if len(finite_vals) == 0: + self.pad_left = 0 + self.pad_right = 0 + self.trim = '.' + self.exp_size = -1 + self.unique = True + self.min_digits = None + elif self.exp_format: + trim, unique = '.', True + if self.floatmode == 'fixed' or self._legacy <= 113: + trim, unique = 'k', False + strs = (dragon4_scientific(x, precision=self.precision, + unique=unique, trim=trim, sign=self.sign == '+') + for x in finite_vals) + frac_strs, _, exp_strs = zip(*(s.partition('e') for s in strs)) + int_part, frac_part = zip(*(s.split('.') for s in frac_strs)) + self.exp_size = max(len(s) for s in exp_strs) - 1 + + self.trim = 'k' + self.precision = max(len(s) for s in frac_part) + self.min_digits = self.precision + self.unique = unique + + # for back-compat with np 1.13, use 2 spaces & sign and full prec + if self._legacy <= 113: + self.pad_left = 3 + else: + # this should be only 1 or 2. Can be calculated from sign. + self.pad_left = max(len(s) for s in int_part) + # pad_right is only needed for nan length calculation + self.pad_right = self.exp_size + 2 + self.precision + else: + trim, unique = '.', True + if self.floatmode == 'fixed': + trim, unique = 'k', False + strs = (dragon4_positional(x, precision=self.precision, + fractional=True, + unique=unique, trim=trim, + sign=self.sign == '+') + for x in finite_vals) + int_part, frac_part = zip(*(s.split('.') for s in strs)) + if self._legacy <= 113: + self.pad_left = 1 + max(len(s.lstrip('-+')) for s in int_part) + else: + self.pad_left = max(len(s) for s in int_part) + self.pad_right = max(len(s) for s in frac_part) + self.exp_size = -1 + self.unique = unique + + if self.floatmode in ['fixed', 'maxprec_equal']: + self.precision = self.min_digits = self.pad_right + self.trim = 'k' + else: + self.trim = '.' + self.min_digits = 0 + + if self._legacy > 113: + # account for sign = ' ' by adding one to pad_left + if self.sign == ' ' and not any(np.signbit(finite_vals)): + self.pad_left += 1 + + # if there are non-finite values, may need to increase pad_left + if data.size != finite_vals.size: + neginf = self.sign != '-' or any(data[isinf(data)] < 0) + offset = self.pad_right + 1 # +1 for decimal pt + current_options = format_options.get() + self.pad_left = max( + self.pad_left, len(current_options['nanstr']) - offset, + len(current_options['infstr']) + neginf - offset + ) + + def __call__(self, x): + if not np.isfinite(x): + with errstate(invalid='ignore'): + current_options = format_options.get() + if np.isnan(x): + sign = '+' if self.sign == '+' else '' + ret = sign + current_options['nanstr'] + else: # isinf + sign = '-' if x < 0 else '+' if self.sign == '+' else '' + ret = sign + current_options['infstr'] + return ' ' * ( + self.pad_left + self.pad_right + 1 - len(ret) + ) + ret + + if self.exp_format: + return dragon4_scientific(x, + precision=self.precision, + min_digits=self.min_digits, + unique=self.unique, + trim=self.trim, + sign=self.sign == '+', + pad_left=self.pad_left, + exp_digits=self.exp_size) + else: + return dragon4_positional(x, + precision=self.precision, + min_digits=self.min_digits, + unique=self.unique, + fractional=True, + trim=self.trim, + sign=self.sign == '+', + pad_left=self.pad_left, + pad_right=self.pad_right) + + +@set_module('numpy') +def format_float_scientific(x, precision=None, unique=True, trim='k', + sign=False, pad_left=None, exp_digits=None, + min_digits=None): + """ + Format a floating-point scalar as a decimal string in scientific notation. + + Provides control over rounding, trimming and padding. Uses and assumes + IEEE unbiased rounding. Uses the "Dragon4" algorithm. + + Parameters + ---------- + x : python float or numpy floating scalar + Value to format. + precision : non-negative integer or None, optional + Maximum number of digits to print. May be None if `unique` is + `True`, but must be an integer if unique is `False`. + unique : boolean, optional + If `True`, use a digit-generation strategy which gives the shortest + representation which uniquely identifies the floating-point number from + other values of the same type, by judicious rounding. If `precision` + is given fewer digits than necessary can be printed. If `min_digits` + is given more can be printed, in which cases the last digit is rounded + with unbiased rounding. + If `False`, digits are generated as if printing an infinite-precision + value and stopping after `precision` digits, rounding the remaining + value with unbiased rounding + trim : one of 'k', '.', '0', '-', optional + Controls post-processing trimming of trailing digits, as follows: + + * 'k' : keep trailing zeros, keep decimal point (no trimming) + * '.' : trim all trailing zeros, leave decimal point + * '0' : trim all but the zero before the decimal point. Insert the + zero if it is missing. + * '-' : trim trailing zeros and any trailing decimal point + sign : boolean, optional + Whether to show the sign for positive values. + pad_left : non-negative integer, optional + Pad the left side of the string with whitespace until at least that + many characters are to the left of the decimal point. + exp_digits : non-negative integer, optional + Pad the exponent with zeros until it contains at least this + many digits. If omitted, the exponent will be at least 2 digits. + min_digits : non-negative integer or None, optional + Minimum number of digits to print. This only has an effect for + `unique=True`. In that case more digits than necessary to uniquely + identify the value may be printed and rounded unbiased. + + .. versionadded:: 1.21.0 + + Returns + ------- + rep : string + The string representation of the floating point value + + See Also + -------- + format_float_positional + + Examples + -------- + >>> import numpy as np + >>> np.format_float_scientific(np.float32(np.pi)) + '3.1415927e+00' + >>> s = np.float32(1.23e24) + >>> np.format_float_scientific(s, unique=False, precision=15) + '1.230000071797338e+24' + >>> np.format_float_scientific(s, exp_digits=4) + '1.23e+0024' + """ + precision = _none_or_positive_arg(precision, 'precision') + pad_left = _none_or_positive_arg(pad_left, 'pad_left') + exp_digits = _none_or_positive_arg(exp_digits, 'exp_digits') + min_digits = _none_or_positive_arg(min_digits, 'min_digits') + if min_digits > 0 and precision > 0 and min_digits > precision: + raise ValueError("min_digits must be less than or equal to precision") + return dragon4_scientific(x, precision=precision, unique=unique, + trim=trim, sign=sign, pad_left=pad_left, + exp_digits=exp_digits, min_digits=min_digits) + + +@set_module('numpy') +def format_float_positional(x, precision=None, unique=True, + fractional=True, trim='k', sign=False, + pad_left=None, pad_right=None, min_digits=None): + """ + Format a floating-point scalar as a decimal string in positional notation. + + Provides control over rounding, trimming and padding. Uses and assumes + IEEE unbiased rounding. Uses the "Dragon4" algorithm. + + Parameters + ---------- + x : python float or numpy floating scalar + Value to format. + precision : non-negative integer or None, optional + Maximum number of digits to print. May be None if `unique` is + `True`, but must be an integer if unique is `False`. + unique : boolean, optional + If `True`, use a digit-generation strategy which gives the shortest + representation which uniquely identifies the floating-point number from + other values of the same type, by judicious rounding. If `precision` + is given fewer digits than necessary can be printed, or if `min_digits` + is given more can be printed, in which cases the last digit is rounded + with unbiased rounding. + If `False`, digits are generated as if printing an infinite-precision + value and stopping after `precision` digits, rounding the remaining + value with unbiased rounding + fractional : boolean, optional + If `True`, the cutoffs of `precision` and `min_digits` refer to the + total number of digits after the decimal point, including leading + zeros. + If `False`, `precision` and `min_digits` refer to the total number of + significant digits, before or after the decimal point, ignoring leading + zeros. + trim : one of 'k', '.', '0', '-', optional + Controls post-processing trimming of trailing digits, as follows: + + * 'k' : keep trailing zeros, keep decimal point (no trimming) + * '.' : trim all trailing zeros, leave decimal point + * '0' : trim all but the zero before the decimal point. Insert the + zero if it is missing. + * '-' : trim trailing zeros and any trailing decimal point + sign : boolean, optional + Whether to show the sign for positive values. + pad_left : non-negative integer, optional + Pad the left side of the string with whitespace until at least that + many characters are to the left of the decimal point. + pad_right : non-negative integer, optional + Pad the right side of the string with whitespace until at least that + many characters are to the right of the decimal point. + min_digits : non-negative integer or None, optional + Minimum number of digits to print. Only has an effect if `unique=True` + in which case additional digits past those necessary to uniquely + identify the value may be printed, rounding the last additional digit. + + .. versionadded:: 1.21.0 + + Returns + ------- + rep : string + The string representation of the floating point value + + See Also + -------- + format_float_scientific + + Examples + -------- + >>> import numpy as np + >>> np.format_float_positional(np.float32(np.pi)) + '3.1415927' + >>> np.format_float_positional(np.float16(np.pi)) + '3.14' + >>> np.format_float_positional(np.float16(0.3)) + '0.3' + >>> np.format_float_positional(np.float16(0.3), unique=False, precision=10) + '0.3000488281' + """ + precision = _none_or_positive_arg(precision, 'precision') + pad_left = _none_or_positive_arg(pad_left, 'pad_left') + pad_right = _none_or_positive_arg(pad_right, 'pad_right') + min_digits = _none_or_positive_arg(min_digits, 'min_digits') + if not fractional and precision == 0: + raise ValueError("precision must be greater than 0 if " + "fractional=False") + if min_digits > 0 and precision > 0 and min_digits > precision: + raise ValueError("min_digits must be less than or equal to precision") + return dragon4_positional(x, precision=precision, unique=unique, + fractional=fractional, trim=trim, + sign=sign, pad_left=pad_left, + pad_right=pad_right, min_digits=min_digits) + +class IntegerFormat: + def __init__(self, data, sign='-'): + if data.size > 0: + data_max = np.max(data) + data_min = np.min(data) + data_max_str_len = len(str(data_max)) + if sign == ' ' and data_min < 0: + sign = '-' + if data_max >= 0 and sign in "+ ": + data_max_str_len += 1 + max_str_len = max(data_max_str_len, + len(str(data_min))) + else: + max_str_len = 0 + self.format = f'{{:{sign}{max_str_len}d}}' + + def __call__(self, x): + return self.format.format(x) + +class BoolFormat: + def __init__(self, data, **kwargs): + # add an extra space so " True" and "False" have the same length and + # array elements align nicely when printed, except in 0d arrays + self.truestr = ' True' if data.shape != () else 'True' + + def __call__(self, x): + return self.truestr if x else "False" + + +class ComplexFloatingFormat: + """ Formatter for subtypes of np.complexfloating """ + def __init__(self, x, precision, floatmode, suppress_small, + sign=False, *, legacy=None): + # for backcompatibility, accept bools + if isinstance(sign, bool): + sign = '+' if sign else '-' + + floatmode_real = floatmode_imag = floatmode + if legacy <= 113: + floatmode_real = 'maxprec_equal' + floatmode_imag = 'maxprec' + + self.real_format = FloatingFormat( + x.real, precision, floatmode_real, suppress_small, + sign=sign, legacy=legacy + ) + self.imag_format = FloatingFormat( + x.imag, precision, floatmode_imag, suppress_small, + sign='+', legacy=legacy + ) + + def __call__(self, x): + r = self.real_format(x.real) + i = self.imag_format(x.imag) + + # add the 'j' before the terminal whitespace in i + sp = len(i.rstrip()) + i = i[:sp] + 'j' + i[sp:] + + return r + i + + +class _TimelikeFormat: + def __init__(self, data): + non_nat = data[~isnat(data)] + if len(non_nat) > 0: + # Max str length of non-NaT elements + max_str_len = max(len(self._format_non_nat(np.max(non_nat))), + len(self._format_non_nat(np.min(non_nat)))) + else: + max_str_len = 0 + if len(non_nat) < data.size: + # data contains a NaT + max_str_len = max(max_str_len, 5) + self._format = f'%{max_str_len}s' + self._nat = "'NaT'".rjust(max_str_len) + + def _format_non_nat(self, x): + # override in subclass + raise NotImplementedError + + def __call__(self, x): + if isnat(x): + return self._nat + else: + return self._format % self._format_non_nat(x) + + +class DatetimeFormat(_TimelikeFormat): + def __init__(self, x, unit=None, timezone=None, casting='same_kind', + legacy=False): + # Get the unit from the dtype + if unit is None: + if x.dtype.kind == 'M': + unit = datetime_data(x.dtype)[0] + else: + unit = 's' + + if timezone is None: + timezone = 'naive' + self.timezone = timezone + self.unit = unit + self.casting = casting + self.legacy = legacy + + # must be called after the above are configured + super().__init__(x) + + def __call__(self, x): + if self.legacy <= 113: + return self._format_non_nat(x) + return super().__call__(x) + + def _format_non_nat(self, x): + return "'%s'" % datetime_as_string(x, + unit=self.unit, + timezone=self.timezone, + casting=self.casting) + + +class TimedeltaFormat(_TimelikeFormat): + def _format_non_nat(self, x): + return str(x.astype('i8')) + + +class SubArrayFormat: + def __init__(self, format_function, **options): + self.format_function = format_function + self.threshold = options['threshold'] + self.edge_items = options['edgeitems'] + + def __call__(self, a): + self.summary_insert = "..." if a.size > self.threshold else "" + return self.format_array(a) + + def format_array(self, a): + if np.ndim(a) == 0: + return self.format_function(a) + + if self.summary_insert and a.shape[0] > 2 * self.edge_items: + formatted = ( + [self.format_array(a_) for a_ in a[:self.edge_items]] + + [self.summary_insert] + + [self.format_array(a_) for a_ in a[-self.edge_items:]] + ) + else: + formatted = [self.format_array(a_) for a_ in a] + + return "[" + ", ".join(formatted) + "]" + + +class StructuredVoidFormat: + """ + Formatter for structured np.void objects. + + This does not work on structured alias types like + np.dtype(('i4', 'i2,i2')), as alias scalars lose their field information, + and the implementation relies upon np.void.__getitem__. + """ + def __init__(self, format_functions): + self.format_functions = format_functions + + @classmethod + def from_data(cls, data, **options): + """ + This is a second way to initialize StructuredVoidFormat, + using the raw data as input. Added to avoid changing + the signature of __init__. + """ + format_functions = [] + for field_name in data.dtype.names: + format_function = _get_format_function(data[field_name], **options) + if data.dtype[field_name].shape != (): + format_function = SubArrayFormat(format_function, **options) + format_functions.append(format_function) + return cls(format_functions) + + def __call__(self, x): + str_fields = [ + format_function(field) + for field, format_function in zip(x, self.format_functions) + ] + if len(str_fields) == 1: + return f"({str_fields[0]},)" + else: + return f"({', '.join(str_fields)})" + + +def _void_scalar_to_string(x, is_repr=True): + """ + Implements the repr for structured-void scalars. It is called from the + scalartypes.c.src code, and is placed here because it uses the elementwise + formatters defined above. + """ + options = format_options.get().copy() + + if options["legacy"] <= 125: + return StructuredVoidFormat.from_data(array(x), **options)(x) + + if options.get('formatter') is None: + options['formatter'] = {} + options['formatter'].setdefault('float_kind', str) + val_repr = StructuredVoidFormat.from_data(array(x), **options)(x) + if not is_repr: + return val_repr + cls = type(x) + cls_fqn = cls.__module__.replace("numpy", "np") + "." + cls.__name__ + void_dtype = np.dtype((np.void, x.dtype)) + return f"{cls_fqn}({val_repr}, dtype={void_dtype!s})" + + +_typelessdata = [int_, float64, complex128, _nt.bool] + + +def dtype_is_implied(dtype): + """ + Determine if the given dtype is implied by the representation + of its values. + + Parameters + ---------- + dtype : dtype + Data type + + Returns + ------- + implied : bool + True if the dtype is implied by the representation of its values. + + Examples + -------- + >>> import numpy as np + >>> np._core.arrayprint.dtype_is_implied(int) + True + >>> np.array([1, 2, 3], int) + array([1, 2, 3]) + >>> np._core.arrayprint.dtype_is_implied(np.int8) + False + >>> np.array([1, 2, 3], np.int8) + array([1, 2, 3], dtype=int8) + """ + dtype = np.dtype(dtype) + if format_options.get()['legacy'] <= 113 and dtype.type == np.bool: + return False + + # not just void types can be structured, and names are not part of the repr + if dtype.names is not None: + return False + + # should care about endianness *unless size is 1* (e.g., int8, bool) + if not dtype.isnative: + return False + + return dtype.type in _typelessdata + + +def dtype_short_repr(dtype): + """ + Convert a dtype to a short form which evaluates to the same dtype. + + The intent is roughly that the following holds + + >>> from numpy import * + >>> dt = np.int64([1, 2]).dtype + >>> assert eval(dtype_short_repr(dt)) == dt + """ + if type(dtype).__repr__ != np.dtype.__repr__: + # TODO: Custom repr for user DTypes, logic should likely move. + return repr(dtype) + if dtype.names is not None: + # structured dtypes give a list or tuple repr + return str(dtype) + elif issubclass(dtype.type, flexible): + # handle these separately so they don't give garbage like str256 + return f"'{str(dtype)}'" + + typename = dtype.name + if not dtype.isnative: + # deal with cases like dtype(' 210 + and arr.size > current_options['threshold'])): + extras.append(f"shape={arr.shape}") + if not dtype_is_implied(arr.dtype) or arr.size == 0: + extras.append(f"dtype={dtype_short_repr(arr.dtype)}") + + if not extras: + return prefix + lst + ")" + + arr_str = prefix + lst + "," + extra_str = ", ".join(extras) + ")" + # compute whether we should put extras on a new line: Do so if adding the + # extras would extend the last line past max_line_width. + # Note: This line gives the correct result even when rfind returns -1. + last_line_len = len(arr_str) - (arr_str.rfind('\n') + 1) + spacer = " " + if current_options['legacy'] <= 113: + if issubclass(arr.dtype.type, flexible): + spacer = '\n' + ' ' * len(prefix) + elif last_line_len + len(extra_str) + 1 > max_line_width: + spacer = '\n' + ' ' * len(prefix) + + return arr_str + spacer + extra_str + + +def _array_repr_dispatcher( + arr, max_line_width=None, precision=None, suppress_small=None): + return (arr,) + + +@array_function_dispatch(_array_repr_dispatcher, module='numpy') +def array_repr(arr, max_line_width=None, precision=None, suppress_small=None): + """ + Return the string representation of an array. + + Parameters + ---------- + arr : ndarray + Input array. + max_line_width : int, optional + Inserts newlines if text is longer than `max_line_width`. + Defaults to ``numpy.get_printoptions()['linewidth']``. + precision : int, optional + Floating point precision. + Defaults to ``numpy.get_printoptions()['precision']``. + suppress_small : bool, optional + Represent numbers "very close" to zero as zero; default is False. + Very close is defined by precision: if the precision is 8, e.g., + numbers smaller (in absolute value) than 5e-9 are represented as + zero. + Defaults to ``numpy.get_printoptions()['suppress']``. + + Returns + ------- + string : str + The string representation of an array. + + See Also + -------- + array_str, array2string, set_printoptions + + Examples + -------- + >>> import numpy as np + >>> np.array_repr(np.array([1,2])) + 'array([1, 2])' + >>> np.array_repr(np.ma.array([0.])) + 'MaskedArray([0.])' + >>> np.array_repr(np.array([], np.int32)) + 'array([], dtype=int32)' + + >>> x = np.array([1e-6, 4e-7, 2, 3]) + >>> np.array_repr(x, precision=6, suppress_small=True) + 'array([0.000001, 0. , 2. , 3. ])' + + """ + return _array_repr_implementation( + arr, max_line_width, precision, suppress_small) + + +@_recursive_guard() +def _guarded_repr_or_str(v): + if isinstance(v, bytes): + return repr(v) + return str(v) + + +def _array_str_implementation( + a, max_line_width=None, precision=None, suppress_small=None, + array2string=array2string): + """Internal version of array_str() that allows overriding array2string.""" + if (format_options.get()['legacy'] <= 113 and + a.shape == () and not a.dtype.names): + return str(a.item()) + + # the str of 0d arrays is a special case: It should appear like a scalar, + # so floats are not truncated by `precision`, and strings are not wrapped + # in quotes. So we return the str of the scalar value. + if a.shape == (): + # obtain a scalar and call str on it, avoiding problems for subclasses + # for which indexing with () returns a 0d instead of a scalar by using + # ndarray's getindex. Also guard against recursive 0d object arrays. + return _guarded_repr_or_str(np.ndarray.__getitem__(a, ())) + + return array2string(a, max_line_width, precision, suppress_small, ' ', "") + + +def _array_str_dispatcher( + a, max_line_width=None, precision=None, suppress_small=None): + return (a,) + + +@array_function_dispatch(_array_str_dispatcher, module='numpy') +def array_str(a, max_line_width=None, precision=None, suppress_small=None): + """ + Return a string representation of the data in an array. + + The data in the array is returned as a single string. This function is + similar to `array_repr`, the difference being that `array_repr` also + returns information on the kind of array and its data type. + + Parameters + ---------- + a : ndarray + Input array. + max_line_width : int, optional + Inserts newlines if text is longer than `max_line_width`. + Defaults to ``numpy.get_printoptions()['linewidth']``. + precision : int, optional + Floating point precision. + Defaults to ``numpy.get_printoptions()['precision']``. + suppress_small : bool, optional + Represent numbers "very close" to zero as zero; default is False. + Very close is defined by precision: if the precision is 8, e.g., + numbers smaller (in absolute value) than 5e-9 are represented as + zero. + Defaults to ``numpy.get_printoptions()['suppress']``. + + See Also + -------- + array2string, array_repr, set_printoptions + + Examples + -------- + >>> import numpy as np + >>> np.array_str(np.arange(3)) + '[0 1 2]' + + """ + return _array_str_implementation( + a, max_line_width, precision, suppress_small) + + +# needed if __array_function__ is disabled +_array2string_impl = getattr(array2string, '__wrapped__', array2string) +_default_array_str = functools.partial(_array_str_implementation, + array2string=_array2string_impl) +_default_array_repr = functools.partial(_array_repr_implementation, + array2string=_array2string_impl) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/arrayprint.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/arrayprint.pyi new file mode 100644 index 0000000..fec03a6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/arrayprint.pyi @@ -0,0 +1,238 @@ +from collections.abc import Callable + +# Using a private class is by no means ideal, but it is simply a consequence +# of a `contextlib.context` returning an instance of aforementioned class +from contextlib import _GeneratorContextManager +from typing import ( + Any, + Final, + Literal, + SupportsIndex, + TypeAlias, + TypedDict, + overload, + type_check_only, +) + +from typing_extensions import deprecated + +import numpy as np +from numpy._globals import _NoValueType +from numpy._typing import NDArray, _CharLike_co, _FloatLike_co + +__all__ = [ + "array2string", + "array_repr", + "array_str", + "format_float_positional", + "format_float_scientific", + "get_printoptions", + "printoptions", + "set_printoptions", +] + +### + +_FloatMode: TypeAlias = Literal["fixed", "unique", "maxprec", "maxprec_equal"] +_LegacyNoStyle: TypeAlias = Literal["1.21", "1.25", "2.1", False] +_Legacy: TypeAlias = Literal["1.13", _LegacyNoStyle] +_Sign: TypeAlias = Literal["-", "+", " "] +_Trim: TypeAlias = Literal["k", ".", "0", "-"] +_ReprFunc: TypeAlias = Callable[[NDArray[Any]], str] + +@type_check_only +class _FormatDict(TypedDict, total=False): + bool: Callable[[np.bool], str] + int: Callable[[np.integer], str] + timedelta: Callable[[np.timedelta64], str] + datetime: Callable[[np.datetime64], str] + float: Callable[[np.floating], str] + longfloat: Callable[[np.longdouble], str] + complexfloat: Callable[[np.complexfloating], str] + longcomplexfloat: Callable[[np.clongdouble], str] + void: Callable[[np.void], str] + numpystr: Callable[[_CharLike_co], str] + object: Callable[[object], str] + all: Callable[[object], str] + int_kind: Callable[[np.integer], str] + float_kind: Callable[[np.floating], str] + complex_kind: Callable[[np.complexfloating], str] + str_kind: Callable[[_CharLike_co], str] + +@type_check_only +class _FormatOptions(TypedDict): + precision: int + threshold: int + edgeitems: int + linewidth: int + suppress: bool + nanstr: str + infstr: str + formatter: _FormatDict | None + sign: _Sign + floatmode: _FloatMode + legacy: _Legacy + +### + +__docformat__: Final = "restructuredtext" # undocumented + +def set_printoptions( + precision: SupportsIndex | None = ..., + threshold: int | None = ..., + edgeitems: int | None = ..., + linewidth: int | None = ..., + suppress: bool | None = ..., + nanstr: str | None = ..., + infstr: str | None = ..., + formatter: _FormatDict | None = ..., + sign: _Sign | None = None, + floatmode: _FloatMode | None = None, + *, + legacy: _Legacy | None = None, + override_repr: _ReprFunc | None = None, +) -> None: ... +def get_printoptions() -> _FormatOptions: ... + +# public numpy export +@overload # no style +def array2string( + a: NDArray[Any], + max_line_width: int | None = None, + precision: SupportsIndex | None = None, + suppress_small: bool | None = None, + separator: str = " ", + prefix: str = "", + style: _NoValueType = ..., + formatter: _FormatDict | None = None, + threshold: int | None = None, + edgeitems: int | None = None, + sign: _Sign | None = None, + floatmode: _FloatMode | None = None, + suffix: str = "", + *, + legacy: _Legacy | None = None, +) -> str: ... +@overload # style= (positional), legacy="1.13" +def array2string( + a: NDArray[Any], + max_line_width: int | None, + precision: SupportsIndex | None, + suppress_small: bool | None, + separator: str, + prefix: str, + style: _ReprFunc, + formatter: _FormatDict | None = None, + threshold: int | None = None, + edgeitems: int | None = None, + sign: _Sign | None = None, + floatmode: _FloatMode | None = None, + suffix: str = "", + *, + legacy: Literal["1.13"], +) -> str: ... +@overload # style= (keyword), legacy="1.13" +def array2string( + a: NDArray[Any], + max_line_width: int | None = None, + precision: SupportsIndex | None = None, + suppress_small: bool | None = None, + separator: str = " ", + prefix: str = "", + *, + style: _ReprFunc, + formatter: _FormatDict | None = None, + threshold: int | None = None, + edgeitems: int | None = None, + sign: _Sign | None = None, + floatmode: _FloatMode | None = None, + suffix: str = "", + legacy: Literal["1.13"], +) -> str: ... +@overload # style= (positional), legacy!="1.13" +@deprecated("'style' argument is deprecated and no longer functional except in 1.13 'legacy' mode") +def array2string( + a: NDArray[Any], + max_line_width: int | None, + precision: SupportsIndex | None, + suppress_small: bool | None, + separator: str, + prefix: str, + style: _ReprFunc, + formatter: _FormatDict | None = None, + threshold: int | None = None, + edgeitems: int | None = None, + sign: _Sign | None = None, + floatmode: _FloatMode | None = None, + suffix: str = "", + *, + legacy: _LegacyNoStyle | None = None, +) -> str: ... +@overload # style= (keyword), legacy="1.13" +@deprecated("'style' argument is deprecated and no longer functional except in 1.13 'legacy' mode") +def array2string( + a: NDArray[Any], + max_line_width: int | None = None, + precision: SupportsIndex | None = None, + suppress_small: bool | None = None, + separator: str = " ", + prefix: str = "", + *, + style: _ReprFunc, + formatter: _FormatDict | None = None, + threshold: int | None = None, + edgeitems: int | None = None, + sign: _Sign | None = None, + floatmode: _FloatMode | None = None, + suffix: str = "", + legacy: _LegacyNoStyle | None = None, +) -> str: ... + +def format_float_scientific( + x: _FloatLike_co, + precision: int | None = ..., + unique: bool = ..., + trim: _Trim = "k", + sign: bool = ..., + pad_left: int | None = ..., + exp_digits: int | None = ..., + min_digits: int | None = ..., +) -> str: ... +def format_float_positional( + x: _FloatLike_co, + precision: int | None = ..., + unique: bool = ..., + fractional: bool = ..., + trim: _Trim = "k", + sign: bool = ..., + pad_left: int | None = ..., + pad_right: int | None = ..., + min_digits: int | None = ..., +) -> str: ... +def array_repr( + arr: NDArray[Any], + max_line_width: int | None = ..., + precision: SupportsIndex | None = ..., + suppress_small: bool | None = ..., +) -> str: ... +def array_str( + a: NDArray[Any], + max_line_width: int | None = ..., + precision: SupportsIndex | None = ..., + suppress_small: bool | None = ..., +) -> str: ... +def printoptions( + precision: SupportsIndex | None = ..., + threshold: int | None = ..., + edgeitems: int | None = ..., + linewidth: int | None = ..., + suppress: bool | None = ..., + nanstr: str | None = ..., + infstr: str | None = ..., + formatter: _FormatDict | None = ..., + sign: _Sign | None = None, + floatmode: _FloatMode | None = None, + *, + legacy: _Legacy | None = None, + override_repr: _ReprFunc | None = None, +) -> _GeneratorContextManager[_FormatOptions]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/cversions.py b/.venv/lib/python3.12/site-packages/numpy/_core/cversions.py new file mode 100644 index 0000000..00159c3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/cversions.py @@ -0,0 +1,13 @@ +"""Simple script to compute the api hash of the current API. + +The API has is defined by numpy_api_order and ufunc_api_order. + +""" +from os.path import dirname + +from code_generators.genapi import fullapi_hash +from code_generators.numpy_api import full_api + +if __name__ == '__main__': + curdir = dirname(__file__) + print(fullapi_hash(full_api)) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/defchararray.py b/.venv/lib/python3.12/site-packages/numpy/_core/defchararray.py new file mode 100644 index 0000000..bde8921 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/defchararray.py @@ -0,0 +1,1427 @@ +""" +This module contains a set of functions for vectorized string +operations and methods. + +.. note:: + The `chararray` class exists for backwards compatibility with + Numarray, it is not recommended for new development. Starting from numpy + 1.4, if one needs arrays of strings, it is recommended to use arrays of + `dtype` `object_`, `bytes_` or `str_`, and use the free functions + in the `numpy.char` module for fast vectorized string operations. + +Some methods will only be available if the corresponding string method is +available in your version of Python. + +The preferred alias for `defchararray` is `numpy.char`. + +""" +import functools + +import numpy as np +from numpy._core import overrides +from numpy._core.multiarray import compare_chararrays +from numpy._core.strings import ( + _join as join, +) +from numpy._core.strings import ( + _rsplit as rsplit, +) +from numpy._core.strings import ( + _split as split, +) +from numpy._core.strings import ( + _splitlines as splitlines, +) +from numpy._utils import set_module +from numpy.strings import * +from numpy.strings import ( + multiply as strings_multiply, +) +from numpy.strings import ( + partition as strings_partition, +) +from numpy.strings import ( + rpartition as strings_rpartition, +) + +from .numeric import array as narray +from .numeric import asarray as asnarray +from .numeric import ndarray +from .numerictypes import bytes_, character, str_ + +__all__ = [ + 'equal', 'not_equal', 'greater_equal', 'less_equal', + 'greater', 'less', 'str_len', 'add', 'multiply', 'mod', 'capitalize', + 'center', 'count', 'decode', 'encode', 'endswith', 'expandtabs', + 'find', 'index', 'isalnum', 'isalpha', 'isdigit', 'islower', 'isspace', + 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'partition', + 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', + 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', + 'title', 'translate', 'upper', 'zfill', 'isnumeric', 'isdecimal', + 'array', 'asarray', 'compare_chararrays', 'chararray' + ] + + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy.char') + + +def _binary_op_dispatcher(x1, x2): + return (x1, x2) + + +@array_function_dispatch(_binary_op_dispatcher) +def equal(x1, x2): + """ + Return (x1 == x2) element-wise. + + Unlike `numpy.equal`, this comparison is performed by first + stripping whitespace characters from the end of the string. This + behavior is provided for backward-compatibility with numarray. + + Parameters + ---------- + x1, x2 : array_like of str or unicode + Input arrays of the same shape. + + Returns + ------- + out : ndarray + Output array of bools. + + Examples + -------- + >>> import numpy as np + >>> y = "aa " + >>> x = "aa" + >>> np.char.equal(x, y) + array(True) + + See Also + -------- + not_equal, greater_equal, less_equal, greater, less + """ + return compare_chararrays(x1, x2, '==', True) + + +@array_function_dispatch(_binary_op_dispatcher) +def not_equal(x1, x2): + """ + Return (x1 != x2) element-wise. + + Unlike `numpy.not_equal`, this comparison is performed by first + stripping whitespace characters from the end of the string. This + behavior is provided for backward-compatibility with numarray. + + Parameters + ---------- + x1, x2 : array_like of str or unicode + Input arrays of the same shape. + + Returns + ------- + out : ndarray + Output array of bools. + + See Also + -------- + equal, greater_equal, less_equal, greater, less + + Examples + -------- + >>> import numpy as np + >>> x1 = np.array(['a', 'b', 'c']) + >>> np.char.not_equal(x1, 'b') + array([ True, False, True]) + + """ + return compare_chararrays(x1, x2, '!=', True) + + +@array_function_dispatch(_binary_op_dispatcher) +def greater_equal(x1, x2): + """ + Return (x1 >= x2) element-wise. + + Unlike `numpy.greater_equal`, this comparison is performed by + first stripping whitespace characters from the end of the string. + This behavior is provided for backward-compatibility with + numarray. + + Parameters + ---------- + x1, x2 : array_like of str or unicode + Input arrays of the same shape. + + Returns + ------- + out : ndarray + Output array of bools. + + See Also + -------- + equal, not_equal, less_equal, greater, less + + Examples + -------- + >>> import numpy as np + >>> x1 = np.array(['a', 'b', 'c']) + >>> np.char.greater_equal(x1, 'b') + array([False, True, True]) + + """ + return compare_chararrays(x1, x2, '>=', True) + + +@array_function_dispatch(_binary_op_dispatcher) +def less_equal(x1, x2): + """ + Return (x1 <= x2) element-wise. + + Unlike `numpy.less_equal`, this comparison is performed by first + stripping whitespace characters from the end of the string. This + behavior is provided for backward-compatibility with numarray. + + Parameters + ---------- + x1, x2 : array_like of str or unicode + Input arrays of the same shape. + + Returns + ------- + out : ndarray + Output array of bools. + + See Also + -------- + equal, not_equal, greater_equal, greater, less + + Examples + -------- + >>> import numpy as np + >>> x1 = np.array(['a', 'b', 'c']) + >>> np.char.less_equal(x1, 'b') + array([ True, True, False]) + + """ + return compare_chararrays(x1, x2, '<=', True) + + +@array_function_dispatch(_binary_op_dispatcher) +def greater(x1, x2): + """ + Return (x1 > x2) element-wise. + + Unlike `numpy.greater`, this comparison is performed by first + stripping whitespace characters from the end of the string. This + behavior is provided for backward-compatibility with numarray. + + Parameters + ---------- + x1, x2 : array_like of str or unicode + Input arrays of the same shape. + + Returns + ------- + out : ndarray + Output array of bools. + + See Also + -------- + equal, not_equal, greater_equal, less_equal, less + + Examples + -------- + >>> import numpy as np + >>> x1 = np.array(['a', 'b', 'c']) + >>> np.char.greater(x1, 'b') + array([False, False, True]) + + """ + return compare_chararrays(x1, x2, '>', True) + + +@array_function_dispatch(_binary_op_dispatcher) +def less(x1, x2): + """ + Return (x1 < x2) element-wise. + + Unlike `numpy.greater`, this comparison is performed by first + stripping whitespace characters from the end of the string. This + behavior is provided for backward-compatibility with numarray. + + Parameters + ---------- + x1, x2 : array_like of str or unicode + Input arrays of the same shape. + + Returns + ------- + out : ndarray + Output array of bools. + + See Also + -------- + equal, not_equal, greater_equal, less_equal, greater + + Examples + -------- + >>> import numpy as np + >>> x1 = np.array(['a', 'b', 'c']) + >>> np.char.less(x1, 'b') + array([True, False, False]) + + """ + return compare_chararrays(x1, x2, '<', True) + + +@set_module("numpy.char") +def multiply(a, i): + """ + Return (a * i), that is string multiple concatenation, + element-wise. + + Values in ``i`` of less than 0 are treated as 0 (which yields an + empty string). + + Parameters + ---------- + a : array_like, with `np.bytes_` or `np.str_` dtype + + i : array_like, with any integer dtype + + Returns + ------- + out : ndarray + Output array of str or unicode, depending on input types + + Notes + ----- + This is a thin wrapper around np.strings.multiply that raises + `ValueError` when ``i`` is not an integer. It only + exists for backwards-compatibility. + + Examples + -------- + >>> import numpy as np + >>> a = np.array(["a", "b", "c"]) + >>> np.strings.multiply(a, 3) + array(['aaa', 'bbb', 'ccc'], dtype='>> i = np.array([1, 2, 3]) + >>> np.strings.multiply(a, i) + array(['a', 'bb', 'ccc'], dtype='>> np.strings.multiply(np.array(['a']), i) + array(['a', 'aa', 'aaa'], dtype='>> a = np.array(['a', 'b', 'c', 'd', 'e', 'f']).reshape((2, 3)) + >>> np.strings.multiply(a, 3) + array([['aaa', 'bbb', 'ccc'], + ['ddd', 'eee', 'fff']], dtype='>> np.strings.multiply(a, i) + array([['a', 'bb', 'ccc'], + ['d', 'ee', 'fff']], dtype='>> import numpy as np + >>> x = np.array(["Numpy is nice!"]) + >>> np.char.partition(x, " ") + array([['Numpy', ' ', 'is nice!']], dtype='>> import numpy as np + >>> a = np.array(['aAaAaA', ' aA ', 'abBABba']) + >>> np.char.rpartition(a, 'A') + array([['aAaAa', 'A', ''], + [' a', 'A', ' '], + ['abB', 'A', 'Bba']], dtype='= 2`` and ``order='F'``, in which case `strides` + is in "Fortran order". + + Methods + ------- + astype + argsort + copy + count + decode + dump + dumps + encode + endswith + expandtabs + fill + find + flatten + getfield + index + isalnum + isalpha + isdecimal + isdigit + islower + isnumeric + isspace + istitle + isupper + item + join + ljust + lower + lstrip + nonzero + put + ravel + repeat + replace + reshape + resize + rfind + rindex + rjust + rsplit + rstrip + searchsorted + setfield + setflags + sort + split + splitlines + squeeze + startswith + strip + swapaxes + swapcase + take + title + tofile + tolist + tostring + translate + transpose + upper + view + zfill + + Parameters + ---------- + shape : tuple + Shape of the array. + itemsize : int, optional + Length of each array element, in number of characters. Default is 1. + unicode : bool, optional + Are the array elements of type unicode (True) or string (False). + Default is False. + buffer : object exposing the buffer interface or str, optional + Memory address of the start of the array data. Default is None, + in which case a new array is created. + offset : int, optional + Fixed stride displacement from the beginning of an axis? + Default is 0. Needs to be >=0. + strides : array_like of ints, optional + Strides for the array (see `~numpy.ndarray.strides` for + full description). Default is None. + order : {'C', 'F'}, optional + The order in which the array data is stored in memory: 'C' -> + "row major" order (the default), 'F' -> "column major" + (Fortran) order. + + Examples + -------- + >>> import numpy as np + >>> charar = np.char.chararray((3, 3)) + >>> charar[:] = 'a' + >>> charar + chararray([[b'a', b'a', b'a'], + [b'a', b'a', b'a'], + [b'a', b'a', b'a']], dtype='|S1') + + >>> charar = np.char.chararray(charar.shape, itemsize=5) + >>> charar[:] = 'abc' + >>> charar + chararray([[b'abc', b'abc', b'abc'], + [b'abc', b'abc', b'abc'], + [b'abc', b'abc', b'abc']], dtype='|S5') + + """ + def __new__(subtype, shape, itemsize=1, unicode=False, buffer=None, + offset=0, strides=None, order='C'): + if unicode: + dtype = str_ + else: + dtype = bytes_ + + # force itemsize to be a Python int, since using NumPy integer + # types results in itemsize.itemsize being used as the size of + # strings in the new array. + itemsize = int(itemsize) + + if isinstance(buffer, str): + # unicode objects do not have the buffer interface + filler = buffer + buffer = None + else: + filler = None + + if buffer is None: + self = ndarray.__new__(subtype, shape, (dtype, itemsize), + order=order) + else: + self = ndarray.__new__(subtype, shape, (dtype, itemsize), + buffer=buffer, + offset=offset, strides=strides, + order=order) + if filler is not None: + self[...] = filler + + return self + + def __array_wrap__(self, arr, context=None, return_scalar=False): + # When calling a ufunc (and some other functions), we return a + # chararray if the ufunc output is a string-like array, + # or an ndarray otherwise + if arr.dtype.char in "SUbc": + return arr.view(type(self)) + return arr + + def __array_finalize__(self, obj): + # The b is a special case because it is used for reconstructing. + if self.dtype.char not in 'VSUbc': + raise ValueError("Can only create a chararray from string data.") + + def __getitem__(self, obj): + val = ndarray.__getitem__(self, obj) + if isinstance(val, character): + return val.rstrip() + return val + + # IMPLEMENTATION NOTE: Most of the methods of this class are + # direct delegations to the free functions in this module. + # However, those that return an array of strings should instead + # return a chararray, so some extra wrapping is required. + + def __eq__(self, other): + """ + Return (self == other) element-wise. + + See Also + -------- + equal + """ + return equal(self, other) + + def __ne__(self, other): + """ + Return (self != other) element-wise. + + See Also + -------- + not_equal + """ + return not_equal(self, other) + + def __ge__(self, other): + """ + Return (self >= other) element-wise. + + See Also + -------- + greater_equal + """ + return greater_equal(self, other) + + def __le__(self, other): + """ + Return (self <= other) element-wise. + + See Also + -------- + less_equal + """ + return less_equal(self, other) + + def __gt__(self, other): + """ + Return (self > other) element-wise. + + See Also + -------- + greater + """ + return greater(self, other) + + def __lt__(self, other): + """ + Return (self < other) element-wise. + + See Also + -------- + less + """ + return less(self, other) + + def __add__(self, other): + """ + Return (self + other), that is string concatenation, + element-wise for a pair of array_likes of str or unicode. + + See Also + -------- + add + """ + return add(self, other) + + def __radd__(self, other): + """ + Return (other + self), that is string concatenation, + element-wise for a pair of array_likes of `bytes_` or `str_`. + + See Also + -------- + add + """ + return add(other, self) + + def __mul__(self, i): + """ + Return (self * i), that is string multiple concatenation, + element-wise. + + See Also + -------- + multiply + """ + return asarray(multiply(self, i)) + + def __rmul__(self, i): + """ + Return (self * i), that is string multiple concatenation, + element-wise. + + See Also + -------- + multiply + """ + return asarray(multiply(self, i)) + + def __mod__(self, i): + """ + Return (self % i), that is pre-Python 2.6 string formatting + (interpolation), element-wise for a pair of array_likes of `bytes_` + or `str_`. + + See Also + -------- + mod + """ + return asarray(mod(self, i)) + + def __rmod__(self, other): + return NotImplemented + + def argsort(self, axis=-1, kind=None, order=None): + """ + Return the indices that sort the array lexicographically. + + For full documentation see `numpy.argsort`, for which this method is + in fact merely a "thin wrapper." + + Examples + -------- + >>> c = np.array(['a1b c', '1b ca', 'b ca1', 'Ca1b'], 'S5') + >>> c = c.view(np.char.chararray); c + chararray(['a1b c', '1b ca', 'b ca1', 'Ca1b'], + dtype='|S5') + >>> c[c.argsort()] + chararray(['1b ca', 'Ca1b', 'a1b c', 'b ca1'], + dtype='|S5') + + """ + return self.__array__().argsort(axis, kind, order) + argsort.__doc__ = ndarray.argsort.__doc__ + + def capitalize(self): + """ + Return a copy of `self` with only the first character of each element + capitalized. + + See Also + -------- + char.capitalize + + """ + return asarray(capitalize(self)) + + def center(self, width, fillchar=' '): + """ + Return a copy of `self` with its elements centered in a + string of length `width`. + + See Also + -------- + center + """ + return asarray(center(self, width, fillchar)) + + def count(self, sub, start=0, end=None): + """ + Returns an array with the number of non-overlapping occurrences of + substring `sub` in the range [`start`, `end`]. + + See Also + -------- + char.count + + """ + return count(self, sub, start, end) + + def decode(self, encoding=None, errors=None): + """ + Calls ``bytes.decode`` element-wise. + + See Also + -------- + char.decode + + """ + return decode(self, encoding, errors) + + def encode(self, encoding=None, errors=None): + """ + Calls :meth:`str.encode` element-wise. + + See Also + -------- + char.encode + + """ + return encode(self, encoding, errors) + + def endswith(self, suffix, start=0, end=None): + """ + Returns a boolean array which is `True` where the string element + in `self` ends with `suffix`, otherwise `False`. + + See Also + -------- + char.endswith + + """ + return endswith(self, suffix, start, end) + + def expandtabs(self, tabsize=8): + """ + Return a copy of each string element where all tab characters are + replaced by one or more spaces. + + See Also + -------- + char.expandtabs + + """ + return asarray(expandtabs(self, tabsize)) + + def find(self, sub, start=0, end=None): + """ + For each element, return the lowest index in the string where + substring `sub` is found. + + See Also + -------- + char.find + + """ + return find(self, sub, start, end) + + def index(self, sub, start=0, end=None): + """ + Like `find`, but raises :exc:`ValueError` when the substring is not + found. + + See Also + -------- + char.index + + """ + return index(self, sub, start, end) + + def isalnum(self): + """ + Returns true for each element if all characters in the string + are alphanumeric and there is at least one character, false + otherwise. + + See Also + -------- + char.isalnum + + """ + return isalnum(self) + + def isalpha(self): + """ + Returns true for each element if all characters in the string + are alphabetic and there is at least one character, false + otherwise. + + See Also + -------- + char.isalpha + + """ + return isalpha(self) + + def isdigit(self): + """ + Returns true for each element if all characters in the string are + digits and there is at least one character, false otherwise. + + See Also + -------- + char.isdigit + + """ + return isdigit(self) + + def islower(self): + """ + Returns true for each element if all cased characters in the + string are lowercase and there is at least one cased character, + false otherwise. + + See Also + -------- + char.islower + + """ + return islower(self) + + def isspace(self): + """ + Returns true for each element if there are only whitespace + characters in the string and there is at least one character, + false otherwise. + + See Also + -------- + char.isspace + + """ + return isspace(self) + + def istitle(self): + """ + Returns true for each element if the element is a titlecased + string and there is at least one character, false otherwise. + + See Also + -------- + char.istitle + + """ + return istitle(self) + + def isupper(self): + """ + Returns true for each element if all cased characters in the + string are uppercase and there is at least one character, false + otherwise. + + See Also + -------- + char.isupper + + """ + return isupper(self) + + def join(self, seq): + """ + Return a string which is the concatenation of the strings in the + sequence `seq`. + + See Also + -------- + char.join + + """ + return join(self, seq) + + def ljust(self, width, fillchar=' '): + """ + Return an array with the elements of `self` left-justified in a + string of length `width`. + + See Also + -------- + char.ljust + + """ + return asarray(ljust(self, width, fillchar)) + + def lower(self): + """ + Return an array with the elements of `self` converted to + lowercase. + + See Also + -------- + char.lower + + """ + return asarray(lower(self)) + + def lstrip(self, chars=None): + """ + For each element in `self`, return a copy with the leading characters + removed. + + See Also + -------- + char.lstrip + + """ + return lstrip(self, chars) + + def partition(self, sep): + """ + Partition each element in `self` around `sep`. + + See Also + -------- + partition + """ + return asarray(partition(self, sep)) + + def replace(self, old, new, count=None): + """ + For each element in `self`, return a copy of the string with all + occurrences of substring `old` replaced by `new`. + + See Also + -------- + char.replace + + """ + return replace(self, old, new, count if count is not None else -1) + + def rfind(self, sub, start=0, end=None): + """ + For each element in `self`, return the highest index in the string + where substring `sub` is found, such that `sub` is contained + within [`start`, `end`]. + + See Also + -------- + char.rfind + + """ + return rfind(self, sub, start, end) + + def rindex(self, sub, start=0, end=None): + """ + Like `rfind`, but raises :exc:`ValueError` when the substring `sub` is + not found. + + See Also + -------- + char.rindex + + """ + return rindex(self, sub, start, end) + + def rjust(self, width, fillchar=' '): + """ + Return an array with the elements of `self` + right-justified in a string of length `width`. + + See Also + -------- + char.rjust + + """ + return asarray(rjust(self, width, fillchar)) + + def rpartition(self, sep): + """ + Partition each element in `self` around `sep`. + + See Also + -------- + rpartition + """ + return asarray(rpartition(self, sep)) + + def rsplit(self, sep=None, maxsplit=None): + """ + For each element in `self`, return a list of the words in + the string, using `sep` as the delimiter string. + + See Also + -------- + char.rsplit + + """ + return rsplit(self, sep, maxsplit) + + def rstrip(self, chars=None): + """ + For each element in `self`, return a copy with the trailing + characters removed. + + See Also + -------- + char.rstrip + + """ + return rstrip(self, chars) + + def split(self, sep=None, maxsplit=None): + """ + For each element in `self`, return a list of the words in the + string, using `sep` as the delimiter string. + + See Also + -------- + char.split + + """ + return split(self, sep, maxsplit) + + def splitlines(self, keepends=None): + """ + For each element in `self`, return a list of the lines in the + element, breaking at line boundaries. + + See Also + -------- + char.splitlines + + """ + return splitlines(self, keepends) + + def startswith(self, prefix, start=0, end=None): + """ + Returns a boolean array which is `True` where the string element + in `self` starts with `prefix`, otherwise `False`. + + See Also + -------- + char.startswith + + """ + return startswith(self, prefix, start, end) + + def strip(self, chars=None): + """ + For each element in `self`, return a copy with the leading and + trailing characters removed. + + See Also + -------- + char.strip + + """ + return strip(self, chars) + + def swapcase(self): + """ + For each element in `self`, return a copy of the string with + uppercase characters converted to lowercase and vice versa. + + See Also + -------- + char.swapcase + + """ + return asarray(swapcase(self)) + + def title(self): + """ + For each element in `self`, return a titlecased version of the + string: words start with uppercase characters, all remaining cased + characters are lowercase. + + See Also + -------- + char.title + + """ + return asarray(title(self)) + + def translate(self, table, deletechars=None): + """ + For each element in `self`, return a copy of the string where + all characters occurring in the optional argument + `deletechars` are removed, and the remaining characters have + been mapped through the given translation table. + + See Also + -------- + char.translate + + """ + return asarray(translate(self, table, deletechars)) + + def upper(self): + """ + Return an array with the elements of `self` converted to + uppercase. + + See Also + -------- + char.upper + + """ + return asarray(upper(self)) + + def zfill(self, width): + """ + Return the numeric string left-filled with zeros in a string of + length `width`. + + See Also + -------- + char.zfill + + """ + return asarray(zfill(self, width)) + + def isnumeric(self): + """ + For each element in `self`, return True if there are only + numeric characters in the element. + + See Also + -------- + char.isnumeric + + """ + return isnumeric(self) + + def isdecimal(self): + """ + For each element in `self`, return True if there are only + decimal characters in the element. + + See Also + -------- + char.isdecimal + + """ + return isdecimal(self) + + +@set_module("numpy.char") +def array(obj, itemsize=None, copy=True, unicode=None, order=None): + """ + Create a `~numpy.char.chararray`. + + .. note:: + This class is provided for numarray backward-compatibility. + New code (not concerned with numarray compatibility) should use + arrays of type `bytes_` or `str_` and use the free functions + in :mod:`numpy.char` for fast vectorized string operations instead. + + Versus a NumPy array of dtype `bytes_` or `str_`, this + class adds the following functionality: + + 1) values automatically have whitespace removed from the end + when indexed + + 2) comparison operators automatically remove whitespace from the + end when comparing values + + 3) vectorized string operations are provided as methods + (e.g. `chararray.endswith `) + and infix operators (e.g. ``+, *, %``) + + Parameters + ---------- + obj : array of str or unicode-like + + itemsize : int, optional + `itemsize` is the number of characters per scalar in the + resulting array. If `itemsize` is None, and `obj` is an + object array or a Python list, the `itemsize` will be + automatically determined. If `itemsize` is provided and `obj` + is of type str or unicode, then the `obj` string will be + chunked into `itemsize` pieces. + + copy : bool, optional + If true (default), then the object is copied. Otherwise, a copy + will only be made if ``__array__`` returns a copy, if obj is a + nested sequence, or if a copy is needed to satisfy any of the other + requirements (`itemsize`, unicode, `order`, etc.). + + unicode : bool, optional + When true, the resulting `~numpy.char.chararray` can contain Unicode + characters, when false only 8-bit characters. If unicode is + None and `obj` is one of the following: + + - a `~numpy.char.chararray`, + - an ndarray of type :class:`str_` or :class:`bytes_` + - a Python :class:`str` or :class:`bytes` object, + + then the unicode setting of the output array will be + automatically determined. + + order : {'C', 'F', 'A'}, optional + Specify the order of the array. If order is 'C' (default), then the + array will be in C-contiguous order (last-index varies the + fastest). If order is 'F', then the returned array + will be in Fortran-contiguous order (first-index varies the + fastest). If order is 'A', then the returned array may + be in any order (either C-, Fortran-contiguous, or even + discontiguous). + + Examples + -------- + + >>> import numpy as np + >>> char_array = np.char.array(['hello', 'world', 'numpy','array']) + >>> char_array + chararray(['hello', 'world', 'numpy', 'array'], dtype='`) + and infix operators (e.g. ``+``, ``*``, ``%``) + + Parameters + ---------- + obj : array of str or unicode-like + + itemsize : int, optional + `itemsize` is the number of characters per scalar in the + resulting array. If `itemsize` is None, and `obj` is an + object array or a Python list, the `itemsize` will be + automatically determined. If `itemsize` is provided and `obj` + is of type str or unicode, then the `obj` string will be + chunked into `itemsize` pieces. + + unicode : bool, optional + When true, the resulting `~numpy.char.chararray` can contain Unicode + characters, when false only 8-bit characters. If unicode is + None and `obj` is one of the following: + + - a `~numpy.char.chararray`, + - an ndarray of type `str_` or `unicode_` + - a Python str or unicode object, + + then the unicode setting of the output array will be + automatically determined. + + order : {'C', 'F'}, optional + Specify the order of the array. If order is 'C' (default), then the + array will be in C-contiguous order (last-index varies the + fastest). If order is 'F', then the returned array + will be in Fortran-contiguous order (first-index varies the + fastest). + + Examples + -------- + >>> import numpy as np + >>> np.char.asarray(['hello', 'world']) + chararray(['hello', 'world'], dtype=' _CharArray[bytes_]: ... + @overload + def __new__( + subtype, + shape: _ShapeLike, + itemsize: SupportsIndex | SupportsInt = ..., + unicode: L[True] = ..., + buffer: _SupportsBuffer = ..., + offset: SupportsIndex = ..., + strides: _ShapeLike = ..., + order: _OrderKACF = ..., + ) -> _CharArray[str_]: ... + + def __array_finalize__(self, obj: object) -> None: ... + def __mul__(self, other: i_co) -> chararray[_AnyShape, _CharDTypeT_co]: ... + def __rmul__(self, other: i_co) -> chararray[_AnyShape, _CharDTypeT_co]: ... + def __mod__(self, i: Any) -> chararray[_AnyShape, _CharDTypeT_co]: ... + + @overload + def __eq__( + self: _CharArray[str_], + other: U_co, + ) -> NDArray[np.bool]: ... + @overload + def __eq__( + self: _CharArray[bytes_], + other: S_co, + ) -> NDArray[np.bool]: ... + + @overload + def __ne__( + self: _CharArray[str_], + other: U_co, + ) -> NDArray[np.bool]: ... + @overload + def __ne__( + self: _CharArray[bytes_], + other: S_co, + ) -> NDArray[np.bool]: ... + + @overload + def __ge__( + self: _CharArray[str_], + other: U_co, + ) -> NDArray[np.bool]: ... + @overload + def __ge__( + self: _CharArray[bytes_], + other: S_co, + ) -> NDArray[np.bool]: ... + + @overload + def __le__( + self: _CharArray[str_], + other: U_co, + ) -> NDArray[np.bool]: ... + @overload + def __le__( + self: _CharArray[bytes_], + other: S_co, + ) -> NDArray[np.bool]: ... + + @overload + def __gt__( + self: _CharArray[str_], + other: U_co, + ) -> NDArray[np.bool]: ... + @overload + def __gt__( + self: _CharArray[bytes_], + other: S_co, + ) -> NDArray[np.bool]: ... + + @overload + def __lt__( + self: _CharArray[str_], + other: U_co, + ) -> NDArray[np.bool]: ... + @overload + def __lt__( + self: _CharArray[bytes_], + other: S_co, + ) -> NDArray[np.bool]: ... + + @overload + def __add__( + self: _CharArray[str_], + other: U_co, + ) -> _CharArray[str_]: ... + @overload + def __add__( + self: _CharArray[bytes_], + other: S_co, + ) -> _CharArray[bytes_]: ... + + @overload + def __radd__( + self: _CharArray[str_], + other: U_co, + ) -> _CharArray[str_]: ... + @overload + def __radd__( + self: _CharArray[bytes_], + other: S_co, + ) -> _CharArray[bytes_]: ... + + @overload + def center( + self: _CharArray[str_], + width: i_co, + fillchar: U_co = ..., + ) -> _CharArray[str_]: ... + @overload + def center( + self: _CharArray[bytes_], + width: i_co, + fillchar: S_co = ..., + ) -> _CharArray[bytes_]: ... + + @overload + def count( + self: _CharArray[str_], + sub: U_co, + start: i_co = ..., + end: i_co | None = ..., + ) -> NDArray[int_]: ... + @overload + def count( + self: _CharArray[bytes_], + sub: S_co, + start: i_co = ..., + end: i_co | None = ..., + ) -> NDArray[int_]: ... + + def decode( + self: _CharArray[bytes_], + encoding: str | None = ..., + errors: str | None = ..., + ) -> _CharArray[str_]: ... + + def encode( + self: _CharArray[str_], + encoding: str | None = ..., + errors: str | None = ..., + ) -> _CharArray[bytes_]: ... + + @overload + def endswith( + self: _CharArray[str_], + suffix: U_co, + start: i_co = ..., + end: i_co | None = ..., + ) -> NDArray[np.bool]: ... + @overload + def endswith( + self: _CharArray[bytes_], + suffix: S_co, + start: i_co = ..., + end: i_co | None = ..., + ) -> NDArray[np.bool]: ... + + def expandtabs( + self, + tabsize: i_co = ..., + ) -> Self: ... + + @overload + def find( + self: _CharArray[str_], + sub: U_co, + start: i_co = ..., + end: i_co | None = ..., + ) -> NDArray[int_]: ... + @overload + def find( + self: _CharArray[bytes_], + sub: S_co, + start: i_co = ..., + end: i_co | None = ..., + ) -> NDArray[int_]: ... + + @overload + def index( + self: _CharArray[str_], + sub: U_co, + start: i_co = ..., + end: i_co | None = ..., + ) -> NDArray[int_]: ... + @overload + def index( + self: _CharArray[bytes_], + sub: S_co, + start: i_co = ..., + end: i_co | None = ..., + ) -> NDArray[int_]: ... + + @overload + def join( + self: _CharArray[str_], + seq: U_co, + ) -> _CharArray[str_]: ... + @overload + def join( + self: _CharArray[bytes_], + seq: S_co, + ) -> _CharArray[bytes_]: ... + + @overload + def ljust( + self: _CharArray[str_], + width: i_co, + fillchar: U_co = ..., + ) -> _CharArray[str_]: ... + @overload + def ljust( + self: _CharArray[bytes_], + width: i_co, + fillchar: S_co = ..., + ) -> _CharArray[bytes_]: ... + + @overload + def lstrip( + self: _CharArray[str_], + chars: U_co | None = ..., + ) -> _CharArray[str_]: ... + @overload + def lstrip( + self: _CharArray[bytes_], + chars: S_co | None = ..., + ) -> _CharArray[bytes_]: ... + + @overload + def partition( + self: _CharArray[str_], + sep: U_co, + ) -> _CharArray[str_]: ... + @overload + def partition( + self: _CharArray[bytes_], + sep: S_co, + ) -> _CharArray[bytes_]: ... + + @overload + def replace( + self: _CharArray[str_], + old: U_co, + new: U_co, + count: i_co | None = ..., + ) -> _CharArray[str_]: ... + @overload + def replace( + self: _CharArray[bytes_], + old: S_co, + new: S_co, + count: i_co | None = ..., + ) -> _CharArray[bytes_]: ... + + @overload + def rfind( + self: _CharArray[str_], + sub: U_co, + start: i_co = ..., + end: i_co | None = ..., + ) -> NDArray[int_]: ... + @overload + def rfind( + self: _CharArray[bytes_], + sub: S_co, + start: i_co = ..., + end: i_co | None = ..., + ) -> NDArray[int_]: ... + + @overload + def rindex( + self: _CharArray[str_], + sub: U_co, + start: i_co = ..., + end: i_co | None = ..., + ) -> NDArray[int_]: ... + @overload + def rindex( + self: _CharArray[bytes_], + sub: S_co, + start: i_co = ..., + end: i_co | None = ..., + ) -> NDArray[int_]: ... + + @overload + def rjust( + self: _CharArray[str_], + width: i_co, + fillchar: U_co = ..., + ) -> _CharArray[str_]: ... + @overload + def rjust( + self: _CharArray[bytes_], + width: i_co, + fillchar: S_co = ..., + ) -> _CharArray[bytes_]: ... + + @overload + def rpartition( + self: _CharArray[str_], + sep: U_co, + ) -> _CharArray[str_]: ... + @overload + def rpartition( + self: _CharArray[bytes_], + sep: S_co, + ) -> _CharArray[bytes_]: ... + + @overload + def rsplit( + self: _CharArray[str_], + sep: U_co | None = ..., + maxsplit: i_co | None = ..., + ) -> NDArray[object_]: ... + @overload + def rsplit( + self: _CharArray[bytes_], + sep: S_co | None = ..., + maxsplit: i_co | None = ..., + ) -> NDArray[object_]: ... + + @overload + def rstrip( + self: _CharArray[str_], + chars: U_co | None = ..., + ) -> _CharArray[str_]: ... + @overload + def rstrip( + self: _CharArray[bytes_], + chars: S_co | None = ..., + ) -> _CharArray[bytes_]: ... + + @overload + def split( + self: _CharArray[str_], + sep: U_co | None = ..., + maxsplit: i_co | None = ..., + ) -> NDArray[object_]: ... + @overload + def split( + self: _CharArray[bytes_], + sep: S_co | None = ..., + maxsplit: i_co | None = ..., + ) -> NDArray[object_]: ... + + def splitlines(self, keepends: b_co | None = ...) -> NDArray[object_]: ... + + @overload + def startswith( + self: _CharArray[str_], + prefix: U_co, + start: i_co = ..., + end: i_co | None = ..., + ) -> NDArray[np.bool]: ... + @overload + def startswith( + self: _CharArray[bytes_], + prefix: S_co, + start: i_co = ..., + end: i_co | None = ..., + ) -> NDArray[np.bool]: ... + + @overload + def strip( + self: _CharArray[str_], + chars: U_co | None = ..., + ) -> _CharArray[str_]: ... + @overload + def strip( + self: _CharArray[bytes_], + chars: S_co | None = ..., + ) -> _CharArray[bytes_]: ... + + @overload + def translate( + self: _CharArray[str_], + table: U_co, + deletechars: U_co | None = ..., + ) -> _CharArray[str_]: ... + @overload + def translate( + self: _CharArray[bytes_], + table: S_co, + deletechars: S_co | None = ..., + ) -> _CharArray[bytes_]: ... + + def zfill(self, width: i_co) -> Self: ... + def capitalize(self) -> Self: ... + def title(self) -> Self: ... + def swapcase(self) -> Self: ... + def lower(self) -> Self: ... + def upper(self) -> Self: ... + def isalnum(self) -> ndarray[_ShapeT_co, dtype[np.bool]]: ... + def isalpha(self) -> ndarray[_ShapeT_co, dtype[np.bool]]: ... + def isdigit(self) -> ndarray[_ShapeT_co, dtype[np.bool]]: ... + def islower(self) -> ndarray[_ShapeT_co, dtype[np.bool]]: ... + def isspace(self) -> ndarray[_ShapeT_co, dtype[np.bool]]: ... + def istitle(self) -> ndarray[_ShapeT_co, dtype[np.bool]]: ... + def isupper(self) -> ndarray[_ShapeT_co, dtype[np.bool]]: ... + def isnumeric(self) -> ndarray[_ShapeT_co, dtype[np.bool]]: ... + def isdecimal(self) -> ndarray[_ShapeT_co, dtype[np.bool]]: ... + +# Comparison +@overload +def equal(x1: U_co, x2: U_co) -> NDArray[np.bool]: ... +@overload +def equal(x1: S_co, x2: S_co) -> NDArray[np.bool]: ... +@overload +def equal(x1: T_co, x2: T_co) -> NDArray[np.bool]: ... + +@overload +def not_equal(x1: U_co, x2: U_co) -> NDArray[np.bool]: ... +@overload +def not_equal(x1: S_co, x2: S_co) -> NDArray[np.bool]: ... +@overload +def not_equal(x1: T_co, x2: T_co) -> NDArray[np.bool]: ... + +@overload +def greater_equal(x1: U_co, x2: U_co) -> NDArray[np.bool]: ... +@overload +def greater_equal(x1: S_co, x2: S_co) -> NDArray[np.bool]: ... +@overload +def greater_equal(x1: T_co, x2: T_co) -> NDArray[np.bool]: ... + +@overload +def less_equal(x1: U_co, x2: U_co) -> NDArray[np.bool]: ... +@overload +def less_equal(x1: S_co, x2: S_co) -> NDArray[np.bool]: ... +@overload +def less_equal(x1: T_co, x2: T_co) -> NDArray[np.bool]: ... + +@overload +def greater(x1: U_co, x2: U_co) -> NDArray[np.bool]: ... +@overload +def greater(x1: S_co, x2: S_co) -> NDArray[np.bool]: ... +@overload +def greater(x1: T_co, x2: T_co) -> NDArray[np.bool]: ... + +@overload +def less(x1: U_co, x2: U_co) -> NDArray[np.bool]: ... +@overload +def less(x1: S_co, x2: S_co) -> NDArray[np.bool]: ... +@overload +def less(x1: T_co, x2: T_co) -> NDArray[np.bool]: ... + +@overload +def add(x1: U_co, x2: U_co) -> NDArray[np.str_]: ... +@overload +def add(x1: S_co, x2: S_co) -> NDArray[np.bytes_]: ... +@overload +def add(x1: _StringDTypeSupportsArray, x2: _StringDTypeSupportsArray) -> _StringDTypeArray: ... +@overload +def add(x1: T_co, x2: T_co) -> _StringDTypeOrUnicodeArray: ... + +@overload +def multiply(a: U_co, i: i_co) -> NDArray[np.str_]: ... +@overload +def multiply(a: S_co, i: i_co) -> NDArray[np.bytes_]: ... +@overload +def multiply(a: _StringDTypeSupportsArray, i: i_co) -> _StringDTypeArray: ... +@overload +def multiply(a: T_co, i: i_co) -> _StringDTypeOrUnicodeArray: ... + +@overload +def mod(a: U_co, value: Any) -> NDArray[np.str_]: ... +@overload +def mod(a: S_co, value: Any) -> NDArray[np.bytes_]: ... +@overload +def mod(a: _StringDTypeSupportsArray, value: Any) -> _StringDTypeArray: ... +@overload +def mod(a: T_co, value: Any) -> _StringDTypeOrUnicodeArray: ... + +@overload +def capitalize(a: U_co) -> NDArray[str_]: ... +@overload +def capitalize(a: S_co) -> NDArray[bytes_]: ... +@overload +def capitalize(a: _StringDTypeSupportsArray) -> _StringDTypeArray: ... +@overload +def capitalize(a: T_co) -> _StringDTypeOrUnicodeArray: ... + +@overload +def center(a: U_co, width: i_co, fillchar: U_co = ...) -> NDArray[str_]: ... +@overload +def center(a: S_co, width: i_co, fillchar: S_co = ...) -> NDArray[bytes_]: ... +@overload +def center(a: _StringDTypeSupportsArray, width: i_co, fillchar: _StringDTypeSupportsArray = ...) -> _StringDTypeArray: ... +@overload +def center(a: T_co, width: i_co, fillchar: T_co = ...) -> _StringDTypeOrUnicodeArray: ... + +def decode( + a: S_co, + encoding: str | None = ..., + errors: str | None = ..., +) -> NDArray[str_]: ... +def encode( + a: U_co | T_co, + encoding: str | None = ..., + errors: str | None = ..., +) -> NDArray[bytes_]: ... + +@overload +def expandtabs(a: U_co, tabsize: i_co = ...) -> NDArray[str_]: ... +@overload +def expandtabs(a: S_co, tabsize: i_co = ...) -> NDArray[bytes_]: ... +@overload +def expandtabs(a: _StringDTypeSupportsArray, tabsize: i_co = ...) -> _StringDTypeArray: ... +@overload +def expandtabs(a: T_co, tabsize: i_co = ...) -> _StringDTypeOrUnicodeArray: ... + +@overload +def join(sep: U_co, seq: U_co) -> NDArray[str_]: ... +@overload +def join(sep: S_co, seq: S_co) -> NDArray[bytes_]: ... +@overload +def join(sep: _StringDTypeSupportsArray, seq: _StringDTypeSupportsArray) -> _StringDTypeArray: ... +@overload +def join(sep: T_co, seq: T_co) -> _StringDTypeOrUnicodeArray: ... + +@overload +def ljust(a: U_co, width: i_co, fillchar: U_co = ...) -> NDArray[str_]: ... +@overload +def ljust(a: S_co, width: i_co, fillchar: S_co = ...) -> NDArray[bytes_]: ... +@overload +def ljust(a: _StringDTypeSupportsArray, width: i_co, fillchar: _StringDTypeSupportsArray = ...) -> _StringDTypeArray: ... +@overload +def ljust(a: T_co, width: i_co, fillchar: T_co = ...) -> _StringDTypeOrUnicodeArray: ... + +@overload +def lower(a: U_co) -> NDArray[str_]: ... +@overload +def lower(a: S_co) -> NDArray[bytes_]: ... +@overload +def lower(a: _StringDTypeSupportsArray) -> _StringDTypeArray: ... +@overload +def lower(a: T_co) -> _StringDTypeOrUnicodeArray: ... + +@overload +def lstrip(a: U_co, chars: U_co | None = ...) -> NDArray[str_]: ... +@overload +def lstrip(a: S_co, chars: S_co | None = ...) -> NDArray[bytes_]: ... +@overload +def lstrip(a: _StringDTypeSupportsArray, chars: _StringDTypeSupportsArray | None = ...) -> _StringDTypeArray: ... +@overload +def lstrip(a: T_co, chars: T_co | None = ...) -> _StringDTypeOrUnicodeArray: ... + +@overload +def partition(a: U_co, sep: U_co) -> NDArray[str_]: ... +@overload +def partition(a: S_co, sep: S_co) -> NDArray[bytes_]: ... +@overload +def partition(a: _StringDTypeSupportsArray, sep: _StringDTypeSupportsArray) -> _StringDTypeArray: ... +@overload +def partition(a: T_co, sep: T_co) -> _StringDTypeOrUnicodeArray: ... + +@overload +def replace( + a: U_co, + old: U_co, + new: U_co, + count: i_co | None = ..., +) -> NDArray[str_]: ... +@overload +def replace( + a: S_co, + old: S_co, + new: S_co, + count: i_co | None = ..., +) -> NDArray[bytes_]: ... +@overload +def replace( + a: _StringDTypeSupportsArray, + old: _StringDTypeSupportsArray, + new: _StringDTypeSupportsArray, + count: i_co = ..., +) -> _StringDTypeArray: ... +@overload +def replace( + a: T_co, + old: T_co, + new: T_co, + count: i_co = ..., +) -> _StringDTypeOrUnicodeArray: ... + +@overload +def rjust( + a: U_co, + width: i_co, + fillchar: U_co = ..., +) -> NDArray[str_]: ... +@overload +def rjust( + a: S_co, + width: i_co, + fillchar: S_co = ..., +) -> NDArray[bytes_]: ... +@overload +def rjust( + a: _StringDTypeSupportsArray, + width: i_co, + fillchar: _StringDTypeSupportsArray = ..., +) -> _StringDTypeArray: ... +@overload +def rjust( + a: T_co, + width: i_co, + fillchar: T_co = ..., +) -> _StringDTypeOrUnicodeArray: ... + +@overload +def rpartition(a: U_co, sep: U_co) -> NDArray[str_]: ... +@overload +def rpartition(a: S_co, sep: S_co) -> NDArray[bytes_]: ... +@overload +def rpartition(a: _StringDTypeSupportsArray, sep: _StringDTypeSupportsArray) -> _StringDTypeArray: ... +@overload +def rpartition(a: T_co, sep: T_co) -> _StringDTypeOrUnicodeArray: ... + +@overload +def rsplit( + a: U_co, + sep: U_co | None = ..., + maxsplit: i_co | None = ..., +) -> NDArray[object_]: ... +@overload +def rsplit( + a: S_co, + sep: S_co | None = ..., + maxsplit: i_co | None = ..., +) -> NDArray[object_]: ... +@overload +def rsplit( + a: _StringDTypeSupportsArray, + sep: _StringDTypeSupportsArray | None = ..., + maxsplit: i_co | None = ..., +) -> NDArray[object_]: ... +@overload +def rsplit( + a: T_co, + sep: T_co | None = ..., + maxsplit: i_co | None = ..., +) -> NDArray[object_]: ... + +@overload +def rstrip(a: U_co, chars: U_co | None = ...) -> NDArray[str_]: ... +@overload +def rstrip(a: S_co, chars: S_co | None = ...) -> NDArray[bytes_]: ... +@overload +def rstrip(a: _StringDTypeSupportsArray, chars: _StringDTypeSupportsArray | None = ...) -> _StringDTypeArray: ... +@overload +def rstrip(a: T_co, chars: T_co | None = ...) -> _StringDTypeOrUnicodeArray: ... + +@overload +def split( + a: U_co, + sep: U_co | None = ..., + maxsplit: i_co | None = ..., +) -> NDArray[object_]: ... +@overload +def split( + a: S_co, + sep: S_co | None = ..., + maxsplit: i_co | None = ..., +) -> NDArray[object_]: ... +@overload +def split( + a: _StringDTypeSupportsArray, + sep: _StringDTypeSupportsArray | None = ..., + maxsplit: i_co | None = ..., +) -> NDArray[object_]: ... +@overload +def split( + a: T_co, + sep: T_co | None = ..., + maxsplit: i_co | None = ..., +) -> NDArray[object_]: ... + +def splitlines(a: UST_co, keepends: b_co | None = ...) -> NDArray[np.object_]: ... + +@overload +def strip(a: U_co, chars: U_co | None = ...) -> NDArray[str_]: ... +@overload +def strip(a: S_co, chars: S_co | None = ...) -> NDArray[bytes_]: ... +@overload +def strip(a: _StringDTypeSupportsArray, chars: _StringDTypeSupportsArray | None = ...) -> _StringDTypeArray: ... +@overload +def strip(a: T_co, chars: T_co | None = ...) -> _StringDTypeOrUnicodeArray: ... + +@overload +def swapcase(a: U_co) -> NDArray[str_]: ... +@overload +def swapcase(a: S_co) -> NDArray[bytes_]: ... +@overload +def swapcase(a: _StringDTypeSupportsArray) -> _StringDTypeArray: ... +@overload +def swapcase(a: T_co) -> _StringDTypeOrUnicodeArray: ... + +@overload +def title(a: U_co) -> NDArray[str_]: ... +@overload +def title(a: S_co) -> NDArray[bytes_]: ... +@overload +def title(a: _StringDTypeSupportsArray) -> _StringDTypeArray: ... +@overload +def title(a: T_co) -> _StringDTypeOrUnicodeArray: ... + +@overload +def translate( + a: U_co, + table: str, + deletechars: str | None = ..., +) -> NDArray[str_]: ... +@overload +def translate( + a: S_co, + table: str, + deletechars: str | None = ..., +) -> NDArray[bytes_]: ... +@overload +def translate( + a: _StringDTypeSupportsArray, + table: str, + deletechars: str | None = ..., +) -> _StringDTypeArray: ... +@overload +def translate( + a: T_co, + table: str, + deletechars: str | None = ..., +) -> _StringDTypeOrUnicodeArray: ... + +@overload +def upper(a: U_co) -> NDArray[str_]: ... +@overload +def upper(a: S_co) -> NDArray[bytes_]: ... +@overload +def upper(a: _StringDTypeSupportsArray) -> _StringDTypeArray: ... +@overload +def upper(a: T_co) -> _StringDTypeOrUnicodeArray: ... + +@overload +def zfill(a: U_co, width: i_co) -> NDArray[str_]: ... +@overload +def zfill(a: S_co, width: i_co) -> NDArray[bytes_]: ... +@overload +def zfill(a: _StringDTypeSupportsArray, width: i_co) -> _StringDTypeArray: ... +@overload +def zfill(a: T_co, width: i_co) -> _StringDTypeOrUnicodeArray: ... + +# String information +@overload +def count( + a: U_co, + sub: U_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[int_]: ... +@overload +def count( + a: S_co, + sub: S_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[int_]: ... +@overload +def count( + a: T_co, + sub: T_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.int_]: ... + +@overload +def endswith( + a: U_co, + suffix: U_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.bool]: ... +@overload +def endswith( + a: S_co, + suffix: S_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.bool]: ... +@overload +def endswith( + a: T_co, + suffix: T_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.bool]: ... + +@overload +def find( + a: U_co, + sub: U_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[int_]: ... +@overload +def find( + a: S_co, + sub: S_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[int_]: ... +@overload +def find( + a: T_co, + sub: T_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.int_]: ... + +@overload +def index( + a: U_co, + sub: U_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[int_]: ... +@overload +def index( + a: S_co, + sub: S_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[int_]: ... +@overload +def index( + a: T_co, + sub: T_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.int_]: ... + +def isalpha(a: UST_co) -> NDArray[np.bool]: ... +def isalnum(a: UST_co) -> NDArray[np.bool]: ... +def isdecimal(a: U_co | T_co) -> NDArray[np.bool]: ... +def isdigit(a: UST_co) -> NDArray[np.bool]: ... +def islower(a: UST_co) -> NDArray[np.bool]: ... +def isnumeric(a: U_co | T_co) -> NDArray[np.bool]: ... +def isspace(a: UST_co) -> NDArray[np.bool]: ... +def istitle(a: UST_co) -> NDArray[np.bool]: ... +def isupper(a: UST_co) -> NDArray[np.bool]: ... + +@overload +def rfind( + a: U_co, + sub: U_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[int_]: ... +@overload +def rfind( + a: S_co, + sub: S_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[int_]: ... +@overload +def rfind( + a: T_co, + sub: T_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.int_]: ... + +@overload +def rindex( + a: U_co, + sub: U_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[int_]: ... +@overload +def rindex( + a: S_co, + sub: S_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[int_]: ... +@overload +def rindex( + a: T_co, + sub: T_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.int_]: ... + +@overload +def startswith( + a: U_co, + prefix: U_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.bool]: ... +@overload +def startswith( + a: S_co, + prefix: S_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.bool]: ... +@overload +def startswith( + a: T_co, + suffix: T_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.bool]: ... + +def str_len(A: UST_co) -> NDArray[int_]: ... + +# Overload 1 and 2: str- or bytes-based array-likes +# overload 3 and 4: arbitrary object with unicode=False (-> bytes_) +# overload 5 and 6: arbitrary object with unicode=True (-> str_) +# overload 7: arbitrary object with unicode=None (default) (-> str_ | bytes_) +@overload +def array( + obj: U_co, + itemsize: int | None = ..., + copy: bool = ..., + unicode: L[True] | None = ..., + order: _OrderKACF = ..., +) -> _CharArray[str_]: ... +@overload +def array( + obj: S_co, + itemsize: int | None = ..., + copy: bool = ..., + unicode: L[False] | None = ..., + order: _OrderKACF = ..., +) -> _CharArray[bytes_]: ... +@overload +def array( + obj: object, + itemsize: int | None, + copy: bool, + unicode: L[False], + order: _OrderKACF = ..., +) -> _CharArray[bytes_]: ... +@overload +def array( + obj: object, + itemsize: int | None = ..., + copy: bool = ..., + *, + unicode: L[False], + order: _OrderKACF = ..., +) -> _CharArray[bytes_]: ... +@overload +def array( + obj: object, + itemsize: int | None, + copy: bool, + unicode: L[True], + order: _OrderKACF = ..., +) -> _CharArray[str_]: ... +@overload +def array( + obj: object, + itemsize: int | None = ..., + copy: bool = ..., + *, + unicode: L[True], + order: _OrderKACF = ..., +) -> _CharArray[str_]: ... +@overload +def array( + obj: object, + itemsize: int | None = ..., + copy: bool = ..., + unicode: bool | None = ..., + order: _OrderKACF = ..., +) -> _CharArray[str_] | _CharArray[bytes_]: ... + +@overload +def asarray( + obj: U_co, + itemsize: int | None = ..., + unicode: L[True] | None = ..., + order: _OrderKACF = ..., +) -> _CharArray[str_]: ... +@overload +def asarray( + obj: S_co, + itemsize: int | None = ..., + unicode: L[False] | None = ..., + order: _OrderKACF = ..., +) -> _CharArray[bytes_]: ... +@overload +def asarray( + obj: object, + itemsize: int | None, + unicode: L[False], + order: _OrderKACF = ..., +) -> _CharArray[bytes_]: ... +@overload +def asarray( + obj: object, + itemsize: int | None = ..., + *, + unicode: L[False], + order: _OrderKACF = ..., +) -> _CharArray[bytes_]: ... +@overload +def asarray( + obj: object, + itemsize: int | None, + unicode: L[True], + order: _OrderKACF = ..., +) -> _CharArray[str_]: ... +@overload +def asarray( + obj: object, + itemsize: int | None = ..., + *, + unicode: L[True], + order: _OrderKACF = ..., +) -> _CharArray[str_]: ... +@overload +def asarray( + obj: object, + itemsize: int | None = ..., + unicode: bool | None = ..., + order: _OrderKACF = ..., +) -> _CharArray[str_] | _CharArray[bytes_]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/einsumfunc.py b/.venv/lib/python3.12/site-packages/numpy/_core/einsumfunc.py new file mode 100644 index 0000000..8e71e6d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/einsumfunc.py @@ -0,0 +1,1498 @@ +""" +Implementation of optimized einsum. + +""" +import itertools +import operator + +from numpy._core.multiarray import c_einsum +from numpy._core.numeric import asanyarray, tensordot +from numpy._core.overrides import array_function_dispatch + +__all__ = ['einsum', 'einsum_path'] + +# importing string for string.ascii_letters would be too slow +# the first import before caching has been measured to take 800 µs (#23777) +# imports begin with uppercase to mimic ASCII values to avoid sorting issues +einsum_symbols = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' +einsum_symbols_set = set(einsum_symbols) + + +def _flop_count(idx_contraction, inner, num_terms, size_dictionary): + """ + Computes the number of FLOPS in the contraction. + + Parameters + ---------- + idx_contraction : iterable + The indices involved in the contraction + inner : bool + Does this contraction require an inner product? + num_terms : int + The number of terms in a contraction + size_dictionary : dict + The size of each of the indices in idx_contraction + + Returns + ------- + flop_count : int + The total number of FLOPS required for the contraction. + + Examples + -------- + + >>> _flop_count('abc', False, 1, {'a': 2, 'b':3, 'c':5}) + 30 + + >>> _flop_count('abc', True, 2, {'a': 2, 'b':3, 'c':5}) + 60 + + """ + + overall_size = _compute_size_by_dict(idx_contraction, size_dictionary) + op_factor = max(1, num_terms - 1) + if inner: + op_factor += 1 + + return overall_size * op_factor + +def _compute_size_by_dict(indices, idx_dict): + """ + Computes the product of the elements in indices based on the dictionary + idx_dict. + + Parameters + ---------- + indices : iterable + Indices to base the product on. + idx_dict : dictionary + Dictionary of index sizes + + Returns + ------- + ret : int + The resulting product. + + Examples + -------- + >>> _compute_size_by_dict('abbc', {'a': 2, 'b':3, 'c':5}) + 90 + + """ + ret = 1 + for i in indices: + ret *= idx_dict[i] + return ret + + +def _find_contraction(positions, input_sets, output_set): + """ + Finds the contraction for a given set of input and output sets. + + Parameters + ---------- + positions : iterable + Integer positions of terms used in the contraction. + input_sets : list + List of sets that represent the lhs side of the einsum subscript + output_set : set + Set that represents the rhs side of the overall einsum subscript + + Returns + ------- + new_result : set + The indices of the resulting contraction + remaining : list + List of sets that have not been contracted, the new set is appended to + the end of this list + idx_removed : set + Indices removed from the entire contraction + idx_contraction : set + The indices used in the current contraction + + Examples + -------- + + # A simple dot product test case + >>> pos = (0, 1) + >>> isets = [set('ab'), set('bc')] + >>> oset = set('ac') + >>> _find_contraction(pos, isets, oset) + ({'a', 'c'}, [{'a', 'c'}], {'b'}, {'a', 'b', 'c'}) + + # A more complex case with additional terms in the contraction + >>> pos = (0, 2) + >>> isets = [set('abd'), set('ac'), set('bdc')] + >>> oset = set('ac') + >>> _find_contraction(pos, isets, oset) + ({'a', 'c'}, [{'a', 'c'}, {'a', 'c'}], {'b', 'd'}, {'a', 'b', 'c', 'd'}) + """ + + idx_contract = set() + idx_remain = output_set.copy() + remaining = [] + for ind, value in enumerate(input_sets): + if ind in positions: + idx_contract |= value + else: + remaining.append(value) + idx_remain |= value + + new_result = idx_remain & idx_contract + idx_removed = (idx_contract - new_result) + remaining.append(new_result) + + return (new_result, remaining, idx_removed, idx_contract) + + +def _optimal_path(input_sets, output_set, idx_dict, memory_limit): + """ + Computes all possible pair contractions, sieves the results based + on ``memory_limit`` and returns the lowest cost path. This algorithm + scales factorial with respect to the elements in the list ``input_sets``. + + Parameters + ---------- + input_sets : list + List of sets that represent the lhs side of the einsum subscript + output_set : set + Set that represents the rhs side of the overall einsum subscript + idx_dict : dictionary + Dictionary of index sizes + memory_limit : int + The maximum number of elements in a temporary array + + Returns + ------- + path : list + The optimal contraction order within the memory limit constraint. + + Examples + -------- + >>> isets = [set('abd'), set('ac'), set('bdc')] + >>> oset = set() + >>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4} + >>> _optimal_path(isets, oset, idx_sizes, 5000) + [(0, 2), (0, 1)] + """ + + full_results = [(0, [], input_sets)] + for iteration in range(len(input_sets) - 1): + iter_results = [] + + # Compute all unique pairs + for curr in full_results: + cost, positions, remaining = curr + for con in itertools.combinations( + range(len(input_sets) - iteration), 2 + ): + + # Find the contraction + cont = _find_contraction(con, remaining, output_set) + new_result, new_input_sets, idx_removed, idx_contract = cont + + # Sieve the results based on memory_limit + new_size = _compute_size_by_dict(new_result, idx_dict) + if new_size > memory_limit: + continue + + # Build (total_cost, positions, indices_remaining) + total_cost = cost + _flop_count( + idx_contract, idx_removed, len(con), idx_dict + ) + new_pos = positions + [con] + iter_results.append((total_cost, new_pos, new_input_sets)) + + # Update combinatorial list, if we did not find anything return best + # path + remaining contractions + if iter_results: + full_results = iter_results + else: + path = min(full_results, key=lambda x: x[0])[1] + path += [tuple(range(len(input_sets) - iteration))] + return path + + # If we have not found anything return single einsum contraction + if len(full_results) == 0: + return [tuple(range(len(input_sets)))] + + path = min(full_results, key=lambda x: x[0])[1] + return path + +def _parse_possible_contraction( + positions, input_sets, output_set, idx_dict, + memory_limit, path_cost, naive_cost + ): + """Compute the cost (removed size + flops) and resultant indices for + performing the contraction specified by ``positions``. + + Parameters + ---------- + positions : tuple of int + The locations of the proposed tensors to contract. + input_sets : list of sets + The indices found on each tensors. + output_set : set + The output indices of the expression. + idx_dict : dict + Mapping of each index to its size. + memory_limit : int + The total allowed size for an intermediary tensor. + path_cost : int + The contraction cost so far. + naive_cost : int + The cost of the unoptimized expression. + + Returns + ------- + cost : (int, int) + A tuple containing the size of any indices removed, and the flop cost. + positions : tuple of int + The locations of the proposed tensors to contract. + new_input_sets : list of sets + The resulting new list of indices if this proposed contraction + is performed. + + """ + + # Find the contraction + contract = _find_contraction(positions, input_sets, output_set) + idx_result, new_input_sets, idx_removed, idx_contract = contract + + # Sieve the results based on memory_limit + new_size = _compute_size_by_dict(idx_result, idx_dict) + if new_size > memory_limit: + return None + + # Build sort tuple + old_sizes = ( + _compute_size_by_dict(input_sets[p], idx_dict) for p in positions + ) + removed_size = sum(old_sizes) - new_size + + # NB: removed_size used to be just the size of any removed indices i.e.: + # helpers.compute_size_by_dict(idx_removed, idx_dict) + cost = _flop_count(idx_contract, idx_removed, len(positions), idx_dict) + sort = (-removed_size, cost) + + # Sieve based on total cost as well + if (path_cost + cost) > naive_cost: + return None + + # Add contraction to possible choices + return [sort, positions, new_input_sets] + + +def _update_other_results(results, best): + """Update the positions and provisional input_sets of ``results`` + based on performing the contraction result ``best``. Remove any + involving the tensors contracted. + + Parameters + ---------- + results : list + List of contraction results produced by + ``_parse_possible_contraction``. + best : list + The best contraction of ``results`` i.e. the one that + will be performed. + + Returns + ------- + mod_results : list + The list of modified results, updated with outcome of + ``best`` contraction. + """ + + best_con = best[1] + bx, by = best_con + mod_results = [] + + for cost, (x, y), con_sets in results: + + # Ignore results involving tensors just contracted + if x in best_con or y in best_con: + continue + + # Update the input_sets + del con_sets[by - int(by > x) - int(by > y)] + del con_sets[bx - int(bx > x) - int(bx > y)] + con_sets.insert(-1, best[2][-1]) + + # Update the position indices + mod_con = x - int(x > bx) - int(x > by), y - int(y > bx) - int(y > by) + mod_results.append((cost, mod_con, con_sets)) + + return mod_results + +def _greedy_path(input_sets, output_set, idx_dict, memory_limit): + """ + Finds the path by contracting the best pair until the input list is + exhausted. The best pair is found by minimizing the tuple + ``(-prod(indices_removed), cost)``. What this amounts to is prioritizing + matrix multiplication or inner product operations, then Hadamard like + operations, and finally outer operations. Outer products are limited by + ``memory_limit``. This algorithm scales cubically with respect to the + number of elements in the list ``input_sets``. + + Parameters + ---------- + input_sets : list + List of sets that represent the lhs side of the einsum subscript + output_set : set + Set that represents the rhs side of the overall einsum subscript + idx_dict : dictionary + Dictionary of index sizes + memory_limit : int + The maximum number of elements in a temporary array + + Returns + ------- + path : list + The greedy contraction order within the memory limit constraint. + + Examples + -------- + >>> isets = [set('abd'), set('ac'), set('bdc')] + >>> oset = set() + >>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4} + >>> _greedy_path(isets, oset, idx_sizes, 5000) + [(0, 2), (0, 1)] + """ + + # Handle trivial cases that leaked through + if len(input_sets) == 1: + return [(0,)] + elif len(input_sets) == 2: + return [(0, 1)] + + # Build up a naive cost + contract = _find_contraction( + range(len(input_sets)), input_sets, output_set + ) + idx_result, new_input_sets, idx_removed, idx_contract = contract + naive_cost = _flop_count( + idx_contract, idx_removed, len(input_sets), idx_dict + ) + + # Initially iterate over all pairs + comb_iter = itertools.combinations(range(len(input_sets)), 2) + known_contractions = [] + + path_cost = 0 + path = [] + + for iteration in range(len(input_sets) - 1): + + # Iterate over all pairs on the first step, only previously + # found pairs on subsequent steps + for positions in comb_iter: + + # Always initially ignore outer products + if input_sets[positions[0]].isdisjoint(input_sets[positions[1]]): + continue + + result = _parse_possible_contraction( + positions, input_sets, output_set, idx_dict, + memory_limit, path_cost, naive_cost + ) + if result is not None: + known_contractions.append(result) + + # If we do not have a inner contraction, rescan pairs + # including outer products + if len(known_contractions) == 0: + + # Then check the outer products + for positions in itertools.combinations( + range(len(input_sets)), 2 + ): + result = _parse_possible_contraction( + positions, input_sets, output_set, idx_dict, + memory_limit, path_cost, naive_cost + ) + if result is not None: + known_contractions.append(result) + + # If we still did not find any remaining contractions, + # default back to einsum like behavior + if len(known_contractions) == 0: + path.append(tuple(range(len(input_sets)))) + break + + # Sort based on first index + best = min(known_contractions, key=lambda x: x[0]) + + # Now propagate as many unused contractions as possible + # to the next iteration + known_contractions = _update_other_results(known_contractions, best) + + # Next iteration only compute contractions with the new tensor + # All other contractions have been accounted for + input_sets = best[2] + new_tensor_pos = len(input_sets) - 1 + comb_iter = ((i, new_tensor_pos) for i in range(new_tensor_pos)) + + # Update path and total cost + path.append(best[1]) + path_cost += best[0][1] + + return path + + +def _can_dot(inputs, result, idx_removed): + """ + Checks if we can use BLAS (np.tensordot) call and its beneficial to do so. + + Parameters + ---------- + inputs : list of str + Specifies the subscripts for summation. + result : str + Resulting summation. + idx_removed : set + Indices that are removed in the summation + + + Returns + ------- + type : bool + Returns true if BLAS should and can be used, else False + + Notes + ----- + If the operations is BLAS level 1 or 2 and is not already aligned + we default back to einsum as the memory movement to copy is more + costly than the operation itself. + + + Examples + -------- + + # Standard GEMM operation + >>> _can_dot(['ij', 'jk'], 'ik', set('j')) + True + + # Can use the standard BLAS, but requires odd data movement + >>> _can_dot(['ijj', 'jk'], 'ik', set('j')) + False + + # DDOT where the memory is not aligned + >>> _can_dot(['ijk', 'ikj'], '', set('ijk')) + False + + """ + + # All `dot` calls remove indices + if len(idx_removed) == 0: + return False + + # BLAS can only handle two operands + if len(inputs) != 2: + return False + + input_left, input_right = inputs + + for c in set(input_left + input_right): + # can't deal with repeated indices on same input or more than 2 total + nl, nr = input_left.count(c), input_right.count(c) + if (nl > 1) or (nr > 1) or (nl + nr > 2): + return False + + # can't do implicit summation or dimension collapse e.g. + # "ab,bc->c" (implicitly sum over 'a') + # "ab,ca->ca" (take diagonal of 'a') + if nl + nr - 1 == int(c in result): + return False + + # Build a few temporaries + set_left = set(input_left) + set_right = set(input_right) + keep_left = set_left - idx_removed + keep_right = set_right - idx_removed + rs = len(idx_removed) + + # At this point we are a DOT, GEMV, or GEMM operation + + # Handle inner products + + # DDOT with aligned data + if input_left == input_right: + return True + + # DDOT without aligned data (better to use einsum) + if set_left == set_right: + return False + + # Handle the 4 possible (aligned) GEMV or GEMM cases + + # GEMM or GEMV no transpose + if input_left[-rs:] == input_right[:rs]: + return True + + # GEMM or GEMV transpose both + if input_left[:rs] == input_right[-rs:]: + return True + + # GEMM or GEMV transpose right + if input_left[-rs:] == input_right[-rs:]: + return True + + # GEMM or GEMV transpose left + if input_left[:rs] == input_right[:rs]: + return True + + # Einsum is faster than GEMV if we have to copy data + if not keep_left or not keep_right: + return False + + # We are a matrix-matrix product, but we need to copy data + return True + + +def _parse_einsum_input(operands): + """ + A reproduction of einsum c side einsum parsing in python. + + Returns + ------- + input_strings : str + Parsed input strings + output_string : str + Parsed output string + operands : list of array_like + The operands to use in the numpy contraction + + Examples + -------- + The operand list is simplified to reduce printing: + + >>> np.random.seed(123) + >>> a = np.random.rand(4, 4) + >>> b = np.random.rand(4, 4, 4) + >>> _parse_einsum_input(('...a,...a->...', a, b)) + ('za,xza', 'xz', [a, b]) # may vary + + >>> _parse_einsum_input((a, [Ellipsis, 0], b, [Ellipsis, 0])) + ('za,xza', 'xz', [a, b]) # may vary + """ + + if len(operands) == 0: + raise ValueError("No input operands") + + if isinstance(operands[0], str): + subscripts = operands[0].replace(" ", "") + operands = [asanyarray(v) for v in operands[1:]] + + # Ensure all characters are valid + for s in subscripts: + if s in '.,->': + continue + if s not in einsum_symbols: + raise ValueError(f"Character {s} is not a valid symbol.") + + else: + tmp_operands = list(operands) + operand_list = [] + subscript_list = [] + for p in range(len(operands) // 2): + operand_list.append(tmp_operands.pop(0)) + subscript_list.append(tmp_operands.pop(0)) + + output_list = tmp_operands[-1] if len(tmp_operands) else None + operands = [asanyarray(v) for v in operand_list] + subscripts = "" + last = len(subscript_list) - 1 + for num, sub in enumerate(subscript_list): + for s in sub: + if s is Ellipsis: + subscripts += "..." + else: + try: + s = operator.index(s) + except TypeError as e: + raise TypeError( + "For this input type lists must contain " + "either int or Ellipsis" + ) from e + subscripts += einsum_symbols[s] + if num != last: + subscripts += "," + + if output_list is not None: + subscripts += "->" + for s in output_list: + if s is Ellipsis: + subscripts += "..." + else: + try: + s = operator.index(s) + except TypeError as e: + raise TypeError( + "For this input type lists must contain " + "either int or Ellipsis" + ) from e + subscripts += einsum_symbols[s] + # Check for proper "->" + if ("-" in subscripts) or (">" in subscripts): + invalid = (subscripts.count("-") > 1) or (subscripts.count(">") > 1) + if invalid or (subscripts.count("->") != 1): + raise ValueError("Subscripts can only contain one '->'.") + + # Parse ellipses + if "." in subscripts: + used = subscripts.replace(".", "").replace(",", "").replace("->", "") + unused = list(einsum_symbols_set - set(used)) + ellipse_inds = "".join(unused) + longest = 0 + + if "->" in subscripts: + input_tmp, output_sub = subscripts.split("->") + split_subscripts = input_tmp.split(",") + out_sub = True + else: + split_subscripts = subscripts.split(',') + out_sub = False + + for num, sub in enumerate(split_subscripts): + if "." in sub: + if (sub.count(".") != 3) or (sub.count("...") != 1): + raise ValueError("Invalid Ellipses.") + + # Take into account numerical values + if operands[num].shape == (): + ellipse_count = 0 + else: + ellipse_count = max(operands[num].ndim, 1) + ellipse_count -= (len(sub) - 3) + + if ellipse_count > longest: + longest = ellipse_count + + if ellipse_count < 0: + raise ValueError("Ellipses lengths do not match.") + elif ellipse_count == 0: + split_subscripts[num] = sub.replace('...', '') + else: + rep_inds = ellipse_inds[-ellipse_count:] + split_subscripts[num] = sub.replace('...', rep_inds) + + subscripts = ",".join(split_subscripts) + if longest == 0: + out_ellipse = "" + else: + out_ellipse = ellipse_inds[-longest:] + + if out_sub: + subscripts += "->" + output_sub.replace("...", out_ellipse) + else: + # Special care for outputless ellipses + output_subscript = "" + tmp_subscripts = subscripts.replace(",", "") + for s in sorted(set(tmp_subscripts)): + if s not in (einsum_symbols): + raise ValueError(f"Character {s} is not a valid symbol.") + if tmp_subscripts.count(s) == 1: + output_subscript += s + normal_inds = ''.join(sorted(set(output_subscript) - + set(out_ellipse))) + + subscripts += "->" + out_ellipse + normal_inds + + # Build output string if does not exist + if "->" in subscripts: + input_subscripts, output_subscript = subscripts.split("->") + else: + input_subscripts = subscripts + # Build output subscripts + tmp_subscripts = subscripts.replace(",", "") + output_subscript = "" + for s in sorted(set(tmp_subscripts)): + if s not in einsum_symbols: + raise ValueError(f"Character {s} is not a valid symbol.") + if tmp_subscripts.count(s) == 1: + output_subscript += s + + # Make sure output subscripts are in the input + for char in output_subscript: + if output_subscript.count(char) != 1: + raise ValueError("Output character %s appeared more than once in " + "the output." % char) + if char not in input_subscripts: + raise ValueError(f"Output character {char} did not appear in the input") + + # Make sure number operands is equivalent to the number of terms + if len(input_subscripts.split(',')) != len(operands): + raise ValueError("Number of einsum subscripts must be equal to the " + "number of operands.") + + return (input_subscripts, output_subscript, operands) + + +def _einsum_path_dispatcher(*operands, optimize=None, einsum_call=None): + # NOTE: technically, we should only dispatch on array-like arguments, not + # subscripts (given as strings). But separating operands into + # arrays/subscripts is a little tricky/slow (given einsum's two supported + # signatures), so as a practical shortcut we dispatch on everything. + # Strings will be ignored for dispatching since they don't define + # __array_function__. + return operands + + +@array_function_dispatch(_einsum_path_dispatcher, module='numpy') +def einsum_path(*operands, optimize='greedy', einsum_call=False): + """ + einsum_path(subscripts, *operands, optimize='greedy') + + Evaluates the lowest cost contraction order for an einsum expression by + considering the creation of intermediate arrays. + + Parameters + ---------- + subscripts : str + Specifies the subscripts for summation. + *operands : list of array_like + These are the arrays for the operation. + optimize : {bool, list, tuple, 'greedy', 'optimal'} + Choose the type of path. If a tuple is provided, the second argument is + assumed to be the maximum intermediate size created. If only a single + argument is provided the largest input or output array size is used + as a maximum intermediate size. + + * if a list is given that starts with ``einsum_path``, uses this as the + contraction path + * if False no optimization is taken + * if True defaults to the 'greedy' algorithm + * 'optimal' An algorithm that combinatorially explores all possible + ways of contracting the listed tensors and chooses the least costly + path. Scales exponentially with the number of terms in the + contraction. + * 'greedy' An algorithm that chooses the best pair contraction + at each step. Effectively, this algorithm searches the largest inner, + Hadamard, and then outer products at each step. Scales cubically with + the number of terms in the contraction. Equivalent to the 'optimal' + path for most contractions. + + Default is 'greedy'. + + Returns + ------- + path : list of tuples + A list representation of the einsum path. + string_repr : str + A printable representation of the einsum path. + + Notes + ----- + The resulting path indicates which terms of the input contraction should be + contracted first, the result of this contraction is then appended to the + end of the contraction list. This list can then be iterated over until all + intermediate contractions are complete. + + See Also + -------- + einsum, linalg.multi_dot + + Examples + -------- + + We can begin with a chain dot example. In this case, it is optimal to + contract the ``b`` and ``c`` tensors first as represented by the first + element of the path ``(1, 2)``. The resulting tensor is added to the end + of the contraction and the remaining contraction ``(0, 1)`` is then + completed. + + >>> np.random.seed(123) + >>> a = np.random.rand(2, 2) + >>> b = np.random.rand(2, 5) + >>> c = np.random.rand(5, 2) + >>> path_info = np.einsum_path('ij,jk,kl->il', a, b, c, optimize='greedy') + >>> print(path_info[0]) + ['einsum_path', (1, 2), (0, 1)] + >>> print(path_info[1]) + Complete contraction: ij,jk,kl->il # may vary + Naive scaling: 4 + Optimized scaling: 3 + Naive FLOP count: 1.600e+02 + Optimized FLOP count: 5.600e+01 + Theoretical speedup: 2.857 + Largest intermediate: 4.000e+00 elements + ------------------------------------------------------------------------- + scaling current remaining + ------------------------------------------------------------------------- + 3 kl,jk->jl ij,jl->il + 3 jl,ij->il il->il + + + A more complex index transformation example. + + >>> I = np.random.rand(10, 10, 10, 10) + >>> C = np.random.rand(10, 10) + >>> path_info = np.einsum_path('ea,fb,abcd,gc,hd->efgh', C, C, I, C, C, + ... optimize='greedy') + + >>> print(path_info[0]) + ['einsum_path', (0, 2), (0, 3), (0, 2), (0, 1)] + >>> print(path_info[1]) + Complete contraction: ea,fb,abcd,gc,hd->efgh # may vary + Naive scaling: 8 + Optimized scaling: 5 + Naive FLOP count: 8.000e+08 + Optimized FLOP count: 8.000e+05 + Theoretical speedup: 1000.000 + Largest intermediate: 1.000e+04 elements + -------------------------------------------------------------------------- + scaling current remaining + -------------------------------------------------------------------------- + 5 abcd,ea->bcde fb,gc,hd,bcde->efgh + 5 bcde,fb->cdef gc,hd,cdef->efgh + 5 cdef,gc->defg hd,defg->efgh + 5 defg,hd->efgh efgh->efgh + """ + + # Figure out what the path really is + path_type = optimize + if path_type is True: + path_type = 'greedy' + if path_type is None: + path_type = False + + explicit_einsum_path = False + memory_limit = None + + # No optimization or a named path algorithm + if (path_type is False) or isinstance(path_type, str): + pass + + # Given an explicit path + elif len(path_type) and (path_type[0] == 'einsum_path'): + explicit_einsum_path = True + + # Path tuple with memory limit + elif ((len(path_type) == 2) and isinstance(path_type[0], str) and + isinstance(path_type[1], (int, float))): + memory_limit = int(path_type[1]) + path_type = path_type[0] + + else: + raise TypeError(f"Did not understand the path: {str(path_type)}") + + # Hidden option, only einsum should call this + einsum_call_arg = einsum_call + + # Python side parsing + input_subscripts, output_subscript, operands = ( + _parse_einsum_input(operands) + ) + + # Build a few useful list and sets + input_list = input_subscripts.split(',') + input_sets = [set(x) for x in input_list] + output_set = set(output_subscript) + indices = set(input_subscripts.replace(',', '')) + + # Get length of each unique dimension and ensure all dimensions are correct + dimension_dict = {} + broadcast_indices = [[] for x in range(len(input_list))] + for tnum, term in enumerate(input_list): + sh = operands[tnum].shape + if len(sh) != len(term): + raise ValueError("Einstein sum subscript %s does not contain the " + "correct number of indices for operand %d." + % (input_subscripts[tnum], tnum)) + for cnum, char in enumerate(term): + dim = sh[cnum] + + # Build out broadcast indices + if dim == 1: + broadcast_indices[tnum].append(char) + + if char in dimension_dict.keys(): + # For broadcasting cases we always want the largest dim size + if dimension_dict[char] == 1: + dimension_dict[char] = dim + elif dim not in (1, dimension_dict[char]): + raise ValueError("Size of label '%s' for operand %d (%d) " + "does not match previous terms (%d)." + % (char, tnum, dimension_dict[char], dim)) + else: + dimension_dict[char] = dim + + # Convert broadcast inds to sets + broadcast_indices = [set(x) for x in broadcast_indices] + + # Compute size of each input array plus the output array + size_list = [_compute_size_by_dict(term, dimension_dict) + for term in input_list + [output_subscript]] + max_size = max(size_list) + + if memory_limit is None: + memory_arg = max_size + else: + memory_arg = memory_limit + + # Compute naive cost + # This isn't quite right, need to look into exactly how einsum does this + inner_product = (sum(len(x) for x in input_sets) - len(indices)) > 0 + naive_cost = _flop_count( + indices, inner_product, len(input_list), dimension_dict + ) + + # Compute the path + if explicit_einsum_path: + path = path_type[1:] + elif ( + (path_type is False) + or (len(input_list) in [1, 2]) + or (indices == output_set) + ): + # Nothing to be optimized, leave it to einsum + path = [tuple(range(len(input_list)))] + elif path_type == "greedy": + path = _greedy_path( + input_sets, output_set, dimension_dict, memory_arg + ) + elif path_type == "optimal": + path = _optimal_path( + input_sets, output_set, dimension_dict, memory_arg + ) + else: + raise KeyError("Path name %s not found", path_type) + + cost_list, scale_list, size_list, contraction_list = [], [], [], [] + + # Build contraction tuple (positions, gemm, einsum_str, remaining) + for cnum, contract_inds in enumerate(path): + # Make sure we remove inds from right to left + contract_inds = tuple(sorted(contract_inds, reverse=True)) + + contract = _find_contraction(contract_inds, input_sets, output_set) + out_inds, input_sets, idx_removed, idx_contract = contract + + cost = _flop_count( + idx_contract, idx_removed, len(contract_inds), dimension_dict + ) + cost_list.append(cost) + scale_list.append(len(idx_contract)) + size_list.append(_compute_size_by_dict(out_inds, dimension_dict)) + + bcast = set() + tmp_inputs = [] + for x in contract_inds: + tmp_inputs.append(input_list.pop(x)) + bcast |= broadcast_indices.pop(x) + + new_bcast_inds = bcast - idx_removed + + # If we're broadcasting, nix blas + if not len(idx_removed & bcast): + do_blas = _can_dot(tmp_inputs, out_inds, idx_removed) + else: + do_blas = False + + # Last contraction + if (cnum - len(path)) == -1: + idx_result = output_subscript + else: + sort_result = [(dimension_dict[ind], ind) for ind in out_inds] + idx_result = "".join([x[1] for x in sorted(sort_result)]) + + input_list.append(idx_result) + broadcast_indices.append(new_bcast_inds) + einsum_str = ",".join(tmp_inputs) + "->" + idx_result + + contraction = ( + contract_inds, idx_removed, einsum_str, input_list[:], do_blas + ) + contraction_list.append(contraction) + + opt_cost = sum(cost_list) + 1 + + if len(input_list) != 1: + # Explicit "einsum_path" is usually trusted, but we detect this kind of + # mistake in order to prevent from returning an intermediate value. + raise RuntimeError( + f"Invalid einsum_path is specified: {len(input_list) - 1} more " + "operands has to be contracted.") + + if einsum_call_arg: + return (operands, contraction_list) + + # Return the path along with a nice string representation + overall_contraction = input_subscripts + "->" + output_subscript + header = ("scaling", "current", "remaining") + + speedup = naive_cost / opt_cost + max_i = max(size_list) + + path_print = f" Complete contraction: {overall_contraction}\n" + path_print += f" Naive scaling: {len(indices)}\n" + path_print += " Optimized scaling: %d\n" % max(scale_list) + path_print += f" Naive FLOP count: {naive_cost:.3e}\n" + path_print += f" Optimized FLOP count: {opt_cost:.3e}\n" + path_print += f" Theoretical speedup: {speedup:3.3f}\n" + path_print += f" Largest intermediate: {max_i:.3e} elements\n" + path_print += "-" * 74 + "\n" + path_print += "%6s %24s %40s\n" % header + path_print += "-" * 74 + + for n, contraction in enumerate(contraction_list): + inds, idx_rm, einsum_str, remaining, blas = contraction + remaining_str = ",".join(remaining) + "->" + output_subscript + path_run = (scale_list[n], einsum_str, remaining_str) + path_print += "\n%4d %24s %40s" % path_run + + path = ['einsum_path'] + path + return (path, path_print) + + +def _einsum_dispatcher(*operands, out=None, optimize=None, **kwargs): + # Arguably we dispatch on more arguments than we really should; see note in + # _einsum_path_dispatcher for why. + yield from operands + yield out + + +# Rewrite einsum to handle different cases +@array_function_dispatch(_einsum_dispatcher, module='numpy') +def einsum(*operands, out=None, optimize=False, **kwargs): + """ + einsum(subscripts, *operands, out=None, dtype=None, order='K', + casting='safe', optimize=False) + + Evaluates the Einstein summation convention on the operands. + + Using the Einstein summation convention, many common multi-dimensional, + linear algebraic array operations can be represented in a simple fashion. + In *implicit* mode `einsum` computes these values. + + In *explicit* mode, `einsum` provides further flexibility to compute + other array operations that might not be considered classical Einstein + summation operations, by disabling, or forcing summation over specified + subscript labels. + + See the notes and examples for clarification. + + Parameters + ---------- + subscripts : str + Specifies the subscripts for summation as comma separated list of + subscript labels. An implicit (classical Einstein summation) + calculation is performed unless the explicit indicator '->' is + included as well as subscript labels of the precise output form. + operands : list of array_like + These are the arrays for the operation. + out : ndarray, optional + If provided, the calculation is done into this array. + dtype : {data-type, None}, optional + If provided, forces the calculation to use the data type specified. + Note that you may have to also give a more liberal `casting` + parameter to allow the conversions. Default is None. + order : {'C', 'F', 'A', 'K'}, optional + Controls the memory layout of the output. 'C' means it should + be C contiguous. 'F' means it should be Fortran contiguous, + 'A' means it should be 'F' if the inputs are all 'F', 'C' otherwise. + 'K' means it should be as close to the layout as the inputs as + is possible, including arbitrarily permuted axes. + Default is 'K'. + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional + Controls what kind of data casting may occur. Setting this to + 'unsafe' is not recommended, as it can adversely affect accumulations. + + * 'no' means the data types should not be cast at all. + * 'equiv' means only byte-order changes are allowed. + * 'safe' means only casts which can preserve values are allowed. + * 'same_kind' means only safe casts or casts within a kind, + like float64 to float32, are allowed. + * 'unsafe' means any data conversions may be done. + + Default is 'safe'. + optimize : {False, True, 'greedy', 'optimal'}, optional + Controls if intermediate optimization should occur. No optimization + will occur if False and True will default to the 'greedy' algorithm. + Also accepts an explicit contraction list from the ``np.einsum_path`` + function. See ``np.einsum_path`` for more details. Defaults to False. + + Returns + ------- + output : ndarray + The calculation based on the Einstein summation convention. + + See Also + -------- + einsum_path, dot, inner, outer, tensordot, linalg.multi_dot + einsum: + Similar verbose interface is provided by the + `einops `_ package to cover + additional operations: transpose, reshape/flatten, repeat/tile, + squeeze/unsqueeze and reductions. + The `opt_einsum `_ + optimizes contraction order for einsum-like expressions + in backend-agnostic manner. + + Notes + ----- + The Einstein summation convention can be used to compute + many multi-dimensional, linear algebraic array operations. `einsum` + provides a succinct way of representing these. + + A non-exhaustive list of these operations, + which can be computed by `einsum`, is shown below along with examples: + + * Trace of an array, :py:func:`numpy.trace`. + * Return a diagonal, :py:func:`numpy.diag`. + * Array axis summations, :py:func:`numpy.sum`. + * Transpositions and permutations, :py:func:`numpy.transpose`. + * Matrix multiplication and dot product, :py:func:`numpy.matmul` + :py:func:`numpy.dot`. + * Vector inner and outer products, :py:func:`numpy.inner` + :py:func:`numpy.outer`. + * Broadcasting, element-wise and scalar multiplication, + :py:func:`numpy.multiply`. + * Tensor contractions, :py:func:`numpy.tensordot`. + * Chained array operations, in efficient calculation order, + :py:func:`numpy.einsum_path`. + + The subscripts string is a comma-separated list of subscript labels, + where each label refers to a dimension of the corresponding operand. + Whenever a label is repeated it is summed, so ``np.einsum('i,i', a, b)`` + is equivalent to :py:func:`np.inner(a,b) `. If a label + appears only once, it is not summed, so ``np.einsum('i', a)`` + produces a view of ``a`` with no changes. A further example + ``np.einsum('ij,jk', a, b)`` describes traditional matrix multiplication + and is equivalent to :py:func:`np.matmul(a,b) `. + Repeated subscript labels in one operand take the diagonal. + For example, ``np.einsum('ii', a)`` is equivalent to + :py:func:`np.trace(a) `. + + In *implicit mode*, the chosen subscripts are important + since the axes of the output are reordered alphabetically. This + means that ``np.einsum('ij', a)`` doesn't affect a 2D array, while + ``np.einsum('ji', a)`` takes its transpose. Additionally, + ``np.einsum('ij,jk', a, b)`` returns a matrix multiplication, while, + ``np.einsum('ij,jh', a, b)`` returns the transpose of the + multiplication since subscript 'h' precedes subscript 'i'. + + In *explicit mode* the output can be directly controlled by + specifying output subscript labels. This requires the + identifier '->' as well as the list of output subscript labels. + This feature increases the flexibility of the function since + summing can be disabled or forced when required. The call + ``np.einsum('i->', a)`` is like :py:func:`np.sum(a) ` + if ``a`` is a 1-D array, and ``np.einsum('ii->i', a)`` + is like :py:func:`np.diag(a) ` if ``a`` is a square 2-D array. + The difference is that `einsum` does not allow broadcasting by default. + Additionally ``np.einsum('ij,jh->ih', a, b)`` directly specifies the + order of the output subscript labels and therefore returns matrix + multiplication, unlike the example above in implicit mode. + + To enable and control broadcasting, use an ellipsis. Default + NumPy-style broadcasting is done by adding an ellipsis + to the left of each term, like ``np.einsum('...ii->...i', a)``. + ``np.einsum('...i->...', a)`` is like + :py:func:`np.sum(a, axis=-1) ` for array ``a`` of any shape. + To take the trace along the first and last axes, + you can do ``np.einsum('i...i', a)``, or to do a matrix-matrix + product with the left-most indices instead of rightmost, one can do + ``np.einsum('ij...,jk...->ik...', a, b)``. + + When there is only one operand, no axes are summed, and no output + parameter is provided, a view into the operand is returned instead + of a new array. Thus, taking the diagonal as ``np.einsum('ii->i', a)`` + produces a view (changed in version 1.10.0). + + `einsum` also provides an alternative way to provide the subscripts and + operands as ``einsum(op0, sublist0, op1, sublist1, ..., [sublistout])``. + If the output shape is not provided in this format `einsum` will be + calculated in implicit mode, otherwise it will be performed explicitly. + The examples below have corresponding `einsum` calls with the two + parameter methods. + + Views returned from einsum are now writeable whenever the input array + is writeable. For example, ``np.einsum('ijk...->kji...', a)`` will now + have the same effect as :py:func:`np.swapaxes(a, 0, 2) ` + and ``np.einsum('ii->i', a)`` will return a writeable view of the diagonal + of a 2D array. + + Added the ``optimize`` argument which will optimize the contraction order + of an einsum expression. For a contraction with three or more operands + this can greatly increase the computational efficiency at the cost of + a larger memory footprint during computation. + + Typically a 'greedy' algorithm is applied which empirical tests have shown + returns the optimal path in the majority of cases. In some cases 'optimal' + will return the superlative path through a more expensive, exhaustive + search. For iterative calculations it may be advisable to calculate + the optimal path once and reuse that path by supplying it as an argument. + An example is given below. + + See :py:func:`numpy.einsum_path` for more details. + + Examples + -------- + >>> a = np.arange(25).reshape(5,5) + >>> b = np.arange(5) + >>> c = np.arange(6).reshape(2,3) + + Trace of a matrix: + + >>> np.einsum('ii', a) + 60 + >>> np.einsum(a, [0,0]) + 60 + >>> np.trace(a) + 60 + + Extract the diagonal (requires explicit form): + + >>> np.einsum('ii->i', a) + array([ 0, 6, 12, 18, 24]) + >>> np.einsum(a, [0,0], [0]) + array([ 0, 6, 12, 18, 24]) + >>> np.diag(a) + array([ 0, 6, 12, 18, 24]) + + Sum over an axis (requires explicit form): + + >>> np.einsum('ij->i', a) + array([ 10, 35, 60, 85, 110]) + >>> np.einsum(a, [0,1], [0]) + array([ 10, 35, 60, 85, 110]) + >>> np.sum(a, axis=1) + array([ 10, 35, 60, 85, 110]) + + For higher dimensional arrays summing a single axis can be done + with ellipsis: + + >>> np.einsum('...j->...', a) + array([ 10, 35, 60, 85, 110]) + >>> np.einsum(a, [Ellipsis,1], [Ellipsis]) + array([ 10, 35, 60, 85, 110]) + + Compute a matrix transpose, or reorder any number of axes: + + >>> np.einsum('ji', c) + array([[0, 3], + [1, 4], + [2, 5]]) + >>> np.einsum('ij->ji', c) + array([[0, 3], + [1, 4], + [2, 5]]) + >>> np.einsum(c, [1,0]) + array([[0, 3], + [1, 4], + [2, 5]]) + >>> np.transpose(c) + array([[0, 3], + [1, 4], + [2, 5]]) + + Vector inner products: + + >>> np.einsum('i,i', b, b) + 30 + >>> np.einsum(b, [0], b, [0]) + 30 + >>> np.inner(b,b) + 30 + + Matrix vector multiplication: + + >>> np.einsum('ij,j', a, b) + array([ 30, 80, 130, 180, 230]) + >>> np.einsum(a, [0,1], b, [1]) + array([ 30, 80, 130, 180, 230]) + >>> np.dot(a, b) + array([ 30, 80, 130, 180, 230]) + >>> np.einsum('...j,j', a, b) + array([ 30, 80, 130, 180, 230]) + + Broadcasting and scalar multiplication: + + >>> np.einsum('..., ...', 3, c) + array([[ 0, 3, 6], + [ 9, 12, 15]]) + >>> np.einsum(',ij', 3, c) + array([[ 0, 3, 6], + [ 9, 12, 15]]) + >>> np.einsum(3, [Ellipsis], c, [Ellipsis]) + array([[ 0, 3, 6], + [ 9, 12, 15]]) + >>> np.multiply(3, c) + array([[ 0, 3, 6], + [ 9, 12, 15]]) + + Vector outer product: + + >>> np.einsum('i,j', np.arange(2)+1, b) + array([[0, 1, 2, 3, 4], + [0, 2, 4, 6, 8]]) + >>> np.einsum(np.arange(2)+1, [0], b, [1]) + array([[0, 1, 2, 3, 4], + [0, 2, 4, 6, 8]]) + >>> np.outer(np.arange(2)+1, b) + array([[0, 1, 2, 3, 4], + [0, 2, 4, 6, 8]]) + + Tensor contraction: + + >>> a = np.arange(60.).reshape(3,4,5) + >>> b = np.arange(24.).reshape(4,3,2) + >>> np.einsum('ijk,jil->kl', a, b) + array([[4400., 4730.], + [4532., 4874.], + [4664., 5018.], + [4796., 5162.], + [4928., 5306.]]) + >>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3]) + array([[4400., 4730.], + [4532., 4874.], + [4664., 5018.], + [4796., 5162.], + [4928., 5306.]]) + >>> np.tensordot(a,b, axes=([1,0],[0,1])) + array([[4400., 4730.], + [4532., 4874.], + [4664., 5018.], + [4796., 5162.], + [4928., 5306.]]) + + Writeable returned arrays (since version 1.10.0): + + >>> a = np.zeros((3, 3)) + >>> np.einsum('ii->i', a)[:] = 1 + >>> a + array([[1., 0., 0.], + [0., 1., 0.], + [0., 0., 1.]]) + + Example of ellipsis use: + + >>> a = np.arange(6).reshape((3,2)) + >>> b = np.arange(12).reshape((4,3)) + >>> np.einsum('ki,jk->ij', a, b) + array([[10, 28, 46, 64], + [13, 40, 67, 94]]) + >>> np.einsum('ki,...k->i...', a, b) + array([[10, 28, 46, 64], + [13, 40, 67, 94]]) + >>> np.einsum('k...,jk', a, b) + array([[10, 28, 46, 64], + [13, 40, 67, 94]]) + + Chained array operations. For more complicated contractions, speed ups + might be achieved by repeatedly computing a 'greedy' path or pre-computing + the 'optimal' path and repeatedly applying it, using an `einsum_path` + insertion (since version 1.12.0). Performance improvements can be + particularly significant with larger arrays: + + >>> a = np.ones(64).reshape(2,4,8) + + Basic `einsum`: ~1520ms (benchmarked on 3.1GHz Intel i5.) + + >>> for iteration in range(500): + ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a) + + Sub-optimal `einsum` (due to repeated path calculation time): ~330ms + + >>> for iteration in range(500): + ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, + ... optimize='optimal') + + Greedy `einsum` (faster optimal path approximation): ~160ms + + >>> for iteration in range(500): + ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='greedy') + + Optimal `einsum` (best usage pattern in some use cases): ~110ms + + >>> path = np.einsum_path('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, + ... optimize='optimal')[0] + >>> for iteration in range(500): + ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize=path) + + """ + # Special handling if out is specified + specified_out = out is not None + + # If no optimization, run pure einsum + if optimize is False: + if specified_out: + kwargs['out'] = out + return c_einsum(*operands, **kwargs) + + # Check the kwargs to avoid a more cryptic error later, without having to + # repeat default values here + valid_einsum_kwargs = ['dtype', 'order', 'casting'] + unknown_kwargs = [k for (k, v) in kwargs.items() if + k not in valid_einsum_kwargs] + if len(unknown_kwargs): + raise TypeError(f"Did not understand the following kwargs: {unknown_kwargs}") + + # Build the contraction list and operand + operands, contraction_list = einsum_path(*operands, optimize=optimize, + einsum_call=True) + + # Handle order kwarg for output array, c_einsum allows mixed case + output_order = kwargs.pop('order', 'K') + if output_order.upper() == 'A': + if all(arr.flags.f_contiguous for arr in operands): + output_order = 'F' + else: + output_order = 'C' + + # Start contraction loop + for num, contraction in enumerate(contraction_list): + inds, idx_rm, einsum_str, remaining, blas = contraction + tmp_operands = [operands.pop(x) for x in inds] + + # Do we need to deal with the output? + handle_out = specified_out and ((num + 1) == len(contraction_list)) + + # Call tensordot if still possible + if blas: + # Checks have already been handled + input_str, results_index = einsum_str.split('->') + input_left, input_right = input_str.split(',') + + tensor_result = input_left + input_right + for s in idx_rm: + tensor_result = tensor_result.replace(s, "") + + # Find indices to contract over + left_pos, right_pos = [], [] + for s in sorted(idx_rm): + left_pos.append(input_left.find(s)) + right_pos.append(input_right.find(s)) + + # Contract! + new_view = tensordot( + *tmp_operands, axes=(tuple(left_pos), tuple(right_pos)) + ) + + # Build a new view if needed + if (tensor_result != results_index) or handle_out: + if handle_out: + kwargs["out"] = out + new_view = c_einsum( + tensor_result + '->' + results_index, new_view, **kwargs + ) + + # Call einsum + else: + # If out was specified + if handle_out: + kwargs["out"] = out + + # Do the contraction + new_view = c_einsum(einsum_str, *tmp_operands, **kwargs) + + # Append new items and dereference what we can + operands.append(new_view) + del tmp_operands, new_view + + if specified_out: + return out + else: + return asanyarray(operands[0], order=output_order) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/einsumfunc.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/einsumfunc.pyi new file mode 100644 index 0000000..9653a26 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/einsumfunc.pyi @@ -0,0 +1,184 @@ +from collections.abc import Sequence +from typing import Any, Literal, TypeAlias, TypeVar, overload + +import numpy as np +from numpy import _OrderKACF, number +from numpy._typing import ( + NDArray, + _ArrayLikeBool_co, + _ArrayLikeComplex_co, + _ArrayLikeFloat_co, + _ArrayLikeInt_co, + _ArrayLikeObject_co, + _ArrayLikeUInt_co, + _DTypeLikeBool, + _DTypeLikeComplex, + _DTypeLikeComplex_co, + _DTypeLikeFloat, + _DTypeLikeInt, + _DTypeLikeObject, + _DTypeLikeUInt, +) + +__all__ = ["einsum", "einsum_path"] + +_ArrayT = TypeVar( + "_ArrayT", + bound=NDArray[np.bool | number], +) + +_OptimizeKind: TypeAlias = bool | Literal["greedy", "optimal"] | Sequence[Any] | None +_CastingSafe: TypeAlias = Literal["no", "equiv", "safe", "same_kind"] +_CastingUnsafe: TypeAlias = Literal["unsafe"] + +# TODO: Properly handle the `casting`-based combinatorics +# TODO: We need to evaluate the content `__subscripts` in order +# to identify whether or an array or scalar is returned. At a cursory +# glance this seems like something that can quite easily be done with +# a mypy plugin. +# Something like `is_scalar = bool(__subscripts.partition("->")[-1])` +@overload +def einsum( + subscripts: str | _ArrayLikeInt_co, + /, + *operands: _ArrayLikeBool_co, + out: None = ..., + dtype: _DTypeLikeBool | None = ..., + order: _OrderKACF = ..., + casting: _CastingSafe = ..., + optimize: _OptimizeKind = ..., +) -> Any: ... +@overload +def einsum( + subscripts: str | _ArrayLikeInt_co, + /, + *operands: _ArrayLikeUInt_co, + out: None = ..., + dtype: _DTypeLikeUInt | None = ..., + order: _OrderKACF = ..., + casting: _CastingSafe = ..., + optimize: _OptimizeKind = ..., +) -> Any: ... +@overload +def einsum( + subscripts: str | _ArrayLikeInt_co, + /, + *operands: _ArrayLikeInt_co, + out: None = ..., + dtype: _DTypeLikeInt | None = ..., + order: _OrderKACF = ..., + casting: _CastingSafe = ..., + optimize: _OptimizeKind = ..., +) -> Any: ... +@overload +def einsum( + subscripts: str | _ArrayLikeInt_co, + /, + *operands: _ArrayLikeFloat_co, + out: None = ..., + dtype: _DTypeLikeFloat | None = ..., + order: _OrderKACF = ..., + casting: _CastingSafe = ..., + optimize: _OptimizeKind = ..., +) -> Any: ... +@overload +def einsum( + subscripts: str | _ArrayLikeInt_co, + /, + *operands: _ArrayLikeComplex_co, + out: None = ..., + dtype: _DTypeLikeComplex | None = ..., + order: _OrderKACF = ..., + casting: _CastingSafe = ..., + optimize: _OptimizeKind = ..., +) -> Any: ... +@overload +def einsum( + subscripts: str | _ArrayLikeInt_co, + /, + *operands: Any, + casting: _CastingUnsafe, + dtype: _DTypeLikeComplex_co | None = ..., + out: None = ..., + order: _OrderKACF = ..., + optimize: _OptimizeKind = ..., +) -> Any: ... +@overload +def einsum( + subscripts: str | _ArrayLikeInt_co, + /, + *operands: _ArrayLikeComplex_co, + out: _ArrayT, + dtype: _DTypeLikeComplex_co | None = ..., + order: _OrderKACF = ..., + casting: _CastingSafe = ..., + optimize: _OptimizeKind = ..., +) -> _ArrayT: ... +@overload +def einsum( + subscripts: str | _ArrayLikeInt_co, + /, + *operands: Any, + out: _ArrayT, + casting: _CastingUnsafe, + dtype: _DTypeLikeComplex_co | None = ..., + order: _OrderKACF = ..., + optimize: _OptimizeKind = ..., +) -> _ArrayT: ... + +@overload +def einsum( + subscripts: str | _ArrayLikeInt_co, + /, + *operands: _ArrayLikeObject_co, + out: None = ..., + dtype: _DTypeLikeObject | None = ..., + order: _OrderKACF = ..., + casting: _CastingSafe = ..., + optimize: _OptimizeKind = ..., +) -> Any: ... +@overload +def einsum( + subscripts: str | _ArrayLikeInt_co, + /, + *operands: Any, + casting: _CastingUnsafe, + dtype: _DTypeLikeObject | None = ..., + out: None = ..., + order: _OrderKACF = ..., + optimize: _OptimizeKind = ..., +) -> Any: ... +@overload +def einsum( + subscripts: str | _ArrayLikeInt_co, + /, + *operands: _ArrayLikeObject_co, + out: _ArrayT, + dtype: _DTypeLikeObject | None = ..., + order: _OrderKACF = ..., + casting: _CastingSafe = ..., + optimize: _OptimizeKind = ..., +) -> _ArrayT: ... +@overload +def einsum( + subscripts: str | _ArrayLikeInt_co, + /, + *operands: Any, + out: _ArrayT, + casting: _CastingUnsafe, + dtype: _DTypeLikeObject | None = ..., + order: _OrderKACF = ..., + optimize: _OptimizeKind = ..., +) -> _ArrayT: ... + +# NOTE: `einsum_call` is a hidden kwarg unavailable for public use. +# It is therefore excluded from the signatures below. +# NOTE: In practice the list consists of a `str` (first element) +# and a variable number of integer tuples. +def einsum_path( + subscripts: str | _ArrayLikeInt_co, + /, + *operands: _ArrayLikeComplex_co | _DTypeLikeObject, + optimize: _OptimizeKind = "greedy", + einsum_call: Literal[False] = False, +) -> tuple[list[Any], str]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py b/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py new file mode 100644 index 0000000..e20d774 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.py @@ -0,0 +1,4269 @@ +"""Module containing non-deprecated functions borrowed from Numeric. + +""" +import functools +import types +import warnings + +import numpy as np +from numpy._utils import set_module + +from . import _methods, overrides +from . import multiarray as mu +from . import numerictypes as nt +from . import umath as um +from ._multiarray_umath import _array_converter +from .multiarray import asanyarray, asarray, concatenate + +_dt_ = nt.sctype2char + +# functions that are methods +__all__ = [ + 'all', 'amax', 'amin', 'any', 'argmax', + 'argmin', 'argpartition', 'argsort', 'around', 'choose', 'clip', + 'compress', 'cumprod', 'cumsum', 'cumulative_prod', 'cumulative_sum', + 'diagonal', 'mean', 'max', 'min', 'matrix_transpose', + 'ndim', 'nonzero', 'partition', 'prod', 'ptp', 'put', + 'ravel', 'repeat', 'reshape', 'resize', 'round', + 'searchsorted', 'shape', 'size', 'sort', 'squeeze', + 'std', 'sum', 'swapaxes', 'take', 'trace', 'transpose', 'var', +] + +_gentype = types.GeneratorType +# save away Python sum +_sum_ = sum + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy') + + +# functions that are now methods +def _wrapit(obj, method, *args, **kwds): + conv = _array_converter(obj) + # As this already tried the method, subok is maybe quite reasonable here + # but this follows what was done before. TODO: revisit this. + arr, = conv.as_arrays(subok=False) + result = getattr(arr, method)(*args, **kwds) + + return conv.wrap(result, to_scalar=False) + + +def _wrapfunc(obj, method, *args, **kwds): + bound = getattr(obj, method, None) + if bound is None: + return _wrapit(obj, method, *args, **kwds) + + try: + return bound(*args, **kwds) + except TypeError: + # A TypeError occurs if the object does have such a method in its + # class, but its signature is not identical to that of NumPy's. This + # situation has occurred in the case of a downstream library like + # 'pandas'. + # + # Call _wrapit from within the except clause to ensure a potential + # exception has a traceback chain. + return _wrapit(obj, method, *args, **kwds) + + +def _wrapreduction(obj, ufunc, method, axis, dtype, out, **kwargs): + passkwargs = {k: v for k, v in kwargs.items() + if v is not np._NoValue} + + if type(obj) is not mu.ndarray: + try: + reduction = getattr(obj, method) + except AttributeError: + pass + else: + # This branch is needed for reductions like any which don't + # support a dtype. + if dtype is not None: + return reduction(axis=axis, dtype=dtype, out=out, **passkwargs) + else: + return reduction(axis=axis, out=out, **passkwargs) + + return ufunc.reduce(obj, axis, dtype, out, **passkwargs) + + +def _wrapreduction_any_all(obj, ufunc, method, axis, out, **kwargs): + # Same as above function, but dtype is always bool (but never passed on) + passkwargs = {k: v for k, v in kwargs.items() + if v is not np._NoValue} + + if type(obj) is not mu.ndarray: + try: + reduction = getattr(obj, method) + except AttributeError: + pass + else: + return reduction(axis=axis, out=out, **passkwargs) + + return ufunc.reduce(obj, axis, bool, out, **passkwargs) + + +def _take_dispatcher(a, indices, axis=None, out=None, mode=None): + return (a, out) + + +@array_function_dispatch(_take_dispatcher) +def take(a, indices, axis=None, out=None, mode='raise'): + """ + Take elements from an array along an axis. + + When axis is not None, this function does the same thing as "fancy" + indexing (indexing arrays using arrays); however, it can be easier to use + if you need elements along a given axis. A call such as + ``np.take(arr, indices, axis=3)`` is equivalent to + ``arr[:,:,:,indices,...]``. + + Explained without fancy indexing, this is equivalent to the following use + of `ndindex`, which sets each of ``ii``, ``jj``, and ``kk`` to a tuple of + indices:: + + Ni, Nk = a.shape[:axis], a.shape[axis+1:] + Nj = indices.shape + for ii in ndindex(Ni): + for jj in ndindex(Nj): + for kk in ndindex(Nk): + out[ii + jj + kk] = a[ii + (indices[jj],) + kk] + + Parameters + ---------- + a : array_like (Ni..., M, Nk...) + The source array. + indices : array_like (Nj...) + The indices of the values to extract. + Also allow scalars for indices. + axis : int, optional + The axis over which to select values. By default, the flattened + input array is used. + out : ndarray, optional (Ni..., Nj..., Nk...) + If provided, the result will be placed in this array. It should + be of the appropriate shape and dtype. Note that `out` is always + buffered if `mode='raise'`; use other modes for better performance. + mode : {'raise', 'wrap', 'clip'}, optional + Specifies how out-of-bounds indices will behave. + + * 'raise' -- raise an error (default) + * 'wrap' -- wrap around + * 'clip' -- clip to the range + + 'clip' mode means that all indices that are too large are replaced + by the index that addresses the last element along that axis. Note + that this disables indexing with negative numbers. + + Returns + ------- + out : ndarray (Ni..., Nj..., Nk...) + The returned array has the same type as `a`. + + See Also + -------- + compress : Take elements using a boolean mask + ndarray.take : equivalent method + take_along_axis : Take elements by matching the array and the index arrays + + Notes + ----- + By eliminating the inner loop in the description above, and using `s_` to + build simple slice objects, `take` can be expressed in terms of applying + fancy indexing to each 1-d slice:: + + Ni, Nk = a.shape[:axis], a.shape[axis+1:] + for ii in ndindex(Ni): + for kk in ndindex(Nj): + out[ii + s_[...,] + kk] = a[ii + s_[:,] + kk][indices] + + For this reason, it is equivalent to (but faster than) the following use + of `apply_along_axis`:: + + out = np.apply_along_axis(lambda a_1d: a_1d[indices], axis, a) + + Examples + -------- + >>> import numpy as np + >>> a = [4, 3, 5, 7, 6, 8] + >>> indices = [0, 1, 4] + >>> np.take(a, indices) + array([4, 3, 6]) + + In this example if `a` is an ndarray, "fancy" indexing can be used. + + >>> a = np.array(a) + >>> a[indices] + array([4, 3, 6]) + + If `indices` is not one dimensional, the output also has these dimensions. + + >>> np.take(a, [[0, 1], [2, 3]]) + array([[4, 3], + [5, 7]]) + """ + return _wrapfunc(a, 'take', indices, axis=axis, out=out, mode=mode) + + +def _reshape_dispatcher(a, /, shape=None, order=None, *, newshape=None, + copy=None): + return (a,) + + +@array_function_dispatch(_reshape_dispatcher) +def reshape(a, /, shape=None, order='C', *, newshape=None, copy=None): + """ + Gives a new shape to an array without changing its data. + + Parameters + ---------- + a : array_like + Array to be reshaped. + shape : int or tuple of ints + The new shape should be compatible with the original shape. If + an integer, then the result will be a 1-D array of that length. + One shape dimension can be -1. In this case, the value is + inferred from the length of the array and remaining dimensions. + order : {'C', 'F', 'A'}, optional + Read the elements of ``a`` using this index order, and place the + elements into the reshaped array using this index order. 'C' + means to read / write the elements using C-like index order, + with the last axis index changing fastest, back to the first + axis index changing slowest. 'F' means to read / write the + elements using Fortran-like index order, with the first index + changing fastest, and the last index changing slowest. Note that + the 'C' and 'F' options take no account of the memory layout of + the underlying array, and only refer to the order of indexing. + 'A' means to read / write the elements in Fortran-like index + order if ``a`` is Fortran *contiguous* in memory, C-like order + otherwise. + newshape : int or tuple of ints + .. deprecated:: 2.1 + Replaced by ``shape`` argument. Retained for backward + compatibility. + copy : bool, optional + If ``True``, then the array data is copied. If ``None``, a copy will + only be made if it's required by ``order``. For ``False`` it raises + a ``ValueError`` if a copy cannot be avoided. Default: ``None``. + + Returns + ------- + reshaped_array : ndarray + This will be a new view object if possible; otherwise, it will + be a copy. Note there is no guarantee of the *memory layout* (C- or + Fortran- contiguous) of the returned array. + + See Also + -------- + ndarray.reshape : Equivalent method. + + Notes + ----- + It is not always possible to change the shape of an array without copying + the data. + + The ``order`` keyword gives the index ordering both for *fetching* + the values from ``a``, and then *placing* the values into the output + array. For example, let's say you have an array: + + >>> a = np.arange(6).reshape((3, 2)) + >>> a + array([[0, 1], + [2, 3], + [4, 5]]) + + You can think of reshaping as first raveling the array (using the given + index order), then inserting the elements from the raveled array into the + new array using the same kind of index ordering as was used for the + raveling. + + >>> np.reshape(a, (2, 3)) # C-like index ordering + array([[0, 1, 2], + [3, 4, 5]]) + >>> np.reshape(np.ravel(a), (2, 3)) # equivalent to C ravel then C reshape + array([[0, 1, 2], + [3, 4, 5]]) + >>> np.reshape(a, (2, 3), order='F') # Fortran-like index ordering + array([[0, 4, 3], + [2, 1, 5]]) + >>> np.reshape(np.ravel(a, order='F'), (2, 3), order='F') + array([[0, 4, 3], + [2, 1, 5]]) + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1,2,3], [4,5,6]]) + >>> np.reshape(a, 6) + array([1, 2, 3, 4, 5, 6]) + >>> np.reshape(a, 6, order='F') + array([1, 4, 2, 5, 3, 6]) + + >>> np.reshape(a, (3,-1)) # the unspecified value is inferred to be 2 + array([[1, 2], + [3, 4], + [5, 6]]) + """ + if newshape is None and shape is None: + raise TypeError( + "reshape() missing 1 required positional argument: 'shape'") + if newshape is not None: + if shape is not None: + raise TypeError( + "You cannot specify 'newshape' and 'shape' arguments " + "at the same time.") + # Deprecated in NumPy 2.1, 2024-04-18 + warnings.warn( + "`newshape` keyword argument is deprecated, " + "use `shape=...` or pass shape positionally instead. " + "(deprecated in NumPy 2.1)", + DeprecationWarning, + stacklevel=2, + ) + shape = newshape + if copy is not None: + return _wrapfunc(a, 'reshape', shape, order=order, copy=copy) + return _wrapfunc(a, 'reshape', shape, order=order) + + +def _choose_dispatcher(a, choices, out=None, mode=None): + yield a + yield from choices + yield out + + +@array_function_dispatch(_choose_dispatcher) +def choose(a, choices, out=None, mode='raise'): + """ + Construct an array from an index array and a list of arrays to choose from. + + First of all, if confused or uncertain, definitely look at the Examples - + in its full generality, this function is less simple than it might + seem from the following code description:: + + np.choose(a,c) == np.array([c[a[I]][I] for I in np.ndindex(a.shape)]) + + But this omits some subtleties. Here is a fully general summary: + + Given an "index" array (`a`) of integers and a sequence of ``n`` arrays + (`choices`), `a` and each choice array are first broadcast, as necessary, + to arrays of a common shape; calling these *Ba* and *Bchoices[i], i = + 0,...,n-1* we have that, necessarily, ``Ba.shape == Bchoices[i].shape`` + for each ``i``. Then, a new array with shape ``Ba.shape`` is created as + follows: + + * if ``mode='raise'`` (the default), then, first of all, each element of + ``a`` (and thus ``Ba``) must be in the range ``[0, n-1]``; now, suppose + that ``i`` (in that range) is the value at the ``(j0, j1, ..., jm)`` + position in ``Ba`` - then the value at the same position in the new array + is the value in ``Bchoices[i]`` at that same position; + + * if ``mode='wrap'``, values in `a` (and thus `Ba`) may be any (signed) + integer; modular arithmetic is used to map integers outside the range + `[0, n-1]` back into that range; and then the new array is constructed + as above; + + * if ``mode='clip'``, values in `a` (and thus ``Ba``) may be any (signed) + integer; negative integers are mapped to 0; values greater than ``n-1`` + are mapped to ``n-1``; and then the new array is constructed as above. + + Parameters + ---------- + a : int array + This array must contain integers in ``[0, n-1]``, where ``n`` is the + number of choices, unless ``mode=wrap`` or ``mode=clip``, in which + cases any integers are permissible. + choices : sequence of arrays + Choice arrays. `a` and all of the choices must be broadcastable to the + same shape. If `choices` is itself an array (not recommended), then + its outermost dimension (i.e., the one corresponding to + ``choices.shape[0]``) is taken as defining the "sequence". + out : array, optional + If provided, the result will be inserted into this array. It should + be of the appropriate shape and dtype. Note that `out` is always + buffered if ``mode='raise'``; use other modes for better performance. + mode : {'raise' (default), 'wrap', 'clip'}, optional + Specifies how indices outside ``[0, n-1]`` will be treated: + + * 'raise' : an exception is raised + * 'wrap' : value becomes value mod ``n`` + * 'clip' : values < 0 are mapped to 0, values > n-1 are mapped to n-1 + + Returns + ------- + merged_array : array + The merged result. + + Raises + ------ + ValueError: shape mismatch + If `a` and each choice array are not all broadcastable to the same + shape. + + See Also + -------- + ndarray.choose : equivalent method + numpy.take_along_axis : Preferable if `choices` is an array + + Notes + ----- + To reduce the chance of misinterpretation, even though the following + "abuse" is nominally supported, `choices` should neither be, nor be + thought of as, a single array, i.e., the outermost sequence-like container + should be either a list or a tuple. + + Examples + -------- + + >>> import numpy as np + >>> choices = [[0, 1, 2, 3], [10, 11, 12, 13], + ... [20, 21, 22, 23], [30, 31, 32, 33]] + >>> np.choose([2, 3, 1, 0], choices + ... # the first element of the result will be the first element of the + ... # third (2+1) "array" in choices, namely, 20; the second element + ... # will be the second element of the fourth (3+1) choice array, i.e., + ... # 31, etc. + ... ) + array([20, 31, 12, 3]) + >>> np.choose([2, 4, 1, 0], choices, mode='clip') # 4 goes to 3 (4-1) + array([20, 31, 12, 3]) + >>> # because there are 4 choice arrays + >>> np.choose([2, 4, 1, 0], choices, mode='wrap') # 4 goes to (4 mod 4) + array([20, 1, 12, 3]) + >>> # i.e., 0 + + A couple examples illustrating how choose broadcasts: + + >>> a = [[1, 0, 1], [0, 1, 0], [1, 0, 1]] + >>> choices = [-10, 10] + >>> np.choose(a, choices) + array([[ 10, -10, 10], + [-10, 10, -10], + [ 10, -10, 10]]) + + >>> # With thanks to Anne Archibald + >>> a = np.array([0, 1]).reshape((2,1,1)) + >>> c1 = np.array([1, 2, 3]).reshape((1,3,1)) + >>> c2 = np.array([-1, -2, -3, -4, -5]).reshape((1,1,5)) + >>> np.choose(a, (c1, c2)) # result is 2x3x5, res[0,:,:]=c1, res[1,:,:]=c2 + array([[[ 1, 1, 1, 1, 1], + [ 2, 2, 2, 2, 2], + [ 3, 3, 3, 3, 3]], + [[-1, -2, -3, -4, -5], + [-1, -2, -3, -4, -5], + [-1, -2, -3, -4, -5]]]) + + """ + return _wrapfunc(a, 'choose', choices, out=out, mode=mode) + + +def _repeat_dispatcher(a, repeats, axis=None): + return (a,) + + +@array_function_dispatch(_repeat_dispatcher) +def repeat(a, repeats, axis=None): + """ + Repeat each element of an array after themselves + + Parameters + ---------- + a : array_like + Input array. + repeats : int or array of ints + The number of repetitions for each element. `repeats` is broadcasted + to fit the shape of the given axis. + axis : int, optional + The axis along which to repeat values. By default, use the + flattened input array, and return a flat output array. + + Returns + ------- + repeated_array : ndarray + Output array which has the same shape as `a`, except along + the given axis. + + See Also + -------- + tile : Tile an array. + unique : Find the unique elements of an array. + + Examples + -------- + >>> import numpy as np + >>> np.repeat(3, 4) + array([3, 3, 3, 3]) + >>> x = np.array([[1,2],[3,4]]) + >>> np.repeat(x, 2) + array([1, 1, 2, 2, 3, 3, 4, 4]) + >>> np.repeat(x, 3, axis=1) + array([[1, 1, 1, 2, 2, 2], + [3, 3, 3, 4, 4, 4]]) + >>> np.repeat(x, [1, 2], axis=0) + array([[1, 2], + [3, 4], + [3, 4]]) + + """ + return _wrapfunc(a, 'repeat', repeats, axis=axis) + + +def _put_dispatcher(a, ind, v, mode=None): + return (a, ind, v) + + +@array_function_dispatch(_put_dispatcher) +def put(a, ind, v, mode='raise'): + """ + Replaces specified elements of an array with given values. + + The indexing works on the flattened target array. `put` is roughly + equivalent to: + + :: + + a.flat[ind] = v + + Parameters + ---------- + a : ndarray + Target array. + ind : array_like + Target indices, interpreted as integers. + v : array_like + Values to place in `a` at target indices. If `v` is shorter than + `ind` it will be repeated as necessary. + mode : {'raise', 'wrap', 'clip'}, optional + Specifies how out-of-bounds indices will behave. + + * 'raise' -- raise an error (default) + * 'wrap' -- wrap around + * 'clip' -- clip to the range + + 'clip' mode means that all indices that are too large are replaced + by the index that addresses the last element along that axis. Note + that this disables indexing with negative numbers. In 'raise' mode, + if an exception occurs the target array may still be modified. + + See Also + -------- + putmask, place + put_along_axis : Put elements by matching the array and the index arrays + + Examples + -------- + >>> import numpy as np + >>> a = np.arange(5) + >>> np.put(a, [0, 2], [-44, -55]) + >>> a + array([-44, 1, -55, 3, 4]) + + >>> a = np.arange(5) + >>> np.put(a, 22, -5, mode='clip') + >>> a + array([ 0, 1, 2, 3, -5]) + + """ + try: + put = a.put + except AttributeError as e: + raise TypeError(f"argument 1 must be numpy.ndarray, not {type(a)}") from e + + return put(ind, v, mode=mode) + + +def _swapaxes_dispatcher(a, axis1, axis2): + return (a,) + + +@array_function_dispatch(_swapaxes_dispatcher) +def swapaxes(a, axis1, axis2): + """ + Interchange two axes of an array. + + Parameters + ---------- + a : array_like + Input array. + axis1 : int + First axis. + axis2 : int + Second axis. + + Returns + ------- + a_swapped : ndarray + For NumPy >= 1.10.0, if `a` is an ndarray, then a view of `a` is + returned; otherwise a new array is created. For earlier NumPy + versions a view of `a` is returned only if the order of the + axes is changed, otherwise the input array is returned. + + Examples + -------- + >>> import numpy as np + >>> x = np.array([[1,2,3]]) + >>> np.swapaxes(x,0,1) + array([[1], + [2], + [3]]) + + >>> x = np.array([[[0,1],[2,3]],[[4,5],[6,7]]]) + >>> x + array([[[0, 1], + [2, 3]], + [[4, 5], + [6, 7]]]) + + >>> np.swapaxes(x,0,2) + array([[[0, 4], + [2, 6]], + [[1, 5], + [3, 7]]]) + + """ + return _wrapfunc(a, 'swapaxes', axis1, axis2) + + +def _transpose_dispatcher(a, axes=None): + return (a,) + + +@array_function_dispatch(_transpose_dispatcher) +def transpose(a, axes=None): + """ + Returns an array with axes transposed. + + For a 1-D array, this returns an unchanged view of the original array, as a + transposed vector is simply the same vector. + To convert a 1-D array into a 2-D column vector, an additional dimension + must be added, e.g., ``np.atleast_2d(a).T`` achieves this, as does + ``a[:, np.newaxis]``. + For a 2-D array, this is the standard matrix transpose. + For an n-D array, if axes are given, their order indicates how the + axes are permuted (see Examples). If axes are not provided, then + ``transpose(a).shape == a.shape[::-1]``. + + Parameters + ---------- + a : array_like + Input array. + axes : tuple or list of ints, optional + If specified, it must be a tuple or list which contains a permutation + of [0, 1, ..., N-1] where N is the number of axes of `a`. Negative + indices can also be used to specify axes. The i-th axis of the returned + array will correspond to the axis numbered ``axes[i]`` of the input. + If not specified, defaults to ``range(a.ndim)[::-1]``, which reverses + the order of the axes. + + Returns + ------- + p : ndarray + `a` with its axes permuted. A view is returned whenever possible. + + See Also + -------- + ndarray.transpose : Equivalent method. + moveaxis : Move axes of an array to new positions. + argsort : Return the indices that would sort an array. + + Notes + ----- + Use ``transpose(a, argsort(axes))`` to invert the transposition of tensors + when using the `axes` keyword argument. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1, 2], [3, 4]]) + >>> a + array([[1, 2], + [3, 4]]) + >>> np.transpose(a) + array([[1, 3], + [2, 4]]) + + >>> a = np.array([1, 2, 3, 4]) + >>> a + array([1, 2, 3, 4]) + >>> np.transpose(a) + array([1, 2, 3, 4]) + + >>> a = np.ones((1, 2, 3)) + >>> np.transpose(a, (1, 0, 2)).shape + (2, 1, 3) + + >>> a = np.ones((2, 3, 4, 5)) + >>> np.transpose(a).shape + (5, 4, 3, 2) + + >>> a = np.arange(3*4*5).reshape((3, 4, 5)) + >>> np.transpose(a, (-1, 0, -2)).shape + (5, 3, 4) + + """ + return _wrapfunc(a, 'transpose', axes) + + +def _matrix_transpose_dispatcher(x): + return (x,) + +@array_function_dispatch(_matrix_transpose_dispatcher) +def matrix_transpose(x, /): + """ + Transposes a matrix (or a stack of matrices) ``x``. + + This function is Array API compatible. + + Parameters + ---------- + x : array_like + Input array having shape (..., M, N) and whose two innermost + dimensions form ``MxN`` matrices. + + Returns + ------- + out : ndarray + An array containing the transpose for each matrix and having shape + (..., N, M). + + See Also + -------- + transpose : Generic transpose method. + + Examples + -------- + >>> import numpy as np + >>> np.matrix_transpose([[1, 2], [3, 4]]) + array([[1, 3], + [2, 4]]) + + >>> np.matrix_transpose([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) + array([[[1, 3], + [2, 4]], + [[5, 7], + [6, 8]]]) + + """ + x = asanyarray(x) + if x.ndim < 2: + raise ValueError( + f"Input array must be at least 2-dimensional, but it is {x.ndim}" + ) + return swapaxes(x, -1, -2) + + +def _partition_dispatcher(a, kth, axis=None, kind=None, order=None): + return (a,) + + +@array_function_dispatch(_partition_dispatcher) +def partition(a, kth, axis=-1, kind='introselect', order=None): + """ + Return a partitioned copy of an array. + + Creates a copy of the array and partially sorts it in such a way that + the value of the element in k-th position is in the position it would be + in a sorted array. In the output array, all elements smaller than the k-th + element are located to the left of this element and all equal or greater + are located to its right. The ordering of the elements in the two + partitions on the either side of the k-th element in the output array is + undefined. + + Parameters + ---------- + a : array_like + Array to be sorted. + kth : int or sequence of ints + Element index to partition by. The k-th value of the element + will be in its final sorted position and all smaller elements + will be moved before it and all equal or greater elements behind + it. The order of all elements in the partitions is undefined. If + provided with a sequence of k-th it will partition all elements + indexed by k-th of them into their sorted position at once. + + .. deprecated:: 1.22.0 + Passing booleans as index is deprecated. + axis : int or None, optional + Axis along which to sort. If None, the array is flattened before + sorting. The default is -1, which sorts along the last axis. + kind : {'introselect'}, optional + Selection algorithm. Default is 'introselect'. + order : str or list of str, optional + When `a` is an array with fields defined, this argument + specifies which fields to compare first, second, etc. A single + field can be specified as a string. Not all fields need be + specified, but unspecified fields will still be used, in the + order in which they come up in the dtype, to break ties. + + Returns + ------- + partitioned_array : ndarray + Array of the same type and shape as `a`. + + See Also + -------- + ndarray.partition : Method to sort an array in-place. + argpartition : Indirect partition. + sort : Full sorting + + Notes + ----- + The various selection algorithms are characterized by their average + speed, worst case performance, work space size, and whether they are + stable. A stable sort keeps items with the same key in the same + relative order. The available algorithms have the following + properties: + + ================= ======= ============= ============ ======= + kind speed worst case work space stable + ================= ======= ============= ============ ======= + 'introselect' 1 O(n) 0 no + ================= ======= ============= ============ ======= + + All the partition algorithms make temporary copies of the data when + partitioning along any but the last axis. Consequently, + partitioning along the last axis is faster and uses less space than + partitioning along any other axis. + + The sort order for complex numbers is lexicographic. If both the + real and imaginary parts are non-nan then the order is determined by + the real parts except when they are equal, in which case the order + is determined by the imaginary parts. + + The sort order of ``np.nan`` is bigger than ``np.inf``. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([7, 1, 7, 7, 1, 5, 7, 2, 3, 2, 6, 2, 3, 0]) + >>> p = np.partition(a, 4) + >>> p + array([0, 1, 2, 1, 2, 5, 2, 3, 3, 6, 7, 7, 7, 7]) # may vary + + ``p[4]`` is 2; all elements in ``p[:4]`` are less than or equal + to ``p[4]``, and all elements in ``p[5:]`` are greater than or + equal to ``p[4]``. The partition is:: + + [0, 1, 2, 1], [2], [5, 2, 3, 3, 6, 7, 7, 7, 7] + + The next example shows the use of multiple values passed to `kth`. + + >>> p2 = np.partition(a, (4, 8)) + >>> p2 + array([0, 1, 2, 1, 2, 3, 3, 2, 5, 6, 7, 7, 7, 7]) + + ``p2[4]`` is 2 and ``p2[8]`` is 5. All elements in ``p2[:4]`` + are less than or equal to ``p2[4]``, all elements in ``p2[5:8]`` + are greater than or equal to ``p2[4]`` and less than or equal to + ``p2[8]``, and all elements in ``p2[9:]`` are greater than or + equal to ``p2[8]``. The partition is:: + + [0, 1, 2, 1], [2], [3, 3, 2], [5], [6, 7, 7, 7, 7] + """ + if axis is None: + # flatten returns (1, N) for np.matrix, so always use the last axis + a = asanyarray(a).flatten() + axis = -1 + else: + a = asanyarray(a).copy(order="K") + a.partition(kth, axis=axis, kind=kind, order=order) + return a + + +def _argpartition_dispatcher(a, kth, axis=None, kind=None, order=None): + return (a,) + + +@array_function_dispatch(_argpartition_dispatcher) +def argpartition(a, kth, axis=-1, kind='introselect', order=None): + """ + Perform an indirect partition along the given axis using the + algorithm specified by the `kind` keyword. It returns an array of + indices of the same shape as `a` that index data along the given + axis in partitioned order. + + Parameters + ---------- + a : array_like + Array to sort. + kth : int or sequence of ints + Element index to partition by. The k-th element will be in its + final sorted position and all smaller elements will be moved + before it and all larger elements behind it. The order of all + elements in the partitions is undefined. If provided with a + sequence of k-th it will partition all of them into their sorted + position at once. + + .. deprecated:: 1.22.0 + Passing booleans as index is deprecated. + axis : int or None, optional + Axis along which to sort. The default is -1 (the last axis). If + None, the flattened array is used. + kind : {'introselect'}, optional + Selection algorithm. Default is 'introselect' + order : str or list of str, optional + When `a` is an array with fields defined, this argument + specifies which fields to compare first, second, etc. A single + field can be specified as a string, and not all fields need be + specified, but unspecified fields will still be used, in the + order in which they come up in the dtype, to break ties. + + Returns + ------- + index_array : ndarray, int + Array of indices that partition `a` along the specified axis. + If `a` is one-dimensional, ``a[index_array]`` yields a partitioned `a`. + More generally, ``np.take_along_axis(a, index_array, axis=axis)`` + always yields the partitioned `a`, irrespective of dimensionality. + + See Also + -------- + partition : Describes partition algorithms used. + ndarray.partition : Inplace partition. + argsort : Full indirect sort. + take_along_axis : Apply ``index_array`` from argpartition + to an array as if by calling partition. + + Notes + ----- + The returned indices are not guaranteed to be sorted according to + the values. Furthermore, the default selection algorithm ``introselect`` + is unstable, and hence the returned indices are not guaranteed + to be the earliest/latest occurrence of the element. + + `argpartition` works for real/complex inputs with nan values, + see `partition` for notes on the enhanced sort order and + different selection algorithms. + + Examples + -------- + One dimensional array: + + >>> import numpy as np + >>> x = np.array([3, 4, 2, 1]) + >>> x[np.argpartition(x, 3)] + array([2, 1, 3, 4]) # may vary + >>> x[np.argpartition(x, (1, 3))] + array([1, 2, 3, 4]) # may vary + + >>> x = [3, 4, 2, 1] + >>> np.array(x)[np.argpartition(x, 3)] + array([2, 1, 3, 4]) # may vary + + Multi-dimensional array: + + >>> x = np.array([[3, 4, 2], [1, 3, 1]]) + >>> index_array = np.argpartition(x, kth=1, axis=-1) + >>> # below is the same as np.partition(x, kth=1) + >>> np.take_along_axis(x, index_array, axis=-1) + array([[2, 3, 4], + [1, 1, 3]]) + + """ + return _wrapfunc(a, 'argpartition', kth, axis=axis, kind=kind, order=order) + + +def _sort_dispatcher(a, axis=None, kind=None, order=None, *, stable=None): + return (a,) + + +@array_function_dispatch(_sort_dispatcher) +def sort(a, axis=-1, kind=None, order=None, *, stable=None): + """ + Return a sorted copy of an array. + + Parameters + ---------- + a : array_like + Array to be sorted. + axis : int or None, optional + Axis along which to sort. If None, the array is flattened before + sorting. The default is -1, which sorts along the last axis. + kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional + Sorting algorithm. The default is 'quicksort'. Note that both 'stable' + and 'mergesort' use timsort or radix sort under the covers and, + in general, the actual implementation will vary with data type. + The 'mergesort' option is retained for backwards compatibility. + order : str or list of str, optional + When `a` is an array with fields defined, this argument specifies + which fields to compare first, second, etc. A single field can + be specified as a string, and not all fields need be specified, + but unspecified fields will still be used, in the order in which + they come up in the dtype, to break ties. + stable : bool, optional + Sort stability. If ``True``, the returned array will maintain + the relative order of ``a`` values which compare as equal. + If ``False`` or ``None``, this is not guaranteed. Internally, + this option selects ``kind='stable'``. Default: ``None``. + + .. versionadded:: 2.0.0 + + Returns + ------- + sorted_array : ndarray + Array of the same type and shape as `a`. + + See Also + -------- + ndarray.sort : Method to sort an array in-place. + argsort : Indirect sort. + lexsort : Indirect stable sort on multiple keys. + searchsorted : Find elements in a sorted array. + partition : Partial sort. + + Notes + ----- + The various sorting algorithms are characterized by their average speed, + worst case performance, work space size, and whether they are stable. A + stable sort keeps items with the same key in the same relative + order. The four algorithms implemented in NumPy have the following + properties: + + =========== ======= ============= ============ ======== + kind speed worst case work space stable + =========== ======= ============= ============ ======== + 'quicksort' 1 O(n^2) 0 no + 'heapsort' 3 O(n*log(n)) 0 no + 'mergesort' 2 O(n*log(n)) ~n/2 yes + 'timsort' 2 O(n*log(n)) ~n/2 yes + =========== ======= ============= ============ ======== + + .. note:: The datatype determines which of 'mergesort' or 'timsort' + is actually used, even if 'mergesort' is specified. User selection + at a finer scale is not currently available. + + For performance, ``sort`` makes a temporary copy if needed to make the data + `contiguous `_ + in memory along the sort axis. For even better performance and reduced + memory consumption, ensure that the array is already contiguous along the + sort axis. + + The sort order for complex numbers is lexicographic. If both the real + and imaginary parts are non-nan then the order is determined by the + real parts except when they are equal, in which case the order is + determined by the imaginary parts. + + Previous to numpy 1.4.0 sorting real and complex arrays containing nan + values led to undefined behaviour. In numpy versions >= 1.4.0 nan + values are sorted to the end. The extended sort order is: + + * Real: [R, nan] + * Complex: [R + Rj, R + nanj, nan + Rj, nan + nanj] + + where R is a non-nan real value. Complex values with the same nan + placements are sorted according to the non-nan part if it exists. + Non-nan values are sorted as before. + + quicksort has been changed to: + `introsort `_. + When sorting does not make enough progress it switches to + `heapsort `_. + This implementation makes quicksort O(n*log(n)) in the worst case. + + 'stable' automatically chooses the best stable sorting algorithm + for the data type being sorted. + It, along with 'mergesort' is currently mapped to + `timsort `_ + or `radix sort `_ + depending on the data type. + API forward compatibility currently limits the + ability to select the implementation and it is hardwired for the different + data types. + + Timsort is added for better performance on already or nearly + sorted data. On random data timsort is almost identical to + mergesort. It is now used for stable sort while quicksort is still the + default sort if none is chosen. For timsort details, refer to + `CPython listsort.txt + `_ + 'mergesort' and 'stable' are mapped to radix sort for integer data types. + Radix sort is an O(n) sort instead of O(n log n). + + NaT now sorts to the end of arrays for consistency with NaN. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1,4],[3,1]]) + >>> np.sort(a) # sort along the last axis + array([[1, 4], + [1, 3]]) + >>> np.sort(a, axis=None) # sort the flattened array + array([1, 1, 3, 4]) + >>> np.sort(a, axis=0) # sort along the first axis + array([[1, 1], + [3, 4]]) + + Use the `order` keyword to specify a field to use when sorting a + structured array: + + >>> dtype = [('name', 'S10'), ('height', float), ('age', int)] + >>> values = [('Arthur', 1.8, 41), ('Lancelot', 1.9, 38), + ... ('Galahad', 1.7, 38)] + >>> a = np.array(values, dtype=dtype) # create a structured array + >>> np.sort(a, order='height') # doctest: +SKIP + array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41), + ('Lancelot', 1.8999999999999999, 38)], + dtype=[('name', '|S10'), ('height', '>> np.sort(a, order=['age', 'height']) # doctest: +SKIP + array([('Galahad', 1.7, 38), ('Lancelot', 1.8999999999999999, 38), + ('Arthur', 1.8, 41)], + dtype=[('name', '|S10'), ('height', '>> import numpy as np + >>> x = np.array([3, 1, 2]) + >>> np.argsort(x) + array([1, 2, 0]) + + Two-dimensional array: + + >>> x = np.array([[0, 3], [2, 2]]) + >>> x + array([[0, 3], + [2, 2]]) + + >>> ind = np.argsort(x, axis=0) # sorts along first axis (down) + >>> ind + array([[0, 1], + [1, 0]]) + >>> np.take_along_axis(x, ind, axis=0) # same as np.sort(x, axis=0) + array([[0, 2], + [2, 3]]) + + >>> ind = np.argsort(x, axis=1) # sorts along last axis (across) + >>> ind + array([[0, 1], + [0, 1]]) + >>> np.take_along_axis(x, ind, axis=1) # same as np.sort(x, axis=1) + array([[0, 3], + [2, 2]]) + + Indices of the sorted elements of a N-dimensional array: + + >>> ind = np.unravel_index(np.argsort(x, axis=None), x.shape) + >>> ind + (array([0, 1, 1, 0]), array([0, 0, 1, 1])) + >>> x[ind] # same as np.sort(x, axis=None) + array([0, 2, 2, 3]) + + Sorting with keys: + + >>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '>> x + array([(1, 0), (0, 1)], + dtype=[('x', '>> np.argsort(x, order=('x','y')) + array([1, 0]) + + >>> np.argsort(x, order=('y','x')) + array([0, 1]) + + """ + return _wrapfunc( + a, 'argsort', axis=axis, kind=kind, order=order, stable=stable + ) + +def _argmax_dispatcher(a, axis=None, out=None, *, keepdims=np._NoValue): + return (a, out) + + +@array_function_dispatch(_argmax_dispatcher) +def argmax(a, axis=None, out=None, *, keepdims=np._NoValue): + """ + Returns the indices of the maximum values along an axis. + + Parameters + ---------- + a : array_like + Input array. + axis : int, optional + By default, the index is into the flattened array, otherwise + along the specified axis. + out : array, optional + If provided, the result will be inserted into this array. It should + be of the appropriate shape and dtype. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the array. + + .. versionadded:: 1.22.0 + + Returns + ------- + index_array : ndarray of ints + Array of indices into the array. It has the same shape as ``a.shape`` + with the dimension along `axis` removed. If `keepdims` is set to True, + then the size of `axis` will be 1 with the resulting array having same + shape as ``a.shape``. + + See Also + -------- + ndarray.argmax, argmin + amax : The maximum value along a given axis. + unravel_index : Convert a flat index into an index tuple. + take_along_axis : Apply ``np.expand_dims(index_array, axis)`` + from argmax to an array as if by calling max. + + Notes + ----- + In case of multiple occurrences of the maximum values, the indices + corresponding to the first occurrence are returned. + + Examples + -------- + >>> import numpy as np + >>> a = np.arange(6).reshape(2,3) + 10 + >>> a + array([[10, 11, 12], + [13, 14, 15]]) + >>> np.argmax(a) + 5 + >>> np.argmax(a, axis=0) + array([1, 1, 1]) + >>> np.argmax(a, axis=1) + array([2, 2]) + + Indexes of the maximal elements of a N-dimensional array: + + >>> ind = np.unravel_index(np.argmax(a, axis=None), a.shape) + >>> ind + (1, 2) + >>> a[ind] + 15 + + >>> b = np.arange(6) + >>> b[1] = 5 + >>> b + array([0, 5, 2, 3, 4, 5]) + >>> np.argmax(b) # Only the first occurrence is returned. + 1 + + >>> x = np.array([[4,2,3], [1,0,3]]) + >>> index_array = np.argmax(x, axis=-1) + >>> # Same as np.amax(x, axis=-1, keepdims=True) + >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), axis=-1) + array([[4], + [3]]) + >>> # Same as np.amax(x, axis=-1) + >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), + ... axis=-1).squeeze(axis=-1) + array([4, 3]) + + Setting `keepdims` to `True`, + + >>> x = np.arange(24).reshape((2, 3, 4)) + >>> res = np.argmax(x, axis=1, keepdims=True) + >>> res.shape + (2, 1, 4) + """ + kwds = {'keepdims': keepdims} if keepdims is not np._NoValue else {} + return _wrapfunc(a, 'argmax', axis=axis, out=out, **kwds) + + +def _argmin_dispatcher(a, axis=None, out=None, *, keepdims=np._NoValue): + return (a, out) + + +@array_function_dispatch(_argmin_dispatcher) +def argmin(a, axis=None, out=None, *, keepdims=np._NoValue): + """ + Returns the indices of the minimum values along an axis. + + Parameters + ---------- + a : array_like + Input array. + axis : int, optional + By default, the index is into the flattened array, otherwise + along the specified axis. + out : array, optional + If provided, the result will be inserted into this array. It should + be of the appropriate shape and dtype. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the array. + + .. versionadded:: 1.22.0 + + Returns + ------- + index_array : ndarray of ints + Array of indices into the array. It has the same shape as `a.shape` + with the dimension along `axis` removed. If `keepdims` is set to True, + then the size of `axis` will be 1 with the resulting array having same + shape as `a.shape`. + + See Also + -------- + ndarray.argmin, argmax + amin : The minimum value along a given axis. + unravel_index : Convert a flat index into an index tuple. + take_along_axis : Apply ``np.expand_dims(index_array, axis)`` + from argmin to an array as if by calling min. + + Notes + ----- + In case of multiple occurrences of the minimum values, the indices + corresponding to the first occurrence are returned. + + Examples + -------- + >>> import numpy as np + >>> a = np.arange(6).reshape(2,3) + 10 + >>> a + array([[10, 11, 12], + [13, 14, 15]]) + >>> np.argmin(a) + 0 + >>> np.argmin(a, axis=0) + array([0, 0, 0]) + >>> np.argmin(a, axis=1) + array([0, 0]) + + Indices of the minimum elements of a N-dimensional array: + + >>> ind = np.unravel_index(np.argmin(a, axis=None), a.shape) + >>> ind + (0, 0) + >>> a[ind] + 10 + + >>> b = np.arange(6) + 10 + >>> b[4] = 10 + >>> b + array([10, 11, 12, 13, 10, 15]) + >>> np.argmin(b) # Only the first occurrence is returned. + 0 + + >>> x = np.array([[4,2,3], [1,0,3]]) + >>> index_array = np.argmin(x, axis=-1) + >>> # Same as np.amin(x, axis=-1, keepdims=True) + >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), axis=-1) + array([[2], + [0]]) + >>> # Same as np.amax(x, axis=-1) + >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), + ... axis=-1).squeeze(axis=-1) + array([2, 0]) + + Setting `keepdims` to `True`, + + >>> x = np.arange(24).reshape((2, 3, 4)) + >>> res = np.argmin(x, axis=1, keepdims=True) + >>> res.shape + (2, 1, 4) + """ + kwds = {'keepdims': keepdims} if keepdims is not np._NoValue else {} + return _wrapfunc(a, 'argmin', axis=axis, out=out, **kwds) + + +def _searchsorted_dispatcher(a, v, side=None, sorter=None): + return (a, v, sorter) + + +@array_function_dispatch(_searchsorted_dispatcher) +def searchsorted(a, v, side='left', sorter=None): + """ + Find indices where elements should be inserted to maintain order. + + Find the indices into a sorted array `a` such that, if the + corresponding elements in `v` were inserted before the indices, the + order of `a` would be preserved. + + Assuming that `a` is sorted: + + ====== ============================ + `side` returned index `i` satisfies + ====== ============================ + left ``a[i-1] < v <= a[i]`` + right ``a[i-1] <= v < a[i]`` + ====== ============================ + + Parameters + ---------- + a : 1-D array_like + Input array. If `sorter` is None, then it must be sorted in + ascending order, otherwise `sorter` must be an array of indices + that sort it. + v : array_like + Values to insert into `a`. + side : {'left', 'right'}, optional + If 'left', the index of the first suitable location found is given. + If 'right', return the last such index. If there is no suitable + index, return either 0 or N (where N is the length of `a`). + sorter : 1-D array_like, optional + Optional array of integer indices that sort array a into ascending + order. They are typically the result of argsort. + + Returns + ------- + indices : int or array of ints + Array of insertion points with the same shape as `v`, + or an integer if `v` is a scalar. + + See Also + -------- + sort : Return a sorted copy of an array. + histogram : Produce histogram from 1-D data. + + Notes + ----- + Binary search is used to find the required insertion points. + + As of NumPy 1.4.0 `searchsorted` works with real/complex arrays containing + `nan` values. The enhanced sort order is documented in `sort`. + + This function uses the same algorithm as the builtin python + `bisect.bisect_left` (``side='left'``) and `bisect.bisect_right` + (``side='right'``) functions, which is also vectorized + in the `v` argument. + + Examples + -------- + >>> import numpy as np + >>> np.searchsorted([11,12,13,14,15], 13) + 2 + >>> np.searchsorted([11,12,13,14,15], 13, side='right') + 3 + >>> np.searchsorted([11,12,13,14,15], [-10, 20, 12, 13]) + array([0, 5, 1, 2]) + + When `sorter` is used, the returned indices refer to the sorted + array of `a` and not `a` itself: + + >>> a = np.array([40, 10, 20, 30]) + >>> sorter = np.argsort(a) + >>> sorter + array([1, 2, 3, 0]) # Indices that would sort the array 'a' + >>> result = np.searchsorted(a, 25, sorter=sorter) + >>> result + 2 + >>> a[sorter[result]] + 30 # The element at index 2 of the sorted array is 30. + """ + return _wrapfunc(a, 'searchsorted', v, side=side, sorter=sorter) + + +def _resize_dispatcher(a, new_shape): + return (a,) + + +@array_function_dispatch(_resize_dispatcher) +def resize(a, new_shape): + """ + Return a new array with the specified shape. + + If the new array is larger than the original array, then the new + array is filled with repeated copies of `a`. Note that this behavior + is different from a.resize(new_shape) which fills with zeros instead + of repeated copies of `a`. + + Parameters + ---------- + a : array_like + Array to be resized. + + new_shape : int or tuple of int + Shape of resized array. + + Returns + ------- + reshaped_array : ndarray + The new array is formed from the data in the old array, repeated + if necessary to fill out the required number of elements. The + data are repeated iterating over the array in C-order. + + See Also + -------- + numpy.reshape : Reshape an array without changing the total size. + numpy.pad : Enlarge and pad an array. + numpy.repeat : Repeat elements of an array. + ndarray.resize : resize an array in-place. + + Notes + ----- + When the total size of the array does not change `~numpy.reshape` should + be used. In most other cases either indexing (to reduce the size) + or padding (to increase the size) may be a more appropriate solution. + + Warning: This functionality does **not** consider axes separately, + i.e. it does not apply interpolation/extrapolation. + It fills the return array with the required number of elements, iterating + over `a` in C-order, disregarding axes (and cycling back from the start if + the new shape is larger). This functionality is therefore not suitable to + resize images, or data where each axis represents a separate and distinct + entity. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[0,1],[2,3]]) + >>> np.resize(a,(2,3)) + array([[0, 1, 2], + [3, 0, 1]]) + >>> np.resize(a,(1,4)) + array([[0, 1, 2, 3]]) + >>> np.resize(a,(2,4)) + array([[0, 1, 2, 3], + [0, 1, 2, 3]]) + + """ + if isinstance(new_shape, (int, nt.integer)): + new_shape = (new_shape,) + + a = ravel(a) + + new_size = 1 + for dim_length in new_shape: + new_size *= dim_length + if dim_length < 0: + raise ValueError( + 'all elements of `new_shape` must be non-negative' + ) + + if a.size == 0 or new_size == 0: + # First case must zero fill. The second would have repeats == 0. + return np.zeros_like(a, shape=new_shape) + + # ceiling division without negating new_size + repeats = (new_size + a.size - 1) // a.size + a = concatenate((a,) * repeats)[:new_size] + + return reshape(a, new_shape) + + +def _squeeze_dispatcher(a, axis=None): + return (a,) + + +@array_function_dispatch(_squeeze_dispatcher) +def squeeze(a, axis=None): + """ + Remove axes of length one from `a`. + + Parameters + ---------- + a : array_like + Input data. + axis : None or int or tuple of ints, optional + Selects a subset of the entries of length one in the + shape. If an axis is selected with shape entry greater than + one, an error is raised. + + Returns + ------- + squeezed : ndarray + The input array, but with all or a subset of the + dimensions of length 1 removed. This is always `a` itself + or a view into `a`. Note that if all axes are squeezed, + the result is a 0d array and not a scalar. + + Raises + ------ + ValueError + If `axis` is not None, and an axis being squeezed is not of length 1 + + See Also + -------- + expand_dims : The inverse operation, adding entries of length one + reshape : Insert, remove, and combine dimensions, and resize existing ones + + Examples + -------- + >>> import numpy as np + >>> x = np.array([[[0], [1], [2]]]) + >>> x.shape + (1, 3, 1) + >>> np.squeeze(x).shape + (3,) + >>> np.squeeze(x, axis=0).shape + (3, 1) + >>> np.squeeze(x, axis=1).shape + Traceback (most recent call last): + ... + ValueError: cannot select an axis to squeeze out which has size + not equal to one + >>> np.squeeze(x, axis=2).shape + (1, 3) + >>> x = np.array([[1234]]) + >>> x.shape + (1, 1) + >>> np.squeeze(x) + array(1234) # 0d array + >>> np.squeeze(x).shape + () + >>> np.squeeze(x)[()] + 1234 + + """ + try: + squeeze = a.squeeze + except AttributeError: + return _wrapit(a, 'squeeze', axis=axis) + if axis is None: + return squeeze() + else: + return squeeze(axis=axis) + + +def _diagonal_dispatcher(a, offset=None, axis1=None, axis2=None): + return (a,) + + +@array_function_dispatch(_diagonal_dispatcher) +def diagonal(a, offset=0, axis1=0, axis2=1): + """ + Return specified diagonals. + + If `a` is 2-D, returns the diagonal of `a` with the given offset, + i.e., the collection of elements of the form ``a[i, i+offset]``. If + `a` has more than two dimensions, then the axes specified by `axis1` + and `axis2` are used to determine the 2-D sub-array whose diagonal is + returned. The shape of the resulting array can be determined by + removing `axis1` and `axis2` and appending an index to the right equal + to the size of the resulting diagonals. + + In versions of NumPy prior to 1.7, this function always returned a new, + independent array containing a copy of the values in the diagonal. + + In NumPy 1.7 and 1.8, it continues to return a copy of the diagonal, + but depending on this fact is deprecated. Writing to the resulting + array continues to work as it used to, but a FutureWarning is issued. + + Starting in NumPy 1.9 it returns a read-only view on the original array. + Attempting to write to the resulting array will produce an error. + + In some future release, it will return a read/write view and writing to + the returned array will alter your original array. The returned array + will have the same type as the input array. + + If you don't write to the array returned by this function, then you can + just ignore all of the above. + + If you depend on the current behavior, then we suggest copying the + returned array explicitly, i.e., use ``np.diagonal(a).copy()`` instead + of just ``np.diagonal(a)``. This will work with both past and future + versions of NumPy. + + Parameters + ---------- + a : array_like + Array from which the diagonals are taken. + offset : int, optional + Offset of the diagonal from the main diagonal. Can be positive or + negative. Defaults to main diagonal (0). + axis1 : int, optional + Axis to be used as the first axis of the 2-D sub-arrays from which + the diagonals should be taken. Defaults to first axis (0). + axis2 : int, optional + Axis to be used as the second axis of the 2-D sub-arrays from + which the diagonals should be taken. Defaults to second axis (1). + + Returns + ------- + array_of_diagonals : ndarray + If `a` is 2-D, then a 1-D array containing the diagonal and of the + same type as `a` is returned unless `a` is a `matrix`, in which case + a 1-D array rather than a (2-D) `matrix` is returned in order to + maintain backward compatibility. + + If ``a.ndim > 2``, then the dimensions specified by `axis1` and `axis2` + are removed, and a new axis inserted at the end corresponding to the + diagonal. + + Raises + ------ + ValueError + If the dimension of `a` is less than 2. + + See Also + -------- + diag : MATLAB work-a-like for 1-D and 2-D arrays. + diagflat : Create diagonal arrays. + trace : Sum along diagonals. + + Examples + -------- + >>> import numpy as np + >>> a = np.arange(4).reshape(2,2) + >>> a + array([[0, 1], + [2, 3]]) + >>> a.diagonal() + array([0, 3]) + >>> a.diagonal(1) + array([1]) + + A 3-D example: + + >>> a = np.arange(8).reshape(2,2,2); a + array([[[0, 1], + [2, 3]], + [[4, 5], + [6, 7]]]) + >>> a.diagonal(0, # Main diagonals of two arrays created by skipping + ... 0, # across the outer(left)-most axis last and + ... 1) # the "middle" (row) axis first. + array([[0, 6], + [1, 7]]) + + The sub-arrays whose main diagonals we just obtained; note that each + corresponds to fixing the right-most (column) axis, and that the + diagonals are "packed" in rows. + + >>> a[:,:,0] # main diagonal is [0 6] + array([[0, 2], + [4, 6]]) + >>> a[:,:,1] # main diagonal is [1 7] + array([[1, 3], + [5, 7]]) + + The anti-diagonal can be obtained by reversing the order of elements + using either `numpy.flipud` or `numpy.fliplr`. + + >>> a = np.arange(9).reshape(3, 3) + >>> a + array([[0, 1, 2], + [3, 4, 5], + [6, 7, 8]]) + >>> np.fliplr(a).diagonal() # Horizontal flip + array([2, 4, 6]) + >>> np.flipud(a).diagonal() # Vertical flip + array([6, 4, 2]) + + Note that the order in which the diagonal is retrieved varies depending + on the flip function. + """ + if isinstance(a, np.matrix): + # Make diagonal of matrix 1-D to preserve backward compatibility. + return asarray(a).diagonal(offset=offset, axis1=axis1, axis2=axis2) + else: + return asanyarray(a).diagonal(offset=offset, axis1=axis1, axis2=axis2) + + +def _trace_dispatcher( + a, offset=None, axis1=None, axis2=None, dtype=None, out=None): + return (a, out) + + +@array_function_dispatch(_trace_dispatcher) +def trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None): + """ + Return the sum along diagonals of the array. + + If `a` is 2-D, the sum along its diagonal with the given offset + is returned, i.e., the sum of elements ``a[i,i+offset]`` for all i. + + If `a` has more than two dimensions, then the axes specified by axis1 and + axis2 are used to determine the 2-D sub-arrays whose traces are returned. + The shape of the resulting array is the same as that of `a` with `axis1` + and `axis2` removed. + + Parameters + ---------- + a : array_like + Input array, from which the diagonals are taken. + offset : int, optional + Offset of the diagonal from the main diagonal. Can be both positive + and negative. Defaults to 0. + axis1, axis2 : int, optional + Axes to be used as the first and second axis of the 2-D sub-arrays + from which the diagonals should be taken. Defaults are the first two + axes of `a`. + dtype : dtype, optional + Determines the data-type of the returned array and of the accumulator + where the elements are summed. If dtype has the value None and `a` is + of integer type of precision less than the default integer + precision, then the default integer precision is used. Otherwise, + the precision is the same as that of `a`. + out : ndarray, optional + Array into which the output is placed. Its type is preserved and + it must be of the right shape to hold the output. + + Returns + ------- + sum_along_diagonals : ndarray + If `a` is 2-D, the sum along the diagonal is returned. If `a` has + larger dimensions, then an array of sums along diagonals is returned. + + See Also + -------- + diag, diagonal, diagflat + + Examples + -------- + >>> import numpy as np + >>> np.trace(np.eye(3)) + 3.0 + >>> a = np.arange(8).reshape((2,2,2)) + >>> np.trace(a) + array([6, 8]) + + >>> a = np.arange(24).reshape((2,2,2,3)) + >>> np.trace(a).shape + (2, 3) + + """ + if isinstance(a, np.matrix): + # Get trace of matrix via an array to preserve backward compatibility. + return asarray(a).trace( + offset=offset, axis1=axis1, axis2=axis2, dtype=dtype, out=out + ) + else: + return asanyarray(a).trace( + offset=offset, axis1=axis1, axis2=axis2, dtype=dtype, out=out + ) + + +def _ravel_dispatcher(a, order=None): + return (a,) + + +@array_function_dispatch(_ravel_dispatcher) +def ravel(a, order='C'): + """Return a contiguous flattened array. + + A 1-D array, containing the elements of the input, is returned. A copy is + made only if needed. + + As of NumPy 1.10, the returned array will have the same type as the input + array. (for example, a masked array will be returned for a masked array + input) + + Parameters + ---------- + a : array_like + Input array. The elements in `a` are read in the order specified by + `order`, and packed as a 1-D array. + order : {'C','F', 'A', 'K'}, optional + + The elements of `a` are read using this index order. 'C' means + to index the elements in row-major, C-style order, + with the last axis index changing fastest, back to the first + axis index changing slowest. 'F' means to index the elements + in column-major, Fortran-style order, with the + first index changing fastest, and the last index changing + slowest. Note that the 'C' and 'F' options take no account of + the memory layout of the underlying array, and only refer to + the order of axis indexing. 'A' means to read the elements in + Fortran-like index order if `a` is Fortran *contiguous* in + memory, C-like order otherwise. 'K' means to read the + elements in the order they occur in memory, except for + reversing the data when strides are negative. By default, 'C' + index order is used. + + Returns + ------- + y : array_like + y is a contiguous 1-D array of the same subtype as `a`, + with shape ``(a.size,)``. + Note that matrices are special cased for backward compatibility, + if `a` is a matrix, then y is a 1-D ndarray. + + See Also + -------- + ndarray.flat : 1-D iterator over an array. + ndarray.flatten : 1-D array copy of the elements of an array + in row-major order. + ndarray.reshape : Change the shape of an array without changing its data. + + Notes + ----- + In row-major, C-style order, in two dimensions, the row index + varies the slowest, and the column index the quickest. This can + be generalized to multiple dimensions, where row-major order + implies that the index along the first axis varies slowest, and + the index along the last quickest. The opposite holds for + column-major, Fortran-style index ordering. + + When a view is desired in as many cases as possible, ``arr.reshape(-1)`` + may be preferable. However, ``ravel`` supports ``K`` in the optional + ``order`` argument while ``reshape`` does not. + + Examples + -------- + It is equivalent to ``reshape(-1, order=order)``. + + >>> import numpy as np + >>> x = np.array([[1, 2, 3], [4, 5, 6]]) + >>> np.ravel(x) + array([1, 2, 3, 4, 5, 6]) + + >>> x.reshape(-1) + array([1, 2, 3, 4, 5, 6]) + + >>> np.ravel(x, order='F') + array([1, 4, 2, 5, 3, 6]) + + When ``order`` is 'A', it will preserve the array's 'C' or 'F' ordering: + + >>> np.ravel(x.T) + array([1, 4, 2, 5, 3, 6]) + >>> np.ravel(x.T, order='A') + array([1, 2, 3, 4, 5, 6]) + + When ``order`` is 'K', it will preserve orderings that are neither 'C' + nor 'F', but won't reverse axes: + + >>> a = np.arange(3)[::-1]; a + array([2, 1, 0]) + >>> a.ravel(order='C') + array([2, 1, 0]) + >>> a.ravel(order='K') + array([2, 1, 0]) + + >>> a = np.arange(12).reshape(2,3,2).swapaxes(1,2); a + array([[[ 0, 2, 4], + [ 1, 3, 5]], + [[ 6, 8, 10], + [ 7, 9, 11]]]) + >>> a.ravel(order='C') + array([ 0, 2, 4, 1, 3, 5, 6, 8, 10, 7, 9, 11]) + >>> a.ravel(order='K') + array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) + + """ + if isinstance(a, np.matrix): + return asarray(a).ravel(order=order) + else: + return asanyarray(a).ravel(order=order) + + +def _nonzero_dispatcher(a): + return (a,) + + +@array_function_dispatch(_nonzero_dispatcher) +def nonzero(a): + """ + Return the indices of the elements that are non-zero. + + Returns a tuple of arrays, one for each dimension of `a`, + containing the indices of the non-zero elements in that + dimension. The values in `a` are always tested and returned in + row-major, C-style order. + + To group the indices by element, rather than dimension, use `argwhere`, + which returns a row for each non-zero element. + + .. note:: + + When called on a zero-d array or scalar, ``nonzero(a)`` is treated + as ``nonzero(atleast_1d(a))``. + + .. deprecated:: 1.17.0 + + Use `atleast_1d` explicitly if this behavior is deliberate. + + Parameters + ---------- + a : array_like + Input array. + + Returns + ------- + tuple_of_arrays : tuple + Indices of elements that are non-zero. + + See Also + -------- + flatnonzero : + Return indices that are non-zero in the flattened version of the input + array. + ndarray.nonzero : + Equivalent ndarray method. + count_nonzero : + Counts the number of non-zero elements in the input array. + + Notes + ----- + While the nonzero values can be obtained with ``a[nonzero(a)]``, it is + recommended to use ``x[x.astype(bool)]`` or ``x[x != 0]`` instead, which + will correctly handle 0-d arrays. + + Examples + -------- + >>> import numpy as np + >>> x = np.array([[3, 0, 0], [0, 4, 0], [5, 6, 0]]) + >>> x + array([[3, 0, 0], + [0, 4, 0], + [5, 6, 0]]) + >>> np.nonzero(x) + (array([0, 1, 2, 2]), array([0, 1, 0, 1])) + + >>> x[np.nonzero(x)] + array([3, 4, 5, 6]) + >>> np.transpose(np.nonzero(x)) + array([[0, 0], + [1, 1], + [2, 0], + [2, 1]]) + + A common use for ``nonzero`` is to find the indices of an array, where + a condition is True. Given an array `a`, the condition `a` > 3 is a + boolean array and since False is interpreted as 0, np.nonzero(a > 3) + yields the indices of the `a` where the condition is true. + + >>> a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) + >>> a > 3 + array([[False, False, False], + [ True, True, True], + [ True, True, True]]) + >>> np.nonzero(a > 3) + (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2])) + + Using this result to index `a` is equivalent to using the mask directly: + + >>> a[np.nonzero(a > 3)] + array([4, 5, 6, 7, 8, 9]) + >>> a[a > 3] # prefer this spelling + array([4, 5, 6, 7, 8, 9]) + + ``nonzero`` can also be called as a method of the array. + + >>> (a > 3).nonzero() + (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2])) + + """ + return _wrapfunc(a, 'nonzero') + + +def _shape_dispatcher(a): + return (a,) + + +@array_function_dispatch(_shape_dispatcher) +def shape(a): + """ + Return the shape of an array. + + Parameters + ---------- + a : array_like + Input array. + + Returns + ------- + shape : tuple of ints + The elements of the shape tuple give the lengths of the + corresponding array dimensions. + + See Also + -------- + len : ``len(a)`` is equivalent to ``np.shape(a)[0]`` for N-D arrays with + ``N>=1``. + ndarray.shape : Equivalent array method. + + Examples + -------- + >>> import numpy as np + >>> np.shape(np.eye(3)) + (3, 3) + >>> np.shape([[1, 3]]) + (1, 2) + >>> np.shape([0]) + (1,) + >>> np.shape(0) + () + + >>> a = np.array([(1, 2), (3, 4), (5, 6)], + ... dtype=[('x', 'i4'), ('y', 'i4')]) + >>> np.shape(a) + (3,) + >>> a.shape + (3,) + + """ + try: + result = a.shape + except AttributeError: + result = asarray(a).shape + return result + + +def _compress_dispatcher(condition, a, axis=None, out=None): + return (condition, a, out) + + +@array_function_dispatch(_compress_dispatcher) +def compress(condition, a, axis=None, out=None): + """ + Return selected slices of an array along given axis. + + When working along a given axis, a slice along that axis is returned in + `output` for each index where `condition` evaluates to True. When + working on a 1-D array, `compress` is equivalent to `extract`. + + Parameters + ---------- + condition : 1-D array of bools + Array that selects which entries to return. If len(condition) + is less than the size of `a` along the given axis, then output is + truncated to the length of the condition array. + a : array_like + Array from which to extract a part. + axis : int, optional + Axis along which to take slices. If None (default), work on the + flattened array. + out : ndarray, optional + Output array. Its type is preserved and it must be of the right + shape to hold the output. + + Returns + ------- + compressed_array : ndarray + A copy of `a` without the slices along axis for which `condition` + is false. + + See Also + -------- + take, choose, diag, diagonal, select + ndarray.compress : Equivalent method in ndarray + extract : Equivalent method when working on 1-D arrays + :ref:`ufuncs-output-type` + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1, 2], [3, 4], [5, 6]]) + >>> a + array([[1, 2], + [3, 4], + [5, 6]]) + >>> np.compress([0, 1], a, axis=0) + array([[3, 4]]) + >>> np.compress([False, True, True], a, axis=0) + array([[3, 4], + [5, 6]]) + >>> np.compress([False, True], a, axis=1) + array([[2], + [4], + [6]]) + + Working on the flattened array does not return slices along an axis but + selects elements. + + >>> np.compress([False, True], a) + array([2]) + + """ + return _wrapfunc(a, 'compress', condition, axis=axis, out=out) + + +def _clip_dispatcher(a, a_min=None, a_max=None, out=None, *, min=None, + max=None, **kwargs): + return (a, a_min, a_max, out, min, max) + + +@array_function_dispatch(_clip_dispatcher) +def clip(a, a_min=np._NoValue, a_max=np._NoValue, out=None, *, + min=np._NoValue, max=np._NoValue, **kwargs): + """ + Clip (limit) the values in an array. + + Given an interval, values outside the interval are clipped to + the interval edges. For example, if an interval of ``[0, 1]`` + is specified, values smaller than 0 become 0, and values larger + than 1 become 1. + + Equivalent to but faster than ``np.minimum(a_max, np.maximum(a, a_min))``. + + No check is performed to ensure ``a_min < a_max``. + + Parameters + ---------- + a : array_like + Array containing elements to clip. + a_min, a_max : array_like or None + Minimum and maximum value. If ``None``, clipping is not performed on + the corresponding edge. If both ``a_min`` and ``a_max`` are ``None``, + the elements of the returned array stay the same. Both are broadcasted + against ``a``. + out : ndarray, optional + The results will be placed in this array. It may be the input + array for in-place clipping. `out` must be of the right shape + to hold the output. Its type is preserved. + min, max : array_like or None + Array API compatible alternatives for ``a_min`` and ``a_max`` + arguments. Either ``a_min`` and ``a_max`` or ``min`` and ``max`` + can be passed at the same time. Default: ``None``. + + .. versionadded:: 2.1.0 + **kwargs + For other keyword-only arguments, see the + :ref:`ufunc docs `. + + Returns + ------- + clipped_array : ndarray + An array with the elements of `a`, but where values + < `a_min` are replaced with `a_min`, and those > `a_max` + with `a_max`. + + See Also + -------- + :ref:`ufuncs-output-type` + + Notes + ----- + When `a_min` is greater than `a_max`, `clip` returns an + array in which all values are equal to `a_max`, + as shown in the second example. + + Examples + -------- + >>> import numpy as np + >>> a = np.arange(10) + >>> a + array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) + >>> np.clip(a, 1, 8) + array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8]) + >>> np.clip(a, 8, 1) + array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) + >>> np.clip(a, 3, 6, out=a) + array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6]) + >>> a + array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6]) + >>> a = np.arange(10) + >>> a + array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) + >>> np.clip(a, [3, 4, 1, 1, 1, 4, 4, 4, 4, 4], 8) + array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8]) + + """ + if a_min is np._NoValue and a_max is np._NoValue: + a_min = None if min is np._NoValue else min + a_max = None if max is np._NoValue else max + elif a_min is np._NoValue: + raise TypeError("clip() missing 1 required positional " + "argument: 'a_min'") + elif a_max is np._NoValue: + raise TypeError("clip() missing 1 required positional " + "argument: 'a_max'") + elif min is not np._NoValue or max is not np._NoValue: + raise ValueError("Passing `min` or `max` keyword argument when " + "`a_min` and `a_max` are provided is forbidden.") + + return _wrapfunc(a, 'clip', a_min, a_max, out=out, **kwargs) + + +def _sum_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None, + initial=None, where=None): + return (a, out) + + +@array_function_dispatch(_sum_dispatcher) +def sum(a, axis=None, dtype=None, out=None, keepdims=np._NoValue, + initial=np._NoValue, where=np._NoValue): + """ + Sum of array elements over a given axis. + + Parameters + ---------- + a : array_like + Elements to sum. + axis : None or int or tuple of ints, optional + Axis or axes along which a sum is performed. The default, + axis=None, will sum all of the elements of the input array. If + axis is negative it counts from the last to the first axis. If + axis is a tuple of ints, a sum is performed on all of the axes + specified in the tuple instead of a single axis or all the axes as + before. + dtype : dtype, optional + The type of the returned array and of the accumulator in which the + elements are summed. The dtype of `a` is used by default unless `a` + has an integer dtype of less precision than the default platform + integer. In that case, if `a` is signed then the platform integer + is used while if `a` is unsigned then an unsigned integer of the + same precision as the platform integer is used. + out : ndarray, optional + Alternative output array in which to place the result. It must have + the same shape as the expected output, but the type of the output + values will be cast if necessary. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the input array. + + If the default value is passed, then `keepdims` will not be + passed through to the `sum` method of sub-classes of + `ndarray`, however any non-default value will be. If the + sub-class' method does not implement `keepdims` any + exceptions will be raised. + initial : scalar, optional + Starting value for the sum. See `~numpy.ufunc.reduce` for details. + where : array_like of bool, optional + Elements to include in the sum. See `~numpy.ufunc.reduce` for details. + + Returns + ------- + sum_along_axis : ndarray + An array with the same shape as `a`, with the specified + axis removed. If `a` is a 0-d array, or if `axis` is None, a scalar + is returned. If an output array is specified, a reference to + `out` is returned. + + See Also + -------- + ndarray.sum : Equivalent method. + add: ``numpy.add.reduce`` equivalent function. + cumsum : Cumulative sum of array elements. + trapezoid : Integration of array values using composite trapezoidal rule. + + mean, average + + Notes + ----- + Arithmetic is modular when using integer types, and no error is + raised on overflow. + + The sum of an empty array is the neutral element 0: + + >>> np.sum([]) + 0.0 + + For floating point numbers the numerical precision of sum (and + ``np.add.reduce``) is in general limited by directly adding each number + individually to the result causing rounding errors in every step. + However, often numpy will use a numerically better approach (partial + pairwise summation) leading to improved precision in many use-cases. + This improved precision is always provided when no ``axis`` is given. + When ``axis`` is given, it will depend on which axis is summed. + Technically, to provide the best speed possible, the improved precision + is only used when the summation is along the fast axis in memory. + Note that the exact precision may vary depending on other parameters. + In contrast to NumPy, Python's ``math.fsum`` function uses a slower but + more precise approach to summation. + Especially when summing a large number of lower precision floating point + numbers, such as ``float32``, numerical errors can become significant. + In such cases it can be advisable to use `dtype="float64"` to use a higher + precision for the output. + + Examples + -------- + >>> import numpy as np + >>> np.sum([0.5, 1.5]) + 2.0 + >>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32) + np.int32(1) + >>> np.sum([[0, 1], [0, 5]]) + 6 + >>> np.sum([[0, 1], [0, 5]], axis=0) + array([0, 6]) + >>> np.sum([[0, 1], [0, 5]], axis=1) + array([1, 5]) + >>> np.sum([[0, 1], [np.nan, 5]], where=[False, True], axis=1) + array([1., 5.]) + + If the accumulator is too small, overflow occurs: + + >>> np.ones(128, dtype=np.int8).sum(dtype=np.int8) + np.int8(-128) + + You can also start the sum with a value other than zero: + + >>> np.sum([10], initial=5) + 15 + """ + if isinstance(a, _gentype): + # 2018-02-25, 1.15.0 + warnings.warn( + "Calling np.sum(generator) is deprecated, and in the future will " + "give a different result. Use np.sum(np.fromiter(generator)) or " + "the python sum builtin instead.", + DeprecationWarning, stacklevel=2 + ) + + res = _sum_(a) + if out is not None: + out[...] = res + return out + return res + + return _wrapreduction( + a, np.add, 'sum', axis, dtype, out, + keepdims=keepdims, initial=initial, where=where + ) + + +def _any_dispatcher(a, axis=None, out=None, keepdims=None, *, + where=np._NoValue): + return (a, where, out) + + +@array_function_dispatch(_any_dispatcher) +def any(a, axis=None, out=None, keepdims=np._NoValue, *, where=np._NoValue): + """ + Test whether any array element along a given axis evaluates to True. + + Returns single boolean if `axis` is ``None`` + + Parameters + ---------- + a : array_like + Input array or object that can be converted to an array. + axis : None or int or tuple of ints, optional + Axis or axes along which a logical OR reduction is performed. + The default (``axis=None``) is to perform a logical OR over all + the dimensions of the input array. `axis` may be negative, in + which case it counts from the last to the first axis. If this + is a tuple of ints, a reduction is performed on multiple + axes, instead of a single axis or all the axes as before. + out : ndarray, optional + Alternate output array in which to place the result. It must have + the same shape as the expected output and its type is preserved + (e.g., if it is of type float, then it will remain so, returning + 1.0 for True and 0.0 for False, regardless of the type of `a`). + See :ref:`ufuncs-output-type` for more details. + + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the input array. + + If the default value is passed, then `keepdims` will not be + passed through to the `any` method of sub-classes of + `ndarray`, however any non-default value will be. If the + sub-class' method does not implement `keepdims` any + exceptions will be raised. + + where : array_like of bool, optional + Elements to include in checking for any `True` values. + See `~numpy.ufunc.reduce` for details. + + .. versionadded:: 1.20.0 + + Returns + ------- + any : bool or ndarray + A new boolean or `ndarray` is returned unless `out` is specified, + in which case a reference to `out` is returned. + + See Also + -------- + ndarray.any : equivalent method + + all : Test whether all elements along a given axis evaluate to True. + + Notes + ----- + Not a Number (NaN), positive infinity and negative infinity evaluate + to `True` because these are not equal to zero. + + .. versionchanged:: 2.0 + Before NumPy 2.0, ``any`` did not return booleans for object dtype + input arrays. + This behavior is still available via ``np.logical_or.reduce``. + + Examples + -------- + >>> import numpy as np + >>> np.any([[True, False], [True, True]]) + True + + >>> np.any([[True, False, True ], + ... [False, False, False]], axis=0) + array([ True, False, True]) + + >>> np.any([-1, 0, 5]) + True + + >>> np.any([[np.nan], [np.inf]], axis=1, keepdims=True) + array([[ True], + [ True]]) + + >>> np.any([[True, False], [False, False]], where=[[False], [True]]) + False + + >>> a = np.array([[1, 0, 0], + ... [0, 0, 1], + ... [0, 0, 0]]) + >>> np.any(a, axis=0) + array([ True, False, True]) + >>> np.any(a, axis=1) + array([ True, True, False]) + + >>> o=np.array(False) + >>> z=np.any([-1, 4, 5], out=o) + >>> z, o + (array(True), array(True)) + >>> # Check now that z is a reference to o + >>> z is o + True + >>> id(z), id(o) # identity of z and o # doctest: +SKIP + (191614240, 191614240) + + """ + return _wrapreduction_any_all(a, np.logical_or, 'any', axis, out, + keepdims=keepdims, where=where) + + +def _all_dispatcher(a, axis=None, out=None, keepdims=None, *, + where=None): + return (a, where, out) + + +@array_function_dispatch(_all_dispatcher) +def all(a, axis=None, out=None, keepdims=np._NoValue, *, where=np._NoValue): + """ + Test whether all array elements along a given axis evaluate to True. + + Parameters + ---------- + a : array_like + Input array or object that can be converted to an array. + axis : None or int or tuple of ints, optional + Axis or axes along which a logical AND reduction is performed. + The default (``axis=None``) is to perform a logical AND over all + the dimensions of the input array. `axis` may be negative, in + which case it counts from the last to the first axis. If this + is a tuple of ints, a reduction is performed on multiple + axes, instead of a single axis or all the axes as before. + out : ndarray, optional + Alternate output array in which to place the result. + It must have the same shape as the expected output and its + type is preserved (e.g., if ``dtype(out)`` is float, the result + will consist of 0.0's and 1.0's). See :ref:`ufuncs-output-type` + for more details. + + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the input array. + + If the default value is passed, then `keepdims` will not be + passed through to the `all` method of sub-classes of + `ndarray`, however any non-default value will be. If the + sub-class' method does not implement `keepdims` any + exceptions will be raised. + + where : array_like of bool, optional + Elements to include in checking for all `True` values. + See `~numpy.ufunc.reduce` for details. + + .. versionadded:: 1.20.0 + + Returns + ------- + all : ndarray, bool + A new boolean or array is returned unless `out` is specified, + in which case a reference to `out` is returned. + + See Also + -------- + ndarray.all : equivalent method + + any : Test whether any element along a given axis evaluates to True. + + Notes + ----- + Not a Number (NaN), positive infinity and negative infinity + evaluate to `True` because these are not equal to zero. + + .. versionchanged:: 2.0 + Before NumPy 2.0, ``all`` did not return booleans for object dtype + input arrays. + This behavior is still available via ``np.logical_and.reduce``. + + Examples + -------- + >>> import numpy as np + >>> np.all([[True,False],[True,True]]) + False + + >>> np.all([[True,False],[True,True]], axis=0) + array([ True, False]) + + >>> np.all([-1, 4, 5]) + True + + >>> np.all([1.0, np.nan]) + True + + >>> np.all([[True, True], [False, True]], where=[[True], [False]]) + True + + >>> o=np.array(False) + >>> z=np.all([-1, 4, 5], out=o) + >>> id(z), id(o), z + (28293632, 28293632, array(True)) # may vary + + """ + return _wrapreduction_any_all(a, np.logical_and, 'all', axis, out, + keepdims=keepdims, where=where) + + +def _cumulative_func(x, func, axis, dtype, out, include_initial): + x = np.atleast_1d(x) + x_ndim = x.ndim + if axis is None: + if x_ndim >= 2: + raise ValueError("For arrays which have more than one dimension " + "``axis`` argument is required.") + axis = 0 + + if out is not None and include_initial: + item = [slice(None)] * x_ndim + item[axis] = slice(1, None) + func.accumulate(x, axis=axis, dtype=dtype, out=out[tuple(item)]) + item[axis] = 0 + out[tuple(item)] = func.identity + return out + + res = func.accumulate(x, axis=axis, dtype=dtype, out=out) + if include_initial: + initial_shape = list(x.shape) + initial_shape[axis] = 1 + res = np.concat( + [np.full_like(res, func.identity, shape=initial_shape), res], + axis=axis, + ) + + return res + + +def _cumulative_prod_dispatcher(x, /, *, axis=None, dtype=None, out=None, + include_initial=None): + return (x, out) + + +@array_function_dispatch(_cumulative_prod_dispatcher) +def cumulative_prod(x, /, *, axis=None, dtype=None, out=None, + include_initial=False): + """ + Return the cumulative product of elements along a given axis. + + This function is an Array API compatible alternative to `numpy.cumprod`. + + Parameters + ---------- + x : array_like + Input array. + axis : int, optional + Axis along which the cumulative product is computed. The default + (None) is only allowed for one-dimensional arrays. For arrays + with more than one dimension ``axis`` is required. + dtype : dtype, optional + Type of the returned array, as well as of the accumulator in which + the elements are multiplied. If ``dtype`` is not specified, it + defaults to the dtype of ``x``, unless ``x`` has an integer dtype + with a precision less than that of the default platform integer. + In that case, the default platform integer is used instead. + out : ndarray, optional + Alternative output array in which to place the result. It must + have the same shape and buffer length as the expected output + but the type of the resulting values will be cast if necessary. + See :ref:`ufuncs-output-type` for more details. + include_initial : bool, optional + Boolean indicating whether to include the initial value (ones) as + the first value in the output. With ``include_initial=True`` + the shape of the output is different than the shape of the input. + Default: ``False``. + + Returns + ------- + cumulative_prod_along_axis : ndarray + A new array holding the result is returned unless ``out`` is + specified, in which case a reference to ``out`` is returned. The + result has the same shape as ``x`` if ``include_initial=False``. + + Notes + ----- + Arithmetic is modular when using integer types, and no error is + raised on overflow. + + Examples + -------- + >>> a = np.array([1, 2, 3]) + >>> np.cumulative_prod(a) # intermediate results 1, 1*2 + ... # total product 1*2*3 = 6 + array([1, 2, 6]) + >>> a = np.array([1, 2, 3, 4, 5, 6]) + >>> np.cumulative_prod(a, dtype=float) # specify type of output + array([ 1., 2., 6., 24., 120., 720.]) + + The cumulative product for each column (i.e., over the rows) of ``b``: + + >>> b = np.array([[1, 2, 3], [4, 5, 6]]) + >>> np.cumulative_prod(b, axis=0) + array([[ 1, 2, 3], + [ 4, 10, 18]]) + + The cumulative product for each row (i.e. over the columns) of ``b``: + + >>> np.cumulative_prod(b, axis=1) + array([[ 1, 2, 6], + [ 4, 20, 120]]) + + """ + return _cumulative_func(x, um.multiply, axis, dtype, out, include_initial) + + +def _cumulative_sum_dispatcher(x, /, *, axis=None, dtype=None, out=None, + include_initial=None): + return (x, out) + + +@array_function_dispatch(_cumulative_sum_dispatcher) +def cumulative_sum(x, /, *, axis=None, dtype=None, out=None, + include_initial=False): + """ + Return the cumulative sum of the elements along a given axis. + + This function is an Array API compatible alternative to `numpy.cumsum`. + + Parameters + ---------- + x : array_like + Input array. + axis : int, optional + Axis along which the cumulative sum is computed. The default + (None) is only allowed for one-dimensional arrays. For arrays + with more than one dimension ``axis`` is required. + dtype : dtype, optional + Type of the returned array and of the accumulator in which the + elements are summed. If ``dtype`` is not specified, it defaults + to the dtype of ``x``, unless ``x`` has an integer dtype with + a precision less than that of the default platform integer. + In that case, the default platform integer is used. + out : ndarray, optional + Alternative output array in which to place the result. It must + have the same shape and buffer length as the expected output + but the type will be cast if necessary. See :ref:`ufuncs-output-type` + for more details. + include_initial : bool, optional + Boolean indicating whether to include the initial value (zeros) as + the first value in the output. With ``include_initial=True`` + the shape of the output is different than the shape of the input. + Default: ``False``. + + Returns + ------- + cumulative_sum_along_axis : ndarray + A new array holding the result is returned unless ``out`` is + specified, in which case a reference to ``out`` is returned. The + result has the same shape as ``x`` if ``include_initial=False``. + + See Also + -------- + sum : Sum array elements. + trapezoid : Integration of array values using composite trapezoidal rule. + diff : Calculate the n-th discrete difference along given axis. + + Notes + ----- + Arithmetic is modular when using integer types, and no error is + raised on overflow. + + ``cumulative_sum(a)[-1]`` may not be equal to ``sum(a)`` for + floating-point values since ``sum`` may use a pairwise summation routine, + reducing the roundoff-error. See `sum` for more information. + + Examples + -------- + >>> a = np.array([1, 2, 3, 4, 5, 6]) + >>> a + array([1, 2, 3, 4, 5, 6]) + >>> np.cumulative_sum(a) + array([ 1, 3, 6, 10, 15, 21]) + >>> np.cumulative_sum(a, dtype=float) # specifies type of output value(s) + array([ 1., 3., 6., 10., 15., 21.]) + + >>> b = np.array([[1, 2, 3], [4, 5, 6]]) + >>> np.cumulative_sum(b,axis=0) # sum over rows for each of the 3 columns + array([[1, 2, 3], + [5, 7, 9]]) + >>> np.cumulative_sum(b,axis=1) # sum over columns for each of the 2 rows + array([[ 1, 3, 6], + [ 4, 9, 15]]) + + ``cumulative_sum(c)[-1]`` may not be equal to ``sum(c)`` + + >>> c = np.array([1, 2e-9, 3e-9] * 1000000) + >>> np.cumulative_sum(c)[-1] + 1000000.0050045159 + >>> c.sum() + 1000000.0050000029 + + """ + return _cumulative_func(x, um.add, axis, dtype, out, include_initial) + + +def _cumsum_dispatcher(a, axis=None, dtype=None, out=None): + return (a, out) + + +@array_function_dispatch(_cumsum_dispatcher) +def cumsum(a, axis=None, dtype=None, out=None): + """ + Return the cumulative sum of the elements along a given axis. + + Parameters + ---------- + a : array_like + Input array. + axis : int, optional + Axis along which the cumulative sum is computed. The default + (None) is to compute the cumsum over the flattened array. + dtype : dtype, optional + Type of the returned array and of the accumulator in which the + elements are summed. If `dtype` is not specified, it defaults + to the dtype of `a`, unless `a` has an integer dtype with a + precision less than that of the default platform integer. In + that case, the default platform integer is used. + out : ndarray, optional + Alternative output array in which to place the result. It must + have the same shape and buffer length as the expected output + but the type will be cast if necessary. See :ref:`ufuncs-output-type` + for more details. + + Returns + ------- + cumsum_along_axis : ndarray. + A new array holding the result is returned unless `out` is + specified, in which case a reference to `out` is returned. The + result has the same size as `a`, and the same shape as `a` if + `axis` is not None or `a` is a 1-d array. + + See Also + -------- + cumulative_sum : Array API compatible alternative for ``cumsum``. + sum : Sum array elements. + trapezoid : Integration of array values using composite trapezoidal rule. + diff : Calculate the n-th discrete difference along given axis. + + Notes + ----- + Arithmetic is modular when using integer types, and no error is + raised on overflow. + + ``cumsum(a)[-1]`` may not be equal to ``sum(a)`` for floating-point + values since ``sum`` may use a pairwise summation routine, reducing + the roundoff-error. See `sum` for more information. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1,2,3], [4,5,6]]) + >>> a + array([[1, 2, 3], + [4, 5, 6]]) + >>> np.cumsum(a) + array([ 1, 3, 6, 10, 15, 21]) + >>> np.cumsum(a, dtype=float) # specifies type of output value(s) + array([ 1., 3., 6., 10., 15., 21.]) + + >>> np.cumsum(a,axis=0) # sum over rows for each of the 3 columns + array([[1, 2, 3], + [5, 7, 9]]) + >>> np.cumsum(a,axis=1) # sum over columns for each of the 2 rows + array([[ 1, 3, 6], + [ 4, 9, 15]]) + + ``cumsum(b)[-1]`` may not be equal to ``sum(b)`` + + >>> b = np.array([1, 2e-9, 3e-9] * 1000000) + >>> b.cumsum()[-1] + 1000000.0050045159 + >>> b.sum() + 1000000.0050000029 + + """ + return _wrapfunc(a, 'cumsum', axis=axis, dtype=dtype, out=out) + + +def _ptp_dispatcher(a, axis=None, out=None, keepdims=None): + return (a, out) + + +@array_function_dispatch(_ptp_dispatcher) +def ptp(a, axis=None, out=None, keepdims=np._NoValue): + """ + Range of values (maximum - minimum) along an axis. + + The name of the function comes from the acronym for 'peak to peak'. + + .. warning:: + `ptp` preserves the data type of the array. This means the + return value for an input of signed integers with n bits + (e.g. `numpy.int8`, `numpy.int16`, etc) is also a signed integer + with n bits. In that case, peak-to-peak values greater than + ``2**(n-1)-1`` will be returned as negative values. An example + with a work-around is shown below. + + Parameters + ---------- + a : array_like + Input values. + axis : None or int or tuple of ints, optional + Axis along which to find the peaks. By default, flatten the + array. `axis` may be negative, in + which case it counts from the last to the first axis. + If this is a tuple of ints, a reduction is performed on multiple + axes, instead of a single axis or all the axes as before. + out : array_like + Alternative output array in which to place the result. It must + have the same shape and buffer length as the expected output, + but the type of the output values will be cast if necessary. + + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the input array. + + If the default value is passed, then `keepdims` will not be + passed through to the `ptp` method of sub-classes of + `ndarray`, however any non-default value will be. If the + sub-class' method does not implement `keepdims` any + exceptions will be raised. + + Returns + ------- + ptp : ndarray or scalar + The range of a given array - `scalar` if array is one-dimensional + or a new array holding the result along the given axis + + Examples + -------- + >>> import numpy as np + >>> x = np.array([[4, 9, 2, 10], + ... [6, 9, 7, 12]]) + + >>> np.ptp(x, axis=1) + array([8, 6]) + + >>> np.ptp(x, axis=0) + array([2, 0, 5, 2]) + + >>> np.ptp(x) + 10 + + This example shows that a negative value can be returned when + the input is an array of signed integers. + + >>> y = np.array([[1, 127], + ... [0, 127], + ... [-1, 127], + ... [-2, 127]], dtype=np.int8) + >>> np.ptp(y, axis=1) + array([ 126, 127, -128, -127], dtype=int8) + + A work-around is to use the `view()` method to view the result as + unsigned integers with the same bit width: + + >>> np.ptp(y, axis=1).view(np.uint8) + array([126, 127, 128, 129], dtype=uint8) + + """ + kwargs = {} + if keepdims is not np._NoValue: + kwargs['keepdims'] = keepdims + return _methods._ptp(a, axis=axis, out=out, **kwargs) + + +def _max_dispatcher(a, axis=None, out=None, keepdims=None, initial=None, + where=None): + return (a, out) + + +@array_function_dispatch(_max_dispatcher) +@set_module('numpy') +def max(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue, + where=np._NoValue): + """ + Return the maximum of an array or maximum along an axis. + + Parameters + ---------- + a : array_like + Input data. + axis : None or int or tuple of ints, optional + Axis or axes along which to operate. By default, flattened input is + used. If this is a tuple of ints, the maximum is selected over + multiple axes, instead of a single axis or all the axes as before. + + out : ndarray, optional + Alternative output array in which to place the result. Must + be of the same shape and buffer length as the expected output. + See :ref:`ufuncs-output-type` for more details. + + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the input array. + + If the default value is passed, then `keepdims` will not be + passed through to the ``max`` method of sub-classes of + `ndarray`, however any non-default value will be. If the + sub-class' method does not implement `keepdims` any + exceptions will be raised. + + initial : scalar, optional + The minimum value of an output element. Must be present to allow + computation on empty slice. See `~numpy.ufunc.reduce` for details. + + where : array_like of bool, optional + Elements to compare for the maximum. See `~numpy.ufunc.reduce` + for details. + + Returns + ------- + max : ndarray or scalar + Maximum of `a`. If `axis` is None, the result is a scalar value. + If `axis` is an int, the result is an array of dimension + ``a.ndim - 1``. If `axis` is a tuple, the result is an array of + dimension ``a.ndim - len(axis)``. + + See Also + -------- + amin : + The minimum value of an array along a given axis, propagating any NaNs. + nanmax : + The maximum value of an array along a given axis, ignoring any NaNs. + maximum : + Element-wise maximum of two arrays, propagating any NaNs. + fmax : + Element-wise maximum of two arrays, ignoring any NaNs. + argmax : + Return the indices of the maximum values. + + nanmin, minimum, fmin + + Notes + ----- + NaN values are propagated, that is if at least one item is NaN, the + corresponding max value will be NaN as well. To ignore NaN values + (MATLAB behavior), please use nanmax. + + Don't use `~numpy.max` for element-wise comparison of 2 arrays; when + ``a.shape[0]`` is 2, ``maximum(a[0], a[1])`` is faster than + ``max(a, axis=0)``. + + Examples + -------- + >>> import numpy as np + >>> a = np.arange(4).reshape((2,2)) + >>> a + array([[0, 1], + [2, 3]]) + >>> np.max(a) # Maximum of the flattened array + 3 + >>> np.max(a, axis=0) # Maxima along the first axis + array([2, 3]) + >>> np.max(a, axis=1) # Maxima along the second axis + array([1, 3]) + >>> np.max(a, where=[False, True], initial=-1, axis=0) + array([-1, 3]) + >>> b = np.arange(5, dtype=float) + >>> b[2] = np.nan + >>> np.max(b) + np.float64(nan) + >>> np.max(b, where=~np.isnan(b), initial=-1) + 4.0 + >>> np.nanmax(b) + 4.0 + + You can use an initial value to compute the maximum of an empty slice, or + to initialize it to a different value: + + >>> np.max([[-50], [10]], axis=-1, initial=0) + array([ 0, 10]) + + Notice that the initial value is used as one of the elements for which the + maximum is determined, unlike for the default argument Python's max + function, which is only used for empty iterables. + + >>> np.max([5], initial=6) + 6 + >>> max([5], default=6) + 5 + """ + return _wrapreduction(a, np.maximum, 'max', axis, None, out, + keepdims=keepdims, initial=initial, where=where) + + +@array_function_dispatch(_max_dispatcher) +def amax(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue, + where=np._NoValue): + """ + Return the maximum of an array or maximum along an axis. + + `amax` is an alias of `~numpy.max`. + + See Also + -------- + max : alias of this function + ndarray.max : equivalent method + """ + return _wrapreduction(a, np.maximum, 'max', axis, None, out, + keepdims=keepdims, initial=initial, where=where) + + +def _min_dispatcher(a, axis=None, out=None, keepdims=None, initial=None, + where=None): + return (a, out) + + +@array_function_dispatch(_min_dispatcher) +def min(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue, + where=np._NoValue): + """ + Return the minimum of an array or minimum along an axis. + + Parameters + ---------- + a : array_like + Input data. + axis : None or int or tuple of ints, optional + Axis or axes along which to operate. By default, flattened input is + used. + + If this is a tuple of ints, the minimum is selected over multiple axes, + instead of a single axis or all the axes as before. + out : ndarray, optional + Alternative output array in which to place the result. Must + be of the same shape and buffer length as the expected output. + See :ref:`ufuncs-output-type` for more details. + + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the input array. + + If the default value is passed, then `keepdims` will not be + passed through to the ``min`` method of sub-classes of + `ndarray`, however any non-default value will be. If the + sub-class' method does not implement `keepdims` any + exceptions will be raised. + + initial : scalar, optional + The maximum value of an output element. Must be present to allow + computation on empty slice. See `~numpy.ufunc.reduce` for details. + + where : array_like of bool, optional + Elements to compare for the minimum. See `~numpy.ufunc.reduce` + for details. + + Returns + ------- + min : ndarray or scalar + Minimum of `a`. If `axis` is None, the result is a scalar value. + If `axis` is an int, the result is an array of dimension + ``a.ndim - 1``. If `axis` is a tuple, the result is an array of + dimension ``a.ndim - len(axis)``. + + See Also + -------- + amax : + The maximum value of an array along a given axis, propagating any NaNs. + nanmin : + The minimum value of an array along a given axis, ignoring any NaNs. + minimum : + Element-wise minimum of two arrays, propagating any NaNs. + fmin : + Element-wise minimum of two arrays, ignoring any NaNs. + argmin : + Return the indices of the minimum values. + + nanmax, maximum, fmax + + Notes + ----- + NaN values are propagated, that is if at least one item is NaN, the + corresponding min value will be NaN as well. To ignore NaN values + (MATLAB behavior), please use nanmin. + + Don't use `~numpy.min` for element-wise comparison of 2 arrays; when + ``a.shape[0]`` is 2, ``minimum(a[0], a[1])`` is faster than + ``min(a, axis=0)``. + + Examples + -------- + >>> import numpy as np + >>> a = np.arange(4).reshape((2,2)) + >>> a + array([[0, 1], + [2, 3]]) + >>> np.min(a) # Minimum of the flattened array + 0 + >>> np.min(a, axis=0) # Minima along the first axis + array([0, 1]) + >>> np.min(a, axis=1) # Minima along the second axis + array([0, 2]) + >>> np.min(a, where=[False, True], initial=10, axis=0) + array([10, 1]) + + >>> b = np.arange(5, dtype=float) + >>> b[2] = np.nan + >>> np.min(b) + np.float64(nan) + >>> np.min(b, where=~np.isnan(b), initial=10) + 0.0 + >>> np.nanmin(b) + 0.0 + + >>> np.min([[-50], [10]], axis=-1, initial=0) + array([-50, 0]) + + Notice that the initial value is used as one of the elements for which the + minimum is determined, unlike for the default argument Python's max + function, which is only used for empty iterables. + + Notice that this isn't the same as Python's ``default`` argument. + + >>> np.min([6], initial=5) + 5 + >>> min([6], default=5) + 6 + """ + return _wrapreduction(a, np.minimum, 'min', axis, None, out, + keepdims=keepdims, initial=initial, where=where) + + +@array_function_dispatch(_min_dispatcher) +def amin(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue, + where=np._NoValue): + """ + Return the minimum of an array or minimum along an axis. + + `amin` is an alias of `~numpy.min`. + + See Also + -------- + min : alias of this function + ndarray.min : equivalent method + """ + return _wrapreduction(a, np.minimum, 'min', axis, None, out, + keepdims=keepdims, initial=initial, where=where) + + +def _prod_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None, + initial=None, where=None): + return (a, out) + + +@array_function_dispatch(_prod_dispatcher) +def prod(a, axis=None, dtype=None, out=None, keepdims=np._NoValue, + initial=np._NoValue, where=np._NoValue): + """ + Return the product of array elements over a given axis. + + Parameters + ---------- + a : array_like + Input data. + axis : None or int or tuple of ints, optional + Axis or axes along which a product is performed. The default, + axis=None, will calculate the product of all the elements in the + input array. If axis is negative it counts from the last to the + first axis. + + If axis is a tuple of ints, a product is performed on all of the + axes specified in the tuple instead of a single axis or all the + axes as before. + dtype : dtype, optional + The type of the returned array, as well as of the accumulator in + which the elements are multiplied. The dtype of `a` is used by + default unless `a` has an integer dtype of less precision than the + default platform integer. In that case, if `a` is signed then the + platform integer is used while if `a` is unsigned then an unsigned + integer of the same precision as the platform integer is used. + out : ndarray, optional + Alternative output array in which to place the result. It must have + the same shape as the expected output, but the type of the output + values will be cast if necessary. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left in the + result as dimensions with size one. With this option, the result + will broadcast correctly against the input array. + + If the default value is passed, then `keepdims` will not be + passed through to the `prod` method of sub-classes of + `ndarray`, however any non-default value will be. If the + sub-class' method does not implement `keepdims` any + exceptions will be raised. + initial : scalar, optional + The starting value for this product. See `~numpy.ufunc.reduce` + for details. + where : array_like of bool, optional + Elements to include in the product. See `~numpy.ufunc.reduce` + for details. + + Returns + ------- + product_along_axis : ndarray, see `dtype` parameter above. + An array shaped as `a` but with the specified axis removed. + Returns a reference to `out` if specified. + + See Also + -------- + ndarray.prod : equivalent method + :ref:`ufuncs-output-type` + + Notes + ----- + Arithmetic is modular when using integer types, and no error is + raised on overflow. That means that, on a 32-bit platform: + + >>> x = np.array([536870910, 536870910, 536870910, 536870910]) + >>> np.prod(x) + 16 # may vary + + The product of an empty array is the neutral element 1: + + >>> np.prod([]) + 1.0 + + Examples + -------- + By default, calculate the product of all elements: + + >>> import numpy as np + >>> np.prod([1.,2.]) + 2.0 + + Even when the input array is two-dimensional: + + >>> a = np.array([[1., 2.], [3., 4.]]) + >>> np.prod(a) + 24.0 + + But we can also specify the axis over which to multiply: + + >>> np.prod(a, axis=1) + array([ 2., 12.]) + >>> np.prod(a, axis=0) + array([3., 8.]) + + Or select specific elements to include: + + >>> np.prod([1., np.nan, 3.], where=[True, False, True]) + 3.0 + + If the type of `x` is unsigned, then the output type is + the unsigned platform integer: + + >>> x = np.array([1, 2, 3], dtype=np.uint8) + >>> np.prod(x).dtype == np.uint + True + + If `x` is of a signed integer type, then the output type + is the default platform integer: + + >>> x = np.array([1, 2, 3], dtype=np.int8) + >>> np.prod(x).dtype == int + True + + You can also start the product with a value other than one: + + >>> np.prod([1, 2], initial=5) + 10 + """ + return _wrapreduction(a, np.multiply, 'prod', axis, dtype, out, + keepdims=keepdims, initial=initial, where=where) + + +def _cumprod_dispatcher(a, axis=None, dtype=None, out=None): + return (a, out) + + +@array_function_dispatch(_cumprod_dispatcher) +def cumprod(a, axis=None, dtype=None, out=None): + """ + Return the cumulative product of elements along a given axis. + + Parameters + ---------- + a : array_like + Input array. + axis : int, optional + Axis along which the cumulative product is computed. By default + the input is flattened. + dtype : dtype, optional + Type of the returned array, as well as of the accumulator in which + the elements are multiplied. If *dtype* is not specified, it + defaults to the dtype of `a`, unless `a` has an integer dtype with + a precision less than that of the default platform integer. In + that case, the default platform integer is used instead. + out : ndarray, optional + Alternative output array in which to place the result. It must + have the same shape and buffer length as the expected output + but the type of the resulting values will be cast if necessary. + + Returns + ------- + cumprod : ndarray + A new array holding the result is returned unless `out` is + specified, in which case a reference to out is returned. + + See Also + -------- + cumulative_prod : Array API compatible alternative for ``cumprod``. + :ref:`ufuncs-output-type` + + Notes + ----- + Arithmetic is modular when using integer types, and no error is + raised on overflow. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([1,2,3]) + >>> np.cumprod(a) # intermediate results 1, 1*2 + ... # total product 1*2*3 = 6 + array([1, 2, 6]) + >>> a = np.array([[1, 2, 3], [4, 5, 6]]) + >>> np.cumprod(a, dtype=float) # specify type of output + array([ 1., 2., 6., 24., 120., 720.]) + + The cumulative product for each column (i.e., over the rows) of `a`: + + >>> np.cumprod(a, axis=0) + array([[ 1, 2, 3], + [ 4, 10, 18]]) + + The cumulative product for each row (i.e. over the columns) of `a`: + + >>> np.cumprod(a,axis=1) + array([[ 1, 2, 6], + [ 4, 20, 120]]) + + """ + return _wrapfunc(a, 'cumprod', axis=axis, dtype=dtype, out=out) + + +def _ndim_dispatcher(a): + return (a,) + + +@array_function_dispatch(_ndim_dispatcher) +def ndim(a): + """ + Return the number of dimensions of an array. + + Parameters + ---------- + a : array_like + Input array. If it is not already an ndarray, a conversion is + attempted. + + Returns + ------- + number_of_dimensions : int + The number of dimensions in `a`. Scalars are zero-dimensional. + + See Also + -------- + ndarray.ndim : equivalent method + shape : dimensions of array + ndarray.shape : dimensions of array + + Examples + -------- + >>> import numpy as np + >>> np.ndim([[1,2,3],[4,5,6]]) + 2 + >>> np.ndim(np.array([[1,2,3],[4,5,6]])) + 2 + >>> np.ndim(1) + 0 + + """ + try: + return a.ndim + except AttributeError: + return asarray(a).ndim + + +def _size_dispatcher(a, axis=None): + return (a,) + + +@array_function_dispatch(_size_dispatcher) +def size(a, axis=None): + """ + Return the number of elements along a given axis. + + Parameters + ---------- + a : array_like + Input data. + axis : int, optional + Axis along which the elements are counted. By default, give + the total number of elements. + + Returns + ------- + element_count : int + Number of elements along the specified axis. + + See Also + -------- + shape : dimensions of array + ndarray.shape : dimensions of array + ndarray.size : number of elements in array + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1,2,3],[4,5,6]]) + >>> np.size(a) + 6 + >>> np.size(a,1) + 3 + >>> np.size(a,0) + 2 + + """ + if axis is None: + try: + return a.size + except AttributeError: + return asarray(a).size + else: + try: + return a.shape[axis] + except AttributeError: + return asarray(a).shape[axis] + + +def _round_dispatcher(a, decimals=None, out=None): + return (a, out) + + +@array_function_dispatch(_round_dispatcher) +def round(a, decimals=0, out=None): + """ + Evenly round to the given number of decimals. + + Parameters + ---------- + a : array_like + Input data. + decimals : int, optional + Number of decimal places to round to (default: 0). If + decimals is negative, it specifies the number of positions to + the left of the decimal point. + out : ndarray, optional + Alternative output array in which to place the result. It must have + the same shape as the expected output, but the type of the output + values will be cast if necessary. See :ref:`ufuncs-output-type` + for more details. + + Returns + ------- + rounded_array : ndarray + An array of the same type as `a`, containing the rounded values. + Unless `out` was specified, a new array is created. A reference to + the result is returned. + + The real and imaginary parts of complex numbers are rounded + separately. The result of rounding a float is a float. + + See Also + -------- + ndarray.round : equivalent method + around : an alias for this function + ceil, fix, floor, rint, trunc + + + Notes + ----- + For values exactly halfway between rounded decimal values, NumPy + rounds to the nearest even value. Thus 1.5 and 2.5 round to 2.0, + -0.5 and 0.5 round to 0.0, etc. + + ``np.round`` uses a fast but sometimes inexact algorithm to round + floating-point datatypes. For positive `decimals` it is equivalent to + ``np.true_divide(np.rint(a * 10**decimals), 10**decimals)``, which has + error due to the inexact representation of decimal fractions in the IEEE + floating point standard [1]_ and errors introduced when scaling by powers + of ten. For instance, note the extra "1" in the following: + + >>> np.round(56294995342131.5, 3) + 56294995342131.51 + + If your goal is to print such values with a fixed number of decimals, it is + preferable to use numpy's float printing routines to limit the number of + printed decimals: + + >>> np.format_float_positional(56294995342131.5, precision=3) + '56294995342131.5' + + The float printing routines use an accurate but much more computationally + demanding algorithm to compute the number of digits after the decimal + point. + + Alternatively, Python's builtin `round` function uses a more accurate + but slower algorithm for 64-bit floating point values: + + >>> round(56294995342131.5, 3) + 56294995342131.5 + >>> np.round(16.055, 2), round(16.055, 2) # equals 16.0549999999999997 + (16.06, 16.05) + + + References + ---------- + .. [1] "Lecture Notes on the Status of IEEE 754", William Kahan, + https://people.eecs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF + + Examples + -------- + >>> import numpy as np + >>> np.round([0.37, 1.64]) + array([0., 2.]) + >>> np.round([0.37, 1.64], decimals=1) + array([0.4, 1.6]) + >>> np.round([.5, 1.5, 2.5, 3.5, 4.5]) # rounds to nearest even value + array([0., 2., 2., 4., 4.]) + >>> np.round([1,2,3,11], decimals=1) # ndarray of ints is returned + array([ 1, 2, 3, 11]) + >>> np.round([1,2,3,11], decimals=-1) + array([ 0, 0, 0, 10]) + + """ + return _wrapfunc(a, 'round', decimals=decimals, out=out) + + +@array_function_dispatch(_round_dispatcher) +def around(a, decimals=0, out=None): + """ + Round an array to the given number of decimals. + + `around` is an alias of `~numpy.round`. + + See Also + -------- + ndarray.round : equivalent method + round : alias for this function + ceil, fix, floor, rint, trunc + + """ + return _wrapfunc(a, 'round', decimals=decimals, out=out) + + +def _mean_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None, *, + where=None): + return (a, where, out) + + +@array_function_dispatch(_mean_dispatcher) +def mean(a, axis=None, dtype=None, out=None, keepdims=np._NoValue, *, + where=np._NoValue): + """ + Compute the arithmetic mean along the specified axis. + + Returns the average of the array elements. The average is taken over + the flattened array by default, otherwise over the specified axis. + `float64` intermediate and return values are used for integer inputs. + + Parameters + ---------- + a : array_like + Array containing numbers whose mean is desired. If `a` is not an + array, a conversion is attempted. + axis : None or int or tuple of ints, optional + Axis or axes along which the means are computed. The default is to + compute the mean of the flattened array. + + If this is a tuple of ints, a mean is performed over multiple axes, + instead of a single axis or all the axes as before. + dtype : data-type, optional + Type to use in computing the mean. For integer inputs, the default + is `float64`; for floating point inputs, it is the same as the + input dtype. + out : ndarray, optional + Alternate output array in which to place the result. The default + is ``None``; if provided, it must have the same shape as the + expected output, but the type will be cast if necessary. + See :ref:`ufuncs-output-type` for more details. + See :ref:`ufuncs-output-type` for more details. + + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the input array. + + If the default value is passed, then `keepdims` will not be + passed through to the `mean` method of sub-classes of + `ndarray`, however any non-default value will be. If the + sub-class' method does not implement `keepdims` any + exceptions will be raised. + + where : array_like of bool, optional + Elements to include in the mean. See `~numpy.ufunc.reduce` for details. + + .. versionadded:: 1.20.0 + + Returns + ------- + m : ndarray, see dtype parameter above + If `out=None`, returns a new array containing the mean values, + otherwise a reference to the output array is returned. + + See Also + -------- + average : Weighted average + std, var, nanmean, nanstd, nanvar + + Notes + ----- + The arithmetic mean is the sum of the elements along the axis divided + by the number of elements. + + Note that for floating-point input, the mean is computed using the + same precision the input has. Depending on the input data, this can + cause the results to be inaccurate, especially for `float32` (see + example below). Specifying a higher-precision accumulator using the + `dtype` keyword can alleviate this issue. + + By default, `float16` results are computed using `float32` intermediates + for extra precision. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1, 2], [3, 4]]) + >>> np.mean(a) + 2.5 + >>> np.mean(a, axis=0) + array([2., 3.]) + >>> np.mean(a, axis=1) + array([1.5, 3.5]) + + In single precision, `mean` can be inaccurate: + + >>> a = np.zeros((2, 512*512), dtype=np.float32) + >>> a[0, :] = 1.0 + >>> a[1, :] = 0.1 + >>> np.mean(a) + np.float32(0.54999924) + + Computing the mean in float64 is more accurate: + + >>> np.mean(a, dtype=np.float64) + 0.55000000074505806 # may vary + + Computing the mean in timedelta64 is available: + + >>> b = np.array([1, 3], dtype="timedelta64[D]") + >>> np.mean(b) + np.timedelta64(2,'D') + + Specifying a where argument: + + >>> a = np.array([[5, 9, 13], [14, 10, 12], [11, 15, 19]]) + >>> np.mean(a) + 12.0 + >>> np.mean(a, where=[[True], [False], [False]]) + 9.0 + + """ + kwargs = {} + if keepdims is not np._NoValue: + kwargs['keepdims'] = keepdims + if where is not np._NoValue: + kwargs['where'] = where + if type(a) is not mu.ndarray: + try: + mean = a.mean + except AttributeError: + pass + else: + return mean(axis=axis, dtype=dtype, out=out, **kwargs) + + return _methods._mean(a, axis=axis, dtype=dtype, + out=out, **kwargs) + + +def _std_dispatcher(a, axis=None, dtype=None, out=None, ddof=None, + keepdims=None, *, where=None, mean=None, correction=None): + return (a, where, out, mean) + + +@array_function_dispatch(_std_dispatcher) +def std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue, *, + where=np._NoValue, mean=np._NoValue, correction=np._NoValue): + r""" + Compute the standard deviation along the specified axis. + + Returns the standard deviation, a measure of the spread of a distribution, + of the array elements. The standard deviation is computed for the + flattened array by default, otherwise over the specified axis. + + Parameters + ---------- + a : array_like + Calculate the standard deviation of these values. + axis : None or int or tuple of ints, optional + Axis or axes along which the standard deviation is computed. The + default is to compute the standard deviation of the flattened array. + If this is a tuple of ints, a standard deviation is performed over + multiple axes, instead of a single axis or all the axes as before. + dtype : dtype, optional + Type to use in computing the standard deviation. For arrays of + integer type the default is float64, for arrays of float types it is + the same as the array type. + out : ndarray, optional + Alternative output array in which to place the result. It must have + the same shape as the expected output but the type (of the calculated + values) will be cast if necessary. + See :ref:`ufuncs-output-type` for more details. + ddof : {int, float}, optional + Means Delta Degrees of Freedom. The divisor used in calculations + is ``N - ddof``, where ``N`` represents the number of elements. + By default `ddof` is zero. See Notes for details about use of `ddof`. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the input array. + + If the default value is passed, then `keepdims` will not be + passed through to the `std` method of sub-classes of + `ndarray`, however any non-default value will be. If the + sub-class' method does not implement `keepdims` any + exceptions will be raised. + where : array_like of bool, optional + Elements to include in the standard deviation. + See `~numpy.ufunc.reduce` for details. + + .. versionadded:: 1.20.0 + + mean : array_like, optional + Provide the mean to prevent its recalculation. The mean should have + a shape as if it was calculated with ``keepdims=True``. + The axis for the calculation of the mean should be the same as used in + the call to this std function. + + .. versionadded:: 2.0.0 + + correction : {int, float}, optional + Array API compatible name for the ``ddof`` parameter. Only one of them + can be provided at the same time. + + .. versionadded:: 2.0.0 + + Returns + ------- + standard_deviation : ndarray, see dtype parameter above. + If `out` is None, return a new array containing the standard deviation, + otherwise return a reference to the output array. + + See Also + -------- + var, mean, nanmean, nanstd, nanvar + :ref:`ufuncs-output-type` + + Notes + ----- + There are several common variants of the array standard deviation + calculation. Assuming the input `a` is a one-dimensional NumPy array + and ``mean`` is either provided as an argument or computed as + ``a.mean()``, NumPy computes the standard deviation of an array as:: + + N = len(a) + d2 = abs(a - mean)**2 # abs is for complex `a` + var = d2.sum() / (N - ddof) # note use of `ddof` + std = var**0.5 + + Different values of the argument `ddof` are useful in different + contexts. NumPy's default ``ddof=0`` corresponds with the expression: + + .. math:: + + \sqrt{\frac{\sum_i{|a_i - \bar{a}|^2 }}{N}} + + which is sometimes called the "population standard deviation" in the field + of statistics because it applies the definition of standard deviation to + `a` as if `a` were a complete population of possible observations. + + Many other libraries define the standard deviation of an array + differently, e.g.: + + .. math:: + + \sqrt{\frac{\sum_i{|a_i - \bar{a}|^2 }}{N - 1}} + + In statistics, the resulting quantity is sometimes called the "sample + standard deviation" because if `a` is a random sample from a larger + population, this calculation provides the square root of an unbiased + estimate of the variance of the population. The use of :math:`N-1` in the + denominator is often called "Bessel's correction" because it corrects for + bias (toward lower values) in the variance estimate introduced when the + sample mean of `a` is used in place of the true mean of the population. + The resulting estimate of the standard deviation is still biased, but less + than it would have been without the correction. For this quantity, use + ``ddof=1``. + + Note that, for complex numbers, `std` takes the absolute + value before squaring, so that the result is always real and nonnegative. + + For floating-point input, the standard deviation is computed using the same + precision the input has. Depending on the input data, this can cause + the results to be inaccurate, especially for float32 (see example below). + Specifying a higher-accuracy accumulator using the `dtype` keyword can + alleviate this issue. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1, 2], [3, 4]]) + >>> np.std(a) + 1.1180339887498949 # may vary + >>> np.std(a, axis=0) + array([1., 1.]) + >>> np.std(a, axis=1) + array([0.5, 0.5]) + + In single precision, std() can be inaccurate: + + >>> a = np.zeros((2, 512*512), dtype=np.float32) + >>> a[0, :] = 1.0 + >>> a[1, :] = 0.1 + >>> np.std(a) + np.float32(0.45000005) + + Computing the standard deviation in float64 is more accurate: + + >>> np.std(a, dtype=np.float64) + 0.44999999925494177 # may vary + + Specifying a where argument: + + >>> a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]]) + >>> np.std(a) + 2.614064523559687 # may vary + >>> np.std(a, where=[[True], [True], [False]]) + 2.0 + + Using the mean keyword to save computation time: + + >>> import numpy as np + >>> from timeit import timeit + >>> a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]]) + >>> mean = np.mean(a, axis=1, keepdims=True) + >>> + >>> g = globals() + >>> n = 10000 + >>> t1 = timeit("std = np.std(a, axis=1, mean=mean)", globals=g, number=n) + >>> t2 = timeit("std = np.std(a, axis=1)", globals=g, number=n) + >>> print(f'Percentage execution time saved {100*(t2-t1)/t2:.0f}%') + #doctest: +SKIP + Percentage execution time saved 30% + + """ + kwargs = {} + if keepdims is not np._NoValue: + kwargs['keepdims'] = keepdims + if where is not np._NoValue: + kwargs['where'] = where + if mean is not np._NoValue: + kwargs['mean'] = mean + + if correction != np._NoValue: + if ddof != 0: + raise ValueError( + "ddof and correction can't be provided simultaneously." + ) + else: + ddof = correction + + if type(a) is not mu.ndarray: + try: + std = a.std + except AttributeError: + pass + else: + return std(axis=axis, dtype=dtype, out=out, ddof=ddof, **kwargs) + + return _methods._std(a, axis=axis, dtype=dtype, out=out, ddof=ddof, + **kwargs) + + +def _var_dispatcher(a, axis=None, dtype=None, out=None, ddof=None, + keepdims=None, *, where=None, mean=None, correction=None): + return (a, where, out, mean) + + +@array_function_dispatch(_var_dispatcher) +def var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue, *, + where=np._NoValue, mean=np._NoValue, correction=np._NoValue): + r""" + Compute the variance along the specified axis. + + Returns the variance of the array elements, a measure of the spread of a + distribution. The variance is computed for the flattened array by + default, otherwise over the specified axis. + + Parameters + ---------- + a : array_like + Array containing numbers whose variance is desired. If `a` is not an + array, a conversion is attempted. + axis : None or int or tuple of ints, optional + Axis or axes along which the variance is computed. The default is to + compute the variance of the flattened array. + If this is a tuple of ints, a variance is performed over multiple axes, + instead of a single axis or all the axes as before. + dtype : data-type, optional + Type to use in computing the variance. For arrays of integer type + the default is `float64`; for arrays of float types it is the same as + the array type. + out : ndarray, optional + Alternate output array in which to place the result. It must have + the same shape as the expected output, but the type is cast if + necessary. + ddof : {int, float}, optional + "Delta Degrees of Freedom": the divisor used in the calculation is + ``N - ddof``, where ``N`` represents the number of elements. By + default `ddof` is zero. See notes for details about use of `ddof`. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the input array. + + If the default value is passed, then `keepdims` will not be + passed through to the `var` method of sub-classes of + `ndarray`, however any non-default value will be. If the + sub-class' method does not implement `keepdims` any + exceptions will be raised. + where : array_like of bool, optional + Elements to include in the variance. See `~numpy.ufunc.reduce` for + details. + + .. versionadded:: 1.20.0 + + mean : array like, optional + Provide the mean to prevent its recalculation. The mean should have + a shape as if it was calculated with ``keepdims=True``. + The axis for the calculation of the mean should be the same as used in + the call to this var function. + + .. versionadded:: 2.0.0 + + correction : {int, float}, optional + Array API compatible name for the ``ddof`` parameter. Only one of them + can be provided at the same time. + + .. versionadded:: 2.0.0 + + Returns + ------- + variance : ndarray, see dtype parameter above + If ``out=None``, returns a new array containing the variance; + otherwise, a reference to the output array is returned. + + See Also + -------- + std, mean, nanmean, nanstd, nanvar + :ref:`ufuncs-output-type` + + Notes + ----- + There are several common variants of the array variance calculation. + Assuming the input `a` is a one-dimensional NumPy array and ``mean`` is + either provided as an argument or computed as ``a.mean()``, NumPy + computes the variance of an array as:: + + N = len(a) + d2 = abs(a - mean)**2 # abs is for complex `a` + var = d2.sum() / (N - ddof) # note use of `ddof` + + Different values of the argument `ddof` are useful in different + contexts. NumPy's default ``ddof=0`` corresponds with the expression: + + .. math:: + + \frac{\sum_i{|a_i - \bar{a}|^2 }}{N} + + which is sometimes called the "population variance" in the field of + statistics because it applies the definition of variance to `a` as if `a` + were a complete population of possible observations. + + Many other libraries define the variance of an array differently, e.g.: + + .. math:: + + \frac{\sum_i{|a_i - \bar{a}|^2}}{N - 1} + + In statistics, the resulting quantity is sometimes called the "sample + variance" because if `a` is a random sample from a larger population, + this calculation provides an unbiased estimate of the variance of the + population. The use of :math:`N-1` in the denominator is often called + "Bessel's correction" because it corrects for bias (toward lower values) + in the variance estimate introduced when the sample mean of `a` is used + in place of the true mean of the population. For this quantity, use + ``ddof=1``. + + Note that for complex numbers, the absolute value is taken before + squaring, so that the result is always real and nonnegative. + + For floating-point input, the variance is computed using the same + precision the input has. Depending on the input data, this can cause + the results to be inaccurate, especially for `float32` (see example + below). Specifying a higher-accuracy accumulator using the ``dtype`` + keyword can alleviate this issue. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1, 2], [3, 4]]) + >>> np.var(a) + 1.25 + >>> np.var(a, axis=0) + array([1., 1.]) + >>> np.var(a, axis=1) + array([0.25, 0.25]) + + In single precision, var() can be inaccurate: + + >>> a = np.zeros((2, 512*512), dtype=np.float32) + >>> a[0, :] = 1.0 + >>> a[1, :] = 0.1 + >>> np.var(a) + np.float32(0.20250003) + + Computing the variance in float64 is more accurate: + + >>> np.var(a, dtype=np.float64) + 0.20249999932944759 # may vary + >>> ((1-0.55)**2 + (0.1-0.55)**2)/2 + 0.2025 + + Specifying a where argument: + + >>> a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]]) + >>> np.var(a) + 6.833333333333333 # may vary + >>> np.var(a, where=[[True], [True], [False]]) + 4.0 + + Using the mean keyword to save computation time: + + >>> import numpy as np + >>> from timeit import timeit + >>> + >>> a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]]) + >>> mean = np.mean(a, axis=1, keepdims=True) + >>> + >>> g = globals() + >>> n = 10000 + >>> t1 = timeit("var = np.var(a, axis=1, mean=mean)", globals=g, number=n) + >>> t2 = timeit("var = np.var(a, axis=1)", globals=g, number=n) + >>> print(f'Percentage execution time saved {100*(t2-t1)/t2:.0f}%') + #doctest: +SKIP + Percentage execution time saved 32% + + """ + kwargs = {} + if keepdims is not np._NoValue: + kwargs['keepdims'] = keepdims + if where is not np._NoValue: + kwargs['where'] = where + if mean is not np._NoValue: + kwargs['mean'] = mean + + if correction != np._NoValue: + if ddof != 0: + raise ValueError( + "ddof and correction can't be provided simultaneously." + ) + else: + ddof = correction + + if type(a) is not mu.ndarray: + try: + var = a.var + + except AttributeError: + pass + else: + return var(axis=axis, dtype=dtype, out=out, ddof=ddof, **kwargs) + + return _methods._var(a, axis=axis, dtype=dtype, out=out, ddof=ddof, + **kwargs) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.pyi new file mode 100644 index 0000000..f0f8309 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/fromnumeric.pyi @@ -0,0 +1,1750 @@ +# ruff: noqa: ANN401 +from collections.abc import Sequence +from typing import ( + Any, + Literal, + Never, + Protocol, + SupportsIndex, + TypeAlias, + TypeVar, + overload, + type_check_only, +) + +from _typeshed import Incomplete +from typing_extensions import deprecated + +import numpy as np +from numpy import ( + _AnyShapeT, + _CastingKind, + _ModeKind, + _OrderACF, + _OrderKACF, + _PartitionKind, + _SortKind, + _SortSide, + complexfloating, + float16, + floating, + generic, + int64, + int_, + intp, + object_, + timedelta64, + uint64, +) +from numpy._globals import _NoValueType +from numpy._typing import ( + ArrayLike, + DTypeLike, + NDArray, + _AnyShape, + _ArrayLike, + _ArrayLikeBool_co, + _ArrayLikeComplex_co, + _ArrayLikeFloat_co, + _ArrayLikeInt, + _ArrayLikeInt_co, + _ArrayLikeObject_co, + _ArrayLikeUInt_co, + _BoolLike_co, + _ComplexLike_co, + _DTypeLike, + _IntLike_co, + _NestedSequence, + _NumberLike_co, + _ScalarLike_co, + _ShapeLike, +) + +__all__ = [ + "all", + "amax", + "amin", + "any", + "argmax", + "argmin", + "argpartition", + "argsort", + "around", + "choose", + "clip", + "compress", + "cumprod", + "cumsum", + "cumulative_prod", + "cumulative_sum", + "diagonal", + "mean", + "max", + "min", + "matrix_transpose", + "ndim", + "nonzero", + "partition", + "prod", + "ptp", + "put", + "ravel", + "repeat", + "reshape", + "resize", + "round", + "searchsorted", + "shape", + "size", + "sort", + "squeeze", + "std", + "sum", + "swapaxes", + "take", + "trace", + "transpose", + "var", +] + +_ScalarT = TypeVar("_ScalarT", bound=generic) +_NumberOrObjectT = TypeVar("_NumberOrObjectT", bound=np.number | np.object_) +_ArrayT = TypeVar("_ArrayT", bound=np.ndarray[Any, Any]) +_ShapeT = TypeVar("_ShapeT", bound=tuple[int, ...]) +_ShapeT_co = TypeVar("_ShapeT_co", bound=tuple[int, ...], covariant=True) +_BoolOrIntArrayT = TypeVar("_BoolOrIntArrayT", bound=NDArray[np.integer | np.bool]) + +@type_check_only +class _SupportsShape(Protocol[_ShapeT_co]): + # NOTE: it matters that `self` is positional only + @property + def shape(self, /) -> _ShapeT_co: ... + +# a "sequence" that isn't a string, bytes, bytearray, or memoryview +_T = TypeVar("_T") +_PyArray: TypeAlias = list[_T] | tuple[_T, ...] +# `int` also covers `bool` +_PyScalar: TypeAlias = complex | bytes | str + +@overload +def take( + a: _ArrayLike[_ScalarT], + indices: _IntLike_co, + axis: None = ..., + out: None = ..., + mode: _ModeKind = ..., +) -> _ScalarT: ... +@overload +def take( + a: ArrayLike, + indices: _IntLike_co, + axis: SupportsIndex | None = ..., + out: None = ..., + mode: _ModeKind = ..., +) -> Any: ... +@overload +def take( + a: _ArrayLike[_ScalarT], + indices: _ArrayLikeInt_co, + axis: SupportsIndex | None = ..., + out: None = ..., + mode: _ModeKind = ..., +) -> NDArray[_ScalarT]: ... +@overload +def take( + a: ArrayLike, + indices: _ArrayLikeInt_co, + axis: SupportsIndex | None = ..., + out: None = ..., + mode: _ModeKind = ..., +) -> NDArray[Any]: ... +@overload +def take( + a: ArrayLike, + indices: _ArrayLikeInt_co, + axis: SupportsIndex | None, + out: _ArrayT, + mode: _ModeKind = ..., +) -> _ArrayT: ... +@overload +def take( + a: ArrayLike, + indices: _ArrayLikeInt_co, + axis: SupportsIndex | None = ..., + *, + out: _ArrayT, + mode: _ModeKind = ..., +) -> _ArrayT: ... + +@overload +def reshape( # shape: index + a: _ArrayLike[_ScalarT], + /, + shape: SupportsIndex, + order: _OrderACF = "C", + *, + copy: bool | None = None, +) -> np.ndarray[tuple[int], np.dtype[_ScalarT]]: ... +@overload +def reshape( # shape: (int, ...) @ _AnyShapeT + a: _ArrayLike[_ScalarT], + /, + shape: _AnyShapeT, + order: _OrderACF = "C", + *, + copy: bool | None = None, +) -> np.ndarray[_AnyShapeT, np.dtype[_ScalarT]]: ... +@overload # shape: Sequence[index] +def reshape( + a: _ArrayLike[_ScalarT], + /, + shape: Sequence[SupportsIndex], + order: _OrderACF = "C", + *, + copy: bool | None = None, +) -> NDArray[_ScalarT]: ... +@overload # shape: index +def reshape( + a: ArrayLike, + /, + shape: SupportsIndex, + order: _OrderACF = "C", + *, + copy: bool | None = None, +) -> np.ndarray[tuple[int], np.dtype]: ... +@overload +def reshape( # shape: (int, ...) @ _AnyShapeT + a: ArrayLike, + /, + shape: _AnyShapeT, + order: _OrderACF = "C", + *, + copy: bool | None = None, +) -> np.ndarray[_AnyShapeT, np.dtype]: ... +@overload # shape: Sequence[index] +def reshape( + a: ArrayLike, + /, + shape: Sequence[SupportsIndex], + order: _OrderACF = "C", + *, + copy: bool | None = None, +) -> NDArray[Any]: ... +@overload +@deprecated( + "`newshape` keyword argument is deprecated, " + "use `shape=...` or pass shape positionally instead. " + "(deprecated in NumPy 2.1)", +) +def reshape( + a: ArrayLike, + /, + shape: None = None, + order: _OrderACF = "C", + *, + newshape: _ShapeLike, + copy: bool | None = None, +) -> NDArray[Any]: ... + +@overload +def choose( + a: _IntLike_co, + choices: ArrayLike, + out: None = ..., + mode: _ModeKind = ..., +) -> Any: ... +@overload +def choose( + a: _ArrayLikeInt_co, + choices: _ArrayLike[_ScalarT], + out: None = ..., + mode: _ModeKind = ..., +) -> NDArray[_ScalarT]: ... +@overload +def choose( + a: _ArrayLikeInt_co, + choices: ArrayLike, + out: None = ..., + mode: _ModeKind = ..., +) -> NDArray[Any]: ... +@overload +def choose( + a: _ArrayLikeInt_co, + choices: ArrayLike, + out: _ArrayT, + mode: _ModeKind = ..., +) -> _ArrayT: ... + +@overload +def repeat( + a: _ArrayLike[_ScalarT], + repeats: _ArrayLikeInt_co, + axis: None = None, +) -> np.ndarray[tuple[int], np.dtype[_ScalarT]]: ... +@overload +def repeat( + a: _ArrayLike[_ScalarT], + repeats: _ArrayLikeInt_co, + axis: SupportsIndex, +) -> NDArray[_ScalarT]: ... +@overload +def repeat( + a: ArrayLike, + repeats: _ArrayLikeInt_co, + axis: None = None, +) -> np.ndarray[tuple[int], np.dtype[Any]]: ... +@overload +def repeat( + a: ArrayLike, + repeats: _ArrayLikeInt_co, + axis: SupportsIndex, +) -> NDArray[Any]: ... + +def put( + a: NDArray[Any], + ind: _ArrayLikeInt_co, + v: ArrayLike, + mode: _ModeKind = ..., +) -> None: ... + +@overload +def swapaxes( + a: _ArrayLike[_ScalarT], + axis1: SupportsIndex, + axis2: SupportsIndex, +) -> NDArray[_ScalarT]: ... +@overload +def swapaxes( + a: ArrayLike, + axis1: SupportsIndex, + axis2: SupportsIndex, +) -> NDArray[Any]: ... + +@overload +def transpose( + a: _ArrayLike[_ScalarT], + axes: _ShapeLike | None = ... +) -> NDArray[_ScalarT]: ... +@overload +def transpose( + a: ArrayLike, + axes: _ShapeLike | None = ... +) -> NDArray[Any]: ... + +@overload +def matrix_transpose(x: _ArrayLike[_ScalarT], /) -> NDArray[_ScalarT]: ... +@overload +def matrix_transpose(x: ArrayLike, /) -> NDArray[Any]: ... + +# +@overload +def partition( + a: _ArrayLike[_ScalarT], + kth: _ArrayLikeInt, + axis: SupportsIndex | None = -1, + kind: _PartitionKind = "introselect", + order: None = None, +) -> NDArray[_ScalarT]: ... +@overload +def partition( + a: _ArrayLike[np.void], + kth: _ArrayLikeInt, + axis: SupportsIndex | None = -1, + kind: _PartitionKind = "introselect", + order: str | Sequence[str] | None = None, +) -> NDArray[np.void]: ... +@overload +def partition( + a: ArrayLike, + kth: _ArrayLikeInt, + axis: SupportsIndex | None = -1, + kind: _PartitionKind = "introselect", + order: str | Sequence[str] | None = None, +) -> NDArray[Any]: ... + +# +def argpartition( + a: ArrayLike, + kth: _ArrayLikeInt, + axis: SupportsIndex | None = -1, + kind: _PartitionKind = "introselect", + order: str | Sequence[str] | None = None, +) -> NDArray[intp]: ... + +# +@overload +def sort( + a: _ArrayLike[_ScalarT], + axis: SupportsIndex | None = ..., + kind: _SortKind | None = ..., + order: str | Sequence[str] | None = ..., + *, + stable: bool | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def sort( + a: ArrayLike, + axis: SupportsIndex | None = ..., + kind: _SortKind | None = ..., + order: str | Sequence[str] | None = ..., + *, + stable: bool | None = ..., +) -> NDArray[Any]: ... + +def argsort( + a: ArrayLike, + axis: SupportsIndex | None = ..., + kind: _SortKind | None = ..., + order: str | Sequence[str] | None = ..., + *, + stable: bool | None = ..., +) -> NDArray[intp]: ... + +@overload +def argmax( + a: ArrayLike, + axis: None = ..., + out: None = ..., + *, + keepdims: Literal[False] = ..., +) -> intp: ... +@overload +def argmax( + a: ArrayLike, + axis: SupportsIndex | None = ..., + out: None = ..., + *, + keepdims: bool = ..., +) -> Any: ... +@overload +def argmax( + a: ArrayLike, + axis: SupportsIndex | None, + out: _BoolOrIntArrayT, + *, + keepdims: bool = ..., +) -> _BoolOrIntArrayT: ... +@overload +def argmax( + a: ArrayLike, + axis: SupportsIndex | None = ..., + *, + out: _BoolOrIntArrayT, + keepdims: bool = ..., +) -> _BoolOrIntArrayT: ... + +@overload +def argmin( + a: ArrayLike, + axis: None = ..., + out: None = ..., + *, + keepdims: Literal[False] = ..., +) -> intp: ... +@overload +def argmin( + a: ArrayLike, + axis: SupportsIndex | None = ..., + out: None = ..., + *, + keepdims: bool = ..., +) -> Any: ... +@overload +def argmin( + a: ArrayLike, + axis: SupportsIndex | None, + out: _BoolOrIntArrayT, + *, + keepdims: bool = ..., +) -> _BoolOrIntArrayT: ... +@overload +def argmin( + a: ArrayLike, + axis: SupportsIndex | None = ..., + *, + out: _BoolOrIntArrayT, + keepdims: bool = ..., +) -> _BoolOrIntArrayT: ... + +@overload +def searchsorted( + a: ArrayLike, + v: _ScalarLike_co, + side: _SortSide = ..., + sorter: _ArrayLikeInt_co | None = ..., # 1D int array +) -> intp: ... +@overload +def searchsorted( + a: ArrayLike, + v: ArrayLike, + side: _SortSide = ..., + sorter: _ArrayLikeInt_co | None = ..., # 1D int array +) -> NDArray[intp]: ... + +# +@overload +def resize(a: _ArrayLike[_ScalarT], new_shape: SupportsIndex | tuple[SupportsIndex]) -> np.ndarray[tuple[int], np.dtype[_ScalarT]]: ... +@overload +def resize(a: _ArrayLike[_ScalarT], new_shape: _AnyShapeT) -> np.ndarray[_AnyShapeT, np.dtype[_ScalarT]]: ... +@overload +def resize(a: _ArrayLike[_ScalarT], new_shape: _ShapeLike) -> NDArray[_ScalarT]: ... +@overload +def resize(a: ArrayLike, new_shape: SupportsIndex | tuple[SupportsIndex]) -> np.ndarray[tuple[int], np.dtype]: ... +@overload +def resize(a: ArrayLike, new_shape: _AnyShapeT) -> np.ndarray[_AnyShapeT, np.dtype]: ... +@overload +def resize(a: ArrayLike, new_shape: _ShapeLike) -> NDArray[Any]: ... + +@overload +def squeeze( + a: _ScalarT, + axis: _ShapeLike | None = ..., +) -> _ScalarT: ... +@overload +def squeeze( + a: _ArrayLike[_ScalarT], + axis: _ShapeLike | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def squeeze( + a: ArrayLike, + axis: _ShapeLike | None = ..., +) -> NDArray[Any]: ... + +@overload +def diagonal( + a: _ArrayLike[_ScalarT], + offset: SupportsIndex = ..., + axis1: SupportsIndex = ..., + axis2: SupportsIndex = ..., # >= 2D array +) -> NDArray[_ScalarT]: ... +@overload +def diagonal( + a: ArrayLike, + offset: SupportsIndex = ..., + axis1: SupportsIndex = ..., + axis2: SupportsIndex = ..., # >= 2D array +) -> NDArray[Any]: ... + +@overload +def trace( + a: ArrayLike, # >= 2D array + offset: SupportsIndex = ..., + axis1: SupportsIndex = ..., + axis2: SupportsIndex = ..., + dtype: DTypeLike = ..., + out: None = ..., +) -> Any: ... +@overload +def trace( + a: ArrayLike, # >= 2D array + offset: SupportsIndex, + axis1: SupportsIndex, + axis2: SupportsIndex, + dtype: DTypeLike, + out: _ArrayT, +) -> _ArrayT: ... +@overload +def trace( + a: ArrayLike, # >= 2D array + offset: SupportsIndex = ..., + axis1: SupportsIndex = ..., + axis2: SupportsIndex = ..., + dtype: DTypeLike = ..., + *, + out: _ArrayT, +) -> _ArrayT: ... + +_Array1D: TypeAlias = np.ndarray[tuple[int], np.dtype[_ScalarT]] + +@overload +def ravel(a: _ArrayLike[_ScalarT], order: _OrderKACF = "C") -> _Array1D[_ScalarT]: ... +@overload +def ravel(a: bytes | _NestedSequence[bytes], order: _OrderKACF = "C") -> _Array1D[np.bytes_]: ... +@overload +def ravel(a: str | _NestedSequence[str], order: _OrderKACF = "C") -> _Array1D[np.str_]: ... +@overload +def ravel(a: bool | _NestedSequence[bool], order: _OrderKACF = "C") -> _Array1D[np.bool]: ... +@overload +def ravel(a: int | _NestedSequence[int], order: _OrderKACF = "C") -> _Array1D[np.int_ | np.bool]: ... +@overload +def ravel(a: float | _NestedSequence[float], order: _OrderKACF = "C") -> _Array1D[np.float64 | np.int_ | np.bool]: ... +@overload +def ravel( + a: complex | _NestedSequence[complex], + order: _OrderKACF = "C", +) -> _Array1D[np.complex128 | np.float64 | np.int_ | np.bool]: ... +@overload +def ravel(a: ArrayLike, order: _OrderKACF = "C") -> np.ndarray[tuple[int], np.dtype]: ... + +def nonzero(a: _ArrayLike[Any]) -> tuple[NDArray[intp], ...]: ... + +# this prevents `Any` from being returned with Pyright +@overload +def shape(a: _SupportsShape[Never]) -> _AnyShape: ... +@overload +def shape(a: _SupportsShape[_ShapeT]) -> _ShapeT: ... +@overload +def shape(a: _PyScalar) -> tuple[()]: ... +# `collections.abc.Sequence` can't be used hesre, since `bytes` and `str` are +# subtypes of it, which would make the return types incompatible. +@overload +def shape(a: _PyArray[_PyScalar]) -> tuple[int]: ... +@overload +def shape(a: _PyArray[_PyArray[_PyScalar]]) -> tuple[int, int]: ... +# this overload will be skipped by typecheckers that don't support PEP 688 +@overload +def shape(a: memoryview | bytearray) -> tuple[int]: ... +@overload +def shape(a: ArrayLike) -> _AnyShape: ... + +@overload +def compress( + condition: _ArrayLikeBool_co, # 1D bool array + a: _ArrayLike[_ScalarT], + axis: SupportsIndex | None = ..., + out: None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def compress( + condition: _ArrayLikeBool_co, # 1D bool array + a: ArrayLike, + axis: SupportsIndex | None = ..., + out: None = ..., +) -> NDArray[Any]: ... +@overload +def compress( + condition: _ArrayLikeBool_co, # 1D bool array + a: ArrayLike, + axis: SupportsIndex | None, + out: _ArrayT, +) -> _ArrayT: ... +@overload +def compress( + condition: _ArrayLikeBool_co, # 1D bool array + a: ArrayLike, + axis: SupportsIndex | None = ..., + *, + out: _ArrayT, +) -> _ArrayT: ... + +@overload +def clip( + a: _ScalarT, + a_min: ArrayLike | None, + a_max: ArrayLike | None, + out: None = ..., + *, + min: ArrayLike | None = ..., + max: ArrayLike | None = ..., + dtype: None = ..., + where: _ArrayLikeBool_co | None = ..., + order: _OrderKACF = ..., + subok: bool = ..., + signature: str | tuple[str | None, ...] = ..., + casting: _CastingKind = ..., +) -> _ScalarT: ... +@overload +def clip( + a: _ScalarLike_co, + a_min: ArrayLike | None, + a_max: ArrayLike | None, + out: None = ..., + *, + min: ArrayLike | None = ..., + max: ArrayLike | None = ..., + dtype: None = ..., + where: _ArrayLikeBool_co | None = ..., + order: _OrderKACF = ..., + subok: bool = ..., + signature: str | tuple[str | None, ...] = ..., + casting: _CastingKind = ..., +) -> Any: ... +@overload +def clip( + a: _ArrayLike[_ScalarT], + a_min: ArrayLike | None, + a_max: ArrayLike | None, + out: None = ..., + *, + min: ArrayLike | None = ..., + max: ArrayLike | None = ..., + dtype: None = ..., + where: _ArrayLikeBool_co | None = ..., + order: _OrderKACF = ..., + subok: bool = ..., + signature: str | tuple[str | None, ...] = ..., + casting: _CastingKind = ..., +) -> NDArray[_ScalarT]: ... +@overload +def clip( + a: ArrayLike, + a_min: ArrayLike | None, + a_max: ArrayLike | None, + out: None = ..., + *, + min: ArrayLike | None = ..., + max: ArrayLike | None = ..., + dtype: None = ..., + where: _ArrayLikeBool_co | None = ..., + order: _OrderKACF = ..., + subok: bool = ..., + signature: str | tuple[str | None, ...] = ..., + casting: _CastingKind = ..., +) -> NDArray[Any]: ... +@overload +def clip( + a: ArrayLike, + a_min: ArrayLike | None, + a_max: ArrayLike | None, + out: _ArrayT, + *, + min: ArrayLike | None = ..., + max: ArrayLike | None = ..., + dtype: DTypeLike = ..., + where: _ArrayLikeBool_co | None = ..., + order: _OrderKACF = ..., + subok: bool = ..., + signature: str | tuple[str | None, ...] = ..., + casting: _CastingKind = ..., +) -> _ArrayT: ... +@overload +def clip( + a: ArrayLike, + a_min: ArrayLike | None, + a_max: ArrayLike | None, + out: ArrayLike = ..., + *, + min: ArrayLike | None = ..., + max: ArrayLike | None = ..., + dtype: DTypeLike, + where: _ArrayLikeBool_co | None = ..., + order: _OrderKACF = ..., + subok: bool = ..., + signature: str | tuple[str | None, ...] = ..., + casting: _CastingKind = ..., +) -> Any: ... + +@overload +def sum( + a: _ArrayLike[_ScalarT], + axis: None = ..., + dtype: None = ..., + out: None = ..., + keepdims: Literal[False] = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> _ScalarT: ... +@overload +def sum( + a: _ArrayLike[_ScalarT], + axis: None = ..., + dtype: None = ..., + out: None = ..., + keepdims: bool = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> _ScalarT | NDArray[_ScalarT]: ... +@overload +def sum( + a: ArrayLike, + axis: None, + dtype: _DTypeLike[_ScalarT], + out: None = ..., + keepdims: Literal[False] = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> _ScalarT: ... +@overload +def sum( + a: ArrayLike, + axis: None = ..., + *, + dtype: _DTypeLike[_ScalarT], + out: None = ..., + keepdims: Literal[False] = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> _ScalarT: ... +@overload +def sum( + a: ArrayLike, + axis: _ShapeLike | None, + dtype: _DTypeLike[_ScalarT], + out: None = ..., + keepdims: bool = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> _ScalarT | NDArray[_ScalarT]: ... +@overload +def sum( + a: ArrayLike, + axis: _ShapeLike | None = ..., + *, + dtype: _DTypeLike[_ScalarT], + out: None = ..., + keepdims: bool = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> _ScalarT | NDArray[_ScalarT]: ... +@overload +def sum( + a: ArrayLike, + axis: _ShapeLike | None = ..., + dtype: DTypeLike = ..., + out: None = ..., + keepdims: bool = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> Any: ... +@overload +def sum( + a: ArrayLike, + axis: _ShapeLike | None, + dtype: DTypeLike, + out: _ArrayT, + keepdims: bool = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> _ArrayT: ... +@overload +def sum( + a: ArrayLike, + axis: _ShapeLike | None = ..., + dtype: DTypeLike = ..., + *, + out: _ArrayT, + keepdims: bool = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> _ArrayT: ... + +# keep in sync with `any` +@overload +def all( + a: ArrayLike | None, + axis: None = None, + out: None = None, + keepdims: Literal[False, 0] | _NoValueType = ..., + *, + where: _ArrayLikeBool_co | _NoValueType = ..., +) -> np.bool: ... +@overload +def all( + a: ArrayLike | None, + axis: int | tuple[int, ...] | None = None, + out: None = None, + keepdims: _BoolLike_co | _NoValueType = ..., + *, + where: _ArrayLikeBool_co | _NoValueType = ..., +) -> Incomplete: ... +@overload +def all( + a: ArrayLike | None, + axis: int | tuple[int, ...] | None, + out: _ArrayT, + keepdims: _BoolLike_co | _NoValueType = ..., + *, + where: _ArrayLikeBool_co | _NoValueType = ..., +) -> _ArrayT: ... +@overload +def all( + a: ArrayLike | None, + axis: int | tuple[int, ...] | None = None, + *, + out: _ArrayT, + keepdims: _BoolLike_co | _NoValueType = ..., + where: _ArrayLikeBool_co | _NoValueType = ..., +) -> _ArrayT: ... + +# keep in sync with `all` +@overload +def any( + a: ArrayLike | None, + axis: None = None, + out: None = None, + keepdims: Literal[False, 0] | _NoValueType = ..., + *, + where: _ArrayLikeBool_co | _NoValueType = ..., +) -> np.bool: ... +@overload +def any( + a: ArrayLike | None, + axis: int | tuple[int, ...] | None = None, + out: None = None, + keepdims: _BoolLike_co | _NoValueType = ..., + *, + where: _ArrayLikeBool_co | _NoValueType = ..., +) -> Incomplete: ... +@overload +def any( + a: ArrayLike | None, + axis: int | tuple[int, ...] | None, + out: _ArrayT, + keepdims: _BoolLike_co | _NoValueType = ..., + *, + where: _ArrayLikeBool_co | _NoValueType = ..., +) -> _ArrayT: ... +@overload +def any( + a: ArrayLike | None, + axis: int | tuple[int, ...] | None = None, + *, + out: _ArrayT, + keepdims: _BoolLike_co | _NoValueType = ..., + where: _ArrayLikeBool_co | _NoValueType = ..., +) -> _ArrayT: ... + +# +@overload +def cumsum( + a: _ArrayLike[_ScalarT], + axis: SupportsIndex | None = ..., + dtype: None = ..., + out: None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def cumsum( + a: ArrayLike, + axis: SupportsIndex | None = ..., + dtype: None = ..., + out: None = ..., +) -> NDArray[Any]: ... +@overload +def cumsum( + a: ArrayLike, + axis: SupportsIndex | None, + dtype: _DTypeLike[_ScalarT], + out: None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def cumsum( + a: ArrayLike, + axis: SupportsIndex | None = ..., + *, + dtype: _DTypeLike[_ScalarT], + out: None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def cumsum( + a: ArrayLike, + axis: SupportsIndex | None = ..., + dtype: DTypeLike = ..., + out: None = ..., +) -> NDArray[Any]: ... +@overload +def cumsum( + a: ArrayLike, + axis: SupportsIndex | None, + dtype: DTypeLike, + out: _ArrayT, +) -> _ArrayT: ... +@overload +def cumsum( + a: ArrayLike, + axis: SupportsIndex | None = ..., + dtype: DTypeLike = ..., + *, + out: _ArrayT, +) -> _ArrayT: ... + +@overload +def cumulative_sum( + x: _ArrayLike[_ScalarT], + /, + *, + axis: SupportsIndex | None = ..., + dtype: None = ..., + out: None = ..., + include_initial: bool = ..., +) -> NDArray[_ScalarT]: ... +@overload +def cumulative_sum( + x: ArrayLike, + /, + *, + axis: SupportsIndex | None = ..., + dtype: None = ..., + out: None = ..., + include_initial: bool = ..., +) -> NDArray[Any]: ... +@overload +def cumulative_sum( + x: ArrayLike, + /, + *, + axis: SupportsIndex | None = ..., + dtype: _DTypeLike[_ScalarT], + out: None = ..., + include_initial: bool = ..., +) -> NDArray[_ScalarT]: ... +@overload +def cumulative_sum( + x: ArrayLike, + /, + *, + axis: SupportsIndex | None = ..., + dtype: DTypeLike = ..., + out: None = ..., + include_initial: bool = ..., +) -> NDArray[Any]: ... +@overload +def cumulative_sum( + x: ArrayLike, + /, + *, + axis: SupportsIndex | None = ..., + dtype: DTypeLike = ..., + out: _ArrayT, + include_initial: bool = ..., +) -> _ArrayT: ... + +@overload +def ptp( + a: _ArrayLike[_ScalarT], + axis: None = ..., + out: None = ..., + keepdims: Literal[False] = ..., +) -> _ScalarT: ... +@overload +def ptp( + a: ArrayLike, + axis: _ShapeLike | None = ..., + out: None = ..., + keepdims: bool = ..., +) -> Any: ... +@overload +def ptp( + a: ArrayLike, + axis: _ShapeLike | None, + out: _ArrayT, + keepdims: bool = ..., +) -> _ArrayT: ... +@overload +def ptp( + a: ArrayLike, + axis: _ShapeLike | None = ..., + *, + out: _ArrayT, + keepdims: bool = ..., +) -> _ArrayT: ... + +@overload +def amax( + a: _ArrayLike[_ScalarT], + axis: None = ..., + out: None = ..., + keepdims: Literal[False] = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> _ScalarT: ... +@overload +def amax( + a: ArrayLike, + axis: _ShapeLike | None = ..., + out: None = ..., + keepdims: bool = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> Any: ... +@overload +def amax( + a: ArrayLike, + axis: _ShapeLike | None, + out: _ArrayT, + keepdims: bool = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> _ArrayT: ... +@overload +def amax( + a: ArrayLike, + axis: _ShapeLike | None = ..., + *, + out: _ArrayT, + keepdims: bool = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> _ArrayT: ... + +@overload +def amin( + a: _ArrayLike[_ScalarT], + axis: None = ..., + out: None = ..., + keepdims: Literal[False] = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> _ScalarT: ... +@overload +def amin( + a: ArrayLike, + axis: _ShapeLike | None = ..., + out: None = ..., + keepdims: bool = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> Any: ... +@overload +def amin( + a: ArrayLike, + axis: _ShapeLike | None, + out: _ArrayT, + keepdims: bool = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> _ArrayT: ... +@overload +def amin( + a: ArrayLike, + axis: _ShapeLike | None = ..., + *, + out: _ArrayT, + keepdims: bool = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> _ArrayT: ... + +# TODO: `np.prod()``: For object arrays `initial` does not necessarily +# have to be a numerical scalar. +# The only requirement is that it is compatible +# with the `.__mul__()` method(s) of the passed array's elements. + +# Note that the same situation holds for all wrappers around +# `np.ufunc.reduce`, e.g. `np.sum()` (`.__add__()`). +@overload +def prod( + a: _ArrayLikeBool_co, + axis: None = ..., + dtype: None = ..., + out: None = ..., + keepdims: Literal[False] = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> int_: ... +@overload +def prod( + a: _ArrayLikeUInt_co, + axis: None = ..., + dtype: None = ..., + out: None = ..., + keepdims: Literal[False] = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> uint64: ... +@overload +def prod( + a: _ArrayLikeInt_co, + axis: None = ..., + dtype: None = ..., + out: None = ..., + keepdims: Literal[False] = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> int64: ... +@overload +def prod( + a: _ArrayLikeFloat_co, + axis: None = ..., + dtype: None = ..., + out: None = ..., + keepdims: Literal[False] = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> floating: ... +@overload +def prod( + a: _ArrayLikeComplex_co, + axis: None = ..., + dtype: None = ..., + out: None = ..., + keepdims: Literal[False] = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> complexfloating: ... +@overload +def prod( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: _ShapeLike | None = ..., + dtype: None = ..., + out: None = ..., + keepdims: bool = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> Any: ... +@overload +def prod( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: None, + dtype: _DTypeLike[_ScalarT], + out: None = ..., + keepdims: Literal[False] = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> _ScalarT: ... +@overload +def prod( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: None = ..., + *, + dtype: _DTypeLike[_ScalarT], + out: None = ..., + keepdims: Literal[False] = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> _ScalarT: ... +@overload +def prod( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: _ShapeLike | None = ..., + dtype: DTypeLike | None = ..., + out: None = ..., + keepdims: bool = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> Any: ... +@overload +def prod( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: _ShapeLike | None, + dtype: DTypeLike | None, + out: _ArrayT, + keepdims: bool = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> _ArrayT: ... +@overload +def prod( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: _ShapeLike | None = ..., + dtype: DTypeLike | None = ..., + *, + out: _ArrayT, + keepdims: bool = ..., + initial: _NumberLike_co = ..., + where: _ArrayLikeBool_co = ..., +) -> _ArrayT: ... + +@overload +def cumprod( + a: _ArrayLikeBool_co, + axis: SupportsIndex | None = ..., + dtype: None = ..., + out: None = ..., +) -> NDArray[int_]: ... +@overload +def cumprod( + a: _ArrayLikeUInt_co, + axis: SupportsIndex | None = ..., + dtype: None = ..., + out: None = ..., +) -> NDArray[uint64]: ... +@overload +def cumprod( + a: _ArrayLikeInt_co, + axis: SupportsIndex | None = ..., + dtype: None = ..., + out: None = ..., +) -> NDArray[int64]: ... +@overload +def cumprod( + a: _ArrayLikeFloat_co, + axis: SupportsIndex | None = ..., + dtype: None = ..., + out: None = ..., +) -> NDArray[floating]: ... +@overload +def cumprod( + a: _ArrayLikeComplex_co, + axis: SupportsIndex | None = ..., + dtype: None = ..., + out: None = ..., +) -> NDArray[complexfloating]: ... +@overload +def cumprod( + a: _ArrayLikeObject_co, + axis: SupportsIndex | None = ..., + dtype: None = ..., + out: None = ..., +) -> NDArray[object_]: ... +@overload +def cumprod( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: SupportsIndex | None, + dtype: _DTypeLike[_ScalarT], + out: None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def cumprod( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: SupportsIndex | None = ..., + *, + dtype: _DTypeLike[_ScalarT], + out: None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def cumprod( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: SupportsIndex | None = ..., + dtype: DTypeLike = ..., + out: None = ..., +) -> NDArray[Any]: ... +@overload +def cumprod( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: SupportsIndex | None, + dtype: DTypeLike, + out: _ArrayT, +) -> _ArrayT: ... +@overload +def cumprod( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: SupportsIndex | None = ..., + dtype: DTypeLike = ..., + *, + out: _ArrayT, +) -> _ArrayT: ... + +@overload +def cumulative_prod( + x: _ArrayLikeBool_co, + /, + *, + axis: SupportsIndex | None = ..., + dtype: None = ..., + out: None = ..., + include_initial: bool = ..., +) -> NDArray[int_]: ... +@overload +def cumulative_prod( + x: _ArrayLikeUInt_co, + /, + *, + axis: SupportsIndex | None = ..., + dtype: None = ..., + out: None = ..., + include_initial: bool = ..., +) -> NDArray[uint64]: ... +@overload +def cumulative_prod( + x: _ArrayLikeInt_co, + /, + *, + axis: SupportsIndex | None = ..., + dtype: None = ..., + out: None = ..., + include_initial: bool = ..., +) -> NDArray[int64]: ... +@overload +def cumulative_prod( + x: _ArrayLikeFloat_co, + /, + *, + axis: SupportsIndex | None = ..., + dtype: None = ..., + out: None = ..., + include_initial: bool = ..., +) -> NDArray[floating]: ... +@overload +def cumulative_prod( + x: _ArrayLikeComplex_co, + /, + *, + axis: SupportsIndex | None = ..., + dtype: None = ..., + out: None = ..., + include_initial: bool = ..., +) -> NDArray[complexfloating]: ... +@overload +def cumulative_prod( + x: _ArrayLikeObject_co, + /, + *, + axis: SupportsIndex | None = ..., + dtype: None = ..., + out: None = ..., + include_initial: bool = ..., +) -> NDArray[object_]: ... +@overload +def cumulative_prod( + x: _ArrayLikeComplex_co | _ArrayLikeObject_co, + /, + *, + axis: SupportsIndex | None = ..., + dtype: _DTypeLike[_ScalarT], + out: None = ..., + include_initial: bool = ..., +) -> NDArray[_ScalarT]: ... +@overload +def cumulative_prod( + x: _ArrayLikeComplex_co | _ArrayLikeObject_co, + /, + *, + axis: SupportsIndex | None = ..., + dtype: DTypeLike = ..., + out: None = ..., + include_initial: bool = ..., +) -> NDArray[Any]: ... +@overload +def cumulative_prod( + x: _ArrayLikeComplex_co | _ArrayLikeObject_co, + /, + *, + axis: SupportsIndex | None = ..., + dtype: DTypeLike = ..., + out: _ArrayT, + include_initial: bool = ..., +) -> _ArrayT: ... + +def ndim(a: ArrayLike) -> int: ... + +def size(a: ArrayLike, axis: int | None = ...) -> int: ... + +@overload +def around( + a: _BoolLike_co, + decimals: SupportsIndex = ..., + out: None = ..., +) -> float16: ... +@overload +def around( + a: _NumberOrObjectT, + decimals: SupportsIndex = ..., + out: None = ..., +) -> _NumberOrObjectT: ... +@overload +def around( + a: _ComplexLike_co | object_, + decimals: SupportsIndex = ..., + out: None = ..., +) -> Any: ... +@overload +def around( + a: _ArrayLikeBool_co, + decimals: SupportsIndex = ..., + out: None = ..., +) -> NDArray[float16]: ... +@overload +def around( + a: _ArrayLike[_NumberOrObjectT], + decimals: SupportsIndex = ..., + out: None = ..., +) -> NDArray[_NumberOrObjectT]: ... +@overload +def around( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + decimals: SupportsIndex = ..., + out: None = ..., +) -> NDArray[Any]: ... +@overload +def around( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + decimals: SupportsIndex, + out: _ArrayT, +) -> _ArrayT: ... +@overload +def around( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + decimals: SupportsIndex = ..., + *, + out: _ArrayT, +) -> _ArrayT: ... + +@overload +def mean( + a: _ArrayLikeFloat_co, + axis: None = ..., + dtype: None = ..., + out: None = ..., + keepdims: Literal[False] | _NoValueType = ..., + *, + where: _ArrayLikeBool_co | _NoValueType = ..., +) -> floating: ... +@overload +def mean( + a: _ArrayLikeComplex_co, + axis: None = ..., + dtype: None = ..., + out: None = ..., + keepdims: Literal[False] | _NoValueType = ..., + *, + where: _ArrayLikeBool_co | _NoValueType = ..., +) -> complexfloating: ... +@overload +def mean( + a: _ArrayLike[np.timedelta64], + axis: None = ..., + dtype: None = ..., + out: None = ..., + keepdims: Literal[False] | _NoValueType = ..., + *, + where: _ArrayLikeBool_co | _NoValueType = ..., +) -> timedelta64: ... +@overload +def mean( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: _ShapeLike | None, + dtype: DTypeLike, + out: _ArrayT, + keepdims: bool | _NoValueType = ..., + *, + where: _ArrayLikeBool_co | _NoValueType = ..., +) -> _ArrayT: ... +@overload +def mean( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: _ShapeLike | None = ..., + dtype: DTypeLike | None = ..., + *, + out: _ArrayT, + keepdims: bool | _NoValueType = ..., + where: _ArrayLikeBool_co | _NoValueType = ..., +) -> _ArrayT: ... +@overload +def mean( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: None, + dtype: _DTypeLike[_ScalarT], + out: None = ..., + keepdims: Literal[False] | _NoValueType = ..., + *, + where: _ArrayLikeBool_co | _NoValueType = ..., +) -> _ScalarT: ... +@overload +def mean( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: None = ..., + *, + dtype: _DTypeLike[_ScalarT], + out: None = ..., + keepdims: Literal[False] | _NoValueType = ..., + where: _ArrayLikeBool_co | _NoValueType = ..., +) -> _ScalarT: ... +@overload +def mean( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: _ShapeLike | None, + dtype: _DTypeLike[_ScalarT], + out: None, + keepdims: Literal[True, 1], + *, + where: _ArrayLikeBool_co | _NoValueType = ..., +) -> NDArray[_ScalarT]: ... +@overload +def mean( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: _ShapeLike | None, + dtype: _DTypeLike[_ScalarT], + out: None = ..., + *, + keepdims: bool | _NoValueType = ..., + where: _ArrayLikeBool_co | _NoValueType = ..., +) -> _ScalarT | NDArray[_ScalarT]: ... +@overload +def mean( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: _ShapeLike | None = ..., + *, + dtype: _DTypeLike[_ScalarT], + out: None = ..., + keepdims: bool | _NoValueType = ..., + where: _ArrayLikeBool_co | _NoValueType = ..., +) -> _ScalarT | NDArray[_ScalarT]: ... +@overload +def mean( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: _ShapeLike | None = ..., + dtype: DTypeLike | None = ..., + out: None = ..., + keepdims: bool | _NoValueType = ..., + *, + where: _ArrayLikeBool_co | _NoValueType = ..., +) -> Incomplete: ... + +@overload +def std( + a: _ArrayLikeComplex_co, + axis: None = ..., + dtype: None = ..., + out: None = ..., + ddof: float = ..., + keepdims: Literal[False] = ..., + *, + where: _ArrayLikeBool_co | _NoValueType = ..., + mean: _ArrayLikeComplex_co | _NoValueType = ..., + correction: float | _NoValueType = ..., +) -> floating: ... +@overload +def std( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: _ShapeLike | None = ..., + dtype: None = ..., + out: None = ..., + ddof: float = ..., + keepdims: bool = ..., + *, + where: _ArrayLikeBool_co | _NoValueType = ..., + mean: _ArrayLikeComplex_co | _ArrayLikeObject_co | _NoValueType = ..., + correction: float | _NoValueType = ..., +) -> Any: ... +@overload +def std( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: None, + dtype: _DTypeLike[_ScalarT], + out: None = ..., + ddof: float = ..., + keepdims: Literal[False] = ..., + *, + where: _ArrayLikeBool_co | _NoValueType = ..., + mean: _ArrayLikeComplex_co | _ArrayLikeObject_co | _NoValueType = ..., + correction: float | _NoValueType = ..., +) -> _ScalarT: ... +@overload +def std( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: None = ..., + *, + dtype: _DTypeLike[_ScalarT], + out: None = ..., + ddof: float = ..., + keepdims: Literal[False] = ..., + where: _ArrayLikeBool_co | _NoValueType = ..., + mean: _ArrayLikeComplex_co | _ArrayLikeObject_co | _NoValueType = ..., + correction: float | _NoValueType = ..., +) -> _ScalarT: ... +@overload +def std( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: _ShapeLike | None = ..., + dtype: DTypeLike = ..., + out: None = ..., + ddof: float = ..., + keepdims: bool = ..., + *, + where: _ArrayLikeBool_co | _NoValueType = ..., + mean: _ArrayLikeComplex_co | _ArrayLikeObject_co | _NoValueType = ..., + correction: float | _NoValueType = ..., +) -> Any: ... +@overload +def std( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: _ShapeLike | None, + dtype: DTypeLike, + out: _ArrayT, + ddof: float = ..., + keepdims: bool = ..., + *, + where: _ArrayLikeBool_co | _NoValueType = ..., + mean: _ArrayLikeComplex_co | _ArrayLikeObject_co | _NoValueType = ..., + correction: float | _NoValueType = ..., +) -> _ArrayT: ... +@overload +def std( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: _ShapeLike | None = ..., + dtype: DTypeLike = ..., + *, + out: _ArrayT, + ddof: float = ..., + keepdims: bool = ..., + where: _ArrayLikeBool_co | _NoValueType = ..., + mean: _ArrayLikeComplex_co | _ArrayLikeObject_co | _NoValueType = ..., + correction: float | _NoValueType = ..., +) -> _ArrayT: ... + +@overload +def var( + a: _ArrayLikeComplex_co, + axis: None = ..., + dtype: None = ..., + out: None = ..., + ddof: float = ..., + keepdims: Literal[False] = ..., + *, + where: _ArrayLikeBool_co | _NoValueType = ..., + mean: _ArrayLikeComplex_co | _NoValueType = ..., + correction: float | _NoValueType = ..., +) -> floating: ... +@overload +def var( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: _ShapeLike | None = ..., + dtype: None = ..., + out: None = ..., + ddof: float = ..., + keepdims: bool = ..., + *, + where: _ArrayLikeBool_co | _NoValueType = ..., + mean: _ArrayLikeComplex_co | _ArrayLikeObject_co | _NoValueType = ..., + correction: float | _NoValueType = ..., +) -> Any: ... +@overload +def var( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: None, + dtype: _DTypeLike[_ScalarT], + out: None = ..., + ddof: float = ..., + keepdims: Literal[False] = ..., + *, + where: _ArrayLikeBool_co | _NoValueType = ..., + mean: _ArrayLikeComplex_co | _ArrayLikeObject_co | _NoValueType = ..., + correction: float | _NoValueType = ..., +) -> _ScalarT: ... +@overload +def var( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: None = ..., + *, + dtype: _DTypeLike[_ScalarT], + out: None = ..., + ddof: float = ..., + keepdims: Literal[False] = ..., + where: _ArrayLikeBool_co | _NoValueType = ..., + mean: _ArrayLikeComplex_co | _ArrayLikeObject_co | _NoValueType = ..., + correction: float | _NoValueType = ..., +) -> _ScalarT: ... +@overload +def var( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: _ShapeLike | None = ..., + dtype: DTypeLike = ..., + out: None = ..., + ddof: float = ..., + keepdims: bool = ..., + *, + where: _ArrayLikeBool_co | _NoValueType = ..., + mean: _ArrayLikeComplex_co | _ArrayLikeObject_co | _NoValueType = ..., + correction: float | _NoValueType = ..., +) -> Any: ... +@overload +def var( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: _ShapeLike | None, + dtype: DTypeLike, + out: _ArrayT, + ddof: float = ..., + keepdims: bool = ..., + *, + where: _ArrayLikeBool_co | _NoValueType = ..., + mean: _ArrayLikeComplex_co | _ArrayLikeObject_co | _NoValueType = ..., + correction: float | _NoValueType = ..., +) -> _ArrayT: ... +@overload +def var( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: _ShapeLike | None = ..., + dtype: DTypeLike = ..., + *, + out: _ArrayT, + ddof: float = ..., + keepdims: bool = ..., + where: _ArrayLikeBool_co | _NoValueType = ..., + mean: _ArrayLikeComplex_co | _ArrayLikeObject_co | _NoValueType = ..., + correction: float | _NoValueType = ..., +) -> _ArrayT: ... + +max = amax +min = amin +round = around diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/function_base.py b/.venv/lib/python3.12/site-packages/numpy/_core/function_base.py new file mode 100644 index 0000000..12ab2a7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/function_base.py @@ -0,0 +1,545 @@ +import functools +import operator +import types +import warnings + +import numpy as np +from numpy._core import overrides +from numpy._core._multiarray_umath import _array_converter +from numpy._core.multiarray import add_docstring + +from . import numeric as _nx +from .numeric import asanyarray, nan, ndim, result_type + +__all__ = ['logspace', 'linspace', 'geomspace'] + + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy') + + +def _linspace_dispatcher(start, stop, num=None, endpoint=None, retstep=None, + dtype=None, axis=None, *, device=None): + return (start, stop) + + +@array_function_dispatch(_linspace_dispatcher) +def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, + axis=0, *, device=None): + """ + Return evenly spaced numbers over a specified interval. + + Returns `num` evenly spaced samples, calculated over the + interval [`start`, `stop`]. + + The endpoint of the interval can optionally be excluded. + + .. versionchanged:: 1.20.0 + Values are rounded towards ``-inf`` instead of ``0`` when an + integer ``dtype`` is specified. The old behavior can + still be obtained with ``np.linspace(start, stop, num).astype(int)`` + + Parameters + ---------- + start : array_like + The starting value of the sequence. + stop : array_like + The end value of the sequence, unless `endpoint` is set to False. + In that case, the sequence consists of all but the last of ``num + 1`` + evenly spaced samples, so that `stop` is excluded. Note that the step + size changes when `endpoint` is False. + num : int, optional + Number of samples to generate. Default is 50. Must be non-negative. + endpoint : bool, optional + If True, `stop` is the last sample. Otherwise, it is not included. + Default is True. + retstep : bool, optional + If True, return (`samples`, `step`), where `step` is the spacing + between samples. + dtype : dtype, optional + The type of the output array. If `dtype` is not given, the data type + is inferred from `start` and `stop`. The inferred dtype will never be + an integer; `float` is chosen even if the arguments would produce an + array of integers. + axis : int, optional + The axis in the result to store the samples. Relevant only if start + or stop are array-like. By default (0), the samples will be along a + new axis inserted at the beginning. Use -1 to get an axis at the end. + device : str, optional + The device on which to place the created array. Default: None. + For Array-API interoperability only, so must be ``"cpu"`` if passed. + + .. versionadded:: 2.0.0 + + Returns + ------- + samples : ndarray + There are `num` equally spaced samples in the closed interval + ``[start, stop]`` or the half-open interval ``[start, stop)`` + (depending on whether `endpoint` is True or False). + step : float, optional + Only returned if `retstep` is True + + Size of spacing between samples. + + + See Also + -------- + arange : Similar to `linspace`, but uses a step size (instead of the + number of samples). + geomspace : Similar to `linspace`, but with numbers spaced evenly on a log + scale (a geometric progression). + logspace : Similar to `geomspace`, but with the end points specified as + logarithms. + :ref:`how-to-partition` + + Examples + -------- + >>> import numpy as np + >>> np.linspace(2.0, 3.0, num=5) + array([2. , 2.25, 2.5 , 2.75, 3. ]) + >>> np.linspace(2.0, 3.0, num=5, endpoint=False) + array([2. , 2.2, 2.4, 2.6, 2.8]) + >>> np.linspace(2.0, 3.0, num=5, retstep=True) + (array([2. , 2.25, 2.5 , 2.75, 3. ]), 0.25) + + Graphical illustration: + + >>> import matplotlib.pyplot as plt + >>> N = 8 + >>> y = np.zeros(N) + >>> x1 = np.linspace(0, 10, N, endpoint=True) + >>> x2 = np.linspace(0, 10, N, endpoint=False) + >>> plt.plot(x1, y, 'o') + [] + >>> plt.plot(x2, y + 0.5, 'o') + [] + >>> plt.ylim([-0.5, 1]) + (-0.5, 1) + >>> plt.show() + + """ + num = operator.index(num) + if num < 0: + raise ValueError( + f"Number of samples, {num}, must be non-negative." + ) + div = (num - 1) if endpoint else num + + conv = _array_converter(start, stop) + start, stop = conv.as_arrays() + dt = conv.result_type(ensure_inexact=True) + + if dtype is None: + dtype = dt + integer_dtype = False + else: + integer_dtype = _nx.issubdtype(dtype, _nx.integer) + + # Use `dtype=type(dt)` to enforce a floating point evaluation: + delta = np.subtract(stop, start, dtype=type(dt)) + y = _nx.arange( + 0, num, dtype=dt, device=device + ).reshape((-1,) + (1,) * ndim(delta)) + + # In-place multiplication y *= delta/div is faster, but prevents + # the multiplicant from overriding what class is produced, and thus + # prevents, e.g. use of Quantities, see gh-7142. Hence, we multiply + # in place only for standard scalar types. + if div > 0: + _mult_inplace = _nx.isscalar(delta) + step = delta / div + any_step_zero = ( + step == 0 if _mult_inplace else _nx.asanyarray(step == 0).any()) + if any_step_zero: + # Special handling for denormal numbers, gh-5437 + y /= div + if _mult_inplace: + y *= delta + else: + y = y * delta + elif _mult_inplace: + y *= step + else: + y = y * step + else: + # sequences with 0 items or 1 item with endpoint=True (i.e. div <= 0) + # have an undefined step + step = nan + # Multiply with delta to allow possible override of output class. + y = y * delta + + y += start + + if endpoint and num > 1: + y[-1, ...] = stop + + if axis != 0: + y = _nx.moveaxis(y, 0, axis) + + if integer_dtype: + _nx.floor(y, out=y) + + y = conv.wrap(y.astype(dtype, copy=False)) + if retstep: + return y, step + else: + return y + + +def _logspace_dispatcher(start, stop, num=None, endpoint=None, base=None, + dtype=None, axis=None): + return (start, stop, base) + + +@array_function_dispatch(_logspace_dispatcher) +def logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None, + axis=0): + """ + Return numbers spaced evenly on a log scale. + + In linear space, the sequence starts at ``base ** start`` + (`base` to the power of `start`) and ends with ``base ** stop`` + (see `endpoint` below). + + .. versionchanged:: 1.25.0 + Non-scalar 'base` is now supported + + Parameters + ---------- + start : array_like + ``base ** start`` is the starting value of the sequence. + stop : array_like + ``base ** stop`` is the final value of the sequence, unless `endpoint` + is False. In that case, ``num + 1`` values are spaced over the + interval in log-space, of which all but the last (a sequence of + length `num`) are returned. + num : integer, optional + Number of samples to generate. Default is 50. + endpoint : boolean, optional + If true, `stop` is the last sample. Otherwise, it is not included. + Default is True. + base : array_like, optional + The base of the log space. The step size between the elements in + ``ln(samples) / ln(base)`` (or ``log_base(samples)``) is uniform. + Default is 10.0. + dtype : dtype + The type of the output array. If `dtype` is not given, the data type + is inferred from `start` and `stop`. The inferred type will never be + an integer; `float` is chosen even if the arguments would produce an + array of integers. + axis : int, optional + The axis in the result to store the samples. Relevant only if start, + stop, or base are array-like. By default (0), the samples will be + along a new axis inserted at the beginning. Use -1 to get an axis at + the end. + + Returns + ------- + samples : ndarray + `num` samples, equally spaced on a log scale. + + See Also + -------- + arange : Similar to linspace, with the step size specified instead of the + number of samples. Note that, when used with a float endpoint, the + endpoint may or may not be included. + linspace : Similar to logspace, but with the samples uniformly distributed + in linear space, instead of log space. + geomspace : Similar to logspace, but with endpoints specified directly. + :ref:`how-to-partition` + + Notes + ----- + If base is a scalar, logspace is equivalent to the code + + >>> y = np.linspace(start, stop, num=num, endpoint=endpoint) + ... # doctest: +SKIP + >>> power(base, y).astype(dtype) + ... # doctest: +SKIP + + Examples + -------- + >>> import numpy as np + >>> np.logspace(2.0, 3.0, num=4) + array([ 100. , 215.443469 , 464.15888336, 1000. ]) + >>> np.logspace(2.0, 3.0, num=4, endpoint=False) + array([100. , 177.827941 , 316.22776602, 562.34132519]) + >>> np.logspace(2.0, 3.0, num=4, base=2.0) + array([4. , 5.0396842 , 6.34960421, 8. ]) + >>> np.logspace(2.0, 3.0, num=4, base=[2.0, 3.0], axis=-1) + array([[ 4. , 5.0396842 , 6.34960421, 8. ], + [ 9. , 12.98024613, 18.72075441, 27. ]]) + + Graphical illustration: + + >>> import matplotlib.pyplot as plt + >>> N = 10 + >>> x1 = np.logspace(0.1, 1, N, endpoint=True) + >>> x2 = np.logspace(0.1, 1, N, endpoint=False) + >>> y = np.zeros(N) + >>> plt.plot(x1, y, 'o') + [] + >>> plt.plot(x2, y + 0.5, 'o') + [] + >>> plt.ylim([-0.5, 1]) + (-0.5, 1) + >>> plt.show() + + """ + if not isinstance(base, (float, int)) and np.ndim(base): + # If base is non-scalar, broadcast it with the others, since it + # may influence how axis is interpreted. + ndmax = np.broadcast(start, stop, base).ndim + start, stop, base = ( + np.array(a, copy=None, subok=True, ndmin=ndmax) + for a in (start, stop, base) + ) + base = np.expand_dims(base, axis=axis) + y = linspace(start, stop, num=num, endpoint=endpoint, axis=axis) + if dtype is None: + return _nx.power(base, y) + return _nx.power(base, y).astype(dtype, copy=False) + + +def _geomspace_dispatcher(start, stop, num=None, endpoint=None, dtype=None, + axis=None): + return (start, stop) + + +@array_function_dispatch(_geomspace_dispatcher) +def geomspace(start, stop, num=50, endpoint=True, dtype=None, axis=0): + """ + Return numbers spaced evenly on a log scale (a geometric progression). + + This is similar to `logspace`, but with endpoints specified directly. + Each output sample is a constant multiple of the previous. + + Parameters + ---------- + start : array_like + The starting value of the sequence. + stop : array_like + The final value of the sequence, unless `endpoint` is False. + In that case, ``num + 1`` values are spaced over the + interval in log-space, of which all but the last (a sequence of + length `num`) are returned. + num : integer, optional + Number of samples to generate. Default is 50. + endpoint : boolean, optional + If true, `stop` is the last sample. Otherwise, it is not included. + Default is True. + dtype : dtype + The type of the output array. If `dtype` is not given, the data type + is inferred from `start` and `stop`. The inferred dtype will never be + an integer; `float` is chosen even if the arguments would produce an + array of integers. + axis : int, optional + The axis in the result to store the samples. Relevant only if start + or stop are array-like. By default (0), the samples will be along a + new axis inserted at the beginning. Use -1 to get an axis at the end. + + Returns + ------- + samples : ndarray + `num` samples, equally spaced on a log scale. + + See Also + -------- + logspace : Similar to geomspace, but with endpoints specified using log + and base. + linspace : Similar to geomspace, but with arithmetic instead of geometric + progression. + arange : Similar to linspace, with the step size specified instead of the + number of samples. + :ref:`how-to-partition` + + Notes + ----- + If the inputs or dtype are complex, the output will follow a logarithmic + spiral in the complex plane. (There are an infinite number of spirals + passing through two points; the output will follow the shortest such path.) + + Examples + -------- + >>> import numpy as np + >>> np.geomspace(1, 1000, num=4) + array([ 1., 10., 100., 1000.]) + >>> np.geomspace(1, 1000, num=3, endpoint=False) + array([ 1., 10., 100.]) + >>> np.geomspace(1, 1000, num=4, endpoint=False) + array([ 1. , 5.62341325, 31.6227766 , 177.827941 ]) + >>> np.geomspace(1, 256, num=9) + array([ 1., 2., 4., 8., 16., 32., 64., 128., 256.]) + + Note that the above may not produce exact integers: + + >>> np.geomspace(1, 256, num=9, dtype=int) + array([ 1, 2, 4, 7, 16, 32, 63, 127, 256]) + >>> np.around(np.geomspace(1, 256, num=9)).astype(int) + array([ 1, 2, 4, 8, 16, 32, 64, 128, 256]) + + Negative, decreasing, and complex inputs are allowed: + + >>> np.geomspace(1000, 1, num=4) + array([1000., 100., 10., 1.]) + >>> np.geomspace(-1000, -1, num=4) + array([-1000., -100., -10., -1.]) + >>> np.geomspace(1j, 1000j, num=4) # Straight line + array([0. +1.j, 0. +10.j, 0. +100.j, 0.+1000.j]) + >>> np.geomspace(-1+0j, 1+0j, num=5) # Circle + array([-1.00000000e+00+1.22464680e-16j, -7.07106781e-01+7.07106781e-01j, + 6.12323400e-17+1.00000000e+00j, 7.07106781e-01+7.07106781e-01j, + 1.00000000e+00+0.00000000e+00j]) + + Graphical illustration of `endpoint` parameter: + + >>> import matplotlib.pyplot as plt + >>> N = 10 + >>> y = np.zeros(N) + >>> plt.semilogx(np.geomspace(1, 1000, N, endpoint=True), y + 1, 'o') + [] + >>> plt.semilogx(np.geomspace(1, 1000, N, endpoint=False), y + 2, 'o') + [] + >>> plt.axis([0.5, 2000, 0, 3]) + [0.5, 2000, 0, 3] + >>> plt.grid(True, color='0.7', linestyle='-', which='both', axis='both') + >>> plt.show() + + """ + start = asanyarray(start) + stop = asanyarray(stop) + if _nx.any(start == 0) or _nx.any(stop == 0): + raise ValueError('Geometric sequence cannot include zero') + + dt = result_type(start, stop, float(num), _nx.zeros((), dtype)) + if dtype is None: + dtype = dt + else: + # complex to dtype('complex128'), for instance + dtype = _nx.dtype(dtype) + + # Promote both arguments to the same dtype in case, for instance, one is + # complex and another is negative and log would produce NaN otherwise. + # Copy since we may change things in-place further down. + start = start.astype(dt, copy=True) + stop = stop.astype(dt, copy=True) + + # Allow negative real values and ensure a consistent result for complex + # (including avoiding negligible real or imaginary parts in output) by + # rotating start to positive real, calculating, then undoing rotation. + out_sign = _nx.sign(start) + start /= out_sign + stop = stop / out_sign + + log_start = _nx.log10(start) + log_stop = _nx.log10(stop) + result = logspace(log_start, log_stop, num=num, + endpoint=endpoint, base=10.0, dtype=dt) + + # Make sure the endpoints match the start and stop arguments. This is + # necessary because np.exp(np.log(x)) is not necessarily equal to x. + if num > 0: + result[0] = start + if num > 1 and endpoint: + result[-1] = stop + + result *= out_sign + + if axis != 0: + result = _nx.moveaxis(result, 0, axis) + + return result.astype(dtype, copy=False) + + +def _needs_add_docstring(obj): + """ + Returns true if the only way to set the docstring of `obj` from python is + via add_docstring. + + This function errs on the side of being overly conservative. + """ + Py_TPFLAGS_HEAPTYPE = 1 << 9 + + if isinstance(obj, (types.FunctionType, types.MethodType, property)): + return False + + if isinstance(obj, type) and obj.__flags__ & Py_TPFLAGS_HEAPTYPE: + return False + + return True + + +def _add_docstring(obj, doc, warn_on_python): + if warn_on_python and not _needs_add_docstring(obj): + warnings.warn( + f"add_newdoc was used on a pure-python object {obj}. " + "Prefer to attach it directly to the source.", + UserWarning, + stacklevel=3) + try: + add_docstring(obj, doc) + except Exception: + pass + + +def add_newdoc(place, obj, doc, warn_on_python=True): + """ + Add documentation to an existing object, typically one defined in C + + The purpose is to allow easier editing of the docstrings without requiring + a re-compile. This exists primarily for internal use within numpy itself. + + Parameters + ---------- + place : str + The absolute name of the module to import from + obj : str or None + The name of the object to add documentation to, typically a class or + function name. + doc : {str, Tuple[str, str], List[Tuple[str, str]]} + If a string, the documentation to apply to `obj` + + If a tuple, then the first element is interpreted as an attribute + of `obj` and the second as the docstring to apply - + ``(method, docstring)`` + + If a list, then each element of the list should be a tuple of length + two - ``[(method1, docstring1), (method2, docstring2), ...]`` + warn_on_python : bool + If True, the default, emit `UserWarning` if this is used to attach + documentation to a pure-python object. + + Notes + ----- + This routine never raises an error if the docstring can't be written, but + will raise an error if the object being documented does not exist. + + This routine cannot modify read-only docstrings, as appear + in new-style classes or built-in functions. Because this + routine never raises an error the caller must check manually + that the docstrings were changed. + + Since this function grabs the ``char *`` from a c-level str object and puts + it into the ``tp_doc`` slot of the type of `obj`, it violates a number of + C-API best-practices, by: + + - modifying a `PyTypeObject` after calling `PyType_Ready` + - calling `Py_INCREF` on the str and losing the reference, so the str + will never be released + + If possible it should be avoided. + """ + new = getattr(__import__(place, globals(), {}, [obj]), obj) + if isinstance(doc, str): + if "${ARRAY_FUNCTION_LIKE}" in doc: + doc = overrides.get_array_function_like_doc(new, doc) + _add_docstring(new, doc.strip(), warn_on_python) + elif isinstance(doc, tuple): + attr, docstring = doc + _add_docstring(getattr(new, attr), docstring.strip(), warn_on_python) + elif isinstance(doc, list): + for attr, docstring in doc: + _add_docstring( + getattr(new, attr), docstring.strip(), warn_on_python + ) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/function_base.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/function_base.pyi new file mode 100644 index 0000000..44d1311 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/function_base.pyi @@ -0,0 +1,278 @@ +from typing import Literal as L +from typing import SupportsIndex, TypeAlias, TypeVar, overload + +from _typeshed import Incomplete + +import numpy as np +from numpy._typing import ( + DTypeLike, + NDArray, + _ArrayLikeComplex_co, + _ArrayLikeFloat_co, + _DTypeLike, +) +from numpy._typing._array_like import _DualArrayLike + +__all__ = ["geomspace", "linspace", "logspace"] + +_ScalarT = TypeVar("_ScalarT", bound=np.generic) + +_ToArrayFloat64: TypeAlias = _DualArrayLike[np.dtype[np.float64 | np.integer | np.bool], float] + +@overload +def linspace( + start: _ToArrayFloat64, + stop: _ToArrayFloat64, + num: SupportsIndex = 50, + endpoint: bool = True, + retstep: L[False] = False, + dtype: None = None, + axis: SupportsIndex = 0, + *, + device: L["cpu"] | None = None, +) -> NDArray[np.float64]: ... +@overload +def linspace( + start: _ArrayLikeFloat_co, + stop: _ArrayLikeFloat_co, + num: SupportsIndex = 50, + endpoint: bool = True, + retstep: L[False] = False, + dtype: None = None, + axis: SupportsIndex = 0, + *, + device: L["cpu"] | None = None, +) -> NDArray[np.floating]: ... +@overload +def linspace( + start: _ArrayLikeComplex_co, + stop: _ArrayLikeComplex_co, + num: SupportsIndex = 50, + endpoint: bool = True, + retstep: L[False] = False, + dtype: None = None, + axis: SupportsIndex = 0, + *, + device: L["cpu"] | None = None, +) -> NDArray[np.complexfloating]: ... +@overload +def linspace( + start: _ArrayLikeComplex_co, + stop: _ArrayLikeComplex_co, + num: SupportsIndex, + endpoint: bool, + retstep: L[False], + dtype: _DTypeLike[_ScalarT], + axis: SupportsIndex = 0, + *, + device: L["cpu"] | None = None, +) -> NDArray[_ScalarT]: ... +@overload +def linspace( + start: _ArrayLikeComplex_co, + stop: _ArrayLikeComplex_co, + num: SupportsIndex = 50, + endpoint: bool = True, + retstep: L[False] = False, + *, + dtype: _DTypeLike[_ScalarT], + axis: SupportsIndex = 0, + device: L["cpu"] | None = None, +) -> NDArray[_ScalarT]: ... +@overload +def linspace( + start: _ArrayLikeComplex_co, + stop: _ArrayLikeComplex_co, + num: SupportsIndex = 50, + endpoint: bool = True, + retstep: L[False] = False, + dtype: DTypeLike | None = None, + axis: SupportsIndex = 0, + *, + device: L["cpu"] | None = None, +) -> NDArray[Incomplete]: ... +@overload +def linspace( + start: _ToArrayFloat64, + stop: _ToArrayFloat64, + num: SupportsIndex = 50, + endpoint: bool = True, + *, + retstep: L[True], + dtype: None = None, + axis: SupportsIndex = 0, + device: L["cpu"] | None = None, +) -> tuple[NDArray[np.float64], np.float64]: ... +@overload +def linspace( + start: _ArrayLikeFloat_co, + stop: _ArrayLikeFloat_co, + num: SupportsIndex = 50, + endpoint: bool = True, + *, + retstep: L[True], + dtype: None = None, + axis: SupportsIndex = 0, + device: L["cpu"] | None = None, +) -> tuple[NDArray[np.floating], np.floating]: ... +@overload +def linspace( + start: _ArrayLikeComplex_co, + stop: _ArrayLikeComplex_co, + num: SupportsIndex = 50, + endpoint: bool = True, + *, + retstep: L[True], + dtype: None = None, + axis: SupportsIndex = 0, + device: L["cpu"] | None = None, +) -> tuple[NDArray[np.complexfloating], np.complexfloating]: ... +@overload +def linspace( + start: _ArrayLikeComplex_co, + stop: _ArrayLikeComplex_co, + num: SupportsIndex = 50, + endpoint: bool = True, + *, + retstep: L[True], + dtype: _DTypeLike[_ScalarT], + axis: SupportsIndex = 0, + device: L["cpu"] | None = None, +) -> tuple[NDArray[_ScalarT], _ScalarT]: ... +@overload +def linspace( + start: _ArrayLikeComplex_co, + stop: _ArrayLikeComplex_co, + num: SupportsIndex = 50, + endpoint: bool = True, + *, + retstep: L[True], + dtype: DTypeLike | None = None, + axis: SupportsIndex = 0, + device: L["cpu"] | None = None, +) -> tuple[NDArray[Incomplete], Incomplete]: ... + +@overload +def logspace( + start: _ToArrayFloat64, + stop: _ToArrayFloat64, + num: SupportsIndex = 50, + endpoint: bool = True, + base: _ToArrayFloat64 = 10.0, + dtype: None = None, + axis: SupportsIndex = 0, +) -> NDArray[np.float64]: ... +@overload +def logspace( + start: _ArrayLikeFloat_co, + stop: _ArrayLikeFloat_co, + num: SupportsIndex = 50, + endpoint: bool = True, + base: _ArrayLikeFloat_co = 10.0, + dtype: None = None, + axis: SupportsIndex = 0, +) -> NDArray[np.floating]: ... +@overload +def logspace( + start: _ArrayLikeComplex_co, + stop: _ArrayLikeComplex_co, + num: SupportsIndex = 50, + endpoint: bool = True, + base: _ArrayLikeComplex_co = 10.0, + dtype: None = None, + axis: SupportsIndex = 0, +) -> NDArray[np.complexfloating]: ... +@overload +def logspace( + start: _ArrayLikeComplex_co, + stop: _ArrayLikeComplex_co, + num: SupportsIndex, + endpoint: bool, + base: _ArrayLikeComplex_co, + dtype: _DTypeLike[_ScalarT], + axis: SupportsIndex = 0, +) -> NDArray[_ScalarT]: ... +@overload +def logspace( + start: _ArrayLikeComplex_co, + stop: _ArrayLikeComplex_co, + num: SupportsIndex = 50, + endpoint: bool = True, + base: _ArrayLikeComplex_co = 10.0, + *, + dtype: _DTypeLike[_ScalarT], + axis: SupportsIndex = 0, +) -> NDArray[_ScalarT]: ... +@overload +def logspace( + start: _ArrayLikeComplex_co, + stop: _ArrayLikeComplex_co, + num: SupportsIndex = 50, + endpoint: bool = True, + base: _ArrayLikeComplex_co = 10.0, + dtype: DTypeLike | None = None, + axis: SupportsIndex = 0, +) -> NDArray[Incomplete]: ... + +@overload +def geomspace( + start: _ToArrayFloat64, + stop: _ToArrayFloat64, + num: SupportsIndex = 50, + endpoint: bool = True, + dtype: None = None, + axis: SupportsIndex = 0, +) -> NDArray[np.float64]: ... +@overload +def geomspace( + start: _ArrayLikeFloat_co, + stop: _ArrayLikeFloat_co, + num: SupportsIndex = 50, + endpoint: bool = True, + dtype: None = None, + axis: SupportsIndex = 0, +) -> NDArray[np.floating]: ... +@overload +def geomspace( + start: _ArrayLikeComplex_co, + stop: _ArrayLikeComplex_co, + num: SupportsIndex = 50, + endpoint: bool = True, + dtype: None = None, + axis: SupportsIndex = 0, +) -> NDArray[np.complexfloating]: ... +@overload +def geomspace( + start: _ArrayLikeComplex_co, + stop: _ArrayLikeComplex_co, + num: SupportsIndex, + endpoint: bool, + dtype: _DTypeLike[_ScalarT], + axis: SupportsIndex = 0, +) -> NDArray[_ScalarT]: ... +@overload +def geomspace( + start: _ArrayLikeComplex_co, + stop: _ArrayLikeComplex_co, + num: SupportsIndex = 50, + endpoint: bool = True, + *, + dtype: _DTypeLike[_ScalarT], + axis: SupportsIndex = 0, +) -> NDArray[_ScalarT]: ... +@overload +def geomspace( + start: _ArrayLikeComplex_co, + stop: _ArrayLikeComplex_co, + num: SupportsIndex = 50, + endpoint: bool = True, + dtype: DTypeLike | None = None, + axis: SupportsIndex = 0, +) -> NDArray[Incomplete]: ... + +def add_newdoc( + place: str, + obj: str, + doc: str | tuple[str, str] | list[tuple[str, str]], + warn_on_python: bool = True, +) -> None: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/getlimits.py b/.venv/lib/python3.12/site-packages/numpy/_core/getlimits.py new file mode 100644 index 0000000..afa2cce --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/getlimits.py @@ -0,0 +1,748 @@ +"""Machine limits for Float32 and Float64 and (long double) if available... + +""" +__all__ = ['finfo', 'iinfo'] + +import types +import warnings + +from numpy._utils import set_module + +from . import numeric +from . import numerictypes as ntypes +from ._machar import MachAr +from .numeric import array, inf, nan +from .umath import exp2, isnan, log10, nextafter + + +def _fr0(a): + """fix rank-0 --> rank-1""" + if a.ndim == 0: + a = a.copy() + a.shape = (1,) + return a + + +def _fr1(a): + """fix rank > 0 --> rank-0""" + if a.size == 1: + a = a.copy() + a.shape = () + return a + + +class MachArLike: + """ Object to simulate MachAr instance """ + def __init__(self, ftype, *, eps, epsneg, huge, tiny, + ibeta, smallest_subnormal=None, **kwargs): + self.params = _MACHAR_PARAMS[ftype] + self.ftype = ftype + self.title = self.params['title'] + # Parameter types same as for discovered MachAr object. + if not smallest_subnormal: + self._smallest_subnormal = nextafter( + self.ftype(0), self.ftype(1), dtype=self.ftype) + else: + self._smallest_subnormal = smallest_subnormal + self.epsilon = self.eps = self._float_to_float(eps) + self.epsneg = self._float_to_float(epsneg) + self.xmax = self.huge = self._float_to_float(huge) + self.xmin = self._float_to_float(tiny) + self.smallest_normal = self.tiny = self._float_to_float(tiny) + self.ibeta = self.params['itype'](ibeta) + self.__dict__.update(kwargs) + self.precision = int(-log10(self.eps)) + self.resolution = self._float_to_float( + self._float_conv(10) ** (-self.precision)) + self._str_eps = self._float_to_str(self.eps) + self._str_epsneg = self._float_to_str(self.epsneg) + self._str_xmin = self._float_to_str(self.xmin) + self._str_xmax = self._float_to_str(self.xmax) + self._str_resolution = self._float_to_str(self.resolution) + self._str_smallest_normal = self._float_to_str(self.xmin) + + @property + def smallest_subnormal(self): + """Return the value for the smallest subnormal. + + Returns + ------- + smallest_subnormal : float + value for the smallest subnormal. + + Warns + ----- + UserWarning + If the calculated value for the smallest subnormal is zero. + """ + # Check that the calculated value is not zero, in case it raises a + # warning. + value = self._smallest_subnormal + if self.ftype(0) == value: + warnings.warn( + f'The value of the smallest subnormal for {self.ftype} type is zero.', + UserWarning, stacklevel=2) + + return self._float_to_float(value) + + @property + def _str_smallest_subnormal(self): + """Return the string representation of the smallest subnormal.""" + return self._float_to_str(self.smallest_subnormal) + + def _float_to_float(self, value): + """Converts float to float. + + Parameters + ---------- + value : float + value to be converted. + """ + return _fr1(self._float_conv(value)) + + def _float_conv(self, value): + """Converts float to conv. + + Parameters + ---------- + value : float + value to be converted. + """ + return array([value], self.ftype) + + def _float_to_str(self, value): + """Converts float to str. + + Parameters + ---------- + value : float + value to be converted. + """ + return self.params['fmt'] % array(_fr0(value)[0], self.ftype) + + +_convert_to_float = { + ntypes.csingle: ntypes.single, + ntypes.complex128: ntypes.float64, + ntypes.clongdouble: ntypes.longdouble + } + +# Parameters for creating MachAr / MachAr-like objects +_title_fmt = 'numpy {} precision floating point number' +_MACHAR_PARAMS = { + ntypes.double: { + 'itype': ntypes.int64, + 'fmt': '%24.16e', + 'title': _title_fmt.format('double')}, + ntypes.single: { + 'itype': ntypes.int32, + 'fmt': '%15.7e', + 'title': _title_fmt.format('single')}, + ntypes.longdouble: { + 'itype': ntypes.longlong, + 'fmt': '%s', + 'title': _title_fmt.format('long double')}, + ntypes.half: { + 'itype': ntypes.int16, + 'fmt': '%12.5e', + 'title': _title_fmt.format('half')}} + +# Key to identify the floating point type. Key is result of +# +# ftype = np.longdouble # or float64, float32, etc. +# v = (ftype(-1.0) / ftype(10.0)) +# v.view(v.dtype.newbyteorder('<')).tobytes() +# +# Uses division to work around deficiencies in strtold on some platforms. +# See: +# https://perl5.git.perl.org/perl.git/blob/3118d7d684b56cbeb702af874f4326683c45f045:/Configure + +_KNOWN_TYPES = {} +def _register_type(machar, bytepat): + _KNOWN_TYPES[bytepat] = machar + + +_float_ma = {} + + +def _register_known_types(): + # Known parameters for float16 + # See docstring of MachAr class for description of parameters. + f16 = ntypes.float16 + float16_ma = MachArLike(f16, + machep=-10, + negep=-11, + minexp=-14, + maxexp=16, + it=10, + iexp=5, + ibeta=2, + irnd=5, + ngrd=0, + eps=exp2(f16(-10)), + epsneg=exp2(f16(-11)), + huge=f16(65504), + tiny=f16(2 ** -14)) + _register_type(float16_ma, b'f\xae') + _float_ma[16] = float16_ma + + # Known parameters for float32 + f32 = ntypes.float32 + float32_ma = MachArLike(f32, + machep=-23, + negep=-24, + minexp=-126, + maxexp=128, + it=23, + iexp=8, + ibeta=2, + irnd=5, + ngrd=0, + eps=exp2(f32(-23)), + epsneg=exp2(f32(-24)), + huge=f32((1 - 2 ** -24) * 2**128), + tiny=exp2(f32(-126))) + _register_type(float32_ma, b'\xcd\xcc\xcc\xbd') + _float_ma[32] = float32_ma + + # Known parameters for float64 + f64 = ntypes.float64 + epsneg_f64 = 2.0 ** -53.0 + tiny_f64 = 2.0 ** -1022.0 + float64_ma = MachArLike(f64, + machep=-52, + negep=-53, + minexp=-1022, + maxexp=1024, + it=52, + iexp=11, + ibeta=2, + irnd=5, + ngrd=0, + eps=2.0 ** -52.0, + epsneg=epsneg_f64, + huge=(1.0 - epsneg_f64) / tiny_f64 * f64(4), + tiny=tiny_f64) + _register_type(float64_ma, b'\x9a\x99\x99\x99\x99\x99\xb9\xbf') + _float_ma[64] = float64_ma + + # Known parameters for IEEE 754 128-bit binary float + ld = ntypes.longdouble + epsneg_f128 = exp2(ld(-113)) + tiny_f128 = exp2(ld(-16382)) + # Ignore runtime error when this is not f128 + with numeric.errstate(all='ignore'): + huge_f128 = (ld(1) - epsneg_f128) / tiny_f128 * ld(4) + float128_ma = MachArLike(ld, + machep=-112, + negep=-113, + minexp=-16382, + maxexp=16384, + it=112, + iexp=15, + ibeta=2, + irnd=5, + ngrd=0, + eps=exp2(ld(-112)), + epsneg=epsneg_f128, + huge=huge_f128, + tiny=tiny_f128) + # IEEE 754 128-bit binary float + _register_type(float128_ma, + b'\x9a\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\xfb\xbf') + _float_ma[128] = float128_ma + + # Known parameters for float80 (Intel 80-bit extended precision) + epsneg_f80 = exp2(ld(-64)) + tiny_f80 = exp2(ld(-16382)) + # Ignore runtime error when this is not f80 + with numeric.errstate(all='ignore'): + huge_f80 = (ld(1) - epsneg_f80) / tiny_f80 * ld(4) + float80_ma = MachArLike(ld, + machep=-63, + negep=-64, + minexp=-16382, + maxexp=16384, + it=63, + iexp=15, + ibeta=2, + irnd=5, + ngrd=0, + eps=exp2(ld(-63)), + epsneg=epsneg_f80, + huge=huge_f80, + tiny=tiny_f80) + # float80, first 10 bytes containing actual storage + _register_type(float80_ma, b'\xcd\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xfb\xbf') + _float_ma[80] = float80_ma + + # Guessed / known parameters for double double; see: + # https://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format#Double-double_arithmetic + # These numbers have the same exponent range as float64, but extended + # number of digits in the significand. + huge_dd = nextafter(ld(inf), ld(0), dtype=ld) + # As the smallest_normal in double double is so hard to calculate we set + # it to NaN. + smallest_normal_dd = nan + # Leave the same value for the smallest subnormal as double + smallest_subnormal_dd = ld(nextafter(0., 1.)) + float_dd_ma = MachArLike(ld, + machep=-105, + negep=-106, + minexp=-1022, + maxexp=1024, + it=105, + iexp=11, + ibeta=2, + irnd=5, + ngrd=0, + eps=exp2(ld(-105)), + epsneg=exp2(ld(-106)), + huge=huge_dd, + tiny=smallest_normal_dd, + smallest_subnormal=smallest_subnormal_dd) + # double double; low, high order (e.g. PPC 64) + _register_type(float_dd_ma, + b'\x9a\x99\x99\x99\x99\x99Y<\x9a\x99\x99\x99\x99\x99\xb9\xbf') + # double double; high, low order (e.g. PPC 64 le) + _register_type(float_dd_ma, + b'\x9a\x99\x99\x99\x99\x99\xb9\xbf\x9a\x99\x99\x99\x99\x99Y<') + _float_ma['dd'] = float_dd_ma + + +def _get_machar(ftype): + """ Get MachAr instance or MachAr-like instance + + Get parameters for floating point type, by first trying signatures of + various known floating point types, then, if none match, attempting to + identify parameters by analysis. + + Parameters + ---------- + ftype : class + Numpy floating point type class (e.g. ``np.float64``) + + Returns + ------- + ma_like : instance of :class:`MachAr` or :class:`MachArLike` + Object giving floating point parameters for `ftype`. + + Warns + ----- + UserWarning + If the binary signature of the float type is not in the dictionary of + known float types. + """ + params = _MACHAR_PARAMS.get(ftype) + if params is None: + raise ValueError(repr(ftype)) + # Detect known / suspected types + # ftype(-1.0) / ftype(10.0) is better than ftype('-0.1') because stold + # may be deficient + key = (ftype(-1.0) / ftype(10.)) + key = key.view(key.dtype.newbyteorder("<")).tobytes() + ma_like = None + if ftype == ntypes.longdouble: + # Could be 80 bit == 10 byte extended precision, where last bytes can + # be random garbage. + # Comparing first 10 bytes to pattern first to avoid branching on the + # random garbage. + ma_like = _KNOWN_TYPES.get(key[:10]) + if ma_like is None: + # see if the full key is known. + ma_like = _KNOWN_TYPES.get(key) + if ma_like is None and len(key) == 16: + # machine limits could be f80 masquerading as np.float128, + # find all keys with length 16 and make new dict, but make the keys + # only 10 bytes long, the last bytes can be random garbage + _kt = {k[:10]: v for k, v in _KNOWN_TYPES.items() if len(k) == 16} + ma_like = _kt.get(key[:10]) + if ma_like is not None: + return ma_like + # Fall back to parameter discovery + warnings.warn( + f'Signature {key} for {ftype} does not match any known type: ' + 'falling back to type probe function.\n' + 'This warnings indicates broken support for the dtype!', + UserWarning, stacklevel=2) + return _discovered_machar(ftype) + + +def _discovered_machar(ftype): + """ Create MachAr instance with found information on float types + + TODO: MachAr should be retired completely ideally. We currently only + ever use it system with broken longdouble (valgrind, WSL). + """ + params = _MACHAR_PARAMS[ftype] + return MachAr(lambda v: array([v], ftype), + lambda v: _fr0(v.astype(params['itype']))[0], + lambda v: array(_fr0(v)[0], ftype), + lambda v: params['fmt'] % array(_fr0(v)[0], ftype), + params['title']) + + +@set_module('numpy') +class finfo: + """ + finfo(dtype) + + Machine limits for floating point types. + + Attributes + ---------- + bits : int + The number of bits occupied by the type. + dtype : dtype + Returns the dtype for which `finfo` returns information. For complex + input, the returned dtype is the associated ``float*`` dtype for its + real and complex components. + eps : float + The difference between 1.0 and the next smallest representable float + larger than 1.0. For example, for 64-bit binary floats in the IEEE-754 + standard, ``eps = 2**-52``, approximately 2.22e-16. + epsneg : float + The difference between 1.0 and the next smallest representable float + less than 1.0. For example, for 64-bit binary floats in the IEEE-754 + standard, ``epsneg = 2**-53``, approximately 1.11e-16. + iexp : int + The number of bits in the exponent portion of the floating point + representation. + machep : int + The exponent that yields `eps`. + max : floating point number of the appropriate type + The largest representable number. + maxexp : int + The smallest positive power of the base (2) that causes overflow. + min : floating point number of the appropriate type + The smallest representable number, typically ``-max``. + minexp : int + The most negative power of the base (2) consistent with there + being no leading 0's in the mantissa. + negep : int + The exponent that yields `epsneg`. + nexp : int + The number of bits in the exponent including its sign and bias. + nmant : int + The number of bits in the mantissa. + precision : int + The approximate number of decimal digits to which this kind of + float is precise. + resolution : floating point number of the appropriate type + The approximate decimal resolution of this type, i.e., + ``10**-precision``. + tiny : float + An alias for `smallest_normal`, kept for backwards compatibility. + smallest_normal : float + The smallest positive floating point number with 1 as leading bit in + the mantissa following IEEE-754 (see Notes). + smallest_subnormal : float + The smallest positive floating point number with 0 as leading bit in + the mantissa following IEEE-754. + + Parameters + ---------- + dtype : float, dtype, or instance + Kind of floating point or complex floating point + data-type about which to get information. + + See Also + -------- + iinfo : The equivalent for integer data types. + spacing : The distance between a value and the nearest adjacent number + nextafter : The next floating point value after x1 towards x2 + + Notes + ----- + For developers of NumPy: do not instantiate this at the module level. + The initial calculation of these parameters is expensive and negatively + impacts import times. These objects are cached, so calling ``finfo()`` + repeatedly inside your functions is not a problem. + + Note that ``smallest_normal`` is not actually the smallest positive + representable value in a NumPy floating point type. As in the IEEE-754 + standard [1]_, NumPy floating point types make use of subnormal numbers to + fill the gap between 0 and ``smallest_normal``. However, subnormal numbers + may have significantly reduced precision [2]_. + + This function can also be used for complex data types as well. If used, + the output will be the same as the corresponding real float type + (e.g. numpy.finfo(numpy.csingle) is the same as numpy.finfo(numpy.single)). + However, the output is true for the real and imaginary components. + + References + ---------- + .. [1] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008, + pp.1-70, 2008, https://doi.org/10.1109/IEEESTD.2008.4610935 + .. [2] Wikipedia, "Denormal Numbers", + https://en.wikipedia.org/wiki/Denormal_number + + Examples + -------- + >>> import numpy as np + >>> np.finfo(np.float64).dtype + dtype('float64') + >>> np.finfo(np.complex64).dtype + dtype('float32') + + """ + + _finfo_cache = {} + + __class_getitem__ = classmethod(types.GenericAlias) + + def __new__(cls, dtype): + try: + obj = cls._finfo_cache.get(dtype) # most common path + if obj is not None: + return obj + except TypeError: + pass + + if dtype is None: + # Deprecated in NumPy 1.25, 2023-01-16 + warnings.warn( + "finfo() dtype cannot be None. This behavior will " + "raise an error in the future. (Deprecated in NumPy 1.25)", + DeprecationWarning, + stacklevel=2 + ) + + try: + dtype = numeric.dtype(dtype) + except TypeError: + # In case a float instance was given + dtype = numeric.dtype(type(dtype)) + + obj = cls._finfo_cache.get(dtype) + if obj is not None: + return obj + dtypes = [dtype] + newdtype = ntypes.obj2sctype(dtype) + if newdtype is not dtype: + dtypes.append(newdtype) + dtype = newdtype + if not issubclass(dtype, numeric.inexact): + raise ValueError(f"data type {dtype!r} not inexact") + obj = cls._finfo_cache.get(dtype) + if obj is not None: + return obj + if not issubclass(dtype, numeric.floating): + newdtype = _convert_to_float[dtype] + if newdtype is not dtype: + # dtype changed, for example from complex128 to float64 + dtypes.append(newdtype) + dtype = newdtype + + obj = cls._finfo_cache.get(dtype, None) + if obj is not None: + # the original dtype was not in the cache, but the new + # dtype is in the cache. we add the original dtypes to + # the cache and return the result + for dt in dtypes: + cls._finfo_cache[dt] = obj + return obj + obj = object.__new__(cls)._init(dtype) + for dt in dtypes: + cls._finfo_cache[dt] = obj + return obj + + def _init(self, dtype): + self.dtype = numeric.dtype(dtype) + machar = _get_machar(dtype) + + for word in ['precision', 'iexp', + 'maxexp', 'minexp', 'negep', + 'machep']: + setattr(self, word, getattr(machar, word)) + for word in ['resolution', 'epsneg', 'smallest_subnormal']: + setattr(self, word, getattr(machar, word).flat[0]) + self.bits = self.dtype.itemsize * 8 + self.max = machar.huge.flat[0] + self.min = -self.max + self.eps = machar.eps.flat[0] + self.nexp = machar.iexp + self.nmant = machar.it + self._machar = machar + self._str_tiny = machar._str_xmin.strip() + self._str_max = machar._str_xmax.strip() + self._str_epsneg = machar._str_epsneg.strip() + self._str_eps = machar._str_eps.strip() + self._str_resolution = machar._str_resolution.strip() + self._str_smallest_normal = machar._str_smallest_normal.strip() + self._str_smallest_subnormal = machar._str_smallest_subnormal.strip() + return self + + def __str__(self): + fmt = ( + 'Machine parameters for %(dtype)s\n' + '---------------------------------------------------------------\n' + 'precision = %(precision)3s resolution = %(_str_resolution)s\n' + 'machep = %(machep)6s eps = %(_str_eps)s\n' + 'negep = %(negep)6s epsneg = %(_str_epsneg)s\n' + 'minexp = %(minexp)6s tiny = %(_str_tiny)s\n' + 'maxexp = %(maxexp)6s max = %(_str_max)s\n' + 'nexp = %(nexp)6s min = -max\n' + 'smallest_normal = %(_str_smallest_normal)s ' + 'smallest_subnormal = %(_str_smallest_subnormal)s\n' + '---------------------------------------------------------------\n' + ) + return fmt % self.__dict__ + + def __repr__(self): + c = self.__class__.__name__ + d = self.__dict__.copy() + d['klass'] = c + return (("%(klass)s(resolution=%(resolution)s, min=-%(_str_max)s," + " max=%(_str_max)s, dtype=%(dtype)s)") % d) + + @property + def smallest_normal(self): + """Return the value for the smallest normal. + + Returns + ------- + smallest_normal : float + Value for the smallest normal. + + Warns + ----- + UserWarning + If the calculated value for the smallest normal is requested for + double-double. + """ + # This check is necessary because the value for smallest_normal is + # platform dependent for longdouble types. + if isnan(self._machar.smallest_normal.flat[0]): + warnings.warn( + 'The value of smallest normal is undefined for double double', + UserWarning, stacklevel=2) + return self._machar.smallest_normal.flat[0] + + @property + def tiny(self): + """Return the value for tiny, alias of smallest_normal. + + Returns + ------- + tiny : float + Value for the smallest normal, alias of smallest_normal. + + Warns + ----- + UserWarning + If the calculated value for the smallest normal is requested for + double-double. + """ + return self.smallest_normal + + +@set_module('numpy') +class iinfo: + """ + iinfo(type) + + Machine limits for integer types. + + Attributes + ---------- + bits : int + The number of bits occupied by the type. + dtype : dtype + Returns the dtype for which `iinfo` returns information. + min : int + The smallest integer expressible by the type. + max : int + The largest integer expressible by the type. + + Parameters + ---------- + int_type : integer type, dtype, or instance + The kind of integer data type to get information about. + + See Also + -------- + finfo : The equivalent for floating point data types. + + Examples + -------- + With types: + + >>> import numpy as np + >>> ii16 = np.iinfo(np.int16) + >>> ii16.min + -32768 + >>> ii16.max + 32767 + >>> ii32 = np.iinfo(np.int32) + >>> ii32.min + -2147483648 + >>> ii32.max + 2147483647 + + With instances: + + >>> ii32 = np.iinfo(np.int32(10)) + >>> ii32.min + -2147483648 + >>> ii32.max + 2147483647 + + """ + + _min_vals = {} + _max_vals = {} + + __class_getitem__ = classmethod(types.GenericAlias) + + def __init__(self, int_type): + try: + self.dtype = numeric.dtype(int_type) + except TypeError: + self.dtype = numeric.dtype(type(int_type)) + self.kind = self.dtype.kind + self.bits = self.dtype.itemsize * 8 + self.key = "%s%d" % (self.kind, self.bits) + if self.kind not in 'iu': + raise ValueError(f"Invalid integer data type {self.kind!r}.") + + @property + def min(self): + """Minimum value of given dtype.""" + if self.kind == 'u': + return 0 + else: + try: + val = iinfo._min_vals[self.key] + except KeyError: + val = int(-(1 << (self.bits - 1))) + iinfo._min_vals[self.key] = val + return val + + @property + def max(self): + """Maximum value of given dtype.""" + try: + val = iinfo._max_vals[self.key] + except KeyError: + if self.kind == 'u': + val = int((1 << self.bits) - 1) + else: + val = int((1 << (self.bits - 1)) - 1) + iinfo._max_vals[self.key] = val + return val + + def __str__(self): + """String representation.""" + fmt = ( + 'Machine parameters for %(dtype)s\n' + '---------------------------------------------------------------\n' + 'min = %(min)s\n' + 'max = %(max)s\n' + '---------------------------------------------------------------\n' + ) + return fmt % {'dtype': self.dtype, 'min': self.min, 'max': self.max} + + def __repr__(self): + return "%s(min=%s, max=%s, dtype=%s)" % (self.__class__.__name__, + self.min, self.max, self.dtype) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/getlimits.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/getlimits.pyi new file mode 100644 index 0000000..9d79b17 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/getlimits.pyi @@ -0,0 +1,3 @@ +from numpy import finfo, iinfo + +__all__ = ["finfo", "iinfo"] diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__multiarray_api.c b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__multiarray_api.c new file mode 100644 index 0000000..8398c62 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__multiarray_api.c @@ -0,0 +1,376 @@ + +/* These pointers will be stored in the C-object for use in other + extension modules +*/ + +void *PyArray_API[] = { + (void *) PyArray_GetNDArrayCVersion, + NULL, + (void *) &PyArray_Type, + (void *) &PyArrayDescr_Type, + NULL, + (void *) &PyArrayIter_Type, + (void *) &PyArrayMultiIter_Type, + (int *) &NPY_NUMUSERTYPES, + (void *) &PyBoolArrType_Type, + (void *) &_PyArrayScalar_BoolValues, + (void *) &PyGenericArrType_Type, + (void *) &PyNumberArrType_Type, + (void *) &PyIntegerArrType_Type, + (void *) &PySignedIntegerArrType_Type, + (void *) &PyUnsignedIntegerArrType_Type, + (void *) &PyInexactArrType_Type, + (void *) &PyFloatingArrType_Type, + (void *) &PyComplexFloatingArrType_Type, + (void *) &PyFlexibleArrType_Type, + (void *) &PyCharacterArrType_Type, + (void *) &PyByteArrType_Type, + (void *) &PyShortArrType_Type, + (void *) &PyIntArrType_Type, + (void *) &PyLongArrType_Type, + (void *) &PyLongLongArrType_Type, + (void *) &PyUByteArrType_Type, + (void *) &PyUShortArrType_Type, + (void *) &PyUIntArrType_Type, + (void *) &PyULongArrType_Type, + (void *) &PyULongLongArrType_Type, + (void *) &PyFloatArrType_Type, + (void *) &PyDoubleArrType_Type, + (void *) &PyLongDoubleArrType_Type, + (void *) &PyCFloatArrType_Type, + (void *) &PyCDoubleArrType_Type, + (void *) &PyCLongDoubleArrType_Type, + (void *) &PyObjectArrType_Type, + (void *) &PyStringArrType_Type, + (void *) &PyUnicodeArrType_Type, + (void *) &PyVoidArrType_Type, + NULL, + NULL, + (void *) PyArray_INCREF, + (void *) PyArray_XDECREF, + (void *) PyArray_SetStringFunction, + (void *) PyArray_DescrFromType, + (void *) PyArray_TypeObjectFromType, + (void *) PyArray_Zero, + (void *) PyArray_One, + (void *) PyArray_CastToType, + (void *) PyArray_CopyInto, + (void *) PyArray_CopyAnyInto, + (void *) PyArray_CanCastSafely, + (void *) PyArray_CanCastTo, + (void *) PyArray_ObjectType, + (void *) PyArray_DescrFromObject, + (void *) PyArray_ConvertToCommonType, + (void *) PyArray_DescrFromScalar, + (void *) PyArray_DescrFromTypeObject, + (void *) PyArray_Size, + (void *) PyArray_Scalar, + (void *) PyArray_FromScalar, + (void *) PyArray_ScalarAsCtype, + (void *) PyArray_CastScalarToCtype, + (void *) PyArray_CastScalarDirect, + (void *) PyArray_Pack, + NULL, + NULL, + NULL, + (void *) PyArray_FromAny, + (void *) PyArray_EnsureArray, + (void *) PyArray_EnsureAnyArray, + (void *) PyArray_FromFile, + (void *) PyArray_FromString, + (void *) PyArray_FromBuffer, + (void *) PyArray_FromIter, + (void *) PyArray_Return, + (void *) PyArray_GetField, + (void *) PyArray_SetField, + (void *) PyArray_Byteswap, + (void *) PyArray_Resize, + NULL, + NULL, + NULL, + (void *) PyArray_CopyObject, + (void *) PyArray_NewCopy, + (void *) PyArray_ToList, + (void *) PyArray_ToString, + (void *) PyArray_ToFile, + (void *) PyArray_Dump, + (void *) PyArray_Dumps, + (void *) PyArray_ValidType, + (void *) PyArray_UpdateFlags, + (void *) PyArray_New, + (void *) PyArray_NewFromDescr, + (void *) PyArray_DescrNew, + (void *) PyArray_DescrNewFromType, + (void *) PyArray_GetPriority, + (void *) PyArray_IterNew, + (void *) PyArray_MultiIterNew, + (void *) PyArray_PyIntAsInt, + (void *) PyArray_PyIntAsIntp, + (void *) PyArray_Broadcast, + NULL, + (void *) PyArray_FillWithScalar, + (void *) PyArray_CheckStrides, + (void *) PyArray_DescrNewByteorder, + (void *) PyArray_IterAllButAxis, + (void *) PyArray_CheckFromAny, + (void *) PyArray_FromArray, + (void *) PyArray_FromInterface, + (void *) PyArray_FromStructInterface, + (void *) PyArray_FromArrayAttr, + (void *) PyArray_ScalarKind, + (void *) PyArray_CanCoerceScalar, + NULL, + (void *) PyArray_CanCastScalar, + NULL, + (void *) PyArray_RemoveSmallest, + (void *) PyArray_ElementStrides, + (void *) PyArray_Item_INCREF, + (void *) PyArray_Item_XDECREF, + NULL, + (void *) PyArray_Transpose, + (void *) PyArray_TakeFrom, + (void *) PyArray_PutTo, + (void *) PyArray_PutMask, + (void *) PyArray_Repeat, + (void *) PyArray_Choose, + (void *) PyArray_Sort, + (void *) PyArray_ArgSort, + (void *) PyArray_SearchSorted, + (void *) PyArray_ArgMax, + (void *) PyArray_ArgMin, + (void *) PyArray_Reshape, + (void *) PyArray_Newshape, + (void *) PyArray_Squeeze, + (void *) PyArray_View, + (void *) PyArray_SwapAxes, + (void *) PyArray_Max, + (void *) PyArray_Min, + (void *) PyArray_Ptp, + (void *) PyArray_Mean, + (void *) PyArray_Trace, + (void *) PyArray_Diagonal, + (void *) PyArray_Clip, + (void *) PyArray_Conjugate, + (void *) PyArray_Nonzero, + (void *) PyArray_Std, + (void *) PyArray_Sum, + (void *) PyArray_CumSum, + (void *) PyArray_Prod, + (void *) PyArray_CumProd, + (void *) PyArray_All, + (void *) PyArray_Any, + (void *) PyArray_Compress, + (void *) PyArray_Flatten, + (void *) PyArray_Ravel, + (void *) PyArray_MultiplyList, + (void *) PyArray_MultiplyIntList, + (void *) PyArray_GetPtr, + (void *) PyArray_CompareLists, + (void *) PyArray_AsCArray, + NULL, + NULL, + (void *) PyArray_Free, + (void *) PyArray_Converter, + (void *) PyArray_IntpFromSequence, + (void *) PyArray_Concatenate, + (void *) PyArray_InnerProduct, + (void *) PyArray_MatrixProduct, + NULL, + (void *) PyArray_Correlate, + NULL, + (void *) PyArray_DescrConverter, + (void *) PyArray_DescrConverter2, + (void *) PyArray_IntpConverter, + (void *) PyArray_BufferConverter, + (void *) PyArray_AxisConverter, + (void *) PyArray_BoolConverter, + (void *) PyArray_ByteorderConverter, + (void *) PyArray_OrderConverter, + (void *) PyArray_EquivTypes, + (void *) PyArray_Zeros, + (void *) PyArray_Empty, + (void *) PyArray_Where, + (void *) PyArray_Arange, + (void *) PyArray_ArangeObj, + (void *) PyArray_SortkindConverter, + (void *) PyArray_LexSort, + (void *) PyArray_Round, + (void *) PyArray_EquivTypenums, + (void *) PyArray_RegisterDataType, + (void *) PyArray_RegisterCastFunc, + (void *) PyArray_RegisterCanCast, + (void *) PyArray_InitArrFuncs, + (void *) PyArray_IntTupleFromIntp, + NULL, + (void *) PyArray_ClipmodeConverter, + (void *) PyArray_OutputConverter, + (void *) PyArray_BroadcastToShape, + NULL, + NULL, + (void *) PyArray_DescrAlignConverter, + (void *) PyArray_DescrAlignConverter2, + (void *) PyArray_SearchsideConverter, + (void *) PyArray_CheckAxis, + (void *) PyArray_OverflowMultiplyList, + NULL, + (void *) PyArray_MultiIterFromObjects, + (void *) PyArray_GetEndianness, + (void *) PyArray_GetNDArrayCFeatureVersion, + (void *) PyArray_Correlate2, + (void *) PyArray_NeighborhoodIterNew, + (void *) &PyTimeIntegerArrType_Type, + (void *) &PyDatetimeArrType_Type, + (void *) &PyTimedeltaArrType_Type, + (void *) &PyHalfArrType_Type, + (void *) &NpyIter_Type, + NULL, + NULL, + NULL, + NULL, + (void *) NpyIter_GetTransferFlags, + (void *) NpyIter_New, + (void *) NpyIter_MultiNew, + (void *) NpyIter_AdvancedNew, + (void *) NpyIter_Copy, + (void *) NpyIter_Deallocate, + (void *) NpyIter_HasDelayedBufAlloc, + (void *) NpyIter_HasExternalLoop, + (void *) NpyIter_EnableExternalLoop, + (void *) NpyIter_GetInnerStrideArray, + (void *) NpyIter_GetInnerLoopSizePtr, + (void *) NpyIter_Reset, + (void *) NpyIter_ResetBasePointers, + (void *) NpyIter_ResetToIterIndexRange, + (void *) NpyIter_GetNDim, + (void *) NpyIter_GetNOp, + (void *) NpyIter_GetIterNext, + (void *) NpyIter_GetIterSize, + (void *) NpyIter_GetIterIndexRange, + (void *) NpyIter_GetIterIndex, + (void *) NpyIter_GotoIterIndex, + (void *) NpyIter_HasMultiIndex, + (void *) NpyIter_GetShape, + (void *) NpyIter_GetGetMultiIndex, + (void *) NpyIter_GotoMultiIndex, + (void *) NpyIter_RemoveMultiIndex, + (void *) NpyIter_HasIndex, + (void *) NpyIter_IsBuffered, + (void *) NpyIter_IsGrowInner, + (void *) NpyIter_GetBufferSize, + (void *) NpyIter_GetIndexPtr, + (void *) NpyIter_GotoIndex, + (void *) NpyIter_GetDataPtrArray, + (void *) NpyIter_GetDescrArray, + (void *) NpyIter_GetOperandArray, + (void *) NpyIter_GetIterView, + (void *) NpyIter_GetReadFlags, + (void *) NpyIter_GetWriteFlags, + (void *) NpyIter_DebugPrint, + (void *) NpyIter_IterationNeedsAPI, + (void *) NpyIter_GetInnerFixedStrideArray, + (void *) NpyIter_RemoveAxis, + (void *) NpyIter_GetAxisStrideArray, + (void *) NpyIter_RequiresBuffering, + (void *) NpyIter_GetInitialDataPtrArray, + (void *) NpyIter_CreateCompatibleStrides, + (void *) PyArray_CastingConverter, + (void *) PyArray_CountNonzero, + (void *) PyArray_PromoteTypes, + (void *) PyArray_MinScalarType, + (void *) PyArray_ResultType, + (void *) PyArray_CanCastArrayTo, + (void *) PyArray_CanCastTypeTo, + (void *) PyArray_EinsteinSum, + (void *) PyArray_NewLikeArray, + NULL, + (void *) PyArray_ConvertClipmodeSequence, + (void *) PyArray_MatrixProduct2, + (void *) NpyIter_IsFirstVisit, + (void *) PyArray_SetBaseObject, + (void *) PyArray_CreateSortedStridePerm, + (void *) PyArray_RemoveAxesInPlace, + (void *) PyArray_DebugPrint, + (void *) PyArray_FailUnlessWriteable, + (void *) PyArray_SetUpdateIfCopyBase, + (void *) PyDataMem_NEW, + (void *) PyDataMem_FREE, + (void *) PyDataMem_RENEW, + NULL, + (NPY_CASTING *) &NPY_DEFAULT_ASSIGN_CASTING, + NULL, + NULL, + NULL, + (void *) PyArray_Partition, + (void *) PyArray_ArgPartition, + (void *) PyArray_SelectkindConverter, + (void *) PyDataMem_NEW_ZEROED, + (void *) PyArray_CheckAnyScalarExact, + NULL, + (void *) PyArray_ResolveWritebackIfCopy, + (void *) PyArray_SetWritebackIfCopyBase, + (void *) PyDataMem_SetHandler, + (void *) PyDataMem_GetHandler, + (PyObject* *) &PyDataMem_DefaultHandler, + (void *) NpyDatetime_ConvertDatetime64ToDatetimeStruct, + (void *) NpyDatetime_ConvertDatetimeStructToDatetime64, + (void *) NpyDatetime_ConvertPyDateTimeToDatetimeStruct, + (void *) NpyDatetime_GetDatetimeISO8601StrLen, + (void *) NpyDatetime_MakeISO8601Datetime, + (void *) NpyDatetime_ParseISO8601Datetime, + (void *) NpyString_load, + (void *) NpyString_pack, + (void *) NpyString_pack_null, + (void *) NpyString_acquire_allocator, + (void *) NpyString_acquire_allocators, + (void *) NpyString_release_allocator, + (void *) NpyString_release_allocators, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + NULL, + (void *) PyArray_GetDefaultDescr, + (void *) PyArrayInitDTypeMeta_FromSpec, + (void *) PyArray_CommonDType, + (void *) PyArray_PromoteDTypeSequence, + (void *) _PyDataType_GetArrFuncs, + NULL, + NULL, + NULL +}; diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__multiarray_api.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__multiarray_api.h new file mode 100644 index 0000000..34363fb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__multiarray_api.h @@ -0,0 +1,1622 @@ + +#if defined(_MULTIARRAYMODULE) || defined(WITH_CPYCHECKER_STEALS_REFERENCE_TO_ARG_ATTRIBUTE) + +typedef struct { + PyObject_HEAD + npy_bool obval; +} PyBoolScalarObject; + +extern NPY_NO_EXPORT PyTypeObject PyArrayNeighborhoodIter_Type; +extern NPY_NO_EXPORT PyBoolScalarObject _PyArrayScalar_BoolValues[2]; + +NPY_NO_EXPORT unsigned int PyArray_GetNDArrayCVersion \ + (void); +extern NPY_NO_EXPORT PyTypeObject PyArray_Type; + +extern NPY_NO_EXPORT PyArray_DTypeMeta PyArrayDescr_TypeFull; +#define PyArrayDescr_Type (*(PyTypeObject *)(&PyArrayDescr_TypeFull)) + +extern NPY_NO_EXPORT PyTypeObject PyArrayIter_Type; + +extern NPY_NO_EXPORT PyTypeObject PyArrayMultiIter_Type; + +extern NPY_NO_EXPORT int NPY_NUMUSERTYPES; + +extern NPY_NO_EXPORT PyTypeObject PyBoolArrType_Type; + +extern NPY_NO_EXPORT PyBoolScalarObject _PyArrayScalar_BoolValues[2]; + +extern NPY_NO_EXPORT PyTypeObject PyGenericArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyNumberArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyIntegerArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PySignedIntegerArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyUnsignedIntegerArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyInexactArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyFloatingArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyComplexFloatingArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyFlexibleArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyCharacterArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyByteArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyShortArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyIntArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyLongArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyLongLongArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyUByteArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyUShortArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyUIntArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyULongArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyULongLongArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyFloatArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyDoubleArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyLongDoubleArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyCFloatArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyCDoubleArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyCLongDoubleArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyObjectArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyStringArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyUnicodeArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyVoidArrType_Type; + +NPY_NO_EXPORT int PyArray_INCREF \ + (PyArrayObject *); +NPY_NO_EXPORT int PyArray_XDECREF \ + (PyArrayObject *); +NPY_NO_EXPORT void PyArray_SetStringFunction \ + (PyObject *, int); +NPY_NO_EXPORT PyArray_Descr * PyArray_DescrFromType \ + (int); +NPY_NO_EXPORT PyObject * PyArray_TypeObjectFromType \ + (int); +NPY_NO_EXPORT char * PyArray_Zero \ + (PyArrayObject *); +NPY_NO_EXPORT char * PyArray_One \ + (PyArrayObject *); +NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) PyObject * PyArray_CastToType \ + (PyArrayObject *, PyArray_Descr *, int); +NPY_NO_EXPORT int PyArray_CopyInto \ + (PyArrayObject *, PyArrayObject *); +NPY_NO_EXPORT int PyArray_CopyAnyInto \ + (PyArrayObject *, PyArrayObject *); +NPY_NO_EXPORT int PyArray_CanCastSafely \ + (int, int); +NPY_NO_EXPORT npy_bool PyArray_CanCastTo \ + (PyArray_Descr *, PyArray_Descr *); +NPY_NO_EXPORT int PyArray_ObjectType \ + (PyObject *, int); +NPY_NO_EXPORT PyArray_Descr * PyArray_DescrFromObject \ + (PyObject *, PyArray_Descr *); +NPY_NO_EXPORT PyArrayObject ** PyArray_ConvertToCommonType \ + (PyObject *, int *); +NPY_NO_EXPORT PyArray_Descr * PyArray_DescrFromScalar \ + (PyObject *); +NPY_NO_EXPORT PyArray_Descr * PyArray_DescrFromTypeObject \ + (PyObject *); +NPY_NO_EXPORT npy_intp PyArray_Size \ + (PyObject *); +NPY_NO_EXPORT PyObject * PyArray_Scalar \ + (void *, PyArray_Descr *, PyObject *); +NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) PyObject * PyArray_FromScalar \ + (PyObject *, PyArray_Descr *); +NPY_NO_EXPORT void PyArray_ScalarAsCtype \ + (PyObject *, void *); +NPY_NO_EXPORT int PyArray_CastScalarToCtype \ + (PyObject *, void *, PyArray_Descr *); +NPY_NO_EXPORT int PyArray_CastScalarDirect \ + (PyObject *, PyArray_Descr *, void *, int); +NPY_NO_EXPORT int PyArray_Pack \ + (PyArray_Descr *, void *, PyObject *); +NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) PyObject * PyArray_FromAny \ + (PyObject *, PyArray_Descr *, int, int, int, PyObject *); +NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(1) PyObject * PyArray_EnsureArray \ + (PyObject *); +NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(1) PyObject * PyArray_EnsureAnyArray \ + (PyObject *); +NPY_NO_EXPORT PyObject * PyArray_FromFile \ + (FILE *, PyArray_Descr *, npy_intp, char *); +NPY_NO_EXPORT PyObject * PyArray_FromString \ + (char *, npy_intp, PyArray_Descr *, npy_intp, char *); +NPY_NO_EXPORT PyObject * PyArray_FromBuffer \ + (PyObject *, PyArray_Descr *, npy_intp, npy_intp); +NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) PyObject * PyArray_FromIter \ + (PyObject *, PyArray_Descr *, npy_intp); +NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(1) PyObject * PyArray_Return \ + (PyArrayObject *); +NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) PyObject * PyArray_GetField \ + (PyArrayObject *, PyArray_Descr *, int); +NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) int PyArray_SetField \ + (PyArrayObject *, PyArray_Descr *, int, PyObject *); +NPY_NO_EXPORT PyObject * PyArray_Byteswap \ + (PyArrayObject *, npy_bool); +NPY_NO_EXPORT PyObject * PyArray_Resize \ + (PyArrayObject *, PyArray_Dims *, int, NPY_ORDER NPY_UNUSED(order)); +NPY_NO_EXPORT int PyArray_CopyObject \ + (PyArrayObject *, PyObject *); +NPY_NO_EXPORT PyObject * PyArray_NewCopy \ + (PyArrayObject *, NPY_ORDER); +NPY_NO_EXPORT PyObject * PyArray_ToList \ + (PyArrayObject *); +NPY_NO_EXPORT PyObject * PyArray_ToString \ + (PyArrayObject *, NPY_ORDER); +NPY_NO_EXPORT int PyArray_ToFile \ + (PyArrayObject *, FILE *, char *, char *); +NPY_NO_EXPORT int PyArray_Dump \ + (PyObject *, PyObject *, int); +NPY_NO_EXPORT PyObject * PyArray_Dumps \ + (PyObject *, int); +NPY_NO_EXPORT int PyArray_ValidType \ + (int); +NPY_NO_EXPORT void PyArray_UpdateFlags \ + (PyArrayObject *, int); +NPY_NO_EXPORT PyObject * PyArray_New \ + (PyTypeObject *, int, npy_intp const *, int, npy_intp const *, void *, int, int, PyObject *); +NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) PyObject * PyArray_NewFromDescr \ + (PyTypeObject *, PyArray_Descr *, int, npy_intp const *, npy_intp const *, void *, int, PyObject *); +NPY_NO_EXPORT PyArray_Descr * PyArray_DescrNew \ + (PyArray_Descr *); +NPY_NO_EXPORT PyArray_Descr * PyArray_DescrNewFromType \ + (int); +NPY_NO_EXPORT double PyArray_GetPriority \ + (PyObject *, double); +NPY_NO_EXPORT PyObject * PyArray_IterNew \ + (PyObject *); +NPY_NO_EXPORT PyObject* PyArray_MultiIterNew \ + (int, ...); +NPY_NO_EXPORT int PyArray_PyIntAsInt \ + (PyObject *); +NPY_NO_EXPORT npy_intp PyArray_PyIntAsIntp \ + (PyObject *); +NPY_NO_EXPORT int PyArray_Broadcast \ + (PyArrayMultiIterObject *); +NPY_NO_EXPORT int PyArray_FillWithScalar \ + (PyArrayObject *, PyObject *); +NPY_NO_EXPORT npy_bool PyArray_CheckStrides \ + (int, int, npy_intp, npy_intp, npy_intp const *, npy_intp const *); +NPY_NO_EXPORT PyArray_Descr * PyArray_DescrNewByteorder \ + (PyArray_Descr *, char); +NPY_NO_EXPORT PyObject * PyArray_IterAllButAxis \ + (PyObject *, int *); +NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) PyObject * PyArray_CheckFromAny \ + (PyObject *, PyArray_Descr *, int, int, int, PyObject *); +NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) PyObject * PyArray_FromArray \ + (PyArrayObject *, PyArray_Descr *, int); +NPY_NO_EXPORT PyObject * PyArray_FromInterface \ + (PyObject *); +NPY_NO_EXPORT PyObject * PyArray_FromStructInterface \ + (PyObject *); +NPY_NO_EXPORT PyObject * PyArray_FromArrayAttr \ + (PyObject *, PyArray_Descr *, PyObject *); +NPY_NO_EXPORT NPY_SCALARKIND PyArray_ScalarKind \ + (int, PyArrayObject **); +NPY_NO_EXPORT int PyArray_CanCoerceScalar \ + (int, int, NPY_SCALARKIND); +NPY_NO_EXPORT npy_bool PyArray_CanCastScalar \ + (PyTypeObject *, PyTypeObject *); +NPY_NO_EXPORT int PyArray_RemoveSmallest \ + (PyArrayMultiIterObject *); +NPY_NO_EXPORT int PyArray_ElementStrides \ + (PyObject *); +NPY_NO_EXPORT void PyArray_Item_INCREF \ + (char *, PyArray_Descr *); +NPY_NO_EXPORT void PyArray_Item_XDECREF \ + (char *, PyArray_Descr *); +NPY_NO_EXPORT PyObject * PyArray_Transpose \ + (PyArrayObject *, PyArray_Dims *); +NPY_NO_EXPORT PyObject * PyArray_TakeFrom \ + (PyArrayObject *, PyObject *, int, PyArrayObject *, NPY_CLIPMODE); +NPY_NO_EXPORT PyObject * PyArray_PutTo \ + (PyArrayObject *, PyObject*, PyObject *, NPY_CLIPMODE); +NPY_NO_EXPORT PyObject * PyArray_PutMask \ + (PyArrayObject *, PyObject*, PyObject*); +NPY_NO_EXPORT PyObject * PyArray_Repeat \ + (PyArrayObject *, PyObject *, int); +NPY_NO_EXPORT PyObject * PyArray_Choose \ + (PyArrayObject *, PyObject *, PyArrayObject *, NPY_CLIPMODE); +NPY_NO_EXPORT int PyArray_Sort \ + (PyArrayObject *, int, NPY_SORTKIND); +NPY_NO_EXPORT PyObject * PyArray_ArgSort \ + (PyArrayObject *, int, NPY_SORTKIND); +NPY_NO_EXPORT PyObject * PyArray_SearchSorted \ + (PyArrayObject *, PyObject *, NPY_SEARCHSIDE, PyObject *); +NPY_NO_EXPORT PyObject * PyArray_ArgMax \ + (PyArrayObject *, int, PyArrayObject *); +NPY_NO_EXPORT PyObject * PyArray_ArgMin \ + (PyArrayObject *, int, PyArrayObject *); +NPY_NO_EXPORT PyObject * PyArray_Reshape \ + (PyArrayObject *, PyObject *); +NPY_NO_EXPORT PyObject * PyArray_Newshape \ + (PyArrayObject *, PyArray_Dims *, NPY_ORDER); +NPY_NO_EXPORT PyObject * PyArray_Squeeze \ + (PyArrayObject *); +NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) PyObject * PyArray_View \ + (PyArrayObject *, PyArray_Descr *, PyTypeObject *); +NPY_NO_EXPORT PyObject * PyArray_SwapAxes \ + (PyArrayObject *, int, int); +NPY_NO_EXPORT PyObject * PyArray_Max \ + (PyArrayObject *, int, PyArrayObject *); +NPY_NO_EXPORT PyObject * PyArray_Min \ + (PyArrayObject *, int, PyArrayObject *); +NPY_NO_EXPORT PyObject * PyArray_Ptp \ + (PyArrayObject *, int, PyArrayObject *); +NPY_NO_EXPORT PyObject * PyArray_Mean \ + (PyArrayObject *, int, int, PyArrayObject *); +NPY_NO_EXPORT PyObject * PyArray_Trace \ + (PyArrayObject *, int, int, int, int, PyArrayObject *); +NPY_NO_EXPORT PyObject * PyArray_Diagonal \ + (PyArrayObject *, int, int, int); +NPY_NO_EXPORT PyObject * PyArray_Clip \ + (PyArrayObject *, PyObject *, PyObject *, PyArrayObject *); +NPY_NO_EXPORT PyObject * PyArray_Conjugate \ + (PyArrayObject *, PyArrayObject *); +NPY_NO_EXPORT PyObject * PyArray_Nonzero \ + (PyArrayObject *); +NPY_NO_EXPORT PyObject * PyArray_Std \ + (PyArrayObject *, int, int, PyArrayObject *, int); +NPY_NO_EXPORT PyObject * PyArray_Sum \ + (PyArrayObject *, int, int, PyArrayObject *); +NPY_NO_EXPORT PyObject * PyArray_CumSum \ + (PyArrayObject *, int, int, PyArrayObject *); +NPY_NO_EXPORT PyObject * PyArray_Prod \ + (PyArrayObject *, int, int, PyArrayObject *); +NPY_NO_EXPORT PyObject * PyArray_CumProd \ + (PyArrayObject *, int, int, PyArrayObject *); +NPY_NO_EXPORT PyObject * PyArray_All \ + (PyArrayObject *, int, PyArrayObject *); +NPY_NO_EXPORT PyObject * PyArray_Any \ + (PyArrayObject *, int, PyArrayObject *); +NPY_NO_EXPORT PyObject * PyArray_Compress \ + (PyArrayObject *, PyObject *, int, PyArrayObject *); +NPY_NO_EXPORT PyObject * PyArray_Flatten \ + (PyArrayObject *, NPY_ORDER); +NPY_NO_EXPORT PyObject * PyArray_Ravel \ + (PyArrayObject *, NPY_ORDER); +NPY_NO_EXPORT npy_intp PyArray_MultiplyList \ + (npy_intp const *, int); +NPY_NO_EXPORT int PyArray_MultiplyIntList \ + (int const *, int); +NPY_NO_EXPORT void * PyArray_GetPtr \ + (PyArrayObject *, npy_intp const*); +NPY_NO_EXPORT int PyArray_CompareLists \ + (npy_intp const *, npy_intp const *, int); +NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(5) int PyArray_AsCArray \ + (PyObject **, void *, npy_intp *, int, PyArray_Descr*); +NPY_NO_EXPORT int PyArray_Free \ + (PyObject *, void *); +NPY_NO_EXPORT int PyArray_Converter \ + (PyObject *, PyObject **); +NPY_NO_EXPORT int PyArray_IntpFromSequence \ + (PyObject *, npy_intp *, int); +NPY_NO_EXPORT PyObject * PyArray_Concatenate \ + (PyObject *, int); +NPY_NO_EXPORT PyObject * PyArray_InnerProduct \ + (PyObject *, PyObject *); +NPY_NO_EXPORT PyObject * PyArray_MatrixProduct \ + (PyObject *, PyObject *); +NPY_NO_EXPORT PyObject * PyArray_Correlate \ + (PyObject *, PyObject *, int); +NPY_NO_EXPORT int PyArray_DescrConverter \ + (PyObject *, PyArray_Descr **); +NPY_NO_EXPORT int PyArray_DescrConverter2 \ + (PyObject *, PyArray_Descr **); +NPY_NO_EXPORT int PyArray_IntpConverter \ + (PyObject *, PyArray_Dims *); +NPY_NO_EXPORT int PyArray_BufferConverter \ + (PyObject *, PyArray_Chunk *); +NPY_NO_EXPORT int PyArray_AxisConverter \ + (PyObject *, int *); +NPY_NO_EXPORT int PyArray_BoolConverter \ + (PyObject *, npy_bool *); +NPY_NO_EXPORT int PyArray_ByteorderConverter \ + (PyObject *, char *); +NPY_NO_EXPORT int PyArray_OrderConverter \ + (PyObject *, NPY_ORDER *); +NPY_NO_EXPORT unsigned char PyArray_EquivTypes \ + (PyArray_Descr *, PyArray_Descr *); +NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(3) PyObject * PyArray_Zeros \ + (int, npy_intp const *, PyArray_Descr *, int); +NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(3) PyObject * PyArray_Empty \ + (int, npy_intp const *, PyArray_Descr *, int); +NPY_NO_EXPORT PyObject * PyArray_Where \ + (PyObject *, PyObject *, PyObject *); +NPY_NO_EXPORT PyObject * PyArray_Arange \ + (double, double, double, int); +NPY_NO_EXPORT PyObject * PyArray_ArangeObj \ + (PyObject *, PyObject *, PyObject *, PyArray_Descr *); +NPY_NO_EXPORT int PyArray_SortkindConverter \ + (PyObject *, NPY_SORTKIND *); +NPY_NO_EXPORT PyObject * PyArray_LexSort \ + (PyObject *, int); +NPY_NO_EXPORT PyObject * PyArray_Round \ + (PyArrayObject *, int, PyArrayObject *); +NPY_NO_EXPORT unsigned char PyArray_EquivTypenums \ + (int, int); +NPY_NO_EXPORT int PyArray_RegisterDataType \ + (PyArray_DescrProto *); +NPY_NO_EXPORT int PyArray_RegisterCastFunc \ + (PyArray_Descr *, int, PyArray_VectorUnaryFunc *); +NPY_NO_EXPORT int PyArray_RegisterCanCast \ + (PyArray_Descr *, int, NPY_SCALARKIND); +NPY_NO_EXPORT void PyArray_InitArrFuncs \ + (PyArray_ArrFuncs *); +NPY_NO_EXPORT PyObject * PyArray_IntTupleFromIntp \ + (int, npy_intp const *); +NPY_NO_EXPORT int PyArray_ClipmodeConverter \ + (PyObject *, NPY_CLIPMODE *); +NPY_NO_EXPORT int PyArray_OutputConverter \ + (PyObject *, PyArrayObject **); +NPY_NO_EXPORT PyObject * PyArray_BroadcastToShape \ + (PyObject *, npy_intp *, int); +NPY_NO_EXPORT int PyArray_DescrAlignConverter \ + (PyObject *, PyArray_Descr **); +NPY_NO_EXPORT int PyArray_DescrAlignConverter2 \ + (PyObject *, PyArray_Descr **); +NPY_NO_EXPORT int PyArray_SearchsideConverter \ + (PyObject *, void *); +NPY_NO_EXPORT PyObject * PyArray_CheckAxis \ + (PyArrayObject *, int *, int); +NPY_NO_EXPORT npy_intp PyArray_OverflowMultiplyList \ + (npy_intp const *, int); +NPY_NO_EXPORT PyObject* PyArray_MultiIterFromObjects \ + (PyObject **, int, int, ...); +NPY_NO_EXPORT int PyArray_GetEndianness \ + (void); +NPY_NO_EXPORT unsigned int PyArray_GetNDArrayCFeatureVersion \ + (void); +NPY_NO_EXPORT PyObject * PyArray_Correlate2 \ + (PyObject *, PyObject *, int); +NPY_NO_EXPORT PyObject* PyArray_NeighborhoodIterNew \ + (PyArrayIterObject *, const npy_intp *, int, PyArrayObject*); +extern NPY_NO_EXPORT PyTypeObject PyTimeIntegerArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyDatetimeArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyTimedeltaArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject PyHalfArrType_Type; + +extern NPY_NO_EXPORT PyTypeObject NpyIter_Type; + +NPY_NO_EXPORT NPY_ARRAYMETHOD_FLAGS NpyIter_GetTransferFlags \ + (NpyIter *); +NPY_NO_EXPORT NpyIter * NpyIter_New \ + (PyArrayObject *, npy_uint32, NPY_ORDER, NPY_CASTING, PyArray_Descr*); +NPY_NO_EXPORT NpyIter * NpyIter_MultiNew \ + (int, PyArrayObject **, npy_uint32, NPY_ORDER, NPY_CASTING, npy_uint32 *, PyArray_Descr **); +NPY_NO_EXPORT NpyIter * NpyIter_AdvancedNew \ + (int, PyArrayObject **, npy_uint32, NPY_ORDER, NPY_CASTING, npy_uint32 *, PyArray_Descr **, int, int **, npy_intp *, npy_intp); +NPY_NO_EXPORT NpyIter * NpyIter_Copy \ + (NpyIter *); +NPY_NO_EXPORT int NpyIter_Deallocate \ + (NpyIter *); +NPY_NO_EXPORT npy_bool NpyIter_HasDelayedBufAlloc \ + (NpyIter *); +NPY_NO_EXPORT npy_bool NpyIter_HasExternalLoop \ + (NpyIter *); +NPY_NO_EXPORT int NpyIter_EnableExternalLoop \ + (NpyIter *); +NPY_NO_EXPORT npy_intp * NpyIter_GetInnerStrideArray \ + (NpyIter *); +NPY_NO_EXPORT npy_intp * NpyIter_GetInnerLoopSizePtr \ + (NpyIter *); +NPY_NO_EXPORT int NpyIter_Reset \ + (NpyIter *, char **); +NPY_NO_EXPORT int NpyIter_ResetBasePointers \ + (NpyIter *, char **, char **); +NPY_NO_EXPORT int NpyIter_ResetToIterIndexRange \ + (NpyIter *, npy_intp, npy_intp, char **); +NPY_NO_EXPORT int NpyIter_GetNDim \ + (NpyIter *); +NPY_NO_EXPORT int NpyIter_GetNOp \ + (NpyIter *); +NPY_NO_EXPORT NpyIter_IterNextFunc * NpyIter_GetIterNext \ + (NpyIter *, char **); +NPY_NO_EXPORT npy_intp NpyIter_GetIterSize \ + (NpyIter *); +NPY_NO_EXPORT void NpyIter_GetIterIndexRange \ + (NpyIter *, npy_intp *, npy_intp *); +NPY_NO_EXPORT npy_intp NpyIter_GetIterIndex \ + (NpyIter *); +NPY_NO_EXPORT int NpyIter_GotoIterIndex \ + (NpyIter *, npy_intp); +NPY_NO_EXPORT npy_bool NpyIter_HasMultiIndex \ + (NpyIter *); +NPY_NO_EXPORT int NpyIter_GetShape \ + (NpyIter *, npy_intp *); +NPY_NO_EXPORT NpyIter_GetMultiIndexFunc * NpyIter_GetGetMultiIndex \ + (NpyIter *, char **); +NPY_NO_EXPORT int NpyIter_GotoMultiIndex \ + (NpyIter *, npy_intp const *); +NPY_NO_EXPORT int NpyIter_RemoveMultiIndex \ + (NpyIter *); +NPY_NO_EXPORT npy_bool NpyIter_HasIndex \ + (NpyIter *); +NPY_NO_EXPORT npy_bool NpyIter_IsBuffered \ + (NpyIter *); +NPY_NO_EXPORT npy_bool NpyIter_IsGrowInner \ + (NpyIter *); +NPY_NO_EXPORT npy_intp NpyIter_GetBufferSize \ + (NpyIter *); +NPY_NO_EXPORT npy_intp * NpyIter_GetIndexPtr \ + (NpyIter *); +NPY_NO_EXPORT int NpyIter_GotoIndex \ + (NpyIter *, npy_intp); +NPY_NO_EXPORT char ** NpyIter_GetDataPtrArray \ + (NpyIter *); +NPY_NO_EXPORT PyArray_Descr ** NpyIter_GetDescrArray \ + (NpyIter *); +NPY_NO_EXPORT PyArrayObject ** NpyIter_GetOperandArray \ + (NpyIter *); +NPY_NO_EXPORT PyArrayObject * NpyIter_GetIterView \ + (NpyIter *, npy_intp); +NPY_NO_EXPORT void NpyIter_GetReadFlags \ + (NpyIter *, char *); +NPY_NO_EXPORT void NpyIter_GetWriteFlags \ + (NpyIter *, char *); +NPY_NO_EXPORT void NpyIter_DebugPrint \ + (NpyIter *); +NPY_NO_EXPORT npy_bool NpyIter_IterationNeedsAPI \ + (NpyIter *); +NPY_NO_EXPORT void NpyIter_GetInnerFixedStrideArray \ + (NpyIter *, npy_intp *); +NPY_NO_EXPORT int NpyIter_RemoveAxis \ + (NpyIter *, int); +NPY_NO_EXPORT npy_intp * NpyIter_GetAxisStrideArray \ + (NpyIter *, int); +NPY_NO_EXPORT npy_bool NpyIter_RequiresBuffering \ + (NpyIter *); +NPY_NO_EXPORT char ** NpyIter_GetInitialDataPtrArray \ + (NpyIter *); +NPY_NO_EXPORT int NpyIter_CreateCompatibleStrides \ + (NpyIter *, npy_intp, npy_intp *); +NPY_NO_EXPORT int PyArray_CastingConverter \ + (PyObject *, NPY_CASTING *); +NPY_NO_EXPORT npy_intp PyArray_CountNonzero \ + (PyArrayObject *); +NPY_NO_EXPORT PyArray_Descr * PyArray_PromoteTypes \ + (PyArray_Descr *, PyArray_Descr *); +NPY_NO_EXPORT PyArray_Descr * PyArray_MinScalarType \ + (PyArrayObject *); +NPY_NO_EXPORT PyArray_Descr * PyArray_ResultType \ + (npy_intp, PyArrayObject *arrs[], npy_intp, PyArray_Descr *descrs[]); +NPY_NO_EXPORT npy_bool PyArray_CanCastArrayTo \ + (PyArrayObject *, PyArray_Descr *, NPY_CASTING); +NPY_NO_EXPORT npy_bool PyArray_CanCastTypeTo \ + (PyArray_Descr *, PyArray_Descr *, NPY_CASTING); +NPY_NO_EXPORT PyArrayObject * PyArray_EinsteinSum \ + (char *, npy_intp, PyArrayObject **, PyArray_Descr *, NPY_ORDER, NPY_CASTING, PyArrayObject *); +NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(3) PyObject * PyArray_NewLikeArray \ + (PyArrayObject *, NPY_ORDER, PyArray_Descr *, int); +NPY_NO_EXPORT int PyArray_ConvertClipmodeSequence \ + (PyObject *, NPY_CLIPMODE *, int); +NPY_NO_EXPORT PyObject * PyArray_MatrixProduct2 \ + (PyObject *, PyObject *, PyArrayObject*); +NPY_NO_EXPORT npy_bool NpyIter_IsFirstVisit \ + (NpyIter *, int); +NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) int PyArray_SetBaseObject \ + (PyArrayObject *, PyObject *); +NPY_NO_EXPORT void PyArray_CreateSortedStridePerm \ + (int, npy_intp const *, npy_stride_sort_item *); +NPY_NO_EXPORT void PyArray_RemoveAxesInPlace \ + (PyArrayObject *, const npy_bool *); +NPY_NO_EXPORT void PyArray_DebugPrint \ + (PyArrayObject *); +NPY_NO_EXPORT int PyArray_FailUnlessWriteable \ + (PyArrayObject *, const char *); +NPY_NO_EXPORT NPY_STEALS_REF_TO_ARG(2) int PyArray_SetUpdateIfCopyBase \ + (PyArrayObject *, PyArrayObject *); +NPY_NO_EXPORT void * PyDataMem_NEW \ + (size_t); +NPY_NO_EXPORT void PyDataMem_FREE \ + (void *); +NPY_NO_EXPORT void * PyDataMem_RENEW \ + (void *, size_t); +extern NPY_NO_EXPORT NPY_CASTING NPY_DEFAULT_ASSIGN_CASTING; + +NPY_NO_EXPORT int PyArray_Partition \ + (PyArrayObject *, PyArrayObject *, int, NPY_SELECTKIND); +NPY_NO_EXPORT PyObject * PyArray_ArgPartition \ + (PyArrayObject *, PyArrayObject *, int, NPY_SELECTKIND); +NPY_NO_EXPORT int PyArray_SelectkindConverter \ + (PyObject *, NPY_SELECTKIND *); +NPY_NO_EXPORT void * PyDataMem_NEW_ZEROED \ + (size_t, size_t); +NPY_NO_EXPORT int PyArray_CheckAnyScalarExact \ + (PyObject *); +NPY_NO_EXPORT int PyArray_ResolveWritebackIfCopy \ + (PyArrayObject *); +NPY_NO_EXPORT int PyArray_SetWritebackIfCopyBase \ + (PyArrayObject *, PyArrayObject *); +NPY_NO_EXPORT PyObject * PyDataMem_SetHandler \ + (PyObject *); +NPY_NO_EXPORT PyObject * PyDataMem_GetHandler \ + (void); +extern NPY_NO_EXPORT PyObject* PyDataMem_DefaultHandler; + +NPY_NO_EXPORT int NpyDatetime_ConvertDatetime64ToDatetimeStruct \ + (PyArray_DatetimeMetaData *, npy_datetime, npy_datetimestruct *); +NPY_NO_EXPORT int NpyDatetime_ConvertDatetimeStructToDatetime64 \ + (PyArray_DatetimeMetaData *, const npy_datetimestruct *, npy_datetime *); +NPY_NO_EXPORT int NpyDatetime_ConvertPyDateTimeToDatetimeStruct \ + (PyObject *, npy_datetimestruct *, NPY_DATETIMEUNIT *, int); +NPY_NO_EXPORT int NpyDatetime_GetDatetimeISO8601StrLen \ + (int, NPY_DATETIMEUNIT); +NPY_NO_EXPORT int NpyDatetime_MakeISO8601Datetime \ + (npy_datetimestruct *, char *, npy_intp, int, int, NPY_DATETIMEUNIT, int, NPY_CASTING); +NPY_NO_EXPORT int NpyDatetime_ParseISO8601Datetime \ + (char const *, Py_ssize_t, NPY_DATETIMEUNIT, NPY_CASTING, npy_datetimestruct *, NPY_DATETIMEUNIT *, npy_bool *); +NPY_NO_EXPORT int NpyString_load \ + (npy_string_allocator *, const npy_packed_static_string *, npy_static_string *); +NPY_NO_EXPORT int NpyString_pack \ + (npy_string_allocator *, npy_packed_static_string *, const char *, size_t); +NPY_NO_EXPORT int NpyString_pack_null \ + (npy_string_allocator *, npy_packed_static_string *); +NPY_NO_EXPORT npy_string_allocator * NpyString_acquire_allocator \ + (const PyArray_StringDTypeObject *); +NPY_NO_EXPORT void NpyString_acquire_allocators \ + (size_t, PyArray_Descr *const descrs[], npy_string_allocator *allocators[]); +NPY_NO_EXPORT void NpyString_release_allocator \ + (npy_string_allocator *); +NPY_NO_EXPORT void NpyString_release_allocators \ + (size_t, npy_string_allocator *allocators[]); +NPY_NO_EXPORT PyArray_Descr * PyArray_GetDefaultDescr \ + (PyArray_DTypeMeta *); +NPY_NO_EXPORT int PyArrayInitDTypeMeta_FromSpec \ + (PyArray_DTypeMeta *, PyArrayDTypeMeta_Spec *); +NPY_NO_EXPORT PyArray_DTypeMeta * PyArray_CommonDType \ + (PyArray_DTypeMeta *, PyArray_DTypeMeta *); +NPY_NO_EXPORT PyArray_DTypeMeta * PyArray_PromoteDTypeSequence \ + (npy_intp, PyArray_DTypeMeta **); +NPY_NO_EXPORT PyArray_ArrFuncs * _PyDataType_GetArrFuncs \ + (const PyArray_Descr *); + +#else + +#if defined(PY_ARRAY_UNIQUE_SYMBOL) + #define PyArray_API PY_ARRAY_UNIQUE_SYMBOL + #define _NPY_VERSION_CONCAT_HELPER2(x, y) x ## y + #define _NPY_VERSION_CONCAT_HELPER(arg) \ + _NPY_VERSION_CONCAT_HELPER2(arg, PyArray_RUNTIME_VERSION) + #define PyArray_RUNTIME_VERSION \ + _NPY_VERSION_CONCAT_HELPER(PY_ARRAY_UNIQUE_SYMBOL) +#endif + +/* By default do not export API in an .so (was never the case on windows) */ +#ifndef NPY_API_SYMBOL_ATTRIBUTE + #define NPY_API_SYMBOL_ATTRIBUTE NPY_VISIBILITY_HIDDEN +#endif + +#if defined(NO_IMPORT) || defined(NO_IMPORT_ARRAY) +extern NPY_API_SYMBOL_ATTRIBUTE void **PyArray_API; +extern NPY_API_SYMBOL_ATTRIBUTE int PyArray_RUNTIME_VERSION; +#else +#if defined(PY_ARRAY_UNIQUE_SYMBOL) +NPY_API_SYMBOL_ATTRIBUTE void **PyArray_API; +NPY_API_SYMBOL_ATTRIBUTE int PyArray_RUNTIME_VERSION; +#else +static void **PyArray_API = NULL; +static int PyArray_RUNTIME_VERSION = 0; +#endif +#endif + +#define PyArray_GetNDArrayCVersion \ + (*(unsigned int (*)(void)) \ + PyArray_API[0]) +#define PyArray_Type (*(PyTypeObject *)PyArray_API[2]) +#define PyArrayDescr_Type (*(PyTypeObject *)PyArray_API[3]) +#define PyArrayIter_Type (*(PyTypeObject *)PyArray_API[5]) +#define PyArrayMultiIter_Type (*(PyTypeObject *)PyArray_API[6]) +#define NPY_NUMUSERTYPES (*(int *)PyArray_API[7]) +#define PyBoolArrType_Type (*(PyTypeObject *)PyArray_API[8]) +#define _PyArrayScalar_BoolValues ((PyBoolScalarObject *)PyArray_API[9]) +#define PyGenericArrType_Type (*(PyTypeObject *)PyArray_API[10]) +#define PyNumberArrType_Type (*(PyTypeObject *)PyArray_API[11]) +#define PyIntegerArrType_Type (*(PyTypeObject *)PyArray_API[12]) +#define PySignedIntegerArrType_Type (*(PyTypeObject *)PyArray_API[13]) +#define PyUnsignedIntegerArrType_Type (*(PyTypeObject *)PyArray_API[14]) +#define PyInexactArrType_Type (*(PyTypeObject *)PyArray_API[15]) +#define PyFloatingArrType_Type (*(PyTypeObject *)PyArray_API[16]) +#define PyComplexFloatingArrType_Type (*(PyTypeObject *)PyArray_API[17]) +#define PyFlexibleArrType_Type (*(PyTypeObject *)PyArray_API[18]) +#define PyCharacterArrType_Type (*(PyTypeObject *)PyArray_API[19]) +#define PyByteArrType_Type (*(PyTypeObject *)PyArray_API[20]) +#define PyShortArrType_Type (*(PyTypeObject *)PyArray_API[21]) +#define PyIntArrType_Type (*(PyTypeObject *)PyArray_API[22]) +#define PyLongArrType_Type (*(PyTypeObject *)PyArray_API[23]) +#define PyLongLongArrType_Type (*(PyTypeObject *)PyArray_API[24]) +#define PyUByteArrType_Type (*(PyTypeObject *)PyArray_API[25]) +#define PyUShortArrType_Type (*(PyTypeObject *)PyArray_API[26]) +#define PyUIntArrType_Type (*(PyTypeObject *)PyArray_API[27]) +#define PyULongArrType_Type (*(PyTypeObject *)PyArray_API[28]) +#define PyULongLongArrType_Type (*(PyTypeObject *)PyArray_API[29]) +#define PyFloatArrType_Type (*(PyTypeObject *)PyArray_API[30]) +#define PyDoubleArrType_Type (*(PyTypeObject *)PyArray_API[31]) +#define PyLongDoubleArrType_Type (*(PyTypeObject *)PyArray_API[32]) +#define PyCFloatArrType_Type (*(PyTypeObject *)PyArray_API[33]) +#define PyCDoubleArrType_Type (*(PyTypeObject *)PyArray_API[34]) +#define PyCLongDoubleArrType_Type (*(PyTypeObject *)PyArray_API[35]) +#define PyObjectArrType_Type (*(PyTypeObject *)PyArray_API[36]) +#define PyStringArrType_Type (*(PyTypeObject *)PyArray_API[37]) +#define PyUnicodeArrType_Type (*(PyTypeObject *)PyArray_API[38]) +#define PyVoidArrType_Type (*(PyTypeObject *)PyArray_API[39]) +#define PyArray_INCREF \ + (*(int (*)(PyArrayObject *)) \ + PyArray_API[42]) +#define PyArray_XDECREF \ + (*(int (*)(PyArrayObject *)) \ + PyArray_API[43]) +#define PyArray_SetStringFunction \ + (*(void (*)(PyObject *, int)) \ + PyArray_API[44]) +#define PyArray_DescrFromType \ + (*(PyArray_Descr * (*)(int)) \ + PyArray_API[45]) +#define PyArray_TypeObjectFromType \ + (*(PyObject * (*)(int)) \ + PyArray_API[46]) +#define PyArray_Zero \ + (*(char * (*)(PyArrayObject *)) \ + PyArray_API[47]) +#define PyArray_One \ + (*(char * (*)(PyArrayObject *)) \ + PyArray_API[48]) +#define PyArray_CastToType \ + (*(PyObject * (*)(PyArrayObject *, PyArray_Descr *, int)) \ + PyArray_API[49]) +#define PyArray_CopyInto \ + (*(int (*)(PyArrayObject *, PyArrayObject *)) \ + PyArray_API[50]) +#define PyArray_CopyAnyInto \ + (*(int (*)(PyArrayObject *, PyArrayObject *)) \ + PyArray_API[51]) +#define PyArray_CanCastSafely \ + (*(int (*)(int, int)) \ + PyArray_API[52]) +#define PyArray_CanCastTo \ + (*(npy_bool (*)(PyArray_Descr *, PyArray_Descr *)) \ + PyArray_API[53]) +#define PyArray_ObjectType \ + (*(int (*)(PyObject *, int)) \ + PyArray_API[54]) +#define PyArray_DescrFromObject \ + (*(PyArray_Descr * (*)(PyObject *, PyArray_Descr *)) \ + PyArray_API[55]) +#define PyArray_ConvertToCommonType \ + (*(PyArrayObject ** (*)(PyObject *, int *)) \ + PyArray_API[56]) +#define PyArray_DescrFromScalar \ + (*(PyArray_Descr * (*)(PyObject *)) \ + PyArray_API[57]) +#define PyArray_DescrFromTypeObject \ + (*(PyArray_Descr * (*)(PyObject *)) \ + PyArray_API[58]) +#define PyArray_Size \ + (*(npy_intp (*)(PyObject *)) \ + PyArray_API[59]) +#define PyArray_Scalar \ + (*(PyObject * (*)(void *, PyArray_Descr *, PyObject *)) \ + PyArray_API[60]) +#define PyArray_FromScalar \ + (*(PyObject * (*)(PyObject *, PyArray_Descr *)) \ + PyArray_API[61]) +#define PyArray_ScalarAsCtype \ + (*(void (*)(PyObject *, void *)) \ + PyArray_API[62]) +#define PyArray_CastScalarToCtype \ + (*(int (*)(PyObject *, void *, PyArray_Descr *)) \ + PyArray_API[63]) +#define PyArray_CastScalarDirect \ + (*(int (*)(PyObject *, PyArray_Descr *, void *, int)) \ + PyArray_API[64]) + +#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION +#define PyArray_Pack \ + (*(int (*)(PyArray_Descr *, void *, PyObject *)) \ + PyArray_API[65]) +#endif +#define PyArray_FromAny \ + (*(PyObject * (*)(PyObject *, PyArray_Descr *, int, int, int, PyObject *)) \ + PyArray_API[69]) +#define PyArray_EnsureArray \ + (*(PyObject * (*)(PyObject *)) \ + PyArray_API[70]) +#define PyArray_EnsureAnyArray \ + (*(PyObject * (*)(PyObject *)) \ + PyArray_API[71]) +#define PyArray_FromFile \ + (*(PyObject * (*)(FILE *, PyArray_Descr *, npy_intp, char *)) \ + PyArray_API[72]) +#define PyArray_FromString \ + (*(PyObject * (*)(char *, npy_intp, PyArray_Descr *, npy_intp, char *)) \ + PyArray_API[73]) +#define PyArray_FromBuffer \ + (*(PyObject * (*)(PyObject *, PyArray_Descr *, npy_intp, npy_intp)) \ + PyArray_API[74]) +#define PyArray_FromIter \ + (*(PyObject * (*)(PyObject *, PyArray_Descr *, npy_intp)) \ + PyArray_API[75]) +#define PyArray_Return \ + (*(PyObject * (*)(PyArrayObject *)) \ + PyArray_API[76]) +#define PyArray_GetField \ + (*(PyObject * (*)(PyArrayObject *, PyArray_Descr *, int)) \ + PyArray_API[77]) +#define PyArray_SetField \ + (*(int (*)(PyArrayObject *, PyArray_Descr *, int, PyObject *)) \ + PyArray_API[78]) +#define PyArray_Byteswap \ + (*(PyObject * (*)(PyArrayObject *, npy_bool)) \ + PyArray_API[79]) +#define PyArray_Resize \ + (*(PyObject * (*)(PyArrayObject *, PyArray_Dims *, int, NPY_ORDER NPY_UNUSED(order))) \ + PyArray_API[80]) +#define PyArray_CopyObject \ + (*(int (*)(PyArrayObject *, PyObject *)) \ + PyArray_API[84]) +#define PyArray_NewCopy \ + (*(PyObject * (*)(PyArrayObject *, NPY_ORDER)) \ + PyArray_API[85]) +#define PyArray_ToList \ + (*(PyObject * (*)(PyArrayObject *)) \ + PyArray_API[86]) +#define PyArray_ToString \ + (*(PyObject * (*)(PyArrayObject *, NPY_ORDER)) \ + PyArray_API[87]) +#define PyArray_ToFile \ + (*(int (*)(PyArrayObject *, FILE *, char *, char *)) \ + PyArray_API[88]) +#define PyArray_Dump \ + (*(int (*)(PyObject *, PyObject *, int)) \ + PyArray_API[89]) +#define PyArray_Dumps \ + (*(PyObject * (*)(PyObject *, int)) \ + PyArray_API[90]) +#define PyArray_ValidType \ + (*(int (*)(int)) \ + PyArray_API[91]) +#define PyArray_UpdateFlags \ + (*(void (*)(PyArrayObject *, int)) \ + PyArray_API[92]) +#define PyArray_New \ + (*(PyObject * (*)(PyTypeObject *, int, npy_intp const *, int, npy_intp const *, void *, int, int, PyObject *)) \ + PyArray_API[93]) +#define PyArray_NewFromDescr \ + (*(PyObject * (*)(PyTypeObject *, PyArray_Descr *, int, npy_intp const *, npy_intp const *, void *, int, PyObject *)) \ + PyArray_API[94]) +#define PyArray_DescrNew \ + (*(PyArray_Descr * (*)(PyArray_Descr *)) \ + PyArray_API[95]) +#define PyArray_DescrNewFromType \ + (*(PyArray_Descr * (*)(int)) \ + PyArray_API[96]) +#define PyArray_GetPriority \ + (*(double (*)(PyObject *, double)) \ + PyArray_API[97]) +#define PyArray_IterNew \ + (*(PyObject * (*)(PyObject *)) \ + PyArray_API[98]) +#define PyArray_MultiIterNew \ + (*(PyObject* (*)(int, ...)) \ + PyArray_API[99]) +#define PyArray_PyIntAsInt \ + (*(int (*)(PyObject *)) \ + PyArray_API[100]) +#define PyArray_PyIntAsIntp \ + (*(npy_intp (*)(PyObject *)) \ + PyArray_API[101]) +#define PyArray_Broadcast \ + (*(int (*)(PyArrayMultiIterObject *)) \ + PyArray_API[102]) +#define PyArray_FillWithScalar \ + (*(int (*)(PyArrayObject *, PyObject *)) \ + PyArray_API[104]) +#define PyArray_CheckStrides \ + (*(npy_bool (*)(int, int, npy_intp, npy_intp, npy_intp const *, npy_intp const *)) \ + PyArray_API[105]) +#define PyArray_DescrNewByteorder \ + (*(PyArray_Descr * (*)(PyArray_Descr *, char)) \ + PyArray_API[106]) +#define PyArray_IterAllButAxis \ + (*(PyObject * (*)(PyObject *, int *)) \ + PyArray_API[107]) +#define PyArray_CheckFromAny \ + (*(PyObject * (*)(PyObject *, PyArray_Descr *, int, int, int, PyObject *)) \ + PyArray_API[108]) +#define PyArray_FromArray \ + (*(PyObject * (*)(PyArrayObject *, PyArray_Descr *, int)) \ + PyArray_API[109]) +#define PyArray_FromInterface \ + (*(PyObject * (*)(PyObject *)) \ + PyArray_API[110]) +#define PyArray_FromStructInterface \ + (*(PyObject * (*)(PyObject *)) \ + PyArray_API[111]) +#define PyArray_FromArrayAttr \ + (*(PyObject * (*)(PyObject *, PyArray_Descr *, PyObject *)) \ + PyArray_API[112]) +#define PyArray_ScalarKind \ + (*(NPY_SCALARKIND (*)(int, PyArrayObject **)) \ + PyArray_API[113]) +#define PyArray_CanCoerceScalar \ + (*(int (*)(int, int, NPY_SCALARKIND)) \ + PyArray_API[114]) +#define PyArray_CanCastScalar \ + (*(npy_bool (*)(PyTypeObject *, PyTypeObject *)) \ + PyArray_API[116]) +#define PyArray_RemoveSmallest \ + (*(int (*)(PyArrayMultiIterObject *)) \ + PyArray_API[118]) +#define PyArray_ElementStrides \ + (*(int (*)(PyObject *)) \ + PyArray_API[119]) +#define PyArray_Item_INCREF \ + (*(void (*)(char *, PyArray_Descr *)) \ + PyArray_API[120]) +#define PyArray_Item_XDECREF \ + (*(void (*)(char *, PyArray_Descr *)) \ + PyArray_API[121]) +#define PyArray_Transpose \ + (*(PyObject * (*)(PyArrayObject *, PyArray_Dims *)) \ + PyArray_API[123]) +#define PyArray_TakeFrom \ + (*(PyObject * (*)(PyArrayObject *, PyObject *, int, PyArrayObject *, NPY_CLIPMODE)) \ + PyArray_API[124]) +#define PyArray_PutTo \ + (*(PyObject * (*)(PyArrayObject *, PyObject*, PyObject *, NPY_CLIPMODE)) \ + PyArray_API[125]) +#define PyArray_PutMask \ + (*(PyObject * (*)(PyArrayObject *, PyObject*, PyObject*)) \ + PyArray_API[126]) +#define PyArray_Repeat \ + (*(PyObject * (*)(PyArrayObject *, PyObject *, int)) \ + PyArray_API[127]) +#define PyArray_Choose \ + (*(PyObject * (*)(PyArrayObject *, PyObject *, PyArrayObject *, NPY_CLIPMODE)) \ + PyArray_API[128]) +#define PyArray_Sort \ + (*(int (*)(PyArrayObject *, int, NPY_SORTKIND)) \ + PyArray_API[129]) +#define PyArray_ArgSort \ + (*(PyObject * (*)(PyArrayObject *, int, NPY_SORTKIND)) \ + PyArray_API[130]) +#define PyArray_SearchSorted \ + (*(PyObject * (*)(PyArrayObject *, PyObject *, NPY_SEARCHSIDE, PyObject *)) \ + PyArray_API[131]) +#define PyArray_ArgMax \ + (*(PyObject * (*)(PyArrayObject *, int, PyArrayObject *)) \ + PyArray_API[132]) +#define PyArray_ArgMin \ + (*(PyObject * (*)(PyArrayObject *, int, PyArrayObject *)) \ + PyArray_API[133]) +#define PyArray_Reshape \ + (*(PyObject * (*)(PyArrayObject *, PyObject *)) \ + PyArray_API[134]) +#define PyArray_Newshape \ + (*(PyObject * (*)(PyArrayObject *, PyArray_Dims *, NPY_ORDER)) \ + PyArray_API[135]) +#define PyArray_Squeeze \ + (*(PyObject * (*)(PyArrayObject *)) \ + PyArray_API[136]) +#define PyArray_View \ + (*(PyObject * (*)(PyArrayObject *, PyArray_Descr *, PyTypeObject *)) \ + PyArray_API[137]) +#define PyArray_SwapAxes \ + (*(PyObject * (*)(PyArrayObject *, int, int)) \ + PyArray_API[138]) +#define PyArray_Max \ + (*(PyObject * (*)(PyArrayObject *, int, PyArrayObject *)) \ + PyArray_API[139]) +#define PyArray_Min \ + (*(PyObject * (*)(PyArrayObject *, int, PyArrayObject *)) \ + PyArray_API[140]) +#define PyArray_Ptp \ + (*(PyObject * (*)(PyArrayObject *, int, PyArrayObject *)) \ + PyArray_API[141]) +#define PyArray_Mean \ + (*(PyObject * (*)(PyArrayObject *, int, int, PyArrayObject *)) \ + PyArray_API[142]) +#define PyArray_Trace \ + (*(PyObject * (*)(PyArrayObject *, int, int, int, int, PyArrayObject *)) \ + PyArray_API[143]) +#define PyArray_Diagonal \ + (*(PyObject * (*)(PyArrayObject *, int, int, int)) \ + PyArray_API[144]) +#define PyArray_Clip \ + (*(PyObject * (*)(PyArrayObject *, PyObject *, PyObject *, PyArrayObject *)) \ + PyArray_API[145]) +#define PyArray_Conjugate \ + (*(PyObject * (*)(PyArrayObject *, PyArrayObject *)) \ + PyArray_API[146]) +#define PyArray_Nonzero \ + (*(PyObject * (*)(PyArrayObject *)) \ + PyArray_API[147]) +#define PyArray_Std \ + (*(PyObject * (*)(PyArrayObject *, int, int, PyArrayObject *, int)) \ + PyArray_API[148]) +#define PyArray_Sum \ + (*(PyObject * (*)(PyArrayObject *, int, int, PyArrayObject *)) \ + PyArray_API[149]) +#define PyArray_CumSum \ + (*(PyObject * (*)(PyArrayObject *, int, int, PyArrayObject *)) \ + PyArray_API[150]) +#define PyArray_Prod \ + (*(PyObject * (*)(PyArrayObject *, int, int, PyArrayObject *)) \ + PyArray_API[151]) +#define PyArray_CumProd \ + (*(PyObject * (*)(PyArrayObject *, int, int, PyArrayObject *)) \ + PyArray_API[152]) +#define PyArray_All \ + (*(PyObject * (*)(PyArrayObject *, int, PyArrayObject *)) \ + PyArray_API[153]) +#define PyArray_Any \ + (*(PyObject * (*)(PyArrayObject *, int, PyArrayObject *)) \ + PyArray_API[154]) +#define PyArray_Compress \ + (*(PyObject * (*)(PyArrayObject *, PyObject *, int, PyArrayObject *)) \ + PyArray_API[155]) +#define PyArray_Flatten \ + (*(PyObject * (*)(PyArrayObject *, NPY_ORDER)) \ + PyArray_API[156]) +#define PyArray_Ravel \ + (*(PyObject * (*)(PyArrayObject *, NPY_ORDER)) \ + PyArray_API[157]) +#define PyArray_MultiplyList \ + (*(npy_intp (*)(npy_intp const *, int)) \ + PyArray_API[158]) +#define PyArray_MultiplyIntList \ + (*(int (*)(int const *, int)) \ + PyArray_API[159]) +#define PyArray_GetPtr \ + (*(void * (*)(PyArrayObject *, npy_intp const*)) \ + PyArray_API[160]) +#define PyArray_CompareLists \ + (*(int (*)(npy_intp const *, npy_intp const *, int)) \ + PyArray_API[161]) +#define PyArray_AsCArray \ + (*(int (*)(PyObject **, void *, npy_intp *, int, PyArray_Descr*)) \ + PyArray_API[162]) +#define PyArray_Free \ + (*(int (*)(PyObject *, void *)) \ + PyArray_API[165]) +#define PyArray_Converter \ + (*(int (*)(PyObject *, PyObject **)) \ + PyArray_API[166]) +#define PyArray_IntpFromSequence \ + (*(int (*)(PyObject *, npy_intp *, int)) \ + PyArray_API[167]) +#define PyArray_Concatenate \ + (*(PyObject * (*)(PyObject *, int)) \ + PyArray_API[168]) +#define PyArray_InnerProduct \ + (*(PyObject * (*)(PyObject *, PyObject *)) \ + PyArray_API[169]) +#define PyArray_MatrixProduct \ + (*(PyObject * (*)(PyObject *, PyObject *)) \ + PyArray_API[170]) +#define PyArray_Correlate \ + (*(PyObject * (*)(PyObject *, PyObject *, int)) \ + PyArray_API[172]) +#define PyArray_DescrConverter \ + (*(int (*)(PyObject *, PyArray_Descr **)) \ + PyArray_API[174]) +#define PyArray_DescrConverter2 \ + (*(int (*)(PyObject *, PyArray_Descr **)) \ + PyArray_API[175]) +#define PyArray_IntpConverter \ + (*(int (*)(PyObject *, PyArray_Dims *)) \ + PyArray_API[176]) +#define PyArray_BufferConverter \ + (*(int (*)(PyObject *, PyArray_Chunk *)) \ + PyArray_API[177]) +#define PyArray_AxisConverter \ + (*(int (*)(PyObject *, int *)) \ + PyArray_API[178]) +#define PyArray_BoolConverter \ + (*(int (*)(PyObject *, npy_bool *)) \ + PyArray_API[179]) +#define PyArray_ByteorderConverter \ + (*(int (*)(PyObject *, char *)) \ + PyArray_API[180]) +#define PyArray_OrderConverter \ + (*(int (*)(PyObject *, NPY_ORDER *)) \ + PyArray_API[181]) +#define PyArray_EquivTypes \ + (*(unsigned char (*)(PyArray_Descr *, PyArray_Descr *)) \ + PyArray_API[182]) +#define PyArray_Zeros \ + (*(PyObject * (*)(int, npy_intp const *, PyArray_Descr *, int)) \ + PyArray_API[183]) +#define PyArray_Empty \ + (*(PyObject * (*)(int, npy_intp const *, PyArray_Descr *, int)) \ + PyArray_API[184]) +#define PyArray_Where \ + (*(PyObject * (*)(PyObject *, PyObject *, PyObject *)) \ + PyArray_API[185]) +#define PyArray_Arange \ + (*(PyObject * (*)(double, double, double, int)) \ + PyArray_API[186]) +#define PyArray_ArangeObj \ + (*(PyObject * (*)(PyObject *, PyObject *, PyObject *, PyArray_Descr *)) \ + PyArray_API[187]) +#define PyArray_SortkindConverter \ + (*(int (*)(PyObject *, NPY_SORTKIND *)) \ + PyArray_API[188]) +#define PyArray_LexSort \ + (*(PyObject * (*)(PyObject *, int)) \ + PyArray_API[189]) +#define PyArray_Round \ + (*(PyObject * (*)(PyArrayObject *, int, PyArrayObject *)) \ + PyArray_API[190]) +#define PyArray_EquivTypenums \ + (*(unsigned char (*)(int, int)) \ + PyArray_API[191]) +#define PyArray_RegisterDataType \ + (*(int (*)(PyArray_DescrProto *)) \ + PyArray_API[192]) +#define PyArray_RegisterCastFunc \ + (*(int (*)(PyArray_Descr *, int, PyArray_VectorUnaryFunc *)) \ + PyArray_API[193]) +#define PyArray_RegisterCanCast \ + (*(int (*)(PyArray_Descr *, int, NPY_SCALARKIND)) \ + PyArray_API[194]) +#define PyArray_InitArrFuncs \ + (*(void (*)(PyArray_ArrFuncs *)) \ + PyArray_API[195]) +#define PyArray_IntTupleFromIntp \ + (*(PyObject * (*)(int, npy_intp const *)) \ + PyArray_API[196]) +#define PyArray_ClipmodeConverter \ + (*(int (*)(PyObject *, NPY_CLIPMODE *)) \ + PyArray_API[198]) +#define PyArray_OutputConverter \ + (*(int (*)(PyObject *, PyArrayObject **)) \ + PyArray_API[199]) +#define PyArray_BroadcastToShape \ + (*(PyObject * (*)(PyObject *, npy_intp *, int)) \ + PyArray_API[200]) +#define PyArray_DescrAlignConverter \ + (*(int (*)(PyObject *, PyArray_Descr **)) \ + PyArray_API[203]) +#define PyArray_DescrAlignConverter2 \ + (*(int (*)(PyObject *, PyArray_Descr **)) \ + PyArray_API[204]) +#define PyArray_SearchsideConverter \ + (*(int (*)(PyObject *, void *)) \ + PyArray_API[205]) +#define PyArray_CheckAxis \ + (*(PyObject * (*)(PyArrayObject *, int *, int)) \ + PyArray_API[206]) +#define PyArray_OverflowMultiplyList \ + (*(npy_intp (*)(npy_intp const *, int)) \ + PyArray_API[207]) +#define PyArray_MultiIterFromObjects \ + (*(PyObject* (*)(PyObject **, int, int, ...)) \ + PyArray_API[209]) +#define PyArray_GetEndianness \ + (*(int (*)(void)) \ + PyArray_API[210]) +#define PyArray_GetNDArrayCFeatureVersion \ + (*(unsigned int (*)(void)) \ + PyArray_API[211]) +#define PyArray_Correlate2 \ + (*(PyObject * (*)(PyObject *, PyObject *, int)) \ + PyArray_API[212]) +#define PyArray_NeighborhoodIterNew \ + (*(PyObject* (*)(PyArrayIterObject *, const npy_intp *, int, PyArrayObject*)) \ + PyArray_API[213]) +#define PyTimeIntegerArrType_Type (*(PyTypeObject *)PyArray_API[214]) +#define PyDatetimeArrType_Type (*(PyTypeObject *)PyArray_API[215]) +#define PyTimedeltaArrType_Type (*(PyTypeObject *)PyArray_API[216]) +#define PyHalfArrType_Type (*(PyTypeObject *)PyArray_API[217]) +#define NpyIter_Type (*(PyTypeObject *)PyArray_API[218]) + +#if NPY_FEATURE_VERSION >= NPY_2_3_API_VERSION +#define NpyIter_GetTransferFlags \ + (*(NPY_ARRAYMETHOD_FLAGS (*)(NpyIter *)) \ + PyArray_API[223]) +#endif +#define NpyIter_New \ + (*(NpyIter * (*)(PyArrayObject *, npy_uint32, NPY_ORDER, NPY_CASTING, PyArray_Descr*)) \ + PyArray_API[224]) +#define NpyIter_MultiNew \ + (*(NpyIter * (*)(int, PyArrayObject **, npy_uint32, NPY_ORDER, NPY_CASTING, npy_uint32 *, PyArray_Descr **)) \ + PyArray_API[225]) +#define NpyIter_AdvancedNew \ + (*(NpyIter * (*)(int, PyArrayObject **, npy_uint32, NPY_ORDER, NPY_CASTING, npy_uint32 *, PyArray_Descr **, int, int **, npy_intp *, npy_intp)) \ + PyArray_API[226]) +#define NpyIter_Copy \ + (*(NpyIter * (*)(NpyIter *)) \ + PyArray_API[227]) +#define NpyIter_Deallocate \ + (*(int (*)(NpyIter *)) \ + PyArray_API[228]) +#define NpyIter_HasDelayedBufAlloc \ + (*(npy_bool (*)(NpyIter *)) \ + PyArray_API[229]) +#define NpyIter_HasExternalLoop \ + (*(npy_bool (*)(NpyIter *)) \ + PyArray_API[230]) +#define NpyIter_EnableExternalLoop \ + (*(int (*)(NpyIter *)) \ + PyArray_API[231]) +#define NpyIter_GetInnerStrideArray \ + (*(npy_intp * (*)(NpyIter *)) \ + PyArray_API[232]) +#define NpyIter_GetInnerLoopSizePtr \ + (*(npy_intp * (*)(NpyIter *)) \ + PyArray_API[233]) +#define NpyIter_Reset \ + (*(int (*)(NpyIter *, char **)) \ + PyArray_API[234]) +#define NpyIter_ResetBasePointers \ + (*(int (*)(NpyIter *, char **, char **)) \ + PyArray_API[235]) +#define NpyIter_ResetToIterIndexRange \ + (*(int (*)(NpyIter *, npy_intp, npy_intp, char **)) \ + PyArray_API[236]) +#define NpyIter_GetNDim \ + (*(int (*)(NpyIter *)) \ + PyArray_API[237]) +#define NpyIter_GetNOp \ + (*(int (*)(NpyIter *)) \ + PyArray_API[238]) +#define NpyIter_GetIterNext \ + (*(NpyIter_IterNextFunc * (*)(NpyIter *, char **)) \ + PyArray_API[239]) +#define NpyIter_GetIterSize \ + (*(npy_intp (*)(NpyIter *)) \ + PyArray_API[240]) +#define NpyIter_GetIterIndexRange \ + (*(void (*)(NpyIter *, npy_intp *, npy_intp *)) \ + PyArray_API[241]) +#define NpyIter_GetIterIndex \ + (*(npy_intp (*)(NpyIter *)) \ + PyArray_API[242]) +#define NpyIter_GotoIterIndex \ + (*(int (*)(NpyIter *, npy_intp)) \ + PyArray_API[243]) +#define NpyIter_HasMultiIndex \ + (*(npy_bool (*)(NpyIter *)) \ + PyArray_API[244]) +#define NpyIter_GetShape \ + (*(int (*)(NpyIter *, npy_intp *)) \ + PyArray_API[245]) +#define NpyIter_GetGetMultiIndex \ + (*(NpyIter_GetMultiIndexFunc * (*)(NpyIter *, char **)) \ + PyArray_API[246]) +#define NpyIter_GotoMultiIndex \ + (*(int (*)(NpyIter *, npy_intp const *)) \ + PyArray_API[247]) +#define NpyIter_RemoveMultiIndex \ + (*(int (*)(NpyIter *)) \ + PyArray_API[248]) +#define NpyIter_HasIndex \ + (*(npy_bool (*)(NpyIter *)) \ + PyArray_API[249]) +#define NpyIter_IsBuffered \ + (*(npy_bool (*)(NpyIter *)) \ + PyArray_API[250]) +#define NpyIter_IsGrowInner \ + (*(npy_bool (*)(NpyIter *)) \ + PyArray_API[251]) +#define NpyIter_GetBufferSize \ + (*(npy_intp (*)(NpyIter *)) \ + PyArray_API[252]) +#define NpyIter_GetIndexPtr \ + (*(npy_intp * (*)(NpyIter *)) \ + PyArray_API[253]) +#define NpyIter_GotoIndex \ + (*(int (*)(NpyIter *, npy_intp)) \ + PyArray_API[254]) +#define NpyIter_GetDataPtrArray \ + (*(char ** (*)(NpyIter *)) \ + PyArray_API[255]) +#define NpyIter_GetDescrArray \ + (*(PyArray_Descr ** (*)(NpyIter *)) \ + PyArray_API[256]) +#define NpyIter_GetOperandArray \ + (*(PyArrayObject ** (*)(NpyIter *)) \ + PyArray_API[257]) +#define NpyIter_GetIterView \ + (*(PyArrayObject * (*)(NpyIter *, npy_intp)) \ + PyArray_API[258]) +#define NpyIter_GetReadFlags \ + (*(void (*)(NpyIter *, char *)) \ + PyArray_API[259]) +#define NpyIter_GetWriteFlags \ + (*(void (*)(NpyIter *, char *)) \ + PyArray_API[260]) +#define NpyIter_DebugPrint \ + (*(void (*)(NpyIter *)) \ + PyArray_API[261]) +#define NpyIter_IterationNeedsAPI \ + (*(npy_bool (*)(NpyIter *)) \ + PyArray_API[262]) +#define NpyIter_GetInnerFixedStrideArray \ + (*(void (*)(NpyIter *, npy_intp *)) \ + PyArray_API[263]) +#define NpyIter_RemoveAxis \ + (*(int (*)(NpyIter *, int)) \ + PyArray_API[264]) +#define NpyIter_GetAxisStrideArray \ + (*(npy_intp * (*)(NpyIter *, int)) \ + PyArray_API[265]) +#define NpyIter_RequiresBuffering \ + (*(npy_bool (*)(NpyIter *)) \ + PyArray_API[266]) +#define NpyIter_GetInitialDataPtrArray \ + (*(char ** (*)(NpyIter *)) \ + PyArray_API[267]) +#define NpyIter_CreateCompatibleStrides \ + (*(int (*)(NpyIter *, npy_intp, npy_intp *)) \ + PyArray_API[268]) +#define PyArray_CastingConverter \ + (*(int (*)(PyObject *, NPY_CASTING *)) \ + PyArray_API[269]) +#define PyArray_CountNonzero \ + (*(npy_intp (*)(PyArrayObject *)) \ + PyArray_API[270]) +#define PyArray_PromoteTypes \ + (*(PyArray_Descr * (*)(PyArray_Descr *, PyArray_Descr *)) \ + PyArray_API[271]) +#define PyArray_MinScalarType \ + (*(PyArray_Descr * (*)(PyArrayObject *)) \ + PyArray_API[272]) +#define PyArray_ResultType \ + (*(PyArray_Descr * (*)(npy_intp, PyArrayObject *arrs[], npy_intp, PyArray_Descr *descrs[])) \ + PyArray_API[273]) +#define PyArray_CanCastArrayTo \ + (*(npy_bool (*)(PyArrayObject *, PyArray_Descr *, NPY_CASTING)) \ + PyArray_API[274]) +#define PyArray_CanCastTypeTo \ + (*(npy_bool (*)(PyArray_Descr *, PyArray_Descr *, NPY_CASTING)) \ + PyArray_API[275]) +#define PyArray_EinsteinSum \ + (*(PyArrayObject * (*)(char *, npy_intp, PyArrayObject **, PyArray_Descr *, NPY_ORDER, NPY_CASTING, PyArrayObject *)) \ + PyArray_API[276]) +#define PyArray_NewLikeArray \ + (*(PyObject * (*)(PyArrayObject *, NPY_ORDER, PyArray_Descr *, int)) \ + PyArray_API[277]) +#define PyArray_ConvertClipmodeSequence \ + (*(int (*)(PyObject *, NPY_CLIPMODE *, int)) \ + PyArray_API[279]) +#define PyArray_MatrixProduct2 \ + (*(PyObject * (*)(PyObject *, PyObject *, PyArrayObject*)) \ + PyArray_API[280]) +#define NpyIter_IsFirstVisit \ + (*(npy_bool (*)(NpyIter *, int)) \ + PyArray_API[281]) +#define PyArray_SetBaseObject \ + (*(int (*)(PyArrayObject *, PyObject *)) \ + PyArray_API[282]) +#define PyArray_CreateSortedStridePerm \ + (*(void (*)(int, npy_intp const *, npy_stride_sort_item *)) \ + PyArray_API[283]) +#define PyArray_RemoveAxesInPlace \ + (*(void (*)(PyArrayObject *, const npy_bool *)) \ + PyArray_API[284]) +#define PyArray_DebugPrint \ + (*(void (*)(PyArrayObject *)) \ + PyArray_API[285]) +#define PyArray_FailUnlessWriteable \ + (*(int (*)(PyArrayObject *, const char *)) \ + PyArray_API[286]) +#define PyArray_SetUpdateIfCopyBase \ + (*(int (*)(PyArrayObject *, PyArrayObject *)) \ + PyArray_API[287]) +#define PyDataMem_NEW \ + (*(void * (*)(size_t)) \ + PyArray_API[288]) +#define PyDataMem_FREE \ + (*(void (*)(void *)) \ + PyArray_API[289]) +#define PyDataMem_RENEW \ + (*(void * (*)(void *, size_t)) \ + PyArray_API[290]) +#define NPY_DEFAULT_ASSIGN_CASTING (*(NPY_CASTING *)PyArray_API[292]) +#define PyArray_Partition \ + (*(int (*)(PyArrayObject *, PyArrayObject *, int, NPY_SELECTKIND)) \ + PyArray_API[296]) +#define PyArray_ArgPartition \ + (*(PyObject * (*)(PyArrayObject *, PyArrayObject *, int, NPY_SELECTKIND)) \ + PyArray_API[297]) +#define PyArray_SelectkindConverter \ + (*(int (*)(PyObject *, NPY_SELECTKIND *)) \ + PyArray_API[298]) +#define PyDataMem_NEW_ZEROED \ + (*(void * (*)(size_t, size_t)) \ + PyArray_API[299]) +#define PyArray_CheckAnyScalarExact \ + (*(int (*)(PyObject *)) \ + PyArray_API[300]) +#define PyArray_ResolveWritebackIfCopy \ + (*(int (*)(PyArrayObject *)) \ + PyArray_API[302]) +#define PyArray_SetWritebackIfCopyBase \ + (*(int (*)(PyArrayObject *, PyArrayObject *)) \ + PyArray_API[303]) + +#if NPY_FEATURE_VERSION >= NPY_1_22_API_VERSION +#define PyDataMem_SetHandler \ + (*(PyObject * (*)(PyObject *)) \ + PyArray_API[304]) +#endif + +#if NPY_FEATURE_VERSION >= NPY_1_22_API_VERSION +#define PyDataMem_GetHandler \ + (*(PyObject * (*)(void)) \ + PyArray_API[305]) +#endif +#define PyDataMem_DefaultHandler (*(PyObject* *)PyArray_API[306]) + +#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION +#define NpyDatetime_ConvertDatetime64ToDatetimeStruct \ + (*(int (*)(PyArray_DatetimeMetaData *, npy_datetime, npy_datetimestruct *)) \ + PyArray_API[307]) +#endif + +#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION +#define NpyDatetime_ConvertDatetimeStructToDatetime64 \ + (*(int (*)(PyArray_DatetimeMetaData *, const npy_datetimestruct *, npy_datetime *)) \ + PyArray_API[308]) +#endif + +#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION +#define NpyDatetime_ConvertPyDateTimeToDatetimeStruct \ + (*(int (*)(PyObject *, npy_datetimestruct *, NPY_DATETIMEUNIT *, int)) \ + PyArray_API[309]) +#endif + +#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION +#define NpyDatetime_GetDatetimeISO8601StrLen \ + (*(int (*)(int, NPY_DATETIMEUNIT)) \ + PyArray_API[310]) +#endif + +#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION +#define NpyDatetime_MakeISO8601Datetime \ + (*(int (*)(npy_datetimestruct *, char *, npy_intp, int, int, NPY_DATETIMEUNIT, int, NPY_CASTING)) \ + PyArray_API[311]) +#endif + +#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION +#define NpyDatetime_ParseISO8601Datetime \ + (*(int (*)(char const *, Py_ssize_t, NPY_DATETIMEUNIT, NPY_CASTING, npy_datetimestruct *, NPY_DATETIMEUNIT *, npy_bool *)) \ + PyArray_API[312]) +#endif + +#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION +#define NpyString_load \ + (*(int (*)(npy_string_allocator *, const npy_packed_static_string *, npy_static_string *)) \ + PyArray_API[313]) +#endif + +#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION +#define NpyString_pack \ + (*(int (*)(npy_string_allocator *, npy_packed_static_string *, const char *, size_t)) \ + PyArray_API[314]) +#endif + +#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION +#define NpyString_pack_null \ + (*(int (*)(npy_string_allocator *, npy_packed_static_string *)) \ + PyArray_API[315]) +#endif + +#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION +#define NpyString_acquire_allocator \ + (*(npy_string_allocator * (*)(const PyArray_StringDTypeObject *)) \ + PyArray_API[316]) +#endif + +#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION +#define NpyString_acquire_allocators \ + (*(void (*)(size_t, PyArray_Descr *const descrs[], npy_string_allocator *allocators[])) \ + PyArray_API[317]) +#endif + +#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION +#define NpyString_release_allocator \ + (*(void (*)(npy_string_allocator *)) \ + PyArray_API[318]) +#endif + +#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION +#define NpyString_release_allocators \ + (*(void (*)(size_t, npy_string_allocator *allocators[])) \ + PyArray_API[319]) +#endif + +#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION +#define PyArray_GetDefaultDescr \ + (*(PyArray_Descr * (*)(PyArray_DTypeMeta *)) \ + PyArray_API[361]) +#endif + +#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION +#define PyArrayInitDTypeMeta_FromSpec \ + (*(int (*)(PyArray_DTypeMeta *, PyArrayDTypeMeta_Spec *)) \ + PyArray_API[362]) +#endif + +#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION +#define PyArray_CommonDType \ + (*(PyArray_DTypeMeta * (*)(PyArray_DTypeMeta *, PyArray_DTypeMeta *)) \ + PyArray_API[363]) +#endif + +#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION +#define PyArray_PromoteDTypeSequence \ + (*(PyArray_DTypeMeta * (*)(npy_intp, PyArray_DTypeMeta **)) \ + PyArray_API[364]) +#endif +#define _PyDataType_GetArrFuncs \ + (*(PyArray_ArrFuncs * (*)(const PyArray_Descr *)) \ + PyArray_API[365]) + +/* + * The DType classes are inconvenient for the Python generation so exposed + * manually in the header below (may be moved). + */ +#include "numpy/_public_dtype_api_table.h" + +#if !defined(NO_IMPORT_ARRAY) && !defined(NO_IMPORT) +static int +_import_array(void) +{ + int st; + PyObject *numpy = PyImport_ImportModule("numpy._core._multiarray_umath"); + PyObject *c_api; + if (numpy == NULL && PyErr_ExceptionMatches(PyExc_ModuleNotFoundError)) { + PyErr_Clear(); + numpy = PyImport_ImportModule("numpy.core._multiarray_umath"); + } + + if (numpy == NULL) { + return -1; + } + + c_api = PyObject_GetAttrString(numpy, "_ARRAY_API"); + Py_DECREF(numpy); + if (c_api == NULL) { + return -1; + } + + if (!PyCapsule_CheckExact(c_api)) { + PyErr_SetString(PyExc_RuntimeError, "_ARRAY_API is not PyCapsule object"); + Py_DECREF(c_api); + return -1; + } + PyArray_API = (void **)PyCapsule_GetPointer(c_api, NULL); + Py_DECREF(c_api); + if (PyArray_API == NULL) { + PyErr_SetString(PyExc_RuntimeError, "_ARRAY_API is NULL pointer"); + return -1; + } + + /* + * On exceedingly few platforms these sizes may not match, in which case + * We do not support older NumPy versions at all. + */ + if (sizeof(Py_ssize_t) != sizeof(Py_intptr_t) && + PyArray_RUNTIME_VERSION < NPY_2_0_API_VERSION) { + PyErr_Format(PyExc_RuntimeError, + "module compiled against NumPy 2.0 but running on NumPy 1.x. " + "Unfortunately, this is not supported on niche platforms where " + "`sizeof(size_t) != sizeof(inptr_t)`."); + } + /* + * Perform runtime check of C API version. As of now NumPy 2.0 is ABI + * backwards compatible (in the exposed feature subset!) for all practical + * purposes. + */ + if (NPY_VERSION < PyArray_GetNDArrayCVersion()) { + PyErr_Format(PyExc_RuntimeError, "module compiled against "\ + "ABI version 0x%x but this version of numpy is 0x%x", \ + (int) NPY_VERSION, (int) PyArray_GetNDArrayCVersion()); + return -1; + } + PyArray_RUNTIME_VERSION = (int)PyArray_GetNDArrayCFeatureVersion(); + if (NPY_FEATURE_VERSION > PyArray_RUNTIME_VERSION) { + PyErr_Format(PyExc_RuntimeError, + "module was compiled against NumPy C-API version 0x%x " + "(NumPy " NPY_FEATURE_VERSION_STRING ") " + "but the running NumPy has C-API version 0x%x. " + "Check the section C-API incompatibility at the " + "Troubleshooting ImportError section at " + "https://numpy.org/devdocs/user/troubleshooting-importerror.html" + "#c-api-incompatibility " + "for indications on how to solve this problem.", + (int)NPY_FEATURE_VERSION, PyArray_RUNTIME_VERSION); + return -1; + } + + /* + * Perform runtime check of endianness and check it matches the one set by + * the headers (npy_endian.h) as a safeguard + */ + st = PyArray_GetEndianness(); + if (st == NPY_CPU_UNKNOWN_ENDIAN) { + PyErr_SetString(PyExc_RuntimeError, + "FATAL: module compiled as unknown endian"); + return -1; + } +#if NPY_BYTE_ORDER == NPY_BIG_ENDIAN + if (st != NPY_CPU_BIG) { + PyErr_SetString(PyExc_RuntimeError, + "FATAL: module compiled as big endian, but " + "detected different endianness at runtime"); + return -1; + } +#elif NPY_BYTE_ORDER == NPY_LITTLE_ENDIAN + if (st != NPY_CPU_LITTLE) { + PyErr_SetString(PyExc_RuntimeError, + "FATAL: module compiled as little endian, but " + "detected different endianness at runtime"); + return -1; + } +#endif + + return 0; +} + +#define import_array() { \ + if (_import_array() < 0) { \ + PyErr_Print(); \ + PyErr_SetString( \ + PyExc_ImportError, \ + "numpy._core.multiarray failed to import" \ + ); \ + return NULL; \ + } \ +} + +#define import_array1(ret) { \ + if (_import_array() < 0) { \ + PyErr_Print(); \ + PyErr_SetString( \ + PyExc_ImportError, \ + "numpy._core.multiarray failed to import" \ + ); \ + return ret; \ + } \ +} + +#define import_array2(msg, ret) { \ + if (_import_array() < 0) { \ + PyErr_Print(); \ + PyErr_SetString(PyExc_ImportError, msg); \ + return ret; \ + } \ +} + +#endif + +#endif diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__ufunc_api.c b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__ufunc_api.c new file mode 100644 index 0000000..10fcbc4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__ufunc_api.c @@ -0,0 +1,54 @@ + +/* These pointers will be stored in the C-object for use in other + extension modules +*/ + +void *PyUFunc_API[] = { + (void *) &PyUFunc_Type, + (void *) PyUFunc_FromFuncAndData, + (void *) PyUFunc_RegisterLoopForType, + NULL, + (void *) PyUFunc_f_f_As_d_d, + (void *) PyUFunc_d_d, + (void *) PyUFunc_f_f, + (void *) PyUFunc_g_g, + (void *) PyUFunc_F_F_As_D_D, + (void *) PyUFunc_F_F, + (void *) PyUFunc_D_D, + (void *) PyUFunc_G_G, + (void *) PyUFunc_O_O, + (void *) PyUFunc_ff_f_As_dd_d, + (void *) PyUFunc_ff_f, + (void *) PyUFunc_dd_d, + (void *) PyUFunc_gg_g, + (void *) PyUFunc_FF_F_As_DD_D, + (void *) PyUFunc_DD_D, + (void *) PyUFunc_FF_F, + (void *) PyUFunc_GG_G, + (void *) PyUFunc_OO_O, + (void *) PyUFunc_O_O_method, + (void *) PyUFunc_OO_O_method, + (void *) PyUFunc_On_Om, + NULL, + NULL, + (void *) PyUFunc_clearfperr, + (void *) PyUFunc_getfperr, + NULL, + (void *) PyUFunc_ReplaceLoopBySignature, + (void *) PyUFunc_FromFuncAndDataAndSignature, + NULL, + (void *) PyUFunc_e_e, + (void *) PyUFunc_e_e_As_f_f, + (void *) PyUFunc_e_e_As_d_d, + (void *) PyUFunc_ee_e, + (void *) PyUFunc_ee_e_As_ff_f, + (void *) PyUFunc_ee_e_As_dd_d, + (void *) PyUFunc_DefaultTypeResolver, + (void *) PyUFunc_ValidateCasting, + (void *) PyUFunc_RegisterLoopForDescr, + (void *) PyUFunc_FromFuncAndDataAndSignatureAndIdentity, + (void *) PyUFunc_AddLoopFromSpec, + (void *) PyUFunc_AddPromoter, + (void *) PyUFunc_AddWrappingLoop, + (void *) PyUFunc_GiveFloatingpointErrors +}; diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__ufunc_api.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__ufunc_api.h new file mode 100644 index 0000000..b05dce3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/__ufunc_api.h @@ -0,0 +1,341 @@ + +#ifdef _UMATHMODULE + +extern NPY_NO_EXPORT PyTypeObject PyUFunc_Type; + +extern NPY_NO_EXPORT PyTypeObject PyUFunc_Type; + +NPY_NO_EXPORT PyObject * PyUFunc_FromFuncAndData \ + (PyUFuncGenericFunction *, void *const *, const char *, int, int, int, int, const char *, const char *, int); +NPY_NO_EXPORT int PyUFunc_RegisterLoopForType \ + (PyUFuncObject *, int, PyUFuncGenericFunction, const int *, void *); +NPY_NO_EXPORT void PyUFunc_f_f_As_d_d \ + (char **, npy_intp const *, npy_intp const *, void *); +NPY_NO_EXPORT void PyUFunc_d_d \ + (char **, npy_intp const *, npy_intp const *, void *); +NPY_NO_EXPORT void PyUFunc_f_f \ + (char **, npy_intp const *, npy_intp const *, void *); +NPY_NO_EXPORT void PyUFunc_g_g \ + (char **, npy_intp const *, npy_intp const *, void *); +NPY_NO_EXPORT void PyUFunc_F_F_As_D_D \ + (char **, npy_intp const *, npy_intp const *, void *); +NPY_NO_EXPORT void PyUFunc_F_F \ + (char **, npy_intp const *, npy_intp const *, void *); +NPY_NO_EXPORT void PyUFunc_D_D \ + (char **, npy_intp const *, npy_intp const *, void *); +NPY_NO_EXPORT void PyUFunc_G_G \ + (char **, npy_intp const *, npy_intp const *, void *); +NPY_NO_EXPORT void PyUFunc_O_O \ + (char **, npy_intp const *, npy_intp const *, void *); +NPY_NO_EXPORT void PyUFunc_ff_f_As_dd_d \ + (char **, npy_intp const *, npy_intp const *, void *); +NPY_NO_EXPORT void PyUFunc_ff_f \ + (char **, npy_intp const *, npy_intp const *, void *); +NPY_NO_EXPORT void PyUFunc_dd_d \ + (char **, npy_intp const *, npy_intp const *, void *); +NPY_NO_EXPORT void PyUFunc_gg_g \ + (char **, npy_intp const *, npy_intp const *, void *); +NPY_NO_EXPORT void PyUFunc_FF_F_As_DD_D \ + (char **, npy_intp const *, npy_intp const *, void *); +NPY_NO_EXPORT void PyUFunc_DD_D \ + (char **, npy_intp const *, npy_intp const *, void *); +NPY_NO_EXPORT void PyUFunc_FF_F \ + (char **, npy_intp const *, npy_intp const *, void *); +NPY_NO_EXPORT void PyUFunc_GG_G \ + (char **, npy_intp const *, npy_intp const *, void *); +NPY_NO_EXPORT void PyUFunc_OO_O \ + (char **, npy_intp const *, npy_intp const *, void *); +NPY_NO_EXPORT void PyUFunc_O_O_method \ + (char **, npy_intp const *, npy_intp const *, void *); +NPY_NO_EXPORT void PyUFunc_OO_O_method \ + (char **, npy_intp const *, npy_intp const *, void *); +NPY_NO_EXPORT void PyUFunc_On_Om \ + (char **, npy_intp const *, npy_intp const *, void *); +NPY_NO_EXPORT void PyUFunc_clearfperr \ + (void); +NPY_NO_EXPORT int PyUFunc_getfperr \ + (void); +NPY_NO_EXPORT int PyUFunc_ReplaceLoopBySignature \ + (PyUFuncObject *, PyUFuncGenericFunction, const int *, PyUFuncGenericFunction *); +NPY_NO_EXPORT PyObject * PyUFunc_FromFuncAndDataAndSignature \ + (PyUFuncGenericFunction *, void *const *, const char *, int, int, int, int, const char *, const char *, int, const char *); +NPY_NO_EXPORT void PyUFunc_e_e \ + (char **, npy_intp const *, npy_intp const *, void *); +NPY_NO_EXPORT void PyUFunc_e_e_As_f_f \ + (char **, npy_intp const *, npy_intp const *, void *); +NPY_NO_EXPORT void PyUFunc_e_e_As_d_d \ + (char **, npy_intp const *, npy_intp const *, void *); +NPY_NO_EXPORT void PyUFunc_ee_e \ + (char **, npy_intp const *, npy_intp const *, void *); +NPY_NO_EXPORT void PyUFunc_ee_e_As_ff_f \ + (char **, npy_intp const *, npy_intp const *, void *); +NPY_NO_EXPORT void PyUFunc_ee_e_As_dd_d \ + (char **, npy_intp const *, npy_intp const *, void *); +NPY_NO_EXPORT int PyUFunc_DefaultTypeResolver \ + (PyUFuncObject *, NPY_CASTING, PyArrayObject **, PyObject *, PyArray_Descr **); +NPY_NO_EXPORT int PyUFunc_ValidateCasting \ + (PyUFuncObject *, NPY_CASTING, PyArrayObject **, PyArray_Descr *const *); +NPY_NO_EXPORT int PyUFunc_RegisterLoopForDescr \ + (PyUFuncObject *, PyArray_Descr *, PyUFuncGenericFunction, PyArray_Descr **, void *); +NPY_NO_EXPORT PyObject * PyUFunc_FromFuncAndDataAndSignatureAndIdentity \ + (PyUFuncGenericFunction *, void *const *, const char *, int, int, int, int, const char *, const char *, const int, const char *, PyObject *); +NPY_NO_EXPORT int PyUFunc_AddLoopFromSpec \ + (PyObject *, PyArrayMethod_Spec *); +NPY_NO_EXPORT int PyUFunc_AddPromoter \ + (PyObject *, PyObject *, PyObject *); +NPY_NO_EXPORT int PyUFunc_AddWrappingLoop \ + (PyObject *, PyArray_DTypeMeta *new_dtypes[], PyArray_DTypeMeta *wrapped_dtypes[], PyArrayMethod_TranslateGivenDescriptors *, PyArrayMethod_TranslateLoopDescriptors *); +NPY_NO_EXPORT int PyUFunc_GiveFloatingpointErrors \ + (const char *, int); + +#else + +#if defined(PY_UFUNC_UNIQUE_SYMBOL) +#define PyUFunc_API PY_UFUNC_UNIQUE_SYMBOL +#endif + +/* By default do not export API in an .so (was never the case on windows) */ +#ifndef NPY_API_SYMBOL_ATTRIBUTE + #define NPY_API_SYMBOL_ATTRIBUTE NPY_VISIBILITY_HIDDEN +#endif + +#if defined(NO_IMPORT) || defined(NO_IMPORT_UFUNC) +extern NPY_API_SYMBOL_ATTRIBUTE void **PyUFunc_API; +#else +#if defined(PY_UFUNC_UNIQUE_SYMBOL) +NPY_API_SYMBOL_ATTRIBUTE void **PyUFunc_API; +#else +static void **PyUFunc_API=NULL; +#endif +#endif + +#define PyUFunc_Type (*(PyTypeObject *)PyUFunc_API[0]) +#define PyUFunc_FromFuncAndData \ + (*(PyObject * (*)(PyUFuncGenericFunction *, void *const *, const char *, int, int, int, int, const char *, const char *, int)) \ + PyUFunc_API[1]) +#define PyUFunc_RegisterLoopForType \ + (*(int (*)(PyUFuncObject *, int, PyUFuncGenericFunction, const int *, void *)) \ + PyUFunc_API[2]) +#define PyUFunc_f_f_As_d_d \ + (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \ + PyUFunc_API[4]) +#define PyUFunc_d_d \ + (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \ + PyUFunc_API[5]) +#define PyUFunc_f_f \ + (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \ + PyUFunc_API[6]) +#define PyUFunc_g_g \ + (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \ + PyUFunc_API[7]) +#define PyUFunc_F_F_As_D_D \ + (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \ + PyUFunc_API[8]) +#define PyUFunc_F_F \ + (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \ + PyUFunc_API[9]) +#define PyUFunc_D_D \ + (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \ + PyUFunc_API[10]) +#define PyUFunc_G_G \ + (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \ + PyUFunc_API[11]) +#define PyUFunc_O_O \ + (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \ + PyUFunc_API[12]) +#define PyUFunc_ff_f_As_dd_d \ + (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \ + PyUFunc_API[13]) +#define PyUFunc_ff_f \ + (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \ + PyUFunc_API[14]) +#define PyUFunc_dd_d \ + (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \ + PyUFunc_API[15]) +#define PyUFunc_gg_g \ + (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \ + PyUFunc_API[16]) +#define PyUFunc_FF_F_As_DD_D \ + (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \ + PyUFunc_API[17]) +#define PyUFunc_DD_D \ + (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \ + PyUFunc_API[18]) +#define PyUFunc_FF_F \ + (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \ + PyUFunc_API[19]) +#define PyUFunc_GG_G \ + (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \ + PyUFunc_API[20]) +#define PyUFunc_OO_O \ + (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \ + PyUFunc_API[21]) +#define PyUFunc_O_O_method \ + (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \ + PyUFunc_API[22]) +#define PyUFunc_OO_O_method \ + (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \ + PyUFunc_API[23]) +#define PyUFunc_On_Om \ + (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \ + PyUFunc_API[24]) +#define PyUFunc_clearfperr \ + (*(void (*)(void)) \ + PyUFunc_API[27]) +#define PyUFunc_getfperr \ + (*(int (*)(void)) \ + PyUFunc_API[28]) +#define PyUFunc_ReplaceLoopBySignature \ + (*(int (*)(PyUFuncObject *, PyUFuncGenericFunction, const int *, PyUFuncGenericFunction *)) \ + PyUFunc_API[30]) +#define PyUFunc_FromFuncAndDataAndSignature \ + (*(PyObject * (*)(PyUFuncGenericFunction *, void *const *, const char *, int, int, int, int, const char *, const char *, int, const char *)) \ + PyUFunc_API[31]) +#define PyUFunc_e_e \ + (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \ + PyUFunc_API[33]) +#define PyUFunc_e_e_As_f_f \ + (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \ + PyUFunc_API[34]) +#define PyUFunc_e_e_As_d_d \ + (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \ + PyUFunc_API[35]) +#define PyUFunc_ee_e \ + (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \ + PyUFunc_API[36]) +#define PyUFunc_ee_e_As_ff_f \ + (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \ + PyUFunc_API[37]) +#define PyUFunc_ee_e_As_dd_d \ + (*(void (*)(char **, npy_intp const *, npy_intp const *, void *)) \ + PyUFunc_API[38]) +#define PyUFunc_DefaultTypeResolver \ + (*(int (*)(PyUFuncObject *, NPY_CASTING, PyArrayObject **, PyObject *, PyArray_Descr **)) \ + PyUFunc_API[39]) +#define PyUFunc_ValidateCasting \ + (*(int (*)(PyUFuncObject *, NPY_CASTING, PyArrayObject **, PyArray_Descr *const *)) \ + PyUFunc_API[40]) +#define PyUFunc_RegisterLoopForDescr \ + (*(int (*)(PyUFuncObject *, PyArray_Descr *, PyUFuncGenericFunction, PyArray_Descr **, void *)) \ + PyUFunc_API[41]) + +#if NPY_FEATURE_VERSION >= NPY_1_16_API_VERSION +#define PyUFunc_FromFuncAndDataAndSignatureAndIdentity \ + (*(PyObject * (*)(PyUFuncGenericFunction *, void *const *, const char *, int, int, int, int, const char *, const char *, const int, const char *, PyObject *)) \ + PyUFunc_API[42]) +#endif + +#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION +#define PyUFunc_AddLoopFromSpec \ + (*(int (*)(PyObject *, PyArrayMethod_Spec *)) \ + PyUFunc_API[43]) +#endif + +#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION +#define PyUFunc_AddPromoter \ + (*(int (*)(PyObject *, PyObject *, PyObject *)) \ + PyUFunc_API[44]) +#endif + +#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION +#define PyUFunc_AddWrappingLoop \ + (*(int (*)(PyObject *, PyArray_DTypeMeta *new_dtypes[], PyArray_DTypeMeta *wrapped_dtypes[], PyArrayMethod_TranslateGivenDescriptors *, PyArrayMethod_TranslateLoopDescriptors *)) \ + PyUFunc_API[45]) +#endif + +#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION +#define PyUFunc_GiveFloatingpointErrors \ + (*(int (*)(const char *, int)) \ + PyUFunc_API[46]) +#endif + +static inline int +_import_umath(void) +{ + PyObject *c_api; + PyObject *numpy = PyImport_ImportModule("numpy._core._multiarray_umath"); + if (numpy == NULL && PyErr_ExceptionMatches(PyExc_ModuleNotFoundError)) { + PyErr_Clear(); + numpy = PyImport_ImportModule("numpy.core._multiarray_umath"); + } + + if (numpy == NULL) { + PyErr_SetString(PyExc_ImportError, + "_multiarray_umath failed to import"); + return -1; + } + + c_api = PyObject_GetAttrString(numpy, "_UFUNC_API"); + Py_DECREF(numpy); + if (c_api == NULL) { + PyErr_SetString(PyExc_AttributeError, "_UFUNC_API not found"); + return -1; + } + + if (!PyCapsule_CheckExact(c_api)) { + PyErr_SetString(PyExc_RuntimeError, "_UFUNC_API is not PyCapsule object"); + Py_DECREF(c_api); + return -1; + } + PyUFunc_API = (void **)PyCapsule_GetPointer(c_api, NULL); + Py_DECREF(c_api); + if (PyUFunc_API == NULL) { + PyErr_SetString(PyExc_RuntimeError, "_UFUNC_API is NULL pointer"); + return -1; + } + return 0; +} + +#define import_umath() \ + do {\ + UFUNC_NOFPE\ + if (_import_umath() < 0) {\ + PyErr_Print();\ + PyErr_SetString(PyExc_ImportError,\ + "numpy._core.umath failed to import");\ + return NULL;\ + }\ + } while(0) + +#define import_umath1(ret) \ + do {\ + UFUNC_NOFPE\ + if (_import_umath() < 0) {\ + PyErr_Print();\ + PyErr_SetString(PyExc_ImportError,\ + "numpy._core.umath failed to import");\ + return ret;\ + }\ + } while(0) + +#define import_umath2(ret, msg) \ + do {\ + UFUNC_NOFPE\ + if (_import_umath() < 0) {\ + PyErr_Print();\ + PyErr_SetString(PyExc_ImportError, msg);\ + return ret;\ + }\ + } while(0) + +#define import_ufunc() \ + do {\ + UFUNC_NOFPE\ + if (_import_umath() < 0) {\ + PyErr_Print();\ + PyErr_SetString(PyExc_ImportError,\ + "numpy._core.umath failed to import");\ + }\ + } while(0) + + +static inline int +PyUFunc_ImportUFuncAPI() +{ + if (NPY_UNLIKELY(PyUFunc_API == NULL)) { + import_umath1(-1); + } + return 0; +} + +#endif diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/_neighborhood_iterator_imp.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/_neighborhood_iterator_imp.h new file mode 100644 index 0000000..b365cb5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/_neighborhood_iterator_imp.h @@ -0,0 +1,90 @@ +#ifndef NUMPY_CORE_INCLUDE_NUMPY__NEIGHBORHOOD_IMP_H_ +#error You should not include this header directly +#endif +/* + * Private API (here for inline) + */ +static inline int +_PyArrayNeighborhoodIter_IncrCoord(PyArrayNeighborhoodIterObject* iter); + +/* + * Update to next item of the iterator + * + * Note: this simply increment the coordinates vector, last dimension + * incremented first , i.e, for dimension 3 + * ... + * -1, -1, -1 + * -1, -1, 0 + * -1, -1, 1 + * .... + * -1, 0, -1 + * -1, 0, 0 + * .... + * 0, -1, -1 + * 0, -1, 0 + * .... + */ +#define _UPDATE_COORD_ITER(c) \ + wb = iter->coordinates[c] < iter->bounds[c][1]; \ + if (wb) { \ + iter->coordinates[c] += 1; \ + return 0; \ + } \ + else { \ + iter->coordinates[c] = iter->bounds[c][0]; \ + } + +static inline int +_PyArrayNeighborhoodIter_IncrCoord(PyArrayNeighborhoodIterObject* iter) +{ + npy_intp i, wb; + + for (i = iter->nd - 1; i >= 0; --i) { + _UPDATE_COORD_ITER(i) + } + + return 0; +} + +/* + * Version optimized for 2d arrays, manual loop unrolling + */ +static inline int +_PyArrayNeighborhoodIter_IncrCoord2D(PyArrayNeighborhoodIterObject* iter) +{ + npy_intp wb; + + _UPDATE_COORD_ITER(1) + _UPDATE_COORD_ITER(0) + + return 0; +} +#undef _UPDATE_COORD_ITER + +/* + * Advance to the next neighbour + */ +static inline int +PyArrayNeighborhoodIter_Next(PyArrayNeighborhoodIterObject* iter) +{ + _PyArrayNeighborhoodIter_IncrCoord (iter); + iter->dataptr = iter->translate((PyArrayIterObject*)iter, iter->coordinates); + + return 0; +} + +/* + * Reset functions + */ +static inline int +PyArrayNeighborhoodIter_Reset(PyArrayNeighborhoodIterObject* iter) +{ + npy_intp i; + + for (i = 0; i < iter->nd; ++i) { + iter->coordinates[i] = iter->bounds[i][0]; + } + iter->dataptr = iter->translate((PyArrayIterObject*)iter, iter->coordinates); + + return 0; +} diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/_numpyconfig.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/_numpyconfig.h new file mode 100644 index 0000000..16a4b44 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/_numpyconfig.h @@ -0,0 +1,33 @@ +#define NPY_HAVE_ENDIAN_H 1 + +#define NPY_SIZEOF_SHORT 2 +#define NPY_SIZEOF_INT 4 +#define NPY_SIZEOF_LONG 8 +#define NPY_SIZEOF_FLOAT 4 +#define NPY_SIZEOF_COMPLEX_FLOAT 8 +#define NPY_SIZEOF_DOUBLE 8 +#define NPY_SIZEOF_COMPLEX_DOUBLE 16 +#define NPY_SIZEOF_LONGDOUBLE 16 +#define NPY_SIZEOF_COMPLEX_LONGDOUBLE 32 +#define NPY_SIZEOF_PY_INTPTR_T 8 +#define NPY_SIZEOF_INTP 8 +#define NPY_SIZEOF_UINTP 8 +#define NPY_SIZEOF_WCHAR_T 4 +#define NPY_SIZEOF_OFF_T 8 +#define NPY_SIZEOF_PY_LONG_LONG 8 +#define NPY_SIZEOF_LONGLONG 8 + +/* + * Defined to 1 or 0. Note that Pyodide hardcodes NPY_NO_SMP (and other defines + * in this header) for better cross-compilation, so don't rename them without a + * good reason. + */ +#define NPY_NO_SMP 0 + +#define NPY_VISIBILITY_HIDDEN __attribute__((visibility("hidden"))) +#define NPY_ABI_VERSION 0x02000000 +#define NPY_API_VERSION 0x00000014 + +#ifndef __STDC_FORMAT_MACROS +#define __STDC_FORMAT_MACROS 1 +#endif diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/_public_dtype_api_table.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/_public_dtype_api_table.h new file mode 100644 index 0000000..51f3905 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/_public_dtype_api_table.h @@ -0,0 +1,86 @@ +/* + * Public exposure of the DType Classes. These are tricky to expose + * via the Python API, so they are exposed through this header for now. + * + * These definitions are only relevant for the public API and we reserve + * the slots 320-360 in the API table generation for this (currently). + * + * TODO: This file should be consolidated with the API table generation + * (although not sure the current generation is worth preserving). + */ +#ifndef NUMPY_CORE_INCLUDE_NUMPY__PUBLIC_DTYPE_API_TABLE_H_ +#define NUMPY_CORE_INCLUDE_NUMPY__PUBLIC_DTYPE_API_TABLE_H_ + +#if !(defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD) + +/* All of these require NumPy 2.0 support */ +#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION + +/* + * The type of the DType metaclass + */ +#define PyArrayDTypeMeta_Type (*(PyTypeObject *)(PyArray_API + 320)[0]) +/* + * NumPy's builtin DTypes: + */ +#define PyArray_BoolDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[1]) +/* Integers */ +#define PyArray_ByteDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[2]) +#define PyArray_UByteDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[3]) +#define PyArray_ShortDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[4]) +#define PyArray_UShortDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[5]) +#define PyArray_IntDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[6]) +#define PyArray_UIntDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[7]) +#define PyArray_LongDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[8]) +#define PyArray_ULongDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[9]) +#define PyArray_LongLongDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[10]) +#define PyArray_ULongLongDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[11]) +/* Integer aliases */ +#define PyArray_Int8DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[12]) +#define PyArray_UInt8DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[13]) +#define PyArray_Int16DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[14]) +#define PyArray_UInt16DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[15]) +#define PyArray_Int32DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[16]) +#define PyArray_UInt32DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[17]) +#define PyArray_Int64DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[18]) +#define PyArray_UInt64DType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[19]) +#define PyArray_IntpDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[20]) +#define PyArray_UIntpDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[21]) +/* Floats */ +#define PyArray_HalfDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[22]) +#define PyArray_FloatDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[23]) +#define PyArray_DoubleDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[24]) +#define PyArray_LongDoubleDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[25]) +/* Complex */ +#define PyArray_CFloatDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[26]) +#define PyArray_CDoubleDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[27]) +#define PyArray_CLongDoubleDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[28]) +/* String/Bytes */ +#define PyArray_BytesDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[29]) +#define PyArray_UnicodeDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[30]) +/* Datetime/Timedelta */ +#define PyArray_DatetimeDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[31]) +#define PyArray_TimedeltaDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[32]) +/* Object/Void */ +#define PyArray_ObjectDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[33]) +#define PyArray_VoidDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[34]) +/* Python types (used as markers for scalars) */ +#define PyArray_PyLongDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[35]) +#define PyArray_PyFloatDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[36]) +#define PyArray_PyComplexDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[37]) +/* Default integer type */ +#define PyArray_DefaultIntDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[38]) +/* New non-legacy DTypes follow in the order they were added */ +#define PyArray_StringDType (*(PyArray_DTypeMeta *)(PyArray_API + 320)[39]) + +/* NOTE: offset 40 is free */ + +/* Need to start with a larger offset again for the abstract classes: */ +#define PyArray_IntAbstractDType (*(PyArray_DTypeMeta *)PyArray_API[366]) +#define PyArray_FloatAbstractDType (*(PyArray_DTypeMeta *)PyArray_API[367]) +#define PyArray_ComplexAbstractDType (*(PyArray_DTypeMeta *)PyArray_API[368]) + +#endif /* NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION */ + +#endif /* NPY_INTERNAL_BUILD */ +#endif /* NUMPY_CORE_INCLUDE_NUMPY__PUBLIC_DTYPE_API_TABLE_H_ */ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/arrayobject.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/arrayobject.h new file mode 100644 index 0000000..97d9359 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/arrayobject.h @@ -0,0 +1,7 @@ +#ifndef NUMPY_CORE_INCLUDE_NUMPY_ARRAYOBJECT_H_ +#define NUMPY_CORE_INCLUDE_NUMPY_ARRAYOBJECT_H_ +#define Py_ARRAYOBJECT_H + +#include "ndarrayobject.h" + +#endif /* NUMPY_CORE_INCLUDE_NUMPY_ARRAYOBJECT_H_ */ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/arrayscalars.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/arrayscalars.h new file mode 100644 index 0000000..ff04806 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/arrayscalars.h @@ -0,0 +1,196 @@ +#ifndef NUMPY_CORE_INCLUDE_NUMPY_ARRAYSCALARS_H_ +#define NUMPY_CORE_INCLUDE_NUMPY_ARRAYSCALARS_H_ + +#ifndef _MULTIARRAYMODULE +typedef struct { + PyObject_HEAD + npy_bool obval; +} PyBoolScalarObject; +#endif + + +typedef struct { + PyObject_HEAD + signed char obval; +} PyByteScalarObject; + + +typedef struct { + PyObject_HEAD + short obval; +} PyShortScalarObject; + + +typedef struct { + PyObject_HEAD + int obval; +} PyIntScalarObject; + + +typedef struct { + PyObject_HEAD + long obval; +} PyLongScalarObject; + + +typedef struct { + PyObject_HEAD + npy_longlong obval; +} PyLongLongScalarObject; + + +typedef struct { + PyObject_HEAD + unsigned char obval; +} PyUByteScalarObject; + + +typedef struct { + PyObject_HEAD + unsigned short obval; +} PyUShortScalarObject; + + +typedef struct { + PyObject_HEAD + unsigned int obval; +} PyUIntScalarObject; + + +typedef struct { + PyObject_HEAD + unsigned long obval; +} PyULongScalarObject; + + +typedef struct { + PyObject_HEAD + npy_ulonglong obval; +} PyULongLongScalarObject; + + +typedef struct { + PyObject_HEAD + npy_half obval; +} PyHalfScalarObject; + + +typedef struct { + PyObject_HEAD + float obval; +} PyFloatScalarObject; + + +typedef struct { + PyObject_HEAD + double obval; +} PyDoubleScalarObject; + + +typedef struct { + PyObject_HEAD + npy_longdouble obval; +} PyLongDoubleScalarObject; + + +typedef struct { + PyObject_HEAD + npy_cfloat obval; +} PyCFloatScalarObject; + + +typedef struct { + PyObject_HEAD + npy_cdouble obval; +} PyCDoubleScalarObject; + + +typedef struct { + PyObject_HEAD + npy_clongdouble obval; +} PyCLongDoubleScalarObject; + + +typedef struct { + PyObject_HEAD + PyObject * obval; +} PyObjectScalarObject; + +typedef struct { + PyObject_HEAD + npy_datetime obval; + PyArray_DatetimeMetaData obmeta; +} PyDatetimeScalarObject; + +typedef struct { + PyObject_HEAD + npy_timedelta obval; + PyArray_DatetimeMetaData obmeta; +} PyTimedeltaScalarObject; + + +typedef struct { + PyObject_HEAD + char obval; +} PyScalarObject; + +#define PyStringScalarObject PyBytesObject +#ifndef Py_LIMITED_API +typedef struct { + /* note that the PyObject_HEAD macro lives right here */ + PyUnicodeObject base; + Py_UCS4 *obval; + #if NPY_FEATURE_VERSION >= NPY_1_20_API_VERSION + char *buffer_fmt; + #endif +} PyUnicodeScalarObject; +#endif + + +typedef struct { + PyObject_VAR_HEAD + char *obval; +#if defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD + /* Internally use the subclass to allow accessing names/fields */ + _PyArray_LegacyDescr *descr; +#else + PyArray_Descr *descr; +#endif + int flags; + PyObject *base; + #if NPY_FEATURE_VERSION >= NPY_1_20_API_VERSION + void *_buffer_info; /* private buffer info, tagged to allow warning */ + #endif +} PyVoidScalarObject; + +/* Macros + PyScalarObject + PyArrType_Type + are defined in ndarrayobject.h +*/ + +#define PyArrayScalar_False ((PyObject *)(&(_PyArrayScalar_BoolValues[0]))) +#define PyArrayScalar_True ((PyObject *)(&(_PyArrayScalar_BoolValues[1]))) +#define PyArrayScalar_FromLong(i) \ + ((PyObject *)(&(_PyArrayScalar_BoolValues[((i)!=0)]))) +#define PyArrayScalar_RETURN_BOOL_FROM_LONG(i) \ + return Py_INCREF(PyArrayScalar_FromLong(i)), \ + PyArrayScalar_FromLong(i) +#define PyArrayScalar_RETURN_FALSE \ + return Py_INCREF(PyArrayScalar_False), \ + PyArrayScalar_False +#define PyArrayScalar_RETURN_TRUE \ + return Py_INCREF(PyArrayScalar_True), \ + PyArrayScalar_True + +#define PyArrayScalar_New(cls) \ + Py##cls##ArrType_Type.tp_alloc(&Py##cls##ArrType_Type, 0) +#ifndef Py_LIMITED_API +/* For the limited API, use PyArray_ScalarAsCtype instead */ +#define PyArrayScalar_VAL(obj, cls) \ + ((Py##cls##ScalarObject *)obj)->obval +#define PyArrayScalar_ASSIGN(obj, cls, val) \ + PyArrayScalar_VAL(obj, cls) = val +#endif + +#endif /* NUMPY_CORE_INCLUDE_NUMPY_ARRAYSCALARS_H_ */ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/dtype_api.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/dtype_api.h new file mode 100644 index 0000000..b37c9fb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/dtype_api.h @@ -0,0 +1,480 @@ +/* + * The public DType API + */ + +#ifndef NUMPY_CORE_INCLUDE_NUMPY___DTYPE_API_H_ +#define NUMPY_CORE_INCLUDE_NUMPY___DTYPE_API_H_ + +struct PyArrayMethodObject_tag; + +/* + * Largely opaque struct for DType classes (i.e. metaclass instances). + * The internal definition is currently in `ndarraytypes.h` (export is a bit + * more complex because `PyArray_Descr` is a DTypeMeta internally but not + * externally). + */ +#if !(defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD) + +#ifndef Py_LIMITED_API + + typedef struct PyArray_DTypeMeta_tag { + PyHeapTypeObject super; + + /* + * Most DTypes will have a singleton default instance, for the + * parametric legacy DTypes (bytes, string, void, datetime) this + * may be a pointer to the *prototype* instance? + */ + PyArray_Descr *singleton; + /* Copy of the legacy DTypes type number, usually invalid. */ + int type_num; + + /* The type object of the scalar instances (may be NULL?) */ + PyTypeObject *scalar_type; + /* + * DType flags to signal legacy, parametric, or + * abstract. But plenty of space for additional information/flags. + */ + npy_uint64 flags; + + /* + * Use indirection in order to allow a fixed size for this struct. + * A stable ABI size makes creating a static DType less painful + * while also ensuring flexibility for all opaque API (with one + * indirection due the pointer lookup). + */ + void *dt_slots; + /* Allow growing (at the moment also beyond this) */ + void *reserved[3]; + } PyArray_DTypeMeta; + +#else + +typedef PyTypeObject PyArray_DTypeMeta; + +#endif /* Py_LIMITED_API */ + +#endif /* not internal build */ + +/* + * ****************************************************** + * ArrayMethod API (Casting and UFuncs) + * ****************************************************** + */ + + +typedef enum { + /* Flag for whether the GIL is required */ + NPY_METH_REQUIRES_PYAPI = 1 << 0, + /* + * Some functions cannot set floating point error flags, this flag + * gives us the option (not requirement) to skip floating point error + * setup/check. No function should set error flags and ignore them + * since it would interfere with chaining operations (e.g. casting). + */ + NPY_METH_NO_FLOATINGPOINT_ERRORS = 1 << 1, + /* Whether the method supports unaligned access (not runtime) */ + NPY_METH_SUPPORTS_UNALIGNED = 1 << 2, + /* + * Used for reductions to allow reordering the operation. At this point + * assume that if set, it also applies to normal operations though! + */ + NPY_METH_IS_REORDERABLE = 1 << 3, + /* + * Private flag for now for *logic* functions. The logical functions + * `logical_or` and `logical_and` can always cast the inputs to booleans + * "safely" (because that is how the cast to bool is defined). + * @seberg: I am not sure this is the best way to handle this, so its + * private for now (also it is very limited anyway). + * There is one "exception". NA aware dtypes cannot cast to bool + * (hopefully), so the `??->?` loop should error even with this flag. + * But a second NA fallback loop will be necessary. + */ + _NPY_METH_FORCE_CAST_INPUTS = 1 << 17, + + /* All flags which can change at runtime */ + NPY_METH_RUNTIME_FLAGS = ( + NPY_METH_REQUIRES_PYAPI | + NPY_METH_NO_FLOATINGPOINT_ERRORS), +} NPY_ARRAYMETHOD_FLAGS; + + +typedef struct PyArrayMethod_Context_tag { + /* The caller, which is typically the original ufunc. May be NULL */ + PyObject *caller; + /* The method "self". Currently an opaque object. */ + struct PyArrayMethodObject_tag *method; + + /* Operand descriptors, filled in by resolve_descriptors */ + PyArray_Descr *const *descriptors; + /* Structure may grow (this is harmless for DType authors) */ +} PyArrayMethod_Context; + + +/* + * The main object for creating a new ArrayMethod. We use the typical `slots` + * mechanism used by the Python limited API (see below for the slot defs). + */ +typedef struct { + const char *name; + int nin, nout; + NPY_CASTING casting; + NPY_ARRAYMETHOD_FLAGS flags; + PyArray_DTypeMeta **dtypes; + PyType_Slot *slots; +} PyArrayMethod_Spec; + + +/* + * ArrayMethod slots + * ----------------- + * + * SLOTS IDs For the ArrayMethod creation, once fully public, IDs are fixed + * but can be deprecated and arbitrarily extended. + */ +#define _NPY_METH_resolve_descriptors_with_scalars 1 +#define NPY_METH_resolve_descriptors 2 +#define NPY_METH_get_loop 3 +#define NPY_METH_get_reduction_initial 4 +/* specific loops for constructions/default get_loop: */ +#define NPY_METH_strided_loop 5 +#define NPY_METH_contiguous_loop 6 +#define NPY_METH_unaligned_strided_loop 7 +#define NPY_METH_unaligned_contiguous_loop 8 +#define NPY_METH_contiguous_indexed_loop 9 +#define _NPY_METH_static_data 10 + + +/* + * The resolve descriptors function, must be able to handle NULL values for + * all output (but not input) `given_descrs` and fill `loop_descrs`. + * Return -1 on error or 0 if the operation is not possible without an error + * set. (This may still be in flux.) + * Otherwise must return the "casting safety", for normal functions, this is + * almost always "safe" (or even "equivalent"?). + * + * `resolve_descriptors` is optional if all output DTypes are non-parametric. + */ +typedef NPY_CASTING (PyArrayMethod_ResolveDescriptors)( + /* "method" is currently opaque (necessary e.g. to wrap Python) */ + struct PyArrayMethodObject_tag *method, + /* DTypes the method was created for */ + PyArray_DTypeMeta *const *dtypes, + /* Input descriptors (instances). Outputs may be NULL. */ + PyArray_Descr *const *given_descrs, + /* Exact loop descriptors to use, must not hold references on error */ + PyArray_Descr **loop_descrs, + npy_intp *view_offset); + + +/* + * Rarely needed, slightly more powerful version of `resolve_descriptors`. + * See also `PyArrayMethod_ResolveDescriptors` for details on shared arguments. + * + * NOTE: This function is private now as it is unclear how and what to pass + * exactly as additional information to allow dealing with the scalars. + * See also gh-24915. + */ +typedef NPY_CASTING (PyArrayMethod_ResolveDescriptorsWithScalar)( + struct PyArrayMethodObject_tag *method, + PyArray_DTypeMeta *const *dtypes, + /* Unlike above, these can have any DType and we may allow NULL. */ + PyArray_Descr *const *given_descrs, + /* + * Input scalars or NULL. Only ever passed for python scalars. + * WARNING: In some cases, a loop may be explicitly selected and the + * value passed is not available (NULL) or does not have the + * expected type. + */ + PyObject *const *input_scalars, + PyArray_Descr **loop_descrs, + npy_intp *view_offset); + + + +typedef int (PyArrayMethod_StridedLoop)(PyArrayMethod_Context *context, + char *const *data, const npy_intp *dimensions, const npy_intp *strides, + NpyAuxData *transferdata); + + +typedef int (PyArrayMethod_GetLoop)( + PyArrayMethod_Context *context, + int aligned, int move_references, + const npy_intp *strides, + PyArrayMethod_StridedLoop **out_loop, + NpyAuxData **out_transferdata, + NPY_ARRAYMETHOD_FLAGS *flags); + +/** + * Query an ArrayMethod for the initial value for use in reduction. + * + * @param context The arraymethod context, mainly to access the descriptors. + * @param reduction_is_empty Whether the reduction is empty. When it is, the + * value returned may differ. In this case it is a "default" value that + * may differ from the "identity" value normally used. For example: + * - `0.0` is the default for `sum([])`. But `-0.0` is the correct + * identity otherwise as it preserves the sign for `sum([-0.0])`. + * - We use no identity for object, but return the default of `0` and `1` + * for the empty `sum([], dtype=object)` and `prod([], dtype=object)`. + * This allows `np.sum(np.array(["a", "b"], dtype=object))` to work. + * - `-inf` or `INT_MIN` for `max` is an identity, but at least `INT_MIN` + * not a good *default* when there are no items. + * @param initial Pointer to initial data to be filled (if possible) + * + * @returns -1, 0, or 1 indicating error, no initial value, and initial being + * successfully filled. Errors must not be given where 0 is correct, NumPy + * may call this even when not strictly necessary. + */ +typedef int (PyArrayMethod_GetReductionInitial)( + PyArrayMethod_Context *context, npy_bool reduction_is_empty, + void *initial); + +/* + * The following functions are only used by the wrapping array method defined + * in umath/wrapping_array_method.c + */ + + +/* + * The function to convert the given descriptors (passed in to + * `resolve_descriptors`) and translates them for the wrapped loop. + * The new descriptors MUST be viewable with the old ones, `NULL` must be + * supported (for outputs) and should normally be forwarded. + * + * The function must clean up on error. + * + * NOTE: We currently assume that this translation gives "viewable" results. + * I.e. there is no additional casting related to the wrapping process. + * In principle that could be supported, but not sure it is useful. + * This currently also means that e.g. alignment must apply identically + * to the new dtypes. + * + * TODO: Due to the fact that `resolve_descriptors` is also used for `can_cast` + * there is no way to "pass out" the result of this function. This means + * it will be called twice for every ufunc call. + * (I am considering including `auxdata` as an "optional" parameter to + * `resolve_descriptors`, so that it can be filled there if not NULL.) + */ +typedef int (PyArrayMethod_TranslateGivenDescriptors)(int nin, int nout, + PyArray_DTypeMeta *const wrapped_dtypes[], + PyArray_Descr *const given_descrs[], PyArray_Descr *new_descrs[]); + +/** + * The function to convert the actual loop descriptors (as returned by the + * original `resolve_descriptors` function) to the ones the output array + * should use. + * This function must return "viewable" types, it must not mutate them in any + * form that would break the inner-loop logic. Does not need to support NULL. + * + * The function must clean up on error. + * + * @param nin Number of input arguments + * @param nout Number of output arguments + * @param new_dtypes The DTypes of the output (usually probably not needed) + * @param given_descrs Original given_descrs to the resolver, necessary to + * fetch any information related to the new dtypes from the original. + * @param original_descrs The `loop_descrs` returned by the wrapped loop. + * @param loop_descrs The output descriptors, compatible to `original_descrs`. + * + * @returns 0 on success, -1 on failure. + */ +typedef int (PyArrayMethod_TranslateLoopDescriptors)(int nin, int nout, + PyArray_DTypeMeta *const new_dtypes[], PyArray_Descr *const given_descrs[], + PyArray_Descr *original_descrs[], PyArray_Descr *loop_descrs[]); + + + +/* + * A traverse loop working on a single array. This is similar to the general + * strided-loop function. This is designed for loops that need to visit every + * element of a single array. + * + * Currently this is used for array clearing, via the NPY_DT_get_clear_loop + * API hook, and zero-filling, via the NPY_DT_get_fill_zero_loop API hook. + * These are most useful for handling arrays storing embedded references to + * python objects or heap-allocated data. + * + * The `void *traverse_context` is passed in because we may need to pass in + * Interpreter state or similar in the future, but we don't want to pass in + * a full context (with pointers to dtypes, method, caller which all make + * no sense for a traverse function). + * + * We assume for now that this context can be just passed through in the + * the future (for structured dtypes). + * + */ +typedef int (PyArrayMethod_TraverseLoop)( + void *traverse_context, const PyArray_Descr *descr, char *data, + npy_intp size, npy_intp stride, NpyAuxData *auxdata); + + +/* + * Simplified get_loop function specific to dtype traversal + * + * It should set the flags needed for the traversal loop and set out_loop to the + * loop function, which must be a valid PyArrayMethod_TraverseLoop + * pointer. Currently this is used for zero-filling and clearing arrays storing + * embedded references. + * + */ +typedef int (PyArrayMethod_GetTraverseLoop)( + void *traverse_context, const PyArray_Descr *descr, + int aligned, npy_intp fixed_stride, + PyArrayMethod_TraverseLoop **out_loop, NpyAuxData **out_auxdata, + NPY_ARRAYMETHOD_FLAGS *flags); + + +/* + * Type of the C promoter function, which must be wrapped into a + * PyCapsule with name "numpy._ufunc_promoter". + * + * Note that currently the output dtypes are always NULL unless they are + * also part of the signature. This is an implementation detail and could + * change in the future. However, in general promoters should not have a + * need for output dtypes. + * (There are potential use-cases, these are currently unsupported.) + */ +typedef int (PyArrayMethod_PromoterFunction)(PyObject *ufunc, + PyArray_DTypeMeta *const op_dtypes[], PyArray_DTypeMeta *const signature[], + PyArray_DTypeMeta *new_op_dtypes[]); + +/* + * **************************** + * DTYPE API + * **************************** + */ + +#define NPY_DT_ABSTRACT 1 << 1 +#define NPY_DT_PARAMETRIC 1 << 2 +#define NPY_DT_NUMERIC 1 << 3 + +/* + * These correspond to slots in the NPY_DType_Slots struct and must + * be in the same order as the members of that struct. If new slots + * get added or old slots get removed NPY_NUM_DTYPE_SLOTS must also + * be updated + */ + +#define NPY_DT_discover_descr_from_pyobject 1 +// this slot is considered private because its API hasn't been decided +#define _NPY_DT_is_known_scalar_type 2 +#define NPY_DT_default_descr 3 +#define NPY_DT_common_dtype 4 +#define NPY_DT_common_instance 5 +#define NPY_DT_ensure_canonical 6 +#define NPY_DT_setitem 7 +#define NPY_DT_getitem 8 +#define NPY_DT_get_clear_loop 9 +#define NPY_DT_get_fill_zero_loop 10 +#define NPY_DT_finalize_descr 11 + +// These PyArray_ArrFunc slots will be deprecated and replaced eventually +// getitem and setitem can be defined as a performance optimization; +// by default the user dtypes call `legacy_getitem_using_DType` and +// `legacy_setitem_using_DType`, respectively. This functionality is +// only supported for basic NumPy DTypes. + + +// used to separate dtype slots from arrfuncs slots +// intended only for internal use but defined here for clarity +#define _NPY_DT_ARRFUNCS_OFFSET (1 << 10) + +// Cast is disabled +// #define NPY_DT_PyArray_ArrFuncs_cast 0 + _NPY_DT_ARRFUNCS_OFFSET + +#define NPY_DT_PyArray_ArrFuncs_getitem 1 + _NPY_DT_ARRFUNCS_OFFSET +#define NPY_DT_PyArray_ArrFuncs_setitem 2 + _NPY_DT_ARRFUNCS_OFFSET + +// Copyswap is disabled +// #define NPY_DT_PyArray_ArrFuncs_copyswapn 3 + _NPY_DT_ARRFUNCS_OFFSET +// #define NPY_DT_PyArray_ArrFuncs_copyswap 4 + _NPY_DT_ARRFUNCS_OFFSET +#define NPY_DT_PyArray_ArrFuncs_compare 5 + _NPY_DT_ARRFUNCS_OFFSET +#define NPY_DT_PyArray_ArrFuncs_argmax 6 + _NPY_DT_ARRFUNCS_OFFSET +#define NPY_DT_PyArray_ArrFuncs_dotfunc 7 + _NPY_DT_ARRFUNCS_OFFSET +#define NPY_DT_PyArray_ArrFuncs_scanfunc 8 + _NPY_DT_ARRFUNCS_OFFSET +#define NPY_DT_PyArray_ArrFuncs_fromstr 9 + _NPY_DT_ARRFUNCS_OFFSET +#define NPY_DT_PyArray_ArrFuncs_nonzero 10 + _NPY_DT_ARRFUNCS_OFFSET +#define NPY_DT_PyArray_ArrFuncs_fill 11 + _NPY_DT_ARRFUNCS_OFFSET +#define NPY_DT_PyArray_ArrFuncs_fillwithscalar 12 + _NPY_DT_ARRFUNCS_OFFSET +#define NPY_DT_PyArray_ArrFuncs_sort 13 + _NPY_DT_ARRFUNCS_OFFSET +#define NPY_DT_PyArray_ArrFuncs_argsort 14 + _NPY_DT_ARRFUNCS_OFFSET + +// Casting related slots are disabled. See +// https://github.com/numpy/numpy/pull/23173#discussion_r1101098163 +// #define NPY_DT_PyArray_ArrFuncs_castdict 15 + _NPY_DT_ARRFUNCS_OFFSET +// #define NPY_DT_PyArray_ArrFuncs_scalarkind 16 + _NPY_DT_ARRFUNCS_OFFSET +// #define NPY_DT_PyArray_ArrFuncs_cancastscalarkindto 17 + _NPY_DT_ARRFUNCS_OFFSET +// #define NPY_DT_PyArray_ArrFuncs_cancastto 18 + _NPY_DT_ARRFUNCS_OFFSET + +// These are deprecated in NumPy 1.19, so are disabled here. +// #define NPY_DT_PyArray_ArrFuncs_fastclip 19 + _NPY_DT_ARRFUNCS_OFFSET +// #define NPY_DT_PyArray_ArrFuncs_fastputmask 20 + _NPY_DT_ARRFUNCS_OFFSET +// #define NPY_DT_PyArray_ArrFuncs_fasttake 21 + _NPY_DT_ARRFUNCS_OFFSET +#define NPY_DT_PyArray_ArrFuncs_argmin 22 + _NPY_DT_ARRFUNCS_OFFSET + + +// TODO: These slots probably still need some thought, and/or a way to "grow"? +typedef struct { + PyTypeObject *typeobj; /* type of python scalar or NULL */ + int flags; /* flags, including parametric and abstract */ + /* NULL terminated cast definitions. Use NULL for the newly created DType */ + PyArrayMethod_Spec **casts; + PyType_Slot *slots; + /* Baseclass or NULL (will always subclass `np.dtype`) */ + PyTypeObject *baseclass; +} PyArrayDTypeMeta_Spec; + + +typedef PyArray_Descr *(PyArrayDTypeMeta_DiscoverDescrFromPyobject)( + PyArray_DTypeMeta *cls, PyObject *obj); + +/* + * Before making this public, we should decide whether it should pass + * the type, or allow looking at the object. A possible use-case: + * `np.array(np.array([0]), dtype=np.ndarray)` + * Could consider arrays that are not `dtype=ndarray` "scalars". + */ +typedef int (PyArrayDTypeMeta_IsKnownScalarType)( + PyArray_DTypeMeta *cls, PyTypeObject *obj); + +typedef PyArray_Descr *(PyArrayDTypeMeta_DefaultDescriptor)(PyArray_DTypeMeta *cls); +typedef PyArray_DTypeMeta *(PyArrayDTypeMeta_CommonDType)( + PyArray_DTypeMeta *dtype1, PyArray_DTypeMeta *dtype2); + + +/* + * Convenience utility for getting a reference to the DType metaclass associated + * with a dtype instance. + */ +#define NPY_DTYPE(descr) ((PyArray_DTypeMeta *)Py_TYPE(descr)) + +static inline PyArray_DTypeMeta * +NPY_DT_NewRef(PyArray_DTypeMeta *o) { + Py_INCREF((PyObject *)o); + return o; +} + + +typedef PyArray_Descr *(PyArrayDTypeMeta_CommonInstance)( + PyArray_Descr *dtype1, PyArray_Descr *dtype2); +typedef PyArray_Descr *(PyArrayDTypeMeta_EnsureCanonical)(PyArray_Descr *dtype); +/* + * Returns either a new reference to *dtype* or a new descriptor instance + * initialized with the same parameters as *dtype*. The caller cannot know + * which choice a dtype will make. This function is called just before the + * array buffer is created for a newly created array, it is not called for + * views and the descriptor returned by this function is attached to the array. + */ +typedef PyArray_Descr *(PyArrayDTypeMeta_FinalizeDescriptor)(PyArray_Descr *dtype); + +/* + * TODO: These two functions are currently only used for experimental DType + * API support. Their relation should be "reversed": NumPy should + * always use them internally. + * There are open points about "casting safety" though, e.g. setting + * elements is currently always unsafe. + */ +typedef int(PyArrayDTypeMeta_SetItem)(PyArray_Descr *, PyObject *, char *); +typedef PyObject *(PyArrayDTypeMeta_GetItem)(PyArray_Descr *, char *); + +#endif /* NUMPY_CORE_INCLUDE_NUMPY___DTYPE_API_H_ */ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/halffloat.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/halffloat.h new file mode 100644 index 0000000..9504016 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/halffloat.h @@ -0,0 +1,70 @@ +#ifndef NUMPY_CORE_INCLUDE_NUMPY_HALFFLOAT_H_ +#define NUMPY_CORE_INCLUDE_NUMPY_HALFFLOAT_H_ + +#include +#include + +#ifdef __cplusplus +extern "C" { +#endif + +/* + * Half-precision routines + */ + +/* Conversions */ +float npy_half_to_float(npy_half h); +double npy_half_to_double(npy_half h); +npy_half npy_float_to_half(float f); +npy_half npy_double_to_half(double d); +/* Comparisons */ +int npy_half_eq(npy_half h1, npy_half h2); +int npy_half_ne(npy_half h1, npy_half h2); +int npy_half_le(npy_half h1, npy_half h2); +int npy_half_lt(npy_half h1, npy_half h2); +int npy_half_ge(npy_half h1, npy_half h2); +int npy_half_gt(npy_half h1, npy_half h2); +/* faster *_nonan variants for when you know h1 and h2 are not NaN */ +int npy_half_eq_nonan(npy_half h1, npy_half h2); +int npy_half_lt_nonan(npy_half h1, npy_half h2); +int npy_half_le_nonan(npy_half h1, npy_half h2); +/* Miscellaneous functions */ +int npy_half_iszero(npy_half h); +int npy_half_isnan(npy_half h); +int npy_half_isinf(npy_half h); +int npy_half_isfinite(npy_half h); +int npy_half_signbit(npy_half h); +npy_half npy_half_copysign(npy_half x, npy_half y); +npy_half npy_half_spacing(npy_half h); +npy_half npy_half_nextafter(npy_half x, npy_half y); +npy_half npy_half_divmod(npy_half x, npy_half y, npy_half *modulus); + +/* + * Half-precision constants + */ + +#define NPY_HALF_ZERO (0x0000u) +#define NPY_HALF_PZERO (0x0000u) +#define NPY_HALF_NZERO (0x8000u) +#define NPY_HALF_ONE (0x3c00u) +#define NPY_HALF_NEGONE (0xbc00u) +#define NPY_HALF_PINF (0x7c00u) +#define NPY_HALF_NINF (0xfc00u) +#define NPY_HALF_NAN (0x7e00u) + +#define NPY_MAX_HALF (0x7bffu) + +/* + * Bit-level conversions + */ + +npy_uint16 npy_floatbits_to_halfbits(npy_uint32 f); +npy_uint16 npy_doublebits_to_halfbits(npy_uint64 d); +npy_uint32 npy_halfbits_to_floatbits(npy_uint16 h); +npy_uint64 npy_halfbits_to_doublebits(npy_uint16 h); + +#ifdef __cplusplus +} +#endif + +#endif /* NUMPY_CORE_INCLUDE_NUMPY_HALFFLOAT_H_ */ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/ndarrayobject.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/ndarrayobject.h new file mode 100644 index 0000000..f06bafe --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/ndarrayobject.h @@ -0,0 +1,304 @@ +/* + * DON'T INCLUDE THIS DIRECTLY. + */ +#ifndef NUMPY_CORE_INCLUDE_NUMPY_NDARRAYOBJECT_H_ +#define NUMPY_CORE_INCLUDE_NUMPY_NDARRAYOBJECT_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#include +#include "ndarraytypes.h" +#include "dtype_api.h" + +/* Includes the "function" C-API -- these are all stored in a + list of pointers --- one for each file + The two lists are concatenated into one in multiarray. + + They are available as import_array() +*/ + +#include "__multiarray_api.h" + +/* + * Include any definitions which are defined differently for 1.x and 2.x + * (Symbols only available on 2.x are not there, but rather guarded.) + */ +#include "npy_2_compat.h" + +/* C-API that requires previous API to be defined */ + +#define PyArray_DescrCheck(op) PyObject_TypeCheck(op, &PyArrayDescr_Type) + +#define PyArray_Check(op) PyObject_TypeCheck(op, &PyArray_Type) +#define PyArray_CheckExact(op) (((PyObject*)(op))->ob_type == &PyArray_Type) + +#define PyArray_HasArrayInterfaceType(op, type, context, out) \ + ((((out)=PyArray_FromStructInterface(op)) != Py_NotImplemented) || \ + (((out)=PyArray_FromInterface(op)) != Py_NotImplemented) || \ + (((out)=PyArray_FromArrayAttr(op, type, context)) != \ + Py_NotImplemented)) + +#define PyArray_HasArrayInterface(op, out) \ + PyArray_HasArrayInterfaceType(op, NULL, NULL, out) + +#define PyArray_IsZeroDim(op) (PyArray_Check(op) && \ + (PyArray_NDIM((PyArrayObject *)op) == 0)) + +#define PyArray_IsScalar(obj, cls) \ + (PyObject_TypeCheck(obj, &Py##cls##ArrType_Type)) + +#define PyArray_CheckScalar(m) (PyArray_IsScalar(m, Generic) || \ + PyArray_IsZeroDim(m)) +#define PyArray_IsPythonNumber(obj) \ + (PyFloat_Check(obj) || PyComplex_Check(obj) || \ + PyLong_Check(obj) || PyBool_Check(obj)) +#define PyArray_IsIntegerScalar(obj) (PyLong_Check(obj) \ + || PyArray_IsScalar((obj), Integer)) +#define PyArray_IsPythonScalar(obj) \ + (PyArray_IsPythonNumber(obj) || PyBytes_Check(obj) || \ + PyUnicode_Check(obj)) + +#define PyArray_IsAnyScalar(obj) \ + (PyArray_IsScalar(obj, Generic) || PyArray_IsPythonScalar(obj)) + +#define PyArray_CheckAnyScalar(obj) (PyArray_IsPythonScalar(obj) || \ + PyArray_CheckScalar(obj)) + + +#define PyArray_GETCONTIGUOUS(m) (PyArray_ISCONTIGUOUS(m) ? \ + Py_INCREF(m), (m) : \ + (PyArrayObject *)(PyArray_Copy(m))) + +#define PyArray_SAMESHAPE(a1,a2) ((PyArray_NDIM(a1) == PyArray_NDIM(a2)) && \ + PyArray_CompareLists(PyArray_DIMS(a1), \ + PyArray_DIMS(a2), \ + PyArray_NDIM(a1))) + +#define PyArray_SIZE(m) PyArray_MultiplyList(PyArray_DIMS(m), PyArray_NDIM(m)) +#define PyArray_NBYTES(m) (PyArray_ITEMSIZE(m) * PyArray_SIZE(m)) +#define PyArray_FROM_O(m) PyArray_FromAny(m, NULL, 0, 0, 0, NULL) + +#define PyArray_FROM_OF(m,flags) PyArray_CheckFromAny(m, NULL, 0, 0, flags, \ + NULL) + +#define PyArray_FROM_OT(m,type) PyArray_FromAny(m, \ + PyArray_DescrFromType(type), 0, 0, 0, NULL) + +#define PyArray_FROM_OTF(m, type, flags) \ + PyArray_FromAny(m, PyArray_DescrFromType(type), 0, 0, \ + (((flags) & NPY_ARRAY_ENSURECOPY) ? \ + ((flags) | NPY_ARRAY_DEFAULT) : (flags)), NULL) + +#define PyArray_FROMANY(m, type, min, max, flags) \ + PyArray_FromAny(m, PyArray_DescrFromType(type), min, max, \ + (((flags) & NPY_ARRAY_ENSURECOPY) ? \ + (flags) | NPY_ARRAY_DEFAULT : (flags)), NULL) + +#define PyArray_ZEROS(m, dims, type, is_f_order) \ + PyArray_Zeros(m, dims, PyArray_DescrFromType(type), is_f_order) + +#define PyArray_EMPTY(m, dims, type, is_f_order) \ + PyArray_Empty(m, dims, PyArray_DescrFromType(type), is_f_order) + +#define PyArray_FILLWBYTE(obj, val) memset(PyArray_DATA(obj), val, \ + PyArray_NBYTES(obj)) + +#define PyArray_ContiguousFromAny(op, type, min_depth, max_depth) \ + PyArray_FromAny(op, PyArray_DescrFromType(type), min_depth, \ + max_depth, NPY_ARRAY_DEFAULT, NULL) + +#define PyArray_EquivArrTypes(a1, a2) \ + PyArray_EquivTypes(PyArray_DESCR(a1), PyArray_DESCR(a2)) + +#define PyArray_EquivByteorders(b1, b2) \ + (((b1) == (b2)) || (PyArray_ISNBO(b1) == PyArray_ISNBO(b2))) + +#define PyArray_SimpleNew(nd, dims, typenum) \ + PyArray_New(&PyArray_Type, nd, dims, typenum, NULL, NULL, 0, 0, NULL) + +#define PyArray_SimpleNewFromData(nd, dims, typenum, data) \ + PyArray_New(&PyArray_Type, nd, dims, typenum, NULL, \ + data, 0, NPY_ARRAY_CARRAY, NULL) + +#define PyArray_SimpleNewFromDescr(nd, dims, descr) \ + PyArray_NewFromDescr(&PyArray_Type, descr, nd, dims, \ + NULL, NULL, 0, NULL) + +#define PyArray_ToScalar(data, arr) \ + PyArray_Scalar(data, PyArray_DESCR(arr), (PyObject *)arr) + + +/* These might be faster without the dereferencing of obj + going on inside -- of course an optimizing compiler should + inline the constants inside a for loop making it a moot point +*/ + +#define PyArray_GETPTR1(obj, i) ((void *)(PyArray_BYTES(obj) + \ + (i)*PyArray_STRIDES(obj)[0])) + +#define PyArray_GETPTR2(obj, i, j) ((void *)(PyArray_BYTES(obj) + \ + (i)*PyArray_STRIDES(obj)[0] + \ + (j)*PyArray_STRIDES(obj)[1])) + +#define PyArray_GETPTR3(obj, i, j, k) ((void *)(PyArray_BYTES(obj) + \ + (i)*PyArray_STRIDES(obj)[0] + \ + (j)*PyArray_STRIDES(obj)[1] + \ + (k)*PyArray_STRIDES(obj)[2])) + +#define PyArray_GETPTR4(obj, i, j, k, l) ((void *)(PyArray_BYTES(obj) + \ + (i)*PyArray_STRIDES(obj)[0] + \ + (j)*PyArray_STRIDES(obj)[1] + \ + (k)*PyArray_STRIDES(obj)[2] + \ + (l)*PyArray_STRIDES(obj)[3])) + +static inline void +PyArray_DiscardWritebackIfCopy(PyArrayObject *arr) +{ + PyArrayObject_fields *fa = (PyArrayObject_fields *)arr; + if (fa && fa->base) { + if (fa->flags & NPY_ARRAY_WRITEBACKIFCOPY) { + PyArray_ENABLEFLAGS((PyArrayObject*)fa->base, NPY_ARRAY_WRITEABLE); + Py_DECREF(fa->base); + fa->base = NULL; + PyArray_CLEARFLAGS(arr, NPY_ARRAY_WRITEBACKIFCOPY); + } + } +} + +#define PyArray_DESCR_REPLACE(descr) do { \ + PyArray_Descr *_new_; \ + _new_ = PyArray_DescrNew(descr); \ + Py_XDECREF(descr); \ + descr = _new_; \ + } while(0) + +/* Copy should always return contiguous array */ +#define PyArray_Copy(obj) PyArray_NewCopy(obj, NPY_CORDER) + +#define PyArray_FromObject(op, type, min_depth, max_depth) \ + PyArray_FromAny(op, PyArray_DescrFromType(type), min_depth, \ + max_depth, NPY_ARRAY_BEHAVED | \ + NPY_ARRAY_ENSUREARRAY, NULL) + +#define PyArray_ContiguousFromObject(op, type, min_depth, max_depth) \ + PyArray_FromAny(op, PyArray_DescrFromType(type), min_depth, \ + max_depth, NPY_ARRAY_DEFAULT | \ + NPY_ARRAY_ENSUREARRAY, NULL) + +#define PyArray_CopyFromObject(op, type, min_depth, max_depth) \ + PyArray_FromAny(op, PyArray_DescrFromType(type), min_depth, \ + max_depth, NPY_ARRAY_ENSURECOPY | \ + NPY_ARRAY_DEFAULT | \ + NPY_ARRAY_ENSUREARRAY, NULL) + +#define PyArray_Cast(mp, type_num) \ + PyArray_CastToType(mp, PyArray_DescrFromType(type_num), 0) + +#define PyArray_Take(ap, items, axis) \ + PyArray_TakeFrom(ap, items, axis, NULL, NPY_RAISE) + +#define PyArray_Put(ap, items, values) \ + PyArray_PutTo(ap, items, values, NPY_RAISE) + + +/* + Check to see if this key in the dictionary is the "title" + entry of the tuple (i.e. a duplicate dictionary entry in the fields + dict). +*/ + +static inline int +NPY_TITLE_KEY_check(PyObject *key, PyObject *value) +{ + PyObject *title; + if (PyTuple_Size(value) != 3) { + return 0; + } + title = PyTuple_GetItem(value, 2); + if (key == title) { + return 1; + } +#ifdef PYPY_VERSION + /* + * On PyPy, dictionary keys do not always preserve object identity. + * Fall back to comparison by value. + */ + if (PyUnicode_Check(title) && PyUnicode_Check(key)) { + return PyUnicode_Compare(title, key) == 0 ? 1 : 0; + } +#endif + return 0; +} + +/* Macro, for backward compat with "if NPY_TITLE_KEY(key, value) { ..." */ +#define NPY_TITLE_KEY(key, value) (NPY_TITLE_KEY_check((key), (value))) + +#define DEPRECATE(msg) PyErr_WarnEx(PyExc_DeprecationWarning,msg,1) +#define DEPRECATE_FUTUREWARNING(msg) PyErr_WarnEx(PyExc_FutureWarning,msg,1) + + +/* + * These macros and functions unfortunately require runtime version checks + * that are only defined in `npy_2_compat.h`. For that reasons they cannot be + * part of `ndarraytypes.h` which tries to be self contained. + */ + +static inline npy_intp +PyArray_ITEMSIZE(const PyArrayObject *arr) +{ + return PyDataType_ELSIZE(((PyArrayObject_fields *)arr)->descr); +} + +#define PyDataType_HASFIELDS(obj) (PyDataType_ISLEGACY((PyArray_Descr*)(obj)) && PyDataType_NAMES((PyArray_Descr*)(obj)) != NULL) +#define PyDataType_HASSUBARRAY(dtype) (PyDataType_ISLEGACY(dtype) && PyDataType_SUBARRAY(dtype) != NULL) +#define PyDataType_ISUNSIZED(dtype) ((dtype)->elsize == 0 && \ + !PyDataType_HASFIELDS(dtype)) + +#define PyDataType_FLAGCHK(dtype, flag) \ + ((PyDataType_FLAGS(dtype) & (flag)) == (flag)) + +#define PyDataType_REFCHK(dtype) \ + PyDataType_FLAGCHK(dtype, NPY_ITEM_REFCOUNT) + +#define NPY_BEGIN_THREADS_DESCR(dtype) \ + do {if (!(PyDataType_FLAGCHK((dtype), NPY_NEEDS_PYAPI))) \ + NPY_BEGIN_THREADS;} while (0); + +#define NPY_END_THREADS_DESCR(dtype) \ + do {if (!(PyDataType_FLAGCHK((dtype), NPY_NEEDS_PYAPI))) \ + NPY_END_THREADS; } while (0); + +#if !(defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD) +/* The internal copy of this is now defined in `dtypemeta.h` */ +/* + * `PyArray_Scalar` is the same as this function but converts will convert + * most NumPy types to Python scalars. + */ +static inline PyObject * +PyArray_GETITEM(const PyArrayObject *arr, const char *itemptr) +{ + return PyDataType_GetArrFuncs(((PyArrayObject_fields *)arr)->descr)->getitem( + (void *)itemptr, (PyArrayObject *)arr); +} + +/* + * SETITEM should only be used if it is known that the value is a scalar + * and of a type understood by the arrays dtype. + * Use `PyArray_Pack` if the value may be of a different dtype. + */ +static inline int +PyArray_SETITEM(PyArrayObject *arr, char *itemptr, PyObject *v) +{ + return PyDataType_GetArrFuncs(((PyArrayObject_fields *)arr)->descr)->setitem(v, itemptr, arr); +} +#endif /* not internal */ + + +#ifdef __cplusplus +} +#endif + + +#endif /* NUMPY_CORE_INCLUDE_NUMPY_NDARRAYOBJECT_H_ */ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/ndarraytypes.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/ndarraytypes.h new file mode 100644 index 0000000..baa4240 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/ndarraytypes.h @@ -0,0 +1,1950 @@ +#ifndef NUMPY_CORE_INCLUDE_NUMPY_NDARRAYTYPES_H_ +#define NUMPY_CORE_INCLUDE_NUMPY_NDARRAYTYPES_H_ + +#include "npy_common.h" +#include "npy_endian.h" +#include "npy_cpu.h" +#include "utils.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define NPY_NO_EXPORT NPY_VISIBILITY_HIDDEN + +/* Always allow threading unless it was explicitly disabled at build time */ +#if !NPY_NO_SMP + #define NPY_ALLOW_THREADS 1 +#else + #define NPY_ALLOW_THREADS 0 +#endif + +#ifndef __has_extension +#define __has_extension(x) 0 +#endif + +/* + * There are several places in the code where an array of dimensions + * is allocated statically. This is the size of that static + * allocation. + * + * The array creation itself could have arbitrary dimensions but all + * the places where static allocation is used would need to be changed + * to dynamic (including inside of several structures) + * + * As of NumPy 2.0, we strongly discourage the downstream use of NPY_MAXDIMS, + * but since auditing everything seems a big ask, define it as 64. + * A future version could: + * - Increase or remove the limit and require recompilation (like 2.0 did) + * - Deprecate or remove the macro but keep the limit (at basically any time) + */ +#define NPY_MAXDIMS 64 +/* We cannot change this as it would break ABI: */ +#define NPY_MAXDIMS_LEGACY_ITERS 32 +/* NPY_MAXARGS is version dependent and defined in npy_2_compat.h */ + +/* Used for Converter Functions "O&" code in ParseTuple */ +#define NPY_FAIL 0 +#define NPY_SUCCEED 1 + + +enum NPY_TYPES { NPY_BOOL=0, + NPY_BYTE, NPY_UBYTE, + NPY_SHORT, NPY_USHORT, + NPY_INT, NPY_UINT, + NPY_LONG, NPY_ULONG, + NPY_LONGLONG, NPY_ULONGLONG, + NPY_FLOAT, NPY_DOUBLE, NPY_LONGDOUBLE, + NPY_CFLOAT, NPY_CDOUBLE, NPY_CLONGDOUBLE, + NPY_OBJECT=17, + NPY_STRING, NPY_UNICODE, + NPY_VOID, + /* + * New 1.6 types appended, may be integrated + * into the above in 2.0. + */ + NPY_DATETIME, NPY_TIMEDELTA, NPY_HALF, + + NPY_CHAR, /* Deprecated, will raise if used */ + + /* The number of *legacy* dtypes */ + NPY_NTYPES_LEGACY=24, + + /* assign a high value to avoid changing this in the + future when new dtypes are added */ + NPY_NOTYPE=25, + + NPY_USERDEF=256, /* leave room for characters */ + + /* The number of types not including the new 1.6 types */ + NPY_NTYPES_ABI_COMPATIBLE=21, + + /* + * New DTypes which do not share the legacy layout + * (added after NumPy 2.0). VSTRING is the first of these + * we may open up a block for user-defined dtypes in the + * future. + */ + NPY_VSTRING=2056, +}; + + +/* basetype array priority */ +#define NPY_PRIORITY 0.0 + +/* default subtype priority */ +#define NPY_SUBTYPE_PRIORITY 1.0 + +/* default scalar priority */ +#define NPY_SCALAR_PRIORITY -1000000.0 + +/* How many floating point types are there (excluding half) */ +#define NPY_NUM_FLOATTYPE 3 + +/* + * These characters correspond to the array type and the struct + * module + */ + +enum NPY_TYPECHAR { + NPY_BOOLLTR = '?', + NPY_BYTELTR = 'b', + NPY_UBYTELTR = 'B', + NPY_SHORTLTR = 'h', + NPY_USHORTLTR = 'H', + NPY_INTLTR = 'i', + NPY_UINTLTR = 'I', + NPY_LONGLTR = 'l', + NPY_ULONGLTR = 'L', + NPY_LONGLONGLTR = 'q', + NPY_ULONGLONGLTR = 'Q', + NPY_HALFLTR = 'e', + NPY_FLOATLTR = 'f', + NPY_DOUBLELTR = 'd', + NPY_LONGDOUBLELTR = 'g', + NPY_CFLOATLTR = 'F', + NPY_CDOUBLELTR = 'D', + NPY_CLONGDOUBLELTR = 'G', + NPY_OBJECTLTR = 'O', + NPY_STRINGLTR = 'S', + NPY_DEPRECATED_STRINGLTR2 = 'a', + NPY_UNICODELTR = 'U', + NPY_VOIDLTR = 'V', + NPY_DATETIMELTR = 'M', + NPY_TIMEDELTALTR = 'm', + NPY_CHARLTR = 'c', + + /* + * New non-legacy DTypes + */ + NPY_VSTRINGLTR = 'T', + + /* + * Note, we removed `NPY_INTPLTR` due to changing its definition + * to 'n', rather than 'p'. On any typical platform this is the + * same integer. 'n' should be used for the `np.intp` with the same + * size as `size_t` while 'p' remains pointer sized. + * + * 'p', 'P', 'n', and 'N' are valid and defined explicitly + * in `arraytypes.c.src`. + */ + + /* + * These are for dtype 'kinds', not dtype 'typecodes' + * as the above are for. + */ + NPY_GENBOOLLTR ='b', + NPY_SIGNEDLTR = 'i', + NPY_UNSIGNEDLTR = 'u', + NPY_FLOATINGLTR = 'f', + NPY_COMPLEXLTR = 'c', + +}; + +/* + * Changing this may break Numpy API compatibility + * due to changing offsets in PyArray_ArrFuncs, so be + * careful. Here we have reused the mergesort slot for + * any kind of stable sort, the actual implementation will + * depend on the data type. + */ +typedef enum { + _NPY_SORT_UNDEFINED=-1, + NPY_QUICKSORT=0, + NPY_HEAPSORT=1, + NPY_MERGESORT=2, + NPY_STABLESORT=2, +} NPY_SORTKIND; +#define NPY_NSORTS (NPY_STABLESORT + 1) + + +typedef enum { + NPY_INTROSELECT=0 +} NPY_SELECTKIND; +#define NPY_NSELECTS (NPY_INTROSELECT + 1) + + +typedef enum { + NPY_SEARCHLEFT=0, + NPY_SEARCHRIGHT=1 +} NPY_SEARCHSIDE; +#define NPY_NSEARCHSIDES (NPY_SEARCHRIGHT + 1) + + +typedef enum { + NPY_NOSCALAR=-1, + NPY_BOOL_SCALAR, + NPY_INTPOS_SCALAR, + NPY_INTNEG_SCALAR, + NPY_FLOAT_SCALAR, + NPY_COMPLEX_SCALAR, + NPY_OBJECT_SCALAR +} NPY_SCALARKIND; +#define NPY_NSCALARKINDS (NPY_OBJECT_SCALAR + 1) + +/* For specifying array memory layout or iteration order */ +typedef enum { + /* Fortran order if inputs are all Fortran, C otherwise */ + NPY_ANYORDER=-1, + /* C order */ + NPY_CORDER=0, + /* Fortran order */ + NPY_FORTRANORDER=1, + /* An order as close to the inputs as possible */ + NPY_KEEPORDER=2 +} NPY_ORDER; + +/* For specifying allowed casting in operations which support it */ +typedef enum { + _NPY_ERROR_OCCURRED_IN_CAST = -1, + /* Only allow identical types */ + NPY_NO_CASTING=0, + /* Allow identical and byte swapped types */ + NPY_EQUIV_CASTING=1, + /* Only allow safe casts */ + NPY_SAFE_CASTING=2, + /* Allow safe casts or casts within the same kind */ + NPY_SAME_KIND_CASTING=3, + /* Allow any casts */ + NPY_UNSAFE_CASTING=4, +} NPY_CASTING; + +typedef enum { + NPY_CLIP=0, + NPY_WRAP=1, + NPY_RAISE=2 +} NPY_CLIPMODE; + +typedef enum { + NPY_VALID=0, + NPY_SAME=1, + NPY_FULL=2 +} NPY_CORRELATEMODE; + +/* The special not-a-time (NaT) value */ +#define NPY_DATETIME_NAT NPY_MIN_INT64 + +/* + * Upper bound on the length of a DATETIME ISO 8601 string + * YEAR: 21 (64-bit year) + * MONTH: 3 + * DAY: 3 + * HOURS: 3 + * MINUTES: 3 + * SECONDS: 3 + * ATTOSECONDS: 1 + 3*6 + * TIMEZONE: 5 + * NULL TERMINATOR: 1 + */ +#define NPY_DATETIME_MAX_ISO8601_STRLEN (21 + 3*5 + 1 + 3*6 + 6 + 1) + +/* The FR in the unit names stands for frequency */ +typedef enum { + /* Force signed enum type, must be -1 for code compatibility */ + NPY_FR_ERROR = -1, /* error or undetermined */ + + /* Start of valid units */ + NPY_FR_Y = 0, /* Years */ + NPY_FR_M = 1, /* Months */ + NPY_FR_W = 2, /* Weeks */ + /* Gap where 1.6 NPY_FR_B (value 3) was */ + NPY_FR_D = 4, /* Days */ + NPY_FR_h = 5, /* hours */ + NPY_FR_m = 6, /* minutes */ + NPY_FR_s = 7, /* seconds */ + NPY_FR_ms = 8, /* milliseconds */ + NPY_FR_us = 9, /* microseconds */ + NPY_FR_ns = 10, /* nanoseconds */ + NPY_FR_ps = 11, /* picoseconds */ + NPY_FR_fs = 12, /* femtoseconds */ + NPY_FR_as = 13, /* attoseconds */ + NPY_FR_GENERIC = 14 /* unbound units, can convert to anything */ +} NPY_DATETIMEUNIT; + +/* + * NOTE: With the NPY_FR_B gap for 1.6 ABI compatibility, NPY_DATETIME_NUMUNITS + * is technically one more than the actual number of units. + */ +#define NPY_DATETIME_NUMUNITS (NPY_FR_GENERIC + 1) +#define NPY_DATETIME_DEFAULTUNIT NPY_FR_GENERIC + +/* + * Business day conventions for mapping invalid business + * days to valid business days. + */ +typedef enum { + /* Go forward in time to the following business day. */ + NPY_BUSDAY_FORWARD, + NPY_BUSDAY_FOLLOWING = NPY_BUSDAY_FORWARD, + /* Go backward in time to the preceding business day. */ + NPY_BUSDAY_BACKWARD, + NPY_BUSDAY_PRECEDING = NPY_BUSDAY_BACKWARD, + /* + * Go forward in time to the following business day, unless it + * crosses a month boundary, in which case go backward + */ + NPY_BUSDAY_MODIFIEDFOLLOWING, + /* + * Go backward in time to the preceding business day, unless it + * crosses a month boundary, in which case go forward. + */ + NPY_BUSDAY_MODIFIEDPRECEDING, + /* Produce a NaT for non-business days. */ + NPY_BUSDAY_NAT, + /* Raise an exception for non-business days. */ + NPY_BUSDAY_RAISE +} NPY_BUSDAY_ROLL; + + +/************************************************************ + * NumPy Auxiliary Data for inner loops, sort functions, etc. + ************************************************************/ + +/* + * When creating an auxiliary data struct, this should always appear + * as the first member, like this: + * + * typedef struct { + * NpyAuxData base; + * double constant; + * } constant_multiplier_aux_data; + */ +typedef struct NpyAuxData_tag NpyAuxData; + +/* Function pointers for freeing or cloning auxiliary data */ +typedef void (NpyAuxData_FreeFunc) (NpyAuxData *); +typedef NpyAuxData *(NpyAuxData_CloneFunc) (NpyAuxData *); + +struct NpyAuxData_tag { + NpyAuxData_FreeFunc *free; + NpyAuxData_CloneFunc *clone; + /* To allow for a bit of expansion without breaking the ABI */ + void *reserved[2]; +}; + +/* Macros to use for freeing and cloning auxiliary data */ +#define NPY_AUXDATA_FREE(auxdata) \ + do { \ + if ((auxdata) != NULL) { \ + (auxdata)->free(auxdata); \ + } \ + } while(0) +#define NPY_AUXDATA_CLONE(auxdata) \ + ((auxdata)->clone(auxdata)) + +#define NPY_ERR(str) fprintf(stderr, #str); fflush(stderr); +#define NPY_ERR2(str) fprintf(stderr, str); fflush(stderr); + +/* +* Macros to define how array, and dimension/strides data is +* allocated. These should be made private +*/ + +#define NPY_USE_PYMEM 1 + + +#if NPY_USE_PYMEM == 1 +/* use the Raw versions which are safe to call with the GIL released */ +#define PyArray_malloc PyMem_RawMalloc +#define PyArray_free PyMem_RawFree +#define PyArray_realloc PyMem_RawRealloc +#else +#define PyArray_malloc malloc +#define PyArray_free free +#define PyArray_realloc realloc +#endif + +/* Dimensions and strides */ +#define PyDimMem_NEW(size) \ + ((npy_intp *)PyArray_malloc(size*sizeof(npy_intp))) + +#define PyDimMem_FREE(ptr) PyArray_free(ptr) + +#define PyDimMem_RENEW(ptr,size) \ + ((npy_intp *)PyArray_realloc(ptr,size*sizeof(npy_intp))) + +/* forward declaration */ +struct _PyArray_Descr; + +/* These must deal with unaligned and swapped data if necessary */ +typedef PyObject * (PyArray_GetItemFunc) (void *, void *); +typedef int (PyArray_SetItemFunc)(PyObject *, void *, void *); + +typedef void (PyArray_CopySwapNFunc)(void *, npy_intp, void *, npy_intp, + npy_intp, int, void *); + +typedef void (PyArray_CopySwapFunc)(void *, void *, int, void *); +typedef npy_bool (PyArray_NonzeroFunc)(void *, void *); + + +/* + * These assume aligned and notswapped data -- a buffer will be used + * before or contiguous data will be obtained + */ + +typedef int (PyArray_CompareFunc)(const void *, const void *, void *); +typedef int (PyArray_ArgFunc)(void*, npy_intp, npy_intp*, void *); + +typedef void (PyArray_DotFunc)(void *, npy_intp, void *, npy_intp, void *, + npy_intp, void *); + +typedef void (PyArray_VectorUnaryFunc)(void *, void *, npy_intp, void *, + void *); + +/* + * XXX the ignore argument should be removed next time the API version + * is bumped. It used to be the separator. + */ +typedef int (PyArray_ScanFunc)(FILE *fp, void *dptr, + char *ignore, struct _PyArray_Descr *); +typedef int (PyArray_FromStrFunc)(char *s, void *dptr, char **endptr, + struct _PyArray_Descr *); + +typedef int (PyArray_FillFunc)(void *, npy_intp, void *); + +typedef int (PyArray_SortFunc)(void *, npy_intp, void *); +typedef int (PyArray_ArgSortFunc)(void *, npy_intp *, npy_intp, void *); + +typedef int (PyArray_FillWithScalarFunc)(void *, npy_intp, void *, void *); + +typedef int (PyArray_ScalarKindFunc)(void *); + +typedef struct { + npy_intp *ptr; + int len; +} PyArray_Dims; + +typedef struct { + /* + * Functions to cast to most other standard types + * Can have some NULL entries. The types + * DATETIME, TIMEDELTA, and HALF go into the castdict + * even though they are built-in. + */ + PyArray_VectorUnaryFunc *cast[NPY_NTYPES_ABI_COMPATIBLE]; + + /* The next four functions *cannot* be NULL */ + + /* + * Functions to get and set items with standard Python types + * -- not array scalars + */ + PyArray_GetItemFunc *getitem; + PyArray_SetItemFunc *setitem; + + /* + * Copy and/or swap data. Memory areas may not overlap + * Use memmove first if they might + */ + PyArray_CopySwapNFunc *copyswapn; + PyArray_CopySwapFunc *copyswap; + + /* + * Function to compare items + * Can be NULL + */ + PyArray_CompareFunc *compare; + + /* + * Function to select largest + * Can be NULL + */ + PyArray_ArgFunc *argmax; + + /* + * Function to compute dot product + * Can be NULL + */ + PyArray_DotFunc *dotfunc; + + /* + * Function to scan an ASCII file and + * place a single value plus possible separator + * Can be NULL + */ + PyArray_ScanFunc *scanfunc; + + /* + * Function to read a single value from a string + * and adjust the pointer; Can be NULL + */ + PyArray_FromStrFunc *fromstr; + + /* + * Function to determine if data is zero or not + * If NULL a default version is + * used at Registration time. + */ + PyArray_NonzeroFunc *nonzero; + + /* + * Used for arange. Should return 0 on success + * and -1 on failure. + * Can be NULL. + */ + PyArray_FillFunc *fill; + + /* + * Function to fill arrays with scalar values + * Can be NULL + */ + PyArray_FillWithScalarFunc *fillwithscalar; + + /* + * Sorting functions + * Can be NULL + */ + PyArray_SortFunc *sort[NPY_NSORTS]; + PyArray_ArgSortFunc *argsort[NPY_NSORTS]; + + /* + * Dictionary of additional casting functions + * PyArray_VectorUnaryFuncs + * which can be populated to support casting + * to other registered types. Can be NULL + */ + PyObject *castdict; + + /* + * Functions useful for generalizing + * the casting rules. + * Can be NULL; + */ + PyArray_ScalarKindFunc *scalarkind; + int **cancastscalarkindto; + int *cancastto; + + void *_unused1; + void *_unused2; + void *_unused3; + + /* + * Function to select smallest + * Can be NULL + */ + PyArray_ArgFunc *argmin; + +} PyArray_ArrFuncs; + + +/* The item must be reference counted when it is inserted or extracted. */ +#define NPY_ITEM_REFCOUNT 0x01 +/* Same as needing REFCOUNT */ +#define NPY_ITEM_HASOBJECT 0x01 +/* Convert to list for pickling */ +#define NPY_LIST_PICKLE 0x02 +/* The item is a POINTER */ +#define NPY_ITEM_IS_POINTER 0x04 +/* memory needs to be initialized for this data-type */ +#define NPY_NEEDS_INIT 0x08 +/* operations need Python C-API so don't give-up thread. */ +#define NPY_NEEDS_PYAPI 0x10 +/* Use f.getitem when extracting elements of this data-type */ +#define NPY_USE_GETITEM 0x20 +/* Use f.setitem when setting creating 0-d array from this data-type.*/ +#define NPY_USE_SETITEM 0x40 +/* A sticky flag specifically for structured arrays */ +#define NPY_ALIGNED_STRUCT 0x80 + +/* + *These are inherited for global data-type if any data-types in the + * field have them + */ +#define NPY_FROM_FIELDS (NPY_NEEDS_INIT | NPY_LIST_PICKLE | \ + NPY_ITEM_REFCOUNT | NPY_NEEDS_PYAPI) + +#define NPY_OBJECT_DTYPE_FLAGS (NPY_LIST_PICKLE | NPY_USE_GETITEM | \ + NPY_ITEM_IS_POINTER | NPY_ITEM_REFCOUNT | \ + NPY_NEEDS_INIT | NPY_NEEDS_PYAPI) + +#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION +/* + * Public version of the Descriptor struct as of 2.x + */ +typedef struct _PyArray_Descr { + PyObject_HEAD + /* + * the type object representing an + * instance of this type -- should not + * be two type_numbers with the same type + * object. + */ + PyTypeObject *typeobj; + /* kind for this type */ + char kind; + /* unique-character representing this type */ + char type; + /* + * '>' (big), '<' (little), '|' + * (not-applicable), or '=' (native). + */ + char byteorder; + /* Former flags flags space (unused) to ensure type_num is stable. */ + char _former_flags; + /* number representing this type */ + int type_num; + /* Space for dtype instance specific flags. */ + npy_uint64 flags; + /* element size (itemsize) for this type */ + npy_intp elsize; + /* alignment needed for this type */ + npy_intp alignment; + /* metadata dict or NULL */ + PyObject *metadata; + /* Cached hash value (-1 if not yet computed). */ + npy_hash_t hash; + /* Unused slot (must be initialized to NULL) for future use */ + void *reserved_null[2]; +} PyArray_Descr; + +#else /* 1.x and 2.x compatible version (only shared fields): */ + +typedef struct _PyArray_Descr { + PyObject_HEAD + PyTypeObject *typeobj; + char kind; + char type; + char byteorder; + char _former_flags; + int type_num; +} PyArray_Descr; + +/* To access modified fields, define the full 2.0 struct: */ +typedef struct { + PyObject_HEAD + PyTypeObject *typeobj; + char kind; + char type; + char byteorder; + char _former_flags; + int type_num; + npy_uint64 flags; + npy_intp elsize; + npy_intp alignment; + PyObject *metadata; + npy_hash_t hash; + void *reserved_null[2]; +} _PyArray_DescrNumPy2; + +#endif /* 1.x and 2.x compatible version */ + +/* + * Semi-private struct with additional field of legacy descriptors (must + * check NPY_DT_is_legacy before casting/accessing). The struct is also not + * valid when running on 1.x (i.e. in public API use). + */ +typedef struct { + PyObject_HEAD + PyTypeObject *typeobj; + char kind; + char type; + char byteorder; + char _former_flags; + int type_num; + npy_uint64 flags; + npy_intp elsize; + npy_intp alignment; + PyObject *metadata; + npy_hash_t hash; + void *reserved_null[2]; + struct _arr_descr *subarray; + PyObject *fields; + PyObject *names; + NpyAuxData *c_metadata; +} _PyArray_LegacyDescr; + + +/* + * Umodified PyArray_Descr struct identical to NumPy 1.x. This struct is + * used as a prototype for registering a new legacy DType. + * It is also used to access the fields in user code running on 1.x. + */ +typedef struct { + PyObject_HEAD + PyTypeObject *typeobj; + char kind; + char type; + char byteorder; + char flags; + int type_num; + int elsize; + int alignment; + struct _arr_descr *subarray; + PyObject *fields; + PyObject *names; + PyArray_ArrFuncs *f; + PyObject *metadata; + NpyAuxData *c_metadata; + npy_hash_t hash; +} PyArray_DescrProto; + + +typedef struct _arr_descr { + PyArray_Descr *base; + PyObject *shape; /* a tuple */ +} PyArray_ArrayDescr; + +/* + * Memory handler structure for array data. + */ +/* The declaration of free differs from PyMemAllocatorEx */ +typedef struct { + void *ctx; + void* (*malloc) (void *ctx, size_t size); + void* (*calloc) (void *ctx, size_t nelem, size_t elsize); + void* (*realloc) (void *ctx, void *ptr, size_t new_size); + void (*free) (void *ctx, void *ptr, size_t size); + /* + * This is the end of the version=1 struct. Only add new fields after + * this line + */ +} PyDataMemAllocator; + +typedef struct { + char name[127]; /* multiple of 64 to keep the struct aligned */ + uint8_t version; /* currently 1 */ + PyDataMemAllocator allocator; +} PyDataMem_Handler; + + +/* + * The main array object structure. + * + * It has been recommended to use the inline functions defined below + * (PyArray_DATA and friends) to access fields here for a number of + * releases. Direct access to the members themselves is deprecated. + * To ensure that your code does not use deprecated access, + * #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION + * (or NPY_1_8_API_VERSION or higher as required). + */ +/* This struct will be moved to a private header in a future release */ +typedef struct tagPyArrayObject_fields { + PyObject_HEAD + /* Pointer to the raw data buffer */ + char *data; + /* The number of dimensions, also called 'ndim' */ + int nd; + /* The size in each dimension, also called 'shape' */ + npy_intp *dimensions; + /* + * Number of bytes to jump to get to the + * next element in each dimension + */ + npy_intp *strides; + /* + * This object is decref'd upon + * deletion of array. Except in the + * case of WRITEBACKIFCOPY which has + * special handling. + * + * For views it points to the original + * array, collapsed so no chains of + * views occur. + * + * For creation from buffer object it + * points to an object that should be + * decref'd on deletion + * + * For WRITEBACKIFCOPY flag this is an + * array to-be-updated upon calling + * PyArray_ResolveWritebackIfCopy + */ + PyObject *base; + /* Pointer to type structure */ + PyArray_Descr *descr; + /* Flags describing array -- see below */ + int flags; + /* For weak references */ + PyObject *weakreflist; +#if NPY_FEATURE_VERSION >= NPY_1_20_API_VERSION + void *_buffer_info; /* private buffer info, tagged to allow warning */ +#endif + /* + * For malloc/calloc/realloc/free per object + */ +#if NPY_FEATURE_VERSION >= NPY_1_22_API_VERSION + PyObject *mem_handler; +#endif +} PyArrayObject_fields; + +/* + * To hide the implementation details, we only expose + * the Python struct HEAD. + */ +#if !defined(NPY_NO_DEPRECATED_API) || \ + (NPY_NO_DEPRECATED_API < NPY_1_7_API_VERSION) +/* + * Can't put this in npy_deprecated_api.h like the others. + * PyArrayObject field access is deprecated as of NumPy 1.7. + */ +typedef PyArrayObject_fields PyArrayObject; +#else +typedef struct tagPyArrayObject { + PyObject_HEAD +} PyArrayObject; +#endif + +/* + * Removed 2020-Nov-25, NumPy 1.20 + * #define NPY_SIZEOF_PYARRAYOBJECT (sizeof(PyArrayObject_fields)) + * + * The above macro was removed as it gave a false sense of a stable ABI + * with respect to the structures size. If you require a runtime constant, + * you can use `PyArray_Type.tp_basicsize` instead. Otherwise, please + * see the PyArrayObject documentation or ask the NumPy developers for + * information on how to correctly replace the macro in a way that is + * compatible with multiple NumPy versions. + */ + +/* Mirrors buffer object to ptr */ + +typedef struct { + PyObject_HEAD + PyObject *base; + void *ptr; + npy_intp len; + int flags; +} PyArray_Chunk; + +typedef struct { + NPY_DATETIMEUNIT base; + int num; +} PyArray_DatetimeMetaData; + +typedef struct { + NpyAuxData base; + PyArray_DatetimeMetaData meta; +} PyArray_DatetimeDTypeMetaData; + +/* + * This structure contains an exploded view of a date-time value. + * NaT is represented by year == NPY_DATETIME_NAT. + */ +typedef struct { + npy_int64 year; + npy_int32 month, day, hour, min, sec, us, ps, as; +} npy_datetimestruct; + +/* This structure contains an exploded view of a timedelta value */ +typedef struct { + npy_int64 day; + npy_int32 sec, us, ps, as; +} npy_timedeltastruct; + +typedef int (PyArray_FinalizeFunc)(PyArrayObject *, PyObject *); + +/* + * Means c-style contiguous (last index varies the fastest). The data + * elements right after each other. + * + * This flag may be requested in constructor functions. + * This flag may be tested for in PyArray_FLAGS(arr). + */ +#define NPY_ARRAY_C_CONTIGUOUS 0x0001 + +/* + * Set if array is a contiguous Fortran array: the first index varies + * the fastest in memory (strides array is reverse of C-contiguous + * array) + * + * This flag may be requested in constructor functions. + * This flag may be tested for in PyArray_FLAGS(arr). + */ +#define NPY_ARRAY_F_CONTIGUOUS 0x0002 + +/* + * Note: all 0-d arrays are C_CONTIGUOUS and F_CONTIGUOUS. If a + * 1-d array is C_CONTIGUOUS it is also F_CONTIGUOUS. Arrays with + * more then one dimension can be C_CONTIGUOUS and F_CONTIGUOUS + * at the same time if they have either zero or one element. + * A higher dimensional array always has the same contiguity flags as + * `array.squeeze()`; dimensions with `array.shape[dimension] == 1` are + * effectively ignored when checking for contiguity. + */ + +/* + * If set, the array owns the data: it will be free'd when the array + * is deleted. + * + * This flag may be tested for in PyArray_FLAGS(arr). + */ +#define NPY_ARRAY_OWNDATA 0x0004 + +/* + * An array never has the next four set; they're only used as parameter + * flags to the various FromAny functions + * + * This flag may be requested in constructor functions. + */ + +/* Cause a cast to occur regardless of whether or not it is safe. */ +#define NPY_ARRAY_FORCECAST 0x0010 + +/* + * Always copy the array. Returned arrays are always CONTIGUOUS, + * ALIGNED, and WRITEABLE. See also: NPY_ARRAY_ENSURENOCOPY = 0x4000. + * + * This flag may be requested in constructor functions. + */ +#define NPY_ARRAY_ENSURECOPY 0x0020 + +/* + * Make sure the returned array is a base-class ndarray + * + * This flag may be requested in constructor functions. + */ +#define NPY_ARRAY_ENSUREARRAY 0x0040 + +/* + * Make sure that the strides are in units of the element size Needed + * for some operations with record-arrays. + * + * This flag may be requested in constructor functions. + */ +#define NPY_ARRAY_ELEMENTSTRIDES 0x0080 + +/* + * Array data is aligned on the appropriate memory address for the type + * stored according to how the compiler would align things (e.g., an + * array of integers (4 bytes each) starts on a memory address that's + * a multiple of 4) + * + * This flag may be requested in constructor functions. + * This flag may be tested for in PyArray_FLAGS(arr). + */ +#define NPY_ARRAY_ALIGNED 0x0100 + +/* + * Array data has the native endianness + * + * This flag may be requested in constructor functions. + */ +#define NPY_ARRAY_NOTSWAPPED 0x0200 + +/* + * Array data is writeable + * + * This flag may be requested in constructor functions. + * This flag may be tested for in PyArray_FLAGS(arr). + */ +#define NPY_ARRAY_WRITEABLE 0x0400 + +/* + * If this flag is set, then base contains a pointer to an array of + * the same size that should be updated with the current contents of + * this array when PyArray_ResolveWritebackIfCopy is called. + * + * This flag may be requested in constructor functions. + * This flag may be tested for in PyArray_FLAGS(arr). + */ +#define NPY_ARRAY_WRITEBACKIFCOPY 0x2000 + +/* + * No copy may be made while converting from an object/array (result is a view) + * + * This flag may be requested in constructor functions. + */ +#define NPY_ARRAY_ENSURENOCOPY 0x4000 + +/* + * NOTE: there are also internal flags defined in multiarray/arrayobject.h, + * which start at bit 31 and work down. + */ + +#define NPY_ARRAY_BEHAVED (NPY_ARRAY_ALIGNED | \ + NPY_ARRAY_WRITEABLE) +#define NPY_ARRAY_BEHAVED_NS (NPY_ARRAY_ALIGNED | \ + NPY_ARRAY_WRITEABLE | \ + NPY_ARRAY_NOTSWAPPED) +#define NPY_ARRAY_CARRAY (NPY_ARRAY_C_CONTIGUOUS | \ + NPY_ARRAY_BEHAVED) +#define NPY_ARRAY_CARRAY_RO (NPY_ARRAY_C_CONTIGUOUS | \ + NPY_ARRAY_ALIGNED) +#define NPY_ARRAY_FARRAY (NPY_ARRAY_F_CONTIGUOUS | \ + NPY_ARRAY_BEHAVED) +#define NPY_ARRAY_FARRAY_RO (NPY_ARRAY_F_CONTIGUOUS | \ + NPY_ARRAY_ALIGNED) +#define NPY_ARRAY_DEFAULT (NPY_ARRAY_CARRAY) +#define NPY_ARRAY_IN_ARRAY (NPY_ARRAY_CARRAY_RO) +#define NPY_ARRAY_OUT_ARRAY (NPY_ARRAY_CARRAY) +#define NPY_ARRAY_INOUT_ARRAY (NPY_ARRAY_CARRAY) +#define NPY_ARRAY_INOUT_ARRAY2 (NPY_ARRAY_CARRAY | \ + NPY_ARRAY_WRITEBACKIFCOPY) +#define NPY_ARRAY_IN_FARRAY (NPY_ARRAY_FARRAY_RO) +#define NPY_ARRAY_OUT_FARRAY (NPY_ARRAY_FARRAY) +#define NPY_ARRAY_INOUT_FARRAY (NPY_ARRAY_FARRAY) +#define NPY_ARRAY_INOUT_FARRAY2 (NPY_ARRAY_FARRAY | \ + NPY_ARRAY_WRITEBACKIFCOPY) + +#define NPY_ARRAY_UPDATE_ALL (NPY_ARRAY_C_CONTIGUOUS | \ + NPY_ARRAY_F_CONTIGUOUS | \ + NPY_ARRAY_ALIGNED) + +/* This flag is for the array interface, not PyArrayObject */ +#define NPY_ARR_HAS_DESCR 0x0800 + + + + +/* + * Size of internal buffers used for alignment Make BUFSIZE a multiple + * of sizeof(npy_cdouble) -- usually 16 so that ufunc buffers are aligned + */ +#define NPY_MIN_BUFSIZE ((int)sizeof(npy_cdouble)) +#define NPY_MAX_BUFSIZE (((int)sizeof(npy_cdouble))*1000000) +#define NPY_BUFSIZE 8192 +/* buffer stress test size: */ +/*#define NPY_BUFSIZE 17*/ + +/* + * C API: consists of Macros and functions. The MACROS are defined + * here. + */ + + +#define PyArray_ISCONTIGUOUS(m) PyArray_CHKFLAGS((m), NPY_ARRAY_C_CONTIGUOUS) +#define PyArray_ISWRITEABLE(m) PyArray_CHKFLAGS((m), NPY_ARRAY_WRITEABLE) +#define PyArray_ISALIGNED(m) PyArray_CHKFLAGS((m), NPY_ARRAY_ALIGNED) + +#define PyArray_IS_C_CONTIGUOUS(m) PyArray_CHKFLAGS((m), NPY_ARRAY_C_CONTIGUOUS) +#define PyArray_IS_F_CONTIGUOUS(m) PyArray_CHKFLAGS((m), NPY_ARRAY_F_CONTIGUOUS) + +/* the variable is used in some places, so always define it */ +#define NPY_BEGIN_THREADS_DEF PyThreadState *_save=NULL; +#if NPY_ALLOW_THREADS +#define NPY_BEGIN_ALLOW_THREADS Py_BEGIN_ALLOW_THREADS +#define NPY_END_ALLOW_THREADS Py_END_ALLOW_THREADS +#define NPY_BEGIN_THREADS do {_save = PyEval_SaveThread();} while (0); +#define NPY_END_THREADS do { if (_save) \ + { PyEval_RestoreThread(_save); _save = NULL;} } while (0); +#define NPY_BEGIN_THREADS_THRESHOLDED(loop_size) do { if ((loop_size) > 500) \ + { _save = PyEval_SaveThread();} } while (0); + + +#define NPY_ALLOW_C_API_DEF PyGILState_STATE __save__; +#define NPY_ALLOW_C_API do {__save__ = PyGILState_Ensure();} while (0); +#define NPY_DISABLE_C_API do {PyGILState_Release(__save__);} while (0); +#else +#define NPY_BEGIN_ALLOW_THREADS +#define NPY_END_ALLOW_THREADS +#define NPY_BEGIN_THREADS +#define NPY_END_THREADS +#define NPY_BEGIN_THREADS_THRESHOLDED(loop_size) +#define NPY_BEGIN_THREADS_DESCR(dtype) +#define NPY_END_THREADS_DESCR(dtype) +#define NPY_ALLOW_C_API_DEF +#define NPY_ALLOW_C_API +#define NPY_DISABLE_C_API +#endif + +/********************************** + * The nditer object, added in 1.6 + **********************************/ + +/* The actual structure of the iterator is an internal detail */ +typedef struct NpyIter_InternalOnly NpyIter; + +/* Iterator function pointers that may be specialized */ +typedef int (NpyIter_IterNextFunc)(NpyIter *iter); +typedef void (NpyIter_GetMultiIndexFunc)(NpyIter *iter, + npy_intp *outcoords); + +/*** Global flags that may be passed to the iterator constructors ***/ + +/* Track an index representing C order */ +#define NPY_ITER_C_INDEX 0x00000001 +/* Track an index representing Fortran order */ +#define NPY_ITER_F_INDEX 0x00000002 +/* Track a multi-index */ +#define NPY_ITER_MULTI_INDEX 0x00000004 +/* User code external to the iterator does the 1-dimensional innermost loop */ +#define NPY_ITER_EXTERNAL_LOOP 0x00000008 +/* Convert all the operands to a common data type */ +#define NPY_ITER_COMMON_DTYPE 0x00000010 +/* Operands may hold references, requiring API access during iteration */ +#define NPY_ITER_REFS_OK 0x00000020 +/* Zero-sized operands should be permitted, iteration checks IterSize for 0 */ +#define NPY_ITER_ZEROSIZE_OK 0x00000040 +/* Permits reductions (size-0 stride with dimension size > 1) */ +#define NPY_ITER_REDUCE_OK 0x00000080 +/* Enables sub-range iteration */ +#define NPY_ITER_RANGED 0x00000100 +/* Enables buffering */ +#define NPY_ITER_BUFFERED 0x00000200 +/* When buffering is enabled, grows the inner loop if possible */ +#define NPY_ITER_GROWINNER 0x00000400 +/* Delay allocation of buffers until first Reset* call */ +#define NPY_ITER_DELAY_BUFALLOC 0x00000800 +/* When NPY_KEEPORDER is specified, disable reversing negative-stride axes */ +#define NPY_ITER_DONT_NEGATE_STRIDES 0x00001000 +/* + * If output operands overlap with other operands (based on heuristics that + * has false positives but no false negatives), make temporary copies to + * eliminate overlap. + */ +#define NPY_ITER_COPY_IF_OVERLAP 0x00002000 + +/*** Per-operand flags that may be passed to the iterator constructors ***/ + +/* The operand will be read from and written to */ +#define NPY_ITER_READWRITE 0x00010000 +/* The operand will only be read from */ +#define NPY_ITER_READONLY 0x00020000 +/* The operand will only be written to */ +#define NPY_ITER_WRITEONLY 0x00040000 +/* The operand's data must be in native byte order */ +#define NPY_ITER_NBO 0x00080000 +/* The operand's data must be aligned */ +#define NPY_ITER_ALIGNED 0x00100000 +/* The operand's data must be contiguous (within the inner loop) */ +#define NPY_ITER_CONTIG 0x00200000 +/* The operand may be copied to satisfy requirements */ +#define NPY_ITER_COPY 0x00400000 +/* The operand may be copied with WRITEBACKIFCOPY to satisfy requirements */ +#define NPY_ITER_UPDATEIFCOPY 0x00800000 +/* Allocate the operand if it is NULL */ +#define NPY_ITER_ALLOCATE 0x01000000 +/* If an operand is allocated, don't use any subtype */ +#define NPY_ITER_NO_SUBTYPE 0x02000000 +/* This is a virtual array slot, operand is NULL but temporary data is there */ +#define NPY_ITER_VIRTUAL 0x04000000 +/* Require that the dimension match the iterator dimensions exactly */ +#define NPY_ITER_NO_BROADCAST 0x08000000 +/* A mask is being used on this array, affects buffer -> array copy */ +#define NPY_ITER_WRITEMASKED 0x10000000 +/* This array is the mask for all WRITEMASKED operands */ +#define NPY_ITER_ARRAYMASK 0x20000000 +/* Assume iterator order data access for COPY_IF_OVERLAP */ +#define NPY_ITER_OVERLAP_ASSUME_ELEMENTWISE 0x40000000 + +#define NPY_ITER_GLOBAL_FLAGS 0x0000ffff +#define NPY_ITER_PER_OP_FLAGS 0xffff0000 + + +/***************************** + * Basic iterator object + *****************************/ + +/* FWD declaration */ +typedef struct PyArrayIterObject_tag PyArrayIterObject; + +/* + * type of the function which translates a set of coordinates to a + * pointer to the data + */ +typedef char* (*npy_iter_get_dataptr_t)( + PyArrayIterObject* iter, const npy_intp*); + +struct PyArrayIterObject_tag { + PyObject_HEAD + int nd_m1; /* number of dimensions - 1 */ + npy_intp index, size; + npy_intp coordinates[NPY_MAXDIMS_LEGACY_ITERS];/* N-dimensional loop */ + npy_intp dims_m1[NPY_MAXDIMS_LEGACY_ITERS]; /* ao->dimensions - 1 */ + npy_intp strides[NPY_MAXDIMS_LEGACY_ITERS]; /* ao->strides or fake */ + npy_intp backstrides[NPY_MAXDIMS_LEGACY_ITERS];/* how far to jump back */ + npy_intp factors[NPY_MAXDIMS_LEGACY_ITERS]; /* shape factors */ + PyArrayObject *ao; + char *dataptr; /* pointer to current item*/ + npy_bool contiguous; + + npy_intp bounds[NPY_MAXDIMS_LEGACY_ITERS][2]; + npy_intp limits[NPY_MAXDIMS_LEGACY_ITERS][2]; + npy_intp limits_sizes[NPY_MAXDIMS_LEGACY_ITERS]; + npy_iter_get_dataptr_t translate; +} ; + + +/* Iterator API */ +#define PyArrayIter_Check(op) PyObject_TypeCheck((op), &PyArrayIter_Type) + +#define _PyAIT(it) ((PyArrayIterObject *)(it)) +#define PyArray_ITER_RESET(it) do { \ + _PyAIT(it)->index = 0; \ + _PyAIT(it)->dataptr = PyArray_BYTES(_PyAIT(it)->ao); \ + memset(_PyAIT(it)->coordinates, 0, \ + (_PyAIT(it)->nd_m1+1)*sizeof(npy_intp)); \ +} while (0) + +#define _PyArray_ITER_NEXT1(it) do { \ + (it)->dataptr += _PyAIT(it)->strides[0]; \ + (it)->coordinates[0]++; \ +} while (0) + +#define _PyArray_ITER_NEXT2(it) do { \ + if ((it)->coordinates[1] < (it)->dims_m1[1]) { \ + (it)->coordinates[1]++; \ + (it)->dataptr += (it)->strides[1]; \ + } \ + else { \ + (it)->coordinates[1] = 0; \ + (it)->coordinates[0]++; \ + (it)->dataptr += (it)->strides[0] - \ + (it)->backstrides[1]; \ + } \ +} while (0) + +#define PyArray_ITER_NEXT(it) do { \ + _PyAIT(it)->index++; \ + if (_PyAIT(it)->nd_m1 == 0) { \ + _PyArray_ITER_NEXT1(_PyAIT(it)); \ + } \ + else if (_PyAIT(it)->contiguous) \ + _PyAIT(it)->dataptr += PyArray_ITEMSIZE(_PyAIT(it)->ao); \ + else if (_PyAIT(it)->nd_m1 == 1) { \ + _PyArray_ITER_NEXT2(_PyAIT(it)); \ + } \ + else { \ + int __npy_i; \ + for (__npy_i=_PyAIT(it)->nd_m1; __npy_i >= 0; __npy_i--) { \ + if (_PyAIT(it)->coordinates[__npy_i] < \ + _PyAIT(it)->dims_m1[__npy_i]) { \ + _PyAIT(it)->coordinates[__npy_i]++; \ + _PyAIT(it)->dataptr += \ + _PyAIT(it)->strides[__npy_i]; \ + break; \ + } \ + else { \ + _PyAIT(it)->coordinates[__npy_i] = 0; \ + _PyAIT(it)->dataptr -= \ + _PyAIT(it)->backstrides[__npy_i]; \ + } \ + } \ + } \ +} while (0) + +#define PyArray_ITER_GOTO(it, destination) do { \ + int __npy_i; \ + _PyAIT(it)->index = 0; \ + _PyAIT(it)->dataptr = PyArray_BYTES(_PyAIT(it)->ao); \ + for (__npy_i = _PyAIT(it)->nd_m1; __npy_i>=0; __npy_i--) { \ + if (destination[__npy_i] < 0) { \ + destination[__npy_i] += \ + _PyAIT(it)->dims_m1[__npy_i]+1; \ + } \ + _PyAIT(it)->dataptr += destination[__npy_i] * \ + _PyAIT(it)->strides[__npy_i]; \ + _PyAIT(it)->coordinates[__npy_i] = \ + destination[__npy_i]; \ + _PyAIT(it)->index += destination[__npy_i] * \ + ( __npy_i==_PyAIT(it)->nd_m1 ? 1 : \ + _PyAIT(it)->dims_m1[__npy_i+1]+1) ; \ + } \ +} while (0) + +#define PyArray_ITER_GOTO1D(it, ind) do { \ + int __npy_i; \ + npy_intp __npy_ind = (npy_intp)(ind); \ + if (__npy_ind < 0) __npy_ind += _PyAIT(it)->size; \ + _PyAIT(it)->index = __npy_ind; \ + if (_PyAIT(it)->nd_m1 == 0) { \ + _PyAIT(it)->dataptr = PyArray_BYTES(_PyAIT(it)->ao) + \ + __npy_ind * _PyAIT(it)->strides[0]; \ + } \ + else if (_PyAIT(it)->contiguous) \ + _PyAIT(it)->dataptr = PyArray_BYTES(_PyAIT(it)->ao) + \ + __npy_ind * PyArray_ITEMSIZE(_PyAIT(it)->ao); \ + else { \ + _PyAIT(it)->dataptr = PyArray_BYTES(_PyAIT(it)->ao); \ + for (__npy_i = 0; __npy_i<=_PyAIT(it)->nd_m1; \ + __npy_i++) { \ + _PyAIT(it)->coordinates[__npy_i] = \ + (__npy_ind / _PyAIT(it)->factors[__npy_i]); \ + _PyAIT(it)->dataptr += \ + (__npy_ind / _PyAIT(it)->factors[__npy_i]) \ + * _PyAIT(it)->strides[__npy_i]; \ + __npy_ind %= _PyAIT(it)->factors[__npy_i]; \ + } \ + } \ +} while (0) + +#define PyArray_ITER_DATA(it) ((void *)(_PyAIT(it)->dataptr)) + +#define PyArray_ITER_NOTDONE(it) (_PyAIT(it)->index < _PyAIT(it)->size) + + +/* + * Any object passed to PyArray_Broadcast must be binary compatible + * with this structure. + */ + +typedef struct { + PyObject_HEAD + int numiter; /* number of iters */ + npy_intp size; /* broadcasted size */ + npy_intp index; /* current index */ + int nd; /* number of dims */ + npy_intp dimensions[NPY_MAXDIMS_LEGACY_ITERS]; /* dimensions */ + /* + * Space for the individual iterators, do not specify size publicly + * to allow changing it more easily. + * One reason is that Cython uses this for checks and only allows + * growing structs (as of Cython 3.0.6). It also allows NPY_MAXARGS + * to be runtime dependent. + */ +#if (defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD) + PyArrayIterObject *iters[64]; +#elif defined(__cplusplus) + /* + * C++ doesn't strictly support flexible members and gives compilers + * warnings (pedantic only), so we lie. We can't make it 64 because + * then Cython is unhappy (larger struct at runtime is OK smaller not). + */ + PyArrayIterObject *iters[32]; +#else + PyArrayIterObject *iters[]; +#endif +} PyArrayMultiIterObject; + +#define _PyMIT(m) ((PyArrayMultiIterObject *)(m)) +#define PyArray_MultiIter_RESET(multi) do { \ + int __npy_mi; \ + _PyMIT(multi)->index = 0; \ + for (__npy_mi=0; __npy_mi < _PyMIT(multi)->numiter; __npy_mi++) { \ + PyArray_ITER_RESET(_PyMIT(multi)->iters[__npy_mi]); \ + } \ +} while (0) + +#define PyArray_MultiIter_NEXT(multi) do { \ + int __npy_mi; \ + _PyMIT(multi)->index++; \ + for (__npy_mi=0; __npy_mi < _PyMIT(multi)->numiter; __npy_mi++) { \ + PyArray_ITER_NEXT(_PyMIT(multi)->iters[__npy_mi]); \ + } \ +} while (0) + +#define PyArray_MultiIter_GOTO(multi, dest) do { \ + int __npy_mi; \ + for (__npy_mi=0; __npy_mi < _PyMIT(multi)->numiter; __npy_mi++) { \ + PyArray_ITER_GOTO(_PyMIT(multi)->iters[__npy_mi], dest); \ + } \ + _PyMIT(multi)->index = _PyMIT(multi)->iters[0]->index; \ +} while (0) + +#define PyArray_MultiIter_GOTO1D(multi, ind) do { \ + int __npy_mi; \ + for (__npy_mi=0; __npy_mi < _PyMIT(multi)->numiter; __npy_mi++) { \ + PyArray_ITER_GOTO1D(_PyMIT(multi)->iters[__npy_mi], ind); \ + } \ + _PyMIT(multi)->index = _PyMIT(multi)->iters[0]->index; \ +} while (0) + +#define PyArray_MultiIter_DATA(multi, i) \ + ((void *)(_PyMIT(multi)->iters[i]->dataptr)) + +#define PyArray_MultiIter_NEXTi(multi, i) \ + PyArray_ITER_NEXT(_PyMIT(multi)->iters[i]) + +#define PyArray_MultiIter_NOTDONE(multi) \ + (_PyMIT(multi)->index < _PyMIT(multi)->size) + + +static NPY_INLINE int +PyArray_MultiIter_NUMITER(PyArrayMultiIterObject *multi) +{ + return multi->numiter; +} + + +static NPY_INLINE npy_intp +PyArray_MultiIter_SIZE(PyArrayMultiIterObject *multi) +{ + return multi->size; +} + + +static NPY_INLINE npy_intp +PyArray_MultiIter_INDEX(PyArrayMultiIterObject *multi) +{ + return multi->index; +} + + +static NPY_INLINE int +PyArray_MultiIter_NDIM(PyArrayMultiIterObject *multi) +{ + return multi->nd; +} + + +static NPY_INLINE npy_intp * +PyArray_MultiIter_DIMS(PyArrayMultiIterObject *multi) +{ + return multi->dimensions; +} + + +static NPY_INLINE void ** +PyArray_MultiIter_ITERS(PyArrayMultiIterObject *multi) +{ + return (void**)multi->iters; +} + + +enum { + NPY_NEIGHBORHOOD_ITER_ZERO_PADDING, + NPY_NEIGHBORHOOD_ITER_ONE_PADDING, + NPY_NEIGHBORHOOD_ITER_CONSTANT_PADDING, + NPY_NEIGHBORHOOD_ITER_CIRCULAR_PADDING, + NPY_NEIGHBORHOOD_ITER_MIRROR_PADDING +}; + +typedef struct { + PyObject_HEAD + + /* + * PyArrayIterObject part: keep this in this exact order + */ + int nd_m1; /* number of dimensions - 1 */ + npy_intp index, size; + npy_intp coordinates[NPY_MAXDIMS_LEGACY_ITERS];/* N-dimensional loop */ + npy_intp dims_m1[NPY_MAXDIMS_LEGACY_ITERS]; /* ao->dimensions - 1 */ + npy_intp strides[NPY_MAXDIMS_LEGACY_ITERS]; /* ao->strides or fake */ + npy_intp backstrides[NPY_MAXDIMS_LEGACY_ITERS];/* how far to jump back */ + npy_intp factors[NPY_MAXDIMS_LEGACY_ITERS]; /* shape factors */ + PyArrayObject *ao; + char *dataptr; /* pointer to current item*/ + npy_bool contiguous; + + npy_intp bounds[NPY_MAXDIMS_LEGACY_ITERS][2]; + npy_intp limits[NPY_MAXDIMS_LEGACY_ITERS][2]; + npy_intp limits_sizes[NPY_MAXDIMS_LEGACY_ITERS]; + npy_iter_get_dataptr_t translate; + + /* + * New members + */ + npy_intp nd; + + /* Dimensions is the dimension of the array */ + npy_intp dimensions[NPY_MAXDIMS_LEGACY_ITERS]; + + /* + * Neighborhood points coordinates are computed relatively to the + * point pointed by _internal_iter + */ + PyArrayIterObject* _internal_iter; + /* + * To keep a reference to the representation of the constant value + * for constant padding + */ + char* constant; + + int mode; +} PyArrayNeighborhoodIterObject; + +/* + * Neighborhood iterator API + */ + +/* General: those work for any mode */ +static inline int +PyArrayNeighborhoodIter_Reset(PyArrayNeighborhoodIterObject* iter); +static inline int +PyArrayNeighborhoodIter_Next(PyArrayNeighborhoodIterObject* iter); +#if 0 +static inline int +PyArrayNeighborhoodIter_Next2D(PyArrayNeighborhoodIterObject* iter); +#endif + +/* + * Include inline implementations - functions defined there are not + * considered public API + */ +#define NUMPY_CORE_INCLUDE_NUMPY__NEIGHBORHOOD_IMP_H_ +#include "_neighborhood_iterator_imp.h" +#undef NUMPY_CORE_INCLUDE_NUMPY__NEIGHBORHOOD_IMP_H_ + + + +/* The default array type */ +#define NPY_DEFAULT_TYPE NPY_DOUBLE +/* default integer type defined in npy_2_compat header */ + +/* + * All sorts of useful ways to look into a PyArrayObject. It is recommended + * to use PyArrayObject * objects instead of always casting from PyObject *, + * for improved type checking. + * + * In many cases here the macro versions of the accessors are deprecated, + * but can't be immediately changed to inline functions because the + * preexisting macros accept PyObject * and do automatic casts. Inline + * functions accepting PyArrayObject * provides for some compile-time + * checking of correctness when working with these objects in C. + */ + +#define PyArray_ISONESEGMENT(m) (PyArray_CHKFLAGS(m, NPY_ARRAY_C_CONTIGUOUS) || \ + PyArray_CHKFLAGS(m, NPY_ARRAY_F_CONTIGUOUS)) + +#define PyArray_ISFORTRAN(m) (PyArray_CHKFLAGS(m, NPY_ARRAY_F_CONTIGUOUS) && \ + (!PyArray_CHKFLAGS(m, NPY_ARRAY_C_CONTIGUOUS))) + +#define PyArray_FORTRAN_IF(m) ((PyArray_CHKFLAGS(m, NPY_ARRAY_F_CONTIGUOUS) ? \ + NPY_ARRAY_F_CONTIGUOUS : 0)) + +static inline int +PyArray_NDIM(const PyArrayObject *arr) +{ + return ((PyArrayObject_fields *)arr)->nd; +} + +static inline void * +PyArray_DATA(const PyArrayObject *arr) +{ + return ((PyArrayObject_fields *)arr)->data; +} + +static inline char * +PyArray_BYTES(const PyArrayObject *arr) +{ + return ((PyArrayObject_fields *)arr)->data; +} + +static inline npy_intp * +PyArray_DIMS(const PyArrayObject *arr) +{ + return ((PyArrayObject_fields *)arr)->dimensions; +} + +static inline npy_intp * +PyArray_STRIDES(const PyArrayObject *arr) +{ + return ((PyArrayObject_fields *)arr)->strides; +} + +static inline npy_intp +PyArray_DIM(const PyArrayObject *arr, int idim) +{ + return ((PyArrayObject_fields *)arr)->dimensions[idim]; +} + +static inline npy_intp +PyArray_STRIDE(const PyArrayObject *arr, int istride) +{ + return ((PyArrayObject_fields *)arr)->strides[istride]; +} + +static inline NPY_RETURNS_BORROWED_REF PyObject * +PyArray_BASE(const PyArrayObject *arr) +{ + return ((PyArrayObject_fields *)arr)->base; +} + +static inline NPY_RETURNS_BORROWED_REF PyArray_Descr * +PyArray_DESCR(const PyArrayObject *arr) +{ + return ((PyArrayObject_fields *)arr)->descr; +} + +static inline int +PyArray_FLAGS(const PyArrayObject *arr) +{ + return ((PyArrayObject_fields *)arr)->flags; +} + + +static inline int +PyArray_TYPE(const PyArrayObject *arr) +{ + return ((PyArrayObject_fields *)arr)->descr->type_num; +} + +static inline int +PyArray_CHKFLAGS(const PyArrayObject *arr, int flags) +{ + return (PyArray_FLAGS(arr) & flags) == flags; +} + +static inline PyArray_Descr * +PyArray_DTYPE(const PyArrayObject *arr) +{ + return ((PyArrayObject_fields *)arr)->descr; +} + +static inline npy_intp * +PyArray_SHAPE(const PyArrayObject *arr) +{ + return ((PyArrayObject_fields *)arr)->dimensions; +} + +/* + * Enables the specified array flags. Does no checking, + * assumes you know what you're doing. + */ +static inline void +PyArray_ENABLEFLAGS(PyArrayObject *arr, int flags) +{ + ((PyArrayObject_fields *)arr)->flags |= flags; +} + +/* + * Clears the specified array flags. Does no checking, + * assumes you know what you're doing. + */ +static inline void +PyArray_CLEARFLAGS(PyArrayObject *arr, int flags) +{ + ((PyArrayObject_fields *)arr)->flags &= ~flags; +} + +#if NPY_FEATURE_VERSION >= NPY_1_22_API_VERSION + static inline NPY_RETURNS_BORROWED_REF PyObject * + PyArray_HANDLER(PyArrayObject *arr) + { + return ((PyArrayObject_fields *)arr)->mem_handler; + } +#endif + +#define PyTypeNum_ISBOOL(type) ((type) == NPY_BOOL) + +#define PyTypeNum_ISUNSIGNED(type) (((type) == NPY_UBYTE) || \ + ((type) == NPY_USHORT) || \ + ((type) == NPY_UINT) || \ + ((type) == NPY_ULONG) || \ + ((type) == NPY_ULONGLONG)) + +#define PyTypeNum_ISSIGNED(type) (((type) == NPY_BYTE) || \ + ((type) == NPY_SHORT) || \ + ((type) == NPY_INT) || \ + ((type) == NPY_LONG) || \ + ((type) == NPY_LONGLONG)) + +#define PyTypeNum_ISINTEGER(type) (((type) >= NPY_BYTE) && \ + ((type) <= NPY_ULONGLONG)) + +#define PyTypeNum_ISFLOAT(type) ((((type) >= NPY_FLOAT) && \ + ((type) <= NPY_LONGDOUBLE)) || \ + ((type) == NPY_HALF)) + +#define PyTypeNum_ISNUMBER(type) (((type) <= NPY_CLONGDOUBLE) || \ + ((type) == NPY_HALF)) + +#define PyTypeNum_ISSTRING(type) (((type) == NPY_STRING) || \ + ((type) == NPY_UNICODE)) + +#define PyTypeNum_ISCOMPLEX(type) (((type) >= NPY_CFLOAT) && \ + ((type) <= NPY_CLONGDOUBLE)) + +#define PyTypeNum_ISFLEXIBLE(type) (((type) >=NPY_STRING) && \ + ((type) <=NPY_VOID)) + +#define PyTypeNum_ISDATETIME(type) (((type) >=NPY_DATETIME) && \ + ((type) <=NPY_TIMEDELTA)) + +#define PyTypeNum_ISUSERDEF(type) (((type) >= NPY_USERDEF) && \ + ((type) < NPY_USERDEF+ \ + NPY_NUMUSERTYPES)) + +#define PyTypeNum_ISEXTENDED(type) (PyTypeNum_ISFLEXIBLE(type) || \ + PyTypeNum_ISUSERDEF(type)) + +#define PyTypeNum_ISOBJECT(type) ((type) == NPY_OBJECT) + + +#define PyDataType_ISLEGACY(dtype) ((dtype)->type_num < NPY_VSTRING && ((dtype)->type_num >= 0)) +#define PyDataType_ISBOOL(obj) PyTypeNum_ISBOOL(((PyArray_Descr*)(obj))->type_num) +#define PyDataType_ISUNSIGNED(obj) PyTypeNum_ISUNSIGNED(((PyArray_Descr*)(obj))->type_num) +#define PyDataType_ISSIGNED(obj) PyTypeNum_ISSIGNED(((PyArray_Descr*)(obj))->type_num) +#define PyDataType_ISINTEGER(obj) PyTypeNum_ISINTEGER(((PyArray_Descr*)(obj))->type_num ) +#define PyDataType_ISFLOAT(obj) PyTypeNum_ISFLOAT(((PyArray_Descr*)(obj))->type_num) +#define PyDataType_ISNUMBER(obj) PyTypeNum_ISNUMBER(((PyArray_Descr*)(obj))->type_num) +#define PyDataType_ISSTRING(obj) PyTypeNum_ISSTRING(((PyArray_Descr*)(obj))->type_num) +#define PyDataType_ISCOMPLEX(obj) PyTypeNum_ISCOMPLEX(((PyArray_Descr*)(obj))->type_num) +#define PyDataType_ISFLEXIBLE(obj) PyTypeNum_ISFLEXIBLE(((PyArray_Descr*)(obj))->type_num) +#define PyDataType_ISDATETIME(obj) PyTypeNum_ISDATETIME(((PyArray_Descr*)(obj))->type_num) +#define PyDataType_ISUSERDEF(obj) PyTypeNum_ISUSERDEF(((PyArray_Descr*)(obj))->type_num) +#define PyDataType_ISEXTENDED(obj) PyTypeNum_ISEXTENDED(((PyArray_Descr*)(obj))->type_num) +#define PyDataType_ISOBJECT(obj) PyTypeNum_ISOBJECT(((PyArray_Descr*)(obj))->type_num) +#define PyDataType_MAKEUNSIZED(dtype) ((dtype)->elsize = 0) +/* + * PyDataType_* FLAGS, FLACHK, REFCHK, HASFIELDS, HASSUBARRAY, UNSIZED, + * SUBARRAY, NAMES, FIELDS, C_METADATA, and METADATA require version specific + * lookup and are defined in npy_2_compat.h. + */ + + +#define PyArray_ISBOOL(obj) PyTypeNum_ISBOOL(PyArray_TYPE(obj)) +#define PyArray_ISUNSIGNED(obj) PyTypeNum_ISUNSIGNED(PyArray_TYPE(obj)) +#define PyArray_ISSIGNED(obj) PyTypeNum_ISSIGNED(PyArray_TYPE(obj)) +#define PyArray_ISINTEGER(obj) PyTypeNum_ISINTEGER(PyArray_TYPE(obj)) +#define PyArray_ISFLOAT(obj) PyTypeNum_ISFLOAT(PyArray_TYPE(obj)) +#define PyArray_ISNUMBER(obj) PyTypeNum_ISNUMBER(PyArray_TYPE(obj)) +#define PyArray_ISSTRING(obj) PyTypeNum_ISSTRING(PyArray_TYPE(obj)) +#define PyArray_ISCOMPLEX(obj) PyTypeNum_ISCOMPLEX(PyArray_TYPE(obj)) +#define PyArray_ISFLEXIBLE(obj) PyTypeNum_ISFLEXIBLE(PyArray_TYPE(obj)) +#define PyArray_ISDATETIME(obj) PyTypeNum_ISDATETIME(PyArray_TYPE(obj)) +#define PyArray_ISUSERDEF(obj) PyTypeNum_ISUSERDEF(PyArray_TYPE(obj)) +#define PyArray_ISEXTENDED(obj) PyTypeNum_ISEXTENDED(PyArray_TYPE(obj)) +#define PyArray_ISOBJECT(obj) PyTypeNum_ISOBJECT(PyArray_TYPE(obj)) +#define PyArray_HASFIELDS(obj) PyDataType_HASFIELDS(PyArray_DESCR(obj)) + + /* + * FIXME: This should check for a flag on the data-type that + * states whether or not it is variable length. Because the + * ISFLEXIBLE check is hard-coded to the built-in data-types. + */ +#define PyArray_ISVARIABLE(obj) PyTypeNum_ISFLEXIBLE(PyArray_TYPE(obj)) + +#define PyArray_SAFEALIGNEDCOPY(obj) (PyArray_ISALIGNED(obj) && !PyArray_ISVARIABLE(obj)) + + +#define NPY_LITTLE '<' +#define NPY_BIG '>' +#define NPY_NATIVE '=' +#define NPY_SWAP 's' +#define NPY_IGNORE '|' + +#if NPY_BYTE_ORDER == NPY_BIG_ENDIAN +#define NPY_NATBYTE NPY_BIG +#define NPY_OPPBYTE NPY_LITTLE +#else +#define NPY_NATBYTE NPY_LITTLE +#define NPY_OPPBYTE NPY_BIG +#endif + +#define PyArray_ISNBO(arg) ((arg) != NPY_OPPBYTE) +#define PyArray_IsNativeByteOrder PyArray_ISNBO +#define PyArray_ISNOTSWAPPED(m) PyArray_ISNBO(PyArray_DESCR(m)->byteorder) +#define PyArray_ISBYTESWAPPED(m) (!PyArray_ISNOTSWAPPED(m)) + +#define PyArray_FLAGSWAP(m, flags) (PyArray_CHKFLAGS(m, flags) && \ + PyArray_ISNOTSWAPPED(m)) + +#define PyArray_ISCARRAY(m) PyArray_FLAGSWAP(m, NPY_ARRAY_CARRAY) +#define PyArray_ISCARRAY_RO(m) PyArray_FLAGSWAP(m, NPY_ARRAY_CARRAY_RO) +#define PyArray_ISFARRAY(m) PyArray_FLAGSWAP(m, NPY_ARRAY_FARRAY) +#define PyArray_ISFARRAY_RO(m) PyArray_FLAGSWAP(m, NPY_ARRAY_FARRAY_RO) +#define PyArray_ISBEHAVED(m) PyArray_FLAGSWAP(m, NPY_ARRAY_BEHAVED) +#define PyArray_ISBEHAVED_RO(m) PyArray_FLAGSWAP(m, NPY_ARRAY_ALIGNED) + + +#define PyDataType_ISNOTSWAPPED(d) PyArray_ISNBO(((PyArray_Descr *)(d))->byteorder) +#define PyDataType_ISBYTESWAPPED(d) (!PyDataType_ISNOTSWAPPED(d)) + +/************************************************************ + * A struct used by PyArray_CreateSortedStridePerm, new in 1.7. + ************************************************************/ + +typedef struct { + npy_intp perm, stride; +} npy_stride_sort_item; + +/************************************************************ + * This is the form of the struct that's stored in the + * PyCapsule returned by an array's __array_struct__ attribute. See + * https://docs.scipy.org/doc/numpy/reference/arrays.interface.html for the full + * documentation. + ************************************************************/ +typedef struct { + int two; /* + * contains the integer 2 as a sanity + * check + */ + + int nd; /* number of dimensions */ + + char typekind; /* + * kind in array --- character code of + * typestr + */ + + int itemsize; /* size of each element */ + + int flags; /* + * how should be data interpreted. Valid + * flags are CONTIGUOUS (1), F_CONTIGUOUS (2), + * ALIGNED (0x100), NOTSWAPPED (0x200), and + * WRITEABLE (0x400). ARR_HAS_DESCR (0x800) + * states that arrdescr field is present in + * structure + */ + + npy_intp *shape; /* + * A length-nd array of shape + * information + */ + + npy_intp *strides; /* A length-nd array of stride information */ + + void *data; /* A pointer to the first element of the array */ + + PyObject *descr; /* + * A list of fields or NULL (ignored if flags + * does not have ARR_HAS_DESCR flag set) + */ +} PyArrayInterface; + + +/**************************************** + * NpyString + * + * Types used by the NpyString API. + ****************************************/ + +/* + * A "packed" encoded string. The string data must be accessed by first unpacking the string. + */ +typedef struct npy_packed_static_string npy_packed_static_string; + +/* + * An unpacked read-only view onto the data in a packed string + */ +typedef struct npy_unpacked_static_string { + size_t size; + const char *buf; +} npy_static_string; + +/* + * Handles heap allocations for static strings. + */ +typedef struct npy_string_allocator npy_string_allocator; + +typedef struct { + PyArray_Descr base; + // The object representing a null value + PyObject *na_object; + // Flag indicating whether or not to coerce arbitrary objects to strings + char coerce; + // Flag indicating the na object is NaN-like + char has_nan_na; + // Flag indicating the na object is a string + char has_string_na; + // If nonzero, indicates that this instance is owned by an array already + char array_owned; + // The string data to use when a default string is needed + npy_static_string default_string; + // The name of the missing data object, if any + npy_static_string na_name; + // the allocator should only be directly accessed after + // acquiring the allocator_lock and the lock should + // be released immediately after the allocator is + // no longer needed + npy_string_allocator *allocator; +} PyArray_StringDTypeObject; + +/* + * PyArray_DTypeMeta related definitions. + * + * As of now, this API is preliminary and will be extended as necessary. + */ +#if defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD + /* + * The Structures defined in this block are currently considered + * private API and may change without warning! + * Part of this (at least the size) is expected to be public API without + * further modifications. + */ + /* TODO: Make this definition public in the API, as soon as its settled */ + NPY_NO_EXPORT extern PyTypeObject PyArrayDTypeMeta_Type; + + /* + * While NumPy DTypes would not need to be heap types the plan is to + * make DTypes available in Python at which point they will be heap types. + * Since we also wish to add fields to the DType class, this looks like + * a typical instance definition, but with PyHeapTypeObject instead of + * only the PyObject_HEAD. + * This must only be exposed very extremely careful consideration, since + * it is a fairly complex construct which may be better to allow + * refactoring of. + */ + typedef struct { + PyHeapTypeObject super; + + /* + * Most DTypes will have a singleton default instance, for the + * parametric legacy DTypes (bytes, string, void, datetime) this + * may be a pointer to the *prototype* instance? + */ + PyArray_Descr *singleton; + /* Copy of the legacy DTypes type number, usually invalid. */ + int type_num; + + /* The type object of the scalar instances (may be NULL?) */ + PyTypeObject *scalar_type; + /* + * DType flags to signal legacy, parametric, or + * abstract. But plenty of space for additional information/flags. + */ + npy_uint64 flags; + + /* + * Use indirection in order to allow a fixed size for this struct. + * A stable ABI size makes creating a static DType less painful + * while also ensuring flexibility for all opaque API (with one + * indirection due the pointer lookup). + */ + void *dt_slots; + void *reserved[3]; + } PyArray_DTypeMeta; + +#endif /* NPY_INTERNAL_BUILD */ + + +/* + * Use the keyword NPY_DEPRECATED_INCLUDES to ensure that the header files + * npy_*_*_deprecated_api.h are only included from here and nowhere else. + */ +#ifdef NPY_DEPRECATED_INCLUDES +#error "Do not use the reserved keyword NPY_DEPRECATED_INCLUDES." +#endif +#define NPY_DEPRECATED_INCLUDES +/* + * There is no file npy_1_8_deprecated_api.h since there are no additional + * deprecated API features in NumPy 1.8. + * + * Note to maintainers: insert code like the following in future NumPy + * versions. + * + * #if !defined(NPY_NO_DEPRECATED_API) || \ + * (NPY_NO_DEPRECATED_API < NPY_1_9_API_VERSION) + * #include "npy_1_9_deprecated_api.h" + * #endif + * Then in the npy_1_9_deprecated_api.h header add something like this + * -------------------- + * #ifndef NPY_DEPRECATED_INCLUDES + * #error "Should never include npy_*_*_deprecated_api directly." + * #endif + * #ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_1_7_DEPRECATED_API_H_ + * #define NUMPY_CORE_INCLUDE_NUMPY_NPY_1_7_DEPRECATED_API_H_ + * + * #ifndef NPY_NO_DEPRECATED_API + * #if defined(_WIN32) + * #define _WARN___STR2__(x) #x + * #define _WARN___STR1__(x) _WARN___STR2__(x) + * #define _WARN___LOC__ __FILE__ "(" _WARN___STR1__(__LINE__) ") : Warning Msg: " + * #pragma message(_WARN___LOC__"Using deprecated NumPy API, disable it with " \ + * "#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION") + * #else + * #warning "Using deprecated NumPy API, disable it with " \ + * "#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION" + * #endif + * #endif + * -------------------- + */ +#undef NPY_DEPRECATED_INCLUDES + +#ifdef __cplusplus +} +#endif + +#endif /* NUMPY_CORE_INCLUDE_NUMPY_NDARRAYTYPES_H_ */ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_2_compat.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_2_compat.h new file mode 100644 index 0000000..e39e65a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_2_compat.h @@ -0,0 +1,249 @@ +/* + * This header file defines relevant features which: + * - Require runtime inspection depending on the NumPy version. + * - May be needed when compiling with an older version of NumPy to allow + * a smooth transition. + * + * As such, it is shipped with NumPy 2.0, but designed to be vendored in full + * or parts by downstream projects. + * + * It must be included after any other includes. `import_array()` must have + * been called in the scope or version dependency will misbehave, even when + * only `PyUFunc_` API is used. + * + * If required complicated defs (with inline functions) should be written as: + * + * #if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION + * Simple definition when NumPy 2.0 API is guaranteed. + * #else + * static inline definition of a 1.x compatibility shim + * #if NPY_ABI_VERSION < 0x02000000 + * Make 1.x compatibility shim the public API (1.x only branch) + * #else + * Runtime dispatched version (1.x or 2.x) + * #endif + * #endif + * + * An internal build always passes NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION + */ + +#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_2_COMPAT_H_ +#define NUMPY_CORE_INCLUDE_NUMPY_NPY_2_COMPAT_H_ + +/* + * New macros for accessing real and complex part of a complex number can be + * found in "npy_2_complexcompat.h". + */ + + +/* + * This header is meant to be included by downstream directly for 1.x compat. + * In that case we need to ensure that users first included the full headers + * and not just `ndarraytypes.h`. + */ + +#ifndef NPY_FEATURE_VERSION + #error "The NumPy 2 compat header requires `import_array()` for which " \ + "the `ndarraytypes.h` header include is not sufficient. Please " \ + "include it after `numpy/ndarrayobject.h` or similar.\n" \ + "To simplify inclusion, you may use `PyArray_ImportNumPy()` " \ + "which is defined in the compat header and is lightweight (can be)." +#endif + +#if NPY_ABI_VERSION < 0x02000000 + /* + * Define 2.0 feature version as it is needed below to decide whether we + * compile for both 1.x and 2.x (defining it guarantees 1.x only). + */ + #define NPY_2_0_API_VERSION 0x00000012 + /* + * If we are compiling with NumPy 1.x, PyArray_RUNTIME_VERSION so we + * pretend the `PyArray_RUNTIME_VERSION` is `NPY_FEATURE_VERSION`. + * This allows downstream to use `PyArray_RUNTIME_VERSION` if they need to. + */ + #define PyArray_RUNTIME_VERSION NPY_FEATURE_VERSION + /* Compiling on NumPy 1.x where these are the same: */ + #define PyArray_DescrProto PyArray_Descr +#endif + + +/* + * Define a better way to call `_import_array()` to simplify backporting as + * we now require imports more often (necessary to make ABI flexible). + */ +#ifdef import_array1 + +static inline int +PyArray_ImportNumPyAPI(void) +{ + if (NPY_UNLIKELY(PyArray_API == NULL)) { + import_array1(-1); + } + return 0; +} + +#endif /* import_array1 */ + + +/* + * NPY_DEFAULT_INT + * + * The default integer has changed, `NPY_DEFAULT_INT` is available at runtime + * for use as type number, e.g. `PyArray_DescrFromType(NPY_DEFAULT_INT)`. + * + * NPY_RAVEL_AXIS + * + * This was introduced in NumPy 2.0 to allow indicating that an axis should be + * raveled in an operation. Before NumPy 2.0, NPY_MAXDIMS was used for this purpose. + * + * NPY_MAXDIMS + * + * A constant indicating the maximum number dimensions allowed when creating + * an ndarray. + * + * NPY_NTYPES_LEGACY + * + * The number of built-in NumPy dtypes. + */ +#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION + #define NPY_DEFAULT_INT NPY_INTP + #define NPY_RAVEL_AXIS NPY_MIN_INT + #define NPY_MAXARGS 64 + +#elif NPY_ABI_VERSION < 0x02000000 + #define NPY_DEFAULT_INT NPY_LONG + #define NPY_RAVEL_AXIS 32 + #define NPY_MAXARGS 32 + + /* Aliases of 2.x names to 1.x only equivalent names */ + #define NPY_NTYPES NPY_NTYPES_LEGACY + #define PyArray_DescrProto PyArray_Descr + #define _PyArray_LegacyDescr PyArray_Descr + /* NumPy 2 definition always works, but add it for 1.x only */ + #define PyDataType_ISLEGACY(dtype) (1) +#else + #define NPY_DEFAULT_INT \ + (PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION ? NPY_INTP : NPY_LONG) + #define NPY_RAVEL_AXIS \ + (PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION ? NPY_MIN_INT : 32) + #define NPY_MAXARGS \ + (PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION ? 64 : 32) +#endif + + +/* + * Access inline functions for descriptor fields. Except for the first + * few fields, these needed to be moved (elsize, alignment) for + * additional space. Or they are descriptor specific and are not generally + * available anymore (metadata, c_metadata, subarray, names, fields). + * + * Most of these are defined via the `DESCR_ACCESSOR` macro helper. + */ +#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION || NPY_ABI_VERSION < 0x02000000 + /* Compiling for 1.x or 2.x only, direct field access is OK: */ + + static inline void + PyDataType_SET_ELSIZE(PyArray_Descr *dtype, npy_intp size) + { + dtype->elsize = size; + } + + static inline npy_uint64 + PyDataType_FLAGS(const PyArray_Descr *dtype) + { + #if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION + return dtype->flags; + #else + return (unsigned char)dtype->flags; /* Need unsigned cast on 1.x */ + #endif + } + + #define DESCR_ACCESSOR(FIELD, field, type, legacy_only) \ + static inline type \ + PyDataType_##FIELD(const PyArray_Descr *dtype) { \ + if (legacy_only && !PyDataType_ISLEGACY(dtype)) { \ + return (type)0; \ + } \ + return ((_PyArray_LegacyDescr *)dtype)->field; \ + } +#else /* compiling for both 1.x and 2.x */ + + static inline void + PyDataType_SET_ELSIZE(PyArray_Descr *dtype, npy_intp size) + { + if (PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION) { + ((_PyArray_DescrNumPy2 *)dtype)->elsize = size; + } + else { + ((PyArray_DescrProto *)dtype)->elsize = (int)size; + } + } + + static inline npy_uint64 + PyDataType_FLAGS(const PyArray_Descr *dtype) + { + if (PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION) { + return ((_PyArray_DescrNumPy2 *)dtype)->flags; + } + else { + return (unsigned char)((PyArray_DescrProto *)dtype)->flags; + } + } + + /* Cast to LegacyDescr always fine but needed when `legacy_only` */ + #define DESCR_ACCESSOR(FIELD, field, type, legacy_only) \ + static inline type \ + PyDataType_##FIELD(const PyArray_Descr *dtype) { \ + if (legacy_only && !PyDataType_ISLEGACY(dtype)) { \ + return (type)0; \ + } \ + if (PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION) { \ + return ((_PyArray_LegacyDescr *)dtype)->field; \ + } \ + else { \ + return ((PyArray_DescrProto *)dtype)->field; \ + } \ + } +#endif + +DESCR_ACCESSOR(ELSIZE, elsize, npy_intp, 0) +DESCR_ACCESSOR(ALIGNMENT, alignment, npy_intp, 0) +DESCR_ACCESSOR(METADATA, metadata, PyObject *, 1) +DESCR_ACCESSOR(SUBARRAY, subarray, PyArray_ArrayDescr *, 1) +DESCR_ACCESSOR(NAMES, names, PyObject *, 1) +DESCR_ACCESSOR(FIELDS, fields, PyObject *, 1) +DESCR_ACCESSOR(C_METADATA, c_metadata, NpyAuxData *, 1) + +#undef DESCR_ACCESSOR + + +#if !(defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD) +#if NPY_FEATURE_VERSION >= NPY_2_0_API_VERSION + static inline PyArray_ArrFuncs * + PyDataType_GetArrFuncs(const PyArray_Descr *descr) + { + return _PyDataType_GetArrFuncs(descr); + } +#elif NPY_ABI_VERSION < 0x02000000 + static inline PyArray_ArrFuncs * + PyDataType_GetArrFuncs(const PyArray_Descr *descr) + { + return descr->f; + } +#else + static inline PyArray_ArrFuncs * + PyDataType_GetArrFuncs(const PyArray_Descr *descr) + { + if (PyArray_RUNTIME_VERSION >= NPY_2_0_API_VERSION) { + return _PyDataType_GetArrFuncs(descr); + } + else { + return ((PyArray_DescrProto *)descr)->f; + } + } +#endif + + +#endif /* not internal build */ + +#endif /* NUMPY_CORE_INCLUDE_NUMPY_NPY_2_COMPAT_H_ */ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_2_complexcompat.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_2_complexcompat.h new file mode 100644 index 0000000..0b50901 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_2_complexcompat.h @@ -0,0 +1,28 @@ +/* This header is designed to be copy-pasted into downstream packages, since it provides + a compatibility layer between the old C struct complex types and the new native C99 + complex types. The new macros are in numpy/npy_math.h, which is why it is included here. */ +#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_2_COMPLEXCOMPAT_H_ +#define NUMPY_CORE_INCLUDE_NUMPY_NPY_2_COMPLEXCOMPAT_H_ + +#include + +#ifndef NPY_CSETREALF +#define NPY_CSETREALF(c, r) (c)->real = (r) +#endif +#ifndef NPY_CSETIMAGF +#define NPY_CSETIMAGF(c, i) (c)->imag = (i) +#endif +#ifndef NPY_CSETREAL +#define NPY_CSETREAL(c, r) (c)->real = (r) +#endif +#ifndef NPY_CSETIMAG +#define NPY_CSETIMAG(c, i) (c)->imag = (i) +#endif +#ifndef NPY_CSETREALL +#define NPY_CSETREALL(c, r) (c)->real = (r) +#endif +#ifndef NPY_CSETIMAGL +#define NPY_CSETIMAGL(c, i) (c)->imag = (i) +#endif + +#endif diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_3kcompat.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_3kcompat.h new file mode 100644 index 0000000..c2bf74f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_3kcompat.h @@ -0,0 +1,374 @@ +/* + * This is a convenience header file providing compatibility utilities + * for supporting different minor versions of Python 3. + * It was originally used to support the transition from Python 2, + * hence the "3k" naming. + * + * If you want to use this for your own projects, it's recommended to make a + * copy of it. We don't provide backwards compatibility guarantees. + */ + +#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_3KCOMPAT_H_ +#define NUMPY_CORE_INCLUDE_NUMPY_NPY_3KCOMPAT_H_ + +#include +#include + +#include "npy_common.h" + +#ifdef __cplusplus +extern "C" { +#endif + +/* Python13 removes _PyLong_AsInt */ +static inline int +Npy__PyLong_AsInt(PyObject *obj) +{ + int overflow; + long result = PyLong_AsLongAndOverflow(obj, &overflow); + + /* INT_MAX and INT_MIN are defined in Python.h */ + if (overflow || result > INT_MAX || result < INT_MIN) { + /* XXX: could be cute and give a different + message for overflow == -1 */ + PyErr_SetString(PyExc_OverflowError, + "Python int too large to convert to C int"); + return -1; + } + return (int)result; +} + +#if defined _MSC_VER && _MSC_VER >= 1900 + +#include + +/* + * Macros to protect CRT calls against instant termination when passed an + * invalid parameter (https://bugs.python.org/issue23524). + */ +extern _invalid_parameter_handler _Py_silent_invalid_parameter_handler; +#define NPY_BEGIN_SUPPRESS_IPH { _invalid_parameter_handler _Py_old_handler = \ + _set_thread_local_invalid_parameter_handler(_Py_silent_invalid_parameter_handler); +#define NPY_END_SUPPRESS_IPH _set_thread_local_invalid_parameter_handler(_Py_old_handler); } + +#else + +#define NPY_BEGIN_SUPPRESS_IPH +#define NPY_END_SUPPRESS_IPH + +#endif /* _MSC_VER >= 1900 */ + +/* + * PyFile_* compatibility + */ + +/* + * Get a FILE* handle to the file represented by the Python object + */ +static inline FILE* +npy_PyFile_Dup2(PyObject *file, char *mode, npy_off_t *orig_pos) +{ + int fd, fd2, unbuf; + Py_ssize_t fd2_tmp; + PyObject *ret, *os, *io, *io_raw; + npy_off_t pos; + FILE *handle; + + /* Flush first to ensure things end up in the file in the correct order */ + ret = PyObject_CallMethod(file, "flush", ""); + if (ret == NULL) { + return NULL; + } + Py_DECREF(ret); + fd = PyObject_AsFileDescriptor(file); + if (fd == -1) { + return NULL; + } + + /* + * The handle needs to be dup'd because we have to call fclose + * at the end + */ + os = PyImport_ImportModule("os"); + if (os == NULL) { + return NULL; + } + ret = PyObject_CallMethod(os, "dup", "i", fd); + Py_DECREF(os); + if (ret == NULL) { + return NULL; + } + fd2_tmp = PyNumber_AsSsize_t(ret, PyExc_IOError); + Py_DECREF(ret); + if (fd2_tmp == -1 && PyErr_Occurred()) { + return NULL; + } + if (fd2_tmp < INT_MIN || fd2_tmp > INT_MAX) { + PyErr_SetString(PyExc_IOError, + "Getting an 'int' from os.dup() failed"); + return NULL; + } + fd2 = (int)fd2_tmp; + + /* Convert to FILE* handle */ +#ifdef _WIN32 + NPY_BEGIN_SUPPRESS_IPH + handle = _fdopen(fd2, mode); + NPY_END_SUPPRESS_IPH +#else + handle = fdopen(fd2, mode); +#endif + if (handle == NULL) { + PyErr_SetString(PyExc_IOError, + "Getting a FILE* from a Python file object via " + "_fdopen failed. If you built NumPy, you probably " + "linked with the wrong debug/release runtime"); + return NULL; + } + + /* Record the original raw file handle position */ + *orig_pos = npy_ftell(handle); + if (*orig_pos == -1) { + /* The io module is needed to determine if buffering is used */ + io = PyImport_ImportModule("io"); + if (io == NULL) { + fclose(handle); + return NULL; + } + /* File object instances of RawIOBase are unbuffered */ + io_raw = PyObject_GetAttrString(io, "RawIOBase"); + Py_DECREF(io); + if (io_raw == NULL) { + fclose(handle); + return NULL; + } + unbuf = PyObject_IsInstance(file, io_raw); + Py_DECREF(io_raw); + if (unbuf == 1) { + /* Succeed if the IO is unbuffered */ + return handle; + } + else { + PyErr_SetString(PyExc_IOError, "obtaining file position failed"); + fclose(handle); + return NULL; + } + } + + /* Seek raw handle to the Python-side position */ + ret = PyObject_CallMethod(file, "tell", ""); + if (ret == NULL) { + fclose(handle); + return NULL; + } + pos = PyLong_AsLongLong(ret); + Py_DECREF(ret); + if (PyErr_Occurred()) { + fclose(handle); + return NULL; + } + if (npy_fseek(handle, pos, SEEK_SET) == -1) { + PyErr_SetString(PyExc_IOError, "seeking file failed"); + fclose(handle); + return NULL; + } + return handle; +} + +/* + * Close the dup-ed file handle, and seek the Python one to the current position + */ +static inline int +npy_PyFile_DupClose2(PyObject *file, FILE* handle, npy_off_t orig_pos) +{ + int fd, unbuf; + PyObject *ret, *io, *io_raw; + npy_off_t position; + + position = npy_ftell(handle); + + /* Close the FILE* handle */ + fclose(handle); + + /* + * Restore original file handle position, in order to not confuse + * Python-side data structures + */ + fd = PyObject_AsFileDescriptor(file); + if (fd == -1) { + return -1; + } + + if (npy_lseek(fd, orig_pos, SEEK_SET) == -1) { + + /* The io module is needed to determine if buffering is used */ + io = PyImport_ImportModule("io"); + if (io == NULL) { + return -1; + } + /* File object instances of RawIOBase are unbuffered */ + io_raw = PyObject_GetAttrString(io, "RawIOBase"); + Py_DECREF(io); + if (io_raw == NULL) { + return -1; + } + unbuf = PyObject_IsInstance(file, io_raw); + Py_DECREF(io_raw); + if (unbuf == 1) { + /* Succeed if the IO is unbuffered */ + return 0; + } + else { + PyErr_SetString(PyExc_IOError, "seeking file failed"); + return -1; + } + } + + if (position == -1) { + PyErr_SetString(PyExc_IOError, "obtaining file position failed"); + return -1; + } + + /* Seek Python-side handle to the FILE* handle position */ + ret = PyObject_CallMethod(file, "seek", NPY_OFF_T_PYFMT "i", position, 0); + if (ret == NULL) { + return -1; + } + Py_DECREF(ret); + return 0; +} + +static inline PyObject* +npy_PyFile_OpenFile(PyObject *filename, const char *mode) +{ + PyObject *open; + open = PyDict_GetItemString(PyEval_GetBuiltins(), "open"); + if (open == NULL) { + return NULL; + } + return PyObject_CallFunction(open, "Os", filename, mode); +} + +static inline int +npy_PyFile_CloseFile(PyObject *file) +{ + PyObject *ret; + + ret = PyObject_CallMethod(file, "close", NULL); + if (ret == NULL) { + return -1; + } + Py_DECREF(ret); + return 0; +} + +/* This is a copy of _PyErr_ChainExceptions, which + * is no longer exported from Python3.12 + */ +static inline void +npy_PyErr_ChainExceptions(PyObject *exc, PyObject *val, PyObject *tb) +{ + if (exc == NULL) + return; + + if (PyErr_Occurred()) { + PyObject *exc2, *val2, *tb2; + PyErr_Fetch(&exc2, &val2, &tb2); + PyErr_NormalizeException(&exc, &val, &tb); + if (tb != NULL) { + PyException_SetTraceback(val, tb); + Py_DECREF(tb); + } + Py_DECREF(exc); + PyErr_NormalizeException(&exc2, &val2, &tb2); + PyException_SetContext(val2, val); + PyErr_Restore(exc2, val2, tb2); + } + else { + PyErr_Restore(exc, val, tb); + } +} + +/* This is a copy of _PyErr_ChainExceptions, with: + * __cause__ used instead of __context__ + */ +static inline void +npy_PyErr_ChainExceptionsCause(PyObject *exc, PyObject *val, PyObject *tb) +{ + if (exc == NULL) + return; + + if (PyErr_Occurred()) { + PyObject *exc2, *val2, *tb2; + PyErr_Fetch(&exc2, &val2, &tb2); + PyErr_NormalizeException(&exc, &val, &tb); + if (tb != NULL) { + PyException_SetTraceback(val, tb); + Py_DECREF(tb); + } + Py_DECREF(exc); + PyErr_NormalizeException(&exc2, &val2, &tb2); + PyException_SetCause(val2, val); + PyErr_Restore(exc2, val2, tb2); + } + else { + PyErr_Restore(exc, val, tb); + } +} + +/* + * PyCObject functions adapted to PyCapsules. + * + * The main job here is to get rid of the improved error handling + * of PyCapsules. It's a shame... + */ +static inline PyObject * +NpyCapsule_FromVoidPtr(void *ptr, void (*dtor)(PyObject *)) +{ + PyObject *ret = PyCapsule_New(ptr, NULL, dtor); + if (ret == NULL) { + PyErr_Clear(); + } + return ret; +} + +static inline PyObject * +NpyCapsule_FromVoidPtrAndDesc(void *ptr, void* context, void (*dtor)(PyObject *)) +{ + PyObject *ret = NpyCapsule_FromVoidPtr(ptr, dtor); + if (ret != NULL && PyCapsule_SetContext(ret, context) != 0) { + PyErr_Clear(); + Py_DECREF(ret); + ret = NULL; + } + return ret; +} + +static inline void * +NpyCapsule_AsVoidPtr(PyObject *obj) +{ + void *ret = PyCapsule_GetPointer(obj, NULL); + if (ret == NULL) { + PyErr_Clear(); + } + return ret; +} + +static inline void * +NpyCapsule_GetDesc(PyObject *obj) +{ + return PyCapsule_GetContext(obj); +} + +static inline int +NpyCapsule_Check(PyObject *ptr) +{ + return PyCapsule_CheckExact(ptr); +} + +#ifdef __cplusplus +} +#endif + + +#endif /* NUMPY_CORE_INCLUDE_NUMPY_NPY_3KCOMPAT_H_ */ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_common.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_common.h new file mode 100644 index 0000000..e2556a0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_common.h @@ -0,0 +1,977 @@ +#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_COMMON_H_ +#define NUMPY_CORE_INCLUDE_NUMPY_NPY_COMMON_H_ + +/* need Python.h for npy_intp, npy_uintp */ +#include + +/* numpconfig.h is auto-generated */ +#include "numpyconfig.h" +#ifdef HAVE_NPY_CONFIG_H +#include +#endif + +/* + * using static inline modifiers when defining npy_math functions + * allows the compiler to make optimizations when possible + */ +#ifndef NPY_INLINE_MATH +#if defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD + #define NPY_INLINE_MATH 1 +#else + #define NPY_INLINE_MATH 0 +#endif +#endif + +/* + * gcc does not unroll even with -O3 + * use with care, unrolling on modern cpus rarely speeds things up + */ +#ifdef HAVE_ATTRIBUTE_OPTIMIZE_UNROLL_LOOPS +#define NPY_GCC_UNROLL_LOOPS \ + __attribute__((optimize("unroll-loops"))) +#else +#define NPY_GCC_UNROLL_LOOPS +#endif + +/* highest gcc optimization level, enabled autovectorizer */ +#ifdef HAVE_ATTRIBUTE_OPTIMIZE_OPT_3 +#define NPY_GCC_OPT_3 __attribute__((optimize("O3"))) +#else +#define NPY_GCC_OPT_3 +#endif + +/* + * mark an argument (starting from 1) that must not be NULL and is not checked + * DO NOT USE IF FUNCTION CHECKS FOR NULL!! the compiler will remove the check + */ +#ifdef HAVE_ATTRIBUTE_NONNULL +#define NPY_GCC_NONNULL(n) __attribute__((nonnull(n))) +#else +#define NPY_GCC_NONNULL(n) +#endif + +/* + * give a hint to the compiler which branch is more likely or unlikely + * to occur, e.g. rare error cases: + * + * if (NPY_UNLIKELY(failure == 0)) + * return NULL; + * + * the double !! is to cast the expression (e.g. NULL) to a boolean required by + * the intrinsic + */ +#ifdef HAVE___BUILTIN_EXPECT +#define NPY_LIKELY(x) __builtin_expect(!!(x), 1) +#define NPY_UNLIKELY(x) __builtin_expect(!!(x), 0) +#else +#define NPY_LIKELY(x) (x) +#define NPY_UNLIKELY(x) (x) +#endif + +#ifdef HAVE___BUILTIN_PREFETCH +/* unlike _mm_prefetch also works on non-x86 */ +#define NPY_PREFETCH(x, rw, loc) __builtin_prefetch((x), (rw), (loc)) +#else +#ifdef NPY_HAVE_SSE +/* _MM_HINT_ET[01] (rw = 1) unsupported, only available in gcc >= 4.9 */ +#define NPY_PREFETCH(x, rw, loc) _mm_prefetch((x), loc == 0 ? _MM_HINT_NTA : \ + (loc == 1 ? _MM_HINT_T2 : \ + (loc == 2 ? _MM_HINT_T1 : \ + (loc == 3 ? _MM_HINT_T0 : -1)))) +#else +#define NPY_PREFETCH(x, rw,loc) +#endif +#endif + +/* `NPY_INLINE` kept for backwards compatibility; use `inline` instead */ +#if defined(_MSC_VER) && !defined(__clang__) + #define NPY_INLINE __inline +/* clang included here to handle clang-cl on Windows */ +#elif defined(__GNUC__) || defined(__clang__) + #if defined(__STRICT_ANSI__) + #define NPY_INLINE __inline__ + #else + #define NPY_INLINE inline + #endif +#else + #define NPY_INLINE +#endif + +#ifdef _MSC_VER + #define NPY_FINLINE static __forceinline +#elif defined(__GNUC__) + #define NPY_FINLINE static inline __attribute__((always_inline)) +#else + #define NPY_FINLINE static +#endif + +#if defined(_MSC_VER) + #define NPY_NOINLINE static __declspec(noinline) +#elif defined(__GNUC__) || defined(__clang__) + #define NPY_NOINLINE static __attribute__((noinline)) +#else + #define NPY_NOINLINE static +#endif + +#ifdef __cplusplus + #define NPY_TLS thread_local +#elif defined(HAVE_THREAD_LOCAL) + #define NPY_TLS thread_local +#elif defined(HAVE__THREAD_LOCAL) + #define NPY_TLS _Thread_local +#elif defined(HAVE___THREAD) + #define NPY_TLS __thread +#elif defined(HAVE___DECLSPEC_THREAD_) + #define NPY_TLS __declspec(thread) +#else + #define NPY_TLS +#endif + +#ifdef WITH_CPYCHECKER_RETURNS_BORROWED_REF_ATTRIBUTE + #define NPY_RETURNS_BORROWED_REF \ + __attribute__((cpychecker_returns_borrowed_ref)) +#else + #define NPY_RETURNS_BORROWED_REF +#endif + +#ifdef WITH_CPYCHECKER_STEALS_REFERENCE_TO_ARG_ATTRIBUTE + #define NPY_STEALS_REF_TO_ARG(n) \ + __attribute__((cpychecker_steals_reference_to_arg(n))) +#else + #define NPY_STEALS_REF_TO_ARG(n) +#endif + +/* 64 bit file position support, also on win-amd64. Issue gh-2256 */ +#if defined(_MSC_VER) && defined(_WIN64) && (_MSC_VER > 1400) || \ + defined(__MINGW32__) || defined(__MINGW64__) + #include + + #define npy_fseek _fseeki64 + #define npy_ftell _ftelli64 + #define npy_lseek _lseeki64 + #define npy_off_t npy_int64 + + #if NPY_SIZEOF_INT == 8 + #define NPY_OFF_T_PYFMT "i" + #elif NPY_SIZEOF_LONG == 8 + #define NPY_OFF_T_PYFMT "l" + #elif NPY_SIZEOF_LONGLONG == 8 + #define NPY_OFF_T_PYFMT "L" + #else + #error Unsupported size for type off_t + #endif +#else +#ifdef HAVE_FSEEKO + #define npy_fseek fseeko +#else + #define npy_fseek fseek +#endif +#ifdef HAVE_FTELLO + #define npy_ftell ftello +#else + #define npy_ftell ftell +#endif + #include + #ifndef _WIN32 + #include + #endif + #define npy_lseek lseek + #define npy_off_t off_t + + #if NPY_SIZEOF_OFF_T == NPY_SIZEOF_SHORT + #define NPY_OFF_T_PYFMT "h" + #elif NPY_SIZEOF_OFF_T == NPY_SIZEOF_INT + #define NPY_OFF_T_PYFMT "i" + #elif NPY_SIZEOF_OFF_T == NPY_SIZEOF_LONG + #define NPY_OFF_T_PYFMT "l" + #elif NPY_SIZEOF_OFF_T == NPY_SIZEOF_LONGLONG + #define NPY_OFF_T_PYFMT "L" + #else + #error Unsupported size for type off_t + #endif +#endif + +/* enums for detected endianness */ +enum { + NPY_CPU_UNKNOWN_ENDIAN, + NPY_CPU_LITTLE, + NPY_CPU_BIG +}; + +/* + * This is to typedef npy_intp to the appropriate size for Py_ssize_t. + * (Before NumPy 2.0 we used Py_intptr_t and Py_uintptr_t from `pyport.h`.) + */ +typedef Py_ssize_t npy_intp; +typedef size_t npy_uintp; + +/* + * Define sizes that were not defined in numpyconfig.h. + */ +#define NPY_SIZEOF_CHAR 1 +#define NPY_SIZEOF_BYTE 1 +#define NPY_SIZEOF_DATETIME 8 +#define NPY_SIZEOF_TIMEDELTA 8 +#define NPY_SIZEOF_HALF 2 +#define NPY_SIZEOF_CFLOAT NPY_SIZEOF_COMPLEX_FLOAT +#define NPY_SIZEOF_CDOUBLE NPY_SIZEOF_COMPLEX_DOUBLE +#define NPY_SIZEOF_CLONGDOUBLE NPY_SIZEOF_COMPLEX_LONGDOUBLE + +#ifdef constchar +#undef constchar +#endif + +#define NPY_SSIZE_T_PYFMT "n" +#define constchar char + +/* NPY_INTP_FMT Note: + * Unlike the other NPY_*_FMT macros, which are used with PyOS_snprintf, + * NPY_INTP_FMT is used with PyErr_Format and PyUnicode_FromFormat. Those + * functions use different formatting codes that are portably specified + * according to the Python documentation. See issue gh-2388. + */ +#if NPY_SIZEOF_INTP == NPY_SIZEOF_LONG + #define NPY_INTP NPY_LONG + #define NPY_UINTP NPY_ULONG + #define PyIntpArrType_Type PyLongArrType_Type + #define PyUIntpArrType_Type PyULongArrType_Type + #define NPY_MAX_INTP NPY_MAX_LONG + #define NPY_MIN_INTP NPY_MIN_LONG + #define NPY_MAX_UINTP NPY_MAX_ULONG + #define NPY_INTP_FMT "ld" +#elif NPY_SIZEOF_INTP == NPY_SIZEOF_INT + #define NPY_INTP NPY_INT + #define NPY_UINTP NPY_UINT + #define PyIntpArrType_Type PyIntArrType_Type + #define PyUIntpArrType_Type PyUIntArrType_Type + #define NPY_MAX_INTP NPY_MAX_INT + #define NPY_MIN_INTP NPY_MIN_INT + #define NPY_MAX_UINTP NPY_MAX_UINT + #define NPY_INTP_FMT "d" +#elif defined(PY_LONG_LONG) && (NPY_SIZEOF_INTP == NPY_SIZEOF_LONGLONG) + #define NPY_INTP NPY_LONGLONG + #define NPY_UINTP NPY_ULONGLONG + #define PyIntpArrType_Type PyLongLongArrType_Type + #define PyUIntpArrType_Type PyULongLongArrType_Type + #define NPY_MAX_INTP NPY_MAX_LONGLONG + #define NPY_MIN_INTP NPY_MIN_LONGLONG + #define NPY_MAX_UINTP NPY_MAX_ULONGLONG + #define NPY_INTP_FMT "lld" +#else + #error "Failed to correctly define NPY_INTP and NPY_UINTP" +#endif + + +/* + * Some platforms don't define bool, long long, or long double. + * Handle that here. + */ +#define NPY_BYTE_FMT "hhd" +#define NPY_UBYTE_FMT "hhu" +#define NPY_SHORT_FMT "hd" +#define NPY_USHORT_FMT "hu" +#define NPY_INT_FMT "d" +#define NPY_UINT_FMT "u" +#define NPY_LONG_FMT "ld" +#define NPY_ULONG_FMT "lu" +#define NPY_HALF_FMT "g" +#define NPY_FLOAT_FMT "g" +#define NPY_DOUBLE_FMT "g" + + +#ifdef PY_LONG_LONG +typedef PY_LONG_LONG npy_longlong; +typedef unsigned PY_LONG_LONG npy_ulonglong; +# ifdef _MSC_VER +# define NPY_LONGLONG_FMT "I64d" +# define NPY_ULONGLONG_FMT "I64u" +# else +# define NPY_LONGLONG_FMT "lld" +# define NPY_ULONGLONG_FMT "llu" +# endif +# ifdef _MSC_VER +# define NPY_LONGLONG_SUFFIX(x) (x##i64) +# define NPY_ULONGLONG_SUFFIX(x) (x##Ui64) +# else +# define NPY_LONGLONG_SUFFIX(x) (x##LL) +# define NPY_ULONGLONG_SUFFIX(x) (x##ULL) +# endif +#else +typedef long npy_longlong; +typedef unsigned long npy_ulonglong; +# define NPY_LONGLONG_SUFFIX(x) (x##L) +# define NPY_ULONGLONG_SUFFIX(x) (x##UL) +#endif + + +typedef unsigned char npy_bool; +#define NPY_FALSE 0 +#define NPY_TRUE 1 +/* + * `NPY_SIZEOF_LONGDOUBLE` isn't usually equal to sizeof(long double). + * In some certain cases, it may forced to be equal to sizeof(double) + * even against the compiler implementation and the same goes for + * `complex long double`. + * + * Therefore, avoid `long double`, use `npy_longdouble` instead, + * and when it comes to standard math functions make sure of using + * the double version when `NPY_SIZEOF_LONGDOUBLE` == `NPY_SIZEOF_DOUBLE`. + * For example: + * npy_longdouble *ptr, x; + * #if NPY_SIZEOF_LONGDOUBLE == NPY_SIZEOF_DOUBLE + * npy_longdouble r = modf(x, ptr); + * #else + * npy_longdouble r = modfl(x, ptr); + * #endif + * + * See https://github.com/numpy/numpy/issues/20348 + */ +#if NPY_SIZEOF_LONGDOUBLE == NPY_SIZEOF_DOUBLE + #define NPY_LONGDOUBLE_FMT "g" + #define longdouble_t double + typedef double npy_longdouble; +#else + #define NPY_LONGDOUBLE_FMT "Lg" + #define longdouble_t long double + typedef long double npy_longdouble; +#endif + +#ifndef Py_USING_UNICODE +#error Must use Python with unicode enabled. +#endif + + +typedef signed char npy_byte; +typedef unsigned char npy_ubyte; +typedef unsigned short npy_ushort; +typedef unsigned int npy_uint; +typedef unsigned long npy_ulong; + +/* These are for completeness */ +typedef char npy_char; +typedef short npy_short; +typedef int npy_int; +typedef long npy_long; +typedef float npy_float; +typedef double npy_double; + +typedef Py_hash_t npy_hash_t; +#define NPY_SIZEOF_HASH_T NPY_SIZEOF_INTP + +#if defined(__cplusplus) + +typedef struct +{ + double _Val[2]; +} npy_cdouble; + +typedef struct +{ + float _Val[2]; +} npy_cfloat; + +typedef struct +{ + long double _Val[2]; +} npy_clongdouble; + +#else + +#include + + +#if defined(_MSC_VER) && !defined(__INTEL_COMPILER) +typedef _Dcomplex npy_cdouble; +typedef _Fcomplex npy_cfloat; +typedef _Lcomplex npy_clongdouble; +#else /* !defined(_MSC_VER) || defined(__INTEL_COMPILER) */ +typedef double _Complex npy_cdouble; +typedef float _Complex npy_cfloat; +typedef longdouble_t _Complex npy_clongdouble; +#endif + +#endif + +/* + * numarray-style bit-width typedefs + */ +#define NPY_MAX_INT8 127 +#define NPY_MIN_INT8 -128 +#define NPY_MAX_UINT8 255 +#define NPY_MAX_INT16 32767 +#define NPY_MIN_INT16 -32768 +#define NPY_MAX_UINT16 65535 +#define NPY_MAX_INT32 2147483647 +#define NPY_MIN_INT32 (-NPY_MAX_INT32 - 1) +#define NPY_MAX_UINT32 4294967295U +#define NPY_MAX_INT64 NPY_LONGLONG_SUFFIX(9223372036854775807) +#define NPY_MIN_INT64 (-NPY_MAX_INT64 - NPY_LONGLONG_SUFFIX(1)) +#define NPY_MAX_UINT64 NPY_ULONGLONG_SUFFIX(18446744073709551615) +#define NPY_MAX_INT128 NPY_LONGLONG_SUFFIX(85070591730234615865843651857942052864) +#define NPY_MIN_INT128 (-NPY_MAX_INT128 - NPY_LONGLONG_SUFFIX(1)) +#define NPY_MAX_UINT128 NPY_ULONGLONG_SUFFIX(170141183460469231731687303715884105728) +#define NPY_MIN_DATETIME NPY_MIN_INT64 +#define NPY_MAX_DATETIME NPY_MAX_INT64 +#define NPY_MIN_TIMEDELTA NPY_MIN_INT64 +#define NPY_MAX_TIMEDELTA NPY_MAX_INT64 + + /* Need to find the number of bits for each type and + make definitions accordingly. + + C states that sizeof(char) == 1 by definition + + So, just using the sizeof keyword won't help. + + It also looks like Python itself uses sizeof(char) quite a + bit, which by definition should be 1 all the time. + + Idea: Make Use of CHAR_BIT which should tell us how many + BITS per CHARACTER + */ + + /* Include platform definitions -- These are in the C89/90 standard */ +#include +#define NPY_MAX_BYTE SCHAR_MAX +#define NPY_MIN_BYTE SCHAR_MIN +#define NPY_MAX_UBYTE UCHAR_MAX +#define NPY_MAX_SHORT SHRT_MAX +#define NPY_MIN_SHORT SHRT_MIN +#define NPY_MAX_USHORT USHRT_MAX +#define NPY_MAX_INT INT_MAX +#ifndef INT_MIN +#define INT_MIN (-INT_MAX - 1) +#endif +#define NPY_MIN_INT INT_MIN +#define NPY_MAX_UINT UINT_MAX +#define NPY_MAX_LONG LONG_MAX +#define NPY_MIN_LONG LONG_MIN +#define NPY_MAX_ULONG ULONG_MAX + +#define NPY_BITSOF_BOOL (sizeof(npy_bool) * CHAR_BIT) +#define NPY_BITSOF_CHAR CHAR_BIT +#define NPY_BITSOF_BYTE (NPY_SIZEOF_BYTE * CHAR_BIT) +#define NPY_BITSOF_SHORT (NPY_SIZEOF_SHORT * CHAR_BIT) +#define NPY_BITSOF_INT (NPY_SIZEOF_INT * CHAR_BIT) +#define NPY_BITSOF_LONG (NPY_SIZEOF_LONG * CHAR_BIT) +#define NPY_BITSOF_LONGLONG (NPY_SIZEOF_LONGLONG * CHAR_BIT) +#define NPY_BITSOF_INTP (NPY_SIZEOF_INTP * CHAR_BIT) +#define NPY_BITSOF_HALF (NPY_SIZEOF_HALF * CHAR_BIT) +#define NPY_BITSOF_FLOAT (NPY_SIZEOF_FLOAT * CHAR_BIT) +#define NPY_BITSOF_DOUBLE (NPY_SIZEOF_DOUBLE * CHAR_BIT) +#define NPY_BITSOF_LONGDOUBLE (NPY_SIZEOF_LONGDOUBLE * CHAR_BIT) +#define NPY_BITSOF_CFLOAT (NPY_SIZEOF_CFLOAT * CHAR_BIT) +#define NPY_BITSOF_CDOUBLE (NPY_SIZEOF_CDOUBLE * CHAR_BIT) +#define NPY_BITSOF_CLONGDOUBLE (NPY_SIZEOF_CLONGDOUBLE * CHAR_BIT) +#define NPY_BITSOF_DATETIME (NPY_SIZEOF_DATETIME * CHAR_BIT) +#define NPY_BITSOF_TIMEDELTA (NPY_SIZEOF_TIMEDELTA * CHAR_BIT) + +#if NPY_BITSOF_LONG == 8 +#define NPY_INT8 NPY_LONG +#define NPY_UINT8 NPY_ULONG + typedef long npy_int8; + typedef unsigned long npy_uint8; +#define PyInt8ScalarObject PyLongScalarObject +#define PyInt8ArrType_Type PyLongArrType_Type +#define PyUInt8ScalarObject PyULongScalarObject +#define PyUInt8ArrType_Type PyULongArrType_Type +#define NPY_INT8_FMT NPY_LONG_FMT +#define NPY_UINT8_FMT NPY_ULONG_FMT +#elif NPY_BITSOF_LONG == 16 +#define NPY_INT16 NPY_LONG +#define NPY_UINT16 NPY_ULONG + typedef long npy_int16; + typedef unsigned long npy_uint16; +#define PyInt16ScalarObject PyLongScalarObject +#define PyInt16ArrType_Type PyLongArrType_Type +#define PyUInt16ScalarObject PyULongScalarObject +#define PyUInt16ArrType_Type PyULongArrType_Type +#define NPY_INT16_FMT NPY_LONG_FMT +#define NPY_UINT16_FMT NPY_ULONG_FMT +#elif NPY_BITSOF_LONG == 32 +#define NPY_INT32 NPY_LONG +#define NPY_UINT32 NPY_ULONG + typedef long npy_int32; + typedef unsigned long npy_uint32; + typedef unsigned long npy_ucs4; +#define PyInt32ScalarObject PyLongScalarObject +#define PyInt32ArrType_Type PyLongArrType_Type +#define PyUInt32ScalarObject PyULongScalarObject +#define PyUInt32ArrType_Type PyULongArrType_Type +#define NPY_INT32_FMT NPY_LONG_FMT +#define NPY_UINT32_FMT NPY_ULONG_FMT +#elif NPY_BITSOF_LONG == 64 +#define NPY_INT64 NPY_LONG +#define NPY_UINT64 NPY_ULONG + typedef long npy_int64; + typedef unsigned long npy_uint64; +#define PyInt64ScalarObject PyLongScalarObject +#define PyInt64ArrType_Type PyLongArrType_Type +#define PyUInt64ScalarObject PyULongScalarObject +#define PyUInt64ArrType_Type PyULongArrType_Type +#define NPY_INT64_FMT NPY_LONG_FMT +#define NPY_UINT64_FMT NPY_ULONG_FMT +#define MyPyLong_FromInt64 PyLong_FromLong +#define MyPyLong_AsInt64 PyLong_AsLong +#endif + +#if NPY_BITSOF_LONGLONG == 8 +# ifndef NPY_INT8 +# define NPY_INT8 NPY_LONGLONG +# define NPY_UINT8 NPY_ULONGLONG + typedef npy_longlong npy_int8; + typedef npy_ulonglong npy_uint8; +# define PyInt8ScalarObject PyLongLongScalarObject +# define PyInt8ArrType_Type PyLongLongArrType_Type +# define PyUInt8ScalarObject PyULongLongScalarObject +# define PyUInt8ArrType_Type PyULongLongArrType_Type +#define NPY_INT8_FMT NPY_LONGLONG_FMT +#define NPY_UINT8_FMT NPY_ULONGLONG_FMT +# endif +# define NPY_MAX_LONGLONG NPY_MAX_INT8 +# define NPY_MIN_LONGLONG NPY_MIN_INT8 +# define NPY_MAX_ULONGLONG NPY_MAX_UINT8 +#elif NPY_BITSOF_LONGLONG == 16 +# ifndef NPY_INT16 +# define NPY_INT16 NPY_LONGLONG +# define NPY_UINT16 NPY_ULONGLONG + typedef npy_longlong npy_int16; + typedef npy_ulonglong npy_uint16; +# define PyInt16ScalarObject PyLongLongScalarObject +# define PyInt16ArrType_Type PyLongLongArrType_Type +# define PyUInt16ScalarObject PyULongLongScalarObject +# define PyUInt16ArrType_Type PyULongLongArrType_Type +#define NPY_INT16_FMT NPY_LONGLONG_FMT +#define NPY_UINT16_FMT NPY_ULONGLONG_FMT +# endif +# define NPY_MAX_LONGLONG NPY_MAX_INT16 +# define NPY_MIN_LONGLONG NPY_MIN_INT16 +# define NPY_MAX_ULONGLONG NPY_MAX_UINT16 +#elif NPY_BITSOF_LONGLONG == 32 +# ifndef NPY_INT32 +# define NPY_INT32 NPY_LONGLONG +# define NPY_UINT32 NPY_ULONGLONG + typedef npy_longlong npy_int32; + typedef npy_ulonglong npy_uint32; + typedef npy_ulonglong npy_ucs4; +# define PyInt32ScalarObject PyLongLongScalarObject +# define PyInt32ArrType_Type PyLongLongArrType_Type +# define PyUInt32ScalarObject PyULongLongScalarObject +# define PyUInt32ArrType_Type PyULongLongArrType_Type +#define NPY_INT32_FMT NPY_LONGLONG_FMT +#define NPY_UINT32_FMT NPY_ULONGLONG_FMT +# endif +# define NPY_MAX_LONGLONG NPY_MAX_INT32 +# define NPY_MIN_LONGLONG NPY_MIN_INT32 +# define NPY_MAX_ULONGLONG NPY_MAX_UINT32 +#elif NPY_BITSOF_LONGLONG == 64 +# ifndef NPY_INT64 +# define NPY_INT64 NPY_LONGLONG +# define NPY_UINT64 NPY_ULONGLONG + typedef npy_longlong npy_int64; + typedef npy_ulonglong npy_uint64; +# define PyInt64ScalarObject PyLongLongScalarObject +# define PyInt64ArrType_Type PyLongLongArrType_Type +# define PyUInt64ScalarObject PyULongLongScalarObject +# define PyUInt64ArrType_Type PyULongLongArrType_Type +#define NPY_INT64_FMT NPY_LONGLONG_FMT +#define NPY_UINT64_FMT NPY_ULONGLONG_FMT +# define MyPyLong_FromInt64 PyLong_FromLongLong +# define MyPyLong_AsInt64 PyLong_AsLongLong +# endif +# define NPY_MAX_LONGLONG NPY_MAX_INT64 +# define NPY_MIN_LONGLONG NPY_MIN_INT64 +# define NPY_MAX_ULONGLONG NPY_MAX_UINT64 +#endif + +#if NPY_BITSOF_INT == 8 +#ifndef NPY_INT8 +#define NPY_INT8 NPY_INT +#define NPY_UINT8 NPY_UINT + typedef int npy_int8; + typedef unsigned int npy_uint8; +# define PyInt8ScalarObject PyIntScalarObject +# define PyInt8ArrType_Type PyIntArrType_Type +# define PyUInt8ScalarObject PyUIntScalarObject +# define PyUInt8ArrType_Type PyUIntArrType_Type +#define NPY_INT8_FMT NPY_INT_FMT +#define NPY_UINT8_FMT NPY_UINT_FMT +#endif +#elif NPY_BITSOF_INT == 16 +#ifndef NPY_INT16 +#define NPY_INT16 NPY_INT +#define NPY_UINT16 NPY_UINT + typedef int npy_int16; + typedef unsigned int npy_uint16; +# define PyInt16ScalarObject PyIntScalarObject +# define PyInt16ArrType_Type PyIntArrType_Type +# define PyUInt16ScalarObject PyIntUScalarObject +# define PyUInt16ArrType_Type PyIntUArrType_Type +#define NPY_INT16_FMT NPY_INT_FMT +#define NPY_UINT16_FMT NPY_UINT_FMT +#endif +#elif NPY_BITSOF_INT == 32 +#ifndef NPY_INT32 +#define NPY_INT32 NPY_INT +#define NPY_UINT32 NPY_UINT + typedef int npy_int32; + typedef unsigned int npy_uint32; + typedef unsigned int npy_ucs4; +# define PyInt32ScalarObject PyIntScalarObject +# define PyInt32ArrType_Type PyIntArrType_Type +# define PyUInt32ScalarObject PyUIntScalarObject +# define PyUInt32ArrType_Type PyUIntArrType_Type +#define NPY_INT32_FMT NPY_INT_FMT +#define NPY_UINT32_FMT NPY_UINT_FMT +#endif +#elif NPY_BITSOF_INT == 64 +#ifndef NPY_INT64 +#define NPY_INT64 NPY_INT +#define NPY_UINT64 NPY_UINT + typedef int npy_int64; + typedef unsigned int npy_uint64; +# define PyInt64ScalarObject PyIntScalarObject +# define PyInt64ArrType_Type PyIntArrType_Type +# define PyUInt64ScalarObject PyUIntScalarObject +# define PyUInt64ArrType_Type PyUIntArrType_Type +#define NPY_INT64_FMT NPY_INT_FMT +#define NPY_UINT64_FMT NPY_UINT_FMT +# define MyPyLong_FromInt64 PyLong_FromLong +# define MyPyLong_AsInt64 PyLong_AsLong +#endif +#endif + +#if NPY_BITSOF_SHORT == 8 +#ifndef NPY_INT8 +#define NPY_INT8 NPY_SHORT +#define NPY_UINT8 NPY_USHORT + typedef short npy_int8; + typedef unsigned short npy_uint8; +# define PyInt8ScalarObject PyShortScalarObject +# define PyInt8ArrType_Type PyShortArrType_Type +# define PyUInt8ScalarObject PyUShortScalarObject +# define PyUInt8ArrType_Type PyUShortArrType_Type +#define NPY_INT8_FMT NPY_SHORT_FMT +#define NPY_UINT8_FMT NPY_USHORT_FMT +#endif +#elif NPY_BITSOF_SHORT == 16 +#ifndef NPY_INT16 +#define NPY_INT16 NPY_SHORT +#define NPY_UINT16 NPY_USHORT + typedef short npy_int16; + typedef unsigned short npy_uint16; +# define PyInt16ScalarObject PyShortScalarObject +# define PyInt16ArrType_Type PyShortArrType_Type +# define PyUInt16ScalarObject PyUShortScalarObject +# define PyUInt16ArrType_Type PyUShortArrType_Type +#define NPY_INT16_FMT NPY_SHORT_FMT +#define NPY_UINT16_FMT NPY_USHORT_FMT +#endif +#elif NPY_BITSOF_SHORT == 32 +#ifndef NPY_INT32 +#define NPY_INT32 NPY_SHORT +#define NPY_UINT32 NPY_USHORT + typedef short npy_int32; + typedef unsigned short npy_uint32; + typedef unsigned short npy_ucs4; +# define PyInt32ScalarObject PyShortScalarObject +# define PyInt32ArrType_Type PyShortArrType_Type +# define PyUInt32ScalarObject PyUShortScalarObject +# define PyUInt32ArrType_Type PyUShortArrType_Type +#define NPY_INT32_FMT NPY_SHORT_FMT +#define NPY_UINT32_FMT NPY_USHORT_FMT +#endif +#elif NPY_BITSOF_SHORT == 64 +#ifndef NPY_INT64 +#define NPY_INT64 NPY_SHORT +#define NPY_UINT64 NPY_USHORT + typedef short npy_int64; + typedef unsigned short npy_uint64; +# define PyInt64ScalarObject PyShortScalarObject +# define PyInt64ArrType_Type PyShortArrType_Type +# define PyUInt64ScalarObject PyUShortScalarObject +# define PyUInt64ArrType_Type PyUShortArrType_Type +#define NPY_INT64_FMT NPY_SHORT_FMT +#define NPY_UINT64_FMT NPY_USHORT_FMT +# define MyPyLong_FromInt64 PyLong_FromLong +# define MyPyLong_AsInt64 PyLong_AsLong +#endif +#endif + + +#if NPY_BITSOF_CHAR == 8 +#ifndef NPY_INT8 +#define NPY_INT8 NPY_BYTE +#define NPY_UINT8 NPY_UBYTE + typedef signed char npy_int8; + typedef unsigned char npy_uint8; +# define PyInt8ScalarObject PyByteScalarObject +# define PyInt8ArrType_Type PyByteArrType_Type +# define PyUInt8ScalarObject PyUByteScalarObject +# define PyUInt8ArrType_Type PyUByteArrType_Type +#define NPY_INT8_FMT NPY_BYTE_FMT +#define NPY_UINT8_FMT NPY_UBYTE_FMT +#endif +#elif NPY_BITSOF_CHAR == 16 +#ifndef NPY_INT16 +#define NPY_INT16 NPY_BYTE +#define NPY_UINT16 NPY_UBYTE + typedef signed char npy_int16; + typedef unsigned char npy_uint16; +# define PyInt16ScalarObject PyByteScalarObject +# define PyInt16ArrType_Type PyByteArrType_Type +# define PyUInt16ScalarObject PyUByteScalarObject +# define PyUInt16ArrType_Type PyUByteArrType_Type +#define NPY_INT16_FMT NPY_BYTE_FMT +#define NPY_UINT16_FMT NPY_UBYTE_FMT +#endif +#elif NPY_BITSOF_CHAR == 32 +#ifndef NPY_INT32 +#define NPY_INT32 NPY_BYTE +#define NPY_UINT32 NPY_UBYTE + typedef signed char npy_int32; + typedef unsigned char npy_uint32; + typedef unsigned char npy_ucs4; +# define PyInt32ScalarObject PyByteScalarObject +# define PyInt32ArrType_Type PyByteArrType_Type +# define PyUInt32ScalarObject PyUByteScalarObject +# define PyUInt32ArrType_Type PyUByteArrType_Type +#define NPY_INT32_FMT NPY_BYTE_FMT +#define NPY_UINT32_FMT NPY_UBYTE_FMT +#endif +#elif NPY_BITSOF_CHAR == 64 +#ifndef NPY_INT64 +#define NPY_INT64 NPY_BYTE +#define NPY_UINT64 NPY_UBYTE + typedef signed char npy_int64; + typedef unsigned char npy_uint64; +# define PyInt64ScalarObject PyByteScalarObject +# define PyInt64ArrType_Type PyByteArrType_Type +# define PyUInt64ScalarObject PyUByteScalarObject +# define PyUInt64ArrType_Type PyUByteArrType_Type +#define NPY_INT64_FMT NPY_BYTE_FMT +#define NPY_UINT64_FMT NPY_UBYTE_FMT +# define MyPyLong_FromInt64 PyLong_FromLong +# define MyPyLong_AsInt64 PyLong_AsLong +#endif +#elif NPY_BITSOF_CHAR == 128 +#endif + + + +#if NPY_BITSOF_DOUBLE == 32 +#ifndef NPY_FLOAT32 +#define NPY_FLOAT32 NPY_DOUBLE +#define NPY_COMPLEX64 NPY_CDOUBLE + typedef double npy_float32; + typedef npy_cdouble npy_complex64; +# define PyFloat32ScalarObject PyDoubleScalarObject +# define PyComplex64ScalarObject PyCDoubleScalarObject +# define PyFloat32ArrType_Type PyDoubleArrType_Type +# define PyComplex64ArrType_Type PyCDoubleArrType_Type +#define NPY_FLOAT32_FMT NPY_DOUBLE_FMT +#define NPY_COMPLEX64_FMT NPY_CDOUBLE_FMT +#endif +#elif NPY_BITSOF_DOUBLE == 64 +#ifndef NPY_FLOAT64 +#define NPY_FLOAT64 NPY_DOUBLE +#define NPY_COMPLEX128 NPY_CDOUBLE + typedef double npy_float64; + typedef npy_cdouble npy_complex128; +# define PyFloat64ScalarObject PyDoubleScalarObject +# define PyComplex128ScalarObject PyCDoubleScalarObject +# define PyFloat64ArrType_Type PyDoubleArrType_Type +# define PyComplex128ArrType_Type PyCDoubleArrType_Type +#define NPY_FLOAT64_FMT NPY_DOUBLE_FMT +#define NPY_COMPLEX128_FMT NPY_CDOUBLE_FMT +#endif +#elif NPY_BITSOF_DOUBLE == 80 +#ifndef NPY_FLOAT80 +#define NPY_FLOAT80 NPY_DOUBLE +#define NPY_COMPLEX160 NPY_CDOUBLE + typedef double npy_float80; + typedef npy_cdouble npy_complex160; +# define PyFloat80ScalarObject PyDoubleScalarObject +# define PyComplex160ScalarObject PyCDoubleScalarObject +# define PyFloat80ArrType_Type PyDoubleArrType_Type +# define PyComplex160ArrType_Type PyCDoubleArrType_Type +#define NPY_FLOAT80_FMT NPY_DOUBLE_FMT +#define NPY_COMPLEX160_FMT NPY_CDOUBLE_FMT +#endif +#elif NPY_BITSOF_DOUBLE == 96 +#ifndef NPY_FLOAT96 +#define NPY_FLOAT96 NPY_DOUBLE +#define NPY_COMPLEX192 NPY_CDOUBLE + typedef double npy_float96; + typedef npy_cdouble npy_complex192; +# define PyFloat96ScalarObject PyDoubleScalarObject +# define PyComplex192ScalarObject PyCDoubleScalarObject +# define PyFloat96ArrType_Type PyDoubleArrType_Type +# define PyComplex192ArrType_Type PyCDoubleArrType_Type +#define NPY_FLOAT96_FMT NPY_DOUBLE_FMT +#define NPY_COMPLEX192_FMT NPY_CDOUBLE_FMT +#endif +#elif NPY_BITSOF_DOUBLE == 128 +#ifndef NPY_FLOAT128 +#define NPY_FLOAT128 NPY_DOUBLE +#define NPY_COMPLEX256 NPY_CDOUBLE + typedef double npy_float128; + typedef npy_cdouble npy_complex256; +# define PyFloat128ScalarObject PyDoubleScalarObject +# define PyComplex256ScalarObject PyCDoubleScalarObject +# define PyFloat128ArrType_Type PyDoubleArrType_Type +# define PyComplex256ArrType_Type PyCDoubleArrType_Type +#define NPY_FLOAT128_FMT NPY_DOUBLE_FMT +#define NPY_COMPLEX256_FMT NPY_CDOUBLE_FMT +#endif +#endif + + + +#if NPY_BITSOF_FLOAT == 32 +#ifndef NPY_FLOAT32 +#define NPY_FLOAT32 NPY_FLOAT +#define NPY_COMPLEX64 NPY_CFLOAT + typedef float npy_float32; + typedef npy_cfloat npy_complex64; +# define PyFloat32ScalarObject PyFloatScalarObject +# define PyComplex64ScalarObject PyCFloatScalarObject +# define PyFloat32ArrType_Type PyFloatArrType_Type +# define PyComplex64ArrType_Type PyCFloatArrType_Type +#define NPY_FLOAT32_FMT NPY_FLOAT_FMT +#define NPY_COMPLEX64_FMT NPY_CFLOAT_FMT +#endif +#elif NPY_BITSOF_FLOAT == 64 +#ifndef NPY_FLOAT64 +#define NPY_FLOAT64 NPY_FLOAT +#define NPY_COMPLEX128 NPY_CFLOAT + typedef float npy_float64; + typedef npy_cfloat npy_complex128; +# define PyFloat64ScalarObject PyFloatScalarObject +# define PyComplex128ScalarObject PyCFloatScalarObject +# define PyFloat64ArrType_Type PyFloatArrType_Type +# define PyComplex128ArrType_Type PyCFloatArrType_Type +#define NPY_FLOAT64_FMT NPY_FLOAT_FMT +#define NPY_COMPLEX128_FMT NPY_CFLOAT_FMT +#endif +#elif NPY_BITSOF_FLOAT == 80 +#ifndef NPY_FLOAT80 +#define NPY_FLOAT80 NPY_FLOAT +#define NPY_COMPLEX160 NPY_CFLOAT + typedef float npy_float80; + typedef npy_cfloat npy_complex160; +# define PyFloat80ScalarObject PyFloatScalarObject +# define PyComplex160ScalarObject PyCFloatScalarObject +# define PyFloat80ArrType_Type PyFloatArrType_Type +# define PyComplex160ArrType_Type PyCFloatArrType_Type +#define NPY_FLOAT80_FMT NPY_FLOAT_FMT +#define NPY_COMPLEX160_FMT NPY_CFLOAT_FMT +#endif +#elif NPY_BITSOF_FLOAT == 96 +#ifndef NPY_FLOAT96 +#define NPY_FLOAT96 NPY_FLOAT +#define NPY_COMPLEX192 NPY_CFLOAT + typedef float npy_float96; + typedef npy_cfloat npy_complex192; +# define PyFloat96ScalarObject PyFloatScalarObject +# define PyComplex192ScalarObject PyCFloatScalarObject +# define PyFloat96ArrType_Type PyFloatArrType_Type +# define PyComplex192ArrType_Type PyCFloatArrType_Type +#define NPY_FLOAT96_FMT NPY_FLOAT_FMT +#define NPY_COMPLEX192_FMT NPY_CFLOAT_FMT +#endif +#elif NPY_BITSOF_FLOAT == 128 +#ifndef NPY_FLOAT128 +#define NPY_FLOAT128 NPY_FLOAT +#define NPY_COMPLEX256 NPY_CFLOAT + typedef float npy_float128; + typedef npy_cfloat npy_complex256; +# define PyFloat128ScalarObject PyFloatScalarObject +# define PyComplex256ScalarObject PyCFloatScalarObject +# define PyFloat128ArrType_Type PyFloatArrType_Type +# define PyComplex256ArrType_Type PyCFloatArrType_Type +#define NPY_FLOAT128_FMT NPY_FLOAT_FMT +#define NPY_COMPLEX256_FMT NPY_CFLOAT_FMT +#endif +#endif + +/* half/float16 isn't a floating-point type in C */ +#define NPY_FLOAT16 NPY_HALF +typedef npy_uint16 npy_half; +typedef npy_half npy_float16; + +#if NPY_BITSOF_LONGDOUBLE == 32 +#ifndef NPY_FLOAT32 +#define NPY_FLOAT32 NPY_LONGDOUBLE +#define NPY_COMPLEX64 NPY_CLONGDOUBLE + typedef npy_longdouble npy_float32; + typedef npy_clongdouble npy_complex64; +# define PyFloat32ScalarObject PyLongDoubleScalarObject +# define PyComplex64ScalarObject PyCLongDoubleScalarObject +# define PyFloat32ArrType_Type PyLongDoubleArrType_Type +# define PyComplex64ArrType_Type PyCLongDoubleArrType_Type +#define NPY_FLOAT32_FMT NPY_LONGDOUBLE_FMT +#define NPY_COMPLEX64_FMT NPY_CLONGDOUBLE_FMT +#endif +#elif NPY_BITSOF_LONGDOUBLE == 64 +#ifndef NPY_FLOAT64 +#define NPY_FLOAT64 NPY_LONGDOUBLE +#define NPY_COMPLEX128 NPY_CLONGDOUBLE + typedef npy_longdouble npy_float64; + typedef npy_clongdouble npy_complex128; +# define PyFloat64ScalarObject PyLongDoubleScalarObject +# define PyComplex128ScalarObject PyCLongDoubleScalarObject +# define PyFloat64ArrType_Type PyLongDoubleArrType_Type +# define PyComplex128ArrType_Type PyCLongDoubleArrType_Type +#define NPY_FLOAT64_FMT NPY_LONGDOUBLE_FMT +#define NPY_COMPLEX128_FMT NPY_CLONGDOUBLE_FMT +#endif +#elif NPY_BITSOF_LONGDOUBLE == 80 +#ifndef NPY_FLOAT80 +#define NPY_FLOAT80 NPY_LONGDOUBLE +#define NPY_COMPLEX160 NPY_CLONGDOUBLE + typedef npy_longdouble npy_float80; + typedef npy_clongdouble npy_complex160; +# define PyFloat80ScalarObject PyLongDoubleScalarObject +# define PyComplex160ScalarObject PyCLongDoubleScalarObject +# define PyFloat80ArrType_Type PyLongDoubleArrType_Type +# define PyComplex160ArrType_Type PyCLongDoubleArrType_Type +#define NPY_FLOAT80_FMT NPY_LONGDOUBLE_FMT +#define NPY_COMPLEX160_FMT NPY_CLONGDOUBLE_FMT +#endif +#elif NPY_BITSOF_LONGDOUBLE == 96 +#ifndef NPY_FLOAT96 +#define NPY_FLOAT96 NPY_LONGDOUBLE +#define NPY_COMPLEX192 NPY_CLONGDOUBLE + typedef npy_longdouble npy_float96; + typedef npy_clongdouble npy_complex192; +# define PyFloat96ScalarObject PyLongDoubleScalarObject +# define PyComplex192ScalarObject PyCLongDoubleScalarObject +# define PyFloat96ArrType_Type PyLongDoubleArrType_Type +# define PyComplex192ArrType_Type PyCLongDoubleArrType_Type +#define NPY_FLOAT96_FMT NPY_LONGDOUBLE_FMT +#define NPY_COMPLEX192_FMT NPY_CLONGDOUBLE_FMT +#endif +#elif NPY_BITSOF_LONGDOUBLE == 128 +#ifndef NPY_FLOAT128 +#define NPY_FLOAT128 NPY_LONGDOUBLE +#define NPY_COMPLEX256 NPY_CLONGDOUBLE + typedef npy_longdouble npy_float128; + typedef npy_clongdouble npy_complex256; +# define PyFloat128ScalarObject PyLongDoubleScalarObject +# define PyComplex256ScalarObject PyCLongDoubleScalarObject +# define PyFloat128ArrType_Type PyLongDoubleArrType_Type +# define PyComplex256ArrType_Type PyCLongDoubleArrType_Type +#define NPY_FLOAT128_FMT NPY_LONGDOUBLE_FMT +#define NPY_COMPLEX256_FMT NPY_CLONGDOUBLE_FMT +#endif +#endif + +/* datetime typedefs */ +typedef npy_int64 npy_timedelta; +typedef npy_int64 npy_datetime; +#define NPY_DATETIME_FMT NPY_INT64_FMT +#define NPY_TIMEDELTA_FMT NPY_INT64_FMT + +/* End of typedefs for numarray style bit-width names */ + +#endif /* NUMPY_CORE_INCLUDE_NUMPY_NPY_COMMON_H_ */ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_cpu.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_cpu.h new file mode 100644 index 0000000..91cf2d8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_cpu.h @@ -0,0 +1,124 @@ +/* + * This set (target) cpu specific macros: + * - Possible values: + * NPY_CPU_X86 + * NPY_CPU_AMD64 + * NPY_CPU_PPC + * NPY_CPU_PPC64 + * NPY_CPU_PPC64LE + * NPY_CPU_SPARC + * NPY_CPU_S390 + * NPY_CPU_IA64 + * NPY_CPU_HPPA + * NPY_CPU_ALPHA + * NPY_CPU_ARMEL + * NPY_CPU_ARMEB + * NPY_CPU_SH_LE + * NPY_CPU_SH_BE + * NPY_CPU_ARCEL + * NPY_CPU_ARCEB + * NPY_CPU_RISCV64 + * NPY_CPU_RISCV32 + * NPY_CPU_LOONGARCH + * NPY_CPU_WASM + */ +#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_CPU_H_ +#define NUMPY_CORE_INCLUDE_NUMPY_NPY_CPU_H_ + +#include "numpyconfig.h" + +#if defined( __i386__ ) || defined(i386) || defined(_M_IX86) + /* + * __i386__ is defined by gcc and Intel compiler on Linux, + * _M_IX86 by VS compiler, + * i386 by Sun compilers on opensolaris at least + */ + #define NPY_CPU_X86 +#elif defined(__x86_64__) || defined(__amd64__) || defined(__x86_64) || defined(_M_AMD64) + /* + * both __x86_64__ and __amd64__ are defined by gcc + * __x86_64 defined by sun compiler on opensolaris at least + * _M_AMD64 defined by MS compiler + */ + #define NPY_CPU_AMD64 +#elif defined(__powerpc64__) && defined(__LITTLE_ENDIAN__) + #define NPY_CPU_PPC64LE +#elif defined(__powerpc64__) && defined(__BIG_ENDIAN__) + #define NPY_CPU_PPC64 +#elif defined(__ppc__) || defined(__powerpc__) || defined(_ARCH_PPC) + /* + * __ppc__ is defined by gcc, I remember having seen __powerpc__ once, + * but can't find it ATM + * _ARCH_PPC is used by at least gcc on AIX + * As __powerpc__ and _ARCH_PPC are also defined by PPC64 check + * for those specifically first before defaulting to ppc + */ + #define NPY_CPU_PPC +#elif defined(__sparc__) || defined(__sparc) + /* __sparc__ is defined by gcc and Forte (e.g. Sun) compilers */ + #define NPY_CPU_SPARC +#elif defined(__s390__) + #define NPY_CPU_S390 +#elif defined(__ia64) + #define NPY_CPU_IA64 +#elif defined(__hppa) + #define NPY_CPU_HPPA +#elif defined(__alpha__) + #define NPY_CPU_ALPHA +#elif defined(__arm__) || defined(__aarch64__) || defined(_M_ARM64) + /* _M_ARM64 is defined in MSVC for ARM64 compilation on Windows */ + #if defined(__ARMEB__) || defined(__AARCH64EB__) + #if defined(__ARM_32BIT_STATE) + #define NPY_CPU_ARMEB_AARCH32 + #elif defined(__ARM_64BIT_STATE) + #define NPY_CPU_ARMEB_AARCH64 + #else + #define NPY_CPU_ARMEB + #endif + #elif defined(__ARMEL__) || defined(__AARCH64EL__) || defined(_M_ARM64) + #if defined(__ARM_32BIT_STATE) + #define NPY_CPU_ARMEL_AARCH32 + #elif defined(__ARM_64BIT_STATE) || defined(_M_ARM64) || defined(__AARCH64EL__) + #define NPY_CPU_ARMEL_AARCH64 + #else + #define NPY_CPU_ARMEL + #endif + #else + # error Unknown ARM CPU, please report this to numpy maintainers with \ + information about your platform (OS, CPU and compiler) + #endif +#elif defined(__sh__) && defined(__LITTLE_ENDIAN__) + #define NPY_CPU_SH_LE +#elif defined(__sh__) && defined(__BIG_ENDIAN__) + #define NPY_CPU_SH_BE +#elif defined(__MIPSEL__) + #define NPY_CPU_MIPSEL +#elif defined(__MIPSEB__) + #define NPY_CPU_MIPSEB +#elif defined(__or1k__) + #define NPY_CPU_OR1K +#elif defined(__mc68000__) + #define NPY_CPU_M68K +#elif defined(__arc__) && defined(__LITTLE_ENDIAN__) + #define NPY_CPU_ARCEL +#elif defined(__arc__) && defined(__BIG_ENDIAN__) + #define NPY_CPU_ARCEB +#elif defined(__riscv) + #if __riscv_xlen == 64 + #define NPY_CPU_RISCV64 + #elif __riscv_xlen == 32 + #define NPY_CPU_RISCV32 + #endif +#elif defined(__loongarch_lp64) + #define NPY_CPU_LOONGARCH64 +#elif defined(__EMSCRIPTEN__) + /* __EMSCRIPTEN__ is defined by emscripten: an LLVM-to-Web compiler */ + #define NPY_CPU_WASM +#else + #error Unknown CPU, please report this to numpy maintainers with \ + information about your platform (OS, CPU and compiler) +#endif + +#define NPY_ALIGNMENT_REQUIRED 1 + +#endif /* NUMPY_CORE_INCLUDE_NUMPY_NPY_CPU_H_ */ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_endian.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_endian.h new file mode 100644 index 0000000..0926212 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_endian.h @@ -0,0 +1,78 @@ +#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_ENDIAN_H_ +#define NUMPY_CORE_INCLUDE_NUMPY_NPY_ENDIAN_H_ + +/* + * NPY_BYTE_ORDER is set to the same value as BYTE_ORDER set by glibc in + * endian.h + */ + +#if defined(NPY_HAVE_ENDIAN_H) || defined(NPY_HAVE_SYS_ENDIAN_H) + /* Use endian.h if available */ + + #if defined(NPY_HAVE_ENDIAN_H) + #include + #elif defined(NPY_HAVE_SYS_ENDIAN_H) + #include + #endif + + #if defined(BYTE_ORDER) && defined(BIG_ENDIAN) && defined(LITTLE_ENDIAN) + #define NPY_BYTE_ORDER BYTE_ORDER + #define NPY_LITTLE_ENDIAN LITTLE_ENDIAN + #define NPY_BIG_ENDIAN BIG_ENDIAN + #elif defined(_BYTE_ORDER) && defined(_BIG_ENDIAN) && defined(_LITTLE_ENDIAN) + #define NPY_BYTE_ORDER _BYTE_ORDER + #define NPY_LITTLE_ENDIAN _LITTLE_ENDIAN + #define NPY_BIG_ENDIAN _BIG_ENDIAN + #elif defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && defined(__LITTLE_ENDIAN) + #define NPY_BYTE_ORDER __BYTE_ORDER + #define NPY_LITTLE_ENDIAN __LITTLE_ENDIAN + #define NPY_BIG_ENDIAN __BIG_ENDIAN + #endif +#endif + +#ifndef NPY_BYTE_ORDER + /* Set endianness info using target CPU */ + #include "npy_cpu.h" + + #define NPY_LITTLE_ENDIAN 1234 + #define NPY_BIG_ENDIAN 4321 + + #if defined(NPY_CPU_X86) \ + || defined(NPY_CPU_AMD64) \ + || defined(NPY_CPU_IA64) \ + || defined(NPY_CPU_ALPHA) \ + || defined(NPY_CPU_ARMEL) \ + || defined(NPY_CPU_ARMEL_AARCH32) \ + || defined(NPY_CPU_ARMEL_AARCH64) \ + || defined(NPY_CPU_SH_LE) \ + || defined(NPY_CPU_MIPSEL) \ + || defined(NPY_CPU_PPC64LE) \ + || defined(NPY_CPU_ARCEL) \ + || defined(NPY_CPU_RISCV64) \ + || defined(NPY_CPU_RISCV32) \ + || defined(NPY_CPU_LOONGARCH) \ + || defined(NPY_CPU_WASM) + #define NPY_BYTE_ORDER NPY_LITTLE_ENDIAN + + #elif defined(NPY_CPU_PPC) \ + || defined(NPY_CPU_SPARC) \ + || defined(NPY_CPU_S390) \ + || defined(NPY_CPU_HPPA) \ + || defined(NPY_CPU_PPC64) \ + || defined(NPY_CPU_ARMEB) \ + || defined(NPY_CPU_ARMEB_AARCH32) \ + || defined(NPY_CPU_ARMEB_AARCH64) \ + || defined(NPY_CPU_SH_BE) \ + || defined(NPY_CPU_MIPSEB) \ + || defined(NPY_CPU_OR1K) \ + || defined(NPY_CPU_M68K) \ + || defined(NPY_CPU_ARCEB) + #define NPY_BYTE_ORDER NPY_BIG_ENDIAN + + #else + #error Unknown CPU: can not set endianness + #endif + +#endif + +#endif /* NUMPY_CORE_INCLUDE_NUMPY_NPY_ENDIAN_H_ */ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_math.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_math.h new file mode 100644 index 0000000..abc784b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_math.h @@ -0,0 +1,602 @@ +#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_MATH_H_ +#define NUMPY_CORE_INCLUDE_NUMPY_NPY_MATH_H_ + +#include + +#include + +/* By adding static inline specifiers to npy_math function definitions when + appropriate, compiler is given the opportunity to optimize */ +#if NPY_INLINE_MATH +#define NPY_INPLACE static inline +#else +#define NPY_INPLACE +#endif + + +#ifdef __cplusplus +extern "C" { +#endif + +#define PyArray_MAX(a,b) (((a)>(b))?(a):(b)) +#define PyArray_MIN(a,b) (((a)<(b))?(a):(b)) + +/* + * NAN and INFINITY like macros (same behavior as glibc for NAN, same as C99 + * for INFINITY) + * + * XXX: I should test whether INFINITY and NAN are available on the platform + */ +static inline float __npy_inff(void) +{ + const union { npy_uint32 __i; float __f;} __bint = {0x7f800000UL}; + return __bint.__f; +} + +static inline float __npy_nanf(void) +{ + const union { npy_uint32 __i; float __f;} __bint = {0x7fc00000UL}; + return __bint.__f; +} + +static inline float __npy_pzerof(void) +{ + const union { npy_uint32 __i; float __f;} __bint = {0x00000000UL}; + return __bint.__f; +} + +static inline float __npy_nzerof(void) +{ + const union { npy_uint32 __i; float __f;} __bint = {0x80000000UL}; + return __bint.__f; +} + +#define NPY_INFINITYF __npy_inff() +#define NPY_NANF __npy_nanf() +#define NPY_PZEROF __npy_pzerof() +#define NPY_NZEROF __npy_nzerof() + +#define NPY_INFINITY ((npy_double)NPY_INFINITYF) +#define NPY_NAN ((npy_double)NPY_NANF) +#define NPY_PZERO ((npy_double)NPY_PZEROF) +#define NPY_NZERO ((npy_double)NPY_NZEROF) + +#define NPY_INFINITYL ((npy_longdouble)NPY_INFINITYF) +#define NPY_NANL ((npy_longdouble)NPY_NANF) +#define NPY_PZEROL ((npy_longdouble)NPY_PZEROF) +#define NPY_NZEROL ((npy_longdouble)NPY_NZEROF) + +/* + * Useful constants + */ +#define NPY_E 2.718281828459045235360287471352662498 /* e */ +#define NPY_LOG2E 1.442695040888963407359924681001892137 /* log_2 e */ +#define NPY_LOG10E 0.434294481903251827651128918916605082 /* log_10 e */ +#define NPY_LOGE2 0.693147180559945309417232121458176568 /* log_e 2 */ +#define NPY_LOGE10 2.302585092994045684017991454684364208 /* log_e 10 */ +#define NPY_PI 3.141592653589793238462643383279502884 /* pi */ +#define NPY_PI_2 1.570796326794896619231321691639751442 /* pi/2 */ +#define NPY_PI_4 0.785398163397448309615660845819875721 /* pi/4 */ +#define NPY_1_PI 0.318309886183790671537767526745028724 /* 1/pi */ +#define NPY_2_PI 0.636619772367581343075535053490057448 /* 2/pi */ +#define NPY_EULER 0.577215664901532860606512090082402431 /* Euler constant */ +#define NPY_SQRT2 1.414213562373095048801688724209698079 /* sqrt(2) */ +#define NPY_SQRT1_2 0.707106781186547524400844362104849039 /* 1/sqrt(2) */ + +#define NPY_Ef 2.718281828459045235360287471352662498F /* e */ +#define NPY_LOG2Ef 1.442695040888963407359924681001892137F /* log_2 e */ +#define NPY_LOG10Ef 0.434294481903251827651128918916605082F /* log_10 e */ +#define NPY_LOGE2f 0.693147180559945309417232121458176568F /* log_e 2 */ +#define NPY_LOGE10f 2.302585092994045684017991454684364208F /* log_e 10 */ +#define NPY_PIf 3.141592653589793238462643383279502884F /* pi */ +#define NPY_PI_2f 1.570796326794896619231321691639751442F /* pi/2 */ +#define NPY_PI_4f 0.785398163397448309615660845819875721F /* pi/4 */ +#define NPY_1_PIf 0.318309886183790671537767526745028724F /* 1/pi */ +#define NPY_2_PIf 0.636619772367581343075535053490057448F /* 2/pi */ +#define NPY_EULERf 0.577215664901532860606512090082402431F /* Euler constant */ +#define NPY_SQRT2f 1.414213562373095048801688724209698079F /* sqrt(2) */ +#define NPY_SQRT1_2f 0.707106781186547524400844362104849039F /* 1/sqrt(2) */ + +#define NPY_El 2.718281828459045235360287471352662498L /* e */ +#define NPY_LOG2El 1.442695040888963407359924681001892137L /* log_2 e */ +#define NPY_LOG10El 0.434294481903251827651128918916605082L /* log_10 e */ +#define NPY_LOGE2l 0.693147180559945309417232121458176568L /* log_e 2 */ +#define NPY_LOGE10l 2.302585092994045684017991454684364208L /* log_e 10 */ +#define NPY_PIl 3.141592653589793238462643383279502884L /* pi */ +#define NPY_PI_2l 1.570796326794896619231321691639751442L /* pi/2 */ +#define NPY_PI_4l 0.785398163397448309615660845819875721L /* pi/4 */ +#define NPY_1_PIl 0.318309886183790671537767526745028724L /* 1/pi */ +#define NPY_2_PIl 0.636619772367581343075535053490057448L /* 2/pi */ +#define NPY_EULERl 0.577215664901532860606512090082402431L /* Euler constant */ +#define NPY_SQRT2l 1.414213562373095048801688724209698079L /* sqrt(2) */ +#define NPY_SQRT1_2l 0.707106781186547524400844362104849039L /* 1/sqrt(2) */ + +/* + * Integer functions. + */ +NPY_INPLACE npy_uint npy_gcdu(npy_uint a, npy_uint b); +NPY_INPLACE npy_uint npy_lcmu(npy_uint a, npy_uint b); +NPY_INPLACE npy_ulong npy_gcdul(npy_ulong a, npy_ulong b); +NPY_INPLACE npy_ulong npy_lcmul(npy_ulong a, npy_ulong b); +NPY_INPLACE npy_ulonglong npy_gcdull(npy_ulonglong a, npy_ulonglong b); +NPY_INPLACE npy_ulonglong npy_lcmull(npy_ulonglong a, npy_ulonglong b); + +NPY_INPLACE npy_int npy_gcd(npy_int a, npy_int b); +NPY_INPLACE npy_int npy_lcm(npy_int a, npy_int b); +NPY_INPLACE npy_long npy_gcdl(npy_long a, npy_long b); +NPY_INPLACE npy_long npy_lcml(npy_long a, npy_long b); +NPY_INPLACE npy_longlong npy_gcdll(npy_longlong a, npy_longlong b); +NPY_INPLACE npy_longlong npy_lcmll(npy_longlong a, npy_longlong b); + +NPY_INPLACE npy_ubyte npy_rshiftuhh(npy_ubyte a, npy_ubyte b); +NPY_INPLACE npy_ubyte npy_lshiftuhh(npy_ubyte a, npy_ubyte b); +NPY_INPLACE npy_ushort npy_rshiftuh(npy_ushort a, npy_ushort b); +NPY_INPLACE npy_ushort npy_lshiftuh(npy_ushort a, npy_ushort b); +NPY_INPLACE npy_uint npy_rshiftu(npy_uint a, npy_uint b); +NPY_INPLACE npy_uint npy_lshiftu(npy_uint a, npy_uint b); +NPY_INPLACE npy_ulong npy_rshiftul(npy_ulong a, npy_ulong b); +NPY_INPLACE npy_ulong npy_lshiftul(npy_ulong a, npy_ulong b); +NPY_INPLACE npy_ulonglong npy_rshiftull(npy_ulonglong a, npy_ulonglong b); +NPY_INPLACE npy_ulonglong npy_lshiftull(npy_ulonglong a, npy_ulonglong b); + +NPY_INPLACE npy_byte npy_rshifthh(npy_byte a, npy_byte b); +NPY_INPLACE npy_byte npy_lshifthh(npy_byte a, npy_byte b); +NPY_INPLACE npy_short npy_rshifth(npy_short a, npy_short b); +NPY_INPLACE npy_short npy_lshifth(npy_short a, npy_short b); +NPY_INPLACE npy_int npy_rshift(npy_int a, npy_int b); +NPY_INPLACE npy_int npy_lshift(npy_int a, npy_int b); +NPY_INPLACE npy_long npy_rshiftl(npy_long a, npy_long b); +NPY_INPLACE npy_long npy_lshiftl(npy_long a, npy_long b); +NPY_INPLACE npy_longlong npy_rshiftll(npy_longlong a, npy_longlong b); +NPY_INPLACE npy_longlong npy_lshiftll(npy_longlong a, npy_longlong b); + +NPY_INPLACE uint8_t npy_popcountuhh(npy_ubyte a); +NPY_INPLACE uint8_t npy_popcountuh(npy_ushort a); +NPY_INPLACE uint8_t npy_popcountu(npy_uint a); +NPY_INPLACE uint8_t npy_popcountul(npy_ulong a); +NPY_INPLACE uint8_t npy_popcountull(npy_ulonglong a); +NPY_INPLACE uint8_t npy_popcounthh(npy_byte a); +NPY_INPLACE uint8_t npy_popcounth(npy_short a); +NPY_INPLACE uint8_t npy_popcount(npy_int a); +NPY_INPLACE uint8_t npy_popcountl(npy_long a); +NPY_INPLACE uint8_t npy_popcountll(npy_longlong a); + +/* + * C99 double math funcs that need fixups or are blocklist-able + */ +NPY_INPLACE double npy_sin(double x); +NPY_INPLACE double npy_cos(double x); +NPY_INPLACE double npy_tan(double x); +NPY_INPLACE double npy_hypot(double x, double y); +NPY_INPLACE double npy_log2(double x); +NPY_INPLACE double npy_atan2(double x, double y); + +/* Mandatory C99 double math funcs, no blocklisting or fixups */ +/* defined for legacy reasons, should be deprecated at some point */ +#define npy_sinh sinh +#define npy_cosh cosh +#define npy_tanh tanh +#define npy_asin asin +#define npy_acos acos +#define npy_atan atan +#define npy_log log +#define npy_log10 log10 +#define npy_cbrt cbrt +#define npy_fabs fabs +#define npy_ceil ceil +#define npy_fmod fmod +#define npy_floor floor +#define npy_expm1 expm1 +#define npy_log1p log1p +#define npy_acosh acosh +#define npy_asinh asinh +#define npy_atanh atanh +#define npy_rint rint +#define npy_trunc trunc +#define npy_exp2 exp2 +#define npy_frexp frexp +#define npy_ldexp ldexp +#define npy_copysign copysign +#define npy_exp exp +#define npy_sqrt sqrt +#define npy_pow pow +#define npy_modf modf +#define npy_nextafter nextafter + +double npy_spacing(double x); + +/* + * IEEE 754 fpu handling + */ + +/* use builtins to avoid function calls in tight loops + * only available if npy_config.h is available (= numpys own build) */ +#ifdef HAVE___BUILTIN_ISNAN + #define npy_isnan(x) __builtin_isnan(x) +#else + #define npy_isnan(x) isnan(x) +#endif + + +/* only available if npy_config.h is available (= numpys own build) */ +#ifdef HAVE___BUILTIN_ISFINITE + #define npy_isfinite(x) __builtin_isfinite(x) +#else + #define npy_isfinite(x) isfinite((x)) +#endif + +/* only available if npy_config.h is available (= numpys own build) */ +#ifdef HAVE___BUILTIN_ISINF + #define npy_isinf(x) __builtin_isinf(x) +#else + #define npy_isinf(x) isinf((x)) +#endif + +#define npy_signbit(x) signbit((x)) + +/* + * float C99 math funcs that need fixups or are blocklist-able + */ +NPY_INPLACE float npy_sinf(float x); +NPY_INPLACE float npy_cosf(float x); +NPY_INPLACE float npy_tanf(float x); +NPY_INPLACE float npy_expf(float x); +NPY_INPLACE float npy_sqrtf(float x); +NPY_INPLACE float npy_hypotf(float x, float y); +NPY_INPLACE float npy_log2f(float x); +NPY_INPLACE float npy_atan2f(float x, float y); +NPY_INPLACE float npy_powf(float x, float y); +NPY_INPLACE float npy_modff(float x, float* y); + +/* Mandatory C99 float math funcs, no blocklisting or fixups */ +/* defined for legacy reasons, should be deprecated at some point */ + +#define npy_sinhf sinhf +#define npy_coshf coshf +#define npy_tanhf tanhf +#define npy_asinf asinf +#define npy_acosf acosf +#define npy_atanf atanf +#define npy_logf logf +#define npy_log10f log10f +#define npy_cbrtf cbrtf +#define npy_fabsf fabsf +#define npy_ceilf ceilf +#define npy_fmodf fmodf +#define npy_floorf floorf +#define npy_expm1f expm1f +#define npy_log1pf log1pf +#define npy_asinhf asinhf +#define npy_acoshf acoshf +#define npy_atanhf atanhf +#define npy_rintf rintf +#define npy_truncf truncf +#define npy_exp2f exp2f +#define npy_frexpf frexpf +#define npy_ldexpf ldexpf +#define npy_copysignf copysignf +#define npy_nextafterf nextafterf + +float npy_spacingf(float x); + +/* + * long double C99 double math funcs that need fixups or are blocklist-able + */ +NPY_INPLACE npy_longdouble npy_sinl(npy_longdouble x); +NPY_INPLACE npy_longdouble npy_cosl(npy_longdouble x); +NPY_INPLACE npy_longdouble npy_tanl(npy_longdouble x); +NPY_INPLACE npy_longdouble npy_expl(npy_longdouble x); +NPY_INPLACE npy_longdouble npy_sqrtl(npy_longdouble x); +NPY_INPLACE npy_longdouble npy_hypotl(npy_longdouble x, npy_longdouble y); +NPY_INPLACE npy_longdouble npy_log2l(npy_longdouble x); +NPY_INPLACE npy_longdouble npy_atan2l(npy_longdouble x, npy_longdouble y); +NPY_INPLACE npy_longdouble npy_powl(npy_longdouble x, npy_longdouble y); +NPY_INPLACE npy_longdouble npy_modfl(npy_longdouble x, npy_longdouble* y); + +/* Mandatory C99 double math funcs, no blocklisting or fixups */ +/* defined for legacy reasons, should be deprecated at some point */ +#define npy_sinhl sinhl +#define npy_coshl coshl +#define npy_tanhl tanhl +#define npy_fabsl fabsl +#define npy_floorl floorl +#define npy_ceill ceill +#define npy_rintl rintl +#define npy_truncl truncl +#define npy_cbrtl cbrtl +#define npy_log10l log10l +#define npy_logl logl +#define npy_expm1l expm1l +#define npy_asinl asinl +#define npy_acosl acosl +#define npy_atanl atanl +#define npy_asinhl asinhl +#define npy_acoshl acoshl +#define npy_atanhl atanhl +#define npy_log1pl log1pl +#define npy_exp2l exp2l +#define npy_fmodl fmodl +#define npy_frexpl frexpl +#define npy_ldexpl ldexpl +#define npy_copysignl copysignl +#define npy_nextafterl nextafterl + +npy_longdouble npy_spacingl(npy_longdouble x); + +/* + * Non standard functions + */ +NPY_INPLACE double npy_deg2rad(double x); +NPY_INPLACE double npy_rad2deg(double x); +NPY_INPLACE double npy_logaddexp(double x, double y); +NPY_INPLACE double npy_logaddexp2(double x, double y); +NPY_INPLACE double npy_divmod(double x, double y, double *modulus); +NPY_INPLACE double npy_heaviside(double x, double h0); + +NPY_INPLACE float npy_deg2radf(float x); +NPY_INPLACE float npy_rad2degf(float x); +NPY_INPLACE float npy_logaddexpf(float x, float y); +NPY_INPLACE float npy_logaddexp2f(float x, float y); +NPY_INPLACE float npy_divmodf(float x, float y, float *modulus); +NPY_INPLACE float npy_heavisidef(float x, float h0); + +NPY_INPLACE npy_longdouble npy_deg2radl(npy_longdouble x); +NPY_INPLACE npy_longdouble npy_rad2degl(npy_longdouble x); +NPY_INPLACE npy_longdouble npy_logaddexpl(npy_longdouble x, npy_longdouble y); +NPY_INPLACE npy_longdouble npy_logaddexp2l(npy_longdouble x, npy_longdouble y); +NPY_INPLACE npy_longdouble npy_divmodl(npy_longdouble x, npy_longdouble y, + npy_longdouble *modulus); +NPY_INPLACE npy_longdouble npy_heavisidel(npy_longdouble x, npy_longdouble h0); + +#define npy_degrees npy_rad2deg +#define npy_degreesf npy_rad2degf +#define npy_degreesl npy_rad2degl + +#define npy_radians npy_deg2rad +#define npy_radiansf npy_deg2radf +#define npy_radiansl npy_deg2radl + +/* + * Complex declarations + */ + +static inline double npy_creal(const npy_cdouble z) +{ +#if defined(__cplusplus) + return z._Val[0]; +#else + return creal(z); +#endif +} + +static inline void npy_csetreal(npy_cdouble *z, const double r) +{ + ((double *) z)[0] = r; +} + +static inline double npy_cimag(const npy_cdouble z) +{ +#if defined(__cplusplus) + return z._Val[1]; +#else + return cimag(z); +#endif +} + +static inline void npy_csetimag(npy_cdouble *z, const double i) +{ + ((double *) z)[1] = i; +} + +static inline float npy_crealf(const npy_cfloat z) +{ +#if defined(__cplusplus) + return z._Val[0]; +#else + return crealf(z); +#endif +} + +static inline void npy_csetrealf(npy_cfloat *z, const float r) +{ + ((float *) z)[0] = r; +} + +static inline float npy_cimagf(const npy_cfloat z) +{ +#if defined(__cplusplus) + return z._Val[1]; +#else + return cimagf(z); +#endif +} + +static inline void npy_csetimagf(npy_cfloat *z, const float i) +{ + ((float *) z)[1] = i; +} + +static inline npy_longdouble npy_creall(const npy_clongdouble z) +{ +#if defined(__cplusplus) + return (npy_longdouble)z._Val[0]; +#else + return creall(z); +#endif +} + +static inline void npy_csetreall(npy_clongdouble *z, const longdouble_t r) +{ + ((longdouble_t *) z)[0] = r; +} + +static inline npy_longdouble npy_cimagl(const npy_clongdouble z) +{ +#if defined(__cplusplus) + return (npy_longdouble)z._Val[1]; +#else + return cimagl(z); +#endif +} + +static inline void npy_csetimagl(npy_clongdouble *z, const longdouble_t i) +{ + ((longdouble_t *) z)[1] = i; +} + +#define NPY_CSETREAL(z, r) npy_csetreal(z, r) +#define NPY_CSETIMAG(z, i) npy_csetimag(z, i) +#define NPY_CSETREALF(z, r) npy_csetrealf(z, r) +#define NPY_CSETIMAGF(z, i) npy_csetimagf(z, i) +#define NPY_CSETREALL(z, r) npy_csetreall(z, r) +#define NPY_CSETIMAGL(z, i) npy_csetimagl(z, i) + +static inline npy_cdouble npy_cpack(double x, double y) +{ + npy_cdouble z; + npy_csetreal(&z, x); + npy_csetimag(&z, y); + return z; +} + +static inline npy_cfloat npy_cpackf(float x, float y) +{ + npy_cfloat z; + npy_csetrealf(&z, x); + npy_csetimagf(&z, y); + return z; +} + +static inline npy_clongdouble npy_cpackl(npy_longdouble x, npy_longdouble y) +{ + npy_clongdouble z; + npy_csetreall(&z, x); + npy_csetimagl(&z, y); + return z; +} + +/* + * Double precision complex functions + */ +double npy_cabs(npy_cdouble z); +double npy_carg(npy_cdouble z); + +npy_cdouble npy_cexp(npy_cdouble z); +npy_cdouble npy_clog(npy_cdouble z); +npy_cdouble npy_cpow(npy_cdouble x, npy_cdouble y); + +npy_cdouble npy_csqrt(npy_cdouble z); + +npy_cdouble npy_ccos(npy_cdouble z); +npy_cdouble npy_csin(npy_cdouble z); +npy_cdouble npy_ctan(npy_cdouble z); + +npy_cdouble npy_ccosh(npy_cdouble z); +npy_cdouble npy_csinh(npy_cdouble z); +npy_cdouble npy_ctanh(npy_cdouble z); + +npy_cdouble npy_cacos(npy_cdouble z); +npy_cdouble npy_casin(npy_cdouble z); +npy_cdouble npy_catan(npy_cdouble z); + +npy_cdouble npy_cacosh(npy_cdouble z); +npy_cdouble npy_casinh(npy_cdouble z); +npy_cdouble npy_catanh(npy_cdouble z); + +/* + * Single precision complex functions + */ +float npy_cabsf(npy_cfloat z); +float npy_cargf(npy_cfloat z); + +npy_cfloat npy_cexpf(npy_cfloat z); +npy_cfloat npy_clogf(npy_cfloat z); +npy_cfloat npy_cpowf(npy_cfloat x, npy_cfloat y); + +npy_cfloat npy_csqrtf(npy_cfloat z); + +npy_cfloat npy_ccosf(npy_cfloat z); +npy_cfloat npy_csinf(npy_cfloat z); +npy_cfloat npy_ctanf(npy_cfloat z); + +npy_cfloat npy_ccoshf(npy_cfloat z); +npy_cfloat npy_csinhf(npy_cfloat z); +npy_cfloat npy_ctanhf(npy_cfloat z); + +npy_cfloat npy_cacosf(npy_cfloat z); +npy_cfloat npy_casinf(npy_cfloat z); +npy_cfloat npy_catanf(npy_cfloat z); + +npy_cfloat npy_cacoshf(npy_cfloat z); +npy_cfloat npy_casinhf(npy_cfloat z); +npy_cfloat npy_catanhf(npy_cfloat z); + + +/* + * Extended precision complex functions + */ +npy_longdouble npy_cabsl(npy_clongdouble z); +npy_longdouble npy_cargl(npy_clongdouble z); + +npy_clongdouble npy_cexpl(npy_clongdouble z); +npy_clongdouble npy_clogl(npy_clongdouble z); +npy_clongdouble npy_cpowl(npy_clongdouble x, npy_clongdouble y); + +npy_clongdouble npy_csqrtl(npy_clongdouble z); + +npy_clongdouble npy_ccosl(npy_clongdouble z); +npy_clongdouble npy_csinl(npy_clongdouble z); +npy_clongdouble npy_ctanl(npy_clongdouble z); + +npy_clongdouble npy_ccoshl(npy_clongdouble z); +npy_clongdouble npy_csinhl(npy_clongdouble z); +npy_clongdouble npy_ctanhl(npy_clongdouble z); + +npy_clongdouble npy_cacosl(npy_clongdouble z); +npy_clongdouble npy_casinl(npy_clongdouble z); +npy_clongdouble npy_catanl(npy_clongdouble z); + +npy_clongdouble npy_cacoshl(npy_clongdouble z); +npy_clongdouble npy_casinhl(npy_clongdouble z); +npy_clongdouble npy_catanhl(npy_clongdouble z); + + +/* + * Functions that set the floating point error + * status word. + */ + +/* + * platform-dependent code translates floating point + * status to an integer sum of these values + */ +#define NPY_FPE_DIVIDEBYZERO 1 +#define NPY_FPE_OVERFLOW 2 +#define NPY_FPE_UNDERFLOW 4 +#define NPY_FPE_INVALID 8 + +int npy_clear_floatstatus_barrier(char*); +int npy_get_floatstatus_barrier(char*); +/* + * use caution with these - clang and gcc8.1 are known to reorder calls + * to this form of the function which can defeat the check. The _barrier + * form of the call is preferable, where the argument is + * (char*)&local_variable + */ +int npy_clear_floatstatus(void); +int npy_get_floatstatus(void); + +void npy_set_floatstatus_divbyzero(void); +void npy_set_floatstatus_overflow(void); +void npy_set_floatstatus_underflow(void); +void npy_set_floatstatus_invalid(void); + +#ifdef __cplusplus +} +#endif + +#if NPY_INLINE_MATH +#include "npy_math_internal.h" +#endif + +#endif /* NUMPY_CORE_INCLUDE_NUMPY_NPY_MATH_H_ */ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_no_deprecated_api.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_no_deprecated_api.h new file mode 100644 index 0000000..39658c0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_no_deprecated_api.h @@ -0,0 +1,20 @@ +/* + * This include file is provided for inclusion in Cython *.pyd files where + * one would like to define the NPY_NO_DEPRECATED_API macro. It can be + * included by + * + * cdef extern from "npy_no_deprecated_api.h": pass + * + */ +#ifndef NPY_NO_DEPRECATED_API + +/* put this check here since there may be multiple includes in C extensions. */ +#if defined(NUMPY_CORE_INCLUDE_NUMPY_NDARRAYTYPES_H_) || \ + defined(NUMPY_CORE_INCLUDE_NUMPY_NPY_DEPRECATED_API_H) || \ + defined(NUMPY_CORE_INCLUDE_NUMPY_OLD_DEFINES_H_) +#error "npy_no_deprecated_api.h" must be first among numpy includes. +#else +#define NPY_NO_DEPRECATED_API NPY_API_VERSION +#endif + +#endif /* NPY_NO_DEPRECATED_API */ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_os.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_os.h new file mode 100644 index 0000000..0ce5d78 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/npy_os.h @@ -0,0 +1,42 @@ +#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_OS_H_ +#define NUMPY_CORE_INCLUDE_NUMPY_NPY_OS_H_ + +#if defined(linux) || defined(__linux) || defined(__linux__) + #define NPY_OS_LINUX +#elif defined(__FreeBSD__) || defined(__NetBSD__) || \ + defined(__OpenBSD__) || defined(__DragonFly__) + #define NPY_OS_BSD + #ifdef __FreeBSD__ + #define NPY_OS_FREEBSD + #elif defined(__NetBSD__) + #define NPY_OS_NETBSD + #elif defined(__OpenBSD__) + #define NPY_OS_OPENBSD + #elif defined(__DragonFly__) + #define NPY_OS_DRAGONFLY + #endif +#elif defined(sun) || defined(__sun) + #define NPY_OS_SOLARIS +#elif defined(__CYGWIN__) + #define NPY_OS_CYGWIN +/* We are on Windows.*/ +#elif defined(_WIN32) + /* We are using MinGW (64-bit or 32-bit)*/ + #if defined(__MINGW32__) || defined(__MINGW64__) + #define NPY_OS_MINGW + /* Otherwise, if _WIN64 is defined, we are targeting 64-bit Windows*/ + #elif defined(_WIN64) + #define NPY_OS_WIN64 + /* Otherwise assume we are targeting 32-bit Windows*/ + #else + #define NPY_OS_WIN32 + #endif +#elif defined(__APPLE__) + #define NPY_OS_DARWIN +#elif defined(__HAIKU__) + #define NPY_OS_HAIKU +#else + #define NPY_OS_UNKNOWN +#endif + +#endif /* NUMPY_CORE_INCLUDE_NUMPY_NPY_OS_H_ */ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/numpyconfig.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/numpyconfig.h new file mode 100644 index 0000000..ba44c28 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/numpyconfig.h @@ -0,0 +1,182 @@ +#ifndef NUMPY_CORE_INCLUDE_NUMPY_NPY_NUMPYCONFIG_H_ +#define NUMPY_CORE_INCLUDE_NUMPY_NPY_NUMPYCONFIG_H_ + +#include "_numpyconfig.h" + +/* + * On Mac OS X, because there is only one configuration stage for all the archs + * in universal builds, any macro which depends on the arch needs to be + * hardcoded. + * + * Note that distutils/pip will attempt a universal2 build when Python itself + * is built as universal2, hence this hardcoding is needed even if we do not + * support universal2 wheels anymore (see gh-22796). + * This code block can be removed after we have dropped the setup.py based + * build completely. + */ +#ifdef __APPLE__ + #undef NPY_SIZEOF_LONG + + #ifdef __LP64__ + #define NPY_SIZEOF_LONG 8 + #else + #define NPY_SIZEOF_LONG 4 + #endif + + #undef NPY_SIZEOF_LONGDOUBLE + #undef NPY_SIZEOF_COMPLEX_LONGDOUBLE + #ifdef HAVE_LDOUBLE_IEEE_DOUBLE_LE + #undef HAVE_LDOUBLE_IEEE_DOUBLE_LE + #endif + #ifdef HAVE_LDOUBLE_INTEL_EXTENDED_16_BYTES_LE + #undef HAVE_LDOUBLE_INTEL_EXTENDED_16_BYTES_LE + #endif + + #if defined(__arm64__) + #define NPY_SIZEOF_LONGDOUBLE 8 + #define NPY_SIZEOF_COMPLEX_LONGDOUBLE 16 + #define HAVE_LDOUBLE_IEEE_DOUBLE_LE 1 + #elif defined(__x86_64) + #define NPY_SIZEOF_LONGDOUBLE 16 + #define NPY_SIZEOF_COMPLEX_LONGDOUBLE 32 + #define HAVE_LDOUBLE_INTEL_EXTENDED_16_BYTES_LE 1 + #elif defined (__i386) + #define NPY_SIZEOF_LONGDOUBLE 12 + #define NPY_SIZEOF_COMPLEX_LONGDOUBLE 24 + #elif defined(__ppc__) || defined (__ppc64__) + #define NPY_SIZEOF_LONGDOUBLE 16 + #define NPY_SIZEOF_COMPLEX_LONGDOUBLE 32 + #else + #error "unknown architecture" + #endif +#endif + + +/** + * To help with both NPY_TARGET_VERSION and the NPY_NO_DEPRECATED_API macro, + * we include API version numbers for specific versions of NumPy. + * To exclude all API that was deprecated as of 1.7, add the following before + * #including any NumPy headers: + * #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION + * The same is true for NPY_TARGET_VERSION, although NumPy will default to + * a backwards compatible build anyway. + */ +#define NPY_1_7_API_VERSION 0x00000007 +#define NPY_1_8_API_VERSION 0x00000008 +#define NPY_1_9_API_VERSION 0x00000009 +#define NPY_1_10_API_VERSION 0x0000000a +#define NPY_1_11_API_VERSION 0x0000000a +#define NPY_1_12_API_VERSION 0x0000000a +#define NPY_1_13_API_VERSION 0x0000000b +#define NPY_1_14_API_VERSION 0x0000000c +#define NPY_1_15_API_VERSION 0x0000000c +#define NPY_1_16_API_VERSION 0x0000000d +#define NPY_1_17_API_VERSION 0x0000000d +#define NPY_1_18_API_VERSION 0x0000000d +#define NPY_1_19_API_VERSION 0x0000000d +#define NPY_1_20_API_VERSION 0x0000000e +#define NPY_1_21_API_VERSION 0x0000000e +#define NPY_1_22_API_VERSION 0x0000000f +#define NPY_1_23_API_VERSION 0x00000010 +#define NPY_1_24_API_VERSION 0x00000010 +#define NPY_1_25_API_VERSION 0x00000011 +#define NPY_2_0_API_VERSION 0x00000012 +#define NPY_2_1_API_VERSION 0x00000013 +#define NPY_2_2_API_VERSION 0x00000013 +#define NPY_2_3_API_VERSION 0x00000014 + + +/* + * Binary compatibility version number. This number is increased + * whenever the C-API is changed such that binary compatibility is + * broken, i.e. whenever a recompile of extension modules is needed. + */ +#define NPY_VERSION NPY_ABI_VERSION + +/* + * Minor API version we are compiling to be compatible with. The version + * Number is always increased when the API changes via: `NPY_API_VERSION` + * (and should maybe just track the NumPy version). + * + * If we have an internal build, we always target the current version of + * course. + * + * For downstream users, we default to an older version to provide them with + * maximum compatibility by default. Downstream can choose to extend that + * default, or narrow it down if they wish to use newer API. If you adjust + * this, consider the Python version support (example for 1.25.x): + * + * NumPy 1.25.x supports Python: 3.9 3.10 3.11 (3.12) + * NumPy 1.19.x supports Python: 3.6 3.7 3.8 3.9 + * NumPy 1.17.x supports Python: 3.5 3.6 3.7 3.8 + * NumPy 1.15.x supports Python: ... 3.6 3.7 + * + * Users of the stable ABI may wish to target the last Python that is not + * end of life. This would be 3.8 at NumPy 1.25 release time. + * 1.17 as default was the choice of oldest-support-numpy at the time and + * has in practice no limit (compared to 1.19). Even earlier becomes legacy. + */ +#if defined(NPY_INTERNAL_BUILD) && NPY_INTERNAL_BUILD + /* NumPy internal build, always use current version. */ + #define NPY_FEATURE_VERSION NPY_API_VERSION +#elif defined(NPY_TARGET_VERSION) && NPY_TARGET_VERSION + /* user provided a target version, use it */ + #define NPY_FEATURE_VERSION NPY_TARGET_VERSION +#else + /* Use the default (increase when dropping Python 3.11 support) */ + #define NPY_FEATURE_VERSION NPY_1_23_API_VERSION +#endif + +/* Sanity check the (requested) feature version */ +#if NPY_FEATURE_VERSION > NPY_API_VERSION + #error "NPY_TARGET_VERSION higher than NumPy headers!" +#elif NPY_FEATURE_VERSION < NPY_1_15_API_VERSION + /* No support for irrelevant old targets, no need for error, but warn. */ + #ifndef _MSC_VER + #warning "Requested NumPy target lower than supported NumPy 1.15." + #else + #define _WARN___STR2__(x) #x + #define _WARN___STR1__(x) _WARN___STR2__(x) + #define _WARN___LOC__ __FILE__ "(" _WARN___STR1__(__LINE__) ") : Warning Msg: " + #pragma message(_WARN___LOC__"Requested NumPy target lower than supported NumPy 1.15.") + #endif +#endif + +/* + * We define a human readable translation to the Python version of NumPy + * for error messages (and also to allow grepping the binaries for conda). + */ +#if NPY_FEATURE_VERSION == NPY_1_7_API_VERSION + #define NPY_FEATURE_VERSION_STRING "1.7" +#elif NPY_FEATURE_VERSION == NPY_1_8_API_VERSION + #define NPY_FEATURE_VERSION_STRING "1.8" +#elif NPY_FEATURE_VERSION == NPY_1_9_API_VERSION + #define NPY_FEATURE_VERSION_STRING "1.9" +#elif NPY_FEATURE_VERSION == NPY_1_10_API_VERSION /* also 1.11, 1.12 */ + #define NPY_FEATURE_VERSION_STRING "1.10" +#elif NPY_FEATURE_VERSION == NPY_1_13_API_VERSION + #define NPY_FEATURE_VERSION_STRING "1.13" +#elif NPY_FEATURE_VERSION == NPY_1_14_API_VERSION /* also 1.15 */ + #define NPY_FEATURE_VERSION_STRING "1.14" +#elif NPY_FEATURE_VERSION == NPY_1_16_API_VERSION /* also 1.17, 1.18, 1.19 */ + #define NPY_FEATURE_VERSION_STRING "1.16" +#elif NPY_FEATURE_VERSION == NPY_1_20_API_VERSION /* also 1.21 */ + #define NPY_FEATURE_VERSION_STRING "1.20" +#elif NPY_FEATURE_VERSION == NPY_1_22_API_VERSION + #define NPY_FEATURE_VERSION_STRING "1.22" +#elif NPY_FEATURE_VERSION == NPY_1_23_API_VERSION /* also 1.24 */ + #define NPY_FEATURE_VERSION_STRING "1.23" +#elif NPY_FEATURE_VERSION == NPY_1_25_API_VERSION + #define NPY_FEATURE_VERSION_STRING "1.25" +#elif NPY_FEATURE_VERSION == NPY_2_0_API_VERSION + #define NPY_FEATURE_VERSION_STRING "2.0" +#elif NPY_FEATURE_VERSION == NPY_2_1_API_VERSION + #define NPY_FEATURE_VERSION_STRING "2.1" +#elif NPY_FEATURE_VERSION == NPY_2_3_API_VERSION + #define NPY_FEATURE_VERSION_STRING "2.3" +#else + #error "Missing version string define for new NumPy version." +#endif + + +#endif /* NUMPY_CORE_INCLUDE_NUMPY_NPY_NUMPYCONFIG_H_ */ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/LICENSE.txt b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/LICENSE.txt new file mode 100644 index 0000000..d72a7c3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/LICENSE.txt @@ -0,0 +1,21 @@ + zlib License + ------------ + + Copyright (C) 2010 - 2019 ridiculous_fish, + Copyright (C) 2016 - 2019 Kim Walisch, + + This software is provided 'as-is', without any express or implied + warranty. In no event will the authors be held liable for any damages + arising from the use of this software. + + Permission is granted to anyone to use this software for any purpose, + including commercial applications, and to alter it and redistribute it + freely, subject to the following restrictions: + + 1. The origin of this software must not be misrepresented; you must not + claim that you wrote the original software. If you use this software + in a product, an acknowledgment in the product documentation would be + appreciated but is not required. + 2. Altered source versions must be plainly marked as such, and must not be + misrepresented as being the original software. + 3. This notice may not be removed or altered from any source distribution. diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/bitgen.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/bitgen.h new file mode 100644 index 0000000..162dd5c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/bitgen.h @@ -0,0 +1,20 @@ +#ifndef NUMPY_CORE_INCLUDE_NUMPY_RANDOM_BITGEN_H_ +#define NUMPY_CORE_INCLUDE_NUMPY_RANDOM_BITGEN_H_ + +#pragma once +#include +#include +#include + +/* Must match the declaration in numpy/random/.pxd */ + +typedef struct bitgen { + void *state; + uint64_t (*next_uint64)(void *st); + uint32_t (*next_uint32)(void *st); + double (*next_double)(void *st); + uint64_t (*next_raw)(void *st); +} bitgen_t; + + +#endif /* NUMPY_CORE_INCLUDE_NUMPY_RANDOM_BITGEN_H_ */ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/distributions.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/distributions.h new file mode 100644 index 0000000..e7fa4bd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/distributions.h @@ -0,0 +1,209 @@ +#ifndef NUMPY_CORE_INCLUDE_NUMPY_RANDOM_DISTRIBUTIONS_H_ +#define NUMPY_CORE_INCLUDE_NUMPY_RANDOM_DISTRIBUTIONS_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#include +#include "numpy/npy_common.h" +#include +#include +#include + +#include "numpy/npy_math.h" +#include "numpy/random/bitgen.h" + +/* + * RAND_INT_TYPE is used to share integer generators with RandomState which + * used long in place of int64_t. If changing a distribution that uses + * RAND_INT_TYPE, then the original unmodified copy must be retained for + * use in RandomState by copying to the legacy distributions source file. + */ +#ifdef NP_RANDOM_LEGACY +#define RAND_INT_TYPE long +#define RAND_INT_MAX LONG_MAX +#else +#define RAND_INT_TYPE int64_t +#define RAND_INT_MAX INT64_MAX +#endif + +#ifdef _MSC_VER +#define DECLDIR __declspec(dllexport) +#else +#define DECLDIR extern +#endif + +#ifndef MIN +#define MIN(x, y) (((x) < (y)) ? x : y) +#define MAX(x, y) (((x) > (y)) ? x : y) +#endif + +#ifndef M_PI +#define M_PI 3.14159265358979323846264338328 +#endif + +typedef struct s_binomial_t { + int has_binomial; /* !=0: following parameters initialized for binomial */ + double psave; + RAND_INT_TYPE nsave; + double r; + double q; + double fm; + RAND_INT_TYPE m; + double p1; + double xm; + double xl; + double xr; + double c; + double laml; + double lamr; + double p2; + double p3; + double p4; +} binomial_t; + +DECLDIR float random_standard_uniform_f(bitgen_t *bitgen_state); +DECLDIR double random_standard_uniform(bitgen_t *bitgen_state); +DECLDIR void random_standard_uniform_fill(bitgen_t *, npy_intp, double *); +DECLDIR void random_standard_uniform_fill_f(bitgen_t *, npy_intp, float *); + +DECLDIR int64_t random_positive_int64(bitgen_t *bitgen_state); +DECLDIR int32_t random_positive_int32(bitgen_t *bitgen_state); +DECLDIR int64_t random_positive_int(bitgen_t *bitgen_state); +DECLDIR uint64_t random_uint(bitgen_t *bitgen_state); + +DECLDIR double random_standard_exponential(bitgen_t *bitgen_state); +DECLDIR float random_standard_exponential_f(bitgen_t *bitgen_state); +DECLDIR void random_standard_exponential_fill(bitgen_t *, npy_intp, double *); +DECLDIR void random_standard_exponential_fill_f(bitgen_t *, npy_intp, float *); +DECLDIR void random_standard_exponential_inv_fill(bitgen_t *, npy_intp, double *); +DECLDIR void random_standard_exponential_inv_fill_f(bitgen_t *, npy_intp, float *); + +DECLDIR double random_standard_normal(bitgen_t *bitgen_state); +DECLDIR float random_standard_normal_f(bitgen_t *bitgen_state); +DECLDIR void random_standard_normal_fill(bitgen_t *, npy_intp, double *); +DECLDIR void random_standard_normal_fill_f(bitgen_t *, npy_intp, float *); +DECLDIR double random_standard_gamma(bitgen_t *bitgen_state, double shape); +DECLDIR float random_standard_gamma_f(bitgen_t *bitgen_state, float shape); + +DECLDIR double random_normal(bitgen_t *bitgen_state, double loc, double scale); + +DECLDIR double random_gamma(bitgen_t *bitgen_state, double shape, double scale); +DECLDIR float random_gamma_f(bitgen_t *bitgen_state, float shape, float scale); + +DECLDIR double random_exponential(bitgen_t *bitgen_state, double scale); +DECLDIR double random_uniform(bitgen_t *bitgen_state, double lower, double range); +DECLDIR double random_beta(bitgen_t *bitgen_state, double a, double b); +DECLDIR double random_chisquare(bitgen_t *bitgen_state, double df); +DECLDIR double random_f(bitgen_t *bitgen_state, double dfnum, double dfden); +DECLDIR double random_standard_cauchy(bitgen_t *bitgen_state); +DECLDIR double random_pareto(bitgen_t *bitgen_state, double a); +DECLDIR double random_weibull(bitgen_t *bitgen_state, double a); +DECLDIR double random_power(bitgen_t *bitgen_state, double a); +DECLDIR double random_laplace(bitgen_t *bitgen_state, double loc, double scale); +DECLDIR double random_gumbel(bitgen_t *bitgen_state, double loc, double scale); +DECLDIR double random_logistic(bitgen_t *bitgen_state, double loc, double scale); +DECLDIR double random_lognormal(bitgen_t *bitgen_state, double mean, double sigma); +DECLDIR double random_rayleigh(bitgen_t *bitgen_state, double mode); +DECLDIR double random_standard_t(bitgen_t *bitgen_state, double df); +DECLDIR double random_noncentral_chisquare(bitgen_t *bitgen_state, double df, + double nonc); +DECLDIR double random_noncentral_f(bitgen_t *bitgen_state, double dfnum, + double dfden, double nonc); +DECLDIR double random_wald(bitgen_t *bitgen_state, double mean, double scale); +DECLDIR double random_vonmises(bitgen_t *bitgen_state, double mu, double kappa); +DECLDIR double random_triangular(bitgen_t *bitgen_state, double left, double mode, + double right); + +DECLDIR RAND_INT_TYPE random_poisson(bitgen_t *bitgen_state, double lam); +DECLDIR RAND_INT_TYPE random_negative_binomial(bitgen_t *bitgen_state, double n, + double p); + +DECLDIR int64_t random_binomial(bitgen_t *bitgen_state, double p, + int64_t n, binomial_t *binomial); + +DECLDIR int64_t random_logseries(bitgen_t *bitgen_state, double p); +DECLDIR int64_t random_geometric(bitgen_t *bitgen_state, double p); +DECLDIR RAND_INT_TYPE random_geometric_search(bitgen_t *bitgen_state, double p); +DECLDIR RAND_INT_TYPE random_zipf(bitgen_t *bitgen_state, double a); +DECLDIR int64_t random_hypergeometric(bitgen_t *bitgen_state, + int64_t good, int64_t bad, int64_t sample); +DECLDIR uint64_t random_interval(bitgen_t *bitgen_state, uint64_t max); + +/* Generate random uint64 numbers in closed interval [off, off + rng]. */ +DECLDIR uint64_t random_bounded_uint64(bitgen_t *bitgen_state, uint64_t off, + uint64_t rng, uint64_t mask, + bool use_masked); + +/* Generate random uint32 numbers in closed interval [off, off + rng]. */ +DECLDIR uint32_t random_buffered_bounded_uint32(bitgen_t *bitgen_state, + uint32_t off, uint32_t rng, + uint32_t mask, bool use_masked, + int *bcnt, uint32_t *buf); +DECLDIR uint16_t random_buffered_bounded_uint16(bitgen_t *bitgen_state, + uint16_t off, uint16_t rng, + uint16_t mask, bool use_masked, + int *bcnt, uint32_t *buf); +DECLDIR uint8_t random_buffered_bounded_uint8(bitgen_t *bitgen_state, uint8_t off, + uint8_t rng, uint8_t mask, + bool use_masked, int *bcnt, + uint32_t *buf); +DECLDIR npy_bool random_buffered_bounded_bool(bitgen_t *bitgen_state, npy_bool off, + npy_bool rng, npy_bool mask, + bool use_masked, int *bcnt, + uint32_t *buf); + +DECLDIR void random_bounded_uint64_fill(bitgen_t *bitgen_state, uint64_t off, + uint64_t rng, npy_intp cnt, + bool use_masked, uint64_t *out); +DECLDIR void random_bounded_uint32_fill(bitgen_t *bitgen_state, uint32_t off, + uint32_t rng, npy_intp cnt, + bool use_masked, uint32_t *out); +DECLDIR void random_bounded_uint16_fill(bitgen_t *bitgen_state, uint16_t off, + uint16_t rng, npy_intp cnt, + bool use_masked, uint16_t *out); +DECLDIR void random_bounded_uint8_fill(bitgen_t *bitgen_state, uint8_t off, + uint8_t rng, npy_intp cnt, + bool use_masked, uint8_t *out); +DECLDIR void random_bounded_bool_fill(bitgen_t *bitgen_state, npy_bool off, + npy_bool rng, npy_intp cnt, + bool use_masked, npy_bool *out); + +DECLDIR void random_multinomial(bitgen_t *bitgen_state, RAND_INT_TYPE n, RAND_INT_TYPE *mnix, + double *pix, npy_intp d, binomial_t *binomial); + +/* multivariate hypergeometric, "count" method */ +DECLDIR int random_multivariate_hypergeometric_count(bitgen_t *bitgen_state, + int64_t total, + size_t num_colors, int64_t *colors, + int64_t nsample, + size_t num_variates, int64_t *variates); + +/* multivariate hypergeometric, "marginals" method */ +DECLDIR void random_multivariate_hypergeometric_marginals(bitgen_t *bitgen_state, + int64_t total, + size_t num_colors, int64_t *colors, + int64_t nsample, + size_t num_variates, int64_t *variates); + +/* Common to legacy-distributions.c and distributions.c but not exported */ + +RAND_INT_TYPE random_binomial_btpe(bitgen_t *bitgen_state, + RAND_INT_TYPE n, + double p, + binomial_t *binomial); +RAND_INT_TYPE random_binomial_inversion(bitgen_t *bitgen_state, + RAND_INT_TYPE n, + double p, + binomial_t *binomial); +double random_loggam(double x); +static inline double next_double(bitgen_t *bitgen_state) { + return bitgen_state->next_double(bitgen_state->state); +} + +#ifdef __cplusplus +} +#endif + +#endif /* NUMPY_CORE_INCLUDE_NUMPY_RANDOM_DISTRIBUTIONS_H_ */ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/libdivide.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/libdivide.h new file mode 100644 index 0000000..f4eb803 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/random/libdivide.h @@ -0,0 +1,2079 @@ +// libdivide.h - Optimized integer division +// https://libdivide.com +// +// Copyright (C) 2010 - 2019 ridiculous_fish, +// Copyright (C) 2016 - 2019 Kim Walisch, +// +// libdivide is dual-licensed under the Boost or zlib licenses. +// You may use libdivide under the terms of either of these. +// See LICENSE.txt for more details. + +#ifndef NUMPY_CORE_INCLUDE_NUMPY_LIBDIVIDE_LIBDIVIDE_H_ +#define NUMPY_CORE_INCLUDE_NUMPY_LIBDIVIDE_LIBDIVIDE_H_ + +#define LIBDIVIDE_VERSION "3.0" +#define LIBDIVIDE_VERSION_MAJOR 3 +#define LIBDIVIDE_VERSION_MINOR 0 + +#include + +#if defined(__cplusplus) + #include + #include + #include +#else + #include + #include +#endif + +#if defined(LIBDIVIDE_AVX512) + #include +#elif defined(LIBDIVIDE_AVX2) + #include +#elif defined(LIBDIVIDE_SSE2) + #include +#endif + +#if defined(_MSC_VER) + #include + // disable warning C4146: unary minus operator applied + // to unsigned type, result still unsigned + #pragma warning(disable: 4146) + #define LIBDIVIDE_VC +#endif + +#if !defined(__has_builtin) + #define __has_builtin(x) 0 +#endif + +#if defined(__SIZEOF_INT128__) + #define HAS_INT128_T + // clang-cl on Windows does not yet support 128-bit division + #if !(defined(__clang__) && defined(LIBDIVIDE_VC)) + #define HAS_INT128_DIV + #endif +#endif + +#if defined(__x86_64__) || defined(_M_X64) + #define LIBDIVIDE_X86_64 +#endif + +#if defined(__i386__) + #define LIBDIVIDE_i386 +#endif + +#if defined(__GNUC__) || defined(__clang__) + #define LIBDIVIDE_GCC_STYLE_ASM +#endif + +#if defined(__cplusplus) || defined(LIBDIVIDE_VC) + #define LIBDIVIDE_FUNCTION __FUNCTION__ +#else + #define LIBDIVIDE_FUNCTION __func__ +#endif + +#define LIBDIVIDE_ERROR(msg) \ + do { \ + fprintf(stderr, "libdivide.h:%d: %s(): Error: %s\n", \ + __LINE__, LIBDIVIDE_FUNCTION, msg); \ + abort(); \ + } while (0) + +#if defined(LIBDIVIDE_ASSERTIONS_ON) + #define LIBDIVIDE_ASSERT(x) \ + do { \ + if (!(x)) { \ + fprintf(stderr, "libdivide.h:%d: %s(): Assertion failed: %s\n", \ + __LINE__, LIBDIVIDE_FUNCTION, #x); \ + abort(); \ + } \ + } while (0) +#else + #define LIBDIVIDE_ASSERT(x) +#endif + +#ifdef __cplusplus +namespace libdivide { +#endif + +// pack divider structs to prevent compilers from padding. +// This reduces memory usage by up to 43% when using a large +// array of libdivide dividers and improves performance +// by up to 10% because of reduced memory bandwidth. +#pragma pack(push, 1) + +struct libdivide_u32_t { + uint32_t magic; + uint8_t more; +}; + +struct libdivide_s32_t { + int32_t magic; + uint8_t more; +}; + +struct libdivide_u64_t { + uint64_t magic; + uint8_t more; +}; + +struct libdivide_s64_t { + int64_t magic; + uint8_t more; +}; + +struct libdivide_u32_branchfree_t { + uint32_t magic; + uint8_t more; +}; + +struct libdivide_s32_branchfree_t { + int32_t magic; + uint8_t more; +}; + +struct libdivide_u64_branchfree_t { + uint64_t magic; + uint8_t more; +}; + +struct libdivide_s64_branchfree_t { + int64_t magic; + uint8_t more; +}; + +#pragma pack(pop) + +// Explanation of the "more" field: +// +// * Bits 0-5 is the shift value (for shift path or mult path). +// * Bit 6 is the add indicator for mult path. +// * Bit 7 is set if the divisor is negative. We use bit 7 as the negative +// divisor indicator so that we can efficiently use sign extension to +// create a bitmask with all bits set to 1 (if the divisor is negative) +// or 0 (if the divisor is positive). +// +// u32: [0-4] shift value +// [5] ignored +// [6] add indicator +// magic number of 0 indicates shift path +// +// s32: [0-4] shift value +// [5] ignored +// [6] add indicator +// [7] indicates negative divisor +// magic number of 0 indicates shift path +// +// u64: [0-5] shift value +// [6] add indicator +// magic number of 0 indicates shift path +// +// s64: [0-5] shift value +// [6] add indicator +// [7] indicates negative divisor +// magic number of 0 indicates shift path +// +// In s32 and s64 branchfree modes, the magic number is negated according to +// whether the divisor is negated. In branchfree strategy, it is not negated. + +enum { + LIBDIVIDE_32_SHIFT_MASK = 0x1F, + LIBDIVIDE_64_SHIFT_MASK = 0x3F, + LIBDIVIDE_ADD_MARKER = 0x40, + LIBDIVIDE_NEGATIVE_DIVISOR = 0x80 +}; + +static inline struct libdivide_s32_t libdivide_s32_gen(int32_t d); +static inline struct libdivide_u32_t libdivide_u32_gen(uint32_t d); +static inline struct libdivide_s64_t libdivide_s64_gen(int64_t d); +static inline struct libdivide_u64_t libdivide_u64_gen(uint64_t d); + +static inline struct libdivide_s32_branchfree_t libdivide_s32_branchfree_gen(int32_t d); +static inline struct libdivide_u32_branchfree_t libdivide_u32_branchfree_gen(uint32_t d); +static inline struct libdivide_s64_branchfree_t libdivide_s64_branchfree_gen(int64_t d); +static inline struct libdivide_u64_branchfree_t libdivide_u64_branchfree_gen(uint64_t d); + +static inline int32_t libdivide_s32_do(int32_t numer, const struct libdivide_s32_t *denom); +static inline uint32_t libdivide_u32_do(uint32_t numer, const struct libdivide_u32_t *denom); +static inline int64_t libdivide_s64_do(int64_t numer, const struct libdivide_s64_t *denom); +static inline uint64_t libdivide_u64_do(uint64_t numer, const struct libdivide_u64_t *denom); + +static inline int32_t libdivide_s32_branchfree_do(int32_t numer, const struct libdivide_s32_branchfree_t *denom); +static inline uint32_t libdivide_u32_branchfree_do(uint32_t numer, const struct libdivide_u32_branchfree_t *denom); +static inline int64_t libdivide_s64_branchfree_do(int64_t numer, const struct libdivide_s64_branchfree_t *denom); +static inline uint64_t libdivide_u64_branchfree_do(uint64_t numer, const struct libdivide_u64_branchfree_t *denom); + +static inline int32_t libdivide_s32_recover(const struct libdivide_s32_t *denom); +static inline uint32_t libdivide_u32_recover(const struct libdivide_u32_t *denom); +static inline int64_t libdivide_s64_recover(const struct libdivide_s64_t *denom); +static inline uint64_t libdivide_u64_recover(const struct libdivide_u64_t *denom); + +static inline int32_t libdivide_s32_branchfree_recover(const struct libdivide_s32_branchfree_t *denom); +static inline uint32_t libdivide_u32_branchfree_recover(const struct libdivide_u32_branchfree_t *denom); +static inline int64_t libdivide_s64_branchfree_recover(const struct libdivide_s64_branchfree_t *denom); +static inline uint64_t libdivide_u64_branchfree_recover(const struct libdivide_u64_branchfree_t *denom); + +//////// Internal Utility Functions + +static inline uint32_t libdivide_mullhi_u32(uint32_t x, uint32_t y) { + uint64_t xl = x, yl = y; + uint64_t rl = xl * yl; + return (uint32_t)(rl >> 32); +} + +static inline int32_t libdivide_mullhi_s32(int32_t x, int32_t y) { + int64_t xl = x, yl = y; + int64_t rl = xl * yl; + // needs to be arithmetic shift + return (int32_t)(rl >> 32); +} + +static inline uint64_t libdivide_mullhi_u64(uint64_t x, uint64_t y) { +#if defined(LIBDIVIDE_VC) && \ + defined(LIBDIVIDE_X86_64) + return __umulh(x, y); +#elif defined(HAS_INT128_T) + __uint128_t xl = x, yl = y; + __uint128_t rl = xl * yl; + return (uint64_t)(rl >> 64); +#else + // full 128 bits are x0 * y0 + (x0 * y1 << 32) + (x1 * y0 << 32) + (x1 * y1 << 64) + uint32_t mask = 0xFFFFFFFF; + uint32_t x0 = (uint32_t)(x & mask); + uint32_t x1 = (uint32_t)(x >> 32); + uint32_t y0 = (uint32_t)(y & mask); + uint32_t y1 = (uint32_t)(y >> 32); + uint32_t x0y0_hi = libdivide_mullhi_u32(x0, y0); + uint64_t x0y1 = x0 * (uint64_t)y1; + uint64_t x1y0 = x1 * (uint64_t)y0; + uint64_t x1y1 = x1 * (uint64_t)y1; + uint64_t temp = x1y0 + x0y0_hi; + uint64_t temp_lo = temp & mask; + uint64_t temp_hi = temp >> 32; + + return x1y1 + temp_hi + ((temp_lo + x0y1) >> 32); +#endif +} + +static inline int64_t libdivide_mullhi_s64(int64_t x, int64_t y) { +#if defined(LIBDIVIDE_VC) && \ + defined(LIBDIVIDE_X86_64) + return __mulh(x, y); +#elif defined(HAS_INT128_T) + __int128_t xl = x, yl = y; + __int128_t rl = xl * yl; + return (int64_t)(rl >> 64); +#else + // full 128 bits are x0 * y0 + (x0 * y1 << 32) + (x1 * y0 << 32) + (x1 * y1 << 64) + uint32_t mask = 0xFFFFFFFF; + uint32_t x0 = (uint32_t)(x & mask); + uint32_t y0 = (uint32_t)(y & mask); + int32_t x1 = (int32_t)(x >> 32); + int32_t y1 = (int32_t)(y >> 32); + uint32_t x0y0_hi = libdivide_mullhi_u32(x0, y0); + int64_t t = x1 * (int64_t)y0 + x0y0_hi; + int64_t w1 = x0 * (int64_t)y1 + (t & mask); + + return x1 * (int64_t)y1 + (t >> 32) + (w1 >> 32); +#endif +} + +static inline int32_t libdivide_count_leading_zeros32(uint32_t val) { +#if defined(__GNUC__) || \ + __has_builtin(__builtin_clz) + // Fast way to count leading zeros + return __builtin_clz(val); +#elif defined(LIBDIVIDE_VC) + unsigned long result; + if (_BitScanReverse(&result, val)) { + return 31 - result; + } + return 0; +#else + if (val == 0) + return 32; + int32_t result = 8; + uint32_t hi = 0xFFU << 24; + while ((val & hi) == 0) { + hi >>= 8; + result += 8; + } + while (val & hi) { + result -= 1; + hi <<= 1; + } + return result; +#endif +} + +static inline int32_t libdivide_count_leading_zeros64(uint64_t val) { +#if defined(__GNUC__) || \ + __has_builtin(__builtin_clzll) + // Fast way to count leading zeros + return __builtin_clzll(val); +#elif defined(LIBDIVIDE_VC) && defined(_WIN64) + unsigned long result; + if (_BitScanReverse64(&result, val)) { + return 63 - result; + } + return 0; +#else + uint32_t hi = val >> 32; + uint32_t lo = val & 0xFFFFFFFF; + if (hi != 0) return libdivide_count_leading_zeros32(hi); + return 32 + libdivide_count_leading_zeros32(lo); +#endif +} + +// libdivide_64_div_32_to_32: divides a 64-bit uint {u1, u0} by a 32-bit +// uint {v}. The result must fit in 32 bits. +// Returns the quotient directly and the remainder in *r +static inline uint32_t libdivide_64_div_32_to_32(uint32_t u1, uint32_t u0, uint32_t v, uint32_t *r) { +#if (defined(LIBDIVIDE_i386) || defined(LIBDIVIDE_X86_64)) && \ + defined(LIBDIVIDE_GCC_STYLE_ASM) + uint32_t result; + __asm__("divl %[v]" + : "=a"(result), "=d"(*r) + : [v] "r"(v), "a"(u0), "d"(u1) + ); + return result; +#else + uint64_t n = ((uint64_t)u1 << 32) | u0; + uint32_t result = (uint32_t)(n / v); + *r = (uint32_t)(n - result * (uint64_t)v); + return result; +#endif +} + +// libdivide_128_div_64_to_64: divides a 128-bit uint {u1, u0} by a 64-bit +// uint {v}. The result must fit in 64 bits. +// Returns the quotient directly and the remainder in *r +static uint64_t libdivide_128_div_64_to_64(uint64_t u1, uint64_t u0, uint64_t v, uint64_t *r) { +#if defined(LIBDIVIDE_X86_64) && \ + defined(LIBDIVIDE_GCC_STYLE_ASM) + uint64_t result; + __asm__("divq %[v]" + : "=a"(result), "=d"(*r) + : [v] "r"(v), "a"(u0), "d"(u1) + ); + return result; +#elif defined(HAS_INT128_T) && \ + defined(HAS_INT128_DIV) + __uint128_t n = ((__uint128_t)u1 << 64) | u0; + uint64_t result = (uint64_t)(n / v); + *r = (uint64_t)(n - result * (__uint128_t)v); + return result; +#else + // Code taken from Hacker's Delight: + // http://www.hackersdelight.org/HDcode/divlu.c. + // License permits inclusion here per: + // http://www.hackersdelight.org/permissions.htm + + const uint64_t b = (1ULL << 32); // Number base (32 bits) + uint64_t un1, un0; // Norm. dividend LSD's + uint64_t vn1, vn0; // Norm. divisor digits + uint64_t q1, q0; // Quotient digits + uint64_t un64, un21, un10; // Dividend digit pairs + uint64_t rhat; // A remainder + int32_t s; // Shift amount for norm + + // If overflow, set rem. to an impossible value, + // and return the largest possible quotient + if (u1 >= v) { + *r = (uint64_t) -1; + return (uint64_t) -1; + } + + // count leading zeros + s = libdivide_count_leading_zeros64(v); + if (s > 0) { + // Normalize divisor + v = v << s; + un64 = (u1 << s) | (u0 >> (64 - s)); + un10 = u0 << s; // Shift dividend left + } else { + // Avoid undefined behavior of (u0 >> 64). + // The behavior is undefined if the right operand is + // negative, or greater than or equal to the length + // in bits of the promoted left operand. + un64 = u1; + un10 = u0; + } + + // Break divisor up into two 32-bit digits + vn1 = v >> 32; + vn0 = v & 0xFFFFFFFF; + + // Break right half of dividend into two digits + un1 = un10 >> 32; + un0 = un10 & 0xFFFFFFFF; + + // Compute the first quotient digit, q1 + q1 = un64 / vn1; + rhat = un64 - q1 * vn1; + + while (q1 >= b || q1 * vn0 > b * rhat + un1) { + q1 = q1 - 1; + rhat = rhat + vn1; + if (rhat >= b) + break; + } + + // Multiply and subtract + un21 = un64 * b + un1 - q1 * v; + + // Compute the second quotient digit + q0 = un21 / vn1; + rhat = un21 - q0 * vn1; + + while (q0 >= b || q0 * vn0 > b * rhat + un0) { + q0 = q0 - 1; + rhat = rhat + vn1; + if (rhat >= b) + break; + } + + *r = (un21 * b + un0 - q0 * v) >> s; + return q1 * b + q0; +#endif +} + +// Bitshift a u128 in place, left (signed_shift > 0) or right (signed_shift < 0) +static inline void libdivide_u128_shift(uint64_t *u1, uint64_t *u0, int32_t signed_shift) { + if (signed_shift > 0) { + uint32_t shift = signed_shift; + *u1 <<= shift; + *u1 |= *u0 >> (64 - shift); + *u0 <<= shift; + } + else if (signed_shift < 0) { + uint32_t shift = -signed_shift; + *u0 >>= shift; + *u0 |= *u1 << (64 - shift); + *u1 >>= shift; + } +} + +// Computes a 128 / 128 -> 64 bit division, with a 128 bit remainder. +static uint64_t libdivide_128_div_128_to_64(uint64_t u_hi, uint64_t u_lo, uint64_t v_hi, uint64_t v_lo, uint64_t *r_hi, uint64_t *r_lo) { +#if defined(HAS_INT128_T) && \ + defined(HAS_INT128_DIV) + __uint128_t ufull = u_hi; + __uint128_t vfull = v_hi; + ufull = (ufull << 64) | u_lo; + vfull = (vfull << 64) | v_lo; + uint64_t res = (uint64_t)(ufull / vfull); + __uint128_t remainder = ufull - (vfull * res); + *r_lo = (uint64_t)remainder; + *r_hi = (uint64_t)(remainder >> 64); + return res; +#else + // Adapted from "Unsigned Doubleword Division" in Hacker's Delight + // We want to compute u / v + typedef struct { uint64_t hi; uint64_t lo; } u128_t; + u128_t u = {u_hi, u_lo}; + u128_t v = {v_hi, v_lo}; + + if (v.hi == 0) { + // divisor v is a 64 bit value, so we just need one 128/64 division + // Note that we are simpler than Hacker's Delight here, because we know + // the quotient fits in 64 bits whereas Hacker's Delight demands a full + // 128 bit quotient + *r_hi = 0; + return libdivide_128_div_64_to_64(u.hi, u.lo, v.lo, r_lo); + } + // Here v >= 2**64 + // We know that v.hi != 0, so count leading zeros is OK + // We have 0 <= n <= 63 + uint32_t n = libdivide_count_leading_zeros64(v.hi); + + // Normalize the divisor so its MSB is 1 + u128_t v1t = v; + libdivide_u128_shift(&v1t.hi, &v1t.lo, n); + uint64_t v1 = v1t.hi; // i.e. v1 = v1t >> 64 + + // To ensure no overflow + u128_t u1 = u; + libdivide_u128_shift(&u1.hi, &u1.lo, -1); + + // Get quotient from divide unsigned insn. + uint64_t rem_ignored; + uint64_t q1 = libdivide_128_div_64_to_64(u1.hi, u1.lo, v1, &rem_ignored); + + // Undo normalization and division of u by 2. + u128_t q0 = {0, q1}; + libdivide_u128_shift(&q0.hi, &q0.lo, n); + libdivide_u128_shift(&q0.hi, &q0.lo, -63); + + // Make q0 correct or too small by 1 + // Equivalent to `if (q0 != 0) q0 = q0 - 1;` + if (q0.hi != 0 || q0.lo != 0) { + q0.hi -= (q0.lo == 0); // borrow + q0.lo -= 1; + } + + // Now q0 is correct. + // Compute q0 * v as q0v + // = (q0.hi << 64 + q0.lo) * (v.hi << 64 + v.lo) + // = (q0.hi * v.hi << 128) + (q0.hi * v.lo << 64) + + // (q0.lo * v.hi << 64) + q0.lo * v.lo) + // Each term is 128 bit + // High half of full product (upper 128 bits!) are dropped + u128_t q0v = {0, 0}; + q0v.hi = q0.hi*v.lo + q0.lo*v.hi + libdivide_mullhi_u64(q0.lo, v.lo); + q0v.lo = q0.lo*v.lo; + + // Compute u - q0v as u_q0v + // This is the remainder + u128_t u_q0v = u; + u_q0v.hi -= q0v.hi + (u.lo < q0v.lo); // second term is borrow + u_q0v.lo -= q0v.lo; + + // Check if u_q0v >= v + // This checks if our remainder is larger than the divisor + if ((u_q0v.hi > v.hi) || + (u_q0v.hi == v.hi && u_q0v.lo >= v.lo)) { + // Increment q0 + q0.lo += 1; + q0.hi += (q0.lo == 0); // carry + + // Subtract v from remainder + u_q0v.hi -= v.hi + (u_q0v.lo < v.lo); + u_q0v.lo -= v.lo; + } + + *r_hi = u_q0v.hi; + *r_lo = u_q0v.lo; + + LIBDIVIDE_ASSERT(q0.hi == 0); + return q0.lo; +#endif +} + +////////// UINT32 + +static inline struct libdivide_u32_t libdivide_internal_u32_gen(uint32_t d, int branchfree) { + if (d == 0) { + LIBDIVIDE_ERROR("divider must be != 0"); + } + + struct libdivide_u32_t result; + uint32_t floor_log_2_d = 31 - libdivide_count_leading_zeros32(d); + + // Power of 2 + if ((d & (d - 1)) == 0) { + // We need to subtract 1 from the shift value in case of an unsigned + // branchfree divider because there is a hardcoded right shift by 1 + // in its division algorithm. Because of this we also need to add back + // 1 in its recovery algorithm. + result.magic = 0; + result.more = (uint8_t)(floor_log_2_d - (branchfree != 0)); + } else { + uint8_t more; + uint32_t rem, proposed_m; + proposed_m = libdivide_64_div_32_to_32(1U << floor_log_2_d, 0, d, &rem); + + LIBDIVIDE_ASSERT(rem > 0 && rem < d); + const uint32_t e = d - rem; + + // This power works if e < 2**floor_log_2_d. + if (!branchfree && (e < (1U << floor_log_2_d))) { + // This power works + more = floor_log_2_d; + } else { + // We have to use the general 33-bit algorithm. We need to compute + // (2**power) / d. However, we already have (2**(power-1))/d and + // its remainder. By doubling both, and then correcting the + // remainder, we can compute the larger division. + // don't care about overflow here - in fact, we expect it + proposed_m += proposed_m; + const uint32_t twice_rem = rem + rem; + if (twice_rem >= d || twice_rem < rem) proposed_m += 1; + more = floor_log_2_d | LIBDIVIDE_ADD_MARKER; + } + result.magic = 1 + proposed_m; + result.more = more; + // result.more's shift should in general be ceil_log_2_d. But if we + // used the smaller power, we subtract one from the shift because we're + // using the smaller power. If we're using the larger power, we + // subtract one from the shift because it's taken care of by the add + // indicator. So floor_log_2_d happens to be correct in both cases. + } + return result; +} + +struct libdivide_u32_t libdivide_u32_gen(uint32_t d) { + return libdivide_internal_u32_gen(d, 0); +} + +struct libdivide_u32_branchfree_t libdivide_u32_branchfree_gen(uint32_t d) { + if (d == 1) { + LIBDIVIDE_ERROR("branchfree divider must be != 1"); + } + struct libdivide_u32_t tmp = libdivide_internal_u32_gen(d, 1); + struct libdivide_u32_branchfree_t ret = {tmp.magic, (uint8_t)(tmp.more & LIBDIVIDE_32_SHIFT_MASK)}; + return ret; +} + +uint32_t libdivide_u32_do(uint32_t numer, const struct libdivide_u32_t *denom) { + uint8_t more = denom->more; + if (!denom->magic) { + return numer >> more; + } + else { + uint32_t q = libdivide_mullhi_u32(denom->magic, numer); + if (more & LIBDIVIDE_ADD_MARKER) { + uint32_t t = ((numer - q) >> 1) + q; + return t >> (more & LIBDIVIDE_32_SHIFT_MASK); + } + else { + // All upper bits are 0, + // don't need to mask them off. + return q >> more; + } + } +} + +uint32_t libdivide_u32_branchfree_do(uint32_t numer, const struct libdivide_u32_branchfree_t *denom) { + uint32_t q = libdivide_mullhi_u32(denom->magic, numer); + uint32_t t = ((numer - q) >> 1) + q; + return t >> denom->more; +} + +uint32_t libdivide_u32_recover(const struct libdivide_u32_t *denom) { + uint8_t more = denom->more; + uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; + + if (!denom->magic) { + return 1U << shift; + } else if (!(more & LIBDIVIDE_ADD_MARKER)) { + // We compute q = n/d = n*m / 2^(32 + shift) + // Therefore we have d = 2^(32 + shift) / m + // We need to ceil it. + // We know d is not a power of 2, so m is not a power of 2, + // so we can just add 1 to the floor + uint32_t hi_dividend = 1U << shift; + uint32_t rem_ignored; + return 1 + libdivide_64_div_32_to_32(hi_dividend, 0, denom->magic, &rem_ignored); + } else { + // Here we wish to compute d = 2^(32+shift+1)/(m+2^32). + // Notice (m + 2^32) is a 33 bit number. Use 64 bit division for now + // Also note that shift may be as high as 31, so shift + 1 will + // overflow. So we have to compute it as 2^(32+shift)/(m+2^32), and + // then double the quotient and remainder. + uint64_t half_n = 1ULL << (32 + shift); + uint64_t d = (1ULL << 32) | denom->magic; + // Note that the quotient is guaranteed <= 32 bits, but the remainder + // may need 33! + uint32_t half_q = (uint32_t)(half_n / d); + uint64_t rem = half_n % d; + // We computed 2^(32+shift)/(m+2^32) + // Need to double it, and then add 1 to the quotient if doubling th + // remainder would increase the quotient. + // Note that rem<<1 cannot overflow, since rem < d and d is 33 bits + uint32_t full_q = half_q + half_q + ((rem<<1) >= d); + + // We rounded down in gen (hence +1) + return full_q + 1; + } +} + +uint32_t libdivide_u32_branchfree_recover(const struct libdivide_u32_branchfree_t *denom) { + uint8_t more = denom->more; + uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; + + if (!denom->magic) { + return 1U << (shift + 1); + } else { + // Here we wish to compute d = 2^(32+shift+1)/(m+2^32). + // Notice (m + 2^32) is a 33 bit number. Use 64 bit division for now + // Also note that shift may be as high as 31, so shift + 1 will + // overflow. So we have to compute it as 2^(32+shift)/(m+2^32), and + // then double the quotient and remainder. + uint64_t half_n = 1ULL << (32 + shift); + uint64_t d = (1ULL << 32) | denom->magic; + // Note that the quotient is guaranteed <= 32 bits, but the remainder + // may need 33! + uint32_t half_q = (uint32_t)(half_n / d); + uint64_t rem = half_n % d; + // We computed 2^(32+shift)/(m+2^32) + // Need to double it, and then add 1 to the quotient if doubling th + // remainder would increase the quotient. + // Note that rem<<1 cannot overflow, since rem < d and d is 33 bits + uint32_t full_q = half_q + half_q + ((rem<<1) >= d); + + // We rounded down in gen (hence +1) + return full_q + 1; + } +} + +/////////// UINT64 + +static inline struct libdivide_u64_t libdivide_internal_u64_gen(uint64_t d, int branchfree) { + if (d == 0) { + LIBDIVIDE_ERROR("divider must be != 0"); + } + + struct libdivide_u64_t result; + uint32_t floor_log_2_d = 63 - libdivide_count_leading_zeros64(d); + + // Power of 2 + if ((d & (d - 1)) == 0) { + // We need to subtract 1 from the shift value in case of an unsigned + // branchfree divider because there is a hardcoded right shift by 1 + // in its division algorithm. Because of this we also need to add back + // 1 in its recovery algorithm. + result.magic = 0; + result.more = (uint8_t)(floor_log_2_d - (branchfree != 0)); + } else { + uint64_t proposed_m, rem; + uint8_t more; + // (1 << (64 + floor_log_2_d)) / d + proposed_m = libdivide_128_div_64_to_64(1ULL << floor_log_2_d, 0, d, &rem); + + LIBDIVIDE_ASSERT(rem > 0 && rem < d); + const uint64_t e = d - rem; + + // This power works if e < 2**floor_log_2_d. + if (!branchfree && e < (1ULL << floor_log_2_d)) { + // This power works + more = floor_log_2_d; + } else { + // We have to use the general 65-bit algorithm. We need to compute + // (2**power) / d. However, we already have (2**(power-1))/d and + // its remainder. By doubling both, and then correcting the + // remainder, we can compute the larger division. + // don't care about overflow here - in fact, we expect it + proposed_m += proposed_m; + const uint64_t twice_rem = rem + rem; + if (twice_rem >= d || twice_rem < rem) proposed_m += 1; + more = floor_log_2_d | LIBDIVIDE_ADD_MARKER; + } + result.magic = 1 + proposed_m; + result.more = more; + // result.more's shift should in general be ceil_log_2_d. But if we + // used the smaller power, we subtract one from the shift because we're + // using the smaller power. If we're using the larger power, we + // subtract one from the shift because it's taken care of by the add + // indicator. So floor_log_2_d happens to be correct in both cases, + // which is why we do it outside of the if statement. + } + return result; +} + +struct libdivide_u64_t libdivide_u64_gen(uint64_t d) { + return libdivide_internal_u64_gen(d, 0); +} + +struct libdivide_u64_branchfree_t libdivide_u64_branchfree_gen(uint64_t d) { + if (d == 1) { + LIBDIVIDE_ERROR("branchfree divider must be != 1"); + } + struct libdivide_u64_t tmp = libdivide_internal_u64_gen(d, 1); + struct libdivide_u64_branchfree_t ret = {tmp.magic, (uint8_t)(tmp.more & LIBDIVIDE_64_SHIFT_MASK)}; + return ret; +} + +uint64_t libdivide_u64_do(uint64_t numer, const struct libdivide_u64_t *denom) { + uint8_t more = denom->more; + if (!denom->magic) { + return numer >> more; + } + else { + uint64_t q = libdivide_mullhi_u64(denom->magic, numer); + if (more & LIBDIVIDE_ADD_MARKER) { + uint64_t t = ((numer - q) >> 1) + q; + return t >> (more & LIBDIVIDE_64_SHIFT_MASK); + } + else { + // All upper bits are 0, + // don't need to mask them off. + return q >> more; + } + } +} + +uint64_t libdivide_u64_branchfree_do(uint64_t numer, const struct libdivide_u64_branchfree_t *denom) { + uint64_t q = libdivide_mullhi_u64(denom->magic, numer); + uint64_t t = ((numer - q) >> 1) + q; + return t >> denom->more; +} + +uint64_t libdivide_u64_recover(const struct libdivide_u64_t *denom) { + uint8_t more = denom->more; + uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; + + if (!denom->magic) { + return 1ULL << shift; + } else if (!(more & LIBDIVIDE_ADD_MARKER)) { + // We compute q = n/d = n*m / 2^(64 + shift) + // Therefore we have d = 2^(64 + shift) / m + // We need to ceil it. + // We know d is not a power of 2, so m is not a power of 2, + // so we can just add 1 to the floor + uint64_t hi_dividend = 1ULL << shift; + uint64_t rem_ignored; + return 1 + libdivide_128_div_64_to_64(hi_dividend, 0, denom->magic, &rem_ignored); + } else { + // Here we wish to compute d = 2^(64+shift+1)/(m+2^64). + // Notice (m + 2^64) is a 65 bit number. This gets hairy. See + // libdivide_u32_recover for more on what we do here. + // TODO: do something better than 128 bit math + + // Full n is a (potentially) 129 bit value + // half_n is a 128 bit value + // Compute the hi half of half_n. Low half is 0. + uint64_t half_n_hi = 1ULL << shift, half_n_lo = 0; + // d is a 65 bit value. The high bit is always set to 1. + const uint64_t d_hi = 1, d_lo = denom->magic; + // Note that the quotient is guaranteed <= 64 bits, + // but the remainder may need 65! + uint64_t r_hi, r_lo; + uint64_t half_q = libdivide_128_div_128_to_64(half_n_hi, half_n_lo, d_hi, d_lo, &r_hi, &r_lo); + // We computed 2^(64+shift)/(m+2^64) + // Double the remainder ('dr') and check if that is larger than d + // Note that d is a 65 bit value, so r1 is small and so r1 + r1 + // cannot overflow + uint64_t dr_lo = r_lo + r_lo; + uint64_t dr_hi = r_hi + r_hi + (dr_lo < r_lo); // last term is carry + int dr_exceeds_d = (dr_hi > d_hi) || (dr_hi == d_hi && dr_lo >= d_lo); + uint64_t full_q = half_q + half_q + (dr_exceeds_d ? 1 : 0); + return full_q + 1; + } +} + +uint64_t libdivide_u64_branchfree_recover(const struct libdivide_u64_branchfree_t *denom) { + uint8_t more = denom->more; + uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; + + if (!denom->magic) { + return 1ULL << (shift + 1); + } else { + // Here we wish to compute d = 2^(64+shift+1)/(m+2^64). + // Notice (m + 2^64) is a 65 bit number. This gets hairy. See + // libdivide_u32_recover for more on what we do here. + // TODO: do something better than 128 bit math + + // Full n is a (potentially) 129 bit value + // half_n is a 128 bit value + // Compute the hi half of half_n. Low half is 0. + uint64_t half_n_hi = 1ULL << shift, half_n_lo = 0; + // d is a 65 bit value. The high bit is always set to 1. + const uint64_t d_hi = 1, d_lo = denom->magic; + // Note that the quotient is guaranteed <= 64 bits, + // but the remainder may need 65! + uint64_t r_hi, r_lo; + uint64_t half_q = libdivide_128_div_128_to_64(half_n_hi, half_n_lo, d_hi, d_lo, &r_hi, &r_lo); + // We computed 2^(64+shift)/(m+2^64) + // Double the remainder ('dr') and check if that is larger than d + // Note that d is a 65 bit value, so r1 is small and so r1 + r1 + // cannot overflow + uint64_t dr_lo = r_lo + r_lo; + uint64_t dr_hi = r_hi + r_hi + (dr_lo < r_lo); // last term is carry + int dr_exceeds_d = (dr_hi > d_hi) || (dr_hi == d_hi && dr_lo >= d_lo); + uint64_t full_q = half_q + half_q + (dr_exceeds_d ? 1 : 0); + return full_q + 1; + } +} + +/////////// SINT32 + +static inline struct libdivide_s32_t libdivide_internal_s32_gen(int32_t d, int branchfree) { + if (d == 0) { + LIBDIVIDE_ERROR("divider must be != 0"); + } + + struct libdivide_s32_t result; + + // If d is a power of 2, or negative a power of 2, we have to use a shift. + // This is especially important because the magic algorithm fails for -1. + // To check if d is a power of 2 or its inverse, it suffices to check + // whether its absolute value has exactly one bit set. This works even for + // INT_MIN, because abs(INT_MIN) == INT_MIN, and INT_MIN has one bit set + // and is a power of 2. + uint32_t ud = (uint32_t)d; + uint32_t absD = (d < 0) ? -ud : ud; + uint32_t floor_log_2_d = 31 - libdivide_count_leading_zeros32(absD); + // check if exactly one bit is set, + // don't care if absD is 0 since that's divide by zero + if ((absD & (absD - 1)) == 0) { + // Branchfree and normal paths are exactly the same + result.magic = 0; + result.more = floor_log_2_d | (d < 0 ? LIBDIVIDE_NEGATIVE_DIVISOR : 0); + } else { + LIBDIVIDE_ASSERT(floor_log_2_d >= 1); + + uint8_t more; + // the dividend here is 2**(floor_log_2_d + 31), so the low 32 bit word + // is 0 and the high word is floor_log_2_d - 1 + uint32_t rem, proposed_m; + proposed_m = libdivide_64_div_32_to_32(1U << (floor_log_2_d - 1), 0, absD, &rem); + const uint32_t e = absD - rem; + + // We are going to start with a power of floor_log_2_d - 1. + // This works if works if e < 2**floor_log_2_d. + if (!branchfree && e < (1U << floor_log_2_d)) { + // This power works + more = floor_log_2_d - 1; + } else { + // We need to go one higher. This should not make proposed_m + // overflow, but it will make it negative when interpreted as an + // int32_t. + proposed_m += proposed_m; + const uint32_t twice_rem = rem + rem; + if (twice_rem >= absD || twice_rem < rem) proposed_m += 1; + more = floor_log_2_d | LIBDIVIDE_ADD_MARKER; + } + + proposed_m += 1; + int32_t magic = (int32_t)proposed_m; + + // Mark if we are negative. Note we only negate the magic number in the + // branchfull case. + if (d < 0) { + more |= LIBDIVIDE_NEGATIVE_DIVISOR; + if (!branchfree) { + magic = -magic; + } + } + + result.more = more; + result.magic = magic; + } + return result; +} + +struct libdivide_s32_t libdivide_s32_gen(int32_t d) { + return libdivide_internal_s32_gen(d, 0); +} + +struct libdivide_s32_branchfree_t libdivide_s32_branchfree_gen(int32_t d) { + struct libdivide_s32_t tmp = libdivide_internal_s32_gen(d, 1); + struct libdivide_s32_branchfree_t result = {tmp.magic, tmp.more}; + return result; +} + +int32_t libdivide_s32_do(int32_t numer, const struct libdivide_s32_t *denom) { + uint8_t more = denom->more; + uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; + + if (!denom->magic) { + uint32_t sign = (int8_t)more >> 7; + uint32_t mask = (1U << shift) - 1; + uint32_t uq = numer + ((numer >> 31) & mask); + int32_t q = (int32_t)uq; + q >>= shift; + q = (q ^ sign) - sign; + return q; + } else { + uint32_t uq = (uint32_t)libdivide_mullhi_s32(denom->magic, numer); + if (more & LIBDIVIDE_ADD_MARKER) { + // must be arithmetic shift and then sign extend + int32_t sign = (int8_t)more >> 7; + // q += (more < 0 ? -numer : numer) + // cast required to avoid UB + uq += ((uint32_t)numer ^ sign) - sign; + } + int32_t q = (int32_t)uq; + q >>= shift; + q += (q < 0); + return q; + } +} + +int32_t libdivide_s32_branchfree_do(int32_t numer, const struct libdivide_s32_branchfree_t *denom) { + uint8_t more = denom->more; + uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; + // must be arithmetic shift and then sign extend + int32_t sign = (int8_t)more >> 7; + int32_t magic = denom->magic; + int32_t q = libdivide_mullhi_s32(magic, numer); + q += numer; + + // If q is non-negative, we have nothing to do + // If q is negative, we want to add either (2**shift)-1 if d is a power of + // 2, or (2**shift) if it is not a power of 2 + uint32_t is_power_of_2 = (magic == 0); + uint32_t q_sign = (uint32_t)(q >> 31); + q += q_sign & ((1U << shift) - is_power_of_2); + + // Now arithmetic right shift + q >>= shift; + // Negate if needed + q = (q ^ sign) - sign; + + return q; +} + +int32_t libdivide_s32_recover(const struct libdivide_s32_t *denom) { + uint8_t more = denom->more; + uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; + if (!denom->magic) { + uint32_t absD = 1U << shift; + if (more & LIBDIVIDE_NEGATIVE_DIVISOR) { + absD = -absD; + } + return (int32_t)absD; + } else { + // Unsigned math is much easier + // We negate the magic number only in the branchfull case, and we don't + // know which case we're in. However we have enough information to + // determine the correct sign of the magic number. The divisor was + // negative if LIBDIVIDE_NEGATIVE_DIVISOR is set. If ADD_MARKER is set, + // the magic number's sign is opposite that of the divisor. + // We want to compute the positive magic number. + int negative_divisor = (more & LIBDIVIDE_NEGATIVE_DIVISOR); + int magic_was_negated = (more & LIBDIVIDE_ADD_MARKER) + ? denom->magic > 0 : denom->magic < 0; + + // Handle the power of 2 case (including branchfree) + if (denom->magic == 0) { + int32_t result = 1U << shift; + return negative_divisor ? -result : result; + } + + uint32_t d = (uint32_t)(magic_was_negated ? -denom->magic : denom->magic); + uint64_t n = 1ULL << (32 + shift); // this shift cannot exceed 30 + uint32_t q = (uint32_t)(n / d); + int32_t result = (int32_t)q; + result += 1; + return negative_divisor ? -result : result; + } +} + +int32_t libdivide_s32_branchfree_recover(const struct libdivide_s32_branchfree_t *denom) { + return libdivide_s32_recover((const struct libdivide_s32_t *)denom); +} + +///////////// SINT64 + +static inline struct libdivide_s64_t libdivide_internal_s64_gen(int64_t d, int branchfree) { + if (d == 0) { + LIBDIVIDE_ERROR("divider must be != 0"); + } + + struct libdivide_s64_t result; + + // If d is a power of 2, or negative a power of 2, we have to use a shift. + // This is especially important because the magic algorithm fails for -1. + // To check if d is a power of 2 or its inverse, it suffices to check + // whether its absolute value has exactly one bit set. This works even for + // INT_MIN, because abs(INT_MIN) == INT_MIN, and INT_MIN has one bit set + // and is a power of 2. + uint64_t ud = (uint64_t)d; + uint64_t absD = (d < 0) ? -ud : ud; + uint32_t floor_log_2_d = 63 - libdivide_count_leading_zeros64(absD); + // check if exactly one bit is set, + // don't care if absD is 0 since that's divide by zero + if ((absD & (absD - 1)) == 0) { + // Branchfree and non-branchfree cases are the same + result.magic = 0; + result.more = floor_log_2_d | (d < 0 ? LIBDIVIDE_NEGATIVE_DIVISOR : 0); + } else { + // the dividend here is 2**(floor_log_2_d + 63), so the low 64 bit word + // is 0 and the high word is floor_log_2_d - 1 + uint8_t more; + uint64_t rem, proposed_m; + proposed_m = libdivide_128_div_64_to_64(1ULL << (floor_log_2_d - 1), 0, absD, &rem); + const uint64_t e = absD - rem; + + // We are going to start with a power of floor_log_2_d - 1. + // This works if works if e < 2**floor_log_2_d. + if (!branchfree && e < (1ULL << floor_log_2_d)) { + // This power works + more = floor_log_2_d - 1; + } else { + // We need to go one higher. This should not make proposed_m + // overflow, but it will make it negative when interpreted as an + // int32_t. + proposed_m += proposed_m; + const uint64_t twice_rem = rem + rem; + if (twice_rem >= absD || twice_rem < rem) proposed_m += 1; + // note that we only set the LIBDIVIDE_NEGATIVE_DIVISOR bit if we + // also set ADD_MARKER this is an annoying optimization that + // enables algorithm #4 to avoid the mask. However we always set it + // in the branchfree case + more = floor_log_2_d | LIBDIVIDE_ADD_MARKER; + } + proposed_m += 1; + int64_t magic = (int64_t)proposed_m; + + // Mark if we are negative + if (d < 0) { + more |= LIBDIVIDE_NEGATIVE_DIVISOR; + if (!branchfree) { + magic = -magic; + } + } + + result.more = more; + result.magic = magic; + } + return result; +} + +struct libdivide_s64_t libdivide_s64_gen(int64_t d) { + return libdivide_internal_s64_gen(d, 0); +} + +struct libdivide_s64_branchfree_t libdivide_s64_branchfree_gen(int64_t d) { + struct libdivide_s64_t tmp = libdivide_internal_s64_gen(d, 1); + struct libdivide_s64_branchfree_t ret = {tmp.magic, tmp.more}; + return ret; +} + +int64_t libdivide_s64_do(int64_t numer, const struct libdivide_s64_t *denom) { + uint8_t more = denom->more; + uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; + + if (!denom->magic) { // shift path + uint64_t mask = (1ULL << shift) - 1; + uint64_t uq = numer + ((numer >> 63) & mask); + int64_t q = (int64_t)uq; + q >>= shift; + // must be arithmetic shift and then sign-extend + int64_t sign = (int8_t)more >> 7; + q = (q ^ sign) - sign; + return q; + } else { + uint64_t uq = (uint64_t)libdivide_mullhi_s64(denom->magic, numer); + if (more & LIBDIVIDE_ADD_MARKER) { + // must be arithmetic shift and then sign extend + int64_t sign = (int8_t)more >> 7; + // q += (more < 0 ? -numer : numer) + // cast required to avoid UB + uq += ((uint64_t)numer ^ sign) - sign; + } + int64_t q = (int64_t)uq; + q >>= shift; + q += (q < 0); + return q; + } +} + +int64_t libdivide_s64_branchfree_do(int64_t numer, const struct libdivide_s64_branchfree_t *denom) { + uint8_t more = denom->more; + uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; + // must be arithmetic shift and then sign extend + int64_t sign = (int8_t)more >> 7; + int64_t magic = denom->magic; + int64_t q = libdivide_mullhi_s64(magic, numer); + q += numer; + + // If q is non-negative, we have nothing to do. + // If q is negative, we want to add either (2**shift)-1 if d is a power of + // 2, or (2**shift) if it is not a power of 2. + uint64_t is_power_of_2 = (magic == 0); + uint64_t q_sign = (uint64_t)(q >> 63); + q += q_sign & ((1ULL << shift) - is_power_of_2); + + // Arithmetic right shift + q >>= shift; + // Negate if needed + q = (q ^ sign) - sign; + + return q; +} + +int64_t libdivide_s64_recover(const struct libdivide_s64_t *denom) { + uint8_t more = denom->more; + uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; + if (denom->magic == 0) { // shift path + uint64_t absD = 1ULL << shift; + if (more & LIBDIVIDE_NEGATIVE_DIVISOR) { + absD = -absD; + } + return (int64_t)absD; + } else { + // Unsigned math is much easier + int negative_divisor = (more & LIBDIVIDE_NEGATIVE_DIVISOR); + int magic_was_negated = (more & LIBDIVIDE_ADD_MARKER) + ? denom->magic > 0 : denom->magic < 0; + + uint64_t d = (uint64_t)(magic_was_negated ? -denom->magic : denom->magic); + uint64_t n_hi = 1ULL << shift, n_lo = 0; + uint64_t rem_ignored; + uint64_t q = libdivide_128_div_64_to_64(n_hi, n_lo, d, &rem_ignored); + int64_t result = (int64_t)(q + 1); + if (negative_divisor) { + result = -result; + } + return result; + } +} + +int64_t libdivide_s64_branchfree_recover(const struct libdivide_s64_branchfree_t *denom) { + return libdivide_s64_recover((const struct libdivide_s64_t *)denom); +} + +#if defined(LIBDIVIDE_AVX512) + +static inline __m512i libdivide_u32_do_vector(__m512i numers, const struct libdivide_u32_t *denom); +static inline __m512i libdivide_s32_do_vector(__m512i numers, const struct libdivide_s32_t *denom); +static inline __m512i libdivide_u64_do_vector(__m512i numers, const struct libdivide_u64_t *denom); +static inline __m512i libdivide_s64_do_vector(__m512i numers, const struct libdivide_s64_t *denom); + +static inline __m512i libdivide_u32_branchfree_do_vector(__m512i numers, const struct libdivide_u32_branchfree_t *denom); +static inline __m512i libdivide_s32_branchfree_do_vector(__m512i numers, const struct libdivide_s32_branchfree_t *denom); +static inline __m512i libdivide_u64_branchfree_do_vector(__m512i numers, const struct libdivide_u64_branchfree_t *denom); +static inline __m512i libdivide_s64_branchfree_do_vector(__m512i numers, const struct libdivide_s64_branchfree_t *denom); + +//////// Internal Utility Functions + +static inline __m512i libdivide_s64_signbits(__m512i v) {; + return _mm512_srai_epi64(v, 63); +} + +static inline __m512i libdivide_s64_shift_right_vector(__m512i v, int amt) { + return _mm512_srai_epi64(v, amt); +} + +// Here, b is assumed to contain one 32-bit value repeated. +static inline __m512i libdivide_mullhi_u32_vector(__m512i a, __m512i b) { + __m512i hi_product_0Z2Z = _mm512_srli_epi64(_mm512_mul_epu32(a, b), 32); + __m512i a1X3X = _mm512_srli_epi64(a, 32); + __m512i mask = _mm512_set_epi32(-1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0); + __m512i hi_product_Z1Z3 = _mm512_and_si512(_mm512_mul_epu32(a1X3X, b), mask); + return _mm512_or_si512(hi_product_0Z2Z, hi_product_Z1Z3); +} + +// b is one 32-bit value repeated. +static inline __m512i libdivide_mullhi_s32_vector(__m512i a, __m512i b) { + __m512i hi_product_0Z2Z = _mm512_srli_epi64(_mm512_mul_epi32(a, b), 32); + __m512i a1X3X = _mm512_srli_epi64(a, 32); + __m512i mask = _mm512_set_epi32(-1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0); + __m512i hi_product_Z1Z3 = _mm512_and_si512(_mm512_mul_epi32(a1X3X, b), mask); + return _mm512_or_si512(hi_product_0Z2Z, hi_product_Z1Z3); +} + +// Here, y is assumed to contain one 64-bit value repeated. +// https://stackoverflow.com/a/28827013 +static inline __m512i libdivide_mullhi_u64_vector(__m512i x, __m512i y) { + __m512i lomask = _mm512_set1_epi64(0xffffffff); + __m512i xh = _mm512_shuffle_epi32(x, (_MM_PERM_ENUM) 0xB1); + __m512i yh = _mm512_shuffle_epi32(y, (_MM_PERM_ENUM) 0xB1); + __m512i w0 = _mm512_mul_epu32(x, y); + __m512i w1 = _mm512_mul_epu32(x, yh); + __m512i w2 = _mm512_mul_epu32(xh, y); + __m512i w3 = _mm512_mul_epu32(xh, yh); + __m512i w0h = _mm512_srli_epi64(w0, 32); + __m512i s1 = _mm512_add_epi64(w1, w0h); + __m512i s1l = _mm512_and_si512(s1, lomask); + __m512i s1h = _mm512_srli_epi64(s1, 32); + __m512i s2 = _mm512_add_epi64(w2, s1l); + __m512i s2h = _mm512_srli_epi64(s2, 32); + __m512i hi = _mm512_add_epi64(w3, s1h); + hi = _mm512_add_epi64(hi, s2h); + + return hi; +} + +// y is one 64-bit value repeated. +static inline __m512i libdivide_mullhi_s64_vector(__m512i x, __m512i y) { + __m512i p = libdivide_mullhi_u64_vector(x, y); + __m512i t1 = _mm512_and_si512(libdivide_s64_signbits(x), y); + __m512i t2 = _mm512_and_si512(libdivide_s64_signbits(y), x); + p = _mm512_sub_epi64(p, t1); + p = _mm512_sub_epi64(p, t2); + return p; +} + +////////// UINT32 + +__m512i libdivide_u32_do_vector(__m512i numers, const struct libdivide_u32_t *denom) { + uint8_t more = denom->more; + if (!denom->magic) { + return _mm512_srli_epi32(numers, more); + } + else { + __m512i q = libdivide_mullhi_u32_vector(numers, _mm512_set1_epi32(denom->magic)); + if (more & LIBDIVIDE_ADD_MARKER) { + // uint32_t t = ((numer - q) >> 1) + q; + // return t >> denom->shift; + uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK; + __m512i t = _mm512_add_epi32(_mm512_srli_epi32(_mm512_sub_epi32(numers, q), 1), q); + return _mm512_srli_epi32(t, shift); + } + else { + return _mm512_srli_epi32(q, more); + } + } +} + +__m512i libdivide_u32_branchfree_do_vector(__m512i numers, const struct libdivide_u32_branchfree_t *denom) { + __m512i q = libdivide_mullhi_u32_vector(numers, _mm512_set1_epi32(denom->magic)); + __m512i t = _mm512_add_epi32(_mm512_srli_epi32(_mm512_sub_epi32(numers, q), 1), q); + return _mm512_srli_epi32(t, denom->more); +} + +////////// UINT64 + +__m512i libdivide_u64_do_vector(__m512i numers, const struct libdivide_u64_t *denom) { + uint8_t more = denom->more; + if (!denom->magic) { + return _mm512_srli_epi64(numers, more); + } + else { + __m512i q = libdivide_mullhi_u64_vector(numers, _mm512_set1_epi64(denom->magic)); + if (more & LIBDIVIDE_ADD_MARKER) { + // uint32_t t = ((numer - q) >> 1) + q; + // return t >> denom->shift; + uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK; + __m512i t = _mm512_add_epi64(_mm512_srli_epi64(_mm512_sub_epi64(numers, q), 1), q); + return _mm512_srli_epi64(t, shift); + } + else { + return _mm512_srli_epi64(q, more); + } + } +} + +__m512i libdivide_u64_branchfree_do_vector(__m512i numers, const struct libdivide_u64_branchfree_t *denom) { + __m512i q = libdivide_mullhi_u64_vector(numers, _mm512_set1_epi64(denom->magic)); + __m512i t = _mm512_add_epi64(_mm512_srli_epi64(_mm512_sub_epi64(numers, q), 1), q); + return _mm512_srli_epi64(t, denom->more); +} + +////////// SINT32 + +__m512i libdivide_s32_do_vector(__m512i numers, const struct libdivide_s32_t *denom) { + uint8_t more = denom->more; + if (!denom->magic) { + uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK; + uint32_t mask = (1U << shift) - 1; + __m512i roundToZeroTweak = _mm512_set1_epi32(mask); + // q = numer + ((numer >> 31) & roundToZeroTweak); + __m512i q = _mm512_add_epi32(numers, _mm512_and_si512(_mm512_srai_epi32(numers, 31), roundToZeroTweak)); + q = _mm512_srai_epi32(q, shift); + __m512i sign = _mm512_set1_epi32((int8_t)more >> 7); + // q = (q ^ sign) - sign; + q = _mm512_sub_epi32(_mm512_xor_si512(q, sign), sign); + return q; + } + else { + __m512i q = libdivide_mullhi_s32_vector(numers, _mm512_set1_epi32(denom->magic)); + if (more & LIBDIVIDE_ADD_MARKER) { + // must be arithmetic shift + __m512i sign = _mm512_set1_epi32((int8_t)more >> 7); + // q += ((numer ^ sign) - sign); + q = _mm512_add_epi32(q, _mm512_sub_epi32(_mm512_xor_si512(numers, sign), sign)); + } + // q >>= shift + q = _mm512_srai_epi32(q, more & LIBDIVIDE_32_SHIFT_MASK); + q = _mm512_add_epi32(q, _mm512_srli_epi32(q, 31)); // q += (q < 0) + return q; + } +} + +__m512i libdivide_s32_branchfree_do_vector(__m512i numers, const struct libdivide_s32_branchfree_t *denom) { + int32_t magic = denom->magic; + uint8_t more = denom->more; + uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; + // must be arithmetic shift + __m512i sign = _mm512_set1_epi32((int8_t)more >> 7); + __m512i q = libdivide_mullhi_s32_vector(numers, _mm512_set1_epi32(magic)); + q = _mm512_add_epi32(q, numers); // q += numers + + // If q is non-negative, we have nothing to do + // If q is negative, we want to add either (2**shift)-1 if d is + // a power of 2, or (2**shift) if it is not a power of 2 + uint32_t is_power_of_2 = (magic == 0); + __m512i q_sign = _mm512_srai_epi32(q, 31); // q_sign = q >> 31 + __m512i mask = _mm512_set1_epi32((1U << shift) - is_power_of_2); + q = _mm512_add_epi32(q, _mm512_and_si512(q_sign, mask)); // q = q + (q_sign & mask) + q = _mm512_srai_epi32(q, shift); // q >>= shift + q = _mm512_sub_epi32(_mm512_xor_si512(q, sign), sign); // q = (q ^ sign) - sign + return q; +} + +////////// SINT64 + +__m512i libdivide_s64_do_vector(__m512i numers, const struct libdivide_s64_t *denom) { + uint8_t more = denom->more; + int64_t magic = denom->magic; + if (magic == 0) { // shift path + uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK; + uint64_t mask = (1ULL << shift) - 1; + __m512i roundToZeroTweak = _mm512_set1_epi64(mask); + // q = numer + ((numer >> 63) & roundToZeroTweak); + __m512i q = _mm512_add_epi64(numers, _mm512_and_si512(libdivide_s64_signbits(numers), roundToZeroTweak)); + q = libdivide_s64_shift_right_vector(q, shift); + __m512i sign = _mm512_set1_epi32((int8_t)more >> 7); + // q = (q ^ sign) - sign; + q = _mm512_sub_epi64(_mm512_xor_si512(q, sign), sign); + return q; + } + else { + __m512i q = libdivide_mullhi_s64_vector(numers, _mm512_set1_epi64(magic)); + if (more & LIBDIVIDE_ADD_MARKER) { + // must be arithmetic shift + __m512i sign = _mm512_set1_epi32((int8_t)more >> 7); + // q += ((numer ^ sign) - sign); + q = _mm512_add_epi64(q, _mm512_sub_epi64(_mm512_xor_si512(numers, sign), sign)); + } + // q >>= denom->mult_path.shift + q = libdivide_s64_shift_right_vector(q, more & LIBDIVIDE_64_SHIFT_MASK); + q = _mm512_add_epi64(q, _mm512_srli_epi64(q, 63)); // q += (q < 0) + return q; + } +} + +__m512i libdivide_s64_branchfree_do_vector(__m512i numers, const struct libdivide_s64_branchfree_t *denom) { + int64_t magic = denom->magic; + uint8_t more = denom->more; + uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; + // must be arithmetic shift + __m512i sign = _mm512_set1_epi32((int8_t)more >> 7); + + // libdivide_mullhi_s64(numers, magic); + __m512i q = libdivide_mullhi_s64_vector(numers, _mm512_set1_epi64(magic)); + q = _mm512_add_epi64(q, numers); // q += numers + + // If q is non-negative, we have nothing to do. + // If q is negative, we want to add either (2**shift)-1 if d is + // a power of 2, or (2**shift) if it is not a power of 2. + uint32_t is_power_of_2 = (magic == 0); + __m512i q_sign = libdivide_s64_signbits(q); // q_sign = q >> 63 + __m512i mask = _mm512_set1_epi64((1ULL << shift) - is_power_of_2); + q = _mm512_add_epi64(q, _mm512_and_si512(q_sign, mask)); // q = q + (q_sign & mask) + q = libdivide_s64_shift_right_vector(q, shift); // q >>= shift + q = _mm512_sub_epi64(_mm512_xor_si512(q, sign), sign); // q = (q ^ sign) - sign + return q; +} + +#elif defined(LIBDIVIDE_AVX2) + +static inline __m256i libdivide_u32_do_vector(__m256i numers, const struct libdivide_u32_t *denom); +static inline __m256i libdivide_s32_do_vector(__m256i numers, const struct libdivide_s32_t *denom); +static inline __m256i libdivide_u64_do_vector(__m256i numers, const struct libdivide_u64_t *denom); +static inline __m256i libdivide_s64_do_vector(__m256i numers, const struct libdivide_s64_t *denom); + +static inline __m256i libdivide_u32_branchfree_do_vector(__m256i numers, const struct libdivide_u32_branchfree_t *denom); +static inline __m256i libdivide_s32_branchfree_do_vector(__m256i numers, const struct libdivide_s32_branchfree_t *denom); +static inline __m256i libdivide_u64_branchfree_do_vector(__m256i numers, const struct libdivide_u64_branchfree_t *denom); +static inline __m256i libdivide_s64_branchfree_do_vector(__m256i numers, const struct libdivide_s64_branchfree_t *denom); + +//////// Internal Utility Functions + +// Implementation of _mm256_srai_epi64(v, 63) (from AVX512). +static inline __m256i libdivide_s64_signbits(__m256i v) { + __m256i hiBitsDuped = _mm256_shuffle_epi32(v, _MM_SHUFFLE(3, 3, 1, 1)); + __m256i signBits = _mm256_srai_epi32(hiBitsDuped, 31); + return signBits; +} + +// Implementation of _mm256_srai_epi64 (from AVX512). +static inline __m256i libdivide_s64_shift_right_vector(__m256i v, int amt) { + const int b = 64 - amt; + __m256i m = _mm256_set1_epi64x(1ULL << (b - 1)); + __m256i x = _mm256_srli_epi64(v, amt); + __m256i result = _mm256_sub_epi64(_mm256_xor_si256(x, m), m); + return result; +} + +// Here, b is assumed to contain one 32-bit value repeated. +static inline __m256i libdivide_mullhi_u32_vector(__m256i a, __m256i b) { + __m256i hi_product_0Z2Z = _mm256_srli_epi64(_mm256_mul_epu32(a, b), 32); + __m256i a1X3X = _mm256_srli_epi64(a, 32); + __m256i mask = _mm256_set_epi32(-1, 0, -1, 0, -1, 0, -1, 0); + __m256i hi_product_Z1Z3 = _mm256_and_si256(_mm256_mul_epu32(a1X3X, b), mask); + return _mm256_or_si256(hi_product_0Z2Z, hi_product_Z1Z3); +} + +// b is one 32-bit value repeated. +static inline __m256i libdivide_mullhi_s32_vector(__m256i a, __m256i b) { + __m256i hi_product_0Z2Z = _mm256_srli_epi64(_mm256_mul_epi32(a, b), 32); + __m256i a1X3X = _mm256_srli_epi64(a, 32); + __m256i mask = _mm256_set_epi32(-1, 0, -1, 0, -1, 0, -1, 0); + __m256i hi_product_Z1Z3 = _mm256_and_si256(_mm256_mul_epi32(a1X3X, b), mask); + return _mm256_or_si256(hi_product_0Z2Z, hi_product_Z1Z3); +} + +// Here, y is assumed to contain one 64-bit value repeated. +// https://stackoverflow.com/a/28827013 +static inline __m256i libdivide_mullhi_u64_vector(__m256i x, __m256i y) { + __m256i lomask = _mm256_set1_epi64x(0xffffffff); + __m256i xh = _mm256_shuffle_epi32(x, 0xB1); // x0l, x0h, x1l, x1h + __m256i yh = _mm256_shuffle_epi32(y, 0xB1); // y0l, y0h, y1l, y1h + __m256i w0 = _mm256_mul_epu32(x, y); // x0l*y0l, x1l*y1l + __m256i w1 = _mm256_mul_epu32(x, yh); // x0l*y0h, x1l*y1h + __m256i w2 = _mm256_mul_epu32(xh, y); // x0h*y0l, x1h*y0l + __m256i w3 = _mm256_mul_epu32(xh, yh); // x0h*y0h, x1h*y1h + __m256i w0h = _mm256_srli_epi64(w0, 32); + __m256i s1 = _mm256_add_epi64(w1, w0h); + __m256i s1l = _mm256_and_si256(s1, lomask); + __m256i s1h = _mm256_srli_epi64(s1, 32); + __m256i s2 = _mm256_add_epi64(w2, s1l); + __m256i s2h = _mm256_srli_epi64(s2, 32); + __m256i hi = _mm256_add_epi64(w3, s1h); + hi = _mm256_add_epi64(hi, s2h); + + return hi; +} + +// y is one 64-bit value repeated. +static inline __m256i libdivide_mullhi_s64_vector(__m256i x, __m256i y) { + __m256i p = libdivide_mullhi_u64_vector(x, y); + __m256i t1 = _mm256_and_si256(libdivide_s64_signbits(x), y); + __m256i t2 = _mm256_and_si256(libdivide_s64_signbits(y), x); + p = _mm256_sub_epi64(p, t1); + p = _mm256_sub_epi64(p, t2); + return p; +} + +////////// UINT32 + +__m256i libdivide_u32_do_vector(__m256i numers, const struct libdivide_u32_t *denom) { + uint8_t more = denom->more; + if (!denom->magic) { + return _mm256_srli_epi32(numers, more); + } + else { + __m256i q = libdivide_mullhi_u32_vector(numers, _mm256_set1_epi32(denom->magic)); + if (more & LIBDIVIDE_ADD_MARKER) { + // uint32_t t = ((numer - q) >> 1) + q; + // return t >> denom->shift; + uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK; + __m256i t = _mm256_add_epi32(_mm256_srli_epi32(_mm256_sub_epi32(numers, q), 1), q); + return _mm256_srli_epi32(t, shift); + } + else { + return _mm256_srli_epi32(q, more); + } + } +} + +__m256i libdivide_u32_branchfree_do_vector(__m256i numers, const struct libdivide_u32_branchfree_t *denom) { + __m256i q = libdivide_mullhi_u32_vector(numers, _mm256_set1_epi32(denom->magic)); + __m256i t = _mm256_add_epi32(_mm256_srli_epi32(_mm256_sub_epi32(numers, q), 1), q); + return _mm256_srli_epi32(t, denom->more); +} + +////////// UINT64 + +__m256i libdivide_u64_do_vector(__m256i numers, const struct libdivide_u64_t *denom) { + uint8_t more = denom->more; + if (!denom->magic) { + return _mm256_srli_epi64(numers, more); + } + else { + __m256i q = libdivide_mullhi_u64_vector(numers, _mm256_set1_epi64x(denom->magic)); + if (more & LIBDIVIDE_ADD_MARKER) { + // uint32_t t = ((numer - q) >> 1) + q; + // return t >> denom->shift; + uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK; + __m256i t = _mm256_add_epi64(_mm256_srli_epi64(_mm256_sub_epi64(numers, q), 1), q); + return _mm256_srli_epi64(t, shift); + } + else { + return _mm256_srli_epi64(q, more); + } + } +} + +__m256i libdivide_u64_branchfree_do_vector(__m256i numers, const struct libdivide_u64_branchfree_t *denom) { + __m256i q = libdivide_mullhi_u64_vector(numers, _mm256_set1_epi64x(denom->magic)); + __m256i t = _mm256_add_epi64(_mm256_srli_epi64(_mm256_sub_epi64(numers, q), 1), q); + return _mm256_srli_epi64(t, denom->more); +} + +////////// SINT32 + +__m256i libdivide_s32_do_vector(__m256i numers, const struct libdivide_s32_t *denom) { + uint8_t more = denom->more; + if (!denom->magic) { + uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK; + uint32_t mask = (1U << shift) - 1; + __m256i roundToZeroTweak = _mm256_set1_epi32(mask); + // q = numer + ((numer >> 31) & roundToZeroTweak); + __m256i q = _mm256_add_epi32(numers, _mm256_and_si256(_mm256_srai_epi32(numers, 31), roundToZeroTweak)); + q = _mm256_srai_epi32(q, shift); + __m256i sign = _mm256_set1_epi32((int8_t)more >> 7); + // q = (q ^ sign) - sign; + q = _mm256_sub_epi32(_mm256_xor_si256(q, sign), sign); + return q; + } + else { + __m256i q = libdivide_mullhi_s32_vector(numers, _mm256_set1_epi32(denom->magic)); + if (more & LIBDIVIDE_ADD_MARKER) { + // must be arithmetic shift + __m256i sign = _mm256_set1_epi32((int8_t)more >> 7); + // q += ((numer ^ sign) - sign); + q = _mm256_add_epi32(q, _mm256_sub_epi32(_mm256_xor_si256(numers, sign), sign)); + } + // q >>= shift + q = _mm256_srai_epi32(q, more & LIBDIVIDE_32_SHIFT_MASK); + q = _mm256_add_epi32(q, _mm256_srli_epi32(q, 31)); // q += (q < 0) + return q; + } +} + +__m256i libdivide_s32_branchfree_do_vector(__m256i numers, const struct libdivide_s32_branchfree_t *denom) { + int32_t magic = denom->magic; + uint8_t more = denom->more; + uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; + // must be arithmetic shift + __m256i sign = _mm256_set1_epi32((int8_t)more >> 7); + __m256i q = libdivide_mullhi_s32_vector(numers, _mm256_set1_epi32(magic)); + q = _mm256_add_epi32(q, numers); // q += numers + + // If q is non-negative, we have nothing to do + // If q is negative, we want to add either (2**shift)-1 if d is + // a power of 2, or (2**shift) if it is not a power of 2 + uint32_t is_power_of_2 = (magic == 0); + __m256i q_sign = _mm256_srai_epi32(q, 31); // q_sign = q >> 31 + __m256i mask = _mm256_set1_epi32((1U << shift) - is_power_of_2); + q = _mm256_add_epi32(q, _mm256_and_si256(q_sign, mask)); // q = q + (q_sign & mask) + q = _mm256_srai_epi32(q, shift); // q >>= shift + q = _mm256_sub_epi32(_mm256_xor_si256(q, sign), sign); // q = (q ^ sign) - sign + return q; +} + +////////// SINT64 + +__m256i libdivide_s64_do_vector(__m256i numers, const struct libdivide_s64_t *denom) { + uint8_t more = denom->more; + int64_t magic = denom->magic; + if (magic == 0) { // shift path + uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK; + uint64_t mask = (1ULL << shift) - 1; + __m256i roundToZeroTweak = _mm256_set1_epi64x(mask); + // q = numer + ((numer >> 63) & roundToZeroTweak); + __m256i q = _mm256_add_epi64(numers, _mm256_and_si256(libdivide_s64_signbits(numers), roundToZeroTweak)); + q = libdivide_s64_shift_right_vector(q, shift); + __m256i sign = _mm256_set1_epi32((int8_t)more >> 7); + // q = (q ^ sign) - sign; + q = _mm256_sub_epi64(_mm256_xor_si256(q, sign), sign); + return q; + } + else { + __m256i q = libdivide_mullhi_s64_vector(numers, _mm256_set1_epi64x(magic)); + if (more & LIBDIVIDE_ADD_MARKER) { + // must be arithmetic shift + __m256i sign = _mm256_set1_epi32((int8_t)more >> 7); + // q += ((numer ^ sign) - sign); + q = _mm256_add_epi64(q, _mm256_sub_epi64(_mm256_xor_si256(numers, sign), sign)); + } + // q >>= denom->mult_path.shift + q = libdivide_s64_shift_right_vector(q, more & LIBDIVIDE_64_SHIFT_MASK); + q = _mm256_add_epi64(q, _mm256_srli_epi64(q, 63)); // q += (q < 0) + return q; + } +} + +__m256i libdivide_s64_branchfree_do_vector(__m256i numers, const struct libdivide_s64_branchfree_t *denom) { + int64_t magic = denom->magic; + uint8_t more = denom->more; + uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; + // must be arithmetic shift + __m256i sign = _mm256_set1_epi32((int8_t)more >> 7); + + // libdivide_mullhi_s64(numers, magic); + __m256i q = libdivide_mullhi_s64_vector(numers, _mm256_set1_epi64x(magic)); + q = _mm256_add_epi64(q, numers); // q += numers + + // If q is non-negative, we have nothing to do. + // If q is negative, we want to add either (2**shift)-1 if d is + // a power of 2, or (2**shift) if it is not a power of 2. + uint32_t is_power_of_2 = (magic == 0); + __m256i q_sign = libdivide_s64_signbits(q); // q_sign = q >> 63 + __m256i mask = _mm256_set1_epi64x((1ULL << shift) - is_power_of_2); + q = _mm256_add_epi64(q, _mm256_and_si256(q_sign, mask)); // q = q + (q_sign & mask) + q = libdivide_s64_shift_right_vector(q, shift); // q >>= shift + q = _mm256_sub_epi64(_mm256_xor_si256(q, sign), sign); // q = (q ^ sign) - sign + return q; +} + +#elif defined(LIBDIVIDE_SSE2) + +static inline __m128i libdivide_u32_do_vector(__m128i numers, const struct libdivide_u32_t *denom); +static inline __m128i libdivide_s32_do_vector(__m128i numers, const struct libdivide_s32_t *denom); +static inline __m128i libdivide_u64_do_vector(__m128i numers, const struct libdivide_u64_t *denom); +static inline __m128i libdivide_s64_do_vector(__m128i numers, const struct libdivide_s64_t *denom); + +static inline __m128i libdivide_u32_branchfree_do_vector(__m128i numers, const struct libdivide_u32_branchfree_t *denom); +static inline __m128i libdivide_s32_branchfree_do_vector(__m128i numers, const struct libdivide_s32_branchfree_t *denom); +static inline __m128i libdivide_u64_branchfree_do_vector(__m128i numers, const struct libdivide_u64_branchfree_t *denom); +static inline __m128i libdivide_s64_branchfree_do_vector(__m128i numers, const struct libdivide_s64_branchfree_t *denom); + +//////// Internal Utility Functions + +// Implementation of _mm_srai_epi64(v, 63) (from AVX512). +static inline __m128i libdivide_s64_signbits(__m128i v) { + __m128i hiBitsDuped = _mm_shuffle_epi32(v, _MM_SHUFFLE(3, 3, 1, 1)); + __m128i signBits = _mm_srai_epi32(hiBitsDuped, 31); + return signBits; +} + +// Implementation of _mm_srai_epi64 (from AVX512). +static inline __m128i libdivide_s64_shift_right_vector(__m128i v, int amt) { + const int b = 64 - amt; + __m128i m = _mm_set1_epi64x(1ULL << (b - 1)); + __m128i x = _mm_srli_epi64(v, amt); + __m128i result = _mm_sub_epi64(_mm_xor_si128(x, m), m); + return result; +} + +// Here, b is assumed to contain one 32-bit value repeated. +static inline __m128i libdivide_mullhi_u32_vector(__m128i a, __m128i b) { + __m128i hi_product_0Z2Z = _mm_srli_epi64(_mm_mul_epu32(a, b), 32); + __m128i a1X3X = _mm_srli_epi64(a, 32); + __m128i mask = _mm_set_epi32(-1, 0, -1, 0); + __m128i hi_product_Z1Z3 = _mm_and_si128(_mm_mul_epu32(a1X3X, b), mask); + return _mm_or_si128(hi_product_0Z2Z, hi_product_Z1Z3); +} + +// SSE2 does not have a signed multiplication instruction, but we can convert +// unsigned to signed pretty efficiently. Again, b is just a 32 bit value +// repeated four times. +static inline __m128i libdivide_mullhi_s32_vector(__m128i a, __m128i b) { + __m128i p = libdivide_mullhi_u32_vector(a, b); + // t1 = (a >> 31) & y, arithmetic shift + __m128i t1 = _mm_and_si128(_mm_srai_epi32(a, 31), b); + __m128i t2 = _mm_and_si128(_mm_srai_epi32(b, 31), a); + p = _mm_sub_epi32(p, t1); + p = _mm_sub_epi32(p, t2); + return p; +} + +// Here, y is assumed to contain one 64-bit value repeated. +// https://stackoverflow.com/a/28827013 +static inline __m128i libdivide_mullhi_u64_vector(__m128i x, __m128i y) { + __m128i lomask = _mm_set1_epi64x(0xffffffff); + __m128i xh = _mm_shuffle_epi32(x, 0xB1); // x0l, x0h, x1l, x1h + __m128i yh = _mm_shuffle_epi32(y, 0xB1); // y0l, y0h, y1l, y1h + __m128i w0 = _mm_mul_epu32(x, y); // x0l*y0l, x1l*y1l + __m128i w1 = _mm_mul_epu32(x, yh); // x0l*y0h, x1l*y1h + __m128i w2 = _mm_mul_epu32(xh, y); // x0h*y0l, x1h*y0l + __m128i w3 = _mm_mul_epu32(xh, yh); // x0h*y0h, x1h*y1h + __m128i w0h = _mm_srli_epi64(w0, 32); + __m128i s1 = _mm_add_epi64(w1, w0h); + __m128i s1l = _mm_and_si128(s1, lomask); + __m128i s1h = _mm_srli_epi64(s1, 32); + __m128i s2 = _mm_add_epi64(w2, s1l); + __m128i s2h = _mm_srli_epi64(s2, 32); + __m128i hi = _mm_add_epi64(w3, s1h); + hi = _mm_add_epi64(hi, s2h); + + return hi; +} + +// y is one 64-bit value repeated. +static inline __m128i libdivide_mullhi_s64_vector(__m128i x, __m128i y) { + __m128i p = libdivide_mullhi_u64_vector(x, y); + __m128i t1 = _mm_and_si128(libdivide_s64_signbits(x), y); + __m128i t2 = _mm_and_si128(libdivide_s64_signbits(y), x); + p = _mm_sub_epi64(p, t1); + p = _mm_sub_epi64(p, t2); + return p; +} + +////////// UINT32 + +__m128i libdivide_u32_do_vector(__m128i numers, const struct libdivide_u32_t *denom) { + uint8_t more = denom->more; + if (!denom->magic) { + return _mm_srli_epi32(numers, more); + } + else { + __m128i q = libdivide_mullhi_u32_vector(numers, _mm_set1_epi32(denom->magic)); + if (more & LIBDIVIDE_ADD_MARKER) { + // uint32_t t = ((numer - q) >> 1) + q; + // return t >> denom->shift; + uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK; + __m128i t = _mm_add_epi32(_mm_srli_epi32(_mm_sub_epi32(numers, q), 1), q); + return _mm_srli_epi32(t, shift); + } + else { + return _mm_srli_epi32(q, more); + } + } +} + +__m128i libdivide_u32_branchfree_do_vector(__m128i numers, const struct libdivide_u32_branchfree_t *denom) { + __m128i q = libdivide_mullhi_u32_vector(numers, _mm_set1_epi32(denom->magic)); + __m128i t = _mm_add_epi32(_mm_srli_epi32(_mm_sub_epi32(numers, q), 1), q); + return _mm_srli_epi32(t, denom->more); +} + +////////// UINT64 + +__m128i libdivide_u64_do_vector(__m128i numers, const struct libdivide_u64_t *denom) { + uint8_t more = denom->more; + if (!denom->magic) { + return _mm_srli_epi64(numers, more); + } + else { + __m128i q = libdivide_mullhi_u64_vector(numers, _mm_set1_epi64x(denom->magic)); + if (more & LIBDIVIDE_ADD_MARKER) { + // uint32_t t = ((numer - q) >> 1) + q; + // return t >> denom->shift; + uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK; + __m128i t = _mm_add_epi64(_mm_srli_epi64(_mm_sub_epi64(numers, q), 1), q); + return _mm_srli_epi64(t, shift); + } + else { + return _mm_srli_epi64(q, more); + } + } +} + +__m128i libdivide_u64_branchfree_do_vector(__m128i numers, const struct libdivide_u64_branchfree_t *denom) { + __m128i q = libdivide_mullhi_u64_vector(numers, _mm_set1_epi64x(denom->magic)); + __m128i t = _mm_add_epi64(_mm_srli_epi64(_mm_sub_epi64(numers, q), 1), q); + return _mm_srli_epi64(t, denom->more); +} + +////////// SINT32 + +__m128i libdivide_s32_do_vector(__m128i numers, const struct libdivide_s32_t *denom) { + uint8_t more = denom->more; + if (!denom->magic) { + uint32_t shift = more & LIBDIVIDE_32_SHIFT_MASK; + uint32_t mask = (1U << shift) - 1; + __m128i roundToZeroTweak = _mm_set1_epi32(mask); + // q = numer + ((numer >> 31) & roundToZeroTweak); + __m128i q = _mm_add_epi32(numers, _mm_and_si128(_mm_srai_epi32(numers, 31), roundToZeroTweak)); + q = _mm_srai_epi32(q, shift); + __m128i sign = _mm_set1_epi32((int8_t)more >> 7); + // q = (q ^ sign) - sign; + q = _mm_sub_epi32(_mm_xor_si128(q, sign), sign); + return q; + } + else { + __m128i q = libdivide_mullhi_s32_vector(numers, _mm_set1_epi32(denom->magic)); + if (more & LIBDIVIDE_ADD_MARKER) { + // must be arithmetic shift + __m128i sign = _mm_set1_epi32((int8_t)more >> 7); + // q += ((numer ^ sign) - sign); + q = _mm_add_epi32(q, _mm_sub_epi32(_mm_xor_si128(numers, sign), sign)); + } + // q >>= shift + q = _mm_srai_epi32(q, more & LIBDIVIDE_32_SHIFT_MASK); + q = _mm_add_epi32(q, _mm_srli_epi32(q, 31)); // q += (q < 0) + return q; + } +} + +__m128i libdivide_s32_branchfree_do_vector(__m128i numers, const struct libdivide_s32_branchfree_t *denom) { + int32_t magic = denom->magic; + uint8_t more = denom->more; + uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK; + // must be arithmetic shift + __m128i sign = _mm_set1_epi32((int8_t)more >> 7); + __m128i q = libdivide_mullhi_s32_vector(numers, _mm_set1_epi32(magic)); + q = _mm_add_epi32(q, numers); // q += numers + + // If q is non-negative, we have nothing to do + // If q is negative, we want to add either (2**shift)-1 if d is + // a power of 2, or (2**shift) if it is not a power of 2 + uint32_t is_power_of_2 = (magic == 0); + __m128i q_sign = _mm_srai_epi32(q, 31); // q_sign = q >> 31 + __m128i mask = _mm_set1_epi32((1U << shift) - is_power_of_2); + q = _mm_add_epi32(q, _mm_and_si128(q_sign, mask)); // q = q + (q_sign & mask) + q = _mm_srai_epi32(q, shift); // q >>= shift + q = _mm_sub_epi32(_mm_xor_si128(q, sign), sign); // q = (q ^ sign) - sign + return q; +} + +////////// SINT64 + +__m128i libdivide_s64_do_vector(__m128i numers, const struct libdivide_s64_t *denom) { + uint8_t more = denom->more; + int64_t magic = denom->magic; + if (magic == 0) { // shift path + uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK; + uint64_t mask = (1ULL << shift) - 1; + __m128i roundToZeroTweak = _mm_set1_epi64x(mask); + // q = numer + ((numer >> 63) & roundToZeroTweak); + __m128i q = _mm_add_epi64(numers, _mm_and_si128(libdivide_s64_signbits(numers), roundToZeroTweak)); + q = libdivide_s64_shift_right_vector(q, shift); + __m128i sign = _mm_set1_epi32((int8_t)more >> 7); + // q = (q ^ sign) - sign; + q = _mm_sub_epi64(_mm_xor_si128(q, sign), sign); + return q; + } + else { + __m128i q = libdivide_mullhi_s64_vector(numers, _mm_set1_epi64x(magic)); + if (more & LIBDIVIDE_ADD_MARKER) { + // must be arithmetic shift + __m128i sign = _mm_set1_epi32((int8_t)more >> 7); + // q += ((numer ^ sign) - sign); + q = _mm_add_epi64(q, _mm_sub_epi64(_mm_xor_si128(numers, sign), sign)); + } + // q >>= denom->mult_path.shift + q = libdivide_s64_shift_right_vector(q, more & LIBDIVIDE_64_SHIFT_MASK); + q = _mm_add_epi64(q, _mm_srli_epi64(q, 63)); // q += (q < 0) + return q; + } +} + +__m128i libdivide_s64_branchfree_do_vector(__m128i numers, const struct libdivide_s64_branchfree_t *denom) { + int64_t magic = denom->magic; + uint8_t more = denom->more; + uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK; + // must be arithmetic shift + __m128i sign = _mm_set1_epi32((int8_t)more >> 7); + + // libdivide_mullhi_s64(numers, magic); + __m128i q = libdivide_mullhi_s64_vector(numers, _mm_set1_epi64x(magic)); + q = _mm_add_epi64(q, numers); // q += numers + + // If q is non-negative, we have nothing to do. + // If q is negative, we want to add either (2**shift)-1 if d is + // a power of 2, or (2**shift) if it is not a power of 2. + uint32_t is_power_of_2 = (magic == 0); + __m128i q_sign = libdivide_s64_signbits(q); // q_sign = q >> 63 + __m128i mask = _mm_set1_epi64x((1ULL << shift) - is_power_of_2); + q = _mm_add_epi64(q, _mm_and_si128(q_sign, mask)); // q = q + (q_sign & mask) + q = libdivide_s64_shift_right_vector(q, shift); // q >>= shift + q = _mm_sub_epi64(_mm_xor_si128(q, sign), sign); // q = (q ^ sign) - sign + return q; +} + +#endif + +/////////// C++ stuff + +#ifdef __cplusplus + +// The C++ divider class is templated on both an integer type +// (like uint64_t) and an algorithm type. +// * BRANCHFULL is the default algorithm type. +// * BRANCHFREE is the branchfree algorithm type. +enum { + BRANCHFULL, + BRANCHFREE +}; + +#if defined(LIBDIVIDE_AVX512) + #define LIBDIVIDE_VECTOR_TYPE __m512i +#elif defined(LIBDIVIDE_AVX2) + #define LIBDIVIDE_VECTOR_TYPE __m256i +#elif defined(LIBDIVIDE_SSE2) + #define LIBDIVIDE_VECTOR_TYPE __m128i +#endif + +#if !defined(LIBDIVIDE_VECTOR_TYPE) + #define LIBDIVIDE_DIVIDE_VECTOR(ALGO) +#else + #define LIBDIVIDE_DIVIDE_VECTOR(ALGO) \ + LIBDIVIDE_VECTOR_TYPE divide(LIBDIVIDE_VECTOR_TYPE n) const { \ + return libdivide_##ALGO##_do_vector(n, &denom); \ + } +#endif + +// The DISPATCHER_GEN() macro generates C++ methods (for the given integer +// and algorithm types) that redirect to libdivide's C API. +#define DISPATCHER_GEN(T, ALGO) \ + libdivide_##ALGO##_t denom; \ + dispatcher() { } \ + dispatcher(T d) \ + : denom(libdivide_##ALGO##_gen(d)) \ + { } \ + T divide(T n) const { \ + return libdivide_##ALGO##_do(n, &denom); \ + } \ + LIBDIVIDE_DIVIDE_VECTOR(ALGO) \ + T recover() const { \ + return libdivide_##ALGO##_recover(&denom); \ + } + +// The dispatcher selects a specific division algorithm for a given +// type and ALGO using partial template specialization. +template struct dispatcher { }; + +template<> struct dispatcher { DISPATCHER_GEN(int32_t, s32) }; +template<> struct dispatcher { DISPATCHER_GEN(int32_t, s32_branchfree) }; +template<> struct dispatcher { DISPATCHER_GEN(uint32_t, u32) }; +template<> struct dispatcher { DISPATCHER_GEN(uint32_t, u32_branchfree) }; +template<> struct dispatcher { DISPATCHER_GEN(int64_t, s64) }; +template<> struct dispatcher { DISPATCHER_GEN(int64_t, s64_branchfree) }; +template<> struct dispatcher { DISPATCHER_GEN(uint64_t, u64) }; +template<> struct dispatcher { DISPATCHER_GEN(uint64_t, u64_branchfree) }; + +// This is the main divider class for use by the user (C++ API). +// The actual division algorithm is selected using the dispatcher struct +// based on the integer and algorithm template parameters. +template +class divider { +public: + // We leave the default constructor empty so that creating + // an array of dividers and then initializing them + // later doesn't slow us down. + divider() { } + + // Constructor that takes the divisor as a parameter + divider(T d) : div(d) { } + + // Divides n by the divisor + T divide(T n) const { + return div.divide(n); + } + + // Recovers the divisor, returns the value that was + // used to initialize this divider object. + T recover() const { + return div.recover(); + } + + bool operator==(const divider& other) const { + return div.denom.magic == other.denom.magic && + div.denom.more == other.denom.more; + } + + bool operator!=(const divider& other) const { + return !(*this == other); + } + +#if defined(LIBDIVIDE_VECTOR_TYPE) + // Treats the vector as packed integer values with the same type as + // the divider (e.g. s32, u32, s64, u64) and divides each of + // them by the divider, returning the packed quotients. + LIBDIVIDE_VECTOR_TYPE divide(LIBDIVIDE_VECTOR_TYPE n) const { + return div.divide(n); + } +#endif + +private: + // Storage for the actual divisor + dispatcher::value, + std::is_signed::value, sizeof(T), ALGO> div; +}; + +// Overload of operator / for scalar division +template +T operator/(T n, const divider& div) { + return div.divide(n); +} + +// Overload of operator /= for scalar division +template +T& operator/=(T& n, const divider& div) { + n = div.divide(n); + return n; +} + +#if defined(LIBDIVIDE_VECTOR_TYPE) + // Overload of operator / for vector division + template + LIBDIVIDE_VECTOR_TYPE operator/(LIBDIVIDE_VECTOR_TYPE n, const divider& div) { + return div.divide(n); + } + // Overload of operator /= for vector division + template + LIBDIVIDE_VECTOR_TYPE& operator/=(LIBDIVIDE_VECTOR_TYPE& n, const divider& div) { + n = div.divide(n); + return n; + } +#endif + +// libdivdie::branchfree_divider +template +using branchfree_divider = divider; + +} // namespace libdivide + +#endif // __cplusplus + +#endif // NUMPY_CORE_INCLUDE_NUMPY_LIBDIVIDE_LIBDIVIDE_H_ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/ufuncobject.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/ufuncobject.h new file mode 100644 index 0000000..f5f82b5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/ufuncobject.h @@ -0,0 +1,343 @@ +#ifndef NUMPY_CORE_INCLUDE_NUMPY_UFUNCOBJECT_H_ +#define NUMPY_CORE_INCLUDE_NUMPY_UFUNCOBJECT_H_ + +#include +#include + +#ifdef __cplusplus +extern "C" { +#endif + +/* + * The legacy generic inner loop for a standard element-wise or + * generalized ufunc. + */ +typedef void (*PyUFuncGenericFunction) + (char **args, + npy_intp const *dimensions, + npy_intp const *strides, + void *innerloopdata); + +/* + * The most generic one-dimensional inner loop for + * a masked standard element-wise ufunc. "Masked" here means that it skips + * doing calculations on any items for which the maskptr array has a true + * value. + */ +typedef void (PyUFunc_MaskedStridedInnerLoopFunc)( + char **dataptrs, npy_intp *strides, + char *maskptr, npy_intp mask_stride, + npy_intp count, + NpyAuxData *innerloopdata); + +/* Forward declaration for the type resolver and loop selector typedefs */ +struct _tagPyUFuncObject; + +/* + * Given the operands for calling a ufunc, should determine the + * calculation input and output data types and return an inner loop function. + * This function should validate that the casting rule is being followed, + * and fail if it is not. + * + * For backwards compatibility, the regular type resolution function does not + * support auxiliary data with object semantics. The type resolution call + * which returns a masked generic function returns a standard NpyAuxData + * object, for which the NPY_AUXDATA_FREE and NPY_AUXDATA_CLONE macros + * work. + * + * ufunc: The ufunc object. + * casting: The 'casting' parameter provided to the ufunc. + * operands: An array of length (ufunc->nin + ufunc->nout), + * with the output parameters possibly NULL. + * type_tup: Either NULL, or the type_tup passed to the ufunc. + * out_dtypes: An array which should be populated with new + * references to (ufunc->nin + ufunc->nout) new + * dtypes, one for each input and output. These + * dtypes should all be in native-endian format. + * + * Should return 0 on success, -1 on failure (with exception set), + * or -2 if Py_NotImplemented should be returned. + */ +typedef int (PyUFunc_TypeResolutionFunc)( + struct _tagPyUFuncObject *ufunc, + NPY_CASTING casting, + PyArrayObject **operands, + PyObject *type_tup, + PyArray_Descr **out_dtypes); + +/* + * This is the signature for the functions that may be assigned to the + * `process_core_dims_func` field of the PyUFuncObject structure. + * Implementation of this function is optional. This function is only used + * by generalized ufuncs (i.e. those with the field `core_enabled` set to 1). + * The function is called by the ufunc during the processing of the arguments + * of a call of the ufunc. The function can check the core dimensions of the + * input and output arrays and return -1 with an exception set if any + * requirements are not satisfied. If the caller of the ufunc didn't provide + * output arrays, the core dimensions associated with the output arrays (i.e. + * those that are not also used in input arrays) will have the value -1 in + * `core_dim_sizes`. This function can replace any output core dimensions + * that are -1 with a value that is appropriate for the ufunc. + * + * Parameter Description + * --------------- ------------------------------------------------------ + * ufunc The ufunc object + * core_dim_sizes An array with length `ufunc->core_num_dim_ix`. + * The core dimensions of the arrays passed to the ufunc + * will have been set. If the caller of the ufunc didn't + * provide the output array(s), the output-only core + * dimensions will have the value -1. + * + * The function must not change any element in `core_dim_sizes` that is + * not -1 on input. Doing so will result in incorrect output from the + * ufunc, and could result in a crash of the Python interpreter. + * + * The function must return 0 on success, -1 on failure (with an exception + * set). + */ +typedef int (PyUFunc_ProcessCoreDimsFunc)( + struct _tagPyUFuncObject *ufunc, + npy_intp *core_dim_sizes); + +typedef struct _tagPyUFuncObject { + PyObject_HEAD + /* + * nin: Number of inputs + * nout: Number of outputs + * nargs: Always nin + nout (Why is it stored?) + */ + int nin, nout, nargs; + + /* + * Identity for reduction, any of PyUFunc_One, PyUFunc_Zero + * PyUFunc_MinusOne, PyUFunc_None, PyUFunc_ReorderableNone, + * PyUFunc_IdentityValue. + */ + int identity; + + /* Array of one-dimensional core loops */ + PyUFuncGenericFunction *functions; + /* Array of funcdata that gets passed into the functions */ + void *const *data; + /* The number of elements in 'functions' and 'data' */ + int ntypes; + + /* Used to be unused field 'check_return' */ + int reserved1; + + /* The name of the ufunc */ + const char *name; + + /* Array of type numbers, of size ('nargs' * 'ntypes') */ + const char *types; + + /* Documentation string */ + const char *doc; + + void *ptr; + PyObject *obj; + PyObject *userloops; + + /* generalized ufunc parameters */ + + /* 0 for scalar ufunc; 1 for generalized ufunc */ + int core_enabled; + /* number of distinct dimension names in signature */ + int core_num_dim_ix; + + /* + * dimension indices of input/output argument k are stored in + * core_dim_ixs[core_offsets[k]..core_offsets[k]+core_num_dims[k]-1] + */ + + /* numbers of core dimensions of each argument */ + int *core_num_dims; + /* + * dimension indices in a flatted form; indices + * are in the range of [0,core_num_dim_ix) + */ + int *core_dim_ixs; + /* + * positions of 1st core dimensions of each + * argument in core_dim_ixs, equivalent to cumsum(core_num_dims) + */ + int *core_offsets; + /* signature string for printing purpose */ + char *core_signature; + + /* + * A function which resolves the types and fills an array + * with the dtypes for the inputs and outputs. + */ + PyUFunc_TypeResolutionFunc *type_resolver; + + /* A dictionary to monkeypatch ufuncs */ + PyObject *dict; + + /* + * This was blocked off to be the "new" inner loop selector in 1.7, + * but this was never implemented. (This is also why the above + * selector is called the "legacy" selector.) + */ + #ifndef Py_LIMITED_API + vectorcallfunc vectorcall; + #else + void *vectorcall; + #endif + + /* Was previously the `PyUFunc_MaskedInnerLoopSelectionFunc` */ + void *reserved3; + + /* + * List of flags for each operand when ufunc is called by nditer object. + * These flags will be used in addition to the default flags for each + * operand set by nditer object. + */ + npy_uint32 *op_flags; + + /* + * List of global flags used when ufunc is called by nditer object. + * These flags will be used in addition to the default global flags + * set by nditer object. + */ + npy_uint32 iter_flags; + + /* New in NPY_API_VERSION 0x0000000D and above */ + #if NPY_FEATURE_VERSION >= NPY_1_16_API_VERSION + /* + * for each core_num_dim_ix distinct dimension names, + * the possible "frozen" size (-1 if not frozen). + */ + npy_intp *core_dim_sizes; + + /* + * for each distinct core dimension, a set of UFUNC_CORE_DIM* flags + */ + npy_uint32 *core_dim_flags; + + /* Identity for reduction, when identity == PyUFunc_IdentityValue */ + PyObject *identity_value; + #endif /* NPY_FEATURE_VERSION >= NPY_1_16_API_VERSION */ + + /* New in NPY_API_VERSION 0x0000000F and above */ + #if NPY_FEATURE_VERSION >= NPY_1_22_API_VERSION + /* New private fields related to dispatching */ + void *_dispatch_cache; + /* A PyListObject of `(tuple of DTypes, ArrayMethod/Promoter)` */ + PyObject *_loops; + #endif + #if NPY_FEATURE_VERSION >= NPY_2_1_API_VERSION + /* + * Optional function to process core dimensions of a gufunc. + */ + PyUFunc_ProcessCoreDimsFunc *process_core_dims_func; + #endif +} PyUFuncObject; + +#include "arrayobject.h" +/* Generalized ufunc; 0x0001 reserved for possible use as CORE_ENABLED */ +/* the core dimension's size will be determined by the operands. */ +#define UFUNC_CORE_DIM_SIZE_INFERRED 0x0002 +/* the core dimension may be absent */ +#define UFUNC_CORE_DIM_CAN_IGNORE 0x0004 +/* flags inferred during execution */ +#define UFUNC_CORE_DIM_MISSING 0x00040000 + + +#define UFUNC_OBJ_ISOBJECT 1 +#define UFUNC_OBJ_NEEDS_API 2 + + +#if NPY_ALLOW_THREADS +#define NPY_LOOP_BEGIN_THREADS do {if (!(loop->obj & UFUNC_OBJ_NEEDS_API)) _save = PyEval_SaveThread();} while (0); +#define NPY_LOOP_END_THREADS do {if (!(loop->obj & UFUNC_OBJ_NEEDS_API)) PyEval_RestoreThread(_save);} while (0); +#else +#define NPY_LOOP_BEGIN_THREADS +#define NPY_LOOP_END_THREADS +#endif + +/* + * UFunc has unit of 0, and the order of operations can be reordered + * This case allows reduction with multiple axes at once. + */ +#define PyUFunc_Zero 0 +/* + * UFunc has unit of 1, and the order of operations can be reordered + * This case allows reduction with multiple axes at once. + */ +#define PyUFunc_One 1 +/* + * UFunc has unit of -1, and the order of operations can be reordered + * This case allows reduction with multiple axes at once. Intended for + * bitwise_and reduction. + */ +#define PyUFunc_MinusOne 2 +/* + * UFunc has no unit, and the order of operations cannot be reordered. + * This case does not allow reduction with multiple axes at once. + */ +#define PyUFunc_None -1 +/* + * UFunc has no unit, and the order of operations can be reordered + * This case allows reduction with multiple axes at once. + */ +#define PyUFunc_ReorderableNone -2 +/* + * UFunc unit is an identity_value, and the order of operations can be reordered + * This case allows reduction with multiple axes at once. + */ +#define PyUFunc_IdentityValue -3 + + +#define UFUNC_REDUCE 0 +#define UFUNC_ACCUMULATE 1 +#define UFUNC_REDUCEAT 2 +#define UFUNC_OUTER 3 + + +typedef struct { + int nin; + int nout; + PyObject *callable; +} PyUFunc_PyFuncData; + +/* A linked-list of function information for + user-defined 1-d loops. + */ +typedef struct _loop1d_info { + PyUFuncGenericFunction func; + void *data; + int *arg_types; + struct _loop1d_info *next; + int nargs; + PyArray_Descr **arg_dtypes; +} PyUFunc_Loop1d; + + +#define UFUNC_PYVALS_NAME "UFUNC_PYVALS" + +/* THESE MACROS ARE DEPRECATED. + * Use npy_set_floatstatus_* in the npymath library. + */ +#define UFUNC_FPE_DIVIDEBYZERO NPY_FPE_DIVIDEBYZERO +#define UFUNC_FPE_OVERFLOW NPY_FPE_OVERFLOW +#define UFUNC_FPE_UNDERFLOW NPY_FPE_UNDERFLOW +#define UFUNC_FPE_INVALID NPY_FPE_INVALID + +/* Make sure it gets defined if it isn't already */ +#ifndef UFUNC_NOFPE +/* Clear the floating point exception default of Borland C++ */ +#if defined(__BORLANDC__) +#define UFUNC_NOFPE _control87(MCW_EM, MCW_EM); +#else +#define UFUNC_NOFPE +#endif +#endif + +#include "__ufunc_api.h" + +#ifdef __cplusplus +} +#endif + +#endif /* NUMPY_CORE_INCLUDE_NUMPY_UFUNCOBJECT_H_ */ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/utils.h b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/utils.h new file mode 100644 index 0000000..97f0609 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/include/numpy/utils.h @@ -0,0 +1,37 @@ +#ifndef NUMPY_CORE_INCLUDE_NUMPY_UTILS_H_ +#define NUMPY_CORE_INCLUDE_NUMPY_UTILS_H_ + +#ifndef __COMP_NPY_UNUSED + #if defined(__GNUC__) + #define __COMP_NPY_UNUSED __attribute__ ((__unused__)) + #elif defined(__ICC) + #define __COMP_NPY_UNUSED __attribute__ ((__unused__)) + #elif defined(__clang__) + #define __COMP_NPY_UNUSED __attribute__ ((unused)) + #else + #define __COMP_NPY_UNUSED + #endif +#endif + +#if defined(__GNUC__) || defined(__ICC) || defined(__clang__) + #define NPY_DECL_ALIGNED(x) __attribute__ ((aligned (x))) +#elif defined(_MSC_VER) + #define NPY_DECL_ALIGNED(x) __declspec(align(x)) +#else + #define NPY_DECL_ALIGNED(x) +#endif + +/* Use this to tag a variable as not used. It will remove unused variable + * warning on support platforms (see __COM_NPY_UNUSED) and mangle the variable + * to avoid accidental use */ +#define NPY_UNUSED(x) __NPY_UNUSED_TAGGED ## x __COMP_NPY_UNUSED +#define NPY_EXPAND(x) x + +#define NPY_STRINGIFY(x) #x +#define NPY_TOSTRING(x) NPY_STRINGIFY(x) + +#define NPY_CAT__(a, b) a ## b +#define NPY_CAT_(a, b) NPY_CAT__(a, b) +#define NPY_CAT(a, b) NPY_CAT_(a, b) + +#endif /* NUMPY_CORE_INCLUDE_NUMPY_UTILS_H_ */ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/lib/libnpymath.a b/.venv/lib/python3.12/site-packages/numpy/_core/lib/libnpymath.a new file mode 100644 index 0000000..f8d561d Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/lib/libnpymath.a differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/lib/npy-pkg-config/mlib.ini b/.venv/lib/python3.12/site-packages/numpy/_core/lib/npy-pkg-config/mlib.ini new file mode 100644 index 0000000..5840f5e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/lib/npy-pkg-config/mlib.ini @@ -0,0 +1,12 @@ +[meta] +Name = mlib +Description = Math library used with this version of numpy +Version = 1.0 + +[default] +Libs=-lm +Cflags= + +[msvc] +Libs=m.lib +Cflags= diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/lib/npy-pkg-config/npymath.ini b/.venv/lib/python3.12/site-packages/numpy/_core/lib/npy-pkg-config/npymath.ini new file mode 100644 index 0000000..8d879e3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/lib/npy-pkg-config/npymath.ini @@ -0,0 +1,20 @@ +[meta] +Name=npymath +Description=Portable, core math library implementing C99 standard +Version=0.1 + +[variables] +pkgname=numpy._core +prefix=${pkgdir} +libdir=${prefix}/lib +includedir=${prefix}/include + +[default] +Libs=-L${libdir} -lnpymath +Cflags=-I${includedir} +Requires=mlib + +[msvc] +Libs=/LIBPATH:${libdir} npymath.lib +Cflags=/INCLUDE:${includedir} +Requires=mlib diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/lib/pkgconfig/numpy.pc b/.venv/lib/python3.12/site-packages/numpy/_core/lib/pkgconfig/numpy.pc new file mode 100644 index 0000000..3a4fdbc --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/lib/pkgconfig/numpy.pc @@ -0,0 +1,7 @@ +prefix=${pcfiledir}/../.. +includedir=${prefix}/include + +Name: numpy +Description: NumPy is the fundamental package for scientific computing with Python. +Version: 2.3.2 +Cflags: -I${includedir} diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/memmap.py b/.venv/lib/python3.12/site-packages/numpy/_core/memmap.py new file mode 100644 index 0000000..8cfa7f9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/memmap.py @@ -0,0 +1,363 @@ +import operator +from contextlib import nullcontext + +import numpy as np +from numpy._utils import set_module + +from .numeric import dtype, ndarray, uint8 + +__all__ = ['memmap'] + +dtypedescr = dtype +valid_filemodes = ["r", "c", "r+", "w+"] +writeable_filemodes = ["r+", "w+"] + +mode_equivalents = { + "readonly": "r", + "copyonwrite": "c", + "readwrite": "r+", + "write": "w+" + } + + +@set_module('numpy') +class memmap(ndarray): + """Create a memory-map to an array stored in a *binary* file on disk. + + Memory-mapped files are used for accessing small segments of large files + on disk, without reading the entire file into memory. NumPy's + memmap's are array-like objects. This differs from Python's ``mmap`` + module, which uses file-like objects. + + This subclass of ndarray has some unpleasant interactions with + some operations, because it doesn't quite fit properly as a subclass. + An alternative to using this subclass is to create the ``mmap`` + object yourself, then create an ndarray with ndarray.__new__ directly, + passing the object created in its 'buffer=' parameter. + + This class may at some point be turned into a factory function + which returns a view into an mmap buffer. + + Flush the memmap instance to write the changes to the file. Currently there + is no API to close the underlying ``mmap``. It is tricky to ensure the + resource is actually closed, since it may be shared between different + memmap instances. + + + Parameters + ---------- + filename : str, file-like object, or pathlib.Path instance + The file name or file object to be used as the array data buffer. + dtype : data-type, optional + The data-type used to interpret the file contents. + Default is `uint8`. + mode : {'r+', 'r', 'w+', 'c'}, optional + The file is opened in this mode: + + +------+-------------------------------------------------------------+ + | 'r' | Open existing file for reading only. | + +------+-------------------------------------------------------------+ + | 'r+' | Open existing file for reading and writing. | + +------+-------------------------------------------------------------+ + | 'w+' | Create or overwrite existing file for reading and writing. | + | | If ``mode == 'w+'`` then `shape` must also be specified. | + +------+-------------------------------------------------------------+ + | 'c' | Copy-on-write: assignments affect data in memory, but | + | | changes are not saved to disk. The file on disk is | + | | read-only. | + +------+-------------------------------------------------------------+ + + Default is 'r+'. + offset : int, optional + In the file, array data starts at this offset. Since `offset` is + measured in bytes, it should normally be a multiple of the byte-size + of `dtype`. When ``mode != 'r'``, even positive offsets beyond end of + file are valid; The file will be extended to accommodate the + additional data. By default, ``memmap`` will start at the beginning of + the file, even if ``filename`` is a file pointer ``fp`` and + ``fp.tell() != 0``. + shape : int or sequence of ints, optional + The desired shape of the array. If ``mode == 'r'`` and the number + of remaining bytes after `offset` is not a multiple of the byte-size + of `dtype`, you must specify `shape`. By default, the returned array + will be 1-D with the number of elements determined by file size + and data-type. + + .. versionchanged:: 2.0 + The shape parameter can now be any integer sequence type, previously + types were limited to tuple and int. + + order : {'C', 'F'}, optional + Specify the order of the ndarray memory layout: + :term:`row-major`, C-style or :term:`column-major`, + Fortran-style. This only has an effect if the shape is + greater than 1-D. The default order is 'C'. + + Attributes + ---------- + filename : str or pathlib.Path instance + Path to the mapped file. + offset : int + Offset position in the file. + mode : str + File mode. + + Methods + ------- + flush + Flush any changes in memory to file on disk. + When you delete a memmap object, flush is called first to write + changes to disk. + + + See also + -------- + lib.format.open_memmap : Create or load a memory-mapped ``.npy`` file. + + Notes + ----- + The memmap object can be used anywhere an ndarray is accepted. + Given a memmap ``fp``, ``isinstance(fp, numpy.ndarray)`` returns + ``True``. + + Memory-mapped files cannot be larger than 2GB on 32-bit systems. + + When a memmap causes a file to be created or extended beyond its + current size in the filesystem, the contents of the new part are + unspecified. On systems with POSIX filesystem semantics, the extended + part will be filled with zero bytes. + + Examples + -------- + >>> import numpy as np + >>> data = np.arange(12, dtype='float32') + >>> data.resize((3,4)) + + This example uses a temporary file so that doctest doesn't write + files to your directory. You would use a 'normal' filename. + + >>> from tempfile import mkdtemp + >>> import os.path as path + >>> filename = path.join(mkdtemp(), 'newfile.dat') + + Create a memmap with dtype and shape that matches our data: + + >>> fp = np.memmap(filename, dtype='float32', mode='w+', shape=(3,4)) + >>> fp + memmap([[0., 0., 0., 0.], + [0., 0., 0., 0.], + [0., 0., 0., 0.]], dtype=float32) + + Write data to memmap array: + + >>> fp[:] = data[:] + >>> fp + memmap([[ 0., 1., 2., 3.], + [ 4., 5., 6., 7.], + [ 8., 9., 10., 11.]], dtype=float32) + + >>> fp.filename == path.abspath(filename) + True + + Flushes memory changes to disk in order to read them back + + >>> fp.flush() + + Load the memmap and verify data was stored: + + >>> newfp = np.memmap(filename, dtype='float32', mode='r', shape=(3,4)) + >>> newfp + memmap([[ 0., 1., 2., 3.], + [ 4., 5., 6., 7.], + [ 8., 9., 10., 11.]], dtype=float32) + + Read-only memmap: + + >>> fpr = np.memmap(filename, dtype='float32', mode='r', shape=(3,4)) + >>> fpr.flags.writeable + False + + Copy-on-write memmap: + + >>> fpc = np.memmap(filename, dtype='float32', mode='c', shape=(3,4)) + >>> fpc.flags.writeable + True + + It's possible to assign to copy-on-write array, but values are only + written into the memory copy of the array, and not written to disk: + + >>> fpc + memmap([[ 0., 1., 2., 3.], + [ 4., 5., 6., 7.], + [ 8., 9., 10., 11.]], dtype=float32) + >>> fpc[0,:] = 0 + >>> fpc + memmap([[ 0., 0., 0., 0.], + [ 4., 5., 6., 7.], + [ 8., 9., 10., 11.]], dtype=float32) + + File on disk is unchanged: + + >>> fpr + memmap([[ 0., 1., 2., 3.], + [ 4., 5., 6., 7.], + [ 8., 9., 10., 11.]], dtype=float32) + + Offset into a memmap: + + >>> fpo = np.memmap(filename, dtype='float32', mode='r', offset=16) + >>> fpo + memmap([ 4., 5., 6., 7., 8., 9., 10., 11.], dtype=float32) + + """ + + __array_priority__ = -100.0 + + def __new__(subtype, filename, dtype=uint8, mode='r+', offset=0, + shape=None, order='C'): + # Import here to minimize 'import numpy' overhead + import mmap + import os.path + try: + mode = mode_equivalents[mode] + except KeyError as e: + if mode not in valid_filemodes: + all_modes = valid_filemodes + list(mode_equivalents.keys()) + raise ValueError( + f"mode must be one of {all_modes!r} (got {mode!r})" + ) from None + + if mode == 'w+' and shape is None: + raise ValueError("shape must be given if mode == 'w+'") + + if hasattr(filename, 'read'): + f_ctx = nullcontext(filename) + else: + f_ctx = open( + os.fspath(filename), + ('r' if mode == 'c' else mode) + 'b' + ) + + with f_ctx as fid: + fid.seek(0, 2) + flen = fid.tell() + descr = dtypedescr(dtype) + _dbytes = descr.itemsize + + if shape is None: + bytes = flen - offset + if bytes % _dbytes: + raise ValueError("Size of available data is not a " + "multiple of the data-type size.") + size = bytes // _dbytes + shape = (size,) + else: + if not isinstance(shape, (tuple, list)): + try: + shape = [operator.index(shape)] + except TypeError: + pass + shape = tuple(shape) + size = np.intp(1) # avoid overflows + for k in shape: + size *= k + + bytes = int(offset + size * _dbytes) + + if mode in ('w+', 'r+'): + # gh-27723 + # if bytes == 0, we write out 1 byte to allow empty memmap. + bytes = max(bytes, 1) + if flen < bytes: + fid.seek(bytes - 1, 0) + fid.write(b'\0') + fid.flush() + + if mode == 'c': + acc = mmap.ACCESS_COPY + elif mode == 'r': + acc = mmap.ACCESS_READ + else: + acc = mmap.ACCESS_WRITE + + start = offset - offset % mmap.ALLOCATIONGRANULARITY + bytes -= start + # bytes == 0 is problematic as in mmap length=0 maps the full file. + # See PR gh-27723 for a more detailed explanation. + if bytes == 0 and start > 0: + bytes += mmap.ALLOCATIONGRANULARITY + start -= mmap.ALLOCATIONGRANULARITY + array_offset = offset - start + mm = mmap.mmap(fid.fileno(), bytes, access=acc, offset=start) + + self = ndarray.__new__(subtype, shape, dtype=descr, buffer=mm, + offset=array_offset, order=order) + self._mmap = mm + self.offset = offset + self.mode = mode + + if isinstance(filename, os.PathLike): + # special case - if we were constructed with a pathlib.path, + # then filename is a path object, not a string + self.filename = filename.resolve() + elif hasattr(fid, "name") and isinstance(fid.name, str): + # py3 returns int for TemporaryFile().name + self.filename = os.path.abspath(fid.name) + # same as memmap copies (e.g. memmap + 1) + else: + self.filename = None + + return self + + def __array_finalize__(self, obj): + if hasattr(obj, '_mmap') and np.may_share_memory(self, obj): + self._mmap = obj._mmap + self.filename = obj.filename + self.offset = obj.offset + self.mode = obj.mode + else: + self._mmap = None + self.filename = None + self.offset = None + self.mode = None + + def flush(self): + """ + Write any changes in the array to the file on disk. + + For further information, see `memmap`. + + Parameters + ---------- + None + + See Also + -------- + memmap + + """ + if self.base is not None and hasattr(self.base, 'flush'): + self.base.flush() + + def __array_wrap__(self, arr, context=None, return_scalar=False): + arr = super().__array_wrap__(arr, context) + + # Return a memmap if a memmap was given as the output of the + # ufunc. Leave the arr class unchanged if self is not a memmap + # to keep original memmap subclasses behavior + if self is arr or type(self) is not memmap: + return arr + + # Return scalar instead of 0d memmap, e.g. for np.sum with + # axis=None (note that subclasses will not reach here) + if return_scalar: + return arr[()] + + # Return ndarray otherwise + return arr.view(np.ndarray) + + def __getitem__(self, index): + res = super().__getitem__(index) + if type(res) is memmap and res._mmap is None: + return res.view(type=ndarray) + return res diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/memmap.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/memmap.pyi new file mode 100644 index 0000000..0b31328 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/memmap.pyi @@ -0,0 +1,3 @@ +from numpy import memmap + +__all__ = ["memmap"] diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/multiarray.py b/.venv/lib/python3.12/site-packages/numpy/_core/multiarray.py new file mode 100644 index 0000000..236ca7e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/multiarray.py @@ -0,0 +1,1762 @@ +""" +Create the numpy._core.multiarray namespace for backward compatibility. +In v1.16 the multiarray and umath c-extension modules were merged into +a single _multiarray_umath extension module. So we replicate the old +namespace by importing from the extension module. + +""" + +import functools + +from . import _multiarray_umath, overrides +from ._multiarray_umath import * # noqa: F403 + +# These imports are needed for backward compatibility, +# do not change them. issue gh-15518 +# _get_ndarray_c_version is semi-public, on purpose not added to __all__ +from ._multiarray_umath import ( # noqa: F401 + _ARRAY_API, + _flagdict, + _get_madvise_hugepage, + _get_ndarray_c_version, + _monotonicity, + _place, + _reconstruct, + _set_madvise_hugepage, + _vec_string, + from_dlpack, +) + +__all__ = [ + '_ARRAY_API', 'ALLOW_THREADS', 'BUFSIZE', 'CLIP', 'DATETIMEUNITS', + 'ITEM_HASOBJECT', 'ITEM_IS_POINTER', 'LIST_PICKLE', 'MAXDIMS', + 'MAY_SHARE_BOUNDS', 'MAY_SHARE_EXACT', 'NEEDS_INIT', 'NEEDS_PYAPI', + 'RAISE', 'USE_GETITEM', 'USE_SETITEM', 'WRAP', + '_flagdict', 'from_dlpack', '_place', '_reconstruct', '_vec_string', + '_monotonicity', 'add_docstring', 'arange', 'array', 'asarray', + 'asanyarray', 'ascontiguousarray', 'asfortranarray', 'bincount', + 'broadcast', 'busday_count', 'busday_offset', 'busdaycalendar', 'can_cast', + 'compare_chararrays', 'concatenate', 'copyto', 'correlate', 'correlate2', + 'count_nonzero', 'c_einsum', 'datetime_as_string', 'datetime_data', + 'dot', 'dragon4_positional', 'dragon4_scientific', 'dtype', + 'empty', 'empty_like', 'error', 'flagsobj', 'flatiter', 'format_longfloat', + 'frombuffer', 'fromfile', 'fromiter', 'fromstring', + 'get_handler_name', 'get_handler_version', 'inner', 'interp', + 'interp_complex', 'is_busday', 'lexsort', 'matmul', 'vecdot', + 'may_share_memory', 'min_scalar_type', 'ndarray', 'nditer', 'nested_iters', + 'normalize_axis_index', 'packbits', 'promote_types', 'putmask', + 'ravel_multi_index', 'result_type', 'scalar', 'set_datetimeparse_function', + 'set_typeDict', 'shares_memory', 'typeinfo', + 'unpackbits', 'unravel_index', 'vdot', 'where', 'zeros'] + +# For backward compatibility, make sure pickle imports +# these functions from here +_reconstruct.__module__ = 'numpy._core.multiarray' +scalar.__module__ = 'numpy._core.multiarray' + + +from_dlpack.__module__ = 'numpy' +arange.__module__ = 'numpy' +array.__module__ = 'numpy' +asarray.__module__ = 'numpy' +asanyarray.__module__ = 'numpy' +ascontiguousarray.__module__ = 'numpy' +asfortranarray.__module__ = 'numpy' +datetime_data.__module__ = 'numpy' +empty.__module__ = 'numpy' +frombuffer.__module__ = 'numpy' +fromfile.__module__ = 'numpy' +fromiter.__module__ = 'numpy' +frompyfunc.__module__ = 'numpy' +fromstring.__module__ = 'numpy' +may_share_memory.__module__ = 'numpy' +nested_iters.__module__ = 'numpy' +promote_types.__module__ = 'numpy' +zeros.__module__ = 'numpy' +normalize_axis_index.__module__ = 'numpy.lib.array_utils' +add_docstring.__module__ = 'numpy.lib' +compare_chararrays.__module__ = 'numpy.char' + + +def _override___module__(): + namespace_names = globals() + for ufunc_name in [ + 'absolute', 'arccos', 'arccosh', 'add', 'arcsin', 'arcsinh', 'arctan', + 'arctan2', 'arctanh', 'bitwise_and', 'bitwise_count', 'invert', + 'left_shift', 'bitwise_or', 'right_shift', 'bitwise_xor', 'cbrt', + 'ceil', 'conjugate', 'copysign', 'cos', 'cosh', 'deg2rad', 'degrees', + 'divide', 'divmod', 'equal', 'exp', 'exp2', 'expm1', 'fabs', + 'float_power', 'floor', 'floor_divide', 'fmax', 'fmin', 'fmod', + 'frexp', 'gcd', 'greater', 'greater_equal', 'heaviside', 'hypot', + 'isfinite', 'isinf', 'isnan', 'isnat', 'lcm', 'ldexp', 'less', + 'less_equal', 'log', 'log10', 'log1p', 'log2', 'logaddexp', + 'logaddexp2', 'logical_and', 'logical_not', 'logical_or', + 'logical_xor', 'matmul', 'matvec', 'maximum', 'minimum', 'remainder', + 'modf', 'multiply', 'negative', 'nextafter', 'not_equal', 'positive', + 'power', 'rad2deg', 'radians', 'reciprocal', 'rint', 'sign', 'signbit', + 'sin', 'sinh', 'spacing', 'sqrt', 'square', 'subtract', 'tan', 'tanh', + 'trunc', 'vecdot', 'vecmat', + ]: + ufunc = namespace_names[ufunc_name] + ufunc.__module__ = "numpy" + ufunc.__qualname__ = ufunc_name + + +_override___module__() + + +# We can't verify dispatcher signatures because NumPy's C functions don't +# support introspection. +array_function_from_c_func_and_dispatcher = functools.partial( + overrides.array_function_from_dispatcher, + module='numpy', docs_from_dispatcher=True, verify=False) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.empty_like) +def empty_like( + prototype, dtype=None, order=None, subok=None, shape=None, *, device=None +): + """ + empty_like(prototype, dtype=None, order='K', subok=True, shape=None, *, + device=None) + + Return a new array with the same shape and type as a given array. + + Parameters + ---------- + prototype : array_like + The shape and data-type of `prototype` define these same attributes + of the returned array. + dtype : data-type, optional + Overrides the data type of the result. + order : {'C', 'F', 'A', or 'K'}, optional + Overrides the memory layout of the result. 'C' means C-order, + 'F' means F-order, 'A' means 'F' if `prototype` is Fortran + contiguous, 'C' otherwise. 'K' means match the layout of `prototype` + as closely as possible. + subok : bool, optional. + If True, then the newly created array will use the sub-class + type of `prototype`, otherwise it will be a base-class array. Defaults + to True. + shape : int or sequence of ints, optional. + Overrides the shape of the result. If order='K' and the number of + dimensions is unchanged, will try to keep order, otherwise, + order='C' is implied. + device : str, optional + The device on which to place the created array. Default: None. + For Array-API interoperability only, so must be ``"cpu"`` if passed. + + .. versionadded:: 2.0.0 + + Returns + ------- + out : ndarray + Array of uninitialized (arbitrary) data with the same + shape and type as `prototype`. + + See Also + -------- + ones_like : Return an array of ones with shape and type of input. + zeros_like : Return an array of zeros with shape and type of input. + full_like : Return a new array with shape of input filled with value. + empty : Return a new uninitialized array. + + Notes + ----- + Unlike other array creation functions (e.g. `zeros_like`, `ones_like`, + `full_like`), `empty_like` does not initialize the values of the array, + and may therefore be marginally faster. However, the values stored in the + newly allocated array are arbitrary. For reproducible behavior, be sure + to set each element of the array before reading. + + Examples + -------- + >>> import numpy as np + >>> a = ([1,2,3], [4,5,6]) # a is array-like + >>> np.empty_like(a) + array([[-1073741821, -1073741821, 3], # uninitialized + [ 0, 0, -1073741821]]) + >>> a = np.array([[1., 2., 3.],[4.,5.,6.]]) + >>> np.empty_like(a) + array([[ -2.00000715e+000, 1.48219694e-323, -2.00000572e+000], # uninitialized + [ 4.38791518e-305, -2.00000715e+000, 4.17269252e-309]]) + + """ + return (prototype,) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.concatenate) +def concatenate(arrays, axis=None, out=None, *, dtype=None, casting=None): + """ + concatenate( + (a1, a2, ...), + axis=0, + out=None, + dtype=None, + casting="same_kind" + ) + + Join a sequence of arrays along an existing axis. + + Parameters + ---------- + a1, a2, ... : sequence of array_like + The arrays must have the same shape, except in the dimension + corresponding to `axis` (the first, by default). + axis : int, optional + The axis along which the arrays will be joined. If axis is None, + arrays are flattened before use. Default is 0. + out : ndarray, optional + If provided, the destination to place the result. The shape must be + correct, matching that of what concatenate would have returned if no + out argument were specified. + dtype : str or dtype + If provided, the destination array will have this dtype. Cannot be + provided together with `out`. + + .. versionadded:: 1.20.0 + + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional + Controls what kind of data casting may occur. Defaults to 'same_kind'. + For a description of the options, please see :term:`casting`. + + .. versionadded:: 1.20.0 + + Returns + ------- + res : ndarray + The concatenated array. + + See Also + -------- + ma.concatenate : Concatenate function that preserves input masks. + array_split : Split an array into multiple sub-arrays of equal or + near-equal size. + split : Split array into a list of multiple sub-arrays of equal size. + hsplit : Split array into multiple sub-arrays horizontally (column wise). + vsplit : Split array into multiple sub-arrays vertically (row wise). + dsplit : Split array into multiple sub-arrays along the 3rd axis (depth). + stack : Stack a sequence of arrays along a new axis. + block : Assemble arrays from blocks. + hstack : Stack arrays in sequence horizontally (column wise). + vstack : Stack arrays in sequence vertically (row wise). + dstack : Stack arrays in sequence depth wise (along third dimension). + column_stack : Stack 1-D arrays as columns into a 2-D array. + + Notes + ----- + When one or more of the arrays to be concatenated is a MaskedArray, + this function will return a MaskedArray object instead of an ndarray, + but the input masks are *not* preserved. In cases where a MaskedArray + is expected as input, use the ma.concatenate function from the masked + array module instead. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1, 2], [3, 4]]) + >>> b = np.array([[5, 6]]) + >>> np.concatenate((a, b), axis=0) + array([[1, 2], + [3, 4], + [5, 6]]) + >>> np.concatenate((a, b.T), axis=1) + array([[1, 2, 5], + [3, 4, 6]]) + >>> np.concatenate((a, b), axis=None) + array([1, 2, 3, 4, 5, 6]) + + This function will not preserve masking of MaskedArray inputs. + + >>> a = np.ma.arange(3) + >>> a[1] = np.ma.masked + >>> b = np.arange(2, 5) + >>> a + masked_array(data=[0, --, 2], + mask=[False, True, False], + fill_value=999999) + >>> b + array([2, 3, 4]) + >>> np.concatenate([a, b]) + masked_array(data=[0, 1, 2, 2, 3, 4], + mask=False, + fill_value=999999) + >>> np.ma.concatenate([a, b]) + masked_array(data=[0, --, 2, 2, 3, 4], + mask=[False, True, False, False, False, False], + fill_value=999999) + + """ + if out is not None: + # optimize for the typical case where only arrays is provided + arrays = list(arrays) + arrays.append(out) + return arrays + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.inner) +def inner(a, b): + """ + inner(a, b, /) + + Inner product of two arrays. + + Ordinary inner product of vectors for 1-D arrays (without complex + conjugation), in higher dimensions a sum product over the last axes. + + Parameters + ---------- + a, b : array_like + If `a` and `b` are nonscalar, their last dimensions must match. + + Returns + ------- + out : ndarray + If `a` and `b` are both + scalars or both 1-D arrays then a scalar is returned; otherwise + an array is returned. + ``out.shape = (*a.shape[:-1], *b.shape[:-1])`` + + Raises + ------ + ValueError + If both `a` and `b` are nonscalar and their last dimensions have + different sizes. + + See Also + -------- + tensordot : Sum products over arbitrary axes. + dot : Generalised matrix product, using second last dimension of `b`. + vecdot : Vector dot product of two arrays. + einsum : Einstein summation convention. + + Notes + ----- + For vectors (1-D arrays) it computes the ordinary inner-product:: + + np.inner(a, b) = sum(a[:]*b[:]) + + More generally, if ``ndim(a) = r > 0`` and ``ndim(b) = s > 0``:: + + np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1)) + + or explicitly:: + + np.inner(a, b)[i0,...,ir-2,j0,...,js-2] + = sum(a[i0,...,ir-2,:]*b[j0,...,js-2,:]) + + In addition `a` or `b` may be scalars, in which case:: + + np.inner(a,b) = a*b + + Examples + -------- + Ordinary inner product for vectors: + + >>> import numpy as np + >>> a = np.array([1,2,3]) + >>> b = np.array([0,1,0]) + >>> np.inner(a, b) + 2 + + Some multidimensional examples: + + >>> a = np.arange(24).reshape((2,3,4)) + >>> b = np.arange(4) + >>> c = np.inner(a, b) + >>> c.shape + (2, 3) + >>> c + array([[ 14, 38, 62], + [ 86, 110, 134]]) + + >>> a = np.arange(2).reshape((1,1,2)) + >>> b = np.arange(6).reshape((3,2)) + >>> c = np.inner(a, b) + >>> c.shape + (1, 1, 3) + >>> c + array([[[1, 3, 5]]]) + + An example where `b` is a scalar: + + >>> np.inner(np.eye(2), 7) + array([[7., 0.], + [0., 7.]]) + + """ + return (a, b) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.where) +def where(condition, x=None, y=None): + """ + where(condition, [x, y], /) + + Return elements chosen from `x` or `y` depending on `condition`. + + .. note:: + When only `condition` is provided, this function is a shorthand for + ``np.asarray(condition).nonzero()``. Using `nonzero` directly should be + preferred, as it behaves correctly for subclasses. The rest of this + documentation covers only the case where all three arguments are + provided. + + Parameters + ---------- + condition : array_like, bool + Where True, yield `x`, otherwise yield `y`. + x, y : array_like + Values from which to choose. `x`, `y` and `condition` need to be + broadcastable to some shape. + + Returns + ------- + out : ndarray + An array with elements from `x` where `condition` is True, and elements + from `y` elsewhere. + + See Also + -------- + choose + nonzero : The function that is called when x and y are omitted + + Notes + ----- + If all the arrays are 1-D, `where` is equivalent to:: + + [xv if c else yv + for c, xv, yv in zip(condition, x, y)] + + Examples + -------- + >>> import numpy as np + >>> a = np.arange(10) + >>> a + array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) + >>> np.where(a < 5, a, 10*a) + array([ 0, 1, 2, 3, 4, 50, 60, 70, 80, 90]) + + This can be used on multidimensional arrays too: + + >>> np.where([[True, False], [True, True]], + ... [[1, 2], [3, 4]], + ... [[9, 8], [7, 6]]) + array([[1, 8], + [3, 4]]) + + The shapes of x, y, and the condition are broadcast together: + + >>> x, y = np.ogrid[:3, :4] + >>> np.where(x < y, x, 10 + y) # both x and 10+y are broadcast + array([[10, 0, 0, 0], + [10, 11, 1, 1], + [10, 11, 12, 2]]) + + >>> a = np.array([[0, 1, 2], + ... [0, 2, 4], + ... [0, 3, 6]]) + >>> np.where(a < 4, a, -1) # -1 is broadcast + array([[ 0, 1, 2], + [ 0, 2, -1], + [ 0, 3, -1]]) + """ + return (condition, x, y) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.lexsort) +def lexsort(keys, axis=None): + """ + lexsort(keys, axis=-1) + + Perform an indirect stable sort using a sequence of keys. + + Given multiple sorting keys, lexsort returns an array of integer indices + that describes the sort order by multiple keys. The last key in the + sequence is used for the primary sort order, ties are broken by the + second-to-last key, and so on. + + Parameters + ---------- + keys : (k, m, n, ...) array-like + The `k` keys to be sorted. The *last* key (e.g, the last + row if `keys` is a 2D array) is the primary sort key. + Each element of `keys` along the zeroth axis must be + an array-like object of the same shape. + axis : int, optional + Axis to be indirectly sorted. By default, sort over the last axis + of each sequence. Separate slices along `axis` sorted over + independently; see last example. + + Returns + ------- + indices : (m, n, ...) ndarray of ints + Array of indices that sort the keys along the specified axis. + + See Also + -------- + argsort : Indirect sort. + ndarray.sort : In-place sort. + sort : Return a sorted copy of an array. + + Examples + -------- + Sort names: first by surname, then by name. + + >>> import numpy as np + >>> surnames = ('Hertz', 'Galilei', 'Hertz') + >>> first_names = ('Heinrich', 'Galileo', 'Gustav') + >>> ind = np.lexsort((first_names, surnames)) + >>> ind + array([1, 2, 0]) + + >>> [surnames[i] + ", " + first_names[i] for i in ind] + ['Galilei, Galileo', 'Hertz, Gustav', 'Hertz, Heinrich'] + + Sort according to two numerical keys, first by elements + of ``a``, then breaking ties according to elements of ``b``: + + >>> a = [1, 5, 1, 4, 3, 4, 4] # First sequence + >>> b = [9, 4, 0, 4, 0, 2, 1] # Second sequence + >>> ind = np.lexsort((b, a)) # Sort by `a`, then by `b` + >>> ind + array([2, 0, 4, 6, 5, 3, 1]) + >>> [(a[i], b[i]) for i in ind] + [(1, 0), (1, 9), (3, 0), (4, 1), (4, 2), (4, 4), (5, 4)] + + Compare against `argsort`, which would sort each key independently. + + >>> np.argsort((b, a), kind='stable') + array([[2, 4, 6, 5, 1, 3, 0], + [0, 2, 4, 3, 5, 6, 1]]) + + To sort lexicographically with `argsort`, we would need to provide a + structured array. + + >>> x = np.array([(ai, bi) for ai, bi in zip(a, b)], + ... dtype = np.dtype([('x', int), ('y', int)])) + >>> np.argsort(x) # or np.argsort(x, order=('x', 'y')) + array([2, 0, 4, 6, 5, 3, 1]) + + The zeroth axis of `keys` always corresponds with the sequence of keys, + so 2D arrays are treated just like other sequences of keys. + + >>> arr = np.asarray([b, a]) + >>> ind2 = np.lexsort(arr) + >>> np.testing.assert_equal(ind2, ind) + + Accordingly, the `axis` parameter refers to an axis of *each* key, not of + the `keys` argument itself. For instance, the array ``arr`` is treated as + a sequence of two 1-D keys, so specifying ``axis=0`` is equivalent to + using the default axis, ``axis=-1``. + + >>> np.testing.assert_equal(np.lexsort(arr, axis=0), + ... np.lexsort(arr, axis=-1)) + + For higher-dimensional arrays, the axis parameter begins to matter. The + resulting array has the same shape as each key, and the values are what + we would expect if `lexsort` were performed on corresponding slices + of the keys independently. For instance, + + >>> x = [[1, 2, 3, 4], + ... [4, 3, 2, 1], + ... [2, 1, 4, 3]] + >>> y = [[2, 2, 1, 1], + ... [1, 2, 1, 2], + ... [1, 1, 2, 1]] + >>> np.lexsort((x, y), axis=1) + array([[2, 3, 0, 1], + [2, 0, 3, 1], + [1, 0, 3, 2]]) + + Each row of the result is what we would expect if we were to perform + `lexsort` on the corresponding row of the keys: + + >>> for i in range(3): + ... print(np.lexsort((x[i], y[i]))) + [2 3 0 1] + [2 0 3 1] + [1 0 3 2] + + """ + if isinstance(keys, tuple): + return keys + else: + return (keys,) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.can_cast) +def can_cast(from_, to, casting=None): + """ + can_cast(from_, to, casting='safe') + + Returns True if cast between data types can occur according to the + casting rule. + + Parameters + ---------- + from_ : dtype, dtype specifier, NumPy scalar, or array + Data type, NumPy scalar, or array to cast from. + to : dtype or dtype specifier + Data type to cast to. + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional + Controls what kind of data casting may occur. + + * 'no' means the data types should not be cast at all. + * 'equiv' means only byte-order changes are allowed. + * 'safe' means only casts which can preserve values are allowed. + * 'same_kind' means only safe casts or casts within a kind, + like float64 to float32, are allowed. + * 'unsafe' means any data conversions may be done. + + Returns + ------- + out : bool + True if cast can occur according to the casting rule. + + Notes + ----- + .. versionchanged:: 2.0 + This function does not support Python scalars anymore and does not + apply any value-based logic for 0-D arrays and NumPy scalars. + + See also + -------- + dtype, result_type + + Examples + -------- + Basic examples + + >>> import numpy as np + >>> np.can_cast(np.int32, np.int64) + True + >>> np.can_cast(np.float64, complex) + True + >>> np.can_cast(complex, float) + False + + >>> np.can_cast('i8', 'f8') + True + >>> np.can_cast('i8', 'f4') + False + >>> np.can_cast('i4', 'S4') + False + + """ + return (from_,) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.min_scalar_type) +def min_scalar_type(a): + """ + min_scalar_type(a, /) + + For scalar ``a``, returns the data type with the smallest size + and smallest scalar kind which can hold its value. For non-scalar + array ``a``, returns the vector's dtype unmodified. + + Floating point values are not demoted to integers, + and complex values are not demoted to floats. + + Parameters + ---------- + a : scalar or array_like + The value whose minimal data type is to be found. + + Returns + ------- + out : dtype + The minimal data type. + + See Also + -------- + result_type, promote_types, dtype, can_cast + + Examples + -------- + >>> import numpy as np + >>> np.min_scalar_type(10) + dtype('uint8') + + >>> np.min_scalar_type(-260) + dtype('int16') + + >>> np.min_scalar_type(3.1) + dtype('float16') + + >>> np.min_scalar_type(1e50) + dtype('float64') + + >>> np.min_scalar_type(np.arange(4,dtype='f8')) + dtype('float64') + + """ + return (a,) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.result_type) +def result_type(*arrays_and_dtypes): + """ + result_type(*arrays_and_dtypes) + + Returns the type that results from applying the NumPy + type promotion rules to the arguments. + + Type promotion in NumPy works similarly to the rules in languages + like C++, with some slight differences. When both scalars and + arrays are used, the array's type takes precedence and the actual value + of the scalar is taken into account. + + For example, calculating 3*a, where a is an array of 32-bit floats, + intuitively should result in a 32-bit float output. If the 3 is a + 32-bit integer, the NumPy rules indicate it can't convert losslessly + into a 32-bit float, so a 64-bit float should be the result type. + By examining the value of the constant, '3', we see that it fits in + an 8-bit integer, which can be cast losslessly into the 32-bit float. + + Parameters + ---------- + arrays_and_dtypes : list of arrays and dtypes + The operands of some operation whose result type is needed. + + Returns + ------- + out : dtype + The result type. + + See also + -------- + dtype, promote_types, min_scalar_type, can_cast + + Notes + ----- + The specific algorithm used is as follows. + + Categories are determined by first checking which of boolean, + integer (int/uint), or floating point (float/complex) the maximum + kind of all the arrays and the scalars are. + + If there are only scalars or the maximum category of the scalars + is higher than the maximum category of the arrays, + the data types are combined with :func:`promote_types` + to produce the return value. + + Otherwise, `min_scalar_type` is called on each scalar, and + the resulting data types are all combined with :func:`promote_types` + to produce the return value. + + The set of int values is not a subset of the uint values for types + with the same number of bits, something not reflected in + :func:`min_scalar_type`, but handled as a special case in `result_type`. + + Examples + -------- + >>> import numpy as np + >>> np.result_type(3, np.arange(7, dtype='i1')) + dtype('int8') + + >>> np.result_type('i4', 'c8') + dtype('complex128') + + >>> np.result_type(3.0, -2) + dtype('float64') + + """ + return arrays_and_dtypes + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.dot) +def dot(a, b, out=None): + """ + dot(a, b, out=None) + + Dot product of two arrays. Specifically, + + - If both `a` and `b` are 1-D arrays, it is inner product of vectors + (without complex conjugation). + + - If both `a` and `b` are 2-D arrays, it is matrix multiplication, + but using :func:`matmul` or ``a @ b`` is preferred. + + - If either `a` or `b` is 0-D (scalar), it is equivalent to + :func:`multiply` and using ``numpy.multiply(a, b)`` or ``a * b`` is + preferred. + + - If `a` is an N-D array and `b` is a 1-D array, it is a sum product over + the last axis of `a` and `b`. + + - If `a` is an N-D array and `b` is an M-D array (where ``M>=2``), it is a + sum product over the last axis of `a` and the second-to-last axis of + `b`:: + + dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m]) + + It uses an optimized BLAS library when possible (see `numpy.linalg`). + + Parameters + ---------- + a : array_like + First argument. + b : array_like + Second argument. + out : ndarray, optional + Output argument. This must have the exact kind that would be returned + if it was not used. In particular, it must have the right type, must be + C-contiguous, and its dtype must be the dtype that would be returned + for `dot(a,b)`. This is a performance feature. Therefore, if these + conditions are not met, an exception is raised, instead of attempting + to be flexible. + + Returns + ------- + output : ndarray + Returns the dot product of `a` and `b`. If `a` and `b` are both + scalars or both 1-D arrays then a scalar is returned; otherwise + an array is returned. + If `out` is given, then it is returned. + + Raises + ------ + ValueError + If the last dimension of `a` is not the same size as + the second-to-last dimension of `b`. + + See Also + -------- + vdot : Complex-conjugating dot product. + vecdot : Vector dot product of two arrays. + tensordot : Sum products over arbitrary axes. + einsum : Einstein summation convention. + matmul : '@' operator as method with out parameter. + linalg.multi_dot : Chained dot product. + + Examples + -------- + >>> import numpy as np + >>> np.dot(3, 4) + 12 + + Neither argument is complex-conjugated: + + >>> np.dot([2j, 3j], [2j, 3j]) + (-13+0j) + + For 2-D arrays it is the matrix product: + + >>> a = [[1, 0], [0, 1]] + >>> b = [[4, 1], [2, 2]] + >>> np.dot(a, b) + array([[4, 1], + [2, 2]]) + + >>> a = np.arange(3*4*5*6).reshape((3,4,5,6)) + >>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3)) + >>> np.dot(a, b)[2,3,2,1,2,2] + 499128 + >>> sum(a[2,3,2,:] * b[1,2,:,2]) + 499128 + + """ + return (a, b, out) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.vdot) +def vdot(a, b): + r""" + vdot(a, b, /) + + Return the dot product of two vectors. + + The `vdot` function handles complex numbers differently than `dot`: + if the first argument is complex, it is replaced by its complex conjugate + in the dot product calculation. `vdot` also handles multidimensional + arrays differently than `dot`: it does not perform a matrix product, but + flattens the arguments to 1-D arrays before taking a vector dot product. + + Consequently, when the arguments are 2-D arrays of the same shape, this + function effectively returns their + `Frobenius inner product `_ + (also known as the *trace inner product* or the *standard inner product* + on a vector space of matrices). + + Parameters + ---------- + a : array_like + If `a` is complex the complex conjugate is taken before calculation + of the dot product. + b : array_like + Second argument to the dot product. + + Returns + ------- + output : ndarray + Dot product of `a` and `b`. Can be an int, float, or + complex depending on the types of `a` and `b`. + + See Also + -------- + dot : Return the dot product without using the complex conjugate of the + first argument. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([1+2j,3+4j]) + >>> b = np.array([5+6j,7+8j]) + >>> np.vdot(a, b) + (70-8j) + >>> np.vdot(b, a) + (70+8j) + + Note that higher-dimensional arrays are flattened! + + >>> a = np.array([[1, 4], [5, 6]]) + >>> b = np.array([[4, 1], [2, 2]]) + >>> np.vdot(a, b) + 30 + >>> np.vdot(b, a) + 30 + >>> 1*4 + 4*1 + 5*2 + 6*2 + 30 + + """ # noqa: E501 + return (a, b) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.bincount) +def bincount(x, weights=None, minlength=None): + """ + bincount(x, /, weights=None, minlength=0) + + Count number of occurrences of each value in array of non-negative ints. + + The number of bins (of size 1) is one larger than the largest value in + `x`. If `minlength` is specified, there will be at least this number + of bins in the output array (though it will be longer if necessary, + depending on the contents of `x`). + Each bin gives the number of occurrences of its index value in `x`. + If `weights` is specified the input array is weighted by it, i.e. if a + value ``n`` is found at position ``i``, ``out[n] += weight[i]`` instead + of ``out[n] += 1``. + + Parameters + ---------- + x : array_like, 1 dimension, nonnegative ints + Input array. + weights : array_like, optional + Weights, array of the same shape as `x`. + minlength : int, optional + A minimum number of bins for the output array. + + Returns + ------- + out : ndarray of ints + The result of binning the input array. + The length of `out` is equal to ``np.amax(x)+1``. + + Raises + ------ + ValueError + If the input is not 1-dimensional, or contains elements with negative + values, or if `minlength` is negative. + TypeError + If the type of the input is float or complex. + + See Also + -------- + histogram, digitize, unique + + Examples + -------- + >>> import numpy as np + >>> np.bincount(np.arange(5)) + array([1, 1, 1, 1, 1]) + >>> np.bincount(np.array([0, 1, 1, 3, 2, 1, 7])) + array([1, 3, 1, 1, 0, 0, 0, 1]) + + >>> x = np.array([0, 1, 1, 3, 2, 1, 7, 23]) + >>> np.bincount(x).size == np.amax(x)+1 + True + + The input array needs to be of integer dtype, otherwise a + TypeError is raised: + + >>> np.bincount(np.arange(5, dtype=float)) + Traceback (most recent call last): + ... + TypeError: Cannot cast array data from dtype('float64') to dtype('int64') + according to the rule 'safe' + + A possible use of ``bincount`` is to perform sums over + variable-size chunks of an array, using the ``weights`` keyword. + + >>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights + >>> x = np.array([0, 1, 1, 2, 2, 2]) + >>> np.bincount(x, weights=w) + array([ 0.3, 0.7, 1.1]) + + """ + return (x, weights) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.ravel_multi_index) +def ravel_multi_index(multi_index, dims, mode=None, order=None): + """ + ravel_multi_index(multi_index, dims, mode='raise', order='C') + + Converts a tuple of index arrays into an array of flat + indices, applying boundary modes to the multi-index. + + Parameters + ---------- + multi_index : tuple of array_like + A tuple of integer arrays, one array for each dimension. + dims : tuple of ints + The shape of array into which the indices from ``multi_index`` apply. + mode : {'raise', 'wrap', 'clip'}, optional + Specifies how out-of-bounds indices are handled. Can specify + either one mode or a tuple of modes, one mode per index. + + * 'raise' -- raise an error (default) + * 'wrap' -- wrap around + * 'clip' -- clip to the range + + In 'clip' mode, a negative index which would normally + wrap will clip to 0 instead. + order : {'C', 'F'}, optional + Determines whether the multi-index should be viewed as + indexing in row-major (C-style) or column-major + (Fortran-style) order. + + Returns + ------- + raveled_indices : ndarray + An array of indices into the flattened version of an array + of dimensions ``dims``. + + See Also + -------- + unravel_index + + Examples + -------- + >>> import numpy as np + >>> arr = np.array([[3,6,6],[4,5,1]]) + >>> np.ravel_multi_index(arr, (7,6)) + array([22, 41, 37]) + >>> np.ravel_multi_index(arr, (7,6), order='F') + array([31, 41, 13]) + >>> np.ravel_multi_index(arr, (4,6), mode='clip') + array([22, 23, 19]) + >>> np.ravel_multi_index(arr, (4,4), mode=('clip','wrap')) + array([12, 13, 13]) + + >>> np.ravel_multi_index((3,1,4,1), (6,7,8,9)) + 1621 + """ + return multi_index + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.unravel_index) +def unravel_index(indices, shape=None, order=None): + """ + unravel_index(indices, shape, order='C') + + Converts a flat index or array of flat indices into a tuple + of coordinate arrays. + + Parameters + ---------- + indices : array_like + An integer array whose elements are indices into the flattened + version of an array of dimensions ``shape``. Before version 1.6.0, + this function accepted just one index value. + shape : tuple of ints + The shape of the array to use for unraveling ``indices``. + order : {'C', 'F'}, optional + Determines whether the indices should be viewed as indexing in + row-major (C-style) or column-major (Fortran-style) order. + + Returns + ------- + unraveled_coords : tuple of ndarray + Each array in the tuple has the same shape as the ``indices`` + array. + + See Also + -------- + ravel_multi_index + + Examples + -------- + >>> import numpy as np + >>> np.unravel_index([22, 41, 37], (7,6)) + (array([3, 6, 6]), array([4, 5, 1])) + >>> np.unravel_index([31, 41, 13], (7,6), order='F') + (array([3, 6, 6]), array([4, 5, 1])) + + >>> np.unravel_index(1621, (6,7,8,9)) + (3, 1, 4, 1) + + """ + return (indices,) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.copyto) +def copyto(dst, src, casting=None, where=None): + """ + copyto(dst, src, casting='same_kind', where=True) + + Copies values from one array to another, broadcasting as necessary. + + Raises a TypeError if the `casting` rule is violated, and if + `where` is provided, it selects which elements to copy. + + Parameters + ---------- + dst : ndarray + The array into which values are copied. + src : array_like + The array from which values are copied. + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional + Controls what kind of data casting may occur when copying. + + * 'no' means the data types should not be cast at all. + * 'equiv' means only byte-order changes are allowed. + * 'safe' means only casts which can preserve values are allowed. + * 'same_kind' means only safe casts or casts within a kind, + like float64 to float32, are allowed. + * 'unsafe' means any data conversions may be done. + where : array_like of bool, optional + A boolean array which is broadcasted to match the dimensions + of `dst`, and selects elements to copy from `src` to `dst` + wherever it contains the value True. + + Examples + -------- + >>> import numpy as np + >>> A = np.array([4, 5, 6]) + >>> B = [1, 2, 3] + >>> np.copyto(A, B) + >>> A + array([1, 2, 3]) + + >>> A = np.array([[1, 2, 3], [4, 5, 6]]) + >>> B = [[4, 5, 6], [7, 8, 9]] + >>> np.copyto(A, B) + >>> A + array([[4, 5, 6], + [7, 8, 9]]) + + """ + return (dst, src, where) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.putmask) +def putmask(a, /, mask, values): + """ + putmask(a, mask, values) + + Changes elements of an array based on conditional and input values. + + Sets ``a.flat[n] = values[n]`` for each n where ``mask.flat[n]==True``. + + If `values` is not the same size as `a` and `mask` then it will repeat. + This gives behavior different from ``a[mask] = values``. + + Parameters + ---------- + a : ndarray + Target array. + mask : array_like + Boolean mask array. It has to be the same shape as `a`. + values : array_like + Values to put into `a` where `mask` is True. If `values` is smaller + than `a` it will be repeated. + + See Also + -------- + place, put, take, copyto + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(6).reshape(2, 3) + >>> np.putmask(x, x>2, x**2) + >>> x + array([[ 0, 1, 2], + [ 9, 16, 25]]) + + If `values` is smaller than `a` it is repeated: + + >>> x = np.arange(5) + >>> np.putmask(x, x>1, [-33, -44]) + >>> x + array([ 0, 1, -33, -44, -33]) + + """ + return (a, mask, values) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.packbits) +def packbits(a, axis=None, bitorder='big'): + """ + packbits(a, /, axis=None, bitorder='big') + + Packs the elements of a binary-valued array into bits in a uint8 array. + + The result is padded to full bytes by inserting zero bits at the end. + + Parameters + ---------- + a : array_like + An array of integers or booleans whose elements should be packed to + bits. + axis : int, optional + The dimension over which bit-packing is done. + ``None`` implies packing the flattened array. + bitorder : {'big', 'little'}, optional + The order of the input bits. 'big' will mimic bin(val), + ``[0, 0, 0, 0, 0, 0, 1, 1] => 3 = 0b00000011``, 'little' will + reverse the order so ``[1, 1, 0, 0, 0, 0, 0, 0] => 3``. + Defaults to 'big'. + + Returns + ------- + packed : ndarray + Array of type uint8 whose elements represent bits corresponding to the + logical (0 or nonzero) value of the input elements. The shape of + `packed` has the same number of dimensions as the input (unless `axis` + is None, in which case the output is 1-D). + + See Also + -------- + unpackbits: Unpacks elements of a uint8 array into a binary-valued output + array. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[[1,0,1], + ... [0,1,0]], + ... [[1,1,0], + ... [0,0,1]]]) + >>> b = np.packbits(a, axis=-1) + >>> b + array([[[160], + [ 64]], + [[192], + [ 32]]], dtype=uint8) + + Note that in binary 160 = 1010 0000, 64 = 0100 0000, 192 = 1100 0000, + and 32 = 0010 0000. + + """ + return (a,) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.unpackbits) +def unpackbits(a, axis=None, count=None, bitorder='big'): + """ + unpackbits(a, /, axis=None, count=None, bitorder='big') + + Unpacks elements of a uint8 array into a binary-valued output array. + + Each element of `a` represents a bit-field that should be unpacked + into a binary-valued output array. The shape of the output array is + either 1-D (if `axis` is ``None``) or the same shape as the input + array with unpacking done along the axis specified. + + Parameters + ---------- + a : ndarray, uint8 type + Input array. + axis : int, optional + The dimension over which bit-unpacking is done. + ``None`` implies unpacking the flattened array. + count : int or None, optional + The number of elements to unpack along `axis`, provided as a way + of undoing the effect of packing a size that is not a multiple + of eight. A non-negative number means to only unpack `count` + bits. A negative number means to trim off that many bits from + the end. ``None`` means to unpack the entire array (the + default). Counts larger than the available number of bits will + add zero padding to the output. Negative counts must not + exceed the available number of bits. + bitorder : {'big', 'little'}, optional + The order of the returned bits. 'big' will mimic bin(val), + ``3 = 0b00000011 => [0, 0, 0, 0, 0, 0, 1, 1]``, 'little' will reverse + the order to ``[1, 1, 0, 0, 0, 0, 0, 0]``. + Defaults to 'big'. + + Returns + ------- + unpacked : ndarray, uint8 type + The elements are binary-valued (0 or 1). + + See Also + -------- + packbits : Packs the elements of a binary-valued array into bits in + a uint8 array. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[2], [7], [23]], dtype=np.uint8) + >>> a + array([[ 2], + [ 7], + [23]], dtype=uint8) + >>> b = np.unpackbits(a, axis=1) + >>> b + array([[0, 0, 0, 0, 0, 0, 1, 0], + [0, 0, 0, 0, 0, 1, 1, 1], + [0, 0, 0, 1, 0, 1, 1, 1]], dtype=uint8) + >>> c = np.unpackbits(a, axis=1, count=-3) + >>> c + array([[0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 1, 0]], dtype=uint8) + + >>> p = np.packbits(b, axis=0) + >>> np.unpackbits(p, axis=0) + array([[0, 0, 0, 0, 0, 0, 1, 0], + [0, 0, 0, 0, 0, 1, 1, 1], + [0, 0, 0, 1, 0, 1, 1, 1], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8) + >>> np.array_equal(b, np.unpackbits(p, axis=0, count=b.shape[0])) + True + + """ + return (a,) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.shares_memory) +def shares_memory(a, b, max_work=None): + """ + shares_memory(a, b, /, max_work=None) + + Determine if two arrays share memory. + + .. warning:: + + This function can be exponentially slow for some inputs, unless + `max_work` is set to zero or a positive integer. + If in doubt, use `numpy.may_share_memory` instead. + + Parameters + ---------- + a, b : ndarray + Input arrays + max_work : int, optional + Effort to spend on solving the overlap problem (maximum number + of candidate solutions to consider). The following special + values are recognized: + + max_work=-1 (default) + The problem is solved exactly. In this case, the function returns + True only if there is an element shared between the arrays. Finding + the exact solution may take extremely long in some cases. + max_work=0 + Only the memory bounds of a and b are checked. + This is equivalent to using ``may_share_memory()``. + + Raises + ------ + numpy.exceptions.TooHardError + Exceeded max_work. + + Returns + ------- + out : bool + + See Also + -------- + may_share_memory + + Examples + -------- + >>> import numpy as np + >>> x = np.array([1, 2, 3, 4]) + >>> np.shares_memory(x, np.array([5, 6, 7])) + False + >>> np.shares_memory(x[::2], x) + True + >>> np.shares_memory(x[::2], x[1::2]) + False + + Checking whether two arrays share memory is NP-complete, and + runtime may increase exponentially in the number of + dimensions. Hence, `max_work` should generally be set to a finite + number, as it is possible to construct examples that take + extremely long to run: + + >>> from numpy.lib.stride_tricks import as_strided + >>> x = np.zeros([192163377], dtype=np.int8) + >>> x1 = as_strided( + ... x, strides=(36674, 61119, 85569), shape=(1049, 1049, 1049)) + >>> x2 = as_strided( + ... x[64023025:], strides=(12223, 12224, 1), shape=(1049, 1049, 1)) + >>> np.shares_memory(x1, x2, max_work=1000) + Traceback (most recent call last): + ... + numpy.exceptions.TooHardError: Exceeded max_work + + Running ``np.shares_memory(x1, x2)`` without `max_work` set takes + around 1 minute for this case. It is possible to find problems + that take still significantly longer. + + """ + return (a, b) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.may_share_memory) +def may_share_memory(a, b, max_work=None): + """ + may_share_memory(a, b, /, max_work=None) + + Determine if two arrays might share memory + + A return of True does not necessarily mean that the two arrays + share any element. It just means that they *might*. + + Only the memory bounds of a and b are checked by default. + + Parameters + ---------- + a, b : ndarray + Input arrays + max_work : int, optional + Effort to spend on solving the overlap problem. See + `shares_memory` for details. Default for ``may_share_memory`` + is to do a bounds check. + + Returns + ------- + out : bool + + See Also + -------- + shares_memory + + Examples + -------- + >>> import numpy as np + >>> np.may_share_memory(np.array([1,2]), np.array([5,8,9])) + False + >>> x = np.zeros([3, 4]) + >>> np.may_share_memory(x[:,0], x[:,1]) + True + + """ + return (a, b) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.is_busday) +def is_busday(dates, weekmask=None, holidays=None, busdaycal=None, out=None): + """ + is_busday( + dates, + weekmask='1111100', + holidays=None, + busdaycal=None, + out=None + ) + + Calculates which of the given dates are valid days, and which are not. + + Parameters + ---------- + dates : array_like of datetime64[D] + The array of dates to process. + weekmask : str or array_like of bool, optional + A seven-element array indicating which of Monday through Sunday are + valid days. May be specified as a length-seven list or array, like + [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string + like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for + weekdays, optionally separated by white space. Valid abbreviations + are: Mon Tue Wed Thu Fri Sat Sun + holidays : array_like of datetime64[D], optional + An array of dates to consider as invalid dates. They may be + specified in any order, and NaT (not-a-time) dates are ignored. + This list is saved in a normalized form that is suited for + fast calculations of valid days. + busdaycal : busdaycalendar, optional + A `busdaycalendar` object which specifies the valid days. If this + parameter is provided, neither weekmask nor holidays may be + provided. + out : array of bool, optional + If provided, this array is filled with the result. + + Returns + ------- + out : array of bool + An array with the same shape as ``dates``, containing True for + each valid day, and False for each invalid day. + + See Also + -------- + busdaycalendar : An object that specifies a custom set of valid days. + busday_offset : Applies an offset counted in valid days. + busday_count : Counts how many valid days are in a half-open date range. + + Examples + -------- + >>> import numpy as np + >>> # The weekdays are Friday, Saturday, and Monday + ... np.is_busday(['2011-07-01', '2011-07-02', '2011-07-18'], + ... holidays=['2011-07-01', '2011-07-04', '2011-07-17']) + array([False, False, True]) + """ + return (dates, weekmask, holidays, out) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.busday_offset) +def busday_offset(dates, offsets, roll=None, weekmask=None, holidays=None, + busdaycal=None, out=None): + """ + busday_offset( + dates, + offsets, + roll='raise', + weekmask='1111100', + holidays=None, + busdaycal=None, + out=None + ) + + First adjusts the date to fall on a valid day according to + the ``roll`` rule, then applies offsets to the given dates + counted in valid days. + + Parameters + ---------- + dates : array_like of datetime64[D] + The array of dates to process. + offsets : array_like of int + The array of offsets, which is broadcast with ``dates``. + roll : {'raise', 'nat', 'forward', 'following', 'backward', 'preceding', \ + 'modifiedfollowing', 'modifiedpreceding'}, optional + How to treat dates that do not fall on a valid day. The default + is 'raise'. + + * 'raise' means to raise an exception for an invalid day. + * 'nat' means to return a NaT (not-a-time) for an invalid day. + * 'forward' and 'following' mean to take the first valid day + later in time. + * 'backward' and 'preceding' mean to take the first valid day + earlier in time. + * 'modifiedfollowing' means to take the first valid day + later in time unless it is across a Month boundary, in which + case to take the first valid day earlier in time. + * 'modifiedpreceding' means to take the first valid day + earlier in time unless it is across a Month boundary, in which + case to take the first valid day later in time. + weekmask : str or array_like of bool, optional + A seven-element array indicating which of Monday through Sunday are + valid days. May be specified as a length-seven list or array, like + [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string + like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for + weekdays, optionally separated by white space. Valid abbreviations + are: Mon Tue Wed Thu Fri Sat Sun + holidays : array_like of datetime64[D], optional + An array of dates to consider as invalid dates. They may be + specified in any order, and NaT (not-a-time) dates are ignored. + This list is saved in a normalized form that is suited for + fast calculations of valid days. + busdaycal : busdaycalendar, optional + A `busdaycalendar` object which specifies the valid days. If this + parameter is provided, neither weekmask nor holidays may be + provided. + out : array of datetime64[D], optional + If provided, this array is filled with the result. + + Returns + ------- + out : array of datetime64[D] + An array with a shape from broadcasting ``dates`` and ``offsets`` + together, containing the dates with offsets applied. + + See Also + -------- + busdaycalendar : An object that specifies a custom set of valid days. + is_busday : Returns a boolean array indicating valid days. + busday_count : Counts how many valid days are in a half-open date range. + + Examples + -------- + >>> import numpy as np + >>> # First business day in October 2011 (not accounting for holidays) + ... np.busday_offset('2011-10', 0, roll='forward') + np.datetime64('2011-10-03') + >>> # Last business day in February 2012 (not accounting for holidays) + ... np.busday_offset('2012-03', -1, roll='forward') + np.datetime64('2012-02-29') + >>> # Third Wednesday in January 2011 + ... np.busday_offset('2011-01', 2, roll='forward', weekmask='Wed') + np.datetime64('2011-01-19') + >>> # 2012 Mother's Day in Canada and the U.S. + ... np.busday_offset('2012-05', 1, roll='forward', weekmask='Sun') + np.datetime64('2012-05-13') + + >>> # First business day on or after a date + ... np.busday_offset('2011-03-20', 0, roll='forward') + np.datetime64('2011-03-21') + >>> np.busday_offset('2011-03-22', 0, roll='forward') + np.datetime64('2011-03-22') + >>> # First business day after a date + ... np.busday_offset('2011-03-20', 1, roll='backward') + np.datetime64('2011-03-21') + >>> np.busday_offset('2011-03-22', 1, roll='backward') + np.datetime64('2011-03-23') + """ + return (dates, offsets, weekmask, holidays, out) + + +@array_function_from_c_func_and_dispatcher(_multiarray_umath.busday_count) +def busday_count(begindates, enddates, weekmask=None, holidays=None, + busdaycal=None, out=None): + """ + busday_count( + begindates, + enddates, + weekmask='1111100', + holidays=[], + busdaycal=None, + out=None + ) + + Counts the number of valid days between `begindates` and + `enddates`, not including the day of `enddates`. + + If ``enddates`` specifies a date value that is earlier than the + corresponding ``begindates`` date value, the count will be negative. + + Parameters + ---------- + begindates : array_like of datetime64[D] + The array of the first dates for counting. + enddates : array_like of datetime64[D] + The array of the end dates for counting, which are excluded + from the count themselves. + weekmask : str or array_like of bool, optional + A seven-element array indicating which of Monday through Sunday are + valid days. May be specified as a length-seven list or array, like + [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string + like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for + weekdays, optionally separated by white space. Valid abbreviations + are: Mon Tue Wed Thu Fri Sat Sun + holidays : array_like of datetime64[D], optional + An array of dates to consider as invalid dates. They may be + specified in any order, and NaT (not-a-time) dates are ignored. + This list is saved in a normalized form that is suited for + fast calculations of valid days. + busdaycal : busdaycalendar, optional + A `busdaycalendar` object which specifies the valid days. If this + parameter is provided, neither weekmask nor holidays may be + provided. + out : array of int, optional + If provided, this array is filled with the result. + + Returns + ------- + out : array of int + An array with a shape from broadcasting ``begindates`` and ``enddates`` + together, containing the number of valid days between + the begin and end dates. + + See Also + -------- + busdaycalendar : An object that specifies a custom set of valid days. + is_busday : Returns a boolean array indicating valid days. + busday_offset : Applies an offset counted in valid days. + + Examples + -------- + >>> import numpy as np + >>> # Number of weekdays in January 2011 + ... np.busday_count('2011-01', '2011-02') + 21 + >>> # Number of weekdays in 2011 + >>> np.busday_count('2011', '2012') + 260 + >>> # Number of Saturdays in 2011 + ... np.busday_count('2011', '2012', weekmask='Sat') + 53 + """ + return (begindates, enddates, weekmask, holidays, out) + + +@array_function_from_c_func_and_dispatcher( + _multiarray_umath.datetime_as_string) +def datetime_as_string(arr, unit=None, timezone=None, casting=None): + """ + datetime_as_string(arr, unit=None, timezone='naive', casting='same_kind') + + Convert an array of datetimes into an array of strings. + + Parameters + ---------- + arr : array_like of datetime64 + The array of UTC timestamps to format. + unit : str + One of None, 'auto', or + a :ref:`datetime unit `. + timezone : {'naive', 'UTC', 'local'} or tzinfo + Timezone information to use when displaying the datetime. If 'UTC', + end with a Z to indicate UTC time. If 'local', convert to the local + timezone first, and suffix with a +-#### timezone offset. If a tzinfo + object, then do as with 'local', but use the specified timezone. + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'} + Casting to allow when changing between datetime units. + + Returns + ------- + str_arr : ndarray + An array of strings the same shape as `arr`. + + Examples + -------- + >>> import numpy as np + >>> import pytz + >>> d = np.arange('2002-10-27T04:30', 4*60, 60, dtype='M8[m]') + >>> d + array(['2002-10-27T04:30', '2002-10-27T05:30', '2002-10-27T06:30', + '2002-10-27T07:30'], dtype='datetime64[m]') + + Setting the timezone to UTC shows the same information, but with a Z suffix + + >>> np.datetime_as_string(d, timezone='UTC') + array(['2002-10-27T04:30Z', '2002-10-27T05:30Z', '2002-10-27T06:30Z', + '2002-10-27T07:30Z'], dtype='>> np.datetime_as_string(d, timezone=pytz.timezone('US/Eastern')) + array(['2002-10-27T00:30-0400', '2002-10-27T01:30-0400', + '2002-10-27T01:30-0500', '2002-10-27T02:30-0500'], dtype='>> np.datetime_as_string(d, unit='h') + array(['2002-10-27T04', '2002-10-27T05', '2002-10-27T06', '2002-10-27T07'], + dtype='>> np.datetime_as_string(d, unit='s') + array(['2002-10-27T04:30:00', '2002-10-27T05:30:00', '2002-10-27T06:30:00', + '2002-10-27T07:30:00'], dtype='>> np.datetime_as_string(d, unit='h', casting='safe') + Traceback (most recent call last): + ... + TypeError: Cannot create a datetime string as units 'h' from a NumPy + datetime with units 'm' according to the rule 'safe' + """ + return (arr,) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/multiarray.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/multiarray.pyi new file mode 100644 index 0000000..13a3f00 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/multiarray.pyi @@ -0,0 +1,1285 @@ +# TODO: Sort out any and all missing functions in this namespace +import datetime as dt +from collections.abc import Callable, Iterable, Sequence +from typing import ( + Any, + ClassVar, + Final, + Protocol, + SupportsIndex, + TypeAlias, + TypedDict, + TypeVar, + Unpack, + final, + overload, + type_check_only, +) +from typing import ( + Literal as L, +) + +from _typeshed import StrOrBytesPath, SupportsLenAndGetItem +from typing_extensions import CapsuleType + +import numpy as np +from numpy import ( # type: ignore[attr-defined] + _AnyShapeT, + _CastingKind, + _CopyMode, + _ModeKind, + _NDIterFlagsKind, + _NDIterFlagsOp, + _OrderCF, + _OrderKACF, + _SupportsBuffer, + _SupportsFileMethods, + broadcast, + # Re-exports + busdaycalendar, + complexfloating, + correlate, + count_nonzero, + datetime64, + dtype, + flatiter, + float64, + floating, + from_dlpack, + generic, + int_, + interp, + intp, + matmul, + ndarray, + nditer, + signedinteger, + str_, + timedelta64, + # The rest + ufunc, + uint8, + unsignedinteger, + vecdot, +) +from numpy import ( + einsum as c_einsum, +) +from numpy._typing import ( + ArrayLike, + # DTypes + DTypeLike, + # Arrays + NDArray, + _ArrayLike, + _ArrayLikeBool_co, + _ArrayLikeBytes_co, + _ArrayLikeComplex_co, + _ArrayLikeDT64_co, + _ArrayLikeFloat_co, + _ArrayLikeInt_co, + _ArrayLikeObject_co, + _ArrayLikeStr_co, + _ArrayLikeTD64_co, + _ArrayLikeUInt_co, + _DTypeLike, + _FloatLike_co, + _IntLike_co, + _NestedSequence, + _ScalarLike_co, + # Shapes + _Shape, + _ShapeLike, + _SupportsArrayFunc, + _SupportsDType, + _TD64Like_co, +) +from numpy._typing._ufunc import ( + _2PTuple, + _PyFunc_Nin1_Nout1, + _PyFunc_Nin1P_Nout2P, + _PyFunc_Nin2_Nout1, + _PyFunc_Nin3P_Nout1, +) +from numpy.lib._array_utils_impl import normalize_axis_index + +__all__ = [ + "_ARRAY_API", + "ALLOW_THREADS", + "BUFSIZE", + "CLIP", + "DATETIMEUNITS", + "ITEM_HASOBJECT", + "ITEM_IS_POINTER", + "LIST_PICKLE", + "MAXDIMS", + "MAY_SHARE_BOUNDS", + "MAY_SHARE_EXACT", + "NEEDS_INIT", + "NEEDS_PYAPI", + "RAISE", + "USE_GETITEM", + "USE_SETITEM", + "WRAP", + "_flagdict", + "from_dlpack", + "_place", + "_reconstruct", + "_vec_string", + "_monotonicity", + "add_docstring", + "arange", + "array", + "asarray", + "asanyarray", + "ascontiguousarray", + "asfortranarray", + "bincount", + "broadcast", + "busday_count", + "busday_offset", + "busdaycalendar", + "can_cast", + "compare_chararrays", + "concatenate", + "copyto", + "correlate", + "correlate2", + "count_nonzero", + "c_einsum", + "datetime_as_string", + "datetime_data", + "dot", + "dragon4_positional", + "dragon4_scientific", + "dtype", + "empty", + "empty_like", + "error", + "flagsobj", + "flatiter", + "format_longfloat", + "frombuffer", + "fromfile", + "fromiter", + "fromstring", + "get_handler_name", + "get_handler_version", + "inner", + "interp", + "interp_complex", + "is_busday", + "lexsort", + "matmul", + "vecdot", + "may_share_memory", + "min_scalar_type", + "ndarray", + "nditer", + "nested_iters", + "normalize_axis_index", + "packbits", + "promote_types", + "putmask", + "ravel_multi_index", + "result_type", + "scalar", + "set_datetimeparse_function", + "set_typeDict", + "shares_memory", + "typeinfo", + "unpackbits", + "unravel_index", + "vdot", + "where", + "zeros", +] + +_ScalarT = TypeVar("_ScalarT", bound=generic) +_DTypeT = TypeVar("_DTypeT", bound=np.dtype) +_ArrayT = TypeVar("_ArrayT", bound=ndarray[Any, Any]) +_ArrayT_co = TypeVar( + "_ArrayT_co", + bound=ndarray[Any, Any], + covariant=True, +) +_ReturnType = TypeVar("_ReturnType") +_IDType = TypeVar("_IDType") +_Nin = TypeVar("_Nin", bound=int) +_Nout = TypeVar("_Nout", bound=int) + +_ShapeT = TypeVar("_ShapeT", bound=_Shape) +_Array: TypeAlias = ndarray[_ShapeT, dtype[_ScalarT]] +_Array1D: TypeAlias = ndarray[tuple[int], dtype[_ScalarT]] + +# Valid time units +_UnitKind: TypeAlias = L[ + "Y", + "M", + "D", + "h", + "m", + "s", + "ms", + "us", "μs", + "ns", + "ps", + "fs", + "as", +] +_RollKind: TypeAlias = L[ # `raise` is deliberately excluded + "nat", + "forward", + "following", + "backward", + "preceding", + "modifiedfollowing", + "modifiedpreceding", +] + +@type_check_only +class _SupportsArray(Protocol[_ArrayT_co]): + def __array__(self, /) -> _ArrayT_co: ... + +@type_check_only +class _KwargsEmpty(TypedDict, total=False): + device: L["cpu"] | None + like: _SupportsArrayFunc | None + +@type_check_only +class _ConstructorEmpty(Protocol): + # 1-D shape + @overload + def __call__( + self, + /, + shape: SupportsIndex, + dtype: None = ..., + order: _OrderCF = ..., + **kwargs: Unpack[_KwargsEmpty], + ) -> _Array1D[float64]: ... + @overload + def __call__( + self, + /, + shape: SupportsIndex, + dtype: _DTypeT | _SupportsDType[_DTypeT], + order: _OrderCF = ..., + **kwargs: Unpack[_KwargsEmpty], + ) -> ndarray[tuple[int], _DTypeT]: ... + @overload + def __call__( + self, + /, + shape: SupportsIndex, + dtype: type[_ScalarT], + order: _OrderCF = ..., + **kwargs: Unpack[_KwargsEmpty], + ) -> _Array1D[_ScalarT]: ... + @overload + def __call__( + self, + /, + shape: SupportsIndex, + dtype: DTypeLike | None = ..., + order: _OrderCF = ..., + **kwargs: Unpack[_KwargsEmpty], + ) -> _Array1D[Any]: ... + + # known shape + @overload + def __call__( + self, + /, + shape: _AnyShapeT, + dtype: None = ..., + order: _OrderCF = ..., + **kwargs: Unpack[_KwargsEmpty], + ) -> _Array[_AnyShapeT, float64]: ... + @overload + def __call__( + self, + /, + shape: _AnyShapeT, + dtype: _DTypeT | _SupportsDType[_DTypeT], + order: _OrderCF = ..., + **kwargs: Unpack[_KwargsEmpty], + ) -> ndarray[_AnyShapeT, _DTypeT]: ... + @overload + def __call__( + self, + /, + shape: _AnyShapeT, + dtype: type[_ScalarT], + order: _OrderCF = ..., + **kwargs: Unpack[_KwargsEmpty], + ) -> _Array[_AnyShapeT, _ScalarT]: ... + @overload + def __call__( + self, + /, + shape: _AnyShapeT, + dtype: DTypeLike | None = ..., + order: _OrderCF = ..., + **kwargs: Unpack[_KwargsEmpty], + ) -> _Array[_AnyShapeT, Any]: ... + + # unknown shape + @overload + def __call__( + self, /, + shape: _ShapeLike, + dtype: None = ..., + order: _OrderCF = ..., + **kwargs: Unpack[_KwargsEmpty], + ) -> NDArray[float64]: ... + @overload + def __call__( + self, /, + shape: _ShapeLike, + dtype: _DTypeT | _SupportsDType[_DTypeT], + order: _OrderCF = ..., + **kwargs: Unpack[_KwargsEmpty], + ) -> ndarray[Any, _DTypeT]: ... + @overload + def __call__( + self, /, + shape: _ShapeLike, + dtype: type[_ScalarT], + order: _OrderCF = ..., + **kwargs: Unpack[_KwargsEmpty], + ) -> NDArray[_ScalarT]: ... + @overload + def __call__( + self, + /, + shape: _ShapeLike, + dtype: DTypeLike | None = ..., + order: _OrderCF = ..., + **kwargs: Unpack[_KwargsEmpty], + ) -> NDArray[Any]: ... + +# using `Final` or `TypeAlias` will break stubtest +error = Exception + +# from ._multiarray_umath +ITEM_HASOBJECT: Final = 1 +LIST_PICKLE: Final = 2 +ITEM_IS_POINTER: Final = 4 +NEEDS_INIT: Final = 8 +NEEDS_PYAPI: Final = 16 +USE_GETITEM: Final = 32 +USE_SETITEM: Final = 64 +DATETIMEUNITS: Final[CapsuleType] +_ARRAY_API: Final[CapsuleType] +_flagdict: Final[dict[str, int]] +_monotonicity: Final[Callable[..., object]] +_place: Final[Callable[..., object]] +_reconstruct: Final[Callable[..., object]] +_vec_string: Final[Callable[..., object]] +correlate2: Final[Callable[..., object]] +dragon4_positional: Final[Callable[..., object]] +dragon4_scientific: Final[Callable[..., object]] +interp_complex: Final[Callable[..., object]] +set_datetimeparse_function: Final[Callable[..., object]] +def get_handler_name(a: NDArray[Any] = ..., /) -> str | None: ... +def get_handler_version(a: NDArray[Any] = ..., /) -> int | None: ... +def format_longfloat(x: np.longdouble, precision: int) -> str: ... +def scalar(dtype: _DTypeT, object: bytes | object = ...) -> ndarray[tuple[()], _DTypeT]: ... +def set_typeDict(dict_: dict[str, np.dtype], /) -> None: ... +typeinfo: Final[dict[str, np.dtype[np.generic]]] + +ALLOW_THREADS: Final[int] # 0 or 1 (system-specific) +BUFSIZE: L[8192] +CLIP: L[0] +WRAP: L[1] +RAISE: L[2] +MAXDIMS: L[32] +MAY_SHARE_BOUNDS: L[0] +MAY_SHARE_EXACT: L[-1] +tracemalloc_domain: L[389047] + +zeros: Final[_ConstructorEmpty] +empty: Final[_ConstructorEmpty] + +@overload +def empty_like( + prototype: _ArrayT, + dtype: None = ..., + order: _OrderKACF = ..., + subok: bool = ..., + shape: _ShapeLike | None = ..., + *, + device: L["cpu"] | None = ..., +) -> _ArrayT: ... +@overload +def empty_like( + prototype: _ArrayLike[_ScalarT], + dtype: None = ..., + order: _OrderKACF = ..., + subok: bool = ..., + shape: _ShapeLike | None = ..., + *, + device: L["cpu"] | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def empty_like( + prototype: Any, + dtype: _DTypeLike[_ScalarT], + order: _OrderKACF = ..., + subok: bool = ..., + shape: _ShapeLike | None = ..., + *, + device: L["cpu"] | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def empty_like( + prototype: Any, + dtype: DTypeLike | None = ..., + order: _OrderKACF = ..., + subok: bool = ..., + shape: _ShapeLike | None = ..., + *, + device: L["cpu"] | None = ..., +) -> NDArray[Any]: ... + +@overload +def array( + object: _ArrayT, + dtype: None = ..., + *, + copy: bool | _CopyMode | None = ..., + order: _OrderKACF = ..., + subok: L[True], + ndmin: int = ..., + like: _SupportsArrayFunc | None = ..., +) -> _ArrayT: ... +@overload +def array( + object: _SupportsArray[_ArrayT], + dtype: None = ..., + *, + copy: bool | _CopyMode | None = ..., + order: _OrderKACF = ..., + subok: L[True], + ndmin: L[0] = ..., + like: _SupportsArrayFunc | None = ..., +) -> _ArrayT: ... +@overload +def array( + object: _ArrayLike[_ScalarT], + dtype: None = ..., + *, + copy: bool | _CopyMode | None = ..., + order: _OrderKACF = ..., + subok: bool = ..., + ndmin: int = ..., + like: _SupportsArrayFunc | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def array( + object: Any, + dtype: _DTypeLike[_ScalarT], + *, + copy: bool | _CopyMode | None = ..., + order: _OrderKACF = ..., + subok: bool = ..., + ndmin: int = ..., + like: _SupportsArrayFunc | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def array( + object: Any, + dtype: DTypeLike | None = ..., + *, + copy: bool | _CopyMode | None = ..., + order: _OrderKACF = ..., + subok: bool = ..., + ndmin: int = ..., + like: _SupportsArrayFunc | None = ..., +) -> NDArray[Any]: ... + +# +@overload +def ravel_multi_index( + multi_index: SupportsLenAndGetItem[_IntLike_co], + dims: _ShapeLike, + mode: _ModeKind | tuple[_ModeKind, ...] = "raise", + order: _OrderCF = "C", +) -> intp: ... +@overload +def ravel_multi_index( + multi_index: SupportsLenAndGetItem[_ArrayLikeInt_co], + dims: _ShapeLike, + mode: _ModeKind | tuple[_ModeKind, ...] = "raise", + order: _OrderCF = "C", +) -> NDArray[intp]: ... + +# +@overload +def unravel_index(indices: _IntLike_co, shape: _ShapeLike, order: _OrderCF = "C") -> tuple[intp, ...]: ... +@overload +def unravel_index(indices: _ArrayLikeInt_co, shape: _ShapeLike, order: _OrderCF = "C") -> tuple[NDArray[intp], ...]: ... + +# NOTE: Allow any sequence of array-like objects +@overload +def concatenate( # type: ignore[misc] + arrays: _ArrayLike[_ScalarT], + /, + axis: SupportsIndex | None = ..., + out: None = ..., + *, + dtype: None = ..., + casting: _CastingKind | None = ... +) -> NDArray[_ScalarT]: ... +@overload +@overload +def concatenate( # type: ignore[misc] + arrays: SupportsLenAndGetItem[ArrayLike], + /, + axis: SupportsIndex | None = ..., + out: None = ..., + *, + dtype: _DTypeLike[_ScalarT], + casting: _CastingKind | None = ... +) -> NDArray[_ScalarT]: ... +@overload +def concatenate( # type: ignore[misc] + arrays: SupportsLenAndGetItem[ArrayLike], + /, + axis: SupportsIndex | None = ..., + out: None = ..., + *, + dtype: DTypeLike | None = None, + casting: _CastingKind | None = ... +) -> NDArray[Any]: ... +@overload +def concatenate( + arrays: SupportsLenAndGetItem[ArrayLike], + /, + axis: SupportsIndex | None = ..., + out: _ArrayT = ..., + *, + dtype: DTypeLike = ..., + casting: _CastingKind | None = ... +) -> _ArrayT: ... + +def inner( + a: ArrayLike, + b: ArrayLike, + /, +) -> Any: ... + +@overload +def where( + condition: ArrayLike, + /, +) -> tuple[NDArray[intp], ...]: ... +@overload +def where( + condition: ArrayLike, + x: ArrayLike, + y: ArrayLike, + /, +) -> NDArray[Any]: ... + +def lexsort( + keys: ArrayLike, + axis: SupportsIndex | None = ..., +) -> Any: ... + +def can_cast( + from_: ArrayLike | DTypeLike, + to: DTypeLike, + casting: _CastingKind | None = ..., +) -> bool: ... + +def min_scalar_type(a: ArrayLike, /) -> dtype: ... + +def result_type(*arrays_and_dtypes: ArrayLike | DTypeLike) -> dtype: ... + +@overload +def dot(a: ArrayLike, b: ArrayLike, out: None = ...) -> Any: ... +@overload +def dot(a: ArrayLike, b: ArrayLike, out: _ArrayT) -> _ArrayT: ... + +@overload +def vdot(a: _ArrayLikeBool_co, b: _ArrayLikeBool_co, /) -> np.bool: ... # type: ignore[misc] +@overload +def vdot(a: _ArrayLikeUInt_co, b: _ArrayLikeUInt_co, /) -> unsignedinteger: ... # type: ignore[misc] +@overload +def vdot(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co, /) -> signedinteger: ... # type: ignore[misc] +@overload +def vdot(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, /) -> floating: ... # type: ignore[misc] +@overload +def vdot(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co, /) -> complexfloating: ... # type: ignore[misc] +@overload +def vdot(a: _ArrayLikeTD64_co, b: _ArrayLikeTD64_co, /) -> timedelta64: ... +@overload +def vdot(a: _ArrayLikeObject_co, b: Any, /) -> Any: ... +@overload +def vdot(a: Any, b: _ArrayLikeObject_co, /) -> Any: ... + +def bincount( + x: ArrayLike, + /, + weights: ArrayLike | None = ..., + minlength: SupportsIndex = ..., +) -> NDArray[intp]: ... + +def copyto( + dst: NDArray[Any], + src: ArrayLike, + casting: _CastingKind | None = ..., + where: _ArrayLikeBool_co | None = ..., +) -> None: ... + +def putmask( + a: NDArray[Any], + /, + mask: _ArrayLikeBool_co, + values: ArrayLike, +) -> None: ... + +def packbits( + a: _ArrayLikeInt_co, + /, + axis: SupportsIndex | None = ..., + bitorder: L["big", "little"] = ..., +) -> NDArray[uint8]: ... + +def unpackbits( + a: _ArrayLike[uint8], + /, + axis: SupportsIndex | None = ..., + count: SupportsIndex | None = ..., + bitorder: L["big", "little"] = ..., +) -> NDArray[uint8]: ... + +def shares_memory( + a: object, + b: object, + /, + max_work: int | None = ..., +) -> bool: ... + +def may_share_memory( + a: object, + b: object, + /, + max_work: int | None = ..., +) -> bool: ... + +@overload +def asarray( + a: _ArrayLike[_ScalarT], + dtype: None = ..., + order: _OrderKACF = ..., + *, + device: L["cpu"] | None = ..., + copy: bool | None = ..., + like: _SupportsArrayFunc | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def asarray( + a: Any, + dtype: _DTypeLike[_ScalarT], + order: _OrderKACF = ..., + *, + device: L["cpu"] | None = ..., + copy: bool | None = ..., + like: _SupportsArrayFunc | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def asarray( + a: Any, + dtype: DTypeLike | None = ..., + order: _OrderKACF = ..., + *, + device: L["cpu"] | None = ..., + copy: bool | None = ..., + like: _SupportsArrayFunc | None = ..., +) -> NDArray[Any]: ... + +@overload +def asanyarray( + a: _ArrayT, # Preserve subclass-information + dtype: None = ..., + order: _OrderKACF = ..., + *, + device: L["cpu"] | None = ..., + copy: bool | None = ..., + like: _SupportsArrayFunc | None = ..., +) -> _ArrayT: ... +@overload +def asanyarray( + a: _ArrayLike[_ScalarT], + dtype: None = ..., + order: _OrderKACF = ..., + *, + device: L["cpu"] | None = ..., + copy: bool | None = ..., + like: _SupportsArrayFunc | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def asanyarray( + a: Any, + dtype: _DTypeLike[_ScalarT], + order: _OrderKACF = ..., + *, + device: L["cpu"] | None = ..., + copy: bool | None = ..., + like: _SupportsArrayFunc | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def asanyarray( + a: Any, + dtype: DTypeLike | None = ..., + order: _OrderKACF = ..., + *, + device: L["cpu"] | None = ..., + copy: bool | None = ..., + like: _SupportsArrayFunc | None = ..., +) -> NDArray[Any]: ... + +@overload +def ascontiguousarray( + a: _ArrayLike[_ScalarT], + dtype: None = ..., + *, + like: _SupportsArrayFunc | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def ascontiguousarray( + a: Any, + dtype: _DTypeLike[_ScalarT], + *, + like: _SupportsArrayFunc | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def ascontiguousarray( + a: Any, + dtype: DTypeLike | None = ..., + *, + like: _SupportsArrayFunc | None = ..., +) -> NDArray[Any]: ... + +@overload +def asfortranarray( + a: _ArrayLike[_ScalarT], + dtype: None = ..., + *, + like: _SupportsArrayFunc | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def asfortranarray( + a: Any, + dtype: _DTypeLike[_ScalarT], + *, + like: _SupportsArrayFunc | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def asfortranarray( + a: Any, + dtype: DTypeLike | None = ..., + *, + like: _SupportsArrayFunc | None = ..., +) -> NDArray[Any]: ... + +def promote_types(__type1: DTypeLike, __type2: DTypeLike) -> dtype: ... + +# `sep` is a de facto mandatory argument, as its default value is deprecated +@overload +def fromstring( + string: str | bytes, + dtype: None = ..., + count: SupportsIndex = ..., + *, + sep: str, + like: _SupportsArrayFunc | None = ..., +) -> NDArray[float64]: ... +@overload +def fromstring( + string: str | bytes, + dtype: _DTypeLike[_ScalarT], + count: SupportsIndex = ..., + *, + sep: str, + like: _SupportsArrayFunc | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def fromstring( + string: str | bytes, + dtype: DTypeLike | None = ..., + count: SupportsIndex = ..., + *, + sep: str, + like: _SupportsArrayFunc | None = ..., +) -> NDArray[Any]: ... + +@overload +def frompyfunc( # type: ignore[overload-overlap] + func: Callable[[Any], _ReturnType], /, + nin: L[1], + nout: L[1], + *, + identity: None = ..., +) -> _PyFunc_Nin1_Nout1[_ReturnType, None]: ... +@overload +def frompyfunc( # type: ignore[overload-overlap] + func: Callable[[Any], _ReturnType], /, + nin: L[1], + nout: L[1], + *, + identity: _IDType, +) -> _PyFunc_Nin1_Nout1[_ReturnType, _IDType]: ... +@overload +def frompyfunc( # type: ignore[overload-overlap] + func: Callable[[Any, Any], _ReturnType], /, + nin: L[2], + nout: L[1], + *, + identity: None = ..., +) -> _PyFunc_Nin2_Nout1[_ReturnType, None]: ... +@overload +def frompyfunc( # type: ignore[overload-overlap] + func: Callable[[Any, Any], _ReturnType], /, + nin: L[2], + nout: L[1], + *, + identity: _IDType, +) -> _PyFunc_Nin2_Nout1[_ReturnType, _IDType]: ... +@overload +def frompyfunc( # type: ignore[overload-overlap] + func: Callable[..., _ReturnType], /, + nin: _Nin, + nout: L[1], + *, + identity: None = ..., +) -> _PyFunc_Nin3P_Nout1[_ReturnType, None, _Nin]: ... +@overload +def frompyfunc( # type: ignore[overload-overlap] + func: Callable[..., _ReturnType], /, + nin: _Nin, + nout: L[1], + *, + identity: _IDType, +) -> _PyFunc_Nin3P_Nout1[_ReturnType, _IDType, _Nin]: ... +@overload +def frompyfunc( + func: Callable[..., _2PTuple[_ReturnType]], /, + nin: _Nin, + nout: _Nout, + *, + identity: None = ..., +) -> _PyFunc_Nin1P_Nout2P[_ReturnType, None, _Nin, _Nout]: ... +@overload +def frompyfunc( + func: Callable[..., _2PTuple[_ReturnType]], /, + nin: _Nin, + nout: _Nout, + *, + identity: _IDType, +) -> _PyFunc_Nin1P_Nout2P[_ReturnType, _IDType, _Nin, _Nout]: ... +@overload +def frompyfunc( + func: Callable[..., Any], /, + nin: SupportsIndex, + nout: SupportsIndex, + *, + identity: object | None = ..., +) -> ufunc: ... + +@overload +def fromfile( + file: StrOrBytesPath | _SupportsFileMethods, + dtype: None = ..., + count: SupportsIndex = ..., + sep: str = ..., + offset: SupportsIndex = ..., + *, + like: _SupportsArrayFunc | None = ..., +) -> NDArray[float64]: ... +@overload +def fromfile( + file: StrOrBytesPath | _SupportsFileMethods, + dtype: _DTypeLike[_ScalarT], + count: SupportsIndex = ..., + sep: str = ..., + offset: SupportsIndex = ..., + *, + like: _SupportsArrayFunc | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def fromfile( + file: StrOrBytesPath | _SupportsFileMethods, + dtype: DTypeLike | None = ..., + count: SupportsIndex = ..., + sep: str = ..., + offset: SupportsIndex = ..., + *, + like: _SupportsArrayFunc | None = ..., +) -> NDArray[Any]: ... + +@overload +def fromiter( + iter: Iterable[Any], + dtype: _DTypeLike[_ScalarT], + count: SupportsIndex = ..., + *, + like: _SupportsArrayFunc | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def fromiter( + iter: Iterable[Any], + dtype: DTypeLike, + count: SupportsIndex = ..., + *, + like: _SupportsArrayFunc | None = ..., +) -> NDArray[Any]: ... + +@overload +def frombuffer( + buffer: _SupportsBuffer, + dtype: None = ..., + count: SupportsIndex = ..., + offset: SupportsIndex = ..., + *, + like: _SupportsArrayFunc | None = ..., +) -> NDArray[float64]: ... +@overload +def frombuffer( + buffer: _SupportsBuffer, + dtype: _DTypeLike[_ScalarT], + count: SupportsIndex = ..., + offset: SupportsIndex = ..., + *, + like: _SupportsArrayFunc | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def frombuffer( + buffer: _SupportsBuffer, + dtype: DTypeLike | None = ..., + count: SupportsIndex = ..., + offset: SupportsIndex = ..., + *, + like: _SupportsArrayFunc | None = ..., +) -> NDArray[Any]: ... + +@overload +def arange( # type: ignore[misc] + stop: _IntLike_co, + /, *, + dtype: None = ..., + device: L["cpu"] | None = ..., + like: _SupportsArrayFunc | None = ..., +) -> _Array1D[signedinteger]: ... +@overload +def arange( # type: ignore[misc] + start: _IntLike_co, + stop: _IntLike_co, + step: _IntLike_co = ..., + dtype: None = ..., + *, + device: L["cpu"] | None = ..., + like: _SupportsArrayFunc | None = ..., +) -> _Array1D[signedinteger]: ... +@overload +def arange( # type: ignore[misc] + stop: _FloatLike_co, + /, *, + dtype: None = ..., + device: L["cpu"] | None = ..., + like: _SupportsArrayFunc | None = ..., +) -> _Array1D[floating]: ... +@overload +def arange( # type: ignore[misc] + start: _FloatLike_co, + stop: _FloatLike_co, + step: _FloatLike_co = ..., + dtype: None = ..., + *, + device: L["cpu"] | None = ..., + like: _SupportsArrayFunc | None = ..., +) -> _Array1D[floating]: ... +@overload +def arange( + stop: _TD64Like_co, + /, *, + dtype: None = ..., + device: L["cpu"] | None = ..., + like: _SupportsArrayFunc | None = ..., +) -> _Array1D[timedelta64]: ... +@overload +def arange( + start: _TD64Like_co, + stop: _TD64Like_co, + step: _TD64Like_co = ..., + dtype: None = ..., + *, + device: L["cpu"] | None = ..., + like: _SupportsArrayFunc | None = ..., +) -> _Array1D[timedelta64]: ... +@overload +def arange( # both start and stop must always be specified for datetime64 + start: datetime64, + stop: datetime64, + step: datetime64 = ..., + dtype: None = ..., + *, + device: L["cpu"] | None = ..., + like: _SupportsArrayFunc | None = ..., +) -> _Array1D[datetime64]: ... +@overload +def arange( + stop: Any, + /, *, + dtype: _DTypeLike[_ScalarT], + device: L["cpu"] | None = ..., + like: _SupportsArrayFunc | None = ..., +) -> _Array1D[_ScalarT]: ... +@overload +def arange( + start: Any, + stop: Any, + step: Any = ..., + dtype: _DTypeLike[_ScalarT] = ..., + *, + device: L["cpu"] | None = ..., + like: _SupportsArrayFunc | None = ..., +) -> _Array1D[_ScalarT]: ... +@overload +def arange( + stop: Any, /, + *, + dtype: DTypeLike | None = ..., + device: L["cpu"] | None = ..., + like: _SupportsArrayFunc | None = ..., +) -> _Array1D[Any]: ... +@overload +def arange( + start: Any, + stop: Any, + step: Any = ..., + dtype: DTypeLike | None = ..., + *, + device: L["cpu"] | None = ..., + like: _SupportsArrayFunc | None = ..., +) -> _Array1D[Any]: ... + +def datetime_data( + dtype: str | _DTypeLike[datetime64] | _DTypeLike[timedelta64], /, +) -> tuple[str, int]: ... + +# The datetime functions perform unsafe casts to `datetime64[D]`, +# so a lot of different argument types are allowed here + +@overload +def busday_count( # type: ignore[misc] + begindates: _ScalarLike_co | dt.date, + enddates: _ScalarLike_co | dt.date, + weekmask: ArrayLike = ..., + holidays: ArrayLike | dt.date | _NestedSequence[dt.date] | None = ..., + busdaycal: busdaycalendar | None = ..., + out: None = ..., +) -> int_: ... +@overload +def busday_count( # type: ignore[misc] + begindates: ArrayLike | dt.date | _NestedSequence[dt.date], + enddates: ArrayLike | dt.date | _NestedSequence[dt.date], + weekmask: ArrayLike = ..., + holidays: ArrayLike | dt.date | _NestedSequence[dt.date] | None = ..., + busdaycal: busdaycalendar | None = ..., + out: None = ..., +) -> NDArray[int_]: ... +@overload +def busday_count( + begindates: ArrayLike | dt.date | _NestedSequence[dt.date], + enddates: ArrayLike | dt.date | _NestedSequence[dt.date], + weekmask: ArrayLike = ..., + holidays: ArrayLike | dt.date | _NestedSequence[dt.date] | None = ..., + busdaycal: busdaycalendar | None = ..., + out: _ArrayT = ..., +) -> _ArrayT: ... + +# `roll="raise"` is (more or less?) equivalent to `casting="safe"` +@overload +def busday_offset( # type: ignore[misc] + dates: datetime64 | dt.date, + offsets: _TD64Like_co | dt.timedelta, + roll: L["raise"] = ..., + weekmask: ArrayLike = ..., + holidays: ArrayLike | dt.date | _NestedSequence[dt.date] | None = ..., + busdaycal: busdaycalendar | None = ..., + out: None = ..., +) -> datetime64: ... +@overload +def busday_offset( # type: ignore[misc] + dates: _ArrayLike[datetime64] | dt.date | _NestedSequence[dt.date], + offsets: _ArrayLikeTD64_co | dt.timedelta | _NestedSequence[dt.timedelta], + roll: L["raise"] = ..., + weekmask: ArrayLike = ..., + holidays: ArrayLike | dt.date | _NestedSequence[dt.date] | None = ..., + busdaycal: busdaycalendar | None = ..., + out: None = ..., +) -> NDArray[datetime64]: ... +@overload +def busday_offset( # type: ignore[misc] + dates: _ArrayLike[datetime64] | dt.date | _NestedSequence[dt.date], + offsets: _ArrayLikeTD64_co | dt.timedelta | _NestedSequence[dt.timedelta], + roll: L["raise"] = ..., + weekmask: ArrayLike = ..., + holidays: ArrayLike | dt.date | _NestedSequence[dt.date] | None = ..., + busdaycal: busdaycalendar | None = ..., + out: _ArrayT = ..., +) -> _ArrayT: ... +@overload +def busday_offset( # type: ignore[misc] + dates: _ScalarLike_co | dt.date, + offsets: _ScalarLike_co | dt.timedelta, + roll: _RollKind, + weekmask: ArrayLike = ..., + holidays: ArrayLike | dt.date | _NestedSequence[dt.date] | None = ..., + busdaycal: busdaycalendar | None = ..., + out: None = ..., +) -> datetime64: ... +@overload +def busday_offset( # type: ignore[misc] + dates: ArrayLike | dt.date | _NestedSequence[dt.date], + offsets: ArrayLike | dt.timedelta | _NestedSequence[dt.timedelta], + roll: _RollKind, + weekmask: ArrayLike = ..., + holidays: ArrayLike | dt.date | _NestedSequence[dt.date] | None = ..., + busdaycal: busdaycalendar | None = ..., + out: None = ..., +) -> NDArray[datetime64]: ... +@overload +def busday_offset( + dates: ArrayLike | dt.date | _NestedSequence[dt.date], + offsets: ArrayLike | dt.timedelta | _NestedSequence[dt.timedelta], + roll: _RollKind, + weekmask: ArrayLike = ..., + holidays: ArrayLike | dt.date | _NestedSequence[dt.date] | None = ..., + busdaycal: busdaycalendar | None = ..., + out: _ArrayT = ..., +) -> _ArrayT: ... + +@overload +def is_busday( # type: ignore[misc] + dates: _ScalarLike_co | dt.date, + weekmask: ArrayLike = ..., + holidays: ArrayLike | dt.date | _NestedSequence[dt.date] | None = ..., + busdaycal: busdaycalendar | None = ..., + out: None = ..., +) -> np.bool: ... +@overload +def is_busday( # type: ignore[misc] + dates: ArrayLike | _NestedSequence[dt.date], + weekmask: ArrayLike = ..., + holidays: ArrayLike | dt.date | _NestedSequence[dt.date] | None = ..., + busdaycal: busdaycalendar | None = ..., + out: None = ..., +) -> NDArray[np.bool]: ... +@overload +def is_busday( + dates: ArrayLike | _NestedSequence[dt.date], + weekmask: ArrayLike = ..., + holidays: ArrayLike | dt.date | _NestedSequence[dt.date] | None = ..., + busdaycal: busdaycalendar | None = ..., + out: _ArrayT = ..., +) -> _ArrayT: ... + +@overload +def datetime_as_string( # type: ignore[misc] + arr: datetime64 | dt.date, + unit: L["auto"] | _UnitKind | None = ..., + timezone: L["naive", "UTC", "local"] | dt.tzinfo = ..., + casting: _CastingKind = ..., +) -> str_: ... +@overload +def datetime_as_string( + arr: _ArrayLikeDT64_co | _NestedSequence[dt.date], + unit: L["auto"] | _UnitKind | None = ..., + timezone: L["naive", "UTC", "local"] | dt.tzinfo = ..., + casting: _CastingKind = ..., +) -> NDArray[str_]: ... + +@overload +def compare_chararrays( + a1: _ArrayLikeStr_co, + a2: _ArrayLikeStr_co, + cmp: L["<", "<=", "==", ">=", ">", "!="], + rstrip: bool, +) -> NDArray[np.bool]: ... +@overload +def compare_chararrays( + a1: _ArrayLikeBytes_co, + a2: _ArrayLikeBytes_co, + cmp: L["<", "<=", "==", ">=", ">", "!="], + rstrip: bool, +) -> NDArray[np.bool]: ... + +def add_docstring(obj: Callable[..., Any], docstring: str, /) -> None: ... + +_GetItemKeys: TypeAlias = L[ + "C", "CONTIGUOUS", "C_CONTIGUOUS", + "F", "FORTRAN", "F_CONTIGUOUS", + "W", "WRITEABLE", + "B", "BEHAVED", + "O", "OWNDATA", + "A", "ALIGNED", + "X", "WRITEBACKIFCOPY", + "CA", "CARRAY", + "FA", "FARRAY", + "FNC", + "FORC", +] +_SetItemKeys: TypeAlias = L[ + "A", "ALIGNED", + "W", "WRITEABLE", + "X", "WRITEBACKIFCOPY", +] + +@final +class flagsobj: + __hash__: ClassVar[None] # type: ignore[assignment] + aligned: bool + # NOTE: deprecated + # updateifcopy: bool + writeable: bool + writebackifcopy: bool + @property + def behaved(self) -> bool: ... + @property + def c_contiguous(self) -> bool: ... + @property + def carray(self) -> bool: ... + @property + def contiguous(self) -> bool: ... + @property + def f_contiguous(self) -> bool: ... + @property + def farray(self) -> bool: ... + @property + def fnc(self) -> bool: ... + @property + def forc(self) -> bool: ... + @property + def fortran(self) -> bool: ... + @property + def num(self) -> int: ... + @property + def owndata(self) -> bool: ... + def __getitem__(self, key: _GetItemKeys) -> bool: ... + def __setitem__(self, key: _SetItemKeys, value: bool) -> None: ... + +def nested_iters( + op: ArrayLike | Sequence[ArrayLike], + axes: Sequence[Sequence[SupportsIndex]], + flags: Sequence[_NDIterFlagsKind] | None = ..., + op_flags: Sequence[Sequence[_NDIterFlagsOp]] | None = ..., + op_dtypes: DTypeLike | Sequence[DTypeLike] = ..., + order: _OrderKACF = ..., + casting: _CastingKind = ..., + buffersize: SupportsIndex = ..., +) -> tuple[nditer, ...]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/numeric.py b/.venv/lib/python3.12/site-packages/numpy/_core/numeric.py new file mode 100644 index 0000000..964447f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/numeric.py @@ -0,0 +1,2760 @@ +import builtins +import functools +import itertools +import math +import numbers +import operator +import sys +import warnings + +import numpy as np +from numpy.exceptions import AxisError + +from . import multiarray, numerictypes, overrides, shape_base, umath +from . import numerictypes as nt +from ._ufunc_config import errstate +from .multiarray import ( # noqa: F401 + ALLOW_THREADS, + BUFSIZE, + CLIP, + MAXDIMS, + MAY_SHARE_BOUNDS, + MAY_SHARE_EXACT, + RAISE, + WRAP, + arange, + array, + asanyarray, + asarray, + ascontiguousarray, + asfortranarray, + broadcast, + can_cast, + concatenate, + copyto, + dot, + dtype, + empty, + empty_like, + flatiter, + from_dlpack, + frombuffer, + fromfile, + fromiter, + fromstring, + inner, + lexsort, + matmul, + may_share_memory, + min_scalar_type, + ndarray, + nditer, + nested_iters, + normalize_axis_index, + promote_types, + putmask, + result_type, + shares_memory, + vdot, + vecdot, + where, + zeros, +) +from .overrides import finalize_array_function_like, set_module +from .umath import NAN, PINF, invert, multiply, sin + +bitwise_not = invert +ufunc = type(sin) +newaxis = None + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy') + + +__all__ = [ + 'newaxis', 'ndarray', 'flatiter', 'nditer', 'nested_iters', 'ufunc', + 'arange', 'array', 'asarray', 'asanyarray', 'ascontiguousarray', + 'asfortranarray', 'zeros', 'count_nonzero', 'empty', 'broadcast', 'dtype', + 'fromstring', 'fromfile', 'frombuffer', 'from_dlpack', 'where', + 'argwhere', 'copyto', 'concatenate', 'lexsort', 'astype', + 'can_cast', 'promote_types', 'min_scalar_type', + 'result_type', 'isfortran', 'empty_like', 'zeros_like', 'ones_like', + 'correlate', 'convolve', 'inner', 'dot', 'outer', 'vdot', 'roll', + 'rollaxis', 'moveaxis', 'cross', 'tensordot', 'little_endian', + 'fromiter', 'array_equal', 'array_equiv', 'indices', 'fromfunction', + 'isclose', 'isscalar', 'binary_repr', 'base_repr', 'ones', + 'identity', 'allclose', 'putmask', + 'flatnonzero', 'inf', 'nan', 'False_', 'True_', 'bitwise_not', + 'full', 'full_like', 'matmul', 'vecdot', 'shares_memory', + 'may_share_memory'] + + +def _zeros_like_dispatcher( + a, dtype=None, order=None, subok=None, shape=None, *, device=None +): + return (a,) + + +@array_function_dispatch(_zeros_like_dispatcher) +def zeros_like( + a, dtype=None, order='K', subok=True, shape=None, *, device=None +): + """ + Return an array of zeros with the same shape and type as a given array. + + Parameters + ---------- + a : array_like + The shape and data-type of `a` define these same attributes of + the returned array. + dtype : data-type, optional + Overrides the data type of the result. + order : {'C', 'F', 'A', or 'K'}, optional + Overrides the memory layout of the result. 'C' means C-order, + 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous, + 'C' otherwise. 'K' means match the layout of `a` as closely + as possible. + subok : bool, optional. + If True, then the newly created array will use the sub-class + type of `a`, otherwise it will be a base-class array. Defaults + to True. + shape : int or sequence of ints, optional. + Overrides the shape of the result. If order='K' and the number of + dimensions is unchanged, will try to keep order, otherwise, + order='C' is implied. + device : str, optional + The device on which to place the created array. Default: None. + For Array-API interoperability only, so must be ``"cpu"`` if passed. + + .. versionadded:: 2.0.0 + + Returns + ------- + out : ndarray + Array of zeros with the same shape and type as `a`. + + See Also + -------- + empty_like : Return an empty array with shape and type of input. + ones_like : Return an array of ones with shape and type of input. + full_like : Return a new array with shape of input filled with value. + zeros : Return a new array setting values to zero. + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(6) + >>> x = x.reshape((2, 3)) + >>> x + array([[0, 1, 2], + [3, 4, 5]]) + >>> np.zeros_like(x) + array([[0, 0, 0], + [0, 0, 0]]) + + >>> y = np.arange(3, dtype=float) + >>> y + array([0., 1., 2.]) + >>> np.zeros_like(y) + array([0., 0., 0.]) + + """ + res = empty_like( + a, dtype=dtype, order=order, subok=subok, shape=shape, device=device + ) + # needed instead of a 0 to get same result as zeros for string dtypes + z = zeros(1, dtype=res.dtype) + multiarray.copyto(res, z, casting='unsafe') + return res + + +@finalize_array_function_like +@set_module('numpy') +def ones(shape, dtype=None, order='C', *, device=None, like=None): + """ + Return a new array of given shape and type, filled with ones. + + Parameters + ---------- + shape : int or sequence of ints + Shape of the new array, e.g., ``(2, 3)`` or ``2``. + dtype : data-type, optional + The desired data-type for the array, e.g., `numpy.int8`. Default is + `numpy.float64`. + order : {'C', 'F'}, optional, default: C + Whether to store multi-dimensional data in row-major + (C-style) or column-major (Fortran-style) order in + memory. + device : str, optional + The device on which to place the created array. Default: None. + For Array-API interoperability only, so must be ``"cpu"`` if passed. + + .. versionadded:: 2.0.0 + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray + Array of ones with the given shape, dtype, and order. + + See Also + -------- + ones_like : Return an array of ones with shape and type of input. + empty : Return a new uninitialized array. + zeros : Return a new array setting values to zero. + full : Return a new array of given shape filled with value. + + Examples + -------- + >>> import numpy as np + >>> np.ones(5) + array([1., 1., 1., 1., 1.]) + + >>> np.ones((5,), dtype=int) + array([1, 1, 1, 1, 1]) + + >>> np.ones((2, 1)) + array([[1.], + [1.]]) + + >>> s = (2,2) + >>> np.ones(s) + array([[1., 1.], + [1., 1.]]) + + """ + if like is not None: + return _ones_with_like( + like, shape, dtype=dtype, order=order, device=device + ) + + a = empty(shape, dtype, order, device=device) + multiarray.copyto(a, 1, casting='unsafe') + return a + + +_ones_with_like = array_function_dispatch()(ones) + + +def _ones_like_dispatcher( + a, dtype=None, order=None, subok=None, shape=None, *, device=None +): + return (a,) + + +@array_function_dispatch(_ones_like_dispatcher) +def ones_like( + a, dtype=None, order='K', subok=True, shape=None, *, device=None +): + """ + Return an array of ones with the same shape and type as a given array. + + Parameters + ---------- + a : array_like + The shape and data-type of `a` define these same attributes of + the returned array. + dtype : data-type, optional + Overrides the data type of the result. + order : {'C', 'F', 'A', or 'K'}, optional + Overrides the memory layout of the result. 'C' means C-order, + 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous, + 'C' otherwise. 'K' means match the layout of `a` as closely + as possible. + subok : bool, optional. + If True, then the newly created array will use the sub-class + type of `a`, otherwise it will be a base-class array. Defaults + to True. + shape : int or sequence of ints, optional. + Overrides the shape of the result. If order='K' and the number of + dimensions is unchanged, will try to keep order, otherwise, + order='C' is implied. + device : str, optional + The device on which to place the created array. Default: None. + For Array-API interoperability only, so must be ``"cpu"`` if passed. + + .. versionadded:: 2.0.0 + + Returns + ------- + out : ndarray + Array of ones with the same shape and type as `a`. + + See Also + -------- + empty_like : Return an empty array with shape and type of input. + zeros_like : Return an array of zeros with shape and type of input. + full_like : Return a new array with shape of input filled with value. + ones : Return a new array setting values to one. + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(6) + >>> x = x.reshape((2, 3)) + >>> x + array([[0, 1, 2], + [3, 4, 5]]) + >>> np.ones_like(x) + array([[1, 1, 1], + [1, 1, 1]]) + + >>> y = np.arange(3, dtype=float) + >>> y + array([0., 1., 2.]) + >>> np.ones_like(y) + array([1., 1., 1.]) + + """ + res = empty_like( + a, dtype=dtype, order=order, subok=subok, shape=shape, device=device + ) + multiarray.copyto(res, 1, casting='unsafe') + return res + + +def _full_dispatcher( + shape, fill_value, dtype=None, order=None, *, device=None, like=None +): + return (like,) + + +@finalize_array_function_like +@set_module('numpy') +def full(shape, fill_value, dtype=None, order='C', *, device=None, like=None): + """ + Return a new array of given shape and type, filled with `fill_value`. + + Parameters + ---------- + shape : int or sequence of ints + Shape of the new array, e.g., ``(2, 3)`` or ``2``. + fill_value : scalar or array_like + Fill value. + dtype : data-type, optional + The desired data-type for the array The default, None, means + ``np.array(fill_value).dtype``. + order : {'C', 'F'}, optional + Whether to store multidimensional data in C- or Fortran-contiguous + (row- or column-wise) order in memory. + device : str, optional + The device on which to place the created array. Default: None. + For Array-API interoperability only, so must be ``"cpu"`` if passed. + + .. versionadded:: 2.0.0 + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray + Array of `fill_value` with the given shape, dtype, and order. + + See Also + -------- + full_like : Return a new array with shape of input filled with value. + empty : Return a new uninitialized array. + ones : Return a new array setting values to one. + zeros : Return a new array setting values to zero. + + Examples + -------- + >>> import numpy as np + >>> np.full((2, 2), np.inf) + array([[inf, inf], + [inf, inf]]) + >>> np.full((2, 2), 10) + array([[10, 10], + [10, 10]]) + + >>> np.full((2, 2), [1, 2]) + array([[1, 2], + [1, 2]]) + + """ + if like is not None: + return _full_with_like( + like, shape, fill_value, dtype=dtype, order=order, device=device + ) + + if dtype is None: + fill_value = asarray(fill_value) + dtype = fill_value.dtype + a = empty(shape, dtype, order, device=device) + multiarray.copyto(a, fill_value, casting='unsafe') + return a + + +_full_with_like = array_function_dispatch()(full) + + +def _full_like_dispatcher( + a, fill_value, dtype=None, order=None, subok=None, shape=None, + *, device=None +): + return (a,) + + +@array_function_dispatch(_full_like_dispatcher) +def full_like( + a, fill_value, dtype=None, order='K', subok=True, shape=None, + *, device=None +): + """ + Return a full array with the same shape and type as a given array. + + Parameters + ---------- + a : array_like + The shape and data-type of `a` define these same attributes of + the returned array. + fill_value : array_like + Fill value. + dtype : data-type, optional + Overrides the data type of the result. + order : {'C', 'F', 'A', or 'K'}, optional + Overrides the memory layout of the result. 'C' means C-order, + 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous, + 'C' otherwise. 'K' means match the layout of `a` as closely + as possible. + subok : bool, optional. + If True, then the newly created array will use the sub-class + type of `a`, otherwise it will be a base-class array. Defaults + to True. + shape : int or sequence of ints, optional. + Overrides the shape of the result. If order='K' and the number of + dimensions is unchanged, will try to keep order, otherwise, + order='C' is implied. + device : str, optional + The device on which to place the created array. Default: None. + For Array-API interoperability only, so must be ``"cpu"`` if passed. + + .. versionadded:: 2.0.0 + + Returns + ------- + out : ndarray + Array of `fill_value` with the same shape and type as `a`. + + See Also + -------- + empty_like : Return an empty array with shape and type of input. + ones_like : Return an array of ones with shape and type of input. + zeros_like : Return an array of zeros with shape and type of input. + full : Return a new array of given shape filled with value. + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(6, dtype=int) + >>> np.full_like(x, 1) + array([1, 1, 1, 1, 1, 1]) + >>> np.full_like(x, 0.1) + array([0, 0, 0, 0, 0, 0]) + >>> np.full_like(x, 0.1, dtype=np.double) + array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1]) + >>> np.full_like(x, np.nan, dtype=np.double) + array([nan, nan, nan, nan, nan, nan]) + + >>> y = np.arange(6, dtype=np.double) + >>> np.full_like(y, 0.1) + array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1]) + + >>> y = np.zeros([2, 2, 3], dtype=int) + >>> np.full_like(y, [0, 0, 255]) + array([[[ 0, 0, 255], + [ 0, 0, 255]], + [[ 0, 0, 255], + [ 0, 0, 255]]]) + """ + res = empty_like( + a, dtype=dtype, order=order, subok=subok, shape=shape, device=device + ) + multiarray.copyto(res, fill_value, casting='unsafe') + return res + + +def _count_nonzero_dispatcher(a, axis=None, *, keepdims=None): + return (a,) + + +@array_function_dispatch(_count_nonzero_dispatcher) +def count_nonzero(a, axis=None, *, keepdims=False): + """ + Counts the number of non-zero values in the array ``a``. + + The word "non-zero" is in reference to the Python 2.x + built-in method ``__nonzero__()`` (renamed ``__bool__()`` + in Python 3.x) of Python objects that tests an object's + "truthfulness". For example, any number is considered + truthful if it is nonzero, whereas any string is considered + truthful if it is not the empty string. Thus, this function + (recursively) counts how many elements in ``a`` (and in + sub-arrays thereof) have their ``__nonzero__()`` or ``__bool__()`` + method evaluated to ``True``. + + Parameters + ---------- + a : array_like + The array for which to count non-zeros. + axis : int or tuple, optional + Axis or tuple of axes along which to count non-zeros. + Default is None, meaning that non-zeros will be counted + along a flattened version of ``a``. + keepdims : bool, optional + If this is set to True, the axes that are counted are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the input array. + + Returns + ------- + count : int or array of int + Number of non-zero values in the array along a given axis. + Otherwise, the total number of non-zero values in the array + is returned. + + See Also + -------- + nonzero : Return the coordinates of all the non-zero values. + + Examples + -------- + >>> import numpy as np + >>> np.count_nonzero(np.eye(4)) + 4 + >>> a = np.array([[0, 1, 7, 0], + ... [3, 0, 2, 19]]) + >>> np.count_nonzero(a) + 5 + >>> np.count_nonzero(a, axis=0) + array([1, 1, 2, 1]) + >>> np.count_nonzero(a, axis=1) + array([2, 3]) + >>> np.count_nonzero(a, axis=1, keepdims=True) + array([[2], + [3]]) + """ + if axis is None and not keepdims: + return multiarray.count_nonzero(a) + + a = asanyarray(a) + + # TODO: this works around .astype(bool) not working properly (gh-9847) + if np.issubdtype(a.dtype, np.character): + a_bool = a != a.dtype.type() + else: + a_bool = a.astype(np.bool, copy=False) + + return a_bool.sum(axis=axis, dtype=np.intp, keepdims=keepdims) + + +@set_module('numpy') +def isfortran(a): + """ + Check if the array is Fortran contiguous but *not* C contiguous. + + This function is obsolete. If you only want to check if an array is Fortran + contiguous use ``a.flags.f_contiguous`` instead. + + Parameters + ---------- + a : ndarray + Input array. + + Returns + ------- + isfortran : bool + Returns True if the array is Fortran contiguous but *not* C contiguous. + + + Examples + -------- + + np.array allows to specify whether the array is written in C-contiguous + order (last index varies the fastest), or FORTRAN-contiguous order in + memory (first index varies the fastest). + + >>> import numpy as np + >>> a = np.array([[1, 2, 3], [4, 5, 6]], order='C') + >>> a + array([[1, 2, 3], + [4, 5, 6]]) + >>> np.isfortran(a) + False + + >>> b = np.array([[1, 2, 3], [4, 5, 6]], order='F') + >>> b + array([[1, 2, 3], + [4, 5, 6]]) + >>> np.isfortran(b) + True + + + The transpose of a C-ordered array is a FORTRAN-ordered array. + + >>> a = np.array([[1, 2, 3], [4, 5, 6]], order='C') + >>> a + array([[1, 2, 3], + [4, 5, 6]]) + >>> np.isfortran(a) + False + >>> b = a.T + >>> b + array([[1, 4], + [2, 5], + [3, 6]]) + >>> np.isfortran(b) + True + + C-ordered arrays evaluate as False even if they are also FORTRAN-ordered. + + >>> np.isfortran(np.array([1, 2], order='F')) + False + + """ + return a.flags.fnc + + +def _argwhere_dispatcher(a): + return (a,) + + +@array_function_dispatch(_argwhere_dispatcher) +def argwhere(a): + """ + Find the indices of array elements that are non-zero, grouped by element. + + Parameters + ---------- + a : array_like + Input data. + + Returns + ------- + index_array : (N, a.ndim) ndarray + Indices of elements that are non-zero. Indices are grouped by element. + This array will have shape ``(N, a.ndim)`` where ``N`` is the number of + non-zero items. + + See Also + -------- + where, nonzero + + Notes + ----- + ``np.argwhere(a)`` is almost the same as ``np.transpose(np.nonzero(a))``, + but produces a result of the correct shape for a 0D array. + + The output of ``argwhere`` is not suitable for indexing arrays. + For this purpose use ``nonzero(a)`` instead. + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(6).reshape(2,3) + >>> x + array([[0, 1, 2], + [3, 4, 5]]) + >>> np.argwhere(x>1) + array([[0, 2], + [1, 0], + [1, 1], + [1, 2]]) + + """ + # nonzero does not behave well on 0d, so promote to 1d + if np.ndim(a) == 0: + a = shape_base.atleast_1d(a) + # then remove the added dimension + return argwhere(a)[:, :0] + return transpose(nonzero(a)) + + +def _flatnonzero_dispatcher(a): + return (a,) + + +@array_function_dispatch(_flatnonzero_dispatcher) +def flatnonzero(a): + """ + Return indices that are non-zero in the flattened version of a. + + This is equivalent to ``np.nonzero(np.ravel(a))[0]``. + + Parameters + ---------- + a : array_like + Input data. + + Returns + ------- + res : ndarray + Output array, containing the indices of the elements of ``a.ravel()`` + that are non-zero. + + See Also + -------- + nonzero : Return the indices of the non-zero elements of the input array. + ravel : Return a 1-D array containing the elements of the input array. + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(-2, 3) + >>> x + array([-2, -1, 0, 1, 2]) + >>> np.flatnonzero(x) + array([0, 1, 3, 4]) + + Use the indices of the non-zero elements as an index array to extract + these elements: + + >>> x.ravel()[np.flatnonzero(x)] + array([-2, -1, 1, 2]) + + """ + return np.nonzero(np.ravel(a))[0] + + +def _correlate_dispatcher(a, v, mode=None): + return (a, v) + + +@array_function_dispatch(_correlate_dispatcher) +def correlate(a, v, mode='valid'): + r""" + Cross-correlation of two 1-dimensional sequences. + + This function computes the correlation as generally defined in signal + processing texts [1]_: + + .. math:: c_k = \sum_n a_{n+k} \cdot \overline{v}_n + + with a and v sequences being zero-padded where necessary and + :math:`\overline v` denoting complex conjugation. + + Parameters + ---------- + a, v : array_like + Input sequences. + mode : {'valid', 'same', 'full'}, optional + Refer to the `convolve` docstring. Note that the default + is 'valid', unlike `convolve`, which uses 'full'. + + Returns + ------- + out : ndarray + Discrete cross-correlation of `a` and `v`. + + See Also + -------- + convolve : Discrete, linear convolution of two one-dimensional sequences. + scipy.signal.correlate : uses FFT which has superior performance + on large arrays. + + Notes + ----- + The definition of correlation above is not unique and sometimes + correlation may be defined differently. Another common definition is [1]_: + + .. math:: c'_k = \sum_n a_{n} \cdot \overline{v_{n+k}} + + which is related to :math:`c_k` by :math:`c'_k = c_{-k}`. + + `numpy.correlate` may perform slowly in large arrays (i.e. n = 1e5) + because it does not use the FFT to compute the convolution; in that case, + `scipy.signal.correlate` might be preferable. + + References + ---------- + .. [1] Wikipedia, "Cross-correlation", + https://en.wikipedia.org/wiki/Cross-correlation + + Examples + -------- + >>> import numpy as np + >>> np.correlate([1, 2, 3], [0, 1, 0.5]) + array([3.5]) + >>> np.correlate([1, 2, 3], [0, 1, 0.5], "same") + array([2. , 3.5, 3. ]) + >>> np.correlate([1, 2, 3], [0, 1, 0.5], "full") + array([0.5, 2. , 3.5, 3. , 0. ]) + + Using complex sequences: + + >>> np.correlate([1+1j, 2, 3-1j], [0, 1, 0.5j], 'full') + array([ 0.5-0.5j, 1.0+0.j , 1.5-1.5j, 3.0-1.j , 0.0+0.j ]) + + Note that you get the time reversed, complex conjugated result + (:math:`\overline{c_{-k}}`) when the two input sequences a and v change + places: + + >>> np.correlate([0, 1, 0.5j], [1+1j, 2, 3-1j], 'full') + array([ 0.0+0.j , 3.0+1.j , 1.5+1.5j, 1.0+0.j , 0.5+0.5j]) + + """ + return multiarray.correlate2(a, v, mode) + + +def _convolve_dispatcher(a, v, mode=None): + return (a, v) + + +@array_function_dispatch(_convolve_dispatcher) +def convolve(a, v, mode='full'): + """ + Returns the discrete, linear convolution of two one-dimensional sequences. + + The convolution operator is often seen in signal processing, where it + models the effect of a linear time-invariant system on a signal [1]_. In + probability theory, the sum of two independent random variables is + distributed according to the convolution of their individual + distributions. + + If `v` is longer than `a`, the arrays are swapped before computation. + + Parameters + ---------- + a : (N,) array_like + First one-dimensional input array. + v : (M,) array_like + Second one-dimensional input array. + mode : {'full', 'valid', 'same'}, optional + 'full': + By default, mode is 'full'. This returns the convolution + at each point of overlap, with an output shape of (N+M-1,). At + the end-points of the convolution, the signals do not overlap + completely, and boundary effects may be seen. + + 'same': + Mode 'same' returns output of length ``max(M, N)``. Boundary + effects are still visible. + + 'valid': + Mode 'valid' returns output of length + ``max(M, N) - min(M, N) + 1``. The convolution product is only given + for points where the signals overlap completely. Values outside + the signal boundary have no effect. + + Returns + ------- + out : ndarray + Discrete, linear convolution of `a` and `v`. + + See Also + -------- + scipy.signal.fftconvolve : Convolve two arrays using the Fast Fourier + Transform. + scipy.linalg.toeplitz : Used to construct the convolution operator. + polymul : Polynomial multiplication. Same output as convolve, but also + accepts poly1d objects as input. + + Notes + ----- + The discrete convolution operation is defined as + + .. math:: (a * v)_n = \\sum_{m = -\\infty}^{\\infty} a_m v_{n - m} + + It can be shown that a convolution :math:`x(t) * y(t)` in time/space + is equivalent to the multiplication :math:`X(f) Y(f)` in the Fourier + domain, after appropriate padding (padding is necessary to prevent + circular convolution). Since multiplication is more efficient (faster) + than convolution, the function `scipy.signal.fftconvolve` exploits the + FFT to calculate the convolution of large data-sets. + + References + ---------- + .. [1] Wikipedia, "Convolution", + https://en.wikipedia.org/wiki/Convolution + + Examples + -------- + Note how the convolution operator flips the second array + before "sliding" the two across one another: + + >>> import numpy as np + >>> np.convolve([1, 2, 3], [0, 1, 0.5]) + array([0. , 1. , 2.5, 4. , 1.5]) + + Only return the middle values of the convolution. + Contains boundary effects, where zeros are taken + into account: + + >>> np.convolve([1,2,3],[0,1,0.5], 'same') + array([1. , 2.5, 4. ]) + + The two arrays are of the same length, so there + is only one position where they completely overlap: + + >>> np.convolve([1,2,3],[0,1,0.5], 'valid') + array([2.5]) + + """ + a, v = array(a, copy=None, ndmin=1), array(v, copy=None, ndmin=1) + if (len(v) > len(a)): + a, v = v, a + if len(a) == 0: + raise ValueError('a cannot be empty') + if len(v) == 0: + raise ValueError('v cannot be empty') + return multiarray.correlate(a, v[::-1], mode) + + +def _outer_dispatcher(a, b, out=None): + return (a, b, out) + + +@array_function_dispatch(_outer_dispatcher) +def outer(a, b, out=None): + """ + Compute the outer product of two vectors. + + Given two vectors `a` and `b` of length ``M`` and ``N``, respectively, + the outer product [1]_ is:: + + [[a_0*b_0 a_0*b_1 ... a_0*b_{N-1} ] + [a_1*b_0 . + [ ... . + [a_{M-1}*b_0 a_{M-1}*b_{N-1} ]] + + Parameters + ---------- + a : (M,) array_like + First input vector. Input is flattened if + not already 1-dimensional. + b : (N,) array_like + Second input vector. Input is flattened if + not already 1-dimensional. + out : (M, N) ndarray, optional + A location where the result is stored + + Returns + ------- + out : (M, N) ndarray + ``out[i, j] = a[i] * b[j]`` + + See also + -------- + inner + einsum : ``einsum('i,j->ij', a.ravel(), b.ravel())`` is the equivalent. + ufunc.outer : A generalization to dimensions other than 1D and other + operations. ``np.multiply.outer(a.ravel(), b.ravel())`` + is the equivalent. + linalg.outer : An Array API compatible variation of ``np.outer``, + which accepts 1-dimensional inputs only. + tensordot : ``np.tensordot(a.ravel(), b.ravel(), axes=((), ()))`` + is the equivalent. + + References + ---------- + .. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*, 3rd + ed., Baltimore, MD, Johns Hopkins University Press, 1996, + pg. 8. + + Examples + -------- + Make a (*very* coarse) grid for computing a Mandelbrot set: + + >>> import numpy as np + >>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5)) + >>> rl + array([[-2., -1., 0., 1., 2.], + [-2., -1., 0., 1., 2.], + [-2., -1., 0., 1., 2.], + [-2., -1., 0., 1., 2.], + [-2., -1., 0., 1., 2.]]) + >>> im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,))) + >>> im + array([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j], + [0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j], + [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], + [0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j], + [0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]]) + >>> grid = rl + im + >>> grid + array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j], + [-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j], + [-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j], + [-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j], + [-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]]) + + An example using a "vector" of letters: + + >>> x = np.array(['a', 'b', 'c'], dtype=object) + >>> np.outer(x, [1, 2, 3]) + array([['a', 'aa', 'aaa'], + ['b', 'bb', 'bbb'], + ['c', 'cc', 'ccc']], dtype=object) + + """ + a = asarray(a) + b = asarray(b) + return multiply(a.ravel()[:, newaxis], b.ravel()[newaxis, :], out) + + +def _tensordot_dispatcher(a, b, axes=None): + return (a, b) + + +@array_function_dispatch(_tensordot_dispatcher) +def tensordot(a, b, axes=2): + """ + Compute tensor dot product along specified axes. + + Given two tensors, `a` and `b`, and an array_like object containing + two array_like objects, ``(a_axes, b_axes)``, sum the products of + `a`'s and `b`'s elements (components) over the axes specified by + ``a_axes`` and ``b_axes``. The third argument can be a single non-negative + integer_like scalar, ``N``; if it is such, then the last ``N`` dimensions + of `a` and the first ``N`` dimensions of `b` are summed over. + + Parameters + ---------- + a, b : array_like + Tensors to "dot". + + axes : int or (2,) array_like + * integer_like + If an int N, sum over the last N axes of `a` and the first N axes + of `b` in order. The sizes of the corresponding axes must match. + * (2,) array_like + Or, a list of axes to be summed over, first sequence applying to `a`, + second to `b`. Both elements array_like must be of the same length. + + Returns + ------- + output : ndarray + The tensor dot product of the input. + + See Also + -------- + dot, einsum + + Notes + ----- + Three common use cases are: + * ``axes = 0`` : tensor product :math:`a\\otimes b` + * ``axes = 1`` : tensor dot product :math:`a\\cdot b` + * ``axes = 2`` : (default) tensor double contraction :math:`a:b` + + When `axes` is integer_like, the sequence of axes for evaluation + will be: from the -Nth axis to the -1th axis in `a`, + and from the 0th axis to (N-1)th axis in `b`. + For example, ``axes = 2`` is the equal to + ``axes = [[-2, -1], [0, 1]]``. + When N-1 is smaller than 0, or when -N is larger than -1, + the element of `a` and `b` are defined as the `axes`. + + When there is more than one axis to sum over - and they are not the last + (first) axes of `a` (`b`) - the argument `axes` should consist of + two sequences of the same length, with the first axis to sum over given + first in both sequences, the second axis second, and so forth. + The calculation can be referred to ``numpy.einsum``. + + The shape of the result consists of the non-contracted axes of the + first tensor, followed by the non-contracted axes of the second. + + Examples + -------- + An example on integer_like: + + >>> a_0 = np.array([[1, 2], [3, 4]]) + >>> b_0 = np.array([[5, 6], [7, 8]]) + >>> c_0 = np.tensordot(a_0, b_0, axes=0) + >>> c_0.shape + (2, 2, 2, 2) + >>> c_0 + array([[[[ 5, 6], + [ 7, 8]], + [[10, 12], + [14, 16]]], + [[[15, 18], + [21, 24]], + [[20, 24], + [28, 32]]]]) + + An example on array_like: + + >>> a = np.arange(60.).reshape(3,4,5) + >>> b = np.arange(24.).reshape(4,3,2) + >>> c = np.tensordot(a,b, axes=([1,0],[0,1])) + >>> c.shape + (5, 2) + >>> c + array([[4400., 4730.], + [4532., 4874.], + [4664., 5018.], + [4796., 5162.], + [4928., 5306.]]) + + A slower but equivalent way of computing the same... + + >>> d = np.zeros((5,2)) + >>> for i in range(5): + ... for j in range(2): + ... for k in range(3): + ... for n in range(4): + ... d[i,j] += a[k,n,i] * b[n,k,j] + >>> c == d + array([[ True, True], + [ True, True], + [ True, True], + [ True, True], + [ True, True]]) + + An extended example taking advantage of the overloading of + and \\*: + + >>> a = np.array(range(1, 9)) + >>> a.shape = (2, 2, 2) + >>> A = np.array(('a', 'b', 'c', 'd'), dtype=object) + >>> A.shape = (2, 2) + >>> a; A + array([[[1, 2], + [3, 4]], + [[5, 6], + [7, 8]]]) + array([['a', 'b'], + ['c', 'd']], dtype=object) + + >>> np.tensordot(a, A) # third argument default is 2 for double-contraction + array(['abbcccdddd', 'aaaaabbbbbbcccccccdddddddd'], dtype=object) + + >>> np.tensordot(a, A, 1) + array([[['acc', 'bdd'], + ['aaacccc', 'bbbdddd']], + [['aaaaacccccc', 'bbbbbdddddd'], + ['aaaaaaacccccccc', 'bbbbbbbdddddddd']]], dtype=object) + + >>> np.tensordot(a, A, 0) # tensor product (result too long to incl.) + array([[[[['a', 'b'], + ['c', 'd']], + ... + + >>> np.tensordot(a, A, (0, 1)) + array([[['abbbbb', 'cddddd'], + ['aabbbbbb', 'ccdddddd']], + [['aaabbbbbbb', 'cccddddddd'], + ['aaaabbbbbbbb', 'ccccdddddddd']]], dtype=object) + + >>> np.tensordot(a, A, (2, 1)) + array([[['abb', 'cdd'], + ['aaabbbb', 'cccdddd']], + [['aaaaabbbbbb', 'cccccdddddd'], + ['aaaaaaabbbbbbbb', 'cccccccdddddddd']]], dtype=object) + + >>> np.tensordot(a, A, ((0, 1), (0, 1))) + array(['abbbcccccddddddd', 'aabbbbccccccdddddddd'], dtype=object) + + >>> np.tensordot(a, A, ((2, 1), (1, 0))) + array(['acccbbdddd', 'aaaaacccccccbbbbbbdddddddd'], dtype=object) + + """ + try: + iter(axes) + except Exception: + axes_a = list(range(-axes, 0)) + axes_b = list(range(axes)) + else: + axes_a, axes_b = axes + try: + na = len(axes_a) + axes_a = list(axes_a) + except TypeError: + axes_a = [axes_a] + na = 1 + try: + nb = len(axes_b) + axes_b = list(axes_b) + except TypeError: + axes_b = [axes_b] + nb = 1 + + a, b = asarray(a), asarray(b) + as_ = a.shape + nda = a.ndim + bs = b.shape + ndb = b.ndim + equal = True + if na != nb: + equal = False + else: + for k in range(na): + if as_[axes_a[k]] != bs[axes_b[k]]: + equal = False + break + if axes_a[k] < 0: + axes_a[k] += nda + if axes_b[k] < 0: + axes_b[k] += ndb + if not equal: + raise ValueError("shape-mismatch for sum") + + # Move the axes to sum over to the end of "a" + # and to the front of "b" + notin = [k for k in range(nda) if k not in axes_a] + newaxes_a = notin + axes_a + N2 = math.prod(as_[axis] for axis in axes_a) + newshape_a = (math.prod(as_[ax] for ax in notin), N2) + olda = [as_[axis] for axis in notin] + + notin = [k for k in range(ndb) if k not in axes_b] + newaxes_b = axes_b + notin + N2 = math.prod(bs[axis] for axis in axes_b) + newshape_b = (N2, math.prod(bs[ax] for ax in notin)) + oldb = [bs[axis] for axis in notin] + + at = a.transpose(newaxes_a).reshape(newshape_a) + bt = b.transpose(newaxes_b).reshape(newshape_b) + res = dot(at, bt) + return res.reshape(olda + oldb) + + +def _roll_dispatcher(a, shift, axis=None): + return (a,) + + +@array_function_dispatch(_roll_dispatcher) +def roll(a, shift, axis=None): + """ + Roll array elements along a given axis. + + Elements that roll beyond the last position are re-introduced at + the first. + + Parameters + ---------- + a : array_like + Input array. + shift : int or tuple of ints + The number of places by which elements are shifted. If a tuple, + then `axis` must be a tuple of the same size, and each of the + given axes is shifted by the corresponding number. If an int + while `axis` is a tuple of ints, then the same value is used for + all given axes. + axis : int or tuple of ints, optional + Axis or axes along which elements are shifted. By default, the + array is flattened before shifting, after which the original + shape is restored. + + Returns + ------- + res : ndarray + Output array, with the same shape as `a`. + + See Also + -------- + rollaxis : Roll the specified axis backwards, until it lies in a + given position. + + Notes + ----- + Supports rolling over multiple dimensions simultaneously. + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(10) + >>> np.roll(x, 2) + array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7]) + >>> np.roll(x, -2) + array([2, 3, 4, 5, 6, 7, 8, 9, 0, 1]) + + >>> x2 = np.reshape(x, (2, 5)) + >>> x2 + array([[0, 1, 2, 3, 4], + [5, 6, 7, 8, 9]]) + >>> np.roll(x2, 1) + array([[9, 0, 1, 2, 3], + [4, 5, 6, 7, 8]]) + >>> np.roll(x2, -1) + array([[1, 2, 3, 4, 5], + [6, 7, 8, 9, 0]]) + >>> np.roll(x2, 1, axis=0) + array([[5, 6, 7, 8, 9], + [0, 1, 2, 3, 4]]) + >>> np.roll(x2, -1, axis=0) + array([[5, 6, 7, 8, 9], + [0, 1, 2, 3, 4]]) + >>> np.roll(x2, 1, axis=1) + array([[4, 0, 1, 2, 3], + [9, 5, 6, 7, 8]]) + >>> np.roll(x2, -1, axis=1) + array([[1, 2, 3, 4, 0], + [6, 7, 8, 9, 5]]) + >>> np.roll(x2, (1, 1), axis=(1, 0)) + array([[9, 5, 6, 7, 8], + [4, 0, 1, 2, 3]]) + >>> np.roll(x2, (2, 1), axis=(1, 0)) + array([[8, 9, 5, 6, 7], + [3, 4, 0, 1, 2]]) + + """ + a = asanyarray(a) + if axis is None: + return roll(a.ravel(), shift, 0).reshape(a.shape) + + else: + axis = normalize_axis_tuple(axis, a.ndim, allow_duplicate=True) + broadcasted = broadcast(shift, axis) + if broadcasted.ndim > 1: + raise ValueError( + "'shift' and 'axis' should be scalars or 1D sequences") + shifts = dict.fromkeys(range(a.ndim), 0) + for sh, ax in broadcasted: + shifts[ax] += int(sh) + + rolls = [((slice(None), slice(None)),)] * a.ndim + for ax, offset in shifts.items(): + offset %= a.shape[ax] or 1 # If `a` is empty, nothing matters. + if offset: + # (original, result), (original, result) + rolls[ax] = ((slice(None, -offset), slice(offset, None)), + (slice(-offset, None), slice(None, offset))) + + result = empty_like(a) + for indices in itertools.product(*rolls): + arr_index, res_index = zip(*indices) + result[res_index] = a[arr_index] + + return result + + +def _rollaxis_dispatcher(a, axis, start=None): + return (a,) + + +@array_function_dispatch(_rollaxis_dispatcher) +def rollaxis(a, axis, start=0): + """ + Roll the specified axis backwards, until it lies in a given position. + + This function continues to be supported for backward compatibility, but you + should prefer `moveaxis`. The `moveaxis` function was added in NumPy + 1.11. + + Parameters + ---------- + a : ndarray + Input array. + axis : int + The axis to be rolled. The positions of the other axes do not + change relative to one another. + start : int, optional + When ``start <= axis``, the axis is rolled back until it lies in + this position. When ``start > axis``, the axis is rolled until it + lies before this position. The default, 0, results in a "complete" + roll. The following table describes how negative values of ``start`` + are interpreted: + + .. table:: + :align: left + + +-------------------+----------------------+ + | ``start`` | Normalized ``start`` | + +===================+======================+ + | ``-(arr.ndim+1)`` | raise ``AxisError`` | + +-------------------+----------------------+ + | ``-arr.ndim`` | 0 | + +-------------------+----------------------+ + | |vdots| | |vdots| | + +-------------------+----------------------+ + | ``-1`` | ``arr.ndim-1`` | + +-------------------+----------------------+ + | ``0`` | ``0`` | + +-------------------+----------------------+ + | |vdots| | |vdots| | + +-------------------+----------------------+ + | ``arr.ndim`` | ``arr.ndim`` | + +-------------------+----------------------+ + | ``arr.ndim + 1`` | raise ``AxisError`` | + +-------------------+----------------------+ + + .. |vdots| unicode:: U+22EE .. Vertical Ellipsis + + Returns + ------- + res : ndarray + For NumPy >= 1.10.0 a view of `a` is always returned. For earlier + NumPy versions a view of `a` is returned only if the order of the + axes is changed, otherwise the input array is returned. + + See Also + -------- + moveaxis : Move array axes to new positions. + roll : Roll the elements of an array by a number of positions along a + given axis. + + Examples + -------- + >>> import numpy as np + >>> a = np.ones((3,4,5,6)) + >>> np.rollaxis(a, 3, 1).shape + (3, 6, 4, 5) + >>> np.rollaxis(a, 2).shape + (5, 3, 4, 6) + >>> np.rollaxis(a, 1, 4).shape + (3, 5, 6, 4) + + """ + n = a.ndim + axis = normalize_axis_index(axis, n) + if start < 0: + start += n + msg = "'%s' arg requires %d <= %s < %d, but %d was passed in" + if not (0 <= start < n + 1): + raise AxisError(msg % ('start', -n, 'start', n + 1, start)) + if axis < start: + # it's been removed + start -= 1 + if axis == start: + return a[...] + axes = list(range(n)) + axes.remove(axis) + axes.insert(start, axis) + return a.transpose(axes) + + +@set_module("numpy.lib.array_utils") +def normalize_axis_tuple(axis, ndim, argname=None, allow_duplicate=False): + """ + Normalizes an axis argument into a tuple of non-negative integer axes. + + This handles shorthands such as ``1`` and converts them to ``(1,)``, + as well as performing the handling of negative indices covered by + `normalize_axis_index`. + + By default, this forbids axes from being specified multiple times. + + Used internally by multi-axis-checking logic. + + Parameters + ---------- + axis : int, iterable of int + The un-normalized index or indices of the axis. + ndim : int + The number of dimensions of the array that `axis` should be normalized + against. + argname : str, optional + A prefix to put before the error message, typically the name of the + argument. + allow_duplicate : bool, optional + If False, the default, disallow an axis from being specified twice. + + Returns + ------- + normalized_axes : tuple of int + The normalized axis index, such that `0 <= normalized_axis < ndim` + + Raises + ------ + AxisError + If any axis provided is out of range + ValueError + If an axis is repeated + + See also + -------- + normalize_axis_index : normalizing a single scalar axis + """ + # Optimization to speed-up the most common cases. + if not isinstance(axis, (tuple, list)): + try: + axis = [operator.index(axis)] + except TypeError: + pass + # Going via an iterator directly is slower than via list comprehension. + axis = tuple(normalize_axis_index(ax, ndim, argname) for ax in axis) + if not allow_duplicate and len(set(axis)) != len(axis): + if argname: + raise ValueError(f'repeated axis in `{argname}` argument') + else: + raise ValueError('repeated axis') + return axis + + +def _moveaxis_dispatcher(a, source, destination): + return (a,) + + +@array_function_dispatch(_moveaxis_dispatcher) +def moveaxis(a, source, destination): + """ + Move axes of an array to new positions. + + Other axes remain in their original order. + + Parameters + ---------- + a : np.ndarray + The array whose axes should be reordered. + source : int or sequence of int + Original positions of the axes to move. These must be unique. + destination : int or sequence of int + Destination positions for each of the original axes. These must also be + unique. + + Returns + ------- + result : np.ndarray + Array with moved axes. This array is a view of the input array. + + See Also + -------- + transpose : Permute the dimensions of an array. + swapaxes : Interchange two axes of an array. + + Examples + -------- + >>> import numpy as np + >>> x = np.zeros((3, 4, 5)) + >>> np.moveaxis(x, 0, -1).shape + (4, 5, 3) + >>> np.moveaxis(x, -1, 0).shape + (5, 3, 4) + + These all achieve the same result: + + >>> np.transpose(x).shape + (5, 4, 3) + >>> np.swapaxes(x, 0, -1).shape + (5, 4, 3) + >>> np.moveaxis(x, [0, 1], [-1, -2]).shape + (5, 4, 3) + >>> np.moveaxis(x, [0, 1, 2], [-1, -2, -3]).shape + (5, 4, 3) + + """ + try: + # allow duck-array types if they define transpose + transpose = a.transpose + except AttributeError: + a = asarray(a) + transpose = a.transpose + + source = normalize_axis_tuple(source, a.ndim, 'source') + destination = normalize_axis_tuple(destination, a.ndim, 'destination') + if len(source) != len(destination): + raise ValueError('`source` and `destination` arguments must have ' + 'the same number of elements') + + order = [n for n in range(a.ndim) if n not in source] + + for dest, src in sorted(zip(destination, source)): + order.insert(dest, src) + + result = transpose(order) + return result + + +def _cross_dispatcher(a, b, axisa=None, axisb=None, axisc=None, axis=None): + return (a, b) + + +@array_function_dispatch(_cross_dispatcher) +def cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None): + """ + Return the cross product of two (arrays of) vectors. + + The cross product of `a` and `b` in :math:`R^3` is a vector perpendicular + to both `a` and `b`. If `a` and `b` are arrays of vectors, the vectors + are defined by the last axis of `a` and `b` by default, and these axes + can have dimensions 2 or 3. Where the dimension of either `a` or `b` is + 2, the third component of the input vector is assumed to be zero and the + cross product calculated accordingly. In cases where both input vectors + have dimension 2, the z-component of the cross product is returned. + + Parameters + ---------- + a : array_like + Components of the first vector(s). + b : array_like + Components of the second vector(s). + axisa : int, optional + Axis of `a` that defines the vector(s). By default, the last axis. + axisb : int, optional + Axis of `b` that defines the vector(s). By default, the last axis. + axisc : int, optional + Axis of `c` containing the cross product vector(s). Ignored if + both input vectors have dimension 2, as the return is scalar. + By default, the last axis. + axis : int, optional + If defined, the axis of `a`, `b` and `c` that defines the vector(s) + and cross product(s). Overrides `axisa`, `axisb` and `axisc`. + + Returns + ------- + c : ndarray + Vector cross product(s). + + Raises + ------ + ValueError + When the dimension of the vector(s) in `a` and/or `b` does not + equal 2 or 3. + + See Also + -------- + inner : Inner product + outer : Outer product. + linalg.cross : An Array API compatible variation of ``np.cross``, + which accepts (arrays of) 3-element vectors only. + ix_ : Construct index arrays. + + Notes + ----- + Supports full broadcasting of the inputs. + + Dimension-2 input arrays were deprecated in 2.0.0. If you do need this + functionality, you can use:: + + def cross2d(x, y): + return x[..., 0] * y[..., 1] - x[..., 1] * y[..., 0] + + Examples + -------- + Vector cross-product. + + >>> import numpy as np + >>> x = [1, 2, 3] + >>> y = [4, 5, 6] + >>> np.cross(x, y) + array([-3, 6, -3]) + + One vector with dimension 2. + + >>> x = [1, 2] + >>> y = [4, 5, 6] + >>> np.cross(x, y) + array([12, -6, -3]) + + Equivalently: + + >>> x = [1, 2, 0] + >>> y = [4, 5, 6] + >>> np.cross(x, y) + array([12, -6, -3]) + + Both vectors with dimension 2. + + >>> x = [1,2] + >>> y = [4,5] + >>> np.cross(x, y) + array(-3) + + Multiple vector cross-products. Note that the direction of the cross + product vector is defined by the *right-hand rule*. + + >>> x = np.array([[1,2,3], [4,5,6]]) + >>> y = np.array([[4,5,6], [1,2,3]]) + >>> np.cross(x, y) + array([[-3, 6, -3], + [ 3, -6, 3]]) + + The orientation of `c` can be changed using the `axisc` keyword. + + >>> np.cross(x, y, axisc=0) + array([[-3, 3], + [ 6, -6], + [-3, 3]]) + + Change the vector definition of `x` and `y` using `axisa` and `axisb`. + + >>> x = np.array([[1,2,3], [4,5,6], [7, 8, 9]]) + >>> y = np.array([[7, 8, 9], [4,5,6], [1,2,3]]) + >>> np.cross(x, y) + array([[ -6, 12, -6], + [ 0, 0, 0], + [ 6, -12, 6]]) + >>> np.cross(x, y, axisa=0, axisb=0) + array([[-24, 48, -24], + [-30, 60, -30], + [-36, 72, -36]]) + + """ + if axis is not None: + axisa, axisb, axisc = (axis,) * 3 + a = asarray(a) + b = asarray(b) + + if (a.ndim < 1) or (b.ndim < 1): + raise ValueError("At least one array has zero dimension") + + # Check axisa and axisb are within bounds + axisa = normalize_axis_index(axisa, a.ndim, msg_prefix='axisa') + axisb = normalize_axis_index(axisb, b.ndim, msg_prefix='axisb') + + # Move working axis to the end of the shape + a = moveaxis(a, axisa, -1) + b = moveaxis(b, axisb, -1) + msg = ("incompatible dimensions for cross product\n" + "(dimension must be 2 or 3)") + if a.shape[-1] not in (2, 3) or b.shape[-1] not in (2, 3): + raise ValueError(msg) + if a.shape[-1] == 2 or b.shape[-1] == 2: + # Deprecated in NumPy 2.0, 2023-09-26 + warnings.warn( + "Arrays of 2-dimensional vectors are deprecated. Use arrays of " + "3-dimensional vectors instead. (deprecated in NumPy 2.0)", + DeprecationWarning, stacklevel=2 + ) + + # Create the output array + shape = broadcast(a[..., 0], b[..., 0]).shape + if a.shape[-1] == 3 or b.shape[-1] == 3: + shape += (3,) + # Check axisc is within bounds + axisc = normalize_axis_index(axisc, len(shape), msg_prefix='axisc') + dtype = promote_types(a.dtype, b.dtype) + cp = empty(shape, dtype) + + # recast arrays as dtype + a = a.astype(dtype) + b = b.astype(dtype) + + # create local aliases for readability + a0 = a[..., 0] + a1 = a[..., 1] + if a.shape[-1] == 3: + a2 = a[..., 2] + b0 = b[..., 0] + b1 = b[..., 1] + if b.shape[-1] == 3: + b2 = b[..., 2] + if cp.ndim != 0 and cp.shape[-1] == 3: + cp0 = cp[..., 0] + cp1 = cp[..., 1] + cp2 = cp[..., 2] + + if a.shape[-1] == 2: + if b.shape[-1] == 2: + # a0 * b1 - a1 * b0 + multiply(a0, b1, out=cp) + cp -= a1 * b0 + return cp + else: + assert b.shape[-1] == 3 + # cp0 = a1 * b2 - 0 (a2 = 0) + # cp1 = 0 - a0 * b2 (a2 = 0) + # cp2 = a0 * b1 - a1 * b0 + multiply(a1, b2, out=cp0) + multiply(a0, b2, out=cp1) + negative(cp1, out=cp1) + multiply(a0, b1, out=cp2) + cp2 -= a1 * b0 + else: + assert a.shape[-1] == 3 + if b.shape[-1] == 3: + # cp0 = a1 * b2 - a2 * b1 + # cp1 = a2 * b0 - a0 * b2 + # cp2 = a0 * b1 - a1 * b0 + multiply(a1, b2, out=cp0) + tmp = np.multiply(a2, b1, out=...) + cp0 -= tmp + multiply(a2, b0, out=cp1) + multiply(a0, b2, out=tmp) + cp1 -= tmp + multiply(a0, b1, out=cp2) + multiply(a1, b0, out=tmp) + cp2 -= tmp + else: + assert b.shape[-1] == 2 + # cp0 = 0 - a2 * b1 (b2 = 0) + # cp1 = a2 * b0 - 0 (b2 = 0) + # cp2 = a0 * b1 - a1 * b0 + multiply(a2, b1, out=cp0) + negative(cp0, out=cp0) + multiply(a2, b0, out=cp1) + multiply(a0, b1, out=cp2) + cp2 -= a1 * b0 + + return moveaxis(cp, -1, axisc) + + +little_endian = (sys.byteorder == 'little') + + +@set_module('numpy') +def indices(dimensions, dtype=int, sparse=False): + """ + Return an array representing the indices of a grid. + + Compute an array where the subarrays contain index values 0, 1, ... + varying only along the corresponding axis. + + Parameters + ---------- + dimensions : sequence of ints + The shape of the grid. + dtype : dtype, optional + Data type of the result. + sparse : boolean, optional + Return a sparse representation of the grid instead of a dense + representation. Default is False. + + Returns + ------- + grid : one ndarray or tuple of ndarrays + If sparse is False: + Returns one array of grid indices, + ``grid.shape = (len(dimensions),) + tuple(dimensions)``. + If sparse is True: + Returns a tuple of arrays, with + ``grid[i].shape = (1, ..., 1, dimensions[i], 1, ..., 1)`` with + dimensions[i] in the ith place + + See Also + -------- + mgrid, ogrid, meshgrid + + Notes + ----- + The output shape in the dense case is obtained by prepending the number + of dimensions in front of the tuple of dimensions, i.e. if `dimensions` + is a tuple ``(r0, ..., rN-1)`` of length ``N``, the output shape is + ``(N, r0, ..., rN-1)``. + + The subarrays ``grid[k]`` contains the N-D array of indices along the + ``k-th`` axis. Explicitly:: + + grid[k, i0, i1, ..., iN-1] = ik + + Examples + -------- + >>> import numpy as np + >>> grid = np.indices((2, 3)) + >>> grid.shape + (2, 2, 3) + >>> grid[0] # row indices + array([[0, 0, 0], + [1, 1, 1]]) + >>> grid[1] # column indices + array([[0, 1, 2], + [0, 1, 2]]) + + The indices can be used as an index into an array. + + >>> x = np.arange(20).reshape(5, 4) + >>> row, col = np.indices((2, 3)) + >>> x[row, col] + array([[0, 1, 2], + [4, 5, 6]]) + + Note that it would be more straightforward in the above example to + extract the required elements directly with ``x[:2, :3]``. + + If sparse is set to true, the grid will be returned in a sparse + representation. + + >>> i, j = np.indices((2, 3), sparse=True) + >>> i.shape + (2, 1) + >>> j.shape + (1, 3) + >>> i # row indices + array([[0], + [1]]) + >>> j # column indices + array([[0, 1, 2]]) + + """ + dimensions = tuple(dimensions) + N = len(dimensions) + shape = (1,) * N + if sparse: + res = () + else: + res = empty((N,) + dimensions, dtype=dtype) + for i, dim in enumerate(dimensions): + idx = arange(dim, dtype=dtype).reshape( + shape[:i] + (dim,) + shape[i + 1:] + ) + if sparse: + res = res + (idx,) + else: + res[i] = idx + return res + + +@finalize_array_function_like +@set_module('numpy') +def fromfunction(function, shape, *, dtype=float, like=None, **kwargs): + """ + Construct an array by executing a function over each coordinate. + + The resulting array therefore has a value ``fn(x, y, z)`` at + coordinate ``(x, y, z)``. + + Parameters + ---------- + function : callable + The function is called with N parameters, where N is the rank of + `shape`. Each parameter represents the coordinates of the array + varying along a specific axis. For example, if `shape` + were ``(2, 2)``, then the parameters would be + ``array([[0, 0], [1, 1]])`` and ``array([[0, 1], [0, 1]])`` + shape : (N,) tuple of ints + Shape of the output array, which also determines the shape of + the coordinate arrays passed to `function`. + dtype : data-type, optional + Data-type of the coordinate arrays passed to `function`. + By default, `dtype` is float. + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + fromfunction : any + The result of the call to `function` is passed back directly. + Therefore the shape of `fromfunction` is completely determined by + `function`. If `function` returns a scalar value, the shape of + `fromfunction` would not match the `shape` parameter. + + See Also + -------- + indices, meshgrid + + Notes + ----- + Keywords other than `dtype` and `like` are passed to `function`. + + Examples + -------- + >>> import numpy as np + >>> np.fromfunction(lambda i, j: i, (2, 2), dtype=float) + array([[0., 0.], + [1., 1.]]) + + >>> np.fromfunction(lambda i, j: j, (2, 2), dtype=float) + array([[0., 1.], + [0., 1.]]) + + >>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int) + array([[ True, False, False], + [False, True, False], + [False, False, True]]) + + >>> np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int) + array([[0, 1, 2], + [1, 2, 3], + [2, 3, 4]]) + + """ + if like is not None: + return _fromfunction_with_like( + like, function, shape, dtype=dtype, **kwargs) + + args = indices(shape, dtype=dtype) + return function(*args, **kwargs) + + +_fromfunction_with_like = array_function_dispatch()(fromfunction) + + +def _frombuffer(buf, dtype, shape, order, axis_order=None): + array = frombuffer(buf, dtype=dtype) + if order == 'K' and axis_order is not None: + return array.reshape(shape, order='C').transpose(axis_order) + return array.reshape(shape, order=order) + + +@set_module('numpy') +def isscalar(element): + """ + Returns True if the type of `element` is a scalar type. + + Parameters + ---------- + element : any + Input argument, can be of any type and shape. + + Returns + ------- + val : bool + True if `element` is a scalar type, False if it is not. + + See Also + -------- + ndim : Get the number of dimensions of an array + + Notes + ----- + If you need a stricter way to identify a *numerical* scalar, use + ``isinstance(x, numbers.Number)``, as that returns ``False`` for most + non-numerical elements such as strings. + + In most cases ``np.ndim(x) == 0`` should be used instead of this function, + as that will also return true for 0d arrays. This is how numpy overloads + functions in the style of the ``dx`` arguments to `gradient` and + the ``bins`` argument to `histogram`. Some key differences: + + +------------------------------------+---------------+-------------------+ + | x |``isscalar(x)``|``np.ndim(x) == 0``| + +====================================+===============+===================+ + | PEP 3141 numeric objects | ``True`` | ``True`` | + | (including builtins) | | | + +------------------------------------+---------------+-------------------+ + | builtin string and buffer objects | ``True`` | ``True`` | + +------------------------------------+---------------+-------------------+ + | other builtin objects, like | ``False`` | ``True`` | + | `pathlib.Path`, `Exception`, | | | + | the result of `re.compile` | | | + +------------------------------------+---------------+-------------------+ + | third-party objects like | ``False`` | ``True`` | + | `matplotlib.figure.Figure` | | | + +------------------------------------+---------------+-------------------+ + | zero-dimensional numpy arrays | ``False`` | ``True`` | + +------------------------------------+---------------+-------------------+ + | other numpy arrays | ``False`` | ``False`` | + +------------------------------------+---------------+-------------------+ + | `list`, `tuple`, and other | ``False`` | ``False`` | + | sequence objects | | | + +------------------------------------+---------------+-------------------+ + + Examples + -------- + >>> import numpy as np + + >>> np.isscalar(3.1) + True + + >>> np.isscalar(np.array(3.1)) + False + + >>> np.isscalar([3.1]) + False + + >>> np.isscalar(False) + True + + >>> np.isscalar('numpy') + True + + NumPy supports PEP 3141 numbers: + + >>> from fractions import Fraction + >>> np.isscalar(Fraction(5, 17)) + True + >>> from numbers import Number + >>> np.isscalar(Number()) + True + + """ + return (isinstance(element, generic) + or type(element) in ScalarType + or isinstance(element, numbers.Number)) + + +@set_module('numpy') +def binary_repr(num, width=None): + """ + Return the binary representation of the input number as a string. + + For negative numbers, if width is not given, a minus sign is added to the + front. If width is given, the two's complement of the number is + returned, with respect to that width. + + In a two's-complement system negative numbers are represented by the two's + complement of the absolute value. This is the most common method of + representing signed integers on computers [1]_. A N-bit two's-complement + system can represent every integer in the range + :math:`-2^{N-1}` to :math:`+2^{N-1}-1`. + + Parameters + ---------- + num : int + Only an integer decimal number can be used. + width : int, optional + The length of the returned string if `num` is positive, or the length + of the two's complement if `num` is negative, provided that `width` is + at least a sufficient number of bits for `num` to be represented in + the designated form. If the `width` value is insufficient, an error is + raised. + + Returns + ------- + bin : str + Binary representation of `num` or two's complement of `num`. + + See Also + -------- + base_repr: Return a string representation of a number in the given base + system. + bin: Python's built-in binary representation generator of an integer. + + Notes + ----- + `binary_repr` is equivalent to using `base_repr` with base 2, but about 25x + faster. + + References + ---------- + .. [1] Wikipedia, "Two's complement", + https://en.wikipedia.org/wiki/Two's_complement + + Examples + -------- + >>> import numpy as np + >>> np.binary_repr(3) + '11' + >>> np.binary_repr(-3) + '-11' + >>> np.binary_repr(3, width=4) + '0011' + + The two's complement is returned when the input number is negative and + width is specified: + + >>> np.binary_repr(-3, width=3) + '101' + >>> np.binary_repr(-3, width=5) + '11101' + + """ + def err_if_insufficient(width, binwidth): + if width is not None and width < binwidth: + raise ValueError( + f"Insufficient bit {width=} provided for {binwidth=}" + ) + + # Ensure that num is a Python integer to avoid overflow or unwanted + # casts to floating point. + num = operator.index(num) + + if num == 0: + return '0' * (width or 1) + + elif num > 0: + binary = f'{num:b}' + binwidth = len(binary) + outwidth = (binwidth if width is None + else builtins.max(binwidth, width)) + err_if_insufficient(width, binwidth) + return binary.zfill(outwidth) + + elif width is None: + return f'-{-num:b}' + + else: + poswidth = len(f'{-num:b}') + + # See gh-8679: remove extra digit + # for numbers at boundaries. + if 2**(poswidth - 1) == -num: + poswidth -= 1 + + twocomp = 2**(poswidth + 1) + num + binary = f'{twocomp:b}' + binwidth = len(binary) + + outwidth = builtins.max(binwidth, width) + err_if_insufficient(width, binwidth) + return '1' * (outwidth - binwidth) + binary + + +@set_module('numpy') +def base_repr(number, base=2, padding=0): + """ + Return a string representation of a number in the given base system. + + Parameters + ---------- + number : int + The value to convert. Positive and negative values are handled. + base : int, optional + Convert `number` to the `base` number system. The valid range is 2-36, + the default value is 2. + padding : int, optional + Number of zeros padded on the left. Default is 0 (no padding). + + Returns + ------- + out : str + String representation of `number` in `base` system. + + See Also + -------- + binary_repr : Faster version of `base_repr` for base 2. + + Examples + -------- + >>> import numpy as np + >>> np.base_repr(5) + '101' + >>> np.base_repr(6, 5) + '11' + >>> np.base_repr(7, base=5, padding=3) + '00012' + + >>> np.base_repr(10, base=16) + 'A' + >>> np.base_repr(32, base=16) + '20' + + """ + digits = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ' + if base > len(digits): + raise ValueError("Bases greater than 36 not handled in base_repr.") + elif base < 2: + raise ValueError("Bases less than 2 not handled in base_repr.") + + num = abs(int(number)) + res = [] + while num: + res.append(digits[num % base]) + num //= base + if padding: + res.append('0' * padding) + if number < 0: + res.append('-') + return ''.join(reversed(res or '0')) + + +# These are all essentially abbreviations +# These might wind up in a special abbreviations module + + +def _maketup(descr, val): + dt = dtype(descr) + # Place val in all scalar tuples: + fields = dt.fields + if fields is None: + return val + else: + res = [_maketup(fields[name][0], val) for name in dt.names] + return tuple(res) + + +@finalize_array_function_like +@set_module('numpy') +def identity(n, dtype=None, *, like=None): + """ + Return the identity array. + + The identity array is a square array with ones on + the main diagonal. + + Parameters + ---------- + n : int + Number of rows (and columns) in `n` x `n` output. + dtype : data-type, optional + Data-type of the output. Defaults to ``float``. + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray + `n` x `n` array with its main diagonal set to one, + and all other elements 0. + + Examples + -------- + >>> import numpy as np + >>> np.identity(3) + array([[1., 0., 0.], + [0., 1., 0.], + [0., 0., 1.]]) + + """ + if like is not None: + return _identity_with_like(like, n, dtype=dtype) + + from numpy import eye + return eye(n, dtype=dtype, like=like) + + +_identity_with_like = array_function_dispatch()(identity) + + +def _allclose_dispatcher(a, b, rtol=None, atol=None, equal_nan=None): + return (a, b, rtol, atol) + + +@array_function_dispatch(_allclose_dispatcher) +def allclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False): + """ + Returns True if two arrays are element-wise equal within a tolerance. + + The tolerance values are positive, typically very small numbers. The + relative difference (`rtol` * abs(`b`)) and the absolute difference + `atol` are added together to compare against the absolute difference + between `a` and `b`. + + .. warning:: The default `atol` is not appropriate for comparing numbers + with magnitudes much smaller than one (see Notes). + + NaNs are treated as equal if they are in the same place and if + ``equal_nan=True``. Infs are treated as equal if they are in the same + place and of the same sign in both arrays. + + Parameters + ---------- + a, b : array_like + Input arrays to compare. + rtol : array_like + The relative tolerance parameter (see Notes). + atol : array_like + The absolute tolerance parameter (see Notes). + equal_nan : bool + Whether to compare NaN's as equal. If True, NaN's in `a` will be + considered equal to NaN's in `b` in the output array. + + Returns + ------- + allclose : bool + Returns True if the two arrays are equal within the given + tolerance; False otherwise. + + See Also + -------- + isclose, all, any, equal + + Notes + ----- + If the following equation is element-wise True, then allclose returns + True.:: + + absolute(a - b) <= (atol + rtol * absolute(b)) + + The above equation is not symmetric in `a` and `b`, so that + ``allclose(a, b)`` might be different from ``allclose(b, a)`` in + some rare cases. + + The default value of `atol` is not appropriate when the reference value + `b` has magnitude smaller than one. For example, it is unlikely that + ``a = 1e-9`` and ``b = 2e-9`` should be considered "close", yet + ``allclose(1e-9, 2e-9)`` is ``True`` with default settings. Be sure + to select `atol` for the use case at hand, especially for defining the + threshold below which a non-zero value in `a` will be considered "close" + to a very small or zero value in `b`. + + The comparison of `a` and `b` uses standard broadcasting, which + means that `a` and `b` need not have the same shape in order for + ``allclose(a, b)`` to evaluate to True. The same is true for + `equal` but not `array_equal`. + + `allclose` is not defined for non-numeric data types. + `bool` is considered a numeric data-type for this purpose. + + Examples + -------- + >>> import numpy as np + >>> np.allclose([1e10,1e-7], [1.00001e10,1e-8]) + False + + >>> np.allclose([1e10,1e-8], [1.00001e10,1e-9]) + True + + >>> np.allclose([1e10,1e-8], [1.0001e10,1e-9]) + False + + >>> np.allclose([1.0, np.nan], [1.0, np.nan]) + False + + >>> np.allclose([1.0, np.nan], [1.0, np.nan], equal_nan=True) + True + + + """ + res = all(isclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan)) + return builtins.bool(res) + + +def _isclose_dispatcher(a, b, rtol=None, atol=None, equal_nan=None): + return (a, b, rtol, atol) + + +@array_function_dispatch(_isclose_dispatcher) +def isclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False): + """ + Returns a boolean array where two arrays are element-wise equal within a + tolerance. + + The tolerance values are positive, typically very small numbers. The + relative difference (`rtol` * abs(`b`)) and the absolute difference + `atol` are added together to compare against the absolute difference + between `a` and `b`. + + .. warning:: The default `atol` is not appropriate for comparing numbers + with magnitudes much smaller than one (see Notes). + + Parameters + ---------- + a, b : array_like + Input arrays to compare. + rtol : array_like + The relative tolerance parameter (see Notes). + atol : array_like + The absolute tolerance parameter (see Notes). + equal_nan : bool + Whether to compare NaN's as equal. If True, NaN's in `a` will be + considered equal to NaN's in `b` in the output array. + + Returns + ------- + y : array_like + Returns a boolean array of where `a` and `b` are equal within the + given tolerance. If both `a` and `b` are scalars, returns a single + boolean value. + + See Also + -------- + allclose + math.isclose + + Notes + ----- + For finite values, isclose uses the following equation to test whether + two floating point values are equivalent.:: + + absolute(a - b) <= (atol + rtol * absolute(b)) + + Unlike the built-in `math.isclose`, the above equation is not symmetric + in `a` and `b` -- it assumes `b` is the reference value -- so that + `isclose(a, b)` might be different from `isclose(b, a)`. + + The default value of `atol` is not appropriate when the reference value + `b` has magnitude smaller than one. For example, it is unlikely that + ``a = 1e-9`` and ``b = 2e-9`` should be considered "close", yet + ``isclose(1e-9, 2e-9)`` is ``True`` with default settings. Be sure + to select `atol` for the use case at hand, especially for defining the + threshold below which a non-zero value in `a` will be considered "close" + to a very small or zero value in `b`. + + `isclose` is not defined for non-numeric data types. + :class:`bool` is considered a numeric data-type for this purpose. + + Examples + -------- + >>> import numpy as np + >>> np.isclose([1e10,1e-7], [1.00001e10,1e-8]) + array([ True, False]) + + >>> np.isclose([1e10,1e-8], [1.00001e10,1e-9]) + array([ True, True]) + + >>> np.isclose([1e10,1e-8], [1.0001e10,1e-9]) + array([False, True]) + + >>> np.isclose([1.0, np.nan], [1.0, np.nan]) + array([ True, False]) + + >>> np.isclose([1.0, np.nan], [1.0, np.nan], equal_nan=True) + array([ True, True]) + + >>> np.isclose([1e-8, 1e-7], [0.0, 0.0]) + array([ True, False]) + + >>> np.isclose([1e-100, 1e-7], [0.0, 0.0], atol=0.0) + array([False, False]) + + >>> np.isclose([1e-10, 1e-10], [1e-20, 0.0]) + array([ True, True]) + + >>> np.isclose([1e-10, 1e-10], [1e-20, 0.999999e-10], atol=0.0) + array([False, True]) + + """ + # Turn all but python scalars into arrays. + x, y, atol, rtol = ( + a if isinstance(a, (int, float, complex)) else asanyarray(a) + for a in (a, b, atol, rtol)) + + # Make sure y is an inexact type to avoid bad behavior on abs(MIN_INT). + # This will cause casting of x later. Also, make sure to allow subclasses + # (e.g., for numpy.ma). + # NOTE: We explicitly allow timedelta, which used to work. This could + # possibly be deprecated. See also gh-18286. + # timedelta works if `atol` is an integer or also a timedelta. + # Although, the default tolerances are unlikely to be useful + if (dtype := getattr(y, "dtype", None)) is not None and dtype.kind != "m": + dt = multiarray.result_type(y, 1.) + y = asanyarray(y, dtype=dt) + elif isinstance(y, int): + y = float(y) + + # atol and rtol can be arrays + if not (np.all(np.isfinite(atol)) and np.all(np.isfinite(rtol))): + err_s = np.geterr()["invalid"] + err_msg = f"One of rtol or atol is not valid, atol: {atol}, rtol: {rtol}" + + if err_s == "warn": + warnings.warn(err_msg, RuntimeWarning, stacklevel=2) + elif err_s == "raise": + raise FloatingPointError(err_msg) + elif err_s == "print": + print(err_msg) + + with errstate(invalid='ignore'): + + result = (less_equal(abs(x - y), atol + rtol * abs(y)) + & isfinite(y) + | (x == y)) + if equal_nan: + result |= isnan(x) & isnan(y) + + return result[()] # Flatten 0d arrays to scalars + + +def _array_equal_dispatcher(a1, a2, equal_nan=None): + return (a1, a2) + + +_no_nan_types = { + # should use np.dtype.BoolDType, but as of writing + # that fails the reloading test. + type(dtype(nt.bool)), + type(dtype(nt.int8)), + type(dtype(nt.int16)), + type(dtype(nt.int32)), + type(dtype(nt.int64)), +} + + +def _dtype_cannot_hold_nan(dtype): + return type(dtype) in _no_nan_types + + +@array_function_dispatch(_array_equal_dispatcher) +def array_equal(a1, a2, equal_nan=False): + """ + True if two arrays have the same shape and elements, False otherwise. + + Parameters + ---------- + a1, a2 : array_like + Input arrays. + equal_nan : bool + Whether to compare NaN's as equal. If the dtype of a1 and a2 is + complex, values will be considered equal if either the real or the + imaginary component of a given value is ``nan``. + + Returns + ------- + b : bool + Returns True if the arrays are equal. + + See Also + -------- + allclose: Returns True if two arrays are element-wise equal within a + tolerance. + array_equiv: Returns True if input arrays are shape consistent and all + elements equal. + + Examples + -------- + >>> import numpy as np + + >>> np.array_equal([1, 2], [1, 2]) + True + + >>> np.array_equal(np.array([1, 2]), np.array([1, 2])) + True + + >>> np.array_equal([1, 2], [1, 2, 3]) + False + + >>> np.array_equal([1, 2], [1, 4]) + False + + >>> a = np.array([1, np.nan]) + >>> np.array_equal(a, a) + False + + >>> np.array_equal(a, a, equal_nan=True) + True + + When ``equal_nan`` is True, complex values with nan components are + considered equal if either the real *or* the imaginary components are nan. + + >>> a = np.array([1 + 1j]) + >>> b = a.copy() + >>> a.real = np.nan + >>> b.imag = np.nan + >>> np.array_equal(a, b, equal_nan=True) + True + """ + try: + a1, a2 = asarray(a1), asarray(a2) + except Exception: + return False + if a1.shape != a2.shape: + return False + if not equal_nan: + return builtins.bool((asanyarray(a1 == a2)).all()) + + if a1 is a2: + # nan will compare equal so an array will compare equal to itself. + return True + + cannot_have_nan = (_dtype_cannot_hold_nan(a1.dtype) + and _dtype_cannot_hold_nan(a2.dtype)) + if cannot_have_nan: + return builtins.bool(asarray(a1 == a2).all()) + + # Handling NaN values if equal_nan is True + a1nan, a2nan = isnan(a1), isnan(a2) + # NaN's occur at different locations + if not (a1nan == a2nan).all(): + return False + # Shapes of a1, a2 and masks are guaranteed to be consistent by this point + return builtins.bool((a1[~a1nan] == a2[~a1nan]).all()) + + +def _array_equiv_dispatcher(a1, a2): + return (a1, a2) + + +@array_function_dispatch(_array_equiv_dispatcher) +def array_equiv(a1, a2): + """ + Returns True if input arrays are shape consistent and all elements equal. + + Shape consistent means they are either the same shape, or one input array + can be broadcasted to create the same shape as the other one. + + Parameters + ---------- + a1, a2 : array_like + Input arrays. + + Returns + ------- + out : bool + True if equivalent, False otherwise. + + Examples + -------- + >>> import numpy as np + >>> np.array_equiv([1, 2], [1, 2]) + True + >>> np.array_equiv([1, 2], [1, 3]) + False + + Showing the shape equivalence: + + >>> np.array_equiv([1, 2], [[1, 2], [1, 2]]) + True + >>> np.array_equiv([1, 2], [[1, 2, 1, 2], [1, 2, 1, 2]]) + False + + >>> np.array_equiv([1, 2], [[1, 2], [1, 3]]) + False + + """ + try: + a1, a2 = asarray(a1), asarray(a2) + except Exception: + return False + try: + multiarray.broadcast(a1, a2) + except Exception: + return False + + return builtins.bool(asanyarray(a1 == a2).all()) + + +def _astype_dispatcher(x, dtype, /, *, copy=None, device=None): + return (x, dtype) + + +@array_function_dispatch(_astype_dispatcher) +def astype(x, dtype, /, *, copy=True, device=None): + """ + Copies an array to a specified data type. + + This function is an Array API compatible alternative to + `numpy.ndarray.astype`. + + Parameters + ---------- + x : ndarray + Input NumPy array to cast. ``array_likes`` are explicitly not + supported here. + dtype : dtype + Data type of the result. + copy : bool, optional + Specifies whether to copy an array when the specified dtype matches + the data type of the input array ``x``. If ``True``, a newly allocated + array must always be returned. If ``False`` and the specified dtype + matches the data type of the input array, the input array must be + returned; otherwise, a newly allocated array must be returned. + Defaults to ``True``. + device : str, optional + The device on which to place the returned array. Default: None. + For Array-API interoperability only, so must be ``"cpu"`` if passed. + + .. versionadded:: 2.1.0 + + Returns + ------- + out : ndarray + An array having the specified data type. + + See Also + -------- + ndarray.astype + + Examples + -------- + >>> import numpy as np + >>> arr = np.array([1, 2, 3]); arr + array([1, 2, 3]) + >>> np.astype(arr, np.float64) + array([1., 2., 3.]) + + Non-copy case: + + >>> arr = np.array([1, 2, 3]) + >>> arr_noncpy = np.astype(arr, arr.dtype, copy=False) + >>> np.shares_memory(arr, arr_noncpy) + True + + """ + if not (isinstance(x, np.ndarray) or isscalar(x)): + raise TypeError( + "Input should be a NumPy array or scalar. " + f"It is a {type(x)} instead." + ) + if device is not None and device != "cpu": + raise ValueError( + 'Device not understood. Only "cpu" is allowed, but received:' + f' {device}' + ) + return x.astype(dtype, copy=copy) + + +inf = PINF +nan = NAN +False_ = nt.bool(False) +True_ = nt.bool(True) + + +def extend_all(module): + existing = set(__all__) + mall = module.__all__ + for a in mall: + if a not in existing: + __all__.append(a) + + +from . import _asarray, _ufunc_config, arrayprint, fromnumeric +from ._asarray import * +from ._ufunc_config import * +from .arrayprint import * +from .fromnumeric import * +from .numerictypes import * +from .umath import * + +extend_all(fromnumeric) +extend_all(umath) +extend_all(numerictypes) +extend_all(arrayprint) +extend_all(_asarray) +extend_all(_ufunc_config) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/numeric.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/numeric.pyi new file mode 100644 index 0000000..919fe19 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/numeric.pyi @@ -0,0 +1,882 @@ +from collections.abc import Callable, Sequence +from typing import ( + Any, + Final, + Never, + NoReturn, + SupportsAbs, + SupportsIndex, + TypeAlias, + TypeGuard, + TypeVar, + Unpack, + overload, +) +from typing import Literal as L + +import numpy as np +from numpy import ( + False_, + True_, + _OrderCF, + _OrderKACF, + # re-exports + bitwise_not, + broadcast, + complexfloating, + dtype, + flatiter, + float64, + floating, + from_dlpack, + # other + generic, + inf, + int_, + intp, + little_endian, + matmul, + nan, + ndarray, + nditer, + newaxis, + object_, + signedinteger, + timedelta64, + ufunc, + unsignedinteger, + vecdot, +) +from numpy._typing import ( + ArrayLike, + DTypeLike, + NDArray, + _ArrayLike, + _ArrayLikeBool_co, + _ArrayLikeComplex_co, + _ArrayLikeFloat_co, + _ArrayLikeInt_co, + _ArrayLikeObject_co, + _ArrayLikeTD64_co, + _ArrayLikeUInt_co, + _DTypeLike, + _NestedSequence, + _ScalarLike_co, + _Shape, + _ShapeLike, + _SupportsArrayFunc, + _SupportsDType, +) + +from .fromnumeric import all as all +from .fromnumeric import any as any +from .fromnumeric import argpartition as argpartition +from .fromnumeric import matrix_transpose as matrix_transpose +from .fromnumeric import mean as mean +from .multiarray import ( + # other + _Array, + _ConstructorEmpty, + _KwargsEmpty, + # re-exports + arange, + array, + asanyarray, + asarray, + ascontiguousarray, + asfortranarray, + can_cast, + concatenate, + copyto, + dot, + empty, + empty_like, + frombuffer, + fromfile, + fromiter, + fromstring, + inner, + lexsort, + may_share_memory, + min_scalar_type, + nested_iters, + promote_types, + putmask, + result_type, + shares_memory, + vdot, + where, + zeros, +) + +__all__ = [ + "newaxis", + "ndarray", + "flatiter", + "nditer", + "nested_iters", + "ufunc", + "arange", + "array", + "asarray", + "asanyarray", + "ascontiguousarray", + "asfortranarray", + "zeros", + "count_nonzero", + "empty", + "broadcast", + "dtype", + "fromstring", + "fromfile", + "frombuffer", + "from_dlpack", + "where", + "argwhere", + "copyto", + "concatenate", + "lexsort", + "astype", + "can_cast", + "promote_types", + "min_scalar_type", + "result_type", + "isfortran", + "empty_like", + "zeros_like", + "ones_like", + "correlate", + "convolve", + "inner", + "dot", + "outer", + "vdot", + "roll", + "rollaxis", + "moveaxis", + "cross", + "tensordot", + "little_endian", + "fromiter", + "array_equal", + "array_equiv", + "indices", + "fromfunction", + "isclose", + "isscalar", + "binary_repr", + "base_repr", + "ones", + "identity", + "allclose", + "putmask", + "flatnonzero", + "inf", + "nan", + "False_", + "True_", + "bitwise_not", + "full", + "full_like", + "matmul", + "vecdot", + "shares_memory", + "may_share_memory", +] + +_T = TypeVar("_T") +_ScalarT = TypeVar("_ScalarT", bound=generic) +_DTypeT = TypeVar("_DTypeT", bound=np.dtype) +_ArrayT = TypeVar("_ArrayT", bound=np.ndarray[Any, Any]) +_ShapeT = TypeVar("_ShapeT", bound=_Shape) +_AnyShapeT = TypeVar( + "_AnyShapeT", + tuple[()], + tuple[int], + tuple[int, int], + tuple[int, int, int], + tuple[int, int, int, int], + tuple[int, ...], +) + +_CorrelateMode: TypeAlias = L["valid", "same", "full"] + +@overload +def zeros_like( + a: _ArrayT, + dtype: None = ..., + order: _OrderKACF = ..., + subok: L[True] = ..., + shape: None = ..., + *, + device: L["cpu"] | None = ..., +) -> _ArrayT: ... +@overload +def zeros_like( + a: _ArrayLike[_ScalarT], + dtype: None = ..., + order: _OrderKACF = ..., + subok: bool = ..., + shape: _ShapeLike | None = ..., + *, + device: L["cpu"] | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def zeros_like( + a: Any, + dtype: _DTypeLike[_ScalarT], + order: _OrderKACF = ..., + subok: bool = ..., + shape: _ShapeLike | None = ..., + *, + device: L["cpu"] | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def zeros_like( + a: Any, + dtype: DTypeLike | None = ..., + order: _OrderKACF = ..., + subok: bool = ..., + shape: _ShapeLike | None = ..., + *, + device: L["cpu"] | None = ..., +) -> NDArray[Any]: ... + +ones: Final[_ConstructorEmpty] + +@overload +def ones_like( + a: _ArrayT, + dtype: None = ..., + order: _OrderKACF = ..., + subok: L[True] = ..., + shape: None = ..., + *, + device: L["cpu"] | None = ..., +) -> _ArrayT: ... +@overload +def ones_like( + a: _ArrayLike[_ScalarT], + dtype: None = ..., + order: _OrderKACF = ..., + subok: bool = ..., + shape: _ShapeLike | None = ..., + *, + device: L["cpu"] | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def ones_like( + a: Any, + dtype: _DTypeLike[_ScalarT], + order: _OrderKACF = ..., + subok: bool = ..., + shape: _ShapeLike | None = ..., + *, + device: L["cpu"] | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def ones_like( + a: Any, + dtype: DTypeLike | None = ..., + order: _OrderKACF = ..., + subok: bool = ..., + shape: _ShapeLike | None = ..., + *, + device: L["cpu"] | None = ..., +) -> NDArray[Any]: ... + +# TODO: Add overloads for bool, int, float, complex, str, bytes, and memoryview +# 1-D shape +@overload +def full( + shape: SupportsIndex, + fill_value: _ScalarT, + dtype: None = ..., + order: _OrderCF = ..., + **kwargs: Unpack[_KwargsEmpty], +) -> _Array[tuple[int], _ScalarT]: ... +@overload +def full( + shape: SupportsIndex, + fill_value: Any, + dtype: _DTypeT | _SupportsDType[_DTypeT], + order: _OrderCF = ..., + **kwargs: Unpack[_KwargsEmpty], +) -> np.ndarray[tuple[int], _DTypeT]: ... +@overload +def full( + shape: SupportsIndex, + fill_value: Any, + dtype: type[_ScalarT], + order: _OrderCF = ..., + **kwargs: Unpack[_KwargsEmpty], +) -> _Array[tuple[int], _ScalarT]: ... +@overload +def full( + shape: SupportsIndex, + fill_value: Any, + dtype: DTypeLike | None = ..., + order: _OrderCF = ..., + **kwargs: Unpack[_KwargsEmpty], +) -> _Array[tuple[int], Any]: ... +# known shape +@overload +def full( + shape: _AnyShapeT, + fill_value: _ScalarT, + dtype: None = ..., + order: _OrderCF = ..., + **kwargs: Unpack[_KwargsEmpty], +) -> _Array[_AnyShapeT, _ScalarT]: ... +@overload +def full( + shape: _AnyShapeT, + fill_value: Any, + dtype: _DTypeT | _SupportsDType[_DTypeT], + order: _OrderCF = ..., + **kwargs: Unpack[_KwargsEmpty], +) -> np.ndarray[_AnyShapeT, _DTypeT]: ... +@overload +def full( + shape: _AnyShapeT, + fill_value: Any, + dtype: type[_ScalarT], + order: _OrderCF = ..., + **kwargs: Unpack[_KwargsEmpty], +) -> _Array[_AnyShapeT, _ScalarT]: ... +@overload +def full( + shape: _AnyShapeT, + fill_value: Any, + dtype: DTypeLike | None = ..., + order: _OrderCF = ..., + **kwargs: Unpack[_KwargsEmpty], +) -> _Array[_AnyShapeT, Any]: ... +# unknown shape +@overload +def full( + shape: _ShapeLike, + fill_value: _ScalarT, + dtype: None = ..., + order: _OrderCF = ..., + **kwargs: Unpack[_KwargsEmpty], +) -> NDArray[_ScalarT]: ... +@overload +def full( + shape: _ShapeLike, + fill_value: Any, + dtype: _DTypeT | _SupportsDType[_DTypeT], + order: _OrderCF = ..., + **kwargs: Unpack[_KwargsEmpty], +) -> np.ndarray[Any, _DTypeT]: ... +@overload +def full( + shape: _ShapeLike, + fill_value: Any, + dtype: type[_ScalarT], + order: _OrderCF = ..., + **kwargs: Unpack[_KwargsEmpty], +) -> NDArray[_ScalarT]: ... +@overload +def full( + shape: _ShapeLike, + fill_value: Any, + dtype: DTypeLike | None = ..., + order: _OrderCF = ..., + **kwargs: Unpack[_KwargsEmpty], +) -> NDArray[Any]: ... + +@overload +def full_like( + a: _ArrayT, + fill_value: Any, + dtype: None = ..., + order: _OrderKACF = ..., + subok: L[True] = ..., + shape: None = ..., + *, + device: L["cpu"] | None = ..., +) -> _ArrayT: ... +@overload +def full_like( + a: _ArrayLike[_ScalarT], + fill_value: Any, + dtype: None = ..., + order: _OrderKACF = ..., + subok: bool = ..., + shape: _ShapeLike | None = ..., + *, + device: L["cpu"] | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def full_like( + a: Any, + fill_value: Any, + dtype: _DTypeLike[_ScalarT], + order: _OrderKACF = ..., + subok: bool = ..., + shape: _ShapeLike | None = ..., + *, + device: L["cpu"] | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def full_like( + a: Any, + fill_value: Any, + dtype: DTypeLike | None = ..., + order: _OrderKACF = ..., + subok: bool = ..., + shape: _ShapeLike | None = ..., + *, + device: L["cpu"] | None = ..., +) -> NDArray[Any]: ... + +# +@overload +def count_nonzero(a: ArrayLike, axis: None = None, *, keepdims: L[False] = False) -> np.intp: ... +@overload +def count_nonzero(a: _ScalarLike_co, axis: _ShapeLike | None = None, *, keepdims: L[True]) -> np.intp: ... +@overload +def count_nonzero( + a: NDArray[Any] | _NestedSequence[ArrayLike], axis: _ShapeLike | None = None, *, keepdims: L[True] +) -> NDArray[np.intp]: ... +@overload +def count_nonzero(a: ArrayLike, axis: _ShapeLike | None = None, *, keepdims: bool = False) -> Any: ... + +# +def isfortran(a: NDArray[Any] | generic) -> bool: ... + +def argwhere(a: ArrayLike) -> NDArray[intp]: ... + +def flatnonzero(a: ArrayLike) -> NDArray[intp]: ... + +@overload +def correlate( + a: _ArrayLike[Never], + v: _ArrayLike[Never], + mode: _CorrelateMode = ..., +) -> NDArray[Any]: ... +@overload +def correlate( + a: _ArrayLikeBool_co, + v: _ArrayLikeBool_co, + mode: _CorrelateMode = ..., +) -> NDArray[np.bool]: ... +@overload +def correlate( + a: _ArrayLikeUInt_co, + v: _ArrayLikeUInt_co, + mode: _CorrelateMode = ..., +) -> NDArray[unsignedinteger]: ... +@overload +def correlate( + a: _ArrayLikeInt_co, + v: _ArrayLikeInt_co, + mode: _CorrelateMode = ..., +) -> NDArray[signedinteger]: ... +@overload +def correlate( + a: _ArrayLikeFloat_co, + v: _ArrayLikeFloat_co, + mode: _CorrelateMode = ..., +) -> NDArray[floating]: ... +@overload +def correlate( + a: _ArrayLikeComplex_co, + v: _ArrayLikeComplex_co, + mode: _CorrelateMode = ..., +) -> NDArray[complexfloating]: ... +@overload +def correlate( + a: _ArrayLikeTD64_co, + v: _ArrayLikeTD64_co, + mode: _CorrelateMode = ..., +) -> NDArray[timedelta64]: ... +@overload +def correlate( + a: _ArrayLikeObject_co, + v: _ArrayLikeObject_co, + mode: _CorrelateMode = ..., +) -> NDArray[object_]: ... + +@overload +def convolve( + a: _ArrayLike[Never], + v: _ArrayLike[Never], + mode: _CorrelateMode = ..., +) -> NDArray[Any]: ... +@overload +def convolve( + a: _ArrayLikeBool_co, + v: _ArrayLikeBool_co, + mode: _CorrelateMode = ..., +) -> NDArray[np.bool]: ... +@overload +def convolve( + a: _ArrayLikeUInt_co, + v: _ArrayLikeUInt_co, + mode: _CorrelateMode = ..., +) -> NDArray[unsignedinteger]: ... +@overload +def convolve( + a: _ArrayLikeInt_co, + v: _ArrayLikeInt_co, + mode: _CorrelateMode = ..., +) -> NDArray[signedinteger]: ... +@overload +def convolve( + a: _ArrayLikeFloat_co, + v: _ArrayLikeFloat_co, + mode: _CorrelateMode = ..., +) -> NDArray[floating]: ... +@overload +def convolve( + a: _ArrayLikeComplex_co, + v: _ArrayLikeComplex_co, + mode: _CorrelateMode = ..., +) -> NDArray[complexfloating]: ... +@overload +def convolve( + a: _ArrayLikeTD64_co, + v: _ArrayLikeTD64_co, + mode: _CorrelateMode = ..., +) -> NDArray[timedelta64]: ... +@overload +def convolve( + a: _ArrayLikeObject_co, + v: _ArrayLikeObject_co, + mode: _CorrelateMode = ..., +) -> NDArray[object_]: ... + +@overload +def outer( + a: _ArrayLike[Never], + b: _ArrayLike[Never], + out: None = ..., +) -> NDArray[Any]: ... +@overload +def outer( + a: _ArrayLikeBool_co, + b: _ArrayLikeBool_co, + out: None = ..., +) -> NDArray[np.bool]: ... +@overload +def outer( + a: _ArrayLikeUInt_co, + b: _ArrayLikeUInt_co, + out: None = ..., +) -> NDArray[unsignedinteger]: ... +@overload +def outer( + a: _ArrayLikeInt_co, + b: _ArrayLikeInt_co, + out: None = ..., +) -> NDArray[signedinteger]: ... +@overload +def outer( + a: _ArrayLikeFloat_co, + b: _ArrayLikeFloat_co, + out: None = ..., +) -> NDArray[floating]: ... +@overload +def outer( + a: _ArrayLikeComplex_co, + b: _ArrayLikeComplex_co, + out: None = ..., +) -> NDArray[complexfloating]: ... +@overload +def outer( + a: _ArrayLikeTD64_co, + b: _ArrayLikeTD64_co, + out: None = ..., +) -> NDArray[timedelta64]: ... +@overload +def outer( + a: _ArrayLikeObject_co, + b: _ArrayLikeObject_co, + out: None = ..., +) -> NDArray[object_]: ... +@overload +def outer( + a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, + b: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, + out: _ArrayT, +) -> _ArrayT: ... + +@overload +def tensordot( + a: _ArrayLike[Never], + b: _ArrayLike[Never], + axes: int | tuple[_ShapeLike, _ShapeLike] = ..., +) -> NDArray[Any]: ... +@overload +def tensordot( + a: _ArrayLikeBool_co, + b: _ArrayLikeBool_co, + axes: int | tuple[_ShapeLike, _ShapeLike] = ..., +) -> NDArray[np.bool]: ... +@overload +def tensordot( + a: _ArrayLikeUInt_co, + b: _ArrayLikeUInt_co, + axes: int | tuple[_ShapeLike, _ShapeLike] = ..., +) -> NDArray[unsignedinteger]: ... +@overload +def tensordot( + a: _ArrayLikeInt_co, + b: _ArrayLikeInt_co, + axes: int | tuple[_ShapeLike, _ShapeLike] = ..., +) -> NDArray[signedinteger]: ... +@overload +def tensordot( + a: _ArrayLikeFloat_co, + b: _ArrayLikeFloat_co, + axes: int | tuple[_ShapeLike, _ShapeLike] = ..., +) -> NDArray[floating]: ... +@overload +def tensordot( + a: _ArrayLikeComplex_co, + b: _ArrayLikeComplex_co, + axes: int | tuple[_ShapeLike, _ShapeLike] = ..., +) -> NDArray[complexfloating]: ... +@overload +def tensordot( + a: _ArrayLikeTD64_co, + b: _ArrayLikeTD64_co, + axes: int | tuple[_ShapeLike, _ShapeLike] = ..., +) -> NDArray[timedelta64]: ... +@overload +def tensordot( + a: _ArrayLikeObject_co, + b: _ArrayLikeObject_co, + axes: int | tuple[_ShapeLike, _ShapeLike] = ..., +) -> NDArray[object_]: ... + +@overload +def roll( + a: _ArrayLike[_ScalarT], + shift: _ShapeLike, + axis: _ShapeLike | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def roll( + a: ArrayLike, + shift: _ShapeLike, + axis: _ShapeLike | None = ..., +) -> NDArray[Any]: ... + +def rollaxis( + a: NDArray[_ScalarT], + axis: int, + start: int = ..., +) -> NDArray[_ScalarT]: ... + +def moveaxis( + a: NDArray[_ScalarT], + source: _ShapeLike, + destination: _ShapeLike, +) -> NDArray[_ScalarT]: ... + +@overload +def cross( + a: _ArrayLike[Never], + b: _ArrayLike[Never], + axisa: int = ..., + axisb: int = ..., + axisc: int = ..., + axis: int | None = ..., +) -> NDArray[Any]: ... +@overload +def cross( + a: _ArrayLikeBool_co, + b: _ArrayLikeBool_co, + axisa: int = ..., + axisb: int = ..., + axisc: int = ..., + axis: int | None = ..., +) -> NoReturn: ... +@overload +def cross( + a: _ArrayLikeUInt_co, + b: _ArrayLikeUInt_co, + axisa: int = ..., + axisb: int = ..., + axisc: int = ..., + axis: int | None = ..., +) -> NDArray[unsignedinteger]: ... +@overload +def cross( + a: _ArrayLikeInt_co, + b: _ArrayLikeInt_co, + axisa: int = ..., + axisb: int = ..., + axisc: int = ..., + axis: int | None = ..., +) -> NDArray[signedinteger]: ... +@overload +def cross( + a: _ArrayLikeFloat_co, + b: _ArrayLikeFloat_co, + axisa: int = ..., + axisb: int = ..., + axisc: int = ..., + axis: int | None = ..., +) -> NDArray[floating]: ... +@overload +def cross( + a: _ArrayLikeComplex_co, + b: _ArrayLikeComplex_co, + axisa: int = ..., + axisb: int = ..., + axisc: int = ..., + axis: int | None = ..., +) -> NDArray[complexfloating]: ... +@overload +def cross( + a: _ArrayLikeObject_co, + b: _ArrayLikeObject_co, + axisa: int = ..., + axisb: int = ..., + axisc: int = ..., + axis: int | None = ..., +) -> NDArray[object_]: ... + +@overload +def indices( + dimensions: Sequence[int], + dtype: type[int] = ..., + sparse: L[False] = ..., +) -> NDArray[int_]: ... +@overload +def indices( + dimensions: Sequence[int], + dtype: type[int], + sparse: L[True], +) -> tuple[NDArray[int_], ...]: ... +@overload +def indices( + dimensions: Sequence[int], + dtype: type[int] = ..., + *, + sparse: L[True], +) -> tuple[NDArray[int_], ...]: ... +@overload +def indices( + dimensions: Sequence[int], + dtype: _DTypeLike[_ScalarT], + sparse: L[False] = ..., +) -> NDArray[_ScalarT]: ... +@overload +def indices( + dimensions: Sequence[int], + dtype: _DTypeLike[_ScalarT], + sparse: L[True], +) -> tuple[NDArray[_ScalarT], ...]: ... +@overload +def indices( + dimensions: Sequence[int], + dtype: DTypeLike = ..., + sparse: L[False] = ..., +) -> NDArray[Any]: ... +@overload +def indices( + dimensions: Sequence[int], + dtype: DTypeLike, + sparse: L[True], +) -> tuple[NDArray[Any], ...]: ... +@overload +def indices( + dimensions: Sequence[int], + dtype: DTypeLike = ..., + *, + sparse: L[True], +) -> tuple[NDArray[Any], ...]: ... + +def fromfunction( + function: Callable[..., _T], + shape: Sequence[int], + *, + dtype: DTypeLike = ..., + like: _SupportsArrayFunc | None = ..., + **kwargs: Any, +) -> _T: ... + +def isscalar(element: object) -> TypeGuard[generic | complex | str | bytes | memoryview]: ... + +def binary_repr(num: SupportsIndex, width: int | None = ...) -> str: ... + +def base_repr( + number: SupportsAbs[float], + base: float = ..., + padding: SupportsIndex | None = ..., +) -> str: ... + +@overload +def identity( + n: int, + dtype: None = ..., + *, + like: _SupportsArrayFunc | None = ..., +) -> NDArray[float64]: ... +@overload +def identity( + n: int, + dtype: _DTypeLike[_ScalarT], + *, + like: _SupportsArrayFunc | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def identity( + n: int, + dtype: DTypeLike | None = ..., + *, + like: _SupportsArrayFunc | None = ..., +) -> NDArray[Any]: ... + +def allclose( + a: ArrayLike, + b: ArrayLike, + rtol: ArrayLike = ..., + atol: ArrayLike = ..., + equal_nan: bool = ..., +) -> bool: ... + +@overload +def isclose( + a: _ScalarLike_co, + b: _ScalarLike_co, + rtol: ArrayLike = ..., + atol: ArrayLike = ..., + equal_nan: bool = ..., +) -> np.bool: ... +@overload +def isclose( + a: ArrayLike, + b: ArrayLike, + rtol: ArrayLike = ..., + atol: ArrayLike = ..., + equal_nan: bool = ..., +) -> NDArray[np.bool]: ... + +def array_equal(a1: ArrayLike, a2: ArrayLike, equal_nan: bool = ...) -> bool: ... + +def array_equiv(a1: ArrayLike, a2: ArrayLike) -> bool: ... + +@overload +def astype( + x: ndarray[_ShapeT, dtype], + dtype: _DTypeLike[_ScalarT], + /, + *, + copy: bool = ..., + device: L["cpu"] | None = ..., +) -> ndarray[_ShapeT, dtype[_ScalarT]]: ... +@overload +def astype( + x: ndarray[_ShapeT, dtype], + dtype: DTypeLike, + /, + *, + copy: bool = ..., + device: L["cpu"] | None = ..., +) -> ndarray[_ShapeT, dtype]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/numerictypes.py b/.venv/lib/python3.12/site-packages/numpy/_core/numerictypes.py new file mode 100644 index 0000000..135dc1b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/numerictypes.py @@ -0,0 +1,633 @@ +""" +numerictypes: Define the numeric type objects + +This module is designed so "from numerictypes import \\*" is safe. +Exported symbols include: + + Dictionary with all registered number types (including aliases): + sctypeDict + + Type objects (not all will be available, depends on platform): + see variable sctypes for which ones you have + + Bit-width names + + int8 int16 int32 int64 + uint8 uint16 uint32 uint64 + float16 float32 float64 float96 float128 + complex64 complex128 complex192 complex256 + datetime64 timedelta64 + + c-based names + + bool + + object_ + + void, str_ + + byte, ubyte, + short, ushort + intc, uintc, + intp, uintp, + int_, uint, + longlong, ulonglong, + + single, csingle, + double, cdouble, + longdouble, clongdouble, + + As part of the type-hierarchy: xx -- is bit-width + + generic + +-> bool (kind=b) + +-> number + | +-> integer + | | +-> signedinteger (intxx) (kind=i) + | | | byte + | | | short + | | | intc + | | | intp + | | | int_ + | | | longlong + | | \\-> unsignedinteger (uintxx) (kind=u) + | | ubyte + | | ushort + | | uintc + | | uintp + | | uint + | | ulonglong + | +-> inexact + | +-> floating (floatxx) (kind=f) + | | half + | | single + | | double + | | longdouble + | \\-> complexfloating (complexxx) (kind=c) + | csingle + | cdouble + | clongdouble + +-> flexible + | +-> character + | | bytes_ (kind=S) + | | str_ (kind=U) + | | + | \\-> void (kind=V) + \\-> object_ (not used much) (kind=O) + +""" +import numbers +import warnings + +from numpy._utils import set_module + +from . import multiarray as ma +from .multiarray import ( + busday_count, + busday_offset, + busdaycalendar, + datetime_as_string, + datetime_data, + dtype, + is_busday, + ndarray, +) + +# we add more at the bottom +__all__ = [ + 'ScalarType', 'typecodes', 'issubdtype', 'datetime_data', + 'datetime_as_string', 'busday_offset', 'busday_count', + 'is_busday', 'busdaycalendar', 'isdtype' +] + +# we don't need all these imports, but we need to keep them for compatibility +# for users using np._core.numerictypes.UPPER_TABLE +# we don't export these for import *, but we do want them accessible +# as numerictypes.bool, etc. +from builtins import bool, bytes, complex, float, int, object, str # noqa: F401, UP029 + +from ._dtype import _kind_name +from ._string_helpers import ( # noqa: F401 + LOWER_TABLE, + UPPER_TABLE, + english_capitalize, + english_lower, + english_upper, +) +from ._type_aliases import allTypes, sctypeDict, sctypes + +# We use this later +generic = allTypes['generic'] + +genericTypeRank = ['bool', 'int8', 'uint8', 'int16', 'uint16', + 'int32', 'uint32', 'int64', 'uint64', + 'float16', 'float32', 'float64', 'float96', 'float128', + 'complex64', 'complex128', 'complex192', 'complex256', + 'object'] + +@set_module('numpy') +def maximum_sctype(t): + """ + Return the scalar type of highest precision of the same kind as the input. + + .. deprecated:: 2.0 + Use an explicit dtype like int64 or float64 instead. + + Parameters + ---------- + t : dtype or dtype specifier + The input data type. This can be a `dtype` object or an object that + is convertible to a `dtype`. + + Returns + ------- + out : dtype + The highest precision data type of the same kind (`dtype.kind`) as `t`. + + See Also + -------- + obj2sctype, mintypecode, sctype2char + dtype + + Examples + -------- + >>> from numpy._core.numerictypes import maximum_sctype + >>> maximum_sctype(int) + + >>> maximum_sctype(np.uint8) + + >>> maximum_sctype(complex) + # may vary + + >>> maximum_sctype(str) + + + >>> maximum_sctype('i2') + + >>> maximum_sctype('f4') + # may vary + + """ + + # Deprecated in NumPy 2.0, 2023-07-11 + warnings.warn( + "`maximum_sctype` is deprecated. Use an explicit dtype like int64 " + "or float64 instead. (deprecated in NumPy 2.0)", + DeprecationWarning, + stacklevel=2 + ) + + g = obj2sctype(t) + if g is None: + return t + t = g + base = _kind_name(dtype(t)) + if base in sctypes: + return sctypes[base][-1] + else: + return t + + +@set_module('numpy') +def issctype(rep): + """ + Determines whether the given object represents a scalar data-type. + + Parameters + ---------- + rep : any + If `rep` is an instance of a scalar dtype, True is returned. If not, + False is returned. + + Returns + ------- + out : bool + Boolean result of check whether `rep` is a scalar dtype. + + See Also + -------- + issubsctype, issubdtype, obj2sctype, sctype2char + + Examples + -------- + >>> from numpy._core.numerictypes import issctype + >>> issctype(np.int32) + True + >>> issctype(list) + False + >>> issctype(1.1) + False + + Strings are also a scalar type: + + >>> issctype(np.dtype('str')) + True + + """ + if not isinstance(rep, (type, dtype)): + return False + try: + res = obj2sctype(rep) + if res and res != object_: + return True + else: + return False + except Exception: + return False + + +def obj2sctype(rep, default=None): + """ + Return the scalar dtype or NumPy equivalent of Python type of an object. + + Parameters + ---------- + rep : any + The object of which the type is returned. + default : any, optional + If given, this is returned for objects whose types can not be + determined. If not given, None is returned for those objects. + + Returns + ------- + dtype : dtype or Python type + The data type of `rep`. + + See Also + -------- + sctype2char, issctype, issubsctype, issubdtype + + Examples + -------- + >>> from numpy._core.numerictypes import obj2sctype + >>> obj2sctype(np.int32) + + >>> obj2sctype(np.array([1., 2.])) + + >>> obj2sctype(np.array([1.j])) + + + >>> obj2sctype(dict) + + >>> obj2sctype('string') + + >>> obj2sctype(1, default=list) + + + """ + # prevent abstract classes being upcast + if isinstance(rep, type) and issubclass(rep, generic): + return rep + # extract dtype from arrays + if isinstance(rep, ndarray): + return rep.dtype.type + # fall back on dtype to convert + try: + res = dtype(rep) + except Exception: + return default + else: + return res.type + + +@set_module('numpy') +def issubclass_(arg1, arg2): + """ + Determine if a class is a subclass of a second class. + + `issubclass_` is equivalent to the Python built-in ``issubclass``, + except that it returns False instead of raising a TypeError if one + of the arguments is not a class. + + Parameters + ---------- + arg1 : class + Input class. True is returned if `arg1` is a subclass of `arg2`. + arg2 : class or tuple of classes. + Input class. If a tuple of classes, True is returned if `arg1` is a + subclass of any of the tuple elements. + + Returns + ------- + out : bool + Whether `arg1` is a subclass of `arg2` or not. + + See Also + -------- + issubsctype, issubdtype, issctype + + Examples + -------- + >>> np.issubclass_(np.int32, int) + False + >>> np.issubclass_(np.int32, float) + False + >>> np.issubclass_(np.float64, float) + True + + """ + try: + return issubclass(arg1, arg2) + except TypeError: + return False + + +@set_module('numpy') +def issubsctype(arg1, arg2): + """ + Determine if the first argument is a subclass of the second argument. + + Parameters + ---------- + arg1, arg2 : dtype or dtype specifier + Data-types. + + Returns + ------- + out : bool + The result. + + See Also + -------- + issctype, issubdtype, obj2sctype + + Examples + -------- + >>> from numpy._core import issubsctype + >>> issubsctype('S8', str) + False + >>> issubsctype(np.array([1]), int) + True + >>> issubsctype(np.array([1]), float) + False + + """ + return issubclass(obj2sctype(arg1), obj2sctype(arg2)) + + +class _PreprocessDTypeError(Exception): + pass + + +def _preprocess_dtype(dtype): + """ + Preprocess dtype argument by: + 1. fetching type from a data type + 2. verifying that types are built-in NumPy dtypes + """ + if isinstance(dtype, ma.dtype): + dtype = dtype.type + if isinstance(dtype, ndarray) or dtype not in allTypes.values(): + raise _PreprocessDTypeError + return dtype + + +@set_module('numpy') +def isdtype(dtype, kind): + """ + Determine if a provided dtype is of a specified data type ``kind``. + + This function only supports built-in NumPy's data types. + Third-party dtypes are not yet supported. + + Parameters + ---------- + dtype : dtype + The input dtype. + kind : dtype or str or tuple of dtypes/strs. + dtype or dtype kind. Allowed dtype kinds are: + * ``'bool'`` : boolean kind + * ``'signed integer'`` : signed integer data types + * ``'unsigned integer'`` : unsigned integer data types + * ``'integral'`` : integer data types + * ``'real floating'`` : real-valued floating-point data types + * ``'complex floating'`` : complex floating-point data types + * ``'numeric'`` : numeric data types + + Returns + ------- + out : bool + + See Also + -------- + issubdtype + + Examples + -------- + >>> import numpy as np + >>> np.isdtype(np.float32, np.float64) + False + >>> np.isdtype(np.float32, "real floating") + True + >>> np.isdtype(np.complex128, ("real floating", "complex floating")) + True + + """ + try: + dtype = _preprocess_dtype(dtype) + except _PreprocessDTypeError: + raise TypeError( + "dtype argument must be a NumPy dtype, " + f"but it is a {type(dtype)}." + ) from None + + input_kinds = kind if isinstance(kind, tuple) else (kind,) + + processed_kinds = set() + + for kind in input_kinds: + if kind == "bool": + processed_kinds.add(allTypes["bool"]) + elif kind == "signed integer": + processed_kinds.update(sctypes["int"]) + elif kind == "unsigned integer": + processed_kinds.update(sctypes["uint"]) + elif kind == "integral": + processed_kinds.update(sctypes["int"] + sctypes["uint"]) + elif kind == "real floating": + processed_kinds.update(sctypes["float"]) + elif kind == "complex floating": + processed_kinds.update(sctypes["complex"]) + elif kind == "numeric": + processed_kinds.update( + sctypes["int"] + sctypes["uint"] + + sctypes["float"] + sctypes["complex"] + ) + elif isinstance(kind, str): + raise ValueError( + "kind argument is a string, but" + f" {kind!r} is not a known kind name." + ) + else: + try: + kind = _preprocess_dtype(kind) + except _PreprocessDTypeError: + raise TypeError( + "kind argument must be comprised of " + "NumPy dtypes or strings only, " + f"but is a {type(kind)}." + ) from None + processed_kinds.add(kind) + + return dtype in processed_kinds + + +@set_module('numpy') +def issubdtype(arg1, arg2): + r""" + Returns True if first argument is a typecode lower/equal in type hierarchy. + + This is like the builtin :func:`issubclass`, but for `dtype`\ s. + + Parameters + ---------- + arg1, arg2 : dtype_like + `dtype` or object coercible to one + + Returns + ------- + out : bool + + See Also + -------- + :ref:`arrays.scalars` : Overview of the numpy type hierarchy. + + Examples + -------- + `issubdtype` can be used to check the type of arrays: + + >>> ints = np.array([1, 2, 3], dtype=np.int32) + >>> np.issubdtype(ints.dtype, np.integer) + True + >>> np.issubdtype(ints.dtype, np.floating) + False + + >>> floats = np.array([1, 2, 3], dtype=np.float32) + >>> np.issubdtype(floats.dtype, np.integer) + False + >>> np.issubdtype(floats.dtype, np.floating) + True + + Similar types of different sizes are not subdtypes of each other: + + >>> np.issubdtype(np.float64, np.float32) + False + >>> np.issubdtype(np.float32, np.float64) + False + + but both are subtypes of `floating`: + + >>> np.issubdtype(np.float64, np.floating) + True + >>> np.issubdtype(np.float32, np.floating) + True + + For convenience, dtype-like objects are allowed too: + + >>> np.issubdtype('S1', np.bytes_) + True + >>> np.issubdtype('i4', np.signedinteger) + True + + """ + if not issubclass_(arg1, generic): + arg1 = dtype(arg1).type + if not issubclass_(arg2, generic): + arg2 = dtype(arg2).type + + return issubclass(arg1, arg2) + + +@set_module('numpy') +def sctype2char(sctype): + """ + Return the string representation of a scalar dtype. + + Parameters + ---------- + sctype : scalar dtype or object + If a scalar dtype, the corresponding string character is + returned. If an object, `sctype2char` tries to infer its scalar type + and then return the corresponding string character. + + Returns + ------- + typechar : str + The string character corresponding to the scalar type. + + Raises + ------ + ValueError + If `sctype` is an object for which the type can not be inferred. + + See Also + -------- + obj2sctype, issctype, issubsctype, mintypecode + + Examples + -------- + >>> from numpy._core.numerictypes import sctype2char + >>> for sctype in [np.int32, np.double, np.cdouble, np.bytes_, np.ndarray]: + ... print(sctype2char(sctype)) + l # may vary + d + D + S + O + + >>> x = np.array([1., 2-1.j]) + >>> sctype2char(x) + 'D' + >>> sctype2char(list) + 'O' + + """ + sctype = obj2sctype(sctype) + if sctype is None: + raise ValueError("unrecognized type") + if sctype not in sctypeDict.values(): + # for compatibility + raise KeyError(sctype) + return dtype(sctype).char + + +def _scalar_type_key(typ): + """A ``key`` function for `sorted`.""" + dt = dtype(typ) + return (dt.kind.lower(), dt.itemsize) + + +ScalarType = [int, float, complex, bool, bytes, str, memoryview] +ScalarType += sorted(set(sctypeDict.values()), key=_scalar_type_key) +ScalarType = tuple(ScalarType) + + +# Now add the types we've determined to this module +for key in allTypes: + globals()[key] = allTypes[key] + __all__.append(key) + +del key + +typecodes = {'Character': 'c', + 'Integer': 'bhilqnp', + 'UnsignedInteger': 'BHILQNP', + 'Float': 'efdg', + 'Complex': 'FDG', + 'AllInteger': 'bBhHiIlLqQnNpP', + 'AllFloat': 'efdgFDG', + 'Datetime': 'Mm', + 'All': '?bhilqnpBHILQNPefdgFDGSUVOMm'} + +# backwards compatibility --- deprecated name +# Formal deprecation: Numpy 1.20.0, 2020-10-19 (see numpy/__init__.py) +typeDict = sctypeDict + +def _register_types(): + numbers.Integral.register(integer) + numbers.Complex.register(inexact) + numbers.Real.register(floating) + numbers.Number.register(number) + + +_register_types() diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/numerictypes.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/numerictypes.pyi new file mode 100644 index 0000000..753fe34 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/numerictypes.pyi @@ -0,0 +1,192 @@ +import builtins +from typing import Any, TypedDict, type_check_only +from typing import Literal as L + +import numpy as np +from numpy import ( + bool, + bool_, + byte, + bytes_, + cdouble, + character, + clongdouble, + complex64, + complex128, + complexfloating, + csingle, + datetime64, + double, + dtype, + flexible, + float16, + float32, + float64, + floating, + generic, + half, + inexact, + int8, + int16, + int32, + int64, + int_, + intc, + integer, + intp, + long, + longdouble, + longlong, + number, + object_, + short, + signedinteger, + single, + str_, + timedelta64, + ubyte, + uint, + uint8, + uint16, + uint32, + uint64, + uintc, + uintp, + ulong, + ulonglong, + unsignedinteger, + ushort, + void, +) +from numpy._typing import DTypeLike +from numpy._typing._extended_precision import complex192, complex256, float96, float128 + +from ._type_aliases import sctypeDict # noqa: F401 +from .multiarray import ( + busday_count, + busday_offset, + busdaycalendar, + datetime_as_string, + datetime_data, + is_busday, +) + +__all__ = [ + "ScalarType", + "typecodes", + "issubdtype", + "datetime_data", + "datetime_as_string", + "busday_offset", + "busday_count", + "is_busday", + "busdaycalendar", + "isdtype", + "generic", + "unsignedinteger", + "character", + "inexact", + "number", + "integer", + "flexible", + "complexfloating", + "signedinteger", + "floating", + "bool", + "float16", + "float32", + "float64", + "longdouble", + "complex64", + "complex128", + "clongdouble", + "bytes_", + "str_", + "void", + "object_", + "datetime64", + "timedelta64", + "int8", + "byte", + "uint8", + "ubyte", + "int16", + "short", + "uint16", + "ushort", + "int32", + "intc", + "uint32", + "uintc", + "int64", + "long", + "uint64", + "ulong", + "longlong", + "ulonglong", + "intp", + "uintp", + "double", + "cdouble", + "single", + "csingle", + "half", + "bool_", + "int_", + "uint", + "float96", + "float128", + "complex192", + "complex256", +] + +@type_check_only +class _TypeCodes(TypedDict): + Character: L['c'] + Integer: L['bhilqnp'] + UnsignedInteger: L['BHILQNP'] + Float: L['efdg'] + Complex: L['FDG'] + AllInteger: L['bBhHiIlLqQnNpP'] + AllFloat: L['efdgFDG'] + Datetime: L['Mm'] + All: L['?bhilqnpBHILQNPefdgFDGSUVOMm'] + +def isdtype(dtype: dtype | type[Any], kind: DTypeLike | tuple[DTypeLike, ...]) -> builtins.bool: ... + +def issubdtype(arg1: DTypeLike, arg2: DTypeLike) -> builtins.bool: ... + +typecodes: _TypeCodes +ScalarType: tuple[ + type[int], + type[float], + type[complex], + type[builtins.bool], + type[bytes], + type[str], + type[memoryview], + type[np.bool], + type[csingle], + type[cdouble], + type[clongdouble], + type[half], + type[single], + type[double], + type[longdouble], + type[byte], + type[short], + type[intc], + type[long], + type[longlong], + type[timedelta64], + type[datetime64], + type[object_], + type[bytes_], + type[str_], + type[ubyte], + type[ushort], + type[uintc], + type[ulong], + type[ulonglong], + type[void], +] diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/overrides.py b/.venv/lib/python3.12/site-packages/numpy/_core/overrides.py new file mode 100644 index 0000000..6414710 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/overrides.py @@ -0,0 +1,183 @@ +"""Implementation of __array_function__ overrides from NEP-18.""" +import collections +import functools + +from numpy._core._multiarray_umath import ( + _ArrayFunctionDispatcher, + _get_implementing_args, + add_docstring, +) +from numpy._utils import set_module # noqa: F401 +from numpy._utils._inspect import getargspec + +ARRAY_FUNCTIONS = set() + +array_function_like_doc = ( + """like : array_like, optional + Reference object to allow the creation of arrays which are not + NumPy arrays. If an array-like passed in as ``like`` supports + the ``__array_function__`` protocol, the result will be defined + by it. In this case, it ensures the creation of an array object + compatible with that passed in via this argument.""" +) + +def get_array_function_like_doc(public_api, docstring_template=""): + ARRAY_FUNCTIONS.add(public_api) + docstring = public_api.__doc__ or docstring_template + return docstring.replace("${ARRAY_FUNCTION_LIKE}", array_function_like_doc) + +def finalize_array_function_like(public_api): + public_api.__doc__ = get_array_function_like_doc(public_api) + return public_api + + +add_docstring( + _ArrayFunctionDispatcher, + """ + Class to wrap functions with checks for __array_function__ overrides. + + All arguments are required, and can only be passed by position. + + Parameters + ---------- + dispatcher : function or None + The dispatcher function that returns a single sequence-like object + of all arguments relevant. It must have the same signature (except + the default values) as the actual implementation. + If ``None``, this is a ``like=`` dispatcher and the + ``_ArrayFunctionDispatcher`` must be called with ``like`` as the + first (additional and positional) argument. + implementation : function + Function that implements the operation on NumPy arrays without + overrides. Arguments passed calling the ``_ArrayFunctionDispatcher`` + will be forwarded to this (and the ``dispatcher``) as if using + ``*args, **kwargs``. + + Attributes + ---------- + _implementation : function + The original implementation passed in. + """) + + +# exposed for testing purposes; used internally by _ArrayFunctionDispatcher +add_docstring( + _get_implementing_args, + """ + Collect arguments on which to call __array_function__. + + Parameters + ---------- + relevant_args : iterable of array-like + Iterable of possibly array-like arguments to check for + __array_function__ methods. + + Returns + ------- + Sequence of arguments with __array_function__ methods, in the order in + which they should be called. + """) + + +ArgSpec = collections.namedtuple('ArgSpec', 'args varargs keywords defaults') + + +def verify_matching_signatures(implementation, dispatcher): + """Verify that a dispatcher function has the right signature.""" + implementation_spec = ArgSpec(*getargspec(implementation)) + dispatcher_spec = ArgSpec(*getargspec(dispatcher)) + + if (implementation_spec.args != dispatcher_spec.args or + implementation_spec.varargs != dispatcher_spec.varargs or + implementation_spec.keywords != dispatcher_spec.keywords or + (bool(implementation_spec.defaults) != + bool(dispatcher_spec.defaults)) or + (implementation_spec.defaults is not None and + len(implementation_spec.defaults) != + len(dispatcher_spec.defaults))): + raise RuntimeError('implementation and dispatcher for %s have ' + 'different function signatures' % implementation) + + if implementation_spec.defaults is not None: + if dispatcher_spec.defaults != (None,) * len(dispatcher_spec.defaults): + raise RuntimeError('dispatcher functions can only use None for ' + 'default argument values') + + +def array_function_dispatch(dispatcher=None, module=None, verify=True, + docs_from_dispatcher=False): + """Decorator for adding dispatch with the __array_function__ protocol. + + See NEP-18 for example usage. + + Parameters + ---------- + dispatcher : callable or None + Function that when called like ``dispatcher(*args, **kwargs)`` with + arguments from the NumPy function call returns an iterable of + array-like arguments to check for ``__array_function__``. + + If `None`, the first argument is used as the single `like=` argument + and not passed on. A function implementing `like=` must call its + dispatcher with `like` as the first non-keyword argument. + module : str, optional + __module__ attribute to set on new function, e.g., ``module='numpy'``. + By default, module is copied from the decorated function. + verify : bool, optional + If True, verify the that the signature of the dispatcher and decorated + function signatures match exactly: all required and optional arguments + should appear in order with the same names, but the default values for + all optional arguments should be ``None``. Only disable verification + if the dispatcher's signature needs to deviate for some particular + reason, e.g., because the function has a signature like + ``func(*args, **kwargs)``. + docs_from_dispatcher : bool, optional + If True, copy docs from the dispatcher function onto the dispatched + function, rather than from the implementation. This is useful for + functions defined in C, which otherwise don't have docstrings. + + Returns + ------- + Function suitable for decorating the implementation of a NumPy function. + + """ + def decorator(implementation): + if verify: + if dispatcher is not None: + verify_matching_signatures(implementation, dispatcher) + else: + # Using __code__ directly similar to verify_matching_signature + co = implementation.__code__ + last_arg = co.co_argcount + co.co_kwonlyargcount - 1 + last_arg = co.co_varnames[last_arg] + if last_arg != "like" or co.co_kwonlyargcount == 0: + raise RuntimeError( + "__array_function__ expects `like=` to be the last " + "argument and a keyword-only argument. " + f"{implementation} does not seem to comply.") + + if docs_from_dispatcher: + add_docstring(implementation, dispatcher.__doc__) + + public_api = _ArrayFunctionDispatcher(dispatcher, implementation) + public_api = functools.wraps(implementation)(public_api) + + if module is not None: + public_api.__module__ = module + + ARRAY_FUNCTIONS.add(public_api) + + return public_api + + return decorator + + +def array_function_from_dispatcher( + implementation, module=None, verify=True, docs_from_dispatcher=True): + """Like array_function_dispatcher, but with function arguments flipped.""" + + def decorator(dispatcher): + return array_function_dispatch( + dispatcher, module, verify=verify, + docs_from_dispatcher=docs_from_dispatcher)(implementation) + return decorator diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/overrides.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/overrides.pyi new file mode 100644 index 0000000..0545319 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/overrides.pyi @@ -0,0 +1,48 @@ +from collections.abc import Callable, Iterable +from typing import Any, Final, NamedTuple, ParamSpec, TypeVar + +from numpy._typing import _SupportsArrayFunc + +_T = TypeVar("_T") +_Tss = ParamSpec("_Tss") +_FuncT = TypeVar("_FuncT", bound=Callable[..., object]) + +### + +ARRAY_FUNCTIONS: set[Callable[..., Any]] = ... +array_function_like_doc: Final[str] = ... + +class ArgSpec(NamedTuple): + args: list[str] + varargs: str | None + keywords: str | None + defaults: tuple[Any, ...] + +def get_array_function_like_doc(public_api: Callable[..., Any], docstring_template: str = "") -> str: ... +def finalize_array_function_like(public_api: _FuncT) -> _FuncT: ... + +# +def verify_matching_signatures( + implementation: Callable[_Tss, object], + dispatcher: Callable[_Tss, Iterable[_SupportsArrayFunc]], +) -> None: ... + +# NOTE: This actually returns a `_ArrayFunctionDispatcher` callable wrapper object, with +# the original wrapped callable stored in the `._implementation` attribute. It checks +# for any `__array_function__` of the values of specific arguments that the dispatcher +# specifies. Since the dispatcher only returns an iterable of passed array-like args, +# this overridable behaviour is impossible to annotate. +def array_function_dispatch( + dispatcher: Callable[_Tss, Iterable[_SupportsArrayFunc]] | None = None, + module: str | None = None, + verify: bool = True, + docs_from_dispatcher: bool = False, +) -> Callable[[_FuncT], _FuncT]: ... + +# +def array_function_from_dispatcher( + implementation: Callable[_Tss, _T], + module: str | None = None, + verify: bool = True, + docs_from_dispatcher: bool = True, +) -> Callable[[Callable[_Tss, Iterable[_SupportsArrayFunc]]], Callable[_Tss, _T]]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/printoptions.py b/.venv/lib/python3.12/site-packages/numpy/_core/printoptions.py new file mode 100644 index 0000000..5d6f963 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/printoptions.py @@ -0,0 +1,32 @@ +""" +Stores and defines the low-level format_options context variable. + +This is defined in its own file outside of the arrayprint module +so we can import it from C while initializing the multiarray +C module during import without introducing circular dependencies. +""" + +import sys +from contextvars import ContextVar + +__all__ = ["format_options"] + +default_format_options_dict = { + "edgeitems": 3, # repr N leading and trailing items of each dimension + "threshold": 1000, # total items > triggers array summarization + "floatmode": "maxprec", + "precision": 8, # precision of floating point representations + "suppress": False, # suppress printing small floating values in exp format + "linewidth": 75, + "nanstr": "nan", + "infstr": "inf", + "sign": "-", + "formatter": None, + # Internally stored as an int to simplify comparisons; converted from/to + # str/False on the way in/out. + 'legacy': sys.maxsize, + 'override_repr': None, +} + +format_options = ContextVar( + "format_options", default=default_format_options_dict) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/printoptions.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/printoptions.pyi new file mode 100644 index 0000000..bd7c7b4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/printoptions.pyi @@ -0,0 +1,28 @@ +from collections.abc import Callable +from contextvars import ContextVar +from typing import Any, Final, TypedDict + +from .arrayprint import _FormatDict + +__all__ = ["format_options"] + +### + +class _FormatOptionsDict(TypedDict): + edgeitems: int + threshold: int + floatmode: str + precision: int + suppress: bool + linewidth: int + nanstr: str + infstr: str + sign: str + formatter: _FormatDict | None + legacy: int + override_repr: Callable[[Any], str] | None + +### + +default_format_options_dict: Final[_FormatOptionsDict] = ... +format_options: ContextVar[_FormatOptionsDict] diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/records.py b/.venv/lib/python3.12/site-packages/numpy/_core/records.py new file mode 100644 index 0000000..39bcf4b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/records.py @@ -0,0 +1,1089 @@ +""" +This module contains a set of functions for record arrays. +""" +import os +import warnings +from collections import Counter +from contextlib import nullcontext + +from numpy._utils import set_module + +from . import numeric as sb +from . import numerictypes as nt +from .arrayprint import _get_legacy_print_mode + +# All of the functions allow formats to be a dtype +__all__ = [ + 'record', 'recarray', 'format_parser', 'fromarrays', 'fromrecords', + 'fromstring', 'fromfile', 'array', 'find_duplicate', +] + + +ndarray = sb.ndarray + +_byteorderconv = {'b': '>', + 'l': '<', + 'n': '=', + 'B': '>', + 'L': '<', + 'N': '=', + 'S': 's', + 's': 's', + '>': '>', + '<': '<', + '=': '=', + '|': '|', + 'I': '|', + 'i': '|'} + +# formats regular expression +# allows multidimensional spec with a tuple syntax in front +# of the letter code '(2,3)f4' and ' ( 2 , 3 ) f4 ' +# are equally allowed + +numfmt = nt.sctypeDict + + +@set_module('numpy.rec') +def find_duplicate(list): + """Find duplication in a list, return a list of duplicated elements""" + return [ + item + for item, counts in Counter(list).items() + if counts > 1 + ] + + +@set_module('numpy.rec') +class format_parser: + """ + Class to convert formats, names, titles description to a dtype. + + After constructing the format_parser object, the dtype attribute is + the converted data-type: + ``dtype = format_parser(formats, names, titles).dtype`` + + Attributes + ---------- + dtype : dtype + The converted data-type. + + Parameters + ---------- + formats : str or list of str + The format description, either specified as a string with + comma-separated format descriptions in the form ``'f8, i4, S5'``, or + a list of format description strings in the form + ``['f8', 'i4', 'S5']``. + names : str or list/tuple of str + The field names, either specified as a comma-separated string in the + form ``'col1, col2, col3'``, or as a list or tuple of strings in the + form ``['col1', 'col2', 'col3']``. + An empty list can be used, in that case default field names + ('f0', 'f1', ...) are used. + titles : sequence + Sequence of title strings. An empty list can be used to leave titles + out. + aligned : bool, optional + If True, align the fields by padding as the C-compiler would. + Default is False. + byteorder : str, optional + If specified, all the fields will be changed to the + provided byte-order. Otherwise, the default byte-order is + used. For all available string specifiers, see `dtype.newbyteorder`. + + See Also + -------- + numpy.dtype, numpy.typename + + Examples + -------- + >>> import numpy as np + >>> np.rec.format_parser(['>> np.rec.format_parser(['f8', 'i4', 'a5'], ['col1', 'col2', 'col3'], + ... []).dtype + dtype([('col1', '>> np.rec.format_parser([' len(titles): + self._titles += [None] * (self._nfields - len(titles)) + + def _createdtype(self, byteorder): + dtype = sb.dtype({ + 'names': self._names, + 'formats': self._f_formats, + 'offsets': self._offsets, + 'titles': self._titles, + }) + if byteorder is not None: + byteorder = _byteorderconv[byteorder[0]] + dtype = dtype.newbyteorder(byteorder) + + self.dtype = dtype + + +class record(nt.void): + """A data-type scalar that allows field access as attribute lookup. + """ + + # manually set name and module so that this class's type shows up + # as numpy.record when printed + __name__ = 'record' + __module__ = 'numpy' + + def __repr__(self): + if _get_legacy_print_mode() <= 113: + return self.__str__() + return super().__repr__() + + def __str__(self): + if _get_legacy_print_mode() <= 113: + return str(self.item()) + return super().__str__() + + def __getattribute__(self, attr): + if attr in ('setfield', 'getfield', 'dtype'): + return nt.void.__getattribute__(self, attr) + try: + return nt.void.__getattribute__(self, attr) + except AttributeError: + pass + fielddict = nt.void.__getattribute__(self, 'dtype').fields + res = fielddict.get(attr, None) + if res: + obj = self.getfield(*res[:2]) + # if it has fields return a record, + # otherwise return the object + try: + dt = obj.dtype + except AttributeError: + # happens if field is Object type + return obj + if dt.names is not None: + return obj.view((self.__class__, obj.dtype)) + return obj + else: + raise AttributeError(f"'record' object has no attribute '{attr}'") + + def __setattr__(self, attr, val): + if attr in ('setfield', 'getfield', 'dtype'): + raise AttributeError(f"Cannot set '{attr}' attribute") + fielddict = nt.void.__getattribute__(self, 'dtype').fields + res = fielddict.get(attr, None) + if res: + return self.setfield(val, *res[:2]) + elif getattr(self, attr, None): + return nt.void.__setattr__(self, attr, val) + else: + raise AttributeError(f"'record' object has no attribute '{attr}'") + + def __getitem__(self, indx): + obj = nt.void.__getitem__(self, indx) + + # copy behavior of record.__getattribute__, + if isinstance(obj, nt.void) and obj.dtype.names is not None: + return obj.view((self.__class__, obj.dtype)) + else: + # return a single element + return obj + + def pprint(self): + """Pretty-print all fields.""" + # pretty-print all fields + names = self.dtype.names + maxlen = max(len(name) for name in names) + fmt = '%% %ds: %%s' % maxlen + rows = [fmt % (name, getattr(self, name)) for name in names] + return "\n".join(rows) + +# The recarray is almost identical to a standard array (which supports +# named fields already) The biggest difference is that it can use +# attribute-lookup to find the fields and it is constructed using +# a record. + +# If byteorder is given it forces a particular byteorder on all +# the fields (and any subfields) + + +@set_module("numpy.rec") +class recarray(ndarray): + """Construct an ndarray that allows field access using attributes. + + Arrays may have a data-types containing fields, analogous + to columns in a spread sheet. An example is ``[(x, int), (y, float)]``, + where each entry in the array is a pair of ``(int, float)``. Normally, + these attributes are accessed using dictionary lookups such as ``arr['x']`` + and ``arr['y']``. Record arrays allow the fields to be accessed as members + of the array, using ``arr.x`` and ``arr.y``. + + Parameters + ---------- + shape : tuple + Shape of output array. + dtype : data-type, optional + The desired data-type. By default, the data-type is determined + from `formats`, `names`, `titles`, `aligned` and `byteorder`. + formats : list of data-types, optional + A list containing the data-types for the different columns, e.g. + ``['i4', 'f8', 'i4']``. `formats` does *not* support the new + convention of using types directly, i.e. ``(int, float, int)``. + Note that `formats` must be a list, not a tuple. + Given that `formats` is somewhat limited, we recommend specifying + `dtype` instead. + names : tuple of str, optional + The name of each column, e.g. ``('x', 'y', 'z')``. + buf : buffer, optional + By default, a new array is created of the given shape and data-type. + If `buf` is specified and is an object exposing the buffer interface, + the array will use the memory from the existing buffer. In this case, + the `offset` and `strides` keywords are available. + + Other Parameters + ---------------- + titles : tuple of str, optional + Aliases for column names. For example, if `names` were + ``('x', 'y', 'z')`` and `titles` is + ``('x_coordinate', 'y_coordinate', 'z_coordinate')``, then + ``arr['x']`` is equivalent to both ``arr.x`` and ``arr.x_coordinate``. + byteorder : {'<', '>', '='}, optional + Byte-order for all fields. + aligned : bool, optional + Align the fields in memory as the C-compiler would. + strides : tuple of ints, optional + Buffer (`buf`) is interpreted according to these strides (strides + define how many bytes each array element, row, column, etc. + occupy in memory). + offset : int, optional + Start reading buffer (`buf`) from this offset onwards. + order : {'C', 'F'}, optional + Row-major (C-style) or column-major (Fortran-style) order. + + Returns + ------- + rec : recarray + Empty array of the given shape and type. + + See Also + -------- + numpy.rec.fromrecords : Construct a record array from data. + numpy.record : fundamental data-type for `recarray`. + numpy.rec.format_parser : determine data-type from formats, names, titles. + + Notes + ----- + This constructor can be compared to ``empty``: it creates a new record + array but does not fill it with data. To create a record array from data, + use one of the following methods: + + 1. Create a standard ndarray and convert it to a record array, + using ``arr.view(np.recarray)`` + 2. Use the `buf` keyword. + 3. Use `np.rec.fromrecords`. + + Examples + -------- + Create an array with two fields, ``x`` and ``y``: + + >>> import numpy as np + >>> x = np.array([(1.0, 2), (3.0, 4)], dtype=[('x', '>> x + array([(1., 2), (3., 4)], dtype=[('x', '>> x['x'] + array([1., 3.]) + + View the array as a record array: + + >>> x = x.view(np.recarray) + + >>> x.x + array([1., 3.]) + + >>> x.y + array([2, 4]) + + Create a new, empty record array: + + >>> np.recarray((2,), + ... dtype=[('x', int), ('y', float), ('z', int)]) #doctest: +SKIP + rec.array([(-1073741821, 1.2249118382103472e-301, 24547520), + (3471280, 1.2134086255804012e-316, 0)], + dtype=[('x', ' 0 or self.shape == (0,): + lst = sb.array2string( + self, separator=', ', prefix=prefix, suffix=',') + else: + # show zero-length shape unless it is (0,) + lst = f"[], shape={repr(self.shape)}" + + lf = '\n' + ' ' * len(prefix) + if _get_legacy_print_mode() <= 113: + lf = ' ' + lf # trailing space + return fmt % (lst, lf, repr_dtype) + + def field(self, attr, val=None): + if isinstance(attr, int): + names = ndarray.__getattribute__(self, 'dtype').names + attr = names[attr] + + fielddict = ndarray.__getattribute__(self, 'dtype').fields + + res = fielddict[attr][:2] + + if val is None: + obj = self.getfield(*res) + if obj.dtype.names is not None: + return obj + return obj.view(ndarray) + else: + return self.setfield(val, *res) + + +def _deprecate_shape_0_as_None(shape): + if shape == 0: + warnings.warn( + "Passing `shape=0` to have the shape be inferred is deprecated, " + "and in future will be equivalent to `shape=(0,)`. To infer " + "the shape and suppress this warning, pass `shape=None` instead.", + FutureWarning, stacklevel=3) + return None + else: + return shape + + +@set_module("numpy.rec") +def fromarrays(arrayList, dtype=None, shape=None, formats=None, + names=None, titles=None, aligned=False, byteorder=None): + """Create a record array from a (flat) list of arrays + + Parameters + ---------- + arrayList : list or tuple + List of array-like objects (such as lists, tuples, + and ndarrays). + dtype : data-type, optional + valid dtype for all arrays + shape : int or tuple of ints, optional + Shape of the resulting array. If not provided, inferred from + ``arrayList[0]``. + formats, names, titles, aligned, byteorder : + If `dtype` is ``None``, these arguments are passed to + `numpy.rec.format_parser` to construct a dtype. See that function for + detailed documentation. + + Returns + ------- + np.recarray + Record array consisting of given arrayList columns. + + Examples + -------- + >>> x1=np.array([1,2,3,4]) + >>> x2=np.array(['a','dd','xyz','12']) + >>> x3=np.array([1.1,2,3,4]) + >>> r = np.rec.fromarrays([x1,x2,x3],names='a,b,c') + >>> print(r[1]) + (2, 'dd', 2.0) # may vary + >>> x1[1]=34 + >>> r.a + array([1, 2, 3, 4]) + + >>> x1 = np.array([1, 2, 3, 4]) + >>> x2 = np.array(['a', 'dd', 'xyz', '12']) + >>> x3 = np.array([1.1, 2, 3,4]) + >>> r = np.rec.fromarrays( + ... [x1, x2, x3], + ... dtype=np.dtype([('a', np.int32), ('b', 'S3'), ('c', np.float32)])) + >>> r + rec.array([(1, b'a', 1.1), (2, b'dd', 2. ), (3, b'xyz', 3. ), + (4, b'12', 4. )], + dtype=[('a', ' 0: + shape = shape[:-nn] + + _array = recarray(shape, descr) + + # populate the record array (makes a copy) + for k, obj in enumerate(arrayList): + nn = descr[k].ndim + testshape = obj.shape[:obj.ndim - nn] + name = _names[k] + if testshape != shape: + raise ValueError(f'array-shape mismatch in array {k} ("{name}")') + + _array[name] = obj + + return _array + + +@set_module("numpy.rec") +def fromrecords(recList, dtype=None, shape=None, formats=None, names=None, + titles=None, aligned=False, byteorder=None): + """Create a recarray from a list of records in text form. + + Parameters + ---------- + recList : sequence + data in the same field may be heterogeneous - they will be promoted + to the highest data type. + dtype : data-type, optional + valid dtype for all arrays + shape : int or tuple of ints, optional + shape of each array. + formats, names, titles, aligned, byteorder : + If `dtype` is ``None``, these arguments are passed to + `numpy.format_parser` to construct a dtype. See that function for + detailed documentation. + + If both `formats` and `dtype` are None, then this will auto-detect + formats. Use list of tuples rather than list of lists for faster + processing. + + Returns + ------- + np.recarray + record array consisting of given recList rows. + + Examples + -------- + >>> r=np.rec.fromrecords([(456,'dbe',1.2),(2,'de',1.3)], + ... names='col1,col2,col3') + >>> print(r[0]) + (456, 'dbe', 1.2) + >>> r.col1 + array([456, 2]) + >>> r.col2 + array(['dbe', 'de'], dtype='>> import pickle + >>> pickle.loads(pickle.dumps(r)) + rec.array([(456, 'dbe', 1.2), ( 2, 'de', 1.3)], + dtype=[('col1', ' 1: + raise ValueError("Can only deal with 1-d array.") + _array = recarray(shape, descr) + for k in range(_array.size): + _array[k] = tuple(recList[k]) + # list of lists instead of list of tuples ? + # 2018-02-07, 1.14.1 + warnings.warn( + "fromrecords expected a list of tuples, may have received a list " + "of lists instead. In the future that will raise an error", + FutureWarning, stacklevel=2) + return _array + else: + if shape is not None and retval.shape != shape: + retval.shape = shape + + res = retval.view(recarray) + + return res + + +@set_module("numpy.rec") +def fromstring(datastring, dtype=None, shape=None, offset=0, formats=None, + names=None, titles=None, aligned=False, byteorder=None): + r"""Create a record array from binary data + + Note that despite the name of this function it does not accept `str` + instances. + + Parameters + ---------- + datastring : bytes-like + Buffer of binary data + dtype : data-type, optional + Valid dtype for all arrays + shape : int or tuple of ints, optional + Shape of each array. + offset : int, optional + Position in the buffer to start reading from. + formats, names, titles, aligned, byteorder : + If `dtype` is ``None``, these arguments are passed to + `numpy.format_parser` to construct a dtype. See that function for + detailed documentation. + + + Returns + ------- + np.recarray + Record array view into the data in datastring. This will be readonly + if `datastring` is readonly. + + See Also + -------- + numpy.frombuffer + + Examples + -------- + >>> a = b'\x01\x02\x03abc' + >>> np.rec.fromstring(a, dtype='u1,u1,u1,S3') + rec.array([(1, 2, 3, b'abc')], + dtype=[('f0', 'u1'), ('f1', 'u1'), ('f2', 'u1'), ('f3', 'S3')]) + + >>> grades_dtype = [('Name', (np.str_, 10)), ('Marks', np.float64), + ... ('GradeLevel', np.int32)] + >>> grades_array = np.array([('Sam', 33.3, 3), ('Mike', 44.4, 5), + ... ('Aadi', 66.6, 6)], dtype=grades_dtype) + >>> np.rec.fromstring(grades_array.tobytes(), dtype=grades_dtype) + rec.array([('Sam', 33.3, 3), ('Mike', 44.4, 5), ('Aadi', 66.6, 6)], + dtype=[('Name', '>> s = '\x01\x02\x03abc' + >>> np.rec.fromstring(s, dtype='u1,u1,u1,S3') + Traceback (most recent call last): + ... + TypeError: a bytes-like object is required, not 'str' + """ + + if dtype is None and formats is None: + raise TypeError("fromstring() needs a 'dtype' or 'formats' argument") + + if dtype is not None: + descr = sb.dtype(dtype) + else: + descr = format_parser(formats, names, titles, aligned, byteorder).dtype + + itemsize = descr.itemsize + + # NumPy 1.19.0, 2020-01-01 + shape = _deprecate_shape_0_as_None(shape) + + if shape in (None, -1): + shape = (len(datastring) - offset) // itemsize + + _array = recarray(shape, descr, buf=datastring, offset=offset) + return _array + +def get_remaining_size(fd): + pos = fd.tell() + try: + fd.seek(0, 2) + return fd.tell() - pos + finally: + fd.seek(pos, 0) + + +@set_module("numpy.rec") +def fromfile(fd, dtype=None, shape=None, offset=0, formats=None, + names=None, titles=None, aligned=False, byteorder=None): + """Create an array from binary file data + + Parameters + ---------- + fd : str or file type + If file is a string or a path-like object then that file is opened, + else it is assumed to be a file object. The file object must + support random access (i.e. it must have tell and seek methods). + dtype : data-type, optional + valid dtype for all arrays + shape : int or tuple of ints, optional + shape of each array. + offset : int, optional + Position in the file to start reading from. + formats, names, titles, aligned, byteorder : + If `dtype` is ``None``, these arguments are passed to + `numpy.format_parser` to construct a dtype. See that function for + detailed documentation + + Returns + ------- + np.recarray + record array consisting of data enclosed in file. + + Examples + -------- + >>> from tempfile import TemporaryFile + >>> a = np.empty(10,dtype='f8,i4,a5') + >>> a[5] = (0.5,10,'abcde') + >>> + >>> fd=TemporaryFile() + >>> a = a.view(a.dtype.newbyteorder('<')) + >>> a.tofile(fd) + >>> + >>> _ = fd.seek(0) + >>> r=np.rec.fromfile(fd, formats='f8,i4,a5', shape=10, + ... byteorder='<') + >>> print(r[5]) + (0.5, 10, b'abcde') + >>> r.shape + (10,) + """ + + if dtype is None and formats is None: + raise TypeError("fromfile() needs a 'dtype' or 'formats' argument") + + # NumPy 1.19.0, 2020-01-01 + shape = _deprecate_shape_0_as_None(shape) + + if shape is None: + shape = (-1,) + elif isinstance(shape, int): + shape = (shape,) + + if hasattr(fd, 'readinto'): + # GH issue 2504. fd supports io.RawIOBase or io.BufferedIOBase + # interface. Example of fd: gzip, BytesIO, BufferedReader + # file already opened + ctx = nullcontext(fd) + else: + # open file + ctx = open(os.fspath(fd), 'rb') + + with ctx as fd: + if offset > 0: + fd.seek(offset, 1) + size = get_remaining_size(fd) + + if dtype is not None: + descr = sb.dtype(dtype) + else: + descr = format_parser( + formats, names, titles, aligned, byteorder + ).dtype + + itemsize = descr.itemsize + + shapeprod = sb.array(shape).prod(dtype=nt.intp) + shapesize = shapeprod * itemsize + if shapesize < 0: + shape = list(shape) + shape[shape.index(-1)] = size // -shapesize + shape = tuple(shape) + shapeprod = sb.array(shape).prod(dtype=nt.intp) + + nbytes = shapeprod * itemsize + + if nbytes > size: + raise ValueError( + "Not enough bytes left in file for specified " + "shape and type." + ) + + # create the array + _array = recarray(shape, descr) + nbytesread = fd.readinto(_array.data) + if nbytesread != nbytes: + raise OSError("Didn't read as many bytes as expected") + + return _array + + +@set_module("numpy.rec") +def array(obj, dtype=None, shape=None, offset=0, strides=None, formats=None, + names=None, titles=None, aligned=False, byteorder=None, copy=True): + """ + Construct a record array from a wide-variety of objects. + + A general-purpose record array constructor that dispatches to the + appropriate `recarray` creation function based on the inputs (see Notes). + + Parameters + ---------- + obj : any + Input object. See Notes for details on how various input types are + treated. + dtype : data-type, optional + Valid dtype for array. + shape : int or tuple of ints, optional + Shape of each array. + offset : int, optional + Position in the file or buffer to start reading from. + strides : tuple of ints, optional + Buffer (`buf`) is interpreted according to these strides (strides + define how many bytes each array element, row, column, etc. + occupy in memory). + formats, names, titles, aligned, byteorder : + If `dtype` is ``None``, these arguments are passed to + `numpy.format_parser` to construct a dtype. See that function for + detailed documentation. + copy : bool, optional + Whether to copy the input object (True), or to use a reference instead. + This option only applies when the input is an ndarray or recarray. + Defaults to True. + + Returns + ------- + np.recarray + Record array created from the specified object. + + Notes + ----- + If `obj` is ``None``, then call the `~numpy.recarray` constructor. If + `obj` is a string, then call the `fromstring` constructor. If `obj` is a + list or a tuple, then if the first object is an `~numpy.ndarray`, call + `fromarrays`, otherwise call `fromrecords`. If `obj` is a + `~numpy.recarray`, then make a copy of the data in the recarray + (if ``copy=True``) and use the new formats, names, and titles. If `obj` + is a file, then call `fromfile`. Finally, if obj is an `ndarray`, then + return ``obj.view(recarray)``, making a copy of the data if ``copy=True``. + + Examples + -------- + >>> a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) + >>> a + array([[1, 2, 3], + [4, 5, 6], + [7, 8, 9]]) + + >>> np.rec.array(a) + rec.array([[1, 2, 3], + [4, 5, 6], + [7, 8, 9]], + dtype=int64) + + >>> b = [(1, 1), (2, 4), (3, 9)] + >>> c = np.rec.array(b, formats = ['i2', 'f2'], names = ('x', 'y')) + >>> c + rec.array([(1, 1.), (2, 4.), (3, 9.)], + dtype=[('x', '>> c.x + array([1, 2, 3], dtype=int16) + + >>> c.y + array([1., 4., 9.], dtype=float16) + + >>> r = np.rec.array(['abc','def'], names=['col1','col2']) + >>> print(r.col1) + abc + + >>> r.col1 + array('abc', dtype='>> r.col2 + array('def', dtype=' object: ... + def tell(self, /) -> int: ... + def readinto(self, buffer: memoryview, /) -> int: ... + +### + +# exported in `numpy.rec` +class record(np.void): + def __getattribute__(self, attr: str) -> Any: ... + def __setattr__(self, attr: str, val: ArrayLike) -> None: ... + def pprint(self) -> str: ... + @overload + def __getitem__(self, key: str | SupportsIndex) -> Any: ... + @overload + def __getitem__(self, key: list[str]) -> record: ... + +# exported in `numpy.rec` +class recarray(np.ndarray[_ShapeT_co, _DTypeT_co]): + __name__: ClassVar[Literal["record"]] = "record" + __module__: Literal["numpy"] = "numpy" + @overload + def __new__( + subtype, + shape: _ShapeLike, + dtype: None = None, + buf: _SupportsBuffer | None = None, + offset: SupportsIndex = 0, + strides: _ShapeLike | None = None, + *, + formats: DTypeLike, + names: str | Sequence[str] | None = None, + titles: str | Sequence[str] | None = None, + byteorder: _ByteOrder | None = None, + aligned: bool = False, + order: _OrderKACF = "C", + ) -> _RecArray[record]: ... + @overload + def __new__( + subtype, + shape: _ShapeLike, + dtype: DTypeLike, + buf: _SupportsBuffer | None = None, + offset: SupportsIndex = 0, + strides: _ShapeLike | None = None, + formats: None = None, + names: None = None, + titles: None = None, + byteorder: None = None, + aligned: Literal[False] = False, + order: _OrderKACF = "C", + ) -> _RecArray[Any]: ... + def __array_finalize__(self, /, obj: object) -> None: ... + def __getattribute__(self, attr: str, /) -> Any: ... + def __setattr__(self, attr: str, val: ArrayLike, /) -> None: ... + + # + @overload + def field(self, /, attr: int | str, val: ArrayLike) -> None: ... + @overload + def field(self, /, attr: int | str, val: None = None) -> Any: ... + +# exported in `numpy.rec` +class format_parser: + dtype: np.dtype[np.void] + def __init__( + self, + /, + formats: DTypeLike, + names: str | Sequence[str] | None, + titles: str | Sequence[str] | None, + aligned: bool = False, + byteorder: _ByteOrder | None = None, + ) -> None: ... + +# exported in `numpy.rec` +@overload +def fromarrays( + arrayList: Iterable[ArrayLike], + dtype: DTypeLike | None = None, + shape: _ShapeLike | None = None, + formats: None = None, + names: None = None, + titles: None = None, + aligned: bool = False, + byteorder: None = None, +) -> _RecArray[Any]: ... +@overload +def fromarrays( + arrayList: Iterable[ArrayLike], + dtype: None = None, + shape: _ShapeLike | None = None, + *, + formats: DTypeLike, + names: str | Sequence[str] | None = None, + titles: str | Sequence[str] | None = None, + aligned: bool = False, + byteorder: _ByteOrder | None = None, +) -> _RecArray[record]: ... + +@overload +def fromrecords( + recList: _ArrayLikeVoid_co | tuple[object, ...] | _NestedSequence[tuple[object, ...]], + dtype: DTypeLike | None = None, + shape: _ShapeLike | None = None, + formats: None = None, + names: None = None, + titles: None = None, + aligned: bool = False, + byteorder: None = None, +) -> _RecArray[record]: ... +@overload +def fromrecords( + recList: _ArrayLikeVoid_co | tuple[object, ...] | _NestedSequence[tuple[object, ...]], + dtype: None = None, + shape: _ShapeLike | None = None, + *, + formats: DTypeLike, + names: str | Sequence[str] | None = None, + titles: str | Sequence[str] | None = None, + aligned: bool = False, + byteorder: _ByteOrder | None = None, +) -> _RecArray[record]: ... + +# exported in `numpy.rec` +@overload +def fromstring( + datastring: _SupportsBuffer, + dtype: DTypeLike, + shape: _ShapeLike | None = None, + offset: int = 0, + formats: None = None, + names: None = None, + titles: None = None, + aligned: bool = False, + byteorder: None = None, +) -> _RecArray[record]: ... +@overload +def fromstring( + datastring: _SupportsBuffer, + dtype: None = None, + shape: _ShapeLike | None = None, + offset: int = 0, + *, + formats: DTypeLike, + names: str | Sequence[str] | None = None, + titles: str | Sequence[str] | None = None, + aligned: bool = False, + byteorder: _ByteOrder | None = None, +) -> _RecArray[record]: ... + +# exported in `numpy.rec` +@overload +def fromfile( + fd: StrOrBytesPath | _SupportsReadInto, + dtype: DTypeLike, + shape: _ShapeLike | None = None, + offset: int = 0, + formats: None = None, + names: None = None, + titles: None = None, + aligned: bool = False, + byteorder: None = None, +) -> _RecArray[Any]: ... +@overload +def fromfile( + fd: StrOrBytesPath | _SupportsReadInto, + dtype: None = None, + shape: _ShapeLike | None = None, + offset: int = 0, + *, + formats: DTypeLike, + names: str | Sequence[str] | None = None, + titles: str | Sequence[str] | None = None, + aligned: bool = False, + byteorder: _ByteOrder | None = None, +) -> _RecArray[record]: ... + +# exported in `numpy.rec` +@overload +def array( + obj: _ScalarT | NDArray[_ScalarT], + dtype: None = None, + shape: _ShapeLike | None = None, + offset: int = 0, + strides: tuple[int, ...] | None = None, + formats: None = None, + names: None = None, + titles: None = None, + aligned: bool = False, + byteorder: None = None, + copy: bool = True, +) -> _RecArray[_ScalarT]: ... +@overload +def array( + obj: ArrayLike, + dtype: DTypeLike, + shape: _ShapeLike | None = None, + offset: int = 0, + strides: tuple[int, ...] | None = None, + formats: None = None, + names: None = None, + titles: None = None, + aligned: bool = False, + byteorder: None = None, + copy: bool = True, +) -> _RecArray[Any]: ... +@overload +def array( + obj: ArrayLike, + dtype: None = None, + shape: _ShapeLike | None = None, + offset: int = 0, + strides: tuple[int, ...] | None = None, + *, + formats: DTypeLike, + names: str | Sequence[str] | None = None, + titles: str | Sequence[str] | None = None, + aligned: bool = False, + byteorder: _ByteOrder | None = None, + copy: bool = True, +) -> _RecArray[record]: ... +@overload +def array( + obj: None, + dtype: DTypeLike, + shape: _ShapeLike, + offset: int = 0, + strides: tuple[int, ...] | None = None, + formats: None = None, + names: None = None, + titles: None = None, + aligned: bool = False, + byteorder: None = None, + copy: bool = True, +) -> _RecArray[Any]: ... +@overload +def array( + obj: None, + dtype: None = None, + *, + shape: _ShapeLike, + offset: int = 0, + strides: tuple[int, ...] | None = None, + formats: DTypeLike, + names: str | Sequence[str] | None = None, + titles: str | Sequence[str] | None = None, + aligned: bool = False, + byteorder: _ByteOrder | None = None, + copy: bool = True, +) -> _RecArray[record]: ... +@overload +def array( + obj: _SupportsReadInto, + dtype: DTypeLike, + shape: _ShapeLike | None = None, + offset: int = 0, + strides: tuple[int, ...] | None = None, + formats: None = None, + names: None = None, + titles: None = None, + aligned: bool = False, + byteorder: None = None, + copy: bool = True, +) -> _RecArray[Any]: ... +@overload +def array( + obj: _SupportsReadInto, + dtype: None = None, + shape: _ShapeLike | None = None, + offset: int = 0, + strides: tuple[int, ...] | None = None, + *, + formats: DTypeLike, + names: str | Sequence[str] | None = None, + titles: str | Sequence[str] | None = None, + aligned: bool = False, + byteorder: _ByteOrder | None = None, + copy: bool = True, +) -> _RecArray[record]: ... + +# exported in `numpy.rec` +def find_duplicate(list: Iterable[_T]) -> list[_T]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/shape_base.py b/.venv/lib/python3.12/site-packages/numpy/_core/shape_base.py new file mode 100644 index 0000000..c2a0f0d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/shape_base.py @@ -0,0 +1,998 @@ +__all__ = ['atleast_1d', 'atleast_2d', 'atleast_3d', 'block', 'hstack', + 'stack', 'unstack', 'vstack'] + +import functools +import itertools +import operator + +from . import fromnumeric as _from_nx +from . import numeric as _nx +from . import overrides +from .multiarray import array, asanyarray, normalize_axis_index + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy') + + +def _atleast_1d_dispatcher(*arys): + return arys + + +@array_function_dispatch(_atleast_1d_dispatcher) +def atleast_1d(*arys): + """ + Convert inputs to arrays with at least one dimension. + + Scalar inputs are converted to 1-dimensional arrays, whilst + higher-dimensional inputs are preserved. + + Parameters + ---------- + arys1, arys2, ... : array_like + One or more input arrays. + + Returns + ------- + ret : ndarray + An array, or tuple of arrays, each with ``a.ndim >= 1``. + Copies are made only if necessary. + + See Also + -------- + atleast_2d, atleast_3d + + Examples + -------- + >>> import numpy as np + >>> np.atleast_1d(1.0) + array([1.]) + + >>> x = np.arange(9.0).reshape(3,3) + >>> np.atleast_1d(x) + array([[0., 1., 2.], + [3., 4., 5.], + [6., 7., 8.]]) + >>> np.atleast_1d(x) is x + True + + >>> np.atleast_1d(1, [3, 4]) + (array([1]), array([3, 4])) + + """ + if len(arys) == 1: + result = asanyarray(arys[0]) + if result.ndim == 0: + result = result.reshape(1) + return result + res = [] + for ary in arys: + result = asanyarray(ary) + if result.ndim == 0: + result = result.reshape(1) + res.append(result) + return tuple(res) + + +def _atleast_2d_dispatcher(*arys): + return arys + + +@array_function_dispatch(_atleast_2d_dispatcher) +def atleast_2d(*arys): + """ + View inputs as arrays with at least two dimensions. + + Parameters + ---------- + arys1, arys2, ... : array_like + One or more array-like sequences. Non-array inputs are converted + to arrays. Arrays that already have two or more dimensions are + preserved. + + Returns + ------- + res, res2, ... : ndarray + An array, or tuple of arrays, each with ``a.ndim >= 2``. + Copies are avoided where possible, and views with two or more + dimensions are returned. + + See Also + -------- + atleast_1d, atleast_3d + + Examples + -------- + >>> import numpy as np + >>> np.atleast_2d(3.0) + array([[3.]]) + + >>> x = np.arange(3.0) + >>> np.atleast_2d(x) + array([[0., 1., 2.]]) + >>> np.atleast_2d(x).base is x + True + + >>> np.atleast_2d(1, [1, 2], [[1, 2]]) + (array([[1]]), array([[1, 2]]), array([[1, 2]])) + + """ + res = [] + for ary in arys: + ary = asanyarray(ary) + if ary.ndim == 0: + result = ary.reshape(1, 1) + elif ary.ndim == 1: + result = ary[_nx.newaxis, :] + else: + result = ary + res.append(result) + if len(res) == 1: + return res[0] + else: + return tuple(res) + + +def _atleast_3d_dispatcher(*arys): + return arys + + +@array_function_dispatch(_atleast_3d_dispatcher) +def atleast_3d(*arys): + """ + View inputs as arrays with at least three dimensions. + + Parameters + ---------- + arys1, arys2, ... : array_like + One or more array-like sequences. Non-array inputs are converted to + arrays. Arrays that already have three or more dimensions are + preserved. + + Returns + ------- + res1, res2, ... : ndarray + An array, or tuple of arrays, each with ``a.ndim >= 3``. Copies are + avoided where possible, and views with three or more dimensions are + returned. For example, a 1-D array of shape ``(N,)`` becomes a view + of shape ``(1, N, 1)``, and a 2-D array of shape ``(M, N)`` becomes a + view of shape ``(M, N, 1)``. + + See Also + -------- + atleast_1d, atleast_2d + + Examples + -------- + >>> import numpy as np + >>> np.atleast_3d(3.0) + array([[[3.]]]) + + >>> x = np.arange(3.0) + >>> np.atleast_3d(x).shape + (1, 3, 1) + + >>> x = np.arange(12.0).reshape(4,3) + >>> np.atleast_3d(x).shape + (4, 3, 1) + >>> np.atleast_3d(x).base is x.base # x is a reshape, so not base itself + True + + >>> for arr in np.atleast_3d([1, 2], [[1, 2]], [[[1, 2]]]): + ... print(arr, arr.shape) # doctest: +SKIP + ... + [[[1] + [2]]] (1, 2, 1) + [[[1] + [2]]] (1, 2, 1) + [[[1 2]]] (1, 1, 2) + + """ + res = [] + for ary in arys: + ary = asanyarray(ary) + if ary.ndim == 0: + result = ary.reshape(1, 1, 1) + elif ary.ndim == 1: + result = ary[_nx.newaxis, :, _nx.newaxis] + elif ary.ndim == 2: + result = ary[:, :, _nx.newaxis] + else: + result = ary + res.append(result) + if len(res) == 1: + return res[0] + else: + return tuple(res) + + +def _arrays_for_stack_dispatcher(arrays): + if not hasattr(arrays, "__getitem__"): + raise TypeError('arrays to stack must be passed as a "sequence" type ' + 'such as list or tuple.') + + return tuple(arrays) + + +def _vhstack_dispatcher(tup, *, dtype=None, casting=None): + return _arrays_for_stack_dispatcher(tup) + + +@array_function_dispatch(_vhstack_dispatcher) +def vstack(tup, *, dtype=None, casting="same_kind"): + """ + Stack arrays in sequence vertically (row wise). + + This is equivalent to concatenation along the first axis after 1-D arrays + of shape `(N,)` have been reshaped to `(1,N)`. Rebuilds arrays divided by + `vsplit`. + + This function makes most sense for arrays with up to 3 dimensions. For + instance, for pixel-data with a height (first axis), width (second axis), + and r/g/b channels (third axis). The functions `concatenate`, `stack` and + `block` provide more general stacking and concatenation operations. + + Parameters + ---------- + tup : sequence of ndarrays + The arrays must have the same shape along all but the first axis. + 1-D arrays must have the same length. In the case of a single + array_like input, it will be treated as a sequence of arrays; i.e., + each element along the zeroth axis is treated as a separate array. + + dtype : str or dtype + If provided, the destination array will have this dtype. Cannot be + provided together with `out`. + + .. versionadded:: 1.24 + + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional + Controls what kind of data casting may occur. Defaults to 'same_kind'. + + .. versionadded:: 1.24 + + Returns + ------- + stacked : ndarray + The array formed by stacking the given arrays, will be at least 2-D. + + See Also + -------- + concatenate : Join a sequence of arrays along an existing axis. + stack : Join a sequence of arrays along a new axis. + block : Assemble an nd-array from nested lists of blocks. + hstack : Stack arrays in sequence horizontally (column wise). + dstack : Stack arrays in sequence depth wise (along third axis). + column_stack : Stack 1-D arrays as columns into a 2-D array. + vsplit : Split an array into multiple sub-arrays vertically (row-wise). + unstack : Split an array into a tuple of sub-arrays along an axis. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([1, 2, 3]) + >>> b = np.array([4, 5, 6]) + >>> np.vstack((a,b)) + array([[1, 2, 3], + [4, 5, 6]]) + + >>> a = np.array([[1], [2], [3]]) + >>> b = np.array([[4], [5], [6]]) + >>> np.vstack((a,b)) + array([[1], + [2], + [3], + [4], + [5], + [6]]) + + """ + arrs = atleast_2d(*tup) + if not isinstance(arrs, tuple): + arrs = (arrs,) + return _nx.concatenate(arrs, 0, dtype=dtype, casting=casting) + + +@array_function_dispatch(_vhstack_dispatcher) +def hstack(tup, *, dtype=None, casting="same_kind"): + """ + Stack arrays in sequence horizontally (column wise). + + This is equivalent to concatenation along the second axis, except for 1-D + arrays where it concatenates along the first axis. Rebuilds arrays divided + by `hsplit`. + + This function makes most sense for arrays with up to 3 dimensions. For + instance, for pixel-data with a height (first axis), width (second axis), + and r/g/b channels (third axis). The functions `concatenate`, `stack` and + `block` provide more general stacking and concatenation operations. + + Parameters + ---------- + tup : sequence of ndarrays + The arrays must have the same shape along all but the second axis, + except 1-D arrays which can be any length. In the case of a single + array_like input, it will be treated as a sequence of arrays; i.e., + each element along the zeroth axis is treated as a separate array. + + dtype : str or dtype + If provided, the destination array will have this dtype. Cannot be + provided together with `out`. + + .. versionadded:: 1.24 + + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional + Controls what kind of data casting may occur. Defaults to 'same_kind'. + + .. versionadded:: 1.24 + + Returns + ------- + stacked : ndarray + The array formed by stacking the given arrays. + + See Also + -------- + concatenate : Join a sequence of arrays along an existing axis. + stack : Join a sequence of arrays along a new axis. + block : Assemble an nd-array from nested lists of blocks. + vstack : Stack arrays in sequence vertically (row wise). + dstack : Stack arrays in sequence depth wise (along third axis). + column_stack : Stack 1-D arrays as columns into a 2-D array. + hsplit : Split an array into multiple sub-arrays + horizontally (column-wise). + unstack : Split an array into a tuple of sub-arrays along an axis. + + Examples + -------- + >>> import numpy as np + >>> a = np.array((1,2,3)) + >>> b = np.array((4,5,6)) + >>> np.hstack((a,b)) + array([1, 2, 3, 4, 5, 6]) + >>> a = np.array([[1],[2],[3]]) + >>> b = np.array([[4],[5],[6]]) + >>> np.hstack((a,b)) + array([[1, 4], + [2, 5], + [3, 6]]) + + """ + arrs = atleast_1d(*tup) + if not isinstance(arrs, tuple): + arrs = (arrs,) + # As a special case, dimension 0 of 1-dimensional arrays is "horizontal" + if arrs and arrs[0].ndim == 1: + return _nx.concatenate(arrs, 0, dtype=dtype, casting=casting) + else: + return _nx.concatenate(arrs, 1, dtype=dtype, casting=casting) + + +def _stack_dispatcher(arrays, axis=None, out=None, *, + dtype=None, casting=None): + arrays = _arrays_for_stack_dispatcher(arrays) + if out is not None: + # optimize for the typical case where only arrays is provided + arrays = list(arrays) + arrays.append(out) + return arrays + + +@array_function_dispatch(_stack_dispatcher) +def stack(arrays, axis=0, out=None, *, dtype=None, casting="same_kind"): + """ + Join a sequence of arrays along a new axis. + + The ``axis`` parameter specifies the index of the new axis in the + dimensions of the result. For example, if ``axis=0`` it will be the first + dimension and if ``axis=-1`` it will be the last dimension. + + Parameters + ---------- + arrays : sequence of ndarrays + Each array must have the same shape. In the case of a single ndarray + array_like input, it will be treated as a sequence of arrays; i.e., + each element along the zeroth axis is treated as a separate array. + + axis : int, optional + The axis in the result array along which the input arrays are stacked. + + out : ndarray, optional + If provided, the destination to place the result. The shape must be + correct, matching that of what stack would have returned if no + out argument were specified. + + dtype : str or dtype + If provided, the destination array will have this dtype. Cannot be + provided together with `out`. + + .. versionadded:: 1.24 + + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional + Controls what kind of data casting may occur. Defaults to 'same_kind'. + + .. versionadded:: 1.24 + + + Returns + ------- + stacked : ndarray + The stacked array has one more dimension than the input arrays. + + See Also + -------- + concatenate : Join a sequence of arrays along an existing axis. + block : Assemble an nd-array from nested lists of blocks. + split : Split array into a list of multiple sub-arrays of equal size. + unstack : Split an array into a tuple of sub-arrays along an axis. + + Examples + -------- + >>> import numpy as np + >>> rng = np.random.default_rng() + >>> arrays = [rng.normal(size=(3,4)) for _ in range(10)] + >>> np.stack(arrays, axis=0).shape + (10, 3, 4) + + >>> np.stack(arrays, axis=1).shape + (3, 10, 4) + + >>> np.stack(arrays, axis=2).shape + (3, 4, 10) + + >>> a = np.array([1, 2, 3]) + >>> b = np.array([4, 5, 6]) + >>> np.stack((a, b)) + array([[1, 2, 3], + [4, 5, 6]]) + + >>> np.stack((a, b), axis=-1) + array([[1, 4], + [2, 5], + [3, 6]]) + + """ + arrays = [asanyarray(arr) for arr in arrays] + if not arrays: + raise ValueError('need at least one array to stack') + + shapes = {arr.shape for arr in arrays} + if len(shapes) != 1: + raise ValueError('all input arrays must have the same shape') + + result_ndim = arrays[0].ndim + 1 + axis = normalize_axis_index(axis, result_ndim) + + sl = (slice(None),) * axis + (_nx.newaxis,) + expanded_arrays = [arr[sl] for arr in arrays] + return _nx.concatenate(expanded_arrays, axis=axis, out=out, + dtype=dtype, casting=casting) + +def _unstack_dispatcher(x, /, *, axis=None): + return (x,) + +@array_function_dispatch(_unstack_dispatcher) +def unstack(x, /, *, axis=0): + """ + Split an array into a sequence of arrays along the given axis. + + The ``axis`` parameter specifies the dimension along which the array will + be split. For example, if ``axis=0`` (the default) it will be the first + dimension and if ``axis=-1`` it will be the last dimension. + + The result is a tuple of arrays split along ``axis``. + + .. versionadded:: 2.1.0 + + Parameters + ---------- + x : ndarray + The array to be unstacked. + axis : int, optional + Axis along which the array will be split. Default: ``0``. + + Returns + ------- + unstacked : tuple of ndarrays + The unstacked arrays. + + See Also + -------- + stack : Join a sequence of arrays along a new axis. + concatenate : Join a sequence of arrays along an existing axis. + block : Assemble an nd-array from nested lists of blocks. + split : Split array into a list of multiple sub-arrays of equal size. + + Notes + ----- + ``unstack`` serves as the reverse operation of :py:func:`stack`, i.e., + ``stack(unstack(x, axis=axis), axis=axis) == x``. + + This function is equivalent to ``tuple(np.moveaxis(x, axis, 0))``, since + iterating on an array iterates along the first axis. + + Examples + -------- + >>> arr = np.arange(24).reshape((2, 3, 4)) + >>> np.unstack(arr) + (array([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]), + array([[12, 13, 14, 15], + [16, 17, 18, 19], + [20, 21, 22, 23]])) + >>> np.unstack(arr, axis=1) + (array([[ 0, 1, 2, 3], + [12, 13, 14, 15]]), + array([[ 4, 5, 6, 7], + [16, 17, 18, 19]]), + array([[ 8, 9, 10, 11], + [20, 21, 22, 23]])) + >>> arr2 = np.stack(np.unstack(arr, axis=1), axis=1) + >>> arr2.shape + (2, 3, 4) + >>> np.all(arr == arr2) + np.True_ + + """ + if x.ndim == 0: + raise ValueError("Input array must be at least 1-d.") + return tuple(_nx.moveaxis(x, axis, 0)) + + +# Internal functions to eliminate the overhead of repeated dispatch in one of +# the two possible paths inside np.block. +# Use getattr to protect against __array_function__ being disabled. +_size = getattr(_from_nx.size, '__wrapped__', _from_nx.size) +_ndim = getattr(_from_nx.ndim, '__wrapped__', _from_nx.ndim) +_concatenate = getattr(_from_nx.concatenate, + '__wrapped__', _from_nx.concatenate) + + +def _block_format_index(index): + """ + Convert a list of indices ``[0, 1, 2]`` into ``"arrays[0][1][2]"``. + """ + idx_str = ''.join(f'[{i}]' for i in index if i is not None) + return 'arrays' + idx_str + + +def _block_check_depths_match(arrays, parent_index=[]): + """ + Recursive function checking that the depths of nested lists in `arrays` + all match. Mismatch raises a ValueError as described in the block + docstring below. + + The entire index (rather than just the depth) needs to be calculated + for each innermost list, in case an error needs to be raised, so that + the index of the offending list can be printed as part of the error. + + Parameters + ---------- + arrays : nested list of arrays + The arrays to check + parent_index : list of int + The full index of `arrays` within the nested lists passed to + `_block_check_depths_match` at the top of the recursion. + + Returns + ------- + first_index : list of int + The full index of an element from the bottom of the nesting in + `arrays`. If any element at the bottom is an empty list, this will + refer to it, and the last index along the empty axis will be None. + max_arr_ndim : int + The maximum of the ndims of the arrays nested in `arrays`. + final_size: int + The number of elements in the final array. This is used the motivate + the choice of algorithm used using benchmarking wisdom. + + """ + if isinstance(arrays, tuple): + # not strictly necessary, but saves us from: + # - more than one way to do things - no point treating tuples like + # lists + # - horribly confusing behaviour that results when tuples are + # treated like ndarray + raise TypeError( + f'{_block_format_index(parent_index)} is a tuple. ' + 'Only lists can be used to arrange blocks, and np.block does ' + 'not allow implicit conversion from tuple to ndarray.' + ) + elif isinstance(arrays, list) and len(arrays) > 0: + idxs_ndims = (_block_check_depths_match(arr, parent_index + [i]) + for i, arr in enumerate(arrays)) + + first_index, max_arr_ndim, final_size = next(idxs_ndims) + for index, ndim, size in idxs_ndims: + final_size += size + if ndim > max_arr_ndim: + max_arr_ndim = ndim + if len(index) != len(first_index): + raise ValueError( + "List depths are mismatched. First element was at " + f"depth {len(first_index)}, but there is an element at " + f"depth {len(index)} ({_block_format_index(index)})" + ) + # propagate our flag that indicates an empty list at the bottom + if index[-1] is None: + first_index = index + + return first_index, max_arr_ndim, final_size + elif isinstance(arrays, list) and len(arrays) == 0: + # We've 'bottomed out' on an empty list + return parent_index + [None], 0, 0 + else: + # We've 'bottomed out' - arrays is either a scalar or an array + size = _size(arrays) + return parent_index, _ndim(arrays), size + + +def _atleast_nd(a, ndim): + # Ensures `a` has at least `ndim` dimensions by prepending + # ones to `a.shape` as necessary + return array(a, ndmin=ndim, copy=None, subok=True) + + +def _accumulate(values): + return list(itertools.accumulate(values)) + + +def _concatenate_shapes(shapes, axis): + """Given array shapes, return the resulting shape and slices prefixes. + + These help in nested concatenation. + + Returns + ------- + shape: tuple of int + This tuple satisfies:: + + shape, _ = _concatenate_shapes([arr.shape for shape in arrs], axis) + shape == concatenate(arrs, axis).shape + + slice_prefixes: tuple of (slice(start, end), ) + For a list of arrays being concatenated, this returns the slice + in the larger array at axis that needs to be sliced into. + + For example, the following holds:: + + ret = concatenate([a, b, c], axis) + _, (sl_a, sl_b, sl_c) = concatenate_slices([a, b, c], axis) + + ret[(slice(None),) * axis + sl_a] == a + ret[(slice(None),) * axis + sl_b] == b + ret[(slice(None),) * axis + sl_c] == c + + These are called slice prefixes since they are used in the recursive + blocking algorithm to compute the left-most slices during the + recursion. Therefore, they must be prepended to rest of the slice + that was computed deeper in the recursion. + + These are returned as tuples to ensure that they can quickly be added + to existing slice tuple without creating a new tuple every time. + + """ + # Cache a result that will be reused. + shape_at_axis = [shape[axis] for shape in shapes] + + # Take a shape, any shape + first_shape = shapes[0] + first_shape_pre = first_shape[:axis] + first_shape_post = first_shape[axis + 1:] + + if any(shape[:axis] != first_shape_pre or + shape[axis + 1:] != first_shape_post for shape in shapes): + raise ValueError( + f'Mismatched array shapes in block along axis {axis}.') + + shape = (first_shape_pre + (sum(shape_at_axis),) + first_shape[axis + 1:]) + + offsets_at_axis = _accumulate(shape_at_axis) + slice_prefixes = [(slice(start, end),) + for start, end in zip([0] + offsets_at_axis, + offsets_at_axis)] + return shape, slice_prefixes + + +def _block_info_recursion(arrays, max_depth, result_ndim, depth=0): + """ + Returns the shape of the final array, along with a list + of slices and a list of arrays that can be used for assignment inside the + new array + + Parameters + ---------- + arrays : nested list of arrays + The arrays to check + max_depth : list of int + The number of nested lists + result_ndim : int + The number of dimensions in thefinal array. + + Returns + ------- + shape : tuple of int + The shape that the final array will take on. + slices: list of tuple of slices + The slices into the full array required for assignment. These are + required to be prepended with ``(Ellipsis, )`` to obtain to correct + final index. + arrays: list of ndarray + The data to assign to each slice of the full array + + """ + if depth < max_depth: + shapes, slices, arrays = zip( + *[_block_info_recursion(arr, max_depth, result_ndim, depth + 1) + for arr in arrays]) + + axis = result_ndim - max_depth + depth + shape, slice_prefixes = _concatenate_shapes(shapes, axis) + + # Prepend the slice prefix and flatten the slices + slices = [slice_prefix + the_slice + for slice_prefix, inner_slices in zip(slice_prefixes, slices) + for the_slice in inner_slices] + + # Flatten the array list + arrays = functools.reduce(operator.add, arrays) + + return shape, slices, arrays + else: + # We've 'bottomed out' - arrays is either a scalar or an array + # type(arrays) is not list + # Return the slice and the array inside a list to be consistent with + # the recursive case. + arr = _atleast_nd(arrays, result_ndim) + return arr.shape, [()], [arr] + + +def _block(arrays, max_depth, result_ndim, depth=0): + """ + Internal implementation of block based on repeated concatenation. + `arrays` is the argument passed to + block. `max_depth` is the depth of nested lists within `arrays` and + `result_ndim` is the greatest of the dimensions of the arrays in + `arrays` and the depth of the lists in `arrays` (see block docstring + for details). + """ + if depth < max_depth: + arrs = [_block(arr, max_depth, result_ndim, depth + 1) + for arr in arrays] + return _concatenate(arrs, axis=-(max_depth - depth)) + else: + # We've 'bottomed out' - arrays is either a scalar or an array + # type(arrays) is not list + return _atleast_nd(arrays, result_ndim) + + +def _block_dispatcher(arrays): + # Use type(...) is list to match the behavior of np.block(), which special + # cases list specifically rather than allowing for generic iterables or + # tuple. Also, we know that list.__array_function__ will never exist. + if isinstance(arrays, list): + for subarrays in arrays: + yield from _block_dispatcher(subarrays) + else: + yield arrays + + +@array_function_dispatch(_block_dispatcher) +def block(arrays): + """ + Assemble an nd-array from nested lists of blocks. + + Blocks in the innermost lists are concatenated (see `concatenate`) along + the last dimension (-1), then these are concatenated along the + second-last dimension (-2), and so on until the outermost list is reached. + + Blocks can be of any dimension, but will not be broadcasted using + the normal rules. Instead, leading axes of size 1 are inserted, + to make ``block.ndim`` the same for all blocks. This is primarily useful + for working with scalars, and means that code like ``np.block([v, 1])`` + is valid, where ``v.ndim == 1``. + + When the nested list is two levels deep, this allows block matrices to be + constructed from their components. + + Parameters + ---------- + arrays : nested list of array_like or scalars (but not tuples) + If passed a single ndarray or scalar (a nested list of depth 0), this + is returned unmodified (and not copied). + + Elements shapes must match along the appropriate axes (without + broadcasting), but leading 1s will be prepended to the shape as + necessary to make the dimensions match. + + Returns + ------- + block_array : ndarray + The array assembled from the given blocks. + + The dimensionality of the output is equal to the greatest of: + + * the dimensionality of all the inputs + * the depth to which the input list is nested + + Raises + ------ + ValueError + * If list depths are mismatched - for instance, ``[[a, b], c]`` is + illegal, and should be spelt ``[[a, b], [c]]`` + * If lists are empty - for instance, ``[[a, b], []]`` + + See Also + -------- + concatenate : Join a sequence of arrays along an existing axis. + stack : Join a sequence of arrays along a new axis. + vstack : Stack arrays in sequence vertically (row wise). + hstack : Stack arrays in sequence horizontally (column wise). + dstack : Stack arrays in sequence depth wise (along third axis). + column_stack : Stack 1-D arrays as columns into a 2-D array. + vsplit : Split an array into multiple sub-arrays vertically (row-wise). + unstack : Split an array into a tuple of sub-arrays along an axis. + + Notes + ----- + When called with only scalars, ``np.block`` is equivalent to an ndarray + call. So ``np.block([[1, 2], [3, 4]])`` is equivalent to + ``np.array([[1, 2], [3, 4]])``. + + This function does not enforce that the blocks lie on a fixed grid. + ``np.block([[a, b], [c, d]])`` is not restricted to arrays of the form:: + + AAAbb + AAAbb + cccDD + + But is also allowed to produce, for some ``a, b, c, d``:: + + AAAbb + AAAbb + cDDDD + + Since concatenation happens along the last axis first, `block` is *not* + capable of producing the following directly:: + + AAAbb + cccbb + cccDD + + Matlab's "square bracket stacking", ``[A, B, ...; p, q, ...]``, is + equivalent to ``np.block([[A, B, ...], [p, q, ...]])``. + + Examples + -------- + The most common use of this function is to build a block matrix: + + >>> import numpy as np + >>> A = np.eye(2) * 2 + >>> B = np.eye(3) * 3 + >>> np.block([ + ... [A, np.zeros((2, 3))], + ... [np.ones((3, 2)), B ] + ... ]) + array([[2., 0., 0., 0., 0.], + [0., 2., 0., 0., 0.], + [1., 1., 3., 0., 0.], + [1., 1., 0., 3., 0.], + [1., 1., 0., 0., 3.]]) + + With a list of depth 1, `block` can be used as `hstack`: + + >>> np.block([1, 2, 3]) # hstack([1, 2, 3]) + array([1, 2, 3]) + + >>> a = np.array([1, 2, 3]) + >>> b = np.array([4, 5, 6]) + >>> np.block([a, b, 10]) # hstack([a, b, 10]) + array([ 1, 2, 3, 4, 5, 6, 10]) + + >>> A = np.ones((2, 2), int) + >>> B = 2 * A + >>> np.block([A, B]) # hstack([A, B]) + array([[1, 1, 2, 2], + [1, 1, 2, 2]]) + + With a list of depth 2, `block` can be used in place of `vstack`: + + >>> a = np.array([1, 2, 3]) + >>> b = np.array([4, 5, 6]) + >>> np.block([[a], [b]]) # vstack([a, b]) + array([[1, 2, 3], + [4, 5, 6]]) + + >>> A = np.ones((2, 2), int) + >>> B = 2 * A + >>> np.block([[A], [B]]) # vstack([A, B]) + array([[1, 1], + [1, 1], + [2, 2], + [2, 2]]) + + It can also be used in place of `atleast_1d` and `atleast_2d`: + + >>> a = np.array(0) + >>> b = np.array([1]) + >>> np.block([a]) # atleast_1d(a) + array([0]) + >>> np.block([b]) # atleast_1d(b) + array([1]) + + >>> np.block([[a]]) # atleast_2d(a) + array([[0]]) + >>> np.block([[b]]) # atleast_2d(b) + array([[1]]) + + + """ + arrays, list_ndim, result_ndim, final_size = _block_setup(arrays) + + # It was found through benchmarking that making an array of final size + # around 256x256 was faster by straight concatenation on a + # i7-7700HQ processor and dual channel ram 2400MHz. + # It didn't seem to matter heavily on the dtype used. + # + # A 2D array using repeated concatenation requires 2 copies of the array. + # + # The fastest algorithm will depend on the ratio of CPU power to memory + # speed. + # One can monitor the results of the benchmark + # https://pv.github.io/numpy-bench/#bench_shape_base.Block2D.time_block2d + # to tune this parameter until a C version of the `_block_info_recursion` + # algorithm is implemented which would likely be faster than the python + # version. + if list_ndim * final_size > (2 * 512 * 512): + return _block_slicing(arrays, list_ndim, result_ndim) + else: + return _block_concatenate(arrays, list_ndim, result_ndim) + + +# These helper functions are mostly used for testing. +# They allow us to write tests that directly call `_block_slicing` +# or `_block_concatenate` without blocking large arrays to force the wisdom +# to trigger the desired path. +def _block_setup(arrays): + """ + Returns + (`arrays`, list_ndim, result_ndim, final_size) + """ + bottom_index, arr_ndim, final_size = _block_check_depths_match(arrays) + list_ndim = len(bottom_index) + if bottom_index and bottom_index[-1] is None: + raise ValueError( + f'List at {_block_format_index(bottom_index)} cannot be empty' + ) + result_ndim = max(arr_ndim, list_ndim) + return arrays, list_ndim, result_ndim, final_size + + +def _block_slicing(arrays, list_ndim, result_ndim): + shape, slices, arrays = _block_info_recursion( + arrays, list_ndim, result_ndim) + dtype = _nx.result_type(*[arr.dtype for arr in arrays]) + + # Test preferring F only in the case that all input arrays are F + F_order = all(arr.flags['F_CONTIGUOUS'] for arr in arrays) + C_order = all(arr.flags['C_CONTIGUOUS'] for arr in arrays) + order = 'F' if F_order and not C_order else 'C' + result = _nx.empty(shape=shape, dtype=dtype, order=order) + # Note: In a c implementation, the function + # PyArray_CreateMultiSortedStridePerm could be used for more advanced + # guessing of the desired order. + + for the_slice, arr in zip(slices, arrays): + result[(Ellipsis,) + the_slice] = arr + return result + + +def _block_concatenate(arrays, list_ndim, result_ndim): + result = _block(arrays, list_ndim, result_ndim) + if list_ndim == 0: + # Catch an edge case where _block returns a view because + # `arrays` is a single numpy array and not a list of numpy arrays. + # This might copy scalars or lists twice, but this isn't a likely + # usecase for those interested in performance + result = result.copy() + return result diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/shape_base.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/shape_base.pyi new file mode 100644 index 0000000..c2c9c96 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/shape_base.pyi @@ -0,0 +1,175 @@ +from collections.abc import Sequence +from typing import Any, SupportsIndex, TypeVar, overload + +from numpy import _CastingKind, generic +from numpy._typing import ArrayLike, DTypeLike, NDArray, _ArrayLike, _DTypeLike + +__all__ = [ + "atleast_1d", + "atleast_2d", + "atleast_3d", + "block", + "hstack", + "stack", + "unstack", + "vstack", +] + +_ScalarT = TypeVar("_ScalarT", bound=generic) +_ScalarT1 = TypeVar("_ScalarT1", bound=generic) +_ScalarT2 = TypeVar("_ScalarT2", bound=generic) +_ArrayT = TypeVar("_ArrayT", bound=NDArray[Any]) + +### + +@overload +def atleast_1d(a0: _ArrayLike[_ScalarT], /) -> NDArray[_ScalarT]: ... +@overload +def atleast_1d(a0: _ArrayLike[_ScalarT1], a1: _ArrayLike[_ScalarT2], /) -> tuple[NDArray[_ScalarT1], NDArray[_ScalarT2]]: ... +@overload +def atleast_1d(a0: _ArrayLike[_ScalarT], a1: _ArrayLike[_ScalarT], /, *arys: _ArrayLike[_ScalarT]) -> tuple[NDArray[_ScalarT], ...]: ... +@overload +def atleast_1d(a0: ArrayLike, /) -> NDArray[Any]: ... +@overload +def atleast_1d(a0: ArrayLike, a1: ArrayLike, /) -> tuple[NDArray[Any], NDArray[Any]]: ... +@overload +def atleast_1d(a0: ArrayLike, a1: ArrayLike, /, *ai: ArrayLike) -> tuple[NDArray[Any], ...]: ... + +# +@overload +def atleast_2d(a0: _ArrayLike[_ScalarT], /) -> NDArray[_ScalarT]: ... +@overload +def atleast_2d(a0: _ArrayLike[_ScalarT1], a1: _ArrayLike[_ScalarT2], /) -> tuple[NDArray[_ScalarT1], NDArray[_ScalarT2]]: ... +@overload +def atleast_2d(a0: _ArrayLike[_ScalarT], a1: _ArrayLike[_ScalarT], /, *arys: _ArrayLike[_ScalarT]) -> tuple[NDArray[_ScalarT], ...]: ... +@overload +def atleast_2d(a0: ArrayLike, /) -> NDArray[Any]: ... +@overload +def atleast_2d(a0: ArrayLike, a1: ArrayLike, /) -> tuple[NDArray[Any], NDArray[Any]]: ... +@overload +def atleast_2d(a0: ArrayLike, a1: ArrayLike, /, *ai: ArrayLike) -> tuple[NDArray[Any], ...]: ... + +# +@overload +def atleast_3d(a0: _ArrayLike[_ScalarT], /) -> NDArray[_ScalarT]: ... +@overload +def atleast_3d(a0: _ArrayLike[_ScalarT1], a1: _ArrayLike[_ScalarT2], /) -> tuple[NDArray[_ScalarT1], NDArray[_ScalarT2]]: ... +@overload +def atleast_3d(a0: _ArrayLike[_ScalarT], a1: _ArrayLike[_ScalarT], /, *arys: _ArrayLike[_ScalarT]) -> tuple[NDArray[_ScalarT], ...]: ... +@overload +def atleast_3d(a0: ArrayLike, /) -> NDArray[Any]: ... +@overload +def atleast_3d(a0: ArrayLike, a1: ArrayLike, /) -> tuple[NDArray[Any], NDArray[Any]]: ... +@overload +def atleast_3d(a0: ArrayLike, a1: ArrayLike, /, *ai: ArrayLike) -> tuple[NDArray[Any], ...]: ... + +# +@overload +def vstack( + tup: Sequence[_ArrayLike[_ScalarT]], + *, + dtype: None = ..., + casting: _CastingKind = ... +) -> NDArray[_ScalarT]: ... +@overload +def vstack( + tup: Sequence[ArrayLike], + *, + dtype: _DTypeLike[_ScalarT], + casting: _CastingKind = ... +) -> NDArray[_ScalarT]: ... +@overload +def vstack( + tup: Sequence[ArrayLike], + *, + dtype: DTypeLike = ..., + casting: _CastingKind = ... +) -> NDArray[Any]: ... + +@overload +def hstack( + tup: Sequence[_ArrayLike[_ScalarT]], + *, + dtype: None = ..., + casting: _CastingKind = ... +) -> NDArray[_ScalarT]: ... +@overload +def hstack( + tup: Sequence[ArrayLike], + *, + dtype: _DTypeLike[_ScalarT], + casting: _CastingKind = ... +) -> NDArray[_ScalarT]: ... +@overload +def hstack( + tup: Sequence[ArrayLike], + *, + dtype: DTypeLike = ..., + casting: _CastingKind = ... +) -> NDArray[Any]: ... + +@overload +def stack( + arrays: Sequence[_ArrayLike[_ScalarT]], + axis: SupportsIndex = ..., + out: None = ..., + *, + dtype: None = ..., + casting: _CastingKind = ... +) -> NDArray[_ScalarT]: ... +@overload +def stack( + arrays: Sequence[ArrayLike], + axis: SupportsIndex = ..., + out: None = ..., + *, + dtype: _DTypeLike[_ScalarT], + casting: _CastingKind = ... +) -> NDArray[_ScalarT]: ... +@overload +def stack( + arrays: Sequence[ArrayLike], + axis: SupportsIndex = ..., + out: None = ..., + *, + dtype: DTypeLike = ..., + casting: _CastingKind = ... +) -> NDArray[Any]: ... +@overload +def stack( + arrays: Sequence[ArrayLike], + axis: SupportsIndex, + out: _ArrayT, + *, + dtype: DTypeLike | None = None, + casting: _CastingKind = "same_kind", +) -> _ArrayT: ... +@overload +def stack( + arrays: Sequence[ArrayLike], + axis: SupportsIndex = 0, + *, + out: _ArrayT, + dtype: DTypeLike | None = None, + casting: _CastingKind = "same_kind", +) -> _ArrayT: ... + +@overload +def unstack( + array: _ArrayLike[_ScalarT], + /, + *, + axis: int = ..., +) -> tuple[NDArray[_ScalarT], ...]: ... +@overload +def unstack( + array: ArrayLike, + /, + *, + axis: int = ..., +) -> tuple[NDArray[Any], ...]: ... + +@overload +def block(arrays: _ArrayLike[_ScalarT]) -> NDArray[_ScalarT]: ... +@overload +def block(arrays: ArrayLike) -> NDArray[Any]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/strings.py b/.venv/lib/python3.12/site-packages/numpy/_core/strings.py new file mode 100644 index 0000000..b4dc165 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/strings.py @@ -0,0 +1,1823 @@ +""" +This module contains a set of functions for vectorized string +operations. +""" + +import functools +import sys + +import numpy as np +from numpy import ( + add, + equal, + greater, + greater_equal, + less, + less_equal, + not_equal, +) +from numpy import ( + multiply as _multiply_ufunc, +) +from numpy._core.multiarray import _vec_string +from numpy._core.overrides import array_function_dispatch, set_module +from numpy._core.umath import ( + _center, + _expandtabs, + _expandtabs_length, + _ljust, + _lstrip_chars, + _lstrip_whitespace, + _partition, + _partition_index, + _replace, + _rjust, + _rpartition, + _rpartition_index, + _rstrip_chars, + _rstrip_whitespace, + _slice, + _strip_chars, + _strip_whitespace, + _zfill, + isalnum, + isalpha, + isdecimal, + isdigit, + islower, + isnumeric, + isspace, + istitle, + isupper, + str_len, +) +from numpy._core.umath import ( + count as _count_ufunc, +) +from numpy._core.umath import ( + endswith as _endswith_ufunc, +) +from numpy._core.umath import ( + find as _find_ufunc, +) +from numpy._core.umath import ( + index as _index_ufunc, +) +from numpy._core.umath import ( + rfind as _rfind_ufunc, +) +from numpy._core.umath import ( + rindex as _rindex_ufunc, +) +from numpy._core.umath import ( + startswith as _startswith_ufunc, +) + + +def _override___module__(): + for ufunc in [ + isalnum, isalpha, isdecimal, isdigit, islower, isnumeric, isspace, + istitle, isupper, str_len, + ]: + ufunc.__module__ = "numpy.strings" + ufunc.__qualname__ = ufunc.__name__ + + +_override___module__() + + +__all__ = [ + # UFuncs + "equal", "not_equal", "less", "less_equal", "greater", "greater_equal", + "add", "multiply", "isalpha", "isdigit", "isspace", "isalnum", "islower", + "isupper", "istitle", "isdecimal", "isnumeric", "str_len", "find", + "rfind", "index", "rindex", "count", "startswith", "endswith", "lstrip", + "rstrip", "strip", "replace", "expandtabs", "center", "ljust", "rjust", + "zfill", "partition", "rpartition", "slice", + + # _vec_string - Will gradually become ufuncs as well + "upper", "lower", "swapcase", "capitalize", "title", + + # _vec_string - Will probably not become ufuncs + "mod", "decode", "encode", "translate", + + # Removed from namespace until behavior has been crystallized + # "join", "split", "rsplit", "splitlines", +] + + +MAX = np.iinfo(np.int64).max + +array_function_dispatch = functools.partial( + array_function_dispatch, module='numpy.strings') + + +def _get_num_chars(a): + """ + Helper function that returns the number of characters per field in + a string or unicode array. This is to abstract out the fact that + for a unicode array this is itemsize / 4. + """ + if issubclass(a.dtype.type, np.str_): + return a.itemsize // 4 + return a.itemsize + + +def _to_bytes_or_str_array(result, output_dtype_like): + """ + Helper function to cast a result back into an array + with the appropriate dtype if an object array must be used + as an intermediary. + """ + output_dtype_like = np.asarray(output_dtype_like) + if result.size == 0: + # Calling asarray & tolist in an empty array would result + # in losing shape information + return result.astype(output_dtype_like.dtype) + ret = np.asarray(result.tolist()) + if isinstance(output_dtype_like.dtype, np.dtypes.StringDType): + return ret.astype(type(output_dtype_like.dtype)) + return ret.astype(type(output_dtype_like.dtype)(_get_num_chars(ret))) + + +def _clean_args(*args): + """ + Helper function for delegating arguments to Python string + functions. + + Many of the Python string operations that have optional arguments + do not use 'None' to indicate a default value. In these cases, + we need to remove all None arguments, and those following them. + """ + newargs = [] + for chk in args: + if chk is None: + break + newargs.append(chk) + return newargs + + +def _multiply_dispatcher(a, i): + return (a,) + + +@set_module("numpy.strings") +@array_function_dispatch(_multiply_dispatcher) +def multiply(a, i): + """ + Return (a * i), that is string multiple concatenation, + element-wise. + + Values in ``i`` of less than 0 are treated as 0 (which yields an + empty string). + + Parameters + ---------- + a : array_like, with ``StringDType``, ``bytes_`` or ``str_`` dtype + + i : array_like, with any integer dtype + + Returns + ------- + out : ndarray + Output array of ``StringDType``, ``bytes_`` or ``str_`` dtype, + depending on input types + + Examples + -------- + >>> import numpy as np + >>> a = np.array(["a", "b", "c"]) + >>> np.strings.multiply(a, 3) + array(['aaa', 'bbb', 'ccc'], dtype='>> i = np.array([1, 2, 3]) + >>> np.strings.multiply(a, i) + array(['a', 'bb', 'ccc'], dtype='>> np.strings.multiply(np.array(['a']), i) + array(['a', 'aa', 'aaa'], dtype='>> a = np.array(['a', 'b', 'c', 'd', 'e', 'f']).reshape((2, 3)) + >>> np.strings.multiply(a, 3) + array([['aaa', 'bbb', 'ccc'], + ['ddd', 'eee', 'fff']], dtype='>> np.strings.multiply(a, i) + array([['a', 'bb', 'ccc'], + ['d', 'ee', 'fff']], dtype=' sys.maxsize / np.maximum(i, 1)): + raise OverflowError("Overflow encountered in string multiply") + + buffersizes = a_len * i + out_dtype = f"{a.dtype.char}{buffersizes.max()}" + out = np.empty_like(a, shape=buffersizes.shape, dtype=out_dtype) + return _multiply_ufunc(a, i, out=out) + + +def _mod_dispatcher(a, values): + return (a, values) + + +@set_module("numpy.strings") +@array_function_dispatch(_mod_dispatcher) +def mod(a, values): + """ + Return (a % i), that is pre-Python 2.6 string formatting + (interpolation), element-wise for a pair of array_likes of str + or unicode. + + Parameters + ---------- + a : array_like, with `np.bytes_` or `np.str_` dtype + + values : array_like of values + These values will be element-wise interpolated into the string. + + Returns + ------- + out : ndarray + Output array of ``StringDType``, ``bytes_`` or ``str_`` dtype, + depending on input types + + Examples + -------- + >>> import numpy as np + >>> a = np.array(["NumPy is a %s library"]) + >>> np.strings.mod(a, values=["Python"]) + array(['NumPy is a Python library'], dtype='>> a = np.array([b'%d bytes', b'%d bits']) + >>> values = np.array([8, 64]) + >>> np.strings.mod(a, values) + array([b'8 bytes', b'64 bits'], dtype='|S7') + + """ + return _to_bytes_or_str_array( + _vec_string(a, np.object_, '__mod__', (values,)), a) + + +@set_module("numpy.strings") +def find(a, sub, start=0, end=None): + """ + For each element, return the lowest index in the string where + substring ``sub`` is found, such that ``sub`` is contained in the + range [``start``, ``end``). + + Parameters + ---------- + a : array_like, with ``StringDType``, ``bytes_`` or ``str_`` dtype + + sub : array_like, with `np.bytes_` or `np.str_` dtype + The substring to search for. + + start, end : array_like, with any integer dtype + The range to look in, interpreted as in slice notation. + + Returns + ------- + y : ndarray + Output array of ints + + See Also + -------- + str.find + + Examples + -------- + >>> import numpy as np + >>> a = np.array(["NumPy is a Python library"]) + >>> np.strings.find(a, "Python") + array([11]) + + """ + end = end if end is not None else MAX + return _find_ufunc(a, sub, start, end) + + +@set_module("numpy.strings") +def rfind(a, sub, start=0, end=None): + """ + For each element, return the highest index in the string where + substring ``sub`` is found, such that ``sub`` is contained in the + range [``start``, ``end``). + + Parameters + ---------- + a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype + + sub : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype + The substring to search for. + + start, end : array_like, with any integer dtype + The range to look in, interpreted as in slice notation. + + Returns + ------- + y : ndarray + Output array of ints + + See Also + -------- + str.rfind + + Examples + -------- + >>> import numpy as np + >>> a = np.array(["Computer Science"]) + >>> np.strings.rfind(a, "Science", start=0, end=None) + array([9]) + >>> np.strings.rfind(a, "Science", start=0, end=8) + array([-1]) + >>> b = np.array(["Computer Science", "Science"]) + >>> np.strings.rfind(b, "Science", start=0, end=None) + array([9, 0]) + + """ + end = end if end is not None else MAX + return _rfind_ufunc(a, sub, start, end) + + +@set_module("numpy.strings") +def index(a, sub, start=0, end=None): + """ + Like `find`, but raises :exc:`ValueError` when the substring is not found. + + Parameters + ---------- + a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype + + sub : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype + + start, end : array_like, with any integer dtype, optional + + Returns + ------- + out : ndarray + Output array of ints. + + See Also + -------- + find, str.index + + Examples + -------- + >>> import numpy as np + >>> a = np.array(["Computer Science"]) + >>> np.strings.index(a, "Science", start=0, end=None) + array([9]) + + """ + end = end if end is not None else MAX + return _index_ufunc(a, sub, start, end) + + +@set_module("numpy.strings") +def rindex(a, sub, start=0, end=None): + """ + Like `rfind`, but raises :exc:`ValueError` when the substring `sub` is + not found. + + Parameters + ---------- + a : array-like, with `np.bytes_` or `np.str_` dtype + + sub : array-like, with `np.bytes_` or `np.str_` dtype + + start, end : array-like, with any integer dtype, optional + + Returns + ------- + out : ndarray + Output array of ints. + + See Also + -------- + rfind, str.rindex + + Examples + -------- + >>> a = np.array(["Computer Science"]) + >>> np.strings.rindex(a, "Science", start=0, end=None) + array([9]) + + """ + end = end if end is not None else MAX + return _rindex_ufunc(a, sub, start, end) + + +@set_module("numpy.strings") +def count(a, sub, start=0, end=None): + """ + Returns an array with the number of non-overlapping occurrences of + substring ``sub`` in the range [``start``, ``end``). + + Parameters + ---------- + a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype + + sub : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype + The substring to search for. + + start, end : array_like, with any integer dtype + The range to look in, interpreted as in slice notation. + + Returns + ------- + y : ndarray + Output array of ints + + See Also + -------- + str.count + + Examples + -------- + >>> import numpy as np + >>> c = np.array(['aAaAaA', ' aA ', 'abBABba']) + >>> c + array(['aAaAaA', ' aA ', 'abBABba'], dtype='>> np.strings.count(c, 'A') + array([3, 1, 1]) + >>> np.strings.count(c, 'aA') + array([3, 1, 0]) + >>> np.strings.count(c, 'A', start=1, end=4) + array([2, 1, 1]) + >>> np.strings.count(c, 'A', start=1, end=3) + array([1, 0, 0]) + + """ + end = end if end is not None else MAX + return _count_ufunc(a, sub, start, end) + + +@set_module("numpy.strings") +def startswith(a, prefix, start=0, end=None): + """ + Returns a boolean array which is `True` where the string element + in ``a`` starts with ``prefix``, otherwise `False`. + + Parameters + ---------- + a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype + + prefix : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype + + start, end : array_like, with any integer dtype + With ``start``, test beginning at that position. With ``end``, + stop comparing at that position. + + Returns + ------- + out : ndarray + Output array of bools + + See Also + -------- + str.startswith + + Examples + -------- + >>> import numpy as np + >>> s = np.array(['foo', 'bar']) + >>> s + array(['foo', 'bar'], dtype='>> np.strings.startswith(s, 'fo') + array([True, False]) + >>> np.strings.startswith(s, 'o', start=1, end=2) + array([True, False]) + + """ + end = end if end is not None else MAX + return _startswith_ufunc(a, prefix, start, end) + + +@set_module("numpy.strings") +def endswith(a, suffix, start=0, end=None): + """ + Returns a boolean array which is `True` where the string element + in ``a`` ends with ``suffix``, otherwise `False`. + + Parameters + ---------- + a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype + + suffix : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype + + start, end : array_like, with any integer dtype + With ``start``, test beginning at that position. With ``end``, + stop comparing at that position. + + Returns + ------- + out : ndarray + Output array of bools + + See Also + -------- + str.endswith + + Examples + -------- + >>> import numpy as np + >>> s = np.array(['foo', 'bar']) + >>> s + array(['foo', 'bar'], dtype='>> np.strings.endswith(s, 'ar') + array([False, True]) + >>> np.strings.endswith(s, 'a', start=1, end=2) + array([False, True]) + + """ + end = end if end is not None else MAX + return _endswith_ufunc(a, suffix, start, end) + + +def _code_dispatcher(a, encoding=None, errors=None): + return (a,) + + +@set_module("numpy.strings") +@array_function_dispatch(_code_dispatcher) +def decode(a, encoding=None, errors=None): + r""" + Calls :meth:`bytes.decode` element-wise. + + The set of available codecs comes from the Python standard library, + and may be extended at runtime. For more information, see the + :mod:`codecs` module. + + Parameters + ---------- + a : array_like, with ``bytes_`` dtype + + encoding : str, optional + The name of an encoding + + errors : str, optional + Specifies how to handle encoding errors + + Returns + ------- + out : ndarray + + See Also + -------- + :py:meth:`bytes.decode` + + Notes + ----- + The type of the result will depend on the encoding specified. + + Examples + -------- + >>> import numpy as np + >>> c = np.array([b'\x81\xc1\x81\xc1\x81\xc1', b'@@\x81\xc1@@', + ... b'\x81\x82\xc2\xc1\xc2\x82\x81']) + >>> c + array([b'\x81\xc1\x81\xc1\x81\xc1', b'@@\x81\xc1@@', + b'\x81\x82\xc2\xc1\xc2\x82\x81'], dtype='|S7') + >>> np.strings.decode(c, encoding='cp037') + array(['aAaAaA', ' aA ', 'abBABba'], dtype='>> import numpy as np + >>> a = np.array(['aAaAaA', ' aA ', 'abBABba']) + >>> np.strings.encode(a, encoding='cp037') + array([b'\x81\xc1\x81\xc1\x81\xc1', b'@@\x81\xc1@@', + b'\x81\x82\xc2\xc1\xc2\x82\x81'], dtype='|S7') + + """ + return _to_bytes_or_str_array( + _vec_string(a, np.object_, 'encode', _clean_args(encoding, errors)), + np.bytes_(b'')) + + +def _expandtabs_dispatcher(a, tabsize=None): + return (a,) + + +@set_module("numpy.strings") +@array_function_dispatch(_expandtabs_dispatcher) +def expandtabs(a, tabsize=8): + """ + Return a copy of each string element where all tab characters are + replaced by one or more spaces. + + Calls :meth:`str.expandtabs` element-wise. + + Return a copy of each string element where all tab characters are + replaced by one or more spaces, depending on the current column + and the given `tabsize`. The column number is reset to zero after + each newline occurring in the string. This doesn't understand other + non-printing characters or escape sequences. + + Parameters + ---------- + a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype + Input array + tabsize : int, optional + Replace tabs with `tabsize` number of spaces. If not given defaults + to 8 spaces. + + Returns + ------- + out : ndarray + Output array of ``StringDType``, ``bytes_`` or ``str_`` dtype, + depending on input type + + See Also + -------- + str.expandtabs + + Examples + -------- + >>> import numpy as np + >>> a = np.array(['\t\tHello\tworld']) + >>> np.strings.expandtabs(a, tabsize=4) # doctest: +SKIP + array([' Hello world'], dtype='>> import numpy as np + >>> c = np.array(['a1b2','1b2a','b2a1','2a1b']); c + array(['a1b2', '1b2a', 'b2a1', '2a1b'], dtype='>> np.strings.center(c, width=9) + array([' a1b2 ', ' 1b2a ', ' b2a1 ', ' 2a1b '], dtype='>> np.strings.center(c, width=9, fillchar='*') + array(['***a1b2**', '***1b2a**', '***b2a1**', '***2a1b**'], dtype='>> np.strings.center(c, width=1) + array(['a1b2', '1b2a', 'b2a1', '2a1b'], dtype='>> import numpy as np + >>> c = np.array(['aAaAaA', ' aA ', 'abBABba']) + >>> np.strings.ljust(c, width=3) + array(['aAaAaA', ' aA ', 'abBABba'], dtype='>> np.strings.ljust(c, width=9) + array(['aAaAaA ', ' aA ', 'abBABba '], dtype='>> import numpy as np + >>> a = np.array(['aAaAaA', ' aA ', 'abBABba']) + >>> np.strings.rjust(a, width=3) + array(['aAaAaA', ' aA ', 'abBABba'], dtype='>> np.strings.rjust(a, width=9) + array([' aAaAaA', ' aA ', ' abBABba'], dtype='>> import numpy as np + >>> np.strings.zfill(['1', '-1', '+1'], 3) + array(['001', '-01', '+01'], dtype='>> import numpy as np + >>> c = np.array(['aAaAaA', ' aA ', 'abBABba']) + >>> c + array(['aAaAaA', ' aA ', 'abBABba'], dtype='>> np.strings.lstrip(c, 'a') + array(['AaAaA', ' aA ', 'bBABba'], dtype='>> np.strings.lstrip(c, 'A') # leaves c unchanged + array(['aAaAaA', ' aA ', 'abBABba'], dtype='>> (np.strings.lstrip(c, ' ') == np.strings.lstrip(c, '')).all() + np.False_ + >>> (np.strings.lstrip(c, ' ') == np.strings.lstrip(c)).all() + np.True_ + + """ + if chars is None: + return _lstrip_whitespace(a) + return _lstrip_chars(a, chars) + + +@set_module("numpy.strings") +def rstrip(a, chars=None): + """ + For each element in `a`, return a copy with the trailing characters + removed. + + Parameters + ---------- + a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype + chars : scalar with the same dtype as ``a``, optional + The ``chars`` argument is a string specifying the set of + characters to be removed. If ``None``, the ``chars`` + argument defaults to removing whitespace. The ``chars`` argument + is not a prefix or suffix; rather, all combinations of its + values are stripped. + + Returns + ------- + out : ndarray + Output array of ``StringDType``, ``bytes_`` or ``str_`` dtype, + depending on input types + + See Also + -------- + str.rstrip + + Examples + -------- + >>> import numpy as np + >>> c = np.array(['aAaAaA', 'abBABba']) + >>> c + array(['aAaAaA', 'abBABba'], dtype='>> np.strings.rstrip(c, 'a') + array(['aAaAaA', 'abBABb'], dtype='>> np.strings.rstrip(c, 'A') + array(['aAaAa', 'abBABba'], dtype='>> import numpy as np + >>> c = np.array(['aAaAaA', ' aA ', 'abBABba']) + >>> c + array(['aAaAaA', ' aA ', 'abBABba'], dtype='>> np.strings.strip(c) + array(['aAaAaA', 'aA', 'abBABba'], dtype='>> np.strings.strip(c, 'a') + array(['AaAaA', ' aA ', 'bBABb'], dtype='>> np.strings.strip(c, 'A') + array(['aAaAa', ' aA ', 'abBABba'], dtype='>> import numpy as np + >>> c = np.array(['a1b c', '1bca', 'bca1']); c + array(['a1b c', '1bca', 'bca1'], dtype='>> np.strings.upper(c) + array(['A1B C', '1BCA', 'BCA1'], dtype='>> import numpy as np + >>> c = np.array(['A1B C', '1BCA', 'BCA1']); c + array(['A1B C', '1BCA', 'BCA1'], dtype='>> np.strings.lower(c) + array(['a1b c', '1bca', 'bca1'], dtype='>> import numpy as np + >>> c=np.array(['a1B c','1b Ca','b Ca1','cA1b'],'S5'); c + array(['a1B c', '1b Ca', 'b Ca1', 'cA1b'], + dtype='|S5') + >>> np.strings.swapcase(c) + array(['A1b C', '1B cA', 'B cA1', 'Ca1B'], + dtype='|S5') + + """ + a_arr = np.asarray(a) + return _vec_string(a_arr, a_arr.dtype, 'swapcase') + + +@set_module("numpy.strings") +@array_function_dispatch(_unary_op_dispatcher) +def capitalize(a): + """ + Return a copy of ``a`` with only the first character of each element + capitalized. + + Calls :meth:`str.capitalize` element-wise. + + For byte strings, this method is locale-dependent. + + Parameters + ---------- + a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype + Input array of strings to capitalize. + + Returns + ------- + out : ndarray + Output array of ``StringDType``, ``bytes_`` or ``str_`` dtype, + depending on input types + + See Also + -------- + str.capitalize + + Examples + -------- + >>> import numpy as np + >>> c = np.array(['a1b2','1b2a','b2a1','2a1b'],'S4'); c + array(['a1b2', '1b2a', 'b2a1', '2a1b'], + dtype='|S4') + >>> np.strings.capitalize(c) + array(['A1b2', '1b2a', 'B2a1', '2a1b'], + dtype='|S4') + + """ + a_arr = np.asarray(a) + return _vec_string(a_arr, a_arr.dtype, 'capitalize') + + +@set_module("numpy.strings") +@array_function_dispatch(_unary_op_dispatcher) +def title(a): + """ + Return element-wise title cased version of string or unicode. + + Title case words start with uppercase characters, all remaining cased + characters are lowercase. + + Calls :meth:`str.title` element-wise. + + For 8-bit strings, this method is locale-dependent. + + Parameters + ---------- + a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype + Input array. + + Returns + ------- + out : ndarray + Output array of ``StringDType``, ``bytes_`` or ``str_`` dtype, + depending on input types + + See Also + -------- + str.title + + Examples + -------- + >>> import numpy as np + >>> c=np.array(['a1b c','1b ca','b ca1','ca1b'],'S5'); c + array(['a1b c', '1b ca', 'b ca1', 'ca1b'], + dtype='|S5') + >>> np.strings.title(c) + array(['A1B C', '1B Ca', 'B Ca1', 'Ca1B'], + dtype='|S5') + + """ + a_arr = np.asarray(a) + return _vec_string(a_arr, a_arr.dtype, 'title') + + +def _replace_dispatcher(a, old, new, count=None): + return (a,) + + +@set_module("numpy.strings") +@array_function_dispatch(_replace_dispatcher) +def replace(a, old, new, count=-1): + """ + For each element in ``a``, return a copy of the string with + occurrences of substring ``old`` replaced by ``new``. + + Parameters + ---------- + a : array_like, with ``bytes_`` or ``str_`` dtype + + old, new : array_like, with ``bytes_`` or ``str_`` dtype + + count : array_like, with ``int_`` dtype + If the optional argument ``count`` is given, only the first + ``count`` occurrences are replaced. + + Returns + ------- + out : ndarray + Output array of ``StringDType``, ``bytes_`` or ``str_`` dtype, + depending on input types + + See Also + -------- + str.replace + + Examples + -------- + >>> import numpy as np + >>> a = np.array(["That is a mango", "Monkeys eat mangos"]) + >>> np.strings.replace(a, 'mango', 'banana') + array(['That is a banana', 'Monkeys eat bananas'], dtype='>> a = np.array(["The dish is fresh", "This is it"]) + >>> np.strings.replace(a, 'is', 'was') + array(['The dwash was fresh', 'Thwas was it'], dtype='>> import numpy as np + >>> np.strings.join('-', 'osd') # doctest: +SKIP + array('o-s-d', dtype='>> np.strings.join(['-', '.'], ['ghc', 'osd']) # doctest: +SKIP + array(['g-h-c', 'o.s.d'], dtype='>> import numpy as np + >>> x = np.array("Numpy is nice!") + >>> np.strings.split(x, " ") # doctest: +SKIP + array(list(['Numpy', 'is', 'nice!']), dtype=object) # doctest: +SKIP + + >>> np.strings.split(x, " ", 1) # doctest: +SKIP + array(list(['Numpy', 'is nice!']), dtype=object) # doctest: +SKIP + + See Also + -------- + str.split, rsplit + + """ + # This will return an array of lists of different sizes, so we + # leave it as an object array + return _vec_string( + a, np.object_, 'split', [sep] + _clean_args(maxsplit)) + + +@array_function_dispatch(_split_dispatcher) +def _rsplit(a, sep=None, maxsplit=None): + """ + For each element in `a`, return a list of the words in the + string, using `sep` as the delimiter string. + + Calls :meth:`str.rsplit` element-wise. + + Except for splitting from the right, `rsplit` + behaves like `split`. + + Parameters + ---------- + a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype + + sep : str or unicode, optional + If `sep` is not specified or None, any whitespace string + is a separator. + maxsplit : int, optional + If `maxsplit` is given, at most `maxsplit` splits are done, + the rightmost ones. + + Returns + ------- + out : ndarray + Array of list objects + + See Also + -------- + str.rsplit, split + + Examples + -------- + >>> import numpy as np + >>> a = np.array(['aAaAaA', 'abBABba']) + >>> np.strings.rsplit(a, 'A') # doctest: +SKIP + array([list(['a', 'a', 'a', '']), # doctest: +SKIP + list(['abB', 'Bba'])], dtype=object) # doctest: +SKIP + + """ + # This will return an array of lists of different sizes, so we + # leave it as an object array + return _vec_string( + a, np.object_, 'rsplit', [sep] + _clean_args(maxsplit)) + + +def _splitlines_dispatcher(a, keepends=None): + return (a,) + + +@array_function_dispatch(_splitlines_dispatcher) +def _splitlines(a, keepends=None): + """ + For each element in `a`, return a list of the lines in the + element, breaking at line boundaries. + + Calls :meth:`str.splitlines` element-wise. + + Parameters + ---------- + a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype + + keepends : bool, optional + Line breaks are not included in the resulting list unless + keepends is given and true. + + Returns + ------- + out : ndarray + Array of list objects + + See Also + -------- + str.splitlines + + Examples + -------- + >>> np.char.splitlines("first line\\nsecond line") + array(list(['first line', 'second line']), dtype=object) + >>> a = np.array(["first\\nsecond", "third\\nfourth"]) + >>> np.char.splitlines(a) + array([list(['first', 'second']), list(['third', 'fourth'])], dtype=object) + + """ + return _vec_string( + a, np.object_, 'splitlines', _clean_args(keepends)) + + +def _partition_dispatcher(a, sep): + return (a,) + + +@set_module("numpy.strings") +@array_function_dispatch(_partition_dispatcher) +def partition(a, sep): + """ + Partition each element in ``a`` around ``sep``. + + For each element in ``a``, split the element at the first + occurrence of ``sep``, and return a 3-tuple containing the part + before the separator, the separator itself, and the part after + the separator. If the separator is not found, the first item of + the tuple will contain the whole string, and the second and third + ones will be the empty string. + + Parameters + ---------- + a : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype + Input array + sep : array-like, with ``StringDType``, ``bytes_``, or ``str_`` dtype + Separator to split each string element in ``a``. + + Returns + ------- + out : 3-tuple: + - array with ``StringDType``, ``bytes_`` or ``str_`` dtype with the + part before the separator + - array with ``StringDType``, ``bytes_`` or ``str_`` dtype with the + separator + - array with ``StringDType``, ``bytes_`` or ``str_`` dtype with the + part after the separator + + See Also + -------- + str.partition + + Examples + -------- + >>> import numpy as np + >>> x = np.array(["Numpy is nice!"]) + >>> np.strings.partition(x, " ") + (array(['Numpy'], dtype='>> import numpy as np + >>> a = np.array(['aAaAaA', ' aA ', 'abBABba']) + >>> np.strings.rpartition(a, 'A') + (array(['aAaAa', ' a', 'abB'], dtype='>> import numpy as np + >>> a = np.array(['a1b c', '1bca', 'bca1']) + >>> table = a[0].maketrans('abc', '123') + >>> deletechars = ' ' + >>> np.char.translate(a, table, deletechars) + array(['112 3', '1231', '2311'], dtype='>> import numpy as np + >>> a = np.array(['hello', 'world']) + >>> np.strings.slice(a, 2) + array(['he', 'wo'], dtype='>> np.strings.slice(a, 1, 5, 2) + array(['el', 'ol'], dtype='>> np.strings.slice(a, np.array([1, 2]), np.array([4, 5])) + array(['ell', 'rld'], dtype='>> b = np.array(['hello world', 'γεια σου κόσμε', '你好世界', '👋 🌍'], + ... dtype=np.dtypes.StringDType()) + >>> np.strings.slice(b, -2) + array(['hello wor', 'γεια σου κόσ', '你好', '👋'], dtype=StringDType()) + + >>> np.strings.slice(b, [3, -10, 2, -3], [-1, -2, -1, 3]) + array(['lo worl', ' σου κόσ', '世', '👋 🌍'], dtype=StringDType()) + + >>> np.strings.slice(b, None, None, -1) + array(['dlrow olleh', 'εμσόκ υοσ αιεγ', '界世好你', '🌍 👋'], + dtype=StringDType()) + + """ + # Just like in the construction of a regular slice object, if only start + # is specified then start will become stop, see logic in slice_new. + if stop is None: + stop = start + start = None + + # adjust start, stop, step to be integers, see logic in PySlice_Unpack + if step is None: + step = 1 + step = np.asanyarray(step) + if not np.issubdtype(step.dtype, np.integer): + raise TypeError(f"unsupported type {step.dtype} for operand 'step'") + if np.any(step == 0): + raise ValueError("slice step cannot be zero") + + if start is None: + start = np.where(step < 0, np.iinfo(np.intp).max, 0) + + if stop is None: + stop = np.where(step < 0, np.iinfo(np.intp).min, np.iinfo(np.intp).max) + + return _slice(a, start, stop, step) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/strings.pyi b/.venv/lib/python3.12/site-packages/numpy/_core/strings.pyi new file mode 100644 index 0000000..b187ce7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/strings.pyi @@ -0,0 +1,511 @@ +from typing import TypeAlias, overload + +import numpy as np +from numpy._typing import NDArray, _AnyShape, _SupportsArray +from numpy._typing import _ArrayLikeAnyString_co as UST_co +from numpy._typing import _ArrayLikeBytes_co as S_co +from numpy._typing import _ArrayLikeInt_co as i_co +from numpy._typing import _ArrayLikeStr_co as U_co +from numpy._typing import _ArrayLikeString_co as T_co + +__all__ = [ + "add", + "capitalize", + "center", + "count", + "decode", + "encode", + "endswith", + "equal", + "expandtabs", + "find", + "greater", + "greater_equal", + "index", + "isalnum", + "isalpha", + "isdecimal", + "isdigit", + "islower", + "isnumeric", + "isspace", + "istitle", + "isupper", + "less", + "less_equal", + "ljust", + "lower", + "lstrip", + "mod", + "multiply", + "not_equal", + "partition", + "replace", + "rfind", + "rindex", + "rjust", + "rpartition", + "rstrip", + "startswith", + "str_len", + "strip", + "swapcase", + "title", + "translate", + "upper", + "zfill", + "slice", +] + +_StringDTypeArray: TypeAlias = np.ndarray[_AnyShape, np.dtypes.StringDType] +_StringDTypeSupportsArray: TypeAlias = _SupportsArray[np.dtypes.StringDType] +_StringDTypeOrUnicodeArray: TypeAlias = np.ndarray[_AnyShape, np.dtype[np.str_]] | _StringDTypeArray + +@overload +def equal(x1: U_co, x2: U_co) -> NDArray[np.bool]: ... +@overload +def equal(x1: S_co, x2: S_co) -> NDArray[np.bool]: ... +@overload +def equal(x1: T_co, x2: T_co) -> NDArray[np.bool]: ... + +@overload +def not_equal(x1: U_co, x2: U_co) -> NDArray[np.bool]: ... +@overload +def not_equal(x1: S_co, x2: S_co) -> NDArray[np.bool]: ... +@overload +def not_equal(x1: T_co, x2: T_co) -> NDArray[np.bool]: ... + +@overload +def greater_equal(x1: U_co, x2: U_co) -> NDArray[np.bool]: ... +@overload +def greater_equal(x1: S_co, x2: S_co) -> NDArray[np.bool]: ... +@overload +def greater_equal(x1: T_co, x2: T_co) -> NDArray[np.bool]: ... + +@overload +def less_equal(x1: U_co, x2: U_co) -> NDArray[np.bool]: ... +@overload +def less_equal(x1: S_co, x2: S_co) -> NDArray[np.bool]: ... +@overload +def less_equal(x1: T_co, x2: T_co) -> NDArray[np.bool]: ... + +@overload +def greater(x1: U_co, x2: U_co) -> NDArray[np.bool]: ... +@overload +def greater(x1: S_co, x2: S_co) -> NDArray[np.bool]: ... +@overload +def greater(x1: T_co, x2: T_co) -> NDArray[np.bool]: ... + +@overload +def less(x1: U_co, x2: U_co) -> NDArray[np.bool]: ... +@overload +def less(x1: S_co, x2: S_co) -> NDArray[np.bool]: ... +@overload +def less(x1: T_co, x2: T_co) -> NDArray[np.bool]: ... + +@overload +def add(x1: U_co, x2: U_co) -> NDArray[np.str_]: ... +@overload +def add(x1: S_co, x2: S_co) -> NDArray[np.bytes_]: ... +@overload +def add(x1: _StringDTypeSupportsArray, x2: _StringDTypeSupportsArray) -> _StringDTypeArray: ... +@overload +def add(x1: T_co, x2: T_co) -> _StringDTypeOrUnicodeArray: ... + +@overload +def multiply(a: U_co, i: i_co) -> NDArray[np.str_]: ... +@overload +def multiply(a: S_co, i: i_co) -> NDArray[np.bytes_]: ... +@overload +def multiply(a: _StringDTypeSupportsArray, i: i_co) -> _StringDTypeArray: ... +@overload +def multiply(a: T_co, i: i_co) -> _StringDTypeOrUnicodeArray: ... + +@overload +def mod(a: U_co, value: object) -> NDArray[np.str_]: ... +@overload +def mod(a: S_co, value: object) -> NDArray[np.bytes_]: ... +@overload +def mod(a: _StringDTypeSupportsArray, value: object) -> _StringDTypeArray: ... +@overload +def mod(a: T_co, value: object) -> _StringDTypeOrUnicodeArray: ... + +def isalpha(x: UST_co) -> NDArray[np.bool]: ... +def isalnum(a: UST_co) -> NDArray[np.bool]: ... +def isdigit(x: UST_co) -> NDArray[np.bool]: ... +def isspace(x: UST_co) -> NDArray[np.bool]: ... +def isdecimal(x: U_co | T_co) -> NDArray[np.bool]: ... +def isnumeric(x: U_co | T_co) -> NDArray[np.bool]: ... +def islower(a: UST_co) -> NDArray[np.bool]: ... +def istitle(a: UST_co) -> NDArray[np.bool]: ... +def isupper(a: UST_co) -> NDArray[np.bool]: ... + +def str_len(x: UST_co) -> NDArray[np.int_]: ... + +@overload +def find( + a: U_co, + sub: U_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.int_]: ... +@overload +def find( + a: S_co, + sub: S_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.int_]: ... +@overload +def find( + a: T_co, + sub: T_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.int_]: ... + +@overload +def rfind( + a: U_co, + sub: U_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.int_]: ... +@overload +def rfind( + a: S_co, + sub: S_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.int_]: ... +@overload +def rfind( + a: T_co, + sub: T_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.int_]: ... + +@overload +def index( + a: U_co, + sub: U_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.int_]: ... +@overload +def index( + a: S_co, + sub: S_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.int_]: ... +@overload +def index( + a: T_co, + sub: T_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.int_]: ... + +@overload +def rindex( + a: U_co, + sub: U_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.int_]: ... +@overload +def rindex( + a: S_co, + sub: S_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.int_]: ... +@overload +def rindex( + a: T_co, + sub: T_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.int_]: ... + +@overload +def count( + a: U_co, + sub: U_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.int_]: ... +@overload +def count( + a: S_co, + sub: S_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.int_]: ... +@overload +def count( + a: T_co, + sub: T_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.int_]: ... + +@overload +def startswith( + a: U_co, + prefix: U_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.bool]: ... +@overload +def startswith( + a: S_co, + prefix: S_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.bool]: ... +@overload +def startswith( + a: T_co, + prefix: T_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.bool]: ... + +@overload +def endswith( + a: U_co, + suffix: U_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.bool]: ... +@overload +def endswith( + a: S_co, + suffix: S_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.bool]: ... +@overload +def endswith( + a: T_co, + suffix: T_co, + start: i_co = ..., + end: i_co | None = ..., +) -> NDArray[np.bool]: ... + +def decode( + a: S_co, + encoding: str | None = None, + errors: str | None = None, +) -> NDArray[np.str_]: ... +def encode( + a: U_co | T_co, + encoding: str | None = None, + errors: str | None = None, +) -> NDArray[np.bytes_]: ... + +@overload +def expandtabs(a: U_co, tabsize: i_co = ...) -> NDArray[np.str_]: ... +@overload +def expandtabs(a: S_co, tabsize: i_co = ...) -> NDArray[np.bytes_]: ... +@overload +def expandtabs(a: _StringDTypeSupportsArray, tabsize: i_co = ...) -> _StringDTypeArray: ... +@overload +def expandtabs(a: T_co, tabsize: i_co = ...) -> _StringDTypeOrUnicodeArray: ... + +@overload +def center(a: U_co, width: i_co, fillchar: UST_co = " ") -> NDArray[np.str_]: ... +@overload +def center(a: S_co, width: i_co, fillchar: UST_co = " ") -> NDArray[np.bytes_]: ... +@overload +def center(a: _StringDTypeSupportsArray, width: i_co, fillchar: UST_co = " ") -> _StringDTypeArray: ... +@overload +def center(a: T_co, width: i_co, fillchar: UST_co = " ") -> _StringDTypeOrUnicodeArray: ... + +@overload +def ljust(a: U_co, width: i_co, fillchar: UST_co = " ") -> NDArray[np.str_]: ... +@overload +def ljust(a: S_co, width: i_co, fillchar: UST_co = " ") -> NDArray[np.bytes_]: ... +@overload +def ljust(a: _StringDTypeSupportsArray, width: i_co, fillchar: UST_co = " ") -> _StringDTypeArray: ... +@overload +def ljust(a: T_co, width: i_co, fillchar: UST_co = " ") -> _StringDTypeOrUnicodeArray: ... + +@overload +def rjust(a: U_co, width: i_co, fillchar: UST_co = " ") -> NDArray[np.str_]: ... +@overload +def rjust(a: S_co, width: i_co, fillchar: UST_co = " ") -> NDArray[np.bytes_]: ... +@overload +def rjust(a: _StringDTypeSupportsArray, width: i_co, fillchar: UST_co = " ") -> _StringDTypeArray: ... +@overload +def rjust(a: T_co, width: i_co, fillchar: UST_co = " ") -> _StringDTypeOrUnicodeArray: ... + +@overload +def lstrip(a: U_co, chars: U_co | None = None) -> NDArray[np.str_]: ... +@overload +def lstrip(a: S_co, chars: S_co | None = None) -> NDArray[np.bytes_]: ... +@overload +def lstrip(a: _StringDTypeSupportsArray, chars: T_co | None = None) -> _StringDTypeArray: ... +@overload +def lstrip(a: T_co, chars: T_co | None = None) -> _StringDTypeOrUnicodeArray: ... + +@overload +def rstrip(a: U_co, chars: U_co | None = None) -> NDArray[np.str_]: ... +@overload +def rstrip(a: S_co, chars: S_co | None = None) -> NDArray[np.bytes_]: ... +@overload +def rstrip(a: _StringDTypeSupportsArray, chars: T_co | None = None) -> _StringDTypeArray: ... +@overload +def rstrip(a: T_co, chars: T_co | None = None) -> _StringDTypeOrUnicodeArray: ... + +@overload +def strip(a: U_co, chars: U_co | None = None) -> NDArray[np.str_]: ... +@overload +def strip(a: S_co, chars: S_co | None = None) -> NDArray[np.bytes_]: ... +@overload +def strip(a: _StringDTypeSupportsArray, chars: T_co | None = None) -> _StringDTypeArray: ... +@overload +def strip(a: T_co, chars: T_co | None = None) -> _StringDTypeOrUnicodeArray: ... + +@overload +def zfill(a: U_co, width: i_co) -> NDArray[np.str_]: ... +@overload +def zfill(a: S_co, width: i_co) -> NDArray[np.bytes_]: ... +@overload +def zfill(a: _StringDTypeSupportsArray, width: i_co) -> _StringDTypeArray: ... +@overload +def zfill(a: T_co, width: i_co) -> _StringDTypeOrUnicodeArray: ... + +@overload +def upper(a: U_co) -> NDArray[np.str_]: ... +@overload +def upper(a: S_co) -> NDArray[np.bytes_]: ... +@overload +def upper(a: _StringDTypeSupportsArray) -> _StringDTypeArray: ... +@overload +def upper(a: T_co) -> _StringDTypeOrUnicodeArray: ... + +@overload +def lower(a: U_co) -> NDArray[np.str_]: ... +@overload +def lower(a: S_co) -> NDArray[np.bytes_]: ... +@overload +def lower(a: _StringDTypeSupportsArray) -> _StringDTypeArray: ... +@overload +def lower(a: T_co) -> _StringDTypeOrUnicodeArray: ... + +@overload +def swapcase(a: U_co) -> NDArray[np.str_]: ... +@overload +def swapcase(a: S_co) -> NDArray[np.bytes_]: ... +@overload +def swapcase(a: _StringDTypeSupportsArray) -> _StringDTypeArray: ... +@overload +def swapcase(a: T_co) -> _StringDTypeOrUnicodeArray: ... + +@overload +def capitalize(a: U_co) -> NDArray[np.str_]: ... +@overload +def capitalize(a: S_co) -> NDArray[np.bytes_]: ... +@overload +def capitalize(a: _StringDTypeSupportsArray) -> _StringDTypeArray: ... +@overload +def capitalize(a: T_co) -> _StringDTypeOrUnicodeArray: ... + +@overload +def title(a: U_co) -> NDArray[np.str_]: ... +@overload +def title(a: S_co) -> NDArray[np.bytes_]: ... +@overload +def title(a: _StringDTypeSupportsArray) -> _StringDTypeArray: ... +@overload +def title(a: T_co) -> _StringDTypeOrUnicodeArray: ... + +@overload +def replace( + a: U_co, + old: U_co, + new: U_co, + count: i_co = ..., +) -> NDArray[np.str_]: ... +@overload +def replace( + a: S_co, + old: S_co, + new: S_co, + count: i_co = ..., +) -> NDArray[np.bytes_]: ... +@overload +def replace( + a: _StringDTypeSupportsArray, + old: _StringDTypeSupportsArray, + new: _StringDTypeSupportsArray, + count: i_co = ..., +) -> _StringDTypeArray: ... +@overload +def replace( + a: T_co, + old: T_co, + new: T_co, + count: i_co = ..., +) -> _StringDTypeOrUnicodeArray: ... + +@overload +def partition(a: U_co, sep: U_co) -> NDArray[np.str_]: ... +@overload +def partition(a: S_co, sep: S_co) -> NDArray[np.bytes_]: ... +@overload +def partition(a: _StringDTypeSupportsArray, sep: _StringDTypeSupportsArray) -> _StringDTypeArray: ... +@overload +def partition(a: T_co, sep: T_co) -> _StringDTypeOrUnicodeArray: ... + +@overload +def rpartition(a: U_co, sep: U_co) -> NDArray[np.str_]: ... +@overload +def rpartition(a: S_co, sep: S_co) -> NDArray[np.bytes_]: ... +@overload +def rpartition(a: _StringDTypeSupportsArray, sep: _StringDTypeSupportsArray) -> _StringDTypeArray: ... +@overload +def rpartition(a: T_co, sep: T_co) -> _StringDTypeOrUnicodeArray: ... + +@overload +def translate( + a: U_co, + table: str, + deletechars: str | None = None, +) -> NDArray[np.str_]: ... +@overload +def translate( + a: S_co, + table: str, + deletechars: str | None = None, +) -> NDArray[np.bytes_]: ... +@overload +def translate( + a: _StringDTypeSupportsArray, + table: str, + deletechars: str | None = None, +) -> _StringDTypeArray: ... +@overload +def translate( + a: T_co, + table: str, + deletechars: str | None = None, +) -> _StringDTypeOrUnicodeArray: ... + +# +@overload +def slice(a: U_co, start: i_co | None = None, stop: i_co | None = None, step: i_co | None = None, /) -> NDArray[np.str_]: ... # type: ignore[overload-overlap] +@overload +def slice(a: S_co, start: i_co | None = None, stop: i_co | None = None, step: i_co | None = None, /) -> NDArray[np.bytes_]: ... +@overload +def slice( + a: _StringDTypeSupportsArray, start: i_co | None = None, stop: i_co | None = None, step: i_co | None = None, / +) -> _StringDTypeArray: ... +@overload +def slice( + a: T_co, start: i_co | None = None, stop: i_co | None = None, step: i_co | None = None, / +) -> _StringDTypeOrUnicodeArray: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/_locales.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/_locales.cpython-312.pyc new file mode 100644 index 0000000..2ff2bc1 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/_locales.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/_natype.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/_natype.cpython-312.pyc new file mode 100644 index 0000000..3c399d9 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/_natype.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test__exceptions.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test__exceptions.cpython-312.pyc new file mode 100644 index 0000000..c699888 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test__exceptions.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_abc.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_abc.cpython-312.pyc new file mode 100644 index 0000000..40e9375 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_abc.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_api.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_api.cpython-312.pyc new file mode 100644 index 0000000..a58ff81 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_api.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_argparse.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_argparse.cpython-312.pyc new file mode 100644 index 0000000..7719c19 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_argparse.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_array_api_info.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_array_api_info.cpython-312.pyc new file mode 100644 index 0000000..51fb4f5 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_array_api_info.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_array_coercion.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_array_coercion.cpython-312.pyc new file mode 100644 index 0000000..e945dff Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_array_coercion.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_array_interface.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_array_interface.cpython-312.pyc new file mode 100644 index 0000000..f5dc08a Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_array_interface.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_arraymethod.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_arraymethod.cpython-312.pyc new file mode 100644 index 0000000..c429d91 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_arraymethod.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_arrayobject.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_arrayobject.cpython-312.pyc new file mode 100644 index 0000000..f609ac4 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_arrayobject.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_arrayprint.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_arrayprint.cpython-312.pyc new file mode 100644 index 0000000..207c4fd Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_arrayprint.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_casting_floatingpoint_errors.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_casting_floatingpoint_errors.cpython-312.pyc new file mode 100644 index 0000000..d824fdf Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_casting_floatingpoint_errors.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_casting_unittests.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_casting_unittests.cpython-312.pyc new file mode 100644 index 0000000..ae0cfba Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_casting_unittests.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_conversion_utils.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_conversion_utils.cpython-312.pyc new file mode 100644 index 0000000..4701a48 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_conversion_utils.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_cpu_dispatcher.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_cpu_dispatcher.cpython-312.pyc new file mode 100644 index 0000000..2147ee6 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_cpu_dispatcher.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_cpu_features.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_cpu_features.cpython-312.pyc new file mode 100644 index 0000000..986635b Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_cpu_features.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_custom_dtypes.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_custom_dtypes.cpython-312.pyc new file mode 100644 index 0000000..7b8947c Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_custom_dtypes.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_cython.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_cython.cpython-312.pyc new file mode 100644 index 0000000..111302f Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_cython.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_datetime.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_datetime.cpython-312.pyc new file mode 100644 index 0000000..25d54fb Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_datetime.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_defchararray.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_defchararray.cpython-312.pyc new file mode 100644 index 0000000..eea0d51 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_defchararray.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_deprecations.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_deprecations.cpython-312.pyc new file mode 100644 index 0000000..5a5df17 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_deprecations.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_dlpack.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_dlpack.cpython-312.pyc new file mode 100644 index 0000000..06d72d1 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_dlpack.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_dtype.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_dtype.cpython-312.pyc new file mode 100644 index 0000000..6c7ad88 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_dtype.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_einsum.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_einsum.cpython-312.pyc new file mode 100644 index 0000000..35cb55a Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_einsum.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_errstate.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_errstate.cpython-312.pyc new file mode 100644 index 0000000..604b57e Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_errstate.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_extint128.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_extint128.cpython-312.pyc new file mode 100644 index 0000000..aa90f69 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_extint128.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_function_base.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_function_base.cpython-312.pyc new file mode 100644 index 0000000..31c8c22 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_function_base.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_getlimits.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_getlimits.cpython-312.pyc new file mode 100644 index 0000000..6a52fff Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_getlimits.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_half.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_half.cpython-312.pyc new file mode 100644 index 0000000..df043c2 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_half.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_hashtable.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_hashtable.cpython-312.pyc new file mode 100644 index 0000000..d465e90 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_hashtable.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_indexerrors.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_indexerrors.cpython-312.pyc new file mode 100644 index 0000000..d522867 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_indexerrors.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_indexing.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_indexing.cpython-312.pyc new file mode 100644 index 0000000..773f201 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_indexing.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_item_selection.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_item_selection.cpython-312.pyc new file mode 100644 index 0000000..b75140e Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_item_selection.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_limited_api.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_limited_api.cpython-312.pyc new file mode 100644 index 0000000..41fc8fa Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_limited_api.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_longdouble.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_longdouble.cpython-312.pyc new file mode 100644 index 0000000..99e0d83 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_longdouble.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_machar.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_machar.cpython-312.pyc new file mode 100644 index 0000000..790d2e0 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_machar.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_mem_overlap.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_mem_overlap.cpython-312.pyc new file mode 100644 index 0000000..7f0fb6f Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_mem_overlap.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_mem_policy.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_mem_policy.cpython-312.pyc new file mode 100644 index 0000000..064f3ca Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_mem_policy.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_memmap.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_memmap.cpython-312.pyc new file mode 100644 index 0000000..574af4a Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_memmap.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_multiarray.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_multiarray.cpython-312.pyc new file mode 100644 index 0000000..9532db8 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_multiarray.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_multithreading.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_multithreading.cpython-312.pyc new file mode 100644 index 0000000..fedc155 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_multithreading.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_nditer.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_nditer.cpython-312.pyc new file mode 100644 index 0000000..a33cd89 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_nditer.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_nep50_promotions.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_nep50_promotions.cpython-312.pyc new file mode 100644 index 0000000..5325076 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_nep50_promotions.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_numeric.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_numeric.cpython-312.pyc new file mode 100644 index 0000000..22d62b8 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_numeric.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_numerictypes.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_numerictypes.cpython-312.pyc new file mode 100644 index 0000000..fd3ae3d Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_numerictypes.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_overrides.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_overrides.cpython-312.pyc new file mode 100644 index 0000000..7115dcb Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_overrides.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_print.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_print.cpython-312.pyc new file mode 100644 index 0000000..68530ec Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_print.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_protocols.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_protocols.cpython-312.pyc new file mode 100644 index 0000000..4610ff8 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_protocols.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_records.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_records.cpython-312.pyc new file mode 100644 index 0000000..a700a7f Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_records.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_regression.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_regression.cpython-312.pyc new file mode 100644 index 0000000..996363b Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_regression.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalar_ctors.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalar_ctors.cpython-312.pyc new file mode 100644 index 0000000..67d8c55 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalar_ctors.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalar_methods.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalar_methods.cpython-312.pyc new file mode 100644 index 0000000..9efa210 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalar_methods.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarbuffer.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarbuffer.cpython-312.pyc new file mode 100644 index 0000000..d0b6eed Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarbuffer.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarinherit.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarinherit.cpython-312.pyc new file mode 100644 index 0000000..5f57cb4 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarinherit.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarmath.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarmath.cpython-312.pyc new file mode 100644 index 0000000..d5509d0 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarmath.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarprint.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarprint.cpython-312.pyc new file mode 100644 index 0000000..585a575 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_scalarprint.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_shape_base.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_shape_base.cpython-312.pyc new file mode 100644 index 0000000..b06fceb Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_shape_base.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_simd.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_simd.cpython-312.pyc new file mode 100644 index 0000000..7f2c07d Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_simd.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_simd_module.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_simd_module.cpython-312.pyc new file mode 100644 index 0000000..b05f5f9 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_simd_module.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_stringdtype.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_stringdtype.cpython-312.pyc new file mode 100644 index 0000000..5484abe Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_stringdtype.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_strings.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_strings.cpython-312.pyc new file mode 100644 index 0000000..f2f2ee6 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_strings.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_ufunc.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_ufunc.cpython-312.pyc new file mode 100644 index 0000000..168a209 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_ufunc.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_umath.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_umath.cpython-312.pyc new file mode 100644 index 0000000..a4b0db6 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_umath.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_umath_accuracy.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_umath_accuracy.cpython-312.pyc new file mode 100644 index 0000000..2af157b Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_umath_accuracy.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_umath_complex.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_umath_complex.cpython-312.pyc new file mode 100644 index 0000000..6c038d1 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_umath_complex.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_unicode.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_unicode.cpython-312.pyc new file mode 100644 index 0000000..0fcf3c8 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/__pycache__/test_unicode.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/_locales.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/_locales.py new file mode 100644 index 0000000..debda96 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/_locales.py @@ -0,0 +1,72 @@ +"""Provide class for testing in French locale + +""" +import locale +import sys + +import pytest + +__ALL__ = ['CommaDecimalPointLocale'] + + +def find_comma_decimal_point_locale(): + """See if platform has a decimal point as comma locale. + + Find a locale that uses a comma instead of a period as the + decimal point. + + Returns + ------- + old_locale: str + Locale when the function was called. + new_locale: {str, None) + First French locale found, None if none found. + + """ + if sys.platform == 'win32': + locales = ['FRENCH'] + else: + locales = ['fr_FR', 'fr_FR.UTF-8', 'fi_FI', 'fi_FI.UTF-8'] + + old_locale = locale.getlocale(locale.LC_NUMERIC) + new_locale = None + try: + for loc in locales: + try: + locale.setlocale(locale.LC_NUMERIC, loc) + new_locale = loc + break + except locale.Error: + pass + finally: + locale.setlocale(locale.LC_NUMERIC, locale=old_locale) + return old_locale, new_locale + + +class CommaDecimalPointLocale: + """Sets LC_NUMERIC to a locale with comma as decimal point. + + Classes derived from this class have setup and teardown methods that run + tests with locale.LC_NUMERIC set to a locale where commas (',') are used as + the decimal point instead of periods ('.'). On exit the locale is restored + to the initial locale. It also serves as context manager with the same + effect. If no such locale is available, the test is skipped. + + """ + (cur_locale, tst_locale) = find_comma_decimal_point_locale() + + def setup_method(self): + if self.tst_locale is None: + pytest.skip("No French locale available") + locale.setlocale(locale.LC_NUMERIC, locale=self.tst_locale) + + def teardown_method(self): + locale.setlocale(locale.LC_NUMERIC, locale=self.cur_locale) + + def __enter__(self): + if self.tst_locale is None: + pytest.skip("No French locale available") + locale.setlocale(locale.LC_NUMERIC, locale=self.tst_locale) + + def __exit__(self, type, value, traceback): + locale.setlocale(locale.LC_NUMERIC, locale=self.cur_locale) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/_natype.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/_natype.py new file mode 100644 index 0000000..1c2175b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/_natype.py @@ -0,0 +1,205 @@ +# Vendored implementation of pandas.NA, adapted from pandas/_libs/missing.pyx +# +# This is vendored to avoid adding pandas as a test dependency. + +__all__ = ["pd_NA"] + +import numbers + +import numpy as np + + +def _create_binary_propagating_op(name, is_divmod=False): + is_cmp = name.strip("_") in ["eq", "ne", "le", "lt", "ge", "gt"] + + def method(self, other): + if ( + other is pd_NA + or isinstance(other, (str, bytes, numbers.Number, np.bool)) + or (isinstance(other, np.ndarray) and not other.shape) + ): + # Need the other.shape clause to handle NumPy scalars, + # since we do a setitem on `out` below, which + # won't work for NumPy scalars. + if is_divmod: + return pd_NA, pd_NA + else: + return pd_NA + + elif isinstance(other, np.ndarray): + out = np.empty(other.shape, dtype=object) + out[:] = pd_NA + + if is_divmod: + return out, out.copy() + else: + return out + + elif is_cmp and isinstance(other, (np.datetime64, np.timedelta64)): + return pd_NA + + elif isinstance(other, np.datetime64): + if name in ["__sub__", "__rsub__"]: + return pd_NA + + elif isinstance(other, np.timedelta64): + if name in ["__sub__", "__rsub__", "__add__", "__radd__"]: + return pd_NA + + return NotImplemented + + method.__name__ = name + return method + + +def _create_unary_propagating_op(name: str): + def method(self): + return pd_NA + + method.__name__ = name + return method + + +class NAType: + def __repr__(self) -> str: + return "" + + def __format__(self, format_spec) -> str: + try: + return self.__repr__().__format__(format_spec) + except ValueError: + return self.__repr__() + + def __bool__(self): + raise TypeError("boolean value of NA is ambiguous") + + def __hash__(self): + exponent = 31 if is_32bit else 61 + return 2**exponent - 1 + + def __reduce__(self): + return "pd_NA" + + # Binary arithmetic and comparison ops -> propagate + + __add__ = _create_binary_propagating_op("__add__") + __radd__ = _create_binary_propagating_op("__radd__") + __sub__ = _create_binary_propagating_op("__sub__") + __rsub__ = _create_binary_propagating_op("__rsub__") + __mul__ = _create_binary_propagating_op("__mul__") + __rmul__ = _create_binary_propagating_op("__rmul__") + __matmul__ = _create_binary_propagating_op("__matmul__") + __rmatmul__ = _create_binary_propagating_op("__rmatmul__") + __truediv__ = _create_binary_propagating_op("__truediv__") + __rtruediv__ = _create_binary_propagating_op("__rtruediv__") + __floordiv__ = _create_binary_propagating_op("__floordiv__") + __rfloordiv__ = _create_binary_propagating_op("__rfloordiv__") + __mod__ = _create_binary_propagating_op("__mod__") + __rmod__ = _create_binary_propagating_op("__rmod__") + __divmod__ = _create_binary_propagating_op("__divmod__", is_divmod=True) + __rdivmod__ = _create_binary_propagating_op("__rdivmod__", is_divmod=True) + # __lshift__ and __rshift__ are not implemented + + __eq__ = _create_binary_propagating_op("__eq__") + __ne__ = _create_binary_propagating_op("__ne__") + __le__ = _create_binary_propagating_op("__le__") + __lt__ = _create_binary_propagating_op("__lt__") + __gt__ = _create_binary_propagating_op("__gt__") + __ge__ = _create_binary_propagating_op("__ge__") + + # Unary ops + + __neg__ = _create_unary_propagating_op("__neg__") + __pos__ = _create_unary_propagating_op("__pos__") + __abs__ = _create_unary_propagating_op("__abs__") + __invert__ = _create_unary_propagating_op("__invert__") + + # pow has special + def __pow__(self, other): + if other is pd_NA: + return pd_NA + elif isinstance(other, (numbers.Number, np.bool)): + if other == 0: + # returning positive is correct for +/- 0. + return type(other)(1) + else: + return pd_NA + elif util.is_array(other): + return np.where(other == 0, other.dtype.type(1), pd_NA) + + return NotImplemented + + def __rpow__(self, other): + if other is pd_NA: + return pd_NA + elif isinstance(other, (numbers.Number, np.bool)): + if other == 1: + return other + else: + return pd_NA + elif util.is_array(other): + return np.where(other == 1, other, pd_NA) + return NotImplemented + + # Logical ops using Kleene logic + + def __and__(self, other): + if other is False: + return False + elif other is True or other is pd_NA: + return pd_NA + return NotImplemented + + __rand__ = __and__ + + def __or__(self, other): + if other is True: + return True + elif other is False or other is pd_NA: + return pd_NA + return NotImplemented + + __ror__ = __or__ + + def __xor__(self, other): + if other is False or other is True or other is pd_NA: + return pd_NA + return NotImplemented + + __rxor__ = __xor__ + + __array_priority__ = 1000 + _HANDLED_TYPES = (np.ndarray, numbers.Number, str, np.bool) + + def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): + types = self._HANDLED_TYPES + (NAType,) + for x in inputs: + if not isinstance(x, types): + return NotImplemented + + if method != "__call__": + raise ValueError(f"ufunc method '{method}' not supported for NA") + result = maybe_dispatch_ufunc_to_dunder_op( + self, ufunc, method, *inputs, **kwargs + ) + if result is NotImplemented: + # For a NumPy ufunc that's not a binop, like np.logaddexp + index = next(i for i, x in enumerate(inputs) if x is pd_NA) + result = np.broadcast_arrays(*inputs)[index] + if result.ndim == 0: + result = result.item() + if ufunc.nout > 1: + result = (pd_NA,) * ufunc.nout + + return result + + +pd_NA = NAType() + + +def get_stringdtype_dtype(na_object, coerce=True): + # explicit is check for pd_NA because != with pd_NA returns pd_NA + if na_object is pd_NA or na_object != "unset": + return np.dtypes.StringDType(na_object=na_object, coerce=coerce) + else: + return np.dtypes.StringDType(coerce=coerce) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/astype_copy.pkl b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/astype_copy.pkl new file mode 100644 index 0000000..7397c97 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/astype_copy.pkl differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/generate_umath_validation_data.cpp b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/generate_umath_validation_data.cpp new file mode 100644 index 0000000..88ff45e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/generate_umath_validation_data.cpp @@ -0,0 +1,170 @@ +#include +#include +#include +#include +#include +#include +#include +#include + +struct ufunc { + std::string name; + double (*f32func)(double); + long double (*f64func)(long double); + float f32ulp; + float f64ulp; +}; + +template +T +RandomFloat(T a, T b) +{ + T random = ((T)rand()) / (T)RAND_MAX; + T diff = b - a; + T r = random * diff; + return a + r; +} + +template +void +append_random_array(std::vector &arr, T min, T max, size_t N) +{ + for (size_t ii = 0; ii < N; ++ii) + arr.emplace_back(RandomFloat(min, max)); +} + +template +std::vector +computeTrueVal(const std::vector &in, T2 (*mathfunc)(T2)) +{ + std::vector out; + for (T1 elem : in) { + T2 elem_d = (T2)elem; + T1 out_elem = (T1)mathfunc(elem_d); + out.emplace_back(out_elem); + } + return out; +} + +/* + * FP range: + * [-inf, -maxflt, -1., -minflt, -minden, 0., minden, minflt, 1., maxflt, inf] + */ + +#define MINDEN std::numeric_limits::denorm_min() +#define MINFLT std::numeric_limits::min() +#define MAXFLT std::numeric_limits::max() +#define INF std::numeric_limits::infinity() +#define qNAN std::numeric_limits::quiet_NaN() +#define sNAN std::numeric_limits::signaling_NaN() + +template +std::vector +generate_input_vector(std::string func) +{ + std::vector input = {MINDEN, -MINDEN, MINFLT, -MINFLT, MAXFLT, + -MAXFLT, INF, -INF, qNAN, sNAN, + -1.0, 1.0, 0.0, -0.0}; + + // [-1.0, 1.0] + if ((func == "arcsin") || (func == "arccos") || (func == "arctanh")) { + append_random_array(input, -1.0, 1.0, 700); + } + // (0.0, INF] + else if ((func == "log2") || (func == "log10")) { + append_random_array(input, 0.0, 1.0, 200); + append_random_array(input, MINDEN, MINFLT, 200); + append_random_array(input, MINFLT, 1.0, 200); + append_random_array(input, 1.0, MAXFLT, 200); + } + // (-1.0, INF] + else if (func == "log1p") { + append_random_array(input, -1.0, 1.0, 200); + append_random_array(input, -MINFLT, -MINDEN, 100); + append_random_array(input, -1.0, -MINFLT, 100); + append_random_array(input, MINDEN, MINFLT, 100); + append_random_array(input, MINFLT, 1.0, 100); + append_random_array(input, 1.0, MAXFLT, 100); + } + // [1.0, INF] + else if (func == "arccosh") { + append_random_array(input, 1.0, 2.0, 400); + append_random_array(input, 2.0, MAXFLT, 300); + } + // [-INF, INF] + else { + append_random_array(input, -1.0, 1.0, 100); + append_random_array(input, MINDEN, MINFLT, 100); + append_random_array(input, -MINFLT, -MINDEN, 100); + append_random_array(input, MINFLT, 1.0, 100); + append_random_array(input, -1.0, -MINFLT, 100); + append_random_array(input, 1.0, MAXFLT, 100); + append_random_array(input, -MAXFLT, -100.0, 100); + } + + std::random_shuffle(input.begin(), input.end()); + return input; +} + +int +main() +{ + srand(42); + std::vector umathfunc = { + {"sin", sin, sin, 1.49, 1.00}, + {"cos", cos, cos, 1.49, 1.00}, + {"tan", tan, tan, 3.91, 1.00}, + {"arcsin", asin, asin, 3.12, 1.00}, + {"arccos", acos, acos, 2.1, 1.00}, + {"arctan", atan, atan, 2.3, 1.00}, + {"sinh", sinh, sinh, 1.55, 1.00}, + {"cosh", cosh, cosh, 2.48, 1.00}, + {"tanh", tanh, tanh, 1.38, 2.00}, + {"arcsinh", asinh, asinh, 1.01, 1.00}, + {"arccosh", acosh, acosh, 1.16, 1.00}, + {"arctanh", atanh, atanh, 1.45, 1.00}, + {"cbrt", cbrt, cbrt, 1.94, 2.00}, + //{"exp",exp,exp,3.76,1.00}, + {"exp2", exp2, exp2, 1.01, 1.00}, + {"expm1", expm1, expm1, 2.62, 1.00}, + //{"log",log,log,1.84,1.00}, + {"log10", log10, log10, 3.5, 1.00}, + {"log1p", log1p, log1p, 1.96, 1.0}, + {"log2", log2, log2, 2.12, 1.00}, + }; + + for (int ii = 0; ii < umathfunc.size(); ++ii) { + // ignore sin/cos + if ((umathfunc[ii].name != "sin") && (umathfunc[ii].name != "cos")) { + std::string fileName = + "umath-validation-set-" + umathfunc[ii].name + ".csv"; + std::ofstream txtOut; + txtOut.open(fileName, std::ofstream::trunc); + txtOut << "dtype,input,output,ulperrortol" << std::endl; + + // Single Precision + auto f32in = generate_input_vector(umathfunc[ii].name); + auto f32out = computeTrueVal(f32in, + umathfunc[ii].f32func); + for (int jj = 0; jj < f32in.size(); ++jj) { + txtOut << "np.float32" << std::hex << ",0x" + << *reinterpret_cast(&f32in[jj]) << ",0x" + << *reinterpret_cast(&f32out[jj]) << "," + << ceil(umathfunc[ii].f32ulp) << std::endl; + } + + // Double Precision + auto f64in = generate_input_vector(umathfunc[ii].name); + auto f64out = computeTrueVal( + f64in, umathfunc[ii].f64func); + for (int jj = 0; jj < f64in.size(); ++jj) { + txtOut << "np.float64" << std::hex << ",0x" + << *reinterpret_cast(&f64in[jj]) << ",0x" + << *reinterpret_cast(&f64out[jj]) << "," + << ceil(umathfunc[ii].f64ulp) << std::endl; + } + txtOut.close(); + } + } + return 0; +} diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/recarray_from_file.fits b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/recarray_from_file.fits new file mode 100644 index 0000000..ca48ee8 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/recarray_from_file.fits differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-README.txt b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-README.txt new file mode 100644 index 0000000..cfc9e41 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-README.txt @@ -0,0 +1,15 @@ +Steps to validate transcendental functions: +1) Add a file 'umath-validation-set-.txt', where ufuncname is name of + the function in NumPy you want to validate +2) The file should contain 4 columns: dtype,input,expected output,ulperror + a. dtype: one of np.float16, np.float32, np.float64 + b. input: floating point input to ufunc in hex. Example: 0x414570a4 + represents 12.340000152587890625 + c. expected output: floating point output for the corresponding input in hex. + This should be computed using a high(er) precision library and then rounded to + same format as the input. + d. ulperror: expected maximum ulp error of the function. This + should be same across all rows of the same dtype. Otherwise, the function is + tested for the maximum ulp error among all entries of that dtype. +3) Add file umath-validation-set-.txt to the test file test_umath_accuracy.py + which will then validate your ufunc. diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arccos.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arccos.csv new file mode 100644 index 0000000..82c8595 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arccos.csv @@ -0,0 +1,1429 @@ +dtype,input,output,ulperrortol +np.float32,0xbddd7f50,0x3fd6eec2,3 +np.float32,0xbe32a20c,0x3fdf8182,3 +np.float32,0xbf607c09,0x4028f84f,3 +np.float32,0x3f25d906,0x3f5db544,3 +np.float32,0x3f01cec8,0x3f84febf,3 +np.float32,0x3f1d5c6e,0x3f68a735,3 +np.float32,0xbf0cab89,0x4009c36d,3 +np.float32,0xbf176b40,0x400d0941,3 +np.float32,0x3f3248b2,0x3f4ce6d4,3 +np.float32,0x3f390b48,0x3f434e0d,3 +np.float32,0xbe261698,0x3fddea43,3 +np.float32,0x3f0e1154,0x3f7b848b,3 +np.float32,0xbf379a3c,0x4017b764,3 +np.float32,0xbeda6f2c,0x4000bd62,3 +np.float32,0xbf6a0c3f,0x402e5d5a,3 +np.float32,0x3ef1d700,0x3f8a17b7,3 +np.float32,0xbf6f4f65,0x4031d30d,3 +np.float32,0x3f2c9eee,0x3f54adfd,3 +np.float32,0x3f3cfb18,0x3f3d8a1e,3 +np.float32,0x3ba80800,0x3fc867d2,3 +np.float32,0x3e723b08,0x3faa7e4d,3 +np.float32,0xbf65820f,0x402bb054,3 +np.float32,0xbee64e7a,0x40026410,3 +np.float32,0x3cb15140,0x3fc64a87,3 +np.float32,0x3f193660,0x3f6ddf2a,3 +np.float32,0xbf0e5b52,0x400a44f7,3 +np.float32,0x3ed55f14,0x3f920a4b,3 +np.float32,0x3dd11a80,0x3fbbf85c,3 +np.float32,0xbf4f5c4b,0x4020f4f9,3 +np.float32,0x3f787532,0x3e792e87,3 +np.float32,0x3f40e6ac,0x3f37a74f,3 +np.float32,0x3f1c1318,0x3f6a47b6,3 +np.float32,0xbe3c48d8,0x3fe0bb70,3 +np.float32,0xbe94d4bc,0x3feed08e,3 +np.float32,0xbe5c3688,0x3fe4ce26,3 +np.float32,0xbf6fe026,0x403239cb,3 +np.float32,0x3ea5983c,0x3f9ee7bf,3 +np.float32,0x3f1471e6,0x3f73c5bb,3 +np.float32,0x3f0e2622,0x3f7b6b87,3 +np.float32,0xbf597180,0x40257ad1,3 +np.float32,0xbeb5321c,0x3ff75d34,3 +np.float32,0x3f5afcd2,0x3f0b6012,3 +np.float32,0xbef2ff88,0x40042e14,3 +np.float32,0xbedc747e,0x400104f5,3 +np.float32,0xbee0c2f4,0x40019dfc,3 +np.float32,0xbf152cd8,0x400c57dc,3 +np.float32,0xbf6cf9e2,0x40303bbe,3 +np.float32,0x3ed9cd74,0x3f90d1a1,3 +np.float32,0xbf754406,0x4036767f,3 +np.float32,0x3f59c5c2,0x3f0db42f,3 +np.float32,0x3f2eefd8,0x3f518684,3 +np.float32,0xbf156bf9,0x400c6b49,3 +np.float32,0xbd550790,0x3fcfb8dc,3 +np.float32,0x3ede58fc,0x3f8f8f77,3 +np.float32,0xbf00ac19,0x40063c4b,3 +np.float32,0x3f4d25ba,0x3f24280e,3 +np.float32,0xbe9568be,0x3feef73c,3 +np.float32,0x3f67d154,0x3ee05547,3 +np.float32,0x3f617226,0x3efcb4f4,3 +np.float32,0xbf3ab41a,0x4018d6cc,3 +np.float32,0xbf3186fe,0x401592cd,3 +np.float32,0x3de3ba50,0x3fbacca9,3 +np.float32,0x3e789f98,0x3fa9ab97,3 +np.float32,0x3f016e08,0x3f8536d8,3 +np.float32,0x3e8b618c,0x3fa5c571,3 +np.float32,0x3eff97bc,0x3f8628a9,3 +np.float32,0xbf6729f0,0x402ca32f,3 +np.float32,0xbebec146,0x3ff9eddc,3 +np.float32,0x3ddb2e60,0x3fbb563a,3 +np.float32,0x3caa8e40,0x3fc66595,3 +np.float32,0xbf5973f2,0x40257bfa,3 +np.float32,0xbdd82c70,0x3fd69916,3 +np.float32,0xbedf4c82,0x400169ef,3 +np.float32,0x3ef8f22c,0x3f881184,3 +np.float32,0xbf1d74d4,0x400eedc9,3 +np.float32,0x3f2e10a6,0x3f52b790,3 +np.float32,0xbf08ecc0,0x4008a628,3 +np.float32,0x3ecb7db4,0x3f94be9f,3 +np.float32,0xbf052ded,0x40078bfc,3 +np.float32,0x3f2ee78a,0x3f5191e4,3 +np.float32,0xbf56f4e1,0x40245194,3 +np.float32,0x3f600a3e,0x3f014a25,3 +np.float32,0x3f3836f8,0x3f44808b,3 +np.float32,0x3ecabfbc,0x3f94f25c,3 +np.float32,0x3c70f500,0x3fc72dec,3 +np.float32,0x3f17c444,0x3f6fabf0,3 +np.float32,0xbf4c22a5,0x401f9a09,3 +np.float32,0xbe4205dc,0x3fe1765a,3 +np.float32,0x3ea49138,0x3f9f2d36,3 +np.float32,0xbece0082,0x3ffe106b,3 +np.float32,0xbe387578,0x3fe03eef,3 +np.float32,0xbf2b6466,0x40137a30,3 +np.float32,0xbe9dadb2,0x3ff12204,3 +np.float32,0xbf56b3f2,0x402433bb,3 +np.float32,0xbdf9b4d8,0x3fd8b51f,3 +np.float32,0x3f58a596,0x3f0fd4b4,3 +np.float32,0xbedf5748,0x40016b6e,3 +np.float32,0x3f446442,0x3f32476f,3 +np.float32,0x3f5be886,0x3f099658,3 +np.float32,0x3ea1e44c,0x3f9fe1de,3 +np.float32,0xbf11e9b8,0x400b585f,3 +np.float32,0xbf231f8f,0x4010befb,3 +np.float32,0xbf4395ea,0x401c2dd0,3 +np.float32,0x3e9e7784,0x3fa0c8a6,3 +np.float32,0xbe255184,0x3fddd14c,3 +np.float32,0x3f70d25e,0x3eb13148,3 +np.float32,0x3f220cdc,0x3f62a722,3 +np.float32,0xbd027bf0,0x3fcd23e7,3 +np.float32,0x3e4ef8b8,0x3faf02d2,3 +np.float32,0xbf76fc6b,0x40380728,3 +np.float32,0xbf57e761,0x4024c1cd,3 +np.float32,0x3ed4fc20,0x3f922580,3 +np.float32,0xbf09b64a,0x4008e1db,3 +np.float32,0x3f21ca62,0x3f62fcf5,3 +np.float32,0xbe55f610,0x3fe40170,3 +np.float32,0xbc0def80,0x3fca2bbb,3 +np.float32,0xbebc8764,0x3ff9547b,3 +np.float32,0x3ec1b200,0x3f9766d1,3 +np.float32,0xbf4ee44e,0x4020c1ee,3 +np.float32,0xbea85852,0x3ff3f22a,3 +np.float32,0xbf195c0c,0x400da3d3,3 +np.float32,0xbf754b5d,0x40367ce8,3 +np.float32,0xbdcbfe50,0x3fd5d52b,3 +np.float32,0xbf1adb87,0x400e1be3,3 +np.float32,0xbf6f8491,0x4031f898,3 +np.float32,0xbf6f9ae7,0x4032086e,3 +np.float32,0xbf52b3f0,0x40226790,3 +np.float32,0xbf698452,0x402e09f4,3 +np.float32,0xbf43dc9a,0x401c493a,3 +np.float32,0xbf165f7f,0x400cb664,3 +np.float32,0x3e635468,0x3fac682f,3 +np.float32,0xbe8cf2b6,0x3fecc28a,3 +np.float32,0x7f7fffff,0x7fc00000,3 +np.float32,0xbf4c6513,0x401fb597,3 +np.float32,0xbf02b8f8,0x4006d47e,3 +np.float32,0x3ed3759c,0x3f9290c8,3 +np.float32,0xbf2a7a5f,0x40132b98,3 +np.float32,0xbae65000,0x3fc9496f,3 +np.float32,0x3f65f5ea,0x3ee8ef07,3 +np.float32,0xbe7712fc,0x3fe84106,3 +np.float32,0xbb9ff700,0x3fc9afd2,3 +np.float32,0x3d8d87a0,0x3fc03592,3 +np.float32,0xbefc921c,0x40058c23,3 +np.float32,0xbf286566,0x401279d8,3 +np.float32,0x3f53857e,0x3f192eaf,3 +np.float32,0xbee9b0f4,0x4002dd90,3 +np.float32,0x3f4041f8,0x3f38a14a,3 +np.float32,0x3f54ea96,0x3f16b02d,3 +np.float32,0x3ea50ef8,0x3f9f0c01,3 +np.float32,0xbeaad2dc,0x3ff49a4a,3 +np.float32,0xbec428c8,0x3ffb636f,3 +np.float32,0xbda46178,0x3fd358c7,3 +np.float32,0xbefacfc4,0x40054b7f,3 +np.float32,0xbf7068f9,0x40329c85,3 +np.float32,0x3f70b850,0x3eb1caa7,3 +np.float32,0x7fa00000,0x7fe00000,3 +np.float32,0x80000000,0x3fc90fdb,3 +np.float32,0x3f68d5c8,0x3edb7cf3,3 +np.float32,0x3d9443d0,0x3fbfc98a,3 +np.float32,0xff7fffff,0x7fc00000,3 +np.float32,0xbeee7ba8,0x40038a5e,3 +np.float32,0xbf0aaaba,0x40092a73,3 +np.float32,0x3f36a4e8,0x3f46c0ee,3 +np.float32,0x3ed268e4,0x3f92da82,3 +np.float32,0xbee6002c,0x4002591b,3 +np.float32,0xbe8f2752,0x3fed5576,3 +np.float32,0x3f525912,0x3f1b40e0,3 +np.float32,0xbe8e151e,0x3fed0e16,3 +np.float32,0x1,0x3fc90fdb,3 +np.float32,0x3ee23b84,0x3f8e7ae1,3 +np.float32,0xbf5961ca,0x40257361,3 +np.float32,0x3f6bbca0,0x3ecd14cd,3 +np.float32,0x3e27b230,0x3fb4014d,3 +np.float32,0xbf183bb8,0x400d49fc,3 +np.float32,0x3f57759c,0x3f120b68,3 +np.float32,0xbd6994c0,0x3fd05d84,3 +np.float32,0xbf1dd684,0x400f0cc8,3 +np.float32,0xbececc1c,0x3ffe480a,3 +np.float32,0xbf48855f,0x401e206d,3 +np.float32,0x3f28c922,0x3f59d382,3 +np.float32,0xbf65c094,0x402bd3b0,3 +np.float32,0x3f657d42,0x3eeb11dd,3 +np.float32,0xbed32d4e,0x3fff7b15,3 +np.float32,0xbf31af02,0x4015a0b1,3 +np.float32,0x3d89eb00,0x3fc06f7f,3 +np.float32,0x3dac2830,0x3fbe4a17,3 +np.float32,0x3f7f7cb6,0x3d81a7df,3 +np.float32,0xbedbb570,0x4000ea82,3 +np.float32,0x3db37830,0x3fbdd4a8,3 +np.float32,0xbf376f48,0x4017a7fd,3 +np.float32,0x3f319f12,0x3f4dd2c9,3 +np.float32,0x7fc00000,0x7fc00000,3 +np.float32,0x3f1b4f70,0x3f6b3e31,3 +np.float32,0x3e33c880,0x3fb278d1,3 +np.float32,0x3f2796e0,0x3f5b69bd,3 +np.float32,0x3f4915d6,0x3f2ad4d0,3 +np.float32,0x3e4db120,0x3faf2ca0,3 +np.float32,0x3ef03dd4,0x3f8a8ba9,3 +np.float32,0x3e96ca88,0x3fa2cbf7,3 +np.float32,0xbeb136ce,0x3ff64d2b,3 +np.float32,0xbf2f3938,0x4014c75e,3 +np.float32,0x3f769dde,0x3e8b0d76,3 +np.float32,0x3f67cec8,0x3ee06148,3 +np.float32,0x3f0a1ade,0x3f80204e,3 +np.float32,0x3e4b9718,0x3faf7144,3 +np.float32,0x3cccb480,0x3fc5dcf3,3 +np.float32,0x3caeb740,0x3fc654f0,3 +np.float32,0x3f684e0e,0x3ede0678,3 +np.float32,0x3f0ba93c,0x3f7e6663,3 +np.float32,0xbf12bbc4,0x400b985e,3 +np.float32,0xbf2a8e1a,0x40133235,3 +np.float32,0x3f42029c,0x3f35f5c5,3 +np.float32,0x3eed1728,0x3f8b6f9c,3 +np.float32,0xbe5779ac,0x3fe432fd,3 +np.float32,0x3f6ed8b8,0x3ebc7e4b,3 +np.float32,0x3eea25b0,0x3f8c43c7,3 +np.float32,0x3f1988a4,0x3f6d786b,3 +np.float32,0xbe751674,0x3fe7ff8a,3 +np.float32,0xbe9f7418,0x3ff1997d,3 +np.float32,0x3dca11d0,0x3fbc6979,3 +np.float32,0x3f795226,0x3e6a6cab,3 +np.float32,0xbea780e0,0x3ff3b926,3 +np.float32,0xbed92770,0x4000901e,3 +np.float32,0xbf3e9f8c,0x401a49f8,3 +np.float32,0x3f0f7054,0x3f79ddb2,3 +np.float32,0x3a99d400,0x3fc8e966,3 +np.float32,0xbef082b0,0x4003d3c6,3 +np.float32,0xbf0d0790,0x4009defb,3 +np.float32,0xbf1649da,0x400cafb4,3 +np.float32,0xbea5aca8,0x3ff33d5c,3 +np.float32,0xbf4e1843,0x40206ba1,3 +np.float32,0xbe3d7d5c,0x3fe0e2ad,3 +np.float32,0xbf0e802d,0x400a500e,3 +np.float32,0xbf0de8f0,0x400a2295,3 +np.float32,0xbf3016ba,0x4015137e,3 +np.float32,0x3f36b1ea,0x3f46ae5d,3 +np.float32,0xbd27f170,0x3fce4fc7,3 +np.float32,0x3e96ec54,0x3fa2c31f,3 +np.float32,0x3eb4dfdc,0x3f9ad87d,3 +np.float32,0x3f5cac6c,0x3f0815cc,3 +np.float32,0xbf0489aa,0x40075bf1,3 +np.float32,0x3df010c0,0x3fba05f5,3 +np.float32,0xbf229f4a,0x4010956a,3 +np.float32,0x3f75e474,0x3e905a99,3 +np.float32,0xbcece6a0,0x3fccc397,3 +np.float32,0xbdb41528,0x3fd454e7,3 +np.float32,0x3ec8b2f8,0x3f958118,3 +np.float32,0x3f5eaa70,0x3f041a1d,3 +np.float32,0xbf32e1cc,0x40160b91,3 +np.float32,0xbe8e6026,0x3fed219c,3 +np.float32,0x3e6b3160,0x3fab65e3,3 +np.float32,0x3e6d7460,0x3fab1b81,3 +np.float32,0xbf13fbde,0x400bfa3b,3 +np.float32,0xbe8235ec,0x3fe9f9e3,3 +np.float32,0x3d71c4a0,0x3fc18096,3 +np.float32,0x3eb769d0,0x3f9a2aa0,3 +np.float32,0xbf68cb3b,0x402d99e4,3 +np.float32,0xbd917610,0x3fd22932,3 +np.float32,0x3d3cba60,0x3fc3297f,3 +np.float32,0xbf383cbe,0x4017f1cc,3 +np.float32,0xbeee96d0,0x40038e34,3 +np.float32,0x3ec89cb4,0x3f958725,3 +np.float32,0x3ebf92d8,0x3f97f95f,3 +np.float32,0x3f30f3da,0x3f4ec021,3 +np.float32,0xbd26b560,0x3fce45e4,3 +np.float32,0xbec0eb12,0x3ffa8330,3 +np.float32,0x3f6d592a,0x3ec4a6c1,3 +np.float32,0x3ea6d39c,0x3f9e9463,3 +np.float32,0x3e884184,0x3fa6951e,3 +np.float32,0x3ea566c4,0x3f9ef4d1,3 +np.float32,0x3f0c8f4c,0x3f7d5380,3 +np.float32,0x3f28e1ba,0x3f59b2cb,3 +np.float32,0x3f798538,0x3e66e1c3,3 +np.float32,0xbe2889b8,0x3fde39b8,3 +np.float32,0x3f3da05e,0x3f3c949c,3 +np.float32,0x3f24d700,0x3f5f073e,3 +np.float32,0xbe5b5768,0x3fe4b198,3 +np.float32,0xbed3b03a,0x3fff9f05,3 +np.float32,0x3e8a1c4c,0x3fa619eb,3 +np.float32,0xbf075d24,0x40083030,3 +np.float32,0x3f765648,0x3e8d1f52,3 +np.float32,0xbf70fc5e,0x403308bb,3 +np.float32,0x3f557ae8,0x3f15ab76,3 +np.float32,0x3f02f7ea,0x3f84521c,3 +np.float32,0x3f7ebbde,0x3dcbc5c5,3 +np.float32,0xbefbdfc6,0x40057285,3 +np.float32,0x3ec687ac,0x3f9617d9,3 +np.float32,0x3e4831c8,0x3fafe01b,3 +np.float32,0x3e25cde0,0x3fb43ea8,3 +np.float32,0x3e4f2ab8,0x3faefc70,3 +np.float32,0x3ea60ae4,0x3f9ec973,3 +np.float32,0xbf1ed55f,0x400f5dde,3 +np.float32,0xbf5ad4aa,0x40262479,3 +np.float32,0x3e8b3594,0x3fa5d0de,3 +np.float32,0x3f3a77aa,0x3f413c80,3 +np.float32,0xbf07512b,0x40082ca9,3 +np.float32,0x3f33d990,0x3f4ab5e5,3 +np.float32,0x3f521556,0x3f1bb78f,3 +np.float32,0xbecf6036,0x3ffe7086,3 +np.float32,0x3db91bd0,0x3fbd7a11,3 +np.float32,0x3ef63a74,0x3f88d839,3 +np.float32,0xbf2f1116,0x4014b99c,3 +np.float32,0xbf17fdc0,0x400d36b9,3 +np.float32,0xbe87df2c,0x3feb7117,3 +np.float32,0x80800000,0x3fc90fdb,3 +np.float32,0x3ee24c1c,0x3f8e7641,3 +np.float32,0x3f688dce,0x3edcd644,3 +np.float32,0xbf0f4e1c,0x400a8e1b,3 +np.float32,0x0,0x3fc90fdb,3 +np.float32,0x3f786eba,0x3e7999d4,3 +np.float32,0xbf404f80,0x401aeca8,3 +np.float32,0xbe9ffb6a,0x3ff1bd18,3 +np.float32,0x3f146bfc,0x3f73ccfd,3 +np.float32,0xbe47d630,0x3fe233ee,3 +np.float32,0xbe95847c,0x3feefe7c,3 +np.float32,0xbf135df0,0x400bc9e5,3 +np.float32,0x3ea19f3c,0x3f9ff411,3 +np.float32,0x3f235e20,0x3f60f247,3 +np.float32,0xbec789ec,0x3ffc4def,3 +np.float32,0x3f04b656,0x3f834db6,3 +np.float32,0x3dfaf440,0x3fb95679,3 +np.float32,0xbe4a7f28,0x3fe28abe,3 +np.float32,0x3ed4850c,0x3f92463b,3 +np.float32,0x3ec4ba5c,0x3f9694dd,3 +np.float32,0xbce24ca0,0x3fcc992b,3 +np.float32,0xbf5b7c6e,0x402675a0,3 +np.float32,0xbea3ce2a,0x3ff2bf04,3 +np.float32,0x3db02c60,0x3fbe0998,3 +np.float32,0x3c47b780,0x3fc78069,3 +np.float32,0x3ed33b20,0x3f92a0d5,3 +np.float32,0xbf4556d7,0x401cdcde,3 +np.float32,0xbe1b6e28,0x3fdc90ec,3 +np.float32,0xbf3289b7,0x4015ecd0,3 +np.float32,0x3df3f240,0x3fb9c76d,3 +np.float32,0x3eefa7d0,0x3f8ab61d,3 +np.float32,0xbe945838,0x3feeb006,3 +np.float32,0xbf0b1386,0x400949a3,3 +np.float32,0x3f77e546,0x3e812cc1,3 +np.float32,0x3e804ba0,0x3fa8a480,3 +np.float32,0x3f43dcea,0x3f331a06,3 +np.float32,0x3eb87450,0x3f99e33c,3 +np.float32,0x3e5f4898,0x3facecea,3 +np.float32,0x3f646640,0x3eeff10e,3 +np.float32,0x3f1aa832,0x3f6c1051,3 +np.float32,0xbebf6bfa,0x3ffa1bdc,3 +np.float32,0xbb77f300,0x3fc98bd4,3 +np.float32,0x3f3587fe,0x3f485645,3 +np.float32,0x3ef85f34,0x3f883b8c,3 +np.float32,0x3f50e584,0x3f1dc82c,3 +np.float32,0x3f1d30a8,0x3f68deb0,3 +np.float32,0x3ee75a78,0x3f8d0c86,3 +np.float32,0x3f2c023a,0x3f5581e1,3 +np.float32,0xbf074e34,0x40082bca,3 +np.float32,0xbead71f0,0x3ff54c6d,3 +np.float32,0xbf39ed88,0x40188e69,3 +np.float32,0x3f5d2fe6,0x3f07118b,3 +np.float32,0xbf1f79f8,0x400f9267,3 +np.float32,0x3e900c58,0x3fa48e99,3 +np.float32,0xbf759cb2,0x4036c47b,3 +np.float32,0x3f63329c,0x3ef5359c,3 +np.float32,0xbf5d6755,0x40276709,3 +np.float32,0x3f2ce31c,0x3f54519a,3 +np.float32,0x7f800000,0x7fc00000,3 +np.float32,0x3f1bf50e,0x3f6a6d9a,3 +np.float32,0x3f258334,0x3f5e25d8,3 +np.float32,0xbf661a3f,0x402c06ac,3 +np.float32,0x3d1654c0,0x3fc45cef,3 +np.float32,0xbef14a36,0x4003f009,3 +np.float32,0xbf356051,0x4016ec3a,3 +np.float32,0x3f6ccc42,0x3ec79193,3 +np.float32,0xbf2fe3d6,0x401501f9,3 +np.float32,0x3deedc80,0x3fba195b,3 +np.float32,0x3f2e5a28,0x3f52533e,3 +np.float32,0x3e6b68b8,0x3fab5ec8,3 +np.float32,0x3e458240,0x3fb037b7,3 +np.float32,0xbf24bab0,0x401144cb,3 +np.float32,0x3f600f4c,0x3f013fb2,3 +np.float32,0x3f021a04,0x3f84d316,3 +np.float32,0x3f741732,0x3e9cc948,3 +np.float32,0x3f0788aa,0x3f81a5b0,3 +np.float32,0x3f28802c,0x3f5a347c,3 +np.float32,0x3c9eb400,0x3fc69500,3 +np.float32,0x3e5d11e8,0x3fad357a,3 +np.float32,0x3d921250,0x3fbfecb9,3 +np.float32,0x3f354866,0x3f48b066,3 +np.float32,0xbf72cf43,0x40346d84,3 +np.float32,0x3eecdbb8,0x3f8b805f,3 +np.float32,0xbee585d0,0x400247fd,3 +np.float32,0x3e3607a8,0x3fb22fc6,3 +np.float32,0xbf0cb7d6,0x4009c71c,3 +np.float32,0xbf56b230,0x402432ec,3 +np.float32,0xbf4ced02,0x401fee29,3 +np.float32,0xbf3a325c,0x4018a776,3 +np.float32,0x3ecae8bc,0x3f94e732,3 +np.float32,0xbe48c7e8,0x3fe252bd,3 +np.float32,0xbe175d7c,0x3fdc0d5b,3 +np.float32,0x3ea78dac,0x3f9e632d,3 +np.float32,0xbe7434a8,0x3fe7e279,3 +np.float32,0x3f1f9e02,0x3f65c7b9,3 +np.float32,0xbe150f2c,0x3fdbc2c2,3 +np.float32,0x3ee13480,0x3f8ec423,3 +np.float32,0x3ecb7d54,0x3f94beb9,3 +np.float32,0x3f1cef42,0x3f693181,3 +np.float32,0xbf1ec06a,0x400f5730,3 +np.float32,0xbe112acc,0x3fdb44e8,3 +np.float32,0xbe77b024,0x3fe85545,3 +np.float32,0x3ec86fe0,0x3f959353,3 +np.float32,0x3f36b326,0x3f46ac9a,3 +np.float32,0x3e581a70,0x3fadd829,3 +np.float32,0xbf032c0c,0x4006f5f9,3 +np.float32,0xbf43b1fd,0x401c38b1,3 +np.float32,0x3f3701b4,0x3f463c5c,3 +np.float32,0x3f1a995a,0x3f6c22f1,3 +np.float32,0xbf05de0b,0x4007bf97,3 +np.float32,0x3d4bd960,0x3fc2b063,3 +np.float32,0x3f0e1618,0x3f7b7ed0,3 +np.float32,0x3edfd420,0x3f8f2628,3 +np.float32,0xbf6662fe,0x402c3047,3 +np.float32,0x3ec0690c,0x3f97bf9b,3 +np.float32,0xbeaf4146,0x3ff5c7a0,3 +np.float32,0x3f5e7764,0x3f04816d,3 +np.float32,0xbedd192c,0x40011bc5,3 +np.float32,0x3eb76350,0x3f9a2c5e,3 +np.float32,0xbed8108c,0x400069a5,3 +np.float32,0xbe59f31c,0x3fe48401,3 +np.float32,0xbea3e1e6,0x3ff2c439,3 +np.float32,0x3e26d1f8,0x3fb41db5,3 +np.float32,0x3f3a0a7c,0x3f41dba5,3 +np.float32,0x3ebae068,0x3f993ce4,3 +np.float32,0x3f2d8e30,0x3f536942,3 +np.float32,0xbe838bbe,0x3fea5247,3 +np.float32,0x3ebe4420,0x3f98538f,3 +np.float32,0xbcc59b80,0x3fcc265c,3 +np.float32,0x3eebb5c8,0x3f8bd334,3 +np.float32,0xbafc3400,0x3fc94ee8,3 +np.float32,0xbf63ddc1,0x402ac683,3 +np.float32,0xbeabdf80,0x3ff4e18f,3 +np.float32,0x3ea863f0,0x3f9e2a78,3 +np.float32,0x3f45b292,0x3f303bc1,3 +np.float32,0xbe68aa60,0x3fe666bf,3 +np.float32,0x3eb9de18,0x3f998239,3 +np.float32,0xbf719d85,0x4033815e,3 +np.float32,0x3edef9a8,0x3f8f62db,3 +np.float32,0xbd7781c0,0x3fd0cd1e,3 +np.float32,0x3f0b3b90,0x3f7ee92a,3 +np.float32,0xbe3eb3b4,0x3fe10a27,3 +np.float32,0xbf31a4c4,0x40159d23,3 +np.float32,0x3e929434,0x3fa3e5b0,3 +np.float32,0xbeb1a90e,0x3ff66b9e,3 +np.float32,0xbeba9b5e,0x3ff8d048,3 +np.float32,0xbf272a84,0x4012119e,3 +np.float32,0x3f1ebbd0,0x3f66e889,3 +np.float32,0x3ed3cdc8,0x3f927893,3 +np.float32,0xbf50dfce,0x40219b58,3 +np.float32,0x3f0c02de,0x3f7dfb62,3 +np.float32,0xbf694de3,0x402de8d2,3 +np.float32,0xbeaeb13e,0x3ff5a14f,3 +np.float32,0xbf61aa7a,0x40299702,3 +np.float32,0xbf13d159,0x400bed35,3 +np.float32,0xbeecd034,0x40034e0b,3 +np.float32,0xbe50c2e8,0x3fe35761,3 +np.float32,0x3f714406,0x3eae8e57,3 +np.float32,0xbf1ca486,0x400eabd8,3 +np.float32,0x3f5858cc,0x3f106497,3 +np.float32,0x3f670288,0x3ee41c84,3 +np.float32,0xbf20bd2c,0x400ff9f5,3 +np.float32,0xbe29afd8,0x3fde5eff,3 +np.float32,0xbf635e6a,0x402a80f3,3 +np.float32,0x3e82b7b0,0x3fa80446,3 +np.float32,0x3e982e7c,0x3fa26ece,3 +np.float32,0x3d9f0e00,0x3fbf1c6a,3 +np.float32,0x3e8299b4,0x3fa80c07,3 +np.float32,0xbf0529c1,0x40078ac3,3 +np.float32,0xbf403b8a,0x401ae519,3 +np.float32,0xbe57e09c,0x3fe44027,3 +np.float32,0x3ea1c8f4,0x3f9fe913,3 +np.float32,0xbe216a94,0x3fdd52d0,3 +np.float32,0x3f59c442,0x3f0db709,3 +np.float32,0xbd636260,0x3fd02bdd,3 +np.float32,0xbdbbc788,0x3fd4d08d,3 +np.float32,0x3dd19560,0x3fbbf0a3,3 +np.float32,0x3f060ad4,0x3f828641,3 +np.float32,0x3b102e00,0x3fc8c7c4,3 +np.float32,0x3f42b3b8,0x3f34e5a6,3 +np.float32,0x3f0255ac,0x3f84b071,3 +np.float32,0xbf014898,0x40066996,3 +np.float32,0x3e004dc0,0x3fb8fb51,3 +np.float32,0xbf594ff8,0x40256af2,3 +np.float32,0x3efafddc,0x3f877b80,3 +np.float32,0xbf5f0780,0x40283899,3 +np.float32,0x3ee95e54,0x3f8c7bcc,3 +np.float32,0x3eba2f0c,0x3f996c80,3 +np.float32,0x3f37721c,0x3f459b68,3 +np.float32,0x3e2be780,0x3fb378bf,3 +np.float32,0x3e550270,0x3fae3d69,3 +np.float32,0x3e0f9500,0x3fb70e0a,3 +np.float32,0xbf51974a,0x4021eaf4,3 +np.float32,0x3f393832,0x3f430d05,3 +np.float32,0x3f3df16a,0x3f3c1bd8,3 +np.float32,0xbd662340,0x3fd041ed,3 +np.float32,0x3f7e8418,0x3ddc9fce,3 +np.float32,0xbf392734,0x40184672,3 +np.float32,0x3ee3b278,0x3f8e124e,3 +np.float32,0x3eed4808,0x3f8b61d2,3 +np.float32,0xbf6fccbd,0x40322beb,3 +np.float32,0x3e3ecdd0,0x3fb1123b,3 +np.float32,0x3f4419e0,0x3f32bb45,3 +np.float32,0x3f595e00,0x3f0e7914,3 +np.float32,0xbe8c1486,0x3fec88c6,3 +np.float32,0xbf800000,0x40490fdb,3 +np.float32,0xbdaf5020,0x3fd4084d,3 +np.float32,0xbf407660,0x401afb63,3 +np.float32,0x3f0c3aa8,0x3f7db8b8,3 +np.float32,0xbcdb5980,0x3fcc7d5b,3 +np.float32,0x3f4738d4,0x3f2dd1ed,3 +np.float32,0x3f4d7064,0x3f23ab14,3 +np.float32,0xbeb1d576,0x3ff67774,3 +np.float32,0xbf507166,0x40216bb3,3 +np.float32,0x3e86484c,0x3fa71813,3 +np.float32,0x3f09123e,0x3f80bd35,3 +np.float32,0xbe9abe0e,0x3ff05cb2,3 +np.float32,0x3f3019dc,0x3f4fed21,3 +np.float32,0xbe99e00e,0x3ff0227d,3 +np.float32,0xbf155ec5,0x400c6739,3 +np.float32,0x3f5857ba,0x3f106698,3 +np.float32,0x3edf619c,0x3f8f45fb,3 +np.float32,0xbf5ab76a,0x40261664,3 +np.float32,0x3e54b5a8,0x3fae4738,3 +np.float32,0xbee92772,0x4002ca40,3 +np.float32,0x3f2fd610,0x3f504a7a,3 +np.float32,0xbf38521c,0x4017f97e,3 +np.float32,0xff800000,0x7fc00000,3 +np.float32,0x3e2da348,0x3fb34077,3 +np.float32,0x3f2f85fa,0x3f50b894,3 +np.float32,0x3e88f9c8,0x3fa66551,3 +np.float32,0xbf61e570,0x4029b648,3 +np.float32,0xbeab362c,0x3ff4b4a1,3 +np.float32,0x3ec6c310,0x3f9607bd,3 +np.float32,0x3f0d7bda,0x3f7c3810,3 +np.float32,0xbeba5d36,0x3ff8bf99,3 +np.float32,0x3f4b0554,0x3f27adda,3 +np.float32,0x3f60f5dc,0x3efebfb3,3 +np.float32,0x3f36ce2c,0x3f468603,3 +np.float32,0xbe70afac,0x3fe76e8e,3 +np.float32,0x3f673350,0x3ee339b5,3 +np.float32,0xbe124cf0,0x3fdb698c,3 +np.float32,0xbf1243dc,0x400b73d0,3 +np.float32,0x3f3c8850,0x3f3e3407,3 +np.float32,0x3ea02f24,0x3fa05500,3 +np.float32,0xbeffed34,0x400607db,3 +np.float32,0x3f5c75c2,0x3f08817c,3 +np.float32,0x3f4b2fbe,0x3f27682d,3 +np.float32,0x3ee47c34,0x3f8dd9f9,3 +np.float32,0x3f50d48c,0x3f1de584,3 +np.float32,0x3f12dc5e,0x3f75b628,3 +np.float32,0xbefe7e4a,0x4005d2f4,3 +np.float32,0xbec2e846,0x3ffb0cbc,3 +np.float32,0xbedc3036,0x4000fb80,3 +np.float32,0xbf48aedc,0x401e311f,3 +np.float32,0x3f6e032e,0x3ec11363,3 +np.float32,0xbf60de15,0x40292b72,3 +np.float32,0x3f06585e,0x3f8258ba,3 +np.float32,0x3ef49b98,0x3f894e66,3 +np.float32,0x3cc5fe00,0x3fc5f7cf,3 +np.float32,0xbf7525c5,0x40365c2c,3 +np.float32,0x3f64f9f8,0x3eed5fb2,3 +np.float32,0x3e8849c0,0x3fa692fb,3 +np.float32,0x3e50c878,0x3faec79e,3 +np.float32,0x3ed61530,0x3f91d831,3 +np.float32,0xbf54872e,0x40233724,3 +np.float32,0xbf52ee7f,0x4022815e,3 +np.float32,0xbe708c24,0x3fe769fc,3 +np.float32,0xbf26fc54,0x40120260,3 +np.float32,0x3f226e8a,0x3f6228db,3 +np.float32,0xbef30406,0x40042eb8,3 +np.float32,0x3f5d996c,0x3f063f5f,3 +np.float32,0xbf425f9c,0x401bb618,3 +np.float32,0x3e4bb260,0x3faf6dc9,3 +np.float32,0xbe52d5a4,0x3fe39b29,3 +np.float32,0xbe169cf0,0x3fdbf505,3 +np.float32,0xbedfc422,0x40017a8e,3 +np.float32,0x3d8ffef0,0x3fc00e05,3 +np.float32,0xbf12bdab,0x400b98f2,3 +np.float32,0x3f295d0a,0x3f590e88,3 +np.float32,0x3f49d8e4,0x3f2998aa,3 +np.float32,0xbef914f4,0x40050c12,3 +np.float32,0xbf4ea2b5,0x4020a61e,3 +np.float32,0xbf3a89e5,0x4018c762,3 +np.float32,0x3e8707b4,0x3fa6e67a,3 +np.float32,0x3ac55400,0x3fc8de86,3 +np.float32,0x800000,0x3fc90fdb,3 +np.float32,0xbeb9762c,0x3ff8819b,3 +np.float32,0xbebbe23c,0x3ff92815,3 +np.float32,0xbf598c88,0x402587a1,3 +np.float32,0x3e95d864,0x3fa30b4a,3 +np.float32,0x3f7f6f40,0x3d882486,3 +np.float32,0xbf53658c,0x4022b604,3 +np.float32,0xbf2a35f2,0x401314ad,3 +np.float32,0x3eb14380,0x3f9bcf28,3 +np.float32,0x3f0e0c64,0x3f7b8a7a,3 +np.float32,0x3d349920,0x3fc36a9a,3 +np.float32,0xbec2092c,0x3ffad071,3 +np.float32,0xbe1d08e8,0x3fdcc4e0,3 +np.float32,0xbf008968,0x40063243,3 +np.float32,0xbefad582,0x40054c51,3 +np.float32,0xbe52d010,0x3fe39a72,3 +np.float32,0x3f4afdac,0x3f27ba6b,3 +np.float32,0x3f6c483c,0x3eca4408,3 +np.float32,0xbef3cb68,0x40044b0c,3 +np.float32,0x3e94687c,0x3fa36b6f,3 +np.float32,0xbf64ae5c,0x402b39bb,3 +np.float32,0xbf0022b4,0x40061497,3 +np.float32,0x80000001,0x3fc90fdb,3 +np.float32,0x3f25bcd0,0x3f5dda4b,3 +np.float32,0x3ed91b40,0x3f9102d7,3 +np.float32,0x3f800000,0x0,3 +np.float32,0xbebc6aca,0x3ff94cca,3 +np.float32,0x3f239e9a,0x3f609e7d,3 +np.float32,0xbf7312be,0x4034a305,3 +np.float32,0x3efd16d0,0x3f86e148,3 +np.float32,0x3f52753a,0x3f1b0f72,3 +np.float32,0xbde58960,0x3fd7702c,3 +np.float32,0x3ef88580,0x3f883099,3 +np.float32,0x3eebaefc,0x3f8bd51e,3 +np.float32,0x3e877d2c,0x3fa6c807,3 +np.float32,0x3f1a0324,0x3f6cdf32,3 +np.float32,0xbedfe20a,0x40017eb6,3 +np.float32,0x3f205a3c,0x3f64d69d,3 +np.float32,0xbeed5b7c,0x400361b0,3 +np.float32,0xbf69ba10,0x402e2ad0,3 +np.float32,0x3c4fe200,0x3fc77014,3 +np.float32,0x3f043310,0x3f839a69,3 +np.float32,0xbeaf359a,0x3ff5c485,3 +np.float32,0x3db3f110,0x3fbdcd12,3 +np.float32,0x3e24af88,0x3fb462ed,3 +np.float32,0xbf34e858,0x4016c1c8,3 +np.float32,0x3f3334f2,0x3f4b9cd0,3 +np.float32,0xbf145882,0x400c16a2,3 +np.float32,0xbf541c38,0x40230748,3 +np.float32,0x3eba7e10,0x3f99574b,3 +np.float32,0xbe34c6e0,0x3fdfc731,3 +np.float32,0xbe957abe,0x3feefbf0,3 +np.float32,0xbf595a59,0x40256fdb,3 +np.float32,0xbdedc7b8,0x3fd7f4f0,3 +np.float32,0xbf627c02,0x402a06a9,3 +np.float32,0x3f339b78,0x3f4b0d18,3 +np.float32,0xbf2df6d2,0x40145929,3 +np.float32,0x3f617726,0x3efc9fd8,3 +np.float32,0xbee3a8fc,0x40020561,3 +np.float32,0x3efe9f68,0x3f867043,3 +np.float32,0xbf2c3e76,0x4013c3ba,3 +np.float32,0xbf218f28,0x40103d84,3 +np.float32,0xbf1ea847,0x400f4f7f,3 +np.float32,0x3ded9160,0x3fba2e31,3 +np.float32,0x3bce1b00,0x3fc841bf,3 +np.float32,0xbe90566e,0x3feda46a,3 +np.float32,0xbf5ea2ba,0x4028056b,3 +np.float32,0x3f538e62,0x3f191ee6,3 +np.float32,0xbf59e054,0x4025af74,3 +np.float32,0xbe8c98ba,0x3fecab24,3 +np.float32,0x3ee7bdb0,0x3f8cf0b7,3 +np.float32,0xbf2eb828,0x40149b2b,3 +np.float32,0xbe5eb904,0x3fe52068,3 +np.float32,0xbf16b422,0x400cd08d,3 +np.float32,0x3f1ab9b4,0x3f6bfa58,3 +np.float32,0x3dc23040,0x3fbce82a,3 +np.float32,0xbf29d9e7,0x4012f5e5,3 +np.float32,0xbf38f30a,0x40183393,3 +np.float32,0x3e88e798,0x3fa66a09,3 +np.float32,0x3f1d07e6,0x3f69124f,3 +np.float32,0xbe1d3d34,0x3fdccb7e,3 +np.float32,0xbf1715be,0x400ceec2,3 +np.float32,0x3f7a0eac,0x3e5d11f7,3 +np.float32,0xbe764924,0x3fe82707,3 +np.float32,0xbf01a1f8,0x4006837c,3 +np.float32,0x3f2be730,0x3f55a661,3 +np.float32,0xbf7bb070,0x403d4ce5,3 +np.float32,0xbd602110,0x3fd011c9,3 +np.float32,0x3f5d080c,0x3f07609d,3 +np.float32,0xbda20400,0x3fd332d1,3 +np.float32,0x3f1c62da,0x3f69e308,3 +np.float32,0xbf2c6916,0x4013d223,3 +np.float32,0xbf44f8fd,0x401cb816,3 +np.float32,0x3f4da392,0x3f235539,3 +np.float32,0x3e9e8aa0,0x3fa0c3a0,3 +np.float32,0x3e9633c4,0x3fa2f366,3 +np.float32,0xbf0422ab,0x40073ddd,3 +np.float32,0x3f518386,0x3f1cb603,3 +np.float32,0x3f24307a,0x3f5fe096,3 +np.float32,0xbdfb4220,0x3fd8ce24,3 +np.float32,0x3f179d28,0x3f6fdc7d,3 +np.float32,0xbecc2df0,0x3ffd911e,3 +np.float32,0x3f3dff0c,0x3f3c0782,3 +np.float32,0xbf58c4d8,0x4025295b,3 +np.float32,0xbdcf8438,0x3fd60dd3,3 +np.float32,0xbeeaf1b2,0x40030aa7,3 +np.float32,0xbf298a28,0x4012db45,3 +np.float32,0x3f6c4dec,0x3eca2678,3 +np.float32,0x3f4d1ac8,0x3f243a59,3 +np.float32,0x3f62cdfa,0x3ef6e8f8,3 +np.float32,0xbee8acce,0x4002b909,3 +np.float32,0xbd5f2af0,0x3fd00a15,3 +np.float32,0x3f5fde8e,0x3f01a453,3 +np.float32,0x3e95233c,0x3fa33aa4,3 +np.float32,0x3ecd2a60,0x3f9449be,3 +np.float32,0x3f10aa86,0x3f78619d,3 +np.float32,0x3f3888e8,0x3f440a70,3 +np.float32,0x3eeb5bfc,0x3f8bec7d,3 +np.float32,0xbe12d654,0x3fdb7ae6,3 +np.float32,0x3eca3110,0x3f951931,3 +np.float32,0xbe2d1b7c,0x3fdece05,3 +np.float32,0xbf29e9db,0x4012fb3a,3 +np.float32,0xbf0c50b8,0x4009a845,3 +np.float32,0xbed9f0e4,0x4000abef,3 +np.float64,0x3fd078ec5ba0f1d8,0x3ff4f7c00595a4d3,1 +np.float64,0xbfdbc39743b7872e,0x400027f85bce43b2,1 +np.float64,0xbfacd2707c39a4e0,0x3ffa08ae1075d766,1 +np.float64,0xbfc956890f32ad14,0x3ffc52308e7285fd,1 +np.float64,0xbf939c2298273840,0x3ff9706d18e6ea6b,1 +np.float64,0xbfe0d7048961ae09,0x4000fff4406bd395,1 +np.float64,0xbfe9d19b86f3a337,0x4004139bc683a69f,1 +np.float64,0x3fd35c7f90a6b900,0x3ff437220e9123f8,1 +np.float64,0x3fdddca171bbb944,0x3ff15da61e61ec08,1 +np.float64,0x3feb300de9f6601c,0x3fe1c6fadb68cdca,1 +np.float64,0xbfef1815327e302a,0x400739808fc6f964,1 +np.float64,0xbfe332d78e6665af,0x4001b6c4ef922f7c,1 +np.float64,0xbfedbf4dfb7b7e9c,0x40061cefed62a58b,1 +np.float64,0xbfd8dcc7e3b1b990,0x3fff84307713c2c3,1 +np.float64,0xbfedaf161c7b5e2c,0x400612027c1b2b25,1 +np.float64,0xbfed9bde897b37bd,0x4006053f05bd7d26,1 +np.float64,0xbfe081ebc26103d8,0x4000e70755eb66e0,1 +np.float64,0xbfe0366f9c606cdf,0x4000d11212f29afd,1 +np.float64,0xbfc7c115212f822c,0x3ffc1e8c9d58f7db,1 +np.float64,0x3fd8dd9a78b1bb34,0x3ff2bf8d0f4c9376,1 +np.float64,0xbfe54eff466a9dfe,0x4002655950b611f4,1 +np.float64,0xbfe4aad987e955b3,0x40022efb19882518,1 +np.float64,0x3f70231ca0204600,0x3ff911d834e7abf4,1 +np.float64,0x3fede01d047bc03a,0x3fd773cecbd8561b,1 +np.float64,0xbfd6a00d48ad401a,0x3ffee9fd7051633f,1 +np.float64,0x3fd44f3d50a89e7c,0x3ff3f74dd0fc9c91,1 +np.float64,0x3fe540f0d0ea81e2,0x3feb055a7c7d43d6,1 +np.float64,0xbf3ba2e200374800,0x3ff923b582650c6c,1 +np.float64,0x3fe93b2d3f72765a,0x3fe532fa15331072,1 +np.float64,0x3fee8ce5a17d19cc,0x3fd35666eefbe336,1 +np.float64,0x3fe55d5f8feabac0,0x3feadf3dcfe251d4,1 +np.float64,0xbfd1d2ede8a3a5dc,0x3ffda600041ac884,1 +np.float64,0xbfee41186e7c8231,0x40067a625cc6f64d,1 +np.float64,0x3fe521a8b9ea4352,0x3feb2f1a6c8084e5,1 +np.float64,0x3fc65378ef2ca6f0,0x3ff653dfe81ee9f2,1 +np.float64,0x3fdaba0fbcb57420,0x3ff23d630995c6ba,1 +np.float64,0xbfe6b7441d6d6e88,0x4002e182539a2994,1 +np.float64,0x3fda00b6dcb4016c,0x3ff2703d516f28e7,1 +np.float64,0xbfe8699f01f0d33e,0x400382326920ea9e,1 +np.float64,0xbfef5889367eb112,0x4007832af5983793,1 +np.float64,0x3fefb57c8aff6afa,0x3fc14700ab38dcef,1 +np.float64,0xbfda0dfdaab41bfc,0x3fffd75b6fd497f6,1 +np.float64,0xbfb059c36620b388,0x3ffa27c528b97a42,1 +np.float64,0xbfdd450ab1ba8a16,0x40005dcac6ab50fd,1 +np.float64,0xbfe54d6156ea9ac2,0x400264ce9f3f0fb9,1 +np.float64,0xbfe076e94760edd2,0x4000e3d1374884da,1 +np.float64,0xbfc063286720c650,0x3ffb2fd1d6bff0ef,1 +np.float64,0xbfe24680f2e48d02,0x40016ddfbb5bcc0e,1 +np.float64,0xbfdc9351d2b926a4,0x400044e3756fb765,1 +np.float64,0x3fefb173d8ff62e8,0x3fc1bd5626f80850,1 +np.float64,0x3fe77c117a6ef822,0x3fe7e57089bad2ec,1 +np.float64,0xbfddbcebf7bb79d8,0x40006eadb60406b3,1 +np.float64,0xbfecf6625ff9ecc5,0x40059e6c6961a6db,1 +np.float64,0x3fdc8950b8b912a0,0x3ff1bcfb2e27795b,1 +np.float64,0xbfeb2fa517765f4a,0x4004b00aee3e6888,1 +np.float64,0x3fd0efc88da1df90,0x3ff4d8f7cbd8248a,1 +np.float64,0xbfe6641a2becc834,0x4002c43362c1bd0f,1 +np.float64,0xbfe28aec0fe515d8,0x400182c91d4df039,1 +np.float64,0xbfd5ede8d0abdbd2,0x3ffeba7baef05ae8,1 +np.float64,0xbfbd99702a3b32e0,0x3ffafca21c1053f1,1 +np.float64,0x3f96f043f82de080,0x3ff8c6384d5eb610,1 +np.float64,0xbfe5badbc9eb75b8,0x400289c8cd5873d1,1 +np.float64,0x3fe5c6bf95eb8d80,0x3fea5093e9a3e43e,1 +np.float64,0x3fb1955486232ab0,0x3ff8086d4c3e71d5,1 +np.float64,0xbfea145f397428be,0x4004302237a35871,1 +np.float64,0xbfdabe685db57cd0,0x400003e2e29725fb,1 +np.float64,0xbfefc79758ff8f2f,0x400831814e23bfc8,1 +np.float64,0x3fd7edb66cafdb6c,0x3ff3006c5123bfaf,1 +np.float64,0xbfeaf7644bf5eec8,0x400495a7963ce4ed,1 +np.float64,0x3fdf838d78bf071c,0x3ff0e527eed73800,1 +np.float64,0xbfd1a0165ba3402c,0x3ffd98c5ab76d375,1 +np.float64,0x3fd75b67a9aeb6d0,0x3ff327c8d80b17cf,1 +np.float64,0x3fc2aa9647255530,0x3ff6ca854b157df1,1 +np.float64,0xbfe0957fd4612b00,0x4000ecbf3932becd,1 +np.float64,0x3fda1792c0b42f24,0x3ff269fbb2360487,1 +np.float64,0x3fd480706ca900e0,0x3ff3ea53a6aa3ae8,1 +np.float64,0xbfd0780ed9a0f01e,0x3ffd4bfd544c7d47,1 +np.float64,0x3feeec0cd77dd81a,0x3fd0a8a241fdb441,1 +np.float64,0x3fcfa933e93f5268,0x3ff5223478621a6b,1 +np.float64,0x3fdad2481fb5a490,0x3ff236b86c6b2b49,1 +np.float64,0x3fe03b129de07626,0x3ff09f21fb868451,1 +np.float64,0xbfc01212cd202424,0x3ffb259a07159ae9,1 +np.float64,0x3febdb912df7b722,0x3fe0768e20dac8c9,1 +np.float64,0xbfbf2148763e4290,0x3ffb154c361ce5bf,1 +np.float64,0xbfb1a7eb1e234fd8,0x3ffa3cb37ac4a176,1 +np.float64,0xbfe26ad1ec64d5a4,0x400178f480ecce8d,1 +np.float64,0x3fe6d1cd1b6da39a,0x3fe8dc20ec4dad3b,1 +np.float64,0xbfede0e53dfbc1ca,0x4006340d3bdd7c97,1 +np.float64,0xbfe8fd1bd9f1fa38,0x4003bc3477f93f40,1 +np.float64,0xbfe329d0f26653a2,0x4001b3f345af5648,1 +np.float64,0xbfe4bb20eee97642,0x40023451404d6d08,1 +np.float64,0x3fb574832e2ae900,0x3ff7ca4bed0c7110,1 +np.float64,0xbfdf3c098fbe7814,0x4000a525bb72d659,1 +np.float64,0x3fa453e6d428a7c0,0x3ff87f512bb9b0c6,1 +np.float64,0x3faaec888435d920,0x3ff84a7d9e4def63,1 +np.float64,0xbfcdc240df3b8480,0x3ffce30ece754e7f,1 +np.float64,0xbf8c3220f0386440,0x3ff95a600ae6e157,1 +np.float64,0x3fe806076c700c0e,0x3fe71784a96c76eb,1 +np.float64,0x3fedf9b0e17bf362,0x3fd6e35fc0a7b6c3,1 +np.float64,0xbfe1b48422636908,0x400141bd8ed251bc,1 +np.float64,0xbfe82e2817705c50,0x40036b5a5556d021,1 +np.float64,0xbfc8ef8ff931df20,0x3ffc450ffae7ce58,1 +np.float64,0xbfe919fa94f233f5,0x4003c7cce4697fe8,1 +np.float64,0xbfc3ace4a72759c8,0x3ffb9a197bb22651,1 +np.float64,0x3fe479f71ee8f3ee,0x3fec0bd2f59097aa,1 +np.float64,0xbfeeb54a967d6a95,0x4006da12c83649c5,1 +np.float64,0x3fe5e74ea8ebce9e,0x3fea2407cef0f08c,1 +np.float64,0x3fb382baf2270570,0x3ff7e98213b921ba,1 +np.float64,0xbfdd86fd3cbb0dfa,0x40006712952ddbcf,1 +np.float64,0xbfd250eb52a4a1d6,0x3ffdc6d56253b1cd,1 +np.float64,0x3fea30c4ed74618a,0x3fe3962deba4f30e,1 +np.float64,0x3fc895963d312b30,0x3ff60a5d52fcbccc,1 +np.float64,0x3fe9cc4f6273989e,0x3fe442740942c80f,1 +np.float64,0xbfe8769f5cf0ed3f,0x4003873b4cb5bfce,1 +np.float64,0xbfe382f3726705e7,0x4001cfeb3204d110,1 +np.float64,0x3fbfe9a9163fd350,0x3ff7220bd2b97c8f,1 +np.float64,0xbfca6162bb34c2c4,0x3ffc743f939358f1,1 +np.float64,0x3fe127a014e24f40,0x3ff0147c4bafbc39,1 +np.float64,0x3fee9cdd2a7d39ba,0x3fd2e9ef45ab122f,1 +np.float64,0x3fa9ffb97c33ff80,0x3ff851e69fa3542c,1 +np.float64,0x3fd378f393a6f1e8,0x3ff42faafa77de56,1 +np.float64,0xbfe4df1e1669be3c,0x400240284df1c321,1 +np.float64,0x3fed0ed79bfa1db0,0x3fdba89060aa96fb,1 +np.float64,0x3fdef2ee52bde5dc,0x3ff10e942244f4f1,1 +np.float64,0xbfdab38f3ab5671e,0x40000264d8d5b49b,1 +np.float64,0x3fbe95a96e3d2b50,0x3ff73774cb59ce2d,1 +np.float64,0xbfe945653af28aca,0x4003d9657bf129c2,1 +np.float64,0xbfb18f3f2a231e80,0x3ffa3b27cba23f50,1 +np.float64,0xbfef50bf22fea17e,0x40077998a850082c,1 +np.float64,0xbfc52b8c212a5718,0x3ffbca8d6560a2da,1 +np.float64,0x7ff8000000000000,0x7ff8000000000000,1 +np.float64,0x3fc1e3a02d23c740,0x3ff6e3a5fcac12a4,1 +np.float64,0xbfeb5e4ea5f6bc9d,0x4004c65abef9426f,1 +np.float64,0xbfe425b132684b62,0x400203c29608b00d,1 +np.float64,0xbfbfa1c19e3f4380,0x3ffb1d6367711158,1 +np.float64,0x3fbba2776e3744f0,0x3ff766f6df586fad,1 +np.float64,0xbfb5d0951e2ba128,0x3ffa7f712480b25e,1 +np.float64,0xbfe949fdab7293fb,0x4003db4530a18507,1 +np.float64,0xbfcf13519b3e26a4,0x3ffd0e6f0a6c38ee,1 +np.float64,0x3f91e6d72823cdc0,0x3ff8da5f08909b6e,1 +np.float64,0x3f78a2e360314600,0x3ff909586727caef,1 +np.float64,0xbfe1ae7e8fe35cfd,0x40013fef082caaa3,1 +np.float64,0x3fe97a6dd1f2f4dc,0x3fe4cb4b99863478,1 +np.float64,0xbfcc1e1e69383c3c,0x3ffcad250a949843,1 +np.float64,0x3faccb797c399700,0x3ff83b8066b49330,1 +np.float64,0x3fe7a2647a6f44c8,0x3fe7acceae6ec425,1 +np.float64,0xbfec3bfcf0f877fa,0x4005366af5a7175b,1 +np.float64,0xbfe2310b94646217,0x400167588fceb228,1 +np.float64,0x3feb167372762ce6,0x3fe1f74c0288fad8,1 +np.float64,0xbfb722b4ee2e4568,0x3ffa94a81b94dfca,1 +np.float64,0x3fc58da9712b1b50,0x3ff66cf8f072aa14,1 +np.float64,0xbfe7fff9d6effff4,0x400359d01b8141de,1 +np.float64,0xbfd56691c5aacd24,0x3ffe9686697797e8,1 +np.float64,0x3fe3ab0557e7560a,0x3fed1593959ef8e8,1 +np.float64,0x3fdd458995ba8b14,0x3ff1883d6f22a322,1 +np.float64,0x3fe7bbed2cef77da,0x3fe786d618094cda,1 +np.float64,0x3fa31a30c4263460,0x3ff88920b936fd79,1 +np.float64,0x8010000000000000,0x3ff921fb54442d18,1 +np.float64,0xbfdc5effbdb8be00,0x40003d95fe0dff11,1 +np.float64,0x3febfdad7e77fb5a,0x3fe030b5297dbbdd,1 +np.float64,0x3fe4f3f3b2e9e7e8,0x3feb6bc59eeb2be2,1 +np.float64,0xbfe44469fd6888d4,0x40020daa5488f97a,1 +np.float64,0xbfe19fddb0e33fbc,0x40013b8c902b167b,1 +np.float64,0x3fa36ad17c26d5a0,0x3ff8869b3e828134,1 +np.float64,0x3fcf23e6c93e47d0,0x3ff5336491a65d1e,1 +np.float64,0xffefffffffffffff,0x7ff8000000000000,1 +np.float64,0xbfe375f4cee6ebea,0x4001cbd2ba42e8b5,1 +np.float64,0xbfaef1215c3de240,0x3ffa19ab02081189,1 +np.float64,0xbfec39c59c78738b,0x4005353dc38e3d78,1 +np.float64,0x7ff4000000000000,0x7ffc000000000000,1 +np.float64,0xbfec09bb7b781377,0x40051c0a5754cb3a,1 +np.float64,0x3fe8301f2870603e,0x3fe6d783c5ef0944,1 +np.float64,0xbfed418c987a8319,0x4005cbae1b8693d1,1 +np.float64,0xbfdc16e7adb82dd0,0x4000338b634eaf03,1 +np.float64,0x3fd5d361bdaba6c4,0x3ff390899300a54c,1 +np.float64,0xbff0000000000000,0x400921fb54442d18,1 +np.float64,0x3fd5946232ab28c4,0x3ff3a14767813f29,1 +np.float64,0x3fe833e5fef067cc,0x3fe6d1be720edf2d,1 +np.float64,0x3fedf746a67bee8e,0x3fd6f127fdcadb7b,1 +np.float64,0x3fd90353d3b206a8,0x3ff2b54f7d369ba9,1 +np.float64,0x3fec4b4b72f89696,0x3fdf1b38d2e93532,1 +np.float64,0xbfe9c67596f38ceb,0x40040ee5f524ce03,1 +np.float64,0x3fd350d91aa6a1b4,0x3ff43a303c0da27f,1 +np.float64,0x3fd062603ba0c4c0,0x3ff4fd9514b935d8,1 +np.float64,0xbfe24c075f64980e,0x40016f8e9f2663b3,1 +np.float64,0x3fdaa546eeb54a8c,0x3ff2431a88fef1d5,1 +np.float64,0x3fe92b8151f25702,0x3fe54c67e005cbf9,1 +np.float64,0xbfe1be8b8a637d17,0x400144c078f67c6e,1 +np.float64,0xbfe468a1d7e8d144,0x40021964b118cbf4,1 +np.float64,0xbfdc6de4fab8dbca,0x40003fa9e27893d8,1 +np.float64,0xbfe3c2788ae784f1,0x4001e407ba3aa956,1 +np.float64,0xbfe2bf1542e57e2a,0x400192d4a9072016,1 +np.float64,0xbfe6982f4c6d305e,0x4002d681b1991bbb,1 +np.float64,0x3fdbceb1c4b79d64,0x3ff1f0f117b9d354,1 +np.float64,0x3fdb3705e7b66e0c,0x3ff21af01ca27ace,1 +np.float64,0x3fe3e6358ee7cc6c,0x3fecca4585053983,1 +np.float64,0xbfe16d6a9a62dad5,0x40012c7988aee247,1 +np.float64,0xbfce66e4413ccdc8,0x3ffcf83b08043a0c,1 +np.float64,0xbfeb6cd46876d9a9,0x4004cd61733bfb79,1 +np.float64,0xbfdb1cdd64b639ba,0x400010e6cf087cb7,1 +np.float64,0xbfe09e4e30e13c9c,0x4000ef5277c47721,1 +np.float64,0xbfee88dd127d11ba,0x4006b3cd443643ac,1 +np.float64,0xbf911e06c8223c00,0x3ff966744064fb05,1 +np.float64,0xbfe8f22bc471e458,0x4003b7d5513af295,1 +np.float64,0x3fe3d7329567ae66,0x3fecdd6c241f83ee,1 +np.float64,0x3fc8a9404b315280,0x3ff607dc175edf3f,1 +np.float64,0x3fe7eb80ad6fd702,0x3fe73f8fdb3e6a6c,1 +np.float64,0x3fef0931e37e1264,0x3fcf7fde80a3c5ab,1 +np.float64,0x3fe2ed3c3fe5da78,0x3fee038334cd1860,1 +np.float64,0x3fe251fdb8e4a3fc,0x3feec26dc636ac31,1 +np.float64,0x3feb239436764728,0x3fe1de9462455da7,1 +np.float64,0xbfe63fd7eeec7fb0,0x4002b78cfa3d2fa6,1 +np.float64,0x3fdd639cb5bac738,0x3ff17fc7d92b3eee,1 +np.float64,0x3fd0a7a13fa14f44,0x3ff4eba95c559c84,1 +np.float64,0x3fe804362d70086c,0x3fe71a44cd91ffa4,1 +np.float64,0xbfe0fecf6e61fd9f,0x40010bac8edbdc4f,1 +np.float64,0x3fcb74acfd36e958,0x3ff5ac84437f1b7c,1 +np.float64,0x3fe55053e1eaa0a8,0x3feaf0bf76304c30,1 +np.float64,0x3fc06b508d20d6a0,0x3ff7131da17f3902,1 +np.float64,0x3fdd78750fbaf0ec,0x3ff179e97fbf7f65,1 +np.float64,0x3fe44cb946689972,0x3fec46859b5da6be,1 +np.float64,0xbfeb165a7ff62cb5,0x4004a41c9cc9589e,1 +np.float64,0x3fe01ffb2b603ff6,0x3ff0aed52bf1c3c1,1 +np.float64,0x3f983c60a83078c0,0x3ff8c107805715ab,1 +np.float64,0x3fd8b5ff13b16c00,0x3ff2ca4a837a476a,1 +np.float64,0x3fc80510a1300a20,0x3ff61cc3b4af470b,1 +np.float64,0xbfd3935b06a726b6,0x3ffe1b3a2066f473,1 +np.float64,0xbfdd4a1f31ba943e,0x40005e81979ed445,1 +np.float64,0xbfa76afdd42ed600,0x3ff9dd63ffba72d2,1 +np.float64,0x3fe7e06d496fc0da,0x3fe7503773566707,1 +np.float64,0xbfea5fbfe874bf80,0x40045106af6c538f,1 +np.float64,0x3fee000c487c0018,0x3fd6bef1f8779d88,1 +np.float64,0xbfb39f4ee2273ea0,0x3ffa5c3f2b3888ab,1 +np.float64,0x3feb9247b0772490,0x3fe1092d2905efce,1 +np.float64,0x3fdaa39b4cb54738,0x3ff243901da0da17,1 +np.float64,0x3fcd5b2b493ab658,0x3ff56e262e65b67d,1 +np.float64,0x3fcf82512f3f04a0,0x3ff52738847c55f2,1 +np.float64,0x3fe2af5e0c655ebc,0x3fee4ffab0c82348,1 +np.float64,0xbfec0055d0f800ac,0x4005172d325933e8,1 +np.float64,0x3fe71da9336e3b52,0x3fe86f2e12f6e303,1 +np.float64,0x3fbefab0723df560,0x3ff731188ac716ec,1 +np.float64,0xbfe11dca28623b94,0x400114d3d4ad370d,1 +np.float64,0x3fbcbda8ca397b50,0x3ff755281078abd4,1 +np.float64,0x3fe687c7126d0f8e,0x3fe945099a7855cc,1 +np.float64,0xbfecde510579bca2,0x400590606e244591,1 +np.float64,0xbfd72de681ae5bce,0x3fff0ff797ad1755,1 +np.float64,0xbfe7c0f7386f81ee,0x40034226e0805309,1 +np.float64,0x3fd8d55619b1aaac,0x3ff2c1cb3267b14e,1 +np.float64,0x3fecd7a2ad79af46,0x3fdcabbffeaa279e,1 +np.float64,0x3fee7fb1a8fcff64,0x3fd3ae620286fe19,1 +np.float64,0xbfc5f3a3592be748,0x3ffbe3ed204d9842,1 +np.float64,0x3fec9e5527793caa,0x3fddb00bc8687e4b,1 +np.float64,0x3fc35dc70f26bb90,0x3ff6b3ded7191e33,1 +np.float64,0x3fda91c07ab52380,0x3ff24878848fec8f,1 +np.float64,0xbfe12cde1fe259bc,0x4001194ab99d5134,1 +np.float64,0xbfd35ab736a6b56e,0x3ffe0c5ce8356d16,1 +np.float64,0x3fc9c94123339280,0x3ff5e3239f3ad795,1 +np.float64,0xbfe72f54926e5ea9,0x40030c95d1d02b56,1 +np.float64,0xbfee283186fc5063,0x40066786bd0feb79,1 +np.float64,0xbfe7b383f56f6708,0x40033d23ef0e903d,1 +np.float64,0x3fd6037327ac06e8,0x3ff383bf2f311ddb,1 +np.float64,0x3fe0e344b561c68a,0x3ff03cd90fd4ba65,1 +np.float64,0xbfef0ff54b7e1feb,0x400730fa5fce381e,1 +np.float64,0x3fd269929da4d324,0x3ff476b230136d32,1 +np.float64,0xbfbc5fb9f638bf70,0x3ffae8e63a4e3234,1 +np.float64,0xbfe2e8bc84e5d179,0x40019fb5874f4310,1 +np.float64,0xbfd7017413ae02e8,0x3fff040d843c1531,1 +np.float64,0x3fefd362fa7fa6c6,0x3fbababc3ddbb21d,1 +np.float64,0x3fecb62ed3f96c5e,0x3fdd44ba77ccff94,1 +np.float64,0xbfb16fad5222df58,0x3ffa392d7f02b522,1 +np.float64,0x3fbcf4abc639e950,0x3ff751b23c40e27f,1 +np.float64,0x3fe128adbce2515c,0x3ff013dc91db04b5,1 +np.float64,0x3fa5dd9d842bbb40,0x3ff87300c88d512f,1 +np.float64,0xbfe61efcaf6c3dfa,0x4002ac27117f87c9,1 +np.float64,0x3feffe1233fffc24,0x3f9638d3796a4954,1 +np.float64,0xbfe78548b66f0a92,0x40032c0447b7bfe2,1 +np.float64,0x3fe7bd38416f7a70,0x3fe784e86d6546b6,1 +np.float64,0x3fe0d6bc5961ad78,0x3ff0443899e747ac,1 +np.float64,0xbfd0bb6e47a176dc,0x3ffd5d6dff390d41,1 +np.float64,0xbfec1d16b8f83a2e,0x40052620378d3b78,1 +np.float64,0x3fe9bbec20f377d8,0x3fe45e167c7a3871,1 +np.float64,0xbfeed81d9dfdb03b,0x4006f9dec2db7310,1 +np.float64,0xbfe1e35179e3c6a3,0x40014fd1b1186ac0,1 +np.float64,0xbfc9c7e605338fcc,0x3ffc60a6bd1a7126,1 +np.float64,0x3feec92810fd9250,0x3fd1afde414ab338,1 +np.float64,0xbfeb9f1d90773e3b,0x4004e606b773f5b0,1 +np.float64,0x3fcbabdf6b3757c0,0x3ff5a573866404af,1 +np.float64,0x3fe9f4e1fff3e9c4,0x3fe3fd7b6712dd7b,1 +np.float64,0xbfe6c0175ded802e,0x4002e4a4dc12f3fe,1 +np.float64,0xbfeefc96f37df92e,0x40071d367cd721ff,1 +np.float64,0xbfeaab58dc7556b2,0x400472ce37e31e50,1 +np.float64,0xbfc62668772c4cd0,0x3ffbea5e6c92010a,1 +np.float64,0x3fafe055fc3fc0a0,0x3ff822ce6502519a,1 +np.float64,0x3fd7b648ffaf6c90,0x3ff30f5a42f11418,1 +np.float64,0xbfe934fe827269fd,0x4003d2b9fed9e6ad,1 +np.float64,0xbfe6d691f2edad24,0x4002eca6a4b1797b,1 +np.float64,0x3fc7e62ced2fcc58,0x3ff620b1f44398b7,1 +np.float64,0xbfc89be9f33137d4,0x3ffc3a67a497f59c,1 +np.float64,0xbfe7793d536ef27a,0x40032794bf14dd64,1 +np.float64,0x3fde55a02dbcab40,0x3ff13b5f82d223e4,1 +np.float64,0xbfc8eabd7b31d57c,0x3ffc4472a81cb6d0,1 +np.float64,0x3fddcb5468bb96a8,0x3ff162899c381f2e,1 +np.float64,0xbfec7554d8f8eaaa,0x40055550e18ec463,1 +np.float64,0x3fd0b6e8b6a16dd0,0x3ff4e7b4781a50e3,1 +np.float64,0x3fedaae01b7b55c0,0x3fd8964916cdf53d,1 +np.float64,0x3fe0870f8a610e20,0x3ff072e7db95c2a2,1 +np.float64,0xbfec3e3ce2787c7a,0x4005379d0f6be873,1 +np.float64,0xbfe65502586caa04,0x4002beecff89147f,1 +np.float64,0xbfe0df39a961be74,0x4001025e36d1c061,1 +np.float64,0xbfb5d8edbe2bb1d8,0x3ffa7ff72b7d6a2b,1 +np.float64,0xbfde89574bbd12ae,0x40008ba4cd74544d,1 +np.float64,0xbfe72938f0ee5272,0x40030a5efd1acb6d,1 +np.float64,0xbfcd500d133aa01c,0x3ffcd462f9104689,1 +np.float64,0x3fe0350766606a0e,0x3ff0a2a3664e2c14,1 +np.float64,0xbfc892fb573125f8,0x3ffc3944641cc69d,1 +np.float64,0xbfba7dc7c634fb90,0x3ffaca9a6a0ffe61,1 +np.float64,0xbfeac94478759289,0x40048068a8b83e45,1 +np.float64,0xbfe8f60c1af1ec18,0x4003b961995b6e51,1 +np.float64,0x3fea1c0817743810,0x3fe3ba28c1643cf7,1 +np.float64,0xbfe42a0fefe85420,0x4002052aadd77f01,1 +np.float64,0x3fd2c61c56a58c38,0x3ff45e84cb9a7fa9,1 +np.float64,0xbfd83fb7cdb07f70,0x3fff59ab4790074c,1 +np.float64,0x3fd95e630fb2bcc8,0x3ff29c8bee1335ad,1 +np.float64,0x3feee88f387dd11e,0x3fd0c3ad3ded4094,1 +np.float64,0x3fe061291160c252,0x3ff0890010199bbc,1 +np.float64,0xbfdc7db3b5b8fb68,0x400041dea3759443,1 +np.float64,0x3fee23b320fc4766,0x3fd5ee73d7aa5c56,1 +np.float64,0xbfdc25c590b84b8c,0x4000359cf98a00b4,1 +np.float64,0xbfd63cbfd2ac7980,0x3ffecf7b9cf99b3c,1 +np.float64,0xbfbeb3c29a3d6788,0x3ffb0e66ecc0fc3b,1 +np.float64,0xbfd2f57fd6a5eb00,0x3ffdf1d7c79e1532,1 +np.float64,0xbfab3eda9c367db0,0x3ff9fc0c875f42e9,1 +np.float64,0xbfe12df1c6e25be4,0x4001199c673e698c,1 +np.float64,0x3fef8ab23a7f1564,0x3fc5aff358c59f1c,1 +np.float64,0x3fe562f50feac5ea,0x3fead7bce205f7d9,1 +np.float64,0x3fdc41adbeb8835c,0x3ff1d0f71341b8f2,1 +np.float64,0x3fe2748967e4e912,0x3fee9837f970ff9e,1 +np.float64,0xbfdaa89d57b5513a,0x400000e3889ba4cf,1 +np.float64,0x3fdf2a137dbe5428,0x3ff0fecfbecbbf86,1 +np.float64,0xbfea1fdcd2f43fba,0x4004351974b32163,1 +np.float64,0xbfe34a93a3e69528,0x4001be323946a3e0,1 +np.float64,0x3fe929bacff25376,0x3fe54f47bd7f4cf2,1 +np.float64,0xbfd667fbd6accff8,0x3ffedb04032b3a1a,1 +np.float64,0xbfeb695796f6d2af,0x4004cbb08ec6f525,1 +np.float64,0x3fd204df2ea409c0,0x3ff490f51e6670f5,1 +np.float64,0xbfd89a2757b1344e,0x3fff722127b988c4,1 +np.float64,0xbfd0787187a0f0e4,0x3ffd4c16dbe94f32,1 +np.float64,0x3fd44239bfa88474,0x3ff3fabbfb24b1fa,1 +np.float64,0xbfeb0b3489f61669,0x40049ee33d811d33,1 +np.float64,0x3fdcf04eaab9e09c,0x3ff1a02a29996c4e,1 +np.float64,0x3fd4c51e4fa98a3c,0x3ff3d8302c68fc9a,1 +np.float64,0x3fd1346645a268cc,0x3ff4c72b4970ecaf,1 +np.float64,0x3fd6a89d09ad513c,0x3ff357af6520afac,1 +np.float64,0xbfba0f469a341e90,0x3ffac3a8f41bed23,1 +np.float64,0xbfe13f8ddce27f1c,0x40011ed557719fd6,1 +np.float64,0x3fd43e5e26a87cbc,0x3ff3fbc040fc30dc,1 +np.float64,0x3fe838125a707024,0x3fe6cb5c987248f3,1 +np.float64,0x3fe128c30c625186,0x3ff013cff238dd1b,1 +np.float64,0xbfcd4718833a8e30,0x3ffcd33c96bde6f9,1 +np.float64,0x3fe43fcd08e87f9a,0x3fec573997456ec1,1 +np.float64,0xbfe9a29104734522,0x4003ffd502a1b57f,1 +np.float64,0xbfe4709d7968e13b,0x40021bfc5cd55af4,1 +np.float64,0x3fd21c3925a43874,0x3ff48adf48556cbb,1 +np.float64,0x3fe9a521b2734a44,0x3fe4844fc054e839,1 +np.float64,0xbfdfa6a912bf4d52,0x4000b4730ad8521e,1 +np.float64,0x3fe3740702e6e80e,0x3fed5b106283b6ed,1 +np.float64,0x3fd0a3aa36a14754,0x3ff4ecb02a5e3f49,1 +np.float64,0x3fdcb903d0b97208,0x3ff1afa5d692c5b9,1 +np.float64,0xbfe7d67839efacf0,0x40034a3146abf6f2,1 +np.float64,0x3f9981c6d8330380,0x3ff8bbf1853d7b90,1 +np.float64,0xbfe9d4191673a832,0x400414a9ab453c5d,1 +np.float64,0x3fef0a1e5c7e143c,0x3fcf70b02a54c415,1 +np.float64,0xbfd996dee6b32dbe,0x3fffb6cf707ad8e4,1 +np.float64,0x3fe19bef17e337de,0x3fef9e70d4fcedae,1 +np.float64,0x3fe34a59716694b2,0x3fed8f6d5cfba474,1 +np.float64,0x3fdf27e27cbe4fc4,0x3ff0ff70500e0c7c,1 +np.float64,0xbfe19df87fe33bf1,0x40013afb401de24c,1 +np.float64,0xbfbdfd97ba3bfb30,0x3ffb02ef8c225e57,1 +np.float64,0xbfe3d3417267a683,0x4001e95ed240b0f8,1 +np.float64,0x3fe566498b6acc94,0x3fead342957d4910,1 +np.float64,0x3ff0000000000000,0x0,1 +np.float64,0x3feb329bd8766538,0x3fe1c2225aafe3b4,1 +np.float64,0xbfc19ca703233950,0x3ffb575b5df057b9,1 +np.float64,0x3fe755027d6eaa04,0x3fe81eb99c262e00,1 +np.float64,0xbfe6c2b8306d8570,0x4002e594199f9eec,1 +np.float64,0x3fd69438e6ad2870,0x3ff35d2275ae891d,1 +np.float64,0x3fda3e7285b47ce4,0x3ff25f5573dd47ae,1 +np.float64,0x3fe7928a166f2514,0x3fe7c4490ef4b9a9,1 +np.float64,0xbfd4eb71b9a9d6e4,0x3ffe75e8ccb74be1,1 +np.float64,0xbfcc3a07f1387410,0x3ffcb0b8af914a5b,1 +np.float64,0xbfe6e80225edd004,0x4002f2e26eae8999,1 +np.float64,0xbfb347728a268ee8,0x3ffa56bd526a12db,1 +np.float64,0x3fe5140ead6a281e,0x3feb4132c9140a1c,1 +np.float64,0xbfc147f125228fe4,0x3ffb4cab18b9050f,1 +np.float64,0xbfcb9145b537228c,0x3ffc9b1b6227a8c9,1 +np.float64,0xbfda84ef4bb509de,0x3ffff7f8a674e17d,1 +np.float64,0x3fd2eb6bbfa5d6d8,0x3ff454c225529d7e,1 +np.float64,0x3fe18c95f1e3192c,0x3fefb0cf0efba75a,1 +np.float64,0x3fe78606efef0c0e,0x3fe7d6c3a092d64c,1 +np.float64,0x3fbad5119a35aa20,0x3ff773dffe3ce660,1 +np.float64,0x3fd0cf5903a19eb4,0x3ff4e15fd21fdb42,1 +np.float64,0xbfd85ce90bb0b9d2,0x3fff618ee848e974,1 +np.float64,0x3fe90e11b9f21c24,0x3fe57be62f606f4a,1 +np.float64,0x3fd7a2040faf4408,0x3ff314ce85457ec2,1 +np.float64,0xbfd73fba69ae7f74,0x3fff14bff3504811,1 +np.float64,0x3fa04b4bd42096a0,0x3ff89f9b52f521a2,1 +np.float64,0xbfd7219ce5ae433a,0x3fff0cac0b45cc18,1 +np.float64,0xbfe0cf4661e19e8d,0x4000fdadb14e3c22,1 +np.float64,0x3fd07469fea0e8d4,0x3ff4f8eaa9b2394a,1 +np.float64,0x3f9b05c5d8360b80,0x3ff8b5e10672db5c,1 +np.float64,0x3fe4c25b916984b8,0x3febad29bd0e25e2,1 +np.float64,0xbfde8b4891bd1692,0x40008beb88d5c409,1 +np.float64,0xbfe199a7efe33350,0x400139b089aee21c,1 +np.float64,0x3fecdad25cf9b5a4,0x3fdc9d062867e8c3,1 +np.float64,0xbfe979b277f2f365,0x4003eedb061e25a4,1 +np.float64,0x3fc8c7311f318e60,0x3ff6040b9aeaad9d,1 +np.float64,0x3fd2b605b8a56c0c,0x3ff462b9a955c224,1 +np.float64,0x3fc073b6ad20e770,0x3ff7120e9f2fd63c,1 +np.float64,0xbfec60ede678c1dc,0x40054a3863e24dc2,1 +np.float64,0x3fe225171be44a2e,0x3feef910dca420ea,1 +np.float64,0xbfd7529762aea52e,0x3fff19d00661f650,1 +np.float64,0xbfd781783daf02f0,0x3fff2667b90be461,1 +np.float64,0x3fe3f6ec6d67edd8,0x3fecb4e814a2e33a,1 +np.float64,0x3fece6702df9cce0,0x3fdc6719d92a50d2,1 +np.float64,0xbfb5c602ce2b8c08,0x3ffa7ec761ba856a,1 +np.float64,0xbfd61f0153ac3e02,0x3ffec78e3b1a6c4d,1 +np.float64,0xbfec3462b2f868c5,0x400532630bbd7050,1 +np.float64,0xbfdd248485ba490a,0x400059391c07c1bb,1 +np.float64,0xbfd424921fa84924,0x3ffe416a85d1dcdf,1 +np.float64,0x3fbb23a932364750,0x3ff76eef79209f7f,1 +np.float64,0x3fca248b0f344918,0x3ff5d77c5c1b4e5e,1 +np.float64,0xbfe69af4a4ed35ea,0x4002d77c2e4fbd4e,1 +np.float64,0x3fdafe3cdcb5fc78,0x3ff22a9be6efbbf2,1 +np.float64,0xbfebba3377f77467,0x4004f3836e1fe71a,1 +np.float64,0xbfe650fae06ca1f6,0x4002bd851406377c,1 +np.float64,0x3fda630007b4c600,0x3ff2554f1832bd94,1 +np.float64,0xbfda8107d9b50210,0x3ffff6e6209659f3,1 +np.float64,0x3fea759a02f4eb34,0x3fe31d1a632c9aae,1 +np.float64,0x3fbf88149e3f1030,0x3ff728313aa12ccb,1 +np.float64,0x3f7196d2a0232e00,0x3ff910647e1914c1,1 +np.float64,0x3feeae51d17d5ca4,0x3fd2709698d31f6f,1 +np.float64,0xbfd73cd663ae79ac,0x3fff13f96300b55a,1 +np.float64,0x3fd4fc5f06a9f8c0,0x3ff3c99359854b97,1 +np.float64,0x3fb29f5d6e253ec0,0x3ff7f7c20e396b20,1 +np.float64,0xbfd757c82aaeaf90,0x3fff1b34c6141e98,1 +np.float64,0x3fc56fd4cf2adfa8,0x3ff670c145122909,1 +np.float64,0x3fc609a2f52c1348,0x3ff65d3ef3cade2c,1 +np.float64,0xbfe1de631163bcc6,0x40014e5528fadb73,1 +np.float64,0xbfe7eb4a726fd695,0x40035202f49d95c4,1 +np.float64,0xbfc9223771324470,0x3ffc4b84d5e263b9,1 +np.float64,0x3fee91a8a87d2352,0x3fd3364befde8de6,1 +np.float64,0x3fbc9784fe392f10,0x3ff7578e29f6a1b2,1 +np.float64,0xbfec627c2c78c4f8,0x40054b0ff2cb9c55,1 +np.float64,0xbfb8b406a6316810,0x3ffaadd97062fb8c,1 +np.float64,0xbfecf98384f9f307,0x4005a043d9110d79,1 +np.float64,0xbfe5834bab6b0698,0x400276f114aebee4,1 +np.float64,0xbfd90f391eb21e72,0x3fff91e26a8f48f3,1 +np.float64,0xbfee288ce2fc511a,0x400667cb09aa04b3,1 +np.float64,0x3fd5aa5e32ab54bc,0x3ff39b7080a52214,1 +np.float64,0xbfee7ef907fcfdf2,0x4006ab96a8eba4c5,1 +np.float64,0x3fd6097973ac12f4,0x3ff3822486978bd1,1 +np.float64,0xbfe02d14b8e05a2a,0x4000ce5be53047b1,1 +np.float64,0xbf9c629a6838c540,0x3ff993897728c3f9,1 +np.float64,0xbfee2024667c4049,0x40066188782fb1f0,1 +np.float64,0xbfa42a88fc285510,0x3ff9c35a4bbce104,1 +np.float64,0x3fa407af5c280f60,0x3ff881b360d8eea1,1 +np.float64,0x3fed0ba42cfa1748,0x3fdbb7d55609175f,1 +np.float64,0xbfdd0b5844ba16b0,0x400055b0bb59ebb2,1 +np.float64,0x3fd88d97e6b11b30,0x3ff2d53c1ecb8f8c,1 +np.float64,0xbfeb7a915ef6f523,0x4004d410812eb84c,1 +np.float64,0xbfb5f979ca2bf2f0,0x3ffa8201d73cd4ca,1 +np.float64,0x3fb3b65dd6276cc0,0x3ff7e64576199505,1 +np.float64,0x3fcd47a7793a8f50,0x3ff570a7b672f160,1 +np.float64,0xbfa41dd30c283ba0,0x3ff9c2f488127eb3,1 +np.float64,0x3fe4b1ea1f6963d4,0x3febc2bed7760427,1 +np.float64,0xbfdd0f81d2ba1f04,0x400056463724b768,1 +np.float64,0x3fd15d93f7a2bb28,0x3ff4bc7a24eacfd7,1 +np.float64,0xbfe3213af8e64276,0x4001b14579dfded3,1 +np.float64,0x3fd90dfbeab21bf8,0x3ff2b26a6c2c3bb3,1 +np.float64,0xbfd02d54bca05aaa,0x3ffd38ab3886b203,1 +np.float64,0x3fc218dcad2431b8,0x3ff6dced56d5b417,1 +np.float64,0x3fea5edf71f4bdbe,0x3fe3455ee09f27e6,1 +np.float64,0x3fa74319042e8640,0x3ff867d224545438,1 +np.float64,0x3fd970ad92b2e15c,0x3ff2979084815dc1,1 +np.float64,0x3fce0a4bf73c1498,0x3ff557a4df32df3e,1 +np.float64,0x3fef5c8e10feb91c,0x3fc99ca0eeaaebe4,1 +np.float64,0xbfedae997ffb5d33,0x400611af18f407ab,1 +np.float64,0xbfbcf07d6239e0f8,0x3ffaf201177a2d36,1 +np.float64,0xbfc3c52541278a4c,0x3ffb9d2af0408e4a,1 +np.float64,0x3fe4ef44e4e9de8a,0x3feb71f7331255e5,1 +np.float64,0xbfccd9f5f539b3ec,0x3ffcc53a99339592,1 +np.float64,0xbfda32c745b4658e,0x3fffe16e8727ef89,1 +np.float64,0xbfef54932a7ea926,0x40077e4605e61ca1,1 +np.float64,0x3fe9d4ae3573a95c,0x3fe4344a069a3fd0,1 +np.float64,0x3fda567e73b4acfc,0x3ff258bd77a663c7,1 +np.float64,0xbfd5bcac5eab7958,0x3ffead6379c19c52,1 +np.float64,0xbfee5e56f97cbcae,0x40069131fc54018d,1 +np.float64,0x3fc2d4413925a880,0x3ff6c54163816298,1 +np.float64,0xbfe9ddf6e873bbee,0x400418d8c722f7c5,1 +np.float64,0x3fdaf2a683b5e54c,0x3ff22dcda599d69c,1 +np.float64,0xbfca69789f34d2f0,0x3ffc7547ff10b1a6,1 +np.float64,0x3fed076f62fa0ede,0x3fdbcbda03c1d72a,1 +np.float64,0xbfcb38326f367064,0x3ffc8fb55dadeae5,1 +np.float64,0x3fe1938705e3270e,0x3fefa88130c5adda,1 +np.float64,0x3feaffae3b75ff5c,0x3fe221e3da537c7e,1 +np.float64,0x3fefc94acb7f9296,0x3fbd9a360ace67b4,1 +np.float64,0xbfe8bddeb0f17bbe,0x4003a316685c767e,1 +np.float64,0x3fbe10fbee3c21f0,0x3ff73fceb10650f5,1 +np.float64,0x3fde9126c1bd224c,0x3ff12a742f734d0a,1 +np.float64,0xbfe9686c91f2d0d9,0x4003e7bc6ee77906,1 +np.float64,0xbfb1ba4892237490,0x3ffa3dda064c2509,1 +np.float64,0xbfe2879100e50f22,0x400181c1a5b16f0f,1 +np.float64,0x3fd1cd40b6a39a80,0x3ff49f70e3064e95,1 +np.float64,0xbfc965869132cb0c,0x3ffc5419f3b43701,1 +np.float64,0x3fea7a6f2874f4de,0x3fe31480fb2dd862,1 +np.float64,0x3fc3bc56892778b0,0x3ff6a7e8fa0e8b0e,1 +np.float64,0x3fec1ed451f83da8,0x3fdfd78e564b8ad7,1 +np.float64,0x3feb77d16df6efa2,0x3fe13d083344e45e,1 +np.float64,0xbfe822e7c67045d0,0x400367104a830cf6,1 +np.float64,0x8000000000000001,0x3ff921fb54442d18,1 +np.float64,0xbfd4900918a92012,0x3ffe5dc0e19737b4,1 +np.float64,0x3fed184187fa3084,0x3fdb7b7a39f234f4,1 +np.float64,0x3fecef846179df08,0x3fdc3cb2228c3682,1 +np.float64,0xbfe2d2aed165a55e,0x400198e21c5b861b,1 +np.float64,0x7ff0000000000000,0x7ff8000000000000,1 +np.float64,0xbfee9409a07d2813,0x4006bd358232d073,1 +np.float64,0xbfecedc2baf9db86,0x4005995df566fc21,1 +np.float64,0x3fe6d857396db0ae,0x3fe8d2cb8794aa99,1 +np.float64,0xbf9a579e7834af40,0x3ff98b5cc8021e1c,1 +np.float64,0x3fc664fefb2cca00,0x3ff651a664ccf8fa,1 +np.float64,0xbfe8a7aa0e714f54,0x40039a5b4df938a0,1 +np.float64,0xbfdf27d380be4fa8,0x4000a241074dbae6,1 +np.float64,0x3fe00ddf55e01bbe,0x3ff0b94eb1ea1851,1 +np.float64,0x3feb47edbff68fdc,0x3fe199822d075959,1 +np.float64,0x3fb4993822293270,0x3ff7d80c838186d0,1 +np.float64,0xbfca2cd1473459a4,0x3ffc6d88c8de3d0d,1 +np.float64,0xbfea7d9c7674fb39,0x40045e4559e9e52d,1 +np.float64,0x3fe0dce425e1b9c8,0x3ff04099cab23289,1 +np.float64,0x3fd6bb7e97ad76fc,0x3ff352a30434499c,1 +np.float64,0x3fd4a4f16da949e4,0x3ff3e0b07432c9aa,1 +np.float64,0x8000000000000000,0x3ff921fb54442d18,1 +np.float64,0x3fe688f5b56d11ec,0x3fe9435f63264375,1 +np.float64,0xbfdf5a427ebeb484,0x4000a97a6c5d4abc,1 +np.float64,0xbfd1f3483fa3e690,0x3ffdae6c8a299383,1 +np.float64,0xbfeac920db759242,0x4004805862be51ec,1 +np.float64,0x3fef5bc711feb78e,0x3fc9ac40fba5b93b,1 +np.float64,0x3fe4bd9e12e97b3c,0x3febb363c787d381,1 +np.float64,0x3fef6a59ab7ed4b4,0x3fc880f1324eafce,1 +np.float64,0x3fc07a362120f470,0x3ff7113cf2c672b3,1 +np.float64,0xbfe4d6dbe2e9adb8,0x40023d6f6bea44b7,1 +np.float64,0xbfec2d6a15785ad4,0x40052eb425cc37a2,1 +np.float64,0x3fc90dae05321b60,0x3ff5fb10015d2934,1 +np.float64,0xbfa9239f74324740,0x3ff9eb2d057068ea,1 +np.float64,0xbfeb4fc8baf69f92,0x4004bf5e17fb08a4,1 +np.float64,0x0,0x3ff921fb54442d18,1 +np.float64,0x3faaf1884c35e320,0x3ff84a5591dbe1f3,1 +np.float64,0xbfed842561fb084b,0x4005f5c0a19116ce,1 +np.float64,0xbfc64850c32c90a0,0x3ffbeeac2ee70f9a,1 +np.float64,0x3fd7d879f5afb0f4,0x3ff306254c453436,1 +np.float64,0xbfdabaa586b5754c,0x4000035e6ac83a2b,1 +np.float64,0xbfebfeefa977fddf,0x4005167446fb9faf,1 +np.float64,0xbfe9383462727069,0x4003d407aa6a1577,1 +np.float64,0x3fe108dfb6e211c0,0x3ff026ac924b281d,1 +np.float64,0xbf85096df02a12c0,0x3ff94c0e60a22ede,1 +np.float64,0xbfe3121cd566243a,0x4001ac8f90db5882,1 +np.float64,0xbfd227f62aa44fec,0x3ffdbc26bb175dcc,1 +np.float64,0x3fd931af2cb26360,0x3ff2a8b62dfe003c,1 +np.float64,0xbfd9b794e3b36f2a,0x3fffbfbc89ec013d,1 +np.float64,0x3fc89b2e6f313660,0x3ff609a6e67f15f2,1 +np.float64,0x3fc0b14a8f216298,0x3ff70a4b6905aad2,1 +np.float64,0xbfeda11a657b4235,0x400608b3f9fff574,1 +np.float64,0xbfed2ee9ec7a5dd4,0x4005c040b7c02390,1 +np.float64,0xbfef7819d8fef034,0x4007ac6bf75cf09d,1 +np.float64,0xbfcc4720fb388e40,0x3ffcb2666a00b336,1 +np.float64,0xbfe05dec4be0bbd8,0x4000dc8a25ca3760,1 +np.float64,0x3fb093416e212680,0x3ff81897b6d8b374,1 +np.float64,0xbfc6ab89332d5714,0x3ffbfb4559d143e7,1 +np.float64,0x3fc51948512a3290,0x3ff67bb9df662c0a,1 +np.float64,0x3fed4d94177a9b28,0x3fda76c92f0c0132,1 +np.float64,0x3fdd195fbeba32c0,0x3ff194a5586dd18e,1 +np.float64,0x3fe3f82799e7f050,0x3fecb354c2faf55c,1 +np.float64,0x3fecac2169f95842,0x3fdd7222296cb7a7,1 +np.float64,0x3fe3d3f36fe7a7e6,0x3fece18f45e30dd7,1 +np.float64,0x3fe31ff63d663fec,0x3fedc46c77d30c6a,1 +np.float64,0xbfe3120c83e62419,0x4001ac8a7c4aa742,1 +np.float64,0x3fe7c1a7976f8350,0x3fe77e4a9307c9f8,1 +np.float64,0x3fe226fe9de44dfe,0x3feef6c0f3cb00fa,1 +np.float64,0x3fd5c933baab9268,0x3ff3933e8a37de42,1 +np.float64,0x3feaa98496f5530a,0x3fe2c003832ebf21,1 +np.float64,0xbfc6f80a2f2df014,0x3ffc04fd54cb1317,1 +np.float64,0x3fde5e18d0bcbc30,0x3ff138f7b32a2ca3,1 +np.float64,0xbfe30c8dd566191c,0x4001aad4af935a78,1 +np.float64,0x3fbe8d196e3d1a30,0x3ff737fec8149ecc,1 +np.float64,0x3feaee6731f5dcce,0x3fe241fa42cce22d,1 +np.float64,0x3fef9cc46cff3988,0x3fc3f17b708dbdbb,1 +np.float64,0xbfdb181bdeb63038,0x4000103ecf405602,1 +np.float64,0xbfc58de0ed2b1bc0,0x3ffbd704c14e15cd,1 +np.float64,0xbfee05d5507c0bab,0x40064e480faba6d8,1 +np.float64,0x3fe27d0ffa64fa20,0x3fee8dc71ef79f2c,1 +np.float64,0xbfe4f7ad4c69ef5a,0x400248456cd09a07,1 +np.float64,0xbfe4843e91e9087d,0x4002225f3e139c84,1 +np.float64,0x3fe7158b9c6e2b18,0x3fe87ae845c5ba96,1 +np.float64,0xbfea64316074c863,0x400452fd2bc23a44,1 +np.float64,0xbfc9f3ae4133e75c,0x3ffc663d482afa42,1 +np.float64,0xbfd5e18513abc30a,0x3ffeb72fc76d7071,1 +np.float64,0xbfd52f6438aa5ec8,0x3ffe87e5b18041e5,1 +np.float64,0xbfea970650f52e0d,0x400469a4a6758154,1 +np.float64,0xbfe44321b7e88644,0x40020d404a2141b1,1 +np.float64,0x3fdf5a39bbbeb474,0x3ff0f10453059dbd,1 +np.float64,0xbfa1d4069423a810,0x3ff9b0a2eacd2ce2,1 +np.float64,0xbfc36d16a326da2c,0x3ffb92077d41d26a,1 +np.float64,0x1,0x3ff921fb54442d18,1 +np.float64,0x3feb232a79764654,0x3fe1df5beeb249d0,1 +np.float64,0xbfed2003d5fa4008,0x4005b737c2727583,1 +np.float64,0x3fd5b093a3ab6128,0x3ff399ca2db1d96d,1 +np.float64,0x3fca692c3d34d258,0x3ff5ceb86b79223e,1 +np.float64,0x3fd6bbdf89ad77c0,0x3ff3528916df652d,1 +np.float64,0xbfefdadd46ffb5bb,0x40085ee735e19f19,1 +np.float64,0x3feb69fb2676d3f6,0x3fe157ee0c15691e,1 +np.float64,0x3fe44c931f689926,0x3fec46b6f5e3f265,1 +np.float64,0xbfc43ddbcb287bb8,0x3ffbac71d268d74d,1 +np.float64,0x3fe6e16d43edc2da,0x3fe8c5cf0f0daa66,1 +np.float64,0x3fe489efc76913e0,0x3febf704ca1ac2a6,1 +np.float64,0xbfe590aadceb2156,0x40027b764205cf78,1 +np.float64,0xbf782e8aa0305d00,0x3ff93a29e81928ab,1 +np.float64,0x3fedcb80cffb9702,0x3fd7e5d1f98a418b,1 +np.float64,0x3fe075858060eb0c,0x3ff07d23ab46b60f,1 +np.float64,0x3fe62a68296c54d0,0x3fe9c77f7068043b,1 +np.float64,0x3feff16a3c7fe2d4,0x3fae8e8a739cc67a,1 +np.float64,0xbfd6ed93e3addb28,0x3ffefebab206fa99,1 +np.float64,0x3fe40d8ccf681b1a,0x3fec97e9cd29966d,1 +np.float64,0x3fd6408210ac8104,0x3ff3737a7d374107,1 +np.float64,0x3fec8023b8f90048,0x3fde35ebfb2b3afd,1 +np.float64,0xbfe13babd4627758,0x40011dae5c07c56b,1 +np.float64,0xbfd2183e61a4307c,0x3ffdb80dd747cfbe,1 +np.float64,0x3feae8eb1d75d1d6,0x3fe24c1f6e42ae77,1 +np.float64,0xbfea559b9c74ab37,0x40044c8e5e123b20,1 +np.float64,0xbfd12c9d57a2593a,0x3ffd7ac6222f561c,1 +np.float64,0x3fe32eb697e65d6e,0x3fedb202693875b6,1 +np.float64,0xbfde0808c3bc1012,0x4000794bd8616ea3,1 +np.float64,0x3fe14958a06292b2,0x3ff0007b40ac648a,1 +np.float64,0x3fe3d388a6e7a712,0x3fece21751a6dd7c,1 +np.float64,0x3fe7ad7897ef5af2,0x3fe79c5b3da302a7,1 +np.float64,0x3fec75527e78eaa4,0x3fde655de0cf0508,1 +np.float64,0x3fea920d4c75241a,0x3fe2ea48f031d908,1 +np.float64,0x7fefffffffffffff,0x7ff8000000000000,1 +np.float64,0xbfc17a68cb22f4d0,0x3ffb530925f41aa0,1 +np.float64,0xbfe1c93166e39263,0x400147f3cb435dec,1 +np.float64,0x3feb97c402f72f88,0x3fe0fe5b561bf869,1 +np.float64,0x3fb58ff5162b1ff0,0x3ff7c8933fa969dc,1 +np.float64,0x3fe68e2beded1c58,0x3fe93c075283703b,1 +np.float64,0xbf94564cc828aca0,0x3ff97355e5ee35db,1 +np.float64,0x3fd31061c9a620c4,0x3ff44b150ec96998,1 +np.float64,0xbfc7d0c89f2fa190,0x3ffc208bf4eddc4d,1 +np.float64,0x3fe5736f1d6ae6de,0x3feac18f84992d1e,1 +np.float64,0x3fdb62e480b6c5c8,0x3ff20ecfdc4afe7c,1 +np.float64,0xbfc417228b282e44,0x3ffba78afea35979,1 +np.float64,0x3f8f5ba1303eb780,0x3ff8e343714630ff,1 +np.float64,0x3fe8e99126f1d322,0x3fe5b6511d4c0798,1 +np.float64,0xbfe2ec08a1e5d812,0x4001a0bb28a85875,1 +np.float64,0x3fea3b46cf74768e,0x3fe383dceaa74296,1 +np.float64,0xbfe008b5ed60116c,0x4000c3d62c275d40,1 +np.float64,0xbfcd9f8a4b3b3f14,0x3ffcde98d6484202,1 +np.float64,0xbfdb5fb112b6bf62,0x40001a22137ef1c9,1 +np.float64,0xbfe9079565f20f2b,0x4003c0670c92e401,1 +np.float64,0xbfce250dc53c4a1c,0x3ffcefc2b3dc3332,1 +np.float64,0x3fe9ba85d373750c,0x3fe4607131b28773,1 +np.float64,0x10000000000000,0x3ff921fb54442d18,1 +np.float64,0xbfeb9ef42c773de8,0x4004e5f239203ad8,1 +np.float64,0xbfd6bf457dad7e8a,0x3ffef2563d87b18d,1 +np.float64,0x3fe4de9aa5e9bd36,0x3feb87f97defb04a,1 +np.float64,0x3fedb4f67cfb69ec,0x3fd8603c465bffac,1 +np.float64,0x3fe7b6d9506f6db2,0x3fe78e670c7bdb67,1 +np.float64,0x3fe071717460e2e2,0x3ff07f84472d9cc5,1 +np.float64,0xbfed2e79dbfa5cf4,0x4005bffc6f9ad24f,1 +np.float64,0x3febb8adc377715c,0x3fe0bcebfbd45900,1 +np.float64,0xbfee2cffd87c5a00,0x40066b20a037c478,1 +np.float64,0x3fef7e358d7efc6c,0x3fc6d0ba71a542a8,1 +np.float64,0xbfef027eef7e04fe,0x400723291cb00a7a,1 +np.float64,0x3fac96da34392dc0,0x3ff83d260a936c6a,1 +np.float64,0x3fe9dba94a73b752,0x3fe428736b94885e,1 +np.float64,0x3fed37581efa6eb0,0x3fdae49dcadf1d90,1 +np.float64,0xbfe6e61037edcc20,0x4002f23031b8d522,1 +np.float64,0xbfdea7204dbd4e40,0x40008fe1f37918b7,1 +np.float64,0x3feb9f8edb773f1e,0x3fe0eef20bd4387b,1 +np.float64,0x3feeb0b6ed7d616e,0x3fd25fb3b7a525d6,1 +np.float64,0xbfd7ce9061af9d20,0x3fff3b25d531aa2b,1 +np.float64,0xbfc806b509300d6c,0x3ffc2768743a8360,1 +np.float64,0xbfa283882c250710,0x3ff9b61fda28914a,1 +np.float64,0x3fdec70050bd8e00,0x3ff11b1d769b578f,1 +np.float64,0xbfc858a44930b148,0x3ffc31d6758b4721,1 +np.float64,0x3fdc321150b86424,0x3ff1d5504c3c91e4,1 +np.float64,0x3fd9416870b282d0,0x3ff2a46f3a850f5b,1 +np.float64,0x3fdd756968baead4,0x3ff17ac510a5573f,1 +np.float64,0xbfedfd632cfbfac6,0x400648345a2f89b0,1 +np.float64,0x3fd6874285ad0e84,0x3ff36098ebff763f,1 +np.float64,0x3fe6daacc9edb55a,0x3fe8cf75fae1e35f,1 +np.float64,0x3fe53f19766a7e32,0x3feb07d0e97cd55b,1 +np.float64,0x3fd13cc36ca27988,0x3ff4c4ff801b1faa,1 +np.float64,0x3fe4f21cbce9e43a,0x3feb6e34a72ef529,1 +np.float64,0xbfc21c1cc9243838,0x3ffb67726394ca89,1 +np.float64,0x3fe947a3f2728f48,0x3fe51eae4660e23c,1 +np.float64,0xbfce78cd653cf19c,0x3ffcfa89194b3f5e,1 +np.float64,0x3fe756f049eeade0,0x3fe81be7f2d399e2,1 +np.float64,0xbfcc727cf138e4f8,0x3ffcb7f547841bb0,1 +np.float64,0xbfc2d8d58f25b1ac,0x3ffb7f496cc72458,1 +np.float64,0xbfcfd0e4653fa1c8,0x3ffd26e1309bc80b,1 +np.float64,0xbfe2126c106424d8,0x40015e0e01db6a4a,1 +np.float64,0x3fe580e4306b01c8,0x3feaaf683ce51aa5,1 +np.float64,0x3fcea8a1b93d5140,0x3ff543456c0d28c7,1 +np.float64,0xfff0000000000000,0x7ff8000000000000,1 +np.float64,0xbfd9d5da72b3abb4,0x3fffc8013113f968,1 +np.float64,0xbfe1fdfcea63fbfa,0x400157def2e4808d,1 +np.float64,0xbfc0022e0720045c,0x3ffb239963e7cbf2,1 diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arccosh.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arccosh.csv new file mode 100644 index 0000000..1b3eda4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arccosh.csv @@ -0,0 +1,1429 @@ +dtype,input,output,ulperrortol +np.float32,0x3f83203f,0x3e61d9d6,2 +np.float32,0x3f98dea1,0x3f1d1af6,2 +np.float32,0x7fa00000,0x7fe00000,2 +np.float32,0x7eba99af,0x42b0d032,2 +np.float32,0x3fc95a13,0x3f833650,2 +np.float32,0x3fce9a45,0x3f8771e1,2 +np.float32,0x3fc1bd96,0x3f797811,2 +np.float32,0x7eba2391,0x42b0ceed,2 +np.float32,0x7d4e8f15,0x42acdb8c,2 +np.float32,0x3feca42e,0x3f9cc88e,2 +np.float32,0x7e2b314e,0x42af412e,2 +np.float32,0x7f7fffff,0x42b2d4fc,2 +np.float32,0x3f803687,0x3d6c4380,2 +np.float32,0x3fa0edbd,0x3f33e706,2 +np.float32,0x3faa8074,0x3f4b3d3c,2 +np.float32,0x3fa0c49e,0x3f337af3,2 +np.float32,0x3f8c9ec4,0x3ee18812,2 +np.float32,0x7efef78e,0x42b17006,2 +np.float32,0x3fc75720,0x3f818aa4,2 +np.float32,0x7f52d4c8,0x42b27198,2 +np.float32,0x3f88f21e,0x3ebe52b0,2 +np.float32,0x3ff7a042,0x3fa3a07a,2 +np.float32,0x7f52115c,0x42b26fbd,2 +np.float32,0x3fc6bf6f,0x3f810b42,2 +np.float32,0x3fd105d0,0x3f895649,2 +np.float32,0x3fee7c2a,0x3f9df66e,2 +np.float32,0x7f0ff9a5,0x42b1ae4f,2 +np.float32,0x7e81f075,0x42b016e7,2 +np.float32,0x3fa57d65,0x3f3f70c6,2 +np.float32,0x80800000,0xffc00000,2 +np.float32,0x7da239f5,0x42adc2bf,2 +np.float32,0x3f9e432c,0x3f2cbd80,2 +np.float32,0x3ff2839b,0x3fa07ee4,2 +np.float32,0x3fec8aef,0x3f9cb850,2 +np.float32,0x7d325893,0x42ac905b,2 +np.float32,0x3fa27431,0x3f37dade,2 +np.float32,0x3fce7408,0x3f8753ae,2 +np.float32,0x3fde6684,0x3f93353f,2 +np.float32,0x3feb9a3e,0x3f9c1cff,2 +np.float32,0x7deb34bb,0x42ae80f0,2 +np.float32,0x3fed9300,0x3f9d61b7,2 +np.float32,0x7f35e253,0x42b225fb,2 +np.float32,0x7e6db57f,0x42afe93f,2 +np.float32,0x3fa41f08,0x3f3c10bc,2 +np.float32,0x3fb0d4da,0x3f590de3,2 +np.float32,0x3fb5c690,0x3f632351,2 +np.float32,0x3fcde9ce,0x3f86e638,2 +np.float32,0x3f809c7b,0x3dc81161,2 +np.float32,0x3fd77291,0x3f8e3226,2 +np.float32,0x3fc21a06,0x3f7a1a82,2 +np.float32,0x3fba177e,0x3f6b8139,2 +np.float32,0x7f370dff,0x42b22944,2 +np.float32,0x3fe5bfcc,0x3f9841c1,2 +np.float32,0x3feb0caa,0x3f9bc139,2 +np.float32,0x7f4fe5c3,0x42b26a6c,2 +np.float32,0x7f1e1419,0x42b1de28,2 +np.float32,0x7f5e3c96,0x42b28c92,2 +np.float32,0x3f8cd313,0x3ee3521e,2 +np.float32,0x3fa97824,0x3f48e049,2 +np.float32,0x7d8ca281,0x42ad799e,2 +np.float32,0x3f96b51b,0x3f165193,2 +np.float32,0x3f81328a,0x3e0bf504,2 +np.float32,0x3ff60bf3,0x3fa2ab45,2 +np.float32,0x3ff9b629,0x3fa4e107,2 +np.float32,0x3fecacfc,0x3f9cce37,2 +np.float32,0x3fba8804,0x3f6c5600,2 +np.float32,0x3f81f752,0x3e333fdd,2 +np.float32,0x3fb5b262,0x3f62fb46,2 +np.float32,0x3fa21bc0,0x3f36f7e6,2 +np.float32,0x3fbc87bb,0x3f7011dc,2 +np.float32,0x3fe18b32,0x3f9565ae,2 +np.float32,0x7dfb6dd5,0x42aea316,2 +np.float32,0x3fb7c602,0x3f670ee3,2 +np.float32,0x7efeb6a2,0x42b16f84,2 +np.float32,0x3fa56180,0x3f3f2ca4,2 +np.float32,0x3f8dcaff,0x3eeb9ac0,2 +np.float32,0x7e876238,0x42b02beb,2 +np.float32,0x7f0bb67d,0x42b19eec,2 +np.float32,0x3faca01c,0x3f4fffa5,2 +np.float32,0x3fdb57ee,0x3f9108b8,2 +np.float32,0x3fe3bade,0x3f96e4b7,2 +np.float32,0x7f7aa2dd,0x42b2ca25,2 +np.float32,0x3fed92ec,0x3f9d61aa,2 +np.float32,0x7eb789b1,0x42b0c7b9,2 +np.float32,0x7f7f16e4,0x42b2d329,2 +np.float32,0x3fb6647e,0x3f645b84,2 +np.float32,0x3f99335e,0x3f1e1d96,2 +np.float32,0x7e690a11,0x42afdf17,2 +np.float32,0x7dff2f95,0x42aeaaae,2 +np.float32,0x7f70adfd,0x42b2b564,2 +np.float32,0x3fe92252,0x3f9a80fe,2 +np.float32,0x3fef54ce,0x3f9e7fe5,2 +np.float32,0x3ff24eaa,0x3fa05df9,2 +np.float32,0x7f04565a,0x42b18328,2 +np.float32,0x3fcb8b80,0x3f85007f,2 +np.float32,0x3fcd4d0a,0x3f866983,2 +np.float32,0x3fbe7d82,0x3f73a911,2 +np.float32,0x3f8a7a8a,0x3ecdc8f6,2 +np.float32,0x3f912441,0x3f030d56,2 +np.float32,0x3f9b29d6,0x3f23f663,2 +np.float32,0x3fab7f36,0x3f4d7c6c,2 +np.float32,0x7dfedafc,0x42aeaa04,2 +np.float32,0x3fe190c0,0x3f956982,2 +np.float32,0x3f927515,0x3f07e0bb,2 +np.float32,0x3ff6442a,0x3fa2cd7e,2 +np.float32,0x7f6656d0,0x42b29ee8,2 +np.float32,0x3fe29aa0,0x3f96201f,2 +np.float32,0x3fa4a247,0x3f3d5687,2 +np.float32,0x3fa1cf19,0x3f363226,2 +np.float32,0x3fc20037,0x3f79ed36,2 +np.float32,0x7cc1241a,0x42ab5645,2 +np.float32,0x3fafd540,0x3f56f25a,2 +np.float32,0x7e5b3f5f,0x42afbfdb,2 +np.float32,0x7f48de5f,0x42b258d0,2 +np.float32,0x3fce1ca0,0x3f870e85,2 +np.float32,0x7ee40bb2,0x42b136e4,2 +np.float32,0x7ecdb133,0x42b10212,2 +np.float32,0x3f9f181c,0x3f2f02ca,2 +np.float32,0x3f936cbf,0x3f0b4f63,2 +np.float32,0x3fa4f8ea,0x3f3e2c2f,2 +np.float32,0x3fcc03e2,0x3f8561ac,2 +np.float32,0x3fb801f2,0x3f67831b,2 +np.float32,0x7e141dad,0x42aef70c,2 +np.float32,0x3fe8c04e,0x3f9a4087,2 +np.float32,0x3f8548d5,0x3e929f37,2 +np.float32,0x7f148d7d,0x42b1be56,2 +np.float32,0x3fd2c9a2,0x3f8ab1ed,2 +np.float32,0x7eb374fd,0x42b0bc36,2 +np.float32,0x7f296d36,0x42b201a7,2 +np.float32,0x3ff138e2,0x3f9fb09d,2 +np.float32,0x3ff42898,0x3fa18347,2 +np.float32,0x7da8c5e1,0x42add700,2 +np.float32,0x7dcf72c4,0x42ae40a4,2 +np.float32,0x7ea571fc,0x42b09296,2 +np.float32,0x3fc0953d,0x3f776ba3,2 +np.float32,0x7f1773dd,0x42b1c83c,2 +np.float32,0x7ef53b68,0x42b15c17,2 +np.float32,0x3f85d69f,0x3e9a0f3a,2 +np.float32,0x7e8b9a05,0x42b03ba0,2 +np.float32,0x3ff07d20,0x3f9f3ad2,2 +np.float32,0x7e8da32c,0x42b0430a,2 +np.float32,0x7ef96004,0x42b164ab,2 +np.float32,0x3fdfaa62,0x3f941837,2 +np.float32,0x7f0057c5,0x42b17377,2 +np.float32,0x3fb2663f,0x3f5c5065,2 +np.float32,0x3fd3d8c3,0x3f8b8055,2 +np.float32,0x1,0xffc00000,2 +np.float32,0x3fd536c1,0x3f8c8862,2 +np.float32,0x3f91b953,0x3f053619,2 +np.float32,0x3fb3305c,0x3f5deee1,2 +np.float32,0x7ecd86b9,0x42b101a8,2 +np.float32,0x3fbf71c5,0x3f75624d,2 +np.float32,0x3ff5f0f4,0x3fa29ad2,2 +np.float32,0x3fe50389,0x3f97c328,2 +np.float32,0x3fa325a1,0x3f399e69,2 +np.float32,0x3fe4397a,0x3f973a9f,2 +np.float32,0x3f8684c6,0x3ea2b784,2 +np.float32,0x7f25ae00,0x42b1f634,2 +np.float32,0x3ff7cbf7,0x3fa3badb,2 +np.float32,0x7f73f0e0,0x42b2bc48,2 +np.float32,0x3fc88b70,0x3f828b92,2 +np.float32,0x3fb01c16,0x3f578886,2 +np.float32,0x7e557623,0x42afb229,2 +np.float32,0x3fcbcd5b,0x3f8535b4,2 +np.float32,0x7f7157e4,0x42b2b6cd,2 +np.float32,0x7f51d9d4,0x42b26f36,2 +np.float32,0x7f331a3b,0x42b21e17,2 +np.float32,0x7f777fb5,0x42b2c3b2,2 +np.float32,0x3f832001,0x3e61d11f,2 +np.float32,0x7f2cd055,0x42b20bca,2 +np.float32,0x3f89831f,0x3ec42f76,2 +np.float32,0x7f21da33,0x42b1ea3d,2 +np.float32,0x3f99e416,0x3f20330a,2 +np.float32,0x7f2c8ea1,0x42b20b07,2 +np.float32,0x7f462c98,0x42b251e6,2 +np.float32,0x7f4fdb3f,0x42b26a52,2 +np.float32,0x3fcc1338,0x3f856e07,2 +np.float32,0x3f823673,0x3e3e20da,2 +np.float32,0x7dbfe89d,0x42ae18c6,2 +np.float32,0x3fc9b04c,0x3f837d38,2 +np.float32,0x7dba3213,0x42ae094d,2 +np.float32,0x7ec5a483,0x42b0eda1,2 +np.float32,0x3fbc4d14,0x3f6fa543,2 +np.float32,0x3fc85ce2,0x3f8264f1,2 +np.float32,0x7f77c816,0x42b2c447,2 +np.float32,0x3f9c9281,0x3f280492,2 +np.float32,0x7f49b3e2,0x42b25aef,2 +np.float32,0x3fa7e4da,0x3f45347c,2 +np.float32,0x7e0c9df5,0x42aedc72,2 +np.float32,0x7f21fd1a,0x42b1eaab,2 +np.float32,0x7f7c63ad,0x42b2cdb6,2 +np.float32,0x7f4eb80a,0x42b26783,2 +np.float32,0x7e98038c,0x42b0673c,2 +np.float32,0x7e89ba08,0x42b034b4,2 +np.float32,0x3ffc06ba,0x3fa64094,2 +np.float32,0x3fae63f6,0x3f53db36,2 +np.float32,0x3fbc2d30,0x3f6f6a1c,2 +np.float32,0x7de0e5e5,0x42ae69fe,2 +np.float32,0x7e09ed18,0x42aed28d,2 +np.float32,0x3fea78f8,0x3f9b6129,2 +np.float32,0x7dfe0bcc,0x42aea863,2 +np.float32,0x7ee21d03,0x42b13289,2 +np.float32,0x3fcc3aed,0x3f858dfc,2 +np.float32,0x3fe6b3ba,0x3f98e4ea,2 +np.float32,0x3f90f25f,0x3f025225,2 +np.float32,0x7f1bcaf4,0x42b1d6b3,2 +np.float32,0x3f83ac81,0x3e74c20e,2 +np.float32,0x3f98681d,0x3f1bae16,2 +np.float32,0x3fe1f2d9,0x3f95ad08,2 +np.float32,0x3fa279d7,0x3f37e951,2 +np.float32,0x3feb922a,0x3f9c17c4,2 +np.float32,0x7f1c72e8,0x42b1d8da,2 +np.float32,0x3fea156b,0x3f9b2038,2 +np.float32,0x3fed6bda,0x3f9d48aa,2 +np.float32,0x3fa86142,0x3f46589c,2 +np.float32,0x3ff16bc2,0x3f9fd072,2 +np.float32,0x3fbebf65,0x3f74207b,2 +np.float32,0x7e7b78b5,0x42b00610,2 +np.float32,0x3ff51ab8,0x3fa217f0,2 +np.float32,0x3f8361bb,0x3e6adf07,2 +np.float32,0x7edbceed,0x42b1240e,2 +np.float32,0x7f10e2c0,0x42b1b18a,2 +np.float32,0x3fa7bc58,0x3f44d4ef,2 +np.float32,0x3f813bde,0x3e0e1138,2 +np.float32,0x7f30d5b9,0x42b21791,2 +np.float32,0x3fb4f450,0x3f61806a,2 +np.float32,0x7eee02c4,0x42b14cca,2 +np.float32,0x7ec74b62,0x42b0f1e4,2 +np.float32,0x3ff96bca,0x3fa4b498,2 +np.float32,0x7f50e304,0x42b26cda,2 +np.float32,0x7eb14c57,0x42b0b603,2 +np.float32,0x7c3f0733,0x42a9edbf,2 +np.float32,0x7ea57acb,0x42b092b1,2 +np.float32,0x7f2788dc,0x42b1fbe7,2 +np.float32,0x3fa39f14,0x3f3ad09b,2 +np.float32,0x3fc3a7e0,0x3f7ccfa0,2 +np.float32,0x3fe70a73,0x3f991eb0,2 +np.float32,0x7f4831f7,0x42b25718,2 +np.float32,0x3fe947d0,0x3f9a999c,2 +np.float32,0x7ef2b1c7,0x42b156c4,2 +np.float32,0x3fede0ea,0x3f9d937f,2 +np.float32,0x3f9fef8e,0x3f314637,2 +np.float32,0x3fc313c5,0x3f7bcebd,2 +np.float32,0x7ee99337,0x42b14328,2 +np.float32,0x7eb9042e,0x42b0cbd5,2 +np.float32,0x3fc9d3dc,0x3f839a69,2 +np.float32,0x3fb2c018,0x3f5d091d,2 +np.float32,0x3fcc4e8f,0x3f859dc5,2 +np.float32,0x3fa9363b,0x3f484819,2 +np.float32,0x7f72ce2e,0x42b2b9e4,2 +np.float32,0x7e639326,0x42afd2f1,2 +np.float32,0x7f4595d3,0x42b25060,2 +np.float32,0x7f6d0ac4,0x42b2ad97,2 +np.float32,0x7f1bda0d,0x42b1d6e5,2 +np.float32,0x3fd85ffd,0x3f8ee0ed,2 +np.float32,0x3f91d53f,0x3f059c8e,2 +np.float32,0x7d06e103,0x42ac0155,2 +np.float32,0x3fb83126,0x3f67de6e,2 +np.float32,0x7d81ce1f,0x42ad5097,2 +np.float32,0x7f79cb3b,0x42b2c86b,2 +np.float32,0x7f800000,0x7f800000,2 +np.float32,0x3fdbfffd,0x3f918137,2 +np.float32,0x7f4ecb1c,0x42b267b2,2 +np.float32,0x3fc2c122,0x3f7b3ed3,2 +np.float32,0x7f415854,0x42b24544,2 +np.float32,0x7e3d988b,0x42af7575,2 +np.float32,0x3f83ca99,0x3e789fcb,2 +np.float32,0x7f274f70,0x42b1fb38,2 +np.float32,0x7f0d20e6,0x42b1a416,2 +np.float32,0x3fdf3a1d,0x3f93c9c1,2 +np.float32,0x7efaa13e,0x42b1673d,2 +np.float32,0x3fb20b15,0x3f5b9434,2 +np.float32,0x3f86af9f,0x3ea4c664,2 +np.float32,0x3fe4fcb0,0x3f97be8a,2 +np.float32,0x3f920683,0x3f065085,2 +np.float32,0x3fa4b278,0x3f3d7e8b,2 +np.float32,0x3f8077a8,0x3daef77f,2 +np.float32,0x7e865be4,0x42b02807,2 +np.float32,0x3fcea7e2,0x3f877c9f,2 +np.float32,0x7e7e9db1,0x42b00c6d,2 +np.float32,0x3f9819aa,0x3f1aba7e,2 +np.float32,0x7f2b6c4b,0x42b207a7,2 +np.float32,0x7ef85e3e,0x42b16299,2 +np.float32,0x3fbd8290,0x3f71df8b,2 +np.float32,0x3fbbb615,0x3f6e8c8c,2 +np.float32,0x7f1bc7f5,0x42b1d6a9,2 +np.float32,0x3fbb4fea,0x3f6dcdad,2 +np.float32,0x3fb67e09,0x3f648dd1,2 +np.float32,0x3fc83495,0x3f824374,2 +np.float32,0x3fe52980,0x3f97dcbc,2 +np.float32,0x3f87d893,0x3eb25d7c,2 +np.float32,0x3fdb805a,0x3f9125c0,2 +np.float32,0x3fb33f0f,0x3f5e0ce1,2 +np.float32,0x3facc524,0x3f50516b,2 +np.float32,0x3ff40484,0x3fa16d0e,2 +np.float32,0x3ff078bf,0x3f9f3811,2 +np.float32,0x7f736747,0x42b2bb27,2 +np.float32,0x7f55768b,0x42b277f3,2 +np.float32,0x80000001,0xffc00000,2 +np.float32,0x7f6463d1,0x42b29a8e,2 +np.float32,0x3f8f8b59,0x3ef9d792,2 +np.float32,0x3f8a6f4d,0x3ecd5bf4,2 +np.float32,0x3fe958d9,0x3f9aa4ca,2 +np.float32,0x7f1e2ce2,0x42b1de78,2 +np.float32,0x3fb8584a,0x3f682a05,2 +np.float32,0x7dea3dc6,0x42ae7ed5,2 +np.float32,0x7f53a815,0x42b27399,2 +np.float32,0x7e0cf986,0x42aeddbf,2 +np.float32,0x7f3afb71,0x42b23422,2 +np.float32,0x3fd87d6e,0x3f8ef685,2 +np.float32,0x3ffcaa46,0x3fa6a0d7,2 +np.float32,0x7eecd276,0x42b14a3a,2 +np.float32,0x3ffc30b4,0x3fa65951,2 +np.float32,0x7e9c85e2,0x42b07634,2 +np.float32,0x3f95d862,0x3f1383de,2 +np.float32,0x7ef21410,0x42b15577,2 +np.float32,0x3fbfa1b5,0x3f75b86e,2 +np.float32,0x3fd6d90f,0x3f8dc086,2 +np.float32,0x0,0xffc00000,2 +np.float32,0x7e885dcd,0x42b02f9f,2 +np.float32,0x3fb3e057,0x3f5f54bf,2 +np.float32,0x7f40afdd,0x42b24385,2 +np.float32,0x3fb795c2,0x3f66b120,2 +np.float32,0x3fba7c11,0x3f6c3f73,2 +np.float32,0x3ffef620,0x3fa7f828,2 +np.float32,0x7d430508,0x42acbe1e,2 +np.float32,0x3f8d2892,0x3ee6369f,2 +np.float32,0x3fbea139,0x3f73e9d5,2 +np.float32,0x3ffaa928,0x3fa571b9,2 +np.float32,0x7fc00000,0x7fc00000,2 +np.float32,0x7f16f9ce,0x42b1c69f,2 +np.float32,0x3fa8f753,0x3f47b657,2 +np.float32,0x3fd48a63,0x3f8c06ac,2 +np.float32,0x7f13419e,0x42b1b9d9,2 +np.float32,0x3fdf1526,0x3f93afde,2 +np.float32,0x3f903c8b,0x3eff3be8,2 +np.float32,0x7f085323,0x42b1925b,2 +np.float32,0x7cdbe309,0x42ab98ac,2 +np.float32,0x3fba2cfd,0x3f6ba9f1,2 +np.float32,0x7f5a805d,0x42b283e4,2 +np.float32,0x7f6753dd,0x42b2a119,2 +np.float32,0x3fed9f02,0x3f9d6964,2 +np.float32,0x3f96422c,0x3f14ddba,2 +np.float32,0x7f22f2a9,0x42b1edb1,2 +np.float32,0x3fe3fcfd,0x3f97119d,2 +np.float32,0x7e018ad0,0x42aeb271,2 +np.float32,0x7db896f5,0x42ae04de,2 +np.float32,0x7e55c795,0x42afb2ec,2 +np.float32,0x7f58ef8d,0x42b28036,2 +np.float32,0x7f24a16a,0x42b1f2f3,2 +np.float32,0x3fcf714c,0x3f881b09,2 +np.float32,0x3fcdd056,0x3f86d200,2 +np.float32,0x7f02fad0,0x42b17de0,2 +np.float32,0x7eeab877,0x42b145a9,2 +np.float32,0x3fd6029d,0x3f8d20f7,2 +np.float32,0x3fd4f8cd,0x3f8c59d6,2 +np.float32,0x3fb29d4a,0x3f5cc1a5,2 +np.float32,0x3fb11e2d,0x3f59a77a,2 +np.float32,0x7eded576,0x42b12b0e,2 +np.float32,0x7f26c2a5,0x42b1f988,2 +np.float32,0x3fb6165b,0x3f63c151,2 +np.float32,0x7f3bca47,0x42b23657,2 +np.float32,0x7d8c93bf,0x42ad7968,2 +np.float32,0x3f8ede02,0x3ef47176,2 +np.float32,0x3fbef762,0x3f7485b9,2 +np.float32,0x7f1419af,0x42b1bcc6,2 +np.float32,0x7d9e8c79,0x42adb701,2 +np.float32,0x3fa26336,0x3f37af63,2 +np.float32,0x7f5f5590,0x42b28f18,2 +np.float32,0x3fddc93a,0x3f92c651,2 +np.float32,0x3ff0a5fc,0x3f9f547f,2 +np.float32,0x3fb2f6b8,0x3f5d790e,2 +np.float32,0x3ffe59a4,0x3fa79d2c,2 +np.float32,0x7e4df848,0x42af9fde,2 +np.float32,0x3fb0ab3b,0x3f58b678,2 +np.float32,0x7ea54d47,0x42b09225,2 +np.float32,0x3fdd6404,0x3f927eb2,2 +np.float32,0x3f846dc0,0x3e864caa,2 +np.float32,0x7d046aee,0x42abf7e7,2 +np.float32,0x7f7c5a05,0x42b2cda3,2 +np.float32,0x3faf6126,0x3f55fb21,2 +np.float32,0x7f36a910,0x42b22829,2 +np.float32,0x3fdc7b36,0x3f91d938,2 +np.float32,0x3fff443e,0x3fa82577,2 +np.float32,0x7ee7154a,0x42b13daa,2 +np.float32,0x3f944742,0x3f0e435c,2 +np.float32,0x7f5b510a,0x42b285cc,2 +np.float32,0x3f9bc940,0x3f25c4d2,2 +np.float32,0x3fee4782,0x3f9dd4ea,2 +np.float32,0x3fcfc2dd,0x3f885aea,2 +np.float32,0x7eab65cf,0x42b0a4af,2 +np.float32,0x3f9cf908,0x3f292689,2 +np.float32,0x7ed35501,0x42b10feb,2 +np.float32,0x7dabb70a,0x42addfd9,2 +np.float32,0x7f348919,0x42b2222b,2 +np.float32,0x3fb137d4,0x3f59dd17,2 +np.float32,0x7e7b36c9,0x42b0058a,2 +np.float32,0x7e351fa4,0x42af5e0d,2 +np.float32,0x3f973c0c,0x3f18011e,2 +np.float32,0xff800000,0xffc00000,2 +np.float32,0x3f9b0a4b,0x3f239a33,2 +np.float32,0x3f87c4cf,0x3eb17e7e,2 +np.float32,0x7ef67760,0x42b15eaa,2 +np.float32,0x3fc4d2c8,0x3f7ed20f,2 +np.float32,0x7e940dac,0x42b059b8,2 +np.float32,0x7f6e6a52,0x42b2b08d,2 +np.float32,0x3f838752,0x3e6fe4b2,2 +np.float32,0x3fd8f046,0x3f8f4a94,2 +np.float32,0x3fa82112,0x3f45c223,2 +np.float32,0x3fd49b16,0x3f8c1345,2 +np.float32,0x7f02a941,0x42b17ca1,2 +np.float32,0x3f8a9d2c,0x3ecf1768,2 +np.float32,0x7c9372e3,0x42aacc0f,2 +np.float32,0x3fd260b3,0x3f8a619a,2 +np.float32,0x3f8a1b88,0x3eca27cb,2 +np.float32,0x7d25d510,0x42ac6b1c,2 +np.float32,0x7ef5a578,0x42b15cf5,2 +np.float32,0x3fe6625d,0x3f98ae9a,2 +np.float32,0x3ff53240,0x3fa22658,2 +np.float32,0x3f8bb2e6,0x3ed944cf,2 +np.float32,0x7f4679b1,0x42b252ad,2 +np.float32,0x3fa8db30,0x3f4774fc,2 +np.float32,0x7ee5fafd,0x42b13b37,2 +np.float32,0x3fc405e0,0x3f7d71fb,2 +np.float32,0x3f9303cd,0x3f09ddfd,2 +np.float32,0x7f486e67,0x42b257b2,2 +np.float32,0x7e73f12b,0x42aff680,2 +np.float32,0x3fe80f8b,0x3f99cbe4,2 +np.float32,0x3f84200a,0x3e81a3f3,2 +np.float32,0x3fa14e5c,0x3f34e3ce,2 +np.float32,0x3fda22ec,0x3f9029bb,2 +np.float32,0x3f801772,0x3d1aef98,2 +np.float32,0x7eaa1428,0x42b0a0bb,2 +np.float32,0x3feae0b3,0x3f9ba4aa,2 +np.float32,0x7ea439b4,0x42b08ecc,2 +np.float32,0x3fa28b1c,0x3f381579,2 +np.float32,0x7e8af247,0x42b03937,2 +np.float32,0x3fd19216,0x3f89c2b7,2 +np.float32,0x7f6ea033,0x42b2b100,2 +np.float32,0x3fad4fbf,0x3f518224,2 +np.float32,0x3febd940,0x3f9c45bd,2 +np.float32,0x7f4643a3,0x42b25221,2 +np.float32,0x7ec34478,0x42b0e771,2 +np.float32,0x7f18c83b,0x42b1ccb5,2 +np.float32,0x3fc665ad,0x3f80bf94,2 +np.float32,0x3ff0a999,0x3f9f56c4,2 +np.float32,0x3faf1cd2,0x3f5568fe,2 +np.float32,0x7ecd9dc6,0x42b101e1,2 +np.float32,0x3faad282,0x3f4bf754,2 +np.float32,0x3ff905a0,0x3fa47771,2 +np.float32,0x7f596481,0x42b28149,2 +np.float32,0x7f1cb31f,0x42b1d9ac,2 +np.float32,0x7e266719,0x42af32a6,2 +np.float32,0x7eccce06,0x42b0ffdb,2 +np.float32,0x3f9b6f71,0x3f24c102,2 +np.float32,0x3f80e4ba,0x3df1d6bc,2 +np.float32,0x3f843d51,0x3e836a60,2 +np.float32,0x7f70bd88,0x42b2b585,2 +np.float32,0x3fe4cc96,0x3f979e18,2 +np.float32,0x3ff737c7,0x3fa36151,2 +np.float32,0x3ff1197e,0x3f9f9cf4,2 +np.float32,0x7f08e190,0x42b19471,2 +np.float32,0x3ff1542e,0x3f9fc1b2,2 +np.float32,0x3ff6673c,0x3fa2e2d2,2 +np.float32,0xbf800000,0xffc00000,2 +np.float32,0x7e3f9ba7,0x42af7add,2 +np.float32,0x7f658ff6,0x42b29d2d,2 +np.float32,0x3f93441c,0x3f0ac0d9,2 +np.float32,0x7f526a74,0x42b27096,2 +np.float32,0x7f5b00c8,0x42b28511,2 +np.float32,0x3ff212f8,0x3fa038cf,2 +np.float32,0x7e0bd60d,0x42aed998,2 +np.float32,0x7f71ef7f,0x42b2b80e,2 +np.float32,0x7f7a897e,0x42b2c9f1,2 +np.float32,0x7e8b76a6,0x42b03b1e,2 +np.float32,0x7efa0da3,0x42b1660f,2 +np.float32,0x3fce9166,0x3f876ae0,2 +np.float32,0x3fc4163d,0x3f7d8e30,2 +np.float32,0x3fdb3784,0x3f90f16b,2 +np.float32,0x7c5f177b,0x42aa3d30,2 +np.float32,0x3fc6276d,0x3f808af5,2 +np.float32,0x7bac9cc2,0x42a856f4,2 +np.float32,0x3fe5876f,0x3f981bea,2 +np.float32,0x3fef60e3,0x3f9e878a,2 +np.float32,0x3fb23cd8,0x3f5bfb06,2 +np.float32,0x3fe114e2,0x3f951402,2 +np.float32,0x7ca8ef04,0x42ab11b4,2 +np.float32,0x7d93c2ad,0x42ad92ec,2 +np.float32,0x3fe5bb8a,0x3f983ee6,2 +np.float32,0x7f0182fd,0x42b1781b,2 +np.float32,0x7da63bb2,0x42adcf3d,2 +np.float32,0x3fac46b7,0x3f4f399e,2 +np.float32,0x7f7a5d8f,0x42b2c997,2 +np.float32,0x7f76572e,0x42b2c14b,2 +np.float32,0x7f42d53e,0x42b24931,2 +np.float32,0x7f7ffd00,0x42b2d4f6,2 +np.float32,0x3fc346c3,0x3f7c2756,2 +np.float32,0x7f1f6ae3,0x42b1e27a,2 +np.float32,0x3f87fb56,0x3eb3e2ee,2 +np.float32,0x3fed17a2,0x3f9d12b4,2 +np.float32,0x7f5ea903,0x42b28d8c,2 +np.float32,0x3f967f82,0x3f15a4ab,2 +np.float32,0x7d3b540c,0x42aca984,2 +np.float32,0x7f56711a,0x42b27a4a,2 +np.float32,0x7f122223,0x42b1b5ee,2 +np.float32,0x3fd6fa34,0x3f8dd919,2 +np.float32,0x3fadd62e,0x3f52a7b3,2 +np.float32,0x3fb7bf0c,0x3f67015f,2 +np.float32,0x7edf4ba7,0x42b12c1d,2 +np.float32,0x7e33cc65,0x42af5a4b,2 +np.float32,0x3fa6be17,0x3f427831,2 +np.float32,0x3fa07aa8,0x3f32b7d4,2 +np.float32,0x3fa4a3af,0x3f3d5a01,2 +np.float32,0x3fdbb267,0x3f9149a8,2 +np.float32,0x7ed45e25,0x42b1126c,2 +np.float32,0x3fe3f432,0x3f970ba6,2 +np.float32,0x7f752080,0x42b2bec3,2 +np.float32,0x3f872747,0x3eaa62ea,2 +np.float32,0x7e52175d,0x42afaa03,2 +np.float32,0x3fdc766c,0x3f91d5ce,2 +np.float32,0x7ecd6841,0x42b1015c,2 +np.float32,0x7f3d6c40,0x42b23ac6,2 +np.float32,0x3fb80c14,0x3f6796b9,2 +np.float32,0x3ff6ad56,0x3fa30d68,2 +np.float32,0x3fda44c3,0x3f90423e,2 +np.float32,0x3fdcba0c,0x3f9205fc,2 +np.float32,0x7e14a720,0x42aef8e6,2 +np.float32,0x3fe9e489,0x3f9b0047,2 +np.float32,0x7e69f933,0x42afe123,2 +np.float32,0x3ff3ee6d,0x3fa15f71,2 +np.float32,0x3f8538cd,0x3e91c1a7,2 +np.float32,0x3fdc3f07,0x3f91ae46,2 +np.float32,0x3fba2ef0,0x3f6bada2,2 +np.float32,0x7da64cd8,0x42adcf71,2 +np.float32,0x3fc34bd2,0x3f7c301d,2 +np.float32,0x3fa273aa,0x3f37d984,2 +np.float32,0x3ff0338c,0x3f9f0c86,2 +np.float32,0x7ed62cef,0x42b116c3,2 +np.float32,0x3f911e7e,0x3f02f7c6,2 +np.float32,0x7c8514c9,0x42aa9792,2 +np.float32,0x3fea2a74,0x3f9b2df5,2 +np.float32,0x3fe036f8,0x3f947a25,2 +np.float32,0x7c5654bf,0x42aa28ad,2 +np.float32,0x3fd9e423,0x3f8ffc32,2 +np.float32,0x7eec0439,0x42b1487b,2 +np.float32,0x3fc580f4,0x3f7ffb62,2 +np.float32,0x3fb0e316,0x3f592bbe,2 +np.float32,0x7c4cfb7d,0x42aa11d8,2 +np.float32,0x3faf9704,0x3f566e00,2 +np.float32,0x3fa7cf8a,0x3f45023d,2 +np.float32,0x7f7b724d,0x42b2cbcc,2 +np.float32,0x7f05bfe3,0x42b18897,2 +np.float32,0x3f90bde3,0x3f018bf3,2 +np.float32,0x7c565479,0x42aa28ad,2 +np.float32,0x3f94b517,0x3f0fb8e5,2 +np.float32,0x3fd6aadd,0x3f8d9e3c,2 +np.float32,0x7f09b37c,0x42b1977f,2 +np.float32,0x7f2b45ea,0x42b20734,2 +np.float32,0x3ff1d15e,0x3fa00fe9,2 +np.float32,0x3f99bce6,0x3f1fbd6c,2 +np.float32,0x7ecd1f76,0x42b100a7,2 +np.float32,0x7f443e2b,0x42b24ce2,2 +np.float32,0x7da7d6a5,0x42add428,2 +np.float32,0x7ebe0193,0x42b0d975,2 +np.float32,0x7ee13c43,0x42b1308b,2 +np.float32,0x3f8adf1b,0x3ed18e0c,2 +np.float32,0x7f76ce65,0x42b2c242,2 +np.float32,0x7e34f43d,0x42af5d92,2 +np.float32,0x7f306b76,0x42b2165d,2 +np.float32,0x7e1fd07f,0x42af1df7,2 +np.float32,0x3fab9a41,0x3f4db909,2 +np.float32,0x3fc23d1a,0x3f7a5803,2 +np.float32,0x3f8b7403,0x3ed70245,2 +np.float32,0x3f8c4dd6,0x3edebbae,2 +np.float32,0x3fe5f411,0x3f9864cd,2 +np.float32,0x3f88128b,0x3eb4e508,2 +np.float32,0x3fcb09de,0x3f84976f,2 +np.float32,0x7f32f2f5,0x42b21da6,2 +np.float32,0x3fe75610,0x3f9950f6,2 +np.float32,0x3f993edf,0x3f1e408d,2 +np.float32,0x3fc4a9d7,0x3f7e8be9,2 +np.float32,0x7f74551a,0x42b2bd1a,2 +np.float32,0x7de87129,0x42ae7ae2,2 +np.float32,0x7f18bbbd,0x42b1cc8c,2 +np.float32,0x7e7e1dd4,0x42b00b6c,2 +np.float32,0x3ff6e55b,0x3fa32f64,2 +np.float32,0x3fa634c8,0x3f412df3,2 +np.float32,0x3fd0fb7c,0x3f894e49,2 +np.float32,0x3ff4f6a6,0x3fa201d7,2 +np.float32,0x7f69d418,0x42b2a69a,2 +np.float32,0x7cb9632d,0x42ab414a,2 +np.float32,0x3fc57d36,0x3f7ff503,2 +np.float32,0x7e9e2ed7,0x42b07b9b,2 +np.float32,0x7f2e6868,0x42b2107d,2 +np.float32,0x3fa3169a,0x3f39785d,2 +np.float32,0x7f03cde0,0x42b18117,2 +np.float32,0x7f6d75d2,0x42b2ae7f,2 +np.float32,0x3ff483f2,0x3fa1bb75,2 +np.float32,0x7f1b39f7,0x42b1d4d6,2 +np.float32,0x3f8c7a7d,0x3ee0481e,2 +np.float32,0x3f989095,0x3f1c2b19,2 +np.float32,0x3fa4cbfd,0x3f3dbd87,2 +np.float32,0x7f75b00f,0x42b2bfef,2 +np.float32,0x3f940724,0x3f0d6756,2 +np.float32,0x7f5e5a1a,0x42b28cd6,2 +np.float32,0x800000,0xffc00000,2 +np.float32,0x7edd1d29,0x42b12716,2 +np.float32,0x3fa3e9e4,0x3f3b8c16,2 +np.float32,0x7e46d70e,0x42af8dd5,2 +np.float32,0x3f824745,0x3e40ec1e,2 +np.float32,0x3fd67623,0x3f8d770a,2 +np.float32,0x3fe9a6f3,0x3f9ad7fa,2 +np.float32,0x3fdda67c,0x3f92adc1,2 +np.float32,0x7ccb6c9a,0x42ab70d4,2 +np.float32,0x3ffd364a,0x3fa6f2fe,2 +np.float32,0x7e02424c,0x42aeb545,2 +np.float32,0x3fb6d2f2,0x3f6534a1,2 +np.float32,0x3fe1fe26,0x3f95b4cc,2 +np.float32,0x7e93ac57,0x42b05867,2 +np.float32,0x7f7b3433,0x42b2cb4d,2 +np.float32,0x3fb76803,0x3f66580d,2 +np.float32,0x3f9af881,0x3f23661b,2 +np.float32,0x3fd58062,0x3f8cbf98,2 +np.float32,0x80000000,0xffc00000,2 +np.float32,0x7f1af8f4,0x42b1d3ff,2 +np.float32,0x3fe66bba,0x3f98b4dc,2 +np.float32,0x7f6bd7bf,0x42b2aaff,2 +np.float32,0x3f84f79a,0x3e8e2e49,2 +np.float32,0x7e475b06,0x42af8f28,2 +np.float32,0x3faff89b,0x3f573d5e,2 +np.float32,0x7de5aa77,0x42ae74bb,2 +np.float32,0x3f8e9e42,0x3ef26cd2,2 +np.float32,0x3fb1cec3,0x3f5b1740,2 +np.float32,0x3f8890d6,0x3eba4821,2 +np.float32,0x3f9b39e9,0x3f242547,2 +np.float32,0x3fc895a4,0x3f829407,2 +np.float32,0x7f77943c,0x42b2c3dc,2 +np.float32,0x7f390d58,0x42b22ed2,2 +np.float32,0x3fe7e160,0x3f99ad58,2 +np.float32,0x3f93d2a0,0x3f0cb205,2 +np.float32,0x7f29499b,0x42b2013c,2 +np.float32,0x3f8c11b2,0x3edca10f,2 +np.float32,0x7e898ef8,0x42b03413,2 +np.float32,0x3fdff942,0x3f944f34,2 +np.float32,0x7f3d602f,0x42b23aa5,2 +np.float32,0x3f8a50f3,0x3ecc345b,2 +np.float32,0x3fa1f86d,0x3f369ce4,2 +np.float32,0x3f97ad95,0x3f19681d,2 +np.float32,0x3ffad1e0,0x3fa589e5,2 +np.float32,0x3fa70590,0x3f432311,2 +np.float32,0x7e6840cb,0x42afdd5c,2 +np.float32,0x3fd4036d,0x3f8ba0aa,2 +np.float32,0x7f7cc953,0x42b2ce84,2 +np.float32,0x7f228e1e,0x42b1ec74,2 +np.float32,0x7e37a866,0x42af652a,2 +np.float32,0x3fda22d0,0x3f9029a7,2 +np.float32,0x7f736bff,0x42b2bb31,2 +np.float32,0x3f9833b6,0x3f1b0b8e,2 +np.float32,0x7f466001,0x42b2526a,2 +np.float32,0xff7fffff,0xffc00000,2 +np.float32,0x7dd62bcd,0x42ae50f8,2 +np.float32,0x7f1d2bfe,0x42b1db36,2 +np.float32,0x7ecffe9e,0x42b107c5,2 +np.float32,0x7ebefe0a,0x42b0dc1b,2 +np.float32,0x7f45c63d,0x42b250dd,2 +np.float32,0x7f601af0,0x42b290db,2 +np.float32,0x3fcbb88a,0x3f8524e5,2 +np.float32,0x7ede55ff,0x42b129e8,2 +np.float32,0x7ea5dd5a,0x42b093e2,2 +np.float32,0x3ff53857,0x3fa22a12,2 +np.float32,0x3f8dbd6a,0x3eeb28a4,2 +np.float32,0x3fd1b467,0x3f89dd2c,2 +np.float32,0x3fe0423f,0x3f9481fc,2 +np.float32,0x3f84b421,0x3e8a6174,2 +np.float32,0x7f4efc97,0x42b2682c,2 +np.float32,0x7f601b33,0x42b290dc,2 +np.float32,0x3f94f240,0x3f108719,2 +np.float32,0x7decd251,0x42ae8471,2 +np.float32,0x3fdc457c,0x3f91b2e2,2 +np.float32,0x3f92a966,0x3f089c5a,2 +np.float32,0x3fc9732f,0x3f834afc,2 +np.float32,0x3f97948f,0x3f19194e,2 +np.float32,0x7f0824a1,0x42b191ac,2 +np.float32,0x7f0365a5,0x42b17f81,2 +np.float32,0x3f800000,0x0,2 +np.float32,0x7f0054c6,0x42b1736b,2 +np.float32,0x3fe86544,0x3f9a0484,2 +np.float32,0x7e95f844,0x42b0604e,2 +np.float32,0x3fce8602,0x3f8761e2,2 +np.float32,0x3fc726c8,0x3f81621d,2 +np.float32,0x3fcf6b03,0x3f88161b,2 +np.float32,0x3fceb843,0x3f87898a,2 +np.float32,0x3fe2f8b2,0x3f966071,2 +np.float32,0x7f3c8e7f,0x42b2386d,2 +np.float32,0x3fcee13a,0x3f87a9d2,2 +np.float32,0x3fc4df27,0x3f7ee73c,2 +np.float32,0x3ffde486,0x3fa758e3,2 +np.float32,0x3fa91be0,0x3f480b17,2 +np.float32,0x7f2a5a7d,0x42b20472,2 +np.float32,0x7e278d80,0x42af362d,2 +np.float32,0x3f96d091,0x3f16a9d5,2 +np.float32,0x7e925225,0x42b053b2,2 +np.float32,0x7f7ef83a,0x42b2d2ec,2 +np.float32,0x7eb4923a,0x42b0bf61,2 +np.float32,0x7e98bf19,0x42b069b3,2 +np.float32,0x3fac93a2,0x3f4fe410,2 +np.float32,0x7f46389c,0x42b25205,2 +np.float32,0x3f9fd447,0x3f30fd54,2 +np.float32,0x3fef42d4,0x3f9e7483,2 +np.float32,0x7f482174,0x42b256ed,2 +np.float32,0x3f97aedb,0x3f196c1e,2 +np.float32,0x7f764edd,0x42b2c13a,2 +np.float32,0x3f9117b5,0x3f02de5c,2 +np.float32,0x3fc7984e,0x3f81c12d,2 +np.float64,0x3ff1e2cb7463c597,0x3fdec6caf39e0c0e,1 +np.float64,0x3ffe4f89789c9f13,0x3ff40f4b1da0f3e9,1 +np.float64,0x7f6a5c9ac034b935,0x408605e51703c145,1 +np.float64,0x7fdcb6ece3b96dd9,0x40862d6521e16d60,1 +np.float64,0x3ff6563e182cac7c,0x3feb9d8210f3fa88,1 +np.float64,0x7fde32025f3c6404,0x40862dcc1d1a9b7f,1 +np.float64,0x7fd755ed35aeabd9,0x40862bbc5522b779,1 +np.float64,0x3ff5c81f4bcb903e,0x3fea71f10b954ea3,1 +np.float64,0x3fffe805d35fd00c,0x3ff50463a1ba2938,1 +np.float64,0x7fd045a1c1a08b43,0x408628d9f431f2f5,1 +np.float64,0x3ff49f7dd9893efc,0x3fe7c6736e17ea8e,1 +np.float64,0x7fccfbc1fd39f783,0x408627eca79acf51,1 +np.float64,0x3ff1af0a00035e14,0x3fdd1c0e7d5706ea,1 +np.float64,0x7fe7bd17162f7a2d,0x4086316af683502b,1 +np.float64,0x3ff0941b8d012837,0x3fd128d274065ac0,1 +np.float64,0x3ffa0c5d98b418bb,0x3ff11af9c8edd17f,1 +np.float64,0x3ffad9733355b2e6,0x3ff1b6d1307acb42,1 +np.float64,0x3ffabb2a33d57654,0x3ff1a0442b034e50,1 +np.float64,0x3ff36118b0c6c231,0x3fe472b7dfb23516,1 +np.float64,0x3ff2441d3664883a,0x3fe0d61145608f0c,1 +np.float64,0x7fe039862d20730b,0x40862e5f8ed752d3,1 +np.float64,0x7fb1dde24023bbc4,0x40861e824cdb0664,1 +np.float64,0x7face6335839cc66,0x40861ccf90a26e16,1 +np.float64,0x3ffb5d0e1af6ba1c,0x3ff2170f6f42fafe,1 +np.float64,0x3ff5c2c6a50b858d,0x3fea665aabf04407,1 +np.float64,0x3ffabb409db57681,0x3ff1a054ea32bfc3,1 +np.float64,0x3ff1e054e983c0aa,0x3fdeb30c17286cb6,1 +np.float64,0x7fe467f73268cfed,0x4086303529e52e9b,1 +np.float64,0x7fe0e86bf961d0d7,0x40862eb40788b04a,1 +np.float64,0x3ffb743542f6e86a,0x3ff227b4ea5acee0,1 +np.float64,0x3ff2de6826e5bcd0,0x3fe2e31fcde0a96c,1 +np.float64,0x7fd6b27ccfad64f9,0x40862b8385697c31,1 +np.float64,0x7fe0918e8d21231c,0x40862e8a82d9517a,1 +np.float64,0x7fd0ca0395a19406,0x4086291a0696ed33,1 +np.float64,0x3ffb042496960849,0x3ff1d658c928abfc,1 +np.float64,0x3ffcd0409799a081,0x3ff31877df0cb245,1 +np.float64,0x7fe429bd06685379,0x4086301c9f259934,1 +np.float64,0x3ff933076092660f,0x3ff06d2e5f4d9ab7,1 +np.float64,0x7feaefcb28f5df95,0x4086326dccf88e6f,1 +np.float64,0x7fb5f2c1f82be583,0x40862027ac02a39d,1 +np.float64,0x3ffb5d9e3bd6bb3c,0x3ff21777501d097e,1 +np.float64,0x10000000000000,0xfff8000000000000,1 +np.float64,0x3ff70361596e06c3,0x3fecf675ceda7e19,1 +np.float64,0x3ff71a21b5ee3444,0x3fed224fa048d9a9,1 +np.float64,0x3ffb102b86762057,0x3ff1df2cc9390518,1 +np.float64,0x7feaaeb35c355d66,0x4086325a60704a90,1 +np.float64,0x7fd9a3d0a93347a0,0x40862c7d300fc076,1 +np.float64,0x7fabcf159c379e2a,0x40861c80cdbbff27,1 +np.float64,0x7fd1c066ec2380cd,0x4086298c3006fee6,1 +np.float64,0x3ff3d5ae2d67ab5c,0x3fe5bc16447428db,1 +np.float64,0x3ff4b76add696ed6,0x3fe800f5bbf21376,1 +np.float64,0x3ff60d89ee0c1b14,0x3feb063fdebe1a68,1 +np.float64,0x7f1d2648003a4c8f,0x4085eaf9238af95a,1 +np.float64,0x7fe8b45f6df168be,0x408631bca5abf6d6,1 +np.float64,0x7fe9ea5308f3d4a5,0x4086321ea2bd3af9,1 +np.float64,0x7fcb6ba5a636d74a,0x4086277b208075ed,1 +np.float64,0x3ff621cfd74c43a0,0x3feb30d59baf5919,1 +np.float64,0x3ff7bc8ca0af7919,0x3fee524da8032896,1 +np.float64,0x7fda22dd0c3445b9,0x40862ca47326d063,1 +np.float64,0x7fd02ed4b2a05da8,0x408628ceb6919421,1 +np.float64,0x3ffe64309fdcc861,0x3ff41c1b18940709,1 +np.float64,0x3ffee4042abdc808,0x3ff46a6005bccb41,1 +np.float64,0x3ff078145b00f029,0x3fceeb3d6bfae0eb,1 +np.float64,0x7fda20fd20b441f9,0x40862ca3e03b990b,1 +np.float64,0x3ffa9e9e9af53d3d,0x3ff18ade3cbee789,1 +np.float64,0x3ff0a1062501420c,0x3fd1e32de6d18c0d,1 +np.float64,0x3ff3bdf118477be2,0x3fe57ad89b7fdf8b,1 +np.float64,0x3ff101c0d5c20382,0x3fd6965d3539be47,1 +np.float64,0x7feba3b53b774769,0x408632a28c7aca4d,1 +np.float64,0x3ff598db5d4b31b7,0x3fea0aa65c0b421a,1 +np.float64,0x3ff5fdfbb72bfbf8,0x3feae55accde4a5e,1 +np.float64,0x7fe5bae53aab75c9,0x408630b5e7a5b92a,1 +np.float64,0x3ff8f668afd1ecd2,0x3ff03af686666c9c,1 +np.float64,0x3ff5ba72dd2b74e6,0x3fea5441f223c093,1 +np.float64,0x3ff8498147109302,0x3fef4e45d501601d,1 +np.float64,0x7feddcfa5efbb9f4,0x4086334106a6e76b,1 +np.float64,0x7fd1a30200234603,0x4086297ee5cc562c,1 +np.float64,0x3ffffa8ee07ff51e,0x3ff50f1dc46f1303,1 +np.float64,0x7fef7ed00ebefd9f,0x408633ae01dabe52,1 +np.float64,0x3ffb6e062276dc0c,0x3ff22344c58c2016,1 +np.float64,0x7fcf2b59943e56b2,0x4086288190dd5eeb,1 +np.float64,0x3ffa589f9254b13f,0x3ff155cc081eee0b,1 +np.float64,0x3ff05415ca60a82c,0x3fc9e45565baef0a,1 +np.float64,0x7feb34bed576697d,0x408632822d5a178c,1 +np.float64,0x3ff3993845c73270,0x3fe51423baf246c3,1 +np.float64,0x3ff88367aaf106d0,0x3fefb2d9ca9f1192,1 +np.float64,0x7fef364304fe6c85,0x4086339b7ed82997,1 +np.float64,0x7fcba2c317374585,0x4086278b24e42934,1 +np.float64,0x3ff1aef885e35df1,0x3fdd1b79f55b20c0,1 +np.float64,0x7fe19367886326ce,0x40862f035f867445,1 +np.float64,0x3ff3c8295e279053,0x3fe5970aa670d32e,1 +np.float64,0x3ff6edda164ddbb4,0x3feccca9eb59d6b9,1 +np.float64,0x7fdeaea940bd5d52,0x40862dece02d151b,1 +np.float64,0x7fea9d6324353ac5,0x408632552ddf0d4f,1 +np.float64,0x7fe60e39e66c1c73,0x408630d45b1ad0c4,1 +np.float64,0x7fde06325abc0c64,0x40862dc07910038c,1 +np.float64,0x7f9ec89d303d9139,0x408617c55ea4c576,1 +np.float64,0x3ff9801930530032,0x3ff0abe5be046051,1 +np.float64,0x3ff4d5859689ab0b,0x3fe849a7f7a19fa3,1 +np.float64,0x3ff38afbc48715f8,0x3fe4ebb7710cbab9,1 +np.float64,0x3ffd88a0e77b1142,0x3ff3916964407e21,1 +np.float64,0x1,0xfff8000000000000,1 +np.float64,0x3ff5db59e58bb6b4,0x3fea9b6b5ccc116f,1 +np.float64,0x3ffd4b05b15a960c,0x3ff369792f661a90,1 +np.float64,0x7fdcebc4fb39d789,0x40862d73cd623378,1 +np.float64,0x3ff5b56f944b6adf,0x3fea4955d6b06ca3,1 +np.float64,0x7fd4e4abf2a9c957,0x40862ad9e9da3c61,1 +np.float64,0x7fe08e0d6aa11c1a,0x40862e88d17ef277,1 +np.float64,0x3ff0dfc97da1bf93,0x3fd50f9004136d8f,1 +np.float64,0x7fdec38eaebd871c,0x40862df2511e26b4,1 +np.float64,0x7ff8000000000000,0x7ff8000000000000,1 +np.float64,0x3ff21865504430cb,0x3fe033fe3cf3947a,1 +np.float64,0x7fdc139708b8272d,0x40862d371cfbad03,1 +np.float64,0x7fe1fe3be3a3fc77,0x40862f336e3ba63a,1 +np.float64,0x7fd9fa2493b3f448,0x40862c97f2960be9,1 +np.float64,0x3ff0a027db414050,0x3fd1d6e54a707c87,1 +np.float64,0x3ff568b16f4ad163,0x3fe99f5c6d7b6e18,1 +np.float64,0x3ffe2f82877c5f05,0x3ff3fb54bd0da753,1 +np.float64,0x7fbaf5778435eaee,0x408621ccc9e2c1be,1 +np.float64,0x7fc5aaf8362b55ef,0x40862598e7072a49,1 +np.float64,0x7fe0ebfdd4a1d7fb,0x40862eb5b7bf99d5,1 +np.float64,0x7fd8efeb5931dfd6,0x40862c444636f408,1 +np.float64,0x3ff361a308c6c346,0x3fe4744cae63e6df,1 +np.float64,0x7fef287d39be50f9,0x40863397f65c807e,1 +np.float64,0x7fe72c4a14ae5893,0x4086313992e52082,1 +np.float64,0x3ffd1be44cba37c8,0x3ff34a9a45239eb9,1 +np.float64,0x3ff50369c18a06d4,0x3fe8b69319f091f1,1 +np.float64,0x3ffb333c25766678,0x3ff1f8c78eeb28f1,1 +np.float64,0x7fe12050416240a0,0x40862ece4e2f2f24,1 +np.float64,0x7fe348f5526691ea,0x40862fc16fbe7b6c,1 +np.float64,0x3ff343cc4d068799,0x3fe41c2a30cab7d2,1 +np.float64,0x7fd1b0daaa2361b4,0x408629852b3104ff,1 +np.float64,0x3ff6a41f37ad483e,0x3fec3b36ee6c6d4a,1 +np.float64,0x3ffad9439435b287,0x3ff1b6add9a1b3d7,1 +np.float64,0x7fbeb9a2f23d7345,0x408622d89ac1eaba,1 +np.float64,0x3ffab3d39fb567a7,0x3ff19ac75b4427f3,1 +np.float64,0x3ff890003ed12000,0x3fefc8844471c6ad,1 +np.float64,0x3ffc9f595e593eb2,0x3ff2f7a8699f06d8,1 +np.float64,0x7fe2224ef6e4449d,0x40862f43684a154a,1 +np.float64,0x3ffa67ba08d4cf74,0x3ff161525778df99,1 +np.float64,0x7fe87e24b570fc48,0x408631ab02b159fb,1 +np.float64,0x7fd6e99be92dd337,0x40862b96dba73685,1 +np.float64,0x7fe90f39fdf21e73,0x408631d9dbd36c1e,1 +np.float64,0x3ffb7806abd6f00e,0x3ff22a719b0f4c46,1 +np.float64,0x3ffa511ba3d4a238,0x3ff1500c124f6e17,1 +np.float64,0x3ff5d7a569abaf4b,0x3fea937391c280e8,1 +np.float64,0x7fc4279d20284f39,0x40862504a5cdcb96,1 +np.float64,0x3ffe8791b1fd0f24,0x3ff431f1ed7eaba0,1 +np.float64,0x7fe3b2f5276765e9,0x40862fecf15e2535,1 +np.float64,0x7feeab0e7abd561c,0x408633778044cfbc,1 +np.float64,0x7fdba88531375109,0x40862d1860306d7a,1 +np.float64,0x7fe7b19b3def6335,0x4086316716d6890b,1 +np.float64,0x3ff9e9437413d287,0x3ff0ff89431c748c,1 +np.float64,0x3ff960716a52c0e3,0x3ff092498028f802,1 +np.float64,0x3ff271bf56a4e37f,0x3fe1786fc8dd775d,1 +np.float64,0x3fff2a6578be54cb,0x3ff494bbe303eeb5,1 +np.float64,0x3ffd842eb5fb085e,0x3ff38e8b7ba42bc5,1 +np.float64,0x3ff91600e5d22c02,0x3ff0553c6a6b3d93,1 +np.float64,0x3ff9153f45f22a7e,0x3ff0549c0eaecf95,1 +np.float64,0x7fe0ab319da15662,0x40862e96da3b19f9,1 +np.float64,0x3ff06acd1f60d59a,0x3fcd2aca543d2772,1 +np.float64,0x3ffb3e7a54d67cf4,0x3ff200f288cd391b,1 +np.float64,0x3ffd01356f1a026b,0x3ff339003462a56c,1 +np.float64,0x3ffacd35def59a6c,0x3ff1adb8d32b3ec0,1 +np.float64,0x3ff6f953264df2a6,0x3fece2f992948d6e,1 +np.float64,0x3ff0fa91f5a1f524,0x3fd64609a28f1590,1 +np.float64,0x7fd1b7610ca36ec1,0x408629881e03dc7d,1 +np.float64,0x3ff4317fb7c86300,0x3fe6b086ed265887,1 +np.float64,0x3ff3856198070ac3,0x3fe4dbb6bc88b9e3,1 +np.float64,0x7fed7fc4573aff88,0x40863327e7013a81,1 +np.float64,0x3ffe53cbbf5ca798,0x3ff411f07a29b1f4,1 +np.float64,0x3ff092195b012433,0x3fd10b1c0b4b14fe,1 +np.float64,0x3ff1a3171163462e,0x3fdcb5c301d5d40d,1 +np.float64,0x3ffa1401f1742804,0x3ff120eb319e9faa,1 +np.float64,0x7fd352f6f426a5ed,0x40862a3a048feb6d,1 +np.float64,0x7fd4ee246fa9dc48,0x40862add895d808f,1 +np.float64,0x3ff0675cfa00ceba,0x3fccb2222c5493ca,1 +np.float64,0x3ffe5cb38f3cb967,0x3ff417773483d161,1 +np.float64,0x7fe11469ea2228d3,0x40862ec8bd3e497f,1 +np.float64,0x3fff13cba67e2798,0x3ff4872fe2c26104,1 +np.float64,0x3ffb73d3d316e7a8,0x3ff2276f08612ea2,1 +np.float64,0x7febfb70f237f6e1,0x408632bbc9450721,1 +np.float64,0x3ff84a0d87b0941b,0x3fef4f3b707e3145,1 +np.float64,0x7fd71fd5082e3fa9,0x40862ba9b4091172,1 +np.float64,0x3ff560737d8ac0e7,0x3fe98cc9c9ba2f61,1 +np.float64,0x3ff46a266ae8d44d,0x3fe74190e5234822,1 +np.float64,0x7fe8cc9225719923,0x408631c477db9708,1 +np.float64,0x3ff871de5930e3bc,0x3fef948f7d00fbef,1 +np.float64,0x3ffd0bc7895a178f,0x3ff33ffc18357721,1 +np.float64,0x3ff66099f9ccc134,0x3febb2bc775b4720,1 +np.float64,0x7fe91f1be9723e37,0x408631deec3a5c9e,1 +np.float64,0x7fd60462f12c08c5,0x40862b4537e1c1c6,1 +np.float64,0x3ff053100ba0a620,0x3fc9bc0c21e2284f,1 +np.float64,0x7fd864c611b0c98b,0x40862c1724506255,1 +np.float64,0x7fd191decb2323bd,0x408629771bfb68cc,1 +np.float64,0x3ff792a1656f2543,0x3fee054f2e135fcf,1 +np.float64,0x7fd03625cea06c4b,0x408628d253b840e3,1 +np.float64,0x7fc3967716272ced,0x408624ca35451042,1 +np.float64,0x7fe6636cb32cc6d8,0x408630f3073a22a7,1 +np.float64,0x3ffc2d3976585a73,0x3ff2a9d4c0dae607,1 +np.float64,0x3fffd10ee79fa21e,0x3ff4f70db69888be,1 +np.float64,0x3ff1d4fcae23a9f9,0x3fde57675007b23c,1 +np.float64,0x3ffa5da19e14bb43,0x3ff1599f74d1c113,1 +np.float64,0x3ff7f4eb0d6fe9d6,0x3feeb85189659e99,1 +np.float64,0x7fbcca44d8399489,0x408622536234f7c1,1 +np.float64,0x7fef5f97ec3ebf2f,0x408633a60fdde0d7,1 +np.float64,0x7fde4a66da3c94cd,0x40862dd290ebc184,1 +np.float64,0x3ff072957a40e52b,0x3fce34d913d87613,1 +np.float64,0x3ff2bc4c9dc57899,0x3fe27497e6ebe27d,1 +np.float64,0x7fd7d152b4afa2a4,0x40862be63469eecd,1 +np.float64,0x3ff957d768f2afaf,0x3ff08b4ad8062a73,1 +np.float64,0x7fe4bc5f45a978be,0x40863055fd66e4eb,1 +np.float64,0x7fc90de345321bc6,0x408626c24ce7e370,1 +np.float64,0x3ff2d7a37d85af47,0x3fe2cd6a40b544a0,1 +np.float64,0x7fe536ea1f6a6dd3,0x40863084bade76a3,1 +np.float64,0x3fff970c9cdf2e19,0x3ff4d524572356dd,1 +np.float64,0x3ffe173ae63c2e76,0x3ff3ec1ee35ad28c,1 +np.float64,0x3ff714025cce2805,0x3fed168aedff4a2b,1 +np.float64,0x7fce7b414c3cf682,0x40862853dcdd19d4,1 +np.float64,0x3ff019623f2032c4,0x3fbc7c602df0bbaf,1 +np.float64,0x3ff72f57fd0e5eb0,0x3fed4ae75f697432,1 +np.float64,0x3ff283778e8506ef,0x3fe1b5c5725b0dfd,1 +np.float64,0x3ff685a29aed0b45,0x3febfdfdedd581e2,1 +np.float64,0x3ff942d24fb285a4,0x3ff07a224c3ecfaf,1 +np.float64,0x3ff2e4a9f465c954,0x3fe2f71905399e8f,1 +np.float64,0x7fdfa1c7fa3f438f,0x40862e2b4e06f098,1 +np.float64,0x3ff49b59c26936b4,0x3fe7bc41c8c1e59d,1 +np.float64,0x3ff2102d3704205a,0x3fe014bf7e28924e,1 +np.float64,0x3ff88de3b8311bc8,0x3fefc4e3e0a15a89,1 +np.float64,0x7fea5ba25374b744,0x40863241519c9b66,1 +np.float64,0x3fffe5df637fcbbf,0x3ff5032488f570f9,1 +np.float64,0x7fe67cfefe6cf9fd,0x408630fc25333cb4,1 +np.float64,0x3ff090bf2b01217e,0x3fd0f6fcf1092b4a,1 +np.float64,0x7fecd75bc5f9aeb7,0x408632f9b6c2e013,1 +np.float64,0x7fe15df38c62bbe6,0x40862eeae5ac944b,1 +np.float64,0x3ff4757875a8eaf1,0x3fe75e0eafbe28ce,1 +np.float64,0x7fecca8a51b99514,0x408632f627c23923,1 +np.float64,0x3ff91ca529d2394a,0x3ff05abb327fd1ca,1 +np.float64,0x3ffb962993b72c53,0x3ff23ff831717579,1 +np.float64,0x3ffd548a2c7aa914,0x3ff36fac7f56d716,1 +np.float64,0x7fbafb5cb035f6b8,0x408621ce898a02fb,1 +np.float64,0x3ff1d86daca3b0db,0x3fde73536c29218c,1 +np.float64,0x7fa8d0f8f431a1f1,0x40861b97a03c3a18,1 +np.float64,0x3ff44f1067489e21,0x3fe6fcbd8144ab2a,1 +np.float64,0x7fec062b07380c55,0x408632bed9c6ce85,1 +np.float64,0x3ff7e11e0fcfc23c,0x3fee94ada7efaac4,1 +np.float64,0x7fe77505c1aeea0b,0x4086315287dda0ba,1 +np.float64,0x7fc465af2728cb5d,0x4086251d236107f7,1 +np.float64,0x3ffe811c4a7d0238,0x3ff42df7e8b6cf2d,1 +np.float64,0x7fe05a471260b48d,0x40862e6fa502738b,1 +np.float64,0x7fec32cd9778659a,0x408632cb8d98c5a3,1 +np.float64,0x7fd203a220a40743,0x408629aa43b010c0,1 +np.float64,0x7fed71f7d17ae3ef,0x4086332428207101,1 +np.float64,0x3ff3918999e72313,0x3fe4fe5e8991402f,1 +np.float64,0x3ff3ecae38c7d95c,0x3fe5fa787d887981,1 +np.float64,0x7fd65345b82ca68a,0x40862b61aed8c64e,1 +np.float64,0x3ff1efdd01c3dfba,0x3fdf2eae36139204,1 +np.float64,0x3ffba9344f375268,0x3ff24d7fdcfc313b,1 +np.float64,0x7fd0469b35208d35,0x408628da6ed24bdd,1 +np.float64,0x7fe525782daa4aef,0x4086307e240c8b30,1 +np.float64,0x3ff8e473d371c8e8,0x3ff02beebd4171c7,1 +np.float64,0x3ff59a43898b3487,0x3fea0dc0a6acea0a,1 +np.float64,0x7fef50c7263ea18d,0x408633a247d7cd42,1 +np.float64,0x7fe8b5a301f16b45,0x408631bd0e71c855,1 +np.float64,0x3ff209369de4126d,0x3fdff4264334446b,1 +np.float64,0x3ffbe2ff4437c5fe,0x3ff2763b356814c7,1 +np.float64,0x3ff55938156ab270,0x3fe97c70514f91bf,1 +np.float64,0x3fff5d8bf81ebb18,0x3ff4b333b230672a,1 +np.float64,0x3ff16a317bc2d463,0x3fdab84e7faa468f,1 +np.float64,0x3ff7e64f8dafcc9f,0x3fee9e0bd57e9566,1 +np.float64,0x7fef4dc065be9b80,0x408633a181e25abb,1 +np.float64,0x3ff64a24a62c9449,0x3feb849ced76437e,1 +np.float64,0x7fc3cb85ef27970b,0x408624dfc39c8f74,1 +np.float64,0x7fec2162a77842c4,0x408632c69b0d43b6,1 +np.float64,0x7feccee6dc399dcd,0x408632f75de98c46,1 +np.float64,0x7faff4f5f43fe9eb,0x40861d9d89be14c9,1 +np.float64,0x7fee82df60fd05be,0x4086336cfdeb7317,1 +np.float64,0x3ffe54588d9ca8b1,0x3ff41247eb2f75ca,1 +np.float64,0x3ffe5615b55cac2c,0x3ff4135c4eb11620,1 +np.float64,0x3ffdaf9a6a1b5f35,0x3ff3aa70e50d1692,1 +np.float64,0x3ff69c045f4d3809,0x3fec2b00734e2cde,1 +np.float64,0x7fd049239aa09246,0x408628dbad6dd995,1 +np.float64,0x3ff2acbe8465597d,0x3fe24138652195e1,1 +np.float64,0x3ffb288302365106,0x3ff1f0f86ca7e5d1,1 +np.float64,0x3fff6fe8d87edfd2,0x3ff4be136acf53c5,1 +np.float64,0x3ffc87c8bfb90f92,0x3ff2e7bbd65867cb,1 +np.float64,0x3ff173327ca2e665,0x3fdb0b945abb00d7,1 +np.float64,0x3ff9a5cf7a134b9f,0x3ff0ca2450f07c78,1 +np.float64,0x7faf782b043ef055,0x40861d7e0e9b35ef,1 +np.float64,0x3ffa0874975410e9,0x3ff117ee3dc8f5ba,1 +np.float64,0x7fc710fc7f2e21f8,0x40862618fed167fb,1 +np.float64,0x7feb73f4c876e7e9,0x40863294ae3ac1eb,1 +np.float64,0x8000000000000000,0xfff8000000000000,1 +np.float64,0x7fb46615c028cc2b,0x40861f91bade4dad,1 +np.float64,0x7fc26b064624d60c,0x4086244c1b76c938,1 +np.float64,0x3ff06ab9fa40d574,0x3fcd282fd971d1b4,1 +np.float64,0x3ff61da7410c3b4e,0x3feb28201031af02,1 +np.float64,0x3ffec7ba1b9d8f74,0x3ff459342511f952,1 +np.float64,0x7ff4000000000000,0x7ffc000000000000,1 +np.float64,0x7fe5d570422baae0,0x408630bfa75008c9,1 +np.float64,0x3ffa895832f512b0,0x3ff17ad41555dccb,1 +np.float64,0x7fd343ac21a68757,0x40862a33ad59947a,1 +np.float64,0x3ffc1eeb37383dd6,0x3ff29ff29e55a006,1 +np.float64,0x7fee3c5c507c78b8,0x4086335a6b768090,1 +np.float64,0x7fe96d774a32daee,0x408631f7b9937e36,1 +np.float64,0x7fb878362430f06b,0x40862106603497b6,1 +np.float64,0x7fec0a79c03814f3,0x408632c01479905e,1 +np.float64,0x3ffa2f143c145e28,0x3ff135e25d902e1a,1 +np.float64,0x3ff14ccff80299a0,0x3fd9a0cd3397b14c,1 +np.float64,0x3ff97980dcb2f302,0x3ff0a6942a8133ab,1 +np.float64,0x3ff872e2d1f0e5c6,0x3fef96526eb2f756,1 +np.float64,0x7fdf1c9b46be3936,0x40862e0957fee329,1 +np.float64,0x7fcab6525d356ca4,0x408627458791f029,1 +np.float64,0x3ff964e74a52c9ce,0x3ff095e8845d523c,1 +np.float64,0x3ffb3aa23c967544,0x3ff1fe282d897c13,1 +np.float64,0x7fdd8a36afbb146c,0x40862d9f2b05f61b,1 +np.float64,0x3ffea39f42fd473e,0x3ff4432a48176399,1 +np.float64,0x7fea614f68b4c29e,0x408632430a750385,1 +np.float64,0x7feeafb86abd5f70,0x40863378b79f70cf,1 +np.float64,0x3ff80bc94eb01792,0x3feee138e9d626bd,1 +np.float64,0x7fcaca74743594e8,0x4086274b8ce4d1e1,1 +np.float64,0x3ff8b14815316290,0x3ff000b3526c8321,1 +np.float64,0x7fc698eb5f2d31d6,0x408625eeec86cd2b,1 +np.float64,0x7fe15429a3e2a852,0x40862ee6621205b8,1 +np.float64,0x7fee37f81b7c6fef,0x4086335941ed80dd,1 +np.float64,0x3ff8097ab3f012f6,0x3feedd1bafc3196e,1 +np.float64,0x7fe7c889ceaf9113,0x4086316ed13f2394,1 +np.float64,0x7fceca94513d9528,0x4086286893a06824,1 +np.float64,0x3ff593a103cb2742,0x3fe9ff1af4f63cc9,1 +np.float64,0x7fee237d24bc46f9,0x40863353d4142c87,1 +np.float64,0x3ffbf71e4777ee3c,0x3ff2844c0ed9f4d9,1 +np.float64,0x3ff490c65c09218d,0x3fe7a2216d9f69fd,1 +np.float64,0x3fff5ceaf1feb9d6,0x3ff4b2d430a90110,1 +np.float64,0x3ff55baecceab75e,0x3fe98203980666c4,1 +np.float64,0x3ff511bc306a2378,0x3fe8d81ce7be7b50,1 +np.float64,0x3ff38f83dcc71f08,0x3fe4f89f130d5f87,1 +np.float64,0x3ff73a3676ee746d,0x3fed5f98a65107ee,1 +np.float64,0x7fc27e50c824fca1,0x408624547828bc49,1 +np.float64,0xfff0000000000000,0xfff8000000000000,1 +np.float64,0x3fff38959ebe712b,0x3ff49d362c7ba16a,1 +np.float64,0x3ffad6d23a75ada4,0x3ff1b4dda6394ed0,1 +np.float64,0x3ffe77c6c2dcef8e,0x3ff4283698835ecb,1 +np.float64,0x3fff5feb413ebfd6,0x3ff4b49bcbdb3aa9,1 +np.float64,0x3ff0d30aa161a615,0x3fd4751bcdd7d727,1 +np.float64,0x3ff51e07e00a3c10,0x3fe8f4bd1408d694,1 +np.float64,0x8010000000000000,0xfff8000000000000,1 +np.float64,0x7fd231d2fe2463a5,0x408629beaceafcba,1 +np.float64,0x3fff6b4aee1ed696,0x3ff4bb58544bf8eb,1 +np.float64,0x3ff91fcd2f323f9a,0x3ff05d56e33db6b3,1 +np.float64,0x3ff3b889ab477113,0x3fe56bdeab74cce5,1 +np.float64,0x3ff99bfe30d337fc,0x3ff0c24bbf265561,1 +np.float64,0x3ffbe9e5eaf7d3cc,0x3ff27b0fe60f827a,1 +np.float64,0x7fd65678e92cacf1,0x40862b62d44fe8b6,1 +np.float64,0x7fd9cc477233988e,0x40862c89c638ee48,1 +np.float64,0x3ffc123c72d82479,0x3ff297294d05cbc0,1 +np.float64,0x3ff58abad58b1576,0x3fe9eb65da2a867a,1 +np.float64,0x7fe534887b2a6910,0x40863083d4ec2877,1 +np.float64,0x7fe1d3dcb123a7b8,0x40862f208116c55e,1 +np.float64,0x7fd4d570dba9aae1,0x40862ad412c413cd,1 +np.float64,0x3fffce7d3fdf9cfa,0x3ff4f58f02451928,1 +np.float64,0x3ffa76901c74ed20,0x3ff16c9a5851539c,1 +np.float64,0x7fdd88ffa23b11fe,0x40862d9ed6c6f426,1 +np.float64,0x3ff09fdbb9e13fb7,0x3fd1d2ae4fcbf713,1 +np.float64,0x7fe64567772c8ace,0x408630e845dbc290,1 +np.float64,0x7fb1a849ba235092,0x40861e6a291535b2,1 +np.float64,0x3ffaddb105f5bb62,0x3ff1b9f68f4c419b,1 +np.float64,0x7fd2fc3d5025f87a,0x40862a15cbc1df75,1 +np.float64,0x7fdea7d872bd4fb0,0x40862deb190b2c50,1 +np.float64,0x7fd50ea97eaa1d52,0x40862ae9edc4c812,1 +np.float64,0x3fff659c245ecb38,0x3ff4b7fb18b31aea,1 +np.float64,0x3ff3f1fbb7c7e3f7,0x3fe608bd9d76268c,1 +np.float64,0x3ff76869d9aed0d4,0x3fedb6c23d3a317b,1 +np.float64,0x7fedd4efe93ba9df,0x4086333edeecaa43,1 +np.float64,0x3ff9a5bd4eb34b7a,0x3ff0ca15d02bc960,1 +np.float64,0x3ffd9359cc5b26b4,0x3ff39850cb1a6b6c,1 +np.float64,0x7fe912d0427225a0,0x408631db00e46272,1 +np.float64,0x3ffb3802fe567006,0x3ff1fc4093646465,1 +np.float64,0x3ff02cc38a205987,0x3fc2e8182802a07b,1 +np.float64,0x3ffda953dd1b52a8,0x3ff3a66c504cf207,1 +np.float64,0x7fe0a487e4a1490f,0x40862e93a6f20152,1 +np.float64,0x7fed265ed1fa4cbd,0x4086330f838ae431,1 +np.float64,0x7fd0000114200001,0x408628b76ec48b5c,1 +np.float64,0x3ff2c262786584c5,0x3fe288860d354b0f,1 +np.float64,0x8000000000000001,0xfff8000000000000,1 +np.float64,0x3ffdae9f075b5d3e,0x3ff3a9d006ae55c1,1 +np.float64,0x3ffb69c72156d38e,0x3ff22037cbb85e5b,1 +np.float64,0x7feeae255f7d5c4a,0x408633784e89bc05,1 +np.float64,0x7feb13927c362724,0x408632786630c55d,1 +np.float64,0x7fef49e072be93c0,0x408633a08451d476,1 +np.float64,0x3fff23d6337e47ac,0x3ff490ceb6e634ae,1 +np.float64,0x3ffba82cf8f7505a,0x3ff24cc51c73234d,1 +np.float64,0x7fe948719ef290e2,0x408631ec0b36476e,1 +np.float64,0x3ff41926c5e8324e,0x3fe670e14bbda8cd,1 +np.float64,0x3ff91f09c1523e14,0x3ff05cb5731878da,1 +np.float64,0x3ff6ae6afccd5cd6,0x3fec4fbeca764086,1 +np.float64,0x3ff927f7e0f24ff0,0x3ff06413eeb8eb1e,1 +np.float64,0x3ff19dd2b9e33ba5,0x3fdc882f97994600,1 +np.float64,0x7fe8e502c5b1ca05,0x408631cc56526fff,1 +np.float64,0x7feb49f70fb693ed,0x4086328868486fcd,1 +np.float64,0x3ffd942d535b285a,0x3ff398d8d89f52ca,1 +np.float64,0x7fc3b9c5c627738b,0x408624d893e692ca,1 +np.float64,0x7fea0780ff340f01,0x408632279fa46704,1 +np.float64,0x7fe4c90066a99200,0x4086305adb47a598,1 +np.float64,0x7fdb209113364121,0x40862cf0ab64fd7d,1 +np.float64,0x3ff38617e5470c30,0x3fe4ddc0413b524f,1 +np.float64,0x7fea1b5b803436b6,0x4086322db767f091,1 +np.float64,0x7fe2004898e40090,0x40862f3457795dc5,1 +np.float64,0x3ff3c4360ac7886c,0x3fe58c29843a4c75,1 +np.float64,0x3ff504bc168a0978,0x3fe8b9ada7f698e6,1 +np.float64,0x3ffd3e936fda7d27,0x3ff3615912c5b4ac,1 +np.float64,0x3ffbdc52fb97b8a6,0x3ff2718dae5f1f2b,1 +np.float64,0x3fffef6d84ffdedb,0x3ff508adbc8556cf,1 +np.float64,0x3ff23b65272476ca,0x3fe0b646ed2579eb,1 +np.float64,0x7fe4633068a8c660,0x408630334a4b7ff7,1 +np.float64,0x3ff769b754aed36f,0x3fedb932af0223f9,1 +np.float64,0x7fe7482d92ee905a,0x408631432de1b057,1 +np.float64,0x3ff5dd682aabbad0,0x3fea9fd5e506a86d,1 +np.float64,0x7fd68399a2ad0732,0x40862b72ed89805d,1 +np.float64,0x3ffad7acc3d5af5a,0x3ff1b57fe632c948,1 +np.float64,0x3ffc68e43698d1c8,0x3ff2d2be6f758761,1 +np.float64,0x3ff4e517fbc9ca30,0x3fe86eddf5e63a58,1 +np.float64,0x3ff34c63c56698c8,0x3fe435b74ccd6a13,1 +np.float64,0x7fea9456c17528ad,0x4086325275237015,1 +np.float64,0x7fee6573f2fccae7,0x4086336543760346,1 +np.float64,0x7fd5496fb9aa92de,0x40862b0023235667,1 +np.float64,0x7ff0000000000000,0x7ff0000000000000,1 +np.float64,0x3ffb70e31256e1c6,0x3ff22552f54b13e0,1 +np.float64,0x3ff66a33988cd467,0x3febc656da46a1ca,1 +np.float64,0x3fff0af2eb1e15e6,0x3ff481dec325f5c8,1 +np.float64,0x3ff6a0233d0d4046,0x3fec33400958eda1,1 +np.float64,0x7fdb11e2d5b623c5,0x40862cec55e405f9,1 +np.float64,0x3ffb8a015ad71402,0x3ff2374d7b563a72,1 +np.float64,0x3ff1807d8ce300fb,0x3fdb849e4bce8335,1 +np.float64,0x3ffefd535e3dfaa6,0x3ff479aaac6ffe79,1 +np.float64,0x3ff701e23a6e03c4,0x3fecf39072d96fc7,1 +np.float64,0x3ff4ac809f895901,0x3fe7e6598f2335a5,1 +np.float64,0x3ff0309f26a0613e,0x3fc3b3f4b2783690,1 +np.float64,0x3ff241dd0ce483ba,0x3fe0cde2cb639144,1 +np.float64,0x3ffabce63fb579cc,0x3ff1a18fe2a2da59,1 +np.float64,0x3ffd84b967db0973,0x3ff38ee4f240645d,1 +np.float64,0x7fc3f88b9a27f116,0x408624f1e10cdf3f,1 +np.float64,0x7fe1d5fd5923abfa,0x40862f2175714a3a,1 +np.float64,0x7fe487b145690f62,0x4086304190700183,1 +np.float64,0x7fe7997feaef32ff,0x4086315eeefdddd2,1 +np.float64,0x3ff8f853b671f0a8,0x3ff03c907353a8da,1 +np.float64,0x7fca4c23b5349846,0x408627257ace5778,1 +np.float64,0x7fe0c9bf3a21937d,0x40862ea576c3ea43,1 +np.float64,0x7fc442b389288566,0x4086250f5f126ec9,1 +np.float64,0x7fc6d382ed2da705,0x40862603900431b0,1 +np.float64,0x7fe40b069068160c,0x4086301066468124,1 +np.float64,0x3ff7f62a146fec54,0x3feeba8dfc4363fe,1 +np.float64,0x3ff721e8e94e43d2,0x3fed313a6755d34f,1 +np.float64,0x7fe579feaf2af3fc,0x4086309ddefb6112,1 +np.float64,0x3ffe2c6bde5c58d8,0x3ff3f9665dc9a16e,1 +np.float64,0x7fcf9998ed3f3331,0x4086289dab274788,1 +np.float64,0x7fdb03af2236075d,0x40862ce82252e490,1 +np.float64,0x7fe72799392e4f31,0x40863137f428ee71,1 +np.float64,0x7f9f2190603e4320,0x408617dc5b3b3c3c,1 +np.float64,0x3ff69c56d52d38ae,0x3fec2ba59fe938b2,1 +np.float64,0x7fdcde27bf39bc4e,0x40862d70086cd06d,1 +np.float64,0x3ff654d6b8eca9ae,0x3feb9aa0107609a6,1 +np.float64,0x7fdf69d967bed3b2,0x40862e1d1c2b94c2,1 +np.float64,0xffefffffffffffff,0xfff8000000000000,1 +np.float64,0x7fedfd073f3bfa0d,0x40863349980c2c8b,1 +np.float64,0x7f7c1856803830ac,0x40860bf312b458c7,1 +np.float64,0x7fe9553f1bb2aa7d,0x408631f0173eadd5,1 +np.float64,0x3ff6e92efc2dd25e,0x3fecc38f98e7e1a7,1 +np.float64,0x7fe9719ac532e335,0x408631f906cd79c3,1 +np.float64,0x3ff60e56ae4c1cad,0x3feb07ef8637ec7e,1 +np.float64,0x3ff0d0803501a100,0x3fd455c0af195a9c,1 +np.float64,0x7fe75248a3eea490,0x40863146a614aec1,1 +np.float64,0x7fdff61ead3fec3c,0x40862e408643d7aa,1 +np.float64,0x7fed4ac7a4fa958e,0x408633197b5cf6ea,1 +np.float64,0x7fe58d44562b1a88,0x408630a5098d1bbc,1 +np.float64,0x7fd89dcdb1b13b9a,0x40862c29c2979288,1 +np.float64,0x3ff205deda240bbe,0x3fdfda67c84fd3a8,1 +np.float64,0x7fdf84c15abf0982,0x40862e23f361923d,1 +np.float64,0x3ffe012b3afc0256,0x3ff3de3dfa5f47ce,1 +np.float64,0x3ffe2f3512dc5e6a,0x3ff3fb245206398e,1 +np.float64,0x7fed6174c2bac2e9,0x4086331faa699617,1 +np.float64,0x3ff1f30f8783e61f,0x3fdf47e06f2c40d1,1 +np.float64,0x3ff590da9eab21b5,0x3fe9f8f7b4baf3c2,1 +np.float64,0x3ffb3ca1eb967944,0x3ff1ff9baf66d704,1 +np.float64,0x7fe50ba9a5aa1752,0x408630745ab7fd3c,1 +np.float64,0x3ff43743a4a86e87,0x3fe6bf7ae80b1dda,1 +np.float64,0x3ff47e1a24e8fc34,0x3fe773acca44c7d6,1 +np.float64,0x3ff589ede9eb13dc,0x3fe9e99f28fab3a4,1 +np.float64,0x3ff72f2cbf8e5e5a,0x3fed4a94e7edbf24,1 +np.float64,0x3ffa4f9bbc549f38,0x3ff14ee60aea45d3,1 +np.float64,0x3ff975dae732ebb6,0x3ff0a3a1fbd7284a,1 +np.float64,0x7fbcf14ee039e29d,0x4086225e33f3793e,1 +np.float64,0x3ff10e027f621c05,0x3fd71cce2452b4e0,1 +np.float64,0x3ff33ea193067d43,0x3fe40cbac4daaddc,1 +np.float64,0x7fbef8f2263df1e3,0x408622e905c8e1b4,1 +np.float64,0x3fff7f5bfe3efeb8,0x3ff4c732e83df253,1 +np.float64,0x3ff5700a6b4ae015,0x3fe9afdd7b8b82b0,1 +np.float64,0x3ffd5099da5aa134,0x3ff36d1bf26e55bf,1 +np.float64,0x3ffed8e0f89db1c2,0x3ff4639ff065107a,1 +np.float64,0x3fff9d0c463f3a18,0x3ff4d8a9f297cf52,1 +np.float64,0x3ff23db5b2e47b6b,0x3fe0bebdd48f961a,1 +np.float64,0x3ff042bff1e08580,0x3fc713bf24cc60ef,1 +np.float64,0x7feb4fe97a769fd2,0x4086328a26675646,1 +np.float64,0x3ffeafbfeedd5f80,0x3ff44a955a553b1c,1 +np.float64,0x3ff83fb524507f6a,0x3fef3d1729ae0976,1 +np.float64,0x3ff1992294433245,0x3fdc5f5ce53dd197,1 +np.float64,0x7fe89fe629b13fcb,0x408631b601a83867,1 +np.float64,0x7fe53e4d74aa7c9a,0x40863087839b52f1,1 +np.float64,0x3ff113713e6226e2,0x3fd757631ca7cd09,1 +np.float64,0x7fd4a0b7a629416e,0x40862abfba27a09b,1 +np.float64,0x3ff184c6e2a3098e,0x3fdbab2e3966ae57,1 +np.float64,0x3ffafbbf77f5f77f,0x3ff1d02bb331d9f9,1 +np.float64,0x3ffc6099a358c134,0x3ff2cd16941613d1,1 +np.float64,0x3ffb7c441ef6f888,0x3ff22d7b12e31432,1 +np.float64,0x3ff625ba5eec4b75,0x3feb39060e55fb79,1 +np.float64,0x7fde879acbbd0f35,0x40862de2aab4d72d,1 +np.float64,0x7f930aed982615da,0x408613edb6df8528,1 +np.float64,0x7fa4b82dac29705a,0x40861a261c0a9aae,1 +np.float64,0x7fced5c16b3dab82,0x4086286b7a73e611,1 +np.float64,0x7fe133749d2266e8,0x40862ed73a41b112,1 +np.float64,0x3ff2d8146ea5b029,0x3fe2ced55dbf997d,1 +np.float64,0x3ff60dac77ac1b59,0x3feb0688b0e54c7b,1 +np.float64,0x3ff275d9b024ebb3,0x3fe186b87258b834,1 +np.float64,0x3ff533e6500a67cd,0x3fe92746c8b50ddd,1 +np.float64,0x7fe370896666e112,0x40862fd1ca144736,1 +np.float64,0x7fee7695357ced29,0x40863369c459420e,1 +np.float64,0x7fd1e0528023c0a4,0x4086299a85caffd0,1 +np.float64,0x7fd05c7b24a0b8f5,0x408628e52824386f,1 +np.float64,0x3ff11dcc3b023b98,0x3fd7c56c8cef1be1,1 +np.float64,0x7fc9d9fae933b3f5,0x408627027404bc5f,1 +np.float64,0x7fe2359981246b32,0x40862f4be675e90d,1 +np.float64,0x3ffb10a949962152,0x3ff1df88f83b8cde,1 +np.float64,0x3ffa65b53654cb6a,0x3ff15fc8956ccc87,1 +np.float64,0x3ff0000000000000,0x0,1 +np.float64,0x7fad97ef703b2fde,0x40861d002f3d02da,1 +np.float64,0x3ff57aaf93aaf55f,0x3fe9c7b01f194edb,1 +np.float64,0x7fe9ecd73f33d9ad,0x4086321f69917205,1 +np.float64,0x3ff0dcb79c61b96f,0x3fd4eac86a7a9c38,1 +np.float64,0x7fee9c12ffbd3825,0x4086337396cd706d,1 +np.float64,0x3ff52c40af4a5881,0x3fe915a8a7de8f00,1 +np.float64,0x3ffbcfff59779ffe,0x3ff268e523fe8dda,1 +np.float64,0x7fe014cb4b602996,0x40862e4d5de42a03,1 +np.float64,0x7fae2370e83c46e1,0x40861d258dd5b3ee,1 +np.float64,0x7fe9e33602f3c66b,0x4086321c704ac2bb,1 +np.float64,0x3ff648acd74c915a,0x3feb8195ca53bcaa,1 +np.float64,0x7fe385f507670be9,0x40862fda95ebaf44,1 +np.float64,0x3ffb0e382c361c70,0x3ff1ddbea963e0a7,1 +np.float64,0x3ff47d6b6ae8fad7,0x3fe771f80ad37cd2,1 +np.float64,0x3ffca7d538f94faa,0x3ff2fd5f62e851ac,1 +np.float64,0x3ff83e949c107d29,0x3fef3b1c5bbac99b,1 +np.float64,0x7fc6fb933a2df725,0x408626118e51a286,1 +np.float64,0x7fe43a1454e87428,0x4086302318512d9b,1 +np.float64,0x7fe51fe32aaa3fc5,0x4086307c07271348,1 +np.float64,0x3ff35e563966bcac,0x3fe46aa2856ef85f,1 +np.float64,0x3ff84dd4e4909baa,0x3fef55d86d1d5c2e,1 +np.float64,0x7febe3d84077c7b0,0x408632b507686f03,1 +np.float64,0x3ff6aca2e32d5946,0x3fec4c32a2368ee3,1 +np.float64,0x7fe7070e3e6e0e1b,0x4086312caddb0454,1 +np.float64,0x7fd3657f2aa6cafd,0x40862a41acf47e70,1 +np.float64,0x3ff61534456c2a68,0x3feb1663900af13b,1 +np.float64,0x3ff8bc556eb178ab,0x3ff00a16b5403f88,1 +np.float64,0x3ffa7782e3f4ef06,0x3ff16d529c94a438,1 +np.float64,0x7fc15785ed22af0b,0x408623d0cd94fb86,1 +np.float64,0x3ff2e3eeb6e5c7dd,0x3fe2f4c4876d3edf,1 +np.float64,0x3ff2e4e17e85c9c3,0x3fe2f7c9e437b22e,1 +np.float64,0x7feb3aaf67f6755e,0x40863283ec4a0d76,1 +np.float64,0x7fe89efcf7313df9,0x408631b5b5e41263,1 +np.float64,0x3ffcc6fad4f98df6,0x3ff31245778dff6d,1 +np.float64,0x3ff356114466ac22,0x3fe45253d040a024,1 +np.float64,0x3ff81c70d2d038e2,0x3feefed71ebac776,1 +np.float64,0x7fdb75c96136eb92,0x40862d09a603f03e,1 +np.float64,0x3ff340f91b8681f2,0x3fe413bb6e6d4a54,1 +np.float64,0x3fff906079df20c1,0x3ff4d13869d16bc7,1 +np.float64,0x3ff226a42d644d48,0x3fe0698d316f1ac0,1 +np.float64,0x3ff948abc3b29158,0x3ff07eeb0b3c81ba,1 +np.float64,0x3ffc25df1fb84bbe,0x3ff2a4c13ad4edad,1 +np.float64,0x7fe07ea3b960fd46,0x40862e815b4cf43d,1 +np.float64,0x3ff497d3dae92fa8,0x3fe7b3917bf10311,1 +np.float64,0x7fea561db1f4ac3a,0x4086323fa4aef2a9,1 +np.float64,0x7fd1b49051236920,0x40862986d8759ce5,1 +np.float64,0x7f7ba3bd6037477a,0x40860bd19997fd90,1 +np.float64,0x3ff01126dd00224e,0x3fb76b67938dfb11,1 +np.float64,0x3ff29e1105053c22,0x3fe2102a4c5fa102,1 +np.float64,0x3ff9de2a6553bc55,0x3ff0f6cfe4dea30e,1 +np.float64,0x7fc558e7d42ab1cf,0x4086257a608fc055,1 +np.float64,0x3ff79830a74f3061,0x3fee0f93db153d65,1 +np.float64,0x7fe2661648e4cc2c,0x40862f6117a71eb2,1 +np.float64,0x3ff140cf4262819e,0x3fd92aefedae1ab4,1 +np.float64,0x3ff5f36251abe6c5,0x3feaced481ceaee3,1 +np.float64,0x7fc80911d5301223,0x4086266d4757f768,1 +np.float64,0x3ff9079a6c320f35,0x3ff04949d21ebe1e,1 +np.float64,0x3ffde8d2e09bd1a6,0x3ff3cedca8a5db5d,1 +np.float64,0x3ffadd1de375ba3c,0x3ff1b989790e8d93,1 +np.float64,0x3ffdbc40ee1b7882,0x3ff3b286b1c7da57,1 +np.float64,0x3ff8ff514771fea2,0x3ff04264add00971,1 +np.float64,0x7fefd7d0e63fafa1,0x408633c47d9f7ae4,1 +np.float64,0x3ffc47798c588ef3,0x3ff2bbe441fa783a,1 +np.float64,0x7fe6ebc55b6dd78a,0x408631232d9abf31,1 +np.float64,0xbff0000000000000,0xfff8000000000000,1 +np.float64,0x7fd378e4afa6f1c8,0x40862a49a8f98cb4,1 +np.float64,0x0,0xfff8000000000000,1 +np.float64,0x3ffe88ed7efd11db,0x3ff432c7ecb95492,1 +np.float64,0x3ff4f5509289eaa1,0x3fe8955a11656323,1 +np.float64,0x7fda255b41344ab6,0x40862ca53676a23e,1 +np.float64,0x3ffebe85b9bd7d0c,0x3ff453992cd55dea,1 +np.float64,0x3ff5d6180b8bac30,0x3fea901c2160c3bc,1 +np.float64,0x3ffcdfb8fcf9bf72,0x3ff322c83b3bc735,1 +np.float64,0x3ff3c91c26679238,0x3fe599a652b7cf59,1 +np.float64,0x7fc389f7a62713ee,0x408624c518edef93,1 +np.float64,0x3ffe1245ba1c248c,0x3ff3e901b2c4a47a,1 +np.float64,0x7fe1e76e95e3cedc,0x40862f29446f9eff,1 +np.float64,0x3ff02ae4f92055ca,0x3fc28221abd63daa,1 +np.float64,0x7fbf648a143ec913,0x40862304a0619d03,1 +np.float64,0x3ff2be7ef8657cfe,0x3fe27bcc6c97522e,1 +np.float64,0x3ffa7595e514eb2c,0x3ff16bdc64249ad1,1 +np.float64,0x3ff4ee130049dc26,0x3fe884354cbad8c9,1 +np.float64,0x3ff19211fc232424,0x3fdc2160bf3eae40,1 +np.float64,0x3ffec215aedd842c,0x3ff455c4cdd50c32,1 +np.float64,0x7fe7cb50ffaf96a1,0x4086316fc06a53af,1 +np.float64,0x3fffa679161f4cf2,0x3ff4de30ba7ac5b8,1 +np.float64,0x7fdcb459763968b2,0x40862d646a21011d,1 +np.float64,0x3ff9f338d6d3e672,0x3ff1075835d8f64e,1 +np.float64,0x3ff8de3319d1bc66,0x3ff026ae858c0458,1 +np.float64,0x7fee0199d33c0333,0x4086334ad03ac683,1 +np.float64,0x3ffc06076c380c0f,0x3ff28eaec3814faa,1 +np.float64,0x3ffe9e2e235d3c5c,0x3ff43fd4d2191a7f,1 +np.float64,0x3ffd93b06adb2761,0x3ff398888239cde8,1 +np.float64,0x7fefe4b71cffc96d,0x408633c7ba971b92,1 +np.float64,0x7fb2940352252806,0x40861ed244bcfed6,1 +np.float64,0x3ffba4647e3748c9,0x3ff24a15f02e11b9,1 +np.float64,0x7fd2d9543725b2a7,0x40862a0708446596,1 +np.float64,0x7fc04997f120932f,0x4086235055d35251,1 +np.float64,0x3ff6d14313ada286,0x3fec94b177f5d3fc,1 +np.float64,0x3ff279fc8684f3f9,0x3fe19511c3e5b9a8,1 +np.float64,0x3ff42f4609085e8c,0x3fe6aabe526ce2bc,1 +np.float64,0x7fc1c6c62a238d8b,0x408624037de7f6ec,1 +np.float64,0x7fe31ff4b8e63fe8,0x40862fb05b40fd16,1 +np.float64,0x7fd2a8825fa55104,0x408629f234d460d6,1 +np.float64,0x3ffe8c1d725d183b,0x3ff434bdc444143f,1 +np.float64,0x3ff0e9dc3e21d3b8,0x3fd58676e2c13fc9,1 +np.float64,0x3ffed03172fda063,0x3ff45e59f7aa6c8b,1 +np.float64,0x7fd74621962e8c42,0x40862bb6e90d66f8,1 +np.float64,0x3ff1faa29663f545,0x3fdf833a2c5efde1,1 +np.float64,0x7fda02834db40506,0x40862c9a860d6747,1 +np.float64,0x7f709b2fc021365f,0x408607be328eb3eb,1 +np.float64,0x7fec0d58aa381ab0,0x408632c0e61a1af6,1 +np.float64,0x3ff524d1720a49a3,0x3fe90479968d40fd,1 +np.float64,0x7fd64cb3b32c9966,0x40862b5f53c4b0b4,1 +np.float64,0x3ff9593e3ed2b27c,0x3ff08c6eea5f6e8b,1 +np.float64,0x3ff7de8b1f6fbd16,0x3fee9007abcfdf7b,1 +np.float64,0x7fe8d816d6b1b02d,0x408631c82e38a894,1 +np.float64,0x7fd726bbe22e4d77,0x40862bac16ee8d52,1 +np.float64,0x7fa70b07d42e160f,0x40861affcc4265e2,1 +np.float64,0x7fe18b4091e31680,0x40862effa8bce66f,1 +np.float64,0x3ff830253010604a,0x3fef21b2eaa75758,1 +np.float64,0x3fffcade407f95bc,0x3ff4f3734b24c419,1 +np.float64,0x3ff8c17cecb182fa,0x3ff00e75152d7bda,1 +np.float64,0x7fdad9b9d035b373,0x40862cdbabb793ba,1 +np.float64,0x3ff9f9e154f3f3c2,0x3ff10c8dfdbd2510,1 +np.float64,0x3ff465e162e8cbc3,0x3fe736c751c75b73,1 +np.float64,0x3ff9b4cd8493699b,0x3ff0d616235544b8,1 +np.float64,0x7fe557c4a56aaf88,0x4086309114ed12d9,1 +np.float64,0x7fe5999133eb3321,0x408630a9991a9b54,1 +np.float64,0x7fe7c9009e2f9200,0x4086316ef9359a47,1 +np.float64,0x3ff8545cabd0a8ba,0x3fef6141f1030c36,1 +np.float64,0x3ffa1f1712943e2e,0x3ff129849d492ce3,1 +np.float64,0x7fea803a14750073,0x4086324c652c276c,1 +np.float64,0x3ff5b6f97fcb6df3,0x3fea4cb0b97b18e9,1 +np.float64,0x7fc2efdfc425dfbf,0x40862485036a5c6e,1 +np.float64,0x7fe2c78e5be58f1c,0x40862f8b0a5e7baf,1 +np.float64,0x7fe80d7fff301aff,0x40863185e234060a,1 +np.float64,0x3ffd895d457b12ba,0x3ff391e2cac7a3f8,1 +np.float64,0x3ff44c9764a8992f,0x3fe6f6690396c232,1 +np.float64,0x3ff731688b8e62d1,0x3fed4ed70fac3839,1 +np.float64,0x3ff060200460c040,0x3fcbad4a07d97f0e,1 +np.float64,0x3ffbd2f70a17a5ee,0x3ff26afb46ade929,1 +np.float64,0x7febe9e841f7d3d0,0x408632b6c465ddd9,1 +np.float64,0x3ff2532f8be4a65f,0x3fe10c6cd8d64cf4,1 +np.float64,0x7fefffffffffffff,0x408633ce8fb9f87e,1 +np.float64,0x3ff3a1ae3a47435c,0x3fe52c00210cc459,1 +np.float64,0x7fe9c34ae6b38695,0x408632128d150149,1 +np.float64,0x3fff311029fe6220,0x3ff498b852f30bff,1 +np.float64,0x3ffd4485a1ba890c,0x3ff3653b6fa701cd,1 +np.float64,0x7fd52718b1aa4e30,0x40862af330d9c68c,1 +np.float64,0x3ff10b695a4216d3,0x3fd7009294e367b7,1 +np.float64,0x3ffdf73de59bee7c,0x3ff3d7fa96d2c1ae,1 +np.float64,0x3ff2f1c75965e38f,0x3fe320aaff3db882,1 +np.float64,0x3ff2a56a5a854ad5,0x3fe228cc4ad7e7a5,1 +np.float64,0x7fe60cd1cf6c19a3,0x408630d3d87a04b3,1 +np.float64,0x3ff89fa65c113f4c,0x3fefe3543773180c,1 +np.float64,0x3ffd253130ba4a62,0x3ff350b76ba692a0,1 +np.float64,0x7feaad7051f55ae0,0x40863259ff932d62,1 +np.float64,0x7fd9cc37cf33986f,0x40862c89c15f963b,1 +np.float64,0x3ff8c08de771811c,0x3ff00daa9c17acd7,1 +np.float64,0x7fea58b25d34b164,0x408632406d54cc6f,1 +np.float64,0x7fe5f161fd2be2c3,0x408630c9ddf272a5,1 +np.float64,0x3ff5840dbf8b081c,0x3fe9dc9117b4cbc7,1 +np.float64,0x3ff3fd762307faec,0x3fe6277cd530c640,1 +np.float64,0x3ff9095c98b212b9,0x3ff04abff170ac24,1 +np.float64,0x7feaac66017558cb,0x40863259afb4f8ce,1 +np.float64,0x7fd78f96bcaf1f2c,0x40862bd00175fdf9,1 +np.float64,0x3ffaca27e0959450,0x3ff1ab72b8f8633e,1 +np.float64,0x3ffb7f18cb96fe32,0x3ff22f81bcb8907b,1 +np.float64,0x3ffcce48d1199c92,0x3ff317276f62c0b2,1 +np.float64,0x3ffcb9a7f3797350,0x3ff30958e0d6a34d,1 +np.float64,0x7fda569ef6b4ad3d,0x40862cb43b33275a,1 +np.float64,0x7fde9f0893bd3e10,0x40862de8cc036283,1 +np.float64,0x3ff428be3928517c,0x3fe699bb5ab58904,1 +np.float64,0x7fa4d3344029a668,0x40861a3084989291,1 +np.float64,0x3ff03607bd006c0f,0x3fc4c4840cf35f48,1 +np.float64,0x3ff2b1335c056267,0x3fe25000846b75a2,1 +np.float64,0x7fe0cb8bd8e19717,0x40862ea65237d496,1 +np.float64,0x3fff4b1b7b9e9637,0x3ff4a83fb08e7b24,1 +np.float64,0x7fe7526140aea4c2,0x40863146ae86069c,1 +np.float64,0x7fbfcfb7c23f9f6f,0x4086231fc246ede5,1 diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arcsin.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arcsin.csv new file mode 100644 index 0000000..75d5707 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arcsin.csv @@ -0,0 +1,1429 @@ +dtype,input,output,ulperrortol +np.float32,0xbe7d3a7c,0xbe7fe217,4 +np.float32,0x3dc102f0,0x3dc14c60,4 +np.float32,0xbe119c28,0xbe121aef,4 +np.float32,0xbe51cd68,0xbe534c75,4 +np.float32,0x3c04a300,0x3c04a35f,4 +np.float32,0xbf4f0b62,0xbf712a69,4 +np.float32,0x3ef61a5c,0x3f005cf6,4 +np.float32,0xbf13024c,0xbf1c97df,4 +np.float32,0x3e93b580,0x3e95d6b5,4 +np.float32,0x3e44e7b8,0x3e4623a5,4 +np.float32,0xbe35df20,0xbe36d773,4 +np.float32,0x3eecd2c0,0x3ef633cf,4 +np.float32,0x3f2772ba,0x3f36862a,4 +np.float32,0x3e211ea8,0x3e21cac5,4 +np.float32,0x3e3b3d90,0x3e3c4cc6,4 +np.float32,0x3f37c962,0x3f4d018c,4 +np.float32,0x3e92ad88,0x3e94c31a,4 +np.float32,0x3f356ffc,0x3f49a766,4 +np.float32,0x3f487ba2,0x3f665254,4 +np.float32,0x3f061c46,0x3f0d27ae,4 +np.float32,0xbee340a2,0xbeeb7722,4 +np.float32,0xbe85aede,0xbe874026,4 +np.float32,0x3f34cf9a,0x3f48c474,4 +np.float32,0x3e29a690,0x3e2a6fbd,4 +np.float32,0xbeb29428,0xbeb669d1,4 +np.float32,0xbe606d40,0xbe624370,4 +np.float32,0x3dae6860,0x3dae9e85,4 +np.float32,0xbf04872b,0xbf0b4d25,4 +np.float32,0x3f2080e2,0x3f2d7ab0,4 +np.float32,0xbec77dcc,0xbecceb27,4 +np.float32,0x3e0dda10,0x3e0e4f38,4 +np.float32,0xbefaf970,0xbf03262c,4 +np.float32,0x3f576a0c,0x3f7ffee6,4 +np.float32,0x3f222382,0x3f2f95d6,4 +np.float32,0x7fc00000,0x7fc00000,4 +np.float32,0x3e41c468,0x3e42f14e,4 +np.float32,0xbf2f64dd,0xbf4139a8,4 +np.float32,0xbf60ef90,0xbf895956,4 +np.float32,0xbf67c855,0xbf90eff0,4 +np.float32,0xbed35aee,0xbed9df00,4 +np.float32,0xbf2c7d92,0xbf3d448f,4 +np.float32,0x3f7b1604,0x3faff122,4 +np.float32,0xbf7c758b,0xbfb3bf87,4 +np.float32,0x3ecda1c8,0x3ed39acf,4 +np.float32,0x3f3af8ae,0x3f519fcb,4 +np.float32,0xbf16e6a3,0xbf2160fd,4 +np.float32,0x3f0c97d2,0x3f14d668,4 +np.float32,0x3f0a8060,0x3f1257b9,4 +np.float32,0x3f27905a,0x3f36ad57,4 +np.float32,0x3eeaeba4,0x3ef40efe,4 +np.float32,0x3e58dde0,0x3e5a8580,4 +np.float32,0xbf0cabe2,0xbf14ee6b,4 +np.float32,0xbe805ca8,0xbe81bf03,4 +np.float32,0x3f5462ba,0x3f7a7b85,4 +np.float32,0xbee235d0,0xbeea4d8b,4 +np.float32,0xbe880cb0,0xbe89b426,4 +np.float32,0x80000001,0x80000001,4 +np.float32,0x3f208c00,0x3f2d88f6,4 +np.float32,0xbf34f3d2,0xbf48f7a2,4 +np.float32,0x3f629428,0x3f8b1763,4 +np.float32,0xbf52a900,0xbf776b4a,4 +np.float32,0xbd17f8d0,0xbd1801be,4 +np.float32,0xbef7cada,0xbf0153d1,4 +np.float32,0x3f7d3b90,0x3fb63967,4 +np.float32,0xbd6a20b0,0xbd6a4160,4 +np.float32,0x3f740496,0x3fa1beb7,4 +np.float32,0x3ed8762c,0x3edf7dd9,4 +np.float32,0x3f53b066,0x3f793d42,4 +np.float32,0xbe9de718,0xbea084f9,4 +np.float32,0x3ea3ae90,0x3ea69b4b,4 +np.float32,0x3f1b8f00,0x3f273183,4 +np.float32,0x3f5cd6ac,0x3f852ead,4 +np.float32,0x3f29d510,0x3f39b169,4 +np.float32,0x3ee2a934,0x3eeace33,4 +np.float32,0x3eecac94,0x3ef608c2,4 +np.float32,0xbea915e2,0xbeac5203,4 +np.float32,0xbd316e90,0xbd317cc8,4 +np.float32,0xbf70b495,0xbf9c97b6,4 +np.float32,0xbe80d976,0xbe823ff3,4 +np.float32,0x3e9205f8,0x3e94143f,4 +np.float32,0x3f49247e,0x3f676296,4 +np.float32,0x3d9030c0,0x3d904f50,4 +np.float32,0x3e4df058,0x3e4f5a5c,4 +np.float32,0xbe1fd360,0xbe207b58,4 +np.float32,0xbf69dc7c,0xbf937006,4 +np.float32,0x3f36babe,0x3f4b7df3,4 +np.float32,0xbe8c9758,0xbe8e6bb7,4 +np.float32,0xbf4de72d,0xbf6f3c20,4 +np.float32,0xbecdad68,0xbed3a780,4 +np.float32,0xbf73e2cf,0xbfa18702,4 +np.float32,0xbece16a8,0xbed41a75,4 +np.float32,0x3f618a96,0x3f89fc6d,4 +np.float32,0xbf325853,0xbf454ea9,4 +np.float32,0x3f138568,0x3f1d3828,4 +np.float32,0xbf56a6e9,0xbf7e9748,4 +np.float32,0x3ef5d594,0x3f0035bf,4 +np.float32,0xbf408220,0xbf59dfaa,4 +np.float32,0xbed120e6,0xbed76dd5,4 +np.float32,0xbf6dbda5,0xbf986cee,4 +np.float32,0x3f744a38,0x3fa23282,4 +np.float32,0xbe4b56d8,0xbe4cb329,4 +np.float32,0x3f54c5f2,0x3f7b2d97,4 +np.float32,0xbd8b1c90,0xbd8b3801,4 +np.float32,0x3ee19a48,0x3ee9a03b,4 +np.float32,0x3f48460e,0x3f65fc3d,4 +np.float32,0x3eb541c0,0x3eb9461e,4 +np.float32,0xbea7d098,0xbeaaf98c,4 +np.float32,0xbda99e40,0xbda9d00c,4 +np.float32,0xbefb2ca6,0xbf03438d,4 +np.float32,0x3f4256be,0x3f5cab0b,4 +np.float32,0xbdbdb198,0xbdbdf74d,4 +np.float32,0xbf325b5f,0xbf4552e9,4 +np.float32,0xbf704d1a,0xbf9c00b4,4 +np.float32,0x3ebb1d04,0x3ebf8cf8,4 +np.float32,0xbed03566,0xbed66bf1,4 +np.float32,0x3e8fcee8,0x3e91c501,4 +np.float32,0xbf2e1eec,0xbf3f7b9d,4 +np.float32,0x3f33c4d2,0x3f474cac,4 +np.float32,0x3f598ef4,0x3f8201b4,4 +np.float32,0x3e09bb30,0x3e0a2660,4 +np.float32,0x3ed4e228,0x3edb8cdb,4 +np.float32,0x3eb7a190,0x3ebbd0a1,4 +np.float32,0xbd9ae630,0xbd9b0c18,4 +np.float32,0x3f43020e,0x3f5db2d7,4 +np.float32,0xbec06ac0,0xbec542d4,4 +np.float32,0x3f3dfde0,0x3f561674,4 +np.float32,0xbf64084a,0xbf8cabe6,4 +np.float32,0xbd6f95b0,0xbd6fb8b7,4 +np.float32,0x3f268640,0x3f354e2d,4 +np.float32,0xbe72b4bc,0xbe7509b2,4 +np.float32,0xbf3414fa,0xbf47bd5a,4 +np.float32,0xbf375218,0xbf4c566b,4 +np.float32,0x3f203c1a,0x3f2d2273,4 +np.float32,0xbd503530,0xbd504c2b,4 +np.float32,0xbc45e540,0xbc45e67b,4 +np.float32,0xbf175c4f,0xbf21f2c6,4 +np.float32,0x3f7432a6,0x3fa20b2b,4 +np.float32,0xbf43367f,0xbf5e03d8,4 +np.float32,0x3eb3997c,0x3eb780c4,4 +np.float32,0x3e5574c8,0x3e570878,4 +np.float32,0xbf04b57b,0xbf0b8349,4 +np.float32,0x3f6216d8,0x3f8a914b,4 +np.float32,0xbf57a237,0xbf80337d,4 +np.float32,0xbee1403a,0xbee93bee,4 +np.float32,0xbeaf9b9a,0xbeb33f3b,4 +np.float32,0xbf109374,0xbf19a223,4 +np.float32,0xbeae6824,0xbeb1f810,4 +np.float32,0xbcff9320,0xbcff9dbe,4 +np.float32,0x3ed205c0,0x3ed868a9,4 +np.float32,0x3d897c30,0x3d8996ad,4 +np.float32,0xbf2899d2,0xbf380d4c,4 +np.float32,0xbf54cb0b,0xbf7b36c2,4 +np.float32,0x3ea8e8ec,0x3eac2262,4 +np.float32,0x3ef5e1a0,0x3f003c9d,4 +np.float32,0xbf00c81e,0xbf06f1e2,4 +np.float32,0xbf346775,0xbf483181,4 +np.float32,0x3f7a4fe4,0x3fae077c,4 +np.float32,0x3f00776e,0x3f06948f,4 +np.float32,0xbe0a3078,0xbe0a9cbc,4 +np.float32,0xbeba0b06,0xbebe66be,4 +np.float32,0xbdff4e38,0xbdfff8b2,4 +np.float32,0xbe927f70,0xbe9492ff,4 +np.float32,0x3ebb07e0,0x3ebf7642,4 +np.float32,0x3ebcf8e0,0x3ec18c95,4 +np.float32,0x3f49bdfc,0x3f685b51,4 +np.float32,0x3cbc29c0,0x3cbc2dfd,4 +np.float32,0xbe9e951a,0xbea13bf1,4 +np.float32,0xbe8c237c,0xbe8df33d,4 +np.float32,0x3e17f198,0x3e1881c4,4 +np.float32,0xbd0b5220,0xbd0b5902,4 +np.float32,0xbf34c4a2,0xbf48b4f5,4 +np.float32,0xbedaa814,0xbee1ea94,4 +np.float32,0x3ebf5d6c,0x3ec42053,4 +np.float32,0x3cd04b40,0x3cd050ff,4 +np.float32,0xbec33fe0,0xbec85244,4 +np.float32,0xbf00b27a,0xbf06d8d8,4 +np.float32,0x3f15d7be,0x3f201243,4 +np.float32,0xbe3debd0,0xbe3f06f7,4 +np.float32,0xbea81704,0xbeab4418,4 +np.float32,0x1,0x1,4 +np.float32,0x3f49e6ba,0x3f689d8b,4 +np.float32,0x3f351030,0x3f491fc0,4 +np.float32,0x3e607de8,0x3e625482,4 +np.float32,0xbe8dbbe4,0xbe8f9c0e,4 +np.float32,0x3edbf350,0x3ee35924,4 +np.float32,0xbf0c84c4,0xbf14bf9c,4 +np.float32,0x3eb218b0,0x3eb5e61a,4 +np.float32,0x3e466dd0,0x3e47b138,4 +np.float32,0xbe8ece94,0xbe90ba01,4 +np.float32,0xbe82ec2a,0xbe84649a,4 +np.float32,0xbf7e1f10,0xbfb98b9e,4 +np.float32,0xbf2d00ea,0xbf3df688,4 +np.float32,0x3db7cdd0,0x3db80d36,4 +np.float32,0xbe388b98,0xbe398f25,4 +np.float32,0xbd86cb40,0xbd86e436,4 +np.float32,0x7f7fffff,0x7fc00000,4 +np.float32,0x3f472a60,0x3f6436c6,4 +np.float32,0xbf5b2c1d,0xbf838d87,4 +np.float32,0x3f0409ea,0x3f0abad8,4 +np.float32,0x3f47dd0e,0x3f6553f0,4 +np.float32,0x3e3eab00,0x3e3fc98a,4 +np.float32,0xbf7c2a7f,0xbfb2e19b,4 +np.float32,0xbeda0048,0xbee13112,4 +np.float32,0x3f46600a,0x3f62f5b2,4 +np.float32,0x3f45aef4,0x3f61de43,4 +np.float32,0x3dd40a50,0x3dd46bc4,4 +np.float32,0xbf6cdd0b,0xbf974191,4 +np.float32,0x3f78de4c,0x3faac725,4 +np.float32,0x3f3c39a4,0x3f53777f,4 +np.float32,0xbe2a30ec,0xbe2afc0b,4 +np.float32,0xbf3c0ef0,0xbf533887,4 +np.float32,0x3ecb6548,0x3ed12a53,4 +np.float32,0x3eb994e8,0x3ebde7fc,4 +np.float32,0x3d4c1ee0,0x3d4c3487,4 +np.float32,0xbf52cb6d,0xbf77a7eb,4 +np.float32,0x3eb905d4,0x3ebd4e80,4 +np.float32,0x3e712428,0x3e736d72,4 +np.float32,0xbf79ee6e,0xbfad22be,4 +np.float32,0x3de6f8b0,0x3de776c1,4 +np.float32,0x3e9b2898,0x3e9da325,4 +np.float32,0x3ea09b20,0x3ea35d20,4 +np.float32,0x3d0ea9a0,0x3d0eb103,4 +np.float32,0xbd911500,0xbd913423,4 +np.float32,0x3e004618,0x3e009c97,4 +np.float32,0x3f5e0e5a,0x3f86654c,4 +np.float32,0x3f2e6300,0x3f3fd88b,4 +np.float32,0x3e0cf5d0,0x3e0d68c3,4 +np.float32,0x3d6a16c0,0x3d6a376c,4 +np.float32,0x3f7174aa,0x3f9db53c,4 +np.float32,0xbe04bba0,0xbe051b81,4 +np.float32,0xbe6fdcb4,0xbe721c92,4 +np.float32,0x3f4379f0,0x3f5e6c31,4 +np.float32,0xbf680098,0xbf913257,4 +np.float32,0xbf3c31ca,0xbf536bea,4 +np.float32,0x3f59db58,0x3f824a4e,4 +np.float32,0xbf3ffc84,0xbf591554,4 +np.float32,0x3d1d5160,0x3d1d5b48,4 +np.float32,0x3f6c64ae,0x3f96a3da,4 +np.float32,0xbf1b49fd,0xbf26daaa,4 +np.float32,0x3ec80be0,0x3ecd8576,4 +np.float32,0x3f3becc0,0x3f530629,4 +np.float32,0xbea93890,0xbeac76c1,4 +np.float32,0x3f5b3acc,0x3f839bbd,4 +np.float32,0xbf5d6818,0xbf85bef9,4 +np.float32,0x3f794266,0x3fab9fa6,4 +np.float32,0xbee8eb7c,0xbef1cf3b,4 +np.float32,0xbf360a06,0xbf4a821e,4 +np.float32,0x3f441cf6,0x3f5f693d,4 +np.float32,0x3e60de40,0x3e62b742,4 +np.float32,0xbebb3d7e,0xbebfafdc,4 +np.float32,0x3e56a3a0,0x3e583e28,4 +np.float32,0x3f375bfe,0x3f4c6499,4 +np.float32,0xbf384d7d,0xbf4dbf9a,4 +np.float32,0x3efb03a4,0x3f032c06,4 +np.float32,0x3f1d5d10,0x3f29794d,4 +np.float32,0xbe25f7dc,0xbe26b41d,4 +np.float32,0x3f6d2f88,0x3f97aebb,4 +np.float32,0xbe9fa100,0xbea255cb,4 +np.float32,0xbf21dafa,0xbf2f382a,4 +np.float32,0x3d3870e0,0x3d3880d9,4 +np.float32,0x3eeaf00c,0x3ef413f4,4 +np.float32,0xbc884ea0,0xbc88503c,4 +np.float32,0xbf7dbdad,0xbfb80b6d,4 +np.float32,0xbf4eb713,0xbf709b46,4 +np.float32,0xbf1c0ad4,0xbf27cd92,4 +np.float32,0x3f323088,0x3f451737,4 +np.float32,0x3e405d88,0x3e4183e1,4 +np.float32,0x3d7ad580,0x3d7afdb4,4 +np.float32,0xbf207338,0xbf2d6927,4 +np.float32,0xbecf7948,0xbed59e1a,4 +np.float32,0x3f16ff94,0x3f217fde,4 +np.float32,0xbdf19588,0xbdf225dd,4 +np.float32,0xbf4d9654,0xbf6eb442,4 +np.float32,0xbf390b9b,0xbf4ed220,4 +np.float32,0xbe155a74,0xbe15e354,4 +np.float32,0x3f519e4c,0x3f759850,4 +np.float32,0xbee3f08c,0xbeec3b84,4 +np.float32,0xbf478be7,0xbf64d23b,4 +np.float32,0xbefdee50,0xbf04d92a,4 +np.float32,0x3e8def78,0x3e8fd1bc,4 +np.float32,0x3e3df2a8,0x3e3f0dee,4 +np.float32,0xbf413e22,0xbf5afd97,4 +np.float32,0xbf1b8bc4,0xbf272d71,4 +np.float32,0xbf31e5be,0xbf44af22,4 +np.float32,0x3de7e080,0x3de86010,4 +np.float32,0xbf5ddf7e,0xbf863645,4 +np.float32,0x3f3eba6a,0x3f57306e,4 +np.float32,0xff7fffff,0x7fc00000,4 +np.float32,0x3ec22d5c,0x3ec72973,4 +np.float32,0x80800000,0x80800000,4 +np.float32,0x3f032e0c,0x3f09ba82,4 +np.float32,0x3d74bd60,0x3d74e2b7,4 +np.float32,0xbea0d61e,0xbea39b42,4 +np.float32,0xbefdfa78,0xbf04e02a,4 +np.float32,0x3e5cb220,0x3e5e70ec,4 +np.float32,0xbe239e54,0xbe2452a4,4 +np.float32,0x3f452738,0x3f61090e,4 +np.float32,0x3e99a2e0,0x3e9c0a66,4 +np.float32,0x3e4394d8,0x3e44ca5f,4 +np.float32,0x3f4472e2,0x3f5fef14,4 +np.float32,0xbf46bc70,0xbf638814,4 +np.float32,0xbf0b910f,0xbf139c7a,4 +np.float32,0x3f36b4a6,0x3f4b753f,4 +np.float32,0x3e0bf478,0x3e0c64f6,4 +np.float32,0x3ce02480,0x3ce02ba9,4 +np.float32,0xbd904b10,0xbd9069b1,4 +np.float32,0xbf7f5d72,0xbfc00b70,4 +np.float32,0x3f62127e,0x3f8a8ca8,4 +np.float32,0xbf320253,0xbf44d6e4,4 +np.float32,0x3f2507be,0x3f335833,4 +np.float32,0x3f299284,0x3f395887,4 +np.float32,0xbd8211b0,0xbd82281d,4 +np.float32,0xbd3374c0,0xbd338376,4 +np.float32,0x3f36c56a,0x3f4b8d30,4 +np.float32,0xbf51f704,0xbf76331f,4 +np.float32,0xbe9871ca,0xbe9acab2,4 +np.float32,0xbe818d8c,0xbe82fa0f,4 +np.float32,0x3f08b958,0x3f103c18,4 +np.float32,0x3f22559a,0x3f2fd698,4 +np.float32,0xbf11f388,0xbf1b4db8,4 +np.float32,0x3ebe1990,0x3ec2c359,4 +np.float32,0xbe75ab38,0xbe7816b6,4 +np.float32,0x3e96102c,0x3e984c99,4 +np.float32,0xbe80d9d2,0xbe824052,4 +np.float32,0x3ef47588,0x3efeda7f,4 +np.float32,0xbe45e524,0xbe4725ea,4 +np.float32,0x3f7f9e7a,0x3fc213ff,4 +np.float32,0x3f1d3c36,0x3f294faa,4 +np.float32,0xbf3c58db,0xbf53a591,4 +np.float32,0x3f0d3d20,0x3f159c69,4 +np.float32,0x3f744be6,0x3fa23552,4 +np.float32,0x3f2e0cea,0x3f3f630e,4 +np.float32,0x3e193c10,0x3e19cff7,4 +np.float32,0xbf4150ac,0xbf5b19dd,4 +np.float32,0xbf145f72,0xbf1e4355,4 +np.float32,0xbb76cc00,0xbb76cc26,4 +np.float32,0x3f756780,0x3fa41b3e,4 +np.float32,0x3ea9b868,0x3eacfe3c,4 +np.float32,0x3d07c920,0x3d07cf7f,4 +np.float32,0xbf2263d4,0xbf2fe8ff,4 +np.float32,0x3e53b3f8,0x3e553daa,4 +np.float32,0xbf785be8,0xbfa9b5ba,4 +np.float32,0x3f324f7a,0x3f454254,4 +np.float32,0xbf2188f2,0xbf2ece5b,4 +np.float32,0xbe33781c,0xbe3466a2,4 +np.float32,0xbd3cf120,0xbd3d024c,4 +np.float32,0x3f06b18a,0x3f0dd70f,4 +np.float32,0x3f40d63e,0x3f5a5f6a,4 +np.float32,0x3f752340,0x3fa3a41e,4 +np.float32,0xbe1cf1c0,0xbe1d90bc,4 +np.float32,0xbf02d948,0xbf0957d7,4 +np.float32,0x3f73bed0,0x3fa14bf7,4 +np.float32,0x3d914920,0x3d916864,4 +np.float32,0x7fa00000,0x7fe00000,4 +np.float32,0xbe67a5d8,0xbe69aba7,4 +np.float32,0x3f689c4a,0x3f91eb9f,4 +np.float32,0xbf196e00,0xbf248601,4 +np.float32,0xbf50dacb,0xbf7444fe,4 +np.float32,0x3f628b86,0x3f8b0e1e,4 +np.float32,0x3f6ee2f2,0x3f99fe7f,4 +np.float32,0x3ee5df40,0x3eee6492,4 +np.float32,0x3f501746,0x3f72f41b,4 +np.float32,0xbf1f0f18,0xbf2ba164,4 +np.float32,0xbf1a8bfd,0xbf25ec01,4 +np.float32,0xbd4926f0,0xbd493ba9,4 +np.float32,0xbf4e364f,0xbf6fc17b,4 +np.float32,0x3e50c578,0x3e523ed4,4 +np.float32,0x3f65bf10,0x3f8e95ce,4 +np.float32,0xbe8d75a2,0xbe8f52f2,4 +np.float32,0xbf3f557e,0xbf581962,4 +np.float32,0xbeff2bfc,0xbf05903a,4 +np.float32,0x3f5e8bde,0x3f86e3d8,4 +np.float32,0xbf7a0012,0xbfad4b9b,4 +np.float32,0x3edefce0,0x3ee6b790,4 +np.float32,0xbf0003de,0xbf060f09,4 +np.float32,0x3efc4650,0x3f03e548,4 +np.float32,0x3f4582e4,0x3f6198f5,4 +np.float32,0x3f10086c,0x3f18f9d0,4 +np.float32,0x3f1cd304,0x3f28ca77,4 +np.float32,0x3f683366,0x3f916e8d,4 +np.float32,0xbed49392,0xbedb3675,4 +np.float32,0xbf6fe5f6,0xbf9b6c0e,4 +np.float32,0xbf59b416,0xbf8224f6,4 +np.float32,0x3d20c960,0x3d20d3f4,4 +np.float32,0x3f6b00d6,0x3f94dbe7,4 +np.float32,0x3f6c26ae,0x3f965352,4 +np.float32,0xbf370ea6,0xbf4bf5dd,4 +np.float32,0x3dfe7230,0x3dff1af1,4 +np.float32,0xbefc21a8,0xbf03d038,4 +np.float32,0x3f16a990,0x3f21156a,4 +np.float32,0xbef8ac0c,0xbf01d48f,4 +np.float32,0x3f170de8,0x3f21919d,4 +np.float32,0x3db9ef80,0x3dba3122,4 +np.float32,0x3d696400,0x3d698461,4 +np.float32,0x3f007aa2,0x3f069843,4 +np.float32,0x3f22827c,0x3f3010a9,4 +np.float32,0x3f3650dc,0x3f4ae6f1,4 +np.float32,0xbf1d8037,0xbf29a5e1,4 +np.float32,0xbf08fdc4,0xbf108d0e,4 +np.float32,0xbd8df350,0xbd8e1079,4 +np.float32,0xbf36bb32,0xbf4b7e98,4 +np.float32,0x3f2e3756,0x3f3f9ced,4 +np.float32,0x3d5a6f20,0x3d5a89aa,4 +np.float32,0x3f55d568,0x3f7d1889,4 +np.float32,0x3e1ed110,0x3e1f75d9,4 +np.float32,0x3e7386b8,0x3e75e1dc,4 +np.float32,0x3f48ea0e,0x3f670434,4 +np.float32,0x3e921fb0,0x3e942f14,4 +np.float32,0xbf0d4d0b,0xbf15af7f,4 +np.float32,0x3f179ed2,0x3f224549,4 +np.float32,0xbf3a328e,0xbf507e6d,4 +np.float32,0xbf74591a,0xbfa24b6e,4 +np.float32,0x3ec7d1c4,0x3ecd4657,4 +np.float32,0xbf6ecbed,0xbf99de85,4 +np.float32,0x3db0bd00,0x3db0f559,4 +np.float32,0x7f800000,0x7fc00000,4 +np.float32,0x3e0373b8,0x3e03d0d6,4 +np.float32,0xbf439784,0xbf5e9a04,4 +np.float32,0xbef97a9e,0xbf024ac6,4 +np.float32,0x3e4d71a8,0x3e4ed90a,4 +np.float32,0xbf14d868,0xbf1ed7e3,4 +np.float32,0xbf776870,0xbfa7ce37,4 +np.float32,0xbe32a500,0xbe339038,4 +np.float32,0xbf326d8a,0xbf456c3d,4 +np.float32,0xbe9b758c,0xbe9df3e7,4 +np.float32,0x3d9515a0,0x3d95376a,4 +np.float32,0x3e3f7320,0x3e40953e,4 +np.float32,0xbee57e7e,0xbeedf84f,4 +np.float32,0x3e821e94,0x3e838ffd,4 +np.float32,0x3f74beaa,0x3fa2f721,4 +np.float32,0xbe9b7672,0xbe9df4d9,4 +np.float32,0x3f4041fc,0x3f597e71,4 +np.float32,0xbe9ea7c4,0xbea14f92,4 +np.float32,0xbf800000,0xbfc90fdb,4 +np.float32,0x3e04fb90,0x3e055bfd,4 +np.float32,0xbf14d3d6,0xbf1ed245,4 +np.float32,0xbe84ebec,0xbe86763e,4 +np.float32,0x3f08e568,0x3f107039,4 +np.float32,0x3d8dc9e0,0x3d8de6ef,4 +np.float32,0x3ea4549c,0x3ea74a94,4 +np.float32,0xbebd2806,0xbec1bf51,4 +np.float32,0x3f311a26,0x3f439498,4 +np.float32,0xbf3d2222,0xbf54cf7e,4 +np.float32,0x3e00c500,0x3e011c81,4 +np.float32,0xbe35ed1c,0xbe36e5a9,4 +np.float32,0xbd4ec020,0xbd4ed6a0,4 +np.float32,0x3e1eb088,0x3e1f54eb,4 +np.float32,0x3cf94840,0x3cf9521a,4 +np.float32,0xbf010c5d,0xbf0740e0,4 +np.float32,0xbf3bd63b,0xbf52e502,4 +np.float32,0x3f233f30,0x3f310542,4 +np.float32,0x3ea24128,0x3ea519d7,4 +np.float32,0x3f478b38,0x3f64d124,4 +np.float32,0x3f1e0c6c,0x3f2a57ec,4 +np.float32,0xbf3ad294,0xbf51680a,4 +np.float32,0x3ede0554,0x3ee5a4b4,4 +np.float32,0x3e451a98,0x3e46577d,4 +np.float32,0x3f520164,0x3f764542,4 +np.float32,0x0,0x0,4 +np.float32,0xbd056cd0,0xbd0572db,4 +np.float32,0xbf58b018,0xbf812f5e,4 +np.float32,0x3e036eb0,0x3e03cbc3,4 +np.float32,0x3d1377a0,0x3d137fc9,4 +np.float32,0xbf692d3a,0xbf929a2c,4 +np.float32,0xbec60fb8,0xbecb5dea,4 +np.float32,0x3ed23340,0x3ed89a8e,4 +np.float32,0x3c87f040,0x3c87f1d9,4 +np.float32,0x3dac62f0,0x3dac9737,4 +np.float32,0xbed97c16,0xbee09f02,4 +np.float32,0xbf2d5f3c,0xbf3e769c,4 +np.float32,0xbc3b7c40,0xbc3b7d4c,4 +np.float32,0x3ed998ec,0x3ee0bedd,4 +np.float32,0x3dd86630,0x3dd8cdcb,4 +np.float32,0x3e8b4304,0x3e8d09ea,4 +np.float32,0x3f51e6b0,0x3f761697,4 +np.float32,0x3ec51f24,0x3eca5923,4 +np.float32,0xbf647430,0xbf8d2307,4 +np.float32,0x3f253d9c,0x3f339eb2,4 +np.float32,0x3dc969d0,0x3dc9bd4b,4 +np.float32,0xbc2f1300,0xbc2f13da,4 +np.float32,0xbf170007,0xbf21806d,4 +np.float32,0x3f757d10,0x3fa4412e,4 +np.float32,0xbe7864ac,0xbe7ae564,4 +np.float32,0x3f2ffe90,0x3f420cfb,4 +np.float32,0xbe576138,0xbe590012,4 +np.float32,0xbf517a21,0xbf755959,4 +np.float32,0xbf159cfe,0xbf1fc9d5,4 +np.float32,0xbf638b2a,0xbf8c22cf,4 +np.float32,0xff800000,0x7fc00000,4 +np.float32,0x3ed19ca0,0x3ed7f569,4 +np.float32,0x3f7c4460,0x3fb32d26,4 +np.float32,0x3ebfae6c,0x3ec477ab,4 +np.float32,0x3dd452d0,0x3dd4b4a8,4 +np.float32,0x3f471482,0x3f6413fb,4 +np.float32,0xbf49d704,0xbf6883fe,4 +np.float32,0xbd42c4e0,0xbd42d7af,4 +np.float32,0xbeb02994,0xbeb3d668,4 +np.float32,0x3f4d1fd8,0x3f6dedd2,4 +np.float32,0x3efb591c,0x3f035d11,4 +np.float32,0x80000000,0x80000000,4 +np.float32,0xbf50f782,0xbf7476ad,4 +np.float32,0x3d7232c0,0x3d7256f0,4 +np.float32,0x3f649460,0x3f8d46bb,4 +np.float32,0x3f5561bc,0x3f7c46a9,4 +np.float32,0x3e64f6a0,0x3e66ea5d,4 +np.float32,0x3e5b0470,0x3e5cb8f9,4 +np.float32,0xbe9b6b2c,0xbe9de904,4 +np.float32,0x3f6c33f4,0x3f966486,4 +np.float32,0x3f5cee54,0x3f854613,4 +np.float32,0x3ed3e044,0x3eda716e,4 +np.float32,0xbf3cac7f,0xbf542131,4 +np.float32,0x3c723500,0x3c723742,4 +np.float32,0x3de59900,0x3de614d3,4 +np.float32,0xbdf292f8,0xbdf32517,4 +np.float32,0x3f05c8b2,0x3f0cc59b,4 +np.float32,0xbf1ab182,0xbf261b14,4 +np.float32,0xbda396f0,0xbda3c39a,4 +np.float32,0xbf270ed0,0xbf360231,4 +np.float32,0x3f2063e6,0x3f2d557e,4 +np.float32,0x3c550280,0x3c550409,4 +np.float32,0xbe103b48,0xbe10b679,4 +np.float32,0xbebae390,0xbebf4f40,4 +np.float32,0x3f3bc868,0x3f52d0aa,4 +np.float32,0xbd62f880,0xbd631647,4 +np.float32,0xbe7a38f4,0xbe7cc833,4 +np.float32,0x3f09d796,0x3f118f39,4 +np.float32,0xbf5fa558,0xbf8802d0,4 +np.float32,0x3f111cc8,0x3f1a48b0,4 +np.float32,0x3e831958,0x3e849356,4 +np.float32,0xbf614dbd,0xbf89bc3b,4 +np.float32,0xbd521510,0xbd522cac,4 +np.float32,0x3f05af22,0x3f0ca7a0,4 +np.float32,0xbf1ac60e,0xbf2634df,4 +np.float32,0xbf6bd05e,0xbf95e3fe,4 +np.float32,0xbd1fa6e0,0xbd1fb13b,4 +np.float32,0xbeb82f7a,0xbebc68b1,4 +np.float32,0xbd92aaf8,0xbd92cb23,4 +np.float32,0xbe073a54,0xbe079fbf,4 +np.float32,0xbf198655,0xbf24a468,4 +np.float32,0x3f62f6d8,0x3f8b81ba,4 +np.float32,0x3eef4310,0x3ef8f4f9,4 +np.float32,0x3e8988e0,0x3e8b3eae,4 +np.float32,0xbf3ddba5,0xbf55e367,4 +np.float32,0x3dc6d2e0,0x3dc7232b,4 +np.float32,0xbf31040e,0xbf437601,4 +np.float32,0x3f1bb74a,0x3f276442,4 +np.float32,0xbf0075d2,0xbf0692b3,4 +np.float32,0xbf606ce0,0xbf88d0ff,4 +np.float32,0xbf083856,0xbf0fa39d,4 +np.float32,0xbdb25b20,0xbdb2950a,4 +np.float32,0xbeb86860,0xbebca5ae,4 +np.float32,0x3de83160,0x3de8b176,4 +np.float32,0xbf33a98f,0xbf472664,4 +np.float32,0x3e7795f8,0x3e7a1058,4 +np.float32,0x3e0ca6f8,0x3e0d192a,4 +np.float32,0xbf1aef60,0xbf2668c3,4 +np.float32,0xbda53b58,0xbda5695e,4 +np.float32,0xbf178096,0xbf221fc5,4 +np.float32,0xbf0a4159,0xbf120ccf,4 +np.float32,0x3f7bca36,0x3fb1d0df,4 +np.float32,0xbef94360,0xbf022b26,4 +np.float32,0xbef16f36,0xbefb6ad6,4 +np.float32,0x3f53a7e6,0x3f792e25,4 +np.float32,0xbf7c536f,0xbfb35993,4 +np.float32,0xbe84aaa0,0xbe8632a2,4 +np.float32,0x3ecb3998,0x3ed0fab9,4 +np.float32,0x3f539304,0x3f79090a,4 +np.float32,0xbf3c7816,0xbf53d3b3,4 +np.float32,0xbe7a387c,0xbe7cc7b7,4 +np.float32,0x3f7000e4,0x3f9b92b1,4 +np.float32,0x3e08fd70,0x3e0966e5,4 +np.float32,0x3db97ba0,0x3db9bcc8,4 +np.float32,0xbee99056,0xbef2886a,4 +np.float32,0xbf0668da,0xbf0d819e,4 +np.float32,0x3e58a408,0x3e5a4a51,4 +np.float32,0x3f3440b8,0x3f47faed,4 +np.float32,0xbf19a2ce,0xbf24c7ff,4 +np.float32,0xbe75e990,0xbe7856ee,4 +np.float32,0x3f3c865c,0x3f53e8cb,4 +np.float32,0x3e5e03d0,0x3e5fcac9,4 +np.float32,0x3edb8e34,0x3ee2e932,4 +np.float32,0xbf7e1f5f,0xbfb98ce4,4 +np.float32,0xbf7372ff,0xbfa0d0ae,4 +np.float32,0xbf3ee850,0xbf577548,4 +np.float32,0x3ef19658,0x3efb9737,4 +np.float32,0xbe8088de,0xbe81ecaf,4 +np.float32,0x800000,0x800000,4 +np.float32,0xbde39dd8,0xbde4167a,4 +np.float32,0xbf065d7a,0xbf0d7441,4 +np.float32,0xbde52c78,0xbde5a79b,4 +np.float32,0xbe3a28c0,0xbe3b333e,4 +np.float32,0x3f6e8b3c,0x3f998516,4 +np.float32,0x3f3485c2,0x3f485c39,4 +np.float32,0x3e6f2c68,0x3e71673e,4 +np.float32,0xbe4ec9cc,0xbe50385e,4 +np.float32,0xbf1c3bb0,0xbf280b39,4 +np.float32,0x3ec8ea18,0x3ece76f7,4 +np.float32,0x3e26b5f8,0x3e2774c9,4 +np.float32,0x3e1e4a38,0x3e1eed5c,4 +np.float32,0xbee7a106,0xbef05c6b,4 +np.float32,0xbf305928,0xbf4289d8,4 +np.float32,0x3f0c431c,0x3f147118,4 +np.float32,0xbe57ba6c,0xbe595b52,4 +np.float32,0x3eabc9cc,0x3eaf2fc7,4 +np.float32,0xbef1ed24,0xbefbf9ae,4 +np.float32,0xbf61b576,0xbf8a29cc,4 +np.float32,0x3e9c1ff4,0x3e9ea6cb,4 +np.float32,0x3f6c53b2,0x3f968dbe,4 +np.float32,0x3e2d1b80,0x3e2df156,4 +np.float32,0x3e9f2f70,0x3ea1de4a,4 +np.float32,0xbf5861ee,0xbf80e61a,4 +np.float32,0x3f429144,0x3f5d0505,4 +np.float32,0x3e235cc8,0x3e24103e,4 +np.float32,0xbf354879,0xbf496f6a,4 +np.float32,0xbf20a146,0xbf2da447,4 +np.float32,0x3e8d8968,0x3e8f6785,4 +np.float32,0x3f3fbc94,0x3f58b4c1,4 +np.float32,0x3f2c5f50,0x3f3d1b9f,4 +np.float32,0x3f7bf0f8,0x3fb23d23,4 +np.float32,0xbf218282,0xbf2ec60f,4 +np.float32,0x3f2545aa,0x3f33a93e,4 +np.float32,0xbf4b17be,0xbf6a9018,4 +np.float32,0xbb9df700,0xbb9df728,4 +np.float32,0x3f685d54,0x3f91a06c,4 +np.float32,0x3efdfe2c,0x3f04e24c,4 +np.float32,0x3ef1c5a0,0x3efbccd9,4 +np.float32,0xbf41d731,0xbf5be76e,4 +np.float32,0x3ebd1360,0x3ec1a919,4 +np.float32,0xbf706bd4,0xbf9c2d58,4 +np.float32,0x3ea525e4,0x3ea8279d,4 +np.float32,0xbe51f1b0,0xbe537186,4 +np.float32,0x3f5e8cf6,0x3f86e4f4,4 +np.float32,0xbdad2520,0xbdad5a19,4 +np.float32,0xbf5c5704,0xbf84b0e5,4 +np.float32,0x3f47b54e,0x3f65145e,4 +np.float32,0x3eb4fc78,0x3eb8fc0c,4 +np.float32,0x3dca1450,0x3dca68a1,4 +np.float32,0x3eb02a74,0x3eb3d757,4 +np.float32,0x3f74ae6a,0x3fa2db75,4 +np.float32,0x3f800000,0x3fc90fdb,4 +np.float32,0xbdb46a00,0xbdb4a5f2,4 +np.float32,0xbe9f2ba6,0xbea1da4e,4 +np.float32,0x3f0afa70,0x3f12e8f7,4 +np.float32,0xbf677b20,0xbf909547,4 +np.float32,0x3eff9188,0x3f05cacf,4 +np.float32,0x3f720562,0x3f9e911b,4 +np.float32,0xbf7180d8,0xbf9dc794,4 +np.float32,0xbee7d076,0xbef0919d,4 +np.float32,0x3f0432ce,0x3f0aea95,4 +np.float32,0x3f3bc4c8,0x3f52cb54,4 +np.float32,0xbea72f30,0xbeaa4ebe,4 +np.float32,0x3e90ed00,0x3e92ef33,4 +np.float32,0xbda63670,0xbda6654a,4 +np.float32,0xbf5a6f85,0xbf82d7e0,4 +np.float32,0x3e6e8808,0x3e70be34,4 +np.float32,0xbf4f3822,0xbf71768f,4 +np.float32,0x3e5c8a68,0x3e5e483f,4 +np.float32,0xbf0669d4,0xbf0d82c4,4 +np.float32,0xbf79f77c,0xbfad37b0,4 +np.float32,0x3f25c82c,0x3f345453,4 +np.float32,0x3f1b2948,0x3f26b188,4 +np.float32,0x3ef7e288,0x3f016159,4 +np.float32,0x3c274280,0x3c27433e,4 +np.float32,0xbf4c8fa0,0xbf6cfd5e,4 +np.float32,0x3ea4ccb4,0x3ea7c966,4 +np.float32,0xbf7b157e,0xbfafefca,4 +np.float32,0xbee4c2b0,0xbeed264d,4 +np.float32,0xbc1fd640,0xbc1fd6e6,4 +np.float32,0x3e892308,0x3e8ad4f6,4 +np.float32,0xbf3f69c7,0xbf5837ed,4 +np.float32,0x3ec879e8,0x3ecdfd05,4 +np.float32,0x3f07a8c6,0x3f0efa30,4 +np.float32,0x3f67b880,0x3f90dd4d,4 +np.float32,0x3e8a11c8,0x3e8bccd5,4 +np.float32,0x3f7df6fc,0x3fb8e935,4 +np.float32,0xbef3e498,0xbefe3599,4 +np.float32,0xbf18ad7d,0xbf2395d8,4 +np.float32,0x3f2bce74,0x3f3c57f5,4 +np.float32,0xbf38086e,0xbf4d5c2e,4 +np.float32,0x3f772d7a,0x3fa75c35,4 +np.float32,0xbf3b6e24,0xbf524c00,4 +np.float32,0xbdd39108,0xbdd3f1d4,4 +np.float32,0xbf691f6b,0xbf928974,4 +np.float32,0x3f146188,0x3f1e45e4,4 +np.float32,0xbf56045b,0xbf7d6e03,4 +np.float32,0xbf4b2ee4,0xbf6ab622,4 +np.float32,0xbf3fa3f6,0xbf588f9d,4 +np.float32,0x3f127bb0,0x3f1bf398,4 +np.float32,0x3ed858a0,0x3edf5d3e,4 +np.float32,0xbd6de3b0,0xbd6e05fa,4 +np.float32,0xbecc662c,0xbed24261,4 +np.float32,0xbd6791d0,0xbd67b170,4 +np.float32,0xbf146016,0xbf1e441e,4 +np.float32,0xbf61f04c,0xbf8a6841,4 +np.float32,0xbe7f16d0,0xbe80e6e7,4 +np.float32,0xbebf93e6,0xbec45b10,4 +np.float32,0xbe8a59fc,0xbe8c17d1,4 +np.float32,0xbebc7a0c,0xbec10426,4 +np.float32,0xbf2a682e,0xbf3a7649,4 +np.float32,0xbe18d0cc,0xbe19637b,4 +np.float32,0x3d7f5100,0x3d7f7b66,4 +np.float32,0xbf10f5fa,0xbf1a1998,4 +np.float32,0x3f25e956,0x3f347fdc,4 +np.float32,0x3e6e8658,0x3e70bc78,4 +np.float32,0x3f21a5de,0x3f2ef3a5,4 +np.float32,0xbf4e71d4,0xbf702607,4 +np.float32,0xbf49d6b6,0xbf688380,4 +np.float32,0xbdb729c0,0xbdb7687c,4 +np.float32,0xbf63e1f4,0xbf8c81c7,4 +np.float32,0x3dda6cb0,0x3ddad73e,4 +np.float32,0x3ee1bc40,0x3ee9c612,4 +np.float32,0x3ebdb5f8,0x3ec2581b,4 +np.float32,0x3f7d9576,0x3fb77646,4 +np.float32,0x3e087140,0x3e08d971,4 +np.float64,0xbfdba523cfb74a48,0xbfdc960ddd9c0506,1 +np.float64,0x3fb51773622a2ee0,0x3fb51d93f77089d5,1 +np.float64,0x3fc839f6d33073f0,0x3fc85f9a47dfe8e6,1 +np.float64,0xbfecba2d82f9745b,0xbff1d55416c6c993,1 +np.float64,0x3fd520fe47aa41fc,0x3fd58867f1179634,1 +np.float64,0x3fe1b369c56366d4,0x3fe2c1ac9dd2c45a,1 +np.float64,0xbfec25a7cd784b50,0xbff133417389b12d,1 +np.float64,0xbfd286342ea50c68,0xbfd2cb0bca22e66d,1 +np.float64,0x3fd5f6fe5eabedfc,0x3fd66bad16680d08,1 +np.float64,0xbfe863a87570c751,0xbfebbb9b637eb6dc,1 +np.float64,0x3fc97f5b4d32feb8,0x3fc9ab5066d8eaec,1 +np.float64,0xbfcb667af936ccf4,0xbfcb9d3017047a1d,1 +np.float64,0xbfd1b7b9afa36f74,0xbfd1f3c175706154,1 +np.float64,0x3fef97385b7f2e70,0x3ff6922a1a6c709f,1 +np.float64,0xbfd13e4205a27c84,0xbfd1757c993cdb74,1 +np.float64,0xbfd18d88aca31b12,0xbfd1c7dd75068f7d,1 +np.float64,0x3fe040ce0f60819c,0x3fe10c59d2a27089,1 +np.float64,0xbfddc7deddbb8fbe,0xbfdef9de5baecdda,1 +np.float64,0xbfcf6e96193edd2c,0xbfcfc1bb7396b9a3,1 +np.float64,0x3fd544f494aa89e8,0x3fd5ae850e2b37dd,1 +np.float64,0x3fe15b381fe2b670,0x3fe25841c7bfe2af,1 +np.float64,0xbfde793420bcf268,0xbfdfc2ddc7b4a341,1 +np.float64,0x3fd0d5db30a1abb8,0x3fd1092cef4aa4fb,1 +np.float64,0x3fe386a08c670d42,0x3fe50059bbf7f491,1 +np.float64,0xbfe0aae3a96155c8,0xbfe1880ef13e95ce,1 +np.float64,0xbfe80eeb03f01dd6,0xbfeb39e9f107e944,1 +np.float64,0xbfd531af3caa635e,0xbfd59a178f17552a,1 +np.float64,0x3fcced14ab39da28,0x3fcd2d9a806337ef,1 +np.float64,0xbfdb4c71bcb698e4,0xbfdc33d9d9daf708,1 +np.float64,0xbfde7375ecbce6ec,0xbfdfbc5611bc48ff,1 +np.float64,0x3fecc5707a798ae0,0x3ff1e2268d778017,1 +np.float64,0x3fe8f210a1f1e422,0x3fec9b3349a5baa2,1 +np.float64,0x3fe357f9b8e6aff4,0x3fe4c5a0b89a9228,1 +np.float64,0xbfe0f863b761f0c8,0xbfe1e3283494c3d4,1 +np.float64,0x3fd017c395a02f88,0x3fd044761f2f4a66,1 +np.float64,0x3febeb4746f7d68e,0x3ff0f6b955e7feb6,1 +np.float64,0xbfbdaaeeae3b55e0,0xbfbdbc0950109261,1 +np.float64,0xbfea013095f40261,0xbfee5b8fe8ad8593,1 +np.float64,0xbfe9f87b7973f0f7,0xbfee4ca3a8438d72,1 +np.float64,0x3fd37f77cfa6fef0,0x3fd3d018c825f057,1 +np.float64,0x3fb0799cee20f340,0x3fb07c879e7cb63f,1 +np.float64,0xbfdcfd581cb9fab0,0xbfde15e35314b52d,1 +np.float64,0xbfd49781b8a92f04,0xbfd4f6fa1516fefc,1 +np.float64,0x3fb3fcb6d627f970,0x3fb401ed44a713a8,1 +np.float64,0x3fd5737ef8aae6fc,0x3fd5dfe42d4416c7,1 +np.float64,0x7ff4000000000000,0x7ffc000000000000,1 +np.float64,0xbfe56ae780ead5cf,0xbfe776ea5721b900,1 +np.float64,0x3fd4567786a8acf0,0x3fd4b255421c161a,1 +np.float64,0x3fef6fb58cfedf6c,0x3ff62012dfcf0a33,1 +np.float64,0xbfd1dbcd3da3b79a,0xbfd2194fd628f74d,1 +np.float64,0x3fd9350016b26a00,0x3fd9e8b01eb023e9,1 +np.float64,0xbfe4fb3a69e9f675,0xbfe6e1d2c9eca56c,1 +np.float64,0x3fe9fe0f73f3fc1e,0x3fee5631cfd39772,1 +np.float64,0xbfd51c1bc6aa3838,0xbfd5833b3bd53543,1 +np.float64,0x3fc64158e12c82b0,0x3fc65e7352f237d7,1 +np.float64,0x3fd0d8ee1ba1b1dc,0x3fd10c5c99a16f0e,1 +np.float64,0x3fd5554e15aaaa9c,0x3fd5bfdb9ec9e873,1 +np.float64,0x3fe61ce209ec39c4,0x3fe869bc4c28437d,1 +np.float64,0xbfe4e42c8c69c859,0xbfe6c356dac7e2db,1 +np.float64,0xbfe157021062ae04,0xbfe2533ed39f4212,1 +np.float64,0x3fe844066cf0880c,0x3feb8aea0b7bd0a4,1 +np.float64,0x3fe55016586aa02c,0x3fe752e4b2a67b9f,1 +np.float64,0x3fdabce619b579cc,0x3fdb95809bc789d9,1 +np.float64,0x3fee03bae37c0776,0x3ff3778ba38ca882,1 +np.float64,0xbfeb2f5844f65eb0,0xbff03dd1b767d3c8,1 +np.float64,0x3fedcfdbaffb9fb8,0x3ff32e81d0639164,1 +np.float64,0x3fe06fc63ee0df8c,0x3fe142fc27f92eaf,1 +np.float64,0x3fe7ce90fd6f9d22,0x3fead8f832bbbf5d,1 +np.float64,0xbfbc0015ce380028,0xbfbc0e7470e06e86,1 +np.float64,0xbfe9b3de90f367bd,0xbfedd857931dfc6b,1 +np.float64,0xbfcb588f5936b120,0xbfcb8ef0124a4f21,1 +np.float64,0x3f8d376a503a6f00,0x3f8d37ab43e7988d,1 +np.float64,0xbfdb123a40b62474,0xbfdbf38b6cf5db92,1 +np.float64,0xbfee7da6be7cfb4e,0xbff433042cd9d5eb,1 +np.float64,0xbfc4c9e01b2993c0,0xbfc4e18dbafe37ef,1 +np.float64,0x3fedd42faffba860,0x3ff334790cd18a19,1 +np.float64,0x3fe9cdf772f39bee,0x3fee044f87b856ab,1 +np.float64,0x3fe0245881e048b2,0x3fe0eb5a1f739c8d,1 +np.float64,0xbfe4712bd9e8e258,0xbfe62cb3d82034aa,1 +np.float64,0x3fe9a16b46f342d6,0x3fedb972b2542551,1 +np.float64,0xbfe57ab4536af568,0xbfe78c34b03569c2,1 +np.float64,0x3fb6d6ceb22dada0,0x3fb6de976964d6dd,1 +np.float64,0x3fc3ac23a3275848,0x3fc3c02de53919b8,1 +np.float64,0xbfccb531e7396a64,0xbfccf43ec69f6281,1 +np.float64,0xbfd2f07fc8a5e100,0xbfd33a35a8c41b62,1 +np.float64,0xbfe3e5dd04e7cbba,0xbfe57940157c27ba,1 +np.float64,0x3feefe40757dfc80,0x3ff51bc72b846af6,1 +np.float64,0x8000000000000001,0x8000000000000001,1 +np.float64,0x3fecb7b766796f6e,0x3ff1d28972a0fc7e,1 +np.float64,0xbfea1bf1357437e2,0xbfee89a6532bfd71,1 +np.float64,0xbfca3983b7347308,0xbfca696463b791ef,1 +np.float64,0x10000000000000,0x10000000000000,1 +np.float64,0xbf886b45d030d680,0xbf886b6bbc04314b,1 +np.float64,0x3fd5224bb5aa4498,0x3fd589c92e82218f,1 +np.float64,0xbfec799874f8f331,0xbff18d5158b8e640,1 +np.float64,0xbf88124410302480,0xbf88126863350a16,1 +np.float64,0xbfe37feaaa66ffd6,0xbfe4f7e24382e79d,1 +np.float64,0x3fd777eca1aeefd8,0x3fd8076ead6d55dc,1 +np.float64,0x3fecaaeb3af955d6,0x3ff1c4159fa3e965,1 +np.float64,0xbfeb81e4e6f703ca,0xbff08d4e4c77fada,1 +np.float64,0xbfd7d0a0edafa142,0xbfd866e37010312e,1 +np.float64,0x3feda48c00fb4918,0x3ff2f3fd33c36307,1 +np.float64,0x3feb87ecc4770fda,0x3ff09336e490deda,1 +np.float64,0xbfefd78ad27faf16,0xbff78abbafb50ac1,1 +np.float64,0x3fe58e918c6b1d24,0x3fe7a70b38cbf016,1 +np.float64,0x3fda163b95b42c78,0x3fdade86b88ba4ee,1 +np.float64,0x3fe8fc1aaf71f836,0x3fecab3f93b59df5,1 +np.float64,0xbf8de56f903bcac0,0xbf8de5b527cec797,1 +np.float64,0xbfec112db2f8225b,0xbff11dd648de706f,1 +np.float64,0x3fc3214713264290,0x3fc333b1c862f7d0,1 +np.float64,0xbfeb5e5836f6bcb0,0xbff06ac364b49177,1 +np.float64,0x3fc23d9777247b30,0x3fc24d8ae3bcb615,1 +np.float64,0xbfdf0eed65be1dda,0xbfe036cea9b9dfb6,1 +np.float64,0xbfb2d5c85a25ab90,0xbfb2da24bb409ff3,1 +np.float64,0xbfecdda0c3f9bb42,0xbff1fdf94fc6e89e,1 +np.float64,0x3fdfe79154bfcf24,0x3fe0b338e0476a9d,1 +np.float64,0xbfd712ac6bae2558,0xbfd79abde21f287b,1 +np.float64,0x3fea3f148a747e2a,0x3feec6bed9d4fa04,1 +np.float64,0x3fd4879e4ca90f3c,0x3fd4e632fa4e2edd,1 +np.float64,0x3fe9137a9e7226f6,0x3fecd0c441088d6a,1 +np.float64,0xbfc75bf4ef2eb7e8,0xbfc77da8347d742d,1 +np.float64,0xbfd94090a0b28122,0xbfd9f5458816ed5a,1 +np.float64,0x3fde439cbcbc8738,0x3fdf85fbf496b61f,1 +np.float64,0xbfe18bacdce3175a,0xbfe29210e01237f7,1 +np.float64,0xbfd58ec413ab1d88,0xbfd5fcd838f0a934,1 +np.float64,0xbfeae5af2d75cb5e,0xbfeff1de1b4a06be,1 +np.float64,0x3fb64d1a162c9a30,0x3fb65458fb831354,1 +np.float64,0x3fc18b1e15231640,0x3fc1994c6ffd7a6a,1 +np.float64,0xbfd7b881bcaf7104,0xbfd84ce89a9ee8c7,1 +np.float64,0x3feb916a40f722d4,0x3ff09c8aa851d7c4,1 +np.float64,0x3fdab5fbb5b56bf8,0x3fdb8de43961bbde,1 +np.float64,0x3fe4f35402e9e6a8,0x3fe6d75dc5082894,1 +np.float64,0x3fe2fdb2e5e5fb66,0x3fe454e32a5d2182,1 +np.float64,0x3fe8607195f0c0e4,0x3febb6a4c3bf6a5c,1 +np.float64,0x3fd543ca9aaa8794,0x3fd5ad49203ae572,1 +np.float64,0x3fe8e05ca1f1c0ba,0x3fec7eff123dcc58,1 +np.float64,0x3fe298b6ca65316e,0x3fe3d81d2927c4dd,1 +np.float64,0x3fcfecea733fd9d8,0x3fd0220f1d0faf78,1 +np.float64,0xbfe2e739f065ce74,0xbfe439004e73772a,1 +np.float64,0xbfd1ae6b82a35cd8,0xbfd1ea129a5ee756,1 +np.float64,0xbfeb7edff576fdc0,0xbff08a5a638b8a8b,1 +np.float64,0x3fe5b645ff6b6c8c,0x3fe7dcee1faefe3f,1 +np.float64,0xbfd478427ba8f084,0xbfd4d5fc7c239e60,1 +np.float64,0xbfe39904e3e7320a,0xbfe517972b30b1e5,1 +np.float64,0xbfd3b75b6ba76eb6,0xbfd40acf20a6e074,1 +np.float64,0x3fd596267aab2c4c,0x3fd604b01faeaf75,1 +np.float64,0x3fe134463762688c,0x3fe229fc36784a72,1 +np.float64,0x3fd25dadf7a4bb5c,0x3fd2a0b9e04ea060,1 +np.float64,0xbfc05d3e0b20ba7c,0xbfc068bd2bb9966f,1 +np.float64,0x3f8cf517b039ea00,0x3f8cf556ed74b163,1 +np.float64,0x3fda87361cb50e6c,0x3fdb5a75af897e7f,1 +np.float64,0x3fe53e1926ea7c32,0x3fe73acf01b8ff31,1 +np.float64,0x3fe2e94857e5d290,0x3fe43b8cc820f9c7,1 +np.float64,0x3fd81fe6acb03fcc,0x3fd8bc623c0068cf,1 +np.float64,0xbfddf662c3bbecc6,0xbfdf2e76dc90786e,1 +np.float64,0x3fece174fbf9c2ea,0x3ff2026a1a889580,1 +np.float64,0xbfdc83c5b8b9078c,0xbfdd8dcf6ee3b7da,1 +np.float64,0x3feaf5448f75ea8a,0x3ff0075b108bcd0d,1 +np.float64,0xbfebf32f7ef7e65f,0xbff0fed42aaa826a,1 +np.float64,0x3fe389e5e8e713cc,0x3fe5047ade055ccb,1 +np.float64,0x3f635cdcc026ba00,0x3f635cddeea082ce,1 +np.float64,0x3fae580f543cb020,0x3fae5c9d5108a796,1 +np.float64,0x3fec9fafce793f60,0x3ff1b77bec654f00,1 +np.float64,0x3fb19d226e233a40,0x3fb1a0b32531f7ee,1 +np.float64,0xbfdf9a71e7bf34e4,0xbfe086cef88626c7,1 +np.float64,0x8010000000000000,0x8010000000000000,1 +np.float64,0xbfef170ba2fe2e17,0xbff54ed4675f5b8a,1 +np.float64,0xbfcc6e2f8f38dc60,0xbfccab65fc34d183,1 +np.float64,0x3fee756c4bfcead8,0x3ff4258782c137e6,1 +np.float64,0xbfd461c218a8c384,0xbfd4be3e391f0ff4,1 +np.float64,0xbfe3b64686e76c8d,0xbfe53caa16d6c90f,1 +np.float64,0xbfc1c65d8d238cbc,0xbfc1d51e58f82403,1 +np.float64,0x3fe6e06c63edc0d8,0x3fe97cb832eeb6a2,1 +np.float64,0xbfc9fc20b933f840,0xbfca2ab004312d85,1 +np.float64,0xbfe29aa6df65354e,0xbfe3da7ecf3ba466,1 +np.float64,0x3fea4df7d1749bf0,0x3feee0d448bd4746,1 +np.float64,0xbfedec6161fbd8c3,0xbff3563e1d943aa2,1 +np.float64,0x3fdb6f0437b6de08,0x3fdc5a1888b1213d,1 +np.float64,0xbfe270cbd3e4e198,0xbfe3a72ac27a0b0c,1 +np.float64,0xbfdfff8068bfff00,0xbfe0c1088e3b8983,1 +np.float64,0xbfd28edbe6a51db8,0xbfd2d416c8ed363e,1 +np.float64,0xbfb4e35f9229c6c0,0xbfb4e9531d2a737f,1 +np.float64,0xbfee6727e97cce50,0xbff40e7717576e46,1 +np.float64,0xbfddb5fbddbb6bf8,0xbfdee5aad78f5361,1 +np.float64,0xbfdf9d3e9dbf3a7e,0xbfe0886b191f2957,1 +np.float64,0x3fa57e77042afce0,0x3fa5801518ea9342,1 +np.float64,0x3f95c4e4882b89c0,0x3f95c55003c8e714,1 +np.float64,0x3fd9b10f61b36220,0x3fda6fe5d635a8aa,1 +np.float64,0xbfe2973411652e68,0xbfe3d641fe9885fd,1 +np.float64,0xbfee87bd5a7d0f7b,0xbff443bea81b3fff,1 +np.float64,0x3f9ea064c83d40c0,0x3f9ea19025085b2f,1 +np.float64,0xbfe4b823dfe97048,0xbfe689623d30dc75,1 +np.float64,0xbfa06a326c20d460,0xbfa06aeacbcd3eb8,1 +np.float64,0x3fe1e5c4c1e3cb8a,0x3fe2fe44b822f20e,1 +np.float64,0x3f99dafaa833b600,0x3f99dbaec10a1a0a,1 +np.float64,0xbfed7cb3877af967,0xbff2bfe9e556aaf9,1 +np.float64,0x3fd604f2e2ac09e4,0x3fd67a89408ce6ba,1 +np.float64,0x3fec57b60f78af6c,0x3ff16881f46d60f7,1 +np.float64,0xbfea2e3a17745c74,0xbfeea95c7190fd42,1 +np.float64,0xbfd60a7c37ac14f8,0xbfd6806ed642de35,1 +np.float64,0xbfe544b9726a8973,0xbfe743ac399d81d7,1 +np.float64,0xbfd13520faa26a42,0xbfd16c02034a8fe0,1 +np.float64,0xbfea9ea59ff53d4b,0xbfef70538ee12e00,1 +np.float64,0x3fd66633f8accc68,0x3fd6e23c13ab0e9e,1 +np.float64,0xbfe4071bd3e80e38,0xbfe5a3c9ba897d81,1 +np.float64,0xbfbe1659fa3c2cb0,0xbfbe2831d4fed196,1 +np.float64,0xbfd3312777a6624e,0xbfd37df09b9baeba,1 +np.float64,0x3fd13997caa27330,0x3fd170a4900c8907,1 +np.float64,0xbfe7cbc235ef9784,0xbfead4c4d6cbf129,1 +np.float64,0xbfe1456571628acb,0xbfe23e4ec768c8e2,1 +np.float64,0xbfedf1a044fbe340,0xbff35da96773e176,1 +np.float64,0x3fce38b1553c7160,0x3fce8270709774f9,1 +np.float64,0xbfecb01761f9602f,0xbff1c9e9d382f1f8,1 +np.float64,0xbfe0a03560e1406b,0xbfe17b8d5a1ca662,1 +np.float64,0x3fe50f37cbea1e70,0x3fe6fc55e1ae7da6,1 +np.float64,0xbfe12d64a0625aca,0xbfe221d3a7834e43,1 +np.float64,0xbf6fb288403f6500,0xbf6fb28d6f389db6,1 +np.float64,0x3fda831765b50630,0x3fdb55eecae58ca9,1 +np.float64,0x3fe1a0fe4c6341fc,0x3fe2ab9564304425,1 +np.float64,0xbfef2678a77e4cf1,0xbff56ff42b2797bb,1 +np.float64,0xbfab269c1c364d40,0xbfab29df1cd48779,1 +np.float64,0x3fe8ec82a271d906,0x3fec92567d7a6675,1 +np.float64,0xbfc235115f246a24,0xbfc244ee567682ea,1 +np.float64,0x3feef5bf8d7deb80,0x3ff50ad4875ee9bd,1 +np.float64,0x3fe768b5486ed16a,0x3fea421356160e65,1 +np.float64,0xbfd4255684a84aae,0xbfd47e8baf7ec7f6,1 +np.float64,0x3fc7f67f2b2fed00,0x3fc81ae83cf92dd5,1 +np.float64,0x3fe9b1b19a736364,0x3fedd4b0e24ee741,1 +np.float64,0x3fb27eb9e624fd70,0x3fb282dacd89ce28,1 +np.float64,0xbfd490b710a9216e,0xbfd4efcdeb213458,1 +np.float64,0xbfd1347b2ca268f6,0xbfd16b55dece2d38,1 +np.float64,0x3fc6a5668d2d4ad0,0x3fc6c41452c0c087,1 +np.float64,0xbfca7b209f34f640,0xbfcaac710486f6bd,1 +np.float64,0x3fc23a1a47247438,0x3fc24a047fd4c27a,1 +np.float64,0x3fdb1413a8b62828,0x3fdbf595e2d994bc,1 +np.float64,0xbfea69b396f4d367,0xbfef11bdd2b0709a,1 +np.float64,0x3fd14c9958a29934,0x3fd1846161b10422,1 +np.float64,0xbfe205f44be40be8,0xbfe325283aa3c6a8,1 +np.float64,0x3fecd03c9ef9a07a,0x3ff1ee85aaf52a01,1 +np.float64,0x3fe34281d7e68504,0x3fe4aab63e6de816,1 +np.float64,0xbfe120e2376241c4,0xbfe213023ab03939,1 +np.float64,0xbfe951edc4f2a3dc,0xbfed3615e38576f8,1 +np.float64,0x3fe5a2286f6b4450,0x3fe7c196e0ec10ed,1 +np.float64,0xbfed7a3e1f7af47c,0xbff2bcc0793555d2,1 +np.float64,0x3fe050274960a04e,0x3fe11e2e256ea5cc,1 +np.float64,0xbfcfa71f653f4e40,0xbfcffc11483d6a06,1 +np.float64,0x3f6ead2e403d5a00,0x3f6ead32f314c052,1 +np.float64,0x3fe3a2a026674540,0x3fe523bfe085f6ec,1 +np.float64,0xbfe294a62e65294c,0xbfe3d31ebd0b4ca2,1 +np.float64,0xbfb4894d06291298,0xbfb48ef4b8e256b8,1 +np.float64,0xbfc0c042c1218084,0xbfc0cc98ac2767c4,1 +np.float64,0xbfc6a32cb52d4658,0xbfc6c1d1597ed06b,1 +np.float64,0xbfd30f7777a61eee,0xbfd35aa39fee34eb,1 +np.float64,0x3fe7fc2c2eeff858,0x3feb1d8a558b5537,1 +np.float64,0x7fefffffffffffff,0x7ff8000000000000,1 +np.float64,0xbfdadf917bb5bf22,0xbfdbbbae9a9f67a0,1 +np.float64,0xbfcf0395e13e072c,0xbfcf5366015f7362,1 +np.float64,0xbfe8644c9170c899,0xbfebbc98e74a227d,1 +np.float64,0x3fc3b2d8e52765b0,0x3fc3c6f7d44cffaa,1 +np.float64,0x3fc57407b92ae810,0x3fc58e12ccdd47a1,1 +np.float64,0x3fd56a560daad4ac,0x3fd5d62b8dfcc058,1 +np.float64,0x3fd595deefab2bbc,0x3fd6046420b2f79b,1 +np.float64,0xbfd5360f50aa6c1e,0xbfd59ebaacd815b8,1 +np.float64,0x3fdfb6aababf6d54,0x3fe0970b8aac9f61,1 +np.float64,0x3ff0000000000000,0x3ff921fb54442d18,1 +np.float64,0xbfeb3a8958f67513,0xbff04872e8278c79,1 +np.float64,0x3f9e1ea6683c3d40,0x3f9e1fc326186705,1 +np.float64,0x3fe6b6d5986d6dac,0x3fe94175bd60b19d,1 +np.float64,0xbfee4d90b77c9b21,0xbff3e60e9134edc2,1 +np.float64,0x3fd806ce0cb00d9c,0x3fd8a14c4855a8f5,1 +np.float64,0x3fd54acc75aa9598,0x3fd5b4b72fcbb5df,1 +np.float64,0xbfe59761f16b2ec4,0xbfe7b2fa5d0244ac,1 +np.float64,0xbfcd4fa3513a9f48,0xbfcd92d0814a5383,1 +np.float64,0xbfdc827523b904ea,0xbfdd8c577b53053c,1 +np.float64,0xbfd4bb7f34a976fe,0xbfd51d00d9a99360,1 +np.float64,0xbfe818bc87f03179,0xbfeb48d1ea0199c5,1 +np.float64,0xbfa8a2e15c3145c0,0xbfa8a5510ba0e45c,1 +np.float64,0xbfb6d15f422da2c0,0xbfb6d922689da015,1 +np.float64,0x3fcd04eaab3a09d8,0x3fcd46131746ef08,1 +np.float64,0x3fcfb5cfbb3f6ba0,0x3fd0059d308237f3,1 +np.float64,0x3fe8dcf609f1b9ec,0x3fec7997973010b6,1 +np.float64,0xbfdf1834d7be306a,0xbfe03c1d4e2b48f0,1 +np.float64,0x3fee82ae50fd055c,0x3ff43b545066fe1a,1 +np.float64,0xbfde039c08bc0738,0xbfdf3d6ed4d2ee5c,1 +np.float64,0x3fec07389bf80e72,0x3ff1137ed0acd161,1 +np.float64,0xbfef44c010fe8980,0xbff5b488ad22a4c5,1 +np.float64,0x3f76e722e02dce00,0x3f76e72ab2759d88,1 +np.float64,0xbfcaa9e6053553cc,0xbfcadc41125fca93,1 +np.float64,0x3fed6088147ac110,0x3ff29c06c4ef35fc,1 +np.float64,0x3fd32bd836a657b0,0x3fd3785fdb75909f,1 +np.float64,0xbfeedbb1d97db764,0xbff4d87f6c82a93c,1 +np.float64,0xbfe40f31d5e81e64,0xbfe5ae292cf258a2,1 +np.float64,0x7ff8000000000000,0x7ff8000000000000,1 +np.float64,0xbfeb2b25bc76564c,0xbff039d81388550c,1 +np.float64,0x3fec5008fa78a012,0x3ff1604195801da3,1 +np.float64,0x3fce2d4f293c5aa0,0x3fce76b99c2db4da,1 +np.float64,0xbfdc435412b886a8,0xbfdd45e7b7813f1e,1 +np.float64,0x3fdf2c9d06be593c,0x3fe047cb03c141b6,1 +np.float64,0x3fddefc61ebbdf8c,0x3fdf26fb8fad9fae,1 +np.float64,0x3fab50218436a040,0x3fab537395eaf3bb,1 +np.float64,0xbfd5b95a8fab72b6,0xbfd62a191a59343a,1 +np.float64,0x3fdbf803b4b7f008,0x3fdcf211578e98c3,1 +np.float64,0xbfec8c255979184b,0xbff1a1bee108ed30,1 +np.float64,0x3fe33cdaffe679b6,0x3fe4a3a318cd994f,1 +np.float64,0x3fd8cf585cb19eb0,0x3fd97a408bf3c38c,1 +np.float64,0x3fe919dde07233bc,0x3fecdb0ea13a2455,1 +np.float64,0xbfd5ba35e4ab746c,0xbfd62b024805542d,1 +np.float64,0x3fd2f933e7a5f268,0x3fd343527565e97c,1 +np.float64,0xbfe5b9f8ddeb73f2,0xbfe7e1f772c3e438,1 +np.float64,0x3fe843cd92f0879c,0x3feb8a92d68eae3e,1 +np.float64,0xbfd096b234a12d64,0xbfd0c7beca2c6605,1 +np.float64,0xbfef3363da7e66c8,0xbff58c98dde6c27c,1 +np.float64,0x3fd51b01ddaa3604,0x3fd582109d89ead1,1 +np.float64,0x3fea0f10ff741e22,0x3fee736c2d2a2067,1 +np.float64,0x3fc276e7b724edd0,0x3fc28774520bc6d4,1 +np.float64,0xbfef9abc9f7f3579,0xbff69d49762b1889,1 +np.float64,0x3fe1539ec0e2a73e,0x3fe24f370b7687d0,1 +np.float64,0x3fad72350c3ae460,0x3fad765e7766682a,1 +np.float64,0x3fa289a47c251340,0x3fa28aae12f41646,1 +np.float64,0xbfe5c488e5eb8912,0xbfe7f05d7e7dcddb,1 +np.float64,0xbfc22ef1d7245de4,0xbfc23ebeb990a1b8,1 +np.float64,0x3fe59a0b80eb3418,0x3fe7b695fdcba1de,1 +np.float64,0xbfe9cad619f395ac,0xbfedff0514d91e2c,1 +np.float64,0x3fc8bc74eb3178e8,0x3fc8e48cb22da666,1 +np.float64,0xbfc5389a3f2a7134,0xbfc551cd6febc544,1 +np.float64,0x3fce82feb33d0600,0x3fceceecce2467ef,1 +np.float64,0x3fda346791b468d0,0x3fdaff95154a4ca6,1 +np.float64,0x3fd04501fea08a04,0x3fd073397b32607e,1 +np.float64,0xbfb6be498a2d7c90,0xbfb6c5f93aeb0e57,1 +np.float64,0x3fe1f030dd63e062,0x3fe30ad8fb97cce0,1 +np.float64,0xbfee3fb36dfc7f67,0xbff3d0a5e380b86f,1 +np.float64,0xbfa876773c30ecf0,0xbfa878d9d3df6a3f,1 +np.float64,0x3fdb58296eb6b054,0x3fdc40ceffb17f82,1 +np.float64,0xbfea16b5d8742d6c,0xbfee809b99fd6adc,1 +np.float64,0xbfdc5062b6b8a0c6,0xbfdd547623275fdb,1 +np.float64,0x3fef6db242fedb64,0x3ff61ab4cdaef467,1 +np.float64,0xbfc9f778f933eef0,0xbfca25eef1088167,1 +np.float64,0xbfd22063eba440c8,0xbfd260c8766c69cf,1 +np.float64,0x3fdd2379f2ba46f4,0x3fde40b025cb1ffa,1 +np.float64,0xbfea967af2f52cf6,0xbfef61a178774636,1 +np.float64,0x3fe4f5b49fe9eb6a,0x3fe6da8311a5520e,1 +np.float64,0x3feccde17b799bc2,0x3ff1ebd0ea228b71,1 +np.float64,0x3fe1bb76506376ec,0x3fe2cb56fca01840,1 +np.float64,0xbfef94e583ff29cb,0xbff68aeab8ba75a2,1 +np.float64,0x3fed024a55fa0494,0x3ff228ea5d456e9d,1 +np.float64,0xbfe877b2a8f0ef65,0xbfebdaa1a4712459,1 +np.float64,0x3fef687a8d7ed0f6,0x3ff60cf5fef8d448,1 +np.float64,0xbfeeb2dc8afd65b9,0xbff48dda6a906cd6,1 +np.float64,0x3fdb2e28aeb65c50,0x3fdc12620655eb7a,1 +np.float64,0x3fedc1863afb830c,0x3ff31ae823315e83,1 +np.float64,0xbfe6b1bb546d6376,0xbfe93a38163e3a59,1 +np.float64,0x3fe479c78468f390,0x3fe637e5c0fc5730,1 +np.float64,0x3fbad1fade35a3f0,0x3fbade9a43ca05cf,1 +np.float64,0xbfe2d1c563e5a38b,0xbfe41e712785900c,1 +np.float64,0xbfc08c33ed211868,0xbfc09817a752d500,1 +np.float64,0xbfecce0935f99c12,0xbff1ebfe84524037,1 +np.float64,0x3fce4ef0e73c9de0,0x3fce995638a3dc48,1 +np.float64,0xbfd2fb2343a5f646,0xbfd345592517ca18,1 +np.float64,0x3fd848f7cdb091f0,0x3fd8e8bee5f7b49a,1 +np.float64,0x3fe532b7d2ea6570,0x3fe72b9ac747926a,1 +np.float64,0x3fd616aadcac2d54,0x3fd68d692c5cad42,1 +np.float64,0x3fd7720eb3aee41c,0x3fd801206a0e1e43,1 +np.float64,0x3fee835a35fd06b4,0x3ff43c7175eb7a54,1 +np.float64,0xbfe2e8f70b65d1ee,0xbfe43b2800a947a7,1 +np.float64,0xbfed38f45d7a71e9,0xbff26acd6bde7174,1 +np.float64,0xbfc0c62661218c4c,0xbfc0d28964d66120,1 +np.float64,0x3fe97940bef2f282,0x3fed76b986a74ee3,1 +np.float64,0x3fc96f7dc532def8,0x3fc99b20044c8fcf,1 +np.float64,0xbfd60201eeac0404,0xbfd677675efaaedc,1 +np.float64,0x3fe63c0867ec7810,0x3fe894f060200140,1 +np.float64,0xbfef6144b37ec289,0xbff5fa589a515ba8,1 +np.float64,0xbfde2da0c8bc5b42,0xbfdf6d0b59e3232a,1 +np.float64,0xbfd7401612ae802c,0xbfd7cb74ddd413b9,1 +np.float64,0x3fe41c012de83802,0x3fe5be9d87da3f82,1 +np.float64,0x3fdf501609bea02c,0x3fe05c1d96a2270b,1 +np.float64,0x3fcf9fa1233f3f40,0x3fcff45598e72f07,1 +np.float64,0x3fd4e3895ea9c714,0x3fd547580d8392a2,1 +np.float64,0x3fe1e8ff5fe3d1fe,0x3fe3022a0b86a2ab,1 +np.float64,0xbfe0aa55956154ab,0xbfe18768823da589,1 +np.float64,0x3fb2a0aa26254150,0x3fb2a4e1faff1c93,1 +np.float64,0x3fd3823417a70468,0x3fd3d2f808dbb167,1 +np.float64,0xbfaed323643da640,0xbfaed7e9bef69811,1 +np.float64,0x3fe661e8c4ecc3d2,0x3fe8c9c535f43c16,1 +np.float64,0xbfa429777c2852f0,0xbfa42acd38ba02a6,1 +np.float64,0x3fb5993ea22b3280,0x3fb59fd353e47397,1 +np.float64,0x3fee62d21efcc5a4,0x3ff40788f9278ade,1 +np.float64,0xbf813fb810227f80,0xbf813fc56d8f3c53,1 +np.float64,0x3fd56205deaac40c,0x3fd5cd59671ef193,1 +np.float64,0x3fd31a4de5a6349c,0x3fd365fe401b66e8,1 +np.float64,0xbfec7cc7a478f98f,0xbff190cf69703ca4,1 +np.float64,0xbf755881a02ab100,0xbf755887f52e7794,1 +np.float64,0x3fdd1c92e6ba3924,0x3fde38efb4e8605c,1 +np.float64,0x3fdf49da80be93b4,0x3fe0588af8dd4a34,1 +np.float64,0x3fe1fcdbf2e3f9b8,0x3fe31a27b9d273f2,1 +np.float64,0x3fe2a0f18be541e4,0x3fe3e23b159ce20f,1 +np.float64,0xbfed0f1561fa1e2b,0xbff23820fc0a54ca,1 +np.float64,0x3fe34a006c669400,0x3fe4b419b9ed2b83,1 +np.float64,0xbfd51be430aa37c8,0xbfd583005a4d62e7,1 +np.float64,0x3fe5ec4e336bd89c,0x3fe826caad6b0f65,1 +np.float64,0xbfdad71b1fb5ae36,0xbfdbb25bef8b53d8,1 +np.float64,0xbfe8eac2d871d586,0xbfec8f8cac7952f9,1 +np.float64,0xbfe1d5aef663ab5e,0xbfe2eae14b7ccdfd,1 +np.float64,0x3fec11d3157823a6,0x3ff11e8279506753,1 +np.float64,0xbfe67ff1166cffe2,0xbfe8f3e61c1dfd32,1 +np.float64,0xbfd101eecda203de,0xbfd136e0e9557022,1 +np.float64,0x3fde6c9e5cbcd93c,0x3fdfb48ee7efe134,1 +np.float64,0x3fec3ede9c787dbe,0x3ff14dead1e5cc1c,1 +np.float64,0x3fe7a022086f4044,0x3fea93ce2980b161,1 +np.float64,0xbfc3b2b1b7276564,0xbfc3c6d02d60bb21,1 +np.float64,0x7ff0000000000000,0x7ff8000000000000,1 +np.float64,0x3fe60b5647ec16ac,0x3fe8517ef0544b40,1 +np.float64,0xbfd20ab654a4156c,0xbfd24a2f1b8e4932,1 +np.float64,0xbfe4aa1e2f69543c,0xbfe677005cbd2646,1 +np.float64,0xbfc831cc0b306398,0xbfc8574910d0b86d,1 +np.float64,0xbfc3143495262868,0xbfc3267961b79198,1 +np.float64,0x3fc14d64c1229ac8,0x3fc15afea90a319d,1 +np.float64,0x3fc0a5a207214b48,0x3fc0b1bd2f15c1b0,1 +np.float64,0xbfc0b8351521706c,0xbfc0c4792672d6db,1 +np.float64,0xbfdc383600b8706c,0xbfdd398429e163bd,1 +np.float64,0x3fd9e17321b3c2e8,0x3fdaa4c4d140a622,1 +np.float64,0xbfd44f079ea89e10,0xbfd4aa7d6deff4ab,1 +np.float64,0xbfc3de52a927bca4,0xbfc3f2f8f65f4c3f,1 +np.float64,0x3fe7779d566eef3a,0x3fea57f8592dbaad,1 +np.float64,0xbfe309039e661207,0xbfe462f47f9a64e5,1 +np.float64,0x3fd8e06d08b1c0dc,0x3fd98cc946e440a6,1 +np.float64,0x3fdde66c9ebbccd8,0x3fdf1c68009a8dc1,1 +np.float64,0x3fd4369c6ba86d38,0x3fd490bf460a69e4,1 +np.float64,0xbfe132252fe2644a,0xbfe22775e109cc2e,1 +np.float64,0x3fee15483c7c2a90,0x3ff39111de89036f,1 +np.float64,0xbfc1d5ee8123abdc,0xbfc1e4d66c6871a5,1 +np.float64,0x3fc851c52b30a388,0x3fc877d93fb4ae1a,1 +np.float64,0x3fdaade707b55bd0,0x3fdb85001661fffe,1 +np.float64,0xbfe79fb7f96f3f70,0xbfea9330ec27ac10,1 +np.float64,0xbfe8b0f725f161ee,0xbfec3411c0e4517a,1 +np.float64,0xbfea79f5f374f3ec,0xbfef2e9dd9270488,1 +np.float64,0x3fe0b5fe5b616bfc,0x3fe19512a36a4534,1 +np.float64,0xbfad7c622c3af8c0,0xbfad808fea96a804,1 +np.float64,0xbfe3e24dbce7c49c,0xbfe574b4c1ea9818,1 +np.float64,0xbfe80b038af01607,0xbfeb33fec279576a,1 +np.float64,0xbfef69e2ea7ed3c6,0xbff610a5593a18bc,1 +np.float64,0x3fdcc0bb39b98178,0x3fddd1f8c9a46430,1 +np.float64,0xbfba39976a347330,0xbfba4563bb5369a4,1 +np.float64,0xbfebf9768ef7f2ed,0xbff10548ab725f74,1 +np.float64,0xbfec21c066f84381,0xbff12f2803ba052f,1 +np.float64,0xbfca216a6b3442d4,0xbfca50c5e1e5748e,1 +np.float64,0x3fd5e40da4abc81c,0x3fd65783f9a22946,1 +np.float64,0x3fc235ca17246b98,0x3fc245a8f453173f,1 +np.float64,0x3fecb5b867796b70,0x3ff1d046a0bfda69,1 +np.float64,0x3fcb457fef368b00,0x3fcb7b6daa8165a7,1 +np.float64,0xbfa5ed6f7c2bdae0,0xbfa5ef27244e2e42,1 +np.float64,0x3fecf618a1f9ec32,0x3ff21a86cc104542,1 +np.float64,0x3fe9d95413f3b2a8,0x3fee178dcafa11fc,1 +np.float64,0xbfe93a5357f274a7,0xbfed0f9a565da84a,1 +np.float64,0xbfeb9e45ff773c8c,0xbff0a93cab8e258d,1 +np.float64,0x3fcbd9d0bd37b3a0,0x3fcc134e87cae241,1 +np.float64,0x3fe55d4db76aba9c,0x3fe764a0e028475a,1 +np.float64,0xbfc8a6fc71314df8,0xbfc8ceaafbfc59a7,1 +np.float64,0x3fe0615fa660c2c0,0x3fe1323611c4cbc2,1 +np.float64,0x3fb965558632cab0,0x3fb9700b84de20ab,1 +np.float64,0x8000000000000000,0x8000000000000000,1 +np.float64,0x3fe76776c6eeceee,0x3fea40403e24a9f1,1 +np.float64,0x3fe3b7f672676fec,0x3fe53ece71a1a1b1,1 +np.float64,0xbfa9b82ba4337050,0xbfa9baf15394ca64,1 +np.float64,0xbfe31faf49663f5e,0xbfe47f31b1ca73dc,1 +np.float64,0xbfcc4c6beb3898d8,0xbfcc88c5f814b2c1,1 +np.float64,0x3fd481530aa902a8,0x3fd4df8df03bc155,1 +np.float64,0x3fd47593b8a8eb28,0x3fd4d327ab78a1a8,1 +np.float64,0x3fd70e6ccbae1cd8,0x3fd7962fe8b63d46,1 +np.float64,0x3fd25191f7a4a324,0x3fd2941623c88e02,1 +np.float64,0x3fd0603ef0a0c07c,0x3fd08f64e97588dc,1 +np.float64,0xbfc653bae52ca774,0xbfc6711e5e0d8ea9,1 +np.float64,0xbfd11db8fea23b72,0xbfd153b63c6e8812,1 +np.float64,0xbfea9bde25f537bc,0xbfef6b52268e139a,1 +np.float64,0x1,0x1,1 +np.float64,0xbfefd3806d7fa701,0xbff776dcef9583ca,1 +np.float64,0xbfe0fb8cfde1f71a,0xbfe1e6e2e774a8f8,1 +np.float64,0x3fea384534f4708a,0x3feebadaa389be0d,1 +np.float64,0x3feff761c97feec4,0x3ff866157b9d072d,1 +np.float64,0x3fe7131ccb6e263a,0x3fe9c58b4389f505,1 +np.float64,0x3fe9084f7872109e,0x3fecbed0355dbc8f,1 +np.float64,0x3f708e89e0211d00,0x3f708e8cd4946b9e,1 +np.float64,0xbfe39185f067230c,0xbfe50e1cd178244d,1 +np.float64,0x3fd67cc1a9acf984,0x3fd6fa514784b48c,1 +np.float64,0xbfecaef005f95de0,0xbff1c89c9c3ef94a,1 +np.float64,0xbfe12eec81e25dd9,0xbfe223a4285bba9a,1 +np.float64,0x3fbe7f9faa3cff40,0x3fbe92363525068d,1 +np.float64,0xbfe1950b2b632a16,0xbfe29d45fc1e4ce9,1 +np.float64,0x3fe45049e6e8a094,0x3fe6020de759e383,1 +np.float64,0x3fe4d10c8969a21a,0x3fe6aa1fe42cbeb9,1 +np.float64,0xbfe9d04658f3a08d,0xbfee08370a0dbf0c,1 +np.float64,0x3fe14fb314e29f66,0x3fe24a8d73663521,1 +np.float64,0xbfef4abfe4fe9580,0xbff5c2c1ff1250ca,1 +np.float64,0xbfe6162b366c2c56,0xbfe86073ac3c6243,1 +np.float64,0x3feffe781e7ffcf0,0x3ff8d2cbedd6a1b5,1 +np.float64,0xbff0000000000000,0xbff921fb54442d18,1 +np.float64,0x3fc1dc45ad23b888,0x3fc1eb3d9bddda58,1 +np.float64,0xbfe793f6fcef27ee,0xbfea81c93d65aa64,1 +np.float64,0x3fdef6d2bbbdeda4,0x3fe029079d42efb5,1 +np.float64,0xbfdf0ac479be1588,0xbfe0346dbc95963f,1 +np.float64,0xbfd33927d7a67250,0xbfd38653f90a5b73,1 +np.float64,0xbfe248b072e49161,0xbfe37631ef6572e1,1 +np.float64,0xbfc8ceb6af319d6c,0xbfc8f7288657f471,1 +np.float64,0x3fdd7277fcbae4f0,0x3fde99886e6766ef,1 +np.float64,0xbfe0d30c6561a619,0xbfe1b72f90bf53d6,1 +np.float64,0xbfcb0fe07d361fc0,0xbfcb448e2eae9542,1 +np.float64,0xbfe351f57fe6a3eb,0xbfe4be13eef250f2,1 +np.float64,0x3fe85ec02cf0bd80,0x3febb407e2e52e4c,1 +np.float64,0x3fc8bc59b53178b0,0x3fc8e470f65800ec,1 +np.float64,0xbfd278d447a4f1a8,0xbfd2bd133c9c0620,1 +np.float64,0x3feda5cfd87b4ba0,0x3ff2f5ab4324f43f,1 +np.float64,0xbfd2b32a36a56654,0xbfd2fa09c36afd34,1 +np.float64,0xbfed4a81cb7a9504,0xbff28077a4f4fff4,1 +np.float64,0x3fdf079bf9be0f38,0x3fe0329f7fb13f54,1 +np.float64,0x3fd14097f6a28130,0x3fd177e9834ec23f,1 +np.float64,0xbfaeab11843d5620,0xbfaeafc5531eb6b5,1 +np.float64,0xbfac3f8c14387f20,0xbfac433893d53360,1 +np.float64,0xbfc139d7ed2273b0,0xbfc14743adbbe660,1 +np.float64,0x3fe78cb02cef1960,0x3fea7707f76edba9,1 +np.float64,0x3fefe16b41ffc2d6,0x3ff7bff36a7aa7b8,1 +np.float64,0x3fec5260d378a4c2,0x3ff162c588b0da38,1 +np.float64,0x3fedb146f17b628e,0x3ff304f90d3a15d1,1 +np.float64,0x3fd1fd45f7a3fa8c,0x3fd23c2dc3929e20,1 +np.float64,0x3fe0898a5ee11314,0x3fe1610c63e726eb,1 +np.float64,0x3fe7719946eee332,0x3fea4f205eecb59f,1 +np.float64,0x3fe955218972aa44,0x3fed3b530c1f7651,1 +np.float64,0x3fe0ccbf4461997e,0x3fe1afc7b4587836,1 +np.float64,0xbfe9204314f24086,0xbfece5605780e346,1 +np.float64,0xbfe552017feaa403,0xbfe755773cbd74d5,1 +np.float64,0x3fd8ce4b32b19c98,0x3fd9791c8dd44eae,1 +np.float64,0x3fef89acd9ff135a,0x3ff668f78adf7ced,1 +np.float64,0x3fc9d713ad33ae28,0x3fca04da6c293bbd,1 +np.float64,0xbfe22d9c4de45b38,0xbfe3553effadcf92,1 +np.float64,0x3fa5cda38c2b9b40,0x3fa5cf53c5787482,1 +np.float64,0x3fa878ebdc30f1e0,0x3fa87b4f2bf1d4c3,1 +np.float64,0x3fe8030353700606,0x3feb27e196928789,1 +np.float64,0x3fb50607222a0c10,0x3fb50c188ce391e6,1 +np.float64,0x3fd9ba4ab4b37494,0x3fda79fa8bd40f45,1 +np.float64,0x3fb564598e2ac8b0,0x3fb56abe42d1ba13,1 +np.float64,0xbfd1177c83a22efa,0xbfd14d3d7ef30cc4,1 +np.float64,0xbfd952cec7b2a59e,0xbfda09215d17c0ac,1 +np.float64,0x3fe1d8066663b00c,0x3fe2edb35770b8dd,1 +np.float64,0xbfc89427a3312850,0xbfc8bb7a7c389497,1 +np.float64,0xbfe86ebfd3f0dd80,0xbfebccc2ba0f506c,1 +np.float64,0x3fc390578b2720b0,0x3fc3a40cb7f5f728,1 +np.float64,0xbfd122f9b8a245f4,0xbfd15929dc57a897,1 +np.float64,0x3f8d0636d03a0c80,0x3f8d06767de576df,1 +np.float64,0xbfe4b55d8b696abb,0xbfe685be537a9637,1 +np.float64,0xbfdfd51cf9bfaa3a,0xbfe0a894fcff0c76,1 +np.float64,0xbfd37c1f52a6f83e,0xbfd3cc9593c37aad,1 +np.float64,0x3fd0e8283ea1d050,0x3fd11c25c800785a,1 +np.float64,0x3fd3160784a62c10,0x3fd36183a6c2880c,1 +np.float64,0x3fd4c66e57a98cdc,0x3fd5288fe3394eff,1 +np.float64,0x3fee2f7e3afc5efc,0x3ff3b8063eb30cdc,1 +np.float64,0xbfe526773a6a4cee,0xbfe71b4364215b18,1 +np.float64,0x3fea01181e740230,0x3fee5b65eccfd130,1 +np.float64,0xbfe51c03f76a3808,0xbfe70d5919d37587,1 +np.float64,0x3fd97e1375b2fc28,0x3fda3845da40b22b,1 +np.float64,0x3fd5c14a14ab8294,0x3fd632890d07ed03,1 +np.float64,0xbfec9b474279368e,0xbff1b28f50584fe3,1 +np.float64,0x3fe0139ca860273a,0x3fe0d7fc377f001c,1 +np.float64,0x3fdb080c9db61018,0x3fdbe85056358fa0,1 +np.float64,0xbfdd72ceb1bae59e,0xbfde99ea171661eb,1 +np.float64,0xbfe64e934fec9d26,0xbfe8aec2ef24be63,1 +np.float64,0x3fd1036a93a206d4,0x3fd1386adabe01bd,1 +np.float64,0x3febc9d4a5f793aa,0x3ff0d4c069f1e67d,1 +np.float64,0xbfe547a16fea8f43,0xbfe747902fe6fb4d,1 +np.float64,0x3fc289b0f9251360,0x3fc29a709de6bdd9,1 +np.float64,0xbfe694494a6d2892,0xbfe9108f3dc133e2,1 +np.float64,0x3fd827dfe4b04fc0,0x3fd8c4fe40532b91,1 +np.float64,0xbfe8b89418f17128,0xbfec400c5a334b2e,1 +np.float64,0x3fed5605147aac0a,0x3ff28ed1f612814a,1 +np.float64,0xbfed36af31fa6d5e,0xbff26804e1f71af0,1 +np.float64,0x3fdbb01c02b76038,0x3fdca2381558bbf0,1 +np.float64,0x3fe2a951666552a2,0x3fe3ec88f780f9e6,1 +np.float64,0x3fe662defbecc5be,0x3fe8cb1dbfca98ab,1 +np.float64,0x3fd098b1b3a13164,0x3fd0c9d064e4eaf2,1 +np.float64,0x3fefa10edeff421e,0x3ff6b1c6187b18a8,1 +np.float64,0xbfec4feb7a789fd7,0xbff16021ef37a219,1 +np.float64,0x3fd8e415bbb1c82c,0x3fd990c1f8b786bd,1 +np.float64,0xbfead5a09275ab41,0xbfefd44fab5b4f6e,1 +np.float64,0xbfe8666c16f0ccd8,0xbfebbfe0c9f2a9ae,1 +np.float64,0x3fdc962132b92c44,0x3fdda2525a6f406c,1 +np.float64,0xbfe2037f03e406fe,0xbfe3222ec2a3449e,1 +np.float64,0xbfec82c27e790585,0xbff197626ea9df1e,1 +np.float64,0x3fd2b4e03ca569c0,0x3fd2fbd3c7fda23e,1 +np.float64,0xbfe9b0dee5f361be,0xbfedd34f6d3dfe8a,1 +np.float64,0x3feef45cd17de8ba,0x3ff508180687b591,1 +np.float64,0x3f82c39bf0258700,0x3f82c3ad24c3b3f1,1 +np.float64,0xbfca848cfd350918,0xbfcab612ce258546,1 +np.float64,0x3fd6442aaaac8854,0x3fd6bdea54016e48,1 +np.float64,0x3fe550799e6aa0f4,0x3fe75369c9ea5b1e,1 +np.float64,0xbfe0e9d5a361d3ac,0xbfe1d20011139d89,1 +np.float64,0x3fbfc9ff1e3f9400,0x3fbfdf0ea6885c80,1 +np.float64,0xbfa187e8b4230fd0,0xbfa188c95072092e,1 +np.float64,0x3fcd28c9533a5190,0x3fcd6ae879c21b47,1 +np.float64,0x3fc6227ec52c4500,0x3fc63f1fbb441d29,1 +np.float64,0x3fe9b7a2ed736f46,0x3feddeab49b2d176,1 +np.float64,0x3fd4aee93da95dd4,0x3fd50fb3b71e0339,1 +np.float64,0xbfe164dacf62c9b6,0xbfe263bb2f7dd5d9,1 +np.float64,0x3fec62e525f8c5ca,0x3ff17496416d9921,1 +np.float64,0x3fdd363ee0ba6c7c,0x3fde55c6a49a5f86,1 +np.float64,0x3fe65cbf75ecb97e,0x3fe8c28d31ff3ebd,1 +np.float64,0xbfe76d27ca6eda50,0xbfea4899e3661425,1 +np.float64,0xbfc305738d260ae8,0xbfc3178dcfc9d30f,1 +np.float64,0xbfd3aa2a54a75454,0xbfd3fcf1e1ce8328,1 +np.float64,0x3fd1609fc9a2c140,0x3fd1992efa539b9f,1 +np.float64,0xbfac1291bc382520,0xbfac162cc7334b4d,1 +np.float64,0xbfedb461ea7b68c4,0xbff309247850455d,1 +np.float64,0xbfe8d2adf8f1a55c,0xbfec6947be90ba92,1 +np.float64,0xbfd7128965ae2512,0xbfd79a9855bcfc5a,1 +np.float64,0x3fe8deb09471bd62,0x3fec7c56b3aee531,1 +np.float64,0xbfe5f4d329ebe9a6,0xbfe8327ea8189af8,1 +np.float64,0xbfd3b46ac9a768d6,0xbfd407b80b12ff17,1 +np.float64,0x3fec899d7cf9133a,0x3ff19ef26baca36f,1 +np.float64,0xbfec192fd5783260,0xbff126306e507fd0,1 +np.float64,0x3fe945bdaef28b7c,0x3fed222f787310bf,1 +np.float64,0xbfeff9635d7ff2c7,0xbff87d6773f318eb,1 +np.float64,0xbfd604b81cac0970,0xbfd67a4aa852559a,1 +np.float64,0x3fcd1cc9d53a3990,0x3fcd5e962e237c24,1 +np.float64,0xbfed77b0fffaef62,0xbff2b97a1c9b6483,1 +np.float64,0xbfc9c69325338d28,0xbfc9f401500402fb,1 +np.float64,0xbfdf97e246bf2fc4,0xbfe0855601ea9db3,1 +np.float64,0x3fc7e6304f2fcc60,0x3fc80a4e718504cd,1 +np.float64,0x3fec3b599e7876b4,0x3ff14a2d1b9c68e6,1 +np.float64,0xbfe98618e1f30c32,0xbfed8bfbb31c394a,1 +np.float64,0xbfe59b3c0feb3678,0xbfe7b832d6df81de,1 +np.float64,0xbfe54ce2fe6a99c6,0xbfe74e9a85be4116,1 +np.float64,0x3fc9db49cb33b690,0x3fca092737ef500a,1 +np.float64,0xbfb4a922ae295248,0xbfb4aee4e39078a9,1 +np.float64,0xbfd0e542e0a1ca86,0xbfd11925208d66af,1 +np.float64,0x3fd70543f2ae0a88,0x3fd78c5e9238a3ee,1 +np.float64,0x3fd67f7a7facfef4,0x3fd6fd3998df8545,1 +np.float64,0xbfe40b643d6816c8,0xbfe5a947e427f298,1 +np.float64,0xbfcd85f69b3b0bec,0xbfcdcaa24b75f1a3,1 +np.float64,0x3fec705fb4f8e0c0,0x3ff1833c82163ee2,1 +np.float64,0x3fb37650ea26eca0,0x3fb37b20c16fb717,1 +np.float64,0x3fe5ebfa55ebd7f4,0x3fe826578d716e70,1 +np.float64,0x3fe991dfe5f323c0,0x3fed9f8a4bf1f588,1 +np.float64,0xbfd658bd0aacb17a,0xbfd6d3dd06e54900,1 +np.float64,0xbfc24860252490c0,0xbfc258701a0b9290,1 +np.float64,0xbfefb8d763ff71af,0xbff705b6ea4a569d,1 +np.float64,0x3fb8fcb4ae31f970,0x3fb906e809e7899f,1 +np.float64,0x3fce6343cb3cc688,0x3fceae41d1629625,1 +np.float64,0xbfd43d5a11a87ab4,0xbfd497da25687e07,1 +np.float64,0xbfe9568851f2ad11,0xbfed3d9e5fe83a76,1 +np.float64,0x3fe1b66153e36cc2,0x3fe2c53c7e016271,1 +np.float64,0x3fef27452bfe4e8a,0x3ff571b3486ed416,1 +np.float64,0x3fca87c0a7350f80,0x3fcab958a7bb82d4,1 +np.float64,0xbfd8776a8fb0eed6,0xbfd91afaf2f50edf,1 +np.float64,0x3fe9522a76f2a454,0x3fed3679264e1525,1 +np.float64,0x3fea14ff2cf429fe,0x3fee7da6431cc316,1 +np.float64,0x3fe970618bf2e0c4,0x3fed68154d54dd97,1 +np.float64,0x3fd3410cfca68218,0x3fd38e9b21792240,1 +np.float64,0xbf6a8070c0350100,0xbf6a8073c7c34517,1 +np.float64,0xbfbe449de23c8938,0xbfbe56c8e5e4d98b,1 +np.float64,0x3fedbc92e27b7926,0x3ff314313216d8e6,1 +np.float64,0xbfe3be4706677c8e,0xbfe546d3ceb85aea,1 +np.float64,0x3fe30cd6d76619ae,0x3fe467b6f2664a8d,1 +np.float64,0x3fd7d69b21afad38,0x3fd86d54284d05ad,1 +np.float64,0xbfe501001fea0200,0xbfe6e978afcff4d9,1 +np.float64,0xbfe44ba3d8e89748,0xbfe5fc0a31cd1e3e,1 +np.float64,0x3fec52f7c078a5f0,0x3ff16367acb209b2,1 +np.float64,0xbfcb19efcb3633e0,0xbfcb4ed9235a7d47,1 +np.float64,0xbfab86796c370cf0,0xbfab89df7bf15710,1 +np.float64,0xbfb962feda32c600,0xbfb96db1e1679c98,1 +np.float64,0x3fe0dd14e861ba2a,0x3fe1c2fc72810567,1 +np.float64,0x3fe41bcc6de83798,0x3fe5be59b7f9003b,1 +np.float64,0x3fc82f4c4f305e98,0x3fc854bd9798939f,1 +np.float64,0xbfcd143a613a2874,0xbfcd55cbd1619d84,1 +np.float64,0xbfd52da61baa5b4c,0xbfd595d0b3543439,1 +np.float64,0xbfb71b4a8e2e3698,0xbfb7235a4ab8432f,1 +np.float64,0xbfec141a19782834,0xbff120e1e39fc856,1 +np.float64,0xbfdba9319db75264,0xbfdc9a8ca2578bb2,1 +np.float64,0xbfbce5d74639cbb0,0xbfbcf5a4878cfa51,1 +np.float64,0x3fde67f7b3bccff0,0x3fdfaf45a9f843ad,1 +np.float64,0xbfe12d87bc625b10,0xbfe221fd4476eb71,1 +np.float64,0x3fe35b8f6be6b71e,0x3fe4ca20f65179e1,1 +np.float64,0xbfdbada1d3b75b44,0xbfdc9f78b19f93d1,1 +np.float64,0xbfc60159c52c02b4,0xbfc61d79b879f598,1 +np.float64,0x3fd6b81c38ad7038,0x3fd739c27bfa16d8,1 +np.float64,0xbfd646a253ac8d44,0xbfd6c08c19612bbb,1 +np.float64,0xbfe6babef0ed757e,0xbfe94703d0bfa311,1 +np.float64,0xbfed5671f1faace4,0xbff28f5a3f3683d0,1 +np.float64,0x3fc01d1e85203a40,0x3fc02817ec0dfd38,1 +np.float64,0xbfe9188a61f23115,0xbfecd8eb5da84223,1 +np.float64,0x3fdca3bab9b94774,0x3fddb1868660c239,1 +np.float64,0xbfa255750c24aaf0,0xbfa25675f7b36343,1 +np.float64,0x3fb3602db626c060,0x3fb364ed2d5b2876,1 +np.float64,0xbfd30a14bda6142a,0xbfd354ff703b8862,1 +np.float64,0xbfe1cfe381639fc7,0xbfe2e3e720b968c8,1 +np.float64,0xbfd2af6a4fa55ed4,0xbfd2f61e190bcd1f,1 +np.float64,0xbfe93c50937278a1,0xbfed12d64bb10d73,1 +np.float64,0x3fddd8bc44bbb178,0x3fdf0ced7f9005cc,1 +np.float64,0x3fdb2bc73cb65790,0x3fdc0fc0e18e425e,1 +np.float64,0xbfd073f6aba0e7ee,0xbfd0a3cb5468a961,1 +np.float64,0x3fed4bad7b7a975a,0x3ff281ebeb75e414,1 +np.float64,0xbfdc75b50bb8eb6a,0xbfdd7e1a7631cb22,1 +np.float64,0x3fd458a90fa8b154,0x3fd4b4a5817248ce,1 +np.float64,0x3feead5db57d5abc,0x3ff484286fab55ff,1 +np.float64,0x3fb3894382271280,0x3fb38e217b4e7905,1 +np.float64,0xffefffffffffffff,0x7ff8000000000000,1 +np.float64,0xbfe428212ae85042,0xbfe5ce36f226bea8,1 +np.float64,0xbfc08b39f7211674,0xbfc0971b93ebc7ad,1 +np.float64,0xbfc2e7cf5525cfa0,0xbfc2f994eb72b623,1 +np.float64,0xbfdb0d85afb61b0c,0xbfdbee5a2de3c5db,1 +np.float64,0xfff0000000000000,0x7ff8000000000000,1 +np.float64,0xbfd0d36af7a1a6d6,0xbfd106a5f05ef6ff,1 +np.float64,0xbfc333d0912667a0,0xbfc3467162b7289a,1 +np.float64,0x3fcdababc53b5758,0x3fcdf16458c20fa8,1 +np.float64,0x3fd0821b38a10438,0x3fd0b26e3e0b9185,1 +np.float64,0x0,0x0,1 +np.float64,0x3feb7f70edf6fee2,0x3ff08ae81854bf20,1 +np.float64,0x3fe6e075716dc0ea,0x3fe97cc5254be6ff,1 +np.float64,0x3fea13b682f4276e,0x3fee7b6f18073b5b,1 diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arcsinh.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arcsinh.csv new file mode 100644 index 0000000..9eedb1a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arcsinh.csv @@ -0,0 +1,1429 @@ +dtype,input,output,ulperrortol +np.float32,0xbf24142a,0xbf1a85ef,2 +np.float32,0x3e71cf91,0x3e6f9e37,2 +np.float32,0xe52a7,0xe52a7,2 +np.float32,0x3ef1e074,0x3ee9add9,2 +np.float32,0x806160ac,0x806160ac,2 +np.float32,0x7e2d59a2,0x42af4798,2 +np.float32,0xbf32cac9,0xbf26bf96,2 +np.float32,0x3f081701,0x3f026142,2 +np.float32,0x3f23cc88,0x3f1a499c,2 +np.float32,0xbf090d94,0xbf033ad0,2 +np.float32,0x803af2fc,0x803af2fc,2 +np.float32,0x807eb17e,0x807eb17e,2 +np.float32,0x5c0d8e,0x5c0d8e,2 +np.float32,0x3f7b79d2,0x3f5e6b1d,2 +np.float32,0x806feeae,0x806feeae,2 +np.float32,0x3e4b423a,0x3e49f274,2 +np.float32,0x3f49e5ac,0x3f394a41,2 +np.float32,0x3f18cd4e,0x3f10ef35,2 +np.float32,0xbed75734,0xbed17322,2 +np.float32,0x7f591151,0x42b28085,2 +np.float32,0xfefe9da6,0xc2b16f51,2 +np.float32,0xfeac90fc,0xc2b0a82a,2 +np.float32,0x805c198e,0x805c198e,2 +np.float32,0x7f66d6df,0x42b2a004,2 +np.float32,0x505438,0x505438,2 +np.float32,0xbf39a209,0xbf2c5255,2 +np.float32,0x7fa00000,0x7fe00000,2 +np.float32,0xc84cb,0xc84cb,2 +np.float32,0x7f07d6f5,0x42b19088,2 +np.float32,0x79d7e4,0x79d7e4,2 +np.float32,0xff32f6a0,0xc2b21db1,2 +np.float32,0x7c005c05,0x42a9222e,2 +np.float32,0x3ec449aa,0x3ebfc5ae,2 +np.float32,0x800ec323,0x800ec323,2 +np.float32,0xff1c904c,0xc2b1d93a,2 +np.float32,0x7f4eca52,0x42b267b0,2 +np.float32,0x3ee06540,0x3ed9c514,2 +np.float32,0x6aab4,0x6aab4,2 +np.float32,0x3e298d8c,0x3e28c99e,2 +np.float32,0xbf38d162,0xbf2ba94a,2 +np.float32,0x2d9083,0x2d9083,2 +np.float32,0x7eae5032,0x42b0ad52,2 +np.float32,0x3ead5b3c,0x3eaa3443,2 +np.float32,0x806fef66,0x806fef66,2 +np.float32,0x3f5b614e,0x3f46ca71,2 +np.float32,0xbf4c906a,0xbf3b60fc,2 +np.float32,0x8049453e,0x8049453e,2 +np.float32,0x3d305220,0x3d304432,2 +np.float32,0x2e1a89,0x2e1a89,2 +np.float32,0xbf4e74ec,0xbf3cdacf,2 +np.float32,0x807a827a,0x807a827a,2 +np.float32,0x80070745,0x80070745,2 +np.float32,0xbe1ba2fc,0xbe1b0b28,2 +np.float32,0xbe5131d0,0xbe4fc421,2 +np.float32,0x5bfd98,0x5bfd98,2 +np.float32,0xbd8e1a48,0xbd8dfd27,2 +np.float32,0x8006c160,0x8006c160,2 +np.float32,0x346490,0x346490,2 +np.float32,0xbdbdf060,0xbdbdaaf0,2 +np.float32,0x3ea9d0c4,0x3ea6d8c7,2 +np.float32,0xbf2aaa28,0xbf200916,2 +np.float32,0xbf160c26,0xbf0e9047,2 +np.float32,0x80081fd4,0x80081fd4,2 +np.float32,0x7db44283,0x42adf8b6,2 +np.float32,0xbf1983f8,0xbf118bf5,2 +np.float32,0x2c4a35,0x2c4a35,2 +np.float32,0x6165a7,0x6165a7,2 +np.float32,0xbe776b44,0xbe75129f,2 +np.float32,0xfe81841a,0xc2b0153b,2 +np.float32,0xbf7d1b2f,0xbf5f9461,2 +np.float32,0x80602d36,0x80602d36,2 +np.float32,0xfe8d5046,0xc2b041dd,2 +np.float32,0xfe5037bc,0xc2afa56d,2 +np.float32,0x4bbea6,0x4bbea6,2 +np.float32,0xfea039de,0xc2b0822d,2 +np.float32,0x7ea627a4,0x42b094c7,2 +np.float32,0x3f556198,0x3f423591,2 +np.float32,0xfedbae04,0xc2b123c1,2 +np.float32,0xbe30432c,0xbe2f6744,2 +np.float32,0x80202c77,0x80202c77,2 +np.float32,0xff335cc1,0xc2b21ed5,2 +np.float32,0x3e1e1ebe,0x3e1d7f95,2 +np.float32,0x8021c9c0,0x8021c9c0,2 +np.float32,0x7dc978,0x7dc978,2 +np.float32,0xff6cfabc,0xc2b2ad75,2 +np.float32,0x7f2bd542,0x42b208e0,2 +np.float32,0x53bf33,0x53bf33,2 +np.float32,0x804e04bb,0x804e04bb,2 +np.float32,0x3f30d2f9,0x3f2521ca,2 +np.float32,0x3dfde876,0x3dfd4316,2 +np.float32,0x46f8b1,0x46f8b1,2 +np.float32,0xbd5f9e20,0xbd5f81ba,2 +np.float32,0x807d6a22,0x807d6a22,2 +np.float32,0xff3881da,0xc2b22d50,2 +np.float32,0x1b1cb5,0x1b1cb5,2 +np.float32,0x3f75f2d0,0x3f5a7435,2 +np.float32,0xfee39c1a,0xc2b135e9,2 +np.float32,0x7f79f14a,0x42b2c8b9,2 +np.float32,0x8000e2d1,0x8000e2d1,2 +np.float32,0xab779,0xab779,2 +np.float32,0xbede6690,0xbed7f102,2 +np.float32,0x76e20d,0x76e20d,2 +np.float32,0x3ed714cb,0x3ed135e9,2 +np.float32,0xbeaa6f44,0xbea76f31,2 +np.float32,0x7f7dc8b1,0x42b2d089,2 +np.float32,0x108cb2,0x108cb2,2 +np.float32,0x7d37ba82,0x42ac9f94,2 +np.float32,0x3f31d068,0x3f25f221,2 +np.float32,0x8010a331,0x8010a331,2 +np.float32,0x3f2fdc7c,0x3f2456cd,2 +np.float32,0x7f7a9a67,0x42b2ca13,2 +np.float32,0x3f2acb31,0x3f202492,2 +np.float32,0x7f54fa94,0x42b276c9,2 +np.float32,0x3ebf8a70,0x3ebb553c,2 +np.float32,0x7f75b1a7,0x42b2bff2,2 +np.float32,0x7daebe07,0x42ade8cc,2 +np.float32,0xbd3a3ef0,0xbd3a2e86,2 +np.float32,0x8078ec9e,0x8078ec9e,2 +np.float32,0x3eda206a,0x3ed403ec,2 +np.float32,0x3f7248f2,0x3f57cd77,2 +np.float32,0x805d55ba,0x805d55ba,2 +np.float32,0xff30dc3e,0xc2b217a3,2 +np.float32,0xbe12b27c,0xbe123333,2 +np.float32,0xbf6ed9cf,0xbf554cd0,2 +np.float32,0xbed9eb5c,0xbed3d31c,2 +np.float32,0xbf1c9aea,0xbf14307b,2 +np.float32,0x3f540ac4,0x3f412de2,2 +np.float32,0x800333ac,0x800333ac,2 +np.float32,0x3f74cdb4,0x3f59a09a,2 +np.float32,0xbf41dc41,0xbf32ee6f,2 +np.float32,0xff2c7804,0xc2b20ac4,2 +np.float32,0x514493,0x514493,2 +np.float32,0xbddf1220,0xbddea1cf,2 +np.float32,0xfeaf74de,0xc2b0b0ab,2 +np.float32,0xfe5dfb30,0xc2afc633,2 +np.float32,0xbf4785c4,0xbf376bdb,2 +np.float32,0x80191cd3,0x80191cd3,2 +np.float32,0xfe44f708,0xc2af88fb,2 +np.float32,0x3d4cd8a0,0x3d4cc2ca,2 +np.float32,0x7f572eff,0x42b27c0f,2 +np.float32,0x8031bacb,0x8031bacb,2 +np.float32,0x7f2ea684,0x42b21133,2 +np.float32,0xbea1976a,0xbe9f05bb,2 +np.float32,0x3d677b41,0x3d675bc1,2 +np.float32,0x3f61bf24,0x3f4b9870,2 +np.float32,0x7ef55ddf,0x42b15c5f,2 +np.float32,0x3eabcb20,0x3ea8b91c,2 +np.float32,0xff73d9ec,0xc2b2bc18,2 +np.float32,0x77b9f5,0x77b9f5,2 +np.float32,0x4c6c6c,0x4c6c6c,2 +np.float32,0x7ed09c94,0x42b10949,2 +np.float32,0xdeeec,0xdeeec,2 +np.float32,0x7eac5858,0x42b0a782,2 +np.float32,0x7e190658,0x42af07bd,2 +np.float32,0xbe3c8980,0xbe3b7ce2,2 +np.float32,0x8059e86e,0x8059e86e,2 +np.float32,0xff201836,0xc2b1e4a5,2 +np.float32,0xbeac109c,0xbea8fafb,2 +np.float32,0x7edd1e2b,0x42b12718,2 +np.float32,0x639cd8,0x639cd8,2 +np.float32,0x3f5e4cae,0x3f490059,2 +np.float32,0x3d84c185,0x3d84a9c4,2 +np.float32,0xbe8c1130,0xbe8a605b,2 +np.float32,0x80000000,0x80000000,2 +np.float32,0x3f1da5e4,0x3f151404,2 +np.float32,0x7f75a873,0x42b2bfdf,2 +np.float32,0xbd873540,0xbd871c28,2 +np.float32,0xbe8e5e10,0xbe8c9808,2 +np.float32,0x7f004bf2,0x42b17347,2 +np.float32,0x800000,0x800000,2 +np.float32,0xbf6d6b79,0xbf544095,2 +np.float32,0x7ed7b563,0x42b11a6a,2 +np.float32,0x80693745,0x80693745,2 +np.float32,0x3ee0f608,0x3eda49a8,2 +np.float32,0xfe1285a4,0xc2aef181,2 +np.float32,0x72d946,0x72d946,2 +np.float32,0x6a0dca,0x6a0dca,2 +np.float32,0x3f5c9df6,0x3f47ba99,2 +np.float32,0xff002af6,0xc2b172c4,2 +np.float32,0x3f4ac98f,0x3f39fd0a,2 +np.float32,0x8066acf7,0x8066acf7,2 +np.float32,0xbcaa4e60,0xbcaa4b3c,2 +np.float32,0x80162813,0x80162813,2 +np.float32,0xff34b318,0xc2b222a2,2 +np.float32,0x7f1ce33c,0x42b1da49,2 +np.float32,0x3f0e55ab,0x3f07ddb0,2 +np.float32,0x7c75d996,0x42aa6eec,2 +np.float32,0xbf221bc6,0xbf18dc89,2 +np.float32,0x3f5a1a4c,0x3f45d1d4,2 +np.float32,0x7f2451b8,0x42b1f1fb,2 +np.float32,0x3ec55ca0,0x3ec0c655,2 +np.float32,0x3f752dc2,0x3f59e600,2 +np.float32,0xbe33f638,0xbe330c4d,2 +np.float32,0x3e2a9148,0x3e29c9d8,2 +np.float32,0x3f3362a1,0x3f273c01,2 +np.float32,0x5f83b3,0x5f83b3,2 +np.float32,0x3e362488,0x3e353216,2 +np.float32,0x140bcf,0x140bcf,2 +np.float32,0x7e3e96df,0x42af7822,2 +np.float32,0xbebc7082,0xbeb86ce6,2 +np.float32,0xbe92a92e,0xbe90b9d2,2 +np.float32,0xff3d8afc,0xc2b23b19,2 +np.float32,0x804125e3,0x804125e3,2 +np.float32,0x3f3675d1,0x3f29bedb,2 +np.float32,0xff70bb09,0xc2b2b57f,2 +np.float32,0x3f29681c,0x3f1efcd2,2 +np.float32,0xbdc70380,0xbdc6b3a8,2 +np.float32,0x54e0dd,0x54e0dd,2 +np.float32,0x3d545de0,0x3d54458c,2 +np.float32,0x7f800000,0x7f800000,2 +np.float32,0x8014a4c2,0x8014a4c2,2 +np.float32,0xbe93f58a,0xbe91f938,2 +np.float32,0x17de33,0x17de33,2 +np.float32,0xfefb679a,0xc2b168d2,2 +np.float32,0xbf23423e,0xbf19d511,2 +np.float32,0x7e893fa1,0x42b032ec,2 +np.float32,0x3f44fe2d,0x3f356bda,2 +np.float32,0xbebb2e78,0xbeb73e8f,2 +np.float32,0x3f5632e0,0x3f42d633,2 +np.float32,0x3ddd8698,0x3ddd1896,2 +np.float32,0x80164ea7,0x80164ea7,2 +np.float32,0x80087b37,0x80087b37,2 +np.float32,0xbf06ab1e,0xbf011f95,2 +np.float32,0x3db95524,0x3db9149f,2 +np.float32,0x7aa1fbb3,0x42a570a1,2 +np.float32,0xbd84fc48,0xbd84e467,2 +np.float32,0x3d65c6f5,0x3d65a826,2 +np.float32,0xfe987800,0xc2b068c4,2 +np.float32,0x7ec59532,0x42b0ed7a,2 +np.float32,0x3ea0232c,0x3e9da29a,2 +np.float32,0x80292a08,0x80292a08,2 +np.float32,0x734cfe,0x734cfe,2 +np.float32,0x3f3b6d63,0x3f2dc596,2 +np.float32,0x3f27bcc1,0x3f1d97e6,2 +np.float32,0xfe1da554,0xc2af16f9,2 +np.float32,0x7c91f5,0x7c91f5,2 +np.float32,0xfe4e78cc,0xc2afa11e,2 +np.float32,0x7e4b4e08,0x42af9933,2 +np.float32,0xfe0949ec,0xc2aed02e,2 +np.float32,0x7e2f057f,0x42af4c81,2 +np.float32,0xbf200ae0,0xbf171ce1,2 +np.float32,0x3ebcc244,0x3eb8b99e,2 +np.float32,0xbf68f58d,0xbf50f7aa,2 +np.float32,0x4420b1,0x4420b1,2 +np.float32,0x3f5b61bf,0x3f46cac7,2 +np.float32,0x3fec78,0x3fec78,2 +np.float32,0x7f4183c8,0x42b245b7,2 +np.float32,0xbf10587c,0xbf099ee2,2 +np.float32,0x0,0x0,2 +np.float32,0x7ec84dc3,0x42b0f47a,2 +np.float32,0x3f5fbd7b,0x3f4a166d,2 +np.float32,0xbd884eb8,0xbd883502,2 +np.float32,0xfe3f10a4,0xc2af7969,2 +np.float32,0xff3f4920,0xc2b23fc9,2 +np.float32,0x8013900f,0x8013900f,2 +np.float32,0x8003529d,0x8003529d,2 +np.float32,0xbf032384,0xbefbfb3c,2 +np.float32,0xff418c7c,0xc2b245ce,2 +np.float32,0xbec0aad0,0xbebc633b,2 +np.float32,0xfdbff178,0xc2ae18de,2 +np.float32,0x68ab15,0x68ab15,2 +np.float32,0xbdfc4a88,0xbdfba848,2 +np.float32,0xbf5adec6,0xbf466747,2 +np.float32,0x807d5dcc,0x807d5dcc,2 +np.float32,0x61d144,0x61d144,2 +np.float32,0x807e3a03,0x807e3a03,2 +np.float32,0x1872f2,0x1872f2,2 +np.float32,0x7f2a272c,0x42b203d8,2 +np.float32,0xfe7f8314,0xc2b00e3a,2 +np.float32,0xbe42aeac,0xbe418737,2 +np.float32,0x8024b614,0x8024b614,2 +np.float32,0xbe41b6b8,0xbe40939a,2 +np.float32,0xa765c,0xa765c,2 +np.float32,0x7ea74f4b,0x42b09853,2 +np.float32,0x7f7ef631,0x42b2d2e7,2 +np.float32,0x7eaef5e6,0x42b0af38,2 +np.float32,0xff733d85,0xc2b2bacf,2 +np.float32,0x537ac0,0x537ac0,2 +np.float32,0xbeca4790,0xbec55b1d,2 +np.float32,0x80117314,0x80117314,2 +np.float32,0xfe958536,0xc2b05ec5,2 +np.float32,0x8066ecc2,0x8066ecc2,2 +np.float32,0xbf56baf3,0xbf433e82,2 +np.float32,0x1f7fd7,0x1f7fd7,2 +np.float32,0x3e942104,0x3e9222fc,2 +np.float32,0xfeaffe82,0xc2b0b23c,2 +np.float32,0xfe0e02b0,0xc2aee17e,2 +np.float32,0xbf800000,0xbf61a1b3,2 +np.float32,0x800b7e49,0x800b7e49,2 +np.float32,0x6c514f,0x6c514f,2 +np.float32,0xff800000,0xff800000,2 +np.float32,0x7f7d9a45,0x42b2d02b,2 +np.float32,0x800c9c69,0x800c9c69,2 +np.float32,0x274b14,0x274b14,2 +np.float32,0xbf4b22b0,0xbf3a42e2,2 +np.float32,0x63e5ae,0x63e5ae,2 +np.float32,0xbe18facc,0xbe186a90,2 +np.float32,0x7e137351,0x42aef4bd,2 +np.float32,0x80518ffd,0x80518ffd,2 +np.float32,0xbf0a8ffc,0xbf048f0d,2 +np.float32,0x841d,0x841d,2 +np.float32,0x7edfdc9e,0x42b12d69,2 +np.float32,0xfd1092b0,0xc2ac24de,2 +np.float32,0x7e2c9bdf,0x42af4566,2 +np.float32,0x7f7fffff,0x42b2d4fc,2 +np.float32,0x3f4954a6,0x3f38d853,2 +np.float32,0xbe83efd2,0xbe8284c3,2 +np.float32,0x800e8e02,0x800e8e02,2 +np.float32,0x78ad39,0x78ad39,2 +np.float32,0x7eb0f967,0x42b0b514,2 +np.float32,0xbe39aa94,0xbe38a9ee,2 +np.float32,0x80194e7b,0x80194e7b,2 +np.float32,0x3cf3a340,0x3cf39a0f,2 +np.float32,0x3ed3117a,0x3ecd8173,2 +np.float32,0x7f530b11,0x42b2721c,2 +np.float32,0xff756ba2,0xc2b2bf60,2 +np.float32,0x15ea25,0x15ea25,2 +np.float32,0x803cbb64,0x803cbb64,2 +np.float32,0x3f34722d,0x3f281a2c,2 +np.float32,0x3ddd88e0,0x3ddd1adb,2 +np.float32,0x3f54244c,0x3f41418b,2 +np.float32,0x3e0adb98,0x3e0a6f8b,2 +np.float32,0x80800000,0x80800000,2 +np.float32,0x58902b,0x58902b,2 +np.float32,0xfe3b50b8,0xc2af6f43,2 +np.float32,0xfe0846d0,0xc2aecc64,2 +np.float32,0xbe0299d0,0xbe023fd4,2 +np.float32,0x18dde6,0x18dde6,2 +np.float32,0x8039fe8b,0x8039fe8b,2 +np.float32,0x8015d179,0x8015d179,2 +np.float32,0x3f551322,0x3f41f947,2 +np.float32,0x2ab387,0x2ab387,2 +np.float32,0xbf7e311e,0xbf6059d0,2 +np.float32,0xbdba58a8,0xbdba1713,2 +np.float32,0xbf1d008a,0xbf148724,2 +np.float32,0xbf6b9c97,0xbf52ec98,2 +np.float32,0x802acf04,0x802acf04,2 +np.float32,0x1,0x1,2 +np.float32,0xbe9e16d6,0xbe9bade3,2 +np.float32,0xbf048a14,0xbefe78c7,2 +np.float32,0x7e432ad3,0x42af8449,2 +np.float32,0xbdcc7fe0,0xbdcc2944,2 +np.float32,0x6dfc27,0x6dfc27,2 +np.float32,0xfef6eed8,0xc2b15fa1,2 +np.float32,0xbeeff6e8,0xbee7f2e4,2 +np.float32,0x7e3a6ca8,0x42af6cd2,2 +np.float32,0xff2c82e8,0xc2b20ae4,2 +np.float32,0x3e9f8d74,0x3e9d13b0,2 +np.float32,0x7ea36191,0x42b08c29,2 +np.float32,0x7f734bed,0x42b2baed,2 +np.float32,0x7f2df96d,0x42b20f37,2 +np.float32,0x5036fd,0x5036fd,2 +np.float32,0x806eab38,0x806eab38,2 +np.float32,0xbe9db90e,0xbe9b5446,2 +np.float32,0xfeef6fac,0xc2b14fd9,2 +np.float32,0xc2bf7,0xc2bf7,2 +np.float32,0xff53ec3d,0xc2b2743d,2 +np.float32,0x7e837637,0x42b01cde,2 +np.float32,0xbefb5934,0xbef23662,2 +np.float32,0x3f6cec80,0x3f53e371,2 +np.float32,0x3e86e7de,0x3e85643f,2 +np.float32,0x3f09cb42,0x3f03e1ef,2 +np.float32,0xbec3d236,0xbebf5620,2 +np.float32,0xfedef246,0xc2b12b50,2 +np.float32,0xbf08d6a8,0xbf030a62,2 +np.float32,0x8036cbf9,0x8036cbf9,2 +np.float32,0x3f74d3e3,0x3f59a512,2 +np.float32,0x6a600c,0x6a600c,2 +np.float32,0xfd1295b0,0xc2ac2bf1,2 +np.float32,0xbeb61142,0xbeb26efa,2 +np.float32,0x80216556,0x80216556,2 +np.float32,0xbf1fa0f6,0xbf16c30a,2 +np.float32,0x3e0af8e1,0x3e0a8c90,2 +np.float32,0x80434709,0x80434709,2 +np.float32,0x49efd9,0x49efd9,2 +np.float32,0x7f7cce6c,0x42b2ce8f,2 +np.float32,0x6e5450,0x6e5450,2 +np.float32,0x7f0fc115,0x42b1ad86,2 +np.float32,0x632db0,0x632db0,2 +np.float32,0x3f6f4c2a,0x3f55a064,2 +np.float32,0x7ec4f273,0x42b0ebd3,2 +np.float32,0x61ae1e,0x61ae1e,2 +np.float32,0x5f47c4,0x5f47c4,2 +np.float32,0xbf3c8f62,0xbf2eaf54,2 +np.float32,0xfca38900,0xc2ab0113,2 +np.float32,0x3ec89d52,0x3ec3ce78,2 +np.float32,0xbe0e3f70,0xbe0dcb53,2 +np.float32,0x805d3156,0x805d3156,2 +np.float32,0x3eee33f8,0x3ee65a4e,2 +np.float32,0xbeda7e9a,0xbed45a90,2 +np.float32,0x7e2fac7b,0x42af4e69,2 +np.float32,0x7efd0e28,0x42b16c2c,2 +np.float32,0x3f0c7b17,0x3f063e46,2 +np.float32,0xbf395bec,0xbf2c198f,2 +np.float32,0xfdf1c3f8,0xc2ae8f05,2 +np.float32,0xbe11f4e4,0xbe117783,2 +np.float32,0x7eddc901,0x42b128a3,2 +np.float32,0x3f4bad09,0x3f3aaf33,2 +np.float32,0xfefb5d76,0xc2b168bd,2 +np.float32,0x3ed3a4cf,0x3ece09a3,2 +np.float32,0x7ec582e4,0x42b0ed4a,2 +np.float32,0x3dc2268a,0x3dc1dc64,2 +np.float32,0x3ef9b17c,0x3ef0b9c9,2 +np.float32,0x2748ac,0x2748ac,2 +np.float32,0xfed6a602,0xc2b117e4,2 +np.float32,0xbefc9c36,0xbef35832,2 +np.float32,0x7e0476,0x7e0476,2 +np.float32,0x804be1a0,0x804be1a0,2 +np.float32,0xbefbc1c2,0xbef2943a,2 +np.float32,0xbd4698f0,0xbd46850a,2 +np.float32,0x688627,0x688627,2 +np.float32,0x3f7f7685,0x3f61406f,2 +np.float32,0x827fb,0x827fb,2 +np.float32,0x3f503264,0x3f3e34fd,2 +np.float32,0x7f5458d1,0x42b27543,2 +np.float32,0x800ac01f,0x800ac01f,2 +np.float32,0x6188dd,0x6188dd,2 +np.float32,0x806ac0ba,0x806ac0ba,2 +np.float32,0xbe14493c,0xbe13c5cc,2 +np.float32,0x3f77542c,0x3f5b72ae,2 +np.float32,0xfeaacab6,0xc2b0a2df,2 +np.float32,0x7f2893d5,0x42b1ff15,2 +np.float32,0x66b528,0x66b528,2 +np.float32,0xbf653e24,0xbf4e3573,2 +np.float32,0x801a2853,0x801a2853,2 +np.float32,0x3f3d8c98,0x3f2f7b04,2 +np.float32,0xfdffbad8,0xc2aeabc5,2 +np.float32,0x3dd50f,0x3dd50f,2 +np.float32,0x3f325a4c,0x3f266353,2 +np.float32,0xfcc48ec0,0xc2ab5f3f,2 +np.float32,0x3e6f5b9a,0x3e6d3ae5,2 +np.float32,0x3dbcd62b,0x3dbc91ee,2 +np.float32,0xbf7458d9,0xbf594c1c,2 +np.float32,0xff5adb24,0xc2b284b9,2 +np.float32,0x807b246d,0x807b246d,2 +np.float32,0x3f800000,0x3f61a1b3,2 +np.float32,0x231a28,0x231a28,2 +np.float32,0xbdc66258,0xbdc61341,2 +np.float32,0x3c84b4b4,0x3c84b338,2 +np.float32,0xbf215894,0xbf183783,2 +np.float32,0xff4ee298,0xc2b267ec,2 +np.float32,0x801ef52e,0x801ef52e,2 +np.float32,0x1040b0,0x1040b0,2 +np.float32,0xff545582,0xc2b2753b,2 +np.float32,0x3f3b9dda,0x3f2decaf,2 +np.float32,0x730f99,0x730f99,2 +np.float32,0xff7fffff,0xc2b2d4fc,2 +np.float32,0xff24cc5e,0xc2b1f379,2 +np.float32,0xbe9b456a,0xbe98fc0b,2 +np.float32,0x188fb,0x188fb,2 +np.float32,0x3f5c7ce2,0x3f47a18a,2 +np.float32,0x7fc00000,0x7fc00000,2 +np.float32,0x806ea4da,0x806ea4da,2 +np.float32,0xfe810570,0xc2b01345,2 +np.float32,0x8036af89,0x8036af89,2 +np.float32,0x8043cec6,0x8043cec6,2 +np.float32,0x80342bb3,0x80342bb3,2 +np.float32,0x1a2bd4,0x1a2bd4,2 +np.float32,0x3f6248c2,0x3f4bff9a,2 +np.float32,0x8024eb35,0x8024eb35,2 +np.float32,0x7ea55872,0x42b09247,2 +np.float32,0x806d6e56,0x806d6e56,2 +np.float32,0x25c21a,0x25c21a,2 +np.float32,0x3f4e95f3,0x3f3cf483,2 +np.float32,0x15ca38,0x15ca38,2 +np.float32,0x803f01b2,0x803f01b2,2 +np.float32,0xbe731634,0xbe70dc10,2 +np.float32,0x3e80cee4,0x3e7ef933,2 +np.float32,0x3ef6dda5,0x3eee2e7b,2 +np.float32,0x3f3dfdc2,0x3f2fd5ed,2 +np.float32,0xff0492a7,0xc2b18411,2 +np.float32,0xbf1d0adf,0xbf148ff3,2 +np.float32,0xfcf75460,0xc2abd4e3,2 +np.float32,0x3f46fca6,0x3f36ffa6,2 +np.float32,0xbe63b5c0,0xbe61dfb3,2 +np.float32,0xff019bec,0xc2b1787d,2 +np.float32,0x801f14a9,0x801f14a9,2 +np.float32,0x3f176cfa,0x3f0fc051,2 +np.float32,0x3f69d976,0x3f51a015,2 +np.float32,0x3f4917cb,0x3f38a87a,2 +np.float32,0x3b2a0bea,0x3b2a0bdd,2 +np.float32,0xbf41d857,0xbf32eb50,2 +np.float32,0xbf08841a,0xbf02c18f,2 +np.float32,0x7ec86f14,0x42b0f4d0,2 +np.float32,0xbf7d15d1,0xbf5f9090,2 +np.float32,0xbd080550,0xbd07feea,2 +np.float32,0xbf6f1bef,0xbf557d26,2 +np.float32,0xfebc282c,0xc2b0d473,2 +np.float32,0x3e68d2f5,0x3e66dd03,2 +np.float32,0x3f3ed8fe,0x3f3085d5,2 +np.float32,0xff2f78ae,0xc2b2139a,2 +np.float32,0xff647a70,0xc2b29ac1,2 +np.float32,0xfd0859a0,0xc2ac06e2,2 +np.float32,0x3ea578a8,0x3ea2b7e1,2 +np.float32,0x6c58c6,0x6c58c6,2 +np.float32,0xff23f26a,0xc2b1f0d2,2 +np.float32,0x800902a4,0x800902a4,2 +np.float32,0xfe8ba64e,0xc2b03bcd,2 +np.float32,0x3f091143,0x3f033e0f,2 +np.float32,0x8017c4bd,0x8017c4bd,2 +np.float32,0xbf708fd4,0xbf568c8c,2 +np.float32,0x3be1d8,0x3be1d8,2 +np.float32,0x80091f07,0x80091f07,2 +np.float32,0x68eabe,0x68eabe,2 +np.float32,0xfe9ab2c8,0xc2b07033,2 +np.float32,0x3eabe752,0x3ea8d3d7,2 +np.float32,0xbf7adcb2,0xbf5dfaf5,2 +np.float32,0x801ecc01,0x801ecc01,2 +np.float32,0xbf5570a9,0xbf424123,2 +np.float32,0x3e89eecd,0x3e88510e,2 +np.float32,0xfeb2feee,0xc2b0bae4,2 +np.float32,0xbeb25ec2,0xbeaef22b,2 +np.float32,0x201e49,0x201e49,2 +np.float32,0x800a35f6,0x800a35f6,2 +np.float32,0xbf02d449,0xbefb6e2a,2 +np.float32,0x3f062bea,0x3f00aef6,2 +np.float32,0x7f5219ff,0x42b26fd2,2 +np.float32,0xbd4561d0,0xbd454e47,2 +np.float32,0x3f6c4789,0x3f536a4b,2 +np.float32,0x7f58b06d,0x42b27fa1,2 +np.float32,0x7f132f39,0x42b1b999,2 +np.float32,0x3e05dcb4,0x3e057bd8,2 +np.float32,0x7f526045,0x42b2707d,2 +np.float32,0x3f6117d0,0x3f4b1adb,2 +np.float32,0xbf21f47d,0xbf18bb57,2 +np.float32,0x1a26d6,0x1a26d6,2 +np.float32,0x46b114,0x46b114,2 +np.float32,0x3eb24518,0x3eaed9ef,2 +np.float32,0xfe2139c8,0xc2af2278,2 +np.float32,0xbf7c36fb,0xbf5ef1f6,2 +np.float32,0x3f193834,0x3f114af7,2 +np.float32,0xff3ea650,0xc2b23e14,2 +np.float32,0xfeeb3bca,0xc2b146c7,2 +np.float32,0x7e8b8ca0,0x42b03b6f,2 +np.float32,0x3eed903d,0x3ee5c5d2,2 +np.float32,0xbdc73740,0xbdc6e72a,2 +np.float32,0x7e500307,0x42afa4ec,2 +np.float32,0xe003c,0xe003c,2 +np.float32,0x3e612bb4,0x3e5f64fd,2 +np.float32,0xfd81e248,0xc2ad50e6,2 +np.float32,0x766a4f,0x766a4f,2 +np.float32,0x3e8708c9,0x3e858414,2 +np.float32,0xbf206c58,0xbf176f7f,2 +np.float32,0x7e93aeb0,0x42b0586f,2 +np.float32,0xfd9d36b8,0xc2adb2ad,2 +np.float32,0xff1f4e0e,0xc2b1e21d,2 +np.float32,0x3f22bd5a,0x3f1964f8,2 +np.float32,0x7f6a517a,0x42b2a7ad,2 +np.float32,0xff6ca773,0xc2b2acc1,2 +np.float32,0x7f6bf453,0x42b2ab3d,2 +np.float32,0x3edfdd64,0x3ed9489f,2 +np.float32,0xbeafc5ba,0xbeac7daa,2 +np.float32,0x7d862039,0x42ad615b,2 +np.float32,0xbe9d2002,0xbe9ac1fc,2 +np.float32,0xbdcc54c0,0xbdcbfe5b,2 +np.float32,0xbf1bc0aa,0xbf13762a,2 +np.float32,0xbf4679ce,0xbf36984b,2 +np.float32,0x3ef45696,0x3eebe713,2 +np.float32,0xff6eb999,0xc2b2b137,2 +np.float32,0xbe4b2e4c,0xbe49dee8,2 +np.float32,0x3f498951,0x3f3901b7,2 +np.float32,0xbe9692f4,0xbe947be1,2 +np.float32,0xbf44ce26,0xbf3545c8,2 +np.float32,0x805787a8,0x805787a8,2 +np.float32,0xbf342650,0xbf27dc26,2 +np.float32,0x3edafbf0,0x3ed4cdd2,2 +np.float32,0x3f6fb858,0x3f55ef63,2 +np.float32,0xff227d0a,0xc2b1ec3f,2 +np.float32,0xfeb9a202,0xc2b0cd89,2 +np.float32,0x7f5b12c1,0x42b2853b,2 +np.float32,0x584578,0x584578,2 +np.float32,0x7ec0b76f,0x42b0e0b5,2 +np.float32,0x3f57f54b,0x3f442f10,2 +np.float32,0x7eef3620,0x42b14f5d,2 +np.float32,0x4525b5,0x4525b5,2 +np.float32,0x801bd407,0x801bd407,2 +np.float32,0xbed1f166,0xbecc7703,2 +np.float32,0x3f57e732,0x3f442449,2 +np.float32,0x80767cd5,0x80767cd5,2 +np.float32,0xbef1a7d2,0xbee97aa3,2 +np.float32,0x3dd5b1af,0x3dd54ee6,2 +np.float32,0x960c,0x960c,2 +np.float32,0x7c392d41,0x42a9ddd1,2 +np.float32,0x3f5c9a34,0x3f47b7c1,2 +np.float32,0x3f5cecee,0x3f47f667,2 +np.float32,0xbee482ce,0xbedd8899,2 +np.float32,0x8066ba7e,0x8066ba7e,2 +np.float32,0x7ed76127,0x42b119a2,2 +np.float32,0x805ca40b,0x805ca40b,2 +np.float32,0x7f5ed5d1,0x42b28df3,2 +np.float32,0xfe9e1b1e,0xc2b07b5b,2 +np.float32,0x3f0201a2,0x3ef9f6c4,2 +np.float32,0xbf2e6430,0xbf232039,2 +np.float32,0x80326b4d,0x80326b4d,2 +np.float32,0x3f11dc7c,0x3f0af06e,2 +np.float32,0xbe89c42e,0xbe8827e6,2 +np.float32,0x3f3c69f8,0x3f2e9133,2 +np.float32,0x806326a9,0x806326a9,2 +np.float32,0x3f1c5286,0x3f13f2b6,2 +np.float32,0xff5c0ead,0xc2b28786,2 +np.float32,0xff32b952,0xc2b21d01,2 +np.float32,0x7dd27c4e,0x42ae4815,2 +np.float32,0xbf7a6816,0xbf5da7a2,2 +np.float32,0xfeac72f8,0xc2b0a7d1,2 +np.float32,0x335ad7,0x335ad7,2 +np.float32,0xbe682da4,0xbe663bcc,2 +np.float32,0x3f2df244,0x3f22c208,2 +np.float32,0x80686e8e,0x80686e8e,2 +np.float32,0x7f50120f,0x42b26ad9,2 +np.float32,0x3dbc596a,0x3dbc15b3,2 +np.float32,0xbf4f2868,0xbf3d666d,2 +np.float32,0x80000001,0x80000001,2 +np.float32,0xff66c059,0xc2b29fd2,2 +np.float32,0xfe8bbcaa,0xc2b03c1f,2 +np.float32,0x3ece6a51,0x3ec93271,2 +np.float32,0x7f06cd26,0x42b18c9a,2 +np.float32,0x7e41e6dc,0x42af80f5,2 +np.float32,0x7d878334,0x42ad669f,2 +np.float32,0xfe8c5c4c,0xc2b03e67,2 +np.float32,0x337a05,0x337a05,2 +np.float32,0x3e63801d,0x3e61ab58,2 +np.float32,0x62c315,0x62c315,2 +np.float32,0x802aa888,0x802aa888,2 +np.float32,0x80038b43,0x80038b43,2 +np.float32,0xff5c1271,0xc2b2878f,2 +np.float32,0xff4184a5,0xc2b245b9,2 +np.float32,0x7ef58f4b,0x42b15cc6,2 +np.float32,0x7f42d8ac,0x42b2493a,2 +np.float32,0x806609f2,0x806609f2,2 +np.float32,0x801e763b,0x801e763b,2 +np.float32,0x7f2bc073,0x42b208a2,2 +np.float32,0x801d7d7f,0x801d7d7f,2 +np.float32,0x7d415dc1,0x42acb9c2,2 +np.float32,0xbf624ff9,0xbf4c0502,2 +np.float32,0xbf603afd,0xbf4a74e2,2 +np.float32,0x8007fe42,0x8007fe42,2 +np.float32,0x800456db,0x800456db,2 +np.float32,0x620871,0x620871,2 +np.float32,0x3e9c6c1e,0x3e9a15fa,2 +np.float32,0x4245d,0x4245d,2 +np.float32,0x8035bde9,0x8035bde9,2 +np.float32,0xbf597418,0xbf45533c,2 +np.float32,0x3c730f80,0x3c730d38,2 +np.float32,0x3f7cd8ed,0x3f5f6540,2 +np.float32,0x807e49c3,0x807e49c3,2 +np.float32,0x3d6584c0,0x3d65660c,2 +np.float32,0xff42a744,0xc2b248b8,2 +np.float32,0xfedc6f56,0xc2b12583,2 +np.float32,0x806263a4,0x806263a4,2 +np.float32,0x175a17,0x175a17,2 +np.float32,0x3f1e8537,0x3f15d208,2 +np.float32,0x4055b5,0x4055b5,2 +np.float32,0x438aa6,0x438aa6,2 +np.float32,0x8038507f,0x8038507f,2 +np.float32,0xbed75348,0xbed16f85,2 +np.float32,0x7f07b7d6,0x42b19012,2 +np.float32,0xfe8b9d30,0xc2b03bac,2 +np.float32,0x805c501c,0x805c501c,2 +np.float32,0x3ef22b1d,0x3ee9f159,2 +np.float32,0x802b6759,0x802b6759,2 +np.float32,0x45281a,0x45281a,2 +np.float32,0xbf7e9970,0xbf60a3cf,2 +np.float32,0xbf14d152,0xbf0d8062,2 +np.float32,0x3d9ff950,0x3d9fcfc8,2 +np.float32,0x7865d9,0x7865d9,2 +np.float32,0xbee67fa4,0xbedf58eb,2 +np.float32,0x7dc822d1,0x42ae2e44,2 +np.float32,0x3f3af0fe,0x3f2d612c,2 +np.float32,0xbefea106,0xbef5274e,2 +np.float32,0xbf758a3f,0xbf5a28c5,2 +np.float32,0xbf331bdd,0xbf270209,2 +np.float32,0x7f51c901,0x42b26f0d,2 +np.float32,0x3f67c33b,0x3f5014d8,2 +np.float32,0xbbc9d980,0xbbc9d92c,2 +np.float32,0xbc407540,0xbc40741e,2 +np.float32,0x7eed9a3c,0x42b14be9,2 +np.float32,0x1be0fe,0x1be0fe,2 +np.float32,0xbf6b4913,0xbf52af1f,2 +np.float32,0xbda8eba8,0xbda8bac6,2 +np.float32,0x8004bcea,0x8004bcea,2 +np.float32,0xff6f6afe,0xc2b2b2b3,2 +np.float32,0xbf205810,0xbf175e50,2 +np.float32,0x80651944,0x80651944,2 +np.float32,0xbec73016,0xbec27a3f,2 +np.float32,0x5701b9,0x5701b9,2 +np.float32,0xbf1062ce,0xbf09a7df,2 +np.float32,0x3e0306ae,0x3e02abd1,2 +np.float32,0x7bfc62,0x7bfc62,2 +np.float32,0xbf48dd3c,0xbf387a6b,2 +np.float32,0x8009573e,0x8009573e,2 +np.float32,0x660a2c,0x660a2c,2 +np.float32,0xff2280da,0xc2b1ec4b,2 +np.float32,0xbf7034fe,0xbf564a54,2 +np.float32,0xbeeb448e,0xbee3b045,2 +np.float32,0xff4e949c,0xc2b2672b,2 +np.float32,0xbf3c4486,0xbf2e7309,2 +np.float32,0x7eb086d8,0x42b0b3c8,2 +np.float32,0x7eac8aca,0x42b0a817,2 +np.float32,0xfd3d2d60,0xc2acae8b,2 +np.float32,0xbf363226,0xbf2987bd,2 +np.float32,0x7f02e524,0x42b17d8c,2 +np.float32,0x8049a148,0x8049a148,2 +np.float32,0x147202,0x147202,2 +np.float32,0x8031d3f6,0x8031d3f6,2 +np.float32,0xfe78bf68,0xc2b0007d,2 +np.float32,0x7ebd16d0,0x42b0d6fb,2 +np.float32,0xbdaed2e8,0xbdae9cbb,2 +np.float32,0x802833ae,0x802833ae,2 +np.float32,0x7f62adf6,0x42b296b5,2 +np.float32,0xff2841c0,0xc2b1fe1b,2 +np.float32,0xbeb2c47e,0xbeaf523b,2 +np.float32,0x7e42a36e,0x42af82e6,2 +np.float32,0x41ea29,0x41ea29,2 +np.float32,0xbcaaa800,0xbcaaa4d7,2 +np.float64,0x3fed71f27ebae3e5,0x3fea5c6095012ca6,1 +np.float64,0x224dc392449b9,0x224dc392449b9,1 +np.float64,0x3fdf897a7d3f12f5,0x3fde620339360992,1 +np.float64,0xbfe1f99a5123f334,0xbfe124a57cfaf556,1 +np.float64,0xbfd9725c3bb2e4b8,0xbfd8d1e3f75110c7,1 +np.float64,0x3fe38977546712ee,0x3fe27d9d37f4b91f,1 +np.float64,0xbfc36c29e526d854,0xbfc3594743ee45c4,1 +np.float64,0xbfe5cbec332b97d8,0xbfe4638802316849,1 +np.float64,0x2ff35efe5fe6d,0x2ff35efe5fe6d,1 +np.float64,0x7fd3f828e227f051,0x40862a7d4a40b1e0,1 +np.float64,0xffd06fc11620df82,0xc08628ee8f1bf6c8,1 +np.float64,0x3fe5321bf4aa6438,0x3fe3e3d9fa453199,1 +np.float64,0xffd07a323ca0f464,0xc08628f3a2930f8c,1 +np.float64,0x3fdf7abe7abef57c,0x3fde54cb193d49cb,1 +np.float64,0x40941f1881285,0x40941f1881285,1 +np.float64,0xffef18defc7e31bd,0xc0863393f2c9f061,1 +np.float64,0xbfe379f871e6f3f1,0xbfe270620cb68347,1 +np.float64,0xffec829848f90530,0xc08632e210edaa2b,1 +np.float64,0x80070c00574e1801,0x80070c00574e1801,1 +np.float64,0xffce7654b23ceca8,0xc086285291e89975,1 +np.float64,0x7fc9932daa33265a,0x408626ec6cc2b807,1 +np.float64,0x355ee98c6abde,0x355ee98c6abde,1 +np.float64,0x3fac54962c38a920,0x3fac50e40b6c19f2,1 +np.float64,0x800857984af0af31,0x800857984af0af31,1 +np.float64,0x7fea6a3d55f4d47a,0x40863245bf39f179,1 +np.float64,0x3fdb8fab33371f56,0x3fdac5ffc9e1c347,1 +np.float64,0x800a887a7bf510f5,0x800a887a7bf510f5,1 +np.float64,0xbfbdbda3c63b7b48,0xbfbdac9dd5a2d3e8,1 +np.float64,0xbfd4a2457b29448a,0xbfd44acb3b316d6d,1 +np.float64,0x7fd5329a502a6534,0x40862af789b528b5,1 +np.float64,0x3fd96a7bceb2d4f8,0x3fd8ca92104d6cd6,1 +np.float64,0x3fde6a0cd6bcd41a,0x3fdd5f4b85abf749,1 +np.float64,0xbfc7faaff32ff560,0xbfc7d7560b8c4a52,1 +np.float64,0x7fec381b2f787035,0x408632cd0e9c095c,1 +np.float64,0x1fc2eb543f85e,0x1fc2eb543f85e,1 +np.float64,0x7ac6000af58c1,0x7ac6000af58c1,1 +np.float64,0xffe060a87920c150,0xc0862e72c37d5a4e,1 +np.float64,0xbfb7d8c89e2fb190,0xbfb7cffd3c3f8e3a,1 +np.float64,0x3fd91033deb22068,0x3fd87695b067aa1e,1 +np.float64,0x3fec1aff01b835fe,0x3fe95d5cbd729af7,1 +np.float64,0x7fb97f69ec32fed3,0x4086215aaae5c697,1 +np.float64,0x7feaf1e4e5f5e3c9,0x4086326e6ca6a2bb,1 +np.float64,0x800537e44d0a6fc9,0x800537e44d0a6fc9,1 +np.float64,0x800b2a0d0d36541a,0x800b2a0d0d36541a,1 +np.float64,0x3fe2193846e43270,0x3fe140308550138e,1 +np.float64,0x5e2a0a32bc542,0x5e2a0a32bc542,1 +np.float64,0xffe5888b09eb1116,0xc08630a348783aa3,1 +np.float64,0xbfceb9b5033d736c,0xbfce701049c10435,1 +np.float64,0x7fe5d68589abad0a,0x408630c00ce63f23,1 +np.float64,0x8009b5457ff36a8b,0x8009b5457ff36a8b,1 +np.float64,0xbfb5518c2e2aa318,0xbfb54b42638ca718,1 +np.float64,0x3f9c58469838b080,0x3f9c575974fbcd7b,1 +np.float64,0x3fe8db4b4731b697,0x3fe6dc9231587966,1 +np.float64,0x8007d0f77f4fa1f0,0x8007d0f77f4fa1f0,1 +np.float64,0x7fe79eef542f3dde,0x40863160c673c67f,1 +np.float64,0xffbdc0b6163b8170,0xc0862296be4bf032,1 +np.float64,0x3fbb8d3312371a66,0x3fbb7fa76fb4cf8d,1 +np.float64,0xffd8a0eedbb141de,0xc0862c2ac6e512f0,1 +np.float64,0x7fee99d8d87d33b1,0x4086337301c4c8df,1 +np.float64,0xffe7479b552e8f36,0xc0863142fba0f0ec,1 +np.float64,0xffedf8ef4abbf1de,0xc08633488068fe69,1 +np.float64,0x895c4d9f12b8a,0x895c4d9f12b8a,1 +np.float64,0x29b4caf05369a,0x29b4caf05369a,1 +np.float64,0xbfefb90d657f721b,0xbfec01efa2425b35,1 +np.float64,0xde07c3bdbc0f9,0xde07c3bdbc0f9,1 +np.float64,0x7feae9fd02f5d3f9,0x4086326c1368ed5a,1 +np.float64,0x3feab792da756f26,0x3fe84f6e15338ed7,1 +np.float64,0xbfeff8ed72fff1db,0xbfec2f35da06daaf,1 +np.float64,0x8004b2c132896583,0x8004b2c132896583,1 +np.float64,0xbf9fcb00103f9600,0xbf9fc9b1751c569e,1 +np.float64,0x4182b72e83058,0x4182b72e83058,1 +np.float64,0x90820d812105,0x90820d812105,1 +np.float64,0xbfdec9a0ba3d9342,0xbfddb585df607ce1,1 +np.float64,0x7fdc0a69a03814d2,0x40862d347f201b63,1 +np.float64,0xbfef0708937e0e11,0xbfeb82d27f8ea97f,1 +np.float64,0xffda57e4ddb4afca,0xc0862cb49e2e0c4c,1 +np.float64,0xbfa30b9af4261730,0xbfa30a7b4a633060,1 +np.float64,0x7feb57fcc4b6aff9,0x4086328c83957a0b,1 +np.float64,0x7fe6759153eceb22,0x408630f980433963,1 +np.float64,0x7fdd3278c8ba64f1,0x40862d87445243e9,1 +np.float64,0xd3b8e6b9a771d,0xd3b8e6b9a771d,1 +np.float64,0x6267dc88c4cfc,0x6267dc88c4cfc,1 +np.float64,0x7fedd3cf00bba79d,0x4086333e91712ff5,1 +np.float64,0xffbe512ce03ca258,0xc08622bd39314cea,1 +np.float64,0xbfe71742ca6e2e86,0xbfe572ccbf2d010d,1 +np.float64,0x8002fb048c65f60a,0x8002fb048c65f60a,1 +np.float64,0x800d9d9ddf7b3b3c,0x800d9d9ddf7b3b3c,1 +np.float64,0xbfeaf6230df5ec46,0xbfe87f5d751ec3d5,1 +np.float64,0xbfe69973a42d32e8,0xbfe50c680f7002fe,1 +np.float64,0x3fe309cf87e613a0,0x3fe21048714ce1ac,1 +np.float64,0x800435d17a286ba4,0x800435d17a286ba4,1 +np.float64,0x7fefffffffffffff,0x408633ce8fb9f87e,1 +np.float64,0x3fe36ade1766d5bc,0x3fe26379fb285dde,1 +np.float64,0x3f98d8d94831b1c0,0x3f98d839885dc527,1 +np.float64,0xbfd08f7ae5211ef6,0xbfd0618ab5293e1e,1 +np.float64,0xbfcf630bd53ec618,0xbfcf14a0cd20704d,1 +np.float64,0xbfe58f0ca6eb1e1a,0xbfe4312225df8e28,1 +np.float64,0xffef4f6406be9ec7,0xc08633a1ed1d27e5,1 +np.float64,0x7fe10120b3e20240,0x40862ebfaf94e6e8,1 +np.float64,0xffe96c52fbb2d8a5,0xc08631f75d9a59a0,1 +np.float64,0xbfe448a333e89146,0xbfe31fee44c3ec43,1 +np.float64,0x80045ff4e788bfeb,0x80045ff4e788bfeb,1 +np.float64,0x7fefaa2f823f545e,0x408633b8fea29524,1 +np.float64,0xffea6b8bf234d717,0xc0863246248e5960,1 +np.float64,0xbfdb085d80b610bc,0xbfda498b15b43eec,1 +np.float64,0xbfd5e12da3abc25c,0xbfd57970e2b8aecc,1 +np.float64,0x3fcc84928a390925,0x3fcc497c417a89f3,1 +np.float64,0xbfdcb713bf396e28,0xbfdbd46c5e731fd9,1 +np.float64,0xffdf50c0453ea180,0xc0862e16b5562f25,1 +np.float64,0x800342c2f7268587,0x800342c2f7268587,1 +np.float64,0x7feb8b6d743716da,0x4086329b8248de2c,1 +np.float64,0x800a9b18b4953632,0x800a9b18b4953632,1 +np.float64,0xffedaf0d12fb5e19,0xc0863334af82de1a,1 +np.float64,0x800aebda4ab5d7b5,0x800aebda4ab5d7b5,1 +np.float64,0xbfa9f5848433eb10,0xbfa9f2ac7ac065d4,1 +np.float64,0x3fea375928f46eb2,0x3fe7ec9f10eeac7d,1 +np.float64,0x3fd6c213fead8428,0x3fd64dcc1eff5f1b,1 +np.float64,0xbfa0476f44208ee0,0xbfa046bb986007ac,1 +np.float64,0x6c8e18aed91c4,0x6c8e18aed91c4,1 +np.float64,0x8000000000000001,0x8000000000000001,1 +np.float64,0x7fea86b5ba350d6a,0x4086324e59f13027,1 +np.float64,0x2316c3b0462d9,0x2316c3b0462d9,1 +np.float64,0x3fec4e3281389c65,0x3fe983c5c9d65940,1 +np.float64,0x3fbb87c47f772,0x3fbb87c47f772,1 +np.float64,0x8004af00fdc95e03,0x8004af00fdc95e03,1 +np.float64,0xbfd316db9ba62db8,0xbfd2d12765b9d155,1 +np.float64,0x3fec1a7a99f834f6,0x3fe95cf941889b3d,1 +np.float64,0x3feff7e1477fefc3,0x3fec2e782392d4b9,1 +np.float64,0xbfc683ea042d07d4,0xbfc66698cfa5026e,1 +np.float64,0x3fdbc8aaa9b79154,0x3fdafa50e6fc3fff,1 +np.float64,0xfb3b630ff676d,0xfb3b630ff676d,1 +np.float64,0x7fe715ef8eae2bde,0x40863131d794b41f,1 +np.float64,0x7fefa06c11bf40d7,0x408633b686c7996a,1 +np.float64,0x80002a40f5205483,0x80002a40f5205483,1 +np.float64,0x7fe95f3c74b2be78,0x408631f33e37bf76,1 +np.float64,0x3fb2977b32252ef0,0x3fb2934eaf5a4be8,1 +np.float64,0x3fc0f3dbc821e7b8,0x3fc0e745288c84c3,1 +np.float64,0x3fda98da56b531b5,0x3fd9e2b19447dacc,1 +np.float64,0x3f95b9d5202b73aa,0x3f95b96a53282949,1 +np.float64,0x3fdc1ace7738359d,0x3fdb4597d31df7ff,1 +np.float64,0xffeac5bb2e358b76,0xc0863261452ab66c,1 +np.float64,0xbfefb1b78f7f636f,0xbfebfcb9be100ced,1 +np.float64,0xf5c9e191eb93c,0xf5c9e191eb93c,1 +np.float64,0x3fe83a977630752f,0x3fe65d0df90ff6ef,1 +np.float64,0x3fc317515d262ea0,0x3fc3056072b719f0,1 +np.float64,0x7fe2dcfab225b9f4,0x40862f94257c28a2,1 +np.float64,0xca2b115794562,0xca2b115794562,1 +np.float64,0x3fd495301aa92a60,0x3fd43e57108761d5,1 +np.float64,0x800ccc4293199885,0x800ccc4293199885,1 +np.float64,0xc8d3173d91a63,0xc8d3173d91a63,1 +np.float64,0xbf2541bb7e4a8,0xbf2541bb7e4a8,1 +np.float64,0xbfe9a330df334662,0xbfe779816573f5be,1 +np.float64,0xffd5e4c8252bc990,0xc0862b39b3ca5d72,1 +np.float64,0x3fe90f3a53721e75,0x3fe70585ae09531d,1 +np.float64,0xbfe2b5ddc7a56bbc,0xbfe1c7fa91a675ed,1 +np.float64,0xbf981a0360303400,0xbf9819719345073a,1 +np.float64,0x19174b0e322ea,0x19174b0e322ea,1 +np.float64,0xbfd2f71a1725ee34,0xbfd2b2b6f7cd10b1,1 +np.float64,0x80056e83236add07,0x80056e83236add07,1 +np.float64,0x7fe4bc41d9697883,0x40863055f20ce0cb,1 +np.float64,0xffe76e06c46edc0d,0xc086315024b25559,1 +np.float64,0x3fe3c4f0f96789e2,0x3fe2b04b584609bf,1 +np.float64,0x3fe6cfc533ed9f8a,0x3fe538b4d784d5ee,1 +np.float64,0x7fd234a640a4694c,0x408629bfead4f0b2,1 +np.float64,0x3fdbc49c9ab78939,0x3fdaf698a83d08e2,1 +np.float64,0x3fe4c5336ee98a66,0x3fe388c6ddb60e0a,1 +np.float64,0xf4b9497be9729,0xf4b9497be9729,1 +np.float64,0x3fb312be12262580,0x3fb30e3c847c1d16,1 +np.float64,0x3fe9554218f2aa84,0x3fe73c8b311c7a98,1 +np.float64,0xff899816a0333040,0xc08610bfb2cd8559,1 +np.float64,0x8006008ad52c0116,0x8006008ad52c0116,1 +np.float64,0x3fd7d47be4afa8f8,0x3fd74fa71ec17fd0,1 +np.float64,0x8010000000000000,0x8010000000000000,1 +np.float64,0xdf2a9943be553,0xdf2a9943be553,1 +np.float64,0xbfeb86bf1eb70d7e,0xbfe8ed797580ba5c,1 +np.float64,0x800e2c0c28bc5818,0x800e2c0c28bc5818,1 +np.float64,0xbfe2be65d4657ccc,0xbfe1cf578dec2323,1 +np.float64,0xbfedea3a5afbd475,0xbfeab490bf05e585,1 +np.float64,0xbfe04b1583a0962b,0xbfdf523dfd7be25c,1 +np.float64,0x75929bb4eb254,0x75929bb4eb254,1 +np.float64,0x3fd7b4968caf692d,0x3fd731c0938ff97c,1 +np.float64,0x60bd8fd2c17b3,0x60bd8fd2c17b3,1 +np.float64,0xbfdaf15e70b5e2bc,0xbfda345a95ce18fe,1 +np.float64,0x7fdd7c35c2baf86b,0x40862d9b5f40c6b2,1 +np.float64,0x7feeb4d2ab7d69a4,0x4086337a0c0dffaf,1 +np.float64,0xffe65b5a1decb6b4,0xc08630f024420efb,1 +np.float64,0x7feb272b30764e55,0x4086327e2e553aa2,1 +np.float64,0x3fd27513e8a4ea28,0x3fd235ea49670f6a,1 +np.float64,0x3fe6541a6aeca834,0x3fe4d3a5b69fd1b6,1 +np.float64,0xbfe0c6ca0f618d94,0xbfe017058259efdb,1 +np.float64,0x7fc1bf07b7237e0e,0x4086240000fa5a52,1 +np.float64,0x7fe96af9c0f2d5f3,0x408631f6f0f4faa2,1 +np.float64,0x3fe0728be7a0e518,0x3fdf9881a5869de9,1 +np.float64,0xffe8ea4441b1d488,0xc08631ce0685ae7e,1 +np.float64,0xffd0b973f02172e8,0xc08629121e7fdf85,1 +np.float64,0xffe37b907a26f720,0xc0862fd6529401a0,1 +np.float64,0x3fe0ee826461dd05,0x3fe03a2a424a1b40,1 +np.float64,0xbfe8073c92300e79,0xbfe6340cbd179ac1,1 +np.float64,0x800768383f8ed071,0x800768383f8ed071,1 +np.float64,0x8002e467c7c5c8d0,0x8002e467c7c5c8d0,1 +np.float64,0xbfd8d53ea5b1aa7e,0xbfd83fa7243289d7,1 +np.float64,0xffebefce2bb7df9c,0xc08632b874f4f8dc,1 +np.float64,0xffe3be9eb9277d3d,0xc0862ff1ac70ad0b,1 +np.float64,0xffe2f8a82e65f150,0xc0862f9fd9e77d86,1 +np.float64,0xbfa01d151c203a30,0xbfa01c66dc13a70a,1 +np.float64,0x800877062d30ee0d,0x800877062d30ee0d,1 +np.float64,0xaade16a755bc3,0xaade16a755bc3,1 +np.float64,0xbfeb1abc70363579,0xbfe89b52c3b003aa,1 +np.float64,0x80097d0b2ad2fa17,0x80097d0b2ad2fa17,1 +np.float64,0x8001499907429333,0x8001499907429333,1 +np.float64,0x3fe8db2aaf71b656,0x3fe6dc7873f1b235,1 +np.float64,0x5cfeadc4b9fd6,0x5cfeadc4b9fd6,1 +np.float64,0xff3f77d1fe7ef,0xff3f77d1fe7ef,1 +np.float64,0xffeecd56f9bd9aad,0xc08633806cb1163d,1 +np.float64,0xbf96f3ca582de7a0,0xbf96f34c6b8e1c85,1 +np.float64,0x7ed6b44afdad7,0x7ed6b44afdad7,1 +np.float64,0x80071808da4e3012,0x80071808da4e3012,1 +np.float64,0x3feb8aee2bf715dc,0x3fe8f0a55516615c,1 +np.float64,0x800038f62e2071ed,0x800038f62e2071ed,1 +np.float64,0x3fb13f9af2227f30,0x3fb13c456ced8e08,1 +np.float64,0xffd584d1812b09a4,0xc0862b165558ec0c,1 +np.float64,0x800b20c30fb64186,0x800b20c30fb64186,1 +np.float64,0x80024f9646e49f2d,0x80024f9646e49f2d,1 +np.float64,0xffefffffffffffff,0xc08633ce8fb9f87e,1 +np.float64,0x3fdddbcb5bbbb797,0x3fdcde981111f650,1 +np.float64,0xffed14077f3a280e,0xc086330a795ad634,1 +np.float64,0x800fec2da7ffd85b,0x800fec2da7ffd85b,1 +np.float64,0x3fe8205ffc7040c0,0x3fe6482318d217f9,1 +np.float64,0x3013e5226027d,0x3013e5226027d,1 +np.float64,0xffe4e5aad469cb55,0xc0863065dc2fb4e3,1 +np.float64,0x5cb0f7b2b9620,0x5cb0f7b2b9620,1 +np.float64,0xbfeb4537d2768a70,0xbfe8bbb2c1d3bff9,1 +np.float64,0xbfd859e297b0b3c6,0xbfd7cc807948bf9d,1 +np.float64,0x71f00b8ce3e02,0x71f00b8ce3e02,1 +np.float64,0xf5c1b875eb837,0xf5c1b875eb837,1 +np.float64,0xa0f35c8141e8,0xa0f35c8141e8,1 +np.float64,0xffe24860b42490c1,0xc0862f54222f616e,1 +np.float64,0xffcd9ae8583b35d0,0xc08628181e643a42,1 +np.float64,0x7fe9b710c7736e21,0x4086320ec033490f,1 +np.float64,0x3fd2b9ca1d257394,0x3fd277e631f0c0b3,1 +np.float64,0x23559bfc46ab4,0x23559bfc46ab4,1 +np.float64,0x8002adf75e455bef,0x8002adf75e455bef,1 +np.float64,0xbfefa4d75cbf49af,0xbfebf392e51d6a1a,1 +np.float64,0xffcfef263e3fde4c,0xc08628b336adb611,1 +np.float64,0x80061acaa8ec3596,0x80061acaa8ec3596,1 +np.float64,0x7fc1b33be0236677,0x408623faaddcc17e,1 +np.float64,0x7fe3a84083675080,0x40862fe8972e41e1,1 +np.float64,0xbfe756c1276ead82,0xbfe5a6318b061e1b,1 +np.float64,0xbfae4b71b43c96e0,0xbfae46ed0b6203a4,1 +np.float64,0x800421c6d0a8438e,0x800421c6d0a8438e,1 +np.float64,0x8009ad56fe335aae,0x8009ad56fe335aae,1 +np.float64,0xbfe71afc976e35f9,0xbfe575d21f3d7193,1 +np.float64,0x7fec0bbe4c38177c,0x408632c0710f1d8a,1 +np.float64,0x750e1daeea1c4,0x750e1daeea1c4,1 +np.float64,0x800501d4240a03a9,0x800501d4240a03a9,1 +np.float64,0x800794955cef292b,0x800794955cef292b,1 +np.float64,0x3fdf8a87f5bf1510,0x3fde62f4f00cfa19,1 +np.float64,0xbfebebdbc7f7d7b8,0xbfe939e51ba1340c,1 +np.float64,0xbfe3a16217a742c4,0xbfe292039dd08a71,1 +np.float64,0x3fed6cd04c3ad9a1,0x3fea58995973f74b,1 +np.float64,0xffcad8787335b0f0,0xc086274fbb35dd37,1 +np.float64,0x3fcb178e3d362f1c,0x3fcae4c9f3e6dddc,1 +np.float64,0xbfcadc669435b8cc,0xbfcaaae7cf075420,1 +np.float64,0x7fe0e3906321c720,0x40862eb1bacc5c43,1 +np.float64,0xff8ad5edb035abc0,0xc0861120b6404d0b,1 +np.float64,0x3fe175a21562eb44,0x3fe0b13120a46549,1 +np.float64,0xbfeb4c4a5f769895,0xbfe8c1147f1c9d8f,1 +np.float64,0x7fca22f4e63445e9,0x40862718e9b4094e,1 +np.float64,0x3fe4269d0c684d3a,0x3fe3032aa2015c53,1 +np.float64,0x3fef551c09beaa38,0x3febbabe03f49c83,1 +np.float64,0xffd843df9fb087c0,0xc0862c0c52d5e5d9,1 +np.float64,0x7fc497e2ca292fc5,0x40862530bbd9fcc7,1 +np.float64,0x3fee02919efc0523,0x3feac655588a4acd,1 +np.float64,0x7fed1e52c0fa3ca5,0x4086330d4ddd8a2c,1 +np.float64,0xba04d4ef7409b,0xba04d4ef7409b,1 +np.float64,0x3fee22d0937c45a2,0x3feaddd4ca66b447,1 +np.float64,0xffeb2558cf764ab1,0xc086327da4e84053,1 +np.float64,0xbfe103d987e207b3,0xbfe04d04818ad1ff,1 +np.float64,0x3f9fd7fed03faffe,0x3f9fd6ae9a45be84,1 +np.float64,0x800a53ec4c34a7d9,0x800a53ec4c34a7d9,1 +np.float64,0xbfe2feb17f65fd63,0xbfe206b9d33a78a2,1 +np.float64,0x989bdd613139,0x989bdd613139,1 +np.float64,0xbfdd0ad3fb3a15a8,0xbfdc20c32a530741,1 +np.float64,0xbfc4222163284444,0xbfc40d1c612784b5,1 +np.float64,0xc30cf5c78619f,0xc30cf5c78619f,1 +np.float64,0x3fe913bd6732277b,0x3fe70912f76bad71,1 +np.float64,0x98f175f531e2f,0x98f175f531e2f,1 +np.float64,0x3fed8c1f717b183f,0x3fea6f9fb3af3423,1 +np.float64,0x7fee46b085bc8d60,0x4086335d269eb7e9,1 +np.float64,0x8007480f564e901f,0x8007480f564e901f,1 +np.float64,0xc9b96e179372e,0xc9b96e179372e,1 +np.float64,0x3fe44deac4289bd6,0x3fe32463a74a69e7,1 +np.float64,0x80021d6c5c243ad9,0x80021d6c5c243ad9,1 +np.float64,0xbfebc805a6f7900b,0xbfe91edcf65a1c19,1 +np.float64,0x80044748adc88e92,0x80044748adc88e92,1 +np.float64,0x4007ee44800fe,0x4007ee44800fe,1 +np.float64,0xbfe24307a4648610,0xbfe1648ad5c47b6f,1 +np.float64,0xbfee6d3a93fcda75,0xbfeb13e1a3196e78,1 +np.float64,0x3fe49a287f293451,0x3fe364a11b9f0068,1 +np.float64,0x80052b37ceaa5670,0x80052b37ceaa5670,1 +np.float64,0xbfd42be893a857d2,0xbfd3da05dac7c286,1 +np.float64,0xffb4bbe4ac2977c8,0xc0861fb31bda6956,1 +np.float64,0xbfc732a4142e6548,0xbfc7129a4eafa399,1 +np.float64,0x7fd0696791a0d2ce,0x408628eb7756cb9c,1 +np.float64,0x3fe46c8f8d68d91f,0x3fe33e3df16187c1,1 +np.float64,0x3fe3a28f1ce7451e,0x3fe293043238d08c,1 +np.float64,0xffedc4eb723b89d6,0xc086333a92258c15,1 +np.float64,0x8000d15b4c41a2b7,0x8000d15b4c41a2b7,1 +np.float64,0xffeb73450236e689,0xc08632947b0148ab,1 +np.float64,0xffe68cf4722d19e8,0xc0863101d08d77bd,1 +np.float64,0x800c70eb4698e1d7,0x800c70eb4698e1d7,1 +np.float64,0xffa94387ff529,0xffa94387ff529,1 +np.float64,0x7fe3835d996706ba,0x40862fd985ff8e7d,1 +np.float64,0x3fe55e476feabc8e,0x3fe408a15594ec52,1 +np.float64,0xffc69672222d2ce4,0xc08625ee0c4c0f6a,1 +np.float64,0xbf9d900b883b2020,0xbf9d8efe811d36df,1 +np.float64,0xbfdb9b9755b7372e,0xbfdad0f2aa2cb110,1 +np.float64,0xffeade6073b5bcc0,0xc08632689f17a25d,1 +np.float64,0xffd1d6a6baa3ad4e,0xc086299630a93a7b,1 +np.float64,0x7fd05ba25620b744,0x408628e4be1ef845,1 +np.float64,0xbfc7d422d52fa844,0xbfc7b170a61531bf,1 +np.float64,0x3fd5196797aa32d0,0x3fd4bc0f0e7d8e1d,1 +np.float64,0x617594a4c2eb3,0x617594a4c2eb3,1 +np.float64,0x7fd779bc4caef378,0x40862bc89271b882,1 +np.float64,0xffd2fb262ba5f64c,0xc0862a15561e9524,1 +np.float64,0x72fd661ae5fad,0x72fd661ae5fad,1 +np.float64,0x3fecf441f339e884,0x3fe9ff880d584f64,1 +np.float64,0x7fc3a8968827512c,0x408624d198b05c61,1 +np.float64,0x3fe7a25c56ef44b9,0x3fe5e32509a7c32d,1 +np.float64,0x7fd117d514222fa9,0x4086293ec640d5f2,1 +np.float64,0x3fe37dfe5ee6fbfc,0x3fe273d1bcaa1ef0,1 +np.float64,0xbfed4cd19d7a99a3,0xbfea41064cba4c8b,1 +np.float64,0x8003ff12aaa7fe26,0x8003ff12aaa7fe26,1 +np.float64,0x3fcbc3d1193787a2,0x3fcb8d39e3e88264,1 +np.float64,0xe9ba1a91d3744,0xe9ba1a91d3744,1 +np.float64,0x8002ab71998556e4,0x8002ab71998556e4,1 +np.float64,0x800110057922200c,0x800110057922200c,1 +np.float64,0xbfe3b7af19a76f5e,0xbfe2a502fc0a2882,1 +np.float64,0x7fd9de9d5e33bd3a,0x40862c8f73cccabf,1 +np.float64,0xbfba0f0a86341e18,0xbfba0392f44c2771,1 +np.float64,0x8000000000000000,0x8000000000000000,1 +np.float64,0x7fe5d162e96ba2c5,0x408630be2b15e01b,1 +np.float64,0x800b7f0eac76fe1e,0x800b7f0eac76fe1e,1 +np.float64,0xff98bed150317da0,0xc086160633164f5f,1 +np.float64,0x3fef91fd70ff23fb,0x3febe629709d0ae7,1 +np.float64,0x7fe5bea7f16b7d4f,0x408630b749f445e9,1 +np.float64,0xbfe3dc428467b885,0xbfe2c41ea93fab07,1 +np.float64,0xbfeba1fbfcf743f8,0xbfe9021b52851bb9,1 +np.float64,0x7fd2fb2108a5f641,0x40862a1553f45830,1 +np.float64,0x7feb8199a4370332,0x40863298a7169dad,1 +np.float64,0x800f97ff8d7f2fff,0x800f97ff8d7f2fff,1 +np.float64,0x3fd5e20b6b2bc417,0x3fd57a42bd1c0993,1 +np.float64,0x8006b4072dad680f,0x8006b4072dad680f,1 +np.float64,0x605dccf2c0bba,0x605dccf2c0bba,1 +np.float64,0x3fc705ed142e0bda,0x3fc6e69971d86f73,1 +np.float64,0xffd2ba1aad257436,0xc08629f9bc918f8b,1 +np.float64,0x8002954e23c52a9d,0x8002954e23c52a9d,1 +np.float64,0xbfecc65da7798cbb,0xbfe9dd745be18562,1 +np.float64,0x7fc66110482cc220,0x408625db0db57ef8,1 +np.float64,0x3fcd09446d3a1289,0x3fcccaf2dd0a41ea,1 +np.float64,0x3febe7095437ce13,0x3fe93642d1e73b2a,1 +np.float64,0x8004773c7da8ee7a,0x8004773c7da8ee7a,1 +np.float64,0x8001833241230665,0x8001833241230665,1 +np.float64,0x3fe6a262db6d44c6,0x3fe513b3dab5adce,1 +np.float64,0xe6282cc1cc506,0xe6282cc1cc506,1 +np.float64,0x800b9d8553973b0b,0x800b9d8553973b0b,1 +np.float64,0x3fdfbe0c7b3f7c19,0x3fde912375d867a8,1 +np.float64,0x7fd5ac11ebab5823,0x40862b24dfc6d08e,1 +np.float64,0x800e4b7cb1fc96f9,0x800e4b7cb1fc96f9,1 +np.float64,0x3fe14706da628e0e,0x3fe0883aec2a917a,1 +np.float64,0x7fc963f97532c7f2,0x408626dd9b0cafe1,1 +np.float64,0xbfe9c250b5b384a2,0xbfe791c5eabcb05d,1 +np.float64,0x3fe8d16e6c71a2dd,0x3fe6d4c7a33a0bf4,1 +np.float64,0x3fe474ae4628e95d,0x3fe34515c93f4733,1 +np.float64,0x3fbf3257ee3e64b0,0x3fbf1eb530e126ea,1 +np.float64,0x8005f089b3abe114,0x8005f089b3abe114,1 +np.float64,0x3fece07bccf9c0f8,0x3fe9f0dc228124d5,1 +np.float64,0xbfc52521632a4a44,0xbfc50ccebdf59c2c,1 +np.float64,0x7fdf53beb13ea77c,0x40862e177918195e,1 +np.float64,0x8003d9f6ad07b3ee,0x8003d9f6ad07b3ee,1 +np.float64,0xffeacf96bbb59f2d,0xc086326436b38b1a,1 +np.float64,0xdccaea29b995e,0xdccaea29b995e,1 +np.float64,0x5948d21eb291b,0x5948d21eb291b,1 +np.float64,0x10000000000000,0x10000000000000,1 +np.float64,0x7fef6d2c543eda58,0x408633a98593cdf5,1 +np.float64,0x7feda454f47b48a9,0x40863331cb6dc9f7,1 +np.float64,0x3fdd377cecba6ef8,0x3fdc4968f74a9c83,1 +np.float64,0x800644096d4c8814,0x800644096d4c8814,1 +np.float64,0xbfe33ca15ae67942,0xbfe23be5de832bd8,1 +np.float64,0xffce9582bd3d2b04,0xc086285abdf9bf9d,1 +np.float64,0x3fe6621e86acc43d,0x3fe4df231bfa93e1,1 +np.float64,0xee7d19e9dcfa3,0xee7d19e9dcfa3,1 +np.float64,0x800be5997277cb33,0x800be5997277cb33,1 +np.float64,0x82069041040e,0x82069041040e,1 +np.float64,0x800d6efdc19addfc,0x800d6efdc19addfc,1 +np.float64,0x7fb27770ee24eee1,0x40861ec5ed91b839,1 +np.float64,0x3fd506064caa0c0d,0x3fd4a9a66353fefd,1 +np.float64,0xbfeca9b36bf95367,0xbfe9c81f03ba37b8,1 +np.float64,0xffeab1b7bab5636f,0xc086325b47f61f2b,1 +np.float64,0xffc99f5b2e333eb8,0xc08626f03b08b412,1 +np.float64,0x3fbf1a71bc3e34e3,0x3fbf06fbcaa5de58,1 +np.float64,0x3fe75015736ea02b,0x3fe5a0cd8d763d8d,1 +np.float64,0xffe6a7442fad4e88,0xc086310b20addba4,1 +np.float64,0x3fe5d62ff86bac60,0x3fe46c033195bf28,1 +np.float64,0x7fd0b1f0362163df,0x4086290e857dc1be,1 +np.float64,0xbe0353737c06b,0xbe0353737c06b,1 +np.float64,0x7fec912d8739225a,0x408632e627704635,1 +np.float64,0xded8ba2fbdb18,0xded8ba2fbdb18,1 +np.float64,0x7fec0b53fdf816a7,0x408632c052bc1bd2,1 +np.float64,0x7fe9640d12b2c819,0x408631f4c2ba54d8,1 +np.float64,0x800be714eeb7ce2a,0x800be714eeb7ce2a,1 +np.float64,0xbfcf444a793e8894,0xbfcef6c126b54853,1 +np.float64,0xffeb20cf1bf6419e,0xc086327c4e6ffe80,1 +np.float64,0xc07de22180fd,0xc07de22180fd,1 +np.float64,0xffed129d387a253a,0xc086330a15ad0adb,1 +np.float64,0x3fd9e94fedb3d2a0,0x3fd94049924706a8,1 +np.float64,0x7fe6ba488c2d7490,0x40863111d51e7861,1 +np.float64,0xbfebbdf25db77be5,0xbfe91740ad7ba521,1 +np.float64,0x7fbc6c3c4838d878,0x40862239160cb613,1 +np.float64,0xbfefa82ecebf505e,0xbfebf5f31957dffd,1 +np.float64,0x800bebeb7ad7d7d7,0x800bebeb7ad7d7d7,1 +np.float64,0x7fecccc6f8f9998d,0x408632f6c6da8aac,1 +np.float64,0xcbe4926197ca,0xcbe4926197ca,1 +np.float64,0x2c5d9fd858bb5,0x2c5d9fd858bb5,1 +np.float64,0xbfe9fb021073f604,0xbfe7bddc61f1151a,1 +np.float64,0xbfebb18572f7630b,0xbfe90ddc5002313f,1 +np.float64,0x13bb0d3227763,0x13bb0d3227763,1 +np.float64,0x3feefa5e5cbdf4bd,0x3feb79b9e8ce16bf,1 +np.float64,0x3fc97f086132fe10,0x3fc9549fc8e15ecb,1 +np.float64,0xffe70887c06e110f,0xc086312d30fd31cf,1 +np.float64,0xa00c113540182,0xa00c113540182,1 +np.float64,0x800950984772a131,0x800950984772a131,1 +np.float64,0x1,0x1,1 +np.float64,0x3fd83b4026b07680,0x3fd7afdc659d9a34,1 +np.float64,0xbfe32348fbe64692,0xbfe226292a706a1a,1 +np.float64,0x800b894dcc77129c,0x800b894dcc77129c,1 +np.float64,0xeb2ca419d6595,0xeb2ca419d6595,1 +np.float64,0xbff0000000000000,0xbfec34366179d427,1 +np.float64,0x3feb269e99f64d3d,0x3fe8a4634b927a21,1 +np.float64,0xbfe83149d7706294,0xbfe655a2b245254e,1 +np.float64,0xbfe6eef3ca6ddde8,0xbfe5521310e24d16,1 +np.float64,0x3fea89a4b7b51349,0x3fe82c1fc69edcec,1 +np.float64,0x800f2a8bf17e5518,0x800f2a8bf17e5518,1 +np.float64,0x800f71fac29ee3f6,0x800f71fac29ee3f6,1 +np.float64,0xe7cb31f1cf966,0xe7cb31f1cf966,1 +np.float64,0x3b0f8752761f2,0x3b0f8752761f2,1 +np.float64,0x3fea27dea3744fbd,0x3fe7e0a4705476b2,1 +np.float64,0xbfa97c019c32f800,0xbfa97950c1257b92,1 +np.float64,0xffeff13647ffe26c,0xc08633cadc7105ed,1 +np.float64,0x3feee162353dc2c4,0x3feb67c2da0fbce8,1 +np.float64,0x80088c0807911810,0x80088c0807911810,1 +np.float64,0x3fe936ab1db26d56,0x3fe72489bc69719d,1 +np.float64,0xa2f84bd545f0a,0xa2f84bd545f0a,1 +np.float64,0xbfed445ed27a88be,0xbfea3acac0aaf482,1 +np.float64,0x800faf3e69df5e7d,0x800faf3e69df5e7d,1 +np.float64,0x3fc145a330228b46,0x3fc13853f11b1c90,1 +np.float64,0xbfe25ec5abe4bd8c,0xbfe17c9e9b486f07,1 +np.float64,0x3fe119b160e23363,0x3fe0604b10178966,1 +np.float64,0x7fe0cbf2836197e4,0x40862ea6831e5f4a,1 +np.float64,0x3fe75dd3b4eebba8,0x3fe5abe80fd628fb,1 +np.float64,0x3f7c391000387220,0x3f7c39015d8f3a36,1 +np.float64,0x899d9cad133b4,0x899d9cad133b4,1 +np.float64,0x3fe5f0e34febe1c6,0x3fe4820cefe138fc,1 +np.float64,0x7fe060dfdba0c1bf,0x40862e72de8afcd0,1 +np.float64,0xbfae42f7103c85f0,0xbfae3e7630819c60,1 +np.float64,0x35f1f2c06be5,0x35f1f2c06be5,1 +np.float64,0xffc5194d362a329c,0xc086256266c8b7ad,1 +np.float64,0xbfda034f1b34069e,0xbfd95860a44c43ad,1 +np.float64,0x32bcebca6579e,0x32bcebca6579e,1 +np.float64,0xbfd1751ebca2ea3e,0xbfd13f79f45bf75c,1 +np.float64,0x3fee4fa1e5bc9f44,0x3feafe69e0d6c1c7,1 +np.float64,0x7f9c03cd5038079a,0x4086170459172900,1 +np.float64,0x7fc5fb6d6d2bf6da,0x408625b6651cfc73,1 +np.float64,0x7ff8000000000000,0x7ff8000000000000,1 +np.float64,0xffd1a8162ca3502c,0xc0862981333931ad,1 +np.float64,0x7fc415c198282b82,0x408624fd8c155d1b,1 +np.float64,0xffda37fbe7b46ff8,0xc0862caae7865c43,1 +np.float64,0xbfef4312257e8624,0xbfebadd89f3ee31c,1 +np.float64,0xbfec45e1fd788bc4,0xbfe97d8b14db6274,1 +np.float64,0xbfe6fdcfd26dfba0,0xbfe55e25b770d00a,1 +np.float64,0x7feb66d424f6cda7,0x40863290d9ff7ea2,1 +np.float64,0x8b08a29916115,0x8b08a29916115,1 +np.float64,0xffe12ca25c625944,0xc0862ed40d769f72,1 +np.float64,0x7ff4000000000000,0x7ffc000000000000,1 +np.float64,0x804925e100925,0x804925e100925,1 +np.float64,0xcebf3e019d9,0xcebf3e019d9,1 +np.float64,0xbfd5d75d4aabaeba,0xbfd57027671dedf7,1 +np.float64,0x800b829ecd37053e,0x800b829ecd37053e,1 +np.float64,0x800b1205daf6240c,0x800b1205daf6240c,1 +np.float64,0x3fdf7e9889befd31,0x3fde583fdff406c3,1 +np.float64,0x7ff0000000000000,0x7ff0000000000000,1 +np.float64,0x3fdc09760d3812ec,0x3fdb35b55c8090c6,1 +np.float64,0x800c4d99e4f89b34,0x800c4d99e4f89b34,1 +np.float64,0xffbaa6772e354cf0,0xc08621b535badb2f,1 +np.float64,0xbfc91188fd322310,0xbfc8e933b5d25ea7,1 +np.float64,0xffc1b947f4237290,0xc08623fd69164251,1 +np.float64,0x3fc6ab3b252d5678,0x3fc68d50bbac106d,1 +np.float64,0xffac8eb968391d70,0xc0861cb734833355,1 +np.float64,0xffe29a35c365346b,0xc0862f77a1aed6d8,1 +np.float64,0x3fde14b9543c2973,0x3fdd122697779015,1 +np.float64,0xbf10f5400021e000,0xbf10f53fffef1383,1 +np.float64,0xffe0831aa3e10635,0xc0862e838553d0ca,1 +np.float64,0x3fccbadbcf3975b8,0x3fcc7e768d0154ec,1 +np.float64,0x3fe092ef66e125df,0x3fdfd212a7116c9b,1 +np.float64,0xbfd727f039ae4fe0,0xbfd6adad040b2334,1 +np.float64,0xbfe4223b93a84477,0xbfe2ff7587364db4,1 +np.float64,0x3f4e5c3a003cb874,0x3f4e5c39b75c70f7,1 +np.float64,0x800e76b1a87ced63,0x800e76b1a87ced63,1 +np.float64,0x3fed2b7368fa56e7,0x3fea2863b9131b8c,1 +np.float64,0xffadb76ec43b6ee0,0xc0861d08ae79f20c,1 +np.float64,0x800b6a0cd1f6d41a,0x800b6a0cd1f6d41a,1 +np.float64,0xffee6aa943fcd552,0xc0863366a24250d5,1 +np.float64,0xbfe68cbc4e6d1978,0xbfe502040591aa5b,1 +np.float64,0xff859a38002b3480,0xc0860f64726235cc,1 +np.float64,0x3474d13e68e9b,0x3474d13e68e9b,1 +np.float64,0xffc11d49f6223a94,0xc08623b5c2df9712,1 +np.float64,0x800d82d019bb05a0,0x800d82d019bb05a0,1 +np.float64,0xbfe2af0192255e03,0xbfe1c20e38106388,1 +np.float64,0x3fe97d13c032fa28,0x3fe75bba11a65f86,1 +np.float64,0x7fcd457e133a8afb,0x40862800e80f5863,1 +np.float64,0x9d7254cf3ae4b,0x9d7254cf3ae4b,1 +np.float64,0x8003047675a608ee,0x8003047675a608ee,1 +np.float64,0x3fead6cd7d75ad9a,0x3fe8676138e5ff93,1 +np.float64,0x3fea6ee3b0f4ddc7,0x3fe817838a2bcbe3,1 +np.float64,0x3feed0edea7da1dc,0x3feb5bea3cb12fe2,1 +np.float64,0x88003fe510008,0x88003fe510008,1 +np.float64,0x3fe64cadc56c995c,0x3fe4cd8ead87fc79,1 +np.float64,0xaae30c5955c62,0xaae30c5955c62,1 +np.float64,0x7fc8c97cae3192f8,0x408626ac579f4fc5,1 +np.float64,0xbfc2bc0e8b25781c,0xbfc2ab188fdab7dc,1 +np.float64,0xc8f8e5e791f1d,0xc8f8e5e791f1d,1 +np.float64,0x3fecfaa5d6f9f54c,0x3fea0444dabe5a15,1 +np.float64,0xbfeb93740ff726e8,0xbfe8f71a9ab13baf,1 +np.float64,0xffd951236c32a246,0xc0862c633a4661eb,1 +np.float64,0x3fddbc5fcd3b78c0,0x3fdcc21c1a0a9246,1 +np.float64,0xbfd242443da48488,0xbfd20512d91f7924,1 +np.float64,0x2a3689b2546d2,0x2a3689b2546d2,1 +np.float64,0xffe24c67382498ce,0xc0862f55e4ea6283,1 +np.float64,0x800cbfce22197f9c,0x800cbfce22197f9c,1 +np.float64,0x8002269428044d29,0x8002269428044d29,1 +np.float64,0x7fd44babbd289756,0x40862a9e79b51c3b,1 +np.float64,0x3feea056a27d40ad,0x3feb38dcddb682f0,1 +np.float64,0xffeca8174b39502e,0xc08632ec8f88a5b2,1 +np.float64,0x7fbe0853a03c10a6,0x408622a9e8d53a9e,1 +np.float64,0xbfa9704b2432e090,0xbfa96d9dfc8c0cc2,1 +np.float64,0x800bda28fab7b452,0x800bda28fab7b452,1 +np.float64,0xbfb0ffa2f621ff48,0xbfb0fc71f405e82a,1 +np.float64,0xbfe66c04216cd808,0xbfe4e73ea3b58cf6,1 +np.float64,0x3fe336ea5d266dd5,0x3fe236ffcf078c62,1 +np.float64,0xbfe7729ae6aee536,0xbfe5bcad4b8ac62d,1 +np.float64,0x558cfc96ab1a0,0x558cfc96ab1a0,1 +np.float64,0xbfe7d792aaefaf26,0xbfe60de1b8f0279d,1 +np.float64,0xffd19ef6bda33dee,0xc086297d0ffee3c7,1 +np.float64,0x666b3ab4ccd68,0x666b3ab4ccd68,1 +np.float64,0xffa3d89e3c27b140,0xc08619cdeb2c1e49,1 +np.float64,0xbfb1728f7f62f,0xbfb1728f7f62f,1 +np.float64,0x3fc76319f32ec634,0x3fc74247bd005e20,1 +np.float64,0xbfbf1caee23e3960,0xbfbf0934c13d70e2,1 +np.float64,0x7fe79626f32f2c4d,0x4086315dcc68a5cb,1 +np.float64,0xffee78c4603cf188,0xc086336a572c05c2,1 +np.float64,0x3fce546eda3ca8de,0x3fce0d8d737fd31d,1 +np.float64,0xa223644d4446d,0xa223644d4446d,1 +np.float64,0x3fecea878b79d510,0x3fe9f850d50973f6,1 +np.float64,0x3fc20e0ea1241c1d,0x3fc1fedda87c5e75,1 +np.float64,0xffd1c5a99ca38b54,0xc086298e8e94cd47,1 +np.float64,0x7feb2c299d765852,0x4086327fa6db2808,1 +np.float64,0xcaf9d09595f3a,0xcaf9d09595f3a,1 +np.float64,0xbfe293bf21e5277e,0xbfe1aa7f6ac274ef,1 +np.float64,0xbfbaa3c8ce354790,0xbfba97891df19c01,1 +np.float64,0x3faf5784543eaf09,0x3faf5283acc7d71d,1 +np.float64,0x7fc014f8f62029f1,0x40862336531c662d,1 +np.float64,0xbfe0d9ac2d61b358,0xbfe027bce36699ca,1 +np.float64,0x8003e112ff27c227,0x8003e112ff27c227,1 +np.float64,0xffec0d4151381a82,0xc08632c0df718dd0,1 +np.float64,0x7fa2156fb0242ade,0x4086190f7587d708,1 +np.float64,0xd698358dad307,0xd698358dad307,1 +np.float64,0xbfed8d1b0efb1a36,0xbfea70588ef9ba18,1 +np.float64,0xbfd2cae6a92595ce,0xbfd28851e2185dee,1 +np.float64,0xffe7a36764ef46ce,0xc086316249c9287a,1 +np.float64,0xbfdb8ad8e5b715b2,0xbfdac19213c14315,1 +np.float64,0x3b5dba6076bc,0x3b5dba6076bc,1 +np.float64,0x800e6e8347bcdd07,0x800e6e8347bcdd07,1 +np.float64,0x800bea9f3fb7d53f,0x800bea9f3fb7d53f,1 +np.float64,0x7fb6d0e5fc2da1cb,0x4086207714c4ab85,1 +np.float64,0x0,0x0,1 +np.float64,0xbfe2aa1e1465543c,0xbfe1bdd550ef2966,1 +np.float64,0x7fd3f6a47fa7ed48,0x40862a7caea33055,1 +np.float64,0x800094e292c129c6,0x800094e292c129c6,1 +np.float64,0x800e1500ecbc2a02,0x800e1500ecbc2a02,1 +np.float64,0xbfd8ff6f97b1fee0,0xbfd866f84346ecdc,1 +np.float64,0x681457d0d028c,0x681457d0d028c,1 +np.float64,0x3feed0b5987da16b,0x3feb5bc1ab424984,1 +np.float64,0x3fdbcb34cdb79668,0x3fdafca540f32c06,1 +np.float64,0xbfdc9eacdcb93d5a,0xbfdbbe274aa8aeb0,1 +np.float64,0xffe6e35d526dc6ba,0xc08631203df38ed2,1 +np.float64,0x3fcac1cc65358398,0x3fca90de41889613,1 +np.float64,0xbfebf07a55b7e0f5,0xbfe93d6007db0c67,1 +np.float64,0xbfd7a7b1e7af4f64,0xbfd725a9081c22cb,1 +np.float64,0x800232bd7de4657c,0x800232bd7de4657c,1 +np.float64,0x7fb1dae43c23b5c7,0x40861e80f5c0a64e,1 +np.float64,0x8013ded70027c,0x8013ded70027c,1 +np.float64,0x7fc4373a59286e74,0x4086250ad60575d0,1 +np.float64,0xbfe9980fd6733020,0xbfe770d1352d0ed3,1 +np.float64,0x8008a66b8dd14cd7,0x8008a66b8dd14cd7,1 +np.float64,0xbfaebc67f83d78d0,0xbfaeb7b015848478,1 +np.float64,0xffd0c52762218a4e,0xc0862917b564afc6,1 +np.float64,0xbfd503860aaa070c,0xbfd4a74618441561,1 +np.float64,0x5bdacabcb7b5a,0x5bdacabcb7b5a,1 +np.float64,0xf3623cffe6c48,0xf3623cffe6c48,1 +np.float64,0x7fe16c6c7ea2d8d8,0x40862ef18d90201f,1 +np.float64,0x3ff0000000000000,0x3fec34366179d427,1 +np.float64,0x7fe19cbc84233978,0x40862f079dcbc169,1 +np.float64,0x3fcfd3d6933fa7ad,0x3fcf822187907f6b,1 +np.float64,0x8007d65d672facbc,0x8007d65d672facbc,1 +np.float64,0xffca6115aa34c22c,0xc086272bd7728750,1 +np.float64,0xbfe77ab1556ef562,0xbfe5c332fb55b66e,1 +np.float64,0x8001ed797c23daf4,0x8001ed797c23daf4,1 +np.float64,0x7fdd3d16cb3a7a2d,0x40862d8a2c869281,1 +np.float64,0x75f36beaebe6e,0x75f36beaebe6e,1 +np.float64,0xffda3c2798b47850,0xc0862cac2d3435df,1 +np.float64,0xbfa37cc3c426f980,0xbfa37b8f9d3ec4b7,1 +np.float64,0x80030ea8bd061d52,0x80030ea8bd061d52,1 +np.float64,0xffe41f7617683eec,0xc08630188a3e135e,1 +np.float64,0x800e40590dfc80b2,0x800e40590dfc80b2,1 +np.float64,0x3fea950d80f52a1c,0x3fe834e74481e66f,1 +np.float64,0xffec95e39a792bc6,0xc08632e779150084,1 +np.float64,0xbfd54310ecaa8622,0xbfd4e39c4d767002,1 +np.float64,0xffd40c9971a81932,0xc0862a85764eb2f4,1 +np.float64,0xb0a2230761445,0xb0a2230761445,1 +np.float64,0x80092973661252e7,0x80092973661252e7,1 +np.float64,0x7fb13b030a227605,0x40861e380aeb5549,1 +np.float64,0x3fbd5d8db23abb1b,0x3fbd4d2a0b94af36,1 +np.float64,0xbfd6cb8567ad970a,0xbfd656b19ab8fa61,1 +np.float64,0xbfe7c0fd346f81fa,0xbfe5fbc28807c794,1 +np.float64,0xffd586579eab0cb0,0xc0862b16e65c0754,1 +np.float64,0x8000e52da461ca5c,0x8000e52da461ca5c,1 +np.float64,0x3fc69d17112d3a2e,0x3fc67f63fe1fea1c,1 +np.float64,0x3fd36ba892a6d750,0x3fd3225be1fa87af,1 +np.float64,0x7fe2850598e50a0a,0x40862f6e7fcd6c1a,1 +np.float64,0x80074a4dacce949c,0x80074a4dacce949c,1 +np.float64,0x3fe25eea4d64bdd5,0x3fe17cbe5fefbd4e,1 +np.float64,0xbfe250c08be4a181,0xbfe17074c520e5de,1 +np.float64,0x8000f5665481eacd,0x8000f5665481eacd,1 +np.float64,0x7fdb3172f83662e5,0x40862cf5a46764f1,1 +np.float64,0x7fd8ed82d631db05,0x40862c4380658afa,1 +np.float64,0xffec5163feb8a2c7,0xc08632d4366aab06,1 +np.float64,0x800ff14ac6ffe296,0x800ff14ac6ffe296,1 +np.float64,0xbfc7cc7aea2f98f4,0xbfc7a9e9cb38f023,1 +np.float64,0xbfd50cdfc32a19c0,0xbfd4b0282b452fb2,1 +np.float64,0xbfec256d75b84adb,0xbfe965328c1860b2,1 +np.float64,0xffe860c4cdb0c189,0xc08631a164b7059a,1 +np.float64,0xbfe23de164247bc3,0xbfe16011bffa4651,1 +np.float64,0xcc96b39d992d7,0xcc96b39d992d7,1 +np.float64,0xbfec43acf938875a,0xbfe97be3a13b50c3,1 +np.float64,0xc4f587bb89eb1,0xc4f587bb89eb1,1 +np.float64,0xbfcd971d9a3b2e3c,0xbfcd5537ad15dab4,1 +np.float64,0xffcaf00d8035e01c,0xc0862756bf2cdf8f,1 +np.float64,0x8008c26f93f184e0,0x8008c26f93f184e0,1 +np.float64,0xfff0000000000000,0xfff0000000000000,1 +np.float64,0xbfd13552c3a26aa6,0xbfd101e5e252eb7b,1 +np.float64,0x7fe497235e292e46,0x4086304792fb423a,1 +np.float64,0x7fd6dc0192adb802,0x40862b921a5e935d,1 +np.float64,0xf16d49a1e2da9,0xf16d49a1e2da9,1 +np.float64,0xffef6b1b71bed636,0xc08633a8feed0178,1 +np.float64,0x7fe15ec62f62bd8b,0x40862eeb46b193dc,1 +np.float64,0x3fef4369ec7e86d4,0x3febae1768be52cc,1 +np.float64,0x4f84e8e89f09e,0x4f84e8e89f09e,1 +np.float64,0xbfe19e71ade33ce4,0xbfe0d4fad05e0ebc,1 +np.float64,0xbfe7e1df1defc3be,0xbfe616233e15b3d0,1 +np.float64,0x7fe9349afdb26935,0x408631e5c1c5c6cd,1 +np.float64,0xff90c35ac82186c0,0xc08612e896a06467,1 +np.float64,0xbfe88bf8807117f1,0xbfe69dc786464422,1 +np.float64,0x3feaf9ff6475f3fe,0x3fe8825132410d18,1 +np.float64,0x9ff487a33fe91,0x9ff487a33fe91,1 +np.float64,0x7fedb30159bb6602,0x40863335c0419322,1 +np.float64,0x800bddf6ed77bbee,0x800bddf6ed77bbee,1 +np.float64,0x3fd919df133233be,0x3fd87f963b9584ce,1 +np.float64,0x7fd64da3b52c9b46,0x40862b5fa9dd3b6d,1 +np.float64,0xbfce288db43c511c,0xbfcde2d953407ae8,1 +np.float64,0x3fe88bc72771178e,0x3fe69da05e9e9b4e,1 +np.float64,0x800feafe259fd5fc,0x800feafe259fd5fc,1 +np.float64,0x3febbbff4a7777ff,0x3fe915c78f6a280f,1 +np.float64,0xbfefbde4417f7bc9,0xbfec055f4fb2cd21,1 +np.float64,0xf13ca103e2794,0xf13ca103e2794,1 +np.float64,0x3fe6423884ec8471,0x3fe4c4f97eaa876a,1 +np.float64,0x800ca01c8cb94039,0x800ca01c8cb94039,1 +np.float64,0x3fbc5073f638a0e0,0x3fbc41c163ac0001,1 +np.float64,0xbfda0d83cfb41b08,0xbfd961d4cacc82cf,1 +np.float64,0x800f37b8f17e6f72,0x800f37b8f17e6f72,1 +np.float64,0x7fe0b08cd7216119,0x40862e996becb771,1 +np.float64,0xffd4222a40a84454,0xc0862a8e0c984917,1 +np.float64,0x7feb3df98ff67bf2,0x40863284e3a86ee6,1 +np.float64,0x8001d5d291e3aba6,0x8001d5d291e3aba6,1 +np.float64,0xbfd3c21629a7842c,0xbfd3750095a5894a,1 +np.float64,0xbfd069eb48a0d3d6,0xbfd03d2b1c2ae9db,1 +np.float64,0xffeb1be2973637c4,0xc086327ada954662,1 +np.float64,0x3fc659f97e2cb3f3,0x3fc63d497a451f10,1 +np.float64,0xbfeb624bc776c498,0xbfe8d1cf7c0626ca,1 +np.float64,0xffeedf26e23dbe4d,0xc08633850baab425,1 +np.float64,0xffe70da48a6e1b48,0xc086312ef75d5036,1 +np.float64,0x2b4f4830569ea,0x2b4f4830569ea,1 +np.float64,0xffe82e7fcfb05cff,0xc0863190d4771f75,1 +np.float64,0x3fcc2c1fd5385840,0x3fcbf3211ddc5123,1 +np.float64,0x7fe22ced5a6459da,0x40862f481629ee6a,1 +np.float64,0x7fe13d2895e27a50,0x40862edbbc411899,1 +np.float64,0x3fd54c4280aa9884,0x3fd4ec55a946c5d7,1 +np.float64,0xffd75b8e01aeb71c,0xc0862bbe42d76e5e,1 +np.float64,0x7f1d5376fe3ab,0x7f1d5376fe3ab,1 +np.float64,0x3fe6ec6c902dd8d9,0x3fe55004f35192bd,1 +np.float64,0x5634504aac68b,0x5634504aac68b,1 +np.float64,0x3feedb0d83bdb61b,0x3feb633467467ce6,1 +np.float64,0x3fddb1c0dcbb6380,0x3fdcb87a02daf1fa,1 +np.float64,0xbfa832da443065b0,0xbfa8308c70257209,1 +np.float64,0x87a9836b0f531,0x87a9836b0f531,1 diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arctan.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arctan.csv new file mode 100644 index 0000000..c03e144 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arctan.csv @@ -0,0 +1,1429 @@ +dtype,input,output,ulperrortol +np.float32,0x3f338252,0x3f1c8d9c,3 +np.float32,0x7e569df2,0x3fc90fdb,3 +np.float32,0xbf347e25,0xbf1d361f,3 +np.float32,0xbf0a654e,0xbefdbfd2,3 +np.float32,0x8070968e,0x8070968e,3 +np.float32,0x803cfb27,0x803cfb27,3 +np.float32,0x8024362e,0x8024362e,3 +np.float32,0xfd55dca0,0xbfc90fdb,3 +np.float32,0x592b82,0x592b82,3 +np.float32,0x802eb8e1,0x802eb8e1,3 +np.float32,0xbc5fef40,0xbc5febae,3 +np.float32,0x3f1f6ce8,0x3f0e967c,3 +np.float32,0x20bedc,0x20bedc,3 +np.float32,0xbf058860,0xbef629c7,3 +np.float32,0x311504,0x311504,3 +np.float32,0xbd23f560,0xbd23defa,3 +np.float32,0x800ff4e8,0x800ff4e8,3 +np.float32,0x355009,0x355009,3 +np.float32,0x3f7be42e,0x3f46fdb3,3 +np.float32,0xbf225f7c,0xbf10b364,3 +np.float32,0x8074fa9e,0x8074fa9e,3 +np.float32,0xbea4b418,0xbe9f59ce,3 +np.float32,0xbe909c14,0xbe8cf045,3 +np.float32,0x80026bee,0x80026bee,3 +np.float32,0x3d789c20,0x3d784e25,3 +np.float32,0x7f56a4ba,0x3fc90fdb,3 +np.float32,0xbf70d141,0xbf413db7,3 +np.float32,0xbf2c4886,0xbf17a505,3 +np.float32,0x7e2993bf,0x3fc90fdb,3 +np.float32,0xbe2c8a30,0xbe2aef28,3 +np.float32,0x803f82d9,0x803f82d9,3 +np.float32,0x3f062fbc,0x3ef730a1,3 +np.float32,0x3f349ee0,0x3f1d4bfa,3 +np.float32,0x3eccfb69,0x3ec2f9e8,3 +np.float32,0x7e8a85dd,0x3fc90fdb,3 +np.float32,0x25331,0x25331,3 +np.float32,0x464f19,0x464f19,3 +np.float32,0x8035c818,0x8035c818,3 +np.float32,0x802e5799,0x802e5799,3 +np.float32,0x64e1c0,0x64e1c0,3 +np.float32,0x701cc2,0x701cc2,3 +np.float32,0x265c57,0x265c57,3 +np.float32,0x807a053f,0x807a053f,3 +np.float32,0x3bd2c412,0x3bd2c354,3 +np.float32,0xff28f1c8,0xbfc90fdb,3 +np.float32,0x7f08f08b,0x3fc90fdb,3 +np.float32,0x800c50e4,0x800c50e4,3 +np.float32,0x369674,0x369674,3 +np.float32,0xbf5b7db3,0xbf3571bf,3 +np.float32,0x7edcf5e2,0x3fc90fdb,3 +np.float32,0x800e5d4b,0x800e5d4b,3 +np.float32,0x80722554,0x80722554,3 +np.float32,0x693f33,0x693f33,3 +np.float32,0x800844e4,0x800844e4,3 +np.float32,0xbf111b82,0xbf0402ec,3 +np.float32,0x7df9c9ac,0x3fc90fdb,3 +np.float32,0xbf6619a6,0xbf3b6f57,3 +np.float32,0x8002fafe,0x8002fafe,3 +np.float32,0xfe1e67f8,0xbfc90fdb,3 +np.float32,0x3f7f4bf8,0x3f48b5b7,3 +np.float32,0x7f017b20,0x3fc90fdb,3 +np.float32,0x2d9b07,0x2d9b07,3 +np.float32,0x803aa174,0x803aa174,3 +np.float32,0x7d530336,0x3fc90fdb,3 +np.float32,0x80662195,0x80662195,3 +np.float32,0xfd5ebcf0,0xbfc90fdb,3 +np.float32,0xbe7b8dcc,0xbe76ab59,3 +np.float32,0x7f2bacaf,0x3fc90fdb,3 +np.float32,0x3f194fc4,0x3f0a229e,3 +np.float32,0x7ee21cdf,0x3fc90fdb,3 +np.float32,0x3f5a17fc,0x3f34a307,3 +np.float32,0x7f100c58,0x3fc90fdb,3 +np.float32,0x7e9128f5,0x3fc90fdb,3 +np.float32,0xbf2107c6,0xbf0fbdb4,3 +np.float32,0xbd29c800,0xbd29af22,3 +np.float32,0xbf5af499,0xbf3522a6,3 +np.float32,0x801bde44,0x801bde44,3 +np.float32,0xfeb4761a,0xbfc90fdb,3 +np.float32,0x3d88aa1b,0x3d887650,3 +np.float32,0x7eba5e0b,0x3fc90fdb,3 +np.float32,0x803906bd,0x803906bd,3 +np.float32,0x80101512,0x80101512,3 +np.float32,0x7e898f83,0x3fc90fdb,3 +np.float32,0x806406d3,0x806406d3,3 +np.float32,0x7ed20fc0,0x3fc90fdb,3 +np.float32,0x20827d,0x20827d,3 +np.float32,0x3f361359,0x3f1e43fe,3 +np.float32,0xfe4ef8d8,0xbfc90fdb,3 +np.float32,0x805e7d2d,0x805e7d2d,3 +np.float32,0xbe4316b0,0xbe40c745,3 +np.float32,0xbf0a1c06,0xbefd4e5a,3 +np.float32,0x3e202860,0x3e1edee1,3 +np.float32,0xbeb32a2c,0xbeac5899,3 +np.float32,0xfe528838,0xbfc90fdb,3 +np.float32,0x2f73e2,0x2f73e2,3 +np.float32,0xbe16e010,0xbe15cc27,3 +np.float32,0x3f50d6c5,0x3f2f2d75,3 +np.float32,0xbe88a6a2,0xbe8589c7,3 +np.float32,0x3ee36060,0x3ed5fb36,3 +np.float32,0x6c978b,0x6c978b,3 +np.float32,0x7f1b735f,0x3fc90fdb,3 +np.float32,0x3dad8256,0x3dad1885,3 +np.float32,0x807f5094,0x807f5094,3 +np.float32,0x65c358,0x65c358,3 +np.float32,0xff315ce4,0xbfc90fdb,3 +np.float32,0x7411a6,0x7411a6,3 +np.float32,0x80757b04,0x80757b04,3 +np.float32,0x3eec73a6,0x3edd82f4,3 +np.float32,0xfe9f69e8,0xbfc90fdb,3 +np.float32,0x801f4fa8,0x801f4fa8,3 +np.float32,0xbf6f2fae,0xbf405f79,3 +np.float32,0xfea206b6,0xbfc90fdb,3 +np.float32,0x3f257301,0x3f12e1ee,3 +np.float32,0x7ea6a506,0x3fc90fdb,3 +np.float32,0x80800000,0x80800000,3 +np.float32,0xff735c2d,0xbfc90fdb,3 +np.float32,0x80197f95,0x80197f95,3 +np.float32,0x7f4a354f,0x3fc90fdb,3 +np.float32,0xff320c00,0xbfc90fdb,3 +np.float32,0x3f2659de,0x3f138484,3 +np.float32,0xbe5451bc,0xbe515a52,3 +np.float32,0x3f6e228c,0x3f3fcf7c,3 +np.float32,0x66855a,0x66855a,3 +np.float32,0x8034b3a3,0x8034b3a3,3 +np.float32,0xbe21a2fc,0xbe20505d,3 +np.float32,0x7f79e2dc,0x3fc90fdb,3 +np.float32,0xbe19a8e0,0xbe18858c,3 +np.float32,0x10802c,0x10802c,3 +np.float32,0xfeee579e,0xbfc90fdb,3 +np.float32,0x3f3292c8,0x3f1becc0,3 +np.float32,0xbf595a71,0xbf34350a,3 +np.float32,0xbf7c3373,0xbf4725f4,3 +np.float32,0xbdd30938,0xbdd24b36,3 +np.float32,0x153a17,0x153a17,3 +np.float32,0x807282a0,0x807282a0,3 +np.float32,0xfe817322,0xbfc90fdb,3 +np.float32,0x3f1b3628,0x3f0b8771,3 +np.float32,0x41be8f,0x41be8f,3 +np.float32,0x7f4a8343,0x3fc90fdb,3 +np.float32,0x3dc4ea2b,0x3dc44fae,3 +np.float32,0x802aac25,0x802aac25,3 +np.float32,0xbf20e1d7,0xbf0fa284,3 +np.float32,0xfd91a1b0,0xbfc90fdb,3 +np.float32,0x3f0d5476,0x3f012265,3 +np.float32,0x21c916,0x21c916,3 +np.float32,0x807df399,0x807df399,3 +np.float32,0x7e207b4c,0x3fc90fdb,3 +np.float32,0x8055f8ff,0x8055f8ff,3 +np.float32,0x7edf3b01,0x3fc90fdb,3 +np.float32,0x803a8df3,0x803a8df3,3 +np.float32,0x3ce3b002,0x3ce3a101,3 +np.float32,0x3f62dd54,0x3f39a248,3 +np.float32,0xff33ae10,0xbfc90fdb,3 +np.float32,0x7e3de69d,0x3fc90fdb,3 +np.float32,0x8024581e,0x8024581e,3 +np.float32,0xbf4ac99d,0xbf2b807a,3 +np.float32,0x3f157d19,0x3f074d8c,3 +np.float32,0xfed383f4,0xbfc90fdb,3 +np.float32,0xbf5a39fa,0xbf34b6b8,3 +np.float32,0x800d757d,0x800d757d,3 +np.float32,0x807d606b,0x807d606b,3 +np.float32,0x3e828f89,0x3e7fac2d,3 +np.float32,0x7a6604,0x7a6604,3 +np.float32,0x7dc7e72b,0x3fc90fdb,3 +np.float32,0x80144146,0x80144146,3 +np.float32,0x7c2eed69,0x3fc90fdb,3 +np.float32,0x3f5b4d8c,0x3f3555fc,3 +np.float32,0xfd8b7778,0xbfc90fdb,3 +np.float32,0xfc9d9140,0xbfc90fdb,3 +np.float32,0xbea265d4,0xbe9d4232,3 +np.float32,0xbe9344d0,0xbe8f65da,3 +np.float32,0x3f71f19a,0x3f41d65b,3 +np.float32,0x804a3f59,0x804a3f59,3 +np.float32,0x3e596290,0x3e563476,3 +np.float32,0x3e994ee4,0x3e94f546,3 +np.float32,0xbc103e00,0xbc103d0c,3 +np.float32,0xbf1cd896,0xbf0cb889,3 +np.float32,0x7f52b080,0x3fc90fdb,3 +np.float32,0xff584452,0xbfc90fdb,3 +np.float32,0x58b26b,0x58b26b,3 +np.float32,0x3f23cd4c,0x3f11b799,3 +np.float32,0x707d7,0x707d7,3 +np.float32,0xff732cff,0xbfc90fdb,3 +np.float32,0x3e41c2a6,0x3e3f7f0f,3 +np.float32,0xbf7058e9,0xbf40fdcf,3 +np.float32,0x7dca9857,0x3fc90fdb,3 +np.float32,0x7f0eb44b,0x3fc90fdb,3 +np.float32,0x8000405c,0x8000405c,3 +np.float32,0x4916ab,0x4916ab,3 +np.float32,0x4811a8,0x4811a8,3 +np.float32,0x3d69bf,0x3d69bf,3 +np.float32,0xfeadcf1e,0xbfc90fdb,3 +np.float32,0x3e08dbbf,0x3e080d58,3 +np.float32,0xff031f88,0xbfc90fdb,3 +np.float32,0xbe09cab8,0xbe08f818,3 +np.float32,0x21d7cd,0x21d7cd,3 +np.float32,0x3f23230d,0x3f113ea9,3 +np.float32,0x7e8a48d4,0x3fc90fdb,3 +np.float32,0x413869,0x413869,3 +np.float32,0x7e832990,0x3fc90fdb,3 +np.float32,0x800f5c09,0x800f5c09,3 +np.float32,0x7f5893b6,0x3fc90fdb,3 +np.float32,0x7f06b5b1,0x3fc90fdb,3 +np.float32,0xbe1cbee8,0xbe1b89d6,3 +np.float32,0xbf279f14,0xbf1468a8,3 +np.float32,0xfea86060,0xbfc90fdb,3 +np.float32,0x3e828174,0x3e7f91bb,3 +np.float32,0xff682c82,0xbfc90fdb,3 +np.float32,0x4e20f3,0x4e20f3,3 +np.float32,0x7f17d7e9,0x3fc90fdb,3 +np.float32,0x80671f92,0x80671f92,3 +np.float32,0x7f6dd100,0x3fc90fdb,3 +np.float32,0x3f219a4d,0x3f102695,3 +np.float32,0x803c9808,0x803c9808,3 +np.float32,0x3c432ada,0x3c43287d,3 +np.float32,0xbd3db450,0xbd3d91a2,3 +np.float32,0x3baac135,0x3baac0d0,3 +np.float32,0xff7fffe1,0xbfc90fdb,3 +np.float32,0xfe38a6f4,0xbfc90fdb,3 +np.float32,0x3dfb0a04,0x3df9cb04,3 +np.float32,0x800b05c2,0x800b05c2,3 +np.float32,0x644163,0x644163,3 +np.float32,0xff03a025,0xbfc90fdb,3 +np.float32,0x3f7d506c,0x3f47b641,3 +np.float32,0xff0e682a,0xbfc90fdb,3 +np.float32,0x3e09b7b0,0x3e08e567,3 +np.float32,0x7f72a216,0x3fc90fdb,3 +np.float32,0x7f800000,0x3fc90fdb,3 +np.float32,0x8050a281,0x8050a281,3 +np.float32,0x7edafa2f,0x3fc90fdb,3 +np.float32,0x3f4e0df6,0x3f2d7f2f,3 +np.float32,0xbf6728e0,0xbf3c050f,3 +np.float32,0x3e904ce4,0x3e8ca6eb,3 +np.float32,0x0,0x0,3 +np.float32,0xfd215070,0xbfc90fdb,3 +np.float32,0x7e406b15,0x3fc90fdb,3 +np.float32,0xbf2803c9,0xbf14af18,3 +np.float32,0x5950c8,0x5950c8,3 +np.float32,0xbeddcec8,0xbed14faa,3 +np.float32,0xbec6457e,0xbebd2aa5,3 +np.float32,0xbf42843c,0xbf2656db,3 +np.float32,0x3ee9cba8,0x3edb5163,3 +np.float32,0xbe30c954,0xbe2f0f90,3 +np.float32,0xbeee6b44,0xbedf216f,3 +np.float32,0xbe35d818,0xbe33f7cd,3 +np.float32,0xbe47c630,0xbe454bc6,3 +np.float32,0x801b146f,0x801b146f,3 +np.float32,0x7f6788da,0x3fc90fdb,3 +np.float32,0x3eaef088,0x3ea8927d,3 +np.float32,0x3eb5983e,0x3eae81fc,3 +np.float32,0x40b51d,0x40b51d,3 +np.float32,0xfebddd04,0xbfc90fdb,3 +np.float32,0x3e591aee,0x3e55efea,3 +np.float32,0xbe2b6b48,0xbe29d81f,3 +np.float32,0xff4a8826,0xbfc90fdb,3 +np.float32,0x3e791df0,0x3e745eac,3 +np.float32,0x7c8f681f,0x3fc90fdb,3 +np.float32,0xfe7a15c4,0xbfc90fdb,3 +np.float32,0x3c8963,0x3c8963,3 +np.float32,0x3f0afa0a,0x3efea5cc,3 +np.float32,0xbf0d2680,0xbf00ff29,3 +np.float32,0x3dc306b0,0x3dc27096,3 +np.float32,0x7f4cf105,0x3fc90fdb,3 +np.float32,0xbe196060,0xbe183ea4,3 +np.float32,0x5caf1c,0x5caf1c,3 +np.float32,0x801f2852,0x801f2852,3 +np.float32,0xbe01aa0c,0xbe00fa53,3 +np.float32,0x3f0cfd32,0x3f00df7a,3 +np.float32,0x7d82038e,0x3fc90fdb,3 +np.float32,0x7f7b927f,0x3fc90fdb,3 +np.float32,0xbe93b2e4,0xbe8fcb7f,3 +np.float32,0x1ffe8c,0x1ffe8c,3 +np.float32,0x3faaf6,0x3faaf6,3 +np.float32,0x3e32b1b8,0x3e30e9ab,3 +np.float32,0x802953c0,0x802953c0,3 +np.float32,0xfe5d9844,0xbfc90fdb,3 +np.float32,0x3e1a59d0,0x3e193292,3 +np.float32,0x801c6edc,0x801c6edc,3 +np.float32,0x1ecf41,0x1ecf41,3 +np.float32,0xfe56b09c,0xbfc90fdb,3 +np.float32,0x7e878351,0x3fc90fdb,3 +np.float32,0x3f401e2c,0x3f24cfcb,3 +np.float32,0xbf204a40,0xbf0f35bb,3 +np.float32,0x3e155a98,0x3e144ee1,3 +np.float32,0xbf34f929,0xbf1d8838,3 +np.float32,0x801bbf70,0x801bbf70,3 +np.float32,0x7e7c9730,0x3fc90fdb,3 +np.float32,0x7cc23432,0x3fc90fdb,3 +np.float32,0xbf351638,0xbf1d9b97,3 +np.float32,0x80152094,0x80152094,3 +np.float32,0x3f2d731c,0x3f187219,3 +np.float32,0x804ab0b7,0x804ab0b7,3 +np.float32,0x37d6db,0x37d6db,3 +np.float32,0xbf3ccc56,0xbf22acbf,3 +np.float32,0x3e546f8c,0x3e5176e7,3 +np.float32,0xbe90e87e,0xbe8d3707,3 +np.float32,0x48256c,0x48256c,3 +np.float32,0x7e2468d0,0x3fc90fdb,3 +np.float32,0x807af47e,0x807af47e,3 +np.float32,0x3ed4b221,0x3ec996f0,3 +np.float32,0x3d3b1956,0x3d3af811,3 +np.float32,0xbe69d93c,0xbe65e7f0,3 +np.float32,0xff03ff14,0xbfc90fdb,3 +np.float32,0x801e79dc,0x801e79dc,3 +np.float32,0x3f467c53,0x3f28d63d,3 +np.float32,0x3eab6baa,0x3ea56a1c,3 +np.float32,0xbf15519c,0xbf072d1c,3 +np.float32,0x7f0bd8e8,0x3fc90fdb,3 +np.float32,0xbe1e0d1c,0xbe1cd053,3 +np.float32,0x8016edab,0x8016edab,3 +np.float32,0x7ecaa09b,0x3fc90fdb,3 +np.float32,0x3f72e6d9,0x3f4257a8,3 +np.float32,0xbefe787e,0xbeec29a4,3 +np.float32,0xbee989e8,0xbedb1af9,3 +np.float32,0xbe662db0,0xbe626a45,3 +np.float32,0x495bf7,0x495bf7,3 +np.float32,0x26c379,0x26c379,3 +np.float32,0x7f54d41a,0x3fc90fdb,3 +np.float32,0x801e7dd9,0x801e7dd9,3 +np.float32,0x80000000,0x80000000,3 +np.float32,0xfa3d3000,0xbfc90fdb,3 +np.float32,0xfa3cb800,0xbfc90fdb,3 +np.float32,0x264894,0x264894,3 +np.float32,0xff6de011,0xbfc90fdb,3 +np.float32,0x7e9045b2,0x3fc90fdb,3 +np.float32,0x3f2253a8,0x3f10aaf4,3 +np.float32,0xbd462bf0,0xbd460469,3 +np.float32,0x7f1796af,0x3fc90fdb,3 +np.float32,0x3e718858,0x3e6d3279,3 +np.float32,0xff437d7e,0xbfc90fdb,3 +np.float32,0x805ae7cb,0x805ae7cb,3 +np.float32,0x807e32e9,0x807e32e9,3 +np.float32,0x3ee0bafc,0x3ed3c453,3 +np.float32,0xbf721dee,0xbf41edc3,3 +np.float32,0xfec9f792,0xbfc90fdb,3 +np.float32,0x7f050720,0x3fc90fdb,3 +np.float32,0x182261,0x182261,3 +np.float32,0x3e39e678,0x3e37e5be,3 +np.float32,0x7e096e4b,0x3fc90fdb,3 +np.float32,0x103715,0x103715,3 +np.float32,0x3f7e7741,0x3f484ae4,3 +np.float32,0x3e29aea5,0x3e28277c,3 +np.float32,0x58c183,0x58c183,3 +np.float32,0xff72fdb2,0xbfc90fdb,3 +np.float32,0xbd9a9420,0xbd9a493c,3 +np.float32,0x7f1e07e7,0x3fc90fdb,3 +np.float32,0xff79f522,0xbfc90fdb,3 +np.float32,0x7c7d0e96,0x3fc90fdb,3 +np.float32,0xbeba9e8e,0xbeb2f504,3 +np.float32,0xfd880a80,0xbfc90fdb,3 +np.float32,0xff7f2a33,0xbfc90fdb,3 +np.float32,0x3e861ae0,0x3e83289c,3 +np.float32,0x7f0161c1,0x3fc90fdb,3 +np.float32,0xfe844ff8,0xbfc90fdb,3 +np.float32,0xbebf4b98,0xbeb7128e,3 +np.float32,0x652bee,0x652bee,3 +np.float32,0xff188a4b,0xbfc90fdb,3 +np.float32,0xbf800000,0xbf490fdb,3 +np.float32,0x80418711,0x80418711,3 +np.float32,0xbeb712d4,0xbeafd1f6,3 +np.float32,0xbf7cee28,0xbf478491,3 +np.float32,0xfe66c59c,0xbfc90fdb,3 +np.float32,0x4166a2,0x4166a2,3 +np.float32,0x3dfa1a2c,0x3df8deb5,3 +np.float32,0xbdbfbcb8,0xbdbf2e0f,3 +np.float32,0xfe60ef70,0xbfc90fdb,3 +np.float32,0xfe009444,0xbfc90fdb,3 +np.float32,0xfeb27aa0,0xbfc90fdb,3 +np.float32,0xbe99f7bc,0xbe95902b,3 +np.float32,0x8043d28d,0x8043d28d,3 +np.float32,0xfe5328c4,0xbfc90fdb,3 +np.float32,0x8017b27e,0x8017b27e,3 +np.float32,0x3ef1d2cf,0x3ee1ebd7,3 +np.float32,0x805ddd90,0x805ddd90,3 +np.float32,0xbf424263,0xbf262d17,3 +np.float32,0xfc99dde0,0xbfc90fdb,3 +np.float32,0xbf7ec13b,0xbf487015,3 +np.float32,0xbef727ea,0xbee64377,3 +np.float32,0xff15ce95,0xbfc90fdb,3 +np.float32,0x1fbba4,0x1fbba4,3 +np.float32,0x3f3b2368,0x3f2198a9,3 +np.float32,0xfefda26e,0xbfc90fdb,3 +np.float32,0x801519ad,0x801519ad,3 +np.float32,0x80473fa2,0x80473fa2,3 +np.float32,0x7e7a8bc1,0x3fc90fdb,3 +np.float32,0x3e8a9289,0x3e87548a,3 +np.float32,0x3ed68987,0x3ecb2872,3 +np.float32,0x805bca66,0x805bca66,3 +np.float32,0x8079c4e3,0x8079c4e3,3 +np.float32,0x3a2510,0x3a2510,3 +np.float32,0x7eedc598,0x3fc90fdb,3 +np.float32,0x80681956,0x80681956,3 +np.float32,0xff64c778,0xbfc90fdb,3 +np.float32,0x806bbc46,0x806bbc46,3 +np.float32,0x433643,0x433643,3 +np.float32,0x705b92,0x705b92,3 +np.float32,0xff359392,0xbfc90fdb,3 +np.float32,0xbee78672,0xbed96fa7,3 +np.float32,0x3e21717b,0x3e202010,3 +np.float32,0xfea13c34,0xbfc90fdb,3 +np.float32,0x2c8895,0x2c8895,3 +np.float32,0x3ed33290,0x3ec84f7c,3 +np.float32,0x3e63031e,0x3e5f662e,3 +np.float32,0x7e30907b,0x3fc90fdb,3 +np.float32,0xbe293708,0xbe27b310,3 +np.float32,0x3ed93738,0x3ecd6ea3,3 +np.float32,0x9db7e,0x9db7e,3 +np.float32,0x3f7cd1b8,0x3f47762c,3 +np.float32,0x3eb5143c,0x3eae0cb0,3 +np.float32,0xbe69b234,0xbe65c2d7,3 +np.float32,0x3f6e74de,0x3f3ffb97,3 +np.float32,0x5d0559,0x5d0559,3 +np.float32,0x3e1e8c30,0x3e1d4c70,3 +np.float32,0xbf2d1878,0xbf1833ef,3 +np.float32,0xff2adf82,0xbfc90fdb,3 +np.float32,0x8012e2c1,0x8012e2c1,3 +np.float32,0x7f031be3,0x3fc90fdb,3 +np.float32,0x805ff94e,0x805ff94e,3 +np.float32,0x3e9d5b27,0x3e98aa31,3 +np.float32,0x3f56d5cf,0x3f32bc9e,3 +np.float32,0x3eaa0412,0x3ea4267f,3 +np.float32,0xbe899ea4,0xbe86712f,3 +np.float32,0x800f2f48,0x800f2f48,3 +np.float32,0x3f1c2269,0x3f0c33ea,3 +np.float32,0x3f4a5f64,0x3f2b3f28,3 +np.float32,0x80739318,0x80739318,3 +np.float32,0x806e9b47,0x806e9b47,3 +np.float32,0x3c8cd300,0x3c8ccf73,3 +np.float32,0x7f39a39d,0x3fc90fdb,3 +np.float32,0x3ec95d61,0x3ebfd9dc,3 +np.float32,0xff351ff8,0xbfc90fdb,3 +np.float32,0xff3a8f58,0xbfc90fdb,3 +np.float32,0x7f313ec0,0x3fc90fdb,3 +np.float32,0x803aed13,0x803aed13,3 +np.float32,0x7f771d9b,0x3fc90fdb,3 +np.float32,0x8045a6d6,0x8045a6d6,3 +np.float32,0xbc85f280,0xbc85ef72,3 +np.float32,0x7e9c68f5,0x3fc90fdb,3 +np.float32,0xbf0f9379,0xbf02d975,3 +np.float32,0x7e97bcb1,0x3fc90fdb,3 +np.float32,0x804a07d5,0x804a07d5,3 +np.float32,0x802e6117,0x802e6117,3 +np.float32,0x7ed5e388,0x3fc90fdb,3 +np.float32,0x80750455,0x80750455,3 +np.float32,0xff4a8325,0xbfc90fdb,3 +np.float32,0xbedb6866,0xbecf497c,3 +np.float32,0x52ea3b,0x52ea3b,3 +np.float32,0xff773172,0xbfc90fdb,3 +np.float32,0xbeaa8ff0,0xbea4a46e,3 +np.float32,0x7eef2058,0x3fc90fdb,3 +np.float32,0x3f712472,0x3f4169d3,3 +np.float32,0xff6c8608,0xbfc90fdb,3 +np.float32,0xbf6eaa41,0xbf40182a,3 +np.float32,0x3eb03c24,0x3ea9bb34,3 +np.float32,0xfe118cd4,0xbfc90fdb,3 +np.float32,0x3e5b03b0,0x3e57c378,3 +np.float32,0x7f34d92d,0x3fc90fdb,3 +np.float32,0x806c3418,0x806c3418,3 +np.float32,0x7f3074e3,0x3fc90fdb,3 +np.float32,0x8002df02,0x8002df02,3 +np.float32,0x3f6df63a,0x3f3fb7b7,3 +np.float32,0xfd2b4100,0xbfc90fdb,3 +np.float32,0x80363d5c,0x80363d5c,3 +np.float32,0xbeac1f98,0xbea60bd6,3 +np.float32,0xff7fffff,0xbfc90fdb,3 +np.float32,0x80045097,0x80045097,3 +np.float32,0xfe011100,0xbfc90fdb,3 +np.float32,0x80739ef5,0x80739ef5,3 +np.float32,0xff3976ed,0xbfc90fdb,3 +np.float32,0xbe18e3a0,0xbe17c49e,3 +np.float32,0xbe289294,0xbe2712f6,3 +np.float32,0x3f1d41e7,0x3f0d050e,3 +np.float32,0x39364a,0x39364a,3 +np.float32,0x8072b77e,0x8072b77e,3 +np.float32,0x3f7cfec0,0x3f478cf6,3 +np.float32,0x2f68f6,0x2f68f6,3 +np.float32,0xbf031fb8,0xbef25c84,3 +np.float32,0xbf0b842c,0xbeff7afc,3 +np.float32,0x3f081e7e,0x3efa3676,3 +np.float32,0x7f7fffff,0x3fc90fdb,3 +np.float32,0xff15da0e,0xbfc90fdb,3 +np.float32,0x3d2001b2,0x3d1fece1,3 +np.float32,0x7f76efef,0x3fc90fdb,3 +np.float32,0x3f2405dd,0x3f11dfb7,3 +np.float32,0xa0319,0xa0319,3 +np.float32,0x3e23d2bd,0x3e227255,3 +np.float32,0xbd4d4c50,0xbd4d205e,3 +np.float32,0x382344,0x382344,3 +np.float32,0x21bbf,0x21bbf,3 +np.float32,0xbf209e82,0xbf0f7239,3 +np.float32,0xff03bf9f,0xbfc90fdb,3 +np.float32,0x7b1789,0x7b1789,3 +np.float32,0xff314944,0xbfc90fdb,3 +np.float32,0x1a63eb,0x1a63eb,3 +np.float32,0x803dc983,0x803dc983,3 +np.float32,0x3f0ff558,0x3f0323dc,3 +np.float32,0x3f544f2c,0x3f313f58,3 +np.float32,0xff032948,0xbfc90fdb,3 +np.float32,0x7f4933cc,0x3fc90fdb,3 +np.float32,0x7f14c5ed,0x3fc90fdb,3 +np.float32,0x803aeebf,0x803aeebf,3 +np.float32,0xbf0d4c0f,0xbf011bf5,3 +np.float32,0xbeaf8de2,0xbea91f57,3 +np.float32,0xff3ae030,0xbfc90fdb,3 +np.float32,0xbb362d00,0xbb362ce1,3 +np.float32,0x3d1f79e0,0x3d1f6544,3 +np.float32,0x3f56e9d9,0x3f32c860,3 +np.float32,0x3f723e5e,0x3f41fee2,3 +np.float32,0x4c0179,0x4c0179,3 +np.float32,0xfee36132,0xbfc90fdb,3 +np.float32,0x619ae6,0x619ae6,3 +np.float32,0xfde5d670,0xbfc90fdb,3 +np.float32,0xff079ac5,0xbfc90fdb,3 +np.float32,0x3e974fbd,0x3e931fae,3 +np.float32,0x8020ae6b,0x8020ae6b,3 +np.float32,0x6b5af1,0x6b5af1,3 +np.float32,0xbeb57cd6,0xbeae69a3,3 +np.float32,0x806e7eb2,0x806e7eb2,3 +np.float32,0x7e666edb,0x3fc90fdb,3 +np.float32,0xbf458c18,0xbf283ff0,3 +np.float32,0x3e50518e,0x3e4d8399,3 +np.float32,0x3e9ce224,0x3e983b98,3 +np.float32,0x3e6bc067,0x3e67b6c6,3 +np.float32,0x13783d,0x13783d,3 +np.float32,0xff3d518c,0xbfc90fdb,3 +np.float32,0xfeba5968,0xbfc90fdb,3 +np.float32,0xbf0b9f76,0xbeffa50f,3 +np.float32,0xfe174900,0xbfc90fdb,3 +np.float32,0x3f38bb0a,0x3f200527,3 +np.float32,0x7e94a77d,0x3fc90fdb,3 +np.float32,0x29d776,0x29d776,3 +np.float32,0xbf4e058d,0xbf2d7a15,3 +np.float32,0xbd94abc8,0xbd946923,3 +np.float32,0xbee62db0,0xbed85124,3 +np.float32,0x800000,0x800000,3 +np.float32,0xbef1df7e,0xbee1f636,3 +np.float32,0xbcf3cd20,0xbcf3bab5,3 +np.float32,0x80007b05,0x80007b05,3 +np.float32,0x3d9b3f2e,0x3d9af351,3 +np.float32,0xbf714a68,0xbf417dee,3 +np.float32,0xbf2a2d37,0xbf163069,3 +np.float32,0x8055104f,0x8055104f,3 +np.float32,0x7f5c40d7,0x3fc90fdb,3 +np.float32,0x1,0x1,3 +np.float32,0xff35f3a6,0xbfc90fdb,3 +np.float32,0xd9c7c,0xd9c7c,3 +np.float32,0xbf440cfc,0xbf274f22,3 +np.float32,0x8050ac43,0x8050ac43,3 +np.float32,0x63ee16,0x63ee16,3 +np.float32,0x7d90419b,0x3fc90fdb,3 +np.float32,0xfee22198,0xbfc90fdb,3 +np.float32,0xc2ead,0xc2ead,3 +np.float32,0x7f5cd6a6,0x3fc90fdb,3 +np.float32,0x3f6fab7e,0x3f40a184,3 +np.float32,0x3ecf998c,0x3ec53a73,3 +np.float32,0x7e5271f0,0x3fc90fdb,3 +np.float32,0x67c016,0x67c016,3 +np.float32,0x2189c8,0x2189c8,3 +np.float32,0x27d892,0x27d892,3 +np.float32,0x3f0d02c4,0x3f00e3c0,3 +np.float32,0xbf69ebca,0xbf3d8862,3 +np.float32,0x3e60c0d6,0x3e5d3ebb,3 +np.float32,0x3f45206c,0x3f27fc66,3 +np.float32,0xbf6b47dc,0xbf3e4592,3 +np.float32,0xfe9be2e2,0xbfc90fdb,3 +np.float32,0x7fa00000,0x7fe00000,3 +np.float32,0xff271562,0xbfc90fdb,3 +np.float32,0x3e2e5270,0x3e2caaaf,3 +np.float32,0x80222934,0x80222934,3 +np.float32,0xbd01d220,0xbd01c701,3 +np.float32,0x223aa0,0x223aa0,3 +np.float32,0x3f4b5a7e,0x3f2bd967,3 +np.float32,0x3f217d85,0x3f101200,3 +np.float32,0xbf57663a,0xbf331144,3 +np.float32,0x3f219862,0x3f102536,3 +np.float32,0x28a28c,0x28a28c,3 +np.float32,0xbf3f55f4,0xbf244f86,3 +np.float32,0xbf3de287,0xbf236092,3 +np.float32,0xbf1c1ce2,0xbf0c2fe3,3 +np.float32,0x80000001,0x80000001,3 +np.float32,0x3db695d0,0x3db61a90,3 +np.float32,0x6c39bf,0x6c39bf,3 +np.float32,0x7e33a12f,0x3fc90fdb,3 +np.float32,0x67623a,0x67623a,3 +np.float32,0x3e45dc54,0x3e4373b6,3 +np.float32,0x7f62fa68,0x3fc90fdb,3 +np.float32,0x3f0e1d01,0x3f01bbe5,3 +np.float32,0x3f13dc69,0x3f0615f5,3 +np.float32,0x246703,0x246703,3 +np.float32,0xbf1055b5,0xbf036d07,3 +np.float32,0x7f46d3d0,0x3fc90fdb,3 +np.float32,0x3d2b8086,0x3d2b66e5,3 +np.float32,0xbf03be44,0xbef35776,3 +np.float32,0x3f800000,0x3f490fdb,3 +np.float32,0xbec8d226,0xbebf613d,3 +np.float32,0x3d8faf00,0x3d8f72d4,3 +np.float32,0x170c4e,0x170c4e,3 +np.float32,0xff14c0f0,0xbfc90fdb,3 +np.float32,0xff16245d,0xbfc90fdb,3 +np.float32,0x7f44ce6d,0x3fc90fdb,3 +np.float32,0xbe8175d8,0xbe7d9aeb,3 +np.float32,0x3df7a4a1,0x3df67254,3 +np.float32,0xfe2cc46c,0xbfc90fdb,3 +np.float32,0x3f284e63,0x3f14e335,3 +np.float32,0x7e46e5d6,0x3fc90fdb,3 +np.float32,0x397be4,0x397be4,3 +np.float32,0xbf2560bc,0xbf12d50b,3 +np.float32,0x3ed9b8c1,0x3ecddc60,3 +np.float32,0xfec18c5a,0xbfc90fdb,3 +np.float32,0x64894d,0x64894d,3 +np.float32,0x36a65d,0x36a65d,3 +np.float32,0x804ffcd7,0x804ffcd7,3 +np.float32,0x800f79e4,0x800f79e4,3 +np.float32,0x5d45ac,0x5d45ac,3 +np.float32,0x6cdda0,0x6cdda0,3 +np.float32,0xbf7f2077,0xbf489fe5,3 +np.float32,0xbf152f78,0xbf0713a1,3 +np.float32,0x807bf344,0x807bf344,3 +np.float32,0x3f775023,0x3f44a4d8,3 +np.float32,0xbf3edf67,0xbf240365,3 +np.float32,0x7eed729c,0x3fc90fdb,3 +np.float32,0x14cc29,0x14cc29,3 +np.float32,0x7edd7b6b,0x3fc90fdb,3 +np.float32,0xbf3c6e2c,0xbf226fb7,3 +np.float32,0x51b9ad,0x51b9ad,3 +np.float32,0x3f617ee8,0x3f38dd7c,3 +np.float32,0xff800000,0xbfc90fdb,3 +np.float32,0x7f440ea0,0x3fc90fdb,3 +np.float32,0x3e639893,0x3e5ff49e,3 +np.float32,0xbd791bb0,0xbd78cd3c,3 +np.float32,0x8059fcbc,0x8059fcbc,3 +np.float32,0xbf7d1214,0xbf4796bd,3 +np.float32,0x3ef368fa,0x3ee33788,3 +np.float32,0xbecec0f4,0xbec48055,3 +np.float32,0xbc83d940,0xbc83d656,3 +np.float32,0xbce01220,0xbce003d4,3 +np.float32,0x803192a5,0x803192a5,3 +np.float32,0xbe40e0c0,0xbe3ea4f0,3 +np.float32,0xfb692600,0xbfc90fdb,3 +np.float32,0x3f1bec65,0x3f0c0c88,3 +np.float32,0x7f042798,0x3fc90fdb,3 +np.float32,0xbe047374,0xbe03b83b,3 +np.float32,0x7f7c6630,0x3fc90fdb,3 +np.float32,0x7f58dae3,0x3fc90fdb,3 +np.float32,0x80691c92,0x80691c92,3 +np.float32,0x7dbe76,0x7dbe76,3 +np.float32,0xbf231384,0xbf11339d,3 +np.float32,0xbef4acf8,0xbee43f8b,3 +np.float32,0x3ee9f9d0,0x3edb7793,3 +np.float32,0x3f0064f6,0x3eee04a8,3 +np.float32,0x313732,0x313732,3 +np.float32,0xfd58cf80,0xbfc90fdb,3 +np.float32,0x3f7a2bc9,0x3f461d30,3 +np.float32,0x7f7681af,0x3fc90fdb,3 +np.float32,0x7f504211,0x3fc90fdb,3 +np.float32,0xfeae0c00,0xbfc90fdb,3 +np.float32,0xbee14396,0xbed436d1,3 +np.float32,0x7fc00000,0x7fc00000,3 +np.float32,0x693406,0x693406,3 +np.float32,0x3eb4a679,0x3eadab1b,3 +np.float32,0x550505,0x550505,3 +np.float32,0xfd493d10,0xbfc90fdb,3 +np.float32,0x3f4fc907,0x3f2e8b2c,3 +np.float32,0x80799aa4,0x80799aa4,3 +np.float32,0xff1ea89b,0xbfc90fdb,3 +np.float32,0xff424510,0xbfc90fdb,3 +np.float32,0x7f68d026,0x3fc90fdb,3 +np.float32,0xbea230ca,0xbe9d1200,3 +np.float32,0x7ea585da,0x3fc90fdb,3 +np.float32,0x3f3db211,0x3f23414c,3 +np.float32,0xfea4d964,0xbfc90fdb,3 +np.float32,0xbf17fe18,0xbf092984,3 +np.float32,0x7cc8a2,0x7cc8a2,3 +np.float32,0xff0330ba,0xbfc90fdb,3 +np.float32,0x3f769835,0x3f444592,3 +np.float32,0xeb0ac,0xeb0ac,3 +np.float32,0x7f7e45de,0x3fc90fdb,3 +np.float32,0xbdb510a8,0xbdb49873,3 +np.float32,0x3ebf900b,0x3eb74e9c,3 +np.float32,0xbf21bbce,0xbf103e89,3 +np.float32,0xbf3f4682,0xbf24459d,3 +np.float32,0x7eb6e9c8,0x3fc90fdb,3 +np.float32,0xbf42532d,0xbf2637be,3 +np.float32,0xbd3b2600,0xbd3b04b4,3 +np.float32,0x3f1fa9aa,0x3f0ec23e,3 +np.float32,0x7ed6a0f1,0x3fc90fdb,3 +np.float32,0xff4759a1,0xbfc90fdb,3 +np.float32,0x6d26e3,0x6d26e3,3 +np.float32,0xfe1108e0,0xbfc90fdb,3 +np.float32,0xfdf76900,0xbfc90fdb,3 +np.float32,0xfec66f22,0xbfc90fdb,3 +np.float32,0xbf3d097f,0xbf22d458,3 +np.float32,0x3d85be25,0x3d858d99,3 +np.float32,0x7f36739f,0x3fc90fdb,3 +np.float32,0x7bc0a304,0x3fc90fdb,3 +np.float32,0xff48dd90,0xbfc90fdb,3 +np.float32,0x48cab0,0x48cab0,3 +np.float32,0x3ed3943c,0x3ec8a2ef,3 +np.float32,0xbf61488e,0xbf38bede,3 +np.float32,0x3f543df5,0x3f313525,3 +np.float32,0x5cf2ca,0x5cf2ca,3 +np.float32,0x572686,0x572686,3 +np.float32,0x80369c7c,0x80369c7c,3 +np.float32,0xbd2c1d20,0xbd2c0338,3 +np.float32,0x3e255428,0x3e23ea0b,3 +np.float32,0xbeba9ee0,0xbeb2f54c,3 +np.float32,0x8015c165,0x8015c165,3 +np.float32,0x3d31f488,0x3d31d7e6,3 +np.float32,0x3f68591c,0x3f3cac43,3 +np.float32,0xf5ed5,0xf5ed5,3 +np.float32,0xbf3b1d34,0xbf21949e,3 +np.float32,0x1f0343,0x1f0343,3 +np.float32,0x3f0e52b5,0x3f01e4ef,3 +np.float32,0x7f57c596,0x3fc90fdb,3 +np.float64,0x7fd8e333ddb1c667,0x3ff921fb54442d18,1 +np.float64,0x800bcc9cdad7993a,0x800bcc9cdad7993a,1 +np.float64,0x3fcd6f81df3adf00,0x3fcceebbafc5d55e,1 +np.float64,0x3fed7338a57ae671,0x3fe7ce3e5811fc0a,1 +np.float64,0x7fe64994fcac9329,0x3ff921fb54442d18,1 +np.float64,0xfa5a6345f4b4d,0xfa5a6345f4b4d,1 +np.float64,0xe9dcd865d3b9b,0xe9dcd865d3b9b,1 +np.float64,0x7fea6cffabf4d9fe,0x3ff921fb54442d18,1 +np.float64,0xa9e1de6153c3c,0xa9e1de6153c3c,1 +np.float64,0xab6bdc5356d7c,0xab6bdc5356d7c,1 +np.float64,0x80062864a02c50ca,0x80062864a02c50ca,1 +np.float64,0xbfdac03aa7b58076,0xbfd9569f3230128d,1 +np.float64,0xbfe61b77752c36ef,0xbfe3588f51b8be8f,1 +np.float64,0x800bc854c8d790aa,0x800bc854c8d790aa,1 +np.float64,0x3feed1a2da3da346,0x3fe887f9b8ea031f,1 +np.float64,0x3fe910d3697221a7,0x3fe54365a53d840e,1 +np.float64,0x7fe7ab4944ef5692,0x3ff921fb54442d18,1 +np.float64,0x3fa462f1a028c5e3,0x3fa460303a6a4e69,1 +np.float64,0x800794f1a3af29e4,0x800794f1a3af29e4,1 +np.float64,0x3fee6fe7fafcdfd0,0x3fe854f863816d55,1 +np.float64,0x8000000000000000,0x8000000000000000,1 +np.float64,0x7f336472fe66d,0x7f336472fe66d,1 +np.float64,0xffb1623ac822c478,0xbff921fb54442d18,1 +np.float64,0x3fbacd68ce359ad2,0x3fbab480b3638846,1 +np.float64,0xffd5c02706ab804e,0xbff921fb54442d18,1 +np.float64,0xbfd4daf03d29b5e0,0xbfd42928f069c062,1 +np.float64,0x800c6e85dbd8dd0c,0x800c6e85dbd8dd0c,1 +np.float64,0x800e3599c5bc6b34,0x800e3599c5bc6b34,1 +np.float64,0x2c0d654c581ad,0x2c0d654c581ad,1 +np.float64,0xbfdd3eb13fba7d62,0xbfdb6e8143302de7,1 +np.float64,0x800b60cb8776c197,0x800b60cb8776c197,1 +np.float64,0x80089819ad113034,0x80089819ad113034,1 +np.float64,0x29fe721453fcf,0x29fe721453fcf,1 +np.float64,0x3fe8722f4df0e45f,0x3fe4e026d9eadb4d,1 +np.float64,0xffd1fbcd01a3f79a,0xbff921fb54442d18,1 +np.float64,0x7fc74e1e982e9c3c,0x3ff921fb54442d18,1 +np.float64,0x800c09d3d15813a8,0x800c09d3d15813a8,1 +np.float64,0xbfeee4578b3dc8af,0xbfe891ab3d6c3ce4,1 +np.float64,0xffdd01a6f33a034e,0xbff921fb54442d18,1 +np.float64,0x7fcc130480382608,0x3ff921fb54442d18,1 +np.float64,0xffcbb6bd1d376d7c,0xbff921fb54442d18,1 +np.float64,0xc068a53780d15,0xc068a53780d15,1 +np.float64,0xbfc974f15532e9e4,0xbfc92100b355f3e7,1 +np.float64,0x3fe6da79442db4f3,0x3fe3d87393b082e7,1 +np.float64,0xd9d9be4db3b38,0xd9d9be4db3b38,1 +np.float64,0x5ea50a20bd4a2,0x5ea50a20bd4a2,1 +np.float64,0xbfe5597f7d2ab2ff,0xbfe2d3ccc544b52b,1 +np.float64,0x80019364e4e326cb,0x80019364e4e326cb,1 +np.float64,0x3fed2902c3fa5206,0x3fe7a5e1df07e5c1,1 +np.float64,0xbfa7b72b5c2f6e50,0xbfa7b2d545b3cc1f,1 +np.float64,0xffdb60dd43b6c1ba,0xbff921fb54442d18,1 +np.float64,0x81a65d8b034cc,0x81a65d8b034cc,1 +np.float64,0x8000c30385818608,0x8000c30385818608,1 +np.float64,0x6022f5f4c045f,0x6022f5f4c045f,1 +np.float64,0x8007a2bb810f4578,0x8007a2bb810f4578,1 +np.float64,0x7fdc68893238d111,0x3ff921fb54442d18,1 +np.float64,0x7fd443454ea8868a,0x3ff921fb54442d18,1 +np.float64,0xffe6b04209ed6084,0xbff921fb54442d18,1 +np.float64,0x7fcd9733d13b2e67,0x3ff921fb54442d18,1 +np.float64,0xf5ee80a9ebdd0,0xf5ee80a9ebdd0,1 +np.float64,0x3fe3788e8de6f11e,0x3fe17dec7e6843a0,1 +np.float64,0x3fee36f62f7c6dec,0x3fe836f832515b43,1 +np.float64,0xf6cb49aded969,0xf6cb49aded969,1 +np.float64,0x3fd2b15ea4a562bc,0x3fd22fdc09920e67,1 +np.float64,0x7fccf6aef139ed5d,0x3ff921fb54442d18,1 +np.float64,0x3fd396b8ce272d72,0x3fd3026118857bd4,1 +np.float64,0x7fe53d3c80ea7a78,0x3ff921fb54442d18,1 +np.float64,0x3feae88fc4f5d120,0x3fe65fb04b18ef7a,1 +np.float64,0x3fedc643747b8c86,0x3fe7fafa6c20e25a,1 +np.float64,0xffdb2dc0df365b82,0xbff921fb54442d18,1 +np.float64,0xbfa2af3658255e70,0xbfa2ad17348f4253,1 +np.float64,0x3f8aa77b30354ef6,0x3f8aa71892336a69,1 +np.float64,0xbfdd1b1efbba363e,0xbfdb510dcd186820,1 +np.float64,0x800f50d99c5ea1b3,0x800f50d99c5ea1b3,1 +np.float64,0xff6ed602403dac00,0xbff921fb54442d18,1 +np.float64,0x800477d71aa8efaf,0x800477d71aa8efaf,1 +np.float64,0xbfe729a9e86e5354,0xbfe40ca78d9eefcf,1 +np.float64,0x3fd81ab2d4303566,0x3fd70d7e3937ea22,1 +np.float64,0xb617cbab6c2fa,0xb617cbab6c2fa,1 +np.float64,0x7fefffffffffffff,0x3ff921fb54442d18,1 +np.float64,0xffa40933ac281260,0xbff921fb54442d18,1 +np.float64,0xbfe1ede621e3dbcc,0xbfe057bb2b341ced,1 +np.float64,0xbfec700f03b8e01e,0xbfe73fb190bc722e,1 +np.float64,0x6e28af02dc517,0x6e28af02dc517,1 +np.float64,0x3fe37ad37ae6f5a7,0x3fe17f94674818a9,1 +np.float64,0x8000cbdeeae197bf,0x8000cbdeeae197bf,1 +np.float64,0x3fe8fd1f01f1fa3e,0x3fe5372bbec5d72c,1 +np.float64,0x3f8f9229103f2452,0x3f8f918531894256,1 +np.float64,0x800536858e0a6d0c,0x800536858e0a6d0c,1 +np.float64,0x7fe82bb4f9f05769,0x3ff921fb54442d18,1 +np.float64,0xffc1c2fb592385f8,0xbff921fb54442d18,1 +np.float64,0x7f924ddfc0249bbf,0x3ff921fb54442d18,1 +np.float64,0xffd5e125c52bc24c,0xbff921fb54442d18,1 +np.float64,0xbfef0d8738be1b0e,0xbfe8a6ef17b16c10,1 +np.float64,0x3fc9c8875233910f,0x3fc9715e708503cb,1 +np.float64,0xbfe2d926f4e5b24e,0xbfe108956e61cbb3,1 +np.float64,0x7fd61c496dac3892,0x3ff921fb54442d18,1 +np.float64,0x7fed545c6b7aa8b8,0x3ff921fb54442d18,1 +np.float64,0x8003746fea86e8e1,0x8003746fea86e8e1,1 +np.float64,0x3fdf515e75bea2bd,0x3fdd201a5585caa3,1 +np.float64,0xffda87c8ee350f92,0xbff921fb54442d18,1 +np.float64,0xffc675d8e22cebb0,0xbff921fb54442d18,1 +np.float64,0xffcdc173433b82e8,0xbff921fb54442d18,1 +np.float64,0xffed9df1517b3be2,0xbff921fb54442d18,1 +np.float64,0x3fd6a2eec72d45de,0x3fd5c1f1d7dcddcf,1 +np.float64,0xffec116a66f822d4,0xbff921fb54442d18,1 +np.float64,0x8007c2a2458f8545,0x8007c2a2458f8545,1 +np.float64,0x3fe4ee80d969dd02,0x3fe2895076094668,1 +np.float64,0x3fe3cae7116795ce,0x3fe1b9c07e0d03a7,1 +np.float64,0xbfd81bf8d8b037f2,0xbfd70e9bbbb4ca57,1 +np.float64,0x800c88ccd1f9119a,0x800c88ccd1f9119a,1 +np.float64,0xffdab2aee2b5655e,0xbff921fb54442d18,1 +np.float64,0x3fe743d227ee87a4,0x3fe41dcaef186d96,1 +np.float64,0x3fb060fd0220c1fa,0x3fb05b47f56ebbb4,1 +np.float64,0xbfd3f03772a7e06e,0xbfd3541522377291,1 +np.float64,0x190a5ae03216,0x190a5ae03216,1 +np.float64,0x3fe48c71916918e4,0x3fe24442f45b3183,1 +np.float64,0x800862470590c48e,0x800862470590c48e,1 +np.float64,0x7fd3ced89d279db0,0x3ff921fb54442d18,1 +np.float64,0x3feb3d9b4ab67b37,0x3fe69140cf2623f7,1 +np.float64,0xbc3f296b787e5,0xbc3f296b787e5,1 +np.float64,0xbfed6b905dfad721,0xbfe7ca1881a8c0fd,1 +np.float64,0xbfe621c2aaac4386,0xbfe35cd1969a82db,1 +np.float64,0x8009e7b17593cf63,0x8009e7b17593cf63,1 +np.float64,0x80045f580ca8beb1,0x80045f580ca8beb1,1 +np.float64,0xbfea2e177e745c2f,0xbfe5f13971633339,1 +np.float64,0x3fee655787fccab0,0x3fe84f6b98b6de26,1 +np.float64,0x3fc9cde92f339bd0,0x3fc9768a88b2c97c,1 +np.float64,0x3fc819c3b3303388,0x3fc7d25e1526e731,1 +np.float64,0x3fd3e848d2a7d090,0x3fd34cd9e6af558f,1 +np.float64,0x3fe19dacac633b5a,0x3fe01a6b4d27adc2,1 +np.float64,0x800b190da316321c,0x800b190da316321c,1 +np.float64,0xd5c69711ab8d3,0xd5c69711ab8d3,1 +np.float64,0xbfdc31bed7b8637e,0xbfda8ea3c1309d6d,1 +np.float64,0xbfd02ba007a05740,0xbfcfad86f0d756dc,1 +np.float64,0x3fe874473d70e88e,0x3fe4e1793cd82123,1 +np.float64,0xffb465585c28cab0,0xbff921fb54442d18,1 +np.float64,0xbfb5d8e13e2bb1c0,0xbfb5cb5c7807fc4d,1 +np.float64,0xffe80f933bf01f26,0xbff921fb54442d18,1 +np.float64,0x7feea783f5fd4f07,0x3ff921fb54442d18,1 +np.float64,0xbfae6665f43cccd0,0xbfae5d45b0a6f90a,1 +np.float64,0x800bd6ef5a77addf,0x800bd6ef5a77addf,1 +np.float64,0x800d145babda28b8,0x800d145babda28b8,1 +np.float64,0x39de155473bc3,0x39de155473bc3,1 +np.float64,0x3fefbd6bb1ff7ad8,0x3fe9008e73a3296e,1 +np.float64,0x3fc40bca3d281798,0x3fc3e2710e167007,1 +np.float64,0x3fcae0918335c120,0x3fca7e09e704a678,1 +np.float64,0x51287fbea2511,0x51287fbea2511,1 +np.float64,0x7fa6bc33a82d7866,0x3ff921fb54442d18,1 +np.float64,0xe72a2bebce546,0xe72a2bebce546,1 +np.float64,0x3fe1c8fd686391fa,0x3fe03b9622aeb4e3,1 +np.float64,0x3fe2a73ac3654e76,0x3fe0e36bc1ee4ac4,1 +np.float64,0x59895218b312b,0x59895218b312b,1 +np.float64,0xc6dc25c78db85,0xc6dc25c78db85,1 +np.float64,0xbfc06cfac520d9f4,0xbfc0561f85d2c907,1 +np.float64,0xbfea912dc4f5225c,0xbfe62c3b1c01c793,1 +np.float64,0x3fb78ce89a2f19d0,0x3fb77bfcb65a67d3,1 +np.float64,0xbfece5cdea39cb9c,0xbfe78103d24099e5,1 +np.float64,0x30d3054e61a61,0x30d3054e61a61,1 +np.float64,0xbfd3fe26fba7fc4e,0xbfd360c8447c4f7a,1 +np.float64,0x800956072a92ac0f,0x800956072a92ac0f,1 +np.float64,0x7fe639b3b6ec7366,0x3ff921fb54442d18,1 +np.float64,0x800ee30240bdc605,0x800ee30240bdc605,1 +np.float64,0x7fef6af0d2bed5e1,0x3ff921fb54442d18,1 +np.float64,0xffefce8725ff9d0d,0xbff921fb54442d18,1 +np.float64,0x3fe2e311da65c624,0x3fe10ff1623089dc,1 +np.float64,0xbfe7e5cbe56fcb98,0xbfe486c3daeda67c,1 +np.float64,0x80095bc14472b783,0x80095bc14472b783,1 +np.float64,0xffef0cb4553e1968,0xbff921fb54442d18,1 +np.float64,0xe3e60567c7cc1,0xe3e60567c7cc1,1 +np.float64,0xffde919f06bd233e,0xbff921fb54442d18,1 +np.float64,0x3fe3f9632e27f2c6,0x3fe1db49ebd21c4e,1 +np.float64,0x9dee9a233bdd4,0x9dee9a233bdd4,1 +np.float64,0xbfe3bb0602e7760c,0xbfe1ae41b6d4c488,1 +np.float64,0x3fc46945a128d288,0x3fc43da54c6c6a2a,1 +np.float64,0x7fdef149ac3de292,0x3ff921fb54442d18,1 +np.float64,0x800a96c76d752d8f,0x800a96c76d752d8f,1 +np.float64,0x3f971a32382e3464,0x3f9719316b9e9baf,1 +np.float64,0x7fe97bcf15b2f79d,0x3ff921fb54442d18,1 +np.float64,0x7fea894558f5128a,0x3ff921fb54442d18,1 +np.float64,0x3fc9e3be1933c780,0x3fc98b847c3923eb,1 +np.float64,0x3f7accac40359959,0x3f7acc9330741b64,1 +np.float64,0xa80c136950183,0xa80c136950183,1 +np.float64,0x3fe408732b2810e6,0x3fe1e61e7cbc8824,1 +np.float64,0xffa775bc042eeb80,0xbff921fb54442d18,1 +np.float64,0x3fbf04bd223e0980,0x3fbede37b8fc697e,1 +np.float64,0x7fd999b34c333366,0x3ff921fb54442d18,1 +np.float64,0xe72146dfce429,0xe72146dfce429,1 +np.float64,0x4f511ee49ea24,0x4f511ee49ea24,1 +np.float64,0xffb3e6e58827cdc8,0xbff921fb54442d18,1 +np.float64,0x3fd1f180cfa3e300,0x3fd17e85b2871de2,1 +np.float64,0x97c8e45b2f91d,0x97c8e45b2f91d,1 +np.float64,0xbfeeb20e88fd641d,0xbfe8778f878440bf,1 +np.float64,0xbfe1fc6dee23f8dc,0xbfe062c815a93cde,1 +np.float64,0xab4bf71f5697f,0xab4bf71f5697f,1 +np.float64,0xa9675a2952cec,0xa9675a2952cec,1 +np.float64,0xbfef3ea4a33e7d49,0xbfe8c02743ebc1b6,1 +np.float64,0x3fe22a2eafa4545d,0x3fe08577afca52a9,1 +np.float64,0x3fe8a08daaf1411c,0x3fe4fd5a34f05305,1 +np.float64,0xbfc6cda77b2d9b50,0xbfc6910bcfa0cf4f,1 +np.float64,0x3fec398394387307,0x3fe7211dd5276500,1 +np.float64,0x3fe36c95c626d92c,0x3fe1752e5aa2357b,1 +np.float64,0xffd8b9e7073173ce,0xbff921fb54442d18,1 +np.float64,0xffe19f043ae33e08,0xbff921fb54442d18,1 +np.float64,0x800e3640709c6c81,0x800e3640709c6c81,1 +np.float64,0x3fe7d6c20aafad84,0x3fe47d1a3307d9c8,1 +np.float64,0x80093fd63b727fad,0x80093fd63b727fad,1 +np.float64,0xffe1a671a4634ce3,0xbff921fb54442d18,1 +np.float64,0xbfe53a6b386a74d6,0xbfe2be41859cb10d,1 +np.float64,0xbfed149a097a2934,0xbfe79ab7e3e93c1c,1 +np.float64,0x7fc2769a5724ed34,0x3ff921fb54442d18,1 +np.float64,0xffd01e4e99a03c9e,0xbff921fb54442d18,1 +np.float64,0xa61f38434c3e7,0xa61f38434c3e7,1 +np.float64,0x800ad4ac5195a959,0x800ad4ac5195a959,1 +np.float64,0x7ff8000000000000,0x7ff8000000000000,1 +np.float64,0x80034a45b6c6948c,0x80034a45b6c6948c,1 +np.float64,0x6350b218c6a17,0x6350b218c6a17,1 +np.float64,0xfff0000000000000,0xbff921fb54442d18,1 +np.float64,0x3fe363e759e6c7cf,0x3fe16ed58d80f9ce,1 +np.float64,0xffe3b98e59e7731c,0xbff921fb54442d18,1 +np.float64,0x3fdbf7b40337ef68,0x3fda5df7ad3c80f9,1 +np.float64,0xbfe9cdf784739bef,0xbfe5b74f346ef93d,1 +np.float64,0xbfc321bea326437c,0xbfc2fdc0d4ff7561,1 +np.float64,0xbfe40f77d2a81ef0,0xbfe1eb28c4ae4dde,1 +np.float64,0x7fe071806960e300,0x3ff921fb54442d18,1 +np.float64,0x7fd269006ea4d200,0x3ff921fb54442d18,1 +np.float64,0x80017a56e0e2f4af,0x80017a56e0e2f4af,1 +np.float64,0x8004b4ea09a969d5,0x8004b4ea09a969d5,1 +np.float64,0xbfedbb01e63b7604,0xbfe7f4f0e84297df,1 +np.float64,0x3fe44454826888a9,0x3fe210ff6d005706,1 +np.float64,0xbfe0e77e6ea1cefd,0xbfdf1a977da33402,1 +np.float64,0xbfed6d4c8c3ada99,0xbfe7cb0932093f60,1 +np.float64,0x1d74cb9e3ae9a,0x1d74cb9e3ae9a,1 +np.float64,0x80082a785d1054f1,0x80082a785d1054f1,1 +np.float64,0x3fe58393266b0726,0x3fe2f0d8e91d4887,1 +np.float64,0xffe4028899680510,0xbff921fb54442d18,1 +np.float64,0x783a2e5af0746,0x783a2e5af0746,1 +np.float64,0x7fcdce88e73b9d11,0x3ff921fb54442d18,1 +np.float64,0x3fc58672a72b0ce5,0x3fc5535e090e56e2,1 +np.float64,0x800889c839b11391,0x800889c839b11391,1 +np.float64,0xffe5e05c466bc0b8,0xbff921fb54442d18,1 +np.float64,0xbfcbef6ebe37dedc,0xbfcb810752468f49,1 +np.float64,0xffe9408563b2810a,0xbff921fb54442d18,1 +np.float64,0xbfee4738367c8e70,0xbfe83f8e5dd7602f,1 +np.float64,0xbfe4aeb587295d6b,0xbfe25c7a0c76a454,1 +np.float64,0xffc9aea0a7335d40,0xbff921fb54442d18,1 +np.float64,0xe1e02199c3c04,0xe1e02199c3c04,1 +np.float64,0xbfbd9400783b2800,0xbfbd729345d1d14f,1 +np.float64,0x7a5418bcf4a84,0x7a5418bcf4a84,1 +np.float64,0x3fdc1c2fa5b83860,0x3fda7c935965ae72,1 +np.float64,0x80076a9f58ced53f,0x80076a9f58ced53f,1 +np.float64,0x3fedc4bf957b897f,0x3fe7fa2a83148f1c,1 +np.float64,0x800981b8a9d30372,0x800981b8a9d30372,1 +np.float64,0xffe1082311621046,0xbff921fb54442d18,1 +np.float64,0xe0091f89c0124,0xe0091f89c0124,1 +np.float64,0xbfce8d674f3d1ad0,0xbfcdfdbf2ddaa0ca,1 +np.float64,0x800516e72eaa2dcf,0x800516e72eaa2dcf,1 +np.float64,0xffe61ee64c6c3dcc,0xbff921fb54442d18,1 +np.float64,0x7fed2683cafa4d07,0x3ff921fb54442d18,1 +np.float64,0xffd4faf27729f5e4,0xbff921fb54442d18,1 +np.float64,0x7fe308fa842611f4,0x3ff921fb54442d18,1 +np.float64,0x3fc612a62b2c2550,0x3fc5db9ddbd4e159,1 +np.float64,0xbfe5b01e766b603d,0xbfe30f72a875e988,1 +np.float64,0x3fc2dd8b9a25bb17,0x3fc2bb06246b9f78,1 +np.float64,0x8170908102e12,0x8170908102e12,1 +np.float64,0x800c1c8a8a583915,0x800c1c8a8a583915,1 +np.float64,0xffe5d91e8b6bb23c,0xbff921fb54442d18,1 +np.float64,0xffd140adee22815c,0xbff921fb54442d18,1 +np.float64,0xbfe2f1f5f8e5e3ec,0xbfe11afa5d749952,1 +np.float64,0xbfed6d1d587ada3b,0xbfe7caef9ecf7651,1 +np.float64,0x3fe9b85e67f370bd,0x3fe5aa3474768982,1 +np.float64,0x7fdc8932edb91265,0x3ff921fb54442d18,1 +np.float64,0x7fd136bc54a26d78,0x3ff921fb54442d18,1 +np.float64,0x800a1ea12a343d43,0x800a1ea12a343d43,1 +np.float64,0x3fec6a5c1b78d4b8,0x3fe73c82235c3f8f,1 +np.float64,0x800fbf6a00df7ed4,0x800fbf6a00df7ed4,1 +np.float64,0xbfd0e6e0cda1cdc2,0xbfd0864bf8cad294,1 +np.float64,0x3fc716df482e2dbf,0x3fc6d7fbfd4a8470,1 +np.float64,0xbfe75990936eb321,0xbfe42bffec3fa0d7,1 +np.float64,0x3fd58e54a02b1ca9,0x3fd4cace1107a5cc,1 +np.float64,0xbfc9c04136338084,0xbfc9696ad2591d54,1 +np.float64,0xdd1f0147ba3e0,0xdd1f0147ba3e0,1 +np.float64,0x5c86a940b90e,0x5c86a940b90e,1 +np.float64,0xbfecae3b8e795c77,0xbfe7624d4988c612,1 +np.float64,0xffd0370595206e0c,0xbff921fb54442d18,1 +np.float64,0xbfdc26d443384da8,0xbfda857ecd33ba9f,1 +np.float64,0xbfd1c849d9a39094,0xbfd15849449cc378,1 +np.float64,0xffee04acdb3c0959,0xbff921fb54442d18,1 +np.float64,0xbfded1056dbda20a,0xbfdcb83b30e1528c,1 +np.float64,0x7fb7b826622f704c,0x3ff921fb54442d18,1 +np.float64,0xbfee4df8ae7c9bf1,0xbfe8431df9dfd05d,1 +np.float64,0x7fe7f3670e2fe6cd,0x3ff921fb54442d18,1 +np.float64,0x8008ac9ae0d15936,0x8008ac9ae0d15936,1 +np.float64,0x800dce9f3b3b9d3f,0x800dce9f3b3b9d3f,1 +np.float64,0x7fbb19db203633b5,0x3ff921fb54442d18,1 +np.float64,0x3fe56c7f302ad8fe,0x3fe2e0eec3ad45fd,1 +np.float64,0x7fe82c05c570580b,0x3ff921fb54442d18,1 +np.float64,0xc0552b7780aa6,0xc0552b7780aa6,1 +np.float64,0x39d40e3073a83,0x39d40e3073a83,1 +np.float64,0x3fd8db54d731b6aa,0x3fd7b589b3ee9b20,1 +np.float64,0xffcdd355233ba6ac,0xbff921fb54442d18,1 +np.float64,0x3fbe97b3a43d2f67,0x3fbe72bca9be0348,1 +np.float64,0xbff0000000000000,0xbfe921fb54442d18,1 +np.float64,0xbfb4f55e6229eac0,0xbfb4e96df18a75a7,1 +np.float64,0xbfc66399ba2cc734,0xbfc62a3298bd96fc,1 +np.float64,0x3fd00988bb201311,0x3fcf6d67a9374c38,1 +np.float64,0x7fe471867d28e30c,0x3ff921fb54442d18,1 +np.float64,0xbfe38e0e64271c1d,0xbfe18d9888b7523b,1 +np.float64,0x8009dc127573b825,0x8009dc127573b825,1 +np.float64,0x800047bde4608f7d,0x800047bde4608f7d,1 +np.float64,0xffeede42c77dbc85,0xbff921fb54442d18,1 +np.float64,0xd8cf6d13b19ee,0xd8cf6d13b19ee,1 +np.float64,0xbfd08fb302a11f66,0xbfd034b1f8235e23,1 +np.float64,0x7fdb404c0b368097,0x3ff921fb54442d18,1 +np.float64,0xbfd6ba0438ad7408,0xbfd5d673e3276ec1,1 +np.float64,0xffd9568027b2ad00,0xbff921fb54442d18,1 +np.float64,0xbfb313b73e262770,0xbfb30ab4acb4fa67,1 +np.float64,0xbfe2dc1a15e5b834,0xbfe10ac5f8f3acd3,1 +np.float64,0xbfee426bf4bc84d8,0xbfe83d061df91edd,1 +np.float64,0xd9142c2fb2286,0xd9142c2fb2286,1 +np.float64,0x7feb0d11dff61a23,0x3ff921fb54442d18,1 +np.float64,0x800fea5b509fd4b7,0x800fea5b509fd4b7,1 +np.float64,0x3fe1a8818da35103,0x3fe022ba1bdf366e,1 +np.float64,0x8010000000000000,0x8010000000000000,1 +np.float64,0xbfd8fc6de6b1f8dc,0xbfd7d24726ed8dcc,1 +np.float64,0xf4b3dc2de967c,0xf4b3dc2de967c,1 +np.float64,0x8af0409b15e08,0x8af0409b15e08,1 +np.float64,0x3fb21e6934243cd2,0x3fb216b065f8709a,1 +np.float64,0x3fc53069392a60d2,0x3fc4ffa931211fb9,1 +np.float64,0xffc955812c32ab04,0xbff921fb54442d18,1 +np.float64,0xbfe3de42b1a7bc86,0xbfe1c7bd1324de75,1 +np.float64,0x1dc149a03b82a,0x1dc149a03b82a,1 +np.float64,0x8001bc5a24a378b5,0x8001bc5a24a378b5,1 +np.float64,0x3da14c407b44,0x3da14c407b44,1 +np.float64,0x80025e8da924bd1c,0x80025e8da924bd1c,1 +np.float64,0xbfcb0141c9360284,0xbfca9d572ea5e1f3,1 +np.float64,0xc90036fd92007,0xc90036fd92007,1 +np.float64,0x138312c427063,0x138312c427063,1 +np.float64,0x800dda3a963bb475,0x800dda3a963bb475,1 +np.float64,0x3fe9339934f26732,0x3fe558e723291f78,1 +np.float64,0xbfea8357027506ae,0xbfe6240826faaf48,1 +np.float64,0x7fe04735cae08e6b,0x3ff921fb54442d18,1 +np.float64,0x3fe29aca3c653594,0x3fe0da214c8bc6a4,1 +np.float64,0x3fbe1f09a03c3e13,0x3fbdfbbefef0155b,1 +np.float64,0x816ee4ad02ddd,0x816ee4ad02ddd,1 +np.float64,0xffddd1b31d3ba366,0xbff921fb54442d18,1 +np.float64,0x3fe2e01e0625c03c,0x3fe10dc0bd6677c2,1 +np.float64,0x3fec6bcf1978d79e,0x3fe73d518cddeb7c,1 +np.float64,0x7fe01aaaf8603555,0x3ff921fb54442d18,1 +np.float64,0xdf300cc5be602,0xdf300cc5be602,1 +np.float64,0xbfe71c01a36e3804,0xbfe403af80ce47b8,1 +np.float64,0xffa5be00ac2b7c00,0xbff921fb54442d18,1 +np.float64,0xbfda9ba711b5374e,0xbfd93775e3ac6bda,1 +np.float64,0xbfe56d8a27eadb14,0xbfe2e1a7185e8e6d,1 +np.float64,0x800f1bc937be3792,0x800f1bc937be3792,1 +np.float64,0x800a61d93c74c3b3,0x800a61d93c74c3b3,1 +np.float64,0x7fe71a52fcae34a5,0x3ff921fb54442d18,1 +np.float64,0x7fb4aef256295de4,0x3ff921fb54442d18,1 +np.float64,0x3fe6c1e861ed83d1,0x3fe3c828f281a7ef,1 +np.float64,0x3fba128402342508,0x3fb9fb94cf141860,1 +np.float64,0x3fee55a7ecfcab50,0x3fe8472a9af893ee,1 +np.float64,0x3fe586f31b2b0de6,0x3fe2f32bce9e91bc,1 +np.float64,0xbfbb1d1442363a28,0xbfbb034c7729d5f2,1 +np.float64,0xc78b4d3f8f16a,0xc78b4d3f8f16a,1 +np.float64,0x7fdbc277d4b784ef,0x3ff921fb54442d18,1 +np.float64,0xbfa728ca2c2e5190,0xbfa724c04e73ccbd,1 +np.float64,0x7fefc7b2143f8f63,0x3ff921fb54442d18,1 +np.float64,0x3fd153a3dda2a748,0x3fd0ebccd33a4dca,1 +np.float64,0xbfe18a6eace314de,0xbfe00ba32ec89d30,1 +np.float64,0x7feef518537dea30,0x3ff921fb54442d18,1 +np.float64,0x8005f007cd4be010,0x8005f007cd4be010,1 +np.float64,0x7fd890b840b12170,0x3ff921fb54442d18,1 +np.float64,0x7feed0582ebda0af,0x3ff921fb54442d18,1 +np.float64,0x1013f53220280,0x1013f53220280,1 +np.float64,0xbfe77273986ee4e7,0xbfe43c375a8bf6de,1 +np.float64,0x7fe3ab8918675711,0x3ff921fb54442d18,1 +np.float64,0xbfc6ad515b2d5aa4,0xbfc671b2f7f86624,1 +np.float64,0x7fcd86231d3b0c45,0x3ff921fb54442d18,1 +np.float64,0xffe2523299a4a464,0xbff921fb54442d18,1 +np.float64,0x7fcadc5a1b35b8b3,0x3ff921fb54442d18,1 +np.float64,0x3fe5e020c4ebc042,0x3fe330418eec75bd,1 +np.float64,0x7fe332a9dc266553,0x3ff921fb54442d18,1 +np.float64,0xfa11dc21f425,0xfa11dc21f425,1 +np.float64,0xbec800177d900,0xbec800177d900,1 +np.float64,0x3fcadd057835ba0b,0x3fca7aa42face8bc,1 +np.float64,0xbfe6b9a206ad7344,0xbfe3c2a9719803de,1 +np.float64,0x3fbb4250b63684a0,0x3fbb281e9cefc519,1 +np.float64,0x7fef8787517f0f0e,0x3ff921fb54442d18,1 +np.float64,0x8001315c2d6262b9,0x8001315c2d6262b9,1 +np.float64,0xbfd94e3cf2b29c7a,0xbfd819257d36f56c,1 +np.float64,0xf1f325abe3e65,0xf1f325abe3e65,1 +np.float64,0x7fd6c07079ad80e0,0x3ff921fb54442d18,1 +np.float64,0x7fe328b075a65160,0x3ff921fb54442d18,1 +np.float64,0x7fe7998f812f331e,0x3ff921fb54442d18,1 +np.float64,0xffe026bb65604d76,0xbff921fb54442d18,1 +np.float64,0xffd6c06de8ad80dc,0xbff921fb54442d18,1 +np.float64,0x3fcd5a37bf3ab46f,0x3fccda82935d98ce,1 +np.float64,0xffc3e5a45227cb48,0xbff921fb54442d18,1 +np.float64,0x3febf7dd8177efbc,0x3fe6fc0bb999883e,1 +np.float64,0x7fd7047ea92e08fc,0x3ff921fb54442d18,1 +np.float64,0x35b3fc406b680,0x35b3fc406b680,1 +np.float64,0x7fd52e97632a5d2e,0x3ff921fb54442d18,1 +np.float64,0x3fd464d401a8c9a8,0x3fd3be2967fc97c3,1 +np.float64,0x800e815b2ebd02b6,0x800e815b2ebd02b6,1 +np.float64,0x3fca8428af350850,0x3fca257b466b8970,1 +np.float64,0x8007b7526f6f6ea6,0x8007b7526f6f6ea6,1 +np.float64,0x82f60a8f05ec2,0x82f60a8f05ec2,1 +np.float64,0x3fb71a5d0a2e34c0,0x3fb70a629ef8e2a2,1 +np.float64,0x7fc8570c7d30ae18,0x3ff921fb54442d18,1 +np.float64,0x7fe5528e77eaa51c,0x3ff921fb54442d18,1 +np.float64,0xffc20dbbf1241b78,0xbff921fb54442d18,1 +np.float64,0xeb13368fd6267,0xeb13368fd6267,1 +np.float64,0x7fe7d529056faa51,0x3ff921fb54442d18,1 +np.float64,0x3fecd02eabf9a05d,0x3fe77516f0ba1ac4,1 +np.float64,0x800fcba6a09f974d,0x800fcba6a09f974d,1 +np.float64,0x7fe7e8e015afd1bf,0x3ff921fb54442d18,1 +np.float64,0xbfd271a382a4e348,0xbfd1f513a191c595,1 +np.float64,0x9f1014013e21,0x9f1014013e21,1 +np.float64,0x3fc05da47f20bb49,0x3fc04708a13a3a47,1 +np.float64,0x3fe0f427dda1e850,0x3fdf2e60ba8678b9,1 +np.float64,0xbfecb29fa539653f,0xbfe764bc791c45dd,1 +np.float64,0x45881ec68b104,0x45881ec68b104,1 +np.float64,0x8000000000000001,0x8000000000000001,1 +np.float64,0x3fe9c67ee1338cfe,0x3fe5b2c7b3df6ce8,1 +np.float64,0x7fedb8fef6bb71fd,0x3ff921fb54442d18,1 +np.float64,0x3fe54f6aaaea9ed6,0x3fe2ccd1df2abaa9,1 +np.float64,0x7feff58a1bbfeb13,0x3ff921fb54442d18,1 +np.float64,0x7fe3b62827276c4f,0x3ff921fb54442d18,1 +np.float64,0x3fe5feb682ebfd6d,0x3fe345105bc6d980,1 +np.float64,0x3fe49f38d9693e72,0x3fe2518b2824757f,1 +np.float64,0x8006bfd27c6d7fa6,0x8006bfd27c6d7fa6,1 +np.float64,0x3fc13409e2226814,0x3fc119ce0c01a5a2,1 +np.float64,0x95f8c7212bf19,0x95f8c7212bf19,1 +np.float64,0x3fd9f0fa6133e1f5,0x3fd8a567515edecf,1 +np.float64,0x3fef95cbe5ff2b98,0x3fe8ec88c768ba0b,1 +np.float64,0x3fbed28bba3da510,0x3fbeacbf136e51c2,1 +np.float64,0xbfd3987aeca730f6,0xbfd303fca58e3e60,1 +np.float64,0xbfed0f90cbfa1f22,0xbfe797f59249410d,1 +np.float64,0xffe55d8cbf2abb19,0xbff921fb54442d18,1 +np.float64,0x3feb4d9fc6769b40,0x3fe69a88131a1f1f,1 +np.float64,0x80085569acd0aad4,0x80085569acd0aad4,1 +np.float64,0x20557a6e40ab0,0x20557a6e40ab0,1 +np.float64,0x3fead2fd5df5a5fb,0x3fe653091f33b27f,1 +np.float64,0x3fe7b9983eaf7330,0x3fe46a50c4b5235e,1 +np.float64,0xffdad237ffb5a470,0xbff921fb54442d18,1 +np.float64,0xbfe5cc39a4eb9874,0xbfe322ad3a903f93,1 +np.float64,0x800ad6eecb35adde,0x800ad6eecb35adde,1 +np.float64,0xffec620f6438c41e,0xbff921fb54442d18,1 +np.float64,0xbfe5ef29122bde52,0xbfe33a7dfcc255e2,1 +np.float64,0x3fd451e7d0a8a3d0,0x3fd3acfa4939af10,1 +np.float64,0x8003ea93c127d528,0x8003ea93c127d528,1 +np.float64,0x800b48d37c9691a7,0x800b48d37c9691a7,1 +np.float64,0x3fe7e202acafc405,0x3fe484558246069b,1 +np.float64,0x80070c9b686e1938,0x80070c9b686e1938,1 +np.float64,0xbfda90bbc6352178,0xbfd92e25fcd12288,1 +np.float64,0x800e1ffebb1c3ffe,0x800e1ffebb1c3ffe,1 +np.float64,0x3ff0000000000000,0x3fe921fb54442d18,1 +np.float64,0xffd8cfdd46319fba,0xbff921fb54442d18,1 +np.float64,0x7fd8cd4182319a82,0x3ff921fb54442d18,1 +np.float64,0x3fed8bb778bb176f,0x3fe7db7c77c4c694,1 +np.float64,0x3fc74a70302e94e0,0x3fc709e95d6defec,1 +np.float64,0x3fe87269d070e4d4,0x3fe4e04bcc4a2137,1 +np.float64,0x7fb48223f6290447,0x3ff921fb54442d18,1 +np.float64,0xffe8ec444b71d888,0xbff921fb54442d18,1 +np.float64,0x7fde17d280bc2fa4,0x3ff921fb54442d18,1 +np.float64,0x3fd1cbde01a397bc,0x3fd15b9bb7b3147b,1 +np.float64,0x800883a64451074d,0x800883a64451074d,1 +np.float64,0x7fe3160a3f262c13,0x3ff921fb54442d18,1 +np.float64,0xbfe051d4d9a0a3aa,0xbfde2ecf14dc75fb,1 +np.float64,0xbfd89de689b13bce,0xbfd780176d1a28a3,1 +np.float64,0x3fecde2bf779bc58,0x3fe77ccf10bdd8e2,1 +np.float64,0xffe75774dc6eaee9,0xbff921fb54442d18,1 +np.float64,0x7fe834414d706882,0x3ff921fb54442d18,1 +np.float64,0x1,0x1,1 +np.float64,0xbfea5e4e4a74bc9c,0xbfe60e0601711835,1 +np.float64,0xffec248d4cb8491a,0xbff921fb54442d18,1 +np.float64,0xffd9942c2c332858,0xbff921fb54442d18,1 +np.float64,0xa9db36a553b67,0xa9db36a553b67,1 +np.float64,0x7fec630718b8c60d,0x3ff921fb54442d18,1 +np.float64,0xbfd062188f20c432,0xbfd009ecd652be89,1 +np.float64,0x8001b84e3023709d,0x8001b84e3023709d,1 +np.float64,0xbfe9e26d7cb3c4db,0xbfe5c3b157ecf668,1 +np.float64,0xbfef66ddf33ecdbc,0xbfe8d4b1f6410a24,1 +np.float64,0x3fd8d7109431ae21,0x3fd7b1d4860719a2,1 +np.float64,0xffee0f53107c1ea5,0xbff921fb54442d18,1 +np.float64,0x80000b4fd60016a0,0x80000b4fd60016a0,1 +np.float64,0xbfd99ff6e5333fee,0xbfd85fb3cbdaa049,1 +np.float64,0xbfe9cfd268339fa5,0xbfe5b86ef021a1b1,1 +np.float64,0xe32eace1c65d6,0xe32eace1c65d6,1 +np.float64,0xffc81f6627303ecc,0xbff921fb54442d18,1 +np.float64,0x7fe98dadde331b5b,0x3ff921fb54442d18,1 +np.float64,0xbfbcebd11e39d7a0,0xbfbccc8ec47883c7,1 +np.float64,0x7fe164880f22c90f,0x3ff921fb54442d18,1 +np.float64,0x800467c0cae8cf82,0x800467c0cae8cf82,1 +np.float64,0x800071e4b140e3ca,0x800071e4b140e3ca,1 +np.float64,0xbfc87a7eae30f4fc,0xbfc82fbc55bb0f24,1 +np.float64,0xffb2e0e23225c1c8,0xbff921fb54442d18,1 +np.float64,0x20ef338041df,0x20ef338041df,1 +np.float64,0x7fe6de71ca6dbce3,0x3ff921fb54442d18,1 +np.float64,0x5d1fa026ba3f5,0x5d1fa026ba3f5,1 +np.float64,0xffd112a9ce222554,0xbff921fb54442d18,1 +np.float64,0x3fb351f66626a3ed,0x3fb3489ab578c452,1 +np.float64,0x7fef7b2bd3bef657,0x3ff921fb54442d18,1 +np.float64,0xffe144f5d4e289eb,0xbff921fb54442d18,1 +np.float64,0xffd63a6750ac74ce,0xbff921fb54442d18,1 +np.float64,0x7fd2d8bb25a5b175,0x3ff921fb54442d18,1 +np.float64,0x3fec5920a078b242,0x3fe732dcffcf6521,1 +np.float64,0x80009a8b7f813518,0x80009a8b7f813518,1 +np.float64,0x3fdea220893d4441,0x3fdc921edf6bf3d8,1 +np.float64,0x8006cee2208d9dc5,0x8006cee2208d9dc5,1 +np.float64,0xdd0b0081ba17,0xdd0b0081ba17,1 +np.float64,0x7ff4000000000000,0x7ffc000000000000,1 +np.float64,0xbfdac33955358672,0xbfd9592bce7daf1f,1 +np.float64,0x7fe8301d7170603a,0x3ff921fb54442d18,1 +np.float64,0xbfc1d34d8523a69c,0xbfc1b62449af9684,1 +np.float64,0x800c62239458c447,0x800c62239458c447,1 +np.float64,0xffd398c009a73180,0xbff921fb54442d18,1 +np.float64,0xbfe0c6d9ee218db4,0xbfdee777557f4401,1 +np.float64,0x3feccdd373799ba7,0x3fe773c9c2263f89,1 +np.float64,0xbfd21898bda43132,0xbfd1a2be8545fcc5,1 +np.float64,0x3fd77019b62ee033,0x3fd67793cabdf267,1 +np.float64,0x7fa609cad42c1395,0x3ff921fb54442d18,1 +np.float64,0x7fb4eaea5a29d5d4,0x3ff921fb54442d18,1 +np.float64,0x3fc570dc9a2ae1b9,0x3fc53e5f6218a799,1 +np.float64,0x800344ae8466895e,0x800344ae8466895e,1 +np.float64,0xbfc7c985252f930c,0xbfc784d60fa27bac,1 +np.float64,0xffaa2929fc345250,0xbff921fb54442d18,1 +np.float64,0xffe63e5ee9ac7cbe,0xbff921fb54442d18,1 +np.float64,0x73f0280ce7e06,0x73f0280ce7e06,1 +np.float64,0xffc525f8822a4bf0,0xbff921fb54442d18,1 +np.float64,0x7fd744d00aae899f,0x3ff921fb54442d18,1 +np.float64,0xbfe0fe590761fcb2,0xbfdf3e493e8b1f32,1 +np.float64,0xfae04ae7f5c0a,0xfae04ae7f5c0a,1 +np.float64,0xef821939df043,0xef821939df043,1 +np.float64,0x7fef6135843ec26a,0x3ff921fb54442d18,1 +np.float64,0xbfebf34dcbf7e69c,0xbfe6f97588a8f911,1 +np.float64,0xbfeec0b498fd8169,0xbfe87f2eceeead12,1 +np.float64,0x7fb67161b42ce2c2,0x3ff921fb54442d18,1 +np.float64,0x3fdcfd998639fb33,0x3fdb38934927c096,1 +np.float64,0xffda5960bc34b2c2,0xbff921fb54442d18,1 +np.float64,0xbfe11f8c71223f19,0xbfdf71fe770c96ab,1 +np.float64,0x3fe4ac1bab695838,0x3fe25aa4517b8322,1 +np.float64,0x3f730458a02608b1,0x3f73044fabb5e999,1 +np.float64,0x3fdb14ffcdb62a00,0x3fd99ea6c241a3ed,1 +np.float64,0xbfc93208cd326410,0xbfc8e09d78b6d4db,1 +np.float64,0x19e734dc33ce8,0x19e734dc33ce8,1 +np.float64,0x3fe5e98428abd308,0x3fe336a6a085eb55,1 +np.float64,0x7fec672a1378ce53,0x3ff921fb54442d18,1 +np.float64,0x800f8bd8d4ff17b2,0x800f8bd8d4ff17b2,1 +np.float64,0xbfe5a12e4e6b425c,0xbfe30533f99d5d06,1 +np.float64,0x75a34cb0eb46a,0x75a34cb0eb46a,1 +np.float64,0x7fe1d21d16a3a439,0x3ff921fb54442d18,1 +np.float64,0x7ff0000000000000,0x3ff921fb54442d18,1 +np.float64,0xffe0f50db261ea1b,0xbff921fb54442d18,1 +np.float64,0xbfd9dc22feb3b846,0xbfd8937ec965a501,1 +np.float64,0x8009d68e48d3ad1d,0x8009d68e48d3ad1d,1 +np.float64,0xbfe2eba620e5d74c,0xbfe1164d7d273c60,1 +np.float64,0x992efa09325e0,0x992efa09325e0,1 +np.float64,0x3fdab640ea356c82,0x3fd94e20cab88db2,1 +np.float64,0x69a6f04ad34df,0x69a6f04ad34df,1 +np.float64,0x3fe397df25272fbe,0x3fe194bd1a3a6192,1 +np.float64,0xebcce9fdd799d,0xebcce9fdd799d,1 +np.float64,0x3fbb49490c369292,0x3fbb2f02eccc497d,1 +np.float64,0xffd871f980b0e3f4,0xbff921fb54442d18,1 +np.float64,0x800348f6966691ee,0x800348f6966691ee,1 +np.float64,0xbfebc270a7f784e1,0xbfe6dda8d0d80f26,1 +np.float64,0xffd6d559b1adaab4,0xbff921fb54442d18,1 +np.float64,0x3fec3635c0b86c6c,0x3fe71f420256e43e,1 +np.float64,0x7fbc82ad7039055a,0x3ff921fb54442d18,1 +np.float64,0x7f873050602e60a0,0x3ff921fb54442d18,1 +np.float64,0x3fca44b8c3348970,0x3fc9e8a1a1a2d96e,1 +np.float64,0x3fe0fc308fe1f861,0x3fdf3aeb469ea225,1 +np.float64,0x7fefc27de8bf84fb,0x3ff921fb54442d18,1 +np.float64,0x8005f3f3916be7e8,0x8005f3f3916be7e8,1 +np.float64,0xbfd4278c7c284f18,0xbfd38678988873b6,1 +np.float64,0x435eafc486bd7,0x435eafc486bd7,1 +np.float64,0xbfd01f5199203ea4,0xbfcf96631f2108a3,1 +np.float64,0xffd5ee9185abdd24,0xbff921fb54442d18,1 +np.float64,0xffedb363257b66c5,0xbff921fb54442d18,1 +np.float64,0x800d68e6e11ad1ce,0x800d68e6e11ad1ce,1 +np.float64,0xbfcf687f8e3ed100,0xbfceccb771b0d39a,1 +np.float64,0x7feb3b9ef2f6773d,0x3ff921fb54442d18,1 +np.float64,0x3fe15ec5ca62bd8c,0x3fdfd3fab9d96f81,1 +np.float64,0x10000000000000,0x10000000000000,1 +np.float64,0xd2386f81a470e,0xd2386f81a470e,1 +np.float64,0xb9feed4573fde,0xb9feed4573fde,1 +np.float64,0x3fe7ed25c9efda4c,0x3fe48b7b72db4014,1 +np.float64,0xbfe01478726028f1,0xbfddcd1f5a2efc59,1 +np.float64,0x9946d02f328da,0x9946d02f328da,1 +np.float64,0xbfe3bb67f06776d0,0xbfe1ae88aa81c5a6,1 +np.float64,0xbfd3fd8a4c27fb14,0xbfd3603982e3b78d,1 +np.float64,0xffd5c3ab912b8758,0xbff921fb54442d18,1 +np.float64,0xffd5f502b12bea06,0xbff921fb54442d18,1 +np.float64,0xbfc64981ec2c9304,0xbfc610e0382b1fa6,1 +np.float64,0xffec42e3413885c6,0xbff921fb54442d18,1 +np.float64,0x80084eb4ed109d6a,0x80084eb4ed109d6a,1 +np.float64,0xbfd17cac9fa2f95a,0xbfd112020588a4b3,1 +np.float64,0xbfd06c1359a0d826,0xbfd0134a28aa9a66,1 +np.float64,0x7fdc3d7c03b87af7,0x3ff921fb54442d18,1 +np.float64,0x7bdf5aaaf7bec,0x7bdf5aaaf7bec,1 +np.float64,0xbfee3cd966fc79b3,0xbfe83a14bc07ac3b,1 +np.float64,0x7fec910da3f9221a,0x3ff921fb54442d18,1 +np.float64,0xffb4ea667029d4d0,0xbff921fb54442d18,1 +np.float64,0x800103d7cce207b0,0x800103d7cce207b0,1 +np.float64,0x7fbb229a6c364534,0x3ff921fb54442d18,1 +np.float64,0x0,0x0,1 +np.float64,0xffd8fccd0331f99a,0xbff921fb54442d18,1 +np.float64,0xbfd0784ae1a0f096,0xbfd01ebff62e39ad,1 +np.float64,0xbfed2ec9b3ba5d93,0xbfe7a9099410bc76,1 +np.float64,0x800690b8d16d2172,0x800690b8d16d2172,1 +np.float64,0x7fc061b26520c364,0x3ff921fb54442d18,1 +np.float64,0x8007ec47054fd88f,0x8007ec47054fd88f,1 +np.float64,0x775546b6eeaa9,0x775546b6eeaa9,1 +np.float64,0x8005e00fb56bc020,0x8005e00fb56bc020,1 +np.float64,0xbfe510f8d0ea21f2,0xbfe2a16862b5a37f,1 +np.float64,0xffd87a6bf3b0f4d8,0xbff921fb54442d18,1 +np.float64,0x800906e3d0520dc8,0x800906e3d0520dc8,1 +np.float64,0x2296f000452f,0x2296f000452f,1 +np.float64,0xbfe3189fa2e63140,0xbfe1378c0e005be4,1 +np.float64,0xb4d2447f69a49,0xb4d2447f69a49,1 +np.float64,0xffd056a24a20ad44,0xbff921fb54442d18,1 +np.float64,0xbfe3b23fe4e76480,0xbfe1a7e5840fcbeb,1 +np.float64,0x80018ee270831dc6,0x80018ee270831dc6,1 +np.float64,0x800df89f245bf13e,0x800df89f245bf13e,1 +np.float64,0x3fee1409d7bc2814,0x3fe824779d133232,1 +np.float64,0xbfef8d81667f1b03,0xbfe8e85523620368,1 +np.float64,0xffd8a6519b314ca4,0xbff921fb54442d18,1 +np.float64,0x7fc7bc86f32f790d,0x3ff921fb54442d18,1 +np.float64,0xffea6159e674c2b3,0xbff921fb54442d18,1 +np.float64,0x3fe153c3fba2a788,0x3fdfc2f74769d300,1 +np.float64,0xffc4261ef3284c3c,0xbff921fb54442d18,1 +np.float64,0x7fe8a8961ff1512b,0x3ff921fb54442d18,1 +np.float64,0xbfe3fb1fd167f640,0xbfe1dc89dcb7ecdf,1 +np.float64,0x3fd88577c2b10af0,0x3fd76acc09660704,1 +np.float64,0x3fe128ec27e251d8,0x3fdf808fc7ebcd8f,1 +np.float64,0xbfed6ca7c4fad950,0xbfe7caafe9a3e213,1 +np.float64,0xbf9a3912b8347220,0xbf9a379b3349352e,1 +np.float64,0xbfd724d7bcae49b0,0xbfd6351efa2a5fc5,1 +np.float64,0xbfed59700a7ab2e0,0xbfe7c043014c694c,1 +np.float64,0x8002ad435bc55a87,0x8002ad435bc55a87,1 +np.float64,0xffe46ed345a8dda6,0xbff921fb54442d18,1 +np.float64,0x7fd2f1d1d825e3a3,0x3ff921fb54442d18,1 +np.float64,0xbfea0265e23404cc,0xbfe5d6fb3fd30464,1 +np.float64,0xbfd17e049122fc0a,0xbfd113421078bbae,1 +np.float64,0xffea03b986b40772,0xbff921fb54442d18,1 +np.float64,0x800b55331a16aa67,0x800b55331a16aa67,1 +np.float64,0xbfc6fcafbf2df960,0xbfc6be9ecd0ebc1f,1 +np.float64,0xd6a36017ad46c,0xd6a36017ad46c,1 +np.float64,0xbfe9ba86dfb3750e,0xbfe5ab840cb0ef86,1 +np.float64,0x75c4a108eb895,0x75c4a108eb895,1 +np.float64,0x8008d6bc8051ad79,0x8008d6bc8051ad79,1 +np.float64,0xbfd3dc5984a7b8b4,0xbfd341f78e0528ec,1 +np.float64,0xffe1cbb01aa39760,0xbff921fb54442d18,1 +np.float64,0x3fc7e292f52fc526,0x3fc79d0ce9365767,1 +np.float64,0xbfcbeae2bd37d5c4,0xbfcb7cb034f82467,1 +np.float64,0x8000f0c62e21e18d,0x8000f0c62e21e18d,1 +np.float64,0xbfe23d8bc6247b18,0xbfe09418ee35c3c7,1 +np.float64,0x717394bae2e73,0x717394bae2e73,1 +np.float64,0xffa2ef1cc425de40,0xbff921fb54442d18,1 +np.float64,0x3fd938c229b27184,0x3fd806900735c99d,1 +np.float64,0x800bf3ec8a77e7d9,0x800bf3ec8a77e7d9,1 +np.float64,0xffeef41dd57de83b,0xbff921fb54442d18,1 +np.float64,0x8008df97e5b1bf30,0x8008df97e5b1bf30,1 +np.float64,0xffe9ab9d0db35739,0xbff921fb54442d18,1 +np.float64,0x99ff391333fe7,0x99ff391333fe7,1 +np.float64,0x3fb864b4a630c969,0x3fb851e883ea2cf9,1 +np.float64,0x22c1230a45825,0x22c1230a45825,1 +np.float64,0xff2336fbfe467,0xff2336fbfe467,1 +np.float64,0xbfd488f4cea911ea,0xbfd3def0490f5414,1 +np.float64,0x3fa379c78426f38f,0x3fa377607370800b,1 +np.float64,0xbfb0873302210e68,0xbfb08155b78dfd53,1 +np.float64,0xbfdf9ff7c2bf3ff0,0xbfdd5f658e357ad2,1 +np.float64,0x800978719192f0e4,0x800978719192f0e4,1 +np.float64,0xbfba8759ea350eb0,0xbfba6f325013b9e5,1 +np.float64,0xbfdd3e6b06ba7cd6,0xbfdb6e472b6091b0,1 +np.float64,0x7fe0c334a7a18668,0x3ff921fb54442d18,1 +np.float64,0xbfeb971feb772e40,0xbfe6c4e0f61404d1,1 +np.float64,0x3fe2a50968e54a13,0x3fe0e1c8b8d96e85,1 +np.float64,0x800fa9c5515f538b,0x800fa9c5515f538b,1 +np.float64,0x800f8532fbbf0a66,0x800f8532fbbf0a66,1 +np.float64,0x167d6f1e2cfaf,0x167d6f1e2cfaf,1 +np.float64,0xffee88e769fd11ce,0xbff921fb54442d18,1 +np.float64,0xbfeecc8529fd990a,0xbfe885520cdad8ea,1 +np.float64,0xffefffffffffffff,0xbff921fb54442d18,1 +np.float64,0xbfef6a566afed4ad,0xbfe8d6767b4c4235,1 +np.float64,0xffec12415af82482,0xbff921fb54442d18,1 +np.float64,0x3678a20a6cf15,0x3678a20a6cf15,1 +np.float64,0xffe468d54ee8d1aa,0xbff921fb54442d18,1 +np.float64,0x800ad6006795ac01,0x800ad6006795ac01,1 +np.float64,0x8001d5b61063ab6d,0x8001d5b61063ab6d,1 +np.float64,0x800dfcd1863bf9a3,0x800dfcd1863bf9a3,1 +np.float64,0xc9fbff6f93f80,0xc9fbff6f93f80,1 +np.float64,0xffe55c20f9eab842,0xbff921fb54442d18,1 +np.float64,0xbfcb596b6536b2d8,0xbfcaf1b339c5c615,1 +np.float64,0xbfe092689ea124d1,0xbfde94fa58946e51,1 +np.float64,0x3fe9ec733af3d8e6,0x3fe5c9bf5dee2623,1 +np.float64,0x3fe30f3d83261e7b,0x3fe1309fd6620e03,1 +np.float64,0xffd31d7f84263b00,0xbff921fb54442d18,1 +np.float64,0xbfe88d2d3e711a5a,0xbfe4f12b5a136178,1 +np.float64,0xffc81e4ce1303c98,0xbff921fb54442d18,1 +np.float64,0xffe5b96ebfab72dd,0xbff921fb54442d18,1 +np.float64,0x512f0502a25e1,0x512f0502a25e1,1 +np.float64,0x7fa3a376982746ec,0x3ff921fb54442d18,1 +np.float64,0x80005b5f2f60b6bf,0x80005b5f2f60b6bf,1 +np.float64,0xc337cc69866fa,0xc337cc69866fa,1 +np.float64,0x3fe7719c4caee339,0x3fe43bab42b19e64,1 +np.float64,0x7fde7ec1d93cfd83,0x3ff921fb54442d18,1 +np.float64,0x3fd2f38f3825e71e,0x3fd26cc7b1dd0acb,1 +np.float64,0x7fce298b993c5316,0x3ff921fb54442d18,1 +np.float64,0x56ae3b2cad5c8,0x56ae3b2cad5c8,1 +np.float64,0x3fe9299f2bf2533e,0x3fe552bddd999e72,1 +np.float64,0x7feff3a4823fe748,0x3ff921fb54442d18,1 +np.float64,0xbfd05c670aa0b8ce,0xbfd00494d78e9e97,1 +np.float64,0xffe745323eae8a64,0xbff921fb54442d18,1 diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arctanh.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arctanh.csv new file mode 100644 index 0000000..68ecaab --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-arctanh.csv @@ -0,0 +1,1429 @@ +dtype,input,output,ulperrortol +np.float32,0x3ee82930,0x3efa60fd,2 +np.float32,0x3f0aa640,0x3f1b3e13,2 +np.float32,0x3ec1a21c,0x3ecbbf8d,2 +np.float32,0x3cdb1740,0x3cdb24a1,2 +np.float32,0xbf28b6f3,0xbf4a86ac,2 +np.float32,0xbe490dcc,0xbe4bb2eb,2 +np.float32,0x80000001,0x80000001,2 +np.float32,0xbf44f9dd,0xbf826ce1,2 +np.float32,0xbf1d66c4,0xbf37786b,2 +np.float32,0x3f0ad26a,0x3f1b7c9b,2 +np.float32,0x3f7b6c54,0x4016aab0,2 +np.float32,0xbf715bb8,0xbfe1a0bc,2 +np.float32,0xbee8a562,0xbefafd6a,2 +np.float32,0x3db94d00,0x3db9cf16,2 +np.float32,0x3ee2970c,0x3ef368b3,2 +np.float32,0x3f3f8614,0x3f77fdca,2 +np.float32,0xbf1fb5f0,0xbf3b3789,2 +np.float32,0x3f798dc0,0x400b96bb,2 +np.float32,0x3e975d64,0x3e9c0573,2 +np.float32,0xbe3f1908,0xbe415d1f,2 +np.float32,0x3f2cea38,0x3f52192e,2 +np.float32,0x3e82f1ac,0x3e85eaa1,2 +np.float32,0x3eab6b30,0x3eb24acd,2 +np.float32,0xbe9bb90c,0xbea0cf5f,2 +np.float32,0xbf43e847,0xbf81202f,2 +np.float32,0xbd232fa0,0xbd2345c0,2 +np.float32,0xbbabbc00,0xbbabbc67,2 +np.float32,0xbf0b2975,0xbf1bf808,2 +np.float32,0xbef5ab0a,0xbf05d305,2 +np.float32,0x3f2cad16,0x3f51a8e2,2 +np.float32,0xbef75940,0xbf06eb08,2 +np.float32,0xbf0c1216,0xbf1d4325,2 +np.float32,0x3e7bdc08,0x3e8090c2,2 +np.float32,0x3da14e10,0x3da1a3c5,2 +np.float32,0x3f627412,0x3fb2bf21,2 +np.float32,0xbd6d08c0,0xbd6d4ca0,2 +np.float32,0x3f3e2368,0x3f74df8b,2 +np.float32,0xbe0df104,0xbe0edc77,2 +np.float32,0x3e8a265c,0x3e8da833,2 +np.float32,0xbdccdbb0,0xbdcd8ba8,2 +np.float32,0x3eb080c4,0x3eb80a44,2 +np.float32,0x3e627800,0x3e6645fe,2 +np.float32,0xbd8be0b0,0xbd8c1886,2 +np.float32,0xbf3282ac,0xbf5cae8c,2 +np.float32,0xbe515910,0xbe545707,2 +np.float32,0xbf2e64ac,0xbf54d637,2 +np.float32,0x3e0fc230,0x3e10b6de,2 +np.float32,0x3eb13ca0,0x3eb8df94,2 +np.float32,0x3f07a3ca,0x3f170572,2 +np.float32,0x3f2c7026,0x3f513935,2 +np.float32,0x3f3c4ec8,0x3f70d67c,2 +np.float32,0xbee9cce8,0xbefc724f,2 +np.float32,0xbe53ca60,0xbe56e3f3,2 +np.float32,0x3dd9e9a0,0x3ddabd98,2 +np.float32,0x3f38b8d4,0x3f69319b,2 +np.float32,0xbe176dc4,0xbe188c1d,2 +np.float32,0xbf322f2e,0xbf5c0c51,2 +np.float32,0xbe9b8676,0xbea097a2,2 +np.float32,0xbca44280,0xbca44823,2 +np.float32,0xbe2b0248,0xbe2ca036,2 +np.float32,0x3d101e80,0x3d102dbd,2 +np.float32,0xbf4eb610,0xbf8f526d,2 +np.float32,0xbec32a50,0xbecd89d1,2 +np.float32,0x3d549100,0x3d54c1ee,2 +np.float32,0x3f78e55e,0x40087025,2 +np.float32,0x3e592798,0x3e5c802d,2 +np.float32,0x3de045d0,0x3de12cfb,2 +np.float32,0xbdad28e0,0xbdad92f7,2 +np.float32,0x3e9a69e0,0x3e9f5e59,2 +np.float32,0x3e809778,0x3e836716,2 +np.float32,0xbf3278d9,0xbf5c9b6d,2 +np.float32,0x3f39fa00,0x3f6bd4a5,2 +np.float32,0xbec8143c,0xbed34ffa,2 +np.float32,0x3ddb7f40,0x3ddc57e6,2 +np.float32,0x3f0e8342,0x3f20c634,2 +np.float32,0x3f353dda,0x3f6213a4,2 +np.float32,0xbe96b400,0xbe9b4bea,2 +np.float32,0x3e626580,0x3e66328a,2 +np.float32,0xbde091c8,0xbde179df,2 +np.float32,0x3eb47b5c,0x3ebc91ca,2 +np.float32,0xbf282182,0xbf497f2f,2 +np.float32,0x3ea9f64c,0x3eb0a748,2 +np.float32,0x3f28dd4e,0x3f4aca86,2 +np.float32,0xbf71de18,0xbfe3f587,2 +np.float32,0x7fa00000,0x7fe00000,2 +np.float32,0xbf6696a6,0xbfbcf11a,2 +np.float32,0xbc853ae0,0xbc853de2,2 +np.float32,0xbeced246,0xbedb51b8,2 +np.float32,0x3f3472a4,0x3f607e00,2 +np.float32,0xbee90124,0xbefb7117,2 +np.float32,0x3eb45b90,0x3ebc6d7c,2 +np.float32,0xbe53ead0,0xbe5705d6,2 +np.float32,0x3f630c80,0x3fb420e2,2 +np.float32,0xbf408cd0,0xbf7a56a2,2 +np.float32,0x3dda4ed0,0x3ddb23f1,2 +np.float32,0xbf37ae88,0xbf67096b,2 +np.float32,0xbdd48c28,0xbdd550c9,2 +np.float32,0xbf5745b0,0xbf9cb4a4,2 +np.float32,0xbf44e6fc,0xbf8255c1,2 +np.float32,0x3f5c8e6a,0x3fa65020,2 +np.float32,0xbea45fe8,0xbeaa6630,2 +np.float32,0x3f08bdee,0x3f188ef5,2 +np.float32,0x3ec77e74,0x3ed29f4b,2 +np.float32,0xbf1a1d3c,0xbf324029,2 +np.float32,0x3cad7340,0x3cad79e3,2 +np.float32,0xbf4fac2e,0xbf90b72a,2 +np.float32,0x3f58516e,0x3f9e8330,2 +np.float32,0x3f442008,0x3f816391,2 +np.float32,0xbf6e0c6c,0xbfd42854,2 +np.float32,0xbf266f7a,0xbf4689b2,2 +np.float32,0x3eb7e2f0,0x3ec077ba,2 +np.float32,0xbf320fd0,0xbf5bcf83,2 +np.float32,0xbf6a76b9,0xbfc80a11,2 +np.float32,0xbf2a91b4,0xbf4dd526,2 +np.float32,0x3f176e30,0x3f2e150e,2 +np.float32,0xbdcccad0,0xbdcd7a9c,2 +np.float32,0x3f60a8a4,0x3faebbf7,2 +np.float32,0x3d9706f0,0x3d974d40,2 +np.float32,0x3ef3cd34,0x3f049d58,2 +np.float32,0xbf73c615,0xbfed79fe,2 +np.float32,0x3df1b170,0x3df2d31b,2 +np.float32,0x3f632a46,0x3fb466c7,2 +np.float32,0xbf3ea18e,0xbf75f9ce,2 +np.float32,0xbf3ea05c,0xbf75f71f,2 +np.float32,0xbdd76750,0xbdd83403,2 +np.float32,0xbca830c0,0xbca836cd,2 +np.float32,0x3f1d4162,0x3f373c59,2 +np.float32,0x3c115700,0x3c1157fa,2 +np.float32,0x3dae8ab0,0x3daef758,2 +np.float32,0xbcad5020,0xbcad56bf,2 +np.float32,0x3ee299c4,0x3ef36c15,2 +np.float32,0xbf7f566c,0xc054c3bd,2 +np.float32,0x3f0cc698,0x3f1e4557,2 +np.float32,0xbe75c648,0xbe7aaa04,2 +np.float32,0x3ea29238,0x3ea86417,2 +np.float32,0x3f09d9c0,0x3f1a1d61,2 +np.float32,0x3f67275c,0x3fbe74b3,2 +np.float32,0x3e1a4e18,0x3e1b7d3a,2 +np.float32,0xbef6e3fc,0xbf069e98,2 +np.float32,0xbf6038ac,0xbfadc9fd,2 +np.float32,0xbe46bdd4,0xbe494b7f,2 +np.float32,0xbf4df1f4,0xbf8e3a98,2 +np.float32,0x3d094dc0,0x3d095aed,2 +np.float32,0x3f44c7d2,0x3f822fa3,2 +np.float32,0xbea30816,0xbea8e737,2 +np.float32,0xbe3c27c4,0xbe3e511b,2 +np.float32,0x3f3bb47c,0x3f6f8789,2 +np.float32,0xbe423760,0xbe4498c3,2 +np.float32,0x3ece1a74,0x3eda7634,2 +np.float32,0x3f14d1f6,0x3f2a1a89,2 +np.float32,0xbf4d9e8f,0xbf8dc4c1,2 +np.float32,0xbe92968e,0xbe96cd7f,2 +np.float32,0x3e99e6c0,0x3e9ece26,2 +np.float32,0xbf397361,0xbf6ab878,2 +np.float32,0xbf4fcea4,0xbf90e99f,2 +np.float32,0x3de37640,0x3de46779,2 +np.float32,0x3eb1b604,0x3eb9698c,2 +np.float32,0xbf52d0a2,0xbf957361,2 +np.float32,0xbe20435c,0xbe21975a,2 +np.float32,0x3f437a58,0x3f809bf1,2 +np.float32,0x3f27d1cc,0x3f48f335,2 +np.float32,0x3f7d4ff2,0x4027d1e2,2 +np.float32,0xbef732e4,0xbf06d205,2 +np.float32,0x3f4a0ae6,0x3f88e18e,2 +np.float32,0x3f800000,0x7f800000,2 +np.float32,0x3e3e56a0,0x3e4093ba,2 +np.float32,0xbed2fcfa,0xbee0517d,2 +np.float32,0xbe0e0114,0xbe0eecd7,2 +np.float32,0xbe808574,0xbe8353db,2 +np.float32,0x3f572e2a,0x3f9c8c86,2 +np.float32,0x80800000,0x80800000,2 +np.float32,0x3f3f3c82,0x3f775703,2 +np.float32,0xbf6e2482,0xbfd4818b,2 +np.float32,0xbf3943b0,0xbf6a5439,2 +np.float32,0x3f6e42ac,0x3fd4f1ea,2 +np.float32,0x3eb676c4,0x3ebed619,2 +np.float32,0xbe5e56c4,0xbe61ef6c,2 +np.float32,0x3eea200c,0x3efcdb65,2 +np.float32,0x3e3d2c78,0x3e3f5ef8,2 +np.float32,0xbdfd8fb0,0xbdfede71,2 +np.float32,0xbee69c8a,0xbef86e89,2 +np.float32,0x3e9efca0,0x3ea46a1c,2 +np.float32,0x3e4c2498,0x3e4ee9ee,2 +np.float32,0xbf3cc93c,0xbf71e21d,2 +np.float32,0x3ee0d77c,0x3ef13d2b,2 +np.float32,0xbefbcd2a,0xbf09d6a3,2 +np.float32,0x3f6dbe5c,0x3fd30a3e,2 +np.float32,0x3dae63e0,0x3daed03f,2 +np.float32,0xbd5001e0,0xbd502fb9,2 +np.float32,0x3f59632a,0x3fa067c8,2 +np.float32,0x3f0d355a,0x3f1ee452,2 +np.float32,0x3f2cbe5c,0x3f51c896,2 +np.float32,0x3c5e6e80,0x3c5e7200,2 +np.float32,0xbe8ac49c,0xbe8e52f0,2 +np.float32,0x3f54e576,0x3f98c0e6,2 +np.float32,0xbeaa0762,0xbeb0ba7c,2 +np.float32,0x3ec81e88,0x3ed35c21,2 +np.float32,0x3f5a6738,0x3fa23fb6,2 +np.float32,0xbf24a682,0xbf43784a,2 +np.float32,0x1,0x1,2 +np.float32,0x3ee6bc24,0x3ef89630,2 +np.float32,0x3f19444a,0x3f30ecf5,2 +np.float32,0x3ec1fc70,0x3ecc28fc,2 +np.float32,0xbf706e14,0xbfdd92fb,2 +np.float32,0x3eccb630,0x3ed8cd98,2 +np.float32,0xbcdf7aa0,0xbcdf88d3,2 +np.float32,0xbe450da8,0xbe478a8e,2 +np.float32,0x3ec9c210,0x3ed54c0b,2 +np.float32,0xbf3b86ca,0xbf6f24d1,2 +np.float32,0x3edcc7a0,0x3eec3a5c,2 +np.float32,0x3f075d5c,0x3f16a39a,2 +np.float32,0xbf5719ce,0xbf9c69de,2 +np.float32,0x3f62cb22,0x3fb3885a,2 +np.float32,0x3f639216,0x3fb55c93,2 +np.float32,0xbf473ee7,0xbf85413a,2 +np.float32,0xbf01b66c,0xbf0eea86,2 +np.float32,0x3e872d80,0x3e8a74f8,2 +np.float32,0xbf60957e,0xbfae925c,2 +np.float32,0xbf6847b2,0xbfc1929b,2 +np.float32,0x3f78bb94,0x4007b363,2 +np.float32,0xbf47efdb,0xbf8622db,2 +np.float32,0xbe1f2308,0xbe206fd6,2 +np.float32,0xbf414926,0xbf7c0a7e,2 +np.float32,0x3eecc268,0x3f00194d,2 +np.float32,0x3eb086d0,0x3eb81120,2 +np.float32,0xbef1af80,0xbf033ff5,2 +np.float32,0xbf454e56,0xbf82d4aa,2 +np.float32,0x3e622560,0x3e65ef20,2 +np.float32,0x3f50d2b2,0x3f926a83,2 +np.float32,0x3eb2c45c,0x3eba9d2c,2 +np.float32,0x3e42d1a0,0x3e4538c9,2 +np.float32,0xbf24cc5c,0xbf43b8e3,2 +np.float32,0x3e8c6464,0x3e90141a,2 +np.float32,0xbf3abff2,0xbf6d79c5,2 +np.float32,0xbec8f2e6,0xbed456fa,2 +np.float32,0xbf787b38,0xc00698b4,2 +np.float32,0xbf58d5cd,0xbf9f6c03,2 +np.float32,0x3df4ee20,0x3df61ba8,2 +np.float32,0xbf34581e,0xbf604951,2 +np.float32,0xbeba5cf4,0xbec35119,2 +np.float32,0xbf76c22d,0xbfffc51c,2 +np.float32,0x3ef63b2c,0x3f0630b4,2 +np.float32,0x3eeadb64,0x3efdc877,2 +np.float32,0x3dfd8c70,0x3dfedb24,2 +np.float32,0x3f441600,0x3f81576d,2 +np.float32,0x3f23a0d8,0x3f41bbf6,2 +np.float32,0x3cb84d40,0x3cb85536,2 +np.float32,0xbf25cb5c,0xbf456e38,2 +np.float32,0xbc108540,0xbc108636,2 +np.float32,0xbc5b9140,0xbc5b949e,2 +np.float32,0xbf62ff40,0xbfb401dd,2 +np.float32,0x3e8e0710,0x3e91d93e,2 +np.float32,0x3f1b6ae0,0x3f344dfd,2 +np.float32,0xbf4dbbbe,0xbf8dedea,2 +np.float32,0x3f1a5fb2,0x3f32a880,2 +np.float32,0xbe56bd00,0xbe59f8cb,2 +np.float32,0xbf490a5c,0xbf87902d,2 +np.float32,0xbf513072,0xbf92f717,2 +np.float32,0x3e73ee28,0x3e78b542,2 +np.float32,0x3f0a4c7a,0x3f1abf2c,2 +np.float32,0x3e10d5c8,0x3e11d00b,2 +np.float32,0xbf771aac,0xc001207e,2 +np.float32,0x3efe2f54,0x3f0b6a46,2 +np.float32,0xbea5f3ea,0xbeac291f,2 +np.float32,0xbf1a73e8,0xbf32c845,2 +np.float32,0x3ebcc82c,0x3ec61c4f,2 +np.float32,0xbf24f492,0xbf43fd9a,2 +np.float32,0x3ecbd908,0x3ed7c691,2 +np.float32,0x3f461c5e,0x3f83d3f0,2 +np.float32,0x3eed0524,0x3f0043c1,2 +np.float32,0x3d06e840,0x3d06f4bf,2 +np.float32,0x3eb6c974,0x3ebf34d7,2 +np.float32,0xbf1c85e1,0xbf36100f,2 +np.float32,0x3ed697d0,0x3ee4ad04,2 +np.float32,0x3eab0484,0x3eb1d733,2 +np.float32,0xbf3b02f2,0xbf6e0935,2 +np.float32,0xbeeab154,0xbefd9334,2 +np.float32,0xbf695372,0xbfc49881,2 +np.float32,0x3e8aaa7c,0x3e8e36be,2 +np.float32,0xbf208754,0xbf3c8f7b,2 +np.float32,0xbe0dbf28,0xbe0ea9a1,2 +np.float32,0x3ca780c0,0x3ca786ba,2 +np.float32,0xbeb320b4,0xbebb065e,2 +np.float32,0x3f13c698,0x3f288821,2 +np.float32,0xbe8cbbec,0xbe9072c4,2 +np.float32,0x3f1ed534,0x3f39c8df,2 +np.float32,0x3e1ca450,0x3e1de190,2 +np.float32,0x3f54be1c,0x3f988134,2 +np.float32,0x3f34e4ee,0x3f6161b4,2 +np.float32,0xbf7e6913,0xc038b246,2 +np.float32,0x3d3c3f20,0x3d3c6119,2 +np.float32,0x3ca9dc80,0x3ca9e2bc,2 +np.float32,0xbf577ea2,0xbf9d161a,2 +np.float32,0xbedb22c8,0xbeea3644,2 +np.float32,0x3f22a044,0x3f400bfa,2 +np.float32,0xbe214b8c,0xbe22a637,2 +np.float32,0x3e8cd300,0x3e908bbc,2 +np.float32,0xbec4d214,0xbecf7a58,2 +np.float32,0x3e9399a4,0x3e97e7e4,2 +np.float32,0xbee6a1a2,0xbef874ed,2 +np.float32,0xbf323742,0xbf5c1bfd,2 +np.float32,0x3f48b882,0x3f8725ac,2 +np.float32,0xbf4d4dba,0xbf8d532e,2 +np.float32,0xbf59640a,0xbfa0695a,2 +np.float32,0xbf2ad562,0xbf4e4f03,2 +np.float32,0x3e317d98,0x3e334d03,2 +np.float32,0xbf6a5b71,0xbfc7b5a2,2 +np.float32,0x3e87b434,0x3e8b05cf,2 +np.float32,0xbf1c344c,0xbf358dee,2 +np.float32,0x3e449428,0x3e470c65,2 +np.float32,0xbf2c0f2f,0xbf508808,2 +np.float32,0xbec5b5ac,0xbed0859c,2 +np.float32,0xbf4aa956,0xbf89b4b1,2 +np.float32,0x3f6dd374,0x3fd35717,2 +np.float32,0x3f45f76c,0x3f83a5ef,2 +np.float32,0xbed1fba8,0xbedf1bd5,2 +np.float32,0xbd26b2d0,0xbd26ca66,2 +np.float32,0xbe9817c2,0xbe9cd1c3,2 +np.float32,0x3e725988,0x3e770875,2 +np.float32,0xbf1a8ded,0xbf32f132,2 +np.float32,0xbe695860,0xbe6d83d3,2 +np.float32,0x3d8cecd0,0x3d8d25ea,2 +np.float32,0x3f574706,0x3f9cb6ec,2 +np.float32,0xbf5c5a1f,0xbfa5eaf3,2 +np.float32,0x3e7a7c88,0x3e7fab83,2 +np.float32,0xff800000,0xffc00000,2 +np.float32,0x3f66396a,0x3fbbfbb0,2 +np.float32,0x3ed6e588,0x3ee50b53,2 +np.float32,0xbb56d500,0xbb56d532,2 +np.float32,0x3ebd23fc,0x3ec6869a,2 +np.float32,0xbf70d490,0xbfdf4af5,2 +np.float32,0x3e514f88,0x3e544d15,2 +np.float32,0x3e660f98,0x3e6a0dac,2 +np.float32,0xbf034da1,0xbf1110bb,2 +np.float32,0xbf60d9be,0xbfaf2714,2 +np.float32,0x3df67b10,0x3df7ae64,2 +np.float32,0xbeeedc0a,0xbf017010,2 +np.float32,0xbe149224,0xbe15a072,2 +np.float32,0x3f455084,0x3f82d759,2 +np.float32,0x3f210f9e,0x3f3d7093,2 +np.float32,0xbeaea3e0,0xbeb5edd3,2 +np.float32,0x3e0724b0,0x3e07efad,2 +np.float32,0x3f09a784,0x3f19d6ac,2 +np.float32,0xbf044340,0xbf125ee8,2 +np.float32,0xbf71adc9,0xbfe315fe,2 +np.float32,0x3efd3870,0x3f0ac6a8,2 +np.float32,0xbf53c7a6,0xbf96f6df,2 +np.float32,0xbf3cf784,0xbf7247af,2 +np.float32,0x3e0ce9e0,0x3e0dd035,2 +np.float32,0xbd3051a0,0xbd306d89,2 +np.float32,0x3ecab804,0x3ed66f77,2 +np.float32,0x3e984350,0x3e9d0189,2 +np.float32,0x3edd1c00,0x3eeca20b,2 +np.float32,0xbe8e22a0,0xbe91f71b,2 +np.float32,0x3ebebc18,0x3ec85fd6,2 +np.float32,0xba275c00,0xba275c01,2 +np.float32,0x3f1d8190,0x3f37a385,2 +np.float32,0x3f17343e,0x3f2dbbfe,2 +np.float32,0x3caa8000,0x3caa864e,2 +np.float32,0x3e7a7308,0x3e7fa168,2 +np.float32,0x3f7359a6,0x3feb3e1a,2 +np.float32,0xbf7ad15a,0xc012a743,2 +np.float32,0xbf122efb,0xbf262812,2 +np.float32,0xbf03ba04,0xbf11a3fa,2 +np.float32,0x3ed7a90c,0x3ee5f8d4,2 +np.float32,0xbe23e318,0xbe254eed,2 +np.float32,0xbe2866f4,0xbe29f20a,2 +np.float32,0xbeaedff2,0xbeb631d0,2 +np.float32,0x0,0x0,2 +np.float32,0x3ef2a034,0x3f03dafd,2 +np.float32,0x3f35806c,0x3f62994e,2 +np.float32,0xbf655e19,0xbfb9c718,2 +np.float32,0x3f5d54ce,0x3fa7d4f4,2 +np.float32,0x3f33e64a,0x3f5f67e3,2 +np.float32,0x3ebf4010,0x3ec8f923,2 +np.float32,0xbe050dc8,0xbe05cf70,2 +np.float32,0x3f61693e,0x3fb063b0,2 +np.float32,0xbd94ac00,0xbd94ef12,2 +np.float32,0x3e9de008,0x3ea32f61,2 +np.float32,0xbe3d042c,0xbe3f3540,2 +np.float32,0x3e8fdfc0,0x3e93d9e4,2 +np.float32,0x3f28bc48,0x3f4a9019,2 +np.float32,0x3edea928,0x3eee8b09,2 +np.float32,0xbf05f673,0xbf14b362,2 +np.float32,0xbf360730,0xbf63a914,2 +np.float32,0xbe3fb454,0xbe41fe0a,2 +np.float32,0x3f6d99a8,0x3fd28552,2 +np.float32,0xbf3ae866,0xbf6dd052,2 +np.float32,0x3f5b1164,0x3fa37aec,2 +np.float32,0xbf64a451,0xbfb7f61b,2 +np.float32,0xbdd79bd0,0xbdd86919,2 +np.float32,0x3e89fc00,0x3e8d7a85,2 +np.float32,0x3f4bf690,0x3f8b77ea,2 +np.float32,0x3cbdf280,0x3cbdfb38,2 +np.float32,0x3f138f98,0x3f2835b4,2 +np.float32,0xbe33967c,0xbe3576bc,2 +np.float32,0xbf298164,0xbf4bedda,2 +np.float32,0x3e9955cc,0x3e9e2edb,2 +np.float32,0xbf79b383,0xc00c56c0,2 +np.float32,0x3ea0834c,0x3ea61aea,2 +np.float32,0xbf511184,0xbf92c89a,2 +np.float32,0x3f4d9fba,0x3f8dc666,2 +np.float32,0x3f3387c2,0x3f5ead80,2 +np.float32,0x3e3f7360,0x3e41babb,2 +np.float32,0xbf3cc4d6,0xbf71d879,2 +np.float32,0x3f2e4402,0x3f54994e,2 +np.float32,0x3e6a7118,0x3e6eabff,2 +np.float32,0xbf05d83e,0xbf1489cc,2 +np.float32,0xbdce4fd8,0xbdcf039a,2 +np.float32,0xbf03e2f4,0xbf11dbaf,2 +np.float32,0x3f1ea0a0,0x3f397375,2 +np.float32,0x3f7aff54,0x4013cb1b,2 +np.float32,0x3f5ef158,0x3fab1801,2 +np.float32,0xbe33bcc8,0xbe359e40,2 +np.float32,0xbf04dd0e,0xbf133111,2 +np.float32,0xbf14f887,0xbf2a54d1,2 +np.float32,0x3f75c37a,0x3ff9196e,2 +np.float32,0x3f35c3c8,0x3f6320f2,2 +np.float32,0x3f53bb94,0x3f96e3c3,2 +np.float32,0x3f4d473e,0x3f8d4a19,2 +np.float32,0xbdfe19e0,0xbdff6ac9,2 +np.float32,0xbf7f0cc4,0xc049342d,2 +np.float32,0xbdbfc778,0xbdc057bb,2 +np.float32,0xbf7575b7,0xbff73067,2 +np.float32,0xbe9df488,0xbea34609,2 +np.float32,0xbefbd3c6,0xbf09daff,2 +np.float32,0x3f19962c,0x3f316cbd,2 +np.float32,0x3f7acec6,0x40129732,2 +np.float32,0xbf5db7de,0xbfa89a21,2 +np.float32,0x3f62f444,0x3fb3e830,2 +np.float32,0xbf522adb,0xbf94737f,2 +np.float32,0xbef6ceb2,0xbf0690ba,2 +np.float32,0xbf57c41e,0xbf9d8db0,2 +np.float32,0x3eb3360c,0x3ebb1eb0,2 +np.float32,0x3f29327e,0x3f4b618e,2 +np.float32,0xbf08d099,0xbf18a916,2 +np.float32,0x3ea21014,0x3ea7d369,2 +np.float32,0x3f39e516,0x3f6ba861,2 +np.float32,0x3e7c4f28,0x3e80ce08,2 +np.float32,0xbec5a7f8,0xbed07582,2 +np.float32,0xbf0b1b46,0xbf1be3e7,2 +np.float32,0xbef0e0ec,0xbf02bb2e,2 +np.float32,0x3d835a30,0x3d838869,2 +np.float32,0x3f08aa40,0x3f18736e,2 +np.float32,0x3eb0e4c8,0x3eb87bcd,2 +np.float32,0x3eb3821c,0x3ebb7564,2 +np.float32,0xbe3a7320,0xbe3c8d5a,2 +np.float32,0x3e43f8c0,0x3e466b10,2 +np.float32,0x3e914288,0x3e955b69,2 +np.float32,0x3ec7d800,0x3ed308e7,2 +np.float32,0x3e603df8,0x3e63eef2,2 +np.float32,0x3f225cac,0x3f3f9ac6,2 +np.float32,0x3e3db8f0,0x3e3ff06b,2 +np.float32,0x3f358d78,0x3f62b38c,2 +np.float32,0xbed9bd64,0xbee88158,2 +np.float32,0x800000,0x800000,2 +np.float32,0x3f1adfce,0x3f337230,2 +np.float32,0xbefdc346,0xbf0b229d,2 +np.float32,0xbf091018,0xbf190208,2 +np.float32,0xbf800000,0xff800000,2 +np.float32,0x3f27c2c4,0x3f48d8db,2 +np.float32,0x3ef59c80,0x3f05c993,2 +np.float32,0x3e18a340,0x3e19c893,2 +np.float32,0x3f209610,0x3f3ca7c5,2 +np.float32,0x3f69cc22,0x3fc60087,2 +np.float32,0xbf66cf07,0xbfbd8721,2 +np.float32,0xbf768098,0xbffdfcc4,2 +np.float32,0x3df27a40,0x3df39ec4,2 +np.float32,0x3daf5bd0,0x3dafca02,2 +np.float32,0x3f53f2be,0x3f973b41,2 +np.float32,0xbf7edcbc,0xc0436ce3,2 +np.float32,0xbdf61db8,0xbdf74fae,2 +np.float32,0x3e2c9328,0x3e2e3cb2,2 +np.float32,0x3f1a4570,0x3f327f41,2 +np.float32,0xbf766306,0xbffd32f1,2 +np.float32,0xbf468b9d,0xbf845f0f,2 +np.float32,0x3e398970,0x3e3b9bb1,2 +np.float32,0xbbefa900,0xbbefaa18,2 +np.float32,0xbf54c989,0xbf9893ad,2 +np.float32,0x3f262cf6,0x3f46169d,2 +np.float32,0x3f638a8a,0x3fb54a98,2 +np.float32,0xbeb36c78,0xbebb5cb8,2 +np.float32,0xbeac4d42,0xbeb34993,2 +np.float32,0x3f1d1942,0x3f36fbf2,2 +np.float32,0xbf5d49ba,0xbfa7bf07,2 +np.float32,0xbf182b5c,0xbf2f38d0,2 +np.float32,0x3f41a742,0x3f7ce5ef,2 +np.float32,0x3f0b9a6c,0x3f1c9898,2 +np.float32,0x3e847494,0x3e8788f3,2 +np.float32,0xbde41608,0xbde50941,2 +np.float32,0x3f693944,0x3fc44b5a,2 +np.float32,0x3f0386b2,0x3f115e37,2 +np.float32,0x3f3a08b0,0x3f6bf3c1,2 +np.float32,0xbf78ee64,0xc0089977,2 +np.float32,0xbf013a11,0xbf0e436e,2 +np.float32,0x3f00668e,0x3f0d2836,2 +np.float32,0x3e6d9850,0x3e720081,2 +np.float32,0x3eacf578,0x3eb4075d,2 +np.float32,0x3f18aef8,0x3f3004b4,2 +np.float32,0x3de342f0,0x3de43385,2 +np.float32,0x3e56cee8,0x3e5a0b85,2 +np.float32,0xbf287912,0xbf4a1966,2 +np.float32,0x3e92c948,0x3e9704c2,2 +np.float32,0x3c07d080,0x3c07d14c,2 +np.float32,0xbe90f6a0,0xbe9508e0,2 +np.float32,0x3e8b4f28,0x3e8ee884,2 +np.float32,0xbf35b56c,0xbf6303ff,2 +np.float32,0xbef512b8,0xbf057027,2 +np.float32,0x3e36c630,0x3e38c0cd,2 +np.float32,0x3f0b3ca8,0x3f1c134a,2 +np.float32,0x3e4cd610,0x3e4fa2c5,2 +np.float32,0xbf5a8372,0xbfa273a3,2 +np.float32,0xbecaad3c,0xbed662ae,2 +np.float32,0xbec372d2,0xbecddeac,2 +np.float32,0x3f6fb2b2,0x3fda8a22,2 +np.float32,0x3f365f28,0x3f645b5a,2 +np.float32,0xbecd00fa,0xbed926a4,2 +np.float32,0xbebafa32,0xbec40672,2 +np.float32,0xbf235b73,0xbf4146c4,2 +np.float32,0x3f7a4658,0x400f6e2c,2 +np.float32,0x3f35e824,0x3f636a54,2 +np.float32,0x3cb87640,0x3cb87e3c,2 +np.float32,0xbf296288,0xbf4bb6ee,2 +np.float32,0x7f800000,0xffc00000,2 +np.float32,0xbf4de86e,0xbf8e2d1a,2 +np.float32,0xbf4ace12,0xbf89e5f3,2 +np.float32,0x3d65a300,0x3d65e0b5,2 +np.float32,0xbe10c534,0xbe11bf21,2 +np.float32,0xbeba3c1c,0xbec32b3e,2 +np.float32,0x3e87eaf8,0x3e8b40b8,2 +np.float32,0x3d5c3bc0,0x3d5c722d,2 +np.float32,0x3e8c14b8,0x3e8fbdf8,2 +np.float32,0xbf06c6f0,0xbf15d327,2 +np.float32,0xbe0f1e30,0xbe100f96,2 +np.float32,0xbee244b0,0xbef30251,2 +np.float32,0x3f2a21b0,0x3f4d0c1d,2 +np.float32,0xbf5f7f81,0xbfac408e,2 +np.float32,0xbe3dba2c,0xbe3ff1b2,2 +np.float32,0x3f3ffc22,0x3f790abf,2 +np.float32,0x3edc3dac,0x3eeb90fd,2 +np.float32,0x7f7fffff,0xffc00000,2 +np.float32,0x3ecfaaac,0x3edc5485,2 +np.float32,0x3f0affbe,0x3f1bbcd9,2 +np.float32,0x3f5f2264,0x3fab7dca,2 +np.float32,0x3f37394c,0x3f66186c,2 +np.float32,0xbe6b2f6c,0xbe6f74e3,2 +np.float32,0x3f284772,0x3f49c1f1,2 +np.float32,0xbdf27bc8,0xbdf3a051,2 +np.float32,0xbc8b14e0,0xbc8b184c,2 +np.float32,0x3f6a867c,0x3fc83b07,2 +np.float32,0x3f1ec876,0x3f39b429,2 +np.float32,0x3f6fd9a8,0x3fdb28d6,2 +np.float32,0xbf473cca,0xbf853e8c,2 +np.float32,0x3e23eff8,0x3e255c23,2 +np.float32,0x3ebefdfc,0x3ec8ac5d,2 +np.float32,0x3f6c8c22,0x3fced2b1,2 +np.float32,0x3f168388,0x3f2cad44,2 +np.float32,0xbece2410,0xbeda81ac,2 +np.float32,0x3f5532f0,0x3f993eea,2 +np.float32,0x3ef1938c,0x3f032dfa,2 +np.float32,0xbef05268,0xbf025fba,2 +np.float32,0x3f552e4a,0x3f993754,2 +np.float32,0x3e9ed068,0x3ea4392d,2 +np.float32,0xbe1a0c24,0xbe1b39be,2 +np.float32,0xbf2623aa,0xbf46068c,2 +np.float32,0xbe1cc300,0xbe1e00fc,2 +np.float32,0xbe9c0576,0xbea12397,2 +np.float32,0xbd827338,0xbd82a07e,2 +np.float32,0x3f0fc31a,0x3f229786,2 +np.float32,0x3e577810,0x3e5abc7d,2 +np.float32,0x3e0e1cb8,0x3e0f0906,2 +np.float32,0x3e84d344,0x3e87ee73,2 +np.float32,0xbf39c45e,0xbf6b6337,2 +np.float32,0x3edfb25c,0x3eefd273,2 +np.float32,0x3e016398,0x3e021596,2 +np.float32,0xbefeb1be,0xbf0bc0de,2 +np.float32,0x3f37e104,0x3f677196,2 +np.float32,0x3f545316,0x3f97d500,2 +np.float32,0xbefc165a,0xbf0a06ed,2 +np.float32,0xbf0923e6,0xbf191dcd,2 +np.float32,0xbf386508,0xbf68831f,2 +np.float32,0xbf3d4630,0xbf72f4e1,2 +np.float32,0x3f3dbe82,0x3f73ff13,2 +np.float32,0xbf703de4,0xbfdcc7e2,2 +np.float32,0xbf531482,0xbf95dd1a,2 +np.float32,0xbf0af1b6,0xbf1ba8f4,2 +np.float32,0xbec8fd9c,0xbed463a4,2 +np.float32,0xbe230320,0xbe24691a,2 +np.float32,0xbf7de541,0xc02faf38,2 +np.float32,0x3efd2360,0x3f0ab8b7,2 +np.float32,0x3db7f350,0x3db87291,2 +np.float32,0x3e74c510,0x3e799924,2 +np.float32,0x3da549c0,0x3da5a5fc,2 +np.float32,0x3e8a3bc4,0x3e8dbf4a,2 +np.float32,0xbf69f086,0xbfc66e84,2 +np.float32,0x3f323f8e,0x3f5c2c17,2 +np.float32,0x3ec0ae3c,0x3ecaa334,2 +np.float32,0xbebe8966,0xbec824fc,2 +np.float32,0x3f34691e,0x3f606b13,2 +np.float32,0x3f13790e,0x3f2813f5,2 +np.float32,0xbf61c027,0xbfb12618,2 +np.float32,0x3e90c690,0x3e94d4a1,2 +np.float32,0xbefce8f0,0xbf0a920e,2 +np.float32,0xbf5c0e8a,0xbfa559a7,2 +np.float32,0x3f374f60,0x3f6645b6,2 +np.float32,0x3f25f6fa,0x3f45b967,2 +np.float32,0x3f2421aa,0x3f42963a,2 +np.float32,0x3ebfa328,0x3ec96c57,2 +np.float32,0x3e3bef28,0x3e3e1685,2 +np.float32,0x3ea3fa3c,0x3ea9f4dd,2 +np.float32,0x3f362b8e,0x3f63f2b2,2 +np.float32,0xbedcef18,0xbeec6ada,2 +np.float32,0xbdd29c88,0xbdd35bd0,2 +np.float32,0x3f261aea,0x3f45f76f,2 +np.float32,0xbe62c470,0xbe66965e,2 +np.float32,0x7fc00000,0x7fc00000,2 +np.float32,0xbee991aa,0xbefc277b,2 +np.float32,0xbf571960,0xbf9c6923,2 +np.float32,0xbe6fb410,0xbe743b41,2 +np.float32,0x3eb1bed0,0x3eb9738d,2 +np.float32,0x80000000,0x80000000,2 +np.float32,0x3eddcbe4,0x3eed7a69,2 +np.float32,0xbf2a81ba,0xbf4db86d,2 +np.float32,0x3f74da54,0x3ff38737,2 +np.float32,0xbeb6bff4,0xbebf29f4,2 +np.float32,0x3f445752,0x3f81a698,2 +np.float32,0x3ed081b4,0x3edd5618,2 +np.float32,0xbee73802,0xbef931b4,2 +np.float32,0xbd13f2a0,0xbd14031c,2 +np.float32,0xbb4d1200,0xbb4d122c,2 +np.float32,0xbee8777a,0xbefac393,2 +np.float32,0x3f42047c,0x3f7dc06c,2 +np.float32,0xbd089270,0xbd089f67,2 +np.float32,0xbf628c16,0xbfb2f66b,2 +np.float32,0x3e72e098,0x3e77978d,2 +np.float32,0x3ed967cc,0x3ee818e4,2 +np.float32,0x3e284c80,0x3e29d6d9,2 +np.float32,0x3f74e8ba,0x3ff3dbef,2 +np.float32,0x3f013e86,0x3f0e4969,2 +np.float32,0xbf610d4f,0xbfaf983c,2 +np.float32,0xbf3c8d36,0xbf715eba,2 +np.float32,0xbedbc756,0xbeeaffdb,2 +np.float32,0x3e143ec8,0x3e154b4c,2 +np.float32,0xbe1c9808,0xbe1dd4fc,2 +np.float32,0xbe887a1e,0xbe8bdac5,2 +np.float32,0xbe85c4bc,0xbe88f17a,2 +np.float32,0x3f35967e,0x3f62c5b4,2 +np.float32,0x3ea2c4a4,0x3ea89c2d,2 +np.float32,0xbc8703c0,0xbc8706e1,2 +np.float32,0xbf13d52c,0xbf289dff,2 +np.float32,0xbf63bb56,0xbfb5bf29,2 +np.float32,0xbf61c5ef,0xbfb13319,2 +np.float32,0xbf128410,0xbf26a675,2 +np.float32,0x3f03fcf2,0x3f11ff13,2 +np.float32,0xbe49c924,0xbe4c75cd,2 +np.float32,0xbf211a9c,0xbf3d82c5,2 +np.float32,0x3f7e9d52,0x403d1b42,2 +np.float32,0x3edfefd4,0x3ef01e71,2 +np.float32,0x3ebc5bd8,0x3ec59efb,2 +np.float32,0x3d7b02e0,0x3d7b537f,2 +np.float32,0xbf1163ba,0xbf24fb43,2 +np.float32,0x3f5072f2,0x3f91dbf1,2 +np.float32,0xbee700ce,0xbef8ec60,2 +np.float32,0x3f534168,0x3f962359,2 +np.float32,0x3e6d6c40,0x3e71d1ef,2 +np.float32,0x3def9d70,0x3df0b7a8,2 +np.float32,0x3e89cf80,0x3e8d4a8a,2 +np.float32,0xbf687ca7,0xbfc2290f,2 +np.float32,0x3f35e134,0x3f635c51,2 +np.float32,0x3e59eef8,0x3e5d50fa,2 +np.float32,0xbf65c9e1,0xbfbada61,2 +np.float32,0xbf759292,0xbff7e43d,2 +np.float32,0x3f4635a0,0x3f83f372,2 +np.float32,0x3f29baaa,0x3f4c53f1,2 +np.float32,0x3f6b15a6,0x3fc9fe04,2 +np.float32,0x3edabc88,0x3ee9b922,2 +np.float32,0x3ef382e0,0x3f046d4d,2 +np.float32,0xbe351310,0xbe36ff7f,2 +np.float32,0xbf05c935,0xbf14751c,2 +np.float32,0xbf0e7c50,0xbf20bc24,2 +np.float32,0xbf69bc94,0xbfc5d1b8,2 +np.float32,0xbed41aca,0xbee1aa23,2 +np.float32,0x3f518c08,0x3f938162,2 +np.float32,0xbf3d7974,0xbf73661a,2 +np.float32,0x3f1951a6,0x3f3101c9,2 +np.float32,0xbeb3f436,0xbebbf787,2 +np.float32,0xbf77a190,0xc0031d43,2 +np.float32,0x3eb5b3cc,0x3ebdf6e7,2 +np.float32,0xbed534b4,0xbee2fed2,2 +np.float32,0xbe53e1b8,0xbe56fc56,2 +np.float32,0x3f679e20,0x3fbfb91c,2 +np.float32,0xff7fffff,0xffc00000,2 +np.float32,0xbf7b9bcb,0xc0180073,2 +np.float32,0xbf5635e8,0xbf9aea15,2 +np.float32,0xbe5a3318,0xbe5d9856,2 +np.float32,0xbe003284,0xbe00df9a,2 +np.float32,0x3eb119a4,0x3eb8b7d6,2 +np.float32,0xbf3bccf8,0xbf6fbc84,2 +np.float32,0x3f36f600,0x3f658ea8,2 +np.float32,0x3f1ea834,0x3f397fc2,2 +np.float32,0xbe7cfb54,0xbe8129b3,2 +np.float32,0xbe9b3746,0xbea0406a,2 +np.float32,0x3edc0f90,0x3eeb586c,2 +np.float32,0x3e1842e8,0x3e19660c,2 +np.float32,0xbd8f10b0,0xbd8f4c70,2 +np.float32,0xbf064aca,0xbf1527a2,2 +np.float32,0x3e632e58,0x3e6705be,2 +np.float32,0xbef28ba4,0xbf03cdbb,2 +np.float32,0x3f27b21e,0x3f48bbaf,2 +np.float32,0xbe6f30d4,0xbe73b06e,2 +np.float32,0x3f3e6cb0,0x3f75834b,2 +np.float32,0xbf264aa5,0xbf4649f0,2 +np.float32,0xbf690775,0xbfc3b978,2 +np.float32,0xbf3e4a38,0xbf753632,2 +np.float64,0x3fe12bbe8c62577e,0x3fe32de8e5f961b0,1 +np.float64,0x3fc9b8909b337120,0x3fca1366da00efff,1 +np.float64,0x3feaee4245f5dc84,0x3ff3a011ea0432f3,1 +np.float64,0xbfe892c000f12580,0xbff03e5adaed6f0c,1 +np.float64,0xbf9be8de4837d1c0,0xbf9beaa367756bd1,1 +np.float64,0x3fe632e58fec65cc,0x3feb5ccc5114ca38,1 +np.float64,0x3fe78a0ef7ef141e,0x3fee1b4521d8eb6c,1 +np.float64,0x3feec27a65fd84f4,0x3fff643c8318e81e,1 +np.float64,0x3fbed6efce3dade0,0x3fbefd76cff00111,1 +np.float64,0xbfe3a05fab6740c0,0xbfe6db078aeeb0ca,1 +np.float64,0x3fdca11a56b94234,0x3fdece9e6eacff1b,1 +np.float64,0x3fe0fb15aae1f62c,0x3fe2e9e095ec2089,1 +np.float64,0x3fede12abf7bc256,0x3ffafd0ff4142807,1 +np.float64,0x3feb919edcf7233e,0x3ff4c9aa0bc2432f,1 +np.float64,0x3fd39633b5a72c68,0x3fd43c2e6d5f441c,1 +np.float64,0x3fd9efcbfeb3df98,0x3fdb83f03e58f91c,1 +np.float64,0x3fe2867a36650cf4,0x3fe525858c8ce72e,1 +np.float64,0x3fdacbb8f3b59770,0x3fdc8cd431b6e3ff,1 +np.float64,0x3fcc120503382408,0x3fcc88a8fa43e1c6,1 +np.float64,0xbfd99ff4eab33fea,0xbfdb24a20ae3687d,1 +np.float64,0xbfe8caf0157195e0,0xbff083b8dd0941d3,1 +np.float64,0x3fddc9bf92bb9380,0x3fe022aac0f761d5,1 +np.float64,0x3fe2dbb66e65b76c,0x3fe5a6e7caf3f1f2,1 +np.float64,0x3fe95f5c4a72beb8,0x3ff1444697e96138,1 +np.float64,0xbfc6b163d92d62c8,0xbfc6ef6e006658a1,1 +np.float64,0x3fdf1b2616be364c,0x3fe0fcbd2848c9e8,1 +np.float64,0xbfdca1ccf7b9439a,0xbfdecf7dc0eaa663,1 +np.float64,0x3fe078d6a260f1ae,0x3fe236a7c66ef6c2,1 +np.float64,0x3fdf471bb9be8e38,0x3fe11990ec74e704,1 +np.float64,0xbfe417626be82ec5,0xbfe79c9aa5ed2e2f,1 +np.float64,0xbfeb9cf5677739eb,0xbff4dfc24c012c90,1 +np.float64,0x3f8d9142b03b2280,0x3f8d91c9559d4779,1 +np.float64,0x3fb052c67220a590,0x3fb05873c90d1cd6,1 +np.float64,0x3fd742e2c7ae85c4,0x3fd860128947d15d,1 +np.float64,0x3fec2e2a2bf85c54,0x3ff60eb554bb8d71,1 +np.float64,0xbfeb2b8bc8f65718,0xbff40b734679497a,1 +np.float64,0x3fe25f8e0d64bf1c,0x3fe4eb381d077803,1 +np.float64,0x3fe56426256ac84c,0x3fe9dafbe79370f0,1 +np.float64,0x3feecc1e5d7d983c,0x3fffa49bedc7aa25,1 +np.float64,0xbfc88ce94b3119d4,0xbfc8dbba0fdee2d2,1 +np.float64,0xbfabcf51ac379ea0,0xbfabd6552aa63da3,1 +np.float64,0xbfccc8b849399170,0xbfcd48d6ff057a4d,1 +np.float64,0x3fd2f831e8a5f064,0x3fd38e67b0dda905,1 +np.float64,0x3fcafdcd6135fb98,0x3fcb670ae2ef4d36,1 +np.float64,0x3feda6042efb4c08,0x3ffa219442ac4ea5,1 +np.float64,0x3fed382b157a7056,0x3ff8bc01bc6d10bc,1 +np.float64,0x3fed858a50fb0b14,0x3ff9b1c05cb6cc0f,1 +np.float64,0x3fcc3960653872c0,0x3fccb2045373a3d1,1 +np.float64,0xbfec5177e478a2f0,0xbff65eb4557d94eb,1 +np.float64,0x3feafe0d5e75fc1a,0x3ff3bb4a260a0dcb,1 +np.float64,0x3fe08bc87ee11790,0x3fe25078aac99d31,1 +np.float64,0xffefffffffffffff,0xfff8000000000000,1 +np.float64,0x3f79985ce0333100,0x3f799872b591d1cb,1 +np.float64,0xbfd4001cf9a8003a,0xbfd4b14b9035b94f,1 +np.float64,0x3fe54a17e6ea9430,0x3fe9ac0f18682343,1 +np.float64,0xbfb4e07fea29c100,0xbfb4ec6520dd0689,1 +np.float64,0xbfed2b6659fa56cd,0xbff895ed57dc1450,1 +np.float64,0xbfe81fc8b5f03f92,0xbfef6b95e72a7a7c,1 +np.float64,0xbfe6aced16ed59da,0xbfec4ce131ee3704,1 +np.float64,0xbfe599f30ceb33e6,0xbfea3d07c1cd78e2,1 +np.float64,0xbfe0ff278b61fe4f,0xbfe2ef8b5efa89ed,1 +np.float64,0xbfe3e9406467d281,0xbfe750e43e841736,1 +np.float64,0x3fcc6b52cf38d6a8,0x3fcce688f4fb2cf1,1 +np.float64,0xbfc890e8133121d0,0xbfc8dfdfee72d258,1 +np.float64,0x3fe46e81dbe8dd04,0x3fe82e09783811a8,1 +np.float64,0x3fd94455e5b288ac,0x3fdab7cef2de0b1f,1 +np.float64,0xbfe82151fff042a4,0xbfef6f254c9696ca,1 +np.float64,0x3fcee1ac1d3dc358,0x3fcf80a6ed07070a,1 +np.float64,0x3fcce8f90939d1f0,0x3fcd6ad18d34f8b5,1 +np.float64,0x3fd6afe56fad5fcc,0x3fd7b7567526b1fb,1 +np.float64,0x3fb1a77092234ee0,0x3fb1ae9fe0d176fc,1 +np.float64,0xbfeb758b0d76eb16,0xbff493d105652edc,1 +np.float64,0xbfb857c24e30af88,0xbfb86aa4da3be53f,1 +np.float64,0x3fe89064eff120ca,0x3ff03b7c5b3339a8,1 +np.float64,0xbfc1bd2fef237a60,0xbfc1da99893473ed,1 +np.float64,0xbfe5ad6e2eeb5adc,0xbfea60ed181b5c05,1 +np.float64,0x3fd5a66358ab4cc8,0x3fd6899e640aeb1f,1 +np.float64,0xbfe198e832e331d0,0xbfe3c8c9496d0de5,1 +np.float64,0xbfdaa5c0d7b54b82,0xbfdc5ed7d3c5ce49,1 +np.float64,0x3fcceccb6939d998,0x3fcd6ed88c2dd3a5,1 +np.float64,0xbfe44413eae88828,0xbfe7e6cd32b34046,1 +np.float64,0xbfc7cbeccf2f97d8,0xbfc8139a2626edae,1 +np.float64,0x3fbf31e4fa3e63d0,0x3fbf59c6e863255e,1 +np.float64,0x3fdf03fa05be07f4,0x3fe0ed953f7989ad,1 +np.float64,0x3fe7f4eaceefe9d6,0x3fef092ca7e2ac39,1 +np.float64,0xbfc084e9d92109d4,0xbfc09ca10fd6aaea,1 +np.float64,0xbf88cfbf70319f80,0xbf88d00effa6d897,1 +np.float64,0x7ff4000000000000,0x7ffc000000000000,1 +np.float64,0xbfa0176e9c202ee0,0xbfa018ca0a6ceef3,1 +np.float64,0xbfd88d0815b11a10,0xbfd9dfc6c6bcbe4e,1 +np.float64,0x3fe89f7730713eee,0x3ff04de52fb536f3,1 +np.float64,0xbfedc9707bfb92e1,0xbffaa25fcf9dd6da,1 +np.float64,0x3fe936d1a6726da4,0x3ff10e40c2d94bc9,1 +np.float64,0x3fdb64aec7b6c95c,0x3fdd473177317b3f,1 +np.float64,0xbfee4f9aaefc9f35,0xbffcdd212667003c,1 +np.float64,0x3fe3730067e6e600,0x3fe692b0a0babf5f,1 +np.float64,0xbfc257e58924afcc,0xbfc27871f8c218d7,1 +np.float64,0x3fe62db12dec5b62,0x3feb52c61b97d9f6,1 +np.float64,0xbfe3ff491367fe92,0xbfe774f1b3a96fd6,1 +np.float64,0x3fea43255274864a,0x3ff28b0c4b7b8d21,1 +np.float64,0xbfea37923c746f24,0xbff27962159f2072,1 +np.float64,0x3fcd0ac3c73a1588,0x3fcd8e6f8de41755,1 +np.float64,0xbfdccafde6b995fc,0xbfdf030fea8a0630,1 +np.float64,0x3fdba35268b746a4,0x3fdd94094f6f50c1,1 +np.float64,0x3fc68ea1d92d1d40,0x3fc6cb8d07cbb0e4,1 +np.float64,0xbfb88b1f6e311640,0xbfb89e7af4e58778,1 +np.float64,0xbfedc7cadffb8f96,0xbffa9c3766227956,1 +np.float64,0x3fe7928d3eef251a,0x3fee2dcf2ac7961b,1 +np.float64,0xbfeff42ede7fe85e,0xc00cef6b0f1e8323,1 +np.float64,0xbfebf07fa477e0ff,0xbff5893f99e15236,1 +np.float64,0x3fe3002ab9660056,0x3fe5defba550c583,1 +np.float64,0x3feb8f4307f71e86,0x3ff4c517ec8d6de9,1 +np.float64,0x3fd3c16f49a782e0,0x3fd46becaacf74da,1 +np.float64,0x3fc7613df12ec278,0x3fc7a52b2a3c3368,1 +np.float64,0xbfe33af560e675eb,0xbfe63a6528ff1587,1 +np.float64,0xbfde86495abd0c92,0xbfe09bd7ba05b461,1 +np.float64,0x3fe1e7fb4ee3cff6,0x3fe43b04311c0ab6,1 +np.float64,0xbfc528b6bd2a516c,0xbfc55ae0a0c184c8,1 +np.float64,0xbfd81025beb0204c,0xbfd94dd72d804613,1 +np.float64,0x10000000000000,0x10000000000000,1 +np.float64,0x3fc1151c47222a38,0x3fc12f5aad80a6bf,1 +np.float64,0x3feafa136775f426,0x3ff3b46854da0b3a,1 +np.float64,0x3fed2da0747a5b40,0x3ff89c85b658459e,1 +np.float64,0x3fda2a4b51b45498,0x3fdbca0d908ddbbd,1 +np.float64,0xbfd04cf518a099ea,0xbfd0aae0033b9e4c,1 +np.float64,0xbfb9065586320ca8,0xbfb91adb7e31f322,1 +np.float64,0xbfd830b428b06168,0xbfd973ca3c484d8d,1 +np.float64,0x3fc952f7ed32a5f0,0x3fc9a9994561fc1a,1 +np.float64,0xbfeb06c83c760d90,0xbff3ca77b326df20,1 +np.float64,0xbfeb1c98ac763931,0xbff3f0d0900f6149,1 +np.float64,0x3fdf061dbebe0c3c,0x3fe0eefb32b48d17,1 +np.float64,0xbf9acbaf28359760,0xbf9acd4024be9fec,1 +np.float64,0x3fec0adde2f815bc,0x3ff5c1628423794d,1 +np.float64,0xbfc4bc750d2978ec,0xbfc4eba43f590b94,1 +np.float64,0x3fdbe47878b7c8f0,0x3fdde44a2b500d73,1 +np.float64,0x3fe160d18162c1a4,0x3fe378cff08f18f0,1 +np.float64,0x3fc3b58dfd276b18,0x3fc3de01d3802de9,1 +np.float64,0x3fa860343430c060,0x3fa864ecd07ec962,1 +np.float64,0x3fcaebfb4b35d7f8,0x3fcb546512d1b4c7,1 +np.float64,0x3fe3fda558e7fb4a,0x3fe772412e5776de,1 +np.float64,0xbfe8169f2c702d3e,0xbfef5666c9a10f6d,1 +np.float64,0x3feda78e9efb4f1e,0x3ffa270712ded769,1 +np.float64,0xbfda483161b49062,0xbfdbedfbf2e850ba,1 +np.float64,0x3fd7407cf3ae80f8,0x3fd85d4f52622743,1 +np.float64,0xbfd63de4d4ac7bca,0xbfd73550a33e3c32,1 +np.float64,0xbfd9c30b90b38618,0xbfdb4e7695c856f3,1 +np.float64,0x3fcd70c00b3ae180,0x3fcdfa0969e0a119,1 +np.float64,0x3feb4f127f769e24,0x3ff44bf42514e0f4,1 +np.float64,0xbfec1db44af83b69,0xbff5ea54aed1f8e9,1 +np.float64,0x3fd68ff051ad1fe0,0x3fd792d0ed6d6122,1 +np.float64,0x3fe0a048a5614092,0x3fe26c80a826b2a2,1 +np.float64,0x3fd59f3742ab3e70,0x3fd6818563fcaf80,1 +np.float64,0x3fca26ecf9344dd8,0x3fca867ceb5d7ba8,1 +np.float64,0x3fdc1d547ab83aa8,0x3fde2a9cea866484,1 +np.float64,0xbfc78df6312f1bec,0xbfc7d3719b698a39,1 +np.float64,0x3fe754e72b6ea9ce,0x3feda89ea844a2e5,1 +np.float64,0x3fe740c1a4ee8184,0x3fed7dc56ec0c425,1 +np.float64,0x3fe77566a9eeeace,0x3fedee6f408df6de,1 +np.float64,0xbfbbf5bf8e37eb80,0xbfbc126a223781b4,1 +np.float64,0xbfe0acb297615965,0xbfe27d86681ca2b5,1 +np.float64,0xbfc20a0487241408,0xbfc228f5f7d52ce8,1 +np.float64,0xfff0000000000000,0xfff8000000000000,1 +np.float64,0x3fef98a4dbff314a,0x40043cfb60bd46fa,1 +np.float64,0x3fd059102ca0b220,0x3fd0b7d2be6d7822,1 +np.float64,0x3fe89f18a1f13e32,0x3ff04d714bbbf400,1 +np.float64,0x3fd45b6275a8b6c4,0x3fd516a44a276a4b,1 +np.float64,0xbfe04463e86088c8,0xbfe1ef9dfc9f9a53,1 +np.float64,0xbfe086e279610dc5,0xbfe249c9c1040a13,1 +np.float64,0x3f89c9b110339380,0x3f89ca0a641454b5,1 +np.float64,0xbfb5f5b4322beb68,0xbfb6038dc3fd1516,1 +np.float64,0x3fe6eae76f6dd5ce,0x3feccabae04d5c14,1 +np.float64,0x3fa9ef6c9c33dee0,0x3fa9f51c9a8c8a2f,1 +np.float64,0xbfe171b45f62e368,0xbfe390ccc4c01bf6,1 +np.float64,0x3fb2999442253330,0x3fb2a1fc006804b5,1 +np.float64,0x3fd124bf04a24980,0x3fd1927abb92472d,1 +np.float64,0xbfe6e05938edc0b2,0xbfecb519ba78114f,1 +np.float64,0x3fed466ee6fa8cde,0x3ff8e75405b50490,1 +np.float64,0xbfb999aa92333358,0xbfb9afa4f19f80a2,1 +np.float64,0xbfe98969ed7312d4,0xbff17d887b0303e7,1 +np.float64,0x3fe782843e6f0508,0x3fee0adbeebe3486,1 +np.float64,0xbfe232fcc26465fa,0xbfe4a90a68d46040,1 +np.float64,0x3fd190a90fa32154,0x3fd206f56ffcdca2,1 +np.float64,0xbfc4f8b75929f170,0xbfc5298b2d4e7740,1 +np.float64,0xbfba3a63d63474c8,0xbfba520835c2fdc2,1 +np.float64,0xbfb7708eea2ee120,0xbfb781695ec17846,1 +np.float64,0x3fed9fb7a5fb3f70,0x3ffa0b717bcd1609,1 +np.float64,0xbfc1b158cd2362b0,0xbfc1ce87345f3473,1 +np.float64,0x3f963478082c6900,0x3f96355c3000953b,1 +np.float64,0x3fc5050e532a0a20,0x3fc536397f38f616,1 +np.float64,0x3fe239f9eee473f4,0x3fe4b360da3b2faa,1 +np.float64,0xbfd66bd80eacd7b0,0xbfd769a29fd784c0,1 +np.float64,0x3fc57cdad52af9b8,0x3fc5b16b937f5f72,1 +np.float64,0xbfd3c36a0aa786d4,0xbfd46e1cd0b4eddc,1 +np.float64,0x3feff433487fe866,0x400cf0ea1def3161,1 +np.float64,0xbfed5577807aaaef,0xbff915e8f6bfdf22,1 +np.float64,0xbfca0dd3eb341ba8,0xbfca6c4d11836cb6,1 +np.float64,0x7ff8000000000000,0x7ff8000000000000,1 +np.float64,0xbf974deaa82e9be0,0xbf974ef26a3130d1,1 +np.float64,0xbfe7f425e1efe84c,0xbfef076cb00d649d,1 +np.float64,0xbfe4413605e8826c,0xbfe7e20448b8a4b1,1 +np.float64,0xbfdfad202cbf5a40,0xbfe15cd9eb2be707,1 +np.float64,0xbfe43261ee6864c4,0xbfe7c952c951fe33,1 +np.float64,0xbfec141225782824,0xbff5d54d33861d98,1 +np.float64,0x3fd0f47abaa1e8f4,0x3fd15e8691a7f1c2,1 +np.float64,0x3fd378f0baa6f1e0,0x3fd41bea4a599081,1 +np.float64,0xbfb52523462a4a48,0xbfb5317fa7f436e2,1 +np.float64,0x3fcb30797d3660f0,0x3fcb9c174ea401ff,1 +np.float64,0xbfd48480dea90902,0xbfd5446e02c8b329,1 +np.float64,0xbfee4ae3ab7c95c7,0xbffcc650340ba274,1 +np.float64,0xbfeab086d075610e,0xbff3387f4e83ae26,1 +np.float64,0x3fa17cddf422f9c0,0x3fa17e9bf1b25736,1 +np.float64,0xbfe3064536e60c8a,0xbfe5e86aa5244319,1 +np.float64,0x3feb2882c5765106,0x3ff40604c7d97d44,1 +np.float64,0xbfa6923ff42d2480,0xbfa695ff57b2fc3f,1 +np.float64,0xbfa8bdbdcc317b80,0xbfa8c2ada0d94aa7,1 +np.float64,0x3fe7f16b8e6fe2d8,0x3fef013948c391a6,1 +np.float64,0x3fe4e7169f69ce2e,0x3fe8fceef835050a,1 +np.float64,0x3fed877638fb0eec,0x3ff9b83694127959,1 +np.float64,0xbfe0cc9ecf61993e,0xbfe2a978234cbde5,1 +np.float64,0xbfe977e79672efcf,0xbff16589ea494a38,1 +np.float64,0xbfe240130ae48026,0xbfe4bc69113e0d7f,1 +np.float64,0x3feb1e9b70763d36,0x3ff3f4615938a491,1 +np.float64,0xbfdf197dfcbe32fc,0xbfe0fba78a0fc816,1 +np.float64,0xbfee0f8543fc1f0a,0xbffbb9d9a4ee5387,1 +np.float64,0x3fe88d2191f11a44,0x3ff037843b5b6313,1 +np.float64,0xbfd11bb850a23770,0xbfd188c1cef40007,1 +np.float64,0xbfa1b36e9c2366e0,0xbfa1b53d1d8a8bc4,1 +np.float64,0xbfea2d70d9f45ae2,0xbff26a0629e36b3e,1 +np.float64,0xbfd9188703b2310e,0xbfda83f9ddc18348,1 +np.float64,0xbfee194894fc3291,0xbffbe3c83b61e7cb,1 +np.float64,0xbfe093b4a9e1276a,0xbfe25b4ad6f8f83d,1 +np.float64,0x3fea031489f4062a,0x3ff22accc000082e,1 +np.float64,0xbfc6c0827b2d8104,0xbfc6ff0a94326381,1 +np.float64,0x3fef5cd340feb9a6,0x4002659c5a1b34af,1 +np.float64,0x8010000000000000,0x8010000000000000,1 +np.float64,0x3fd97cb533b2f96c,0x3fdafab28aaae8e3,1 +np.float64,0x3fe2123334642466,0x3fe478bd83a8ce02,1 +np.float64,0xbfd9a69637b34d2c,0xbfdb2c87c6b6fb8c,1 +np.float64,0x3fc58def7f2b1be0,0x3fc5c2ff724a9f61,1 +np.float64,0xbfedd5da1f7babb4,0xbffad15949b7fb22,1 +np.float64,0x3fe90e92a0721d26,0x3ff0d9b64323efb8,1 +np.float64,0x3fd34b9442a69728,0x3fd3e9f8fe80654e,1 +np.float64,0xbfc5f509ab2bea14,0xbfc62d2ad325c59f,1 +np.float64,0x3feb245634f648ac,0x3ff3fe91a46acbe1,1 +np.float64,0x3fd101e539a203cc,0x3fd16cf52ae6d203,1 +np.float64,0xbfc51e9ba72a3d38,0xbfc5507d00521ba3,1 +np.float64,0x3fe5fe1683ebfc2e,0x3feaf7dd8b1f92b0,1 +np.float64,0x3fc362e59126c5c8,0x3fc389601814170b,1 +np.float64,0x3fea34dbd77469b8,0x3ff27542eb721e7e,1 +np.float64,0xbfc13ed241227da4,0xbfc159d42c0a35a9,1 +np.float64,0xbfe6df118cedbe23,0xbfecb27bb5d3f784,1 +np.float64,0x3fd92895f6b2512c,0x3fda96f5f94b625e,1 +np.float64,0xbfe7ea3aa76fd476,0xbfeef0e93939086e,1 +np.float64,0xbfc855498330aa94,0xbfc8a1ff690c9533,1 +np.float64,0x3fd9f27b3ab3e4f8,0x3fdb8726979afc3b,1 +np.float64,0x3fc65d52232cbaa8,0x3fc698ac4367afba,1 +np.float64,0x3fd1271dd0a24e3c,0x3fd195087649d54e,1 +np.float64,0xbfe983445df30689,0xbff175158b773b90,1 +np.float64,0xbfe0d9b13261b362,0xbfe2bb8908fc9e6e,1 +np.float64,0x3fd7671f2aaece40,0x3fd889dccbf21629,1 +np.float64,0x3fe748aebfee915e,0x3fed8e970d94c17d,1 +np.float64,0x3fea756e4e74eadc,0x3ff2d947ef3a54f4,1 +np.float64,0x3fde22311cbc4464,0x3fe05b4ce9df1fdd,1 +np.float64,0x3fe2b55ec1e56abe,0x3fe56c6849e3985a,1 +np.float64,0x3fed7b47437af68e,0x3ff98f8e82de99a0,1 +np.float64,0x3fec8184b179030a,0x3ff6d03aaf0135ba,1 +np.float64,0x3fc9ea825533d508,0x3fca4776d7190e71,1 +np.float64,0xbfe8ddd58b71bbab,0xbff09b770ed7bc9a,1 +np.float64,0xbfed41741bfa82e8,0xbff8d81c2a9fc615,1 +np.float64,0x3fe0a73888e14e72,0x3fe27602ad9a3726,1 +np.float64,0xbfe9d0a565f3a14b,0xbff1e1897b628f66,1 +np.float64,0x3fda12b381b42568,0x3fdbadbec22fbd5a,1 +np.float64,0x3fef0081187e0102,0x4000949eff8313c2,1 +np.float64,0x3fef6942b67ed286,0x4002b7913eb1ee76,1 +np.float64,0x3fda10f882b421f0,0x3fdbababa2d6659d,1 +np.float64,0x3fe5828971eb0512,0x3fea122b5088315a,1 +np.float64,0x3fe9d4b53ff3a96a,0x3ff1e75c148bda01,1 +np.float64,0x3fe95d246bf2ba48,0x3ff1414a61a136ec,1 +np.float64,0x3f9e575eb83caec0,0x3f9e59a4f17179e3,1 +np.float64,0x3fdb0a20b5b61440,0x3fdcd8a56178a17f,1 +np.float64,0xbfdef425e3bde84c,0xbfe0e33eeacf3861,1 +np.float64,0x3fd6afcf6bad5fa0,0x3fd7b73d47288347,1 +np.float64,0x3fe89256367124ac,0x3ff03dd9f36ce40e,1 +np.float64,0x3fe7e560fcefcac2,0x3feee5ef8688b60b,1 +np.float64,0x3fedef55e1fbdeac,0x3ffb350ee1df986b,1 +np.float64,0xbfe44b926de89725,0xbfe7f3539910c41f,1 +np.float64,0x3fc58310f32b0620,0x3fc5b7cfdba15bd0,1 +np.float64,0x3f736d256026da00,0x3f736d2eebe91a90,1 +np.float64,0x3feb012d2076025a,0x3ff3c0b5d21a7259,1 +np.float64,0xbfe466a6c468cd4e,0xbfe820c9c197601f,1 +np.float64,0x3fe1aba8aa635752,0x3fe3e3b73920f64c,1 +np.float64,0x3fe5597c336ab2f8,0x3fe9c7bc4b765b15,1 +np.float64,0x3fe1004ac5e20096,0x3fe2f12116e99821,1 +np.float64,0x3fecbc67477978ce,0x3ff76377434dbdad,1 +np.float64,0x3fe0e64515e1cc8a,0x3fe2ccf5447c1579,1 +np.float64,0x3febcfa874f79f50,0x3ff54528f0822144,1 +np.float64,0x3fc36915ed26d228,0x3fc38fb5b28d3f72,1 +np.float64,0xbfe01213e5e02428,0xbfe1ac0e1e7418f1,1 +np.float64,0x3fcd97875b3b2f10,0x3fce22fe3fc98702,1 +np.float64,0xbfe30383c5e60708,0xbfe5e427e62cc957,1 +np.float64,0xbfde339bf9bc6738,0xbfe0667f337924f5,1 +np.float64,0xbfda7c1c49b4f838,0xbfdc2c8801ce654a,1 +np.float64,0x3fb6b3489e2d6690,0x3fb6c29650387b92,1 +np.float64,0xbfe1fd4d76e3fa9b,0xbfe45a1f60077678,1 +np.float64,0xbf67c5e0402f8c00,0xbf67c5e49fce115a,1 +np.float64,0xbfd4f9aa2da9f354,0xbfd5c759603d0b9b,1 +np.float64,0x3fe83c227bf07844,0x3fefada9f1bd7fa9,1 +np.float64,0xbf97f717982fee20,0xbf97f836701a8cd5,1 +np.float64,0x3fe9688a2472d114,0x3ff150aa575e7d51,1 +np.float64,0xbfc5a9779d2b52f0,0xbfc5df56509c48b1,1 +np.float64,0xbfe958d5f472b1ac,0xbff13b813f9bee20,1 +np.float64,0xbfd7b3b944af6772,0xbfd8e276c2b2920f,1 +np.float64,0x3fed10198e7a2034,0x3ff8469c817572f0,1 +np.float64,0xbfeeecc4517dd989,0xc000472b1f858be3,1 +np.float64,0xbfdbcce47eb799c8,0xbfddc734aa67812b,1 +np.float64,0xbfd013ee24a027dc,0xbfd06df3089384ca,1 +np.float64,0xbfd215f2bfa42be6,0xbfd29774ffe26a74,1 +np.float64,0x3fdfd0ae67bfa15c,0x3fe1746e3a963a9f,1 +np.float64,0xbfc84aa10b309544,0xbfc896f0d25b723a,1 +np.float64,0xbfcd0c627d3a18c4,0xbfcd9024c73747a9,1 +np.float64,0x3fd87df6dbb0fbec,0x3fd9ce1dde757f31,1 +np.float64,0xbfdad85e05b5b0bc,0xbfdc9c2addb6ce47,1 +np.float64,0xbfee4f8977fc9f13,0xbffcdccd68e514b3,1 +np.float64,0x3fa5c290542b8520,0x3fa5c5ebdf09ca70,1 +np.float64,0xbfd7e401d2afc804,0xbfd91a7e4eb5a026,1 +np.float64,0xbfe33ff73b667fee,0xbfe6423cc6eb07d7,1 +np.float64,0x3fdfb7d6c4bf6fac,0x3fe163f2e8175177,1 +np.float64,0xbfd515d69eaa2bae,0xbfd5e6eedd6a1598,1 +np.float64,0x3fb322232e264440,0x3fb32b49d91c3cbe,1 +np.float64,0xbfe20ac39e641587,0xbfe46dd4b3803f19,1 +np.float64,0x3fe282dc18e505b8,0x3fe520152120c297,1 +np.float64,0xbfc905a4cd320b48,0xbfc95929b74865fb,1 +np.float64,0x3fe0ae3b83615c78,0x3fe27fa1dafc825b,1 +np.float64,0xbfc1bfed0f237fdc,0xbfc1dd6466225cdf,1 +np.float64,0xbfeca4d47d7949a9,0xbff72761a34fb682,1 +np.float64,0xbfe8cf8c48f19f18,0xbff0897ebc003626,1 +np.float64,0xbfe1aaf0a36355e2,0xbfe3e2ae7b17a286,1 +np.float64,0x3fe2ca442e659488,0x3fe58c3a2fb4f14a,1 +np.float64,0xbfda3c2deeb4785c,0xbfdbdf89fe96a243,1 +np.float64,0xbfdc12bfecb82580,0xbfde1d81dea3c221,1 +np.float64,0xbfe2d6d877e5adb1,0xbfe59f73e22c1fc7,1 +np.float64,0x3fe5f930636bf260,0x3feaee96a462e4de,1 +np.float64,0x3fcf3c0ea53e7820,0x3fcfe0b0f92be7e9,1 +np.float64,0xbfa5bb90f42b7720,0xbfa5bee9424004cc,1 +np.float64,0xbfe2fb3a3265f674,0xbfe5d75b988bb279,1 +np.float64,0x3fcaec7aab35d8f8,0x3fcb54ea582fff6f,1 +np.float64,0xbfd8d3228db1a646,0xbfda322297747fbc,1 +np.float64,0x3fedd2e0ad7ba5c2,0x3ffac6002b65c424,1 +np.float64,0xbfd9edeca2b3dbda,0xbfdb81b2b7785e33,1 +np.float64,0xbfef5febb17ebfd7,0xc002796b15950960,1 +np.float64,0x3fde22f787bc45f0,0x3fe05bcc624b9ba2,1 +np.float64,0xbfc716a4ab2e2d48,0xbfc758073839dd44,1 +np.float64,0xbf9bed852837db00,0xbf9bef4b2a3f3bdc,1 +np.float64,0x3fef8f88507f1f10,0x4003e5e566444571,1 +np.float64,0xbfdc1bbed6b8377e,0xbfde28a64e174e60,1 +np.float64,0x3fe02d30eae05a62,0x3fe1d064ec027cd3,1 +np.float64,0x3fd9dbb500b3b76c,0x3fdb6bea40162279,1 +np.float64,0x3fe353ff1d66a7fe,0x3fe661b3358c925e,1 +np.float64,0x3fac3ebfb4387d80,0x3fac4618effff2b0,1 +np.float64,0x3fe63cf0ba6c79e2,0x3feb7030cff5f434,1 +np.float64,0x3fd0e915f8a1d22c,0x3fd152464597b510,1 +np.float64,0xbfd36987cda6d310,0xbfd40af049d7621e,1 +np.float64,0xbfdc5b4dc7b8b69c,0xbfde7790a35da2bc,1 +np.float64,0x3feee7ff4a7dcffe,0x40003545989e07c7,1 +np.float64,0xbfeb2c8308765906,0xbff40d2e6469249e,1 +np.float64,0x3fe535a894ea6b52,0x3fe98781648550d0,1 +np.float64,0xbfef168eb9fe2d1d,0xc000f274ed3cd312,1 +np.float64,0x3fc3e2d98927c5b0,0x3fc40c6991b8900c,1 +np.float64,0xbfcd8fe3e73b1fc8,0xbfce1aec7f9b7f7d,1 +np.float64,0xbfd55d8c3aaabb18,0xbfd6378132ee4892,1 +np.float64,0xbfe424a66168494d,0xbfe7b289d72c98b3,1 +np.float64,0x3fd81af13eb035e4,0x3fd95a6a9696ab45,1 +np.float64,0xbfe3016722e602ce,0xbfe5e0e46db228cd,1 +np.float64,0x3fe9a20beff34418,0x3ff19faca17fc468,1 +np.float64,0xbfe2124bc7e42498,0xbfe478e19927e723,1 +np.float64,0x3fd96f8622b2df0c,0x3fdaeb08da6b08ae,1 +np.float64,0x3fecd6796579acf2,0x3ff7a7d02159e181,1 +np.float64,0x3fe60015df6c002c,0x3feafba6f2682a61,1 +np.float64,0x3fc7181cf72e3038,0x3fc7598c2cc3c3b4,1 +np.float64,0xbfce6e2e0b3cdc5c,0xbfcf0621b3e37115,1 +np.float64,0xbfe52a829e6a5505,0xbfe973a785980af9,1 +np.float64,0x3fed4bbac37a9776,0x3ff8f7a0e68a2bbe,1 +np.float64,0x3fabdfaacc37bf60,0x3fabe6bab42bd246,1 +np.float64,0xbfcd9598cb3b2b30,0xbfce20f3c4c2c261,1 +np.float64,0x3fd717d859ae2fb0,0x3fd82e88eca09ab1,1 +np.float64,0x3fe28ccb18e51996,0x3fe52f071d2694fd,1 +np.float64,0xbfe43f064ae87e0c,0xbfe7de5eab36b5b9,1 +np.float64,0x7fefffffffffffff,0xfff8000000000000,1 +np.float64,0xbfb39b045a273608,0xbfb3a4dd3395fdd5,1 +np.float64,0xbfb3358bae266b18,0xbfb33ece5e95970a,1 +np.float64,0xbfeeafb6717d5f6d,0xbffeec3f9695b575,1 +np.float64,0xbfe7a321afef4644,0xbfee522dd80f41f4,1 +np.float64,0x3fe3a17e5be742fc,0x3fe6dcd32af51e92,1 +np.float64,0xbfc61694bd2c2d28,0xbfc64fbbd835f6e7,1 +np.float64,0xbfd795906faf2b20,0xbfd8bf89b370655c,1 +np.float64,0xbfe4b39b59e96736,0xbfe8a3c5c645b6e3,1 +np.float64,0x3fd310af3ba62160,0x3fd3a9442e825e1c,1 +np.float64,0xbfd45198a6a8a332,0xbfd50bc10311a0a3,1 +np.float64,0x3fd0017eaaa002fc,0x3fd05a472a837999,1 +np.float64,0xbfea974d98752e9b,0xbff30f67f1835183,1 +np.float64,0xbf978f60582f1ec0,0xbf979070e1c2b59d,1 +np.float64,0x3fe1c715d4e38e2c,0x3fe40b479e1241a2,1 +np.float64,0xbfccb965cd3972cc,0xbfcd38b40c4a352d,1 +np.float64,0xbfd9897048b312e0,0xbfdb09d55624c2a3,1 +np.float64,0x3fe7f5de4befebbc,0x3fef0b56be259f9c,1 +np.float64,0x3fcc6c6d4338d8d8,0x3fcce7b20ed68a78,1 +np.float64,0xbfe63884046c7108,0xbfeb67a3b945c3ee,1 +np.float64,0xbfce64e2ad3cc9c4,0xbfcefc47fae2e81f,1 +np.float64,0x3fefeb57b27fd6b0,0x400ab2eac6321cfb,1 +np.float64,0x3fe679627e6cf2c4,0x3febe6451b6ee0c4,1 +np.float64,0x3fc5f710172bee20,0x3fc62f40f85cb040,1 +np.float64,0x3fc34975e52692e8,0x3fc36f58588c7fa2,1 +np.float64,0x3fe8a3784cf146f0,0x3ff052ced9bb9406,1 +np.float64,0x3fd11a607ca234c0,0x3fd1874f876233fe,1 +np.float64,0x3fb2d653f625aca0,0x3fb2df0f4c9633f3,1 +np.float64,0x3fe555f39eeaabe8,0x3fe9c15ee962a28c,1 +np.float64,0xbfea297e3bf452fc,0xbff264107117f709,1 +np.float64,0x3fe1581cdde2b03a,0x3fe36c79acedf99c,1 +np.float64,0x3fd4567063a8ace0,0x3fd51123dbd9106f,1 +np.float64,0x3fa3883aec271080,0x3fa38aa86ec71218,1 +np.float64,0x3fe40e5d7de81cba,0x3fe78dbb9b568850,1 +np.float64,0xbfe9a2f7347345ee,0xbff1a0f4faa05041,1 +np.float64,0x3f9eef03a83dde00,0x3f9ef16caa0c1478,1 +np.float64,0xbfcb4641d1368c84,0xbfcbb2e7ff8c266d,1 +np.float64,0xbfa8403b2c308070,0xbfa844e148b735b7,1 +np.float64,0xbfe1875cd6e30eba,0xbfe3afadc08369f5,1 +np.float64,0xbfdd3c3d26ba787a,0xbfdf919b3e296766,1 +np.float64,0x3fcd6c4c853ad898,0x3fcdf55647b518b8,1 +np.float64,0xbfe360a173e6c143,0xbfe6759eb3a08cf2,1 +np.float64,0x3fe5a13147eb4262,0x3fea4a5a060f5adb,1 +np.float64,0x3feb3cdd7af679ba,0x3ff42aae0cf61234,1 +np.float64,0x3fe5205128ea40a2,0x3fe9618f3d0c54af,1 +np.float64,0x3fce35343f3c6a68,0x3fcec9c4e612b050,1 +np.float64,0xbfc345724d268ae4,0xbfc36b3ce6338e6a,1 +np.float64,0x3fedc4fc0e7b89f8,0x3ffa91c1d775c1f7,1 +np.float64,0x3fe41fbf21683f7e,0x3fe7aa6c174a0e65,1 +np.float64,0xbfc7a1a5d32f434c,0xbfc7e7d27a4c5241,1 +np.float64,0x3fd3e33eaca7c67c,0x3fd4915264441e2f,1 +np.float64,0x3feb3f02f6f67e06,0x3ff42e942249e596,1 +np.float64,0x3fdb75fcb0b6ebf8,0x3fdd5c63f98b6275,1 +np.float64,0x3fd6476603ac8ecc,0x3fd74020b164cf38,1 +np.float64,0x3fed535372faa6a6,0x3ff90f3791821841,1 +np.float64,0x3fe8648ead70c91e,0x3ff006a62befd7ed,1 +np.float64,0x3fd0f90760a1f210,0x3fd1636b39bb1525,1 +np.float64,0xbfca052443340a48,0xbfca633d6e777ae0,1 +np.float64,0xbfa6a5e3342d4bc0,0xbfa6a9ac6a488f5f,1 +np.float64,0x3fd5598038aab300,0x3fd632f35c0c3d52,1 +np.float64,0xbfdf66218fbecc44,0xbfe12df83b19f300,1 +np.float64,0x3fe78e15b56f1c2c,0x3fee240d12489cd1,1 +np.float64,0x3fe3d6a7b3e7ad50,0x3fe7329dcf7401e2,1 +np.float64,0xbfddb8e97bbb71d2,0xbfe017ed6d55a673,1 +np.float64,0xbfd57afd55aaf5fa,0xbfd658a9607c3370,1 +np.float64,0xbfdba4c9abb74994,0xbfdd95d69e5e8814,1 +np.float64,0xbfe71d8090ee3b01,0xbfed3390be6d2eef,1 +np.float64,0xbfc738ac0f2e7158,0xbfc77b3553b7c026,1 +np.float64,0x3f873656302e6c80,0x3f873697556ae011,1 +np.float64,0x3fe559491d6ab292,0x3fe9c7603b12c608,1 +np.float64,0xbfe262776864c4ef,0xbfe4ef905dda8599,1 +np.float64,0x3fe59d8917eb3b12,0x3fea439f44b7573f,1 +np.float64,0xbfd4b5afb5a96b60,0xbfd57b4e3df4dbc8,1 +np.float64,0x3fe81158447022b0,0x3fef4a3cea3eb6a9,1 +np.float64,0xbfeb023441f60468,0xbff3c27f0fc1a4dc,1 +np.float64,0x3fefb212eaff6426,0x40055fc6d949cf44,1 +np.float64,0xbfe1300ac1e26016,0xbfe333f297a1260e,1 +np.float64,0xbfeae0a2f575c146,0xbff388d58c380b8c,1 +np.float64,0xbfeddd8e55fbbb1d,0xbffaef045b2e21d9,1 +np.float64,0x3fec7c6c1d78f8d8,0x3ff6c3ebb019a8e5,1 +np.float64,0xbfe27e071f64fc0e,0xbfe518d2ff630f33,1 +np.float64,0x8000000000000001,0x8000000000000001,1 +np.float64,0x3fc5872abf2b0e58,0x3fc5bc083105db76,1 +np.float64,0x3fe65114baeca22a,0x3feb9745b82ef15a,1 +np.float64,0xbfc783abe52f0758,0xbfc7c8cb23f93e79,1 +np.float64,0x3fe4b7a5dd696f4c,0x3fe8aab9d492f0ca,1 +np.float64,0xbf91a8e8a82351e0,0xbf91a95b6ae806f1,1 +np.float64,0xbfee482eb77c905d,0xbffcb952830e715a,1 +np.float64,0x3fba0eee2a341de0,0x3fba261d495e3a1b,1 +np.float64,0xbfeb8876ae7710ed,0xbff4b7f7f4343506,1 +np.float64,0xbfe4d29e46e9a53c,0xbfe8d9547a601ba7,1 +np.float64,0xbfe12413b8e24828,0xbfe3232656541d10,1 +np.float64,0x3fc0bd8f61217b20,0x3fc0d63f937f0aa4,1 +np.float64,0xbfd3debafda7bd76,0xbfd48c534e5329e4,1 +np.float64,0x3fc0f92de921f258,0x3fc112eb7d47349b,1 +np.float64,0xbfe576b95f6aed72,0xbfe9fca859239b3c,1 +np.float64,0x3fd10e520da21ca4,0x3fd17a546e4152f7,1 +np.float64,0x3fcef917eb3df230,0x3fcf998677a8fa8f,1 +np.float64,0x3fdfcf863abf9f0c,0x3fe173a98af1cb13,1 +np.float64,0x3fc28c4b4f251898,0x3fc2adf43792e917,1 +np.float64,0x3fceb837ad3d7070,0x3fcf54a63b7d8c5c,1 +np.float64,0x3fc0140a05202818,0x3fc029e4f75330cb,1 +np.float64,0xbfd76c3362aed866,0xbfd88fb9e790b4e8,1 +np.float64,0xbfe475300868ea60,0xbfe8395334623e1f,1 +np.float64,0x3fea70b9b4f4e174,0x3ff2d1dad92173ba,1 +np.float64,0xbfe2edbd4965db7a,0xbfe5c29449a9365d,1 +np.float64,0xbfddf86f66bbf0de,0xbfe0408439cada9b,1 +np.float64,0xbfb443cdfa288798,0xbfb44eae796ad3ea,1 +np.float64,0xbf96a8a0482d5140,0xbf96a992b6ef073b,1 +np.float64,0xbfd279db2fa4f3b6,0xbfd3043db6acbd9e,1 +np.float64,0x3fe5d99088ebb322,0x3feab30be14e1605,1 +np.float64,0xbfe1a917abe35230,0xbfe3e0063d0f5f63,1 +np.float64,0x3fc77272f52ee4e8,0x3fc7b6f8ab6f4591,1 +np.float64,0x3fd6b62146ad6c44,0x3fd7be77eef8390a,1 +np.float64,0xbfe39fd9bc673fb4,0xbfe6da30dc4eadde,1 +np.float64,0x3fe35545c066aa8c,0x3fe663b5873e4d4b,1 +np.float64,0xbfcbbeffb3377e00,0xbfcc317edf7f6992,1 +np.float64,0xbfe28a58366514b0,0xbfe52b5734579ffa,1 +np.float64,0xbfbf0c87023e1910,0xbfbf33d970a0dfa5,1 +np.float64,0xbfd31144cba6228a,0xbfd3a9e84f9168f9,1 +np.float64,0xbfe5c044056b8088,0xbfea83d607c1a88a,1 +np.float64,0x3fdaabdf18b557c0,0x3fdc663ee8eddc83,1 +np.float64,0xbfeb883006f71060,0xbff4b76feff615be,1 +np.float64,0xbfebaef41d775de8,0xbff5034111440754,1 +np.float64,0x3fd9b6eb3bb36dd8,0x3fdb3fff5071dacf,1 +np.float64,0x3fe4e33c45e9c678,0x3fe8f637779ddedf,1 +np.float64,0x3fe52213a06a4428,0x3fe964adeff5c14e,1 +np.float64,0x3fe799254cef324a,0x3fee3c3ecfd3cdc5,1 +np.float64,0x3fd0533f35a0a680,0x3fd0b19a003469d3,1 +np.float64,0x3fec7ef5c7f8fdec,0x3ff6ca0abe055048,1 +np.float64,0xbfd1b5da82a36bb6,0xbfd22f357acbee79,1 +np.float64,0xbfd8f9c652b1f38c,0xbfda5faacbce9cf9,1 +np.float64,0x3fc8fc818b31f900,0x3fc94fa9a6aa53c8,1 +np.float64,0x3fcf42cc613e8598,0x3fcfe7dc128f33f2,1 +np.float64,0x3fd393a995a72754,0x3fd4396127b19305,1 +np.float64,0x3fec7b7df9f8f6fc,0x3ff6c1ae51753ef2,1 +np.float64,0x3fc07f175b20fe30,0x3fc096b55c11568c,1 +np.float64,0xbf979170082f22e0,0xbf979280d9555f44,1 +np.float64,0xbfb9d110c633a220,0xbfb9e79ba19b3c4a,1 +np.float64,0x3fedcd7d417b9afa,0x3ffab19734e86d58,1 +np.float64,0xbfec116f27f822de,0xbff5cf9425cb415b,1 +np.float64,0xbfec4fa0bef89f42,0xbff65a771982c920,1 +np.float64,0x3f94d4452829a880,0x3f94d501789ad11c,1 +np.float64,0xbfefe5ede27fcbdc,0xc009c440d3c2a4ce,1 +np.float64,0xbfe7e5f7b5efcbf0,0xbfeee74449aee1db,1 +np.float64,0xbfeb71dc8976e3b9,0xbff48cd84ea54ed2,1 +np.float64,0xbfe4cdb65f699b6c,0xbfe8d0d3bce901ef,1 +np.float64,0x3fb78ef1ee2f1de0,0x3fb7a00e7d183c48,1 +np.float64,0x3fb681864a2d0310,0x3fb6906fe64b4cd7,1 +np.float64,0xbfd2ad3b31a55a76,0xbfd33c57b5985399,1 +np.float64,0x3fdcdaaa95b9b554,0x3fdf16b99628db1e,1 +np.float64,0x3fa4780b7428f020,0x3fa47ad6ce9b8081,1 +np.float64,0x3fc546b0ad2a8d60,0x3fc579b361b3b18f,1 +np.float64,0x3feaf98dd6f5f31c,0x3ff3b38189c3539c,1 +np.float64,0x3feb0b2eca76165e,0x3ff3d22797083f9a,1 +np.float64,0xbfdc02ae3ab8055c,0xbfde099ecb5dbacf,1 +np.float64,0x3fd248bf17a49180,0x3fd2ceb77b346d1d,1 +np.float64,0x3fe349d666e693ac,0x3fe651b9933a8853,1 +np.float64,0xbfca526fc534a4e0,0xbfcab3e83f0d9b93,1 +np.float64,0x3fc156421722ac88,0x3fc171b38826563b,1 +np.float64,0xbfe4244569e8488b,0xbfe7b1e93e7d4f92,1 +np.float64,0x3fe010faabe021f6,0x3fe1aa961338886d,1 +np.float64,0xbfc52dacb72a5b58,0xbfc55ffa50eba380,1 +np.float64,0x8000000000000000,0x8000000000000000,1 +np.float64,0x3fea1d4865f43a90,0x3ff251b839eb4817,1 +np.float64,0xbfa0f65c8421ecc0,0xbfa0f7f37c91be01,1 +np.float64,0x3fcab29c0b356538,0x3fcb1863edbee184,1 +np.float64,0x3fe7949162ef2922,0x3fee323821958b88,1 +np.float64,0x3fdaf9288ab5f250,0x3fdcc400190a4839,1 +np.float64,0xbfe13ece6be27d9d,0xbfe348ba07553179,1 +np.float64,0x3f8a0c4fd0341880,0x3f8a0cabdf710185,1 +np.float64,0x3fdd0442a2ba0884,0x3fdf4b016c4da452,1 +np.float64,0xbfaf06d2343e0da0,0xbfaf1090b1600422,1 +np.float64,0xbfd3b65225a76ca4,0xbfd45fa49ae76cca,1 +np.float64,0x3fef5d75fefebaec,0x400269a5e7c11891,1 +np.float64,0xbfe048e35ce091c6,0xbfe1f5af45dd64f8,1 +np.float64,0xbfe27d4599e4fa8b,0xbfe517b07843d04c,1 +np.float64,0xbfe6f2a637ede54c,0xbfecdaa730462576,1 +np.float64,0x3fc63fbb752c7f78,0x3fc67a2854974109,1 +np.float64,0x3fedda6bfbfbb4d8,0x3ffae2e6131f3475,1 +np.float64,0x3fe7a6f5286f4dea,0x3fee5a9b1ef46016,1 +np.float64,0xbfd4ea8bcea9d518,0xbfd5b66ab7e5cf00,1 +np.float64,0x3fdc116568b822cc,0x3fde1bd4d0d9fd6c,1 +np.float64,0x3fdc45cb1bb88b98,0x3fde5cd1d2751032,1 +np.float64,0x3feabd932f757b26,0x3ff34e06e56a62a1,1 +np.float64,0xbfae5dbe0c3cbb80,0xbfae66e062ac0d65,1 +np.float64,0xbfdb385a00b670b4,0xbfdd10fedf3a58a7,1 +np.float64,0xbfebb14755f7628f,0xbff507e123a2b47c,1 +np.float64,0x3fe6de2fdfedbc60,0x3fecb0ae6e131da2,1 +np.float64,0xbfd86de640b0dbcc,0xbfd9bb4dbf0bf6af,1 +np.float64,0x3fe39e86d9e73d0e,0x3fe6d811c858d5d9,1 +np.float64,0x7ff0000000000000,0xfff8000000000000,1 +np.float64,0x3fa8101684302020,0x3fa814a12176e937,1 +np.float64,0x3fefdd5ad37fbab6,0x4008a08c0b76fbb5,1 +np.float64,0x3fe645c727ec8b8e,0x3feb814ebc470940,1 +np.float64,0x3fe3ba79dce774f4,0x3fe70500db564cb6,1 +np.float64,0xbfe0e5a254e1cb44,0xbfe2cc13940c6d9a,1 +np.float64,0x3fe2cac62465958c,0x3fe58d008c5e31f8,1 +np.float64,0xbfd3ffb531a7ff6a,0xbfd4b0d88cff2040,1 +np.float64,0x3fe0929104612522,0x3fe259bc42dce788,1 +np.float64,0x1,0x1,1 +np.float64,0xbfe7db77e6efb6f0,0xbfeecf93e8a61cb3,1 +np.float64,0xbfe37e9559e6fd2a,0xbfe6a514e29cb7aa,1 +np.float64,0xbfc53a843f2a7508,0xbfc56d2e9ad8b716,1 +np.float64,0xbfedb04485fb6089,0xbffa4615d4334ec3,1 +np.float64,0xbfc44349b1288694,0xbfc46f484b6f1cd6,1 +np.float64,0xbfe265188264ca31,0xbfe4f37d61cd9e17,1 +np.float64,0xbfd030351da0606a,0xbfd08c2537287ee1,1 +np.float64,0x3fd8fb131db1f628,0x3fda613363ca601e,1 +np.float64,0xbff0000000000000,0xfff0000000000000,1 +np.float64,0xbfe48d9a60691b35,0xbfe862c02d8fec1e,1 +np.float64,0x3fd185e050a30bc0,0x3fd1fb4c614ddb07,1 +np.float64,0xbfe4a5807e694b01,0xbfe88b8ff2d6caa7,1 +np.float64,0xbfc934d7ad3269b0,0xbfc98a405d25a666,1 +np.float64,0xbfea0e3c62741c79,0xbff23b4bd3a7b15d,1 +np.float64,0x3fe7244071ee4880,0x3fed41b27ba6bb22,1 +np.float64,0xbfd419f81ba833f0,0xbfd4cdf71b4533a3,1 +np.float64,0xbfe1e73a34e3ce74,0xbfe439eb15fa6baf,1 +np.float64,0x3fcdd9a63f3bb350,0x3fce68e1c401eff0,1 +np.float64,0x3fd1b5960ba36b2c,0x3fd22eeb566f1976,1 +np.float64,0x3fe9ad18e0735a32,0x3ff1af23c534260d,1 +np.float64,0xbfd537918aaa6f24,0xbfd60ccc8df0962b,1 +np.float64,0x3fcba3d3c73747a8,0x3fcc14fd5e5c49ad,1 +np.float64,0x3fd367e3c0a6cfc8,0x3fd40921b14e288e,1 +np.float64,0x3fe94303c6f28608,0x3ff11e62db2db6ac,1 +np.float64,0xbfcc5f77fd38bef0,0xbfccda110c087519,1 +np.float64,0xbfd63b74d7ac76ea,0xbfd7328af9f37402,1 +np.float64,0xbfe5321289ea6425,0xbfe9811ce96609ad,1 +np.float64,0xbfde910879bd2210,0xbfe0a2cd0ed1d368,1 +np.float64,0xbfcc9d9bad393b38,0xbfcd1b722a0b1371,1 +np.float64,0xbfe6dd39e16dba74,0xbfecaeb7c8c069f6,1 +np.float64,0xbfe98316eff3062e,0xbff174d7347d48bf,1 +np.float64,0xbfda88f8d1b511f2,0xbfdc3c0e75dad903,1 +np.float64,0x3fd400d8c2a801b0,0x3fd4b21bacff1f5d,1 +np.float64,0xbfe1ed335863da66,0xbfe4429e45e99779,1 +np.float64,0xbf3423a200284800,0xbf3423a20acb0342,1 +np.float64,0xbfe97bc59672f78b,0xbff16ad1adc44a33,1 +np.float64,0xbfeeca60d7fd94c2,0xbfff98d7f18f7728,1 +np.float64,0x3fd1eb13b2a3d628,0x3fd268e6ff4d56ce,1 +np.float64,0xbfa5594c242ab2a0,0xbfa55c77d6740a39,1 +np.float64,0x3fe72662006e4cc4,0x3fed462a9dedbfee,1 +np.float64,0x3fef4bb221fe9764,0x4001fe4f4cdfedb2,1 +np.float64,0xbfe938d417f271a8,0xbff110e78724ca2b,1 +np.float64,0xbfcc29ab2f385358,0xbfcca182140ef541,1 +np.float64,0x3fe18cd42c6319a8,0x3fe3b77e018165e7,1 +np.float64,0xbfec6c5cae78d8b9,0xbff69d8e01309b48,1 +np.float64,0xbfd5723da7aae47c,0xbfd64ecde17da471,1 +np.float64,0xbfe3096722e612ce,0xbfe5ed43634f37ff,1 +np.float64,0xbfdacaceb1b5959e,0xbfdc8bb826bbed39,1 +np.float64,0x3fc59a57cb2b34b0,0x3fc5cfc4a7c9bac8,1 +np.float64,0x3f84adce10295b80,0x3f84adfc1f1f6e97,1 +np.float64,0x3fdd5b28bbbab650,0x3fdfb8b906d77df4,1 +np.float64,0x3fdebf94c6bd7f28,0x3fe0c10188e1bc7c,1 +np.float64,0x3fdb30c612b6618c,0x3fdd07bf18597821,1 +np.float64,0x3fe7eeb3176fdd66,0x3feefb0be694b855,1 +np.float64,0x0,0x0,1 +np.float64,0xbfe10057e9e200b0,0xbfe2f13365e5b1c9,1 +np.float64,0xbfeb61a82376c350,0xbff46e665d3a60f5,1 +np.float64,0xbfe7f54aec6fea96,0xbfef0a0759f726dc,1 +np.float64,0xbfe4f6da3de9edb4,0xbfe9187d85bd1ab5,1 +np.float64,0xbfeb8be1b3f717c4,0xbff4be8efaab2e75,1 +np.float64,0x3fed40bc31fa8178,0x3ff8d5ec4a7f3e9b,1 +np.float64,0xbfe40f8711681f0e,0xbfe78fa5c62b191b,1 +np.float64,0x3fd1034d94a2069c,0x3fd16e78e9efb85b,1 +np.float64,0x3fc74db15b2e9b60,0x3fc790f26e894098,1 +np.float64,0x3fd912a88cb22550,0x3fda7d0ab3b21308,1 +np.float64,0x3fd8948a3bb12914,0x3fd9e8950c7874c8,1 +np.float64,0xbfa7ada5242f5b50,0xbfa7b1f8db50c104,1 +np.float64,0x3feeb2e1c27d65c4,0x3fff000b7d09c9b7,1 +np.float64,0x3fe9d46cbbf3a8da,0x3ff1e6f405265a6e,1 +np.float64,0xbfe2480b77e49017,0xbfe4c83b9b37bf0c,1 +np.float64,0x3fe950ea9372a1d6,0x3ff130e62468bf2c,1 +np.float64,0x3fefa7272a7f4e4e,0x4004d8c9bf31ab58,1 +np.float64,0xbfe7309209ee6124,0xbfed5b94acef917a,1 +np.float64,0x3fd05e8c64a0bd18,0x3fd0bdb11e0903c6,1 +np.float64,0x3fd9236043b246c0,0x3fda90ccbe4bab1e,1 +np.float64,0xbfdc3d6805b87ad0,0xbfde5266e17154c3,1 +np.float64,0x3fe5e6bad76bcd76,0x3feacbc306c63445,1 +np.float64,0x3ff0000000000000,0x7ff0000000000000,1 +np.float64,0xbfde3d7390bc7ae8,0xbfe06cd480bd0196,1 +np.float64,0xbfd3e2e3c0a7c5c8,0xbfd490edc0a45e26,1 +np.float64,0x3fe39871d76730e4,0x3fe6ce54d1719953,1 +np.float64,0x3fdff00ebcbfe01c,0x3fe1894b6655a6d0,1 +np.float64,0x3f91b7ad58236f40,0x3f91b8213bcb8b0b,1 +np.float64,0xbfd99f48f7b33e92,0xbfdb23d544f62591,1 +np.float64,0x3fae3512cc3c6a20,0x3fae3e10939fd7b5,1 +np.float64,0x3fcc4cf3db3899e8,0x3fccc698a15176d6,1 +np.float64,0xbfd0927e39a124fc,0xbfd0f5522e2bc030,1 +np.float64,0x3fcee859633dd0b0,0x3fcf87bdef7a1e82,1 +np.float64,0xbfe2a8b69565516d,0xbfe5593437b6659a,1 +np.float64,0x3fecf61e20f9ec3c,0x3ff7fda16b0209d4,1 +np.float64,0xbfbf37571e3e6eb0,0xbfbf5f4e1379a64c,1 +np.float64,0xbfd54e1b75aa9c36,0xbfd626223b68971a,1 +np.float64,0x3fe1035a56e206b4,0x3fe2f5651ca0f4b0,1 +np.float64,0x3fe4992989e93254,0x3fe876751afa70dc,1 +np.float64,0x3fc8c313d3318628,0x3fc913faf15d1562,1 +np.float64,0x3f99f6ba8833ed80,0x3f99f8274fb94828,1 +np.float64,0xbfd4a58af0a94b16,0xbfd56947c276e04f,1 +np.float64,0x3fc66f8c872cdf18,0x3fc6ab7a14372a73,1 +np.float64,0x3fc41eee0d283de0,0x3fc449ff1ff0e7a6,1 +np.float64,0x3fefd04d287fa09a,0x4007585010cfa9b0,1 +np.float64,0x3fce9e746f3d3ce8,0x3fcf39514bbe5070,1 +np.float64,0xbfe8056f72700adf,0xbfef2ee2c13e67ba,1 +np.float64,0x3fdd6b1ec0bad63c,0x3fdfccf2ba144fa8,1 +np.float64,0x3fd92ee432b25dc8,0x3fda9e6b96b2b142,1 +np.float64,0xbfc4d18f9529a320,0xbfc50150fb4de0cc,1 +np.float64,0xbfe09939a7613274,0xbfe262d703c317af,1 +np.float64,0xbfd130b132a26162,0xbfd19f5a00ae29c4,1 +np.float64,0x3fa06e21d420dc40,0x3fa06f93aba415fb,1 +np.float64,0x3fc5c48fbd2b8920,0x3fc5fb3bfad3bf55,1 +np.float64,0xbfdfa2bacbbf4576,0xbfe155f839825308,1 +np.float64,0x3fe3e1fa0f67c3f4,0x3fe745081dd4fd03,1 +np.float64,0x3fdae58289b5cb04,0x3fdcac1f6789130a,1 +np.float64,0xbf8ed3ba103da780,0xbf8ed452a9cc1442,1 +np.float64,0xbfec06b46f780d69,0xbff5b86f30d70908,1 +np.float64,0xbfe990c13b732182,0xbff187a90ae611f8,1 +np.float64,0xbfdd46c738ba8d8e,0xbfdf9eee0a113230,1 +np.float64,0x3fe08b83f3611708,0x3fe2501b1c77035c,1 +np.float64,0xbfd501b65baa036c,0xbfd5d05de3fceac8,1 +np.float64,0xbfcf4fa21f3e9f44,0xbfcff5829582c0b6,1 +np.float64,0xbfefbc0bfbff7818,0xc005eca1a2c56b38,1 +np.float64,0xbfe1ba6959e374d2,0xbfe3f8f88d128ce5,1 +np.float64,0xbfd4e74ee3a9ce9e,0xbfd5b2cabeb45e6c,1 +np.float64,0xbfe77c38eaeef872,0xbfedfd332d6f1c75,1 +np.float64,0x3fa9b5e4fc336bc0,0x3fa9bb6f6b80b4af,1 +np.float64,0xbfecba63917974c7,0xbff75e44df7f8e81,1 +np.float64,0x3fd6cf17b2ad9e30,0x3fd7db0b93b7f2b5,1 diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-cbrt.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-cbrt.csv new file mode 100644 index 0000000..ad141cb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-cbrt.csv @@ -0,0 +1,1429 @@ +dtype,input,output,ulperrortol +np.float32,0x3ee7054c,0x3f4459ea,2 +np.float32,0x7d1e2489,0x54095925,2 +np.float32,0x7ee5edf5,0x549b992b,2 +np.float32,0x380607,0x2a425e72,2 +np.float32,0x34a8f3,0x2a3e6603,2 +np.float32,0x3eee2844,0x3f465a45,2 +np.float32,0x59e49c,0x2a638d0a,2 +np.float32,0xbf72c77a,0xbf7b83d4,2 +np.float32,0x7f2517b4,0x54af8bf0,2 +np.float32,0x80068a69,0xa9bdfe8b,2 +np.float32,0xbe8e3578,0xbf270775,2 +np.float32,0xbe4224dc,0xbf131119,2 +np.float32,0xbe0053b8,0xbf001be2,2 +np.float32,0x70e8d,0x29c2ddc5,2 +np.float32,0xff63f7b5,0xd4c37b7f,2 +np.float32,0x3f00bbed,0x3f4b9335,2 +np.float32,0x3f135f4e,0x3f54f5d4,2 +np.float32,0xbe13a488,0xbf063d13,2 +np.float32,0x3f14ec78,0x3f55b478,2 +np.float32,0x7ec35cfb,0x54935fbf,2 +np.float32,0x7d41c589,0x5412f904,2 +np.float32,0x3ef8a16e,0x3f4937f7,2 +np.float32,0x3f5d8464,0x3f73f279,2 +np.float32,0xbeec85ac,0xbf45e5cb,2 +np.float32,0x7f11f722,0x54a87cb1,2 +np.float32,0x8032c085,0xaa3c1219,2 +np.float32,0x80544bac,0xaa5eb9f2,2 +np.float32,0x3e944a10,0x3f296065,2 +np.float32,0xbf29fe50,0xbf5f5796,2 +np.float32,0x7e204d8d,0x545b03d5,2 +np.float32,0xfe1d0254,0xd4598127,2 +np.float32,0x80523129,0xaa5cdba9,2 +np.float32,0x806315fa,0xaa6b0eaf,2 +np.float32,0x3ed3d2a4,0x3f3ec117,2 +np.float32,0x7ee15007,0x549a8cc0,2 +np.float32,0x801ffb5e,0xaa213d4f,2 +np.float32,0x807f9f4a,0xaa7fbf76,2 +np.float32,0xbe45e854,0xbf1402d3,2 +np.float32,0x3d9e2e70,0x3eda0b64,2 +np.float32,0x51f404,0x2a5ca4d7,2 +np.float32,0xbe26a8b0,0xbf0bc54d,2 +np.float32,0x22c99a,0x2a25d2a7,2 +np.float32,0xbf71248b,0xbf7af2d5,2 +np.float32,0x7219fe,0x2a76608e,2 +np.float32,0x7f16fd7d,0x54aa6610,2 +np.float32,0x80716faa,0xaa75e5b9,2 +np.float32,0xbe24f9a4,0xbf0b4c65,2 +np.float32,0x800000,0x2a800000,2 +np.float32,0x80747456,0xaa780f27,2 +np.float32,0x68f9e8,0x2a6fa035,2 +np.float32,0x3f6a297e,0x3f7880d8,2 +np.float32,0x3f28b973,0x3f5ec8f6,2 +np.float32,0x7f58c577,0x54c03a70,2 +np.float32,0x804befcc,0xaa571b4f,2 +np.float32,0x3e2be027,0x3f0d36cf,2 +np.float32,0xfe7e80a4,0xd47f7ff7,2 +np.float32,0xfe9d444a,0xd489181b,2 +np.float32,0x3db3e790,0x3ee399d6,2 +np.float32,0xbf154c3e,0xbf55e23e,2 +np.float32,0x3d1096b7,0x3ea7f4aa,2 +np.float32,0x7fc00000,0x7fc00000,2 +np.float32,0x804e2521,0xaa592c06,2 +np.float32,0xbeda2f00,0xbf40a513,2 +np.float32,0x3f191788,0x3f57ae30,2 +np.float32,0x3ed24ade,0x3f3e4b34,2 +np.float32,0x807fadb4,0xaa7fc917,2 +np.float32,0xbe0a06dc,0xbf034234,2 +np.float32,0x3f250bba,0x3f5d276d,2 +np.float32,0x7e948b00,0x548682c8,2 +np.float32,0xfe65ecdc,0xd476fed2,2 +np.float32,0x6fdbdd,0x2a74c095,2 +np.float32,0x800112de,0xa9500fa6,2 +np.float32,0xfe63225c,0xd475fdee,2 +np.float32,0x7f3d9acd,0x54b7d648,2 +np.float32,0xfc46f480,0xd3bacf87,2 +np.float32,0xfe5deaac,0xd47417ff,2 +np.float32,0x60ce53,0x2a693d93,2 +np.float32,0x6a6e2f,0x2a70ba2c,2 +np.float32,0x7f43f0f1,0x54b9dcd0,2 +np.float32,0xbf6170c9,0xbf756104,2 +np.float32,0xbe5c9f74,0xbf197852,2 +np.float32,0xff1502b0,0xd4a9a693,2 +np.float32,0x8064f6af,0xaa6c886e,2 +np.float32,0xbf380564,0xbf6552e5,2 +np.float32,0xfeb9b7dc,0xd490e85f,2 +np.float32,0x7f34f941,0x54b5010d,2 +np.float32,0xbe9d4ca0,0xbf2cbd5f,2 +np.float32,0x3f6e43d2,0x3f79f240,2 +np.float32,0xbdad0530,0xbee0a8f2,2 +np.float32,0x3da18459,0x3edb9105,2 +np.float32,0xfd968340,0xd42a3808,2 +np.float32,0x3ea03e64,0x3f2dcf96,2 +np.float32,0x801d2f5b,0xaa1c6525,2 +np.float32,0xbf47d92d,0xbf6bb7e9,2 +np.float32,0x55a6b9,0x2a5fe9fb,2 +np.float32,0x77a7c2,0x2a7a4fb8,2 +np.float32,0xfebbc16e,0xd4916f88,2 +np.float32,0x3f5d3d6e,0x3f73d86a,2 +np.float32,0xfccd2b60,0xd3edcacb,2 +np.float32,0xbd026460,0xbea244b0,2 +np.float32,0x3e55bd,0x2a4968e4,2 +np.float32,0xbe7b5708,0xbf20490d,2 +np.float32,0xfe413cf4,0xd469171f,2 +np.float32,0x7710e3,0x2a79e657,2 +np.float32,0xfc932520,0xd3d4d9ca,2 +np.float32,0xbf764a1b,0xbf7cb8aa,2 +np.float32,0x6b1923,0x2a713aca,2 +np.float32,0xfe4dcd04,0xd46e092d,2 +np.float32,0xff3085ac,0xd4b381f8,2 +np.float32,0x3f72c438,0x3f7b82b4,2 +np.float32,0xbf6f0c6e,0xbf7a3852,2 +np.float32,0x801d2b1b,0xaa1c5d8d,2 +np.float32,0x3e9db91e,0x3f2ce50d,2 +np.float32,0x3f684f9d,0x3f77d8c5,2 +np.float32,0x7dc784,0x2a7e82cc,2 +np.float32,0x7d2c88e9,0x540d64f8,2 +np.float32,0x807fb708,0xaa7fcf51,2 +np.float32,0x8003c49a,0xa99e16e0,2 +np.float32,0x3ee4f5b8,0x3f43c3ff,2 +np.float32,0xfe992c5e,0xd487e4ec,2 +np.float32,0x4b4dfa,0x2a568216,2 +np.float32,0x3d374c80,0x3eb5c6a8,2 +np.float32,0xbd3a4700,0xbeb6c15c,2 +np.float32,0xbf13cb80,0xbf5529e5,2 +np.float32,0xbe7306d4,0xbf1e7f91,2 +np.float32,0xbf800000,0xbf800000,2 +np.float32,0xbea42efe,0xbf2f394e,2 +np.float32,0x3e1981d0,0x3f07fe2c,2 +np.float32,0x3f17ea1d,0x3f572047,2 +np.float32,0x7dc1e0,0x2a7e7efe,2 +np.float32,0x80169c08,0xaa0fa320,2 +np.float32,0x3f3e1972,0x3f67d248,2 +np.float32,0xfe5d3c88,0xd473d815,2 +np.float32,0xbf677448,0xbf778aac,2 +np.float32,0x7e799b7d,0x547dd9e4,2 +np.float32,0x3f00bb2c,0x3f4b92cf,2 +np.float32,0xbeb29f9c,0xbf343798,2 +np.float32,0xbd6b7830,0xbec59a86,2 +np.float32,0x807a524a,0xaa7c282a,2 +np.float32,0xbe0a7a04,0xbf0366ab,2 +np.float32,0x80237470,0xaa26e061,2 +np.float32,0x3ccbc0f6,0x3e95744f,2 +np.float32,0x3edec6bc,0x3f41fcb6,2 +np.float32,0x3f635198,0x3f760efa,2 +np.float32,0x800eca4f,0xa9f960d8,2 +np.float32,0x3f800000,0x3f800000,2 +np.float32,0xff4eeb9e,0xd4bd456a,2 +np.float32,0x56f4e,0x29b29e70,2 +np.float32,0xff5383a0,0xd4bea95c,2 +np.float32,0x3f4c3a77,0x3f6d6d94,2 +np.float32,0x3f6c324a,0x3f79388c,2 +np.float32,0xbebdc092,0xbf37e27c,2 +np.float32,0xff258956,0xd4afb42e,2 +np.float32,0xdc78c,0x29f39012,2 +np.float32,0xbf2db06a,0xbf60f2f5,2 +np.float32,0xbe3c5808,0xbf119660,2 +np.float32,0xbf1ba866,0xbf58e0f4,2 +np.float32,0x80377640,0xaa41b79d,2 +np.float32,0x4fdc4d,0x2a5abfea,2 +np.float32,0x7f5e7560,0x54c1e516,2 +np.float32,0xfeb4d3f2,0xd48f9fde,2 +np.float32,0x3f12a622,0x3f549c7d,2 +np.float32,0x7f737ed7,0x54c7d2dc,2 +np.float32,0xa0ddc,0x29db456d,2 +np.float32,0xfe006740,0xd44b6689,2 +np.float32,0x3f17dfd4,0x3f571b6c,2 +np.float32,0x67546e,0x2a6e5dd1,2 +np.float32,0xff0d0f11,0xd4a693e2,2 +np.float32,0xbd170090,0xbeaa6738,2 +np.float32,0x5274a0,0x2a5d1806,2 +np.float32,0x3e154fe0,0x3f06be1a,2 +np.float32,0x7ddb302e,0x5440f0a7,2 +np.float32,0x3f579d10,0x3f71c2af,2 +np.float32,0xff2bc5bb,0xd4b1e20c,2 +np.float32,0xfee8fa6a,0xd49c4872,2 +np.float32,0xbea551b0,0xbf2fa07b,2 +np.float32,0xfeabc75c,0xd48d3004,2 +np.float32,0x7f50a5a8,0x54bdcbd1,2 +np.float32,0x50354b,0x2a5b110d,2 +np.float32,0x7d139f13,0x54063b6b,2 +np.float32,0xbeee1b08,0xbf465699,2 +np.float32,0xfe5e1650,0xd47427fe,2 +np.float32,0x7f7fffff,0x54cb2ff5,2 +np.float32,0xbf52ede8,0xbf6fff35,2 +np.float32,0x804bba81,0xaa56e8f1,2 +np.float32,0x6609e2,0x2a6d5e94,2 +np.float32,0x692621,0x2a6fc1d6,2 +np.float32,0xbf288bb6,0xbf5eb4d3,2 +np.float32,0x804f28c4,0xaa5a1b82,2 +np.float32,0xbdaad2a8,0xbedfb46e,2 +np.float32,0x5e04f8,0x2a66fb13,2 +np.float32,0x804c10da,0xaa573a81,2 +np.float32,0xbe412764,0xbf12d0fd,2 +np.float32,0x801c35cc,0xaa1aa250,2 +np.float32,0x6364d4,0x2a6b4cf9,2 +np.float32,0xbf6d3cea,0xbf79962f,2 +np.float32,0x7e5a9935,0x5472defb,2 +np.float32,0xbe73a38c,0xbf1ea19c,2 +np.float32,0xbd35e950,0xbeb550f2,2 +np.float32,0x46cc16,0x2a5223d6,2 +np.float32,0x3f005288,0x3f4b5b97,2 +np.float32,0x8034e8b7,0xaa3eb2be,2 +np.float32,0xbea775fc,0xbf3061cf,2 +np.float32,0xea0e9,0x29f87751,2 +np.float32,0xbf38faaf,0xbf65b89d,2 +np.float32,0xbedf3184,0xbf421bb0,2 +np.float32,0xbe04250c,0xbf015def,2 +np.float32,0x7f56dae8,0x54bfa901,2 +np.float32,0xfebe3e04,0xd492132e,2 +np.float32,0x3e4dc326,0x3f15f19e,2 +np.float32,0x803da197,0xaa48a621,2 +np.float32,0x7eeb35aa,0x549cc7c6,2 +np.float32,0xfebb3eb6,0xd4914dc0,2 +np.float32,0xfed17478,0xd496d5e2,2 +np.float32,0x80243694,0xaa280ed2,2 +np.float32,0x8017e666,0xaa1251d3,2 +np.float32,0xbf07e942,0xbf4f4a3e,2 +np.float32,0xbf578fa6,0xbf71bdab,2 +np.float32,0x7ed8d80f,0x549896b6,2 +np.float32,0x3f2277ae,0x3f5bff11,2 +np.float32,0x7e6f195b,0x547a3cd4,2 +np.float32,0xbf441559,0xbf6a3a91,2 +np.float32,0x7f1fb427,0x54ad9d8d,2 +np.float32,0x71695f,0x2a75e12d,2 +np.float32,0xbd859588,0xbece19a1,2 +np.float32,0x7f5702fc,0x54bfb4eb,2 +np.float32,0x3f040008,0x3f4d4842,2 +np.float32,0x3de00ca5,0x3ef4df89,2 +np.float32,0x3eeabb03,0x3f45658c,2 +np.float32,0x3dfe5e65,0x3eff7480,2 +np.float32,0x1,0x26a14518,2 +np.float32,0x8065e400,0xaa6d4130,2 +np.float32,0xff50e1bb,0xd4bdde07,2 +np.float32,0xbe88635a,0xbf24b7e9,2 +np.float32,0x3f46bfab,0x3f6b4908,2 +np.float32,0xbd85c3c8,0xbece3168,2 +np.float32,0xbe633f64,0xbf1afdb1,2 +np.float32,0xff2c7706,0xd4b21f2a,2 +np.float32,0xbf02816c,0xbf4c812a,2 +np.float32,0x80653aeb,0xaa6cbdab,2 +np.float32,0x3eef1d10,0x3f469e24,2 +np.float32,0x3d9944bf,0x3ed7c36a,2 +np.float32,0x1b03d4,0x2a186b2b,2 +np.float32,0x3f251b7c,0x3f5d2e76,2 +np.float32,0x3edebab0,0x3f41f937,2 +np.float32,0xfefc2148,0xd4a073ff,2 +np.float32,0x7448ee,0x2a77f051,2 +np.float32,0x3bb8a400,0x3e3637ee,2 +np.float32,0x57df36,0x2a61d527,2 +np.float32,0xfd8b9098,0xd425fccb,2 +np.float32,0x7f67627e,0x54c4744d,2 +np.float32,0x801165d7,0xaa039fba,2 +np.float32,0x53aae5,0x2a5e2bfd,2 +np.float32,0x8014012b,0xaa09e4f1,2 +np.float32,0x3f7a2d53,0x3f7e0b4b,2 +np.float32,0x3f5fb700,0x3f74c052,2 +np.float32,0x7f192a06,0x54ab366c,2 +np.float32,0x3f569611,0x3f71603b,2 +np.float32,0x25e2dc,0x2a2a9b65,2 +np.float32,0x8036465e,0xaa405342,2 +np.float32,0x804118e1,0xaa4c5785,2 +np.float32,0xbef08d3e,0xbf4703e1,2 +np.float32,0x3447e2,0x2a3df0be,2 +np.float32,0xbf2a350b,0xbf5f6f8c,2 +np.float32,0xbec87e3e,0xbf3b4a73,2 +np.float32,0xbe99a4a8,0xbf2b6412,2 +np.float32,0x2ea2ae,0x2a36d77e,2 +np.float32,0xfcb69600,0xd3e4b9e3,2 +np.float32,0x717700,0x2a75eb06,2 +np.float32,0xbf4e81ce,0xbf6e4ecc,2 +np.float32,0xbe2021ac,0xbf09ebee,2 +np.float32,0xfef94eee,0xd49fda31,2 +np.float32,0x8563e,0x29ce0015,2 +np.float32,0x7f5d0ca5,0x54c17c0f,2 +np.float32,0x3f16459a,0x3f56590f,2 +np.float32,0xbe12f7bc,0xbf0608a0,2 +np.float32,0x3f10fd3d,0x3f53ce5f,2 +np.float32,0x3ca5e1b0,0x3e8b8d96,2 +np.float32,0xbe5288e0,0xbf17181f,2 +np.float32,0xbf7360f6,0xbf7bb8c9,2 +np.float32,0x7e989d33,0x5487ba88,2 +np.float32,0x3ea7b5dc,0x3f307839,2 +np.float32,0x7e8da0c9,0x548463f0,2 +np.float32,0xfeaf7888,0xd48e3122,2 +np.float32,0x7d90402d,0x5427d321,2 +np.float32,0x72e309,0x2a76f0ee,2 +np.float32,0xbe1faa34,0xbf09c998,2 +np.float32,0xbf2b1652,0xbf5fd1f4,2 +np.float32,0x8051eb0c,0xaa5c9cca,2 +np.float32,0x7edf02bf,0x549a058e,2 +np.float32,0x7fa00000,0x7fe00000,2 +np.float32,0x3f67f873,0x3f77b9c1,2 +np.float32,0x3f276b63,0x3f5e358c,2 +np.float32,0x7eeb4bf2,0x549cccb9,2 +np.float32,0x3bfa2c,0x2a46d675,2 +np.float32,0x3e133c50,0x3f061d75,2 +np.float32,0x3ca302c0,0x3e8abe4a,2 +np.float32,0x802e152e,0xaa361dd5,2 +np.float32,0x3f504810,0x3f6efd0a,2 +np.float32,0xbf43e0b5,0xbf6a2599,2 +np.float32,0x80800000,0xaa800000,2 +np.float32,0x3f1c0980,0x3f590e03,2 +np.float32,0xbf0084f6,0xbf4b7638,2 +np.float32,0xfee72d32,0xd49be10d,2 +np.float32,0x3f3c00ed,0x3f66f763,2 +np.float32,0x80511e81,0xaa5be492,2 +np.float32,0xfdd1b8a0,0xd43e1f0d,2 +np.float32,0x7d877474,0x54245785,2 +np.float32,0x7f110bfe,0x54a82207,2 +np.float32,0xff800000,0xff800000,2 +np.float32,0x6b6a2,0x29bfa706,2 +np.float32,0xbf5bdfd9,0xbf7357b7,2 +np.float32,0x8025bfa3,0xaa2a6676,2 +np.float32,0x3a3581,0x2a44dd3a,2 +np.float32,0x542c2a,0x2a5e9e2f,2 +np.float32,0xbe1d5650,0xbf091d57,2 +np.float32,0x3e97760d,0x3f2a935e,2 +np.float32,0x7f5dcde2,0x54c1b460,2 +np.float32,0x800bde1e,0xa9e7bbaf,2 +np.float32,0x3e6b9e61,0x3f1cdf07,2 +np.float32,0x7d46c003,0x54143884,2 +np.float32,0x80073fbb,0xa9c49e67,2 +np.float32,0x503c23,0x2a5b1748,2 +np.float32,0x7eb7b070,0x549060c8,2 +np.float32,0xe9d8f,0x29f86456,2 +np.float32,0xbeedd4f0,0xbf464320,2 +np.float32,0x3f40d5d6,0x3f68eda1,2 +np.float32,0xff201f28,0xd4adc44b,2 +np.float32,0xbdf61e98,0xbefca9c7,2 +np.float32,0x3e8a0dc9,0x3f2562e3,2 +np.float32,0xbc0c0c80,0xbe515f61,2 +np.float32,0x2b3c15,0x2a3248e3,2 +np.float32,0x42a7bb,0x2a4df592,2 +np.float32,0x7f337947,0x54b480af,2 +np.float32,0xfec21db4,0xd4930f4b,2 +np.float32,0x7f4fdbf3,0x54bd8e94,2 +np.float32,0x1e2253,0x2a1e1286,2 +np.float32,0x800c4c80,0xa9ea819e,2 +np.float32,0x7e96f5b7,0x54873c88,2 +np.float32,0x7ce4e131,0x53f69ed4,2 +np.float32,0xbead8372,0xbf327b63,2 +np.float32,0x3e15ca7e,0x3f06e2f3,2 +np.float32,0xbf63e17b,0xbf7642da,2 +np.float32,0xff5bdbdb,0xd4c122f9,2 +np.float32,0x3f44411e,0x3f6a4bfd,2 +np.float32,0xfd007da0,0xd40029d2,2 +np.float32,0xbe940168,0xbf2944b7,2 +np.float32,0x80000000,0x80000000,2 +np.float32,0x3d28e356,0x3eb0e1b8,2 +np.float32,0x3eb9fcd8,0x3f36a918,2 +np.float32,0x4f6410,0x2a5a51eb,2 +np.float32,0xbdf18e30,0xbefb1775,2 +np.float32,0x32edbd,0x2a3c49e3,2 +np.float32,0x801f70a5,0xaa2052da,2 +np.float32,0x8045a045,0xaa50f98c,2 +np.float32,0xbdd6cb00,0xbef17412,2 +np.float32,0x3f118f2c,0x3f541557,2 +np.float32,0xbe65c378,0xbf1b8f95,2 +np.float32,0xfd9a9060,0xd42bbb8b,2 +np.float32,0x3f04244f,0x3f4d5b0f,2 +np.float32,0xff05214b,0xd4a3656f,2 +np.float32,0xfe342cd0,0xd463b706,2 +np.float32,0x3f3409a8,0x3f63a836,2 +np.float32,0x80205db2,0xaa21e1e5,2 +np.float32,0xbf37c982,0xbf653a03,2 +np.float32,0x3f36ce8f,0x3f64d17e,2 +np.float32,0x36ffda,0x2a412d61,2 +np.float32,0xff569752,0xd4bf94e6,2 +np.float32,0x802fdb0f,0xaa386c3a,2 +np.float32,0x7ec55a87,0x5493df71,2 +np.float32,0x7f2234c7,0x54ae847e,2 +np.float32,0xbf02df76,0xbf4cb23d,2 +np.float32,0x3d68731a,0x3ec4c156,2 +np.float32,0x8146,0x2921cd8e,2 +np.float32,0x80119364,0xaa041235,2 +np.float32,0xfe6c1c00,0xd47930b5,2 +np.float32,0x8070da44,0xaa757996,2 +np.float32,0xfefbf50c,0xd4a06a9d,2 +np.float32,0xbf01b6a8,0xbf4c170a,2 +np.float32,0x110702,0x2a02aedb,2 +np.float32,0xbf063cd4,0xbf4e6f87,2 +np.float32,0x3f1ff178,0x3f5ad9dd,2 +np.float32,0xbf76dcd4,0xbf7cead0,2 +np.float32,0x80527281,0xaa5d1620,2 +np.float32,0xfea96df8,0xd48c8a7f,2 +np.float32,0x68db02,0x2a6f88b0,2 +np.float32,0x62d971,0x2a6adec7,2 +np.float32,0x3e816fe0,0x3f21df04,2 +np.float32,0x3f586379,0x3f720cc0,2 +np.float32,0x804a3718,0xaa5577ff,2 +np.float32,0x2e2506,0x2a3632b2,2 +np.float32,0x3f297d,0x2a4a4bf3,2 +np.float32,0xbe37aba8,0xbf105f88,2 +np.float32,0xbf18b264,0xbf577ea7,2 +np.float32,0x7f50d02d,0x54bdd8b5,2 +np.float32,0xfee296dc,0xd49ad757,2 +np.float32,0x7ec5137e,0x5493cdb1,2 +np.float32,0x3f4811f4,0x3f6bce3a,2 +np.float32,0xfdff32a0,0xd44af991,2 +np.float32,0x3f6ef140,0x3f7a2ed6,2 +np.float32,0x250838,0x2a2950b5,2 +np.float32,0x25c28e,0x2a2a6ada,2 +np.float32,0xbe875e50,0xbf244e90,2 +np.float32,0x3e3bdff8,0x3f11776a,2 +np.float32,0x3e9fe493,0x3f2daf17,2 +np.float32,0x804d8599,0xaa5897d9,2 +np.float32,0x3f0533da,0x3f4de759,2 +np.float32,0xbe63023c,0xbf1aefc8,2 +np.float32,0x80636e5e,0xaa6b547f,2 +np.float32,0xff112958,0xd4a82d5d,2 +np.float32,0x3e924112,0x3f28991f,2 +np.float32,0xbe996ffc,0xbf2b507a,2 +np.float32,0x802a7cda,0xaa314081,2 +np.float32,0x8022b524,0xaa25b21e,2 +np.float32,0x3f0808c8,0x3f4f5a43,2 +np.float32,0xbef0ec2a,0xbf471e0b,2 +np.float32,0xff4c2345,0xd4bc6b3c,2 +np.float32,0x25ccc8,0x2a2a7a3b,2 +np.float32,0x7f4467d6,0x54ba0260,2 +np.float32,0x7f506539,0x54bdb846,2 +np.float32,0x412ab4,0x2a4c6a2a,2 +np.float32,0x80672c4a,0xaa6e3ef0,2 +np.float32,0xbddfb7f8,0xbef4c0ac,2 +np.float32,0xbf250bb9,0xbf5d276c,2 +np.float32,0x807dca65,0xaa7e84bd,2 +np.float32,0xbf63b8e0,0xbf763438,2 +np.float32,0xbeed1b0c,0xbf460f6b,2 +np.float32,0x8021594f,0xaa238136,2 +np.float32,0xbebc74c8,0xbf377710,2 +np.float32,0x3e9f8e3b,0x3f2d8fce,2 +np.float32,0x7f50ca09,0x54bdd6d8,2 +np.float32,0x805797c1,0xaa6197df,2 +np.float32,0x3de198f9,0x3ef56f98,2 +np.float32,0xf154d,0x29fb0392,2 +np.float32,0xff7fffff,0xd4cb2ff5,2 +np.float32,0xfed22fa8,0xd49702c4,2 +np.float32,0xbf733736,0xbf7baa64,2 +np.float32,0xbf206a8a,0xbf5b1108,2 +np.float32,0xbca49680,0xbe8b3078,2 +np.float32,0xfecba794,0xd4956e1a,2 +np.float32,0x80126582,0xaa061886,2 +np.float32,0xfee5cc82,0xd49b919f,2 +np.float32,0xbf7ad6ae,0xbf7e4491,2 +np.float32,0x7ea88c81,0x548c4c0c,2 +np.float32,0xbf493a0d,0xbf6c4255,2 +np.float32,0xbf06dda0,0xbf4ec1d4,2 +np.float32,0xff3f6e84,0xd4b86cf6,2 +np.float32,0x3e4fe093,0x3f1674b0,2 +np.float32,0x8048ad60,0xaa53fbde,2 +np.float32,0x7ebb7112,0x54915ac5,2 +np.float32,0x5bd191,0x2a652a0d,2 +np.float32,0xfe3121d0,0xd4626cfb,2 +np.float32,0x7e4421c6,0x546a3f83,2 +np.float32,0x19975b,0x2a15b14f,2 +np.float32,0x801c8087,0xaa1b2a64,2 +np.float32,0xfdf6e950,0xd448c0f6,2 +np.float32,0x74e711,0x2a786083,2 +np.float32,0xbf2b2f2e,0xbf5fdccb,2 +np.float32,0x7ed19ece,0x5496e00b,2 +np.float32,0x7f6f8322,0x54c6ba63,2 +np.float32,0x3e90316d,0x3f27cd69,2 +np.float32,0x7ecb42ce,0x54955571,2 +np.float32,0x3f6d49be,0x3f799aaf,2 +np.float32,0x8053d327,0xaa5e4f9a,2 +np.float32,0x7ebd7361,0x5491df3e,2 +np.float32,0xfdb6eed0,0xd435a7aa,2 +np.float32,0x7f3e79f4,0x54b81e4b,2 +np.float32,0xfe83afa6,0xd4813794,2 +np.float32,0x37c443,0x2a421246,2 +np.float32,0xff075a10,0xd4a44cd8,2 +np.float32,0x3ebc5fe0,0x3f377047,2 +np.float32,0x739694,0x2a77714e,2 +np.float32,0xfe832946,0xd4810b91,2 +np.float32,0x7f2638e6,0x54aff235,2 +np.float32,0xfe87f7a6,0xd4829a3f,2 +np.float32,0x3f50f3f8,0x3f6f3eb8,2 +np.float32,0x3eafa3d0,0x3f333548,2 +np.float32,0xbec26ee6,0xbf39626f,2 +np.float32,0x7e6f924f,0x547a66ff,2 +np.float32,0x7f0baa46,0x54a606f8,2 +np.float32,0xbf6dfc49,0xbf79d939,2 +np.float32,0x7f005709,0x54a1699d,2 +np.float32,0x7ee3d7ef,0x549b2057,2 +np.float32,0x803709a4,0xaa4138d7,2 +np.float32,0x3f7bf49a,0x3f7ea509,2 +np.float32,0x509db7,0x2a5b6ff5,2 +np.float32,0x7eb1b0d4,0x548ec9ff,2 +np.float32,0x7eb996ec,0x5490dfce,2 +np.float32,0xbf1fcbaa,0xbf5ac89e,2 +np.float32,0x3e2c9a98,0x3f0d69cc,2 +np.float32,0x3ea77994,0x3f306312,2 +np.float32,0x3f3cbfe4,0x3f67457c,2 +np.float32,0x8422a,0x29cd5a30,2 +np.float32,0xbd974558,0xbed6d264,2 +np.float32,0xfecee77a,0xd496387f,2 +np.float32,0x3f51876b,0x3f6f76f1,2 +np.float32,0x3b1a25,0x2a45ddad,2 +np.float32,0xfe9912f0,0xd487dd67,2 +np.float32,0x3f3ab13d,0x3f666d99,2 +np.float32,0xbf35565a,0xbf64341b,2 +np.float32,0x7d4e84aa,0x54162091,2 +np.float32,0x4c2570,0x2a574dea,2 +np.float32,0x7e82dca6,0x5480f26b,2 +np.float32,0x7f5503e7,0x54bf1c8d,2 +np.float32,0xbeb85034,0xbf361c59,2 +np.float32,0x80460a69,0xaa516387,2 +np.float32,0x805fbbab,0xaa68602c,2 +np.float32,0x7d4b4c1b,0x541557b8,2 +np.float32,0xbefa9a0a,0xbf49bfbc,2 +np.float32,0x3dbd233f,0x3ee76e09,2 +np.float32,0x58b6df,0x2a628d50,2 +np.float32,0xfcdcc180,0xd3f3aad9,2 +np.float32,0x423a37,0x2a4d8487,2 +np.float32,0xbed8b32a,0xbf403507,2 +np.float32,0x3f68e85d,0x3f780f0b,2 +np.float32,0x7ee13c4b,0x549a883d,2 +np.float32,0xff2ed4c5,0xd4b2eec1,2 +np.float32,0xbf54dadc,0xbf70b99a,2 +np.float32,0x3f78b0af,0x3f7d8a32,2 +np.float32,0x3f377372,0x3f651635,2 +np.float32,0xfdaa6178,0xd43166bc,2 +np.float32,0x8060c337,0xaa6934a6,2 +np.float32,0x7ec752c2,0x54945cf6,2 +np.float32,0xbd01a760,0xbea1f624,2 +np.float32,0x6f6599,0x2a746a35,2 +np.float32,0x3f6315b0,0x3f75f95b,2 +np.float32,0x7f2baf32,0x54b1da44,2 +np.float32,0x3e400353,0x3f1286d8,2 +np.float32,0x40d3bf,0x2a4c0f15,2 +np.float32,0x7f733aca,0x54c7c03d,2 +np.float32,0x7e5c5407,0x5473828b,2 +np.float32,0x80191703,0xaa14b56a,2 +np.float32,0xbf4fc144,0xbf6ec970,2 +np.float32,0xbf1137a7,0xbf53eacd,2 +np.float32,0x80575410,0xaa615db3,2 +np.float32,0xbd0911d0,0xbea4fe07,2 +np.float32,0x3e98534a,0x3f2ae643,2 +np.float32,0x3f3b089a,0x3f669185,2 +np.float32,0x4fc752,0x2a5aacc1,2 +np.float32,0xbef44ddc,0xbf480b6e,2 +np.float32,0x80464217,0xaa519af4,2 +np.float32,0x80445fae,0xaa4fb6de,2 +np.float32,0x80771cf4,0xaa79eec8,2 +np.float32,0xfd9182e8,0xd4284fed,2 +np.float32,0xff0a5d16,0xd4a58288,2 +np.float32,0x3f33e169,0x3f63973e,2 +np.float32,0x8021a247,0xaa23f820,2 +np.float32,0xbf362522,0xbf648ab8,2 +np.float32,0x3f457cd7,0x3f6ac95e,2 +np.float32,0xbcadf400,0xbe8dc7e2,2 +np.float32,0x80237210,0xaa26dca7,2 +np.float32,0xbf1293c9,0xbf54939f,2 +np.float32,0xbc5e73c0,0xbe744a37,2 +np.float32,0x3c03f980,0x3e4d44df,2 +np.float32,0x7da46f,0x2a7e6b20,2 +np.float32,0x5d4570,0x2a665dd0,2 +np.float32,0x3e93fbac,0x3f294287,2 +np.float32,0x7e6808fd,0x5477bfa4,2 +np.float32,0xff5aa9a6,0xd4c0c925,2 +np.float32,0xbf5206ba,0xbf6fa767,2 +np.float32,0xbf6e513e,0xbf79f6f1,2 +np.float32,0x3ed01c0f,0x3f3da20f,2 +np.float32,0xff47d93d,0xd4bb1704,2 +np.float32,0x7f466cfd,0x54baa514,2 +np.float32,0x665e10,0x2a6d9fc8,2 +np.float32,0x804d0629,0xaa5820e8,2 +np.float32,0x7e0beaa0,0x54514e7e,2 +np.float32,0xbf7fcb6c,0xbf7fee78,2 +np.float32,0x3f6c5b03,0x3f7946dd,2 +np.float32,0x3e941504,0x3f294c30,2 +np.float32,0xbf2749ad,0xbf5e26a1,2 +np.float32,0xfec2a00a,0xd493302d,2 +np.float32,0x3f15a358,0x3f560bce,2 +np.float32,0x3f15c4e7,0x3f561bcd,2 +np.float32,0xfedc8692,0xd499728c,2 +np.float32,0x7e8f6902,0x5484f180,2 +np.float32,0x7f663d62,0x54c42136,2 +np.float32,0x8027ea62,0xaa2d99b4,2 +np.float32,0x3f3d093d,0x3f67636d,2 +np.float32,0x7f118c33,0x54a85382,2 +np.float32,0x803e866a,0xaa499d43,2 +np.float32,0x80053632,0xa9b02407,2 +np.float32,0xbf36dd66,0xbf64d7af,2 +np.float32,0xbf560358,0xbf71292b,2 +np.float32,0x139a8,0x29596bc0,2 +np.float32,0xbe04f75c,0xbf01a26c,2 +np.float32,0xfe1c3268,0xd45920fa,2 +np.float32,0x7ec77f72,0x5494680c,2 +np.float32,0xbedde724,0xbf41bbba,2 +np.float32,0x3e81dbe0,0x3f220bfd,2 +np.float32,0x800373ac,0xa99989d4,2 +np.float32,0x3f7f859a,0x3f7fd72d,2 +np.float32,0x3eb9dc7e,0x3f369e80,2 +np.float32,0xff5f8eb7,0xd4c236b1,2 +np.float32,0xff1c03cb,0xd4ac44ac,2 +np.float32,0x18cfe1,0x2a14285b,2 +np.float32,0x7f21b075,0x54ae54fd,2 +np.float32,0xff490bd8,0xd4bb7680,2 +np.float32,0xbf15dc22,0xbf5626de,2 +np.float32,0xfe1d5a10,0xd459a9a3,2 +np.float32,0x750544,0x2a7875e4,2 +np.float32,0x8023d5df,0xaa2778b3,2 +np.float32,0x3e42aa08,0x3f1332b2,2 +np.float32,0x3ecaa751,0x3f3bf60d,2 +np.float32,0x0,0x0,2 +np.float32,0x80416da6,0xaa4cb011,2 +np.float32,0x3f4ea9ae,0x3f6e5e22,2 +np.float32,0x2113f4,0x2a230f8e,2 +np.float32,0x3f35c2e6,0x3f64619a,2 +np.float32,0xbf50db8a,0xbf6f3564,2 +np.float32,0xff4d5cea,0xd4bccb8a,2 +np.float32,0x7ee54420,0x549b72d2,2 +np.float32,0x64ee68,0x2a6c81f7,2 +np.float32,0x5330da,0x2a5dbfc2,2 +np.float32,0x80047f88,0xa9a7b467,2 +np.float32,0xbda01078,0xbedae800,2 +np.float32,0xfe96d05a,0xd487315f,2 +np.float32,0x8003cc10,0xa99e7ef4,2 +np.float32,0x8007b4ac,0xa9c8aa3d,2 +np.float32,0x5d4bcf,0x2a66630e,2 +np.float32,0xfdd0c0b0,0xd43dd403,2 +np.float32,0xbf7a1d82,0xbf7e05f0,2 +np.float32,0x74ca33,0x2a784c0f,2 +np.float32,0x804f45e5,0xaa5a3640,2 +np.float32,0x7e6d16aa,0x547988c4,2 +np.float32,0x807d5762,0xaa7e3714,2 +np.float32,0xfecf93d0,0xd4966229,2 +np.float32,0xfecbd25c,0xd4957890,2 +np.float32,0xff7db31c,0xd4ca93b0,2 +np.float32,0x3dac9e18,0x3ee07c4a,2 +np.float32,0xbf4b2d28,0xbf6d0509,2 +np.float32,0xbd4f4c50,0xbebd62e0,2 +np.float32,0xbd2eac40,0xbeb2e0ee,2 +np.float32,0x3d01b69b,0x3ea1fc7b,2 +np.float32,0x7ec63902,0x549416ed,2 +np.float32,0xfcc47700,0xd3ea616d,2 +np.float32,0xbf5ddec2,0xbf7413a1,2 +np.float32,0xff6a6110,0xd4c54c52,2 +np.float32,0xfdfae2a0,0xd449d335,2 +np.float32,0x7e54868c,0x547099cd,2 +np.float32,0x802b5b88,0xaa327413,2 +np.float32,0x80440e72,0xaa4f647a,2 +np.float32,0x3e313c94,0x3f0eaad5,2 +np.float32,0x3ebb492a,0x3f3715a2,2 +np.float32,0xbef56286,0xbf4856d5,2 +np.float32,0x3f0154ba,0x3f4be3a0,2 +np.float32,0xff2df86c,0xd4b2a376,2 +np.float32,0x3ef6a850,0x3f48af57,2 +np.float32,0x3d8d33e1,0x3ed1f22d,2 +np.float32,0x4dd9b9,0x2a58e615,2 +np.float32,0x7f1caf83,0x54ac83c9,2 +np.float32,0xbf7286b3,0xbf7b6d73,2 +np.float32,0x80064f88,0xa9bbbd9f,2 +np.float32,0xbf1f55fa,0xbf5a92db,2 +np.float32,0x546a81,0x2a5ed516,2 +np.float32,0xbe912880,0xbf282d0a,2 +np.float32,0x5df587,0x2a66ee6e,2 +np.float32,0x801f706c,0xaa205279,2 +np.float32,0x58cb6d,0x2a629ece,2 +np.float32,0xfe754f8c,0xd47c62da,2 +np.float32,0xbefb6f4c,0xbf49f8e7,2 +np.float32,0x80000001,0xa6a14518,2 +np.float32,0xbf067837,0xbf4e8df4,2 +np.float32,0x3e8e715c,0x3f271ee4,2 +np.float32,0x8009de9b,0xa9d9ebc8,2 +np.float32,0xbf371ff1,0xbf64f36e,2 +np.float32,0x7f5ce661,0x54c170e4,2 +np.float32,0x3f3c47d1,0x3f671467,2 +np.float32,0xfea5e5a6,0xd48b8eb2,2 +np.float32,0xff62b17f,0xd4c31e15,2 +np.float32,0xff315932,0xd4b3c98f,2 +np.float32,0xbf1c3ca8,0xbf5925b9,2 +np.float32,0x7f800000,0x7f800000,2 +np.float32,0xfdf20868,0xd4476c3b,2 +np.float32,0x5b790e,0x2a64e052,2 +np.float32,0x3f5ddf4e,0x3f7413d4,2 +np.float32,0x7f1a3182,0x54ab9861,2 +np.float32,0x3f4b906e,0x3f6d2b9d,2 +np.float32,0x7ebac760,0x54912edb,2 +np.float32,0x7f626d3f,0x54c30a7e,2 +np.float32,0x3e27b058,0x3f0c0edc,2 +np.float32,0x8041e69c,0xaa4d2de8,2 +np.float32,0x3f42cee0,0x3f69b84a,2 +np.float32,0x7ec5fe83,0x5494085b,2 +np.float32,0x9d3e6,0x29d99cde,2 +np.float32,0x3edc50c0,0x3f41452d,2 +np.float32,0xbf2c463a,0xbf60562c,2 +np.float32,0x800bfa33,0xa9e871e8,2 +np.float32,0x7c9f2c,0x2a7dba4d,2 +np.float32,0x7f2ef9fd,0x54b2fb73,2 +np.float32,0x80741847,0xaa77cdb9,2 +np.float32,0x7e9c462a,0x5488ce1b,2 +np.float32,0x3ea47ec1,0x3f2f55a9,2 +np.float32,0x7f311c43,0x54b3b4f5,2 +np.float32,0x3d8f4c73,0x3ed2facd,2 +np.float32,0x806d7bd2,0xaa7301ef,2 +np.float32,0xbf633d24,0xbf760799,2 +np.float32,0xff4f9a3f,0xd4bd7a99,2 +np.float32,0x3f6021ca,0x3f74e73d,2 +np.float32,0x7e447015,0x546a5eac,2 +np.float32,0x6bff3c,0x2a71e711,2 +np.float32,0xe9c9f,0x29f85f06,2 +np.float32,0x8009fe14,0xa9dad277,2 +np.float32,0x807cf79c,0xaa7df644,2 +np.float32,0xff440e1b,0xd4b9e608,2 +np.float32,0xbddf9a50,0xbef4b5db,2 +np.float32,0x7f3b1c39,0x54b706fc,2 +np.float32,0x3c7471a0,0x3e7c16a7,2 +np.float32,0x8065b02b,0xaa6d18ee,2 +np.float32,0x7f63a3b2,0x54c36379,2 +np.float32,0xbe9c9d92,0xbf2c7d33,2 +np.float32,0x3d93aad3,0x3ed51a2e,2 +np.float32,0xbf41b040,0xbf694571,2 +np.float32,0x80396b9e,0xaa43f899,2 +np.float64,0x800fa025695f404b,0xaaa4000ff64bb00c,2 +np.float64,0xbfecc00198f98003,0xbfeee0b623fbd94b,2 +np.float64,0x7f9eeb60b03dd6c0,0x55291bf8554bb303,2 +np.float64,0x3fba74485634e890,0x3fde08710bdb148d,2 +np.float64,0xbfdd9a75193b34ea,0xbfe8bf711660a2f5,2 +np.float64,0xbfcf92e17a3f25c4,0xbfe4119eda6f3773,2 +np.float64,0xbfe359e2ba66b3c6,0xbfeb0f7ae97ea142,2 +np.float64,0x20791a5640f24,0x2a9441f13d262bed,2 +np.float64,0x3fe455fbfae8abf8,0x3feb830d63e1022c,2 +np.float64,0xbd112b7b7a226,0x2aa238c097ec269a,2 +np.float64,0x93349ba126694,0x2aa0c363cd74465a,2 +np.float64,0x20300cd440602,0x2a9432b4f4081209,2 +np.float64,0x3fdcfae677b9f5cc,0x3fe892a9ee56fe8d,2 +np.float64,0xbfefaae3f7bf55c8,0xbfefe388066132c4,2 +np.float64,0x1a7d6eb634faf,0x2a92ed9851d29ab5,2 +np.float64,0x7fd5308d39aa6119,0x553be444e30326c6,2 +np.float64,0xff811c7390223900,0xd5205cb404952fa7,2 +np.float64,0x80083d24aff07a4a,0xaaa0285cf764d898,2 +np.float64,0x800633810ccc6703,0xaa9d65341419586b,2 +np.float64,0x800ff456223fe8ac,0xaaa423bbcc24dff1,2 +np.float64,0x7fde5c99aebcb932,0x553f71be7d6d9daa,2 +np.float64,0x3fed961c4b3b2c39,0x3fef2ca146270cac,2 +np.float64,0x7fe744d30c6e89a5,0x554220a4cdc78e62,2 +np.float64,0x3fd8f527c7b1ea50,0x3fe76101085be1cb,2 +np.float64,0xbfc96a14b232d428,0xbfe2ab1a8962606c,2 +np.float64,0xffe85f540cf0bea7,0xd54268dff964519a,2 +np.float64,0x800e3be0fe7c77c2,0xaaa3634efd7f020b,2 +np.float64,0x3feb90d032f721a0,0x3fee72a4579e8b12,2 +np.float64,0xffe05674aaa0ace9,0xd5401c9e3fb4abcf,2 +np.float64,0x3fefc2e32c3f85c6,0x3fefeb940924bf42,2 +np.float64,0xbfecfd89e9f9fb14,0xbfeef6addf73ee49,2 +np.float64,0xf5862717eb0c5,0x2aa3e1428780382d,2 +np.float64,0xffc3003b32260078,0xd53558f92202dcdb,2 +np.float64,0x3feb4c152c36982a,0x3fee5940f7da0825,2 +np.float64,0x3fe7147b002e28f6,0x3fecb2948f46d1e3,2 +np.float64,0x7fe00ad9b4a015b2,0x5540039d15e1da54,2 +np.float64,0x8010000000000000,0xaaa428a2f98d728b,2 +np.float64,0xbfd3a41bfea74838,0xbfe595ab45b1be91,2 +np.float64,0x7fdbfd6e5537fadc,0x553e9a6e1107b8d0,2 +np.float64,0x800151d9d9a2a3b4,0xaa918cd8fb63f40f,2 +np.float64,0x7fe6828401ad0507,0x5541eda05dcd1fcf,2 +np.float64,0x3fdae1e7a1b5c3d0,0x3fe7f711e72ecc35,2 +np.float64,0x7fdf4936133e926b,0x553fc29c8d5edea3,2 +np.float64,0x80079de12d4f3bc3,0xaa9f7b06a9286da4,2 +np.float64,0x3fe1261cade24c39,0x3fe9fe09488e417a,2 +np.float64,0xbfc20dce21241b9c,0xbfe0a842fb207a28,2 +np.float64,0x3fe3285dfa2650bc,0x3feaf85215f59ef9,2 +np.float64,0x7fe42b93aea85726,0x554148c3c3bb35e3,2 +np.float64,0xffe6c74e7f6d8e9c,0xd541ffd13fa36dbd,2 +np.float64,0x3fe73ea139ee7d42,0x3fecc402242ab7d3,2 +np.float64,0xffbd4b46be3a9690,0xd53392de917c72e4,2 +np.float64,0x800caed8df395db2,0xaaa2a811a02e6be4,2 +np.float64,0x800aacdb6c9559b7,0xaaa19d6fbc8feebf,2 +np.float64,0x839fb4eb073f7,0x2aa0264b98327c12,2 +np.float64,0xffd0157ba9a02af8,0xd5397157a11c0d05,2 +np.float64,0x7fddc8ff173b91fd,0x553f3e7663fb2ac7,2 +np.float64,0x67b365facf66d,0x2a9dd4d838b0d853,2 +np.float64,0xffe12e7fc7225cff,0xd5406272a83a8e1b,2 +np.float64,0x7fea5b19a034b632,0x5542e567658b3e36,2 +np.float64,0x124989d824932,0x2a90ba8dc7a39532,2 +np.float64,0xffe12ef098225de0,0xd54062968450a078,2 +np.float64,0x3fea2f44a3f45e8a,0x3fedee3c461f4716,2 +np.float64,0x3fe6b033e66d6068,0x3fec88c8035e06b1,2 +np.float64,0x3fe928a2ccf25146,0x3fed88d4cde7a700,2 +np.float64,0x3feead27e97d5a50,0x3fef8d7537d82e60,2 +np.float64,0x8003ab80b6875702,0xaa98adfedd7715a9,2 +np.float64,0x45a405828b481,0x2a9a1fa99a4eff1e,2 +np.float64,0x8002ddebad85bbd8,0xaa96babfda4e0031,2 +np.float64,0x3fc278c32824f186,0x3fe0c8e7c979fbd5,2 +np.float64,0x2e10fffc5c221,0x2a96c30a766d06fa,2 +np.float64,0xffd6ba8c2ead7518,0xd53c8d1d92bc2788,2 +np.float64,0xbfeb5ec3a036bd87,0xbfee602bbf0a0d01,2 +np.float64,0x3fed5bd58f7ab7ab,0x3fef181bf591a4a7,2 +np.float64,0x7feb5274a5b6a4e8,0x55431fcf81876218,2 +np.float64,0xaf8fd6cf5f1fb,0x2aa1c6edbb1e2aaf,2 +np.float64,0x7fece718f179ce31,0x55437c74efb90933,2 +np.float64,0xbfa3c42d0c278860,0xbfd5a16407c77e73,2 +np.float64,0x800b5cff0576b9fe,0xaaa1fc4ecb0dec4f,2 +np.float64,0x800be89ae557d136,0xaaa244d115fc0963,2 +np.float64,0x800d2578f5ba4af2,0xaaa2e18a3a3fc134,2 +np.float64,0x80090ff93e321ff3,0xaaa0add578e3cc3c,2 +np.float64,0x28c5a240518c,0x2a81587cccd7e202,2 +np.float64,0x7fec066929780cd1,0x55434971435d1069,2 +np.float64,0x7fc84d4d15309a99,0x55372c204515694f,2 +np.float64,0xffe070a75de0e14e,0xd54025365046dad2,2 +np.float64,0x7fe5b27cc36b64f9,0x5541b5b822f0b6ca,2 +np.float64,0x3fdea35ac8bd46b6,0x3fe9086a0fb792c2,2 +np.float64,0xbfe79996f7af332e,0xbfece9571d37a5b3,2 +np.float64,0xffdfb47f943f6900,0xd53fe6c14c3366db,2 +np.float64,0xc015cf63802ba,0x2aa2517164d075f4,2 +np.float64,0x7feba98948375312,0x5543340b5b1f1181,2 +np.float64,0x8008678e6550cf1d,0xaaa043e7cea90da5,2 +np.float64,0x3fb11b92fa223726,0x3fd9f8b53be4d90b,2 +np.float64,0x7fc9b18cf0336319,0x55379b42da882047,2 +np.float64,0xbfe5043e736a087d,0xbfebd0c67db7a8e3,2 +np.float64,0x7fde88546a3d10a8,0x553f80cfe5bcf5fe,2 +np.float64,0x8006a6c82dcd4d91,0xaa9e171d182ba049,2 +np.float64,0xbfa0f707ac21ee10,0xbfd48e5d3faa1699,2 +np.float64,0xbfe7716bffaee2d8,0xbfecd8e6abfb8964,2 +np.float64,0x9511ccab2a23a,0x2aa0d56d748f0313,2 +np.float64,0x8003ddb9b847bb74,0xaa991ca06fd9d308,2 +np.float64,0x80030710fac60e23,0xaa9725845ac95fe8,2 +np.float64,0xffece5bbaeb9cb76,0xd5437c2670f894f4,2 +np.float64,0x3fd9be5c72b37cb9,0x3fe79f2e932a5708,2 +np.float64,0x1f050cca3e0a3,0x2a93f36499fe5228,2 +np.float64,0x3fd5422becaa8458,0x3fe6295d6150df58,2 +np.float64,0xffd72c050e2e580a,0xd53cbc52d73b495f,2 +np.float64,0xbfe66d5235ecdaa4,0xbfec6ca27e60bf23,2 +np.float64,0x17ac49a42f58a,0x2a923b5b757087a0,2 +np.float64,0xffd39edc40273db8,0xd53b2f7bb99b96bf,2 +np.float64,0x7fde6cf009bcd9df,0x553f77614eb30d75,2 +np.float64,0x80042b4c3fa85699,0xaa99c05fbdd057db,2 +np.float64,0xbfde5547f8bcaa90,0xbfe8f3147d67a940,2 +np.float64,0xbfdd02f9bf3a05f4,0xbfe894f2048aa3fe,2 +np.float64,0xbfa20ec82c241d90,0xbfd4fd02ee55aac7,2 +np.float64,0x8002f670f8c5ece3,0xaa96fad7e53dd479,2 +np.float64,0x80059f24d7eb3e4a,0xaa9c7312dae0d7bc,2 +np.float64,0x7fe6ae7423ad5ce7,0x5541f9430be53062,2 +np.float64,0xe135ea79c26be,0x2aa350d8f8c526e1,2 +np.float64,0x3fec188ce4f8311a,0x3feea44d21c23f68,2 +np.float64,0x800355688286aad2,0xaa97e6ca51eb8357,2 +np.float64,0xa2d6530b45acb,0x2aa15635bbd366e8,2 +np.float64,0x600e0150c01c1,0x2a9d1456ea6c239c,2 +np.float64,0x8009c30863338611,0xaaa118f94b188bcf,2 +np.float64,0x3fe7e4c0dfefc982,0x3fed07e8480b8c07,2 +np.float64,0xbfddac6407bb58c8,0xbfe8c46f63a50225,2 +np.float64,0xbc85e977790bd,0x2aa2344636ed713d,2 +np.float64,0xfff0000000000000,0xfff0000000000000,2 +np.float64,0xffcd1570303a2ae0,0xd5389a27d5148701,2 +np.float64,0xbf937334d026e660,0xbfd113762e4e29a7,2 +np.float64,0x3fdbfdaa9b37fb55,0x3fe84a425fdff7df,2 +np.float64,0xffc10800f5221000,0xd5349535ffe12030,2 +np.float64,0xaf40f3755e81f,0x2aa1c443af16cd27,2 +np.float64,0x800f7da34f7efb47,0xaaa3f14bf25fc89f,2 +np.float64,0xffe4a60125a94c02,0xd5416b764a294128,2 +np.float64,0xbf8e25aa903c4b40,0xbfcf5ebc275b4789,2 +np.float64,0x3fca681bbb34d038,0x3fe2e882bcaee320,2 +np.float64,0xbfd0f3c9c1a1e794,0xbfe48d0df7b47572,2 +np.float64,0xffeb99b49d373368,0xd5433060dc641910,2 +np.float64,0x3fe554fb916aa9f8,0x3febf437cf30bd67,2 +np.float64,0x80079518d0af2a32,0xaa9f6ee87044745a,2 +np.float64,0x5e01a8a0bc036,0x2a9cdf0badf222c3,2 +np.float64,0xbfea9831b3f53064,0xbfee1601ee953ab3,2 +np.float64,0xbfc369d1a826d3a4,0xbfe110b675c311e0,2 +np.float64,0xa82e640d505cd,0x2aa1863d4e523b9c,2 +np.float64,0x3fe506d70a2a0dae,0x3febd1eba3aa83fa,2 +np.float64,0xcbacba7197598,0x2aa2adeb9927f1f2,2 +np.float64,0xc112d6038225b,0x2aa25978f12038b0,2 +np.float64,0xffa7f5f44c2febf0,0xd52d0ede02d4e18b,2 +np.float64,0x8006f218e34de433,0xaa9e870cf373b4eb,2 +np.float64,0xffe6d9a5d06db34b,0xd54204a4adc608c7,2 +np.float64,0x7fe717210eae2e41,0x554214bf3e2b5228,2 +np.float64,0xbfdd4b45cdba968c,0xbfe8a94c7f225f8e,2 +np.float64,0x883356571066b,0x2aa055ab0b2a8833,2 +np.float64,0x3fe307fc02a60ff8,0x3feae9175053288f,2 +np.float64,0x3fefa985f77f530c,0x3fefe31289446615,2 +np.float64,0x8005698a98aad316,0xaa9c17814ff7d630,2 +np.float64,0x3fea77333c74ee66,0x3fee098ba70e10fd,2 +np.float64,0xbfd1d00b0023a016,0xbfe4e497fd1cbea1,2 +np.float64,0x80009b0c39813619,0xaa8b130a6909cc3f,2 +np.float64,0x3fdbeb896fb7d714,0x3fe84502ba5437f8,2 +np.float64,0x3fb6e7e3562dcfc7,0x3fdca00d35c389ad,2 +np.float64,0xb2d46ebf65a8e,0x2aa1e2fe158d0838,2 +np.float64,0xbfd5453266aa8a64,0xbfe62a6a74c8ef6e,2 +np.float64,0x7fe993aa07732753,0x5542b5438bf31cb7,2 +np.float64,0xbfda5a098cb4b414,0xbfe7ce6d4d606203,2 +np.float64,0xbfe40c3ce068187a,0xbfeb61a32c57a6d0,2 +np.float64,0x3fcf17671d3e2ed0,0x3fe3f753170ab686,2 +np.float64,0xbfe4f814b6e9f02a,0xbfebcb67c60b7b08,2 +np.float64,0x800efedf59fdfdbf,0xaaa3ba4ed44ad45a,2 +np.float64,0x800420b556e8416b,0xaa99aa7fb14edeab,2 +np.float64,0xbf6e4ae6403c9600,0xbfc3cb2b29923989,2 +np.float64,0x3fda5c760a34b8ec,0x3fe7cf2821c52391,2 +np.float64,0x7f898faac0331f55,0x5522b44a01408188,2 +np.float64,0x3fd55af4b7aab5e9,0x3fe631f6d19503b3,2 +np.float64,0xbfa30a255c261450,0xbfd55caf0826361d,2 +np.float64,0x7fdfb801343f7001,0x553fe7ee50b9199a,2 +np.float64,0x7fa89ee91c313dd1,0x552d528ca2a4d659,2 +np.float64,0xffea72921d34e524,0xd542eb01af2e470d,2 +np.float64,0x3feddf0f33fbbe1e,0x3fef462b67fc0a91,2 +np.float64,0x3fe36700b566ce01,0x3feb1596caa8eff7,2 +np.float64,0x7fe6284a25ac5093,0x5541d58be3956601,2 +np.float64,0xffda16f7c8b42df0,0xd53de4f722485205,2 +np.float64,0x7f9355b94026ab72,0x552578cdeb41d2ca,2 +np.float64,0xffd3a9b022275360,0xd53b347b02dcea21,2 +np.float64,0x3fcb7f4f4a36fe9f,0x3fe32a40e9f6c1aa,2 +np.float64,0x7fdb958836372b0f,0x553e746103f92111,2 +np.float64,0x3fd37761c0a6eec4,0x3fe5853c5654027e,2 +np.float64,0x3fe449f1a2e893e4,0x3feb7d9e4eacc356,2 +np.float64,0x80077dfbef0efbf9,0xaa9f4ed788d2fadd,2 +np.float64,0x4823aa7890476,0x2a9a6eb4b653bad5,2 +np.float64,0xbfede01a373bc034,0xbfef468895fbcd29,2 +np.float64,0xbfe2bac5f125758c,0xbfeac4811c4dd66f,2 +np.float64,0x3fec10373af8206e,0x3feea14529e0f178,2 +np.float64,0x3fe305e30ca60bc6,0x3feae81a2f9d0302,2 +np.float64,0xa9668c5f52cd2,0x2aa1910e3a8f2113,2 +np.float64,0xbfd98b1717b3162e,0xbfe78f75995335d2,2 +np.float64,0x800fa649c35f4c94,0xaaa402ae79026a8f,2 +np.float64,0xbfb07dacf620fb58,0xbfd9a7d33d93a30f,2 +np.float64,0x80015812f382b027,0xaa91a843e9c85c0e,2 +np.float64,0x3fc687d96c2d0fb3,0x3fe1ef0ac16319c5,2 +np.float64,0xbfecad2ecd795a5e,0xbfeed9f786697af0,2 +np.float64,0x1608c1242c119,0x2a91cd11e9b4ccd2,2 +np.float64,0x6df775e8dbeef,0x2a9e6ba8c71130eb,2 +np.float64,0xffe96e9332b2dd26,0xd542ac342d06299b,2 +np.float64,0x7fecb6a3b8396d46,0x5543718af8162472,2 +np.float64,0x800d379f893a6f3f,0xaaa2ea36bbcb9308,2 +np.float64,0x3f924cdb202499b6,0x3fd0bb90af8d1f79,2 +np.float64,0x0,0x0,2 +np.float64,0x7feaf3b365f5e766,0x5543099a160e2427,2 +np.float64,0x3fea169ed0742d3e,0x3fede4d526e404f8,2 +np.float64,0x7feaf5f2f775ebe5,0x55430a2196c5f35a,2 +np.float64,0xbfc80d4429301a88,0xbfe2541f2ddd3334,2 +np.float64,0xffc75203b32ea408,0xd536db2837068689,2 +np.float64,0xffed2850e63a50a1,0xd5438b1217b72b8a,2 +np.float64,0x7fc16b0e7f22d61c,0x5534bcd0bfddb6f0,2 +np.float64,0x7feee8ed09fdd1d9,0x5543ed5b3ca483ab,2 +np.float64,0x7fb6c7ee662d8fdc,0x5531fffb5d46dafb,2 +np.float64,0x3fd77cebf8aef9d8,0x3fe6e9242e2bd29d,2 +np.float64,0x3f81c33f70238680,0x3fca4c7f3c9848f7,2 +np.float64,0x3fd59fea92ab3fd5,0x3fe649c1558cadd5,2 +np.float64,0xffeba82d4bf7505a,0xd54333bad387f7bd,2 +np.float64,0xffd37630e1a6ec62,0xd53b1ca62818c670,2 +np.float64,0xffec2c1e70b8583c,0xd5435213dcd27c22,2 +np.float64,0x7fec206971f840d2,0x55434f6660a8ae41,2 +np.float64,0x3fed2964adba52c9,0x3fef0642fe72e894,2 +np.float64,0xffd08e30d6211c62,0xd539b060e0ae02da,2 +np.float64,0x3e5f976c7cbf4,0x2a992e6ff991a122,2 +np.float64,0xffe6eee761adddce,0xd5420a393c67182f,2 +np.float64,0xbfe8ec9a31f1d934,0xbfed714426f58147,2 +np.float64,0x7fefffffffffffff,0x554428a2f98d728b,2 +np.float64,0x3fb3ae8b2c275d16,0x3fdb36b81b18a546,2 +np.float64,0x800f73df4dfee7bf,0xaaa3ed1a3e2cf49c,2 +np.float64,0xffd0c8873b21910e,0xd539ce6a3eab5dfd,2 +np.float64,0x3facd6c49439ad80,0x3fd8886f46335df1,2 +np.float64,0x3935859c726b2,0x2a98775f6438dbb1,2 +np.float64,0x7feed879fbfdb0f3,0x5543e9d1ac239469,2 +np.float64,0xbfe84dd990f09bb3,0xbfed323af09543b1,2 +np.float64,0xbfe767cc5a6ecf98,0xbfecd4f39aedbacb,2 +np.float64,0xffd8bd91d5b17b24,0xd53d5eb3734a2609,2 +np.float64,0xbfe13edeb2a27dbe,0xbfea0a856f0b9656,2 +np.float64,0xd933dd53b267c,0x2aa3158784e428c9,2 +np.float64,0xbfef6fef987edfdf,0xbfefcfb1c160462b,2 +np.float64,0x8009eeda4893ddb5,0xaaa13268a41045b1,2 +np.float64,0xab48c7a156919,0x2aa1a1a9c124c87d,2 +np.float64,0xa997931d532f3,0x2aa192bfe5b7bbb4,2 +np.float64,0xffe39ce8b1e739d1,0xd5411fa1c5c2cbd8,2 +np.float64,0x7e7ac2f6fcf59,0x2a9fdf6f263a9e9f,2 +np.float64,0xbfee1e35a6fc3c6b,0xbfef5c25d32b4047,2 +np.float64,0xffe5589c626ab138,0xd5419d220cc9a6da,2 +np.float64,0x7fe12509bf224a12,0x55405f7036dc5932,2 +np.float64,0xa6f15ba94de2c,0x2aa17b3367b1fc1b,2 +np.float64,0x3fca8adbfa3515b8,0x3fe2f0ca775749e5,2 +np.float64,0xbfcb03aa21360754,0xbfe30d5b90ca41f7,2 +np.float64,0x3fefafb2da7f5f66,0x3fefe5251aead4e7,2 +np.float64,0xffd90a59d23214b4,0xd53d7cf63a644f0e,2 +np.float64,0x3fba499988349333,0x3fddf84154fab7e5,2 +np.float64,0x800a76a0bc54ed42,0xaaa17f68cf67f2fa,2 +np.float64,0x3fea33d15bb467a3,0x3fedeff7f445b2ff,2 +np.float64,0x8005d9b0726bb362,0xaa9cd48624afeca9,2 +np.float64,0x7febf42e9a77e85c,0x55434541d8073376,2 +np.float64,0xbfedfc4469bbf889,0xbfef505989f7ee7d,2 +np.float64,0x8001211f1422423f,0xaa90a9889d865349,2 +np.float64,0x800e852f7fdd0a5f,0xaaa3845f11917f8e,2 +np.float64,0xffefd613c87fac27,0xd5441fd17ec669b4,2 +np.float64,0x7fed2a74543a54e8,0x55438b8c637da8b8,2 +np.float64,0xb83d50ff707aa,0x2aa210b4fc11e4b2,2 +np.float64,0x10000000000000,0x2aa428a2f98d728b,2 +np.float64,0x474ad9208e97,0x2a84e5a31530368a,2 +np.float64,0xffd0c5498ea18a94,0xd539ccc0e5cb425e,2 +np.float64,0x8001a8e9c82351d4,0xaa92f1aee6ca5b7c,2 +np.float64,0xd28db1e5a51b6,0x2aa2e328c0788f4a,2 +np.float64,0x3bf734ac77ee7,0x2a98da65c014b761,2 +np.float64,0x3fe56e17c96adc30,0x3febff2b6b829b7a,2 +np.float64,0x7783113eef063,0x2a9f46c3f09eb42c,2 +np.float64,0x3fd69d4e42ad3a9d,0x3fe69f83a21679f4,2 +np.float64,0x3fd34f4841a69e90,0x3fe5766b3c771616,2 +np.float64,0x3febb49895b76931,0x3fee7fcb603416c9,2 +np.float64,0x7fe8d6cb55f1ad96,0x554286c3b3bf4313,2 +np.float64,0xbfe67c6ba36cf8d8,0xbfec730218f2e284,2 +np.float64,0xffef9d97723f3b2e,0xd54413e38b6c29be,2 +np.float64,0x12d8cd2a25b1b,0x2a90e5ccd37b8563,2 +np.float64,0x81fe019103fc0,0x2aa01524155e73c5,2 +np.float64,0x7fe95d546f72baa8,0x5542a7fabfd425ff,2 +np.float64,0x800e742f1f9ce85e,0xaaa37cbe09e1f874,2 +np.float64,0xffd96bd3a732d7a8,0xd53da3086071264a,2 +np.float64,0x4ef2691e9de4e,0x2a9b3d316047fd6d,2 +np.float64,0x1a91684c3522e,0x2a92f25913c213de,2 +np.float64,0x3d5151b87aa2b,0x2a9909dbd9a44a84,2 +np.float64,0x800d9049435b2093,0xaaa31424e32d94a2,2 +np.float64,0xffe5b25fcc2b64bf,0xd541b5b0416b40b5,2 +np.float64,0xffe0eb784c21d6f0,0xd5404d083c3d6bc6,2 +np.float64,0x8007ceefbf0f9de0,0xaa9fbe0d739368b4,2 +np.float64,0xb78529416f0b,0x2a8ca3b29b5b3f18,2 +np.float64,0x7fba61130034c225,0x5532e6d4ca0f2918,2 +np.float64,0x3fba8d67ae351acf,0x3fde11efd6239b09,2 +np.float64,0x3fe7f24c576fe498,0x3fed0d63947a854d,2 +np.float64,0x2bb58dec576b3,0x2a965de7fca12aff,2 +np.float64,0xbfe86ceec4f0d9de,0xbfed3ea7f1d084e2,2 +np.float64,0x7fd1a7f7bca34fee,0x553a3f01b67fad2a,2 +np.float64,0x3fd9a43acfb34874,0x3fe7972dc5d8dfd6,2 +np.float64,0x7fd9861acdb30c35,0x553dad3b1bbb3b4d,2 +np.float64,0xffecc0c388398186,0xd54373d3b903deec,2 +np.float64,0x3fa6f86e9c2df0e0,0x3fd6bdbe40fcf710,2 +np.float64,0x800ddd99815bbb33,0xaaa33820d2f889bb,2 +np.float64,0x7fe087089b610e10,0x55402c868348a6d3,2 +np.float64,0x3fdf43d249be87a5,0x3fe933d29fbf7c23,2 +np.float64,0x7fe4f734c7a9ee69,0x5541822e56c40725,2 +np.float64,0x3feb39a9d3b67354,0x3fee526bf1f69f0e,2 +np.float64,0x3fe61454a0ec28a9,0x3fec46d7c36f7566,2 +np.float64,0xbfeafaa0a375f541,0xbfee3af2e49d457a,2 +np.float64,0x3fda7378e1b4e6f0,0x3fe7d613a3f92c40,2 +np.float64,0xe3e31c5fc7c64,0x2aa3645c12e26171,2 +np.float64,0xbfe97a556df2f4ab,0xbfeda8aa84cf3544,2 +np.float64,0xff612f9c80225f00,0xd514a51e5a2a8a97,2 +np.float64,0x800c51c8a0f8a391,0xaaa279fe7d40b50b,2 +np.float64,0xffd6f9d2312df3a4,0xd53ca783a5f8d110,2 +np.float64,0xbfead48bd7f5a918,0xbfee2cb2f89c5e57,2 +np.float64,0x800f5949e89eb294,0xaaa3e1a67a10cfef,2 +np.float64,0x800faf292b7f5e52,0xaaa40675e0c96cfd,2 +np.float64,0xbfedc238453b8470,0xbfef3c179d2d0209,2 +np.float64,0x3feb0443c5760888,0x3fee3e8bf29089c2,2 +np.float64,0xb26f69e164ded,0x2aa1df9f3dd7d765,2 +np.float64,0x3fcacdc053359b80,0x3fe300a67765b667,2 +np.float64,0x3fe8b274647164e8,0x3fed5a4cd4da8155,2 +np.float64,0x291e6782523ce,0x2a95ea7ac1b13a68,2 +np.float64,0xbfc4fc094e29f814,0xbfe1838671fc8513,2 +np.float64,0x3fbf1301f23e2600,0x3fdfb03a6f13e597,2 +np.float64,0xffeb36554ab66caa,0xd543193d8181e4f9,2 +np.float64,0xbfd969a52db2d34a,0xbfe78528ae61f16d,2 +np.float64,0x800cccd04d3999a1,0xaaa2b6b7a2d2d2d6,2 +np.float64,0x808eb4cb011d7,0x2aa005effecb2b4a,2 +np.float64,0x7fe839b3f9b07367,0x55425f61e344cd6d,2 +np.float64,0xbfeb25b6ed764b6e,0xbfee4b0234fee365,2 +np.float64,0xffefffffffffffff,0xd54428a2f98d728b,2 +np.float64,0xbfe01305da60260c,0xbfe9700b784af7e9,2 +np.float64,0xffcbf36b0a37e6d8,0xd538474b1d74ffe1,2 +np.float64,0xffaeebe3e83dd7c0,0xd52fa2e8dabf7209,2 +np.float64,0xbfd9913bf0b32278,0xbfe7915907aab13c,2 +np.float64,0xbfe7d125d9efa24c,0xbfecfff563177706,2 +np.float64,0xbfee98d23cbd31a4,0xbfef867ae393e446,2 +np.float64,0x3fe30efb67e61df6,0x3feaec6344633d11,2 +np.float64,0x1,0x2990000000000000,2 +np.float64,0x7fd5524fd3aaa49f,0x553bf30d18ab877e,2 +np.float64,0xc98b403f93168,0x2aa29d2fadb13c07,2 +np.float64,0xffe57080046ae100,0xd541a3b1b687360e,2 +np.float64,0x7fe20bade5e4175b,0x5540a79b94294f40,2 +np.float64,0x3fe155400a22aa80,0x3fea15c45f5b5837,2 +np.float64,0x7fe428dc8f6851b8,0x554147fd2ce93cc1,2 +np.float64,0xffefb77eb67f6efc,0xd544195dcaff4980,2 +np.float64,0x3fe49e733b293ce6,0x3feba394b833452a,2 +np.float64,0x38e01e3e71c05,0x2a986b2c955bad21,2 +np.float64,0x7fe735eb376e6bd5,0x55421cc51290d92d,2 +np.float64,0xbfd81d8644b03b0c,0xbfe71ce6d6fbd51a,2 +np.float64,0x8009a32325134647,0xaaa10645d0e6b0d7,2 +np.float64,0x56031ab8ac064,0x2a9c074be40b1f80,2 +np.float64,0xff8989aa30331340,0xd522b2d319a0ac6e,2 +np.float64,0xbfd6c183082d8306,0xbfe6ab8ffb3a8293,2 +np.float64,0x7ff8000000000000,0x7ff8000000000000,2 +np.float64,0xbfe17b68b1e2f6d2,0xbfea28dac8e0c457,2 +np.float64,0x3fbb50e42236a1c8,0x3fde5b090d51e3bd,2 +np.float64,0xffc2bb7cbf2576f8,0xd5353f1b3571c17f,2 +np.float64,0xbfe7576bca6eaed8,0xbfecce388241f47c,2 +np.float64,0x3fe7b52b04ef6a56,0x3fecf495bef99e7e,2 +np.float64,0xffe5511af82aa236,0xd5419b11524e8350,2 +np.float64,0xbfe66d5edf2cdabe,0xbfec6ca7d7b5be8c,2 +np.float64,0xc84a0ba790942,0x2aa29346f16a2cb4,2 +np.float64,0x6db5e7a0db6be,0x2a9e659c0e8244a0,2 +np.float64,0x7fef8f7b647f1ef6,0x554410e67af75d27,2 +np.float64,0xbfe2b4ada7e5695c,0xbfeac1997ec5a064,2 +np.float64,0xbfe99372e03326e6,0xbfedb2662b287543,2 +np.float64,0x3fa45d352428ba6a,0x3fd5d8a895423abb,2 +np.float64,0x3fa029695c2052d3,0x3fd439f858998886,2 +np.float64,0xffe0a9bd3261537a,0xd54037d0cd8bfcda,2 +np.float64,0xbfef83e09a7f07c1,0xbfefd66a4070ce73,2 +np.float64,0x7fee3dcc31fc7b97,0x5543c8503869407e,2 +np.float64,0xffbd16f1603a2de0,0xd533872fa5be978b,2 +np.float64,0xbfe8173141b02e62,0xbfed1c478614c6f4,2 +np.float64,0xbfef57aa277eaf54,0xbfefc77fdab27771,2 +np.float64,0x7fe883a02f31073f,0x554271ff0e3208da,2 +np.float64,0xe3adb63bc75b7,0x2aa362d833d0e41c,2 +np.float64,0x8001c430bac38862,0xaa93575026d26510,2 +np.float64,0x12fb347225f67,0x2a90f00eb9edb3fe,2 +np.float64,0x3fe53f83cbaa7f08,0x3febead40de452c2,2 +np.float64,0xbfe7f67227efece4,0xbfed0f10e32ad220,2 +np.float64,0xb8c5b45d718b7,0x2aa2152912cda86d,2 +np.float64,0x3fd23bb734a4776e,0x3fe50e5d3008c095,2 +np.float64,0x8001fd558ee3faac,0xaa941faa1f7ed450,2 +np.float64,0xffe6bbeda9ed77db,0xd541fcd185a63afa,2 +np.float64,0x4361d79086c3c,0x2a99d692237c30b7,2 +np.float64,0xbfd012f004a025e0,0xbfe43093e290fd0d,2 +np.float64,0xffe1d8850423b10a,0xd54097cf79d8d01e,2 +np.float64,0x3fccf4df7939e9bf,0x3fe37f8cf8be6436,2 +np.float64,0x8000546bc6c0a8d8,0xaa861bb3588556f2,2 +np.float64,0xbfecb4d6ba7969ae,0xbfeedcb6239135fe,2 +np.float64,0xbfaeb425cc3d6850,0xbfd90cfc103bb896,2 +np.float64,0x800ec037ec7d8070,0xaaa39eae8bde9774,2 +np.float64,0xbfeeaf863dfd5f0c,0xbfef8e4514772a8a,2 +np.float64,0xffec67c6c4b8cf8d,0xd5435fad89f900cf,2 +np.float64,0x3fda4498da348932,0x3fe7c7f6b3f84048,2 +np.float64,0xbfd05fd3dea0bfa8,0xbfe4509265a9b65f,2 +np.float64,0x3fe42cc713a8598e,0x3feb706ba9cd533c,2 +np.float64,0xec22d4d7d845b,0x2aa39f8cccb9711c,2 +np.float64,0x7fda30606c3460c0,0x553deea865065196,2 +np.float64,0xbfd58cba8bab1976,0xbfe64327ce32d611,2 +np.float64,0xadd521c75baa4,0x2aa1b7efce201a98,2 +np.float64,0x7fed43c1027a8781,0x55439131832b6429,2 +np.float64,0x800bee278fb7dc4f,0xaaa247a71e776db4,2 +np.float64,0xbfe9be5dd2737cbc,0xbfedc2f9501755b0,2 +np.float64,0x8003f4854447e90b,0xaa994d9b5372b13b,2 +np.float64,0xbfe5d0f867eba1f1,0xbfec29f8dd8b33a4,2 +np.float64,0x3fd79102d5af2206,0x3fe6efaa7a1efddb,2 +np.float64,0xbfeae783c835cf08,0xbfee33cdb4a44e81,2 +np.float64,0x3fcf1713e83e2e28,0x3fe3f7414753ddfb,2 +np.float64,0xffe5ab3cff2b567a,0xd541b3bf0213274a,2 +np.float64,0x7fe0fc65d8a1f8cb,0x554052761ac96386,2 +np.float64,0x7e81292efd026,0x2a9fdff8c01ae86f,2 +np.float64,0x80091176039222ec,0xaaa0aebf0565dfa6,2 +np.float64,0x800d2bf5ab5a57ec,0xaaa2e4a4c31e7e29,2 +np.float64,0xffd1912ea923225e,0xd53a33b2856726ab,2 +np.float64,0x800869918ed0d323,0xaaa0453408e1295d,2 +np.float64,0xffba0898fa341130,0xd532d19b202a9646,2 +np.float64,0xbfe09fac29613f58,0xbfe9b9687b5811a1,2 +np.float64,0xbfbd4ae82e3a95d0,0xbfdf1220f6f0fdfa,2 +np.float64,0xffea11d27bb423a4,0xd542d3d3e1522474,2 +np.float64,0xbfe6b05705ad60ae,0xbfec88d6bcab2683,2 +np.float64,0x3fe624a3f2ec4948,0x3fec4dcc78ddf871,2 +np.float64,0x53483018a6907,0x2a9bba8f92006b69,2 +np.float64,0xbfec0a6eeb7814de,0xbfee9f2a741248d7,2 +np.float64,0x3fe8c8ce6371919d,0x3fed63250c643482,2 +np.float64,0xbfe26b0ef964d61e,0xbfea9e511db83437,2 +np.float64,0xffa0408784208110,0xd52987f62c369ae9,2 +np.float64,0xffc153abc322a758,0xd534b384b5c5fe63,2 +np.float64,0xbfbdce88a63b9d10,0xbfdf4065ef0b01d4,2 +np.float64,0xffed4a4136fa9482,0xd54392a450f8b0af,2 +np.float64,0x8007aa18748f5432,0xaa9f8bd2226d4299,2 +np.float64,0xbfdab4d3e8b569a8,0xbfe7e9a5402540e5,2 +np.float64,0x7fe68914f92d1229,0x5541ef5e78fa35de,2 +np.float64,0x800a538bb1b4a718,0xaaa16bc487711295,2 +np.float64,0xffe02edbc8605db7,0xd5400f8f713df890,2 +np.float64,0xffe8968053712d00,0xd54276b9cc7f460a,2 +np.float64,0x800a4ce211d499c5,0xaaa1680491deb40c,2 +np.float64,0x3f988080f8310102,0x3fd2713691e99329,2 +np.float64,0xf64e42a7ec9c9,0x2aa3e6a7af780878,2 +np.float64,0xff73cc7100279900,0xd51b4478c3409618,2 +np.float64,0x71e6722ce3ccf,0x2a9ec76ddf296ce0,2 +np.float64,0x8006ca16ab0d942e,0xaa9e4bfd862af570,2 +np.float64,0x8000000000000000,0x8000000000000000,2 +np.float64,0xbfed373e02ba6e7c,0xbfef0b2b7bb767b3,2 +np.float64,0xa6cb0f694d962,0x2aa179dd16b0242b,2 +np.float64,0x7fec14626cf828c4,0x55434ca55b7c85d5,2 +np.float64,0x3fcda404513b4808,0x3fe3a68e8d977752,2 +np.float64,0xbfeb94995f772933,0xbfee74091d288b81,2 +np.float64,0x3fce2299a13c4530,0x3fe3c2603f28d23b,2 +np.float64,0xffd07f4534a0fe8a,0xd539a8a6ebc5a603,2 +np.float64,0x7fdb1c651e3638c9,0x553e478a6385c86b,2 +np.float64,0x3fec758336f8eb06,0x3feec5f3b92c8b28,2 +np.float64,0x796fc87cf2dfa,0x2a9f7184a4ad8c49,2 +np.float64,0x3fef9ba866ff3750,0x3fefde6a446fc2cd,2 +np.float64,0x964d26c72c9a5,0x2aa0e143f1820179,2 +np.float64,0xbfef6af750bed5ef,0xbfefce04870a97bd,2 +np.float64,0x3fe2f3961aa5e72c,0x3feadf769321a3ff,2 +np.float64,0xbfd6b706e9ad6e0e,0xbfe6a8141c5c3b5d,2 +np.float64,0x7fe0ecc40a21d987,0x55404d72c2b46a82,2 +np.float64,0xbfe560d19deac1a3,0xbfebf962681a42a4,2 +np.float64,0xbfea37170ab46e2e,0xbfedf136ee9df02b,2 +np.float64,0xbfebf78947b7ef12,0xbfee9847ef160257,2 +np.float64,0x800551f8312aa3f1,0xaa9bee7d3aa5491b,2 +np.float64,0xffed2513897a4a26,0xd5438a58c4ae28ec,2 +np.float64,0x7fd962d75cb2c5ae,0x553d9f8a0c2016f3,2 +np.float64,0x3fefdd8512bfbb0a,0x3feff47d8da7424d,2 +np.float64,0xbfefa5b43bff4b68,0xbfefe1ca42867af0,2 +np.float64,0xbfc8a2853531450c,0xbfe279bb7b965729,2 +np.float64,0x800c8843bc391088,0xaaa2951344e7b29b,2 +np.float64,0x7fe22587bae44b0e,0x5540af8bb58cfe86,2 +np.float64,0xbfe159fae822b3f6,0xbfea182394eafd8d,2 +np.float64,0xbfe6fdfd50edfbfa,0xbfeca93f2a3597d0,2 +np.float64,0xbfe5cd5afaeb9ab6,0xbfec286a8ce0470f,2 +np.float64,0xbfc84bb97f309774,0xbfe263ef0f8f1f6e,2 +np.float64,0x7fd9c1e548b383ca,0x553dc4556874ecb9,2 +np.float64,0x7fda43d33bb487a5,0x553df60f61532fc0,2 +np.float64,0xbfe774bd25eee97a,0xbfecda42e8578c1f,2 +np.float64,0x800df1f5ab9be3ec,0xaaa34184712e69db,2 +np.float64,0xbff0000000000000,0xbff0000000000000,2 +np.float64,0x3fe14ec21b629d84,0x3fea128244215713,2 +np.float64,0x7fc1ce7843239cf0,0x5534e3fa8285b7b8,2 +np.float64,0xbfe922b204724564,0xbfed86818687d649,2 +np.float64,0x3fc58924fb2b1248,0x3fe1aa715ff6ebbf,2 +np.float64,0x8008b637e4d16c70,0xaaa0760b53abcf46,2 +np.float64,0xffbf55bd4c3eab78,0xd53404a23091a842,2 +np.float64,0x9f6b4a753ed6a,0x2aa136ef9fef9596,2 +np.float64,0xbfd11da7f8a23b50,0xbfe49deb493710d8,2 +np.float64,0x800a2f07fcd45e10,0xaaa157237c98b4f6,2 +np.float64,0x3fdd4defa4ba9bdf,0x3fe8aa0bcf895f4f,2 +np.float64,0x7fe9b0ab05f36155,0x5542bc5335414473,2 +np.float64,0x3fe89c97de313930,0x3fed51a1189b8982,2 +np.float64,0x3fdd45c8773a8b91,0x3fe8a7c2096fbf5a,2 +np.float64,0xbfeb6f64daf6deca,0xbfee665167ef43ad,2 +np.float64,0xffdf9da1c4bf3b44,0xd53fdf141944a983,2 +np.float64,0x3fde092ed0bc125c,0x3fe8de25bfbfc2db,2 +np.float64,0xbfcb21f96b3643f4,0xbfe3147904c258cf,2 +np.float64,0x800c9c934f993927,0xaaa29f17c43f021b,2 +np.float64,0x9b91814d37230,0x2aa11329e59bf6b0,2 +np.float64,0x3fe28a7e0b6514fc,0x3feaad6d23e2eadd,2 +np.float64,0xffecf38395f9e706,0xd5437f3ee1cd61e4,2 +np.float64,0x3fcade92a935bd25,0x3fe3049f4c1da1d0,2 +np.float64,0x800ab25d95d564bc,0xaaa1a076d7c66e04,2 +np.float64,0xffc0989e1e21313c,0xd53467f3b8158298,2 +np.float64,0x3fd81523eeb02a48,0x3fe71a38d2da8a82,2 +np.float64,0x7fe5b9dd402b73ba,0x5541b7b9b8631010,2 +np.float64,0x2c160d94582c3,0x2a966e51b503a3d1,2 +np.float64,0x2c416ffa5882f,0x2a9675aaef8b29c4,2 +np.float64,0x7fefe2ff01bfc5fd,0x55442289faf22b86,2 +np.float64,0xbfd469bf5d28d37e,0xbfe5dd239ffdc7eb,2 +np.float64,0xbfdd56f3eabaade8,0xbfe8ac93244ca17b,2 +np.float64,0xbfe057b89160af71,0xbfe9941557340bb3,2 +np.float64,0x800c50e140b8a1c3,0xaaa2798ace9097ee,2 +np.float64,0xbfda5a8984b4b514,0xbfe7ce93d65a56b0,2 +np.float64,0xbfcd6458323ac8b0,0xbfe39872514127bf,2 +np.float64,0x3fefb1f5ebff63ec,0x3fefe5e761b49b89,2 +np.float64,0x3fea3abc1df47578,0x3fedf29a1c997863,2 +np.float64,0x7fcb4a528e3694a4,0x553815f169667213,2 +np.float64,0x8c77da7b18efc,0x2aa080e52bdedb54,2 +np.float64,0x800e5dde4c5cbbbd,0xaaa372b16fd8b1ad,2 +np.float64,0x3fd2976038a52ec0,0x3fe5316b4f79fdbc,2 +np.float64,0x69413a0ed2828,0x2a9dfacd9cb44286,2 +np.float64,0xbfebbac0bdb77582,0xbfee820d9288b631,2 +np.float64,0x1a12aa7c34256,0x2a92d407e073bbfe,2 +np.float64,0xbfc41a27c3283450,0xbfe143c8665b0d3c,2 +np.float64,0xffe4faa41369f548,0xd54183230e0ce613,2 +np.float64,0xbfdeae81f23d5d04,0xbfe90b734bf35b68,2 +np.float64,0x3fc984ba58330975,0x3fe2b19e9052008e,2 +np.float64,0x7fe6e51b8d2dca36,0x554207a74ae2bb39,2 +np.float64,0x80081a58a81034b2,0xaaa0117d4aff11c8,2 +np.float64,0x7fde3fddfe3c7fbb,0x553f67d0082acc67,2 +np.float64,0x3fac7c999038f933,0x3fd86ec2f5dc3aa4,2 +np.float64,0x7fa26b4c4c24d698,0x552a9e6ea8545c18,2 +np.float64,0x3fdacd06e6b59a0e,0x3fe7f0dc0e8f9c6d,2 +np.float64,0x80064b62cbec96c6,0xaa9d8ac0506fdd05,2 +np.float64,0xb858116170b1,0x2a8caea703d9ccc8,2 +np.float64,0xbfe8d94ccef1b29a,0xbfed69a8782cbf3d,2 +np.float64,0x8005607d6a6ac0fc,0xaa9c07cf8620b037,2 +np.float64,0xbfe66a52daacd4a6,0xbfec6b5e403e6864,2 +np.float64,0x7fc398c2e0273185,0x5535918245894606,2 +np.float64,0x74b2d7dce965c,0x2a9f077020defdbc,2 +np.float64,0x7fe8f7a4d9b1ef49,0x55428eeae210e8eb,2 +np.float64,0x80027deddc84fbdc,0xaa95b11ff9089745,2 +np.float64,0xffeba2a94e774552,0xd5433273f6568902,2 +np.float64,0x80002f8259405f05,0xaa8240b68d7b9dc4,2 +np.float64,0xbfdf0d84883e1b0a,0xbfe92532c69c5802,2 +np.float64,0xbfcdfa7b6b3bf4f8,0xbfe3b997a84d0914,2 +np.float64,0x800c18b04e183161,0xaaa25d46d60b15c6,2 +np.float64,0xffeaf1e37c35e3c6,0xd543092cd929ac19,2 +np.float64,0xbfc5aa07752b5410,0xbfe1b36ab5ec741f,2 +np.float64,0x3fe5c491d1eb8924,0x3fec24a1c3f6a178,2 +np.float64,0xbfeb736937f6e6d2,0xbfee67cd296e6fa9,2 +np.float64,0xffec3d5718787aad,0xd5435602e1a2cc43,2 +np.float64,0x7fe71e1da86e3c3a,0x55421691ead882cb,2 +np.float64,0x3fdd6ed0c93adda2,0x3fe8b341d066c43c,2 +np.float64,0x7fbe3d7a203c7af3,0x5533c83e53283430,2 +np.float64,0x3fdc20cb56384197,0x3fe854676360aba9,2 +np.float64,0xb7a1ac636f436,0x2aa20b9d40d66e78,2 +np.float64,0x3fb1491bb8229237,0x3fda0fabad1738ee,2 +np.float64,0xbfdf9c0ce73f381a,0xbfe94b716dbe35ee,2 +np.float64,0xbfbd4f0ad23a9e18,0xbfdf1397329a2dce,2 +np.float64,0xbfe4e0caac69c196,0xbfebc119b8a181cd,2 +np.float64,0x5753641aaea6d,0x2a9c2ba3e92b0cd2,2 +np.float64,0x72bb814ae5771,0x2a9eda92fada66de,2 +np.float64,0x57ed8f5aafdb3,0x2a9c3c2e1d42e609,2 +np.float64,0xffec33359c38666a,0xd54353b2acd0daf1,2 +np.float64,0x3fa5fe6e8c2bfce0,0x3fd66a0b3bf2720a,2 +np.float64,0xffe2dc8d7ca5b91a,0xd540e6ebc097d601,2 +np.float64,0x7fd99d260eb33a4b,0x553db626c9c75f78,2 +np.float64,0xbfe2dd73e425bae8,0xbfead4fc4b93a727,2 +np.float64,0xdcd4a583b9a95,0x2aa33094c9a17ad7,2 +np.float64,0x7fb0af6422215ec7,0x553039a606e8e64f,2 +np.float64,0x7fdfab6227bf56c3,0x553fe3b26164aeda,2 +np.float64,0x1e4d265e3c9a6,0x2a93cba8a1a8ae6d,2 +np.float64,0xbfdc7d097238fa12,0xbfe86ee2f24fd473,2 +np.float64,0x7fe5d35d29eba6b9,0x5541bea5878bce2b,2 +np.float64,0xffcb886a903710d4,0xd53828281710aab5,2 +np.float64,0xffe058c7ffe0b190,0xd5401d61e9a7cbcf,2 +np.float64,0x3ff0000000000000,0x3ff0000000000000,2 +np.float64,0xffd5b1c1132b6382,0xd53c1c839c098340,2 +np.float64,0x3fe2e7956725cf2b,0x3fead9c907b9d041,2 +np.float64,0x800a8ee293951dc6,0xaaa18ce3f079f118,2 +np.float64,0x7febcd3085b79a60,0x55433c47e1f822ad,2 +np.float64,0x3feb0e14cd761c2a,0x3fee423542102546,2 +np.float64,0x3fb45e6d0628bcda,0x3fdb86db67d0c992,2 +np.float64,0x7fa836e740306dce,0x552d2907cb8118b2,2 +np.float64,0x3fd15ba25b22b745,0x3fe4b6b018409d78,2 +np.float64,0xbfb59980ce2b3300,0xbfdc1206274cb51d,2 +np.float64,0x3fdef1b87fbde371,0x3fe91dafc62124a1,2 +np.float64,0x7fed37a4337a6f47,0x55438e7e0b50ae37,2 +np.float64,0xffe6c87633ad90ec,0xd542001f216ab448,2 +np.float64,0x8008d2548ab1a4a9,0xaaa087ad272d8e17,2 +np.float64,0xbfd1d6744da3ace8,0xbfe4e71965adda74,2 +np.float64,0xbfb27f751224fee8,0xbfdaa82132775406,2 +np.float64,0x3fe2b336ae65666d,0x3feac0e6b13ec2d2,2 +np.float64,0xffc6bac2262d7584,0xd536a951a2eecb49,2 +np.float64,0x7fdb661321b6cc25,0x553e62dfd7fcd3f3,2 +np.float64,0xffe83567d5706acf,0xd5425e4bb5027568,2 +np.float64,0xbf7f0693e03e0d00,0xbfc9235314d53f82,2 +np.float64,0x3feb32b218766564,0x3fee4fd5847f3722,2 +np.float64,0x3fec25d33df84ba6,0x3feea91fcd4aebab,2 +np.float64,0x7fe17abecb22f57d,0x55407a8ba661207c,2 +np.float64,0xbfe5674b1eeace96,0xbfebfc351708dc70,2 +np.float64,0xbfe51a2d2f6a345a,0xbfebda702c9d302a,2 +np.float64,0x3fec05584af80ab0,0x3fee9d502a7bf54d,2 +np.float64,0xffda8871dcb510e4,0xd53e10105f0365b5,2 +np.float64,0xbfc279c31824f388,0xbfe0c9354d871484,2 +np.float64,0x1cbed61e397dc,0x2a937364712cd518,2 +np.float64,0x800787d198af0fa4,0xaa9f5c847affa1d2,2 +np.float64,0x80079f6d65af3edc,0xaa9f7d2863368bbd,2 +np.float64,0xb942f1e97285e,0x2aa2193e0c513b7f,2 +np.float64,0x7fe9078263320f04,0x554292d85dee2c18,2 +np.float64,0xbfe4de0761a9bc0f,0xbfebbfe04116b829,2 +np.float64,0xbfdbe6f3fc37cde8,0xbfe843aea59a0749,2 +np.float64,0xffcb6c0de136d81c,0xd5381fd9c525b813,2 +np.float64,0x9b6bda9336d7c,0x2aa111c924c35386,2 +np.float64,0x3fe17eece422fdda,0x3fea2a9bacd78607,2 +np.float64,0xd8011c49b0024,0x2aa30c87574fc0c6,2 +np.float64,0xbfc0a08b3f214118,0xbfe034d48f0d8dc0,2 +np.float64,0x3fd60adb1eac15b8,0x3fe66e42e4e7e6b5,2 +np.float64,0x80011d68ea023ad3,0xaa909733befbb962,2 +np.float64,0xffb35ac32426b588,0xd5310c4be1c37270,2 +np.float64,0x3fee8b56c9bd16ae,0x3fef81d8d15f6939,2 +np.float64,0x3fdc10a45e382149,0x3fe84fbe4cf11e68,2 +np.float64,0xbfc85dc45e30bb88,0xbfe2687b5518abde,2 +np.float64,0x3fd53b85212a770a,0x3fe6270d6d920d0f,2 +np.float64,0x800fc158927f82b1,0xaaa40e303239586f,2 +np.float64,0x11af5e98235ed,0x2a908b04a790083f,2 +np.float64,0xbfe2a097afe54130,0xbfeab80269eece99,2 +np.float64,0xbfd74ac588ae958c,0xbfe6d8ca3828d0b8,2 +np.float64,0xffea18ab2ef43156,0xd542d579ab31df1e,2 +np.float64,0xbfecda7058f9b4e1,0xbfeeea29c33b7913,2 +np.float64,0x3fc4ac56ed2958b0,0x3fe16d3e2bd7806d,2 +np.float64,0x3feccc898cb99913,0x3feee531f217dcfa,2 +np.float64,0xffeb3a64c5b674c9,0xd5431a30a41f0905,2 +np.float64,0x3fe5a7ee212b4fdc,0x3fec1844af9076fc,2 +np.float64,0x80080fdb52301fb7,0xaaa00a8b4274db67,2 +np.float64,0x800b3e7e47d67cfd,0xaaa1ec2876959852,2 +np.float64,0x80063fb8ee2c7f73,0xaa9d7875c9f20d6f,2 +np.float64,0x7fdacf80d0b59f01,0x553e2acede4c62a8,2 +np.float64,0x401e9b24803d4,0x2a996a0a75d0e093,2 +np.float64,0x3fe6c29505ed852a,0x3fec907a6d8c10af,2 +np.float64,0x8005c04ee2cb809f,0xaa9caa9813faef46,2 +np.float64,0xbfe1360f21e26c1e,0xbfea06155d6985b6,2 +np.float64,0xffc70606682e0c0c,0xd536c239b9d4be0a,2 +np.float64,0x800e639afefcc736,0xaaa37547d0229a26,2 +np.float64,0x3fe5589290aab125,0x3febf5c925c4e6db,2 +np.float64,0x8003b59330276b27,0xaa98c47e44524335,2 +np.float64,0x800d67ec22dacfd8,0xaaa301251b6a730a,2 +np.float64,0x7fdaeb5025b5d69f,0x553e35397dfe87eb,2 +np.float64,0x3fdae32a24b5c654,0x3fe7f771bc108f6c,2 +np.float64,0xffe6c1fc93ad83f8,0xd541fe6a6a716756,2 +np.float64,0xbfd7b9c1d32f7384,0xbfe6fcdae563d638,2 +np.float64,0x800e1bea06fc37d4,0xaaa354c0bf61449c,2 +np.float64,0xbfd78f097aaf1e12,0xbfe6ef068329bdf4,2 +np.float64,0x7fea6a400874d47f,0x5542e905978ad722,2 +np.float64,0x8008b4377cb1686f,0xaaa074c87eee29f9,2 +np.float64,0x8002f3fb8d45e7f8,0xaa96f47ac539b614,2 +np.float64,0xbfcf2b3fd13e5680,0xbfe3fb91c0cc66ad,2 +np.float64,0xffecca2f5279945e,0xd54375f361075927,2 +np.float64,0x7ff0000000000000,0x7ff0000000000000,2 +np.float64,0x7f84d5a5a029ab4a,0x552178d1d4e8640e,2 +np.float64,0x3fea8a4b64351497,0x3fee10c332440eb2,2 +np.float64,0x800fe01ac1dfc036,0xaaa41b34d91a4bee,2 +np.float64,0x3fc0b3d8872167b1,0x3fe03b178d354f8d,2 +np.float64,0x5ee8b0acbdd17,0x2a9cf69f2e317729,2 +np.float64,0x8006ef0407adde09,0xaa9e82888f3dd83e,2 +np.float64,0x7fdbb08a07b76113,0x553e7e4e35b938b9,2 +np.float64,0x49663f9c92cc9,0x2a9a95e0affe5108,2 +np.float64,0x7fd9b87e79b370fc,0x553dc0b5cff3dc7d,2 +np.float64,0xbfd86ae657b0d5cc,0xbfe73584d02bdd2b,2 +np.float64,0x3fd4d4a13729a942,0x3fe6030a962aaaf8,2 +np.float64,0x7fcc246bcb3848d7,0x5538557309449bba,2 +np.float64,0xbfdc86a7d5b90d50,0xbfe871a2983c2a29,2 +np.float64,0xd2a6e995a54dd,0x2aa2e3e9c0fdd6c0,2 +np.float64,0x3f92eb447825d680,0x3fd0eb4fd2ba16d2,2 +np.float64,0x800d4001697a8003,0xaaa2ee358661b75c,2 +np.float64,0x3fd3705fd1a6e0c0,0x3fe582a6f321d7d6,2 +np.float64,0xbfcfdf51533fbea4,0xbfe421c3bdd9f2a3,2 +np.float64,0x3fe268e87964d1d1,0x3fea9d47e08aad8a,2 +np.float64,0x24b8901e49713,0x2a951adeefe7b31b,2 +np.float64,0x3fedb35d687b66bb,0x3fef36e440850bf8,2 +np.float64,0x3fb7ab5cbe2f56c0,0x3fdcf097380721c6,2 +np.float64,0x3f8c4eaa10389d54,0x3fceb7ecb605b73b,2 +np.float64,0xbfed831ed6fb063e,0xbfef25f462a336f1,2 +np.float64,0x7fd8c52112318a41,0x553d61b0ee609f58,2 +np.float64,0xbfe71c4ff76e38a0,0xbfecb5d32e789771,2 +np.float64,0xbfe35fb7b166bf70,0xbfeb12328e75ee6b,2 +np.float64,0x458e1a3a8b1c4,0x2a9a1cebadc81342,2 +np.float64,0x8003c1b3ad478368,0xaa98df5ed060b28c,2 +np.float64,0x7ff4000000000000,0x7ffc000000000000,2 +np.float64,0x7fe17098c162e131,0x5540775a9a3a104f,2 +np.float64,0xbfd95cb71732b96e,0xbfe7812acf7ea511,2 +np.float64,0x8000000000000001,0xa990000000000000,2 +np.float64,0xbfde0e7d9ebc1cfc,0xbfe8df9ca9e49a5b,2 +np.float64,0xffef4f67143e9ecd,0xd5440348a6a2f231,2 +np.float64,0x7fe37d23c826fa47,0x5541165de17caa03,2 +np.float64,0xbfcc0e5f85381cc0,0xbfe34b44b0deefe9,2 +np.float64,0x3fe858f1c470b1e4,0x3fed36ab90557d89,2 +np.float64,0x800e857278fd0ae5,0xaaa3847d13220545,2 +np.float64,0x3febd31a66f7a635,0x3fee8af90e66b043,2 +np.float64,0x7fd3fde1b127fbc2,0x553b5b186a49b968,2 +np.float64,0x3fd3dabb8b27b577,0x3fe5a99b446bed26,2 +np.float64,0xffeb4500f1768a01,0xd5431cab828e254a,2 +np.float64,0xffccca8fc6399520,0xd53884f8b505e79e,2 +np.float64,0xffeee9406b7dd280,0xd543ed6d27a1a899,2 +np.float64,0xffecdde0f0f9bbc1,0xd5437a6258b14092,2 +np.float64,0xe6b54005cd6a8,0x2aa378c25938dfda,2 +np.float64,0x7fe610f1022c21e1,0x5541cf460b972925,2 +np.float64,0xbfe5a170ec6b42e2,0xbfec1576081e3232,2 diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-cos.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-cos.csv new file mode 100644 index 0000000..258ae48 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-cos.csv @@ -0,0 +1,1375 @@ +dtype,input,output,ulperrortol +## +ve denormals ## +np.float32,0x004b4716,0x3f800000,2 +np.float32,0x007b2490,0x3f800000,2 +np.float32,0x007c99fa,0x3f800000,2 +np.float32,0x00734a0c,0x3f800000,2 +np.float32,0x0070de24,0x3f800000,2 +np.float32,0x007fffff,0x3f800000,2 +np.float32,0x00000001,0x3f800000,2 +## -ve denormals ## +np.float32,0x80495d65,0x3f800000,2 +np.float32,0x806894f6,0x3f800000,2 +np.float32,0x80555a76,0x3f800000,2 +np.float32,0x804e1fb8,0x3f800000,2 +np.float32,0x80687de9,0x3f800000,2 +np.float32,0x807fffff,0x3f800000,2 +np.float32,0x80000001,0x3f800000,2 +## +/-0.0f, +/-FLT_MIN +/-FLT_MAX ## +np.float32,0x00000000,0x3f800000,2 +np.float32,0x80000000,0x3f800000,2 +np.float32,0x00800000,0x3f800000,2 +np.float32,0x80800000,0x3f800000,2 +## 1.00f + 0x00000001 ## +np.float32,0x3f800000,0x3f0a5140,2 +np.float32,0x3f800001,0x3f0a513f,2 +np.float32,0x3f800002,0x3f0a513d,2 +np.float32,0xc090a8b0,0xbe4332ce,2 +np.float32,0x41ce3184,0x3f4d1de1,2 +np.float32,0xc1d85848,0xbeaa8980,2 +np.float32,0x402b8820,0xbf653aa3,2 +np.float32,0x42b4e454,0xbf4a338b,2 +np.float32,0x42a67a60,0x3c58202e,2 +np.float32,0x41d92388,0xbed987c7,2 +np.float32,0x422dd66c,0x3f5dcab3,2 +np.float32,0xc28f5be6,0xbf5688d8,2 +np.float32,0x41ab2674,0xbf53aa3b,2 +np.float32,0x3f490fdb,0x3f3504f3,2 +np.float32,0xbf490fdb,0x3f3504f3,2 +np.float32,0x3fc90fdb,0xb33bbd2e,2 +np.float32,0xbfc90fdb,0xb33bbd2e,2 +np.float32,0x40490fdb,0xbf800000,2 +np.float32,0xc0490fdb,0xbf800000,2 +np.float32,0x3fc90fdb,0xb33bbd2e,2 +np.float32,0xbfc90fdb,0xb33bbd2e,2 +np.float32,0x40490fdb,0xbf800000,2 +np.float32,0xc0490fdb,0xbf800000,2 +np.float32,0x40c90fdb,0x3f800000,2 +np.float32,0xc0c90fdb,0x3f800000,2 +np.float32,0x4016cbe4,0xbf3504f3,2 +np.float32,0xc016cbe4,0xbf3504f3,2 +np.float32,0x4096cbe4,0x324cde2e,2 +np.float32,0xc096cbe4,0x324cde2e,2 +np.float32,0x4116cbe4,0xbf800000,2 +np.float32,0xc116cbe4,0xbf800000,2 +np.float32,0x40490fdb,0xbf800000,2 +np.float32,0xc0490fdb,0xbf800000,2 +np.float32,0x40c90fdb,0x3f800000,2 +np.float32,0xc0c90fdb,0x3f800000,2 +np.float32,0x41490fdb,0x3f800000,2 +np.float32,0xc1490fdb,0x3f800000,2 +np.float32,0x407b53d2,0xbf3504f1,2 +np.float32,0xc07b53d2,0xbf3504f1,2 +np.float32,0x40fb53d2,0xb4b5563d,2 +np.float32,0xc0fb53d2,0xb4b5563d,2 +np.float32,0x417b53d2,0xbf800000,2 +np.float32,0xc17b53d2,0xbf800000,2 +np.float32,0x4096cbe4,0x324cde2e,2 +np.float32,0xc096cbe4,0x324cde2e,2 +np.float32,0x4116cbe4,0xbf800000,2 +np.float32,0xc116cbe4,0xbf800000,2 +np.float32,0x4196cbe4,0x3f800000,2 +np.float32,0xc196cbe4,0x3f800000,2 +np.float32,0x40afede0,0x3f3504f7,2 +np.float32,0xc0afede0,0x3f3504f7,2 +np.float32,0x412fede0,0x353222c4,2 +np.float32,0xc12fede0,0x353222c4,2 +np.float32,0x41afede0,0xbf800000,2 +np.float32,0xc1afede0,0xbf800000,2 +np.float32,0x40c90fdb,0x3f800000,2 +np.float32,0xc0c90fdb,0x3f800000,2 +np.float32,0x41490fdb,0x3f800000,2 +np.float32,0xc1490fdb,0x3f800000,2 +np.float32,0x41c90fdb,0x3f800000,2 +np.float32,0xc1c90fdb,0x3f800000,2 +np.float32,0x40e231d6,0x3f3504f3,2 +np.float32,0xc0e231d6,0x3f3504f3,2 +np.float32,0x416231d6,0xb319a6a2,2 +np.float32,0xc16231d6,0xb319a6a2,2 +np.float32,0x41e231d6,0xbf800000,2 +np.float32,0xc1e231d6,0xbf800000,2 +np.float32,0x40fb53d2,0xb4b5563d,2 +np.float32,0xc0fb53d2,0xb4b5563d,2 +np.float32,0x417b53d2,0xbf800000,2 +np.float32,0xc17b53d2,0xbf800000,2 +np.float32,0x41fb53d2,0x3f800000,2 +np.float32,0xc1fb53d2,0x3f800000,2 +np.float32,0x410a3ae7,0xbf3504fb,2 +np.float32,0xc10a3ae7,0xbf3504fb,2 +np.float32,0x418a3ae7,0x35b08908,2 +np.float32,0xc18a3ae7,0x35b08908,2 +np.float32,0x420a3ae7,0xbf800000,2 +np.float32,0xc20a3ae7,0xbf800000,2 +np.float32,0x4116cbe4,0xbf800000,2 +np.float32,0xc116cbe4,0xbf800000,2 +np.float32,0x4196cbe4,0x3f800000,2 +np.float32,0xc196cbe4,0x3f800000,2 +np.float32,0x4216cbe4,0x3f800000,2 +np.float32,0xc216cbe4,0x3f800000,2 +np.float32,0x41235ce2,0xbf3504ef,2 +np.float32,0xc1235ce2,0xbf3504ef,2 +np.float32,0x41a35ce2,0xb53889b6,2 +np.float32,0xc1a35ce2,0xb53889b6,2 +np.float32,0x42235ce2,0xbf800000,2 +np.float32,0xc2235ce2,0xbf800000,2 +np.float32,0x412fede0,0x353222c4,2 +np.float32,0xc12fede0,0x353222c4,2 +np.float32,0x41afede0,0xbf800000,2 +np.float32,0xc1afede0,0xbf800000,2 +np.float32,0x422fede0,0x3f800000,2 +np.float32,0xc22fede0,0x3f800000,2 +np.float32,0x413c7edd,0x3f3504f4,2 +np.float32,0xc13c7edd,0x3f3504f4,2 +np.float32,0x41bc7edd,0x33800add,2 +np.float32,0xc1bc7edd,0x33800add,2 +np.float32,0x423c7edd,0xbf800000,2 +np.float32,0xc23c7edd,0xbf800000,2 +np.float32,0x41490fdb,0x3f800000,2 +np.float32,0xc1490fdb,0x3f800000,2 +np.float32,0x41c90fdb,0x3f800000,2 +np.float32,0xc1c90fdb,0x3f800000,2 +np.float32,0x42490fdb,0x3f800000,2 +np.float32,0xc2490fdb,0x3f800000,2 +np.float32,0x4155a0d9,0x3f3504eb,2 +np.float32,0xc155a0d9,0x3f3504eb,2 +np.float32,0x41d5a0d9,0xb5b3bc81,2 +np.float32,0xc1d5a0d9,0xb5b3bc81,2 +np.float32,0x4255a0d9,0xbf800000,2 +np.float32,0xc255a0d9,0xbf800000,2 +np.float32,0x416231d6,0xb319a6a2,2 +np.float32,0xc16231d6,0xb319a6a2,2 +np.float32,0x41e231d6,0xbf800000,2 +np.float32,0xc1e231d6,0xbf800000,2 +np.float32,0x426231d6,0x3f800000,2 +np.float32,0xc26231d6,0x3f800000,2 +np.float32,0x416ec2d4,0xbf3504f7,2 +np.float32,0xc16ec2d4,0xbf3504f7,2 +np.float32,0x41eec2d4,0x353ef0a7,2 +np.float32,0xc1eec2d4,0x353ef0a7,2 +np.float32,0x426ec2d4,0xbf800000,2 +np.float32,0xc26ec2d4,0xbf800000,2 +np.float32,0x417b53d2,0xbf800000,2 +np.float32,0xc17b53d2,0xbf800000,2 +np.float32,0x41fb53d2,0x3f800000,2 +np.float32,0xc1fb53d2,0x3f800000,2 +np.float32,0x427b53d2,0x3f800000,2 +np.float32,0xc27b53d2,0x3f800000,2 +np.float32,0x4183f268,0xbf3504e7,2 +np.float32,0xc183f268,0xbf3504e7,2 +np.float32,0x4203f268,0xb6059a13,2 +np.float32,0xc203f268,0xb6059a13,2 +np.float32,0x4283f268,0xbf800000,2 +np.float32,0xc283f268,0xbf800000,2 +np.float32,0x418a3ae7,0x35b08908,2 +np.float32,0xc18a3ae7,0x35b08908,2 +np.float32,0x420a3ae7,0xbf800000,2 +np.float32,0xc20a3ae7,0xbf800000,2 +np.float32,0x428a3ae7,0x3f800000,2 +np.float32,0xc28a3ae7,0x3f800000,2 +np.float32,0x41908365,0x3f3504f0,2 +np.float32,0xc1908365,0x3f3504f0,2 +np.float32,0x42108365,0xb512200d,2 +np.float32,0xc2108365,0xb512200d,2 +np.float32,0x42908365,0xbf800000,2 +np.float32,0xc2908365,0xbf800000,2 +np.float32,0x4196cbe4,0x3f800000,2 +np.float32,0xc196cbe4,0x3f800000,2 +np.float32,0x4216cbe4,0x3f800000,2 +np.float32,0xc216cbe4,0x3f800000,2 +np.float32,0x4296cbe4,0x3f800000,2 +np.float32,0xc296cbe4,0x3f800000,2 +np.float32,0x419d1463,0x3f3504ef,2 +np.float32,0xc19d1463,0x3f3504ef,2 +np.float32,0x421d1463,0xb5455799,2 +np.float32,0xc21d1463,0xb5455799,2 +np.float32,0x429d1463,0xbf800000,2 +np.float32,0xc29d1463,0xbf800000,2 +np.float32,0x41a35ce2,0xb53889b6,2 +np.float32,0xc1a35ce2,0xb53889b6,2 +np.float32,0x42235ce2,0xbf800000,2 +np.float32,0xc2235ce2,0xbf800000,2 +np.float32,0x42a35ce2,0x3f800000,2 +np.float32,0xc2a35ce2,0x3f800000,2 +np.float32,0x41a9a561,0xbf3504ff,2 +np.float32,0xc1a9a561,0xbf3504ff,2 +np.float32,0x4229a561,0x360733d0,2 +np.float32,0xc229a561,0x360733d0,2 +np.float32,0x42a9a561,0xbf800000,2 +np.float32,0xc2a9a561,0xbf800000,2 +np.float32,0x41afede0,0xbf800000,2 +np.float32,0xc1afede0,0xbf800000,2 +np.float32,0x422fede0,0x3f800000,2 +np.float32,0xc22fede0,0x3f800000,2 +np.float32,0x42afede0,0x3f800000,2 +np.float32,0xc2afede0,0x3f800000,2 +np.float32,0x41b6365e,0xbf3504f6,2 +np.float32,0xc1b6365e,0xbf3504f6,2 +np.float32,0x4236365e,0x350bb91c,2 +np.float32,0xc236365e,0x350bb91c,2 +np.float32,0x42b6365e,0xbf800000,2 +np.float32,0xc2b6365e,0xbf800000,2 +np.float32,0x41bc7edd,0x33800add,2 +np.float32,0xc1bc7edd,0x33800add,2 +np.float32,0x423c7edd,0xbf800000,2 +np.float32,0xc23c7edd,0xbf800000,2 +np.float32,0x42bc7edd,0x3f800000,2 +np.float32,0xc2bc7edd,0x3f800000,2 +np.float32,0x41c2c75c,0x3f3504f8,2 +np.float32,0xc1c2c75c,0x3f3504f8,2 +np.float32,0x4242c75c,0x354bbe8a,2 +np.float32,0xc242c75c,0x354bbe8a,2 +np.float32,0x42c2c75c,0xbf800000,2 +np.float32,0xc2c2c75c,0xbf800000,2 +np.float32,0x41c90fdb,0x3f800000,2 +np.float32,0xc1c90fdb,0x3f800000,2 +np.float32,0x42490fdb,0x3f800000,2 +np.float32,0xc2490fdb,0x3f800000,2 +np.float32,0x42c90fdb,0x3f800000,2 +np.float32,0xc2c90fdb,0x3f800000,2 +np.float32,0x41cf585a,0x3f3504e7,2 +np.float32,0xc1cf585a,0x3f3504e7,2 +np.float32,0x424f585a,0xb608cd8c,2 +np.float32,0xc24f585a,0xb608cd8c,2 +np.float32,0x42cf585a,0xbf800000,2 +np.float32,0xc2cf585a,0xbf800000,2 +np.float32,0x41d5a0d9,0xb5b3bc81,2 +np.float32,0xc1d5a0d9,0xb5b3bc81,2 +np.float32,0x4255a0d9,0xbf800000,2 +np.float32,0xc255a0d9,0xbf800000,2 +np.float32,0x42d5a0d9,0x3f800000,2 +np.float32,0xc2d5a0d9,0x3f800000,2 +np.float32,0x41dbe958,0xbf350507,2 +np.float32,0xc1dbe958,0xbf350507,2 +np.float32,0x425be958,0x365eab75,2 +np.float32,0xc25be958,0x365eab75,2 +np.float32,0x42dbe958,0xbf800000,2 +np.float32,0xc2dbe958,0xbf800000,2 +np.float32,0x41e231d6,0xbf800000,2 +np.float32,0xc1e231d6,0xbf800000,2 +np.float32,0x426231d6,0x3f800000,2 +np.float32,0xc26231d6,0x3f800000,2 +np.float32,0x42e231d6,0x3f800000,2 +np.float32,0xc2e231d6,0x3f800000,2 +np.float32,0x41e87a55,0xbf3504ef,2 +np.float32,0xc1e87a55,0xbf3504ef,2 +np.float32,0x42687a55,0xb552257b,2 +np.float32,0xc2687a55,0xb552257b,2 +np.float32,0x42e87a55,0xbf800000,2 +np.float32,0xc2e87a55,0xbf800000,2 +np.float32,0x41eec2d4,0x353ef0a7,2 +np.float32,0xc1eec2d4,0x353ef0a7,2 +np.float32,0x426ec2d4,0xbf800000,2 +np.float32,0xc26ec2d4,0xbf800000,2 +np.float32,0x42eec2d4,0x3f800000,2 +np.float32,0xc2eec2d4,0x3f800000,2 +np.float32,0x41f50b53,0x3f3504ff,2 +np.float32,0xc1f50b53,0x3f3504ff,2 +np.float32,0x42750b53,0x360a6748,2 +np.float32,0xc2750b53,0x360a6748,2 +np.float32,0x42f50b53,0xbf800000,2 +np.float32,0xc2f50b53,0xbf800000,2 +np.float32,0x41fb53d2,0x3f800000,2 +np.float32,0xc1fb53d2,0x3f800000,2 +np.float32,0x427b53d2,0x3f800000,2 +np.float32,0xc27b53d2,0x3f800000,2 +np.float32,0x42fb53d2,0x3f800000,2 +np.float32,0xc2fb53d2,0x3f800000,2 +np.float32,0x4200ce28,0x3f3504f6,2 +np.float32,0xc200ce28,0x3f3504f6,2 +np.float32,0x4280ce28,0x34fdd672,2 +np.float32,0xc280ce28,0x34fdd672,2 +np.float32,0x4300ce28,0xbf800000,2 +np.float32,0xc300ce28,0xbf800000,2 +np.float32,0x4203f268,0xb6059a13,2 +np.float32,0xc203f268,0xb6059a13,2 +np.float32,0x4283f268,0xbf800000,2 +np.float32,0xc283f268,0xbf800000,2 +np.float32,0x4303f268,0x3f800000,2 +np.float32,0xc303f268,0x3f800000,2 +np.float32,0x420716a7,0xbf3504f8,2 +np.float32,0xc20716a7,0xbf3504f8,2 +np.float32,0x428716a7,0x35588c6d,2 +np.float32,0xc28716a7,0x35588c6d,2 +np.float32,0x430716a7,0xbf800000,2 +np.float32,0xc30716a7,0xbf800000,2 +np.float32,0x420a3ae7,0xbf800000,2 +np.float32,0xc20a3ae7,0xbf800000,2 +np.float32,0x428a3ae7,0x3f800000,2 +np.float32,0xc28a3ae7,0x3f800000,2 +np.float32,0x430a3ae7,0x3f800000,2 +np.float32,0xc30a3ae7,0x3f800000,2 +np.float32,0x420d5f26,0xbf3504e7,2 +np.float32,0xc20d5f26,0xbf3504e7,2 +np.float32,0x428d5f26,0xb60c0105,2 +np.float32,0xc28d5f26,0xb60c0105,2 +np.float32,0x430d5f26,0xbf800000,2 +np.float32,0xc30d5f26,0xbf800000,2 +np.float32,0x42108365,0xb512200d,2 +np.float32,0xc2108365,0xb512200d,2 +np.float32,0x42908365,0xbf800000,2 +np.float32,0xc2908365,0xbf800000,2 +np.float32,0x43108365,0x3f800000,2 +np.float32,0xc3108365,0x3f800000,2 +np.float32,0x4213a7a5,0x3f350507,2 +np.float32,0xc213a7a5,0x3f350507,2 +np.float32,0x4293a7a5,0x3661deee,2 +np.float32,0xc293a7a5,0x3661deee,2 +np.float32,0x4313a7a5,0xbf800000,2 +np.float32,0xc313a7a5,0xbf800000,2 +np.float32,0x4216cbe4,0x3f800000,2 +np.float32,0xc216cbe4,0x3f800000,2 +np.float32,0x4296cbe4,0x3f800000,2 +np.float32,0xc296cbe4,0x3f800000,2 +np.float32,0x4316cbe4,0x3f800000,2 +np.float32,0xc316cbe4,0x3f800000,2 +np.float32,0x4219f024,0x3f3504d8,2 +np.float32,0xc219f024,0x3f3504d8,2 +np.float32,0x4299f024,0xb69bde6c,2 +np.float32,0xc299f024,0xb69bde6c,2 +np.float32,0x4319f024,0xbf800000,2 +np.float32,0xc319f024,0xbf800000,2 +np.float32,0x421d1463,0xb5455799,2 +np.float32,0xc21d1463,0xb5455799,2 +np.float32,0x429d1463,0xbf800000,2 +np.float32,0xc29d1463,0xbf800000,2 +np.float32,0x431d1463,0x3f800000,2 +np.float32,0xc31d1463,0x3f800000,2 +np.float32,0x422038a3,0xbf350516,2 +np.float32,0xc22038a3,0xbf350516,2 +np.float32,0x42a038a3,0x36c6cd61,2 +np.float32,0xc2a038a3,0x36c6cd61,2 +np.float32,0x432038a3,0xbf800000,2 +np.float32,0xc32038a3,0xbf800000,2 +np.float32,0x42235ce2,0xbf800000,2 +np.float32,0xc2235ce2,0xbf800000,2 +np.float32,0x42a35ce2,0x3f800000,2 +np.float32,0xc2a35ce2,0x3f800000,2 +np.float32,0x43235ce2,0x3f800000,2 +np.float32,0xc3235ce2,0x3f800000,2 +np.float32,0x42268121,0xbf3504f6,2 +np.float32,0xc2268121,0xbf3504f6,2 +np.float32,0x42a68121,0x34e43aac,2 +np.float32,0xc2a68121,0x34e43aac,2 +np.float32,0x43268121,0xbf800000,2 +np.float32,0xc3268121,0xbf800000,2 +np.float32,0x4229a561,0x360733d0,2 +np.float32,0xc229a561,0x360733d0,2 +np.float32,0x42a9a561,0xbf800000,2 +np.float32,0xc2a9a561,0xbf800000,2 +np.float32,0x4329a561,0x3f800000,2 +np.float32,0xc329a561,0x3f800000,2 +np.float32,0x422cc9a0,0x3f3504f8,2 +np.float32,0xc22cc9a0,0x3f3504f8,2 +np.float32,0x42acc9a0,0x35655a50,2 +np.float32,0xc2acc9a0,0x35655a50,2 +np.float32,0x432cc9a0,0xbf800000,2 +np.float32,0xc32cc9a0,0xbf800000,2 +np.float32,0x422fede0,0x3f800000,2 +np.float32,0xc22fede0,0x3f800000,2 +np.float32,0x42afede0,0x3f800000,2 +np.float32,0xc2afede0,0x3f800000,2 +np.float32,0x432fede0,0x3f800000,2 +np.float32,0xc32fede0,0x3f800000,2 +np.float32,0x4233121f,0x3f3504e7,2 +np.float32,0xc233121f,0x3f3504e7,2 +np.float32,0x42b3121f,0xb60f347d,2 +np.float32,0xc2b3121f,0xb60f347d,2 +np.float32,0x4333121f,0xbf800000,2 +np.float32,0xc333121f,0xbf800000,2 +np.float32,0x4236365e,0x350bb91c,2 +np.float32,0xc236365e,0x350bb91c,2 +np.float32,0x42b6365e,0xbf800000,2 +np.float32,0xc2b6365e,0xbf800000,2 +np.float32,0x4336365e,0x3f800000,2 +np.float32,0xc336365e,0x3f800000,2 +np.float32,0x42395a9e,0xbf350507,2 +np.float32,0xc2395a9e,0xbf350507,2 +np.float32,0x42b95a9e,0x36651267,2 +np.float32,0xc2b95a9e,0x36651267,2 +np.float32,0x43395a9e,0xbf800000,2 +np.float32,0xc3395a9e,0xbf800000,2 +np.float32,0x423c7edd,0xbf800000,2 +np.float32,0xc23c7edd,0xbf800000,2 +np.float32,0x42bc7edd,0x3f800000,2 +np.float32,0xc2bc7edd,0x3f800000,2 +np.float32,0x433c7edd,0x3f800000,2 +np.float32,0xc33c7edd,0x3f800000,2 +np.float32,0x423fa31d,0xbf3504d7,2 +np.float32,0xc23fa31d,0xbf3504d7,2 +np.float32,0x42bfa31d,0xb69d7828,2 +np.float32,0xc2bfa31d,0xb69d7828,2 +np.float32,0x433fa31d,0xbf800000,2 +np.float32,0xc33fa31d,0xbf800000,2 +np.float32,0x4242c75c,0x354bbe8a,2 +np.float32,0xc242c75c,0x354bbe8a,2 +np.float32,0x42c2c75c,0xbf800000,2 +np.float32,0xc2c2c75c,0xbf800000,2 +np.float32,0x4342c75c,0x3f800000,2 +np.float32,0xc342c75c,0x3f800000,2 +np.float32,0x4245eb9c,0x3f350517,2 +np.float32,0xc245eb9c,0x3f350517,2 +np.float32,0x42c5eb9c,0x36c8671d,2 +np.float32,0xc2c5eb9c,0x36c8671d,2 +np.float32,0x4345eb9c,0xbf800000,2 +np.float32,0xc345eb9c,0xbf800000,2 +np.float32,0x42490fdb,0x3f800000,2 +np.float32,0xc2490fdb,0x3f800000,2 +np.float32,0x42c90fdb,0x3f800000,2 +np.float32,0xc2c90fdb,0x3f800000,2 +np.float32,0x43490fdb,0x3f800000,2 +np.float32,0xc3490fdb,0x3f800000,2 +np.float32,0x424c341a,0x3f3504f5,2 +np.float32,0xc24c341a,0x3f3504f5,2 +np.float32,0x42cc341a,0x34ca9ee6,2 +np.float32,0xc2cc341a,0x34ca9ee6,2 +np.float32,0x434c341a,0xbf800000,2 +np.float32,0xc34c341a,0xbf800000,2 +np.float32,0x424f585a,0xb608cd8c,2 +np.float32,0xc24f585a,0xb608cd8c,2 +np.float32,0x42cf585a,0xbf800000,2 +np.float32,0xc2cf585a,0xbf800000,2 +np.float32,0x434f585a,0x3f800000,2 +np.float32,0xc34f585a,0x3f800000,2 +np.float32,0x42527c99,0xbf3504f9,2 +np.float32,0xc2527c99,0xbf3504f9,2 +np.float32,0x42d27c99,0x35722833,2 +np.float32,0xc2d27c99,0x35722833,2 +np.float32,0x43527c99,0xbf800000,2 +np.float32,0xc3527c99,0xbf800000,2 +np.float32,0x4255a0d9,0xbf800000,2 +np.float32,0xc255a0d9,0xbf800000,2 +np.float32,0x42d5a0d9,0x3f800000,2 +np.float32,0xc2d5a0d9,0x3f800000,2 +np.float32,0x4355a0d9,0x3f800000,2 +np.float32,0xc355a0d9,0x3f800000,2 +np.float32,0x4258c518,0xbf3504e6,2 +np.float32,0xc258c518,0xbf3504e6,2 +np.float32,0x42d8c518,0xb61267f6,2 +np.float32,0xc2d8c518,0xb61267f6,2 +np.float32,0x4358c518,0xbf800000,2 +np.float32,0xc358c518,0xbf800000,2 +np.float32,0x425be958,0x365eab75,2 +np.float32,0xc25be958,0x365eab75,2 +np.float32,0x42dbe958,0xbf800000,2 +np.float32,0xc2dbe958,0xbf800000,2 +np.float32,0x435be958,0x3f800000,2 +np.float32,0xc35be958,0x3f800000,2 +np.float32,0x425f0d97,0x3f350508,2 +np.float32,0xc25f0d97,0x3f350508,2 +np.float32,0x42df0d97,0x366845e0,2 +np.float32,0xc2df0d97,0x366845e0,2 +np.float32,0x435f0d97,0xbf800000,2 +np.float32,0xc35f0d97,0xbf800000,2 +np.float32,0x426231d6,0x3f800000,2 +np.float32,0xc26231d6,0x3f800000,2 +np.float32,0x42e231d6,0x3f800000,2 +np.float32,0xc2e231d6,0x3f800000,2 +np.float32,0x436231d6,0x3f800000,2 +np.float32,0xc36231d6,0x3f800000,2 +np.float32,0x42655616,0x3f3504d7,2 +np.float32,0xc2655616,0x3f3504d7,2 +np.float32,0x42e55616,0xb69f11e5,2 +np.float32,0xc2e55616,0xb69f11e5,2 +np.float32,0x43655616,0xbf800000,2 +np.float32,0xc3655616,0xbf800000,2 +np.float32,0x42687a55,0xb552257b,2 +np.float32,0xc2687a55,0xb552257b,2 +np.float32,0x42e87a55,0xbf800000,2 +np.float32,0xc2e87a55,0xbf800000,2 +np.float32,0x43687a55,0x3f800000,2 +np.float32,0xc3687a55,0x3f800000,2 +np.float32,0x426b9e95,0xbf350517,2 +np.float32,0xc26b9e95,0xbf350517,2 +np.float32,0x42eb9e95,0x36ca00d9,2 +np.float32,0xc2eb9e95,0x36ca00d9,2 +np.float32,0x436b9e95,0xbf800000,2 +np.float32,0xc36b9e95,0xbf800000,2 +np.float32,0x426ec2d4,0xbf800000,2 +np.float32,0xc26ec2d4,0xbf800000,2 +np.float32,0x42eec2d4,0x3f800000,2 +np.float32,0xc2eec2d4,0x3f800000,2 +np.float32,0x436ec2d4,0x3f800000,2 +np.float32,0xc36ec2d4,0x3f800000,2 +np.float32,0x4271e713,0xbf3504f5,2 +np.float32,0xc271e713,0xbf3504f5,2 +np.float32,0x42f1e713,0x34b10321,2 +np.float32,0xc2f1e713,0x34b10321,2 +np.float32,0x4371e713,0xbf800000,2 +np.float32,0xc371e713,0xbf800000,2 +np.float32,0x42750b53,0x360a6748,2 +np.float32,0xc2750b53,0x360a6748,2 +np.float32,0x42f50b53,0xbf800000,2 +np.float32,0xc2f50b53,0xbf800000,2 +np.float32,0x43750b53,0x3f800000,2 +np.float32,0xc3750b53,0x3f800000,2 +np.float32,0x42782f92,0x3f3504f9,2 +np.float32,0xc2782f92,0x3f3504f9,2 +np.float32,0x42f82f92,0x357ef616,2 +np.float32,0xc2f82f92,0x357ef616,2 +np.float32,0x43782f92,0xbf800000,2 +np.float32,0xc3782f92,0xbf800000,2 +np.float32,0x427b53d2,0x3f800000,2 +np.float32,0xc27b53d2,0x3f800000,2 +np.float32,0x42fb53d2,0x3f800000,2 +np.float32,0xc2fb53d2,0x3f800000,2 +np.float32,0x437b53d2,0x3f800000,2 +np.float32,0xc37b53d2,0x3f800000,2 +np.float32,0x427e7811,0x3f3504e6,2 +np.float32,0xc27e7811,0x3f3504e6,2 +np.float32,0x42fe7811,0xb6159b6f,2 +np.float32,0xc2fe7811,0xb6159b6f,2 +np.float32,0x437e7811,0xbf800000,2 +np.float32,0xc37e7811,0xbf800000,2 +np.float32,0x4280ce28,0x34fdd672,2 +np.float32,0xc280ce28,0x34fdd672,2 +np.float32,0x4300ce28,0xbf800000,2 +np.float32,0xc300ce28,0xbf800000,2 +np.float32,0x4380ce28,0x3f800000,2 +np.float32,0xc380ce28,0x3f800000,2 +np.float32,0x42826048,0xbf350508,2 +np.float32,0xc2826048,0xbf350508,2 +np.float32,0x43026048,0x366b7958,2 +np.float32,0xc3026048,0x366b7958,2 +np.float32,0x43826048,0xbf800000,2 +np.float32,0xc3826048,0xbf800000,2 +np.float32,0x4283f268,0xbf800000,2 +np.float32,0xc283f268,0xbf800000,2 +np.float32,0x4303f268,0x3f800000,2 +np.float32,0xc303f268,0x3f800000,2 +np.float32,0x4383f268,0x3f800000,2 +np.float32,0xc383f268,0x3f800000,2 +np.float32,0x42858487,0xbf350504,2 +np.float32,0xc2858487,0xbf350504,2 +np.float32,0x43058487,0x363ea8be,2 +np.float32,0xc3058487,0x363ea8be,2 +np.float32,0x43858487,0xbf800000,2 +np.float32,0xc3858487,0xbf800000,2 +np.float32,0x428716a7,0x35588c6d,2 +np.float32,0xc28716a7,0x35588c6d,2 +np.float32,0x430716a7,0xbf800000,2 +np.float32,0xc30716a7,0xbf800000,2 +np.float32,0x438716a7,0x3f800000,2 +np.float32,0xc38716a7,0x3f800000,2 +np.float32,0x4288a8c7,0x3f350517,2 +np.float32,0xc288a8c7,0x3f350517,2 +np.float32,0x4308a8c7,0x36cb9a96,2 +np.float32,0xc308a8c7,0x36cb9a96,2 +np.float32,0x4388a8c7,0xbf800000,2 +np.float32,0xc388a8c7,0xbf800000,2 +np.float32,0x428a3ae7,0x3f800000,2 +np.float32,0xc28a3ae7,0x3f800000,2 +np.float32,0x430a3ae7,0x3f800000,2 +np.float32,0xc30a3ae7,0x3f800000,2 +np.float32,0x438a3ae7,0x3f800000,2 +np.float32,0xc38a3ae7,0x3f800000,2 +np.float32,0x428bcd06,0x3f3504f5,2 +np.float32,0xc28bcd06,0x3f3504f5,2 +np.float32,0x430bcd06,0x3497675b,2 +np.float32,0xc30bcd06,0x3497675b,2 +np.float32,0x438bcd06,0xbf800000,2 +np.float32,0xc38bcd06,0xbf800000,2 +np.float32,0x428d5f26,0xb60c0105,2 +np.float32,0xc28d5f26,0xb60c0105,2 +np.float32,0x430d5f26,0xbf800000,2 +np.float32,0xc30d5f26,0xbf800000,2 +np.float32,0x438d5f26,0x3f800000,2 +np.float32,0xc38d5f26,0x3f800000,2 +np.float32,0x428ef146,0xbf350526,2 +np.float32,0xc28ef146,0xbf350526,2 +np.float32,0x430ef146,0x3710bc40,2 +np.float32,0xc30ef146,0x3710bc40,2 +np.float32,0x438ef146,0xbf800000,2 +np.float32,0xc38ef146,0xbf800000,2 +np.float32,0x42908365,0xbf800000,2 +np.float32,0xc2908365,0xbf800000,2 +np.float32,0x43108365,0x3f800000,2 +np.float32,0xc3108365,0x3f800000,2 +np.float32,0x43908365,0x3f800000,2 +np.float32,0xc3908365,0x3f800000,2 +np.float32,0x42921585,0xbf3504e6,2 +np.float32,0xc2921585,0xbf3504e6,2 +np.float32,0x43121585,0xb618cee8,2 +np.float32,0xc3121585,0xb618cee8,2 +np.float32,0x43921585,0xbf800000,2 +np.float32,0xc3921585,0xbf800000,2 +np.float32,0x4293a7a5,0x3661deee,2 +np.float32,0xc293a7a5,0x3661deee,2 +np.float32,0x4313a7a5,0xbf800000,2 +np.float32,0xc313a7a5,0xbf800000,2 +np.float32,0x4393a7a5,0x3f800000,2 +np.float32,0xc393a7a5,0x3f800000,2 +np.float32,0x429539c5,0x3f350536,2 +np.float32,0xc29539c5,0x3f350536,2 +np.float32,0x431539c5,0x373bab34,2 +np.float32,0xc31539c5,0x373bab34,2 +np.float32,0x439539c5,0xbf800000,2 +np.float32,0xc39539c5,0xbf800000,2 +np.float32,0x4296cbe4,0x3f800000,2 +np.float32,0xc296cbe4,0x3f800000,2 +np.float32,0x4316cbe4,0x3f800000,2 +np.float32,0xc316cbe4,0x3f800000,2 +np.float32,0x4396cbe4,0x3f800000,2 +np.float32,0xc396cbe4,0x3f800000,2 +np.float32,0x42985e04,0x3f3504d7,2 +np.float32,0xc2985e04,0x3f3504d7,2 +np.float32,0x43185e04,0xb6a2455d,2 +np.float32,0xc3185e04,0xb6a2455d,2 +np.float32,0x43985e04,0xbf800000,2 +np.float32,0xc3985e04,0xbf800000,2 +np.float32,0x4299f024,0xb69bde6c,2 +np.float32,0xc299f024,0xb69bde6c,2 +np.float32,0x4319f024,0xbf800000,2 +np.float32,0xc319f024,0xbf800000,2 +np.float32,0x4399f024,0x3f800000,2 +np.float32,0xc399f024,0x3f800000,2 +np.float32,0x429b8243,0xbf3504ea,2 +np.float32,0xc29b8243,0xbf3504ea,2 +np.float32,0x431b8243,0xb5cb2eb8,2 +np.float32,0xc31b8243,0xb5cb2eb8,2 +np.float32,0x439b8243,0xbf800000,2 +np.float32,0xc39b8243,0xbf800000,2 +np.float32,0x435b2047,0x3f3504c1,2 +np.float32,0x42a038a2,0xb5e4ca7e,2 +np.float32,0x432038a2,0xbf800000,2 +np.float32,0x4345eb9b,0xbf800000,2 +np.float32,0x42c5eb9b,0xb5de638c,2 +np.float32,0x42eb9e94,0xb5d7fc9b,2 +np.float32,0x4350ea79,0x3631dadb,2 +np.float32,0x42dbe957,0xbf800000,2 +np.float32,0x425be957,0xb505522a,2 +np.float32,0x435be957,0x3f800000,2 +np.float32,0x46027eb2,0x3e7d94c9,2 +np.float32,0x4477baed,0xbe7f1824,2 +np.float32,0x454b8024,0x3e7f5268,2 +np.float32,0x455d2c09,0x3e7f40cb,2 +np.float32,0x4768d3de,0xba14b4af,2 +np.float32,0x46c1e7cd,0x3e7fb102,2 +np.float32,0x44a52949,0xbe7dc9d5,2 +np.float32,0x4454633a,0x3e7dbc7d,2 +np.float32,0x4689810b,0x3e7eb02b,2 +np.float32,0x473473cd,0xbe7eef6f,2 +np.float32,0x44a5193f,0x3e7e1b1f,2 +np.float32,0x46004b36,0x3e7dac59,2 +np.float32,0x467f604b,0x3d7ffd3a,2 +np.float32,0x45ea1805,0x3dffd2e0,2 +np.float32,0x457b6af3,0x3dff7831,2 +np.float32,0x44996159,0xbe7d85f4,2 +np.float32,0x47883553,0xbb80584e,2 +np.float32,0x44e19f0c,0xbdffcfe6,2 +np.float32,0x472b3bf6,0xbe7f7a82,2 +np.float32,0x4600bb4e,0x3a135e33,2 +np.float32,0x449f4556,0x3e7e42e5,2 +np.float32,0x474e9420,0x3dff77b2,2 +np.float32,0x45cbdb23,0x3dff7240,2 +np.float32,0x44222747,0x3dffb039,2 +np.float32,0x4772e419,0xbdff74b8,2 +np.float64,0x1,0x3ff0000000000000,1 +np.float64,0x8000000000000001,0x3ff0000000000000,1 +np.float64,0x10000000000000,0x3ff0000000000000,1 +np.float64,0x8010000000000000,0x3ff0000000000000,1 +np.float64,0x7fefffffffffffff,0xbfefffe62ecfab75,1 +np.float64,0xffefffffffffffff,0xbfefffe62ecfab75,1 +np.float64,0x7ff0000000000000,0xfff8000000000000,1 +np.float64,0xfff0000000000000,0xfff8000000000000,1 +np.float64,0x7ff8000000000000,0x7ff8000000000000,1 +np.float64,0x7ff4000000000000,0x7ffc000000000000,1 +np.float64,0xbfc28bd9dd2517b4,0x3fefaa28ba13a702,1 +np.float64,0x3fb673c62e2ce790,0x3fefe083847a717f,1 +np.float64,0xbfe3e1dac7e7c3b6,0x3fea0500ba099f3a,1 +np.float64,0xbfbe462caa3c8c58,0x3fefc6c8b9c1c87c,1 +np.float64,0xbfb9353576326a68,0x3fefd8513e50e6b1,1 +np.float64,0xbfc05e798520bcf4,0x3fefbd1ad81cf089,1 +np.float64,0xbfe3ca3be2e79478,0x3fea12b995ea6574,1 +np.float64,0xbfde875d46bd0eba,0x3fec6d888662a824,1 +np.float64,0x3fafc4e02c3f89c0,0x3feff03c34bffd69,1 +np.float64,0xbf98855848310ac0,0x3feffda6c1588bdb,1 +np.float64,0x3fe66c51186cd8a2,0x3fe875c61c630ecb,1 +np.float64,0xbfedff1c3b7bfe38,0x3fe2f0c8c9e8fa39,1 +np.float64,0x3fd6082267ac1044,0x3fee1f6023695050,1 +np.float64,0xbfe78449b06f0894,0x3fe7bda2b223850e,1 +np.float64,0x3feedb8e63fdb71c,0x3fe23d5dfd2dd33f,1 +np.float64,0xbfc0a9de3d2153bc,0x3fefbaadf5e5285e,1 +np.float64,0x3fc04c67432098d0,0x3fefbdae07b7de8d,1 +np.float64,0xbfeeef84c4fddf0a,0x3fe22cf37f309d88,1 +np.float64,0x3fc04bb025209760,0x3fefbdb3d7d34ecf,1 +np.float64,0x3fd6b84d48ad709c,0x3fee013403da6e2a,1 +np.float64,0x3fec1ae25d7835c4,0x3fe46e62195cf274,1 +np.float64,0xbfdc6fdf9bb8dfc0,0x3fece48dc78bbb2e,1 +np.float64,0x3fb4db2c9229b660,0x3fefe4d42f79bf49,1 +np.float64,0xbfc0ed698521dad4,0x3fefb8785ea658c9,1 +np.float64,0xbfee82772b7d04ee,0x3fe2864a80efe8e9,1 +np.float64,0x3fd575b664aaeb6c,0x3fee37c669a12879,1 +np.float64,0x3fe4afb1c5e95f64,0x3fe98b177194439c,1 +np.float64,0x3fd93962f9b272c4,0x3fed8bef61876294,1 +np.float64,0x3fd97ae025b2f5c0,0x3fed7f4cfbf4d300,1 +np.float64,0xbfd9afdb1bb35fb6,0x3fed74fdc44dabb1,1 +np.float64,0x3f8ae65e3035cc80,0x3fefff4b1a0ea62b,1 +np.float64,0xbfe7e58664efcb0d,0x3fe77c02a1cbb670,1 +np.float64,0x3fe5f68b37ebed16,0x3fe8c10f849a5d4d,1 +np.float64,0x3fd9137d61b226fc,0x3fed9330eb4815a1,1 +np.float64,0x3fc146d019228da0,0x3fefb57e2d4d52f8,1 +np.float64,0xbfda6036edb4c06e,0x3fed521b2b578679,1 +np.float64,0xbfe78ddfb0ef1bc0,0x3fe7b734319a77e4,1 +np.float64,0x3fe0877823610ef0,0x3febd33a993dd786,1 +np.float64,0x3fbc61af2e38c360,0x3fefcdb4f889756d,1 +np.float64,0x3fd4dcdca4a9b9b8,0x3fee50962ffea5ae,1 +np.float64,0xbfe03cb29f607965,0x3febf7dbf640a75a,1 +np.float64,0xbfc81de407303bc8,0x3fef6f066cef64bc,1 +np.float64,0x3fd8dea42db1bd48,0x3fed9d3e00dbe0b3,1 +np.float64,0x3feac75e94f58ebe,0x3fe56f1f47f97896,1 +np.float64,0x3fb3a1ea6e2743d0,0x3fefe7ec1247cdaa,1 +np.float64,0x3fd695c0f4ad2b80,0x3fee0730bd40883d,1 +np.float64,0xbfd2c631f5a58c64,0x3feea20cbd1105d7,1 +np.float64,0xbfe978a8e1f2f152,0x3fe663014d40ad7a,1 +np.float64,0x3fd8b6b76ab16d70,0x3feda4c879aacc19,1 +np.float64,0x3feaafd30e755fa6,0x3fe5809514c28453,1 +np.float64,0x3fe1e37dc263c6fc,0x3feb20f9ad1f3f5c,1 +np.float64,0x3fd0ec7c24a1d8f8,0x3feee34048f43b75,1 +np.float64,0xbfe3881cbf67103a,0x3fea38d7886e6f53,1 +np.float64,0xbfd7023957ae0472,0x3fedf4471c765a1c,1 +np.float64,0xbfebc51c4ef78a38,0x3fe4b01c424e297b,1 +np.float64,0xbfe20a93eae41528,0x3feb0c2aa321d2e0,1 +np.float64,0x3fef39be867e737e,0x3fe1efaba9164d27,1 +np.float64,0x3fe8ea9576f1d52a,0x3fe6c7a8826ce1be,1 +np.float64,0x3fea921d91f5243c,0x3fe5968c6cf78963,1 +np.float64,0x3fd7ee5d31afdcbc,0x3fedc9f19d43fe61,1 +np.float64,0xbfe3ed581767dab0,0x3fe9fe4ee2f2b1cd,1 +np.float64,0xbfc40923d5281248,0x3fef9bd8ee9f6e68,1 +np.float64,0x3fe411a834682350,0x3fe9e9103854f057,1 +np.float64,0xbfedf6ccdf7bed9a,0x3fe2f77ad6543246,1 +np.float64,0xbfe8788a44f0f114,0x3fe7172f3aa0c742,1 +np.float64,0xbfce728f173ce520,0x3fef1954083bea04,1 +np.float64,0xbfd64dd0acac9ba2,0x3fee138c3293c246,1 +np.float64,0xbfe00669f5600cd4,0x3fec121443945350,1 +np.float64,0xbfe7152ba2ee2a58,0x3fe8079465d09846,1 +np.float64,0x3fe8654d8f70ca9c,0x3fe7247c94f09596,1 +np.float64,0x3fea68045cf4d008,0x3fe5b58cfe81a243,1 +np.float64,0xbfcd4779073a8ef4,0x3fef2a9d78153fa5,1 +np.float64,0xbfdb4456e5b688ae,0x3fed23b11614203f,1 +np.float64,0x3fcb5d59cd36bab0,0x3fef45818216a515,1 +np.float64,0xbfd914ff5ab229fe,0x3fed92e73746fea8,1 +np.float64,0x3fe4d211db69a424,0x3fe97653f433d15f,1 +np.float64,0xbfdbbb9224b77724,0x3fed0adb593dde80,1 +np.float64,0x3fd424ceafa8499c,0x3fee6d9124795d33,1 +np.float64,0x3feb5968f976b2d2,0x3fe501d116efbf54,1 +np.float64,0x3fee7d92a2fcfb26,0x3fe28a479b6a9dcf,1 +np.float64,0x3fc308e9972611d0,0x3fefa595f4df0c89,1 +np.float64,0x3fda79cd77b4f39c,0x3fed4cf8e69ba1f8,1 +np.float64,0x3fcbcf42d5379e88,0x3fef3f6a6a77c187,1 +np.float64,0x3fe13a1da662743c,0x3feb79504faea888,1 +np.float64,0xbfee4435f07c886c,0x3fe2b8ea98d2fc29,1 +np.float64,0x3fd65d68ccacbad0,0x3fee10e1ac7ada89,1 +np.float64,0x3fef2f89bb7e5f14,0x3fe1f81e882cc3f4,1 +np.float64,0xbfef0a7769fe14ef,0x3fe216bf384fc646,1 +np.float64,0x3fc065277320ca50,0x3fefbce44835c193,1 +np.float64,0x3fe9c1a74d73834e,0x3fe62e9ee0c2f2bf,1 +np.float64,0x3fd9d96e5db3b2dc,0x3fed6cd88eb51f6a,1 +np.float64,0x3fe02bf1c56057e4,0x3febfffc24b5a7ba,1 +np.float64,0xbfd6814350ad0286,0x3fee0ab9ad318b84,1 +np.float64,0x3f9fcbec583f97c0,0x3feffc0d0f1d8e75,1 +np.float64,0x3fe23524e5e46a4a,0x3feaf55372949a06,1 +np.float64,0xbfbdc95f6a3b92c0,0x3fefc89c21d44995,1 +np.float64,0x3fe961bb9cf2c378,0x3fe6735d6e1cca58,1 +np.float64,0xbfe8f1c370f1e387,0x3fe6c29d1be8bee9,1 +np.float64,0x3fd880d43ab101a8,0x3fedaee3c7ccfc96,1 +np.float64,0xbfedb37005fb66e0,0x3fe32d91ef2e3bd3,1 +np.float64,0xfdce287bfb9c5,0x3ff0000000000000,1 +np.float64,0x9aa1b9e735437,0x3ff0000000000000,1 +np.float64,0x6beac6e0d7d59,0x3ff0000000000000,1 +np.float64,0x47457aae8e8b0,0x3ff0000000000000,1 +np.float64,0x35ff13b46bfe3,0x3ff0000000000000,1 +np.float64,0xb9c0c82b73819,0x3ff0000000000000,1 +np.float64,0x1a8dc21a351b9,0x3ff0000000000000,1 +np.float64,0x7e87ef6afd0ff,0x3ff0000000000000,1 +np.float64,0x620a6588c414d,0x3ff0000000000000,1 +np.float64,0x7f366000fe6e,0x3ff0000000000000,1 +np.float64,0x787e39f4f0fc8,0x3ff0000000000000,1 +np.float64,0xf5134f1fea26a,0x3ff0000000000000,1 +np.float64,0xbce700ef79ce0,0x3ff0000000000000,1 +np.float64,0x144d7cc8289b1,0x3ff0000000000000,1 +np.float64,0xb9fbc5b973f79,0x3ff0000000000000,1 +np.float64,0xc3d6292d87ac5,0x3ff0000000000000,1 +np.float64,0xc1084e618210a,0x3ff0000000000000,1 +np.float64,0xb6b9eca56d73e,0x3ff0000000000000,1 +np.float64,0xc7ac4b858f58a,0x3ff0000000000000,1 +np.float64,0x516d75d2a2daf,0x3ff0000000000000,1 +np.float64,0x9dc089d93b811,0x3ff0000000000000,1 +np.float64,0x7b5f2840f6be6,0x3ff0000000000000,1 +np.float64,0x121d3ce8243a9,0x3ff0000000000000,1 +np.float64,0xf0be0337e17c1,0x3ff0000000000000,1 +np.float64,0xff58a5cbfeb15,0x3ff0000000000000,1 +np.float64,0xdaf1d07fb5e3a,0x3ff0000000000000,1 +np.float64,0x61d95382c3b2b,0x3ff0000000000000,1 +np.float64,0xe4df943fc9bf3,0x3ff0000000000000,1 +np.float64,0xf72ac2bdee559,0x3ff0000000000000,1 +np.float64,0x12dafbf625b60,0x3ff0000000000000,1 +np.float64,0xee11d427dc23b,0x3ff0000000000000,1 +np.float64,0xf4f8eb37e9f1e,0x3ff0000000000000,1 +np.float64,0xad7cb5df5af97,0x3ff0000000000000,1 +np.float64,0x59fc9b06b3f94,0x3ff0000000000000,1 +np.float64,0x3c3e65e4787ce,0x3ff0000000000000,1 +np.float64,0xe37bc993c6f79,0x3ff0000000000000,1 +np.float64,0x13bd6330277ad,0x3ff0000000000000,1 +np.float64,0x56cc2800ad986,0x3ff0000000000000,1 +np.float64,0x6203b8fcc4078,0x3ff0000000000000,1 +np.float64,0x75c7c8b8eb8fa,0x3ff0000000000000,1 +np.float64,0x5ebf8e00bd7f2,0x3ff0000000000000,1 +np.float64,0xda81f2f1b503f,0x3ff0000000000000,1 +np.float64,0x6adb17d6d5b64,0x3ff0000000000000,1 +np.float64,0x1ba68eee374d3,0x3ff0000000000000,1 +np.float64,0xeecf6fbbdd9ee,0x3ff0000000000000,1 +np.float64,0x24d6dd8e49add,0x3ff0000000000000,1 +np.float64,0xdf7cb81bbef97,0x3ff0000000000000,1 +np.float64,0xafd7be1b5faf8,0x3ff0000000000000,1 +np.float64,0xdb90ca35b721a,0x3ff0000000000000,1 +np.float64,0xa72903a14e521,0x3ff0000000000000,1 +np.float64,0x14533ee028a7,0x3ff0000000000000,1 +np.float64,0x7951540cf2a2b,0x3ff0000000000000,1 +np.float64,0x22882be045106,0x3ff0000000000000,1 +np.float64,0x136270d626c4f,0x3ff0000000000000,1 +np.float64,0x6a0f5744d41ec,0x3ff0000000000000,1 +np.float64,0x21e0d1aa43c1b,0x3ff0000000000000,1 +np.float64,0xee544155dca88,0x3ff0000000000000,1 +np.float64,0xcbe8aac797d16,0x3ff0000000000000,1 +np.float64,0x6c065e80d80e,0x3ff0000000000000,1 +np.float64,0xe57f0411cafe1,0x3ff0000000000000,1 +np.float64,0xdec3a6bdbd875,0x3ff0000000000000,1 +np.float64,0xf4d23a0fe9a48,0x3ff0000000000000,1 +np.float64,0xda77ef47b4efe,0x3ff0000000000000,1 +np.float64,0x8c405c9b1880c,0x3ff0000000000000,1 +np.float64,0x4eced5149d9db,0x3ff0000000000000,1 +np.float64,0x16b6552c2d6cc,0x3ff0000000000000,1 +np.float64,0x6fbc262cdf785,0x3ff0000000000000,1 +np.float64,0x628c3844c5188,0x3ff0000000000000,1 +np.float64,0x6d827d2cdb050,0x3ff0000000000000,1 +np.float64,0xd1bfdf29a37fc,0x3ff0000000000000,1 +np.float64,0xd85400fdb0a80,0x3ff0000000000000,1 +np.float64,0xcc420b2d98842,0x3ff0000000000000,1 +np.float64,0xac41d21b5883b,0x3ff0000000000000,1 +np.float64,0x432f18d4865e4,0x3ff0000000000000,1 +np.float64,0xe7e89a1bcfd14,0x3ff0000000000000,1 +np.float64,0x9b1141d536228,0x3ff0000000000000,1 +np.float64,0x6805f662d00bf,0x3ff0000000000000,1 +np.float64,0xc76552358ecab,0x3ff0000000000000,1 +np.float64,0x4ae8ffee95d21,0x3ff0000000000000,1 +np.float64,0x4396c096872d9,0x3ff0000000000000,1 +np.float64,0x6e8e55d4dd1cb,0x3ff0000000000000,1 +np.float64,0x4c2e33dc985c7,0x3ff0000000000000,1 +np.float64,0xbce814a579d03,0x3ff0000000000000,1 +np.float64,0x911681b5222d0,0x3ff0000000000000,1 +np.float64,0x5f90a4b2bf215,0x3ff0000000000000,1 +np.float64,0x26f76be84deee,0x3ff0000000000000,1 +np.float64,0xb2f7536165eeb,0x3ff0000000000000,1 +np.float64,0x4de4e6089bc9d,0x3ff0000000000000,1 +np.float64,0xf2e016afe5c03,0x3ff0000000000000,1 +np.float64,0xb9b7b949736f7,0x3ff0000000000000,1 +np.float64,0x3363ea1866c7e,0x3ff0000000000000,1 +np.float64,0xd1a3bd6ba3478,0x3ff0000000000000,1 +np.float64,0xae89f3595d13f,0x3ff0000000000000,1 +np.float64,0xddbd9601bb7c,0x3ff0000000000000,1 +np.float64,0x5de41a06bbc84,0x3ff0000000000000,1 +np.float64,0xfd58c86dfab19,0x3ff0000000000000,1 +np.float64,0x24922e8c49247,0x3ff0000000000000,1 +np.float64,0xcda040339b408,0x3ff0000000000000,1 +np.float64,0x5fe500b2bfca1,0x3ff0000000000000,1 +np.float64,0x9214abb924296,0x3ff0000000000000,1 +np.float64,0x800609fe0a2c13fd,0x3ff0000000000000,1 +np.float64,0x800c7c6fe518f8e0,0x3ff0000000000000,1 +np.float64,0x800a1a9491b4352a,0x3ff0000000000000,1 +np.float64,0x800b45e0e8968bc2,0x3ff0000000000000,1 +np.float64,0x8008497e57d092fd,0x3ff0000000000000,1 +np.float64,0x800b9c0af0173816,0x3ff0000000000000,1 +np.float64,0x800194cccb43299a,0x3ff0000000000000,1 +np.float64,0x8001c91ef183923f,0x3ff0000000000000,1 +np.float64,0x800f25b5ccde4b6c,0x3ff0000000000000,1 +np.float64,0x800ce63ccc79cc7a,0x3ff0000000000000,1 +np.float64,0x800d8fb2e83b1f66,0x3ff0000000000000,1 +np.float64,0x80083cd06f7079a1,0x3ff0000000000000,1 +np.float64,0x800823598e9046b3,0x3ff0000000000000,1 +np.float64,0x8001c1319de38264,0x3ff0000000000000,1 +np.float64,0x800f2b68543e56d1,0x3ff0000000000000,1 +np.float64,0x80022a4f4364549f,0x3ff0000000000000,1 +np.float64,0x800f51badf7ea376,0x3ff0000000000000,1 +np.float64,0x8003fbf31e27f7e7,0x3ff0000000000000,1 +np.float64,0x800d4c00e2fa9802,0x3ff0000000000000,1 +np.float64,0x800023b974804774,0x3ff0000000000000,1 +np.float64,0x800860778990c0ef,0x3ff0000000000000,1 +np.float64,0x800a15c241542b85,0x3ff0000000000000,1 +np.float64,0x8003097d9dc612fc,0x3ff0000000000000,1 +np.float64,0x800d77d8541aefb1,0x3ff0000000000000,1 +np.float64,0x80093804ab52700a,0x3ff0000000000000,1 +np.float64,0x800d2b3bfd7a5678,0x3ff0000000000000,1 +np.float64,0x800da24bcd5b4498,0x3ff0000000000000,1 +np.float64,0x8006eee1c28dddc4,0x3ff0000000000000,1 +np.float64,0x80005137fa40a271,0x3ff0000000000000,1 +np.float64,0x8007a3fbc22f47f8,0x3ff0000000000000,1 +np.float64,0x800dcd97071b9b2e,0x3ff0000000000000,1 +np.float64,0x80065b36048cb66d,0x3ff0000000000000,1 +np.float64,0x8004206ba72840d8,0x3ff0000000000000,1 +np.float64,0x8007e82b98cfd058,0x3ff0000000000000,1 +np.float64,0x8001a116ed23422f,0x3ff0000000000000,1 +np.float64,0x800c69e9ff18d3d4,0x3ff0000000000000,1 +np.float64,0x8003843688e7086e,0x3ff0000000000000,1 +np.float64,0x800335e3b8866bc8,0x3ff0000000000000,1 +np.float64,0x800e3308f0bc6612,0x3ff0000000000000,1 +np.float64,0x8002a9ec55c553d9,0x3ff0000000000000,1 +np.float64,0x80001c2084e03842,0x3ff0000000000000,1 +np.float64,0x800bc2bbd8d78578,0x3ff0000000000000,1 +np.float64,0x800ae6bcc555cd7a,0x3ff0000000000000,1 +np.float64,0x80083f7a13907ef5,0x3ff0000000000000,1 +np.float64,0x800d83ed76db07db,0x3ff0000000000000,1 +np.float64,0x800a12251974244b,0x3ff0000000000000,1 +np.float64,0x800a69c95714d393,0x3ff0000000000000,1 +np.float64,0x800cd5a85639ab51,0x3ff0000000000000,1 +np.float64,0x800e0e1837bc1c31,0x3ff0000000000000,1 +np.float64,0x8007b5ca39ef6b95,0x3ff0000000000000,1 +np.float64,0x800cf961cad9f2c4,0x3ff0000000000000,1 +np.float64,0x80066e8fc14cdd20,0x3ff0000000000000,1 +np.float64,0x8001cb8c7b43971a,0x3ff0000000000000,1 +np.float64,0x800002df68a005c0,0x3ff0000000000000,1 +np.float64,0x8003e6681567ccd1,0x3ff0000000000000,1 +np.float64,0x800b039126b60723,0x3ff0000000000000,1 +np.float64,0x800d2e1b663a5c37,0x3ff0000000000000,1 +np.float64,0x800188b3e2a31169,0x3ff0000000000000,1 +np.float64,0x8001f272e943e4e7,0x3ff0000000000000,1 +np.float64,0x800d7f53607afea7,0x3ff0000000000000,1 +np.float64,0x80092cafa4f25960,0x3ff0000000000000,1 +np.float64,0x800fc009f07f8014,0x3ff0000000000000,1 +np.float64,0x8003da896507b514,0x3ff0000000000000,1 +np.float64,0x800d4d1b4c3a9a37,0x3ff0000000000000,1 +np.float64,0x8007a835894f506c,0x3ff0000000000000,1 +np.float64,0x80057ba0522af741,0x3ff0000000000000,1 +np.float64,0x8009b7054b336e0b,0x3ff0000000000000,1 +np.float64,0x800b2c6c125658d9,0x3ff0000000000000,1 +np.float64,0x8008b1840ad16308,0x3ff0000000000000,1 +np.float64,0x8007ea0e3befd41d,0x3ff0000000000000,1 +np.float64,0x800dd658683bacb1,0x3ff0000000000000,1 +np.float64,0x8008cda48fd19b49,0x3ff0000000000000,1 +np.float64,0x8003acca14c75995,0x3ff0000000000000,1 +np.float64,0x8008bd152d717a2b,0x3ff0000000000000,1 +np.float64,0x80010d1ea3621a3e,0x3ff0000000000000,1 +np.float64,0x800130b78b826170,0x3ff0000000000000,1 +np.float64,0x8002cf3a46e59e75,0x3ff0000000000000,1 +np.float64,0x800b76e7fa76edd0,0x3ff0000000000000,1 +np.float64,0x800e065fe1dc0cc0,0x3ff0000000000000,1 +np.float64,0x8000dd527ea1baa6,0x3ff0000000000000,1 +np.float64,0x80032cb234665965,0x3ff0000000000000,1 +np.float64,0x800affc1acb5ff84,0x3ff0000000000000,1 +np.float64,0x80074be23fee97c5,0x3ff0000000000000,1 +np.float64,0x8004f83eafc9f07e,0x3ff0000000000000,1 +np.float64,0x800b02a115560543,0x3ff0000000000000,1 +np.float64,0x800b324a55766495,0x3ff0000000000000,1 +np.float64,0x800ffbcfd69ff7a0,0x3ff0000000000000,1 +np.float64,0x800830bc7b906179,0x3ff0000000000000,1 +np.float64,0x800cbafe383975fd,0x3ff0000000000000,1 +np.float64,0x8001ee42bfe3dc86,0x3ff0000000000000,1 +np.float64,0x8005b00fdc0b6020,0x3ff0000000000000,1 +np.float64,0x8005e7addd0bcf5c,0x3ff0000000000000,1 +np.float64,0x8001ae4cb0635c9a,0x3ff0000000000000,1 +np.float64,0x80098a9941131533,0x3ff0000000000000,1 +np.float64,0x800334c929466993,0x3ff0000000000000,1 +np.float64,0x8009568239d2ad05,0x3ff0000000000000,1 +np.float64,0x800f0639935e0c73,0x3ff0000000000000,1 +np.float64,0x800cebce7499d79d,0x3ff0000000000000,1 +np.float64,0x800482ee4c2905dd,0x3ff0000000000000,1 +np.float64,0x8007b7bd9e2f6f7c,0x3ff0000000000000,1 +np.float64,0x3fe654469f2ca88d,0x3fe8853f6c01ffb3,1 +np.float64,0x3feb4d7297369ae5,0x3fe50ad5bb621408,1 +np.float64,0x3feef53ba43dea77,0x3fe2283f356f8658,1 +np.float64,0x3fddf564eabbeaca,0x3fec8ec0e0dead9c,1 +np.float64,0x3fd3a69078274d21,0x3fee80e05c320000,1 +np.float64,0x3fecdafe5d39b5fd,0x3fe3d91a5d440fd9,1 +np.float64,0x3fd93286bc32650d,0x3fed8d40696cd10e,1 +np.float64,0x3fc0d34eb821a69d,0x3fefb954023d4284,1 +np.float64,0x3fc7b4b9a02f6973,0x3fef73e8739787ce,1 +np.float64,0x3fe08c839a611907,0x3febd0bc6f5641cd,1 +np.float64,0x3fb3d1758627a2eb,0x3fefe776f6183f96,1 +np.float64,0x3fef93c9ff3f2794,0x3fe1a4d2f622627d,1 +np.float64,0x3fea8d0041351a01,0x3fe59a52a1c78c9e,1 +np.float64,0x3fe3e26a30e7c4d4,0x3fea04ad3e0bbf8d,1 +np.float64,0x3fe5a34c9f6b4699,0x3fe8f57c5ccd1eab,1 +np.float64,0x3fc21ef859243df1,0x3fefae0b68a3a2e7,1 +np.float64,0x3fed7dd585fafbab,0x3fe35860041e5b0d,1 +np.float64,0x3fe5abacf22b575a,0x3fe8f03d8b6ef0f2,1 +np.float64,0x3fe426451f284c8a,0x3fe9dcf21f13205b,1 +np.float64,0x3fc01f6456203ec9,0x3fefbf19e2a8e522,1 +np.float64,0x3fe1cf2772239e4f,0x3feb2bbd645c7697,1 +np.float64,0x3fd18c4ace231896,0x3feecdfdd086c110,1 +np.float64,0x3fe8387d5b7070fb,0x3fe74358f2ec4910,1 +np.float64,0x3fdce51c2239ca38,0x3feccb2ae5459632,1 +np.float64,0x3fe5b0f2e4eb61e6,0x3fe8ecef4dbe4277,1 +np.float64,0x3fe1ceeb08a39dd6,0x3feb2bdd4dcfb3df,1 +np.float64,0x3febc5899d778b13,0x3fe4afc8dd8ad228,1 +np.float64,0x3fe7a47fbe2f48ff,0x3fe7a7fd9b352ea5,1 +np.float64,0x3fe7f74e1fafee9c,0x3fe76feb2755b247,1 +np.float64,0x3fe2bfad04e57f5a,0x3feaa9b46adddaeb,1 +np.float64,0x3fd06a090320d412,0x3feef40c334f8fba,1 +np.float64,0x3fdc97297d392e53,0x3fecdc16a3e22fcb,1 +np.float64,0x3fdc1a3f3838347e,0x3fecf6db2769d404,1 +np.float64,0x3fcca90096395201,0x3fef338156fcd218,1 +np.float64,0x3fed464733fa8c8e,0x3fe38483f0465d91,1 +np.float64,0x3fe7e067d82fc0d0,0x3fe77f7c8c9de896,1 +np.float64,0x3fc014fa0b2029f4,0x3fefbf6d84c933f8,1 +np.float64,0x3fd3bf1524277e2a,0x3fee7d2997b74dec,1 +np.float64,0x3fec153b86782a77,0x3fe472bb5497bb2a,1 +np.float64,0x3fd3e4d9d5a7c9b4,0x3fee776842691902,1 +np.float64,0x3fea6c0e2c74d81c,0x3fe5b2954cb458d9,1 +np.float64,0x3fee8f6a373d1ed4,0x3fe27bb9e348125b,1 +np.float64,0x3fd30c6dd42618dc,0x3fee97d2cab2b0bc,1 +np.float64,0x3fe4f90e6d69f21d,0x3fe95ea3dd4007f2,1 +np.float64,0x3fe271d467e4e3a9,0x3fead470d6d4008b,1 +np.float64,0x3fef2983897e5307,0x3fe1fd1a4debe33b,1 +np.float64,0x3fe980cc83b30199,0x3fe65d2fb8a0eb46,1 +np.float64,0x3fdfdf53db3fbea8,0x3fec1cf95b2a1cc7,1 +np.float64,0x3fe4d5307ba9aa61,0x3fe974701b4156cb,1 +np.float64,0x3fdb4e2345b69c47,0x3fed21aa6c146512,1 +np.float64,0x3fe3f7830327ef06,0x3fe9f85f6c88c2a8,1 +np.float64,0x3fca915fb63522bf,0x3fef502b73a52ecf,1 +np.float64,0x3fe66d3709ecda6e,0x3fe87531d7372d7a,1 +np.float64,0x3fd86000bcb0c001,0x3fedb5018dd684ca,1 +np.float64,0x3fe516e5feea2dcc,0x3fe94c68b111404e,1 +np.float64,0x3fd83c53dd3078a8,0x3fedbb9e5dd9e165,1 +np.float64,0x3fedfeeb673bfdd7,0x3fe2f0f0253c5d5d,1 +np.float64,0x3fe0dc6f9c21b8df,0x3feba8e2452410c2,1 +np.float64,0x3fbe154d643c2a9b,0x3fefc780a9357457,1 +np.float64,0x3fe5f63986abec73,0x3fe8c1434951a40a,1 +np.float64,0x3fbce0e50839c1ca,0x3fefcbeeaa27de75,1 +np.float64,0x3fd7ef5c5c2fdeb9,0x3fedc9c3022495b3,1 +np.float64,0x3fc1073914220e72,0x3fefb79de80fc0fd,1 +np.float64,0x3fe1a93c3d235278,0x3feb3fb21f86ac67,1 +np.float64,0x3fe321ee53e643dd,0x3fea72e2999f1e22,1 +np.float64,0x3fa881578c3102af,0x3feff69e6e51e0d6,1 +np.float64,0x3fd313482a262690,0x3fee96d161199495,1 +np.float64,0x3fe7272cd6ae4e5a,0x3fe7fbacbd0d8f43,1 +np.float64,0x3fd6cf4015ad9e80,0x3fedfd3513d544b8,1 +np.float64,0x3fc67b7e6d2cf6fd,0x3fef81f5c16923a4,1 +np.float64,0x3fa1999c14233338,0x3feffb2913a14184,1 +np.float64,0x3fc74eb8dd2e9d72,0x3fef78909a138e3c,1 +np.float64,0x3fc0b9274921724f,0x3fefba2ebd5f3e1c,1 +np.float64,0x3fd53fa156aa7f43,0x3fee40a18e952e88,1 +np.float64,0x3feaccbca4b59979,0x3fe56b22b33eb713,1 +np.float64,0x3fe6a01e3a2d403c,0x3fe8543fbd820ecc,1 +np.float64,0x3fd392a869a72551,0x3fee83e0ffe0e8de,1 +np.float64,0x3fe44d8928689b12,0x3fe9c5bf3c8fffdb,1 +np.float64,0x3fca3f209f347e41,0x3fef5461b6fa0924,1 +np.float64,0x3fee9e84b07d3d09,0x3fe26f638f733549,1 +np.float64,0x3faf49acb03e9359,0x3feff0b583cd8c48,1 +np.float64,0x3fea874b2af50e96,0x3fe59e882fa6febf,1 +np.float64,0x3fc50b72772a16e5,0x3fef918777dc41be,1 +np.float64,0x3fe861d1d4f0c3a4,0x3fe726e44d9d42c2,1 +np.float64,0x3fcadd2e2535ba5c,0x3fef4c3e2b56da38,1 +np.float64,0x3fea59c29cb4b385,0x3fe5c0043e586439,1 +np.float64,0x3fc1ffef0d23ffde,0x3fefaf22be452d13,1 +np.float64,0x3fc2d8dbc125b1b8,0x3fefa75b646d8e4e,1 +np.float64,0x3fd66c6471acd8c9,0x3fee0e5038b895c0,1 +np.float64,0x3fd0854adfa10a96,0x3feef0945bcc5c99,1 +np.float64,0x3feaac7076f558e1,0x3fe58316c23a82ad,1 +np.float64,0x3fdda49db3bb493b,0x3feca0e347c0ad6f,1 +np.float64,0x3fe43a539de874a7,0x3fe9d11d722d4822,1 +np.float64,0x3feeee3ebbfddc7d,0x3fe22dffd251e9af,1 +np.float64,0x3f8ee2c5b03dc58b,0x3fefff11855a7b6c,1 +np.float64,0x3fcd7107c63ae210,0x3fef2840bb55ca52,1 +np.float64,0x3f8d950d203b2a1a,0x3fefff253a08e40e,1 +np.float64,0x3fd40a5e57a814bd,0x3fee71a633c761fc,1 +np.float64,0x3fee836ec83d06de,0x3fe28580975be2fd,1 +np.float64,0x3fd7bbe87f2f77d1,0x3fedd31f661890cc,1 +np.float64,0xbfe05bf138a0b7e2,0x3febe8a000d96e47,1 +np.float64,0xbf88bddd90317bc0,0x3fefff66f6e2ff26,1 +np.float64,0xbfdc9cbb12393976,0x3fecdae2982335db,1 +np.float64,0xbfd85b4eccb0b69e,0x3fedb5e0dd87f702,1 +np.float64,0xbfe5c326cb2b864e,0x3fe8e180f525fa12,1 +np.float64,0xbfe381a0e4a70342,0x3fea3c8e5e3ab78e,1 +np.float64,0xbfe58d892c2b1b12,0x3fe9031551617aed,1 +np.float64,0xbfd7f3a52cafe74a,0x3fedc8fa97edd080,1 +np.float64,0xbfef3417bc7e682f,0x3fe1f45989f6a009,1 +np.float64,0xbfddfb8208bbf704,0x3fec8d5fa9970773,1 +np.float64,0xbfdab69bcc356d38,0x3fed40b2f6c347c6,1 +np.float64,0xbfed3f7cf17a7efa,0x3fe389e4ff4d9235,1 +np.float64,0xbfe47675d9a8ecec,0x3fe9ad6829a69e94,1 +np.float64,0xbfd030e2902061c6,0x3feefb3f811e024f,1 +np.float64,0xbfc376ac7226ed58,0x3fefa1798712b37e,1 +np.float64,0xbfdb7e54a0b6fcaa,0x3fed17a974c4bc28,1 +np.float64,0xbfdb7d5d5736faba,0x3fed17dcf31a8d84,1 +np.float64,0xbf876bd6502ed7c0,0x3fefff76dce6232c,1 +np.float64,0xbfd211e6c02423ce,0x3feebba41f0a1764,1 +np.float64,0xbfb443e3962887c8,0x3fefe658953629d4,1 +np.float64,0xbfe81b09e9b03614,0x3fe757882e4fdbae,1 +np.float64,0xbfdcb905d2b9720c,0x3fecd4c22cfe84e5,1 +np.float64,0xbfe3b62d99276c5b,0x3fea1e5520b3098d,1 +np.float64,0xbfbf05b25c3e0b68,0x3fefc3ecc04bca8e,1 +np.float64,0xbfdedc885b3db910,0x3fec59e22feb49f3,1 +np.float64,0xbfe33aa282667545,0x3fea64f2d55ec471,1 +np.float64,0xbfec84745a3908e9,0x3fe41cb3214e7044,1 +np.float64,0xbfddefdff1bbdfc0,0x3fec8fff88d4d0ec,1 +np.float64,0xbfd26ae6aca4d5ce,0x3feeaf208c7fedf6,1 +np.float64,0xbfee010591fc020b,0x3fe2ef3e57211a5e,1 +np.float64,0xbfb8cfddca319fb8,0x3fefd98d8f7918ed,1 +np.float64,0xbfe991648f3322c9,0x3fe6514e54670bae,1 +np.float64,0xbfee63fd087cc7fa,0x3fe29f1bfa3297cc,1 +np.float64,0xbfe1685942a2d0b2,0x3feb617f5f839eee,1 +np.float64,0xbfc6fc2fd62df860,0x3fef7c4698fd58cf,1 +np.float64,0xbfe42723d3a84e48,0x3fe9dc6ef7243e90,1 +np.float64,0xbfc3a7e89d274fd0,0x3fef9f99e3314e77,1 +np.float64,0xbfeb4c9521f6992a,0x3fe50b7c919bc6d8,1 +np.float64,0xbf707b34e020f680,0x3fefffef05e30264,1 +np.float64,0xbfc078478e20f090,0x3fefbc479305d5aa,1 +np.float64,0xbfd494ac4ca92958,0x3fee5c11f1cd8269,1 +np.float64,0xbfdaf888a035f112,0x3fed3346ae600469,1 +np.float64,0xbfa5d8ed502bb1e0,0x3feff88b0f262609,1 +np.float64,0xbfeec0cbfffd8198,0x3fe253543b2371cb,1 +np.float64,0xbfe594b5986b296b,0x3fe8fe9b39fb3940,1 +np.float64,0xbfc8ece7c631d9d0,0x3fef652bd0611ac7,1 +np.float64,0xbfd8ffeca0b1ffda,0x3fed96ebdf9b65cb,1 +np.float64,0xbfba9b221e353648,0x3fefd3cc21e2f15c,1 +np.float64,0xbfca63a52c34c74c,0x3fef52848eb9ed3b,1 +np.float64,0xbfe588e9b06b11d4,0x3fe905f7403e8881,1 +np.float64,0xbfc76f82db2edf04,0x3fef77138fe9bbc2,1 +np.float64,0xbfeeb3f334bd67e6,0x3fe25ddadb1096d6,1 +np.float64,0xbfbf2b64ce3e56c8,0x3fefc35a9555f6df,1 +np.float64,0xbfe9920e4ff3241c,0x3fe650d4ab8f5c42,1 +np.float64,0xbfb4a54c02294a98,0x3fefe55fc85ae5e9,1 +np.float64,0xbfe353b0c766a762,0x3fea56c02d17e4b7,1 +np.float64,0xbfd99961a4b332c4,0x3fed795fcd00dbf9,1 +np.float64,0xbfef191ddabe323c,0x3fe20aa79524f636,1 +np.float64,0xbfb25d060224ba10,0x3fefeaeee5cc8c0b,1 +np.float64,0xbfe6022428ec0448,0x3fe8b9b46e776194,1 +np.float64,0xbfed1a236cba3447,0x3fe3a76bee0d9861,1 +np.float64,0xbfc59671e72b2ce4,0x3fef8bc4daef6f14,1 +np.float64,0xbfdf2711703e4e22,0x3fec4886a8c9ceb5,1 +np.float64,0xbfeb7e207536fc41,0x3fe4e610c783f168,1 +np.float64,0xbfe6cdf5bcad9bec,0x3fe8365f8a59bc81,1 +np.float64,0xbfe55294adaaa52a,0x3fe927b0af5ccd09,1 +np.float64,0xbfdf4a88913e9512,0x3fec4036df58ba74,1 +np.float64,0xbfebb7efe4376fe0,0x3fe4ba276006992d,1 +np.float64,0xbfe09f29cfa13e54,0x3febc77f4f9c95e7,1 +np.float64,0xbfdf8c75653f18ea,0x3fec30ac924e4f46,1 +np.float64,0xbfefd601c7ffac04,0x3fe16d6f21bcb9c1,1 +np.float64,0xbfeae97ff5f5d300,0x3fe555bb5b87efe9,1 +np.float64,0xbfed427f02fa84fe,0x3fe387830db093bc,1 +np.float64,0xbfa33909cc267210,0x3feffa3a1bcb50dd,1 +np.float64,0xbfe9aa4bf5f35498,0x3fe63f6e98f6aa0f,1 +np.float64,0xbfe2d7349b25ae69,0x3fea9caa7c331e7e,1 +np.float64,0xbfcdbb2a3a3b7654,0x3fef2401c9659e4b,1 +np.float64,0xbfc8a90919315214,0x3fef686fe7fc0513,1 +np.float64,0xbfe62a98df2c5532,0x3fe89ff22a02cc6b,1 +np.float64,0xbfdc0f67b3b81ed0,0x3fecf928b637798f,1 +np.float64,0xbfebb32bf6f76658,0x3fe4bdc893c09698,1 +np.float64,0xbfec067996380cf3,0x3fe47e132741db97,1 +np.float64,0xbfd9774e1d32ee9c,0x3fed7ffe1e87c434,1 +np.float64,0xbfef989890bf3131,0x3fe1a0d025c80cf4,1 +np.float64,0xbfe59887e62b3110,0x3fe8fc382a3d4197,1 +np.float64,0xbfdea0a11e3d4142,0x3fec67b987e236ec,1 +np.float64,0xbfe2ec495825d892,0x3fea90efb231602d,1 +np.float64,0xbfb329c5c2265388,0x3fefe90f1b8209c3,1 +np.float64,0xbfdcd2dcd339a5ba,0x3feccf24c60b1478,1 +np.float64,0xbfe537ea18aa6fd4,0x3fe938237e217fe0,1 +np.float64,0xbfe8675ce170ceba,0x3fe723105925ce3a,1 +np.float64,0xbfd70723acae0e48,0x3fedf369ac070e65,1 +np.float64,0xbfea9d8692b53b0d,0x3fe58e1ee42e3fdb,1 +np.float64,0xbfcfeb96653fd72c,0x3fef029770033bdc,1 +np.float64,0xbfcc06c92d380d94,0x3fef3c69797d9b0a,1 +np.float64,0xbfe16b7c4f62d6f8,0x3feb5fdf9f0a9a07,1 +np.float64,0xbfed4d7a473a9af4,0x3fe37ecee27b1eb7,1 +np.float64,0xbfe6a6f6942d4ded,0x3fe84fccdf762b19,1 +np.float64,0xbfda46d867348db0,0x3fed572d928fa657,1 +np.float64,0xbfdbd9482db7b290,0x3fed049b5f907b52,1 +np.float64,0x7fe992ceb933259c,0xbfeb15af92aad70e,1 +np.float64,0x7fe3069204a60d23,0xbfe5eeff454240e9,1 +np.float64,0x7fe729dbf32e53b7,0xbfefe0528a330e4c,1 +np.float64,0x7fec504fb638a09e,0x3fd288e95dbedf65,1 +np.float64,0x7fe1d30167a3a602,0xbfeffc41f946fd02,1 +np.float64,0x7fed7f8ffd3aff1f,0x3fefe68ec604a19d,1 +np.float64,0x7fd2f23635a5e46b,0x3fea63032efbb447,1 +np.float64,0x7fd4c86db1a990da,0x3fdf6b9f7888db5d,1 +np.float64,0x7fe7554db6eeaa9a,0x3fe1b41476861bb0,1 +np.float64,0x7fe34e823ba69d03,0x3fefc435532e6294,1 +np.float64,0x7fec5c82fef8b905,0x3fef8f0c6473034f,1 +np.float64,0x7feba221bff74442,0xbfea95b81eb19b47,1 +np.float64,0x7fe74808a5ae9010,0xbfd3aa322917c3e5,1 +np.float64,0x7fdf41b7e0be836f,0x3fd14283c7147282,1 +np.float64,0x7fec09892f381311,0x3fe5240376ae484b,1 +np.float64,0x7faaf80bf435f017,0x3fe20227fa811423,1 +np.float64,0x7f8422d8402845b0,0x3fe911714593b8a0,1 +np.float64,0x7fd23a7fada474fe,0x3feff9f40aa37e9c,1 +np.float64,0x7fef4a4806fe948f,0x3fec6eca89cb4a62,1 +np.float64,0x7fe1e71cf763ce39,0xbfea6ac63f9ba457,1 +np.float64,0x7fe3e555be27caaa,0xbfe75b305d0dbbfd,1 +np.float64,0x7fcb8bac96371758,0xbfe8b126077f9d4c,1 +np.float64,0x7fc98e2c84331c58,0x3fef9092eb0bc85a,1 +np.float64,0x7fe947cf2b728f9d,0xbfebfff2c5b7d198,1 +np.float64,0x7feee8058c3dd00a,0xbfef21ebaae2eb17,1 +np.float64,0x7fef61d8d5bec3b1,0xbfdf1a032fb1c864,1 +np.float64,0x7fcf714b6f3ee296,0x3fe6fc89a8084098,1 +np.float64,0x7fa9a8b44c335168,0xbfeb16c149cea943,1 +np.float64,0x7fd175c482a2eb88,0xbfef64d341e73f88,1 +np.float64,0x7feab8e6a87571cc,0x3feb10069c397464,1 +np.float64,0x7fe3ade72de75bcd,0x3fd1753e333d5790,1 +np.float64,0x7fb26d87d224db0f,0xbfe753d36b18f4ca,1 +np.float64,0x7fdb7ef159b6fde2,0x3fe5c0a6044d3607,1 +np.float64,0x7fd5af86422b5f0c,0x3fe77193c95f6484,1 +np.float64,0x7fee9e00b07d3c00,0x3fe864d494596845,1 +np.float64,0x7fef927a147f24f3,0xbfe673b14715693d,1 +np.float64,0x7fd0aea63c215d4b,0xbfeff435f119fce9,1 +np.float64,0x7fd02e3796a05c6e,0x3fe4f7e3706e9a3d,1 +np.float64,0x7fd3ed61da27dac3,0xbfefef2f057f168c,1 +np.float64,0x7fefaca0d4ff5941,0x3fd3e8ad205cd4ab,1 +np.float64,0x7feb659e06f6cb3b,0x3fd64d803203e027,1 +np.float64,0x7fc94ccfaf32999e,0x3fee04922209369a,1 +np.float64,0x7feb4ec294f69d84,0xbfd102763a056c89,1 +np.float64,0x7fe2ada6ac655b4c,0x3fef4f6792aa6093,1 +np.float64,0x7fe5f40fdc2be81f,0xbfb4a6327186eee8,1 +np.float64,0x7fe7584bc3eeb097,0xbfd685b8ff94651d,1 +np.float64,0x7fe45d276be8ba4e,0x3fee53b13f7e442f,1 +np.float64,0x7fe6449b3d6c8935,0xbfe7e08bafa75251,1 +np.float64,0x7f8d62e6b03ac5cc,0x3fe73d30762f38fd,1 +np.float64,0x7fe3a76f72a74ede,0xbfeb48a28bc60968,1 +np.float64,0x7fd057706920aee0,0x3fdece8fa06f626c,1 +np.float64,0x7fe45ae158e8b5c2,0x3fe7a70f47b4d349,1 +np.float64,0x7fea8a5a983514b4,0x3fefb053d5f9ddd7,1 +np.float64,0x7fdd1e86ab3a3d0c,0x3fe3cded1b93816b,1 +np.float64,0x7fdb456108b68ac1,0xbfe37574c0b9bf8f,1 +np.float64,0x7fe972602432e4bf,0x3fef9a26e65ec01c,1 +np.float64,0x7fdbe2385637c470,0x3fed541df57969e1,1 +np.float64,0x7fe57f03602afe06,0x3fbd90f595cbbd94,1 +np.float64,0x7feb0ceb68f619d6,0xbfeae9cb8ee5261f,1 +np.float64,0x7fe6abfe6c6d57fc,0xbfef40a6edaca26f,1 +np.float64,0x7fe037ea08606fd3,0xbfda817d75858597,1 +np.float64,0x7fdd75a52dbaeb49,0x3feef2a0d91d6aa1,1 +np.float64,0x7fe8f9af66b1f35e,0xbfedfceef2a3bfc9,1 +np.float64,0x7fedf762b53beec4,0x3fd8b4f21ef69ee3,1 +np.float64,0x7fe99295b7f3252a,0x3feffc24d970383e,1 +np.float64,0x7fe797b0172f2f5f,0x3fee089aa56f7ce8,1 +np.float64,0x7fed89dcc97b13b9,0xbfcfa2bb0c3ea41f,1 +np.float64,0x7fae9e8d5c3d3d1a,0xbfe512ffe16c6b08,1 +np.float64,0x7fefaecbe27f5d97,0x3fbfc718a5e972f1,1 +np.float64,0x7fce0236d93c046d,0xbfa9b7cd790db256,1 +np.float64,0x7fa9689aac32d134,0x3feced501946628a,1 +np.float64,0x7feb1469e93628d3,0x3fef2a988e7673ed,1 +np.float64,0x7fdba78344b74f06,0xbfe092e78965b30c,1 +np.float64,0x7fece54c3fb9ca97,0x3fd3cfd184bed2e6,1 +np.float64,0x7fdb84212b370841,0xbfe25ebf2db6ee55,1 +np.float64,0x7fbe3e8bf23c7d17,0x3fe2ee72df573345,1 +np.float64,0x7fe43d9803687b2f,0xbfed2eff6a9e66a0,1 +np.float64,0x7fb0f9c00a21f37f,0x3feff70f3276fdb7,1 +np.float64,0x7fea0c6cbbb418d8,0xbfefa612494798b2,1 +np.float64,0x7fe4b3239e296646,0xbfe74dd959af8cdc,1 +np.float64,0x7fe5c6a773eb8d4e,0xbfd06944048f8d2b,1 +np.float64,0x7fb1c1278223824e,0xbfeb533a34655bde,1 +np.float64,0x7fd21c09ee243813,0xbfe921ccbc9255c3,1 +np.float64,0x7fe051020c20a203,0x3fbd519d700c1f2f,1 +np.float64,0x7fe0c76845e18ed0,0x3fefb9595191a31b,1 +np.float64,0x7fe6b0b57b6d616a,0xbf8c59a8ba5fcd9a,1 +np.float64,0x7fd386c460270d88,0x3fe8ffea5d1a5c46,1 +np.float64,0x7feeb884713d7108,0x3fee9b2247ef6c0d,1 +np.float64,0x7fd85f71b6b0bee2,0xbfefc30ec3e28f07,1 +np.float64,0x7fc341366426826c,0x3fd4234d35386d3b,1 +np.float64,0x7fe56482dd6ac905,0x3fe7189de6a50668,1 +np.float64,0x7fec67a2e3f8cf45,0xbfef86d0b940f37f,1 +np.float64,0x7fe38b202fe7163f,0x3feb90b75caa2030,1 +np.float64,0x7fdcbc64883978c8,0x3fed4f758fbf64d4,1 +np.float64,0x7fea5f0598f4be0a,0x3fdd503a417b3d4d,1 +np.float64,0x7fda3b6bcf3476d7,0x3fea6e9af3f7f9f5,1 +np.float64,0x7fc7d7896c2faf12,0x3fda2bebc36a2363,1 +np.float64,0x7fe7e8e2626fd1c4,0xbfe7d5e390c4cc3f,1 +np.float64,0x7fde0f3d7abc1e7a,0xbfede7a0ecfa3606,1 +np.float64,0x7fc692b8f52d2571,0x3feff0cd7ab6f61b,1 +np.float64,0xff92d1fce825a400,0xbfc921c36fc014fa,1 +np.float64,0xffdec3af2fbd875e,0xbfed6a77e6a0364e,1 +np.float64,0xffef46e7d9be8dcf,0xbfed7d39476f7e27,1 +np.float64,0xffe2c2ce4525859c,0x3fe1757261316bc9,1 +np.float64,0xffe27c8b5864f916,0xbfefe017c0d43457,1 +np.float64,0xffe184d7442309ae,0x3fa1fb8c49dba596,1 +np.float64,0xffddf5f98d3bebf4,0x3fee4f8eaa5f847e,1 +np.float64,0xffee3ef354fc7de6,0xbfebfd60fa51b2ba,1 +np.float64,0xffdecb3e85bd967e,0x3fbfad2667a8b468,1 +np.float64,0xffe4ee900b29dd20,0xbfdc02dc626f91cd,1 +np.float64,0xffd3179f6da62f3e,0xbfe2cfe442511776,1 +np.float64,0xffe99ef7cef33def,0x3f50994542a7f303,1 +np.float64,0xffe2b66b1ae56cd6,0xbfefe3e066eb6329,1 +np.float64,0xff8f72aff03ee540,0x3fe9c46224cf5003,1 +np.float64,0xffd29beb85a537d8,0x3fefcb0b6166be71,1 +np.float64,0xffaef02d4c3de060,0xbfef5fb71028fc72,1 +np.float64,0xffd39a2a89273456,0x3fe6d4b183205dca,1 +np.float64,0xffef8a9392ff1526,0x3fedb99fbf402468,1 +np.float64,0xffb9b3f31e3367e8,0x3fee1005270fcf80,1 +np.float64,0xffed9d5c693b3ab8,0x3fd110f4b02365d5,1 +np.float64,0xffeaba45f9f5748b,0x3fe499e0a6f4afb2,1 +np.float64,0xffdba3f70d3747ee,0xbfca0c30493ae519,1 +np.float64,0xffa35b985426b730,0xbfdb625df56bcf45,1 +np.float64,0xffccbc9728397930,0x3fc53cbc59020704,1 +np.float64,0xffef73c942bee792,0xbfdc647a7a5e08be,1 +np.float64,0xffcb5acfb236b5a0,0x3feeb4ec038c39fc,1 +np.float64,0xffea116fe2b422df,0x3fefe03b6ae0b435,1 +np.float64,0xffe97de6e7b2fbcd,0xbfd2025698fab9eb,1 +np.float64,0xffdddba314bbb746,0x3fd31f0fdb8f93be,1 +np.float64,0xffd613a24a2c2744,0xbfebbb1efae884b3,1 +np.float64,0xffe3d938aa67b271,0xbfc2099cead3d3be,1 +np.float64,0xffdf08c2e33e1186,0xbfefd236839b900d,1 +np.float64,0xffea6ba8bd34d751,0x3fe8dfc032114719,1 +np.float64,0xffe3202083e64040,0x3fed513b81432a22,1 +np.float64,0xffb2397db62472f8,0xbfee7d7fe1c3f76c,1 +np.float64,0xffd9d0682ab3a0d0,0x3fe0bcf9e531ad79,1 +np.float64,0xffc293df202527c0,0xbfe58d0bdece5e64,1 +np.float64,0xffe1422c7da28458,0xbf81bd72595f2341,1 +np.float64,0xffd64e4ed4ac9c9e,0x3fa4334cc011c703,1 +np.float64,0xffe40a970ae8152e,0x3fead3d258b55b7d,1 +np.float64,0xffc8c2f2223185e4,0xbfef685f07c8b9fd,1 +np.float64,0xffe4b2f7216965ee,0x3fe3861d3d896a83,1 +np.float64,0xffdb531db3b6a63c,0x3fe18cb8332dd59d,1 +np.float64,0xffe8e727a3b1ce4e,0xbfe57b15abb677b9,1 +np.float64,0xffe530c1e12a6184,0xbfb973ea5535e48f,1 +np.float64,0xffe6f7849cedef08,0x3fd39a37ec5af4b6,1 +np.float64,0xffead62a78b5ac54,0x3fe69b3f6c7aa24b,1 +np.float64,0xffeefdd725fdfbad,0xbfc08a456111fdd5,1 +np.float64,0xffe682182fed0430,0x3fecc7c1292761d2,1 +np.float64,0xffee0ca8dcbc1951,0x3fef6cc361ef2c19,1 +np.float64,0xffec9b338f393666,0x3fefa9ab8e0471b5,1 +np.float64,0xffe13c5e29a278bc,0xbfef8da74ad83398,1 +np.float64,0xffd7bd48c62f7a92,0x3fe3468cd4ac9d34,1 +np.float64,0xffedd0ed14bba1d9,0xbfd563a83477077b,1 +np.float64,0xffe86b83f3f0d707,0x3fe9eb3c658e4b2d,1 +np.float64,0xffd6a4db4bad49b6,0xbfc7e11276166e17,1 +np.float64,0xffc29e8404253d08,0x3fd35971961c789f,1 +np.float64,0xffe27cf3d664f9e7,0xbfeca0f73c72f810,1 +np.float64,0xffc34152352682a4,0x3fef384e564c002c,1 +np.float64,0xffe395728ba72ae4,0x3f8fe18c2de86eba,1 +np.float64,0xffed86c4fbbb0d89,0x3fef709db881c672,1 +np.float64,0xffe8a98d37f1531a,0x3fd4879c8f73c3dc,1 +np.float64,0xffb8ce9fea319d40,0xbfb853c8fe46b08d,1 +np.float64,0xffe7f26db8efe4db,0xbfec1cfd3e5c2ac1,1 +np.float64,0xffd7935b77af26b6,0x3fb7368c89b2a460,1 +np.float64,0xffc5840ed02b081c,0x3fd92220b56631f3,1 +np.float64,0xffc36a873926d510,0x3fa84d61baf61811,1 +np.float64,0xffe06ea583e0dd4a,0x3feb647e348b9e39,1 +np.float64,0xffe6a33031ed4660,0xbfe096b851dc1a0a,1 +np.float64,0xffe001c938e00392,0x3fe4eece77623e7a,1 +np.float64,0xffc1e4f23b23c9e4,0xbfdb9bb1f83f6ac4,1 +np.float64,0xffecd3ecbab9a7d9,0x3fbafb1f800f177d,1 +np.float64,0xffc2d3016825a604,0xbfef650e8b0d6afb,1 +np.float64,0xffe222cb68e44596,0x3fde3690e44de5bd,1 +np.float64,0xffe5bb145e2b7628,0x3fedbb98e23c9dc1,1 +np.float64,0xffe9e5823b73cb04,0xbfee41661016c03c,1 +np.float64,0xffd234a00ba46940,0x3fda0312cda580c2,1 +np.float64,0xffe0913ed6e1227d,0xbfed508bb529bd23,1 +np.float64,0xffe8e3596171c6b2,0xbfdc33e1c1d0310e,1 +np.float64,0xffef9c6835ff38cf,0x3fea8ce6d27dfba3,1 +np.float64,0xffdd3bcf66ba779e,0x3fe50523d2b6470e,1 +np.float64,0xffe57e8cf06afd1a,0xbfee600933347247,1 +np.float64,0xffe0d8c65fa1b18c,0x3fe75091f93d5e4c,1 +np.float64,0xffea7c8c16b4f918,0x3fee681724795198,1 +np.float64,0xffe34f7a05269ef4,0xbfe3c3e179676f13,1 +np.float64,0xffd28894a6a5112a,0xbfe5d1027aee615d,1 +np.float64,0xffc73be6f22e77cc,0x3fe469bbc08b472a,1 +np.float64,0xffe7f71b066fee36,0x3fe7ed136c8fdfaa,1 +np.float64,0xffebc13e29f7827c,0x3fefcdc6e677d314,1 +np.float64,0xffd53e9c942a7d3a,0x3fea5a02c7341749,1 +np.float64,0xffd7191b23ae3236,0x3fea419b66023443,1 +np.float64,0xffe9480325b29006,0xbfefeaff5fa38cd5,1 +np.float64,0xffba46dc0e348db8,0xbfefa54f4de28eba,1 +np.float64,0xffdd4cc31eba9986,0x3fe60bb41fe1c4da,1 +np.float64,0xffe13a70dea274e1,0xbfaa9192f7bd6c9b,1 +np.float64,0xffde25127bbc4a24,0x3f7c75f45e29be7d,1 +np.float64,0xffe4076543a80eca,0x3fea5aad50d2f687,1 +np.float64,0xffe61512acec2a25,0xbfefffeb67401649,1 +np.float64,0xffef812ec1ff025d,0xbfe919c7c073c766,1 +np.float64,0xffd5552aeaaaaa56,0x3fc89d38ab047396,1 diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-cosh.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-cosh.csv new file mode 100644 index 0000000..af14d84 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-cosh.csv @@ -0,0 +1,1429 @@ +dtype,input,output,ulperrortol +np.float32,0xfe0ac238,0x7f800000,3 +np.float32,0xbf553b86,0x3faf079b,3 +np.float32,0xff4457da,0x7f800000,3 +np.float32,0xff7253f3,0x7f800000,3 +np.float32,0x5a5802,0x3f800000,3 +np.float32,0x3db03413,0x3f80795b,3 +np.float32,0x7f6795c9,0x7f800000,3 +np.float32,0x805b9142,0x3f800000,3 +np.float32,0xfeea581a,0x7f800000,3 +np.float32,0x3f7e2dba,0x3fc472f6,3 +np.float32,0x3d9c4d74,0x3f805f7a,3 +np.float32,0x7f18c665,0x7f800000,3 +np.float32,0x7f003e23,0x7f800000,3 +np.float32,0x3d936fa0,0x3f8054f3,3 +np.float32,0x3f32034f,0x3fa0368e,3 +np.float32,0xff087604,0x7f800000,3 +np.float32,0x380a5,0x3f800000,3 +np.float32,0x3f59694e,0x3fb10077,3 +np.float32,0x3e63e648,0x3f832ee4,3 +np.float32,0x80712f42,0x3f800000,3 +np.float32,0x3e169908,0x3f816302,3 +np.float32,0x3f2d766e,0x3f9e8692,3 +np.float32,0x3d6412e0,0x3f8032d0,3 +np.float32,0xbde689e8,0x3f80cfd4,3 +np.float32,0x483e2e,0x3f800000,3 +np.float32,0xff1ba2d0,0x7f800000,3 +np.float32,0x80136bff,0x3f800000,3 +np.float32,0x3f72534c,0x3fbdc1d4,3 +np.float32,0x3e9eb381,0x3f8632c6,3 +np.float32,0x3e142892,0x3f815795,3 +np.float32,0x0,0x3f800000,3 +np.float32,0x2f2528,0x3f800000,3 +np.float32,0x7f38be13,0x7f800000,3 +np.float32,0xfeee6896,0x7f800000,3 +np.float32,0x7f09095d,0x7f800000,3 +np.float32,0xbe94d,0x3f800000,3 +np.float32,0xbedcf8d4,0x3f8c1b74,3 +np.float32,0xbf694c02,0x3fb8ef07,3 +np.float32,0x3e2261f8,0x3f819cde,3 +np.float32,0xbf01d3ce,0x3f90d0e0,3 +np.float32,0xbeb7b3a2,0x3f8853de,3 +np.float32,0x8046de7b,0x3f800000,3 +np.float32,0xbcb45ea0,0x3f8007f1,3 +np.float32,0x3eef14af,0x3f8e35dd,3 +np.float32,0xbf047316,0x3f91846e,3 +np.float32,0x801cef45,0x3f800000,3 +np.float32,0x3e9ad891,0x3f85e609,3 +np.float32,0xff20e9cf,0x7f800000,3 +np.float32,0x80068434,0x3f800000,3 +np.float32,0xbe253020,0x3f81ab49,3 +np.float32,0x3f13f4b8,0x3f95fac9,3 +np.float32,0x804accd1,0x3f800000,3 +np.float32,0x3dee3e10,0x3f80ddf7,3 +np.float32,0xbe6c4690,0x3f836c29,3 +np.float32,0xff30d431,0x7f800000,3 +np.float32,0xbec82416,0x3f89e791,3 +np.float32,0x3f30bbcb,0x3f9fbbcc,3 +np.float32,0x3f5620a2,0x3faf72b8,3 +np.float32,0x807a8130,0x3f800000,3 +np.float32,0x3e3cb02d,0x3f822de0,3 +np.float32,0xff4839ac,0x7f800000,3 +np.float32,0x800a3e9c,0x3f800000,3 +np.float32,0x3dffd65b,0x3f810002,3 +np.float32,0xbf2b1492,0x3f9da987,3 +np.float32,0xbf21602c,0x3f9a48fe,3 +np.float32,0x512531,0x3f800000,3 +np.float32,0x24b99a,0x3f800000,3 +np.float32,0xbf53e345,0x3fae67b1,3 +np.float32,0xff2126ec,0x7f800000,3 +np.float32,0x7e79b49d,0x7f800000,3 +np.float32,0x3ea3cf04,0x3f869b6f,3 +np.float32,0x7f270059,0x7f800000,3 +np.float32,0x3f625b2f,0x3fb561e1,3 +np.float32,0xbf59947e,0x3fb11519,3 +np.float32,0xfe0d1c64,0x7f800000,3 +np.float32,0xbf3f3eae,0x3fa568e2,3 +np.float32,0x7c04d1,0x3f800000,3 +np.float32,0x7e66bd,0x3f800000,3 +np.float32,0x8011880d,0x3f800000,3 +np.float32,0x3f302f07,0x3f9f8759,3 +np.float32,0x4e3375,0x3f800000,3 +np.float32,0xfe67a134,0x7f800000,3 +np.float32,0xff670249,0x7f800000,3 +np.float32,0x7e19f27d,0x7f800000,3 +np.float32,0xbf36ce12,0x3fa20b81,3 +np.float32,0xbe6bcfc4,0x3f8368b5,3 +np.float32,0x76fcba,0x3f800000,3 +np.float32,0x7f30abaf,0x7f800000,3 +np.float32,0x3f4c1f6d,0x3faae43c,3 +np.float32,0x7f61f44a,0x7f800000,3 +np.float32,0xbf4bb3c9,0x3faab4af,3 +np.float32,0xbda15ee0,0x3f8065c6,3 +np.float32,0xfbb4e800,0x7f800000,3 +np.float32,0x7fa00000,0x7fe00000,3 +np.float32,0x80568501,0x3f800000,3 +np.float32,0xfeb285e4,0x7f800000,3 +np.float32,0x804423a7,0x3f800000,3 +np.float32,0x7e6c0f21,0x7f800000,3 +np.float32,0x7f136b3c,0x7f800000,3 +np.float32,0x3f2d08e6,0x3f9e5e9c,3 +np.float32,0xbf6b454e,0x3fb9f7e6,3 +np.float32,0x3e6bceb0,0x3f8368ad,3 +np.float32,0xff1ad16a,0x7f800000,3 +np.float32,0x7cce1a04,0x7f800000,3 +np.float32,0xff7bcf95,0x7f800000,3 +np.float32,0x8049788d,0x3f800000,3 +np.float32,0x7ec45918,0x7f800000,3 +np.float32,0xff7fffff,0x7f800000,3 +np.float32,0x8039a1a0,0x3f800000,3 +np.float32,0x7e90cd72,0x7f800000,3 +np.float32,0xbf7dfd53,0x3fc456cc,3 +np.float32,0x3eeeb664,0x3f8e2a76,3 +np.float32,0x8055ef9b,0x3f800000,3 +np.float32,0x7ee06ddd,0x7f800000,3 +np.float32,0xba2cc000,0x3f800002,3 +np.float32,0x806da632,0x3f800000,3 +np.float32,0x7ecfaaf5,0x7f800000,3 +np.float32,0x3ddd12e6,0x3f80bf19,3 +np.float32,0xbf754394,0x3fbf60b1,3 +np.float32,0x6f3f19,0x3f800000,3 +np.float32,0x800a9af0,0x3f800000,3 +np.float32,0xfeef13ea,0x7f800000,3 +np.float32,0x7f74841f,0x7f800000,3 +np.float32,0xbeb9a2f0,0x3f888181,3 +np.float32,0x77cbb,0x3f800000,3 +np.float32,0xbf587f84,0x3fb0911b,3 +np.float32,0x210ba5,0x3f800000,3 +np.float32,0x3ee60a28,0x3f8d2367,3 +np.float32,0xbe3731ac,0x3f820dc7,3 +np.float32,0xbee8cfee,0x3f8d765e,3 +np.float32,0x7b2ef179,0x7f800000,3 +np.float32,0xfe81377c,0x7f800000,3 +np.float32,0x6ac98c,0x3f800000,3 +np.float32,0x3f51f144,0x3fad8288,3 +np.float32,0x80785750,0x3f800000,3 +np.float32,0x3f46615a,0x3fa864ff,3 +np.float32,0xbf35ac9e,0x3fa19b8e,3 +np.float32,0x7f0982ac,0x7f800000,3 +np.float32,0x1b2610,0x3f800000,3 +np.float32,0x3ed8bb25,0x3f8ba3df,3 +np.float32,0xbeb41bac,0x3f88006d,3 +np.float32,0xff48e89d,0x7f800000,3 +np.float32,0x3ed0ab8c,0x3f8ac755,3 +np.float32,0xbe64671c,0x3f833282,3 +np.float32,0x64bce4,0x3f800000,3 +np.float32,0x284f79,0x3f800000,3 +np.float32,0x7e09faa7,0x7f800000,3 +np.float32,0x4376c1,0x3f800000,3 +np.float32,0x805ca8c0,0x3f800000,3 +np.float32,0xff0859d5,0x7f800000,3 +np.float32,0xbed2f3b2,0x3f8b04dd,3 +np.float32,0x8045bd0c,0x3f800000,3 +np.float32,0x3f0e6216,0x3f94503f,3 +np.float32,0x3f41e3ae,0x3fa68035,3 +np.float32,0x80088ccc,0x3f800000,3 +np.float32,0x3f37fc19,0x3fa2812f,3 +np.float32,0x71c87d,0x3f800000,3 +np.float32,0x8024f4b2,0x3f800000,3 +np.float32,0xff78dd88,0x7f800000,3 +np.float32,0xbda66c90,0x3f806c40,3 +np.float32,0x7f33ef0d,0x7f800000,3 +np.float32,0x46a343,0x3f800000,3 +np.float32,0xff1dce38,0x7f800000,3 +np.float32,0x1b935d,0x3f800000,3 +np.float32,0x3ebec598,0x3f88fd0e,3 +np.float32,0xff115530,0x7f800000,3 +np.float32,0x803916aa,0x3f800000,3 +np.float32,0xff60a3e2,0x7f800000,3 +np.float32,0x3b8ddd48,0x3f80004f,3 +np.float32,0x3f761b6e,0x3fbfd8ea,3 +np.float32,0xbdf55b88,0x3f80eb70,3 +np.float32,0x37374,0x3f800000,3 +np.float32,0x3de150e0,0x3f80c682,3 +np.float32,0x3f343278,0x3fa10a83,3 +np.float32,0xbe9baefa,0x3f85f68b,3 +np.float32,0x3d8d43,0x3f800000,3 +np.float32,0x3e80994b,0x3f840f0c,3 +np.float32,0xbe573c6c,0x3f82d685,3 +np.float32,0x805b83b4,0x3f800000,3 +np.float32,0x683d88,0x3f800000,3 +np.float32,0x692465,0x3f800000,3 +np.float32,0xbdc345f8,0x3f809511,3 +np.float32,0x3f7c1c5a,0x3fc3406f,3 +np.float32,0xbf40bef3,0x3fa606df,3 +np.float32,0xff1e25b9,0x7f800000,3 +np.float32,0x3e4481e0,0x3f825d37,3 +np.float32,0x75d188,0x3f800000,3 +np.float32,0x3ea53cec,0x3f86b956,3 +np.float32,0xff105a54,0x7f800000,3 +np.float32,0x7f800000,0x7f800000,3 +np.float32,0x7f11f0b0,0x7f800000,3 +np.float32,0xbf58a57d,0x3fb0a328,3 +np.float32,0xbdd11e38,0x3f80aaf8,3 +np.float32,0xbea94adc,0x3f870fa0,3 +np.float32,0x3e9dd780,0x3f862180,3 +np.float32,0xff1786b9,0x7f800000,3 +np.float32,0xfec46aa2,0x7f800000,3 +np.float32,0x7f4300c1,0x7f800000,3 +np.float32,0x29ba2b,0x3f800000,3 +np.float32,0x3f4112e2,0x3fa62993,3 +np.float32,0xbe6c9224,0x3f836e5d,3 +np.float32,0x7f0e42a3,0x7f800000,3 +np.float32,0xff6390ad,0x7f800000,3 +np.float32,0x3f54e374,0x3faede94,3 +np.float32,0x7f2642a2,0x7f800000,3 +np.float32,0x7f46b2be,0x7f800000,3 +np.float32,0xfe59095c,0x7f800000,3 +np.float32,0x7146a0,0x3f800000,3 +np.float32,0x3f07763d,0x3f925786,3 +np.float32,0x3d172780,0x3f801651,3 +np.float32,0xff66f1c5,0x7f800000,3 +np.float32,0xff025349,0x7f800000,3 +np.float32,0x6ce99d,0x3f800000,3 +np.float32,0xbf7e4f50,0x3fc48685,3 +np.float32,0xbeff8ca2,0x3f904708,3 +np.float32,0x3e6c8,0x3f800000,3 +np.float32,0x7f7153dc,0x7f800000,3 +np.float32,0xbedcf612,0x3f8c1b26,3 +np.float32,0xbbc2f180,0x3f800094,3 +np.float32,0xbf397399,0x3fa314b8,3 +np.float32,0x6c6e35,0x3f800000,3 +np.float32,0x7f50a88b,0x7f800000,3 +np.float32,0xfe84093e,0x7f800000,3 +np.float32,0x3f737b9d,0x3fbe6478,3 +np.float32,0x7f6a5340,0x7f800000,3 +np.float32,0xbde83c20,0x3f80d2e7,3 +np.float32,0xff769ce9,0x7f800000,3 +np.float32,0xfdd33c30,0x7f800000,3 +np.float32,0xbc95cb60,0x3f80057a,3 +np.float32,0x8007a40d,0x3f800000,3 +np.float32,0x3f55d90c,0x3faf5132,3 +np.float32,0x80282082,0x3f800000,3 +np.float32,0xbf43b1f2,0x3fa7418c,3 +np.float32,0x3f1dc7cb,0x3f991731,3 +np.float32,0xbd4346a0,0x3f80253f,3 +np.float32,0xbf5aa82a,0x3fb19946,3 +np.float32,0x3f4b8c22,0x3faaa333,3 +np.float32,0x3d13468c,0x3f80152f,3 +np.float32,0x7db77097,0x7f800000,3 +np.float32,0x4a00df,0x3f800000,3 +np.float32,0xbedea5e0,0x3f8c4b64,3 +np.float32,0x80482543,0x3f800000,3 +np.float32,0xbef344fe,0x3f8eb8dd,3 +np.float32,0x7ebd4044,0x7f800000,3 +np.float32,0xbf512c0e,0x3fad287e,3 +np.float32,0x3db28cce,0x3f807c9c,3 +np.float32,0xbd0f5ae0,0x3f801412,3 +np.float32,0xfe7ed9ac,0x7f800000,3 +np.float32,0x3eb1aa82,0x3f87c8b4,3 +np.float32,0xfef1679e,0x7f800000,3 +np.float32,0xff3629f2,0x7f800000,3 +np.float32,0xff3562b4,0x7f800000,3 +np.float32,0x3dcafe1d,0x3f80a118,3 +np.float32,0xfedf242a,0x7f800000,3 +np.float32,0xbf43102a,0x3fa6fda4,3 +np.float32,0x8028834e,0x3f800000,3 +np.float32,0x805c8513,0x3f800000,3 +np.float32,0x3f59306a,0x3fb0e550,3 +np.float32,0x3eda2c9c,0x3f8bcc4a,3 +np.float32,0x80023524,0x3f800000,3 +np.float32,0x7ef72879,0x7f800000,3 +np.float32,0x661c8a,0x3f800000,3 +np.float32,0xfec3ba6c,0x7f800000,3 +np.float32,0x805aaca6,0x3f800000,3 +np.float32,0xff5c1f13,0x7f800000,3 +np.float32,0x3f6ab3f4,0x3fb9ab6b,3 +np.float32,0x3f014896,0x3f90ac20,3 +np.float32,0x3f030584,0x3f91222a,3 +np.float32,0xbf74853d,0x3fbef71d,3 +np.float32,0xbf534ee0,0x3fae2323,3 +np.float32,0x2c90c3,0x3f800000,3 +np.float32,0x7f62ad25,0x7f800000,3 +np.float32,0x1c8847,0x3f800000,3 +np.float32,0x7e2a8d43,0x7f800000,3 +np.float32,0x807a09cd,0x3f800000,3 +np.float32,0x413871,0x3f800000,3 +np.float32,0x80063692,0x3f800000,3 +np.float32,0x3edaf29b,0x3f8be211,3 +np.float32,0xbf64a7ab,0x3fb68b2d,3 +np.float32,0xfe56a720,0x7f800000,3 +np.float32,0xbf54a8d4,0x3faec350,3 +np.float32,0x3ecbaef7,0x3f8a4350,3 +np.float32,0x3f413714,0x3fa63890,3 +np.float32,0x7d3aa8,0x3f800000,3 +np.float32,0xbea9a13c,0x3f8716e7,3 +np.float32,0x7ef7553e,0x7f800000,3 +np.float32,0x8056f29f,0x3f800000,3 +np.float32,0xff1f7ffe,0x7f800000,3 +np.float32,0x3f41953b,0x3fa65f9c,3 +np.float32,0x3daa2f,0x3f800000,3 +np.float32,0xff0893e4,0x7f800000,3 +np.float32,0xbefc7ec6,0x3f8fe207,3 +np.float32,0xbb026800,0x3f800011,3 +np.float32,0x341e4f,0x3f800000,3 +np.float32,0x3e7b708a,0x3f83e0d1,3 +np.float32,0xa18cb,0x3f800000,3 +np.float32,0x7e290239,0x7f800000,3 +np.float32,0xbf4254f2,0x3fa6af62,3 +np.float32,0x80000000,0x3f800000,3 +np.float32,0x3f0a6c,0x3f800000,3 +np.float32,0xbec44d28,0x3f898609,3 +np.float32,0xf841f,0x3f800000,3 +np.float32,0x7f01a693,0x7f800000,3 +np.float32,0x8053340b,0x3f800000,3 +np.float32,0xfd4e7990,0x7f800000,3 +np.float32,0xbf782f1f,0x3fc10356,3 +np.float32,0xbe962118,0x3f858acc,3 +np.float32,0xfe8cd702,0x7f800000,3 +np.float32,0x7ecd986f,0x7f800000,3 +np.float32,0x3ebe775f,0x3f88f59b,3 +np.float32,0x8065524f,0x3f800000,3 +np.float32,0x3ede7fc4,0x3f8c471e,3 +np.float32,0x7f5e15ea,0x7f800000,3 +np.float32,0xbe871ada,0x3f847b78,3 +np.float32,0x3f21958b,0x3f9a5af7,3 +np.float32,0x3f64d480,0x3fb6a1fa,3 +np.float32,0xff18b0e9,0x7f800000,3 +np.float32,0xbf0840dd,0x3f928fd9,3 +np.float32,0x80104f5d,0x3f800000,3 +np.float32,0x643b94,0x3f800000,3 +np.float32,0xbc560a80,0x3f8002cc,3 +np.float32,0x3f5c75d6,0x3fb2786e,3 +np.float32,0x7f365fc9,0x7f800000,3 +np.float32,0x54e965,0x3f800000,3 +np.float32,0x6dcd4d,0x3f800000,3 +np.float32,0x3f2057a0,0x3f99f04d,3 +np.float32,0x272fa3,0x3f800000,3 +np.float32,0xff423dc9,0x7f800000,3 +np.float32,0x80273463,0x3f800000,3 +np.float32,0xfe21cc78,0x7f800000,3 +np.float32,0x7fc00000,0x7fc00000,3 +np.float32,0x802feb65,0x3f800000,3 +np.float32,0x3dc733d0,0x3f809b21,3 +np.float32,0x65d56b,0x3f800000,3 +np.float32,0x80351d8e,0x3f800000,3 +np.float32,0xbf244247,0x3f9b43dd,3 +np.float32,0x7f328e7e,0x7f800000,3 +np.float32,0x7f4d9712,0x7f800000,3 +np.float32,0x2c505d,0x3f800000,3 +np.float32,0xbf232ebe,0x3f9ae5a0,3 +np.float32,0x804a363a,0x3f800000,3 +np.float32,0x80417102,0x3f800000,3 +np.float32,0xbf48b170,0x3fa963d4,3 +np.float32,0x7ea3e3b6,0x7f800000,3 +np.float32,0xbf41415b,0x3fa63cd2,3 +np.float32,0xfe3af7c8,0x7f800000,3 +np.float32,0x7f478010,0x7f800000,3 +np.float32,0x80143113,0x3f800000,3 +np.float32,0x3f7626a7,0x3fbfdf2e,3 +np.float32,0xfea20b0a,0x7f800000,3 +np.float32,0x80144d64,0x3f800000,3 +np.float32,0x7db9ba47,0x7f800000,3 +np.float32,0x7f7fffff,0x7f800000,3 +np.float32,0xbe410834,0x3f8247ef,3 +np.float32,0x14a7af,0x3f800000,3 +np.float32,0x7eaebf9e,0x7f800000,3 +np.float32,0xff800000,0x7f800000,3 +np.float32,0x3f0a7d8e,0x3f9330fd,3 +np.float32,0x3ef780,0x3f800000,3 +np.float32,0x3f62253e,0x3fb546d1,3 +np.float32,0x3f4cbeac,0x3fab2acc,3 +np.float32,0x25db1,0x3f800000,3 +np.float32,0x65c54a,0x3f800000,3 +np.float32,0x800f0645,0x3f800000,3 +np.float32,0x3ed28c78,0x3f8af9f0,3 +np.float32,0x8040c6ce,0x3f800000,3 +np.float32,0x5e4e9a,0x3f800000,3 +np.float32,0xbd3fd2b0,0x3f8023f1,3 +np.float32,0xbf5d2d3f,0x3fb2d1b6,3 +np.float32,0x7ead999f,0x7f800000,3 +np.float32,0xbf30dc86,0x3f9fc805,3 +np.float32,0xff2b0a62,0x7f800000,3 +np.float32,0x3d5180e9,0x3f802adf,3 +np.float32,0x3f62716f,0x3fb56d0d,3 +np.float32,0x7e82ae9c,0x7f800000,3 +np.float32,0xfe2d4bdc,0x7f800000,3 +np.float32,0x805cc7d4,0x3f800000,3 +np.float32,0xfb50f700,0x7f800000,3 +np.float32,0xff57b684,0x7f800000,3 +np.float32,0x80344f01,0x3f800000,3 +np.float32,0x7f2af372,0x7f800000,3 +np.float32,0xfeab6204,0x7f800000,3 +np.float32,0x30b251,0x3f800000,3 +np.float32,0x3eed8cc4,0x3f8e0698,3 +np.float32,0x7eeb1c6a,0x7f800000,3 +np.float32,0x3f17ece6,0x3f9735b0,3 +np.float32,0x21e985,0x3f800000,3 +np.float32,0x3f3a7df3,0x3fa37e34,3 +np.float32,0x802a14a2,0x3f800000,3 +np.float32,0x807d4d5b,0x3f800000,3 +np.float32,0x7f6093ce,0x7f800000,3 +np.float32,0x3f800000,0x3fc583ab,3 +np.float32,0x3da2c26e,0x3f806789,3 +np.float32,0xfe05f278,0x7f800000,3 +np.float32,0x800000,0x3f800000,3 +np.float32,0xbee63342,0x3f8d282e,3 +np.float32,0xbf225586,0x3f9a9bd4,3 +np.float32,0xbed60e86,0x3f8b59ba,3 +np.float32,0xbec99484,0x3f8a0ca3,3 +np.float32,0x3e967c71,0x3f859199,3 +np.float32,0x7f26ab62,0x7f800000,3 +np.float32,0xca7f4,0x3f800000,3 +np.float32,0xbf543790,0x3fae8ebc,3 +np.float32,0x3e4c1ed9,0x3f828d2d,3 +np.float32,0xbdf37f88,0x3f80e7e1,3 +np.float32,0xff0cc44e,0x7f800000,3 +np.float32,0x5dea48,0x3f800000,3 +np.float32,0x31023c,0x3f800000,3 +np.float32,0x3ea10733,0x3f866208,3 +np.float32,0x3e11e6f2,0x3f814d2e,3 +np.float32,0x80641960,0x3f800000,3 +np.float32,0x3ef779a8,0x3f8f3edb,3 +np.float32,0x3f2a5062,0x3f9d632a,3 +np.float32,0x2b7d34,0x3f800000,3 +np.float32,0x3eeb95c5,0x3f8dca67,3 +np.float32,0x805c1357,0x3f800000,3 +np.float32,0x3db3a79d,0x3f807e29,3 +np.float32,0xfded1900,0x7f800000,3 +np.float32,0x45f362,0x3f800000,3 +np.float32,0x451f38,0x3f800000,3 +np.float32,0x801d3ae5,0x3f800000,3 +np.float32,0x458d45,0x3f800000,3 +np.float32,0xfda9d298,0x7f800000,3 +np.float32,0x467439,0x3f800000,3 +np.float32,0x7f66554a,0x7f800000,3 +np.float32,0xfef2375a,0x7f800000,3 +np.float32,0xbf33fc47,0x3fa0f5d7,3 +np.float32,0x3f75ba69,0x3fbfa2d0,3 +np.float32,0xfeb625b2,0x7f800000,3 +np.float32,0x8066b371,0x3f800000,3 +np.float32,0x3f5cb4e9,0x3fb29718,3 +np.float32,0x7f3b6a58,0x7f800000,3 +np.float32,0x7f6b35ea,0x7f800000,3 +np.float32,0xbf6ee555,0x3fbbe5be,3 +np.float32,0x3d836e21,0x3f804380,3 +np.float32,0xff43cd0c,0x7f800000,3 +np.float32,0xff55c1fa,0x7f800000,3 +np.float32,0xbf0dfccc,0x3f9432a6,3 +np.float32,0x3ed92121,0x3f8baf00,3 +np.float32,0x80068cc1,0x3f800000,3 +np.float32,0xff0103f9,0x7f800000,3 +np.float32,0x7e51b175,0x7f800000,3 +np.float32,0x8012f214,0x3f800000,3 +np.float32,0x62d298,0x3f800000,3 +np.float32,0xbf3e1525,0x3fa4ef8d,3 +np.float32,0x806b4882,0x3f800000,3 +np.float32,0xbf38c146,0x3fa2ce7c,3 +np.float32,0xbed59c30,0x3f8b4d70,3 +np.float32,0x3d1910c0,0x3f8016e2,3 +np.float32,0x7f33d55b,0x7f800000,3 +np.float32,0x7f5800e3,0x7f800000,3 +np.float32,0x5b2c5d,0x3f800000,3 +np.float32,0x807be750,0x3f800000,3 +np.float32,0x7eb297c1,0x7f800000,3 +np.float32,0x7dafee62,0x7f800000,3 +np.float32,0x7d9e23f0,0x7f800000,3 +np.float32,0x3e580537,0x3f82dbd8,3 +np.float32,0xbf800000,0x3fc583ab,3 +np.float32,0x7f40f880,0x7f800000,3 +np.float32,0x775ad3,0x3f800000,3 +np.float32,0xbedacd36,0x3f8bddf3,3 +np.float32,0x2138f6,0x3f800000,3 +np.float32,0x52c3b7,0x3f800000,3 +np.float32,0x8041cfdd,0x3f800000,3 +np.float32,0x7bf16791,0x7f800000,3 +np.float32,0xbe95869c,0x3f857f55,3 +np.float32,0xbf199796,0x3f97bcaf,3 +np.float32,0x3ef8da38,0x3f8f6b45,3 +np.float32,0x803f3648,0x3f800000,3 +np.float32,0x80026fd2,0x3f800000,3 +np.float32,0x7eb3ac26,0x7f800000,3 +np.float32,0x3e49921b,0x3f827ce8,3 +np.float32,0xbf689aed,0x3fb892de,3 +np.float32,0x3f253509,0x3f9b9779,3 +np.float32,0xff17894a,0x7f800000,3 +np.float32,0x3cd12639,0x3f800aae,3 +np.float32,0x1db14b,0x3f800000,3 +np.float32,0x39a0bf,0x3f800000,3 +np.float32,0xfdfe1d08,0x7f800000,3 +np.float32,0xff416cd2,0x7f800000,3 +np.float32,0x8070d818,0x3f800000,3 +np.float32,0x3e516e12,0x3f82afb8,3 +np.float32,0x80536651,0x3f800000,3 +np.float32,0xbf2903d2,0x3f9cecb7,3 +np.float32,0x3e896ae4,0x3f84a353,3 +np.float32,0xbd6ba2c0,0x3f80363d,3 +np.float32,0x80126d3e,0x3f800000,3 +np.float32,0xfd9d43d0,0x7f800000,3 +np.float32,0x7b56b6,0x3f800000,3 +np.float32,0xff04718e,0x7f800000,3 +np.float32,0x31440f,0x3f800000,3 +np.float32,0xbf7a1313,0x3fc215c9,3 +np.float32,0x7f43d6a0,0x7f800000,3 +np.float32,0x3f566503,0x3faf92cc,3 +np.float32,0xbf39eb0e,0x3fa343f1,3 +np.float32,0xbe35fd70,0x3f8206df,3 +np.float32,0x800c36ac,0x3f800000,3 +np.float32,0x60d061,0x3f800000,3 +np.float32,0x80453e12,0x3f800000,3 +np.float32,0xfe17c36c,0x7f800000,3 +np.float32,0x3d8c72,0x3f800000,3 +np.float32,0xfe8e9134,0x7f800000,3 +np.float32,0xff5d89de,0x7f800000,3 +np.float32,0x7f45020e,0x7f800000,3 +np.float32,0x3f28225e,0x3f9c9d01,3 +np.float32,0xbf3b6900,0x3fa3dbdd,3 +np.float32,0x80349023,0x3f800000,3 +np.float32,0xbf14d780,0x3f964042,3 +np.float32,0x3f56b5d2,0x3fafb8c3,3 +np.float32,0x800c639c,0x3f800000,3 +np.float32,0x7f7a19c8,0x7f800000,3 +np.float32,0xbf7a0815,0x3fc20f86,3 +np.float32,0xbec55926,0x3f89a06e,3 +np.float32,0x4b2cd2,0x3f800000,3 +np.float32,0xbf271eb2,0x3f9c41c8,3 +np.float32,0xff26e168,0x7f800000,3 +np.float32,0x800166b2,0x3f800000,3 +np.float32,0xbde97e38,0x3f80d532,3 +np.float32,0xbf1f93ec,0x3f99af1a,3 +np.float32,0x7f2896ed,0x7f800000,3 +np.float32,0x3da7d96d,0x3f806e1d,3 +np.float32,0x802b7237,0x3f800000,3 +np.float32,0xfdca6bc0,0x7f800000,3 +np.float32,0xbed2e300,0x3f8b0318,3 +np.float32,0x8079d9e8,0x3f800000,3 +np.float32,0x3f388c81,0x3fa2b9c2,3 +np.float32,0x3ed2607c,0x3f8af54a,3 +np.float32,0xff287de6,0x7f800000,3 +np.float32,0x3f55ed89,0x3faf5ac9,3 +np.float32,0x7f5b6af7,0x7f800000,3 +np.float32,0xbeb24730,0x3f87d698,3 +np.float32,0x1,0x3f800000,3 +np.float32,0x3f3a2350,0x3fa35a3b,3 +np.float32,0x8013b422,0x3f800000,3 +np.float32,0x3e9a6560,0x3f85dd35,3 +np.float32,0x80510631,0x3f800000,3 +np.float32,0xfeae39d6,0x7f800000,3 +np.float32,0x7eb437ad,0x7f800000,3 +np.float32,0x8047545b,0x3f800000,3 +np.float32,0x806a1c71,0x3f800000,3 +np.float32,0xbe5543f0,0x3f82c93b,3 +np.float32,0x40e8d,0x3f800000,3 +np.float32,0x63d18b,0x3f800000,3 +np.float32,0x1fa1ea,0x3f800000,3 +np.float32,0x801944e0,0x3f800000,3 +np.float32,0xbf4c7ac6,0x3fab0cae,3 +np.float32,0x7f2679d4,0x7f800000,3 +np.float32,0x3f0102fc,0x3f9099d0,3 +np.float32,0x7e44bdc1,0x7f800000,3 +np.float32,0xbf2072f6,0x3f99f970,3 +np.float32,0x5c7d38,0x3f800000,3 +np.float32,0x30a2e6,0x3f800000,3 +np.float32,0x805b9ca3,0x3f800000,3 +np.float32,0x7cc24ad5,0x7f800000,3 +np.float32,0x3f4f7920,0x3fac6357,3 +np.float32,0x111d62,0x3f800000,3 +np.float32,0xbf4de40a,0x3fabad77,3 +np.float32,0x805d0354,0x3f800000,3 +np.float32,0xbb3d2b00,0x3f800023,3 +np.float32,0x3ef229e7,0x3f8e960b,3 +np.float32,0x3f15754e,0x3f9670e0,3 +np.float32,0xbf689c6b,0x3fb893a5,3 +np.float32,0xbf3796c6,0x3fa2599b,3 +np.float32,0xbe95303c,0x3f8578f2,3 +np.float32,0xfee330de,0x7f800000,3 +np.float32,0xff0d9705,0x7f800000,3 +np.float32,0xbeb0ebd0,0x3f87b7dd,3 +np.float32,0xbf4d5a13,0x3fab6fe7,3 +np.float32,0x80142f5a,0x3f800000,3 +np.float32,0x7e01a87b,0x7f800000,3 +np.float32,0xbe45e5ec,0x3f8265d7,3 +np.float32,0x7f4ac255,0x7f800000,3 +np.float32,0x3ebf6a60,0x3f890ccb,3 +np.float32,0x7f771e16,0x7f800000,3 +np.float32,0x3f41834e,0x3fa6582b,3 +np.float32,0x3f7f6f98,0x3fc52ef0,3 +np.float32,0x7e4ad775,0x7f800000,3 +np.float32,0x3eb39991,0x3f87f4c4,3 +np.float32,0x1e3f4,0x3f800000,3 +np.float32,0x7e84ba19,0x7f800000,3 +np.float32,0x80640be4,0x3f800000,3 +np.float32,0x3f459fc8,0x3fa81272,3 +np.float32,0x3f554ed0,0x3faf109b,3 +np.float32,0x3c6617,0x3f800000,3 +np.float32,0x7f441158,0x7f800000,3 +np.float32,0x7f66e6d8,0x7f800000,3 +np.float32,0x7f565152,0x7f800000,3 +np.float32,0x7f16d550,0x7f800000,3 +np.float32,0xbd4f1950,0x3f8029e5,3 +np.float32,0xcf722,0x3f800000,3 +np.float32,0x3f37d6fd,0x3fa272ad,3 +np.float32,0xff7324ea,0x7f800000,3 +np.float32,0x804bc246,0x3f800000,3 +np.float32,0x7f099ef8,0x7f800000,3 +np.float32,0x5f838b,0x3f800000,3 +np.float32,0x80523534,0x3f800000,3 +np.float32,0x3f595e84,0x3fb0fb50,3 +np.float32,0xfdef8ac8,0x7f800000,3 +np.float32,0x3d9a07,0x3f800000,3 +np.float32,0x410f61,0x3f800000,3 +np.float32,0xbf715dbb,0x3fbd3bcb,3 +np.float32,0xbedd4734,0x3f8c242f,3 +np.float32,0x7e86739a,0x7f800000,3 +np.float32,0x3e81f144,0x3f8424fe,3 +np.float32,0x7f6342d1,0x7f800000,3 +np.float32,0xff6919a3,0x7f800000,3 +np.float32,0xff051878,0x7f800000,3 +np.float32,0x800ba28f,0x3f800000,3 +np.float32,0xfefab3d8,0x7f800000,3 +np.float32,0xff612a84,0x7f800000,3 +np.float32,0x800cd5ab,0x3f800000,3 +np.float32,0x802a07ae,0x3f800000,3 +np.float32,0xfef6ee3a,0x7f800000,3 +np.float32,0x8037e896,0x3f800000,3 +np.float32,0x3ef2d86f,0x3f8eab7d,3 +np.float32,0x3eafe53d,0x3f87a0cb,3 +np.float32,0xba591c00,0x3f800003,3 +np.float32,0x3e9ed028,0x3f863508,3 +np.float32,0x4a12a8,0x3f800000,3 +np.float32,0xbee55c84,0x3f8d0f45,3 +np.float32,0x8038a8d3,0x3f800000,3 +np.float32,0xff055243,0x7f800000,3 +np.float32,0xbf659067,0x3fb701ca,3 +np.float32,0xbee36a86,0x3f8cd5e0,3 +np.float32,0x7f1d74c1,0x7f800000,3 +np.float32,0xbf7657df,0x3fbffaad,3 +np.float32,0x7e37ee34,0x7f800000,3 +np.float32,0xff04bc74,0x7f800000,3 +np.float32,0x806d194e,0x3f800000,3 +np.float32,0x7f5596c3,0x7f800000,3 +np.float32,0xbe09d268,0x3f81293e,3 +np.float32,0x79ff75,0x3f800000,3 +np.float32,0xbf55479c,0x3faf0d3e,3 +np.float32,0xbe5428ec,0x3f82c1d4,3 +np.float32,0x3f624134,0x3fb554d7,3 +np.float32,0x2ccb8a,0x3f800000,3 +np.float32,0xfc082040,0x7f800000,3 +np.float32,0xff315467,0x7f800000,3 +np.float32,0x3e6ea2d2,0x3f837dd5,3 +np.float32,0x8020fdd1,0x3f800000,3 +np.float32,0x7f0416a1,0x7f800000,3 +np.float32,0x710a1b,0x3f800000,3 +np.float32,0x3dfcd050,0x3f80f9fc,3 +np.float32,0xfe995e96,0x7f800000,3 +np.float32,0x3f020d00,0x3f90e006,3 +np.float32,0x8064263e,0x3f800000,3 +np.float32,0xfcee4160,0x7f800000,3 +np.float32,0x801b3a18,0x3f800000,3 +np.float32,0x3f62c984,0x3fb59955,3 +np.float32,0x806e8355,0x3f800000,3 +np.float32,0x7e94f65d,0x7f800000,3 +np.float32,0x1173de,0x3f800000,3 +np.float32,0x3e3ff3b7,0x3f824166,3 +np.float32,0x803b4aea,0x3f800000,3 +np.float32,0x804c5bcc,0x3f800000,3 +np.float32,0x509fe5,0x3f800000,3 +np.float32,0xbf33b5ee,0x3fa0db0b,3 +np.float32,0x3f2ac15c,0x3f9d8ba4,3 +np.float32,0x7f2c54f8,0x7f800000,3 +np.float32,0x7f33d933,0x7f800000,3 +np.float32,0xbf09b2b4,0x3f92f795,3 +np.float32,0x805db8d6,0x3f800000,3 +np.float32,0x6d6e66,0x3f800000,3 +np.float32,0x3ddfea92,0x3f80c40c,3 +np.float32,0xfda719b8,0x7f800000,3 +np.float32,0x5d657f,0x3f800000,3 +np.float32,0xbf005ba3,0x3f906df6,3 +np.float32,0xbf45e606,0x3fa8305c,3 +np.float32,0x5e9fd1,0x3f800000,3 +np.float32,0x8079dc45,0x3f800000,3 +np.float32,0x7e9c40e3,0x7f800000,3 +np.float32,0x6bd5f6,0x3f800000,3 +np.float32,0xbea14a0e,0x3f866761,3 +np.float32,0x7e7323f3,0x7f800000,3 +np.float32,0x7f0c0a79,0x7f800000,3 +np.float32,0xbf7d7aeb,0x3fc40b0f,3 +np.float32,0x437588,0x3f800000,3 +np.float32,0xbf356376,0x3fa17f63,3 +np.float32,0x7f129921,0x7f800000,3 +np.float32,0x7f47a52e,0x7f800000,3 +np.float32,0xba8cb400,0x3f800005,3 +np.float32,0x802284e0,0x3f800000,3 +np.float32,0xbe820f56,0x3f8426ec,3 +np.float32,0x7f2ef6cf,0x7f800000,3 +np.float32,0xbf70a090,0x3fbcd501,3 +np.float32,0xbf173fea,0x3f96ff6d,3 +np.float32,0x3e19c489,0x3f817224,3 +np.float32,0x7f429b30,0x7f800000,3 +np.float32,0xbdae4118,0x3f8076af,3 +np.float32,0x3e70ad30,0x3f838d41,3 +np.float32,0x335fed,0x3f800000,3 +np.float32,0xff5359cf,0x7f800000,3 +np.float32,0xbf17e42b,0x3f9732f1,3 +np.float32,0xff3a950b,0x7f800000,3 +np.float32,0xbcca70c0,0x3f800a02,3 +np.float32,0x3f2cda62,0x3f9e4dad,3 +np.float32,0x3f50c185,0x3facf805,3 +np.float32,0x80000001,0x3f800000,3 +np.float32,0x807b86d2,0x3f800000,3 +np.float32,0x8010c2cf,0x3f800000,3 +np.float32,0x3f130fb8,0x3f95b519,3 +np.float32,0x807dc546,0x3f800000,3 +np.float32,0xbee20740,0x3f8cad3f,3 +np.float32,0x80800000,0x3f800000,3 +np.float32,0x3cbd90c0,0x3f8008c6,3 +np.float32,0x3e693488,0x3f835571,3 +np.float32,0xbe70cd44,0x3f838e35,3 +np.float32,0xbe348dc8,0x3f81feb1,3 +np.float32,0x3f31ea90,0x3fa02d3f,3 +np.float32,0xfcd7e180,0x7f800000,3 +np.float32,0xbe30a75c,0x3f81e8d0,3 +np.float32,0x3e552c5a,0x3f82c89d,3 +np.float32,0xff513f74,0x7f800000,3 +np.float32,0xbdb16248,0x3f807afd,3 +np.float64,0x7fbbf954e437f2a9,0x7ff0000000000000,1 +np.float64,0x581bbf0cb0379,0x3ff0000000000000,1 +np.float64,0x7ff8000000000000,0x7ff8000000000000,1 +np.float64,0xffb959a2a632b348,0x7ff0000000000000,1 +np.float64,0xbfdbd6baebb7ad76,0x3ff189a5ca25a6e1,1 +np.float64,0xbfd094ec9aa129da,0x3ff08a3f6b918065,1 +np.float64,0x3fe236753f646cea,0x3ff2a982660b8b43,1 +np.float64,0xbfe537fadfaa6ff6,0x3ff3a5f1c49c31bf,1 +np.float64,0xbfe31fa7dc663f50,0x3ff2f175374aef0e,1 +np.float64,0x3fc4b6569f296cb0,0x3ff035bde801bb53,1 +np.float64,0x800ce3c00f99c780,0x3ff0000000000000,1 +np.float64,0xbfebcde33e779bc6,0x3ff66de82cd30fc5,1 +np.float64,0x800dc09d3b7b813b,0x3ff0000000000000,1 +np.float64,0x80067d4c450cfa99,0x3ff0000000000000,1 +np.float64,0x1f6ade203ed7,0x3ff0000000000000,1 +np.float64,0xbfd4e311eca9c624,0x3ff0dc1383d6c3db,1 +np.float64,0x800649b3a54c9368,0x3ff0000000000000,1 +np.float64,0xcc14d1ab9829a,0x3ff0000000000000,1 +np.float64,0x3fc290c5bb25218b,0x3ff02b290f46dd6d,1 +np.float64,0x3fe78eb8376f1d70,0x3ff488f3bc259537,1 +np.float64,0xffc60f58e82c1eb0,0x7ff0000000000000,1 +np.float64,0x3fd35666ad26accd,0x3ff0bc6573da6bcd,1 +np.float64,0x7fc20257a62404ae,0x7ff0000000000000,1 +np.float64,0x80076d842e0edb09,0x3ff0000000000000,1 +np.float64,0x3fd8e44b08b1c898,0x3ff139b9a1f8428e,1 +np.float64,0x7fd6f6fc7a2dedf8,0x7ff0000000000000,1 +np.float64,0x3fa01b9f0820373e,0x3ff00206f8ad0f1b,1 +np.float64,0x69ed190ed3da4,0x3ff0000000000000,1 +np.float64,0xbfd997eb34b32fd6,0x3ff14be65a5db4a0,1 +np.float64,0x7feada2d0935b459,0x7ff0000000000000,1 +np.float64,0xbf80987120213100,0x3ff000226d29a9fc,1 +np.float64,0xbfef203e37fe407c,0x3ff82f51f04e8821,1 +np.float64,0xffe3dcf91fa7b9f2,0x7ff0000000000000,1 +np.float64,0x9a367283346cf,0x3ff0000000000000,1 +np.float64,0x800feb09f7bfd614,0x3ff0000000000000,1 +np.float64,0xbfe0319f9520633f,0x3ff217c5205c403f,1 +np.float64,0xbfa91eabd4323d50,0x3ff004ee4347f627,1 +np.float64,0x3fd19cbf7d23397f,0x3ff09c13e8e43571,1 +np.float64,0xffeb8945f0b7128b,0x7ff0000000000000,1 +np.float64,0x800a0eb4f2141d6a,0x3ff0000000000000,1 +np.float64,0xffe83e7312f07ce6,0x7ff0000000000000,1 +np.float64,0xffca53fee834a7fc,0x7ff0000000000000,1 +np.float64,0x800881cbf1710398,0x3ff0000000000000,1 +np.float64,0x80003e6abbe07cd6,0x3ff0000000000000,1 +np.float64,0xbfef6a998afed533,0x3ff859b7852d1b4d,1 +np.float64,0x3fd4eb7577a9d6eb,0x3ff0dcc601261aab,1 +np.float64,0xbfc9c12811338250,0x3ff05331268b05c8,1 +np.float64,0x7fddf84e5e3bf09c,0x7ff0000000000000,1 +np.float64,0xbfd4d6fbbc29adf8,0x3ff0db12db19d187,1 +np.float64,0x80077892bfaef126,0x3ff0000000000000,1 +np.float64,0xffae9d49543d3a90,0x7ff0000000000000,1 +np.float64,0xbfd8bef219317de4,0x3ff136034e5d2f1b,1 +np.float64,0xffe89c74ddb138e9,0x7ff0000000000000,1 +np.float64,0x8003b6bbb7e76d78,0x3ff0000000000000,1 +np.float64,0x315a4e8462b4b,0x3ff0000000000000,1 +np.float64,0x800ee616edddcc2e,0x3ff0000000000000,1 +np.float64,0xdfb27f97bf650,0x3ff0000000000000,1 +np.float64,0x8004723dc328e47c,0x3ff0000000000000,1 +np.float64,0xbfe529500daa52a0,0x3ff3a0b9b33fc84c,1 +np.float64,0xbfe4e46a7ce9c8d5,0x3ff3886ce0f92612,1 +np.float64,0xbf52003680240000,0x3ff00000a203d61a,1 +np.float64,0xffd3400458268008,0x7ff0000000000000,1 +np.float64,0x80076deb444edbd7,0x3ff0000000000000,1 +np.float64,0xa612f6c14c27,0x3ff0000000000000,1 +np.float64,0xbfd41c74c9a838ea,0x3ff0cbe61e16aecf,1 +np.float64,0x43f464a887e8d,0x3ff0000000000000,1 +np.float64,0x800976e748b2edcf,0x3ff0000000000000,1 +np.float64,0xffc79d6ba12f3ad8,0x7ff0000000000000,1 +np.float64,0xffd6dbcb022db796,0x7ff0000000000000,1 +np.float64,0xffd6a9672a2d52ce,0x7ff0000000000000,1 +np.float64,0x3fe95dcfa632bb9f,0x3ff54bbad2ee919e,1 +np.float64,0x3febadd2e1375ba6,0x3ff65e336c47c018,1 +np.float64,0x7fd47c37d828f86f,0x7ff0000000000000,1 +np.float64,0xbfd4ea59e0a9d4b4,0x3ff0dcae6af3e443,1 +np.float64,0x2c112afc58226,0x3ff0000000000000,1 +np.float64,0x8008122bced02458,0x3ff0000000000000,1 +np.float64,0x7fe7105ab3ee20b4,0x7ff0000000000000,1 +np.float64,0x80089634df312c6a,0x3ff0000000000000,1 +np.float64,0x68e9fbc8d1d40,0x3ff0000000000000,1 +np.float64,0xbfec1e1032f83c20,0x3ff69590b9f18ea8,1 +np.float64,0xbfedf181623be303,0x3ff787ef48935dc6,1 +np.float64,0xffe8600457f0c008,0x7ff0000000000000,1 +np.float64,0x7a841ec6f5084,0x3ff0000000000000,1 +np.float64,0x459a572e8b34c,0x3ff0000000000000,1 +np.float64,0x3fe8a232bef14465,0x3ff4fac1780f731e,1 +np.float64,0x3fcb37597d366eb3,0x3ff05cf08ab14ebd,1 +np.float64,0xbfb0261d00204c38,0x3ff00826fb86ca8a,1 +np.float64,0x3fc6e7a6dd2dcf4e,0x3ff041c1222ffa79,1 +np.float64,0xee65dd03dccbc,0x3ff0000000000000,1 +np.float64,0xffe26fdc23e4dfb8,0x7ff0000000000000,1 +np.float64,0x7fe8d6c8cab1ad91,0x7ff0000000000000,1 +np.float64,0xbfeb64bf2676c97e,0x3ff63abb8607828c,1 +np.float64,0x3fd28417b425082f,0x3ff0ac9eb22a732b,1 +np.float64,0xbfd26835b3a4d06c,0x3ff0aa94c48fb6d2,1 +np.float64,0xffec617a01b8c2f3,0x7ff0000000000000,1 +np.float64,0xe1bfff01c3800,0x3ff0000000000000,1 +np.float64,0x3fd4def913a9bdf4,0x3ff0dbbc7271046f,1 +np.float64,0x94f4c17129e98,0x3ff0000000000000,1 +np.float64,0x8009b2eaa33365d6,0x3ff0000000000000,1 +np.float64,0x3fd9633b41b2c678,0x3ff1468388bdfb65,1 +np.float64,0xffe0ae5c80e15cb8,0x7ff0000000000000,1 +np.float64,0x7fdfc35996bf86b2,0x7ff0000000000000,1 +np.float64,0x3fcfc5bdc23f8b7c,0x3ff07ed5caa4545c,1 +np.float64,0xd48b4907a9169,0x3ff0000000000000,1 +np.float64,0xbfe0a2cc52614598,0x3ff2361665895d95,1 +np.float64,0xbfe9068f90720d1f,0x3ff525b82491a1a5,1 +np.float64,0x4238b9208472,0x3ff0000000000000,1 +np.float64,0x800e6b2bf69cd658,0x3ff0000000000000,1 +np.float64,0x7fb638b6ae2c716c,0x7ff0000000000000,1 +np.float64,0x7fe267641764cec7,0x7ff0000000000000,1 +np.float64,0xffc0933d3521267c,0x7ff0000000000000,1 +np.float64,0x7fddfdfb533bfbf6,0x7ff0000000000000,1 +np.float64,0xced2a8e99da55,0x3ff0000000000000,1 +np.float64,0x2a80d5165501b,0x3ff0000000000000,1 +np.float64,0xbfeead2ab63d5a55,0x3ff7eeb5cbcfdcab,1 +np.float64,0x80097f6f92f2fee0,0x3ff0000000000000,1 +np.float64,0x3fee1f29b77c3e54,0x3ff7a0a58c13df62,1 +np.float64,0x3f9d06b8383a0d70,0x3ff001a54a2d8cf8,1 +np.float64,0xbfc8b41d3f31683c,0x3ff04c85379dd6b0,1 +np.float64,0xffd2a04c1e254098,0x7ff0000000000000,1 +np.float64,0xbfb71c01e02e3800,0x3ff010b34220e838,1 +np.float64,0xbfe69249ef6d2494,0x3ff425e48d1e938b,1 +np.float64,0xffefffffffffffff,0x7ff0000000000000,1 +np.float64,0x3feb1d52fbf63aa6,0x3ff618813ae922d7,1 +np.float64,0x7fb8d1a77e31a34e,0x7ff0000000000000,1 +np.float64,0xffc3cfc4ed279f88,0x7ff0000000000000,1 +np.float64,0x2164b9fc42c98,0x3ff0000000000000,1 +np.float64,0x3fbb868cee370d1a,0x3ff017b31b0d4d27,1 +np.float64,0x3fcd6dea583adbd5,0x3ff06cbd16bf44a0,1 +np.float64,0xbfecd041d479a084,0x3ff6efb25f61012d,1 +np.float64,0xbfb0552e6e20aa60,0x3ff00856ca83834a,1 +np.float64,0xe6293cbfcc528,0x3ff0000000000000,1 +np.float64,0x7fba58394034b072,0x7ff0000000000000,1 +np.float64,0x33bc96d467794,0x3ff0000000000000,1 +np.float64,0xffe90ea86bf21d50,0x7ff0000000000000,1 +np.float64,0xbfc626ea6d2c4dd4,0x3ff03d7e01ec3849,1 +np.float64,0x65b56fe4cb6af,0x3ff0000000000000,1 +np.float64,0x3fea409fb7f4813f,0x3ff5b171deab0ebd,1 +np.float64,0x3fe849c1df709384,0x3ff4d59063ff98c4,1 +np.float64,0x169073082d20f,0x3ff0000000000000,1 +np.float64,0xcc8b6add9916e,0x3ff0000000000000,1 +np.float64,0xbfef3d78d5fe7af2,0x3ff83fecc26abeea,1 +np.float64,0x3fe8c65a4a718cb4,0x3ff50a23bfeac7df,1 +np.float64,0x3fde9fa5c8bd3f4c,0x3ff1ddeb12b9d623,1 +np.float64,0xffe2af536da55ea6,0x7ff0000000000000,1 +np.float64,0x800186d0b0c30da2,0x3ff0000000000000,1 +np.float64,0x3fe9ba3c1d737478,0x3ff574ab2bf3a560,1 +np.float64,0xbfe1489c46a29138,0x3ff2641d36b30e21,1 +np.float64,0xbfe4b6b7c0e96d70,0x3ff37880ac8b0540,1 +np.float64,0x800e66ad82fccd5b,0x3ff0000000000000,1 +np.float64,0x7ff0000000000000,0x7ff0000000000000,1 +np.float64,0x7febb0fd477761fa,0x7ff0000000000000,1 +np.float64,0xbfdc433f2eb8867e,0x3ff195ec2a6cce27,1 +np.float64,0x3fe12c5a172258b4,0x3ff25c225b8a34bb,1 +np.float64,0xbfef6f116c3ede23,0x3ff85c47eaed49a0,1 +np.float64,0x800af6f60f35edec,0x3ff0000000000000,1 +np.float64,0xffe567999a2acf32,0x7ff0000000000000,1 +np.float64,0xbfc5ac5ae72b58b4,0x3ff03adb50ec04f3,1 +np.float64,0x3fea1b57e23436b0,0x3ff5a06f98541767,1 +np.float64,0x7fcc3e36fb387c6d,0x7ff0000000000000,1 +np.float64,0x8000c8dc698191ba,0x3ff0000000000000,1 +np.float64,0x3fee5085ed7ca10c,0x3ff7bb92f61245b8,1 +np.float64,0x7fbb9f803a373eff,0x7ff0000000000000,1 +np.float64,0xbfe1e5e806e3cbd0,0x3ff2918f2d773007,1 +np.float64,0x8008f8c3f3b1f188,0x3ff0000000000000,1 +np.float64,0x7fe53df515ea7be9,0x7ff0000000000000,1 +np.float64,0x7fdbb87fb3b770fe,0x7ff0000000000000,1 +np.float64,0x3fefcc0f50ff981f,0x3ff89210a6a04e6b,1 +np.float64,0x3fe33f87d0267f10,0x3ff2fb989ea4f2bc,1 +np.float64,0x1173992022e8,0x3ff0000000000000,1 +np.float64,0x3fef534632bea68c,0x3ff84c5ca9713ff9,1 +np.float64,0x3fc5991d552b3238,0x3ff03a72bfdb6e5f,1 +np.float64,0x3fdad90dc1b5b21c,0x3ff16db868180034,1 +np.float64,0xffe20b8078e41700,0x7ff0000000000000,1 +np.float64,0x7fdf409a82be8134,0x7ff0000000000000,1 +np.float64,0x3fccb7e691396fcd,0x3ff06786b6ccdbcb,1 +np.float64,0xffe416e0b7282dc1,0x7ff0000000000000,1 +np.float64,0xffe3a8a981275152,0x7ff0000000000000,1 +np.float64,0x3fd9c8bd31b3917c,0x3ff150ee6f5f692f,1 +np.float64,0xffeab6fef6356dfd,0x7ff0000000000000,1 +np.float64,0x3fe9c5e3faf38bc8,0x3ff579e18c9bd548,1 +np.float64,0x800b173e44762e7d,0x3ff0000000000000,1 +np.float64,0xffe2719db764e33b,0x7ff0000000000000,1 +np.float64,0x3fd1fcf31223f9e6,0x3ff0a2da7ad99856,1 +np.float64,0x80082c4afcd05896,0x3ff0000000000000,1 +np.float64,0xa56e5e4b4adcc,0x3ff0000000000000,1 +np.float64,0xffbbbddab2377bb8,0x7ff0000000000000,1 +np.float64,0x3b3927c076726,0x3ff0000000000000,1 +np.float64,0x3fec03fd58f807fb,0x3ff6889b8a774728,1 +np.float64,0xbfaa891fb4351240,0x3ff00580987bd914,1 +np.float64,0x7fb4800c4a290018,0x7ff0000000000000,1 +np.float64,0xffbb5d2b6036ba58,0x7ff0000000000000,1 +np.float64,0x7fd6608076acc100,0x7ff0000000000000,1 +np.float64,0x31267e4c624d1,0x3ff0000000000000,1 +np.float64,0x33272266664e5,0x3ff0000000000000,1 +np.float64,0x47bb37f28f768,0x3ff0000000000000,1 +np.float64,0x3fe134bb4ee26977,0x3ff25e7ea647a928,1 +np.float64,0xbfe2b5f42ba56be8,0x3ff2d05cbdc7344b,1 +np.float64,0xbfe0e013fd61c028,0x3ff246dfce572914,1 +np.float64,0x7fecedcda4f9db9a,0x7ff0000000000000,1 +np.float64,0x8001816c2da302d9,0x3ff0000000000000,1 +np.float64,0xffced8b65b3db16c,0x7ff0000000000000,1 +np.float64,0xffdc1d4a0b383a94,0x7ff0000000000000,1 +np.float64,0x7fe94e7339f29ce5,0x7ff0000000000000,1 +np.float64,0x33fb846667f71,0x3ff0000000000000,1 +np.float64,0x800a1380e9542702,0x3ff0000000000000,1 +np.float64,0x800b74eaa776e9d6,0x3ff0000000000000,1 +np.float64,0x5681784aad030,0x3ff0000000000000,1 +np.float64,0xbfee0eb7917c1d6f,0x3ff797b949f7f6b4,1 +np.float64,0xffe4ec5fd2a9d8bf,0x7ff0000000000000,1 +np.float64,0xbfcd7401dd3ae804,0x3ff06cea52c792c0,1 +np.float64,0x800587563beb0ead,0x3ff0000000000000,1 +np.float64,0x3fc15c6f3322b8de,0x3ff025bbd030166d,1 +np.float64,0x7feb6b4caf76d698,0x7ff0000000000000,1 +np.float64,0x7fe136ef82a26dde,0x7ff0000000000000,1 +np.float64,0xf592dac3eb25c,0x3ff0000000000000,1 +np.float64,0x7fd300baf6a60175,0x7ff0000000000000,1 +np.float64,0x7fc880de9e3101bc,0x7ff0000000000000,1 +np.float64,0x7fe7a1aa5caf4354,0x7ff0000000000000,1 +np.float64,0x2f9b8e0e5f373,0x3ff0000000000000,1 +np.float64,0xffcc9071993920e4,0x7ff0000000000000,1 +np.float64,0x8009e151b313c2a4,0x3ff0000000000000,1 +np.float64,0xbfd46e2d18a8dc5a,0x3ff0d27a7b37c1ae,1 +np.float64,0x3fe65c7961acb8f3,0x3ff4116946062a4c,1 +np.float64,0x7fd31b371626366d,0x7ff0000000000000,1 +np.float64,0x98dc924d31b93,0x3ff0000000000000,1 +np.float64,0x268bef364d17f,0x3ff0000000000000,1 +np.float64,0x7fd883ba56310774,0x7ff0000000000000,1 +np.float64,0x3fc53f01a32a7e03,0x3ff0388dea9cd63e,1 +np.float64,0xffe1ea8c0563d518,0x7ff0000000000000,1 +np.float64,0x3fd0bf0e63a17e1d,0x3ff08d0577f5ffa6,1 +np.float64,0x7fef42418f7e8482,0x7ff0000000000000,1 +np.float64,0x8000bccd38c1799b,0x3ff0000000000000,1 +np.float64,0xbfe6c48766ed890f,0x3ff43936fa4048c8,1 +np.float64,0xbfb2a38f3a254720,0x3ff00adc7f7b2822,1 +np.float64,0x3fd5262b2eaa4c56,0x3ff0e1af492c08f5,1 +np.float64,0x80065b4691ecb68e,0x3ff0000000000000,1 +np.float64,0xfb6b9e9ff6d74,0x3ff0000000000000,1 +np.float64,0x8006c71e6ecd8e3e,0x3ff0000000000000,1 +np.float64,0x3fd0a3e43ca147c8,0x3ff08b3ad7b42485,1 +np.float64,0xbfc82d8607305b0c,0x3ff04949d6733ef6,1 +np.float64,0xde048c61bc092,0x3ff0000000000000,1 +np.float64,0xffcf73e0fa3ee7c0,0x7ff0000000000000,1 +np.float64,0xbfe8639d7830c73b,0x3ff4e05f97948376,1 +np.float64,0x8010000000000000,0x3ff0000000000000,1 +np.float64,0x67f01a2acfe04,0x3ff0000000000000,1 +np.float64,0x3fe222e803e445d0,0x3ff2a3a75e5f29d8,1 +np.float64,0xffef84c6387f098b,0x7ff0000000000000,1 +np.float64,0x3fe5969c1e6b2d38,0x3ff3c80130462bb2,1 +np.float64,0x8009f56953d3ead3,0x3ff0000000000000,1 +np.float64,0x3fe05c9b6360b937,0x3ff2232e1cba5617,1 +np.float64,0x3fd8888d63b1111b,0x3ff130a5b788d52f,1 +np.float64,0xffe3a9e6f26753ce,0x7ff0000000000000,1 +np.float64,0x800e2aaa287c5554,0x3ff0000000000000,1 +np.float64,0x3fea8d6c82351ad9,0x3ff5d4d8cde9a11d,1 +np.float64,0x7feef700723dee00,0x7ff0000000000000,1 +np.float64,0x3fa5cb77242b96e0,0x3ff003b62b3e50f1,1 +np.float64,0x7fb68f0a862d1e14,0x7ff0000000000000,1 +np.float64,0x7fb97ee83432fdcf,0x7ff0000000000000,1 +np.float64,0x7fd74a78632e94f0,0x7ff0000000000000,1 +np.float64,0x7fcfe577713fcaee,0x7ff0000000000000,1 +np.float64,0xffe192ee5ea325dc,0x7ff0000000000000,1 +np.float64,0x477d6ae48efae,0x3ff0000000000000,1 +np.float64,0xffe34d5237669aa4,0x7ff0000000000000,1 +np.float64,0x7fe3ce8395a79d06,0x7ff0000000000000,1 +np.float64,0x80019c01ffa33805,0x3ff0000000000000,1 +np.float64,0x74b5b56ce96b7,0x3ff0000000000000,1 +np.float64,0x7fe05ecdeda0bd9b,0x7ff0000000000000,1 +np.float64,0xffe9693eb232d27d,0x7ff0000000000000,1 +np.float64,0xffd2be2c7da57c58,0x7ff0000000000000,1 +np.float64,0x800dbd5cbc1b7aba,0x3ff0000000000000,1 +np.float64,0xbfa36105d426c210,0x3ff002ef2e3a87f7,1 +np.float64,0x800b2d69fb765ad4,0x3ff0000000000000,1 +np.float64,0xbfdb81c9a9370394,0x3ff1802d409cbf7a,1 +np.float64,0x7fd481d014a9039f,0x7ff0000000000000,1 +np.float64,0xffe66c3c1fecd878,0x7ff0000000000000,1 +np.float64,0x3fc55865192ab0c8,0x3ff03915b51e8839,1 +np.float64,0xd6a78987ad4f1,0x3ff0000000000000,1 +np.float64,0x800c6cc80d58d990,0x3ff0000000000000,1 +np.float64,0x979435a12f29,0x3ff0000000000000,1 +np.float64,0xbfbd971e7a3b2e40,0x3ff01b647e45f5a6,1 +np.float64,0x80067565bfeceacc,0x3ff0000000000000,1 +np.float64,0x8001ad689ce35ad2,0x3ff0000000000000,1 +np.float64,0x7fa43253dc2864a7,0x7ff0000000000000,1 +np.float64,0xbfe3dda307e7bb46,0x3ff32ef99a2efe1d,1 +np.float64,0x3fe5d7b395ebaf68,0x3ff3dfd33cdc8ef4,1 +np.float64,0xd94cc9c3b2999,0x3ff0000000000000,1 +np.float64,0x3fee5a513fbcb4a2,0x3ff7c0f17b876ce5,1 +np.float64,0xffe27761fa64eec4,0x7ff0000000000000,1 +np.float64,0x3feb788119b6f102,0x3ff64446f67f4efa,1 +np.float64,0xbfed6e10dffadc22,0x3ff741d5ef610ca0,1 +np.float64,0x7fe73cf98b2e79f2,0x7ff0000000000000,1 +np.float64,0x7847d09af08fb,0x3ff0000000000000,1 +np.float64,0x29ded2da53bdb,0x3ff0000000000000,1 +np.float64,0xbfe51c1ec1aa383e,0x3ff39c0b7cf832e2,1 +np.float64,0xbfeafd5e65f5fabd,0x3ff609548a787f57,1 +np.float64,0x3fd872a26fb0e545,0x3ff12e7fbd95505c,1 +np.float64,0x7fed6b7c1b7ad6f7,0x7ff0000000000000,1 +np.float64,0xffe7ba9ec16f753d,0x7ff0000000000000,1 +np.float64,0x7f89b322f0336645,0x7ff0000000000000,1 +np.float64,0xbfad1677383a2cf0,0x3ff0069ca67e7baa,1 +np.float64,0x3fe0906d04a120da,0x3ff2311b04b7bfef,1 +np.float64,0xffe4b3c9d4296793,0x7ff0000000000000,1 +np.float64,0xbfe476bb0ce8ed76,0x3ff36277d2921a74,1 +np.float64,0x7fc35655cf26acab,0x7ff0000000000000,1 +np.float64,0x7fe9980f0373301d,0x7ff0000000000000,1 +np.float64,0x9e6e04cb3cdc1,0x3ff0000000000000,1 +np.float64,0x800b89e0afb713c2,0x3ff0000000000000,1 +np.float64,0x800bd951a3f7b2a4,0x3ff0000000000000,1 +np.float64,0x29644a9e52c8a,0x3ff0000000000000,1 +np.float64,0x3fe1be2843637c51,0x3ff285e90d8387e4,1 +np.float64,0x7fa233cce4246799,0x7ff0000000000000,1 +np.float64,0xbfcfb7bc2d3f6f78,0x3ff07e657de3e2ed,1 +np.float64,0xffd7c953e7af92a8,0x7ff0000000000000,1 +np.float64,0xbfc5bbaf772b7760,0x3ff03b2ee4febb1e,1 +np.float64,0x8007b7315a6f6e63,0x3ff0000000000000,1 +np.float64,0xbfe906d902320db2,0x3ff525d7e16acfe0,1 +np.float64,0x3fde33d8553c67b1,0x3ff1d09faa19aa53,1 +np.float64,0x61fe76a0c3fcf,0x3ff0000000000000,1 +np.float64,0xa75e355b4ebc7,0x3ff0000000000000,1 +np.float64,0x3fc9e6d86033cdb1,0x3ff05426299c7064,1 +np.float64,0x7fd83f489eb07e90,0x7ff0000000000000,1 +np.float64,0x8000000000000001,0x3ff0000000000000,1 +np.float64,0x80014434ae62886a,0x3ff0000000000000,1 +np.float64,0xbfe21af9686435f3,0x3ff2a149338bdefe,1 +np.float64,0x9354e6cd26a9d,0x3ff0000000000000,1 +np.float64,0xb42b95f768573,0x3ff0000000000000,1 +np.float64,0xbfecb4481bb96890,0x3ff6e15d269dd651,1 +np.float64,0x3f97842ae82f0840,0x3ff0011485156f28,1 +np.float64,0xffdef63d90bdec7c,0x7ff0000000000000,1 +np.float64,0x7fe511a8d36a2351,0x7ff0000000000000,1 +np.float64,0xbf8cb638a0396c80,0x3ff000670c318fb6,1 +np.float64,0x3fe467e1f668cfc4,0x3ff35d65f93ccac6,1 +np.float64,0xbfce7d88f03cfb10,0x3ff074c22475fe5b,1 +np.float64,0x6d0a4994da14a,0x3ff0000000000000,1 +np.float64,0xbfb3072580260e48,0x3ff00b51d3913e9f,1 +np.float64,0x8008fcde36b1f9bd,0x3ff0000000000000,1 +np.float64,0x3fd984df66b309c0,0x3ff149f29125eca4,1 +np.float64,0xffee2a10fe7c5421,0x7ff0000000000000,1 +np.float64,0x80039168ace722d2,0x3ff0000000000000,1 +np.float64,0xffda604379b4c086,0x7ff0000000000000,1 +np.float64,0xffdc6a405bb8d480,0x7ff0000000000000,1 +np.float64,0x3fe62888b26c5111,0x3ff3fdda754c4372,1 +np.float64,0x8008b452cb5168a6,0x3ff0000000000000,1 +np.float64,0x6165d540c2cbb,0x3ff0000000000000,1 +np.float64,0xbfee0c04d17c180a,0x3ff796431c64bcbe,1 +np.float64,0x800609b8448c1371,0x3ff0000000000000,1 +np.float64,0x800fc3fca59f87f9,0x3ff0000000000000,1 +np.float64,0x77f64848efeca,0x3ff0000000000000,1 +np.float64,0x8007cf522d8f9ea5,0x3ff0000000000000,1 +np.float64,0xbfe9fb0b93f3f617,0x3ff591cb0052e22c,1 +np.float64,0x7fd569d5f0aad3ab,0x7ff0000000000000,1 +np.float64,0x7fe5cf489d6b9e90,0x7ff0000000000000,1 +np.float64,0x7fd6e193e92dc327,0x7ff0000000000000,1 +np.float64,0xf78988a5ef131,0x3ff0000000000000,1 +np.float64,0x3fe8f97562b1f2eb,0x3ff5201080fbc12d,1 +np.float64,0x7febfd69d7b7fad3,0x7ff0000000000000,1 +np.float64,0xffc07b5c1720f6b8,0x7ff0000000000000,1 +np.float64,0xbfd966926832cd24,0x3ff146da9adf492e,1 +np.float64,0x7fef5bd9edfeb7b3,0x7ff0000000000000,1 +np.float64,0xbfd2afbc96255f7a,0x3ff0afd601febf44,1 +np.float64,0x7fdd4ea6293a9d4b,0x7ff0000000000000,1 +np.float64,0xbfe8a1e916b143d2,0x3ff4faa23c2793e5,1 +np.float64,0x800188fcd8c311fa,0x3ff0000000000000,1 +np.float64,0xbfe30803f1661008,0x3ff2e9fc729baaee,1 +np.float64,0x7fefffffffffffff,0x7ff0000000000000,1 +np.float64,0x3fd287bec3250f7e,0x3ff0ace34d3102f6,1 +np.float64,0x1f0ee9443e1de,0x3ff0000000000000,1 +np.float64,0xbfd92f73da325ee8,0x3ff14143e4fa2c5a,1 +np.float64,0x3fed7c9bdffaf938,0x3ff74984168734d3,1 +np.float64,0x8002c4d1696589a4,0x3ff0000000000000,1 +np.float64,0xfe03011bfc060,0x3ff0000000000000,1 +np.float64,0x7f7a391e6034723c,0x7ff0000000000000,1 +np.float64,0xffd6fd46f82dfa8e,0x7ff0000000000000,1 +np.float64,0xbfd7520a742ea414,0x3ff112f1ba5d4f91,1 +np.float64,0x8009389d8812713b,0x3ff0000000000000,1 +np.float64,0x7fefb846aaff708c,0x7ff0000000000000,1 +np.float64,0x3fd98a0983331413,0x3ff14a79efb8adbf,1 +np.float64,0xbfd897158db12e2c,0x3ff132137902cf3e,1 +np.float64,0xffc4048d5928091c,0x7ff0000000000000,1 +np.float64,0x80036ae46046d5ca,0x3ff0000000000000,1 +np.float64,0x7faba7ed3c374fd9,0x7ff0000000000000,1 +np.float64,0xbfec4265e1f884cc,0x3ff6a7b8602422c9,1 +np.float64,0xaa195e0b5432c,0x3ff0000000000000,1 +np.float64,0x3feac15d317582ba,0x3ff5ed115758145f,1 +np.float64,0x6c13a5bcd8275,0x3ff0000000000000,1 +np.float64,0xbfed20b8883a4171,0x3ff7194dbd0dc988,1 +np.float64,0x800cde65c899bccc,0x3ff0000000000000,1 +np.float64,0x7c72912af8e53,0x3ff0000000000000,1 +np.float64,0x3fe49d2bb4e93a57,0x3ff36fab3aba15d4,1 +np.float64,0xbfd598fa02ab31f4,0x3ff0eb72fc472025,1 +np.float64,0x8007a191712f4324,0x3ff0000000000000,1 +np.float64,0xbfdeb14872bd6290,0x3ff1e01ca83f35fd,1 +np.float64,0xbfe1da46b3e3b48e,0x3ff28e23ad2f5615,1 +np.float64,0x800a2f348e745e69,0x3ff0000000000000,1 +np.float64,0xbfee66928afccd25,0x3ff7c7ac7dbb3273,1 +np.float64,0xffd78a0a2b2f1414,0x7ff0000000000000,1 +np.float64,0x7fc5fa80b82bf500,0x7ff0000000000000,1 +np.float64,0x800e6d7260dcdae5,0x3ff0000000000000,1 +np.float64,0xbfd6cff2aaad9fe6,0x3ff106f78ee61642,1 +np.float64,0x7fe1041d1d220839,0x7ff0000000000000,1 +np.float64,0xbfdf75586cbeeab0,0x3ff1f8dbaa7e57f0,1 +np.float64,0xffdcaae410b955c8,0x7ff0000000000000,1 +np.float64,0x800fe5e0d1ffcbc2,0x3ff0000000000000,1 +np.float64,0x800d7999527af333,0x3ff0000000000000,1 +np.float64,0xbfe62c233bac5846,0x3ff3ff34220a204c,1 +np.float64,0x7fe99bbff8f3377f,0x7ff0000000000000,1 +np.float64,0x7feeaf471d3d5e8d,0x7ff0000000000000,1 +np.float64,0xd5904ff5ab20a,0x3ff0000000000000,1 +np.float64,0x3fd07aae3320f55c,0x3ff08888c227c968,1 +np.float64,0x7fea82b8dff50571,0x7ff0000000000000,1 +np.float64,0xffef2db9057e5b71,0x7ff0000000000000,1 +np.float64,0xbfe2077fef640f00,0x3ff29b7dd0d39d36,1 +np.float64,0xbfe09a4d7c61349b,0x3ff233c7e88881f4,1 +np.float64,0x3fda50c4cbb4a188,0x3ff15f28a71deee7,1 +np.float64,0x7fe7d9ee6b2fb3dc,0x7ff0000000000000,1 +np.float64,0x3febbf6faeb77edf,0x3ff666d13682ea93,1 +np.float64,0xc401a32988035,0x3ff0000000000000,1 +np.float64,0xbfeab30aa8f56615,0x3ff5e65dcc6603f8,1 +np.float64,0x92c8cea32591a,0x3ff0000000000000,1 +np.float64,0xbff0000000000000,0x3ff8b07551d9f550,1 +np.float64,0xbfbddfb4dc3bbf68,0x3ff01bebaec38faa,1 +np.float64,0xbfd8de3e2a31bc7c,0x3ff1391f4830d20b,1 +np.float64,0xffc83a8f8a307520,0x7ff0000000000000,1 +np.float64,0x3fee026ef53c04de,0x3ff7911337085827,1 +np.float64,0x7fbaf380b235e700,0x7ff0000000000000,1 +np.float64,0xffe5b89fa62b713f,0x7ff0000000000000,1 +np.float64,0xbfdc1ff54ab83fea,0x3ff191e8c0b60bb2,1 +np.float64,0x6ae3534cd5c6b,0x3ff0000000000000,1 +np.float64,0xbfea87e558750fcb,0x3ff5d24846013794,1 +np.float64,0xffe0f467bee1e8cf,0x7ff0000000000000,1 +np.float64,0x7fee3b0dc7bc761b,0x7ff0000000000000,1 +np.float64,0x3fed87521afb0ea4,0x3ff74f2f5cd36a5c,1 +np.float64,0x7b3c9882f6794,0x3ff0000000000000,1 +np.float64,0x7fdd1a62243a34c3,0x7ff0000000000000,1 +np.float64,0x800f1dc88d3e3b91,0x3ff0000000000000,1 +np.float64,0x7fc3213cfa264279,0x7ff0000000000000,1 +np.float64,0x3fe40e0f3d681c1e,0x3ff33f135e9d5ded,1 +np.float64,0x7febf14e51f7e29c,0x7ff0000000000000,1 +np.float64,0xffe96c630c72d8c5,0x7ff0000000000000,1 +np.float64,0x7fdd82fbe7bb05f7,0x7ff0000000000000,1 +np.float64,0xbf9a6a0b1034d420,0x3ff0015ce009f7d8,1 +np.float64,0xbfceb4f8153d69f0,0x3ff0766e3ecc77df,1 +np.float64,0x3fd9de31e633bc64,0x3ff15327b794a16e,1 +np.float64,0x3faa902a30352054,0x3ff00583848d1969,1 +np.float64,0x0,0x3ff0000000000000,1 +np.float64,0x3fbe3459c43c68b4,0x3ff01c8af6710ef6,1 +np.float64,0xbfa8df010031be00,0x3ff004d5632dc9f5,1 +np.float64,0x7fbcf6cf2a39ed9d,0x7ff0000000000000,1 +np.float64,0xffe4236202a846c4,0x7ff0000000000000,1 +np.float64,0x3fd35ed52e26bdaa,0x3ff0bd0b231f11f7,1 +np.float64,0x7fe7a2df532f45be,0x7ff0000000000000,1 +np.float64,0xffe32f8315665f06,0x7ff0000000000000,1 +np.float64,0x7fe1a69f03e34d3d,0x7ff0000000000000,1 +np.float64,0x7fa5542b742aa856,0x7ff0000000000000,1 +np.float64,0x3fe84e9f8ef09d3f,0x3ff4d79816359765,1 +np.float64,0x29076fe6520ef,0x3ff0000000000000,1 +np.float64,0xffd70894f7ae112a,0x7ff0000000000000,1 +np.float64,0x800188edcbe311dc,0x3ff0000000000000,1 +np.float64,0x3fe2c7acda258f5a,0x3ff2d5dad4617703,1 +np.float64,0x3f775d41a02ebb00,0x3ff000110f212445,1 +np.float64,0x7fe8a084d1714109,0x7ff0000000000000,1 +np.float64,0x3fe31562d8a62ac6,0x3ff2ee35055741cd,1 +np.float64,0xbfd195d4d1a32baa,0x3ff09b98a50c151b,1 +np.float64,0xffaae9ff0c35d400,0x7ff0000000000000,1 +np.float64,0xff819866502330c0,0x7ff0000000000000,1 +np.float64,0x7fddc64815bb8c8f,0x7ff0000000000000,1 +np.float64,0xbfd442b428288568,0x3ff0cef70aa73ae6,1 +np.float64,0x8002e7625aa5cec5,0x3ff0000000000000,1 +np.float64,0x7fe8d4f70e71a9ed,0x7ff0000000000000,1 +np.float64,0xbfc3bd015f277a04,0x3ff030cbf16f29d9,1 +np.float64,0x3fd315d5baa62bab,0x3ff0b77a551a5335,1 +np.float64,0x7fa638b4642c7168,0x7ff0000000000000,1 +np.float64,0x3fdea8b795bd516f,0x3ff1df0bb70cdb79,1 +np.float64,0xbfd78754762f0ea8,0x3ff117ee0f29abed,1 +np.float64,0x8009f6a37633ed47,0x3ff0000000000000,1 +np.float64,0x3fea1daf75343b5f,0x3ff5a1804789bf13,1 +np.float64,0x3fd044b6c0a0896e,0x3ff0850b7297d02f,1 +np.float64,0x8003547a9c86a8f6,0x3ff0000000000000,1 +np.float64,0x3fa6c2cd782d859b,0x3ff0040c4ac8f44a,1 +np.float64,0x3fe225baaae44b76,0x3ff2a47f5e1f5e85,1 +np.float64,0x8000000000000000,0x3ff0000000000000,1 +np.float64,0x3fcb53da8736a7b8,0x3ff05db45af470ac,1 +np.float64,0x80079f8f140f3f1f,0x3ff0000000000000,1 +np.float64,0xbfcd1d7e2b3a3afc,0x3ff06a6b6845d05f,1 +np.float64,0x96df93672dbf3,0x3ff0000000000000,1 +np.float64,0xdef86e43bdf0e,0x3ff0000000000000,1 +np.float64,0xbfec05a09db80b41,0x3ff6896b768eea08,1 +np.float64,0x7fe3ff91d267ff23,0x7ff0000000000000,1 +np.float64,0xffea3eaa07347d53,0x7ff0000000000000,1 +np.float64,0xbfebde1cc1f7bc3a,0x3ff675e34ac2afc2,1 +np.float64,0x629bcde8c537a,0x3ff0000000000000,1 +np.float64,0xbfdde4fcff3bc9fa,0x3ff1c7061d21f0fe,1 +np.float64,0x3fee60fd003cc1fa,0x3ff7c49af3878a51,1 +np.float64,0x3fe5c92ac32b9256,0x3ff3da7a7929588b,1 +np.float64,0xbfe249c78f64938f,0x3ff2af52a06f1a50,1 +np.float64,0xbfc6de9dbe2dbd3c,0x3ff0418d284ee29f,1 +np.float64,0xffc8ef094631de14,0x7ff0000000000000,1 +np.float64,0x3fdef05f423de0bf,0x3ff1e800caba8ab5,1 +np.float64,0xffc1090731221210,0x7ff0000000000000,1 +np.float64,0xbfedec9b5fbbd937,0x3ff7854b6792a24a,1 +np.float64,0xbfb873507630e6a0,0x3ff012b23b3b7a67,1 +np.float64,0xbfe3cd6692679acd,0x3ff3299d6936ec4b,1 +np.float64,0xbfb107c890220f90,0x3ff0091122162472,1 +np.float64,0xbfe4e6ee48e9cddc,0x3ff3894e5a5e70a6,1 +np.float64,0xffe6fa3413edf468,0x7ff0000000000000,1 +np.float64,0x3fe2faf79b65f5ef,0x3ff2e5e11fae8b54,1 +np.float64,0xbfdfeb8df9bfd71c,0x3ff208189691b15f,1 +np.float64,0x75d2d03ceba5b,0x3ff0000000000000,1 +np.float64,0x3feb48c182b69183,0x3ff62d4462eba6cb,1 +np.float64,0xffcda9f7ff3b53f0,0x7ff0000000000000,1 +np.float64,0x7fcafbdcbd35f7b8,0x7ff0000000000000,1 +np.float64,0xbfd1895523a312aa,0x3ff09aba642a78d9,1 +np.float64,0x3fe3129c3f662538,0x3ff2ed546bbfafcf,1 +np.float64,0x3fb444dee02889be,0x3ff00cd86273b964,1 +np.float64,0xbf73b32d7ee77,0x3ff0000000000000,1 +np.float64,0x3fae19904c3c3321,0x3ff00714865c498a,1 +np.float64,0x7fefbfaef5bf7f5d,0x7ff0000000000000,1 +np.float64,0x8000dc3816e1b871,0x3ff0000000000000,1 +np.float64,0x8003f957ba47f2b0,0x3ff0000000000000,1 +np.float64,0xbfe3563c7ea6ac79,0x3ff302dcebc92856,1 +np.float64,0xbfdc80fbae3901f8,0x3ff19cfe73e58092,1 +np.float64,0x8009223b04524476,0x3ff0000000000000,1 +np.float64,0x3fd95f431c32be86,0x3ff1461c21cb03f0,1 +np.float64,0x7ff4000000000000,0x7ffc000000000000,1 +np.float64,0xbfe7c12ed3ef825e,0x3ff49d59c265efcd,1 +np.float64,0x10000000000000,0x3ff0000000000000,1 +np.float64,0x7fc5e2632f2bc4c5,0x7ff0000000000000,1 +np.float64,0xffd8f6b4c7b1ed6a,0x7ff0000000000000,1 +np.float64,0x80034b93d4069728,0x3ff0000000000000,1 +np.float64,0xffdf5d4c1dbeba98,0x7ff0000000000000,1 +np.float64,0x800bc63d70178c7b,0x3ff0000000000000,1 +np.float64,0xbfeba31ea0f7463d,0x3ff658fa27073d2b,1 +np.float64,0xbfeebeede97d7ddc,0x3ff7f89a8e80dec4,1 +np.float64,0x7feb0f1f91361e3e,0x7ff0000000000000,1 +np.float64,0xffec3158d0b862b1,0x7ff0000000000000,1 +np.float64,0x3fde51cbfbbca398,0x3ff1d44c2ff15b3d,1 +np.float64,0xd58fb2b3ab1f7,0x3ff0000000000000,1 +np.float64,0x80028b9e32e5173d,0x3ff0000000000000,1 +np.float64,0x7fea77a56c74ef4a,0x7ff0000000000000,1 +np.float64,0x3fdaabbd4a35577b,0x3ff168d82edf2fe0,1 +np.float64,0xbfe69c39cc2d3874,0x3ff429b2f4cdb362,1 +np.float64,0x3b78f5d876f20,0x3ff0000000000000,1 +np.float64,0x7fa47d116428fa22,0x7ff0000000000000,1 +np.float64,0xbfe4118b0ce82316,0x3ff3403d989f780f,1 +np.float64,0x800482e793c905d0,0x3ff0000000000000,1 +np.float64,0xbfe48e5728e91cae,0x3ff36a9020bf9d20,1 +np.float64,0x7fe078ba8860f174,0x7ff0000000000000,1 +np.float64,0x3fd80843e5b01088,0x3ff1242f401e67da,1 +np.float64,0x3feb1f6965f63ed3,0x3ff6197fc590e143,1 +np.float64,0xffa41946d8283290,0x7ff0000000000000,1 +np.float64,0xffe30de129661bc2,0x7ff0000000000000,1 +np.float64,0x3fec9c8e1ab9391c,0x3ff6d542ea2f49b4,1 +np.float64,0x3fdc3e4490387c89,0x3ff1955ae18cac37,1 +np.float64,0xffef49d9c77e93b3,0x7ff0000000000000,1 +np.float64,0xfff0000000000000,0x7ff0000000000000,1 +np.float64,0x3fe0442455608849,0x3ff21cab90067d5c,1 +np.float64,0xbfed86aebd3b0d5e,0x3ff74ed8d4b75f50,1 +np.float64,0xffe4600d2b28c01a,0x7ff0000000000000,1 +np.float64,0x7fc1e8ccff23d199,0x7ff0000000000000,1 +np.float64,0x8008d49b0091a936,0x3ff0000000000000,1 +np.float64,0xbfe4139df028273c,0x3ff340ef3c86227c,1 +np.float64,0xbfe9ab4542b3568a,0x3ff56dfe32061247,1 +np.float64,0xbfd76dd365aedba6,0x3ff11589bab5fe71,1 +np.float64,0x3fd42cf829a859f0,0x3ff0cd3844bb0e11,1 +np.float64,0x7fd077cf2e20ef9d,0x7ff0000000000000,1 +np.float64,0x3fd7505760aea0b0,0x3ff112c937b3f088,1 +np.float64,0x1f93341a3f267,0x3ff0000000000000,1 +np.float64,0x7fe3c3c1b0678782,0x7ff0000000000000,1 +np.float64,0x800f85cec97f0b9e,0x3ff0000000000000,1 +np.float64,0xd93ab121b2756,0x3ff0000000000000,1 +np.float64,0xbfef8066fd7f00ce,0x3ff8663ed7d15189,1 +np.float64,0xffe31dd4af663ba9,0x7ff0000000000000,1 +np.float64,0xbfd7ff05a6affe0c,0x3ff1234c09bb686d,1 +np.float64,0xbfe718c31fee3186,0x3ff45a0c2d0ef7b0,1 +np.float64,0x800484bf33e9097f,0x3ff0000000000000,1 +np.float64,0xffd409dad02813b6,0x7ff0000000000000,1 +np.float64,0x3fe59679896b2cf4,0x3ff3c7f49e4fbbd3,1 +np.float64,0xbfd830c54d30618a,0x3ff1281729861390,1 +np.float64,0x1d4fc81c3a9fa,0x3ff0000000000000,1 +np.float64,0x3fd334e4272669c8,0x3ff0b9d5d82894f0,1 +np.float64,0xffc827e65c304fcc,0x7ff0000000000000,1 +np.float64,0xffe2d1814aa5a302,0x7ff0000000000000,1 +np.float64,0xffd7b5b8d32f6b72,0x7ff0000000000000,1 +np.float64,0xbfdbc9f077b793e0,0x3ff18836b9106ad0,1 +np.float64,0x7fc724c2082e4983,0x7ff0000000000000,1 +np.float64,0x3fa39ed72c273da0,0x3ff00302051ce17e,1 +np.float64,0xbfe3c4c209678984,0x3ff326c4fd16b5cd,1 +np.float64,0x7fe91f6d00f23ed9,0x7ff0000000000000,1 +np.float64,0x8004ee93fea9dd29,0x3ff0000000000000,1 +np.float64,0xbfe7c32d0eaf865a,0x3ff49e290ed2ca0e,1 +np.float64,0x800ea996b29d532d,0x3ff0000000000000,1 +np.float64,0x2df9ec1c5bf3e,0x3ff0000000000000,1 +np.float64,0xabb175df5762f,0x3ff0000000000000,1 +np.float64,0xffe3fc9c8e27f938,0x7ff0000000000000,1 +np.float64,0x7fb358a62826b14b,0x7ff0000000000000,1 +np.float64,0x800aedcccaf5db9a,0x3ff0000000000000,1 +np.float64,0xffca530c5234a618,0x7ff0000000000000,1 +np.float64,0x40f91e9681f24,0x3ff0000000000000,1 +np.float64,0x80098f4572f31e8b,0x3ff0000000000000,1 +np.float64,0xbfdc58c21fb8b184,0x3ff1986115f8fe92,1 +np.float64,0xbfebeafd40b7d5fa,0x3ff67c3cf34036e3,1 +np.float64,0x7fd108861a22110b,0x7ff0000000000000,1 +np.float64,0xff8e499ae03c9340,0x7ff0000000000000,1 +np.float64,0xbfd2f58caa25eb1a,0x3ff0b50b1bffafdf,1 +np.float64,0x3fa040c9bc208193,0x3ff002105e95aefa,1 +np.float64,0xbfd2ebc0a5a5d782,0x3ff0b44ed5a11584,1 +np.float64,0xffe237bc93a46f78,0x7ff0000000000000,1 +np.float64,0x3fd557c5eeaaaf8c,0x3ff0e5e0a575e1ba,1 +np.float64,0x7abb419ef5769,0x3ff0000000000000,1 +np.float64,0xffefa1fe353f43fb,0x7ff0000000000000,1 +np.float64,0x3fa6f80ba02df017,0x3ff0041f51fa0d76,1 +np.float64,0xbfdce79488b9cf2a,0x3ff1a8e32877beb4,1 +np.float64,0x2285f3e4450bf,0x3ff0000000000000,1 +np.float64,0x3bf7eb7277efe,0x3ff0000000000000,1 +np.float64,0xbfd5925fd3ab24c0,0x3ff0eae1c2ac2e78,1 +np.float64,0xbfed6325227ac64a,0x3ff73c14a2ad5bfe,1 +np.float64,0x8000429c02408539,0x3ff0000000000000,1 +np.float64,0xb67c21e76cf84,0x3ff0000000000000,1 +np.float64,0x3fec3d3462f87a69,0x3ff6a51e4c027eb7,1 +np.float64,0x3feae69cbcf5cd3a,0x3ff5fe9387314afd,1 +np.float64,0x7fd0c9a0ec219341,0x7ff0000000000000,1 +np.float64,0x8004adb7f6295b71,0x3ff0000000000000,1 +np.float64,0xffd61fe8bb2c3fd2,0x7ff0000000000000,1 +np.float64,0xffe7fb3834aff670,0x7ff0000000000000,1 +np.float64,0x7fd1eef163a3dde2,0x7ff0000000000000,1 +np.float64,0x2e84547a5d08b,0x3ff0000000000000,1 +np.float64,0x8002d8875ee5b10f,0x3ff0000000000000,1 +np.float64,0x3fe1d1c5f763a38c,0x3ff28ba524fb6de8,1 +np.float64,0x8001dea0bc43bd42,0x3ff0000000000000,1 +np.float64,0xfecfad91fd9f6,0x3ff0000000000000,1 +np.float64,0xffed7965fa3af2cb,0x7ff0000000000000,1 +np.float64,0xbfe6102ccc2c205a,0x3ff3f4c082506686,1 +np.float64,0x3feff75b777feeb6,0x3ff8ab6222578e0c,1 +np.float64,0x3fb8a97bd43152f8,0x3ff013057f0a9d89,1 +np.float64,0xffe234b5e964696c,0x7ff0000000000000,1 +np.float64,0x984d9137309b2,0x3ff0000000000000,1 +np.float64,0xbfe42e9230e85d24,0x3ff349fb7d1a7560,1 +np.float64,0xbfecc8b249f99165,0x3ff6ebd0fea0ea72,1 +np.float64,0x8000840910410813,0x3ff0000000000000,1 +np.float64,0xbfd81db9e7303b74,0x3ff126402d3539ec,1 +np.float64,0x800548eb7fea91d8,0x3ff0000000000000,1 +np.float64,0xbfe4679ad0e8cf36,0x3ff35d4db89296a3,1 +np.float64,0x3fd4c55b5a298ab7,0x3ff0d99da31081f9,1 +np.float64,0xbfa8f5b38c31eb60,0x3ff004de3a23b32d,1 +np.float64,0x80005d348e80ba6a,0x3ff0000000000000,1 +np.float64,0x800c348d6118691b,0x3ff0000000000000,1 +np.float64,0xffd6b88f84ad7120,0x7ff0000000000000,1 +np.float64,0x3fc1aaaa82235555,0x3ff027136afd08e0,1 +np.float64,0x7fca7d081b34fa0f,0x7ff0000000000000,1 +np.float64,0x1,0x3ff0000000000000,1 +np.float64,0xbfdc810d1139021a,0x3ff19d007408cfe3,1 +np.float64,0xbfe5dce05f2bb9c0,0x3ff3e1bb9234617b,1 +np.float64,0xffecfe2c32b9fc58,0x7ff0000000000000,1 +np.float64,0x95b2891b2b651,0x3ff0000000000000,1 +np.float64,0x8000b60c6c616c1a,0x3ff0000000000000,1 +np.float64,0x4944f0889289f,0x3ff0000000000000,1 +np.float64,0x3fe6e508696dca10,0x3ff445d1b94863e9,1 +np.float64,0xbfe63355d0ec66ac,0x3ff401e74f16d16f,1 +np.float64,0xbfe9b9595af372b3,0x3ff57445e1b4d670,1 +np.float64,0x800e16f7313c2dee,0x3ff0000000000000,1 +np.float64,0xffe898f5f0b131eb,0x7ff0000000000000,1 +np.float64,0x3fe91ac651f2358d,0x3ff52e787c21c004,1 +np.float64,0x7fbfaac6783f558c,0x7ff0000000000000,1 +np.float64,0xd8ef3dfbb1de8,0x3ff0000000000000,1 +np.float64,0xbfc58c13a52b1828,0x3ff03a2c19d65019,1 +np.float64,0xbfbde55e8a3bcac0,0x3ff01bf648a3e0a7,1 +np.float64,0xffc3034930260694,0x7ff0000000000000,1 +np.float64,0xea77a64dd4ef5,0x3ff0000000000000,1 +np.float64,0x800cfe7e7739fcfd,0x3ff0000000000000,1 +np.float64,0x4960f31a92c1f,0x3ff0000000000000,1 +np.float64,0x3fd9552c94b2aa58,0x3ff14515a29add09,1 +np.float64,0xffe8b3244c316648,0x7ff0000000000000,1 +np.float64,0x3fe8201e6a70403d,0x3ff4c444fa679cce,1 +np.float64,0xffe9ab7c20f356f8,0x7ff0000000000000,1 +np.float64,0x3fed8bba5f7b1774,0x3ff751853c4c95c5,1 +np.float64,0x8007639cb76ec73a,0x3ff0000000000000,1 +np.float64,0xbfe396db89672db7,0x3ff317bfd1d6fa8c,1 +np.float64,0xbfeb42f888f685f1,0x3ff62a7e0eee56b1,1 +np.float64,0x3fe894827c712904,0x3ff4f4f561d9ea13,1 +np.float64,0xb66b3caf6cd68,0x3ff0000000000000,1 +np.float64,0x800f8907fdbf1210,0x3ff0000000000000,1 +np.float64,0x7fe9b0cddb73619b,0x7ff0000000000000,1 +np.float64,0xbfda70c0e634e182,0x3ff1628c6fdffc53,1 +np.float64,0x3fe0b5f534a16bea,0x3ff23b4ed4c2b48e,1 +np.float64,0xbfe8eee93671ddd2,0x3ff51b85b3c50ae4,1 +np.float64,0xbfe8c22627f1844c,0x3ff50858787a3bfe,1 +np.float64,0x37bb83c86f771,0x3ff0000000000000,1 +np.float64,0xffb7827ffe2f0500,0x7ff0000000000000,1 +np.float64,0x64317940c864,0x3ff0000000000000,1 +np.float64,0x800430ecee6861db,0x3ff0000000000000,1 +np.float64,0x3fa4291fbc285240,0x3ff0032d0204f6dd,1 +np.float64,0xffec69f76af8d3ee,0x7ff0000000000000,1 +np.float64,0x3ff0000000000000,0x3ff8b07551d9f550,1 +np.float64,0x3fc4cf3c42299e79,0x3ff0363fb1d3c254,1 +np.float64,0x7fe0223a77e04474,0x7ff0000000000000,1 +np.float64,0x800a3d4fa4347aa0,0x3ff0000000000000,1 +np.float64,0x3fdd273f94ba4e7f,0x3ff1b05b686e6879,1 +np.float64,0x3feca79052f94f20,0x3ff6dadedfa283aa,1 +np.float64,0x5e7f6f80bcfef,0x3ff0000000000000,1 +np.float64,0xbfef035892fe06b1,0x3ff81efb39cbeba2,1 +np.float64,0x3fee6c08e07cd812,0x3ff7caad952860a1,1 +np.float64,0xffeda715877b4e2a,0x7ff0000000000000,1 +np.float64,0x800580286b0b0052,0x3ff0000000000000,1 +np.float64,0x800703a73fee074f,0x3ff0000000000000,1 +np.float64,0xbfccf96a6639f2d4,0x3ff0696330a60832,1 +np.float64,0x7feb408442368108,0x7ff0000000000000,1 +np.float64,0x3fedc87a46fb90f5,0x3ff771e3635649a9,1 +np.float64,0x3fd8297b773052f7,0x3ff12762bc0cea76,1 +np.float64,0x3fee41bb03fc8376,0x3ff7b37b2da48ab4,1 +np.float64,0xbfe2b05a226560b4,0x3ff2cea17ae7c528,1 +np.float64,0xbfd2e92cf2a5d25a,0x3ff0b41d605ced61,1 +np.float64,0x4817f03a902ff,0x3ff0000000000000,1 +np.float64,0x8c9d4f0d193aa,0x3ff0000000000000,1 diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-exp.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-exp.csv new file mode 100644 index 0000000..7c5ef3b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-exp.csv @@ -0,0 +1,412 @@ +dtype,input,output,ulperrortol +## +ve denormals ## +np.float32,0x004b4716,0x3f800000,3 +np.float32,0x007b2490,0x3f800000,3 +np.float32,0x007c99fa,0x3f800000,3 +np.float32,0x00734a0c,0x3f800000,3 +np.float32,0x0070de24,0x3f800000,3 +np.float32,0x00495d65,0x3f800000,3 +np.float32,0x006894f6,0x3f800000,3 +np.float32,0x00555a76,0x3f800000,3 +np.float32,0x004e1fb8,0x3f800000,3 +np.float32,0x00687de9,0x3f800000,3 +## -ve denormals ## +np.float32,0x805b59af,0x3f800000,3 +np.float32,0x807ed8ed,0x3f800000,3 +np.float32,0x807142ad,0x3f800000,3 +np.float32,0x80772002,0x3f800000,3 +np.float32,0x8062abcb,0x3f800000,3 +np.float32,0x8045e31c,0x3f800000,3 +np.float32,0x805f01c2,0x3f800000,3 +np.float32,0x80506432,0x3f800000,3 +np.float32,0x8060089d,0x3f800000,3 +np.float32,0x8071292f,0x3f800000,3 +## floats that output a denormal ## +np.float32,0xc2cf3fc1,0x00000001,3 +np.float32,0xc2c79726,0x00000021,3 +np.float32,0xc2cb295d,0x00000005,3 +np.float32,0xc2b49e6b,0x00068c4c,3 +np.float32,0xc2ca8116,0x00000008,3 +np.float32,0xc2c23f82,0x000001d7,3 +np.float32,0xc2cb69c0,0x00000005,3 +np.float32,0xc2cc1f4d,0x00000003,3 +np.float32,0xc2ae094e,0x00affc4c,3 +np.float32,0xc2c86c44,0x00000015,3 +## random floats between -87.0f and 88.0f ## +np.float32,0x4030d7e0,0x417d9a05,3 +np.float32,0x426f60e8,0x6aa1be2c,3 +np.float32,0x41a1b220,0x4e0efc11,3 +np.float32,0xc20cc722,0x26159da7,3 +np.float32,0x41c492bc,0x512ec79d,3 +np.float32,0x40980210,0x42e73a0e,3 +np.float32,0xbf1f7b80,0x3f094de3,3 +np.float32,0x42a678a4,0x7b87a383,3 +np.float32,0xc20f3cfd,0x25a1c304,3 +np.float32,0x423ff34c,0x6216467f,3 +np.float32,0x00000000,0x3f800000,3 +## floats that cause an overflow ## +np.float32,0x7f06d8c1,0x7f800000,3 +np.float32,0x7f451912,0x7f800000,3 +np.float32,0x7ecceac3,0x7f800000,3 +np.float32,0x7f643b45,0x7f800000,3 +np.float32,0x7e910ea0,0x7f800000,3 +np.float32,0x7eb4756b,0x7f800000,3 +np.float32,0x7f4ec708,0x7f800000,3 +np.float32,0x7f6b4551,0x7f800000,3 +np.float32,0x7d8edbda,0x7f800000,3 +np.float32,0x7f730718,0x7f800000,3 +np.float32,0x42b17217,0x7f7fff84,3 +np.float32,0x42b17218,0x7f800000,3 +np.float32,0x42b17219,0x7f800000,3 +np.float32,0xfef2b0bc,0x00000000,3 +np.float32,0xff69f83e,0x00000000,3 +np.float32,0xff4ecb12,0x00000000,3 +np.float32,0xfeac6d86,0x00000000,3 +np.float32,0xfde0cdb8,0x00000000,3 +np.float32,0xff26aef4,0x00000000,3 +np.float32,0xff6f9277,0x00000000,3 +np.float32,0xff7adfc4,0x00000000,3 +np.float32,0xff0ad40e,0x00000000,3 +np.float32,0xff6fd8f3,0x00000000,3 +np.float32,0xc2cff1b4,0x00000001,3 +np.float32,0xc2cff1b5,0x00000000,3 +np.float32,0xc2cff1b6,0x00000000,3 +np.float32,0x7f800000,0x7f800000,3 +np.float32,0xff800000,0x00000000,3 +np.float32,0x4292f27c,0x7480000a,3 +np.float32,0x42a920be,0x7c7fff94,3 +np.float32,0x41c214c9,0x50ffffd9,3 +np.float32,0x41abe686,0x4effffd9,3 +np.float32,0x4287db5a,0x707fffd3,3 +np.float32,0x41902cbb,0x4c800078,3 +np.float32,0x42609466,0x67ffffeb,3 +np.float32,0x41a65af5,0x4e7fffd1,3 +np.float32,0x417f13ff,0x4affffc9,3 +np.float32,0x426d0e6c,0x6a3504f2,3 +np.float32,0x41bc8934,0x507fff51,3 +np.float32,0x42a7bdde,0x7c0000d6,3 +np.float32,0x4120cf66,0x46b504f6,3 +np.float32,0x4244da8f,0x62ffff1a,3 +np.float32,0x41a0cf69,0x4e000034,3 +np.float32,0x41cd2bec,0x52000005,3 +np.float32,0x42893e41,0x7100009e,3 +np.float32,0x41b437e1,0x4fb50502,3 +np.float32,0x41d8430f,0x5300001d,3 +np.float32,0x4244da92,0x62ffffda,3 +np.float32,0x41a0cf63,0x4dffffa9,3 +np.float32,0x3eb17218,0x3fb504f3,3 +np.float32,0x428729e8,0x703504dc,3 +np.float32,0x41a0cf67,0x4e000014,3 +np.float32,0x4252b77d,0x65800011,3 +np.float32,0x41902cb9,0x4c800058,3 +np.float32,0x42a0cf67,0x79800052,3 +np.float32,0x4152b77b,0x48ffffe9,3 +np.float32,0x41265af3,0x46ffffc8,3 +np.float32,0x42187e0b,0x5affff9a,3 +np.float32,0xc0d2b77c,0x3ab504f6,3 +np.float32,0xc283b2ac,0x10000072,3 +np.float32,0xc1cff1b4,0x2cb504f5,3 +np.float32,0xc05dce9e,0x3d000000,3 +np.float32,0xc28ec9d2,0x0bfffea5,3 +np.float32,0xc23c893a,0x1d7fffde,3 +np.float32,0xc2a920c0,0x027fff6c,3 +np.float32,0xc1f9886f,0x2900002b,3 +np.float32,0xc2c42920,0x000000b5,3 +np.float32,0xc2893e41,0x0dfffec5,3 +np.float32,0xc2c4da93,0x00000080,3 +np.float32,0xc17f1401,0x3400000c,3 +np.float32,0xc1902cb6,0x327fffaf,3 +np.float32,0xc27c4e3b,0x11ffffc5,3 +np.float32,0xc268e5c5,0x157ffe9d,3 +np.float32,0xc2b4e953,0x0005a826,3 +np.float32,0xc287db5a,0x0e800016,3 +np.float32,0xc207db5a,0x2700000b,3 +np.float32,0xc2b2d4fe,0x000ffff1,3 +np.float32,0xc268e5c0,0x157fffdd,3 +np.float32,0xc22920bd,0x2100003b,3 +np.float32,0xc2902caf,0x0b80011e,3 +np.float32,0xc1902cba,0x327fff2f,3 +np.float32,0xc2ca6625,0x00000008,3 +np.float32,0xc280ece8,0x10fffeb5,3 +np.float32,0xc2918f94,0x0b0000ea,3 +np.float32,0xc29b43d5,0x077ffffc,3 +np.float32,0xc1e61ff7,0x2ab504f5,3 +np.float32,0xc2867878,0x0effff15,3 +np.float32,0xc2a2324a,0x04fffff4,3 +#float64 +## near zero ## +np.float64,0x8000000000000000,0x3ff0000000000000,1 +np.float64,0x8010000000000000,0x3ff0000000000000,1 +np.float64,0x8000000000000001,0x3ff0000000000000,1 +np.float64,0x8360000000000000,0x3ff0000000000000,1 +np.float64,0x9a70000000000000,0x3ff0000000000000,1 +np.float64,0xb9b0000000000000,0x3ff0000000000000,1 +np.float64,0xb810000000000000,0x3ff0000000000000,1 +np.float64,0xbc30000000000000,0x3ff0000000000000,1 +np.float64,0xb6a0000000000000,0x3ff0000000000000,1 +np.float64,0x0000000000000000,0x3ff0000000000000,1 +np.float64,0x0010000000000000,0x3ff0000000000000,1 +np.float64,0x0000000000000001,0x3ff0000000000000,1 +np.float64,0x0360000000000000,0x3ff0000000000000,1 +np.float64,0x1a70000000000000,0x3ff0000000000000,1 +np.float64,0x3c30000000000000,0x3ff0000000000000,1 +np.float64,0x36a0000000000000,0x3ff0000000000000,1 +np.float64,0x39b0000000000000,0x3ff0000000000000,1 +np.float64,0x3810000000000000,0x3ff0000000000000,1 +## underflow ## +np.float64,0xc0c6276800000000,0x0000000000000000,1 +np.float64,0xc0c62d918ce2421d,0x0000000000000000,1 +np.float64,0xc0c62d918ce2421e,0x0000000000000000,1 +np.float64,0xc0c62d91a0000000,0x0000000000000000,1 +np.float64,0xc0c62d9180000000,0x0000000000000000,1 +np.float64,0xc0c62dea45ee3e06,0x0000000000000000,1 +np.float64,0xc0c62dea45ee3e07,0x0000000000000000,1 +np.float64,0xc0c62dea40000000,0x0000000000000000,1 +np.float64,0xc0c62dea60000000,0x0000000000000000,1 +np.float64,0xc0875f1120000000,0x0000000000000000,1 +np.float64,0xc0875f113c30b1c8,0x0000000000000000,1 +np.float64,0xc0875f1140000000,0x0000000000000000,1 +np.float64,0xc093480000000000,0x0000000000000000,1 +np.float64,0xffefffffffffffff,0x0000000000000000,1 +np.float64,0xc7efffffe0000000,0x0000000000000000,1 +## overflow ## +np.float64,0x40862e52fefa39ef,0x7ff0000000000000,1 +np.float64,0x40872e42fefa39ef,0x7ff0000000000000,1 +## +/- INF, +/- NAN ## +np.float64,0x7ff0000000000000,0x7ff0000000000000,1 +np.float64,0xfff0000000000000,0x0000000000000000,1 +np.float64,0x7ff8000000000000,0x7ff8000000000000,1 +np.float64,0xfff8000000000000,0xfff8000000000000,1 +## output denormal ## +np.float64,0xc087438520000000,0x0000000000000001,1 +np.float64,0xc08743853f2f4461,0x0000000000000001,1 +np.float64,0xc08743853f2f4460,0x0000000000000001,1 +np.float64,0xc087438540000000,0x0000000000000001,1 +## between -745.13321910 and 709.78271289 ## +np.float64,0xbff760cd14774bd9,0x3fcdb14ced00ceb6,1 +np.float64,0xbff760cd20000000,0x3fcdb14cd7993879,1 +np.float64,0xbff760cd00000000,0x3fcdb14d12fbd264,1 +np.float64,0xc07f1cf360000000,0x130c1b369af14fda,1 +np.float64,0xbeb0000000000000,0x3feffffe00001000,1 +np.float64,0xbd70000000000000,0x3fefffffffffe000,1 +np.float64,0xc084fd46e5c84952,0x0360000000000139,1 +np.float64,0xc084fd46e5c84953,0x035ffffffffffe71,1 +np.float64,0xc084fd46e0000000,0x0360000b9096d32c,1 +np.float64,0xc084fd4700000000,0x035fff9721d12104,1 +np.float64,0xc086232bc0000000,0x0010003af5e64635,1 +np.float64,0xc086232bdd7abcd2,0x001000000000007c,1 +np.float64,0xc086232bdd7abcd3,0x000ffffffffffe7c,1 +np.float64,0xc086232be0000000,0x000ffffaf57a6fc9,1 +np.float64,0xc086233920000000,0x000fe590e3b45eb0,1 +np.float64,0xc086233938000000,0x000fe56133493c57,1 +np.float64,0xc086233940000000,0x000fe5514deffbbc,1 +np.float64,0xc086234c98000000,0x000fbf1024c32ccb,1 +np.float64,0xc086234ca0000000,0x000fbf0065bae78d,1 +np.float64,0xc086234c80000000,0x000fbf3f623a7724,1 +np.float64,0xc086234ec0000000,0x000fbad237c846f9,1 +np.float64,0xc086234ec8000000,0x000fbac27cfdec97,1 +np.float64,0xc086234ee0000000,0x000fba934cfd3dc2,1 +np.float64,0xc086234ef0000000,0x000fba73d7f618d9,1 +np.float64,0xc086234f00000000,0x000fba54632dddc0,1 +np.float64,0xc0862356e0000000,0x000faae0945b761a,1 +np.float64,0xc0862356f0000000,0x000faac13eb9a310,1 +np.float64,0xc086235700000000,0x000faaa1e9567b0a,1 +np.float64,0xc086236020000000,0x000f98cd75c11ed7,1 +np.float64,0xc086236ca0000000,0x000f8081b4d93f89,1 +np.float64,0xc086236cb0000000,0x000f8062b3f4d6c5,1 +np.float64,0xc086236cc0000000,0x000f8043b34e6f8c,1 +np.float64,0xc086238d98000000,0x000f41220d9b0d2c,1 +np.float64,0xc086238da0000000,0x000f4112cc80a01f,1 +np.float64,0xc086238d80000000,0x000f414fd145db5b,1 +np.float64,0xc08624fd00000000,0x000cbfce8ea1e6c4,1 +np.float64,0xc086256080000000,0x000c250747fcd46e,1 +np.float64,0xc08626c480000000,0x000a34f4bd975193,1 +np.float64,0xbf50000000000000,0x3feff800ffeaac00,1 +np.float64,0xbe10000000000000,0x3fefffffff800000,1 +np.float64,0xbcd0000000000000,0x3feffffffffffff8,1 +np.float64,0xc055d589e0000000,0x38100004bf94f63e,1 +np.float64,0xc055d58a00000000,0x380ffff97f292ce8,1 +np.float64,0xbfd962d900000000,0x3fe585a4b00110e1,1 +np.float64,0x3ff4bed280000000,0x400d411e7a58a303,1 +np.float64,0x3fff0b3620000000,0x401bd7737ffffcf3,1 +np.float64,0x3ff0000000000000,0x4005bf0a8b145769,1 +np.float64,0x3eb0000000000000,0x3ff0000100000800,1 +np.float64,0x3d70000000000000,0x3ff0000000001000,1 +np.float64,0x40862e42e0000000,0x7fefff841808287f,1 +np.float64,0x40862e42fefa39ef,0x7fefffffffffff2a,1 +np.float64,0x40862e0000000000,0x7feef85a11e73f2d,1 +np.float64,0x4000000000000000,0x401d8e64b8d4ddae,1 +np.float64,0x4009242920000000,0x40372a52c383a488,1 +np.float64,0x4049000000000000,0x44719103e4080b45,1 +np.float64,0x4008000000000000,0x403415e5bf6fb106,1 +np.float64,0x3f50000000000000,0x3ff00400800aab55,1 +np.float64,0x3e10000000000000,0x3ff0000000400000,1 +np.float64,0x3cd0000000000000,0x3ff0000000000004,1 +np.float64,0x40562e40a0000000,0x47effed088821c3f,1 +np.float64,0x40562e42e0000000,0x47effff082e6c7ff,1 +np.float64,0x40562e4300000000,0x47f00000417184b8,1 +np.float64,0x3fe8000000000000,0x4000ef9db467dcf8,1 +np.float64,0x402b12e8d4f33589,0x412718f68c71a6fe,1 +np.float64,0x402b12e8d4f3358a,0x412718f68c71a70a,1 +np.float64,0x402b12e8c0000000,0x412718f59a7f472e,1 +np.float64,0x402b12e8e0000000,0x412718f70c0eac62,1 +##use 1th entry +np.float64,0x40631659AE147CB4,0x4db3a95025a4890f,1 +np.float64,0xC061B87D2E85A4E2,0x332640c8e2de2c51,1 +np.float64,0x405A4A50BE243AF4,0x496a45e4b7f0339a,1 +np.float64,0xC0839898B98EC5C6,0x0764027828830df4,1 +#use 2th entry +np.float64,0xC072428C44B6537C,0x2596ade838b96f3e,1 +np.float64,0xC053057C5E1AE9BF,0x3912c8fad18fdadf,1 +np.float64,0x407E89C78328BAA3,0x6bfe35d5b9a1a194,1 +np.float64,0x4083501B6DD87112,0x77a855503a38924e,1 +#use 3th entry +np.float64,0x40832C6195F24540,0x7741e73c80e5eb2f,1 +np.float64,0xC083D4CD557C2EC9,0x06b61727c2d2508e,1 +np.float64,0x400C48F5F67C99BD,0x404128820f02b92e,1 +np.float64,0x4056E36D9B2DF26A,0x4830f52ff34a8242,1 +#use 4th entry +np.float64,0x4080FF700D8CBD06,0x70fa70df9bc30f20,1 +np.float64,0x406C276D39E53328,0x543eb8e20a8f4741,1 +np.float64,0xC070D6159BBD8716,0x27a4a0548c904a75,1 +np.float64,0xC052EBCF8ED61F83,0x391c0e92368d15e4,1 +#use 5th entry +np.float64,0xC061F892A8AC5FBE,0x32f807a89efd3869,1 +np.float64,0x4021D885D2DBA085,0x40bd4dc86d3e3270,1 +np.float64,0x40767AEEEE7D4FCF,0x605e22851ee2afb7,1 +np.float64,0xC0757C5D75D08C80,0x20f0751599b992a2,1 +#use 6th entry +np.float64,0x405ACF7A284C4CE3,0x499a4e0b7a27027c,1 +np.float64,0xC085A6C9E80D7AF5,0x0175914009d62ec2,1 +np.float64,0xC07E4C02F86F1DAE,0x1439269b29a9231e,1 +np.float64,0x4080D80F9691CC87,0x7088a6cdafb041de,1 +#use 7th entry +np.float64,0x407FDFD84FBA0AC1,0x6deb1ae6f9bc4767,1 +np.float64,0x40630C06A1A2213D,0x4dac7a9d51a838b7,1 +np.float64,0x40685FDB30BB8B4F,0x5183f5cc2cac9e79,1 +np.float64,0x408045A2208F77F4,0x6ee299e08e2aa2f0,1 +#use 8th entry +np.float64,0xC08104E391F5078B,0x0ed397b7cbfbd230,1 +np.float64,0xC031501CAEFAE395,0x3e6040fd1ea35085,1 +np.float64,0xC079229124F6247C,0x1babf4f923306b1e,1 +np.float64,0x407FB65F44600435,0x6db03beaf2512b8a,1 +#use 9th entry +np.float64,0xC07EDEE8E8E8A5AC,0x136536cec9cbef48,1 +np.float64,0x4072BB4086099A14,0x5af4d3c3008b56cc,1 +np.float64,0x4050442A2EC42CB4,0x45cd393bd8fad357,1 +np.float64,0xC06AC28FB3D419B4,0x2ca1b9d3437df85f,1 +#use 10th entry +np.float64,0x40567FC6F0A68076,0x480c977fd5f3122e,1 +np.float64,0x40620A2F7EDA59BB,0x4cf278e96f4ce4d7,1 +np.float64,0xC085044707CD557C,0x034aad6c968a045a,1 +np.float64,0xC07374EA5AC516AA,0x23dd6afdc03e83d5,1 +#use 11th entry +np.float64,0x4073CC95332619C1,0x5c804b1498bbaa54,1 +np.float64,0xC0799FEBBE257F31,0x1af6a954c43b87d2,1 +np.float64,0x408159F19EA424F6,0x7200858efcbfc84d,1 +np.float64,0x404A81F6F24C0792,0x44b664a07ce5bbfa,1 +#use 12th entry +np.float64,0x40295FF1EFB9A741,0x4113c0e74c52d7b0,1 +np.float64,0x4073975F4CC411DA,0x5c32be40b4fec2c1,1 +np.float64,0x406E9DE52E82A77E,0x56049c9a3f1ae089,1 +np.float64,0x40748C2F52560ED9,0x5d93bc14fd4cd23b,1 +#use 13th entry +np.float64,0x4062A553CDC4D04C,0x4d6266bfde301318,1 +np.float64,0xC079EC1D63598AB7,0x1a88cb184dab224c,1 +np.float64,0xC0725C1CB3167427,0x25725b46f8a081f6,1 +np.float64,0x407888771D9B45F9,0x6353b1ec6bd7ce80,1 +#use 14th entry +np.float64,0xC082CBA03AA89807,0x09b383723831ce56,1 +np.float64,0xC083A8961BB67DD7,0x0735b118d5275552,1 +np.float64,0xC076BC6ECA12E7E3,0x1f2222679eaef615,1 +np.float64,0xC072752503AA1A5B,0x254eb832242c77e1,1 +#use 15th entry +np.float64,0xC058800792125DEC,0x371882372a0b48d4,1 +np.float64,0x4082909FD863E81C,0x7580d5f386920142,1 +np.float64,0xC071616F8FB534F9,0x26dbe20ef64a412b,1 +np.float64,0x406D1AB571CAA747,0x54ee0d55cb38ac20,1 +#use 16th entry +np.float64,0x406956428B7DAD09,0x52358682c271237f,1 +np.float64,0xC07EFC2D9D17B621,0x133b3e77c27a4d45,1 +np.float64,0xC08469BAC5BA3CCA,0x050863e5f42cc52f,1 +np.float64,0x407189D9626386A5,0x593cb1c0b3b5c1d3,1 +#use 17th entry +np.float64,0x4077E652E3DEB8C6,0x6269a10dcbd3c752,1 +np.float64,0x407674C97DB06878,0x605485dcc2426ec2,1 +np.float64,0xC07CE9969CF4268D,0x16386cf8996669f2,1 +np.float64,0x40780EE32D5847C4,0x62a436bd1abe108d,1 +#use 18th entry +np.float64,0x4076C3AA5E1E8DA1,0x60c62f56a5e72e24,1 +np.float64,0xC0730AFC7239B9BE,0x24758ead095cec1e,1 +np.float64,0xC085CC2B9C420DDB,0x0109cdaa2e5694c1,1 +np.float64,0x406D0765CB6D7AA4,0x54e06f8dd91bd945,1 +#use 19th entry +np.float64,0xC082D011F3B495E7,0x09a6647661d279c2,1 +np.float64,0xC072826AF8F6AFBC,0x253acd3cd224507e,1 +np.float64,0x404EB9C4810CEA09,0x457933dbf07e8133,1 +np.float64,0x408284FBC97C58CE,0x755f6eb234aa4b98,1 +#use 20th entry +np.float64,0x40856008CF6EDC63,0x7d9c0b3c03f4f73c,1 +np.float64,0xC077CB2E9F013B17,0x1d9b3d3a166a55db,1 +np.float64,0xC0479CA3C20AD057,0x3bad40e081555b99,1 +np.float64,0x40844CD31107332A,0x7a821d70aea478e2,1 +#use 21th entry +np.float64,0xC07C8FCC0BFCC844,0x16ba1cc8c539d19b,1 +np.float64,0xC085C4E9A3ABA488,0x011ff675ba1a2217,1 +np.float64,0x4074D538B32966E5,0x5dfd9d78043c6ad9,1 +np.float64,0xC0630CA16902AD46,0x3231a446074cede6,1 +#use 22th entry +np.float64,0xC06C826733D7D0B7,0x2b5f1078314d41e1,1 +np.float64,0xC0520DF55B2B907F,0x396c13a6ce8e833e,1 +np.float64,0xC080712072B0F437,0x107eae02d11d98ea,1 +np.float64,0x40528A6150E19EFB,0x469fdabda02228c5,1 +#use 23th entry +np.float64,0xC07B1D74B6586451,0x18d1253883ae3b48,1 +np.float64,0x4045AFD7867DAEC0,0x43d7d634fc4c5d98,1 +np.float64,0xC07A08B91F9ED3E2,0x1a60973e6397fc37,1 +np.float64,0x407B3ECF0AE21C8C,0x673e03e9d98d7235,1 +#use 24th entry +np.float64,0xC078AEB6F30CEABF,0x1c530b93ab54a1b3,1 +np.float64,0x4084495006A41672,0x7a775b6dc7e63064,1 +np.float64,0x40830B1C0EBF95DD,0x76e1e6eed77cfb89,1 +np.float64,0x407D93E8F33D8470,0x6a9adbc9e1e4f1e5,1 +#use 25th entry +np.float64,0x4066B11A09EFD9E8,0x504dd528065c28a7,1 +np.float64,0x408545823723AEEB,0x7d504a9b1844f594,1 +np.float64,0xC068C711F2CA3362,0x2e104f3496ea118e,1 +np.float64,0x407F317FCC3CA873,0x6cf0732c9948ebf4,1 +#use 26th entry +np.float64,0x407AFB3EBA2ED50F,0x66dc28a129c868d5,1 +np.float64,0xC075377037708ADE,0x21531a329f3d793e,1 +np.float64,0xC07C30066A1F3246,0x174448baa16ded2b,1 +np.float64,0xC06689A75DE2ABD3,0x2fad70662fae230b,1 +#use 27th entry +np.float64,0x4081514E9FCCF1E0,0x71e673b9efd15f44,1 +np.float64,0xC0762C710AF68460,0x1ff1ed7d8947fe43,1 +np.float64,0xC0468102FF70D9C4,0x3be0c3a8ff3419a3,1 +np.float64,0xC07EA4CEEF02A83E,0x13b908f085102c61,1 +#use 28th entry +np.float64,0xC06290B04AE823C4,0x328a83da3c2e3351,1 +np.float64,0xC0770EB1D1C395FB,0x1eab281c1f1db5fe,1 +np.float64,0xC06F5D4D838A5BAE,0x29500ea32fb474ea,1 +np.float64,0x40723B3133B54C5D,0x5a3c82c7c3a2b848,1 +#use 29th entry +np.float64,0x4085E6454CE3B4AA,0x7f20319b9638d06a,1 +np.float64,0x408389F2A0585D4B,0x7850667c58aab3d0,1 +np.float64,0xC0382798F9C8AE69,0x3dc1c79fe8739d6d,1 +np.float64,0xC08299D827608418,0x0a4335f76cdbaeb5,1 +#use 30th entry +np.float64,0xC06F3DED43301BF1,0x2965670ae46750a8,1 +np.float64,0xC070CAF6BDD577D9,0x27b4aa4ffdd29981,1 +np.float64,0x4078529AD4B2D9F2,0x6305c12755d5e0a6,1 +np.float64,0xC055B14E75A31B96,0x381c2eda6d111e5d,1 +#use 31th entry +np.float64,0x407B13EE414FA931,0x6700772c7544564d,1 +np.float64,0x407EAFDE9DE3EC54,0x6c346a0e49724a3c,1 +np.float64,0xC08362F398B9530D,0x07ffeddbadf980cb,1 +np.float64,0x407E865CDD9EEB86,0x6bf866cac5e0d126,1 +#use 32th entry +np.float64,0x407FB62DBC794C86,0x6db009f708ac62cb,1 +np.float64,0xC063D0BAA68CDDDE,0x31a3b2a51ce50430,1 +np.float64,0xC05E7706A2231394,0x34f24bead6fab5c9,1 +np.float64,0x4083E3A06FDE444E,0x79527b7a386d1937,1 diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-exp2.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-exp2.csv new file mode 100644 index 0000000..4e0a63e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-exp2.csv @@ -0,0 +1,1429 @@ +dtype,input,output,ulperrortol +np.float32,0xbdfe94b0,0x3f6adda6,2 +np.float32,0x3f20f8f8,0x3fc5ec69,2 +np.float32,0x7040b5,0x3f800000,2 +np.float32,0x30ec5,0x3f800000,2 +np.float32,0x3eb63070,0x3fa3ce29,2 +np.float32,0xff4dda3d,0x0,2 +np.float32,0x805b832f,0x3f800000,2 +np.float32,0x3e883fb7,0x3f99ed8c,2 +np.float32,0x3f14d71f,0x3fbf8708,2 +np.float32,0xff7b1e55,0x0,2 +np.float32,0xbf691ac6,0x3f082fa2,2 +np.float32,0x7ee3e6ab,0x7f800000,2 +np.float32,0xbec6e2b4,0x3f439248,2 +np.float32,0xbf5f5ec2,0x3f0bd2c0,2 +np.float32,0x8025cc2c,0x3f800000,2 +np.float32,0x7e0d7672,0x7f800000,2 +np.float32,0xff4bbc5c,0x0,2 +np.float32,0xbd94fb30,0x3f73696b,2 +np.float32,0x6cc079,0x3f800000,2 +np.float32,0x803cf080,0x3f800000,2 +np.float32,0x71d418,0x3f800000,2 +np.float32,0xbf24a442,0x3f23ec1e,2 +np.float32,0xbe6c9510,0x3f5a1e1d,2 +np.float32,0xbe8fb284,0x3f52be38,2 +np.float32,0x7ea64754,0x7f800000,2 +np.float32,0x7fc00000,0x7fc00000,2 +np.float32,0x80620cfd,0x3f800000,2 +np.float32,0x3f3e20e8,0x3fd62e72,2 +np.float32,0x3f384600,0x3fd2d00e,2 +np.float32,0xff362150,0x0,2 +np.float32,0xbf349fa8,0x3f1cfaef,2 +np.float32,0xbf776cf2,0x3f0301a6,2 +np.float32,0x8021fc60,0x3f800000,2 +np.float32,0xbdb75280,0x3f70995c,2 +np.float32,0x7e9363a6,0x7f800000,2 +np.float32,0x7e728422,0x7f800000,2 +np.float32,0xfe91edc2,0x0,2 +np.float32,0x3f5f438c,0x3fea491d,2 +np.float32,0x3f2afae9,0x3fcb5c1f,2 +np.float32,0xbef8e766,0x3f36c448,2 +np.float32,0xba522c00,0x3f7fdb97,2 +np.float32,0xff18ee8c,0x0,2 +np.float32,0xbee8c5f4,0x3f3acd44,2 +np.float32,0x3e790448,0x3f97802c,2 +np.float32,0x3e8c9541,0x3f9ad571,2 +np.float32,0xbf03fa9f,0x3f331460,2 +np.float32,0x801ee053,0x3f800000,2 +np.float32,0xbf773230,0x3f03167f,2 +np.float32,0x356fd9,0x3f800000,2 +np.float32,0x8009cd88,0x3f800000,2 +np.float32,0x7f2bac51,0x7f800000,2 +np.float32,0x4d9eeb,0x3f800000,2 +np.float32,0x3133,0x3f800000,2 +np.float32,0x7f4290e0,0x7f800000,2 +np.float32,0xbf5e6523,0x3f0c3161,2 +np.float32,0x3f19182e,0x3fc1bf10,2 +np.float32,0x7e1248bb,0x7f800000,2 +np.float32,0xff5f7aae,0x0,2 +np.float32,0x7e8557b5,0x7f800000,2 +np.float32,0x26fc7f,0x3f800000,2 +np.float32,0x80397d61,0x3f800000,2 +np.float32,0x3cb1825d,0x3f81efe0,2 +np.float32,0x3ed808d0,0x3fab7c45,2 +np.float32,0xbf6f668a,0x3f05e259,2 +np.float32,0x3e3c7802,0x3f916abd,2 +np.float32,0xbd5ac5a0,0x3f76b21b,2 +np.float32,0x805aa6c9,0x3f800000,2 +np.float32,0xbe4d6f68,0x3f5ec3e1,2 +np.float32,0x3f3108b2,0x3fceb87f,2 +np.float32,0x3ec385cc,0x3fa6c9fb,2 +np.float32,0xbe9fc1ce,0x3f4e35e8,2 +np.float32,0x43b68,0x3f800000,2 +np.float32,0x3ef0cdcc,0x3fb15557,2 +np.float32,0x3e3f729b,0x3f91b5e1,2 +np.float32,0x7f52a4df,0x7f800000,2 +np.float32,0xbf56da96,0x3f0f15b9,2 +np.float32,0xbf161d2b,0x3f2a7faf,2 +np.float32,0x3e8df763,0x3f9b1fbe,2 +np.float32,0xff4f0780,0x0,2 +np.float32,0x8048f594,0x3f800000,2 +np.float32,0x3e62bb1d,0x3f953b7e,2 +np.float32,0xfe58e764,0x0,2 +np.float32,0x3dd2c922,0x3f897718,2 +np.float32,0x7fa00000,0x7fe00000,2 +np.float32,0xff07b4b2,0x0,2 +np.float32,0x7f6231a0,0x7f800000,2 +np.float32,0xb8d1d,0x3f800000,2 +np.float32,0x3ee01d24,0x3fad5f16,2 +np.float32,0xbf43f59f,0x3f169869,2 +np.float32,0x801f5257,0x3f800000,2 +np.float32,0x803c15d8,0x3f800000,2 +np.float32,0x3f171a08,0x3fc0b42a,2 +np.float32,0x127aef,0x3f800000,2 +np.float32,0xfd1c6,0x3f800000,2 +np.float32,0x3f1ed13e,0x3fc4c59a,2 +np.float32,0x57fd4f,0x3f800000,2 +np.float32,0x6e8c61,0x3f800000,2 +np.float32,0x804019ab,0x3f800000,2 +np.float32,0x3ef4e5c6,0x3fb251a1,2 +np.float32,0x5044c3,0x3f800000,2 +np.float32,0x3f04460f,0x3fb7204b,2 +np.float32,0x7e326b47,0x7f800000,2 +np.float32,0x800a7e4c,0x3f800000,2 +np.float32,0xbf47ec82,0x3f14fccc,2 +np.float32,0xbedb1b3e,0x3f3e4a4d,2 +np.float32,0x3f741d86,0x3ff7e4b0,2 +np.float32,0xbe249d20,0x3f6501a6,2 +np.float32,0xbf2ea152,0x3f1f8c68,2 +np.float32,0x3ec6dbcc,0x3fa78b3f,2 +np.float32,0x7ebd9bb4,0x7f800000,2 +np.float32,0x3f61b574,0x3febd77a,2 +np.float32,0x3f3dfb2b,0x3fd61891,2 +np.float32,0x3c7d95,0x3f800000,2 +np.float32,0x8071e840,0x3f800000,2 +np.float32,0x15c6fe,0x3f800000,2 +np.float32,0xbf096601,0x3f307893,2 +np.float32,0x7f5c2ef9,0x7f800000,2 +np.float32,0xbe79f750,0x3f582689,2 +np.float32,0x1eb692,0x3f800000,2 +np.float32,0xbd8024f0,0x3f75226d,2 +np.float32,0xbf5a8be8,0x3f0da950,2 +np.float32,0xbf4d28f3,0x3f12e3e1,2 +np.float32,0x7f800000,0x7f800000,2 +np.float32,0xfea8a758,0x0,2 +np.float32,0x8075d2cf,0x3f800000,2 +np.float32,0xfd99af58,0x0,2 +np.float32,0x9e6a,0x3f800000,2 +np.float32,0x2fa19f,0x3f800000,2 +np.float32,0x3e9f4206,0x3f9ecc56,2 +np.float32,0xbee0b666,0x3f3cd9fc,2 +np.float32,0xbec558c4,0x3f43fab1,2 +np.float32,0x7e9a77df,0x7f800000,2 +np.float32,0xff3a9694,0x0,2 +np.float32,0x3f3b3708,0x3fd47f9a,2 +np.float32,0x807cd6d4,0x3f800000,2 +np.float32,0x804aa422,0x3f800000,2 +np.float32,0xfead7a70,0x0,2 +np.float32,0x3f08c610,0x3fb95efe,2 +np.float32,0xff390126,0x0,2 +np.float32,0x5d2d47,0x3f800000,2 +np.float32,0x8006849c,0x3f800000,2 +np.float32,0x654f6e,0x3f800000,2 +np.float32,0xff478a16,0x0,2 +np.float32,0x3f480b0c,0x3fdc024c,2 +np.float32,0xbc3b96c0,0x3f7df9f4,2 +np.float32,0xbcc96460,0x3f7bacb5,2 +np.float32,0x7f349f30,0x7f800000,2 +np.float32,0xbe08fa98,0x3f6954a1,2 +np.float32,0x4f3a13,0x3f800000,2 +np.float32,0x7f6a5ab4,0x7f800000,2 +np.float32,0x7eb85247,0x7f800000,2 +np.float32,0xbf287246,0x3f223e08,2 +np.float32,0x801584d0,0x3f800000,2 +np.float32,0x7ec25371,0x7f800000,2 +np.float32,0x3f002165,0x3fb51552,2 +np.float32,0x3e1108a8,0x3f8d3429,2 +np.float32,0x4f0f88,0x3f800000,2 +np.float32,0x7f67c1ce,0x7f800000,2 +np.float32,0xbf4348f8,0x3f16dedf,2 +np.float32,0xbe292b64,0x3f644d24,2 +np.float32,0xbf2bfa36,0x3f20b2d6,2 +np.float32,0xbf2a6e58,0x3f215f71,2 +np.float32,0x3e97d5d3,0x3f9d35df,2 +np.float32,0x31f597,0x3f800000,2 +np.float32,0x100544,0x3f800000,2 +np.float32,0x10a197,0x3f800000,2 +np.float32,0x3f44df50,0x3fda20d2,2 +np.float32,0x59916d,0x3f800000,2 +np.float32,0x707472,0x3f800000,2 +np.float32,0x8054194e,0x3f800000,2 +np.float32,0x80627b01,0x3f800000,2 +np.float32,0x7f4d5a5b,0x7f800000,2 +np.float32,0xbcecad00,0x3f7aeca5,2 +np.float32,0xff69c541,0x0,2 +np.float32,0xbe164e20,0x3f673c3a,2 +np.float32,0x3dd321de,0x3f897b39,2 +np.float32,0x3c9c4900,0x3f81b431,2 +np.float32,0x7f0efae3,0x7f800000,2 +np.float32,0xbf1b3ee6,0x3f282567,2 +np.float32,0x3ee858ac,0x3faf5083,2 +np.float32,0x3f0e6a39,0x3fbc3965,2 +np.float32,0x7f0c06d8,0x7f800000,2 +np.float32,0x801dd236,0x3f800000,2 +np.float32,0x564245,0x3f800000,2 +np.float32,0x7e99d3ad,0x7f800000,2 +np.float32,0xff3b0164,0x0,2 +np.float32,0x3f386f18,0x3fd2e785,2 +np.float32,0x7f603c39,0x7f800000,2 +np.float32,0x3cbd9b00,0x3f8211f0,2 +np.float32,0x2178e2,0x3f800000,2 +np.float32,0x5db226,0x3f800000,2 +np.float32,0xfec78d62,0x0,2 +np.float32,0x7f40bc1e,0x7f800000,2 +np.float32,0x80325064,0x3f800000,2 +np.float32,0x3f6068dc,0x3feb0377,2 +np.float32,0xfe8b95c6,0x0,2 +np.float32,0xbe496894,0x3f5f5f87,2 +np.float32,0xbf18722a,0x3f296cf4,2 +np.float32,0x332d0e,0x3f800000,2 +np.float32,0x3f6329dc,0x3fecc5c0,2 +np.float32,0x807d1802,0x3f800000,2 +np.float32,0x3e8afcee,0x3f9a7ff1,2 +np.float32,0x26a0a7,0x3f800000,2 +np.float32,0x7f13085d,0x7f800000,2 +np.float32,0x68d547,0x3f800000,2 +np.float32,0x7e9b04ae,0x7f800000,2 +np.float32,0x3f3ecdfe,0x3fd692ea,2 +np.float32,0x805256f4,0x3f800000,2 +np.float32,0x3f312dc8,0x3fcecd42,2 +np.float32,0x23ca15,0x3f800000,2 +np.float32,0x3f53c455,0x3fe31ad6,2 +np.float32,0xbf21186c,0x3f2580fd,2 +np.float32,0x803b9bb1,0x3f800000,2 +np.float32,0xff6ae1fc,0x0,2 +np.float32,0x2103cf,0x3f800000,2 +np.float32,0xbedcec6c,0x3f3dd29d,2 +np.float32,0x7f520afa,0x7f800000,2 +np.float32,0x7e8b44f2,0x7f800000,2 +np.float32,0xfef7f6ce,0x0,2 +np.float32,0xbd5e7c30,0x3f768a6f,2 +np.float32,0xfeb36848,0x0,2 +np.float32,0xff49effb,0x0,2 +np.float32,0xbec207c0,0x3f44dc74,2 +np.float32,0x3e91147f,0x3f9bc77f,2 +np.float32,0xfe784cd4,0x0,2 +np.float32,0xfd1a7250,0x0,2 +np.float32,0xff3b3f48,0x0,2 +np.float32,0x3f685db5,0x3ff0219f,2 +np.float32,0x3f370976,0x3fd21bae,2 +np.float32,0xfed4cc20,0x0,2 +np.float32,0xbf41e337,0x3f17714a,2 +np.float32,0xbf4e8638,0x3f12593a,2 +np.float32,0x3edaf0f1,0x3fac295e,2 +np.float32,0x803cbb4f,0x3f800000,2 +np.float32,0x7f492043,0x7f800000,2 +np.float32,0x2cabcf,0x3f800000,2 +np.float32,0x17f8ac,0x3f800000,2 +np.float32,0x3e846478,0x3f99205a,2 +np.float32,0x76948f,0x3f800000,2 +np.float32,0x1,0x3f800000,2 +np.float32,0x7ea6419e,0x7f800000,2 +np.float32,0xa5315,0x3f800000,2 +np.float32,0xff3a8e32,0x0,2 +np.float32,0xbe5714e8,0x3f5d50b7,2 +np.float32,0xfeadf960,0x0,2 +np.float32,0x3ebbd1a8,0x3fa50efc,2 +np.float32,0x7f31dce7,0x7f800000,2 +np.float32,0x80314999,0x3f800000,2 +np.float32,0x8017f41b,0x3f800000,2 +np.float32,0x7ed6d051,0x7f800000,2 +np.float32,0x7f525688,0x7f800000,2 +np.float32,0x7f7fffff,0x7f800000,2 +np.float32,0x3e8b0461,0x3f9a8180,2 +np.float32,0x3d9fe46e,0x3f871e1f,2 +np.float32,0x5e6d8f,0x3f800000,2 +np.float32,0xbf09ae55,0x3f305608,2 +np.float32,0xfe7028c4,0x0,2 +np.float32,0x7f3ade56,0x7f800000,2 +np.float32,0xff4c9ef9,0x0,2 +np.float32,0x7e3199cf,0x7f800000,2 +np.float32,0x8048652f,0x3f800000,2 +np.float32,0x805e1237,0x3f800000,2 +np.float32,0x189ed8,0x3f800000,2 +np.float32,0xbea7c094,0x3f4bfd98,2 +np.float32,0xbf2f109c,0x3f1f5c5c,2 +np.float32,0xbf0e7f4c,0x3f2e0d2c,2 +np.float32,0x8005981f,0x3f800000,2 +np.float32,0xbf762005,0x3f0377f3,2 +np.float32,0xbf0f60ab,0x3f2da317,2 +np.float32,0xbf4aa3e7,0x3f13e54e,2 +np.float32,0xbf348fd2,0x3f1d01aa,2 +np.float32,0x3e530b50,0x3f93a7fb,2 +np.float32,0xbf0b05a4,0x3f2fb26a,2 +np.float32,0x3eea416c,0x3fafc4aa,2 +np.float32,0x805ad04d,0x3f800000,2 +np.float32,0xbf6328d8,0x3f0a655e,2 +np.float32,0x3f7347b9,0x3ff75558,2 +np.float32,0xfda3ca68,0x0,2 +np.float32,0x80497d21,0x3f800000,2 +np.float32,0x3e740452,0x3f96fd22,2 +np.float32,0x3e528e57,0x3f939b7e,2 +np.float32,0x3e9e19fa,0x3f9e8cbd,2 +np.float32,0x8078060b,0x3f800000,2 +np.float32,0x3f3fea7a,0x3fd73872,2 +np.float32,0xfcfa30a0,0x0,2 +np.float32,0x7f4eb4bf,0x7f800000,2 +np.float32,0x3f712618,0x3ff5e900,2 +np.float32,0xbf668f0e,0x3f0920c6,2 +np.float32,0x3f3001e9,0x3fce259d,2 +np.float32,0xbe9b6fac,0x3f4f6b9c,2 +np.float32,0xbf61fcf3,0x3f0ad5ec,2 +np.float32,0xff08a55c,0x0,2 +np.float32,0x3e805014,0x3f984872,2 +np.float32,0x6ce04c,0x3f800000,2 +np.float32,0x7f7cbc07,0x7f800000,2 +np.float32,0x3c87dc,0x3f800000,2 +np.float32,0x3f2ee498,0x3fcd869a,2 +np.float32,0x4b1116,0x3f800000,2 +np.float32,0x3d382d06,0x3f840d5f,2 +np.float32,0xff7de21e,0x0,2 +np.float32,0x3f2f1d6d,0x3fcda63c,2 +np.float32,0xbf1c1618,0x3f27c38a,2 +np.float32,0xff4264b1,0x0,2 +np.float32,0x8026e5e7,0x3f800000,2 +np.float32,0xbe6fa180,0x3f59ab02,2 +np.float32,0xbe923c02,0x3f52053b,2 +np.float32,0xff3aa453,0x0,2 +np.float32,0x3f77a7ac,0x3ffa47d0,2 +np.float32,0xbed15f36,0x3f40d08a,2 +np.float32,0xa62d,0x3f800000,2 +np.float32,0xbf342038,0x3f1d3123,2 +np.float32,0x7f2f7f80,0x7f800000,2 +np.float32,0x7f2b6fc1,0x7f800000,2 +np.float32,0xff323540,0x0,2 +np.float32,0x3f1a2b6e,0x3fc24faa,2 +np.float32,0x800cc1d2,0x3f800000,2 +np.float32,0xff38fa01,0x0,2 +np.float32,0x80800000,0x3f800000,2 +np.float32,0xbf3d22e0,0x3f196745,2 +np.float32,0x7f40fd62,0x7f800000,2 +np.float32,0x7e1785c7,0x7f800000,2 +np.float32,0x807408c4,0x3f800000,2 +np.float32,0xbf300192,0x3f1ef485,2 +np.float32,0x351e3d,0x3f800000,2 +np.float32,0x7f5ab736,0x7f800000,2 +np.float32,0x2f1696,0x3f800000,2 +np.float32,0x806ac5d7,0x3f800000,2 +np.float32,0x42ec59,0x3f800000,2 +np.float32,0x7f79f52d,0x7f800000,2 +np.float32,0x44ad28,0x3f800000,2 +np.float32,0xbf49dc9c,0x3f143532,2 +np.float32,0x3f6c1f1f,0x3ff295e7,2 +np.float32,0x1589b3,0x3f800000,2 +np.float32,0x3f49b44e,0x3fdd0031,2 +np.float32,0x7f5942c9,0x7f800000,2 +np.float32,0x3f2dab28,0x3fccd877,2 +np.float32,0xff7fffff,0x0,2 +np.float32,0x80578eb2,0x3f800000,2 +np.float32,0x3f39ba67,0x3fd3a50b,2 +np.float32,0x8020340d,0x3f800000,2 +np.float32,0xbf6025b2,0x3f0b8783,2 +np.float32,0x8015ccfe,0x3f800000,2 +np.float32,0x3f6b9762,0x3ff23cd0,2 +np.float32,0xfeeb0c86,0x0,2 +np.float32,0x802779bc,0x3f800000,2 +np.float32,0xbf32bf64,0x3f1dc796,2 +np.float32,0xbf577eb6,0x3f0ed631,2 +np.float32,0x0,0x3f800000,2 +np.float32,0xfe99de6c,0x0,2 +np.float32,0x7a4e53,0x3f800000,2 +np.float32,0x1a15d3,0x3f800000,2 +np.float32,0x8035fe16,0x3f800000,2 +np.float32,0x3e845784,0x3f991dab,2 +np.float32,0x43d688,0x3f800000,2 +np.float32,0xbd447cc0,0x3f77a0b7,2 +np.float32,0x3f83fa,0x3f800000,2 +np.float32,0x3f141df2,0x3fbf2719,2 +np.float32,0x805c586a,0x3f800000,2 +np.float32,0x14c47e,0x3f800000,2 +np.float32,0x3d3bed00,0x3f8422d4,2 +np.float32,0x7f6f4ecd,0x7f800000,2 +np.float32,0x3f0a5e5a,0x3fba2c5c,2 +np.float32,0x523ecf,0x3f800000,2 +np.float32,0xbef4a6e8,0x3f37d262,2 +np.float32,0xff54eb58,0x0,2 +np.float32,0xff3fc875,0x0,2 +np.float32,0x8067c392,0x3f800000,2 +np.float32,0xfedae910,0x0,2 +np.float32,0x80595979,0x3f800000,2 +np.float32,0x3ee87d1d,0x3faf5929,2 +np.float32,0x7f5bad33,0x7f800000,2 +np.float32,0xbf45b868,0x3f15e109,2 +np.float32,0x3ef2277d,0x3fb1a868,2 +np.float32,0x3ca5a950,0x3f81ce8c,2 +np.float32,0x3e70f4e6,0x3f96ad25,2 +np.float32,0xfe3515bc,0x0,2 +np.float32,0xfe4af088,0x0,2 +np.float32,0xff3c78b2,0x0,2 +np.float32,0x7f50f51a,0x7f800000,2 +np.float32,0x3e3a232a,0x3f913009,2 +np.float32,0x7dfec6ff,0x7f800000,2 +np.float32,0x3e1bbaec,0x3f8e3ad6,2 +np.float32,0xbd658fa0,0x3f763ee7,2 +np.float32,0xfe958684,0x0,2 +np.float32,0x503670,0x3f800000,2 +np.float32,0x3f800000,0x40000000,2 +np.float32,0x1bbec6,0x3f800000,2 +np.float32,0xbea7bb7c,0x3f4bff00,2 +np.float32,0xff3a24a2,0x0,2 +np.float32,0xbf416240,0x3f17a635,2 +np.float32,0xbf800000,0x3f000000,2 +np.float32,0xff0c965c,0x0,2 +np.float32,0x80000000,0x3f800000,2 +np.float32,0xbec2c69a,0x3f44a99e,2 +np.float32,0x5b68d4,0x3f800000,2 +np.float32,0xb9a93000,0x3f7ff158,2 +np.float32,0x3d5a0dd8,0x3f84cfbc,2 +np.float32,0xbeaf7a28,0x3f49de4e,2 +np.float32,0x3ee83555,0x3faf4820,2 +np.float32,0xfd320330,0x0,2 +np.float32,0xe1af2,0x3f800000,2 +np.float32,0x7cf28caf,0x7f800000,2 +np.float32,0x80781009,0x3f800000,2 +np.float32,0xbf1e0baf,0x3f26e04d,2 +np.float32,0x7edb05b1,0x7f800000,2 +np.float32,0x3de004,0x3f800000,2 +np.float32,0xff436af6,0x0,2 +np.float32,0x802a9408,0x3f800000,2 +np.float32,0x7ed82205,0x7f800000,2 +np.float32,0x3e3f8212,0x3f91b767,2 +np.float32,0x16a2b2,0x3f800000,2 +np.float32,0xff1e5af3,0x0,2 +np.float32,0xbf1c860c,0x3f2790b7,2 +np.float32,0x3f3bc5da,0x3fd4d1d6,2 +np.float32,0x7f5f7085,0x7f800000,2 +np.float32,0x7f68e409,0x7f800000,2 +np.float32,0x7f4b3388,0x7f800000,2 +np.float32,0x7ecaf440,0x7f800000,2 +np.float32,0x80078785,0x3f800000,2 +np.float32,0x3ebd800d,0x3fa56f45,2 +np.float32,0xbe39a140,0x3f61c58e,2 +np.float32,0x803b587e,0x3f800000,2 +np.float32,0xbeaaa418,0x3f4b31c4,2 +np.float32,0xff7e2b9f,0x0,2 +np.float32,0xff5180a3,0x0,2 +np.float32,0xbf291394,0x3f21f73c,2 +np.float32,0x7f7b9698,0x7f800000,2 +np.float32,0x4218da,0x3f800000,2 +np.float32,0x7f135262,0x7f800000,2 +np.float32,0x804c10e8,0x3f800000,2 +np.float32,0xbf1c2a54,0x3f27ba5a,2 +np.float32,0x7f41fd32,0x7f800000,2 +np.float32,0x3e5cc464,0x3f94a195,2 +np.float32,0xff7a2fa7,0x0,2 +np.float32,0x3e05dc30,0x3f8c23c9,2 +np.float32,0x7f206d99,0x7f800000,2 +np.float32,0xbe9ae520,0x3f4f9287,2 +np.float32,0xfe4f4d58,0x0,2 +np.float32,0xbf44db42,0x3f163ae3,2 +np.float32,0x3f65ac48,0x3fee6300,2 +np.float32,0x3ebfaf36,0x3fa5ecb0,2 +np.float32,0x3f466719,0x3fdb08b0,2 +np.float32,0x80000001,0x3f800000,2 +np.float32,0xff4b3c7b,0x0,2 +np.float32,0x3df44374,0x3f8b0819,2 +np.float32,0xfea4b540,0x0,2 +np.float32,0x7f358e3d,0x7f800000,2 +np.float32,0x801f5e63,0x3f800000,2 +np.float32,0x804ae77e,0x3f800000,2 +np.float32,0xdbb5,0x3f800000,2 +np.float32,0x7f0a7e3b,0x7f800000,2 +np.float32,0xbe4152e4,0x3f609953,2 +np.float32,0x4b9579,0x3f800000,2 +np.float32,0x3ece0bd4,0x3fa92ea5,2 +np.float32,0x7e499d9a,0x7f800000,2 +np.float32,0x80637d8a,0x3f800000,2 +np.float32,0x3e50a425,0x3f936a8b,2 +np.float32,0xbf0e8cb0,0x3f2e06dd,2 +np.float32,0x802763e2,0x3f800000,2 +np.float32,0xff73041b,0x0,2 +np.float32,0xfea466da,0x0,2 +np.float32,0x80064c73,0x3f800000,2 +np.float32,0xbef29222,0x3f385728,2 +np.float32,0x8029c215,0x3f800000,2 +np.float32,0xbd3994e0,0x3f7815d1,2 +np.float32,0xbe6ac9e4,0x3f5a61f3,2 +np.float32,0x804b58b0,0x3f800000,2 +np.float32,0xbdb83be0,0x3f70865c,2 +np.float32,0x7ee18da2,0x7f800000,2 +np.float32,0xfd4ca010,0x0,2 +np.float32,0x807c668b,0x3f800000,2 +np.float32,0xbd40ed90,0x3f77c6e9,2 +np.float32,0x7efc6881,0x7f800000,2 +np.float32,0xfe633bfc,0x0,2 +np.float32,0x803ce363,0x3f800000,2 +np.float32,0x7ecba81e,0x7f800000,2 +np.float32,0xfdcb2378,0x0,2 +np.float32,0xbebc5524,0x3f4662b2,2 +np.float32,0xfaa30000,0x0,2 +np.float32,0x805d451b,0x3f800000,2 +np.float32,0xbee85600,0x3f3ae996,2 +np.float32,0xfefb0a54,0x0,2 +np.float32,0xbdfc6690,0x3f6b0a08,2 +np.float32,0x58a57,0x3f800000,2 +np.float32,0x3b41b7,0x3f800000,2 +np.float32,0x7c99812d,0x7f800000,2 +np.float32,0xbd3ae740,0x3f78079d,2 +np.float32,0xbf4a48a7,0x3f1409dd,2 +np.float32,0xfdeaad58,0x0,2 +np.float32,0xbe9aa65a,0x3f4fa42c,2 +np.float32,0x3f79d78c,0x3ffbc458,2 +np.float32,0x805e7389,0x3f800000,2 +np.float32,0x7ebb3612,0x7f800000,2 +np.float32,0x2e27dc,0x3f800000,2 +np.float32,0x80726dec,0x3f800000,2 +np.float32,0xfe8fb738,0x0,2 +np.float32,0xff1ff3bd,0x0,2 +np.float32,0x7f5264a2,0x7f800000,2 +np.float32,0x3f5a6893,0x3fe739ca,2 +np.float32,0xbec4029c,0x3f44558d,2 +np.float32,0xbef65cfa,0x3f37657e,2 +np.float32,0x63aba1,0x3f800000,2 +np.float32,0xfbb6e200,0x0,2 +np.float32,0xbf3466fc,0x3f1d1307,2 +np.float32,0x3f258844,0x3fc861d7,2 +np.float32,0xbf5f29a7,0x3f0be6dc,2 +np.float32,0x802b51cd,0x3f800000,2 +np.float32,0xbe9094dc,0x3f527dae,2 +np.float32,0xfec2e68c,0x0,2 +np.float32,0x807b38bd,0x3f800000,2 +np.float32,0xbf594662,0x3f0e2663,2 +np.float32,0x7cbcf747,0x7f800000,2 +np.float32,0xbe4b88f0,0x3f5f0d47,2 +np.float32,0x3c53c4,0x3f800000,2 +np.float32,0xbe883562,0x3f54e3f7,2 +np.float32,0xbf1efaf0,0x3f267456,2 +np.float32,0x3e22cd3e,0x3f8ee98b,2 +np.float32,0x80434875,0x3f800000,2 +np.float32,0xbf000b44,0x3f34ff6e,2 +np.float32,0x7f311c3a,0x7f800000,2 +np.float32,0x802f7f3f,0x3f800000,2 +np.float32,0x805155fe,0x3f800000,2 +np.float32,0x7f5d7485,0x7f800000,2 +np.float32,0x80119197,0x3f800000,2 +np.float32,0x3f445b8b,0x3fd9d30d,2 +np.float32,0xbf638eb3,0x3f0a3f38,2 +np.float32,0x402410,0x3f800000,2 +np.float32,0xbc578a40,0x3f7dad1d,2 +np.float32,0xbeecbf8a,0x3f39cc9e,2 +np.float32,0x7f2935a4,0x7f800000,2 +np.float32,0x3f570fea,0x3fe523e2,2 +np.float32,0xbf06bffa,0x3f31bdb6,2 +np.float32,0xbf2afdfd,0x3f2120ba,2 +np.float32,0x7f76f7ab,0x7f800000,2 +np.float32,0xfee2d1e8,0x0,2 +np.float32,0x800b026d,0x3f800000,2 +np.float32,0xff0eda75,0x0,2 +np.float32,0x3d4c,0x3f800000,2 +np.float32,0xbed538a2,0x3f3fcffb,2 +np.float32,0x3f73f4f9,0x3ff7c979,2 +np.float32,0x2aa9fc,0x3f800000,2 +np.float32,0x806a45b3,0x3f800000,2 +np.float32,0xff770d35,0x0,2 +np.float32,0x7e999be3,0x7f800000,2 +np.float32,0x80741128,0x3f800000,2 +np.float32,0xff6aac34,0x0,2 +np.float32,0x470f74,0x3f800000,2 +np.float32,0xff423b7b,0x0,2 +np.float32,0x17dfdd,0x3f800000,2 +np.float32,0x7f029e12,0x7f800000,2 +np.float32,0x803fcb9d,0x3f800000,2 +np.float32,0x3f3dc3,0x3f800000,2 +np.float32,0x7f3a27bc,0x7f800000,2 +np.float32,0x3e473108,0x3f9279ec,2 +np.float32,0x7f4add5d,0x7f800000,2 +np.float32,0xfd9736e0,0x0,2 +np.float32,0x805f1df2,0x3f800000,2 +np.float32,0x6c49c1,0x3f800000,2 +np.float32,0x7ec733c7,0x7f800000,2 +np.float32,0x804c1abf,0x3f800000,2 +np.float32,0x3de2e887,0x3f8a37a5,2 +np.float32,0x3f51630a,0x3fe1a561,2 +np.float32,0x3de686a8,0x3f8a62ff,2 +np.float32,0xbedb3538,0x3f3e439c,2 +np.float32,0xbf3aa892,0x3f1a6f9e,2 +np.float32,0x7ee5fb32,0x7f800000,2 +np.float32,0x7e916c9b,0x7f800000,2 +np.float32,0x3f033f1c,0x3fb69e19,2 +np.float32,0x25324b,0x3f800000,2 +np.float32,0x3f348d1d,0x3fd0b2e2,2 +np.float32,0x3f5797e8,0x3fe57851,2 +np.float32,0xbf69c316,0x3f07f1a0,2 +np.float32,0xbe8b7fb0,0x3f53f1bf,2 +np.float32,0xbdbbc190,0x3f703d00,2 +np.float32,0xff6c4fc0,0x0,2 +np.float32,0x7f29fcbe,0x7f800000,2 +np.float32,0x3f678d19,0x3fef9a23,2 +np.float32,0x73d140,0x3f800000,2 +np.float32,0x3e25bdd2,0x3f8f326b,2 +np.float32,0xbeb775ec,0x3f47b2c6,2 +np.float32,0xff451c4d,0x0,2 +np.float32,0x8072c466,0x3f800000,2 +np.float32,0x3f65e836,0x3fee89b2,2 +np.float32,0x52ca7a,0x3f800000,2 +np.float32,0x62cfed,0x3f800000,2 +np.float32,0xbf583dd0,0x3f0e8c5c,2 +np.float32,0xbf683842,0x3f088342,2 +np.float32,0x3f1a7828,0x3fc2780c,2 +np.float32,0x800ea979,0x3f800000,2 +np.float32,0xbeb9133c,0x3f474328,2 +np.float32,0x3ef09fc7,0x3fb14a4b,2 +np.float32,0x7ebbcb75,0x7f800000,2 +np.float32,0xff316c0e,0x0,2 +np.float32,0x805b84e3,0x3f800000,2 +np.float32,0x3d6a55e0,0x3f852d8a,2 +np.float32,0x3e755788,0x3f971fd1,2 +np.float32,0x3ee7aacb,0x3faf2743,2 +np.float32,0x7f714039,0x7f800000,2 +np.float32,0xff70bad8,0x0,2 +np.float32,0xbe0b74c8,0x3f68f08c,2 +np.float32,0xbf6cb170,0x3f06de86,2 +np.float32,0x7ec1fbff,0x7f800000,2 +np.float32,0x8014b1f6,0x3f800000,2 +np.float32,0xfe8b45fe,0x0,2 +np.float32,0x6e2220,0x3f800000,2 +np.float32,0x3ed1777d,0x3fa9f7ab,2 +np.float32,0xff48e467,0x0,2 +np.float32,0xff76c5aa,0x0,2 +np.float32,0x3e9bd330,0x3f9e0fd7,2 +np.float32,0x3f17de4f,0x3fc11aae,2 +np.float32,0x7eeaa2fd,0x7f800000,2 +np.float32,0xbf572746,0x3f0ef806,2 +np.float32,0x7e235554,0x7f800000,2 +np.float32,0xfe24fc1c,0x0,2 +np.float32,0x7daf71ad,0x7f800000,2 +np.float32,0x800d4a6b,0x3f800000,2 +np.float32,0xbf6fc31d,0x3f05c0ce,2 +np.float32,0x1c4d93,0x3f800000,2 +np.float32,0x7ee9200c,0x7f800000,2 +np.float32,0x3f54b4da,0x3fe3aeec,2 +np.float32,0x2b37b1,0x3f800000,2 +np.float32,0x3f7468bd,0x3ff81731,2 +np.float32,0x3f2850ea,0x3fc9e5f4,2 +np.float32,0xbe0d47ac,0x3f68a6f9,2 +np.float32,0x314877,0x3f800000,2 +np.float32,0x802700c3,0x3f800000,2 +np.float32,0x7e2c915f,0x7f800000,2 +np.float32,0x800d0059,0x3f800000,2 +np.float32,0x3f7f3c25,0x3fff7862,2 +np.float32,0xff735d31,0x0,2 +np.float32,0xff7e339e,0x0,2 +np.float32,0xbef96cf0,0x3f36a340,2 +np.float32,0x3db6ea21,0x3f882cb2,2 +np.float32,0x67cb3d,0x3f800000,2 +np.float32,0x801f349d,0x3f800000,2 +np.float32,0x3f1390ec,0x3fbede29,2 +np.float32,0x7f13644a,0x7f800000,2 +np.float32,0x804a369b,0x3f800000,2 +np.float32,0x80262666,0x3f800000,2 +np.float32,0x7e850fbc,0x7f800000,2 +np.float32,0x18b002,0x3f800000,2 +np.float32,0x8051f1ed,0x3f800000,2 +np.float32,0x3eba48f6,0x3fa4b753,2 +np.float32,0xbf3f4130,0x3f1886a9,2 +np.float32,0xbedac006,0x3f3e61cf,2 +np.float32,0xbf097c70,0x3f306ddc,2 +np.float32,0x4aba6d,0x3f800000,2 +np.float32,0x580078,0x3f800000,2 +np.float32,0x3f64d82e,0x3fedda40,2 +np.float32,0x7f781fd6,0x7f800000,2 +np.float32,0x6aff3d,0x3f800000,2 +np.float32,0xff25e074,0x0,2 +np.float32,0x7ea9ec89,0x7f800000,2 +np.float32,0xbf63b816,0x3f0a2fbb,2 +np.float32,0x133f07,0x3f800000,2 +np.float32,0xff800000,0x0,2 +np.float32,0x8013dde7,0x3f800000,2 +np.float32,0xff770b95,0x0,2 +np.float32,0x806154e8,0x3f800000,2 +np.float32,0x3f1e7bce,0x3fc4981a,2 +np.float32,0xff262c78,0x0,2 +np.float32,0x3f59a652,0x3fe6c04c,2 +np.float32,0x7f220166,0x7f800000,2 +np.float32,0x7eb24939,0x7f800000,2 +np.float32,0xbed58bb0,0x3f3fba6a,2 +np.float32,0x3c2ad000,0x3f80eda7,2 +np.float32,0x2adb2e,0x3f800000,2 +np.float32,0xfe8b213e,0x0,2 +np.float32,0xbf2e0c1e,0x3f1fccea,2 +np.float32,0x7e1716be,0x7f800000,2 +np.float32,0x80184e73,0x3f800000,2 +np.float32,0xbf254743,0x3f23a3d5,2 +np.float32,0x8063a722,0x3f800000,2 +np.float32,0xbe50adf0,0x3f5e46c7,2 +np.float32,0x3f614158,0x3feb8d60,2 +np.float32,0x8014bbc8,0x3f800000,2 +np.float32,0x283bc7,0x3f800000,2 +np.float32,0x3ffb5c,0x3f800000,2 +np.float32,0xfe8de6bc,0x0,2 +np.float32,0xbea6e086,0x3f4c3b82,2 +np.float32,0xfee64b92,0x0,2 +np.float32,0x506c1a,0x3f800000,2 +np.float32,0xff342af8,0x0,2 +np.float32,0x6b6f4c,0x3f800000,2 +np.float32,0xfeb42b1e,0x0,2 +np.float32,0x3e49384a,0x3f92ad71,2 +np.float32,0x152d08,0x3f800000,2 +np.float32,0x804c8f09,0x3f800000,2 +np.float32,0xff5e927d,0x0,2 +np.float32,0x6374da,0x3f800000,2 +np.float32,0x3f48f011,0x3fdc8ae4,2 +np.float32,0xbf446a30,0x3f1668e8,2 +np.float32,0x3ee77073,0x3faf196e,2 +np.float32,0xff4caa40,0x0,2 +np.float32,0x7efc9363,0x7f800000,2 +np.float32,0xbf706dcc,0x3f05830d,2 +np.float32,0xfe29c7e8,0x0,2 +np.float32,0x803cfe58,0x3f800000,2 +np.float32,0x3ec34c7c,0x3fa6bd0a,2 +np.float32,0x3eb85b62,0x3fa44968,2 +np.float32,0xfda1b9d8,0x0,2 +np.float32,0x802932cd,0x3f800000,2 +np.float32,0xbf5cde78,0x3f0cc5fa,2 +np.float32,0x3f31bf44,0x3fcf1ec8,2 +np.float32,0x803a0882,0x3f800000,2 +np.float32,0x800000,0x3f800000,2 +np.float32,0x3f54110e,0x3fe34a08,2 +np.float32,0x80645ea9,0x3f800000,2 +np.float32,0xbd8c1070,0x3f7425c3,2 +np.float32,0x801a006a,0x3f800000,2 +np.float32,0x7f5d161e,0x7f800000,2 +np.float32,0x805b5df3,0x3f800000,2 +np.float32,0xbf71a7c0,0x3f0511be,2 +np.float32,0xbe9a55c0,0x3f4fbad6,2 +np.float64,0xde7e2fd9bcfc6,0x3ff0000000000000,1 +np.float64,0xbfd8cd88eb319b12,0x3fe876349efbfa2b,1 +np.float64,0x3fe4fa13ace9f428,0x3ff933fbb117d196,1 +np.float64,0x475b3d048eb68,0x3ff0000000000000,1 +np.float64,0x7fef39ed07be73d9,0x7ff0000000000000,1 +np.float64,0x80026b84d904d70a,0x3ff0000000000000,1 +np.float64,0xebd60627d7ac1,0x3ff0000000000000,1 +np.float64,0xbfd7cbefdbaf97e0,0x3fe8bad30f6cf8e1,1 +np.float64,0x7fc17c605a22f8c0,0x7ff0000000000000,1 +np.float64,0x8cdac05119b58,0x3ff0000000000000,1 +np.float64,0x3fc45cd60a28b9ac,0x3ff1dd8028ec3f41,1 +np.float64,0x7fef4fce137e9f9b,0x7ff0000000000000,1 +np.float64,0xe5a2b819cb457,0x3ff0000000000000,1 +np.float64,0xe3bcfd4dc77a0,0x3ff0000000000000,1 +np.float64,0x68f0b670d1e17,0x3ff0000000000000,1 +np.float64,0xae69a6455cd35,0x3ff0000000000000,1 +np.float64,0xffe7007a0c6e00f4,0x0,1 +np.float64,0x59fc57a8b3f8c,0x3ff0000000000000,1 +np.float64,0xbfeee429c0bdc854,0x3fe0638fa62bed9f,1 +np.float64,0x80030bb6e206176f,0x3ff0000000000000,1 +np.float64,0x8006967a36ad2cf5,0x3ff0000000000000,1 +np.float64,0x3fe128176a22502f,0x3ff73393301e5dc8,1 +np.float64,0x218de20c431bd,0x3ff0000000000000,1 +np.float64,0x3fe7dbc48aafb789,0x3ffad38989b5955c,1 +np.float64,0xffda1ef411343de8,0x0,1 +np.float64,0xc6b392838d673,0x3ff0000000000000,1 +np.float64,0x7fe6d080c1ada101,0x7ff0000000000000,1 +np.float64,0xbfed36dd67fa6dbb,0x3fe0fec342c4ee89,1 +np.float64,0x3fee2bb6a3fc576e,0x3ffec1c149f1f092,1 +np.float64,0xbfd1f785eb23ef0c,0x3fea576eb01233cb,1 +np.float64,0x7fdad29a1f35a533,0x7ff0000000000000,1 +np.float64,0xffe8928c4fb12518,0x0,1 +np.float64,0x7fb123160022462b,0x7ff0000000000000,1 +np.float64,0x8007ab56cfaf56ae,0x3ff0000000000000,1 +np.float64,0x7fda342d6634685a,0x7ff0000000000000,1 +np.float64,0xbfe3b7e42c676fc8,0x3fe4e05cf8685b8a,1 +np.float64,0xffa708be7c2e1180,0x0,1 +np.float64,0xbfe8ffbece31ff7e,0x3fe29eb84077a34a,1 +np.float64,0xbf91002008220040,0x3fefa245058f05cb,1 +np.float64,0x8000281f0ee0503f,0x3ff0000000000000,1 +np.float64,0x8005617adc2ac2f6,0x3ff0000000000000,1 +np.float64,0x7fa84fec60309fd8,0x7ff0000000000000,1 +np.float64,0x8d00c0231a018,0x3ff0000000000000,1 +np.float64,0xbfdfe52ca63fca5a,0x3fe6a7324cc00d57,1 +np.float64,0x7fcc81073d39020d,0x7ff0000000000000,1 +np.float64,0x800134ff5a6269ff,0x3ff0000000000000,1 +np.float64,0xffc7fff98d2ffff4,0x0,1 +np.float64,0x8000925ce50124bb,0x3ff0000000000000,1 +np.float64,0xffe2530c66a4a618,0x0,1 +np.float64,0x7fc99070673320e0,0x7ff0000000000000,1 +np.float64,0xbfddd5c1f13bab84,0x3fe72a0c80f8df39,1 +np.float64,0x3fe1c220fee38442,0x3ff7817ec66aa55b,1 +np.float64,0x3fb9a1e1043343c2,0x3ff1265e575e6404,1 +np.float64,0xffef72e0833ee5c0,0x0,1 +np.float64,0x3fe710c0416e2181,0x3ffa5e93588aaa69,1 +np.float64,0xbfd8d23cbab1a47a,0x3fe874f5b9d99885,1 +np.float64,0x7fe9628ebd72c51c,0x7ff0000000000000,1 +np.float64,0xdd5fa611babf5,0x3ff0000000000000,1 +np.float64,0x8002bafac86575f6,0x3ff0000000000000,1 +np.float64,0x68acea44d159e,0x3ff0000000000000,1 +np.float64,0xffd776695eaeecd2,0x0,1 +np.float64,0x80059b59bb4b36b4,0x3ff0000000000000,1 +np.float64,0xbdcdd2af7b9bb,0x3ff0000000000000,1 +np.float64,0x8002b432ee856867,0x3ff0000000000000,1 +np.float64,0xcbc72f09978e6,0x3ff0000000000000,1 +np.float64,0xbfee8f4bf6fd1e98,0x3fe081cc0318b170,1 +np.float64,0xffc6e2892d2dc514,0x0,1 +np.float64,0x7feb682e4db6d05c,0x7ff0000000000000,1 +np.float64,0x8004b70a04296e15,0x3ff0000000000000,1 +np.float64,0x42408a4284812,0x3ff0000000000000,1 +np.float64,0xbfe9b8b197f37163,0x3fe254b4c003ce0a,1 +np.float64,0x3fcaadf5f5355bec,0x3ff27ca7876a8d20,1 +np.float64,0xfff0000000000000,0x0,1 +np.float64,0x7fea8376d33506ed,0x7ff0000000000000,1 +np.float64,0xffef73c2d63ee785,0x0,1 +np.float64,0xffe68b2bae2d1657,0x0,1 +np.float64,0x3fd8339cb2306739,0x3ff4cb774d616f90,1 +np.float64,0xbfc6d1db4d2da3b8,0x3fec47bb873a309c,1 +np.float64,0x7fe858016230b002,0x7ff0000000000000,1 +np.float64,0x7fe74cb99d2e9972,0x7ff0000000000000,1 +np.float64,0xffec2e96dc385d2d,0x0,1 +np.float64,0xb762a9876ec55,0x3ff0000000000000,1 +np.float64,0x3feca230c5794462,0x3ffdbfe62a572f52,1 +np.float64,0xbfb5ebad3a2bd758,0x3fee27eed86dcc39,1 +np.float64,0x471c705a8e38f,0x3ff0000000000000,1 +np.float64,0x7fc79bb5cf2f376b,0x7ff0000000000000,1 +np.float64,0xbfe53d6164ea7ac3,0x3fe4331b3beb73bd,1 +np.float64,0xbfe375a3f766eb48,0x3fe4fe67edb516e6,1 +np.float64,0x3fe1c7686ca38ed1,0x3ff7842f04770ba9,1 +np.float64,0x242e74dc485cf,0x3ff0000000000000,1 +np.float64,0x8009c06ab71380d6,0x3ff0000000000000,1 +np.float64,0x3fd08505efa10a0c,0x3ff3227b735b956d,1 +np.float64,0xffe3dfcecda7bf9d,0x0,1 +np.float64,0x8001f079bbc3e0f4,0x3ff0000000000000,1 +np.float64,0x3fddc706b6bb8e0c,0x3ff616d927987363,1 +np.float64,0xbfd151373ea2a26e,0x3fea870ba53ec126,1 +np.float64,0x7fe89533bfb12a66,0x7ff0000000000000,1 +np.float64,0xffed302cbc3a6059,0x0,1 +np.float64,0x3fd871cc28b0e398,0x3ff4d97d58c16ae2,1 +np.float64,0x7fbe9239683d2472,0x7ff0000000000000,1 +np.float64,0x848a445909149,0x3ff0000000000000,1 +np.float64,0x8007b104ce2f620a,0x3ff0000000000000,1 +np.float64,0x7fc2cd6259259ac4,0x7ff0000000000000,1 +np.float64,0xbfeadb640df5b6c8,0x3fe1e2b068de10af,1 +np.float64,0x800033b2f1a06767,0x3ff0000000000000,1 +np.float64,0x7fe54e5b7caa9cb6,0x7ff0000000000000,1 +np.float64,0x4f928f209f26,0x3ff0000000000000,1 +np.float64,0x8003c3dc6f2787ba,0x3ff0000000000000,1 +np.float64,0xbfd55a59daaab4b4,0x3fe9649d57b32b5d,1 +np.float64,0xffe3e2968d67c52c,0x0,1 +np.float64,0x80087434d550e86a,0x3ff0000000000000,1 +np.float64,0xffdde800083bd000,0x0,1 +np.float64,0xffe291f0542523e0,0x0,1 +np.float64,0xbfe1419bc3e28338,0x3fe6051d4f95a34a,1 +np.float64,0x3fd9d00ee1b3a01e,0x3ff5292bb8d5f753,1 +np.float64,0x3fdb720b60b6e417,0x3ff589d133625374,1 +np.float64,0xbfe3e21f0967c43e,0x3fe4cd4d02e3ef9a,1 +np.float64,0x7fd7e27f3dafc4fd,0x7ff0000000000000,1 +np.float64,0x3fd1cc2620a3984c,0x3ff366befbc38e3e,1 +np.float64,0x3fe78d05436f1a0b,0x3ffaa5ee4ea54b79,1 +np.float64,0x7e2acc84fc55a,0x3ff0000000000000,1 +np.float64,0x800ffb861c5ff70c,0x3ff0000000000000,1 +np.float64,0xffb2b0db1a2561b8,0x0,1 +np.float64,0xbfe80c2363701847,0x3fe301fdfe789576,1 +np.float64,0x7fe383c1c3e70783,0x7ff0000000000000,1 +np.float64,0xbfeefc02e6fdf806,0x3fe05b1a8528bf6c,1 +np.float64,0xbfe42c9268285925,0x3fe4abdc14793cb8,1 +np.float64,0x1,0x3ff0000000000000,1 +np.float64,0xa71c7ce94e390,0x3ff0000000000000,1 +np.float64,0x800ed4e6777da9cd,0x3ff0000000000000,1 +np.float64,0x3fde11b35d3c2367,0x3ff628bdc6dd1b78,1 +np.float64,0x3fef3964dbfe72ca,0x3fff777cae357608,1 +np.float64,0x3fefe369b7ffc6d4,0x3fffec357be508a3,1 +np.float64,0xbfdef1855f3de30a,0x3fe6e348c58e3fed,1 +np.float64,0x3fee0e2bc13c1c58,0x3ffeae1909c1b973,1 +np.float64,0xbfd31554ffa62aaa,0x3fea06628b2f048a,1 +np.float64,0x800dc56bcc7b8ad8,0x3ff0000000000000,1 +np.float64,0x7fbba01b8e374036,0x7ff0000000000000,1 +np.float64,0x7fd9737a92b2e6f4,0x7ff0000000000000,1 +np.float64,0x3feeae0fac3d5c1f,0x3fff1913705f1f07,1 +np.float64,0x3fdcc64fcdb98ca0,0x3ff5d9c3e5862972,1 +np.float64,0x3fdad9f83db5b3f0,0x3ff56674e81c1bd1,1 +np.float64,0x32b8797065710,0x3ff0000000000000,1 +np.float64,0x3fd20deae6241bd6,0x3ff37495bc057394,1 +np.float64,0x7fc899f0763133e0,0x7ff0000000000000,1 +np.float64,0x80045805fc08b00d,0x3ff0000000000000,1 +np.float64,0xbfcd8304cb3b0608,0x3feb4611f1eaa30c,1 +np.float64,0x3fd632a2fcac6544,0x3ff4592e1ea14fb0,1 +np.float64,0xffeeb066007d60cb,0x0,1 +np.float64,0x800bb12a42b76255,0x3ff0000000000000,1 +np.float64,0xbfe060fe1760c1fc,0x3fe6714640ab2574,1 +np.float64,0x80067ed737acfdaf,0x3ff0000000000000,1 +np.float64,0x3fd5ec3211abd864,0x3ff449adea82e73e,1 +np.float64,0x7fc4b2fdc22965fb,0x7ff0000000000000,1 +np.float64,0xff656afd002ad600,0x0,1 +np.float64,0xffeadefcdcb5bdf9,0x0,1 +np.float64,0x80052f18610a5e32,0x3ff0000000000000,1 +np.float64,0xbfd5b75c78ab6eb8,0x3fe94b15e0f39194,1 +np.float64,0xa4d3de2b49a7c,0x3ff0000000000000,1 +np.float64,0xbfe321c93de64392,0x3fe524ac7bbee401,1 +np.float64,0x3feb32f5def665ec,0x3ffcd6e4e5f9c271,1 +np.float64,0x7fe6b07e4ced60fc,0x7ff0000000000000,1 +np.float64,0x3fe013bb2de02776,0x3ff6aa4c32ab5ba4,1 +np.float64,0xbfeadd81d375bb04,0x3fe1e1de89b4aebf,1 +np.float64,0xffece7678079cece,0x0,1 +np.float64,0x3fe3d87b8467b0f8,0x3ff897cf22505e4d,1 +np.float64,0xffc4e3a05129c740,0x0,1 +np.float64,0xbfddee6b03bbdcd6,0x3fe723dd83ab49bd,1 +np.float64,0x3fcc4e2672389c4d,0x3ff2a680db769116,1 +np.float64,0x3fd8ed221ab1da44,0x3ff4f569aec8b850,1 +np.float64,0x80000a3538a0146b,0x3ff0000000000000,1 +np.float64,0x8004832eb109065e,0x3ff0000000000000,1 +np.float64,0xffdca83c60395078,0x0,1 +np.float64,0xffef551cda3eaa39,0x0,1 +np.float64,0x800fd95dd65fb2bc,0x3ff0000000000000,1 +np.float64,0x3ff0000000000000,0x4000000000000000,1 +np.float64,0xbfc06f5c4f20deb8,0x3fed466c17305ad8,1 +np.float64,0xbfeb01b5f476036c,0x3fe1d3de0f4211f4,1 +np.float64,0xbfdb2b9284365726,0x3fe7d7b02f790b05,1 +np.float64,0xff76ba83202d7500,0x0,1 +np.float64,0x3fd3f1c59ea7e38c,0x3ff3db96b3a0aaad,1 +np.float64,0x8b99ff6d17340,0x3ff0000000000000,1 +np.float64,0xbfeb383aa0f67075,0x3fe1bedcf2531c08,1 +np.float64,0x3fe321e35fa643c7,0x3ff83749a5d686ee,1 +np.float64,0xbfd863eb2130c7d6,0x3fe8923fcc39bac7,1 +np.float64,0x9e71dd333ce3c,0x3ff0000000000000,1 +np.float64,0x9542962b2a853,0x3ff0000000000000,1 +np.float64,0xba2c963b74593,0x3ff0000000000000,1 +np.float64,0x80019f4d0ca33e9b,0x3ff0000000000000,1 +np.float64,0xffde3e39a73c7c74,0x0,1 +np.float64,0x800258ae02c4b15d,0x3ff0000000000000,1 +np.float64,0xbfd99a535a3334a6,0x3fe8402f3a0662a5,1 +np.float64,0xe6c62143cd8c4,0x3ff0000000000000,1 +np.float64,0x7fbcc828f0399051,0x7ff0000000000000,1 +np.float64,0xbfe42e3596285c6b,0x3fe4ab2066d66071,1 +np.float64,0xffe2ee42d365dc85,0x0,1 +np.float64,0x3fe1f98abea3f315,0x3ff79dc68002a80b,1 +np.float64,0x7fd7225891ae44b0,0x7ff0000000000000,1 +np.float64,0x477177408ee30,0x3ff0000000000000,1 +np.float64,0xbfe16a7e2162d4fc,0x3fe5f1a5c745385d,1 +np.float64,0xbf98aaee283155e0,0x3fef785952e9c089,1 +np.float64,0x7fd7c14a8daf8294,0x7ff0000000000000,1 +np.float64,0xf7e7713defcee,0x3ff0000000000000,1 +np.float64,0x800769aa11aed355,0x3ff0000000000000,1 +np.float64,0xbfed30385e3a6071,0x3fe10135a3bd9ae6,1 +np.float64,0x3fe6dd7205edbae4,0x3ffa4155899efd70,1 +np.float64,0x800d705d26bae0ba,0x3ff0000000000000,1 +np.float64,0xa443ac1f48876,0x3ff0000000000000,1 +np.float64,0xbfec8cfec43919fe,0x3fe13dbf966e6633,1 +np.float64,0x7fd246efaa248dde,0x7ff0000000000000,1 +np.float64,0x800f2ad14afe55a3,0x3ff0000000000000,1 +np.float64,0x800487a894c90f52,0x3ff0000000000000,1 +np.float64,0x80014c4f19e2989f,0x3ff0000000000000,1 +np.float64,0x3fc11f265f223e4d,0x3ff18def05c971e5,1 +np.float64,0xffeb6d565776daac,0x0,1 +np.float64,0x7fd5ca5df8ab94bb,0x7ff0000000000000,1 +np.float64,0xbfe33de4fde67bca,0x3fe517d0e212cd1c,1 +np.float64,0xbfd1c738e5a38e72,0x3fea6539e9491693,1 +np.float64,0xbfec1d8c33b83b18,0x3fe16790fbca0c65,1 +np.float64,0xbfeecb464b7d968d,0x3fe06c67e2aefa55,1 +np.float64,0xbfd621dbf1ac43b8,0x3fe92dfa32d93846,1 +np.float64,0x80069a02860d3406,0x3ff0000000000000,1 +np.float64,0xbfe84f650e309eca,0x3fe2e661300f1975,1 +np.float64,0x7fc1d2cec523a59d,0x7ff0000000000000,1 +np.float64,0x3fd7706d79aee0db,0x3ff49fb033353dfe,1 +np.float64,0xffd94ba458329748,0x0,1 +np.float64,0x7fea98ba1a753173,0x7ff0000000000000,1 +np.float64,0xbfe756ba092ead74,0x3fe34d428d1857bc,1 +np.float64,0xffecfbd836b9f7b0,0x0,1 +np.float64,0x3fd211fbe5a423f8,0x3ff375711a3641e0,1 +np.float64,0x7fee24f7793c49ee,0x7ff0000000000000,1 +np.float64,0x7fe6a098886d4130,0x7ff0000000000000,1 +np.float64,0xbfd4ade909a95bd2,0x3fe99436524db1f4,1 +np.float64,0xbfeb704e6476e09d,0x3fe1a95be4a21bc6,1 +np.float64,0xffefc0f6627f81ec,0x0,1 +np.float64,0x7feff3f896ffe7f0,0x7ff0000000000000,1 +np.float64,0xa3f74edb47eea,0x3ff0000000000000,1 +np.float64,0xbfe0a551cf214aa4,0x3fe65027a7ff42e3,1 +np.float64,0x3fe164b23622c964,0x3ff7521c6225f51d,1 +np.float64,0x7fc258752324b0e9,0x7ff0000000000000,1 +np.float64,0x4739b3348e737,0x3ff0000000000000,1 +np.float64,0xb0392b1d60726,0x3ff0000000000000,1 +np.float64,0x7fe26f42e5e4de85,0x7ff0000000000000,1 +np.float64,0x8004601f87e8c040,0x3ff0000000000000,1 +np.float64,0xffe92ce37b3259c6,0x0,1 +np.float64,0x3fe620da3a6c41b4,0x3ff9d6ee3d005466,1 +np.float64,0x3fd850cfa2b0a1a0,0x3ff4d20bd249d411,1 +np.float64,0xffdcdfdfb5b9bfc0,0x0,1 +np.float64,0x800390297d672054,0x3ff0000000000000,1 +np.float64,0x3fde5864f6bcb0ca,0x3ff639bb9321f5ef,1 +np.float64,0x3fee484cec7c909a,0x3ffed4d2c6274219,1 +np.float64,0x7fe9b9a064b37340,0x7ff0000000000000,1 +np.float64,0xffe50028b8aa0051,0x0,1 +np.float64,0x3fe37774ade6eee9,0x3ff864558498a9a8,1 +np.float64,0x7fef83c724bf078d,0x7ff0000000000000,1 +np.float64,0xbfeb58450fb6b08a,0x3fe1b290556be73d,1 +np.float64,0x7fd7161475ae2c28,0x7ff0000000000000,1 +np.float64,0x3fece09621f9c12c,0x3ffde836a583bbdd,1 +np.float64,0x3fd045790ea08af2,0x3ff31554778fd4e2,1 +np.float64,0xbfe7c7dd6cef8fbb,0x3fe31e2eeda857fc,1 +np.float64,0xffe9632f5372c65e,0x0,1 +np.float64,0x800d4f3a703a9e75,0x3ff0000000000000,1 +np.float64,0xffea880e4df5101c,0x0,1 +np.float64,0xbfeb7edc4ff6fdb8,0x3fe1a3cb5dc33594,1 +np.float64,0xbfcaae4bab355c98,0x3febb1ee65e16b58,1 +np.float64,0xbfde598a19bcb314,0x3fe709145eafaaf8,1 +np.float64,0x3feefb6d78fdf6db,0x3fff4d5c8c68e39a,1 +np.float64,0x13efc75427dfa,0x3ff0000000000000,1 +np.float64,0xffe26f65c064decb,0x0,1 +np.float64,0xbfed5c1addfab836,0x3fe0f1133bd2189a,1 +np.float64,0x7fe7a7cf756f4f9e,0x7ff0000000000000,1 +np.float64,0xffc681702e2d02e0,0x0,1 +np.float64,0x8003d6ab5067ad57,0x3ff0000000000000,1 +np.float64,0xffa695f1342d2be0,0x0,1 +np.float64,0xbfcf8857db3f10b0,0x3feafa14da8c29a4,1 +np.float64,0xbfe8ca06be71940e,0x3fe2b46f6d2c64b4,1 +np.float64,0x3451c74468a3a,0x3ff0000000000000,1 +np.float64,0x3fde47d5f6bc8fac,0x3ff635bf8e024716,1 +np.float64,0xffda159d5db42b3a,0x0,1 +np.float64,0x7fef9fecaa3f3fd8,0x7ff0000000000000,1 +np.float64,0x3fd4e745e3a9ce8c,0x3ff410a9cb6fd8bf,1 +np.float64,0xffef57019b3eae02,0x0,1 +np.float64,0xbfe6604f4f6cc09e,0x3fe3b55de43c626d,1 +np.float64,0xffe066a424a0cd48,0x0,1 +np.float64,0x3fd547de85aa8fbc,0x3ff425b2a7a16675,1 +np.float64,0xffb3c69280278d28,0x0,1 +np.float64,0xffebe0b759f7c16e,0x0,1 +np.float64,0x3fefc84106ff9082,0x3fffd973687337d8,1 +np.float64,0x501c42a4a0389,0x3ff0000000000000,1 +np.float64,0x7feb45d13eb68ba1,0x7ff0000000000000,1 +np.float64,0xbfb16a8c2e22d518,0x3fee86a9c0f9291a,1 +np.float64,0x3be327b877c66,0x3ff0000000000000,1 +np.float64,0x7fe4a58220694b03,0x7ff0000000000000,1 +np.float64,0x3fe0286220a050c4,0x3ff6b472157ab8f2,1 +np.float64,0x3fc9381825327030,0x3ff2575fbea2bf5d,1 +np.float64,0xbfd1af7ee8a35efe,0x3fea6c032cf7e669,1 +np.float64,0xbfea9b0f39b5361e,0x3fe1fbae14b40b4d,1 +np.float64,0x39efe4aa73dfd,0x3ff0000000000000,1 +np.float64,0xffeb06fdc8360dfb,0x0,1 +np.float64,0xbfda481e72b4903c,0x3fe812b4b08d4884,1 +np.float64,0xbfd414ba5ba82974,0x3fe9bec9474bdfe6,1 +np.float64,0x7fe707177b6e0e2e,0x7ff0000000000000,1 +np.float64,0x8000000000000001,0x3ff0000000000000,1 +np.float64,0xbfede6a75bbbcd4f,0x3fe0be874cccd399,1 +np.float64,0x8006cdb577cd9b6c,0x3ff0000000000000,1 +np.float64,0x800051374f20a26f,0x3ff0000000000000,1 +np.float64,0x3fe5cba8c96b9752,0x3ff9a76b3adcc122,1 +np.float64,0xbfee3933487c7267,0x3fe0a0b190f9609a,1 +np.float64,0x3fd574b8d8aae970,0x3ff42f7e83de1af9,1 +np.float64,0xba5db72b74bb7,0x3ff0000000000000,1 +np.float64,0x3fa9bf512c337ea0,0x3ff0914a7f743a94,1 +np.float64,0xffe8cb736c3196e6,0x0,1 +np.float64,0x3761b2f06ec37,0x3ff0000000000000,1 +np.float64,0x8b4d4433169a9,0x3ff0000000000000,1 +np.float64,0x800f0245503e048b,0x3ff0000000000000,1 +np.float64,0x7fb20d54ac241aa8,0x7ff0000000000000,1 +np.float64,0x3fdf26666b3e4ccd,0x3ff66b8995142017,1 +np.float64,0xbfcbf2a83737e550,0x3feb8173a7b9d6b5,1 +np.float64,0x3fd31572a0a62ae5,0x3ff3ac6c94313dcd,1 +np.float64,0x7fb6c2807a2d8500,0x7ff0000000000000,1 +np.float64,0x800799758f2f32ec,0x3ff0000000000000,1 +np.float64,0xe72f1f6bce5e4,0x3ff0000000000000,1 +np.float64,0x3fe0e0f223a1c1e4,0x3ff70fed5b761673,1 +np.float64,0x3fe6d4f133eda9e2,0x3ffa3c8000c169eb,1 +np.float64,0xbfe1ccc3d8639988,0x3fe5c32148bedbda,1 +np.float64,0x3fea71c53574e38a,0x3ffc5f31201fe9be,1 +np.float64,0x9e0323eb3c065,0x3ff0000000000000,1 +np.float64,0x8005cc79a5cb98f4,0x3ff0000000000000,1 +np.float64,0x1dace1f83b59d,0x3ff0000000000000,1 +np.float64,0x10000000000000,0x3ff0000000000000,1 +np.float64,0xbfdef50830bdea10,0x3fe6e269fc17ebef,1 +np.float64,0x8010000000000000,0x3ff0000000000000,1 +np.float64,0xbfdfa82192bf5044,0x3fe6b6313ee0a095,1 +np.float64,0x3fd9398fe2b27320,0x3ff506ca2093c060,1 +np.float64,0x8002721fe664e441,0x3ff0000000000000,1 +np.float64,0x800c04166ad8082d,0x3ff0000000000000,1 +np.float64,0xffec3918b3387230,0x0,1 +np.float64,0x3fec62d5dfb8c5ac,0x3ffd972ea4a54b32,1 +np.float64,0x3fe7e42a0b6fc854,0x3ffad86b0443181d,1 +np.float64,0x3fc0aff5f3215fec,0x3ff1836058d4d210,1 +np.float64,0xbf82ff68a025fec0,0x3fefcb7f06862dce,1 +np.float64,0xae2e35195c5c7,0x3ff0000000000000,1 +np.float64,0x3fece3bddf79c77c,0x3ffdea41fb1ba8fa,1 +np.float64,0xbfa97b947832f730,0x3feeea34ebedbbd2,1 +np.float64,0xbfdfb1b1ce3f6364,0x3fe6b3d72871335c,1 +np.float64,0xbfe61a4f24ac349e,0x3fe3d356bf991b06,1 +np.float64,0x7fe23117a5e4622e,0x7ff0000000000000,1 +np.float64,0x800552a8cccaa552,0x3ff0000000000000,1 +np.float64,0x625b4d0ac4b6a,0x3ff0000000000000,1 +np.float64,0x3f86cf15702d9e00,0x3ff01fbe0381676d,1 +np.float64,0x800d7d1b685afa37,0x3ff0000000000000,1 +np.float64,0x3fe2cb6e40a596dd,0x3ff80a1a562f7fc9,1 +np.float64,0x3fe756eb8e2eadd7,0x3ffa86c638aad07d,1 +np.float64,0x800dc9a5513b934b,0x3ff0000000000000,1 +np.float64,0xbfbbdd118a37ba20,0x3fedacb4624f3cee,1 +np.float64,0x800de01f8efbc03f,0x3ff0000000000000,1 +np.float64,0x800da1a3fe9b4348,0x3ff0000000000000,1 +np.float64,0xbf87d8c7602fb180,0x3fefbe2614998ab6,1 +np.float64,0xbfdfff6141bffec2,0x3fe6a0c54d9f1bc8,1 +np.float64,0xee8fbba5dd1f8,0x3ff0000000000000,1 +np.float64,0x3fe79dc93e6f3b92,0x3ffaaf9d7d955b2c,1 +np.float64,0xffedd4b3d07ba967,0x0,1 +np.float64,0x800905dfc1720bc0,0x3ff0000000000000,1 +np.float64,0x3fd9e483b8b3c907,0x3ff52ddc6c950e7f,1 +np.float64,0xe34ffefdc6a00,0x3ff0000000000000,1 +np.float64,0x2168e62242d1e,0x3ff0000000000000,1 +np.float64,0x800349950e26932b,0x3ff0000000000000,1 +np.float64,0x7fc50da8532a1b50,0x7ff0000000000000,1 +np.float64,0xae1a4d115c34a,0x3ff0000000000000,1 +np.float64,0xa020f0b74041e,0x3ff0000000000000,1 +np.float64,0x3fd2aa2f77a5545f,0x3ff3959f09519a25,1 +np.float64,0x3fbfefc3223fdf86,0x3ff171f3df2d408b,1 +np.float64,0xbfea9fc340b53f86,0x3fe1f9d92b712654,1 +np.float64,0xffe9b920a5337240,0x0,1 +np.float64,0xbfe2eb0265e5d605,0x3fe53dd195782de3,1 +np.float64,0x7fb932c70e32658d,0x7ff0000000000000,1 +np.float64,0x3fda816bfcb502d8,0x3ff551f8d5c84c82,1 +np.float64,0x3fed68cbe9fad198,0x3ffe40f6692d5693,1 +np.float64,0x32df077665be2,0x3ff0000000000000,1 +np.float64,0x7fdc9c2f3539385d,0x7ff0000000000000,1 +np.float64,0x7fe71091a2ee2122,0x7ff0000000000000,1 +np.float64,0xbfe68106c46d020e,0x3fe3a76b56024c2c,1 +np.float64,0xffcf0572823e0ae4,0x0,1 +np.float64,0xbfeeab341fbd5668,0x3fe077d496941cda,1 +np.float64,0x7fe7ada0d2af5b41,0x7ff0000000000000,1 +np.float64,0xffacdef2a439bde0,0x0,1 +np.float64,0x3fe4200f3128401e,0x3ff8be0ddf30fd1e,1 +np.float64,0xffd9022a69320454,0x0,1 +np.float64,0xbfe8e06914f1c0d2,0x3fe2ab5fe7fffb5a,1 +np.float64,0x3fc4b976602972ed,0x3ff1e6786fa7a890,1 +np.float64,0xbfd784c105af0982,0x3fe8cdeb1cdbd57e,1 +np.float64,0x7feb20a20eb64143,0x7ff0000000000000,1 +np.float64,0xbfc87dd83630fbb0,0x3fec067c1e7e6983,1 +np.float64,0x7fe5400cbe6a8018,0x7ff0000000000000,1 +np.float64,0xbfb4a1f5e22943e8,0x3fee42e6c81559a9,1 +np.float64,0x3fe967c575f2cf8a,0x3ffbbd8bc0d5c50d,1 +np.float64,0xbfeb059cf4760b3a,0x3fe1d25c592c4dab,1 +np.float64,0xbfeef536d5bdea6e,0x3fe05d832c15c64a,1 +np.float64,0x3fa90b3f6432167f,0x3ff08d410dd732cc,1 +np.float64,0xbfeaff265e75fe4d,0x3fe1d4db3fb3208d,1 +np.float64,0x6d93d688db27b,0x3ff0000000000000,1 +np.float64,0x800ab9b4ea55736a,0x3ff0000000000000,1 +np.float64,0x3fd444b39d288967,0x3ff3ed749d48d444,1 +np.float64,0xbfd5f2c0d0abe582,0x3fe93ad6124d88e7,1 +np.float64,0x3fea8fd915f51fb2,0x3ffc71b32cb92d60,1 +np.float64,0xbfd23d6491a47aca,0x3fea43875709b0f0,1 +np.float64,0xffe76f75ce6edeeb,0x0,1 +np.float64,0x1f5670da3eacf,0x3ff0000000000000,1 +np.float64,0x8000d89c9621b13a,0x3ff0000000000000,1 +np.float64,0x3fedb51c52bb6a39,0x3ffe732279c228ff,1 +np.float64,0x7f99215ac83242b5,0x7ff0000000000000,1 +np.float64,0x742a6864e854e,0x3ff0000000000000,1 +np.float64,0xbfe02fb340205f66,0x3fe689495f9164e3,1 +np.float64,0x7fef4c12b0fe9824,0x7ff0000000000000,1 +np.float64,0x3fd40e17c2a81c30,0x3ff3e1aee8ed972f,1 +np.float64,0x7fdcd264e939a4c9,0x7ff0000000000000,1 +np.float64,0x3fdb675838b6ceb0,0x3ff587526241c550,1 +np.float64,0x3fdf1a4081be3480,0x3ff66896a18c2385,1 +np.float64,0xbfea5082b874a106,0x3fe218cf8f11be13,1 +np.float64,0xffe1a0ebf7e341d8,0x0,1 +np.float64,0x3fed0a2222ba1444,0x3ffe032ce928ae7d,1 +np.float64,0xffeae036da75c06d,0x0,1 +np.float64,0x5b05fc8ab60c0,0x3ff0000000000000,1 +np.float64,0x7fd8aae5f03155cb,0x7ff0000000000000,1 +np.float64,0xbfd0b4d9fda169b4,0x3feab41e58b6ccb7,1 +np.float64,0xffdcaffa57395ff4,0x0,1 +np.float64,0xbfcbf1455437e28c,0x3feb81a884182c5d,1 +np.float64,0x3f9d6700b83ace01,0x3ff0525657db35d4,1 +np.float64,0x4fd5b0b29fab7,0x3ff0000000000000,1 +np.float64,0x3fe9af2df5b35e5c,0x3ffbe895684df916,1 +np.float64,0x800dfd41f9dbfa84,0x3ff0000000000000,1 +np.float64,0xbf2a30457e546,0x3ff0000000000000,1 +np.float64,0x7fc6be37182d7c6d,0x7ff0000000000000,1 +np.float64,0x800e0f9788dc1f2f,0x3ff0000000000000,1 +np.float64,0x8006890c704d121a,0x3ff0000000000000,1 +np.float64,0xffecb1a7cbb9634f,0x0,1 +np.float64,0xffb35c330426b868,0x0,1 +np.float64,0x7fe8f2ba8a71e574,0x7ff0000000000000,1 +np.float64,0xf3ccff8fe79a0,0x3ff0000000000000,1 +np.float64,0x3fdf19a84e3e3351,0x3ff66871b17474c1,1 +np.float64,0x80049a662d0934cd,0x3ff0000000000000,1 +np.float64,0xdf5bb4bbbeb77,0x3ff0000000000000,1 +np.float64,0x8005eca030cbd941,0x3ff0000000000000,1 +np.float64,0xffe5f239586be472,0x0,1 +np.float64,0xbfc4526a0728a4d4,0x3fecaa52fbf5345e,1 +np.float64,0xbfe8f1ecda31e3da,0x3fe2a44c080848b3,1 +np.float64,0x3feebd32f4bd7a66,0x3fff234788938c3e,1 +np.float64,0xffd6ca04e9ad940a,0x0,1 +np.float64,0x7ff0000000000000,0x7ff0000000000000,1 +np.float64,0xbfd4c560a9a98ac2,0x3fe98db6d97442fc,1 +np.float64,0x8005723471cae46a,0x3ff0000000000000,1 +np.float64,0xbfeb278299764f05,0x3fe1c54b48f8ba4b,1 +np.float64,0x8007907b376f20f7,0x3ff0000000000000,1 +np.float64,0x7fe9c2fd01b385f9,0x7ff0000000000000,1 +np.float64,0x7fdaa37368b546e6,0x7ff0000000000000,1 +np.float64,0xbfe6d0f3786da1e7,0x3fe38582271cada7,1 +np.float64,0xbfea9b77823536ef,0x3fe1fb8575cd1b7d,1 +np.float64,0xbfe90ac38bf21587,0x3fe29a471b47a2e8,1 +np.float64,0xbfe9c51844738a30,0x3fe24fc8de03ea84,1 +np.float64,0x3fe45a9013a8b520,0x3ff8dd7c80f1cf75,1 +np.float64,0xbfe5780551eaf00a,0x3fe419832a6a4c56,1 +np.float64,0xffefffffffffffff,0x0,1 +np.float64,0x7fe3778c84a6ef18,0x7ff0000000000000,1 +np.float64,0xbfdc8a60413914c0,0x3fe77dc55b85028f,1 +np.float64,0xef47ae2fde8f6,0x3ff0000000000000,1 +np.float64,0x8001269fa4c24d40,0x3ff0000000000000,1 +np.float64,0x3fe9d2d39e73a5a7,0x3ffbfe2a66c4148e,1 +np.float64,0xffee61f528fcc3e9,0x0,1 +np.float64,0x3fe8a259ab7144b3,0x3ffb47e797a34bd2,1 +np.float64,0x3f906d610820dac0,0x3ff02dccda8e1a75,1 +np.float64,0x3fe70739f32e0e74,0x3ffa59232f4fcd07,1 +np.float64,0x3fe6b7f5e6ad6fec,0x3ffa2c0cc54f2c16,1 +np.float64,0x95a91a792b524,0x3ff0000000000000,1 +np.float64,0xbfedf6fcf57bedfa,0x3fe0b89bb40081cc,1 +np.float64,0xbfa4d2de9c29a5c0,0x3fef1c485678d657,1 +np.float64,0x3fe130470d22608e,0x3ff737b0be409a38,1 +np.float64,0x3fcf8035423f006b,0x3ff2f9d7c3c6a302,1 +np.float64,0xffe5995a3eab32b4,0x0,1 +np.float64,0xffca68c63034d18c,0x0,1 +np.float64,0xff9d53af903aa760,0x0,1 +np.float64,0x800563f1de6ac7e4,0x3ff0000000000000,1 +np.float64,0x7fce284fa63c509e,0x7ff0000000000000,1 +np.float64,0x7fb2a3959a25472a,0x7ff0000000000000,1 +np.float64,0x7fdbe2652f37c4c9,0x7ff0000000000000,1 +np.float64,0x800d705bbc1ae0b8,0x3ff0000000000000,1 +np.float64,0x7fd9bd2347b37a46,0x7ff0000000000000,1 +np.float64,0x3fcac3c0fb358782,0x3ff27ed62d6c8221,1 +np.float64,0x800110691ec220d3,0x3ff0000000000000,1 +np.float64,0x3fef79a8157ef350,0x3fffa368513eb909,1 +np.float64,0x7fe8bd2f0e317a5d,0x7ff0000000000000,1 +np.float64,0x7fd3040e60a6081c,0x7ff0000000000000,1 +np.float64,0xffea50723234a0e4,0x0,1 +np.float64,0xbfe6220054ac4400,0x3fe3d00961238a93,1 +np.float64,0x3f9eddd8c83dbbc0,0x3ff0567b0c73005a,1 +np.float64,0xbfa4a062c42940c0,0x3fef1e68badde324,1 +np.float64,0xbfd077ad4720ef5a,0x3feac5d577581d07,1 +np.float64,0x7fdfd4b025bfa95f,0x7ff0000000000000,1 +np.float64,0xd00d3cf3a01a8,0x3ff0000000000000,1 +np.float64,0x7fe3010427260207,0x7ff0000000000000,1 +np.float64,0x22ea196645d44,0x3ff0000000000000,1 +np.float64,0x7fd747e8cd2e8fd1,0x7ff0000000000000,1 +np.float64,0xd50665e7aa0cd,0x3ff0000000000000,1 +np.float64,0x7fe1da580ae3b4af,0x7ff0000000000000,1 +np.float64,0xffeb218ecfb6431d,0x0,1 +np.float64,0xbf887d0dd030fa00,0x3fefbc6252c8b354,1 +np.float64,0x3fcaa31067354621,0x3ff27b904c07e07f,1 +np.float64,0x7fe698cc4ded3198,0x7ff0000000000000,1 +np.float64,0x1c40191a38804,0x3ff0000000000000,1 +np.float64,0x80086fd20e30dfa4,0x3ff0000000000000,1 +np.float64,0x7fed34d5eaba69ab,0x7ff0000000000000,1 +np.float64,0xffd00b52622016a4,0x0,1 +np.float64,0x3f80abcdb021579b,0x3ff0172d27945851,1 +np.float64,0x3fe614cfd66c29a0,0x3ff9d031e1839191,1 +np.float64,0x80021d71c8843ae4,0x3ff0000000000000,1 +np.float64,0x800bc2adc657855c,0x3ff0000000000000,1 +np.float64,0x6b9fec1cd73fe,0x3ff0000000000000,1 +np.float64,0xffd9093b5f321276,0x0,1 +np.float64,0x800d3c6c77fa78d9,0x3ff0000000000000,1 +np.float64,0xffe80fc1cbf01f83,0x0,1 +np.float64,0xffbffbaf2a3ff760,0x0,1 +np.float64,0x3fea1ed29eb43da5,0x3ffc2c64ec0e17a3,1 +np.float64,0x7ff4000000000000,0x7ffc000000000000,1 +np.float64,0x3fd944a052328941,0x3ff5094f4c43ecca,1 +np.float64,0x800b1f9416163f29,0x3ff0000000000000,1 +np.float64,0x800f06bf33de0d7e,0x3ff0000000000000,1 +np.float64,0xbfdbf0d226b7e1a4,0x3fe7a4f73793d95b,1 +np.float64,0xffe7306c30ae60d8,0x0,1 +np.float64,0x7fe991accfb32359,0x7ff0000000000000,1 +np.float64,0x3fcc0040d2380082,0x3ff29ea47e4f07d4,1 +np.float64,0x7fefffffffffffff,0x7ff0000000000000,1 +np.float64,0x0,0x3ff0000000000000,1 +np.float64,0x3fe1423f7be2847e,0x3ff740bc1d3b20f8,1 +np.float64,0xbfeae3a3cab5c748,0x3fe1df7e936f8504,1 +np.float64,0x800b2da7d6165b50,0x3ff0000000000000,1 +np.float64,0x800b2404fcd6480a,0x3ff0000000000000,1 +np.float64,0x6fcbcf88df97b,0x3ff0000000000000,1 +np.float64,0xa248c0e14492,0x3ff0000000000000,1 +np.float64,0xffd255776824aaee,0x0,1 +np.float64,0x80057b3effeaf67f,0x3ff0000000000000,1 +np.float64,0x3feb0b07d7761610,0x3ffcbdfe1be5a594,1 +np.float64,0x924e1019249c2,0x3ff0000000000000,1 +np.float64,0x80074307e80e8611,0x3ff0000000000000,1 +np.float64,0xffb207fa46240ff8,0x0,1 +np.float64,0x95ac388d2b587,0x3ff0000000000000,1 +np.float64,0xbff0000000000000,0x3fe0000000000000,1 +np.float64,0x3fd38b6a492716d5,0x3ff3c59f62b5add5,1 +np.float64,0x7fe49362c3e926c5,0x7ff0000000000000,1 +np.float64,0x7fe842889db08510,0x7ff0000000000000,1 +np.float64,0xbfba6003e834c008,0x3fedcb620a2d9856,1 +np.float64,0xffe7e782bd6fcf05,0x0,1 +np.float64,0x7fd9b93d9433727a,0x7ff0000000000000,1 +np.float64,0x7fc8fcb61d31f96b,0x7ff0000000000000,1 +np.float64,0xbfef9be8db3f37d2,0x3fe022d603b81dc2,1 +np.float64,0x6f4fc766de9fa,0x3ff0000000000000,1 +np.float64,0xbfe93016f132602e,0x3fe28b42d782d949,1 +np.float64,0x3fe10e52b8e21ca5,0x3ff726a38b0bb895,1 +np.float64,0x3fbbba0ae6377416,0x3ff13f56084a9da3,1 +np.float64,0x3fe09e42ece13c86,0x3ff6eeb57e775e24,1 +np.float64,0x800942e39fb285c8,0x3ff0000000000000,1 +np.float64,0xffe5964370eb2c86,0x0,1 +np.float64,0x3fde479f32bc8f3e,0x3ff635b2619ba53a,1 +np.float64,0x3fe826e187f04dc3,0x3ffaff52b79c3a08,1 +np.float64,0x3febcbf1eab797e4,0x3ffd37152e5e2598,1 +np.float64,0x3fa0816a202102d4,0x3ff05c8e6a8b00d5,1 +np.float64,0xbd005ccb7a00c,0x3ff0000000000000,1 +np.float64,0x44c12fdc89827,0x3ff0000000000000,1 +np.float64,0xffc8fdffa431fc00,0x0,1 +np.float64,0xffeb4f5a87b69eb4,0x0,1 +np.float64,0xbfb07e7f8420fd00,0x3fee9a32924fe6a0,1 +np.float64,0xbfbd9d1bb63b3a38,0x3fed88ca81e5771c,1 +np.float64,0x8008682a74f0d055,0x3ff0000000000000,1 +np.float64,0x3fdeedbc7b3ddb79,0x3ff65dcb7c55f4dc,1 +np.float64,0x8009e889c613d114,0x3ff0000000000000,1 +np.float64,0x3faea831f43d5064,0x3ff0ad935e890e49,1 +np.float64,0xf0af1703e15e3,0x3ff0000000000000,1 +np.float64,0xffec06c4a5f80d88,0x0,1 +np.float64,0x53a1cc0ca743a,0x3ff0000000000000,1 +np.float64,0x7fd10c9eea22193d,0x7ff0000000000000,1 +np.float64,0xbfd48a6bf0a914d8,0x3fe99e0d109f2bac,1 +np.float64,0x3fd6dfe931adbfd4,0x3ff47f81c2dfc5d3,1 +np.float64,0x3fed20e86b7a41d0,0x3ffe11fecc7bc686,1 +np.float64,0xbfea586818b4b0d0,0x3fe215b7747d5cb8,1 +np.float64,0xbfd4ad3e20295a7c,0x3fe99465ab8c3275,1 +np.float64,0x3fd6619ee4acc33e,0x3ff4638b7b80c08a,1 +np.float64,0x3fdf6fcb63bedf97,0x3ff67d62fd3d560c,1 +np.float64,0x800a9191e7152324,0x3ff0000000000000,1 +np.float64,0x3fd2ff3c0da5fe78,0x3ff3a7b17e892a28,1 +np.float64,0x8003dbf1f327b7e5,0x3ff0000000000000,1 +np.float64,0xffea6b89a934d712,0x0,1 +np.float64,0x7fcfb879043f70f1,0x7ff0000000000000,1 +np.float64,0xea6a84dbd4d51,0x3ff0000000000000,1 +np.float64,0x800ec97a815d92f5,0x3ff0000000000000,1 +np.float64,0xffe304c3a8660987,0x0,1 +np.float64,0xbfefe24dd3ffc49c,0x3fe00a4e065be96d,1 +np.float64,0xffd3cc8c00a79918,0x0,1 +np.float64,0x95be8b7b2b7d2,0x3ff0000000000000,1 +np.float64,0x7fe20570cba40ae1,0x7ff0000000000000,1 +np.float64,0x7f97a06da02f40da,0x7ff0000000000000,1 +np.float64,0xffe702b9522e0572,0x0,1 +np.float64,0x3fada2d8543b45b1,0x3ff0a7adc4201e08,1 +np.float64,0x235e6acc46bce,0x3ff0000000000000,1 +np.float64,0x3fea6bc28ef4d786,0x3ffc5b7fc68fddac,1 +np.float64,0xffdbc9f505b793ea,0x0,1 +np.float64,0xffe98b137ff31626,0x0,1 +np.float64,0x800e26c6721c4d8d,0x3ff0000000000000,1 +np.float64,0x80080de445301bc9,0x3ff0000000000000,1 +np.float64,0x37e504a86fca1,0x3ff0000000000000,1 +np.float64,0x8002f5f60325ebed,0x3ff0000000000000,1 +np.float64,0x5c8772feb90ef,0x3ff0000000000000,1 +np.float64,0xbfe021abb4604358,0x3fe69023a51d22b8,1 +np.float64,0x3fde744f8fbce8a0,0x3ff64074dc84edd7,1 +np.float64,0xbfdd92899f3b2514,0x3fe73aefd9701858,1 +np.float64,0x7fc1ad5c51235ab8,0x7ff0000000000000,1 +np.float64,0xaae2f98955c5f,0x3ff0000000000000,1 +np.float64,0x7f9123d5782247aa,0x7ff0000000000000,1 +np.float64,0xbfe3f8e94b67f1d2,0x3fe4c30ab28e9cb7,1 +np.float64,0x7fdaba8b4cb57516,0x7ff0000000000000,1 +np.float64,0x7fefc85cfeff90b9,0x7ff0000000000000,1 +np.float64,0xffb83b4f523076a0,0x0,1 +np.float64,0xbfe888a68c71114d,0x3fe2ceff17c203d1,1 +np.float64,0x800de1dac4bbc3b6,0x3ff0000000000000,1 +np.float64,0xbfe4f27f09e9e4fe,0x3fe453f9af407eac,1 +np.float64,0xffe3d2713467a4e2,0x0,1 +np.float64,0xbfebaab840375570,0x3fe1931131b98842,1 +np.float64,0x93892a1b27126,0x3ff0000000000000,1 +np.float64,0x1e8e7f983d1d1,0x3ff0000000000000,1 +np.float64,0x3fecc950627992a0,0x3ffdd926f036add0,1 +np.float64,0xbfd41dfb1aa83bf6,0x3fe9bc34ece35b94,1 +np.float64,0x800aebfc6555d7f9,0x3ff0000000000000,1 +np.float64,0x7fe33ba52ca67749,0x7ff0000000000000,1 +np.float64,0xffe57c9b3feaf936,0x0,1 +np.float64,0x3fdd12464fba248c,0x3ff5ebc5598e6bd0,1 +np.float64,0xffe06d7f0fe0dafe,0x0,1 +np.float64,0x800e55b7fe9cab70,0x3ff0000000000000,1 +np.float64,0x3fd33803c8267008,0x3ff3b3cb78b2d642,1 +np.float64,0xe9cab8a1d3957,0x3ff0000000000000,1 +np.float64,0x3fb38ac166271580,0x3ff0de906947c0f0,1 +np.float64,0xbfd67aa552acf54a,0x3fe915cf64a389fd,1 +np.float64,0x1db96daa3b72f,0x3ff0000000000000,1 +np.float64,0xbfee9f08f4fd3e12,0x3fe07c2c615add3c,1 +np.float64,0xf14f6d65e29ee,0x3ff0000000000000,1 +np.float64,0x800bce089e179c12,0x3ff0000000000000,1 +np.float64,0xffc42dcc37285b98,0x0,1 +np.float64,0x7fd5f37063abe6e0,0x7ff0000000000000,1 +np.float64,0xbfd943c2cbb28786,0x3fe856f6452ec753,1 +np.float64,0x8ddfbc091bbf8,0x3ff0000000000000,1 +np.float64,0xbfe153491e22a692,0x3fe5fcb075dbbd5d,1 +np.float64,0xffe7933999ef2672,0x0,1 +np.float64,0x7ff8000000000000,0x7ff8000000000000,1 +np.float64,0x8000000000000000,0x3ff0000000000000,1 +np.float64,0xbfe9154580b22a8b,0x3fe2960bac3a8220,1 +np.float64,0x800dc6dda21b8dbb,0x3ff0000000000000,1 +np.float64,0xbfb26225a824c448,0x3fee7239a457df81,1 +np.float64,0xbfd7b68c83af6d1a,0x3fe8c08e351ab468,1 +np.float64,0xffde01f7213c03ee,0x0,1 +np.float64,0x3fe54cbe0faa997c,0x3ff9614527191d72,1 +np.float64,0xbfd6bec3732d7d86,0x3fe90354909493de,1 +np.float64,0xbfef3c85bd7e790b,0x3fe0444f8c489ca6,1 +np.float64,0x899501b7132a0,0x3ff0000000000000,1 +np.float64,0xbfe17a456462f48b,0x3fe5ea2719a9a84b,1 +np.float64,0xffe34003b8668007,0x0,1 +np.float64,0x7feff6a3633fed46,0x7ff0000000000000,1 +np.float64,0x3fba597ecc34b2fe,0x3ff12ee72e4de474,1 +np.float64,0x4084c7b68109a,0x3ff0000000000000,1 +np.float64,0x3fad23bf4c3a4780,0x3ff0a4d06193ff6d,1 +np.float64,0xffd0fe2707a1fc4e,0x0,1 +np.float64,0xb96cb43f72d97,0x3ff0000000000000,1 +np.float64,0x7fc4d684d829ad09,0x7ff0000000000000,1 +np.float64,0x7fdc349226b86923,0x7ff0000000000000,1 +np.float64,0x7fd82851cd3050a3,0x7ff0000000000000,1 +np.float64,0x800cde0041b9bc01,0x3ff0000000000000,1 +np.float64,0x4e8caa1e9d196,0x3ff0000000000000,1 +np.float64,0xbfed06a6d2fa0d4e,0x3fe1108c3682b05a,1 +np.float64,0xffe8908122312102,0x0,1 +np.float64,0xffe56ed6d9aaddad,0x0,1 +np.float64,0x3fedd6db00fbadb6,0x3ffe896c68c4b26e,1 +np.float64,0x3fde31f9b4bc63f4,0x3ff6307e08f8b6ba,1 +np.float64,0x6bb963c2d772d,0x3ff0000000000000,1 +np.float64,0x787b7142f0f6f,0x3ff0000000000000,1 +np.float64,0x3fe6e4147c6dc829,0x3ffa451bbdece240,1 +np.float64,0x8003857401470ae9,0x3ff0000000000000,1 +np.float64,0xbfeae82c3c75d058,0x3fe1ddbd66e65aab,1 +np.float64,0x7fe174707c62e8e0,0x7ff0000000000000,1 +np.float64,0x80008d2545e11a4b,0x3ff0000000000000,1 +np.float64,0xbfecc2dce17985ba,0x3fe129ad4325985a,1 +np.float64,0xbfe1fa1daf63f43c,0x3fe5adcb0731a44b,1 +np.float64,0x7fcf2530203e4a5f,0x7ff0000000000000,1 +np.float64,0xbfea5cefe874b9e0,0x3fe213f134b61f4a,1 +np.float64,0x800103729f2206e6,0x3ff0000000000000,1 +np.float64,0xbfe8442ff7708860,0x3fe2eaf850faa169,1 +np.float64,0x8006c78e19ed8f1d,0x3ff0000000000000,1 +np.float64,0x3fc259589c24b2b1,0x3ff1abe6a4d28816,1 +np.float64,0xffed02b7b5ba056e,0x0,1 +np.float64,0xbfce0aa4fe3c1548,0x3feb32115d92103e,1 +np.float64,0x7fec06e78bf80dce,0x7ff0000000000000,1 +np.float64,0xbfe0960bbc612c18,0x3fe6578ab29b70d4,1 +np.float64,0x3fee45841cbc8b08,0x3ffed2f6ca808ad3,1 +np.float64,0xbfeb0f8ebef61f1e,0x3fe1ce86003044cd,1 +np.float64,0x8002c357358586af,0x3ff0000000000000,1 +np.float64,0x3fe9aa10cc735422,0x3ffbe57e294ce68b,1 +np.float64,0x800256c0a544ad82,0x3ff0000000000000,1 +np.float64,0x4de6e1449bcdd,0x3ff0000000000000,1 +np.float64,0x65e9bc9ccbd38,0x3ff0000000000000,1 +np.float64,0xbfe53b0fa9aa7620,0x3fe4341f0aa29bbc,1 +np.float64,0xbfcdd94cd13bb298,0x3feb3956acd2e2dd,1 +np.float64,0x8004a49b65a94938,0x3ff0000000000000,1 +np.float64,0x800d3d05deba7a0c,0x3ff0000000000000,1 +np.float64,0x3fe4e05bce69c0b8,0x3ff925f55602a7e0,1 +np.float64,0xffe391e3256723c6,0x0,1 +np.float64,0xbfe92f0f37b25e1e,0x3fe28bacc76ae753,1 +np.float64,0x3f990238d8320472,0x3ff045edd36e2d62,1 +np.float64,0xffed8d15307b1a2a,0x0,1 +np.float64,0x3fee82e01afd05c0,0x3ffefc09e8b9c2b7,1 +np.float64,0xffb2d94b2225b298,0x0,1 diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-expm1.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-expm1.csv new file mode 100644 index 0000000..dcbc7cd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-expm1.csv @@ -0,0 +1,1429 @@ +dtype,input,output,ulperrortol +np.float32,0x80606724,0x80606724,3 +np.float32,0xbf16790f,0xbee38e14,3 +np.float32,0xbf1778a1,0xbee4a97f,3 +np.float32,0x7d4fc610,0x7f800000,3 +np.float32,0xbec30a20,0xbea230d5,3 +np.float32,0x3eae8a36,0x3ecffac5,3 +np.float32,0xbf1f08f1,0xbeece93c,3 +np.float32,0x80374376,0x80374376,3 +np.float32,0x3f2e04ca,0x3f793115,3 +np.float32,0x7e2c7e36,0x7f800000,3 +np.float32,0xbf686cae,0xbf18bcf0,3 +np.float32,0xbf5518cd,0xbf10a3da,3 +np.float32,0x807e233c,0x807e233c,3 +np.float32,0x7f4edd54,0x7f800000,3 +np.float32,0x7ed70088,0x7f800000,3 +np.float32,0x801675da,0x801675da,3 +np.float32,0x806735d5,0x806735d5,3 +np.float32,0xfe635fec,0xbf800000,3 +np.float32,0xfed88a0a,0xbf800000,3 +np.float32,0xff52c052,0xbf800000,3 +np.float32,0x7fc00000,0x7fc00000,3 +np.float32,0xff4f65f9,0xbf800000,3 +np.float32,0xfe0f6c20,0xbf800000,3 +np.float32,0x80322b30,0x80322b30,3 +np.float32,0xfb757000,0xbf800000,3 +np.float32,0x3c81e0,0x3c81e0,3 +np.float32,0x79d56a,0x79d56a,3 +np.float32,0x8029d7af,0x8029d7af,3 +np.float32,0x8058a593,0x8058a593,3 +np.float32,0x3f3a13c7,0x3f88c75c,3 +np.float32,0x2a6b05,0x2a6b05,3 +np.float32,0xbd64c960,0xbd5e83ae,3 +np.float32,0x80471052,0x80471052,3 +np.float32,0xbe5dd950,0xbe47766c,3 +np.float32,0xfd8f88f0,0xbf800000,3 +np.float32,0x75a4b7,0x75a4b7,3 +np.float32,0x3f726f2e,0x3fc9fb7d,3 +np.float32,0x3ed6795c,0x3f053115,3 +np.float32,0x17d7f5,0x17d7f5,3 +np.float32,0xbf4cf19b,0xbf0d094f,3 +np.float32,0x3e0ec532,0x3e1933c6,3 +np.float32,0xff084016,0xbf800000,3 +np.float32,0x800829aa,0x800829aa,3 +np.float32,0x806d7302,0x806d7302,3 +np.float32,0x7f59d9da,0x7f800000,3 +np.float32,0x15f8b9,0x15f8b9,3 +np.float32,0x803befb3,0x803befb3,3 +np.float32,0x525043,0x525043,3 +np.float32,0x51a647,0x51a647,3 +np.float32,0xbf1cfce4,0xbeeab3d9,3 +np.float32,0x3f1f27a4,0x3f5cb1d2,3 +np.float32,0xbebc3a04,0xbe9d8142,3 +np.float32,0xbeea548c,0xbebc07e5,3 +np.float32,0x3f47401c,0x3f96c2a3,3 +np.float32,0x806b1ea3,0x806b1ea3,3 +np.float32,0x3ea56bb8,0x3ec3450c,3 +np.float32,0x3f7b4963,0x3fd597b5,3 +np.float32,0x7f051fa0,0x7f800000,3 +np.float32,0x1d411c,0x1d411c,3 +np.float32,0xff0b6a35,0xbf800000,3 +np.float32,0xbead63c0,0xbe9314f7,3 +np.float32,0x3738be,0x3738be,3 +np.float32,0x3f138cc8,0x3f479155,3 +np.float32,0x800a539f,0x800a539f,3 +np.float32,0x801b0ebd,0x801b0ebd,3 +np.float32,0x318fcd,0x318fcd,3 +np.float32,0x3ed67556,0x3f052e06,3 +np.float32,0x702886,0x702886,3 +np.float32,0x80000001,0x80000001,3 +np.float32,0x70a174,0x70a174,3 +np.float32,0x4f9c66,0x4f9c66,3 +np.float32,0x3e3e1927,0x3e50e351,3 +np.float32,0x7eac9a4d,0x7f800000,3 +np.float32,0x4b7407,0x4b7407,3 +np.float32,0x7f5bd2fd,0x7f800000,3 +np.float32,0x3eaafc58,0x3ecaffbd,3 +np.float32,0xbc989360,0xbc9729e2,3 +np.float32,0x3f470e5c,0x3f968c7b,3 +np.float32,0x4c5672,0x4c5672,3 +np.float32,0xff2b2ee2,0xbf800000,3 +np.float32,0xbf28a104,0xbef7079b,3 +np.float32,0x2c6175,0x2c6175,3 +np.float32,0x3d7e4fb0,0x3d832f9f,3 +np.float32,0x763276,0x763276,3 +np.float32,0x3cf364,0x3cf364,3 +np.float32,0xbf7ace75,0xbf1fe48c,3 +np.float32,0xff19e858,0xbf800000,3 +np.float32,0x80504c70,0x80504c70,3 +np.float32,0xff390210,0xbf800000,3 +np.float32,0x8046a743,0x8046a743,3 +np.float32,0x80000000,0x80000000,3 +np.float32,0x806c51da,0x806c51da,3 +np.float32,0x806ab38f,0x806ab38f,3 +np.float32,0x3f3de863,0x3f8cc538,3 +np.float32,0x7f6d45bb,0x7f800000,3 +np.float32,0xfd16ec60,0xbf800000,3 +np.float32,0x80513cba,0x80513cba,3 +np.float32,0xbf68996b,0xbf18cefa,3 +np.float32,0xfe039f2c,0xbf800000,3 +np.float32,0x3f013207,0x3f280c55,3 +np.float32,0x7ef4bc07,0x7f800000,3 +np.float32,0xbe8b65ac,0xbe741069,3 +np.float32,0xbf7a8186,0xbf1fc7a6,3 +np.float32,0x802532e5,0x802532e5,3 +np.float32,0x32c7df,0x32c7df,3 +np.float32,0x3ce4dceb,0x3ce81701,3 +np.float32,0xfe801118,0xbf800000,3 +np.float32,0x3d905f20,0x3d9594fb,3 +np.float32,0xbe11ed28,0xbe080168,3 +np.float32,0x59e773,0x59e773,3 +np.float32,0x3e9a2547,0x3eb3dd57,3 +np.float32,0x7ecb7c67,0x7f800000,3 +np.float32,0x7f69a67e,0x7f800000,3 +np.float32,0xff121e11,0xbf800000,3 +np.float32,0x3f7917cb,0x3fd2ad8c,3 +np.float32,0xbf1a7da8,0xbee7fc0c,3 +np.float32,0x3f077e66,0x3f329c40,3 +np.float32,0x3ce8e040,0x3cec37b3,3 +np.float32,0xbf3f0b8e,0xbf069f4d,3 +np.float32,0x3f52f194,0x3fa3c9d6,3 +np.float32,0xbf0e7422,0xbeda80f2,3 +np.float32,0xfd67e230,0xbf800000,3 +np.float32,0xff14d9a9,0xbf800000,3 +np.float32,0x3f3546e3,0x3f83dc2b,3 +np.float32,0x3e152e3a,0x3e20983d,3 +np.float32,0x4a89a3,0x4a89a3,3 +np.float32,0x63217,0x63217,3 +np.float32,0xbeb9e2a8,0xbe9be153,3 +np.float32,0x7e9fa049,0x7f800000,3 +np.float32,0x7f58110c,0x7f800000,3 +np.float32,0x3e88290c,0x3e9bfba9,3 +np.float32,0xbf2cb206,0xbefb3494,3 +np.float32,0xff5880c4,0xbf800000,3 +np.float32,0x7ecff3ac,0x7f800000,3 +np.float32,0x3f4b3de6,0x3f9b23fd,3 +np.float32,0xbebd2048,0xbe9e208c,3 +np.float32,0xff08f7a2,0xbf800000,3 +np.float32,0xff473330,0xbf800000,3 +np.float32,0x1,0x1,3 +np.float32,0xbf5dc239,0xbf14584b,3 +np.float32,0x458e3f,0x458e3f,3 +np.float32,0xbdb8a650,0xbdb091f8,3 +np.float32,0xff336ffc,0xbf800000,3 +np.float32,0x3c60bd00,0x3c624966,3 +np.float32,0xbe16a4f8,0xbe0c1664,3 +np.float32,0x3f214246,0x3f60a0f0,3 +np.float32,0x7fa00000,0x7fe00000,3 +np.float32,0x7e08737e,0x7f800000,3 +np.float32,0x3f70574c,0x3fc74b8e,3 +np.float32,0xbed5745c,0xbeae8c77,3 +np.float32,0x361752,0x361752,3 +np.float32,0x3eb276d6,0x3ed584ea,3 +np.float32,0x3f03fc1e,0x3f2cb1a5,3 +np.float32,0x3fafd1,0x3fafd1,3 +np.float32,0x7e50d74c,0x7f800000,3 +np.float32,0x3eeca5,0x3eeca5,3 +np.float32,0x5dc963,0x5dc963,3 +np.float32,0x7f0e63ae,0x7f800000,3 +np.float32,0x8021745f,0x8021745f,3 +np.float32,0xbf5881a9,0xbf121d07,3 +np.float32,0x7dadc7fd,0x7f800000,3 +np.float32,0xbf2c0798,0xbefa86bb,3 +np.float32,0x3e635f50,0x3e7e97a9,3 +np.float32,0xbf2053fa,0xbeee4c0e,3 +np.float32,0x3e8eee2b,0x3ea4dfcc,3 +np.float32,0xfc8a03c0,0xbf800000,3 +np.float32,0xfd9e4948,0xbf800000,3 +np.float32,0x801e817e,0x801e817e,3 +np.float32,0xbf603a27,0xbf1560c3,3 +np.float32,0x7f729809,0x7f800000,3 +np.float32,0x3f5a1864,0x3fac0e04,3 +np.float32,0x3e7648b8,0x3e8b3677,3 +np.float32,0x3edade24,0x3f088bc1,3 +np.float32,0x65e16e,0x65e16e,3 +np.float32,0x3f24aa50,0x3f671117,3 +np.float32,0x803cb1d0,0x803cb1d0,3 +np.float32,0xbe7b1858,0xbe5eadcc,3 +np.float32,0xbf19bb27,0xbee726fb,3 +np.float32,0xfd1f6e60,0xbf800000,3 +np.float32,0xfeb0de60,0xbf800000,3 +np.float32,0xff511a52,0xbf800000,3 +np.float32,0xff7757f7,0xbf800000,3 +np.float32,0x463ff5,0x463ff5,3 +np.float32,0x3f770d12,0x3fcffcc2,3 +np.float32,0xbf208562,0xbeee80dc,3 +np.float32,0x6df204,0x6df204,3 +np.float32,0xbf62d24f,0xbf1673fb,3 +np.float32,0x3dfcf210,0x3e069d5f,3 +np.float32,0xbef26002,0xbec114d7,3 +np.float32,0x7f800000,0x7f800000,3 +np.float32,0x7f30fb85,0x7f800000,3 +np.float32,0x7ee5dfef,0x7f800000,3 +np.float32,0x3f317829,0x3f800611,3 +np.float32,0x3f4b0bbd,0x3f9aec88,3 +np.float32,0x7edf708c,0x7f800000,3 +np.float32,0xff071260,0xbf800000,3 +np.float32,0x3e7b8c30,0x3e8e9198,3 +np.float32,0x3f33778b,0x3f82077f,3 +np.float32,0x3e8cd11d,0x3ea215fd,3 +np.float32,0x8004483d,0x8004483d,3 +np.float32,0x801633e3,0x801633e3,3 +np.float32,0x7e76eb15,0x7f800000,3 +np.float32,0x3c1571,0x3c1571,3 +np.float32,0x7de3de52,0x7f800000,3 +np.float32,0x804ae906,0x804ae906,3 +np.float32,0x7f3a2616,0x7f800000,3 +np.float32,0xff7fffff,0xbf800000,3 +np.float32,0xff5d17e4,0xbf800000,3 +np.float32,0xbeaa6704,0xbe90f252,3 +np.float32,0x7e6a43af,0x7f800000,3 +np.float32,0x2a0f35,0x2a0f35,3 +np.float32,0xfd8fece0,0xbf800000,3 +np.float32,0xfeef2e2a,0xbf800000,3 +np.float32,0xff800000,0xbf800000,3 +np.float32,0xbeefcc52,0xbebf78e4,3 +np.float32,0x3db6c490,0x3dbf2bd5,3 +np.float32,0x8290f,0x8290f,3 +np.float32,0xbeace648,0xbe92bb7f,3 +np.float32,0x801fea79,0x801fea79,3 +np.float32,0x3ea6c230,0x3ec51ebf,3 +np.float32,0x3e5f2ca3,0x3e795c8a,3 +np.float32,0x3eb6f634,0x3edbeb9f,3 +np.float32,0xff790b45,0xbf800000,3 +np.float32,0x3d82e240,0x3d872816,3 +np.float32,0x3f0d6a57,0x3f3cc7db,3 +np.float32,0x7f08531a,0x7f800000,3 +np.float32,0x702b6d,0x702b6d,3 +np.float32,0x7d3a3c38,0x7f800000,3 +np.float32,0x3d0a7fb3,0x3d0cddf3,3 +np.float32,0xff28084c,0xbf800000,3 +np.float32,0xfeee8804,0xbf800000,3 +np.float32,0x804094eb,0x804094eb,3 +np.float32,0x7acb39,0x7acb39,3 +np.float32,0x3f01c07a,0x3f28f88c,3 +np.float32,0x3e05c500,0x3e0ee674,3 +np.float32,0xbe6f7c38,0xbe558ac1,3 +np.float32,0x803b1f4b,0x803b1f4b,3 +np.float32,0xbf76561f,0xbf1e332b,3 +np.float32,0xff30d368,0xbf800000,3 +np.float32,0x7e2e1f38,0x7f800000,3 +np.float32,0x3ee085b8,0x3f0ce7c0,3 +np.float32,0x8064c4a7,0x8064c4a7,3 +np.float32,0xa7c1d,0xa7c1d,3 +np.float32,0x3f27498a,0x3f6c14bc,3 +np.float32,0x137ca,0x137ca,3 +np.float32,0x3d0a5c60,0x3d0cb969,3 +np.float32,0x80765f1f,0x80765f1f,3 +np.float32,0x80230a71,0x80230a71,3 +np.float32,0x3f321ed2,0x3f80acf4,3 +np.float32,0x7d61e7f4,0x7f800000,3 +np.float32,0xbf39f7f2,0xbf0430f7,3 +np.float32,0xbe2503f8,0xbe1867e8,3 +np.float32,0x29333d,0x29333d,3 +np.float32,0x7edc5a0e,0x7f800000,3 +np.float32,0xbe81a8a2,0xbe651663,3 +np.float32,0x7f76ab6d,0x7f800000,3 +np.float32,0x7f46111f,0x7f800000,3 +np.float32,0xff0fc888,0xbf800000,3 +np.float32,0x805ece89,0x805ece89,3 +np.float32,0xc390b,0xc390b,3 +np.float32,0xff64bdee,0xbf800000,3 +np.float32,0x3dd07e4e,0x3ddb79bd,3 +np.float32,0xfecc1f10,0xbf800000,3 +np.float32,0x803f5177,0x803f5177,3 +np.float32,0x802a24d2,0x802a24d2,3 +np.float32,0x7f27d0cc,0x7f800000,3 +np.float32,0x3ef57c98,0x3f1d7e88,3 +np.float32,0x7b848d,0x7b848d,3 +np.float32,0x7f7fffff,0x7f800000,3 +np.float32,0xfe889c46,0xbf800000,3 +np.float32,0xff2d6dc5,0xbf800000,3 +np.float32,0x3f53a186,0x3fa492a6,3 +np.float32,0xbf239c94,0xbef1c90c,3 +np.float32,0xff7c0f4e,0xbf800000,3 +np.float32,0x3e7c69a9,0x3e8f1f3a,3 +np.float32,0xbf47c9e9,0xbf0ab2a9,3 +np.float32,0xbc1eaf00,0xbc1deae9,3 +np.float32,0x3f4a6d39,0x3f9a3d8e,3 +np.float32,0x3f677930,0x3fbc26eb,3 +np.float32,0x3f45eea1,0x3f955418,3 +np.float32,0x7f61a1f8,0x7f800000,3 +np.float32,0xff58c7c6,0xbf800000,3 +np.float32,0x80239801,0x80239801,3 +np.float32,0xff56e616,0xbf800000,3 +np.float32,0xff62052c,0xbf800000,3 +np.float32,0x8009b615,0x8009b615,3 +np.float32,0x293d6b,0x293d6b,3 +np.float32,0xfe9e585c,0xbf800000,3 +np.float32,0x7f58ff4b,0x7f800000,3 +np.float32,0x10937c,0x10937c,3 +np.float32,0x7f5cc13f,0x7f800000,3 +np.float32,0x110c5d,0x110c5d,3 +np.float32,0x805e51fc,0x805e51fc,3 +np.float32,0xbedcf70a,0xbeb3766c,3 +np.float32,0x3f4d5e42,0x3f9d8091,3 +np.float32,0xff5925a0,0xbf800000,3 +np.float32,0x7e87cafa,0x7f800000,3 +np.float32,0xbf6474b2,0xbf171fee,3 +np.float32,0x4b39b2,0x4b39b2,3 +np.float32,0x8020cc28,0x8020cc28,3 +np.float32,0xff004ed8,0xbf800000,3 +np.float32,0xbf204cf5,0xbeee448d,3 +np.float32,0x3e30cf10,0x3e40fdb1,3 +np.float32,0x80202bee,0x80202bee,3 +np.float32,0xbf55a985,0xbf10e2bc,3 +np.float32,0xbe297dd8,0xbe1c351c,3 +np.float32,0x5780d9,0x5780d9,3 +np.float32,0x7ef729fa,0x7f800000,3 +np.float32,0x8039a3b5,0x8039a3b5,3 +np.float32,0x7cdd3f,0x7cdd3f,3 +np.float32,0x7ef0145a,0x7f800000,3 +np.float32,0x807ad7ae,0x807ad7ae,3 +np.float32,0x7f6c2643,0x7f800000,3 +np.float32,0xbec56124,0xbea3c929,3 +np.float32,0x512c3b,0x512c3b,3 +np.float32,0xbed3effe,0xbead8c1e,3 +np.float32,0x7f5e0a4d,0x7f800000,3 +np.float32,0x3f315316,0x3f7fc200,3 +np.float32,0x7eca5727,0x7f800000,3 +np.float32,0x7f4834f3,0x7f800000,3 +np.float32,0x8004af6d,0x8004af6d,3 +np.float32,0x3f223ca4,0x3f6277e3,3 +np.float32,0x7eea4fdd,0x7f800000,3 +np.float32,0x3e7143e8,0x3e880763,3 +np.float32,0xbf737008,0xbf1d160e,3 +np.float32,0xfc408b00,0xbf800000,3 +np.float32,0x803912ca,0x803912ca,3 +np.float32,0x7db31f4e,0x7f800000,3 +np.float32,0xff578b54,0xbf800000,3 +np.float32,0x3f068ec4,0x3f31062b,3 +np.float32,0x35f64f,0x35f64f,3 +np.float32,0x80437df4,0x80437df4,3 +np.float32,0x568059,0x568059,3 +np.float32,0x8005f8ba,0x8005f8ba,3 +np.float32,0x6824ad,0x6824ad,3 +np.float32,0xff3fdf30,0xbf800000,3 +np.float32,0xbf6f7682,0xbf1b89d6,3 +np.float32,0x3dcea8a0,0x3dd971f5,3 +np.float32,0x3ee32a62,0x3f0ef5a9,3 +np.float32,0xbf735bcd,0xbf1d0e3d,3 +np.float32,0x7e8c7c28,0x7f800000,3 +np.float32,0x3ed552bc,0x3f045161,3 +np.float32,0xfed90a8a,0xbf800000,3 +np.float32,0xbe454368,0xbe336d2a,3 +np.float32,0xbf171d26,0xbee4442d,3 +np.float32,0x80652bf9,0x80652bf9,3 +np.float32,0xbdbaaa20,0xbdb26914,3 +np.float32,0x3f56063d,0x3fa7522e,3 +np.float32,0x3d3d4fd3,0x3d41c13f,3 +np.float32,0x80456040,0x80456040,3 +np.float32,0x3dc15586,0x3dcac0ef,3 +np.float32,0x7f753060,0x7f800000,3 +np.float32,0x7f7d8039,0x7f800000,3 +np.float32,0xfdebf280,0xbf800000,3 +np.float32,0xbf1892c3,0xbee5e116,3 +np.float32,0xbf0f1468,0xbedb3878,3 +np.float32,0x40d85c,0x40d85c,3 +np.float32,0x3f93dd,0x3f93dd,3 +np.float32,0xbf5730fd,0xbf118c24,3 +np.float32,0xfe17aa44,0xbf800000,3 +np.float32,0x3dc0baf4,0x3dca1716,3 +np.float32,0xbf3433d8,0xbf015efb,3 +np.float32,0x1c59f5,0x1c59f5,3 +np.float32,0x802b1540,0x802b1540,3 +np.float32,0xbe47df6c,0xbe35936e,3 +np.float32,0xbe8e7070,0xbe78af32,3 +np.float32,0xfe7057f4,0xbf800000,3 +np.float32,0x80668b69,0x80668b69,3 +np.float32,0xbe677810,0xbe4f2c2d,3 +np.float32,0xbe7a2f1c,0xbe5df733,3 +np.float32,0xfeb79e3c,0xbf800000,3 +np.float32,0xbeb6e320,0xbe99c9e8,3 +np.float32,0xfea188f2,0xbf800000,3 +np.float32,0x7dcaeb15,0x7f800000,3 +np.float32,0x1be567,0x1be567,3 +np.float32,0xbf4041cc,0xbf07320d,3 +np.float32,0x3f721aa7,0x3fc98e9a,3 +np.float32,0x7f5aa835,0x7f800000,3 +np.float32,0x15180e,0x15180e,3 +np.float32,0x3f73d739,0x3fcbccdb,3 +np.float32,0xbeecd380,0xbebd9b36,3 +np.float32,0x3f2caec7,0x3f768fea,3 +np.float32,0xbeaf65f2,0xbe9482bb,3 +np.float32,0xfe6aa384,0xbf800000,3 +np.float32,0xbf4f2c0a,0xbf0e085e,3 +np.float32,0xbf2b5907,0xbef9d431,3 +np.float32,0x3e855e0d,0x3e985960,3 +np.float32,0x8056cc64,0x8056cc64,3 +np.float32,0xff746bb5,0xbf800000,3 +np.float32,0x3e0332f6,0x3e0bf986,3 +np.float32,0xff637720,0xbf800000,3 +np.float32,0xbf330676,0xbf00c990,3 +np.float32,0x3ec449a1,0x3eef3862,3 +np.float32,0x766541,0x766541,3 +np.float32,0xfe2edf6c,0xbf800000,3 +np.float32,0xbebb28ca,0xbe9cc3e2,3 +np.float32,0x3f16c930,0x3f4d5ce4,3 +np.float32,0x7f1a9a4a,0x7f800000,3 +np.float32,0x3e9ba1,0x3e9ba1,3 +np.float32,0xbf73d5f6,0xbf1d3d69,3 +np.float32,0xfdc8a8b0,0xbf800000,3 +np.float32,0x50f051,0x50f051,3 +np.float32,0xff0add02,0xbf800000,3 +np.float32,0x1e50bf,0x1e50bf,3 +np.float32,0x3f04d287,0x3f2e1948,3 +np.float32,0x7f1e50,0x7f1e50,3 +np.float32,0x2affb3,0x2affb3,3 +np.float32,0x80039f07,0x80039f07,3 +np.float32,0x804ba79e,0x804ba79e,3 +np.float32,0x7b5a8eed,0x7f800000,3 +np.float32,0x3e1a8b28,0x3e26d0a7,3 +np.float32,0x3ea95f29,0x3ec8bfa4,3 +np.float32,0x7e09fa55,0x7f800000,3 +np.float32,0x7eacb1b3,0x7f800000,3 +np.float32,0x3e8ad7c0,0x3e9f7dec,3 +np.float32,0x7e0e997c,0x7f800000,3 +np.float32,0x3f4422b4,0x3f936398,3 +np.float32,0x806bd222,0x806bd222,3 +np.float32,0x677ae6,0x677ae6,3 +np.float32,0x62cf68,0x62cf68,3 +np.float32,0x7e4e594e,0x7f800000,3 +np.float32,0x80445fd1,0x80445fd1,3 +np.float32,0xff3a0d04,0xbf800000,3 +np.float32,0x8052b256,0x8052b256,3 +np.float32,0x3cb34440,0x3cb53e11,3 +np.float32,0xbf0e3865,0xbeda3c6d,3 +np.float32,0x3f49f5df,0x3f99ba17,3 +np.float32,0xbed75a22,0xbeafcc09,3 +np.float32,0xbf7aec64,0xbf1fefc8,3 +np.float32,0x7f35a62d,0x7f800000,3 +np.float32,0xbf787b03,0xbf1f03fc,3 +np.float32,0x8006a62a,0x8006a62a,3 +np.float32,0x3f6419e7,0x3fb803c7,3 +np.float32,0x3ecea2e5,0x3efe8f01,3 +np.float32,0x80603577,0x80603577,3 +np.float32,0xff73198c,0xbf800000,3 +np.float32,0x7def110a,0x7f800000,3 +np.float32,0x544efd,0x544efd,3 +np.float32,0x3f052340,0x3f2ea0fc,3 +np.float32,0xff306666,0xbf800000,3 +np.float32,0xbf800000,0xbf21d2a7,3 +np.float32,0xbed3e150,0xbead826a,3 +np.float32,0x3f430c99,0x3f92390f,3 +np.float32,0xbf4bffa4,0xbf0c9c73,3 +np.float32,0xfd97a710,0xbf800000,3 +np.float32,0x3cadf0fe,0x3cafcd1a,3 +np.float32,0x807af7b4,0x807af7b4,3 +np.float32,0xbc508600,0xbc4f33bc,3 +np.float32,0x7f3e0ec7,0x7f800000,3 +np.float32,0xbe51334c,0xbe3d36f7,3 +np.float32,0xfe7b7fb4,0xbf800000,3 +np.float32,0xfed9c45e,0xbf800000,3 +np.float32,0x3da024eb,0x3da6926a,3 +np.float32,0x7eed9e76,0x7f800000,3 +np.float32,0xbf2b8f1f,0xbefa0b91,3 +np.float32,0x3f2b9286,0x3f746318,3 +np.float32,0xfe8af49c,0xbf800000,3 +np.float32,0x9c4f7,0x9c4f7,3 +np.float32,0x801d7543,0x801d7543,3 +np.float32,0xbf66474a,0xbf17de66,3 +np.float32,0xbf562155,0xbf1116b1,3 +np.float32,0x46a8de,0x46a8de,3 +np.float32,0x8053fe6b,0x8053fe6b,3 +np.float32,0xbf6ee842,0xbf1b51f3,3 +np.float32,0xbf6ad78e,0xbf19b565,3 +np.float32,0xbf012574,0xbecad7ff,3 +np.float32,0x748364,0x748364,3 +np.float32,0x8073f59b,0x8073f59b,3 +np.float32,0xff526825,0xbf800000,3 +np.float32,0xfeb02dc4,0xbf800000,3 +np.float32,0x8033eb1c,0x8033eb1c,3 +np.float32,0x3f3685ea,0x3f8520cc,3 +np.float32,0x7f657902,0x7f800000,3 +np.float32,0xbf75eac4,0xbf1e0a1f,3 +np.float32,0xfe67f384,0xbf800000,3 +np.float32,0x3f56d3cc,0x3fa83faf,3 +np.float32,0x44a4ce,0x44a4ce,3 +np.float32,0x1dc4b3,0x1dc4b3,3 +np.float32,0x4fb3b2,0x4fb3b2,3 +np.float32,0xbea904a4,0xbe8ff3ed,3 +np.float32,0x7e668f16,0x7f800000,3 +np.float32,0x7f538378,0x7f800000,3 +np.float32,0x80541709,0x80541709,3 +np.float32,0x80228040,0x80228040,3 +np.float32,0x7ef9694e,0x7f800000,3 +np.float32,0x3f5fca9b,0x3fb2ce54,3 +np.float32,0xbe9c43c2,0xbe86ab84,3 +np.float32,0xfecee000,0xbf800000,3 +np.float32,0x5a65c2,0x5a65c2,3 +np.float32,0x3f736572,0x3fcb3985,3 +np.float32,0xbf2a03f7,0xbef87600,3 +np.float32,0xfe96b488,0xbf800000,3 +np.float32,0xfedd8800,0xbf800000,3 +np.float32,0x80411804,0x80411804,3 +np.float32,0x7edcb0a6,0x7f800000,3 +np.float32,0x2bb882,0x2bb882,3 +np.float32,0x3f800000,0x3fdbf0a9,3 +np.float32,0x764b27,0x764b27,3 +np.float32,0x7e92035d,0x7f800000,3 +np.float32,0x3e80facb,0x3e92ae1d,3 +np.float32,0x8040b81a,0x8040b81a,3 +np.float32,0x7f487fe4,0x7f800000,3 +np.float32,0xbc641780,0xbc6282ed,3 +np.float32,0x804b0bb9,0x804b0bb9,3 +np.float32,0x7d0b7c39,0x7f800000,3 +np.float32,0xff072080,0xbf800000,3 +np.float32,0xbed7aff8,0xbeb00462,3 +np.float32,0x35e247,0x35e247,3 +np.float32,0xbf7edd19,0xbf216766,3 +np.float32,0x8004a539,0x8004a539,3 +np.float32,0xfdfc1790,0xbf800000,3 +np.float32,0x8037a841,0x8037a841,3 +np.float32,0xfed0a8a8,0xbf800000,3 +np.float32,0x7f1f1697,0x7f800000,3 +np.float32,0x3f2ccc6e,0x3f76ca23,3 +np.float32,0x35eada,0x35eada,3 +np.float32,0xff111f42,0xbf800000,3 +np.float32,0x3ee1ab7f,0x3f0dcbbe,3 +np.float32,0xbf6e89ee,0xbf1b2cd4,3 +np.float32,0x3f58611c,0x3faa0cdc,3 +np.float32,0x1ac6a6,0x1ac6a6,3 +np.float32,0xbf1286fa,0xbedf2312,3 +np.float32,0x7e451137,0x7f800000,3 +np.float32,0xbe92c326,0xbe7f3405,3 +np.float32,0x3f2fdd16,0x3f7cd87b,3 +np.float32,0xbe5c0ea0,0xbe4604c2,3 +np.float32,0xbdb29968,0xbdab0883,3 +np.float32,0x3964,0x3964,3 +np.float32,0x3f0dc236,0x3f3d60a0,3 +np.float32,0x7c3faf06,0x7f800000,3 +np.float32,0xbef41f7a,0xbec22b16,3 +np.float32,0x3f4c0289,0x3f9bfdcc,3 +np.float32,0x806084e9,0x806084e9,3 +np.float32,0x3ed1d8dd,0x3f01b0c1,3 +np.float32,0x806d8d8b,0x806d8d8b,3 +np.float32,0x3f052180,0x3f2e9e0a,3 +np.float32,0x803d85d5,0x803d85d5,3 +np.float32,0x3e0afd70,0x3e14dd48,3 +np.float32,0x2fbc63,0x2fbc63,3 +np.float32,0x2e436f,0x2e436f,3 +np.float32,0xbf7b19e6,0xbf2000da,3 +np.float32,0x3f34022e,0x3f829362,3 +np.float32,0x3d2b40e0,0x3d2ee246,3 +np.float32,0x3f5298b4,0x3fa3649b,3 +np.float32,0xbdb01328,0xbda8b7de,3 +np.float32,0x7f693c81,0x7f800000,3 +np.float32,0xbeb1abc0,0xbe961edc,3 +np.float32,0x801d9b5d,0x801d9b5d,3 +np.float32,0x80628668,0x80628668,3 +np.float32,0x800f57dd,0x800f57dd,3 +np.float32,0x8017c94f,0x8017c94f,3 +np.float32,0xbf16f5f4,0xbee418b8,3 +np.float32,0x3e686476,0x3e827022,3 +np.float32,0xbf256796,0xbef3abd9,3 +np.float32,0x7f1b4485,0x7f800000,3 +np.float32,0xbea0b3cc,0xbe89ed21,3 +np.float32,0xfee08b2e,0xbf800000,3 +np.float32,0x523cb4,0x523cb4,3 +np.float32,0x3daf2cb2,0x3db6e273,3 +np.float32,0xbd531c40,0xbd4dc323,3 +np.float32,0x80078fe5,0x80078fe5,3 +np.float32,0x80800000,0x80800000,3 +np.float32,0x3f232438,0x3f642d1a,3 +np.float32,0x3ec29446,0x3eecb7c0,3 +np.float32,0x3dbcd2a4,0x3dc5cd1d,3 +np.float32,0x7f045b0d,0x7f800000,3 +np.float32,0x7f22e6d1,0x7f800000,3 +np.float32,0xbf5d3430,0xbf141c80,3 +np.float32,0xbe03ec70,0xbdf78ee6,3 +np.float32,0x3e93ec9a,0x3eab822f,3 +np.float32,0x7f3b9262,0x7f800000,3 +np.float32,0x65ac6a,0x65ac6a,3 +np.float32,0x3db9a8,0x3db9a8,3 +np.float32,0xbf37ab59,0xbf031306,3 +np.float32,0x33c40e,0x33c40e,3 +np.float32,0x7f7a478f,0x7f800000,3 +np.float32,0xbe8532d0,0xbe6a906f,3 +np.float32,0x801c081d,0x801c081d,3 +np.float32,0xbe4212a0,0xbe30ca73,3 +np.float32,0xff0b603e,0xbf800000,3 +np.float32,0x4554dc,0x4554dc,3 +np.float32,0x3dd324be,0x3dde695e,3 +np.float32,0x3f224c44,0x3f629557,3 +np.float32,0x8003cd79,0x8003cd79,3 +np.float32,0xbf31351c,0xbeffc2fd,3 +np.float32,0x8034603a,0x8034603a,3 +np.float32,0xbf6fcb70,0xbf1bab24,3 +np.float32,0x804eb67e,0x804eb67e,3 +np.float32,0xff05c00e,0xbf800000,3 +np.float32,0x3eb5b36f,0x3eda1ec7,3 +np.float32,0x3f1ed7f9,0x3f5c1d90,3 +np.float32,0x3f052d8a,0x3f2eb24b,3 +np.float32,0x5ddf51,0x5ddf51,3 +np.float32,0x7e50c11c,0x7f800000,3 +np.float32,0xff74f55a,0xbf800000,3 +np.float32,0x4322d,0x4322d,3 +np.float32,0x3f16f8a9,0x3f4db27a,3 +np.float32,0x3f4f23d6,0x3f9f7c2c,3 +np.float32,0xbf706c1e,0xbf1bea0a,3 +np.float32,0x3f2cbd52,0x3f76ac77,3 +np.float32,0xf3043,0xf3043,3 +np.float32,0xfee79de0,0xbf800000,3 +np.float32,0x7e942f69,0x7f800000,3 +np.float32,0x180139,0x180139,3 +np.float32,0xff69c678,0xbf800000,3 +np.float32,0x3f46773f,0x3f95e840,3 +np.float32,0x804aae1c,0x804aae1c,3 +np.float32,0x3eb383b4,0x3ed7024c,3 +np.float32,0x8032624e,0x8032624e,3 +np.float32,0xbd0a0f80,0xbd07c27d,3 +np.float32,0xbf1c9b98,0xbeea4a61,3 +np.float32,0x7f370999,0x7f800000,3 +np.float32,0x801931f9,0x801931f9,3 +np.float32,0x3f6f45ce,0x3fc5eea0,3 +np.float32,0xff0ab4cc,0xbf800000,3 +np.float32,0x4c043d,0x4c043d,3 +np.float32,0x8002a599,0x8002a599,3 +np.float32,0xbc4a6080,0xbc4921d7,3 +np.float32,0x3f008d14,0x3f26fb72,3 +np.float32,0x7f48b3d9,0x7f800000,3 +np.float32,0x7cb2ec7e,0x7f800000,3 +np.float32,0xbf1338bd,0xbedfeb61,3 +np.float32,0x0,0x0,3 +np.float32,0xbf2f5b64,0xbefde71c,3 +np.float32,0xbe422974,0xbe30dd56,3 +np.float32,0x3f776be8,0x3fd07950,3 +np.float32,0xbf3e97a1,0xbf06684a,3 +np.float32,0x7d28cb26,0x7f800000,3 +np.float32,0x801618d2,0x801618d2,3 +np.float32,0x807e4f83,0x807e4f83,3 +np.float32,0x8006b07d,0x8006b07d,3 +np.float32,0xfea1c042,0xbf800000,3 +np.float32,0xff24ef74,0xbf800000,3 +np.float32,0xfef7ab16,0xbf800000,3 +np.float32,0x70b771,0x70b771,3 +np.float32,0x7daeb64e,0x7f800000,3 +np.float32,0xbe66e378,0xbe4eb59c,3 +np.float32,0xbead1534,0xbe92dcf7,3 +np.float32,0x7e6769b8,0x7f800000,3 +np.float32,0x7ecd0890,0x7f800000,3 +np.float32,0xbe7380d8,0xbe58b747,3 +np.float32,0x3efa6f2f,0x3f218265,3 +np.float32,0x3f59dada,0x3fabc5eb,3 +np.float32,0xff0f2d20,0xbf800000,3 +np.float32,0x8060210e,0x8060210e,3 +np.float32,0x3ef681e8,0x3f1e51c8,3 +np.float32,0x77a6dd,0x77a6dd,3 +np.float32,0xbebfdd0e,0xbea00399,3 +np.float32,0xfe889b72,0xbf800000,3 +np.float32,0x8049ed2c,0x8049ed2c,3 +np.float32,0x3b089dc4,0x3b08c23e,3 +np.float32,0xbf13c7c4,0xbee08c28,3 +np.float32,0x3efa13b9,0x3f2137d7,3 +np.float32,0x3e9385dc,0x3eaaf914,3 +np.float32,0x7e0e6a43,0x7f800000,3 +np.float32,0x7df6d63f,0x7f800000,3 +np.float32,0x3f3efead,0x3f8dea03,3 +np.float32,0xff52548c,0xbf800000,3 +np.float32,0x803ff9d8,0x803ff9d8,3 +np.float32,0x3c825823,0x3c836303,3 +np.float32,0xfc9e97a0,0xbf800000,3 +np.float32,0xfe644f48,0xbf800000,3 +np.float32,0x802f5017,0x802f5017,3 +np.float32,0x3d5753b9,0x3d5d1661,3 +np.float32,0x7f2a55d2,0x7f800000,3 +np.float32,0x7f4dabfe,0x7f800000,3 +np.float32,0x3f49492a,0x3f98fc47,3 +np.float32,0x3f4d1589,0x3f9d2f82,3 +np.float32,0xff016208,0xbf800000,3 +np.float32,0xbf571cb7,0xbf118365,3 +np.float32,0xbf1ef297,0xbeecd136,3 +np.float32,0x36266b,0x36266b,3 +np.float32,0xbed07b0e,0xbeab4129,3 +np.float32,0x7f553365,0x7f800000,3 +np.float32,0xfe9bb8c6,0xbf800000,3 +np.float32,0xbeb497d6,0xbe982e19,3 +np.float32,0xbf27af6c,0xbef60d16,3 +np.float32,0x55cf51,0x55cf51,3 +np.float32,0x3eab1db0,0x3ecb2e4f,3 +np.float32,0x3e777603,0x3e8bf62f,3 +np.float32,0x7f10e374,0x7f800000,3 +np.float32,0xbf1f6480,0xbeed4b8d,3 +np.float32,0x40479d,0x40479d,3 +np.float32,0x156259,0x156259,3 +np.float32,0x3d852e30,0x3d899b2d,3 +np.float32,0x80014ff3,0x80014ff3,3 +np.float32,0xbd812fa8,0xbd7a645c,3 +np.float32,0x800ab780,0x800ab780,3 +np.float32,0x3ea02ff4,0x3ebc13bd,3 +np.float32,0x7e858b8e,0x7f800000,3 +np.float32,0x75d63b,0x75d63b,3 +np.float32,0xbeb15c94,0xbe95e6e3,3 +np.float32,0x3da0cee0,0x3da74a39,3 +np.float32,0xff21c01c,0xbf800000,3 +np.float32,0x8049b5eb,0x8049b5eb,3 +np.float32,0x80177ab0,0x80177ab0,3 +np.float32,0xff137a50,0xbf800000,3 +np.float32,0x3f7febba,0x3fdbd51c,3 +np.float32,0x8041e4dd,0x8041e4dd,3 +np.float32,0x99b8c,0x99b8c,3 +np.float32,0x5621ba,0x5621ba,3 +np.float32,0x14b534,0x14b534,3 +np.float32,0xbe2eb3a8,0xbe209c95,3 +np.float32,0x7e510c28,0x7f800000,3 +np.float32,0x804ec2f2,0x804ec2f2,3 +np.float32,0x3f662406,0x3fba82b0,3 +np.float32,0x800000,0x800000,3 +np.float32,0x3f3120d6,0x3f7f5d96,3 +np.float32,0x7f179b8e,0x7f800000,3 +np.float32,0x7f65278e,0x7f800000,3 +np.float32,0xfeb50f52,0xbf800000,3 +np.float32,0x7f051bd1,0x7f800000,3 +np.float32,0x7ea0558d,0x7f800000,3 +np.float32,0xbd0a96c0,0xbd08453f,3 +np.float64,0xee82da5ddd05c,0xee82da5ddd05c,1 +np.float64,0x800c3a22d7f87446,0x800c3a22d7f87446,1 +np.float64,0xbfd34b20eaa69642,0xbfd0a825e7688d3e,1 +np.float64,0x3fd6a0f2492d41e5,0x3fdb253b906057b3,1 +np.float64,0xbfda13d8783427b0,0xbfd56b1d76684332,1 +np.float64,0xbfe50b5a99ea16b5,0xbfded7dd82c6f746,1 +np.float64,0x3f82468fc0248d20,0x3f825b7fa9378ee9,1 +np.float64,0x7ff0000000000000,0x7ff0000000000000,1 +np.float64,0x856e50290adca,0x856e50290adca,1 +np.float64,0x7fde55a5fa3cab4b,0x7ff0000000000000,1 +np.float64,0x7fcf2c8dd93e591b,0x7ff0000000000000,1 +np.float64,0x8001b3a0e3236743,0x8001b3a0e3236743,1 +np.float64,0x8000fdb14821fb63,0x8000fdb14821fb63,1 +np.float64,0xbfe3645e08e6c8bc,0xbfdd161362a5e9ef,1 +np.float64,0x7feb34d28b3669a4,0x7ff0000000000000,1 +np.float64,0x80099dd810933bb1,0x80099dd810933bb1,1 +np.float64,0xbfedbcc1097b7982,0xbfe35d86414d53dc,1 +np.float64,0x7fdc406fbdb880de,0x7ff0000000000000,1 +np.float64,0x800c4bf85ab897f1,0x800c4bf85ab897f1,1 +np.float64,0x3fd8f7b0e0b1ef60,0x3fde89b497ae20d8,1 +np.float64,0xffe4fced5c69f9da,0xbff0000000000000,1 +np.float64,0xbfe54d421fea9a84,0xbfdf1be0cbfbfcba,1 +np.float64,0x800af72f3535ee5f,0x800af72f3535ee5f,1 +np.float64,0x3fe24e6570e49ccb,0x3fe8b3a86d970411,1 +np.float64,0xbfdd7b22d0baf646,0xbfd79fac2e4f7558,1 +np.float64,0xbfe6a7654c6d4eca,0xbfe03c1f13f3b409,1 +np.float64,0x3fe2c3eb662587d7,0x3fe98566e625d4f5,1 +np.float64,0x3b1ef71e763e0,0x3b1ef71e763e0,1 +np.float64,0xffed03c6baba078d,0xbff0000000000000,1 +np.float64,0x3febac19d0b75834,0x3ff5fdacc9d51bcd,1 +np.float64,0x800635d6794c6bae,0x800635d6794c6bae,1 +np.float64,0xbfe8cafc827195f9,0xbfe1411438608ae1,1 +np.float64,0x7feeb616a83d6c2c,0x7ff0000000000000,1 +np.float64,0x3fd52d62a2aa5ac5,0x3fd91a07a7f18f44,1 +np.float64,0x80036996b8a6d32e,0x80036996b8a6d32e,1 +np.float64,0x2b1945965632a,0x2b1945965632a,1 +np.float64,0xbfecb5e8c9796bd2,0xbfe2f40fca276aa2,1 +np.float64,0x3fe8669ed4f0cd3e,0x3ff24c89fc9cdbff,1 +np.float64,0x71e9f65ee3d3f,0x71e9f65ee3d3f,1 +np.float64,0xbfd5ab262bab564c,0xbfd261ae108ef79e,1 +np.float64,0xbfe7091342ee1226,0xbfe06bf5622d75f6,1 +np.float64,0x49e888d093d12,0x49e888d093d12,1 +np.float64,0x2272f3dc44e5f,0x2272f3dc44e5f,1 +np.float64,0x7fe98736e0b30e6d,0x7ff0000000000000,1 +np.float64,0x30fa9cde61f54,0x30fa9cde61f54,1 +np.float64,0x7fdc163fc0382c7f,0x7ff0000000000000,1 +np.float64,0xffb40d04ee281a08,0xbff0000000000000,1 +np.float64,0xffe624617f2c48c2,0xbff0000000000000,1 +np.float64,0x3febb582bd376b05,0x3ff608da584d1716,1 +np.float64,0xfc30a5a5f8615,0xfc30a5a5f8615,1 +np.float64,0x3fef202efd7e405e,0x3ffa52009319b069,1 +np.float64,0x8004d0259829a04c,0x8004d0259829a04c,1 +np.float64,0x800622dc71ec45ba,0x800622dc71ec45ba,1 +np.float64,0xffefffffffffffff,0xbff0000000000000,1 +np.float64,0x800e89113c9d1223,0x800e89113c9d1223,1 +np.float64,0x7fba7fde3034ffbb,0x7ff0000000000000,1 +np.float64,0xbfeea31e807d463d,0xbfe3b7369b725915,1 +np.float64,0x3feb7c9589f6f92c,0x3ff5c56cf71b0dff,1 +np.float64,0x3fd52d3b59aa5a77,0x3fd919d0f683fd07,1 +np.float64,0x800de90a43fbd215,0x800de90a43fbd215,1 +np.float64,0x3fe7eb35a9efd66b,0x3ff1c940dbfc6ef9,1 +np.float64,0xbda0adcb7b416,0xbda0adcb7b416,1 +np.float64,0x7fc5753e3a2aea7b,0x7ff0000000000000,1 +np.float64,0xffdd101d103a203a,0xbff0000000000000,1 +np.float64,0x7fcb54f56836a9ea,0x7ff0000000000000,1 +np.float64,0xbfd61c8d6eac391a,0xbfd2b23bc0a2cef4,1 +np.float64,0x3feef55de37deabc,0x3ffa198639a0161d,1 +np.float64,0x7fe4ffbfaea9ff7e,0x7ff0000000000000,1 +np.float64,0x9d1071873a20e,0x9d1071873a20e,1 +np.float64,0x3fef1ecb863e3d97,0x3ffa502a81e09cfc,1 +np.float64,0xad2da12b5a5b4,0xad2da12b5a5b4,1 +np.float64,0xffe614b74c6c296e,0xbff0000000000000,1 +np.float64,0xffe60d3f286c1a7e,0xbff0000000000000,1 +np.float64,0x7fda7d91f4b4fb23,0x7ff0000000000000,1 +np.float64,0x800023f266a047e6,0x800023f266a047e6,1 +np.float64,0x7fdf5f9ad23ebf35,0x7ff0000000000000,1 +np.float64,0x3fa7459f002e8b3e,0x3fa7cf178dcf0af6,1 +np.float64,0x3fe9938d61f3271b,0x3ff39516a13caec3,1 +np.float64,0xbfd59314c3ab262a,0xbfd250830f73efd2,1 +np.float64,0xbfc7e193f72fc328,0xbfc5c924339dd7a8,1 +np.float64,0x7fec1965f17832cb,0x7ff0000000000000,1 +np.float64,0xbfd932908eb26522,0xbfd4d4312d272580,1 +np.float64,0xbfdf2d08e2be5a12,0xbfd8add1413b0b1b,1 +np.float64,0x7fdcf7cc74b9ef98,0x7ff0000000000000,1 +np.float64,0x7fc79300912f2600,0x7ff0000000000000,1 +np.float64,0xffd4bd8f23297b1e,0xbff0000000000000,1 +np.float64,0x41869ce0830e,0x41869ce0830e,1 +np.float64,0x3fe5dcec91ebb9da,0x3fef5e213598cbd4,1 +np.float64,0x800815d9c2902bb4,0x800815d9c2902bb4,1 +np.float64,0x800ba1a4b877434a,0x800ba1a4b877434a,1 +np.float64,0x80069d7bdc4d3af8,0x80069d7bdc4d3af8,1 +np.float64,0xcf00d4339e01b,0xcf00d4339e01b,1 +np.float64,0x80072b71bd4e56e4,0x80072b71bd4e56e4,1 +np.float64,0x80059ca6fbab394f,0x80059ca6fbab394f,1 +np.float64,0x3fe522fc092a45f8,0x3fedf212682bf894,1 +np.float64,0x7fe17f384ea2fe70,0x7ff0000000000000,1 +np.float64,0x0,0x0,1 +np.float64,0x3f72bb4c20257698,0x3f72c64766b52069,1 +np.float64,0x7fbc97c940392f92,0x7ff0000000000000,1 +np.float64,0xffc5904ebd2b209c,0xbff0000000000000,1 +np.float64,0xbfe34fb55b669f6a,0xbfdcff81dd30a49d,1 +np.float64,0x8007ccda006f99b5,0x8007ccda006f99b5,1 +np.float64,0x3fee50e4c8fca1ca,0x3ff9434c7750ad0f,1 +np.float64,0x7fee7b07c67cf60f,0x7ff0000000000000,1 +np.float64,0x3fdcce4a5a399c95,0x3fe230c83f28218a,1 +np.float64,0x7fee5187b37ca30e,0x7ff0000000000000,1 +np.float64,0x3fc48f6a97291ed8,0x3fc64db6200a9833,1 +np.float64,0xc7fec3498ffd9,0xc7fec3498ffd9,1 +np.float64,0x800769c59d2ed38c,0x800769c59d2ed38c,1 +np.float64,0xffe69ede782d3dbc,0xbff0000000000000,1 +np.float64,0x3fecd9770979b2ee,0x3ff76a1f2f0f08f2,1 +np.float64,0x5aa358a8b546c,0x5aa358a8b546c,1 +np.float64,0xbfe795a0506f2b40,0xbfe0afcc52c0166b,1 +np.float64,0xffd4ada1e8a95b44,0xbff0000000000000,1 +np.float64,0xffcac1dc213583b8,0xbff0000000000000,1 +np.float64,0xffe393c15fa72782,0xbff0000000000000,1 +np.float64,0xbfcd6a3c113ad478,0xbfca47a2157b9cdd,1 +np.float64,0xffedde20647bbc40,0xbff0000000000000,1 +np.float64,0x3fd0d011b1a1a024,0x3fd33a57945559f4,1 +np.float64,0x3fef27e29f7e4fc6,0x3ffa5c314e0e3d69,1 +np.float64,0xffe96ff71f72dfee,0xbff0000000000000,1 +np.float64,0xffe762414f2ec482,0xbff0000000000000,1 +np.float64,0x3fc2dcfd3d25b9fa,0x3fc452f41682a12e,1 +np.float64,0xbfbdb125b63b6248,0xbfbc08e6553296d4,1 +np.float64,0x7b915740f724,0x7b915740f724,1 +np.float64,0x60b502b2c16a1,0x60b502b2c16a1,1 +np.float64,0xbfeb38b0be367162,0xbfe254f6782cfc47,1 +np.float64,0x800dc39a3edb8735,0x800dc39a3edb8735,1 +np.float64,0x3fea4fb433349f68,0x3ff468b97cf699f5,1 +np.float64,0xbfd49967962932d0,0xbfd19ceb41ff4cd0,1 +np.float64,0xbfebf75cd377eeba,0xbfe2a576bdbccccc,1 +np.float64,0xbfb653d65c2ca7b0,0xbfb561ab8fcb3f26,1 +np.float64,0xffe3f34b8727e696,0xbff0000000000000,1 +np.float64,0x3fdd798064baf301,0x3fe2b7c130a6fc63,1 +np.float64,0x3febe027e6b7c050,0x3ff63bac1b22e12d,1 +np.float64,0x7fcaa371af3546e2,0x7ff0000000000000,1 +np.float64,0xbfe6ee980a2ddd30,0xbfe05f0bc5dc80d2,1 +np.float64,0xc559c33f8ab39,0xc559c33f8ab39,1 +np.float64,0x84542c2b08a86,0x84542c2b08a86,1 +np.float64,0xbfe5645e046ac8bc,0xbfdf3398dc3cc1bd,1 +np.float64,0x3fee8c48ae7d1892,0x3ff9902899480526,1 +np.float64,0x3fb706471c2e0c8e,0x3fb817787aace8db,1 +np.float64,0x7fefe78f91ffcf1e,0x7ff0000000000000,1 +np.float64,0xbfcf6d560b3edaac,0xbfcbddc72a2130df,1 +np.float64,0x7fd282bfd925057f,0x7ff0000000000000,1 +np.float64,0x3fb973dbee32e7b8,0x3fbac2c87cbd0215,1 +np.float64,0x3fd1ce38ff239c72,0x3fd4876de5164420,1 +np.float64,0x8008ac2e3c31585d,0x8008ac2e3c31585d,1 +np.float64,0x3fa05e06dc20bc00,0x3fa0a1b7de904dce,1 +np.float64,0x7fd925f215324be3,0x7ff0000000000000,1 +np.float64,0x3f949d95d0293b2c,0x3f94d31197d51874,1 +np.float64,0xffdded9e67bbdb3c,0xbff0000000000000,1 +np.float64,0x3fed390dcfba721c,0x3ff7e08c7a709240,1 +np.float64,0x7fe6e62300adcc45,0x7ff0000000000000,1 +np.float64,0xbfd779bc312ef378,0xbfd3a6cb64bb0181,1 +np.float64,0x3fe43e9877287d31,0x3fec3e100ef935fd,1 +np.float64,0x210b68e44216e,0x210b68e44216e,1 +np.float64,0x3fcdffc1e73bff84,0x3fd0e729d02ec539,1 +np.float64,0xcea10c0f9d422,0xcea10c0f9d422,1 +np.float64,0x7feb97a82d772f4f,0x7ff0000000000000,1 +np.float64,0x9b4b4d953696a,0x9b4b4d953696a,1 +np.float64,0x3fd1bd8e95237b1d,0x3fd4716dd34cf828,1 +np.float64,0x800fc273841f84e7,0x800fc273841f84e7,1 +np.float64,0xbfd2aef167255de2,0xbfd0340f30d82f18,1 +np.float64,0x800d021a551a0435,0x800d021a551a0435,1 +np.float64,0xffebf934a8b7f268,0xbff0000000000000,1 +np.float64,0x3fd819849fb03308,0x3fdd43bca0aac749,1 +np.float64,0x7ff8000000000000,0x7ff8000000000000,1 +np.float64,0x27c34b064f86a,0x27c34b064f86a,1 +np.float64,0x7fef4f5a373e9eb3,0x7ff0000000000000,1 +np.float64,0x7fd92fccce325f99,0x7ff0000000000000,1 +np.float64,0x800520869d6a410e,0x800520869d6a410e,1 +np.float64,0x3fccbcaddf397958,0x3fd01bf6b0c4d97f,1 +np.float64,0x80039ebfc4273d80,0x80039ebfc4273d80,1 +np.float64,0xbfed1f0b3c7a3e16,0xbfe31ea6e4c69141,1 +np.float64,0x7fee1bb7c4bc376f,0x7ff0000000000000,1 +np.float64,0xbfa8bee1d8317dc0,0xbfa8283b7dbf95a9,1 +np.float64,0x3fe797db606f2fb6,0x3ff171b1c2bc8fe5,1 +np.float64,0xbfee2ecfdbbc5da0,0xbfe38a3f0a43d14e,1 +np.float64,0x3fe815c7f1302b90,0x3ff1f65165c45d71,1 +np.float64,0xbfbb265c94364cb8,0xbfb9c27ec61a9a1d,1 +np.float64,0x3fcf1cab5d3e3957,0x3fd19c07444642f9,1 +np.float64,0xbfe6ae753f6d5cea,0xbfe03f99666dbe17,1 +np.float64,0xbfd18a2a73a31454,0xbfceaee204aca016,1 +np.float64,0x3fb8a1dffc3143c0,0x3fb9db38341ab1a3,1 +np.float64,0x7fd2a0376025406e,0x7ff0000000000000,1 +np.float64,0x7fe718c0e3ae3181,0x7ff0000000000000,1 +np.float64,0x3fb264d42424c9a8,0x3fb3121f071d4db4,1 +np.float64,0xd27190a7a4e32,0xd27190a7a4e32,1 +np.float64,0xbfe467668c68cecd,0xbfde2c4616738d5e,1 +np.float64,0x800ab9a2b9357346,0x800ab9a2b9357346,1 +np.float64,0x7fcbd108d537a211,0x7ff0000000000000,1 +np.float64,0x3fb79bba6e2f3770,0x3fb8bb2c140d3445,1 +np.float64,0xffefa7165e3f4e2c,0xbff0000000000000,1 +np.float64,0x7fb40185a428030a,0x7ff0000000000000,1 +np.float64,0xbfe9e3d58e73c7ab,0xbfe1c04d51c83d69,1 +np.float64,0x7fef5b97b17eb72e,0x7ff0000000000000,1 +np.float64,0x800a2957683452af,0x800a2957683452af,1 +np.float64,0x800f54f1925ea9e3,0x800f54f1925ea9e3,1 +np.float64,0xeffa4e77dff4a,0xeffa4e77dff4a,1 +np.float64,0xffbe501aa03ca038,0xbff0000000000000,1 +np.float64,0x8006c651bced8ca4,0x8006c651bced8ca4,1 +np.float64,0x3fe159faff22b3f6,0x3fe708f78efbdbed,1 +np.float64,0x800e7d59a31cfab3,0x800e7d59a31cfab3,1 +np.float64,0x3fe6ac2f272d585e,0x3ff07ee5305385c3,1 +np.float64,0x7fd014c054202980,0x7ff0000000000000,1 +np.float64,0xbfe4800b11e90016,0xbfde4648c6f29ce5,1 +np.float64,0xbfe6738470ece709,0xbfe0227b5b42b713,1 +np.float64,0x3fed052add3a0a56,0x3ff7a01819e65c6e,1 +np.float64,0xffe03106f120620e,0xbff0000000000000,1 +np.float64,0x7fe11df4d4e23be9,0x7ff0000000000000,1 +np.float64,0xbfcea25d7b3d44bc,0xbfcb3e808e7ce852,1 +np.float64,0xd0807b03a1010,0xd0807b03a1010,1 +np.float64,0x8004eda4fec9db4b,0x8004eda4fec9db4b,1 +np.float64,0x3fceb5c98d3d6b90,0x3fd15a894b15dd9f,1 +np.float64,0xbfee27228afc4e45,0xbfe38741702f3c0b,1 +np.float64,0xbfe606278c6c0c4f,0xbfdfd7cb6093652d,1 +np.float64,0xbfd66f59bc2cdeb4,0xbfd2ecb2297f6afc,1 +np.float64,0x4aee390095dc8,0x4aee390095dc8,1 +np.float64,0xbfe391355d67226a,0xbfdd46ddc0997014,1 +np.float64,0xffd27765e7a4eecc,0xbff0000000000000,1 +np.float64,0xbfe795e20a2f2bc4,0xbfe0afebc66c4dbd,1 +np.float64,0x7fc9a62e81334c5c,0x7ff0000000000000,1 +np.float64,0xffe4e57e52a9cafc,0xbff0000000000000,1 +np.float64,0x7fac326c8c3864d8,0x7ff0000000000000,1 +np.float64,0x3fe8675f6370cebf,0x3ff24d5863029c15,1 +np.float64,0x7fcf4745e73e8e8b,0x7ff0000000000000,1 +np.float64,0x7fcc9aec9f3935d8,0x7ff0000000000000,1 +np.float64,0x3fec2e8fcab85d20,0x3ff699ccd0b2fed6,1 +np.float64,0x3fd110a968222153,0x3fd38e81a88c2d13,1 +np.float64,0xffb3a68532274d08,0xbff0000000000000,1 +np.float64,0xf0e562bbe1cad,0xf0e562bbe1cad,1 +np.float64,0xbfe815b9e5f02b74,0xbfe0ec9f5023aebc,1 +np.float64,0xbf5151d88022a400,0xbf514f80c465feea,1 +np.float64,0x2547e3144a8fd,0x2547e3144a8fd,1 +np.float64,0x3fedcc0c28fb9818,0x3ff899612fbeb4c5,1 +np.float64,0x3fdc3d1c0f387a38,0x3fe1bf6e2d39bd75,1 +np.float64,0x7fe544dbe62a89b7,0x7ff0000000000000,1 +np.float64,0x8001500e48e2a01d,0x8001500e48e2a01d,1 +np.float64,0xbfed3b2b09fa7656,0xbfe329f3e7bada64,1 +np.float64,0xbfe76a943aeed528,0xbfe09b24e3aa3f79,1 +np.float64,0x3fe944330e328866,0x3ff33d472dee70c5,1 +np.float64,0x8004bbbd6cc9777c,0x8004bbbd6cc9777c,1 +np.float64,0xbfe28133fb650268,0xbfdc1ac230ac4ef5,1 +np.float64,0xc1370af7826e2,0xc1370af7826e2,1 +np.float64,0x7fcfa47f5f3f48fe,0x7ff0000000000000,1 +np.float64,0xbfa3002a04260050,0xbfa2a703a538b54e,1 +np.float64,0xffef44f3903e89e6,0xbff0000000000000,1 +np.float64,0xc32cce298659a,0xc32cce298659a,1 +np.float64,0x7b477cc2f68f0,0x7b477cc2f68f0,1 +np.float64,0x40a7f4ec814ff,0x40a7f4ec814ff,1 +np.float64,0xffee38edf67c71db,0xbff0000000000000,1 +np.float64,0x3fe23f6f1ce47ede,0x3fe8992b8bb03499,1 +np.float64,0x7fc8edfe7f31dbfc,0x7ff0000000000000,1 +np.float64,0x800bb8e6fb3771ce,0x800bb8e6fb3771ce,1 +np.float64,0xbfe11d364ee23a6c,0xbfda82a0c2ef9e46,1 +np.float64,0xbfeb993cb4b7327a,0xbfe27df565da85dc,1 +np.float64,0x10000000000000,0x10000000000000,1 +np.float64,0x3fc1f997d723f330,0x3fc34c5cff060af1,1 +np.float64,0x6e326fa0dc64f,0x6e326fa0dc64f,1 +np.float64,0x800fa30c2c5f4618,0x800fa30c2c5f4618,1 +np.float64,0x7fed16ad603a2d5a,0x7ff0000000000000,1 +np.float64,0x9411cf172823a,0x9411cf172823a,1 +np.float64,0xffece51d4cb9ca3a,0xbff0000000000000,1 +np.float64,0x3fdda3d1453b47a3,0x3fe2d954f7849890,1 +np.float64,0xffd58330172b0660,0xbff0000000000000,1 +np.float64,0xbfc6962ae52d2c54,0xbfc4b4bdf0069f17,1 +np.float64,0xbfb4010a8e280218,0xbfb33e1236f7efa0,1 +np.float64,0x7fd0444909208891,0x7ff0000000000000,1 +np.float64,0xbfe027a24de04f44,0xbfd95e9064101e7c,1 +np.float64,0xa6f3f3214de9,0xa6f3f3214de9,1 +np.float64,0xbfe112eb0fe225d6,0xbfda768f7cbdf346,1 +np.float64,0xbfe99e90d4b33d22,0xbfe1a153e45a382a,1 +np.float64,0xffecb34f8e79669e,0xbff0000000000000,1 +np.float64,0xbfdf32c9653e6592,0xbfd8b159caf5633d,1 +np.float64,0x3fe9519829b2a330,0x3ff34c0a8152e20f,1 +np.float64,0xffd08ec8a7a11d92,0xbff0000000000000,1 +np.float64,0xffd19b71b6a336e4,0xbff0000000000000,1 +np.float64,0x7feda6b9377b4d71,0x7ff0000000000000,1 +np.float64,0x800fda2956bfb453,0x800fda2956bfb453,1 +np.float64,0x3fe54f601bea9ec0,0x3fee483cb03cbde4,1 +np.float64,0xbfe2a8ad5ee5515a,0xbfdc46ee7a10bf0d,1 +np.float64,0xbfd336c8bd266d92,0xbfd09916d432274a,1 +np.float64,0xfff0000000000000,0xbff0000000000000,1 +np.float64,0x3fd9a811a9b35024,0x3fdf8fa68cc048e3,1 +np.float64,0x3fe078c68520f18d,0x3fe58aecc1f9649b,1 +np.float64,0xbfc6d5aa3a2dab54,0xbfc4e9ea84f3d73c,1 +np.float64,0xf9682007f2d04,0xf9682007f2d04,1 +np.float64,0x3fee54523dbca8a4,0x3ff947b826de81f4,1 +np.float64,0x80461e5d008c4,0x80461e5d008c4,1 +np.float64,0x3fdd6d12d5bada26,0x3fe2ade8dee2fa02,1 +np.float64,0x3fcd5f0dfd3abe18,0x3fd081d6cd25731d,1 +np.float64,0x7fa36475c826c8eb,0x7ff0000000000000,1 +np.float64,0xbfdf3ce052be79c0,0xbfd8b78baccfb908,1 +np.float64,0x7fcd890dd13b121b,0x7ff0000000000000,1 +np.float64,0x8000000000000001,0x8000000000000001,1 +np.float64,0x800ec0f4281d81e8,0x800ec0f4281d81e8,1 +np.float64,0xbfba960116352c00,0xbfb94085424496d9,1 +np.float64,0x3fdddedc9bbbbdb8,0x3fe30853fe4ef5ce,1 +np.float64,0x238092a847013,0x238092a847013,1 +np.float64,0xbfe38d4803271a90,0xbfdd429a955c46af,1 +np.float64,0xbfd4c9067329920c,0xbfd1bf6255ed91a4,1 +np.float64,0xbfbee213923dc428,0xbfbd17ce1bda6088,1 +np.float64,0xffd5a2d337ab45a6,0xbff0000000000000,1 +np.float64,0x7fe21bfcf82437f9,0x7ff0000000000000,1 +np.float64,0x3fe2a2714da544e3,0x3fe949594a74ea25,1 +np.float64,0x800e05cf8ebc0b9f,0x800e05cf8ebc0b9f,1 +np.float64,0x559a1526ab343,0x559a1526ab343,1 +np.float64,0xffe6a1b7906d436e,0xbff0000000000000,1 +np.float64,0xffef27d6253e4fab,0xbff0000000000000,1 +np.float64,0xbfe0f90ab0a1f216,0xbfda5828a1edde48,1 +np.float64,0x9675d2ab2cebb,0x9675d2ab2cebb,1 +np.float64,0xffee0f7eecfc1efd,0xbff0000000000000,1 +np.float64,0x2ec005625d801,0x2ec005625d801,1 +np.float64,0x7fde35ff14bc6bfd,0x7ff0000000000000,1 +np.float64,0xffe03f36d9e07e6d,0xbff0000000000000,1 +np.float64,0x7fe09ff7c4213fef,0x7ff0000000000000,1 +np.float64,0xffeac29dd1b5853b,0xbff0000000000000,1 +np.float64,0x3fb63120aa2c6241,0x3fb72ea3de98a853,1 +np.float64,0xffd079eb84a0f3d8,0xbff0000000000000,1 +np.float64,0xbfd3c2cc75a78598,0xbfd1005996880b3f,1 +np.float64,0x7fb80507ee300a0f,0x7ff0000000000000,1 +np.float64,0xffe8006105f000c1,0xbff0000000000000,1 +np.float64,0x8009138b0ab22716,0x8009138b0ab22716,1 +np.float64,0xbfd6dfb40b2dbf68,0xbfd33b8e4008e3b0,1 +np.float64,0xbfe7c2cf9bef859f,0xbfe0c55c807460df,1 +np.float64,0xbfe75fe4da6ebfca,0xbfe09600256d3b81,1 +np.float64,0xffd662fc73acc5f8,0xbff0000000000000,1 +np.float64,0x20b99dbc41735,0x20b99dbc41735,1 +np.float64,0x3fe10b38ade21671,0x3fe68229a9bbeefc,1 +np.float64,0x3743b99c6e878,0x3743b99c6e878,1 +np.float64,0xff9eb5ed903d6be0,0xbff0000000000000,1 +np.float64,0x3ff0000000000000,0x3ffb7e151628aed3,1 +np.float64,0xffb9e0569e33c0b0,0xbff0000000000000,1 +np.float64,0x7fd39c804fa73900,0x7ff0000000000000,1 +np.float64,0x3fe881ef67f103df,0x3ff269dd704b7129,1 +np.float64,0x1b6eb40236dd7,0x1b6eb40236dd7,1 +np.float64,0xbfe734ea432e69d4,0xbfe0813e6355d02f,1 +np.float64,0xffcf48f3743e91e8,0xbff0000000000000,1 +np.float64,0xffed10bcf6fa2179,0xbff0000000000000,1 +np.float64,0x3fef07723b7e0ee4,0x3ffa3156123f3c15,1 +np.float64,0xffe45c704aa8b8e0,0xbff0000000000000,1 +np.float64,0xb7b818d96f703,0xb7b818d96f703,1 +np.float64,0x42fcc04085f99,0x42fcc04085f99,1 +np.float64,0xbfda7ced01b4f9da,0xbfd5b0ce1e5524ae,1 +np.float64,0xbfe1e5963d63cb2c,0xbfdb6a87b6c09185,1 +np.float64,0x7fdfa18003bf42ff,0x7ff0000000000000,1 +np.float64,0xbfe3790a43e6f214,0xbfdd2c9a38b4f089,1 +np.float64,0xffe0ff5b9ae1feb6,0xbff0000000000000,1 +np.float64,0x80085a7d3110b4fb,0x80085a7d3110b4fb,1 +np.float64,0xffd6bfa6622d7f4c,0xbff0000000000000,1 +np.float64,0xbfef5ddc7cfebbb9,0xbfe3fe170521593e,1 +np.float64,0x3fc21773fa242ee8,0x3fc36ebda1f91a72,1 +np.float64,0x7fc04d98da209b31,0x7ff0000000000000,1 +np.float64,0xbfeba3b535b7476a,0xbfe282602e3c322e,1 +np.float64,0xffd41fb5c1a83f6c,0xbff0000000000000,1 +np.float64,0xf87d206df0fa4,0xf87d206df0fa4,1 +np.float64,0x800060946fc0c12a,0x800060946fc0c12a,1 +np.float64,0x3fe69d5f166d3abe,0x3ff06fdddcf4ca93,1 +np.float64,0x7fe9b5793b336af1,0x7ff0000000000000,1 +np.float64,0x7fe0dd4143e1ba82,0x7ff0000000000000,1 +np.float64,0xbfa8eaea3c31d5d0,0xbfa8522e397da3bd,1 +np.float64,0x119f0078233e1,0x119f0078233e1,1 +np.float64,0xbfd78a207aaf1440,0xbfd3b225bbf2ab4f,1 +np.float64,0xc66a6d4d8cd4e,0xc66a6d4d8cd4e,1 +np.float64,0xe7fc4b57cff8a,0xe7fc4b57cff8a,1 +np.float64,0x800883e8091107d0,0x800883e8091107d0,1 +np.float64,0x3fa6520c842ca419,0x3fa6d06e1041743a,1 +np.float64,0x3fa563182c2ac630,0x3fa5d70e27a84c97,1 +np.float64,0xe6a30b61cd462,0xe6a30b61cd462,1 +np.float64,0x3fee85dac37d0bb6,0x3ff987cfa41a9778,1 +np.float64,0x3fe8f621db71ec44,0x3ff2e7b768a2e9d0,1 +np.float64,0x800f231d861e463b,0x800f231d861e463b,1 +np.float64,0xbfe22eb07c645d61,0xbfdbbdbb853ab4c6,1 +np.float64,0x7fd2dda2dea5bb45,0x7ff0000000000000,1 +np.float64,0xbfd09b79a0a136f4,0xbfcd4147606ffd27,1 +np.float64,0xca039cc394074,0xca039cc394074,1 +np.float64,0x8000000000000000,0x8000000000000000,1 +np.float64,0xcb34575d9668b,0xcb34575d9668b,1 +np.float64,0x3fea62c1f3f4c584,0x3ff47e6dc67ec89f,1 +np.float64,0x7fe544c8606a8990,0x7ff0000000000000,1 +np.float64,0xffe0a980c4615301,0xbff0000000000000,1 +np.float64,0x3fdd67d5f8bacfac,0x3fe2a9c3421830f1,1 +np.float64,0xffe41d3dda283a7b,0xbff0000000000000,1 +np.float64,0xffeed59e5ffdab3c,0xbff0000000000000,1 +np.float64,0xffeeae8326fd5d05,0xbff0000000000000,1 +np.float64,0x800d70b4fa7ae16a,0x800d70b4fa7ae16a,1 +np.float64,0xffec932e6839265c,0xbff0000000000000,1 +np.float64,0xee30b185dc616,0xee30b185dc616,1 +np.float64,0x7fc3cf4397279e86,0x7ff0000000000000,1 +np.float64,0xbfeab34f1875669e,0xbfe21b868229de7d,1 +np.float64,0xf45f5f7de8bec,0xf45f5f7de8bec,1 +np.float64,0x3fad2c4b203a5896,0x3fae0528b568f3cf,1 +np.float64,0xbfe2479543e48f2a,0xbfdbd9e57cf64028,1 +np.float64,0x3fd41a1473283429,0x3fd79df2bc60debb,1 +np.float64,0x3febb5155ef76a2a,0x3ff608585afd698b,1 +np.float64,0xffe21f5303e43ea6,0xbff0000000000000,1 +np.float64,0x7fe9ef390833de71,0x7ff0000000000000,1 +np.float64,0xffe8ee873d71dd0e,0xbff0000000000000,1 +np.float64,0x7fd7cbc55e2f978a,0x7ff0000000000000,1 +np.float64,0x80081f9080d03f21,0x80081f9080d03f21,1 +np.float64,0x7fecbafc8b3975f8,0x7ff0000000000000,1 +np.float64,0x800b6c4b0b16d896,0x800b6c4b0b16d896,1 +np.float64,0xbfaa0fc2d4341f80,0xbfa968cdf32b98ad,1 +np.float64,0x3fec79fe4078f3fc,0x3ff6f5361a4a5d93,1 +np.float64,0xbfb14b79de2296f0,0xbfb0b93b75ecec11,1 +np.float64,0x800009d084c013a2,0x800009d084c013a2,1 +np.float64,0x4a4cdfe29499d,0x4a4cdfe29499d,1 +np.float64,0xbfe721c2d56e4386,0xbfe077f541987d76,1 +np.float64,0x3e5f539e7cbeb,0x3e5f539e7cbeb,1 +np.float64,0x3fd23f044c247e09,0x3fd51ceafcdd64aa,1 +np.float64,0x3fc70785b02e0f0b,0x3fc93b2a37eb342a,1 +np.float64,0xbfe7ab4ec7af569e,0xbfe0ba28eecbf6b0,1 +np.float64,0x800c1d4134583a83,0x800c1d4134583a83,1 +np.float64,0xffd9a73070334e60,0xbff0000000000000,1 +np.float64,0x68a4bf24d1499,0x68a4bf24d1499,1 +np.float64,0x7feba9d9507753b2,0x7ff0000000000000,1 +np.float64,0xbfe9d747db73ae90,0xbfe1bab53d932010,1 +np.float64,0x800a9a4aed953496,0x800a9a4aed953496,1 +np.float64,0xffcb89b0ad371360,0xbff0000000000000,1 +np.float64,0xbfc62388b82c4710,0xbfc4547be442a38c,1 +np.float64,0x800a006d187400db,0x800a006d187400db,1 +np.float64,0x3fcef2fbd33de5f8,0x3fd18177b2150148,1 +np.float64,0x8000b74e3da16e9d,0x8000b74e3da16e9d,1 +np.float64,0x25be536e4b7cb,0x25be536e4b7cb,1 +np.float64,0x3fa86e189430dc31,0x3fa905b4684c9f01,1 +np.float64,0xa7584b114eb0a,0xa7584b114eb0a,1 +np.float64,0x800331133c866227,0x800331133c866227,1 +np.float64,0x3fb52b48142a5690,0x3fb611a6f6e7c664,1 +np.float64,0x3fe825797cf04af2,0x3ff206fd60e98116,1 +np.float64,0x3fd0bec4e5217d8a,0x3fd323db3ffd59b2,1 +np.float64,0x907b43a120f7,0x907b43a120f7,1 +np.float64,0x3fed31eb1d3a63d6,0x3ff7d7a91c6930a4,1 +np.float64,0x7f97a13d782f427a,0x7ff0000000000000,1 +np.float64,0xffc7121a702e2434,0xbff0000000000000,1 +np.float64,0xbfe8bb4cbbf1769a,0xbfe139d7f46f1fb1,1 +np.float64,0xbfe3593cc5a6b27a,0xbfdd09ec91d6cd48,1 +np.float64,0x7fcff218ff9ff,0x7fcff218ff9ff,1 +np.float64,0x3fe73651d4ae6ca4,0x3ff10c5c1d21d127,1 +np.float64,0x80054e396eaa9c74,0x80054e396eaa9c74,1 +np.float64,0x3fe527d5f9aa4fac,0x3fedfb7743db9b53,1 +np.float64,0x7fec6f28c5f8de51,0x7ff0000000000000,1 +np.float64,0x3fcd2bbff53a5780,0x3fd061987416b49b,1 +np.float64,0xffd1f0046423e008,0xbff0000000000000,1 +np.float64,0x80034d97fac69b31,0x80034d97fac69b31,1 +np.float64,0x3faa803f14350080,0x3fab32e3f8073be4,1 +np.float64,0x3fcf8da0163f1b40,0x3fd1e42ba2354c8e,1 +np.float64,0x3fd573c2632ae785,0x3fd97c37609d18d7,1 +np.float64,0x7f922960482452c0,0x7ff0000000000000,1 +np.float64,0x800ebd0c5d3d7a19,0x800ebd0c5d3d7a19,1 +np.float64,0xbfee63b7807cc76f,0xbfe39ec7981035db,1 +np.float64,0xffdc023f8e380480,0xbff0000000000000,1 +np.float64,0x3fe3ffa02c67ff40,0x3febc7f8b900ceba,1 +np.float64,0x36c508b86d8a2,0x36c508b86d8a2,1 +np.float64,0x3fc9fbb0f133f760,0x3fcccee9f6ba801c,1 +np.float64,0x3fd75c1d5faeb83b,0x3fdc3150f9eff99e,1 +np.float64,0x3fe9a8d907b351b2,0x3ff3accc78a31df8,1 +np.float64,0x3fdd8fdcafbb1fb8,0x3fe2c97c97757994,1 +np.float64,0x3fb10c34ca22186a,0x3fb1a0cc42c76b86,1 +np.float64,0xbff0000000000000,0xbfe43a54e4e98864,1 +np.float64,0xffd046aefda08d5e,0xbff0000000000000,1 +np.float64,0x80067989758cf314,0x80067989758cf314,1 +np.float64,0x3fee9d77763d3aef,0x3ff9a67ff0841ba5,1 +np.float64,0xffe4d3cbf8e9a798,0xbff0000000000000,1 +np.float64,0x800f9cab273f3956,0x800f9cab273f3956,1 +np.float64,0x800a5c84f9f4b90a,0x800a5c84f9f4b90a,1 +np.float64,0x4fd377009fa8,0x4fd377009fa8,1 +np.float64,0xbfe7ba26af6f744e,0xbfe0c13ce45d6f95,1 +np.float64,0x609c8a86c1392,0x609c8a86c1392,1 +np.float64,0x7fe4d0296ea9a052,0x7ff0000000000000,1 +np.float64,0x59847bccb3090,0x59847bccb3090,1 +np.float64,0xbfdf944157bf2882,0xbfd8ed092bacad43,1 +np.float64,0xbfe7560a632eac15,0xbfe091405ec34973,1 +np.float64,0x3fea0699f4340d34,0x3ff415eb72089230,1 +np.float64,0x800a5533f374aa68,0x800a5533f374aa68,1 +np.float64,0xbf8e8cdb103d19c0,0xbf8e52cffcb83774,1 +np.float64,0x3fe87d9e52f0fb3d,0x3ff2653952344b81,1 +np.float64,0x7fca3950f73472a1,0x7ff0000000000000,1 +np.float64,0xffd5d1068aaba20e,0xbff0000000000000,1 +np.float64,0x3fd1a5f169a34be4,0x3fd4524b6ef17f91,1 +np.float64,0x3fdc4b95a8b8972c,0x3fe1caafd8652bf7,1 +np.float64,0x3fe333f65a6667ed,0x3fea502fb1f8a578,1 +np.float64,0xbfc117aaac222f54,0xbfc00018a4b84b6e,1 +np.float64,0x7fecf2efdf39e5df,0x7ff0000000000000,1 +np.float64,0x4e99d83e9d33c,0x4e99d83e9d33c,1 +np.float64,0x800d18937bda3127,0x800d18937bda3127,1 +np.float64,0x3fd6c67778ad8cef,0x3fdb5aba70a3ea9e,1 +np.float64,0x3fdbb71770b76e2f,0x3fe157ae8da20bc5,1 +np.float64,0xbfe9faf6ebf3f5ee,0xbfe1ca963d83f17f,1 +np.float64,0x80038850ac0710a2,0x80038850ac0710a2,1 +np.float64,0x8006beb72f8d7d6f,0x8006beb72f8d7d6f,1 +np.float64,0x3feead67bffd5acf,0x3ff9bb43e8b15e2f,1 +np.float64,0xbfd1174b89222e98,0xbfcdff9972799907,1 +np.float64,0x7fee2c077cfc580e,0x7ff0000000000000,1 +np.float64,0xbfbdbd904e3b7b20,0xbfbc13f4916ed466,1 +np.float64,0xffee47b8fe3c8f71,0xbff0000000000000,1 +np.float64,0xffd161884222c310,0xbff0000000000000,1 +np.float64,0xbfd42f27c4a85e50,0xbfd14fa8d67ba5ee,1 +np.float64,0x7fefffffffffffff,0x7ff0000000000000,1 +np.float64,0x8008151791b02a30,0x8008151791b02a30,1 +np.float64,0xbfba79029234f208,0xbfb926616cf41755,1 +np.float64,0x8004c486be29890e,0x8004c486be29890e,1 +np.float64,0x7fe5325a252a64b3,0x7ff0000000000000,1 +np.float64,0x5a880f04b5103,0x5a880f04b5103,1 +np.float64,0xbfe6f4b7702de96f,0xbfe06209002dd72c,1 +np.float64,0xbfdf8b3739bf166e,0xbfd8e783efe3c30f,1 +np.float64,0xbfe32571c8e64ae4,0xbfdcd128b9aa49a1,1 +np.float64,0xbfe97c98c172f932,0xbfe1920ac0fc040f,1 +np.float64,0x3fd0b513a2a16a28,0x3fd31744e3a1bf0a,1 +np.float64,0xffe3ab70832756e0,0xbff0000000000000,1 +np.float64,0x80030f055ce61e0b,0x80030f055ce61e0b,1 +np.float64,0xffd5f3b21b2be764,0xbff0000000000000,1 +np.float64,0x800c1f2d6c783e5b,0x800c1f2d6c783e5b,1 +np.float64,0x80075f4f148ebe9f,0x80075f4f148ebe9f,1 +np.float64,0xbfa5a046f42b4090,0xbfa52cfbf8992256,1 +np.float64,0xffd6702583ace04c,0xbff0000000000000,1 +np.float64,0x800dc0a5cf1b814c,0x800dc0a5cf1b814c,1 +np.float64,0x14f2203a29e45,0x14f2203a29e45,1 +np.float64,0x800421a40ee84349,0x800421a40ee84349,1 +np.float64,0xbfea7c279df4f84f,0xbfe2037fff3ed877,1 +np.float64,0xbfe9b41ddcf3683c,0xbfe1aafe18a44bf8,1 +np.float64,0xffe7b037022f606e,0xbff0000000000000,1 +np.float64,0x800bafb648775f6d,0x800bafb648775f6d,1 +np.float64,0x800b81681d5702d1,0x800b81681d5702d1,1 +np.float64,0x3fe29f8dc8653f1c,0x3fe9442da1c32c6b,1 +np.float64,0xffef9a05dc7f340b,0xbff0000000000000,1 +np.float64,0x800c8c65a65918cb,0x800c8c65a65918cb,1 +np.float64,0xffe99df0d5f33be1,0xbff0000000000000,1 +np.float64,0x9afeb22535fd7,0x9afeb22535fd7,1 +np.float64,0x7fc620dd822c41ba,0x7ff0000000000000,1 +np.float64,0x29c2cdf25385b,0x29c2cdf25385b,1 +np.float64,0x2d92284e5b246,0x2d92284e5b246,1 +np.float64,0xffc794aa942f2954,0xbff0000000000000,1 +np.float64,0xbfe7ed907eafdb21,0xbfe0d9a7b1442497,1 +np.float64,0xbfd4e0d4aea9c1aa,0xbfd1d09366dba2a7,1 +np.float64,0xa70412c34e083,0xa70412c34e083,1 +np.float64,0x41dc0ee083b9,0x41dc0ee083b9,1 +np.float64,0x8000ece20da1d9c5,0x8000ece20da1d9c5,1 +np.float64,0x3fdf3dae103e7b5c,0x3fe42314bf826bc5,1 +np.float64,0x3fe972533c72e4a6,0x3ff3703761e70f04,1 +np.float64,0xffba1d2b82343a58,0xbff0000000000000,1 +np.float64,0xe0086c83c010e,0xe0086c83c010e,1 +np.float64,0x3fe6fb0dde6df61c,0x3ff0cf5fae01aa08,1 +np.float64,0x3fcfaf057e3f5e0b,0x3fd1f98c1fd20139,1 +np.float64,0xbfdca19d9239433c,0xbfd7158745192ca9,1 +np.float64,0xffb17f394e22fe70,0xbff0000000000000,1 +np.float64,0x7fe40f05c7681e0b,0x7ff0000000000000,1 +np.float64,0x800b3c575d5678af,0x800b3c575d5678af,1 +np.float64,0x7fa4ab20ac295640,0x7ff0000000000000,1 +np.float64,0xbfd2fff4f6a5ffea,0xbfd07069bb50e1a6,1 +np.float64,0xbfef81b9147f0372,0xbfe40b845a749787,1 +np.float64,0x7fd7400e54ae801c,0x7ff0000000000000,1 +np.float64,0x3fd4401a17a88034,0x3fd7d20fb76a4f3d,1 +np.float64,0xbfd3e907fd27d210,0xbfd11c64b7577fc5,1 +np.float64,0x7fe34bed9ae697da,0x7ff0000000000000,1 +np.float64,0x80039119c0472234,0x80039119c0472234,1 +np.float64,0xbfe2e36ac565c6d6,0xbfdc88454ee997b3,1 +np.float64,0xbfec57204478ae40,0xbfe2cd3183de1d2d,1 +np.float64,0x7fed7e2a12fafc53,0x7ff0000000000000,1 +np.float64,0x7fd5c5fa7d2b8bf4,0x7ff0000000000000,1 +np.float64,0x3fdcf368d6b9e6d0,0x3fe24decce1ebd35,1 +np.float64,0xbfe0ebfcf2e1d7fa,0xbfda48c9247ae8cf,1 +np.float64,0xbfe10dbea2e21b7e,0xbfda707d68b59674,1 +np.float64,0xbfdf201b6ebe4036,0xbfd8a5df27742fdf,1 +np.float64,0xffe16555be62caab,0xbff0000000000000,1 +np.float64,0xffc23a5db22474bc,0xbff0000000000000,1 +np.float64,0xffe1cbb3f8a39768,0xbff0000000000000,1 +np.float64,0x8007b823be0f7048,0x8007b823be0f7048,1 +np.float64,0xbfa5d1f3042ba3e0,0xbfa55c97cd77bf6e,1 +np.float64,0xbfe316a074662d41,0xbfdcc0da4e7334d0,1 +np.float64,0xbfdfab2bf2bf5658,0xbfd8fb046b88b51f,1 +np.float64,0xfacc9dabf5994,0xfacc9dabf5994,1 +np.float64,0xffe7e420a4efc841,0xbff0000000000000,1 +np.float64,0x800bb986cd57730e,0x800bb986cd57730e,1 +np.float64,0xbfe314fa38e629f4,0xbfdcbf09302c3bf5,1 +np.float64,0x7fc56b17772ad62e,0x7ff0000000000000,1 +np.float64,0x8006a87d54ad50fb,0x8006a87d54ad50fb,1 +np.float64,0xbfe6633e4a6cc67c,0xbfe01a67c3b3ff32,1 +np.float64,0x3fe0ff56eb21feae,0x3fe66df01defb0fb,1 +np.float64,0xffc369cfc126d3a0,0xbff0000000000000,1 +np.float64,0x7fe8775d9a30eeba,0x7ff0000000000000,1 +np.float64,0x3fb53db13e2a7b60,0x3fb625a7279cdac3,1 +np.float64,0xffee76e7e6fcedcf,0xbff0000000000000,1 +np.float64,0xb45595b568ab3,0xb45595b568ab3,1 +np.float64,0xffa09a1d50213440,0xbff0000000000000,1 +np.float64,0x7d11dc16fa23c,0x7d11dc16fa23c,1 +np.float64,0x7fd4cc2928299851,0x7ff0000000000000,1 +np.float64,0x6a30e0ead461d,0x6a30e0ead461d,1 +np.float64,0x7fd3ee735a27dce6,0x7ff0000000000000,1 +np.float64,0x8008d7084b31ae11,0x8008d7084b31ae11,1 +np.float64,0x3fe469353fe8d26a,0x3fec8e7e2df38590,1 +np.float64,0x3fcecef2743d9de5,0x3fd16a888b715dfd,1 +np.float64,0x460130d68c027,0x460130d68c027,1 +np.float64,0xbfd76510c62eca22,0xbfd398766b741d6e,1 +np.float64,0x800ec88c2a5d9118,0x800ec88c2a5d9118,1 +np.float64,0x3fac969c6c392d40,0x3fad66ca6a1e583c,1 +np.float64,0x3fe5c616bf6b8c2e,0x3fef30f931e8dde5,1 +np.float64,0xb4cb6cd56996e,0xb4cb6cd56996e,1 +np.float64,0xffc3eacf8827d5a0,0xbff0000000000000,1 +np.float64,0x3fe1ceaf60e39d5f,0x3fe7d31e0a627cf9,1 +np.float64,0xffea69b42ff4d368,0xbff0000000000000,1 +np.float64,0x800ff8aef99ff15e,0x800ff8aef99ff15e,1 +np.float64,0x6c3953f0d872b,0x6c3953f0d872b,1 +np.float64,0x8007ca5a0d0f94b5,0x8007ca5a0d0f94b5,1 +np.float64,0x800993ce3ad3279d,0x800993ce3ad3279d,1 +np.float64,0x3fe5a4d1516b49a2,0x3feeef67b22ac65b,1 +np.float64,0x8003d7512a67aea3,0x8003d7512a67aea3,1 +np.float64,0x33864430670c9,0x33864430670c9,1 +np.float64,0xbfdbf477e3b7e8f0,0xbfd6a63f1b36f424,1 +np.float64,0x3fb5da92582bb525,0x3fb6d04ef1a1d31a,1 +np.float64,0xe38aae71c7156,0xe38aae71c7156,1 +np.float64,0x3fcaf5590a35eab2,0x3fce01ed6eb6188e,1 +np.float64,0x800deba9b05bd754,0x800deba9b05bd754,1 +np.float64,0x7fee0cde287c19bb,0x7ff0000000000000,1 +np.float64,0xbfe0c2ae70e1855d,0xbfda17fa64d84fcf,1 +np.float64,0x518618faa30c4,0x518618faa30c4,1 +np.float64,0xbfeb4c49b8769894,0xbfe25d52cd7e529f,1 +np.float64,0xbfeb3aa21b367544,0xbfe255cae1df4cfd,1 +np.float64,0xffd23f1c5d247e38,0xbff0000000000000,1 +np.float64,0xff9a75132034ea20,0xbff0000000000000,1 +np.float64,0xbfef9d96307f3b2c,0xbfe415e8b6ce0e50,1 +np.float64,0x8004046f2f0808df,0x8004046f2f0808df,1 +np.float64,0x3fe15871aea2b0e3,0x3fe706532ea5c770,1 +np.float64,0x7fd86b1576b0d62a,0x7ff0000000000000,1 +np.float64,0xbfc240a5c724814c,0xbfc102c7971ca455,1 +np.float64,0xffd8ea670bb1d4ce,0xbff0000000000000,1 +np.float64,0xbfeb1ddd1ff63bba,0xbfe2497c4e27bb8e,1 +np.float64,0x3fcd47e0a33a8fc1,0x3fd0734444150d83,1 +np.float64,0xe00b6a65c016e,0xe00b6a65c016e,1 +np.float64,0xbfc7d582142fab04,0xbfc5bf1fbe755a4c,1 +np.float64,0x8cc91ca11993,0x8cc91ca11993,1 +np.float64,0x7fdbc530e3b78a61,0x7ff0000000000000,1 +np.float64,0x7fee437522bc86e9,0x7ff0000000000000,1 +np.float64,0xffe9e09ae2b3c135,0xbff0000000000000,1 +np.float64,0x8002841cada5083a,0x8002841cada5083a,1 +np.float64,0x3fd6b485f8ad690c,0x3fdb412135932699,1 +np.float64,0x80070e8d0b0e1d1b,0x80070e8d0b0e1d1b,1 +np.float64,0x7fed5df165babbe2,0x7ff0000000000000,1 +np.float64,0x7ff4000000000000,0x7ffc000000000000,1 +np.float64,0x7fe99d08cd333a11,0x7ff0000000000000,1 +np.float64,0xdfff4201bfff,0xdfff4201bfff,1 +np.float64,0x800ccf7aaf999ef6,0x800ccf7aaf999ef6,1 +np.float64,0x3fddb05aad3b60b5,0x3fe2e34bdd1dd9d5,1 +np.float64,0xbfe5e1c60e6bc38c,0xbfdfb3275cc1675f,1 +np.float64,0x8004fe674269fccf,0x8004fe674269fccf,1 +np.float64,0x7fe9280363325006,0x7ff0000000000000,1 +np.float64,0xf605b9f1ec0b7,0xf605b9f1ec0b7,1 +np.float64,0x800c7c214018f843,0x800c7c214018f843,1 +np.float64,0x7fd97eb6b9b2fd6c,0x7ff0000000000000,1 +np.float64,0x7fd03f8fb6207f1e,0x7ff0000000000000,1 +np.float64,0x7fc526b64d2a4d6c,0x7ff0000000000000,1 +np.float64,0xbfef1a7c42fe34f9,0xbfe3e4b4399e0fcf,1 +np.float64,0xffdde10a2fbbc214,0xbff0000000000000,1 +np.float64,0xbfdd274f72ba4e9e,0xbfd76aa73788863c,1 +np.float64,0xbfecf7f77af9efef,0xbfe30ee2ae03fed1,1 +np.float64,0xffde709322bce126,0xbff0000000000000,1 +np.float64,0x268b5dac4d16d,0x268b5dac4d16d,1 +np.float64,0x8005c099606b8134,0x8005c099606b8134,1 +np.float64,0xffcf54c1593ea984,0xbff0000000000000,1 +np.float64,0xbfee9b8ebabd371d,0xbfe3b44f2663139d,1 +np.float64,0x3faf0330643e0661,0x3faff88fab74b447,1 +np.float64,0x7fe1c6011be38c01,0x7ff0000000000000,1 +np.float64,0xbfe9d58053b3ab01,0xbfe1b9ea12242485,1 +np.float64,0xbfe15a80fee2b502,0xbfdaca2aa7d1231a,1 +np.float64,0x7fe0d766d8a1aecd,0x7ff0000000000000,1 +np.float64,0x800f65e6a21ecbcd,0x800f65e6a21ecbcd,1 +np.float64,0x7fc85e45a530bc8a,0x7ff0000000000000,1 +np.float64,0x3fcc240e5438481d,0x3fcf7954fc080ac3,1 +np.float64,0xffddd49da2bba93c,0xbff0000000000000,1 +np.float64,0x1376f36c26edf,0x1376f36c26edf,1 +np.float64,0x3feffb7af17ff6f6,0x3ffb77f0ead2f881,1 +np.float64,0x3fd9354ea9b26a9d,0x3fdee4e4c8db8239,1 +np.float64,0xffdf7beed4bef7de,0xbff0000000000000,1 +np.float64,0xbfdef256ecbde4ae,0xbfd889b0e213a019,1 +np.float64,0x800d78bd1e7af17a,0x800d78bd1e7af17a,1 +np.float64,0xb66d66276cdad,0xb66d66276cdad,1 +np.float64,0x7fd8f51138b1ea21,0x7ff0000000000000,1 +np.float64,0xffe8c9c302b19385,0xbff0000000000000,1 +np.float64,0x8000be4cf5417c9b,0x8000be4cf5417c9b,1 +np.float64,0xbfe2293a25645274,0xbfdbb78a8c547c68,1 +np.float64,0xce8392c19d08,0xce8392c19d08,1 +np.float64,0xbfe075736b60eae7,0xbfd9bc0f6e34a283,1 +np.float64,0xbfe8d6fe6a71adfd,0xbfe1469ba80b4915,1 +np.float64,0xffe0c7993fa18f32,0xbff0000000000000,1 +np.float64,0x3fce5210fd3ca422,0x3fd11b40a1270a95,1 +np.float64,0x6c0534a8d80a7,0x6c0534a8d80a7,1 +np.float64,0x23c1823647831,0x23c1823647831,1 +np.float64,0x3fc901253732024a,0x3fcb9d264accb07c,1 +np.float64,0x3fe42b8997685714,0x3fec1a39e207b6e4,1 +np.float64,0x3fec4fd00fb89fa0,0x3ff6c1fdd0c262c8,1 +np.float64,0x8007b333caaf6668,0x8007b333caaf6668,1 +np.float64,0x800f9275141f24ea,0x800f9275141f24ea,1 +np.float64,0xffbba361a23746c0,0xbff0000000000000,1 +np.float64,0xbfee4effa9fc9dff,0xbfe396c11d0cd524,1 +np.float64,0x3e47e84c7c8fe,0x3e47e84c7c8fe,1 +np.float64,0x3fe80eb7b1301d6f,0x3ff1eed318a00153,1 +np.float64,0x7fd3f4c5b4a7e98a,0x7ff0000000000000,1 +np.float64,0x158abab02b158,0x158abab02b158,1 +np.float64,0x1,0x1,1 +np.float64,0x1f1797883e2f4,0x1f1797883e2f4,1 +np.float64,0x3feec055d03d80ac,0x3ff9d3fb0394de33,1 +np.float64,0x8010000000000000,0x8010000000000000,1 +np.float64,0xbfd070860ea0e10c,0xbfccfeec2828efef,1 +np.float64,0x80015c8b3e82b917,0x80015c8b3e82b917,1 +np.float64,0xffef9956d9ff32ad,0xbff0000000000000,1 +np.float64,0x7fe7f087dd2fe10f,0x7ff0000000000000,1 +np.float64,0x8002e7718665cee4,0x8002e7718665cee4,1 +np.float64,0x3fdfb9adb2bf735c,0x3fe4887a86214c1e,1 +np.float64,0xffc7747dfb2ee8fc,0xbff0000000000000,1 +np.float64,0x3fec309bb5386137,0x3ff69c44e1738547,1 +np.float64,0xffdbe2bf9ab7c580,0xbff0000000000000,1 +np.float64,0xbfe6a274daed44ea,0xbfe039aff2be9d48,1 +np.float64,0x7fd5a4e4efab49c9,0x7ff0000000000000,1 +np.float64,0xffbe6aaeb03cd560,0xbff0000000000000,1 diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log.csv new file mode 100644 index 0000000..b8f6b08 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log.csv @@ -0,0 +1,271 @@ +dtype,input,output,ulperrortol +## +ve denormals ## +np.float32,0x004b4716,0xc2afbc1b,4 +np.float32,0x007b2490,0xc2aec01e,4 +np.float32,0x007c99fa,0xc2aeba17,4 +np.float32,0x00734a0c,0xc2aee1dc,4 +np.float32,0x0070de24,0xc2aeecba,4 +np.float32,0x007fffff,0xc2aeac50,4 +np.float32,0x00000001,0xc2ce8ed0,4 +## -ve denormals ## +np.float32,0x80495d65,0xffc00000,4 +np.float32,0x806894f6,0xffc00000,4 +np.float32,0x80555a76,0xffc00000,4 +np.float32,0x804e1fb8,0xffc00000,4 +np.float32,0x80687de9,0xffc00000,4 +np.float32,0x807fffff,0xffc00000,4 +np.float32,0x80000001,0xffc00000,4 +## +/-0.0f, +/-FLT_MIN +/-FLT_MAX ## +np.float32,0x00000000,0xff800000,4 +np.float32,0x80000000,0xff800000,4 +np.float32,0x7f7fffff,0x42b17218,4 +np.float32,0x80800000,0xffc00000,4 +np.float32,0xff7fffff,0xffc00000,4 +## 1.00f + 0x00000001 ## +np.float32,0x3f800000,0x00000000,4 +np.float32,0x3f800001,0x33ffffff,4 +np.float32,0x3f800002,0x347ffffe,4 +np.float32,0x3f7fffff,0xb3800000,4 +np.float32,0x3f7ffffe,0xb4000000,4 +np.float32,0x3f7ffffd,0xb4400001,4 +np.float32,0x402df853,0x3f7ffffe,4 +np.float32,0x402df854,0x3f7fffff,4 +np.float32,0x402df855,0x3f800000,4 +np.float32,0x402df856,0x3f800001,4 +np.float32,0x3ebc5ab0,0xbf800001,4 +np.float32,0x3ebc5ab1,0xbf800000,4 +np.float32,0x3ebc5ab2,0xbf800000,4 +np.float32,0x3ebc5ab3,0xbf7ffffe,4 +np.float32,0x423ef575,0x407768ab,4 +np.float32,0x427b8c61,0x408485dd,4 +np.float32,0x4211e9ee,0x406630b0,4 +np.float32,0x424d5c41,0x407c0fed,4 +np.float32,0x42be722a,0x4091cc91,4 +np.float32,0x42b73d30,0x4090908b,4 +np.float32,0x427e48e2,0x4084de7f,4 +np.float32,0x428f759b,0x4088bba3,4 +np.float32,0x41629069,0x4029a0cc,4 +np.float32,0x4272c99d,0x40836379,4 +np.float32,0x4d1b7458,0x4197463d,4 +np.float32,0x4f10c594,0x41ace2b2,4 +np.float32,0x4ea397c2,0x41a85171,4 +np.float32,0x4fefa9d1,0x41b6769c,4 +np.float32,0x4ebac6ab,0x41a960dc,4 +np.float32,0x4f6efb42,0x41b0e535,4 +np.float32,0x4e9ab8e7,0x41a7df44,4 +np.float32,0x4e81b5d1,0x41a67625,4 +np.float32,0x5014d9f2,0x41b832bd,4 +np.float32,0x4f02175c,0x41ac07b8,4 +np.float32,0x7f034f89,0x42b01c47,4 +np.float32,0x7f56d00e,0x42b11849,4 +np.float32,0x7f1cd5f6,0x42b0773a,4 +np.float32,0x7e979174,0x42af02d7,4 +np.float32,0x7f23369f,0x42b08ba2,4 +np.float32,0x7f0637ae,0x42b0277d,4 +np.float32,0x7efcb6e8,0x42b00897,4 +np.float32,0x7f7907c8,0x42b163f6,4 +np.float32,0x7e95c4c2,0x42aefcba,4 +np.float32,0x7f4577b2,0x42b0ed2d,4 +np.float32,0x3f49c92e,0xbe73ae84,4 +np.float32,0x3f4a23d1,0xbe71e2f8,4 +np.float32,0x3f4abb67,0xbe6ee430,4 +np.float32,0x3f48169a,0xbe7c5532,4 +np.float32,0x3f47f5fa,0xbe7cfc37,4 +np.float32,0x3f488309,0xbe7a2ad8,4 +np.float32,0x3f479df4,0xbe7ebf5f,4 +np.float32,0x3f47cfff,0xbe7dbec9,4 +np.float32,0x3f496704,0xbe75a125,4 +np.float32,0x3f478ee8,0xbe7f0c92,4 +np.float32,0x3f4a763b,0xbe7041ce,4 +np.float32,0x3f47a108,0xbe7eaf94,4 +np.float32,0x3f48136c,0xbe7c6578,4 +np.float32,0x3f481c17,0xbe7c391c,4 +np.float32,0x3f47cd28,0xbe7dcd56,4 +np.float32,0x3f478be8,0xbe7f1bf7,4 +np.float32,0x3f4c1f8e,0xbe67e367,4 +np.float32,0x3f489b0c,0xbe79b03f,4 +np.float32,0x3f4934cf,0xbe76a08a,4 +np.float32,0x3f4954df,0xbe75fd6a,4 +np.float32,0x3f47a3f5,0xbe7ea093,4 +np.float32,0x3f4ba4fc,0xbe6a4b02,4 +np.float32,0x3f47a0e1,0xbe7eb05c,4 +np.float32,0x3f48c30a,0xbe78e42f,4 +np.float32,0x3f48cab8,0xbe78bd05,4 +np.float32,0x3f4b0569,0xbe6d6ea4,4 +np.float32,0x3f47de32,0xbe7d7607,4 +np.float32,0x3f477328,0xbe7f9b00,4 +np.float32,0x3f496dab,0xbe757f52,4 +np.float32,0x3f47662c,0xbe7fddac,4 +np.float32,0x3f48ddd8,0xbe785b80,4 +np.float32,0x3f481866,0xbe7c4bff,4 +np.float32,0x3f48b119,0xbe793fb6,4 +np.float32,0x3f48c7e8,0xbe78cb5c,4 +np.float32,0x3f4985f6,0xbe7503da,4 +np.float32,0x3f483fdf,0xbe7b8212,4 +np.float32,0x3f4b1c76,0xbe6cfa67,4 +np.float32,0x3f480b2e,0xbe7c8fa8,4 +np.float32,0x3f48745f,0xbe7a75bf,4 +np.float32,0x3f485bda,0xbe7af308,4 +np.float32,0x3f47a660,0xbe7e942c,4 +np.float32,0x3f47d4d5,0xbe7da600,4 +np.float32,0x3f4b0a26,0xbe6d56be,4 +np.float32,0x3f4a4883,0xbe712924,4 +np.float32,0x3f4769e7,0xbe7fca84,4 +np.float32,0x3f499702,0xbe74ad3f,4 +np.float32,0x3f494ab1,0xbe763131,4 +np.float32,0x3f476b69,0xbe7fc2c6,4 +np.float32,0x3f4884e8,0xbe7a214a,4 +np.float32,0x3f486945,0xbe7aae76,4 +#float64 +## +ve denormal ## +np.float64,0x0000000000000001,0xc0874385446d71c3,1 +np.float64,0x0001000000000000,0xc086395a2079b70c,1 +np.float64,0x000fffffffffffff,0xc086232bdd7abcd2,1 +np.float64,0x0007ad63e2168cb6,0xc086290bc0b2980f,1 +## -ve denormal ## +np.float64,0x8000000000000001,0xfff8000000000001,1 +np.float64,0x8001000000000000,0xfff8000000000001,1 +np.float64,0x800fffffffffffff,0xfff8000000000001,1 +np.float64,0x8007ad63e2168cb6,0xfff8000000000001,1 +## +/-0.0f, MAX, MIN## +np.float64,0x0000000000000000,0xfff0000000000000,1 +np.float64,0x8000000000000000,0xfff0000000000000,1 +np.float64,0x7fefffffffffffff,0x40862e42fefa39ef,1 +np.float64,0xffefffffffffffff,0xfff8000000000001,1 +## near 1.0f ## +np.float64,0x3ff0000000000000,0x0000000000000000,1 +np.float64,0x3fe8000000000000,0xbfd269621134db92,1 +np.float64,0x3ff0000000000001,0x3cafffffffffffff,1 +np.float64,0x3ff0000020000000,0x3e7fffffe000002b,1 +np.float64,0x3ff0000000000001,0x3cafffffffffffff,1 +np.float64,0x3fefffffe0000000,0xbe70000008000005,1 +np.float64,0x3fefffffffffffff,0xbca0000000000000,1 +## random numbers ## +np.float64,0x02500186f3d9da56,0xc0855b8abf135773,1 +np.float64,0x09200815a3951173,0xc082ff1ad7131bdc,1 +np.float64,0x0da029623b0243d4,0xc0816fc994695bb5,1 +np.float64,0x48703b8ac483a382,0x40579213a313490b,1 +np.float64,0x09207b74c87c9860,0xc082fee20ff349ef,1 +np.float64,0x62c077698e8df947,0x407821c996d110f0,1 +np.float64,0x2350b45e87c3cfb0,0xc073d6b16b51d072,1 +np.float64,0x3990a23f9ff2b623,0xc051aa60eadd8c61,1 +np.float64,0x0d011386a116c348,0xc081a6cc7ea3b8fb,1 +np.float64,0x1fe0f0303ebe273a,0xc0763870b78a81ca,1 +np.float64,0x0cd1260121d387da,0xc081b7668d61a9d1,1 +np.float64,0x1e6135a8f581d422,0xc077425ac10f08c2,1 +np.float64,0x622168db5fe52d30,0x4077b3c669b9fadb,1 +np.float64,0x69f188e1ec6d1718,0x407d1e2f18c63889,1 +np.float64,0x3aa1bf1d9c4dd1a3,0xc04d682e24bde479,1 +np.float64,0x6c81c4011ce4f683,0x407ee5190e8a8e6a,1 +np.float64,0x2191fa55aa5a5095,0xc0750c0c318b5e2d,1 +np.float64,0x32a1f602a32bf360,0xc06270caa493fc17,1 +np.float64,0x16023c90ba93249b,0xc07d0f88e0801638,1 +np.float64,0x1c525fe6d71fa9ff,0xc078af49c66a5d63,1 +np.float64,0x1a927675815d65b7,0xc079e5bdd7fe376e,1 +np.float64,0x41227b8fe70da028,0x402aa0c9f9a84c71,1 +np.float64,0x4962bb6e853fe87d,0x405a34aa04c83747,1 +np.float64,0x23d2cda00b26b5a4,0xc0737c13a06d00ea,1 +np.float64,0x2d13083fd62987fa,0xc06a25055aeb474e,1 +np.float64,0x10e31e4c9b4579a1,0xc0804e181929418e,1 +np.float64,0x26d3247d556a86a9,0xc0716774171da7e8,1 +np.float64,0x6603379398d0d4ac,0x407a64f51f8a887b,1 +np.float64,0x02d38af17d9442ba,0xc0852d955ac9dd68,1 +np.float64,0x6a2382b4818dd967,0x407d4129d688e5d4,1 +np.float64,0x2ee3c403c79b3934,0xc067a091fefaf8b6,1 +np.float64,0x6493a699acdbf1a4,0x4079663c8602bfc5,1 +np.float64,0x1c8413c4f0de3100,0xc0788c99697059b6,1 +np.float64,0x4573f1ed350d9622,0x404e9bd1e4c08920,1 +np.float64,0x2f34265c9200b69c,0xc067310cfea4e986,1 +np.float64,0x19b43e65fa22029b,0xc07a7f8877de22d6,1 +np.float64,0x0af48ab7925ed6bc,0xc0825c4fbc0e5ade,1 +np.float64,0x4fa49699cad82542,0x4065c76d2a318235,1 +np.float64,0x7204a15e56ade492,0x40815bb87484dffb,1 +np.float64,0x4734aa08a230982d,0x40542a4bf7a361a9,1 +np.float64,0x1ae4ed296c2fd749,0xc079ac4921f20abb,1 +np.float64,0x472514ea4370289c,0x4053ff372bd8f18f,1 +np.float64,0x53a54b3f73820430,0x406b5411fc5f2e33,1 +np.float64,0x64754de5a15684fa,0x407951592e99a5ab,1 +np.float64,0x69358e279868a7c3,0x407c9c671a882c31,1 +np.float64,0x284579ec61215945,0xc0706688e55f0927,1 +np.float64,0x68b5c58806447adc,0x407c43d6f4eff760,1 +np.float64,0x1945a83f98b0e65d,0xc07acc15eeb032cc,1 +np.float64,0x0fc5eb98a16578bf,0xc080b0d02eddca0e,1 +np.float64,0x6a75e208f5784250,0x407d7a7383bf8f05,1 +np.float64,0x0fe63a029c47645d,0xc080a59ca1e98866,1 +np.float64,0x37963ac53f065510,0xc057236281f7bdb6,1 +np.float64,0x135661bb07067ff7,0xc07ee924930c21e4,1 +np.float64,0x4b4699469d458422,0x405f73843756e887,1 +np.float64,0x1a66d73e4bf4881b,0xc07a039ba1c63adf,1 +np.float64,0x12a6b9b119a7da59,0xc07f62e49c6431f3,1 +np.float64,0x24c719aa8fd1bdb5,0xc072d26da4bf84d3,1 +np.float64,0x0fa6ff524ffef314,0xc080bb8514662e77,1 +np.float64,0x1db751d66fdd4a9a,0xc077b77cb50d7c92,1 +np.float64,0x4947374c516da82c,0x4059e9acfc7105bf,1 +np.float64,0x1b1771ab98f3afc8,0xc07989326b8e1f66,1 +np.float64,0x25e78805baac8070,0xc0720a818e6ef080,1 +np.float64,0x4bd7a148225d3687,0x406082d004ea3ee7,1 +np.float64,0x53d7d6b2bbbda00a,0x406b9a398967cbd5,1 +np.float64,0x6997fb9f4e1c685f,0x407ce0a703413eba,1 +np.float64,0x069802c2ff71b951,0xc083df39bf7acddc,1 +np.float64,0x4d683ac9890f66d8,0x4062ae21d8c2acf0,1 +np.float64,0x5a2825863ec14f4c,0x40722d718d549552,1 +np.float64,0x0398799a88f4db80,0xc084e93dab8e2158,1 +np.float64,0x5ed87a8b77e135a5,0x40756d7051777b33,1 +np.float64,0x5828cd6d79b9bede,0x4070cafb22fc6ca1,1 +np.float64,0x7b18ba2a5ec6f068,0x408481386b3ed6fe,1 +np.float64,0x4938fd60922198fe,0x4059c206b762ea7e,1 +np.float64,0x31b8f44fcdd1a46e,0xc063b2faa8b6434e,1 +np.float64,0x5729341c0d918464,0x407019cac0c4a7d7,1 +np.float64,0x13595e9228ee878e,0xc07ee7235a7d8088,1 +np.float64,0x17698b0dc9dd4135,0xc07c1627e3a5ad5f,1 +np.float64,0x63b977c283abb0cc,0x4078cf1ec6ed65be,1 +np.float64,0x7349cc0d4dc16943,0x4081cc697ce4cb53,1 +np.float64,0x4e49a80b732fb28d,0x4063e67e3c5cbe90,1 +np.float64,0x07ba14b848a8ae02,0xc0837ac032a094e0,1 +np.float64,0x3da9f17b691bfddc,0xc03929c25366acda,1 +np.float64,0x02ea39aa6c3ac007,0xc08525af6f21e1c4,1 +np.float64,0x3a6a42f04ed9563d,0xc04e98e825dca46b,1 +np.float64,0x1afa877cd7900be7,0xc0799d6648cb34a9,1 +np.float64,0x58ea986649e052c6,0x4071512e939ad790,1 +np.float64,0x691abbc04647f536,0x407c89aaae0fcb83,1 +np.float64,0x43aabc5063e6f284,0x4044b45d18106fd2,1 +np.float64,0x488b003c893e0bea,0x4057df012a2dafbe,1 +np.float64,0x77eb076ed67caee5,0x40836720de94769e,1 +np.float64,0x5c1b46974aba46f4,0x40738731ba256007,1 +np.float64,0x1a5b29ecb5d3c261,0xc07a0becc77040d6,1 +np.float64,0x5d8b6ccf868c6032,0x4074865c1865e2db,1 +np.float64,0x4cfb6690b4aaf5af,0x406216cd8c7e8ddb,1 +np.float64,0x76cbd8eb5c5fc39e,0x4083038dc66d682b,1 +np.float64,0x28bbd1fec5012814,0xc07014c2dd1b9711,1 +np.float64,0x33dc1b3a4fd6bf7a,0xc060bd0756e07d8a,1 +np.float64,0x52bbe89b37de99f3,0x406a10041aa7d343,1 +np.float64,0x07bc479d15eb2dd3,0xc0837a1a6e3a3b61,1 +np.float64,0x18fc5275711a901d,0xc07aff3e9d62bc93,1 +np.float64,0x114c9758e247dc71,0xc080299a7cf15b05,1 +np.float64,0x25ac8f6d60755148,0xc07233c4c0c511d4,1 +np.float64,0x260cae2bb9e9fd7e,0xc071f128c7e82eac,1 +np.float64,0x572ccdfe0241de82,0x40701bedc84bb504,1 +np.float64,0x0ddcef6c8d41f5ee,0xc0815a7e16d07084,1 +np.float64,0x6dad1d59c988af68,0x407fb4a0bc0142b1,1 +np.float64,0x025d200580d8b6d1,0xc08556c0bc32b1b2,1 +np.float64,0x7aad344b6aa74c18,0x40845bbc453f22be,1 +np.float64,0x5b5d9d6ad9d14429,0x4073036d2d21f382,1 +np.float64,0x49cd8d8dcdf19954,0x405b5c034f5c7353,1 +np.float64,0x63edb9483335c1e6,0x4078f2dd21378786,1 +np.float64,0x7b1dd64c9d2c26bd,0x408482b922017bc9,1 +np.float64,0x782e13e0b574be5f,0x40837e2a0090a5ad,1 +np.float64,0x592dfe18b9d6db2f,0x40717f777fbcb1ec,1 +np.float64,0x654e3232ac60d72c,0x4079e71a95a70446,1 +np.float64,0x7b8e42ad22091456,0x4084a9a6f1e61722,1 +np.float64,0x570e88dfd5860ae6,0x407006ae6c0d137a,1 +np.float64,0x294e98346cb98ef1,0xc06f5edaac12bd44,1 +np.float64,0x1adeaa4ab792e642,0xc079b1431d5e2633,1 +np.float64,0x7b6ead3377529ac8,0x40849eabc8c7683c,1 +np.float64,0x2b8eedae8a9b2928,0xc06c400054deef11,1 +np.float64,0x65defb45b2dcf660,0x407a4b53f181c05a,1 +np.float64,0x1baf582d475e7701,0xc07920bcad4a502c,1 +np.float64,0x461f39cf05a0f15a,0x405126368f984fa1,1 +np.float64,0x7e5f6f5dcfff005b,0x4085a37d610439b4,1 +np.float64,0x136f66e4d09bd662,0xc07ed8a2719f2511,1 +np.float64,0x65afd8983fb6ca1f,0x407a2a7f48bf7fc1,1 +np.float64,0x572fa7f95ed22319,0x40701d706cf82e6f,1 diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log10.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log10.csv new file mode 100644 index 0000000..c765777 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log10.csv @@ -0,0 +1,1629 @@ +dtype,input,output,ulperrortol +np.float32,0x3f6fd5c8,0xbce80e8e,4 +np.float32,0x3ea4ab17,0xbefc3deb,4 +np.float32,0x3e87a133,0xbf13b0b7,4 +np.float32,0x3f0d9069,0xbe83bb19,4 +np.float32,0x3f7b9269,0xbbf84f47,4 +np.float32,0x3f7a9ffa,0xbc16fd97,4 +np.float32,0x7f535d34,0x4219cb66,4 +np.float32,0x3e79ad7c,0xbf1ce857,4 +np.float32,0x7e8bfd3b,0x4217dfe9,4 +np.float32,0x3f2d2ee9,0xbe2dcec6,4 +np.float32,0x572e04,0xc21862e4,4 +np.float32,0x7f36f8,0xc217bad5,4 +np.float32,0x3f7982fb,0xbc36aaed,4 +np.float32,0x45b019,0xc218c67c,4 +np.float32,0x3f521c46,0xbdafb3e3,4 +np.float32,0x80000001,0x7fc00000,4 +np.float32,0x3f336c81,0xbe1e107f,4 +np.float32,0x3eac92d7,0xbef1d0bb,4 +np.float32,0x47bdfc,0xc218b990,4 +np.float32,0x7f2d94c8,0x421973d1,4 +np.float32,0x7d53ff8d,0x4214fbb6,4 +np.float32,0x3f581e4e,0xbd96a079,4 +np.float32,0x7ddaf20d,0x42163e4e,4 +np.float32,0x3f341d3c,0xbe1c5b4c,4 +np.float32,0x7ef04ba9,0x4218d032,4 +np.float32,0x620ed2,0xc2182e99,4 +np.float32,0x507850,0xc2188682,4 +np.float32,0x7d08f9,0xc217c284,4 +np.float32,0x7f0cf2aa,0x42191734,4 +np.float32,0x3f109a17,0xbe7e04fe,4 +np.float32,0x7f426152,0x4219a625,4 +np.float32,0x7f32d5a3,0x42198113,4 +np.float32,0x2e14b2,0xc2197e6f,4 +np.float32,0x3a5acd,0xc219156a,4 +np.float32,0x50a565,0xc2188589,4 +np.float32,0x5b751c,0xc2184d97,4 +np.float32,0x7e4149f6,0x42173b22,4 +np.float32,0x3dc34bf9,0xbf82a42a,4 +np.float32,0x3d12bc28,0xbfb910d6,4 +np.float32,0x7ebd2584,0x421865c1,4 +np.float32,0x7f6b3375,0x4219faeb,4 +np.float32,0x7fa00000,0x7fe00000,4 +np.float32,0x3f35fe7d,0xbe17bd33,4 +np.float32,0x7db45c87,0x4215e818,4 +np.float32,0x3efff366,0xbe9a2b8d,4 +np.float32,0x3eb331d0,0xbee971a3,4 +np.float32,0x3f259d5f,0xbe41ae2e,4 +np.float32,0x3eab85ec,0xbef32c4a,4 +np.float32,0x7f194b8a,0x42193c8c,4 +np.float32,0x3f11a614,0xbe7acfc7,4 +np.float32,0x5b17,0xc221f16b,4 +np.float32,0x3f33dadc,0xbe1cff4d,4 +np.float32,0x3cda1506,0xbfc9920f,4 +np.float32,0x3f6856f1,0xbd2c8290,4 +np.float32,0x7f3357fb,0x42198257,4 +np.float32,0x7f56f329,0x4219d2e1,4 +np.float32,0x3ef84108,0xbea0f595,4 +np.float32,0x3f72340f,0xbcc51916,4 +np.float32,0x3daf28,0xc218fcbd,4 +np.float32,0x131035,0xc21b06f4,4 +np.float32,0x3f275c3b,0xbe3d0487,4 +np.float32,0x3ef06130,0xbea82069,4 +np.float32,0x3f57f3b0,0xbd974fef,4 +np.float32,0x7f6c4a78,0x4219fcfa,4 +np.float32,0x7e8421d0,0x4217c639,4 +np.float32,0x3f17a479,0xbe68e08e,4 +np.float32,0x7f03774e,0x4218f83b,4 +np.float32,0x441a33,0xc218d0b8,4 +np.float32,0x539158,0xc21875b6,4 +np.float32,0x3e8fcc75,0xbf0d3018,4 +np.float32,0x7ef74130,0x4218dce4,4 +np.float32,0x3ea6f4fa,0xbef92c38,4 +np.float32,0x7f3948ab,0x421990d5,4 +np.float32,0x7db6f8f5,0x4215ee7c,4 +np.float32,0x3ee44a2f,0xbeb399e5,4 +np.float32,0x156c59,0xc21ad30d,4 +np.float32,0x3f21ee53,0xbe4baf16,4 +np.float32,0x3f2c08f4,0xbe30c424,4 +np.float32,0x3f49885c,0xbdd4c6a9,4 +np.float32,0x3eae0b9c,0xbeefed54,4 +np.float32,0x1b5c1f,0xc21a6646,4 +np.float32,0x3e7330e2,0xbf1fd592,4 +np.float32,0x3ebbeb4c,0xbededf82,4 +np.float32,0x427154,0xc218dbb1,4 +np.float32,0x3f6b8b4b,0xbd142498,4 +np.float32,0x8e769,0xc21c5981,4 +np.float32,0x3e9db557,0xbf02ec1c,4 +np.float32,0x3f001bef,0xbe99f019,4 +np.float32,0x3e58b48c,0xbf2ca77a,4 +np.float32,0x3d46c16b,0xbfa8327c,4 +np.float32,0x7eeeb305,0x4218cd3b,4 +np.float32,0x3e3f163d,0xbf3aa446,4 +np.float32,0x3f66c872,0xbd3877d9,4 +np.float32,0x7f7162f8,0x421a0677,4 +np.float32,0x3edca3bc,0xbebb2e28,4 +np.float32,0x3dc1055b,0xbf834afa,4 +np.float32,0x12b16f,0xc21b0fad,4 +np.float32,0x3f733898,0xbcb62e16,4 +np.float32,0x3e617af8,0xbf283db0,4 +np.float32,0x7e86577a,0x4217cd99,4 +np.float32,0x3f0ba3c7,0xbe86c633,4 +np.float32,0x3f4cad25,0xbdc70247,4 +np.float32,0xb6cdf,0xc21bea9f,4 +np.float32,0x3f42971a,0xbdf3f49e,4 +np.float32,0x3e6ccad2,0xbf22cc78,4 +np.float32,0x7f2121b2,0x421952b8,4 +np.float32,0x3f6d3f55,0xbd075366,4 +np.float32,0x3f524f,0xc218f117,4 +np.float32,0x3e95b5d9,0xbf08b56a,4 +np.float32,0x7f6ae47d,0x4219fa56,4 +np.float32,0x267539,0xc219ceda,4 +np.float32,0x3ef72f6d,0xbea1eb2e,4 +np.float32,0x2100b2,0xc21a12e2,4 +np.float32,0x3d9777d1,0xbf90c4e7,4 +np.float32,0x44c6f5,0xc218cc56,4 +np.float32,0x7f2a613d,0x42196b8a,4 +np.float32,0x390a25,0xc2191f8d,4 +np.float32,0x3f1de5ad,0xbe56e703,4 +np.float32,0x2f59ce,0xc2197258,4 +np.float32,0x7f3b12a1,0x4219951b,4 +np.float32,0x3ecb66d4,0xbecd44ca,4 +np.float32,0x7e74ff,0xc217bd7d,4 +np.float32,0x7ed83f78,0x4218a14d,4 +np.float32,0x685994,0xc21812f1,4 +np.float32,0xbf800000,0x7fc00000,4 +np.float32,0x736f47,0xc217e60b,4 +np.float32,0x7f09c371,0x42190d0a,4 +np.float32,0x3f7ca51d,0xbbbbbce0,4 +np.float32,0x7f4b4d3b,0x4219ba1a,4 +np.float32,0x3f6c4471,0xbd0eb076,4 +np.float32,0xd944e,0xc21b9dcf,4 +np.float32,0x7cb06ffc,0x421375cd,4 +np.float32,0x586187,0xc2185cce,4 +np.float32,0x3f3cbf5b,0xbe078911,4 +np.float32,0x3f30b504,0xbe24d983,4 +np.float32,0x3f0a16ba,0xbe8941fd,4 +np.float32,0x5c43b0,0xc21849af,4 +np.float32,0x3dad74f6,0xbf893bd5,4 +np.float32,0x3c586958,0xbff087a6,4 +np.float32,0x3e8307a8,0xbf1786ba,4 +np.float32,0x7dcd1776,0x4216213d,4 +np.float32,0x3f44d107,0xbde9d662,4 +np.float32,0x3e2e6823,0xbf44cbec,4 +np.float32,0x3d87ea27,0xbf96caca,4 +np.float32,0x3e0c715b,0xbf5ce07e,4 +np.float32,0x7ec9cd5a,0x4218828e,4 +np.float32,0x3e26c0b4,0xbf49c93e,4 +np.float32,0x75b94e,0xc217dd50,4 +np.float32,0x3df7b9f5,0xbf6ad7f4,4 +np.float32,0x0,0xff800000,4 +np.float32,0x3f284795,0xbe3a94da,4 +np.float32,0x7ee49092,0x4218b9f0,4 +np.float32,0x7f4c20e0,0x4219bbe8,4 +np.float32,0x3efbbce8,0xbe9ddc4b,4 +np.float32,0x12274a,0xc21b1cb4,4 +np.float32,0x5fa1b1,0xc21839be,4 +np.float32,0x7f0b210e,0x4219116d,4 +np.float32,0x3f67092a,0xbd368545,4 +np.float32,0x3d572721,0xbfa3ca5b,4 +np.float32,0x3f7913ce,0xbc431028,4 +np.float32,0x3b0613,0xc2191059,4 +np.float32,0x3e1d16c0,0xbf506c6f,4 +np.float32,0xab130,0xc21c081d,4 +np.float32,0x3e23ac97,0xbf4bdb9d,4 +np.float32,0x7ef52368,0x4218d911,4 +np.float32,0x7f38e686,0x42198fe9,4 +np.float32,0x3f106a21,0xbe7e9897,4 +np.float32,0x3ecef8d5,0xbec96644,4 +np.float32,0x3ec37e02,0xbed61683,4 +np.float32,0x3efbd063,0xbe9dcb17,4 +np.float32,0x3f318fe3,0xbe22b402,4 +np.float32,0x7e5e5228,0x4217795d,4 +np.float32,0x72a046,0xc217e92c,4 +np.float32,0x7f6f970b,0x421a0324,4 +np.float32,0x3ed871b4,0xbebf72fb,4 +np.float32,0x7a2eaa,0xc217ccc8,4 +np.float32,0x3e819655,0xbf18c1d7,4 +np.float32,0x80800000,0x7fc00000,4 +np.float32,0x7eab0719,0x421838f9,4 +np.float32,0x7f0763cb,0x4219054f,4 +np.float32,0x3f191672,0xbe64a8af,4 +np.float32,0x7d4327,0xc217c1b6,4 +np.float32,0x3f724ba6,0xbcc3bea3,4 +np.float32,0x60fe06,0xc2183375,4 +np.float32,0x48cd59,0xc218b30b,4 +np.float32,0x3f7fec2b,0xb909d3f3,4 +np.float32,0x1c7bb9,0xc21a5460,4 +np.float32,0x24d8a8,0xc219e1e4,4 +np.float32,0x3e727c52,0xbf20283c,4 +np.float32,0x4bc460,0xc218a14a,4 +np.float32,0x63e313,0xc2182661,4 +np.float32,0x7f625581,0x4219e9d4,4 +np.float32,0x3eeb3e77,0xbeacedc0,4 +np.float32,0x7ef27a47,0x4218d437,4 +np.float32,0x27105a,0xc219c7e6,4 +np.float32,0x22a10b,0xc219fd7d,4 +np.float32,0x3f41e907,0xbdf711ab,4 +np.float32,0x7c1fbf95,0x4212155b,4 +np.float32,0x7e5acceb,0x42177244,4 +np.float32,0x3e0892fa,0xbf5ffb83,4 +np.float32,0x3ea0e51d,0xbf00b2c0,4 +np.float32,0x3e56fc29,0xbf2d8a51,4 +np.float32,0x7ee724ed,0x4218beed,4 +np.float32,0x7ebf142b,0x42186a46,4 +np.float32,0x7f6cf35c,0x4219fe37,4 +np.float32,0x3f11abf7,0xbe7abdcd,4 +np.float32,0x588d7a,0xc2185bf1,4 +np.float32,0x3f6e81d2,0xbcfbcf97,4 +np.float32,0x3f1b6be8,0xbe5dee2b,4 +np.float32,0x7f3815e0,0x42198df2,4 +np.float32,0x3f5bfc88,0xbd86d93d,4 +np.float32,0x3f3775d0,0xbe142bbc,4 +np.float32,0x78a958,0xc217d25a,4 +np.float32,0x2ff7c3,0xc2196c96,4 +np.float32,0x4b9c0,0xc21d733c,4 +np.float32,0x3ec025af,0xbed9ecf3,4 +np.float32,0x6443f0,0xc21824b3,4 +np.float32,0x3f754e28,0xbc97d299,4 +np.float32,0x3eaa91d3,0xbef4699d,4 +np.float32,0x3e5f2837,0xbf296478,4 +np.float32,0xe5676,0xc21b85a4,4 +np.float32,0x3f6859f2,0xbd2c6b90,4 +np.float32,0x3f68686b,0xbd2bfcc6,4 +np.float32,0x4b39b8,0xc218a47b,4 +np.float32,0x630ac4,0xc2182a28,4 +np.float32,0x160980,0xc21ac67d,4 +np.float32,0x3ed91c4d,0xbebec3fd,4 +np.float32,0x7ec27b0d,0x4218721f,4 +np.float32,0x3f3c0a5f,0xbe09344b,4 +np.float32,0x3dbff9c1,0xbf839841,4 +np.float32,0x7f0e8ea7,0x42191c40,4 +np.float32,0x3f36b162,0xbe1608e4,4 +np.float32,0x228bb3,0xc219fe90,4 +np.float32,0x2fdd30,0xc2196d8c,4 +np.float32,0x3e8fce8e,0xbf0d2e79,4 +np.float32,0x3f36acc7,0xbe16141a,4 +np.float32,0x7f44b51c,0x4219ab70,4 +np.float32,0x3ec3371c,0xbed66736,4 +np.float32,0x4388a2,0xc218d473,4 +np.float32,0x3f5aa6c3,0xbd8c4344,4 +np.float32,0x7f09fce4,0x42190dc3,4 +np.float32,0x7ed7854a,0x42189fce,4 +np.float32,0x7f4da83a,0x4219bf3a,4 +np.float32,0x3db8da28,0xbf85b25a,4 +np.float32,0x7f449686,0x4219ab2b,4 +np.float32,0x2eb25,0xc21e498c,4 +np.float32,0x3f2bcc08,0xbe3161bd,4 +np.float32,0x36c923,0xc219317b,4 +np.float32,0x3d52a866,0xbfa4f6d2,4 +np.float32,0x3f7d6688,0xbb913e4e,4 +np.float32,0x3f5a6ba4,0xbd8d33e3,4 +np.float32,0x719740,0xc217ed35,4 +np.float32,0x78a472,0xc217d26c,4 +np.float32,0x7ee33d0c,0x4218b759,4 +np.float32,0x7f668c1d,0x4219f208,4 +np.float32,0x3e29c600,0xbf47ca46,4 +np.float32,0x3f3cefc3,0xbe071712,4 +np.float32,0x3e224ebd,0xbf4cca41,4 +np.float32,0x7f1417be,0x42192d31,4 +np.float32,0x7f29d7d5,0x42196a23,4 +np.float32,0x3338ce,0xc2194f65,4 +np.float32,0x2a7897,0xc219a2b6,4 +np.float32,0x3d6bc3d8,0xbf9eb468,4 +np.float32,0x3f6bd7bf,0xbd11e392,4 +np.float32,0x7f6d26bf,0x4219fe98,4 +np.float32,0x3f52d378,0xbdacadb5,4 +np.float32,0x3efac453,0xbe9eb84a,4 +np.float32,0x3f692eb7,0xbd261184,4 +np.float32,0x3f6a0bb5,0xbd1f7ec1,4 +np.float32,0x3f037a49,0xbe942aa8,4 +np.float32,0x3f465bd4,0xbde2e530,4 +np.float32,0x7ef0f47b,0x4218d16a,4 +np.float32,0x637127,0xc218285e,4 +np.float32,0x3f41e511,0xbdf723d7,4 +np.float32,0x7f800000,0x7f800000,4 +np.float32,0x3f3342d5,0xbe1e77d5,4 +np.float32,0x7f57cfe6,0x4219d4a9,4 +np.float32,0x3e4358ed,0xbf3830a7,4 +np.float32,0x3ce25f15,0xbfc77f2b,4 +np.float32,0x7ed057e7,0x421890be,4 +np.float32,0x7ce154d9,0x4213e295,4 +np.float32,0x3ee91984,0xbeaef703,4 +np.float32,0x7e4e919c,0x421758af,4 +np.float32,0x6830e7,0xc218139e,4 +np.float32,0x3f12f08e,0xbe76e328,4 +np.float32,0x7f0a7a32,0x42190f56,4 +np.float32,0x7f38e,0xc21c8bd3,4 +np.float32,0x3e01def9,0xbf6593e3,4 +np.float32,0x3f5c8c6d,0xbd849432,4 +np.float32,0x3eed8747,0xbeaac7a3,4 +np.float32,0x3cadaa0e,0xbfd63b21,4 +np.float32,0x3f7532a9,0xbc996178,4 +np.float32,0x31f3ac,0xc2195a8f,4 +np.float32,0x3f0e0f97,0xbe82f3af,4 +np.float32,0x3f2a1f35,0xbe35bd3f,4 +np.float32,0x3f4547b2,0xbde7bebd,4 +np.float32,0x3f7988a6,0xbc36094c,4 +np.float32,0x74464c,0xc217e2d2,4 +np.float32,0x7f7518be,0x421a0d3f,4 +np.float32,0x7e97fa0a,0x42180473,4 +np.float32,0x584e3a,0xc2185d2f,4 +np.float32,0x3e7291f3,0xbf201e52,4 +np.float32,0xc0a05,0xc21bd359,4 +np.float32,0x3a3177,0xc21916a6,4 +np.float32,0x4f417f,0xc2188d45,4 +np.float32,0x263fce,0xc219d145,4 +np.float32,0x7e1d58,0xc217beb1,4 +np.float32,0x7f056af3,0x4218fec9,4 +np.float32,0x3f21c181,0xbe4c2a3f,4 +np.float32,0x7eca4956,0x4218839f,4 +np.float32,0x3e58afa8,0xbf2ca9fd,4 +np.float32,0x3f40d583,0xbdfc04ef,4 +np.float32,0x7f432fbb,0x4219a7fc,4 +np.float32,0x43aaa4,0xc218d393,4 +np.float32,0x7f2c9b62,0x42197150,4 +np.float32,0x5c3876,0xc21849e5,4 +np.float32,0x7f2034e8,0x42195029,4 +np.float32,0x7e5be772,0x42177481,4 +np.float32,0x80000000,0xff800000,4 +np.float32,0x3f5be03b,0xbd874bb0,4 +np.float32,0x3e32494f,0xbf4259be,4 +np.float32,0x3e1f4671,0xbf4ee30b,4 +np.float32,0x4606cc,0xc218c454,4 +np.float32,0x425cbc,0xc218dc3b,4 +np.float32,0x7dd9b8bf,0x42163bd0,4 +np.float32,0x3f0465d0,0xbe929db7,4 +np.float32,0x3f735077,0xbcb4d0fa,4 +np.float32,0x4d6a43,0xc21897b8,4 +np.float32,0x3e27d600,0xbf4910f5,4 +np.float32,0x3f06e0cc,0xbe8e7d24,4 +np.float32,0x3f3fd064,0xbe005e45,4 +np.float32,0x176f1,0xc21f7c2d,4 +np.float32,0x3eb64e6f,0xbee59d9c,4 +np.float32,0x7f0f075d,0x42191db8,4 +np.float32,0x3f718cbe,0xbcceb621,4 +np.float32,0x3ead7bda,0xbef0a54a,4 +np.float32,0x7f77c1a8,0x421a120c,4 +np.float32,0x3f6a79c5,0xbd1c3afd,4 +np.float32,0x3e992d1f,0xbf062a02,4 +np.float32,0x3e6f6335,0xbf219639,4 +np.float32,0x7f6d9a3e,0x4219ff70,4 +np.float32,0x557ed1,0xc2186b91,4 +np.float32,0x3f13a456,0xbe74c457,4 +np.float32,0x15c2dc,0xc21acc17,4 +np.float32,0x71f36f,0xc217ebcc,4 +np.float32,0x748dea,0xc217e1c1,4 +np.float32,0x7f0f32e0,0x42191e3f,4 +np.float32,0x5b1da8,0xc2184f41,4 +np.float32,0x3d865d3a,0xbf976e11,4 +np.float32,0x3f800000,0x0,4 +np.float32,0x7f67b56d,0x4219f444,4 +np.float32,0x6266a1,0xc2182d0c,4 +np.float32,0x3ec9c5e4,0xbecf0e6b,4 +np.float32,0x6a6a0e,0xc2180a3b,4 +np.float32,0x7e9db6fd,0x421814ef,4 +np.float32,0x3e7458f7,0xbf1f4e88,4 +np.float32,0x3ead8016,0xbef09fdc,4 +np.float32,0x3e263d1c,0xbf4a211e,4 +np.float32,0x7f6b3329,0x4219faeb,4 +np.float32,0x800000,0xc217b818,4 +np.float32,0x3f0654c7,0xbe8f6471,4 +np.float32,0x3f281b71,0xbe3b0990,4 +np.float32,0x7c4c8e,0xc217c524,4 +np.float32,0x7d113a87,0x4214537d,4 +np.float32,0x734b5f,0xc217e696,4 +np.float32,0x7f079d05,0x4219060b,4 +np.float32,0x3ee830b1,0xbeafd58b,4 +np.float32,0x3f1c3b8b,0xbe5b9d96,4 +np.float32,0x3f2bf0c6,0xbe3102aa,4 +np.float32,0x7ddffe22,0x42164871,4 +np.float32,0x3f1e58b4,0xbe55a37f,4 +np.float32,0x5f3edf,0xc2183b8a,4 +np.float32,0x7f1fb6ec,0x42194eca,4 +np.float32,0x3f78718e,0xbc55311e,4 +np.float32,0x3e574b7d,0xbf2d6152,4 +np.float32,0x7eab27c6,0x4218394e,4 +np.float32,0x7f34603c,0x421984e5,4 +np.float32,0x3f3a8b57,0xbe0cc1ca,4 +np.float32,0x3f744181,0xbca7134e,4 +np.float32,0x3f7e3bc4,0xbb45156b,4 +np.float32,0x93ab4,0xc21c498b,4 +np.float32,0x7ed5541e,0x42189b42,4 +np.float32,0x6bf8ec,0xc21803c4,4 +np.float32,0x757395,0xc217de58,4 +np.float32,0x7f177214,0x42193726,4 +np.float32,0x59935f,0xc21856d6,4 +np.float32,0x2cd9ba,0xc2198a78,4 +np.float32,0x3ef6fd5c,0xbea2183c,4 +np.float32,0x3ebb6c63,0xbedf75e0,4 +np.float32,0x7f43272c,0x4219a7e9,4 +np.float32,0x7f42e67d,0x4219a755,4 +np.float32,0x3f3f744f,0xbe0133f6,4 +np.float32,0x7f5fddaa,0x4219e4f4,4 +np.float32,0x3dc9874f,0xbf80e529,4 +np.float32,0x3f2efe64,0xbe292ec8,4 +np.float32,0x3e0406a6,0xbf63bf7c,4 +np.float32,0x3cdbb0aa,0xbfc92984,4 +np.float32,0x3e6597e7,0xbf263b30,4 +np.float32,0x3f0c1153,0xbe861807,4 +np.float32,0x7fce16,0xc217b8c6,4 +np.float32,0x3f5f4e5f,0xbd730dc6,4 +np.float32,0x3ed41ffa,0xbec3ee69,4 +np.float32,0x3f216c78,0xbe4d1446,4 +np.float32,0x3f123ed7,0xbe78fe4b,4 +np.float32,0x7f7e0ca9,0x421a1d34,4 +np.float32,0x7e318af4,0x42171558,4 +np.float32,0x7f1e1659,0x42194a3d,4 +np.float32,0x34d12a,0xc21941c2,4 +np.float32,0x3d9566ad,0xbf918870,4 +np.float32,0x3e799a47,0xbf1cf0e5,4 +np.float32,0x3e89dd6f,0xbf11df76,4 +np.float32,0x32f0d3,0xc21951d8,4 +np.float32,0x7e89d17e,0x4217d8f6,4 +np.float32,0x1f3b38,0xc21a2b6b,4 +np.float32,0x7ee9e060,0x4218c427,4 +np.float32,0x31a673,0xc2195d41,4 +np.float32,0x5180f1,0xc21880d5,4 +np.float32,0x3cd36f,0xc21902f8,4 +np.float32,0x3bb63004,0xc01050cb,4 +np.float32,0x3e8ee9d1,0xbf0ddfde,4 +np.float32,0x3d2a7da3,0xbfb0b970,4 +np.float32,0x3ea58107,0xbefb1dc3,4 +np.float32,0x7f6760b0,0x4219f3a2,4 +np.float32,0x7f7f9e08,0x421a1ff0,4 +np.float32,0x37e7f1,0xc219287b,4 +np.float32,0x3ef7eb53,0xbea14267,4 +np.float32,0x3e2eb581,0xbf449aa5,4 +np.float32,0x3da7671c,0xbf8b3568,4 +np.float32,0x7af36f7b,0x420f33ee,4 +np.float32,0x3eb3602c,0xbee93823,4 +np.float32,0x3f68bcff,0xbd2975de,4 +np.float32,0x3ea7cefb,0xbef80a9d,4 +np.float32,0x3f329689,0xbe202414,4 +np.float32,0x7f0c7c80,0x421915be,4 +np.float32,0x7f4739b8,0x4219b118,4 +np.float32,0x73af58,0xc217e515,4 +np.float32,0x7f13eb2a,0x42192cab,4 +np.float32,0x30f2d9,0xc2196395,4 +np.float32,0x7ea7066c,0x42182e71,4 +np.float32,0x669fec,0xc2181a5b,4 +np.float32,0x3f7d6876,0xbb90d1ef,4 +np.float32,0x3f08a4ef,0xbe8b9897,4 +np.float32,0x7f2a906c,0x42196c05,4 +np.float32,0x3ed3ca42,0xbec44856,4 +np.float32,0x9d27,0xc220fee2,4 +np.float32,0x3e4508a1,0xbf373c03,4 +np.float32,0x3e41f8de,0xbf38f9bb,4 +np.float32,0x3e912714,0xbf0c255b,4 +np.float32,0xff800000,0x7fc00000,4 +np.float32,0x7eefd13d,0x4218cf4f,4 +np.float32,0x3f491674,0xbdd6bded,4 +np.float32,0x3ef49512,0xbea445c9,4 +np.float32,0x3f045b79,0xbe92af15,4 +np.float32,0x3ef6c412,0xbea24bd5,4 +np.float32,0x3e6f3c28,0xbf21a85d,4 +np.float32,0x3ef71839,0xbea2000e,4 +np.float32,0x1,0xc23369f4,4 +np.float32,0x3e3fcfe4,0xbf3a3876,4 +np.float32,0x3e9d7a65,0xbf0315b2,4 +np.float32,0x20b7c4,0xc21a16bd,4 +np.float32,0x7f707b10,0x421a04cb,4 +np.float32,0x7fc00000,0x7fc00000,4 +np.float32,0x3f285ebd,0xbe3a57ac,4 +np.float32,0x74c9ea,0xc217e0dc,4 +np.float32,0x3f6501f2,0xbd4634ab,4 +np.float32,0x3f248959,0xbe4495cc,4 +np.float32,0x7e915ff0,0x4217f0b3,4 +np.float32,0x7edbb910,0x4218a864,4 +np.float32,0x3f7042dd,0xbce1bddb,4 +np.float32,0x6f08c9,0xc217f754,4 +np.float32,0x7f423993,0x4219a5ca,4 +np.float32,0x3f125704,0xbe78b4cd,4 +np.float32,0x7ef7f5ae,0x4218de28,4 +np.float32,0x3f2dd940,0xbe2c1a33,4 +np.float32,0x3f1ca78e,0xbe5a6a8b,4 +np.float32,0x244863,0xc219e8be,4 +np.float32,0x3f2614fe,0xbe406d6b,4 +np.float32,0x3e75e7a3,0xbf1e99b5,4 +np.float32,0x2bdd6e,0xc2199459,4 +np.float32,0x7e49e279,0x42174e7b,4 +np.float32,0x3e3bb09a,0xbf3ca2cd,4 +np.float32,0x649f06,0xc2182320,4 +np.float32,0x7f4a44e1,0x4219b7d6,4 +np.float32,0x400473,0xc218ec3a,4 +np.float32,0x3edb19ad,0xbebcbcad,4 +np.float32,0x3d8ee956,0xbf94006c,4 +np.float32,0x7e91c603,0x4217f1eb,4 +np.float32,0x221384,0xc21a04a6,4 +np.float32,0x7f7dd660,0x421a1cd5,4 +np.float32,0x7ef34609,0x4218d5ac,4 +np.float32,0x7f5ed529,0x4219e2e5,4 +np.float32,0x7f1bf685,0x42194438,4 +np.float32,0x3cdd094a,0xbfc8d294,4 +np.float32,0x7e87fc8e,0x4217d303,4 +np.float32,0x7f53d971,0x4219cc6b,4 +np.float32,0xabc8b,0xc21c0646,4 +np.float32,0x7f5011e6,0x4219c46a,4 +np.float32,0x7e460638,0x421745e5,4 +np.float32,0xa8126,0xc21c0ffd,4 +np.float32,0x3eec2a66,0xbeac0f2d,4 +np.float32,0x3f3a1213,0xbe0de340,4 +np.float32,0x7f5908db,0x4219d72c,4 +np.float32,0x7e0ad3c5,0x4216a7f3,4 +np.float32,0x3f2de40e,0xbe2bfe90,4 +np.float32,0x3d0463c5,0xbfbec8e4,4 +np.float32,0x7c7cde0b,0x4212e19a,4 +np.float32,0x74c24f,0xc217e0f9,4 +np.float32,0x3f14b4cb,0xbe71929b,4 +np.float32,0x3e94e192,0xbf09537f,4 +np.float32,0x3eebde71,0xbeac56bd,4 +np.float32,0x3f65e413,0xbd3f5b8a,4 +np.float32,0x7e109199,0x4216b9f9,4 +np.float32,0x3f22f5d0,0xbe48ddc0,4 +np.float32,0x3e22d3bc,0xbf4c6f4d,4 +np.float32,0x3f7a812f,0xbc1a680b,4 +np.float32,0x3f67f361,0xbd2f7d7c,4 +np.float32,0x3f1caa63,0xbe5a6281,4 +np.float32,0x3f306fde,0xbe2587ab,4 +np.float32,0x3e8df9d3,0xbf0e9b2f,4 +np.float32,0x3eaaccc4,0xbef41cd4,4 +np.float32,0x7f3f65ec,0x42199f45,4 +np.float32,0x3dc706e0,0xbf8196ec,4 +np.float32,0x3e14eaba,0xbf565cf6,4 +np.float32,0xcc60,0xc2208a09,4 +np.float32,0x358447,0xc2193be7,4 +np.float32,0x3dcecade,0xbf7eec70,4 +np.float32,0x3f20b4f8,0xbe4f0ef0,4 +np.float32,0x7e7c979f,0x4217b222,4 +np.float32,0x7f2387b9,0x4219594a,4 +np.float32,0x3f6f6e5c,0xbcee0e05,4 +np.float32,0x7f19ad81,0x42193da8,4 +np.float32,0x5635e1,0xc21867dd,4 +np.float32,0x4c5e97,0xc2189dc4,4 +np.float32,0x7f35f97f,0x421988d1,4 +np.float32,0x7f685224,0x4219f571,4 +np.float32,0x3eca0616,0xbecec7b8,4 +np.float32,0x3f436d0d,0xbdf024ca,4 +np.float32,0x12a97d,0xc21b106a,4 +np.float32,0x7f0fdc93,0x4219204d,4 +np.float32,0x3debfb42,0xbf703e65,4 +np.float32,0x3c6c54d2,0xbfeba291,4 +np.float32,0x7e5d7491,0x421777a1,4 +np.float32,0x3f4bd2f0,0xbdcab87d,4 +np.float32,0x3f7517f4,0xbc9ae510,4 +np.float32,0x3f71a59a,0xbccd480d,4 +np.float32,0x3f514653,0xbdb33f61,4 +np.float32,0x3f4e6ea4,0xbdbf694b,4 +np.float32,0x3eadadec,0xbef06526,4 +np.float32,0x3f3b41c1,0xbe0b0fbf,4 +np.float32,0xc35a,0xc2209e1e,4 +np.float32,0x384982,0xc2192575,4 +np.float32,0x3464c3,0xc2194556,4 +np.float32,0x7f5e20d9,0x4219e17d,4 +np.float32,0x3ea18b62,0xbf004016,4 +np.float32,0x63a02b,0xc218278c,4 +np.float32,0x7ef547ba,0x4218d953,4 +np.float32,0x3f2496fb,0xbe4470f4,4 +np.float32,0x7ea0c8c6,0x42181d81,4 +np.float32,0x3f42ba60,0xbdf35372,4 +np.float32,0x7e40d9,0xc217be34,4 +np.float32,0x3e95883b,0xbf08d750,4 +np.float32,0x3e0cddf3,0xbf5c8aa8,4 +np.float32,0x3f2305d5,0xbe48b20a,4 +np.float32,0x7f0d0941,0x4219177b,4 +np.float32,0x3f7b98d3,0xbbf6e477,4 +np.float32,0x3f687cdc,0xbd2b6057,4 +np.float32,0x3f42ce91,0xbdf2f73d,4 +np.float32,0x3ee00fc0,0xbeb7c217,4 +np.float32,0x7f3d483a,0x42199a53,4 +np.float32,0x3e1e08eb,0xbf4fc18d,4 +np.float32,0x7e202ff5,0x4216e798,4 +np.float32,0x582898,0xc2185ded,4 +np.float32,0x3e3552b1,0xbf40790c,4 +np.float32,0x3d3f7c87,0xbfaa44b6,4 +np.float32,0x669d8e,0xc2181a65,4 +np.float32,0x3f0e21b4,0xbe82d757,4 +np.float32,0x686f95,0xc2181293,4 +np.float32,0x3f48367f,0xbdda9ead,4 +np.float32,0x3dc27802,0xbf82e0a0,4 +np.float32,0x3f6ac40c,0xbd1a07d4,4 +np.float32,0x3bba6d,0xc2190b12,4 +np.float32,0x3ec7b6b0,0xbed15665,4 +np.float32,0x3f1f9ca4,0xbe521955,4 +np.float32,0x3ef2f147,0xbea5c4b8,4 +np.float32,0x7c65f769,0x4212b762,4 +np.float32,0x7e98e162,0x42180716,4 +np.float32,0x3f0f0c09,0xbe8169ea,4 +np.float32,0x3d67f03b,0xbf9f9d48,4 +np.float32,0x7f3751e4,0x42198c18,4 +np.float32,0x7f1fac61,0x42194ead,4 +np.float32,0x3e9b698b,0xbf048d89,4 +np.float32,0x7e66507b,0x42178913,4 +np.float32,0x7f5cb680,0x4219dea5,4 +np.float32,0x234700,0xc219f53e,4 +np.float32,0x3d9984ad,0xbf900591,4 +np.float32,0x3f33a3f2,0xbe1d872a,4 +np.float32,0x3eaf52b6,0xbeee4cf4,4 +np.float32,0x7f078930,0x421905ca,4 +np.float32,0x3f083b39,0xbe8c44df,4 +np.float32,0x3e3823f8,0xbf3ec231,4 +np.float32,0x3eef6f5d,0xbea9008c,4 +np.float32,0x6145e1,0xc218322c,4 +np.float32,0x16d9ae,0xc21ab65f,4 +np.float32,0x7e543376,0x421764a5,4 +np.float32,0x3ef77ccb,0xbea1a5a0,4 +np.float32,0x3f4a443f,0xbdd18af5,4 +np.float32,0x8f209,0xc21c5770,4 +np.float32,0x3ecac126,0xbecdfa33,4 +np.float32,0x3e8662f9,0xbf14b6c7,4 +np.float32,0x23759a,0xc219f2f4,4 +np.float32,0xf256d,0xc21b6d3f,4 +np.float32,0x3f579f93,0xbd98aaa2,4 +np.float32,0x3ed4cc8e,0xbec339cb,4 +np.float32,0x3ed25400,0xbec5d2a1,4 +np.float32,0x3ed6f8ba,0xbec0f795,4 +np.float32,0x7f36efd9,0x42198b2a,4 +np.float32,0x7f5169dd,0x4219c746,4 +np.float32,0x7de18a20,0x42164b80,4 +np.float32,0x3e8de526,0xbf0eab61,4 +np.float32,0x3de0cbcd,0xbf75a47e,4 +np.float32,0xe265f,0xc21b8b82,4 +np.float32,0x3df3cdbd,0xbf6c9e40,4 +np.float32,0x3f38a25a,0xbe115589,4 +np.float32,0x7f01f2c0,0x4218f311,4 +np.float32,0x3da7d5f4,0xbf8b10a5,4 +np.float32,0x4d4fe8,0xc2189850,4 +np.float32,0x3cc96d9d,0xbfcdfc8d,4 +np.float32,0x259a88,0xc219d8d7,4 +np.float32,0x7f1d5102,0x42194810,4 +np.float32,0x7e17ca91,0x4216cfa7,4 +np.float32,0x3f73d110,0xbcad7a8f,4 +np.float32,0x3f009383,0xbe9920ed,4 +np.float32,0x7e22af,0xc217be9f,4 +np.float32,0x3f7de2ce,0xbb6c0394,4 +np.float32,0x3edd0cd2,0xbebac45a,4 +np.float32,0x3ec9b5c1,0xbecf2035,4 +np.float32,0x3168c5,0xc2195f6b,4 +np.float32,0x3e935522,0xbf0a7d18,4 +np.float32,0x3e494077,0xbf34e120,4 +np.float32,0x3f52ed06,0xbdac41ec,4 +np.float32,0x3f73d51e,0xbcad3f65,4 +np.float32,0x3f03d453,0xbe939295,4 +np.float32,0x7ef4ee68,0x4218d8b1,4 +np.float32,0x3ed0e2,0xc218f4a7,4 +np.float32,0x4efab8,0xc2188ed3,4 +np.float32,0x3dbd5632,0xbf845d3b,4 +np.float32,0x7eecad4f,0x4218c972,4 +np.float32,0x9d636,0xc21c2d32,4 +np.float32,0x3e5f3b6b,0xbf295ae7,4 +np.float32,0x7f4932df,0x4219b57a,4 +np.float32,0x4b59b5,0xc218a3be,4 +np.float32,0x3e5de97f,0xbf2a03b4,4 +np.float32,0x3f1c479d,0xbe5b7b3c,4 +np.float32,0x3f42e7e4,0xbdf283a5,4 +np.float32,0x2445,0xc2238af2,4 +np.float32,0x7aa71b43,0x420e8c9e,4 +np.float32,0x3ede6e4e,0xbeb961e1,4 +np.float32,0x7f05dd3b,0x42190045,4 +np.float32,0x3ef5b55c,0xbea3404b,4 +np.float32,0x7f738624,0x421a0a62,4 +np.float32,0x3e7d50a1,0xbf1b4cb4,4 +np.float32,0x3f44cc4a,0xbde9ebcc,4 +np.float32,0x7e1a7b0b,0x4216d777,4 +np.float32,0x3f1d9868,0xbe57c0da,4 +np.float32,0x1ebee2,0xc21a3263,4 +np.float32,0x31685f,0xc2195f6e,4 +np.float32,0x368a8e,0xc2193379,4 +np.float32,0xa9847,0xc21c0c2e,4 +np.float32,0x3bd3b3,0xc2190a56,4 +np.float32,0x3961e4,0xc2191ce3,4 +np.float32,0x7e13a243,0x4216c34e,4 +np.float32,0x7f7b1790,0x421a17ff,4 +np.float32,0x3e55f020,0xbf2e1545,4 +np.float32,0x3f513861,0xbdb37aa8,4 +np.float32,0x3dd9e754,0xbf791ad2,4 +np.float32,0x5e8d86,0xc2183ec9,4 +np.float32,0x26b796,0xc219cbdd,4 +np.float32,0x429daa,0xc218da89,4 +np.float32,0x3f477caa,0xbdddd9ba,4 +np.float32,0x3f0e5114,0xbe828d45,4 +np.float32,0x3f54f362,0xbda3c286,4 +np.float32,0x6eac1c,0xc217f8c8,4 +np.float32,0x3f04c479,0xbe91fef5,4 +np.float32,0x3e993765,0xbf06228e,4 +np.float32,0x3eafd99f,0xbeeda21b,4 +np.float32,0x3f2a759e,0xbe34db96,4 +np.float32,0x3f05adfb,0xbe907937,4 +np.float32,0x3f6e2dfc,0xbd005980,4 +np.float32,0x3f2f2daa,0xbe28b6b5,4 +np.float32,0x15e746,0xc21ac931,4 +np.float32,0x7d34ca26,0x4214b4e5,4 +np.float32,0x7ebd175c,0x4218659f,4 +np.float32,0x7f1ed26b,0x42194c4c,4 +np.float32,0x2588b,0xc21eaab0,4 +np.float32,0x3f0065e3,0xbe996fe2,4 +np.float32,0x3f610376,0xbd658122,4 +np.float32,0x451995,0xc218ca41,4 +np.float32,0x70e083,0xc217f002,4 +np.float32,0x7e19821a,0x4216d4a8,4 +np.float32,0x3e7cd9a0,0xbf1b80fb,4 +np.float32,0x7f1a8f18,0x42194033,4 +np.float32,0x3f008fee,0xbe99271f,4 +np.float32,0xff7fffff,0x7fc00000,4 +np.float32,0x7f31d826,0x42197e9b,4 +np.float32,0x3f18cf12,0xbe657838,4 +np.float32,0x3e5c1bc7,0xbf2aebf9,4 +np.float32,0x3e3d3993,0xbf3bbaf8,4 +np.float32,0x68457a,0xc2181347,4 +np.float32,0x7ddf7561,0x42164761,4 +np.float32,0x7f47341b,0x4219b10c,4 +np.float32,0x4d3ecd,0xc21898b2,4 +np.float32,0x7f43dee8,0x4219a98b,4 +np.float32,0x3f0def7c,0xbe8325f5,4 +np.float32,0x3d5a551f,0xbfa2f994,4 +np.float32,0x7ed26602,0x4218951b,4 +np.float32,0x3ee7fa5b,0xbeb0099a,4 +np.float32,0x7ef74ea8,0x4218dcfc,4 +np.float32,0x6a3bb2,0xc2180afd,4 +np.float32,0x7f4c1e6e,0x4219bbe3,4 +np.float32,0x3e26f625,0xbf49a5a2,4 +np.float32,0xb8482,0xc21be70b,4 +np.float32,0x3f32f077,0xbe1f445b,4 +np.float32,0x7dd694b6,0x4216355a,4 +np.float32,0x7f3d62fd,0x42199a92,4 +np.float32,0x3f48e41a,0xbdd79cbf,4 +np.float32,0x338fc3,0xc2194c75,4 +np.float32,0x3e8355f0,0xbf174462,4 +np.float32,0x7f487e83,0x4219b3eb,4 +np.float32,0x2227f7,0xc21a039b,4 +np.float32,0x7e4383dd,0x4217403a,4 +np.float32,0x52d28b,0xc21879b2,4 +np.float32,0x12472c,0xc21b19a9,4 +np.float32,0x353530,0xc2193e7b,4 +np.float32,0x3f4e4728,0xbdc0137a,4 +np.float32,0x3bf169,0xc2190979,4 +np.float32,0x3eb3ee2e,0xbee8885f,4 +np.float32,0x3f03e3c0,0xbe937892,4 +np.float32,0x3c9f8408,0xbfdaf47f,4 +np.float32,0x40e792,0xc218e61b,4 +np.float32,0x5a6b29,0xc21852ab,4 +np.float32,0x7f268b83,0x4219616a,4 +np.float32,0x3ee25997,0xbeb57fa7,4 +np.float32,0x3f175324,0xbe69cf53,4 +np.float32,0x3f781d91,0xbc5e9827,4 +np.float32,0x7dba5210,0x4215f68c,4 +np.float32,0x7f1e66,0xc217bb2b,4 +np.float32,0x7f7fffff,0x421a209b,4 +np.float32,0x3f646202,0xbd4b10b8,4 +np.float32,0x575248,0xc218622b,4 +np.float32,0x7c67faa1,0x4212bb42,4 +np.float32,0x7f1683f2,0x42193469,4 +np.float32,0x1a3864,0xc21a7931,4 +np.float32,0x7f30ad75,0x42197bae,4 +np.float32,0x7f1c9d05,0x42194612,4 +np.float32,0x3e791795,0xbf1d2b2c,4 +np.float32,0x7e9ebc19,0x421817cd,4 +np.float32,0x4999b7,0xc218ae31,4 +np.float32,0x3d130e2c,0xbfb8f1cc,4 +np.float32,0x3f7e436f,0xbb41bb07,4 +np.float32,0x3ee00241,0xbeb7cf7d,4 +np.float32,0x7e496181,0x42174d5f,4 +np.float32,0x7efe58be,0x4218e978,4 +np.float32,0x3f5e5b0c,0xbd7aa43f,4 +np.float32,0x7ee4c6ab,0x4218ba59,4 +np.float32,0x3f6da8c6,0xbd043d7e,4 +np.float32,0x3e3e6e0f,0xbf3b064b,4 +np.float32,0x3f0143b3,0xbe97f10a,4 +np.float32,0x79170f,0xc217d0c6,4 +np.float32,0x517645,0xc218810f,4 +np.float32,0x3f1f9960,0xbe52226e,4 +np.float32,0x2a8df9,0xc219a1d6,4 +np.float32,0x2300a6,0xc219f8b8,4 +np.float32,0x3ee31355,0xbeb4c97a,4 +np.float32,0x3f20b05f,0xbe4f1ba9,4 +np.float32,0x3ee64249,0xbeb1b0ff,4 +np.float32,0x3a94b7,0xc21913b2,4 +np.float32,0x7ef7ef43,0x4218de1d,4 +np.float32,0x3f1abb5d,0xbe5fe872,4 +np.float32,0x7f65360b,0x4219ef72,4 +np.float32,0x3d315d,0xc219004c,4 +np.float32,0x3f26bbc4,0xbe3eafb9,4 +np.float32,0x3ee8c6e9,0xbeaf45de,4 +np.float32,0x7e5f1452,0x42177ae1,4 +np.float32,0x3f32e777,0xbe1f5aba,4 +np.float32,0x4d39a1,0xc21898d0,4 +np.float32,0x3e59ad15,0xbf2c2841,4 +np.float32,0x3f4be746,0xbdca5fc4,4 +np.float32,0x72e4fd,0xc217e821,4 +np.float32,0x1af0b8,0xc21a6d25,4 +np.float32,0x3f311147,0xbe23f18d,4 +np.float32,0x3f1ecebb,0xbe545880,4 +np.float32,0x7e90d293,0x4217ef02,4 +np.float32,0x3e3b366a,0xbf3ceb46,4 +np.float32,0x3f133239,0xbe761c96,4 +np.float32,0x7541ab,0xc217df15,4 +np.float32,0x3d8c8275,0xbf94f1a1,4 +np.float32,0x483b92,0xc218b689,4 +np.float32,0x3eb0dbed,0xbeec5c6b,4 +np.float32,0x3f00c676,0xbe98c8e2,4 +np.float32,0x3f445ac2,0xbdebed7c,4 +np.float32,0x3d2af4,0xc219007a,4 +np.float32,0x7f196ee1,0x42193cf2,4 +np.float32,0x290c94,0xc219b1db,4 +np.float32,0x3f5dbdc9,0xbd7f9019,4 +np.float32,0x3e80c62e,0xbf1974fc,4 +np.float32,0x3ec9ed2c,0xbecee326,4 +np.float32,0x7f469d60,0x4219afbb,4 +np.float32,0x3f698413,0xbd2386ce,4 +np.float32,0x42163f,0xc218de14,4 +np.float32,0x67a554,0xc21815f4,4 +np.float32,0x3f4bff74,0xbdc9f651,4 +np.float32,0x16a743,0xc21aba39,4 +np.float32,0x2eb8b0,0xc219784b,4 +np.float32,0x3eed9be1,0xbeaab45b,4 +np.float64,0x7fe0d76873e1aed0,0x40733f9d783bad7a,1 +np.float64,0x3fe22626bb244c4d,0xbfcf86a59864eea2,1 +np.float64,0x7f874113d02e8227,0x407324f54c4015b8,1 +np.float64,0x3fe40a46a9e8148d,0xbfca0411f533fcb9,1 +np.float64,0x3fd03932eea07266,0xbfe312bc9cf5649e,1 +np.float64,0x7fee5d2a1b3cba53,0x407343b5f56367a0,1 +np.float64,0x3feb7bda4a76f7b5,0xbfb0ea2c6edc784a,1 +np.float64,0x3fd6cd831a2d9b06,0xbfdcaf2e1a5faf51,1 +np.float64,0x98324e273064a,0xc0733e0e4c6d11c6,1 +np.float64,0x7fe1dd63b363bac6,0x4073400667c405c3,1 +np.float64,0x3fec5971f178b2e4,0xbfaaef32a7d94563,1 +np.float64,0x17abc07e2f579,0xc0734afca4da721e,1 +np.float64,0x3feec6ab5cfd8d57,0xbf9157f3545a8235,1 +np.float64,0x3fe3ae9622a75d2c,0xbfcb04b5ad254581,1 +np.float64,0x7fea73d854b4e7b0,0x407342c0a548f4c5,1 +np.float64,0x7fe29babf4653757,0x4073404eeb5fe714,1 +np.float64,0x7fd3a55d85a74aba,0x40733bde72e86c27,1 +np.float64,0x3fe83ce305f079c6,0xbfbee3511e85e0f1,1 +np.float64,0x3fd72087ea2e4110,0xbfdc4ab30802d7c2,1 +np.float64,0x7feb54ddab76a9ba,0x407342facb6f3ede,1 +np.float64,0xc57e34a18afd,0xc0734f82ec815baa,1 +np.float64,0x7a8cb97ef5198,0xc0733f8fb3777a67,1 +np.float64,0x7fe801032c300205,0x40734213dbe4eda9,1 +np.float64,0x3aefb1f475df7,0xc07344a5f08a0584,1 +np.float64,0x7fee85f1dd3d0be3,0x407343bf4441c2a7,1 +np.float64,0x3fdc7f1055b8fe21,0xbfd67d300630e893,1 +np.float64,0xe8ecddb3d1d9c,0xc0733b194f18f466,1 +np.float64,0x3fdf2b23c73e5648,0xbfd3ff6872c1f887,1 +np.float64,0x3fdba4aef2b7495e,0xbfd7557205e18b7b,1 +np.float64,0x3fe2ac34c6e5586a,0xbfcdf1dac69bfa08,1 +np.float64,0x3fc9852628330a4c,0xbfe66914f0fb9b0a,1 +np.float64,0x7fda211acf344235,0x40733dd9c2177aeb,1 +np.float64,0x3fe9420eb432841d,0xbfba4dd969a32575,1 +np.float64,0xb2f9d1ed65f3a,0xc0733cedfb6527ff,1 +np.float64,0x3fe9768a68f2ed15,0xbfb967c39c35c435,1 +np.float64,0x7fe8268462b04d08,0x4073421eaed32734,1 +np.float64,0x3fcf331f063e663e,0xbfe39e2f4b427ca9,1 +np.float64,0x7fd4eb9e2b29d73b,0x40733c4e4141418d,1 +np.float64,0x7fd2bba658a5774c,0x40733b89cd53d5b1,1 +np.float64,0x3fdfdf04913fbe09,0xbfd360c7fd9d251b,1 +np.float64,0x3fca5bfd0534b7fa,0xbfe5f5f844b2b20c,1 +np.float64,0x3feacd5032f59aa0,0xbfb3b5234ba8bf7b,1 +np.float64,0x7fe9241cec724839,0x4073426631362cec,1 +np.float64,0x3fe57aca20eaf594,0xbfc628e3ac2c6387,1 +np.float64,0x3fec6553ca38caa8,0xbfaa921368d3b222,1 +np.float64,0x3fe1e9676563d2cf,0xbfd020f866ba9b24,1 +np.float64,0x3fd5590667aab20d,0xbfde8458af5a4fd6,1 +np.float64,0x3fdf7528f43eea52,0xbfd3bdb438d6ba5e,1 +np.float64,0xb8dddc5571bbc,0xc0733cb4601e5bb2,1 +np.float64,0xe6d4e1fbcda9c,0xc0733b295ef4a4ba,1 +np.float64,0x3fe7019d962e033b,0xbfc257c0a6e8de16,1 +np.float64,0x3f94ef585029deb1,0xbffb07e5dfb0e936,1 +np.float64,0x7fc863b08030c760,0x4073388e28d7b354,1 +np.float64,0xf684443bed089,0xc0733ab46cfbff9a,1 +np.float64,0x7fe00e901d201d1f,0x40733f489c05a0f0,1 +np.float64,0x9e5c0a273cb82,0xc0733dc7af797e19,1 +np.float64,0x7fe49734f0692e69,0x4073410303680df0,1 +np.float64,0x7fb7b584442f6b08,0x4073338acff72502,1 +np.float64,0x3f99984c30333098,0xbff9a2642a6ed8cc,1 +np.float64,0x7fea2fcda8745f9a,0x407342aeae7f5e64,1 +np.float64,0xe580caadcb01a,0xc0733b33a3639217,1 +np.float64,0x1899ab3831336,0xc0734ab823729417,1 +np.float64,0x39bd4c76737aa,0xc07344ca6fac6d21,1 +np.float64,0xd755b2dbaeab7,0xc0733ba4fe19f2cc,1 +np.float64,0x3f952bebf82a57d8,0xbffaf3e7749c2512,1 +np.float64,0x3fe62ee5d72c5dcc,0xbfc45e3cb5baad08,1 +np.float64,0xb1264a7d624ca,0xc0733d003a1d0a66,1 +np.float64,0x3fc4bd1bcd297a38,0xbfe94b3058345c46,1 +np.float64,0x7fc5758bb32aeb16,0x407337aa7805497f,1 +np.float64,0x3fb0edcaf421db96,0xbff2dfb09c405294,1 +np.float64,0x3fd240fceaa481fa,0xbfe16f356bb36134,1 +np.float64,0x38c0c62a7181a,0xc07344e916d1e9b7,1 +np.float64,0x3fe98f2b3bf31e56,0xbfb8fc6eb622a820,1 +np.float64,0x3fe2bdf99c257bf3,0xbfcdbd0dbbae4d0b,1 +np.float64,0xce4b390d9c967,0xc0733bf14ada3134,1 +np.float64,0x3fd2ad607ba55ac1,0xbfe11da15167b37b,1 +np.float64,0x3fd8154f11b02a9e,0xbfdb2a6fabb9a026,1 +np.float64,0xf37849fde6f09,0xc0733aca8c64344c,1 +np.float64,0x3fcbae43b2375c87,0xbfe547f267c8e570,1 +np.float64,0x3fcd46fd7d3a8dfb,0xbfe48070f7232929,1 +np.float64,0x7fcdd245273ba489,0x407339f3d907b101,1 +np.float64,0x3fac75cd0838eb9a,0xbff4149d177b057b,1 +np.float64,0x7fe8ff3fd7f1fe7f,0x4073425bf968ba6f,1 +np.float64,0x7febadaa4df75b54,0x407343113a91f0e9,1 +np.float64,0x7fd5e4649c2bc8c8,0x40733c9f0620b065,1 +np.float64,0x903429812069,0xc07351b255e27887,1 +np.float64,0x3fe1d8c51c63b18a,0xbfd03ad448c1f1ee,1 +np.float64,0x3fe573ea646ae7d5,0xbfc63ab0bfd0e601,1 +np.float64,0x3f83b3f3c02767e8,0xc00022677e310649,1 +np.float64,0x7fd15d1582a2ba2a,0x40733b02c469c1d6,1 +np.float64,0x3fe63d3dabec7a7b,0xbfc43a56ee97b27e,1 +np.float64,0x7fe3a452fb2748a5,0x407340af1973c228,1 +np.float64,0x3fafac6b303f58d6,0xbff35651703ae9f2,1 +np.float64,0x513ddd24a27bc,0xc073426af96aaebb,1 +np.float64,0x3fef152246be2a45,0xbf89df79d7719282,1 +np.float64,0x3fe8c923e9f19248,0xbfbc67228e8db5f6,1 +np.float64,0x3fd6e2325fadc465,0xbfdc9602fb0b950f,1 +np.float64,0x3fe9616815f2c2d0,0xbfb9c4311a3b415b,1 +np.float64,0x2fe4e4005fc9d,0xc0734616fe294395,1 +np.float64,0x3fbceb02dc39d606,0xbfee4e68f1c7886f,1 +np.float64,0x7fe35e843d66bd07,0x407340963b066ad6,1 +np.float64,0x7fecd6c648f9ad8c,0x4073435a4c176e94,1 +np.float64,0x7fcbd72bf437ae57,0x4073397994b85665,1 +np.float64,0x3feff6443b3fec88,0xbf40eb380d5318ae,1 +np.float64,0x7fb9373cf6326e79,0x407333f869edef08,1 +np.float64,0x63790d9cc6f22,0xc0734102d4793cda,1 +np.float64,0x3f9de6efe83bcde0,0xbff88db6f0a6b56e,1 +np.float64,0xe00f2dc1c01f,0xc0734ea26ab84ff2,1 +np.float64,0xd7a9aa8baf536,0xc0733ba248fa33ab,1 +np.float64,0x3fee0089ea7c0114,0xbf9cab936ac31c4b,1 +np.float64,0x3fdec0d51cbd81aa,0xbfd45ed8878c5860,1 +np.float64,0x7fe91bf5e9f237eb,0x40734263f005081d,1 +np.float64,0x34ea7d1e69d50,0xc07345659dde7444,1 +np.float64,0x7fe67321a3ace642,0x4073419cc8130d95,1 +np.float64,0x9d1aeb2f3a35e,0xc0733dd5d506425c,1 +np.float64,0x7fbb01df003603bd,0x4073347282f1391d,1 +np.float64,0x42b945b285729,0xc07343c92d1bbef9,1 +np.float64,0x7fc92799b8324f32,0x407338c51e3f0733,1 +np.float64,0x3fe119c19b223383,0xbfd16ab707f65686,1 +np.float64,0x3fc9f9ac5333f359,0xbfe62a2f91ec0dff,1 +np.float64,0x3fd820d5a8b041ab,0xbfdb1d2586fe7b18,1 +np.float64,0x10000000000000,0xc0733a7146f72a42,1 +np.float64,0x3fe7e1543eafc2a8,0xbfc045362889592d,1 +np.float64,0xcbc0e1819783,0xc0734f4b68e05b1c,1 +np.float64,0xeb57e411d6afd,0xc0733b06efec001a,1 +np.float64,0xa9b74b47536ea,0xc0733d4c7bd06ddc,1 +np.float64,0x3fe56d4022eada80,0xbfc64bf8c7e3dd59,1 +np.float64,0x3fd445ca27288b94,0xbfdff40aecd0f882,1 +np.float64,0x3fe5af1cf5ab5e3a,0xbfc5a21d83699a04,1 +np.float64,0x7fed3431eb7a6863,0x40734370aa6131e1,1 +np.float64,0x3fd878dea1b0f1bd,0xbfdab8730dc00517,1 +np.float64,0x7ff8000000000000,0x7ff8000000000000,1 +np.float64,0x3feba9fcc1f753fa,0xbfb03027dcecbf65,1 +np.float64,0x7fca4feed6349fdd,0x4073391526327eb0,1 +np.float64,0x3fe7748ddbaee91c,0xbfc144b438218065,1 +np.float64,0x3fb5fbd94c2bf7b3,0xbff10ee6342c21a0,1 +np.float64,0x3feb603b97f6c077,0xbfb15a1f99d6d25e,1 +np.float64,0x3fe2e6fc8ce5cdf9,0xbfcd43edd7f3b4e6,1 +np.float64,0x7feb2b31f7765663,0x407342f02b306688,1 +np.float64,0x3fe290e2282521c4,0xbfce436deb8dbcf3,1 +np.float64,0x3fe3d5adf9e7ab5c,0xbfca96b8aa55d942,1 +np.float64,0x691899f2d2314,0xc07340a1026897c8,1 +np.float64,0x7fe468b008e8d15f,0x407340f33eadc628,1 +np.float64,0x3fb3a4c416274988,0xbff1d71da539a56e,1 +np.float64,0x3fe2442b29e48856,0xbfcf2b0037322661,1 +np.float64,0x3f376fbc7e6ef,0xc073442939a84643,1 +np.float64,0x3fe7c78d65ef8f1b,0xbfc08157cff411de,1 +np.float64,0xd4f27acba9e50,0xc0733bb8d38daa50,1 +np.float64,0x5198919ea3313,0xc07342633ba7cbea,1 +np.float64,0x7fd09f66f0a13ecd,0x40733ab5310b4385,1 +np.float64,0x3fdfe5531dbfcaa6,0xbfd35b487c7e739f,1 +np.float64,0x3fc4b0fecc2961fe,0xbfe95350c38c1640,1 +np.float64,0x7fd5ae21962b5c42,0x40733c8db78b7250,1 +np.float64,0x3fa4a8fcd42951fa,0xbff64e62fe602b72,1 +np.float64,0x7fc8e0e25831c1c4,0x407338b179b91223,1 +np.float64,0x7fdde1df6f3bc3be,0x40733ec87f9f027e,1 +np.float64,0x3fd8b9ad86b1735b,0xbfda6f385532c41b,1 +np.float64,0x3fd9f20ee933e41e,0xbfd91872fd858597,1 +np.float64,0x7feb35332df66a65,0x407342f2b9c715f0,1 +np.float64,0x7fe783dc7eaf07b8,0x407341ef41873706,1 +np.float64,0x7fceee929f3ddd24,0x40733a34e3c660fd,1 +np.float64,0x985b58d730b6b,0xc0733e0c6cfbb6f8,1 +np.float64,0x3fef4bb55cfe976b,0xbf83cb246c6f2a78,1 +np.float64,0x3fe218014f243003,0xbfcfb20ac683e1f6,1 +np.float64,0x7fe43b9fbea8773e,0x407340e3d5d5d29e,1 +np.float64,0x7fe148c74c62918e,0x40733fcba4367b8b,1 +np.float64,0x3feea4ad083d495a,0xbf93443917f3c991,1 +np.float64,0x8bcf6311179ed,0xc0733ea54d59dd31,1 +np.float64,0xf4b7a2dbe96f5,0xc0733ac175182401,1 +np.float64,0x543338baa8668,0xc073422b59165fe4,1 +np.float64,0x3fdb467317368ce6,0xbfd7b4d515929635,1 +np.float64,0x7fe3bbbc89e77778,0x407340b75cdf3de7,1 +np.float64,0x7fe693377aad266e,0x407341a6af60a0f1,1 +np.float64,0x3fc66210502cc421,0xbfe83bb940610a24,1 +np.float64,0x7fa75638982eac70,0x40732e9da476b816,1 +np.float64,0x3fe0d72a4761ae55,0xbfd1d7c82c479fab,1 +np.float64,0x97dec0dd2fbd8,0xc0733e121e072804,1 +np.float64,0x3fef33ec8c7e67d9,0xbf86701be6be8df1,1 +np.float64,0x7fcfca9b423f9536,0x40733a65a51efb94,1 +np.float64,0x9f2215633e443,0xc0733dbf043de9ed,1 +np.float64,0x2469373e48d28,0xc07347fe9e904b77,1 +np.float64,0x7fecc2e18cb985c2,0x407343557f58dfa2,1 +np.float64,0x3fde4acbfdbc9598,0xbfd4ca559e575e74,1 +np.float64,0x3fd6b11cf1ad623a,0xbfdcd1e17ef36114,1 +np.float64,0x3fc19ec494233d89,0xbfeb8ef228e8826a,1 +np.float64,0x4c89ee389913e,0xc07342d50c904f61,1 +np.float64,0x88c2046f11841,0xc0733ecc91369431,1 +np.float64,0x7fc88c13fd311827,0x40733899a125b392,1 +np.float64,0x3fcebd893a3d7b12,0xbfe3d2f35ab93765,1 +np.float64,0x3feb582a1476b054,0xbfb17ae8ec6a0465,1 +np.float64,0x7fd4369e5da86d3c,0x40733c1118b8cd67,1 +np.float64,0x3fda013fc1340280,0xbfd90831b85e98b2,1 +np.float64,0x7fed33d73fba67ad,0x4073437094ce1bd9,1 +np.float64,0x3fed3191053a6322,0xbfa468cc26a8f685,1 +np.float64,0x3fc04ed51c209daa,0xbfeca24a6f093bca,1 +np.float64,0x3fee4ac8763c9591,0xbf986458abbb90b5,1 +np.float64,0xa2d39dd145a74,0xc0733d9633651fbc,1 +np.float64,0x3fe7d9f86f2fb3f1,0xbfc0565a0b059f1c,1 +np.float64,0x3fe3250144e64a03,0xbfcc8eb2b9ae494b,1 +np.float64,0x7fe2b29507a56529,0x4073405774492075,1 +np.float64,0x7fdcdfcbe2b9bf97,0x40733e8b736b1bd8,1 +np.float64,0x3fc832730f3064e6,0xbfe7267ac9b2e7c3,1 +np.float64,0x3fc7e912e52fd226,0xbfe750dfc0aeae57,1 +np.float64,0x7fc960472f32c08d,0x407338d4b4cb3957,1 +np.float64,0x3fbdf182ea3be306,0xbfedd27150283ffb,1 +np.float64,0x3fd1e9359823d26b,0xbfe1b2ac7fd25f8d,1 +np.float64,0x7fbcf75f6039eebe,0x407334ef13eb16f8,1 +np.float64,0x3fe5a3c910eb4792,0xbfc5bf2f57c5d643,1 +np.float64,0x3fcf4f2a6e3e9e55,0xbfe391b6f065c4b8,1 +np.float64,0x3fee067873fc0cf1,0xbf9c53af0373fc0e,1 +np.float64,0xd3f08b85a7e12,0xc0733bc14357e686,1 +np.float64,0x7ff0000000000000,0x7ff0000000000000,1 +np.float64,0x3fc8635f6430c6bf,0xbfe70a7dc77749a7,1 +np.float64,0x3fe3ff5c52a7feb9,0xbfca22617c6636d5,1 +np.float64,0x3fbbae91fa375d24,0xbfeee9d4c300543f,1 +np.float64,0xe3f71b59c7ee4,0xc0733b3f99187375,1 +np.float64,0x7fca93d3be3527a6,0x40733926fd48ecd6,1 +np.float64,0x3fcd29f7223a53ee,0xbfe48e3edf32fe57,1 +np.float64,0x7fdc4ef6f8389ded,0x40733e68401cf2a6,1 +np.float64,0xe009bc81c014,0xc0734ea295ee3e5b,1 +np.float64,0x61f56c78c3eae,0xc073411e1dbd7c54,1 +np.float64,0x3fde131928bc2632,0xbfd4fda024f6927c,1 +np.float64,0x3fb21ee530243dca,0xbff266aaf0358129,1 +np.float64,0x7feaac82a4f55904,0x407342cf7809d9f9,1 +np.float64,0x3fe66ab177ecd563,0xbfc3c92d4d522819,1 +np.float64,0xfe9f9c2bfd3f4,0xc0733a7ade3a88a7,1 +np.float64,0x7fd0c5217c218a42,0x40733ac4e4c6dfa5,1 +np.float64,0x430f4ae6861ea,0xc07343c03d8a9442,1 +np.float64,0x494bff2a92981,0xc073432209d2fd16,1 +np.float64,0x3f8860e9d030c1d4,0xbffeca059ebf5e89,1 +np.float64,0x3fe43732dc286e66,0xbfc98800388bad2e,1 +np.float64,0x6443b60ec8877,0xc07340f4bab11827,1 +np.float64,0x3feda9be6d7b537d,0xbfa0dcb9a6914069,1 +np.float64,0x3fc5ceb6772b9d6d,0xbfe89868c881db70,1 +np.float64,0x3fbdf153023be2a6,0xbfedd2878c3b4949,1 +np.float64,0x7fe8f6b8e8f1ed71,0x407342599a30b273,1 +np.float64,0x3fea6fbdb8b4df7b,0xbfb53bf66f71ee96,1 +np.float64,0xc7ac3dbb8f588,0xc0733c2b525b7963,1 +np.float64,0x3fef3a91f77e7524,0xbf85b2bd3adbbe31,1 +np.float64,0x3f887cb97030f973,0xbffec21ccbb5d22a,1 +np.float64,0x8b2f1c9f165e4,0xc0733ead49300951,1 +np.float64,0x2c1cb32058397,0xc07346a951bd8d2b,1 +np.float64,0x3fe057edd620afdc,0xbfd2acf1881b7e99,1 +np.float64,0x7f82e9530025d2a5,0x4073238591dd52ce,1 +np.float64,0x3fe4e03dff69c07c,0xbfc7be96c5c006fc,1 +np.float64,0x52727b4aa4e50,0xc0734250c58ebbc1,1 +np.float64,0x3f99a62160334c43,0xbff99ea3ca09d8f9,1 +np.float64,0x3fd5314b4faa6297,0xbfdeb843daf01e03,1 +np.float64,0x3fefde89e13fbd14,0xbf5d1facb7a1e9de,1 +np.float64,0x7fb460f1a228c1e2,0x4073327d8cbc5f86,1 +np.float64,0xeb93efb3d727e,0xc0733b052a4990e4,1 +np.float64,0x3fe884baecf10976,0xbfbd9ba9cfe23713,1 +np.float64,0x7fefffffffffffff,0x40734413509f79ff,1 +np.float64,0x149dc7c6293ba,0xc0734bf26b1df025,1 +np.float64,0x64188f88c8313,0xc07340f7b8e6f4b5,1 +np.float64,0x3fdfac314abf5863,0xbfd38d3e9dba1b0e,1 +np.float64,0x3fd72052a42e40a5,0xbfdc4af30ee0b245,1 +np.float64,0x7fdd951f743b2a3e,0x40733eb68fafa838,1 +np.float64,0x65a2dd5acb45c,0xc07340dc8ed625e1,1 +np.float64,0x7fe89a79997134f2,0x4073423fbceb1cbe,1 +np.float64,0x3fe70a000d6e1400,0xbfc24381e09d02f7,1 +np.float64,0x3fe2cec160259d83,0xbfcd8b5e92354129,1 +np.float64,0x3feb9ef77a773def,0xbfb05c7b2ee6f388,1 +np.float64,0xe0d66689c1acd,0xc0733b582c779620,1 +np.float64,0x3fee86bd0ffd0d7a,0xbf94f7870502c325,1 +np.float64,0x186afc6230d60,0xc0734ac55fb66d5d,1 +np.float64,0xc0631f4b80c64,0xc0733c6d7149d373,1 +np.float64,0x3fdad1b87735a371,0xbfd82cca73ec663b,1 +np.float64,0x7fe7f6d313efeda5,0x40734210e84576ab,1 +np.float64,0x7fd7b7fce6af6ff9,0x40733d2d92ffdaaf,1 +np.float64,0x3fe6f35a28ade6b4,0xbfc27a4239b540c3,1 +np.float64,0x7fdb0b834eb61706,0x40733e17073a61f3,1 +np.float64,0x82f4661105e8d,0xc0733f19b34adeed,1 +np.float64,0x3fc77230112ee460,0xbfe796a7603c0d16,1 +np.float64,0x8000000000000000,0xfff0000000000000,1 +np.float64,0x7fb8317bc63062f7,0x407333aec761a739,1 +np.float64,0x7fd165609a22cac0,0x40733b061541ff15,1 +np.float64,0x3fed394768fa728f,0xbfa42e1596e1faf6,1 +np.float64,0x7febab693d7756d1,0x40734310a9ac828e,1 +np.float64,0x7fe809a69230134c,0x407342165b9acb69,1 +np.float64,0x3fc091d38f2123a7,0xbfec69a70fc23548,1 +np.float64,0x3fb2a8f5dc2551ec,0xbff2327f2641dd0d,1 +np.float64,0x7fc60b6fe02c16df,0x407337da5adc342c,1 +np.float64,0x3fefa53c3bbf4a78,0xbf73d1be15b73b00,1 +np.float64,0x7fee09c1717c1382,0x407343a2c479e1cb,1 +np.float64,0x8000000000000001,0x7ff8000000000000,1 +np.float64,0x3fede0b2733bc165,0xbf9e848ac2ecf604,1 +np.float64,0x3fee2ac331bc5586,0xbf9a3b699b721c9a,1 +np.float64,0x3fd4db12d829b626,0xbfdf2a413d1e453a,1 +np.float64,0x7fe605230dec0a45,0x4073417a67db06be,1 +np.float64,0x3fe378b2bf26f165,0xbfcb9dbb2b6d6832,1 +np.float64,0xc1d4c1ab83a98,0xc0733c60244cadbf,1 +np.float64,0x3feb15500e762aa0,0xbfb28c071d5efc22,1 +np.float64,0x3fe36225a626c44b,0xbfcbde4259e9047e,1 +np.float64,0x3fe7c586a72f8b0d,0xbfc08614b13ed4b2,1 +np.float64,0x7fb0f2d8cc21e5b1,0x40733135b2c7dd99,1 +np.float64,0x5957f3feb2aff,0xc07341c1df75638c,1 +np.float64,0x3fca4851bd3490a3,0xbfe6005ae5279485,1 +np.float64,0x824217d904843,0xc0733f232fd58f0f,1 +np.float64,0x4f9332269f267,0xc073428fd8e9cb32,1 +np.float64,0x3fea6f087374de11,0xbfb53ef0d03918b2,1 +np.float64,0x3fd9409ab4328135,0xbfd9d9231381e2b8,1 +np.float64,0x3fdba03b00374076,0xbfd759ec94a7ab5b,1 +np.float64,0x3fe0ce3766619c6f,0xbfd1e6912582ccf0,1 +np.float64,0x3fabd45ddc37a8bc,0xbff43c78d3188423,1 +np.float64,0x3fc3cadd592795bb,0xbfe9f1576c9b2c79,1 +np.float64,0x3fe10df049621be1,0xbfd17df2f2c28022,1 +np.float64,0x945b5d1328b6c,0xc0733e3bc06f1e75,1 +np.float64,0x7fc1c3742b2386e7,0x4073365a403d1051,1 +np.float64,0x7fdc957138b92ae1,0x40733e7977717586,1 +np.float64,0x7f943fa1a0287f42,0x407328d01de143f5,1 +np.float64,0x3fec9631c4392c64,0xbfa914b176d8f9d2,1 +np.float64,0x3fd8e7c008b1cf80,0xbfda3b9d9b6da8f4,1 +np.float64,0x7222f9fee4460,0xc073400e371516cc,1 +np.float64,0x3fe890e43eb121c8,0xbfbd64921462e823,1 +np.float64,0x3fcfd7fe2a3faffc,0xbfe3557e2f207800,1 +np.float64,0x3fed5dd1c1babba4,0xbfa318bb20db64e6,1 +np.float64,0x3fe6aa34c66d546a,0xbfc32c8a8991c11e,1 +np.float64,0x8ca79801196,0xc0736522bd5adf6a,1 +np.float64,0x3feb274079364e81,0xbfb2427b24b0ca20,1 +np.float64,0x7fe04927e4a0924f,0x40733f61c96f7f89,1 +np.float64,0x7c05f656f80bf,0xc0733f7a70555b4e,1 +np.float64,0x7fe97819eff2f033,0x4073427d4169b0f8,1 +np.float64,0x9def86e33bdf1,0xc0733dcc740b7175,1 +np.float64,0x7fedd1ef3f3ba3dd,0x40734395ceab8238,1 +np.float64,0x77bed86cef7dc,0xc0733fb8e0e9bf73,1 +np.float64,0x9274b41b24e97,0xc0733e52b16dff71,1 +np.float64,0x8010000000000000,0x7ff8000000000000,1 +np.float64,0x9c977855392ef,0xc0733ddba7d421d9,1 +np.float64,0xfb4560a3f68ac,0xc0733a9271e6a118,1 +np.float64,0xa67d9f394cfb4,0xc0733d6e9d58cc94,1 +np.float64,0x3fbfa766b03f4ecd,0xbfed0cccfecfc900,1 +np.float64,0x3fe177417522ee83,0xbfd0d45803bff01a,1 +np.float64,0x7fe85e077bb0bc0e,0x4073422e957a4aa3,1 +np.float64,0x7feeb0a6883d614c,0x407343c8f6568f7c,1 +np.float64,0xbab82edb75706,0xc0733ca2a2b20094,1 +np.float64,0xfadb44bdf5b69,0xc0733a9561b7ec04,1 +np.float64,0x3fefb9b82b3f7370,0xbf6ea776b2dcc3a9,1 +np.float64,0x7fe080ba8a610174,0x40733f795779b220,1 +np.float64,0x3f87faa1c02ff544,0xbffee76acafc92b7,1 +np.float64,0x7fed474108fa8e81,0x4073437531d4313e,1 +np.float64,0x3fdb7b229336f645,0xbfd77f583a4a067f,1 +np.float64,0x256dbf0c4adb9,0xc07347cd94e6fa81,1 +np.float64,0x3fd034ae25a0695c,0xbfe3169c15decdac,1 +np.float64,0x3a72177274e44,0xc07344b4cf7d68cd,1 +np.float64,0x7fa2522d5c24a45a,0x40732cef2f793470,1 +np.float64,0x3fb052bdde20a57c,0xbff3207fd413c848,1 +np.float64,0x3fdccfecbbb99fd9,0xbfd62ec04a1a687a,1 +np.float64,0x3fd403ac53280759,0xbfe027a31df2c8cc,1 +np.float64,0x3fab708e4036e11d,0xbff45591df4f2e8b,1 +np.float64,0x7fcfc001993f8002,0x40733a63539acf9d,1 +np.float64,0x3fd2b295dfa5652c,0xbfe119c1b476c536,1 +np.float64,0x7fe8061262b00c24,0x4073421552ae4538,1 +np.float64,0xffefffffffffffff,0x7ff8000000000000,1 +np.float64,0x7fed52093ffaa411,0x40734377c072a7e8,1 +np.float64,0xf3df902fe7bf2,0xc0733ac79a75ff7a,1 +np.float64,0x7fe13d382e227a6f,0x40733fc6fd0486bd,1 +np.float64,0x3621d5086c43b,0xc073453d31effbcd,1 +np.float64,0x3ff0000000000000,0x0,1 +np.float64,0x3fdaffea27b5ffd4,0xbfd7fd139dc1c2c5,1 +np.float64,0x7fea6536dc34ca6d,0x407342bccc564fdd,1 +np.float64,0x7fd478f00c28f1df,0x40733c27c0072fde,1 +np.float64,0x7fa72ef0502e5de0,0x40732e91e83db75c,1 +np.float64,0x7fd302970626052d,0x40733ba3ec6775f6,1 +np.float64,0x7fbb57ab0036af55,0x407334887348e613,1 +np.float64,0x3fda0ff722b41fee,0xbfd8f87b77930330,1 +np.float64,0x1e983ce23d309,0xc073493438f57e61,1 +np.float64,0x7fc90de97c321bd2,0x407338be01ffd4bd,1 +np.float64,0x7fe074b09c20e960,0x40733f7443f0dbe1,1 +np.float64,0x3fed5dec9fbabbd9,0xbfa317efb1fe8a95,1 +np.float64,0x7fdb877632b70eeb,0x40733e3697c88ba8,1 +np.float64,0x7fe4fb0067e9f600,0x40734124604b99e8,1 +np.float64,0x7fd447dc96288fb8,0x40733c1703ab2cce,1 +np.float64,0x3feb2d1e64f65a3d,0xbfb22a781df61c05,1 +np.float64,0xb6c8e6676d91d,0xc0733cc8859a0b91,1 +np.float64,0x3fdc3c2418387848,0xbfd6bec3a3c3cdb5,1 +np.float64,0x3fdecb9ccdbd973a,0xbfd4551c05721a8e,1 +np.float64,0x3feb1100e7762202,0xbfb29db911fe6768,1 +np.float64,0x3fe0444bc2a08898,0xbfd2ce69582e78c1,1 +np.float64,0x7fda403218b48063,0x40733de201d8340c,1 +np.float64,0x3fdc70421238e084,0xbfd68ba4bd48322b,1 +np.float64,0x3fe06e747c60dce9,0xbfd286bcac34a981,1 +np.float64,0x7fc1931d9623263a,0x407336473da54de4,1 +np.float64,0x229914da45323,0xc073485979ff141c,1 +np.float64,0x3fe142f92da285f2,0xbfd1280909992cb6,1 +np.float64,0xf1d02fa9e3a06,0xc0733ad6b19d71a0,1 +np.float64,0x3fb1fe9b0023fd36,0xbff27317d8252c16,1 +np.float64,0x3fa544b9242a8972,0xbff61ac38569bcfc,1 +np.float64,0x3feeb129d4fd6254,0xbf928f23ad20c1ee,1 +np.float64,0xa2510b7f44a22,0xc0733d9bc81ea0a1,1 +np.float64,0x3fca75694d34ead3,0xbfe5e8975b3646c2,1 +np.float64,0x7fece10621b9c20b,0x4073435cc3dd9a1b,1 +np.float64,0x7fe98a57d3b314af,0x4073428239b6a135,1 +np.float64,0x3fe259c62a64b38c,0xbfcee96682a0f355,1 +np.float64,0x3feaaa9b9d755537,0xbfb445779f3359af,1 +np.float64,0xdaadecfdb55be,0xc0733b899338432a,1 +np.float64,0x3fed00eae4fa01d6,0xbfa5dc8d77be5991,1 +np.float64,0x7fcc96c773392d8e,0x407339a8c5cd786e,1 +np.float64,0x3fef7b8b203ef716,0xbf7cff655ecb6424,1 +np.float64,0x7fd4008113a80101,0x40733bfe6552acb7,1 +np.float64,0x7fe99ff035b33fdf,0x407342881753ee2e,1 +np.float64,0x3ee031e87dc07,0xc0734432d736e492,1 +np.float64,0x3fddfe390f3bfc72,0xbfd510f1d9ec3e36,1 +np.float64,0x3fd9ddce74b3bb9d,0xbfd92e2d75a061bb,1 +np.float64,0x7fe5f742edebee85,0x40734176058e3a77,1 +np.float64,0x3fdb04185b360831,0xbfd7f8c63aa5e1c4,1 +np.float64,0xea2b0f43d4562,0xc0733b0fd77c8118,1 +np.float64,0x7fc3f4973527e92d,0x407337293bbb22c4,1 +np.float64,0x3fb9adfb38335bf6,0xbfeff4f3ea85821a,1 +np.float64,0x87fb98750ff73,0xc0733ed6ad83c269,1 +np.float64,0x3fe005721a200ae4,0xbfd33a9f1ebfb0ac,1 +np.float64,0xd9e04fe7b3c0a,0xc0733b901ee257f3,1 +np.float64,0x2c39102658723,0xc07346a4db63bf55,1 +np.float64,0x3f7dc28e003b851c,0xc0011c1d1233d948,1 +np.float64,0x3430fd3868620,0xc073457e24e0b70d,1 +np.float64,0xbff0000000000000,0x7ff8000000000000,1 +np.float64,0x3fd23e45e0247c8c,0xbfe17146bcf87b57,1 +np.float64,0x6599df3ecb33d,0xc07340dd2c41644c,1 +np.float64,0x3fdf074f31be0e9e,0xbfd41f6e9dbb68a5,1 +np.float64,0x7fdd6233f3bac467,0x40733eaa8f674b72,1 +np.float64,0x7fe03e8481607d08,0x40733f5d3df3b087,1 +np.float64,0x3fcc3b79f13876f4,0xbfe501bf3b379b77,1 +np.float64,0xe5d97ae3cbb30,0xc0733b30f47cbd12,1 +np.float64,0x8acbc4a115979,0xc0733eb240a4d2c6,1 +np.float64,0x3fedbdbc48bb7b79,0xbfa0470fd70c4359,1 +np.float64,0x3fde1611103c2c22,0xbfd4fae1fa8e7e5e,1 +np.float64,0x3fe09478bd2128f1,0xbfd246b7e85711dc,1 +np.float64,0x3fd6dfe8f3adbfd2,0xbfdc98ca2f32c1ad,1 +np.float64,0x72ccf274e599f,0xc0734003e5b0da63,1 +np.float64,0xe27c7265c4f8f,0xc0733b4b2d808566,1 +np.float64,0x7fee3161703c62c2,0x407343abe90f5649,1 +np.float64,0xf54fb5c1eaa0,0xc0734e01384fcf78,1 +np.float64,0xcde5924d9bcb3,0xc0733bf4b83c66c2,1 +np.float64,0x3fc46fdbe528dfb8,0xbfe97f55ef5e9683,1 +np.float64,0x7fe513528a2a26a4,0x4073412c69baceca,1 +np.float64,0x3fd29eca4aa53d95,0xbfe128801cd33ed0,1 +np.float64,0x7febb21718b7642d,0x4073431256def857,1 +np.float64,0x3fcab536c0356a6e,0xbfe5c73c59f41578,1 +np.float64,0x7fc7e9f0d82fd3e1,0x4073386b213e5dfe,1 +np.float64,0xb5b121276b624,0xc0733cd33083941c,1 +np.float64,0x7e0dd9bcfc1bc,0xc0733f5d8bf35050,1 +np.float64,0x3fd1c75106238ea2,0xbfe1cd11cccda0f4,1 +np.float64,0x9f060e673e0c2,0xc0733dc03da71909,1 +np.float64,0x7fd915a2f3322b45,0x40733d912af07189,1 +np.float64,0x3fd8cbae4431975d,0xbfda5b02ca661139,1 +np.float64,0x3fde8b411f3d1682,0xbfd48f6f710a53b6,1 +np.float64,0x3fc17a780622f4f0,0xbfebabb10c55255f,1 +np.float64,0x3fde5cbe5f3cb97d,0xbfd4b9e2e0101fb1,1 +np.float64,0x7fd859036530b206,0x40733d5c2252ff81,1 +np.float64,0xb0f5040f61ea1,0xc0733d02292f527b,1 +np.float64,0x3fde5c49ae3cb893,0xbfd4ba4db3ce2cf3,1 +np.float64,0x3fecc4518df988a3,0xbfa7af0bfc98bc65,1 +np.float64,0x3feffee03cbffdc0,0xbf0f3ede6ca7d695,1 +np.float64,0xbc5eac9b78bd6,0xc0733c92fb51c8ae,1 +np.float64,0x3fe2bb4ef765769e,0xbfcdc4f70a65dadc,1 +np.float64,0x5089443ca1129,0xc073427a7d0cde4a,1 +np.float64,0x3fd0d6e29121adc5,0xbfe28e28ece1db86,1 +np.float64,0xbe171e397c2e4,0xc0733c82cede5d02,1 +np.float64,0x4ede27be9dbc6,0xc073429fba1a4af1,1 +np.float64,0x3fe2aff3af655fe7,0xbfcde6b52a8ed3c1,1 +np.float64,0x7fd85ca295b0b944,0x40733d5d2adcccf1,1 +np.float64,0x24919bba49234,0xc07347f6ed704a6f,1 +np.float64,0x7fd74bc1eeae9783,0x40733d0d94a89011,1 +np.float64,0x3fc1cd12cb239a26,0xbfeb6a9c25c2a11d,1 +np.float64,0x3fdafbc0ac35f781,0xbfd8015ccf1f1b51,1 +np.float64,0x3fee01327c3c0265,0xbf9ca1d0d762dc18,1 +np.float64,0x3fe65bd7702cb7af,0xbfc3ee0de5c36b8d,1 +np.float64,0x7349c82ee693a,0xc0733ffc5b6eccf2,1 +np.float64,0x3fdc5906f738b20e,0xbfd6a26288eb5933,1 +np.float64,0x1,0xc07434e6420f4374,1 +np.float64,0x3fb966128a32cc25,0xbff00e0aa7273838,1 +np.float64,0x3fd501ff9a2a03ff,0xbfdef69133482121,1 +np.float64,0x194d4f3c329ab,0xc0734a861b44cfbe,1 +np.float64,0x3fec5d34f8f8ba6a,0xbfaad1b31510e70b,1 +np.float64,0x1635e4c22c6be,0xc0734b6dec650943,1 +np.float64,0x3fead2f8edb5a5f2,0xbfb39dac30a962cf,1 +np.float64,0x3f7dfa4ce03bf49a,0xc00115a112141aa7,1 +np.float64,0x3fef6827223ed04e,0xbf80a42c9edebfe9,1 +np.float64,0xe771f303cee3f,0xc0733b24a6269fe4,1 +np.float64,0x1160ccc622c1b,0xc0734d22604eacb9,1 +np.float64,0x3fc485cd08290b9a,0xbfe970723008c8c9,1 +np.float64,0x7fef99c518bf3389,0x407343fcf9ed202f,1 +np.float64,0x7fd8c1447a318288,0x40733d79a440b44d,1 +np.float64,0xaf219f955e434,0xc0733d149c13f440,1 +np.float64,0xcf45f6239e8bf,0xc0733be8ddda045d,1 +np.float64,0x7599394aeb328,0xc0733fd90fdbb0ea,1 +np.float64,0xc7f6390f8fec7,0xc0733c28bfbc66a3,1 +np.float64,0x3fd39ae96c2735d3,0xbfe0712274a8742b,1 +np.float64,0xa4d6c18f49ad8,0xc0733d805a0528f7,1 +np.float64,0x7fd9ea78d7b3d4f1,0x40733dcb2b74802a,1 +np.float64,0x3fecd251cb39a4a4,0xbfa742ed41d4ae57,1 +np.float64,0x7fed7a07cd7af40f,0x407343813476027e,1 +np.float64,0x3fd328ae7f26515d,0xbfe0c30b56a83c64,1 +np.float64,0x7fc937ff7a326ffe,0x407338c9a45b9140,1 +np.float64,0x3fcf1d31143e3a62,0xbfe3a7f760fbd6a8,1 +np.float64,0x7fb911dcbc3223b8,0x407333ee158cccc7,1 +np.float64,0x3fd352fc83a6a5f9,0xbfe0a47d2f74d283,1 +np.float64,0x7fd310753fa620e9,0x40733ba8fc4300dd,1 +np.float64,0x3febd64b4577ac97,0xbfaefd4a79f95c4b,1 +np.float64,0x6a6961a4d4d2d,0xc073408ae1687943,1 +np.float64,0x3fe4ba73d16974e8,0xbfc8239341b9e457,1 +np.float64,0x3fed8e7cac3b1cf9,0xbfa1a96a0cc5fcdc,1 +np.float64,0x7fd505ec04aa0bd7,0x40733c56f86e3531,1 +np.float64,0x3fdf166e9abe2cdd,0xbfd411e5f8569d70,1 +np.float64,0x7fe1bc6434e378c7,0x40733ff9861bdabb,1 +np.float64,0x3fd3b0b175a76163,0xbfe061ba5703f3c8,1 +np.float64,0x7fed75d7ffbaebaf,0x4073438037ba6f19,1 +np.float64,0x5a9e109cb53c3,0xc07341a8b04819c8,1 +np.float64,0x3fe14786b4e28f0d,0xbfd120b541bb880e,1 +np.float64,0x3fed4948573a9291,0xbfa3b471ff91614b,1 +np.float64,0x66aac5d8cd559,0xc07340ca9b18af46,1 +np.float64,0x3fdb48efd23691e0,0xbfd7b24c5694838b,1 +np.float64,0x7fe6da7d1eadb4f9,0x407341bc7d1fae43,1 +np.float64,0x7feb702cf336e059,0x40734301b96cc3c0,1 +np.float64,0x3fd1e60987a3cc13,0xbfe1b522cfcc3d0e,1 +np.float64,0x3feca57f50794aff,0xbfa89dc90625d39c,1 +np.float64,0x7fdc46dc56b88db8,0x40733e664294a0f9,1 +np.float64,0x8dc8fd811b920,0xc0733e8c5955df06,1 +np.float64,0xf01634abe02c7,0xc0733ae370a76d0c,1 +np.float64,0x3fc6f8d8ab2df1b1,0xbfe7df5093829464,1 +np.float64,0xda3d7597b47af,0xc0733b8d2702727a,1 +np.float64,0x7feefd53227dfaa5,0x407343da3d04db28,1 +np.float64,0x3fe2fbca3525f794,0xbfcd06e134417c08,1 +np.float64,0x7fd36d3ce226da79,0x40733bca7c322df1,1 +np.float64,0x7fec37e00b786fbf,0x4073433397b48a5b,1 +np.float64,0x3fbf133f163e267e,0xbfed4e72f1362a77,1 +np.float64,0x3fc11efbb9223df7,0xbfebf53002a561fe,1 +np.float64,0x3fc89c0e5431381d,0xbfe6ea562364bf81,1 +np.float64,0x3f9cd45da839a8bb,0xbff8ceb14669ee4b,1 +np.float64,0x23dc8fa647b93,0xc0734819aaa9b0ee,1 +np.float64,0x3fe829110d305222,0xbfbf3e60c45e2399,1 +np.float64,0x7fed8144e57b0289,0x40734382e917a02a,1 +np.float64,0x7fe033fbf7a067f7,0x40733f58bb00b20f,1 +np.float64,0xe3807f45c7010,0xc0733b43379415d1,1 +np.float64,0x3fd708fb342e11f6,0xbfdc670ef9793782,1 +np.float64,0x3fe88c924b311925,0xbfbd78210d9e7164,1 +np.float64,0x3fe0a2a7c7614550,0xbfd22efaf0472c4a,1 +np.float64,0x7fe3a37501a746e9,0x407340aecaeade41,1 +np.float64,0x3fd05077ec20a0f0,0xbfe2fedbf07a5302,1 +np.float64,0x7fd33bf61da677eb,0x40733bb8c58912aa,1 +np.float64,0x3feb29bdae76537b,0xbfb2384a8f61b5f9,1 +np.float64,0x3fec0fc14ff81f83,0xbfad3423e7ade174,1 +np.float64,0x3fd0f8b1a1a1f163,0xbfe2725dd4ccea8b,1 +np.float64,0x3fe382d26a6705a5,0xbfcb80dba4218bdf,1 +np.float64,0x3fa873f2cc30e7e6,0xbff522911cb34279,1 +np.float64,0x7fed7fd7377affad,0x4073438292f6829b,1 +np.float64,0x3feeacd8067d59b0,0xbf92cdbeda94b35e,1 +np.float64,0x7fe464d62228c9ab,0x407340f1eee19aa9,1 +np.float64,0xe997648bd32ed,0xc0733b143aa0fad3,1 +np.float64,0x7fea4869f13490d3,0x407342b5333b54f7,1 +np.float64,0x935b871926b71,0xc0733e47c6683319,1 +np.float64,0x28a9d0c05155,0xc0735a7e3532af83,1 +np.float64,0x79026548f204d,0xc0733fa6339ffa2f,1 +np.float64,0x3fdb1daaabb63b55,0xbfd7de839c240ace,1 +np.float64,0x3fc0db73b421b6e7,0xbfec2c6e36c4f416,1 +np.float64,0xb8b50ac1716b,0xc0734ff9fc60ebce,1 +np.float64,0x7fdf13e0c6be27c1,0x40733f0e44f69437,1 +np.float64,0x3fcd0cb97b3a1973,0xbfe49c34ff531273,1 +np.float64,0x3fcbac034b375807,0xbfe54913d73f180d,1 +np.float64,0x3fe091d2a2e123a5,0xbfd24b290a9218de,1 +np.float64,0xede43627dbc87,0xc0733af3c7c7f716,1 +np.float64,0x7fc037e7ed206fcf,0x407335b85fb0fedb,1 +np.float64,0x3fce7ae4c63cf5ca,0xbfe3f1350fe03f28,1 +np.float64,0x7fcdd862263bb0c3,0x407339f5458bb20e,1 +np.float64,0x4d7adf709af5d,0xc07342bf4edfadb2,1 +np.float64,0xdc6c03f3b8d81,0xc0733b7b74d6a635,1 +np.float64,0x3fe72ae0a4ee55c1,0xbfc1f4665608b21f,1 +np.float64,0xcd62f19d9ac5e,0xc0733bf92235e4d8,1 +np.float64,0xe3a7b8fdc74f7,0xc0733b4204f8e166,1 +np.float64,0x3fdafd35adb5fa6b,0xbfd7ffdca0753b36,1 +np.float64,0x3fa023e8702047d1,0xbff8059150ea1464,1 +np.float64,0x99ff336933fe7,0xc0733df961197517,1 +np.float64,0x7feeb365b9bd66ca,0x407343c995864091,1 +np.float64,0x7fe449b49f689368,0x407340e8aa3369e3,1 +np.float64,0x7faf5843043eb085,0x407330aa700136ca,1 +np.float64,0x3fd47b2922a8f652,0xbfdfab3de86f09ee,1 +np.float64,0x7fd9fc3248b3f864,0x40733dcfea6f9b3e,1 +np.float64,0xe20b0d8dc4162,0xc0733b4ea8fe7b3f,1 +np.float64,0x7feff8e0e23ff1c1,0x40734411c490ed70,1 +np.float64,0x7fa58382d02b0705,0x40732e0cf28e14fe,1 +np.float64,0xb8ad9a1b715b4,0xc0733cb630b8f2d4,1 +np.float64,0xe90abcf1d2158,0xc0733b186b04eeee,1 +np.float64,0x7fd6aa6f32ad54dd,0x40733cdccc636604,1 +np.float64,0x3fd8f84eedb1f09e,0xbfda292909a5298a,1 +np.float64,0x7fecd6b1d9f9ad63,0x4073435a472b05b5,1 +np.float64,0x3fd9f47604b3e8ec,0xbfd915e028cbf4a6,1 +np.float64,0x3fd20d9398241b27,0xbfe19691363dd508,1 +np.float64,0x3fe5ed09bbabda13,0xbfc5043dfc9c8081,1 +np.float64,0x7fbe5265363ca4c9,0x407335406f8e4fac,1 +np.float64,0xac2878af5850f,0xc0733d3311be9786,1 +np.float64,0xac2074555840f,0xc0733d3364970018,1 +np.float64,0x3fcd49b96b3a9373,0xbfe47f24c8181d9c,1 +np.float64,0x3fd10caca6a21959,0xbfe2620ae5594f9a,1 +np.float64,0xec5b87e9d8b71,0xc0733aff499e72ca,1 +np.float64,0x9d5e9fad3abd4,0xc0733dd2d70eeb4a,1 +np.float64,0x7fe3d3a24227a744,0x407340bfc2072fdb,1 +np.float64,0x3fc5f7a77c2bef4f,0xbfe87e69d502d784,1 +np.float64,0x33161a66662c4,0xc07345a436308244,1 +np.float64,0xa27acdc744f5a,0xc0733d99feb3d8ea,1 +np.float64,0x3fe2d9301565b260,0xbfcd6c914e204437,1 +np.float64,0x7fd5d111e12ba223,0x40733c98e14a6fd0,1 +np.float64,0x6c3387bed8672,0xc073406d3648171a,1 +np.float64,0x24d89fe849b15,0xc07347e97bec008c,1 +np.float64,0x3fefd763677faec7,0xbf61ae69caa9cad9,1 +np.float64,0x7fe0a4684ba148d0,0x40733f884d32c464,1 +np.float64,0x3fd5c3c939ab8792,0xbfddfaaefc1c7fca,1 +np.float64,0x3fec9b87a6b9370f,0xbfa8eb34efcc6b9b,1 +np.float64,0x3feb062431f60c48,0xbfb2ca6036698877,1 +np.float64,0x3fef97f6633f2fed,0xbf76bc742860a340,1 +np.float64,0x74477490e88ef,0xc0733fed220986bc,1 +np.float64,0x3fe4bea67ce97d4d,0xbfc818525292b0f6,1 +np.float64,0x3fc6add3a92d5ba7,0xbfe80cfdc9a90bda,1 +np.float64,0x847c9ce308f94,0xc0733f05026f5965,1 +np.float64,0x7fea53fd2eb4a7f9,0x407342b841fc4723,1 +np.float64,0x3fc55a16fc2ab42e,0xbfe8e3849130da34,1 +np.float64,0x3fbdf7d07c3befa1,0xbfedcf84b9c6c161,1 +np.float64,0x3fe5fb25aa6bf64b,0xbfc4e083ff96b116,1 +np.float64,0x61c776a8c38ef,0xc0734121611d84d7,1 +np.float64,0x3fec413164f88263,0xbfabadbd05131546,1 +np.float64,0x9bf06fe137e0e,0xc0733de315469ee0,1 +np.float64,0x2075eefc40ebf,0xc07348cae84de924,1 +np.float64,0x3fdd42e0143a85c0,0xbfd5c0b6f60b3cea,1 +np.float64,0xdbb1ab45b7636,0xc0733b8157329daf,1 +np.float64,0x3feac6d56bf58dab,0xbfb3d00771b28621,1 +np.float64,0x7fb2dc825025b904,0x407331f3e950751a,1 +np.float64,0x3fecea6efd79d4de,0xbfa689309cc0e3fe,1 +np.float64,0x3fd83abec7b0757e,0xbfdaff5c674a9c59,1 +np.float64,0x3fd396f7c0272df0,0xbfe073ee75c414ba,1 +np.float64,0x3fe10036c162006e,0xbfd1945a38342ae1,1 +np.float64,0x3fd5bbded52b77be,0xbfde04cca40d4156,1 +np.float64,0x3fe870945ab0e129,0xbfbdf72f0e6206fa,1 +np.float64,0x3fef72fddcbee5fc,0xbf7ee2dba88b1bad,1 +np.float64,0x4e111aa09c224,0xc07342b1e2b29643,1 +np.float64,0x3fd926d8b5b24db1,0xbfd9f58b78d6b061,1 +np.float64,0x3fc55679172aacf2,0xbfe8e5df687842e2,1 +np.float64,0x7f5f1749803e2e92,0x40731886e16cfc4d,1 +np.float64,0x7fea082b53b41056,0x407342a42227700e,1 +np.float64,0x3fece1d1d039c3a4,0xbfa6cb780988a469,1 +np.float64,0x3b2721d8764e5,0xc073449f6a5a4832,1 +np.float64,0x365cb7006cba,0xc0735879ba5f0b6e,1 +np.float64,0x7ff4000000000000,0x7ffc000000000000,1 +np.float64,0x7fe606ce92ac0d9c,0x4073417aeebe97e8,1 +np.float64,0x3fe237b544a46f6b,0xbfcf50f8f76d7df9,1 +np.float64,0x3fe7265e5eee4cbd,0xbfc1ff39089ec8d0,1 +np.float64,0x7fe2bb3c5ea57678,0x4073405aaad81cf2,1 +np.float64,0x3fd811df84b023bf,0xbfdb2e670ea8d8de,1 +np.float64,0x3f6a0efd00341dfa,0xc003fac1ae831241,1 +np.float64,0x3fd0d214afa1a429,0xbfe2922080a91c72,1 +np.float64,0x3feca6a350b94d47,0xbfa894eea3a96809,1 +np.float64,0x7fe23e5c76247cb8,0x4073402bbaaf71c7,1 +np.float64,0x3fe739a1fdae7344,0xbfc1d109f66efb5d,1 +np.float64,0x3fdf4b8e283e971c,0xbfd3e28f46169cc5,1 +np.float64,0x38f2535271e4b,0xc07344e3085219fa,1 +np.float64,0x7fd263a0f9a4c741,0x40733b68d945dae0,1 +np.float64,0x7fdd941863bb2830,0x40733eb651e3dca9,1 +np.float64,0xace7279159ce5,0xc0733d2b63b5947e,1 +np.float64,0x7fe34670b2268ce0,0x4073408d92770cb5,1 +np.float64,0x7fd11fa6dfa23f4d,0x40733aea02e76ea3,1 +np.float64,0x3fe6d9cbca6db398,0xbfc2b84b5c8c7eab,1 +np.float64,0x3fd69a0274ad3405,0xbfdcee3c7e52c463,1 +np.float64,0x3feb5af671f6b5ed,0xbfb16f88d739477f,1 +np.float64,0x3feea400163d4800,0xbf934e071c64fd0b,1 +np.float64,0x3fefd6bcf17fad7a,0xbf61f711c392b119,1 +np.float64,0x3fe148d43da291a8,0xbfd11e9cd3f91cd3,1 +np.float64,0x7fedf1308b7be260,0x4073439d135656da,1 +np.float64,0x3fe614c99c6c2993,0xbfc49fd1984dfd6d,1 +np.float64,0xd6e8d4e5add1b,0xc0733ba88256026e,1 +np.float64,0xfff0000000000000,0x7ff8000000000000,1 +np.float64,0x3fb530b5562a616b,0xbff1504bcc5c8f73,1 +np.float64,0xb7da68396fb4d,0xc0733cbe2790f52e,1 +np.float64,0x7fad78e26c3af1c4,0x4073303cdbfb0a15,1 +np.float64,0x7fee5698447cad30,0x407343b474573a8b,1 +np.float64,0x3fd488325c291065,0xbfdf999296d901e7,1 +np.float64,0x2669283a4cd26,0xc073479f823109a4,1 +np.float64,0x7fef3b090afe7611,0x407343e805a3b264,1 +np.float64,0x7fe8b96ae0f172d5,0x4073424874a342ab,1 +np.float64,0x7fef409f56fe813e,0x407343e943c3cd44,1 +np.float64,0x3fed28073dfa500e,0xbfa4b17e4cd31a3a,1 +np.float64,0x7f87ecc4802fd988,0x40732527e027b24b,1 +np.float64,0x3fdda24da0bb449b,0xbfd566a43ac035af,1 +np.float64,0x179fc9e62f3fa,0xc0734b0028c80fc1,1 +np.float64,0x3fef85b0927f0b61,0xbf7ac27565d5ab4f,1 +np.float64,0x5631501aac62b,0xc0734201be12c5d4,1 +np.float64,0x3fd782e424af05c8,0xbfdbd57544f8a7c3,1 +np.float64,0x3fe603a9a6ac0753,0xbfc4caff04dc3caf,1 +np.float64,0x7fbd5225163aa449,0x40733504b88f0a56,1 +np.float64,0x3fecd27506b9a4ea,0xbfa741dd70e6b08c,1 +np.float64,0x9c99603b3932c,0xc0733ddb922dc5db,1 +np.float64,0x3fbeb57f1a3d6afe,0xbfed789ff217aa08,1 +np.float64,0x3fef9c0f85bf381f,0xbf75d5c3d6cb281a,1 +np.float64,0x3fde4afb613c95f7,0xbfd4ca2a231c9005,1 +np.float64,0x396233d472c47,0xc07344d56ee70631,1 +np.float64,0x3fb31ea1c6263d44,0xbff207356152138d,1 +np.float64,0x3fe50bdf78aa17bf,0xbfc74ae0cbffb735,1 +np.float64,0xef74c701dee99,0xc0733ae81e4bb443,1 +np.float64,0x9a3e13a1347c3,0xc0733df68b60afc7,1 +np.float64,0x33ba4f886774b,0xc073458e03f0c13e,1 +np.float64,0x3fe8ba0e9931741d,0xbfbcaadf974e8f64,1 +np.float64,0x3fe090a4cd61214a,0xbfd24d236cf365d6,1 +np.float64,0x7fd87d992930fb31,0x40733d668b73b820,1 +np.float64,0x3fe6422b296c8456,0xbfc42e070b695d01,1 +np.float64,0x3febe9334677d267,0xbfae667864606cfe,1 +np.float64,0x771a3ce4ee348,0xc0733fc274d12c97,1 +np.float64,0x3fe0413542e0826b,0xbfd2d3b08fb5b8a6,1 +np.float64,0x3fd00870ea2010e2,0xbfe33cc04cbd42e0,1 +np.float64,0x3fe74fb817ae9f70,0xbfc19c45dbf919e1,1 +np.float64,0x40382fa08071,0xc07357514ced5577,1 +np.float64,0xa14968474292d,0xc0733da71a990f3a,1 +np.float64,0x5487c740a90fa,0xc0734224622d5801,1 +np.float64,0x3fed7d8d14fafb1a,0xbfa228f7ecc2ac03,1 +np.float64,0x3fe39bb485e73769,0xbfcb3a235a722960,1 +np.float64,0x3fd01090b2202121,0xbfe335b752589a22,1 +np.float64,0x3fd21a3e7da4347d,0xbfe18cd435a7c582,1 +np.float64,0x3fe7fa855a2ff50b,0xbfc00ab0665709fe,1 +np.float64,0x3fedc0d4577b81a9,0xbfa02fef3ff553fc,1 +np.float64,0x3fe99d4906333a92,0xbfb8bf18220e5e8e,1 +np.float64,0x3fd944ee3c3289dc,0xbfd9d46071675e73,1 +np.float64,0x3fe3ed8d52e7db1b,0xbfca53f8d4aef484,1 +np.float64,0x7fe748623a6e90c3,0x407341dd97c9dd79,1 +np.float64,0x3fea1b4b98343697,0xbfb6a1560a56927f,1 +np.float64,0xe1215715c242b,0xc0733b55dbf1f0a8,1 +np.float64,0x3fd0d5bccca1ab7a,0xbfe28f1b66d7a470,1 +np.float64,0x881a962710353,0xc0733ed51848a30d,1 +np.float64,0x3fcf022afe3e0456,0xbfe3b40eabf24501,1 +np.float64,0x3fdf1ac6bbbe358d,0xbfd40e03e888288d,1 +np.float64,0x3fa51a5eac2a34bd,0xbff628a7c34d51b3,1 +np.float64,0x3fdbaf408d375e81,0xbfd74ad39d97c92a,1 +np.float64,0x3fcd2418ea3a4832,0xbfe4910b009d8b11,1 +np.float64,0x3fc7b3062a2f660c,0xbfe7706dc47993e1,1 +np.float64,0x7fb8232218304643,0x407333aaa7041a9f,1 +np.float64,0x7fd5f186362be30b,0x40733ca32fdf9cc6,1 +np.float64,0x3fe57ef1d6aafde4,0xbfc61e23d00210c7,1 +np.float64,0x7c6830baf8d07,0xc0733f74f19e9dad,1 +np.float64,0xcacbfd5595980,0xc0733c0fb49edca7,1 +np.float64,0x3fdfdeac873fbd59,0xbfd36114c56bed03,1 +np.float64,0x3fd31f0889263e11,0xbfe0ca0cc1250169,1 +np.float64,0x3fe839fbe47073f8,0xbfbef0a2abc3d63f,1 +np.float64,0x3fc36af57e26d5eb,0xbfea3553f38770b7,1 +np.float64,0x3fe73dbc44ee7b79,0xbfc1c738f8fa6b3d,1 +np.float64,0x3fd3760e4da6ec1d,0xbfe08b5b609d11e5,1 +np.float64,0x3fee1cfa297c39f4,0xbf9b06d081bc9d5b,1 +np.float64,0xdfb01561bf61,0xc0734ea55e559888,1 +np.float64,0x687bd01cd0f7b,0xc07340ab67fe1816,1 +np.float64,0x3fefc88f4cbf911f,0xbf6828c359cf19dc,1 +np.float64,0x8ad34adb15a6a,0xc0733eb1e03811e5,1 +np.float64,0x3fe2b49c12e56938,0xbfcdd8dbdbc0ce59,1 +np.float64,0x6e05037adc0a1,0xc073404f91261635,1 +np.float64,0x3fe2fd737fe5fae7,0xbfcd020407ef4d78,1 +np.float64,0x3fd0f3c0dc21e782,0xbfe2766a1ab02eae,1 +np.float64,0x28564d9850acb,0xc073474875f87c5e,1 +np.float64,0x3fe4758015a8eb00,0xbfc8ddb45134a1bd,1 +np.float64,0x7fe7f19306efe325,0x4073420f626141a7,1 +np.float64,0x7fd27f34c0a4fe69,0x40733b733d2a5b50,1 +np.float64,0x92c2366325847,0xc0733e4f04f8195a,1 +np.float64,0x3fc21f8441243f09,0xbfeb2ad23bc1ab0b,1 +np.float64,0x3fc721d3e42e43a8,0xbfe7c69bb47b40c2,1 +np.float64,0x3fe2f11a1625e234,0xbfcd26363b9c36c3,1 +np.float64,0x3fdcb585acb96b0b,0xbfd648446237cb55,1 +np.float64,0x3fd4060bf2280c18,0xbfe025fd4c8a658b,1 +np.float64,0x7fb8ae2750315c4e,0x407333d23b025d08,1 +np.float64,0x3fe3a03119a74062,0xbfcb2d6c91b38552,1 +np.float64,0x7fdd2af92bba55f1,0x40733e9d737e16e6,1 +np.float64,0x3fe50b05862a160b,0xbfc74d20815fe36b,1 +np.float64,0x164409f82c882,0xc0734b6980e19c03,1 +np.float64,0x3fe4093712a8126e,0xbfca070367fda5e3,1 +np.float64,0xae3049935c609,0xc0733d1e3608797b,1 +np.float64,0x3fd71df4b4ae3be9,0xbfdc4dcb7637600d,1 +np.float64,0x7fca01e8023403cf,0x407339006c521c49,1 +np.float64,0x3fb0c5c43e218b88,0xbff2f03211c63f25,1 +np.float64,0x3fee757af83ceaf6,0xbf95f33a6e56b454,1 +np.float64,0x3f865f1f402cbe3f,0xbfff62d9c9072bd7,1 +np.float64,0x89864e95130ca,0xc0733ec29f1e32c6,1 +np.float64,0x3fe51482bcea2905,0xbfc73414ddc8f1b7,1 +np.float64,0x7fd802f8fa3005f1,0x40733d43684e460a,1 +np.float64,0x3fbeb86ca63d70d9,0xbfed774ccca9b8f5,1 +np.float64,0x3fb355dcc826abba,0xbff1f33f9339e7a3,1 +np.float64,0x3fe506c61eaa0d8c,0xbfc7585a3f7565a6,1 +np.float64,0x7fe393f25ba727e4,0x407340a94bcea73b,1 +np.float64,0xf66f532decdeb,0xc0733ab5041feb0f,1 +np.float64,0x3fe26e872be4dd0e,0xbfceaaab466f32e0,1 +np.float64,0x3fefd9e290bfb3c5,0xbf60977d24496295,1 +np.float64,0x7fe19c5f692338be,0x40733fecef53ad95,1 +np.float64,0x3fe80365ab3006cb,0xbfbfec4090ef76ec,1 +np.float64,0x3fe88ab39eb11567,0xbfbd8099388d054d,1 +np.float64,0x3fe68fb09fad1f61,0xbfc36db9de38c2c0,1 +np.float64,0x3fe9051883b20a31,0xbfbb5b75b8cb8f24,1 +np.float64,0x3fd4708683a8e10d,0xbfdfb9b085dd8a83,1 +np.float64,0x3fe00ac11a601582,0xbfd3316af3e43500,1 +np.float64,0xd16af30ba2d5f,0xc0733bd68e8252f9,1 +np.float64,0x3fb97d654632facb,0xbff007ac1257f575,1 +np.float64,0x7fd637c10fac6f81,0x40733cb949d76546,1 +np.float64,0x7fed2cab6dba5956,0x4073436edfc3764e,1 +np.float64,0x3fed04afbbba095f,0xbfa5bfaa5074b7f4,1 +np.float64,0x0,0xfff0000000000000,1 +np.float64,0x389a1dc671345,0xc07344edd4206338,1 +np.float64,0x3fbc9ba25a393745,0xbfee74c34f49b921,1 +np.float64,0x3feee749947dce93,0xbf8f032d9cf6b5ae,1 +np.float64,0xedc4cf89db89a,0xc0733af4b2a57920,1 +np.float64,0x3fe41629eba82c54,0xbfc9e321faf79e1c,1 +np.float64,0x3feb0bcbf7b61798,0xbfb2b31e5d952869,1 +np.float64,0xad60654b5ac0d,0xc0733d26860df676,1 +np.float64,0x3fe154e1ff22a9c4,0xbfd10b416e58c867,1 +np.float64,0x7fb20e9c8a241d38,0x407331a66453b8bc,1 +np.float64,0x7fcbbaaf7d37755e,0x4073397274f28008,1 +np.float64,0x187d0fbc30fa3,0xc0734ac03cc98cc9,1 +np.float64,0x7fd153afeaa2a75f,0x40733aff00b4311d,1 +np.float64,0x3fe05310a5e0a621,0xbfd2b5386aeecaac,1 +np.float64,0x7fea863b2b750c75,0x407342c57807f700,1 +np.float64,0x3fed5f0c633abe19,0xbfa30f6cfbc4bf94,1 +np.float64,0xf227c8b3e44f9,0xc0733ad42daaec9f,1 +np.float64,0x3fe956524772aca5,0xbfb9f4cabed7081d,1 +np.float64,0xefd11af7dfa24,0xc0733ae570ed2552,1 +np.float64,0x1690fff02d221,0xc0734b51a56c2980,1 +np.float64,0x7fd2e547a825ca8e,0x40733b992d6d9635,1 diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log1p.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log1p.csv new file mode 100644 index 0000000..094e052 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log1p.csv @@ -0,0 +1,1429 @@ +dtype,input,output,ulperrortol +np.float32,0x3e10aca8,0x3e075347,2 +np.float32,0x3f776e66,0x3f2d2003,2 +np.float32,0xbf34e8ce,0xbf9cfd5c,2 +np.float32,0xbf0260ee,0xbf363f69,2 +np.float32,0x3ed285e8,0x3eb05870,2 +np.float32,0x262b88,0x262b88,2 +np.float32,0x3eeffd6c,0x3ec4cfdb,2 +np.float32,0x3ee86808,0x3ebf9f54,2 +np.float32,0x3f36eba8,0x3f0a0524,2 +np.float32,0xbf1c047a,0xbf70afc7,2 +np.float32,0x3ead2916,0x3e952902,2 +np.float32,0x61c9c9,0x61c9c9,2 +np.float32,0xff7fffff,0xffc00000,2 +np.float32,0x7f64ee52,0x42b138e0,2 +np.float32,0x7ed00b1e,0x42afa4ff,2 +np.float32,0x3db53340,0x3dada0b2,2 +np.float32,0x3e6b0a4a,0x3e5397a4,2 +np.float32,0x7ed5d64f,0x42afb310,2 +np.float32,0xbf12bc5f,0xbf59f5ee,2 +np.float32,0xbda12710,0xbda7d8b5,2 +np.float32,0xbe2e89d8,0xbe3f5a9f,2 +np.float32,0x3f5bee75,0x3f1ebea4,2 +np.float32,0x9317a,0x9317a,2 +np.float32,0x7ee00130,0x42afcad8,2 +np.float32,0x7ef0d16d,0x42afefe7,2 +np.float32,0xbec7463a,0xbefc6a44,2 +np.float32,0xbf760ecc,0xc04fe59c,2 +np.float32,0xbecacb3c,0xbf011ae3,2 +np.float32,0x3ead92be,0x3e9577f0,2 +np.float32,0xbf41510d,0xbfb41b3a,2 +np.float32,0x7f71d489,0x42b154f1,2 +np.float32,0x8023bcd5,0x8023bcd5,2 +np.float32,0x801d33d8,0x801d33d8,2 +np.float32,0x3f3f545d,0x3f0ee0d4,2 +np.float32,0xbf700682,0xc0318c25,2 +np.float32,0xbe54e990,0xbe6eb0a3,2 +np.float32,0x7f0289bf,0x42b01941,2 +np.float32,0xbd61ac90,0xbd682113,2 +np.float32,0xbf2ff310,0xbf94cd6f,2 +np.float32,0x7f10064a,0x42b04b98,2 +np.float32,0x804d0d6d,0x804d0d6d,2 +np.float32,0x80317b0a,0x80317b0a,2 +np.float32,0xbddfef18,0xbded2640,2 +np.float32,0x3f00c9ab,0x3ed0a5bd,2 +np.float32,0x7f04b905,0x42b021c1,2 +np.float32,0x7fc00000,0x7fc00000,2 +np.float32,0x6524c4,0x6524c4,2 +np.float32,0x3da08ae0,0x3d9a8f88,2 +np.float32,0x293ea9,0x293ea9,2 +np.float32,0x71499e,0x71499e,2 +np.float32,0xbf14f54d,0xbf5f38a5,2 +np.float32,0x806e60f5,0x806e60f5,2 +np.float32,0x3f5f34bb,0x3f207fff,2 +np.float32,0x80513427,0x80513427,2 +np.float32,0x7f379670,0x42b0c7dc,2 +np.float32,0x3efba888,0x3eccb20b,2 +np.float32,0x3eeadd1b,0x3ec14f4b,2 +np.float32,0x7ec5a27f,0x42af8ab8,2 +np.float32,0x3f2afe4e,0x3f02f7a2,2 +np.float32,0x5591c8,0x5591c8,2 +np.float32,0x3dbb7240,0x3db35bab,2 +np.float32,0x805b911b,0x805b911b,2 +np.float32,0x800000,0x800000,2 +np.float32,0x7e784c04,0x42ae9cab,2 +np.float32,0x7ebaae14,0x42af6d86,2 +np.float32,0xbec84f7a,0xbefe1d42,2 +np.float32,0x7cea8281,0x42aa56bf,2 +np.float32,0xbf542cf6,0xbfe1eb1b,2 +np.float32,0xbf6bfb13,0xc0231a5b,2 +np.float32,0x7d6eeaef,0x42abc32c,2 +np.float32,0xbf062f6b,0xbf3e2000,2 +np.float32,0x8073d8e9,0x8073d8e9,2 +np.float32,0xbea4db14,0xbec6f485,2 +np.float32,0x7d7e8d62,0x42abe3a0,2 +np.float32,0x7e8fc34e,0x42aee7c6,2 +np.float32,0x7dcbb0c3,0x42acd464,2 +np.float32,0x7e123c,0x7e123c,2 +np.float32,0x3d77af62,0x3d707c34,2 +np.float32,0x498cc8,0x498cc8,2 +np.float32,0x7f4e2206,0x42b1032a,2 +np.float32,0x3f734e0a,0x3f2b04a1,2 +np.float32,0x8053a9d0,0x8053a9d0,2 +np.float32,0xbe8a67e0,0xbea15be9,2 +np.float32,0xbf78e0ea,0xc065409e,2 +np.float32,0x352bdd,0x352bdd,2 +np.float32,0x3ee42be7,0x3ebcb38a,2 +np.float32,0x7f482d10,0x42b0f427,2 +np.float32,0xbf23155e,0xbf81b993,2 +np.float32,0x594920,0x594920,2 +np.float32,0x63f53f,0x63f53f,2 +np.float32,0x363592,0x363592,2 +np.float32,0x7dafbb78,0x42ac88cc,2 +np.float32,0x7f69516c,0x42b14298,2 +np.float32,0x3e1d5be2,0x3e126131,2 +np.float32,0x410c23,0x410c23,2 +np.float32,0x7ec9563c,0x42af9439,2 +np.float32,0xbedd3a0e,0xbf10d705,2 +np.float32,0x7f7c4f1f,0x42b16aa8,2 +np.float32,0xbe99b34e,0xbeb6c2d3,2 +np.float32,0x6cdc84,0x6cdc84,2 +np.float32,0x5b3bbe,0x5b3bbe,2 +np.float32,0x252178,0x252178,2 +np.float32,0x7d531865,0x42ab83c8,2 +np.float32,0xbf565b44,0xbfe873bf,2 +np.float32,0x5977ce,0x5977ce,2 +np.float32,0x588a58,0x588a58,2 +np.float32,0x3eae7054,0x3e961d51,2 +np.float32,0x725049,0x725049,2 +np.float32,0x7f2b9386,0x42b0a538,2 +np.float32,0xbe674714,0xbe831245,2 +np.float32,0x8044f0d8,0x8044f0d8,2 +np.float32,0x800a3c21,0x800a3c21,2 +np.float32,0x807b275b,0x807b275b,2 +np.float32,0xbf2463b6,0xbf83896e,2 +np.float32,0x801cca42,0x801cca42,2 +np.float32,0xbf28f2d0,0xbf8a121a,2 +np.float32,0x3f4168c2,0x3f1010ce,2 +np.float32,0x6f91a1,0x6f91a1,2 +np.float32,0xbf2b9eeb,0xbf8e0fc5,2 +np.float32,0xbea4c858,0xbec6d8e4,2 +np.float32,0xbf7abba0,0xc0788e88,2 +np.float32,0x802f18f7,0x802f18f7,2 +np.float32,0xbf7f6c75,0xc0c3145c,2 +np.float32,0xbe988210,0xbeb50f5e,2 +np.float32,0xbf219b7e,0xbf7f6a3b,2 +np.float32,0x7f800000,0x7f800000,2 +np.float32,0x7f7fffff,0x42b17218,2 +np.float32,0xbdca8d90,0xbdd5487e,2 +np.float32,0xbef683b0,0xbf2821b0,2 +np.float32,0x8043e648,0x8043e648,2 +np.float32,0xbf4319a4,0xbfb7cd1b,2 +np.float32,0x62c2b2,0x62c2b2,2 +np.float32,0xbf479ccd,0xbfc1a7b1,2 +np.float32,0x806c8a32,0x806c8a32,2 +np.float32,0x7f004447,0x42b01045,2 +np.float32,0x3f737d36,0x3f2b1ccf,2 +np.float32,0x3ee71f24,0x3ebebced,2 +np.float32,0x3ea0b6b4,0x3e8bc606,2 +np.float32,0x358fd7,0x358fd7,2 +np.float32,0xbe69780c,0xbe847d17,2 +np.float32,0x7f6bed18,0x42b14849,2 +np.float32,0xbf6a5113,0xc01dfe1d,2 +np.float32,0xbf255693,0xbf84de88,2 +np.float32,0x7f34acac,0x42b0bfac,2 +np.float32,0xbe8a3b6a,0xbea11efe,2 +np.float32,0x3f470d84,0x3f1342ab,2 +np.float32,0xbf2cbde3,0xbf8fc602,2 +np.float32,0x47c103,0x47c103,2 +np.float32,0xe3c94,0xe3c94,2 +np.float32,0xbec07afa,0xbef1693a,2 +np.float32,0x6a9cfe,0x6a9cfe,2 +np.float32,0xbe4339e0,0xbe5899da,2 +np.float32,0x7ea9bf1e,0x42af3cd6,2 +np.float32,0x3f6378b4,0x3f22c4c4,2 +np.float32,0xbd989ff0,0xbd9e9c77,2 +np.float32,0xbe6f2f50,0xbe88343d,2 +np.float32,0x3f7f2ac5,0x3f310764,2 +np.float32,0x3f256704,0x3eff2fb2,2 +np.float32,0x80786aca,0x80786aca,2 +np.float32,0x65d02f,0x65d02f,2 +np.float32,0x50d1c3,0x50d1c3,2 +np.float32,0x3f4a9d76,0x3f1541b4,2 +np.float32,0x802cf491,0x802cf491,2 +np.float32,0x3e935cec,0x3e81829b,2 +np.float32,0x3e2ad478,0x3e1dfd81,2 +np.float32,0xbf107cbd,0xbf54bef2,2 +np.float32,0xbf58c02e,0xbff007fe,2 +np.float32,0x80090808,0x80090808,2 +np.float32,0x805d1f66,0x805d1f66,2 +np.float32,0x6aec95,0x6aec95,2 +np.float32,0xbee3fc6e,0xbf16dc73,2 +np.float32,0x7f63314b,0x42b134f9,2 +np.float32,0x550443,0x550443,2 +np.float32,0xbefa8174,0xbf2c026e,2 +np.float32,0x3f7fb380,0x3f314bd5,2 +np.float32,0x80171f2c,0x80171f2c,2 +np.float32,0x3f2f56ae,0x3f058f2d,2 +np.float32,0x3eacaecb,0x3e94cd97,2 +np.float32,0xbe0c4f0c,0xbe16e69d,2 +np.float32,0x3f48e4cb,0x3f144b42,2 +np.float32,0x7f03efe2,0x42b01eb7,2 +np.float32,0xbf1019ac,0xbf53dbe9,2 +np.float32,0x3e958524,0x3e832eb5,2 +np.float32,0xbf1b23c6,0xbf6e72f2,2 +np.float32,0x12c554,0x12c554,2 +np.float32,0x7dee588c,0x42ad24d6,2 +np.float32,0xbe8c216c,0xbea3ba70,2 +np.float32,0x804553cb,0x804553cb,2 +np.float32,0xbe446324,0xbe5a0966,2 +np.float32,0xbef7150a,0xbf28adff,2 +np.float32,0xbf087282,0xbf42ec6e,2 +np.float32,0x3eeef15c,0x3ec41937,2 +np.float32,0x61bbd2,0x61bbd2,2 +np.float32,0x3e51b28d,0x3e3ec538,2 +np.float32,0x57e869,0x57e869,2 +np.float32,0x7e5e7711,0x42ae646c,2 +np.float32,0x8050b173,0x8050b173,2 +np.float32,0xbf63c90c,0xc00d2438,2 +np.float32,0xbeba774c,0xbee7dcf8,2 +np.float32,0x8016faac,0x8016faac,2 +np.float32,0xbe8b448c,0xbea28aaf,2 +np.float32,0x3e8cd448,0x3e78d29e,2 +np.float32,0x80484e02,0x80484e02,2 +np.float32,0x3f63ba68,0x3f22e78c,2 +np.float32,0x2e87bb,0x2e87bb,2 +np.float32,0x230496,0x230496,2 +np.float32,0x1327b2,0x1327b2,2 +np.float32,0xbf046c56,0xbf3a72d2,2 +np.float32,0x3ecefe60,0x3eadd69a,2 +np.float32,0x49c56e,0x49c56e,2 +np.float32,0x3df22d60,0x3de4e550,2 +np.float32,0x3f67c19d,0x3f250707,2 +np.float32,0x3f20eb9c,0x3ef9b624,2 +np.float32,0x3f05ca75,0x3ed742fa,2 +np.float32,0xbe8514f8,0xbe9a1d45,2 +np.float32,0x8070a003,0x8070a003,2 +np.float32,0x7e49650e,0x42ae317a,2 +np.float32,0x3de16ce9,0x3dd5dc3e,2 +np.float32,0xbf4ae952,0xbfc95f1f,2 +np.float32,0xbe44dd84,0xbe5aa0db,2 +np.float32,0x803c3bc0,0x803c3bc0,2 +np.float32,0x3eebb9e8,0x3ec1e692,2 +np.float32,0x80588275,0x80588275,2 +np.float32,0xbea1e69a,0xbec29d86,2 +np.float32,0x3f7b4bf8,0x3f2f154c,2 +np.float32,0x7eb47ecc,0x42af5c46,2 +np.float32,0x3d441e00,0x3d3f911a,2 +np.float32,0x7f54d40e,0x42b11388,2 +np.float32,0xbf47f17e,0xbfc26882,2 +np.float32,0x3ea7da57,0x3e912db4,2 +np.float32,0x3f59cc7b,0x3f1d984e,2 +np.float32,0x570e08,0x570e08,2 +np.float32,0x3e99560c,0x3e8620a2,2 +np.float32,0x3ecfbd14,0x3eae5e55,2 +np.float32,0x7e86be08,0x42aec698,2 +np.float32,0x3f10f28a,0x3ee5b5d3,2 +np.float32,0x7f228722,0x42b0897a,2 +np.float32,0x3f4b979b,0x3f15cd30,2 +np.float32,0xbf134283,0xbf5b30f9,2 +np.float32,0x3f2ae16a,0x3f02e64f,2 +np.float32,0x3e98e158,0x3e85c6cc,2 +np.float32,0x7ec39f27,0x42af857a,2 +np.float32,0x3effedb0,0x3ecf8cea,2 +np.float32,0xbd545620,0xbd5a09c1,2 +np.float32,0x503a28,0x503a28,2 +np.float32,0x3f712744,0x3f29e9a1,2 +np.float32,0x3edc6194,0x3eb748b1,2 +np.float32,0xbf4ec1e5,0xbfd2ff5f,2 +np.float32,0x3f46669e,0x3f12e4b5,2 +np.float32,0xabad3,0xabad3,2 +np.float32,0x80000000,0x80000000,2 +np.float32,0x803f2e6d,0x803f2e6d,2 +np.float32,0xbf431542,0xbfb7c3e6,2 +np.float32,0x3f6f2d53,0x3f28e496,2 +np.float32,0x546bd8,0x546bd8,2 +np.float32,0x25c80a,0x25c80a,2 +np.float32,0x3e50883c,0x3e3dcd7e,2 +np.float32,0xbf5fa2ba,0xc0045c14,2 +np.float32,0x80271c07,0x80271c07,2 +np.float32,0x8043755d,0x8043755d,2 +np.float32,0xbf3c5cea,0xbfaa5ee9,2 +np.float32,0x3f2fea38,0x3f05e6af,2 +np.float32,0x6da3dc,0x6da3dc,2 +np.float32,0xbf095945,0xbf44dc70,2 +np.float32,0xbe33d584,0xbe45c1f5,2 +np.float32,0x7eb41b2e,0x42af5b2b,2 +np.float32,0xbf0feb74,0xbf537242,2 +np.float32,0xbe96225a,0xbeb1b0b1,2 +np.float32,0x3f63b95f,0x3f22e700,2 +np.float32,0x0,0x0,2 +np.float32,0x3e20b0cc,0x3e154374,2 +np.float32,0xbf79880c,0xc06b6801,2 +np.float32,0xbea690b6,0xbec97b93,2 +np.float32,0xbf3e11ca,0xbfada449,2 +np.float32,0x7e7e6292,0x42aea912,2 +np.float32,0x3e793350,0x3e5f0b7b,2 +np.float32,0x802e7183,0x802e7183,2 +np.float32,0x3f1b3695,0x3ef2a788,2 +np.float32,0x801efa20,0x801efa20,2 +np.float32,0x3f1ec43a,0x3ef70f42,2 +np.float32,0xbf12c5ed,0xbf5a0c52,2 +np.float32,0x8005e99c,0x8005e99c,2 +np.float32,0xbf79f5e7,0xc06fcca5,2 +np.float32,0x3ecbaf50,0x3eab7a03,2 +np.float32,0x46b0fd,0x46b0fd,2 +np.float32,0x3edb9023,0x3eb6b631,2 +np.float32,0x7f24bc41,0x42b09063,2 +np.float32,0xbd8d9328,0xbd92b4c6,2 +np.float32,0x3f2c5d7f,0x3f03c9d9,2 +np.float32,0x807bebc9,0x807bebc9,2 +np.float32,0x7f797a99,0x42b164e2,2 +np.float32,0x756e3c,0x756e3c,2 +np.float32,0x80416f8a,0x80416f8a,2 +np.float32,0x3e0d512a,0x3e04611a,2 +np.float32,0x3f7be3e6,0x3f2f61ec,2 +np.float32,0x80075c41,0x80075c41,2 +np.float32,0xbe850294,0xbe9a046c,2 +np.float32,0x684679,0x684679,2 +np.float32,0x3eb393c4,0x3e99eed2,2 +np.float32,0x3f4177c6,0x3f10195b,2 +np.float32,0x3dd1f402,0x3dc7dfe5,2 +np.float32,0x3ef484d4,0x3ec7e2e1,2 +np.float32,0x53eb8f,0x53eb8f,2 +np.float32,0x7f072cb6,0x42b02b20,2 +np.float32,0xbf1b6b55,0xbf6f28d4,2 +np.float32,0xbd8a98d8,0xbd8f827d,2 +np.float32,0x3eafb418,0x3e970e96,2 +np.float32,0x6555af,0x6555af,2 +np.float32,0x7dd5118e,0x42aceb6f,2 +np.float32,0x800a13f7,0x800a13f7,2 +np.float32,0x331a9d,0x331a9d,2 +np.float32,0x8063773f,0x8063773f,2 +np.float32,0x3e95e068,0x3e837553,2 +np.float32,0x80654b32,0x80654b32,2 +np.float32,0x3dabe0e0,0x3da50bb3,2 +np.float32,0xbf6283c3,0xc00a5280,2 +np.float32,0x80751cc5,0x80751cc5,2 +np.float32,0x3f668eb6,0x3f2465c0,2 +np.float32,0x3e13c058,0x3e0a048c,2 +np.float32,0x77780c,0x77780c,2 +np.float32,0x3f7d6e48,0x3f302868,2 +np.float32,0x7e31f9e3,0x42adf22f,2 +np.float32,0x246c7b,0x246c7b,2 +np.float32,0xbe915bf0,0xbeaafa6c,2 +np.float32,0xbf800000,0xff800000,2 +np.float32,0x3f698f42,0x3f25f8e0,2 +np.float32,0x7e698885,0x42ae7d48,2 +np.float32,0x3f5bbd42,0x3f1ea42c,2 +np.float32,0x5b8444,0x5b8444,2 +np.float32,0xbf6065f6,0xc005e2c6,2 +np.float32,0xbeb95036,0xbee60dad,2 +np.float32,0xbf44f846,0xbfbbcade,2 +np.float32,0xc96e5,0xc96e5,2 +np.float32,0xbf213e90,0xbf7e6eae,2 +np.float32,0xbeb309cc,0xbedc4fe6,2 +np.float32,0xbe781cf4,0xbe8e0fe6,2 +np.float32,0x7f0cf0db,0x42b04083,2 +np.float32,0xbf7b6143,0xc08078f9,2 +np.float32,0x80526fc6,0x80526fc6,2 +np.float32,0x3f092bf3,0x3edbaeec,2 +np.float32,0x3ecdf154,0x3ead16df,2 +np.float32,0x2fe85b,0x2fe85b,2 +np.float32,0xbf5100a0,0xbfd8f871,2 +np.float32,0xbec09d40,0xbef1a028,2 +np.float32,0x5e6a85,0x5e6a85,2 +np.float32,0xbec0e2a0,0xbef20f6b,2 +np.float32,0x3f72e788,0x3f2ad00d,2 +np.float32,0x880a6,0x880a6,2 +np.float32,0x3d9e90bf,0x3d98b9fc,2 +np.float32,0x15cf25,0x15cf25,2 +np.float32,0x10171b,0x10171b,2 +np.float32,0x805cf1aa,0x805cf1aa,2 +np.float32,0x3f19bd36,0x3ef0d0d2,2 +np.float32,0x3ebe2bda,0x3ea1b774,2 +np.float32,0xbecd8192,0xbf035c49,2 +np.float32,0x3e2ce508,0x3e1fc21b,2 +np.float32,0x290f,0x290f,2 +np.float32,0x803b679f,0x803b679f,2 +np.float32,0x1,0x1,2 +np.float32,0x807a9c76,0x807a9c76,2 +np.float32,0xbf65fced,0xc01257f8,2 +np.float32,0x3f783414,0x3f2d8475,2 +np.float32,0x3f2d9d92,0x3f0488da,2 +np.float32,0xbddb5798,0xbde80018,2 +np.float32,0x3e91afb8,0x3e8034e7,2 +np.float32,0xbf1b775a,0xbf6f476d,2 +np.float32,0xbf73a32c,0xc041f3ba,2 +np.float32,0xbea39364,0xbec5121b,2 +np.float32,0x80375b94,0x80375b94,2 +np.float32,0x3f331252,0x3f07c3e9,2 +np.float32,0xbf285774,0xbf892e74,2 +np.float32,0x3e699bb8,0x3e526d55,2 +np.float32,0x3f08208a,0x3eda523a,2 +np.float32,0xbf42fb4a,0xbfb78d60,2 +np.float32,0x8029c894,0x8029c894,2 +np.float32,0x3e926c0c,0x3e80c76e,2 +np.float32,0x801e4715,0x801e4715,2 +np.float32,0x3e4b36d8,0x3e395ffd,2 +np.float32,0x8041556b,0x8041556b,2 +np.float32,0xbf2d99ba,0xbf9119bd,2 +np.float32,0x3ed83ea8,0x3eb46250,2 +np.float32,0xbe94a280,0xbeaf92b4,2 +np.float32,0x7f4c7a64,0x42b0ff0a,2 +np.float32,0x806d4022,0x806d4022,2 +np.float32,0xbed382f8,0xbf086d26,2 +np.float32,0x1846fe,0x1846fe,2 +np.float32,0xbe702558,0xbe88d4d8,2 +np.float32,0xbe650ee0,0xbe81a3cc,2 +np.float32,0x3ee9d088,0x3ec0970c,2 +np.float32,0x7f6d4498,0x42b14b30,2 +np.float32,0xbef9f9e6,0xbf2b7ddb,2 +np.float32,0xbf70c384,0xc0349370,2 +np.float32,0xbeff9e9e,0xbf3110c8,2 +np.float32,0xbef06372,0xbf224aa9,2 +np.float32,0xbf15a692,0xbf60e1fa,2 +np.float32,0x8058c117,0x8058c117,2 +np.float32,0xbd9f74b8,0xbda6017b,2 +np.float32,0x801bf130,0x801bf130,2 +np.float32,0x805da84c,0x805da84c,2 +np.float32,0xff800000,0xffc00000,2 +np.float32,0xbeb01de2,0xbed7d6d6,2 +np.float32,0x8077de08,0x8077de08,2 +np.float32,0x3e327668,0x3e2482c1,2 +np.float32,0xbe7add88,0xbe8fe1ab,2 +np.float32,0x805a3c2e,0x805a3c2e,2 +np.float32,0x80326a73,0x80326a73,2 +np.float32,0x800b8a34,0x800b8a34,2 +np.float32,0x8048c83a,0x8048c83a,2 +np.float32,0xbf3799d6,0xbfa1a975,2 +np.float32,0x807649c7,0x807649c7,2 +np.float32,0x3dfdbf90,0x3def3798,2 +np.float32,0xbf1b538a,0xbf6eec4c,2 +np.float32,0xbf1e5989,0xbf76baa0,2 +np.float32,0xc7a80,0xc7a80,2 +np.float32,0x8001be54,0x8001be54,2 +np.float32,0x3f435bbc,0x3f112c6d,2 +np.float32,0xbeabcff8,0xbed151d1,2 +np.float32,0x7de20c78,0x42ad09b7,2 +np.float32,0x3f0e6d2e,0x3ee27b1e,2 +np.float32,0xbf0cb352,0xbf4c3267,2 +np.float32,0x7f6ec06f,0x42b14e61,2 +np.float32,0x7f6fa8ef,0x42b15053,2 +np.float32,0xbf3d2a6a,0xbfabe623,2 +np.float32,0x7f077a4c,0x42b02c46,2 +np.float32,0xbf2a68dc,0xbf8c3cc4,2 +np.float32,0x802a5dbe,0x802a5dbe,2 +np.float32,0x807f631c,0x807f631c,2 +np.float32,0x3dc9b8,0x3dc9b8,2 +np.float32,0x3ebdc1b7,0x3ea16a0a,2 +np.float32,0x7ef29dab,0x42aff3b5,2 +np.float32,0x3e8ab1cc,0x3e757806,2 +np.float32,0x3f27e88e,0x3f011c6d,2 +np.float32,0x3cfd1455,0x3cf93fb5,2 +np.float32,0x7f7eebf5,0x42b16fef,2 +np.float32,0x3c9b2140,0x3c99ade9,2 +np.float32,0x7e928601,0x42aef183,2 +np.float32,0xbd7d2db0,0xbd82abae,2 +np.float32,0x3e6f0df3,0x3e56da20,2 +np.float32,0x7d36a2fc,0x42ab39a3,2 +np.float32,0xbf49d3a2,0xbfc6c859,2 +np.float32,0x7ee541d3,0x42afd6b6,2 +np.float32,0x80753dc0,0x80753dc0,2 +np.float32,0x3f4ce486,0x3f16865d,2 +np.float32,0x39e701,0x39e701,2 +np.float32,0x3f3d9ede,0x3f0de5fa,2 +np.float32,0x7fafb2,0x7fafb2,2 +np.float32,0x3e013fdc,0x3df37090,2 +np.float32,0x807b6a2c,0x807b6a2c,2 +np.float32,0xbe86800a,0xbe9c08c7,2 +np.float32,0x7f40f080,0x42b0e14d,2 +np.float32,0x7eef5afe,0x42afecc8,2 +np.float32,0x7ec30052,0x42af83da,2 +np.float32,0x3eacf768,0x3e9503e1,2 +np.float32,0x7f13ef0e,0x42b0594e,2 +np.float32,0x80419f4a,0x80419f4a,2 +np.float32,0xbf485932,0xbfc3562a,2 +np.float32,0xbe8a24d6,0xbea10011,2 +np.float32,0xbda791c0,0xbdaed2bc,2 +np.float32,0x3e9b5169,0x3e87a67d,2 +np.float32,0x807dd882,0x807dd882,2 +np.float32,0x7f40170e,0x42b0df0a,2 +np.float32,0x7f02f7f9,0x42b01af1,2 +np.float32,0x3ea38bf9,0x3e8decde,2 +np.float32,0x3e2e7ce8,0x3e211ed4,2 +np.float32,0x70a7a6,0x70a7a6,2 +np.float32,0x7d978592,0x42ac3ce7,2 +np.float32,0x804d12d0,0x804d12d0,2 +np.float32,0x80165dc8,0x80165dc8,2 +np.float32,0x80000001,0x80000001,2 +np.float32,0x3e325da0,0x3e246da6,2 +np.float32,0xbe063bb8,0xbe0fe281,2 +np.float32,0x160b8,0x160b8,2 +np.float32,0xbe5687a4,0xbe70bbef,2 +np.float32,0x7f11ab34,0x42b05168,2 +np.float32,0xc955c,0xc955c,2 +np.float32,0xbea0003a,0xbebfd826,2 +np.float32,0x3f7fbdd9,0x3f315102,2 +np.float32,0xbe61aefc,0xbe7ef121,2 +np.float32,0xbf1b9873,0xbf6f9bc3,2 +np.float32,0x3a6d14,0x3a6d14,2 +np.float32,0xbf1ad3b4,0xbf6da808,2 +np.float32,0x3ed2dd24,0x3eb0963d,2 +np.float32,0xbe81a4ca,0xbe957d52,2 +np.float32,0x7f1be3e9,0x42b07421,2 +np.float32,0x7f5ce943,0x42b1269e,2 +np.float32,0x7eebcbdf,0x42afe51d,2 +np.float32,0x807181b5,0x807181b5,2 +np.float32,0xbecb03ba,0xbf0149ad,2 +np.float32,0x42edb8,0x42edb8,2 +np.float32,0xbf3aeec8,0xbfa7b13f,2 +np.float32,0xbd0c4f00,0xbd0ec4a0,2 +np.float32,0x3e48d260,0x3e376070,2 +np.float32,0x1a9731,0x1a9731,2 +np.float32,0x7f323be4,0x42b0b8b5,2 +np.float32,0x1a327f,0x1a327f,2 +np.float32,0x17f1fc,0x17f1fc,2 +np.float32,0xbf2f4f9b,0xbf93c91a,2 +np.float32,0x3ede8934,0x3eb8c9c3,2 +np.float32,0xbf56aaac,0xbfe968bb,2 +np.float32,0x3e22cb5a,0x3e17148c,2 +np.float32,0x7d9def,0x7d9def,2 +np.float32,0x8045b963,0x8045b963,2 +np.float32,0x77404f,0x77404f,2 +np.float32,0x7e2c9efb,0x42ade28b,2 +np.float32,0x8058ad89,0x8058ad89,2 +np.float32,0x7f4139,0x7f4139,2 +np.float32,0x8020e12a,0x8020e12a,2 +np.float32,0x800c9daa,0x800c9daa,2 +np.float32,0x7f2c5ac5,0x42b0a789,2 +np.float32,0x3f04a47b,0x3ed5c043,2 +np.float32,0x804692d5,0x804692d5,2 +np.float32,0xbf6e7fa4,0xc02bb493,2 +np.float32,0x80330756,0x80330756,2 +np.float32,0x7f3e29ad,0x42b0d9e1,2 +np.float32,0xbebf689a,0xbeefb24d,2 +np.float32,0x3f29a86c,0x3f022a56,2 +np.float32,0x3e3bd1c0,0x3e2c72b3,2 +np.float32,0x3f78f2e8,0x3f2de546,2 +np.float32,0x3f3709be,0x3f0a16af,2 +np.float32,0x3e11f150,0x3e086f97,2 +np.float32,0xbf5867ad,0xbfeee8a0,2 +np.float32,0xbebfb328,0xbef0296c,2 +np.float32,0x2f7f15,0x2f7f15,2 +np.float32,0x805cfe84,0x805cfe84,2 +np.float32,0xbf504e01,0xbfd71589,2 +np.float32,0x3ee0903c,0x3eba330c,2 +np.float32,0xbd838990,0xbd87f399,2 +np.float32,0x3f14444e,0x3ee9ee7d,2 +np.float32,0x7e352583,0x42adfb3a,2 +np.float32,0x7e76f824,0x42ae99ec,2 +np.float32,0x3f772d00,0x3f2cfebf,2 +np.float32,0x801f7763,0x801f7763,2 +np.float32,0x3f760bf5,0x3f2c6b87,2 +np.float32,0xbf0bb696,0xbf4a03a5,2 +np.float32,0x3f175d2c,0x3eedd6d2,2 +np.float32,0xbf5723f8,0xbfeae288,2 +np.float32,0x24de0a,0x24de0a,2 +np.float32,0x3cd73f80,0x3cd47801,2 +np.float32,0x7f013305,0x42b013fa,2 +np.float32,0x3e3ad425,0x3e2b9c50,2 +np.float32,0x7d3d16,0x7d3d16,2 +np.float32,0x3ef49738,0x3ec7ef54,2 +np.float32,0x3f5b8612,0x3f1e8678,2 +np.float32,0x7f0eeb5c,0x42b047a7,2 +np.float32,0x7e9d7cb0,0x42af1675,2 +np.float32,0xbdd1cfb0,0xbddd5aa0,2 +np.float32,0xbf645dba,0xc00e78fe,2 +np.float32,0x3f511174,0x3f18d56c,2 +np.float32,0x3d91ad00,0x3d8cba62,2 +np.float32,0x805298da,0x805298da,2 +np.float32,0xbedb6af4,0xbf0f4090,2 +np.float32,0x3d23b1ba,0x3d208205,2 +np.float32,0xbea5783e,0xbec7dc87,2 +np.float32,0x79d191,0x79d191,2 +np.float32,0x3e894413,0x3e7337da,2 +np.float32,0x80800000,0x80800000,2 +np.float32,0xbf34a8d3,0xbf9c907b,2 +np.float32,0x3bae779a,0x3bae011f,2 +np.float32,0x8049284d,0x8049284d,2 +np.float32,0x3eb42cc4,0x3e9a600b,2 +np.float32,0x3da1e2d0,0x3d9bce5f,2 +np.float32,0x3f364b8a,0x3f09a7af,2 +np.float32,0x3d930b10,0x3d8e0118,2 +np.float32,0x8061f8d7,0x8061f8d7,2 +np.float32,0x3f473213,0x3f13573b,2 +np.float32,0x3f1e2a38,0x3ef65102,2 +np.float32,0x8068f7d9,0x8068f7d9,2 +np.float32,0x3f181ef8,0x3eeeca2c,2 +np.float32,0x3eeb6168,0x3ec1a9f5,2 +np.float32,0xc2db6,0xc2db6,2 +np.float32,0x3ef7b578,0x3eca0a69,2 +np.float32,0xbf5b5a84,0xbff8d075,2 +np.float32,0x7f479d5f,0x42b0f2b7,2 +np.float32,0x3e6f3c24,0x3e56ff92,2 +np.float32,0x3f45543a,0x3f1249f0,2 +np.float32,0xbea7c1fa,0xbecb40d2,2 +np.float32,0x7de082,0x7de082,2 +np.float32,0x383729,0x383729,2 +np.float32,0xbd91cb90,0xbd973eb3,2 +np.float32,0x7f320218,0x42b0b80f,2 +np.float32,0x5547f2,0x5547f2,2 +np.float32,0x291fe4,0x291fe4,2 +np.float32,0xbe078ba0,0xbe11655f,2 +np.float32,0x7e0c0658,0x42ad7764,2 +np.float32,0x7e129a2b,0x42ad8ee5,2 +np.float32,0x3f7c96d4,0x3f2fbc0c,2 +np.float32,0x3f800000,0x3f317218,2 +np.float32,0x7f131754,0x42b05662,2 +np.float32,0x15f833,0x15f833,2 +np.float32,0x80392ced,0x80392ced,2 +np.float32,0x3f7c141a,0x3f2f7a36,2 +np.float32,0xbf71c03f,0xc038dcfd,2 +np.float32,0xbe14fb2c,0xbe20fff3,2 +np.float32,0xbee0bac6,0xbf13f14c,2 +np.float32,0x801a32dd,0x801a32dd,2 +np.float32,0x8e12d,0x8e12d,2 +np.float32,0x3f48c606,0x3f143a04,2 +np.float32,0x7f418af5,0x42b0e2e6,2 +np.float32,0x3f1f2918,0x3ef78bb7,2 +np.float32,0x11141b,0x11141b,2 +np.float32,0x3e9fc9e8,0x3e8b11ad,2 +np.float32,0xbea5447a,0xbec79010,2 +np.float32,0xbe31d904,0xbe4359db,2 +np.float32,0x80184667,0x80184667,2 +np.float32,0xbf00503c,0xbf3212c2,2 +np.float32,0x3e0328cf,0x3df6d425,2 +np.float32,0x7ee8e1b7,0x42afdebe,2 +np.float32,0xbef95e24,0xbf2ae5db,2 +np.float32,0x7f3e4eed,0x42b0da45,2 +np.float32,0x3f43ee85,0x3f117fa0,2 +np.float32,0xbcfa2ac0,0xbcfe10fe,2 +np.float32,0x80162774,0x80162774,2 +np.float32,0x372e8b,0x372e8b,2 +np.float32,0x3f263802,0x3f0016b0,2 +np.float32,0x8008725f,0x8008725f,2 +np.float32,0x800beb40,0x800beb40,2 +np.float32,0xbe93308e,0xbead8a77,2 +np.float32,0x3d8a4240,0x3d85cab8,2 +np.float32,0x80179de0,0x80179de0,2 +np.float32,0x7f4a98f2,0x42b0fa4f,2 +np.float32,0x3f0d214e,0x3ee0cff1,2 +np.float32,0x80536c2c,0x80536c2c,2 +np.float32,0x7e7038ed,0x42ae8bbe,2 +np.float32,0x7f345af9,0x42b0bec4,2 +np.float32,0xbf243219,0xbf83442f,2 +np.float32,0x7e0d5555,0x42ad7c27,2 +np.float32,0x762e95,0x762e95,2 +np.float32,0x7ebf4548,0x42af79f6,2 +np.float32,0x8079639e,0x8079639e,2 +np.float32,0x3ef925c0,0x3ecb0260,2 +np.float32,0x3f708695,0x3f2996d6,2 +np.float32,0xfca9f,0xfca9f,2 +np.float32,0x8060dbf4,0x8060dbf4,2 +np.float32,0x4c8840,0x4c8840,2 +np.float32,0xbea922ee,0xbecd4ed5,2 +np.float32,0xbf4f28a9,0xbfd40b98,2 +np.float32,0xbe25ad48,0xbe34ba1b,2 +np.float32,0x3f2fb254,0x3f05c58c,2 +np.float32,0x3f73bcc2,0x3f2b3d5f,2 +np.float32,0xbf479a07,0xbfc1a165,2 +np.float32,0xbeb9a808,0xbee69763,2 +np.float32,0x7eb16a65,0x42af5376,2 +np.float32,0xbeb3e442,0xbedda042,2 +np.float32,0x3d8f439c,0x3d8a79ac,2 +np.float32,0x80347516,0x80347516,2 +np.float32,0x3e8a0c5d,0x3e74738c,2 +np.float32,0xbf0383a4,0xbf389289,2 +np.float32,0x806be8f5,0x806be8f5,2 +np.float32,0x8023f0c5,0x8023f0c5,2 +np.float32,0x2060e9,0x2060e9,2 +np.float32,0xbf759eba,0xc04d239f,2 +np.float32,0x3d84cc5a,0x3d80ab96,2 +np.float32,0xbf57746b,0xbfebdf87,2 +np.float32,0x3e418417,0x3e31401f,2 +np.float32,0xaecce,0xaecce,2 +np.float32,0x3cd1766f,0x3cced45c,2 +np.float32,0x53724a,0x53724a,2 +np.float32,0x3f773710,0x3f2d03de,2 +np.float32,0x8013d040,0x8013d040,2 +np.float32,0x4d0eb2,0x4d0eb2,2 +np.float32,0x8014364a,0x8014364a,2 +np.float32,0x7f3c56c9,0x42b0d4f2,2 +np.float32,0x3eee1e1c,0x3ec3891a,2 +np.float32,0xbdda3eb8,0xbde6c5a0,2 +np.float32,0x26ef4a,0x26ef4a,2 +np.float32,0x7ed3370c,0x42afacbf,2 +np.float32,0xbf06e31b,0xbf3f9ab7,2 +np.float32,0xbe3185f0,0xbe42f556,2 +np.float32,0x3dcf9abe,0x3dc5be41,2 +np.float32,0xbf3696d9,0xbf9fe2bd,2 +np.float32,0x3e68ee50,0x3e51e01a,2 +np.float32,0x3f3d4cc2,0x3f0db6ca,2 +np.float32,0x7fa00000,0x7fe00000,2 +np.float32,0xbf03070c,0xbf3792d0,2 +np.float32,0x3ea79e6c,0x3e910092,2 +np.float32,0xbf1a393a,0xbf6c2251,2 +np.float32,0x3f41eb0e,0x3f105afc,2 +np.float32,0x3ceadb2f,0x3ce78d79,2 +np.float32,0xbf5dc105,0xc000be2c,2 +np.float32,0x7ebb5a0e,0x42af6f5c,2 +np.float32,0xbf7c44eb,0xc0875058,2 +np.float32,0x6aaaf4,0x6aaaf4,2 +np.float32,0x807d8f23,0x807d8f23,2 +np.float32,0xbee6b142,0xbf194fef,2 +np.float32,0xbe83f256,0xbe989526,2 +np.float32,0x7d588e,0x7d588e,2 +np.float32,0x7cc80131,0x42aa0542,2 +np.float32,0x3e0ab198,0x3e02124f,2 +np.float32,0xbf6e64db,0xc02b52eb,2 +np.float32,0x3d238b56,0x3d205d1b,2 +np.float32,0xbeb408e2,0xbeddd8bc,2 +np.float32,0x3f78340d,0x3f2d8471,2 +np.float32,0x806162a3,0x806162a3,2 +np.float32,0x804e484f,0x804e484f,2 +np.float32,0xbeb8c576,0xbee53466,2 +np.float32,0x807aab15,0x807aab15,2 +np.float32,0x3f523e20,0x3f197ab8,2 +np.float32,0xbf009190,0xbf3295de,2 +np.float32,0x3df43da5,0x3de6bd82,2 +np.float32,0x7f639aea,0x42b135e6,2 +np.float32,0x3f1e638a,0x3ef697da,2 +np.float32,0xbf4884de,0xbfc3bac3,2 +np.float32,0xbe9336b6,0xbead931b,2 +np.float32,0x6daf7f,0x6daf7f,2 +np.float32,0xbf1fc152,0xbf7a70b1,2 +np.float32,0x3f103720,0x3ee4c649,2 +np.float32,0x3eeaa227,0x3ec126df,2 +np.float32,0x7f7ea945,0x42b16f69,2 +np.float32,0x3d3cd800,0x3d389ead,2 +np.float32,0x3f3d7268,0x3f0dcc6e,2 +np.float32,0xbf3c1b41,0xbfa9e2e3,2 +np.float32,0x3ecf3818,0x3eadffb2,2 +np.float32,0x3f1af312,0x3ef25372,2 +np.float32,0x48fae4,0x48fae4,2 +np.float64,0x7fedaa1ee4fb543d,0x40862da7ca7c308e,1 +np.float64,0x8007d2d810efa5b1,0x8007d2d810efa5b1,1 +np.float64,0x3fc385e069270bc0,0x3fc22b8884cf2c3b,1 +np.float64,0x68ed4130d1da9,0x68ed4130d1da9,1 +np.float64,0x8008e93e58d1d27d,0x8008e93e58d1d27d,1 +np.float64,0xbfd3d62852a7ac50,0xbfd7be3a7ad1af02,1 +np.float64,0xbfc1fa0ba923f418,0xbfc35f0f19447df7,1 +np.float64,0xbfe01b8cec20371a,0xbfe6658c7e6c8e50,1 +np.float64,0xbfeda81a147b5034,0xc004e9c94f2b91c1,1 +np.float64,0xbfe1c36a97e386d5,0xbfe9ead4d6beaa92,1 +np.float64,0x3fe50be51f2a17ca,0x3fe02c8067d9e5c5,1 +np.float64,0x3febed4d3337da9a,0x3fe413956466134f,1 +np.float64,0x80068ea59ced1d4c,0x80068ea59ced1d4c,1 +np.float64,0x3febe77d5877cefb,0x3fe4107ac088bc71,1 +np.float64,0x800ae77617d5ceed,0x800ae77617d5ceed,1 +np.float64,0x3fd0546b60a0a8d7,0x3fcd16c2e995ab23,1 +np.float64,0xbfe33e1476667c29,0xbfed6d7faec4db2f,1 +np.float64,0x3fe9d2fd51b3a5fb,0x3fe2eef834310219,1 +np.float64,0x8004249878284932,0x8004249878284932,1 +np.float64,0xbfd5b485c72b690c,0xbfda828ccc6a7a5c,1 +np.float64,0x7fcd6e6b6b3adcd6,0x408622807f04768e,1 +np.float64,0x3fd7f9c32caff386,0x3fd45d024514b8da,1 +np.float64,0x7f87eb9d702fd73a,0x40860aa99fcff27f,1 +np.float64,0xbfc5d1f6fb2ba3ec,0xbfc7ec367cb3fecc,1 +np.float64,0x8008316a44d062d5,0x8008316a44d062d5,1 +np.float64,0xbfd54e4358aa9c86,0xbfd9e889d2998a4a,1 +np.float64,0xda65facdb4cc0,0xda65facdb4cc0,1 +np.float64,0x3fc5b4f6f32b69f0,0x3fc40d13aa8e248b,1 +np.float64,0x3fd825a5d5b04b4c,0x3fd47ce73e04d3ff,1 +np.float64,0x7ac9d56ef593b,0x7ac9d56ef593b,1 +np.float64,0xbfd0a51977214a32,0xbfd34702071428be,1 +np.float64,0x3fd21f620b243ec4,0x3fcfea0c02193640,1 +np.float64,0x3fe6fb3f1b2df67e,0x3fe151ffb18c983b,1 +np.float64,0x700de022e01bd,0x700de022e01bd,1 +np.float64,0xbfbb76b81236ed70,0xbfbd0d31deea1ec7,1 +np.float64,0x3fecfc3856f9f870,0x3fe4a2fcadf221e0,1 +np.float64,0x3fede286517bc50c,0x3fe51af2fbd6ef63,1 +np.float64,0x7fdc8da96c391b52,0x408627ce09cfef2b,1 +np.float64,0x8000edfcfb81dbfb,0x8000edfcfb81dbfb,1 +np.float64,0x8009ebc42af3d789,0x8009ebc42af3d789,1 +np.float64,0x7fd658aaf8acb155,0x408625d80cd1ccc9,1 +np.float64,0x3feea584a37d4b09,0x3fe57f29a73729cd,1 +np.float64,0x4cfe494699fca,0x4cfe494699fca,1 +np.float64,0xbfe9d96460b3b2c9,0xbffa62ecfa026c77,1 +np.float64,0x7fdb3852c3b670a5,0x4086276c191dc9b1,1 +np.float64,0xbfe4d1fc9ee9a3f9,0xbff0d37ce37cf479,1 +np.float64,0xffefffffffffffff,0xfff8000000000000,1 +np.float64,0xbfd1c43d7fa3887a,0xbfd4cfbefb5f2c43,1 +np.float64,0x3fec4a8e0d78951c,0x3fe4453a82ca2570,1 +np.float64,0x7fafed74583fdae8,0x4086181017b8dac9,1 +np.float64,0x80076c4ebcced89e,0x80076c4ebcced89e,1 +np.float64,0x8001a9aa7b235356,0x8001a9aa7b235356,1 +np.float64,0x121260fe2424d,0x121260fe2424d,1 +np.float64,0x3fddd028e3bba052,0x3fd87998c4c43c5b,1 +np.float64,0x800ed1cf4a9da39f,0x800ed1cf4a9da39f,1 +np.float64,0xbfef2e63d7fe5cc8,0xc00d53480b16971b,1 +np.float64,0xbfedde3309fbbc66,0xc005ab55b7a7c127,1 +np.float64,0x3fda3e1e85b47c3d,0x3fd5fddafd8d6729,1 +np.float64,0x8007c6443c6f8c89,0x8007c6443c6f8c89,1 +np.float64,0xbfe101705f2202e0,0xbfe8420817665121,1 +np.float64,0x7fe0bff3c1e17fe7,0x4086291539c56d80,1 +np.float64,0x7fe6001dab6c003a,0x40862b43aa7cb060,1 +np.float64,0x7fbdecf7de3bd9ef,0x40861d170b1c51a5,1 +np.float64,0xbfc0fd508c21faa0,0xbfc23a5876e99fa3,1 +np.float64,0xbfcf6eb14f3edd64,0xbfd208cbf742c8ea,1 +np.float64,0x3f6d40ea403a81d5,0x3f6d33934ab8e799,1 +np.float64,0x7fc32600b6264c00,0x40861f10302357e0,1 +np.float64,0x3fd05870baa0b0e0,0x3fcd1d2af420fac7,1 +np.float64,0x80051d5120aa3aa3,0x80051d5120aa3aa3,1 +np.float64,0x3fdb783fcfb6f080,0x3fd6db229658c083,1 +np.float64,0x3fe0b61199e16c24,0x3fdae41e277be2eb,1 +np.float64,0x3daf62167b5ed,0x3daf62167b5ed,1 +np.float64,0xbfec3c53b6f878a7,0xc0011f0ce7a78a2a,1 +np.float64,0x800fc905161f920a,0x800fc905161f920a,1 +np.float64,0x3fdc7b9cc138f73a,0x3fd78f9c2360e661,1 +np.float64,0x7fe4079e97a80f3c,0x40862a83795f2443,1 +np.float64,0x8010000000000000,0x8010000000000000,1 +np.float64,0x7fe6da5345adb4a6,0x40862b9183c1e4b0,1 +np.float64,0xbfd0a76667214ecc,0xbfd34a1e0c1f6186,1 +np.float64,0x37fb0b906ff62,0x37fb0b906ff62,1 +np.float64,0x7fe170e59fa2e1ca,0x408629680a55e5c5,1 +np.float64,0x3fea900c77752019,0x3fe356eec75aa345,1 +np.float64,0x3fc575c63a2aeb8c,0x3fc3d701167d76b5,1 +np.float64,0x3fe8b45da87168bc,0x3fe24ecbb778fd44,1 +np.float64,0xbfcb990ab5373214,0xbfcf1596c076813c,1 +np.float64,0xf146fdfbe28e0,0xf146fdfbe28e0,1 +np.float64,0x8001fcd474c3f9aa,0x8001fcd474c3f9aa,1 +np.float64,0xbfe9b555eeb36aac,0xbffa0630c3bb485b,1 +np.float64,0x800f950be83f2a18,0x800f950be83f2a18,1 +np.float64,0x7feb0e03ab761c06,0x40862ceb30e36887,1 +np.float64,0x7fca51bd4a34a37a,0x4086219b9dfd35c9,1 +np.float64,0xbfdc27c34cb84f86,0xbfe28ccde8d6bc08,1 +np.float64,0x80009ce1714139c4,0x80009ce1714139c4,1 +np.float64,0x8005290fb1ea5220,0x8005290fb1ea5220,1 +np.float64,0xbfee81e6473d03cd,0xc00885972ca1699b,1 +np.float64,0x7fcfb11a373f6233,0x408623180b8f75d9,1 +np.float64,0xbfcb9c4bfd373898,0xbfcf19bd25881928,1 +np.float64,0x7feaec5885f5d8b0,0x40862ce136050e6c,1 +np.float64,0x8009e17a4a53c2f5,0x8009e17a4a53c2f5,1 +np.float64,0xbfe1cceb9e6399d7,0xbfea0038bd3def20,1 +np.float64,0x8009170bd7122e18,0x8009170bd7122e18,1 +np.float64,0xb2b6f7f1656df,0xb2b6f7f1656df,1 +np.float64,0x3fc75bfd1f2eb7f8,0x3fc574c858332265,1 +np.float64,0x3fa24c06ec249800,0x3fa1fa462ffcb8ec,1 +np.float64,0xaa9a4d2d5534a,0xaa9a4d2d5534a,1 +np.float64,0xbfd7b76208af6ec4,0xbfdda0c3200dcc9f,1 +np.float64,0x7f8cbab73039756d,0x40860c20cba57a94,1 +np.float64,0x3fdbcf9f48b79f3f,0x3fd71827a60e8b6d,1 +np.float64,0xbfdd60f71a3ac1ee,0xbfe3a94bc8cf134d,1 +np.float64,0xb9253589724a7,0xb9253589724a7,1 +np.float64,0xbfcf28e37e3e51c8,0xbfd1da9977b741e3,1 +np.float64,0x80011457f7e228b1,0x80011457f7e228b1,1 +np.float64,0x7fec33df737867be,0x40862d404a897122,1 +np.float64,0xae55f8f95cabf,0xae55f8f95cabf,1 +np.float64,0xbfc1ab9397235728,0xbfc303e5533d4a5f,1 +np.float64,0x7fef0f84b3be1f08,0x40862e05f9ba7118,1 +np.float64,0x7fdc94f328b929e5,0x408627d01449d825,1 +np.float64,0x3fee1b598c7c36b3,0x3fe53847be166834,1 +np.float64,0x3fee8326f37d064e,0x3fe56d96f3fbcf43,1 +np.float64,0x3fe7b18a83ef6316,0x3fe1bb6a6d48c675,1 +np.float64,0x3fe5db969c6bb72e,0x3fe0a8d7d151996c,1 +np.float64,0x3e3391d27c673,0x3e3391d27c673,1 +np.float64,0x3fe79a46d76f348e,0x3fe1ae09a96ea628,1 +np.float64,0x7ff4000000000000,0x7ffc000000000000,1 +np.float64,0x7fe57d6505aafac9,0x40862b13925547f1,1 +np.float64,0x3fc433371d28666e,0x3fc2c196a764c47b,1 +np.float64,0x8008dbf69cd1b7ee,0x8008dbf69cd1b7ee,1 +np.float64,0xbfe744f459ee89e8,0xbff4c847ad3ee152,1 +np.float64,0x80098aa245331545,0x80098aa245331545,1 +np.float64,0x6747112ece8e3,0x6747112ece8e3,1 +np.float64,0x5d342a40ba69,0x5d342a40ba69,1 +np.float64,0xf7a17739ef42f,0xf7a17739ef42f,1 +np.float64,0x3fe1b34a9d236695,0x3fdc2d7c4e2c347a,1 +np.float64,0x7fb53bf5ec2a77eb,0x40861a585ec8f7ff,1 +np.float64,0xbfe6256f1cec4ade,0xbff2d89a36be65ae,1 +np.float64,0xb783bc9b6f078,0xb783bc9b6f078,1 +np.float64,0xbfedf74a3bfbee94,0xc0060bb6f2bc11ef,1 +np.float64,0x3fda2a5eccb454be,0x3fd5efd7f18b8e81,1 +np.float64,0xbfb3838ab2270718,0xbfb44c337fbca3c3,1 +np.float64,0x3fb4ac6dc22958e0,0x3fb3e194ca01a502,1 +np.float64,0x76c11aaaed824,0x76c11aaaed824,1 +np.float64,0x80025bb1af04b764,0x80025bb1af04b764,1 +np.float64,0x3fdc02740ab804e8,0x3fd73b8cd6f95f19,1 +np.float64,0x3fe71856f5ee30ae,0x3fe162e9fafb4428,1 +np.float64,0x800236f332646de7,0x800236f332646de7,1 +np.float64,0x7fe13fd9d2e27fb3,0x408629516b42a317,1 +np.float64,0x7fdf6bbd34bed779,0x40862892069d805c,1 +np.float64,0x3fd4727beba8e4f8,0x3fd1be5b48d9e282,1 +np.float64,0x800e0fac9e5c1f59,0x800e0fac9e5c1f59,1 +np.float64,0xfb54423ff6a89,0xfb54423ff6a89,1 +np.float64,0x800fbf7ed47f7efe,0x800fbf7ed47f7efe,1 +np.float64,0x3fe9d41fa2f3a840,0x3fe2ef98dc1fd463,1 +np.float64,0x800d733e805ae67d,0x800d733e805ae67d,1 +np.float64,0x3feebe4c46fd7c98,0x3fe58bcf7f47264e,1 +np.float64,0x7fe1ab77b5e356ee,0x40862982bb3dce34,1 +np.float64,0xbfdddac05abbb580,0xbfe41aa45f72d5a2,1 +np.float64,0x3fe14219dee28434,0x3fdb9b137d1f1220,1 +np.float64,0x3fe25d3d5a24ba7b,0x3fdd06e1cf32d35a,1 +np.float64,0x8000fa4fbe81f4a0,0x8000fa4fbe81f4a0,1 +np.float64,0x3fe303e23e6607c4,0x3fddd94982efa9f1,1 +np.float64,0x3fe89cf5d83139ec,0x3fe24193a2e12f75,1 +np.float64,0x3fe9b36ef87366de,0x3fe2dd7cdc25a4a5,1 +np.float64,0xbfdb8b38f8371672,0xbfe2023ba7e002bb,1 +np.float64,0xafc354955f86b,0xafc354955f86b,1 +np.float64,0xbfe2f3d49e65e7a9,0xbfecb557a94123d3,1 +np.float64,0x800496617c092cc4,0x800496617c092cc4,1 +np.float64,0x32db0cfa65b62,0x32db0cfa65b62,1 +np.float64,0xbfd893bfa2b12780,0xbfdf02a8c1e545aa,1 +np.float64,0x7fd5ac927d2b5924,0x408625997e7c1f9b,1 +np.float64,0x3fde9defb8bd3be0,0x3fd9056190986349,1 +np.float64,0x80030cfeb54619fe,0x80030cfeb54619fe,1 +np.float64,0x3fcba85b273750b8,0x3fc90a5ca976594f,1 +np.float64,0x3fe98f6f5cf31edf,0x3fe2c97fcb4eca25,1 +np.float64,0x3fe33dbf90667b80,0x3fde21b83321b993,1 +np.float64,0x3fe4686636e8d0cc,0x3fdf928cdca751b3,1 +np.float64,0x80018ade6ce315be,0x80018ade6ce315be,1 +np.float64,0x7fa9af70c8335ee1,0x408616528cd5a906,1 +np.float64,0x3fbeb460aa3d68c0,0x3fbcff96b00a2193,1 +np.float64,0x7fa82c869830590c,0x408615d6598d9368,1 +np.float64,0xd08c0e6fa1182,0xd08c0e6fa1182,1 +np.float64,0x3fef4eb750fe9d6f,0x3fe5d522fd4e7f64,1 +np.float64,0xbfc586f5492b0dec,0xbfc791eaae92aad1,1 +np.float64,0x7fede64ac7bbcc95,0x40862db7f444fa7b,1 +np.float64,0x3fe540003d6a8000,0x3fe04bdfc2916a0b,1 +np.float64,0x8009417fe6f28300,0x8009417fe6f28300,1 +np.float64,0x3fe6959cf16d2b3a,0x3fe116a1ce01887b,1 +np.float64,0x3fb0a40036214800,0x3fb01f447778219a,1 +np.float64,0x3feff26e91ffe4dd,0x3fe627798fc859a7,1 +np.float64,0x7fed8e46cd7b1c8d,0x40862da044a1d102,1 +np.float64,0x7fec4eb774f89d6e,0x40862d47e43edb53,1 +np.float64,0x3fe800e5e07001cc,0x3fe1e8e2b9105fc2,1 +np.float64,0x800f4eb2f9be9d66,0x800f4eb2f9be9d66,1 +np.float64,0x800611659bcc22cc,0x800611659bcc22cc,1 +np.float64,0x3fd66e65d2acdccc,0x3fd33ad63a5e1000,1 +np.float64,0x800a9085b7f5210c,0x800a9085b7f5210c,1 +np.float64,0x7fdf933a3fbf2673,0x4086289c0e292f2b,1 +np.float64,0x1cd1ba7a39a38,0x1cd1ba7a39a38,1 +np.float64,0xbfefd0b10fffa162,0xc0149ded900ed851,1 +np.float64,0xbfe8c63485b18c69,0xbff7cf3078b1574f,1 +np.float64,0x3fecde56ca79bcae,0x3fe4934afbd7dda9,1 +np.float64,0x8006cd6888cd9ad2,0x8006cd6888cd9ad2,1 +np.float64,0x3fd7a391c2af4724,0x3fd41e2f74df2329,1 +np.float64,0x3fe6a8ad58ed515a,0x3fe121ccfb28e6f5,1 +np.float64,0x7fe18a80dd631501,0x40862973c09086b9,1 +np.float64,0xbf74fd6d8029fb00,0xbf750b3e368ebe6b,1 +np.float64,0x3fdd35e93dba6bd4,0x3fd810071faaffad,1 +np.float64,0x3feb0d8f57361b1f,0x3fe39b3abdef8b7a,1 +np.float64,0xbfd5ec7288abd8e6,0xbfdad764df0d2ca1,1 +np.float64,0x7fdc848272b90904,0x408627cb78f3fb9e,1 +np.float64,0x800ed3eda91da7db,0x800ed3eda91da7db,1 +np.float64,0x3fefac64857f58c9,0x3fe60459dbaad1ba,1 +np.float64,0x3fd1df7a5ba3bef4,0x3fcf864a39b926ff,1 +np.float64,0xfe26ca4bfc4da,0xfe26ca4bfc4da,1 +np.float64,0xbfd1099f8da21340,0xbfd3cf6e6efe934b,1 +np.float64,0xbfe15de9a7a2bbd4,0xbfe909cc895f8795,1 +np.float64,0x3fe89714ed712e2a,0x3fe23e40d31242a4,1 +np.float64,0x800387113e470e23,0x800387113e470e23,1 +np.float64,0x3fe4f80730e9f00e,0x3fe0208219314cf1,1 +np.float64,0x2f95a97c5f2b6,0x2f95a97c5f2b6,1 +np.float64,0x800ea7cdd87d4f9c,0x800ea7cdd87d4f9c,1 +np.float64,0xbf64b967c0297300,0xbf64c020a145b7a5,1 +np.float64,0xbfc5a91a342b5234,0xbfc7bafd77a61d81,1 +np.float64,0xbfe2226fe76444e0,0xbfeac33eb1d1b398,1 +np.float64,0x3fc6aaa8d42d5552,0x3fc4de79f5c68cd4,1 +np.float64,0x3fe54fd4c1ea9faa,0x3fe05561a9a5922b,1 +np.float64,0x80029c1f75653840,0x80029c1f75653840,1 +np.float64,0xbfcb4a84a2369508,0xbfceb1a23bac3995,1 +np.float64,0x80010abeff02157f,0x80010abeff02157f,1 +np.float64,0x7f92d12cf825a259,0x40860e49bde3a5b6,1 +np.float64,0x800933e7027267ce,0x800933e7027267ce,1 +np.float64,0x3fc022b12e204562,0x3fbe64acc53ed887,1 +np.float64,0xbfe35f938de6bf27,0xbfedc1f3e443c016,1 +np.float64,0x1f8d9bae3f1b4,0x1f8d9bae3f1b4,1 +np.float64,0x3fe552f22ceaa5e4,0x3fe057404072350f,1 +np.float64,0xbfa73753442e6ea0,0xbfa7c24a100190f1,1 +np.float64,0x7fb3e2982827c52f,0x408619d1efa676b6,1 +np.float64,0xbfd80cb7a5301970,0xbfde28e65f344f33,1 +np.float64,0xbfcde835973bd06c,0xbfd10806fba46c8f,1 +np.float64,0xbfd4e3c749a9c78e,0xbfd949aff65de39c,1 +np.float64,0x3fcb4b9d6f36973b,0x3fc8be02ad6dc0d3,1 +np.float64,0x1a63000034c7,0x1a63000034c7,1 +np.float64,0x7fdc9c751e3938e9,0x408627d22df71959,1 +np.float64,0x3fd74f3f712e9e7f,0x3fd3e07df0c37ec1,1 +np.float64,0xbfceab74d33d56e8,0xbfd187e99bf82903,1 +np.float64,0x7ff0000000000000,0x7ff0000000000000,1 +np.float64,0xbfb2cca466259948,0xbfb3868208e8de30,1 +np.float64,0x800204688b8408d2,0x800204688b8408d2,1 +np.float64,0x3e4547407c8aa,0x3e4547407c8aa,1 +np.float64,0xbfe4668846e8cd10,0xbff03c85189f3818,1 +np.float64,0x800dd350245ba6a0,0x800dd350245ba6a0,1 +np.float64,0xbfbc13c160382780,0xbfbdbd56ce996d16,1 +np.float64,0x7fe25a628a24b4c4,0x408629d06eb2d64d,1 +np.float64,0x3fd19dabbc233b57,0x3fcf1f3ed1d34c8c,1 +np.float64,0x547e20faa8fc5,0x547e20faa8fc5,1 +np.float64,0xbfe19392c6232726,0xbfe97ffe4f303335,1 +np.float64,0x3f87f9f6702ff400,0x3f87d64fb471bb04,1 +np.float64,0x9dfc52db3bf8b,0x9dfc52db3bf8b,1 +np.float64,0x800e1f5a9adc3eb5,0x800e1f5a9adc3eb5,1 +np.float64,0xbfddbd09c8bb7a14,0xbfe3fed7d7cffc70,1 +np.float64,0xbfeda71af87b4e36,0xc004e6631c514544,1 +np.float64,0xbfdbfcfe1bb7f9fc,0xbfe266b5d4a56265,1 +np.float64,0x3fe4ee78cd69dcf2,0x3fe01abba4e81fc9,1 +np.float64,0x800f13b820de2770,0x800f13b820de2770,1 +np.float64,0x3f861e09702c3c00,0x3f85ffae83b02c4f,1 +np.float64,0xbfc0972479212e48,0xbfc1c4bf70b30cbc,1 +np.float64,0x7fef057ef57e0afd,0x40862e036479f6a9,1 +np.float64,0x8bdbabe517b76,0x8bdbabe517b76,1 +np.float64,0xbfec495417f892a8,0xc0013ade88746d18,1 +np.float64,0x3fec680ab3f8d015,0x3fe454dd304b560d,1 +np.float64,0xbfae7ce60c3cf9d0,0xbfaf6eef15bbe56b,1 +np.float64,0x3fec314124786282,0x3fe437ca06294f5a,1 +np.float64,0x7fd5ed05b82bda0a,0x408625b125518e58,1 +np.float64,0x3feac9f02f3593e0,0x3fe3768104dd5cb7,1 +np.float64,0x0,0x0,1 +np.float64,0xbfddd2abd5bba558,0xbfe41312b8ea20de,1 +np.float64,0xbfedf9558c7bf2ab,0xc00613c53e0bb33a,1 +np.float64,0x3fef245ffefe48c0,0x3fe5bfb4dfe3b7a5,1 +np.float64,0x7fe178604922f0c0,0x4086296b77d5eaef,1 +np.float64,0x10000000000000,0x10000000000000,1 +np.float64,0x7fed026766ba04ce,0x40862d7a0dc45643,1 +np.float64,0xbfde27d8c3bc4fb2,0xbfe46336b6447697,1 +np.float64,0x3fe9485d9cb290bb,0x3fe2a1e4b6419423,1 +np.float64,0xbfe27b8a7464f715,0xbfeb9382f5b16f65,1 +np.float64,0x5c34d274b869b,0x5c34d274b869b,1 +np.float64,0xbfeee0b7453dc16f,0xc00acdb46459b6e6,1 +np.float64,0x7fe3dfb4d4e7bf69,0x40862a73785fdf12,1 +np.float64,0xb4635eef68c6c,0xb4635eef68c6c,1 +np.float64,0xbfe522a2c82a4546,0xbff148912a59a1d6,1 +np.float64,0x8009ba38a9737472,0x8009ba38a9737472,1 +np.float64,0xbfc056ff3820ae00,0xbfc17b2205fa180d,1 +np.float64,0x7fe1c8b8a0239170,0x4086298feeee6133,1 +np.float64,0x3fe2d2c6b9e5a58e,0x3fdd9b907471031b,1 +np.float64,0x3fa0a161bc2142c0,0x3fa05db36f6a073b,1 +np.float64,0x3fdef4268ebde84c,0x3fd93f980794d1e7,1 +np.float64,0x800ecd9fe2fd9b40,0x800ecd9fe2fd9b40,1 +np.float64,0xbfc9fbd45e33f7a8,0xbfcd0afc47c340f6,1 +np.float64,0x3fe8c3035b718606,0x3fe2570eb65551a1,1 +np.float64,0xbfe78c4ad2ef1896,0xbff54d25b3328742,1 +np.float64,0x8006f5dcf8adebbb,0x8006f5dcf8adebbb,1 +np.float64,0x800301dca2a603ba,0x800301dca2a603ba,1 +np.float64,0xad4289e55a851,0xad4289e55a851,1 +np.float64,0x80037764f9e6eecb,0x80037764f9e6eecb,1 +np.float64,0xbfe73575b26e6aec,0xbff4abfb5e985c62,1 +np.float64,0xbfc6cb91652d9724,0xbfc91a8001b33ec2,1 +np.float64,0xbfe3a918ffe75232,0xbfee7e6e4fd34c53,1 +np.float64,0x9bc84e2b3790a,0x9bc84e2b3790a,1 +np.float64,0x7fdeec303cbdd85f,0x408628714a49d996,1 +np.float64,0x3fe1d1dcb763a3ba,0x3fdc54ce060dc7f4,1 +np.float64,0x8008ae6432b15cc9,0x8008ae6432b15cc9,1 +np.float64,0x3fd8022fa2b00460,0x3fd46322bf02a609,1 +np.float64,0xbfc55b64472ab6c8,0xbfc75d9568f462e0,1 +np.float64,0xbfe8b165437162ca,0xbff7a15e2ead645f,1 +np.float64,0x7f759330feeb3,0x7f759330feeb3,1 +np.float64,0xbfd504f68eaa09ee,0xbfd97b06c01d7473,1 +np.float64,0x54702d5aa8e06,0x54702d5aa8e06,1 +np.float64,0xbfed1779337a2ef2,0xc0032f7109ef5a51,1 +np.float64,0xe248bd4dc4918,0xe248bd4dc4918,1 +np.float64,0xbfd8c59150318b22,0xbfdf53bca6ca8b1e,1 +np.float64,0xbfe3b9d942e773b2,0xbfeea9fcad277ba7,1 +np.float64,0x800934ec127269d9,0x800934ec127269d9,1 +np.float64,0xbfbb7f535a36fea8,0xbfbd16d61b6c52b8,1 +np.float64,0xccb185a199631,0xccb185a199631,1 +np.float64,0x3fe3dda76fe7bb4e,0x3fdee83bc6094301,1 +np.float64,0xbfe0c902f5e19206,0xbfe7ca7c0e888006,1 +np.float64,0xbfefeed08cbfdda1,0xc018aadc483c8724,1 +np.float64,0x7fd0c05c52a180b8,0x40862389daf64aac,1 +np.float64,0xbfd28e3323a51c66,0xbfd5e9ba278fb685,1 +np.float64,0xbef4103b7de82,0xbef4103b7de82,1 +np.float64,0x3fe7661fd12ecc40,0x3fe18ff7dfb696e2,1 +np.float64,0x3fddd5f2f0bbabe4,0x3fd87d8bb6719c3b,1 +np.float64,0x800b3914cfd6722a,0x800b3914cfd6722a,1 +np.float64,0xf3f09a97e7e14,0xf3f09a97e7e14,1 +np.float64,0x7f97092b502e1256,0x40860fe8054cf54e,1 +np.float64,0xbfdbec7917b7d8f2,0xbfe2580b4b792c79,1 +np.float64,0x7fe7ff215aaffe42,0x40862bf5887fa062,1 +np.float64,0x80080186e570030e,0x80080186e570030e,1 +np.float64,0xbfc27f05e624fe0c,0xbfc3fa214be4adc4,1 +np.float64,0x3fe4481be1689038,0x3fdf6b11e9c4ca72,1 +np.float64,0x3fd642cc9cac8598,0x3fd31a857fe70227,1 +np.float64,0xbef8782d7df0f,0xbef8782d7df0f,1 +np.float64,0x8003077dc2e60efc,0x8003077dc2e60efc,1 +np.float64,0x80083eb5a2507d6c,0x80083eb5a2507d6c,1 +np.float64,0x800e8d1eb77d1a3e,0x800e8d1eb77d1a3e,1 +np.float64,0xbfc7737cd22ee6f8,0xbfc9e7716f03f1fc,1 +np.float64,0xbfe9a2b4ddf3456a,0xbff9d71664a8fc78,1 +np.float64,0x7fe67c7d322cf8f9,0x40862b7066465194,1 +np.float64,0x3fec080ce2b8101a,0x3fe421dac225be46,1 +np.float64,0xbfe6d27beb6da4f8,0xbff3fbb1add521f7,1 +np.float64,0x3fdd4f96ceba9f2e,0x3fd821a638986dbe,1 +np.float64,0x3fbd89f1303b13e2,0x3fbbf49223a9d002,1 +np.float64,0xbfe94e2b9d329c57,0xbff907e549c534f5,1 +np.float64,0x3fe2f2cc51e5e599,0x3fddc3d6b4a834a1,1 +np.float64,0xfdcb5b49fb96c,0xfdcb5b49fb96c,1 +np.float64,0xbfea7108fa74e212,0xbffc01b392f4897b,1 +np.float64,0x3fd38baef7a7175c,0x3fd10e7fd3b958dd,1 +np.float64,0x3fa75bf9cc2eb800,0x3fa6d792ecdedb8e,1 +np.float64,0x7fd19fd20aa33fa3,0x408623f1e2cd04c3,1 +np.float64,0x3fd62c708dac58e0,0x3fd309ec7818d16e,1 +np.float64,0x3fdf489047be9120,0x3fd978640617c758,1 +np.float64,0x1,0x1,1 +np.float64,0xbfe21e7c3ea43cf8,0xbfeaba21320697d3,1 +np.float64,0xbfd3649047a6c920,0xbfd71a6f14223744,1 +np.float64,0xbfd68ca68c2d194e,0xbfdbcce6784e5d44,1 +np.float64,0x3fdb26b0ea364d62,0x3fd6a1f86f64ff74,1 +np.float64,0xbfd843821cb08704,0xbfde80e90805ab3f,1 +np.float64,0x3fd508a27aaa1144,0x3fd22fc203a7b9d8,1 +np.float64,0xbfdb951c7eb72a38,0xbfe20aeaec13699b,1 +np.float64,0x3fef556ba57eaad7,0x3fe5d8865cce0a6d,1 +np.float64,0x3fd0d224b3a1a448,0x3fcdde7be5d7e21e,1 +np.float64,0x8007ff272baffe4f,0x8007ff272baffe4f,1 +np.float64,0x3fe1c7bddf638f7c,0x3fdc47cc6cf2f5cd,1 +np.float64,0x7ff8000000000000,0x7ff8000000000000,1 +np.float64,0x2016d560402f,0x2016d560402f,1 +np.float64,0xbfcca10be9394218,0xbfd033f36b94fc54,1 +np.float64,0xbfdb833628b7066c,0xbfe1fb344b840c70,1 +np.float64,0x3fd8529cb3b0a539,0x3fd49d847fe77218,1 +np.float64,0xbfc0b0ebab2161d8,0xbfc1e260c60ffd1b,1 +np.float64,0xbfea8b9a79f51735,0xbffc4ee6be8a0fa2,1 +np.float64,0x7feca8fab7f951f4,0x40862d613e454646,1 +np.float64,0x7fd8c52d82318a5a,0x408626aaf37423a3,1 +np.float64,0xbfe364ad4526c95a,0xbfedcee39bc93ff5,1 +np.float64,0x800b78161256f02d,0x800b78161256f02d,1 +np.float64,0xbfd55f0153aabe02,0xbfda01a78f72d494,1 +np.float64,0x800315a5f0662b4d,0x800315a5f0662b4d,1 +np.float64,0x7fe4c0dca02981b8,0x40862acc27e4819f,1 +np.float64,0x8009825c703304b9,0x8009825c703304b9,1 +np.float64,0x3fe6e94e1cadd29c,0x3fe1478ccc634f49,1 +np.float64,0x7fe622d8586c45b0,0x40862b504177827e,1 +np.float64,0x3fe4458600688b0c,0x3fdf67e79a84b953,1 +np.float64,0xbfdd75d8a1baebb2,0xbfe3bc9e6ca1bbb5,1 +np.float64,0x3fde789c6bbcf138,0x3fd8ec1d435531b3,1 +np.float64,0x3fe7052b94ee0a58,0x3fe157c5c4418dc1,1 +np.float64,0x7fef31652abe62c9,0x40862e0eaeabcfc0,1 +np.float64,0x3fe279691ee4f2d2,0x3fdd2aa41eb43cd4,1 +np.float64,0xbfd533fa95aa67f6,0xbfd9c12f516d29d7,1 +np.float64,0x3fe6d057f96da0b0,0x3fe138fd96693a6a,1 +np.float64,0x800bad984f775b31,0x800bad984f775b31,1 +np.float64,0x7fdd6fdba4badfb6,0x4086280c73d8ef97,1 +np.float64,0x7fe9b5c0eef36b81,0x40862c82c6f57a53,1 +np.float64,0x8000bc02ece17807,0x8000bc02ece17807,1 +np.float64,0xbff0000000000000,0xfff0000000000000,1 +np.float64,0xbfed430be3fa8618,0xc003aaf338c75b3c,1 +np.float64,0x3fee17b759fc2f6f,0x3fe53668696bf48b,1 +np.float64,0x3f8d4cf9d03a9a00,0x3f8d17d2f532afdc,1 +np.float64,0x8005d6257b8bac4c,0x8005d6257b8bac4c,1 +np.float64,0xbfd17a6df9a2f4dc,0xbfd469e3848adc6e,1 +np.float64,0xb28a293965145,0xb28a293965145,1 +np.float64,0xbfe7d011e42fa024,0xbff5cf818998c8ec,1 +np.float64,0xbfe74f0f136e9e1e,0xbff4dad6ebb0443c,1 +np.float64,0x800f249fc9be4940,0x800f249fc9be4940,1 +np.float64,0x2542f8fe4a860,0x2542f8fe4a860,1 +np.float64,0xc48d40cd891a8,0xc48d40cd891a8,1 +np.float64,0x3fe4e64bc8e9cc98,0x3fe015c9eb3caa53,1 +np.float64,0x3fd33881eca67104,0x3fd0cea886be2457,1 +np.float64,0xbfd01748fba02e92,0xbfd28875959e6901,1 +np.float64,0x7fb7ab01f22f5603,0x40861b369927bf53,1 +np.float64,0xbfe340274ce6804e,0xbfed72b39f0ebb24,1 +np.float64,0x7fc16c0c3422d817,0x40861e4eaf1a286c,1 +np.float64,0x3fc26944a324d288,0x3fc133a77b356ac4,1 +np.float64,0xa149d7134293b,0xa149d7134293b,1 +np.float64,0x800837382d106e71,0x800837382d106e71,1 +np.float64,0x797d1740f2fa4,0x797d1740f2fa4,1 +np.float64,0xc3f15b7787e2c,0xc3f15b7787e2c,1 +np.float64,0x80cad1b90195a,0x80cad1b90195a,1 +np.float64,0x3fdd8f1142bb1e23,0x3fd84d21490d1ce6,1 +np.float64,0xbfbde6c9123bcd90,0xbfbfcc030a86836a,1 +np.float64,0x8007f77e032feefd,0x8007f77e032feefd,1 +np.float64,0x3fe74fed1c6e9fda,0x3fe18322cf19cb61,1 +np.float64,0xbfd8a40bbcb14818,0xbfdf1d23520ba74b,1 +np.float64,0xbfeb7a0e6076f41d,0xbfff4ddfb926efa5,1 +np.float64,0xbfcb8c5f663718c0,0xbfcf0570f702bda9,1 +np.float64,0xf668cd97ecd1a,0xf668cd97ecd1a,1 +np.float64,0xbfe92accf572559a,0xbff8b4393878ffdb,1 +np.float64,0xbfeaa955567552ab,0xbffca70c7d73eee5,1 +np.float64,0xbfe083a14f610742,0xbfe739d84bc35077,1 +np.float64,0x78290568f0521,0x78290568f0521,1 +np.float64,0x3fe94bae2372975c,0x3fe2a3beac5c9858,1 +np.float64,0x3fca4fbab9349f78,0x3fc7edbca2492acb,1 +np.float64,0x8000000000000000,0x8000000000000000,1 +np.float64,0x7fb9eb505433d6a0,0x40861bf0adedb74d,1 +np.float64,0x7fdc66f72a38cded,0x408627c32aeecf0f,1 +np.float64,0x2e8e6f445d1cf,0x2e8e6f445d1cf,1 +np.float64,0xbfec43195af88633,0xc0012d7e3f91b7e8,1 +np.float64,0x7fcdb971e93b72e3,0x40862294c9e3a7bc,1 +np.float64,0x800cabc461195789,0x800cabc461195789,1 +np.float64,0x2c79709c58f2f,0x2c79709c58f2f,1 +np.float64,0x8005d772d3cbaee6,0x8005d772d3cbaee6,1 +np.float64,0x3fe84d8c03709b18,0x3fe21490ce3673dd,1 +np.float64,0x7fe5578adc2aaf15,0x40862b056e8437d4,1 +np.float64,0xbf91298c58225320,0xbf914ec86c32d11f,1 +np.float64,0xc7ed2b6d8fda6,0xc7ed2b6d8fda6,1 +np.float64,0x2761404c4ec29,0x2761404c4ec29,1 +np.float64,0x3fbad3c48835a789,0x3fb9833c02385305,1 +np.float64,0x3fa46fee5428dfe0,0x3fa40a357fb24c23,1 +np.float64,0xbfe3900c6fe72019,0xbfee3dba29dd9d43,1 +np.float64,0x3fe7a9e41a6f53c8,0x3fe1b704dfb9884b,1 +np.float64,0xbfe74a7a1eee94f4,0xbff4d269cacb1f29,1 +np.float64,0xbfee609c72fcc139,0xc007da8499d34123,1 +np.float64,0x3fef2d5fc23e5ac0,0x3fe5c44414e59cb4,1 +np.float64,0xbfd7bdc0402f7b80,0xbfddaae1e7bb78fb,1 +np.float64,0xd71ee01dae3dc,0xd71ee01dae3dc,1 +np.float64,0x3fe98cbcdef3197a,0x3fe2c7ffe33c4541,1 +np.float64,0x8000f8dbb3a1f1b8,0x8000f8dbb3a1f1b8,1 +np.float64,0x3fe3e98ad567d316,0x3fdef6e58058313f,1 +np.float64,0x41ad0bfc835a2,0x41ad0bfc835a2,1 +np.float64,0x7fdcc2dc0d3985b7,0x408627dce39f77af,1 +np.float64,0xbfe47b980de8f730,0xbff059acdccd6e2b,1 +np.float64,0xbfef49b6577e936d,0xc00e714f46b2ccc1,1 +np.float64,0x3fac31816c386300,0x3fab71cb92b0db8f,1 +np.float64,0x3fe59097e76b2130,0x3fe07c299fd1127c,1 +np.float64,0xbfecf0df5cf9e1bf,0xc002c7ebdd65039c,1 +np.float64,0x3fd2b7d0b6a56fa1,0x3fd06b638990ae02,1 +np.float64,0xbfeb68deecf6d1be,0xbfff1187e042d3e4,1 +np.float64,0x3fd44a9771a8952f,0x3fd1a01867c5e302,1 +np.float64,0xf79a9dedef354,0xf79a9dedef354,1 +np.float64,0x800c25a170d84b43,0x800c25a170d84b43,1 +np.float64,0x3ff0000000000000,0x3fe62e42fefa39ef,1 +np.float64,0x3fbff4f7623fe9f0,0x3fbe1d3878f4c417,1 +np.float64,0xd284c845a5099,0xd284c845a5099,1 +np.float64,0xbfe3c7815f678f02,0xbfeecdab5ca2e651,1 +np.float64,0x3fc19c934e233927,0x3fc08036104b1f23,1 +np.float64,0x800b6096de16c12e,0x800b6096de16c12e,1 +np.float64,0xbfe962a67e32c54d,0xbff9392313a112a1,1 +np.float64,0x2b9d0116573a1,0x2b9d0116573a1,1 +np.float64,0x3fcab269ed3564d4,0x3fc83f7e1c3095b7,1 +np.float64,0x3fc8c78d86318f1b,0x3fc6a6cde5696f99,1 +np.float64,0xd5b1e9b5ab63d,0xd5b1e9b5ab63d,1 +np.float64,0xbfed802a47fb0054,0xc00465cad3b5b0ef,1 +np.float64,0xbfd73aaf08ae755e,0xbfdcdbd62b8af271,1 +np.float64,0xbfd4f13c0229e278,0xbfd95dacff79e570,1 +np.float64,0xbfe9622808f2c450,0xbff937f13c397e8d,1 +np.float64,0xbfeddfa62efbbf4c,0xc005b0c835eed829,1 +np.float64,0x3fd65663d4acacc8,0x3fd3290cd0e675dc,1 +np.float64,0x8005e890f1abd123,0x8005e890f1abd123,1 +np.float64,0xbfe924919fb24923,0xbff8a5a827a28756,1 +np.float64,0x3fe8cdf490719be9,0x3fe25d39535e8366,1 +np.float64,0x7fc229e6ff2453cd,0x40861ea40ef87a5a,1 +np.float64,0x3fe5cf53ceeb9ea8,0x3fe0a18e0b65f27e,1 +np.float64,0xa79cf6fb4f39f,0xa79cf6fb4f39f,1 +np.float64,0x7fddbb3c0f3b7677,0x40862820d5edf310,1 +np.float64,0x3e1011de7c203,0x3e1011de7c203,1 +np.float64,0x3fc0b59a83216b38,0x3fbf6916510ff411,1 +np.float64,0x8647f98d0c8ff,0x8647f98d0c8ff,1 +np.float64,0x8005dad33ecbb5a7,0x8005dad33ecbb5a7,1 +np.float64,0x8a80d0631501a,0x8a80d0631501a,1 +np.float64,0xbfe18f7d6ee31efb,0xbfe976f06713afc1,1 +np.float64,0xbfe06eaed560dd5e,0xbfe70eac696933e6,1 +np.float64,0xbfed8ef93c7b1df2,0xc00495bfa3195b53,1 +np.float64,0x3febe9c24677d385,0x3fe411b10db16c42,1 +np.float64,0x7fd5d80c1fabb017,0x408625a97a7787ba,1 +np.float64,0x3fca79b59334f368,0x3fc8108a521341dc,1 +np.float64,0xbfccf8db4339f1b8,0xbfd06c9a5424aadb,1 +np.float64,0xbfea5ac5a574b58b,0xbffbc21d1405d840,1 +np.float64,0x800ce2bf4b19c57f,0x800ce2bf4b19c57f,1 +np.float64,0xbfe8df896d31bf13,0xbff807ab38ac41ab,1 +np.float64,0x3feab83da9f5707c,0x3fe36cdd827c0eff,1 +np.float64,0x3fee717683bce2ed,0x3fe564879171719b,1 +np.float64,0x80025e5577c4bcac,0x80025e5577c4bcac,1 +np.float64,0x3fe3e5378e67ca70,0x3fdef1902c5d1efd,1 +np.float64,0x3fa014bb7c202980,0x3f9faacf9238d499,1 +np.float64,0x3fddbf5e16bb7ebc,0x3fd86e2311cb0f6d,1 +np.float64,0x3fd24e50e6a49ca0,0x3fd0198f04f82186,1 +np.float64,0x656b5214cad6b,0x656b5214cad6b,1 +np.float64,0x8b0a4bfd1614a,0x8b0a4bfd1614a,1 +np.float64,0xbfeeb6bd9e7d6d7b,0xc009b669285e319e,1 +np.float64,0x8000000000000001,0x8000000000000001,1 +np.float64,0xbfe719feceee33fe,0xbff47a4c8cbf0cca,1 +np.float64,0xbfd14fa8c8a29f52,0xbfd42f27b1aced39,1 +np.float64,0x7fec9dcb80f93b96,0x40862d5e1e70bbb9,1 +np.float64,0x7fecacb826f9596f,0x40862d6249746915,1 +np.float64,0x973459f52e68b,0x973459f52e68b,1 +np.float64,0x7f40a59e00214b3b,0x4085f194f45f82b1,1 +np.float64,0x7fc5dbaec32bb75d,0x4086201f3e7065d9,1 +np.float64,0x82d0801305a10,0x82d0801305a10,1 +np.float64,0x7fec81c0f4790381,0x40862d5643c0fc85,1 +np.float64,0xbfe2d81e9ee5b03d,0xbfec71a8e864ea40,1 +np.float64,0x6c545c9ad8a8c,0x6c545c9ad8a8c,1 +np.float64,0x3f9be95a5037d2b5,0x3f9b89b48ac8f5d8,1 +np.float64,0x8000cae9702195d4,0x8000cae9702195d4,1 +np.float64,0xbfd375f45126ebe8,0xbfd733677e54a80d,1 +np.float64,0x3fd29a5b81a534b7,0x3fd05494bf200278,1 +np.float64,0xfff0000000000000,0xfff8000000000000,1 +np.float64,0x7fca8fc195351f82,0x408621ae61aa6c13,1 +np.float64,0x1b28e2ae3651d,0x1b28e2ae3651d,1 +np.float64,0x3fe7fdbd14effb7a,0x3fe1e714884b46a8,1 +np.float64,0x3fdf1ce068be39c0,0x3fd95b054e0fad3d,1 +np.float64,0x3fe79f9a636f3f34,0x3fe1b11a40c00b3e,1 +np.float64,0x3fe60eb7036c1d6e,0x3fe0c72a02176874,1 +np.float64,0x229da17e453b5,0x229da17e453b5,1 +np.float64,0x3fc1a921b5235240,0x3fc08b3f35e47fb1,1 +np.float64,0xbb92d2af7725b,0xbb92d2af7725b,1 +np.float64,0x3fe4110cb1e8221a,0x3fdf2787de6c73f7,1 +np.float64,0xbfbc87771a390ef0,0xbfbe3f6e95622363,1 +np.float64,0xbfe74025dfee804c,0xbff4bf7b1895e697,1 +np.float64,0x964eb6592c9d7,0x964eb6592c9d7,1 +np.float64,0x3f951689b82a2d00,0x3f94dfb38d746fdf,1 +np.float64,0x800356271be6ac4f,0x800356271be6ac4f,1 +np.float64,0x7fefffffffffffff,0x40862e42fefa39ef,1 +np.float64,0xbfed5ce250fab9c5,0xc003f7ddfeb94345,1 +np.float64,0x3fec3d5dc1387abc,0x3fe43e39c02d86f4,1 +np.float64,0x3999897e73332,0x3999897e73332,1 +np.float64,0xbfdcb57744b96aee,0xbfe30c4b98f3d088,1 +np.float64,0x7f961fb0b82c3f60,0x40860f9549c3a380,1 +np.float64,0x67d6efcacfadf,0x67d6efcacfadf,1 +np.float64,0x8002c9498f859294,0x8002c9498f859294,1 +np.float64,0xbfa3033800260670,0xbfa35fe3bf43e188,1 +np.float64,0xbfeab2fc157565f8,0xbffcc413c486b4eb,1 +np.float64,0x3fe25e62f364bcc6,0x3fdd0856e19e3430,1 +np.float64,0x7fb2f42dda25e85b,0x4086196fb34a65fd,1 +np.float64,0x3fe0f1a5af61e34c,0x3fdb3235a1786efb,1 +np.float64,0x800a340ca1f4681a,0x800a340ca1f4681a,1 +np.float64,0x7c20b9def8418,0x7c20b9def8418,1 +np.float64,0xdf0842a1be109,0xdf0842a1be109,1 +np.float64,0x3fe9f22cc2f3e45a,0x3fe300359b842bf0,1 +np.float64,0x3fe389ed73e713da,0x3fde809780fe4432,1 +np.float64,0x9500fb932a020,0x9500fb932a020,1 +np.float64,0x3fd8a21ffdb14440,0x3fd4d70862345d86,1 +np.float64,0x800d99c15cbb3383,0x800d99c15cbb3383,1 +np.float64,0x3fd96c98c932d932,0x3fd568959c9b028f,1 +np.float64,0x7fc228483a24508f,0x40861ea358420976,1 +np.float64,0x7fc6737bef2ce6f7,0x408620560ffc6a98,1 +np.float64,0xbfb2c27cee2584f8,0xbfb37b8cc7774b5f,1 +np.float64,0xbfd18409f9230814,0xbfd4771d1a9a24fb,1 +np.float64,0x3fb53cb3f42a7968,0x3fb466f06f88044b,1 +np.float64,0x3fef61d0187ec3a0,0x3fe5dec8a9d13dd9,1 +np.float64,0x3fe59a6ffd2b34e0,0x3fe0820a99c6143d,1 +np.float64,0x3fce18aff43c3160,0x3fcb07c7b523f0d1,1 +np.float64,0xbfb1319a62226338,0xbfb1cc62f31b2b40,1 +np.float64,0xa00cce6d4019a,0xa00cce6d4019a,1 +np.float64,0x80068ae8e0ed15d3,0x80068ae8e0ed15d3,1 +np.float64,0x3fecef353239de6a,0x3fe49c280adc607b,1 +np.float64,0x3fdf1a7fb0be34ff,0x3fd9596bafe2d766,1 +np.float64,0x3feb5e12eeb6bc26,0x3fe3c6be3ede8d07,1 +np.float64,0x3fdeff5cd43dfeba,0x3fd947262ec96b05,1 +np.float64,0x3f995e75e832bd00,0x3f990f511f4c7f1c,1 +np.float64,0xbfeb5b3ed0b6b67e,0xbffee24fc0fc2881,1 +np.float64,0x7fb82aad0a305559,0x40861b614d901182,1 +np.float64,0xbfe5c3a4926b8749,0xbff23cd0ad144fe6,1 +np.float64,0x3fef47da373e8fb4,0x3fe5d1aaa4031993,1 +np.float64,0x7fc6a8c3872d5186,0x40862068f5ca84be,1 +np.float64,0x7fc0c2276221844e,0x40861dff2566d001,1 +np.float64,0x7fc9ce7d28339cf9,0x40862173541f84d1,1 +np.float64,0x3fce2c34933c5869,0x3fcb179428ad241d,1 +np.float64,0xbfcf864c293f0c98,0xbfd21872c4821cfc,1 +np.float64,0x3fc51fd1f82a3fa4,0x3fc38d4f1685c166,1 +np.float64,0xbfe2707b70a4e0f7,0xbfeb795fbd5bb444,1 +np.float64,0x46629b568cc54,0x46629b568cc54,1 +np.float64,0x7fe5f821f32bf043,0x40862b40c2cdea3f,1 +np.float64,0x3fedd2c9457ba592,0x3fe512ce92394526,1 +np.float64,0x7fe6dcb8ceadb971,0x40862b925a7dc05d,1 +np.float64,0x3fd1b983b4a37307,0x3fcf4ae2545cf64e,1 +np.float64,0xbfe1c93104639262,0xbfe9f7d28e4c0c82,1 +np.float64,0x995ebc2932bd8,0x995ebc2932bd8,1 +np.float64,0x800a4c3ee614987e,0x800a4c3ee614987e,1 +np.float64,0x3fbb58766e36b0f0,0x3fb9fb3b9810ec16,1 +np.float64,0xbfe36d636666dac7,0xbfede5080f69053c,1 +np.float64,0x3f4feee1003fddc2,0x3f4feae5f05443d1,1 +np.float64,0x3fed0b772ffa16ee,0x3fe4aafb924903c6,1 +np.float64,0x800bb3faef3767f6,0x800bb3faef3767f6,1 +np.float64,0x3fe285cda5e50b9c,0x3fdd3a58df06c427,1 +np.float64,0x7feb9d560bb73aab,0x40862d152362bb94,1 +np.float64,0x3fecd1f447f9a3e9,0x3fe48cc78288cb3f,1 +np.float64,0x3fca927b0c3524f6,0x3fc8250f49ba28df,1 +np.float64,0x7fcc19944e383328,0x40862221b02fcf43,1 +np.float64,0xbfd8ddf41db1bbe8,0xbfdf7b92073ff2fd,1 +np.float64,0x80006fe736e0dfcf,0x80006fe736e0dfcf,1 +np.float64,0x800bbeb66d577d6d,0x800bbeb66d577d6d,1 +np.float64,0xbfe4329353e86526,0xbfefeaf19ab92b42,1 +np.float64,0x2fad72805f5af,0x2fad72805f5af,1 +np.float64,0x3fe1b827aa637050,0x3fdc33bf46012c0d,1 +np.float64,0x3fc3f3f8e227e7f2,0x3fc28aeb86d65278,1 +np.float64,0x3fec018933780312,0x3fe41e619aa4285c,1 +np.float64,0xbfd92428e0b24852,0xbfdfeecb08d154df,1 +np.float64,0x2d7046845ae0a,0x2d7046845ae0a,1 +np.float64,0x7fde7fd2233cffa3,0x408628550f8a948f,1 +np.float64,0x8000a32cd241465a,0x8000a32cd241465a,1 +np.float64,0x8004267a45084cf5,0x8004267a45084cf5,1 +np.float64,0xbfe6b422556d6844,0xbff3c71f67661e6e,1 +np.float64,0x3fe3a37d922746fb,0x3fdea04e04d6195c,1 +np.float64,0xbfddcc54b53b98aa,0xbfe40d2389cdb848,1 +np.float64,0x3fe18b4b92a31697,0x3fdbf9e68cbf5794,1 +np.float64,0x7fc9c5b2ee338b65,0x408621709a17a47a,1 +np.float64,0x1ebd1ce03d7b,0x1ebd1ce03d7b,1 +np.float64,0x8008a6fc39d14df9,0x8008a6fc39d14df9,1 +np.float64,0x3fec11384c782270,0x3fe426bdaedd2965,1 +np.float64,0x3fefc28344ff8507,0x3fe60f75d34fc3d2,1 +np.float64,0xc35f379786be7,0xc35f379786be7,1 +np.float64,0x3feef51f4a7dea3e,0x3fe5a7b95d7786b5,1 +np.float64,0x3fec9b9f0379373e,0x3fe4702477abbb63,1 +np.float64,0x3fde94f8cdbd29f0,0x3fd8ff50f7df0a6f,1 +np.float64,0xbfed32d1cdfa65a4,0xc0037c1470f6f979,1 +np.float64,0x800d3ba44f5a7749,0x800d3ba44f5a7749,1 +np.float64,0x3fe3c56c8fe78ad9,0x3fdeca4eb9bb8918,1 +np.float64,0xbfe7c97242ef92e4,0xbff5c2950dfd6f69,1 +np.float64,0xbd9440057b288,0xbd9440057b288,1 +np.float64,0x7feb2fc111f65f81,0x40862cf524bd2001,1 +np.float64,0x800a431e2df4863d,0x800a431e2df4863d,1 +np.float64,0x80038a3b79e71478,0x80038a3b79e71478,1 +np.float64,0x80000c93d4601928,0x80000c93d4601928,1 +np.float64,0x7fe9fec022f3fd7f,0x40862c995db8ada0,1 +np.float64,0x3fead0129c35a025,0x3fe379d7a92c8f79,1 +np.float64,0x3fdd8cbaf7bb1974,0x3fd84b87ff0c26c7,1 +np.float64,0x3fe8fb7c60b1f6f9,0x3fe276d5339e7135,1 +np.float64,0x85a255e10b44b,0x85a255e10b44b,1 +np.float64,0xbfe507c23fea0f84,0xbff1212d2260022a,1 +np.float64,0x3fc5487c7b2a90f9,0x3fc3b03222d3d148,1 +np.float64,0x7fec0bdcb8f817b8,0x40862d34e8fd11e7,1 +np.float64,0xbfc5f34b4f2be698,0xbfc8146a899c7a0c,1 +np.float64,0xbfa2a49c14254940,0xbfa2fdab2eae3826,1 +np.float64,0x800ec52f15dd8a5e,0x800ec52f15dd8a5e,1 +np.float64,0xbfe3ba4b12a77496,0xbfeeab256b3e9422,1 +np.float64,0x80034d6c7ba69ada,0x80034d6c7ba69ada,1 +np.float64,0x7fd394d4202729a7,0x408624c98a216742,1 +np.float64,0xbfd4493a38289274,0xbfd865d67af2de91,1 +np.float64,0xe47d6203c8fad,0xe47d6203c8fad,1 +np.float64,0x98eb4e4b31d6a,0x98eb4e4b31d6a,1 +np.float64,0x4507fb128a100,0x4507fb128a100,1 +np.float64,0xbfc77032e42ee064,0xbfc9e36ab747a14d,1 +np.float64,0xa1f8a03b43f14,0xa1f8a03b43f14,1 +np.float64,0xbfc3d4da8527a9b4,0xbfc58c27af2476b0,1 +np.float64,0x3fc0eb7d6921d6fb,0x3fbfc858a077ed61,1 +np.float64,0x7fddb2e9403b65d2,0x4086281e98443709,1 +np.float64,0xbfa7ea62942fd4c0,0xbfa87dfd06b05d2a,1 +np.float64,0xbfe7d5c5426fab8a,0xbff5daa969c6d9e5,1 +np.float64,0x3fbf7cba0c3ef974,0x3fbdb23cd8fe875b,1 +np.float64,0x7fe92021eb324043,0x40862c53aee8b154,1 +np.float64,0x7fefbaa1827f7542,0x40862e3194737072,1 +np.float64,0x3fc6f82c402df059,0x3fc520432cbc533f,1 +np.float64,0x7fb37679a826ecf2,0x408619a5f857e27f,1 +np.float64,0x79ec1528f3d83,0x79ec1528f3d83,1 +np.float64,0x3fbefe1d0c3dfc3a,0x3fbd41650ba2c893,1 +np.float64,0x3fc3e5e11827cbc2,0x3fc27eb9b47c9c42,1 +np.float64,0x16aed1922d5db,0x16aed1922d5db,1 +np.float64,0x800124f7e58249f1,0x800124f7e58249f1,1 +np.float64,0x8004f7d12489efa3,0x8004f7d12489efa3,1 +np.float64,0x3fef80b8e27f0172,0x3fe5ee5fd43322c6,1 +np.float64,0xbfe7740c88eee819,0xbff51f823c8da14d,1 +np.float64,0xbfe6e1f1f6edc3e4,0xbff416bcb1302e7c,1 +np.float64,0x8001a2c4a7e3458a,0x8001a2c4a7e3458a,1 +np.float64,0x3fe861e155f0c3c2,0x3fe2201d3000c329,1 +np.float64,0x3fd00a101a201420,0x3fcca01087dbd728,1 +np.float64,0x7fdf0eb1133e1d61,0x4086287a327839b8,1 +np.float64,0x95e3ffdb2bc80,0x95e3ffdb2bc80,1 +np.float64,0x3fd87a1e8230f43d,0x3fd4ba1eb9be1270,1 +np.float64,0x3fedc4792afb88f2,0x3fe50b6529080f73,1 +np.float64,0x7fc9e81fa833d03e,0x4086217b428cc6ff,1 +np.float64,0xbfd21f1ba5a43e38,0xbfd54e048b988e09,1 +np.float64,0xbfbf52af5a3ea560,0xbfc0b4ab3b81fafc,1 +np.float64,0x7fe475f8e268ebf1,0x40862aaf14fee029,1 +np.float64,0x3fcf56899f3ead10,0x3fcc081de28ae9cf,1 +np.float64,0x917d407122fa8,0x917d407122fa8,1 +np.float64,0x22e23e3245c49,0x22e23e3245c49,1 +np.float64,0xbfeec2814f3d8503,0xc00a00ecca27b426,1 +np.float64,0xbfd97fee1c32ffdc,0xbfe04351dfe306ec,1 diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log2.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log2.csv new file mode 100644 index 0000000..26921ef --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-log2.csv @@ -0,0 +1,1629 @@ +dtype,input,output,ulperrortol +np.float32,0x80000000,0xff800000,3 +np.float32,0x7f12870a,0x42fe63db,3 +np.float32,0x3ef29cf5,0xbf89eb12,3 +np.float32,0x3d6ba8fb,0xc083d26c,3 +np.float32,0x3d9907e8,0xc06f8230,3 +np.float32,0x4ee592,0xc2fd656e,3 +np.float32,0x58d8b1,0xc2fd0db3,3 +np.float32,0x7ba103,0xc2fc19aa,3 +np.float32,0x7f52e90e,0x42ff70e4,3 +np.float32,0x7fcb15,0xc2fc0132,3 +np.float32,0x7cb7129f,0x42f50855,3 +np.float32,0x9faba,0xc301ae59,3 +np.float32,0x7f300a,0xc2fc04b4,3 +np.float32,0x3f0bf047,0xbf5f10cb,3 +np.float32,0x2fb1fb,0xc2fed934,3 +np.float32,0x3eedb0d1,0xbf8db417,3 +np.float32,0x3d7a0b40,0xc0811638,3 +np.float32,0x2e0bac,0xc2fef334,3 +np.float32,0x6278c1,0xc2fcc1b9,3 +np.float32,0x7f61ab2e,0x42ffa2d9,3 +np.float32,0x8fe7c,0xc301d4be,3 +np.float32,0x3f25e6ee,0xbf203536,3 +np.float32,0x7efc78f0,0x42fdf5c0,3 +np.float32,0x6d7304,0xc2fc73a7,3 +np.float32,0x7f1a472a,0x42fe89ed,3 +np.float32,0x7dd029a6,0x42f96734,3 +np.float32,0x3e9b9327,0xbfdbf8f7,3 +np.float32,0x3f4eefc1,0xbe9d2942,3 +np.float32,0x7f5b9b64,0x42ff8ebc,3 +np.float32,0x3e458ee1,0xc017ed6e,3 +np.float32,0x3f7b766b,0xbcd35acf,3 +np.float32,0x3e616070,0xc00bc378,3 +np.float32,0x7f20e633,0x42fea8f8,3 +np.float32,0x3ee3b461,0xbf95a126,3 +np.float32,0x7e7722ba,0x42fbe5f8,3 +np.float32,0x3f0873d7,0xbf6861fa,3 +np.float32,0x7b4cb2,0xc2fc1ba3,3 +np.float32,0x3f0b6b02,0xbf60712e,3 +np.float32,0x9bff4,0xc301b6f2,3 +np.float32,0x3f07be25,0xbf6a4f0c,3 +np.float32,0x3ef10e57,0xbf8b1b75,3 +np.float32,0x46ad75,0xc2fdb6b1,3 +np.float32,0x3f7bc542,0xbcc4e3a9,3 +np.float32,0x3f6673d4,0xbe1b509c,3 +np.float32,0x7f19fe59,0x42fe8890,3 +np.float32,0x7f800000,0x7f800000,3 +np.float32,0x7f2fe696,0x42feead0,3 +np.float32,0x3dc9432d,0xc0563655,3 +np.float32,0x3ee47623,0xbf950446,3 +np.float32,0x3f1f8817,0xbf2eab51,3 +np.float32,0x7f220ec5,0x42feae44,3 +np.float32,0x2325e3,0xc2ffbab1,3 +np.float32,0x29dfc8,0xc2ff395a,3 +np.float32,0x7f524950,0x42ff6eb3,3 +np.float32,0x3e2234e0,0xc02a21c8,3 +np.float32,0x7f1c6f5a,0x42fe942f,3 +np.float32,0x3b6a61,0xc2fe36e7,3 +np.float32,0x3f1df90e,0xbf324ba9,3 +np.float32,0xb57f0,0xc3017f07,3 +np.float32,0x7d0eba,0xc2fc112e,3 +np.float32,0x403aa9,0xc2fdfd5c,3 +np.float32,0x3e74ecc7,0xc004155f,3 +np.float32,0x17509c,0xc30074f2,3 +np.float32,0x7f62196b,0x42ffa442,3 +np.float32,0x3ecef9a9,0xbfa7417a,3 +np.float32,0x7f14b158,0x42fe6eb1,3 +np.float32,0x3ede12be,0xbf9a40fe,3 +np.float32,0x42cfaa,0xc2fde03f,3 +np.float32,0x3f407b0f,0xbed2a6f5,3 +np.float32,0x7f7fffff,0x43000000,3 +np.float32,0x5467c6,0xc2fd3394,3 +np.float32,0x7ea6b80f,0x42fcc336,3 +np.float32,0x3f21e7b2,0xbf293704,3 +np.float32,0x3dc7e9eb,0xc056d542,3 +np.float32,0x7f3e6e67,0x42ff2571,3 +np.float32,0x3e3e809d,0xc01b4911,3 +np.float32,0x3f800000,0x0,3 +np.float32,0x3d8fd238,0xc0753d52,3 +np.float32,0x3f74aa65,0xbd85cd0e,3 +np.float32,0x7ec30305,0x42fd36ff,3 +np.float32,0x3e97bb93,0xbfe0971d,3 +np.float32,0x3e109d9c,0xc034bb1b,3 +np.float32,0x3f4a0b67,0xbeaed537,3 +np.float32,0x3f25a7aa,0xbf20c228,3 +np.float32,0x3ebc05eb,0xbfb8fd6b,3 +np.float32,0x3eebe749,0xbf8f18e5,3 +np.float32,0x3e9dc479,0xbfd96356,3 +np.float32,0x7f245200,0x42feb882,3 +np.float32,0x1573a8,0xc30093b5,3 +np.float32,0x3e66c4b9,0xc00994a6,3 +np.float32,0x3e73bffc,0xc0048709,3 +np.float32,0x3dfef8e5,0xc0405f16,3 +np.float32,0x403750,0xc2fdfd83,3 +np.float32,0x3ebedf17,0xbfb636a4,3 +np.float32,0x15cae6,0xc3008de2,3 +np.float32,0x3edf4d4e,0xbf993c24,3 +np.float32,0x3f7cc41e,0xbc963fb3,3 +np.float32,0x3e9e12a4,0xbfd907ee,3 +np.float32,0x7ded7b59,0x42f9c889,3 +np.float32,0x7f034878,0x42fe12b5,3 +np.float32,0x7ddce43f,0x42f9930b,3 +np.float32,0x3d82b257,0xc07e1333,3 +np.float32,0x3dae89c1,0xc0635dd4,3 +np.float32,0x6b1d00,0xc2fc8396,3 +np.float32,0x449a5a,0xc2fdccb3,3 +np.float32,0x4e89d2,0xc2fd68cb,3 +np.float32,0x7e1ae83f,0x42fa8cef,3 +np.float32,0x7e4bb22c,0x42fb572e,3 +np.float32,0x3de308ea,0xc04b1634,3 +np.float32,0x7f238c7a,0x42feb508,3 +np.float32,0x3f6c62a3,0xbdeb86f3,3 +np.float32,0x3e58cba6,0xc00f5908,3 +np.float32,0x7f7dd91f,0x42fff9c4,3 +np.float32,0x3d989376,0xc06fc88d,3 +np.float32,0x3dd013c5,0xc0532339,3 +np.float32,0x4b17e6,0xc2fd89ed,3 +np.float32,0x7f67f287,0x42ffb71e,3 +np.float32,0x3f69365e,0xbe09ba3c,3 +np.float32,0x3e4b8b21,0xc0152bf1,3 +np.float32,0x3a75b,0xc3032171,3 +np.float32,0x7f303676,0x42feec1f,3 +np.float32,0x7f6570e5,0x42ffaf18,3 +np.float32,0x3f5ed61e,0xbe4cf676,3 +np.float32,0x3e9b22f9,0xbfdc7e4f,3 +np.float32,0x2c095e,0xc2ff1428,3 +np.float32,0x3f1b17c1,0xbf391754,3 +np.float32,0x422dc6,0xc2fde746,3 +np.float32,0x3f677c8d,0xbe14b365,3 +np.float32,0x3ef85d0c,0xbf8597a9,3 +np.float32,0x3ecaaa6b,0xbfab2430,3 +np.float32,0x3f0607d1,0xbf6eff3d,3 +np.float32,0x3f011fdb,0xbf7cc50d,3 +np.float32,0x6ed7c1,0xc2fc6a4e,3 +np.float32,0x7ec2d1a2,0x42fd3644,3 +np.float32,0x3f75b7fe,0xbd7238a2,3 +np.float32,0x3ef2d146,0xbf89c344,3 +np.float32,0x7ec2cd27,0x42fd3633,3 +np.float32,0x7ee1e55a,0x42fda397,3 +np.float32,0x7f464d6a,0x42ff435c,3 +np.float32,0x7f469a93,0x42ff447b,3 +np.float32,0x7ece752f,0x42fd6121,3 +np.float32,0x2ed878,0xc2fee67b,3 +np.float32,0x75b23,0xc3021eff,3 +np.float32,0x3e0f4be4,0xc03593b8,3 +np.float32,0x2778e1,0xc2ff64fc,3 +np.float32,0x5fe2b7,0xc2fcd561,3 +np.float32,0x19b8a9,0xc30050ab,3 +np.float32,0x7df303e5,0x42f9d98d,3 +np.float32,0x608b8d,0xc2fcd051,3 +np.float32,0x588f46,0xc2fd1017,3 +np.float32,0x3eec6a11,0xbf8eb2a1,3 +np.float32,0x3f714121,0xbdaf4906,3 +np.float32,0x7f4f7b9e,0x42ff64c9,3 +np.float32,0x3c271606,0xc0d3b29c,3 +np.float32,0x3f002fe0,0xbf7f75f6,3 +np.float32,0x7efa4798,0x42fdef4f,3 +np.float32,0x3f61a865,0xbe3a601a,3 +np.float32,0x7e8087aa,0x42fc030d,3 +np.float32,0x3f70f0c7,0xbdb321ba,3 +np.float32,0x5db898,0xc2fce63f,3 +np.float32,0x7a965f,0xc2fc1fea,3 +np.float32,0x7f68b112,0x42ffb97c,3 +np.float32,0x7ef0ed3d,0x42fdd32d,3 +np.float32,0x7f3156a1,0x42fef0d3,3 +np.float32,0x3f1d405f,0xbf33fc6e,3 +np.float32,0x3e3494cf,0xc0203945,3 +np.float32,0x6018de,0xc2fcd3c1,3 +np.float32,0x623e49,0xc2fcc370,3 +np.float32,0x3ea29f0f,0xbfd3cad4,3 +np.float32,0xa514,0xc305a20c,3 +np.float32,0x3e1b2ab1,0xc02e3a8f,3 +np.float32,0x3f450b6f,0xbec1578f,3 +np.float32,0x7eb12908,0x42fcf015,3 +np.float32,0x3f10b720,0xbf52ab48,3 +np.float32,0x3e0a93,0xc2fe16f6,3 +np.float32,0x93845,0xc301cb96,3 +np.float32,0x7f4e9ce3,0x42ff61af,3 +np.float32,0x3f6d4296,0xbde09ceb,3 +np.float32,0x6ddede,0xc2fc70d0,3 +np.float32,0x3f4fb6fd,0xbe9a636d,3 +np.float32,0x3f6d08de,0xbde36c0b,3 +np.float32,0x3f56f057,0xbe8122ad,3 +np.float32,0x334e95,0xc2fea349,3 +np.float32,0x7efadbcd,0x42fdf104,3 +np.float32,0x3db02e88,0xc0628046,3 +np.float32,0x3f3309d1,0xbf041066,3 +np.float32,0x2d8722,0xc2fefb8f,3 +np.float32,0x7e926cac,0x42fc6356,3 +np.float32,0x3e3674ab,0xc01f452e,3 +np.float32,0x1b46ce,0xc3003afc,3 +np.float32,0x3f06a338,0xbf6d53fc,3 +np.float32,0x1b1ba7,0xc3003d46,3 +np.float32,0x319dfb,0xc2febc06,3 +np.float32,0x3e2f126a,0xc02315a5,3 +np.float32,0x3f40fe65,0xbed0af9e,3 +np.float32,0x3f1d842f,0xbf335d4b,3 +np.float32,0x3d044e4f,0xc09e78f8,3 +np.float32,0x7f272674,0x42fec51f,3 +np.float32,0x3cda6d8f,0xc0a753db,3 +np.float32,0x3eb92f12,0xbfbbccbb,3 +np.float32,0x7e4318f4,0x42fb3752,3 +np.float32,0x3c5890,0xc2fe2b6d,3 +np.float32,0x3d1993c9,0xc09796f8,3 +np.float32,0x7f18ef24,0x42fe8377,3 +np.float32,0x3e30c3a0,0xc0223244,3 +np.float32,0x3f27cd27,0xbf1c00ef,3 +np.float32,0x3f150957,0xbf47cd6c,3 +np.float32,0x7e7178a3,0x42fbd4d8,3 +np.float32,0x3f298db8,0xbf182ac3,3 +np.float32,0x7cb3be,0xc2fc1348,3 +np.float32,0x3ef64266,0xbf8729de,3 +np.float32,0x3eeb06ce,0xbf8fc8f2,3 +np.float32,0x3f406e36,0xbed2d845,3 +np.float32,0x7f1e1bd3,0x42fe9c0b,3 +np.float32,0x478dcc,0xc2fdad97,3 +np.float32,0x7f7937b5,0x42ffec2b,3 +np.float32,0x3f20f350,0xbf2b6624,3 +np.float32,0x7f13661a,0x42fe683c,3 +np.float32,0x208177,0xc2fff46b,3 +np.float32,0x263cfb,0xc2ff7c72,3 +np.float32,0x7f0bd28c,0x42fe4141,3 +np.float32,0x7230d8,0xc2fc5453,3 +np.float32,0x3f261bbf,0xbf1fbfb4,3 +np.float32,0x737b56,0xc2fc4c05,3 +np.float32,0x3ef88f33,0xbf857263,3 +np.float32,0x7e036464,0x42fa1352,3 +np.float32,0x4b5c4f,0xc2fd874d,3 +np.float32,0x3f77984d,0xbd454596,3 +np.float32,0x3f674202,0xbe162932,3 +np.float32,0x3e7157d9,0xc0057197,3 +np.float32,0x3f3f21da,0xbed7d861,3 +np.float32,0x7f1fb40f,0x42fea375,3 +np.float32,0x7ef0157f,0x42fdd096,3 +np.float32,0x3f71e88d,0xbda74962,3 +np.float32,0x3f174855,0xbf424728,3 +np.float32,0x3f3fdd2c,0xbed505d5,3 +np.float32,0x7b95d1,0xc2fc19ed,3 +np.float32,0x7f23f4e5,0x42feb6df,3 +np.float32,0x7d741925,0x42f7dcd6,3 +np.float32,0x60f81d,0xc2fccd14,3 +np.float32,0x3f17d267,0xbf40f6ae,3 +np.float32,0x3f036fc8,0xbf7636f8,3 +np.float32,0x167653,0xc30082b5,3 +np.float32,0x256d05,0xc2ff8c4f,3 +np.float32,0x3eccc63d,0xbfa93adb,3 +np.float32,0x7f6c91ea,0x42ffc5b2,3 +np.float32,0x2ee52a,0xc2fee5b3,3 +np.float32,0x3dc3579e,0xc058f80d,3 +np.float32,0x4c7170,0xc2fd7cc4,3 +np.float32,0x7f737f20,0x42ffdb03,3 +np.float32,0x3f2f9dbf,0xbf0b3119,3 +np.float32,0x3f4d0c54,0xbea3eec5,3 +np.float32,0x7e380862,0x42fb0c32,3 +np.float32,0x5d637f,0xc2fce8df,3 +np.float32,0x3f0aa623,0xbf627c27,3 +np.float32,0x3e4d5896,0xc0145b88,3 +np.float32,0x3f6cacdc,0xbde7e7ca,3 +np.float32,0x63a2c3,0xc2fcb90a,3 +np.float32,0x6c138c,0xc2fc7cfa,3 +np.float32,0x2063c,0xc303fb88,3 +np.float32,0x7e9e5a3e,0x42fc9d2f,3 +np.float32,0x56ec64,0xc2fd1ddd,3 +np.float32,0x7f1d6a35,0x42fe98cc,3 +np.float32,0x73dc96,0xc2fc4998,3 +np.float32,0x3e5d74e5,0xc00d6238,3 +np.float32,0x7f033cbb,0x42fe1273,3 +np.float32,0x3f5143fc,0xbe94e4e7,3 +np.float32,0x1d56d9,0xc3002010,3 +np.float32,0x2bf3e4,0xc2ff1591,3 +np.float32,0x3f2a6ef1,0xbf164170,3 +np.float32,0x3f33238b,0xbf03db58,3 +np.float32,0x22780e,0xc2ffc91a,3 +np.float32,0x7f00b873,0x42fe0425,3 +np.float32,0x3f7f6145,0xbb654706,3 +np.float32,0x7fc00000,0x7fc00000,3 +np.float32,0x63895a,0xc2fcb9c7,3 +np.float32,0x18a1b2,0xc30060a8,3 +np.float32,0x7e43c6a6,0x42fb39e3,3 +np.float32,0x78676e,0xc2fc2d30,3 +np.float32,0x3f16d839,0xbf435940,3 +np.float32,0x7eff78ba,0x42fdfe79,3 +np.float32,0x3f2e152c,0xbf0e6e54,3 +np.float32,0x3db20ced,0xc06186e1,3 +np.float32,0x3f0cd1d8,0xbf5cbf57,3 +np.float32,0x3fd7a8,0xc2fe01d2,3 +np.float32,0x3ebb075e,0xbfb9f816,3 +np.float32,0x7f94ef,0xc2fc026b,3 +np.float32,0x3d80ba0e,0xc07f7a2b,3 +np.float32,0x7f227e15,0x42feb03f,3 +np.float32,0x792264bf,0x42e6afcc,3 +np.float32,0x7f501576,0x42ff66ec,3 +np.float32,0x223629,0xc2ffcea3,3 +np.float32,0x40a79e,0xc2fdf87b,3 +np.float32,0x449483,0xc2fdccf2,3 +np.float32,0x3f4fa978,0xbe9a9382,3 +np.float32,0x7f148c53,0x42fe6df9,3 +np.float32,0x3ec98b3c,0xbfac2a98,3 +np.float32,0x3e4da320,0xc0143a0a,3 +np.float32,0x3d1d94bb,0xc09666d0,3 +np.float32,0x3c8e624e,0xc0bb155b,3 +np.float32,0x66a9af,0xc2fca2ef,3 +np.float32,0x3ec76ed7,0xbfae1c57,3 +np.float32,0x3f4b52f3,0xbeaa2b81,3 +np.float32,0x7e99bbb5,0x42fc8750,3 +np.float32,0x3f69a46b,0xbe0701be,3 +np.float32,0x3f775400,0xbd4ba495,3 +np.float32,0x131e56,0xc300be3c,3 +np.float32,0x3f30abb4,0xbf08fb10,3 +np.float32,0x7f7e528c,0x42fffb25,3 +np.float32,0x3eb89515,0xbfbc668a,3 +np.float32,0x7e9191b6,0x42fc5f02,3 +np.float32,0x7e80c7e9,0x42fc047e,3 +np.float32,0x3f77ef58,0xbd3d2995,3 +np.float32,0x7ddb1f8a,0x42f98d1b,3 +np.float32,0x7ebc6c4f,0x42fd1d9c,3 +np.float32,0x3f6638e0,0xbe1ccab8,3 +np.float32,0x7f4c45,0xc2fc0410,3 +np.float32,0x3e7d8aad,0xc000e414,3 +np.float32,0x3f4d148b,0xbea3d12e,3 +np.float32,0x3e98c45c,0xbfdf55f4,3 +np.float32,0x3d754c78,0xc081f8a9,3 +np.float32,0x17e4cf,0xc3006be3,3 +np.float32,0x7eb65814,0x42fd0563,3 +np.float32,0x3f65e0d8,0xbe1f0008,3 +np.float32,0x3e99541f,0xbfdea87e,3 +np.float32,0x3f3cb80e,0xbee13b27,3 +np.float32,0x3e99f0c0,0xbfddec3b,3 +np.float32,0x3f43903e,0xbec6ea66,3 +np.float32,0x7e211cd4,0x42faa9f2,3 +np.float32,0x824af,0xc301f971,3 +np.float32,0x3e16a56e,0xc030f56c,3 +np.float32,0x542b3b,0xc2fd35a6,3 +np.float32,0x3eeea2d1,0xbf8cf873,3 +np.float32,0x232e93,0xc2ffb9fa,3 +np.float32,0x3e8c52b9,0xbfef06aa,3 +np.float32,0x7f69c7e3,0x42ffbcef,3 +np.float32,0x3f573e43,0xbe801714,3 +np.float32,0x43b009,0xc2fdd69f,3 +np.float32,0x3ee571ab,0xbf943966,3 +np.float32,0x3ee3d5d8,0xbf958604,3 +np.float32,0x338b12,0xc2fe9fe4,3 +np.float32,0x29cb1f,0xc2ff3ac6,3 +np.float32,0x3f0892b4,0xbf680e7a,3 +np.float32,0x3e8c4f7f,0xbfef0ae9,3 +np.float32,0x7c9d3963,0x42f497e6,3 +np.float32,0x3f26ba84,0xbf1e5f59,3 +np.float32,0x3dd0acc0,0xc052df6f,3 +np.float32,0x3e43fbda,0xc018aa8c,3 +np.float32,0x3ec4fd0f,0xbfb0635d,3 +np.float32,0x3f52c8c6,0xbe8f8d85,3 +np.float32,0x3f5fdc5d,0xbe462fdb,3 +np.float32,0x3f461920,0xbebd6743,3 +np.float32,0x6161ff,0xc2fcc9ef,3 +np.float32,0x7f7ed306,0x42fffc9a,3 +np.float32,0x3d212263,0xc0955f46,3 +np.float32,0x3eca5826,0xbfab6f36,3 +np.float32,0x7d6317ac,0x42f7a77e,3 +np.float32,0x3eb02063,0xbfc50f60,3 +np.float32,0x7f71a6f8,0x42ffd565,3 +np.float32,0x1a3efe,0xc3004935,3 +np.float32,0x3dc599c9,0xc057e856,3 +np.float32,0x3f3e1301,0xbedbf205,3 +np.float32,0xf17d4,0xc301158d,3 +np.float32,0x3f615f84,0xbe3c3d85,3 +np.float32,0x3de63be1,0xc049cb77,3 +np.float32,0x3e8d2f51,0xbfede541,3 +np.float32,0x3a5cdd,0xc2fe441c,3 +np.float32,0x3f443ec0,0xbec4586a,3 +np.float32,0x3eacbd00,0xbfc8a5ad,3 +np.float32,0x3f600f6a,0xbe44df1b,3 +np.float32,0x5f77a6,0xc2fcd89c,3 +np.float32,0x476706,0xc2fdaf28,3 +np.float32,0x2f469,0xc3036fde,3 +np.float32,0x7dc4ba24,0x42f93d77,3 +np.float32,0x3e2d6080,0xc023fb9b,3 +np.float32,0x7e8d7135,0x42fc49c3,3 +np.float32,0x3f589065,0xbe77247b,3 +np.float32,0x3f59e210,0xbe6e2c05,3 +np.float32,0x7f51d388,0x42ff6d15,3 +np.float32,0x7d9a5fda,0x42f88a63,3 +np.float32,0x3e67d5bc,0xc00927ab,3 +np.float32,0x61d72c,0xc2fcc679,3 +np.float32,0x3ef3351d,0xbf897766,3 +np.float32,0x1,0xc3150000,3 +np.float32,0x7f653429,0x42ffae54,3 +np.float32,0x7e1ad3e5,0x42fa8c8e,3 +np.float32,0x3f4ca01d,0xbea57500,3 +np.float32,0x3f7606db,0xbd6ad13e,3 +np.float32,0x7ec4a27d,0x42fd3d1f,3 +np.float32,0x3efe4fd5,0xbf8138c7,3 +np.float32,0x77c2f1,0xc2fc3124,3 +np.float32,0x7e4d3251,0x42fb5c9a,3 +np.float32,0x3f543ac7,0xbe8a8154,3 +np.float32,0x7c3dbe29,0x42f322c4,3 +np.float32,0x408e01,0xc2fdf9a0,3 +np.float32,0x45069b,0xc2fdc829,3 +np.float32,0x3d7ecab7,0xc08037e8,3 +np.float32,0xf8c22,0xc3010a99,3 +np.float32,0x7f69af63,0x42ffbca2,3 +np.float32,0x7ec7d228,0x42fd48fe,3 +np.float32,0xff800000,0xffc00000,3 +np.float32,0xdd7c5,0xc301357c,3 +np.float32,0x143f38,0xc300a90e,3 +np.float32,0x7e65c176,0x42fbb01b,3 +np.float32,0x2c1a9e,0xc2ff1307,3 +np.float32,0x7f6e9224,0x42ffcbeb,3 +np.float32,0x3d32ab39,0xc0909a77,3 +np.float32,0x3e150b42,0xc031f22b,3 +np.float32,0x1f84b4,0xc300059a,3 +np.float32,0x3f71ce21,0xbda88c2a,3 +np.float32,0x2625c4,0xc2ff7e33,3 +np.float32,0x3dd0b293,0xc052dcdc,3 +np.float32,0x625c11,0xc2fcc290,3 +np.float32,0x3f610297,0xbe3e9f24,3 +np.float32,0x7ebdd5e5,0x42fd2320,3 +np.float32,0x3e883458,0xbff486ff,3 +np.float32,0x782313,0xc2fc2ed4,3 +np.float32,0x7f39c843,0x42ff132f,3 +np.float32,0x7f326aa7,0x42fef54d,3 +np.float32,0x4d2c71,0xc2fd75be,3 +np.float32,0x3f55747c,0xbe86409e,3 +np.float32,0x7f7f0867,0x42fffd34,3 +np.float32,0x321316,0xc2feb53f,3 +np.float32,0x3e1b37ed,0xc02e32b0,3 +np.float32,0x80edf,0xc301fd54,3 +np.float32,0x3f0b08ad,0xbf617607,3 +np.float32,0x7f3f4174,0x42ff28a2,3 +np.float32,0x3d79306d,0xc0813eb0,3 +np.float32,0x3f5f657a,0xbe49413d,3 +np.float32,0x3f56c63a,0xbe81b376,3 +np.float32,0x7f667123,0x42ffb24f,3 +np.float32,0x3f71021b,0xbdb24d43,3 +np.float32,0x7f434ab1,0x42ff380f,3 +np.float32,0x3dcae496,0xc055779c,3 +np.float32,0x3f5a7d88,0xbe6a0f5b,3 +np.float32,0x3cdf5c32,0xc0a64bf5,3 +np.float32,0x3e56222c,0xc0107d11,3 +np.float32,0x561a3a,0xc2fd24df,3 +np.float32,0x7ddd953c,0x42f9955a,3 +np.float32,0x7e35d839,0x42fb035c,3 +np.float32,0x3ec1816c,0xbfb3aeb2,3 +np.float32,0x7c87cfcd,0x42f42bc2,3 +np.float32,0xd9cd,0xc3053baf,3 +np.float32,0x3f388234,0xbef1e5b7,3 +np.float32,0x3edfcaca,0xbf98d47b,3 +np.float32,0x3ef28852,0xbf89fac8,3 +np.float32,0x7f7525df,0x42ffe001,3 +np.float32,0x7f6c33ef,0x42ffc48c,3 +np.float32,0x3ea4a881,0xbfd17e61,3 +np.float32,0x3f3e379f,0xbedb63c6,3 +np.float32,0x3f0524c1,0xbf717301,3 +np.float32,0x3db3e7f0,0xc06091d3,3 +np.float32,0x800000,0xc2fc0000,3 +np.float32,0x3f2f2897,0xbf0c27ce,3 +np.float32,0x7eb1776d,0x42fcf15c,3 +np.float32,0x3f039018,0xbf75dc37,3 +np.float32,0x3c4055,0xc2fe2c96,3 +np.float32,0x3f603653,0xbe43dea5,3 +np.float32,0x7f700d24,0x42ffd07c,3 +np.float32,0x3f4741a3,0xbeb918dc,3 +np.float32,0x3f5fe959,0xbe45da2d,3 +np.float32,0x3f3e4401,0xbedb33b1,3 +np.float32,0x7f0705ff,0x42fe2775,3 +np.float32,0x3ea85662,0xbfcd69b0,3 +np.float32,0x3f15f49f,0xbf458829,3 +np.float32,0x3f17c50e,0xbf411728,3 +np.float32,0x3e483f60,0xc016add2,3 +np.float32,0x3f1ab9e5,0xbf39f71b,3 +np.float32,0x3de0b6fb,0xc04c08fe,3 +np.float32,0x7e671225,0x42fbb452,3 +np.float32,0x80800000,0xffc00000,3 +np.float32,0xe2df3,0xc3012c9d,3 +np.float32,0x3ede1e3c,0xbf9a3770,3 +np.float32,0x3df2ffde,0xc044cfec,3 +np.float32,0x3eed8da5,0xbf8dcf6c,3 +np.float32,0x3ead15c3,0xbfc846e1,3 +np.float32,0x7ef3750a,0x42fddae4,3 +np.float32,0x7e6ab7c0,0x42fbbfe4,3 +np.float32,0x7ea4bbe5,0x42fcba5d,3 +np.float32,0x3f227706,0xbf27f0a1,3 +np.float32,0x3ef39bfd,0xbf89295a,3 +np.float32,0x3f289a20,0xbf1a3edd,3 +np.float32,0x7f225f82,0x42feafb4,3 +np.float32,0x768963,0xc2fc38bc,3 +np.float32,0x3f493c00,0xbeb1ccfc,3 +np.float32,0x3f4e7249,0xbe9ee9a7,3 +np.float32,0x1d0c3a,0xc30023c0,3 +np.float32,0x7f3c5f78,0x42ff1d6a,3 +np.float32,0xff7fffff,0xffc00000,3 +np.float32,0x3ee7896a,0xbf928c2a,3 +np.float32,0x3e788479,0xc002bd2e,3 +np.float32,0x3ee4df17,0xbf94af84,3 +np.float32,0x5e06d7,0xc2fce3d7,3 +np.float32,0x3d7b2776,0xc080e1dc,3 +np.float32,0x3e3d39d3,0xc01be7fd,3 +np.float32,0x7c81dece,0x42f40ab7,3 +np.float32,0x3f7d2085,0xbc856255,3 +np.float32,0x7f7f6627,0x42fffe44,3 +np.float32,0x7f5f2e94,0x42ff9aaa,3 +np.float32,0x7f5835f2,0x42ff8339,3 +np.float32,0x3f6a0e32,0xbe046580,3 +np.float32,0x7e16f586,0x42fa79dd,3 +np.float32,0x3f04a2f2,0xbf72dbc5,3 +np.float32,0x3f35e334,0xbefc7740,3 +np.float32,0x3f0d056e,0xbf5c3824,3 +np.float32,0x7ebeb95e,0x42fd2693,3 +np.float32,0x3c6192,0xc2fe2aff,3 +np.float32,0x3e892b4f,0xbff33958,3 +np.float32,0x3f61d694,0xbe3931df,3 +np.float32,0x29d183,0xc2ff3a56,3 +np.float32,0x7f0b0598,0x42fe3d04,3 +np.float32,0x7f743b28,0x42ffdd3d,3 +np.float32,0x3a2ed6,0xc2fe4663,3 +np.float32,0x3e27403a,0xc0274de8,3 +np.float32,0x3f58ee78,0xbe74a349,3 +np.float32,0x3eaa4b,0xc2fe0f92,3 +np.float32,0x3ecb613b,0xbfaa7de8,3 +np.float32,0x7f637d81,0x42ffa8c9,3 +np.float32,0x3f026e96,0xbf790c73,3 +np.float32,0x386cdf,0xc2fe5d0c,3 +np.float32,0x35abd1,0xc2fe8202,3 +np.float32,0x3eac3cd1,0xbfc92ee8,3 +np.float32,0x3f567869,0xbe82bf47,3 +np.float32,0x3f65c643,0xbe1faae6,3 +np.float32,0x7f5422b9,0x42ff752b,3 +np.float32,0x7c26e9,0xc2fc168c,3 +np.float32,0x7eff5cfd,0x42fdfe29,3 +np.float32,0x3f728e7f,0xbd9f6142,3 +np.float32,0x3f10fd43,0xbf51f874,3 +np.float32,0x7e7ada08,0x42fbf0fe,3 +np.float32,0x3e82a611,0xbffc37be,3 +np.float32,0xbf800000,0xffc00000,3 +np.float32,0x3dbe2e12,0xc05b711c,3 +np.float32,0x7e768fa9,0x42fbe440,3 +np.float32,0x5e44e8,0xc2fce1f0,3 +np.float32,0x7f25071a,0x42febbae,3 +np.float32,0x3f54db5e,0xbe885339,3 +np.float32,0x3f0f2c26,0xbf56a0b8,3 +np.float32,0x22f9a7,0xc2ffbe55,3 +np.float32,0x7ed63dcb,0x42fd7c77,3 +np.float32,0x7ea4fae2,0x42fcbb78,3 +np.float32,0x3f1d7766,0xbf337b47,3 +np.float32,0x7f16d59f,0x42fe7941,3 +np.float32,0x3f3a1bb6,0xbeeb855c,3 +np.float32,0x3ef57128,0xbf87c709,3 +np.float32,0xb24ff,0xc3018591,3 +np.float32,0x3ef99e27,0xbf84a983,3 +np.float32,0x3eac2ccf,0xbfc94013,3 +np.float32,0x3e9d3e1e,0xbfda00dc,3 +np.float32,0x718213,0xc2fc58c1,3 +np.float32,0x7edbf509,0x42fd8fea,3 +np.float32,0x70c7f1,0xc2fc5d80,3 +np.float32,0x3f7012f5,0xbdbdc6cd,3 +np.float32,0x12cba,0xc304c487,3 +np.float32,0x7f5d445d,0x42ff944c,3 +np.float32,0x7f3e30bd,0x42ff2481,3 +np.float32,0x63b110,0xc2fcb8a0,3 +np.float32,0x3f39f728,0xbeec1680,3 +np.float32,0x3f5bea58,0xbe6074b1,3 +np.float32,0x3f350749,0xbefff679,3 +np.float32,0x3e91ab2c,0xbfe81f3e,3 +np.float32,0x7ec53fe0,0x42fd3f6d,3 +np.float32,0x3f6cbbdc,0xbde72c8e,3 +np.float32,0x3f4df49f,0xbea0abcf,3 +np.float32,0x3e9c9638,0xbfdac674,3 +np.float32,0x7f3b82ec,0x42ff1a07,3 +np.float32,0x7f612a09,0x42ffa132,3 +np.float32,0x7ea26650,0x42fcafd3,3 +np.float32,0x3a615138,0xc122f26d,3 +np.float32,0x3f1108bd,0xbf51db39,3 +np.float32,0x6f80f6,0xc2fc65ea,3 +np.float32,0x3f7cb578,0xbc98ecb1,3 +np.float32,0x7f54d31a,0x42ff7790,3 +np.float32,0x196868,0xc3005532,3 +np.float32,0x3f01ee0a,0xbf7a7925,3 +np.float32,0x3e184013,0xc02ffb11,3 +np.float32,0xadde3,0xc3018ee3,3 +np.float32,0x252a91,0xc2ff9173,3 +np.float32,0x3f0382c2,0xbf7601a9,3 +np.float32,0x6d818c,0xc2fc7345,3 +np.float32,0x3bfbfd,0xc2fe2fdd,3 +np.float32,0x7f3cad19,0x42ff1e9a,3 +np.float32,0x4169a7,0xc2fdefdf,3 +np.float32,0x3f615d96,0xbe3c4a2b,3 +np.float32,0x3f036480,0xbf7656ac,3 +np.float32,0x7f5fbda3,0x42ff9c83,3 +np.float32,0x3d202d,0xc2fe21f1,3 +np.float32,0x3d0f5e5d,0xc09ac3e9,3 +np.float32,0x3f0fff6e,0xbf548142,3 +np.float32,0x7f11ed32,0x42fe60d2,3 +np.float32,0x3e6f856b,0xc00624b6,3 +np.float32,0x7f7c4dd7,0x42fff542,3 +np.float32,0x3e76fb86,0xc0034fa0,3 +np.float32,0x3e8a0d6e,0xbff209e7,3 +np.float32,0x3eacad19,0xbfc8b6ad,3 +np.float32,0xa7776,0xc3019cbe,3 +np.float32,0x3dc84d74,0xc056a754,3 +np.float32,0x3efb8052,0xbf834626,3 +np.float32,0x3f0e55fc,0xbf58cacc,3 +np.float32,0x7e0e71e3,0x42fa4efb,3 +np.float32,0x3ed5a800,0xbfa1639c,3 +np.float32,0x3f33335b,0xbf03babf,3 +np.float32,0x38cad7,0xc2fe5842,3 +np.float32,0x3bc21256,0xc0ecc927,3 +np.float32,0x3f09522d,0xbf660a19,3 +np.float32,0xcbd5d,0xc3015428,3 +np.float32,0x492752,0xc2fd9d42,3 +np.float32,0x3f2b9b32,0xbf13b904,3 +np.float32,0x6544ac,0xc2fcad09,3 +np.float32,0x52eb12,0xc2fd40b5,3 +np.float32,0x3f66a7c0,0xbe1a03e8,3 +np.float32,0x7ab289,0xc2fc1f41,3 +np.float32,0x62af5e,0xc2fcc020,3 +np.float32,0x7f73e9cf,0x42ffdc46,3 +np.float32,0x3e5eca,0xc2fe130e,3 +np.float32,0x3e3a10f4,0xc01d7602,3 +np.float32,0x3f04db46,0xbf723f0d,3 +np.float32,0x18fc4a,0xc3005b63,3 +np.float32,0x525bcb,0xc2fd45b6,3 +np.float32,0x3f6b9108,0xbdf5c769,3 +np.float32,0x3e992e8c,0xbfded5c5,3 +np.float32,0x7efea647,0x42fdfc18,3 +np.float32,0x7e8371db,0x42fc139e,3 +np.float32,0x3f397cfb,0xbeedfc69,3 +np.float32,0x7e46d233,0x42fb454a,3 +np.float32,0x7d5281ad,0x42f76f79,3 +np.float32,0x7f4c1878,0x42ff58a1,3 +np.float32,0x3e96ca5e,0xbfe1bd97,3 +np.float32,0x6a2743,0xc2fc8a3d,3 +np.float32,0x7f688781,0x42ffb8f8,3 +np.float32,0x7814b7,0xc2fc2f2d,3 +np.float32,0x3f2ffdc9,0xbf0a6756,3 +np.float32,0x3f766fa8,0xbd60fe24,3 +np.float32,0x4dc64e,0xc2fd7003,3 +np.float32,0x3a296f,0xc2fe46a8,3 +np.float32,0x3f2af942,0xbf15162e,3 +np.float32,0x7f702c32,0x42ffd0dc,3 +np.float32,0x7e61e318,0x42fba390,3 +np.float32,0x7f7d3bdb,0x42fff7fa,3 +np.float32,0x3ee87f3f,0xbf91c881,3 +np.float32,0x2bbc28,0xc2ff193c,3 +np.float32,0x3e01f918,0xc03e966e,3 +np.float32,0x7f0b39f4,0x42fe3e1a,3 +np.float32,0x3eaa4d64,0xbfcb4516,3 +np.float32,0x3e53901e,0xc0119a88,3 +np.float32,0x603cb,0xc3026957,3 +np.float32,0x7e81f926,0x42fc0b4d,3 +np.float32,0x5dab7c,0xc2fce6a6,3 +np.float32,0x3f46fefd,0xbeba1018,3 +np.float32,0x648448,0xc2fcb28a,3 +np.float32,0x3ec49470,0xbfb0c58b,3 +np.float32,0x3e8a5393,0xbff1ac2b,3 +np.float32,0x3f27ccfc,0xbf1c014e,3 +np.float32,0x3ed886e6,0xbf9eeca8,3 +np.float32,0x7cfbe06e,0x42f5f401,3 +np.float32,0x3f5aa7ba,0xbe68f229,3 +np.float32,0x9500d,0xc301c7e3,3 +np.float32,0x3f4861,0xc2fe0853,3 +np.float32,0x3e5ae104,0xc00e76f5,3 +np.float32,0x71253a,0xc2fc5b1e,3 +np.float32,0xcf7b8,0xc3014d9c,3 +np.float32,0x7f7edd2d,0x42fffcb7,3 +np.float32,0x3e9039ee,0xbfe9f5ab,3 +np.float32,0x2fd54e,0xc2fed712,3 +np.float32,0x3f600752,0xbe45147a,3 +np.float32,0x3f4da8f6,0xbea1bb5c,3 +np.float32,0x3f2d34a9,0xbf104bd9,3 +np.float32,0x3e1e66dd,0xc02c52d2,3 +np.float32,0x798276,0xc2fc2670,3 +np.float32,0xd55e2,0xc3014347,3 +np.float32,0x80000001,0xffc00000,3 +np.float32,0x3e7a5ead,0xc0020da6,3 +np.float32,0x7ec4c744,0x42fd3da9,3 +np.float32,0x597e00,0xc2fd085a,3 +np.float32,0x3dff6bf4,0xc0403575,3 +np.float32,0x5d6f1a,0xc2fce883,3 +np.float32,0x7e21faff,0x42faadea,3 +np.float32,0x3e570fea,0xc01016c6,3 +np.float32,0x28e6b6,0xc2ff4ab7,3 +np.float32,0x7e77062d,0x42fbe5a3,3 +np.float32,0x74cac4,0xc2fc43b0,3 +np.float32,0x3f707273,0xbdb93078,3 +np.float32,0x228e96,0xc2ffc737,3 +np.float32,0x686ac1,0xc2fc966b,3 +np.float32,0x3d76400d,0xc081cae8,3 +np.float32,0x3e9f502f,0xbfd7966b,3 +np.float32,0x3f6bc656,0xbdf32b1f,3 +np.float32,0x3edb828b,0xbf9c65d4,3 +np.float32,0x6c6e56,0xc2fc7a8e,3 +np.float32,0x3f04552e,0xbf73b48f,3 +np.float32,0x3f39cb69,0xbeecc457,3 +np.float32,0x7f681c44,0x42ffb7a3,3 +np.float32,0x7f5b44ee,0x42ff8d99,3 +np.float32,0x3e71430a,0xc005798d,3 +np.float32,0x3edcfde3,0xbf9b27c6,3 +np.float32,0x3f616a5a,0xbe3bf67f,3 +np.float32,0x3f523936,0xbe918548,3 +np.float32,0x3f39ce3a,0xbeecb925,3 +np.float32,0x3eac589a,0xbfc91120,3 +np.float32,0x7efc8d3d,0x42fdf5fc,3 +np.float32,0x5704b0,0xc2fd1d0f,3 +np.float32,0x7e7972e9,0x42fbecda,3 +np.float32,0x3eb0811c,0xbfc4aa13,3 +np.float32,0x7f1efcbb,0x42fea023,3 +np.float32,0x3e0b9e32,0xc037fa6b,3 +np.float32,0x7eef6a48,0x42fdce87,3 +np.float32,0x3cc0a373,0xc0ad20c0,3 +np.float32,0x3f2a75bb,0xbf1632ba,3 +np.float32,0x0,0xff800000,3 +np.float32,0x7ecdb6f4,0x42fd5e77,3 +np.float32,0x7f2e2dfd,0x42fee38d,3 +np.float32,0x3ee17f6e,0xbf976d8c,3 +np.float32,0x3f51e7ee,0xbe92a319,3 +np.float32,0x3f06942f,0xbf6d7d3c,3 +np.float32,0x3f7ba528,0xbccac6f1,3 +np.float32,0x3f413787,0xbecfd513,3 +np.float32,0x3e085e48,0xc03a2716,3 +np.float32,0x7e4c5e0e,0x42fb599c,3 +np.float32,0x306f76,0xc2fecdd4,3 +np.float32,0x7f5c2203,0x42ff9081,3 +np.float32,0x3d5355b4,0xc088da05,3 +np.float32,0x9a2a,0xc305bb4f,3 +np.float32,0x3db93a1f,0xc05de0db,3 +np.float32,0x4e50c6,0xc2fd6ae4,3 +np.float32,0x7ec4afed,0x42fd3d51,3 +np.float32,0x3a8f27,0xc2fe41a0,3 +np.float32,0x7f213caf,0x42feaa84,3 +np.float32,0x7e7b5f00,0x42fbf286,3 +np.float32,0x7e367194,0x42fb05ca,3 +np.float32,0x7f56e6de,0x42ff7ebd,3 +np.float32,0x3ed7383e,0xbfa00aef,3 +np.float32,0x7e844752,0x42fc184a,3 +np.float32,0x15157,0xc3049a19,3 +np.float32,0x3f78cd92,0xbd28824a,3 +np.float32,0x7ecddb16,0x42fd5ef9,3 +np.float32,0x3e479f16,0xc016f7d8,3 +np.float32,0x3f5cb418,0xbe5b2bd3,3 +np.float32,0x7c0934cb,0x42f2334e,3 +np.float32,0x3ebe5505,0xbfb6bc69,3 +np.float32,0x3eb1335a,0xbfc3eff5,3 +np.float32,0x3f2488a3,0xbf234444,3 +np.float32,0x642906,0xc2fcb52a,3 +np.float32,0x3da635fa,0xc067e15a,3 +np.float32,0x7e0d80db,0x42fa4a15,3 +np.float32,0x4f0b9d,0xc2fd640a,3 +np.float32,0x7e083806,0x42fa2df8,3 +np.float32,0x7f77f8c6,0x42ffe877,3 +np.float32,0x3e7bb46a,0xc0018ff5,3 +np.float32,0x3f06eb2e,0xbf6c8eca,3 +np.float32,0x7eae8f7c,0x42fce52a,3 +np.float32,0x3de481a0,0xc04a7d7f,3 +np.float32,0x3eed4311,0xbf8e096f,3 +np.float32,0x3f7b0300,0xbce8903d,3 +np.float32,0x3811b,0xc30330dd,3 +np.float32,0x3eb6f8e1,0xbfbe04bc,3 +np.float32,0x3ec35210,0xbfb1f55a,3 +np.float32,0x3d386916,0xc08f24a5,3 +np.float32,0x3f1fa197,0xbf2e704d,3 +np.float32,0x7f2020a5,0x42fea56a,3 +np.float32,0x7e1ea53f,0x42fa9e8c,3 +np.float32,0x3f148903,0xbf490bf9,3 +np.float32,0x3f2f56a0,0xbf0bc6c9,3 +np.float32,0x7da9fc,0xc2fc0d9b,3 +np.float32,0x3d802134,0xc07fe810,3 +np.float32,0x3f6cb927,0xbde74e57,3 +np.float32,0x7e05b125,0x42fa2023,3 +np.float32,0x3f3307f9,0xbf041433,3 +np.float32,0x5666bf,0xc2fd2250,3 +np.float32,0x3f51c93b,0xbe930f28,3 +np.float32,0x3eb5dcfe,0xbfbf241e,3 +np.float32,0xb2773,0xc301853f,3 +np.float32,0x7f4dee96,0x42ff5f3f,3 +np.float32,0x3e3f5c33,0xc01adee1,3 +np.float32,0x3f2ed29a,0xbf0cdd4a,3 +np.float32,0x3e3c01ef,0xc01c80ab,3 +np.float32,0x3ec2236e,0xbfb31458,3 +np.float32,0x7e841dc4,0x42fc1761,3 +np.float32,0x3df2cd8e,0xc044e30c,3 +np.float32,0x3f010901,0xbf7d0670,3 +np.float32,0x3c05ceaa,0xc0ddf39b,3 +np.float32,0x3f517226,0xbe944206,3 +np.float32,0x3f23c83d,0xbf24f522,3 +np.float32,0x7fc9da,0xc2fc0139,3 +np.float32,0x7f1bde53,0x42fe9181,3 +np.float32,0x3ea3786c,0xbfd2d4a5,3 +np.float32,0x3e83a71b,0xbffacdd2,3 +np.float32,0x3f6f0d4f,0xbdca61d5,3 +np.float32,0x7f5ab613,0x42ff8bb7,3 +np.float32,0x3ab1ec,0xc2fe3fea,3 +np.float32,0x4fbf58,0xc2fd5d82,3 +np.float32,0x3dea141b,0xc0484403,3 +np.float32,0x7d86ad3b,0x42f8258f,3 +np.float32,0x7f345315,0x42fefd29,3 +np.float32,0x3f3752fe,0xbef6a780,3 +np.float32,0x64830d,0xc2fcb293,3 +np.float32,0x3d9dc1eb,0xc06cb32a,3 +np.float32,0x3f2f935a,0xbf0b46f6,3 +np.float32,0xb90a4,0xc30177e3,3 +np.float32,0x4111dd,0xc2fdf3c1,3 +np.float32,0x3d4cd078,0xc08a4c68,3 +np.float32,0x3e95c3f1,0xbfe30011,3 +np.float32,0x3ec9f356,0xbfabcb4e,3 +np.float32,0x1b90d5,0xc3003717,3 +np.float32,0xee70f,0xc3011a3e,3 +np.float32,0x7fa00000,0x7fe00000,3 +np.float32,0x3f74cdb6,0xbd8422af,3 +np.float32,0x3d9b56fe,0xc06e2037,3 +np.float32,0x3f1853df,0xbf3fbc40,3 +np.float32,0x7d86a011,0x42f82547,3 +np.float32,0x3dff9629,0xc0402634,3 +np.float32,0x46f8c9,0xc2fdb39f,3 +np.float32,0x3e9b410b,0xbfdc5a87,3 +np.float32,0x3f5aed42,0xbe671cac,3 +np.float32,0x3b739886,0xc101257f,3 +np.float64,0x3fe2f58d6565eb1b,0xbfe82a641138e19a,1 +np.float64,0x3fee7f0642fcfe0d,0xbfb1c702f6974932,1 +np.float64,0x25b71f244b6e5,0xc090030d3b3c5d2b,1 +np.float64,0x8c9cc8e1193b,0xc0900b752a678fa8,1 +np.float64,0x3fd329b5d326536c,0xbffbd607f6db945c,1 +np.float64,0x3fb5109b3a2a2136,0xc00cd36bd15dfb18,1 +np.float64,0x3fd5393ae12a7276,0xbff97a7e4a157154,1 +np.float64,0x3fd374d1b926e9a3,0xbffb7c3e1a3a7ed3,1 +np.float64,0x3fe2c7f4e2658fea,0xbfe899f15ca78fcb,1 +np.float64,0x7fe3d6b81ee7ad6f,0x408ffa7b63d407ee,1 +np.float64,0x3fe086d097e10da1,0xbfee81456ce8dd03,1 +np.float64,0x7fd374a64ca6e94c,0x408ff241c7306d39,1 +np.float64,0x3fc0709a5b20e135,0xc007afdede31b29c,1 +np.float64,0x3fd4218f4b28431f,0xbffab2c696966e2d,1 +np.float64,0x143134c828628,0xc09006a8372c4d8a,1 +np.float64,0x3f8bd0aa0037a154,0xc018cf0e8b9c3107,1 +np.float64,0x7fe0ce905ee19d20,0x408ff8915e71bd67,1 +np.float64,0x3fda0f5f32b41ebe,0xbff4bd5e0869e820,1 +np.float64,0x7fe9ae63d0b35cc7,0x408ffd760ca4f292,1 +np.float64,0x3fe75abd9eeeb57b,0xbfdd1476fc8b3089,1 +np.float64,0x786c3110f0d87,0xc08ff8b44cedbeea,1 +np.float64,0x22c5fe80458d,0xc09013853591c2f2,1 +np.float64,0x3fdc250797384a0f,0xbff2f6a02c961f0b,1 +np.float64,0x3fa2b367b02566cf,0xc013199238485054,1 +np.float64,0x3fd26a910ca4d522,0xbffcc0e2089b1c0c,1 +np.float64,0x8068d3b300d1b,0xc08ff7f690210aac,1 +np.float64,0x3fe663bfa9ecc77f,0xbfe07cd95a43a5ce,1 +np.float64,0x3fd0ddb07321bb61,0xbffec886665e895e,1 +np.float64,0x3f91c730b0238e61,0xc0176452badc8d22,1 +np.float64,0x4dd10d309ba22,0xc08ffdbe738b1d8d,1 +np.float64,0x7fe322afa4a6455e,0x408ffa10c038f9de,1 +np.float64,0x7fdf7f7c42befef8,0x408ff7d147ddaad5,1 +np.float64,0x7fd673f386ace7e6,0x408ff3e920d00eef,1 +np.float64,0x3feaebfcadb5d7f9,0xbfcfe8ec27083478,1 +np.float64,0x3fdc6dc23738db84,0xbff2bb46794f07b8,1 +np.float64,0xcd8819599b103,0xc08ff288c5b2cf0f,1 +np.float64,0xfda00e77fb402,0xc08ff01b895d2236,1 +np.float64,0x840b02ff08161,0xc08ff7a41e41114c,1 +np.float64,0x3fbdce3a383b9c74,0xc008d1e61903a289,1 +np.float64,0x3fd24ed3c4a49da8,0xbffce3c12136b6d3,1 +np.float64,0x3fe8d0834131a107,0xbfd77b194e7051d4,1 +np.float64,0x3fdd0cb11aba1962,0xbff23b9dbd554455,1 +np.float64,0x1a32d97e3465c,0xc090052781a37271,1 +np.float64,0x3fdb09d2b1b613a5,0xbff3e396b862bd83,1 +np.float64,0x3fe04c848aa09909,0xbfef2540dd90103a,1 +np.float64,0x3fce0c48613c1891,0xc000b9f76877d744,1 +np.float64,0x3fc37109a226e213,0xc005c05d8b2b9a2f,1 +np.float64,0x81cf3837039e7,0xc08ff7d686517dff,1 +np.float64,0xd9342c29b2686,0xc08ff1e591c9a895,1 +np.float64,0x7fec731b0638e635,0x408ffea4884550a9,1 +np.float64,0x3fba0fc138341f82,0xc00a5e839b085f64,1 +np.float64,0x7fdda893b03b5126,0x408ff71f7c5a2797,1 +np.float64,0xd2a4bb03a5498,0xc08ff2402f7a907c,1 +np.float64,0x3fea61fb0d34c3f6,0xbfd1d293fbe76183,1 +np.float64,0x3fed5cf486fab9e9,0xbfbfc2e01a7ffff1,1 +np.float64,0x3fcbabc2bf375785,0xc001ad7750c9dbdf,1 +np.float64,0x3fdb5fff53b6bfff,0xbff39a7973a0c6a5,1 +np.float64,0x7feef05a00bde0b3,0x408fff9c5cbc8651,1 +np.float64,0xb1cf24f1639e5,0xc08ff434de10fffb,1 +np.float64,0x3fa583989c2b0731,0xc0124a8a3bbf18ce,1 +np.float64,0x7feae90bf9f5d217,0x408ffe002e7bbbea,1 +np.float64,0x3fe9ef41c4b3de84,0xbfd367878ae4528e,1 +np.float64,0x9be24ce337c4a,0xc08ff5b9b1c31cf9,1 +np.float64,0x3fe916894cb22d13,0xbfd677f915d58503,1 +np.float64,0x3fec1bab20f83756,0xbfc7f2777aabe8ee,1 +np.float64,0x3feaabf2873557e5,0xbfd0d11f28341233,1 +np.float64,0x3fd4d3c3b529a787,0xbff9e9e47acc8ca9,1 +np.float64,0x3fe4cfe96c699fd3,0xbfe3dc53fa739169,1 +np.float64,0xccfdb97399fb7,0xc08ff2908d893400,1 +np.float64,0x3fec7598be78eb31,0xbfc5a750f8f3441a,1 +np.float64,0x355be5fc6ab7e,0xc090010ca315b50b,1 +np.float64,0x3fba9f9074353f21,0xc00a1f80eaf5e581,1 +np.float64,0x7fdcaff189395fe2,0x408ff6bd1c5b90d9,1 +np.float64,0x3fd94d3b64b29a77,0xbff56be1b43d25f3,1 +np.float64,0x4e5f29949cbe6,0xc08ffda972da1d73,1 +np.float64,0x3fe654e2d9aca9c6,0xbfe09b88dcd8f15d,1 +np.float64,0x7fdc130190b82602,0x408ff67d496c1a27,1 +np.float64,0x3fbcd4701e39a8e0,0xc009343e36627e80,1 +np.float64,0x7fdaa4d38f3549a6,0x408ff5e2c6d8678f,1 +np.float64,0x3febe95e5237d2bd,0xbfc93e16d453fe3a,1 +np.float64,0x9ef5ca553deba,0xc08ff57ff4f7883d,1 +np.float64,0x7fe878e91170f1d1,0x408ffce795868fc8,1 +np.float64,0x3fe63dff466c7bff,0xbfe0caf2b79c9e5f,1 +np.float64,0x6561446ccac29,0xc08ffab0e383834c,1 +np.float64,0x30c6c2ae618d9,0xc09001914b30381b,1 +np.float64,0x7ff0000000000000,0x7ff0000000000000,1 +np.float64,0x3fe5c9daf1ab93b6,0xbfe1be81baf4dbdb,1 +np.float64,0x3fe0a03e24a1407c,0xbfee3a73c4c0e8f8,1 +np.float64,0xff2a2cf3fe546,0xc08ff009a7e6e782,1 +np.float64,0x7fcf0332213e0663,0x408fefa36235e210,1 +np.float64,0x3fb612affc2c2560,0xc00c494be9c8c33b,1 +np.float64,0x3fd2b259702564b3,0xbffc67967f077e75,1 +np.float64,0x7fcb63685d36c6d0,0x408fee343343f913,1 +np.float64,0x3fe369f1d5a6d3e4,0xbfe71251139939ad,1 +np.float64,0x3fdd17c618ba2f8c,0xbff232d11c986251,1 +np.float64,0x3f92cc8040259901,0xc01711d8e06b52ee,1 +np.float64,0x69a81dc2d3504,0xc08ffa36cdaf1141,1 +np.float64,0x3fea0fad99b41f5b,0xbfd2f4625a652645,1 +np.float64,0xd1cd5799a39ab,0xc08ff24c02b90d26,1 +np.float64,0x324e59ce649cc,0xc0900163ad091c76,1 +np.float64,0x3fc3d460a227a8c1,0xc00585f903dc7a7f,1 +np.float64,0xa7185ec74e30c,0xc08ff4ec7d65ccd9,1 +np.float64,0x3fa254eaac24a9d5,0xc01337053963321a,1 +np.float64,0x3feaeb112435d622,0xbfcfef3be17f81f6,1 +np.float64,0x60144c3ac028a,0xc08ffb4f8eb94595,1 +np.float64,0x7fa4d2ec6829a5d8,0x408fdb0a9670ab83,1 +np.float64,0x3fed1372f97a26e6,0xbfc1b1fe50d48a55,1 +np.float64,0x3fd5ade5972b5bcb,0xbff8fcf28f525031,1 +np.float64,0x7fe72e335bee5c66,0x408ffc4759236437,1 +np.float64,0x7fdfafab143f5f55,0x408ff7e2e22a8129,1 +np.float64,0x3fe90d0db9321a1b,0xbfd69ae5fe10eb9e,1 +np.float64,0x7fe20a59072414b1,0x408ff962a2492484,1 +np.float64,0x3fed853690bb0a6d,0xbfbdc9dc5f199d2b,1 +np.float64,0x3fd709d469ae13a9,0xbff795a218deb700,1 +np.float64,0x3fe21c35f5e4386c,0xbfea47d71789329b,1 +np.float64,0x9ea5ec053d4be,0xc08ff585c2f6b7a3,1 +np.float64,0x3fc0580f9e20b01f,0xc007c1268f49d037,1 +np.float64,0xd99127abb3225,0xc08ff1e0a1ff339d,1 +np.float64,0x3fdc8c9bbfb91937,0xbff2a2478354effb,1 +np.float64,0x3fe15fc6b162bf8d,0xbfec323ac358e008,1 +np.float64,0xffefffffffffffff,0x7ff8000000000000,1 +np.float64,0x3fee341afb3c6836,0xbfb556b6faee9a84,1 +np.float64,0x3fe4b64c56296c99,0xbfe4154835ad2afe,1 +np.float64,0x85de22810bbc5,0xc08ff77b914fe5b5,1 +np.float64,0x3fd22c72e3a458e6,0xbffd0f4269d20bb9,1 +np.float64,0xc090e5218123,0xc09009a4a65a8a8f,1 +np.float64,0x7fd9641692b2c82c,0x408ff5547782bdfc,1 +np.float64,0x3fd9b9cb28b37396,0xbff509a8fb59a9f1,1 +np.float64,0x3fcd2726f93a4e4e,0xc001135059a22117,1 +np.float64,0x3fa4b493d4296928,0xc0128323c7a55f4a,1 +np.float64,0x47455e788e8ac,0xc08ffec2101c1e82,1 +np.float64,0x3fe0d7e2e261afc6,0xbfeda0f1e2d0f4bd,1 +np.float64,0x3fe860fc5b70c1f9,0xbfd91dc42eaf72c2,1 +np.float64,0xa5d7805b4baf0,0xc08ff502bc819ff6,1 +np.float64,0xd83395b1b0673,0xc08ff1f33c3f94c2,1 +np.float64,0x3f865972e02cb2e6,0xc01a1243651565c8,1 +np.float64,0x52fc6952a5f8e,0xc08ffd006b158179,1 +np.float64,0x7fecac6c793958d8,0x408ffebbb1c09a70,1 +np.float64,0x7fe621ff606c43fe,0x408ffbbeb2b1473a,1 +np.float64,0x3fdb9f3f9db73e7f,0xbff365610c52bda7,1 +np.float64,0x7feab92992757252,0x408ffdeb92a04813,1 +np.float64,0xcc46c79f988d9,0xc08ff29adf03fb7c,1 +np.float64,0x3fe3156a03262ad4,0xbfe7dd0f598781c7,1 +np.float64,0x3fc00e3a61201c75,0xc007f5c121a87302,1 +np.float64,0x3fdce8e9f739d1d4,0xbff2581d41ef50ef,1 +np.float64,0x0,0xfff0000000000000,1 +np.float64,0x7d373ac4fa6e8,0xc08ff840fa8beaec,1 +np.float64,0x3fee41e0653c83c1,0xbfb4ae786f2a0d54,1 +np.float64,0x3ff0000000000000,0x0,1 +np.float64,0x7feca6fff9794dff,0x408ffeb982a70556,1 +np.float64,0x7fc532716d2a64e2,0x408feb3f0f6c095b,1 +np.float64,0x3fe4ec2954a9d853,0xbfe39dd44aa5a040,1 +np.float64,0x7fd3321d52a6643a,0x408ff21a0ab9cd85,1 +np.float64,0x7fd8f1b2dfb1e365,0x408ff52001fa7922,1 +np.float64,0x3fee5e58cabcbcb2,0xbfb3539734a24d8b,1 +np.float64,0x3feebf6e7dfd7edd,0xbfad7c648f025102,1 +np.float64,0x6008026ec0101,0xc08ffb5108b54a93,1 +np.float64,0x3fea06f5e2340dec,0xbfd3134a48283360,1 +np.float64,0x41cad13c8395b,0xc08fffae654b2426,1 +np.float64,0x7fedb5c9353b6b91,0x408fff249f1f32b6,1 +np.float64,0xe00c5af9c018c,0xc08ff189e68c655f,1 +np.float64,0x7feac398ddf58731,0x408ffdf01374de9f,1 +np.float64,0x3fed21127c7a4225,0xbfc15b8cf55628fa,1 +np.float64,0x3fd3446711a688ce,0xbffbb5f7252a9fa3,1 +np.float64,0x7fe75fa07a6ebf40,0x408ffc5fdb096018,1 +np.float64,0x3feeb1618cbd62c3,0xbfaece3bd0863070,1 +np.float64,0x7f5226e180244dc2,0x408fb174d506e52f,1 +np.float64,0x3fcd67deca3acfbe,0xc000f9cd7a490749,1 +np.float64,0xdc6f30efb8de6,0xc08ff1b9f2a22d2e,1 +np.float64,0x9c14931338293,0xc08ff5b5f975ec5d,1 +np.float64,0x7fe93e802df27cff,0x408ffd4354eba0e0,1 +np.float64,0x3feb92ae5077255d,0xbfcb7f2084e44dbb,1 +np.float64,0xd78dbfddaf1b8,0xc08ff1fc19fa5a13,1 +np.float64,0x7fe14c301fa2985f,0x408ff8e666cb6592,1 +np.float64,0xbda3d8b77b47b,0xc08ff37689f4b2e5,1 +np.float64,0x8a42953b14853,0xc08ff71c2db3b8cf,1 +np.float64,0x7fe4ca7e186994fb,0x408ffb05e94254a7,1 +np.float64,0x7fe92ffc5e325ff8,0x408ffd3cb0265b12,1 +np.float64,0x91b262912364d,0xc08ff681619be214,1 +np.float64,0x33fe2b0667fc6,0xc0900132f3fab55e,1 +np.float64,0x3fde10e9183c21d2,0xbff17060fb4416c7,1 +np.float64,0xb6b811cb6d702,0xc08ff3e46303b541,1 +np.float64,0x3fe4a7bda0a94f7b,0xbfe435c6481cd0e3,1 +np.float64,0x7fd9fe6057b3fcc0,0x408ff599c79a822c,1 +np.float64,0x3fef44bf917e897f,0xbfa11484e351a6e9,1 +np.float64,0x3fe57d701daafae0,0xbfe2618ab40fc01b,1 +np.float64,0x7fe52d2adbaa5a55,0x408ffb3c2fb1c99d,1 +np.float64,0xb432f66d6865f,0xc08ff40d6b4084fe,1 +np.float64,0xbff0000000000000,0x7ff8000000000000,1 +np.float64,0x7fecd2292bf9a451,0x408ffecad860de6f,1 +np.float64,0x3fddd2ae153ba55c,0xbff1a059adaca33e,1 +np.float64,0x3fee55d6e5bcabae,0xbfb3bb1c6179d820,1 +np.float64,0x7fc1d0085623a010,0x408fe93d16ada7a7,1 +np.float64,0x829b000105360,0xc08ff7c47629a68f,1 +np.float64,0x7fe1e0257523c04a,0x408ff94782cf0717,1 +np.float64,0x7fd652f9ad2ca5f2,0x408ff3d820ec892e,1 +np.float64,0x3fef2246203e448c,0xbfa444ab6209d8cd,1 +np.float64,0x3fec6c0ae178d816,0xbfc5e559ebd4e790,1 +np.float64,0x3fe6ddfee92dbbfe,0xbfdf06dd7d3fa7a8,1 +np.float64,0x3fb7fbcbea2ff798,0xc00b5404d859d148,1 +np.float64,0x7feb9a154d37342a,0x408ffe4b26c29e55,1 +np.float64,0x3fe4db717aa9b6e3,0xbfe3c2c6b3ef13bc,1 +np.float64,0x3fbae17dda35c2fc,0xc00a030f7f4b37e7,1 +np.float64,0x7fd632b9082c6571,0x408ff3c76826ef19,1 +np.float64,0x7fc4184a15283093,0x408feaa14adf00be,1 +np.float64,0x3fe052d19920a5a3,0xbfef136b5df81a3e,1 +np.float64,0x7fe38b872b67170d,0x408ffa4f51aafc86,1 +np.float64,0x3fef9842d03f3086,0xbf92d3d2a21d4be2,1 +np.float64,0x9cea662139d4d,0xc08ff5a634810daa,1 +np.float64,0x3fe35f0855e6be11,0xbfe72c4b564e62aa,1 +np.float64,0x3fecee3d3779dc7a,0xbfc29ee942f8729e,1 +np.float64,0x3fe7903fd72f2080,0xbfdc41db9b5f4048,1 +np.float64,0xb958889572b11,0xc08ff3ba366cf84b,1 +np.float64,0x3fcb3a67c53674d0,0xc001dd21081ad1ea,1 +np.float64,0xe3b1b53fc7637,0xc08ff15a3505e1ce,1 +np.float64,0xe5954ae9cb2aa,0xc08ff141cbbf0ae4,1 +np.float64,0x3fe394af74e7295f,0xbfe6ad1d13f206e8,1 +np.float64,0x7fe21dd704643bad,0x408ff96f13f80c1a,1 +np.float64,0x3fd23a7cf02474fa,0xbffcfd7454117a05,1 +np.float64,0x7fe257515e24aea2,0x408ff99378764d52,1 +np.float64,0x7fe4c5d0a6e98ba0,0x408ffb03503cf939,1 +np.float64,0x3fadc2c1603b8583,0xc0106b2c17550e3a,1 +np.float64,0x3fc0f7f02421efe0,0xc007525ac446864c,1 +np.float64,0x3feaf0b27275e165,0xbfcfc8a03eaa32ad,1 +np.float64,0x5ce7503cb9ceb,0xc08ffbb2de365fa8,1 +np.float64,0x2a0014f654003,0xc090026e41761a0d,1 +np.float64,0x7fe2c848a8e59090,0x408ff9d9b723ee89,1 +np.float64,0x7f66f54bc02dea97,0x408fbc2ae0ec5623,1 +np.float64,0xa35a890146b6,0xc0900a97b358ddbd,1 +np.float64,0x7fee267ded7c4cfb,0x408fff501560c9f5,1 +np.float64,0x3fe07c328520f865,0xbfee9ef7c3435b58,1 +np.float64,0x3fe67122cf6ce246,0xbfe06147001932ba,1 +np.float64,0x3fdacc8925359912,0xbff41824cece219e,1 +np.float64,0xffa3047fff461,0xc08ff00431ec9be3,1 +np.float64,0x3e1af43e7c35f,0xc090002c6573d29b,1 +np.float64,0x86fa94590df53,0xc08ff7632525ed92,1 +np.float64,0x7fec4c76227898eb,0x408ffe94d032c657,1 +np.float64,0x7fe2274ce1e44e99,0x408ff975194cfdff,1 +np.float64,0x7fe670e1b4ace1c2,0x408ffbe78cc451de,1 +np.float64,0x7fe853871db0a70d,0x408ffcd5e6a6ff47,1 +np.float64,0x3fcbf265db37e4cc,0xc0019026336e1176,1 +np.float64,0x3fef033cef3e067a,0xbfa726712eaae7f0,1 +np.float64,0x5d74973abae94,0xc08ffba15e6bb992,1 +np.float64,0x7fdd9c99b6bb3932,0x408ff71ad24a7ae0,1 +np.float64,0xbdc8e09b7b91c,0xc08ff3744939e9a3,1 +np.float64,0xdbfcff71b7fa0,0xc08ff1bfeecc9dfb,1 +np.float64,0xf9b38cf5f3672,0xc08ff0499af34a43,1 +np.float64,0x3fea820aa6b50415,0xbfd162a38e1927b1,1 +np.float64,0x3fe67f59a12cfeb3,0xbfe04412adca49dc,1 +np.float64,0x3feb301d9c76603b,0xbfce17e6edeb92d5,1 +np.float64,0x828ce00b0519c,0xc08ff7c5b5c57cde,1 +np.float64,0x4f935e229f26c,0xc08ffd7c67c1c54f,1 +np.float64,0x7fcd139e023a273b,0x408feee4f12ff11e,1 +np.float64,0x666a9944ccd54,0xc08ffa92d5e5cd64,1 +np.float64,0x3fe792f0fa6f25e2,0xbfdc374fda28f470,1 +np.float64,0xe996029bd32c1,0xc08ff10eb9b47a11,1 +np.float64,0x3fe7b0dd1eef61ba,0xbfdbc2676dc77db0,1 +np.float64,0x7fd3ec0127a7d801,0x408ff287bf47e27d,1 +np.float64,0x3fe793a8ea6f2752,0xbfdc347f7717e48d,1 +np.float64,0x7fdb89d15e3713a2,0x408ff64457a13ea2,1 +np.float64,0x3fe35b3cbbe6b679,0xbfe73557c8321b70,1 +np.float64,0x66573c94ccae8,0xc08ffa9504af7eb5,1 +np.float64,0x3fc620a2302c4144,0xc00442036b944a67,1 +np.float64,0x49b2fe0693660,0xc08ffe5f131c3c7e,1 +np.float64,0x7fda936cdfb526d9,0x408ff5db3ab3f701,1 +np.float64,0xc774ceef8ee9a,0xc08ff2e16d082fa1,1 +np.float64,0x4da9f8a09b55,0xc0900ee2206d0c88,1 +np.float64,0x3fe2ca5d5ae594bb,0xbfe89406611a5f1a,1 +np.float64,0x7fe0832497e10648,0x408ff85d1de6056e,1 +np.float64,0x3fe6a9e3222d53c6,0xbfdfda35a9bc2de1,1 +np.float64,0x3fed3d92c8ba7b26,0xbfc0a73620db8b98,1 +np.float64,0x3fdd2ec093ba5d81,0xbff2209cf78ce3f1,1 +np.float64,0x62fcb968c5f98,0xc08ffaf775a593c7,1 +np.float64,0xfcfb019ff9f60,0xc08ff0230e95bd16,1 +np.float64,0x3fd7a63e8f2f4c7d,0xbff6faf4fff7dbe0,1 +np.float64,0x3fef23b0ec3e4762,0xbfa4230cb176f917,1 +np.float64,0x340d1e6a681a5,0xc09001314b68a0a2,1 +np.float64,0x7fc0b85ba02170b6,0x408fe8821487b802,1 +np.float64,0x7fe9976e84f32edc,0x408ffd6bb6aaf467,1 +np.float64,0x329a0e9e65343,0xc090015b044e3270,1 +np.float64,0x3fea4928d3f49252,0xbfd2299b05546eab,1 +np.float64,0x3f188c70003118e0,0xc02ac3ce23bc5d5a,1 +np.float64,0x3fecce5020b99ca0,0xbfc36b23153d5f50,1 +np.float64,0x3fe203873e24070e,0xbfea86edb3690830,1 +np.float64,0x3fe02d9eaa205b3d,0xbfef7d18c54a76d2,1 +np.float64,0xef7537ebdeea7,0xc08ff0c55e9d89e7,1 +np.float64,0x3fedf7572efbeeae,0xbfb840af357cf07c,1 +np.float64,0xd1a97a61a354,0xc0900926fdfb96cc,1 +np.float64,0x7fe6a0daeced41b5,0x408ffc001edf1407,1 +np.float64,0x3fe5063625aa0c6c,0xbfe3647cfb949d62,1 +np.float64,0x7fe9b28d31736519,0x408ffd77eb4a922b,1 +np.float64,0x7feea90d033d5219,0x408fff81a4bbff62,1 +np.float64,0x3fe9494d17f2929a,0xbfd5bde02eb5287a,1 +np.float64,0x7feee17a8cbdc2f4,0x408fff96cf0dc16a,1 +np.float64,0xb2ad18ef655a3,0xc08ff4267eda8af8,1 +np.float64,0x3fad3b52683a76a5,0xc01085ab75b797ce,1 +np.float64,0x2300a65846016,0xc090037b81ce9500,1 +np.float64,0x3feb1041f9b62084,0xbfcef0c87d8b3249,1 +np.float64,0x3fdd887d3e3b10fa,0xbff1da0e1ede6db2,1 +np.float64,0x3fd3e410eb27c822,0xbffaf9b5fc9cc8cc,1 +np.float64,0x3fe0aa53e3e154a8,0xbfee1e7b5c486578,1 +np.float64,0x7fe33e389aa67c70,0x408ffa214fe50961,1 +np.float64,0x3fd27e3a43a4fc75,0xbffca84a79e8adeb,1 +np.float64,0x3fb309e0082613c0,0xc00dfe407b77a508,1 +np.float64,0x7feaf2ed8cf5e5da,0x408ffe046a9d1ba9,1 +np.float64,0x1e76167a3cec4,0xc0900448cd35ec67,1 +np.float64,0x3fe0a18e1721431c,0xbfee36cf1165a0d4,1 +np.float64,0x3fa73b78c02e76f2,0xc011d9069823b172,1 +np.float64,0x3fef6d48287eda90,0xbf9ab2d08722c101,1 +np.float64,0x8fdf0da31fbe2,0xc08ff6a6a2accaa1,1 +np.float64,0x3fc3638db826c71b,0xc005c86191688826,1 +np.float64,0xaa9c09c555381,0xc08ff4aefe1d9473,1 +np.float64,0x7fccb0f4523961e8,0x408feebd84773f23,1 +np.float64,0xede75dcfdbcec,0xc08ff0d89ba887d1,1 +np.float64,0x7f8a051520340a29,0x408fcd9cc17f0d95,1 +np.float64,0x3fef5ca2babeb945,0xbf9dc221f3618e6a,1 +np.float64,0x7fea0ff4bcf41fe8,0x408ffda193359f22,1 +np.float64,0x7fe05c53fd20b8a7,0x408ff841dc7123e8,1 +np.float64,0x3fc625664b2c4acd,0xc0043f8749b9a1d8,1 +np.float64,0x7fed58f98f7ab1f2,0x408fff00585f48c2,1 +np.float64,0x3fb3e5e51427cbca,0xc00d7bcb6528cafe,1 +np.float64,0x3fe728bd3d6e517a,0xbfdddafa72bd0f60,1 +np.float64,0x3fe3f005dd27e00c,0xbfe5d7b3ec93bca0,1 +np.float64,0x3fd74fbd1a2e9f7a,0xbff750001b63ce81,1 +np.float64,0x3fd3af6d85a75edb,0xbffb371d678d11b4,1 +np.float64,0x7fa690ad8c2d215a,0x408fdbf7db9c7640,1 +np.float64,0x3fbdfd38e23bfa72,0xc008bfc1c5c9b89e,1 +np.float64,0x3fe2374684a46e8d,0xbfea030c4595dfba,1 +np.float64,0x7fc0806c372100d7,0x408fe85b36fee334,1 +np.float64,0x3fef3ac47b7e7589,0xbfa2007195c5213f,1 +np.float64,0x3fb55473922aa8e7,0xc00cae7af8230e0c,1 +np.float64,0x7fe018dc152031b7,0x408ff811e0d712fa,1 +np.float64,0x3fe3b3fca56767f9,0xbfe6638ae2c99c62,1 +np.float64,0x7fac79818c38f302,0x408fdea720b39c3c,1 +np.float64,0x7fefffffffffffff,0x4090000000000000,1 +np.float64,0xd2b290cba5652,0xc08ff23f6d7152a6,1 +np.float64,0x7fc5848eb52b091c,0x408feb6b6f8b77d0,1 +np.float64,0xf399f62de733f,0xc08ff092ae319ad8,1 +np.float64,0x7fdec56c12bd8ad7,0x408ff78c4ddbc667,1 +np.float64,0x3fca640f1e34c81e,0xc0023969c5cbfa4c,1 +np.float64,0x3fd55225db2aa44c,0xbff95f7442a2189e,1 +np.float64,0x7fefa009a97f4012,0x408fffdd2f42ef9f,1 +np.float64,0x4a3b70609478,0xc0900f24e449bc3d,1 +np.float64,0x7fe3738b1ba6e715,0x408ffa411f2cb5e7,1 +np.float64,0x7fe5e53f0b6bca7d,0x408ffb9ed8d95cea,1 +np.float64,0x3fe274dd24a4e9ba,0xbfe967fb114b2a83,1 +np.float64,0x3fcbc58b8c378b17,0xc001a2bb1e158bcc,1 +np.float64,0x3fefc2c0043f8580,0xbf862c9b464dcf38,1 +np.float64,0xc2c4fafd858a0,0xc08ff327aecc409b,1 +np.float64,0x3fd8bc39a9b17873,0xbff5f1ad46e5a51c,1 +np.float64,0x3fdf341656be682d,0xbff094f41e7cb4c4,1 +np.float64,0x3fef8495c13f092c,0xbf966cf6313bae4c,1 +np.float64,0x3fe14e0f05229c1e,0xbfec6166f26b7161,1 +np.float64,0x3fed42d3b2ba85a7,0xbfc0860b773d35d8,1 +np.float64,0x7fd92bbac5b25775,0x408ff53abcb3fe0c,1 +np.float64,0xb1635b6f62c6c,0xc08ff43bdf47accf,1 +np.float64,0x4a3a2dbc94746,0xc08ffe49fabddb36,1 +np.float64,0x87d831290fb06,0xc08ff750419dc6fb,1 +np.float64,0x3fec4713f7f88e28,0xbfc6d6217c9f5cf9,1 +np.float64,0x7fed43ba2d3a8773,0x408ffef7fa2fc303,1 +np.float64,0x7fd1ec5b56a3d8b6,0x408ff14f62615f1e,1 +np.float64,0x3fee534b6c7ca697,0xbfb3da1951aa3e68,1 +np.float64,0x3febb564c2b76aca,0xbfca9737062e55e7,1 +np.float64,0x943e6b0f287ce,0xc08ff64e2d09335c,1 +np.float64,0xf177d957e2efb,0xc08ff0acab2999fa,1 +np.float64,0x7fb5b881a82b7102,0x408fe3872b4fde5e,1 +np.float64,0x3fdb2b4a97b65695,0xbff3c715c91359bc,1 +np.float64,0x3fac0a17e4381430,0xc010c330967309fb,1 +np.float64,0x7fd8057990b00af2,0x408ff4b0a287a348,1 +np.float64,0x1f9026a23f206,0xc09004144f3a19dd,1 +np.float64,0x3fdb2977243652ee,0xbff3c8a2fd05803d,1 +np.float64,0x3fe0f6e74b21edcf,0xbfed4c3bb956bae0,1 +np.float64,0xde9cc3bbbd399,0xc08ff19ce5c1e762,1 +np.float64,0x3fe72ce106ae59c2,0xbfddca7ab14ceba2,1 +np.float64,0x3fa8ee14e031dc2a,0xc01170d54ca88e86,1 +np.float64,0x3fe0b09bbb216137,0xbfee0d189a95b877,1 +np.float64,0x7fdfdcb157bfb962,0x408ff7f33cf2afea,1 +np.float64,0x3fef84d5f53f09ac,0xbf966134e2a154f4,1 +np.float64,0x3fea0e0b1bb41c16,0xbfd2fa2d36637d19,1 +np.float64,0x1ab76fd6356ef,0xc090050a9616ffbd,1 +np.float64,0x7fd0ccf79a2199ee,0x408ff09045af2dee,1 +np.float64,0x7fea929345f52526,0x408ffddadc322b07,1 +np.float64,0x3fe9ef629cf3dec5,0xbfd367129c166838,1 +np.float64,0x3feedf0ea2fdbe1d,0xbfaa862afca44c00,1 +np.float64,0x7fce725f723ce4be,0x408fef6cfd2769a8,1 +np.float64,0x7fe4313b3ca86275,0x408ffaaf9557ef8c,1 +np.float64,0xe2d46463c5a8d,0xc08ff165725c6b08,1 +np.float64,0x7fbacb4ace359695,0x408fe5f3647bd0d5,1 +np.float64,0x3fbafd009635fa01,0xc009f745a7a5c5d5,1 +np.float64,0x3fe3cea66ce79d4d,0xbfe6253b895e2838,1 +np.float64,0x7feaa71484354e28,0x408ffde3c0bad2a6,1 +np.float64,0x3fd755b8b42eab71,0xbff74a1444c6e654,1 +np.float64,0x3fc313e2172627c4,0xc005f830e77940c3,1 +np.float64,0x12d699a225ad4,0xc090070ec00f2338,1 +np.float64,0x3fa975fe8432ebfd,0xc01151b3da48b3f9,1 +np.float64,0x7fdce3103b39c61f,0x408ff6d19b3326fa,1 +np.float64,0x7fd341cbba268396,0x408ff2237490fdca,1 +np.float64,0x3fd8405885b080b1,0xbff6666d8802a7d5,1 +np.float64,0x3fe0f0cca3a1e199,0xbfed5cdb3e600791,1 +np.float64,0x7fbd56680c3aaccf,0x408fe6ff55bf378d,1 +np.float64,0x3f939c4f3027389e,0xc016d364dd6313fb,1 +np.float64,0x3fe9e87fac73d0ff,0xbfd37f9a2be4fe38,1 +np.float64,0x7fc93c6a883278d4,0x408fed4260e614f1,1 +np.float64,0x7fa88c0ff031181f,0x408fdcf09a46bd3a,1 +np.float64,0xd5487f99aa910,0xc08ff21b6390ab3b,1 +np.float64,0x3fe34acc96e69599,0xbfe75c9d290428fb,1 +np.float64,0x3fd17f5964a2feb3,0xbffdef50b524137b,1 +np.float64,0xe23dec0dc47be,0xc08ff16d1ce61dcb,1 +np.float64,0x3fec8bd64fb917ad,0xbfc5173941614b8f,1 +np.float64,0x3fc81d97d7303b30,0xc00343ccb791401d,1 +np.float64,0x7fe79ad18e2f35a2,0x408ffc7cf0ab0f2a,1 +np.float64,0x3f96306b402c60d7,0xc0161ce54754cac1,1 +np.float64,0xfb09fc97f6140,0xc08ff039d1d30123,1 +np.float64,0x3fec9c4afa793896,0xbfc4ace43ee46079,1 +np.float64,0x3f9262dac824c5b6,0xc01732a3a7eeb598,1 +np.float64,0x3fa5cd33f42b9a68,0xc01236ed4d315a3a,1 +np.float64,0x3fe7bb336caf7667,0xbfdb9a268a82e267,1 +np.float64,0xc6c338f98d867,0xc08ff2ebb8475bbc,1 +np.float64,0x3fd50714482a0e29,0xbff9b14a9f84f2c2,1 +np.float64,0xfff0000000000000,0x7ff8000000000000,1 +np.float64,0x3fde2cd0f93c59a2,0xbff15afe35a43a37,1 +np.float64,0xf1719cb9e2e34,0xc08ff0acf77b06d3,1 +np.float64,0xfd3caaf9fa796,0xc08ff020101771bd,1 +np.float64,0x7f750d63a02a1ac6,0x408fc32ad0caa362,1 +np.float64,0x7fcc50f4e238a1e9,0x408fee96a5622f1a,1 +np.float64,0x421d1da0843a4,0xc08fff9ffe62d869,1 +np.float64,0x3fd9e17023b3c2e0,0xbff4e631d687ee8e,1 +np.float64,0x3fe4999a09693334,0xbfe4556b3734c215,1 +np.float64,0xd619ef03ac33e,0xc08ff21013c85529,1 +np.float64,0x3fc4da522229b4a4,0xc004f150b2c573aa,1 +np.float64,0x3feb04b053b60961,0xbfcf3fc9e00ebc40,1 +np.float64,0x3fbedec5ea3dbd8c,0xc0086a33dc22fab5,1 +np.float64,0x7fec3b217ab87642,0x408ffe8dbc8ca041,1 +np.float64,0xdb257d33b64b0,0xc08ff1cb42d3c182,1 +np.float64,0x7fa2d92ec025b25d,0x408fd9e414d11cb0,1 +np.float64,0x3fa425c550284b8b,0xc012ab7cbf83be12,1 +np.float64,0x10b4869021692,0xc09007c0487d648a,1 +np.float64,0x7f97918c902f2318,0x408fd47867806574,1 +np.float64,0x3fe4f91238e9f224,0xbfe38160b4e99919,1 +np.float64,0x3fc2b1af6125635f,0xc00634343bc58461,1 +np.float64,0x3fc2a98071255301,0xc0063942bc8301be,1 +np.float64,0x3fe4cfc585299f8b,0xbfe3dca39f114f34,1 +np.float64,0x3fd1ea75b3a3d4eb,0xbffd63acd02c5406,1 +np.float64,0x3fd6bf48492d7e91,0xbff7e0cd249f80f9,1 +np.float64,0x76643d36ecc88,0xc08ff8e68f13b38c,1 +np.float64,0x7feeabab3e7d5755,0x408fff82a0fd4501,1 +np.float64,0x46c0d4a68d81b,0xc08ffed79abaddc9,1 +np.float64,0x3fd088d57ca111ab,0xbfff3dd0ed7128ea,1 +np.float64,0x3fed25887cba4b11,0xbfc13f47639bd645,1 +np.float64,0x7fd90984b4b21308,0x408ff52b022c7fb4,1 +np.float64,0x3fe6ef31daadde64,0xbfdec185760cbf21,1 +np.float64,0x3fe48dbe83291b7d,0xbfe47005b99920bd,1 +np.float64,0x3fdce8422f39d084,0xbff258a33a96cc8e,1 +np.float64,0xb8ecdef771d9c,0xc08ff3c0eca61b10,1 +np.float64,0x3fe9bbf9a03377f3,0xbfd41ecfdcc336b9,1 +np.float64,0x7fe2565339a4aca5,0x408ff992d8851eaf,1 +np.float64,0x3fe1693e3822d27c,0xbfec1919da2ca697,1 +np.float64,0x3fd3680488a6d009,0xbffb8b7330275947,1 +np.float64,0x7fbe4f3d2c3c9e79,0x408fe75fa3f4e600,1 +np.float64,0x7fd4cfef3ca99fdd,0x408ff308ee3ab50f,1 +np.float64,0x3fd9c9a51cb3934a,0xbff4fb7440055ce6,1 +np.float64,0x3fe08a9640a1152d,0xbfee76bd1bfbf5c2,1 +np.float64,0x3fef012c41fe0259,0xbfa757a2da7f9707,1 +np.float64,0x3fee653fe2fcca80,0xbfb2ffae0c95025c,1 +np.float64,0x7fd0776933a0eed1,0x408ff054e7b43d41,1 +np.float64,0x4c94e5c09929d,0xc08ffdedb7f49e5e,1 +np.float64,0xca3e3d17947c8,0xc08ff2b86dce2f7a,1 +np.float64,0x3fb528e1342a51c2,0xc00cc626c8e2d9ba,1 +np.float64,0xd774df81aee9c,0xc08ff1fd6f0a7548,1 +np.float64,0x3fc47a9b6128f537,0xc00526c577b80849,1 +np.float64,0x3fe29a6f6a6534df,0xbfe90a5f83644911,1 +np.float64,0x3fecda4f59f9b49f,0xbfc31e4a80c4cbb6,1 +np.float64,0x7fe51d44f5aa3a89,0x408ffb3382437426,1 +np.float64,0x3fd677fc412ceff9,0xbff82999086977e7,1 +np.float64,0x3fe2a3c7e7254790,0xbfe8f33415cdba9d,1 +np.float64,0x3fe6d8d1dc6db1a4,0xbfdf1bc61bc24dff,1 +np.float64,0x7febb32d8ef7665a,0x408ffe55a043ded1,1 +np.float64,0x60677860c0d0,0xc0900da2caa7d571,1 +np.float64,0x7390c2e0e7219,0xc08ff92df18bb5d2,1 +np.float64,0x3fca53711b34a6e2,0xc00240b07a9b529b,1 +np.float64,0x7fe7ce6dd8ef9cdb,0x408ffc961164ead9,1 +np.float64,0x7fc0c9de0d2193bb,0x408fe88e245767f6,1 +np.float64,0xc0ee217981dc4,0xc08ff343b77ea770,1 +np.float64,0x72bd4668e57a9,0xc08ff94323fd74fc,1 +np.float64,0x7fd6970e252d2e1b,0x408ff3fb1e2fead2,1 +np.float64,0x7fdcb61040396c20,0x408ff6bf926bc98f,1 +np.float64,0xda4faa25b49f6,0xc08ff1d68b3877f0,1 +np.float64,0x3feb344749f6688f,0xbfcdfba2d66c72c5,1 +np.float64,0x3fe2aa4284e55485,0xbfe8e32ae0683f57,1 +np.float64,0x3f8e8fcfd03d1fa0,0xc01843efb2129908,1 +np.float64,0x8000000000000000,0xfff0000000000000,1 +np.float64,0x3fd8e01155b1c023,0xbff5d0529dae9515,1 +np.float64,0x3fe8033f3370067e,0xbfda837c80b87e7c,1 +np.float64,0x7fc5bf831e2b7f05,0x408feb8ae3b039a0,1 +np.float64,0x3fd8dcdf5331b9bf,0xbff5d349e1ed422a,1 +np.float64,0x3fe58b4e302b169c,0xbfe243c9cbccde44,1 +np.float64,0x3fea8a2e47b5145d,0xbfd1464e37221894,1 +np.float64,0x75cd1e88eb9a4,0xc08ff8f553ef0475,1 +np.float64,0x7fcfc876e23f90ed,0x408fefebe6cc95e6,1 +np.float64,0x7f51aceb002359d5,0x408fb1263f9003fb,1 +np.float64,0x7fc2a1b877254370,0x408fe9c1ec52f8b9,1 +np.float64,0x7fd495810e292b01,0x408ff2e859414d31,1 +np.float64,0x7fd72048632e4090,0x408ff440690cebdb,1 +np.float64,0x7fd7aafaffaf6,0xc08ff803a390779f,1 +np.float64,0x7fe18067d4a300cf,0x408ff9090a02693f,1 +np.float64,0x3fdc1080f8b82102,0xbff3077bf44a89bd,1 +np.float64,0x3fc34a462f26948c,0xc005d777b3cdf139,1 +np.float64,0x3fe21e4a1fe43c94,0xbfea428acfbc6ea9,1 +np.float64,0x1f0d79083e1b0,0xc090042c65a7abf2,1 +np.float64,0x3fe8d0d15931a1a3,0xbfd779f6bbd4db78,1 +np.float64,0x3fe74578022e8af0,0xbfdd68b6c15e9f5e,1 +np.float64,0x50995dd0a132c,0xc08ffd56a5c8accf,1 +np.float64,0x3f9a6342b034c685,0xc0151ce1973c62bd,1 +np.float64,0x3f30856a00210ad4,0xc027e852f4d1fcbc,1 +np.float64,0x3febcf7646b79eed,0xbfc9e9cc9d12425c,1 +np.float64,0x8010000000000000,0x7ff8000000000000,1 +np.float64,0x3fdf520c02bea418,0xbff07ed5013f3062,1 +np.float64,0x3fe5433ecbea867e,0xbfe2df38968b6d14,1 +np.float64,0x3fb933a84e326751,0xc00ac1a144ad26c5,1 +np.float64,0x7b6d72c2f6daf,0xc08ff86b7a67f962,1 +np.float64,0xaef5dae75debc,0xc08ff46496bb2932,1 +np.float64,0x522d869aa45b1,0xc08ffd1d55281e98,1 +np.float64,0xa2462b05448c6,0xc08ff542fe0ac5fd,1 +np.float64,0x3fe2b71dd6e56e3c,0xbfe8c3690cf15415,1 +np.float64,0x3fe5778231aaef04,0xbfe26e495d09b783,1 +np.float64,0x3fe9b8d564f371ab,0xbfd42a161132970d,1 +np.float64,0x3f89ebc34033d787,0xc019373f90bfc7f1,1 +np.float64,0x3fe438ddc6e871bc,0xbfe53039341b0a93,1 +np.float64,0x873c75250e78f,0xc08ff75d8478dccd,1 +np.float64,0x807134cb00e27,0xc08ff7f5cf59c57a,1 +np.float64,0x3fac459878388b31,0xc010b6fe803bcdc2,1 +np.float64,0xca9dc7eb953b9,0xc08ff2b2fb480784,1 +np.float64,0x7feb38587bb670b0,0x408ffe21ff6d521e,1 +np.float64,0x7fd70e9b782e1d36,0x408ff437936b393a,1 +np.float64,0x3fa4037bbc2806f7,0xc012b55744c65ab2,1 +np.float64,0x3fd3d4637427a8c7,0xbffb0beebf4311ef,1 +np.float64,0x7fdabbda5db577b4,0x408ff5ecbc0d4428,1 +np.float64,0x7fda9be0a2b537c0,0x408ff5dee5d03d5a,1 +np.float64,0x7fe9c74396338e86,0x408ffd813506a18a,1 +np.float64,0x3fd058243e20b048,0xbfff822ffd8a7f21,1 +np.float64,0x3fe6aa6ca9ed54d9,0xbfdfd805629ff49e,1 +np.float64,0x3fd91431d5322864,0xbff5a025eea8c78b,1 +np.float64,0x7fe4d7f02329afdf,0x408ffb0d5d9b7878,1 +np.float64,0x3fe2954a12252a94,0xbfe917266e3e22d5,1 +np.float64,0x3fb25f7c8224bef9,0xc00e6764c81b3718,1 +np.float64,0x3fda4bddeeb497bc,0xbff4880638908c81,1 +np.float64,0x55dfd12eabbfb,0xc08ffc9b54ff4002,1 +np.float64,0x3fe8f399e031e734,0xbfd6f8e5c4dcd93f,1 +np.float64,0x3fd954a24832a945,0xbff56521f4707a06,1 +np.float64,0x3fdea911f2bd5224,0xbff0fcb2d0c2b2e2,1 +np.float64,0x3fe6b4ff8a2d69ff,0xbfdfacfc85cafeab,1 +np.float64,0x3fc7fa02042ff404,0xc00354e13b0767ad,1 +np.float64,0x3fe955088c72aa11,0xbfd593130f29949e,1 +np.float64,0xd7e74ec1afcea,0xc08ff1f74f61721c,1 +np.float64,0x3fe9d69c1ab3ad38,0xbfd3bf710a337e06,1 +np.float64,0x3fd85669a2b0acd3,0xbff65176143ccc1e,1 +np.float64,0x3fea99b285353365,0xbfd11062744783f2,1 +np.float64,0x3fe2c79f80a58f3f,0xbfe89ac33f990289,1 +np.float64,0x3f8332ba30266574,0xc01af2cb7b635783,1 +np.float64,0x30d0150061a1,0xc090119030f74c5d,1 +np.float64,0x3fdbf4cb06b7e996,0xbff31e5207aaa754,1 +np.float64,0x3fe6b56c216d6ad8,0xbfdfab42fb2941c5,1 +np.float64,0x7fc4dc239829b846,0x408feb0fb0e13fbe,1 +np.float64,0x3fd0ab85ef21570c,0xbfff0d95d6c7a35c,1 +np.float64,0x7fe13d75e5e27aeb,0x408ff8dc8efa476b,1 +np.float64,0x3fece3b832f9c770,0xbfc2e21b165d583f,1 +np.float64,0x3fe3a279c4e744f4,0xbfe68ca4fbb55dbf,1 +np.float64,0x3feb64659ef6c8cb,0xbfccb6204b6bf724,1 +np.float64,0x2279a6bc44f36,0xc0900391eeeb3e7c,1 +np.float64,0xb88046d571009,0xc08ff3c7b5b45300,1 +np.float64,0x7ff4000000000000,0x7ffc000000000000,1 +np.float64,0x3fe49af059a935e1,0xbfe4526c294f248f,1 +np.float64,0xa3e5508147cc,0xc0900a92ce5924b1,1 +np.float64,0x7fc56def3d2adbdd,0x408feb5f46c360e8,1 +np.float64,0x7fd99f3574333e6a,0x408ff56f3807987c,1 +np.float64,0x3fdc38d56fb871ab,0xbff2e667cad8f36a,1 +np.float64,0xd0b03507a1607,0xc08ff25bbcf8aa9d,1 +np.float64,0xc493f9078927f,0xc08ff30c5fa4e759,1 +np.float64,0x3fc86ddbcb30dbb8,0xc0031da1fcb56d75,1 +np.float64,0x7fe75dc395aebb86,0x408ffc5eef841491,1 +np.float64,0x1647618a2c8ed,0xc0900616ef9479c1,1 +np.float64,0xdf144763be289,0xc08ff196b527f3c9,1 +np.float64,0x3fe0b29da6a1653b,0xbfee078b5f4d7744,1 +np.float64,0x3feb055852b60ab1,0xbfcf3b4db5779a7a,1 +np.float64,0x3fe8bc1625f1782c,0xbfd7c739ade904bc,1 +np.float64,0x7fd19bfb8ea337f6,0x408ff11b2b55699c,1 +np.float64,0x3fed1d80d1ba3b02,0xbfc1722e8d3ce094,1 +np.float64,0x2d9c65925b38e,0xc09001f46bcd3bc5,1 +np.float64,0x7fed6f4d857ade9a,0x408fff091cf6a3b4,1 +np.float64,0x3fd070cd6ba0e19b,0xbfff5f7609ca29e8,1 +np.float64,0x7fea3508b8f46a10,0x408ffdb1f30bd6be,1 +np.float64,0x508b897ca1172,0xc08ffd58a0eb3583,1 +np.float64,0x7feba367b07746ce,0x408ffe4f0bf4bd4e,1 +np.float64,0x3fefebd5c4bfd7ac,0xbf6d20b4fcf21b69,1 +np.float64,0x3fd8ef07b8b1de0f,0xbff5c2745c0795a5,1 +np.float64,0x3fd38ed518271daa,0xbffb5d75f00f6900,1 +np.float64,0x6de0fecedbc20,0xc08ff9c307bbc647,1 +np.float64,0xafc0ffc35f820,0xc08ff45737e5d6b4,1 +np.float64,0x7fd282097ca50412,0x408ff1ae3b27bf3b,1 +np.float64,0x3fe2f2d50b65e5aa,0xbfe831042e6a1e99,1 +np.float64,0x3faa437bac3486f7,0xc01123d8d962205a,1 +np.float64,0x3feea54434fd4a88,0xbfaff202cc456647,1 +np.float64,0x3fc9e65b8633ccb7,0xc00270e77ffd19da,1 +np.float64,0x7fee15af61fc2b5e,0x408fff49a49154a3,1 +np.float64,0x7fefe670a73fcce0,0x408ffff6c44c1005,1 +np.float64,0x3fc0832d0f21065a,0xc007a2dc2f25384a,1 +np.float64,0x3fecfc96bcb9f92d,0xbfc24367c3912620,1 +np.float64,0x3feb705682b6e0ad,0xbfcc65b1bb16f9c5,1 +np.float64,0x3fe185c4f9630b8a,0xbfebcdb401af67a4,1 +np.float64,0x3fb0a5a9f6214b54,0xc00f8ada2566a047,1 +np.float64,0x7fe2908cdda52119,0x408ff9b744861fb1,1 +np.float64,0x7fee776e183ceedb,0x408fff6ee7c2f86e,1 +np.float64,0x3fce1d608f3c3ac1,0xc000b3685d006474,1 +np.float64,0x7fecf92aa339f254,0x408ffeda6c998267,1 +np.float64,0xce13cb519c27a,0xc08ff280f02882a9,1 +np.float64,0x1,0xc090c80000000000,1 +np.float64,0x3fe485a8afa90b51,0xbfe4823265d5a50a,1 +np.float64,0x3feea60908bd4c12,0xbfafdf7ad7fe203f,1 +np.float64,0x3fd2253033a44a60,0xbffd187d0ec8d5b9,1 +np.float64,0x435338fc86a68,0xc08fff6a591059dd,1 +np.float64,0x7fce8763a73d0ec6,0x408fef74f1e715ff,1 +np.float64,0x3fbe5ddb783cbbb7,0xc0089acc5afa794b,1 +np.float64,0x7fe4cf19ada99e32,0x408ffb0877ca302b,1 +np.float64,0x3fe94c9ea1b2993d,0xbfd5b1c2e867b911,1 +np.float64,0x3fe75541c72eaa84,0xbfdd2a27aa117699,1 +np.float64,0x8000000000000001,0x7ff8000000000000,1 +np.float64,0x7fdbec7f2c37d8fd,0x408ff66d69a7f818,1 +np.float64,0x8ef10d091de22,0xc08ff6b9ca5094f8,1 +np.float64,0x3fea69025b74d205,0xbfd1b9fe2c252c70,1 +np.float64,0x562376d0ac46f,0xc08ffc924111cd31,1 +np.float64,0x8e8097ab1d013,0xc08ff6c2e2706f67,1 +np.float64,0x3fca6803ed34d008,0xc00237aef808825b,1 +np.float64,0x7fe8fe9067b1fd20,0x408ffd25f459a7d1,1 +np.float64,0x3f918e8c7f233,0xc0900009fe011d54,1 +np.float64,0x3fdfe773833fcee7,0xbff011bc1af87bb9,1 +np.float64,0xefffef6fdfffe,0xc08ff0beb0f09eb0,1 +np.float64,0x7fe64610282c8c1f,0x408ffbd17209db18,1 +np.float64,0xe66be8c1ccd7d,0xc08ff13706c056e1,1 +np.float64,0x2837e570506fd,0xc09002ae4dae0c1a,1 +np.float64,0x3febe3a081f7c741,0xbfc964171f2a5a47,1 +np.float64,0x3fe21ed09a243da1,0xbfea41342d29c3ff,1 +np.float64,0x3fe1596c8162b2d9,0xbfec431eee30823a,1 +np.float64,0x8f2b9a131e574,0xc08ff6b51104ed4e,1 +np.float64,0x3fe88ed179711da3,0xbfd870d08a4a4b0c,1 +np.float64,0x34159bc2682b4,0xc09001305a885f94,1 +np.float64,0x1ed31e543da65,0xc0900437481577f8,1 +np.float64,0x3feafbe9de75f7d4,0xbfcf7bcdbacf1c61,1 +np.float64,0xfb16fb27f62e0,0xc08ff03938e682a2,1 +np.float64,0x3fe5cd5ba7eb9ab7,0xbfe1b7165771af3c,1 +np.float64,0x7fe72905e76e520b,0x408ffc44c4e7e80c,1 +np.float64,0x7fb7136e2e2e26db,0x408fe439fd383fb7,1 +np.float64,0x8fa585e11f4c,0xc0900b55a08a486b,1 +np.float64,0x7fed985ce47b30b9,0x408fff192b596821,1 +np.float64,0x3feaaf0869755e11,0xbfd0c671571b3764,1 +np.float64,0x3fa40fd4ec281faa,0xc012b1c8dc0b9e5f,1 +np.float64,0x7fda2a70993454e0,0x408ff5ad47b0c68a,1 +np.float64,0x3fe5f7e931abefd2,0xbfe15d52b3605abf,1 +np.float64,0x3fe9fc6d3533f8da,0xbfd338b06a790994,1 +np.float64,0x3fe060649420c0c9,0xbfeeed1756111891,1 +np.float64,0x3fce8435e33d086c,0xc0008c41cea9ed40,1 +np.float64,0x7ff8000000000000,0x7ff8000000000000,1 +np.float64,0x617820aec2f05,0xc08ffb251e9af0f0,1 +np.float64,0x7fcc4ab6ee38956d,0x408fee9419c8f77d,1 +np.float64,0x7fdefda2fc3dfb45,0x408ff7a15063bc05,1 +np.float64,0x7fe5138ccaaa2719,0x408ffb2e30f3a46e,1 +np.float64,0x3fe3817a836702f5,0xbfe6da7c2b25e35a,1 +np.float64,0x3fb8a7dafa314fb6,0xc00b025bc0784ebe,1 +np.float64,0x349dc420693d,0xc09011215825d2c8,1 +np.float64,0x6b0e504ad61cb,0xc08ffa0fee9c5cd6,1 +np.float64,0x273987644e732,0xc09002d34294ed79,1 +np.float64,0x3fc0bd8a6e217b15,0xc0077a5828b4d2f5,1 +np.float64,0x758b48c4eb16a,0xc08ff8fbc8fbe46a,1 +np.float64,0x3fc8a9a52631534a,0xc00301854ec0ef81,1 +np.float64,0x7fe79d29a76f3a52,0x408ffc7e1607a4c1,1 +np.float64,0x3fd7d3ebce2fa7d8,0xbff6ce8a94aebcda,1 +np.float64,0x7fd1cb68a52396d0,0x408ff13a17533b2b,1 +np.float64,0x7fda514a5d34a294,0x408ff5be5e081578,1 +np.float64,0x3fc40b4382281687,0xc0056632c8067228,1 +np.float64,0x7feff1208c3fe240,0x408ffffaa180fa0d,1 +np.float64,0x8f58739f1eb0f,0xc08ff6b17402689d,1 +np.float64,0x1fdbe9a23fb7e,0xc090040685b2d24f,1 +np.float64,0xcb1d0e87963a2,0xc08ff2abbd903b82,1 +np.float64,0x3fc45a6a1a28b4d4,0xc00538f86c4aeaee,1 +np.float64,0x3fe61885b1ac310b,0xbfe118fd2251d2ec,1 +np.float64,0x3fedf584c8fbeb0a,0xbfb8572433ff67a9,1 +np.float64,0x7fb0bddd1a217bb9,0x408fe085e0d621db,1 +np.float64,0x72d8d3e0e5b3,0xc0900ca02f68c7a1,1 +np.float64,0x5cca6ff6b994f,0xc08ffbb6751fda01,1 +np.float64,0x7fe3197839a632ef,0x408ffa0b2fccfb68,1 +np.float64,0x3fcce4d9c139c9b4,0xc0012dae05baa91b,1 +np.float64,0x3fe76d00f62eda02,0xbfdccc5f12799be1,1 +np.float64,0x3fc53c22f72a7846,0xc004bbaa9cbc7958,1 +np.float64,0x7fdda02f1ebb405d,0x408ff71c37c71659,1 +np.float64,0x3fe0844eaba1089d,0xbfee884722762583,1 +np.float64,0x3febb438dc776872,0xbfca9f05e1c691f1,1 +np.float64,0x3fdf4170cdbe82e2,0xbff08b1561c8d848,1 +np.float64,0x3fce1b8d6f3c371b,0xc000b41b69507671,1 +np.float64,0x8370e60706e1d,0xc08ff7b19ea0b4ca,1 +np.float64,0x7fa5bf92382b7f23,0x408fdb8aebb3df87,1 +np.float64,0x7fe4a59979a94b32,0x408ffaf15c1358cd,1 +np.float64,0x3faa66086034cc11,0xc0111c466b7835d6,1 +np.float64,0x7fb7a958262f52af,0x408fe48408b1e093,1 +np.float64,0x3fdaacc5f635598c,0xbff43390d06b5614,1 +np.float64,0x3fd2825b9e2504b7,0xbffca3234264f109,1 +np.float64,0x3fcede160a3dbc2c,0xc0006a759e29060c,1 +np.float64,0x7fd3b19603a7632b,0x408ff265b528371c,1 +np.float64,0x7fcf8a86ea3f150d,0x408fefd552e7f3b2,1 +np.float64,0xedbcc0f7db798,0xc08ff0daad12096b,1 +np.float64,0xf1e1683de3c2d,0xc08ff0a7a0a37e00,1 +np.float64,0xb6ebd9bf6dd7b,0xc08ff3e11e28378d,1 +np.float64,0x3fec8090d6f90122,0xbfc56031b72194cc,1 +np.float64,0x3fd3e10e37a7c21c,0xbffafd34a3ebc933,1 +np.float64,0x7fbb1c96aa36392c,0x408fe616347b3342,1 +np.float64,0x3fe2f3996f25e733,0xbfe82f25bc5d1bbd,1 +np.float64,0x7fe8709da870e13a,0x408ffce3ab6ce59a,1 +np.float64,0x7fea3233d1b46467,0x408ffdb0b3bbc6de,1 +np.float64,0x65fa4112cbf49,0xc08ffa9f85eb72b9,1 +np.float64,0x3fca2cae9f34595d,0xc00251bb275afb87,1 +np.float64,0x8135fd9f026c0,0xc08ff7e42e14dce7,1 +np.float64,0x7fe0a6f057e14de0,0x408ff876081a4bfe,1 +np.float64,0x10000000000000,0xc08ff00000000000,1 +np.float64,0x3fe1fd506263faa1,0xbfea96dd8c543b72,1 +np.float64,0xa5532c554aa66,0xc08ff50bf5bfc66d,1 +np.float64,0xc239d00b8473a,0xc08ff32ff0ea3f92,1 +np.float64,0x7fdb5314e336a629,0x408ff62d4ff60d82,1 +np.float64,0x3fe5f506e2abea0e,0xbfe16362a4682120,1 +np.float64,0x3fa20c60202418c0,0xc0134e08d82608b6,1 +np.float64,0x7fe03864b22070c8,0x408ff82866d65e9a,1 +np.float64,0x3fe72cf5656e59eb,0xbfddca298969effa,1 +np.float64,0x5c295386b852b,0xc08ffbca90b136c9,1 +np.float64,0x7fd71e5020ae3c9f,0x408ff43f6d58eb7c,1 +np.float64,0x3fd1905a842320b5,0xbffdd8ecd288159c,1 +np.float64,0x3fe6bddb256d7bb6,0xbfdf88fee1a820bb,1 +np.float64,0xe061b967c0c37,0xc08ff18581951561,1 +np.float64,0x3fe534f65cea69ed,0xbfe2fe45fe7d3040,1 +np.float64,0xdc7dae07b8fb6,0xc08ff1b93074ea76,1 +np.float64,0x3fd0425082a084a1,0xbfffa11838b21633,1 +np.float64,0xba723fc974e48,0xc08ff3a8b8d01c58,1 +np.float64,0x3fce42ffc73c8600,0xc000a5062678406e,1 +np.float64,0x3f2e6d3c7e5ce,0xc090001304cfd1c7,1 +np.float64,0x3fd4b2e5f7a965cc,0xbffa0e6e6bae0a68,1 +np.float64,0x3fe6db1d18edb63a,0xbfdf128158ee92d9,1 +np.float64,0x7fe4e5792f29caf1,0x408ffb14d9dbf133,1 +np.float64,0x3fc11cdf992239bf,0xc00739569619cd77,1 +np.float64,0x3fc05ea11220bd42,0xc007bc841b48a890,1 +np.float64,0x4bd592d497ab3,0xc08ffe0ab1c962e2,1 +np.float64,0x280068fc5000e,0xc09002b64955e865,1 +np.float64,0x7fe2f2637065e4c6,0x408ff9f379c1253a,1 +np.float64,0x3fefc38467ff8709,0xbf85e53e64b9a424,1 +np.float64,0x2d78ec5a5af1e,0xc09001f8ea8601e0,1 +np.float64,0x7feeef2b957dde56,0x408fff9bebe995f7,1 +np.float64,0x2639baf44c738,0xc09002f9618d623b,1 +np.float64,0x3fc562964d2ac52d,0xc004a6d76959ef78,1 +np.float64,0x3fe21b071fe4360e,0xbfea4adb2cd96ade,1 +np.float64,0x7fe56aa6802ad54c,0x408ffb5d81d1a898,1 +np.float64,0x4296b452852d7,0xc08fff8ad7fbcbe1,1 +np.float64,0x7fe3fac4ff27f589,0x408ffa9049eec479,1 +np.float64,0x7fe7a83e6caf507c,0x408ffc837f436604,1 +np.float64,0x3fc4ac5b872958b7,0xc0050add72381ac3,1 +np.float64,0x3fd6d697c02dad30,0xbff7c931a3eefb01,1 +np.float64,0x3f61e391c023c724,0xc021ad91e754f94b,1 +np.float64,0x10817f9c21031,0xc09007d20434d7bc,1 +np.float64,0x3fdb9c4c4cb73899,0xbff367d8615c5ece,1 +np.float64,0x3fe26ead6b64dd5b,0xbfe977771def5989,1 +np.float64,0x3fc43ea5c3287d4c,0xc00548c2163ae631,1 +np.float64,0x3fe05bd8bba0b7b1,0xbfeef9ea0db91abc,1 +np.float64,0x3feac78369358f07,0xbfd071e2b0aeab39,1 +np.float64,0x7fe254922ca4a923,0x408ff991bdd4e5d3,1 +np.float64,0x3fe5a2f5842b45eb,0xbfe21135c9a71666,1 +np.float64,0x3fd5daf98c2bb5f3,0xbff8cd24f7c07003,1 +np.float64,0x3fcb2a1384365427,0xc001e40f0d04299a,1 +np.float64,0x3fe073974360e72f,0xbfeeb7183a9930b7,1 +np.float64,0xcf3440819e688,0xc08ff270d3a71001,1 +np.float64,0x3fd35656cda6acae,0xbffba083fba4939d,1 +np.float64,0x7fe6c59b4ded8b36,0x408ffc12ce725425,1 +np.float64,0x3fba896f943512df,0xc00a291cb6947701,1 +np.float64,0x7fe54917e86a922f,0x408ffb4b5e0fb848,1 +np.float64,0x7fed2a3f51ba547e,0x408ffeede945a948,1 +np.float64,0x3fdc72bd5038e57b,0xbff2b73b7e93e209,1 +np.float64,0x7fefdb3f9f3fb67e,0x408ffff2b702a768,1 +np.float64,0x3fb0184430203088,0xc00fee8c1351763c,1 +np.float64,0x7d6c3668fad87,0xc08ff83c195f2cca,1 +np.float64,0x3fd5aa254aab544b,0xbff900f16365991b,1 +np.float64,0x3f963daab02c7b55,0xc0161974495b1b71,1 +np.float64,0x3fa7a9c5982f538b,0xc011bde0f6052a89,1 +np.float64,0xb3a5a74b674b5,0xc08ff4167bc97c81,1 +np.float64,0x7fad0c14503a1828,0x408fdee1f2d56cd7,1 +np.float64,0x43e0e9d887c1e,0xc08fff522837b13b,1 +np.float64,0x3fe513b20aea2764,0xbfe346ea994100e6,1 +np.float64,0x7fe4e10393e9c206,0x408ffb12630f6a06,1 +np.float64,0x68b286e2d1651,0xc08ffa51c0d795d4,1 +np.float64,0x7fe8de453331bc89,0x408ffd17012b75ac,1 +np.float64,0x1b3d77d4367b0,0xc09004edea60aa36,1 +np.float64,0x3fd351cbc326a398,0xbffba5f0f4d5fdba,1 +np.float64,0x3fd264951b24c92a,0xbffcc8636788b9bf,1 +np.float64,0xd2465761a48cb,0xc08ff2455c9c53e5,1 +np.float64,0x7fe46a0ef028d41d,0x408ffacfe32c6f5d,1 +np.float64,0x3fafd8ac4c3fb159,0xc010071bf33195d0,1 +np.float64,0x902aec5d2055e,0xc08ff6a08e28aabc,1 +np.float64,0x3fcea61bb03d4c37,0xc0007f76e509b657,1 +np.float64,0x7fe8d90f9571b21e,0x408ffd1495f952e7,1 +np.float64,0x7fa650c9442ca192,0x408fdbd6ff22fdd8,1 +np.float64,0x3fe8ecfdf171d9fc,0xbfd7115df40e8580,1 +np.float64,0x7fd4e6fe7f29cdfc,0x408ff315b0dae183,1 +np.float64,0x77df4c52efbea,0xc08ff8c1d5c1df33,1 +np.float64,0xe200b0cfc4016,0xc08ff1703cfb8e79,1 +np.float64,0x3fe230ea7e2461d5,0xbfea132d2385160e,1 +np.float64,0x7fd1f7ced723ef9d,0x408ff156bfbf92a4,1 +np.float64,0x3fea762818f4ec50,0xbfd18c12a88e5f79,1 +np.float64,0x7feea4ba7c7d4974,0x408fff8004164054,1 +np.float64,0x833ec605067d9,0xc08ff7b606383841,1 +np.float64,0x7fd0c2d7fea185af,0x408ff0894f3a0cf4,1 +np.float64,0x3fe1d7d61d23afac,0xbfeaf76fee875d3e,1 +np.float64,0x65adecb0cb5be,0xc08ffaa82cb09d68,1 diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-sin.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-sin.csv new file mode 100644 index 0000000..03e76ff --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-sin.csv @@ -0,0 +1,1370 @@ +dtype,input,output,ulperrortol +## +ve denormals ## +np.float32,0x004b4716,0x004b4716,2 +np.float32,0x007b2490,0x007b2490,2 +np.float32,0x007c99fa,0x007c99fa,2 +np.float32,0x00734a0c,0x00734a0c,2 +np.float32,0x0070de24,0x0070de24,2 +np.float32,0x007fffff,0x007fffff,2 +np.float32,0x00000001,0x00000001,2 +## -ve denormals ## +np.float32,0x80495d65,0x80495d65,2 +np.float32,0x806894f6,0x806894f6,2 +np.float32,0x80555a76,0x80555a76,2 +np.float32,0x804e1fb8,0x804e1fb8,2 +np.float32,0x80687de9,0x80687de9,2 +np.float32,0x807fffff,0x807fffff,2 +np.float32,0x80000001,0x80000001,2 +## +/-0.0f, +/-FLT_MIN +/-FLT_MAX ## +np.float32,0x00000000,0x00000000,2 +np.float32,0x80000000,0x80000000,2 +np.float32,0x00800000,0x00800000,2 +np.float32,0x80800000,0x80800000,2 +## 1.00f ## +np.float32,0x3f800000,0x3f576aa4,2 +np.float32,0x3f800001,0x3f576aa6,2 +np.float32,0x3f800002,0x3f576aa7,2 +np.float32,0xc090a8b0,0x3f7b4e48,2 +np.float32,0x41ce3184,0x3f192d43,2 +np.float32,0xc1d85848,0xbf7161cb,2 +np.float32,0x402b8820,0x3ee3f29f,2 +np.float32,0x42b4e454,0x3f1d0151,2 +np.float32,0x42a67a60,0x3f7ffa4c,2 +np.float32,0x41d92388,0x3f67beef,2 +np.float32,0x422dd66c,0xbeffb0c1,2 +np.float32,0xc28f5be6,0xbf0bae79,2 +np.float32,0x41ab2674,0x3f0ffe2b,2 +np.float32,0x3f490fdb,0x3f3504f3,2 +np.float32,0xbf490fdb,0xbf3504f3,2 +np.float32,0x3fc90fdb,0x3f800000,2 +np.float32,0xbfc90fdb,0xbf800000,2 +np.float32,0x40490fdb,0xb3bbbd2e,2 +np.float32,0xc0490fdb,0x33bbbd2e,2 +np.float32,0x3fc90fdb,0x3f800000,2 +np.float32,0xbfc90fdb,0xbf800000,2 +np.float32,0x40490fdb,0xb3bbbd2e,2 +np.float32,0xc0490fdb,0x33bbbd2e,2 +np.float32,0x40c90fdb,0x343bbd2e,2 +np.float32,0xc0c90fdb,0xb43bbd2e,2 +np.float32,0x4016cbe4,0x3f3504f3,2 +np.float32,0xc016cbe4,0xbf3504f3,2 +np.float32,0x4096cbe4,0xbf800000,2 +np.float32,0xc096cbe4,0x3f800000,2 +np.float32,0x4116cbe4,0xb2ccde2e,2 +np.float32,0xc116cbe4,0x32ccde2e,2 +np.float32,0x40490fdb,0xb3bbbd2e,2 +np.float32,0xc0490fdb,0x33bbbd2e,2 +np.float32,0x40c90fdb,0x343bbd2e,2 +np.float32,0xc0c90fdb,0xb43bbd2e,2 +np.float32,0x41490fdb,0x34bbbd2e,2 +np.float32,0xc1490fdb,0xb4bbbd2e,2 +np.float32,0x407b53d2,0xbf3504f5,2 +np.float32,0xc07b53d2,0x3f3504f5,2 +np.float32,0x40fb53d2,0x3f800000,2 +np.float32,0xc0fb53d2,0xbf800000,2 +np.float32,0x417b53d2,0xb535563d,2 +np.float32,0xc17b53d2,0x3535563d,2 +np.float32,0x4096cbe4,0xbf800000,2 +np.float32,0xc096cbe4,0x3f800000,2 +np.float32,0x4116cbe4,0xb2ccde2e,2 +np.float32,0xc116cbe4,0x32ccde2e,2 +np.float32,0x4196cbe4,0x334cde2e,2 +np.float32,0xc196cbe4,0xb34cde2e,2 +np.float32,0x40afede0,0xbf3504ef,2 +np.float32,0xc0afede0,0x3f3504ef,2 +np.float32,0x412fede0,0xbf800000,2 +np.float32,0xc12fede0,0x3f800000,2 +np.float32,0x41afede0,0xb5b222c4,2 +np.float32,0xc1afede0,0x35b222c4,2 +np.float32,0x40c90fdb,0x343bbd2e,2 +np.float32,0xc0c90fdb,0xb43bbd2e,2 +np.float32,0x41490fdb,0x34bbbd2e,2 +np.float32,0xc1490fdb,0xb4bbbd2e,2 +np.float32,0x41c90fdb,0x353bbd2e,2 +np.float32,0xc1c90fdb,0xb53bbd2e,2 +np.float32,0x40e231d6,0x3f3504f3,2 +np.float32,0xc0e231d6,0xbf3504f3,2 +np.float32,0x416231d6,0x3f800000,2 +np.float32,0xc16231d6,0xbf800000,2 +np.float32,0x41e231d6,0xb399a6a2,2 +np.float32,0xc1e231d6,0x3399a6a2,2 +np.float32,0x40fb53d2,0x3f800000,2 +np.float32,0xc0fb53d2,0xbf800000,2 +np.float32,0x417b53d2,0xb535563d,2 +np.float32,0xc17b53d2,0x3535563d,2 +np.float32,0x41fb53d2,0x35b5563d,2 +np.float32,0xc1fb53d2,0xb5b5563d,2 +np.float32,0x410a3ae7,0x3f3504eb,2 +np.float32,0xc10a3ae7,0xbf3504eb,2 +np.float32,0x418a3ae7,0xbf800000,2 +np.float32,0xc18a3ae7,0x3f800000,2 +np.float32,0x420a3ae7,0xb6308908,2 +np.float32,0xc20a3ae7,0x36308908,2 +np.float32,0x4116cbe4,0xb2ccde2e,2 +np.float32,0xc116cbe4,0x32ccde2e,2 +np.float32,0x4196cbe4,0x334cde2e,2 +np.float32,0xc196cbe4,0xb34cde2e,2 +np.float32,0x4216cbe4,0x33ccde2e,2 +np.float32,0xc216cbe4,0xb3ccde2e,2 +np.float32,0x41235ce2,0xbf3504f7,2 +np.float32,0xc1235ce2,0x3f3504f7,2 +np.float32,0x41a35ce2,0x3f800000,2 +np.float32,0xc1a35ce2,0xbf800000,2 +np.float32,0x42235ce2,0xb5b889b6,2 +np.float32,0xc2235ce2,0x35b889b6,2 +np.float32,0x412fede0,0xbf800000,2 +np.float32,0xc12fede0,0x3f800000,2 +np.float32,0x41afede0,0xb5b222c4,2 +np.float32,0xc1afede0,0x35b222c4,2 +np.float32,0x422fede0,0x363222c4,2 +np.float32,0xc22fede0,0xb63222c4,2 +np.float32,0x413c7edd,0xbf3504f3,2 +np.float32,0xc13c7edd,0x3f3504f3,2 +np.float32,0x41bc7edd,0xbf800000,2 +np.float32,0xc1bc7edd,0x3f800000,2 +np.float32,0x423c7edd,0xb4000add,2 +np.float32,0xc23c7edd,0x34000add,2 +np.float32,0x41490fdb,0x34bbbd2e,2 +np.float32,0xc1490fdb,0xb4bbbd2e,2 +np.float32,0x41c90fdb,0x353bbd2e,2 +np.float32,0xc1c90fdb,0xb53bbd2e,2 +np.float32,0x42490fdb,0x35bbbd2e,2 +np.float32,0xc2490fdb,0xb5bbbd2e,2 +np.float32,0x4155a0d9,0x3f3504fb,2 +np.float32,0xc155a0d9,0xbf3504fb,2 +np.float32,0x41d5a0d9,0x3f800000,2 +np.float32,0xc1d5a0d9,0xbf800000,2 +np.float32,0x4255a0d9,0xb633bc81,2 +np.float32,0xc255a0d9,0x3633bc81,2 +np.float32,0x416231d6,0x3f800000,2 +np.float32,0xc16231d6,0xbf800000,2 +np.float32,0x41e231d6,0xb399a6a2,2 +np.float32,0xc1e231d6,0x3399a6a2,2 +np.float32,0x426231d6,0x3419a6a2,2 +np.float32,0xc26231d6,0xb419a6a2,2 +np.float32,0x416ec2d4,0x3f3504ef,2 +np.float32,0xc16ec2d4,0xbf3504ef,2 +np.float32,0x41eec2d4,0xbf800000,2 +np.float32,0xc1eec2d4,0x3f800000,2 +np.float32,0x426ec2d4,0xb5bef0a7,2 +np.float32,0xc26ec2d4,0x35bef0a7,2 +np.float32,0x417b53d2,0xb535563d,2 +np.float32,0xc17b53d2,0x3535563d,2 +np.float32,0x41fb53d2,0x35b5563d,2 +np.float32,0xc1fb53d2,0xb5b5563d,2 +np.float32,0x427b53d2,0x3635563d,2 +np.float32,0xc27b53d2,0xb635563d,2 +np.float32,0x4183f268,0xbf3504ff,2 +np.float32,0xc183f268,0x3f3504ff,2 +np.float32,0x4203f268,0x3f800000,2 +np.float32,0xc203f268,0xbf800000,2 +np.float32,0x4283f268,0xb6859a13,2 +np.float32,0xc283f268,0x36859a13,2 +np.float32,0x418a3ae7,0xbf800000,2 +np.float32,0xc18a3ae7,0x3f800000,2 +np.float32,0x420a3ae7,0xb6308908,2 +np.float32,0xc20a3ae7,0x36308908,2 +np.float32,0x428a3ae7,0x36b08908,2 +np.float32,0xc28a3ae7,0xb6b08908,2 +np.float32,0x41908365,0xbf3504f6,2 +np.float32,0xc1908365,0x3f3504f6,2 +np.float32,0x42108365,0xbf800000,2 +np.float32,0xc2108365,0x3f800000,2 +np.float32,0x42908365,0x3592200d,2 +np.float32,0xc2908365,0xb592200d,2 +np.float32,0x4196cbe4,0x334cde2e,2 +np.float32,0xc196cbe4,0xb34cde2e,2 +np.float32,0x4216cbe4,0x33ccde2e,2 +np.float32,0xc216cbe4,0xb3ccde2e,2 +np.float32,0x4296cbe4,0x344cde2e,2 +np.float32,0xc296cbe4,0xb44cde2e,2 +np.float32,0x419d1463,0x3f3504f8,2 +np.float32,0xc19d1463,0xbf3504f8,2 +np.float32,0x421d1463,0x3f800000,2 +np.float32,0xc21d1463,0xbf800000,2 +np.float32,0x429d1463,0xb5c55799,2 +np.float32,0xc29d1463,0x35c55799,2 +np.float32,0x41a35ce2,0x3f800000,2 +np.float32,0xc1a35ce2,0xbf800000,2 +np.float32,0x42235ce2,0xb5b889b6,2 +np.float32,0xc2235ce2,0x35b889b6,2 +np.float32,0x42a35ce2,0x363889b6,2 +np.float32,0xc2a35ce2,0xb63889b6,2 +np.float32,0x41a9a561,0x3f3504e7,2 +np.float32,0xc1a9a561,0xbf3504e7,2 +np.float32,0x4229a561,0xbf800000,2 +np.float32,0xc229a561,0x3f800000,2 +np.float32,0x42a9a561,0xb68733d0,2 +np.float32,0xc2a9a561,0x368733d0,2 +np.float32,0x41afede0,0xb5b222c4,2 +np.float32,0xc1afede0,0x35b222c4,2 +np.float32,0x422fede0,0x363222c4,2 +np.float32,0xc22fede0,0xb63222c4,2 +np.float32,0x42afede0,0x36b222c4,2 +np.float32,0xc2afede0,0xb6b222c4,2 +np.float32,0x41b6365e,0xbf3504f0,2 +np.float32,0xc1b6365e,0x3f3504f0,2 +np.float32,0x4236365e,0x3f800000,2 +np.float32,0xc236365e,0xbf800000,2 +np.float32,0x42b6365e,0x358bb91c,2 +np.float32,0xc2b6365e,0xb58bb91c,2 +np.float32,0x41bc7edd,0xbf800000,2 +np.float32,0xc1bc7edd,0x3f800000,2 +np.float32,0x423c7edd,0xb4000add,2 +np.float32,0xc23c7edd,0x34000add,2 +np.float32,0x42bc7edd,0x34800add,2 +np.float32,0xc2bc7edd,0xb4800add,2 +np.float32,0x41c2c75c,0xbf3504ef,2 +np.float32,0xc1c2c75c,0x3f3504ef,2 +np.float32,0x4242c75c,0xbf800000,2 +np.float32,0xc242c75c,0x3f800000,2 +np.float32,0x42c2c75c,0xb5cbbe8a,2 +np.float32,0xc2c2c75c,0x35cbbe8a,2 +np.float32,0x41c90fdb,0x353bbd2e,2 +np.float32,0xc1c90fdb,0xb53bbd2e,2 +np.float32,0x42490fdb,0x35bbbd2e,2 +np.float32,0xc2490fdb,0xb5bbbd2e,2 +np.float32,0x42c90fdb,0x363bbd2e,2 +np.float32,0xc2c90fdb,0xb63bbd2e,2 +np.float32,0x41cf585a,0x3f3504ff,2 +np.float32,0xc1cf585a,0xbf3504ff,2 +np.float32,0x424f585a,0x3f800000,2 +np.float32,0xc24f585a,0xbf800000,2 +np.float32,0x42cf585a,0xb688cd8c,2 +np.float32,0xc2cf585a,0x3688cd8c,2 +np.float32,0x41d5a0d9,0x3f800000,2 +np.float32,0xc1d5a0d9,0xbf800000,2 +np.float32,0x4255a0d9,0xb633bc81,2 +np.float32,0xc255a0d9,0x3633bc81,2 +np.float32,0x42d5a0d9,0x36b3bc81,2 +np.float32,0xc2d5a0d9,0xb6b3bc81,2 +np.float32,0x41dbe958,0x3f3504e0,2 +np.float32,0xc1dbe958,0xbf3504e0,2 +np.float32,0x425be958,0xbf800000,2 +np.float32,0xc25be958,0x3f800000,2 +np.float32,0x42dbe958,0xb6deab75,2 +np.float32,0xc2dbe958,0x36deab75,2 +np.float32,0x41e231d6,0xb399a6a2,2 +np.float32,0xc1e231d6,0x3399a6a2,2 +np.float32,0x426231d6,0x3419a6a2,2 +np.float32,0xc26231d6,0xb419a6a2,2 +np.float32,0x42e231d6,0x3499a6a2,2 +np.float32,0xc2e231d6,0xb499a6a2,2 +np.float32,0x41e87a55,0xbf3504f8,2 +np.float32,0xc1e87a55,0x3f3504f8,2 +np.float32,0x42687a55,0x3f800000,2 +np.float32,0xc2687a55,0xbf800000,2 +np.float32,0x42e87a55,0xb5d2257b,2 +np.float32,0xc2e87a55,0x35d2257b,2 +np.float32,0x41eec2d4,0xbf800000,2 +np.float32,0xc1eec2d4,0x3f800000,2 +np.float32,0x426ec2d4,0xb5bef0a7,2 +np.float32,0xc26ec2d4,0x35bef0a7,2 +np.float32,0x42eec2d4,0x363ef0a7,2 +np.float32,0xc2eec2d4,0xb63ef0a7,2 +np.float32,0x41f50b53,0xbf3504e7,2 +np.float32,0xc1f50b53,0x3f3504e7,2 +np.float32,0x42750b53,0xbf800000,2 +np.float32,0xc2750b53,0x3f800000,2 +np.float32,0x42f50b53,0xb68a6748,2 +np.float32,0xc2f50b53,0x368a6748,2 +np.float32,0x41fb53d2,0x35b5563d,2 +np.float32,0xc1fb53d2,0xb5b5563d,2 +np.float32,0x427b53d2,0x3635563d,2 +np.float32,0xc27b53d2,0xb635563d,2 +np.float32,0x42fb53d2,0x36b5563d,2 +np.float32,0xc2fb53d2,0xb6b5563d,2 +np.float32,0x4200ce28,0x3f3504f0,2 +np.float32,0xc200ce28,0xbf3504f0,2 +np.float32,0x4280ce28,0x3f800000,2 +np.float32,0xc280ce28,0xbf800000,2 +np.float32,0x4300ce28,0x357dd672,2 +np.float32,0xc300ce28,0xb57dd672,2 +np.float32,0x4203f268,0x3f800000,2 +np.float32,0xc203f268,0xbf800000,2 +np.float32,0x4283f268,0xb6859a13,2 +np.float32,0xc283f268,0x36859a13,2 +np.float32,0x4303f268,0x37059a13,2 +np.float32,0xc303f268,0xb7059a13,2 +np.float32,0x420716a7,0x3f3504ee,2 +np.float32,0xc20716a7,0xbf3504ee,2 +np.float32,0x428716a7,0xbf800000,2 +np.float32,0xc28716a7,0x3f800000,2 +np.float32,0x430716a7,0xb5d88c6d,2 +np.float32,0xc30716a7,0x35d88c6d,2 +np.float32,0x420a3ae7,0xb6308908,2 +np.float32,0xc20a3ae7,0x36308908,2 +np.float32,0x428a3ae7,0x36b08908,2 +np.float32,0xc28a3ae7,0xb6b08908,2 +np.float32,0x430a3ae7,0x37308908,2 +np.float32,0xc30a3ae7,0xb7308908,2 +np.float32,0x420d5f26,0xbf350500,2 +np.float32,0xc20d5f26,0x3f350500,2 +np.float32,0x428d5f26,0x3f800000,2 +np.float32,0xc28d5f26,0xbf800000,2 +np.float32,0x430d5f26,0xb68c0105,2 +np.float32,0xc30d5f26,0x368c0105,2 +np.float32,0x42108365,0xbf800000,2 +np.float32,0xc2108365,0x3f800000,2 +np.float32,0x42908365,0x3592200d,2 +np.float32,0xc2908365,0xb592200d,2 +np.float32,0x43108365,0xb612200d,2 +np.float32,0xc3108365,0x3612200d,2 +np.float32,0x4213a7a5,0xbf3504df,2 +np.float32,0xc213a7a5,0x3f3504df,2 +np.float32,0x4293a7a5,0xbf800000,2 +np.float32,0xc293a7a5,0x3f800000,2 +np.float32,0x4313a7a5,0xb6e1deee,2 +np.float32,0xc313a7a5,0x36e1deee,2 +np.float32,0x4216cbe4,0x33ccde2e,2 +np.float32,0xc216cbe4,0xb3ccde2e,2 +np.float32,0x4296cbe4,0x344cde2e,2 +np.float32,0xc296cbe4,0xb44cde2e,2 +np.float32,0x4316cbe4,0x34ccde2e,2 +np.float32,0xc316cbe4,0xb4ccde2e,2 +np.float32,0x4219f024,0x3f35050f,2 +np.float32,0xc219f024,0xbf35050f,2 +np.float32,0x4299f024,0x3f800000,2 +np.float32,0xc299f024,0xbf800000,2 +np.float32,0x4319f024,0xb71bde6c,2 +np.float32,0xc319f024,0x371bde6c,2 +np.float32,0x421d1463,0x3f800000,2 +np.float32,0xc21d1463,0xbf800000,2 +np.float32,0x429d1463,0xb5c55799,2 +np.float32,0xc29d1463,0x35c55799,2 +np.float32,0x431d1463,0x36455799,2 +np.float32,0xc31d1463,0xb6455799,2 +np.float32,0x422038a3,0x3f3504d0,2 +np.float32,0xc22038a3,0xbf3504d0,2 +np.float32,0x42a038a3,0xbf800000,2 +np.float32,0xc2a038a3,0x3f800000,2 +np.float32,0x432038a3,0xb746cd61,2 +np.float32,0xc32038a3,0x3746cd61,2 +np.float32,0x42235ce2,0xb5b889b6,2 +np.float32,0xc2235ce2,0x35b889b6,2 +np.float32,0x42a35ce2,0x363889b6,2 +np.float32,0xc2a35ce2,0xb63889b6,2 +np.float32,0x43235ce2,0x36b889b6,2 +np.float32,0xc3235ce2,0xb6b889b6,2 +np.float32,0x42268121,0xbf3504f1,2 +np.float32,0xc2268121,0x3f3504f1,2 +np.float32,0x42a68121,0x3f800000,2 +np.float32,0xc2a68121,0xbf800000,2 +np.float32,0x43268121,0x35643aac,2 +np.float32,0xc3268121,0xb5643aac,2 +np.float32,0x4229a561,0xbf800000,2 +np.float32,0xc229a561,0x3f800000,2 +np.float32,0x42a9a561,0xb68733d0,2 +np.float32,0xc2a9a561,0x368733d0,2 +np.float32,0x4329a561,0x370733d0,2 +np.float32,0xc329a561,0xb70733d0,2 +np.float32,0x422cc9a0,0xbf3504ee,2 +np.float32,0xc22cc9a0,0x3f3504ee,2 +np.float32,0x42acc9a0,0xbf800000,2 +np.float32,0xc2acc9a0,0x3f800000,2 +np.float32,0x432cc9a0,0xb5e55a50,2 +np.float32,0xc32cc9a0,0x35e55a50,2 +np.float32,0x422fede0,0x363222c4,2 +np.float32,0xc22fede0,0xb63222c4,2 +np.float32,0x42afede0,0x36b222c4,2 +np.float32,0xc2afede0,0xb6b222c4,2 +np.float32,0x432fede0,0x373222c4,2 +np.float32,0xc32fede0,0xb73222c4,2 +np.float32,0x4233121f,0x3f350500,2 +np.float32,0xc233121f,0xbf350500,2 +np.float32,0x42b3121f,0x3f800000,2 +np.float32,0xc2b3121f,0xbf800000,2 +np.float32,0x4333121f,0xb68f347d,2 +np.float32,0xc333121f,0x368f347d,2 +np.float32,0x4236365e,0x3f800000,2 +np.float32,0xc236365e,0xbf800000,2 +np.float32,0x42b6365e,0x358bb91c,2 +np.float32,0xc2b6365e,0xb58bb91c,2 +np.float32,0x4336365e,0xb60bb91c,2 +np.float32,0xc336365e,0x360bb91c,2 +np.float32,0x42395a9e,0x3f3504df,2 +np.float32,0xc2395a9e,0xbf3504df,2 +np.float32,0x42b95a9e,0xbf800000,2 +np.float32,0xc2b95a9e,0x3f800000,2 +np.float32,0x43395a9e,0xb6e51267,2 +np.float32,0xc3395a9e,0x36e51267,2 +np.float32,0x423c7edd,0xb4000add,2 +np.float32,0xc23c7edd,0x34000add,2 +np.float32,0x42bc7edd,0x34800add,2 +np.float32,0xc2bc7edd,0xb4800add,2 +np.float32,0x433c7edd,0x35000add,2 +np.float32,0xc33c7edd,0xb5000add,2 +np.float32,0x423fa31d,0xbf35050f,2 +np.float32,0xc23fa31d,0x3f35050f,2 +np.float32,0x42bfa31d,0x3f800000,2 +np.float32,0xc2bfa31d,0xbf800000,2 +np.float32,0x433fa31d,0xb71d7828,2 +np.float32,0xc33fa31d,0x371d7828,2 +np.float32,0x4242c75c,0xbf800000,2 +np.float32,0xc242c75c,0x3f800000,2 +np.float32,0x42c2c75c,0xb5cbbe8a,2 +np.float32,0xc2c2c75c,0x35cbbe8a,2 +np.float32,0x4342c75c,0x364bbe8a,2 +np.float32,0xc342c75c,0xb64bbe8a,2 +np.float32,0x4245eb9c,0xbf3504d0,2 +np.float32,0xc245eb9c,0x3f3504d0,2 +np.float32,0x42c5eb9c,0xbf800000,2 +np.float32,0xc2c5eb9c,0x3f800000,2 +np.float32,0x4345eb9c,0xb748671d,2 +np.float32,0xc345eb9c,0x3748671d,2 +np.float32,0x42490fdb,0x35bbbd2e,2 +np.float32,0xc2490fdb,0xb5bbbd2e,2 +np.float32,0x42c90fdb,0x363bbd2e,2 +np.float32,0xc2c90fdb,0xb63bbd2e,2 +np.float32,0x43490fdb,0x36bbbd2e,2 +np.float32,0xc3490fdb,0xb6bbbd2e,2 +np.float32,0x424c341a,0x3f3504f1,2 +np.float32,0xc24c341a,0xbf3504f1,2 +np.float32,0x42cc341a,0x3f800000,2 +np.float32,0xc2cc341a,0xbf800000,2 +np.float32,0x434c341a,0x354a9ee6,2 +np.float32,0xc34c341a,0xb54a9ee6,2 +np.float32,0x424f585a,0x3f800000,2 +np.float32,0xc24f585a,0xbf800000,2 +np.float32,0x42cf585a,0xb688cd8c,2 +np.float32,0xc2cf585a,0x3688cd8c,2 +np.float32,0x434f585a,0x3708cd8c,2 +np.float32,0xc34f585a,0xb708cd8c,2 +np.float32,0x42527c99,0x3f3504ee,2 +np.float32,0xc2527c99,0xbf3504ee,2 +np.float32,0x42d27c99,0xbf800000,2 +np.float32,0xc2d27c99,0x3f800000,2 +np.float32,0x43527c99,0xb5f22833,2 +np.float32,0xc3527c99,0x35f22833,2 +np.float32,0x4255a0d9,0xb633bc81,2 +np.float32,0xc255a0d9,0x3633bc81,2 +np.float32,0x42d5a0d9,0x36b3bc81,2 +np.float32,0xc2d5a0d9,0xb6b3bc81,2 +np.float32,0x4355a0d9,0x3733bc81,2 +np.float32,0xc355a0d9,0xb733bc81,2 +np.float32,0x4258c518,0xbf350500,2 +np.float32,0xc258c518,0x3f350500,2 +np.float32,0x42d8c518,0x3f800000,2 +np.float32,0xc2d8c518,0xbf800000,2 +np.float32,0x4358c518,0xb69267f6,2 +np.float32,0xc358c518,0x369267f6,2 +np.float32,0x425be958,0xbf800000,2 +np.float32,0xc25be958,0x3f800000,2 +np.float32,0x42dbe958,0xb6deab75,2 +np.float32,0xc2dbe958,0x36deab75,2 +np.float32,0x435be958,0x375eab75,2 +np.float32,0xc35be958,0xb75eab75,2 +np.float32,0x425f0d97,0xbf3504df,2 +np.float32,0xc25f0d97,0x3f3504df,2 +np.float32,0x42df0d97,0xbf800000,2 +np.float32,0xc2df0d97,0x3f800000,2 +np.float32,0x435f0d97,0xb6e845e0,2 +np.float32,0xc35f0d97,0x36e845e0,2 +np.float32,0x426231d6,0x3419a6a2,2 +np.float32,0xc26231d6,0xb419a6a2,2 +np.float32,0x42e231d6,0x3499a6a2,2 +np.float32,0xc2e231d6,0xb499a6a2,2 +np.float32,0x436231d6,0x3519a6a2,2 +np.float32,0xc36231d6,0xb519a6a2,2 +np.float32,0x42655616,0x3f35050f,2 +np.float32,0xc2655616,0xbf35050f,2 +np.float32,0x42e55616,0x3f800000,2 +np.float32,0xc2e55616,0xbf800000,2 +np.float32,0x43655616,0xb71f11e5,2 +np.float32,0xc3655616,0x371f11e5,2 +np.float32,0x42687a55,0x3f800000,2 +np.float32,0xc2687a55,0xbf800000,2 +np.float32,0x42e87a55,0xb5d2257b,2 +np.float32,0xc2e87a55,0x35d2257b,2 +np.float32,0x43687a55,0x3652257b,2 +np.float32,0xc3687a55,0xb652257b,2 +np.float32,0x426b9e95,0x3f3504cf,2 +np.float32,0xc26b9e95,0xbf3504cf,2 +np.float32,0x42eb9e95,0xbf800000,2 +np.float32,0xc2eb9e95,0x3f800000,2 +np.float32,0x436b9e95,0xb74a00d9,2 +np.float32,0xc36b9e95,0x374a00d9,2 +np.float32,0x426ec2d4,0xb5bef0a7,2 +np.float32,0xc26ec2d4,0x35bef0a7,2 +np.float32,0x42eec2d4,0x363ef0a7,2 +np.float32,0xc2eec2d4,0xb63ef0a7,2 +np.float32,0x436ec2d4,0x36bef0a7,2 +np.float32,0xc36ec2d4,0xb6bef0a7,2 +np.float32,0x4271e713,0xbf3504f1,2 +np.float32,0xc271e713,0x3f3504f1,2 +np.float32,0x42f1e713,0x3f800000,2 +np.float32,0xc2f1e713,0xbf800000,2 +np.float32,0x4371e713,0x35310321,2 +np.float32,0xc371e713,0xb5310321,2 +np.float32,0x42750b53,0xbf800000,2 +np.float32,0xc2750b53,0x3f800000,2 +np.float32,0x42f50b53,0xb68a6748,2 +np.float32,0xc2f50b53,0x368a6748,2 +np.float32,0x43750b53,0x370a6748,2 +np.float32,0xc3750b53,0xb70a6748,2 +np.float32,0x42782f92,0xbf3504ee,2 +np.float32,0xc2782f92,0x3f3504ee,2 +np.float32,0x42f82f92,0xbf800000,2 +np.float32,0xc2f82f92,0x3f800000,2 +np.float32,0x43782f92,0xb5fef616,2 +np.float32,0xc3782f92,0x35fef616,2 +np.float32,0x427b53d2,0x3635563d,2 +np.float32,0xc27b53d2,0xb635563d,2 +np.float32,0x42fb53d2,0x36b5563d,2 +np.float32,0xc2fb53d2,0xb6b5563d,2 +np.float32,0x437b53d2,0x3735563d,2 +np.float32,0xc37b53d2,0xb735563d,2 +np.float32,0x427e7811,0x3f350500,2 +np.float32,0xc27e7811,0xbf350500,2 +np.float32,0x42fe7811,0x3f800000,2 +np.float32,0xc2fe7811,0xbf800000,2 +np.float32,0x437e7811,0xb6959b6f,2 +np.float32,0xc37e7811,0x36959b6f,2 +np.float32,0x4280ce28,0x3f800000,2 +np.float32,0xc280ce28,0xbf800000,2 +np.float32,0x4300ce28,0x357dd672,2 +np.float32,0xc300ce28,0xb57dd672,2 +np.float32,0x4380ce28,0xb5fdd672,2 +np.float32,0xc380ce28,0x35fdd672,2 +np.float32,0x42826048,0x3f3504de,2 +np.float32,0xc2826048,0xbf3504de,2 +np.float32,0x43026048,0xbf800000,2 +np.float32,0xc3026048,0x3f800000,2 +np.float32,0x43826048,0xb6eb7958,2 +np.float32,0xc3826048,0x36eb7958,2 +np.float32,0x4283f268,0xb6859a13,2 +np.float32,0xc283f268,0x36859a13,2 +np.float32,0x4303f268,0x37059a13,2 +np.float32,0xc303f268,0xb7059a13,2 +np.float32,0x4383f268,0x37859a13,2 +np.float32,0xc383f268,0xb7859a13,2 +np.float32,0x42858487,0xbf3504e2,2 +np.float32,0xc2858487,0x3f3504e2,2 +np.float32,0x43058487,0x3f800000,2 +np.float32,0xc3058487,0xbf800000,2 +np.float32,0x43858487,0x36bea8be,2 +np.float32,0xc3858487,0xb6bea8be,2 +np.float32,0x428716a7,0xbf800000,2 +np.float32,0xc28716a7,0x3f800000,2 +np.float32,0x430716a7,0xb5d88c6d,2 +np.float32,0xc30716a7,0x35d88c6d,2 +np.float32,0x438716a7,0x36588c6d,2 +np.float32,0xc38716a7,0xb6588c6d,2 +np.float32,0x4288a8c7,0xbf3504cf,2 +np.float32,0xc288a8c7,0x3f3504cf,2 +np.float32,0x4308a8c7,0xbf800000,2 +np.float32,0xc308a8c7,0x3f800000,2 +np.float32,0x4388a8c7,0xb74b9a96,2 +np.float32,0xc388a8c7,0x374b9a96,2 +np.float32,0x428a3ae7,0x36b08908,2 +np.float32,0xc28a3ae7,0xb6b08908,2 +np.float32,0x430a3ae7,0x37308908,2 +np.float32,0xc30a3ae7,0xb7308908,2 +np.float32,0x438a3ae7,0x37b08908,2 +np.float32,0xc38a3ae7,0xb7b08908,2 +np.float32,0x428bcd06,0x3f3504f2,2 +np.float32,0xc28bcd06,0xbf3504f2,2 +np.float32,0x430bcd06,0x3f800000,2 +np.float32,0xc30bcd06,0xbf800000,2 +np.float32,0x438bcd06,0x3517675b,2 +np.float32,0xc38bcd06,0xb517675b,2 +np.float32,0x428d5f26,0x3f800000,2 +np.float32,0xc28d5f26,0xbf800000,2 +np.float32,0x430d5f26,0xb68c0105,2 +np.float32,0xc30d5f26,0x368c0105,2 +np.float32,0x438d5f26,0x370c0105,2 +np.float32,0xc38d5f26,0xb70c0105,2 +np.float32,0x428ef146,0x3f3504c0,2 +np.float32,0xc28ef146,0xbf3504c0,2 +np.float32,0x430ef146,0xbf800000,2 +np.float32,0xc30ef146,0x3f800000,2 +np.float32,0x438ef146,0xb790bc40,2 +np.float32,0xc38ef146,0x3790bc40,2 +np.float32,0x42908365,0x3592200d,2 +np.float32,0xc2908365,0xb592200d,2 +np.float32,0x43108365,0xb612200d,2 +np.float32,0xc3108365,0x3612200d,2 +np.float32,0x43908365,0xb692200d,2 +np.float32,0xc3908365,0x3692200d,2 +np.float32,0x42921585,0xbf350501,2 +np.float32,0xc2921585,0x3f350501,2 +np.float32,0x43121585,0x3f800000,2 +np.float32,0xc3121585,0xbf800000,2 +np.float32,0x43921585,0xb698cee8,2 +np.float32,0xc3921585,0x3698cee8,2 +np.float32,0x4293a7a5,0xbf800000,2 +np.float32,0xc293a7a5,0x3f800000,2 +np.float32,0x4313a7a5,0xb6e1deee,2 +np.float32,0xc313a7a5,0x36e1deee,2 +np.float32,0x4393a7a5,0x3761deee,2 +np.float32,0xc393a7a5,0xb761deee,2 +np.float32,0x429539c5,0xbf3504b1,2 +np.float32,0xc29539c5,0x3f3504b1,2 +np.float32,0x431539c5,0xbf800000,2 +np.float32,0xc31539c5,0x3f800000,2 +np.float32,0x439539c5,0xb7bbab34,2 +np.float32,0xc39539c5,0x37bbab34,2 +np.float32,0x4296cbe4,0x344cde2e,2 +np.float32,0xc296cbe4,0xb44cde2e,2 +np.float32,0x4316cbe4,0x34ccde2e,2 +np.float32,0xc316cbe4,0xb4ccde2e,2 +np.float32,0x4396cbe4,0x354cde2e,2 +np.float32,0xc396cbe4,0xb54cde2e,2 +np.float32,0x42985e04,0x3f350510,2 +np.float32,0xc2985e04,0xbf350510,2 +np.float32,0x43185e04,0x3f800000,2 +np.float32,0xc3185e04,0xbf800000,2 +np.float32,0x43985e04,0xb722455d,2 +np.float32,0xc3985e04,0x3722455d,2 +np.float32,0x4299f024,0x3f800000,2 +np.float32,0xc299f024,0xbf800000,2 +np.float32,0x4319f024,0xb71bde6c,2 +np.float32,0xc319f024,0x371bde6c,2 +np.float32,0x4399f024,0x379bde6c,2 +np.float32,0xc399f024,0xb79bde6c,2 +np.float32,0x429b8243,0x3f3504fc,2 +np.float32,0xc29b8243,0xbf3504fc,2 +np.float32,0x431b8243,0xbf800000,2 +np.float32,0xc31b8243,0x3f800000,2 +np.float32,0x439b8243,0x364b2eb8,2 +np.float32,0xc39b8243,0xb64b2eb8,2 +np.float32,0x435b2047,0xbf350525,2 +np.float32,0x42a038a2,0xbf800000,2 +np.float32,0x432038a2,0x3664ca7e,2 +np.float32,0x4345eb9b,0x365e638c,2 +np.float32,0x42c5eb9b,0xbf800000,2 +np.float32,0x42eb9e94,0xbf800000,2 +np.float32,0x4350ea79,0x3f800000,2 +np.float32,0x42dbe957,0x3585522a,2 +np.float32,0x425be957,0xbf800000,2 +np.float32,0x435be957,0xb605522a,2 +np.float32,0x476362a2,0xbd7ff911,2 +np.float32,0x464c99a4,0x3e7f4d41,2 +np.float32,0x4471f73d,0x3e7fe1b0,2 +np.float32,0x445a6752,0x3e7ef367,2 +np.float32,0x474fa400,0x3e7f9fcd,2 +np.float32,0x45c1e72f,0xbe7fc7af,2 +np.float32,0x4558c91d,0x3e7e9f31,2 +np.float32,0x43784f94,0xbdff6654,2 +np.float32,0x466e8500,0xbe7ea0a3,2 +np.float32,0x468e1c25,0x3e7e22fb,2 +np.float32,0x44ea6cfc,0x3dff70c3,2 +np.float32,0x4605126c,0x3e7f89ef,2 +np.float32,0x4788b3c6,0xbb87d853,2 +np.float32,0x4531b042,0x3dffd163,2 +np.float32,0x43f1f71d,0x3dfff387,2 +np.float32,0x462c3fa5,0xbd7fe13d,2 +np.float32,0x441c5354,0xbdff76b4,2 +np.float32,0x44908b69,0x3e7dcf0d,2 +np.float32,0x478813ad,0xbe7e9d80,2 +np.float32,0x441c4351,0x3dff937b,2 +np.float64,0x1,0x1,1 +np.float64,0x8000000000000001,0x8000000000000001,1 +np.float64,0x10000000000000,0x10000000000000,1 +np.float64,0x8010000000000000,0x8010000000000000,1 +np.float64,0x7fefffffffffffff,0x3f7452fc98b34e97,1 +np.float64,0xffefffffffffffff,0xbf7452fc98b34e97,1 +np.float64,0x7ff0000000000000,0xfff8000000000000,1 +np.float64,0xfff0000000000000,0xfff8000000000000,1 +np.float64,0x7ff8000000000000,0x7ff8000000000000,1 +np.float64,0x7ff4000000000000,0x7ffc000000000000,1 +np.float64,0xbfda51b226b4a364,0xbfd9956328ff876c,1 +np.float64,0xbfb4a65aee294cb8,0xbfb4a09fd744f8a5,1 +np.float64,0xbfd73b914fae7722,0xbfd6b9cce55af379,1 +np.float64,0xbfd90c12b4b21826,0xbfd869a3867b51c2,1 +np.float64,0x3fe649bb3d6c9376,0x3fe48778d9b48a21,1 +np.float64,0xbfd5944532ab288a,0xbfd52c30e1951b42,1 +np.float64,0x3fb150c45222a190,0x3fb14d633eb8275d,1 +np.float64,0x3fe4a6ffa9e94e00,0x3fe33f8a95c33299,1 +np.float64,0x3fe8d2157171a42a,0x3fe667d904ac95a6,1 +np.float64,0xbfa889f52c3113f0,0xbfa8878d90a23fa5,1 +np.float64,0x3feb3234bef6646a,0x3fe809d541d9017a,1 +np.float64,0x3fc6de266f2dbc50,0x3fc6bf0ee80a0d86,1 +np.float64,0x3fe8455368f08aa6,0x3fe6028254338ed5,1 +np.float64,0xbfe5576079eaaec1,0xbfe3cb4a8f6bc3f5,1 +np.float64,0xbfe9f822ff73f046,0xbfe7360d7d5cb887,1 +np.float64,0xbfb1960e7e232c20,0xbfb1928438258602,1 +np.float64,0xbfca75938d34eb28,0xbfca4570979bf2fa,1 +np.float64,0x3fd767dd15aecfbc,0x3fd6e33039018bab,1 +np.float64,0xbfe987750ef30eea,0xbfe6e7ed30ce77f0,1 +np.float64,0xbfe87f95a1f0ff2b,0xbfe62ca7e928bb2a,1 +np.float64,0xbfd2465301a48ca6,0xbfd2070245775d76,1 +np.float64,0xbfb1306ed22260e0,0xbfb12d2088eaa4f9,1 +np.float64,0xbfd8089010b01120,0xbfd778f9db77f2f3,1 +np.float64,0x3fbf9cf4ee3f39f0,0x3fbf88674fde1ca2,1 +np.float64,0x3fe6d8468a6db08e,0x3fe4f403f38b7bec,1 +np.float64,0xbfd9e5deefb3cbbe,0xbfd932692c722351,1 +np.float64,0x3fd1584d55a2b09c,0x3fd122253eeecc2e,1 +np.float64,0x3fe857979cf0af30,0x3fe60fc12b5ba8db,1 +np.float64,0x3fe3644149e6c882,0x3fe239f47013cfe6,1 +np.float64,0xbfe22ea62be45d4c,0xbfe13834c17d56fe,1 +np.float64,0xbfe8d93e1df1b27c,0xbfe66cf4ee467fd2,1 +np.float64,0xbfe9c497c9f38930,0xbfe7127417da4204,1 +np.float64,0x3fd6791cecacf238,0x3fd6039ccb5a7fde,1 +np.float64,0xbfc1dc1b1523b838,0xbfc1cd48edd9ae19,1 +np.float64,0xbfc92a8491325508,0xbfc901176e0158a5,1 +np.float64,0x3fa8649b3430c940,0x3fa8623e82d9504f,1 +np.float64,0x3fe0bed6a1617dae,0x3fdffbb307fb1abe,1 +np.float64,0x3febdf7765f7beee,0x3fe87ad01a89b74a,1 +np.float64,0xbfd3a56d46a74ada,0xbfd356cf41bf83cd,1 +np.float64,0x3fd321d824a643b0,0x3fd2d93846a224b3,1 +np.float64,0xbfc6a49fb52d4940,0xbfc686704906e7d3,1 +np.float64,0xbfdd4103c9ba8208,0xbfdc3ef0c03615b4,1 +np.float64,0xbfe0b78a51e16f14,0xbfdfef0d9ffc38b5,1 +np.float64,0xbfdac7a908b58f52,0xbfda0158956ceecf,1 +np.float64,0xbfbfbf12f23f7e28,0xbfbfaa428989258c,1 +np.float64,0xbfd55f5aa2aabeb6,0xbfd4fa39de65f33a,1 +np.float64,0x3fe06969abe0d2d4,0x3fdf6744fafdd9cf,1 +np.float64,0x3fe56ab8be6ad572,0x3fe3da7a1986d543,1 +np.float64,0xbfeefbbec67df77e,0xbfea5d426132f4aa,1 +np.float64,0x3fe6e1f49cedc3ea,0x3fe4fb53f3d8e3d5,1 +np.float64,0x3feceb231c79d646,0x3fe923d3efa55414,1 +np.float64,0xbfd03dd08ea07ba2,0xbfd011549aa1998a,1 +np.float64,0xbfd688327aad1064,0xbfd611c61b56adbe,1 +np.float64,0xbfde3249d8bc6494,0xbfdd16a7237a39d5,1 +np.float64,0x3febd4b65677a96c,0x3fe873e1a401ef03,1 +np.float64,0xbfe46bd2b368d7a6,0xbfe31023c2467749,1 +np.float64,0x3fbf9f5cde3f3ec0,0x3fbf8aca8ec53c45,1 +np.float64,0x3fc20374032406e8,0x3fc1f43f1f2f4d5e,1 +np.float64,0xbfec143b16f82876,0xbfe89caa42582381,1 +np.float64,0xbfd14fa635a29f4c,0xbfd119ced11da669,1 +np.float64,0x3fe25236d4e4a46e,0x3fe156242d644b7a,1 +np.float64,0xbfe4ed793469daf2,0xbfe377a88928fd77,1 +np.float64,0xbfb363572626c6b0,0xbfb35e98d8fe87ae,1 +np.float64,0xbfb389d5aa2713a8,0xbfb384fae55565a7,1 +np.float64,0x3fca6e001934dc00,0x3fca3e0661eaca84,1 +np.float64,0x3fe748f3f76e91e8,0x3fe548ab2168aea6,1 +np.float64,0x3fef150efdfe2a1e,0x3fea6b92d74f60d3,1 +np.float64,0xbfd14b52b1a296a6,0xbfd115a387c0fa93,1 +np.float64,0x3fe3286b5ce650d6,0x3fe208a6469a7527,1 +np.float64,0xbfd57b4f4baaf69e,0xbfd514a12a9f7ab0,1 +np.float64,0xbfef14bd467e297b,0xbfea6b64bbfd42ce,1 +np.float64,0xbfe280bc90650179,0xbfe17d2c49955dba,1 +np.float64,0x3fca8759d7350eb0,0x3fca56d5c17bbc14,1 +np.float64,0xbfdf988f30bf311e,0xbfde53f96f69b05f,1 +np.float64,0x3f6b6eeb4036de00,0x3f6b6ee7e3f86f9a,1 +np.float64,0xbfed560be8faac18,0xbfe9656c5cf973d8,1 +np.float64,0x3fc6102c592c2058,0x3fc5f43efad5396d,1 +np.float64,0xbfdef64ed2bdec9e,0xbfddc4b7fbd45aea,1 +np.float64,0x3fe814acd570295a,0x3fe5df183d543bfe,1 +np.float64,0x3fca21313f344260,0x3fc9f2d47f64fbe2,1 +np.float64,0xbfe89932cc713266,0xbfe63f186a2f60ce,1 +np.float64,0x3fe4ffcff169ffa0,0x3fe386336115ee21,1 +np.float64,0x3fee6964087cd2c8,0x3fea093d31e2c2c5,1 +np.float64,0xbfbeea604e3dd4c0,0xbfbed72734852669,1 +np.float64,0xbfea1954fb7432aa,0xbfe74cdad8720032,1 +np.float64,0x3fea3e1a5ef47c34,0x3fe765ffba65a11d,1 +np.float64,0x3fcedb850b3db708,0x3fce8f39d92f00ba,1 +np.float64,0x3fd3b52d41a76a5c,0x3fd365d22b0003f9,1 +np.float64,0xbfa4108a0c282110,0xbfa40f397fcd844f,1 +np.float64,0x3fd7454c57ae8a98,0x3fd6c2e5542c6c83,1 +np.float64,0xbfeecd3c7a7d9a79,0xbfea42ca943a1695,1 +np.float64,0xbfdddda397bbbb48,0xbfdccb27283d4c4c,1 +np.float64,0x3fe6b52cf76d6a5a,0x3fe4d96ff32925ff,1 +np.float64,0xbfa39a75ec2734f0,0xbfa3993c0da84f87,1 +np.float64,0x3fdd3fe6fdba7fcc,0x3fdc3df12fe9e525,1 +np.float64,0xbfb57a98162af530,0xbfb5742525d5fbe2,1 +np.float64,0xbfd3e166cfa7c2ce,0xbfd38ff2891be9b0,1 +np.float64,0x3fdb6a04f9b6d408,0x3fda955e5018e9dc,1 +np.float64,0x3fe4ab03a4e95608,0x3fe342bfa76e1aa8,1 +np.float64,0xbfe6c8480b6d9090,0xbfe4e7eaa935b3f5,1 +np.float64,0xbdd6b5a17bae,0xbdd6b5a17bae,1 +np.float64,0xd6591979acb23,0xd6591979acb23,1 +np.float64,0x5adbed90b5b7e,0x5adbed90b5b7e,1 +np.float64,0xa664c5314cc99,0xa664c5314cc99,1 +np.float64,0x1727fb162e500,0x1727fb162e500,1 +np.float64,0xdb49a93db6935,0xdb49a93db6935,1 +np.float64,0xb10c958d62193,0xb10c958d62193,1 +np.float64,0xad38276f5a705,0xad38276f5a705,1 +np.float64,0x1d5d0b983aba2,0x1d5d0b983aba2,1 +np.float64,0x915f48e122be9,0x915f48e122be9,1 +np.float64,0x475958ae8eb2c,0x475958ae8eb2c,1 +np.float64,0x3af8406675f09,0x3af8406675f09,1 +np.float64,0x655e88a4cabd2,0x655e88a4cabd2,1 +np.float64,0x40fee8ce81fde,0x40fee8ce81fde,1 +np.float64,0xab83103f57062,0xab83103f57062,1 +np.float64,0x7cf934b8f9f27,0x7cf934b8f9f27,1 +np.float64,0x29f7524853eeb,0x29f7524853eeb,1 +np.float64,0x4a5e954894bd3,0x4a5e954894bd3,1 +np.float64,0x24638f3a48c73,0x24638f3a48c73,1 +np.float64,0xa4f32fc749e66,0xa4f32fc749e66,1 +np.float64,0xf8e92df7f1d26,0xf8e92df7f1d26,1 +np.float64,0x292e9d50525d4,0x292e9d50525d4,1 +np.float64,0xe937e897d26fd,0xe937e897d26fd,1 +np.float64,0xd3bde1d5a77bc,0xd3bde1d5a77bc,1 +np.float64,0xa447ffd548900,0xa447ffd548900,1 +np.float64,0xa3b7b691476f7,0xa3b7b691476f7,1 +np.float64,0x490095c892013,0x490095c892013,1 +np.float64,0xfc853235f90a7,0xfc853235f90a7,1 +np.float64,0x5a8bc082b5179,0x5a8bc082b5179,1 +np.float64,0x1baca45a37595,0x1baca45a37595,1 +np.float64,0x2164120842c83,0x2164120842c83,1 +np.float64,0x66692bdeccd26,0x66692bdeccd26,1 +np.float64,0xf205bdd3e40b8,0xf205bdd3e40b8,1 +np.float64,0x7c3fff98f8801,0x7c3fff98f8801,1 +np.float64,0xccdf10e199bf,0xccdf10e199bf,1 +np.float64,0x92db8e8125b8,0x92db8e8125b8,1 +np.float64,0x5789a8d6af136,0x5789a8d6af136,1 +np.float64,0xbdda869d7bb51,0xbdda869d7bb51,1 +np.float64,0xb665e0596ccbc,0xb665e0596ccbc,1 +np.float64,0x74e6b46ee9cd7,0x74e6b46ee9cd7,1 +np.float64,0x4f39cf7c9e73b,0x4f39cf7c9e73b,1 +np.float64,0xfdbf3907fb7e7,0xfdbf3907fb7e7,1 +np.float64,0xafdef4d55fbdf,0xafdef4d55fbdf,1 +np.float64,0xb49858236930b,0xb49858236930b,1 +np.float64,0x3ebe21d47d7c5,0x3ebe21d47d7c5,1 +np.float64,0x5b620512b6c41,0x5b620512b6c41,1 +np.float64,0x31918cda63232,0x31918cda63232,1 +np.float64,0x68b5741ed16af,0x68b5741ed16af,1 +np.float64,0xa5c09a5b4b814,0xa5c09a5b4b814,1 +np.float64,0x55f51c14abea4,0x55f51c14abea4,1 +np.float64,0xda8a3e41b515,0xda8a3e41b515,1 +np.float64,0x9ea9c8513d539,0x9ea9c8513d539,1 +np.float64,0x7f23b964fe478,0x7f23b964fe478,1 +np.float64,0xf6e08c7bedc12,0xf6e08c7bedc12,1 +np.float64,0x7267aa24e4cf6,0x7267aa24e4cf6,1 +np.float64,0x236bb93a46d78,0x236bb93a46d78,1 +np.float64,0x9a98430b35309,0x9a98430b35309,1 +np.float64,0xbb683fef76d08,0xbb683fef76d08,1 +np.float64,0x1ff0eb6e3fe1e,0x1ff0eb6e3fe1e,1 +np.float64,0xf524038fea481,0xf524038fea481,1 +np.float64,0xd714e449ae29d,0xd714e449ae29d,1 +np.float64,0x4154fd7682aa0,0x4154fd7682aa0,1 +np.float64,0x5b8d2f6cb71a7,0x5b8d2f6cb71a7,1 +np.float64,0xc91aa21d92355,0xc91aa21d92355,1 +np.float64,0xbd94fd117b2a0,0xbd94fd117b2a0,1 +np.float64,0x685b207ad0b65,0x685b207ad0b65,1 +np.float64,0xd2485b05a490c,0xd2485b05a490c,1 +np.float64,0x151ea5e62a3d6,0x151ea5e62a3d6,1 +np.float64,0x2635a7164c6b6,0x2635a7164c6b6,1 +np.float64,0x88ae3b5d115c8,0x88ae3b5d115c8,1 +np.float64,0x8a055a55140ac,0x8a055a55140ac,1 +np.float64,0x756f7694eadef,0x756f7694eadef,1 +np.float64,0x866d74630cdaf,0x866d74630cdaf,1 +np.float64,0x39e44f2873c8b,0x39e44f2873c8b,1 +np.float64,0x2a07ceb6540fb,0x2a07ceb6540fb,1 +np.float64,0xc52b96398a573,0xc52b96398a573,1 +np.float64,0x9546543b2a8cb,0x9546543b2a8cb,1 +np.float64,0x5b995b90b732c,0x5b995b90b732c,1 +np.float64,0x2de10a565bc22,0x2de10a565bc22,1 +np.float64,0x3b06ee94760df,0x3b06ee94760df,1 +np.float64,0xb18e77a5631cf,0xb18e77a5631cf,1 +np.float64,0x3b89ae3a77137,0x3b89ae3a77137,1 +np.float64,0xd9b0b6e5b3617,0xd9b0b6e5b3617,1 +np.float64,0x30b2310861647,0x30b2310861647,1 +np.float64,0x326a3ab464d48,0x326a3ab464d48,1 +np.float64,0x4c18610a9830d,0x4c18610a9830d,1 +np.float64,0x541dea42a83be,0x541dea42a83be,1 +np.float64,0xcd027dbf9a050,0xcd027dbf9a050,1 +np.float64,0x780a0f80f015,0x780a0f80f015,1 +np.float64,0x740ed5b2e81db,0x740ed5b2e81db,1 +np.float64,0xc226814d844d0,0xc226814d844d0,1 +np.float64,0xde958541bd2b1,0xde958541bd2b1,1 +np.float64,0xb563d3296ac7b,0xb563d3296ac7b,1 +np.float64,0x1db3b0b83b677,0x1db3b0b83b677,1 +np.float64,0xa7b0275d4f605,0xa7b0275d4f605,1 +np.float64,0x72f8d038e5f1b,0x72f8d038e5f1b,1 +np.float64,0x860ed1350c1da,0x860ed1350c1da,1 +np.float64,0x79f88262f3f11,0x79f88262f3f11,1 +np.float64,0x8817761f102ef,0x8817761f102ef,1 +np.float64,0xac44784b5888f,0xac44784b5888f,1 +np.float64,0x800fd594241fab28,0x800fd594241fab28,1 +np.float64,0x800ede32f8ddbc66,0x800ede32f8ddbc66,1 +np.float64,0x800de4c1121bc982,0x800de4c1121bc982,1 +np.float64,0x80076ebcddcedd7a,0x80076ebcddcedd7a,1 +np.float64,0x800b3fee06567fdc,0x800b3fee06567fdc,1 +np.float64,0x800b444426b68889,0x800b444426b68889,1 +np.float64,0x800b1c037a563807,0x800b1c037a563807,1 +np.float64,0x8001eb88c2a3d712,0x8001eb88c2a3d712,1 +np.float64,0x80058aae6dab155e,0x80058aae6dab155e,1 +np.float64,0x80083df2d4f07be6,0x80083df2d4f07be6,1 +np.float64,0x800e3b19d97c7634,0x800e3b19d97c7634,1 +np.float64,0x800a71c6f374e38e,0x800a71c6f374e38e,1 +np.float64,0x80048557f1490ab1,0x80048557f1490ab1,1 +np.float64,0x8000a00e6b01401e,0x8000a00e6b01401e,1 +np.float64,0x800766a3e2cecd49,0x800766a3e2cecd49,1 +np.float64,0x80015eb44602bd69,0x80015eb44602bd69,1 +np.float64,0x800bde885a77bd11,0x800bde885a77bd11,1 +np.float64,0x800224c53ea4498b,0x800224c53ea4498b,1 +np.float64,0x80048e8c6a291d1a,0x80048e8c6a291d1a,1 +np.float64,0x800b667e4af6ccfd,0x800b667e4af6ccfd,1 +np.float64,0x800ae3d7e395c7b0,0x800ae3d7e395c7b0,1 +np.float64,0x80086c245550d849,0x80086c245550d849,1 +np.float64,0x800d7d25f6fafa4c,0x800d7d25f6fafa4c,1 +np.float64,0x800f8d9ab0ff1b35,0x800f8d9ab0ff1b35,1 +np.float64,0x800690e949cd21d3,0x800690e949cd21d3,1 +np.float64,0x8003022381060448,0x8003022381060448,1 +np.float64,0x80085e0dad70bc1c,0x80085e0dad70bc1c,1 +np.float64,0x800e2ffc369c5ff9,0x800e2ffc369c5ff9,1 +np.float64,0x800b629b5af6c537,0x800b629b5af6c537,1 +np.float64,0x800fdc964b7fb92d,0x800fdc964b7fb92d,1 +np.float64,0x80036bb4b1c6d76a,0x80036bb4b1c6d76a,1 +np.float64,0x800b382f7f16705f,0x800b382f7f16705f,1 +np.float64,0x800ebac9445d7593,0x800ebac9445d7593,1 +np.float64,0x80015075c3e2a0ec,0x80015075c3e2a0ec,1 +np.float64,0x8002a6ec5ce54dd9,0x8002a6ec5ce54dd9,1 +np.float64,0x8009fab74a93f56f,0x8009fab74a93f56f,1 +np.float64,0x800c94b9ea992974,0x800c94b9ea992974,1 +np.float64,0x800dc2efd75b85e0,0x800dc2efd75b85e0,1 +np.float64,0x800be6400d57cc80,0x800be6400d57cc80,1 +np.float64,0x80021f6858443ed1,0x80021f6858443ed1,1 +np.float64,0x800600e2ac4c01c6,0x800600e2ac4c01c6,1 +np.float64,0x800a2159e6b442b4,0x800a2159e6b442b4,1 +np.float64,0x800c912f4bb9225f,0x800c912f4bb9225f,1 +np.float64,0x800a863a9db50c76,0x800a863a9db50c76,1 +np.float64,0x800ac16851d582d1,0x800ac16851d582d1,1 +np.float64,0x8003f7d32e87efa7,0x8003f7d32e87efa7,1 +np.float64,0x800be4eee3d7c9de,0x800be4eee3d7c9de,1 +np.float64,0x80069ff0ac4d3fe2,0x80069ff0ac4d3fe2,1 +np.float64,0x80061c986d4c3932,0x80061c986d4c3932,1 +np.float64,0x8000737b4de0e6f7,0x8000737b4de0e6f7,1 +np.float64,0x8002066ef7440cdf,0x8002066ef7440cdf,1 +np.float64,0x8001007050c200e1,0x8001007050c200e1,1 +np.float64,0x8008df9fa351bf40,0x8008df9fa351bf40,1 +np.float64,0x800f8394ee5f072a,0x800f8394ee5f072a,1 +np.float64,0x80008e0b01c11c17,0x80008e0b01c11c17,1 +np.float64,0x800f7088ed3ee112,0x800f7088ed3ee112,1 +np.float64,0x800285b86f650b72,0x800285b86f650b72,1 +np.float64,0x8008ec18af51d832,0x8008ec18af51d832,1 +np.float64,0x800da08523bb410a,0x800da08523bb410a,1 +np.float64,0x800de853ca7bd0a8,0x800de853ca7bd0a8,1 +np.float64,0x8008c8aefad1915e,0x8008c8aefad1915e,1 +np.float64,0x80010c39d5821874,0x80010c39d5821874,1 +np.float64,0x8009208349724107,0x8009208349724107,1 +np.float64,0x800783783f0f06f1,0x800783783f0f06f1,1 +np.float64,0x80025caf9984b960,0x80025caf9984b960,1 +np.float64,0x800bc76fa6778ee0,0x800bc76fa6778ee0,1 +np.float64,0x80017e2f89a2fc60,0x80017e2f89a2fc60,1 +np.float64,0x800ef169843de2d3,0x800ef169843de2d3,1 +np.float64,0x80098a5f7db314bf,0x80098a5f7db314bf,1 +np.float64,0x800d646f971ac8df,0x800d646f971ac8df,1 +np.float64,0x800110d1dc6221a4,0x800110d1dc6221a4,1 +np.float64,0x800f8b422a1f1684,0x800f8b422a1f1684,1 +np.float64,0x800785c97dcf0b94,0x800785c97dcf0b94,1 +np.float64,0x800da201283b4403,0x800da201283b4403,1 +np.float64,0x800a117cc7b422fa,0x800a117cc7b422fa,1 +np.float64,0x80024731cfa48e64,0x80024731cfa48e64,1 +np.float64,0x800199d456c333a9,0x800199d456c333a9,1 +np.float64,0x8005f66bab8becd8,0x8005f66bab8becd8,1 +np.float64,0x8008e7227c11ce45,0x8008e7227c11ce45,1 +np.float64,0x8007b66cc42f6cda,0x8007b66cc42f6cda,1 +np.float64,0x800669e6f98cd3cf,0x800669e6f98cd3cf,1 +np.float64,0x800aed917375db23,0x800aed917375db23,1 +np.float64,0x8008b6dd15116dbb,0x8008b6dd15116dbb,1 +np.float64,0x800f49869cfe930d,0x800f49869cfe930d,1 +np.float64,0x800a712661b4e24d,0x800a712661b4e24d,1 +np.float64,0x800944e816f289d1,0x800944e816f289d1,1 +np.float64,0x800eba0f8a1d741f,0x800eba0f8a1d741f,1 +np.float64,0x800cf6ded139edbe,0x800cf6ded139edbe,1 +np.float64,0x80023100c6246202,0x80023100c6246202,1 +np.float64,0x800c5a94add8b52a,0x800c5a94add8b52a,1 +np.float64,0x800adf329b95be66,0x800adf329b95be66,1 +np.float64,0x800af9afc115f360,0x800af9afc115f360,1 +np.float64,0x800d66ce837acd9d,0x800d66ce837acd9d,1 +np.float64,0x8003ffb5e507ff6d,0x8003ffb5e507ff6d,1 +np.float64,0x80027d280024fa51,0x80027d280024fa51,1 +np.float64,0x800fc37e1d1f86fc,0x800fc37e1d1f86fc,1 +np.float64,0x800fc7258b9f8e4b,0x800fc7258b9f8e4b,1 +np.float64,0x8003fb5789e7f6b0,0x8003fb5789e7f6b0,1 +np.float64,0x800eb4e7a13d69cf,0x800eb4e7a13d69cf,1 +np.float64,0x800951850952a30a,0x800951850952a30a,1 +np.float64,0x3fed4071be3a80e3,0x3fe95842074431df,1 +np.float64,0x3f8d2341203a4682,0x3f8d2300b453bd9f,1 +np.float64,0x3fdc8ce332b919c6,0x3fdb9cdf1440c28f,1 +np.float64,0x3fdc69bd84b8d37b,0x3fdb7d25c8166b7b,1 +np.float64,0x3fc4c22ad0298456,0x3fc4aae73e231b4f,1 +np.float64,0x3fea237809f446f0,0x3fe753cc6ca96193,1 +np.float64,0x3fd34cf6462699ed,0x3fd30268909bb47e,1 +np.float64,0x3fafce20643f9c41,0x3fafc8e41a240e35,1 +np.float64,0x3fdc6d416538da83,0x3fdb805262292863,1 +np.float64,0x3fe7d8362aefb06c,0x3fe5b2ce659db7fd,1 +np.float64,0x3fe290087de52011,0x3fe189f9a3eb123d,1 +np.float64,0x3fa62d2bf82c5a58,0x3fa62b65958ca2b8,1 +np.float64,0x3fafd134403fa269,0x3fafcbf670f8a6f3,1 +np.float64,0x3fa224e53c2449ca,0x3fa223ec5de1631b,1 +np.float64,0x3fb67e2c2c2cfc58,0x3fb676c445fb70a0,1 +np.float64,0x3fda358d01346b1a,0x3fd97b9441666eb2,1 +np.float64,0x3fdd30fc4bba61f9,0x3fdc308da423778d,1 +np.float64,0x3fc56e99c52add34,0x3fc5550004492621,1 +np.float64,0x3fe32d08de265a12,0x3fe20c761a73cec2,1 +np.float64,0x3fd46cf932a8d9f2,0x3fd414a7f3db03df,1 +np.float64,0x3fd94cfa2b3299f4,0x3fd8a5961b3e4bdd,1 +np.float64,0x3fed6ea3a6fadd47,0x3fe9745b2f6c9204,1 +np.float64,0x3fe4431d1768863a,0x3fe2ef61d0481de0,1 +np.float64,0x3fe1d8e00ea3b1c0,0x3fe0efab5050ee78,1 +np.float64,0x3fe56f37dcaade70,0x3fe3de00b0f392e0,1 +np.float64,0x3fde919a2dbd2334,0x3fdd6b6d2dcf2396,1 +np.float64,0x3fe251e3d4a4a3c8,0x3fe155de69605d60,1 +np.float64,0x3fe5e0ecc5abc1da,0x3fe436a5de5516cf,1 +np.float64,0x3fcd48780c3a90f0,0x3fcd073fa907ba9b,1 +np.float64,0x3fe4e8149229d029,0x3fe37360801d5b66,1 +np.float64,0x3fb9ef159633de2b,0x3fb9e3bc05a15d1d,1 +np.float64,0x3fc24a3f0424947e,0x3fc23a5432ca0e7c,1 +np.float64,0x3fe55ca196aab943,0x3fe3cf6b3143435a,1 +np.float64,0x3fe184544c2308a9,0x3fe0a7b49fa80aec,1 +np.float64,0x3fe2c76e83658edd,0x3fe1b8355c1ea771,1 +np.float64,0x3fea8d2c4ab51a59,0x3fe79ba85aabc099,1 +np.float64,0x3fd74f98abae9f31,0x3fd6cc85005d0593,1 +np.float64,0x3fec6de9a678dbd3,0x3fe8d59a1d23cdd1,1 +np.float64,0x3fec8a0e50f9141d,0x3fe8e7500f6f6a00,1 +np.float64,0x3fe9de6d08b3bcda,0x3fe7245319508767,1 +np.float64,0x3fe4461fd1688c40,0x3fe2f1cf0b93aba6,1 +np.float64,0x3fde342d9d3c685b,0x3fdd185609d5719d,1 +np.float64,0x3feb413fc8368280,0x3fe813c091d2519a,1 +np.float64,0x3fe64333156c8666,0x3fe48275b9a6a358,1 +np.float64,0x3fe03c65226078ca,0x3fdf18b26786be35,1 +np.float64,0x3fee11054dbc220b,0x3fe9d579a1cfa7ad,1 +np.float64,0x3fbaefccae35df99,0x3fbae314fef7c7ea,1 +np.float64,0x3feed4e3487da9c7,0x3fea4729241c8811,1 +np.float64,0x3fbb655df836cabc,0x3fbb57fcf9a097be,1 +np.float64,0x3fe68b0273ed1605,0x3fe4b96109afdf76,1 +np.float64,0x3fd216bfc3242d80,0x3fd1d957363f6a43,1 +np.float64,0x3fe01328d4a02652,0x3fded083bbf94aba,1 +np.float64,0x3fe3f9a61ae7f34c,0x3fe2b3f701b79028,1 +np.float64,0x3fed4e7cf8fa9cfa,0x3fe960d27084fb40,1 +np.float64,0x3faec08e343d811c,0x3faebbd2aa07ac1f,1 +np.float64,0x3fd2d1bbeea5a378,0x3fd28c9aefcf48ad,1 +np.float64,0x3fd92e941fb25d28,0x3fd889857f88410d,1 +np.float64,0x3fe43decb7e87bd9,0x3fe2eb32b4ee4667,1 +np.float64,0x3fef49cabcfe9395,0x3fea892f9a233f76,1 +np.float64,0x3fe3e96812e7d2d0,0x3fe2a6c6b45dd6ee,1 +np.float64,0x3fd24c0293a49805,0x3fd20c76d54473cb,1 +np.float64,0x3fb43d6b7e287ad7,0x3fb438060772795a,1 +np.float64,0x3fe87bf7d3f0f7f0,0x3fe62a0c47411c62,1 +np.float64,0x3fee82a2e07d0546,0x3fea17e27e752b7b,1 +np.float64,0x3fe40c01bbe81803,0x3fe2c2d9483f44d8,1 +np.float64,0x3fd686ccae2d0d99,0x3fd610763fb61097,1 +np.float64,0x3fe90fcf2af21f9e,0x3fe693c12df59ba9,1 +np.float64,0x3fefb3ce11ff679c,0x3feac3dd4787529d,1 +np.float64,0x3fcec53ff63d8a80,0x3fce79992af00c58,1 +np.float64,0x3fe599dd7bab33bb,0x3fe3ff5da7575d85,1 +np.float64,0x3fe9923b1a732476,0x3fe6ef71d13db456,1 +np.float64,0x3febf76fcef7eee0,0x3fe88a3952e11373,1 +np.float64,0x3fc2cfd128259fa2,0x3fc2be7fd47fd811,1 +np.float64,0x3fe4d37ae269a6f6,0x3fe36300d45e3745,1 +np.float64,0x3fe23aa2e4247546,0x3fe1424e172f756f,1 +np.float64,0x3fe4f0596ca9e0b3,0x3fe379f0c49de7ef,1 +np.float64,0x3fe2e4802fe5c900,0x3fe1d062a8812601,1 +np.float64,0x3fe5989c79eb3139,0x3fe3fe6308552dec,1 +np.float64,0x3fe3c53cb4e78a79,0x3fe28956e573aca4,1 +np.float64,0x3fe6512beeeca258,0x3fe48d2d5ece979f,1 +np.float64,0x3fd8473ddb308e7c,0x3fd7b33e38adc6ad,1 +np.float64,0x3fecd09c9679a139,0x3fe91361fa0c5bcb,1 +np.float64,0x3fc991530e3322a6,0x3fc965e2c514a9e9,1 +np.float64,0x3f6d4508403a8a11,0x3f6d45042b68acc5,1 +np.float64,0x3fea1f198f743e33,0x3fe750ce918d9330,1 +np.float64,0x3fd0a0bb4da14177,0x3fd07100f9c71e1c,1 +np.float64,0x3fd30c45ffa6188c,0x3fd2c499f9961f66,1 +np.float64,0x3fcad98e7c35b31d,0x3fcaa74293cbc52e,1 +np.float64,0x3fec8e4a5eb91c95,0x3fe8e9f898d118db,1 +np.float64,0x3fd19fdb79233fb7,0x3fd1670c00febd24,1 +np.float64,0x3fea9fcbb1f53f97,0x3fe7a836b29c4075,1 +np.float64,0x3fc6d12ea12da25d,0x3fc6b24bd2f89f59,1 +np.float64,0x3fd6af3658ad5e6d,0x3fd636613e08df3f,1 +np.float64,0x3fe31bc385a63787,0x3fe1fe3081621213,1 +np.float64,0x3fc0dbba2221b774,0x3fc0cf42c9313dba,1 +np.float64,0x3fef639ce87ec73a,0x3fea9795454f1036,1 +np.float64,0x3fee5f29dcbcbe54,0x3fea0349b288f355,1 +np.float64,0x3fed46bdb37a8d7b,0x3fe95c199f5aa569,1 +np.float64,0x3fef176afa3e2ed6,0x3fea6ce78b2aa3aa,1 +np.float64,0x3fc841e7683083cf,0x3fc81cccb84848cc,1 +np.float64,0xbfda3ec9a2347d94,0xbfd9840d180e9de3,1 +np.float64,0xbfcd5967ae3ab2d0,0xbfcd17be13142bb9,1 +np.float64,0xbfedf816573bf02d,0xbfe9c6bb06476c60,1 +np.float64,0xbfd0d6e10e21adc2,0xbfd0a54f99d2f3dc,1 +np.float64,0xbfe282df096505be,0xbfe17ef5e2e80760,1 +np.float64,0xbfd77ae6e62ef5ce,0xbfd6f4f6b603ad8a,1 +np.float64,0xbfe37b171aa6f62e,0xbfe24cb4b2d0ade4,1 +np.float64,0xbfef9e5ed9bf3cbe,0xbfeab817b41000bd,1 +np.float64,0xbfe624d6f96c49ae,0xbfe46b1e9c9aff86,1 +np.float64,0xbfefb5da65ff6bb5,0xbfeac4fc9c982772,1 +np.float64,0xbfd29a65d52534cc,0xbfd2579df8ff87b9,1 +np.float64,0xbfd40270172804e0,0xbfd3af6471104aef,1 +np.float64,0xbfb729ee7a2e53e0,0xbfb721d7dbd2705e,1 +np.float64,0xbfb746f1382e8de0,0xbfb73ebc1207f8e3,1 +np.float64,0xbfd3c7e606a78fcc,0xbfd377a8aa1b0dd9,1 +np.float64,0xbfd18c4880231892,0xbfd1543506584ad5,1 +np.float64,0xbfea988080753101,0xbfe7a34cba0d0fa1,1 +np.float64,0xbf877400e02ee800,0xbf8773df47fa7e35,1 +np.float64,0xbfb07e050820fc08,0xbfb07b198d4a52c9,1 +np.float64,0xbfee0a3621fc146c,0xbfe9d1745a05ba77,1 +np.float64,0xbfe78de246ef1bc4,0xbfe57bf2baab91c8,1 +np.float64,0xbfcdbfd3bd3b7fa8,0xbfcd7b728a955a06,1 +np.float64,0xbfe855ea79b0abd5,0xbfe60e8a4a17b921,1 +np.float64,0xbfd86c8e3530d91c,0xbfd7d5e36c918dc1,1 +np.float64,0xbfe4543169e8a863,0xbfe2fd23d42f552e,1 +np.float64,0xbfe41efbf1283df8,0xbfe2d235a2faed1a,1 +np.float64,0xbfd9a55464b34aa8,0xbfd8f7083f7281e5,1 +np.float64,0xbfe5f5078d6bea0f,0xbfe44637d910c270,1 +np.float64,0xbfe6d83e3dedb07c,0xbfe4f3fdadd10552,1 +np.float64,0xbfdb767e70b6ecfc,0xbfdaa0b6c17f3fb1,1 +np.float64,0xbfdfc91b663f9236,0xbfde7eb0dfbeaa26,1 +np.float64,0xbfbfbd18783f7a30,0xbfbfa84bf2fa1c8d,1 +np.float64,0xbfe51199242a2332,0xbfe39447dbe066ae,1 +np.float64,0xbfdbb94814b77290,0xbfdadd63bd796972,1 +np.float64,0xbfd8c6272cb18c4e,0xbfd828f2d9e8607e,1 +np.float64,0xbfce51e0b63ca3c0,0xbfce097ee908083a,1 +np.float64,0xbfe99a177d73342f,0xbfe6f4ec776a57ae,1 +np.float64,0xbfefde2ab0ffbc55,0xbfeadafdcbf54733,1 +np.float64,0xbfcccb5c1c3996b8,0xbfcc8d586a73d126,1 +np.float64,0xbfdf7ddcedbefbba,0xbfde3c749a906de7,1 +np.float64,0xbfef940516ff280a,0xbfeab26429e89f4b,1 +np.float64,0xbfe08009f1e10014,0xbfdf8eab352997eb,1 +np.float64,0xbfe9c02682b3804d,0xbfe70f5fd05f79ee,1 +np.float64,0xbfb3ca1732279430,0xbfb3c50bec5b453a,1 +np.float64,0xbfe368e81926d1d0,0xbfe23dc704d0887c,1 +np.float64,0xbfbd20cc2e3a4198,0xbfbd10b7e6d81c6c,1 +np.float64,0xbfd67ece4d2cfd9c,0xbfd608f527dcc5e7,1 +np.float64,0xbfdc02d1333805a2,0xbfdb20104454b79f,1 +np.float64,0xbfc007a626200f4c,0xbfbff9dc9dc70193,1 +np.float64,0xbfda9e4f8fb53ca0,0xbfd9db8af35dc630,1 +np.float64,0xbfd8173d77302e7a,0xbfd786a0cf3e2914,1 +np.float64,0xbfeb8fcbd0b71f98,0xbfe84734debc10fb,1 +np.float64,0xbfe4bf1cb7697e3a,0xbfe352c891113f29,1 +np.float64,0xbfc18624d5230c48,0xbfc178248e863b64,1 +np.float64,0xbfcf184bac3e3098,0xbfceca3b19be1ebe,1 +np.float64,0xbfd2269c42a44d38,0xbfd1e8920d72b694,1 +np.float64,0xbfe8808526b1010a,0xbfe62d5497292495,1 +np.float64,0xbfe498bd1da9317a,0xbfe334245eadea93,1 +np.float64,0xbfef0855aebe10ab,0xbfea6462f29aeaf9,1 +np.float64,0xbfdeb186c93d630e,0xbfdd87c37943c602,1 +np.float64,0xbfb29fe2ae253fc8,0xbfb29bae3c87efe4,1 +np.float64,0xbfddd9c6c3bbb38e,0xbfdcc7b400bf384b,1 +np.float64,0xbfe3506673e6a0cd,0xbfe2299f26295553,1 +np.float64,0xbfe765957a2ecb2b,0xbfe55e03cf22edab,1 +np.float64,0xbfecc9876c79930f,0xbfe90efaf15b6207,1 +np.float64,0xbfefb37a0a7f66f4,0xbfeac3af3898e7c2,1 +np.float64,0xbfeefa0da7bdf41b,0xbfea5c4cde53c1c3,1 +np.float64,0xbfe6639ee9ecc73e,0xbfe49b4e28a72482,1 +np.float64,0xbfef91a4bb7f2349,0xbfeab114ac9e25dd,1 +np.float64,0xbfc8b392bb316724,0xbfc88c657f4441a3,1 +np.float64,0xbfc88a358231146c,0xbfc863cb900970fe,1 +np.float64,0xbfef25a9d23e4b54,0xbfea74eda432aabe,1 +np.float64,0xbfe6aceea0ed59de,0xbfe4d32e54a3fd01,1 +np.float64,0xbfefe2b3e37fc568,0xbfeadd74f4605835,1 +np.float64,0xbfa9eecb8833dd90,0xbfa9ebf4f4cb2591,1 +np.float64,0xbfd42bad7428575a,0xbfd3d69de8e52d0a,1 +np.float64,0xbfbc366b4a386cd8,0xbfbc27ceee8f3019,1 +np.float64,0xbfd9bca7be337950,0xbfd90c80e6204e57,1 +np.float64,0xbfe8173f53f02e7f,0xbfe5e0f8d8ed329c,1 +np.float64,0xbfce22dbcb3c45b8,0xbfcddbc8159b63af,1 +np.float64,0xbfea2d7ba7345af7,0xbfe75aa62ad5b80a,1 +np.float64,0xbfc08b783e2116f0,0xbfc07faf8d501558,1 +np.float64,0xbfb8c4161c318830,0xbfb8ba33950748ec,1 +np.float64,0xbfddd930bcbbb262,0xbfdcc72dffdf51bb,1 +np.float64,0xbfd108ce8a22119e,0xbfd0d5801e7698bd,1 +np.float64,0xbfd5bd2b5dab7a56,0xbfd552c52c468c76,1 +np.float64,0xbfe7ffe67fefffcd,0xbfe5cfe96e35e6e5,1 +np.float64,0xbfa04ec6bc209d90,0xbfa04e120a2c25cc,1 +np.float64,0xbfef7752cc7eeea6,0xbfeaa28715addc4f,1 +np.float64,0xbfe7083c2eae1078,0xbfe5182bf8ddfc8e,1 +np.float64,0xbfe05dafd0a0bb60,0xbfdf52d397cfe5f6,1 +np.float64,0xbfacb4f2243969e0,0xbfacb118991ea235,1 +np.float64,0xbfc7d47e422fa8fc,0xbfc7b1504714a4fd,1 +np.float64,0xbfbd70b2243ae168,0xbfbd60182efb61de,1 +np.float64,0xbfe930e49cb261c9,0xbfe6ab272b3f9cfc,1 +np.float64,0xbfb5f537e62bea70,0xbfb5ee540dcdc635,1 +np.float64,0xbfbb0c8278361908,0xbfbaffa1f7642a87,1 +np.float64,0xbfe82af2447055e4,0xbfe5ef54ca8db9e8,1 +np.float64,0xbfe92245e6f2448c,0xbfe6a0d32168040b,1 +np.float64,0xbfb799a8522f3350,0xbfb7911a7ada3640,1 +np.float64,0x7faa8290c8350521,0x3fe5916f67209cd6,1 +np.float64,0x7f976597082ecb2d,0x3fcf94dce396bd37,1 +np.float64,0x7fede721237bce41,0x3fe3e7b1575b005f,1 +np.float64,0x7fd5f674d72bece9,0x3fe3210628eba199,1 +np.float64,0x7f9b0f1aa0361e34,0x3feffd34d15d1da7,1 +np.float64,0x7fec48346ab89068,0x3fe93dd84253d9a2,1 +np.float64,0x7f9cac76283958eb,0xbfec4cd999653868,1 +np.float64,0x7fed51ab6bbaa356,0x3fecc27fb5f37bca,1 +np.float64,0x7fded3c116bda781,0xbfda473efee47cf1,1 +np.float64,0x7fd19c48baa33890,0xbfe25700cbfc0326,1 +np.float64,0x7fe5c8f478ab91e8,0xbfee4ab6d84806be,1 +np.float64,0x7fe53c64e46a78c9,0x3fee19c3f227f4e1,1 +np.float64,0x7fc2ad1936255a31,0xbfe56db9b877f807,1 +np.float64,0x7fe2b071b52560e2,0xbfce3990a8d390a9,1 +np.float64,0x7fc93f3217327e63,0xbfd1f6d7ef838d2b,1 +np.float64,0x7fec26df08784dbd,0x3fd5397be41c93d9,1 +np.float64,0x7fcf4770183e8edf,0x3fe6354f5a785016,1 +np.float64,0x7fdc9fcc0bb93f97,0xbfeeeae952e8267d,1 +np.float64,0x7feb21f29c7643e4,0x3fec20122e33f1bf,1 +np.float64,0x7fd0b51273216a24,0x3fefb09f8daba00b,1 +np.float64,0x7fe747a9d76e8f53,0x3feb46a3232842a4,1 +np.float64,0x7fd58885972b110a,0xbfce5ea57c186221,1 +np.float64,0x7fca3ce85c3479d0,0x3fef93a24548e8ca,1 +np.float64,0x7fe1528a46a2a514,0xbfb54bb578d9da91,1 +np.float64,0x7fcc58b21b38b163,0x3feffb5b741ffc2d,1 +np.float64,0x7fdabcaaf5357955,0x3fecbf855db524d1,1 +np.float64,0x7fdd27c6933a4f8c,0xbfef2f41bb80144b,1 +np.float64,0x7fbda4e1be3b49c2,0x3fdb9b33f84f5381,1 +np.float64,0x7fe53363362a66c5,0x3fe4daff3a6a4ed0,1 +np.float64,0x7fe5719d62eae33a,0xbfef761d98f625d5,1 +np.float64,0x7f982ce5a83059ca,0x3fd0b27c3365f0a8,1 +np.float64,0x7fe6db8c42edb718,0x3fe786f4b1fe11a6,1 +np.float64,0x7fe62cca1b2c5993,0x3fd425b6c4c9714a,1 +np.float64,0x7feea88850bd5110,0xbfd7bbb432017175,1 +np.float64,0x7fad6c6ae43ad8d5,0x3fe82e49098bc6de,1 +np.float64,0x7fe70542f02e0a85,0x3fec3017960b4822,1 +np.float64,0x7feaf0bcbb35e178,0xbfc3aac74dd322d5,1 +np.float64,0x7fb5e152fe2bc2a5,0x3fd4b27a4720614c,1 +np.float64,0x7fe456ee5be8addc,0xbfe9e15ab5cff229,1 +np.float64,0x7fd4b53a8d296a74,0xbfefff450f503326,1 +np.float64,0x7fd7149d7a2e293a,0x3fef4ef0a9009096,1 +np.float64,0x7fd43fc5a8a87f8a,0x3fe0c929fee9dce7,1 +np.float64,0x7fef97022aff2e03,0x3fd4ea52a813da20,1 +np.float64,0x7fe035950ae06b29,0x3fef4e125394fb05,1 +np.float64,0x7fecd0548979a0a8,0x3fe89d226244037b,1 +np.float64,0x7fc79b3ac22f3675,0xbfee9c9cf78c8270,1 +np.float64,0x7fd8b8e8263171cf,0x3fe8e24437961db0,1 +np.float64,0x7fc288c23e251183,0xbfbaf8eca50986ca,1 +np.float64,0x7fe436b4b6686d68,0xbfecd661741931c4,1 +np.float64,0x7fcdf99abe3bf334,0x3feaa75c90830b92,1 +np.float64,0x7fd9f9739233f2e6,0xbfebbfcb301b0da5,1 +np.float64,0x7fd6fcbd1b2df979,0xbfccf2c77cb65f56,1 +np.float64,0x7fe242a97b248552,0xbfe5b0f13bcbabc8,1 +np.float64,0x7fe38bf3e06717e7,0x3fbc8fa9004d2668,1 +np.float64,0x7fecd0e8d479a1d1,0xbfe886a6b4f73a4a,1 +np.float64,0x7fe958d60232b1ab,0xbfeb7c4cf0cee2dd,1 +np.float64,0x7f9d492b583a9256,0xbfebe975d00221cb,1 +np.float64,0x7fd6c9983bad932f,0xbfefe817621a31f6,1 +np.float64,0x7fed0d7239fa1ae3,0x3feac7e1b6455b4b,1 +np.float64,0x7fe61dac90ec3b58,0x3fef845b9efe8421,1 +np.float64,0x7f9acd3010359a5f,0xbfe460d376200130,1 +np.float64,0x7fedced9673b9db2,0xbfeeaf23445e1944,1 +np.float64,0x7fd9f271a733e4e2,0xbfd41544535ecb78,1 +np.float64,0x7fe703339bee0666,0x3fef93334626b56c,1 +np.float64,0x7fec7761b7b8eec2,0xbfe6da9179e8e714,1 +np.float64,0x7fdd9fff043b3ffd,0xbfc0761dfb8d94f9,1 +np.float64,0x7fdc10ed17b821d9,0x3fe1481e2a26c77f,1 +np.float64,0x7fe7681e72aed03c,0x3fefff94a6d47c84,1 +np.float64,0x7fe18c29e1e31853,0x3fe86ebd2fd89456,1 +np.float64,0x7fb2fb273c25f64d,0xbfefc136f57e06de,1 +np.float64,0x7fac2bbb90385776,0x3fe25d8e3cdae7e3,1 +np.float64,0x7fed16789efa2cf0,0x3fe94555091fdfd9,1 +np.float64,0x7fd8fe8f7831fd1e,0xbfed58d520361902,1 +np.float64,0x7fa59bde3c2b37bb,0x3fef585391c077ff,1 +np.float64,0x7fda981b53353036,0x3fde02ca08737b5f,1 +np.float64,0x7fd29f388aa53e70,0xbfe04f5499246df2,1 +np.float64,0x7fcd0232513a0464,0xbfd9737f2f565829,1 +np.float64,0x7fe9a881bcf35102,0xbfe079cf285b35dd,1 +np.float64,0x7fdbe399a9b7c732,0x3fe965bc4220f340,1 +np.float64,0x7feb77414af6ee82,0xbfb7df2fcd491f55,1 +np.float64,0x7fa26e86c424dd0d,0xbfea474c3d65b9be,1 +np.float64,0x7feaee869e35dd0c,0xbfd7b333a888cd14,1 +np.float64,0x7fcbd67f6137acfe,0xbfe15a7a15dfcee6,1 +np.float64,0x7fe36991e766d323,0xbfeb288077c4ed9f,1 +np.float64,0x7fdcf4f4fcb9e9e9,0xbfea331ef7a75e7b,1 +np.float64,0x7fbe3445643c688a,0x3fedf21b94ae8e37,1 +np.float64,0x7fd984cfd2b3099f,0x3fc0d3ade71c395e,1 +np.float64,0x7fdec987b23d930e,0x3fe4af5e48f6c26e,1 +np.float64,0x7fde56a9953cad52,0x3fc8e7762cefb8b0,1 +np.float64,0x7fd39fb446273f68,0xbfe6c3443208f44d,1 +np.float64,0x7fc609c1a72c1382,0x3fe884e639571baa,1 +np.float64,0x7fe001be4b20037c,0xbfed0d90cbcb6010,1 +np.float64,0x7fce7ace283cf59b,0xbfd0303792e51f49,1 +np.float64,0x7fe27ba93da4f751,0x3fe548b5ce740d71,1 +np.float64,0x7fcc13c79b38278e,0xbfe2e14f5b64a1e9,1 +np.float64,0x7fc058550620b0a9,0x3fe44bb55ebd0590,1 +np.float64,0x7fa4ba8bf8297517,0x3fee59b39f9d08c4,1 +np.float64,0x7fe50d6872ea1ad0,0xbfea1eaa2d059e13,1 +np.float64,0x7feb7e33b476fc66,0xbfeff28a4424dd3e,1 +np.float64,0x7fe2d7d2a165afa4,0xbfdbaff0ba1ea460,1 +np.float64,0xffd126654b224cca,0xbfef0cd3031fb97c,1 +np.float64,0xffb5f884942bf108,0x3fe0de589bea2e4c,1 +np.float64,0xffe011b4bfe02369,0xbfe805a0edf1e1f2,1 +np.float64,0xffec13eae9b827d5,0x3fb5f30347d78447,1 +np.float64,0xffa6552ae82caa50,0x3fb1ecee60135f2f,1 +np.float64,0xffb62d38b02c5a70,0x3fbd35903148fd12,1 +np.float64,0xffe2c44ea425889d,0xbfd7616547f99a7d,1 +np.float64,0xffea24c61a74498c,0x3fef4a1b15ae9005,1 +np.float64,0xffd23a4ab2a47496,0x3fe933bfaa569ae9,1 +np.float64,0xffc34a073d269410,0xbfeec0f510bb7474,1 +np.float64,0xffeead84cfbd5b09,0x3feb2d635e5a78bd,1 +np.float64,0xffcfd8f3b43fb1e8,0xbfdd59625801771b,1 +np.float64,0xffd3c7f662a78fec,0x3f9cf3209edfbc4e,1 +np.float64,0xffe7b7e4f72f6fca,0xbfefdcff4925632c,1 +np.float64,0xffe48cab05e91956,0x3fe6b41217948423,1 +np.float64,0xffeb6980b336d301,0xbfca5de148f69324,1 +np.float64,0xffe3f15c4aa7e2b8,0xbfeb18efae892081,1 +np.float64,0xffcf290c713e5218,0x3fefe6f1a513ed26,1 +np.float64,0xffd80979b43012f4,0xbfde6c8df91af976,1 +np.float64,0xffc3181e0026303c,0x3fe7448f681def38,1 +np.float64,0xffedfa68f97bf4d1,0xbfeca6efb802d109,1 +np.float64,0xffca0931c0341264,0x3fe31b9f073b08cd,1 +np.float64,0xffe4c44934e98892,0x3feda393a2e8a0f7,1 +np.float64,0xffe65bb56f2cb76a,0xbfeffaf638a4b73e,1 +np.float64,0xffe406a332a80d46,0x3fe8151dadb853c1,1 +np.float64,0xffdb7eae9c36fd5e,0xbfeff89abf5ab16e,1 +np.float64,0xffe245a02da48b40,0x3fef1fb43e85f4b8,1 +np.float64,0xffe2bafa732575f4,0x3fcbab115c6fd86e,1 +np.float64,0xffe8b1eedb7163dd,0x3feff263df6f6b12,1 +np.float64,0xffe6c76c796d8ed8,0xbfe61a8668511293,1 +np.float64,0xffefe327d1ffc64f,0xbfd9b92887a84827,1 +np.float64,0xffa452180c28a430,0xbfa9b9e578a4e52f,1 +np.float64,0xffe9867d0bf30cf9,0xbfca577867588408,1 +np.float64,0xffdfe9b923bfd372,0x3fdab5c15f085c2d,1 +np.float64,0xffed590c6abab218,0xbfd7e7b6c5a120e6,1 +np.float64,0xffeaebcfbab5d79f,0x3fed58be8a9e2c3b,1 +np.float64,0xffe2ba83a8257507,0x3fe6c42a4ac1d4d9,1 +np.float64,0xffe01d5b0ee03ab6,0xbfe5dad6c9247db7,1 +np.float64,0xffe51095d52a212b,0x3fef822cebc32d8e,1 +np.float64,0xffebd7a901b7af51,0xbfe5e63f3e3b1185,1 +np.float64,0xffe4efdcde29dfb9,0xbfe811294dfa758f,1 +np.float64,0xffe3be1aa4a77c35,0x3fdd8dcfcd409bb1,1 +np.float64,0xffbe6f2f763cde60,0x3fd13766e43bd622,1 +np.float64,0xffeed3d80fbda7af,0x3fec10a23c1b7a4a,1 +np.float64,0xffd6ebff37add7fe,0xbfe6177411607c86,1 +np.float64,0xffe85a90f4b0b521,0x3fc09fdd66c8fde9,1 +np.float64,0xffea3d58c2b47ab1,0x3feb5bd4a04b3562,1 +np.float64,0xffef675be6beceb7,0x3fecd840683d1044,1 +np.float64,0xff726a088024d400,0x3feff2b4f47b5214,1 +np.float64,0xffc90856733210ac,0xbfe3c6ffbf6840a5,1 +np.float64,0xffc0b58d9a216b1c,0xbfe10314267d0611,1 +np.float64,0xffee1f3d0abc3e79,0xbfd12ea7efea9067,1 +np.float64,0xffd988c41a331188,0x3febe83802d8a32e,1 +np.float64,0xffe8f1ac9bb1e358,0xbfdbf5fa7e84f2f2,1 +np.float64,0xffe47af279e8f5e4,0x3fef11e339e5fa78,1 +np.float64,0xff9960a7f832c140,0xbfa150363f8ec5b2,1 +np.float64,0xffcac40fa7358820,0xbfec3d5847a3df1d,1 +np.float64,0xffcb024a9d360494,0xbfd060fa31fd6b6a,1 +np.float64,0xffe385ffb3270bff,0xbfee6859e8dcd9e8,1 +np.float64,0xffef62f2c53ec5e5,0x3fe0a71ffddfc718,1 +np.float64,0xffed87ff20fb0ffd,0xbfe661db7c4098e3,1 +np.float64,0xffe369278526d24e,0x3fd64d89a41822fc,1 +np.float64,0xff950288c02a0520,0x3fe1df91d1ad7d5c,1 +np.float64,0xffe70e7c2cee1cf8,0x3fc9fece08df2fd8,1 +np.float64,0xffbaf020b635e040,0xbfc68c43ff9911a7,1 +np.float64,0xffee0120b0fc0240,0x3f9f792e17b490b0,1 +np.float64,0xffe1fa4be7a3f498,0xbfef4b18ab4b319e,1 +np.float64,0xffe61887bf2c310f,0x3fe846714826cb32,1 +np.float64,0xffdc3cf77f3879ee,0x3fe033b948a36125,1 +np.float64,0xffcc2b86f238570c,0xbfefdcceac3f220f,1 +np.float64,0xffe1f030c0a3e061,0x3fef502a808c359a,1 +np.float64,0xffb872c4ee30e588,0x3fef66ed8d3e6175,1 +np.float64,0xffeac8fc617591f8,0xbfe5d8448602aac9,1 +np.float64,0xffe5be16afab7c2d,0x3fee75ccde3cd14d,1 +np.float64,0xffae230ad83c4610,0xbfe49bbe6074d459,1 +np.float64,0xffc8fbeff531f7e0,0x3f77201e0c927f97,1 +np.float64,0xffdc314f48b8629e,0x3fef810dfc5db118,1 +np.float64,0xffec1f8970783f12,0x3fe15567102e042a,1 +np.float64,0xffc6995f902d32c0,0xbfecd5d2eedf342c,1 +np.float64,0xffdc7af76b38f5ee,0xbfd6e754476ab320,1 +np.float64,0xffb30cf8682619f0,0x3fd5ac3dfc4048d0,1 +np.float64,0xffd3a77695a74eee,0xbfefb5d6889e36e9,1 +np.float64,0xffd8b971803172e4,0xbfeb7f62f0b6c70b,1 +np.float64,0xffde4c0234bc9804,0xbfed50ba9e16d5e0,1 +np.float64,0xffb62b3f342c5680,0xbfeabc0de4069b84,1 +np.float64,0xff9af5674035eac0,0xbfed6c198b6b1bd8,1 +np.float64,0xffdfe20cb43fc41a,0x3fb11f8238f66306,1 +np.float64,0xffd2ecd7a0a5d9b0,0xbfec17ef1a62b1e3,1 +np.float64,0xffce60f7863cc1f0,0x3fe6dbcad3e3a006,1 +np.float64,0xffbbb8306a377060,0xbfbfd0fbef485c4c,1 +np.float64,0xffd1b2bd2b23657a,0xbfda3e046d987b99,1 +np.float64,0xffc480f4092901e8,0xbfeeff0427f6897b,1 +np.float64,0xffe6e02d926dc05a,0xbfcd59552778890b,1 +np.float64,0xffd302e5b7a605cc,0xbfee7c08641366b0,1 +np.float64,0xffec2eb92f785d72,0xbfef5c9c7f771050,1 +np.float64,0xffea3e31a9747c62,0xbfc49cd54755faf0,1 +np.float64,0xffce0a4e333c149c,0x3feeb9a6d0db4aee,1 +np.float64,0xffdc520a2db8a414,0x3fefc7b72613dcd0,1 +np.float64,0xffe056b968a0ad72,0xbfe47a9fe1f827fb,1 +np.float64,0xffe5a10f4cab421e,0x3fec2b1f74b73dec,1 diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-sinh.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-sinh.csv new file mode 100644 index 0000000..1ef7b6e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-sinh.csv @@ -0,0 +1,1429 @@ +dtype,input,output,ulperrortol +np.float32,0xfee27582,0xff800000,2 +np.float32,0xff19f092,0xff800000,2 +np.float32,0xbf393576,0xbf49cb31,2 +np.float32,0x8020fdea,0x8020fdea,2 +np.float32,0x455f4e,0x455f4e,2 +np.float32,0xff718c35,0xff800000,2 +np.float32,0x3f3215e3,0x3f40cce5,2 +np.float32,0x19e833,0x19e833,2 +np.float32,0xff2dcd49,0xff800000,2 +np.float32,0x7e8f6c95,0x7f800000,2 +np.float32,0xbf159dac,0xbf1e47a5,2 +np.float32,0x100d3d,0x100d3d,2 +np.float32,0xff673441,0xff800000,2 +np.float32,0x80275355,0x80275355,2 +np.float32,0x4812d0,0x4812d0,2 +np.float32,0x8072b956,0x8072b956,2 +np.float32,0xff3bb918,0xff800000,2 +np.float32,0x0,0x0,2 +np.float32,0xfe327798,0xff800000,2 +np.float32,0x41d4e2,0x41d4e2,2 +np.float32,0xfe34b1b8,0xff800000,2 +np.float32,0x80199f72,0x80199f72,2 +np.float32,0x807242ce,0x807242ce,2 +np.float32,0x3ef4202d,0x3efd7b48,2 +np.float32,0x763529,0x763529,2 +np.float32,0x4f6662,0x4f6662,2 +np.float32,0x3f18efe9,0x3f2232b5,2 +np.float32,0x80701846,0x80701846,2 +np.float32,0x3f599948,0x3f74c393,2 +np.float32,0x5a3d69,0x5a3d69,2 +np.float32,0xbf4a7e65,0xbf6047a3,2 +np.float32,0xff0d4c82,0xff800000,2 +np.float32,0x7a74db,0x7a74db,2 +np.float32,0x803388e6,0x803388e6,2 +np.float32,0x7f4430bb,0x7f800000,2 +np.float32,0x14c5b1,0x14c5b1,2 +np.float32,0xfa113400,0xff800000,2 +np.float32,0x7f4b3209,0x7f800000,2 +np.float32,0x8038d88c,0x8038d88c,2 +np.float32,0xbef2f9de,0xbefc330b,2 +np.float32,0xbe147b38,0xbe15008f,2 +np.float32,0x2b61e6,0x2b61e6,2 +np.float32,0x80000001,0x80000001,2 +np.float32,0x8060456c,0x8060456c,2 +np.float32,0x3f30fa82,0x3f3f6a99,2 +np.float32,0xfd1f0220,0xff800000,2 +np.float32,0xbf2b7555,0xbf389151,2 +np.float32,0xff100b7a,0xff800000,2 +np.float32,0x70d3cd,0x70d3cd,2 +np.float32,0x2a8d4a,0x2a8d4a,2 +np.float32,0xbf7b733f,0xbf92f05f,2 +np.float32,0x3f7106dc,0x3f8b1fc6,2 +np.float32,0x3f39da7a,0x3f4a9d79,2 +np.float32,0x3f5dd73f,0x3f7aaab5,2 +np.float32,0xbe8c8754,0xbe8e4cba,2 +np.float32,0xbf6c74c9,0xbf87c556,2 +np.float32,0x800efbbb,0x800efbbb,2 +np.float32,0xff054ab5,0xff800000,2 +np.float32,0x800b4b46,0x800b4b46,2 +np.float32,0xff77fd74,0xff800000,2 +np.float32,0x257d0,0x257d0,2 +np.float32,0x7caa0c,0x7caa0c,2 +np.float32,0x8025d24d,0x8025d24d,2 +np.float32,0x3d9f1b60,0x3d9f445c,2 +np.float32,0xbe3bf6e8,0xbe3d0595,2 +np.float32,0x54bb93,0x54bb93,2 +np.float32,0xbf3e6a45,0xbf507716,2 +np.float32,0x3f4bb26e,0x3f61e1cd,2 +np.float32,0x3f698edc,0x3f85aac5,2 +np.float32,0xff7bd0ef,0xff800000,2 +np.float32,0xbed07b68,0xbed64a8e,2 +np.float32,0xbf237c72,0xbf2ed3d2,2 +np.float32,0x27b0fa,0x27b0fa,2 +np.float32,0x3f7606d1,0x3f8ed7d6,2 +np.float32,0x790dc0,0x790dc0,2 +np.float32,0x7f68f3ac,0x7f800000,2 +np.float32,0xbed39288,0xbed9a52f,2 +np.float32,0x3f6f8266,0x3f8a0187,2 +np.float32,0x3fbdca,0x3fbdca,2 +np.float32,0xbf7c3e5d,0xbf938b2c,2 +np.float32,0x802321a8,0x802321a8,2 +np.float32,0x3eecab66,0x3ef53031,2 +np.float32,0x62b324,0x62b324,2 +np.float32,0x3f13afac,0x3f1c03fe,2 +np.float32,0xff315ad7,0xff800000,2 +np.float32,0xbf1fac0d,0xbf2a3a63,2 +np.float32,0xbf543984,0xbf6d61d6,2 +np.float32,0x71a212,0x71a212,2 +np.float32,0x114fbe,0x114fbe,2 +np.float32,0x3f5b6ff2,0x3f77505f,2 +np.float32,0xff6ff89e,0xff800000,2 +np.float32,0xff4527a1,0xff800000,2 +np.float32,0x22cb3,0x22cb3,2 +np.float32,0x7f53bb6b,0x7f800000,2 +np.float32,0xff3d2dea,0xff800000,2 +np.float32,0xfd21dac0,0xff800000,2 +np.float32,0xfc486140,0xff800000,2 +np.float32,0x7e2b693a,0x7f800000,2 +np.float32,0x8022a9fb,0x8022a9fb,2 +np.float32,0x80765de0,0x80765de0,2 +np.float32,0x13d299,0x13d299,2 +np.float32,0x7ee53713,0x7f800000,2 +np.float32,0xbde1c770,0xbde23c96,2 +np.float32,0xbd473fc0,0xbd4753de,2 +np.float32,0x3f1cb455,0x3f26acf3,2 +np.float32,0x683e49,0x683e49,2 +np.float32,0x3ed5a9fc,0x3edbeb79,2 +np.float32,0x3f4fe3f6,0x3f67814f,2 +np.float32,0x802a2bce,0x802a2bce,2 +np.float32,0x7e951b4c,0x7f800000,2 +np.float32,0xbe6eb260,0xbe70dd44,2 +np.float32,0xbe3daca8,0xbe3ec2cb,2 +np.float32,0xbe9c38b2,0xbe9ea822,2 +np.float32,0xff2e29dc,0xff800000,2 +np.float32,0x7f62c7cc,0x7f800000,2 +np.float32,0xbf6799a4,0xbf84416c,2 +np.float32,0xbe30a7f0,0xbe318898,2 +np.float32,0xc83d9,0xc83d9,2 +np.float32,0x3f05abf4,0x3f0bd447,2 +np.float32,0x7e9b018a,0x7f800000,2 +np.float32,0xbf0ed72e,0xbf165e5b,2 +np.float32,0x8011ac8c,0x8011ac8c,2 +np.float32,0xbeb7c706,0xbebbbfcb,2 +np.float32,0x803637f9,0x803637f9,2 +np.float32,0xfe787cc8,0xff800000,2 +np.float32,0x3f533d4b,0x3f6c0a50,2 +np.float32,0x3f5c0f1c,0x3f782dde,2 +np.float32,0x3f301f36,0x3f3e590d,2 +np.float32,0x2dc929,0x2dc929,2 +np.float32,0xff15018a,0xff800000,2 +np.float32,0x3f4d0c56,0x3f63afeb,2 +np.float32,0xbf7a2ae3,0xbf91f6e4,2 +np.float32,0xbe771b84,0xbe798346,2 +np.float32,0x80800000,0x80800000,2 +np.float32,0x7f5689ba,0x7f800000,2 +np.float32,0x3f1c3177,0x3f2610df,2 +np.float32,0x3f1b9664,0x3f255825,2 +np.float32,0x3f7e5066,0x3f9520d4,2 +np.float32,0xbf1935f8,0xbf2285ab,2 +np.float32,0x3f096cc7,0x3f101ef9,2 +np.float32,0x8030c180,0x8030c180,2 +np.float32,0x6627ed,0x6627ed,2 +np.float32,0x454595,0x454595,2 +np.float32,0x7de66a33,0x7f800000,2 +np.float32,0xbf800000,0xbf966cfe,2 +np.float32,0xbf35c0a8,0xbf456939,2 +np.float32,0x3f6a6266,0x3f8643e0,2 +np.float32,0x3f0cbcee,0x3f13ef6a,2 +np.float32,0x7efd1e58,0x7f800000,2 +np.float32,0xfe9a74c6,0xff800000,2 +np.float32,0x807ebe6c,0x807ebe6c,2 +np.float32,0x80656736,0x80656736,2 +np.float32,0x800e0608,0x800e0608,2 +np.float32,0xbf30e39a,0xbf3f4e00,2 +np.float32,0x802015fd,0x802015fd,2 +np.float32,0x3e3ce26d,0x3e3df519,2 +np.float32,0x7ec142ac,0x7f800000,2 +np.float32,0xbf68c9ce,0xbf851c78,2 +np.float32,0xfede8356,0xff800000,2 +np.float32,0xbf1507ce,0xbf1d978d,2 +np.float32,0x3e53914c,0x3e551374,2 +np.float32,0x7f3e1c14,0x7f800000,2 +np.float32,0x8070d2ba,0x8070d2ba,2 +np.float32,0xbf4eb793,0xbf65ecee,2 +np.float32,0x7365a6,0x7365a6,2 +np.float32,0x8045cba2,0x8045cba2,2 +np.float32,0x7e4af521,0x7f800000,2 +np.float32,0xbf228625,0xbf2da9e1,2 +np.float32,0x7ee0536c,0x7f800000,2 +np.float32,0x3e126607,0x3e12e5d5,2 +np.float32,0x80311d92,0x80311d92,2 +np.float32,0xbf386b8b,0xbf48ca54,2 +np.float32,0x7f800000,0x7f800000,2 +np.float32,0x8049ec7a,0x8049ec7a,2 +np.float32,0xbf1dfde4,0xbf2836be,2 +np.float32,0x7e719a8c,0x7f800000,2 +np.float32,0x3eb9c856,0x3ebde2e6,2 +np.float32,0xfe3efda8,0xff800000,2 +np.float32,0xbe89d60c,0xbe8b81d1,2 +np.float32,0x3eaad338,0x3eae0317,2 +np.float32,0x7f4e5217,0x7f800000,2 +np.float32,0x3e9d0f40,0x3e9f88ce,2 +np.float32,0xbe026708,0xbe02c155,2 +np.float32,0x5fc22f,0x5fc22f,2 +np.float32,0x1c4572,0x1c4572,2 +np.float32,0xbed89d96,0xbedf22c5,2 +np.float32,0xbf3debee,0xbf4fd441,2 +np.float32,0xbf465520,0xbf5ac6e5,2 +np.float32,0x3f797081,0x3f9169b3,2 +np.float32,0xbf250734,0xbf30b2aa,2 +np.float32,0x7f5068e9,0x7f800000,2 +np.float32,0x3f1b814e,0x3f253f0c,2 +np.float32,0xbf27c5d3,0xbf340b05,2 +np.float32,0x3f1b78ae,0x3f2534c8,2 +np.float32,0x8059b51a,0x8059b51a,2 +np.float32,0x8059f182,0x8059f182,2 +np.float32,0xbf1bb36e,0xbf257ab8,2 +np.float32,0x41ac35,0x41ac35,2 +np.float32,0x68f41f,0x68f41f,2 +np.float32,0xbea504dc,0xbea7e40f,2 +np.float32,0x1,0x1,2 +np.float32,0x3e96b5b0,0x3e98e542,2 +np.float32,0x7f7fffff,0x7f800000,2 +np.float32,0x3c557a80,0x3c557c0c,2 +np.float32,0x800ca3ec,0x800ca3ec,2 +np.float32,0x8077d4aa,0x8077d4aa,2 +np.float32,0x3f000af0,0x3f0572d6,2 +np.float32,0x3e0434dd,0x3e0492f8,2 +np.float32,0x7d1a710a,0x7f800000,2 +np.float32,0x3f70f996,0x3f8b15f8,2 +np.float32,0x8033391d,0x8033391d,2 +np.float32,0x11927c,0x11927c,2 +np.float32,0x7f7784be,0x7f800000,2 +np.float32,0x7acb22af,0x7f800000,2 +np.float32,0x7e8b153c,0x7f800000,2 +np.float32,0x66d402,0x66d402,2 +np.float32,0xfed6e7b0,0xff800000,2 +np.float32,0x7f6872d3,0x7f800000,2 +np.float32,0x1bd49c,0x1bd49c,2 +np.float32,0xfdc4f1b8,0xff800000,2 +np.float32,0xbed8a466,0xbedf2a33,2 +np.float32,0x7ee789,0x7ee789,2 +np.float32,0xbece94b4,0xbed43b52,2 +np.float32,0x3cf3f734,0x3cf4006f,2 +np.float32,0x7e44aa00,0x7f800000,2 +np.float32,0x7f19e99c,0x7f800000,2 +np.float32,0x806ff1bc,0x806ff1bc,2 +np.float32,0x80296934,0x80296934,2 +np.float32,0x7f463363,0x7f800000,2 +np.float32,0xbf212ac3,0xbf2c06bb,2 +np.float32,0x3dc63778,0x3dc686ba,2 +np.float32,0x7f1b4328,0x7f800000,2 +np.float32,0x6311f6,0x6311f6,2 +np.float32,0xbf6b6fb6,0xbf870751,2 +np.float32,0xbf2c44cf,0xbf399155,2 +np.float32,0x3e7a67bc,0x3e7ce887,2 +np.float32,0x7f57c5f7,0x7f800000,2 +np.float32,0x7f2bb4ff,0x7f800000,2 +np.float32,0xbe9d448e,0xbe9fc0a4,2 +np.float32,0xbf4840f0,0xbf5d4f6b,2 +np.float32,0x7f1e1176,0x7f800000,2 +np.float32,0xff76638e,0xff800000,2 +np.float32,0xff055555,0xff800000,2 +np.float32,0x3f32b82b,0x3f419834,2 +np.float32,0xff363aa8,0xff800000,2 +np.float32,0x7f737fd0,0x7f800000,2 +np.float32,0x3da5d798,0x3da60602,2 +np.float32,0x3f1cc126,0x3f26bc3e,2 +np.float32,0x7eb07541,0x7f800000,2 +np.float32,0x3f7b2ff2,0x3f92bd2a,2 +np.float32,0x474f7,0x474f7,2 +np.float32,0x7fc00000,0x7fc00000,2 +np.float32,0xff2b0a4e,0xff800000,2 +np.float32,0xfeb24f16,0xff800000,2 +np.float32,0x2cb9fc,0x2cb9fc,2 +np.float32,0x67189d,0x67189d,2 +np.float32,0x8033d854,0x8033d854,2 +np.float32,0xbe85e94c,0xbe87717a,2 +np.float32,0x80767c6c,0x80767c6c,2 +np.float32,0x7ea84d65,0x7f800000,2 +np.float32,0x3f024bc7,0x3f07fead,2 +np.float32,0xbdcb0100,0xbdcb5625,2 +np.float32,0x3f160a9e,0x3f1ec7c9,2 +np.float32,0xff1734c8,0xff800000,2 +np.float32,0x7f424d5e,0x7f800000,2 +np.float32,0xbf75b215,0xbf8e9862,2 +np.float32,0x3f262a42,0x3f3214c4,2 +np.float32,0xbf4cfb53,0xbf639927,2 +np.float32,0x3f4ac8b8,0x3f60aa7c,2 +np.float32,0x3e90e593,0x3e92d6b3,2 +np.float32,0xbf66bccf,0xbf83a2d8,2 +np.float32,0x7d3d851a,0x7f800000,2 +np.float32,0x7bac783c,0x7f800000,2 +np.float32,0x8001c626,0x8001c626,2 +np.float32,0xbdffd480,0xbe003f7b,2 +np.float32,0x7f6680bf,0x7f800000,2 +np.float32,0xbecf448e,0xbed4f9bb,2 +np.float32,0x584c7,0x584c7,2 +np.float32,0x3f3e8ea0,0x3f50a5fb,2 +np.float32,0xbf5a5f04,0xbf75d56e,2 +np.float32,0x8065ae47,0x8065ae47,2 +np.float32,0xbf48dce3,0xbf5e1dba,2 +np.float32,0xbe8dae2e,0xbe8f7ed8,2 +np.float32,0x3f7ca6ab,0x3f93dace,2 +np.float32,0x4c3e81,0x4c3e81,2 +np.float32,0x80000000,0x80000000,2 +np.float32,0x3ee1f7d9,0x3ee96033,2 +np.float32,0x80588c6f,0x80588c6f,2 +np.float32,0x5ba34e,0x5ba34e,2 +np.float32,0x80095d28,0x80095d28,2 +np.float32,0xbe7ba198,0xbe7e2bdd,2 +np.float32,0xbe0bdcb4,0xbe0c4c22,2 +np.float32,0x1776f7,0x1776f7,2 +np.float32,0x80328b2a,0x80328b2a,2 +np.float32,0x3e978d37,0x3e99c63e,2 +np.float32,0x7ed50906,0x7f800000,2 +np.float32,0x3f776a54,0x3f8fe2bd,2 +np.float32,0xbed624c4,0xbedc7120,2 +np.float32,0x7f0b6a31,0x7f800000,2 +np.float32,0x7eb13913,0x7f800000,2 +np.float32,0xbe733684,0xbe758190,2 +np.float32,0x80016474,0x80016474,2 +np.float32,0x7a51ee,0x7a51ee,2 +np.float32,0x3f6cb91e,0x3f87f729,2 +np.float32,0xbd99b050,0xbd99d540,2 +np.float32,0x7c6e3cba,0x7f800000,2 +np.float32,0xbf00179a,0xbf05811e,2 +np.float32,0x3e609b29,0x3e626954,2 +np.float32,0xff3fd71a,0xff800000,2 +np.float32,0x5d8c2,0x5d8c2,2 +np.float32,0x7ee93662,0x7f800000,2 +np.float32,0x4b0b31,0x4b0b31,2 +np.float32,0x3ec243b7,0x3ec6f594,2 +np.float32,0x804d60f1,0x804d60f1,2 +np.float32,0xbf0cb784,0xbf13e929,2 +np.float32,0x3f13b74d,0x3f1c0cee,2 +np.float32,0xfe37cb64,0xff800000,2 +np.float32,0x1a88,0x1a88,2 +np.float32,0x3e22a472,0x3e2353ba,2 +np.float32,0x7f07d6a0,0x7f800000,2 +np.float32,0x3f78f435,0x3f910bb5,2 +np.float32,0x555a4a,0x555a4a,2 +np.float32,0x3e306c1f,0x3e314be3,2 +np.float32,0x8005877c,0x8005877c,2 +np.float32,0x4df389,0x4df389,2 +np.float32,0x8069ffc7,0x8069ffc7,2 +np.float32,0x3f328f24,0x3f4164c6,2 +np.float32,0x53a31b,0x53a31b,2 +np.float32,0xbe4d6768,0xbe4ec8be,2 +np.float32,0x7fa00000,0x7fe00000,2 +np.float32,0x3f484c1b,0x3f5d5e2f,2 +np.float32,0x8038be05,0x8038be05,2 +np.float32,0x58ac0f,0x58ac0f,2 +np.float32,0x7ed7fb72,0x7f800000,2 +np.float32,0x5a22e1,0x5a22e1,2 +np.float32,0xbebb7394,0xbebfaad6,2 +np.float32,0xbda98160,0xbda9b2ef,2 +np.float32,0x7f3e5c42,0x7f800000,2 +np.float32,0xfed204ae,0xff800000,2 +np.float32,0xbf5ef782,0xbf7c3ec5,2 +np.float32,0xbef7a0a8,0xbf00b292,2 +np.float32,0xfee6e176,0xff800000,2 +np.float32,0xfe121140,0xff800000,2 +np.float32,0xfe9e13be,0xff800000,2 +np.float32,0xbf3c98b1,0xbf4e2003,2 +np.float32,0x77520d,0x77520d,2 +np.float32,0xf17b2,0xf17b2,2 +np.float32,0x724d2f,0x724d2f,2 +np.float32,0x7eb326f5,0x7f800000,2 +np.float32,0x3edd6bf2,0x3ee4636e,2 +np.float32,0x350f57,0x350f57,2 +np.float32,0xff7d4435,0xff800000,2 +np.float32,0x802b2b9d,0x802b2b9d,2 +np.float32,0xbf7fbeee,0xbf963acf,2 +np.float32,0x804f3100,0x804f3100,2 +np.float32,0x7c594a71,0x7f800000,2 +np.float32,0x3ef49340,0x3efdfbb6,2 +np.float32,0x2e0659,0x2e0659,2 +np.float32,0x8006d5fe,0x8006d5fe,2 +np.float32,0xfd2a00b0,0xff800000,2 +np.float32,0xbee1c016,0xbee922ed,2 +np.float32,0x3e3b7de8,0x3e3c8a8b,2 +np.float32,0x805e6bba,0x805e6bba,2 +np.float32,0x1a7da2,0x1a7da2,2 +np.float32,0x6caba4,0x6caba4,2 +np.float32,0x802f7eab,0x802f7eab,2 +np.float32,0xff68b16b,0xff800000,2 +np.float32,0x8064f5e5,0x8064f5e5,2 +np.float32,0x2e39b4,0x2e39b4,2 +np.float32,0x800000,0x800000,2 +np.float32,0xfd0334c0,0xff800000,2 +np.float32,0x3e952fc4,0x3e974e7e,2 +np.float32,0x80057d33,0x80057d33,2 +np.float32,0x3ed3ddc4,0x3ed9f6f1,2 +np.float32,0x3f74ce18,0x3f8dedf4,2 +np.float32,0xff6bb7c0,0xff800000,2 +np.float32,0xff43bc21,0xff800000,2 +np.float32,0x80207570,0x80207570,2 +np.float32,0x7e1dda75,0x7f800000,2 +np.float32,0x3efe335c,0x3f0462ff,2 +np.float32,0xbf252c0c,0xbf30df70,2 +np.float32,0x3ef4b8e3,0x3efe25ba,2 +np.float32,0x7c33938d,0x7f800000,2 +np.float32,0x3eb1593c,0x3eb4ea95,2 +np.float32,0xfe1d0068,0xff800000,2 +np.float32,0xbf10da9b,0xbf18b551,2 +np.float32,0xfeb65748,0xff800000,2 +np.float32,0xfe8c6014,0xff800000,2 +np.float32,0x3f0503e2,0x3f0b14e3,2 +np.float32,0xfe5e5248,0xff800000,2 +np.float32,0xbd10afa0,0xbd10b754,2 +np.float32,0xff64b609,0xff800000,2 +np.float32,0xbf674a96,0xbf84089c,2 +np.float32,0x7f5d200d,0x7f800000,2 +np.float32,0x3cf44900,0x3cf45245,2 +np.float32,0x8044445a,0x8044445a,2 +np.float32,0xff35b676,0xff800000,2 +np.float32,0x806452cd,0x806452cd,2 +np.float32,0xbf2930fb,0xbf35c7b4,2 +np.float32,0x7e500617,0x7f800000,2 +np.float32,0x543719,0x543719,2 +np.float32,0x3ed11068,0x3ed6ec1d,2 +np.float32,0xbd8db068,0xbd8dcd59,2 +np.float32,0x3ede62c8,0x3ee571d0,2 +np.float32,0xbf00a410,0xbf061f9c,2 +np.float32,0xbf44fa39,0xbf58ff5b,2 +np.float32,0x3f1c3114,0x3f261069,2 +np.float32,0xbdea6210,0xbdeae521,2 +np.float32,0x80059f6d,0x80059f6d,2 +np.float32,0xbdba15f8,0xbdba578c,2 +np.float32,0x6d8a61,0x6d8a61,2 +np.float32,0x6f5428,0x6f5428,2 +np.float32,0x18d0e,0x18d0e,2 +np.float32,0x50e131,0x50e131,2 +np.float32,0x3f2f52be,0x3f3d5a7e,2 +np.float32,0x7399d8,0x7399d8,2 +np.float32,0x106524,0x106524,2 +np.float32,0x7ebf1c53,0x7f800000,2 +np.float32,0x80276458,0x80276458,2 +np.float32,0x3ebbde67,0x3ec01ceb,2 +np.float32,0x80144d9d,0x80144d9d,2 +np.float32,0x8017ea6b,0x8017ea6b,2 +np.float32,0xff38f201,0xff800000,2 +np.float32,0x7f2daa82,0x7f800000,2 +np.float32,0x3f3cb7c7,0x3f4e47ed,2 +np.float32,0x7f08c779,0x7f800000,2 +np.float32,0xbecc907a,0xbed20cec,2 +np.float32,0x7d440002,0x7f800000,2 +np.float32,0xbd410d80,0xbd411fcd,2 +np.float32,0x3d63ae07,0x3d63cc0c,2 +np.float32,0x805a9c13,0x805a9c13,2 +np.float32,0x803bdcdc,0x803bdcdc,2 +np.float32,0xbe88b354,0xbe8a5497,2 +np.float32,0x3f4eaf43,0x3f65e1c2,2 +np.float32,0x3f15e5b8,0x3f1e9c60,2 +np.float32,0x3e8a870c,0x3e8c394e,2 +np.float32,0x7e113de9,0x7f800000,2 +np.float32,0x7ee5ba41,0x7f800000,2 +np.float32,0xbe73d178,0xbe7620eb,2 +np.float32,0xfe972e6a,0xff800000,2 +np.float32,0xbf65567d,0xbf82a25a,2 +np.float32,0x3f38247e,0x3f487010,2 +np.float32,0xbece1c62,0xbed3b918,2 +np.float32,0x442c8d,0x442c8d,2 +np.float32,0x2dc52,0x2dc52,2 +np.float32,0x802ed923,0x802ed923,2 +np.float32,0x788cf8,0x788cf8,2 +np.float32,0x8024888e,0x8024888e,2 +np.float32,0x3f789bde,0x3f90c8fc,2 +np.float32,0x3f5de620,0x3f7abf88,2 +np.float32,0x3f0ffc45,0x3f17b2a7,2 +np.float32,0xbf709678,0xbf8accd4,2 +np.float32,0x12181f,0x12181f,2 +np.float32,0xfe54bbe4,0xff800000,2 +np.float32,0x7f1daba0,0x7f800000,2 +np.float32,0xbf6226df,0xbf805e3c,2 +np.float32,0xbd120610,0xbd120dfb,2 +np.float32,0x7f75e951,0x7f800000,2 +np.float32,0x80068048,0x80068048,2 +np.float32,0x45f04a,0x45f04a,2 +np.float32,0xff4c4f58,0xff800000,2 +np.float32,0x311604,0x311604,2 +np.float32,0x805e809c,0x805e809c,2 +np.float32,0x3d1d62c0,0x3d1d6caa,2 +np.float32,0x7f14ccf9,0x7f800000,2 +np.float32,0xff10017c,0xff800000,2 +np.float32,0xbf43ec48,0xbf579df4,2 +np.float32,0xff64da57,0xff800000,2 +np.float32,0x7f0622c5,0x7f800000,2 +np.float32,0x7f5460cd,0x7f800000,2 +np.float32,0xff0ef1c6,0xff800000,2 +np.float32,0xbece1146,0xbed3ad13,2 +np.float32,0x3f4d457f,0x3f63fc70,2 +np.float32,0xbdc1da28,0xbdc2244b,2 +np.float32,0xbe46d3f4,0xbe481463,2 +np.float32,0xff36b3d6,0xff800000,2 +np.float32,0xbec2e76c,0xbec7a540,2 +np.float32,0x8078fb81,0x8078fb81,2 +np.float32,0x7ec819cb,0x7f800000,2 +np.float32,0x39c4d,0x39c4d,2 +np.float32,0xbe8cddc2,0xbe8ea670,2 +np.float32,0xbf36dffb,0xbf46d48b,2 +np.float32,0xbf2302a3,0xbf2e4065,2 +np.float32,0x3e7b34a2,0x3e7dbb9a,2 +np.float32,0x3e3d87e1,0x3e3e9d62,2 +np.float32,0x7f3c94b1,0x7f800000,2 +np.float32,0x80455a85,0x80455a85,2 +np.float32,0xfd875568,0xff800000,2 +np.float32,0xbf618103,0xbf7fd1c8,2 +np.float32,0xbe332e3c,0xbe3418ac,2 +np.float32,0x80736b79,0x80736b79,2 +np.float32,0x3f705d9a,0x3f8aa2e6,2 +np.float32,0xbf3a36d2,0xbf4b134b,2 +np.float32,0xfddc55c0,0xff800000,2 +np.float32,0x805606fd,0x805606fd,2 +np.float32,0x3f4f0bc4,0x3f665e25,2 +np.float32,0xfebe7494,0xff800000,2 +np.float32,0xff0c541b,0xff800000,2 +np.float32,0xff0b8e7f,0xff800000,2 +np.float32,0xbcc51640,0xbcc51b1e,2 +np.float32,0x7ec1c4d0,0x7f800000,2 +np.float32,0xfc5c8e00,0xff800000,2 +np.float32,0x7f48d682,0x7f800000,2 +np.float32,0x7d5c7d8d,0x7f800000,2 +np.float32,0x8052ed03,0x8052ed03,2 +np.float32,0x7d4db058,0x7f800000,2 +np.float32,0xff3a65ee,0xff800000,2 +np.float32,0x806eeb93,0x806eeb93,2 +np.float32,0x803f9733,0x803f9733,2 +np.float32,0xbf2d1388,0xbf3a90e3,2 +np.float32,0x68e260,0x68e260,2 +np.float32,0x3e47a69f,0x3e48eb0e,2 +np.float32,0x3f0c4623,0x3f136646,2 +np.float32,0x3f37a831,0x3f47d249,2 +np.float32,0xff153a0c,0xff800000,2 +np.float32,0x2e8086,0x2e8086,2 +np.float32,0xc3f5e,0xc3f5e,2 +np.float32,0x7f31dc14,0x7f800000,2 +np.float32,0xfee37d68,0xff800000,2 +np.float32,0x711d4,0x711d4,2 +np.float32,0x7ede2ce4,0x7f800000,2 +np.float32,0xbf5d76d0,0xbf7a23d0,2 +np.float32,0xbe2b9eb4,0xbe2c6cac,2 +np.float32,0x2b14d7,0x2b14d7,2 +np.float32,0x3ea1db72,0x3ea4910e,2 +np.float32,0x7f3f03f7,0x7f800000,2 +np.float32,0x92de5,0x92de5,2 +np.float32,0x80322e1b,0x80322e1b,2 +np.float32,0xbf5eb214,0xbf7bdd55,2 +np.float32,0xbf21bf87,0xbf2cba14,2 +np.float32,0xbf5d4b78,0xbf79e73a,2 +np.float32,0xbc302840,0xbc30291e,2 +np.float32,0xfee567c6,0xff800000,2 +np.float32,0x7f70ee14,0x7f800000,2 +np.float32,0x7e5c4b33,0x7f800000,2 +np.float32,0x3f1e7b64,0x3f28ccfd,2 +np.float32,0xbf6309f7,0xbf80ff3e,2 +np.float32,0x1c2fe3,0x1c2fe3,2 +np.float32,0x8e78d,0x8e78d,2 +np.float32,0x7f2fce73,0x7f800000,2 +np.float32,0x7f25f690,0x7f800000,2 +np.float32,0x8074cba5,0x8074cba5,2 +np.float32,0x16975f,0x16975f,2 +np.float32,0x8012cf5c,0x8012cf5c,2 +np.float32,0x7da72138,0x7f800000,2 +np.float32,0xbf563f35,0xbf7025be,2 +np.float32,0x3f69d3f5,0x3f85dcbe,2 +np.float32,0xbf15c148,0xbf1e7184,2 +np.float32,0xbe7a077c,0xbe7c8564,2 +np.float32,0x3ebb6ef1,0x3ebfa5e3,2 +np.float32,0xbe41fde4,0xbe43277b,2 +np.float32,0x7f10b479,0x7f800000,2 +np.float32,0x3e021ace,0x3e02747d,2 +np.float32,0x3e93d984,0x3e95e9be,2 +np.float32,0xfe17e924,0xff800000,2 +np.float32,0xfe21a7cc,0xff800000,2 +np.float32,0x8019b660,0x8019b660,2 +np.float32,0x7e954631,0x7f800000,2 +np.float32,0x7e7330d1,0x7f800000,2 +np.float32,0xbe007d98,0xbe00d3fb,2 +np.float32,0x3ef3870e,0x3efcd077,2 +np.float32,0x7f5bbde8,0x7f800000,2 +np.float32,0x14a5b3,0x14a5b3,2 +np.float32,0x3e84d23f,0x3e8650e8,2 +np.float32,0x80763017,0x80763017,2 +np.float32,0xfe871f36,0xff800000,2 +np.float32,0x7ed43150,0x7f800000,2 +np.float32,0x3cc44547,0x3cc44a16,2 +np.float32,0x3ef0c0fa,0x3ef9b97d,2 +np.float32,0xbede9944,0xbee5ad86,2 +np.float32,0xbf10f0b2,0xbf18cf0a,2 +np.float32,0x3ecdaa78,0x3ed33dd9,2 +np.float32,0x3f7cc058,0x3f93ee6b,2 +np.float32,0x2d952f,0x2d952f,2 +np.float32,0x3f2cf2de,0x3f3a687a,2 +np.float32,0x8029b33c,0x8029b33c,2 +np.float32,0xbf22c737,0xbf2df888,2 +np.float32,0xff53c84a,0xff800000,2 +np.float32,0x40a509,0x40a509,2 +np.float32,0x56abce,0x56abce,2 +np.float32,0xff7fffff,0xff800000,2 +np.float32,0xbf3e67f6,0xbf50741c,2 +np.float32,0xfde67580,0xff800000,2 +np.float32,0x3f103e9b,0x3f17ffc7,2 +np.float32,0x3f3f7232,0x3f51cbe2,2 +np.float32,0x803e6d78,0x803e6d78,2 +np.float32,0x3a61da,0x3a61da,2 +np.float32,0xbc04de80,0xbc04dedf,2 +np.float32,0x7f1e7c52,0x7f800000,2 +np.float32,0x8058ee88,0x8058ee88,2 +np.float32,0x806dd660,0x806dd660,2 +np.float32,0x7e4af9,0x7e4af9,2 +np.float32,0x80702d27,0x80702d27,2 +np.float32,0x802cdad1,0x802cdad1,2 +np.float32,0x3e9b5c23,0x3e9dc149,2 +np.float32,0x7f076e89,0x7f800000,2 +np.float32,0x7f129d68,0x7f800000,2 +np.float32,0x7f6f0b0a,0x7f800000,2 +np.float32,0x7eafafb5,0x7f800000,2 +np.float32,0xbf2ef2ca,0xbf3ce332,2 +np.float32,0xff34c000,0xff800000,2 +np.float32,0x7f559274,0x7f800000,2 +np.float32,0xfed08556,0xff800000,2 +np.float32,0xbf014621,0xbf06d6ad,2 +np.float32,0xff23086a,0xff800000,2 +np.float32,0x6cb33f,0x6cb33f,2 +np.float32,0xfe6e3ffc,0xff800000,2 +np.float32,0x3e6bbec0,0x3e6dd546,2 +np.float32,0x8036afa6,0x8036afa6,2 +np.float32,0xff800000,0xff800000,2 +np.float32,0x3e0ed05c,0x3e0f46ff,2 +np.float32,0x3ec9215c,0x3ece57e6,2 +np.float32,0xbf449fa4,0xbf5888aa,2 +np.float32,0xff2c6640,0xff800000,2 +np.float32,0x7f08f4a7,0x7f800000,2 +np.float32,0xbf4f63e5,0xbf66d4c1,2 +np.float32,0x3f800000,0x3f966cfe,2 +np.float32,0xfe86c7d2,0xff800000,2 +np.float32,0x3f63f969,0x3f81a970,2 +np.float32,0xbd7022d0,0xbd704609,2 +np.float32,0xbead906c,0xbeb0e853,2 +np.float32,0x7ef149ee,0x7f800000,2 +np.float32,0xff0b9ff7,0xff800000,2 +np.float32,0x3f38380d,0x3f4888e7,2 +np.float32,0x3ef3a3e2,0x3efcf09e,2 +np.float32,0xff616477,0xff800000,2 +np.float32,0x3f3f83e4,0x3f51e2c3,2 +np.float32,0xbf79963c,0xbf918642,2 +np.float32,0x801416f4,0x801416f4,2 +np.float32,0xff75ce6d,0xff800000,2 +np.float32,0xbdbf3588,0xbdbf7cad,2 +np.float32,0xbe6ea938,0xbe70d3dc,2 +np.float32,0x8066f977,0x8066f977,2 +np.float32,0x3f5b5362,0x3f7728aa,2 +np.float32,0xbf72052c,0xbf8bdbd8,2 +np.float32,0xbe21ed74,0xbe229a6f,2 +np.float32,0x8062d19c,0x8062d19c,2 +np.float32,0x3ed8d01f,0x3edf59e6,2 +np.float32,0x803ed42b,0x803ed42b,2 +np.float32,0xbe099a64,0xbe0a0481,2 +np.float32,0xbe173eb4,0xbe17cba2,2 +np.float32,0xbebdcf02,0xbec22faf,2 +np.float32,0x7e3ff29e,0x7f800000,2 +np.float32,0x367c92,0x367c92,2 +np.float32,0xbf5c9db8,0xbf78f4a4,2 +np.float32,0xff0b49ea,0xff800000,2 +np.float32,0x3f4f9bc4,0x3f672001,2 +np.float32,0x85d4a,0x85d4a,2 +np.float32,0x80643e33,0x80643e33,2 +np.float32,0x8013aabd,0x8013aabd,2 +np.float32,0xff6997c3,0xff800000,2 +np.float32,0x3f4dd43c,0x3f64bbb6,2 +np.float32,0xff13bbb9,0xff800000,2 +np.float32,0x3f34efa2,0x3f446187,2 +np.float32,0x3e4b2f10,0x3e4c850d,2 +np.float32,0xfef695c6,0xff800000,2 +np.float32,0x7f7e0057,0x7f800000,2 +np.float32,0x3f6e1b9c,0x3f88fa40,2 +np.float32,0x806e46cf,0x806e46cf,2 +np.float32,0x3f15a88a,0x3f1e546c,2 +np.float32,0xbd2de7d0,0xbd2df530,2 +np.float32,0xbf63cae0,0xbf818854,2 +np.float32,0xbdc3e1a0,0xbdc42e1e,2 +np.float32,0xbf11a038,0xbf199b98,2 +np.float32,0xbec13706,0xbec5d56b,2 +np.float32,0x3f1c5f54,0x3f26478d,2 +np.float32,0x3e9ea97e,0x3ea136b4,2 +np.float32,0xfeb5a508,0xff800000,2 +np.float32,0x7f4698f4,0x7f800000,2 +np.float32,0xff51ee2c,0xff800000,2 +np.float32,0xff5994df,0xff800000,2 +np.float32,0x4b9fb9,0x4b9fb9,2 +np.float32,0xfda10d98,0xff800000,2 +np.float32,0x525555,0x525555,2 +np.float32,0x7ed571ef,0x7f800000,2 +np.float32,0xbf600d18,0xbf7dc50c,2 +np.float32,0x3ec674ca,0x3ecb768b,2 +np.float32,0x3cb69115,0x3cb694f3,2 +np.float32,0x7eac75f2,0x7f800000,2 +np.float32,0x804d4d75,0x804d4d75,2 +np.float32,0xfed5292e,0xff800000,2 +np.float32,0x800ed06a,0x800ed06a,2 +np.float32,0xfec37584,0xff800000,2 +np.float32,0x3ef96ac7,0x3f01b326,2 +np.float32,0x42f743,0x42f743,2 +np.float32,0x3f56f442,0x3f711e39,2 +np.float32,0xbf7ea726,0xbf956375,2 +np.float32,0x806c7202,0x806c7202,2 +np.float32,0xbd8ee980,0xbd8f0733,2 +np.float32,0xbdf2e930,0xbdf37b18,2 +np.float32,0x3f103910,0x3f17f955,2 +np.float32,0xff123e8f,0xff800000,2 +np.float32,0x806e4b5d,0x806e4b5d,2 +np.float32,0xbf4f3bfc,0xbf669f07,2 +np.float32,0xbf070c16,0xbf0d6609,2 +np.float32,0xff00e0ba,0xff800000,2 +np.float32,0xff49d828,0xff800000,2 +np.float32,0x7e47f04a,0x7f800000,2 +np.float32,0x7e984dac,0x7f800000,2 +np.float32,0x3f77473c,0x3f8fc858,2 +np.float32,0x3f017439,0x3f070ac8,2 +np.float32,0x118417,0x118417,2 +np.float32,0xbcf7a2c0,0xbcf7ac68,2 +np.float32,0xfee46fee,0xff800000,2 +np.float32,0x3e42a648,0x3e43d2e9,2 +np.float32,0x80131916,0x80131916,2 +np.float32,0x806209d3,0x806209d3,2 +np.float32,0x807c1f12,0x807c1f12,2 +np.float32,0x2f3696,0x2f3696,2 +np.float32,0xff28722b,0xff800000,2 +np.float32,0x7f1416a1,0x7f800000,2 +np.float32,0x8054e7a1,0x8054e7a1,2 +np.float32,0xbddc39a0,0xbddca656,2 +np.float32,0x7dc60175,0x7f800000,2 +np.float64,0x7fd0ae584da15cb0,0x7ff0000000000000,1 +np.float64,0x7fd41d68e5283ad1,0x7ff0000000000000,1 +np.float64,0x7fe93073bb7260e6,0x7ff0000000000000,1 +np.float64,0x3fb4fd19d229fa34,0x3fb5031f57dbac0f,1 +np.float64,0x85609ce10ac2,0x85609ce10ac2,1 +np.float64,0xbfd7aa12ccaf5426,0xbfd8351003a320e2,1 +np.float64,0x8004487c9b4890fa,0x8004487c9b4890fa,1 +np.float64,0x7fe7584cfd2eb099,0x7ff0000000000000,1 +np.float64,0x800ea8edc6dd51dc,0x800ea8edc6dd51dc,1 +np.float64,0x3fe0924aa5a12495,0x3fe15276e271c6dc,1 +np.float64,0x3feb1abf6d36357f,0x3fee76b4d3d06964,1 +np.float64,0x3fa8c14534318280,0x3fa8c3bd5ce5923c,1 +np.float64,0x800b9f5915d73eb3,0x800b9f5915d73eb3,1 +np.float64,0xffc05aaa7820b554,0xfff0000000000000,1 +np.float64,0x800157eda8c2afdc,0x800157eda8c2afdc,1 +np.float64,0xffe8d90042b1b200,0xfff0000000000000,1 +np.float64,0x3feda02ea93b405d,0x3ff1057e61d08d59,1 +np.float64,0xffd03b7361a076e6,0xfff0000000000000,1 +np.float64,0x3fe1a8ecd7e351da,0x3fe291eda9080847,1 +np.float64,0xffc5bfdff82b7fc0,0xfff0000000000000,1 +np.float64,0xbfe6fb3d386df67a,0xbfe9022c05df0565,1 +np.float64,0x7fefffffffffffff,0x7ff0000000000000,1 +np.float64,0x7fa10c340c221867,0x7ff0000000000000,1 +np.float64,0x3fe55cbf1daab97e,0x3fe6fc1648258b75,1 +np.float64,0xbfddeb5f60bbd6be,0xbfdf056d4fb5825f,1 +np.float64,0xffddb1a8213b6350,0xfff0000000000000,1 +np.float64,0xbfb20545e4240a88,0xbfb2091579375176,1 +np.float64,0x3f735ded2026bbda,0x3f735df1dad4ee3a,1 +np.float64,0xbfd1eb91efa3d724,0xbfd227c044dead61,1 +np.float64,0xffd737c588ae6f8c,0xfff0000000000000,1 +np.float64,0x3fc46818ec28d032,0x3fc47e416c4237a6,1 +np.float64,0x0,0x0,1 +np.float64,0xffb632097a2c6410,0xfff0000000000000,1 +np.float64,0xbfcb5ae84b36b5d0,0xbfcb905613af55b8,1 +np.float64,0xbfe7b926402f724c,0xbfe9f4f0be6aacc3,1 +np.float64,0x80081840b3f03082,0x80081840b3f03082,1 +np.float64,0x3fe767a656eecf4d,0x3fe98c53b4779de7,1 +np.float64,0x8005834c088b0699,0x8005834c088b0699,1 +np.float64,0x80074e92658e9d26,0x80074e92658e9d26,1 +np.float64,0x80045d60c268bac2,0x80045d60c268bac2,1 +np.float64,0xffb9aecfe8335da0,0xfff0000000000000,1 +np.float64,0x7fcad3e1cd35a7c3,0x7ff0000000000000,1 +np.float64,0xbf881853d03030c0,0xbf8818783e28fc87,1 +np.float64,0xe18c6d23c318e,0xe18c6d23c318e,1 +np.float64,0x7fcb367b8f366cf6,0x7ff0000000000000,1 +np.float64,0x5c13436cb8269,0x5c13436cb8269,1 +np.float64,0xffe5399938aa7332,0xfff0000000000000,1 +np.float64,0xbfdc45dbc3b88bb8,0xbfdd33958222c27e,1 +np.float64,0xbfd714691bae28d2,0xbfd7954edbef810b,1 +np.float64,0xbfdf18b02b3e3160,0xbfe02ad13634c651,1 +np.float64,0x8003e6f276e7cde6,0x8003e6f276e7cde6,1 +np.float64,0x3febb6b412776d68,0x3fef4f753def31f9,1 +np.float64,0x7fe016a3b4a02d46,0x7ff0000000000000,1 +np.float64,0x3fdc899ac7b91336,0x3fdd7e1cee1cdfc8,1 +np.float64,0x800219271e24324f,0x800219271e24324f,1 +np.float64,0x1529d93e2a53c,0x1529d93e2a53c,1 +np.float64,0x800d5bc827fab790,0x800d5bc827fab790,1 +np.float64,0x3e1495107c293,0x3e1495107c293,1 +np.float64,0x3fe89da0f2b13b42,0x3feb1dc1f3015ad7,1 +np.float64,0x800ba8c17b975183,0x800ba8c17b975183,1 +np.float64,0x8002dacf0265b59f,0x8002dacf0265b59f,1 +np.float64,0xffe6d0a4cc2da149,0xfff0000000000000,1 +np.float64,0x3fdf23fe82be47fc,0x3fe03126d8e2b309,1 +np.float64,0xffe41b1f1c28363e,0xfff0000000000000,1 +np.float64,0xbfd635c634ac6b8c,0xbfd6a8966da6adaa,1 +np.float64,0x800755bc08eeab79,0x800755bc08eeab79,1 +np.float64,0x800ba4c47c374989,0x800ba4c47c374989,1 +np.float64,0x7fec9f7649793eec,0x7ff0000000000000,1 +np.float64,0x7fdbf45738b7e8ad,0x7ff0000000000000,1 +np.float64,0x3f5597f07eab4,0x3f5597f07eab4,1 +np.float64,0xbfbf4599183e8b30,0xbfbf5985d8c65097,1 +np.float64,0xbf5b200580364000,0xbf5b2006501b21ae,1 +np.float64,0x7f91868370230d06,0x7ff0000000000000,1 +np.float64,0x3838e2a67071d,0x3838e2a67071d,1 +np.float64,0xffefe3ff5d3fc7fe,0xfff0000000000000,1 +np.float64,0xffe66b26d06cd64d,0xfff0000000000000,1 +np.float64,0xbfd830a571b0614a,0xbfd8c526927c742c,1 +np.float64,0x7fe8442122f08841,0x7ff0000000000000,1 +np.float64,0x800efa8c637df519,0x800efa8c637df519,1 +np.float64,0xf0026835e004d,0xf0026835e004d,1 +np.float64,0xffb11beefe2237e0,0xfff0000000000000,1 +np.float64,0x3fef9bbb327f3776,0x3ff2809f10641c32,1 +np.float64,0x350595306a0b3,0x350595306a0b3,1 +np.float64,0xf7f6538befecb,0xf7f6538befecb,1 +np.float64,0xffe36379c4a6c6f3,0xfff0000000000000,1 +np.float64,0x28b1d82e5163c,0x28b1d82e5163c,1 +np.float64,0x70a3d804e147c,0x70a3d804e147c,1 +np.float64,0xffd96c1bc9b2d838,0xfff0000000000000,1 +np.float64,0xffce8e00893d1c00,0xfff0000000000000,1 +np.float64,0x800f2bdcb25e57b9,0x800f2bdcb25e57b9,1 +np.float64,0xbfe0d9c63361b38c,0xbfe1a3eb02192b76,1 +np.float64,0xbfdc7b8711b8f70e,0xbfdd6e9db3a01e51,1 +np.float64,0x99e22ec133c46,0x99e22ec133c46,1 +np.float64,0xffeaef6ddab5dedb,0xfff0000000000000,1 +np.float64,0x7fe89c22c0f13845,0x7ff0000000000000,1 +np.float64,0x8002d5207de5aa42,0x8002d5207de5aa42,1 +np.float64,0x3fd1b13353236267,0x3fd1eb1b9345dfca,1 +np.float64,0x800ccae0a41995c1,0x800ccae0a41995c1,1 +np.float64,0x3fdbdaba38b7b574,0x3fdcbdfcbca37ce6,1 +np.float64,0x5b06d12cb60db,0x5b06d12cb60db,1 +np.float64,0xffd52262752a44c4,0xfff0000000000000,1 +np.float64,0x5a17f050b42ff,0x5a17f050b42ff,1 +np.float64,0x3d24205e7a485,0x3d24205e7a485,1 +np.float64,0x7fbed4dec63da9bd,0x7ff0000000000000,1 +np.float64,0xbfe56e9776aadd2f,0xbfe71212863c284f,1 +np.float64,0x7fea0bc952341792,0x7ff0000000000000,1 +np.float64,0x800f692d139ed25a,0x800f692d139ed25a,1 +np.float64,0xffdb63feab36c7fe,0xfff0000000000000,1 +np.float64,0x3fe1c2297fe38452,0x3fe2af21293c9571,1 +np.float64,0x7fede384747bc708,0x7ff0000000000000,1 +np.float64,0x800440169288802e,0x800440169288802e,1 +np.float64,0xffe3241eeb26483e,0xfff0000000000000,1 +np.float64,0xffe28f3879651e70,0xfff0000000000000,1 +np.float64,0xa435cbc1486d,0xa435cbc1486d,1 +np.float64,0x7fe55e08db6abc11,0x7ff0000000000000,1 +np.float64,0x1405e624280be,0x1405e624280be,1 +np.float64,0x3fd861bdf0b0c37c,0x3fd8f9d2e33e45e5,1 +np.float64,0x3feeb67cdc3d6cfa,0x3ff1d337d81d1c14,1 +np.float64,0x3fd159a10e22b342,0x3fd1903be7c2ea0c,1 +np.float64,0x3fd84626bc308c4d,0x3fd8dc373645e65b,1 +np.float64,0xffd3da81d9a7b504,0xfff0000000000000,1 +np.float64,0xbfd4a768b8294ed2,0xbfd503aa7c240051,1 +np.float64,0x3fe3059f2a660b3e,0x3fe42983e0c6bb2e,1 +np.float64,0x3fe3b8353827706a,0x3fe4fdd635c7269b,1 +np.float64,0xbfe4af0399695e07,0xbfe6277d9002b46c,1 +np.float64,0xbfd7e18a92afc316,0xbfd87066b54c4fe6,1 +np.float64,0x800432bcab48657a,0x800432bcab48657a,1 +np.float64,0x80033d609d267ac2,0x80033d609d267ac2,1 +np.float64,0x7fef5f758e7ebeea,0x7ff0000000000000,1 +np.float64,0xbfed7833dbfaf068,0xbff0e85bf45a5ebc,1 +np.float64,0x3fe2283985a45073,0x3fe325b0a9099c74,1 +np.float64,0xe820b4b3d0417,0xe820b4b3d0417,1 +np.float64,0x8003ecb72aa7d96f,0x8003ecb72aa7d96f,1 +np.float64,0xbfeab2c755b5658f,0xbfede7c83e92a625,1 +np.float64,0xbfc7b287f72f6510,0xbfc7d53ef2ffe9dc,1 +np.float64,0xffd9a41d0f33483a,0xfff0000000000000,1 +np.float64,0x3fd3a5b6e3a74b6c,0x3fd3f516f39a4725,1 +np.float64,0x800bc72091578e42,0x800bc72091578e42,1 +np.float64,0x800ff405ce9fe80c,0x800ff405ce9fe80c,1 +np.float64,0x57918600af24,0x57918600af24,1 +np.float64,0x2a5be7fa54b7e,0x2a5be7fa54b7e,1 +np.float64,0xbfdca7886bb94f10,0xbfdd9f142b5b43e4,1 +np.float64,0xbfe216993ee42d32,0xbfe3112936590995,1 +np.float64,0xbfe06bd9cf20d7b4,0xbfe126cd353ab42f,1 +np.float64,0x8003e6c31827cd87,0x8003e6c31827cd87,1 +np.float64,0x8005f37d810be6fc,0x8005f37d810be6fc,1 +np.float64,0x800715b081ae2b62,0x800715b081ae2b62,1 +np.float64,0x3fef94c35bff2986,0x3ff27b4bed2f4051,1 +np.float64,0x6f5798e0deb0,0x6f5798e0deb0,1 +np.float64,0x3fcef1f05c3de3e1,0x3fcf3f557550598f,1 +np.float64,0xbf9a91c400352380,0xbf9a92876273b85c,1 +np.float64,0x3fc9143f7f322880,0x3fc93d678c05d26b,1 +np.float64,0x78ad847af15b1,0x78ad847af15b1,1 +np.float64,0x8000fdc088c1fb82,0x8000fdc088c1fb82,1 +np.float64,0x800200fd304401fb,0x800200fd304401fb,1 +np.float64,0x7fb8ab09dc315613,0x7ff0000000000000,1 +np.float64,0x3fe949771b7292ee,0x3fec00891c3fc5a2,1 +np.float64,0xbfc54cae0e2a995c,0xbfc565e0f3d0e3af,1 +np.float64,0xffd546161e2a8c2c,0xfff0000000000000,1 +np.float64,0x800fe1d1279fc3a2,0x800fe1d1279fc3a2,1 +np.float64,0x3fd9c45301b388a8,0x3fda77fa1f4c79bf,1 +np.float64,0x7fe10ff238221fe3,0x7ff0000000000000,1 +np.float64,0xbfbc2181ae384300,0xbfbc3002229155c4,1 +np.float64,0xbfe7bbfae4ef77f6,0xbfe9f895e91f468d,1 +np.float64,0x800d3d994f7a7b33,0x800d3d994f7a7b33,1 +np.float64,0xffe6e15a896dc2b4,0xfff0000000000000,1 +np.float64,0x800e6b6c8abcd6d9,0x800e6b6c8abcd6d9,1 +np.float64,0xbfd862c938b0c592,0xbfd8faf1cdcb09db,1 +np.float64,0xffe2411f8464823e,0xfff0000000000000,1 +np.float64,0xffd0b32efaa1665e,0xfff0000000000000,1 +np.float64,0x3ac4ace475896,0x3ac4ace475896,1 +np.float64,0xf9c3a7ebf3875,0xf9c3a7ebf3875,1 +np.float64,0xdb998ba5b7332,0xdb998ba5b7332,1 +np.float64,0xbfe438a14fe87142,0xbfe5981751e4c5cd,1 +np.float64,0xbfbcf48cbc39e918,0xbfbd045d60e65d3a,1 +np.float64,0x7fde499615bc932b,0x7ff0000000000000,1 +np.float64,0x800bba269057744e,0x800bba269057744e,1 +np.float64,0x3fc9bb1ba3337638,0x3fc9e78fdb6799c1,1 +np.float64,0xffd9f974fbb3f2ea,0xfff0000000000000,1 +np.float64,0x7fcf1ad1693e35a2,0x7ff0000000000000,1 +np.float64,0x7fe5dcedd32bb9db,0x7ff0000000000000,1 +np.float64,0xeb06500bd60ca,0xeb06500bd60ca,1 +np.float64,0x7fd73e7b592e7cf6,0x7ff0000000000000,1 +np.float64,0xbfe9d91ae873b236,0xbfecc08482849bcd,1 +np.float64,0xffc85338b730a670,0xfff0000000000000,1 +np.float64,0x7fbba41eee37483d,0x7ff0000000000000,1 +np.float64,0x3fed5624fb7aac4a,0x3ff0cf9f0de1fd54,1 +np.float64,0xffe566d80d6acdb0,0xfff0000000000000,1 +np.float64,0x3fd4477884a88ef1,0x3fd49ec7acdd25a0,1 +np.float64,0x3fcb98c5fd37318c,0x3fcbcfa20e2c2712,1 +np.float64,0xffdeba71d5bd74e4,0xfff0000000000000,1 +np.float64,0x8001edc59dc3db8c,0x8001edc59dc3db8c,1 +np.float64,0x3fe6b09e896d613e,0x3fe8a3bb541ec0e3,1 +np.float64,0x3fe8694b4970d296,0x3fead94d271d05cf,1 +np.float64,0xb52c27bf6a585,0xb52c27bf6a585,1 +np.float64,0x7fcb0a21d9361443,0x7ff0000000000000,1 +np.float64,0xbfd9efc68cb3df8e,0xbfdaa7058c0ccbd1,1 +np.float64,0x8007cd170fef9a2f,0x8007cd170fef9a2f,1 +np.float64,0x3fe83325e770664c,0x3fea92c55c9d567e,1 +np.float64,0x800bd0085537a011,0x800bd0085537a011,1 +np.float64,0xffe05b9e7820b73c,0xfff0000000000000,1 +np.float64,0x3fea4ce4347499c8,0x3fed5cea9fdc541b,1 +np.float64,0x7fe08aae1921155b,0x7ff0000000000000,1 +np.float64,0x3fe7a5e7deef4bd0,0x3fe9dc2e20cfb61c,1 +np.float64,0xbfe0ccc8e6e19992,0xbfe195175f32ee3f,1 +np.float64,0xbfe8649717f0c92e,0xbfead3298974dcf0,1 +np.float64,0x7fed6c5308bad8a5,0x7ff0000000000000,1 +np.float64,0xffdbd8c7af37b190,0xfff0000000000000,1 +np.float64,0xbfb2bc4d06257898,0xbfb2c09569912839,1 +np.float64,0x3fc62eca512c5d95,0x3fc64b4251bce8f9,1 +np.float64,0xbfcae2ddbd35c5bc,0xbfcb15971fc61312,1 +np.float64,0x18d26ce831a4f,0x18d26ce831a4f,1 +np.float64,0x7fe38b279267164e,0x7ff0000000000000,1 +np.float64,0x97e1d9ab2fc3b,0x97e1d9ab2fc3b,1 +np.float64,0xbfee8e4785fd1c8f,0xbff1b52d16807627,1 +np.float64,0xbfb189b4a6231368,0xbfb18d37e83860ee,1 +np.float64,0xffd435761ea86aec,0xfff0000000000000,1 +np.float64,0x3fe6c48ebced891e,0x3fe8bcea189c3867,1 +np.float64,0x7fdadd3678b5ba6c,0x7ff0000000000000,1 +np.float64,0x7fea8f15b7b51e2a,0x7ff0000000000000,1 +np.float64,0xbff0000000000000,0xbff2cd9fc44eb982,1 +np.float64,0x80004c071120980f,0x80004c071120980f,1 +np.float64,0x8005367adfea6cf6,0x8005367adfea6cf6,1 +np.float64,0x3fbdc9139a3b9220,0x3fbdda4aba667ce5,1 +np.float64,0x7fed5ee3ad7abdc6,0x7ff0000000000000,1 +np.float64,0x51563fb2a2ac9,0x51563fb2a2ac9,1 +np.float64,0xbfba7d26ce34fa50,0xbfba894229c50ea1,1 +np.float64,0x6c10db36d821c,0x6c10db36d821c,1 +np.float64,0xbfbdaec0d03b5d80,0xbfbdbfca6ede64f4,1 +np.float64,0x800a1cbe7414397d,0x800a1cbe7414397d,1 +np.float64,0x800ae6e7f2d5cdd0,0x800ae6e7f2d5cdd0,1 +np.float64,0x3fea63d3fef4c7a8,0x3fed7c1356688ddc,1 +np.float64,0xbfde1e3a88bc3c76,0xbfdf3dfb09cc2260,1 +np.float64,0xbfd082d75a2105ae,0xbfd0b1e28c84877b,1 +np.float64,0x7fea1e5e85f43cbc,0x7ff0000000000000,1 +np.float64,0xffe2237a1a6446f4,0xfff0000000000000,1 +np.float64,0x3fd1e2be8523c57d,0x3fd21e93dfd1bbc4,1 +np.float64,0x3fd1acd428a359a8,0x3fd1e6916a42bc3a,1 +np.float64,0x61a152f0c342b,0x61a152f0c342b,1 +np.float64,0xbfc61a6b902c34d8,0xbfc6369557690ba0,1 +np.float64,0x7fd1a84b1f235095,0x7ff0000000000000,1 +np.float64,0x1c5cc7e638b9a,0x1c5cc7e638b9a,1 +np.float64,0x8008039755f0072f,0x8008039755f0072f,1 +np.float64,0x80097532d6f2ea66,0x80097532d6f2ea66,1 +np.float64,0xbfc6d979a12db2f4,0xbfc6f89777c53f8f,1 +np.float64,0x8004293ab1085276,0x8004293ab1085276,1 +np.float64,0x3fc2af5c21255eb8,0x3fc2c05dc0652554,1 +np.float64,0xbfd9a5ab87b34b58,0xbfda56d1076abc98,1 +np.float64,0xbfebd360ba77a6c2,0xbfef779fd6595f9b,1 +np.float64,0xffd5313c43aa6278,0xfff0000000000000,1 +np.float64,0xbfe994a262b32945,0xbfec64b969852ed5,1 +np.float64,0x3fce01a52e3c034a,0x3fce48324eb29c31,1 +np.float64,0x56bd74b2ad7af,0x56bd74b2ad7af,1 +np.float64,0xb84093ff70813,0xb84093ff70813,1 +np.float64,0x7fe776df946eedbe,0x7ff0000000000000,1 +np.float64,0xbfe294ac2e652958,0xbfe3a480938afa26,1 +np.float64,0x7fe741b4d0ee8369,0x7ff0000000000000,1 +np.float64,0x800b7e8a1056fd15,0x800b7e8a1056fd15,1 +np.float64,0x7fd28f1269251e24,0x7ff0000000000000,1 +np.float64,0x8009d4492e73a893,0x8009d4492e73a893,1 +np.float64,0x3fe3f27fca67e500,0x3fe543aff825e244,1 +np.float64,0x3fd12447e5a24890,0x3fd158efe43c0452,1 +np.float64,0xbfd58df0f2ab1be2,0xbfd5f6d908e3ebce,1 +np.float64,0xffc0a8e4642151c8,0xfff0000000000000,1 +np.float64,0xbfedb197787b632f,0xbff112367ec9d3e7,1 +np.float64,0xffdde07a7f3bc0f4,0xfff0000000000000,1 +np.float64,0x3fe91f3e5b723e7d,0x3febc886a1d48364,1 +np.float64,0x3fe50415236a082a,0x3fe68f43a5468d8c,1 +np.float64,0xd9a0c875b3419,0xd9a0c875b3419,1 +np.float64,0xbfee04ccf4bc099a,0xbff14f4740a114cf,1 +np.float64,0xbfd2bcc6a125798e,0xbfd30198b1e7d7ed,1 +np.float64,0xbfeb3c16f8f6782e,0xbfeea4ce47d09f58,1 +np.float64,0xffd3ba19e4a77434,0xfff0000000000000,1 +np.float64,0x8010000000000000,0x8010000000000000,1 +np.float64,0x3fdef0a642bde14d,0x3fe0146677b3a488,1 +np.float64,0x3fdc3dd0a2b87ba0,0x3fdd2abe65651487,1 +np.float64,0x3fdbb1fd47b763fb,0x3fdc915a2fd19f4b,1 +np.float64,0x7fbaa375e63546eb,0x7ff0000000000000,1 +np.float64,0x433ef8ee867e0,0x433ef8ee867e0,1 +np.float64,0xf5345475ea68b,0xf5345475ea68b,1 +np.float64,0xa126419b424c8,0xa126419b424c8,1 +np.float64,0x3fe0057248200ae5,0x3fe0b2f488339709,1 +np.float64,0xffc5e3b82f2bc770,0xfff0000000000000,1 +np.float64,0xffb215c910242b90,0xfff0000000000000,1 +np.float64,0xbfeba4ae0837495c,0xbfef3642e4b54aac,1 +np.float64,0xffbb187ebe363100,0xfff0000000000000,1 +np.float64,0x3fe4c6a496a98d49,0x3fe64440cdf06aab,1 +np.float64,0x800767a28f6ecf46,0x800767a28f6ecf46,1 +np.float64,0x3fdbed63b1b7dac8,0x3fdcd27318c0b683,1 +np.float64,0x80006d8339e0db07,0x80006d8339e0db07,1 +np.float64,0x8000b504f0416a0b,0x8000b504f0416a0b,1 +np.float64,0xbfe88055bfb100ac,0xbfeaf767bd2767b9,1 +np.float64,0x3fefe503317fca06,0x3ff2b8d4057240c8,1 +np.float64,0x7fe307538b660ea6,0x7ff0000000000000,1 +np.float64,0x944963c12892d,0x944963c12892d,1 +np.float64,0xbfd2c20b38a58416,0xbfd30717900f8233,1 +np.float64,0x7feed04e3e3da09b,0x7ff0000000000000,1 +np.float64,0x3fe639619cac72c3,0x3fe80de7b8560a8d,1 +np.float64,0x3fde066c66bc0cd9,0x3fdf237fb759a652,1 +np.float64,0xbfc56b22b52ad644,0xbfc584c267a47ebd,1 +np.float64,0x3fc710d5b12e21ab,0x3fc730d817ba0d0c,1 +np.float64,0x3fee1dfc347c3bf8,0x3ff161d9c3e15f68,1 +np.float64,0x3fde400954bc8013,0x3fdf639e5cc9e7a9,1 +np.float64,0x56e701f8adce1,0x56e701f8adce1,1 +np.float64,0xbfe33bbc89e67779,0xbfe46996b39381fe,1 +np.float64,0x7fec89e2f87913c5,0x7ff0000000000000,1 +np.float64,0xbfdad58b40b5ab16,0xbfdba098cc0ad5d3,1 +np.float64,0x3fe99c76a13338ed,0x3fec6f31bae613e7,1 +np.float64,0x3fe4242a29a84854,0x3fe57f6b45e5c0ef,1 +np.float64,0xbfe79d3199ef3a63,0xbfe9d0fb96c846ba,1 +np.float64,0x7ff8000000000000,0x7ff8000000000000,1 +np.float64,0xbfeb35a6cf766b4e,0xbfee9be4e7e943f7,1 +np.float64,0x3e047f267c091,0x3e047f267c091,1 +np.float64,0x4bf1376a97e28,0x4bf1376a97e28,1 +np.float64,0x800ef419685de833,0x800ef419685de833,1 +np.float64,0x3fe0efa61a21df4c,0x3fe1bce98baf2f0f,1 +np.float64,0x3fcc13c4d738278a,0x3fcc4d8c778bcaf7,1 +np.float64,0x800f1d291afe3a52,0x800f1d291afe3a52,1 +np.float64,0x3fd3f10e6da7e21d,0x3fd444106761ea1d,1 +np.float64,0x800706d6d76e0dae,0x800706d6d76e0dae,1 +np.float64,0xffa1ffbc9023ff80,0xfff0000000000000,1 +np.float64,0xbfe098f26d6131e5,0xbfe15a08a5f3eac0,1 +np.float64,0x3fe984f9cc7309f4,0x3fec4fcdbdb1cb9b,1 +np.float64,0x7fd7c2f1eaaf85e3,0x7ff0000000000000,1 +np.float64,0x800a8adb64f515b7,0x800a8adb64f515b7,1 +np.float64,0x80060d3ffc8c1a81,0x80060d3ffc8c1a81,1 +np.float64,0xbfec37e4aef86fc9,0xbff0029a6a1d61e2,1 +np.float64,0x800b21bcfcf6437a,0x800b21bcfcf6437a,1 +np.float64,0xbfc08facc1211f58,0xbfc09b8380ea8032,1 +np.float64,0xffebb4b52577696a,0xfff0000000000000,1 +np.float64,0x800b08096df61013,0x800b08096df61013,1 +np.float64,0x8000000000000000,0x8000000000000000,1 +np.float64,0xffd2f0c9c8a5e194,0xfff0000000000000,1 +np.float64,0xffe78b2299af1644,0xfff0000000000000,1 +np.float64,0x7fd0444794a0888e,0x7ff0000000000000,1 +np.float64,0x307c47b460f8a,0x307c47b460f8a,1 +np.float64,0xffe6b4c851ad6990,0xfff0000000000000,1 +np.float64,0xffe1877224a30ee4,0xfff0000000000000,1 +np.float64,0x48d7b5c091af7,0x48d7b5c091af7,1 +np.float64,0xbfa1dc6b1c23b8d0,0xbfa1dd5889e1b7da,1 +np.float64,0x3fe5004737ea008e,0x3fe68a9c310b08c1,1 +np.float64,0x7fec5f0742b8be0e,0x7ff0000000000000,1 +np.float64,0x3fd0a86285a150c5,0x3fd0d8b238d557fa,1 +np.float64,0x7fed60380efac06f,0x7ff0000000000000,1 +np.float64,0xeeca74dfdd94f,0xeeca74dfdd94f,1 +np.float64,0x3fda05aaa8b40b54,0x3fdabebdbf405e84,1 +np.float64,0x800e530ceb1ca61a,0x800e530ceb1ca61a,1 +np.float64,0x800b3866379670cd,0x800b3866379670cd,1 +np.float64,0xffedb3e7fa3b67cf,0xfff0000000000000,1 +np.float64,0xffdfa4c0713f4980,0xfff0000000000000,1 +np.float64,0x7fe4679e0728cf3b,0x7ff0000000000000,1 +np.float64,0xffe978611ef2f0c2,0xfff0000000000000,1 +np.float64,0x7fc9f4601f33e8bf,0x7ff0000000000000,1 +np.float64,0x3fd4942de6a9285c,0x3fd4ef6e089357dd,1 +np.float64,0x3faafe064435fc00,0x3fab0139cd6564dc,1 +np.float64,0x800d145a519a28b5,0x800d145a519a28b5,1 +np.float64,0xbfd82636f2304c6e,0xbfd8b9f75ddd2f02,1 +np.float64,0xbfdf2e975e3e5d2e,0xbfe037174280788c,1 +np.float64,0x7fd7051d7c2e0a3a,0x7ff0000000000000,1 +np.float64,0x8007933d452f267b,0x8007933d452f267b,1 +np.float64,0xb2043beb64088,0xb2043beb64088,1 +np.float64,0x3febfd9708f7fb2e,0x3fefb2ef090f18d2,1 +np.float64,0xffd9bc6bc83378d8,0xfff0000000000000,1 +np.float64,0xc10f9fd3821f4,0xc10f9fd3821f4,1 +np.float64,0x3fe3c83413a79068,0x3fe510fa1dd8edf7,1 +np.float64,0x3fbe26ccda3c4da0,0x3fbe38a892279975,1 +np.float64,0x3fcc1873103830e6,0x3fcc5257a6ae168d,1 +np.float64,0xe7e000e9cfc00,0xe7e000e9cfc00,1 +np.float64,0xffda73852bb4e70a,0xfff0000000000000,1 +np.float64,0xbfe831be19f0637c,0xbfea90f1b34da3e5,1 +np.float64,0xbfeb568f3076ad1e,0xbfeec97eebfde862,1 +np.float64,0x510a6ad0a214e,0x510a6ad0a214e,1 +np.float64,0x3fe6ba7e35ed74fc,0x3fe8b032a9a28c6a,1 +np.float64,0xffeb5cdcff76b9b9,0xfff0000000000000,1 +np.float64,0x4f0a23e89e145,0x4f0a23e89e145,1 +np.float64,0x446ec20288dd9,0x446ec20288dd9,1 +np.float64,0x7fe2521b02e4a435,0x7ff0000000000000,1 +np.float64,0x8001cd2969e39a54,0x8001cd2969e39a54,1 +np.float64,0x3fdfe90600bfd20c,0x3fe09fdcca10001c,1 +np.float64,0x7fd660c5762cc18a,0x7ff0000000000000,1 +np.float64,0xbfb11b23aa223648,0xbfb11e661949b377,1 +np.float64,0x800e025285fc04a5,0x800e025285fc04a5,1 +np.float64,0xffb180bb18230178,0xfff0000000000000,1 +np.float64,0xaaf590df55eb2,0xaaf590df55eb2,1 +np.float64,0xbfe8637d9df0c6fb,0xbfead1ba429462ec,1 +np.float64,0x7fd2577866a4aef0,0x7ff0000000000000,1 +np.float64,0xbfcfb2ab5a3f6558,0xbfd002ee87f272b9,1 +np.float64,0x7fdd64ae2f3ac95b,0x7ff0000000000000,1 +np.float64,0xffd1a502c9234a06,0xfff0000000000000,1 +np.float64,0x7fc4be4b60297c96,0x7ff0000000000000,1 +np.float64,0xbfb46b712a28d6e0,0xbfb470fca9919172,1 +np.float64,0xffdef913033df226,0xfff0000000000000,1 +np.float64,0x3fd94a3545b2946b,0x3fd9f40431ce9f9c,1 +np.float64,0x7fef88a0b6ff1140,0x7ff0000000000000,1 +np.float64,0xbfbcc81876399030,0xbfbcd7a0ab6cb388,1 +np.float64,0x800a4acfdd9495a0,0x800a4acfdd9495a0,1 +np.float64,0xffe270b3d5e4e167,0xfff0000000000000,1 +np.float64,0xbfd23f601e247ec0,0xbfd27eeca50a49eb,1 +np.float64,0x7fec6e796a78dcf2,0x7ff0000000000000,1 +np.float64,0x3fb85e0c9630bc19,0x3fb867791ccd6c72,1 +np.float64,0x7fe49fc424a93f87,0x7ff0000000000000,1 +np.float64,0xbfe75a99fbaeb534,0xbfe97ba37663de4c,1 +np.float64,0xffe85011b630a023,0xfff0000000000000,1 +np.float64,0xffe5962e492b2c5c,0xfff0000000000000,1 +np.float64,0x6f36ed4cde6de,0x6f36ed4cde6de,1 +np.float64,0x3feb72170af6e42e,0x3feeefbe6f1a2084,1 +np.float64,0x80014d8d60629b1c,0x80014d8d60629b1c,1 +np.float64,0xbfe0eb40d321d682,0xbfe1b7e31f252bf1,1 +np.float64,0x31fe305663fc7,0x31fe305663fc7,1 +np.float64,0x3fd2cd6381a59ac7,0x3fd312edc9868a4d,1 +np.float64,0xffcf0720793e0e40,0xfff0000000000000,1 +np.float64,0xbfeef1ef133de3de,0xbff1ffd5e1a3b648,1 +np.float64,0xbfd01c787aa038f0,0xbfd0482be3158a01,1 +np.float64,0x3fda3607c5b46c10,0x3fdaf3301e217301,1 +np.float64,0xffda9a9911b53532,0xfff0000000000000,1 +np.float64,0x3fc0b37c392166f8,0x3fc0bfa076f3c43e,1 +np.float64,0xbfe06591c760cb24,0xbfe11fad179ea12c,1 +np.float64,0x8006e369c20dc6d4,0x8006e369c20dc6d4,1 +np.float64,0x3fdf2912a8be5224,0x3fe033ff74b92f4d,1 +np.float64,0xffc0feb07821fd60,0xfff0000000000000,1 +np.float64,0xa4b938c949727,0xa4b938c949727,1 +np.float64,0x8008fe676571fccf,0x8008fe676571fccf,1 +np.float64,0xbfdda68459bb4d08,0xbfdeb8faab34fcbc,1 +np.float64,0xbfda18b419343168,0xbfdad360ca52ec7c,1 +np.float64,0x3febcbae35b7975c,0x3fef6cd51c9ebc15,1 +np.float64,0x3fbec615f63d8c30,0x3fbed912ba729926,1 +np.float64,0x7f99a831c8335063,0x7ff0000000000000,1 +np.float64,0x3fe663e8826cc7d1,0x3fe84330bd9aada8,1 +np.float64,0x70a9f9e6e1540,0x70a9f9e6e1540,1 +np.float64,0x8a13a5db14275,0x8a13a5db14275,1 +np.float64,0x7fc4330a3b286613,0x7ff0000000000000,1 +np.float64,0xbfe580c6136b018c,0xbfe728806cc7a99a,1 +np.float64,0x8000000000000001,0x8000000000000001,1 +np.float64,0xffec079d5df80f3a,0xfff0000000000000,1 +np.float64,0x8e1173c31c22f,0x8e1173c31c22f,1 +np.float64,0x3fe088456d21108b,0x3fe14712ca414103,1 +np.float64,0x3fe1b76f73636edf,0x3fe2a2b658557112,1 +np.float64,0xbfd4a1dd162943ba,0xbfd4fdd45cae8fb8,1 +np.float64,0x7fd60b46c8ac168d,0x7ff0000000000000,1 +np.float64,0xffe36cc3b166d987,0xfff0000000000000,1 +np.float64,0x3fdc2ae0cfb855c0,0x3fdd15f026773151,1 +np.float64,0xbfc41aa203283544,0xbfc42fd1b145fdd5,1 +np.float64,0xffed90c55fbb218a,0xfff0000000000000,1 +np.float64,0x3fe67e3a9aecfc75,0x3fe86440db65b4f6,1 +np.float64,0x7fd12dbeaba25b7c,0x7ff0000000000000,1 +np.float64,0xbfe1267c0de24cf8,0xbfe1fbb611bdf1e9,1 +np.float64,0x22e5619645cad,0x22e5619645cad,1 +np.float64,0x7fe327c72ea64f8d,0x7ff0000000000000,1 +np.float64,0x7fd2c3f545a587ea,0x7ff0000000000000,1 +np.float64,0x7fc7b689372f6d11,0x7ff0000000000000,1 +np.float64,0xc5e140bd8bc28,0xc5e140bd8bc28,1 +np.float64,0x3fccb3627a3966c5,0x3fccf11b44fa4102,1 +np.float64,0xbfd2cf725c259ee4,0xbfd315138d0e5dca,1 +np.float64,0x10000000000000,0x10000000000000,1 +np.float64,0xbfd3dfa8b627bf52,0xbfd431d17b235477,1 +np.float64,0xbfb82124e6304248,0xbfb82a4b6d9c2663,1 +np.float64,0x3fdcd590d9b9ab22,0x3fddd1d548806347,1 +np.float64,0x7fdee0cd1b3dc199,0x7ff0000000000000,1 +np.float64,0x8004ebfc60a9d7fa,0x8004ebfc60a9d7fa,1 +np.float64,0x3fe8eb818b71d704,0x3feb842679806108,1 +np.float64,0xffdd5e8fe63abd20,0xfff0000000000000,1 +np.float64,0xbfe3efcbd9e7df98,0xbfe54071436645ee,1 +np.float64,0x3fd5102557aa204b,0x3fd57203d31a05b8,1 +np.float64,0x3fe6318af7ec6316,0x3fe8041a177cbf96,1 +np.float64,0x3fdf3cecdabe79da,0x3fe03f2084ffbc78,1 +np.float64,0x7fe0ab6673a156cc,0x7ff0000000000000,1 +np.float64,0x800037d5c6c06fac,0x800037d5c6c06fac,1 +np.float64,0xffce58b86a3cb170,0xfff0000000000000,1 +np.float64,0xbfe3455d6ce68abb,0xbfe475034cecb2b8,1 +np.float64,0x991b663d3236d,0x991b663d3236d,1 +np.float64,0x3fda82d37c3505a7,0x3fdb46973da05c12,1 +np.float64,0x3f9b736fa036e6df,0x3f9b74471c234411,1 +np.float64,0x8001c96525e392cb,0x8001c96525e392cb,1 +np.float64,0x7ff0000000000000,0x7ff0000000000000,1 +np.float64,0xbfaf59122c3eb220,0xbfaf5e15f8b272b0,1 +np.float64,0xbf9aa7d288354fa0,0xbf9aa897d2a40cb5,1 +np.float64,0x8004a43428694869,0x8004a43428694869,1 +np.float64,0x7feead476dbd5a8e,0x7ff0000000000000,1 +np.float64,0xffca150f81342a20,0xfff0000000000000,1 +np.float64,0x80047ec3bc88fd88,0x80047ec3bc88fd88,1 +np.float64,0xbfee3e5b123c7cb6,0xbff179c8b8334278,1 +np.float64,0x3fd172359f22e46b,0x3fd1a9ba6b1420a1,1 +np.float64,0x3fe8e5e242f1cbc5,0x3feb7cbcaefc4d5c,1 +np.float64,0x8007fb059a6ff60c,0x8007fb059a6ff60c,1 +np.float64,0xe3899e71c7134,0xe3899e71c7134,1 +np.float64,0x7fe3b98326a77305,0x7ff0000000000000,1 +np.float64,0x7fec4e206cb89c40,0x7ff0000000000000,1 +np.float64,0xbfa3b012c4276020,0xbfa3b150c13b3cc5,1 +np.float64,0xffefffffffffffff,0xfff0000000000000,1 +np.float64,0xffe28a5b9aa514b6,0xfff0000000000000,1 +np.float64,0xbfd76a6cc2aed4da,0xbfd7f10f4d04e7f6,1 +np.float64,0xbc2b1c0178564,0xbc2b1c0178564,1 +np.float64,0x6d9d444adb3a9,0x6d9d444adb3a9,1 +np.float64,0xbfdcadd368395ba6,0xbfdda6037b5c429c,1 +np.float64,0x3fe11891fde23124,0x3fe1ebc1c204b14b,1 +np.float64,0x3fdd66c3eebacd88,0x3fde72526b5304c4,1 +np.float64,0xbfe79d85612f3b0b,0xbfe9d1673bd1f6d6,1 +np.float64,0x3fed60abdabac158,0x3ff0d7426b3800a2,1 +np.float64,0xbfb0ffa54021ff48,0xbfb102d81073a9f0,1 +np.float64,0xd2452af5a48a6,0xd2452af5a48a6,1 +np.float64,0xf4b835c1e971,0xf4b835c1e971,1 +np.float64,0x7e269cdafc4d4,0x7e269cdafc4d4,1 +np.float64,0x800097a21d812f45,0x800097a21d812f45,1 +np.float64,0x3fdfcc85e8bf990c,0x3fe08fcf770fd456,1 +np.float64,0xd8d53155b1aa6,0xd8d53155b1aa6,1 +np.float64,0x7fb8ed658831daca,0x7ff0000000000000,1 +np.float64,0xbfec865415b90ca8,0xbff03a4584d719f9,1 +np.float64,0xffd8cda62a319b4c,0xfff0000000000000,1 +np.float64,0x273598d84e6b4,0x273598d84e6b4,1 +np.float64,0x7fd566b5c32acd6b,0x7ff0000000000000,1 +np.float64,0xff61d9d48023b400,0xfff0000000000000,1 +np.float64,0xbfec5c3bf4f8b878,0xbff01c594243337c,1 +np.float64,0x7fd1be0561a37c0a,0x7ff0000000000000,1 +np.float64,0xffeaee3271b5dc64,0xfff0000000000000,1 +np.float64,0x800c0e1931b81c33,0x800c0e1931b81c33,1 +np.float64,0xbfad1171583a22e0,0xbfad1570e5c466d2,1 +np.float64,0x7fd783b0fe2f0761,0x7ff0000000000000,1 +np.float64,0x7fc39903e6273207,0x7ff0000000000000,1 +np.float64,0xffe00003c5600007,0xfff0000000000000,1 +np.float64,0x35a7b9c06b50,0x35a7b9c06b50,1 +np.float64,0x7fee441a22bc8833,0x7ff0000000000000,1 +np.float64,0xff6e47fbc03c9000,0xfff0000000000000,1 +np.float64,0xbfd3c3c9c8a78794,0xbfd41499b1912534,1 +np.float64,0x82c9c87f05939,0x82c9c87f05939,1 +np.float64,0xbfedeb0fe4fbd620,0xbff13c573ce9d3d0,1 +np.float64,0x2b79298656f26,0x2b79298656f26,1 +np.float64,0xbf5ee44f003dc800,0xbf5ee4503353c0ba,1 +np.float64,0xbfe1dd264e63ba4c,0xbfe2ce68116c7bf6,1 +np.float64,0x3fece10b7579c217,0x3ff07b21b11799c6,1 +np.float64,0x3fba47143a348e28,0x3fba52e601adf24c,1 +np.float64,0xffe9816e7a7302dc,0xfff0000000000000,1 +np.float64,0x8009a8047fd35009,0x8009a8047fd35009,1 +np.float64,0x800ac28e4e95851d,0x800ac28e4e95851d,1 +np.float64,0x80093facf4f27f5a,0x80093facf4f27f5a,1 +np.float64,0x3ff0000000000000,0x3ff2cd9fc44eb982,1 +np.float64,0x3fe76a9857eed530,0x3fe99018a5895a4f,1 +np.float64,0xbfd13c59a3a278b4,0xbfd171e133df0b16,1 +np.float64,0x7feb43bc83368778,0x7ff0000000000000,1 +np.float64,0xbfe2970c5fa52e18,0xbfe3a74a434c6efe,1 +np.float64,0xffd091c380212388,0xfff0000000000000,1 +np.float64,0x3febb3b9d2f76774,0x3fef4b4af2bd8580,1 +np.float64,0x7fec66787ef8ccf0,0x7ff0000000000000,1 +np.float64,0xbf935e185826bc40,0xbf935e640557a354,1 +np.float64,0x979df1552f3be,0x979df1552f3be,1 +np.float64,0x7fc096ee73212ddc,0x7ff0000000000000,1 +np.float64,0xbfe9de88faf3bd12,0xbfecc7d1ae691d1b,1 +np.float64,0x7fdc733f06b8e67d,0x7ff0000000000000,1 +np.float64,0xffd71be1a0ae37c4,0xfff0000000000000,1 +np.float64,0xb50dabd36a1b6,0xb50dabd36a1b6,1 +np.float64,0x7fce3d94d63c7b29,0x7ff0000000000000,1 +np.float64,0x7fbaf95e4435f2bc,0x7ff0000000000000,1 +np.float64,0x81a32a6f03466,0x81a32a6f03466,1 +np.float64,0xa99b5b4d5336c,0xa99b5b4d5336c,1 +np.float64,0x7f97c1eeb82f83dc,0x7ff0000000000000,1 +np.float64,0x3fe761636d6ec2c6,0x3fe98451160d2ffb,1 +np.float64,0xbfe3224ef5e6449e,0xbfe44b73eeadac52,1 +np.float64,0x7fde6feb0dbcdfd5,0x7ff0000000000000,1 +np.float64,0xbfee87f9ca7d0ff4,0xbff1b079e9d7f706,1 +np.float64,0x3fe46f4c9828de99,0x3fe5da2ab9609ea5,1 +np.float64,0xffb92fe882325fd0,0xfff0000000000000,1 +np.float64,0x80054bc63cea978d,0x80054bc63cea978d,1 +np.float64,0x3d988bea7b312,0x3d988bea7b312,1 +np.float64,0x3fe6468e1d6c8d1c,0x3fe81e64d37d39a8,1 +np.float64,0x3fd68eefc22d1de0,0x3fd7074264faeead,1 +np.float64,0xffb218a074243140,0xfff0000000000000,1 +np.float64,0x3fdbcb3b6cb79678,0x3fdcad011de40b7d,1 +np.float64,0x7fe3c161772782c2,0x7ff0000000000000,1 +np.float64,0x25575c904aaec,0x25575c904aaec,1 +np.float64,0x800fa43a8f5f4875,0x800fa43a8f5f4875,1 +np.float64,0x3fe41fc9e1e83f94,0x3fe57a25dd1a37f1,1 +np.float64,0x3fd895f4a7b12be9,0x3fd931e7b721a08a,1 +np.float64,0xce31469f9c629,0xce31469f9c629,1 +np.float64,0xffea0f55ca341eab,0xfff0000000000000,1 +np.float64,0xffe831c9ba306393,0xfff0000000000000,1 +np.float64,0x7fe2056f03a40add,0x7ff0000000000000,1 +np.float64,0x7fd6b075e02d60eb,0x7ff0000000000000,1 +np.float64,0x3fdfbef4273f7de8,0x3fe0882c1f59efc0,1 +np.float64,0x8005b9e094ab73c2,0x8005b9e094ab73c2,1 +np.float64,0x3fea881ac6351036,0x3fedad7a319b887c,1 +np.float64,0xbfe2c61c7ee58c39,0xbfe3de9a99d8a9c6,1 +np.float64,0x30b0d3786161b,0x30b0d3786161b,1 +np.float64,0x3fa51d56a02a3aad,0x3fa51edee2d2ecef,1 +np.float64,0x79745732f2e8c,0x79745732f2e8c,1 +np.float64,0x800d55b4907aab69,0x800d55b4907aab69,1 +np.float64,0xbfbe8fcf0a3d1fa0,0xbfbea267fbb5bfdf,1 +np.float64,0xbfd04e2756a09c4e,0xbfd07b74d079f9a2,1 +np.float64,0x3fc65170552ca2e1,0x3fc66e6eb00c82ed,1 +np.float64,0xbfb0674b8020ce98,0xbfb06a2b4771b64c,1 +np.float64,0x2059975840b34,0x2059975840b34,1 +np.float64,0x33d1385467a28,0x33d1385467a28,1 +np.float64,0x3fea41b74ff4836f,0x3fed4dc1a09e53cc,1 +np.float64,0xbfe8e08c9d71c119,0xbfeb75b4c59a6bec,1 +np.float64,0x7fdbbf14d6377e29,0x7ff0000000000000,1 +np.float64,0x3fcd8b71513b16e0,0x3fcdcec80174f9ad,1 +np.float64,0x5c50bc94b8a18,0x5c50bc94b8a18,1 +np.float64,0x969a18f52d343,0x969a18f52d343,1 +np.float64,0x3fd7ae44462f5c89,0x3fd8398bc34e395c,1 +np.float64,0xffdd0f8617ba1f0c,0xfff0000000000000,1 +np.float64,0xfff0000000000000,0xfff0000000000000,1 +np.float64,0xbfe2f9badb65f376,0xbfe41b771320ece8,1 +np.float64,0x3fd140bc7fa29,0x3fd140bc7fa29,1 +np.float64,0xbfe14523b5628a48,0xbfe21ee850972043,1 +np.float64,0x3feedd0336bdba06,0x3ff1f01afc1f3a06,1 +np.float64,0x800de423ad7bc848,0x800de423ad7bc848,1 +np.float64,0x4cef857c99df1,0x4cef857c99df1,1 +np.float64,0xbfea55e0e374abc2,0xbfed691e41d648dd,1 +np.float64,0x3fe70d7a18ae1af4,0x3fe91955a34d8094,1 +np.float64,0xbfc62fc3032c5f88,0xbfc64c3ec25decb8,1 +np.float64,0x3fc915abb5322b58,0x3fc93edac5cc73fe,1 +np.float64,0x69aaff66d3561,0x69aaff66d3561,1 +np.float64,0x5c6a90f2b8d53,0x5c6a90f2b8d53,1 +np.float64,0x3fefe30dc1bfc61c,0x3ff2b752257bdacd,1 +np.float64,0x3fef15db15fe2bb6,0x3ff21aea05601396,1 +np.float64,0xbfe353e5ac66a7cc,0xbfe48644e6553d1a,1 +np.float64,0x3fe6d30cffada61a,0x3fe8cf3e4c61ddac,1 +np.float64,0x7fb7857eb62f0afc,0x7ff0000000000000,1 +np.float64,0xbfdd9b53d23b36a8,0xbfdeac91a7af1340,1 +np.float64,0x3fd1456357228ac7,0x3fd17b3f7d39b27a,1 +np.float64,0x3fb57d10ae2afa21,0x3fb5838702b806f4,1 +np.float64,0x800c59c96c98b393,0x800c59c96c98b393,1 +np.float64,0x7fc1f2413823e481,0x7ff0000000000000,1 +np.float64,0xbfa3983624273070,0xbfa3996fa26c419a,1 +np.float64,0x7fb28874ae2510e8,0x7ff0000000000000,1 +np.float64,0x3fe826d02a304da0,0x3fea82bec50bc0b6,1 +np.float64,0x8008d6f0d3d1ade2,0x8008d6f0d3d1ade2,1 +np.float64,0xffe7c970ca2f92e1,0xfff0000000000000,1 +np.float64,0x7fcf42bcaa3e8578,0x7ff0000000000000,1 +np.float64,0x7fda1ab517343569,0x7ff0000000000000,1 +np.float64,0xbfe7926a65ef24d5,0xbfe9c323dd890d5b,1 +np.float64,0xbfcaf6282d35ec50,0xbfcb294f36a0a33d,1 +np.float64,0x800ca49df8d9493c,0x800ca49df8d9493c,1 +np.float64,0xffea18d26af431a4,0xfff0000000000000,1 +np.float64,0x3fb72f276e2e5e50,0x3fb7374539fd1221,1 +np.float64,0xffa6b613842d6c20,0xfff0000000000000,1 +np.float64,0xbfeb3c7263f678e5,0xbfeea54cdb60b54c,1 +np.float64,0x3fc976d2ba32eda5,0x3fc9a1e83a058de4,1 +np.float64,0xbfe4acd4b0e959aa,0xbfe624d5d4f9b9a6,1 +np.float64,0x7fca410a0f348213,0x7ff0000000000000,1 +np.float64,0xbfde368f77bc6d1e,0xbfdf5910c8c8bcb0,1 +np.float64,0xbfed7412937ae825,0xbff0e55afc428453,1 +np.float64,0xffef6b7b607ed6f6,0xfff0000000000000,1 +np.float64,0xbfb936f17e326de0,0xbfb941629a53c694,1 +np.float64,0x800dbb0c469b7619,0x800dbb0c469b7619,1 +np.float64,0x800f68b0581ed161,0x800f68b0581ed161,1 +np.float64,0x3fe25b2aad64b656,0x3fe361266fa9c5eb,1 +np.float64,0xbfb87e445a30fc88,0xbfb887d676910c3f,1 +np.float64,0x6e6ba9b6dcd76,0x6e6ba9b6dcd76,1 +np.float64,0x3fad27ce583a4f9d,0x3fad2bd72782ffdb,1 +np.float64,0xbfec0bc5d638178c,0xbfefc6e8c8f9095f,1 +np.float64,0x7fcba4a296374944,0x7ff0000000000000,1 +np.float64,0x8004ca237cc99448,0x8004ca237cc99448,1 +np.float64,0xffe85b8c3270b718,0xfff0000000000000,1 +np.float64,0x7fe7ee3eddafdc7d,0x7ff0000000000000,1 +np.float64,0xffd275967ca4eb2c,0xfff0000000000000,1 +np.float64,0xbfa95bc3a032b780,0xbfa95e6b288ecf43,1 +np.float64,0x3fc9e3214b33c643,0x3fca10667e7e7ff4,1 +np.float64,0x8001b89c5d837139,0x8001b89c5d837139,1 +np.float64,0xbf8807dfc0300fc0,0xbf880803e3badfbd,1 +np.float64,0x800aca94b895952a,0x800aca94b895952a,1 +np.float64,0x7fd79534a02f2a68,0x7ff0000000000000,1 +np.float64,0x3fe1b81179e37023,0x3fe2a371d8cc26f0,1 +np.float64,0x800699539d6d32a8,0x800699539d6d32a8,1 +np.float64,0xffe51dfbb3aa3bf7,0xfff0000000000000,1 +np.float64,0xbfdfb775abbf6eec,0xbfe083f48be2f98f,1 +np.float64,0x3fe87979d7b0f2f4,0x3feaee701d959079,1 +np.float64,0x3fd8e4e6a731c9cd,0x3fd986d29f25f982,1 +np.float64,0x3fe3dadaaf67b5b6,0x3fe527520fb02920,1 +np.float64,0x8003c2262bc7844d,0x8003c2262bc7844d,1 +np.float64,0x800c930add392616,0x800c930add392616,1 +np.float64,0xffb7a152a22f42a8,0xfff0000000000000,1 +np.float64,0x80028fe03dc51fc1,0x80028fe03dc51fc1,1 +np.float64,0xffe32ae60c6655cc,0xfff0000000000000,1 +np.float64,0x3fea3527e4746a50,0x3fed3cbbf47f18eb,1 +np.float64,0x800a53059e14a60c,0x800a53059e14a60c,1 +np.float64,0xbfd79e3b202f3c76,0xbfd828672381207b,1 +np.float64,0xffeed7e2eb7dafc5,0xfff0000000000000,1 +np.float64,0x3fec51ed6778a3db,0x3ff01509e34df61d,1 +np.float64,0xbfd84bc577b0978a,0xbfd8e23ec55e42e8,1 +np.float64,0x2483aff849077,0x2483aff849077,1 +np.float64,0x6f57883adeaf2,0x6f57883adeaf2,1 +np.float64,0xffd3fd74d927faea,0xfff0000000000000,1 +np.float64,0x7fca49ec773493d8,0x7ff0000000000000,1 +np.float64,0x7fd08fe2e8211fc5,0x7ff0000000000000,1 +np.float64,0x800852086db0a411,0x800852086db0a411,1 +np.float64,0x3fe5b1f2c9eb63e6,0x3fe7654f511bafc6,1 +np.float64,0xbfe01e2a58e03c54,0xbfe0cedb68f021e6,1 +np.float64,0x800988421d331085,0x800988421d331085,1 +np.float64,0xffd5038b18aa0716,0xfff0000000000000,1 +np.float64,0x8002c9264c85924d,0x8002c9264c85924d,1 +np.float64,0x3fd21ca302243946,0x3fd25ac653a71aab,1 +np.float64,0xbfea60d6e6f4c1ae,0xbfed78031d9dfa2b,1 +np.float64,0xffef97b6263f2f6b,0xfff0000000000000,1 +np.float64,0xbfd524732faa48e6,0xbfd5876ecc415dcc,1 +np.float64,0x660387e8cc072,0x660387e8cc072,1 +np.float64,0x7fcfc108a33f8210,0x7ff0000000000000,1 +np.float64,0x7febe5b0f877cb61,0x7ff0000000000000,1 +np.float64,0xbfa55fdfac2abfc0,0xbfa56176991851a8,1 +np.float64,0x25250f4c4a4a3,0x25250f4c4a4a3,1 +np.float64,0xffe2f6a2f2a5ed46,0xfff0000000000000,1 +np.float64,0x7fa754fcc02ea9f9,0x7ff0000000000000,1 +np.float64,0x3febd19dea37a33c,0x3fef75279f75d3b8,1 +np.float64,0xc5ed55218bdab,0xc5ed55218bdab,1 +np.float64,0x3fe72ff6b3ee5fed,0x3fe945388b979882,1 +np.float64,0xbfe16b854e22d70a,0xbfe24b10fc0dff14,1 +np.float64,0xffb22cbe10245980,0xfff0000000000000,1 +np.float64,0xa54246b54a849,0xa54246b54a849,1 +np.float64,0x3fe7f4cda76fe99c,0x3fea41edc74888b6,1 +np.float64,0x1,0x1,1 +np.float64,0x800d84acce9b095a,0x800d84acce9b095a,1 +np.float64,0xb0eef04761dde,0xb0eef04761dde,1 +np.float64,0x7ff4000000000000,0x7ffc000000000000,1 +np.float64,0xffecaf1dbb795e3b,0xfff0000000000000,1 +np.float64,0x90dbab8d21b76,0x90dbab8d21b76,1 +np.float64,0x3fe79584a9ef2b09,0x3fe9c71fa9e40eb5,1 diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-tan.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-tan.csv new file mode 100644 index 0000000..ac97624 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-tan.csv @@ -0,0 +1,1429 @@ +dtype,input,output,ulperrortol +np.float32,0xfd97ece0,0xc11186e9,4 +np.float32,0x8013bb34,0x8013bb34,4 +np.float32,0x316389,0x316389,4 +np.float32,0x7f7fffff,0xbf1c9eca,4 +np.float32,0x3f7674bb,0x3fb7e450,4 +np.float32,0x80800000,0x80800000,4 +np.float32,0x7f5995e8,0xbf94106c,4 +np.float32,0x74527,0x74527,4 +np.float32,0x7f08caea,0xbeceddb6,4 +np.float32,0x2d49b2,0x2d49b2,4 +np.float32,0x3f74e5e4,0x3fb58695,4 +np.float32,0x3f3fcd51,0x3f6e1e81,4 +np.float32,0xbf4f3608,0xbf864d3d,4 +np.float32,0xbed974a0,0xbee78c70,4 +np.float32,0xff5f483c,0x3ecf3cb2,4 +np.float32,0x7f4532f4,0xc0b96f7b,4 +np.float32,0x3f0a4f7c,0x3f198cc0,4 +np.float32,0x210193,0x210193,4 +np.float32,0xfeebad7a,0xbf92eba8,4 +np.float32,0xfed29f74,0xc134cab6,4 +np.float32,0x803433a0,0x803433a0,4 +np.float32,0x64eb46,0x64eb46,4 +np.float32,0xbf54ef22,0xbf8c757b,4 +np.float32,0x3f3d5fdd,0x3f69a17b,4 +np.float32,0x80000001,0x80000001,4 +np.float32,0x800a837a,0x800a837a,4 +np.float32,0x6ff0be,0x6ff0be,4 +np.float32,0xfe8f1186,0x3f518820,4 +np.float32,0x804963e5,0x804963e5,4 +np.float32,0xfebaa59a,0x3fa1dbb0,4 +np.float32,0x637970,0x637970,4 +np.float32,0x3e722a6b,0x3e76c89a,4 +np.float32,0xff2b0478,0xbddccb5f,4 +np.float32,0xbf7bd85b,0xbfc06821,4 +np.float32,0x3ec33600,0x3ecd4126,4 +np.float32,0x3e0a43b9,0x3e0b1c69,4 +np.float32,0x7f7511b6,0xbe427083,4 +np.float32,0x3f28c114,0x3f465a73,4 +np.float32,0x3f179e1c,0x3f2c3e7c,4 +np.float32,0x7b2963,0x7b2963,4 +np.float32,0x3f423d06,0x3f72b442,4 +np.float32,0x3f5a24c6,0x3f925508,4 +np.float32,0xff18c834,0xbf79b5c8,4 +np.float32,0x3f401ece,0x3f6eb6ac,4 +np.float32,0x7b8a3013,0xbffab968,4 +np.float32,0x80091ff0,0x80091ff0,4 +np.float32,0x3f389c51,0x3f610b47,4 +np.float32,0x5ea174,0x5ea174,4 +np.float32,0x807a9eb2,0x807a9eb2,4 +np.float32,0x806ce61e,0x806ce61e,4 +np.float32,0xbe956acc,0xbe99cefc,4 +np.float32,0x7e60e247,0xbf5e64a5,4 +np.float32,0x7f398e24,0x404d12ed,4 +np.float32,0x3d9049f8,0x3d908735,4 +np.float32,0x7db17ffc,0xbf5b3d87,4 +np.float32,0xff453f78,0xc0239c9f,4 +np.float32,0x3f024aac,0x3f0ed802,4 +np.float32,0xbe781c30,0xbe7d1508,4 +np.float32,0x3f77962a,0x3fb9a28e,4 +np.float32,0xff7fffff,0x3f1c9eca,4 +np.float32,0x3f7152e3,0x3fb03f9d,4 +np.float32,0xff7cb167,0x3f9ce831,4 +np.float32,0x3e763e30,0x3e7b1a10,4 +np.float32,0xbf126527,0xbf24c253,4 +np.float32,0x803f6660,0x803f6660,4 +np.float32,0xbf79de38,0xbfbd38b1,4 +np.float32,0x8046c2f0,0x8046c2f0,4 +np.float32,0x6dc74e,0x6dc74e,4 +np.float32,0xbec9c45e,0xbed4e768,4 +np.float32,0x3f0eedb6,0x3f1fe610,4 +np.float32,0x7e031999,0xbcc13026,4 +np.float32,0x7efc2fd7,0x41e4b284,4 +np.float32,0xbeab7454,0xbeb22a1b,4 +np.float32,0x805ee67b,0x805ee67b,4 +np.float32,0x7f76e58e,0xc2436659,4 +np.float32,0xbe62b024,0xbe667718,4 +np.float32,0x3eea0808,0x3efbd182,4 +np.float32,0xbf7fd00c,0xbfc70719,4 +np.float32,0x7f27b640,0xbf0d97e0,4 +np.float32,0x3f1b58a4,0x3f31b6f4,4 +np.float32,0x252a9f,0x252a9f,4 +np.float32,0x7f65f95a,0xbead5de3,4 +np.float32,0xfc6ea780,0x42d15801,4 +np.float32,0x7eac4c52,0xc0682424,4 +np.float32,0xbe8a3f5a,0xbe8db54d,4 +np.float32,0xbf1644e2,0xbf2a4abd,4 +np.float32,0x3fc96a,0x3fc96a,4 +np.float32,0x7f38c0e4,0x3cc04af8,4 +np.float32,0x3f623d75,0x3f9c065d,4 +np.float32,0x3ee6a51a,0x3ef7a058,4 +np.float32,0x3dd11020,0x3dd1cacf,4 +np.float32,0xb6918,0xb6918,4 +np.float32,0xfdd7a540,0x3f22f081,4 +np.float32,0x80798563,0x80798563,4 +np.float32,0x3e9a8b7a,0x3e9f6a7e,4 +np.float32,0xbea515d4,0xbeab0df5,4 +np.float32,0xbea9b9f4,0xbeb03abe,4 +np.float32,0xbf11a5fa,0xbf23b478,4 +np.float32,0xfd6cadf0,0xbfa2a878,4 +np.float32,0xbf6edd07,0xbfacbb78,4 +np.float32,0xff5c5328,0x3e2d1552,4 +np.float32,0xbea2f788,0xbea8b3f5,4 +np.float32,0x802efaeb,0x802efaeb,4 +np.float32,0xff1c85e5,0x41f8560e,4 +np.float32,0x3f53b123,0x3f8b18e1,4 +np.float32,0xff798c4a,0x4092e66f,4 +np.float32,0x7f2e6fe7,0xbdcbd58f,4 +np.float32,0xfe8a8196,0x3fd7fc56,4 +np.float32,0x5e7ad4,0x5e7ad4,4 +np.float32,0xbf23a02d,0xbf3e4533,4 +np.float32,0x3f31c55c,0x3f5531bf,4 +np.float32,0x80331be3,0x80331be3,4 +np.float32,0x8056960a,0x8056960a,4 +np.float32,0xff1c06ae,0xbfd26992,4 +np.float32,0xbe0cc4b0,0xbe0da96c,4 +np.float32,0x7e925ad5,0xbf8dba54,4 +np.float32,0x2c8cec,0x2c8cec,4 +np.float32,0x8011951e,0x8011951e,4 +np.float32,0x3f2caf84,0x3f4cb89f,4 +np.float32,0xbd32c220,0xbd32df33,4 +np.float32,0xbec358d6,0xbecd6996,4 +np.float32,0x3f6e4930,0x3fabeb92,4 +np.float32,0xbf6a3afd,0xbfa65a3a,4 +np.float32,0x80067764,0x80067764,4 +np.float32,0x3d8df1,0x3d8df1,4 +np.float32,0x7ee51cf2,0x409e4061,4 +np.float32,0x435f5d,0x435f5d,4 +np.float32,0xbf5b17f7,0xbf936ebe,4 +np.float32,0x3ecaacb5,0x3ed5f81f,4 +np.float32,0x807b0aa5,0x807b0aa5,4 +np.float32,0x52b40b,0x52b40b,4 +np.float32,0x146a97,0x146a97,4 +np.float32,0x7f42b952,0xbfdcb413,4 +np.float32,0xbf1a1af2,0xbf2fe1bb,4 +np.float32,0x3f312034,0x3f541aa2,4 +np.float32,0x3f281d60,0x3f4554f9,4 +np.float32,0x50e451,0x50e451,4 +np.float32,0xbe45838c,0xbe480016,4 +np.float32,0xff7d0aeb,0x3eb0746e,4 +np.float32,0x7f32a489,0xbf96af6d,4 +np.float32,0xbf1b4e27,0xbf31a769,4 +np.float32,0x3f242936,0x3f3f1a44,4 +np.float32,0xbf7482ff,0xbfb4f201,4 +np.float32,0x4bda38,0x4bda38,4 +np.float32,0xbf022208,0xbf0ea2bb,4 +np.float32,0x7d08ca95,0xbe904602,4 +np.float32,0x7ed2f356,0xc02b55ad,4 +np.float32,0xbf131204,0xbf25b734,4 +np.float32,0xff3464b4,0x3fb23706,4 +np.float32,0x5a97cf,0x5a97cf,4 +np.float32,0xbe52db70,0xbe55e388,4 +np.float32,0x3f52934f,0x3f89e2aa,4 +np.float32,0xfeea866a,0x40a2b33f,4 +np.float32,0x80333925,0x80333925,4 +np.float32,0xfef5d13e,0xc00139ec,4 +np.float32,0x3f4750ab,0x3f7c87ad,4 +np.float32,0x3e41bfdd,0x3e44185a,4 +np.float32,0xbf5b0572,0xbf935935,4 +np.float32,0xbe93c9da,0xbe9808d8,4 +np.float32,0x7f501f33,0xc0f9973c,4 +np.float32,0x800af035,0x800af035,4 +np.float32,0x3f29faf8,0x3f4852a8,4 +np.float32,0xbe1e4c20,0xbe1f920c,4 +np.float32,0xbf7e8616,0xbfc4d79d,4 +np.float32,0x43ffbf,0x43ffbf,4 +np.float32,0x7f28e8a9,0xbfa1ac24,4 +np.float32,0xbf1f9f92,0xbf3820bc,4 +np.float32,0x3f07e004,0x3f1641c4,4 +np.float32,0x3ef7ea7f,0x3f06a64a,4 +np.float32,0x7e013101,0x3f6080e6,4 +np.float32,0x7f122a4f,0xbf0a796f,4 +np.float32,0xfe096960,0x3ed7273a,4 +np.float32,0x3f06abf1,0x3f14a4b2,4 +np.float32,0x3e50ded3,0x3e53d0f1,4 +np.float32,0x7f50b346,0x3eabb536,4 +np.float32,0xff5adb0f,0xbd441972,4 +np.float32,0xbecefe46,0xbedb0f66,4 +np.float32,0x7da70bd4,0xbec66273,4 +np.float32,0x169811,0x169811,4 +np.float32,0xbee4dfee,0xbef5721a,4 +np.float32,0x3efbeae3,0x3f0936e6,4 +np.float32,0x8031bd61,0x8031bd61,4 +np.float32,0x8048e443,0x8048e443,4 +np.float32,0xff209aa6,0xbeb364cb,4 +np.float32,0xff477499,0x3c1b0041,4 +np.float32,0x803fe929,0x803fe929,4 +np.float32,0x3f70158b,0x3fae7725,4 +np.float32,0x7f795723,0x3e8e850a,4 +np.float32,0x3cba99,0x3cba99,4 +np.float32,0x80588d2a,0x80588d2a,4 +np.float32,0x805d1f05,0x805d1f05,4 +np.float32,0xff4ac09a,0xbefe614d,4 +np.float32,0x804af084,0x804af084,4 +np.float32,0x7c64ae63,0xc1a8b563,4 +np.float32,0x8078d793,0x8078d793,4 +np.float32,0x7f3e2436,0xbf8bf9d3,4 +np.float32,0x7ccec1,0x7ccec1,4 +np.float32,0xbf6462c7,0xbf9eb830,4 +np.float32,0x3f1002ca,0x3f216843,4 +np.float32,0xfe878ca6,0x409e73a5,4 +np.float32,0x3bd841d9,0x3bd842a7,4 +np.float32,0x7d406f41,0xbd9dcfa3,4 +np.float32,0x7c6d6,0x7c6d6,4 +np.float32,0x3f4ef360,0x3f86074b,4 +np.float32,0x805f534a,0x805f534a,4 +np.float32,0x1,0x1,4 +np.float32,0x3f739ee2,0x3fb39db2,4 +np.float32,0x3d0c2352,0x3d0c3153,4 +np.float32,0xfe8a4f2c,0x3edd8add,4 +np.float32,0x3e52eaa0,0x3e55f362,4 +np.float32,0x7bde9758,0xbf5ba5cf,4 +np.float32,0xff422654,0xbf41e487,4 +np.float32,0x385e5b,0x385e5b,4 +np.float32,0x5751dd,0x5751dd,4 +np.float32,0xff6c671c,0xc03e2d6d,4 +np.float32,0x1458be,0x1458be,4 +np.float32,0x80153d4d,0x80153d4d,4 +np.float32,0x7efd2adb,0x3e25458f,4 +np.float32,0xbe161880,0xbe172e12,4 +np.float32,0x7ecea1aa,0x40a66d79,4 +np.float32,0xbf5b02a2,0xbf9355f0,4 +np.float32,0x15d9ab,0x15d9ab,4 +np.float32,0x2dc7c7,0x2dc7c7,4 +np.float32,0xfebbf81a,0x4193f6e6,4 +np.float32,0xfe8e3594,0xc00a6695,4 +np.float32,0x185aa8,0x185aa8,4 +np.float32,0x3daea156,0x3daf0e00,4 +np.float32,0x3e071688,0x3e07e08e,4 +np.float32,0x802db9e6,0x802db9e6,4 +np.float32,0x7f7be2c4,0x3f1363dd,4 +np.float32,0x7eba3f5e,0xc13eb497,4 +np.float32,0x3de04a00,0x3de130a9,4 +np.float32,0xbf1022bc,0xbf2194eb,4 +np.float32,0xbf5b547e,0xbf93b53b,4 +np.float32,0x3e867bd6,0x3e89aa10,4 +np.float32,0xbea5eb5c,0xbeabfb73,4 +np.float32,0x7f1efae9,0x3ffca038,4 +np.float32,0xff5d0344,0xbe55dbbb,4 +np.float32,0x805167e7,0x805167e7,4 +np.float32,0xbdb3a020,0xbdb41667,4 +np.float32,0xbedea6b4,0xbeedd5fd,4 +np.float32,0x8053b45c,0x8053b45c,4 +np.float32,0x7ed370e9,0x3d90eba5,4 +np.float32,0xbefcd7da,0xbf09cf91,4 +np.float32,0x78b9ac,0x78b9ac,4 +np.float32,0xbf2f6dc0,0xbf5141ef,4 +np.float32,0x802d3a7b,0x802d3a7b,4 +np.float32,0xfd45d120,0x3fec31cc,4 +np.float32,0xbf7e7020,0xbfc4b2af,4 +np.float32,0xf04da,0xf04da,4 +np.float32,0xbe9819d4,0xbe9cbd35,4 +np.float32,0x8075ab35,0x8075ab35,4 +np.float32,0xbf052fdc,0xbf12aa2c,4 +np.float32,0x3f1530d0,0x3f28bd9f,4 +np.float32,0x80791881,0x80791881,4 +np.float32,0x67f309,0x67f309,4 +np.float32,0x3f12f16a,0x3f2588f5,4 +np.float32,0x3ecdac47,0x3ed97ff8,4 +np.float32,0xbf297fb7,0xbf478c39,4 +np.float32,0x8069fa80,0x8069fa80,4 +np.float32,0x807f940e,0x807f940e,4 +np.float32,0xbf648dc8,0xbf9eeecb,4 +np.float32,0x3de873b0,0x3de9748d,4 +np.float32,0x3f1aa645,0x3f30af1f,4 +np.float32,0xff227a62,0x3d8283cc,4 +np.float32,0xbf37187d,0xbf5e5f4c,4 +np.float32,0x803b1b1f,0x803b1b1f,4 +np.float32,0x3f58142a,0x3f8ff8da,4 +np.float32,0x8004339e,0x8004339e,4 +np.float32,0xbf0f5654,0xbf2077a4,4 +np.float32,0x3f17e509,0x3f2ca598,4 +np.float32,0x3f800000,0x3fc75923,4 +np.float32,0xfdf79980,0x42f13047,4 +np.float32,0x7f111381,0x3f13c4c9,4 +np.float32,0xbea40c70,0xbea9e724,4 +np.float32,0x110520,0x110520,4 +np.float32,0x60490d,0x60490d,4 +np.float32,0x3f6703ec,0x3fa21951,4 +np.float32,0xbf098256,0xbf187652,4 +np.float32,0x658951,0x658951,4 +np.float32,0x3f53bf16,0x3f8b2818,4 +np.float32,0xff451811,0xc0026068,4 +np.float32,0x80777ee0,0x80777ee0,4 +np.float32,0x3e4fcc19,0x3e52b286,4 +np.float32,0x7f387ee0,0x3ce93eb6,4 +np.float32,0xff51181f,0xbfca3ee4,4 +np.float32,0xbf5655ae,0xbf8e0304,4 +np.float32,0xff2f1dcd,0x40025471,4 +np.float32,0x7f6e58e5,0xbe9930d5,4 +np.float32,0x7adf11,0x7adf11,4 +np.float32,0xbe9a2bc2,0xbe9f0185,4 +np.float32,0x8065d3a0,0x8065d3a0,4 +np.float32,0x3ed6e826,0x3ee47c45,4 +np.float32,0x80598ea0,0x80598ea0,4 +np.float32,0x7f10b90a,0x40437bd0,4 +np.float32,0x27b447,0x27b447,4 +np.float32,0x7ecd861c,0x3fce250f,4 +np.float32,0x0,0x0,4 +np.float32,0xbeba82d6,0xbec3394c,4 +np.float32,0xbf4958b0,0xbf8048ea,4 +np.float32,0x7c643e,0x7c643e,4 +np.float32,0x580770,0x580770,4 +np.float32,0x805bf54a,0x805bf54a,4 +np.float32,0x7f1f3cee,0xbe1a54d6,4 +np.float32,0xfefefdea,0x3fa84576,4 +np.float32,0x7f007b7a,0x3e8a6d25,4 +np.float32,0xbf177959,0xbf2c0919,4 +np.float32,0xbf30fda0,0xbf53e058,4 +np.float32,0x3f0576be,0x3f130861,4 +np.float32,0x3f49380e,0x3f80283a,4 +np.float32,0xebc56,0xebc56,4 +np.float32,0x654e3b,0x654e3b,4 +np.float32,0x14a4d8,0x14a4d8,4 +np.float32,0xff69b3cb,0xbf822a88,4 +np.float32,0xbe9b6c1c,0xbea06109,4 +np.float32,0xbefddd7e,0xbf0a787b,4 +np.float32,0x4c4ebb,0x4c4ebb,4 +np.float32,0x7d0a74,0x7d0a74,4 +np.float32,0xbebb5f80,0xbec43635,4 +np.float32,0x7ee79723,0xc1c7f3f3,4 +np.float32,0x7f2be4c7,0xbfa6c693,4 +np.float32,0x805bc7d5,0x805bc7d5,4 +np.float32,0x8042f12c,0x8042f12c,4 +np.float32,0x3ef91be8,0x3f07697b,4 +np.float32,0x3cf37ac0,0x3cf38d1c,4 +np.float32,0x800000,0x800000,4 +np.float32,0xbe1ebf4c,0xbe200806,4 +np.float32,0x7f380862,0xbeb512e8,4 +np.float32,0xbe320064,0xbe33d0fc,4 +np.float32,0xff300b0c,0xbfadb805,4 +np.float32,0x308a06,0x308a06,4 +np.float32,0xbf084f6e,0xbf16d7b6,4 +np.float32,0xff47cab6,0x3f892b65,4 +np.float32,0xbed99f4a,0xbee7bfd5,4 +np.float32,0xff7d74c0,0x3ee88c9a,4 +np.float32,0x3c3d23,0x3c3d23,4 +np.float32,0x8074bde8,0x8074bde8,4 +np.float32,0x80042164,0x80042164,4 +np.float32,0x3e97c92a,0x3e9c6500,4 +np.float32,0x3b80e0,0x3b80e0,4 +np.float32,0xbf16646a,0xbf2a783d,4 +np.float32,0x7f3b4cb1,0xc01339be,4 +np.float32,0xbf31f36e,0xbf557fd0,4 +np.float32,0x7f540618,0xbe5f6fc1,4 +np.float32,0x7eee47d0,0x40a27e94,4 +np.float32,0x7f12f389,0xbebed654,4 +np.float32,0x56cff5,0x56cff5,4 +np.float32,0x8056032b,0x8056032b,4 +np.float32,0x3ed34e40,0x3ee02e38,4 +np.float32,0x7d51a908,0xbf19a90e,4 +np.float32,0x80000000,0x80000000,4 +np.float32,0xfdf73fd0,0xbf0f8cad,4 +np.float32,0x7ee4fe6d,0xbf1ea7e4,4 +np.float32,0x1f15ba,0x1f15ba,4 +np.float32,0xd18c3,0xd18c3,4 +np.float32,0x80797705,0x80797705,4 +np.float32,0x7ef07091,0x3f2f3b9a,4 +np.float32,0x7f552f41,0x3faf608c,4 +np.float32,0x3f779977,0x3fb9a7ad,4 +np.float32,0xfe1a7a50,0xbdadc4d1,4 +np.float32,0xbf449cf0,0xbf7740db,4 +np.float32,0xbe44e620,0xbe475cad,4 +np.float32,0x3f63a098,0x3f9dc2b5,4 +np.float32,0xfed40a12,0x4164533a,4 +np.float32,0x7a2bbb,0x7a2bbb,4 +np.float32,0xff7f7b9e,0xbeee8740,4 +np.float32,0x7ee27f8b,0x4233f53b,4 +np.float32,0xbf044c06,0xbf117c28,4 +np.float32,0xbeffde54,0xbf0bc49f,4 +np.float32,0xfeaef2e8,0x3ff258fe,4 +np.float32,0x527451,0x527451,4 +np.float32,0xbcef8d00,0xbcef9e7c,4 +np.float32,0xbf0e20c0,0xbf1ec9b2,4 +np.float32,0x8024afda,0x8024afda,4 +np.float32,0x7ef6cb3e,0x422cad0b,4 +np.float32,0x3c120,0x3c120,4 +np.float32,0xbf125c8f,0xbf24b62c,4 +np.float32,0x7e770a93,0x402c9d86,4 +np.float32,0xbd30a4e0,0xbd30c0ee,4 +np.float32,0xbf4d3388,0xbf843530,4 +np.float32,0x3f529072,0x3f89df92,4 +np.float32,0xff0270b1,0xbf81be9a,4 +np.float32,0x5e07e7,0x5e07e7,4 +np.float32,0x7bec32,0x7bec32,4 +np.float32,0x7fc00000,0x7fc00000,4 +np.float32,0x3e3ba5e0,0x3e3dc6e9,4 +np.float32,0x3ecb62d4,0x3ed6ce2c,4 +np.float32,0x3eb3dde8,0x3ebba68f,4 +np.float32,0x8063f952,0x8063f952,4 +np.float32,0x7f204aeb,0x3e88614e,4 +np.float32,0xbeae1ddc,0xbeb5278e,4 +np.float32,0x6829e9,0x6829e9,4 +np.float32,0xbf361a99,0xbf5ca354,4 +np.float32,0xbf24fbe6,0xbf406326,4 +np.float32,0x3f329d41,0x3f56a061,4 +np.float32,0xfed6d666,0x3e8f71a5,4 +np.float32,0x337f92,0x337f92,4 +np.float32,0xbe1c4970,0xbe1d8305,4 +np.float32,0xbe6b7e18,0xbe6fbbde,4 +np.float32,0x3f2267b9,0x3f3c61da,4 +np.float32,0xbee1ee94,0xbef1d628,4 +np.float32,0x7ecffc1a,0x3f02987e,4 +np.float32,0xbe9b1306,0xbe9fff3b,4 +np.float32,0xbeffacae,0xbf0ba468,4 +np.float32,0x7f800000,0xffc00000,4 +np.float32,0xfefc9aa8,0xc19de2a3,4 +np.float32,0x7d7185bb,0xbf9090ec,4 +np.float32,0x7edfbafd,0x3fe9352f,4 +np.float32,0x4ef2ec,0x4ef2ec,4 +np.float32,0x7f4cab2e,0xbff4e5dd,4 +np.float32,0xff3b1788,0x3e3c22e9,4 +np.float32,0x4e15ee,0x4e15ee,4 +np.float32,0xbf5451e6,0xbf8bc8a7,4 +np.float32,0x3f7f6d2e,0x3fc65e8b,4 +np.float32,0xbf1d9184,0xbf35071b,4 +np.float32,0xbf3a81cf,0xbf646d9b,4 +np.float32,0xbe71acc4,0xbe7643ab,4 +np.float32,0x528b7d,0x528b7d,4 +np.float32,0x2cb1d0,0x2cb1d0,4 +np.float32,0x3f324bf8,0x3f56161a,4 +np.float32,0x80709a21,0x80709a21,4 +np.float32,0x4bc448,0x4bc448,4 +np.float32,0x3e8bd600,0x3e8f6b7a,4 +np.float32,0xbeb97d30,0xbec20dd6,4 +np.float32,0x2a5669,0x2a5669,4 +np.float32,0x805f2689,0x805f2689,4 +np.float32,0xfe569f50,0x3fc51952,4 +np.float32,0x1de44c,0x1de44c,4 +np.float32,0x3ec7036c,0x3ed1ae67,4 +np.float32,0x8052b8e5,0x8052b8e5,4 +np.float32,0xff740a6b,0x3f4981a8,4 +np.float32,0xfee9bb70,0xc05e23be,4 +np.float32,0xff4e12c9,0x4002b4ad,4 +np.float32,0x803de0c2,0x803de0c2,4 +np.float32,0xbf433a07,0xbf74966f,4 +np.float32,0x803e60ca,0x803e60ca,4 +np.float32,0xbf19ee98,0xbf2fa07a,4 +np.float32,0x92929,0x92929,4 +np.float32,0x7f709c27,0x4257ba2d,4 +np.float32,0x803167c6,0x803167c6,4 +np.float32,0xbf095ead,0xbf184607,4 +np.float32,0x617060,0x617060,4 +np.float32,0x2d85b3,0x2d85b3,4 +np.float32,0x53d20b,0x53d20b,4 +np.float32,0x3e046838,0x3e052666,4 +np.float32,0xbe7c5fdc,0xbe80ce4b,4 +np.float32,0x3d18d060,0x3d18e289,4 +np.float32,0x804dc031,0x804dc031,4 +np.float32,0x3f224166,0x3f3c26cd,4 +np.float32,0x7d683e3c,0xbea24f25,4 +np.float32,0xbf3a92aa,0xbf648be4,4 +np.float32,0x8072670b,0x8072670b,4 +np.float32,0xbe281aec,0xbe29a1bc,4 +np.float32,0x7f09d918,0xc0942490,4 +np.float32,0x7ca9fd07,0x4018b990,4 +np.float32,0x7d36ac5d,0x3cf57184,4 +np.float32,0x8039b62f,0x8039b62f,4 +np.float32,0x6cad7b,0x6cad7b,4 +np.float32,0x3c0fd9ab,0x3c0fda9d,4 +np.float32,0x80299883,0x80299883,4 +np.float32,0x3c2d0e3e,0x3c2d0fe4,4 +np.float32,0x8002cf62,0x8002cf62,4 +np.float32,0x801dde97,0x801dde97,4 +np.float32,0x80411856,0x80411856,4 +np.float32,0x6ebce8,0x6ebce8,4 +np.float32,0x7b7d1a,0x7b7d1a,4 +np.float32,0x8031d3de,0x8031d3de,4 +np.float32,0x8005c4ab,0x8005c4ab,4 +np.float32,0xbf7dd803,0xbfc3b3ef,4 +np.float32,0x8017ae60,0x8017ae60,4 +np.float32,0xfe9316ce,0xbfe0544a,4 +np.float32,0x3f136bfe,0x3f2636ff,4 +np.float32,0x3df87b80,0x3df9b57d,4 +np.float32,0xff44c356,0xbf11c7ad,4 +np.float32,0x4914ae,0x4914ae,4 +np.float32,0x80524c21,0x80524c21,4 +np.float32,0x805c7dc8,0x805c7dc8,4 +np.float32,0xfed3c0aa,0xbff0c0ab,4 +np.float32,0x7eb2bfbb,0xbf4600bc,4 +np.float32,0xfec8df84,0x3f5bd350,4 +np.float32,0x3e5431a4,0x3e5748c3,4 +np.float32,0xbee6a3a0,0xbef79e86,4 +np.float32,0xbf6cc9b2,0xbfa9d61a,4 +np.float32,0x3f132bd5,0x3f25dbd9,4 +np.float32,0x7e6d2e48,0x3f9d025b,4 +np.float32,0x3edf430c,0x3eee942d,4 +np.float32,0x3f0d1b8a,0x3f1d60e1,4 +np.float32,0xbdf2f688,0xbdf41bfb,4 +np.float32,0xbe47a284,0xbe4a33ff,4 +np.float32,0x3eaa9fbc,0x3eb13be7,4 +np.float32,0xfe98d45e,0x3eb84517,4 +np.float32,0x7efc23b3,0x3dcc1c99,4 +np.float32,0x3ca36242,0x3ca367ce,4 +np.float32,0x3f76a944,0x3fb834e3,4 +np.float32,0xbf45207c,0xbf783f9b,4 +np.float32,0x3e7c1220,0x3e80a4f8,4 +np.float32,0x3f018200,0x3f0dd14e,4 +np.float32,0x3f53cdde,0x3f8b3839,4 +np.float32,0xbdbacb58,0xbdbb5063,4 +np.float32,0x804af68d,0x804af68d,4 +np.float32,0x3e2c12fc,0x3e2db65b,4 +np.float32,0x3f039433,0x3f10895a,4 +np.float32,0x7ef5193d,0x3f4115f7,4 +np.float32,0x8030afbe,0x8030afbe,4 +np.float32,0x3f06fa2a,0x3f150d5d,4 +np.float32,0x3f124442,0x3f2493d2,4 +np.float32,0xbeb5b792,0xbebdc090,4 +np.float32,0xbedc90a4,0xbeeb4de9,4 +np.float32,0x3f3ff8,0x3f3ff8,4 +np.float32,0x3ee75bc5,0x3ef881e4,4 +np.float32,0xfe80e3de,0xbf5cd535,4 +np.float32,0xf52eb,0xf52eb,4 +np.float32,0x80660ee8,0x80660ee8,4 +np.float32,0x3e173a58,0x3e185648,4 +np.float32,0xfe49520c,0xbf728d7c,4 +np.float32,0xbecbb8ec,0xbed73373,4 +np.float32,0xbf027ae0,0xbf0f173e,4 +np.float32,0xbcab6740,0xbcab6da8,4 +np.float32,0xbf2a15e2,0xbf487e11,4 +np.float32,0x3b781b,0x3b781b,4 +np.float32,0x44f559,0x44f559,4 +np.float32,0xff6a0ca6,0xc174d7c3,4 +np.float32,0x6460ef,0x6460ef,4 +np.float32,0xfe58009c,0x3ee2bb30,4 +np.float32,0xfec3c038,0x3e30d617,4 +np.float32,0x7f0687c0,0xbf62c820,4 +np.float32,0xbf44655e,0xbf76d589,4 +np.float32,0xbf42968c,0xbf735e78,4 +np.float32,0x80385503,0x80385503,4 +np.float32,0xbea7e3a2,0xbeae2d59,4 +np.float32,0x3dd0b770,0x3dd17131,4 +np.float32,0xbf4bc185,0xbf82b907,4 +np.float32,0xfefd7d64,0xbee05650,4 +np.float32,0xfaac3c00,0xbff23bc9,4 +np.float32,0xbf562f0d,0xbf8dd7f4,4 +np.float32,0x7fa00000,0x7fe00000,4 +np.float32,0x3e01bdb8,0x3e027098,4 +np.float32,0x3e2868ab,0x3e29f19e,4 +np.float32,0xfec55f2e,0x3f39f304,4 +np.float32,0xed4e,0xed4e,4 +np.float32,0x3e2b7330,0x3e2d11fa,4 +np.float32,0x7f738542,0x40cbbe16,4 +np.float32,0x3f123521,0x3f247e71,4 +np.float32,0x73572c,0x73572c,4 +np.float32,0x804936c8,0x804936c8,4 +np.float32,0x803b80d8,0x803b80d8,4 +np.float32,0x7f566c57,0xbee2855a,4 +np.float32,0xff0e3bd8,0xbff0543f,4 +np.float32,0x7d2b2fe7,0xbf94ba4c,4 +np.float32,0xbf0da470,0xbf1e1dc2,4 +np.float32,0xbd276500,0xbd277ce0,4 +np.float32,0xfcd15dc0,0x403ccc2a,4 +np.float32,0x80071e59,0x80071e59,4 +np.float32,0xbe9b0c34,0xbe9ff7be,4 +np.float32,0x3f4f9069,0x3f86ac50,4 +np.float32,0x80042a95,0x80042a95,4 +np.float32,0x7de28e39,0x3bc9b7f4,4 +np.float32,0xbf641935,0xbf9e5af8,4 +np.float32,0x8034f068,0x8034f068,4 +np.float32,0xff33a3d2,0xbf408e75,4 +np.float32,0xbcc51540,0xbcc51efc,4 +np.float32,0xff6d1ddf,0x3ef58f0e,4 +np.float32,0xbf64dfc4,0xbf9f5725,4 +np.float32,0xff068a06,0x3eea8987,4 +np.float32,0xff01c0af,0x3f24cdfe,4 +np.float32,0x3f4def7e,0x3f84f802,4 +np.float32,0xbf1b4ae7,0xbf31a299,4 +np.float32,0x8077df2d,0x8077df2d,4 +np.float32,0x3f0155c5,0x3f0d9785,4 +np.float32,0x5a54b2,0x5a54b2,4 +np.float32,0x7f271f9e,0x3efb2ef3,4 +np.float32,0xbf0ff2ec,0xbf215217,4 +np.float32,0x7f500130,0xbf8a7fdd,4 +np.float32,0xfed9891c,0xbf65c872,4 +np.float32,0xfecbfaae,0x403bdbc2,4 +np.float32,0x3f3a5aba,0x3f642772,4 +np.float32,0x7ebc681e,0xbd8df059,4 +np.float32,0xfe05e400,0xbfe35d74,4 +np.float32,0xbf295ace,0xbf4750ea,4 +np.float32,0x7ea055b2,0x3f62d6be,4 +np.float32,0xbd00b520,0xbd00bff9,4 +np.float32,0xbf7677aa,0xbfb7e8cf,4 +np.float32,0x3e83f788,0x3e86f816,4 +np.float32,0x801f6710,0x801f6710,4 +np.float32,0x801133cc,0x801133cc,4 +np.float32,0x41da2a,0x41da2a,4 +np.float32,0xff1622fd,0x3f023650,4 +np.float32,0x806c7a72,0x806c7a72,4 +np.float32,0x3f10779c,0x3f220bb4,4 +np.float32,0xbf08cf94,0xbf17848d,4 +np.float32,0xbecb55b4,0xbed6bebd,4 +np.float32,0xbf0a1528,0xbf193d7b,4 +np.float32,0x806a16bd,0x806a16bd,4 +np.float32,0xc222a,0xc222a,4 +np.float32,0x3930de,0x3930de,4 +np.float32,0x3f5c3588,0x3f94bca2,4 +np.float32,0x1215ad,0x1215ad,4 +np.float32,0x3ed15030,0x3eddcf67,4 +np.float32,0x7da83b2e,0x3fce0d39,4 +np.float32,0x32b0a8,0x32b0a8,4 +np.float32,0x805aed6b,0x805aed6b,4 +np.float32,0x3ef8e02f,0x3f074346,4 +np.float32,0xbdeb6780,0xbdec7250,4 +np.float32,0x3f6e3cec,0x3fabda61,4 +np.float32,0xfefd467a,0x3ef7821a,4 +np.float32,0xfef090fe,0x3bb752a2,4 +np.float32,0x8019c538,0x8019c538,4 +np.float32,0x3e8cf284,0x3e909e81,4 +np.float32,0xbe6c6618,0xbe70b0a2,4 +np.float32,0x7f50a539,0x3f367be1,4 +np.float32,0x8019fe2f,0x8019fe2f,4 +np.float32,0x800c3f48,0x800c3f48,4 +np.float32,0xfd054cc0,0xc0f52802,4 +np.float32,0x3d0cca20,0x3d0cd853,4 +np.float32,0xbf4a7c44,0xbf816e74,4 +np.float32,0x3f46fc40,0x3f7be153,4 +np.float32,0x807c5849,0x807c5849,4 +np.float32,0xd7e41,0xd7e41,4 +np.float32,0x70589b,0x70589b,4 +np.float32,0x80357b95,0x80357b95,4 +np.float32,0x3de239f0,0x3de326a5,4 +np.float32,0x800b08e3,0x800b08e3,4 +np.float32,0x807ec946,0x807ec946,4 +np.float32,0x3e2e4b83,0x3e2fff76,4 +np.float32,0x3f198e0f,0x3f2f12a6,4 +np.float32,0xbecb1aca,0xbed67979,4 +np.float32,0x80134082,0x80134082,4 +np.float32,0x3f3a269f,0x3f63ca05,4 +np.float32,0x3f1381e4,0x3f265622,4 +np.float32,0xff293080,0xbf10be6f,4 +np.float32,0xff800000,0xffc00000,4 +np.float32,0x37d196,0x37d196,4 +np.float32,0x7e57eea7,0x3e7d8138,4 +np.float32,0x804b1dae,0x804b1dae,4 +np.float32,0x7d9508f9,0xc1075b35,4 +np.float32,0x3f7bf468,0x3fc095e0,4 +np.float32,0x55472c,0x55472c,4 +np.float32,0x3ecdcd86,0x3ed9a738,4 +np.float32,0x3ed9be0f,0x3ee7e4e9,4 +np.float32,0x3e7e0ddb,0x3e81b2fe,4 +np.float32,0x7ee6c1d3,0x3f850634,4 +np.float32,0x800f6fad,0x800f6fad,4 +np.float32,0xfefb3bd6,0xbff68ecc,4 +np.float32,0x8013d6e2,0x8013d6e2,4 +np.float32,0x3f3a2cb6,0x3f63d4ee,4 +np.float32,0xff383c84,0x3e7854bb,4 +np.float32,0x3f21946e,0x3f3b1cea,4 +np.float32,0xff322ea2,0x3fb22f31,4 +np.float32,0x8065a024,0x8065a024,4 +np.float32,0x7f395e30,0xbefe0de1,4 +np.float32,0x5b52db,0x5b52db,4 +np.float32,0x7f7caea7,0x3dac8ded,4 +np.float32,0xbf0431f8,0xbf1159b2,4 +np.float32,0x7f15b25b,0xc02a3833,4 +np.float32,0x80131abc,0x80131abc,4 +np.float32,0x7e829d81,0xbeb2e93d,4 +np.float32,0x3f2c64d7,0x3f4c3e4d,4 +np.float32,0x7f228d48,0xc1518c74,4 +np.float32,0xfc3c6f40,0xbf00d585,4 +np.float32,0x7f754f0f,0x3e2152f5,4 +np.float32,0xff65d32b,0xbe8bd56c,4 +np.float32,0xfea6b8c0,0x41608655,4 +np.float32,0x3f7d4b05,0x3fc2c96a,4 +np.float32,0x3f463230,0x3f7a54da,4 +np.float32,0x805117bb,0x805117bb,4 +np.float32,0xbf2ad4f7,0xbf49b30e,4 +np.float32,0x3eaa01ff,0x3eb08b56,4 +np.float32,0xff7a02bb,0x3f095f73,4 +np.float32,0x759176,0x759176,4 +np.float32,0x803c18d5,0x803c18d5,4 +np.float32,0xbe0722d8,0xbe07ed16,4 +np.float32,0x3f4b4a99,0x3f823fc6,4 +np.float32,0x3f7d0451,0x3fc25463,4 +np.float32,0xfee31e40,0xbfb41091,4 +np.float32,0xbf733d2c,0xbfb30cf1,4 +np.float32,0x7ed81015,0x417c380c,4 +np.float32,0x7daafc3e,0xbe2a37ed,4 +np.float32,0x3e44f82b,0x3e476f67,4 +np.float32,0x7c8d99,0x7c8d99,4 +np.float32,0x3f7aec5a,0x3fbee991,4 +np.float32,0xff09fd55,0x3e0709d3,4 +np.float32,0xff4ba4df,0x4173c01f,4 +np.float32,0x3f43d944,0x3f75c7bd,4 +np.float32,0xff6a9106,0x40a10eff,4 +np.float32,0x3bc8341c,0x3bc834bf,4 +np.float32,0x3eea82,0x3eea82,4 +np.float32,0xfea36a3c,0x435729b2,4 +np.float32,0x7dcc1fb0,0x3e330053,4 +np.float32,0x3f616ae6,0x3f9b01ae,4 +np.float32,0x8030963f,0x8030963f,4 +np.float32,0x10d1e2,0x10d1e2,4 +np.float32,0xfeb9a8a6,0x40e6daac,4 +np.float32,0xbe1aba00,0xbe1bea3a,4 +np.float32,0x3cb6b4ea,0x3cb6bcac,4 +np.float32,0x3d8b0b64,0x3d8b422f,4 +np.float32,0x7b6894,0x7b6894,4 +np.float32,0x3e89dcde,0x3e8d4b4b,4 +np.float32,0x3f12b952,0x3f253974,4 +np.float32,0x1c316c,0x1c316c,4 +np.float32,0x7e2da535,0x3f95fe6b,4 +np.float32,0x3ae9a494,0x3ae9a4a4,4 +np.float32,0xbc5f5500,0xbc5f588b,4 +np.float32,0x3e7850fc,0x3e7d4d0e,4 +np.float32,0xbf800000,0xbfc75923,4 +np.float32,0x3e652d69,0x3e691502,4 +np.float32,0xbf6bdd26,0xbfa89129,4 +np.float32,0x3f441cfc,0x3f764a02,4 +np.float32,0x7f5445ff,0xc0906191,4 +np.float32,0x807b2ee3,0x807b2ee3,4 +np.float32,0xbeb6cab8,0xbebef9c0,4 +np.float32,0xff737277,0xbf327011,4 +np.float32,0xfc832aa0,0x402fd52e,4 +np.float32,0xbf0c7538,0xbf1c7c0f,4 +np.float32,0x7e1301c7,0xbf0ee63e,4 +np.float64,0xbfe0ef7df7a1defc,0xbfe2b76a8d8aeb35,1 +np.float64,0x7fdd9c2eae3b385c,0xbfc00d6885485039,1 +np.float64,0xbfb484c710290990,0xbfb4900e0a527555,1 +np.float64,0x7fe73e5d6cee7cba,0x3fefbf70a56b60d3,1 +np.float64,0x800a110aa8d42216,0x800a110aa8d42216,1 +np.float64,0xffedd4f3f3bba9e7,0xbff076f8c4124919,1 +np.float64,0x800093407f812682,0x800093407f812682,1 +np.float64,0x800a23150e54462a,0x800a23150e54462a,1 +np.float64,0xbfb1076864220ed0,0xbfb10dd95a74b733,1 +np.float64,0x3fed1f8b37fa3f16,0x3ff496100985211f,1 +np.float64,0x3fdf762f84beec5f,0x3fe1223eb04a17e0,1 +np.float64,0x53fd4e0aa7faa,0x53fd4e0aa7faa,1 +np.float64,0x3fdbd283bdb7a507,0x3fddb7ec9856a546,1 +np.float64,0xbfe43f449d687e89,0xbfe77724a0d3072b,1 +np.float64,0x618b73bcc316f,0x618b73bcc316f,1 +np.float64,0x67759424ceeb3,0x67759424ceeb3,1 +np.float64,0xbfe4b6f7d9a96df0,0xbfe831371f3bd7a8,1 +np.float64,0x800a531b8b74a637,0x800a531b8b74a637,1 +np.float64,0xffeeffd5c37dffab,0x3fea140cbc2c3726,1 +np.float64,0x3fe648e2002c91c4,0x3feac1b8816f972a,1 +np.float64,0x800f16242a1e2c48,0x800f16242a1e2c48,1 +np.float64,0xffeeff8e1dbdff1b,0xc000b555f117dce7,1 +np.float64,0x3fdf1cf73fbe39f0,0x3fe0e9032401135b,1 +np.float64,0x7fe19c388b633870,0x3fd5271b69317d5b,1 +np.float64,0x918f226d231e5,0x918f226d231e5,1 +np.float64,0x4cc19ab499834,0x4cc19ab499834,1 +np.float64,0xbd3121d57a624,0xbd3121d57a624,1 +np.float64,0xbfd145d334a28ba6,0xbfd1b468866124d6,1 +np.float64,0x8bdbf41517b7f,0x8bdbf41517b7f,1 +np.float64,0x3fd1b8cb3ea37198,0x3fd2306b13396cae,1 +np.float64,0xbfd632a959ac6552,0xbfd7220fcfb5ef78,1 +np.float64,0x1cdaafc639b57,0x1cdaafc639b57,1 +np.float64,0x3febdcce1577b99c,0x3ff2fe076195a2bc,1 +np.float64,0x7fca6e945934dd28,0x3ff43040df7024e8,1 +np.float64,0x3fbe08e78e3c11cf,0x3fbe2c60e6b48f75,1 +np.float64,0x7fc1ed0d0523da19,0x3ff55f8dcad9440f,1 +np.float64,0xbfdc729b8cb8e538,0xbfde7b6e15dd60c4,1 +np.float64,0x3fd219404f243281,0x3fd298d7b3546531,1 +np.float64,0x3fe715c3f56e2b88,0x3fec255b5a59456e,1 +np.float64,0x7fe8b88e74b1711c,0x3ff60efd2c81d13d,1 +np.float64,0xa1d2b9fd43a57,0xa1d2b9fd43a57,1 +np.float64,0xffc1818223230304,0xbfb85c6c1e8018e7,1 +np.float64,0x3fde38ac8b3c7159,0x3fe0580c7e228576,1 +np.float64,0x8008faf7b491f5f0,0x8008faf7b491f5f0,1 +np.float64,0xffe7a1d751af43ae,0xbf7114cd7bbcd981,1 +np.float64,0xffec2db1b4b85b62,0xbff5cae759667f83,1 +np.float64,0x7fefce1ae27f9c35,0x3ff4b8b88f4876cf,1 +np.float64,0x7fd1ff56a523feac,0xbff342ce192f14dd,1 +np.float64,0x80026b3e3f84d67d,0x80026b3e3f84d67d,1 +np.float64,0xffedee5879bbdcb0,0xc02fae11508b2be0,1 +np.float64,0x8003c0dc822781ba,0x8003c0dc822781ba,1 +np.float64,0xffe38a79eca714f4,0xc008aa23b7a63980,1 +np.float64,0xbfda70411eb4e082,0xbfdc0d7e29c89010,1 +np.float64,0x800a5e34f574bc6a,0x800a5e34f574bc6a,1 +np.float64,0x3fc19fac6e233f59,0x3fc1bc66ac0d73d4,1 +np.float64,0x3a8a61ea7514d,0x3a8a61ea7514d,1 +np.float64,0x3fb57b536e2af6a0,0x3fb588451f72f44c,1 +np.float64,0x7fd68c6d082d18d9,0xc032ac926b665c9a,1 +np.float64,0xd5b87cfdab710,0xd5b87cfdab710,1 +np.float64,0xfe80b20bfd017,0xfe80b20bfd017,1 +np.float64,0x3fef8781e37f0f04,0x3ff8215fe2c1315a,1 +np.float64,0xffedddbb9c3bbb76,0x3fd959b82258a32a,1 +np.float64,0x3fc7d41f382fa83e,0x3fc81b94c3a091ba,1 +np.float64,0xffc3275dcf264ebc,0x3fb2b3d4985c6078,1 +np.float64,0x7fe34d2b7ba69a56,0x40001f3618e3c7c9,1 +np.float64,0x3fd64ae35fac95c7,0x3fd73d77e0b730f8,1 +np.float64,0x800e53bf6b3ca77f,0x800e53bf6b3ca77f,1 +np.float64,0xbfddf7c9083bef92,0xbfe02f392744d2d1,1 +np.float64,0x1c237cc038471,0x1c237cc038471,1 +np.float64,0x3fe4172beea82e58,0x3fe739b4bf16bc7e,1 +np.float64,0xfa950523f52a1,0xfa950523f52a1,1 +np.float64,0xffc839a2c5307344,0xbff70ff8a3c9247f,1 +np.float64,0x264f828c4c9f1,0x264f828c4c9f1,1 +np.float64,0x148a650a2914e,0x148a650a2914e,1 +np.float64,0x3fe8d255c0b1a4ac,0x3fef623c3ea8d6e3,1 +np.float64,0x800f4fbb28be9f76,0x800f4fbb28be9f76,1 +np.float64,0x7fdca57bcfb94af7,0x3ff51207563fb6cb,1 +np.float64,0x3fe4944107692882,0x3fe7fad593235364,1 +np.float64,0x800119b4f1a2336b,0x800119b4f1a2336b,1 +np.float64,0xbfe734075e6e680e,0xbfec5b35381069f2,1 +np.float64,0xffeb3c00db767801,0xbfbbd7d22df7b4b3,1 +np.float64,0xbfe95c658cb2b8cb,0xbff03ad5e0bc888a,1 +np.float64,0xffeefeb58fbdfd6a,0xbfd5c9264deb0e11,1 +np.float64,0x7fccc80fde39901f,0xc012c60f914f3ca2,1 +np.float64,0x3fe5da289c2bb451,0x3fea07ad00a0ca63,1 +np.float64,0x800e364b0a5c6c96,0x800e364b0a5c6c96,1 +np.float64,0x3fcf9ea7d23f3d50,0x3fd023b72e8c9dcf,1 +np.float64,0x800a475cfc948eba,0x800a475cfc948eba,1 +np.float64,0xffd4e0d757a9c1ae,0xbfa89d573352e011,1 +np.float64,0xbfd4dbec8229b7da,0xbfd5a165f12c7c40,1 +np.float64,0xffe307ab51260f56,0x3fe6b1639da58c3f,1 +np.float64,0xbfe6955a546d2ab4,0xbfeb44ae2183fee9,1 +np.float64,0xbfca1f18f5343e30,0xbfca7d804ccccdf4,1 +np.float64,0xe9f4dfebd3e9c,0xe9f4dfebd3e9c,1 +np.float64,0xfff0000000000000,0xfff8000000000000,1 +np.float64,0x8008e69c0fb1cd38,0x8008e69c0fb1cd38,1 +np.float64,0xbfead1ccf975a39a,0xbff1c84b3db8ca93,1 +np.float64,0x25a982424b531,0x25a982424b531,1 +np.float64,0x8010000000000000,0x8010000000000000,1 +np.float64,0x80056204ea0ac40b,0x80056204ea0ac40b,1 +np.float64,0x800d1442d07a2886,0x800d1442d07a2886,1 +np.float64,0xbfaef3dadc3de7b0,0xbfaefd85ae6205f0,1 +np.float64,0x7fe969ce4b32d39c,0xbff3c4364fc6778f,1 +np.float64,0x7fe418bac0a83175,0x402167d16b1efe0b,1 +np.float64,0x3fd7c82a25af9054,0x3fd8f0c701315672,1 +np.float64,0x80013782a7826f06,0x80013782a7826f06,1 +np.float64,0x7fc031c7ee20638f,0x400747ab705e6904,1 +np.float64,0x3fe8cf327ff19e65,0x3fef5c14f8aafa89,1 +np.float64,0xbfe331a416a66348,0xbfe5e2290a098dd4,1 +np.float64,0x800607b2116c0f65,0x800607b2116c0f65,1 +np.float64,0x7fb40448f0280891,0xbfd43d4f0ffa1d64,1 +np.float64,0x7fefffffffffffff,0xbf74530cfe729484,1 +np.float64,0x3fe39b5444a736a9,0x3fe67eaa0b6acf27,1 +np.float64,0x3fee4733c4fc8e68,0x3ff631eabeef9696,1 +np.float64,0xbfec840f3b79081e,0xbff3cc8563ab2e74,1 +np.float64,0xbfc8f6854c31ed0c,0xbfc948caacb3bba0,1 +np.float64,0xffbcf754a639eea8,0xbfc88d17cad3992b,1 +np.float64,0x8000bd3163417a64,0x8000bd3163417a64,1 +np.float64,0x3fe766d0eaeecda2,0x3fecb660882f7024,1 +np.float64,0xb6cc30156d986,0xb6cc30156d986,1 +np.float64,0xffc0161f9f202c40,0x3fe19bdefe5cf8b1,1 +np.float64,0xffe1e462caa3c8c5,0x3fe392c47feea17b,1 +np.float64,0x30a36a566146e,0x30a36a566146e,1 +np.float64,0x3fa996f580332deb,0x3fa99c6b4f2abebe,1 +np.float64,0x3fba71716e34e2e0,0x3fba899f35edba1d,1 +np.float64,0xbfe8f7e5e971efcc,0xbfefac431a0e3d55,1 +np.float64,0xf48f1803e91e3,0xf48f1803e91e3,1 +np.float64,0x7fe3edc0a127db80,0xc03d1a579a5d74a8,1 +np.float64,0xffeba82056375040,0x3fdfd701308700db,1 +np.float64,0xbfeb5a924cf6b524,0xbff2640de7cd107f,1 +np.float64,0xfa4cd1a9f499a,0xfa4cd1a9f499a,1 +np.float64,0x800de1be7b9bc37d,0x800de1be7b9bc37d,1 +np.float64,0xffd44e56ad289cae,0x3fdf4b8085db9b67,1 +np.float64,0xbfe4fb3aea69f676,0xbfe89d2cc46fcc50,1 +np.float64,0xbfe596495d6b2c92,0xbfe997a589a1f632,1 +np.float64,0x6f55a2b8deab5,0x6f55a2b8deab5,1 +np.float64,0x7fe72dc4712e5b88,0x4039c4586b28c2bc,1 +np.float64,0x89348bd712692,0x89348bd712692,1 +np.float64,0xffe062156120c42a,0x4005f0580973bc77,1 +np.float64,0xbfeabc714d7578e2,0xbff1b07e2fa57dc0,1 +np.float64,0x8003a56b3e874ad7,0x8003a56b3e874ad7,1 +np.float64,0x800eeadfb85dd5c0,0x800eeadfb85dd5c0,1 +np.float64,0x46d77a4c8daf0,0x46d77a4c8daf0,1 +np.float64,0x8000c06e7dc180de,0x8000c06e7dc180de,1 +np.float64,0x3fe428d211e851a4,0x3fe754b1c00a89bc,1 +np.float64,0xc5be11818b7c2,0xc5be11818b7c2,1 +np.float64,0x7fefc244893f8488,0x401133dc54f52de5,1 +np.float64,0x3fde30eee93c61de,0x3fe0532b827543a6,1 +np.float64,0xbfd447f48b288fea,0xbfd4fd0654f90718,1 +np.float64,0xbfde98dc7b3d31b8,0xbfe094df12f84a06,1 +np.float64,0x3fed2c1a1dfa5834,0x3ff4a6c4f3470a65,1 +np.float64,0xbfe992165073242d,0xbff071ab039c9177,1 +np.float64,0x3fd0145d1b2028ba,0x3fd06d3867b703dc,1 +np.float64,0x3fe179457362f28b,0x3fe3722f1d045fda,1 +np.float64,0x800e28964fbc512d,0x800e28964fbc512d,1 +np.float64,0x8004a5d785294bb0,0x8004a5d785294bb0,1 +np.float64,0xbfd652f2272ca5e4,0xbfd7469713125120,1 +np.float64,0x7fe61f49036c3e91,0xbf9b6ccdf2d87e70,1 +np.float64,0xffb7d47dd02fa8f8,0xc004449a82320b13,1 +np.float64,0x3feb82f996b705f3,0x3ff29336c738a4c5,1 +np.float64,0x3fbb7fceea36ffa0,0x3fbb9b02c8ad7f93,1 +np.float64,0x80004519fb208a35,0x80004519fb208a35,1 +np.float64,0xbfe0539114e0a722,0xbfe1e86dc5aa039c,1 +np.float64,0x0,0x0,1 +np.float64,0xbfe99d1125f33a22,0xbff07cf8ec04300f,1 +np.float64,0xffd4fbeecc29f7de,0x3ffab76775a8455f,1 +np.float64,0xbfbf1c618e3e38c0,0xbfbf43d2764a8333,1 +np.float64,0x800cae02a9d95c06,0x800cae02a9d95c06,1 +np.float64,0x3febc47d3bf788fa,0x3ff2e0d7cf8ef509,1 +np.float64,0x3fef838f767f071f,0x3ff81aeac309bca0,1 +np.float64,0xbfd5e70716abce0e,0xbfd6ccb033ef7a35,1 +np.float64,0x3f9116fa60222df5,0x3f9117625f008e0b,1 +np.float64,0xffe02b1e5f20563c,0xbfe6b2ec293520b7,1 +np.float64,0xbf9b5aec3036b5e0,0xbf9b5c96c4c7f951,1 +np.float64,0xfdb0169bfb603,0xfdb0169bfb603,1 +np.float64,0x7fcdd1d51c3ba3a9,0x401f0e12fa0b7570,1 +np.float64,0xbfd088103fa11020,0xbfd0e8c4a333ffb2,1 +np.float64,0x3fe22df82ee45bf0,0x3fe46d03a7c14de2,1 +np.float64,0xbfd57b0c28aaf618,0xbfd65349a6191de5,1 +np.float64,0x3fe0a42f50a1485f,0x3fe252e26775d9a4,1 +np.float64,0x800fab4e363f569c,0x800fab4e363f569c,1 +np.float64,0xffe9f0ed63f3e1da,0xbfe278c341b171d5,1 +np.float64,0x7fe26c244664d848,0xbfb325269dad1996,1 +np.float64,0xffe830410bf06081,0xc00181a39f606e96,1 +np.float64,0x800c548a0c78a914,0x800c548a0c78a914,1 +np.float64,0x800f94761ebf28ec,0x800f94761ebf28ec,1 +np.float64,0x3fe5984845eb3091,0x3fe99aeb653c666d,1 +np.float64,0x7fe93e5bf8f27cb7,0xc010d159fa27396a,1 +np.float64,0xffefffffffffffff,0x3f74530cfe729484,1 +np.float64,0x4c83f1269907f,0x4c83f1269907f,1 +np.float64,0x3fde0065a8bc00cc,0x3fe034a1cdf026d4,1 +np.float64,0x800743810d6e8703,0x800743810d6e8703,1 +np.float64,0x80040662d5280cc6,0x80040662d5280cc6,1 +np.float64,0x3fed20b2c5ba4166,0x3ff497988519d7aa,1 +np.float64,0xffe8fa15e5f1f42b,0x3fff82ca76d797b4,1 +np.float64,0xbb72e22f76e5d,0xbb72e22f76e5d,1 +np.float64,0x7fc18ffa7c231ff4,0xbff4b8b4c3315026,1 +np.float64,0xbfe8d1ac44f1a358,0xbfef60efc4f821e3,1 +np.float64,0x3fd38c1fe8271840,0x3fd42dc37ff7262b,1 +np.float64,0xe577bee5caef8,0xe577bee5caef8,1 +np.float64,0xbff0000000000000,0xbff8eb245cbee3a6,1 +np.float64,0xffcb3a9dd436753c,0x3fcd1a3aff1c3fc7,1 +np.float64,0x7fe44bf2172897e3,0x3ff60bfe82a379f4,1 +np.float64,0x8009203823924071,0x8009203823924071,1 +np.float64,0x7fef8e0abc7f1c14,0x3fe90e4962d47ce5,1 +np.float64,0xffda50004434a000,0x3fb50dee03e1418b,1 +np.float64,0x7fe2ff276ea5fe4e,0xc0355b7d2a0a8d9d,1 +np.float64,0x3fd0711ba5a0e238,0x3fd0d03823d2d259,1 +np.float64,0xe7625b03cec4c,0xe7625b03cec4c,1 +np.float64,0xbfd492c8d7a92592,0xbfd55006cde8d300,1 +np.float64,0x8001fee99f23fdd4,0x8001fee99f23fdd4,1 +np.float64,0x7ff4000000000000,0x7ffc000000000000,1 +np.float64,0xfa15df97f42bc,0xfa15df97f42bc,1 +np.float64,0xbfec3fdca9787fb9,0xbff377164b13c7a9,1 +np.float64,0xbcec10e579d82,0xbcec10e579d82,1 +np.float64,0xbfc3b4e2132769c4,0xbfc3dd1fcc7150a6,1 +np.float64,0x80045b149ee8b62a,0x80045b149ee8b62a,1 +np.float64,0xffe044554c2088aa,0xbff741436d558785,1 +np.float64,0xffcc65f09f38cbe0,0xc0172b4adc2d317d,1 +np.float64,0xf68b2d3bed166,0xf68b2d3bed166,1 +np.float64,0x7fc7f44c572fe898,0x3fec69f3b1eca790,1 +np.float64,0x3fac51f61438a3ec,0x3fac595d34156002,1 +np.float64,0xbfeaa9f256f553e5,0xbff19bfdf5984326,1 +np.float64,0x800e4742149c8e84,0x800e4742149c8e84,1 +np.float64,0xbfc493df132927c0,0xbfc4c1ba4268ead9,1 +np.float64,0xbfbf0c56383e18b0,0xbfbf3389fcf50c72,1 +np.float64,0xbf978a0e082f1420,0xbf978b1dd1da3d3c,1 +np.float64,0xbfe04375356086ea,0xbfe1d34c57314dd1,1 +np.float64,0x3feaeeb29b75dd65,0x3ff1e8b772374979,1 +np.float64,0xbfe15e42c3a2bc86,0xbfe34d45d56c5c15,1 +np.float64,0x3fe507429a6a0e85,0x3fe8b058176b3225,1 +np.float64,0x3feee2b26c3dc565,0x3ff71b73203de921,1 +np.float64,0xbfd496577aa92cae,0xbfd553fa7fe15a5f,1 +np.float64,0x7fe2c10953e58212,0x3fc8ead6a0d14bbf,1 +np.float64,0x800035b77aa06b70,0x800035b77aa06b70,1 +np.float64,0x2329201e46525,0x2329201e46525,1 +np.float64,0xbfe6225c9a6c44b9,0xbfea80861590fa02,1 +np.float64,0xbfd6925030ad24a0,0xbfd78e70b1c2215d,1 +np.float64,0xbfd82225c4b0444c,0xbfd958a60f845b39,1 +np.float64,0xbb03d8a17609,0xbb03d8a17609,1 +np.float64,0x7fc33967b12672ce,0x40001e00c9af4002,1 +np.float64,0xff9373c6d026e780,0xbff308654a459d3d,1 +np.float64,0x3feab1f9c5f563f4,0x3ff1a4e0fd2f093d,1 +np.float64,0xbf993ef768327de0,0xbf994046b64e308b,1 +np.float64,0xffb87382fc30e708,0xbfde0accb83c891b,1 +np.float64,0x800bb3a118176743,0x800bb3a118176743,1 +np.float64,0x800c810250d90205,0x800c810250d90205,1 +np.float64,0xbfd2c4eb9ba589d8,0xbfd3539508b4a4a8,1 +np.float64,0xbee1f5437dc3f,0xbee1f5437dc3f,1 +np.float64,0x3fc07aeab520f5d8,0x3fc0926272f9d8e2,1 +np.float64,0xbfe23747a3246e90,0xbfe47a20a6e98687,1 +np.float64,0x3fde1296debc252c,0x3fe0401143ff6b5c,1 +np.float64,0xbfcec8c2f73d9184,0xbfcf644e25ed3b74,1 +np.float64,0xff9314f2c82629e0,0x40559a0f9099dfd1,1 +np.float64,0xbfe27487afa4e910,0xbfe4d0e01200bde6,1 +np.float64,0xffb3d6637627acc8,0x3fe326d4b1e1834f,1 +np.float64,0xffe6f84d642df09a,0x3fc73fa9f57c3acb,1 +np.float64,0xffe67cf76fecf9ee,0xc01cf48c97937ef9,1 +np.float64,0x7fdc73fc12b8e7f7,0xbfcfcecde9331104,1 +np.float64,0xffdcf8789239f0f2,0x3fe345e3b8e28776,1 +np.float64,0x800a70af5314e15f,0x800a70af5314e15f,1 +np.float64,0xffc862300730c460,0x3fc4e9ea813beca7,1 +np.float64,0xbfcc6961bd38d2c4,0xbfcce33bfa6c6bd1,1 +np.float64,0xbfc9b76bbf336ed8,0xbfca117456ac37e5,1 +np.float64,0x7fb86e829430dd04,0x400a5bd7a18e302d,1 +np.float64,0x7fb9813ef833027d,0xbfe5a6494f143625,1 +np.float64,0x8005085e2c2a10bd,0x8005085e2c2a10bd,1 +np.float64,0xffe5af099d6b5e12,0x40369bbe31e03e06,1 +np.float64,0xffde03b1fd3c0764,0x3ff061120aa1f52a,1 +np.float64,0x7fa4eb6cdc29d6d9,0x3fe9defbe9010322,1 +np.float64,0x800803f4b11007ea,0x800803f4b11007ea,1 +np.float64,0x7febd50f6df7aa1e,0xbffcf540ccf220dd,1 +np.float64,0x7fed454f08fa8a9d,0xbffc2a8b81079403,1 +np.float64,0xbfed7e8c69bafd19,0xbff5161e51ba6634,1 +np.float64,0xffef92e78eff25ce,0xbffefeecddae0ad3,1 +np.float64,0x7fe5b9b413ab7367,0xbfc681ba29704176,1 +np.float64,0x29284e805252,0x29284e805252,1 +np.float64,0xffed3955bcfa72ab,0xbfc695acb5f468de,1 +np.float64,0x3fe464ee1ca8c9dc,0x3fe7b140ce50fdca,1 +np.float64,0xffe522ae4bea455c,0x3feb957c146e66ef,1 +np.float64,0x8000000000000000,0x8000000000000000,1 +np.float64,0x3fd0c353a2a186a8,0x3fd1283aaa43a411,1 +np.float64,0x3fdb30a749b6614f,0x3fdcf40df006ed10,1 +np.float64,0x800109213cc21243,0x800109213cc21243,1 +np.float64,0xbfe72aa0c5ee5542,0xbfec4a713f513bc5,1 +np.float64,0x800865344ad0ca69,0x800865344ad0ca69,1 +np.float64,0x7feb7df60eb6fbeb,0x3fb1df06a67aa22f,1 +np.float64,0x3fe83a5dd93074bc,0x3fee3d63cda72636,1 +np.float64,0xbfde70e548bce1ca,0xbfe07b8e19c9dac6,1 +np.float64,0xbfeea38d537d471b,0xbff6bb18c230c0be,1 +np.float64,0x3fefeebbc47fdd78,0x3ff8cdaa53b7c7b4,1 +np.float64,0x7fe6512e20eca25b,0xbff623cee44a22b5,1 +np.float64,0xf8fa5ca3f1f4c,0xf8fa5ca3f1f4c,1 +np.float64,0x7fd12d00ed225a01,0xbfe90d518ea61faf,1 +np.float64,0x80027db43504fb69,0x80027db43504fb69,1 +np.float64,0xffc10a01aa221404,0x3fcc2065b3d0157b,1 +np.float64,0xbfef8286e87f050e,0xbff8193a54449b59,1 +np.float64,0xbfc73178092e62f0,0xbfc7735072ba4593,1 +np.float64,0x3fc859d70630b3ae,0x3fc8a626522af1c0,1 +np.float64,0x3fe4654c4268ca99,0x3fe7b1d2913eda1a,1 +np.float64,0xbfce93cd843d279c,0xbfcf2c2ef16a0957,1 +np.float64,0xffbcaa16d4395430,0xbfd511ced032d784,1 +np.float64,0xbfe91f980e723f30,0xbfeffb39cf8c7746,1 +np.float64,0x800556fb6f0aadf8,0x800556fb6f0aadf8,1 +np.float64,0xffd009cde520139c,0x3fe4fa83b1e93d28,1 +np.float64,0x7febc0675e3780ce,0x3feb53930c004dae,1 +np.float64,0xbfe7f975bdeff2ec,0xbfedc36e6729b010,1 +np.float64,0x45aff57c8b5ff,0x45aff57c8b5ff,1 +np.float64,0xbfec7ebd0138fd7a,0xbff3c5cab680aae0,1 +np.float64,0x8009448003b28900,0x8009448003b28900,1 +np.float64,0x3fca4b992d349732,0x3fcaabebcc86aa9c,1 +np.float64,0x3fca069161340d20,0x3fca63ecc742ff3a,1 +np.float64,0x80063bc80bec7791,0x80063bc80bec7791,1 +np.float64,0xbfe1764bffe2ec98,0xbfe36e1cb30cec94,1 +np.float64,0xffd0dba72f21b74e,0x3fb1834964d57ef6,1 +np.float64,0xbfe31848fc263092,0xbfe5bd066445cbc3,1 +np.float64,0xbfd1fb227323f644,0xbfd278334e27f02d,1 +np.float64,0xffdc59069fb8b20e,0xbfdfc363f559ea2c,1 +np.float64,0x3fdea52a52bd4a55,0x3fe09cada4e5344c,1 +np.float64,0x3f715e55a022bd00,0x3f715e5c72a2809e,1 +np.float64,0x1d1ac6023a35a,0x1d1ac6023a35a,1 +np.float64,0x7feacc71627598e2,0x400486b82121da19,1 +np.float64,0xa0287fa340510,0xa0287fa340510,1 +np.float64,0xffe352c5abe6a58b,0xc002623346060543,1 +np.float64,0x7fed577a23baaef3,0x3fda19bc8fa3b21f,1 +np.float64,0x3fde8dd5263d1baa,0x3fe08de0fedf7029,1 +np.float64,0x3feddd3be2bbba78,0x3ff599b2f3e018cc,1 +np.float64,0xc7a009f58f401,0xc7a009f58f401,1 +np.float64,0xbfef03d5a4fe07ab,0xbff74ee08681f47b,1 +np.float64,0x7fe2cf60eea59ec1,0x3fe905fb44f8cc60,1 +np.float64,0xbfe498fcab6931fa,0xbfe8023a6ff8becf,1 +np.float64,0xbfef7142acfee285,0xbff7fd196133a595,1 +np.float64,0xd214ffdba42a0,0xd214ffdba42a0,1 +np.float64,0x8006de7d78cdbcfc,0x8006de7d78cdbcfc,1 +np.float64,0xb247d34f648fb,0xb247d34f648fb,1 +np.float64,0xbfdd5bece6bab7da,0xbfdf9ba63ca2c5b2,1 +np.float64,0x7fe874650af0e8c9,0x3fe74204e122c10f,1 +np.float64,0x800768c49baed18a,0x800768c49baed18a,1 +np.float64,0x3fb4c0a192298140,0x3fb4cc4c8aa43300,1 +np.float64,0xbfa740531c2e80a0,0xbfa7446b7c74ae8e,1 +np.float64,0x7fe10d6edf221add,0x3fedbcd2eae26657,1 +np.float64,0xbfe9175d0f722eba,0xbfefeaca7f32c6e3,1 +np.float64,0x953e11d32a7c2,0x953e11d32a7c2,1 +np.float64,0x80032df90c465bf3,0x80032df90c465bf3,1 +np.float64,0xffec5b799638b6f2,0xbfe95cd2c69be12c,1 +np.float64,0xffe0c3cfa9a1879f,0x3fe20b99b0c108ce,1 +np.float64,0x3fb610d8e22c21b2,0x3fb61ee0d6c16df8,1 +np.float64,0xffe16bb39962d766,0xc016d370381b6b42,1 +np.float64,0xbfdc72edb238e5dc,0xbfde7bd2de10717a,1 +np.float64,0xffed52dee3baa5bd,0xc01994c08899129a,1 +np.float64,0xffa92aab08325550,0xbff2b881ce363cbd,1 +np.float64,0x7fe028282de0504f,0xc0157ff96c69a9c7,1 +np.float64,0xbfdb2151bf3642a4,0xbfdce196fcc35857,1 +np.float64,0x3fcffbd13c3ff7a2,0x3fd0554b5f0371ac,1 +np.float64,0x800d206bff1a40d8,0x800d206bff1a40d8,1 +np.float64,0x458f818c8b1f1,0x458f818c8b1f1,1 +np.float64,0x800a7b56a234f6ae,0x800a7b56a234f6ae,1 +np.float64,0xffe3d86161e7b0c2,0xbff58d0dbde9f188,1 +np.float64,0xe8ed82e3d1db1,0xe8ed82e3d1db1,1 +np.float64,0x3fe234e0176469c0,0x3fe476bd36b96a75,1 +np.float64,0xbfc7cb9c132f9738,0xbfc812c46e185e0b,1 +np.float64,0xbfeba116c1f7422e,0xbff2b6b7563ad854,1 +np.float64,0x7fe7041de62e083b,0x3f5d2b42aca47274,1 +np.float64,0xbfcf60f4ff3ec1e8,0xbfd002eb83406436,1 +np.float64,0xbfc06067a520c0d0,0xbfc0776e5839ecda,1 +np.float64,0x4384965a87093,0x4384965a87093,1 +np.float64,0xd2ed9d01a5db4,0xd2ed9d01a5db4,1 +np.float64,0x3fbea88cb63d5119,0x3fbece49cc34a379,1 +np.float64,0x3fe7e982ebefd306,0x3feda5bd4c435d43,1 +np.float64,0xffdb60a3e036c148,0xbfcb7ed21e7a8f49,1 +np.float64,0x7fdba9231eb75245,0xbfd750cab1536398,1 +np.float64,0x800d593534dab26b,0x800d593534dab26b,1 +np.float64,0xffdf15fb683e2bf6,0x3fb3aaea23357f06,1 +np.float64,0xbfd6f8a2e5adf146,0xbfd802e509d67c67,1 +np.float64,0x3feeaa31513d5463,0x3ff6c52147dc053c,1 +np.float64,0xf2f6dfd3e5edc,0xf2f6dfd3e5edc,1 +np.float64,0x7fd58d8279ab1b04,0x403243f23d02af2a,1 +np.float64,0x8000000000000001,0x8000000000000001,1 +np.float64,0x3fdffb8e0ebff71c,0x3fe1786cb0a6b0f3,1 +np.float64,0xc999826b93331,0xc999826b93331,1 +np.float64,0xffc4966f19292ce0,0x3ff0836c75c56cc7,1 +np.float64,0x7fef95a4b2ff2b48,0xbfbbe2c27c78154f,1 +np.float64,0xb8f1307f71e26,0xb8f1307f71e26,1 +np.float64,0x3fe807bc7eb00f79,0x3fedde19f2d3c42d,1 +np.float64,0x5e4b6580bc98,0x5e4b6580bc98,1 +np.float64,0xffe19353576326a6,0xc0278c51fee07d36,1 +np.float64,0xbfb0ca6f3e2194e0,0xbfb0d09be673fa72,1 +np.float64,0x3fea724211b4e484,0x3ff15ee06f0a0a13,1 +np.float64,0xbfda21e1c4b443c4,0xbfdbb041f3c86832,1 +np.float64,0x8008082b24901057,0x8008082b24901057,1 +np.float64,0xbfd031aa4ea06354,0xbfd08c77729634bb,1 +np.float64,0xbfc407e153280fc4,0xbfc432275711df5f,1 +np.float64,0xbb4fa4b5769f5,0xbb4fa4b5769f5,1 +np.float64,0x7fed6d1daffada3a,0xc037a14bc7b41fab,1 +np.float64,0xffeee589943dcb12,0x3ff2abfe47037778,1 +np.float64,0x301379d260270,0x301379d260270,1 +np.float64,0xbfec2fefc2b85fe0,0xbff36362c0363e06,1 +np.float64,0xbfe0b1c82e216390,0xbfe264f503f7c22c,1 +np.float64,0xbfea2bce78f4579d,0xbff112d6f07935ea,1 +np.float64,0x18508ef230a13,0x18508ef230a13,1 +np.float64,0x800667a74d6ccf4f,0x800667a74d6ccf4f,1 +np.float64,0x79ce5c8cf39cc,0x79ce5c8cf39cc,1 +np.float64,0x3feda61c8efb4c39,0x3ff54c9ade076f54,1 +np.float64,0x3fe27e06b0e4fc0d,0x3fe4de665c1dc3ca,1 +np.float64,0xbfd15fea2722bfd4,0xbfd1d081c55813b0,1 +np.float64,0xbfe5222c4cea4458,0xbfe8db62deb7d2ad,1 +np.float64,0xbfe8a16c33b142d8,0xbfef02d5831592a8,1 +np.float64,0x3fdb60e7c4b6c1d0,0x3fdd2e4265c4c3b6,1 +np.float64,0x800076d62b60edad,0x800076d62b60edad,1 +np.float64,0xbfec8f1527791e2a,0xbff3da7ed3641e8d,1 +np.float64,0x2af03bfe55e08,0x2af03bfe55e08,1 +np.float64,0xa862ee0950c5e,0xa862ee0950c5e,1 +np.float64,0x7fea5a7c1eb4b4f7,0xbffa6f07d28ef211,1 +np.float64,0x90e118fb21c23,0x90e118fb21c23,1 +np.float64,0xbfead0721bf5a0e4,0xbff1c6c7a771a128,1 +np.float64,0x3f63f4a4c027e94a,0x3f63f4a75665da67,1 +np.float64,0x3fece0efa579c1e0,0x3ff443bec52f021e,1 +np.float64,0xbfdbe743b737ce88,0xbfddd129bff89c15,1 +np.float64,0x3fd48c9b8fa91938,0x3fd5492a630a8cb5,1 +np.float64,0x3ff0000000000000,0x3ff8eb245cbee3a6,1 +np.float64,0xbfd51ea33baa3d46,0xbfd5ebd5dc710204,1 +np.float64,0x3fcfbab0183f7560,0x3fd032a054580b00,1 +np.float64,0x8007abce13cf579d,0x8007abce13cf579d,1 +np.float64,0xbfef0f4723be1e8e,0xbff760c7008e8913,1 +np.float64,0x8006340f524c681f,0x8006340f524c681f,1 +np.float64,0x87b7d7010f71,0x87b7d7010f71,1 +np.float64,0x3fe9422da9b2845b,0x3ff02052e6148c45,1 +np.float64,0x7fddd259b93ba4b2,0xc000731aa33d84b6,1 +np.float64,0x3fe0156d12202ada,0x3fe1972ba309cb29,1 +np.float64,0x8004f1264b89e24d,0x8004f1264b89e24d,1 +np.float64,0x3fececdcacb9d9b9,0x3ff4534d5861f731,1 +np.float64,0x3fd1790ab822f215,0x3fd1eb97b1bb6fb4,1 +np.float64,0xffce5d11863cba24,0xbfcb4f38c17210da,1 +np.float64,0x800a30c32a546187,0x800a30c32a546187,1 +np.float64,0x3fa58cc61c2b198c,0x3fa59008add7233e,1 +np.float64,0xbfe0ac77d62158f0,0xbfe25de3dba0bc4a,1 +np.float64,0xeb8c5753d718b,0xeb8c5753d718b,1 +np.float64,0x3fee5438dafca872,0x3ff644fef7e7adb5,1 +np.float64,0x3faad1eb2c35a3e0,0x3faad83499f94057,1 +np.float64,0x3fe39152c46722a6,0x3fe66fba0b96ab6e,1 +np.float64,0xffd6fd17712dfa2e,0xc010d697d1ab8731,1 +np.float64,0x5214a888a4296,0x5214a888a4296,1 +np.float64,0x8000127a5da024f5,0x8000127a5da024f5,1 +np.float64,0x7feb3a366cb6746c,0x3fbe49bd8d5f213a,1 +np.float64,0xca479501948f3,0xca479501948f3,1 +np.float64,0x7fe7c799ce6f8f33,0xbfd796cd98dc620c,1 +np.float64,0xffe20bcf30a4179e,0xbff8ca5453fa088f,1 +np.float64,0x3fe624638a6c48c7,0x3fea83f123832c3c,1 +np.float64,0xbfe5f1377c6be26f,0xbfea2e143a2d522c,1 +np.float64,0x7fd193f9f8a327f3,0xbfb04ee2602574d4,1 +np.float64,0xbfe7419d2fee833a,0xbfec737f140d363d,1 +np.float64,0x1,0x1,1 +np.float64,0x7fe2ac246c655848,0x3fd14fee3237727a,1 +np.float64,0xa459b42948b37,0xa459b42948b37,1 +np.float64,0x3fb26155ae24c2ab,0x3fb2696fc446d4c6,1 +np.float64,0xbfdd7b332e3af666,0xbfdfc296c21f1aa8,1 +np.float64,0xbfe00dbda4a01b7c,0xbfe18d2b060f0506,1 +np.float64,0x8003bb22d3e77646,0x8003bb22d3e77646,1 +np.float64,0x3fee21b0a57c4361,0x3ff5fb6a21dc911c,1 +np.float64,0x80ca69270194d,0x80ca69270194d,1 +np.float64,0xbfd6d80350adb006,0xbfd7ddb501edbde0,1 +np.float64,0xd2f8b801a5f2,0xd2f8b801a5f2,1 +np.float64,0xbfe856b3f170ad68,0xbfee7334fdc49296,1 +np.float64,0x3fed5c1b20bab836,0x3ff4e73ee5d5c7f3,1 +np.float64,0xbfd58085a5ab010c,0xbfd6596ddc381ffa,1 +np.float64,0x3fe4f0134b29e027,0x3fe88b70602fbd21,1 +np.float64,0xffc9098fdc321320,0x4011c334a74a92cf,1 +np.float64,0x794749bef28ea,0x794749bef28ea,1 +np.float64,0xbfc86b547f30d6a8,0xbfc8b84a4fafe0af,1 +np.float64,0x7fe1356b9da26ad6,0x3fd270bca208d899,1 +np.float64,0x7fca0ef1aa341de2,0xbff851044c0734fa,1 +np.float64,0x80064cb8b62c9972,0x80064cb8b62c9972,1 +np.float64,0xffd3a09a83a74136,0x3ffb66dae0accdf5,1 +np.float64,0x800e301aa15c6035,0x800e301aa15c6035,1 +np.float64,0x800e51f323bca3e6,0x800e51f323bca3e6,1 +np.float64,0x7ff0000000000000,0xfff8000000000000,1 +np.float64,0x800c4278c87884f2,0x800c4278c87884f2,1 +np.float64,0xbfe8481649f0902c,0xbfee576772695096,1 +np.float64,0xffe2344e3fa4689c,0x3fb10442ec0888de,1 +np.float64,0xbfeada313d75b462,0xbff1d1aee3fab3a9,1 +np.float64,0x8009ddfb1333bbf7,0x8009ddfb1333bbf7,1 +np.float64,0x7fed3314c93a6629,0x3ff7a9b12dc1cd37,1 +np.float64,0x3fd55c26da2ab84e,0x3fd630a7b8aac78a,1 +np.float64,0x800cdb5203f9b6a4,0x800cdb5203f9b6a4,1 +np.float64,0xffd04a875da0950e,0x4009a13810ab121d,1 +np.float64,0x800f1acb527e3597,0x800f1acb527e3597,1 +np.float64,0xbf9519bf282a3380,0xbf951a82e9b955ff,1 +np.float64,0x3fcd7a42fa3af486,0x3fce028f3c51072d,1 +np.float64,0xbfdd3e21b73a7c44,0xbfdf769f2ff2480b,1 +np.float64,0xffd4361e2aa86c3c,0xbfc211ce8e9f792c,1 +np.float64,0x7fccf97f6939f2fe,0xbff8464bad830f06,1 +np.float64,0x800ce47fb939c900,0x800ce47fb939c900,1 +np.float64,0xffe9e51df173ca3b,0xbfceaf990d652c4e,1 +np.float64,0x3fe05bba5b20b775,0x3fe1f326e4455442,1 +np.float64,0x800a29b4b134536a,0x800a29b4b134536a,1 +np.float64,0xe6f794b7cdef3,0xe6f794b7cdef3,1 +np.float64,0xffb5b688ce2b6d10,0x3ff924bb97ae2f6d,1 +np.float64,0x7fa74105d82e820b,0x3fd49643aaa9eee4,1 +np.float64,0x80020d15f7a41a2d,0x80020d15f7a41a2d,1 +np.float64,0x3fd6a983d5ad5308,0x3fd7a8cc8835b5b8,1 +np.float64,0x7fcd9798f03b2f31,0x3fc534c2f7bf4721,1 +np.float64,0xffdd31873a3a630e,0xbfe3171fcdffb3f7,1 +np.float64,0x80075183234ea307,0x80075183234ea307,1 +np.float64,0x82f3132505e63,0x82f3132505e63,1 +np.float64,0x3febfd9cb837fb39,0x3ff325bbf812515d,1 +np.float64,0xbfb4630fda28c620,0xbfb46e1f802ec278,1 +np.float64,0x3feeed7c89fddafa,0x3ff72c20ce5a9ee4,1 +np.float64,0x7fd3dcb3c127b967,0x40123d27ec9ec31d,1 +np.float64,0xbfe923450c72468a,0xbff00149c5742725,1 +np.float64,0x7fdef7f91abdeff1,0xbfe02ceb21f7923d,1 +np.float64,0x7fdd70d28fbae1a4,0xbfefcc5c9d10cdfd,1 +np.float64,0x800ca445a8d9488c,0x800ca445a8d9488c,1 +np.float64,0x7fec2754e1f84ea9,0x40173f6c1c97f825,1 +np.float64,0x7fcbca31f7379463,0x401e26bd2667075b,1 +np.float64,0x8003fa1d0847f43b,0x8003fa1d0847f43b,1 +np.float64,0xffe95cf85932b9f0,0xc01308e60278aa11,1 +np.float64,0x8009c53948f38a73,0x8009c53948f38a73,1 +np.float64,0x3fdcca9226b99524,0x3fdee7a008f75d41,1 +np.float64,0xbfe9ee241f33dc48,0xbff0d16bfff6c8e9,1 +np.float64,0xbfb3365058266ca0,0xbfb33f9176ebb51d,1 +np.float64,0x7fa98e10f4331c21,0x3fdee04ffd31314e,1 +np.float64,0xbfe1a11aea634236,0xbfe3a8e3d84fda38,1 +np.float64,0xbfd8df051131be0a,0xbfda342805d1948b,1 +np.float64,0x3d49a2407a935,0x3d49a2407a935,1 +np.float64,0xfc51eefff8a3e,0xfc51eefff8a3e,1 +np.float64,0xda63950bb4c73,0xda63950bb4c73,1 +np.float64,0x80050f3d4fea1e7b,0x80050f3d4fea1e7b,1 +np.float64,0x3fcdbd6e453b7ae0,0x3fce497478c28e77,1 +np.float64,0x7ebd4932fd7aa,0x7ebd4932fd7aa,1 +np.float64,0x7fa3904eac27209c,0xc0015f3125efc151,1 +np.float64,0x7fc59f956b2b3f2a,0xc00c012e7a2c281f,1 +np.float64,0xbfd436d716a86dae,0xbfd4ea13533a942b,1 +np.float64,0x9347ae3d268f6,0x9347ae3d268f6,1 +np.float64,0xffd001764d2002ec,0xbffab3462e515623,1 +np.float64,0x3fe6f406662de80d,0x3febe9bac3954999,1 +np.float64,0x3f943ecaf8287d96,0x3f943f77dee5e77f,1 +np.float64,0x3fd6250efcac4a1c,0x3fd712afa947d56f,1 +np.float64,0xbfe849ff777093ff,0xbfee5b089d03391f,1 +np.float64,0xffd3b8ef8f2771e0,0x4000463ff7f29214,1 +np.float64,0xbfc3bae9252775d4,0xbfc3e34c133f1933,1 +np.float64,0xbfea93943df52728,0xbff18355e4fc341d,1 +np.float64,0x3fc4d922ad29b245,0x3fc508d66869ef29,1 +np.float64,0x4329694a8652e,0x4329694a8652e,1 +np.float64,0x8834f1a71069e,0x8834f1a71069e,1 +np.float64,0xe0e5be8dc1cb8,0xe0e5be8dc1cb8,1 +np.float64,0x7fef4d103afe9a1f,0xc0047b88b94554fe,1 +np.float64,0x3fe9b57af4f36af6,0x3ff0963831d51c3f,1 +np.float64,0x3fe081e2fa6103c6,0x3fe22572e41be655,1 +np.float64,0x3fd78cf7b42f19ef,0x3fd8acafa1ad776a,1 +np.float64,0x7fbffd58d43ffab1,0x3fb16092c7de6036,1 +np.float64,0xbfe1e8bfae23d180,0xbfe40c1c6277dd52,1 +np.float64,0x800a9f59fb153eb4,0x800a9f59fb153eb4,1 +np.float64,0xffebe14e33b7c29c,0x3fe0ec532f4deedd,1 +np.float64,0xffc36ca00426d940,0xc000806a712d6e83,1 +np.float64,0xbfcc2be82d3857d0,0xbfcca2a7d372ec64,1 +np.float64,0x800c03b908780772,0x800c03b908780772,1 +np.float64,0xf315a64be62b5,0xf315a64be62b5,1 +np.float64,0xbfe644043cec8808,0xbfeab974d3dc6d80,1 +np.float64,0x3fedb7de3cbb6fbc,0x3ff56549a5acd324,1 +np.float64,0xbfb1a875522350e8,0xbfb1afa41dee338d,1 +np.float64,0xffee8d4a407d1a94,0x3fead1749a636ff6,1 +np.float64,0x8004061c13080c39,0x8004061c13080c39,1 +np.float64,0x3fe650ae7feca15c,0x3feacefb8bc25f64,1 +np.float64,0x3fda8340e6b50682,0x3fdc24275cab1df8,1 +np.float64,0x8009084344321087,0x8009084344321087,1 +np.float64,0x7fdd19cb823a3396,0xbfd1d8fb35d89e3f,1 +np.float64,0xbfe893172571262e,0xbfeee716b592b93c,1 +np.float64,0x8ff5acc11fec,0x8ff5acc11fec,1 +np.float64,0xbfdca0c57cb9418a,0xbfdeb42465a1b59e,1 +np.float64,0xffd77bd2a3aef7a6,0x4012cd69e85b82d8,1 +np.float64,0xbfe6ea78982dd4f1,0xbfebd8ec61fb9e1f,1 +np.float64,0x7fe14b1d80a2963a,0xc02241642102cf71,1 +np.float64,0x3fe712bf286e257e,0x3fec20012329a7fb,1 +np.float64,0x7fcb6fa4d636df49,0x400b899d14a886b3,1 +np.float64,0x3fb82cb39a305960,0x3fb83f29c5f0822e,1 +np.float64,0x7fed694c8b3ad298,0xbfe2724373c69808,1 +np.float64,0xbfcd21229f3a4244,0xbfcda497fc3e1245,1 +np.float64,0x564d3770ac9a8,0x564d3770ac9a8,1 +np.float64,0xf4409e13e8814,0xf4409e13e8814,1 +np.float64,0x80068dca9a8d1b96,0x80068dca9a8d1b96,1 +np.float64,0xbfe13f82afe27f06,0xbfe3236ddded353f,1 +np.float64,0x80023f8114647f03,0x80023f8114647f03,1 +np.float64,0xeafba7dfd5f75,0xeafba7dfd5f75,1 +np.float64,0x3feca74ddeb94e9c,0x3ff3f95dcce5a227,1 +np.float64,0x10000000000000,0x10000000000000,1 +np.float64,0xbfebdb4141f7b682,0xbff2fc29823ac64a,1 +np.float64,0xbfcd75ee2f3aebdc,0xbfcdfdfd87cc6a29,1 +np.float64,0x7fc010cda420219a,0x3fae4ca2cf1f2657,1 +np.float64,0x1a90209e35205,0x1a90209e35205,1 +np.float64,0x8008057d01900afa,0x8008057d01900afa,1 +np.float64,0x3f9cb5f280396be5,0x3f9cb7dfb4e4be4e,1 +np.float64,0xffe1bbb60b63776c,0xc00011b1ffcb2561,1 +np.float64,0xffda883f6fb5107e,0x4044238ef4e2a198,1 +np.float64,0x3fc07c0b4a20f817,0x3fc09387de9eebcf,1 +np.float64,0x8003a9ebc0c753d8,0x8003a9ebc0c753d8,1 +np.float64,0x1d7fd5923affc,0x1d7fd5923affc,1 +np.float64,0xbfe9cd8cf9b39b1a,0xbff0af43e567ba4a,1 +np.float64,0x11285cb42250c,0x11285cb42250c,1 +np.float64,0xffe81ae1ccb035c3,0xbfe038be7eb563a6,1 +np.float64,0xbfe56473b1eac8e8,0xbfe94654d8ab9e75,1 +np.float64,0x3fee904619fd208c,0x3ff69e198152fe17,1 +np.float64,0xbfeeb9a2cbfd7346,0xbff6dc8d96da78cd,1 +np.float64,0x8006cdfa59ed9bf5,0x8006cdfa59ed9bf5,1 +np.float64,0x8008f2366d31e46d,0x8008f2366d31e46d,1 +np.float64,0x8008d5f91e31abf3,0x8008d5f91e31abf3,1 +np.float64,0x3fe85886f8b0b10e,0x3fee76af16f5a126,1 +np.float64,0x3fefb9b2b73f7365,0x3ff8745128fa3e3b,1 +np.float64,0x7fdf3e721f3e7ce3,0xbfb19381541ca2a8,1 +np.float64,0x3fd2768c41a4ed18,0x3fd2fe2f85a3f3a6,1 +np.float64,0xbfcabe3c6a357c78,0xbfcb239fb88bc260,1 +np.float64,0xffdffb6a3dbff6d4,0xbff7af4759fd557c,1 +np.float64,0x800817f75f302fef,0x800817f75f302fef,1 +np.float64,0xbfe6a1d1762d43a3,0xbfeb5a399a095ef3,1 +np.float64,0x7fd6f32f912de65e,0x40016dedc51aabd0,1 +np.float64,0x3fc6cb26652d964d,0x3fc7099f047d924a,1 +np.float64,0x3fe8b975d67172ec,0x3fef31946123c0e7,1 +np.float64,0xffe44a09d1e89413,0x3fdee9e5eac6e540,1 +np.float64,0xbfece76d4cb9cedb,0xbff44c34849d07ba,1 +np.float64,0x7feb76027036ec04,0x3fe08595a5e263ac,1 +np.float64,0xffe194f591a329ea,0x3fbe5bd626400a70,1 +np.float64,0xbfc170698122e0d4,0xbfc18c3de8b63565,1 +np.float64,0x3fc82b2c0f305658,0x3fc875c3b5fbcd08,1 +np.float64,0x3fd5015634aa02ac,0x3fd5cb1df07213c3,1 +np.float64,0x7fe640884b6c8110,0xbff66255a420abb5,1 +np.float64,0x5a245206b448b,0x5a245206b448b,1 +np.float64,0xffe9d9fa2f73b3f4,0xc0272b0dd34ab9bf,1 +np.float64,0x3fd990e8aab321d0,0x3fdb04cd3a29bcc3,1 +np.float64,0xde9dda8bbd3bc,0xde9dda8bbd3bc,1 +np.float64,0xbfe81b32b4703666,0xbfee029937fa9f5a,1 +np.float64,0xbfe68116886d022d,0xbfeb21c62081cb73,1 +np.float64,0x3fb8da191231b432,0x3fb8ee28c71507d3,1 +np.float64,0x3fb111395a222273,0x3fb117b57de3dea4,1 +np.float64,0xffbafadc6a35f5b8,0x3ffcc6d2370297b9,1 +np.float64,0x8002ca475b05948f,0x8002ca475b05948f,1 +np.float64,0xbfeafef57875fdeb,0xbff1fb1315676f24,1 +np.float64,0x7fcda427d73b484f,0xbff9f70212694d17,1 +np.float64,0xffe2517b3ba4a2f6,0xc029ca6707305bf4,1 +np.float64,0x7fc5ee156b2bdc2a,0xbff8384b59e9056e,1 +np.float64,0xbfec22af3278455e,0xbff3530fe25816b4,1 +np.float64,0x6b5a8c2cd6b52,0x6b5a8c2cd6b52,1 +np.float64,0xffdaf6c4b935ed8a,0x4002f00ce58affcf,1 +np.float64,0x800a41813c748303,0x800a41813c748303,1 +np.float64,0xbfd09a1269213424,0xbfd0fc0a0c5de8eb,1 +np.float64,0x7fa2cb74d42596e9,0x3fc3d40e000fa69d,1 +np.float64,0x7ff8000000000000,0x7ff8000000000000,1 +np.float64,0x3fbfbf8ed63f7f1e,0x3fbfe97bcad9f53a,1 +np.float64,0x7fe0ebba65a1d774,0x401b0f17b28618df,1 +np.float64,0x3fd02c3a25a05874,0x3fd086aa55b19c9c,1 +np.float64,0xec628f95d8c52,0xec628f95d8c52,1 +np.float64,0x3fd319329fa63264,0x3fd3afb04e0dec63,1 +np.float64,0x180e0ade301c2,0x180e0ade301c2,1 +np.float64,0xbfe8d78324f1af06,0xbfef6c66153064ee,1 +np.float64,0xffb89fa200313f48,0xbfeb96ff2d9358dc,1 +np.float64,0x7fe6abcf86ed579e,0xc0269f4de86365ec,1 +np.float64,0x7fdff8cd65bff19a,0xbfd0f7c6b9052c9a,1 +np.float64,0xbfd2e3a53d25c74a,0xbfd37520cda5f6b2,1 +np.float64,0x7fe844b096708960,0x3ff696a6182e5a7a,1 +np.float64,0x7fdce0c7a3b9c18e,0x3fd42875d69ed379,1 +np.float64,0xffba5a91cc34b520,0x4001b571e8991951,1 +np.float64,0xffe78fe4a6ef1fc9,0x3ff4507b31f5b3bc,1 +np.float64,0xbfd7047493ae08ea,0xbfd810618a53fffb,1 +np.float64,0xc6559def8cab4,0xc6559def8cab4,1 +np.float64,0x3fe75d67a76ebacf,0x3feca56817de65e4,1 +np.float64,0xffd24adbd6a495b8,0xc012c491addf2df5,1 +np.float64,0x7fed35e28dba6bc4,0x403a0fa555ff7ec6,1 +np.float64,0x80078c4afa0f1897,0x80078c4afa0f1897,1 +np.float64,0xa6ec39114dd87,0xa6ec39114dd87,1 +np.float64,0x7fb1bd33ba237a66,0x4010092bb6810fd4,1 +np.float64,0x800ecf215edd9e43,0x800ecf215edd9e43,1 +np.float64,0x3fb7c169242f82d2,0x3fb7d2ed30c462e6,1 +np.float64,0xbf71b46d60236900,0xbf71b4749a10c112,1 +np.float64,0x800d7851787af0a3,0x800d7851787af0a3,1 +np.float64,0x3fcb4a45e7369488,0x3fcbb61701a1bcec,1 +np.float64,0x3fd4e3682429c6d0,0x3fd5a9bcb916eb94,1 +np.float64,0x800497564c292ead,0x800497564c292ead,1 +np.float64,0xbfca3737a1346e70,0xbfca96a86ae5d687,1 +np.float64,0x19aa87e03356,0x19aa87e03356,1 +np.float64,0xffb2593fe624b280,0xc05fedb99b467ced,1 +np.float64,0xbfdd8748fbbb0e92,0xbfdfd1a7df17252c,1 +np.float64,0x8004c7afc7098f60,0x8004c7afc7098f60,1 +np.float64,0x7fde48b2bf3c9164,0xbfe36ef1158ed420,1 +np.float64,0xbfec8e0eb0f91c1d,0xbff3d9319705a602,1 +np.float64,0xffea1be204f437c3,0xc0144f67298c3e6f,1 +np.float64,0x7fdb906b593720d6,0xbfce99233396eda7,1 +np.float64,0x3fef0f114ffe1e22,0x3ff76072a258a51b,1 +np.float64,0x3fe3e284c8e7c50a,0x3fe6e9b05e17c999,1 +np.float64,0xbfbda9eef23b53e0,0xbfbdcc1abb443597,1 +np.float64,0x3feb6454d4f6c8aa,0x3ff26f65a85baba4,1 +np.float64,0x3fea317439f462e8,0x3ff118e2187ef33f,1 +np.float64,0x376ad0646ed5b,0x376ad0646ed5b,1 +np.float64,0x7fdd461a1c3a8c33,0x3f7ba20fb79e785f,1 +np.float64,0xebc520a3d78a4,0xebc520a3d78a4,1 +np.float64,0x3fca90fe53352200,0x3fcaf45c7fae234d,1 +np.float64,0xbfe80dd1de701ba4,0xbfede97e12cde9de,1 +np.float64,0x3fd242b00ea48560,0x3fd2c5cf9bf69a31,1 +np.float64,0x7fe46c057828d80a,0xbfe2f76837488f94,1 +np.float64,0x3fc162bea322c580,0x3fc17e517c958867,1 +np.float64,0xffebf0452ff7e08a,0x3ffc3fd95c257b54,1 +np.float64,0xffd88043c6310088,0x4008b05598d0d95f,1 +np.float64,0x800d8c49da5b1894,0x800d8c49da5b1894,1 +np.float64,0xbfed33b487ba6769,0xbff4b0ea941f8a6a,1 +np.float64,0x16b881e22d711,0x16b881e22d711,1 +np.float64,0x288bae0051177,0x288bae0051177,1 +np.float64,0xffc83a0fe8307420,0x4006eff03da17f86,1 +np.float64,0x3fc7868b252f0d18,0x3fc7cb4954290324,1 +np.float64,0xbfe195514b232aa2,0xbfe398aae6c8ed76,1 +np.float64,0x800c001ae7f80036,0x800c001ae7f80036,1 +np.float64,0x7feb82abe7370557,0xbff1e13fe6fad23c,1 +np.float64,0xffecf609cdf9ec13,0xc0112aa1805ae59e,1 +np.float64,0xffddd654f63bacaa,0x3fe46cce899f710d,1 +np.float64,0x3fe2163138642c62,0x3fe44b9c760acd4c,1 +np.float64,0x4e570dc09cae2,0x4e570dc09cae2,1 +np.float64,0x7fe9e8d091f3d1a0,0xc000fe20f8e9a4b5,1 +np.float64,0x7fe60042952c0084,0x3fd0aa740f394c2a,1 diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-tanh.csv b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-tanh.csv new file mode 100644 index 0000000..9e3ddc6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/data/umath-validation-set-tanh.csv @@ -0,0 +1,1429 @@ +dtype,input,output,ulperrortol +np.float32,0xbe26ebb0,0xbe25752f,2 +np.float32,0xbe22ecc0,0xbe219054,2 +np.float32,0x8010a6b3,0x8010a6b3,2 +np.float32,0x3135da,0x3135da,2 +np.float32,0xbe982afc,0xbe93d727,2 +np.float32,0x16a51f,0x16a51f,2 +np.float32,0x491e56,0x491e56,2 +np.float32,0x4bf7ca,0x4bf7ca,2 +np.float32,0x3eebc21c,0x3edc65b2,2 +np.float32,0x80155c94,0x80155c94,2 +np.float32,0x3e14f626,0x3e13eb6a,2 +np.float32,0x801a238f,0x801a238f,2 +np.float32,0xbde33a80,0xbde24cf9,2 +np.float32,0xbef8439c,0xbee67a51,2 +np.float32,0x7f60d0a5,0x3f800000,2 +np.float32,0x190ee3,0x190ee3,2 +np.float32,0x80759113,0x80759113,2 +np.float32,0x800afa9f,0x800afa9f,2 +np.float32,0x7110cf,0x7110cf,2 +np.float32,0x3cf709f0,0x3cf6f6c6,2 +np.float32,0x3ef58da4,0x3ee44fa7,2 +np.float32,0xbf220ff2,0xbf0f662c,2 +np.float32,0xfd888078,0xbf800000,2 +np.float32,0xbe324734,0xbe307f9b,2 +np.float32,0x3eb5cb4f,0x3eae8560,2 +np.float32,0xbf7e7d02,0xbf425493,2 +np.float32,0x3ddcdcf0,0x3ddc02c2,2 +np.float32,0x8026d27a,0x8026d27a,2 +np.float32,0x3d4c0fb1,0x3d4be484,2 +np.float32,0xbf27d2c9,0xbf134d7c,2 +np.float32,0x8029ff80,0x8029ff80,2 +np.float32,0x7f046d2c,0x3f800000,2 +np.float32,0x13f94b,0x13f94b,2 +np.float32,0x7f4ff922,0x3f800000,2 +np.float32,0x3f4ea2ed,0x3f2b03e4,2 +np.float32,0x3e7211f0,0x3e6da8cf,2 +np.float32,0x7f39d0cf,0x3f800000,2 +np.float32,0xfee57fc6,0xbf800000,2 +np.float32,0xff6fb326,0xbf800000,2 +np.float32,0xff800000,0xbf800000,2 +np.float32,0x3f0437a4,0x3ef32fcd,2 +np.float32,0xff546d1e,0xbf800000,2 +np.float32,0x3eb5645b,0x3eae2a5c,2 +np.float32,0x3f08a6e5,0x3ef9ff8f,2 +np.float32,0x80800000,0x80800000,2 +np.float32,0x7f3413da,0x3f800000,2 +np.float32,0xfd760140,0xbf800000,2 +np.float32,0x7f3ad24a,0x3f800000,2 +np.float32,0xbf56e812,0xbf2f7f14,2 +np.float32,0xbece0338,0xbec3920a,2 +np.float32,0xbeede54a,0xbede22ae,2 +np.float32,0x7eaeb215,0x3f800000,2 +np.float32,0x3c213c00,0x3c213aab,2 +np.float32,0x7eaac217,0x3f800000,2 +np.float32,0xbf2f740e,0xbf1851a6,2 +np.float32,0x7f6ca5b8,0x3f800000,2 +np.float32,0xff42ce95,0xbf800000,2 +np.float32,0x802e4189,0x802e4189,2 +np.float32,0x80000001,0x80000001,2 +np.float32,0xbf31f298,0xbf19ebbe,2 +np.float32,0x3dcb0e6c,0x3dca64c1,2 +np.float32,0xbf29599c,0xbf145204,2 +np.float32,0x2e33f2,0x2e33f2,2 +np.float32,0x1c11e7,0x1c11e7,2 +np.float32,0x3f3b188d,0x3f1fa302,2 +np.float32,0x113300,0x113300,2 +np.float32,0x8054589e,0x8054589e,2 +np.float32,0x2a9e69,0x2a9e69,2 +np.float32,0xff513af7,0xbf800000,2 +np.float32,0x7f2e987a,0x3f800000,2 +np.float32,0x807cd426,0x807cd426,2 +np.float32,0x7f0dc4e4,0x3f800000,2 +np.float32,0x7e7c0d56,0x3f800000,2 +np.float32,0x5cb076,0x5cb076,2 +np.float32,0x80576426,0x80576426,2 +np.float32,0xff616222,0xbf800000,2 +np.float32,0xbf7accb5,0xbf40c005,2 +np.float32,0xfe4118c8,0xbf800000,2 +np.float32,0x804b9327,0x804b9327,2 +np.float32,0x3ed2b428,0x3ec79026,2 +np.float32,0x3f4a048f,0x3f286d41,2 +np.float32,0x800000,0x800000,2 +np.float32,0x7efceb9f,0x3f800000,2 +np.float32,0xbf5fe2d3,0xbf34246f,2 +np.float32,0x807e086a,0x807e086a,2 +np.float32,0x7ef5e856,0x3f800000,2 +np.float32,0xfc546f00,0xbf800000,2 +np.float32,0x3a65b890,0x3a65b88c,2 +np.float32,0x800cfa70,0x800cfa70,2 +np.float32,0x80672ea7,0x80672ea7,2 +np.float32,0x3f2bf3f2,0x3f160a12,2 +np.float32,0xbf0ab67e,0xbefd2004,2 +np.float32,0x3f2a0bb4,0x3f14c824,2 +np.float32,0xbeff5374,0xbeec12d7,2 +np.float32,0xbf221b58,0xbf0f6dff,2 +np.float32,0x7cc1f3,0x7cc1f3,2 +np.float32,0x7f234e3c,0x3f800000,2 +np.float32,0x3f60ff10,0x3f34b37d,2 +np.float32,0xbdd957f0,0xbdd887fe,2 +np.float32,0x801ce048,0x801ce048,2 +np.float32,0x7f3a8f76,0x3f800000,2 +np.float32,0xfdd13d08,0xbf800000,2 +np.float32,0x3e9af4a4,0x3e966445,2 +np.float32,0x1e55f3,0x1e55f3,2 +np.float32,0x327905,0x327905,2 +np.float32,0xbf03cf0b,0xbef28dad,2 +np.float32,0x3f0223d3,0x3eeff4f4,2 +np.float32,0xfdd96ff8,0xbf800000,2 +np.float32,0x428db8,0x428db8,2 +np.float32,0xbd74a200,0xbd7457a5,2 +np.float32,0x2a63a3,0x2a63a3,2 +np.float32,0x7e8aa9d7,0x3f800000,2 +np.float32,0x7f50b810,0x3f800000,2 +np.float32,0xbce5ec80,0xbce5dd0d,2 +np.float32,0x54711,0x54711,2 +np.float32,0x8074212a,0x8074212a,2 +np.float32,0xbf13d0ec,0xbf0551b5,2 +np.float32,0x80217f89,0x80217f89,2 +np.float32,0x3f300824,0x3f18b12f,2 +np.float32,0x7d252462,0x3f800000,2 +np.float32,0x807a154c,0x807a154c,2 +np.float32,0x8064d4b9,0x8064d4b9,2 +np.float32,0x804543b4,0x804543b4,2 +np.float32,0x4c269e,0x4c269e,2 +np.float32,0xff39823b,0xbf800000,2 +np.float32,0x3f5040b1,0x3f2be80b,2 +np.float32,0xbf7028c1,0xbf3bfee5,2 +np.float32,0x3e94eb78,0x3e90db93,2 +np.float32,0x3ccc1b40,0x3ccc1071,2 +np.float32,0xbe8796f0,0xbe8481a1,2 +np.float32,0xfc767bc0,0xbf800000,2 +np.float32,0xbdd81ed0,0xbdd75259,2 +np.float32,0xbed31bfc,0xbec7e82d,2 +np.float32,0xbf350a9e,0xbf1be1c6,2 +np.float32,0x33d41f,0x33d41f,2 +np.float32,0x3f73e076,0x3f3db0b5,2 +np.float32,0x3f800000,0x3f42f7d6,2 +np.float32,0xfee27c14,0xbf800000,2 +np.float32,0x7f6e4388,0x3f800000,2 +np.float32,0x4ea19b,0x4ea19b,2 +np.float32,0xff2d75f2,0xbf800000,2 +np.float32,0x7ee225ca,0x3f800000,2 +np.float32,0x3f31cb4b,0x3f19d2a4,2 +np.float32,0x80554a9d,0x80554a9d,2 +np.float32,0x3f4d57fa,0x3f2a4c03,2 +np.float32,0x3eac6a88,0x3ea62e72,2 +np.float32,0x773520,0x773520,2 +np.float32,0x8079c20a,0x8079c20a,2 +np.float32,0xfeb1eb94,0xbf800000,2 +np.float32,0xfe8d81c0,0xbf800000,2 +np.float32,0xfeed6902,0xbf800000,2 +np.float32,0x8066bb65,0x8066bb65,2 +np.float32,0x7f800000,0x3f800000,2 +np.float32,0x1,0x1,2 +np.float32,0x3f2c66a4,0x3f16554a,2 +np.float32,0x3cd231,0x3cd231,2 +np.float32,0x3e932a64,0x3e8f3e0c,2 +np.float32,0xbf3ab1c3,0xbf1f6420,2 +np.float32,0xbc902b20,0xbc902751,2 +np.float32,0x7dac0a5b,0x3f800000,2 +np.float32,0x3f2b7e06,0x3f15bc93,2 +np.float32,0x75de0,0x75de0,2 +np.float32,0x8020b7bc,0x8020b7bc,2 +np.float32,0x3f257cda,0x3f11bb6b,2 +np.float32,0x807480e5,0x807480e5,2 +np.float32,0xfe00d758,0xbf800000,2 +np.float32,0xbd9b54e0,0xbd9b08cd,2 +np.float32,0x4dfbe3,0x4dfbe3,2 +np.float32,0xff645788,0xbf800000,2 +np.float32,0xbe92c80a,0xbe8ee360,2 +np.float32,0x3eb9b400,0x3eb1f77c,2 +np.float32,0xff20b69c,0xbf800000,2 +np.float32,0x623c28,0x623c28,2 +np.float32,0xff235748,0xbf800000,2 +np.float32,0xbf3bbc56,0xbf2006f3,2 +np.float32,0x7e6f78b1,0x3f800000,2 +np.float32,0x7e1584e9,0x3f800000,2 +np.float32,0xff463423,0xbf800000,2 +np.float32,0x8002861e,0x8002861e,2 +np.float32,0xbf0491d8,0xbef3bb6a,2 +np.float32,0x7ea3bc17,0x3f800000,2 +np.float32,0xbedde7ea,0xbed0fb49,2 +np.float32,0xbf4bac48,0xbf295c8b,2 +np.float32,0xff28e276,0xbf800000,2 +np.float32,0x7e8f3bf5,0x3f800000,2 +np.float32,0xbf0a4a73,0xbefc7c9d,2 +np.float32,0x7ec5bd96,0x3f800000,2 +np.float32,0xbf4c22e8,0xbf299f2c,2 +np.float32,0x3e3970a0,0x3e377064,2 +np.float32,0x3ecb1118,0x3ec10c88,2 +np.float32,0xff548a7a,0xbf800000,2 +np.float32,0xfe8ec550,0xbf800000,2 +np.float32,0x3e158985,0x3e147bb2,2 +np.float32,0x7eb79ad7,0x3f800000,2 +np.float32,0xbe811384,0xbe7cd1ab,2 +np.float32,0xbdc4b9e8,0xbdc41f94,2 +np.float32,0xe0fd5,0xe0fd5,2 +np.float32,0x3f2485f2,0x3f11142b,2 +np.float32,0xfdd3c3d8,0xbf800000,2 +np.float32,0xfe8458e6,0xbf800000,2 +np.float32,0x3f06e398,0x3ef74dd8,2 +np.float32,0xff4752cf,0xbf800000,2 +np.float32,0x6998e3,0x6998e3,2 +np.float32,0x626751,0x626751,2 +np.float32,0x806631d6,0x806631d6,2 +np.float32,0xbf0c3cf4,0xbeff6c54,2 +np.float32,0x802860f8,0x802860f8,2 +np.float32,0xff2952cb,0xbf800000,2 +np.float32,0xff31d40b,0xbf800000,2 +np.float32,0x7c389473,0x3f800000,2 +np.float32,0x3dcd2f1b,0x3dcc8010,2 +np.float32,0x3d70c29f,0x3d707bbc,2 +np.float32,0x3f6bd386,0x3f39f979,2 +np.float32,0x1efec9,0x1efec9,2 +np.float32,0x3f675518,0x3f37d338,2 +np.float32,0x5fdbe3,0x5fdbe3,2 +np.float32,0x5d684e,0x5d684e,2 +np.float32,0xbedfe748,0xbed2a4c7,2 +np.float32,0x3f0cb07a,0x3f000cdc,2 +np.float32,0xbf77151e,0xbf3f1f5d,2 +np.float32,0x7f038ea0,0x3f800000,2 +np.float32,0x3ea91be9,0x3ea3376f,2 +np.float32,0xbdf20738,0xbdf0e861,2 +np.float32,0x807ea380,0x807ea380,2 +np.float32,0x2760ca,0x2760ca,2 +np.float32,0x7f20a544,0x3f800000,2 +np.float32,0x76ed83,0x76ed83,2 +np.float32,0x15a441,0x15a441,2 +np.float32,0x74c76d,0x74c76d,2 +np.float32,0xff3d5c2a,0xbf800000,2 +np.float32,0x7f6a76a6,0x3f800000,2 +np.float32,0x3eb87067,0x3eb0dabe,2 +np.float32,0xbf515cfa,0xbf2c83af,2 +np.float32,0xbdececc0,0xbdebdf9d,2 +np.float32,0x7f51b7c2,0x3f800000,2 +np.float32,0x3eb867ac,0x3eb0d30d,2 +np.float32,0xff50fd84,0xbf800000,2 +np.float32,0x806945e9,0x806945e9,2 +np.float32,0x298eed,0x298eed,2 +np.float32,0x441f53,0x441f53,2 +np.float32,0x8066d4b0,0x8066d4b0,2 +np.float32,0x3f6a479c,0x3f393dae,2 +np.float32,0xbf6ce2a7,0xbf3a7921,2 +np.float32,0x8064c3cf,0x8064c3cf,2 +np.float32,0xbf2d8146,0xbf170dfd,2 +np.float32,0x3b0e82,0x3b0e82,2 +np.float32,0xbea97574,0xbea387dc,2 +np.float32,0x67ad15,0x67ad15,2 +np.float32,0xbf68478f,0xbf38485a,2 +np.float32,0xff6f593b,0xbf800000,2 +np.float32,0xbeda26f2,0xbecdd806,2 +np.float32,0xbd216d50,0xbd2157ee,2 +np.float32,0x7a8544db,0x3f800000,2 +np.float32,0x801df20b,0x801df20b,2 +np.float32,0xbe14ba24,0xbe13b0a8,2 +np.float32,0xfdc6d8a8,0xbf800000,2 +np.float32,0x1d6b49,0x1d6b49,2 +np.float32,0x7f5ff1b8,0x3f800000,2 +np.float32,0x3f75e032,0x3f3e9625,2 +np.float32,0x7f2c5687,0x3f800000,2 +np.float32,0x3d95fb6c,0x3d95b6ee,2 +np.float32,0xbea515e4,0xbe9f97c8,2 +np.float32,0x7f2b2cd7,0x3f800000,2 +np.float32,0x3f076f7a,0x3ef8241e,2 +np.float32,0x5178ca,0x5178ca,2 +np.float32,0xbeb5976a,0xbeae5781,2 +np.float32,0x3e3c3563,0x3e3a1e13,2 +np.float32,0xbd208530,0xbd20702a,2 +np.float32,0x3eb03b04,0x3ea995ef,2 +np.float32,0x17fb9c,0x17fb9c,2 +np.float32,0xfca68e40,0xbf800000,2 +np.float32,0xbf5e7433,0xbf336a9f,2 +np.float32,0xff5b8d3d,0xbf800000,2 +np.float32,0x8003121d,0x8003121d,2 +np.float32,0xbe6dd344,0xbe69a3b0,2 +np.float32,0x67cc4,0x67cc4,2 +np.float32,0x9b01d,0x9b01d,2 +np.float32,0x127c13,0x127c13,2 +np.float32,0xfea5e3d6,0xbf800000,2 +np.float32,0xbdf5c610,0xbdf499c1,2 +np.float32,0x3aff4c00,0x3aff4beb,2 +np.float32,0x3b00afd0,0x3b00afc5,2 +np.float32,0x479618,0x479618,2 +np.float32,0x801cbd05,0x801cbd05,2 +np.float32,0x3ec9249f,0x3ebf6579,2 +np.float32,0x3535c4,0x3535c4,2 +np.float32,0xbeb4f662,0xbeadc915,2 +np.float32,0x8006fda6,0x8006fda6,2 +np.float32,0xbf4f3097,0xbf2b5239,2 +np.float32,0xbf3cb9a8,0xbf20a0e9,2 +np.float32,0x32ced0,0x32ced0,2 +np.float32,0x7ea34e76,0x3f800000,2 +np.float32,0x80063046,0x80063046,2 +np.float32,0x80727e8b,0x80727e8b,2 +np.float32,0xfd6b5780,0xbf800000,2 +np.float32,0x80109815,0x80109815,2 +np.float32,0xfdcc8a78,0xbf800000,2 +np.float32,0x81562,0x81562,2 +np.float32,0x803dfacc,0x803dfacc,2 +np.float32,0xbe204318,0xbe1ef75f,2 +np.float32,0xbf745d34,0xbf3de8e2,2 +np.float32,0xff13fdcc,0xbf800000,2 +np.float32,0x7f75ba8c,0x3f800000,2 +np.float32,0x806c04b4,0x806c04b4,2 +np.float32,0x3ec61ca6,0x3ebcc877,2 +np.float32,0xbeaea984,0xbea8301f,2 +np.float32,0xbf4dcd0e,0xbf2a8d34,2 +np.float32,0x802a01d3,0x802a01d3,2 +np.float32,0xbf747be5,0xbf3df6ad,2 +np.float32,0xbf75cbd2,0xbf3e8d0f,2 +np.float32,0x7db86576,0x3f800000,2 +np.float32,0xff49a2c3,0xbf800000,2 +np.float32,0xbedc5314,0xbecfa978,2 +np.float32,0x8078877b,0x8078877b,2 +np.float32,0xbead4824,0xbea6f499,2 +np.float32,0xbf3926e3,0xbf1e716c,2 +np.float32,0x807f4a1c,0x807f4a1c,2 +np.float32,0x7f2cd8fd,0x3f800000,2 +np.float32,0x806cfcca,0x806cfcca,2 +np.float32,0xff1aa048,0xbf800000,2 +np.float32,0x7eb9ea08,0x3f800000,2 +np.float32,0xbf1034bc,0xbf02ab3a,2 +np.float32,0xbd087830,0xbd086b44,2 +np.float32,0x7e071034,0x3f800000,2 +np.float32,0xbefcc9de,0xbeea122f,2 +np.float32,0x80796d7a,0x80796d7a,2 +np.float32,0x33ce46,0x33ce46,2 +np.float32,0x8074a783,0x8074a783,2 +np.float32,0xbe95a56a,0xbe918691,2 +np.float32,0xbf2ff3f4,0xbf18a42d,2 +np.float32,0x1633e9,0x1633e9,2 +np.float32,0x7f0f104b,0x3f800000,2 +np.float32,0xbf800000,0xbf42f7d6,2 +np.float32,0x3d2cd6,0x3d2cd6,2 +np.float32,0xfed43e16,0xbf800000,2 +np.float32,0x3ee6faec,0x3ed87d2c,2 +np.float32,0x3f2c32d0,0x3f163352,2 +np.float32,0xff4290c0,0xbf800000,2 +np.float32,0xbf66500e,0xbf37546a,2 +np.float32,0x7dfb8fe3,0x3f800000,2 +np.float32,0x3f20ba5d,0x3f0e7b16,2 +np.float32,0xff30c7ae,0xbf800000,2 +np.float32,0x1728a4,0x1728a4,2 +np.float32,0x340d82,0x340d82,2 +np.float32,0xff7870b7,0xbf800000,2 +np.float32,0xbeac6ac4,0xbea62ea7,2 +np.float32,0xbef936fc,0xbee73c36,2 +np.float32,0x3ec7e12c,0x3ebe4ef8,2 +np.float32,0x80673488,0x80673488,2 +np.float32,0xfdf14c90,0xbf800000,2 +np.float32,0x3f182568,0x3f08726e,2 +np.float32,0x7ed7dcd0,0x3f800000,2 +np.float32,0x3de4da34,0x3de3e790,2 +np.float32,0xff7fffff,0xbf800000,2 +np.float32,0x4ff90c,0x4ff90c,2 +np.float32,0x3efb0d1c,0x3ee8b1d6,2 +np.float32,0xbf66e952,0xbf379ef4,2 +np.float32,0xba9dc,0xba9dc,2 +np.float32,0xff67c766,0xbf800000,2 +np.float32,0x7f1ffc29,0x3f800000,2 +np.float32,0x3f51c906,0x3f2cbe99,2 +np.float32,0x3f2e5792,0x3f179968,2 +np.float32,0x3ecb9750,0x3ec17fa0,2 +np.float32,0x7f3fcefc,0x3f800000,2 +np.float32,0xbe4e30fc,0xbe4b72f9,2 +np.float32,0x7e9bc4ce,0x3f800000,2 +np.float32,0x7e70aa1f,0x3f800000,2 +np.float32,0x14c6e9,0x14c6e9,2 +np.float32,0xbcf327c0,0xbcf3157a,2 +np.float32,0xff1fd204,0xbf800000,2 +np.float32,0x7d934a03,0x3f800000,2 +np.float32,0x8028bf1e,0x8028bf1e,2 +np.float32,0x7f0800b7,0x3f800000,2 +np.float32,0xfe04825c,0xbf800000,2 +np.float32,0x807210ac,0x807210ac,2 +np.float32,0x3f7faf7c,0x3f42d5fd,2 +np.float32,0x3e04a543,0x3e03e899,2 +np.float32,0x3e98ea15,0x3e94863e,2 +np.float32,0x3d2a2e48,0x3d2a153b,2 +np.float32,0x7fa00000,0x7fe00000,2 +np.float32,0x20a488,0x20a488,2 +np.float32,0x3f6ba86a,0x3f39e51a,2 +np.float32,0x0,0x0,2 +np.float32,0x3e892ddd,0x3e85fcfe,2 +np.float32,0x3e2da627,0x3e2c00e0,2 +np.float32,0xff000a50,0xbf800000,2 +np.float32,0x3eb749f4,0x3eafd739,2 +np.float32,0x8024c0ae,0x8024c0ae,2 +np.float32,0xfc8f3b40,0xbf800000,2 +np.float32,0xbf685fc7,0xbf385405,2 +np.float32,0x3f1510e6,0x3f063a4f,2 +np.float32,0x3f68e8ad,0x3f3895d8,2 +np.float32,0x3dba8608,0x3dba0271,2 +np.float32,0xbf16ea10,0xbf079017,2 +np.float32,0xb3928,0xb3928,2 +np.float32,0xfe447c00,0xbf800000,2 +np.float32,0x3db9cd57,0x3db94b45,2 +np.float32,0x803b66b0,0x803b66b0,2 +np.float32,0x805b5e02,0x805b5e02,2 +np.float32,0x7ec93f61,0x3f800000,2 +np.float32,0x8005a126,0x8005a126,2 +np.float32,0x6d8888,0x6d8888,2 +np.float32,0x3e21b7de,0x3e206314,2 +np.float32,0xbec9c31e,0xbebfedc2,2 +np.float32,0xbea88aa8,0xbea2b4e5,2 +np.float32,0x3d8fc310,0x3d8f86bb,2 +np.float32,0xbf3cc68a,0xbf20a8b8,2 +np.float32,0x432690,0x432690,2 +np.float32,0xbe51d514,0xbe4ef1a3,2 +np.float32,0xbcda6d20,0xbcda5fe1,2 +np.float32,0xfe24e458,0xbf800000,2 +np.float32,0xfedc8c14,0xbf800000,2 +np.float32,0x7f7e9bd4,0x3f800000,2 +np.float32,0x3ebcc880,0x3eb4ab44,2 +np.float32,0xbe0aa490,0xbe09cd44,2 +np.float32,0x3dc9158c,0x3dc870c3,2 +np.float32,0x3e5c319e,0x3e58dc90,2 +np.float32,0x1d4527,0x1d4527,2 +np.float32,0x2dbf5,0x2dbf5,2 +np.float32,0xbf1f121f,0xbf0d5534,2 +np.float32,0x7e3e9ab5,0x3f800000,2 +np.float32,0x7f74b5c1,0x3f800000,2 +np.float32,0xbf6321ba,0xbf35c42b,2 +np.float32,0xbe5c7488,0xbe591c79,2 +np.float32,0x7e7b02cd,0x3f800000,2 +np.float32,0xfe7cbfa4,0xbf800000,2 +np.float32,0xbeace360,0xbea69a86,2 +np.float32,0x7e149b00,0x3f800000,2 +np.float32,0xbf61a700,0xbf35079a,2 +np.float32,0x7eb592a7,0x3f800000,2 +np.float32,0x3f2105e6,0x3f0eaf30,2 +np.float32,0xfd997a88,0xbf800000,2 +np.float32,0xff5d093b,0xbf800000,2 +np.float32,0x63aede,0x63aede,2 +np.float32,0x6907ee,0x6907ee,2 +np.float32,0xbf7578ee,0xbf3e680f,2 +np.float32,0xfea971e8,0xbf800000,2 +np.float32,0x3f21d0f5,0x3f0f3aed,2 +np.float32,0x3a50e2,0x3a50e2,2 +np.float32,0x7f0f5b1e,0x3f800000,2 +np.float32,0x805b9765,0x805b9765,2 +np.float32,0xbe764ab8,0xbe71a664,2 +np.float32,0x3eafac7f,0x3ea91701,2 +np.float32,0x807f4130,0x807f4130,2 +np.float32,0x7c5f31,0x7c5f31,2 +np.float32,0xbdbe0e30,0xbdbd8300,2 +np.float32,0x7ecfe4e0,0x3f800000,2 +np.float32,0xff7cb628,0xbf800000,2 +np.float32,0xff1842bc,0xbf800000,2 +np.float32,0xfd4163c0,0xbf800000,2 +np.float32,0x800e11f7,0x800e11f7,2 +np.float32,0x7f3adec8,0x3f800000,2 +np.float32,0x7f597514,0x3f800000,2 +np.float32,0xbe986e14,0xbe9414a4,2 +np.float32,0x800fa9d7,0x800fa9d7,2 +np.float32,0xff5b79c4,0xbf800000,2 +np.float32,0x80070565,0x80070565,2 +np.float32,0xbee5628e,0xbed72d60,2 +np.float32,0x3f438ef2,0x3f24b3ca,2 +np.float32,0xcda91,0xcda91,2 +np.float32,0x7e64151a,0x3f800000,2 +np.float32,0xbe95d584,0xbe91b2c7,2 +np.float32,0x8022c2a1,0x8022c2a1,2 +np.float32,0x7e7097bf,0x3f800000,2 +np.float32,0x80139035,0x80139035,2 +np.float32,0x804de2cb,0x804de2cb,2 +np.float32,0xfde5d178,0xbf800000,2 +np.float32,0x6d238,0x6d238,2 +np.float32,0x807abedc,0x807abedc,2 +np.float32,0x3f450a12,0x3f259129,2 +np.float32,0x3ef1c120,0x3ee141f2,2 +np.float32,0xfeb64dae,0xbf800000,2 +np.float32,0x8001732c,0x8001732c,2 +np.float32,0x3f76062e,0x3f3ea711,2 +np.float32,0x3eddd550,0x3ed0ebc8,2 +np.float32,0xff5ca1d4,0xbf800000,2 +np.float32,0xbf49dc5e,0xbf285673,2 +np.float32,0x7e9e5438,0x3f800000,2 +np.float32,0x7e83625e,0x3f800000,2 +np.float32,0x3f5dc41c,0x3f3310da,2 +np.float32,0x3f583efa,0x3f30342f,2 +np.float32,0xbe26bf88,0xbe254a2d,2 +np.float32,0xff1e0beb,0xbf800000,2 +np.float32,0xbe2244c8,0xbe20ec86,2 +np.float32,0xff0b1630,0xbf800000,2 +np.float32,0xff338dd6,0xbf800000,2 +np.float32,0x3eafc22c,0x3ea92a51,2 +np.float32,0x800ea07f,0x800ea07f,2 +np.float32,0x3f46f006,0x3f26aa7e,2 +np.float32,0x3e5f57cd,0x3e5bde16,2 +np.float32,0xbf1b2d8e,0xbf0a9a93,2 +np.float32,0xfeacdbe0,0xbf800000,2 +np.float32,0x7e5ea4bc,0x3f800000,2 +np.float32,0xbf51cbe2,0xbf2cc027,2 +np.float32,0x8073644c,0x8073644c,2 +np.float32,0xff2d6bfe,0xbf800000,2 +np.float32,0x3f65f0f6,0x3f37260a,2 +np.float32,0xff4b37a6,0xbf800000,2 +np.float32,0x712df7,0x712df7,2 +np.float32,0x7f71ef17,0x3f800000,2 +np.float32,0x8042245c,0x8042245c,2 +np.float32,0x3e5dde7b,0x3e5a760d,2 +np.float32,0x8069317d,0x8069317d,2 +np.float32,0x807932dd,0x807932dd,2 +np.float32,0x802f847e,0x802f847e,2 +np.float32,0x7e9300,0x7e9300,2 +np.float32,0x8040b4ab,0x8040b4ab,2 +np.float32,0xff76ef8e,0xbf800000,2 +np.float32,0x4aae3a,0x4aae3a,2 +np.float32,0x8058de73,0x8058de73,2 +np.float32,0x7e4d58c0,0x3f800000,2 +np.float32,0x3d811b30,0x3d80ef79,2 +np.float32,0x7ec952cc,0x3f800000,2 +np.float32,0xfe162b1c,0xbf800000,2 +np.float32,0x3f0f1187,0x3f01d367,2 +np.float32,0xbf2f3458,0xbf182878,2 +np.float32,0x5ceb14,0x5ceb14,2 +np.float32,0xbec29476,0xbeb9b939,2 +np.float32,0x3e71f943,0x3e6d9176,2 +np.float32,0x3ededefc,0x3ed1c909,2 +np.float32,0x805df6ac,0x805df6ac,2 +np.float32,0x3e5ae2c8,0x3e579ca8,2 +np.float32,0x3f6ad2c3,0x3f397fdf,2 +np.float32,0x7d5f94d3,0x3f800000,2 +np.float32,0xbeec7fe4,0xbedd0037,2 +np.float32,0x3f645304,0x3f365b0d,2 +np.float32,0xbf69a087,0xbf38edef,2 +np.float32,0x8025102e,0x8025102e,2 +np.float32,0x800db486,0x800db486,2 +np.float32,0x4df6c7,0x4df6c7,2 +np.float32,0x806d8cdd,0x806d8cdd,2 +np.float32,0x7f0c78cc,0x3f800000,2 +np.float32,0x7e1cf70b,0x3f800000,2 +np.float32,0x3e0ae570,0x3e0a0cf7,2 +np.float32,0x80176ef8,0x80176ef8,2 +np.float32,0x3f38b60c,0x3f1e2bbb,2 +np.float32,0x3d3071e0,0x3d3055f5,2 +np.float32,0x3ebfcfdd,0x3eb750a9,2 +np.float32,0xfe2cdec0,0xbf800000,2 +np.float32,0x7eeb2eed,0x3f800000,2 +np.float32,0x8026c904,0x8026c904,2 +np.float32,0xbec79bde,0xbebe133a,2 +np.float32,0xbf7dfab6,0xbf421d47,2 +np.float32,0x805b3cfd,0x805b3cfd,2 +np.float32,0xfdfcfb68,0xbf800000,2 +np.float32,0xbd537ec0,0xbd534eaf,2 +np.float32,0x52ce73,0x52ce73,2 +np.float32,0xfeac6ea6,0xbf800000,2 +np.float32,0x3f2c2990,0x3f162d41,2 +np.float32,0x3e3354e0,0x3e318539,2 +np.float32,0x802db22b,0x802db22b,2 +np.float32,0x7f0faa83,0x3f800000,2 +np.float32,0x7f10e161,0x3f800000,2 +np.float32,0x7f165c60,0x3f800000,2 +np.float32,0xbf5a756f,0xbf315c82,2 +np.float32,0x7f5a4b68,0x3f800000,2 +np.float32,0xbd77fbf0,0xbd77ae7c,2 +np.float32,0x65d83c,0x65d83c,2 +np.float32,0x3e5f28,0x3e5f28,2 +np.float32,0x8040ec92,0x8040ec92,2 +np.float32,0xbf2b41a6,0xbf1594d5,2 +np.float32,0x7f2f88f1,0x3f800000,2 +np.float32,0xfdb64ab8,0xbf800000,2 +np.float32,0xbf7a3ff1,0xbf4082f5,2 +np.float32,0x1948fc,0x1948fc,2 +np.float32,0x802c1039,0x802c1039,2 +np.float32,0x80119274,0x80119274,2 +np.float32,0x7e885d7b,0x3f800000,2 +np.float32,0xfaf6a,0xfaf6a,2 +np.float32,0x3eba28c4,0x3eb25e1d,2 +np.float32,0x3e4df370,0x3e4b37da,2 +np.float32,0xbf19eff6,0xbf09b97d,2 +np.float32,0xbeddd3c6,0xbed0ea7f,2 +np.float32,0xff6fc971,0xbf800000,2 +np.float32,0x7e93de29,0x3f800000,2 +np.float32,0x3eb12332,0x3eaa6485,2 +np.float32,0x3eb7c6e4,0x3eb04563,2 +np.float32,0x4a67ee,0x4a67ee,2 +np.float32,0xff1cafde,0xbf800000,2 +np.float32,0x3f5e2812,0x3f3343da,2 +np.float32,0x3f060e04,0x3ef605d4,2 +np.float32,0x3e9027d8,0x3e8c76a6,2 +np.float32,0xe2d33,0xe2d33,2 +np.float32,0xff4c94fc,0xbf800000,2 +np.float32,0xbf574908,0xbf2fb26b,2 +np.float32,0xbf786c08,0xbf3fb68e,2 +np.float32,0x8011ecab,0x8011ecab,2 +np.float32,0xbf061c6a,0xbef61bfa,2 +np.float32,0x7eea5f9d,0x3f800000,2 +np.float32,0x3ea2e19c,0x3e9d99a5,2 +np.float32,0x8071550c,0x8071550c,2 +np.float32,0x41c70b,0x41c70b,2 +np.float32,0x80291fc8,0x80291fc8,2 +np.float32,0x43b1ec,0x43b1ec,2 +np.float32,0x32f5a,0x32f5a,2 +np.float32,0xbe9310ec,0xbe8f2692,2 +np.float32,0x7f75f6bf,0x3f800000,2 +np.float32,0x3e6642a6,0x3e6274d2,2 +np.float32,0x3ecb88e0,0x3ec1733f,2 +np.float32,0x804011b6,0x804011b6,2 +np.float32,0x80629cca,0x80629cca,2 +np.float32,0x8016b914,0x8016b914,2 +np.float32,0xbdd05fc0,0xbdcfa870,2 +np.float32,0x807b824d,0x807b824d,2 +np.float32,0xfeec2576,0xbf800000,2 +np.float32,0xbf54bf22,0xbf2e584c,2 +np.float32,0xbf185eb0,0xbf089b6b,2 +np.float32,0xfbc09480,0xbf800000,2 +np.float32,0x3f413054,0x3f234e25,2 +np.float32,0x7e9e32b8,0x3f800000,2 +np.float32,0x266296,0x266296,2 +np.float32,0x460284,0x460284,2 +np.float32,0x3eb0b056,0x3ea9fe5a,2 +np.float32,0x1a7be5,0x1a7be5,2 +np.float32,0x7f099895,0x3f800000,2 +np.float32,0x3f3614f0,0x3f1c88ef,2 +np.float32,0x7e757dc2,0x3f800000,2 +np.float32,0x801fc91e,0x801fc91e,2 +np.float32,0x3f5ce37d,0x3f329ddb,2 +np.float32,0x3e664d70,0x3e627f15,2 +np.float32,0xbf38ed78,0xbf1e4dfa,2 +np.float32,0xbf5c563d,0xbf325543,2 +np.float32,0xbe91cc54,0xbe8dfb24,2 +np.float32,0x3d767fbe,0x3d7633ac,2 +np.float32,0xbf6aeb40,0xbf398b7f,2 +np.float32,0x7f40508b,0x3f800000,2 +np.float32,0x2650df,0x2650df,2 +np.float32,0xbe8cea3c,0xbe897628,2 +np.float32,0x80515af8,0x80515af8,2 +np.float32,0x7f423986,0x3f800000,2 +np.float32,0xbdf250e8,0xbdf1310c,2 +np.float32,0xfe89288a,0xbf800000,2 +np.float32,0x397b3b,0x397b3b,2 +np.float32,0x7e5e91b0,0x3f800000,2 +np.float32,0x6866e2,0x6866e2,2 +np.float32,0x7f4d8877,0x3f800000,2 +np.float32,0x3e6c4a21,0x3e682ee3,2 +np.float32,0xfc3d5980,0xbf800000,2 +np.float32,0x7eae2cd0,0x3f800000,2 +np.float32,0xbf241222,0xbf10c579,2 +np.float32,0xfebc02de,0xbf800000,2 +np.float32,0xff6e0645,0xbf800000,2 +np.float32,0x802030b6,0x802030b6,2 +np.float32,0x7ef9a441,0x3f800000,2 +np.float32,0x3fcf9f,0x3fcf9f,2 +np.float32,0xbf0ccf13,0xbf0023cc,2 +np.float32,0xfefee688,0xbf800000,2 +np.float32,0xbf6c8e0c,0xbf3a5160,2 +np.float32,0xfe749c28,0xbf800000,2 +np.float32,0x7f7fffff,0x3f800000,2 +np.float32,0x58c1a0,0x58c1a0,2 +np.float32,0x3f2de0a1,0x3f174c17,2 +np.float32,0xbf5f7138,0xbf33eb03,2 +np.float32,0x3da15270,0x3da0fd3c,2 +np.float32,0x3da66560,0x3da607e4,2 +np.float32,0xbf306f9a,0xbf18f3c6,2 +np.float32,0x3e81a4de,0x3e7de293,2 +np.float32,0xbebb5fb8,0xbeb36f1a,2 +np.float32,0x14bf64,0x14bf64,2 +np.float32,0xbeac46c6,0xbea60e73,2 +np.float32,0xbdcdf210,0xbdcd4111,2 +np.float32,0x3f7e3cd9,0x3f42395e,2 +np.float32,0xbc4be640,0xbc4be38e,2 +np.float32,0xff5f53b4,0xbf800000,2 +np.float32,0xbf1315ae,0xbf04c90b,2 +np.float32,0x80000000,0x80000000,2 +np.float32,0xbf6a4149,0xbf393aaa,2 +np.float32,0x3f66b8ee,0x3f378772,2 +np.float32,0xff29293e,0xbf800000,2 +np.float32,0xbcc989c0,0xbcc97f58,2 +np.float32,0xbd9a1b70,0xbd99d125,2 +np.float32,0xfef353cc,0xbf800000,2 +np.float32,0xbdc30cf0,0xbdc27683,2 +np.float32,0xfdfd6768,0xbf800000,2 +np.float32,0x7ebac44c,0x3f800000,2 +np.float32,0xff453cd6,0xbf800000,2 +np.float32,0x3ef07720,0x3ee03787,2 +np.float32,0x80219c14,0x80219c14,2 +np.float32,0x805553a8,0x805553a8,2 +np.float32,0x80703928,0x80703928,2 +np.float32,0xff16d3a7,0xbf800000,2 +np.float32,0x3f1472bc,0x3f05c77b,2 +np.float32,0x3eeea37a,0x3edebcf9,2 +np.float32,0x3db801e6,0x3db7838d,2 +np.float32,0x800870d2,0x800870d2,2 +np.float32,0xbea1172c,0xbe9bfa32,2 +np.float32,0x3f1f5e7c,0x3f0d8a42,2 +np.float32,0x123cdb,0x123cdb,2 +np.float32,0x7f6e6b06,0x3f800000,2 +np.float32,0x3ed80573,0x3ecc0def,2 +np.float32,0xfea31b82,0xbf800000,2 +np.float32,0x6744e0,0x6744e0,2 +np.float32,0x695e8b,0x695e8b,2 +np.float32,0xbee3888a,0xbed5a67d,2 +np.float32,0x7f64bc2a,0x3f800000,2 +np.float32,0x7f204244,0x3f800000,2 +np.float32,0x7f647102,0x3f800000,2 +np.float32,0x3dd8ebc0,0x3dd81d03,2 +np.float32,0x801e7ab1,0x801e7ab1,2 +np.float32,0x7d034b56,0x3f800000,2 +np.float32,0x7fc00000,0x7fc00000,2 +np.float32,0x80194193,0x80194193,2 +np.float32,0xfe31c8d4,0xbf800000,2 +np.float32,0x7fc0c4,0x7fc0c4,2 +np.float32,0xd95bf,0xd95bf,2 +np.float32,0x7e4f991d,0x3f800000,2 +np.float32,0x7fc563,0x7fc563,2 +np.float32,0xbe3fcccc,0xbe3d968a,2 +np.float32,0xfdaaa1c8,0xbf800000,2 +np.float32,0xbf48e449,0xbf27c949,2 +np.float32,0x3eb6c584,0x3eaf625e,2 +np.float32,0xbea35a74,0xbe9e0702,2 +np.float32,0x3eeab47a,0x3edb89d5,2 +np.float32,0xbed99556,0xbecd5de5,2 +np.float64,0xbfb94a81e0329500,0xbfb935867ba761fe,2 +np.float64,0xbfec132f1678265e,0xbfe6900eb097abc3,2 +np.float64,0x5685ea72ad0be,0x5685ea72ad0be,2 +np.float64,0xbfd74d3169ae9a62,0xbfd652e09b9daf32,2 +np.float64,0xbfe28df53d651bea,0xbfe0b8a7f50ab433,2 +np.float64,0x0,0x0,2 +np.float64,0xbfed912738bb224e,0xbfe749e3732831ae,2 +np.float64,0x7fcc6faed838df5d,0x3ff0000000000000,2 +np.float64,0xbfe95fe9a432bfd3,0xbfe51f6349919910,2 +np.float64,0xbfc4d5900b29ab20,0xbfc4a6f496179b8b,2 +np.float64,0xbfcd6025033ac04c,0xbfccded7b34b49b0,2 +np.float64,0xbfdfa655b43f4cac,0xbfdd4ca1e5bb9db8,2 +np.float64,0xe7ea5c7fcfd4c,0xe7ea5c7fcfd4c,2 +np.float64,0xffa5449ca42a8940,0xbff0000000000000,2 +np.float64,0xffe63294c1ac6529,0xbff0000000000000,2 +np.float64,0x7feb9cbae7f73975,0x3ff0000000000000,2 +np.float64,0x800eb07c3e3d60f9,0x800eb07c3e3d60f9,2 +np.float64,0x3fc95777e932aef0,0x3fc9040391e20c00,2 +np.float64,0x800736052dee6c0b,0x800736052dee6c0b,2 +np.float64,0x3fe9ae4afd335c96,0x3fe54b569bab45c7,2 +np.float64,0x7fee4c94217c9927,0x3ff0000000000000,2 +np.float64,0x80094b594bd296b3,0x80094b594bd296b3,2 +np.float64,0xffe5adbcee6b5b7a,0xbff0000000000000,2 +np.float64,0x3fecb8eab47971d5,0x3fe6e236be6f27e9,2 +np.float64,0x44956914892ae,0x44956914892ae,2 +np.float64,0xbfe3bd18ef677a32,0xbfe190bf1e07200c,2 +np.float64,0x800104e5b46209cc,0x800104e5b46209cc,2 +np.float64,0x8008fbcecf71f79e,0x8008fbcecf71f79e,2 +np.float64,0x800f0a46a0be148d,0x800f0a46a0be148d,2 +np.float64,0x7fe657a0702caf40,0x3ff0000000000000,2 +np.float64,0xffd3ff1a9027fe36,0xbff0000000000000,2 +np.float64,0x3fe78bc87bef1790,0x3fe40d2e63aaf029,2 +np.float64,0x7feeabdc4c7d57b8,0x3ff0000000000000,2 +np.float64,0xbfabd28d8437a520,0xbfabcb8ce03a0e56,2 +np.float64,0xbfddc3a133bb8742,0xbfdbc9fdb2594451,2 +np.float64,0x7fec911565b9222a,0x3ff0000000000000,2 +np.float64,0x71302604e2605,0x71302604e2605,2 +np.float64,0xee919d2bdd234,0xee919d2bdd234,2 +np.float64,0xbfc04fcff3209fa0,0xbfc0395a739a2ce4,2 +np.float64,0xffe4668a36e8cd14,0xbff0000000000000,2 +np.float64,0xbfeeafeebefd5fde,0xbfe7cd5f3d61a3ec,2 +np.float64,0x7fddb34219bb6683,0x3ff0000000000000,2 +np.float64,0xbfd2cac6cba5958e,0xbfd24520abb2ff36,2 +np.float64,0xbfb857e49630afc8,0xbfb8452d5064dec2,2 +np.float64,0x3fd2dbf90b25b7f2,0x3fd254eaf48484c2,2 +np.float64,0x800af65c94f5ecba,0x800af65c94f5ecba,2 +np.float64,0xa0eef4bf41ddf,0xa0eef4bf41ddf,2 +np.float64,0xffd8e0a4adb1c14a,0xbff0000000000000,2 +np.float64,0xffe858f6e870b1ed,0xbff0000000000000,2 +np.float64,0x3f94c2c308298580,0x3f94c208a4bb006d,2 +np.float64,0xffb45f0d7428be18,0xbff0000000000000,2 +np.float64,0x800ed4f43dbda9e9,0x800ed4f43dbda9e9,2 +np.float64,0x8002dd697e85bad4,0x8002dd697e85bad4,2 +np.float64,0x787ceab2f0f9e,0x787ceab2f0f9e,2 +np.float64,0xbfdff5fcc2bfebfa,0xbfdd8b736b128589,2 +np.float64,0x7fdb2b4294365684,0x3ff0000000000000,2 +np.float64,0xffe711e5e92e23cc,0xbff0000000000000,2 +np.float64,0x800b1c93f1163928,0x800b1c93f1163928,2 +np.float64,0x7fc524d2f22a49a5,0x3ff0000000000000,2 +np.float64,0x7fc88013b5310026,0x3ff0000000000000,2 +np.float64,0x3fe1a910c5e35222,0x3fe00fd779ebaa2a,2 +np.float64,0xbfb57ec9ca2afd90,0xbfb571e47ecb9335,2 +np.float64,0x7fd7594b20aeb295,0x3ff0000000000000,2 +np.float64,0x7fba4641ca348c83,0x3ff0000000000000,2 +np.float64,0xffe61393706c2726,0xbff0000000000000,2 +np.float64,0x7fd54f3c7baa9e78,0x3ff0000000000000,2 +np.float64,0xffe65ffb12ecbff6,0xbff0000000000000,2 +np.float64,0xbfba3b0376347608,0xbfba239cbbbd1b11,2 +np.float64,0x800200886d640112,0x800200886d640112,2 +np.float64,0xbfecf0ba4679e174,0xbfe6fd59de44a3ec,2 +np.float64,0xffe5c57e122b8afc,0xbff0000000000000,2 +np.float64,0x7fdaad0143355a02,0x3ff0000000000000,2 +np.float64,0x46ab32c08d567,0x46ab32c08d567,2 +np.float64,0x7ff8000000000000,0x7ff8000000000000,2 +np.float64,0xbfda7980fdb4f302,0xbfd90fa9c8066109,2 +np.float64,0x3fe237703c646ee0,0x3fe07969f8d8805a,2 +np.float64,0x8000e9fcfc21d3fb,0x8000e9fcfc21d3fb,2 +np.float64,0xbfdfe6e958bfcdd2,0xbfdd7f952fe87770,2 +np.float64,0xbd7baf217af8,0xbd7baf217af8,2 +np.float64,0xbfceba9e4b3d753c,0xbfce26e54359869a,2 +np.float64,0xb95a2caf72b46,0xb95a2caf72b46,2 +np.float64,0x3fb407e25a280fc5,0x3fb3fd71e457b628,2 +np.float64,0xa1da09d943b41,0xa1da09d943b41,2 +np.float64,0xbfe9c7271cf38e4e,0xbfe559296b471738,2 +np.float64,0x3fefae6170ff5cc3,0x3fe83c70ba82f0e1,2 +np.float64,0x7fe7375348ae6ea6,0x3ff0000000000000,2 +np.float64,0xffe18c9cc6e31939,0xbff0000000000000,2 +np.float64,0x800483d13a6907a3,0x800483d13a6907a3,2 +np.float64,0x7fe772a18caee542,0x3ff0000000000000,2 +np.float64,0xffefff64e7bffec9,0xbff0000000000000,2 +np.float64,0x7fcffc31113ff861,0x3ff0000000000000,2 +np.float64,0x3fd91e067e323c0d,0x3fd7e70bf365a7b3,2 +np.float64,0xb0a6673d614cd,0xb0a6673d614cd,2 +np.float64,0xffef9a297e3f3452,0xbff0000000000000,2 +np.float64,0xffe87cc15e70f982,0xbff0000000000000,2 +np.float64,0xffefd6ad8e7fad5a,0xbff0000000000000,2 +np.float64,0x7fe3aaa3a8a75546,0x3ff0000000000000,2 +np.float64,0xddab0341bb561,0xddab0341bb561,2 +np.float64,0x3fe996d6d7332dae,0x3fe53e3ed5be2922,2 +np.float64,0x3fdbe66a18b7ccd4,0x3fda41e6053c1512,2 +np.float64,0x8914775d1228f,0x8914775d1228f,2 +np.float64,0x3fe44621d4688c44,0x3fe1ef9c7225f8bd,2 +np.float64,0xffab29a2a4365340,0xbff0000000000000,2 +np.float64,0xffc8d4a0c431a940,0xbff0000000000000,2 +np.float64,0xbfd426e085284dc2,0xbfd382e2a9617b87,2 +np.float64,0xbfd3b0a525a7614a,0xbfd3176856faccf1,2 +np.float64,0x80036dedcb06dbdc,0x80036dedcb06dbdc,2 +np.float64,0x3feb13823b762704,0x3fe60ca3facdb696,2 +np.float64,0x3fd7246b7bae48d8,0x3fd62f08afded155,2 +np.float64,0x1,0x1,2 +np.float64,0x3fe8ade4b9715bc9,0x3fe4b97cc1387d27,2 +np.float64,0x3fdf2dbec53e5b7e,0x3fdcecfeee33de95,2 +np.float64,0x3fe4292bf9685258,0x3fe1dbb5a6704090,2 +np.float64,0xbfd21acbb8243598,0xbfd1a2ff42174cae,2 +np.float64,0xdd0d2d01ba1a6,0xdd0d2d01ba1a6,2 +np.float64,0x3fa3f3d2f427e7a0,0x3fa3f13d6f101555,2 +np.float64,0x7fdabf4aceb57e95,0x3ff0000000000000,2 +np.float64,0xd4d9e39ba9b3d,0xd4d9e39ba9b3d,2 +np.float64,0xffec773396f8ee66,0xbff0000000000000,2 +np.float64,0x3fa88cc79031198f,0x3fa887f7ade722ba,2 +np.float64,0xffe63a92066c7524,0xbff0000000000000,2 +np.float64,0xbfcf514e2e3ea29c,0xbfceb510e99aaa19,2 +np.float64,0x9d78c19d3af18,0x9d78c19d3af18,2 +np.float64,0x7fdd748bfbbae917,0x3ff0000000000000,2 +np.float64,0xffb3594c4626b298,0xbff0000000000000,2 +np.float64,0x80068ce5b32d19cc,0x80068ce5b32d19cc,2 +np.float64,0x3fec63d60e78c7ac,0x3fe6b85536e44217,2 +np.float64,0x80080bad4dd0175b,0x80080bad4dd0175b,2 +np.float64,0xbfec6807baf8d010,0xbfe6ba69740f9687,2 +np.float64,0x7fedbae0bbfb75c0,0x3ff0000000000000,2 +np.float64,0x8001cb7aa3c396f6,0x8001cb7aa3c396f6,2 +np.float64,0x7fe1f1f03563e3df,0x3ff0000000000000,2 +np.float64,0x7fd83d3978307a72,0x3ff0000000000000,2 +np.float64,0xbfc05ffe9d20bffc,0xbfc049464e3f0af2,2 +np.float64,0xfe6e053ffcdc1,0xfe6e053ffcdc1,2 +np.float64,0xbfd3bdf39d277be8,0xbfd32386edf12726,2 +np.float64,0x800f41b27bde8365,0x800f41b27bde8365,2 +np.float64,0xbfe2c98390e59307,0xbfe0e3c9260fe798,2 +np.float64,0xffdd6206bcbac40e,0xbff0000000000000,2 +np.float64,0x67f35ef4cfe6c,0x67f35ef4cfe6c,2 +np.float64,0x800337e02ae66fc1,0x800337e02ae66fc1,2 +np.float64,0x3fe0ff70afe1fee1,0x3fdf1f46434330df,2 +np.float64,0x3fd7e0a1df2fc144,0x3fd6d3f82c8031e4,2 +np.float64,0x8008da5cd1b1b4ba,0x8008da5cd1b1b4ba,2 +np.float64,0x80065ec9e4ccbd95,0x80065ec9e4ccbd95,2 +np.float64,0x3fe1d1e559a3a3cb,0x3fe02e4f146aa1ab,2 +np.float64,0x7feb7d2f0836fa5d,0x3ff0000000000000,2 +np.float64,0xbfcb33ce9736679c,0xbfcaccd431b205bb,2 +np.float64,0x800e6d0adf5cda16,0x800e6d0adf5cda16,2 +np.float64,0x7fe46f272ca8de4d,0x3ff0000000000000,2 +np.float64,0x4fdfc73e9fbfa,0x4fdfc73e9fbfa,2 +np.float64,0x800958a13112b143,0x800958a13112b143,2 +np.float64,0xbfea01f877f403f1,0xbfe579a541594247,2 +np.float64,0xeefaf599ddf5f,0xeefaf599ddf5f,2 +np.float64,0x80038766c5e70ece,0x80038766c5e70ece,2 +np.float64,0x7fd31bc28ba63784,0x3ff0000000000000,2 +np.float64,0xbfe4df77eee9bef0,0xbfe257abe7083b77,2 +np.float64,0x7fe6790c78acf218,0x3ff0000000000000,2 +np.float64,0xffe7c66884af8cd0,0xbff0000000000000,2 +np.float64,0x800115e36f422bc8,0x800115e36f422bc8,2 +np.float64,0x3fc601945d2c0329,0x3fc5cab917bb20bc,2 +np.float64,0x3fd6ac9546ad592b,0x3fd5c55437ec3508,2 +np.float64,0xa7bd59294f7ab,0xa7bd59294f7ab,2 +np.float64,0x8005c26c8b8b84da,0x8005c26c8b8b84da,2 +np.float64,0x8257501704aea,0x8257501704aea,2 +np.float64,0x5b12aae0b6256,0x5b12aae0b6256,2 +np.float64,0x800232fe02c465fd,0x800232fe02c465fd,2 +np.float64,0x800dae28f85b5c52,0x800dae28f85b5c52,2 +np.float64,0x3fdade1ac135bc36,0x3fd964a2000ace25,2 +np.float64,0x3fed72ca04fae594,0x3fe73b9170d809f9,2 +np.float64,0x7fc6397e2b2c72fb,0x3ff0000000000000,2 +np.float64,0x3fe1f5296d23ea53,0x3fe048802d17621e,2 +np.float64,0xffe05544b920aa89,0xbff0000000000000,2 +np.float64,0xbfdb2e1588365c2c,0xbfd9a7e4113c713e,2 +np.float64,0xbfed6a06fa3ad40e,0xbfe7376be60535f8,2 +np.float64,0xbfe31dcaf5e63b96,0xbfe120417c46cac1,2 +np.float64,0xbfb7ed67ae2fdad0,0xbfb7dba14af33b00,2 +np.float64,0xffd32bb7eb265770,0xbff0000000000000,2 +np.float64,0x80039877b04730f0,0x80039877b04730f0,2 +np.float64,0x3f832e5630265cac,0x3f832e316f47f218,2 +np.float64,0xffe7fa7f732ff4fe,0xbff0000000000000,2 +np.float64,0x9649b87f2c937,0x9649b87f2c937,2 +np.float64,0xffaee447183dc890,0xbff0000000000000,2 +np.float64,0x7fe4e02dd869c05b,0x3ff0000000000000,2 +np.float64,0x3fe1d35e7463a6bd,0x3fe02f67bd21e86e,2 +np.float64,0xffe57f40fe2afe82,0xbff0000000000000,2 +np.float64,0xbfea1362b93426c6,0xbfe5833421dba8fc,2 +np.float64,0xffe9c689fe338d13,0xbff0000000000000,2 +np.float64,0xffc592dd102b25bc,0xbff0000000000000,2 +np.float64,0x3fd283c7aba5078f,0x3fd203d61d1398c3,2 +np.float64,0x8001d6820243ad05,0x8001d6820243ad05,2 +np.float64,0x3fe0ad5991e15ab4,0x3fdea14ef0d47fbd,2 +np.float64,0x3fe3916f2ee722de,0x3fe1722684a9ffb1,2 +np.float64,0xffef9e54e03f3ca9,0xbff0000000000000,2 +np.float64,0x7fe864faebb0c9f5,0x3ff0000000000000,2 +np.float64,0xbfed3587c3fa6b10,0xbfe71e7112df8a68,2 +np.float64,0xbfdd9efc643b3df8,0xbfdbac3a16caf208,2 +np.float64,0xbfd5ac08feab5812,0xbfd4e14575a6e41b,2 +np.float64,0xffda90fae6b521f6,0xbff0000000000000,2 +np.float64,0x8001380ecf22701e,0x8001380ecf22701e,2 +np.float64,0x7fed266fa5fa4cde,0x3ff0000000000000,2 +np.float64,0xffec6c0ac3b8d815,0xbff0000000000000,2 +np.float64,0x3fe7de43c32fbc88,0x3fe43ef62821a5a6,2 +np.float64,0x800bf4ffc357ea00,0x800bf4ffc357ea00,2 +np.float64,0x3fe125c975624b93,0x3fdf59b2de3eff5d,2 +np.float64,0x8004714c1028e299,0x8004714c1028e299,2 +np.float64,0x3fef1bfbf5fe37f8,0x3fe7fd2ba1b63c8a,2 +np.float64,0x800cae15c3195c2c,0x800cae15c3195c2c,2 +np.float64,0x7fde708e083ce11b,0x3ff0000000000000,2 +np.float64,0x7fbcee5df639dcbb,0x3ff0000000000000,2 +np.float64,0x800b1467141628cf,0x800b1467141628cf,2 +np.float64,0x3fe525e0d36a4bc2,0x3fe286b6e59e30f5,2 +np.float64,0xffe987f8b8330ff1,0xbff0000000000000,2 +np.float64,0x7e0a8284fc151,0x7e0a8284fc151,2 +np.float64,0x8006f982442df305,0x8006f982442df305,2 +np.float64,0xbfd75a3cb62eb47a,0xbfd65e54cee981c9,2 +np.float64,0x258e91104b1d3,0x258e91104b1d3,2 +np.float64,0xbfecd0056779a00b,0xbfe6ed7ae97fff1b,2 +np.float64,0x7fc3a4f9122749f1,0x3ff0000000000000,2 +np.float64,0x6e2b1024dc563,0x6e2b1024dc563,2 +np.float64,0x800d575ad4daaeb6,0x800d575ad4daaeb6,2 +np.float64,0xbfceafb1073d5f64,0xbfce1c93023d8414,2 +np.float64,0xffe895cb5f312b96,0xbff0000000000000,2 +np.float64,0x7fe7811ed4ef023d,0x3ff0000000000000,2 +np.float64,0xbfd93f952f327f2a,0xbfd803e6b5576b99,2 +np.float64,0xffdd883a3fbb1074,0xbff0000000000000,2 +np.float64,0x7fee5624eefcac49,0x3ff0000000000000,2 +np.float64,0xbfe264bb2624c976,0xbfe09a9b7cc896e7,2 +np.float64,0xffef14b417be2967,0xbff0000000000000,2 +np.float64,0xbfecbd0d94397a1b,0xbfe6e43bef852d9f,2 +np.float64,0xbfe20d9e4ba41b3c,0xbfe05a98e05846d9,2 +np.float64,0x10000000000000,0x10000000000000,2 +np.float64,0x7fefde93f7bfbd27,0x3ff0000000000000,2 +np.float64,0x80076b9e232ed73d,0x80076b9e232ed73d,2 +np.float64,0xbfe80df52c701bea,0xbfe45b754b433792,2 +np.float64,0x7fe3b5a637676b4b,0x3ff0000000000000,2 +np.float64,0x2c81d14c5903b,0x2c81d14c5903b,2 +np.float64,0x80038945c767128c,0x80038945c767128c,2 +np.float64,0xffeebaf544bd75ea,0xbff0000000000000,2 +np.float64,0xffdb1867d2b630d0,0xbff0000000000000,2 +np.float64,0x3fe3376eaee66ede,0x3fe13285579763d8,2 +np.float64,0xffddf65ca43becba,0xbff0000000000000,2 +np.float64,0xffec8e3e04791c7b,0xbff0000000000000,2 +np.float64,0x80064f4bde2c9e98,0x80064f4bde2c9e98,2 +np.float64,0x7fe534a085ea6940,0x3ff0000000000000,2 +np.float64,0xbfcbabe31d3757c8,0xbfcb3f8e70adf7e7,2 +np.float64,0xbfe45ca11e28b942,0xbfe1ff04515ef809,2 +np.float64,0x65f4df02cbe9d,0x65f4df02cbe9d,2 +np.float64,0xb08b0cbb61162,0xb08b0cbb61162,2 +np.float64,0x3feae2e8b975c5d1,0x3fe5f302b5e8eda2,2 +np.float64,0x7fcf277ff93e4eff,0x3ff0000000000000,2 +np.float64,0x80010999c4821334,0x80010999c4821334,2 +np.float64,0xbfd7f65911afecb2,0xbfd6e6e9cd098f8b,2 +np.float64,0x800e0560ec3c0ac2,0x800e0560ec3c0ac2,2 +np.float64,0x7fec4152ba3882a4,0x3ff0000000000000,2 +np.float64,0xbfb5c77cd42b8ef8,0xbfb5ba1336084908,2 +np.float64,0x457ff1b68afff,0x457ff1b68afff,2 +np.float64,0x5323ec56a647e,0x5323ec56a647e,2 +np.float64,0xbfeed16cf8bda2da,0xbfe7dc49fc9ae549,2 +np.float64,0xffe8446106b088c1,0xbff0000000000000,2 +np.float64,0xffb93cd13c3279a0,0xbff0000000000000,2 +np.float64,0x7fe515c2aeea2b84,0x3ff0000000000000,2 +np.float64,0x80099df83f933bf1,0x80099df83f933bf1,2 +np.float64,0x7fb3a375562746ea,0x3ff0000000000000,2 +np.float64,0x7fcd7efa243afdf3,0x3ff0000000000000,2 +np.float64,0xffe40cddb12819bb,0xbff0000000000000,2 +np.float64,0x8008b68eecd16d1e,0x8008b68eecd16d1e,2 +np.float64,0x2aec688055d8e,0x2aec688055d8e,2 +np.float64,0xffe23750bc646ea1,0xbff0000000000000,2 +np.float64,0x5adacf60b5b7,0x5adacf60b5b7,2 +np.float64,0x7fefb29b1cbf6535,0x3ff0000000000000,2 +np.float64,0xbfeadbf90175b7f2,0xbfe5ef55e2194794,2 +np.float64,0xeaad2885d55a5,0xeaad2885d55a5,2 +np.float64,0xffd7939fba2f2740,0xbff0000000000000,2 +np.float64,0x3fd187ea3aa30fd4,0x3fd11af023472386,2 +np.float64,0xbf6eb579c03d6b00,0xbf6eb57052f47019,2 +np.float64,0x3fefb67b3bff6cf6,0x3fe83fe4499969ac,2 +np.float64,0xbfe5183aacea3076,0xbfe27da1aa0b61a0,2 +np.float64,0xbfb83e47a2307c90,0xbfb82bcb0e12db42,2 +np.float64,0x80088849b1b11094,0x80088849b1b11094,2 +np.float64,0x800ceeed7399dddb,0x800ceeed7399dddb,2 +np.float64,0x80097cd90892f9b2,0x80097cd90892f9b2,2 +np.float64,0x7ec73feefd8e9,0x7ec73feefd8e9,2 +np.float64,0x7fe3291de5a6523b,0x3ff0000000000000,2 +np.float64,0xbfd537086daa6e10,0xbfd4787af5f60653,2 +np.float64,0x800e8ed4455d1da9,0x800e8ed4455d1da9,2 +np.float64,0x800ef8d19cbdf1a3,0x800ef8d19cbdf1a3,2 +np.float64,0x800dc4fa3a5b89f5,0x800dc4fa3a5b89f5,2 +np.float64,0xaa8b85cd55171,0xaa8b85cd55171,2 +np.float64,0xffd67a5f40acf4be,0xbff0000000000000,2 +np.float64,0xbfb7496db22e92d8,0xbfb7390a48130861,2 +np.float64,0x3fd86a8e7ab0d51d,0x3fd74bfba0f72616,2 +np.float64,0xffb7f5b7fc2feb70,0xbff0000000000000,2 +np.float64,0xbfea0960a7f412c1,0xbfe57db6d0ff4191,2 +np.float64,0x375f4fc26ebeb,0x375f4fc26ebeb,2 +np.float64,0x800c537e70b8a6fd,0x800c537e70b8a6fd,2 +np.float64,0x800b3f4506d67e8a,0x800b3f4506d67e8a,2 +np.float64,0x7fe61f2d592c3e5a,0x3ff0000000000000,2 +np.float64,0xffefffffffffffff,0xbff0000000000000,2 +np.float64,0x8005d0bb84eba178,0x8005d0bb84eba178,2 +np.float64,0x800c78b0ec18f162,0x800c78b0ec18f162,2 +np.float64,0xbfc42cccfb285998,0xbfc4027392f66b0d,2 +np.float64,0x3fd8fdc73fb1fb8e,0x3fd7cb46f928153f,2 +np.float64,0x800c71754298e2eb,0x800c71754298e2eb,2 +np.float64,0x3fe4aa7a96a954f5,0x3fe233f5d3bc1352,2 +np.float64,0x7fd53841f6aa7083,0x3ff0000000000000,2 +np.float64,0x3fd0a887b8a15110,0x3fd04ac3b9c0d1ca,2 +np.float64,0x8007b8e164cf71c4,0x8007b8e164cf71c4,2 +np.float64,0xbfddc35c66bb86b8,0xbfdbc9c5dddfb014,2 +np.float64,0x6a3756fed46eb,0x6a3756fed46eb,2 +np.float64,0xffd3dcd05527b9a0,0xbff0000000000000,2 +np.float64,0xbfd7dc75632fb8ea,0xbfd6d0538b340a98,2 +np.float64,0x17501f822ea05,0x17501f822ea05,2 +np.float64,0xbfe1f98b99a3f317,0xbfe04bbf8f8b6cb3,2 +np.float64,0x66ea65d2cdd4d,0x66ea65d2cdd4d,2 +np.float64,0xbfd12241e2224484,0xbfd0bc62f46ea5e1,2 +np.float64,0x3fed6e6fb3fadcdf,0x3fe7398249097285,2 +np.float64,0x3fe0b5ebeba16bd8,0x3fdeae84b3000a47,2 +np.float64,0x66d1bce8cda38,0x66d1bce8cda38,2 +np.float64,0x3fdd728db3bae51b,0x3fdb880f28c52713,2 +np.float64,0xffb45dbe5228bb80,0xbff0000000000000,2 +np.float64,0x1ff8990c3ff14,0x1ff8990c3ff14,2 +np.float64,0x800a68e8f294d1d2,0x800a68e8f294d1d2,2 +np.float64,0xbfe4d08b84a9a117,0xbfe24da40bff6be7,2 +np.float64,0x3fe0177f0ee02efe,0x3fddb83c5971df51,2 +np.float64,0xffc56893692ad128,0xbff0000000000000,2 +np.float64,0x51b44f6aa368b,0x51b44f6aa368b,2 +np.float64,0x2258ff4e44b21,0x2258ff4e44b21,2 +np.float64,0x3fe913649e7226c9,0x3fe4f3f119530f53,2 +np.float64,0xffe3767df766ecfc,0xbff0000000000000,2 +np.float64,0xbfe62ae12fec55c2,0xbfe33108f1f22a94,2 +np.float64,0x7fb6a6308e2d4c60,0x3ff0000000000000,2 +np.float64,0xbfe00f2085e01e41,0xbfddab19b6fc77d1,2 +np.float64,0x3fb66447dc2cc890,0x3fb655b4f46844f0,2 +np.float64,0x3fd80238f6b00470,0x3fd6f143be1617d6,2 +np.float64,0xbfd05bfeb3a0b7fe,0xbfd0031ab3455e15,2 +np.float64,0xffc3a50351274a08,0xbff0000000000000,2 +np.float64,0xffd8f4241cb1e848,0xbff0000000000000,2 +np.float64,0xbfca72a88c34e550,0xbfca13ebe85f2aca,2 +np.float64,0x3fd47d683ba8fad0,0x3fd3d13f1176ed8c,2 +np.float64,0x3fb6418e642c831d,0x3fb6333ebe479ff2,2 +np.float64,0x800fde8e023fbd1c,0x800fde8e023fbd1c,2 +np.float64,0x8001fb01e323f605,0x8001fb01e323f605,2 +np.float64,0x3febb21ff9f76440,0x3fe65ed788d52fee,2 +np.float64,0x3fe47553ffe8eaa8,0x3fe20fe01f853603,2 +np.float64,0x7fca20b3f9344167,0x3ff0000000000000,2 +np.float64,0x3fe704f4ec6e09ea,0x3fe3ba7277201805,2 +np.float64,0xf864359df0c87,0xf864359df0c87,2 +np.float64,0x4d96b01c9b2d7,0x4d96b01c9b2d7,2 +np.float64,0x3fe8a09fe9f14140,0x3fe4b1c6a2d2e095,2 +np.float64,0xffc46c61b228d8c4,0xbff0000000000000,2 +np.float64,0x3fe680a837ed0150,0x3fe3679d6eeb6485,2 +np.float64,0xbfecedc20f39db84,0xbfe6fbe9ee978bf6,2 +np.float64,0x3fb2314eae24629d,0x3fb2297ba6d55d2d,2 +np.float64,0x3fe9f0b8e7b3e172,0x3fe57026eae36db3,2 +np.float64,0x80097a132ed2f427,0x80097a132ed2f427,2 +np.float64,0x800ae5a41955cb49,0x800ae5a41955cb49,2 +np.float64,0xbfd7527279aea4e4,0xbfd6577de356e1bd,2 +np.float64,0x3fe27d3e01e4fa7c,0x3fe0ac7dd96f9179,2 +np.float64,0x7fedd8cb01bbb195,0x3ff0000000000000,2 +np.float64,0x78f8695af1f0e,0x78f8695af1f0e,2 +np.float64,0x800d2d0e927a5a1d,0x800d2d0e927a5a1d,2 +np.float64,0xffe74b46fb2e968e,0xbff0000000000000,2 +np.float64,0xbfdd12d4c8ba25aa,0xbfdb39dae49e1c10,2 +np.float64,0xbfd6c14710ad828e,0xbfd5d79ef5a8d921,2 +np.float64,0x921f4e55243ea,0x921f4e55243ea,2 +np.float64,0x800b4e4c80969c99,0x800b4e4c80969c99,2 +np.float64,0x7fe08c6ab7e118d4,0x3ff0000000000000,2 +np.float64,0xbfed290014fa5200,0xbfe71871f7e859ed,2 +np.float64,0x8008c1d5c59183ac,0x8008c1d5c59183ac,2 +np.float64,0x3fd339e68c2673cd,0x3fd2aaff3f165a9d,2 +np.float64,0xbfdd20d8113a41b0,0xbfdb4553ea2cb2fb,2 +np.float64,0x3fe52a25deea544c,0x3fe2898d5bf4442c,2 +np.float64,0x498602d4930c1,0x498602d4930c1,2 +np.float64,0x3fd8c450113188a0,0x3fd799b0b2a6c43c,2 +np.float64,0xbfd72bc2f2ae5786,0xbfd6357e15ba7f70,2 +np.float64,0xbfd076188ea0ec32,0xbfd01b8fce44d1af,2 +np.float64,0x9aace1713559c,0x9aace1713559c,2 +np.float64,0x8008a730e8914e62,0x8008a730e8914e62,2 +np.float64,0x7fe9e9a3d833d347,0x3ff0000000000000,2 +np.float64,0x800d3a0d69da741b,0x800d3a0d69da741b,2 +np.float64,0xbfe3e28a29e7c514,0xbfe1aad7643a2d19,2 +np.float64,0x7fe9894c71331298,0x3ff0000000000000,2 +np.float64,0xbfe7c6acb5ef8d5a,0xbfe430c9e258ce62,2 +np.float64,0xffb5a520a62b4a40,0xbff0000000000000,2 +np.float64,0x7fc02109ae204212,0x3ff0000000000000,2 +np.float64,0xb5c58f196b8b2,0xb5c58f196b8b2,2 +np.float64,0x3feb4ee82e769dd0,0x3fe62bae9a39d8b1,2 +np.float64,0x3fec5c3cf278b87a,0x3fe6b49000f12441,2 +np.float64,0x81f64b8103eca,0x81f64b8103eca,2 +np.float64,0xbfeab00d73f5601b,0xbfe5d7f755ab73d9,2 +np.float64,0x3fd016bf28a02d7e,0x3fcf843ea23bcd3c,2 +np.float64,0xbfa1db617423b6c0,0xbfa1d9872ddeb5a8,2 +np.float64,0x3fe83c879d70790f,0x3fe4771502d8f012,2 +np.float64,0x6b267586d64cf,0x6b267586d64cf,2 +np.float64,0x3fc91b6d3f3236d8,0x3fc8ca3eb4da25a9,2 +np.float64,0x7fd4e3f8f3a9c7f1,0x3ff0000000000000,2 +np.float64,0x800a75899214eb14,0x800a75899214eb14,2 +np.float64,0x7fdb1f2e07b63e5b,0x3ff0000000000000,2 +np.float64,0xffe7805a11ef00b4,0xbff0000000000000,2 +np.float64,0x3fc8e1b88a31c371,0x3fc892af45330818,2 +np.float64,0xbfe809fe447013fc,0xbfe45918f07da4d9,2 +np.float64,0xbfeb9d7f2ab73afe,0xbfe65446bfddc792,2 +np.float64,0x3fb47f0a5c28fe15,0x3fb473db9113e880,2 +np.float64,0x800a17ae3cb42f5d,0x800a17ae3cb42f5d,2 +np.float64,0xf5540945eaa81,0xf5540945eaa81,2 +np.float64,0xbfe577fc26aaeff8,0xbfe2bcfbf2cf69ff,2 +np.float64,0xbfb99b3e06333680,0xbfb98577b88e0515,2 +np.float64,0x7fd9290391b25206,0x3ff0000000000000,2 +np.float64,0x7fe1aa62ffa354c5,0x3ff0000000000000,2 +np.float64,0x7b0189a0f604,0x7b0189a0f604,2 +np.float64,0x3f9000ed602001db,0x3f900097fe168105,2 +np.float64,0x3fd576128d2aec25,0x3fd4b1002c92286f,2 +np.float64,0xffecc98ece79931d,0xbff0000000000000,2 +np.float64,0x800a1736c7f42e6e,0x800a1736c7f42e6e,2 +np.float64,0xbfed947548bb28eb,0xbfe74b71479ae739,2 +np.float64,0xa45c032148b9,0xa45c032148b9,2 +np.float64,0xbfc13d011c227a04,0xbfc1228447de5e9f,2 +np.float64,0xffed8baa6ebb1754,0xbff0000000000000,2 +np.float64,0x800ea2de243d45bc,0x800ea2de243d45bc,2 +np.float64,0x8001396be52272d9,0x8001396be52272d9,2 +np.float64,0xd018d1cda031a,0xd018d1cda031a,2 +np.float64,0x7fe1fece1fe3fd9b,0x3ff0000000000000,2 +np.float64,0x8009ac484c135891,0x8009ac484c135891,2 +np.float64,0x3fc560ad132ac15a,0x3fc52e5a9479f08e,2 +np.float64,0x3fd6f80ebe2df01d,0x3fd607f70ce8e3f4,2 +np.float64,0xbfd3e69e82a7cd3e,0xbfd34887c2a40699,2 +np.float64,0x3fe232d9baa465b3,0x3fe0760a822ada0c,2 +np.float64,0x3fe769bbc6eed378,0x3fe3f872680f6631,2 +np.float64,0xffe63dbd952c7b7a,0xbff0000000000000,2 +np.float64,0x4e0c00da9c181,0x4e0c00da9c181,2 +np.float64,0xffeae4d89735c9b0,0xbff0000000000000,2 +np.float64,0x3fe030bcbb606179,0x3fdddfc66660bfce,2 +np.float64,0x7fe35ca40d66b947,0x3ff0000000000000,2 +np.float64,0xbfd45bd66628b7ac,0xbfd3b2e04bfe7866,2 +np.float64,0x3fd1f0be2323e17c,0x3fd17c1c340d7a48,2 +np.float64,0x3fd7123b6cae2478,0x3fd61f0675aa9ae1,2 +np.float64,0xbfe918a377723147,0xbfe4f6efe66f5714,2 +np.float64,0x7fc400356f28006a,0x3ff0000000000000,2 +np.float64,0x7fd2dead70a5bd5a,0x3ff0000000000000,2 +np.float64,0xffe9c28f81f3851e,0xbff0000000000000,2 +np.float64,0x3fd09b1ec7a1363e,0x3fd03e3894320140,2 +np.float64,0x7fe6e80c646dd018,0x3ff0000000000000,2 +np.float64,0x7fec3760a4786ec0,0x3ff0000000000000,2 +np.float64,0x309eb6ee613d8,0x309eb6ee613d8,2 +np.float64,0x800731cb0ece6397,0x800731cb0ece6397,2 +np.float64,0xbfdb0c553db618aa,0xbfd98b8a4680ee60,2 +np.float64,0x3fd603a52eac074c,0x3fd52f6b53de7455,2 +np.float64,0x9ecb821b3d971,0x9ecb821b3d971,2 +np.float64,0x3feb7d64dc36faca,0x3fe643c2754bb7f4,2 +np.float64,0xffeb94825ef72904,0xbff0000000000000,2 +np.float64,0x24267418484cf,0x24267418484cf,2 +np.float64,0xbfa6b2fbac2d65f0,0xbfa6af2dca5bfa6f,2 +np.float64,0x8010000000000000,0x8010000000000000,2 +np.float64,0xffe6873978ed0e72,0xbff0000000000000,2 +np.float64,0x800447934ba88f27,0x800447934ba88f27,2 +np.float64,0x3fef305f09fe60be,0x3fe806156b8ca47c,2 +np.float64,0xffd441c697a8838e,0xbff0000000000000,2 +np.float64,0xbfa7684f6c2ed0a0,0xbfa764238d34830c,2 +np.float64,0xffb2c976142592f0,0xbff0000000000000,2 +np.float64,0xbfcc9d1585393a2c,0xbfcc25756bcbca1f,2 +np.float64,0xbfd477bb1ba8ef76,0xbfd3cc1d2114e77e,2 +np.float64,0xbfed1559983a2ab3,0xbfe70f03afd994ee,2 +np.float64,0xbfeb51139036a227,0xbfe62ccf56bc7fff,2 +np.float64,0x7d802890fb006,0x7d802890fb006,2 +np.float64,0x800e00af777c015f,0x800e00af777c015f,2 +np.float64,0x800647ce128c8f9d,0x800647ce128c8f9d,2 +np.float64,0x800a26da91d44db6,0x800a26da91d44db6,2 +np.float64,0x3fdc727eddb8e4fe,0x3fdab5fd9db630b3,2 +np.float64,0x7fd06def2ba0dbdd,0x3ff0000000000000,2 +np.float64,0xffe23678c4a46cf1,0xbff0000000000000,2 +np.float64,0xbfe7198e42ee331c,0xbfe3c7326c9c7553,2 +np.float64,0xffae465f3c3c8cc0,0xbff0000000000000,2 +np.float64,0xff9aea7c5035d500,0xbff0000000000000,2 +np.float64,0xbfeae49c0f35c938,0xbfe5f3e9326cb08b,2 +np.float64,0x3f9a16f300342de6,0x3f9a1581212be50f,2 +np.float64,0x8d99e2c31b33d,0x8d99e2c31b33d,2 +np.float64,0xffd58af253ab15e4,0xbff0000000000000,2 +np.float64,0xbfd205cd25a40b9a,0xbfd18f97155f8b25,2 +np.float64,0xbfebe839bbf7d074,0xbfe67a6024e8fefe,2 +np.float64,0xbfe4fb3595a9f66b,0xbfe26a42f99819ea,2 +np.float64,0x800e867c739d0cf9,0x800e867c739d0cf9,2 +np.float64,0x8bc4274f17885,0x8bc4274f17885,2 +np.float64,0xaec8914b5d912,0xaec8914b5d912,2 +np.float64,0x7fd1d64473a3ac88,0x3ff0000000000000,2 +np.float64,0xbfe6d6f69cedaded,0xbfe39dd61bc7e23e,2 +np.float64,0x7fed05039d7a0a06,0x3ff0000000000000,2 +np.float64,0xbfc40eab0f281d58,0xbfc3e50d14b79265,2 +np.float64,0x45179aec8a2f4,0x45179aec8a2f4,2 +np.float64,0xbfe717e362ee2fc7,0xbfe3c62a95b07d13,2 +np.float64,0xbfe5b8df0d6b71be,0xbfe2e76c7ec5013d,2 +np.float64,0x5c67ba6eb8cf8,0x5c67ba6eb8cf8,2 +np.float64,0xbfda72ce4cb4e59c,0xbfd909fdc7ecfe20,2 +np.float64,0x7fdf59a1e2beb343,0x3ff0000000000000,2 +np.float64,0xc4f7897f89ef1,0xc4f7897f89ef1,2 +np.float64,0x8fcd0a351f9a2,0x8fcd0a351f9a2,2 +np.float64,0x3fb161761022c2ec,0x3fb15aa31c464de2,2 +np.float64,0x8008a985be71530c,0x8008a985be71530c,2 +np.float64,0x3fca4ddb5e349bb7,0x3fc9f0a3b60e49c6,2 +np.float64,0x7fcc10a2d9382145,0x3ff0000000000000,2 +np.float64,0x78902b3af1206,0x78902b3af1206,2 +np.float64,0x7fe1e2765f23c4ec,0x3ff0000000000000,2 +np.float64,0xc1d288cf83a51,0xc1d288cf83a51,2 +np.float64,0x7fe8af692bb15ed1,0x3ff0000000000000,2 +np.float64,0x80057d90fb8afb23,0x80057d90fb8afb23,2 +np.float64,0x3fdc136b8fb826d8,0x3fda6749582b2115,2 +np.float64,0x800ec8ea477d91d5,0x800ec8ea477d91d5,2 +np.float64,0x4c0f4796981ea,0x4c0f4796981ea,2 +np.float64,0xec34c4a5d8699,0xec34c4a5d8699,2 +np.float64,0x7fce343dfb3c687b,0x3ff0000000000000,2 +np.float64,0xbfc95a98a332b530,0xbfc90705b2cc2fec,2 +np.float64,0x800d118e1dba231c,0x800d118e1dba231c,2 +np.float64,0x3fd354f310a6a9e8,0x3fd2c3bb90054154,2 +np.float64,0xbfdac0d4fab581aa,0xbfd94bf37424928e,2 +np.float64,0x3fe7f5391fefea72,0x3fe44cb49d51985b,2 +np.float64,0xd4c3c329a9879,0xd4c3c329a9879,2 +np.float64,0x3fc53977692a72f0,0x3fc50835d85c9ed1,2 +np.float64,0xbfd6989538ad312a,0xbfd5b3a2c08511fe,2 +np.float64,0xbfe329f2906653e5,0xbfe128ec1525a1c0,2 +np.float64,0x7ff0000000000000,0x3ff0000000000000,2 +np.float64,0xbfea57c90974af92,0xbfe5a87b04aa3116,2 +np.float64,0x7fdfba94043f7527,0x3ff0000000000000,2 +np.float64,0x3feedabddafdb57c,0x3fe7e06c0661978d,2 +np.float64,0x4bd9f3b697b3f,0x4bd9f3b697b3f,2 +np.float64,0x3fdd15bbfc3a2b78,0x3fdb3c3b8d070f7e,2 +np.float64,0x3fbd89ccd23b13a0,0x3fbd686b825cff80,2 +np.float64,0x7ff4000000000000,0x7ffc000000000000,2 +np.float64,0x3f9baa8928375512,0x3f9ba8d01ddd5300,2 +np.float64,0x4a3ebdf2947d8,0x4a3ebdf2947d8,2 +np.float64,0x3fe698d5c06d31ac,0x3fe376dff48312c8,2 +np.float64,0xffd5323df12a647c,0xbff0000000000000,2 +np.float64,0xffea7f111174fe22,0xbff0000000000000,2 +np.float64,0x3feb4656a9b68cad,0x3fe627392eb2156f,2 +np.float64,0x7fc1260e9c224c1c,0x3ff0000000000000,2 +np.float64,0x80056e45e5eadc8d,0x80056e45e5eadc8d,2 +np.float64,0x7fd0958ef6a12b1d,0x3ff0000000000000,2 +np.float64,0x8001f85664e3f0ae,0x8001f85664e3f0ae,2 +np.float64,0x3fe553853beaa70a,0x3fe2a4f5e7c83558,2 +np.float64,0xbfeb33ce6276679d,0xbfe61d8ec9e5ff8c,2 +np.float64,0xbfd1b24e21a3649c,0xbfd14245df6065e9,2 +np.float64,0x3fe286fc40650df9,0x3fe0b395c8059429,2 +np.float64,0xffed378058fa6f00,0xbff0000000000000,2 +np.float64,0xbfd0c4a2d7a18946,0xbfd06509a434d6a0,2 +np.float64,0xbfea31d581f463ab,0xbfe593d976139f94,2 +np.float64,0xbfe0705c85e0e0b9,0xbfde42efa978eb0c,2 +np.float64,0xe4c4c339c9899,0xe4c4c339c9899,2 +np.float64,0x3fd68befa9ad17df,0x3fd5a870b3f1f83e,2 +np.float64,0x8000000000000001,0x8000000000000001,2 +np.float64,0x3fe294256965284b,0x3fe0bd271e22d86b,2 +np.float64,0x8005327a862a64f6,0x8005327a862a64f6,2 +np.float64,0xbfdb8155ce3702ac,0xbfd9ed9ef97920f8,2 +np.float64,0xbff0000000000000,0xbfe85efab514f394,2 +np.float64,0xffe66988f1ecd312,0xbff0000000000000,2 +np.float64,0x3fb178a85e22f150,0x3fb171b9fbf95f1d,2 +np.float64,0x7f829b900025371f,0x3ff0000000000000,2 +np.float64,0x8000000000000000,0x8000000000000000,2 +np.float64,0x8006cb77f60d96f1,0x8006cb77f60d96f1,2 +np.float64,0x3fe0c5d53aa18baa,0x3fdec7012ab92b42,2 +np.float64,0x77266426ee4cd,0x77266426ee4cd,2 +np.float64,0xbfec95f468392be9,0xbfe6d11428f60136,2 +np.float64,0x3fedbf532dfb7ea6,0x3fe75f8436dd1d58,2 +np.float64,0x8002fadd3f85f5bb,0x8002fadd3f85f5bb,2 +np.float64,0xbfefebaa8d3fd755,0xbfe8566c6aa90fba,2 +np.float64,0xffc7dd2b712fba58,0xbff0000000000000,2 +np.float64,0x7fe5d3a6e8aba74d,0x3ff0000000000000,2 +np.float64,0x2da061525b40d,0x2da061525b40d,2 +np.float64,0x7fcb9b9953373732,0x3ff0000000000000,2 +np.float64,0x2ca2f6fc59460,0x2ca2f6fc59460,2 +np.float64,0xffeb84b05af70960,0xbff0000000000000,2 +np.float64,0xffe551e86c6aa3d0,0xbff0000000000000,2 +np.float64,0xbfdb311311366226,0xbfd9aa6688faafb9,2 +np.float64,0xbfd4f3875629e70e,0xbfd43bcd73534c66,2 +np.float64,0x7fe95666f932accd,0x3ff0000000000000,2 +np.float64,0x3fc73dfb482e7bf7,0x3fc6fd70c20ebf60,2 +np.float64,0x800cd9e40939b3c8,0x800cd9e40939b3c8,2 +np.float64,0x3fb0c9fa422193f0,0x3fb0c3d38879a2ac,2 +np.float64,0xffd59a38372b3470,0xbff0000000000000,2 +np.float64,0x3fa8320ef4306420,0x3fa82d739e937d35,2 +np.float64,0x3fd517f16caa2fe4,0x3fd45c8de1e93b37,2 +np.float64,0xaed921655db24,0xaed921655db24,2 +np.float64,0x93478fb9268f2,0x93478fb9268f2,2 +np.float64,0x1615e28a2c2bd,0x1615e28a2c2bd,2 +np.float64,0xbfead23010f5a460,0xbfe5ea24d5d8f820,2 +np.float64,0x774a6070ee94d,0x774a6070ee94d,2 +np.float64,0x3fdf5874bd3eb0e9,0x3fdd0ef121dd915c,2 +np.float64,0x8004b25f53a964bf,0x8004b25f53a964bf,2 +np.float64,0xbfddacdd2ebb59ba,0xbfdbb78198fab36b,2 +np.float64,0x8008a3acf271475a,0x8008a3acf271475a,2 +np.float64,0xbfdb537c8736a6fa,0xbfd9c741038bb8f0,2 +np.float64,0xbfe56a133f6ad426,0xbfe2b3d5b8d259a1,2 +np.float64,0xffda1db531343b6a,0xbff0000000000000,2 +np.float64,0x3fcbe05f3a37c0be,0x3fcb71a54a64ddfb,2 +np.float64,0x7fe1ccaa7da39954,0x3ff0000000000000,2 +np.float64,0x3faeadd8343d5bb0,0x3faea475608860e6,2 +np.float64,0x3fe662ba1c2cc574,0x3fe354a6176e90df,2 +np.float64,0xffe4d49f4e69a93e,0xbff0000000000000,2 +np.float64,0xbfeadbc424f5b788,0xbfe5ef39dbe66343,2 +np.float64,0x99cf66f1339ed,0x99cf66f1339ed,2 +np.float64,0x33af77a2675f0,0x33af77a2675f0,2 +np.float64,0x7fec7b32ecf8f665,0x3ff0000000000000,2 +np.float64,0xffef3e44993e7c88,0xbff0000000000000,2 +np.float64,0xffe8f8ceac31f19c,0xbff0000000000000,2 +np.float64,0x7fe0d15b6da1a2b6,0x3ff0000000000000,2 +np.float64,0x4ba795c2974f3,0x4ba795c2974f3,2 +np.float64,0x3fe361aa37a6c354,0x3fe15079021d6b15,2 +np.float64,0xffe709714f6e12e2,0xbff0000000000000,2 +np.float64,0xffe7ea6a872fd4d4,0xbff0000000000000,2 +np.float64,0xffdb9441c8b72884,0xbff0000000000000,2 +np.float64,0xffd5e11ae9abc236,0xbff0000000000000,2 +np.float64,0xffe092a08b612540,0xbff0000000000000,2 +np.float64,0x3fe1f27e1ca3e4fc,0x3fe04685b5131207,2 +np.float64,0xbfe71ce1bdee39c4,0xbfe3c940809a7081,2 +np.float64,0xffe8c3aa68318754,0xbff0000000000000,2 +np.float64,0x800d4e2919da9c52,0x800d4e2919da9c52,2 +np.float64,0x7fe6c8bca76d9178,0x3ff0000000000000,2 +np.float64,0x7fced8751e3db0e9,0x3ff0000000000000,2 +np.float64,0xd61d0c8bac3a2,0xd61d0c8bac3a2,2 +np.float64,0x3fec57732938aee6,0x3fe6b22f15f38352,2 +np.float64,0xff9251cc7024a3a0,0xbff0000000000000,2 +np.float64,0xf4a68cb9e94d2,0xf4a68cb9e94d2,2 +np.float64,0x3feed76703bdaece,0x3fe7def0fc9a080c,2 +np.float64,0xbfe8971ff7712e40,0xbfe4ac3eb8ebff07,2 +np.float64,0x3fe4825f682904bf,0x3fe218c1952fe67d,2 +np.float64,0xbfd60f7698ac1eee,0xbfd539f0979b4b0c,2 +np.float64,0x3fcf0845993e1088,0x3fce7032f7180144,2 +np.float64,0x7fc83443f3306887,0x3ff0000000000000,2 +np.float64,0x3fe93123ae726247,0x3fe504e4fc437e89,2 +np.float64,0x3fbf9eb8363f3d70,0x3fbf75cdfa6828d5,2 +np.float64,0xbf8b45e5d0368bc0,0xbf8b457c29dfe1a9,2 +np.float64,0x8006c2853d0d850b,0x8006c2853d0d850b,2 +np.float64,0xffef26e25ffe4dc4,0xbff0000000000000,2 +np.float64,0x7fefffffffffffff,0x3ff0000000000000,2 +np.float64,0xbfde98f2c2bd31e6,0xbfdc761bfab1c4cb,2 +np.float64,0xffb725e6222e4bd0,0xbff0000000000000,2 +np.float64,0x800c63ead5d8c7d6,0x800c63ead5d8c7d6,2 +np.float64,0x3fea087e95f410fd,0x3fe57d3ab440706c,2 +np.float64,0xbfdf9f8a603f3f14,0xbfdd4742d77dfa57,2 +np.float64,0xfff0000000000000,0xbff0000000000000,2 +np.float64,0xbfcdc0841d3b8108,0xbfcd3a401debba9a,2 +np.float64,0x800f0c8f4f7e191f,0x800f0c8f4f7e191f,2 +np.float64,0x800ba6e75fd74dcf,0x800ba6e75fd74dcf,2 +np.float64,0x7fee4927e8bc924f,0x3ff0000000000000,2 +np.float64,0x3fadf141903be283,0x3fade8878d9d3551,2 +np.float64,0x3efb1a267df64,0x3efb1a267df64,2 +np.float64,0xffebf55f22b7eabe,0xbff0000000000000,2 +np.float64,0x7fbe8045663d008a,0x3ff0000000000000,2 +np.float64,0x3fefc0129f7f8026,0x3fe843f8b7d6cf38,2 +np.float64,0xbfe846b420f08d68,0xbfe47d1709e43937,2 +np.float64,0x7fe8e87043f1d0e0,0x3ff0000000000000,2 +np.float64,0x3fcfb718453f6e31,0x3fcf14ecee7b32b4,2 +np.float64,0x7fe4306b71a860d6,0x3ff0000000000000,2 +np.float64,0x7fee08459f7c108a,0x3ff0000000000000,2 +np.float64,0x3fed705165fae0a3,0x3fe73a66369c5700,2 +np.float64,0x7fd0e63f4da1cc7e,0x3ff0000000000000,2 +np.float64,0xffd1a40c2ea34818,0xbff0000000000000,2 +np.float64,0xbfa369795c26d2f0,0xbfa36718218d46b3,2 +np.float64,0xef70b9f5dee17,0xef70b9f5dee17,2 +np.float64,0x3fb50a0a6e2a1410,0x3fb4fdf27724560a,2 +np.float64,0x7fe30a0f6166141e,0x3ff0000000000000,2 +np.float64,0xbfd7b3ca7daf6794,0xbfd6accb81032b2d,2 +np.float64,0x3fc21dceb3243b9d,0x3fc1ff15d5d277a3,2 +np.float64,0x3fe483e445a907c9,0x3fe219ca0e269552,2 +np.float64,0x3fb2b1e2a22563c0,0x3fb2a96554900eaf,2 +np.float64,0x4b1ff6409641,0x4b1ff6409641,2 +np.float64,0xbfd92eabc9b25d58,0xbfd7f55d7776d64e,2 +np.float64,0x8003b8604c8770c1,0x8003b8604c8770c1,2 +np.float64,0x800d20a9df1a4154,0x800d20a9df1a4154,2 +np.float64,0xecf8a535d9f15,0xecf8a535d9f15,2 +np.float64,0x3fe92d15bab25a2b,0x3fe50296aa15ae85,2 +np.float64,0x800239c205a47385,0x800239c205a47385,2 +np.float64,0x3fc48664a9290cc8,0x3fc459d126320ef6,2 +np.float64,0x3fe7620625eec40c,0x3fe3f3bcbee3e8c6,2 +np.float64,0x3fd242ff4ca48600,0x3fd1c81ed7a971c8,2 +np.float64,0xbfe39bafcfa73760,0xbfe17959c7a279db,2 +np.float64,0x7fdcd2567239a4ac,0x3ff0000000000000,2 +np.float64,0x3fe5f2f292ebe5e6,0x3fe30d12f05e2752,2 +np.float64,0x7fda3819d1347033,0x3ff0000000000000,2 +np.float64,0xffca5b4d4334b69c,0xbff0000000000000,2 +np.float64,0xb8a2b7cd71457,0xb8a2b7cd71457,2 +np.float64,0x3fee689603fcd12c,0x3fe7ad4ace26d6dd,2 +np.float64,0x7fe26541a564ca82,0x3ff0000000000000,2 +np.float64,0x3fe6912ee66d225e,0x3fe3720d242c4d82,2 +np.float64,0xffe6580c75ecb018,0xbff0000000000000,2 +np.float64,0x7fe01a3370603466,0x3ff0000000000000,2 +np.float64,0xffe84e3f84b09c7e,0xbff0000000000000,2 +np.float64,0x3ff0000000000000,0x3fe85efab514f394,2 +np.float64,0x3fe214d4266429a8,0x3fe05fec03a3c247,2 +np.float64,0x3fd00aec5da015d8,0x3fcf6e070ad4ad62,2 +np.float64,0x800aac8631f5590d,0x800aac8631f5590d,2 +np.float64,0xbfe7c4f5f76f89ec,0xbfe42fc1c57b4a13,2 +np.float64,0xaf146c7d5e28e,0xaf146c7d5e28e,2 +np.float64,0xbfe57188b66ae312,0xbfe2b8be4615ef75,2 +np.float64,0xffef8cb8e1ff1971,0xbff0000000000000,2 +np.float64,0x8001daf8aa63b5f2,0x8001daf8aa63b5f2,2 +np.float64,0x3fdddcc339bbb986,0x3fdbde5f3783538b,2 +np.float64,0xdd8c92c3bb193,0xdd8c92c3bb193,2 +np.float64,0xbfe861a148f0c342,0xbfe48cf1d228a336,2 +np.float64,0xffe260a32e24c146,0xbff0000000000000,2 +np.float64,0x1f7474b43ee8f,0x1f7474b43ee8f,2 +np.float64,0x3fe81dbd89703b7c,0x3fe464d78df92b7b,2 +np.float64,0x7fed0101177a0201,0x3ff0000000000000,2 +np.float64,0x7fd8b419a8316832,0x3ff0000000000000,2 +np.float64,0x3fe93debccf27bd8,0x3fe50c27727917f0,2 +np.float64,0xe5ead05bcbd5a,0xe5ead05bcbd5a,2 +np.float64,0xbfebbbc4cff7778a,0xbfe663c4ca003bbf,2 +np.float64,0xbfea343eb474687e,0xbfe59529f73ea151,2 +np.float64,0x3fbe74a5963ce94b,0x3fbe50123ed05d8d,2 +np.float64,0x3fd31d3a5d263a75,0x3fd290c026cb38a5,2 +np.float64,0xbfd79908acaf3212,0xbfd695620e31c3c6,2 +np.float64,0xbfc26a350324d46c,0xbfc249f335f3e465,2 +np.float64,0xbfac38d5583871b0,0xbfac31866d12a45e,2 +np.float64,0x3fe40cea672819d5,0x3fe1c83754e72c92,2 +np.float64,0xbfa74770642e8ee0,0xbfa74355fcf67332,2 +np.float64,0x7fc60942d32c1285,0x3ff0000000000000,2 diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/__pycache__/setup.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/__pycache__/setup.cpython-312.pyc new file mode 100644 index 0000000..c26db55 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/__pycache__/setup.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/checks.pyx b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/checks.pyx new file mode 100644 index 0000000..57df05c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/checks.pyx @@ -0,0 +1,373 @@ +#cython: language_level=3 + +""" +Functions in this module give python-space wrappers for cython functions +exposed in numpy/__init__.pxd, so they can be tested in test_cython.py +""" +cimport numpy as cnp +cnp.import_array() + + +def is_td64(obj): + return cnp.is_timedelta64_object(obj) + + +def is_dt64(obj): + return cnp.is_datetime64_object(obj) + + +def get_dt64_value(obj): + return cnp.get_datetime64_value(obj) + + +def get_td64_value(obj): + return cnp.get_timedelta64_value(obj) + + +def get_dt64_unit(obj): + return cnp.get_datetime64_unit(obj) + + +def is_integer(obj): + return isinstance(obj, (cnp.integer, int)) + + +def get_datetime_iso_8601_strlen(): + return cnp.get_datetime_iso_8601_strlen(0, cnp.NPY_FR_ns) + + +def convert_datetime64_to_datetimestruct(): + cdef: + cnp.npy_datetimestruct dts + cnp.PyArray_DatetimeMetaData meta + cnp.int64_t value = 1647374515260292 + # i.e. (time.time() * 10**6) at 2022-03-15 20:01:55.260292 UTC + + meta.base = cnp.NPY_FR_us + meta.num = 1 + cnp.convert_datetime64_to_datetimestruct(&meta, value, &dts) + return dts + + +def make_iso_8601_datetime(dt: "datetime"): + cdef: + cnp.npy_datetimestruct dts + char result[36] # 36 corresponds to NPY_FR_s passed below + int local = 0 + int utc = 0 + int tzoffset = 0 + + dts.year = dt.year + dts.month = dt.month + dts.day = dt.day + dts.hour = dt.hour + dts.min = dt.minute + dts.sec = dt.second + dts.us = dt.microsecond + dts.ps = dts.as = 0 + + cnp.make_iso_8601_datetime( + &dts, + result, + sizeof(result), + local, + utc, + cnp.NPY_FR_s, + tzoffset, + cnp.NPY_NO_CASTING, + ) + return result + + +cdef cnp.broadcast multiiter_from_broadcast_obj(object bcast): + cdef dict iter_map = { + 1: cnp.PyArray_MultiIterNew1, + 2: cnp.PyArray_MultiIterNew2, + 3: cnp.PyArray_MultiIterNew3, + 4: cnp.PyArray_MultiIterNew4, + 5: cnp.PyArray_MultiIterNew5, + } + arrays = [x.base for x in bcast.iters] + cdef cnp.broadcast result = iter_map[len(arrays)](*arrays) + return result + + +def get_multiiter_size(bcast: "broadcast"): + cdef cnp.broadcast multi = multiiter_from_broadcast_obj(bcast) + return multi.size + + +def get_multiiter_number_of_dims(bcast: "broadcast"): + cdef cnp.broadcast multi = multiiter_from_broadcast_obj(bcast) + return multi.nd + + +def get_multiiter_current_index(bcast: "broadcast"): + cdef cnp.broadcast multi = multiiter_from_broadcast_obj(bcast) + return multi.index + + +def get_multiiter_num_of_iterators(bcast: "broadcast"): + cdef cnp.broadcast multi = multiiter_from_broadcast_obj(bcast) + return multi.numiter + + +def get_multiiter_shape(bcast: "broadcast"): + cdef cnp.broadcast multi = multiiter_from_broadcast_obj(bcast) + return tuple([multi.dimensions[i] for i in range(bcast.nd)]) + + +def get_multiiter_iters(bcast: "broadcast"): + cdef cnp.broadcast multi = multiiter_from_broadcast_obj(bcast) + return tuple([multi.iters[i] for i in range(bcast.numiter)]) + + +def get_default_integer(): + if cnp.NPY_DEFAULT_INT == cnp.NPY_LONG: + return cnp.dtype("long") + if cnp.NPY_DEFAULT_INT == cnp.NPY_INTP: + return cnp.dtype("intp") + return None + +def get_ravel_axis(): + return cnp.NPY_RAVEL_AXIS + + +def conv_intp(cnp.intp_t val): + return val + + +def get_dtype_flags(cnp.dtype dtype): + return dtype.flags + + +cdef cnp.NpyIter* npyiter_from_nditer_obj(object it): + """A function to create a NpyIter struct from a nditer object. + + This function is only meant for testing purposes and only extracts the + necessary info from nditer to test the functionality of NpyIter methods + """ + cdef: + cnp.NpyIter* cit + cnp.PyArray_Descr* op_dtypes[3] + cnp.npy_uint32 op_flags[3] + cnp.PyArrayObject* ops[3] + cnp.npy_uint32 flags = 0 + + if it.has_index: + flags |= cnp.NPY_ITER_C_INDEX + if it.has_delayed_bufalloc: + flags |= cnp.NPY_ITER_BUFFERED | cnp.NPY_ITER_DELAY_BUFALLOC + if it.has_multi_index: + flags |= cnp.NPY_ITER_MULTI_INDEX + + # one of READWRITE, READONLY and WRTIEONLY at the minimum must be specified for op_flags + for i in range(it.nop): + op_flags[i] = cnp.NPY_ITER_READONLY + + for i in range(it.nop): + op_dtypes[i] = cnp.PyArray_DESCR(it.operands[i]) + ops[i] = it.operands[i] + + cit = cnp.NpyIter_MultiNew(it.nop, &ops[0], flags, cnp.NPY_KEEPORDER, + cnp.NPY_NO_CASTING, &op_flags[0], + NULL) + return cit + + +def get_npyiter_size(it: "nditer"): + cdef cnp.NpyIter* cit = npyiter_from_nditer_obj(it) + result = cnp.NpyIter_GetIterSize(cit) + cnp.NpyIter_Deallocate(cit) + return result + + +def get_npyiter_ndim(it: "nditer"): + cdef cnp.NpyIter* cit = npyiter_from_nditer_obj(it) + result = cnp.NpyIter_GetNDim(cit) + cnp.NpyIter_Deallocate(cit) + return result + + +def get_npyiter_nop(it: "nditer"): + cdef cnp.NpyIter* cit = npyiter_from_nditer_obj(it) + result = cnp.NpyIter_GetNOp(cit) + cnp.NpyIter_Deallocate(cit) + return result + + +def get_npyiter_operands(it: "nditer"): + cdef cnp.NpyIter* cit = npyiter_from_nditer_obj(it) + try: + arr = cnp.NpyIter_GetOperandArray(cit) + return tuple([arr[i] for i in range(it.nop)]) + finally: + cnp.NpyIter_Deallocate(cit) + + +def get_npyiter_itviews(it: "nditer"): + cdef cnp.NpyIter* cit = npyiter_from_nditer_obj(it) + result = tuple([cnp.NpyIter_GetIterView(cit, i) for i in range(it.nop)]) + cnp.NpyIter_Deallocate(cit) + return result + + +def get_npyiter_dtypes(it: "nditer"): + cdef cnp.NpyIter* cit = npyiter_from_nditer_obj(it) + try: + arr = cnp.NpyIter_GetDescrArray(cit) + return tuple([arr[i] for i in range(it.nop)]) + finally: + cnp.NpyIter_Deallocate(cit) + + +def npyiter_has_delayed_bufalloc(it: "nditer"): + cdef cnp.NpyIter* cit = npyiter_from_nditer_obj(it) + result = cnp.NpyIter_HasDelayedBufAlloc(cit) + cnp.NpyIter_Deallocate(cit) + return result + + +def npyiter_has_index(it: "nditer"): + cdef cnp.NpyIter* cit = npyiter_from_nditer_obj(it) + result = cnp.NpyIter_HasIndex(cit) + cnp.NpyIter_Deallocate(cit) + return result + + +def npyiter_has_multi_index(it: "nditer"): + cdef cnp.NpyIter* cit = npyiter_from_nditer_obj(it) + result = cnp.NpyIter_HasMultiIndex(cit) + cnp.NpyIter_Deallocate(cit) + return result + + +def test_get_multi_index_iter_next(it: "nditer", cnp.ndarray[cnp.float64_t, ndim=2] arr): + cdef cnp.NpyIter* cit = npyiter_from_nditer_obj(it) + cdef cnp.NpyIter_GetMultiIndexFunc get_multi_index = \ + cnp.NpyIter_GetGetMultiIndex(cit, NULL) + cdef cnp.NpyIter_IterNextFunc iternext = \ + cnp.NpyIter_GetIterNext(cit, NULL) + return 1 + + +def npyiter_has_finished(it: "nditer"): + cdef cnp.NpyIter* cit + try: + cit = npyiter_from_nditer_obj(it) + cnp.NpyIter_GotoIterIndex(cit, it.index) + return not (cnp.NpyIter_GetIterIndex(cit) < cnp.NpyIter_GetIterSize(cit)) + finally: + cnp.NpyIter_Deallocate(cit) + +def compile_fillwithbyte(): + # Regression test for gh-25878, mostly checks it compiles. + cdef cnp.npy_intp dims[2] + dims = (1, 2) + pos = cnp.PyArray_ZEROS(2, dims, cnp.NPY_UINT8, 0) + cnp.PyArray_FILLWBYTE(pos, 1) + return pos + +def inc2_cfloat_struct(cnp.ndarray[cnp.cfloat_t] arr): + # This works since we compile in C mode, it will fail in cpp mode + arr[1].real += 1 + arr[1].imag += 1 + # This works in both modes + arr[1].real = arr[1].real + 1 + arr[1].imag = arr[1].imag + 1 + + +def npystring_pack(arr): + cdef char *string = "Hello world" + cdef size_t size = 11 + + allocator = cnp.NpyString_acquire_allocator( + cnp.PyArray_DESCR(arr) + ) + + # copy string->packed_string, the pointer to the underlying array buffer + ret = cnp.NpyString_pack( + allocator, cnp.PyArray_DATA(arr), string, size, + ) + + cnp.NpyString_release_allocator(allocator) + return ret + + +def npystring_load(arr): + allocator = cnp.NpyString_acquire_allocator( + cnp.PyArray_DESCR(arr) + ) + + cdef cnp.npy_static_string sdata + sdata.size = 0 + sdata.buf = NULL + + cdef cnp.npy_packed_static_string *packed_string = cnp.PyArray_DATA(arr) + cdef int is_null = cnp.NpyString_load(allocator, packed_string, &sdata) + cnp.NpyString_release_allocator(allocator) + if is_null == -1: + raise ValueError("String unpacking failed.") + elif is_null == 1: + # String in the array buffer is the null string + return "" + else: + # Cython syntax for copying a c string to python bytestring: + # slice the char * by the length of the string + return sdata.buf[:sdata.size].decode('utf-8') + + +def npystring_pack_multiple(arr1, arr2): + cdef cnp.npy_string_allocator *allocators[2] + cdef cnp.PyArray_Descr *descrs[2] + descrs[0] = cnp.PyArray_DESCR(arr1) + descrs[1] = cnp.PyArray_DESCR(arr2) + + cnp.NpyString_acquire_allocators(2, descrs, allocators) + + # Write into the first element of each array + cdef int ret1 = cnp.NpyString_pack( + allocators[0], cnp.PyArray_DATA(arr1), "Hello world", 11, + ) + cdef int ret2 = cnp.NpyString_pack( + allocators[1], cnp.PyArray_DATA(arr2), "test this", 9, + ) + + # Write a null string into the last element + cdef cnp.npy_intp elsize = cnp.PyArray_ITEMSIZE(arr1) + cdef int ret3 = cnp.NpyString_pack_null( + allocators[0], + (cnp.PyArray_DATA(arr1) + 2*elsize), + ) + + cnp.NpyString_release_allocators(2, allocators) + if ret1 == -1 or ret2 == -1 or ret3 == -1: + return -1 + + return 0 + + +def npystring_allocators_other_types(arr1, arr2): + cdef cnp.npy_string_allocator *allocators[2] + cdef cnp.PyArray_Descr *descrs[2] + descrs[0] = cnp.PyArray_DESCR(arr1) + descrs[1] = cnp.PyArray_DESCR(arr2) + + cnp.NpyString_acquire_allocators(2, descrs, allocators) + + # None of the dtypes here are StringDType, so every allocator + # should be NULL upon acquisition. + cdef int ret = 0 + for allocator in allocators: + if allocator != NULL: + ret = -1 + break + + cnp.NpyString_release_allocators(2, allocators) + return ret + + +def check_npy_uintp_type_enum(): + # Regression test for gh-27890: cnp.NPY_UINTP was not defined. + # Cython would fail to compile this before gh-27890 was fixed. + return cnp.NPY_UINTP > 0 diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/meson.build b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/meson.build new file mode 100644 index 0000000..8362c33 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/meson.build @@ -0,0 +1,43 @@ +project('checks', 'c', 'cython') + +py = import('python').find_installation(pure: false) + +cc = meson.get_compiler('c') +cy = meson.get_compiler('cython') + +# Keep synced with pyproject.toml +if not cy.version().version_compare('>=3.0.6') + error('tests requires Cython >= 3.0.6') +endif + +cython_args = [] +if cy.version().version_compare('>=3.1.0') + cython_args += ['-Xfreethreading_compatible=True'] +endif + +npy_include_path = run_command(py, [ + '-c', + 'import os; os.chdir(".."); import numpy; print(os.path.abspath(numpy.get_include()))' + ], check: true).stdout().strip() + +npy_path = run_command(py, [ + '-c', + 'import os; os.chdir(".."); import numpy; print(os.path.dirname(numpy.__file__).removesuffix("numpy"))' + ], check: true).stdout().strip() + +# TODO: This is a hack due to gh-25135, where cython may not find the right +# __init__.pyd file. +add_project_arguments('-I', npy_path, language : 'cython') + +py.extension_module( + 'checks', + 'checks.pyx', + install: false, + c_args: [ + '-DNPY_NO_DEPRECATED_API=0', # Cython still uses old NumPy C API + # Require 1.25+ to test datetime additions + '-DNPY_TARGET_VERSION=NPY_2_0_API_VERSION', + ], + include_directories: [npy_include_path], + cython_args: cython_args, +) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/setup.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/setup.py new file mode 100644 index 0000000..eb57477 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/cython/setup.py @@ -0,0 +1,39 @@ +""" +Provide python-space access to the functions exposed in numpy/__init__.pxd +for testing. +""" + +import os +from distutils.core import setup + +import Cython +from Cython.Build import cythonize +from setuptools.extension import Extension + +import numpy as np +from numpy._utils import _pep440 + +macros = [ + ("NPY_NO_DEPRECATED_API", 0), + # Require 1.25+ to test datetime additions + ("NPY_TARGET_VERSION", "NPY_2_0_API_VERSION"), +] + +checks = Extension( + "checks", + sources=[os.path.join('.', "checks.pyx")], + include_dirs=[np.get_include()], + define_macros=macros, +) + +extensions = [checks] + +compiler_directives = {} +if _pep440.parse(Cython.__version__) >= _pep440.parse("3.1.0a0"): + compiler_directives['freethreading_compatible'] = True + +setup( + ext_modules=cythonize( + extensions, + compiler_directives=compiler_directives) +) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/__pycache__/setup.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/__pycache__/setup.cpython-312.pyc new file mode 100644 index 0000000..0783909 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/__pycache__/setup.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/limited_api1.c b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/limited_api1.c new file mode 100644 index 0000000..3dbf569 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/limited_api1.c @@ -0,0 +1,17 @@ +#define Py_LIMITED_API 0x03060000 + +#include +#include +#include + +static PyModuleDef moduledef = { + .m_base = PyModuleDef_HEAD_INIT, + .m_name = "limited_api1" +}; + +PyMODINIT_FUNC PyInit_limited_api1(void) +{ + import_array(); + import_umath(); + return PyModule_Create(&moduledef); +} diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/limited_api2.pyx b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/limited_api2.pyx new file mode 100644 index 0000000..327d5b0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/limited_api2.pyx @@ -0,0 +1,11 @@ +#cython: language_level=3 + +""" +Make sure cython can compile in limited API mode (see meson.build) +""" + +cdef extern from "numpy/arrayobject.h": + pass +cdef extern from "numpy/arrayscalars.h": + pass + diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/limited_api_latest.c b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/limited_api_latest.c new file mode 100644 index 0000000..13668f2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/limited_api_latest.c @@ -0,0 +1,19 @@ +#if Py_LIMITED_API != PY_VERSION_HEX & 0xffff0000 + # error "Py_LIMITED_API not defined to Python major+minor version" +#endif + +#include +#include +#include + +static PyModuleDef moduledef = { + .m_base = PyModuleDef_HEAD_INIT, + .m_name = "limited_api_latest" +}; + +PyMODINIT_FUNC PyInit_limited_api_latest(void) +{ + import_array(); + import_umath(); + return PyModule_Create(&moduledef); +} diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/meson.build b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/meson.build new file mode 100644 index 0000000..65287d8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/meson.build @@ -0,0 +1,59 @@ +project('checks', 'c', 'cython') + +py = import('python').find_installation(pure: false) + +cc = meson.get_compiler('c') +cy = meson.get_compiler('cython') + +# Keep synced with pyproject.toml +if not cy.version().version_compare('>=3.0.6') + error('tests requires Cython >= 3.0.6') +endif + +npy_include_path = run_command(py, [ + '-c', + 'import os; os.chdir(".."); import numpy; print(os.path.abspath(numpy.get_include()))' + ], check: true).stdout().strip() + +npy_path = run_command(py, [ + '-c', + 'import os; os.chdir(".."); import numpy; print(os.path.dirname(numpy.__file__).removesuffix("numpy"))' + ], check: true).stdout().strip() + +# TODO: This is a hack due to https://github.com/cython/cython/issues/5820, +# where cython may not find the right __init__.pyd file. +add_project_arguments('-I', npy_path, language : 'cython') + +py.extension_module( + 'limited_api1', + 'limited_api1.c', + c_args: [ + '-DNPY_NO_DEPRECATED_API=NPY_1_21_API_VERSION', + ], + include_directories: [npy_include_path], + limited_api: '3.6', +) + +py.extension_module( + 'limited_api_latest', + 'limited_api_latest.c', + c_args: [ + '-DNPY_NO_DEPRECATED_API=NPY_1_21_API_VERSION', + ], + include_directories: [npy_include_path], + limited_api: py.language_version(), +) + +py.extension_module( + 'limited_api2', + 'limited_api2.pyx', + install: false, + c_args: [ + '-DNPY_NO_DEPRECATED_API=0', + # Require 1.25+ to test datetime additions + '-DNPY_TARGET_VERSION=NPY_2_0_API_VERSION', + '-DCYTHON_LIMITED_API=1', + ], + include_directories: [npy_include_path], + limited_api: '3.7', +) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/setup.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/setup.py new file mode 100644 index 0000000..16adcd1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/examples/limited_api/setup.py @@ -0,0 +1,24 @@ +""" +Build an example package using the limited Python C API. +""" + +import os + +from setuptools import Extension, setup + +import numpy as np + +macros = [("NPY_NO_DEPRECATED_API", 0), ("Py_LIMITED_API", "0x03060000")] + +limited_api = Extension( + "limited_api", + sources=[os.path.join('.', "limited_api.c")], + include_dirs=[np.get_include()], + define_macros=macros, +) + +extensions = [limited_api] + +setup( + ext_modules=extensions +) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test__exceptions.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test__exceptions.py new file mode 100644 index 0000000..35782e7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test__exceptions.py @@ -0,0 +1,90 @@ +""" +Tests of the ._exceptions module. Primarily for exercising the __str__ methods. +""" + +import pickle + +import pytest + +import numpy as np +from numpy.exceptions import AxisError + +_ArrayMemoryError = np._core._exceptions._ArrayMemoryError +_UFuncNoLoopError = np._core._exceptions._UFuncNoLoopError + +class TestArrayMemoryError: + def test_pickling(self): + """ Test that _ArrayMemoryError can be pickled """ + error = _ArrayMemoryError((1023,), np.dtype(np.uint8)) + res = pickle.loads(pickle.dumps(error)) + assert res._total_size == error._total_size + + def test_str(self): + e = _ArrayMemoryError((1023,), np.dtype(np.uint8)) + str(e) # not crashing is enough + + # testing these properties is easier than testing the full string repr + def test__size_to_string(self): + """ Test e._size_to_string """ + f = _ArrayMemoryError._size_to_string + Ki = 1024 + assert f(0) == '0 bytes' + assert f(1) == '1 bytes' + assert f(1023) == '1023 bytes' + assert f(Ki) == '1.00 KiB' + assert f(Ki + 1) == '1.00 KiB' + assert f(10 * Ki) == '10.0 KiB' + assert f(int(999.4 * Ki)) == '999. KiB' + assert f(int(1023.4 * Ki)) == '1023. KiB' + assert f(int(1023.5 * Ki)) == '1.00 MiB' + assert f(Ki * Ki) == '1.00 MiB' + + # 1023.9999 Mib should round to 1 GiB + assert f(int(Ki * Ki * Ki * 0.9999)) == '1.00 GiB' + assert f(Ki * Ki * Ki * Ki * Ki * Ki) == '1.00 EiB' + # larger than sys.maxsize, adding larger prefixes isn't going to help + # anyway. + assert f(Ki * Ki * Ki * Ki * Ki * Ki * 123456) == '123456. EiB' + + def test__total_size(self): + """ Test e._total_size """ + e = _ArrayMemoryError((1,), np.dtype(np.uint8)) + assert e._total_size == 1 + + e = _ArrayMemoryError((2, 4), np.dtype((np.uint64, 16))) + assert e._total_size == 1024 + + +class TestUFuncNoLoopError: + def test_pickling(self): + """ Test that _UFuncNoLoopError can be pickled """ + assert isinstance(pickle.dumps(_UFuncNoLoopError), bytes) + + +@pytest.mark.parametrize("args", [ + (2, 1, None), + (2, 1, "test_prefix"), + ("test message",), +]) +class TestAxisError: + def test_attr(self, args): + """Validate attribute types.""" + exc = AxisError(*args) + if len(args) == 1: + assert exc.axis is None + assert exc.ndim is None + else: + axis, ndim, *_ = args + assert exc.axis == axis + assert exc.ndim == ndim + + def test_pickling(self, args): + """Test that `AxisError` can be pickled.""" + exc = AxisError(*args) + exc2 = pickle.loads(pickle.dumps(exc)) + + assert type(exc) is type(exc2) + for name in ("axis", "ndim", "args"): + attr1 = getattr(exc, name) + attr2 = getattr(exc2, name) + assert attr1 == attr2, name diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_abc.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_abc.py new file mode 100644 index 0000000..aee1904 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_abc.py @@ -0,0 +1,54 @@ +import numbers + +import numpy as np +from numpy._core.numerictypes import sctypes +from numpy.testing import assert_ + + +class TestABC: + def test_abstract(self): + assert_(issubclass(np.number, numbers.Number)) + + assert_(issubclass(np.inexact, numbers.Complex)) + assert_(issubclass(np.complexfloating, numbers.Complex)) + assert_(issubclass(np.floating, numbers.Real)) + + assert_(issubclass(np.integer, numbers.Integral)) + assert_(issubclass(np.signedinteger, numbers.Integral)) + assert_(issubclass(np.unsignedinteger, numbers.Integral)) + + def test_floats(self): + for t in sctypes['float']: + assert_(isinstance(t(), numbers.Real), + f"{t.__name__} is not instance of Real") + assert_(issubclass(t, numbers.Real), + f"{t.__name__} is not subclass of Real") + assert_(not isinstance(t(), numbers.Rational), + f"{t.__name__} is instance of Rational") + assert_(not issubclass(t, numbers.Rational), + f"{t.__name__} is subclass of Rational") + + def test_complex(self): + for t in sctypes['complex']: + assert_(isinstance(t(), numbers.Complex), + f"{t.__name__} is not instance of Complex") + assert_(issubclass(t, numbers.Complex), + f"{t.__name__} is not subclass of Complex") + assert_(not isinstance(t(), numbers.Real), + f"{t.__name__} is instance of Real") + assert_(not issubclass(t, numbers.Real), + f"{t.__name__} is subclass of Real") + + def test_int(self): + for t in sctypes['int']: + assert_(isinstance(t(), numbers.Integral), + f"{t.__name__} is not instance of Integral") + assert_(issubclass(t, numbers.Integral), + f"{t.__name__} is not subclass of Integral") + + def test_uint(self): + for t in sctypes['uint']: + assert_(isinstance(t(), numbers.Integral), + f"{t.__name__} is not instance of Integral") + assert_(issubclass(t, numbers.Integral), + f"{t.__name__} is not subclass of Integral") diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_api.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_api.py new file mode 100644 index 0000000..2599053 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_api.py @@ -0,0 +1,621 @@ +import sys + +import pytest +from numpy._core._rational_tests import rational + +import numpy as np +import numpy._core.umath as ncu +from numpy.testing import ( + HAS_REFCOUNT, + assert_, + assert_array_equal, + assert_equal, + assert_raises, + assert_warns, +) + + +def test_array_array(): + tobj = type(object) + ones11 = np.ones((1, 1), np.float64) + tndarray = type(ones11) + # Test is_ndarray + assert_equal(np.array(ones11, dtype=np.float64), ones11) + if HAS_REFCOUNT: + old_refcount = sys.getrefcount(tndarray) + np.array(ones11) + assert_equal(old_refcount, sys.getrefcount(tndarray)) + + # test None + assert_equal(np.array(None, dtype=np.float64), + np.array(np.nan, dtype=np.float64)) + if HAS_REFCOUNT: + old_refcount = sys.getrefcount(tobj) + np.array(None, dtype=np.float64) + assert_equal(old_refcount, sys.getrefcount(tobj)) + + # test scalar + assert_equal(np.array(1.0, dtype=np.float64), + np.ones((), dtype=np.float64)) + if HAS_REFCOUNT: + old_refcount = sys.getrefcount(np.float64) + np.array(np.array(1.0, dtype=np.float64), dtype=np.float64) + assert_equal(old_refcount, sys.getrefcount(np.float64)) + + # test string + S2 = np.dtype((bytes, 2)) + S3 = np.dtype((bytes, 3)) + S5 = np.dtype((bytes, 5)) + assert_equal(np.array(b"1.0", dtype=np.float64), + np.ones((), dtype=np.float64)) + assert_equal(np.array(b"1.0").dtype, S3) + assert_equal(np.array(b"1.0", dtype=bytes).dtype, S3) + assert_equal(np.array(b"1.0", dtype=S2), np.array(b"1.")) + assert_equal(np.array(b"1", dtype=S5), np.ones((), dtype=S5)) + + # test string + U2 = np.dtype((str, 2)) + U3 = np.dtype((str, 3)) + U5 = np.dtype((str, 5)) + assert_equal(np.array("1.0", dtype=np.float64), + np.ones((), dtype=np.float64)) + assert_equal(np.array("1.0").dtype, U3) + assert_equal(np.array("1.0", dtype=str).dtype, U3) + assert_equal(np.array("1.0", dtype=U2), np.array("1.")) + assert_equal(np.array("1", dtype=U5), np.ones((), dtype=U5)) + + builtins = getattr(__builtins__, '__dict__', __builtins__) + assert_(hasattr(builtins, 'get')) + + # test memoryview + dat = np.array(memoryview(b'1.0'), dtype=np.float64) + assert_equal(dat, [49.0, 46.0, 48.0]) + assert_(dat.dtype.type is np.float64) + + dat = np.array(memoryview(b'1.0')) + assert_equal(dat, [49, 46, 48]) + assert_(dat.dtype.type is np.uint8) + + # test array interface + a = np.array(100.0, dtype=np.float64) + o = type("o", (object,), + {"__array_interface__": a.__array_interface__}) + assert_equal(np.array(o, dtype=np.float64), a) + + # test array_struct interface + a = np.array([(1, 4.0, 'Hello'), (2, 6.0, 'World')], + dtype=[('f0', int), ('f1', float), ('f2', str)]) + o = type("o", (object,), + {"__array_struct__": a.__array_struct__}) + # wasn't what I expected... is np.array(o) supposed to equal a ? + # instead we get a array([...], dtype=">V18") + assert_equal(bytes(np.array(o).data), bytes(a.data)) + + # test array + def custom__array__(self, dtype=None, copy=None): + return np.array(100.0, dtype=dtype, copy=copy) + + o = type("o", (object,), {"__array__": custom__array__})() + assert_equal(np.array(o, dtype=np.float64), np.array(100.0, np.float64)) + + # test recursion + nested = 1.5 + for i in range(ncu.MAXDIMS): + nested = [nested] + + # no error + np.array(nested) + + # Exceeds recursion limit + assert_raises(ValueError, np.array, [nested], dtype=np.float64) + + # Try with lists... + # float32 + assert_equal(np.array([None] * 10, dtype=np.float32), + np.full((10,), np.nan, dtype=np.float32)) + assert_equal(np.array([[None]] * 10, dtype=np.float32), + np.full((10, 1), np.nan, dtype=np.float32)) + assert_equal(np.array([[None] * 10], dtype=np.float32), + np.full((1, 10), np.nan, dtype=np.float32)) + assert_equal(np.array([[None] * 10] * 10, dtype=np.float32), + np.full((10, 10), np.nan, dtype=np.float32)) + # float64 + assert_equal(np.array([None] * 10, dtype=np.float64), + np.full((10,), np.nan, dtype=np.float64)) + assert_equal(np.array([[None]] * 10, dtype=np.float64), + np.full((10, 1), np.nan, dtype=np.float64)) + assert_equal(np.array([[None] * 10], dtype=np.float64), + np.full((1, 10), np.nan, dtype=np.float64)) + assert_equal(np.array([[None] * 10] * 10, dtype=np.float64), + np.full((10, 10), np.nan, dtype=np.float64)) + + assert_equal(np.array([1.0] * 10, dtype=np.float64), + np.ones((10,), dtype=np.float64)) + assert_equal(np.array([[1.0]] * 10, dtype=np.float64), + np.ones((10, 1), dtype=np.float64)) + assert_equal(np.array([[1.0] * 10], dtype=np.float64), + np.ones((1, 10), dtype=np.float64)) + assert_equal(np.array([[1.0] * 10] * 10, dtype=np.float64), + np.ones((10, 10), dtype=np.float64)) + + # Try with tuples + assert_equal(np.array((None,) * 10, dtype=np.float64), + np.full((10,), np.nan, dtype=np.float64)) + assert_equal(np.array([(None,)] * 10, dtype=np.float64), + np.full((10, 1), np.nan, dtype=np.float64)) + assert_equal(np.array([(None,) * 10], dtype=np.float64), + np.full((1, 10), np.nan, dtype=np.float64)) + assert_equal(np.array([(None,) * 10] * 10, dtype=np.float64), + np.full((10, 10), np.nan, dtype=np.float64)) + + assert_equal(np.array((1.0,) * 10, dtype=np.float64), + np.ones((10,), dtype=np.float64)) + assert_equal(np.array([(1.0,)] * 10, dtype=np.float64), + np.ones((10, 1), dtype=np.float64)) + assert_equal(np.array([(1.0,) * 10], dtype=np.float64), + np.ones((1, 10), dtype=np.float64)) + assert_equal(np.array([(1.0,) * 10] * 10, dtype=np.float64), + np.ones((10, 10), dtype=np.float64)) + +@pytest.mark.parametrize("array", [True, False]) +def test_array_impossible_casts(array): + # All builtin types can be forcibly cast, at least theoretically, + # but user dtypes cannot necessarily. + rt = rational(1, 2) + if array: + rt = np.array(rt) + with assert_raises(TypeError): + np.array(rt, dtype="M8") + + +def test_array_astype(): + a = np.arange(6, dtype='f4').reshape(2, 3) + # Default behavior: allows unsafe casts, keeps memory layout, + # always copies. + b = a.astype('i4') + assert_equal(a, b) + assert_equal(b.dtype, np.dtype('i4')) + assert_equal(a.strides, b.strides) + b = a.T.astype('i4') + assert_equal(a.T, b) + assert_equal(b.dtype, np.dtype('i4')) + assert_equal(a.T.strides, b.strides) + b = a.astype('f4') + assert_equal(a, b) + assert_(not (a is b)) + + # copy=False parameter skips a copy + b = a.astype('f4', copy=False) + assert_(a is b) + + # order parameter allows overriding of the memory layout, + # forcing a copy if the layout is wrong + b = a.astype('f4', order='F', copy=False) + assert_equal(a, b) + assert_(not (a is b)) + assert_(b.flags.f_contiguous) + + b = a.astype('f4', order='C', copy=False) + assert_equal(a, b) + assert_(a is b) + assert_(b.flags.c_contiguous) + + # casting parameter allows catching bad casts + b = a.astype('c8', casting='safe') + assert_equal(a, b) + assert_equal(b.dtype, np.dtype('c8')) + + assert_raises(TypeError, a.astype, 'i4', casting='safe') + + # subok=False passes through a non-subclassed array + b = a.astype('f4', subok=0, copy=False) + assert_(a is b) + + class MyNDArray(np.ndarray): + pass + + a = np.array([[0, 1, 2], [3, 4, 5]], dtype='f4').view(MyNDArray) + + # subok=True passes through a subclass + b = a.astype('f4', subok=True, copy=False) + assert_(a is b) + + # subok=True is default, and creates a subtype on a cast + b = a.astype('i4', copy=False) + assert_equal(a, b) + assert_equal(type(b), MyNDArray) + + # subok=False never returns a subclass + b = a.astype('f4', subok=False, copy=False) + assert_equal(a, b) + assert_(not (a is b)) + assert_(type(b) is not MyNDArray) + + # Make sure converting from string object to fixed length string + # does not truncate. + a = np.array([b'a' * 100], dtype='O') + b = a.astype('S') + assert_equal(a, b) + assert_equal(b.dtype, np.dtype('S100')) + a = np.array(['a' * 100], dtype='O') + b = a.astype('U') + assert_equal(a, b) + assert_equal(b.dtype, np.dtype('U100')) + + # Same test as above but for strings shorter than 64 characters + a = np.array([b'a' * 10], dtype='O') + b = a.astype('S') + assert_equal(a, b) + assert_equal(b.dtype, np.dtype('S10')) + a = np.array(['a' * 10], dtype='O') + b = a.astype('U') + assert_equal(a, b) + assert_equal(b.dtype, np.dtype('U10')) + + a = np.array(123456789012345678901234567890, dtype='O').astype('S') + assert_array_equal(a, np.array(b'1234567890' * 3, dtype='S30')) + a = np.array(123456789012345678901234567890, dtype='O').astype('U') + assert_array_equal(a, np.array('1234567890' * 3, dtype='U30')) + + a = np.array([123456789012345678901234567890], dtype='O').astype('S') + assert_array_equal(a, np.array(b'1234567890' * 3, dtype='S30')) + a = np.array([123456789012345678901234567890], dtype='O').astype('U') + assert_array_equal(a, np.array('1234567890' * 3, dtype='U30')) + + a = np.array(123456789012345678901234567890, dtype='S') + assert_array_equal(a, np.array(b'1234567890' * 3, dtype='S30')) + a = np.array(123456789012345678901234567890, dtype='U') + assert_array_equal(a, np.array('1234567890' * 3, dtype='U30')) + + a = np.array('a\u0140', dtype='U') + b = np.ndarray(buffer=a, dtype='uint32', shape=2) + assert_(b.size == 2) + + a = np.array([1000], dtype='i4') + assert_raises(TypeError, a.astype, 'S1', casting='safe') + + a = np.array(1000, dtype='i4') + assert_raises(TypeError, a.astype, 'U1', casting='safe') + + # gh-24023 + assert_raises(TypeError, a.astype) + +@pytest.mark.parametrize("dt", ["S", "U"]) +def test_array_astype_to_string_discovery_empty(dt): + # See also gh-19085 + arr = np.array([""], dtype=object) + # Note, the itemsize is the `0 -> 1` logic, which should change. + # The important part the test is rather that it does not error. + assert arr.astype(dt).dtype.itemsize == np.dtype(f"{dt}1").itemsize + + # check the same thing for `np.can_cast` (since it accepts arrays) + assert np.can_cast(arr, dt, casting="unsafe") + assert not np.can_cast(arr, dt, casting="same_kind") + # as well as for the object as a descriptor: + assert np.can_cast("O", dt, casting="unsafe") + +@pytest.mark.parametrize("dt", ["d", "f", "S13", "U32"]) +def test_array_astype_to_void(dt): + dt = np.dtype(dt) + arr = np.array([], dtype=dt) + assert arr.astype("V").dtype.itemsize == dt.itemsize + +def test_object_array_astype_to_void(): + # This is different to `test_array_astype_to_void` as object arrays + # are inspected. The default void is "V8" (8 is the length of double) + arr = np.array([], dtype="O").astype("V") + assert arr.dtype == "V8" + +@pytest.mark.parametrize("t", + np._core.sctypes['uint'] + + np._core.sctypes['int'] + + np._core.sctypes['float'] +) +def test_array_astype_warning(t): + # test ComplexWarning when casting from complex to float or int + a = np.array(10, dtype=np.complex128) + assert_warns(np.exceptions.ComplexWarning, a.astype, t) + +@pytest.mark.parametrize(["dtype", "out_dtype"], + [(np.bytes_, np.bool), + (np.str_, np.bool), + (np.dtype("S10,S9"), np.dtype("?,?")), + # The following also checks unaligned unicode access: + (np.dtype("S7,U9"), np.dtype("?,?"))]) +def test_string_to_boolean_cast(dtype, out_dtype): + # Only the last two (empty) strings are falsy (the `\0` is stripped): + arr = np.array( + ["10", "10\0\0\0", "0\0\0", "0", "False", " ", "", "\0"], + dtype=dtype) + expected = np.array( + [True, True, True, True, True, True, False, False], + dtype=out_dtype) + assert_array_equal(arr.astype(out_dtype), expected) + # As it's similar, check that nonzero behaves the same (structs are + # nonzero if all entries are) + assert_array_equal(np.nonzero(arr), np.nonzero(expected)) + +@pytest.mark.parametrize("str_type", [str, bytes, np.str_]) +@pytest.mark.parametrize("scalar_type", + [np.complex64, np.complex128, np.clongdouble]) +def test_string_to_complex_cast(str_type, scalar_type): + value = scalar_type(b"1+3j") + assert scalar_type(value) == 1 + 3j + assert np.array([value], dtype=object).astype(scalar_type)[()] == 1 + 3j + assert np.array(value).astype(scalar_type)[()] == 1 + 3j + arr = np.zeros(1, dtype=scalar_type) + arr[0] = value + assert arr[0] == 1 + 3j + +@pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) +def test_none_to_nan_cast(dtype): + # Note that at the time of writing this test, the scalar constructors + # reject None + arr = np.zeros(1, dtype=dtype) + arr[0] = None + assert np.isnan(arr)[0] + assert np.isnan(np.array(None, dtype=dtype))[()] + assert np.isnan(np.array([None], dtype=dtype))[0] + assert np.isnan(np.array(None).astype(dtype))[()] + +def test_copyto_fromscalar(): + a = np.arange(6, dtype='f4').reshape(2, 3) + + # Simple copy + np.copyto(a, 1.5) + assert_equal(a, 1.5) + np.copyto(a.T, 2.5) + assert_equal(a, 2.5) + + # Where-masked copy + mask = np.array([[0, 1, 0], [0, 0, 1]], dtype='?') + np.copyto(a, 3.5, where=mask) + assert_equal(a, [[2.5, 3.5, 2.5], [2.5, 2.5, 3.5]]) + mask = np.array([[0, 1], [1, 1], [1, 0]], dtype='?') + np.copyto(a.T, 4.5, where=mask) + assert_equal(a, [[2.5, 4.5, 4.5], [4.5, 4.5, 3.5]]) + +def test_copyto(): + a = np.arange(6, dtype='i4').reshape(2, 3) + + # Simple copy + np.copyto(a, [[3, 1, 5], [6, 2, 1]]) + assert_equal(a, [[3, 1, 5], [6, 2, 1]]) + + # Overlapping copy should work + np.copyto(a[:, :2], a[::-1, 1::-1]) + assert_equal(a, [[2, 6, 5], [1, 3, 1]]) + + # Defaults to 'same_kind' casting + assert_raises(TypeError, np.copyto, a, 1.5) + + # Force a copy with 'unsafe' casting, truncating 1.5 to 1 + np.copyto(a, 1.5, casting='unsafe') + assert_equal(a, 1) + + # Copying with a mask + np.copyto(a, 3, where=[True, False, True]) + assert_equal(a, [[3, 1, 3], [3, 1, 3]]) + + # Casting rule still applies with a mask + assert_raises(TypeError, np.copyto, a, 3.5, where=[True, False, True]) + + # Lists of integer 0's and 1's is ok too + np.copyto(a, 4.0, casting='unsafe', where=[[0, 1, 1], [1, 0, 0]]) + assert_equal(a, [[3, 4, 4], [4, 1, 3]]) + + # Overlapping copy with mask should work + np.copyto(a[:, :2], a[::-1, 1::-1], where=[[0, 1], [1, 1]]) + assert_equal(a, [[3, 4, 4], [4, 3, 3]]) + + # 'dst' must be an array + assert_raises(TypeError, np.copyto, [1, 2, 3], [2, 3, 4]) + + +def test_copyto_cast_safety(): + with pytest.raises(TypeError): + np.copyto(np.arange(3), 3., casting="safe") + + # Can put integer and float scalars safely (and equiv): + np.copyto(np.arange(3), 3, casting="equiv") + np.copyto(np.arange(3.), 3., casting="equiv") + # And also with less precision safely: + np.copyto(np.arange(3, dtype="uint8"), 3, casting="safe") + np.copyto(np.arange(3., dtype="float32"), 3., casting="safe") + + # But not equiv: + with pytest.raises(TypeError): + np.copyto(np.arange(3, dtype="uint8"), 3, casting="equiv") + + with pytest.raises(TypeError): + np.copyto(np.arange(3., dtype="float32"), 3., casting="equiv") + + # As a special thing, object is equiv currently: + np.copyto(np.arange(3, dtype=object), 3, casting="equiv") + + # The following raises an overflow error/gives a warning but not + # type error (due to casting), though: + with pytest.raises(OverflowError): + np.copyto(np.arange(3), 2**80, casting="safe") + + with pytest.warns(RuntimeWarning): + np.copyto(np.arange(3, dtype=np.float32), 2e300, casting="safe") + + +def test_copyto_permut(): + # test explicit overflow case + pad = 500 + l = [True] * pad + [True, True, True, True] + r = np.zeros(len(l) - pad) + d = np.ones(len(l) - pad) + mask = np.array(l)[pad:] + np.copyto(r, d, where=mask[::-1]) + + # test all permutation of possible masks, 9 should be sufficient for + # current 4 byte unrolled code + power = 9 + d = np.ones(power) + for i in range(2**power): + r = np.zeros(power) + l = [(i & x) != 0 for x in range(power)] + mask = np.array(l) + np.copyto(r, d, where=mask) + assert_array_equal(r == 1, l) + assert_equal(r.sum(), sum(l)) + + r = np.zeros(power) + np.copyto(r, d, where=mask[::-1]) + assert_array_equal(r == 1, l[::-1]) + assert_equal(r.sum(), sum(l)) + + r = np.zeros(power) + np.copyto(r[::2], d[::2], where=mask[::2]) + assert_array_equal(r[::2] == 1, l[::2]) + assert_equal(r[::2].sum(), sum(l[::2])) + + r = np.zeros(power) + np.copyto(r[::2], d[::2], where=mask[::-2]) + assert_array_equal(r[::2] == 1, l[::-2]) + assert_equal(r[::2].sum(), sum(l[::-2])) + + for c in [0xFF, 0x7F, 0x02, 0x10]: + r = np.zeros(power) + mask = np.array(l) + imask = np.array(l).view(np.uint8) + imask[mask != 0] = c + np.copyto(r, d, where=mask) + assert_array_equal(r == 1, l) + assert_equal(r.sum(), sum(l)) + + r = np.zeros(power) + np.copyto(r, d, where=True) + assert_equal(r.sum(), r.size) + r = np.ones(power) + d = np.zeros(power) + np.copyto(r, d, where=False) + assert_equal(r.sum(), r.size) + +def test_copy_order(): + a = np.arange(24).reshape(2, 1, 3, 4) + b = a.copy(order='F') + c = np.arange(24).reshape(2, 1, 4, 3).swapaxes(2, 3) + + def check_copy_result(x, y, ccontig, fcontig, strides=False): + assert_(not (x is y)) + assert_equal(x, y) + assert_equal(res.flags.c_contiguous, ccontig) + assert_equal(res.flags.f_contiguous, fcontig) + + # Validate the initial state of a, b, and c + assert_(a.flags.c_contiguous) + assert_(not a.flags.f_contiguous) + assert_(not b.flags.c_contiguous) + assert_(b.flags.f_contiguous) + assert_(not c.flags.c_contiguous) + assert_(not c.flags.f_contiguous) + + # Copy with order='C' + res = a.copy(order='C') + check_copy_result(res, a, ccontig=True, fcontig=False, strides=True) + res = b.copy(order='C') + check_copy_result(res, b, ccontig=True, fcontig=False, strides=False) + res = c.copy(order='C') + check_copy_result(res, c, ccontig=True, fcontig=False, strides=False) + res = np.copy(a, order='C') + check_copy_result(res, a, ccontig=True, fcontig=False, strides=True) + res = np.copy(b, order='C') + check_copy_result(res, b, ccontig=True, fcontig=False, strides=False) + res = np.copy(c, order='C') + check_copy_result(res, c, ccontig=True, fcontig=False, strides=False) + + # Copy with order='F' + res = a.copy(order='F') + check_copy_result(res, a, ccontig=False, fcontig=True, strides=False) + res = b.copy(order='F') + check_copy_result(res, b, ccontig=False, fcontig=True, strides=True) + res = c.copy(order='F') + check_copy_result(res, c, ccontig=False, fcontig=True, strides=False) + res = np.copy(a, order='F') + check_copy_result(res, a, ccontig=False, fcontig=True, strides=False) + res = np.copy(b, order='F') + check_copy_result(res, b, ccontig=False, fcontig=True, strides=True) + res = np.copy(c, order='F') + check_copy_result(res, c, ccontig=False, fcontig=True, strides=False) + + # Copy with order='K' + res = a.copy(order='K') + check_copy_result(res, a, ccontig=True, fcontig=False, strides=True) + res = b.copy(order='K') + check_copy_result(res, b, ccontig=False, fcontig=True, strides=True) + res = c.copy(order='K') + check_copy_result(res, c, ccontig=False, fcontig=False, strides=True) + res = np.copy(a, order='K') + check_copy_result(res, a, ccontig=True, fcontig=False, strides=True) + res = np.copy(b, order='K') + check_copy_result(res, b, ccontig=False, fcontig=True, strides=True) + res = np.copy(c, order='K') + check_copy_result(res, c, ccontig=False, fcontig=False, strides=True) + +def test_contiguous_flags(): + a = np.ones((4, 4, 1))[::2, :, :] + a.strides = a.strides[:2] + (-123,) + b = np.ones((2, 2, 1, 2, 2)).swapaxes(3, 4) + + def check_contig(a, ccontig, fcontig): + assert_(a.flags.c_contiguous == ccontig) + assert_(a.flags.f_contiguous == fcontig) + + # Check if new arrays are correct: + check_contig(a, False, False) + check_contig(b, False, False) + check_contig(np.empty((2, 2, 0, 2, 2)), True, True) + check_contig(np.array([[[1], [2]]], order='F'), True, True) + check_contig(np.empty((2, 2)), True, False) + check_contig(np.empty((2, 2), order='F'), False, True) + + # Check that np.array creates correct contiguous flags: + check_contig(np.array(a, copy=None), False, False) + check_contig(np.array(a, copy=None, order='C'), True, False) + check_contig(np.array(a, ndmin=4, copy=None, order='F'), False, True) + + # Check slicing update of flags and : + check_contig(a[0], True, True) + check_contig(a[None, ::4, ..., None], True, True) + check_contig(b[0, 0, ...], False, True) + check_contig(b[:, :, 0:0, :, :], True, True) + + # Test ravel and squeeze. + check_contig(a.ravel(), True, True) + check_contig(np.ones((1, 3, 1)).squeeze(), True, True) + +def test_broadcast_arrays(): + # Test user defined dtypes + a = np.array([(1, 2, 3)], dtype='u4,u4,u4') + b = np.array([(1, 2, 3), (4, 5, 6), (7, 8, 9)], dtype='u4,u4,u4') + result = np.broadcast_arrays(a, b) + assert_equal(result[0], np.array([(1, 2, 3), (1, 2, 3), (1, 2, 3)], dtype='u4,u4,u4')) + assert_equal(result[1], np.array([(1, 2, 3), (4, 5, 6), (7, 8, 9)], dtype='u4,u4,u4')) + +@pytest.mark.parametrize(["shape", "fill_value", "expected_output"], + [((2, 2), [5.0, 6.0], np.array([[5.0, 6.0], [5.0, 6.0]])), + ((3, 2), [1.0, 2.0], np.array([[1.0, 2.0], [1.0, 2.0], [1.0, 2.0]]))]) +def test_full_from_list(shape, fill_value, expected_output): + output = np.full(shape, fill_value) + assert_equal(output, expected_output) + +def test_astype_copyflag(): + # test the various copyflag options + arr = np.arange(10, dtype=np.intp) + + res_true = arr.astype(np.intp, copy=True) + assert not np.shares_memory(arr, res_true) + + res_false = arr.astype(np.intp, copy=False) + assert np.shares_memory(arr, res_false) + + res_false_float = arr.astype(np.float64, copy=False) + assert not np.shares_memory(arr, res_false_float) + + # _CopyMode enum isn't allowed + assert_raises(ValueError, arr.astype, np.float64, + copy=np._CopyMode.NEVER) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_argparse.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_argparse.py new file mode 100644 index 0000000..7f949c1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_argparse.py @@ -0,0 +1,92 @@ +""" +Tests for the private NumPy argument parsing functionality. +They mainly exists to ensure good test coverage without having to try the +weirder cases on actual numpy functions but test them in one place. + +The test function is defined in C to be equivalent to (errors may not always +match exactly, and could be adjusted): + + def func(arg1, /, arg2, *, arg3): + i = integer(arg1) # reproducing the 'i' parsing in Python. + return None +""" + +import threading + +import pytest +from numpy._core._multiarray_tests import ( + argparse_example_function as func, +) +from numpy._core._multiarray_tests import ( + threaded_argparse_example_function as thread_func, +) + +import numpy as np +from numpy.testing import IS_WASM + + +@pytest.mark.skipif(IS_WASM, reason="wasm doesn't have support for threads") +def test_thread_safe_argparse_cache(): + b = threading.Barrier(8) + + def call_thread_func(): + b.wait() + thread_func(arg1=3, arg2=None) + + tasks = [threading.Thread(target=call_thread_func) for _ in range(8)] + [t.start() for t in tasks] + [t.join() for t in tasks] + + +def test_invalid_integers(): + with pytest.raises(TypeError, + match="integer argument expected, got float"): + func(1.) + with pytest.raises(OverflowError): + func(2**100) + + +def test_missing_arguments(): + with pytest.raises(TypeError, + match="missing required positional argument 0"): + func() + with pytest.raises(TypeError, + match="missing required positional argument 0"): + func(arg2=1, arg3=4) + with pytest.raises(TypeError, + match=r"missing required argument \'arg2\' \(pos 1\)"): + func(1, arg3=5) + + +def test_too_many_positional(): + # the second argument is positional but can be passed as keyword. + with pytest.raises(TypeError, + match="takes from 2 to 3 positional arguments but 4 were given"): + func(1, 2, 3, 4) + + +def test_multiple_values(): + with pytest.raises(TypeError, + match=r"given by name \('arg2'\) and position \(position 1\)"): + func(1, 2, arg2=3) + + +def test_string_fallbacks(): + # We can (currently?) use numpy strings to test the "slow" fallbacks + # that should normally not be taken due to string interning. + arg2 = np.str_("arg2") + missing_arg = np.str_("missing_arg") + func(1, **{arg2: 3}) + with pytest.raises(TypeError, + match="got an unexpected keyword argument 'missing_arg'"): + func(2, **{missing_arg: 3}) + + +def test_too_many_arguments_method_forwarding(): + # Not directly related to the standard argument parsing, but we sometimes + # forward methods to Python: arr.mean() calls np._core._methods._mean() + # This adds code coverage for this `npy_forward_method`. + arr = np.arange(3) + args = range(1000) + with pytest.raises(TypeError): + arr.mean(*args) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_array_api_info.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_array_api_info.py new file mode 100644 index 0000000..4842dbf --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_array_api_info.py @@ -0,0 +1,113 @@ +import pytest + +import numpy as np + +info = np.__array_namespace_info__() + + +def test_capabilities(): + caps = info.capabilities() + assert caps["boolean indexing"] is True + assert caps["data-dependent shapes"] is True + + # This will be added in the 2024.12 release of the array API standard. + + # assert caps["max rank"] == 64 + # np.zeros((1,)*64) + # with pytest.raises(ValueError): + # np.zeros((1,)*65) + + +def test_default_device(): + assert info.default_device() == "cpu" == np.asarray(0).device + + +def test_default_dtypes(): + dtypes = info.default_dtypes() + assert dtypes["real floating"] == np.float64 == np.asarray(0.0).dtype + assert dtypes["complex floating"] == np.complex128 == \ + np.asarray(0.0j).dtype + assert dtypes["integral"] == np.intp == np.asarray(0).dtype + assert dtypes["indexing"] == np.intp == np.argmax(np.zeros(10)).dtype + + with pytest.raises(ValueError, match="Device not understood"): + info.default_dtypes(device="gpu") + + +def test_dtypes_all(): + dtypes = info.dtypes() + assert dtypes == { + "bool": np.bool_, + "int8": np.int8, + "int16": np.int16, + "int32": np.int32, + "int64": np.int64, + "uint8": np.uint8, + "uint16": np.uint16, + "uint32": np.uint32, + "uint64": np.uint64, + "float32": np.float32, + "float64": np.float64, + "complex64": np.complex64, + "complex128": np.complex128, + } + + +dtype_categories = { + "bool": {"bool": np.bool_}, + "signed integer": { + "int8": np.int8, + "int16": np.int16, + "int32": np.int32, + "int64": np.int64, + }, + "unsigned integer": { + "uint8": np.uint8, + "uint16": np.uint16, + "uint32": np.uint32, + "uint64": np.uint64, + }, + "integral": ("signed integer", "unsigned integer"), + "real floating": {"float32": np.float32, "float64": np.float64}, + "complex floating": {"complex64": np.complex64, "complex128": + np.complex128}, + "numeric": ("integral", "real floating", "complex floating"), +} + + +@pytest.mark.parametrize("kind", dtype_categories) +def test_dtypes_kind(kind): + expected = dtype_categories[kind] + if isinstance(expected, tuple): + assert info.dtypes(kind=kind) == info.dtypes(kind=expected) + else: + assert info.dtypes(kind=kind) == expected + + +def test_dtypes_tuple(): + dtypes = info.dtypes(kind=("bool", "integral")) + assert dtypes == { + "bool": np.bool_, + "int8": np.int8, + "int16": np.int16, + "int32": np.int32, + "int64": np.int64, + "uint8": np.uint8, + "uint16": np.uint16, + "uint32": np.uint32, + "uint64": np.uint64, + } + + +def test_dtypes_invalid_kind(): + with pytest.raises(ValueError, match="unsupported kind"): + info.dtypes(kind="invalid") + + +def test_dtypes_invalid_device(): + with pytest.raises(ValueError, match="Device not understood"): + info.dtypes(device="gpu") + + +def test_devices(): + assert info.devices() == ["cpu"] diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_array_coercion.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_array_coercion.py new file mode 100644 index 0000000..883aee6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_array_coercion.py @@ -0,0 +1,911 @@ +""" +Tests for array coercion, mainly through testing `np.array` results directly. +Note that other such tests exist, e.g., in `test_api.py` and many corner-cases +are tested (sometimes indirectly) elsewhere. +""" + +from itertools import permutations, product + +import numpy._core._multiarray_umath as ncu +import pytest +from numpy._core._rational_tests import rational +from pytest import param + +import numpy as np +from numpy.testing import IS_64BIT, IS_PYPY, assert_array_equal + + +def arraylikes(): + """ + Generator for functions converting an array into various array-likes. + If full is True (default) it includes array-likes not capable of handling + all dtypes. + """ + # base array: + def ndarray(a): + return a + + yield param(ndarray, id="ndarray") + + # subclass: + class MyArr(np.ndarray): + pass + + def subclass(a): + return a.view(MyArr) + + yield subclass + + class _SequenceLike: + # Older NumPy versions, sometimes cared whether a protocol array was + # also _SequenceLike. This shouldn't matter, but keep it for now + # for __array__ and not the others. + def __len__(self): + raise TypeError + + def __getitem__(self, _, /): + raise TypeError + + # Array-interface + class ArrayDunder(_SequenceLike): + def __init__(self, a): + self.a = a + + def __array__(self, dtype=None, copy=None): + if dtype is None: + return self.a + return self.a.astype(dtype) + + yield param(ArrayDunder, id="__array__") + + # memory-view + yield param(memoryview, id="memoryview") + + # Array-interface + class ArrayInterface: + def __init__(self, a): + self.a = a # need to hold on to keep interface valid + self.__array_interface__ = a.__array_interface__ + + yield param(ArrayInterface, id="__array_interface__") + + # Array-Struct + class ArrayStruct: + def __init__(self, a): + self.a = a # need to hold on to keep struct valid + self.__array_struct__ = a.__array_struct__ + + yield param(ArrayStruct, id="__array_struct__") + + +def scalar_instances(times=True, extended_precision=True, user_dtype=True): + # Hard-coded list of scalar instances. + # Floats: + yield param(np.sqrt(np.float16(5)), id="float16") + yield param(np.sqrt(np.float32(5)), id="float32") + yield param(np.sqrt(np.float64(5)), id="float64") + if extended_precision: + yield param(np.sqrt(np.longdouble(5)), id="longdouble") + + # Complex: + yield param(np.sqrt(np.complex64(2 + 3j)), id="complex64") + yield param(np.sqrt(np.complex128(2 + 3j)), id="complex128") + if extended_precision: + yield param(np.sqrt(np.clongdouble(2 + 3j)), id="clongdouble") + + # Bool: + # XFAIL: Bool should be added, but has some bad properties when it + # comes to strings, see also gh-9875 + # yield param(np.bool(0), id="bool") + + # Integers: + yield param(np.int8(2), id="int8") + yield param(np.int16(2), id="int16") + yield param(np.int32(2), id="int32") + yield param(np.int64(2), id="int64") + + yield param(np.uint8(2), id="uint8") + yield param(np.uint16(2), id="uint16") + yield param(np.uint32(2), id="uint32") + yield param(np.uint64(2), id="uint64") + + # Rational: + if user_dtype: + yield param(rational(1, 2), id="rational") + + # Cannot create a structured void scalar directly: + structured = np.array([(1, 3)], "i,i")[0] + assert isinstance(structured, np.void) + assert structured.dtype == np.dtype("i,i") + yield param(structured, id="structured") + + if times: + # Datetimes and timedelta + yield param(np.timedelta64(2), id="timedelta64[generic]") + yield param(np.timedelta64(23, "s"), id="timedelta64[s]") + yield param(np.timedelta64("NaT", "s"), id="timedelta64[s](NaT)") + + yield param(np.datetime64("NaT"), id="datetime64[generic](NaT)") + yield param(np.datetime64("2020-06-07 12:43", "ms"), id="datetime64[ms]") + + # Strings and unstructured void: + yield param(np.bytes_(b"1234"), id="bytes") + yield param(np.str_("2345"), id="unicode") + yield param(np.void(b"4321"), id="unstructured_void") + + +def is_parametric_dtype(dtype): + """Returns True if the dtype is a parametric legacy dtype (itemsize + is 0, or a datetime without units) + """ + if dtype.itemsize == 0: + return True + if issubclass(dtype.type, (np.datetime64, np.timedelta64)): + if dtype.name.endswith("64"): + # Generic time units + return True + return False + + +class TestStringDiscovery: + @pytest.mark.parametrize("obj", + [object(), 1.2, 10**43, None, "string"], + ids=["object", "1.2", "10**43", "None", "string"]) + def test_basic_stringlength(self, obj): + length = len(str(obj)) + expected = np.dtype(f"S{length}") + + assert np.array(obj, dtype="S").dtype == expected + assert np.array([obj], dtype="S").dtype == expected + + # A nested array is also discovered correctly + arr = np.array(obj, dtype="O") + assert np.array(arr, dtype="S").dtype == expected + # Also if we use the dtype class + assert np.array(arr, dtype=type(expected)).dtype == expected + # Check that .astype() behaves identical + assert arr.astype("S").dtype == expected + # The DType class is accepted by `.astype()` + assert arr.astype(type(np.dtype("S"))).dtype == expected + + @pytest.mark.parametrize("obj", + [object(), 1.2, 10**43, None, "string"], + ids=["object", "1.2", "10**43", "None", "string"]) + def test_nested_arrays_stringlength(self, obj): + length = len(str(obj)) + expected = np.dtype(f"S{length}") + arr = np.array(obj, dtype="O") + assert np.array([arr, arr], dtype="S").dtype == expected + + @pytest.mark.parametrize("arraylike", arraylikes()) + def test_unpack_first_level(self, arraylike): + # We unpack exactly one level of array likes + obj = np.array([None]) + obj[0] = np.array(1.2) + # the length of the included item, not of the float dtype + length = len(str(obj[0])) + expected = np.dtype(f"S{length}") + + obj = arraylike(obj) + # casting to string usually calls str(obj) + arr = np.array([obj], dtype="S") + assert arr.shape == (1, 1) + assert arr.dtype == expected + + +class TestScalarDiscovery: + def test_void_special_case(self): + # Void dtypes with structures discover tuples as elements + arr = np.array((1, 2, 3), dtype="i,i,i") + assert arr.shape == () + arr = np.array([(1, 2, 3)], dtype="i,i,i") + assert arr.shape == (1,) + + def test_char_special_case(self): + arr = np.array("string", dtype="c") + assert arr.shape == (6,) + assert arr.dtype.char == "c" + arr = np.array(["string"], dtype="c") + assert arr.shape == (1, 6) + assert arr.dtype.char == "c" + + def test_char_special_case_deep(self): + # Check that the character special case errors correctly if the + # array is too deep: + nested = ["string"] # 2 dimensions (due to string being sequence) + for i in range(ncu.MAXDIMS - 2): + nested = [nested] + + arr = np.array(nested, dtype='c') + assert arr.shape == (1,) * (ncu.MAXDIMS - 1) + (6,) + with pytest.raises(ValueError): + np.array([nested], dtype="c") + + def test_unknown_object(self): + arr = np.array(object()) + assert arr.shape == () + assert arr.dtype == np.dtype("O") + + @pytest.mark.parametrize("scalar", scalar_instances()) + def test_scalar(self, scalar): + arr = np.array(scalar) + assert arr.shape == () + assert arr.dtype == scalar.dtype + + arr = np.array([[scalar, scalar]]) + assert arr.shape == (1, 2) + assert arr.dtype == scalar.dtype + + # Additionally to string this test also runs into a corner case + # with datetime promotion (the difference is the promotion order). + @pytest.mark.filterwarnings("ignore:Promotion of numbers:FutureWarning") + def test_scalar_promotion(self): + for sc1, sc2 in product(scalar_instances(), scalar_instances()): + sc1, sc2 = sc1.values[0], sc2.values[0] + # test all combinations: + try: + arr = np.array([sc1, sc2]) + except (TypeError, ValueError): + # The promotion between two times can fail + # XFAIL (ValueError): Some object casts are currently undefined + continue + assert arr.shape == (2,) + try: + dt1, dt2 = sc1.dtype, sc2.dtype + expected_dtype = np.promote_types(dt1, dt2) + assert arr.dtype == expected_dtype + except TypeError as e: + # Will currently always go to object dtype + assert arr.dtype == np.dtype("O") + + @pytest.mark.parametrize("scalar", scalar_instances()) + def test_scalar_coercion(self, scalar): + # This tests various scalar coercion paths, mainly for the numerical + # types. It includes some paths not directly related to `np.array`. + if isinstance(scalar, np.inexact): + # Ensure we have a full-precision number if available + scalar = type(scalar)((scalar * 2)**0.5) + + if type(scalar) is rational: + # Rational generally fails due to a missing cast. In the future + # object casts should automatically be defined based on `setitem`. + pytest.xfail("Rational to object cast is undefined currently.") + + # Use casting from object: + arr = np.array(scalar, dtype=object).astype(scalar.dtype) + + # Test various ways to create an array containing this scalar: + arr1 = np.array(scalar).reshape(1) + arr2 = np.array([scalar]) + arr3 = np.empty(1, dtype=scalar.dtype) + arr3[0] = scalar + arr4 = np.empty(1, dtype=scalar.dtype) + arr4[:] = [scalar] + # All of these methods should yield the same results + assert_array_equal(arr, arr1) + assert_array_equal(arr, arr2) + assert_array_equal(arr, arr3) + assert_array_equal(arr, arr4) + + @pytest.mark.xfail(IS_PYPY, reason="`int(np.complex128(3))` fails on PyPy") + @pytest.mark.filterwarnings("ignore::numpy.exceptions.ComplexWarning") + @pytest.mark.parametrize("cast_to", scalar_instances()) + def test_scalar_coercion_same_as_cast_and_assignment(self, cast_to): + """ + Test that in most cases: + * `np.array(scalar, dtype=dtype)` + * `np.empty((), dtype=dtype)[()] = scalar` + * `np.array(scalar).astype(dtype)` + should behave the same. The only exceptions are parametric dtypes + (mainly datetime/timedelta without unit) and void without fields. + """ + dtype = cast_to.dtype # use to parametrize only the target dtype + + for scalar in scalar_instances(times=False): + scalar = scalar.values[0] + + if dtype.type == np.void: + if scalar.dtype.fields is not None and dtype.fields is None: + # Here, coercion to "V6" works, but the cast fails. + # Since the types are identical, SETITEM takes care of + # this, but has different rules than the cast. + with pytest.raises(TypeError): + np.array(scalar).astype(dtype) + np.array(scalar, dtype=dtype) + np.array([scalar], dtype=dtype) + continue + + # The main test, we first try to use casting and if it succeeds + # continue below testing that things are the same, otherwise + # test that the alternative paths at least also fail. + try: + cast = np.array(scalar).astype(dtype) + except (TypeError, ValueError, RuntimeError): + # coercion should also raise (error type may change) + with pytest.raises(Exception): # noqa: B017 + np.array(scalar, dtype=dtype) + + if (isinstance(scalar, rational) and + np.issubdtype(dtype, np.signedinteger)): + return + + with pytest.raises(Exception): # noqa: B017 + np.array([scalar], dtype=dtype) + # assignment should also raise + res = np.zeros((), dtype=dtype) + with pytest.raises(Exception): # noqa: B017 + res[()] = scalar + + return + + # Non error path: + arr = np.array(scalar, dtype=dtype) + assert_array_equal(arr, cast) + # assignment behaves the same + ass = np.zeros((), dtype=dtype) + ass[()] = scalar + assert_array_equal(ass, cast) + + @pytest.mark.parametrize("pyscalar", [10, 10.32, 10.14j, 10**100]) + def test_pyscalar_subclasses(self, pyscalar): + """NumPy arrays are read/write which means that anything but invariant + behaviour is on thin ice. However, we currently are happy to discover + subclasses of Python float, int, complex the same as the base classes. + This should potentially be deprecated. + """ + class MyScalar(type(pyscalar)): + pass + + res = np.array(MyScalar(pyscalar)) + expected = np.array(pyscalar) + assert_array_equal(res, expected) + + @pytest.mark.parametrize("dtype_char", np.typecodes["All"]) + def test_default_dtype_instance(self, dtype_char): + if dtype_char in "SU": + dtype = np.dtype(dtype_char + "1") + elif dtype_char == "V": + # Legacy behaviour was to use V8. The reason was float64 being the + # default dtype and that having 8 bytes. + dtype = np.dtype("V8") + else: + dtype = np.dtype(dtype_char) + + discovered_dtype, _ = ncu._discover_array_parameters([], type(dtype)) + + assert discovered_dtype == dtype + assert discovered_dtype.itemsize == dtype.itemsize + + @pytest.mark.parametrize("dtype", np.typecodes["Integer"]) + @pytest.mark.parametrize(["scalar", "error"], + [(np.float64(np.nan), ValueError), + (np.array(-1).astype(np.ulonglong)[()], OverflowError)]) + def test_scalar_to_int_coerce_does_not_cast(self, dtype, scalar, error): + """ + Signed integers are currently different in that they do not cast other + NumPy scalar, but instead use scalar.__int__(). The hardcoded + exception to this rule is `np.array(scalar, dtype=integer)`. + """ + dtype = np.dtype(dtype) + + # This is a special case using casting logic. It warns for the NaN + # but allows the cast (giving undefined behaviour). + with np.errstate(invalid="ignore"): + coerced = np.array(scalar, dtype=dtype) + cast = np.array(scalar).astype(dtype) + assert_array_equal(coerced, cast) + + # However these fail: + with pytest.raises(error): + np.array([scalar], dtype=dtype) + with pytest.raises(error): + cast[()] = scalar + + +class TestTimeScalars: + @pytest.mark.parametrize("dtype", [np.int64, np.float32]) + @pytest.mark.parametrize("scalar", + [param(np.timedelta64("NaT", "s"), id="timedelta64[s](NaT)"), + param(np.timedelta64(123, "s"), id="timedelta64[s]"), + param(np.datetime64("NaT", "generic"), id="datetime64[generic](NaT)"), + param(np.datetime64(1, "D"), id="datetime64[D]")],) + def test_coercion_basic(self, dtype, scalar): + # Note the `[scalar]` is there because np.array(scalar) uses stricter + # `scalar.__int__()` rules for backward compatibility right now. + arr = np.array(scalar, dtype=dtype) + cast = np.array(scalar).astype(dtype) + assert_array_equal(arr, cast) + + ass = np.ones((), dtype=dtype) + if issubclass(dtype, np.integer): + with pytest.raises(TypeError): + # raises, as would np.array([scalar], dtype=dtype), this is + # conversion from times, but behaviour of integers. + ass[()] = scalar + else: + ass[()] = scalar + assert_array_equal(ass, cast) + + @pytest.mark.parametrize("dtype", [np.int64, np.float32]) + @pytest.mark.parametrize("scalar", + [param(np.timedelta64(123, "ns"), id="timedelta64[ns]"), + param(np.timedelta64(12, "generic"), id="timedelta64[generic]")]) + def test_coercion_timedelta_convert_to_number(self, dtype, scalar): + # Only "ns" and "generic" timedeltas can be converted to numbers + # so these are slightly special. + arr = np.array(scalar, dtype=dtype) + cast = np.array(scalar).astype(dtype) + ass = np.ones((), dtype=dtype) + ass[()] = scalar # raises, as would np.array([scalar], dtype=dtype) + + assert_array_equal(arr, cast) + assert_array_equal(cast, cast) + + @pytest.mark.parametrize("dtype", ["S6", "U6"]) + @pytest.mark.parametrize(["val", "unit"], + [param(123, "s", id="[s]"), param(123, "D", id="[D]")]) + def test_coercion_assignment_datetime(self, val, unit, dtype): + # String from datetime64 assignment is currently special cased to + # never use casting. This is because casting will error in this + # case, and traditionally in most cases the behaviour is maintained + # like this. (`np.array(scalar, dtype="U6")` would have failed before) + # TODO: This discrepancy _should_ be resolved, either by relaxing the + # cast, or by deprecating the first part. + scalar = np.datetime64(val, unit) + dtype = np.dtype(dtype) + cut_string = dtype.type(str(scalar)[:6]) + + arr = np.array(scalar, dtype=dtype) + assert arr[()] == cut_string + ass = np.ones((), dtype=dtype) + ass[()] = scalar + assert ass[()] == cut_string + + with pytest.raises(RuntimeError): + # However, unlike the above assignment using `str(scalar)[:6]` + # due to being handled by the string DType and not be casting + # the explicit cast fails: + np.array(scalar).astype(dtype) + + @pytest.mark.parametrize(["val", "unit"], + [param(123, "s", id="[s]"), param(123, "D", id="[D]")]) + def test_coercion_assignment_timedelta(self, val, unit): + scalar = np.timedelta64(val, unit) + + # Unlike datetime64, timedelta allows the unsafe cast: + np.array(scalar, dtype="S6") + cast = np.array(scalar).astype("S6") + ass = np.ones((), dtype="S6") + ass[()] = scalar + expected = scalar.astype("S")[:6] + assert cast[()] == expected + assert ass[()] == expected + +class TestNested: + def test_nested_simple(self): + initial = [1.2] + nested = initial + for i in range(ncu.MAXDIMS - 1): + nested = [nested] + + arr = np.array(nested, dtype="float64") + assert arr.shape == (1,) * ncu.MAXDIMS + with pytest.raises(ValueError): + np.array([nested], dtype="float64") + + with pytest.raises(ValueError, match=".*would exceed the maximum"): + np.array([nested]) # user must ask for `object` explicitly + + arr = np.array([nested], dtype=object) + assert arr.dtype == np.dtype("O") + assert arr.shape == (1,) * ncu.MAXDIMS + assert arr.item() is initial + + def test_pathological_self_containing(self): + # Test that this also works for two nested sequences + l = [] + l.append(l) + arr = np.array([l, l, l], dtype=object) + assert arr.shape == (3,) + (1,) * (ncu.MAXDIMS - 1) + + # Also check a ragged case: + arr = np.array([l, [None], l], dtype=object) + assert arr.shape == (3, 1) + + @pytest.mark.parametrize("arraylike", arraylikes()) + def test_nested_arraylikes(self, arraylike): + # We try storing an array like into an array, but the array-like + # will have too many dimensions. This means the shape discovery + # decides that the array-like must be treated as an object (a special + # case of ragged discovery). The result will be an array with one + # dimension less than the maximum dimensions, and the array being + # assigned to it (which does work for object or if `float(arraylike)` + # works). + initial = arraylike(np.ones((1, 1))) + + nested = initial + for i in range(ncu.MAXDIMS - 1): + nested = [nested] + + with pytest.raises(ValueError, match=".*would exceed the maximum"): + # It will refuse to assign the array into + np.array(nested, dtype="float64") + + # If this is object, we end up assigning a (1, 1) array into (1,) + # (due to running out of dimensions), this is currently supported but + # a special case which is not ideal. + arr = np.array(nested, dtype=object) + assert arr.shape == (1,) * ncu.MAXDIMS + assert arr.item() == np.array(initial).item() + + @pytest.mark.parametrize("arraylike", arraylikes()) + def test_uneven_depth_ragged(self, arraylike): + arr = np.arange(4).reshape((2, 2)) + arr = arraylike(arr) + + # Array is ragged in the second dimension already: + out = np.array([arr, [arr]], dtype=object) + assert out.shape == (2,) + assert out[0] is arr + assert type(out[1]) is list + + # Array is ragged in the third dimension: + with pytest.raises(ValueError): + # This is a broadcast error during assignment, because + # the array shape would be (2, 2, 2) but `arr[0, 0] = arr` fails. + np.array([arr, [arr, arr]], dtype=object) + + def test_empty_sequence(self): + arr = np.array([[], [1], [[1]]], dtype=object) + assert arr.shape == (3,) + + # The empty sequence stops further dimension discovery, so the + # result shape will be (0,) which leads to an error during: + with pytest.raises(ValueError): + np.array([[], np.empty((0, 1))], dtype=object) + + def test_array_of_different_depths(self): + # When multiple arrays (or array-likes) are included in a + # sequences and have different depth, we currently discover + # as many dimensions as they share. (see also gh-17224) + arr = np.zeros((3, 2)) + mismatch_first_dim = np.zeros((1, 2)) + mismatch_second_dim = np.zeros((3, 3)) + + dtype, shape = ncu._discover_array_parameters( + [arr, mismatch_second_dim], dtype=np.dtype("O")) + assert shape == (2, 3) + + dtype, shape = ncu._discover_array_parameters( + [arr, mismatch_first_dim], dtype=np.dtype("O")) + assert shape == (2,) + # The second case is currently supported because the arrays + # can be stored as objects: + res = np.asarray([arr, mismatch_first_dim], dtype=np.dtype("O")) + assert res[0] is arr + assert res[1] is mismatch_first_dim + + +class TestBadSequences: + # These are tests for bad objects passed into `np.array`, in general + # these have undefined behaviour. In the old code they partially worked + # when now they will fail. We could (and maybe should) create a copy + # of all sequences to be safe against bad-actors. + + def test_growing_list(self): + # List to coerce, `mylist` will append to it during coercion + obj = [] + + class mylist(list): + def __len__(self): + obj.append([1, 2]) + return super().__len__() + + obj.append(mylist([1, 2])) + + with pytest.raises(RuntimeError): + np.array(obj) + + # Note: We do not test a shrinking list. These do very evil things + # and the only way to fix them would be to copy all sequences. + # (which may be a real option in the future). + + def test_mutated_list(self): + # List to coerce, `mylist` will mutate the first element + obj = [] + + class mylist(list): + def __len__(self): + obj[0] = [2, 3] # replace with a different list. + return super().__len__() + + obj.append([2, 3]) + obj.append(mylist([1, 2])) + # Does not crash: + np.array(obj) + + def test_replace_0d_array(self): + # List to coerce, `mylist` will mutate the first element + obj = [] + + class baditem: + def __len__(self): + obj[0][0] = 2 # replace with a different list. + raise ValueError("not actually a sequence!") + + def __getitem__(self, _, /): + pass + + # Runs into a corner case in the new code, the `array(2)` is cached + # so replacing it invalidates the cache. + obj.append([np.array(2), baditem()]) + with pytest.raises(RuntimeError): + np.array(obj) + + +class TestArrayLikes: + @pytest.mark.parametrize("arraylike", arraylikes()) + def test_0d_object_special_case(self, arraylike): + arr = np.array(0.) + obj = arraylike(arr) + # A single array-like is always converted: + res = np.array(obj, dtype=object) + assert_array_equal(arr, res) + + # But a single 0-D nested array-like never: + res = np.array([obj], dtype=object) + assert res[0] is obj + + @pytest.mark.parametrize("arraylike", arraylikes()) + @pytest.mark.parametrize("arr", [np.array(0.), np.arange(4)]) + def test_object_assignment_special_case(self, arraylike, arr): + obj = arraylike(arr) + empty = np.arange(1, dtype=object) + empty[:] = [obj] + assert empty[0] is obj + + def test_0d_generic_special_case(self): + class ArraySubclass(np.ndarray): + def __float__(self): + raise TypeError("e.g. quantities raise on this") + + arr = np.array(0.) + obj = arr.view(ArraySubclass) + res = np.array(obj) + # The subclass is simply cast: + assert_array_equal(arr, res) + + # If the 0-D array-like is included, __float__ is currently + # guaranteed to be used. We may want to change that, quantities + # and masked arrays half make use of this. + with pytest.raises(TypeError): + np.array([obj]) + + # The same holds for memoryview: + obj = memoryview(arr) + res = np.array(obj) + assert_array_equal(arr, res) + with pytest.raises(ValueError): + # The error type does not matter much here. + np.array([obj]) + + def test_arraylike_classes(self): + # The classes of array-likes should generally be acceptable to be + # stored inside a numpy (object) array. This tests all of the + # special attributes (since all are checked during coercion). + arr = np.array(np.int64) + assert arr[()] is np.int64 + arr = np.array([np.int64]) + assert arr[0] is np.int64 + + # This also works for properties/unbound methods: + class ArrayLike: + @property + def __array_interface__(self): + pass + + @property + def __array_struct__(self): + pass + + def __array__(self, dtype=None, copy=None): + pass + + arr = np.array(ArrayLike) + assert arr[()] is ArrayLike + arr = np.array([ArrayLike]) + assert arr[0] is ArrayLike + + @pytest.mark.skipif(not IS_64BIT, reason="Needs 64bit platform") + def test_too_large_array_error_paths(self): + """Test the error paths, including for memory leaks""" + arr = np.array(0, dtype="uint8") + # Guarantees that a contiguous copy won't work: + arr = np.broadcast_to(arr, 2**62) + + for i in range(5): + # repeat, to ensure caching cannot have an effect: + with pytest.raises(MemoryError): + np.array(arr) + with pytest.raises(MemoryError): + np.array([arr]) + + @pytest.mark.parametrize("attribute", + ["__array_interface__", "__array__", "__array_struct__"]) + @pytest.mark.parametrize("error", [RecursionError, MemoryError]) + def test_bad_array_like_attributes(self, attribute, error): + # RecursionError and MemoryError are considered fatal. All errors + # (except AttributeError) should probably be raised in the future, + # but shapely made use of it, so it will require a deprecation. + + class BadInterface: + def __getattr__(self, attr): + if attr == attribute: + raise error + super().__getattr__(attr) + + with pytest.raises(error): + np.array(BadInterface()) + + @pytest.mark.parametrize("error", [RecursionError, MemoryError]) + def test_bad_array_like_bad_length(self, error): + # RecursionError and MemoryError are considered "critical" in + # sequences. We could expand this more generally though. (NumPy 1.20) + class BadSequence: + def __len__(self): + raise error + + def __getitem__(self, _, /): + # must have getitem to be a Sequence + return 1 + + with pytest.raises(error): + np.array(BadSequence()) + + def test_array_interface_descr_optional(self): + # The descr should be optional regression test for gh-27249 + arr = np.ones(10, dtype="V10") + iface = arr.__array_interface__ + iface.pop("descr") + + class MyClass: + __array_interface__ = iface + + assert_array_equal(np.asarray(MyClass), arr) + + +class TestAsArray: + """Test expected behaviors of ``asarray``.""" + + def test_dtype_identity(self): + """Confirm the intended behavior for *dtype* kwarg. + + The result of ``asarray()`` should have the dtype provided through the + keyword argument, when used. This forces unique array handles to be + produced for unique np.dtype objects, but (for equivalent dtypes), the + underlying data (the base object) is shared with the original array + object. + + Ref https://github.com/numpy/numpy/issues/1468 + """ + int_array = np.array([1, 2, 3], dtype='i') + assert np.asarray(int_array) is int_array + + # The character code resolves to the singleton dtype object provided + # by the numpy package. + assert np.asarray(int_array, dtype='i') is int_array + + # Derive a dtype from n.dtype('i'), but add a metadata object to force + # the dtype to be distinct. + unequal_type = np.dtype('i', metadata={'spam': True}) + annotated_int_array = np.asarray(int_array, dtype=unequal_type) + assert annotated_int_array is not int_array + assert annotated_int_array.base is int_array + # Create an equivalent descriptor with a new and distinct dtype + # instance. + equivalent_requirement = np.dtype('i', metadata={'spam': True}) + annotated_int_array_alt = np.asarray(annotated_int_array, + dtype=equivalent_requirement) + assert unequal_type == equivalent_requirement + assert unequal_type is not equivalent_requirement + assert annotated_int_array_alt is not annotated_int_array + assert annotated_int_array_alt.dtype is equivalent_requirement + + # Check the same logic for a pair of C types whose equivalence may vary + # between computing environments. + # Find an equivalent pair. + integer_type_codes = ('i', 'l', 'q') + integer_dtypes = [np.dtype(code) for code in integer_type_codes] + typeA = None + typeB = None + for typeA, typeB in permutations(integer_dtypes, r=2): + if typeA == typeB: + assert typeA is not typeB + break + assert isinstance(typeA, np.dtype) and isinstance(typeB, np.dtype) + + # These ``asarray()`` calls may produce a new view or a copy, + # but never the same object. + long_int_array = np.asarray(int_array, dtype='l') + long_long_int_array = np.asarray(int_array, dtype='q') + assert long_int_array is not int_array + assert long_long_int_array is not int_array + assert np.asarray(long_int_array, dtype='q') is not long_int_array + array_a = np.asarray(int_array, dtype=typeA) + assert typeA == typeB + assert typeA is not typeB + assert array_a.dtype is typeA + assert array_a is not np.asarray(array_a, dtype=typeB) + assert np.asarray(array_a, dtype=typeB).dtype is typeB + assert array_a is np.asarray(array_a, dtype=typeB).base + + +class TestSpecialAttributeLookupFailure: + # An exception was raised while fetching the attribute + + class WeirdArrayLike: + @property + def __array__(self, dtype=None, copy=None): # noqa: PLR0206 + raise RuntimeError("oops!") + + class WeirdArrayInterface: + @property + def __array_interface__(self): + raise RuntimeError("oops!") + + def test_deprecated(self): + with pytest.raises(RuntimeError): + np.array(self.WeirdArrayLike()) + with pytest.raises(RuntimeError): + np.array(self.WeirdArrayInterface()) + + +def test_subarray_from_array_construction(): + # Arrays are more complex, since they "broadcast" on success: + arr = np.array([1, 2]) + + res = arr.astype("2i") + assert_array_equal(res, [[1, 1], [2, 2]]) + + res = np.array(arr, dtype="(2,)i") + + assert_array_equal(res, [[1, 1], [2, 2]]) + + res = np.array([[(1,), (2,)], arr], dtype="2i") + assert_array_equal(res, [[[1, 1], [2, 2]], [[1, 1], [2, 2]]]) + + # Also try a multi-dimensional example: + arr = np.arange(5 * 2).reshape(5, 2) + expected = np.broadcast_to(arr[:, :, np.newaxis, np.newaxis], (5, 2, 2, 2)) + + res = arr.astype("(2,2)f") + assert_array_equal(res, expected) + + res = np.array(arr, dtype="(2,2)f") + assert_array_equal(res, expected) + + +def test_empty_string(): + # Empty strings are unfortunately often converted to S1 and we need to + # make sure we are filling the S1 and not the (possibly) detected S0 + # result. This should likely just return S0 and if not maybe the decision + # to return S1 should be moved. + res = np.array([""] * 10, dtype="S") + assert_array_equal(res, np.array("\0", "S1")) + assert res.dtype == "S1" + + arr = np.array([""] * 10, dtype=object) + + res = arr.astype("S") + assert_array_equal(res, b"") + assert res.dtype == "S1" + + res = np.array(arr, dtype="S") + assert_array_equal(res, b"") + # TODO: This is arguably weird/wrong, but seems old: + assert res.dtype == f"S{np.dtype('O').itemsize}" + + res = np.array([[""] * 10, arr], dtype="S") + assert_array_equal(res, b"") + assert res.shape == (2, 10) + assert res.dtype == "S1" diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_array_interface.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_array_interface.py new file mode 100644 index 0000000..afb19f4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_array_interface.py @@ -0,0 +1,222 @@ +import sys +import sysconfig + +import pytest + +import numpy as np +from numpy.testing import IS_EDITABLE, IS_WASM, extbuild + + +@pytest.fixture +def get_module(tmp_path): + """ Some codes to generate data and manage temporary buffers use when + sharing with numpy via the array interface protocol. + """ + if sys.platform.startswith('cygwin'): + pytest.skip('link fails on cygwin') + if IS_WASM: + pytest.skip("Can't build module inside Wasm") + if IS_EDITABLE: + pytest.skip("Can't build module for editable install") + + prologue = ''' + #include + #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION + #include + #include + #include + + NPY_NO_EXPORT + void delete_array_struct(PyObject *cap) { + + /* get the array interface structure */ + PyArrayInterface *inter = (PyArrayInterface*) + PyCapsule_GetPointer(cap, NULL); + + /* get the buffer by which data was shared */ + double *ptr = (double*)PyCapsule_GetContext(cap); + + /* for the purposes of the regression test set the elements + to nan */ + for (npy_intp i = 0; i < inter->shape[0]; ++i) + ptr[i] = nan(""); + + /* free the shared buffer */ + free(ptr); + + /* free the array interface structure */ + free(inter->shape); + free(inter); + + fprintf(stderr, "delete_array_struct\\ncap = %ld inter = %ld" + " ptr = %ld\\n", (long)cap, (long)inter, (long)ptr); + } + ''' + + functions = [ + ("new_array_struct", "METH_VARARGS", """ + + long long n_elem = 0; + double value = 0.0; + + if (!PyArg_ParseTuple(args, "Ld", &n_elem, &value)) { + Py_RETURN_NONE; + } + + /* allocate and initialize the data to share with numpy */ + long long n_bytes = n_elem*sizeof(double); + double *data = (double*)malloc(n_bytes); + + if (!data) { + PyErr_Format(PyExc_MemoryError, + "Failed to malloc %lld bytes", n_bytes); + + Py_RETURN_NONE; + } + + for (long long i = 0; i < n_elem; ++i) { + data[i] = value; + } + + /* calculate the shape and stride */ + int nd = 1; + + npy_intp *ss = (npy_intp*)malloc(2*nd*sizeof(npy_intp)); + npy_intp *shape = ss; + npy_intp *stride = ss + nd; + + shape[0] = n_elem; + stride[0] = sizeof(double); + + /* construct the array interface */ + PyArrayInterface *inter = (PyArrayInterface*) + malloc(sizeof(PyArrayInterface)); + + memset(inter, 0, sizeof(PyArrayInterface)); + + inter->two = 2; + inter->nd = nd; + inter->typekind = 'f'; + inter->itemsize = sizeof(double); + inter->shape = shape; + inter->strides = stride; + inter->data = data; + inter->flags = NPY_ARRAY_WRITEABLE | NPY_ARRAY_NOTSWAPPED | + NPY_ARRAY_ALIGNED | NPY_ARRAY_C_CONTIGUOUS; + + /* package into a capsule */ + PyObject *cap = PyCapsule_New(inter, NULL, delete_array_struct); + + /* save the pointer to the data */ + PyCapsule_SetContext(cap, data); + + fprintf(stderr, "new_array_struct\\ncap = %ld inter = %ld" + " ptr = %ld\\n", (long)cap, (long)inter, (long)data); + + return cap; + """) + ] + + more_init = "import_array();" + + try: + import array_interface_testing + return array_interface_testing + except ImportError: + pass + + # if it does not exist, build and load it + if sysconfig.get_platform() == "win-arm64": + pytest.skip("Meson unable to find MSVC linker on win-arm64") + return extbuild.build_and_import_extension('array_interface_testing', + functions, + prologue=prologue, + include_dirs=[np.get_include()], + build_dir=tmp_path, + more_init=more_init) + + +@pytest.mark.slow +def test_cstruct(get_module): + + class data_source: + """ + This class is for testing the timing of the PyCapsule destructor + invoked when numpy release its reference to the shared data as part of + the numpy array interface protocol. If the PyCapsule destructor is + called early the shared data is freed and invalid memory accesses will + occur. + """ + + def __init__(self, size, value): + self.size = size + self.value = value + + @property + def __array_struct__(self): + return get_module.new_array_struct(self.size, self.value) + + # write to the same stream as the C code + stderr = sys.__stderr__ + + # used to validate the shared data. + expected_value = -3.1415 + multiplier = -10000.0 + + # create some data to share with numpy via the array interface + # assign the data an expected value. + stderr.write(' ---- create an object to share data ---- \n') + buf = data_source(256, expected_value) + stderr.write(' ---- OK!\n\n') + + # share the data + stderr.write(' ---- share data via the array interface protocol ---- \n') + arr = np.array(buf, copy=False) + stderr.write(f'arr.__array_interface___ = {str(arr.__array_interface__)}\n') + stderr.write(f'arr.base = {str(arr.base)}\n') + stderr.write(' ---- OK!\n\n') + + # release the source of the shared data. this will not release the data + # that was shared with numpy, that is done in the PyCapsule destructor. + stderr.write(' ---- destroy the object that shared data ---- \n') + buf = None + stderr.write(' ---- OK!\n\n') + + # check that we got the expected data. If the PyCapsule destructor we + # defined was prematurely called then this test will fail because our + # destructor sets the elements of the array to NaN before free'ing the + # buffer. Reading the values here may also cause a SEGV + assert np.allclose(arr, expected_value) + + # read the data. If the PyCapsule destructor we defined was prematurely + # called then reading the values here may cause a SEGV and will be reported + # as invalid reads by valgrind + stderr.write(' ---- read shared data ---- \n') + stderr.write(f'arr = {str(arr)}\n') + stderr.write(' ---- OK!\n\n') + + # write to the shared buffer. If the shared data was prematurely deleted + # this will may cause a SEGV and valgrind will report invalid writes + stderr.write(' ---- modify shared data ---- \n') + arr *= multiplier + expected_value *= multiplier + stderr.write(f'arr.__array_interface___ = {str(arr.__array_interface__)}\n') + stderr.write(f'arr.base = {str(arr.base)}\n') + stderr.write(' ---- OK!\n\n') + + # read the data. If the shared data was prematurely deleted this + # will may cause a SEGV and valgrind will report invalid reads + stderr.write(' ---- read modified shared data ---- \n') + stderr.write(f'arr = {str(arr)}\n') + stderr.write(' ---- OK!\n\n') + + # check that we got the expected data. If the PyCapsule destructor we + # defined was prematurely called then this test will fail because our + # destructor sets the elements of the array to NaN before free'ing the + # buffer. Reading the values here may also cause a SEGV + assert np.allclose(arr, expected_value) + + # free the shared data, the PyCapsule destructor should run here + stderr.write(' ---- free shared data ---- \n') + arr = None + stderr.write(' ---- OK!\n\n') diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_arraymethod.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_arraymethod.py new file mode 100644 index 0000000..d8baef7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_arraymethod.py @@ -0,0 +1,84 @@ +""" +This file tests the generic aspects of ArrayMethod. At the time of writing +this is private API, but when added, public API may be added here. +""" + +import types +from typing import Any + +import pytest +from numpy._core._multiarray_umath import _get_castingimpl as get_castingimpl + +import numpy as np + + +class TestResolveDescriptors: + # Test mainly error paths of the resolve_descriptors function, + # note that the `casting_unittests` tests exercise this non-error paths. + + # Casting implementations are the main/only current user: + method = get_castingimpl(type(np.dtype("d")), type(np.dtype("f"))) + + @pytest.mark.parametrize("args", [ + (True,), # Not a tuple. + ((None,)), # Too few elements + ((None, None, None),), # Too many + ((None, None),), # Input dtype is None, which is invalid. + ((np.dtype("d"), True),), # Output dtype is not a dtype + ((np.dtype("f"), None),), # Input dtype does not match method + ]) + def test_invalid_arguments(self, args): + with pytest.raises(TypeError): + self.method._resolve_descriptors(*args) + + +class TestSimpleStridedCall: + # Test mainly error paths of the resolve_descriptors function, + # note that the `casting_unittests` tests exercise this non-error paths. + + # Casting implementations are the main/only current user: + method = get_castingimpl(type(np.dtype("d")), type(np.dtype("f"))) + + @pytest.mark.parametrize(["args", "error"], [ + ((True,), TypeError), # Not a tuple + (((None,),), TypeError), # Too few elements + ((None, None), TypeError), # Inputs are not arrays. + (((None, None, None),), TypeError), # Too many + (((np.arange(3), np.arange(3)),), TypeError), # Incorrect dtypes + (((np.ones(3, dtype=">d"), np.ones(3, dtype=" None: + """Test `ndarray.__class_getitem__`.""" + alias = cls[Any, Any] + assert isinstance(alias, types.GenericAlias) + assert alias.__origin__ is cls + + @pytest.mark.parametrize("arg_len", range(4)) + def test_subscript_tup(self, cls: type[np.ndarray], arg_len: int) -> None: + arg_tup = (Any,) * arg_len + if arg_len in (1, 2): + assert cls[arg_tup] + else: + match = f"Too {'few' if arg_len == 0 else 'many'} arguments" + with pytest.raises(TypeError, match=match): + cls[arg_tup] diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_arrayobject.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_arrayobject.py new file mode 100644 index 0000000..ffa1ba0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_arrayobject.py @@ -0,0 +1,75 @@ +import pytest + +import numpy as np +from numpy.testing import assert_array_equal + + +def test_matrix_transpose_raises_error_for_1d(): + msg = "matrix transpose with ndim < 2 is undefined" + arr = np.arange(48) + with pytest.raises(ValueError, match=msg): + arr.mT + + +def test_matrix_transpose_equals_transpose_2d(): + arr = np.arange(48).reshape((6, 8)) + assert_array_equal(arr.T, arr.mT) + + +ARRAY_SHAPES_TO_TEST = ( + (5, 2), + (5, 2, 3), + (5, 2, 3, 4), +) + + +@pytest.mark.parametrize("shape", ARRAY_SHAPES_TO_TEST) +def test_matrix_transpose_equals_swapaxes(shape): + num_of_axes = len(shape) + vec = np.arange(shape[-1]) + arr = np.broadcast_to(vec, shape) + tgt = np.swapaxes(arr, num_of_axes - 2, num_of_axes - 1) + mT = arr.mT + assert_array_equal(tgt, mT) + + +class MyArr(np.ndarray): + def __array_wrap__(self, arr, context=None, return_scalar=None): + return super().__array_wrap__(arr, context, return_scalar) + + +class MyArrNoWrap(np.ndarray): + pass + + +@pytest.mark.parametrize("subclass_self", [np.ndarray, MyArr, MyArrNoWrap]) +@pytest.mark.parametrize("subclass_arr", [np.ndarray, MyArr, MyArrNoWrap]) +def test_array_wrap(subclass_self, subclass_arr): + # NumPy should allow `__array_wrap__` to be called on arrays, it's logic + # is designed in a way that: + # + # * Subclasses never return scalars by default (to preserve their + # information). They can choose to if they wish. + # * NumPy returns scalars, if `return_scalar` is passed as True to allow + # manual calls to `arr.__array_wrap__` to do the right thing. + # * The type of the input should be ignored (it should be a base-class + # array, but I am not sure this is guaranteed). + + arr = np.arange(3).view(subclass_self) + + arr0d = np.array(3, dtype=np.int8).view(subclass_arr) + # With third argument True, ndarray allows "decay" to scalar. + # (I don't think NumPy would pass `None`, but it seems clear to support) + if subclass_self is np.ndarray: + assert type(arr.__array_wrap__(arr0d, None, True)) is np.int8 + else: + assert type(arr.__array_wrap__(arr0d, None, True)) is type(arr) + + # Otherwise, result should be viewed as the subclass + assert type(arr.__array_wrap__(arr0d)) is type(arr) + assert type(arr.__array_wrap__(arr0d, None, None)) is type(arr) + assert type(arr.__array_wrap__(arr0d, None, False)) is type(arr) + + # Non 0-D array can't be converted to scalar, so we ignore that + arr1d = np.array([3], dtype=np.int8).view(subclass_arr) + assert type(arr.__array_wrap__(arr1d, None, True)) is type(arr) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_arrayprint.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_arrayprint.py new file mode 100644 index 0000000..1fd4ac2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_arrayprint.py @@ -0,0 +1,1328 @@ +import gc +import sys +import textwrap + +import pytest +from hypothesis import given +from hypothesis.extra import numpy as hynp + +import numpy as np +from numpy._core.arrayprint import _typelessdata +from numpy.testing import ( + HAS_REFCOUNT, + IS_WASM, + assert_, + assert_equal, + assert_raises, + assert_raises_regex, + assert_warns, +) +from numpy.testing._private.utils import run_threaded + + +class TestArrayRepr: + def test_nan_inf(self): + x = np.array([np.nan, np.inf]) + assert_equal(repr(x), 'array([nan, inf])') + + def test_subclass(self): + class sub(np.ndarray): + pass + + # one dimensional + x1d = np.array([1, 2]).view(sub) + assert_equal(repr(x1d), 'sub([1, 2])') + + # two dimensional + x2d = np.array([[1, 2], [3, 4]]).view(sub) + assert_equal(repr(x2d), + 'sub([[1, 2],\n' + ' [3, 4]])') + + # two dimensional with flexible dtype + xstruct = np.ones((2, 2), dtype=[('a', ' 1) + y = sub(None) + x[()] = y + y[()] = x + assert_equal(repr(x), + 'sub(sub(sub(..., dtype=object), dtype=object), dtype=object)') + assert_equal(str(x), '...') + x[()] = 0 # resolve circular references for garbage collector + + # nested 0d-subclass-object + x = sub(None) + x[()] = sub(None) + assert_equal(repr(x), 'sub(sub(None, dtype=object), dtype=object)') + assert_equal(str(x), 'None') + + # gh-10663 + class DuckCounter(np.ndarray): + def __getitem__(self, item): + result = super().__getitem__(item) + if not isinstance(result, DuckCounter): + result = result[...].view(DuckCounter) + return result + + def to_string(self): + return {0: 'zero', 1: 'one', 2: 'two'}.get(self.item(), 'many') + + def __str__(self): + if self.shape == (): + return self.to_string() + else: + fmt = {'all': lambda x: x.to_string()} + return np.array2string(self, formatter=fmt) + + dc = np.arange(5).view(DuckCounter) + assert_equal(str(dc), "[zero one two many many]") + assert_equal(str(dc[0]), "zero") + + def test_self_containing(self): + arr0d = np.array(None) + arr0d[()] = arr0d + assert_equal(repr(arr0d), + 'array(array(..., dtype=object), dtype=object)') + arr0d[()] = 0 # resolve recursion for garbage collector + + arr1d = np.array([None, None]) + arr1d[1] = arr1d + assert_equal(repr(arr1d), + 'array([None, array(..., dtype=object)], dtype=object)') + arr1d[1] = 0 # resolve recursion for garbage collector + + first = np.array(None) + second = np.array(None) + first[()] = second + second[()] = first + assert_equal(repr(first), + 'array(array(array(..., dtype=object), dtype=object), dtype=object)') + first[()] = 0 # resolve circular references for garbage collector + + def test_containing_list(self): + # printing square brackets directly would be ambiguous + arr1d = np.array([None, None]) + arr1d[0] = [1, 2] + arr1d[1] = [3] + assert_equal(repr(arr1d), + 'array([list([1, 2]), list([3])], dtype=object)') + + def test_void_scalar_recursion(self): + # gh-9345 + repr(np.void(b'test')) # RecursionError ? + + def test_fieldless_structured(self): + # gh-10366 + no_fields = np.dtype([]) + arr_no_fields = np.empty(4, dtype=no_fields) + assert_equal(repr(arr_no_fields), 'array([(), (), (), ()], dtype=[])') + + +class TestComplexArray: + def test_str(self): + rvals = [0, 1, -1, np.inf, -np.inf, np.nan] + cvals = [complex(rp, ip) for rp in rvals for ip in rvals] + dtypes = [np.complex64, np.cdouble, np.clongdouble] + actual = [str(np.array([c], dt)) for c in cvals for dt in dtypes] + wanted = [ + '[0.+0.j]', '[0.+0.j]', '[0.+0.j]', + '[0.+1.j]', '[0.+1.j]', '[0.+1.j]', + '[0.-1.j]', '[0.-1.j]', '[0.-1.j]', + '[0.+infj]', '[0.+infj]', '[0.+infj]', + '[0.-infj]', '[0.-infj]', '[0.-infj]', + '[0.+nanj]', '[0.+nanj]', '[0.+nanj]', + '[1.+0.j]', '[1.+0.j]', '[1.+0.j]', + '[1.+1.j]', '[1.+1.j]', '[1.+1.j]', + '[1.-1.j]', '[1.-1.j]', '[1.-1.j]', + '[1.+infj]', '[1.+infj]', '[1.+infj]', + '[1.-infj]', '[1.-infj]', '[1.-infj]', + '[1.+nanj]', '[1.+nanj]', '[1.+nanj]', + '[-1.+0.j]', '[-1.+0.j]', '[-1.+0.j]', + '[-1.+1.j]', '[-1.+1.j]', '[-1.+1.j]', + '[-1.-1.j]', '[-1.-1.j]', '[-1.-1.j]', + '[-1.+infj]', '[-1.+infj]', '[-1.+infj]', + '[-1.-infj]', '[-1.-infj]', '[-1.-infj]', + '[-1.+nanj]', '[-1.+nanj]', '[-1.+nanj]', + '[inf+0.j]', '[inf+0.j]', '[inf+0.j]', + '[inf+1.j]', '[inf+1.j]', '[inf+1.j]', + '[inf-1.j]', '[inf-1.j]', '[inf-1.j]', + '[inf+infj]', '[inf+infj]', '[inf+infj]', + '[inf-infj]', '[inf-infj]', '[inf-infj]', + '[inf+nanj]', '[inf+nanj]', '[inf+nanj]', + '[-inf+0.j]', '[-inf+0.j]', '[-inf+0.j]', + '[-inf+1.j]', '[-inf+1.j]', '[-inf+1.j]', + '[-inf-1.j]', '[-inf-1.j]', '[-inf-1.j]', + '[-inf+infj]', '[-inf+infj]', '[-inf+infj]', + '[-inf-infj]', '[-inf-infj]', '[-inf-infj]', + '[-inf+nanj]', '[-inf+nanj]', '[-inf+nanj]', + '[nan+0.j]', '[nan+0.j]', '[nan+0.j]', + '[nan+1.j]', '[nan+1.j]', '[nan+1.j]', + '[nan-1.j]', '[nan-1.j]', '[nan-1.j]', + '[nan+infj]', '[nan+infj]', '[nan+infj]', + '[nan-infj]', '[nan-infj]', '[nan-infj]', + '[nan+nanj]', '[nan+nanj]', '[nan+nanj]'] + + for res, val in zip(actual, wanted): + assert_equal(res, val) + +class TestArray2String: + def test_basic(self): + """Basic test of array2string.""" + a = np.arange(3) + assert_(np.array2string(a) == '[0 1 2]') + assert_(np.array2string(a, max_line_width=4, legacy='1.13') == '[0 1\n 2]') + assert_(np.array2string(a, max_line_width=4) == '[0\n 1\n 2]') + + def test_unexpected_kwarg(self): + # ensure than an appropriate TypeError + # is raised when array2string receives + # an unexpected kwarg + + with assert_raises_regex(TypeError, 'nonsense'): + np.array2string(np.array([1, 2, 3]), + nonsense=None) + + def test_format_function(self): + """Test custom format function for each element in array.""" + def _format_function(x): + if np.abs(x) < 1: + return '.' + elif np.abs(x) < 2: + return 'o' + else: + return 'O' + + x = np.arange(3) + x_hex = "[0x0 0x1 0x2]" + x_oct = "[0o0 0o1 0o2]" + assert_(np.array2string(x, formatter={'all': _format_function}) == + "[. o O]") + assert_(np.array2string(x, formatter={'int_kind': _format_function}) == + "[. o O]") + assert_(np.array2string(x, formatter={'all': lambda x: f"{x:.4f}"}) == + "[0.0000 1.0000 2.0000]") + assert_equal(np.array2string(x, formatter={'int': hex}), + x_hex) + assert_equal(np.array2string(x, formatter={'int': oct}), + x_oct) + + x = np.arange(3.) + assert_(np.array2string(x, formatter={'float_kind': lambda x: f"{x:.2f}"}) == + "[0.00 1.00 2.00]") + assert_(np.array2string(x, formatter={'float': lambda x: f"{x:.2f}"}) == + "[0.00 1.00 2.00]") + + s = np.array(['abc', 'def']) + assert_(np.array2string(s, formatter={'numpystr': lambda s: s * 2}) == + '[abcabc defdef]') + + def test_structure_format_mixed(self): + dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))]) + x = np.array([('Sarah', (8.0, 7.0)), ('John', (6.0, 7.0))], dtype=dt) + assert_equal(np.array2string(x), + "[('Sarah', [8., 7.]) ('John', [6., 7.])]") + + np.set_printoptions(legacy='1.13') + try: + # for issue #5692 + A = np.zeros(shape=10, dtype=[("A", "M8[s]")]) + A[5:].fill(np.datetime64('NaT')) + assert_equal( + np.array2string(A), + textwrap.dedent("""\ + [('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) + ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('NaT',) ('NaT',) + ('NaT',) ('NaT',) ('NaT',)]""") + ) + finally: + np.set_printoptions(legacy=False) + + # same again, but with non-legacy behavior + assert_equal( + np.array2string(A), + textwrap.dedent("""\ + [('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) + ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) + ('1970-01-01T00:00:00',) ( 'NaT',) + ( 'NaT',) ( 'NaT',) + ( 'NaT',) ( 'NaT',)]""") + ) + + # and again, with timedeltas + A = np.full(10, 123456, dtype=[("A", "m8[s]")]) + A[5:].fill(np.datetime64('NaT')) + assert_equal( + np.array2string(A), + textwrap.dedent("""\ + [(123456,) (123456,) (123456,) (123456,) (123456,) ( 'NaT',) ( 'NaT',) + ( 'NaT',) ( 'NaT',) ( 'NaT',)]""") + ) + + def test_structure_format_int(self): + # See #8160 + struct_int = np.array([([1, -1],), ([123, 1],)], + dtype=[('B', 'i4', 2)]) + assert_equal(np.array2string(struct_int), + "[([ 1, -1],) ([123, 1],)]") + struct_2dint = np.array([([[0, 1], [2, 3]],), ([[12, 0], [0, 0]],)], + dtype=[('B', 'i4', (2, 2))]) + assert_equal(np.array2string(struct_2dint), + "[([[ 0, 1], [ 2, 3]],) ([[12, 0], [ 0, 0]],)]") + + def test_structure_format_float(self): + # See #8172 + array_scalar = np.array( + (1., 2.1234567890123456789, 3.), dtype=('f8,f8,f8')) + assert_equal(np.array2string(array_scalar), "(1., 2.12345679, 3.)") + + def test_unstructured_void_repr(self): + a = np.array([27, 91, 50, 75, 7, 65, 10, 8, 27, 91, 51, 49, 109, 82, 101, 100], + dtype='u1').view('V8') + assert_equal(repr(a[0]), + r"np.void(b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08')") + assert_equal(str(a[0]), r"b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08'") + assert_equal(repr(a), + r"array([b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08'," + "\n" + r" b'\x1B\x5B\x33\x31\x6D\x52\x65\x64'], dtype='|V8')") + + assert_equal(eval(repr(a), vars(np)), a) + assert_equal(eval(repr(a[0]), {'np': np}), a[0]) + + def test_edgeitems_kwarg(self): + # previously the global print options would be taken over the kwarg + arr = np.zeros(3, int) + assert_equal( + np.array2string(arr, edgeitems=1, threshold=0), + "[0 ... 0]" + ) + + def test_summarize_1d(self): + A = np.arange(1001) + strA = '[ 0 1 2 ... 998 999 1000]' + assert_equal(str(A), strA) + + reprA = 'array([ 0, 1, 2, ..., 998, 999, 1000])' + try: + np.set_printoptions(legacy='2.1') + assert_equal(repr(A), reprA) + finally: + np.set_printoptions(legacy=False) + + assert_equal(repr(A), reprA.replace(')', ', shape=(1001,))')) + + def test_summarize_2d(self): + A = np.arange(1002).reshape(2, 501) + strA = '[[ 0 1 2 ... 498 499 500]\n' \ + ' [ 501 502 503 ... 999 1000 1001]]' + assert_equal(str(A), strA) + + reprA = 'array([[ 0, 1, 2, ..., 498, 499, 500],\n' \ + ' [ 501, 502, 503, ..., 999, 1000, 1001]])' + try: + np.set_printoptions(legacy='2.1') + assert_equal(repr(A), reprA) + finally: + np.set_printoptions(legacy=False) + + assert_equal(repr(A), reprA.replace(')', ', shape=(2, 501))')) + + def test_summarize_2d_dtype(self): + A = np.arange(1002, dtype='i2').reshape(2, 501) + strA = '[[ 0 1 2 ... 498 499 500]\n' \ + ' [ 501 502 503 ... 999 1000 1001]]' + assert_equal(str(A), strA) + + reprA = ('array([[ 0, 1, 2, ..., 498, 499, 500],\n' + ' [ 501, 502, 503, ..., 999, 1000, 1001]],\n' + ' shape=(2, 501), dtype=int16)') + assert_equal(repr(A), reprA) + + def test_summarize_structure(self): + A = (np.arange(2002, dtype="i8", (2, 1001))]) + strB = "[([[1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1]],)]" + assert_equal(str(B), strB) + + reprB = ( + "array([([[1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1]],)],\n" + " dtype=[('i', '>i8', (2, 1001))])" + ) + assert_equal(repr(B), reprB) + + C = (np.arange(22, dtype=" 1: + # if the type is >1 byte, the non-native endian version + # must show endianness. + assert non_native_repr != native_repr + assert f"dtype='{non_native_dtype.byteorder}" in non_native_repr + + def test_linewidth_repr(self): + a = np.full(7, fill_value=2) + np.set_printoptions(linewidth=17) + assert_equal( + repr(a), + textwrap.dedent("""\ + array([2, 2, 2, + 2, 2, 2, + 2])""") + ) + np.set_printoptions(linewidth=17, legacy='1.13') + assert_equal( + repr(a), + textwrap.dedent("""\ + array([2, 2, 2, + 2, 2, 2, 2])""") + ) + + a = np.full(8, fill_value=2) + + np.set_printoptions(linewidth=18, legacy=False) + assert_equal( + repr(a), + textwrap.dedent("""\ + array([2, 2, 2, + 2, 2, 2, + 2, 2])""") + ) + + np.set_printoptions(linewidth=18, legacy='1.13') + assert_equal( + repr(a), + textwrap.dedent("""\ + array([2, 2, 2, 2, + 2, 2, 2, 2])""") + ) + + def test_linewidth_str(self): + a = np.full(18, fill_value=2) + np.set_printoptions(linewidth=18) + assert_equal( + str(a), + textwrap.dedent("""\ + [2 2 2 2 2 2 2 2 + 2 2 2 2 2 2 2 2 + 2 2]""") + ) + np.set_printoptions(linewidth=18, legacy='1.13') + assert_equal( + str(a), + textwrap.dedent("""\ + [2 2 2 2 2 2 2 2 2 + 2 2 2 2 2 2 2 2 2]""") + ) + + def test_edgeitems(self): + np.set_printoptions(edgeitems=1, threshold=1) + a = np.arange(27).reshape((3, 3, 3)) + assert_equal( + repr(a), + textwrap.dedent("""\ + array([[[ 0, ..., 2], + ..., + [ 6, ..., 8]], + + ..., + + [[18, ..., 20], + ..., + [24, ..., 26]]], shape=(3, 3, 3))""") + ) + + b = np.zeros((3, 3, 1, 1)) + assert_equal( + repr(b), + textwrap.dedent("""\ + array([[[[0.]], + + ..., + + [[0.]]], + + + ..., + + + [[[0.]], + + ..., + + [[0.]]]], shape=(3, 3, 1, 1))""") + ) + + # 1.13 had extra trailing spaces, and was missing newlines + try: + np.set_printoptions(legacy='1.13') + assert_equal(repr(a), ( + "array([[[ 0, ..., 2],\n" + " ..., \n" + " [ 6, ..., 8]],\n" + "\n" + " ..., \n" + " [[18, ..., 20],\n" + " ..., \n" + " [24, ..., 26]]])") + ) + assert_equal(repr(b), ( + "array([[[[ 0.]],\n" + "\n" + " ..., \n" + " [[ 0.]]],\n" + "\n" + "\n" + " ..., \n" + " [[[ 0.]],\n" + "\n" + " ..., \n" + " [[ 0.]]]])") + ) + finally: + np.set_printoptions(legacy=False) + + def test_edgeitems_structured(self): + np.set_printoptions(edgeitems=1, threshold=1) + A = np.arange(5 * 2 * 3, dtype="f4')])"), + (np.void(b'a'), r"void(b'\x61')", r"np.void(b'\x61')"), + ]) +def test_scalar_repr_special(scalar, legacy_repr, representation): + # Test NEP 51 scalar repr (and legacy option) for numeric types + assert repr(scalar) == representation + + with np.printoptions(legacy="1.25"): + assert repr(scalar) == legacy_repr + +def test_scalar_void_float_str(): + # Note that based on this currently we do not print the same as a tuple + # would, since the tuple would include the repr() inside for floats, but + # we do not do that. + scalar = np.void((1.0, 2.0), dtype=[('f0', 'f4')]) + assert str(scalar) == "(1.0, 2.0)" + +@pytest.mark.skipif(IS_WASM, reason="wasm doesn't support asyncio") +@pytest.mark.skipif(sys.version_info < (3, 11), + reason="asyncio.barrier was added in Python 3.11") +def test_printoptions_asyncio_safe(): + asyncio = pytest.importorskip("asyncio") + + b = asyncio.Barrier(2) + + async def legacy_113(): + np.set_printoptions(legacy='1.13', precision=12) + await b.wait() + po = np.get_printoptions() + assert po['legacy'] == '1.13' + assert po['precision'] == 12 + orig_linewidth = po['linewidth'] + with np.printoptions(linewidth=34, legacy='1.21'): + po = np.get_printoptions() + assert po['legacy'] == '1.21' + assert po['precision'] == 12 + assert po['linewidth'] == 34 + po = np.get_printoptions() + assert po['linewidth'] == orig_linewidth + assert po['legacy'] == '1.13' + assert po['precision'] == 12 + + async def legacy_125(): + np.set_printoptions(legacy='1.25', precision=7) + await b.wait() + po = np.get_printoptions() + assert po['legacy'] == '1.25' + assert po['precision'] == 7 + orig_linewidth = po['linewidth'] + with np.printoptions(linewidth=6, legacy='1.13'): + po = np.get_printoptions() + assert po['legacy'] == '1.13' + assert po['precision'] == 7 + assert po['linewidth'] == 6 + po = np.get_printoptions() + assert po['linewidth'] == orig_linewidth + assert po['legacy'] == '1.25' + assert po['precision'] == 7 + + async def main(): + await asyncio.gather(legacy_125(), legacy_125()) + + loop = asyncio.new_event_loop() + asyncio.run(main()) + loop.close() + +@pytest.mark.skipif(IS_WASM, reason="wasm doesn't support threads") +def test_multithreaded_array_printing(): + # the dragon4 implementation uses a static scratch space for performance + # reasons this test makes sure it is set up in a thread-safe manner + + run_threaded(TestPrintOptions().test_floatmode, 500) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_casting_floatingpoint_errors.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_casting_floatingpoint_errors.py new file mode 100644 index 0000000..2f9c01f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_casting_floatingpoint_errors.py @@ -0,0 +1,154 @@ +import pytest +from pytest import param + +import numpy as np +from numpy.testing import IS_WASM + + +def values_and_dtypes(): + """ + Generate value+dtype pairs that generate floating point errors during + casts. The invalid casts to integers will generate "invalid" value + warnings, the float casts all generate "overflow". + + (The Python int/float paths don't need to get tested in all the same + situations, but it does not hurt.) + """ + # Casting to float16: + yield param(70000, "float16", id="int-to-f2") + yield param("70000", "float16", id="str-to-f2") + yield param(70000.0, "float16", id="float-to-f2") + yield param(np.longdouble(70000.), "float16", id="longdouble-to-f2") + yield param(np.float64(70000.), "float16", id="double-to-f2") + yield param(np.float32(70000.), "float16", id="float-to-f2") + # Casting to float32: + yield param(10**100, "float32", id="int-to-f4") + yield param(1e100, "float32", id="float-to-f2") + yield param(np.longdouble(1e300), "float32", id="longdouble-to-f2") + yield param(np.float64(1e300), "float32", id="double-to-f2") + # Casting to float64: + # If longdouble is double-double, its max can be rounded down to the double + # max. So we correct the double spacing (a bit weird, admittedly): + max_ld = np.finfo(np.longdouble).max + spacing = np.spacing(np.nextafter(np.finfo("f8").max, 0)) + if max_ld - spacing > np.finfo("f8").max: + yield param(np.finfo(np.longdouble).max, "float64", + id="longdouble-to-f8") + + # Cast to complex32: + yield param(2e300, "complex64", id="float-to-c8") + yield param(2e300 + 0j, "complex64", id="complex-to-c8") + yield param(2e300j, "complex64", id="complex-to-c8") + yield param(np.longdouble(2e300), "complex64", id="longdouble-to-c8") + + # Invalid float to integer casts: + with np.errstate(over="ignore"): + for to_dt in np.typecodes["AllInteger"]: + for value in [np.inf, np.nan]: + for from_dt in np.typecodes["AllFloat"]: + from_dt = np.dtype(from_dt) + from_val = from_dt.type(value) + + yield param(from_val, to_dt, id=f"{from_val}-to-{to_dt}") + + +def check_operations(dtype, value): + """ + There are many dedicated paths in NumPy which cast and should check for + floating point errors which occurred during those casts. + """ + if dtype.kind != 'i': + # These assignments use the stricter setitem logic: + def assignment(): + arr = np.empty(3, dtype=dtype) + arr[0] = value + + yield assignment + + def fill(): + arr = np.empty(3, dtype=dtype) + arr.fill(value) + + yield fill + + def copyto_scalar(): + arr = np.empty(3, dtype=dtype) + np.copyto(arr, value, casting="unsafe") + + yield copyto_scalar + + def copyto(): + arr = np.empty(3, dtype=dtype) + np.copyto(arr, np.array([value, value, value]), casting="unsafe") + + yield copyto + + def copyto_scalar_masked(): + arr = np.empty(3, dtype=dtype) + np.copyto(arr, value, casting="unsafe", + where=[True, False, True]) + + yield copyto_scalar_masked + + def copyto_masked(): + arr = np.empty(3, dtype=dtype) + np.copyto(arr, np.array([value, value, value]), casting="unsafe", + where=[True, False, True]) + + yield copyto_masked + + def direct_cast(): + np.array([value, value, value]).astype(dtype) + + yield direct_cast + + def direct_cast_nd_strided(): + arr = np.full((5, 5, 5), fill_value=value)[:, ::2, :] + arr.astype(dtype) + + yield direct_cast_nd_strided + + def boolean_array_assignment(): + arr = np.empty(3, dtype=dtype) + arr[[True, False, True]] = np.array([value, value]) + + yield boolean_array_assignment + + def integer_array_assignment(): + arr = np.empty(3, dtype=dtype) + values = np.array([value, value]) + + arr[[0, 1]] = values + + yield integer_array_assignment + + def integer_array_assignment_with_subspace(): + arr = np.empty((5, 3), dtype=dtype) + values = np.array([value, value, value]) + + arr[[0, 2]] = values + + yield integer_array_assignment_with_subspace + + def flat_assignment(): + arr = np.empty((3,), dtype=dtype) + values = np.array([value, value, value]) + arr.flat[:] = values + + yield flat_assignment + +@pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support") +@pytest.mark.parametrize(["value", "dtype"], values_and_dtypes()) +@pytest.mark.filterwarnings("ignore::numpy.exceptions.ComplexWarning") +def test_floatingpoint_errors_casting(dtype, value): + dtype = np.dtype(dtype) + for operation in check_operations(dtype, value): + dtype = np.dtype(dtype) + + match = "invalid" if dtype.kind in 'iu' else "overflow" + with pytest.warns(RuntimeWarning, match=match): + operation() + + with np.errstate(all="raise"): + with pytest.raises(FloatingPointError, match=match): + operation() diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_casting_unittests.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_casting_unittests.py new file mode 100644 index 0000000..f8441ea --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_casting_unittests.py @@ -0,0 +1,817 @@ +""" +The tests exercise the casting machinery in a more low-level manner. +The reason is mostly to test a new implementation of the casting machinery. + +Unlike most tests in NumPy, these are closer to unit-tests rather +than integration tests. +""" + +import ctypes +import enum +import random +import textwrap + +import pytest +from numpy._core._multiarray_umath import _get_castingimpl as get_castingimpl + +import numpy as np +from numpy.lib.stride_tricks import as_strided +from numpy.testing import assert_array_equal + +# Simple skips object, parametric and long double (unsupported by struct) +simple_dtypes = "?bhilqBHILQefdFD" +if np.dtype("l").itemsize != np.dtype("q").itemsize: + # Remove l and L, the table was generated with 64bit linux in mind. + simple_dtypes = simple_dtypes.replace("l", "").replace("L", "") +simple_dtypes = [type(np.dtype(c)) for c in simple_dtypes] + + +def simple_dtype_instances(): + for dtype_class in simple_dtypes: + dt = dtype_class() + yield pytest.param(dt, id=str(dt)) + if dt.byteorder != "|": + dt = dt.newbyteorder() + yield pytest.param(dt, id=str(dt)) + + +def get_expected_stringlength(dtype): + """Returns the string length when casting the basic dtypes to strings. + """ + if dtype == np.bool: + return 5 + if dtype.kind in "iu": + if dtype.itemsize == 1: + length = 3 + elif dtype.itemsize == 2: + length = 5 + elif dtype.itemsize == 4: + length = 10 + elif dtype.itemsize == 8: + length = 20 + else: + raise AssertionError(f"did not find expected length for {dtype}") + + if dtype.kind == "i": + length += 1 # adds one character for the sign + + return length + + # Note: Can't do dtype comparison for longdouble on windows + if dtype.char == "g": + return 48 + elif dtype.char == "G": + return 48 * 2 + elif dtype.kind == "f": + return 32 # also for half apparently. + elif dtype.kind == "c": + return 32 * 2 + + raise AssertionError(f"did not find expected length for {dtype}") + + +class Casting(enum.IntEnum): + no = 0 + equiv = 1 + safe = 2 + same_kind = 3 + unsafe = 4 + + +def _get_cancast_table(): + table = textwrap.dedent(""" + X ? b h i l q B H I L Q e f d g F D G S U V O M m + ? # = = = = = = = = = = = = = = = = = = = = = . = + b . # = = = = . . . . . = = = = = = = = = = = . = + h . ~ # = = = . . . . . ~ = = = = = = = = = = . = + i . ~ ~ # = = . . . . . ~ ~ = = ~ = = = = = = . = + l . ~ ~ ~ # # . . . . . ~ ~ = = ~ = = = = = = . = + q . ~ ~ ~ # # . . . . . ~ ~ = = ~ = = = = = = . = + B . ~ = = = = # = = = = = = = = = = = = = = = . = + H . ~ ~ = = = ~ # = = = ~ = = = = = = = = = = . = + I . ~ ~ ~ = = ~ ~ # = = ~ ~ = = ~ = = = = = = . = + L . ~ ~ ~ ~ ~ ~ ~ ~ # # ~ ~ = = ~ = = = = = = . ~ + Q . ~ ~ ~ ~ ~ ~ ~ ~ # # ~ ~ = = ~ = = = = = = . ~ + e . . . . . . . . . . . # = = = = = = = = = = . . + f . . . . . . . . . . . ~ # = = = = = = = = = . . + d . . . . . . . . . . . ~ ~ # = ~ = = = = = = . . + g . . . . . . . . . . . ~ ~ ~ # ~ ~ = = = = = . . + F . . . . . . . . . . . . . . . # = = = = = = . . + D . . . . . . . . . . . . . . . ~ # = = = = = . . + G . . . . . . . . . . . . . . . ~ ~ # = = = = . . + S . . . . . . . . . . . . . . . . . . # = = = . . + U . . . . . . . . . . . . . . . . . . . # = = . . + V . . . . . . . . . . . . . . . . . . . . # = . . + O . . . . . . . . . . . . . . . . . . . . = # . . + M . . . . . . . . . . . . . . . . . . . . = = # . + m . . . . . . . . . . . . . . . . . . . . = = . # + """).strip().split("\n") + dtypes = [type(np.dtype(c)) for c in table[0][2::2]] + + convert_cast = {".": Casting.unsafe, "~": Casting.same_kind, + "=": Casting.safe, "#": Casting.equiv, + " ": -1} + + cancast = {} + for from_dt, row in zip(dtypes, table[1:]): + cancast[from_dt] = {} + for to_dt, c in zip(dtypes, row[2::2]): + cancast[from_dt][to_dt] = convert_cast[c] + + return cancast + + +CAST_TABLE = _get_cancast_table() + + +class TestChanges: + """ + These test cases exercise some behaviour changes + """ + @pytest.mark.parametrize("string", ["S", "U"]) + @pytest.mark.parametrize("floating", ["e", "f", "d", "g"]) + def test_float_to_string(self, floating, string): + assert np.can_cast(floating, string) + # 100 is long enough to hold any formatted floating + assert np.can_cast(floating, f"{string}100") + + def test_to_void(self): + # But in general, we do consider these safe: + assert np.can_cast("d", "V") + assert np.can_cast("S20", "V") + + # Do not consider it a safe cast if the void is too smaller: + assert not np.can_cast("d", "V1") + assert not np.can_cast("S20", "V1") + assert not np.can_cast("U1", "V1") + # Structured to unstructured is just like any other: + assert np.can_cast("d,i", "V", casting="same_kind") + # Unstructured void to unstructured is actually no cast at all: + assert np.can_cast("V3", "V", casting="no") + assert np.can_cast("V0", "V", casting="no") + + +class TestCasting: + size = 1500 # Best larger than NPY_LOWLEVEL_BUFFER_BLOCKSIZE * itemsize + + def get_data(self, dtype1, dtype2): + if dtype2 is None or dtype1.itemsize >= dtype2.itemsize: + length = self.size // dtype1.itemsize + else: + length = self.size // dtype2.itemsize + + # Assume that the base array is well enough aligned for all inputs. + arr1 = np.empty(length, dtype=dtype1) + assert arr1.flags.c_contiguous + assert arr1.flags.aligned + + values = [random.randrange(-128, 128) for _ in range(length)] + + for i, value in enumerate(values): + # Use item assignment to ensure this is not using casting: + if value < 0 and dtype1.kind == "u": + # Manually rollover unsigned integers (-1 -> int.max) + value = value + np.iinfo(dtype1).max + 1 + arr1[i] = value + + if dtype2 is None: + if dtype1.char == "?": + values = [bool(v) for v in values] + return arr1, values + + if dtype2.char == "?": + values = [bool(v) for v in values] + + arr2 = np.empty(length, dtype=dtype2) + assert arr2.flags.c_contiguous + assert arr2.flags.aligned + + for i, value in enumerate(values): + # Use item assignment to ensure this is not using casting: + if value < 0 and dtype2.kind == "u": + # Manually rollover unsigned integers (-1 -> int.max) + value = value + np.iinfo(dtype2).max + 1 + arr2[i] = value + + return arr1, arr2, values + + def get_data_variation(self, arr1, arr2, aligned=True, contig=True): + """ + Returns a copy of arr1 that may be non-contiguous or unaligned, and a + matching array for arr2 (although not a copy). + """ + if contig: + stride1 = arr1.dtype.itemsize + stride2 = arr2.dtype.itemsize + elif aligned: + stride1 = 2 * arr1.dtype.itemsize + stride2 = 2 * arr2.dtype.itemsize + else: + stride1 = arr1.dtype.itemsize + 1 + stride2 = arr2.dtype.itemsize + 1 + + max_size1 = len(arr1) * 3 * arr1.dtype.itemsize + 1 + max_size2 = len(arr2) * 3 * arr2.dtype.itemsize + 1 + from_bytes = np.zeros(max_size1, dtype=np.uint8) + to_bytes = np.zeros(max_size2, dtype=np.uint8) + + # Sanity check that the above is large enough: + assert stride1 * len(arr1) <= from_bytes.nbytes + assert stride2 * len(arr2) <= to_bytes.nbytes + + if aligned: + new1 = as_strided(from_bytes[:-1].view(arr1.dtype), + arr1.shape, (stride1,)) + new2 = as_strided(to_bytes[:-1].view(arr2.dtype), + arr2.shape, (stride2,)) + else: + new1 = as_strided(from_bytes[1:].view(arr1.dtype), + arr1.shape, (stride1,)) + new2 = as_strided(to_bytes[1:].view(arr2.dtype), + arr2.shape, (stride2,)) + + new1[...] = arr1 + + if not contig: + # Ensure we did not overwrite bytes that should not be written: + offset = arr1.dtype.itemsize if aligned else 0 + buf = from_bytes[offset::stride1].tobytes() + assert buf.count(b"\0") == len(buf) + + if contig: + assert new1.flags.c_contiguous + assert new2.flags.c_contiguous + else: + assert not new1.flags.c_contiguous + assert not new2.flags.c_contiguous + + if aligned: + assert new1.flags.aligned + assert new2.flags.aligned + else: + assert not new1.flags.aligned or new1.dtype.alignment == 1 + assert not new2.flags.aligned or new2.dtype.alignment == 1 + + return new1, new2 + + @pytest.mark.parametrize("from_Dt", simple_dtypes) + def test_simple_cancast(self, from_Dt): + for to_Dt in simple_dtypes: + cast = get_castingimpl(from_Dt, to_Dt) + + for from_dt in [from_Dt(), from_Dt().newbyteorder()]: + default = cast._resolve_descriptors((from_dt, None))[1][1] + assert default == to_Dt() + del default + + for to_dt in [to_Dt(), to_Dt().newbyteorder()]: + casting, (from_res, to_res), view_off = ( + cast._resolve_descriptors((from_dt, to_dt))) + assert type(from_res) == from_Dt + assert type(to_res) == to_Dt + if view_off is not None: + # If a view is acceptable, this is "no" casting + # and byte order must be matching. + assert casting == Casting.no + # The above table lists this as "equivalent" + assert Casting.equiv == CAST_TABLE[from_Dt][to_Dt] + # Note that to_res may not be the same as from_dt + assert from_res.isnative == to_res.isnative + else: + if from_Dt == to_Dt: + # Note that to_res may not be the same as from_dt + assert from_res.isnative != to_res.isnative + assert casting == CAST_TABLE[from_Dt][to_Dt] + + if from_Dt is to_Dt: + assert from_dt is from_res + assert to_dt is to_res + + @pytest.mark.filterwarnings("ignore::numpy.exceptions.ComplexWarning") + @pytest.mark.parametrize("from_dt", simple_dtype_instances()) + def test_simple_direct_casts(self, from_dt): + """ + This test checks numeric direct casts for dtypes supported also by the + struct module (plus complex). It tries to be test a wide range of + inputs, but skips over possibly undefined behaviour (e.g. int rollover). + Longdouble and CLongdouble are tested, but only using double precision. + + If this test creates issues, it should possibly just be simplified + or even removed (checking whether unaligned/non-contiguous casts give + the same results is useful, though). + """ + for to_dt in simple_dtype_instances(): + to_dt = to_dt.values[0] + cast = get_castingimpl(type(from_dt), type(to_dt)) + + casting, (from_res, to_res), view_off = cast._resolve_descriptors( + (from_dt, to_dt)) + + if from_res is not from_dt or to_res is not to_dt: + # Do not test this case, it is handled in multiple steps, + # each of which should is tested individually. + return + + safe = casting <= Casting.safe + del from_res, to_res, casting + + arr1, arr2, values = self.get_data(from_dt, to_dt) + + cast._simple_strided_call((arr1, arr2)) + + # Check via python list + assert arr2.tolist() == values + + # Check that the same results are achieved for strided loops + arr1_o, arr2_o = self.get_data_variation(arr1, arr2, True, False) + cast._simple_strided_call((arr1_o, arr2_o)) + + assert_array_equal(arr2_o, arr2) + assert arr2_o.tobytes() == arr2.tobytes() + + # Check if alignment makes a difference, but only if supported + # and only if the alignment can be wrong + if ((from_dt.alignment == 1 and to_dt.alignment == 1) or + not cast._supports_unaligned): + return + + arr1_o, arr2_o = self.get_data_variation(arr1, arr2, False, True) + cast._simple_strided_call((arr1_o, arr2_o)) + + assert_array_equal(arr2_o, arr2) + assert arr2_o.tobytes() == arr2.tobytes() + + arr1_o, arr2_o = self.get_data_variation(arr1, arr2, False, False) + cast._simple_strided_call((arr1_o, arr2_o)) + + assert_array_equal(arr2_o, arr2) + assert arr2_o.tobytes() == arr2.tobytes() + + del arr1_o, arr2_o, cast + + @pytest.mark.parametrize("from_Dt", simple_dtypes) + def test_numeric_to_times(self, from_Dt): + # We currently only implement contiguous loops, so only need to + # test those. + from_dt = from_Dt() + + time_dtypes = [np.dtype("M8"), np.dtype("M8[ms]"), np.dtype("M8[4D]"), + np.dtype("m8"), np.dtype("m8[ms]"), np.dtype("m8[4D]")] + for time_dt in time_dtypes: + cast = get_castingimpl(type(from_dt), type(time_dt)) + + casting, (from_res, to_res), view_off = cast._resolve_descriptors( + (from_dt, time_dt)) + + assert from_res is from_dt + assert to_res is time_dt + del from_res, to_res + + assert casting & CAST_TABLE[from_Dt][type(time_dt)] + assert view_off is None + + int64_dt = np.dtype(np.int64) + arr1, arr2, values = self.get_data(from_dt, int64_dt) + arr2 = arr2.view(time_dt) + arr2[...] = np.datetime64("NaT") + + if time_dt == np.dtype("M8"): + # This is a bit of a strange path, and could probably be removed + arr1[-1] = 0 # ensure at least one value is not NaT + + # The cast currently succeeds, but the values are invalid: + cast._simple_strided_call((arr1, arr2)) + with pytest.raises(ValueError): + str(arr2[-1]) # e.g. conversion to string fails + return + + cast._simple_strided_call((arr1, arr2)) + + assert [int(v) for v in arr2.tolist()] == values + + # Check that the same results are achieved for strided loops + arr1_o, arr2_o = self.get_data_variation(arr1, arr2, True, False) + cast._simple_strided_call((arr1_o, arr2_o)) + + assert_array_equal(arr2_o, arr2) + assert arr2_o.tobytes() == arr2.tobytes() + + @pytest.mark.parametrize( + ["from_dt", "to_dt", "expected_casting", "expected_view_off", + "nom", "denom"], + [("M8[ns]", None, Casting.no, 0, 1, 1), + (str(np.dtype("M8[ns]").newbyteorder()), None, + Casting.equiv, None, 1, 1), + ("M8", "M8[ms]", Casting.safe, 0, 1, 1), + # should be invalid cast: + ("M8[ms]", "M8", Casting.unsafe, None, 1, 1), + ("M8[5ms]", "M8[5ms]", Casting.no, 0, 1, 1), + ("M8[ns]", "M8[ms]", Casting.same_kind, None, 1, 10**6), + ("M8[ms]", "M8[ns]", Casting.safe, None, 10**6, 1), + ("M8[ms]", "M8[7ms]", Casting.same_kind, None, 1, 7), + ("M8[4D]", "M8[1M]", Casting.same_kind, None, None, + # give full values based on NumPy 1.19.x + [-2**63, 0, -1, 1314, -1315, 564442610]), + ("m8[ns]", None, Casting.no, 0, 1, 1), + (str(np.dtype("m8[ns]").newbyteorder()), None, + Casting.equiv, None, 1, 1), + ("m8", "m8[ms]", Casting.safe, 0, 1, 1), + # should be invalid cast: + ("m8[ms]", "m8", Casting.unsafe, None, 1, 1), + ("m8[5ms]", "m8[5ms]", Casting.no, 0, 1, 1), + ("m8[ns]", "m8[ms]", Casting.same_kind, None, 1, 10**6), + ("m8[ms]", "m8[ns]", Casting.safe, None, 10**6, 1), + ("m8[ms]", "m8[7ms]", Casting.same_kind, None, 1, 7), + ("m8[4D]", "m8[1M]", Casting.unsafe, None, None, + # give full values based on NumPy 1.19.x + [-2**63, 0, 0, 1314, -1315, 564442610])]) + def test_time_to_time(self, from_dt, to_dt, + expected_casting, expected_view_off, + nom, denom): + from_dt = np.dtype(from_dt) + if to_dt is not None: + to_dt = np.dtype(to_dt) + + # Test a few values for casting (results generated with NumPy 1.19) + values = np.array([-2**63, 1, 2**63 - 1, 10000, -10000, 2**32]) + values = values.astype(np.dtype("int64").newbyteorder(from_dt.byteorder)) + assert values.dtype.byteorder == from_dt.byteorder + assert np.isnat(values.view(from_dt)[0]) + + DType = type(from_dt) + cast = get_castingimpl(DType, DType) + casting, (from_res, to_res), view_off = cast._resolve_descriptors( + (from_dt, to_dt)) + assert from_res is from_dt + assert to_res is to_dt or to_dt is None + assert casting == expected_casting + assert view_off == expected_view_off + + if nom is not None: + expected_out = (values * nom // denom).view(to_res) + expected_out[0] = "NaT" + else: + expected_out = np.empty_like(values) + expected_out[...] = denom + expected_out = expected_out.view(to_dt) + + orig_arr = values.view(from_dt) + orig_out = np.empty_like(expected_out) + + if casting == Casting.unsafe and (to_dt == "m8" or to_dt == "M8"): # noqa: PLR1714 + # Casting from non-generic to generic units is an error and should + # probably be reported as an invalid cast earlier. + with pytest.raises(ValueError): + cast._simple_strided_call((orig_arr, orig_out)) + return + + for aligned in [True, True]: + for contig in [True, True]: + arr, out = self.get_data_variation( + orig_arr, orig_out, aligned, contig) + out[...] = 0 + cast._simple_strided_call((arr, out)) + assert_array_equal(out.view("int64"), expected_out.view("int64")) + + def string_with_modified_length(self, dtype, change_length): + fact = 1 if dtype.char == "S" else 4 + length = dtype.itemsize // fact + change_length + return np.dtype(f"{dtype.byteorder}{dtype.char}{length}") + + @pytest.mark.parametrize("other_DT", simple_dtypes) + @pytest.mark.parametrize("string_char", ["S", "U"]) + def test_string_cancast(self, other_DT, string_char): + fact = 1 if string_char == "S" else 4 + + string_DT = type(np.dtype(string_char)) + cast = get_castingimpl(other_DT, string_DT) + + other_dt = other_DT() + expected_length = get_expected_stringlength(other_dt) + string_dt = np.dtype(f"{string_char}{expected_length}") + + safety, (res_other_dt, res_dt), view_off = cast._resolve_descriptors( + (other_dt, None)) + assert res_dt.itemsize == expected_length * fact + assert safety == Casting.safe # we consider to string casts "safe" + assert view_off is None + assert isinstance(res_dt, string_DT) + + # These casts currently implement changing the string length, so + # check the cast-safety for too long/fixed string lengths: + for change_length in [-1, 0, 1]: + if change_length >= 0: + expected_safety = Casting.safe + else: + expected_safety = Casting.same_kind + + to_dt = self.string_with_modified_length(string_dt, change_length) + safety, (_, res_dt), view_off = cast._resolve_descriptors( + (other_dt, to_dt)) + assert res_dt is to_dt + assert safety == expected_safety + assert view_off is None + + # The opposite direction is always considered unsafe: + cast = get_castingimpl(string_DT, other_DT) + + safety, _, view_off = cast._resolve_descriptors((string_dt, other_dt)) + assert safety == Casting.unsafe + assert view_off is None + + cast = get_castingimpl(string_DT, other_DT) + safety, (_, res_dt), view_off = cast._resolve_descriptors( + (string_dt, None)) + assert safety == Casting.unsafe + assert view_off is None + assert other_dt is res_dt # returns the singleton for simple dtypes + + @pytest.mark.parametrize("string_char", ["S", "U"]) + @pytest.mark.parametrize("other_dt", simple_dtype_instances()) + def test_simple_string_casts_roundtrip(self, other_dt, string_char): + """ + Tests casts from and to string by checking the roundtripping property. + + The test also covers some string to string casts (but not all). + + If this test creates issues, it should possibly just be simplified + or even removed (checking whether unaligned/non-contiguous casts give + the same results is useful, though). + """ + string_DT = type(np.dtype(string_char)) + + cast = get_castingimpl(type(other_dt), string_DT) + cast_back = get_castingimpl(string_DT, type(other_dt)) + _, (res_other_dt, string_dt), _ = cast._resolve_descriptors( + (other_dt, None)) + + if res_other_dt is not other_dt: + # do not support non-native byteorder, skip test in that case + assert other_dt.byteorder != res_other_dt.byteorder + return + + orig_arr, values = self.get_data(other_dt, None) + str_arr = np.zeros(len(orig_arr), dtype=string_dt) + string_dt_short = self.string_with_modified_length(string_dt, -1) + str_arr_short = np.zeros(len(orig_arr), dtype=string_dt_short) + string_dt_long = self.string_with_modified_length(string_dt, 1) + str_arr_long = np.zeros(len(orig_arr), dtype=string_dt_long) + + assert not cast._supports_unaligned # if support is added, should test + assert not cast_back._supports_unaligned + + for contig in [True, False]: + other_arr, str_arr = self.get_data_variation( + orig_arr, str_arr, True, contig) + _, str_arr_short = self.get_data_variation( + orig_arr, str_arr_short.copy(), True, contig) + _, str_arr_long = self.get_data_variation( + orig_arr, str_arr_long, True, contig) + + cast._simple_strided_call((other_arr, str_arr)) + + cast._simple_strided_call((other_arr, str_arr_short)) + assert_array_equal(str_arr.astype(string_dt_short), str_arr_short) + + cast._simple_strided_call((other_arr, str_arr_long)) + assert_array_equal(str_arr, str_arr_long) + + if other_dt.kind == "b": + # Booleans do not roundtrip + continue + + other_arr[...] = 0 + cast_back._simple_strided_call((str_arr, other_arr)) + assert_array_equal(orig_arr, other_arr) + + other_arr[...] = 0 + cast_back._simple_strided_call((str_arr_long, other_arr)) + assert_array_equal(orig_arr, other_arr) + + @pytest.mark.parametrize("other_dt", ["S8", "U8"]) + @pytest.mark.parametrize("string_char", ["S", "U"]) + def test_string_to_string_cancast(self, other_dt, string_char): + other_dt = np.dtype(other_dt) + + fact = 1 if string_char == "S" else 4 + div = 1 if other_dt.char == "S" else 4 + + string_DT = type(np.dtype(string_char)) + cast = get_castingimpl(type(other_dt), string_DT) + + expected_length = other_dt.itemsize // div + string_dt = np.dtype(f"{string_char}{expected_length}") + + safety, (res_other_dt, res_dt), view_off = cast._resolve_descriptors( + (other_dt, None)) + assert res_dt.itemsize == expected_length * fact + assert isinstance(res_dt, string_DT) + + expected_view_off = None + if other_dt.char == string_char: + if other_dt.isnative: + expected_safety = Casting.no + expected_view_off = 0 + else: + expected_safety = Casting.equiv + elif string_char == "U": + expected_safety = Casting.safe + else: + expected_safety = Casting.unsafe + + assert view_off == expected_view_off + assert expected_safety == safety + + for change_length in [-1, 0, 1]: + to_dt = self.string_with_modified_length(string_dt, change_length) + safety, (_, res_dt), view_off = cast._resolve_descriptors( + (other_dt, to_dt)) + + assert res_dt is to_dt + if change_length <= 0: + assert view_off == expected_view_off + else: + assert view_off is None + if expected_safety == Casting.unsafe: + assert safety == expected_safety + elif change_length < 0: + assert safety == Casting.same_kind + elif change_length == 0: + assert safety == expected_safety + elif change_length > 0: + assert safety == Casting.safe + + @pytest.mark.parametrize("order1", [">", "<"]) + @pytest.mark.parametrize("order2", [">", "<"]) + def test_unicode_byteswapped_cast(self, order1, order2): + # Very specific tests (not using the castingimpl directly) + # that tests unicode bytedwaps including for unaligned array data. + dtype1 = np.dtype(f"{order1}U30") + dtype2 = np.dtype(f"{order2}U30") + data1 = np.empty(30 * 4 + 1, dtype=np.uint8)[1:].view(dtype1) + data2 = np.empty(30 * 4 + 1, dtype=np.uint8)[1:].view(dtype2) + if dtype1.alignment != 1: + # alignment should always be >1, but skip the check if not + assert not data1.flags.aligned + assert not data2.flags.aligned + + element = "this is a ünicode string‽" + data1[()] = element + # Test both `data1` and `data1.copy()` (which should be aligned) + for data in [data1, data1.copy()]: + data2[...] = data1 + assert data2[()] == element + assert data2.copy()[()] == element + + def test_void_to_string_special_case(self): + # Cover a small special case in void to string casting that could + # probably just as well be turned into an error (compare + # `test_object_to_parametric_internal_error` below). + assert np.array([], dtype="V5").astype("S").dtype.itemsize == 5 + assert np.array([], dtype="V5").astype("U").dtype.itemsize == 4 * 5 + + def test_object_to_parametric_internal_error(self): + # We reject casting from object to a parametric type, without + # figuring out the correct instance first. + object_dtype = type(np.dtype(object)) + other_dtype = type(np.dtype(str)) + cast = get_castingimpl(object_dtype, other_dtype) + with pytest.raises(TypeError, + match="casting from object to the parametric DType"): + cast._resolve_descriptors((np.dtype("O"), None)) + + @pytest.mark.parametrize("dtype", simple_dtype_instances()) + def test_object_and_simple_resolution(self, dtype): + # Simple test to exercise the cast when no instance is specified + object_dtype = type(np.dtype(object)) + cast = get_castingimpl(object_dtype, type(dtype)) + + safety, (_, res_dt), view_off = cast._resolve_descriptors( + (np.dtype("O"), dtype)) + assert safety == Casting.unsafe + assert view_off is None + assert res_dt is dtype + + safety, (_, res_dt), view_off = cast._resolve_descriptors( + (np.dtype("O"), None)) + assert safety == Casting.unsafe + assert view_off is None + assert res_dt == dtype.newbyteorder("=") + + @pytest.mark.parametrize("dtype", simple_dtype_instances()) + def test_simple_to_object_resolution(self, dtype): + # Simple test to exercise the cast when no instance is specified + object_dtype = type(np.dtype(object)) + cast = get_castingimpl(type(dtype), object_dtype) + + safety, (_, res_dt), view_off = cast._resolve_descriptors( + (dtype, None)) + assert safety == Casting.safe + assert view_off is None + assert res_dt is np.dtype("O") + + @pytest.mark.parametrize("casting", ["no", "unsafe"]) + def test_void_and_structured_with_subarray(self, casting): + # test case corresponding to gh-19325 + dtype = np.dtype([("foo", " casts may succeed or fail, but a NULL'ed array must + # behave the same as one filled with None's. + arr_normal = np.array([None] * 5) + arr_NULLs = np.empty_like(arr_normal) + ctypes.memset(arr_NULLs.ctypes.data, 0, arr_NULLs.nbytes) + # If the check fails (maybe it should) the test would lose its purpose: + assert arr_NULLs.tobytes() == b"\x00" * arr_NULLs.nbytes + + try: + expected = arr_normal.astype(dtype) + except TypeError: + with pytest.raises(TypeError): + arr_NULLs.astype(dtype) + else: + assert_array_equal(expected, arr_NULLs.astype(dtype)) + + @pytest.mark.parametrize("dtype", + np.typecodes["AllInteger"] + np.typecodes["AllFloat"]) + def test_nonstandard_bool_to_other(self, dtype): + # simple test for casting bool_ to numeric types, which should not + # expose the detail that NumPy bools can sometimes take values other + # than 0 and 1. See also gh-19514. + nonstandard_bools = np.array([0, 3, -7], dtype=np.int8).view(bool) + res = nonstandard_bools.astype(dtype) + expected = [0, 1, 1] + assert_array_equal(res, expected) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_conversion_utils.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_conversion_utils.py new file mode 100644 index 0000000..03ba339 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_conversion_utils.py @@ -0,0 +1,206 @@ +""" +Tests for numpy/_core/src/multiarray/conversion_utils.c +""" +import re + +import numpy._core._multiarray_tests as mt +import pytest + +from numpy._core.multiarray import CLIP, RAISE, WRAP +from numpy.testing import assert_raises + + +class StringConverterTestCase: + allow_bytes = True + case_insensitive = True + exact_match = False + warn = True + + def _check_value_error(self, val): + pattern = fr'\(got {re.escape(repr(val))}\)' + with pytest.raises(ValueError, match=pattern) as exc: + self.conv(val) + + def _check_conv_assert_warn(self, val, expected): + if self.warn: + with assert_raises(ValueError) as exc: + assert self.conv(val) == expected + else: + assert self.conv(val) == expected + + def _check(self, val, expected): + """Takes valid non-deprecated inputs for converters, + runs converters on inputs, checks correctness of outputs, + warnings and errors""" + assert self.conv(val) == expected + + if self.allow_bytes: + assert self.conv(val.encode('ascii')) == expected + else: + with pytest.raises(TypeError): + self.conv(val.encode('ascii')) + + if len(val) != 1: + if self.exact_match: + self._check_value_error(val[:1]) + self._check_value_error(val + '\0') + else: + self._check_conv_assert_warn(val[:1], expected) + + if self.case_insensitive: + if val != val.lower(): + self._check_conv_assert_warn(val.lower(), expected) + if val != val.upper(): + self._check_conv_assert_warn(val.upper(), expected) + else: + if val != val.lower(): + self._check_value_error(val.lower()) + if val != val.upper(): + self._check_value_error(val.upper()) + + def test_wrong_type(self): + # common cases which apply to all the below + with pytest.raises(TypeError): + self.conv({}) + with pytest.raises(TypeError): + self.conv([]) + + def test_wrong_value(self): + # nonsense strings + self._check_value_error('') + self._check_value_error('\N{greek small letter pi}') + + if self.allow_bytes: + self._check_value_error(b'') + # bytes which can't be converted to strings via utf8 + self._check_value_error(b"\xFF") + if self.exact_match: + self._check_value_error("there's no way this is supported") + + +class TestByteorderConverter(StringConverterTestCase): + """ Tests of PyArray_ByteorderConverter """ + conv = mt.run_byteorder_converter + warn = False + + def test_valid(self): + for s in ['big', '>']: + self._check(s, 'NPY_BIG') + for s in ['little', '<']: + self._check(s, 'NPY_LITTLE') + for s in ['native', '=']: + self._check(s, 'NPY_NATIVE') + for s in ['ignore', '|']: + self._check(s, 'NPY_IGNORE') + for s in ['swap']: + self._check(s, 'NPY_SWAP') + + +class TestSortkindConverter(StringConverterTestCase): + """ Tests of PyArray_SortkindConverter """ + conv = mt.run_sortkind_converter + warn = False + + def test_valid(self): + self._check('quicksort', 'NPY_QUICKSORT') + self._check('heapsort', 'NPY_HEAPSORT') + self._check('mergesort', 'NPY_STABLESORT') # alias + self._check('stable', 'NPY_STABLESORT') + + +class TestSelectkindConverter(StringConverterTestCase): + """ Tests of PyArray_SelectkindConverter """ + conv = mt.run_selectkind_converter + case_insensitive = False + exact_match = True + + def test_valid(self): + self._check('introselect', 'NPY_INTROSELECT') + + +class TestSearchsideConverter(StringConverterTestCase): + """ Tests of PyArray_SearchsideConverter """ + conv = mt.run_searchside_converter + + def test_valid(self): + self._check('left', 'NPY_SEARCHLEFT') + self._check('right', 'NPY_SEARCHRIGHT') + + +class TestOrderConverter(StringConverterTestCase): + """ Tests of PyArray_OrderConverter """ + conv = mt.run_order_converter + warn = False + + def test_valid(self): + self._check('c', 'NPY_CORDER') + self._check('f', 'NPY_FORTRANORDER') + self._check('a', 'NPY_ANYORDER') + self._check('k', 'NPY_KEEPORDER') + + def test_flatten_invalid_order(self): + # invalid after gh-14596 + with pytest.raises(ValueError): + self.conv('Z') + for order in [False, True, 0, 8]: + with pytest.raises(TypeError): + self.conv(order) + + +class TestClipmodeConverter(StringConverterTestCase): + """ Tests of PyArray_ClipmodeConverter """ + conv = mt.run_clipmode_converter + + def test_valid(self): + self._check('clip', 'NPY_CLIP') + self._check('wrap', 'NPY_WRAP') + self._check('raise', 'NPY_RAISE') + + # integer values allowed here + assert self.conv(CLIP) == 'NPY_CLIP' + assert self.conv(WRAP) == 'NPY_WRAP' + assert self.conv(RAISE) == 'NPY_RAISE' + + +class TestCastingConverter(StringConverterTestCase): + """ Tests of PyArray_CastingConverter """ + conv = mt.run_casting_converter + case_insensitive = False + exact_match = True + + def test_valid(self): + self._check("no", "NPY_NO_CASTING") + self._check("equiv", "NPY_EQUIV_CASTING") + self._check("safe", "NPY_SAFE_CASTING") + self._check("same_kind", "NPY_SAME_KIND_CASTING") + self._check("unsafe", "NPY_UNSAFE_CASTING") + + +class TestIntpConverter: + """ Tests of PyArray_IntpConverter """ + conv = mt.run_intp_converter + + def test_basic(self): + assert self.conv(1) == (1,) + assert self.conv((1, 2)) == (1, 2) + assert self.conv([1, 2]) == (1, 2) + assert self.conv(()) == () + + def test_none(self): + with pytest.raises(TypeError): + assert self.conv(None) == () + + def test_float(self): + with pytest.raises(TypeError): + self.conv(1.0) + with pytest.raises(TypeError): + self.conv([1, 1.0]) + + def test_too_large(self): + with pytest.raises(ValueError): + self.conv(2**64) + + def test_too_many_dims(self): + assert self.conv([1] * 64) == (1,) * 64 + with pytest.raises(ValueError): + self.conv([1] * 65) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_cpu_dispatcher.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_cpu_dispatcher.py new file mode 100644 index 0000000..0a47685 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_cpu_dispatcher.py @@ -0,0 +1,49 @@ +from numpy._core._multiarray_umath import ( + __cpu_baseline__, + __cpu_dispatch__, + __cpu_features__, +) + +from numpy._core import _umath_tests +from numpy.testing import assert_equal + + +def test_dispatcher(): + """ + Testing the utilities of the CPU dispatcher + """ + targets = ( + "SSE2", "SSE41", "AVX2", + "VSX", "VSX2", "VSX3", + "NEON", "ASIMD", "ASIMDHP", + "VX", "VXE", "LSX" + ) + highest_sfx = "" # no suffix for the baseline + all_sfx = [] + for feature in reversed(targets): + # skip baseline features, by the default `CCompilerOpt` do not generate separated objects + # for the baseline, just one object combined all of them via 'baseline' option + # within the configuration statements. + if feature in __cpu_baseline__: + continue + # check compiler and running machine support + if feature not in __cpu_dispatch__ or not __cpu_features__[feature]: + continue + + if not highest_sfx: + highest_sfx = "_" + feature + all_sfx.append("func" + "_" + feature) + + test = _umath_tests.test_dispatch() + assert_equal(test["func"], "func" + highest_sfx) + assert_equal(test["var"], "var" + highest_sfx) + + if highest_sfx: + assert_equal(test["func_xb"], "func" + highest_sfx) + assert_equal(test["var_xb"], "var" + highest_sfx) + else: + assert_equal(test["func_xb"], "nobase") + assert_equal(test["var_xb"], "nobase") + + all_sfx.append("func") # add the baseline + assert_equal(test["all"], all_sfx) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_cpu_features.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_cpu_features.py new file mode 100644 index 0000000..d1e3dc6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_cpu_features.py @@ -0,0 +1,432 @@ +import os +import pathlib +import platform +import re +import subprocess +import sys + +import pytest +from numpy._core._multiarray_umath import ( + __cpu_baseline__, + __cpu_dispatch__, + __cpu_features__, +) + + +def assert_features_equal(actual, desired, fname): + __tracebackhide__ = True # Hide traceback for py.test + actual, desired = str(actual), str(desired) + if actual == desired: + return + detected = str(__cpu_features__).replace("'", "") + try: + with open("/proc/cpuinfo") as fd: + cpuinfo = fd.read(2048) + except Exception as err: + cpuinfo = str(err) + + try: + import subprocess + auxv = subprocess.check_output(['/bin/true'], env={"LD_SHOW_AUXV": "1"}) + auxv = auxv.decode() + except Exception as err: + auxv = str(err) + + import textwrap + error_report = textwrap.indent( +f""" +########################################### +### Extra debugging information +########################################### +------------------------------------------- +--- NumPy Detections +------------------------------------------- +{detected} +------------------------------------------- +--- SYS / CPUINFO +------------------------------------------- +{cpuinfo}.... +------------------------------------------- +--- SYS / AUXV +------------------------------------------- +{auxv} +""", prefix='\r') + + raise AssertionError(( + "Failure Detection\n" + " NAME: '%s'\n" + " ACTUAL: %s\n" + " DESIRED: %s\n" + "%s" + ) % (fname, actual, desired, error_report)) + +def _text_to_list(txt): + out = txt.strip("][\n").replace("'", "").split(', ') + return None if out[0] == "" else out + +class AbstractTest: + features = [] + features_groups = {} + features_map = {} + features_flags = set() + + def load_flags(self): + # a hook + pass + + def test_features(self): + self.load_flags() + for gname, features in self.features_groups.items(): + test_features = [self.cpu_have(f) for f in features] + assert_features_equal(__cpu_features__.get(gname), all(test_features), gname) + + for feature_name in self.features: + cpu_have = self.cpu_have(feature_name) + npy_have = __cpu_features__.get(feature_name) + assert_features_equal(npy_have, cpu_have, feature_name) + + def cpu_have(self, feature_name): + map_names = self.features_map.get(feature_name, feature_name) + if isinstance(map_names, str): + return map_names in self.features_flags + return any(f in self.features_flags for f in map_names) + + def load_flags_cpuinfo(self, magic_key): + self.features_flags = self.get_cpuinfo_item(magic_key) + + def get_cpuinfo_item(self, magic_key): + values = set() + with open('/proc/cpuinfo') as fd: + for line in fd: + if not line.startswith(magic_key): + continue + flags_value = [s.strip() for s in line.split(':', 1)] + if len(flags_value) == 2: + values = values.union(flags_value[1].upper().split()) + return values + + def load_flags_auxv(self): + auxv = subprocess.check_output(['/bin/true'], env={"LD_SHOW_AUXV": "1"}) + for at in auxv.split(b'\n'): + if not at.startswith(b"AT_HWCAP"): + continue + hwcap_value = [s.strip() for s in at.split(b':', 1)] + if len(hwcap_value) == 2: + self.features_flags = self.features_flags.union( + hwcap_value[1].upper().decode().split() + ) + +@pytest.mark.skipif( + sys.platform == 'emscripten', + reason=( + "The subprocess module is not available on WASM platforms and" + " therefore this test class cannot be properly executed." + ), +) +class TestEnvPrivation: + cwd = pathlib.Path(__file__).parent.resolve() + env = os.environ.copy() + _enable = os.environ.pop('NPY_ENABLE_CPU_FEATURES', None) + _disable = os.environ.pop('NPY_DISABLE_CPU_FEATURES', None) + SUBPROCESS_ARGS = {"cwd": cwd, "capture_output": True, "text": True, "check": True} + unavailable_feats = [ + feat for feat in __cpu_dispatch__ if not __cpu_features__[feat] + ] + UNAVAILABLE_FEAT = ( + None if len(unavailable_feats) == 0 + else unavailable_feats[0] + ) + BASELINE_FEAT = None if len(__cpu_baseline__) == 0 else __cpu_baseline__[0] + SCRIPT = """ +def main(): + from numpy._core._multiarray_umath import ( + __cpu_features__, + __cpu_dispatch__ + ) + + detected = [feat for feat in __cpu_dispatch__ if __cpu_features__[feat]] + print(detected) + +if __name__ == "__main__": + main() + """ + + @pytest.fixture(autouse=True) + def setup_class(self, tmp_path_factory): + file = tmp_path_factory.mktemp("runtime_test_script") + file /= "_runtime_detect.py" + file.write_text(self.SCRIPT) + self.file = file + + def _run(self): + return subprocess.run( + [sys.executable, self.file], + env=self.env, + **self.SUBPROCESS_ARGS, + ) + + # Helper function mimicking pytest.raises for subprocess call + def _expect_error( + self, + msg, + err_type, + no_error_msg="Failed to generate error" + ): + try: + self._run() + except subprocess.CalledProcessError as e: + assertion_message = f"Expected: {msg}\nGot: {e.stderr}" + assert re.search(msg, e.stderr), assertion_message + + assertion_message = ( + f"Expected error of type: {err_type}; see full " + f"error:\n{e.stderr}" + ) + assert re.search(err_type, e.stderr), assertion_message + else: + assert False, no_error_msg + + def setup_method(self): + """Ensure that the environment is reset""" + self.env = os.environ.copy() + + def test_runtime_feature_selection(self): + """ + Ensure that when selecting `NPY_ENABLE_CPU_FEATURES`, only the + features exactly specified are dispatched. + """ + + # Capture runtime-enabled features + out = self._run() + non_baseline_features = _text_to_list(out.stdout) + + if non_baseline_features is None: + pytest.skip( + "No dispatchable features outside of baseline detected." + ) + feature = non_baseline_features[0] + + # Capture runtime-enabled features when `NPY_ENABLE_CPU_FEATURES` is + # specified + self.env['NPY_ENABLE_CPU_FEATURES'] = feature + out = self._run() + enabled_features = _text_to_list(out.stdout) + + # Ensure that only one feature is enabled, and it is exactly the one + # specified by `NPY_ENABLE_CPU_FEATURES` + assert set(enabled_features) == {feature} + + if len(non_baseline_features) < 2: + pytest.skip("Only one non-baseline feature detected.") + # Capture runtime-enabled features when `NPY_ENABLE_CPU_FEATURES` is + # specified + self.env['NPY_ENABLE_CPU_FEATURES'] = ",".join(non_baseline_features) + out = self._run() + enabled_features = _text_to_list(out.stdout) + + # Ensure that both features are enabled, and they are exactly the ones + # specified by `NPY_ENABLE_CPU_FEATURES` + assert set(enabled_features) == set(non_baseline_features) + + @pytest.mark.parametrize("enabled, disabled", + [ + ("feature", "feature"), + ("feature", "same"), + ]) + def test_both_enable_disable_set(self, enabled, disabled): + """ + Ensure that when both environment variables are set then an + ImportError is thrown + """ + self.env['NPY_ENABLE_CPU_FEATURES'] = enabled + self.env['NPY_DISABLE_CPU_FEATURES'] = disabled + msg = "Both NPY_DISABLE_CPU_FEATURES and NPY_ENABLE_CPU_FEATURES" + err_type = "ImportError" + self._expect_error(msg, err_type) + + @pytest.mark.skipif( + not __cpu_dispatch__, + reason=( + "NPY_*_CPU_FEATURES only parsed if " + "`__cpu_dispatch__` is non-empty" + ) + ) + @pytest.mark.parametrize("action", ["ENABLE", "DISABLE"]) + def test_variable_too_long(self, action): + """ + Test that an error is thrown if the environment variables are too long + to be processed. Current limit is 1024, but this may change later. + """ + MAX_VAR_LENGTH = 1024 + # Actual length is MAX_VAR_LENGTH + 1 due to null-termination + self.env[f'NPY_{action}_CPU_FEATURES'] = "t" * MAX_VAR_LENGTH + msg = ( + f"Length of environment variable 'NPY_{action}_CPU_FEATURES' is " + f"{MAX_VAR_LENGTH + 1}, only {MAX_VAR_LENGTH} accepted" + ) + err_type = "RuntimeError" + self._expect_error(msg, err_type) + + @pytest.mark.skipif( + not __cpu_dispatch__, + reason=( + "NPY_*_CPU_FEATURES only parsed if " + "`__cpu_dispatch__` is non-empty" + ) + ) + def test_impossible_feature_disable(self): + """ + Test that a RuntimeError is thrown if an impossible feature-disabling + request is made. This includes disabling a baseline feature. + """ + + if self.BASELINE_FEAT is None: + pytest.skip("There are no unavailable features to test with") + bad_feature = self.BASELINE_FEAT + self.env['NPY_DISABLE_CPU_FEATURES'] = bad_feature + msg = ( + f"You cannot disable CPU feature '{bad_feature}', since it is " + "part of the baseline optimizations" + ) + err_type = "RuntimeError" + self._expect_error(msg, err_type) + + def test_impossible_feature_enable(self): + """ + Test that a RuntimeError is thrown if an impossible feature-enabling + request is made. This includes enabling a feature not supported by the + machine, or disabling a baseline optimization. + """ + + if self.UNAVAILABLE_FEAT is None: + pytest.skip("There are no unavailable features to test with") + bad_feature = self.UNAVAILABLE_FEAT + self.env['NPY_ENABLE_CPU_FEATURES'] = bad_feature + msg = ( + f"You cannot enable CPU features \\({bad_feature}\\), since " + "they are not supported by your machine." + ) + err_type = "RuntimeError" + self._expect_error(msg, err_type) + + # Ensure that it fails even when providing garbage in addition + feats = f"{bad_feature}, Foobar" + self.env['NPY_ENABLE_CPU_FEATURES'] = feats + msg = ( + f"You cannot enable CPU features \\({bad_feature}\\), since they " + "are not supported by your machine." + ) + self._expect_error(msg, err_type) + + if self.BASELINE_FEAT is not None: + # Ensure that only the bad feature gets reported + feats = f"{bad_feature}, {self.BASELINE_FEAT}" + self.env['NPY_ENABLE_CPU_FEATURES'] = feats + msg = ( + f"You cannot enable CPU features \\({bad_feature}\\), since " + "they are not supported by your machine." + ) + self._expect_error(msg, err_type) + + +is_linux = sys.platform.startswith('linux') +is_cygwin = sys.platform.startswith('cygwin') +machine = platform.machine() +is_x86 = re.match(r"^(amd64|x86|i386|i686)", machine, re.IGNORECASE) +@pytest.mark.skipif( + not (is_linux or is_cygwin) or not is_x86, reason="Only for Linux and x86" +) +class Test_X86_Features(AbstractTest): + features = [ + "MMX", "SSE", "SSE2", "SSE3", "SSSE3", "SSE41", "POPCNT", "SSE42", + "AVX", "F16C", "XOP", "FMA4", "FMA3", "AVX2", "AVX512F", "AVX512CD", + "AVX512ER", "AVX512PF", "AVX5124FMAPS", "AVX5124VNNIW", "AVX512VPOPCNTDQ", + "AVX512VL", "AVX512BW", "AVX512DQ", "AVX512VNNI", "AVX512IFMA", + "AVX512VBMI", "AVX512VBMI2", "AVX512BITALG", "AVX512FP16", + ] + features_groups = { + "AVX512_KNL": ["AVX512F", "AVX512CD", "AVX512ER", "AVX512PF"], + "AVX512_KNM": ["AVX512F", "AVX512CD", "AVX512ER", "AVX512PF", "AVX5124FMAPS", + "AVX5124VNNIW", "AVX512VPOPCNTDQ"], + "AVX512_SKX": ["AVX512F", "AVX512CD", "AVX512BW", "AVX512DQ", "AVX512VL"], + "AVX512_CLX": ["AVX512F", "AVX512CD", "AVX512BW", "AVX512DQ", "AVX512VL", "AVX512VNNI"], + "AVX512_CNL": ["AVX512F", "AVX512CD", "AVX512BW", "AVX512DQ", "AVX512VL", "AVX512IFMA", + "AVX512VBMI"], + "AVX512_ICL": ["AVX512F", "AVX512CD", "AVX512BW", "AVX512DQ", "AVX512VL", "AVX512IFMA", + "AVX512VBMI", "AVX512VNNI", "AVX512VBMI2", "AVX512BITALG", "AVX512VPOPCNTDQ"], + "AVX512_SPR": ["AVX512F", "AVX512CD", "AVX512BW", "AVX512DQ", + "AVX512VL", "AVX512IFMA", "AVX512VBMI", "AVX512VNNI", + "AVX512VBMI2", "AVX512BITALG", "AVX512VPOPCNTDQ", + "AVX512FP16"], + } + features_map = { + "SSE3": "PNI", "SSE41": "SSE4_1", "SSE42": "SSE4_2", "FMA3": "FMA", + "AVX512VNNI": "AVX512_VNNI", "AVX512BITALG": "AVX512_BITALG", + "AVX512VBMI2": "AVX512_VBMI2", "AVX5124FMAPS": "AVX512_4FMAPS", + "AVX5124VNNIW": "AVX512_4VNNIW", "AVX512VPOPCNTDQ": "AVX512_VPOPCNTDQ", + "AVX512FP16": "AVX512_FP16", + } + + def load_flags(self): + self.load_flags_cpuinfo("flags") + + +is_power = re.match(r"^(powerpc|ppc)64", machine, re.IGNORECASE) +@pytest.mark.skipif(not is_linux or not is_power, reason="Only for Linux and Power") +class Test_POWER_Features(AbstractTest): + features = ["VSX", "VSX2", "VSX3", "VSX4"] + features_map = {"VSX2": "ARCH_2_07", "VSX3": "ARCH_3_00", "VSX4": "ARCH_3_1"} + + def load_flags(self): + self.load_flags_auxv() + + +is_zarch = re.match(r"^(s390x)", machine, re.IGNORECASE) +@pytest.mark.skipif(not is_linux or not is_zarch, + reason="Only for Linux and IBM Z") +class Test_ZARCH_Features(AbstractTest): + features = ["VX", "VXE", "VXE2"] + + def load_flags(self): + self.load_flags_auxv() + + +is_arm = re.match(r"^(arm|aarch64)", machine, re.IGNORECASE) +@pytest.mark.skipif(not is_linux or not is_arm, reason="Only for Linux and ARM") +class Test_ARM_Features(AbstractTest): + features = [ + "SVE", "NEON", "ASIMD", "FPHP", "ASIMDHP", "ASIMDDP", "ASIMDFHM" + ] + features_groups = { + "NEON_FP16": ["NEON", "HALF"], + "NEON_VFPV4": ["NEON", "VFPV4"], + } + + def load_flags(self): + self.load_flags_cpuinfo("Features") + arch = self.get_cpuinfo_item("CPU architecture") + # in case of mounting virtual filesystem of aarch64 kernel without linux32 + is_rootfs_v8 = ( + not re.match(r"^armv[0-9]+l$", machine) and + (int('0' + next(iter(arch))) > 7 if arch else 0) + ) + if re.match(r"^(aarch64|AARCH64)", machine) or is_rootfs_v8: + self.features_map = { + "NEON": "ASIMD", "HALF": "ASIMD", "VFPV4": "ASIMD" + } + else: + self.features_map = { + # ELF auxiliary vector and /proc/cpuinfo on Linux kernel(armv8 aarch32) + # doesn't provide information about ASIMD, so we assume that ASIMD is supported + # if the kernel reports any one of the following ARM8 features. + "ASIMD": ("AES", "SHA1", "SHA2", "PMULL", "CRC32") + } + + +is_loongarch = re.match(r"^(loongarch)", machine, re.IGNORECASE) +@pytest.mark.skipif(not is_linux or not is_loongarch, reason="Only for Linux and LoongArch") +class Test_LOONGARCH_Features(AbstractTest): + features = ["LSX"] + + def load_flags(self): + self.load_flags_cpuinfo("Features") diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_custom_dtypes.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_custom_dtypes.py new file mode 100644 index 0000000..66e6de3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_custom_dtypes.py @@ -0,0 +1,315 @@ +from tempfile import NamedTemporaryFile + +import pytest +from numpy._core._multiarray_umath import ( + _discover_array_parameters as discover_array_params, +) +from numpy._core._multiarray_umath import _get_sfloat_dtype + +import numpy as np +from numpy.testing import assert_array_equal + +SF = _get_sfloat_dtype() + + +class TestSFloat: + def _get_array(self, scaling, aligned=True): + if not aligned: + a = np.empty(3 * 8 + 1, dtype=np.uint8)[1:] + a = a.view(np.float64) + a[:] = [1., 2., 3.] + else: + a = np.array([1., 2., 3.]) + + a *= 1. / scaling # the casting code also uses the reciprocal. + return a.view(SF(scaling)) + + def test_sfloat_rescaled(self): + sf = SF(1.) + sf2 = sf.scaled_by(2.) + assert sf2.get_scaling() == 2. + sf6 = sf2.scaled_by(3.) + assert sf6.get_scaling() == 6. + + def test_class_discovery(self): + # This does not test much, since we always discover the scaling as 1. + # But most of NumPy (when writing) does not understand DType classes + dt, _ = discover_array_params([1., 2., 3.], dtype=SF) + assert dt == SF(1.) + + @pytest.mark.parametrize("scaling", [1., -1., 2.]) + def test_scaled_float_from_floats(self, scaling): + a = np.array([1., 2., 3.], dtype=SF(scaling)) + + assert a.dtype.get_scaling() == scaling + assert_array_equal(scaling * a.view(np.float64), [1., 2., 3.]) + + def test_repr(self): + # Check the repr, mainly to cover the code paths: + assert repr(SF(scaling=1.)) == "_ScaledFloatTestDType(scaling=1.0)" + + def test_dtype_str(self): + assert SF(1.).str == "_ScaledFloatTestDType(scaling=1.0)" + + def test_dtype_name(self): + assert SF(1.).name == "_ScaledFloatTestDType64" + + def test_sfloat_structured_dtype_printing(self): + dt = np.dtype([("id", int), ("value", SF(0.5))]) + # repr of structured dtypes need special handling because the + # implementation bypasses the object repr + assert "('value', '_ScaledFloatTestDType64')" in repr(dt) + + @pytest.mark.parametrize("scaling", [1., -1., 2.]) + def test_sfloat_from_float(self, scaling): + a = np.array([1., 2., 3.]).astype(dtype=SF(scaling)) + + assert a.dtype.get_scaling() == scaling + assert_array_equal(scaling * a.view(np.float64), [1., 2., 3.]) + + @pytest.mark.parametrize("aligned", [True, False]) + @pytest.mark.parametrize("scaling", [1., -1., 2.]) + def test_sfloat_getitem(self, aligned, scaling): + a = self._get_array(1., aligned) + assert a.tolist() == [1., 2., 3.] + + @pytest.mark.parametrize("aligned", [True, False]) + def test_sfloat_casts(self, aligned): + a = self._get_array(1., aligned) + + assert np.can_cast(a, SF(-1.), casting="equiv") + assert not np.can_cast(a, SF(-1.), casting="no") + na = a.astype(SF(-1.)) + assert_array_equal(-1 * na.view(np.float64), a.view(np.float64)) + + assert np.can_cast(a, SF(2.), casting="same_kind") + assert not np.can_cast(a, SF(2.), casting="safe") + a2 = a.astype(SF(2.)) + assert_array_equal(2 * a2.view(np.float64), a.view(np.float64)) + + @pytest.mark.parametrize("aligned", [True, False]) + def test_sfloat_cast_internal_errors(self, aligned): + a = self._get_array(2e300, aligned) + + with pytest.raises(TypeError, + match="error raised inside the core-loop: non-finite factor!"): + a.astype(SF(2e-300)) + + def test_sfloat_promotion(self): + assert np.result_type(SF(2.), SF(3.)) == SF(3.) + assert np.result_type(SF(3.), SF(2.)) == SF(3.) + # Float64 -> SF(1.) and then promotes normally, so both of this work: + assert np.result_type(SF(3.), np.float64) == SF(3.) + assert np.result_type(np.float64, SF(0.5)) == SF(1.) + + # Test an undefined promotion: + with pytest.raises(TypeError): + np.result_type(SF(1.), np.int64) + + def test_basic_multiply(self): + a = self._get_array(2.) + b = self._get_array(4.) + + res = a * b + # multiplies dtype scaling and content separately: + assert res.dtype.get_scaling() == 8. + expected_view = a.view(np.float64) * b.view(np.float64) + assert_array_equal(res.view(np.float64), expected_view) + + def test_possible_and_impossible_reduce(self): + # For reductions to work, the first and last operand must have the + # same dtype. For this parametric DType that is not necessarily true. + a = self._get_array(2.) + # Addition reduction works (as of writing requires to pass initial + # because setting a scaled-float from the default `0` fails). + res = np.add.reduce(a, initial=0.) + assert res == a.astype(np.float64).sum() + + # But each multiplication changes the factor, so a reduction is not + # possible (the relaxed version of the old refusal to handle any + # flexible dtype). + with pytest.raises(TypeError, + match="the resolved dtypes are not compatible"): + np.multiply.reduce(a) + + def test_basic_ufunc_at(self): + float_a = np.array([1., 2., 3.]) + b = self._get_array(2.) + + float_b = b.view(np.float64).copy() + np.multiply.at(float_b, [1, 1, 1], float_a) + np.multiply.at(b, [1, 1, 1], float_a) + + assert_array_equal(b.view(np.float64), float_b) + + def test_basic_multiply_promotion(self): + float_a = np.array([1., 2., 3.]) + b = self._get_array(2.) + + res1 = float_a * b + res2 = b * float_a + + # one factor is one, so we get the factor of b: + assert res1.dtype == res2.dtype == b.dtype + expected_view = float_a * b.view(np.float64) + assert_array_equal(res1.view(np.float64), expected_view) + assert_array_equal(res2.view(np.float64), expected_view) + + # Check that promotion works when `out` is used: + np.multiply(b, float_a, out=res2) + with pytest.raises(TypeError): + # The promoter accepts this (maybe it should not), but the SFloat + # result cannot be cast to integer: + np.multiply(b, float_a, out=np.arange(3)) + + def test_basic_addition(self): + a = self._get_array(2.) + b = self._get_array(4.) + + res = a + b + # addition uses the type promotion rules for the result: + assert res.dtype == np.result_type(a.dtype, b.dtype) + expected_view = (a.astype(res.dtype).view(np.float64) + + b.astype(res.dtype).view(np.float64)) + assert_array_equal(res.view(np.float64), expected_view) + + def test_addition_cast_safety(self): + """The addition method is special for the scaled float, because it + includes the "cast" between different factors, thus cast-safety + is influenced by the implementation. + """ + a = self._get_array(2.) + b = self._get_array(-2.) + c = self._get_array(3.) + + # sign change is "equiv": + np.add(a, b, casting="equiv") + with pytest.raises(TypeError): + np.add(a, b, casting="no") + + # Different factor is "same_kind" (default) so check that "safe" fails + with pytest.raises(TypeError): + np.add(a, c, casting="safe") + + # Check that casting the output fails also (done by the ufunc here) + with pytest.raises(TypeError): + np.add(a, a, out=c, casting="safe") + + @pytest.mark.parametrize("ufunc", + [np.logical_and, np.logical_or, np.logical_xor]) + def test_logical_ufuncs_casts_to_bool(self, ufunc): + a = self._get_array(2.) + a[0] = 0. # make sure first element is considered False. + + float_equiv = a.astype(float) + expected = ufunc(float_equiv, float_equiv) + res = ufunc(a, a) + assert_array_equal(res, expected) + + # also check that the same works for reductions: + expected = ufunc.reduce(float_equiv) + res = ufunc.reduce(a) + assert_array_equal(res, expected) + + # The output casting does not match the bool, bool -> bool loop: + with pytest.raises(TypeError): + ufunc(a, a, out=np.empty(a.shape, dtype=int), casting="equiv") + + def test_wrapped_and_wrapped_reductions(self): + a = self._get_array(2.) + float_equiv = a.astype(float) + + expected = np.hypot(float_equiv, float_equiv) + res = np.hypot(a, a) + assert res.dtype == a.dtype + res_float = res.view(np.float64) * 2 + assert_array_equal(res_float, expected) + + # Also check reduction (keepdims, due to incorrect getitem) + res = np.hypot.reduce(a, keepdims=True) + assert res.dtype == a.dtype + expected = np.hypot.reduce(float_equiv, keepdims=True) + assert res.view(np.float64) * 2 == expected + + def test_astype_class(self): + # Very simple test that we accept `.astype()` also on the class. + # ScaledFloat always returns the default descriptor, but it does + # check the relevant code paths. + arr = np.array([1., 2., 3.], dtype=object) + + res = arr.astype(SF) # passing the class class + expected = arr.astype(SF(1.)) # above will have discovered 1. scaling + assert_array_equal(res.view(np.float64), expected.view(np.float64)) + + def test_creation_class(self): + # passing in a dtype class should return + # the default descriptor + arr1 = np.array([1., 2., 3.], dtype=SF) + assert arr1.dtype == SF(1.) + arr2 = np.array([1., 2., 3.], dtype=SF(1.)) + assert_array_equal(arr1.view(np.float64), arr2.view(np.float64)) + assert arr1.dtype == arr2.dtype + + assert np.empty(3, dtype=SF).dtype == SF(1.) + assert np.empty_like(arr1, dtype=SF).dtype == SF(1.) + assert np.zeros(3, dtype=SF).dtype == SF(1.) + assert np.zeros_like(arr1, dtype=SF).dtype == SF(1.) + + def test_np_save_load(self): + # this monkeypatch is needed because pickle + # uses the repr of a type to reconstruct it + np._ScaledFloatTestDType = SF + + arr = np.array([1.0, 2.0, 3.0], dtype=SF(1.0)) + + # adapted from RoundtripTest.roundtrip in np.save tests + with NamedTemporaryFile("wb", delete=False, suffix=".npz") as f: + with pytest.warns(UserWarning) as record: + np.savez(f.name, arr) + + assert len(record) == 1 + + with np.load(f.name, allow_pickle=True) as data: + larr = data["arr_0"] + assert_array_equal(arr.view(np.float64), larr.view(np.float64)) + assert larr.dtype == arr.dtype == SF(1.0) + + del np._ScaledFloatTestDType + + def test_flatiter(self): + arr = np.array([1.0, 2.0, 3.0], dtype=SF(1.0)) + + for i, val in enumerate(arr.flat): + assert arr[i] == val + + @pytest.mark.parametrize( + "index", [ + [1, 2], ..., slice(None, 2, None), + np.array([True, True, False]), np.array([0, 1]) + ], ids=["int_list", "ellipsis", "slice", "bool_array", "int_array"]) + def test_flatiter_index(self, index): + arr = np.array([1.0, 2.0, 3.0], dtype=SF(1.0)) + np.testing.assert_array_equal( + arr[index].view(np.float64), arr.flat[index].view(np.float64)) + + arr2 = arr.copy() + arr[index] = 5.0 + arr2.flat[index] = 5.0 + np.testing.assert_array_equal( + arr.view(np.float64), arr2.view(np.float64)) + +def test_type_pickle(): + # can't actually unpickle, but we can pickle (if in namespace) + import pickle + + np._ScaledFloatTestDType = SF + + s = pickle.dumps(SF) + res = pickle.loads(s) + assert res is SF + + del np._ScaledFloatTestDType + + +def test_is_numeric(): + assert SF._is_numeric diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_cython.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_cython.py new file mode 100644 index 0000000..fb3839f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_cython.py @@ -0,0 +1,351 @@ +import os +import subprocess +import sys +import sysconfig +from datetime import datetime + +import pytest + +import numpy as np +from numpy.testing import IS_EDITABLE, IS_WASM, assert_array_equal + +# This import is copied from random.tests.test_extending +try: + import cython + from Cython.Compiler.Version import version as cython_version +except ImportError: + cython = None +else: + from numpy._utils import _pep440 + + # Note: keep in sync with the one in pyproject.toml + required_version = "3.0.6" + if _pep440.parse(cython_version) < _pep440.Version(required_version): + # too old or wrong cython, skip the test + cython = None + +pytestmark = pytest.mark.skipif(cython is None, reason="requires cython") + + +if IS_EDITABLE: + pytest.skip( + "Editable install doesn't support tests with a compile step", + allow_module_level=True + ) + + +@pytest.fixture(scope='module') +def install_temp(tmpdir_factory): + # Based in part on test_cython from random.tests.test_extending + if IS_WASM: + pytest.skip("No subprocess") + + srcdir = os.path.join(os.path.dirname(__file__), 'examples', 'cython') + build_dir = tmpdir_factory.mktemp("cython_test") / "build" + os.makedirs(build_dir, exist_ok=True) + # Ensure we use the correct Python interpreter even when `meson` is + # installed in a different Python environment (see gh-24956) + native_file = str(build_dir / 'interpreter-native-file.ini') + with open(native_file, 'w') as f: + f.write("[binaries]\n") + f.write(f"python = '{sys.executable}'\n") + f.write(f"python3 = '{sys.executable}'") + + try: + subprocess.check_call(["meson", "--version"]) + except FileNotFoundError: + pytest.skip("No usable 'meson' found") + if sysconfig.get_platform() == "win-arm64": + pytest.skip("Meson unable to find MSVC linker on win-arm64") + if sys.platform == "win32": + subprocess.check_call(["meson", "setup", + "--buildtype=release", + "--vsenv", "--native-file", native_file, + str(srcdir)], + cwd=build_dir, + ) + else: + subprocess.check_call(["meson", "setup", + "--native-file", native_file, str(srcdir)], + cwd=build_dir + ) + try: + subprocess.check_call(["meson", "compile", "-vv"], cwd=build_dir) + except subprocess.CalledProcessError: + print("----------------") + print("meson build failed when doing") + print(f"'meson setup --native-file {native_file} {srcdir}'") + print("'meson compile -vv'") + print(f"in {build_dir}") + print("----------------") + raise + + sys.path.append(str(build_dir)) + + +def test_is_timedelta64_object(install_temp): + import checks + + assert checks.is_td64(np.timedelta64(1234)) + assert checks.is_td64(np.timedelta64(1234, "ns")) + assert checks.is_td64(np.timedelta64("NaT", "ns")) + + assert not checks.is_td64(1) + assert not checks.is_td64(None) + assert not checks.is_td64("foo") + assert not checks.is_td64(np.datetime64("now", "s")) + + +def test_is_datetime64_object(install_temp): + import checks + + assert checks.is_dt64(np.datetime64(1234, "ns")) + assert checks.is_dt64(np.datetime64("NaT", "ns")) + + assert not checks.is_dt64(1) + assert not checks.is_dt64(None) + assert not checks.is_dt64("foo") + assert not checks.is_dt64(np.timedelta64(1234)) + + +def test_get_datetime64_value(install_temp): + import checks + + dt64 = np.datetime64("2016-01-01", "ns") + + result = checks.get_dt64_value(dt64) + expected = dt64.view("i8") + + assert result == expected + + +def test_get_timedelta64_value(install_temp): + import checks + + td64 = np.timedelta64(12345, "h") + + result = checks.get_td64_value(td64) + expected = td64.view("i8") + + assert result == expected + + +def test_get_datetime64_unit(install_temp): + import checks + + dt64 = np.datetime64("2016-01-01", "ns") + result = checks.get_dt64_unit(dt64) + expected = 10 + assert result == expected + + td64 = np.timedelta64(12345, "h") + result = checks.get_dt64_unit(td64) + expected = 5 + assert result == expected + + +def test_abstract_scalars(install_temp): + import checks + + assert checks.is_integer(1) + assert checks.is_integer(np.int8(1)) + assert checks.is_integer(np.uint64(1)) + +def test_default_int(install_temp): + import checks + + assert checks.get_default_integer() is np.dtype(int) + + +def test_ravel_axis(install_temp): + import checks + + assert checks.get_ravel_axis() == np.iinfo("intc").min + + +def test_convert_datetime64_to_datetimestruct(install_temp): + # GH#21199 + import checks + + res = checks.convert_datetime64_to_datetimestruct() + + exp = { + "year": 2022, + "month": 3, + "day": 15, + "hour": 20, + "min": 1, + "sec": 55, + "us": 260292, + "ps": 0, + "as": 0, + } + + assert res == exp + + +class TestDatetimeStrings: + def test_make_iso_8601_datetime(self, install_temp): + # GH#21199 + import checks + dt = datetime(2016, 6, 2, 10, 45, 19) + # uses NPY_FR_s + result = checks.make_iso_8601_datetime(dt) + assert result == b"2016-06-02T10:45:19" + + def test_get_datetime_iso_8601_strlen(self, install_temp): + # GH#21199 + import checks + # uses NPY_FR_ns + res = checks.get_datetime_iso_8601_strlen() + assert res == 48 + + +@pytest.mark.parametrize( + "arrays", + [ + [np.random.rand(2)], + [np.random.rand(2), np.random.rand(3, 1)], + [np.random.rand(2), np.random.rand(2, 3, 2), np.random.rand(1, 3, 2)], + [np.random.rand(2, 1)] * 4 + [np.random.rand(1, 1, 1)], + ] +) +def test_multiiter_fields(install_temp, arrays): + import checks + bcast = np.broadcast(*arrays) + + assert bcast.ndim == checks.get_multiiter_number_of_dims(bcast) + assert bcast.size == checks.get_multiiter_size(bcast) + assert bcast.numiter == checks.get_multiiter_num_of_iterators(bcast) + assert bcast.shape == checks.get_multiiter_shape(bcast) + assert bcast.index == checks.get_multiiter_current_index(bcast) + assert all( + x.base is y.base + for x, y in zip(bcast.iters, checks.get_multiiter_iters(bcast)) + ) + + +def test_dtype_flags(install_temp): + import checks + dtype = np.dtype("i,O") # dtype with somewhat interesting flags + assert dtype.flags == checks.get_dtype_flags(dtype) + + +def test_conv_intp(install_temp): + import checks + + class myint: + def __int__(self): + return 3 + + # These conversion passes via `__int__`, not `__index__`: + assert checks.conv_intp(3.) == 3 + assert checks.conv_intp(myint()) == 3 + + +def test_npyiter_api(install_temp): + import checks + arr = np.random.rand(3, 2) + + it = np.nditer(arr) + assert checks.get_npyiter_size(it) == it.itersize == np.prod(arr.shape) + assert checks.get_npyiter_ndim(it) == it.ndim == 1 + assert checks.npyiter_has_index(it) == it.has_index == False + + it = np.nditer(arr, flags=["c_index"]) + assert checks.npyiter_has_index(it) == it.has_index == True + assert ( + checks.npyiter_has_delayed_bufalloc(it) + == it.has_delayed_bufalloc + == False + ) + + it = np.nditer(arr, flags=["buffered", "delay_bufalloc"]) + assert ( + checks.npyiter_has_delayed_bufalloc(it) + == it.has_delayed_bufalloc + == True + ) + + it = np.nditer(arr, flags=["multi_index"]) + assert checks.get_npyiter_size(it) == it.itersize == np.prod(arr.shape) + assert checks.npyiter_has_multi_index(it) == it.has_multi_index == True + assert checks.get_npyiter_ndim(it) == it.ndim == 2 + assert checks.test_get_multi_index_iter_next(it, arr) + + arr2 = np.random.rand(2, 1, 2) + it = np.nditer([arr, arr2]) + assert checks.get_npyiter_nop(it) == it.nop == 2 + assert checks.get_npyiter_size(it) == it.itersize == 12 + assert checks.get_npyiter_ndim(it) == it.ndim == 3 + assert all( + x is y for x, y in zip(checks.get_npyiter_operands(it), it.operands) + ) + assert all( + np.allclose(x, y) + for x, y in zip(checks.get_npyiter_itviews(it), it.itviews) + ) + + +def test_fillwithbytes(install_temp): + import checks + + arr = checks.compile_fillwithbyte() + assert_array_equal(arr, np.ones((1, 2))) + + +def test_complex(install_temp): + from checks import inc2_cfloat_struct + + arr = np.array([0, 10 + 10j], dtype="F") + inc2_cfloat_struct(arr) + assert arr[1] == (12 + 12j) + + +def test_npystring_pack(install_temp): + """Check that the cython API can write to a vstring array.""" + import checks + + arr = np.array(['a', 'b', 'c'], dtype='T') + assert checks.npystring_pack(arr) == 0 + + # checks.npystring_pack writes to the beginning of the array + assert arr[0] == "Hello world" + +def test_npystring_load(install_temp): + """Check that the cython API can load strings from a vstring array.""" + import checks + + arr = np.array(['abcd', 'b', 'c'], dtype='T') + result = checks.npystring_load(arr) + assert result == 'abcd' + + +def test_npystring_multiple_allocators(install_temp): + """Check that the cython API can acquire/release multiple vstring allocators.""" + import checks + + dt = np.dtypes.StringDType(na_object=None) + arr1 = np.array(['abcd', 'b', 'c'], dtype=dt) + arr2 = np.array(['a', 'b', 'c'], dtype=dt) + + assert checks.npystring_pack_multiple(arr1, arr2) == 0 + assert arr1[0] == "Hello world" + assert arr1[-1] is None + assert arr2[0] == "test this" + + +def test_npystring_allocators_other_dtype(install_temp): + """Check that allocators for non-StringDType arrays is NULL.""" + import checks + + arr1 = np.array([1, 2, 3], dtype='i') + arr2 = np.array([4, 5, 6], dtype='i') + + assert checks.npystring_allocators_other_types(arr1, arr2) == 0 + + +@pytest.mark.skipif(sysconfig.get_platform() == 'win-arm64', reason='no checks module on win-arm64') +def test_npy_uintp_type_enum(): + import checks + assert checks.check_npy_uintp_type_enum() diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_datetime.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_datetime.py new file mode 100644 index 0000000..1cbacb8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_datetime.py @@ -0,0 +1,2710 @@ +import datetime +import pickle + +import pytest + +import numpy +import numpy as np +from numpy.testing import ( + IS_WASM, + assert_, + assert_array_equal, + assert_equal, + assert_raises, + assert_raises_regex, + assert_warns, + suppress_warnings, +) + +# Use pytz to test out various time zones if available +try: + from pytz import timezone as tz + _has_pytz = True +except ImportError: + _has_pytz = False + +try: + RecursionError +except NameError: + RecursionError = RuntimeError # python < 3.5 + + +def _assert_equal_hash(v1, v2): + assert v1 == v2 + assert hash(v1) == hash(v2) + assert v2 in {v1} + + +class TestDateTime: + + def test_string(self): + msg = "no explicit representation of timezones available for " \ + "np.datetime64" + with pytest.warns(UserWarning, match=msg): + np.datetime64('2000-01-01T00+01') + + def test_datetime(self): + msg = "no explicit representation of timezones available for " \ + "np.datetime64" + with pytest.warns(UserWarning, match=msg): + t0 = np.datetime64('2023-06-09T12:18:40Z', 'ns') + + t0 = np.datetime64('2023-06-09T12:18:40', 'ns') + + def test_datetime_dtype_creation(self): + for unit in ['Y', 'M', 'W', 'D', + 'h', 'm', 's', 'ms', 'us', + 'μs', # alias for us + 'ns', 'ps', 'fs', 'as']: + dt1 = np.dtype(f'M8[750{unit}]') + assert_(dt1 == np.dtype(f'datetime64[750{unit}]')) + dt2 = np.dtype(f'm8[{unit}]') + assert_(dt2 == np.dtype(f'timedelta64[{unit}]')) + + # Generic units shouldn't add [] to the end + assert_equal(str(np.dtype("M8")), "datetime64") + + # Should be possible to specify the endianness + assert_equal(np.dtype("=M8"), np.dtype("M8")) + assert_equal(np.dtype("=M8[s]"), np.dtype("M8[s]")) + assert_(np.dtype(">M8") == np.dtype("M8") or + np.dtype("M8[D]") == np.dtype("M8[D]") or + np.dtype("M8") != np.dtype("m8") == np.dtype("m8") or + np.dtype("m8[D]") == np.dtype("m8[D]") or + np.dtype("m8") != np.dtype(" Scalars + assert_equal(np.datetime64(b, '[s]'), np.datetime64('NaT', '[s]')) + assert_equal(np.datetime64(b, '[ms]'), np.datetime64('NaT', '[ms]')) + assert_equal(np.datetime64(b, '[M]'), np.datetime64('NaT', '[M]')) + assert_equal(np.datetime64(b, '[Y]'), np.datetime64('NaT', '[Y]')) + assert_equal(np.datetime64(b, '[W]'), np.datetime64('NaT', '[W]')) + + # Arrays -> Scalars + assert_equal(np.datetime64(a, '[s]'), np.datetime64('NaT', '[s]')) + assert_equal(np.datetime64(a, '[ms]'), np.datetime64('NaT', '[ms]')) + assert_equal(np.datetime64(a, '[M]'), np.datetime64('NaT', '[M]')) + assert_equal(np.datetime64(a, '[Y]'), np.datetime64('NaT', '[Y]')) + assert_equal(np.datetime64(a, '[W]'), np.datetime64('NaT', '[W]')) + + # NaN -> NaT + nan = np.array([np.nan] * 8 + [0]) + fnan = nan.astype('f') + lnan = nan.astype('g') + cnan = nan.astype('D') + cfnan = nan.astype('F') + clnan = nan.astype('G') + hnan = nan.astype(np.half) + + nat = np.array([np.datetime64('NaT')] * 8 + [np.datetime64(0, 'D')]) + assert_equal(nan.astype('M8[ns]'), nat) + assert_equal(fnan.astype('M8[ns]'), nat) + assert_equal(lnan.astype('M8[ns]'), nat) + assert_equal(cnan.astype('M8[ns]'), nat) + assert_equal(cfnan.astype('M8[ns]'), nat) + assert_equal(clnan.astype('M8[ns]'), nat) + assert_equal(hnan.astype('M8[ns]'), nat) + + nat = np.array([np.timedelta64('NaT')] * 8 + [np.timedelta64(0)]) + assert_equal(nan.astype('timedelta64[ns]'), nat) + assert_equal(fnan.astype('timedelta64[ns]'), nat) + assert_equal(lnan.astype('timedelta64[ns]'), nat) + assert_equal(cnan.astype('timedelta64[ns]'), nat) + assert_equal(cfnan.astype('timedelta64[ns]'), nat) + assert_equal(clnan.astype('timedelta64[ns]'), nat) + assert_equal(hnan.astype('timedelta64[ns]'), nat) + + def test_days_creation(self): + assert_equal(np.array('1599', dtype='M8[D]').astype('i8'), + (1600 - 1970) * 365 - (1972 - 1600) / 4 + 3 - 365) + assert_equal(np.array('1600', dtype='M8[D]').astype('i8'), + (1600 - 1970) * 365 - (1972 - 1600) / 4 + 3) + assert_equal(np.array('1601', dtype='M8[D]').astype('i8'), + (1600 - 1970) * 365 - (1972 - 1600) / 4 + 3 + 366) + assert_equal(np.array('1900', dtype='M8[D]').astype('i8'), + (1900 - 1970) * 365 - (1970 - 1900) // 4) + assert_equal(np.array('1901', dtype='M8[D]').astype('i8'), + (1900 - 1970) * 365 - (1970 - 1900) // 4 + 365) + assert_equal(np.array('1967', dtype='M8[D]').astype('i8'), -3 * 365 - 1) + assert_equal(np.array('1968', dtype='M8[D]').astype('i8'), -2 * 365 - 1) + assert_equal(np.array('1969', dtype='M8[D]').astype('i8'), -1 * 365) + assert_equal(np.array('1970', dtype='M8[D]').astype('i8'), 0 * 365) + assert_equal(np.array('1971', dtype='M8[D]').astype('i8'), 1 * 365) + assert_equal(np.array('1972', dtype='M8[D]').astype('i8'), 2 * 365) + assert_equal(np.array('1973', dtype='M8[D]').astype('i8'), 3 * 365 + 1) + assert_equal(np.array('1974', dtype='M8[D]').astype('i8'), 4 * 365 + 1) + assert_equal(np.array('2000', dtype='M8[D]').astype('i8'), + (2000 - 1970) * 365 + (2000 - 1972) // 4) + assert_equal(np.array('2001', dtype='M8[D]').astype('i8'), + (2000 - 1970) * 365 + (2000 - 1972) // 4 + 366) + assert_equal(np.array('2400', dtype='M8[D]').astype('i8'), + (2400 - 1970) * 365 + (2400 - 1972) // 4 - 3) + assert_equal(np.array('2401', dtype='M8[D]').astype('i8'), + (2400 - 1970) * 365 + (2400 - 1972) // 4 - 3 + 366) + + assert_equal(np.array('1600-02-29', dtype='M8[D]').astype('i8'), + (1600 - 1970) * 365 - (1972 - 1600) // 4 + 3 + 31 + 28) + assert_equal(np.array('1600-03-01', dtype='M8[D]').astype('i8'), + (1600 - 1970) * 365 - (1972 - 1600) // 4 + 3 + 31 + 29) + assert_equal(np.array('2000-02-29', dtype='M8[D]').astype('i8'), + (2000 - 1970) * 365 + (2000 - 1972) // 4 + 31 + 28) + assert_equal(np.array('2000-03-01', dtype='M8[D]').astype('i8'), + (2000 - 1970) * 365 + (2000 - 1972) // 4 + 31 + 29) + assert_equal(np.array('2001-03-22', dtype='M8[D]').astype('i8'), + (2000 - 1970) * 365 + (2000 - 1972) // 4 + 366 + 31 + 28 + 21) + + def test_days_to_pydate(self): + assert_equal(np.array('1599', dtype='M8[D]').astype('O'), + datetime.date(1599, 1, 1)) + assert_equal(np.array('1600', dtype='M8[D]').astype('O'), + datetime.date(1600, 1, 1)) + assert_equal(np.array('1601', dtype='M8[D]').astype('O'), + datetime.date(1601, 1, 1)) + assert_equal(np.array('1900', dtype='M8[D]').astype('O'), + datetime.date(1900, 1, 1)) + assert_equal(np.array('1901', dtype='M8[D]').astype('O'), + datetime.date(1901, 1, 1)) + assert_equal(np.array('2000', dtype='M8[D]').astype('O'), + datetime.date(2000, 1, 1)) + assert_equal(np.array('2001', dtype='M8[D]').astype('O'), + datetime.date(2001, 1, 1)) + assert_equal(np.array('1600-02-29', dtype='M8[D]').astype('O'), + datetime.date(1600, 2, 29)) + assert_equal(np.array('1600-03-01', dtype='M8[D]').astype('O'), + datetime.date(1600, 3, 1)) + assert_equal(np.array('2001-03-22', dtype='M8[D]').astype('O'), + datetime.date(2001, 3, 22)) + + def test_dtype_comparison(self): + assert_(not (np.dtype('M8[us]') == np.dtype('M8[ms]'))) + assert_(np.dtype('M8[us]') != np.dtype('M8[ms]')) + assert_(np.dtype('M8[2D]') != np.dtype('M8[D]')) + assert_(np.dtype('M8[D]') != np.dtype('M8[2D]')) + + def test_pydatetime_creation(self): + a = np.array(['1960-03-12', datetime.date(1960, 3, 12)], dtype='M8[D]') + assert_equal(a[0], a[1]) + a = np.array(['1999-12-31', datetime.date(1999, 12, 31)], dtype='M8[D]') + assert_equal(a[0], a[1]) + a = np.array(['2000-01-01', datetime.date(2000, 1, 1)], dtype='M8[D]') + assert_equal(a[0], a[1]) + # Will fail if the date changes during the exact right moment + a = np.array(['today', datetime.date.today()], dtype='M8[D]') + assert_equal(a[0], a[1]) + # datetime.datetime.now() returns local time, not UTC + #a = np.array(['now', datetime.datetime.now()], dtype='M8[s]') + #assert_equal(a[0], a[1]) + + # we can give a datetime.date time units + assert_equal(np.array(datetime.date(1960, 3, 12), dtype='M8[s]'), + np.array(np.datetime64('1960-03-12T00:00:00'))) + + def test_datetime_string_conversion(self): + a = ['2011-03-16', '1920-01-01', '2013-05-19'] + str_a = np.array(a, dtype='S') + uni_a = np.array(a, dtype='U') + dt_a = np.array(a, dtype='M') + + # String to datetime + assert_equal(dt_a, str_a.astype('M')) + assert_equal(dt_a.dtype, str_a.astype('M').dtype) + dt_b = np.empty_like(dt_a) + dt_b[...] = str_a + assert_equal(dt_a, dt_b) + + # Datetime to string + assert_equal(str_a, dt_a.astype('S0')) + str_b = np.empty_like(str_a) + str_b[...] = dt_a + assert_equal(str_a, str_b) + + # Unicode to datetime + assert_equal(dt_a, uni_a.astype('M')) + assert_equal(dt_a.dtype, uni_a.astype('M').dtype) + dt_b = np.empty_like(dt_a) + dt_b[...] = uni_a + assert_equal(dt_a, dt_b) + + # Datetime to unicode + assert_equal(uni_a, dt_a.astype('U')) + uni_b = np.empty_like(uni_a) + uni_b[...] = dt_a + assert_equal(uni_a, uni_b) + + # Datetime to long string - gh-9712 + assert_equal(str_a, dt_a.astype((np.bytes_, 128))) + str_b = np.empty(str_a.shape, dtype=(np.bytes_, 128)) + str_b[...] = dt_a + assert_equal(str_a, str_b) + + @pytest.mark.parametrize("time_dtype", ["m8[D]", "M8[Y]"]) + def test_time_byteswapping(self, time_dtype): + times = np.array(["2017", "NaT"], dtype=time_dtype) + times_swapped = times.astype(times.dtype.newbyteorder()) + assert_array_equal(times, times_swapped) + + unswapped = times_swapped.view(np.dtype("int64").newbyteorder()) + assert_array_equal(unswapped, times.view(np.int64)) + + @pytest.mark.parametrize(["time1", "time2"], + [("M8[s]", "M8[D]"), ("m8[s]", "m8[ns]")]) + def test_time_byteswapped_cast(self, time1, time2): + dtype1 = np.dtype(time1) + dtype2 = np.dtype(time2) + times = np.array(["2017", "NaT"], dtype=dtype1) + expected = times.astype(dtype2) + + # Test that every byte-swapping combination also returns the same + # results (previous tests check that this comparison works fine). + res = times.astype(dtype1.newbyteorder()).astype(dtype2) + assert_array_equal(res, expected) + res = times.astype(dtype2.newbyteorder()) + assert_array_equal(res, expected) + res = times.astype(dtype1.newbyteorder()).astype(dtype2.newbyteorder()) + assert_array_equal(res, expected) + + @pytest.mark.parametrize("time_dtype", ["m8[D]", "M8[Y]"]) + @pytest.mark.parametrize("str_dtype", ["U", "S"]) + def test_datetime_conversions_byteorders(self, str_dtype, time_dtype): + times = np.array(["2017", "NaT"], dtype=time_dtype) + # Unfortunately, timedelta does not roundtrip: + from_strings = np.array(["2017", "NaT"], dtype=str_dtype) + to_strings = times.astype(str_dtype) # assume this is correct + + # Check that conversion from times to string works if src is swapped: + times_swapped = times.astype(times.dtype.newbyteorder()) + res = times_swapped.astype(str_dtype) + assert_array_equal(res, to_strings) + # And also if both are swapped: + res = times_swapped.astype(to_strings.dtype.newbyteorder()) + assert_array_equal(res, to_strings) + # only destination is swapped: + res = times.astype(to_strings.dtype.newbyteorder()) + assert_array_equal(res, to_strings) + + # Check that conversion from string to times works if src is swapped: + from_strings_swapped = from_strings.astype( + from_strings.dtype.newbyteorder()) + res = from_strings_swapped.astype(time_dtype) + assert_array_equal(res, times) + # And if both are swapped: + res = from_strings_swapped.astype(times.dtype.newbyteorder()) + assert_array_equal(res, times) + # Only destination is swapped: + res = from_strings.astype(times.dtype.newbyteorder()) + assert_array_equal(res, times) + + def test_datetime_array_str(self): + a = np.array(['2011-03-16', '1920-01-01', '2013-05-19'], dtype='M') + assert_equal(str(a), "['2011-03-16' '1920-01-01' '2013-05-19']") + + a = np.array(['2011-03-16T13:55', '1920-01-01T03:12'], dtype='M') + assert_equal(np.array2string(a, separator=', ', + formatter={'datetime': lambda x: + f"'{np.datetime_as_string(x, timezone='UTC')}'"}), + "['2011-03-16T13:55Z', '1920-01-01T03:12Z']") + + # Check that one NaT doesn't corrupt subsequent entries + a = np.array(['2010', 'NaT', '2030']).astype('M') + assert_equal(str(a), "['2010' 'NaT' '2030']") + + def test_timedelta_array_str(self): + a = np.array([-1, 0, 100], dtype='m') + assert_equal(str(a), "[ -1 0 100]") + a = np.array(['NaT', 'NaT'], dtype='m') + assert_equal(str(a), "['NaT' 'NaT']") + # Check right-alignment with NaTs + a = np.array([-1, 'NaT', 0], dtype='m') + assert_equal(str(a), "[ -1 'NaT' 0]") + a = np.array([-1, 'NaT', 1234567], dtype='m') + assert_equal(str(a), "[ -1 'NaT' 1234567]") + + # Test with other byteorder: + a = np.array([-1, 'NaT', 1234567], dtype='>m') + assert_equal(str(a), "[ -1 'NaT' 1234567]") + a = np.array([-1, 'NaT', 1234567], dtype=''\np4\nNNNI-1\nI-1\nI0\n((dp5\n(S'us'\np6\n"\ + b"I1\nI1\nI1\ntp7\ntp8\ntp9\nb." + assert_equal(pickle.loads(pkl), np.dtype('>M8[us]')) + + def test_setstate(self): + "Verify that datetime dtype __setstate__ can handle bad arguments" + dt = np.dtype('>M8[us]') + assert_raises(ValueError, dt.__setstate__, (4, '>', None, None, None, -1, -1, 0, 1)) + assert_(dt.__reduce__()[2] == np.dtype('>M8[us]').__reduce__()[2]) + assert_raises(TypeError, dt.__setstate__, (4, '>', None, None, None, -1, -1, 0, ({}, 'xxx'))) + assert_(dt.__reduce__()[2] == np.dtype('>M8[us]').__reduce__()[2]) + + def test_dtype_promotion(self): + # datetime datetime computes the metadata gcd + # timedelta timedelta computes the metadata gcd + for mM in ['m', 'M']: + assert_equal( + np.promote_types(np.dtype(mM + '8[2Y]'), np.dtype(mM + '8[2Y]')), + np.dtype(mM + '8[2Y]')) + assert_equal( + np.promote_types(np.dtype(mM + '8[12Y]'), np.dtype(mM + '8[15Y]')), + np.dtype(mM + '8[3Y]')) + assert_equal( + np.promote_types(np.dtype(mM + '8[62M]'), np.dtype(mM + '8[24M]')), + np.dtype(mM + '8[2M]')) + assert_equal( + np.promote_types(np.dtype(mM + '8[1W]'), np.dtype(mM + '8[2D]')), + np.dtype(mM + '8[1D]')) + assert_equal( + np.promote_types(np.dtype(mM + '8[W]'), np.dtype(mM + '8[13s]')), + np.dtype(mM + '8[s]')) + assert_equal( + np.promote_types(np.dtype(mM + '8[13W]'), np.dtype(mM + '8[49s]')), + np.dtype(mM + '8[7s]')) + # timedelta timedelta raises when there is no reasonable gcd + assert_raises(TypeError, np.promote_types, + np.dtype('m8[Y]'), np.dtype('m8[D]')) + assert_raises(TypeError, np.promote_types, + np.dtype('m8[M]'), np.dtype('m8[W]')) + # timedelta and float cannot be safely cast with each other + assert_raises(TypeError, np.promote_types, "float32", "m8") + assert_raises(TypeError, np.promote_types, "m8", "float32") + assert_raises(TypeError, np.promote_types, "uint64", "m8") + assert_raises(TypeError, np.promote_types, "m8", "uint64") + + # timedelta timedelta may overflow with big unit ranges + assert_raises(OverflowError, np.promote_types, + np.dtype('m8[W]'), np.dtype('m8[fs]')) + assert_raises(OverflowError, np.promote_types, + np.dtype('m8[s]'), np.dtype('m8[as]')) + + def test_cast_overflow(self): + # gh-4486 + def cast(): + numpy.datetime64("1971-01-01 00:00:00.000000000000000").astype("datetime64[{unit}]') + assert_equal(np.isnat(arr), res) + arr = np.array([123, -321, "NaT"], dtype=f'timedelta64[{unit}]') + assert_equal(np.isnat(arr), res) + + def test_isnat_error(self): + # Test that only datetime dtype arrays are accepted + for t in np.typecodes["All"]: + if t in np.typecodes["Datetime"]: + continue + assert_raises(TypeError, np.isnat, np.zeros(10, t)) + + def test_isfinite_scalar(self): + assert_(not np.isfinite(np.datetime64('NaT', 'ms'))) + assert_(not np.isfinite(np.datetime64('NaT', 'ns'))) + assert_(np.isfinite(np.datetime64('2038-01-19T03:14:07'))) + + assert_(not np.isfinite(np.timedelta64('NaT', "ms"))) + assert_(np.isfinite(np.timedelta64(34, "ms"))) + + @pytest.mark.parametrize('unit', ['Y', 'M', 'W', 'D', 'h', 'm', 's', 'ms', + 'us', 'ns', 'ps', 'fs', 'as']) + @pytest.mark.parametrize('dstr', ['datetime64[%s]', + 'timedelta64[%s]']) + def test_isfinite_isinf_isnan_units(self, unit, dstr): + '''check isfinite, isinf, isnan for all units of M, m dtypes + ''' + arr_val = [123, -321, "NaT"] + arr = np.array(arr_val, dtype=(dstr % unit)) + pos = np.array([True, True, False]) + neg = np.array([False, False, True]) + false = np.array([False, False, False]) + assert_equal(np.isfinite(arr), pos) + assert_equal(np.isinf(arr), false) + assert_equal(np.isnan(arr), neg) + + def test_assert_equal(self): + assert_raises(AssertionError, assert_equal, + np.datetime64('nat'), np.timedelta64('nat')) + + def test_corecursive_input(self): + # construct a co-recursive list + a, b = [], [] + a.append(b) + b.append(a) + obj_arr = np.array([None]) + obj_arr[0] = a + + # At some point this caused a stack overflow (gh-11154). Now raises + # ValueError since the nested list cannot be converted to a datetime. + assert_raises(ValueError, obj_arr.astype, 'M8') + assert_raises(ValueError, obj_arr.astype, 'm8') + + @pytest.mark.parametrize("shape", [(), (1,)]) + def test_discovery_from_object_array(self, shape): + arr = np.array("2020-10-10", dtype=object).reshape(shape) + res = np.array("2020-10-10", dtype="M8").reshape(shape) + assert res.dtype == np.dtype("M8[D]") + assert_equal(arr.astype("M8"), res) + arr[...] = np.bytes_("2020-10-10") # try a numpy string type + assert_equal(arr.astype("M8"), res) + arr = arr.astype("S") + assert_equal(arr.astype("S").astype("M8"), res) + + @pytest.mark.parametrize("time_unit", [ + "Y", "M", "W", "D", "h", "m", "s", "ms", "us", "ns", "ps", "fs", "as", + # compound units + "10D", "2M", + ]) + def test_limit_symmetry(self, time_unit): + """ + Dates should have symmetric limits around the unix epoch at +/-np.int64 + """ + epoch = np.datetime64(0, time_unit) + latest = np.datetime64(np.iinfo(np.int64).max, time_unit) + earliest = np.datetime64(-np.iinfo(np.int64).max, time_unit) + + # above should not have overflowed + assert earliest < epoch < latest + + @pytest.mark.parametrize("time_unit", [ + "Y", "M", + pytest.param("W", marks=pytest.mark.xfail(reason="gh-13197")), + "D", "h", "m", + "s", "ms", "us", "ns", "ps", "fs", "as", + pytest.param("10D", marks=pytest.mark.xfail(reason="similar to gh-13197")), + ]) + @pytest.mark.parametrize("sign", [-1, 1]) + def test_limit_str_roundtrip(self, time_unit, sign): + """ + Limits should roundtrip when converted to strings. + + This tests the conversion to and from npy_datetimestruct. + """ + # TODO: add absolute (gold standard) time span limit strings + limit = np.datetime64(np.iinfo(np.int64).max * sign, time_unit) + + # Convert to string and back. Explicit unit needed since the day and + # week reprs are not distinguishable. + limit_via_str = np.datetime64(str(limit), time_unit) + assert limit_via_str == limit + + def test_datetime_hash_nat(self): + nat1 = np.datetime64() + nat2 = np.datetime64() + assert nat1 is not nat2 + assert nat1 != nat2 + assert hash(nat1) != hash(nat2) + + @pytest.mark.parametrize('unit', ('Y', 'M', 'W', 'D', 'h', 'm', 's', 'ms', 'us')) + def test_datetime_hash_weeks(self, unit): + dt = np.datetime64(2348, 'W') # 2015-01-01 + dt2 = np.datetime64(dt, unit) + _assert_equal_hash(dt, dt2) + + dt3 = np.datetime64(int(dt2.astype(int)) + 1, unit) + assert hash(dt) != hash(dt3) # doesn't collide + + @pytest.mark.parametrize('unit', ('h', 'm', 's', 'ms', 'us')) + def test_datetime_hash_weeks_vs_pydatetime(self, unit): + dt = np.datetime64(2348, 'W') # 2015-01-01 + dt2 = np.datetime64(dt, unit) + pydt = dt2.astype(datetime.datetime) + assert isinstance(pydt, datetime.datetime) + _assert_equal_hash(pydt, dt2) + + @pytest.mark.parametrize('unit', ('Y', 'M', 'W', 'D', 'h', 'm', 's', 'ms', 'us')) + def test_datetime_hash_big_negative(self, unit): + dt = np.datetime64(-102894, 'W') # -002-01-01 + dt2 = np.datetime64(dt, unit) + _assert_equal_hash(dt, dt2) + + # can only go down to "fs" before integer overflow + @pytest.mark.parametrize('unit', ('m', 's', 'ms', 'us', 'ns', 'ps', 'fs')) + def test_datetime_hash_minutes(self, unit): + dt = np.datetime64(3, 'm') + dt2 = np.datetime64(dt, unit) + _assert_equal_hash(dt, dt2) + + @pytest.mark.parametrize('unit', ('ns', 'ps', 'fs', 'as')) + def test_datetime_hash_ns(self, unit): + dt = np.datetime64(3, 'ns') + dt2 = np.datetime64(dt, unit) + _assert_equal_hash(dt, dt2) + + dt3 = np.datetime64(int(dt2.astype(int)) + 1, unit) + assert hash(dt) != hash(dt3) # doesn't collide + + @pytest.mark.parametrize('wk', range(500000, 500010)) # 11552-09-04 + @pytest.mark.parametrize('unit', ('W', 'D', 'h', 'm', 's', 'ms', 'us')) + def test_datetime_hash_big_positive(self, wk, unit): + dt = np.datetime64(wk, 'W') + dt2 = np.datetime64(dt, unit) + _assert_equal_hash(dt, dt2) + + def test_timedelta_hash_generic(self): + assert_raises(ValueError, hash, np.timedelta64(123)) # generic + + @pytest.mark.parametrize('unit', ('Y', 'M')) + def test_timedelta_hash_year_month(self, unit): + td = np.timedelta64(45, 'Y') + td2 = np.timedelta64(td, unit) + _assert_equal_hash(td, td2) + + @pytest.mark.parametrize('unit', ('W', 'D', 'h', 'm', 's', 'ms', 'us')) + def test_timedelta_hash_weeks(self, unit): + td = np.timedelta64(10, 'W') + td2 = np.timedelta64(td, unit) + _assert_equal_hash(td, td2) + + td3 = np.timedelta64(int(td2.astype(int)) + 1, unit) + assert hash(td) != hash(td3) # doesn't collide + + @pytest.mark.parametrize('unit', ('W', 'D', 'h', 'm', 's', 'ms', 'us')) + def test_timedelta_hash_weeks_vs_pydelta(self, unit): + td = np.timedelta64(10, 'W') + td2 = np.timedelta64(td, unit) + pytd = td2.astype(datetime.timedelta) + assert isinstance(pytd, datetime.timedelta) + _assert_equal_hash(pytd, td2) + + @pytest.mark.parametrize('unit', ('ms', 'us', 'ns', 'ps', 'fs', 'as')) + def test_timedelta_hash_ms(self, unit): + td = np.timedelta64(3, 'ms') + td2 = np.timedelta64(td, unit) + _assert_equal_hash(td, td2) + + td3 = np.timedelta64(int(td2.astype(int)) + 1, unit) + assert hash(td) != hash(td3) # doesn't collide + + @pytest.mark.parametrize('wk', range(500000, 500010)) + @pytest.mark.parametrize('unit', ('W', 'D', 'h', 'm', 's', 'ms', 'us')) + def test_timedelta_hash_big_positive(self, wk, unit): + td = np.timedelta64(wk, 'W') + td2 = np.timedelta64(td, unit) + _assert_equal_hash(td, td2) + + +class TestDateTimeData: + + def test_basic(self): + a = np.array(['1980-03-23'], dtype=np.datetime64) + assert_equal(np.datetime_data(a.dtype), ('D', 1)) + + def test_bytes(self): + # byte units are converted to unicode + dt = np.datetime64('2000', (b'ms', 5)) + assert np.datetime_data(dt.dtype) == ('ms', 5) + + dt = np.datetime64('2000', b'5ms') + assert np.datetime_data(dt.dtype) == ('ms', 5) + + def test_non_ascii(self): + # μs is normalized to μ + dt = np.datetime64('2000', ('μs', 5)) + assert np.datetime_data(dt.dtype) == ('us', 5) + + dt = np.datetime64('2000', '5μs') + assert np.datetime_data(dt.dtype) == ('us', 5) + + +def test_comparisons_return_not_implemented(): + # GH#17017 + + class custom: + __array_priority__ = 10000 + + obj = custom() + + dt = np.datetime64('2000', 'ns') + td = dt - dt + + for item in [dt, td]: + assert item.__eq__(obj) is NotImplemented + assert item.__ne__(obj) is NotImplemented + assert item.__le__(obj) is NotImplemented + assert item.__lt__(obj) is NotImplemented + assert item.__ge__(obj) is NotImplemented + assert item.__gt__(obj) is NotImplemented diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_defchararray.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_defchararray.py new file mode 100644 index 0000000..2607953 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_defchararray.py @@ -0,0 +1,825 @@ +import pytest + +import numpy as np +from numpy._core.multiarray import _vec_string +from numpy.testing import ( + assert_, + assert_array_equal, + assert_equal, + assert_raises, + assert_raises_regex, +) + +kw_unicode_true = {'unicode': True} # make 2to3 work properly +kw_unicode_false = {'unicode': False} + +class TestBasic: + def test_from_object_array(self): + A = np.array([['abc', 2], + ['long ', '0123456789']], dtype='O') + B = np.char.array(A) + assert_equal(B.dtype.itemsize, 10) + assert_array_equal(B, [[b'abc', b'2'], + [b'long', b'0123456789']]) + + def test_from_object_array_unicode(self): + A = np.array([['abc', 'Sigma \u03a3'], + ['long ', '0123456789']], dtype='O') + assert_raises(ValueError, np.char.array, (A,)) + B = np.char.array(A, **kw_unicode_true) + assert_equal(B.dtype.itemsize, 10 * np.array('a', 'U').dtype.itemsize) + assert_array_equal(B, [['abc', 'Sigma \u03a3'], + ['long', '0123456789']]) + + def test_from_string_array(self): + A = np.array([[b'abc', b'foo'], + [b'long ', b'0123456789']]) + assert_equal(A.dtype.type, np.bytes_) + B = np.char.array(A) + assert_array_equal(B, A) + assert_equal(B.dtype, A.dtype) + assert_equal(B.shape, A.shape) + B[0, 0] = 'changed' + assert_(B[0, 0] != A[0, 0]) + C = np.char.asarray(A) + assert_array_equal(C, A) + assert_equal(C.dtype, A.dtype) + C[0, 0] = 'changed again' + assert_(C[0, 0] != B[0, 0]) + assert_(C[0, 0] == A[0, 0]) + + def test_from_unicode_array(self): + A = np.array([['abc', 'Sigma \u03a3'], + ['long ', '0123456789']]) + assert_equal(A.dtype.type, np.str_) + B = np.char.array(A) + assert_array_equal(B, A) + assert_equal(B.dtype, A.dtype) + assert_equal(B.shape, A.shape) + B = np.char.array(A, **kw_unicode_true) + assert_array_equal(B, A) + assert_equal(B.dtype, A.dtype) + assert_equal(B.shape, A.shape) + + def fail(): + np.char.array(A, **kw_unicode_false) + + assert_raises(UnicodeEncodeError, fail) + + def test_unicode_upconvert(self): + A = np.char.array(['abc']) + B = np.char.array(['\u03a3']) + assert_(issubclass((A + B).dtype.type, np.str_)) + + def test_from_string(self): + A = np.char.array(b'abc') + assert_equal(len(A), 1) + assert_equal(len(A[0]), 3) + assert_(issubclass(A.dtype.type, np.bytes_)) + + def test_from_unicode(self): + A = np.char.array('\u03a3') + assert_equal(len(A), 1) + assert_equal(len(A[0]), 1) + assert_equal(A.itemsize, 4) + assert_(issubclass(A.dtype.type, np.str_)) + +class TestVecString: + def test_non_existent_method(self): + + def fail(): + _vec_string('a', np.bytes_, 'bogus') + + assert_raises(AttributeError, fail) + + def test_non_string_array(self): + + def fail(): + _vec_string(1, np.bytes_, 'strip') + + assert_raises(TypeError, fail) + + def test_invalid_args_tuple(self): + + def fail(): + _vec_string(['a'], np.bytes_, 'strip', 1) + + assert_raises(TypeError, fail) + + def test_invalid_type_descr(self): + + def fail(): + _vec_string(['a'], 'BOGUS', 'strip') + + assert_raises(TypeError, fail) + + def test_invalid_function_args(self): + + def fail(): + _vec_string(['a'], np.bytes_, 'strip', (1,)) + + assert_raises(TypeError, fail) + + def test_invalid_result_type(self): + + def fail(): + _vec_string(['a'], np.int_, 'strip') + + assert_raises(TypeError, fail) + + def test_broadcast_error(self): + + def fail(): + _vec_string([['abc', 'def']], np.int_, 'find', (['a', 'd', 'j'],)) + + assert_raises(ValueError, fail) + + +class TestWhitespace: + def setup_method(self): + self.A = np.array([['abc ', '123 '], + ['789 ', 'xyz ']]).view(np.char.chararray) + self.B = np.array([['abc', '123'], + ['789', 'xyz']]).view(np.char.chararray) + + def test1(self): + assert_(np.all(self.A == self.B)) + assert_(np.all(self.A >= self.B)) + assert_(np.all(self.A <= self.B)) + assert_(not np.any(self.A > self.B)) + assert_(not np.any(self.A < self.B)) + assert_(not np.any(self.A != self.B)) + +class TestChar: + def setup_method(self): + self.A = np.array('abc1', dtype='c').view(np.char.chararray) + + def test_it(self): + assert_equal(self.A.shape, (4,)) + assert_equal(self.A.upper()[:2].tobytes(), b'AB') + +class TestComparisons: + def setup_method(self): + self.A = np.array([['abc', 'abcc', '123'], + ['789', 'abc', 'xyz']]).view(np.char.chararray) + self.B = np.array([['efg', 'efg', '123 '], + ['051', 'efgg', 'tuv']]).view(np.char.chararray) + + def test_not_equal(self): + assert_array_equal((self.A != self.B), + [[True, True, False], [True, True, True]]) + + def test_equal(self): + assert_array_equal((self.A == self.B), + [[False, False, True], [False, False, False]]) + + def test_greater_equal(self): + assert_array_equal((self.A >= self.B), + [[False, False, True], [True, False, True]]) + + def test_less_equal(self): + assert_array_equal((self.A <= self.B), + [[True, True, True], [False, True, False]]) + + def test_greater(self): + assert_array_equal((self.A > self.B), + [[False, False, False], [True, False, True]]) + + def test_less(self): + assert_array_equal((self.A < self.B), + [[True, True, False], [False, True, False]]) + + def test_type(self): + out1 = np.char.equal(self.A, self.B) + out2 = np.char.equal('a', 'a') + assert_(isinstance(out1, np.ndarray)) + assert_(isinstance(out2, np.ndarray)) + +class TestComparisonsMixed1(TestComparisons): + """Ticket #1276""" + + def setup_method(self): + TestComparisons.setup_method(self) + self.B = np.array( + [['efg', 'efg', '123 '], + ['051', 'efgg', 'tuv']], np.str_).view(np.char.chararray) + +class TestComparisonsMixed2(TestComparisons): + """Ticket #1276""" + + def setup_method(self): + TestComparisons.setup_method(self) + self.A = np.array( + [['abc', 'abcc', '123'], + ['789', 'abc', 'xyz']], np.str_).view(np.char.chararray) + +class TestInformation: + def setup_method(self): + self.A = np.array([[' abc ', ''], + ['12345', 'MixedCase'], + ['123 \t 345 \0 ', 'UPPER']]) \ + .view(np.char.chararray) + self.B = np.array([[' \u03a3 ', ''], + ['12345', 'MixedCase'], + ['123 \t 345 \0 ', 'UPPER']]) \ + .view(np.char.chararray) + # Array with longer strings, > MEMCHR_CUT_OFF in code. + self.C = (np.array(['ABCDEFGHIJKLMNOPQRSTUVWXYZ', + '01234567890123456789012345']) + .view(np.char.chararray)) + + def test_len(self): + assert_(issubclass(np.char.str_len(self.A).dtype.type, np.integer)) + assert_array_equal(np.char.str_len(self.A), [[5, 0], [5, 9], [12, 5]]) + assert_array_equal(np.char.str_len(self.B), [[3, 0], [5, 9], [12, 5]]) + + def test_count(self): + assert_(issubclass(self.A.count('').dtype.type, np.integer)) + assert_array_equal(self.A.count('a'), [[1, 0], [0, 1], [0, 0]]) + assert_array_equal(self.A.count('123'), [[0, 0], [1, 0], [1, 0]]) + # Python doesn't seem to like counting NULL characters + # assert_array_equal(self.A.count('\0'), [[0, 0], [0, 0], [1, 0]]) + assert_array_equal(self.A.count('a', 0, 2), [[1, 0], [0, 0], [0, 0]]) + assert_array_equal(self.B.count('a'), [[0, 0], [0, 1], [0, 0]]) + assert_array_equal(self.B.count('123'), [[0, 0], [1, 0], [1, 0]]) + # assert_array_equal(self.B.count('\0'), [[0, 0], [0, 0], [1, 0]]) + + def test_endswith(self): + assert_(issubclass(self.A.endswith('').dtype.type, np.bool)) + assert_array_equal(self.A.endswith(' '), [[1, 0], [0, 0], [1, 0]]) + assert_array_equal(self.A.endswith('3', 0, 3), [[0, 0], [1, 0], [1, 0]]) + + def fail(): + self.A.endswith('3', 'fdjk') + + assert_raises(TypeError, fail) + + @pytest.mark.parametrize( + "dtype, encode", + [("U", str), + ("S", lambda x: x.encode('ascii')), + ]) + def test_find(self, dtype, encode): + A = self.A.astype(dtype) + assert_(issubclass(A.find(encode('a')).dtype.type, np.integer)) + assert_array_equal(A.find(encode('a')), + [[1, -1], [-1, 6], [-1, -1]]) + assert_array_equal(A.find(encode('3')), + [[-1, -1], [2, -1], [2, -1]]) + assert_array_equal(A.find(encode('a'), 0, 2), + [[1, -1], [-1, -1], [-1, -1]]) + assert_array_equal(A.find([encode('1'), encode('P')]), + [[-1, -1], [0, -1], [0, 1]]) + C = self.C.astype(dtype) + assert_array_equal(C.find(encode('M')), [12, -1]) + + def test_index(self): + + def fail(): + self.A.index('a') + + assert_raises(ValueError, fail) + assert_(np.char.index('abcba', 'b') == 1) + assert_(issubclass(np.char.index('abcba', 'b').dtype.type, np.integer)) + + def test_isalnum(self): + assert_(issubclass(self.A.isalnum().dtype.type, np.bool)) + assert_array_equal(self.A.isalnum(), [[False, False], [True, True], [False, True]]) + + def test_isalpha(self): + assert_(issubclass(self.A.isalpha().dtype.type, np.bool)) + assert_array_equal(self.A.isalpha(), [[False, False], [False, True], [False, True]]) + + def test_isdigit(self): + assert_(issubclass(self.A.isdigit().dtype.type, np.bool)) + assert_array_equal(self.A.isdigit(), [[False, False], [True, False], [False, False]]) + + def test_islower(self): + assert_(issubclass(self.A.islower().dtype.type, np.bool)) + assert_array_equal(self.A.islower(), [[True, False], [False, False], [False, False]]) + + def test_isspace(self): + assert_(issubclass(self.A.isspace().dtype.type, np.bool)) + assert_array_equal(self.A.isspace(), [[False, False], [False, False], [False, False]]) + + def test_istitle(self): + assert_(issubclass(self.A.istitle().dtype.type, np.bool)) + assert_array_equal(self.A.istitle(), [[False, False], [False, False], [False, False]]) + + def test_isupper(self): + assert_(issubclass(self.A.isupper().dtype.type, np.bool)) + assert_array_equal(self.A.isupper(), [[False, False], [False, False], [False, True]]) + + def test_rfind(self): + assert_(issubclass(self.A.rfind('a').dtype.type, np.integer)) + assert_array_equal(self.A.rfind('a'), [[1, -1], [-1, 6], [-1, -1]]) + assert_array_equal(self.A.rfind('3'), [[-1, -1], [2, -1], [6, -1]]) + assert_array_equal(self.A.rfind('a', 0, 2), [[1, -1], [-1, -1], [-1, -1]]) + assert_array_equal(self.A.rfind(['1', 'P']), [[-1, -1], [0, -1], [0, 2]]) + + def test_rindex(self): + + def fail(): + self.A.rindex('a') + + assert_raises(ValueError, fail) + assert_(np.char.rindex('abcba', 'b') == 3) + assert_(issubclass(np.char.rindex('abcba', 'b').dtype.type, np.integer)) + + def test_startswith(self): + assert_(issubclass(self.A.startswith('').dtype.type, np.bool)) + assert_array_equal(self.A.startswith(' '), [[1, 0], [0, 0], [0, 0]]) + assert_array_equal(self.A.startswith('1', 0, 3), [[0, 0], [1, 0], [1, 0]]) + + def fail(): + self.A.startswith('3', 'fdjk') + + assert_raises(TypeError, fail) + + +class TestMethods: + def setup_method(self): + self.A = np.array([[' abc ', ''], + ['12345', 'MixedCase'], + ['123 \t 345 \0 ', 'UPPER']], + dtype='S').view(np.char.chararray) + self.B = np.array([[' \u03a3 ', ''], + ['12345', 'MixedCase'], + ['123 \t 345 \0 ', 'UPPER']]).view( + np.char.chararray) + + def test_capitalize(self): + tgt = [[b' abc ', b''], + [b'12345', b'Mixedcase'], + [b'123 \t 345 \0 ', b'Upper']] + assert_(issubclass(self.A.capitalize().dtype.type, np.bytes_)) + assert_array_equal(self.A.capitalize(), tgt) + + tgt = [[' \u03c3 ', ''], + ['12345', 'Mixedcase'], + ['123 \t 345 \0 ', 'Upper']] + assert_(issubclass(self.B.capitalize().dtype.type, np.str_)) + assert_array_equal(self.B.capitalize(), tgt) + + def test_center(self): + assert_(issubclass(self.A.center(10).dtype.type, np.bytes_)) + C = self.A.center([10, 20]) + assert_array_equal(np.char.str_len(C), [[10, 20], [10, 20], [12, 20]]) + + C = self.A.center(20, b'#') + assert_(np.all(C.startswith(b'#'))) + assert_(np.all(C.endswith(b'#'))) + + C = np.char.center(b'FOO', [[10, 20], [15, 8]]) + tgt = [[b' FOO ', b' FOO '], + [b' FOO ', b' FOO ']] + assert_(issubclass(C.dtype.type, np.bytes_)) + assert_array_equal(C, tgt) + + def test_decode(self): + A = np.char.array([b'\\u03a3']) + assert_(A.decode('unicode-escape')[0] == '\u03a3') + + def test_encode(self): + B = self.B.encode('unicode_escape') + assert_(B[0][0] == ' \\u03a3 '.encode('latin1')) + + def test_expandtabs(self): + T = self.A.expandtabs() + assert_(T[2, 0] == b'123 345 \0') + + def test_join(self): + # NOTE: list(b'123') == [49, 50, 51] + # so that b','.join(b'123') results to an error on Py3 + A0 = self.A.decode('ascii') + + A = np.char.join([',', '#'], A0) + assert_(issubclass(A.dtype.type, np.str_)) + tgt = np.array([[' ,a,b,c, ', ''], + ['1,2,3,4,5', 'M#i#x#e#d#C#a#s#e'], + ['1,2,3, ,\t, ,3,4,5, ,\x00, ', 'U#P#P#E#R']]) + assert_array_equal(np.char.join([',', '#'], A0), tgt) + + def test_ljust(self): + assert_(issubclass(self.A.ljust(10).dtype.type, np.bytes_)) + + C = self.A.ljust([10, 20]) + assert_array_equal(np.char.str_len(C), [[10, 20], [10, 20], [12, 20]]) + + C = self.A.ljust(20, b'#') + assert_array_equal(C.startswith(b'#'), [ + [False, True], [False, False], [False, False]]) + assert_(np.all(C.endswith(b'#'))) + + C = np.char.ljust(b'FOO', [[10, 20], [15, 8]]) + tgt = [[b'FOO ', b'FOO '], + [b'FOO ', b'FOO ']] + assert_(issubclass(C.dtype.type, np.bytes_)) + assert_array_equal(C, tgt) + + def test_lower(self): + tgt = [[b' abc ', b''], + [b'12345', b'mixedcase'], + [b'123 \t 345 \0 ', b'upper']] + assert_(issubclass(self.A.lower().dtype.type, np.bytes_)) + assert_array_equal(self.A.lower(), tgt) + + tgt = [[' \u03c3 ', ''], + ['12345', 'mixedcase'], + ['123 \t 345 \0 ', 'upper']] + assert_(issubclass(self.B.lower().dtype.type, np.str_)) + assert_array_equal(self.B.lower(), tgt) + + def test_lstrip(self): + tgt = [[b'abc ', b''], + [b'12345', b'MixedCase'], + [b'123 \t 345 \0 ', b'UPPER']] + assert_(issubclass(self.A.lstrip().dtype.type, np.bytes_)) + assert_array_equal(self.A.lstrip(), tgt) + + tgt = [[b' abc', b''], + [b'2345', b'ixedCase'], + [b'23 \t 345 \x00', b'UPPER']] + assert_array_equal(self.A.lstrip([b'1', b'M']), tgt) + + tgt = [['\u03a3 ', ''], + ['12345', 'MixedCase'], + ['123 \t 345 \0 ', 'UPPER']] + assert_(issubclass(self.B.lstrip().dtype.type, np.str_)) + assert_array_equal(self.B.lstrip(), tgt) + + def test_partition(self): + P = self.A.partition([b'3', b'M']) + tgt = [[(b' abc ', b'', b''), (b'', b'', b'')], + [(b'12', b'3', b'45'), (b'', b'M', b'ixedCase')], + [(b'12', b'3', b' \t 345 \0 '), (b'UPPER', b'', b'')]] + assert_(issubclass(P.dtype.type, np.bytes_)) + assert_array_equal(P, tgt) + + def test_replace(self): + R = self.A.replace([b'3', b'a'], + [b'##########', b'@']) + tgt = [[b' abc ', b''], + [b'12##########45', b'MixedC@se'], + [b'12########## \t ##########45 \x00 ', b'UPPER']] + assert_(issubclass(R.dtype.type, np.bytes_)) + assert_array_equal(R, tgt) + # Test special cases that should just return the input array, + # since replacements are not possible or do nothing. + S1 = self.A.replace(b'A very long byte string, longer than A', b'') + assert_array_equal(S1, self.A) + S2 = self.A.replace(b'', b'') + assert_array_equal(S2, self.A) + S3 = self.A.replace(b'3', b'3') + assert_array_equal(S3, self.A) + S4 = self.A.replace(b'3', b'', count=0) + assert_array_equal(S4, self.A) + + def test_replace_count_and_size(self): + a = np.array(['0123456789' * i for i in range(4)] + ).view(np.char.chararray) + r1 = a.replace('5', 'ABCDE') + assert r1.dtype.itemsize == (3 * 10 + 3 * 4) * 4 + assert_array_equal(r1, np.array(['01234ABCDE6789' * i + for i in range(4)])) + r2 = a.replace('5', 'ABCDE', count=1) + assert r2.dtype.itemsize == (3 * 10 + 4) * 4 + r3 = a.replace('5', 'ABCDE', count=0) + assert r3.dtype.itemsize == a.dtype.itemsize + assert_array_equal(r3, a) + # Negative values mean to replace all. + r4 = a.replace('5', 'ABCDE', count=-1) + assert r4.dtype.itemsize == (3 * 10 + 3 * 4) * 4 + assert_array_equal(r4, r1) + # We can do count on an element-by-element basis. + r5 = a.replace('5', 'ABCDE', count=[-1, -1, -1, 1]) + assert r5.dtype.itemsize == (3 * 10 + 4) * 4 + assert_array_equal(r5, np.array( + ['01234ABCDE6789' * i for i in range(3)] + + ['01234ABCDE6789' + '0123456789' * 2])) + + def test_replace_broadcasting(self): + a = np.array('0,0,0').view(np.char.chararray) + r1 = a.replace('0', '1', count=np.arange(3)) + assert r1.dtype == a.dtype + assert_array_equal(r1, np.array(['0,0,0', '1,0,0', '1,1,0'])) + r2 = a.replace('0', [['1'], ['2']], count=np.arange(1, 4)) + assert_array_equal(r2, np.array([['1,0,0', '1,1,0', '1,1,1'], + ['2,0,0', '2,2,0', '2,2,2']])) + r3 = a.replace(['0', '0,0', '0,0,0'], 'X') + assert_array_equal(r3, np.array(['X,X,X', 'X,0', 'X'])) + + def test_rjust(self): + assert_(issubclass(self.A.rjust(10).dtype.type, np.bytes_)) + + C = self.A.rjust([10, 20]) + assert_array_equal(np.char.str_len(C), [[10, 20], [10, 20], [12, 20]]) + + C = self.A.rjust(20, b'#') + assert_(np.all(C.startswith(b'#'))) + assert_array_equal(C.endswith(b'#'), + [[False, True], [False, False], [False, False]]) + + C = np.char.rjust(b'FOO', [[10, 20], [15, 8]]) + tgt = [[b' FOO', b' FOO'], + [b' FOO', b' FOO']] + assert_(issubclass(C.dtype.type, np.bytes_)) + assert_array_equal(C, tgt) + + def test_rpartition(self): + P = self.A.rpartition([b'3', b'M']) + tgt = [[(b'', b'', b' abc '), (b'', b'', b'')], + [(b'12', b'3', b'45'), (b'', b'M', b'ixedCase')], + [(b'123 \t ', b'3', b'45 \0 '), (b'', b'', b'UPPER')]] + assert_(issubclass(P.dtype.type, np.bytes_)) + assert_array_equal(P, tgt) + + def test_rsplit(self): + A = self.A.rsplit(b'3') + tgt = [[[b' abc '], [b'']], + [[b'12', b'45'], [b'MixedCase']], + [[b'12', b' \t ', b'45 \x00 '], [b'UPPER']]] + assert_(issubclass(A.dtype.type, np.object_)) + assert_equal(A.tolist(), tgt) + + def test_rstrip(self): + assert_(issubclass(self.A.rstrip().dtype.type, np.bytes_)) + + tgt = [[b' abc', b''], + [b'12345', b'MixedCase'], + [b'123 \t 345', b'UPPER']] + assert_array_equal(self.A.rstrip(), tgt) + + tgt = [[b' abc ', b''], + [b'1234', b'MixedCase'], + [b'123 \t 345 \x00', b'UPP'] + ] + assert_array_equal(self.A.rstrip([b'5', b'ER']), tgt) + + tgt = [[' \u03a3', ''], + ['12345', 'MixedCase'], + ['123 \t 345', 'UPPER']] + assert_(issubclass(self.B.rstrip().dtype.type, np.str_)) + assert_array_equal(self.B.rstrip(), tgt) + + def test_strip(self): + tgt = [[b'abc', b''], + [b'12345', b'MixedCase'], + [b'123 \t 345', b'UPPER']] + assert_(issubclass(self.A.strip().dtype.type, np.bytes_)) + assert_array_equal(self.A.strip(), tgt) + + tgt = [[b' abc ', b''], + [b'234', b'ixedCas'], + [b'23 \t 345 \x00', b'UPP']] + assert_array_equal(self.A.strip([b'15', b'EReM']), tgt) + + tgt = [['\u03a3', ''], + ['12345', 'MixedCase'], + ['123 \t 345', 'UPPER']] + assert_(issubclass(self.B.strip().dtype.type, np.str_)) + assert_array_equal(self.B.strip(), tgt) + + def test_split(self): + A = self.A.split(b'3') + tgt = [ + [[b' abc '], [b'']], + [[b'12', b'45'], [b'MixedCase']], + [[b'12', b' \t ', b'45 \x00 '], [b'UPPER']]] + assert_(issubclass(A.dtype.type, np.object_)) + assert_equal(A.tolist(), tgt) + + def test_splitlines(self): + A = np.char.array(['abc\nfds\nwer']).splitlines() + assert_(issubclass(A.dtype.type, np.object_)) + assert_(A.shape == (1,)) + assert_(len(A[0]) == 3) + + def test_swapcase(self): + tgt = [[b' ABC ', b''], + [b'12345', b'mIXEDcASE'], + [b'123 \t 345 \0 ', b'upper']] + assert_(issubclass(self.A.swapcase().dtype.type, np.bytes_)) + assert_array_equal(self.A.swapcase(), tgt) + + tgt = [[' \u03c3 ', ''], + ['12345', 'mIXEDcASE'], + ['123 \t 345 \0 ', 'upper']] + assert_(issubclass(self.B.swapcase().dtype.type, np.str_)) + assert_array_equal(self.B.swapcase(), tgt) + + def test_title(self): + tgt = [[b' Abc ', b''], + [b'12345', b'Mixedcase'], + [b'123 \t 345 \0 ', b'Upper']] + assert_(issubclass(self.A.title().dtype.type, np.bytes_)) + assert_array_equal(self.A.title(), tgt) + + tgt = [[' \u03a3 ', ''], + ['12345', 'Mixedcase'], + ['123 \t 345 \0 ', 'Upper']] + assert_(issubclass(self.B.title().dtype.type, np.str_)) + assert_array_equal(self.B.title(), tgt) + + def test_upper(self): + tgt = [[b' ABC ', b''], + [b'12345', b'MIXEDCASE'], + [b'123 \t 345 \0 ', b'UPPER']] + assert_(issubclass(self.A.upper().dtype.type, np.bytes_)) + assert_array_equal(self.A.upper(), tgt) + + tgt = [[' \u03a3 ', ''], + ['12345', 'MIXEDCASE'], + ['123 \t 345 \0 ', 'UPPER']] + assert_(issubclass(self.B.upper().dtype.type, np.str_)) + assert_array_equal(self.B.upper(), tgt) + + def test_isnumeric(self): + + def fail(): + self.A.isnumeric() + + assert_raises(TypeError, fail) + assert_(issubclass(self.B.isnumeric().dtype.type, np.bool)) + assert_array_equal(self.B.isnumeric(), [ + [False, False], [True, False], [False, False]]) + + def test_isdecimal(self): + + def fail(): + self.A.isdecimal() + + assert_raises(TypeError, fail) + assert_(issubclass(self.B.isdecimal().dtype.type, np.bool)) + assert_array_equal(self.B.isdecimal(), [ + [False, False], [True, False], [False, False]]) + + +class TestOperations: + def setup_method(self): + self.A = np.array([['abc', '123'], + ['789', 'xyz']]).view(np.char.chararray) + self.B = np.array([['efg', '456'], + ['051', 'tuv']]).view(np.char.chararray) + + def test_add(self): + AB = np.array([['abcefg', '123456'], + ['789051', 'xyztuv']]).view(np.char.chararray) + assert_array_equal(AB, (self.A + self.B)) + assert_(len((self.A + self.B)[0][0]) == 6) + + def test_radd(self): + QA = np.array([['qabc', 'q123'], + ['q789', 'qxyz']]).view(np.char.chararray) + assert_array_equal(QA, ('q' + self.A)) + + def test_mul(self): + A = self.A + for r in (2, 3, 5, 7, 197): + Ar = np.array([[A[0, 0] * r, A[0, 1] * r], + [A[1, 0] * r, A[1, 1] * r]]).view(np.char.chararray) + + assert_array_equal(Ar, (self.A * r)) + + for ob in [object(), 'qrs']: + with assert_raises_regex(ValueError, + 'Can only multiply by integers'): + A * ob + + def test_rmul(self): + A = self.A + for r in (2, 3, 5, 7, 197): + Ar = np.array([[A[0, 0] * r, A[0, 1] * r], + [A[1, 0] * r, A[1, 1] * r]]).view(np.char.chararray) + assert_array_equal(Ar, (r * self.A)) + + for ob in [object(), 'qrs']: + with assert_raises_regex(ValueError, + 'Can only multiply by integers'): + ob * A + + def test_mod(self): + """Ticket #856""" + F = np.array([['%d', '%f'], ['%s', '%r']]).view(np.char.chararray) + C = np.array([[3, 7], [19, 1]], dtype=np.int64) + FC = np.array([['3', '7.000000'], + ['19', 'np.int64(1)']]).view(np.char.chararray) + assert_array_equal(FC, F % C) + + A = np.array([['%.3f', '%d'], ['%s', '%r']]).view(np.char.chararray) + A1 = np.array([['1.000', '1'], + ['1', repr(np.array(1)[()])]]).view(np.char.chararray) + assert_array_equal(A1, (A % 1)) + + A2 = np.array([['1.000', '2'], + ['3', repr(np.array(4)[()])]]).view(np.char.chararray) + assert_array_equal(A2, (A % [[1, 2], [3, 4]])) + + def test_rmod(self): + assert_(f"{self.A}" == str(self.A)) + assert_(f"{self.A!r}" == repr(self.A)) + + for ob in [42, object()]: + with assert_raises_regex( + TypeError, "unsupported operand type.* and 'chararray'"): + ob % self.A + + def test_slice(self): + """Regression test for https://github.com/numpy/numpy/issues/5982""" + + arr = np.array([['abc ', 'def '], ['geh ', 'ijk ']], + dtype='S4').view(np.char.chararray) + sl1 = arr[:] + assert_array_equal(sl1, arr) + assert_(sl1.base is arr) + assert_(sl1.base.base is arr.base) + + sl2 = arr[:, :] + assert_array_equal(sl2, arr) + assert_(sl2.base is arr) + assert_(sl2.base.base is arr.base) + + assert_(arr[0, 0] == b'abc') + + @pytest.mark.parametrize('data', [['plate', ' ', 'shrimp'], + [b'retro', b' ', b'encabulator']]) + def test_getitem_length_zero_item(self, data): + # Regression test for gh-26375. + a = np.char.array(data) + # a.dtype.type() will be an empty string or bytes instance. + # The equality test will fail if a[1] has the wrong type + # or does not have length 0. + assert_equal(a[1], a.dtype.type()) + + +class TestMethodsEmptyArray: + def setup_method(self): + self.U = np.array([], dtype='U') + self.S = np.array([], dtype='S') + + def test_encode(self): + res = np.char.encode(self.U) + assert_array_equal(res, []) + assert_(res.dtype.char == 'S') + + def test_decode(self): + res = np.char.decode(self.S) + assert_array_equal(res, []) + assert_(res.dtype.char == 'U') + + def test_decode_with_reshape(self): + res = np.char.decode(self.S.reshape((1, 0, 1))) + assert_(res.shape == (1, 0, 1)) + + +class TestMethodsScalarValues: + def test_mod(self): + A = np.array([[' abc ', ''], + ['12345', 'MixedCase'], + ['123 \t 345 \0 ', 'UPPER']], dtype='S') + tgt = [[b'123 abc ', b'123'], + [b'12312345', b'123MixedCase'], + [b'123123 \t 345 \0 ', b'123UPPER']] + assert_array_equal(np.char.mod(b"123%s", A), tgt) + + def test_decode(self): + bytestring = b'\x81\xc1\x81\xc1\x81\xc1' + assert_equal(np.char.decode(bytestring, encoding='cp037'), + 'aAaAaA') + + def test_encode(self): + unicode = 'aAaAaA' + assert_equal(np.char.encode(unicode, encoding='cp037'), + b'\x81\xc1\x81\xc1\x81\xc1') + + def test_expandtabs(self): + s = "\tone level of indentation\n\t\ttwo levels of indentation" + assert_equal( + np.char.expandtabs(s, tabsize=2), + " one level of indentation\n two levels of indentation" + ) + + def test_join(self): + seps = np.array(['-', '_']) + assert_array_equal(np.char.join(seps, 'hello'), + ['h-e-l-l-o', 'h_e_l_l_o']) + + def test_partition(self): + assert_equal(np.char.partition('This string', ' '), + ['This', ' ', 'string']) + + def test_rpartition(self): + assert_equal(np.char.rpartition('This string here', ' '), + ['This string', ' ', 'here']) + + def test_replace(self): + assert_equal(np.char.replace('Python is good', 'good', 'great'), + 'Python is great') + + +def test_empty_indexing(): + """Regression test for ticket 1948.""" + # Check that indexing a chararray with an empty list/array returns an + # empty chararray instead of a chararray with a single empty string in it. + s = np.char.chararray((4,)) + assert_(s[[]].size == 0) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_deprecations.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_deprecations.py new file mode 100644 index 0000000..d90c155 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_deprecations.py @@ -0,0 +1,454 @@ +""" +Tests related to deprecation warnings. Also a convenient place +to document how deprecations should eventually be turned into errors. + +""" +import contextlib +import warnings + +import numpy._core._struct_ufunc_tests as struct_ufunc +import pytest +from numpy._core._multiarray_tests import fromstring_null_term_c_api # noqa: F401 + +import numpy as np +from numpy.testing import assert_raises, temppath + +try: + import pytz # noqa: F401 + _has_pytz = True +except ImportError: + _has_pytz = False + + +class _DeprecationTestCase: + # Just as warning: warnings uses re.match, so the start of this message + # must match. + message = '' + warning_cls = DeprecationWarning + + def setup_method(self): + self.warn_ctx = warnings.catch_warnings(record=True) + self.log = self.warn_ctx.__enter__() + + # Do *not* ignore other DeprecationWarnings. Ignoring warnings + # can give very confusing results because of + # https://bugs.python.org/issue4180 and it is probably simplest to + # try to keep the tests cleanly giving only the right warning type. + # (While checking them set to "error" those are ignored anyway) + # We still have them show up, because otherwise they would be raised + warnings.filterwarnings("always", category=self.warning_cls) + warnings.filterwarnings("always", message=self.message, + category=self.warning_cls) + + def teardown_method(self): + self.warn_ctx.__exit__() + + def assert_deprecated(self, function, num=1, ignore_others=False, + function_fails=False, + exceptions=np._NoValue, + args=(), kwargs={}): + """Test if DeprecationWarnings are given and raised. + + This first checks if the function when called gives `num` + DeprecationWarnings, after that it tries to raise these + DeprecationWarnings and compares them with `exceptions`. + The exceptions can be different for cases where this code path + is simply not anticipated and the exception is replaced. + + Parameters + ---------- + function : callable + The function to test + num : int + Number of DeprecationWarnings to expect. This should normally be 1. + ignore_others : bool + Whether warnings of the wrong type should be ignored (note that + the message is not checked) + function_fails : bool + If the function would normally fail, setting this will check for + warnings inside a try/except block. + exceptions : Exception or tuple of Exceptions + Exception to expect when turning the warnings into an error. + The default checks for DeprecationWarnings. If exceptions is + empty the function is expected to run successfully. + args : tuple + Arguments for `function` + kwargs : dict + Keyword arguments for `function` + """ + __tracebackhide__ = True # Hide traceback for py.test + + # reset the log + self.log[:] = [] + + if exceptions is np._NoValue: + exceptions = (self.warning_cls,) + + if function_fails: + context_manager = contextlib.suppress(Exception) + else: + context_manager = contextlib.nullcontext() + with context_manager: + function(*args, **kwargs) + + # just in case, clear the registry + num_found = 0 + for warning in self.log: + if warning.category is self.warning_cls: + num_found += 1 + elif not ignore_others: + raise AssertionError( + "expected %s but got: %s" % + (self.warning_cls.__name__, warning.category)) + if num is not None and num_found != num: + msg = f"{len(self.log)} warnings found but {num} expected." + lst = [str(w) for w in self.log] + raise AssertionError("\n".join([msg] + lst)) + + with warnings.catch_warnings(): + warnings.filterwarnings("error", message=self.message, + category=self.warning_cls) + try: + function(*args, **kwargs) + if exceptions != (): + raise AssertionError( + "No error raised during function call") + except exceptions: + if exceptions == (): + raise AssertionError( + "Error raised during function call") + + def assert_not_deprecated(self, function, args=(), kwargs={}): + """Test that warnings are not raised. + + This is just a shorthand for: + + self.assert_deprecated(function, num=0, ignore_others=True, + exceptions=tuple(), args=args, kwargs=kwargs) + """ + self.assert_deprecated(function, num=0, ignore_others=True, + exceptions=(), args=args, kwargs=kwargs) + + +class _VisibleDeprecationTestCase(_DeprecationTestCase): + warning_cls = np.exceptions.VisibleDeprecationWarning + + +class TestTestDeprecated: + def test_assert_deprecated(self): + test_case_instance = _DeprecationTestCase() + test_case_instance.setup_method() + assert_raises(AssertionError, + test_case_instance.assert_deprecated, + lambda: None) + + def foo(): + warnings.warn("foo", category=DeprecationWarning, stacklevel=2) + + test_case_instance.assert_deprecated(foo) + test_case_instance.teardown_method() + + +class TestBincount(_DeprecationTestCase): + # 2024-07-29, 2.1.0 + @pytest.mark.parametrize('badlist', [[0.5, 1.2, 1.5], + ['0', '1', '1']]) + def test_bincount_bad_list(self, badlist): + self.assert_deprecated(lambda: np.bincount(badlist)) + + +class TestGeneratorSum(_DeprecationTestCase): + # 2018-02-25, 1.15.0 + def test_generator_sum(self): + self.assert_deprecated(np.sum, args=((i for i in range(5)),)) + + +class BuiltInRoundComplexDType(_DeprecationTestCase): + # 2020-03-31 1.19.0 + deprecated_types = [np.csingle, np.cdouble, np.clongdouble] + not_deprecated_types = [ + np.int8, np.int16, np.int32, np.int64, + np.uint8, np.uint16, np.uint32, np.uint64, + np.float16, np.float32, np.float64, + ] + + def test_deprecated(self): + for scalar_type in self.deprecated_types: + scalar = scalar_type(0) + self.assert_deprecated(round, args=(scalar,)) + self.assert_deprecated(round, args=(scalar, 0)) + self.assert_deprecated(round, args=(scalar,), kwargs={'ndigits': 0}) + + def test_not_deprecated(self): + for scalar_type in self.not_deprecated_types: + scalar = scalar_type(0) + self.assert_not_deprecated(round, args=(scalar,)) + self.assert_not_deprecated(round, args=(scalar, 0)) + self.assert_not_deprecated(round, args=(scalar,), kwargs={'ndigits': 0}) + + +class FlatteningConcatenateUnsafeCast(_DeprecationTestCase): + # NumPy 1.20, 2020-09-03 + message = "concatenate with `axis=None` will use same-kind casting" + + def test_deprecated(self): + self.assert_deprecated(np.concatenate, + args=(([0.], [1.]),), + kwargs={'axis': None, 'out': np.empty(2, dtype=np.int64)}) + + def test_not_deprecated(self): + self.assert_not_deprecated(np.concatenate, + args=(([0.], [1.]),), + kwargs={'axis': None, 'out': np.empty(2, dtype=np.int64), + 'casting': "unsafe"}) + + with assert_raises(TypeError): + # Tests should notice if the deprecation warning is given first... + np.concatenate(([0.], [1.]), out=np.empty(2, dtype=np.int64), + casting="same_kind") + + +class TestCtypesGetter(_DeprecationTestCase): + # Deprecated 2021-05-18, Numpy 1.21.0 + warning_cls = DeprecationWarning + ctypes = np.array([1]).ctypes + + @pytest.mark.parametrize( + "name", ["get_data", "get_shape", "get_strides", "get_as_parameter"] + ) + def test_deprecated(self, name: str) -> None: + func = getattr(self.ctypes, name) + self.assert_deprecated(func) + + @pytest.mark.parametrize( + "name", ["data", "shape", "strides", "_as_parameter_"] + ) + def test_not_deprecated(self, name: str) -> None: + self.assert_not_deprecated(lambda: getattr(self.ctypes, name)) + + +class TestMachAr(_DeprecationTestCase): + # Deprecated 2022-11-22, NumPy 1.25 + warning_cls = DeprecationWarning + + def test_deprecated_module(self): + self.assert_deprecated(lambda: np._core.MachAr) + + +class TestQuantileInterpolationDeprecation(_DeprecationTestCase): + # Deprecated 2021-11-08, NumPy 1.22 + @pytest.mark.parametrize("func", + [np.percentile, np.quantile, np.nanpercentile, np.nanquantile]) + def test_deprecated(self, func): + self.assert_deprecated( + lambda: func([0., 1.], 0., interpolation="linear")) + self.assert_deprecated( + lambda: func([0., 1.], 0., interpolation="nearest")) + + @pytest.mark.parametrize("func", + [np.percentile, np.quantile, np.nanpercentile, np.nanquantile]) + def test_both_passed(self, func): + with warnings.catch_warnings(): + # catch the DeprecationWarning so that it does not raise: + warnings.simplefilter("always", DeprecationWarning) + with pytest.raises(TypeError): + func([0., 1.], 0., interpolation="nearest", method="nearest") + + +class TestScalarConversion(_DeprecationTestCase): + # 2023-01-02, 1.25.0 + def test_float_conversion(self): + self.assert_deprecated(float, args=(np.array([3.14]),)) + + def test_behaviour(self): + b = np.array([[3.14]]) + c = np.zeros(5) + with pytest.warns(DeprecationWarning): + c[0] = b + + +class TestPyIntConversion(_DeprecationTestCase): + message = r".*stop allowing conversion of out-of-bound.*" + + @pytest.mark.parametrize("dtype", np.typecodes["AllInteger"]) + def test_deprecated_scalar(self, dtype): + dtype = np.dtype(dtype) + info = np.iinfo(dtype) + + # Cover the most common creation paths (all end up in the + # same place): + def scalar(value, dtype): + dtype.type(value) + + def assign(value, dtype): + arr = np.array([0, 0, 0], dtype=dtype) + arr[2] = value + + def create(value, dtype): + np.array([value], dtype=dtype) + + for creation_func in [scalar, assign, create]: + try: + self.assert_deprecated( + lambda: creation_func(info.min - 1, dtype)) + except OverflowError: + pass # OverflowErrors always happened also before and are OK. + + try: + self.assert_deprecated( + lambda: creation_func(info.max + 1, dtype)) + except OverflowError: + pass # OverflowErrors always happened also before and are OK. + + +@pytest.mark.parametrize("name", ["str", "bytes", "object"]) +def test_future_scalar_attributes(name): + # FutureWarning added 2022-11-17, NumPy 1.24, + assert name not in dir(np) # we may want to not add them + with pytest.warns(FutureWarning, + match=f"In the future .*{name}"): + assert not hasattr(np, name) + + # Unfortunately, they are currently still valid via `np.dtype()` + np.dtype(name) + name in np._core.sctypeDict + + +# Ignore the above future attribute warning for this test. +@pytest.mark.filterwarnings("ignore:In the future:FutureWarning") +class TestRemovedGlobals: + # Removed 2023-01-12, NumPy 1.24.0 + # Not a deprecation, but the large error was added to aid those who missed + # the previous deprecation, and should be removed similarly to one + # (or faster). + @pytest.mark.parametrize("name", + ["object", "float", "complex", "str", "int"]) + def test_attributeerror_includes_info(self, name): + msg = f".*\n`np.{name}` was a deprecated alias for the builtin" + with pytest.raises(AttributeError, match=msg): + getattr(np, name) + + +class TestDeprecatedFinfo(_DeprecationTestCase): + # Deprecated in NumPy 1.25, 2023-01-16 + def test_deprecated_none(self): + self.assert_deprecated(np.finfo, args=(None,)) + + +class TestMathAlias(_DeprecationTestCase): + def test_deprecated_np_lib_math(self): + self.assert_deprecated(lambda: np.lib.math) + + +class TestLibImports(_DeprecationTestCase): + # Deprecated in Numpy 1.26.0, 2023-09 + def test_lib_functions_deprecation_call(self): + from numpy import in1d, row_stack, trapz + from numpy._core.numerictypes import maximum_sctype + from numpy.lib._function_base_impl import disp + from numpy.lib._npyio_impl import recfromcsv, recfromtxt + from numpy.lib._shape_base_impl import get_array_wrap + from numpy.lib._utils_impl import safe_eval + from numpy.lib.tests.test_io import TextIO + + self.assert_deprecated(lambda: safe_eval("None")) + + data_gen = lambda: TextIO('A,B\n0,1\n2,3') + kwargs = {'delimiter': ",", 'missing_values': "N/A", 'names': True} + self.assert_deprecated(lambda: recfromcsv(data_gen())) + self.assert_deprecated(lambda: recfromtxt(data_gen(), **kwargs)) + + self.assert_deprecated(lambda: disp("test")) + self.assert_deprecated(get_array_wrap) + self.assert_deprecated(lambda: maximum_sctype(int)) + + self.assert_deprecated(lambda: in1d([1], [1])) + self.assert_deprecated(lambda: row_stack([[]])) + self.assert_deprecated(lambda: trapz([1], [1])) + self.assert_deprecated(lambda: np.chararray) + + +class TestDeprecatedDTypeAliases(_DeprecationTestCase): + + def _check_for_warning(self, func): + with warnings.catch_warnings(record=True) as caught_warnings: + func() + assert len(caught_warnings) == 1 + w = caught_warnings[0] + assert w.category is DeprecationWarning + assert "alias 'a' was deprecated in NumPy 2.0" in str(w.message) + + def test_a_dtype_alias(self): + for dtype in ["a", "a10"]: + f = lambda: np.dtype(dtype) + self._check_for_warning(f) + self.assert_deprecated(f) + f = lambda: np.array(["hello", "world"]).astype("a10") + self._check_for_warning(f) + self.assert_deprecated(f) + + +class TestDeprecatedArrayWrap(_DeprecationTestCase): + message = "__array_wrap__.*" + + def test_deprecated(self): + class Test1: + def __array__(self, dtype=None, copy=None): + return np.arange(4) + + def __array_wrap__(self, arr, context=None): + self.called = True + return 'pass context' + + class Test2(Test1): + def __array_wrap__(self, arr): + self.called = True + return 'pass' + + test1 = Test1() + test2 = Test2() + self.assert_deprecated(lambda: np.negative(test1)) + assert test1.called + self.assert_deprecated(lambda: np.negative(test2)) + assert test2.called + + +class TestDeprecatedDTypeParenthesizedRepeatCount(_DeprecationTestCase): + message = "Passing in a parenthesized single number" + + @pytest.mark.parametrize("string", ["(2)i,", "(3)3S,", "f,(2)f"]) + def test_parenthesized_repeat_count(self, string): + self.assert_deprecated(np.dtype, args=(string,)) + + +class TestDeprecatedSaveFixImports(_DeprecationTestCase): + # Deprecated in Numpy 2.1, 2024-05 + message = "The 'fix_imports' flag is deprecated and has no effect." + + def test_deprecated(self): + with temppath(suffix='.npy') as path: + sample_args = (path, np.array(np.zeros((1024, 10)))) + self.assert_not_deprecated(np.save, args=sample_args) + self.assert_deprecated(np.save, args=sample_args, + kwargs={'fix_imports': True}) + self.assert_deprecated(np.save, args=sample_args, + kwargs={'fix_imports': False}) + for allow_pickle in [True, False]: + self.assert_not_deprecated(np.save, args=sample_args, + kwargs={'allow_pickle': allow_pickle}) + self.assert_deprecated(np.save, args=sample_args, + kwargs={'allow_pickle': allow_pickle, + 'fix_imports': True}) + self.assert_deprecated(np.save, args=sample_args, + kwargs={'allow_pickle': allow_pickle, + 'fix_imports': False}) + + +class TestAddNewdocUFunc(_DeprecationTestCase): + # Deprecated in Numpy 2.2, 2024-11 + def test_deprecated(self): + self.assert_deprecated( + lambda: np._core.umath._add_newdoc_ufunc( + struct_ufunc.add_triplet, "new docs" + ) + ) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_dlpack.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_dlpack.py new file mode 100644 index 0000000..89c2403 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_dlpack.py @@ -0,0 +1,190 @@ +import sys + +import pytest + +import numpy as np +from numpy.testing import IS_PYPY, assert_array_equal + + +def new_and_old_dlpack(): + yield np.arange(5) + + class OldDLPack(np.ndarray): + # Support only the "old" version + def __dlpack__(self, stream=None): + return super().__dlpack__(stream=None) + + yield np.arange(5).view(OldDLPack) + + +class TestDLPack: + @pytest.mark.skipif(IS_PYPY, reason="PyPy can't get refcounts.") + @pytest.mark.parametrize("max_version", [(0, 0), None, (1, 0), (100, 3)]) + def test_dunder_dlpack_refcount(self, max_version): + x = np.arange(5) + y = x.__dlpack__(max_version=max_version) + startcount = sys.getrefcount(x) + del y + assert startcount - sys.getrefcount(x) == 1 + + def test_dunder_dlpack_stream(self): + x = np.arange(5) + x.__dlpack__(stream=None) + + with pytest.raises(RuntimeError): + x.__dlpack__(stream=1) + + def test_dunder_dlpack_copy(self): + # Checks the argument parsing of __dlpack__ explicitly. + # Honoring the flag is tested in the from_dlpack round-tripping test. + x = np.arange(5) + x.__dlpack__(copy=True) + x.__dlpack__(copy=None) + x.__dlpack__(copy=False) + + with pytest.raises(ValueError): + # NOTE: The copy converter should be stricter, but not just here. + x.__dlpack__(copy=np.array([1, 2, 3])) + + def test_strides_not_multiple_of_itemsize(self): + dt = np.dtype([('int', np.int32), ('char', np.int8)]) + y = np.zeros((5,), dtype=dt) + z = y['int'] + + with pytest.raises(BufferError): + np.from_dlpack(z) + + @pytest.mark.skipif(IS_PYPY, reason="PyPy can't get refcounts.") + @pytest.mark.parametrize("arr", new_and_old_dlpack()) + def test_from_dlpack_refcount(self, arr): + arr = arr.copy() + y = np.from_dlpack(arr) + startcount = sys.getrefcount(arr) + del y + assert startcount - sys.getrefcount(arr) == 1 + + @pytest.mark.parametrize("dtype", [ + np.bool, + np.int8, np.int16, np.int32, np.int64, + np.uint8, np.uint16, np.uint32, np.uint64, + np.float16, np.float32, np.float64, + np.complex64, np.complex128 + ]) + @pytest.mark.parametrize("arr", new_and_old_dlpack()) + def test_dtype_passthrough(self, arr, dtype): + x = arr.astype(dtype) + y = np.from_dlpack(x) + + assert y.dtype == x.dtype + assert_array_equal(x, y) + + def test_invalid_dtype(self): + x = np.asarray(np.datetime64('2021-05-27')) + + with pytest.raises(BufferError): + np.from_dlpack(x) + + def test_invalid_byte_swapping(self): + dt = np.dtype('=i8').newbyteorder() + x = np.arange(5, dtype=dt) + + with pytest.raises(BufferError): + np.from_dlpack(x) + + def test_non_contiguous(self): + x = np.arange(25).reshape((5, 5)) + + y1 = x[0] + assert_array_equal(y1, np.from_dlpack(y1)) + + y2 = x[:, 0] + assert_array_equal(y2, np.from_dlpack(y2)) + + y3 = x[1, :] + assert_array_equal(y3, np.from_dlpack(y3)) + + y4 = x[1] + assert_array_equal(y4, np.from_dlpack(y4)) + + y5 = np.diagonal(x).copy() + assert_array_equal(y5, np.from_dlpack(y5)) + + @pytest.mark.parametrize("ndim", range(33)) + def test_higher_dims(self, ndim): + shape = (1,) * ndim + x = np.zeros(shape, dtype=np.float64) + + assert shape == np.from_dlpack(x).shape + + def test_dlpack_device(self): + x = np.arange(5) + assert x.__dlpack_device__() == (1, 0) + y = np.from_dlpack(x) + assert y.__dlpack_device__() == (1, 0) + z = y[::2] + assert z.__dlpack_device__() == (1, 0) + + def dlpack_deleter_exception(self, max_version): + x = np.arange(5) + _ = x.__dlpack__(max_version=max_version) + raise RuntimeError + + @pytest.mark.parametrize("max_version", [None, (1, 0)]) + def test_dlpack_destructor_exception(self, max_version): + with pytest.raises(RuntimeError): + self.dlpack_deleter_exception(max_version=max_version) + + def test_readonly(self): + x = np.arange(5) + x.flags.writeable = False + # Raises without max_version + with pytest.raises(BufferError): + x.__dlpack__() + + # But works fine if we try with version + y = np.from_dlpack(x) + assert not y.flags.writeable + + def test_writeable(self): + x_new, x_old = new_and_old_dlpack() + + # new dlpacks respect writeability + y = np.from_dlpack(x_new) + assert y.flags.writeable + + # old dlpacks are not writeable for backwards compatibility + y = np.from_dlpack(x_old) + assert not y.flags.writeable + + def test_ndim0(self): + x = np.array(1.0) + y = np.from_dlpack(x) + assert_array_equal(x, y) + + def test_size1dims_arrays(self): + x = np.ndarray(dtype='f8', shape=(10, 5, 1), strides=(8, 80, 4), + buffer=np.ones(1000, dtype=np.uint8), order='F') + y = np.from_dlpack(x) + assert_array_equal(x, y) + + def test_copy(self): + x = np.arange(5) + + y = np.from_dlpack(x) + assert np.may_share_memory(x, y) + y = np.from_dlpack(x, copy=False) + assert np.may_share_memory(x, y) + y = np.from_dlpack(x, copy=True) + assert not np.may_share_memory(x, y) + + def test_device(self): + x = np.arange(5) + # requesting (1, 0), i.e. CPU device works in both calls: + x.__dlpack__(dl_device=(1, 0)) + np.from_dlpack(x, device="cpu") + np.from_dlpack(x, device=None) + + with pytest.raises(ValueError): + x.__dlpack__(dl_device=(10, 0)) + with pytest.raises(ValueError): + np.from_dlpack(x, device="gpu") diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_dtype.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_dtype.py new file mode 100644 index 0000000..684672a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_dtype.py @@ -0,0 +1,1995 @@ +import ctypes +import gc +import operator +import pickle +import random +import sys +import types +from itertools import permutations +from typing import Any + +import hypothesis +import pytest +from hypothesis.extra import numpy as hynp +from numpy._core._multiarray_tests import create_custom_field_dtype +from numpy._core._rational_tests import rational + +import numpy as np +import numpy.dtypes +from numpy.testing import ( + HAS_REFCOUNT, + IS_PYSTON, + IS_WASM, + assert_, + assert_array_equal, + assert_equal, + assert_raises, +) + + +def assert_dtype_equal(a, b): + assert_equal(a, b) + assert_equal(hash(a), hash(b), + "two equivalent types do not hash to the same value !") + +def assert_dtype_not_equal(a, b): + assert_(a != b) + assert_(hash(a) != hash(b), + "two different types hash to the same value !") + +class TestBuiltin: + @pytest.mark.parametrize('t', [int, float, complex, np.int32, str, object]) + def test_run(self, t): + """Only test hash runs at all.""" + dt = np.dtype(t) + hash(dt) + + @pytest.mark.parametrize('t', [int, float]) + def test_dtype(self, t): + # Make sure equivalent byte order char hash the same (e.g. < and = on + # little endian) + dt = np.dtype(t) + dt2 = dt.newbyteorder("<") + dt3 = dt.newbyteorder(">") + if dt == dt2: + assert_(dt.byteorder != dt2.byteorder, "bogus test") + assert_dtype_equal(dt, dt2) + else: + assert_(dt.byteorder != dt3.byteorder, "bogus test") + assert_dtype_equal(dt, dt3) + + def test_equivalent_dtype_hashing(self): + # Make sure equivalent dtypes with different type num hash equal + uintp = np.dtype(np.uintp) + if uintp.itemsize == 4: + left = uintp + right = np.dtype(np.uint32) + else: + left = uintp + right = np.dtype(np.ulonglong) + assert_(left == right) + assert_(hash(left) == hash(right)) + + def test_invalid_types(self): + # Make sure invalid type strings raise an error + + assert_raises(TypeError, np.dtype, 'O3') + assert_raises(TypeError, np.dtype, 'O5') + assert_raises(TypeError, np.dtype, 'O7') + assert_raises(TypeError, np.dtype, 'b3') + assert_raises(TypeError, np.dtype, 'h4') + assert_raises(TypeError, np.dtype, 'I5') + assert_raises(TypeError, np.dtype, 'e3') + assert_raises(TypeError, np.dtype, 'f5') + + if np.dtype('g').itemsize == 8 or np.dtype('g').itemsize == 16: + assert_raises(TypeError, np.dtype, 'g12') + elif np.dtype('g').itemsize == 12: + assert_raises(TypeError, np.dtype, 'g16') + + if np.dtype('l').itemsize == 8: + assert_raises(TypeError, np.dtype, 'l4') + assert_raises(TypeError, np.dtype, 'L4') + else: + assert_raises(TypeError, np.dtype, 'l8') + assert_raises(TypeError, np.dtype, 'L8') + + if np.dtype('q').itemsize == 8: + assert_raises(TypeError, np.dtype, 'q4') + assert_raises(TypeError, np.dtype, 'Q4') + else: + assert_raises(TypeError, np.dtype, 'q8') + assert_raises(TypeError, np.dtype, 'Q8') + + # Make sure negative-sized dtype raises an error + assert_raises(TypeError, np.dtype, 'S-1') + assert_raises(TypeError, np.dtype, 'U-1') + assert_raises(TypeError, np.dtype, 'V-1') + + def test_richcompare_invalid_dtype_equality(self): + # Make sure objects that cannot be converted to valid + # dtypes results in False/True when compared to valid dtypes. + # Here 7 cannot be converted to dtype. No exceptions should be raised + + assert not np.dtype(np.int32) == 7, "dtype richcompare failed for ==" + assert np.dtype(np.int32) != 7, "dtype richcompare failed for !=" + + @pytest.mark.parametrize( + 'operation', + [operator.le, operator.lt, operator.ge, operator.gt]) + def test_richcompare_invalid_dtype_comparison(self, operation): + # Make sure TypeError is raised for comparison operators + # for invalid dtypes. Here 7 is an invalid dtype. + + with pytest.raises(TypeError): + operation(np.dtype(np.int32), 7) + + @pytest.mark.parametrize("dtype", + ['Bool', 'Bytes0', 'Complex32', 'Complex64', + 'Datetime64', 'Float16', 'Float32', 'Float64', + 'Int8', 'Int16', 'Int32', 'Int64', + 'Object0', 'Str0', 'Timedelta64', + 'UInt8', 'UInt16', 'Uint32', 'UInt32', + 'Uint64', 'UInt64', 'Void0', + "Float128", "Complex128"]) + def test_numeric_style_types_are_invalid(self, dtype): + with assert_raises(TypeError): + np.dtype(dtype) + + def test_expired_dtypes_with_bad_bytesize(self): + match: str = r".*removed in NumPy 2.0.*" + with pytest.raises(TypeError, match=match): + np.dtype("int0") + with pytest.raises(TypeError, match=match): + np.dtype("uint0") + with pytest.raises(TypeError, match=match): + np.dtype("bool8") + with pytest.raises(TypeError, match=match): + np.dtype("bytes0") + with pytest.raises(TypeError, match=match): + np.dtype("str0") + with pytest.raises(TypeError, match=match): + np.dtype("object0") + with pytest.raises(TypeError, match=match): + np.dtype("void0") + + @pytest.mark.parametrize( + 'value', + ['m8', 'M8', 'datetime64', 'timedelta64', + 'i4, (2,3)f8, f4', 'S3, 3u8, (3,4)S10', + '>f', '= (3, 12), + reason="Python 3.12 has immortal refcounts, this test will no longer " + "work. See gh-23986" +) +@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") +class TestStructuredObjectRefcounting: + """These tests cover various uses of complicated structured types which + include objects and thus require reference counting. + """ + @pytest.mark.parametrize(['dt', 'pat', 'count', 'singleton'], + iter_struct_object_dtypes()) + @pytest.mark.parametrize(["creation_func", "creation_obj"], [ + pytest.param(np.empty, None, + # None is probably used for too many things + marks=pytest.mark.skip("unreliable due to python's behaviour")), + (np.ones, 1), + (np.zeros, 0)]) + def test_structured_object_create_delete(self, dt, pat, count, singleton, + creation_func, creation_obj): + """Structured object reference counting in creation and deletion""" + # The test assumes that 0, 1, and None are singletons. + gc.collect() + before = sys.getrefcount(creation_obj) + arr = creation_func(3, dt) + + now = sys.getrefcount(creation_obj) + assert now - before == count * 3 + del arr + now = sys.getrefcount(creation_obj) + assert now == before + + @pytest.mark.parametrize(['dt', 'pat', 'count', 'singleton'], + iter_struct_object_dtypes()) + def test_structured_object_item_setting(self, dt, pat, count, singleton): + """Structured object reference counting for simple item setting""" + one = 1 + + gc.collect() + before = sys.getrefcount(singleton) + arr = np.array([pat] * 3, dt) + assert sys.getrefcount(singleton) - before == count * 3 + # Fill with `1` and check that it was replaced correctly: + before2 = sys.getrefcount(one) + arr[...] = one + after2 = sys.getrefcount(one) + assert after2 - before2 == count * 3 + del arr + gc.collect() + assert sys.getrefcount(one) == before2 + assert sys.getrefcount(singleton) == before + + @pytest.mark.parametrize(['dt', 'pat', 'count', 'singleton'], + iter_struct_object_dtypes()) + @pytest.mark.parametrize( + ['shape', 'index', 'items_changed'], + [((3,), ([0, 2],), 2), + ((3, 2), ([0, 2], slice(None)), 4), + ((3, 2), ([0, 2], [1]), 2), + ((3,), ([True, False, True]), 2)]) + def test_structured_object_indexing(self, shape, index, items_changed, + dt, pat, count, singleton): + """Structured object reference counting for advanced indexing.""" + # Use two small negative values (should be singletons, but less likely + # to run into race-conditions). This failed in some threaded envs + # When using 0 and 1. If it fails again, should remove all explicit + # checks, and rely on `pytest-leaks` reference count checker only. + val0 = -4 + val1 = -5 + + arr = np.full(shape, val0, dt) + + gc.collect() + before_val0 = sys.getrefcount(val0) + before_val1 = sys.getrefcount(val1) + # Test item getting: + part = arr[index] + after_val0 = sys.getrefcount(val0) + assert after_val0 - before_val0 == count * items_changed + del part + # Test item setting: + arr[index] = val1 + gc.collect() + after_val0 = sys.getrefcount(val0) + after_val1 = sys.getrefcount(val1) + assert before_val0 - after_val0 == count * items_changed + assert after_val1 - before_val1 == count * items_changed + + @pytest.mark.parametrize(['dt', 'pat', 'count', 'singleton'], + iter_struct_object_dtypes()) + def test_structured_object_take_and_repeat(self, dt, pat, count, singleton): + """Structured object reference counting for specialized functions. + The older functions such as take and repeat use different code paths + then item setting (when writing this). + """ + indices = [0, 1] + + arr = np.array([pat] * 3, dt) + gc.collect() + before = sys.getrefcount(singleton) + res = arr.take(indices) + after = sys.getrefcount(singleton) + assert after - before == count * 2 + new = res.repeat(10) + gc.collect() + after_repeat = sys.getrefcount(singleton) + assert after_repeat - after == count * 2 * 10 + + +class TestStructuredDtypeSparseFields: + """Tests subarray fields which contain sparse dtypes so that + not all memory is used by the dtype work. Such dtype's should + leave the underlying memory unchanged. + """ + dtype = np.dtype([('a', {'names': ['aa', 'ab'], 'formats': ['f', 'f'], + 'offsets': [0, 4]}, (2, 3))]) + sparse_dtype = np.dtype([('a', {'names': ['ab'], 'formats': ['f'], + 'offsets': [4]}, (2, 3))]) + + def test_sparse_field_assignment(self): + arr = np.zeros(3, self.dtype) + sparse_arr = arr.view(self.sparse_dtype) + + sparse_arr[...] = np.finfo(np.float32).max + # dtype is reduced when accessing the field, so shape is (3, 2, 3): + assert_array_equal(arr["a"]["aa"], np.zeros((3, 2, 3))) + + def test_sparse_field_assignment_fancy(self): + # Fancy assignment goes to the copyswap function for complex types: + arr = np.zeros(3, self.dtype) + sparse_arr = arr.view(self.sparse_dtype) + + sparse_arr[[0, 1, 2]] = np.finfo(np.float32).max + # dtype is reduced when accessing the field, so shape is (3, 2, 3): + assert_array_equal(arr["a"]["aa"], np.zeros((3, 2, 3))) + + +class TestMonsterType: + """Test deeply nested subtypes.""" + + def test1(self): + simple1 = np.dtype({'names': ['r', 'b'], 'formats': ['u1', 'u1'], + 'titles': ['Red pixel', 'Blue pixel']}) + a = np.dtype([('yo', int), ('ye', simple1), + ('yi', np.dtype((int, (3, 2))))]) + b = np.dtype([('yo', int), ('ye', simple1), + ('yi', np.dtype((int, (3, 2))))]) + assert_dtype_equal(a, b) + + c = np.dtype([('yo', int), ('ye', simple1), + ('yi', np.dtype((a, (3, 2))))]) + d = np.dtype([('yo', int), ('ye', simple1), + ('yi', np.dtype((a, (3, 2))))]) + assert_dtype_equal(c, d) + + @pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking") + @pytest.mark.skipif(IS_WASM, reason="Pyodide/WASM has limited stack size") + def test_list_recursion(self): + l = [] + l.append(('f', l)) + with pytest.raises(RecursionError): + np.dtype(l) + + @pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking") + @pytest.mark.skipif(IS_WASM, reason="Pyodide/WASM has limited stack size") + def test_tuple_recursion(self): + d = np.int32 + for i in range(100000): + d = (d, (1,)) + with pytest.raises(RecursionError): + np.dtype(d) + + @pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking") + @pytest.mark.skipif(IS_WASM, reason="Pyodide/WASM has limited stack size") + def test_dict_recursion(self): + d = {"names": ['self'], "formats": [None], "offsets": [0]} + d['formats'][0] = d + with pytest.raises(RecursionError): + np.dtype(d) + + +class TestMetadata: + def test_no_metadata(self): + d = np.dtype(int) + assert_(d.metadata is None) + + def test_metadata_takes_dict(self): + d = np.dtype(int, metadata={'datum': 1}) + assert_(d.metadata == {'datum': 1}) + + def test_metadata_rejects_nondict(self): + assert_raises(TypeError, np.dtype, int, metadata='datum') + assert_raises(TypeError, np.dtype, int, metadata=1) + assert_raises(TypeError, np.dtype, int, metadata=None) + + def test_nested_metadata(self): + d = np.dtype([('a', np.dtype(int, metadata={'datum': 1}))]) + assert_(d['a'].metadata == {'datum': 1}) + + def test_base_metadata_copied(self): + d = np.dtype((np.void, np.dtype('i4,i4', metadata={'datum': 1}))) + assert_(d.metadata == {'datum': 1}) + +class TestString: + def test_complex_dtype_str(self): + dt = np.dtype([('top', [('tiles', ('>f4', (64, 64)), (1,)), + ('rtile', '>f4', (64, 36))], (3,)), + ('bottom', [('bleft', ('>f4', (8, 64)), (1,)), + ('bright', '>f4', (8, 36))])]) + assert_equal(str(dt), + "[('top', [('tiles', ('>f4', (64, 64)), (1,)), " + "('rtile', '>f4', (64, 36))], (3,)), " + "('bottom', [('bleft', ('>f4', (8, 64)), (1,)), " + "('bright', '>f4', (8, 36))])]") + + # If the sticky aligned flag is set to True, it makes the + # str() function use a dict representation with an 'aligned' flag + dt = np.dtype([('top', [('tiles', ('>f4', (64, 64)), (1,)), + ('rtile', '>f4', (64, 36))], + (3,)), + ('bottom', [('bleft', ('>f4', (8, 64)), (1,)), + ('bright', '>f4', (8, 36))])], + align=True) + assert_equal(str(dt), + "{'names': ['top', 'bottom']," + " 'formats': [([('tiles', ('>f4', (64, 64)), (1,)), " + "('rtile', '>f4', (64, 36))], (3,)), " + "[('bleft', ('>f4', (8, 64)), (1,)), " + "('bright', '>f4', (8, 36))]]," + " 'offsets': [0, 76800]," + " 'itemsize': 80000," + " 'aligned': True}") + with np.printoptions(legacy='1.21'): + assert_equal(str(dt), + "{'names':['top','bottom'], " + "'formats':[([('tiles', ('>f4', (64, 64)), (1,)), " + "('rtile', '>f4', (64, 36))], (3,))," + "[('bleft', ('>f4', (8, 64)), (1,)), " + "('bright', '>f4', (8, 36))]], " + "'offsets':[0,76800], " + "'itemsize':80000, " + "'aligned':True}") + assert_equal(np.dtype(eval(str(dt))), dt) + + dt = np.dtype({'names': ['r', 'g', 'b'], 'formats': ['u1', 'u1', 'u1'], + 'offsets': [0, 1, 2], + 'titles': ['Red pixel', 'Green pixel', 'Blue pixel']}) + assert_equal(str(dt), + "[(('Red pixel', 'r'), 'u1'), " + "(('Green pixel', 'g'), 'u1'), " + "(('Blue pixel', 'b'), 'u1')]") + + dt = np.dtype({'names': ['rgba', 'r', 'g', 'b'], + 'formats': ['f4', (64, 64)), (1,)), + ('rtile', '>f4', (64, 36))], (3,)), + ('bottom', [('bleft', ('>f4', (8, 64)), (1,)), + ('bright', '>f4', (8, 36))])]) + assert_equal(repr(dt), + "dtype([('top', [('tiles', ('>f4', (64, 64)), (1,)), " + "('rtile', '>f4', (64, 36))], (3,)), " + "('bottom', [('bleft', ('>f4', (8, 64)), (1,)), " + "('bright', '>f4', (8, 36))])])") + + dt = np.dtype({'names': ['r', 'g', 'b'], 'formats': ['u1', 'u1', 'u1'], + 'offsets': [0, 1, 2], + 'titles': ['Red pixel', 'Green pixel', 'Blue pixel']}, + align=True) + assert_equal(repr(dt), + "dtype([(('Red pixel', 'r'), 'u1'), " + "(('Green pixel', 'g'), 'u1'), " + "(('Blue pixel', 'b'), 'u1')], align=True)") + + def test_repr_structured_not_packed(self): + dt = np.dtype({'names': ['rgba', 'r', 'g', 'b'], + 'formats': ['i4") + assert np.result_type(dt).isnative + assert np.result_type(dt).num == dt.num + + # dtype with empty space: + struct_dt = np.dtype(">i4,i1,f4', (2, 1)), ('b', 'u4')]) + self.check(BigEndStruct, expected) + + def test_little_endian_structure_packed(self): + class LittleEndStruct(ctypes.LittleEndianStructure): + _fields_ = [ + ('one', ctypes.c_uint8), + ('two', ctypes.c_uint32) + ] + _pack_ = 1 + expected = np.dtype([('one', 'u1'), ('two', 'B'), + ('b', '>H') + ], align=True) + self.check(PaddedStruct, expected) + + def test_simple_endian_types(self): + self.check(ctypes.c_uint16.__ctype_le__, np.dtype('u2')) + self.check(ctypes.c_uint8.__ctype_le__, np.dtype('u1')) + self.check(ctypes.c_uint8.__ctype_be__, np.dtype('u1')) + + all_types = set(np.typecodes['All']) + all_pairs = permutations(all_types, 2) + + @pytest.mark.parametrize("pair", all_pairs) + def test_pairs(self, pair): + """ + Check that np.dtype('x,y') matches [np.dtype('x'), np.dtype('y')] + Example: np.dtype('d,I') -> dtype([('f0', ' None: + alias = np.dtype[Any] + assert isinstance(alias, types.GenericAlias) + assert alias.__origin__ is np.dtype + + @pytest.mark.parametrize("code", np.typecodes["All"]) + def test_dtype_subclass(self, code: str) -> None: + cls = type(np.dtype(code)) + alias = cls[Any] + assert isinstance(alias, types.GenericAlias) + assert alias.__origin__ is cls + + @pytest.mark.parametrize("arg_len", range(4)) + def test_subscript_tuple(self, arg_len: int) -> None: + arg_tup = (Any,) * arg_len + if arg_len == 1: + assert np.dtype[arg_tup] + else: + with pytest.raises(TypeError): + np.dtype[arg_tup] + + def test_subscript_scalar(self) -> None: + assert np.dtype[Any] + + +def test_result_type_integers_and_unitless_timedelta64(): + # Regression test for gh-20077. The following call of `result_type` + # would cause a seg. fault. + td = np.timedelta64(4) + result = np.result_type(0, td) + assert_dtype_equal(result, td.dtype) + + +def test_creating_dtype_with_dtype_class_errors(): + # Regression test for #25031, calling `np.dtype` with itself segfaulted. + with pytest.raises(TypeError, match="Cannot convert np.dtype into a"): + np.array(np.ones(10), dtype=np.dtype) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_einsum.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_einsum.py new file mode 100644 index 0000000..0bd180b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_einsum.py @@ -0,0 +1,1317 @@ +import itertools + +import pytest + +import numpy as np +from numpy.testing import ( + assert_, + assert_allclose, + assert_almost_equal, + assert_array_equal, + assert_equal, + assert_raises, + assert_raises_regex, + suppress_warnings, +) + +# Setup for optimize einsum +chars = 'abcdefghij' +sizes = np.array([2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3]) +global_size_dict = dict(zip(chars, sizes)) + + +class TestEinsum: + @pytest.mark.parametrize("do_opt", [True, False]) + @pytest.mark.parametrize("einsum_fn", [np.einsum, np.einsum_path]) + def test_einsum_errors(self, do_opt, einsum_fn): + # Need enough arguments + assert_raises(ValueError, einsum_fn, optimize=do_opt) + assert_raises(ValueError, einsum_fn, "", optimize=do_opt) + + # subscripts must be a string + assert_raises(TypeError, einsum_fn, 0, 0, optimize=do_opt) + + # issue 4528 revealed a segfault with this call + assert_raises(TypeError, einsum_fn, *(None,) * 63, optimize=do_opt) + + # number of operands must match count in subscripts string + assert_raises(ValueError, einsum_fn, "", 0, 0, optimize=do_opt) + assert_raises(ValueError, einsum_fn, ",", 0, [0], [0], + optimize=do_opt) + assert_raises(ValueError, einsum_fn, ",", [0], optimize=do_opt) + + # can't have more subscripts than dimensions in the operand + assert_raises(ValueError, einsum_fn, "i", 0, optimize=do_opt) + assert_raises(ValueError, einsum_fn, "ij", [0, 0], optimize=do_opt) + assert_raises(ValueError, einsum_fn, "...i", 0, optimize=do_opt) + assert_raises(ValueError, einsum_fn, "i...j", [0, 0], optimize=do_opt) + assert_raises(ValueError, einsum_fn, "i...", 0, optimize=do_opt) + assert_raises(ValueError, einsum_fn, "ij...", [0, 0], optimize=do_opt) + + # invalid ellipsis + assert_raises(ValueError, einsum_fn, "i..", [0, 0], optimize=do_opt) + assert_raises(ValueError, einsum_fn, ".i...", [0, 0], optimize=do_opt) + assert_raises(ValueError, einsum_fn, "j->..j", [0, 0], optimize=do_opt) + assert_raises(ValueError, einsum_fn, "j->.j...", [0, 0], + optimize=do_opt) + + # invalid subscript character + assert_raises(ValueError, einsum_fn, "i%...", [0, 0], optimize=do_opt) + assert_raises(ValueError, einsum_fn, "...j$", [0, 0], optimize=do_opt) + assert_raises(ValueError, einsum_fn, "i->&", [0, 0], optimize=do_opt) + + # output subscripts must appear in input + assert_raises(ValueError, einsum_fn, "i->ij", [0, 0], optimize=do_opt) + + # output subscripts may only be specified once + assert_raises(ValueError, einsum_fn, "ij->jij", [[0, 0], [0, 0]], + optimize=do_opt) + + # dimensions must match when being collapsed + assert_raises(ValueError, einsum_fn, "ii", + np.arange(6).reshape(2, 3), optimize=do_opt) + assert_raises(ValueError, einsum_fn, "ii->i", + np.arange(6).reshape(2, 3), optimize=do_opt) + + with assert_raises_regex(ValueError, "'b'"): + # gh-11221 - 'c' erroneously appeared in the error message + a = np.ones((3, 3, 4, 5, 6)) + b = np.ones((3, 4, 5)) + einsum_fn('aabcb,abc', a, b) + + def test_einsum_sorting_behavior(self): + # Case 1: 26 dimensions (all lowercase indices) + n1 = 26 + x1 = np.random.random((1,) * n1) + path1 = np.einsum_path(x1, range(n1))[1] # Get einsum path details + output_indices1 = path1.split("->")[-1].strip() # Extract output indices + # Assert indices are only uppercase letters and sorted correctly + assert all(c.isupper() for c in output_indices1), ( + "Output indices for n=26 should use uppercase letters only: " + f"{output_indices1}" + ) + assert_equal( + output_indices1, + ''.join(sorted(output_indices1)), + err_msg=( + "Output indices for n=26 are not lexicographically sorted: " + f"{output_indices1}" + ) + ) + + # Case 2: 27 dimensions (includes uppercase indices) + n2 = 27 + x2 = np.random.random((1,) * n2) + path2 = np.einsum_path(x2, range(n2))[1] + output_indices2 = path2.split("->")[-1].strip() + # Assert indices include both uppercase and lowercase letters + assert any(c.islower() for c in output_indices2), ( + "Output indices for n=27 should include uppercase letters: " + f"{output_indices2}" + ) + # Assert output indices are sorted uppercase before lowercase + assert_equal( + output_indices2, + ''.join(sorted(output_indices2)), + err_msg=( + "Output indices for n=27 are not lexicographically sorted: " + f"{output_indices2}" + ) + ) + + # Additional Check: Ensure dimensions correspond correctly to indices + # Generate expected mapping of dimensions to indices + expected_indices = [ + chr(i + ord('A')) if i < 26 else chr(i - 26 + ord('a')) + for i in range(n2) + ] + assert_equal( + output_indices2, + ''.join(expected_indices), + err_msg=( + "Output indices do not map to the correct dimensions. Expected: " + f"{''.join(expected_indices)}, Got: {output_indices2}" + ) + ) + + @pytest.mark.parametrize("do_opt", [True, False]) + def test_einsum_specific_errors(self, do_opt): + # out parameter must be an array + assert_raises(TypeError, np.einsum, "", 0, out='test', + optimize=do_opt) + + # order parameter must be a valid order + assert_raises(ValueError, np.einsum, "", 0, order='W', + optimize=do_opt) + + # casting parameter must be a valid casting + assert_raises(ValueError, np.einsum, "", 0, casting='blah', + optimize=do_opt) + + # dtype parameter must be a valid dtype + assert_raises(TypeError, np.einsum, "", 0, dtype='bad_data_type', + optimize=do_opt) + + # other keyword arguments are rejected + assert_raises(TypeError, np.einsum, "", 0, bad_arg=0, optimize=do_opt) + + # broadcasting to new dimensions must be enabled explicitly + assert_raises(ValueError, np.einsum, "i", np.arange(6).reshape(2, 3), + optimize=do_opt) + assert_raises(ValueError, np.einsum, "i->i", [[0, 1], [0, 1]], + out=np.arange(4).reshape(2, 2), optimize=do_opt) + + # Check order kwarg, asanyarray allows 1d to pass through + assert_raises(ValueError, np.einsum, "i->i", + np.arange(6).reshape(-1, 1), optimize=do_opt, order='d') + + def test_einsum_object_errors(self): + # Exceptions created by object arithmetic should + # successfully propagate + + class CustomException(Exception): + pass + + class DestructoBox: + + def __init__(self, value, destruct): + self._val = value + self._destruct = destruct + + def __add__(self, other): + tmp = self._val + other._val + if tmp >= self._destruct: + raise CustomException + else: + self._val = tmp + return self + + def __radd__(self, other): + if other == 0: + return self + else: + return self.__add__(other) + + def __mul__(self, other): + tmp = self._val * other._val + if tmp >= self._destruct: + raise CustomException + else: + self._val = tmp + return self + + def __rmul__(self, other): + if other == 0: + return self + else: + return self.__mul__(other) + + a = np.array([DestructoBox(i, 5) for i in range(1, 10)], + dtype='object').reshape(3, 3) + + # raised from unbuffered_loop_nop1_ndim2 + assert_raises(CustomException, np.einsum, "ij->i", a) + + # raised from unbuffered_loop_nop1_ndim3 + b = np.array([DestructoBox(i, 100) for i in range(27)], + dtype='object').reshape(3, 3, 3) + assert_raises(CustomException, np.einsum, "i...k->...", b) + + # raised from unbuffered_loop_nop2_ndim2 + b = np.array([DestructoBox(i, 55) for i in range(1, 4)], + dtype='object') + assert_raises(CustomException, np.einsum, "ij, j", a, b) + + # raised from unbuffered_loop_nop2_ndim3 + assert_raises(CustomException, np.einsum, "ij, jh", a, a) + + # raised from PyArray_EinsteinSum + assert_raises(CustomException, np.einsum, "ij->", a) + + def test_einsum_views(self): + # pass-through + for do_opt in [True, False]: + a = np.arange(6) + a.shape = (2, 3) + + b = np.einsum("...", a, optimize=do_opt) + assert_(b.base is a) + + b = np.einsum(a, [Ellipsis], optimize=do_opt) + assert_(b.base is a) + + b = np.einsum("ij", a, optimize=do_opt) + assert_(b.base is a) + assert_equal(b, a) + + b = np.einsum(a, [0, 1], optimize=do_opt) + assert_(b.base is a) + assert_equal(b, a) + + # output is writeable whenever input is writeable + b = np.einsum("...", a, optimize=do_opt) + assert_(b.flags['WRITEABLE']) + a.flags['WRITEABLE'] = False + b = np.einsum("...", a, optimize=do_opt) + assert_(not b.flags['WRITEABLE']) + + # transpose + a = np.arange(6) + a.shape = (2, 3) + + b = np.einsum("ji", a, optimize=do_opt) + assert_(b.base is a) + assert_equal(b, a.T) + + b = np.einsum(a, [1, 0], optimize=do_opt) + assert_(b.base is a) + assert_equal(b, a.T) + + # diagonal + a = np.arange(9) + a.shape = (3, 3) + + b = np.einsum("ii->i", a, optimize=do_opt) + assert_(b.base is a) + assert_equal(b, [a[i, i] for i in range(3)]) + + b = np.einsum(a, [0, 0], [0], optimize=do_opt) + assert_(b.base is a) + assert_equal(b, [a[i, i] for i in range(3)]) + + # diagonal with various ways of broadcasting an additional dimension + a = np.arange(27) + a.shape = (3, 3, 3) + + b = np.einsum("...ii->...i", a, optimize=do_opt) + assert_(b.base is a) + assert_equal(b, [[x[i, i] for i in range(3)] for x in a]) + + b = np.einsum(a, [Ellipsis, 0, 0], [Ellipsis, 0], optimize=do_opt) + assert_(b.base is a) + assert_equal(b, [[x[i, i] for i in range(3)] for x in a]) + + b = np.einsum("ii...->...i", a, optimize=do_opt) + assert_(b.base is a) + assert_equal(b, [[x[i, i] for i in range(3)] + for x in a.transpose(2, 0, 1)]) + + b = np.einsum(a, [0, 0, Ellipsis], [Ellipsis, 0], optimize=do_opt) + assert_(b.base is a) + assert_equal(b, [[x[i, i] for i in range(3)] + for x in a.transpose(2, 0, 1)]) + + b = np.einsum("...ii->i...", a, optimize=do_opt) + assert_(b.base is a) + assert_equal(b, [a[:, i, i] for i in range(3)]) + + b = np.einsum(a, [Ellipsis, 0, 0], [0, Ellipsis], optimize=do_opt) + assert_(b.base is a) + assert_equal(b, [a[:, i, i] for i in range(3)]) + + b = np.einsum("jii->ij", a, optimize=do_opt) + assert_(b.base is a) + assert_equal(b, [a[:, i, i] for i in range(3)]) + + b = np.einsum(a, [1, 0, 0], [0, 1], optimize=do_opt) + assert_(b.base is a) + assert_equal(b, [a[:, i, i] for i in range(3)]) + + b = np.einsum("ii...->i...", a, optimize=do_opt) + assert_(b.base is a) + assert_equal(b, [a.transpose(2, 0, 1)[:, i, i] for i in range(3)]) + + b = np.einsum(a, [0, 0, Ellipsis], [0, Ellipsis], optimize=do_opt) + assert_(b.base is a) + assert_equal(b, [a.transpose(2, 0, 1)[:, i, i] for i in range(3)]) + + b = np.einsum("i...i->i...", a, optimize=do_opt) + assert_(b.base is a) + assert_equal(b, [a.transpose(1, 0, 2)[:, i, i] for i in range(3)]) + + b = np.einsum(a, [0, Ellipsis, 0], [0, Ellipsis], optimize=do_opt) + assert_(b.base is a) + assert_equal(b, [a.transpose(1, 0, 2)[:, i, i] for i in range(3)]) + + b = np.einsum("i...i->...i", a, optimize=do_opt) + assert_(b.base is a) + assert_equal(b, [[x[i, i] for i in range(3)] + for x in a.transpose(1, 0, 2)]) + + b = np.einsum(a, [0, Ellipsis, 0], [Ellipsis, 0], optimize=do_opt) + assert_(b.base is a) + assert_equal(b, [[x[i, i] for i in range(3)] + for x in a.transpose(1, 0, 2)]) + + # triple diagonal + a = np.arange(27) + a.shape = (3, 3, 3) + + b = np.einsum("iii->i", a, optimize=do_opt) + assert_(b.base is a) + assert_equal(b, [a[i, i, i] for i in range(3)]) + + b = np.einsum(a, [0, 0, 0], [0], optimize=do_opt) + assert_(b.base is a) + assert_equal(b, [a[i, i, i] for i in range(3)]) + + # swap axes + a = np.arange(24) + a.shape = (2, 3, 4) + + b = np.einsum("ijk->jik", a, optimize=do_opt) + assert_(b.base is a) + assert_equal(b, a.swapaxes(0, 1)) + + b = np.einsum(a, [0, 1, 2], [1, 0, 2], optimize=do_opt) + assert_(b.base is a) + assert_equal(b, a.swapaxes(0, 1)) + + def check_einsum_sums(self, dtype, do_opt=False): + dtype = np.dtype(dtype) + # Check various sums. Does many sizes to exercise unrolled loops. + + # sum(a, axis=-1) + for n in range(1, 17): + a = np.arange(n, dtype=dtype) + b = np.sum(a, axis=-1) + if hasattr(b, 'astype'): + b = b.astype(dtype) + assert_equal(np.einsum("i->", a, optimize=do_opt), b) + assert_equal(np.einsum(a, [0], [], optimize=do_opt), b) + + for n in range(1, 17): + a = np.arange(2 * 3 * n, dtype=dtype).reshape(2, 3, n) + b = np.sum(a, axis=-1) + if hasattr(b, 'astype'): + b = b.astype(dtype) + assert_equal(np.einsum("...i->...", a, optimize=do_opt), b) + assert_equal(np.einsum(a, [Ellipsis, 0], [Ellipsis], optimize=do_opt), b) + + # sum(a, axis=0) + for n in range(1, 17): + a = np.arange(2 * n, dtype=dtype).reshape(2, n) + b = np.sum(a, axis=0) + if hasattr(b, 'astype'): + b = b.astype(dtype) + assert_equal(np.einsum("i...->...", a, optimize=do_opt), b) + assert_equal(np.einsum(a, [0, Ellipsis], [Ellipsis], optimize=do_opt), b) + + for n in range(1, 17): + a = np.arange(2 * 3 * n, dtype=dtype).reshape(2, 3, n) + b = np.sum(a, axis=0) + if hasattr(b, 'astype'): + b = b.astype(dtype) + assert_equal(np.einsum("i...->...", a, optimize=do_opt), b) + assert_equal(np.einsum(a, [0, Ellipsis], [Ellipsis], optimize=do_opt), b) + + # trace(a) + for n in range(1, 17): + a = np.arange(n * n, dtype=dtype).reshape(n, n) + b = np.trace(a) + if hasattr(b, 'astype'): + b = b.astype(dtype) + assert_equal(np.einsum("ii", a, optimize=do_opt), b) + assert_equal(np.einsum(a, [0, 0], optimize=do_opt), b) + + # gh-15961: should accept numpy int64 type in subscript list + np_array = np.asarray([0, 0]) + assert_equal(np.einsum(a, np_array, optimize=do_opt), b) + assert_equal(np.einsum(a, list(np_array), optimize=do_opt), b) + + # multiply(a, b) + assert_equal(np.einsum("..., ...", 3, 4), 12) # scalar case + for n in range(1, 17): + a = np.arange(3 * n, dtype=dtype).reshape(3, n) + b = np.arange(2 * 3 * n, dtype=dtype).reshape(2, 3, n) + assert_equal(np.einsum("..., ...", a, b, optimize=do_opt), + np.multiply(a, b)) + assert_equal(np.einsum(a, [Ellipsis], b, [Ellipsis], optimize=do_opt), + np.multiply(a, b)) + + # inner(a,b) + for n in range(1, 17): + a = np.arange(2 * 3 * n, dtype=dtype).reshape(2, 3, n) + b = np.arange(n, dtype=dtype) + assert_equal(np.einsum("...i, ...i", a, b, optimize=do_opt), np.inner(a, b)) + assert_equal(np.einsum(a, [Ellipsis, 0], b, [Ellipsis, 0], optimize=do_opt), + np.inner(a, b)) + + for n in range(1, 11): + a = np.arange(n * 3 * 2, dtype=dtype).reshape(n, 3, 2) + b = np.arange(n, dtype=dtype) + assert_equal(np.einsum("i..., i...", a, b, optimize=do_opt), + np.inner(a.T, b.T).T) + assert_equal(np.einsum(a, [0, Ellipsis], b, [0, Ellipsis], optimize=do_opt), + np.inner(a.T, b.T).T) + + # outer(a,b) + for n in range(1, 17): + a = np.arange(3, dtype=dtype) + 1 + b = np.arange(n, dtype=dtype) + 1 + assert_equal(np.einsum("i,j", a, b, optimize=do_opt), + np.outer(a, b)) + assert_equal(np.einsum(a, [0], b, [1], optimize=do_opt), + np.outer(a, b)) + + # Suppress the complex warnings for the 'as f8' tests + with suppress_warnings() as sup: + sup.filter(np.exceptions.ComplexWarning) + + # matvec(a,b) / a.dot(b) where a is matrix, b is vector + for n in range(1, 17): + a = np.arange(4 * n, dtype=dtype).reshape(4, n) + b = np.arange(n, dtype=dtype) + assert_equal(np.einsum("ij, j", a, b, optimize=do_opt), + np.dot(a, b)) + assert_equal(np.einsum(a, [0, 1], b, [1], optimize=do_opt), + np.dot(a, b)) + + c = np.arange(4, dtype=dtype) + np.einsum("ij,j", a, b, out=c, + dtype='f8', casting='unsafe', optimize=do_opt) + assert_equal(c, + np.dot(a.astype('f8'), + b.astype('f8')).astype(dtype)) + c[...] = 0 + np.einsum(a, [0, 1], b, [1], out=c, + dtype='f8', casting='unsafe', optimize=do_opt) + assert_equal(c, + np.dot(a.astype('f8'), + b.astype('f8')).astype(dtype)) + + for n in range(1, 17): + a = np.arange(4 * n, dtype=dtype).reshape(4, n) + b = np.arange(n, dtype=dtype) + assert_equal(np.einsum("ji,j", a.T, b.T, optimize=do_opt), + np.dot(b.T, a.T)) + assert_equal(np.einsum(a.T, [1, 0], b.T, [1], optimize=do_opt), + np.dot(b.T, a.T)) + + c = np.arange(4, dtype=dtype) + np.einsum("ji,j", a.T, b.T, out=c, + dtype='f8', casting='unsafe', optimize=do_opt) + assert_equal(c, + np.dot(b.T.astype('f8'), + a.T.astype('f8')).astype(dtype)) + c[...] = 0 + np.einsum(a.T, [1, 0], b.T, [1], out=c, + dtype='f8', casting='unsafe', optimize=do_opt) + assert_equal(c, + np.dot(b.T.astype('f8'), + a.T.astype('f8')).astype(dtype)) + + # matmat(a,b) / a.dot(b) where a is matrix, b is matrix + for n in range(1, 17): + if n < 8 or dtype != 'f2': + a = np.arange(4 * n, dtype=dtype).reshape(4, n) + b = np.arange(n * 6, dtype=dtype).reshape(n, 6) + assert_equal(np.einsum("ij,jk", a, b, optimize=do_opt), + np.dot(a, b)) + assert_equal(np.einsum(a, [0, 1], b, [1, 2], optimize=do_opt), + np.dot(a, b)) + + for n in range(1, 17): + a = np.arange(4 * n, dtype=dtype).reshape(4, n) + b = np.arange(n * 6, dtype=dtype).reshape(n, 6) + c = np.arange(24, dtype=dtype).reshape(4, 6) + np.einsum("ij,jk", a, b, out=c, dtype='f8', casting='unsafe', + optimize=do_opt) + assert_equal(c, + np.dot(a.astype('f8'), + b.astype('f8')).astype(dtype)) + c[...] = 0 + np.einsum(a, [0, 1], b, [1, 2], out=c, + dtype='f8', casting='unsafe', optimize=do_opt) + assert_equal(c, + np.dot(a.astype('f8'), + b.astype('f8')).astype(dtype)) + + # matrix triple product (note this is not currently an efficient + # way to multiply 3 matrices) + a = np.arange(12, dtype=dtype).reshape(3, 4) + b = np.arange(20, dtype=dtype).reshape(4, 5) + c = np.arange(30, dtype=dtype).reshape(5, 6) + if dtype != 'f2': + assert_equal(np.einsum("ij,jk,kl", a, b, c, optimize=do_opt), + a.dot(b).dot(c)) + assert_equal(np.einsum(a, [0, 1], b, [1, 2], c, [2, 3], + optimize=do_opt), a.dot(b).dot(c)) + + d = np.arange(18, dtype=dtype).reshape(3, 6) + np.einsum("ij,jk,kl", a, b, c, out=d, + dtype='f8', casting='unsafe', optimize=do_opt) + tgt = a.astype('f8').dot(b.astype('f8')) + tgt = tgt.dot(c.astype('f8')).astype(dtype) + assert_equal(d, tgt) + + d[...] = 0 + np.einsum(a, [0, 1], b, [1, 2], c, [2, 3], out=d, + dtype='f8', casting='unsafe', optimize=do_opt) + tgt = a.astype('f8').dot(b.astype('f8')) + tgt = tgt.dot(c.astype('f8')).astype(dtype) + assert_equal(d, tgt) + + # tensordot(a, b) + if np.dtype(dtype) != np.dtype('f2'): + a = np.arange(60, dtype=dtype).reshape(3, 4, 5) + b = np.arange(24, dtype=dtype).reshape(4, 3, 2) + assert_equal(np.einsum("ijk, jil -> kl", a, b), + np.tensordot(a, b, axes=([1, 0], [0, 1]))) + assert_equal(np.einsum(a, [0, 1, 2], b, [1, 0, 3], [2, 3]), + np.tensordot(a, b, axes=([1, 0], [0, 1]))) + + c = np.arange(10, dtype=dtype).reshape(5, 2) + np.einsum("ijk,jil->kl", a, b, out=c, + dtype='f8', casting='unsafe', optimize=do_opt) + assert_equal(c, np.tensordot(a.astype('f8'), b.astype('f8'), + axes=([1, 0], [0, 1])).astype(dtype)) + c[...] = 0 + np.einsum(a, [0, 1, 2], b, [1, 0, 3], [2, 3], out=c, + dtype='f8', casting='unsafe', optimize=do_opt) + assert_equal(c, np.tensordot(a.astype('f8'), b.astype('f8'), + axes=([1, 0], [0, 1])).astype(dtype)) + + # logical_and(logical_and(a!=0, b!=0), c!=0) + neg_val = -2 if dtype.kind != "u" else np.iinfo(dtype).max - 1 + a = np.array([1, 3, neg_val, 0, 12, 13, 0, 1], dtype=dtype) + b = np.array([0, 3.5, 0., neg_val, 0, 1, 3, 12], dtype=dtype) + c = np.array([True, True, False, True, True, False, True, True]) + + assert_equal(np.einsum("i,i,i->i", a, b, c, + dtype='?', casting='unsafe', optimize=do_opt), + np.logical_and(np.logical_and(a != 0, b != 0), c != 0)) + assert_equal(np.einsum(a, [0], b, [0], c, [0], [0], + dtype='?', casting='unsafe'), + np.logical_and(np.logical_and(a != 0, b != 0), c != 0)) + + a = np.arange(9, dtype=dtype) + assert_equal(np.einsum(",i->", 3, a), 3 * np.sum(a)) + assert_equal(np.einsum(3, [], a, [0], []), 3 * np.sum(a)) + assert_equal(np.einsum("i,->", a, 3), 3 * np.sum(a)) + assert_equal(np.einsum(a, [0], 3, [], []), 3 * np.sum(a)) + + # Various stride0, contiguous, and SSE aligned variants + for n in range(1, 25): + a = np.arange(n, dtype=dtype) + if np.dtype(dtype).itemsize > 1: + assert_equal(np.einsum("...,...", a, a, optimize=do_opt), + np.multiply(a, a)) + assert_equal(np.einsum("i,i", a, a, optimize=do_opt), np.dot(a, a)) + assert_equal(np.einsum("i,->i", a, 2, optimize=do_opt), 2 * a) + assert_equal(np.einsum(",i->i", 2, a, optimize=do_opt), 2 * a) + assert_equal(np.einsum("i,->", a, 2, optimize=do_opt), 2 * np.sum(a)) + assert_equal(np.einsum(",i->", 2, a, optimize=do_opt), 2 * np.sum(a)) + + assert_equal(np.einsum("...,...", a[1:], a[:-1], optimize=do_opt), + np.multiply(a[1:], a[:-1])) + assert_equal(np.einsum("i,i", a[1:], a[:-1], optimize=do_opt), + np.dot(a[1:], a[:-1])) + assert_equal(np.einsum("i,->i", a[1:], 2, optimize=do_opt), 2 * a[1:]) + assert_equal(np.einsum(",i->i", 2, a[1:], optimize=do_opt), 2 * a[1:]) + assert_equal(np.einsum("i,->", a[1:], 2, optimize=do_opt), + 2 * np.sum(a[1:])) + assert_equal(np.einsum(",i->", 2, a[1:], optimize=do_opt), + 2 * np.sum(a[1:])) + + # An object array, summed as the data type + a = np.arange(9, dtype=object) + + b = np.einsum("i->", a, dtype=dtype, casting='unsafe') + assert_equal(b, np.sum(a)) + if hasattr(b, "dtype"): + # Can be a python object when dtype is object + assert_equal(b.dtype, np.dtype(dtype)) + + b = np.einsum(a, [0], [], dtype=dtype, casting='unsafe') + assert_equal(b, np.sum(a)) + if hasattr(b, "dtype"): + # Can be a python object when dtype is object + assert_equal(b.dtype, np.dtype(dtype)) + + # A case which was failing (ticket #1885) + p = np.arange(2) + 1 + q = np.arange(4).reshape(2, 2) + 3 + r = np.arange(4).reshape(2, 2) + 7 + assert_equal(np.einsum('z,mz,zm->', p, q, r), 253) + + # singleton dimensions broadcast (gh-10343) + p = np.ones((10, 2)) + q = np.ones((1, 2)) + assert_array_equal(np.einsum('ij,ij->j', p, q, optimize=True), + np.einsum('ij,ij->j', p, q, optimize=False)) + assert_array_equal(np.einsum('ij,ij->j', p, q, optimize=True), + [10.] * 2) + + # a blas-compatible contraction broadcasting case which was failing + # for optimize=True (ticket #10930) + x = np.array([2., 3.]) + y = np.array([4.]) + assert_array_equal(np.einsum("i, i", x, y, optimize=False), 20.) + assert_array_equal(np.einsum("i, i", x, y, optimize=True), 20.) + + # all-ones array was bypassing bug (ticket #10930) + p = np.ones((1, 5)) / 2 + q = np.ones((5, 5)) / 2 + for optimize in (True, False): + assert_array_equal(np.einsum("...ij,...jk->...ik", p, p, + optimize=optimize), + np.einsum("...ij,...jk->...ik", p, q, + optimize=optimize)) + assert_array_equal(np.einsum("...ij,...jk->...ik", p, q, + optimize=optimize), + np.full((1, 5), 1.25)) + + # Cases which were failing (gh-10899) + x = np.eye(2, dtype=dtype) + y = np.ones(2, dtype=dtype) + assert_array_equal(np.einsum("ji,i->", x, y, optimize=optimize), + [2.]) # contig_contig_outstride0_two + assert_array_equal(np.einsum("i,ij->", y, x, optimize=optimize), + [2.]) # stride0_contig_outstride0_two + assert_array_equal(np.einsum("ij,i->", x, y, optimize=optimize), + [2.]) # contig_stride0_outstride0_two + + def test_einsum_sums_int8(self): + self.check_einsum_sums('i1') + + def test_einsum_sums_uint8(self): + self.check_einsum_sums('u1') + + def test_einsum_sums_int16(self): + self.check_einsum_sums('i2') + + def test_einsum_sums_uint16(self): + self.check_einsum_sums('u2') + + def test_einsum_sums_int32(self): + self.check_einsum_sums('i4') + self.check_einsum_sums('i4', True) + + def test_einsum_sums_uint32(self): + self.check_einsum_sums('u4') + self.check_einsum_sums('u4', True) + + def test_einsum_sums_int64(self): + self.check_einsum_sums('i8') + + def test_einsum_sums_uint64(self): + self.check_einsum_sums('u8') + + def test_einsum_sums_float16(self): + self.check_einsum_sums('f2') + + def test_einsum_sums_float32(self): + self.check_einsum_sums('f4') + + def test_einsum_sums_float64(self): + self.check_einsum_sums('f8') + self.check_einsum_sums('f8', True) + + def test_einsum_sums_longdouble(self): + self.check_einsum_sums(np.longdouble) + + def test_einsum_sums_cfloat64(self): + self.check_einsum_sums('c8') + self.check_einsum_sums('c8', True) + + def test_einsum_sums_cfloat128(self): + self.check_einsum_sums('c16') + + def test_einsum_sums_clongdouble(self): + self.check_einsum_sums(np.clongdouble) + + def test_einsum_sums_object(self): + self.check_einsum_sums('object') + self.check_einsum_sums('object', True) + + def test_einsum_misc(self): + # This call used to crash because of a bug in + # PyArray_AssignZero + a = np.ones((1, 2)) + b = np.ones((2, 2, 1)) + assert_equal(np.einsum('ij...,j...->i...', a, b), [[[2], [2]]]) + assert_equal(np.einsum('ij...,j...->i...', a, b, optimize=True), [[[2], [2]]]) + + # Regression test for issue #10369 (test unicode inputs with Python 2) + assert_equal(np.einsum('ij...,j...->i...', a, b), [[[2], [2]]]) + assert_equal(np.einsum('...i,...i', [1, 2, 3], [2, 3, 4]), 20) + assert_equal(np.einsum('...i,...i', [1, 2, 3], [2, 3, 4], + optimize='greedy'), 20) + + # The iterator had an issue with buffering this reduction + a = np.ones((5, 12, 4, 2, 3), np.int64) + b = np.ones((5, 12, 11), np.int64) + assert_equal(np.einsum('ijklm,ijn,ijn->', a, b, b), + np.einsum('ijklm,ijn->', a, b)) + assert_equal(np.einsum('ijklm,ijn,ijn->', a, b, b, optimize=True), + np.einsum('ijklm,ijn->', a, b, optimize=True)) + + # Issue #2027, was a problem in the contiguous 3-argument + # inner loop implementation + a = np.arange(1, 3) + b = np.arange(1, 5).reshape(2, 2) + c = np.arange(1, 9).reshape(4, 2) + assert_equal(np.einsum('x,yx,zx->xzy', a, b, c), + [[[1, 3], [3, 9], [5, 15], [7, 21]], + [[8, 16], [16, 32], [24, 48], [32, 64]]]) + assert_equal(np.einsum('x,yx,zx->xzy', a, b, c, optimize=True), + [[[1, 3], [3, 9], [5, 15], [7, 21]], + [[8, 16], [16, 32], [24, 48], [32, 64]]]) + + # Ensure explicitly setting out=None does not cause an error + # see issue gh-15776 and issue gh-15256 + assert_equal(np.einsum('i,j', [1], [2], out=None), [[2]]) + + def test_object_loop(self): + + class Mult: + def __mul__(self, other): + return 42 + + objMult = np.array([Mult()]) + objNULL = np.ndarray(buffer=b'\0' * np.intp(0).itemsize, shape=1, dtype=object) + + with pytest.raises(TypeError): + np.einsum("i,j", [1], objNULL) + with pytest.raises(TypeError): + np.einsum("i,j", objNULL, [1]) + assert np.einsum("i,j", objMult, objMult) == 42 + + def test_subscript_range(self): + # Issue #7741, make sure that all letters of Latin alphabet (both uppercase & lowercase) can be used + # when creating a subscript from arrays + a = np.ones((2, 3)) + b = np.ones((3, 4)) + np.einsum(a, [0, 20], b, [20, 2], [0, 2], optimize=False) + np.einsum(a, [0, 27], b, [27, 2], [0, 2], optimize=False) + np.einsum(a, [0, 51], b, [51, 2], [0, 2], optimize=False) + assert_raises(ValueError, lambda: np.einsum(a, [0, 52], b, [52, 2], [0, 2], optimize=False)) + assert_raises(ValueError, lambda: np.einsum(a, [-1, 5], b, [5, 2], [-1, 2], optimize=False)) + + def test_einsum_broadcast(self): + # Issue #2455 change in handling ellipsis + # remove the 'middle broadcast' error + # only use the 'RIGHT' iteration in prepare_op_axes + # adds auto broadcast on left where it belongs + # broadcast on right has to be explicit + # We need to test the optimized parsing as well + + A = np.arange(2 * 3 * 4).reshape(2, 3, 4) + B = np.arange(3) + ref = np.einsum('ijk,j->ijk', A, B, optimize=False) + for opt in [True, False]: + assert_equal(np.einsum('ij...,j...->ij...', A, B, optimize=opt), ref) + assert_equal(np.einsum('ij...,...j->ij...', A, B, optimize=opt), ref) + assert_equal(np.einsum('ij...,j->ij...', A, B, optimize=opt), ref) # used to raise error + + A = np.arange(12).reshape((4, 3)) + B = np.arange(6).reshape((3, 2)) + ref = np.einsum('ik,kj->ij', A, B, optimize=False) + for opt in [True, False]: + assert_equal(np.einsum('ik...,k...->i...', A, B, optimize=opt), ref) + assert_equal(np.einsum('ik...,...kj->i...j', A, B, optimize=opt), ref) + assert_equal(np.einsum('...k,kj', A, B, optimize=opt), ref) # used to raise error + assert_equal(np.einsum('ik,k...->i...', A, B, optimize=opt), ref) # used to raise error + + dims = [2, 3, 4, 5] + a = np.arange(np.prod(dims)).reshape(dims) + v = np.arange(dims[2]) + ref = np.einsum('ijkl,k->ijl', a, v, optimize=False) + for opt in [True, False]: + assert_equal(np.einsum('ijkl,k', a, v, optimize=opt), ref) + assert_equal(np.einsum('...kl,k', a, v, optimize=opt), ref) # used to raise error + assert_equal(np.einsum('...kl,k...', a, v, optimize=opt), ref) + + J, K, M = 160, 160, 120 + A = np.arange(J * K * M).reshape(1, 1, 1, J, K, M) + B = np.arange(J * K * M * 3).reshape(J, K, M, 3) + ref = np.einsum('...lmn,...lmno->...o', A, B, optimize=False) + for opt in [True, False]: + assert_equal(np.einsum('...lmn,lmno->...o', A, B, + optimize=opt), ref) # used to raise error + + def test_einsum_fixedstridebug(self): + # Issue #4485 obscure einsum bug + # This case revealed a bug in nditer where it reported a stride + # as 'fixed' (0) when it was in fact not fixed during processing + # (0 or 4). The reason for the bug was that the check for a fixed + # stride was using the information from the 2D inner loop reuse + # to restrict the iteration dimensions it had to validate to be + # the same, but that 2D inner loop reuse logic is only triggered + # during the buffer copying step, and hence it was invalid to + # rely on those values. The fix is to check all the dimensions + # of the stride in question, which in the test case reveals that + # the stride is not fixed. + # + # NOTE: This test is triggered by the fact that the default buffersize, + # used by einsum, is 8192, and 3*2731 = 8193, is larger than that + # and results in a mismatch between the buffering and the + # striding for operand A. + A = np.arange(2 * 3).reshape(2, 3).astype(np.float32) + B = np.arange(2 * 3 * 2731).reshape(2, 3, 2731).astype(np.int16) + es = np.einsum('cl, cpx->lpx', A, B) + tp = np.tensordot(A, B, axes=(0, 0)) + assert_equal(es, tp) + # The following is the original test case from the bug report, + # made repeatable by changing random arrays to aranges. + A = np.arange(3 * 3).reshape(3, 3).astype(np.float64) + B = np.arange(3 * 3 * 64 * 64).reshape(3, 3, 64, 64).astype(np.float32) + es = np.einsum('cl, cpxy->lpxy', A, B) + tp = np.tensordot(A, B, axes=(0, 0)) + assert_equal(es, tp) + + def test_einsum_fixed_collapsingbug(self): + # Issue #5147. + # The bug only occurred when output argument of einssum was used. + x = np.random.normal(0, 1, (5, 5, 5, 5)) + y1 = np.zeros((5, 5)) + np.einsum('aabb->ab', x, out=y1) + idx = np.arange(5) + y2 = x[idx[:, None], idx[:, None], idx, idx] + assert_equal(y1, y2) + + def test_einsum_failed_on_p9_and_s390x(self): + # Issues gh-14692 and gh-12689 + # Bug with signed vs unsigned char errored on power9 and s390x Linux + tensor = np.random.random_sample((10, 10, 10, 10)) + x = np.einsum('ijij->', tensor) + y = tensor.trace(axis1=0, axis2=2).trace() + assert_allclose(x, y) + + def test_einsum_all_contig_non_contig_output(self): + # Issue gh-5907, tests that the all contiguous special case + # actually checks the contiguity of the output + x = np.ones((5, 5)) + out = np.ones(10)[::2] + correct_base = np.ones(10) + correct_base[::2] = 5 + # Always worked (inner iteration is done with 0-stride): + np.einsum('mi,mi,mi->m', x, x, x, out=out) + assert_array_equal(out.base, correct_base) + # Example 1: + out = np.ones(10)[::2] + np.einsum('im,im,im->m', x, x, x, out=out) + assert_array_equal(out.base, correct_base) + # Example 2, buffering causes x to be contiguous but + # special cases do not catch the operation before: + out = np.ones((2, 2, 2))[..., 0] + correct_base = np.ones((2, 2, 2)) + correct_base[..., 0] = 2 + x = np.ones((2, 2), np.float32) + np.einsum('ij,jk->ik', x, x, out=out) + assert_array_equal(out.base, correct_base) + + @pytest.mark.parametrize("dtype", + np.typecodes["AllFloat"] + np.typecodes["AllInteger"]) + def test_different_paths(self, dtype): + # Test originally added to cover broken float16 path: gh-20305 + # Likely most are covered elsewhere, at least partially. + dtype = np.dtype(dtype) + # Simple test, designed to exercise most specialized code paths, + # note the +0.5 for floats. This makes sure we use a float value + # where the results must be exact. + arr = (np.arange(7) + 0.5).astype(dtype) + scalar = np.array(2, dtype=dtype) + + # contig -> scalar: + res = np.einsum('i->', arr) + assert res == arr.sum() + # contig, contig -> contig: + res = np.einsum('i,i->i', arr, arr) + assert_array_equal(res, arr * arr) + # noncontig, noncontig -> contig: + res = np.einsum('i,i->i', arr.repeat(2)[::2], arr.repeat(2)[::2]) + assert_array_equal(res, arr * arr) + # contig + contig -> scalar + assert np.einsum('i,i->', arr, arr) == (arr * arr).sum() + # contig + scalar -> contig (with out) + out = np.ones(7, dtype=dtype) + res = np.einsum('i,->i', arr, dtype.type(2), out=out) + assert_array_equal(res, arr * dtype.type(2)) + # scalar + contig -> contig (with out) + res = np.einsum(',i->i', scalar, arr) + assert_array_equal(res, arr * dtype.type(2)) + # scalar + contig -> scalar + res = np.einsum(',i->', scalar, arr) + # Use einsum to compare to not have difference due to sum round-offs: + assert res == np.einsum('i->', scalar * arr) + # contig + scalar -> scalar + res = np.einsum('i,->', arr, scalar) + # Use einsum to compare to not have difference due to sum round-offs: + assert res == np.einsum('i->', scalar * arr) + # contig + contig + contig -> scalar + arr = np.array([0.5, 0.5, 0.25, 4.5, 3.], dtype=dtype) + res = np.einsum('i,i,i->', arr, arr, arr) + assert_array_equal(res, (arr * arr * arr).sum()) + # four arrays: + res = np.einsum('i,i,i,i->', arr, arr, arr, arr) + assert_array_equal(res, (arr * arr * arr * arr).sum()) + + def test_small_boolean_arrays(self): + # See gh-5946. + # Use array of True embedded in False. + a = np.zeros((16, 1, 1), dtype=np.bool)[:2] + a[...] = True + out = np.zeros((16, 1, 1), dtype=np.bool)[:2] + tgt = np.ones((2, 1, 1), dtype=np.bool) + res = np.einsum('...ij,...jk->...ik', a, a, out=out) + assert_equal(res, tgt) + + def test_out_is_res(self): + a = np.arange(9).reshape(3, 3) + res = np.einsum('...ij,...jk->...ik', a, a, out=a) + assert res is a + + def optimize_compare(self, subscripts, operands=None): + # Tests all paths of the optimization function against + # conventional einsum + if operands is None: + args = [subscripts] + terms = subscripts.split('->')[0].split(',') + for term in terms: + dims = [global_size_dict[x] for x in term] + args.append(np.random.rand(*dims)) + else: + args = [subscripts] + operands + + noopt = np.einsum(*args, optimize=False) + opt = np.einsum(*args, optimize='greedy') + assert_almost_equal(opt, noopt) + opt = np.einsum(*args, optimize='optimal') + assert_almost_equal(opt, noopt) + + def test_hadamard_like_products(self): + # Hadamard outer products + self.optimize_compare('a,ab,abc->abc') + self.optimize_compare('a,b,ab->ab') + + def test_index_transformations(self): + # Simple index transformation cases + self.optimize_compare('ea,fb,gc,hd,abcd->efgh') + self.optimize_compare('ea,fb,abcd,gc,hd->efgh') + self.optimize_compare('abcd,ea,fb,gc,hd->efgh') + + def test_complex(self): + # Long test cases + self.optimize_compare('acdf,jbje,gihb,hfac,gfac,gifabc,hfac') + self.optimize_compare('acdf,jbje,gihb,hfac,gfac,gifabc,hfac') + self.optimize_compare('cd,bdhe,aidb,hgca,gc,hgibcd,hgac') + self.optimize_compare('abhe,hidj,jgba,hiab,gab') + self.optimize_compare('bde,cdh,agdb,hica,ibd,hgicd,hiac') + self.optimize_compare('chd,bde,agbc,hiad,hgc,hgi,hiad') + self.optimize_compare('chd,bde,agbc,hiad,bdi,cgh,agdb') + self.optimize_compare('bdhe,acad,hiab,agac,hibd') + + def test_collapse(self): + # Inner products + self.optimize_compare('ab,ab,c->') + self.optimize_compare('ab,ab,c->c') + self.optimize_compare('ab,ab,cd,cd->') + self.optimize_compare('ab,ab,cd,cd->ac') + self.optimize_compare('ab,ab,cd,cd->cd') + self.optimize_compare('ab,ab,cd,cd,ef,ef->') + + def test_expand(self): + # Outer products + self.optimize_compare('ab,cd,ef->abcdef') + self.optimize_compare('ab,cd,ef->acdf') + self.optimize_compare('ab,cd,de->abcde') + self.optimize_compare('ab,cd,de->be') + self.optimize_compare('ab,bcd,cd->abcd') + self.optimize_compare('ab,bcd,cd->abd') + + def test_edge_cases(self): + # Difficult edge cases for optimization + self.optimize_compare('eb,cb,fb->cef') + self.optimize_compare('dd,fb,be,cdb->cef') + self.optimize_compare('bca,cdb,dbf,afc->') + self.optimize_compare('dcc,fce,ea,dbf->ab') + self.optimize_compare('fdf,cdd,ccd,afe->ae') + self.optimize_compare('abcd,ad') + self.optimize_compare('ed,fcd,ff,bcf->be') + self.optimize_compare('baa,dcf,af,cde->be') + self.optimize_compare('bd,db,eac->ace') + self.optimize_compare('fff,fae,bef,def->abd') + self.optimize_compare('efc,dbc,acf,fd->abe') + self.optimize_compare('ba,ac,da->bcd') + + def test_inner_product(self): + # Inner products + self.optimize_compare('ab,ab') + self.optimize_compare('ab,ba') + self.optimize_compare('abc,abc') + self.optimize_compare('abc,bac') + self.optimize_compare('abc,cba') + + def test_random_cases(self): + # Randomly built test cases + self.optimize_compare('aab,fa,df,ecc->bde') + self.optimize_compare('ecb,fef,bad,ed->ac') + self.optimize_compare('bcf,bbb,fbf,fc->') + self.optimize_compare('bb,ff,be->e') + self.optimize_compare('bcb,bb,fc,fff->') + self.optimize_compare('fbb,dfd,fc,fc->') + self.optimize_compare('afd,ba,cc,dc->bf') + self.optimize_compare('adb,bc,fa,cfc->d') + self.optimize_compare('bbd,bda,fc,db->acf') + self.optimize_compare('dba,ead,cad->bce') + self.optimize_compare('aef,fbc,dca->bde') + + def test_combined_views_mapping(self): + # gh-10792 + a = np.arange(9).reshape(1, 1, 3, 1, 3) + b = np.einsum('bbcdc->d', a) + assert_equal(b, [12]) + + def test_broadcasting_dot_cases(self): + # Ensures broadcasting cases are not mistaken for GEMM + + a = np.random.rand(1, 5, 4) + b = np.random.rand(4, 6) + c = np.random.rand(5, 6) + d = np.random.rand(10) + + self.optimize_compare('ijk,kl,jl', operands=[a, b, c]) + self.optimize_compare('ijk,kl,jl,i->i', operands=[a, b, c, d]) + + e = np.random.rand(1, 1, 5, 4) + f = np.random.rand(7, 7) + self.optimize_compare('abjk,kl,jl', operands=[e, b, c]) + self.optimize_compare('abjk,kl,jl,ab->ab', operands=[e, b, c, f]) + + # Edge case found in gh-11308 + g = np.arange(64).reshape(2, 4, 8) + self.optimize_compare('obk,ijk->ioj', operands=[g, g]) + + def test_output_order(self): + # Ensure output order is respected for optimize cases, the below + # contraction should yield a reshaped tensor view + # gh-16415 + + a = np.ones((2, 3, 5), order='F') + b = np.ones((4, 3), order='F') + + for opt in [True, False]: + tmp = np.einsum('...ft,mf->...mt', a, b, order='a', optimize=opt) + assert_(tmp.flags.f_contiguous) + + tmp = np.einsum('...ft,mf->...mt', a, b, order='f', optimize=opt) + assert_(tmp.flags.f_contiguous) + + tmp = np.einsum('...ft,mf->...mt', a, b, order='c', optimize=opt) + assert_(tmp.flags.c_contiguous) + + tmp = np.einsum('...ft,mf->...mt', a, b, order='k', optimize=opt) + assert_(tmp.flags.c_contiguous is False) + assert_(tmp.flags.f_contiguous is False) + + tmp = np.einsum('...ft,mf->...mt', a, b, optimize=opt) + assert_(tmp.flags.c_contiguous is False) + assert_(tmp.flags.f_contiguous is False) + + c = np.ones((4, 3), order='C') + for opt in [True, False]: + tmp = np.einsum('...ft,mf->...mt', a, c, order='a', optimize=opt) + assert_(tmp.flags.c_contiguous) + + d = np.ones((2, 3, 5), order='C') + for opt in [True, False]: + tmp = np.einsum('...ft,mf->...mt', d, c, order='a', optimize=opt) + assert_(tmp.flags.c_contiguous) + +class TestEinsumPath: + def build_operands(self, string, size_dict=global_size_dict): + + # Builds views based off initial operands + operands = [string] + terms = string.split('->')[0].split(',') + for term in terms: + dims = [size_dict[x] for x in term] + operands.append(np.random.rand(*dims)) + + return operands + + def assert_path_equal(self, comp, benchmark): + # Checks if list of tuples are equivalent + ret = (len(comp) == len(benchmark)) + assert_(ret) + for pos in range(len(comp) - 1): + ret &= isinstance(comp[pos + 1], tuple) + ret &= (comp[pos + 1] == benchmark[pos + 1]) + assert_(ret) + + def test_memory_contraints(self): + # Ensure memory constraints are satisfied + + outer_test = self.build_operands('a,b,c->abc') + + path, path_str = np.einsum_path(*outer_test, optimize=('greedy', 0)) + self.assert_path_equal(path, ['einsum_path', (0, 1, 2)]) + + path, path_str = np.einsum_path(*outer_test, optimize=('optimal', 0)) + self.assert_path_equal(path, ['einsum_path', (0, 1, 2)]) + + long_test = self.build_operands('acdf,jbje,gihb,hfac') + path, path_str = np.einsum_path(*long_test, optimize=('greedy', 0)) + self.assert_path_equal(path, ['einsum_path', (0, 1, 2, 3)]) + + path, path_str = np.einsum_path(*long_test, optimize=('optimal', 0)) + self.assert_path_equal(path, ['einsum_path', (0, 1, 2, 3)]) + + def test_long_paths(self): + # Long complex cases + + # Long test 1 + long_test1 = self.build_operands('acdf,jbje,gihb,hfac,gfac,gifabc,hfac') + path, path_str = np.einsum_path(*long_test1, optimize='greedy') + self.assert_path_equal(path, ['einsum_path', + (3, 6), (3, 4), (2, 4), (2, 3), (0, 2), (0, 1)]) + + path, path_str = np.einsum_path(*long_test1, optimize='optimal') + self.assert_path_equal(path, ['einsum_path', + (3, 6), (3, 4), (2, 4), (2, 3), (0, 2), (0, 1)]) + + # Long test 2 + long_test2 = self.build_operands('chd,bde,agbc,hiad,bdi,cgh,agdb') + path, path_str = np.einsum_path(*long_test2, optimize='greedy') + self.assert_path_equal(path, ['einsum_path', + (3, 4), (0, 3), (3, 4), (1, 3), (1, 2), (0, 1)]) + + path, path_str = np.einsum_path(*long_test2, optimize='optimal') + self.assert_path_equal(path, ['einsum_path', + (0, 5), (1, 4), (3, 4), (1, 3), (1, 2), (0, 1)]) + + def test_edge_paths(self): + # Difficult edge cases + + # Edge test1 + edge_test1 = self.build_operands('eb,cb,fb->cef') + path, path_str = np.einsum_path(*edge_test1, optimize='greedy') + self.assert_path_equal(path, ['einsum_path', (0, 2), (0, 1)]) + + path, path_str = np.einsum_path(*edge_test1, optimize='optimal') + self.assert_path_equal(path, ['einsum_path', (0, 2), (0, 1)]) + + # Edge test2 + edge_test2 = self.build_operands('dd,fb,be,cdb->cef') + path, path_str = np.einsum_path(*edge_test2, optimize='greedy') + self.assert_path_equal(path, ['einsum_path', (0, 3), (0, 1), (0, 1)]) + + path, path_str = np.einsum_path(*edge_test2, optimize='optimal') + self.assert_path_equal(path, ['einsum_path', (0, 3), (0, 1), (0, 1)]) + + # Edge test3 + edge_test3 = self.build_operands('bca,cdb,dbf,afc->') + path, path_str = np.einsum_path(*edge_test3, optimize='greedy') + self.assert_path_equal(path, ['einsum_path', (1, 2), (0, 2), (0, 1)]) + + path, path_str = np.einsum_path(*edge_test3, optimize='optimal') + self.assert_path_equal(path, ['einsum_path', (1, 2), (0, 2), (0, 1)]) + + # Edge test4 + edge_test4 = self.build_operands('dcc,fce,ea,dbf->ab') + path, path_str = np.einsum_path(*edge_test4, optimize='greedy') + self.assert_path_equal(path, ['einsum_path', (1, 2), (0, 1), (0, 1)]) + + path, path_str = np.einsum_path(*edge_test4, optimize='optimal') + self.assert_path_equal(path, ['einsum_path', (1, 2), (0, 2), (0, 1)]) + + # Edge test5 + edge_test4 = self.build_operands('a,ac,ab,ad,cd,bd,bc->', + size_dict={"a": 20, "b": 20, "c": 20, "d": 20}) + path, path_str = np.einsum_path(*edge_test4, optimize='greedy') + self.assert_path_equal(path, ['einsum_path', (0, 1), (0, 1, 2, 3, 4, 5)]) + + path, path_str = np.einsum_path(*edge_test4, optimize='optimal') + self.assert_path_equal(path, ['einsum_path', (0, 1), (0, 1, 2, 3, 4, 5)]) + + def test_path_type_input(self): + # Test explicit path handling + path_test = self.build_operands('dcc,fce,ea,dbf->ab') + + path, path_str = np.einsum_path(*path_test, optimize=False) + self.assert_path_equal(path, ['einsum_path', (0, 1, 2, 3)]) + + path, path_str = np.einsum_path(*path_test, optimize=True) + self.assert_path_equal(path, ['einsum_path', (1, 2), (0, 1), (0, 1)]) + + exp_path = ['einsum_path', (0, 2), (0, 2), (0, 1)] + path, path_str = np.einsum_path(*path_test, optimize=exp_path) + self.assert_path_equal(path, exp_path) + + # Double check einsum works on the input path + noopt = np.einsum(*path_test, optimize=False) + opt = np.einsum(*path_test, optimize=exp_path) + assert_almost_equal(noopt, opt) + + def test_path_type_input_internal_trace(self): + # gh-20962 + path_test = self.build_operands('cab,cdd->ab') + exp_path = ['einsum_path', (1,), (0, 1)] + + path, path_str = np.einsum_path(*path_test, optimize=exp_path) + self.assert_path_equal(path, exp_path) + + # Double check einsum works on the input path + noopt = np.einsum(*path_test, optimize=False) + opt = np.einsum(*path_test, optimize=exp_path) + assert_almost_equal(noopt, opt) + + def test_path_type_input_invalid(self): + path_test = self.build_operands('ab,bc,cd,de->ae') + exp_path = ['einsum_path', (2, 3), (0, 1)] + assert_raises(RuntimeError, np.einsum, *path_test, optimize=exp_path) + assert_raises( + RuntimeError, np.einsum_path, *path_test, optimize=exp_path) + + path_test = self.build_operands('a,a,a->a') + exp_path = ['einsum_path', (1,), (0, 1)] + assert_raises(RuntimeError, np.einsum, *path_test, optimize=exp_path) + assert_raises( + RuntimeError, np.einsum_path, *path_test, optimize=exp_path) + + def test_spaces(self): + # gh-10794 + arr = np.array([[1]]) + for sp in itertools.product(['', ' '], repeat=4): + # no error for any spacing + np.einsum('{}...a{}->{}...a{}'.format(*sp), arr) + +def test_overlap(): + a = np.arange(9, dtype=int).reshape(3, 3) + b = np.arange(9, dtype=int).reshape(3, 3) + d = np.dot(a, b) + # sanity check + c = np.einsum('ij,jk->ik', a, b) + assert_equal(c, d) + # gh-10080, out overlaps one of the operands + c = np.einsum('ij,jk->ik', a, b, out=b) + assert_equal(c, d) + +def test_einsum_chunking_precision(): + """Most einsum operations are reductions and until NumPy 2.3 reductions + never (or almost never?) used the `GROWINNER` mechanism to increase the + inner loop size when no buffers are needed. + Because einsum reductions work roughly: + + def inner(*inputs, out): + accumulate = 0 + for vals in zip(*inputs): + accumulate += prod(vals) + out[0] += accumulate + + Calling the inner-loop more often actually improves accuracy slightly + (same effect as pairwise summation but much less). + Without adding pairwise summation to the inner-loop it seems best to just + not use GROWINNER, a quick tests suggest that is maybe 1% slowdown for + the simplest `einsum("i,i->i", x, x)` case. + + (It is not clear that we should guarantee precision to this extend.) + """ + num = 1_000_000 + value = 1. + np.finfo(np.float64).eps * 8196 + res = np.einsum("i->", np.broadcast_to(np.array(value), num)) / num + + # At with GROWINNER 11 decimals succeed (larger will be less) + assert_almost_equal(res, value, decimal=15) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_errstate.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_errstate.py new file mode 100644 index 0000000..b72fb65 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_errstate.py @@ -0,0 +1,131 @@ +import sysconfig + +import pytest + +import numpy as np +from numpy.testing import IS_WASM, assert_raises + +# The floating point emulation on ARM EABI systems lacking a hardware FPU is +# known to be buggy. This is an attempt to identify these hosts. It may not +# catch all possible cases, but it catches the known cases of gh-413 and +# gh-15562. +hosttype = sysconfig.get_config_var('HOST_GNU_TYPE') +arm_softfloat = False if hosttype is None else hosttype.endswith('gnueabi') + +class TestErrstate: + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + @pytest.mark.skipif(arm_softfloat, + reason='platform/cpu issue with FPU (gh-413,-15562)') + def test_invalid(self): + with np.errstate(all='raise', under='ignore'): + a = -np.arange(3) + # This should work + with np.errstate(invalid='ignore'): + np.sqrt(a) + # While this should fail! + with assert_raises(FloatingPointError): + np.sqrt(a) + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + @pytest.mark.skipif(arm_softfloat, + reason='platform/cpu issue with FPU (gh-15562)') + def test_divide(self): + with np.errstate(all='raise', under='ignore'): + a = -np.arange(3) + # This should work + with np.errstate(divide='ignore'): + a // 0 + # While this should fail! + with assert_raises(FloatingPointError): + a // 0 + # As should this, see gh-15562 + with assert_raises(FloatingPointError): + a // a + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + @pytest.mark.skipif(arm_softfloat, + reason='platform/cpu issue with FPU (gh-15562)') + def test_errcall(self): + count = 0 + + def foo(*args): + nonlocal count + count += 1 + + olderrcall = np.geterrcall() + with np.errstate(call=foo): + assert np.geterrcall() is foo + with np.errstate(call=None): + assert np.geterrcall() is None + assert np.geterrcall() is olderrcall + assert count == 0 + + with np.errstate(call=foo, invalid="call"): + np.array(np.inf) - np.array(np.inf) + + assert count == 1 + + def test_errstate_decorator(self): + @np.errstate(all='ignore') + def foo(): + a = -np.arange(3) + a // 0 + + foo() + + def test_errstate_enter_once(self): + errstate = np.errstate(invalid="warn") + with errstate: + pass + + # The errstate context cannot be entered twice as that would not be + # thread-safe + with pytest.raises(TypeError, + match="Cannot enter `np.errstate` twice"): + with errstate: + pass + + @pytest.mark.skipif(IS_WASM, reason="wasm doesn't support asyncio") + def test_asyncio_safe(self): + # asyncio may not always work, lets assume its fine if missing + # Pyodide/wasm doesn't support it. If this test makes problems, + # it should just be skipped liberally (or run differently). + asyncio = pytest.importorskip("asyncio") + + @np.errstate(invalid="ignore") + def decorated(): + # Decorated non-async function (it is not safe to decorate an + # async one) + assert np.geterr()["invalid"] == "ignore" + + async def func1(): + decorated() + await asyncio.sleep(0.1) + decorated() + + async def func2(): + with np.errstate(invalid="raise"): + assert np.geterr()["invalid"] == "raise" + await asyncio.sleep(0.125) + assert np.geterr()["invalid"] == "raise" + + # for good sport, a third one with yet another state: + async def func3(): + with np.errstate(invalid="print"): + assert np.geterr()["invalid"] == "print" + await asyncio.sleep(0.11) + assert np.geterr()["invalid"] == "print" + + async def main(): + # simply run all three function multiple times: + await asyncio.gather( + func1(), func2(), func3(), func1(), func2(), func3(), + func1(), func2(), func3(), func1(), func2(), func3()) + + loop = asyncio.new_event_loop() + with np.errstate(invalid="warn"): + asyncio.run(main()) + assert np.geterr()["invalid"] == "warn" + + assert np.geterr()["invalid"] == "warn" # the default + loop.close() diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_extint128.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_extint128.py new file mode 100644 index 0000000..1a05151 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_extint128.py @@ -0,0 +1,217 @@ +import contextlib +import itertools +import operator + +import numpy._core._multiarray_tests as mt +import pytest + +import numpy as np +from numpy.testing import assert_equal, assert_raises + +INT64_MAX = np.iinfo(np.int64).max +INT64_MIN = np.iinfo(np.int64).min +INT64_MID = 2**32 + +# int128 is not two's complement, the sign bit is separate +INT128_MAX = 2**128 - 1 +INT128_MIN = -INT128_MAX +INT128_MID = 2**64 + +INT64_VALUES = ( + [INT64_MIN + j for j in range(20)] + + [INT64_MAX - j for j in range(20)] + + [INT64_MID + j for j in range(-20, 20)] + + [2 * INT64_MID + j for j in range(-20, 20)] + + [INT64_MID // 2 + j for j in range(-20, 20)] + + list(range(-70, 70)) +) + +INT128_VALUES = ( + [INT128_MIN + j for j in range(20)] + + [INT128_MAX - j for j in range(20)] + + [INT128_MID + j for j in range(-20, 20)] + + [2 * INT128_MID + j for j in range(-20, 20)] + + [INT128_MID // 2 + j for j in range(-20, 20)] + + list(range(-70, 70)) + + [False] # negative zero +) + +INT64_POS_VALUES = [x for x in INT64_VALUES if x > 0] + + +@contextlib.contextmanager +def exc_iter(*args): + """ + Iterate over Cartesian product of *args, and if an exception is raised, + add information of the current iterate. + """ + + value = [None] + + def iterate(): + for v in itertools.product(*args): + value[0] = v + yield v + + try: + yield iterate() + except Exception: + import traceback + msg = f"At: {repr(value[0])!r}\n{traceback.format_exc()}" + raise AssertionError(msg) + + +def test_safe_binop(): + # Test checked arithmetic routines + + ops = [ + (operator.add, 1), + (operator.sub, 2), + (operator.mul, 3) + ] + + with exc_iter(ops, INT64_VALUES, INT64_VALUES) as it: + for xop, a, b in it: + pyop, op = xop + c = pyop(a, b) + + if not (INT64_MIN <= c <= INT64_MAX): + assert_raises(OverflowError, mt.extint_safe_binop, a, b, op) + else: + d = mt.extint_safe_binop(a, b, op) + if c != d: + # assert_equal is slow + assert_equal(d, c) + + +def test_to_128(): + with exc_iter(INT64_VALUES) as it: + for a, in it: + b = mt.extint_to_128(a) + if a != b: + assert_equal(b, a) + + +def test_to_64(): + with exc_iter(INT128_VALUES) as it: + for a, in it: + if not (INT64_MIN <= a <= INT64_MAX): + assert_raises(OverflowError, mt.extint_to_64, a) + else: + b = mt.extint_to_64(a) + if a != b: + assert_equal(b, a) + + +def test_mul_64_64(): + with exc_iter(INT64_VALUES, INT64_VALUES) as it: + for a, b in it: + c = a * b + d = mt.extint_mul_64_64(a, b) + if c != d: + assert_equal(d, c) + + +def test_add_128(): + with exc_iter(INT128_VALUES, INT128_VALUES) as it: + for a, b in it: + c = a + b + if not (INT128_MIN <= c <= INT128_MAX): + assert_raises(OverflowError, mt.extint_add_128, a, b) + else: + d = mt.extint_add_128(a, b) + if c != d: + assert_equal(d, c) + + +def test_sub_128(): + with exc_iter(INT128_VALUES, INT128_VALUES) as it: + for a, b in it: + c = a - b + if not (INT128_MIN <= c <= INT128_MAX): + assert_raises(OverflowError, mt.extint_sub_128, a, b) + else: + d = mt.extint_sub_128(a, b) + if c != d: + assert_equal(d, c) + + +def test_neg_128(): + with exc_iter(INT128_VALUES) as it: + for a, in it: + b = -a + c = mt.extint_neg_128(a) + if b != c: + assert_equal(c, b) + + +def test_shl_128(): + with exc_iter(INT128_VALUES) as it: + for a, in it: + if a < 0: + b = -(((-a) << 1) & (2**128 - 1)) + else: + b = (a << 1) & (2**128 - 1) + c = mt.extint_shl_128(a) + if b != c: + assert_equal(c, b) + + +def test_shr_128(): + with exc_iter(INT128_VALUES) as it: + for a, in it: + if a < 0: + b = -((-a) >> 1) + else: + b = a >> 1 + c = mt.extint_shr_128(a) + if b != c: + assert_equal(c, b) + + +def test_gt_128(): + with exc_iter(INT128_VALUES, INT128_VALUES) as it: + for a, b in it: + c = a > b + d = mt.extint_gt_128(a, b) + if c != d: + assert_equal(d, c) + + +@pytest.mark.slow +def test_divmod_128_64(): + with exc_iter(INT128_VALUES, INT64_POS_VALUES) as it: + for a, b in it: + if a >= 0: + c, cr = divmod(a, b) + else: + c, cr = divmod(-a, b) + c = -c + cr = -cr + + d, dr = mt.extint_divmod_128_64(a, b) + + if c != d or d != dr or b * d + dr != a: + assert_equal(d, c) + assert_equal(dr, cr) + assert_equal(b * d + dr, a) + + +def test_floordiv_128_64(): + with exc_iter(INT128_VALUES, INT64_POS_VALUES) as it: + for a, b in it: + c = a // b + d = mt.extint_floordiv_128_64(a, b) + + if c != d: + assert_equal(d, c) + + +def test_ceildiv_128_64(): + with exc_iter(INT128_VALUES, INT64_POS_VALUES) as it: + for a, b in it: + c = (a + b - 1) // b + d = mt.extint_ceildiv_128_64(a, b) + + if c != d: + assert_equal(d, c) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_function_base.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_function_base.py new file mode 100644 index 0000000..c925cf1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_function_base.py @@ -0,0 +1,503 @@ +import platform +import sys + +import pytest + +import numpy as np +from numpy import ( + arange, + array, + dtype, + errstate, + geomspace, + isnan, + linspace, + logspace, + ndarray, + nextafter, + sqrt, + stack, +) +from numpy._core import sctypes +from numpy._core.function_base import add_newdoc +from numpy.testing import ( + IS_PYPY, + assert_, + assert_allclose, + assert_array_equal, + assert_equal, + assert_raises, +) + + +def _is_armhf(): + # Check if the current platform is ARMHF (32-bit ARM architecture) + return platform.machine().startswith('arm') and platform.architecture()[0] == '32bit' + +class PhysicalQuantity(float): + def __new__(cls, value): + return float.__new__(cls, value) + + def __add__(self, x): + assert_(isinstance(x, PhysicalQuantity)) + return PhysicalQuantity(float(x) + float(self)) + __radd__ = __add__ + + def __sub__(self, x): + assert_(isinstance(x, PhysicalQuantity)) + return PhysicalQuantity(float(self) - float(x)) + + def __rsub__(self, x): + assert_(isinstance(x, PhysicalQuantity)) + return PhysicalQuantity(float(x) - float(self)) + + def __mul__(self, x): + return PhysicalQuantity(float(x) * float(self)) + __rmul__ = __mul__ + + def __truediv__(self, x): + return PhysicalQuantity(float(self) / float(x)) + + def __rtruediv__(self, x): + return PhysicalQuantity(float(x) / float(self)) + + +class PhysicalQuantity2(ndarray): + __array_priority__ = 10 + + +class TestLogspace: + + def test_basic(self): + y = logspace(0, 6) + assert_(len(y) == 50) + y = logspace(0, 6, num=100) + assert_(y[-1] == 10 ** 6) + y = logspace(0, 6, endpoint=False) + assert_(y[-1] < 10 ** 6) + y = logspace(0, 6, num=7) + assert_array_equal(y, [1, 10, 100, 1e3, 1e4, 1e5, 1e6]) + + def test_start_stop_array(self): + start = array([0., 1.]) + stop = array([6., 7.]) + t1 = logspace(start, stop, 6) + t2 = stack([logspace(_start, _stop, 6) + for _start, _stop in zip(start, stop)], axis=1) + assert_equal(t1, t2) + t3 = logspace(start, stop[0], 6) + t4 = stack([logspace(_start, stop[0], 6) + for _start in start], axis=1) + assert_equal(t3, t4) + t5 = logspace(start, stop, 6, axis=-1) + assert_equal(t5, t2.T) + + @pytest.mark.parametrize("axis", [0, 1, -1]) + def test_base_array(self, axis: int): + start = 1 + stop = 2 + num = 6 + base = array([1, 2]) + t1 = logspace(start, stop, num=num, base=base, axis=axis) + t2 = stack( + [logspace(start, stop, num=num, base=_base) for _base in base], + axis=(axis + 1) % t1.ndim, + ) + assert_equal(t1, t2) + + @pytest.mark.parametrize("axis", [0, 1, -1]) + def test_stop_base_array(self, axis: int): + start = 1 + stop = array([2, 3]) + num = 6 + base = array([1, 2]) + t1 = logspace(start, stop, num=num, base=base, axis=axis) + t2 = stack( + [logspace(start, _stop, num=num, base=_base) + for _stop, _base in zip(stop, base)], + axis=(axis + 1) % t1.ndim, + ) + assert_equal(t1, t2) + + def test_dtype(self): + y = logspace(0, 6, dtype='float32') + assert_equal(y.dtype, dtype('float32')) + y = logspace(0, 6, dtype='float64') + assert_equal(y.dtype, dtype('float64')) + y = logspace(0, 6, dtype='int32') + assert_equal(y.dtype, dtype('int32')) + + def test_physical_quantities(self): + a = PhysicalQuantity(1.0) + b = PhysicalQuantity(5.0) + assert_equal(logspace(a, b), logspace(1.0, 5.0)) + + def test_subclass(self): + a = array(1).view(PhysicalQuantity2) + b = array(7).view(PhysicalQuantity2) + ls = logspace(a, b) + assert type(ls) is PhysicalQuantity2 + assert_equal(ls, logspace(1.0, 7.0)) + ls = logspace(a, b, 1) + assert type(ls) is PhysicalQuantity2 + assert_equal(ls, logspace(1.0, 7.0, 1)) + + +class TestGeomspace: + + def test_basic(self): + y = geomspace(1, 1e6) + assert_(len(y) == 50) + y = geomspace(1, 1e6, num=100) + assert_(y[-1] == 10 ** 6) + y = geomspace(1, 1e6, endpoint=False) + assert_(y[-1] < 10 ** 6) + y = geomspace(1, 1e6, num=7) + assert_array_equal(y, [1, 10, 100, 1e3, 1e4, 1e5, 1e6]) + + y = geomspace(8, 2, num=3) + assert_allclose(y, [8, 4, 2]) + assert_array_equal(y.imag, 0) + + y = geomspace(-1, -100, num=3) + assert_array_equal(y, [-1, -10, -100]) + assert_array_equal(y.imag, 0) + + y = geomspace(-100, -1, num=3) + assert_array_equal(y, [-100, -10, -1]) + assert_array_equal(y.imag, 0) + + def test_boundaries_match_start_and_stop_exactly(self): + # make sure that the boundaries of the returned array exactly + # equal 'start' and 'stop' - this isn't obvious because + # np.exp(np.log(x)) isn't necessarily exactly equal to x + start = 0.3 + stop = 20.3 + + y = geomspace(start, stop, num=1) + assert_equal(y[0], start) + + y = geomspace(start, stop, num=1, endpoint=False) + assert_equal(y[0], start) + + y = geomspace(start, stop, num=3) + assert_equal(y[0], start) + assert_equal(y[-1], stop) + + y = geomspace(start, stop, num=3, endpoint=False) + assert_equal(y[0], start) + + def test_nan_interior(self): + with errstate(invalid='ignore'): + y = geomspace(-3, 3, num=4) + + assert_equal(y[0], -3.0) + assert_(isnan(y[1:-1]).all()) + assert_equal(y[3], 3.0) + + with errstate(invalid='ignore'): + y = geomspace(-3, 3, num=4, endpoint=False) + + assert_equal(y[0], -3.0) + assert_(isnan(y[1:]).all()) + + def test_complex(self): + # Purely imaginary + y = geomspace(1j, 16j, num=5) + assert_allclose(y, [1j, 2j, 4j, 8j, 16j]) + assert_array_equal(y.real, 0) + + y = geomspace(-4j, -324j, num=5) + assert_allclose(y, [-4j, -12j, -36j, -108j, -324j]) + assert_array_equal(y.real, 0) + + y = geomspace(1 + 1j, 1000 + 1000j, num=4) + assert_allclose(y, [1 + 1j, 10 + 10j, 100 + 100j, 1000 + 1000j]) + + y = geomspace(-1 + 1j, -1000 + 1000j, num=4) + assert_allclose(y, [-1 + 1j, -10 + 10j, -100 + 100j, -1000 + 1000j]) + + # Logarithmic spirals + y = geomspace(-1, 1, num=3, dtype=complex) + assert_allclose(y, [-1, 1j, +1]) + + y = geomspace(0 + 3j, -3 + 0j, 3) + assert_allclose(y, [0 + 3j, -3 / sqrt(2) + 3j / sqrt(2), -3 + 0j]) + y = geomspace(0 + 3j, 3 + 0j, 3) + assert_allclose(y, [0 + 3j, 3 / sqrt(2) + 3j / sqrt(2), 3 + 0j]) + y = geomspace(-3 + 0j, 0 - 3j, 3) + assert_allclose(y, [-3 + 0j, -3 / sqrt(2) - 3j / sqrt(2), 0 - 3j]) + y = geomspace(0 + 3j, -3 + 0j, 3) + assert_allclose(y, [0 + 3j, -3 / sqrt(2) + 3j / sqrt(2), -3 + 0j]) + y = geomspace(-2 - 3j, 5 + 7j, 7) + assert_allclose(y, [-2 - 3j, -0.29058977 - 4.15771027j, + 2.08885354 - 4.34146838j, 4.58345529 - 3.16355218j, + 6.41401745 - 0.55233457j, 6.75707386 + 3.11795092j, + 5 + 7j]) + + # Type promotion should prevent the -5 from becoming a NaN + y = geomspace(3j, -5, 2) + assert_allclose(y, [3j, -5]) + y = geomspace(-5, 3j, 2) + assert_allclose(y, [-5, 3j]) + + def test_complex_shortest_path(self): + # test the shortest logarithmic spiral is used, see gh-25644 + x = 1.2 + 3.4j + y = np.exp(1j * (np.pi - .1)) * x + z = np.geomspace(x, y, 5) + expected = np.array([1.2 + 3.4j, -1.47384 + 3.2905616j, + -3.33577588 + 1.36842949j, -3.36011056 - 1.30753855j, + -1.53343861 - 3.26321406j]) + np.testing.assert_array_almost_equal(z, expected) + + def test_dtype(self): + y = geomspace(1, 1e6, dtype='float32') + assert_equal(y.dtype, dtype('float32')) + y = geomspace(1, 1e6, dtype='float64') + assert_equal(y.dtype, dtype('float64')) + y = geomspace(1, 1e6, dtype='int32') + assert_equal(y.dtype, dtype('int32')) + + # Native types + y = geomspace(1, 1e6, dtype=float) + assert_equal(y.dtype, dtype('float64')) + y = geomspace(1, 1e6, dtype=complex) + assert_equal(y.dtype, dtype('complex128')) + + def test_start_stop_array_scalar(self): + lim1 = array([120, 100], dtype="int8") + lim2 = array([-120, -100], dtype="int8") + lim3 = array([1200, 1000], dtype="uint16") + t1 = geomspace(lim1[0], lim1[1], 5) + t2 = geomspace(lim2[0], lim2[1], 5) + t3 = geomspace(lim3[0], lim3[1], 5) + t4 = geomspace(120.0, 100.0, 5) + t5 = geomspace(-120.0, -100.0, 5) + t6 = geomspace(1200.0, 1000.0, 5) + + # t3 uses float32, t6 uses float64 + assert_allclose(t1, t4, rtol=1e-2) + assert_allclose(t2, t5, rtol=1e-2) + assert_allclose(t3, t6, rtol=1e-5) + + def test_start_stop_array(self): + # Try to use all special cases. + start = array([1.e0, 32., 1j, -4j, 1 + 1j, -1]) + stop = array([1.e4, 2., 16j, -324j, 10000 + 10000j, 1]) + t1 = geomspace(start, stop, 5) + t2 = stack([geomspace(_start, _stop, 5) + for _start, _stop in zip(start, stop)], axis=1) + assert_equal(t1, t2) + t3 = geomspace(start, stop[0], 5) + t4 = stack([geomspace(_start, stop[0], 5) + for _start in start], axis=1) + assert_equal(t3, t4) + t5 = geomspace(start, stop, 5, axis=-1) + assert_equal(t5, t2.T) + + def test_physical_quantities(self): + a = PhysicalQuantity(1.0) + b = PhysicalQuantity(5.0) + assert_equal(geomspace(a, b), geomspace(1.0, 5.0)) + + def test_subclass(self): + a = array(1).view(PhysicalQuantity2) + b = array(7).view(PhysicalQuantity2) + gs = geomspace(a, b) + assert type(gs) is PhysicalQuantity2 + assert_equal(gs, geomspace(1.0, 7.0)) + gs = geomspace(a, b, 1) + assert type(gs) is PhysicalQuantity2 + assert_equal(gs, geomspace(1.0, 7.0, 1)) + + def test_bounds(self): + assert_raises(ValueError, geomspace, 0, 10) + assert_raises(ValueError, geomspace, 10, 0) + assert_raises(ValueError, geomspace, 0, 0) + + +class TestLinspace: + + def test_basic(self): + y = linspace(0, 10) + assert_(len(y) == 50) + y = linspace(2, 10, num=100) + assert_(y[-1] == 10) + y = linspace(2, 10, endpoint=False) + assert_(y[-1] < 10) + assert_raises(ValueError, linspace, 0, 10, num=-1) + + def test_corner(self): + y = list(linspace(0, 1, 1)) + assert_(y == [0.0], y) + assert_raises(TypeError, linspace, 0, 1, num=2.5) + + def test_type(self): + t1 = linspace(0, 1, 0).dtype + t2 = linspace(0, 1, 1).dtype + t3 = linspace(0, 1, 2).dtype + assert_equal(t1, t2) + assert_equal(t2, t3) + + def test_dtype(self): + y = linspace(0, 6, dtype='float32') + assert_equal(y.dtype, dtype('float32')) + y = linspace(0, 6, dtype='float64') + assert_equal(y.dtype, dtype('float64')) + y = linspace(0, 6, dtype='int32') + assert_equal(y.dtype, dtype('int32')) + + def test_start_stop_array_scalar(self): + lim1 = array([-120, 100], dtype="int8") + lim2 = array([120, -100], dtype="int8") + lim3 = array([1200, 1000], dtype="uint16") + t1 = linspace(lim1[0], lim1[1], 5) + t2 = linspace(lim2[0], lim2[1], 5) + t3 = linspace(lim3[0], lim3[1], 5) + t4 = linspace(-120.0, 100.0, 5) + t5 = linspace(120.0, -100.0, 5) + t6 = linspace(1200.0, 1000.0, 5) + assert_equal(t1, t4) + assert_equal(t2, t5) + assert_equal(t3, t6) + + def test_start_stop_array(self): + start = array([-120, 120], dtype="int8") + stop = array([100, -100], dtype="int8") + t1 = linspace(start, stop, 5) + t2 = stack([linspace(_start, _stop, 5) + for _start, _stop in zip(start, stop)], axis=1) + assert_equal(t1, t2) + t3 = linspace(start, stop[0], 5) + t4 = stack([linspace(_start, stop[0], 5) + for _start in start], axis=1) + assert_equal(t3, t4) + t5 = linspace(start, stop, 5, axis=-1) + assert_equal(t5, t2.T) + + def test_complex(self): + lim1 = linspace(1 + 2j, 3 + 4j, 5) + t1 = array([1.0 + 2.j, 1.5 + 2.5j, 2.0 + 3j, 2.5 + 3.5j, 3.0 + 4j]) + lim2 = linspace(1j, 10, 5) + t2 = array([0.0 + 1.j, 2.5 + 0.75j, 5.0 + 0.5j, 7.5 + 0.25j, 10.0 + 0j]) + assert_equal(lim1, t1) + assert_equal(lim2, t2) + + def test_physical_quantities(self): + a = PhysicalQuantity(0.0) + b = PhysicalQuantity(1.0) + assert_equal(linspace(a, b), linspace(0.0, 1.0)) + + def test_subclass(self): + a = array(0).view(PhysicalQuantity2) + b = array(1).view(PhysicalQuantity2) + ls = linspace(a, b) + assert type(ls) is PhysicalQuantity2 + assert_equal(ls, linspace(0.0, 1.0)) + ls = linspace(a, b, 1) + assert type(ls) is PhysicalQuantity2 + assert_equal(ls, linspace(0.0, 1.0, 1)) + + def test_array_interface(self): + # Regression test for https://github.com/numpy/numpy/pull/6659 + # Ensure that start/stop can be objects that implement + # __array_interface__ and are convertible to numeric scalars + + class Arrayish: + """ + A generic object that supports the __array_interface__ and hence + can in principle be converted to a numeric scalar, but is not + otherwise recognized as numeric, but also happens to support + multiplication by floats. + + Data should be an object that implements the buffer interface, + and contains at least 4 bytes. + """ + + def __init__(self, data): + self._data = data + + @property + def __array_interface__(self): + return {'shape': (), 'typestr': ' 300) + assert_(len(np.lib._index_tricks_impl.mgrid.__doc__) > 300) + + @pytest.mark.skipif(sys.flags.optimize == 2, reason="Python running -OO") + def test_errors_are_ignored(self): + prev_doc = np._core.flatiter.index.__doc__ + # nothing changed, but error ignored, this should probably + # give a warning (or even error) in the future. + add_newdoc("numpy._core", "flatiter", ("index", "bad docstring")) + assert prev_doc == np._core.flatiter.index.__doc__ diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_getlimits.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_getlimits.py new file mode 100644 index 0000000..721c6ac --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_getlimits.py @@ -0,0 +1,205 @@ +""" Test functions for limits module. + +""" +import types +import warnings + +import pytest + +import numpy as np +from numpy import double, half, longdouble, single +from numpy._core import finfo, iinfo +from numpy._core.getlimits import _discovered_machar, _float_ma +from numpy.testing import assert_, assert_equal, assert_raises + +################################################## + +class TestPythonFloat: + def test_singleton(self): + ftype = finfo(float) + ftype2 = finfo(float) + assert_equal(id(ftype), id(ftype2)) + +class TestHalf: + def test_singleton(self): + ftype = finfo(half) + ftype2 = finfo(half) + assert_equal(id(ftype), id(ftype2)) + +class TestSingle: + def test_singleton(self): + ftype = finfo(single) + ftype2 = finfo(single) + assert_equal(id(ftype), id(ftype2)) + +class TestDouble: + def test_singleton(self): + ftype = finfo(double) + ftype2 = finfo(double) + assert_equal(id(ftype), id(ftype2)) + +class TestLongdouble: + def test_singleton(self): + ftype = finfo(longdouble) + ftype2 = finfo(longdouble) + assert_equal(id(ftype), id(ftype2)) + +def assert_finfo_equal(f1, f2): + # assert two finfo instances have the same attributes + for attr in ('bits', 'eps', 'epsneg', 'iexp', 'machep', + 'max', 'maxexp', 'min', 'minexp', 'negep', 'nexp', + 'nmant', 'precision', 'resolution', 'tiny', + 'smallest_normal', 'smallest_subnormal'): + assert_equal(getattr(f1, attr), getattr(f2, attr), + f'finfo instances {f1} and {f2} differ on {attr}') + +def assert_iinfo_equal(i1, i2): + # assert two iinfo instances have the same attributes + for attr in ('bits', 'min', 'max'): + assert_equal(getattr(i1, attr), getattr(i2, attr), + f'iinfo instances {i1} and {i2} differ on {attr}') + +class TestFinfo: + def test_basic(self): + dts = list(zip(['f2', 'f4', 'f8', 'c8', 'c16'], + [np.float16, np.float32, np.float64, np.complex64, + np.complex128])) + for dt1, dt2 in dts: + assert_finfo_equal(finfo(dt1), finfo(dt2)) + + assert_raises(ValueError, finfo, 'i4') + + def test_regression_gh23108(self): + # np.float32(1.0) and np.float64(1.0) have the same hash and are + # equal under the == operator + f1 = np.finfo(np.float32(1.0)) + f2 = np.finfo(np.float64(1.0)) + assert f1 != f2 + + def test_regression_gh23867(self): + class NonHashableWithDtype: + __hash__ = None + dtype = np.dtype('float32') + + x = NonHashableWithDtype() + assert np.finfo(x) == np.finfo(x.dtype) + + +class TestIinfo: + def test_basic(self): + dts = list(zip(['i1', 'i2', 'i4', 'i8', + 'u1', 'u2', 'u4', 'u8'], + [np.int8, np.int16, np.int32, np.int64, + np.uint8, np.uint16, np.uint32, np.uint64])) + for dt1, dt2 in dts: + assert_iinfo_equal(iinfo(dt1), iinfo(dt2)) + + assert_raises(ValueError, iinfo, 'f4') + + def test_unsigned_max(self): + types = np._core.sctypes['uint'] + for T in types: + with np.errstate(over="ignore"): + max_calculated = T(0) - T(1) + assert_equal(iinfo(T).max, max_calculated) + +class TestRepr: + def test_iinfo_repr(self): + expected = "iinfo(min=-32768, max=32767, dtype=int16)" + assert_equal(repr(np.iinfo(np.int16)), expected) + + def test_finfo_repr(self): + expected = "finfo(resolution=1e-06, min=-3.4028235e+38,"\ + " max=3.4028235e+38, dtype=float32)" + assert_equal(repr(np.finfo(np.float32)), expected) + + +def test_instances(): + # Test the finfo and iinfo results on numeric instances agree with + # the results on the corresponding types + + for c in [int, np.int16, np.int32, np.int64]: + class_iinfo = iinfo(c) + instance_iinfo = iinfo(c(12)) + + assert_iinfo_equal(class_iinfo, instance_iinfo) + + for c in [float, np.float16, np.float32, np.float64]: + class_finfo = finfo(c) + instance_finfo = finfo(c(1.2)) + assert_finfo_equal(class_finfo, instance_finfo) + + with pytest.raises(ValueError): + iinfo(10.) + + with pytest.raises(ValueError): + iinfo('hi') + + with pytest.raises(ValueError): + finfo(np.int64(1)) + + +def assert_ma_equal(discovered, ma_like): + # Check MachAr-like objects same as calculated MachAr instances + for key, value in discovered.__dict__.items(): + assert_equal(value, getattr(ma_like, key)) + if hasattr(value, 'shape'): + assert_equal(value.shape, getattr(ma_like, key).shape) + assert_equal(value.dtype, getattr(ma_like, key).dtype) + + +def test_known_types(): + # Test we are correctly compiling parameters for known types + for ftype, ma_like in ((np.float16, _float_ma[16]), + (np.float32, _float_ma[32]), + (np.float64, _float_ma[64])): + assert_ma_equal(_discovered_machar(ftype), ma_like) + # Suppress warning for broken discovery of double double on PPC + with np.errstate(all='ignore'): + ld_ma = _discovered_machar(np.longdouble) + bytes = np.dtype(np.longdouble).itemsize + if (ld_ma.it, ld_ma.maxexp) == (63, 16384) and bytes in (12, 16): + # 80-bit extended precision + assert_ma_equal(ld_ma, _float_ma[80]) + elif (ld_ma.it, ld_ma.maxexp) == (112, 16384) and bytes == 16: + # IEE 754 128-bit + assert_ma_equal(ld_ma, _float_ma[128]) + + +def test_subnormal_warning(): + """Test that the subnormal is zero warning is not being raised.""" + with np.errstate(all='ignore'): + ld_ma = _discovered_machar(np.longdouble) + bytes = np.dtype(np.longdouble).itemsize + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + if (ld_ma.it, ld_ma.maxexp) == (63, 16384) and bytes in (12, 16): + # 80-bit extended precision + ld_ma.smallest_subnormal + assert len(w) == 0 + elif (ld_ma.it, ld_ma.maxexp) == (112, 16384) and bytes == 16: + # IEE 754 128-bit + ld_ma.smallest_subnormal + assert len(w) == 0 + else: + # Double double + ld_ma.smallest_subnormal + # This test may fail on some platforms + assert len(w) == 0 + + +def test_plausible_finfo(): + # Assert that finfo returns reasonable results for all types + for ftype in np._core.sctypes['float'] + np._core.sctypes['complex']: + info = np.finfo(ftype) + assert_(info.nmant > 1) + assert_(info.minexp < -1) + assert_(info.maxexp > 1) + + +class TestRuntimeSubscriptable: + def test_finfo_generic(self): + assert isinstance(np.finfo[np.float64], types.GenericAlias) + + def test_iinfo_generic(self): + assert isinstance(np.iinfo[np.int_], types.GenericAlias) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_half.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_half.py new file mode 100644 index 0000000..68f17b2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_half.py @@ -0,0 +1,568 @@ +import platform + +import pytest + +import numpy as np +from numpy import float16, float32, float64, uint16 +from numpy.testing import IS_WASM, assert_, assert_equal + + +def assert_raises_fpe(strmatch, callable, *args, **kwargs): + try: + callable(*args, **kwargs) + except FloatingPointError as exc: + assert_(str(exc).find(strmatch) >= 0, + f"Did not raise floating point {strmatch} error") + else: + assert_(False, + f"Did not raise floating point {strmatch} error") + +class TestHalf: + def setup_method(self): + # An array of all possible float16 values + self.all_f16 = np.arange(0x10000, dtype=uint16) + self.all_f16.dtype = float16 + + # NaN value can cause an invalid FP exception if HW is being used + with np.errstate(invalid='ignore'): + self.all_f32 = np.array(self.all_f16, dtype=float32) + self.all_f64 = np.array(self.all_f16, dtype=float64) + + # An array of all non-NaN float16 values, in sorted order + self.nonan_f16 = np.concatenate( + (np.arange(0xfc00, 0x7fff, -1, dtype=uint16), + np.arange(0x0000, 0x7c01, 1, dtype=uint16))) + self.nonan_f16.dtype = float16 + self.nonan_f32 = np.array(self.nonan_f16, dtype=float32) + self.nonan_f64 = np.array(self.nonan_f16, dtype=float64) + + # An array of all finite float16 values, in sorted order + self.finite_f16 = self.nonan_f16[1:-1] + self.finite_f32 = self.nonan_f32[1:-1] + self.finite_f64 = self.nonan_f64[1:-1] + + def test_half_conversions(self): + """Checks that all 16-bit values survive conversion + to/from 32-bit and 64-bit float""" + # Because the underlying routines preserve the NaN bits, every + # value is preserved when converting to/from other floats. + + # Convert from float32 back to float16 + with np.errstate(invalid='ignore'): + b = np.array(self.all_f32, dtype=float16) + # avoid testing NaNs due to differing bit patterns in Q/S NaNs + b_nn = b == b + assert_equal(self.all_f16[b_nn].view(dtype=uint16), + b[b_nn].view(dtype=uint16)) + + # Convert from float64 back to float16 + with np.errstate(invalid='ignore'): + b = np.array(self.all_f64, dtype=float16) + b_nn = b == b + assert_equal(self.all_f16[b_nn].view(dtype=uint16), + b[b_nn].view(dtype=uint16)) + + # Convert float16 to longdouble and back + # This doesn't necessarily preserve the extra NaN bits, + # so exclude NaNs. + a_ld = np.array(self.nonan_f16, dtype=np.longdouble) + b = np.array(a_ld, dtype=float16) + assert_equal(self.nonan_f16.view(dtype=uint16), + b.view(dtype=uint16)) + + # Check the range for which all integers can be represented + i_int = np.arange(-2048, 2049) + i_f16 = np.array(i_int, dtype=float16) + j = np.array(i_f16, dtype=int) + assert_equal(i_int, j) + + @pytest.mark.parametrize("string_dt", ["S", "U"]) + def test_half_conversion_to_string(self, string_dt): + # Currently uses S/U32 (which is sufficient for float32) + expected_dt = np.dtype(f"{string_dt}32") + assert np.promote_types(np.float16, string_dt) == expected_dt + assert np.promote_types(string_dt, np.float16) == expected_dt + + arr = np.ones(3, dtype=np.float16).astype(string_dt) + assert arr.dtype == expected_dt + + @pytest.mark.parametrize("string_dt", ["S", "U"]) + def test_half_conversion_from_string(self, string_dt): + string = np.array("3.1416", dtype=string_dt) + assert string.astype(np.float16) == np.array(3.1416, dtype=np.float16) + + @pytest.mark.parametrize("offset", [None, "up", "down"]) + @pytest.mark.parametrize("shift", [None, "up", "down"]) + @pytest.mark.parametrize("float_t", [np.float32, np.float64]) + def test_half_conversion_rounding(self, float_t, shift, offset): + # Assumes that round to even is used during casting. + max_pattern = np.float16(np.finfo(np.float16).max).view(np.uint16) + + # Test all (positive) finite numbers, denormals are most interesting + # however: + f16s_patterns = np.arange(0, max_pattern + 1, dtype=np.uint16) + f16s_float = f16s_patterns.view(np.float16).astype(float_t) + + # Shift the values by half a bit up or a down (or do not shift), + if shift == "up": + f16s_float = 0.5 * (f16s_float[:-1] + f16s_float[1:])[1:] + elif shift == "down": + f16s_float = 0.5 * (f16s_float[:-1] + f16s_float[1:])[:-1] + else: + f16s_float = f16s_float[1:-1] + + # Increase the float by a minimal value: + if offset == "up": + f16s_float = np.nextafter(f16s_float, float_t(np.inf)) + elif offset == "down": + f16s_float = np.nextafter(f16s_float, float_t(-np.inf)) + + # Convert back to float16 and its bit pattern: + res_patterns = f16s_float.astype(np.float16).view(np.uint16) + + # The above calculation tries the original values, or the exact + # midpoints between the float16 values. It then further offsets them + # by as little as possible. If no offset occurs, "round to even" + # logic will be necessary, an arbitrarily small offset should cause + # normal up/down rounding always. + + # Calculate the expected pattern: + cmp_patterns = f16s_patterns[1:-1].copy() + + if shift == "down" and offset != "up": + shift_pattern = -1 + elif shift == "up" and offset != "down": + shift_pattern = 1 + else: + # There cannot be a shift, either shift is None, so all rounding + # will go back to original, or shift is reduced by offset too much. + shift_pattern = 0 + + # If rounding occurs, is it normal rounding or round to even? + if offset is None: + # Round to even occurs, modify only non-even, cast to allow + (-1) + cmp_patterns[0::2].view(np.int16)[...] += shift_pattern + else: + cmp_patterns.view(np.int16)[...] += shift_pattern + + assert_equal(res_patterns, cmp_patterns) + + @pytest.mark.parametrize(["float_t", "uint_t", "bits"], + [(np.float32, np.uint32, 23), + (np.float64, np.uint64, 52)]) + def test_half_conversion_denormal_round_even(self, float_t, uint_t, bits): + # Test specifically that all bits are considered when deciding + # whether round to even should occur (i.e. no bits are lost at the + # end. Compare also gh-12721. The most bits can get lost for the + # smallest denormal: + smallest_value = np.uint16(1).view(np.float16).astype(float_t) + assert smallest_value == 2**-24 + + # Will be rounded to zero based on round to even rule: + rounded_to_zero = smallest_value / float_t(2) + assert rounded_to_zero.astype(np.float16) == 0 + + # The significand will be all 0 for the float_t, test that we do not + # lose the lower ones of these: + for i in range(bits): + # slightly increasing the value should make it round up: + larger_pattern = rounded_to_zero.view(uint_t) | uint_t(1 << i) + larger_value = larger_pattern.view(float_t) + assert larger_value.astype(np.float16) == smallest_value + + def test_nans_infs(self): + with np.errstate(all='ignore'): + # Check some of the ufuncs + assert_equal(np.isnan(self.all_f16), np.isnan(self.all_f32)) + assert_equal(np.isinf(self.all_f16), np.isinf(self.all_f32)) + assert_equal(np.isfinite(self.all_f16), np.isfinite(self.all_f32)) + assert_equal(np.signbit(self.all_f16), np.signbit(self.all_f32)) + assert_equal(np.spacing(float16(65504)), np.inf) + + # Check comparisons of all values with NaN + nan = float16(np.nan) + + assert_(not (self.all_f16 == nan).any()) + assert_(not (nan == self.all_f16).any()) + + assert_((self.all_f16 != nan).all()) + assert_((nan != self.all_f16).all()) + + assert_(not (self.all_f16 < nan).any()) + assert_(not (nan < self.all_f16).any()) + + assert_(not (self.all_f16 <= nan).any()) + assert_(not (nan <= self.all_f16).any()) + + assert_(not (self.all_f16 > nan).any()) + assert_(not (nan > self.all_f16).any()) + + assert_(not (self.all_f16 >= nan).any()) + assert_(not (nan >= self.all_f16).any()) + + def test_half_values(self): + """Confirms a small number of known half values""" + a = np.array([1.0, -1.0, + 2.0, -2.0, + 0.0999755859375, 0.333251953125, # 1/10, 1/3 + 65504, -65504, # Maximum magnitude + 2.0**(-14), -2.0**(-14), # Minimum normal + 2.0**(-24), -2.0**(-24), # Minimum subnormal + 0, -1 / 1e1000, # Signed zeros + np.inf, -np.inf]) + b = np.array([0x3c00, 0xbc00, + 0x4000, 0xc000, + 0x2e66, 0x3555, + 0x7bff, 0xfbff, + 0x0400, 0x8400, + 0x0001, 0x8001, + 0x0000, 0x8000, + 0x7c00, 0xfc00], dtype=uint16) + b.dtype = float16 + assert_equal(a, b) + + def test_half_rounding(self): + """Checks that rounding when converting to half is correct""" + a = np.array([2.0**-25 + 2.0**-35, # Rounds to minimum subnormal + 2.0**-25, # Underflows to zero (nearest even mode) + 2.0**-26, # Underflows to zero + 1.0 + 2.0**-11 + 2.0**-16, # rounds to 1.0+2**(-10) + 1.0 + 2.0**-11, # rounds to 1.0 (nearest even mode) + 1.0 + 2.0**-12, # rounds to 1.0 + 65519, # rounds to 65504 + 65520], # rounds to inf + dtype=float64) + rounded = [2.0**-24, + 0.0, + 0.0, + 1.0 + 2.0**(-10), + 1.0, + 1.0, + 65504, + np.inf] + + # Check float64->float16 rounding + with np.errstate(over="ignore"): + b = np.array(a, dtype=float16) + assert_equal(b, rounded) + + # Check float32->float16 rounding + a = np.array(a, dtype=float32) + with np.errstate(over="ignore"): + b = np.array(a, dtype=float16) + assert_equal(b, rounded) + + def test_half_correctness(self): + """Take every finite float16, and check the casting functions with + a manual conversion.""" + + # Create an array of all finite float16s + a_bits = self.finite_f16.view(dtype=uint16) + + # Convert to 64-bit float manually + a_sgn = (-1.0)**((a_bits & 0x8000) >> 15) + a_exp = np.array((a_bits & 0x7c00) >> 10, dtype=np.int32) - 15 + a_man = (a_bits & 0x03ff) * 2.0**(-10) + # Implicit bit of normalized floats + a_man[a_exp != -15] += 1 + # Denormalized exponent is -14 + a_exp[a_exp == -15] = -14 + + a_manual = a_sgn * a_man * 2.0**a_exp + + a32_fail = np.nonzero(self.finite_f32 != a_manual)[0] + if len(a32_fail) != 0: + bad_index = a32_fail[0] + assert_equal(self.finite_f32, a_manual, + "First non-equal is half value 0x%x -> %g != %g" % + (a_bits[bad_index], + self.finite_f32[bad_index], + a_manual[bad_index])) + + a64_fail = np.nonzero(self.finite_f64 != a_manual)[0] + if len(a64_fail) != 0: + bad_index = a64_fail[0] + assert_equal(self.finite_f64, a_manual, + "First non-equal is half value 0x%x -> %g != %g" % + (a_bits[bad_index], + self.finite_f64[bad_index], + a_manual[bad_index])) + + def test_half_ordering(self): + """Make sure comparisons are working right""" + + # All non-NaN float16 values in reverse order + a = self.nonan_f16[::-1].copy() + + # 32-bit float copy + b = np.array(a, dtype=float32) + + # Should sort the same + a.sort() + b.sort() + assert_equal(a, b) + + # Comparisons should work + assert_((a[:-1] <= a[1:]).all()) + assert_(not (a[:-1] > a[1:]).any()) + assert_((a[1:] >= a[:-1]).all()) + assert_(not (a[1:] < a[:-1]).any()) + # All != except for +/-0 + assert_equal(np.nonzero(a[:-1] < a[1:])[0].size, a.size - 2) + assert_equal(np.nonzero(a[1:] > a[:-1])[0].size, a.size - 2) + + def test_half_funcs(self): + """Test the various ArrFuncs""" + + # fill + assert_equal(np.arange(10, dtype=float16), + np.arange(10, dtype=float32)) + + # fillwithscalar + a = np.zeros((5,), dtype=float16) + a.fill(1) + assert_equal(a, np.ones((5,), dtype=float16)) + + # nonzero and copyswap + a = np.array([0, 0, -1, -1 / 1e20, 0, 2.0**-24, 7.629e-6], dtype=float16) + assert_equal(a.nonzero()[0], + [2, 5, 6]) + a = a.byteswap() + a = a.view(a.dtype.newbyteorder()) + assert_equal(a.nonzero()[0], + [2, 5, 6]) + + # dot + a = np.arange(0, 10, 0.5, dtype=float16) + b = np.ones((20,), dtype=float16) + assert_equal(np.dot(a, b), + 95) + + # argmax + a = np.array([0, -np.inf, -2, 0.5, 12.55, 7.3, 2.1, 12.4], dtype=float16) + assert_equal(a.argmax(), + 4) + a = np.array([0, -np.inf, -2, np.inf, 12.55, np.nan, 2.1, 12.4], dtype=float16) + assert_equal(a.argmax(), + 5) + + # getitem + a = np.arange(10, dtype=float16) + for i in range(10): + assert_equal(a.item(i), i) + + def test_spacing_nextafter(self): + """Test np.spacing and np.nextafter""" + # All non-negative finite #'s + a = np.arange(0x7c00, dtype=uint16) + hinf = np.array((np.inf,), dtype=float16) + hnan = np.array((np.nan,), dtype=float16) + a_f16 = a.view(dtype=float16) + + assert_equal(np.spacing(a_f16[:-1]), a_f16[1:] - a_f16[:-1]) + + assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:]) + assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1]) + assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1]) + + assert_equal(np.nextafter(hinf, a_f16), a_f16[-1]) + assert_equal(np.nextafter(-hinf, a_f16), -a_f16[-1]) + + assert_equal(np.nextafter(hinf, hinf), hinf) + assert_equal(np.nextafter(hinf, -hinf), a_f16[-1]) + assert_equal(np.nextafter(-hinf, hinf), -a_f16[-1]) + assert_equal(np.nextafter(-hinf, -hinf), -hinf) + + assert_equal(np.nextafter(a_f16, hnan), hnan[0]) + assert_equal(np.nextafter(hnan, a_f16), hnan[0]) + + assert_equal(np.nextafter(hnan, hnan), hnan) + assert_equal(np.nextafter(hinf, hnan), hnan) + assert_equal(np.nextafter(hnan, hinf), hnan) + + # switch to negatives + a |= 0x8000 + + assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1])) + assert_equal(np.spacing(a_f16[1:]), a_f16[:-1] - a_f16[1:]) + + assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1]) + assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1]) + assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:]) + + assert_equal(np.nextafter(hinf, a_f16), -a_f16[-1]) + assert_equal(np.nextafter(-hinf, a_f16), a_f16[-1]) + + assert_equal(np.nextafter(a_f16, hnan), hnan[0]) + assert_equal(np.nextafter(hnan, a_f16), hnan[0]) + + def test_half_ufuncs(self): + """Test the various ufuncs""" + + a = np.array([0, 1, 2, 4, 2], dtype=float16) + b = np.array([-2, 5, 1, 4, 3], dtype=float16) + c = np.array([0, -1, -np.inf, np.nan, 6], dtype=float16) + + assert_equal(np.add(a, b), [-2, 6, 3, 8, 5]) + assert_equal(np.subtract(a, b), [2, -4, 1, 0, -1]) + assert_equal(np.multiply(a, b), [0, 5, 2, 16, 6]) + assert_equal(np.divide(a, b), [0, 0.199951171875, 2, 1, 0.66650390625]) + + assert_equal(np.equal(a, b), [False, False, False, True, False]) + assert_equal(np.not_equal(a, b), [True, True, True, False, True]) + assert_equal(np.less(a, b), [False, True, False, False, True]) + assert_equal(np.less_equal(a, b), [False, True, False, True, True]) + assert_equal(np.greater(a, b), [True, False, True, False, False]) + assert_equal(np.greater_equal(a, b), [True, False, True, True, False]) + assert_equal(np.logical_and(a, b), [False, True, True, True, True]) + assert_equal(np.logical_or(a, b), [True, True, True, True, True]) + assert_equal(np.logical_xor(a, b), [True, False, False, False, False]) + assert_equal(np.logical_not(a), [True, False, False, False, False]) + + assert_equal(np.isnan(c), [False, False, False, True, False]) + assert_equal(np.isinf(c), [False, False, True, False, False]) + assert_equal(np.isfinite(c), [True, True, False, False, True]) + assert_equal(np.signbit(b), [True, False, False, False, False]) + + assert_equal(np.copysign(b, a), [2, 5, 1, 4, 3]) + + assert_equal(np.maximum(a, b), [0, 5, 2, 4, 3]) + + x = np.maximum(b, c) + assert_(np.isnan(x[3])) + x[3] = 0 + assert_equal(x, [0, 5, 1, 0, 6]) + + assert_equal(np.minimum(a, b), [-2, 1, 1, 4, 2]) + + x = np.minimum(b, c) + assert_(np.isnan(x[3])) + x[3] = 0 + assert_equal(x, [-2, -1, -np.inf, 0, 3]) + + assert_equal(np.fmax(a, b), [0, 5, 2, 4, 3]) + assert_equal(np.fmax(b, c), [0, 5, 1, 4, 6]) + assert_equal(np.fmin(a, b), [-2, 1, 1, 4, 2]) + assert_equal(np.fmin(b, c), [-2, -1, -np.inf, 4, 3]) + + assert_equal(np.floor_divide(a, b), [0, 0, 2, 1, 0]) + assert_equal(np.remainder(a, b), [0, 1, 0, 0, 2]) + assert_equal(np.divmod(a, b), ([0, 0, 2, 1, 0], [0, 1, 0, 0, 2])) + assert_equal(np.square(b), [4, 25, 1, 16, 9]) + assert_equal(np.reciprocal(b), [-0.5, 0.199951171875, 1, 0.25, 0.333251953125]) + assert_equal(np.ones_like(b), [1, 1, 1, 1, 1]) + assert_equal(np.conjugate(b), b) + assert_equal(np.absolute(b), [2, 5, 1, 4, 3]) + assert_equal(np.negative(b), [2, -5, -1, -4, -3]) + assert_equal(np.positive(b), b) + assert_equal(np.sign(b), [-1, 1, 1, 1, 1]) + assert_equal(np.modf(b), ([0, 0, 0, 0, 0], b)) + assert_equal(np.frexp(b), ([-0.5, 0.625, 0.5, 0.5, 0.75], [2, 3, 1, 3, 2])) + assert_equal(np.ldexp(b, [0, 1, 2, 4, 2]), [-2, 10, 4, 64, 12]) + + def test_half_coercion(self): + """Test that half gets coerced properly with the other types""" + a16 = np.array((1,), dtype=float16) + a32 = np.array((1,), dtype=float32) + b16 = float16(1) + b32 = float32(1) + + assert np.power(a16, 2).dtype == float16 + assert np.power(a16, 2.0).dtype == float16 + assert np.power(a16, b16).dtype == float16 + assert np.power(a16, b32).dtype == float32 + assert np.power(a16, a16).dtype == float16 + assert np.power(a16, a32).dtype == float32 + + assert np.power(b16, 2).dtype == float16 + assert np.power(b16, 2.0).dtype == float16 + assert np.power(b16, b16).dtype, float16 + assert np.power(b16, b32).dtype, float32 + assert np.power(b16, a16).dtype, float16 + assert np.power(b16, a32).dtype, float32 + + assert np.power(a32, a16).dtype == float32 + assert np.power(a32, b16).dtype == float32 + assert np.power(b32, a16).dtype == float32 + assert np.power(b32, b16).dtype == float32 + + @pytest.mark.skipif(platform.machine() == "armv5tel", + reason="See gh-413.") + @pytest.mark.skipif(IS_WASM, + reason="fp exceptions don't work in wasm.") + def test_half_fpe(self): + with np.errstate(all='raise'): + sx16 = np.array((1e-4,), dtype=float16) + bx16 = np.array((1e4,), dtype=float16) + sy16 = float16(1e-4) + by16 = float16(1e4) + + # Underflow errors + assert_raises_fpe('underflow', lambda a, b: a * b, sx16, sx16) + assert_raises_fpe('underflow', lambda a, b: a * b, sx16, sy16) + assert_raises_fpe('underflow', lambda a, b: a * b, sy16, sx16) + assert_raises_fpe('underflow', lambda a, b: a * b, sy16, sy16) + assert_raises_fpe('underflow', lambda a, b: a / b, sx16, bx16) + assert_raises_fpe('underflow', lambda a, b: a / b, sx16, by16) + assert_raises_fpe('underflow', lambda a, b: a / b, sy16, bx16) + assert_raises_fpe('underflow', lambda a, b: a / b, sy16, by16) + assert_raises_fpe('underflow', lambda a, b: a / b, + float16(2.**-14), float16(2**11)) + assert_raises_fpe('underflow', lambda a, b: a / b, + float16(-2.**-14), float16(2**11)) + assert_raises_fpe('underflow', lambda a, b: a / b, + float16(2.**-14 + 2**-24), float16(2)) + assert_raises_fpe('underflow', lambda a, b: a / b, + float16(-2.**-14 - 2**-24), float16(2)) + assert_raises_fpe('underflow', lambda a, b: a / b, + float16(2.**-14 + 2**-23), float16(4)) + + # Overflow errors + assert_raises_fpe('overflow', lambda a, b: a * b, bx16, bx16) + assert_raises_fpe('overflow', lambda a, b: a * b, bx16, by16) + assert_raises_fpe('overflow', lambda a, b: a * b, by16, bx16) + assert_raises_fpe('overflow', lambda a, b: a * b, by16, by16) + assert_raises_fpe('overflow', lambda a, b: a / b, bx16, sx16) + assert_raises_fpe('overflow', lambda a, b: a / b, bx16, sy16) + assert_raises_fpe('overflow', lambda a, b: a / b, by16, sx16) + assert_raises_fpe('overflow', lambda a, b: a / b, by16, sy16) + assert_raises_fpe('overflow', lambda a, b: a + b, + float16(65504), float16(17)) + assert_raises_fpe('overflow', lambda a, b: a - b, + float16(-65504), float16(17)) + assert_raises_fpe('overflow', np.nextafter, float16(65504), float16(np.inf)) + assert_raises_fpe('overflow', np.nextafter, float16(-65504), float16(-np.inf)) + assert_raises_fpe('overflow', np.spacing, float16(65504)) + + # Invalid value errors + assert_raises_fpe('invalid', np.divide, float16(np.inf), float16(np.inf)) + assert_raises_fpe('invalid', np.spacing, float16(np.inf)) + assert_raises_fpe('invalid', np.spacing, float16(np.nan)) + + # These should not raise + float16(65472) + float16(32) + float16(2**-13) / float16(2) + float16(2**-14) / float16(2**10) + np.spacing(float16(-65504)) + np.nextafter(float16(65504), float16(-np.inf)) + np.nextafter(float16(-65504), float16(np.inf)) + np.nextafter(float16(np.inf), float16(0)) + np.nextafter(float16(-np.inf), float16(0)) + np.nextafter(float16(0), float16(np.nan)) + np.nextafter(float16(np.nan), float16(0)) + float16(2**-14) / float16(2**10) + float16(-2**-14) / float16(2**10) + float16(2**-14 + 2**-23) / float16(2) + float16(-2**-14 - 2**-23) / float16(2) + + def test_half_array_interface(self): + """Test that half is compatible with __array_interface__""" + class Dummy: + pass + + a = np.ones((1,), dtype=float16) + b = Dummy() + b.__array_interface__ = a.__array_interface__ + c = np.array(b) + assert_(c.dtype == float16) + assert_equal(a, c) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_hashtable.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_hashtable.py new file mode 100644 index 0000000..74be521 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_hashtable.py @@ -0,0 +1,35 @@ +import random + +import pytest +from numpy._core._multiarray_tests import identityhash_tester + + +@pytest.mark.parametrize("key_length", [1, 3, 6]) +@pytest.mark.parametrize("length", [1, 16, 2000]) +def test_identity_hashtable(key_length, length): + # use a 30 object pool for everything (duplicates will happen) + pool = [object() for i in range(20)] + keys_vals = [] + for i in range(length): + keys = tuple(random.choices(pool, k=key_length)) + keys_vals.append((keys, random.choice(pool))) + + dictionary = dict(keys_vals) + + # add a random item at the end: + keys_vals.append(random.choice(keys_vals)) + # the expected one could be different with duplicates: + expected = dictionary[keys_vals[-1][0]] + + res = identityhash_tester(key_length, keys_vals, replace=True) + assert res is expected + + if length == 1: + return + + # add a new item with a key that is already used and a new value, this + # should error if replace is False, see gh-26690 + new_key = (keys_vals[1][0], object()) + keys_vals[0] = new_key + with pytest.raises(RuntimeError): + identityhash_tester(key_length, keys_vals) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_indexerrors.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_indexerrors.py new file mode 100644 index 0000000..02110c2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_indexerrors.py @@ -0,0 +1,125 @@ +import numpy as np +from numpy.testing import ( + assert_raises, + assert_raises_regex, +) + + +class TestIndexErrors: + '''Tests to exercise indexerrors not covered by other tests.''' + + def test_arraytypes_fasttake(self): + 'take from a 0-length dimension' + x = np.empty((2, 3, 0, 4)) + assert_raises(IndexError, x.take, [0], axis=2) + assert_raises(IndexError, x.take, [1], axis=2) + assert_raises(IndexError, x.take, [0], axis=2, mode='wrap') + assert_raises(IndexError, x.take, [0], axis=2, mode='clip') + + def test_take_from_object(self): + # Check exception taking from object array + d = np.zeros(5, dtype=object) + assert_raises(IndexError, d.take, [6]) + + # Check exception taking from 0-d array + d = np.zeros((5, 0), dtype=object) + assert_raises(IndexError, d.take, [1], axis=1) + assert_raises(IndexError, d.take, [0], axis=1) + assert_raises(IndexError, d.take, [0]) + assert_raises(IndexError, d.take, [0], mode='wrap') + assert_raises(IndexError, d.take, [0], mode='clip') + + def test_multiindex_exceptions(self): + a = np.empty(5, dtype=object) + assert_raises(IndexError, a.item, 20) + a = np.empty((5, 0), dtype=object) + assert_raises(IndexError, a.item, (0, 0)) + + def test_put_exceptions(self): + a = np.zeros((5, 5)) + assert_raises(IndexError, a.put, 100, 0) + a = np.zeros((5, 5), dtype=object) + assert_raises(IndexError, a.put, 100, 0) + a = np.zeros((5, 5, 0)) + assert_raises(IndexError, a.put, 100, 0) + a = np.zeros((5, 5, 0), dtype=object) + assert_raises(IndexError, a.put, 100, 0) + + def test_iterators_exceptions(self): + "cases in iterators.c" + def assign(obj, ind, val): + obj[ind] = val + + a = np.zeros([1, 2, 3]) + assert_raises(IndexError, lambda: a[0, 5, None, 2]) + assert_raises(IndexError, lambda: a[0, 5, 0, 2]) + assert_raises(IndexError, lambda: assign(a, (0, 5, None, 2), 1)) + assert_raises(IndexError, lambda: assign(a, (0, 5, 0, 2), 1)) + + a = np.zeros([1, 0, 3]) + assert_raises(IndexError, lambda: a[0, 0, None, 2]) + assert_raises(IndexError, lambda: assign(a, (0, 0, None, 2), 1)) + + a = np.zeros([1, 2, 3]) + assert_raises(IndexError, lambda: a.flat[10]) + assert_raises(IndexError, lambda: assign(a.flat, 10, 5)) + a = np.zeros([1, 0, 3]) + assert_raises(IndexError, lambda: a.flat[10]) + assert_raises(IndexError, lambda: assign(a.flat, 10, 5)) + + a = np.zeros([1, 2, 3]) + assert_raises(IndexError, lambda: a.flat[np.array(10)]) + assert_raises(IndexError, lambda: assign(a.flat, np.array(10), 5)) + a = np.zeros([1, 0, 3]) + assert_raises(IndexError, lambda: a.flat[np.array(10)]) + assert_raises(IndexError, lambda: assign(a.flat, np.array(10), 5)) + + a = np.zeros([1, 2, 3]) + assert_raises(IndexError, lambda: a.flat[np.array([10])]) + assert_raises(IndexError, lambda: assign(a.flat, np.array([10]), 5)) + a = np.zeros([1, 0, 3]) + assert_raises(IndexError, lambda: a.flat[np.array([10])]) + assert_raises(IndexError, lambda: assign(a.flat, np.array([10]), 5)) + + def test_mapping(self): + "cases from mapping.c" + + def assign(obj, ind, val): + obj[ind] = val + + a = np.zeros((0, 10)) + assert_raises(IndexError, lambda: a[12]) + + a = np.zeros((3, 5)) + assert_raises(IndexError, lambda: a[(10, 20)]) + assert_raises(IndexError, lambda: assign(a, (10, 20), 1)) + a = np.zeros((3, 0)) + assert_raises(IndexError, lambda: a[(1, 0)]) + assert_raises(IndexError, lambda: assign(a, (1, 0), 1)) + + a = np.zeros((10,)) + assert_raises(IndexError, lambda: assign(a, 10, 1)) + a = np.zeros((0,)) + assert_raises(IndexError, lambda: assign(a, 10, 1)) + + a = np.zeros((3, 5)) + assert_raises(IndexError, lambda: a[(1, [1, 20])]) + assert_raises(IndexError, lambda: assign(a, (1, [1, 20]), 1)) + a = np.zeros((3, 0)) + assert_raises(IndexError, lambda: a[(1, [0, 1])]) + assert_raises(IndexError, lambda: assign(a, (1, [0, 1]), 1)) + + def test_mapping_error_message(self): + a = np.zeros((3, 5)) + index = (1, 2, 3, 4, 5) + assert_raises_regex( + IndexError, + "too many indices for array: " + "array is 2-dimensional, but 5 were indexed", + lambda: a[index]) + + def test_methods(self): + "cases from methods.c" + + a = np.zeros((3, 3)) + assert_raises(IndexError, lambda: a.item(100)) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_indexing.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_indexing.py new file mode 100644 index 0000000..e722d0c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_indexing.py @@ -0,0 +1,1455 @@ +import functools +import operator +import sys +import warnings +from itertools import product + +import pytest +from numpy._core._multiarray_tests import array_indexing + +import numpy as np +from numpy.exceptions import ComplexWarning, VisibleDeprecationWarning +from numpy.testing import ( + HAS_REFCOUNT, + assert_, + assert_array_equal, + assert_equal, + assert_raises, + assert_raises_regex, + assert_warns, +) + + +class TestIndexing: + def test_index_no_floats(self): + a = np.array([[[5]]]) + + assert_raises(IndexError, lambda: a[0.0]) + assert_raises(IndexError, lambda: a[0, 0.0]) + assert_raises(IndexError, lambda: a[0.0, 0]) + assert_raises(IndexError, lambda: a[0.0, :]) + assert_raises(IndexError, lambda: a[:, 0.0]) + assert_raises(IndexError, lambda: a[:, 0.0, :]) + assert_raises(IndexError, lambda: a[0.0, :, :]) + assert_raises(IndexError, lambda: a[0, 0, 0.0]) + assert_raises(IndexError, lambda: a[0.0, 0, 0]) + assert_raises(IndexError, lambda: a[0, 0.0, 0]) + assert_raises(IndexError, lambda: a[-1.4]) + assert_raises(IndexError, lambda: a[0, -1.4]) + assert_raises(IndexError, lambda: a[-1.4, 0]) + assert_raises(IndexError, lambda: a[-1.4, :]) + assert_raises(IndexError, lambda: a[:, -1.4]) + assert_raises(IndexError, lambda: a[:, -1.4, :]) + assert_raises(IndexError, lambda: a[-1.4, :, :]) + assert_raises(IndexError, lambda: a[0, 0, -1.4]) + assert_raises(IndexError, lambda: a[-1.4, 0, 0]) + assert_raises(IndexError, lambda: a[0, -1.4, 0]) + assert_raises(IndexError, lambda: a[0.0:, 0.0]) + assert_raises(IndexError, lambda: a[0.0:, 0.0, :]) + + def test_slicing_no_floats(self): + a = np.array([[5]]) + + # start as float. + assert_raises(TypeError, lambda: a[0.0:]) + assert_raises(TypeError, lambda: a[0:, 0.0:2]) + assert_raises(TypeError, lambda: a[0.0::2, :0]) + assert_raises(TypeError, lambda: a[0.0:1:2, :]) + assert_raises(TypeError, lambda: a[:, 0.0:]) + # stop as float. + assert_raises(TypeError, lambda: a[:0.0]) + assert_raises(TypeError, lambda: a[:0, 1:2.0]) + assert_raises(TypeError, lambda: a[:0.0:2, :0]) + assert_raises(TypeError, lambda: a[:0.0, :]) + assert_raises(TypeError, lambda: a[:, 0:4.0:2]) + # step as float. + assert_raises(TypeError, lambda: a[::1.0]) + assert_raises(TypeError, lambda: a[0:, :2:2.0]) + assert_raises(TypeError, lambda: a[1::4.0, :0]) + assert_raises(TypeError, lambda: a[::5.0, :]) + assert_raises(TypeError, lambda: a[:, 0:4:2.0]) + # mixed. + assert_raises(TypeError, lambda: a[1.0:2:2.0]) + assert_raises(TypeError, lambda: a[1.0::2.0]) + assert_raises(TypeError, lambda: a[0:, :2.0:2.0]) + assert_raises(TypeError, lambda: a[1.0:1:4.0, :0]) + assert_raises(TypeError, lambda: a[1.0:5.0:5.0, :]) + assert_raises(TypeError, lambda: a[:, 0.4:4.0:2.0]) + # should still get the DeprecationWarning if step = 0. + assert_raises(TypeError, lambda: a[::0.0]) + + def test_index_no_array_to_index(self): + # No non-scalar arrays. + a = np.array([[[1]]]) + + assert_raises(TypeError, lambda: a[a:a:a]) + + def test_none_index(self): + # `None` index adds newaxis + a = np.array([1, 2, 3]) + assert_equal(a[None], a[np.newaxis]) + assert_equal(a[None].ndim, a.ndim + 1) + + def test_empty_tuple_index(self): + # Empty tuple index creates a view + a = np.array([1, 2, 3]) + assert_equal(a[()], a) + assert_(a[()].base is a) + a = np.array(0) + assert_(isinstance(a[()], np.int_)) + + def test_void_scalar_empty_tuple(self): + s = np.zeros((), dtype='V4') + assert_equal(s[()].dtype, s.dtype) + assert_equal(s[()], s) + assert_equal(type(s[...]), np.ndarray) + + def test_same_kind_index_casting(self): + # Indexes should be cast with same-kind and not safe, even if that + # is somewhat unsafe. So test various different code paths. + index = np.arange(5) + u_index = index.astype(np.uintp) + arr = np.arange(10) + + assert_array_equal(arr[index], arr[u_index]) + arr[u_index] = np.arange(5) + assert_array_equal(arr, np.arange(10)) + + arr = np.arange(10).reshape(5, 2) + assert_array_equal(arr[index], arr[u_index]) + + arr[u_index] = np.arange(5)[:, None] + assert_array_equal(arr, np.arange(5)[:, None].repeat(2, axis=1)) + + arr = np.arange(25).reshape(5, 5) + assert_array_equal(arr[u_index, u_index], arr[index, index]) + + def test_empty_fancy_index(self): + # Empty list index creates an empty array + # with the same dtype (but with weird shape) + a = np.array([1, 2, 3]) + assert_equal(a[[]], []) + assert_equal(a[[]].dtype, a.dtype) + + b = np.array([], dtype=np.intp) + assert_equal(a[[]], []) + assert_equal(a[[]].dtype, a.dtype) + + b = np.array([]) + assert_raises(IndexError, a.__getitem__, b) + + def test_gh_26542(self): + a = np.array([0, 1, 2]) + idx = np.array([2, 1, 0]) + a[idx] = a + expected = np.array([2, 1, 0]) + assert_equal(a, expected) + + def test_gh_26542_2d(self): + a = np.array([[0, 1, 2]]) + idx_row = np.zeros(3, dtype=int) + idx_col = np.array([2, 1, 0]) + a[idx_row, idx_col] = a + expected = np.array([[2, 1, 0]]) + assert_equal(a, expected) + + def test_gh_26542_index_overlap(self): + arr = np.arange(100) + expected_vals = np.copy(arr[:-10]) + arr[10:] = arr[:-10] + actual_vals = arr[10:] + assert_equal(actual_vals, expected_vals) + + def test_gh_26844(self): + expected = [0, 1, 3, 3, 3] + a = np.arange(5) + a[2:][a[:-2]] = 3 + assert_equal(a, expected) + + def test_gh_26844_segfault(self): + # check for absence of segfault for: + # https://github.com/numpy/numpy/pull/26958/files#r1854589178 + a = np.arange(5) + expected = [0, 1, 3, 3, 3] + a[2:][None, a[:-2]] = 3 + assert_equal(a, expected) + + def test_ellipsis_index(self): + a = np.array([[1, 2, 3], + [4, 5, 6], + [7, 8, 9]]) + assert_(a[...] is not a) + assert_equal(a[...], a) + # `a[...]` was `a` in numpy <1.9. + assert_(a[...].base is a) + + # Slicing with ellipsis can skip an + # arbitrary number of dimensions + assert_equal(a[0, ...], a[0]) + assert_equal(a[0, ...], a[0, :]) + assert_equal(a[..., 0], a[:, 0]) + + # Slicing with ellipsis always results + # in an array, not a scalar + assert_equal(a[0, ..., 1], np.array(2)) + + # Assignment with `(Ellipsis,)` on 0-d arrays + b = np.array(1) + b[(Ellipsis,)] = 2 + assert_equal(b, 2) + + def test_single_int_index(self): + # Single integer index selects one row + a = np.array([[1, 2, 3], + [4, 5, 6], + [7, 8, 9]]) + + assert_equal(a[0], [1, 2, 3]) + assert_equal(a[-1], [7, 8, 9]) + + # Index out of bounds produces IndexError + assert_raises(IndexError, a.__getitem__, 1 << 30) + # Index overflow produces IndexError + assert_raises(IndexError, a.__getitem__, 1 << 64) + + def test_single_bool_index(self): + # Single boolean index + a = np.array([[1, 2, 3], + [4, 5, 6], + [7, 8, 9]]) + + assert_equal(a[np.array(True)], a[None]) + assert_equal(a[np.array(False)], a[None][0:0]) + + def test_boolean_shape_mismatch(self): + arr = np.ones((5, 4, 3)) + + index = np.array([True]) + assert_raises(IndexError, arr.__getitem__, index) + + index = np.array([False] * 6) + assert_raises(IndexError, arr.__getitem__, index) + + index = np.zeros((4, 4), dtype=bool) + assert_raises(IndexError, arr.__getitem__, index) + + assert_raises(IndexError, arr.__getitem__, (slice(None), index)) + + def test_boolean_indexing_onedim(self): + # Indexing a 2-dimensional array with + # boolean array of length one + a = np.array([[0., 0., 0.]]) + b = np.array([True], dtype=bool) + assert_equal(a[b], a) + # boolean assignment + a[b] = 1. + assert_equal(a, [[1., 1., 1.]]) + + def test_boolean_assignment_value_mismatch(self): + # A boolean assignment should fail when the shape of the values + # cannot be broadcast to the subscription. (see also gh-3458) + a = np.arange(4) + + def f(a, v): + a[a > -1] = v + + assert_raises(ValueError, f, a, []) + assert_raises(ValueError, f, a, [1, 2, 3]) + assert_raises(ValueError, f, a[:1], [1, 2, 3]) + + def test_boolean_assignment_needs_api(self): + # See also gh-7666 + # This caused a segfault on Python 2 due to the GIL not being + # held when the iterator does not need it, but the transfer function + # does + arr = np.zeros(1000) + indx = np.zeros(1000, dtype=bool) + indx[:100] = True + arr[indx] = np.ones(100, dtype=object) + + expected = np.zeros(1000) + expected[:100] = 1 + assert_array_equal(arr, expected) + + def test_boolean_indexing_twodim(self): + # Indexing a 2-dimensional array with + # 2-dimensional boolean array + a = np.array([[1, 2, 3], + [4, 5, 6], + [7, 8, 9]]) + b = np.array([[ True, False, True], + [False, True, False], + [ True, False, True]]) + assert_equal(a[b], [1, 3, 5, 7, 9]) + assert_equal(a[b[1]], [[4, 5, 6]]) + assert_equal(a[b[0]], a[b[2]]) + + # boolean assignment + a[b] = 0 + assert_equal(a, [[0, 2, 0], + [4, 0, 6], + [0, 8, 0]]) + + def test_boolean_indexing_list(self): + # Regression test for #13715. It's a use-after-free bug which the + # test won't directly catch, but it will show up in valgrind. + a = np.array([1, 2, 3]) + b = [True, False, True] + # Two variants of the test because the first takes a fast path + assert_equal(a[b], [1, 3]) + assert_equal(a[None, b], [[1, 3]]) + + def test_reverse_strides_and_subspace_bufferinit(self): + # This tests that the strides are not reversed for simple and + # subspace fancy indexing. + a = np.ones(5) + b = np.zeros(5, dtype=np.intp)[::-1] + c = np.arange(5)[::-1] + + a[b] = c + # If the strides are not reversed, the 0 in the arange comes last. + assert_equal(a[0], 0) + + # This also tests that the subspace buffer is initialized: + a = np.ones((5, 2)) + c = np.arange(10).reshape(5, 2)[::-1] + a[b, :] = c + assert_equal(a[0], [0, 1]) + + def test_reversed_strides_result_allocation(self): + # Test a bug when calculating the output strides for a result array + # when the subspace size was 1 (and test other cases as well) + a = np.arange(10)[:, None] + i = np.arange(10)[::-1] + assert_array_equal(a[i], a[i.copy('C')]) + + a = np.arange(20).reshape(-1, 2) + + def test_uncontiguous_subspace_assignment(self): + # During development there was a bug activating a skip logic + # based on ndim instead of size. + a = np.full((3, 4, 2), -1) + b = np.full((3, 4, 2), -1) + + a[[0, 1]] = np.arange(2 * 4 * 2).reshape(2, 4, 2).T + b[[0, 1]] = np.arange(2 * 4 * 2).reshape(2, 4, 2).T.copy() + + assert_equal(a, b) + + def test_too_many_fancy_indices_special_case(self): + # Just documents behaviour, this is a small limitation. + a = np.ones((1,) * 64) # 64 is NPY_MAXDIMS + assert_raises(IndexError, a.__getitem__, (np.array([0]),) * 64) + + def test_scalar_array_bool(self): + # NumPy bools can be used as boolean index (python ones as of yet not) + a = np.array(1) + assert_equal(a[np.bool(True)], a[np.array(True)]) + assert_equal(a[np.bool(False)], a[np.array(False)]) + + # After deprecating bools as integers: + #a = np.array([0,1,2]) + #assert_equal(a[True, :], a[None, :]) + #assert_equal(a[:, True], a[:, None]) + # + #assert_(not np.may_share_memory(a, a[True, :])) + + def test_everything_returns_views(self): + # Before `...` would return a itself. + a = np.arange(5) + + assert_(a is not a[()]) + assert_(a is not a[...]) + assert_(a is not a[:]) + + def test_broaderrors_indexing(self): + a = np.zeros((5, 5)) + assert_raises(IndexError, a.__getitem__, ([0, 1], [0, 1, 2])) + assert_raises(IndexError, a.__setitem__, ([0, 1], [0, 1, 2]), 0) + + def test_trivial_fancy_out_of_bounds(self): + a = np.zeros(5) + ind = np.ones(20, dtype=np.intp) + ind[-1] = 10 + assert_raises(IndexError, a.__getitem__, ind) + assert_raises(IndexError, a.__setitem__, ind, 0) + ind = np.ones(20, dtype=np.intp) + ind[0] = 11 + assert_raises(IndexError, a.__getitem__, ind) + assert_raises(IndexError, a.__setitem__, ind, 0) + + def test_trivial_fancy_not_possible(self): + # Test that the fast path for trivial assignment is not incorrectly + # used when the index is not contiguous or 1D, see also gh-11467. + a = np.arange(6) + idx = np.arange(6, dtype=np.intp).reshape(2, 1, 3)[:, :, 0] + assert_array_equal(a[idx], idx) + + # this case must not go into the fast path, note that idx is + # a non-contiguous none 1D array here. + a[idx] = -1 + res = np.arange(6) + res[0] = -1 + res[3] = -1 + assert_array_equal(a, res) + + def test_nonbaseclass_values(self): + class SubClass(np.ndarray): + def __array_finalize__(self, old): + # Have array finalize do funny things + self.fill(99) + + a = np.zeros((5, 5)) + s = a.copy().view(type=SubClass) + s.fill(1) + + a[[0, 1, 2, 3, 4], :] = s + assert_((a == 1).all()) + + # Subspace is last, so transposing might want to finalize + a[:, [0, 1, 2, 3, 4]] = s + assert_((a == 1).all()) + + a.fill(0) + a[...] = s + assert_((a == 1).all()) + + def test_array_like_values(self): + # Similar to the above test, but use a memoryview instead + a = np.zeros((5, 5)) + s = np.arange(25, dtype=np.float64).reshape(5, 5) + + a[[0, 1, 2, 3, 4], :] = memoryview(s) + assert_array_equal(a, s) + + a[:, [0, 1, 2, 3, 4]] = memoryview(s) + assert_array_equal(a, s) + + a[...] = memoryview(s) + assert_array_equal(a, s) + + @pytest.mark.parametrize("writeable", [True, False]) + def test_subclass_writeable(self, writeable): + d = np.rec.array([('NGC1001', 11), ('NGC1002', 1.), ('NGC1003', 1.)], + dtype=[('target', 'S20'), ('V_mag', '>f4')]) + d.flags.writeable = writeable + # Advanced indexing results are always writeable: + ind = np.array([False, True, True], dtype=bool) + assert d[ind].flags.writeable + ind = np.array([0, 1]) + assert d[ind].flags.writeable + # Views should be writeable if the original array is: + assert d[...].flags.writeable == writeable + assert d[0].flags.writeable == writeable + + def test_memory_order(self): + # This is not necessary to preserve. Memory layouts for + # more complex indices are not as simple. + a = np.arange(10) + b = np.arange(10).reshape(5, 2).T + assert_(a[b].flags.f_contiguous) + + # Takes a different implementation branch: + a = a.reshape(-1, 1) + assert_(a[b, 0].flags.f_contiguous) + + def test_scalar_return_type(self): + # Full scalar indices should return scalars and object + # arrays should not call PyArray_Return on their items + class Zero: + # The most basic valid indexing + def __index__(self): + return 0 + + z = Zero() + + class ArrayLike: + # Simple array, should behave like the array + def __array__(self, dtype=None, copy=None): + return np.array(0) + + a = np.zeros(()) + assert_(isinstance(a[()], np.float64)) + a = np.zeros(1) + assert_(isinstance(a[z], np.float64)) + a = np.zeros((1, 1)) + assert_(isinstance(a[z, np.array(0)], np.float64)) + assert_(isinstance(a[z, ArrayLike()], np.float64)) + + # And object arrays do not call it too often: + b = np.array(0) + a = np.array(0, dtype=object) + a[()] = b + assert_(isinstance(a[()], np.ndarray)) + a = np.array([b, None]) + assert_(isinstance(a[z], np.ndarray)) + a = np.array([[b, None]]) + assert_(isinstance(a[z, np.array(0)], np.ndarray)) + assert_(isinstance(a[z, ArrayLike()], np.ndarray)) + + def test_small_regressions(self): + # Reference count of intp for index checks + a = np.array([0]) + if HAS_REFCOUNT: + refcount = sys.getrefcount(np.dtype(np.intp)) + # item setting always checks indices in separate function: + a[np.array([0], dtype=np.intp)] = 1 + a[np.array([0], dtype=np.uint8)] = 1 + assert_raises(IndexError, a.__setitem__, + np.array([1], dtype=np.intp), 1) + assert_raises(IndexError, a.__setitem__, + np.array([1], dtype=np.uint8), 1) + + if HAS_REFCOUNT: + assert_equal(sys.getrefcount(np.dtype(np.intp)), refcount) + + def test_unaligned(self): + v = (np.zeros(64, dtype=np.int8) + ord('a'))[1:-7] + d = v.view(np.dtype("S8")) + # unaligned source + x = (np.zeros(16, dtype=np.int8) + ord('a'))[1:-7] + x = x.view(np.dtype("S8")) + x[...] = np.array("b" * 8, dtype="S") + b = np.arange(d.size) + # trivial + assert_equal(d[b], d) + d[b] = x + # nontrivial + # unaligned index array + b = np.zeros(d.size + 1).view(np.int8)[1:-(np.intp(0).itemsize - 1)] + b = b.view(np.intp)[:d.size] + b[...] = np.arange(d.size) + assert_equal(d[b.astype(np.int16)], d) + d[b.astype(np.int16)] = x + # boolean + d[b % 2 == 0] + d[b % 2 == 0] = x[::2] + + def test_tuple_subclass(self): + arr = np.ones((5, 5)) + + # A tuple subclass should also be an nd-index + class TupleSubclass(tuple): + pass + index = ([1], [1]) + index = TupleSubclass(index) + assert_(arr[index].shape == (1,)) + # Unlike the non nd-index: + assert_(arr[index,].shape != (1,)) + + def test_broken_sequence_not_nd_index(self): + # See gh-5063: + # If we have an object which claims to be a sequence, but fails + # on item getting, this should not be converted to an nd-index (tuple) + # If this object happens to be a valid index otherwise, it should work + # This object here is very dubious and probably bad though: + class SequenceLike: + def __index__(self): + return 0 + + def __len__(self): + return 1 + + def __getitem__(self, item): + raise IndexError('Not possible') + + arr = np.arange(10) + assert_array_equal(arr[SequenceLike()], arr[SequenceLike(),]) + + # also test that field indexing does not segfault + # for a similar reason, by indexing a structured array + arr = np.zeros((1,), dtype=[('f1', 'i8'), ('f2', 'i8')]) + assert_array_equal(arr[SequenceLike()], arr[SequenceLike(),]) + + def test_indexing_array_weird_strides(self): + # See also gh-6221 + # the shapes used here come from the issue and create the correct + # size for the iterator buffering size. + x = np.ones(10) + x2 = np.ones((10, 2)) + ind = np.arange(10)[:, None, None, None] + ind = np.broadcast_to(ind, (10, 55, 4, 4)) + + # single advanced index case + assert_array_equal(x[ind], x[ind.copy()]) + # higher dimensional advanced index + zind = np.zeros(4, dtype=np.intp) + assert_array_equal(x2[ind, zind], x2[ind.copy(), zind]) + + def test_indexing_array_negative_strides(self): + # From gh-8264, + # core dumps if negative strides are used in iteration + arro = np.zeros((4, 4)) + arr = arro[::-1, ::-1] + + slices = (slice(None), [0, 1, 2, 3]) + arr[slices] = 10 + assert_array_equal(arr, 10.) + + def test_character_assignment(self): + # This is an example a function going through CopyObject which + # used to have an untested special path for scalars + # (the character special dtype case, should be deprecated probably) + arr = np.zeros((1, 5), dtype="c") + arr[0] = np.str_("asdfg") # must assign as a sequence + assert_array_equal(arr[0], np.array("asdfg", dtype="c")) + assert arr[0, 1] == b"s" # make sure not all were set to "a" for both + + @pytest.mark.parametrize("index", + [True, False, np.array([0])]) + @pytest.mark.parametrize("num", [64, 80]) + @pytest.mark.parametrize("original_ndim", [1, 64]) + def test_too_many_advanced_indices(self, index, num, original_ndim): + # These are limitations based on the number of arguments we can process. + # For `num=32` (and all boolean cases), the result is actually define; + # but the use of NpyIter (NPY_MAXARGS) limits it for technical reasons. + arr = np.ones((1,) * original_ndim) + with pytest.raises(IndexError): + arr[(index,) * num] + with pytest.raises(IndexError): + arr[(index,) * num] = 1. + + def test_nontuple_ndindex(self): + a = np.arange(25).reshape((5, 5)) + assert_equal(a[[0, 1]], np.array([a[0], a[1]])) + assert_equal(a[[0, 1], [0, 1]], np.array([0, 6])) + assert_raises(IndexError, a.__getitem__, [slice(None)]) + + def test_flat_index_on_flatiter(self): + a = np.arange(9).reshape((3, 3)) + b = np.array([0, 5, 6]) + assert_equal(a.flat[b.flat], np.array([0, 5, 6])) + + def test_empty_string_flat_index_on_flatiter(self): + a = np.arange(9).reshape((3, 3)) + b = np.array([], dtype="S") + assert_equal(a.flat[b.flat], np.array([])) + + def test_nonempty_string_flat_index_on_flatiter(self): + a = np.arange(9).reshape((3, 3)) + b = np.array(["a"], dtype="S") + with pytest.raises(IndexError, match="unsupported iterator index"): + a.flat[b.flat] + + +class TestFieldIndexing: + def test_scalar_return_type(self): + # Field access on an array should return an array, even if it + # is 0-d. + a = np.zeros((), [('a', 'f8')]) + assert_(isinstance(a['a'], np.ndarray)) + assert_(isinstance(a[['a']], np.ndarray)) + + +class TestBroadcastedAssignments: + def assign(self, a, ind, val): + a[ind] = val + return a + + def test_prepending_ones(self): + a = np.zeros((3, 2)) + + a[...] = np.ones((1, 3, 2)) + # Fancy with subspace with and without transpose + a[[0, 1, 2], :] = np.ones((1, 3, 2)) + a[:, [0, 1]] = np.ones((1, 3, 2)) + # Fancy without subspace (with broadcasting) + a[[[0], [1], [2]], [0, 1]] = np.ones((1, 3, 2)) + + def test_prepend_not_one(self): + assign = self.assign + s_ = np.s_ + a = np.zeros(5) + + # Too large and not only ones. + assert_raises(ValueError, assign, a, s_[...], np.ones((2, 1))) + assert_raises(ValueError, assign, a, s_[[1, 2, 3],], np.ones((2, 1))) + assert_raises(ValueError, assign, a, s_[[[1], [2]],], np.ones((2, 2, 1))) + + def test_simple_broadcasting_errors(self): + assign = self.assign + s_ = np.s_ + a = np.zeros((5, 1)) + + assert_raises(ValueError, assign, a, s_[...], np.zeros((5, 2))) + assert_raises(ValueError, assign, a, s_[...], np.zeros((5, 0))) + assert_raises(ValueError, assign, a, s_[:, [0]], np.zeros((5, 2))) + assert_raises(ValueError, assign, a, s_[:, [0]], np.zeros((5, 0))) + assert_raises(ValueError, assign, a, s_[[0], :], np.zeros((2, 1))) + + @pytest.mark.parametrize("index", [ + (..., [1, 2], slice(None)), + ([0, 1], ..., 0), + (..., [1, 2], [1, 2])]) + def test_broadcast_error_reports_correct_shape(self, index): + values = np.zeros((100, 100)) # will never broadcast below + + arr = np.zeros((3, 4, 5, 6, 7)) + # We currently report without any spaces (could be changed) + shape_str = str(arr[index].shape).replace(" ", "") + + with pytest.raises(ValueError) as e: + arr[index] = values + + assert str(e.value).endswith(shape_str) + + def test_index_is_larger(self): + # Simple case of fancy index broadcasting of the index. + a = np.zeros((5, 5)) + a[[[0], [1], [2]], [0, 1, 2]] = [2, 3, 4] + + assert_((a[:3, :3] == [2, 3, 4]).all()) + + def test_broadcast_subspace(self): + a = np.zeros((100, 100)) + v = np.arange(100)[:, None] + b = np.arange(100)[::-1] + a[b] = v + assert_((a[::-1] == v).all()) + + +class TestSubclasses: + def test_basic(self): + # Test that indexing in various ways produces SubClass instances, + # and that the base is set up correctly: the original subclass + # instance for views, and a new ndarray for advanced/boolean indexing + # where a copy was made (latter a regression test for gh-11983). + class SubClass(np.ndarray): + pass + + a = np.arange(5) + s = a.view(SubClass) + s_slice = s[:3] + assert_(type(s_slice) is SubClass) + assert_(s_slice.base is s) + assert_array_equal(s_slice, a[:3]) + + s_fancy = s[[0, 1, 2]] + assert_(type(s_fancy) is SubClass) + assert_(s_fancy.base is not s) + assert_(type(s_fancy.base) is np.ndarray) + assert_array_equal(s_fancy, a[[0, 1, 2]]) + assert_array_equal(s_fancy.base, a[[0, 1, 2]]) + + s_bool = s[s > 0] + assert_(type(s_bool) is SubClass) + assert_(s_bool.base is not s) + assert_(type(s_bool.base) is np.ndarray) + assert_array_equal(s_bool, a[a > 0]) + assert_array_equal(s_bool.base, a[a > 0]) + + def test_fancy_on_read_only(self): + # Test that fancy indexing on read-only SubClass does not make a + # read-only copy (gh-14132) + class SubClass(np.ndarray): + pass + + a = np.arange(5) + s = a.view(SubClass) + s.flags.writeable = False + s_fancy = s[[0, 1, 2]] + assert_(s_fancy.flags.writeable) + + def test_finalize_gets_full_info(self): + # Array finalize should be called on the filled array. + class SubClass(np.ndarray): + def __array_finalize__(self, old): + self.finalize_status = np.array(self) + self.old = old + + s = np.arange(10).view(SubClass) + new_s = s[:3] + assert_array_equal(new_s.finalize_status, new_s) + assert_array_equal(new_s.old, s) + + new_s = s[[0, 1, 2, 3]] + assert_array_equal(new_s.finalize_status, new_s) + assert_array_equal(new_s.old, s) + + new_s = s[s > 0] + assert_array_equal(new_s.finalize_status, new_s) + assert_array_equal(new_s.old, s) + + +class TestFancyIndexingCast: + def test_boolean_index_cast_assign(self): + # Setup the boolean index and float arrays. + shape = (8, 63) + bool_index = np.zeros(shape).astype(bool) + bool_index[0, 1] = True + zero_array = np.zeros(shape) + + # Assigning float is fine. + zero_array[bool_index] = np.array([1]) + assert_equal(zero_array[0, 1], 1) + + # Fancy indexing works, although we get a cast warning. + assert_warns(ComplexWarning, + zero_array.__setitem__, ([0], [1]), np.array([2 + 1j])) + assert_equal(zero_array[0, 1], 2) # No complex part + + # Cast complex to float, throwing away the imaginary portion. + assert_warns(ComplexWarning, + zero_array.__setitem__, bool_index, np.array([1j])) + assert_equal(zero_array[0, 1], 0) + +class TestFancyIndexingEquivalence: + def test_object_assign(self): + # Check that the field and object special case using copyto is active. + # The right hand side cannot be converted to an array here. + a = np.arange(5, dtype=object) + b = a.copy() + a[:3] = [1, (1, 2), 3] + b[[0, 1, 2]] = [1, (1, 2), 3] + assert_array_equal(a, b) + + # test same for subspace fancy indexing + b = np.arange(5, dtype=object)[None, :] + b[[0], :3] = [[1, (1, 2), 3]] + assert_array_equal(a, b[0]) + + # Check that swapping of axes works. + # There was a bug that made the later assignment throw a ValueError + # do to an incorrectly transposed temporary right hand side (gh-5714) + b = b.T + b[:3, [0]] = [[1], [(1, 2)], [3]] + assert_array_equal(a, b[:, 0]) + + # Another test for the memory order of the subspace + arr = np.ones((3, 4, 5), dtype=object) + # Equivalent slicing assignment for comparison + cmp_arr = arr.copy() + cmp_arr[:1, ...] = [[[1], [2], [3], [4]]] + arr[[0], ...] = [[[1], [2], [3], [4]]] + assert_array_equal(arr, cmp_arr) + arr = arr.copy('F') + arr[[0], ...] = [[[1], [2], [3], [4]]] + assert_array_equal(arr, cmp_arr) + + def test_cast_equivalence(self): + # Yes, normal slicing uses unsafe casting. + a = np.arange(5) + b = a.copy() + + a[:3] = np.array(['2', '-3', '-1']) + b[[0, 2, 1]] = np.array(['2', '-1', '-3']) + assert_array_equal(a, b) + + # test the same for subspace fancy indexing + b = np.arange(5)[None, :] + b[[0], :3] = np.array([['2', '-3', '-1']]) + assert_array_equal(a, b[0]) + + +class TestMultiIndexingAutomated: + """ + These tests use code to mimic the C-Code indexing for selection. + + NOTE: + + * This still lacks tests for complex item setting. + * If you change behavior of indexing, you might want to modify + these tests to try more combinations. + * Behavior was written to match numpy version 1.8. (though a + first version matched 1.7.) + * Only tuple indices are supported by the mimicking code. + (and tested as of writing this) + * Error types should match most of the time as long as there + is only one error. For multiple errors, what gets raised + will usually not be the same one. They are *not* tested. + + Update 2016-11-30: It is probably not worth maintaining this test + indefinitely and it can be dropped if maintenance becomes a burden. + + """ + + def setup_method(self): + self.a = np.arange(np.prod([3, 1, 5, 6])).reshape(3, 1, 5, 6) + self.b = np.empty((3, 0, 5, 6)) + self.complex_indices = ['skip', Ellipsis, + 0, + # Boolean indices, up to 3-d for some special cases of eating up + # dimensions, also need to test all False + np.array([True, False, False]), + np.array([[True, False], [False, True]]), + np.array([[[False, False], [False, False]]]), + # Some slices: + slice(-5, 5, 2), + slice(1, 1, 100), + slice(4, -1, -2), + slice(None, None, -3), + # Some Fancy indexes: + np.empty((0, 1, 1), dtype=np.intp), # empty and can be broadcast + np.array([0, 1, -2]), + np.array([[2], [0], [1]]), + np.array([[0, -1], [0, 1]], dtype=np.dtype('intp').newbyteorder()), + np.array([2, -1], dtype=np.int8), + np.zeros([1] * 31, dtype=int), # trigger too large array. + np.array([0., 1.])] # invalid datatype + # Some simpler indices that still cover a bit more + self.simple_indices = [Ellipsis, None, -1, [1], np.array([True]), + 'skip'] + # Very simple ones to fill the rest: + self.fill_indices = [slice(None, None), 0] + + def _get_multi_index(self, arr, indices): + """Mimic multi dimensional indexing. + + Parameters + ---------- + arr : ndarray + Array to be indexed. + indices : tuple of index objects + + Returns + ------- + out : ndarray + An array equivalent to the indexing operation (but always a copy). + `arr[indices]` should be identical. + no_copy : bool + Whether the indexing operation requires a copy. If this is `True`, + `np.may_share_memory(arr, arr[indices])` should be `True` (with + some exceptions for scalars and possibly 0-d arrays). + + Notes + ----- + While the function may mostly match the errors of normal indexing this + is generally not the case. + """ + in_indices = list(indices) + indices = [] + # if False, this is a fancy or boolean index + no_copy = True + # number of fancy/scalar indexes that are not consecutive + num_fancy = 0 + # number of dimensions indexed by a "fancy" index + fancy_dim = 0 + # NOTE: This is a funny twist (and probably OK to change). + # The boolean array has illegal indexes, but this is + # allowed if the broadcast fancy-indices are 0-sized. + # This variable is to catch that case. + error_unless_broadcast_to_empty = False + + # We need to handle Ellipsis and make arrays from indices, also + # check if this is fancy indexing (set no_copy). + ndim = 0 + ellipsis_pos = None # define here mostly to replace all but first. + for i, indx in enumerate(in_indices): + if indx is None: + continue + if isinstance(indx, np.ndarray) and indx.dtype == bool: + no_copy = False + if indx.ndim == 0: + raise IndexError + # boolean indices can have higher dimensions + ndim += indx.ndim + fancy_dim += indx.ndim + continue + if indx is Ellipsis: + if ellipsis_pos is None: + ellipsis_pos = i + continue # do not increment ndim counter + raise IndexError + if isinstance(indx, slice): + ndim += 1 + continue + if not isinstance(indx, np.ndarray): + # This could be open for changes in numpy. + # numpy should maybe raise an error if casting to intp + # is not safe. It rejects np.array([1., 2.]) but not + # [1., 2.] as index (same for ie. np.take). + # (Note the importance of empty lists if changing this here) + try: + indx = np.array(indx, dtype=np.intp) + except ValueError: + raise IndexError + in_indices[i] = indx + elif indx.dtype.kind not in 'bi': + raise IndexError('arrays used as indices must be of ' + 'integer (or boolean) type') + if indx.ndim != 0: + no_copy = False + ndim += 1 + fancy_dim += 1 + + if arr.ndim - ndim < 0: + # we can't take more dimensions then we have, not even for 0-d + # arrays. since a[()] makes sense, but not a[(),]. We will + # raise an error later on, unless a broadcasting error occurs + # first. + raise IndexError + + if ndim == 0 and None not in in_indices: + # Well we have no indexes or one Ellipsis. This is legal. + return arr.copy(), no_copy + + if ellipsis_pos is not None: + in_indices[ellipsis_pos:ellipsis_pos + 1] = ([slice(None, None)] * + (arr.ndim - ndim)) + + for ax, indx in enumerate(in_indices): + if isinstance(indx, slice): + # convert to an index array + indx = np.arange(*indx.indices(arr.shape[ax])) + indices.append(['s', indx]) + continue + elif indx is None: + # this is like taking a slice with one element from a new axis: + indices.append(['n', np.array([0], dtype=np.intp)]) + arr = arr.reshape(arr.shape[:ax] + (1,) + arr.shape[ax:]) + continue + if isinstance(indx, np.ndarray) and indx.dtype == bool: + if indx.shape != arr.shape[ax:ax + indx.ndim]: + raise IndexError + + try: + flat_indx = np.ravel_multi_index(np.nonzero(indx), + arr.shape[ax:ax + indx.ndim], mode='raise') + except Exception: + error_unless_broadcast_to_empty = True + # fill with 0s instead, and raise error later + flat_indx = np.array([0] * indx.sum(), dtype=np.intp) + # concatenate axis into a single one: + if indx.ndim != 0: + arr = arr.reshape(arr.shape[:ax] + + (np.prod(arr.shape[ax:ax + indx.ndim]),) + + arr.shape[ax + indx.ndim:]) + indx = flat_indx + else: + # This could be changed, a 0-d boolean index can + # make sense (even outside the 0-d indexed array case) + # Note that originally this is could be interpreted as + # integer in the full integer special case. + raise IndexError + # If the index is a singleton, the bounds check is done + # before the broadcasting. This used to be different in <1.9 + elif indx.ndim == 0 and not ( + -arr.shape[ax] <= indx < arr.shape[ax] + ): + raise IndexError + if indx.ndim == 0: + # The index is a scalar. This used to be two fold, but if + # fancy indexing was active, the check was done later, + # possibly after broadcasting it away (1.7. or earlier). + # Now it is always done. + if indx >= arr.shape[ax] or indx < - arr.shape[ax]: + raise IndexError + if (len(indices) > 0 and + indices[-1][0] == 'f' and + ax != ellipsis_pos): + # NOTE: There could still have been a 0-sized Ellipsis + # between them. Checked that with ellipsis_pos. + indices[-1].append(indx) + else: + # We have a fancy index that is not after an existing one. + # NOTE: A 0-d array triggers this as well, while one may + # expect it to not trigger it, since a scalar would not be + # considered fancy indexing. + num_fancy += 1 + indices.append(['f', indx]) + + if num_fancy > 1 and not no_copy: + # We have to flush the fancy indexes left + new_indices = indices[:] + axes = list(range(arr.ndim)) + fancy_axes = [] + new_indices.insert(0, ['f']) + ni = 0 + ai = 0 + for indx in indices: + ni += 1 + if indx[0] == 'f': + new_indices[0].extend(indx[1:]) + del new_indices[ni] + ni -= 1 + for ax in range(ai, ai + len(indx[1:])): + fancy_axes.append(ax) + axes.remove(ax) + ai += len(indx) - 1 # axis we are at + indices = new_indices + # and now we need to transpose arr: + arr = arr.transpose(*(fancy_axes + axes)) + + # We only have one 'f' index now and arr is transposed accordingly. + # Now handle newaxis by reshaping... + ax = 0 + for indx in indices: + if indx[0] == 'f': + if len(indx) == 1: + continue + # First of all, reshape arr to combine fancy axes into one: + orig_shape = arr.shape + orig_slice = orig_shape[ax:ax + len(indx[1:])] + arr = arr.reshape(arr.shape[:ax] + + (np.prod(orig_slice).astype(int),) + + arr.shape[ax + len(indx[1:]):]) + + # Check if broadcasting works + res = np.broadcast(*indx[1:]) + # unfortunately the indices might be out of bounds. So check + # that first, and use mode='wrap' then. However only if + # there are any indices... + if res.size != 0: + if error_unless_broadcast_to_empty: + raise IndexError + for _indx, _size in zip(indx[1:], orig_slice): + if _indx.size == 0: + continue + if np.any(_indx >= _size) or np.any(_indx < -_size): + raise IndexError + if len(indx[1:]) == len(orig_slice): + if np.prod(orig_slice) == 0: + # Work around for a crash or IndexError with 'wrap' + # in some 0-sized cases. + try: + mi = np.ravel_multi_index(indx[1:], orig_slice, + mode='raise') + except Exception: + # This happens with 0-sized orig_slice (sometimes?) + # here it is a ValueError, but indexing gives a: + raise IndexError('invalid index into 0-sized') + else: + mi = np.ravel_multi_index(indx[1:], orig_slice, + mode='wrap') + else: + # Maybe never happens... + raise ValueError + arr = arr.take(mi.ravel(), axis=ax) + try: + arr = arr.reshape(arr.shape[:ax] + + mi.shape + + arr.shape[ax + 1:]) + except ValueError: + # too many dimensions, probably + raise IndexError + ax += mi.ndim + continue + + # If we are here, we have a 1D array for take: + arr = arr.take(indx[1], axis=ax) + ax += 1 + + return arr, no_copy + + def _check_multi_index(self, arr, index): + """Check a multi index item getting and simple setting. + + Parameters + ---------- + arr : ndarray + Array to be indexed, must be a reshaped arange. + index : tuple of indexing objects + Index being tested. + """ + # Test item getting + try: + mimic_get, no_copy = self._get_multi_index(arr, index) + except Exception as e: + if HAS_REFCOUNT: + prev_refcount = sys.getrefcount(arr) + assert_raises(type(e), arr.__getitem__, index) + assert_raises(type(e), arr.__setitem__, index, 0) + if HAS_REFCOUNT: + assert_equal(prev_refcount, sys.getrefcount(arr)) + return + + self._compare_index_result(arr, index, mimic_get, no_copy) + + def _check_single_index(self, arr, index): + """Check a single index item getting and simple setting. + + Parameters + ---------- + arr : ndarray + Array to be indexed, must be an arange. + index : indexing object + Index being tested. Must be a single index and not a tuple + of indexing objects (see also `_check_multi_index`). + """ + try: + mimic_get, no_copy = self._get_multi_index(arr, (index,)) + except Exception as e: + if HAS_REFCOUNT: + prev_refcount = sys.getrefcount(arr) + assert_raises(type(e), arr.__getitem__, index) + assert_raises(type(e), arr.__setitem__, index, 0) + if HAS_REFCOUNT: + assert_equal(prev_refcount, sys.getrefcount(arr)) + return + + self._compare_index_result(arr, index, mimic_get, no_copy) + + def _compare_index_result(self, arr, index, mimic_get, no_copy): + """Compare mimicked result to indexing result. + """ + arr = arr.copy() + if HAS_REFCOUNT: + startcount = sys.getrefcount(arr) + indexed_arr = arr[index] + assert_array_equal(indexed_arr, mimic_get) + # Check if we got a view, unless its a 0-sized or 0-d array. + # (then its not a view, and that does not matter) + if indexed_arr.size != 0 and indexed_arr.ndim != 0: + assert_(np.may_share_memory(indexed_arr, arr) == no_copy) + # Check reference count of the original array + if HAS_REFCOUNT: + if no_copy: + # refcount increases by one: + assert_equal(sys.getrefcount(arr), startcount + 1) + else: + assert_equal(sys.getrefcount(arr), startcount) + + # Test non-broadcast setitem: + b = arr.copy() + b[index] = mimic_get + 1000 + if b.size == 0: + return # nothing to compare here... + if no_copy and indexed_arr.ndim != 0: + # change indexed_arr in-place to manipulate original: + indexed_arr += 1000 + assert_array_equal(arr, b) + return + # Use the fact that the array is originally an arange: + arr.flat[indexed_arr.ravel()] += 1000 + assert_array_equal(arr, b) + + def test_boolean(self): + a = np.array(5) + assert_equal(a[np.array(True)], 5) + a[np.array(True)] = 1 + assert_equal(a, 1) + # NOTE: This is different from normal broadcasting, as + # arr[boolean_array] works like in a multi index. Which means + # it is aligned to the left. This is probably correct for + # consistency with arr[boolean_array,] also no broadcasting + # is done at all + self._check_multi_index( + self.a, (np.zeros_like(self.a, dtype=bool),)) + self._check_multi_index( + self.a, (np.zeros_like(self.a, dtype=bool)[..., 0],)) + self._check_multi_index( + self.a, (np.zeros_like(self.a, dtype=bool)[None, ...],)) + + def test_multidim(self): + # Automatically test combinations with complex indexes on 2nd (or 1st) + # spot and the simple ones in one other spot. + with warnings.catch_warnings(): + # This is so that np.array(True) is not accepted in a full integer + # index, when running the file separately. + warnings.filterwarnings('error', '', DeprecationWarning) + warnings.filterwarnings('error', '', VisibleDeprecationWarning) + + def isskip(idx): + return isinstance(idx, str) and idx == "skip" + + for simple_pos in [0, 2, 3]: + tocheck = [self.fill_indices, self.complex_indices, + self.fill_indices, self.fill_indices] + tocheck[simple_pos] = self.simple_indices + for index in product(*tocheck): + index = tuple(i for i in index if not isskip(i)) + self._check_multi_index(self.a, index) + self._check_multi_index(self.b, index) + + # Check very simple item getting: + self._check_multi_index(self.a, (0, 0, 0, 0)) + self._check_multi_index(self.b, (0, 0, 0, 0)) + # Also check (simple cases of) too many indices: + assert_raises(IndexError, self.a.__getitem__, (0, 0, 0, 0, 0)) + assert_raises(IndexError, self.a.__setitem__, (0, 0, 0, 0, 0), 0) + assert_raises(IndexError, self.a.__getitem__, (0, 0, [1], 0, 0)) + assert_raises(IndexError, self.a.__setitem__, (0, 0, [1], 0, 0), 0) + + def test_1d(self): + a = np.arange(10) + for index in self.complex_indices: + self._check_single_index(a, index) + +class TestFloatNonIntegerArgument: + """ + These test that ``TypeError`` is raised when you try to use + non-integers as arguments to for indexing and slicing e.g. ``a[0.0:5]`` + and ``a[0.5]``, or other functions like ``array.reshape(1., -1)``. + + """ + def test_valid_indexing(self): + # These should raise no errors. + a = np.array([[[5]]]) + + a[np.array([0])] + a[[0, 0]] + a[:, [0, 0]] + a[:, 0, :] + a[:, :, :] + + def test_valid_slicing(self): + # These should raise no errors. + a = np.array([[[5]]]) + + a[::] + a[0:] + a[:2] + a[0:2] + a[::2] + a[1::2] + a[:2:2] + a[1:2:2] + + def test_non_integer_argument_errors(self): + a = np.array([[5]]) + + assert_raises(TypeError, np.reshape, a, (1., 1., -1)) + assert_raises(TypeError, np.reshape, a, (np.array(1.), -1)) + assert_raises(TypeError, np.take, a, [0], 1.) + assert_raises(TypeError, np.take, a, [0], np.float64(1.)) + + def test_non_integer_sequence_multiplication(self): + # NumPy scalar sequence multiply should not work with non-integers + def mult(a, b): + return a * b + + assert_raises(TypeError, mult, [1], np.float64(3)) + # following should be OK + mult([1], np.int_(3)) + + def test_reduce_axis_float_index(self): + d = np.zeros((3, 3, 3)) + assert_raises(TypeError, np.min, d, 0.5) + assert_raises(TypeError, np.min, d, (0.5, 1)) + assert_raises(TypeError, np.min, d, (1, 2.2)) + assert_raises(TypeError, np.min, d, (.2, 1.2)) + + +class TestBooleanIndexing: + # Using a boolean as integer argument/indexing is an error. + def test_bool_as_int_argument_errors(self): + a = np.array([[[1]]]) + + assert_raises(TypeError, np.reshape, a, (True, -1)) + assert_raises(TypeError, np.reshape, a, (np.bool(True), -1)) + # Note that operator.index(np.array(True)) does not work, a boolean + # array is thus also deprecated, but not with the same message: + assert_raises(TypeError, operator.index, np.array(True)) + assert_raises(TypeError, operator.index, np.True_) + assert_raises(TypeError, np.take, args=(a, [0], False)) + + def test_boolean_indexing_weirdness(self): + # Weird boolean indexing things + a = np.ones((2, 3, 4)) + assert a[False, True, ...].shape == (0, 2, 3, 4) + assert a[True, [0, 1], True, True, [1], [[2]]].shape == (1, 2) + assert_raises(IndexError, lambda: a[False, [0, 1], ...]) + + def test_boolean_indexing_fast_path(self): + # These used to either give the wrong error, or incorrectly give no + # error. + a = np.ones((3, 3)) + + # This used to incorrectly work (and give an array of shape (0,)) + idx1 = np.array([[False] * 9]) + assert_raises_regex(IndexError, + "boolean index did not match indexed array along axis 0; " + "size of axis is 3 but size of corresponding boolean axis is 1", + lambda: a[idx1]) + + # This used to incorrectly give a ValueError: operands could not be broadcast together + idx2 = np.array([[False] * 8 + [True]]) + assert_raises_regex(IndexError, + "boolean index did not match indexed array along axis 0; " + "size of axis is 3 but size of corresponding boolean axis is 1", + lambda: a[idx2]) + + # This is the same as it used to be. The above two should work like this. + idx3 = np.array([[False] * 10]) + assert_raises_regex(IndexError, + "boolean index did not match indexed array along axis 0; " + "size of axis is 3 but size of corresponding boolean axis is 1", + lambda: a[idx3]) + + # This used to give ValueError: non-broadcastable operand + a = np.ones((1, 1, 2)) + idx = np.array([[[True], [False]]]) + assert_raises_regex(IndexError, + "boolean index did not match indexed array along axis 1; " + "size of axis is 1 but size of corresponding boolean axis is 2", + lambda: a[idx]) + + +class TestArrayToIndexDeprecation: + """Creating an index from array not 0-D is an error. + + """ + def test_array_to_index_error(self): + # so no exception is expected. The raising is effectively tested above. + a = np.array([[[1]]]) + + assert_raises(TypeError, operator.index, np.array([1])) + assert_raises(TypeError, np.reshape, a, (a, -1)) + assert_raises(TypeError, np.take, a, [0], a) + + +class TestNonIntegerArrayLike: + """Tests that array_likes only valid if can safely cast to integer. + + For instance, lists give IndexError when they cannot be safely cast to + an integer. + + """ + def test_basic(self): + a = np.arange(10) + + assert_raises(IndexError, a.__getitem__, [0.5, 1.5]) + assert_raises(IndexError, a.__getitem__, (['1', '2'],)) + + # The following is valid + a.__getitem__([]) + + +class TestMultipleEllipsisError: + """An index can only have a single ellipsis. + + """ + def test_basic(self): + a = np.arange(10) + assert_raises(IndexError, lambda: a[..., ...]) + assert_raises(IndexError, a.__getitem__, ((Ellipsis,) * 2,)) + assert_raises(IndexError, a.__getitem__, ((Ellipsis,) * 3,)) + + +class TestCApiAccess: + def test_getitem(self): + subscript = functools.partial(array_indexing, 0) + + # 0-d arrays don't work: + assert_raises(IndexError, subscript, np.ones(()), 0) + # Out of bound values: + assert_raises(IndexError, subscript, np.ones(10), 11) + assert_raises(IndexError, subscript, np.ones(10), -11) + assert_raises(IndexError, subscript, np.ones((10, 10)), 11) + assert_raises(IndexError, subscript, np.ones((10, 10)), -11) + + a = np.arange(10) + assert_array_equal(a[4], subscript(a, 4)) + a = a.reshape(5, 2) + assert_array_equal(a[-4], subscript(a, -4)) + + def test_setitem(self): + assign = functools.partial(array_indexing, 1) + + # Deletion is impossible: + assert_raises(ValueError, assign, np.ones(10), 0) + # 0-d arrays don't work: + assert_raises(IndexError, assign, np.ones(()), 0, 0) + # Out of bound values: + assert_raises(IndexError, assign, np.ones(10), 11, 0) + assert_raises(IndexError, assign, np.ones(10), -11, 0) + assert_raises(IndexError, assign, np.ones((10, 10)), 11, 0) + assert_raises(IndexError, assign, np.ones((10, 10)), -11, 0) + + a = np.arange(10) + assign(a, 4, 10) + assert_(a[4] == 10) + + a = a.reshape(5, 2) + assign(a, 4, 10) + assert_array_equal(a[-1], [10, 10]) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_item_selection.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_item_selection.py new file mode 100644 index 0000000..79fb82d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_item_selection.py @@ -0,0 +1,167 @@ +import sys + +import pytest + +import numpy as np +from numpy.testing import HAS_REFCOUNT, assert_, assert_array_equal, assert_raises + + +class TestTake: + def test_simple(self): + a = [[1, 2], [3, 4]] + a_str = [[b'1', b'2'], [b'3', b'4']] + modes = ['raise', 'wrap', 'clip'] + indices = [-1, 4] + index_arrays = [np.empty(0, dtype=np.intp), + np.empty((), dtype=np.intp), + np.empty((1, 1), dtype=np.intp)] + real_indices = {'raise': {-1: 1, 4: IndexError}, + 'wrap': {-1: 1, 4: 0}, + 'clip': {-1: 0, 4: 1}} + # Currently all types but object, use the same function generation. + # So it should not be necessary to test all. However test also a non + # refcounted struct on top of object, which has a size that hits the + # default (non-specialized) path. + types = int, object, np.dtype([('', 'i2', 3)]) + for t in types: + # ta works, even if the array may be odd if buffer interface is used + ta = np.array(a if np.issubdtype(t, np.number) else a_str, dtype=t) + tresult = list(ta.T.copy()) + for index_array in index_arrays: + if index_array.size != 0: + tresult[0].shape = (2,) + index_array.shape + tresult[1].shape = (2,) + index_array.shape + for mode in modes: + for index in indices: + real_index = real_indices[mode][index] + if real_index is IndexError and index_array.size != 0: + index_array.put(0, index) + assert_raises(IndexError, ta.take, index_array, + mode=mode, axis=1) + elif index_array.size != 0: + index_array.put(0, index) + res = ta.take(index_array, mode=mode, axis=1) + assert_array_equal(res, tresult[real_index]) + else: + res = ta.take(index_array, mode=mode, axis=1) + assert_(res.shape == (2,) + index_array.shape) + + def test_refcounting(self): + objects = [object() for i in range(10)] + if HAS_REFCOUNT: + orig_rcs = [sys.getrefcount(o) for o in objects] + for mode in ('raise', 'clip', 'wrap'): + a = np.array(objects) + b = np.array([2, 2, 4, 5, 3, 5]) + a.take(b, out=a[:6], mode=mode) + del a + if HAS_REFCOUNT: + assert_(all(sys.getrefcount(o) == rc + 1 + for o, rc in zip(objects, orig_rcs))) + # not contiguous, example: + a = np.array(objects * 2)[::2] + a.take(b, out=a[:6], mode=mode) + del a + if HAS_REFCOUNT: + assert_(all(sys.getrefcount(o) == rc + 1 + for o, rc in zip(objects, orig_rcs))) + + def test_unicode_mode(self): + d = np.arange(10) + k = b'\xc3\xa4'.decode("UTF8") + assert_raises(ValueError, d.take, 5, mode=k) + + def test_empty_partition(self): + # In reference to github issue #6530 + a_original = np.array([0, 2, 4, 6, 8, 10]) + a = a_original.copy() + + # An empty partition should be a successful no-op + a.partition(np.array([], dtype=np.int16)) + + assert_array_equal(a, a_original) + + def test_empty_argpartition(self): + # In reference to github issue #6530 + a = np.array([0, 2, 4, 6, 8, 10]) + a = a.argpartition(np.array([], dtype=np.int16)) + + b = np.array([0, 1, 2, 3, 4, 5]) + assert_array_equal(a, b) + + +class TestPutMask: + @pytest.mark.parametrize("dtype", list(np.typecodes["All"]) + ["i,O"]) + def test_simple(self, dtype): + if dtype.lower() == "m": + dtype += "8[ns]" + + # putmask is weird and doesn't care about value length (even shorter) + vals = np.arange(1001).astype(dtype=dtype) + + mask = np.random.randint(2, size=1000).astype(bool) + # Use vals.dtype in case of flexible dtype (i.e. string) + arr = np.zeros(1000, dtype=vals.dtype) + zeros = arr.copy() + + np.putmask(arr, mask, vals) + assert_array_equal(arr[mask], vals[:len(mask)][mask]) + assert_array_equal(arr[~mask], zeros[~mask]) + + @pytest.mark.parametrize("dtype", list(np.typecodes["All"])[1:] + ["i,O"]) + @pytest.mark.parametrize("mode", ["raise", "wrap", "clip"]) + def test_empty(self, dtype, mode): + arr = np.zeros(1000, dtype=dtype) + arr_copy = arr.copy() + mask = np.random.randint(2, size=1000).astype(bool) + + # Allowing empty values like this is weird... + np.put(arr, mask, []) + assert_array_equal(arr, arr_copy) + + +class TestPut: + @pytest.mark.parametrize("dtype", list(np.typecodes["All"])[1:] + ["i,O"]) + @pytest.mark.parametrize("mode", ["raise", "wrap", "clip"]) + def test_simple(self, dtype, mode): + if dtype.lower() == "m": + dtype += "8[ns]" + + # put is weird and doesn't care about value length (even shorter) + vals = np.arange(1001).astype(dtype=dtype) + + # Use vals.dtype in case of flexible dtype (i.e. string) + arr = np.zeros(1000, dtype=vals.dtype) + zeros = arr.copy() + + if mode == "clip": + # Special because 0 and -1 value are "reserved" for clip test + indx = np.random.permutation(len(arr) - 2)[:-500] + 1 + + indx[-1] = 0 + indx[-2] = len(arr) - 1 + indx_put = indx.copy() + indx_put[-1] = -1389 + indx_put[-2] = 1321 + else: + # Avoid duplicates (for simplicity) and fill half only + indx = np.random.permutation(len(arr) - 3)[:-500] + indx_put = indx + if mode == "wrap": + indx_put = indx_put + len(arr) + + np.put(arr, indx_put, vals, mode=mode) + assert_array_equal(arr[indx], vals[:len(indx)]) + untouched = np.ones(len(arr), dtype=bool) + untouched[indx] = False + assert_array_equal(arr[untouched], zeros[:untouched.sum()]) + + @pytest.mark.parametrize("dtype", list(np.typecodes["All"])[1:] + ["i,O"]) + @pytest.mark.parametrize("mode", ["raise", "wrap", "clip"]) + def test_empty(self, dtype, mode): + arr = np.zeros(1000, dtype=dtype) + arr_copy = arr.copy() + + # Allowing empty values like this is weird... + np.put(arr, [1, 2, 3], []) + assert_array_equal(arr, arr_copy) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_limited_api.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_limited_api.py new file mode 100644 index 0000000..984210e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_limited_api.py @@ -0,0 +1,102 @@ +import os +import subprocess +import sys +import sysconfig + +import pytest + +from numpy.testing import IS_EDITABLE, IS_PYPY, IS_WASM, NOGIL_BUILD + +# This import is copied from random.tests.test_extending +try: + import cython + from Cython.Compiler.Version import version as cython_version +except ImportError: + cython = None +else: + from numpy._utils import _pep440 + + # Note: keep in sync with the one in pyproject.toml + required_version = "3.0.6" + if _pep440.parse(cython_version) < _pep440.Version(required_version): + # too old or wrong cython, skip the test + cython = None + +pytestmark = pytest.mark.skipif(cython is None, reason="requires cython") + + +if IS_EDITABLE: + pytest.skip( + "Editable install doesn't support tests with a compile step", + allow_module_level=True + ) + + +@pytest.fixture(scope='module') +def install_temp(tmpdir_factory): + # Based in part on test_cython from random.tests.test_extending + if IS_WASM: + pytest.skip("No subprocess") + + srcdir = os.path.join(os.path.dirname(__file__), 'examples', 'limited_api') + build_dir = tmpdir_factory.mktemp("limited_api") / "build" + os.makedirs(build_dir, exist_ok=True) + # Ensure we use the correct Python interpreter even when `meson` is + # installed in a different Python environment (see gh-24956) + native_file = str(build_dir / 'interpreter-native-file.ini') + with open(native_file, 'w') as f: + f.write("[binaries]\n") + f.write(f"python = '{sys.executable}'\n") + f.write(f"python3 = '{sys.executable}'") + + try: + subprocess.check_call(["meson", "--version"]) + except FileNotFoundError: + pytest.skip("No usable 'meson' found") + if sysconfig.get_platform() == "win-arm64": + pytest.skip("Meson unable to find MSVC linker on win-arm64") + if sys.platform == "win32": + subprocess.check_call(["meson", "setup", + "--werror", + "--buildtype=release", + "--vsenv", "--native-file", native_file, + str(srcdir)], + cwd=build_dir, + ) + else: + subprocess.check_call(["meson", "setup", "--werror", + "--native-file", native_file, str(srcdir)], + cwd=build_dir + ) + try: + subprocess.check_call( + ["meson", "compile", "-vv"], cwd=build_dir) + except subprocess.CalledProcessError as p: + print(f"{p.stdout=}") + print(f"{p.stderr=}") + raise + + sys.path.append(str(build_dir)) + + +@pytest.mark.skipif(IS_WASM, reason="Can't start subprocess") +@pytest.mark.xfail( + sysconfig.get_config_var("Py_DEBUG"), + reason=( + "Py_LIMITED_API is incompatible with Py_DEBUG, Py_TRACE_REFS, " + "and Py_REF_DEBUG" + ), +) +@pytest.mark.xfail( + NOGIL_BUILD, + reason="Py_GIL_DISABLED builds do not currently support the limited API", +) +@pytest.mark.skipif(IS_PYPY, reason="no support for limited API in PyPy") +def test_limited_api(install_temp): + """Test building a third-party C extension with the limited API + and building a cython extension with the limited API + """ + + import limited_api1 # Earliest (3.6) # noqa: F401 + import limited_api2 # cython # noqa: F401 + import limited_api_latest # Latest version (current Python) # noqa: F401 diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_longdouble.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_longdouble.py new file mode 100644 index 0000000..f7edd97 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_longdouble.py @@ -0,0 +1,369 @@ +import platform +import warnings + +import pytest + +import numpy as np +from numpy._core.tests._locales import CommaDecimalPointLocale +from numpy.testing import ( + IS_MUSL, + assert_, + assert_array_equal, + assert_equal, + assert_raises, + temppath, +) + +LD_INFO = np.finfo(np.longdouble) +longdouble_longer_than_double = (LD_INFO.eps < np.finfo(np.double).eps) + + +_o = 1 + LD_INFO.eps +string_to_longdouble_inaccurate = (_o != np.longdouble(str(_o))) +del _o + + +def test_scalar_extraction(): + """Confirm that extracting a value doesn't convert to python float""" + o = 1 + LD_INFO.eps + a = np.array([o, o, o]) + assert_equal(a[1], o) + + +# Conversions string -> long double + +# 0.1 not exactly representable in base 2 floating point. +repr_precision = len(repr(np.longdouble(0.1))) +# +2 from macro block starting around line 842 in scalartypes.c.src. + + +@pytest.mark.skipif(IS_MUSL, + reason="test flaky on musllinux") +@pytest.mark.skipif(LD_INFO.precision + 2 >= repr_precision, + reason="repr precision not enough to show eps") +def test_str_roundtrip(): + # We will only see eps in repr if within printing precision. + o = 1 + LD_INFO.eps + assert_equal(np.longdouble(str(o)), o, f"str was {str(o)}") + + +@pytest.mark.skipif(string_to_longdouble_inaccurate, reason="Need strtold_l") +def test_str_roundtrip_bytes(): + o = 1 + LD_INFO.eps + assert_equal(np.longdouble(str(o).encode("ascii")), o) + + +@pytest.mark.skipif(string_to_longdouble_inaccurate, reason="Need strtold_l") +@pytest.mark.parametrize("strtype", (np.str_, np.bytes_, str, bytes)) +def test_array_and_stringlike_roundtrip(strtype): + """ + Test that string representations of long-double roundtrip both + for array casting and scalar coercion, see also gh-15608. + """ + o = 1 + LD_INFO.eps + + if strtype in (np.bytes_, bytes): + o_str = strtype(str(o).encode("ascii")) + else: + o_str = strtype(str(o)) + + # Test that `o` is correctly coerced from the string-like + assert o == np.longdouble(o_str) + + # Test that arrays also roundtrip correctly: + o_strarr = np.asarray([o] * 3, dtype=strtype) + assert (o == o_strarr.astype(np.longdouble)).all() + + # And array coercion and casting to string give the same as scalar repr: + assert (o_strarr == o_str).all() + assert (np.asarray([o] * 3).astype(strtype) == o_str).all() + + +def test_bogus_string(): + assert_raises(ValueError, np.longdouble, "spam") + assert_raises(ValueError, np.longdouble, "1.0 flub") + + +@pytest.mark.skipif(string_to_longdouble_inaccurate, reason="Need strtold_l") +def test_fromstring(): + o = 1 + LD_INFO.eps + s = (" " + str(o)) * 5 + a = np.array([o] * 5) + assert_equal(np.fromstring(s, sep=" ", dtype=np.longdouble), a, + err_msg=f"reading '{s}'") + + +def test_fromstring_complex(): + for ctype in ["complex", "cdouble"]: + # Check spacing between separator + assert_equal(np.fromstring("1, 2 , 3 ,4", sep=",", dtype=ctype), + np.array([1., 2., 3., 4.])) + # Real component not specified + assert_equal(np.fromstring("1j, -2j, 3j, 4e1j", sep=",", dtype=ctype), + np.array([1.j, -2.j, 3.j, 40.j])) + # Both components specified + assert_equal(np.fromstring("1+1j,2-2j, -3+3j, -4e1+4j", sep=",", dtype=ctype), + np.array([1. + 1.j, 2. - 2.j, - 3. + 3.j, - 40. + 4j])) + # Spaces at wrong places + with assert_raises(ValueError): + np.fromstring("1+2 j,3", dtype=ctype, sep=",") + with assert_raises(ValueError): + np.fromstring("1+ 2j,3", dtype=ctype, sep=",") + with assert_raises(ValueError): + np.fromstring("1 +2j,3", dtype=ctype, sep=",") + with assert_raises(ValueError): + np.fromstring("1+j", dtype=ctype, sep=",") + with assert_raises(ValueError): + np.fromstring("1+", dtype=ctype, sep=",") + with assert_raises(ValueError): + np.fromstring("1j+1", dtype=ctype, sep=",") + + +def test_fromstring_bogus(): + with assert_raises(ValueError): + np.fromstring("1. 2. 3. flop 4.", dtype=float, sep=" ") + + +def test_fromstring_empty(): + with assert_raises(ValueError): + np.fromstring("xxxxx", sep="x") + + +def test_fromstring_missing(): + with assert_raises(ValueError): + np.fromstring("1xx3x4x5x6", sep="x") + + +class TestFileBased: + + ldbl = 1 + LD_INFO.eps + tgt = np.array([ldbl] * 5) + out = ''.join([str(t) + '\n' for t in tgt]) + + def test_fromfile_bogus(self): + with temppath() as path: + with open(path, 'w') as f: + f.write("1. 2. 3. flop 4.\n") + + with assert_raises(ValueError): + np.fromfile(path, dtype=float, sep=" ") + + def test_fromfile_complex(self): + for ctype in ["complex", "cdouble"]: + # Check spacing between separator and only real component specified + with temppath() as path: + with open(path, 'w') as f: + f.write("1, 2 , 3 ,4\n") + + res = np.fromfile(path, dtype=ctype, sep=",") + assert_equal(res, np.array([1., 2., 3., 4.])) + + # Real component not specified + with temppath() as path: + with open(path, 'w') as f: + f.write("1j, -2j, 3j, 4e1j\n") + + res = np.fromfile(path, dtype=ctype, sep=",") + assert_equal(res, np.array([1.j, -2.j, 3.j, 40.j])) + + # Both components specified + with temppath() as path: + with open(path, 'w') as f: + f.write("1+1j,2-2j, -3+3j, -4e1+4j\n") + + res = np.fromfile(path, dtype=ctype, sep=",") + assert_equal(res, np.array([1. + 1.j, 2. - 2.j, - 3. + 3.j, - 40. + 4j])) + + # Spaces at wrong places + with temppath() as path: + with open(path, 'w') as f: + f.write("1+2 j,3\n") + + with assert_raises(ValueError): + np.fromfile(path, dtype=ctype, sep=",") + + # Spaces at wrong places + with temppath() as path: + with open(path, 'w') as f: + f.write("1+ 2j,3\n") + + with assert_raises(ValueError): + np.fromfile(path, dtype=ctype, sep=",") + + # Spaces at wrong places + with temppath() as path: + with open(path, 'w') as f: + f.write("1 +2j,3\n") + + with assert_raises(ValueError): + np.fromfile(path, dtype=ctype, sep=",") + + # Wrong sep + with temppath() as path: + with open(path, 'w') as f: + f.write("1+j\n") + + with assert_raises(ValueError): + np.fromfile(path, dtype=ctype, sep=",") + + # Wrong sep + with temppath() as path: + with open(path, 'w') as f: + f.write("1+\n") + + with assert_raises(ValueError): + np.fromfile(path, dtype=ctype, sep=",") + + # Wrong sep + with temppath() as path: + with open(path, 'w') as f: + f.write("1j+1\n") + + with assert_raises(ValueError): + np.fromfile(path, dtype=ctype, sep=",") + + @pytest.mark.skipif(string_to_longdouble_inaccurate, + reason="Need strtold_l") + def test_fromfile(self): + with temppath() as path: + with open(path, 'w') as f: + f.write(self.out) + res = np.fromfile(path, dtype=np.longdouble, sep="\n") + assert_equal(res, self.tgt) + + @pytest.mark.skipif(string_to_longdouble_inaccurate, + reason="Need strtold_l") + def test_genfromtxt(self): + with temppath() as path: + with open(path, 'w') as f: + f.write(self.out) + res = np.genfromtxt(path, dtype=np.longdouble) + assert_equal(res, self.tgt) + + @pytest.mark.skipif(string_to_longdouble_inaccurate, + reason="Need strtold_l") + def test_loadtxt(self): + with temppath() as path: + with open(path, 'w') as f: + f.write(self.out) + res = np.loadtxt(path, dtype=np.longdouble) + assert_equal(res, self.tgt) + + @pytest.mark.skipif(string_to_longdouble_inaccurate, + reason="Need strtold_l") + def test_tofile_roundtrip(self): + with temppath() as path: + self.tgt.tofile(path, sep=" ") + res = np.fromfile(path, dtype=np.longdouble, sep=" ") + assert_equal(res, self.tgt) + + +# Conversions long double -> string + + +def test_str_exact(): + o = 1 + LD_INFO.eps + assert_(str(o) != '1') + + +@pytest.mark.skipif(longdouble_longer_than_double, reason="BUG #2376") +@pytest.mark.skipif(string_to_longdouble_inaccurate, + reason="Need strtold_l") +def test_format(): + assert_(f"{1 + LD_INFO.eps:.40g}" != '1') + + +@pytest.mark.skipif(longdouble_longer_than_double, reason="BUG #2376") +@pytest.mark.skipif(string_to_longdouble_inaccurate, + reason="Need strtold_l") +def test_percent(): + o = 1 + LD_INFO.eps + assert_(f"{o:.40g}" != '1') + + +@pytest.mark.skipif(longdouble_longer_than_double, + reason="array repr problem") +@pytest.mark.skipif(string_to_longdouble_inaccurate, + reason="Need strtold_l") +def test_array_repr(): + o = 1 + LD_INFO.eps + a = np.array([o]) + b = np.array([1], dtype=np.longdouble) + if not np.all(a != b): + raise ValueError("precision loss creating arrays") + assert_(repr(a) != repr(b)) + +# +# Locale tests: scalar types formatting should be independent of the locale +# + +class TestCommaDecimalPointLocale(CommaDecimalPointLocale): + + def test_str_roundtrip_foreign(self): + o = 1.5 + assert_equal(o, np.longdouble(str(o))) + + def test_fromstring_foreign_repr(self): + f = 1.234 + a = np.fromstring(repr(f), dtype=float, sep=" ") + assert_equal(a[0], f) + + def test_fromstring_foreign(self): + s = "1.234" + a = np.fromstring(s, dtype=np.longdouble, sep=" ") + assert_equal(a[0], np.longdouble(s)) + + def test_fromstring_foreign_sep(self): + a = np.array([1, 2, 3, 4]) + b = np.fromstring("1,2,3,4,", dtype=np.longdouble, sep=",") + assert_array_equal(a, b) + + def test_fromstring_foreign_value(self): + with assert_raises(ValueError): + np.fromstring("1,234", dtype=np.longdouble, sep=" ") + + +@pytest.mark.parametrize("int_val", [ + # cases discussed in gh-10723 + # and gh-9968 + 2 ** 1024, 0]) +def test_longdouble_from_int(int_val): + # for issue gh-9968 + str_val = str(int_val) + # we'll expect a RuntimeWarning on platforms + # with np.longdouble equivalent to np.double + # for large integer input + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', RuntimeWarning) + # can be inf==inf on some platforms + assert np.longdouble(int_val) == np.longdouble(str_val) + # we can't directly compare the int and + # max longdouble value on all platforms + if np.allclose(np.finfo(np.longdouble).max, + np.finfo(np.double).max) and w: + assert w[0].category is RuntimeWarning + +@pytest.mark.parametrize("bool_val", [ + True, False]) +def test_longdouble_from_bool(bool_val): + assert np.longdouble(bool_val) == np.longdouble(int(bool_val)) + + +@pytest.mark.skipif( + not (IS_MUSL and platform.machine() == "x86_64"), + reason="only need to run on musllinux_x86_64" +) +def test_musllinux_x86_64_signature(): + # this test may fail if you're emulating musllinux_x86_64 on a different + # architecture, but should pass natively. + known_sigs = [b'\xcd\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xfb\xbf'] + sig = (np.longdouble(-1.0) / np.longdouble(10.0)) + sig = sig.view(sig.dtype.newbyteorder('<')).tobytes()[:10] + assert sig in known_sigs + + +def test_eps_positive(): + # np.finfo('g').eps should be positive on all platforms. If this isn't true + # then something may have gone wrong with the MachArLike, e.g. if + # np._core.getlimits._discovered_machar didn't work properly + assert np.finfo(np.longdouble).eps > 0. diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_machar.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_machar.py new file mode 100644 index 0000000..2d772dd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_machar.py @@ -0,0 +1,30 @@ +""" +Test machar. Given recent changes to hardcode type data, we might want to get +rid of both MachAr and this test at some point. + +""" +import numpy._core.numerictypes as ntypes +from numpy import array, errstate +from numpy._core._machar import MachAr + + +class TestMachAr: + def _run_machar_highprec(self): + # Instantiate MachAr instance with high enough precision to cause + # underflow + try: + hiprec = ntypes.float96 + MachAr(lambda v: array(v, hiprec)) + except AttributeError: + # Fixme, this needs to raise a 'skip' exception. + "Skipping test: no ntypes.float96 available on this platform." + + def test_underlow(self): + # Regression test for #759: + # instantiating MachAr for dtype = np.float96 raises spurious warning. + with errstate(all='raise'): + try: + self._run_machar_highprec() + except FloatingPointError as e: + msg = f"Caught {e} exception, should not have been raised." + raise AssertionError(msg) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_mem_overlap.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_mem_overlap.py new file mode 100644 index 0000000..d173567 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_mem_overlap.py @@ -0,0 +1,930 @@ +import itertools + +import pytest +from numpy._core._multiarray_tests import internal_overlap, solve_diophantine + +import numpy as np +from numpy._core import _umath_tests +from numpy.lib.stride_tricks import as_strided +from numpy.testing import assert_, assert_array_equal, assert_equal, assert_raises + +ndims = 2 +size = 10 +shape = tuple([size] * ndims) + +MAY_SHARE_BOUNDS = 0 +MAY_SHARE_EXACT = -1 + + +def _indices_for_nelems(nelems): + """Returns slices of length nelems, from start onwards, in direction sign.""" + + if nelems == 0: + return [size // 2] # int index + + res = [] + for step in (1, 2): + for sign in (-1, 1): + start = size // 2 - nelems * step * sign // 2 + stop = start + nelems * step * sign + res.append(slice(start, stop, step * sign)) + + return res + + +def _indices_for_axis(): + """Returns (src, dst) pairs of indices.""" + + res = [] + for nelems in (0, 2, 3): + ind = _indices_for_nelems(nelems) + res.extend(itertools.product(ind, ind)) # all assignments of size "nelems" + + return res + + +def _indices(ndims): + """Returns ((axis0_src, axis0_dst), (axis1_src, axis1_dst), ... ) index pairs.""" + + ind = _indices_for_axis() + return itertools.product(ind, repeat=ndims) + + +def _check_assignment(srcidx, dstidx): + """Check assignment arr[dstidx] = arr[srcidx] works.""" + + arr = np.arange(np.prod(shape)).reshape(shape) + + cpy = arr.copy() + + cpy[dstidx] = arr[srcidx] + arr[dstidx] = arr[srcidx] + + assert_(np.all(arr == cpy), + f'assigning arr[{dstidx}] = arr[{srcidx}]') + + +def test_overlapping_assignments(): + # Test automatically generated assignments which overlap in memory. + + inds = _indices(ndims) + + for ind in inds: + srcidx = tuple(a[0] for a in ind) + dstidx = tuple(a[1] for a in ind) + + _check_assignment(srcidx, dstidx) + + +@pytest.mark.slow +def test_diophantine_fuzz(): + # Fuzz test the diophantine solver + rng = np.random.RandomState(1234) + + max_int = np.iinfo(np.intp).max + + for ndim in range(10): + feasible_count = 0 + infeasible_count = 0 + + min_count = 500 // (ndim + 1) + + while min(feasible_count, infeasible_count) < min_count: + # Ensure big and small integer problems + A_max = 1 + rng.randint(0, 11, dtype=np.intp)**6 + U_max = rng.randint(0, 11, dtype=np.intp)**6 + + A_max = min(max_int, A_max) + U_max = min(max_int - 1, U_max) + + A = tuple(int(rng.randint(1, A_max + 1, dtype=np.intp)) + for j in range(ndim)) + U = tuple(int(rng.randint(0, U_max + 2, dtype=np.intp)) + for j in range(ndim)) + + b_ub = min(max_int - 2, sum(a * ub for a, ub in zip(A, U))) + b = int(rng.randint(-1, b_ub + 2, dtype=np.intp)) + + if ndim == 0 and feasible_count < min_count: + b = 0 + + X = solve_diophantine(A, U, b) + + if X is None: + # Check the simplified decision problem agrees + X_simplified = solve_diophantine(A, U, b, simplify=1) + assert_(X_simplified is None, (A, U, b, X_simplified)) + + # Check no solution exists (provided the problem is + # small enough so that brute force checking doesn't + # take too long) + ranges = tuple(range(0, a * ub + 1, a) for a, ub in zip(A, U)) + + size = 1 + for r in ranges: + size *= len(r) + if size < 100000: + assert_(not any(sum(w) == b for w in itertools.product(*ranges))) + infeasible_count += 1 + else: + # Check the simplified decision problem agrees + X_simplified = solve_diophantine(A, U, b, simplify=1) + assert_(X_simplified is not None, (A, U, b, X_simplified)) + + # Check validity + assert_(sum(a * x for a, x in zip(A, X)) == b) + assert_(all(0 <= x <= ub for x, ub in zip(X, U))) + feasible_count += 1 + + +def test_diophantine_overflow(): + # Smoke test integer overflow detection + max_intp = np.iinfo(np.intp).max + max_int64 = np.iinfo(np.int64).max + + if max_int64 <= max_intp: + # Check that the algorithm works internally in 128-bit; + # solving this problem requires large intermediate numbers + A = (max_int64 // 2, max_int64 // 2 - 10) + U = (max_int64 // 2, max_int64 // 2 - 10) + b = 2 * (max_int64 // 2) - 10 + + assert_equal(solve_diophantine(A, U, b), (1, 1)) + + +def check_may_share_memory_exact(a, b): + got = np.may_share_memory(a, b, max_work=MAY_SHARE_EXACT) + + assert_equal(np.may_share_memory(a, b), + np.may_share_memory(a, b, max_work=MAY_SHARE_BOUNDS)) + + a.fill(0) + b.fill(0) + a.fill(1) + exact = b.any() + + err_msg = "" + if got != exact: + err_msg = " " + "\n ".join([ + f"base_a - base_b = {a.__array_interface__['data'][0] - b.__array_interface__['data'][0]!r}", + f"shape_a = {a.shape!r}", + f"shape_b = {b.shape!r}", + f"strides_a = {a.strides!r}", + f"strides_b = {b.strides!r}", + f"size_a = {a.size!r}", + f"size_b = {b.size!r}" + ]) + + assert_equal(got, exact, err_msg=err_msg) + + +def test_may_share_memory_manual(): + # Manual test cases for may_share_memory + + # Base arrays + xs0 = [ + np.zeros([13, 21, 23, 22], dtype=np.int8), + np.zeros([13, 21, 23 * 2, 22], dtype=np.int8)[:, :, ::2, :] + ] + + # Generate all negative stride combinations + xs = [] + for x in xs0: + for ss in itertools.product(*(([slice(None), slice(None, None, -1)],) * 4)): + xp = x[ss] + xs.append(xp) + + for x in xs: + # The default is a simple extent check + assert_(np.may_share_memory(x[:, 0, :], x[:, 1, :])) + assert_(np.may_share_memory(x[:, 0, :], x[:, 1, :], max_work=None)) + + # Exact checks + check_may_share_memory_exact(x[:, 0, :], x[:, 1, :]) + check_may_share_memory_exact(x[:, ::7], x[:, 3::3]) + + try: + xp = x.ravel() + if xp.flags.owndata: + continue + xp = xp.view(np.int16) + except ValueError: + continue + + # 0-size arrays cannot overlap + check_may_share_memory_exact(x.ravel()[6:6], + xp.reshape(13, 21, 23, 11)[:, ::7]) + + # Test itemsize is dealt with + check_may_share_memory_exact(x[:, ::7], + xp.reshape(13, 21, 23, 11)) + check_may_share_memory_exact(x[:, ::7], + xp.reshape(13, 21, 23, 11)[:, 3::3]) + check_may_share_memory_exact(x.ravel()[6:7], + xp.reshape(13, 21, 23, 11)[:, ::7]) + + # Check unit size + x = np.zeros([1], dtype=np.int8) + check_may_share_memory_exact(x, x) + check_may_share_memory_exact(x, x.copy()) + + +def iter_random_view_pairs(x, same_steps=True, equal_size=False): + rng = np.random.RandomState(1234) + + if equal_size and same_steps: + raise ValueError + + def random_slice(n, step): + start = rng.randint(0, n + 1, dtype=np.intp) + stop = rng.randint(start, n + 1, dtype=np.intp) + if rng.randint(0, 2, dtype=np.intp) == 0: + stop, start = start, stop + step *= -1 + return slice(start, stop, step) + + def random_slice_fixed_size(n, step, size): + start = rng.randint(0, n + 1 - size * step) + stop = start + (size - 1) * step + 1 + if rng.randint(0, 2) == 0: + stop, start = start - 1, stop - 1 + if stop < 0: + stop = None + step *= -1 + return slice(start, stop, step) + + # First a few regular views + yield x, x + for j in range(1, 7, 3): + yield x[j:], x[:-j] + yield x[..., j:], x[..., :-j] + + # An array with zero stride internal overlap + strides = list(x.strides) + strides[0] = 0 + xp = as_strided(x, shape=x.shape, strides=strides) + yield x, xp + yield xp, xp + + # An array with non-zero stride internal overlap + strides = list(x.strides) + if strides[0] > 1: + strides[0] = 1 + xp = as_strided(x, shape=x.shape, strides=strides) + yield x, xp + yield xp, xp + + # Then discontiguous views + while True: + steps = tuple(rng.randint(1, 11, dtype=np.intp) + if rng.randint(0, 5, dtype=np.intp) == 0 else 1 + for j in range(x.ndim)) + s1 = tuple(random_slice(p, s) for p, s in zip(x.shape, steps)) + + t1 = np.arange(x.ndim) + rng.shuffle(t1) + + if equal_size: + t2 = t1 + else: + t2 = np.arange(x.ndim) + rng.shuffle(t2) + + a = x[s1] + + if equal_size: + if a.size == 0: + continue + + steps2 = tuple(rng.randint(1, max(2, p // (1 + pa))) + if rng.randint(0, 5) == 0 else 1 + for p, s, pa in zip(x.shape, s1, a.shape)) + s2 = tuple(random_slice_fixed_size(p, s, pa) + for p, s, pa in zip(x.shape, steps2, a.shape)) + elif same_steps: + steps2 = steps + else: + steps2 = tuple(rng.randint(1, 11, dtype=np.intp) + if rng.randint(0, 5, dtype=np.intp) == 0 else 1 + for j in range(x.ndim)) + + if not equal_size: + s2 = tuple(random_slice(p, s) for p, s in zip(x.shape, steps2)) + + a = a.transpose(t1) + b = x[s2].transpose(t2) + + yield a, b + + +def check_may_share_memory_easy_fuzz(get_max_work, same_steps, min_count): + # Check that overlap problems with common strides are solved with + # little work. + x = np.zeros([17, 34, 71, 97], dtype=np.int16) + + feasible = 0 + infeasible = 0 + + pair_iter = iter_random_view_pairs(x, same_steps) + + while min(feasible, infeasible) < min_count: + a, b = next(pair_iter) + + bounds_overlap = np.may_share_memory(a, b) + may_share_answer = np.may_share_memory(a, b) + easy_answer = np.may_share_memory(a, b, max_work=get_max_work(a, b)) + exact_answer = np.may_share_memory(a, b, max_work=MAY_SHARE_EXACT) + + if easy_answer != exact_answer: + # assert_equal is slow... + assert_equal(easy_answer, exact_answer) + + if may_share_answer != bounds_overlap: + assert_equal(may_share_answer, bounds_overlap) + + if bounds_overlap: + if exact_answer: + feasible += 1 + else: + infeasible += 1 + + +@pytest.mark.slow +def test_may_share_memory_easy_fuzz(): + # Check that overlap problems with common strides are always + # solved with little work. + + check_may_share_memory_easy_fuzz(get_max_work=lambda a, b: 1, + same_steps=True, + min_count=2000) + + +@pytest.mark.slow +def test_may_share_memory_harder_fuzz(): + # Overlap problems with not necessarily common strides take more + # work. + # + # The work bound below can't be reduced much. Harder problems can + # also exist but not be detected here, as the set of problems + # comes from RNG. + + check_may_share_memory_easy_fuzz(get_max_work=lambda a, b: max(a.size, b.size) // 2, + same_steps=False, + min_count=2000) + + +def test_shares_memory_api(): + x = np.zeros([4, 5, 6], dtype=np.int8) + + assert_equal(np.shares_memory(x, x), True) + assert_equal(np.shares_memory(x, x.copy()), False) + + a = x[:, ::2, ::3] + b = x[:, ::3, ::2] + assert_equal(np.shares_memory(a, b), True) + assert_equal(np.shares_memory(a, b, max_work=None), True) + assert_raises( + np.exceptions.TooHardError, np.shares_memory, a, b, max_work=1 + ) + + +def test_may_share_memory_bad_max_work(): + x = np.zeros([1]) + assert_raises(OverflowError, np.may_share_memory, x, x, max_work=10**100) + assert_raises(OverflowError, np.shares_memory, x, x, max_work=10**100) + + +def test_internal_overlap_diophantine(): + def check(A, U, exists=None): + X = solve_diophantine(A, U, 0, require_ub_nontrivial=1) + + if exists is None: + exists = (X is not None) + + if X is not None: + assert_(sum(a * x for a, x in zip(A, X)) == sum(a * u // 2 for a, u in zip(A, U))) + assert_(all(0 <= x <= u for x, u in zip(X, U))) + assert_(any(x != u // 2 for x, u in zip(X, U))) + + if exists: + assert_(X is not None, repr(X)) + else: + assert_(X is None, repr(X)) + + # Smoke tests + check((3, 2), (2 * 2, 3 * 2), exists=True) + check((3 * 2, 2), (15 * 2, (3 - 1) * 2), exists=False) + + +def test_internal_overlap_slices(): + # Slicing an array never generates internal overlap + + x = np.zeros([17, 34, 71, 97], dtype=np.int16) + + rng = np.random.RandomState(1234) + + def random_slice(n, step): + start = rng.randint(0, n + 1, dtype=np.intp) + stop = rng.randint(start, n + 1, dtype=np.intp) + if rng.randint(0, 2, dtype=np.intp) == 0: + stop, start = start, stop + step *= -1 + return slice(start, stop, step) + + cases = 0 + min_count = 5000 + + while cases < min_count: + steps = tuple(rng.randint(1, 11, dtype=np.intp) + if rng.randint(0, 5, dtype=np.intp) == 0 else 1 + for j in range(x.ndim)) + t1 = np.arange(x.ndim) + rng.shuffle(t1) + s1 = tuple(random_slice(p, s) for p, s in zip(x.shape, steps)) + a = x[s1].transpose(t1) + + assert_(not internal_overlap(a)) + cases += 1 + + +def check_internal_overlap(a, manual_expected=None): + got = internal_overlap(a) + + # Brute-force check + m = set() + ranges = tuple(range(n) for n in a.shape) + for v in itertools.product(*ranges): + offset = sum(s * w for s, w in zip(a.strides, v)) + if offset in m: + expected = True + break + else: + m.add(offset) + else: + expected = False + + # Compare + if got != expected: + assert_equal(got, expected, err_msg=repr((a.strides, a.shape))) + if manual_expected is not None and expected != manual_expected: + assert_equal(expected, manual_expected) + return got + + +def test_internal_overlap_manual(): + # Stride tricks can construct arrays with internal overlap + + # We don't care about memory bounds, the array is not + # read/write accessed + x = np.arange(1).astype(np.int8) + + # Check low-dimensional special cases + + check_internal_overlap(x, False) # 1-dim + check_internal_overlap(x.reshape([]), False) # 0-dim + + a = as_strided(x, strides=(3, 4), shape=(4, 4)) + check_internal_overlap(a, False) + + a = as_strided(x, strides=(3, 4), shape=(5, 4)) + check_internal_overlap(a, True) + + a = as_strided(x, strides=(0,), shape=(0,)) + check_internal_overlap(a, False) + + a = as_strided(x, strides=(0,), shape=(1,)) + check_internal_overlap(a, False) + + a = as_strided(x, strides=(0,), shape=(2,)) + check_internal_overlap(a, True) + + a = as_strided(x, strides=(0, -9993), shape=(87, 22)) + check_internal_overlap(a, True) + + a = as_strided(x, strides=(0, -9993), shape=(1, 22)) + check_internal_overlap(a, False) + + a = as_strided(x, strides=(0, -9993), shape=(0, 22)) + check_internal_overlap(a, False) + + +def test_internal_overlap_fuzz(): + # Fuzz check; the brute-force check is fairly slow + + x = np.arange(1).astype(np.int8) + + overlap = 0 + no_overlap = 0 + min_count = 100 + + rng = np.random.RandomState(1234) + + while min(overlap, no_overlap) < min_count: + ndim = rng.randint(1, 4, dtype=np.intp) + + strides = tuple(rng.randint(-1000, 1000, dtype=np.intp) + for j in range(ndim)) + shape = tuple(rng.randint(1, 30, dtype=np.intp) + for j in range(ndim)) + + a = as_strided(x, strides=strides, shape=shape) + result = check_internal_overlap(a) + + if result: + overlap += 1 + else: + no_overlap += 1 + + +def test_non_ndarray_inputs(): + # Regression check for gh-5604 + + class MyArray: + def __init__(self, data): + self.data = data + + @property + def __array_interface__(self): + return self.data.__array_interface__ + + class MyArray2: + def __init__(self, data): + self.data = data + + def __array__(self, dtype=None, copy=None): + return self.data + + for cls in [MyArray, MyArray2]: + x = np.arange(5) + + assert_(np.may_share_memory(cls(x[::2]), x[1::2])) + assert_(not np.shares_memory(cls(x[::2]), x[1::2])) + + assert_(np.shares_memory(cls(x[1::3]), x[::2])) + assert_(np.may_share_memory(cls(x[1::3]), x[::2])) + + +def view_element_first_byte(x): + """Construct an array viewing the first byte of each element of `x`""" + from numpy.lib._stride_tricks_impl import DummyArray + interface = dict(x.__array_interface__) + interface['typestr'] = '|b1' + interface['descr'] = [('', '|b1')] + return np.asarray(DummyArray(interface, x)) + + +def assert_copy_equivalent(operation, args, out, **kwargs): + """ + Check that operation(*args, out=out) produces results + equivalent to out[...] = operation(*args, out=out.copy()) + """ + + kwargs['out'] = out + kwargs2 = dict(kwargs) + kwargs2['out'] = out.copy() + + out_orig = out.copy() + out[...] = operation(*args, **kwargs2) + expected = out.copy() + out[...] = out_orig + + got = operation(*args, **kwargs).copy() + + if (got != expected).any(): + assert_equal(got, expected) + + +class TestUFunc: + """ + Test ufunc call memory overlap handling + """ + + def check_unary_fuzz(self, operation, get_out_axis_size, dtype=np.int16, + count=5000): + shapes = [7, 13, 8, 21, 29, 32] + + rng = np.random.RandomState(1234) + + for ndim in range(1, 6): + x = rng.randint(0, 2**16, size=shapes[:ndim]).astype(dtype) + + it = iter_random_view_pairs(x, same_steps=False, equal_size=True) + + min_count = count // (ndim + 1)**2 + + overlapping = 0 + while overlapping < min_count: + a, b = next(it) + + a_orig = a.copy() + b_orig = b.copy() + + if get_out_axis_size is None: + assert_copy_equivalent(operation, [a], out=b) + + if np.shares_memory(a, b): + overlapping += 1 + else: + for axis in itertools.chain(range(ndim), [None]): + a[...] = a_orig + b[...] = b_orig + + # Determine size for reduction axis (None if scalar) + outsize, scalarize = get_out_axis_size(a, b, axis) + if outsize == 'skip': + continue + + # Slice b to get an output array of the correct size + sl = [slice(None)] * ndim + if axis is None: + if outsize is None: + sl = [slice(0, 1)] + [0] * (ndim - 1) + else: + sl = [slice(0, outsize)] + [0] * (ndim - 1) + elif outsize is None: + k = b.shape[axis] // 2 + if ndim == 1: + sl[axis] = slice(k, k + 1) + else: + sl[axis] = k + else: + assert b.shape[axis] >= outsize + sl[axis] = slice(0, outsize) + b_out = b[tuple(sl)] + + if scalarize: + b_out = b_out.reshape([]) + + if np.shares_memory(a, b_out): + overlapping += 1 + + # Check result + assert_copy_equivalent(operation, [a], out=b_out, axis=axis) + + @pytest.mark.slow + def test_unary_ufunc_call_fuzz(self): + self.check_unary_fuzz(np.invert, None, np.int16) + + @pytest.mark.slow + def test_unary_ufunc_call_complex_fuzz(self): + # Complex typically has a smaller alignment than itemsize + self.check_unary_fuzz(np.negative, None, np.complex128, count=500) + + def test_binary_ufunc_accumulate_fuzz(self): + def get_out_axis_size(a, b, axis): + if axis is None: + if a.ndim == 1: + return a.size, False + else: + return 'skip', False # accumulate doesn't support this + else: + return a.shape[axis], False + + self.check_unary_fuzz(np.add.accumulate, get_out_axis_size, + dtype=np.int16, count=500) + + def test_binary_ufunc_reduce_fuzz(self): + def get_out_axis_size(a, b, axis): + return None, (axis is None or a.ndim == 1) + + self.check_unary_fuzz(np.add.reduce, get_out_axis_size, + dtype=np.int16, count=500) + + def test_binary_ufunc_reduceat_fuzz(self): + def get_out_axis_size(a, b, axis): + if axis is None: + if a.ndim == 1: + return a.size, False + else: + return 'skip', False # reduceat doesn't support this + else: + return a.shape[axis], False + + def do_reduceat(a, out, axis): + if axis is None: + size = len(a) + step = size // len(out) + else: + size = a.shape[axis] + step = a.shape[axis] // out.shape[axis] + idx = np.arange(0, size, step) + return np.add.reduceat(a, idx, out=out, axis=axis) + + self.check_unary_fuzz(do_reduceat, get_out_axis_size, + dtype=np.int16, count=500) + + def test_binary_ufunc_reduceat_manual(self): + def check(ufunc, a, ind, out): + c1 = ufunc.reduceat(a.copy(), ind.copy(), out=out.copy()) + c2 = ufunc.reduceat(a, ind, out=out) + assert_array_equal(c1, c2) + + # Exactly same input/output arrays + a = np.arange(10000, dtype=np.int16) + check(np.add, a, a[::-1].copy(), a) + + # Overlap with index + a = np.arange(10000, dtype=np.int16) + check(np.add, a, a[::-1], a) + + @pytest.mark.slow + def test_unary_gufunc_fuzz(self): + shapes = [7, 13, 8, 21, 29, 32] + gufunc = _umath_tests.euclidean_pdist + + rng = np.random.RandomState(1234) + + for ndim in range(2, 6): + x = rng.rand(*shapes[:ndim]) + + it = iter_random_view_pairs(x, same_steps=False, equal_size=True) + + min_count = 500 // (ndim + 1)**2 + + overlapping = 0 + while overlapping < min_count: + a, b = next(it) + + if min(a.shape[-2:]) < 2 or min(b.shape[-2:]) < 2 or a.shape[-1] < 2: + continue + + # Ensure the shapes are so that euclidean_pdist is happy + if b.shape[-1] > b.shape[-2]: + b = b[..., 0, :] + else: + b = b[..., :, 0] + + n = a.shape[-2] + p = n * (n - 1) // 2 + if p <= b.shape[-1] and p > 0: + b = b[..., :p] + else: + n = max(2, int(np.sqrt(b.shape[-1])) // 2) + p = n * (n - 1) // 2 + a = a[..., :n, :] + b = b[..., :p] + + # Call + if np.shares_memory(a, b): + overlapping += 1 + + with np.errstate(over='ignore', invalid='ignore'): + assert_copy_equivalent(gufunc, [a], out=b) + + def test_ufunc_at_manual(self): + def check(ufunc, a, ind, b=None): + a0 = a.copy() + if b is None: + ufunc.at(a0, ind.copy()) + c1 = a0.copy() + ufunc.at(a, ind) + c2 = a.copy() + else: + ufunc.at(a0, ind.copy(), b.copy()) + c1 = a0.copy() + ufunc.at(a, ind, b) + c2 = a.copy() + assert_array_equal(c1, c2) + + # Overlap with index + a = np.arange(10000, dtype=np.int16) + check(np.invert, a[::-1], a) + + # Overlap with second data array + a = np.arange(100, dtype=np.int16) + ind = np.arange(0, 100, 2, dtype=np.int16) + check(np.add, a, ind, a[25:75]) + + def test_unary_ufunc_1d_manual(self): + # Exercise ufunc fast-paths (that avoid creation of an `np.nditer`) + + def check(a, b): + a_orig = a.copy() + b_orig = b.copy() + + b0 = b.copy() + c1 = ufunc(a, out=b0) + c2 = ufunc(a, out=b) + assert_array_equal(c1, c2) + + # Trigger "fancy ufunc loop" code path + mask = view_element_first_byte(b).view(np.bool) + + a[...] = a_orig + b[...] = b_orig + c1 = ufunc(a, out=b.copy(), where=mask.copy()).copy() + + a[...] = a_orig + b[...] = b_orig + c2 = ufunc(a, out=b, where=mask.copy()).copy() + + # Also, mask overlapping with output + a[...] = a_orig + b[...] = b_orig + c3 = ufunc(a, out=b, where=mask).copy() + + assert_array_equal(c1, c2) + assert_array_equal(c1, c3) + + dtypes = [np.int8, np.int16, np.int32, np.int64, np.float32, + np.float64, np.complex64, np.complex128] + dtypes = [np.dtype(x) for x in dtypes] + + for dtype in dtypes: + if np.issubdtype(dtype, np.integer): + ufunc = np.invert + else: + ufunc = np.reciprocal + + n = 1000 + k = 10 + indices = [ + np.index_exp[:n], + np.index_exp[k:k + n], + np.index_exp[n - 1::-1], + np.index_exp[k + n - 1:k - 1:-1], + np.index_exp[:2 * n:2], + np.index_exp[k:k + 2 * n:2], + np.index_exp[2 * n - 1::-2], + np.index_exp[k + 2 * n - 1:k - 1:-2], + ] + + for xi, yi in itertools.product(indices, indices): + v = np.arange(1, 1 + n * 2 + k, dtype=dtype) + x = v[xi] + y = v[yi] + + with np.errstate(all='ignore'): + check(x, y) + + # Scalar cases + check(x[:1], y) + check(x[-1:], y) + check(x[:1].reshape([]), y) + check(x[-1:].reshape([]), y) + + def test_unary_ufunc_where_same(self): + # Check behavior at wheremask overlap + ufunc = np.invert + + def check(a, out, mask): + c1 = ufunc(a, out=out.copy(), where=mask.copy()) + c2 = ufunc(a, out=out, where=mask) + assert_array_equal(c1, c2) + + # Check behavior with same input and output arrays + x = np.arange(100).astype(np.bool) + check(x, x, x) + check(x, x.copy(), x) + check(x, x, x.copy()) + + @pytest.mark.slow + def test_binary_ufunc_1d_manual(self): + ufunc = np.add + + def check(a, b, c): + c0 = c.copy() + c1 = ufunc(a, b, out=c0) + c2 = ufunc(a, b, out=c) + assert_array_equal(c1, c2) + + for dtype in [np.int8, np.int16, np.int32, np.int64, + np.float32, np.float64, np.complex64, np.complex128]: + # Check different data dependency orders + + n = 1000 + k = 10 + + indices = [] + for p in [1, 2]: + indices.extend([ + np.index_exp[:p * n:p], + np.index_exp[k:k + p * n:p], + np.index_exp[p * n - 1::-p], + np.index_exp[k + p * n - 1:k - 1:-p], + ]) + + for x, y, z in itertools.product(indices, indices, indices): + v = np.arange(6 * n).astype(dtype) + x = v[x] + y = v[y] + z = v[z] + + check(x, y, z) + + # Scalar cases + check(x[:1], y, z) + check(x[-1:], y, z) + check(x[:1].reshape([]), y, z) + check(x[-1:].reshape([]), y, z) + check(x, y[:1], z) + check(x, y[-1:], z) + check(x, y[:1].reshape([]), z) + check(x, y[-1:].reshape([]), z) + + def test_inplace_op_simple_manual(self): + rng = np.random.RandomState(1234) + x = rng.rand(200, 200) # bigger than bufsize + + x += x.T + assert_array_equal(x - x.T, 0) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_mem_policy.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_mem_policy.py new file mode 100644 index 0000000..b9f971e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_mem_policy.py @@ -0,0 +1,452 @@ +import asyncio +import gc +import os +import sys +import sysconfig +import threading + +import pytest + +import numpy as np +from numpy._core.multiarray import get_handler_name +from numpy.testing import IS_EDITABLE, IS_WASM, assert_warns, extbuild + + +@pytest.fixture +def get_module(tmp_path): + """ Add a memory policy that returns a false pointer 64 bytes into the + actual allocation, and fill the prefix with some text. Then check at each + memory manipulation that the prefix exists, to make sure all alloc/realloc/ + free/calloc go via the functions here. + """ + if sys.platform.startswith('cygwin'): + pytest.skip('link fails on cygwin') + if IS_WASM: + pytest.skip("Can't build module inside Wasm") + if IS_EDITABLE: + pytest.skip("Can't build module for editable install") + + functions = [ + ("get_default_policy", "METH_NOARGS", """ + Py_INCREF(PyDataMem_DefaultHandler); + return PyDataMem_DefaultHandler; + """), + ("set_secret_data_policy", "METH_NOARGS", """ + PyObject *secret_data = + PyCapsule_New(&secret_data_handler, "mem_handler", NULL); + if (secret_data == NULL) { + return NULL; + } + PyObject *old = PyDataMem_SetHandler(secret_data); + Py_DECREF(secret_data); + return old; + """), + ("set_wrong_capsule_name_data_policy", "METH_NOARGS", """ + PyObject *wrong_name_capsule = + PyCapsule_New(&secret_data_handler, "not_mem_handler", NULL); + if (wrong_name_capsule == NULL) { + return NULL; + } + PyObject *old = PyDataMem_SetHandler(wrong_name_capsule); + Py_DECREF(wrong_name_capsule); + return old; + """), + ("set_old_policy", "METH_O", """ + PyObject *old; + if (args != NULL && PyCapsule_CheckExact(args)) { + old = PyDataMem_SetHandler(args); + } + else { + old = PyDataMem_SetHandler(NULL); + } + return old; + """), + ("get_array", "METH_NOARGS", """ + char *buf = (char *)malloc(20); + npy_intp dims[1]; + dims[0] = 20; + PyArray_Descr *descr = PyArray_DescrNewFromType(NPY_UINT8); + return PyArray_NewFromDescr(&PyArray_Type, descr, 1, dims, NULL, + buf, NPY_ARRAY_WRITEABLE, NULL); + """), + ("set_own", "METH_O", """ + if (!PyArray_Check(args)) { + PyErr_SetString(PyExc_ValueError, + "need an ndarray"); + return NULL; + } + PyArray_ENABLEFLAGS((PyArrayObject*)args, NPY_ARRAY_OWNDATA); + // Maybe try this too? + // PyArray_BASE(PyArrayObject *)args) = NULL; + Py_RETURN_NONE; + """), + ("get_array_with_base", "METH_NOARGS", """ + char *buf = (char *)malloc(20); + npy_intp dims[1]; + dims[0] = 20; + PyArray_Descr *descr = PyArray_DescrNewFromType(NPY_UINT8); + PyObject *arr = PyArray_NewFromDescr(&PyArray_Type, descr, 1, dims, + NULL, buf, + NPY_ARRAY_WRITEABLE, NULL); + if (arr == NULL) return NULL; + PyObject *obj = PyCapsule_New(buf, "buf capsule", + (PyCapsule_Destructor)&warn_on_free); + if (obj == NULL) { + Py_DECREF(arr); + return NULL; + } + if (PyArray_SetBaseObject((PyArrayObject *)arr, obj) < 0) { + Py_DECREF(arr); + Py_DECREF(obj); + return NULL; + } + return arr; + + """), + ] + prologue = ''' + #define NPY_TARGET_VERSION NPY_1_22_API_VERSION + #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION + #include + /* + * This struct allows the dynamic configuration of the allocator funcs + * of the `secret_data_allocator`. It is provided here for + * demonstration purposes, as a valid `ctx` use-case scenario. + */ + typedef struct { + void *(*malloc)(size_t); + void *(*calloc)(size_t, size_t); + void *(*realloc)(void *, size_t); + void (*free)(void *); + } SecretDataAllocatorFuncs; + + NPY_NO_EXPORT void * + shift_alloc(void *ctx, size_t sz) { + SecretDataAllocatorFuncs *funcs = (SecretDataAllocatorFuncs *)ctx; + char *real = (char *)funcs->malloc(sz + 64); + if (real == NULL) { + return NULL; + } + snprintf(real, 64, "originally allocated %ld", (unsigned long)sz); + return (void *)(real + 64); + } + NPY_NO_EXPORT void * + shift_zero(void *ctx, size_t sz, size_t cnt) { + SecretDataAllocatorFuncs *funcs = (SecretDataAllocatorFuncs *)ctx; + char *real = (char *)funcs->calloc(sz + 64, cnt); + if (real == NULL) { + return NULL; + } + snprintf(real, 64, "originally allocated %ld via zero", + (unsigned long)sz); + return (void *)(real + 64); + } + NPY_NO_EXPORT void + shift_free(void *ctx, void * p, npy_uintp sz) { + SecretDataAllocatorFuncs *funcs = (SecretDataAllocatorFuncs *)ctx; + if (p == NULL) { + return ; + } + char *real = (char *)p - 64; + if (strncmp(real, "originally allocated", 20) != 0) { + fprintf(stdout, "uh-oh, unmatched shift_free, " + "no appropriate prefix\\n"); + /* Make C runtime crash by calling free on the wrong address */ + funcs->free((char *)p + 10); + /* funcs->free(real); */ + } + else { + npy_uintp i = (npy_uintp)atoi(real +20); + if (i != sz) { + fprintf(stderr, "uh-oh, unmatched shift_free" + "(ptr, %ld) but allocated %ld\\n", sz, i); + /* This happens in some places, only print */ + funcs->free(real); + } + else { + funcs->free(real); + } + } + } + NPY_NO_EXPORT void * + shift_realloc(void *ctx, void * p, npy_uintp sz) { + SecretDataAllocatorFuncs *funcs = (SecretDataAllocatorFuncs *)ctx; + if (p != NULL) { + char *real = (char *)p - 64; + if (strncmp(real, "originally allocated", 20) != 0) { + fprintf(stdout, "uh-oh, unmatched shift_realloc\\n"); + return realloc(p, sz); + } + return (void *)((char *)funcs->realloc(real, sz + 64) + 64); + } + else { + char *real = (char *)funcs->realloc(p, sz + 64); + if (real == NULL) { + return NULL; + } + snprintf(real, 64, "originally allocated " + "%ld via realloc", (unsigned long)sz); + return (void *)(real + 64); + } + } + /* As an example, we use the standard {m|c|re}alloc/free funcs. */ + static SecretDataAllocatorFuncs secret_data_handler_ctx = { + malloc, + calloc, + realloc, + free + }; + static PyDataMem_Handler secret_data_handler = { + "secret_data_allocator", + 1, + { + &secret_data_handler_ctx, /* ctx */ + shift_alloc, /* malloc */ + shift_zero, /* calloc */ + shift_realloc, /* realloc */ + shift_free /* free */ + } + }; + void warn_on_free(void *capsule) { + PyErr_WarnEx(PyExc_UserWarning, "in warn_on_free", 1); + void * obj = PyCapsule_GetPointer(capsule, + PyCapsule_GetName(capsule)); + free(obj); + }; + ''' + more_init = "import_array();" + try: + import mem_policy + return mem_policy + except ImportError: + pass + # if it does not exist, build and load it + if sysconfig.get_platform() == "win-arm64": + pytest.skip("Meson unable to find MSVC linker on win-arm64") + return extbuild.build_and_import_extension('mem_policy', + functions, + prologue=prologue, + include_dirs=[np.get_include()], + build_dir=tmp_path, + more_init=more_init) + + +def test_set_policy(get_module): + + get_handler_name = np._core.multiarray.get_handler_name + get_handler_version = np._core.multiarray.get_handler_version + orig_policy_name = get_handler_name() + + a = np.arange(10).reshape((2, 5)) # a doesn't own its own data + assert get_handler_name(a) is None + assert get_handler_version(a) is None + assert get_handler_name(a.base) == orig_policy_name + assert get_handler_version(a.base) == 1 + + orig_policy = get_module.set_secret_data_policy() + + b = np.arange(10).reshape((2, 5)) # b doesn't own its own data + assert get_handler_name(b) is None + assert get_handler_version(b) is None + assert get_handler_name(b.base) == 'secret_data_allocator' + assert get_handler_version(b.base) == 1 + + if orig_policy_name == 'default_allocator': + get_module.set_old_policy(None) # tests PyDataMem_SetHandler(NULL) + assert get_handler_name() == 'default_allocator' + else: + get_module.set_old_policy(orig_policy) + assert get_handler_name() == orig_policy_name + + with pytest.raises(ValueError, + match="Capsule must be named 'mem_handler'"): + get_module.set_wrong_capsule_name_data_policy() + + +def test_default_policy_singleton(get_module): + get_handler_name = np._core.multiarray.get_handler_name + + # set the policy to default + orig_policy = get_module.set_old_policy(None) + + assert get_handler_name() == 'default_allocator' + + # re-set the policy to default + def_policy_1 = get_module.set_old_policy(None) + + assert get_handler_name() == 'default_allocator' + + # set the policy to original + def_policy_2 = get_module.set_old_policy(orig_policy) + + # since default policy is a singleton, + # these should be the same object + assert def_policy_1 is def_policy_2 is get_module.get_default_policy() + + +def test_policy_propagation(get_module): + # The memory policy goes hand-in-hand with flags.owndata + + class MyArr(np.ndarray): + pass + + get_handler_name = np._core.multiarray.get_handler_name + orig_policy_name = get_handler_name() + a = np.arange(10).view(MyArr).reshape((2, 5)) + assert get_handler_name(a) is None + assert a.flags.owndata is False + + assert get_handler_name(a.base) is None + assert a.base.flags.owndata is False + + assert get_handler_name(a.base.base) == orig_policy_name + assert a.base.base.flags.owndata is True + + +async def concurrent_context1(get_module, orig_policy_name, event): + if orig_policy_name == 'default_allocator': + get_module.set_secret_data_policy() + assert get_handler_name() == 'secret_data_allocator' + else: + get_module.set_old_policy(None) + assert get_handler_name() == 'default_allocator' + event.set() + + +async def concurrent_context2(get_module, orig_policy_name, event): + await event.wait() + # the policy is not affected by changes in parallel contexts + assert get_handler_name() == orig_policy_name + # change policy in the child context + if orig_policy_name == 'default_allocator': + get_module.set_secret_data_policy() + assert get_handler_name() == 'secret_data_allocator' + else: + get_module.set_old_policy(None) + assert get_handler_name() == 'default_allocator' + + +async def async_test_context_locality(get_module): + orig_policy_name = np._core.multiarray.get_handler_name() + + event = asyncio.Event() + # the child contexts inherit the parent policy + concurrent_task1 = asyncio.create_task( + concurrent_context1(get_module, orig_policy_name, event)) + concurrent_task2 = asyncio.create_task( + concurrent_context2(get_module, orig_policy_name, event)) + await concurrent_task1 + await concurrent_task2 + + # the parent context is not affected by child policy changes + assert np._core.multiarray.get_handler_name() == orig_policy_name + + +def test_context_locality(get_module): + if (sys.implementation.name == 'pypy' + and sys.pypy_version_info[:3] < (7, 3, 6)): + pytest.skip('no context-locality support in PyPy < 7.3.6') + asyncio.run(async_test_context_locality(get_module)) + + +def concurrent_thread1(get_module, event): + get_module.set_secret_data_policy() + assert np._core.multiarray.get_handler_name() == 'secret_data_allocator' + event.set() + + +def concurrent_thread2(get_module, event): + event.wait() + # the policy is not affected by changes in parallel threads + assert np._core.multiarray.get_handler_name() == 'default_allocator' + # change policy in the child thread + get_module.set_secret_data_policy() + + +def test_thread_locality(get_module): + orig_policy_name = np._core.multiarray.get_handler_name() + + event = threading.Event() + # the child threads do not inherit the parent policy + concurrent_task1 = threading.Thread(target=concurrent_thread1, + args=(get_module, event)) + concurrent_task2 = threading.Thread(target=concurrent_thread2, + args=(get_module, event)) + concurrent_task1.start() + concurrent_task2.start() + concurrent_task1.join() + concurrent_task2.join() + + # the parent thread is not affected by child policy changes + assert np._core.multiarray.get_handler_name() == orig_policy_name + + +@pytest.mark.skip(reason="too slow, see gh-23975") +def test_new_policy(get_module): + a = np.arange(10) + orig_policy_name = np._core.multiarray.get_handler_name(a) + + orig_policy = get_module.set_secret_data_policy() + + b = np.arange(10) + assert np._core.multiarray.get_handler_name(b) == 'secret_data_allocator' + + # test array manipulation. This is slow + if orig_policy_name == 'default_allocator': + # when the np._core.test tests recurse into this test, the + # policy will be set so this "if" will be false, preventing + # infinite recursion + # + # if needed, debug this by + # - running tests with -- -s (to not capture stdout/stderr + # - setting verbose=2 + # - setting extra_argv=['-vv'] here + assert np._core.test('full', verbose=1, extra_argv=[]) + # also try the ma tests, the pickling test is quite tricky + assert np.ma.test('full', verbose=1, extra_argv=[]) + + get_module.set_old_policy(orig_policy) + + c = np.arange(10) + assert np._core.multiarray.get_handler_name(c) == orig_policy_name + + +@pytest.mark.xfail(sys.implementation.name == "pypy", + reason=("bad interaction between getenv and " + "os.environ inside pytest")) +@pytest.mark.parametrize("policy", ["0", "1", None]) +def test_switch_owner(get_module, policy): + a = get_module.get_array() + assert np._core.multiarray.get_handler_name(a) is None + get_module.set_own(a) + + if policy is None: + # See what we expect to be set based on the env variable + policy = os.getenv("NUMPY_WARN_IF_NO_MEM_POLICY", "0") == "1" + oldval = None + else: + policy = policy == "1" + oldval = np._core._multiarray_umath._set_numpy_warn_if_no_mem_policy( + policy) + try: + # The policy should be NULL, so we have to assume we can call + # "free". A warning is given if the policy == "1" + if policy: + with assert_warns(RuntimeWarning) as w: + del a + gc.collect() + else: + del a + gc.collect() + + finally: + if oldval is not None: + np._core._multiarray_umath._set_numpy_warn_if_no_mem_policy(oldval) + + +def test_owner_is_base(get_module): + a = get_module.get_array_with_base() + with pytest.warns(UserWarning, match='warn_on_free'): + del a + gc.collect() + gc.collect() diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_memmap.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_memmap.py new file mode 100644 index 0000000..cbd8252 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_memmap.py @@ -0,0 +1,246 @@ +import mmap +import os +import sys +from pathlib import Path +from tempfile import NamedTemporaryFile, TemporaryFile + +import pytest + +from numpy import ( + add, + allclose, + arange, + asarray, + average, + isscalar, + memmap, + multiply, + ndarray, + prod, + subtract, + sum, +) +from numpy.testing import ( + IS_PYPY, + assert_, + assert_array_equal, + assert_equal, + break_cycles, + suppress_warnings, +) + + +class TestMemmap: + def setup_method(self): + self.tmpfp = NamedTemporaryFile(prefix='mmap') + self.shape = (3, 4) + self.dtype = 'float32' + self.data = arange(12, dtype=self.dtype) + self.data.resize(self.shape) + + def teardown_method(self): + self.tmpfp.close() + self.data = None + if IS_PYPY: + break_cycles() + break_cycles() + + def test_roundtrip(self): + # Write data to file + fp = memmap(self.tmpfp, dtype=self.dtype, mode='w+', + shape=self.shape) + fp[:] = self.data[:] + del fp # Test __del__ machinery, which handles cleanup + + # Read data back from file + newfp = memmap(self.tmpfp, dtype=self.dtype, mode='r', + shape=self.shape) + assert_(allclose(self.data, newfp)) + assert_array_equal(self.data, newfp) + assert_equal(newfp.flags.writeable, False) + + def test_open_with_filename(self, tmp_path): + tmpname = tmp_path / 'mmap' + fp = memmap(tmpname, dtype=self.dtype, mode='w+', + shape=self.shape) + fp[:] = self.data[:] + del fp + + def test_unnamed_file(self): + with TemporaryFile() as f: + fp = memmap(f, dtype=self.dtype, shape=self.shape) + del fp + + def test_attributes(self): + offset = 1 + mode = "w+" + fp = memmap(self.tmpfp, dtype=self.dtype, mode=mode, + shape=self.shape, offset=offset) + assert_equal(offset, fp.offset) + assert_equal(mode, fp.mode) + del fp + + def test_filename(self, tmp_path): + tmpname = tmp_path / "mmap" + fp = memmap(tmpname, dtype=self.dtype, mode='w+', + shape=self.shape) + abspath = Path(os.path.abspath(tmpname)) + fp[:] = self.data[:] + assert_equal(abspath, fp.filename) + b = fp[:1] + assert_equal(abspath, b.filename) + del b + del fp + + def test_path(self, tmp_path): + tmpname = tmp_path / "mmap" + fp = memmap(Path(tmpname), dtype=self.dtype, mode='w+', + shape=self.shape) + # os.path.realpath does not resolve symlinks on Windows + # see: https://bugs.python.org/issue9949 + # use Path.resolve, just as memmap class does internally + abspath = str(Path(tmpname).resolve()) + fp[:] = self.data[:] + assert_equal(abspath, str(fp.filename.resolve())) + b = fp[:1] + assert_equal(abspath, str(b.filename.resolve())) + del b + del fp + + def test_filename_fileobj(self): + fp = memmap(self.tmpfp, dtype=self.dtype, mode="w+", + shape=self.shape) + assert_equal(fp.filename, self.tmpfp.name) + + @pytest.mark.skipif(sys.platform == 'gnu0', + reason="Known to fail on hurd") + def test_flush(self): + fp = memmap(self.tmpfp, dtype=self.dtype, mode='w+', + shape=self.shape) + fp[:] = self.data[:] + assert_equal(fp[0], self.data[0]) + fp.flush() + + def test_del(self): + # Make sure a view does not delete the underlying mmap + fp_base = memmap(self.tmpfp, dtype=self.dtype, mode='w+', + shape=self.shape) + fp_base[0] = 5 + fp_view = fp_base[0:1] + assert_equal(fp_view[0], 5) + del fp_view + # Should still be able to access and assign values after + # deleting the view + assert_equal(fp_base[0], 5) + fp_base[0] = 6 + assert_equal(fp_base[0], 6) + + def test_arithmetic_drops_references(self): + fp = memmap(self.tmpfp, dtype=self.dtype, mode='w+', + shape=self.shape) + tmp = (fp + 10) + if isinstance(tmp, memmap): + assert_(tmp._mmap is not fp._mmap) + + def test_indexing_drops_references(self): + fp = memmap(self.tmpfp, dtype=self.dtype, mode='w+', + shape=self.shape) + tmp = fp[(1, 2), (2, 3)] + if isinstance(tmp, memmap): + assert_(tmp._mmap is not fp._mmap) + + def test_slicing_keeps_references(self): + fp = memmap(self.tmpfp, dtype=self.dtype, mode='w+', + shape=self.shape) + assert_(fp[:2, :2]._mmap is fp._mmap) + + def test_view(self): + fp = memmap(self.tmpfp, dtype=self.dtype, shape=self.shape) + new1 = fp.view() + new2 = new1.view() + assert_(new1.base is fp) + assert_(new2.base is fp) + new_array = asarray(fp) + assert_(new_array.base is fp) + + def test_ufunc_return_ndarray(self): + fp = memmap(self.tmpfp, dtype=self.dtype, shape=self.shape) + fp[:] = self.data + + with suppress_warnings() as sup: + sup.filter(FutureWarning, "np.average currently does not preserve") + for unary_op in [sum, average, prod]: + result = unary_op(fp) + assert_(isscalar(result)) + assert_(result.__class__ is self.data[0, 0].__class__) + + assert_(unary_op(fp, axis=0).__class__ is ndarray) + assert_(unary_op(fp, axis=1).__class__ is ndarray) + + for binary_op in [add, subtract, multiply]: + assert_(binary_op(fp, self.data).__class__ is ndarray) + assert_(binary_op(self.data, fp).__class__ is ndarray) + assert_(binary_op(fp, fp).__class__ is ndarray) + + fp += 1 + assert fp.__class__ is memmap + add(fp, 1, out=fp) + assert fp.__class__ is memmap + + def test_getitem(self): + fp = memmap(self.tmpfp, dtype=self.dtype, shape=self.shape) + fp[:] = self.data + + assert_(fp[1:, :-1].__class__ is memmap) + # Fancy indexing returns a copy that is not memmapped + assert_(fp[[0, 1]].__class__ is ndarray) + + def test_memmap_subclass(self): + class MemmapSubClass(memmap): + pass + + fp = MemmapSubClass(self.tmpfp, dtype=self.dtype, shape=self.shape) + fp[:] = self.data + + # We keep previous behavior for subclasses of memmap, i.e. the + # ufunc and __getitem__ output is never turned into a ndarray + assert_(sum(fp, axis=0).__class__ is MemmapSubClass) + assert_(sum(fp).__class__ is MemmapSubClass) + assert_(fp[1:, :-1].__class__ is MemmapSubClass) + assert fp[[0, 1]].__class__ is MemmapSubClass + + def test_mmap_offset_greater_than_allocation_granularity(self): + size = 5 * mmap.ALLOCATIONGRANULARITY + offset = mmap.ALLOCATIONGRANULARITY + 1 + fp = memmap(self.tmpfp, shape=size, mode='w+', offset=offset) + assert_(fp.offset == offset) + + def test_empty_array_with_offset_multiple_of_allocation_granularity(self): + self.tmpfp.write(b'a' * mmap.ALLOCATIONGRANULARITY) + size = 0 + offset = mmap.ALLOCATIONGRANULARITY + fp = memmap(self.tmpfp, shape=size, mode='w+', offset=offset) + assert_equal(fp.offset, offset) + + def test_no_shape(self): + self.tmpfp.write(b'a' * 16) + mm = memmap(self.tmpfp, dtype='float64') + assert_equal(mm.shape, (2,)) + + def test_empty_array(self): + # gh-12653 + with pytest.raises(ValueError, match='empty file'): + memmap(self.tmpfp, shape=(0, 4), mode='r') + + # gh-27723 + # empty memmap works with mode in ('w+','r+') + memmap(self.tmpfp, shape=(0, 4), mode='w+') + + # ok now the file is not empty + memmap(self.tmpfp, shape=(0, 4), mode='w+') + + def test_shape_type(self): + memmap(self.tmpfp, shape=3, mode='w+') + memmap(self.tmpfp, shape=self.shape, mode='w+') + memmap(self.tmpfp, shape=list(self.shape), mode='w+') + memmap(self.tmpfp, shape=asarray(self.shape), mode='w+') diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_multiarray.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_multiarray.py new file mode 100644 index 0000000..26587b6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_multiarray.py @@ -0,0 +1,10563 @@ +import builtins +import collections.abc +import ctypes +import functools +import gc +import io +import itertools +import mmap +import operator +import os +import pathlib +import pickle +import re +import sys +import tempfile +import warnings +import weakref +from contextlib import contextmanager + +# Need to test an object that does not fully implement math interface +from datetime import datetime, timedelta +from decimal import Decimal + +import numpy._core._multiarray_tests as _multiarray_tests +import pytest +from numpy._core._rational_tests import rational + +import numpy as np +from numpy._core.multiarray import _get_ndarray_c_version, dot +from numpy._core.tests._locales import CommaDecimalPointLocale +from numpy.exceptions import AxisError, ComplexWarning +from numpy.lib.recfunctions import repack_fields +from numpy.testing import ( + BLAS_SUPPORTS_FPE, + HAS_REFCOUNT, + IS_64BIT, + IS_PYPY, + IS_PYSTON, + IS_WASM, + assert_, + assert_allclose, + assert_almost_equal, + assert_array_almost_equal, + assert_array_compare, + assert_array_equal, + assert_array_less, + assert_equal, + assert_raises, + assert_raises_regex, + assert_warns, + break_cycles, + check_support_sve, + runstring, + suppress_warnings, + temppath, +) +from numpy.testing._private.utils import _no_tracing, requires_memory + + +def assert_arg_sorted(arr, arg): + # resulting array should be sorted and arg values should be unique + assert_equal(arr[arg], np.sort(arr)) + assert_equal(np.sort(arg), np.arange(len(arg))) + + +def assert_arr_partitioned(kth, k, arr_part): + assert_equal(arr_part[k], kth) + assert_array_compare(operator.__le__, arr_part[:k], kth) + assert_array_compare(operator.__ge__, arr_part[k:], kth) + + +def _aligned_zeros(shape, dtype=float, order="C", align=None): + """ + Allocate a new ndarray with aligned memory. + + The ndarray is guaranteed *not* aligned to twice the requested alignment. + Eg, if align=4, guarantees it is not aligned to 8. If align=None uses + dtype.alignment.""" + dtype = np.dtype(dtype) + if dtype == np.dtype(object): + # Can't do this, fall back to standard allocation (which + # should always be sufficiently aligned) + if align is not None: + raise ValueError("object array alignment not supported") + return np.zeros(shape, dtype=dtype, order=order) + if align is None: + align = dtype.alignment + if not hasattr(shape, '__len__'): + shape = (shape,) + size = functools.reduce(operator.mul, shape) * dtype.itemsize + buf = np.empty(size + 2 * align + 1, np.uint8) + + ptr = buf.__array_interface__['data'][0] + offset = ptr % align + if offset != 0: + offset = align - offset + if (ptr % (2 * align)) == 0: + offset += align + + # Note: slices producing 0-size arrays do not necessarily change + # data pointer --- so we use and allocate size+1 + buf = buf[offset:offset + size + 1][:-1] + buf.fill(0) + data = np.ndarray(shape, dtype, buf, order=order) + return data + + +class TestFlags: + def setup_method(self): + self.a = np.arange(10) + + def test_writeable(self): + mydict = locals() + self.a.flags.writeable = False + assert_raises(ValueError, runstring, 'self.a[0] = 3', mydict) + self.a.flags.writeable = True + self.a[0] = 5 + self.a[0] = 0 + + def test_writeable_any_base(self): + # Ensure that any base being writeable is sufficient to change flag; + # this is especially interesting for arrays from an array interface. + arr = np.arange(10) + + class subclass(np.ndarray): + pass + + # Create subclass so base will not be collapsed, this is OK to change + view1 = arr.view(subclass) + view2 = view1[...] + arr.flags.writeable = False + view2.flags.writeable = False + view2.flags.writeable = True # Can be set to True again. + + arr = np.arange(10) + + class frominterface: + def __init__(self, arr): + self.arr = arr + self.__array_interface__ = arr.__array_interface__ + + view1 = np.asarray(frominterface) + view2 = view1[...] + view2.flags.writeable = False + view2.flags.writeable = True + + view1.flags.writeable = False + view2.flags.writeable = False + with assert_raises(ValueError): + # Must assume not writeable, since only base is not: + view2.flags.writeable = True + + def test_writeable_from_readonly(self): + # gh-9440 - make sure fromstring, from buffer on readonly buffers + # set writeable False + data = b'\x00' * 100 + vals = np.frombuffer(data, 'B') + assert_raises(ValueError, vals.setflags, write=True) + types = np.dtype([('vals', 'u1'), ('res3', 'S4')]) + values = np._core.records.fromstring(data, types) + vals = values['vals'] + assert_raises(ValueError, vals.setflags, write=True) + + def test_writeable_from_buffer(self): + data = bytearray(b'\x00' * 100) + vals = np.frombuffer(data, 'B') + assert_(vals.flags.writeable) + vals.setflags(write=False) + assert_(vals.flags.writeable is False) + vals.setflags(write=True) + assert_(vals.flags.writeable) + types = np.dtype([('vals', 'u1'), ('res3', 'S4')]) + values = np._core.records.fromstring(data, types) + vals = values['vals'] + assert_(vals.flags.writeable) + vals.setflags(write=False) + assert_(vals.flags.writeable is False) + vals.setflags(write=True) + assert_(vals.flags.writeable) + + @pytest.mark.skipif(IS_PYPY, reason="PyPy always copies") + def test_writeable_pickle(self): + import pickle + # Small arrays will be copied without setting base. + # See condition for using PyArray_SetBaseObject in + # array_setstate. + a = np.arange(1000) + for v in range(pickle.HIGHEST_PROTOCOL): + vals = pickle.loads(pickle.dumps(a, v)) + assert_(vals.flags.writeable) + assert_(isinstance(vals.base, bytes)) + + def test_writeable_from_c_data(self): + # Test that the writeable flag can be changed for an array wrapping + # low level C-data, but not owning its data. + # Also see that this is deprecated to change from python. + from numpy._core._multiarray_tests import get_c_wrapping_array + + arr_writeable = get_c_wrapping_array(True) + assert not arr_writeable.flags.owndata + assert arr_writeable.flags.writeable + view = arr_writeable[...] + + # Toggling the writeable flag works on the view: + view.flags.writeable = False + assert not view.flags.writeable + view.flags.writeable = True + assert view.flags.writeable + # Flag can be unset on the arr_writeable: + arr_writeable.flags.writeable = False + + arr_readonly = get_c_wrapping_array(False) + assert not arr_readonly.flags.owndata + assert not arr_readonly.flags.writeable + + for arr in [arr_writeable, arr_readonly]: + view = arr[...] + view.flags.writeable = False # make sure it is readonly + arr.flags.writeable = False + assert not arr.flags.writeable + + with assert_raises(ValueError): + view.flags.writeable = True + + with assert_raises(ValueError): + arr.flags.writeable = True + + def test_warnonwrite(self): + a = np.arange(10) + a.flags._warn_on_write = True + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always') + a[1] = 10 + a[2] = 10 + # only warn once + assert_(len(w) == 1) + + @pytest.mark.parametrize(["flag", "flag_value", "writeable"], + [("writeable", True, True), + # Delete _warn_on_write after deprecation and simplify + # the parameterization: + ("_warn_on_write", True, False), + ("writeable", False, False)]) + def test_readonly_flag_protocols(self, flag, flag_value, writeable): + a = np.arange(10) + setattr(a.flags, flag, flag_value) + + class MyArr: + __array_struct__ = a.__array_struct__ + + assert memoryview(a).readonly is not writeable + assert a.__array_interface__['data'][1] is not writeable + assert np.asarray(MyArr()).flags.writeable is writeable + + def test_otherflags(self): + assert_equal(self.a.flags.carray, True) + assert_equal(self.a.flags['C'], True) + assert_equal(self.a.flags.farray, False) + assert_equal(self.a.flags.behaved, True) + assert_equal(self.a.flags.fnc, False) + assert_equal(self.a.flags.forc, True) + assert_equal(self.a.flags.owndata, True) + assert_equal(self.a.flags.writeable, True) + assert_equal(self.a.flags.aligned, True) + assert_equal(self.a.flags.writebackifcopy, False) + assert_equal(self.a.flags['X'], False) + assert_equal(self.a.flags['WRITEBACKIFCOPY'], False) + + def test_string_align(self): + a = np.zeros(4, dtype=np.dtype('|S4')) + assert_(a.flags.aligned) + # not power of two are accessed byte-wise and thus considered aligned + a = np.zeros(5, dtype=np.dtype('|S4')) + assert_(a.flags.aligned) + + def test_void_align(self): + a = np.zeros(4, dtype=np.dtype([("a", "i4"), ("b", "i4")])) + assert_(a.flags.aligned) + + @pytest.mark.parametrize("row_size", [5, 1 << 16]) + @pytest.mark.parametrize("row_count", [1, 5]) + @pytest.mark.parametrize("ndmin", [0, 1, 2]) + def test_xcontiguous_load_txt(self, row_size, row_count, ndmin): + s = io.StringIO('\n'.join(['1.0 ' * row_size] * row_count)) + a = np.loadtxt(s, ndmin=ndmin) + + assert a.flags.c_contiguous + x = [i for i in a.shape if i != 1] + assert a.flags.f_contiguous == (len(x) <= 1) + + +class TestHash: + # see #3793 + def test_int(self): + for st, ut, s in [(np.int8, np.uint8, 8), + (np.int16, np.uint16, 16), + (np.int32, np.uint32, 32), + (np.int64, np.uint64, 64)]: + for i in range(1, s): + assert_equal(hash(st(-2**i)), hash(-2**i), + err_msg="%r: -2**%d" % (st, i)) + assert_equal(hash(st(2**(i - 1))), hash(2**(i - 1)), + err_msg="%r: 2**%d" % (st, i - 1)) + assert_equal(hash(st(2**i - 1)), hash(2**i - 1), + err_msg="%r: 2**%d - 1" % (st, i)) + + i = max(i - 1, 1) + assert_equal(hash(ut(2**(i - 1))), hash(2**(i - 1)), + err_msg="%r: 2**%d" % (ut, i - 1)) + assert_equal(hash(ut(2**i - 1)), hash(2**i - 1), + err_msg="%r: 2**%d - 1" % (ut, i)) + + +class TestAttributes: + def setup_method(self): + self.one = np.arange(10) + self.two = np.arange(20).reshape(4, 5) + self.three = np.arange(60, dtype=np.float64).reshape(2, 5, 6) + + def test_attributes(self): + assert_equal(self.one.shape, (10,)) + assert_equal(self.two.shape, (4, 5)) + assert_equal(self.three.shape, (2, 5, 6)) + self.three.shape = (10, 3, 2) + assert_equal(self.three.shape, (10, 3, 2)) + self.three.shape = (2, 5, 6) + assert_equal(self.one.strides, (self.one.itemsize,)) + num = self.two.itemsize + assert_equal(self.two.strides, (5 * num, num)) + num = self.three.itemsize + assert_equal(self.three.strides, (30 * num, 6 * num, num)) + assert_equal(self.one.ndim, 1) + assert_equal(self.two.ndim, 2) + assert_equal(self.three.ndim, 3) + num = self.two.itemsize + assert_equal(self.two.size, 20) + assert_equal(self.two.nbytes, 20 * num) + assert_equal(self.two.itemsize, self.two.dtype.itemsize) + assert_equal(self.two.base, np.arange(20)) + + def test_dtypeattr(self): + assert_equal(self.one.dtype, np.dtype(np.int_)) + assert_equal(self.three.dtype, np.dtype(np.float64)) + assert_equal(self.one.dtype.char, np.dtype(int).char) + assert self.one.dtype.char in "lq" + assert_equal(self.three.dtype.char, 'd') + assert_(self.three.dtype.str[0] in '<>') + assert_equal(self.one.dtype.str[1], 'i') + assert_equal(self.three.dtype.str[1], 'f') + + def test_int_subclassing(self): + # Regression test for https://github.com/numpy/numpy/pull/3526 + + numpy_int = np.int_(0) + + # int_ doesn't inherit from Python int, because it's not fixed-width + assert_(not isinstance(numpy_int, int)) + + def test_stridesattr(self): + x = self.one + + def make_array(size, offset, strides): + return np.ndarray(size, buffer=x, dtype=int, + offset=offset * x.itemsize, + strides=strides * x.itemsize) + + assert_equal(make_array(4, 4, -1), np.array([4, 3, 2, 1])) + assert_raises(ValueError, make_array, 4, 4, -2) + assert_raises(ValueError, make_array, 4, 2, -1) + assert_raises(ValueError, make_array, 8, 3, 1) + assert_equal(make_array(8, 3, 0), np.array([3] * 8)) + # Check behavior reported in gh-2503: + assert_raises(ValueError, make_array, (2, 3), 5, np.array([-2, -3])) + make_array(0, 0, 10) + + def test_set_stridesattr(self): + x = self.one + + def make_array(size, offset, strides): + try: + r = np.ndarray([size], dtype=int, buffer=x, + offset=offset * x.itemsize) + except Exception as e: + raise RuntimeError(e) + r.strides = strides = strides * x.itemsize + return r + + assert_equal(make_array(4, 4, -1), np.array([4, 3, 2, 1])) + assert_equal(make_array(7, 3, 1), np.array([3, 4, 5, 6, 7, 8, 9])) + assert_raises(ValueError, make_array, 4, 4, -2) + assert_raises(ValueError, make_array, 4, 2, -1) + assert_raises(RuntimeError, make_array, 8, 3, 1) + # Check that the true extent of the array is used. + # Test relies on as_strided base not exposing a buffer. + x = np.lib.stride_tricks.as_strided(np.arange(1), (10, 10), (0, 0)) + + def set_strides(arr, strides): + arr.strides = strides + + assert_raises(ValueError, set_strides, x, (10 * x.itemsize, x.itemsize)) + + # Test for offset calculations: + x = np.lib.stride_tricks.as_strided(np.arange(10, dtype=np.int8)[-1], + shape=(10,), strides=(-1,)) + assert_raises(ValueError, set_strides, x[::-1], -1) + a = x[::-1] + a.strides = 1 + a[::2].strides = 2 + + # test 0d + arr_0d = np.array(0) + arr_0d.strides = () + assert_raises(TypeError, set_strides, arr_0d, None) + + def test_fill(self): + for t in "?bhilqpBHILQPfdgFDGO": + x = np.empty((3, 2, 1), t) + y = np.empty((3, 2, 1), t) + x.fill(1) + y[...] = 1 + assert_equal(x, y) + + def test_fill_max_uint64(self): + x = np.empty((3, 2, 1), dtype=np.uint64) + y = np.empty((3, 2, 1), dtype=np.uint64) + value = 2**64 - 1 + y[...] = value + x.fill(value) + assert_array_equal(x, y) + + def test_fill_struct_array(self): + # Filling from a scalar + x = np.array([(0, 0.0), (1, 1.0)], dtype='i4,f8') + x.fill(x[0]) + assert_equal(x['f1'][1], x['f1'][0]) + # Filling from a tuple that can be converted + # to a scalar + x = np.zeros(2, dtype=[('a', 'f8'), ('b', 'i4')]) + x.fill((3.5, -2)) + assert_array_equal(x['a'], [3.5, 3.5]) + assert_array_equal(x['b'], [-2, -2]) + + def test_fill_readonly(self): + # gh-22922 + a = np.zeros(11) + a.setflags(write=False) + with pytest.raises(ValueError, match=".*read-only"): + a.fill(0) + + def test_fill_subarrays(self): + # NOTE: + # This is also a regression test for a crash with PYTHONMALLOC=debug + + dtype = np.dtype("2i4')) + assert_(np.dtype([('a', 'i4')])) + + def test_structured_non_void(self): + fields = [('a', 'i8'), ('b', 'f8')]) + assert_equal(a == b, [False, True]) + assert_equal(a != b, [True, False]) + + a = np.array([(5, 42), (10, 1)], dtype=[('a', '>f8'), ('b', 'i8')]) + assert_equal(a == b, [False, True]) + assert_equal(a != b, [True, False]) + + # Including with embedded subarray dtype (although subarray comparison + # itself may still be a bit weird and compare the raw data) + a = np.array([(5, 42), (10, 1)], dtype=[('a', '10>f8'), ('b', '5i8')]) + assert_equal(a == b, [False, True]) + assert_equal(a != b, [True, False]) + + @pytest.mark.parametrize("op", [ + operator.eq, lambda x, y: operator.eq(y, x), + operator.ne, lambda x, y: operator.ne(y, x)]) + def test_void_comparison_failures(self, op): + # In principle, one could decide to return an array of False for some + # if comparisons are impossible. But right now we return TypeError + # when "void" dtype are involved. + x = np.zeros(3, dtype=[('a', 'i1')]) + y = np.zeros(3) + # Cannot compare non-structured to structured: + with pytest.raises(TypeError): + op(x, y) + + # Added title prevents promotion, but casts are OK: + y = np.zeros(3, dtype=[(('title', 'a'), 'i1')]) + assert np.can_cast(y.dtype, x.dtype) + with pytest.raises(TypeError): + op(x, y) + + x = np.zeros(3, dtype="V7") + y = np.zeros(3, dtype="V8") + with pytest.raises(TypeError): + op(x, y) + + def test_casting(self): + # Check that casting a structured array to change its byte order + # works + a = np.array([(1,)], dtype=[('a', 'i4')], casting='unsafe')) + b = a.astype([('a', '>i4')]) + a_tmp = a.byteswap() + a_tmp = a_tmp.view(a_tmp.dtype.newbyteorder()) + assert_equal(b, a_tmp) + assert_equal(a['a'][0], b['a'][0]) + + # Check that equality comparison works on structured arrays if + # they are 'equiv'-castable + a = np.array([(5, 42), (10, 1)], dtype=[('a', '>i4'), ('b', 'f8')]) + assert_(np.can_cast(a.dtype, b.dtype, casting='equiv')) + assert_equal(a == b, [True, True]) + + # Check that 'equiv' casting can change byte order + assert_(np.can_cast(a.dtype, b.dtype, casting='equiv')) + c = a.astype(b.dtype, casting='equiv') + assert_equal(a == c, [True, True]) + + # Check that 'safe' casting can change byte order and up-cast + # fields + t = [('a', 'f8')] + assert_(np.can_cast(a.dtype, t, casting='safe')) + c = a.astype(t, casting='safe') + assert_equal((c == np.array([(5, 42), (10, 1)], dtype=t)), + [True, True]) + + # Check that 'same_kind' casting can change byte order and + # change field widths within a "kind" + t = [('a', 'f4')] + assert_(np.can_cast(a.dtype, t, casting='same_kind')) + c = a.astype(t, casting='same_kind') + assert_equal((c == np.array([(5, 42), (10, 1)], dtype=t)), + [True, True]) + + # Check that casting fails if the casting rule should fail on + # any of the fields + t = [('a', '>i8'), ('b', 'i2'), ('b', 'i8'), ('b', 'i4')] + assert_(not np.can_cast(a.dtype, t, casting=casting)) + t = [('a', '>i4'), ('b', 'i8") + ab = np.array([(1, 2)], dtype=[A, B]) + ba = np.array([(1, 2)], dtype=[B, A]) + assert_raises(TypeError, np.concatenate, ab, ba) + assert_raises(TypeError, np.result_type, ab.dtype, ba.dtype) + assert_raises(TypeError, np.promote_types, ab.dtype, ba.dtype) + + # dtypes with same field names/order but different memory offsets + # and byte-order are promotable to packed nbo. + assert_equal(np.promote_types(ab.dtype, ba[['a', 'b']].dtype), + repack_fields(ab.dtype.newbyteorder('N'))) + + # gh-13667 + # dtypes with different fieldnames but castable field types are castable + assert_equal(np.can_cast(ab.dtype, ba.dtype), True) + assert_equal(ab.astype(ba.dtype).dtype, ba.dtype) + assert_equal(np.can_cast('f8,i8', [('f0', 'f8'), ('f1', 'i8')]), True) + assert_equal(np.can_cast('f8,i8', [('f1', 'f8'), ('f0', 'i8')]), True) + assert_equal(np.can_cast('f8,i8', [('f1', 'i8'), ('f0', 'f8')]), False) + assert_equal(np.can_cast('f8,i8', [('f1', 'i8'), ('f0', 'f8')], + casting='unsafe'), True) + + ab[:] = ba # make sure assignment still works + + # tests of type-promotion of corresponding fields + dt1 = np.dtype([("", "i4")]) + dt2 = np.dtype([("", "i8")]) + assert_equal(np.promote_types(dt1, dt2), np.dtype([('f0', 'i8')])) + assert_equal(np.promote_types(dt2, dt1), np.dtype([('f0', 'i8')])) + assert_raises(TypeError, np.promote_types, dt1, np.dtype([("", "V3")])) + assert_equal(np.promote_types('i4,f8', 'i8,f4'), + np.dtype([('f0', 'i8'), ('f1', 'f8')])) + # test nested case + dt1nest = np.dtype([("", dt1)]) + dt2nest = np.dtype([("", dt2)]) + assert_equal(np.promote_types(dt1nest, dt2nest), + np.dtype([('f0', np.dtype([('f0', 'i8')]))])) + + # note that offsets are lost when promoting: + dt = np.dtype({'names': ['x'], 'formats': ['i4'], 'offsets': [8]}) + a = np.ones(3, dtype=dt) + assert_equal(np.concatenate([a, a]).dtype, np.dtype([('x', 'i4')])) + + @pytest.mark.parametrize("dtype_dict", [ + {"names": ["a", "b"], "formats": ["i4", "f"], "itemsize": 100}, + {"names": ["a", "b"], "formats": ["i4", "f"], + "offsets": [0, 12]}]) + @pytest.mark.parametrize("align", [True, False]) + def test_structured_promotion_packs(self, dtype_dict, align): + # Structured dtypes are packed when promoted (we consider the packed + # form to be "canonical"), so tere is no extra padding. + dtype = np.dtype(dtype_dict, align=align) + # Remove non "canonical" dtype options: + dtype_dict.pop("itemsize", None) + dtype_dict.pop("offsets", None) + expected = np.dtype(dtype_dict, align=align) + + res = np.promote_types(dtype, dtype) + assert res.itemsize == expected.itemsize + assert res.fields == expected.fields + + # But the "expected" one, should just be returned unchanged: + res = np.promote_types(expected, expected) + assert res is expected + + def test_structured_asarray_is_view(self): + # A scalar viewing an array preserves its view even when creating a + # new array. This test documents behaviour, it may not be the best + # desired behaviour. + arr = np.array([1], dtype="i,i") + scalar = arr[0] + assert not scalar.flags.owndata # view into the array + assert np.asarray(scalar).base is scalar + # But never when a dtype is passed in: + assert np.asarray(scalar, dtype=scalar.dtype).base is None + # A scalar which owns its data does not have this property. + # It is not easy to create one, one method is to use pickle: + scalar = pickle.loads(pickle.dumps(scalar)) + assert scalar.flags.owndata + assert np.asarray(scalar).base is None + +class TestBool: + def test_test_interning(self): + a0 = np.bool(0) + b0 = np.bool(False) + assert_(a0 is b0) + a1 = np.bool(1) + b1 = np.bool(True) + assert_(a1 is b1) + assert_(np.array([True])[0] is a1) + assert_(np.array(True)[()] is a1) + + def test_sum(self): + d = np.ones(101, dtype=bool) + assert_equal(d.sum(), d.size) + assert_equal(d[::2].sum(), d[::2].size) + assert_equal(d[::-2].sum(), d[::-2].size) + + d = np.frombuffer(b'\xff\xff' * 100, dtype=bool) + assert_equal(d.sum(), d.size) + assert_equal(d[::2].sum(), d[::2].size) + assert_equal(d[::-2].sum(), d[::-2].size) + + def check_count_nonzero(self, power, length): + powers = [2 ** i for i in range(length)] + for i in range(2**power): + l = [(i & x) != 0 for x in powers] + a = np.array(l, dtype=bool) + c = builtins.sum(l) + assert_equal(np.count_nonzero(a), c) + av = a.view(np.uint8) + av *= 3 + assert_equal(np.count_nonzero(a), c) + av *= 4 + assert_equal(np.count_nonzero(a), c) + av[av != 0] = 0xFF + assert_equal(np.count_nonzero(a), c) + + def test_count_nonzero(self): + # check all 12 bit combinations in a length 17 array + # covers most cases of the 16 byte unrolled code + self.check_count_nonzero(12, 17) + + @pytest.mark.slow + def test_count_nonzero_all(self): + # check all combinations in a length 17 array + # covers all cases of the 16 byte unrolled code + self.check_count_nonzero(17, 17) + + def test_count_nonzero_unaligned(self): + # prevent mistakes as e.g. gh-4060 + for o in range(7): + a = np.zeros((18,), dtype=bool)[o + 1:] + a[:o] = True + assert_equal(np.count_nonzero(a), builtins.sum(a.tolist())) + a = np.ones((18,), dtype=bool)[o + 1:] + a[:o] = False + assert_equal(np.count_nonzero(a), builtins.sum(a.tolist())) + + def _test_cast_from_flexible(self, dtype): + # empty string -> false + for n in range(3): + v = np.array(b'', (dtype, n)) + assert_equal(bool(v), False) + assert_equal(bool(v[()]), False) + assert_equal(v.astype(bool), False) + assert_(isinstance(v.astype(bool), np.ndarray)) + assert_(v[()].astype(bool) is np.False_) + + # anything else -> true + for n in range(1, 4): + for val in [b'a', b'0', b' ']: + v = np.array(val, (dtype, n)) + assert_equal(bool(v), True) + assert_equal(bool(v[()]), True) + assert_equal(v.astype(bool), True) + assert_(isinstance(v.astype(bool), np.ndarray)) + assert_(v[()].astype(bool) is np.True_) + + def test_cast_from_void(self): + self._test_cast_from_flexible(np.void) + + @pytest.mark.xfail(reason="See gh-9847") + def test_cast_from_unicode(self): + self._test_cast_from_flexible(np.str_) + + @pytest.mark.xfail(reason="See gh-9847") + def test_cast_from_bytes(self): + self._test_cast_from_flexible(np.bytes_) + + +class TestZeroSizeFlexible: + @staticmethod + def _zeros(shape, dtype=str): + dtype = np.dtype(dtype) + if dtype == np.void: + return np.zeros(shape, dtype=(dtype, 0)) + + # not constructable directly + dtype = np.dtype([('x', dtype, 0)]) + return np.zeros(shape, dtype=dtype)['x'] + + def test_create(self): + zs = self._zeros(10, bytes) + assert_equal(zs.itemsize, 0) + zs = self._zeros(10, np.void) + assert_equal(zs.itemsize, 0) + zs = self._zeros(10, str) + assert_equal(zs.itemsize, 0) + + def _test_sort_partition(self, name, kinds, **kwargs): + # Previously, these would all hang + for dt in [bytes, np.void, str]: + zs = self._zeros(10, dt) + sort_method = getattr(zs, name) + sort_func = getattr(np, name) + for kind in kinds: + sort_method(kind=kind, **kwargs) + sort_func(zs, kind=kind, **kwargs) + + def test_sort(self): + self._test_sort_partition('sort', kinds='qhs') + + def test_argsort(self): + self._test_sort_partition('argsort', kinds='qhs') + + def test_partition(self): + self._test_sort_partition('partition', kinds=['introselect'], kth=2) + + def test_argpartition(self): + self._test_sort_partition('argpartition', kinds=['introselect'], kth=2) + + def test_resize(self): + # previously an error + for dt in [bytes, np.void, str]: + zs = self._zeros(10, dt) + zs.resize(25) + zs.resize((10, 10)) + + def test_view(self): + for dt in [bytes, np.void, str]: + zs = self._zeros(10, dt) + + # viewing as itself should be allowed + assert_equal(zs.view(dt).dtype, np.dtype(dt)) + + # viewing as any non-empty type gives an empty result + assert_equal(zs.view((dt, 1)).shape, (0,)) + + def test_dumps(self): + zs = self._zeros(10, int) + assert_equal(zs, pickle.loads(zs.dumps())) + + def test_pickle(self): + for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): + for dt in [bytes, np.void, str]: + zs = self._zeros(10, dt) + p = pickle.dumps(zs, protocol=proto) + zs2 = pickle.loads(p) + + assert_equal(zs.dtype, zs2.dtype) + + def test_pickle_empty(self): + """Checking if an empty array pickled and un-pickled will not cause a + segmentation fault""" + arr = np.array([]).reshape(999999, 0) + pk_dmp = pickle.dumps(arr) + pk_load = pickle.loads(pk_dmp) + + assert pk_load.size == 0 + + @pytest.mark.skipif(pickle.HIGHEST_PROTOCOL < 5, + reason="requires pickle protocol 5") + def test_pickle_with_buffercallback(self): + array = np.arange(10) + buffers = [] + bytes_string = pickle.dumps(array, buffer_callback=buffers.append, + protocol=5) + array_from_buffer = pickle.loads(bytes_string, buffers=buffers) + # when using pickle protocol 5 with buffer callbacks, + # array_from_buffer is reconstructed from a buffer holding a view + # to the initial array's data, so modifying an element in array + # should modify it in array_from_buffer too. + array[0] = -1 + assert array_from_buffer[0] == -1, array_from_buffer[0] + + +class TestMethods: + + sort_kinds = ['quicksort', 'heapsort', 'stable'] + + def test_all_where(self): + a = np.array([[True, False, True], + [False, False, False], + [True, True, True]]) + wh_full = np.array([[True, False, True], + [False, False, False], + [True, False, True]]) + wh_lower = np.array([[False], + [False], + [True]]) + for _ax in [0, None]: + assert_equal(a.all(axis=_ax, where=wh_lower), + np.all(a[wh_lower[:, 0], :], axis=_ax)) + assert_equal(np.all(a, axis=_ax, where=wh_lower), + a[wh_lower[:, 0], :].all(axis=_ax)) + + assert_equal(a.all(where=wh_full), True) + assert_equal(np.all(a, where=wh_full), True) + assert_equal(a.all(where=False), True) + assert_equal(np.all(a, where=False), True) + + def test_any_where(self): + a = np.array([[True, False, True], + [False, False, False], + [True, True, True]]) + wh_full = np.array([[False, True, False], + [True, True, True], + [False, False, False]]) + wh_middle = np.array([[False], + [True], + [False]]) + for _ax in [0, None]: + assert_equal(a.any(axis=_ax, where=wh_middle), + np.any(a[wh_middle[:, 0], :], axis=_ax)) + assert_equal(np.any(a, axis=_ax, where=wh_middle), + a[wh_middle[:, 0], :].any(axis=_ax)) + assert_equal(a.any(where=wh_full), False) + assert_equal(np.any(a, where=wh_full), False) + assert_equal(a.any(where=False), False) + assert_equal(np.any(a, where=False), False) + + @pytest.mark.parametrize("dtype", + ["i8", "U10", "object", "datetime64[ms]"]) + def test_any_and_all_result_dtype(self, dtype): + arr = np.ones(3, dtype=dtype) + assert arr.any().dtype == np.bool + assert arr.all().dtype == np.bool + + def test_any_and_all_object_dtype(self): + # (seberg) Not sure we should even allow dtype here, but it is. + arr = np.ones(3, dtype=object) + # keepdims to prevent getting a scalar. + assert arr.any(dtype=object, keepdims=True).dtype == object + assert arr.all(dtype=object, keepdims=True).dtype == object + + def test_compress(self): + tgt = [[5, 6, 7, 8, 9]] + arr = np.arange(10).reshape(2, 5) + out = arr.compress([0, 1], axis=0) + assert_equal(out, tgt) + + tgt = [[1, 3], [6, 8]] + out = arr.compress([0, 1, 0, 1, 0], axis=1) + assert_equal(out, tgt) + + tgt = [[1], [6]] + arr = np.arange(10).reshape(2, 5) + out = arr.compress([0, 1], axis=1) + assert_equal(out, tgt) + + arr = np.arange(10).reshape(2, 5) + out = arr.compress([0, 1]) + assert_equal(out, 1) + + def test_choose(self): + x = 2 * np.ones((3,), dtype=int) + y = 3 * np.ones((3,), dtype=int) + x2 = 2 * np.ones((2, 3), dtype=int) + y2 = 3 * np.ones((2, 3), dtype=int) + ind = np.array([0, 0, 1]) + + A = ind.choose((x, y)) + assert_equal(A, [2, 2, 3]) + + A = ind.choose((x2, y2)) + assert_equal(A, [[2, 2, 3], [2, 2, 3]]) + + A = ind.choose((x, y2)) + assert_equal(A, [[2, 2, 3], [2, 2, 3]]) + + oned = np.ones(1) + # gh-12031, caused SEGFAULT + assert_raises(TypeError, oned.choose, np.void(0), [oned]) + + out = np.array(0) + ret = np.choose(np.array(1), [10, 20, 30], out=out) + assert out is ret + assert_equal(out[()], 20) + + # gh-6272 check overlap on out + x = np.arange(5) + y = np.choose([0, 0, 0], [x[:3], x[:3], x[:3]], out=x[1:4], mode='wrap') + assert_equal(y, np.array([0, 1, 2])) + + # gh_28206 check fail when out not writeable + x = np.arange(3) + out = np.zeros(3) + out.setflags(write=False) + assert_raises(ValueError, np.choose, [0, 1, 2], [x, x, x], out=out) + + def test_prod(self): + ba = [1, 2, 10, 11, 6, 5, 4] + ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] + + for ctype in [np.int16, np.uint16, np.int32, np.uint32, + np.float32, np.float64, np.complex64, np.complex128]: + a = np.array(ba, ctype) + a2 = np.array(ba2, ctype) + if ctype in ['1', 'b']: + assert_raises(ArithmeticError, a.prod) + assert_raises(ArithmeticError, a2.prod, axis=1) + else: + assert_equal(a.prod(axis=0), 26400) + assert_array_equal(a2.prod(axis=0), + np.array([50, 36, 84, 180], ctype)) + assert_array_equal(a2.prod(axis=-1), + np.array([24, 1890, 600], ctype)) + + @pytest.mark.parametrize('dtype', [None, object]) + def test_repeat(self, dtype): + m = np.array([1, 2, 3, 4, 5, 6], dtype=dtype) + m_rect = m.reshape((2, 3)) + + A = m.repeat([1, 3, 2, 1, 1, 2]) + assert_equal(A, [1, 2, 2, 2, 3, + 3, 4, 5, 6, 6]) + + A = m.repeat(2) + assert_equal(A, [1, 1, 2, 2, 3, 3, + 4, 4, 5, 5, 6, 6]) + + A = m_rect.repeat([2, 1], axis=0) + assert_equal(A, [[1, 2, 3], + [1, 2, 3], + [4, 5, 6]]) + + A = m_rect.repeat([1, 3, 2], axis=1) + assert_equal(A, [[1, 2, 2, 2, 3, 3], + [4, 5, 5, 5, 6, 6]]) + + A = m_rect.repeat(2, axis=0) + assert_equal(A, [[1, 2, 3], + [1, 2, 3], + [4, 5, 6], + [4, 5, 6]]) + + A = m_rect.repeat(2, axis=1) + assert_equal(A, [[1, 1, 2, 2, 3, 3], + [4, 4, 5, 5, 6, 6]]) + + def test_reshape(self): + arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) + + tgt = [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]] + assert_equal(arr.reshape(2, 6), tgt) + + tgt = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] + assert_equal(arr.reshape(3, 4), tgt) + + tgt = [[1, 10, 8, 6], [4, 2, 11, 9], [7, 5, 3, 12]] + assert_equal(arr.reshape((3, 4), order='F'), tgt) + + tgt = [[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]] + assert_equal(arr.T.reshape((3, 4), order='C'), tgt) + + def test_round(self): + def check_round(arr, expected, *round_args): + assert_equal(arr.round(*round_args), expected) + # With output array + out = np.zeros_like(arr) + res = arr.round(*round_args, out=out) + assert_equal(out, expected) + assert out is res + + check_round(np.array([1.2, 1.5]), [1, 2]) + check_round(np.array(1.5), 2) + check_round(np.array([12.2, 15.5]), [10, 20], -1) + check_round(np.array([12.15, 15.51]), [12.2, 15.5], 1) + # Complex rounding + check_round(np.array([4.5 + 1.5j]), [4 + 2j]) + check_round(np.array([12.5 + 15.5j]), [10 + 20j], -1) + + def test_squeeze(self): + a = np.array([[[1], [2], [3]]]) + assert_equal(a.squeeze(), [1, 2, 3]) + assert_equal(a.squeeze(axis=(0,)), [[1], [2], [3]]) + assert_raises(ValueError, a.squeeze, axis=(1,)) + assert_equal(a.squeeze(axis=(2,)), [[1, 2, 3]]) + + def test_transpose(self): + a = np.array([[1, 2], [3, 4]]) + assert_equal(a.transpose(), [[1, 3], [2, 4]]) + assert_raises(ValueError, lambda: a.transpose(0)) + assert_raises(ValueError, lambda: a.transpose(0, 0)) + assert_raises(ValueError, lambda: a.transpose(0, 1, 2)) + + def test_sort(self): + # test ordering for floats and complex containing nans. It is only + # necessary to check the less-than comparison, so sorts that + # only follow the insertion sort path are sufficient. We only + # test doubles and complex doubles as the logic is the same. + + # check doubles + msg = "Test real sort order with nans" + a = np.array([np.nan, 1, 0]) + b = np.sort(a) + assert_equal(b, a[::-1], msg) + # check complex + msg = "Test complex sort order with nans" + a = np.zeros(9, dtype=np.complex128) + a.real += [np.nan, np.nan, np.nan, 1, 0, 1, 1, 0, 0] + a.imag += [np.nan, 1, 0, np.nan, np.nan, 1, 0, 1, 0] + b = np.sort(a) + assert_equal(b, a[::-1], msg) + + with assert_raises_regex( + ValueError, + "kind` and `stable` parameters can't be provided at the same time" + ): + np.sort(a, kind="stable", stable=True) + + # all c scalar sorts use the same code with different types + # so it suffices to run a quick check with one type. The number + # of sorted items must be greater than ~50 to check the actual + # algorithm because quick and merge sort fall over to insertion + # sort for small arrays. + + @pytest.mark.parametrize('dtype', [np.uint8, np.uint16, np.uint32, np.uint64, + np.float16, np.float32, np.float64, + np.longdouble]) + def test_sort_unsigned(self, dtype): + a = np.arange(101, dtype=dtype) + b = a[::-1].copy() + for kind in self.sort_kinds: + msg = f"scalar sort, kind={kind}" + c = a.copy() + c.sort(kind=kind) + assert_equal(c, a, msg) + c = b.copy() + c.sort(kind=kind) + assert_equal(c, a, msg) + + @pytest.mark.parametrize('dtype', + [np.int8, np.int16, np.int32, np.int64, np.float16, + np.float32, np.float64, np.longdouble]) + def test_sort_signed(self, dtype): + a = np.arange(-50, 51, dtype=dtype) + b = a[::-1].copy() + for kind in self.sort_kinds: + msg = f"scalar sort, kind={kind}" + c = a.copy() + c.sort(kind=kind) + assert_equal(c, a, msg) + c = b.copy() + c.sort(kind=kind) + assert_equal(c, a, msg) + + @pytest.mark.parametrize('dtype', [np.float32, np.float64, np.longdouble]) + @pytest.mark.parametrize('part', ['real', 'imag']) + def test_sort_complex(self, part, dtype): + # test complex sorts. These use the same code as the scalars + # but the compare function differs. + cdtype = { + np.single: np.csingle, + np.double: np.cdouble, + np.longdouble: np.clongdouble, + }[dtype] + a = np.arange(-50, 51, dtype=dtype) + b = a[::-1].copy() + ai = (a * (1 + 1j)).astype(cdtype) + bi = (b * (1 + 1j)).astype(cdtype) + setattr(ai, part, 1) + setattr(bi, part, 1) + for kind in self.sort_kinds: + msg = f"complex sort, {part} part == 1, kind={kind}" + c = ai.copy() + c.sort(kind=kind) + assert_equal(c, ai, msg) + c = bi.copy() + c.sort(kind=kind) + assert_equal(c, ai, msg) + + def test_sort_complex_byte_swapping(self): + # test sorting of complex arrays requiring byte-swapping, gh-5441 + for endianness in '<>': + for dt in np.typecodes['Complex']: + arr = np.array([1 + 3.j, 2 + 2.j, 3 + 1.j], dtype=endianness + dt) + c = arr.copy() + c.sort() + msg = f'byte-swapped complex sort, dtype={dt}' + assert_equal(c, arr, msg) + + @pytest.mark.parametrize('dtype', [np.bytes_, np.str_]) + def test_sort_string(self, dtype): + # np.array will perform the encoding to bytes for us in the bytes test + a = np.array(['aaaaaaaa' + chr(i) for i in range(101)], dtype=dtype) + b = a[::-1].copy() + for kind in self.sort_kinds: + msg = f"kind={kind}" + c = a.copy() + c.sort(kind=kind) + assert_equal(c, a, msg) + c = b.copy() + c.sort(kind=kind) + assert_equal(c, a, msg) + + def test_sort_object(self): + # test object array sorts. + a = np.empty((101,), dtype=object) + a[:] = list(range(101)) + b = a[::-1] + for kind in ['q', 'h', 'm']: + msg = f"kind={kind}" + c = a.copy() + c.sort(kind=kind) + assert_equal(c, a, msg) + c = b.copy() + c.sort(kind=kind) + assert_equal(c, a, msg) + + @pytest.mark.parametrize("dt", [ + np.dtype([('f', float), ('i', int)]), + np.dtype([('f', float), ('i', object)])]) + @pytest.mark.parametrize("step", [1, 2]) + def test_sort_structured(self, dt, step): + # test record array sorts. + a = np.array([(i, i) for i in range(101 * step)], dtype=dt) + b = a[::-1] + for kind in ['q', 'h', 'm']: + msg = f"kind={kind}" + c = a.copy()[::step] + indx = c.argsort(kind=kind) + c.sort(kind=kind) + assert_equal(c, a[::step], msg) + assert_equal(a[::step][indx], a[::step], msg) + c = b.copy()[::step] + indx = c.argsort(kind=kind) + c.sort(kind=kind) + assert_equal(c, a[step - 1::step], msg) + assert_equal(b[::step][indx], a[step - 1::step], msg) + + @pytest.mark.parametrize('dtype', ['datetime64[D]', 'timedelta64[D]']) + def test_sort_time(self, dtype): + # test datetime64 and timedelta64 sorts. + a = np.arange(0, 101, dtype=dtype) + b = a[::-1] + for kind in ['q', 'h', 'm']: + msg = f"kind={kind}" + c = a.copy() + c.sort(kind=kind) + assert_equal(c, a, msg) + c = b.copy() + c.sort(kind=kind) + assert_equal(c, a, msg) + + def test_sort_axis(self): + # check axis handling. This should be the same for all type + # specific sorts, so we only check it for one type and one kind + a = np.array([[3, 2], [1, 0]]) + b = np.array([[1, 0], [3, 2]]) + c = np.array([[2, 3], [0, 1]]) + d = a.copy() + d.sort(axis=0) + assert_equal(d, b, "test sort with axis=0") + d = a.copy() + d.sort(axis=1) + assert_equal(d, c, "test sort with axis=1") + d = a.copy() + d.sort() + assert_equal(d, c, "test sort with default axis") + + def test_sort_size_0(self): + # check axis handling for multidimensional empty arrays + a = np.array([]) + a.shape = (3, 2, 1, 0) + for axis in range(-a.ndim, a.ndim): + msg = f'test empty array sort with axis={axis}' + assert_equal(np.sort(a, axis=axis), a, msg) + msg = 'test empty array sort with axis=None' + assert_equal(np.sort(a, axis=None), a.ravel(), msg) + + def test_sort_bad_ordering(self): + # test generic class with bogus ordering, + # should not segfault. + class Boom: + def __lt__(self, other): + return True + + a = np.array([Boom()] * 100, dtype=object) + for kind in self.sort_kinds: + msg = f"kind={kind}" + c = a.copy() + c.sort(kind=kind) + assert_equal(c, a, msg) + + def test_void_sort(self): + # gh-8210 - previously segfaulted + for i in range(4): + rand = np.random.randint(256, size=4000, dtype=np.uint8) + arr = rand.view('V4') + arr[::-1].sort() + + dt = np.dtype([('val', 'i4', (1,))]) + for i in range(4): + rand = np.random.randint(256, size=4000, dtype=np.uint8) + arr = rand.view(dt) + arr[::-1].sort() + + def test_sort_raises(self): + # gh-9404 + arr = np.array([0, datetime.now(), 1], dtype=object) + for kind in self.sort_kinds: + assert_raises(TypeError, arr.sort, kind=kind) + # gh-3879 + + class Raiser: + def raises_anything(*args, **kwargs): + raise TypeError("SOMETHING ERRORED") + __eq__ = __ne__ = __lt__ = __gt__ = __ge__ = __le__ = raises_anything + arr = np.array([[Raiser(), n] for n in range(10)]).reshape(-1) + np.random.shuffle(arr) + for kind in self.sort_kinds: + assert_raises(TypeError, arr.sort, kind=kind) + + def test_sort_degraded(self): + # test degraded dataset would take minutes to run with normal qsort + d = np.arange(1000000) + do = d.copy() + x = d + # create a median of 3 killer where each median is the sorted second + # last element of the quicksort partition + while x.size > 3: + mid = x.size // 2 + x[mid], x[-2] = x[-2], x[mid] + x = x[:-2] + + assert_equal(np.sort(d), do) + assert_equal(d[np.argsort(d)], do) + + def test_copy(self): + def assert_fortran(arr): + assert_(arr.flags.fortran) + assert_(arr.flags.f_contiguous) + assert_(not arr.flags.c_contiguous) + + def assert_c(arr): + assert_(not arr.flags.fortran) + assert_(not arr.flags.f_contiguous) + assert_(arr.flags.c_contiguous) + + a = np.empty((2, 2), order='F') + # Test copying a Fortran array + assert_c(a.copy()) + assert_c(a.copy('C')) + assert_fortran(a.copy('F')) + assert_fortran(a.copy('A')) + + # Now test starting with a C array. + a = np.empty((2, 2), order='C') + assert_c(a.copy()) + assert_c(a.copy('C')) + assert_fortran(a.copy('F')) + assert_c(a.copy('A')) + + @pytest.mark.parametrize("dtype", ['O', np.int32, 'i,O']) + def test__deepcopy__(self, dtype): + # Force the entry of NULLs into array + a = np.empty(4, dtype=dtype) + ctypes.memset(a.ctypes.data, 0, a.nbytes) + + # Ensure no error is raised, see gh-21833 + b = a.__deepcopy__({}) + + a[0] = 42 + with pytest.raises(AssertionError): + assert_array_equal(a, b) + + def test__deepcopy__catches_failure(self): + class MyObj: + def __deepcopy__(self, *args, **kwargs): + raise RuntimeError + + arr = np.array([1, MyObj(), 3], dtype='O') + with pytest.raises(RuntimeError): + arr.__deepcopy__({}) + + def test_sort_order(self): + # Test sorting an array with fields + x1 = np.array([21, 32, 14]) + x2 = np.array(['my', 'first', 'name']) + x3 = np.array([3.1, 4.5, 6.2]) + r = np.rec.fromarrays([x1, x2, x3], names='id,word,number') + + r.sort(order=['id']) + assert_equal(r.id, np.array([14, 21, 32])) + assert_equal(r.word, np.array(['name', 'my', 'first'])) + assert_equal(r.number, np.array([6.2, 3.1, 4.5])) + + r.sort(order=['word']) + assert_equal(r.id, np.array([32, 21, 14])) + assert_equal(r.word, np.array(['first', 'my', 'name'])) + assert_equal(r.number, np.array([4.5, 3.1, 6.2])) + + r.sort(order=['number']) + assert_equal(r.id, np.array([21, 32, 14])) + assert_equal(r.word, np.array(['my', 'first', 'name'])) + assert_equal(r.number, np.array([3.1, 4.5, 6.2])) + + assert_raises_regex(ValueError, 'duplicate', + lambda: r.sort(order=['id', 'id'])) + + if sys.byteorder == 'little': + strtype = '>i2' + else: + strtype = '': + for dt in np.typecodes['Complex']: + arr = np.array([1 + 3.j, 2 + 2.j, 3 + 1.j], dtype=endianness + dt) + msg = f'byte-swapped complex argsort, dtype={dt}' + assert_equal(arr.argsort(), + np.arange(len(arr), dtype=np.intp), msg) + + # test string argsorts. + s = 'aaaaaaaa' + a = np.array([s + chr(i) for i in range(101)]) + b = a[::-1].copy() + r = np.arange(101) + rr = r[::-1] + for kind in self.sort_kinds: + msg = f"string argsort, kind={kind}" + assert_equal(a.copy().argsort(kind=kind), r, msg) + assert_equal(b.copy().argsort(kind=kind), rr, msg) + + # test unicode argsorts. + s = 'aaaaaaaa' + a = np.array([s + chr(i) for i in range(101)], dtype=np.str_) + b = a[::-1] + r = np.arange(101) + rr = r[::-1] + for kind in self.sort_kinds: + msg = f"unicode argsort, kind={kind}" + assert_equal(a.copy().argsort(kind=kind), r, msg) + assert_equal(b.copy().argsort(kind=kind), rr, msg) + + # test object array argsorts. + a = np.empty((101,), dtype=object) + a[:] = list(range(101)) + b = a[::-1] + r = np.arange(101) + rr = r[::-1] + for kind in self.sort_kinds: + msg = f"object argsort, kind={kind}" + assert_equal(a.copy().argsort(kind=kind), r, msg) + assert_equal(b.copy().argsort(kind=kind), rr, msg) + + # test structured array argsorts. + dt = np.dtype([('f', float), ('i', int)]) + a = np.array([(i, i) for i in range(101)], dtype=dt) + b = a[::-1] + r = np.arange(101) + rr = r[::-1] + for kind in self.sort_kinds: + msg = f"structured array argsort, kind={kind}" + assert_equal(a.copy().argsort(kind=kind), r, msg) + assert_equal(b.copy().argsort(kind=kind), rr, msg) + + # test datetime64 argsorts. + a = np.arange(0, 101, dtype='datetime64[D]') + b = a[::-1] + r = np.arange(101) + rr = r[::-1] + for kind in ['q', 'h', 'm']: + msg = f"datetime64 argsort, kind={kind}" + assert_equal(a.copy().argsort(kind=kind), r, msg) + assert_equal(b.copy().argsort(kind=kind), rr, msg) + + # test timedelta64 argsorts. + a = np.arange(0, 101, dtype='timedelta64[D]') + b = a[::-1] + r = np.arange(101) + rr = r[::-1] + for kind in ['q', 'h', 'm']: + msg = f"timedelta64 argsort, kind={kind}" + assert_equal(a.copy().argsort(kind=kind), r, msg) + assert_equal(b.copy().argsort(kind=kind), rr, msg) + + # check axis handling. This should be the same for all type + # specific argsorts, so we only check it for one type and one kind + a = np.array([[3, 2], [1, 0]]) + b = np.array([[1, 1], [0, 0]]) + c = np.array([[1, 0], [1, 0]]) + assert_equal(a.copy().argsort(axis=0), b) + assert_equal(a.copy().argsort(axis=1), c) + assert_equal(a.copy().argsort(), c) + + # check axis handling for multidimensional empty arrays + a = np.array([]) + a.shape = (3, 2, 1, 0) + for axis in range(-a.ndim, a.ndim): + msg = f'test empty array argsort with axis={axis}' + assert_equal(np.argsort(a, axis=axis), + np.zeros_like(a, dtype=np.intp), msg) + msg = 'test empty array argsort with axis=None' + assert_equal(np.argsort(a, axis=None), + np.zeros_like(a.ravel(), dtype=np.intp), msg) + + # check that stable argsorts are stable + r = np.arange(100) + # scalars + a = np.zeros(100) + assert_equal(a.argsort(kind='m'), r) + # complex + a = np.zeros(100, dtype=complex) + assert_equal(a.argsort(kind='m'), r) + # string + a = np.array(['aaaaaaaaa' for i in range(100)]) + assert_equal(a.argsort(kind='m'), r) + # unicode + a = np.array(['aaaaaaaaa' for i in range(100)], dtype=np.str_) + assert_equal(a.argsort(kind='m'), r) + + with assert_raises_regex( + ValueError, + "kind` and `stable` parameters can't be provided at the same time" + ): + np.argsort(a, kind="stable", stable=True) + + def test_sort_unicode_kind(self): + d = np.arange(10) + k = b'\xc3\xa4'.decode("UTF8") + assert_raises(ValueError, d.sort, kind=k) + assert_raises(ValueError, d.argsort, kind=k) + + @pytest.mark.parametrize('a', [ + np.array([0, 1, np.nan], dtype=np.float16), + np.array([0, 1, np.nan], dtype=np.float32), + np.array([0, 1, np.nan]), + ]) + def test_searchsorted_floats(self, a): + # test for floats arrays containing nans. Explicitly test + # half, single, and double precision floats to verify that + # the NaN-handling is correct. + msg = f"Test real ({a.dtype}) searchsorted with nans, side='l'" + b = a.searchsorted(a, side='left') + assert_equal(b, np.arange(3), msg) + msg = f"Test real ({a.dtype}) searchsorted with nans, side='r'" + b = a.searchsorted(a, side='right') + assert_equal(b, np.arange(1, 4), msg) + # check keyword arguments + a.searchsorted(v=1) + x = np.array([0, 1, np.nan], dtype='float32') + y = np.searchsorted(x, x[-1]) + assert_equal(y, 2) + + def test_searchsorted_complex(self): + # test for complex arrays containing nans. + # The search sorted routines use the compare functions for the + # array type, so this checks if that is consistent with the sort + # order. + # check double complex + a = np.zeros(9, dtype=np.complex128) + a.real += [0, 0, 1, 1, 0, 1, np.nan, np.nan, np.nan] + a.imag += [0, 1, 0, 1, np.nan, np.nan, 0, 1, np.nan] + msg = "Test complex searchsorted with nans, side='l'" + b = a.searchsorted(a, side='left') + assert_equal(b, np.arange(9), msg) + msg = "Test complex searchsorted with nans, side='r'" + b = a.searchsorted(a, side='right') + assert_equal(b, np.arange(1, 10), msg) + msg = "Test searchsorted with little endian, side='l'" + a = np.array([0, 128], dtype=' p[:, i]).all(), + msg="%d: %r < %r" % (i, p[:, i], p[:, i + 1:].T)) + for row in range(p.shape[0]): + self.assert_partitioned(p[row], [i]) + self.assert_partitioned(parg[row], [i]) + + p = np.partition(d0, i, axis=0, kind=k) + parg = d0[np.argpartition(d0, i, axis=0, kind=k), + np.arange(d0.shape[1])[None, :]] + aae(p[i, :], np.array([i] * d1.shape[0], dtype=dt)) + # array_less does not seem to work right + at((p[:i, :] <= p[i, :]).all(), + msg="%d: %r <= %r" % (i, p[i, :], p[:i, :])) + at((p[i + 1:, :] > p[i, :]).all(), + msg="%d: %r < %r" % (i, p[i, :], p[:, i + 1:])) + for col in range(p.shape[1]): + self.assert_partitioned(p[:, col], [i]) + self.assert_partitioned(parg[:, col], [i]) + + # check inplace + dc = d.copy() + dc.partition(i, kind=k) + assert_equal(dc, np.partition(d, i, kind=k)) + dc = d0.copy() + dc.partition(i, axis=0, kind=k) + assert_equal(dc, np.partition(d0, i, axis=0, kind=k)) + dc = d1.copy() + dc.partition(i, axis=1, kind=k) + assert_equal(dc, np.partition(d1, i, axis=1, kind=k)) + + def assert_partitioned(self, d, kth): + prev = 0 + for k in np.sort(kth): + assert_array_compare(operator.__le__, d[prev:k], d[k], + err_msg='kth %d' % k) + assert_((d[k:] >= d[k]).all(), + msg="kth %d, %r not greater equal %r" % (k, d[k:], d[k])) + prev = k + 1 + + def test_partition_iterative(self): + d = np.arange(17) + kth = (0, 1, 2, 429, 231) + assert_raises(ValueError, d.partition, kth) + assert_raises(ValueError, d.argpartition, kth) + d = np.arange(10).reshape((2, 5)) + assert_raises(ValueError, d.partition, kth, axis=0) + assert_raises(ValueError, d.partition, kth, axis=1) + assert_raises(ValueError, np.partition, d, kth, axis=1) + assert_raises(ValueError, np.partition, d, kth, axis=None) + + d = np.array([3, 4, 2, 1]) + p = np.partition(d, (0, 3)) + self.assert_partitioned(p, (0, 3)) + self.assert_partitioned(d[np.argpartition(d, (0, 3))], (0, 3)) + + assert_array_equal(p, np.partition(d, (-3, -1))) + assert_array_equal(p, d[np.argpartition(d, (-3, -1))]) + + d = np.arange(17) + np.random.shuffle(d) + d.partition(range(d.size)) + assert_array_equal(np.arange(17), d) + np.random.shuffle(d) + assert_array_equal(np.arange(17), d[d.argpartition(range(d.size))]) + + # test unsorted kth + d = np.arange(17) + np.random.shuffle(d) + keys = np.array([1, 3, 8, -2]) + np.random.shuffle(d) + p = np.partition(d, keys) + self.assert_partitioned(p, keys) + p = d[np.argpartition(d, keys)] + self.assert_partitioned(p, keys) + np.random.shuffle(keys) + assert_array_equal(np.partition(d, keys), p) + assert_array_equal(d[np.argpartition(d, keys)], p) + + # equal kth + d = np.arange(20)[::-1] + self.assert_partitioned(np.partition(d, [5] * 4), [5]) + self.assert_partitioned(np.partition(d, [5] * 4 + [6, 13]), + [5] * 4 + [6, 13]) + self.assert_partitioned(d[np.argpartition(d, [5] * 4)], [5]) + self.assert_partitioned(d[np.argpartition(d, [5] * 4 + [6, 13])], + [5] * 4 + [6, 13]) + + d = np.arange(12) + np.random.shuffle(d) + d1 = np.tile(np.arange(12), (4, 1)) + map(np.random.shuffle, d1) + d0 = np.transpose(d1) + + kth = (1, 6, 7, -1) + p = np.partition(d1, kth, axis=1) + pa = d1[np.arange(d1.shape[0])[:, None], + d1.argpartition(kth, axis=1)] + assert_array_equal(p, pa) + for i in range(d1.shape[0]): + self.assert_partitioned(p[i, :], kth) + p = np.partition(d0, kth, axis=0) + pa = d0[np.argpartition(d0, kth, axis=0), + np.arange(d0.shape[1])[None, :]] + assert_array_equal(p, pa) + for i in range(d0.shape[1]): + self.assert_partitioned(p[:, i], kth) + + def test_partition_cdtype(self): + d = np.array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41), + ('Lancelot', 1.9, 38)], + dtype=[('name', '|S10'), ('height', ' (numpy ufunc, has_in_place_version, preferred_dtype) + ops = { + 'add': (np.add, True, float), + 'sub': (np.subtract, True, float), + 'mul': (np.multiply, True, float), + 'truediv': (np.true_divide, True, float), + 'floordiv': (np.floor_divide, True, float), + 'mod': (np.remainder, True, float), + 'divmod': (np.divmod, False, float), + 'pow': (np.power, True, int), + 'lshift': (np.left_shift, True, int), + 'rshift': (np.right_shift, True, int), + 'and': (np.bitwise_and, True, int), + 'xor': (np.bitwise_xor, True, int), + 'or': (np.bitwise_or, True, int), + 'matmul': (np.matmul, True, float), + # 'ge': (np.less_equal, False), + # 'gt': (np.less, False), + # 'le': (np.greater_equal, False), + # 'lt': (np.greater, False), + # 'eq': (np.equal, False), + # 'ne': (np.not_equal, False), + } + + class Coerced(Exception): + pass + + def array_impl(self): + raise Coerced + + def op_impl(self, other): + return "forward" + + def rop_impl(self, other): + return "reverse" + + def iop_impl(self, other): + return "in-place" + + def array_ufunc_impl(self, ufunc, method, *args, **kwargs): + return ("__array_ufunc__", ufunc, method, args, kwargs) + + # Create an object with the given base, in the given module, with a + # bunch of placeholder __op__ methods, and optionally a + # __array_ufunc__ and __array_priority__. + def make_obj(base, array_priority=False, array_ufunc=False, + alleged_module="__main__"): + class_namespace = {"__array__": array_impl} + if array_priority is not False: + class_namespace["__array_priority__"] = array_priority + for op in ops: + class_namespace[f"__{op}__"] = op_impl + class_namespace[f"__r{op}__"] = rop_impl + class_namespace[f"__i{op}__"] = iop_impl + if array_ufunc is not False: + class_namespace["__array_ufunc__"] = array_ufunc + eval_namespace = {"base": base, + "class_namespace": class_namespace, + "__name__": alleged_module, + } + MyType = eval("type('MyType', (base,), class_namespace)", + eval_namespace) + if issubclass(MyType, np.ndarray): + # Use this range to avoid special case weirdnesses around + # divide-by-0, pow(x, 2), overflow due to pow(big, big), etc. + return np.arange(3, 7).reshape(2, 2).view(MyType) + else: + return MyType() + + def check(obj, binop_override_expected, ufunc_override_expected, + inplace_override_expected, check_scalar=True): + for op, (ufunc, has_inplace, dtype) in ops.items(): + err_msg = ('op: %s, ufunc: %s, has_inplace: %s, dtype: %s' + % (op, ufunc, has_inplace, dtype)) + check_objs = [np.arange(3, 7, dtype=dtype).reshape(2, 2)] + if check_scalar: + check_objs.append(check_objs[0][0]) + for arr in check_objs: + arr_method = getattr(arr, f"__{op}__") + + def first_out_arg(result): + if op == "divmod": + assert_(isinstance(result, tuple)) + return result[0] + else: + return result + + # arr __op__ obj + if binop_override_expected: + assert_equal(arr_method(obj), NotImplemented, err_msg) + elif ufunc_override_expected: + assert_equal(arr_method(obj)[0], "__array_ufunc__", + err_msg) + elif (isinstance(obj, np.ndarray) and + (type(obj).__array_ufunc__ is + np.ndarray.__array_ufunc__)): + # __array__ gets ignored + res = first_out_arg(arr_method(obj)) + assert_(res.__class__ is obj.__class__, err_msg) + else: + assert_raises((TypeError, Coerced), + arr_method, obj, err_msg=err_msg) + # obj __op__ arr + arr_rmethod = getattr(arr, f"__r{op}__") + if ufunc_override_expected: + res = arr_rmethod(obj) + assert_equal(res[0], "__array_ufunc__", + err_msg=err_msg) + assert_equal(res[1], ufunc, err_msg=err_msg) + elif (isinstance(obj, np.ndarray) and + (type(obj).__array_ufunc__ is + np.ndarray.__array_ufunc__)): + # __array__ gets ignored + res = first_out_arg(arr_rmethod(obj)) + assert_(res.__class__ is obj.__class__, err_msg) + else: + # __array_ufunc__ = "asdf" creates a TypeError + assert_raises((TypeError, Coerced), + arr_rmethod, obj, err_msg=err_msg) + + # arr __iop__ obj + # array scalars don't have in-place operators + if has_inplace and isinstance(arr, np.ndarray): + arr_imethod = getattr(arr, f"__i{op}__") + if inplace_override_expected: + assert_equal(arr_method(obj), NotImplemented, + err_msg=err_msg) + elif ufunc_override_expected: + res = arr_imethod(obj) + assert_equal(res[0], "__array_ufunc__", err_msg) + assert_equal(res[1], ufunc, err_msg) + assert_(type(res[-1]["out"]) is tuple, err_msg) + assert_(res[-1]["out"][0] is arr, err_msg) + elif (isinstance(obj, np.ndarray) and + (type(obj).__array_ufunc__ is + np.ndarray.__array_ufunc__)): + # __array__ gets ignored + assert_(arr_imethod(obj) is arr, err_msg) + else: + assert_raises((TypeError, Coerced), + arr_imethod, obj, + err_msg=err_msg) + + op_fn = getattr(operator, op, None) + if op_fn is None: + op_fn = getattr(operator, op + "_", None) + if op_fn is None: + op_fn = getattr(builtins, op) + assert_equal(op_fn(obj, arr), "forward", err_msg) + if not isinstance(obj, np.ndarray): + if binop_override_expected: + assert_equal(op_fn(arr, obj), "reverse", err_msg) + elif ufunc_override_expected: + assert_equal(op_fn(arr, obj)[0], "__array_ufunc__", + err_msg) + if ufunc_override_expected: + assert_equal(ufunc(obj, arr)[0], "__array_ufunc__", + err_msg) + + # No array priority, no array_ufunc -> nothing called + check(make_obj(object), False, False, False) + # Negative array priority, no array_ufunc -> nothing called + # (has to be very negative, because scalar priority is -1000000.0) + check(make_obj(object, array_priority=-2**30), False, False, False) + # Positive array priority, no array_ufunc -> binops and iops only + check(make_obj(object, array_priority=1), True, False, True) + # ndarray ignores array_priority for ndarray subclasses + check(make_obj(np.ndarray, array_priority=1), False, False, False, + check_scalar=False) + # Positive array_priority and array_ufunc -> array_ufunc only + check(make_obj(object, array_priority=1, + array_ufunc=array_ufunc_impl), False, True, False) + check(make_obj(np.ndarray, array_priority=1, + array_ufunc=array_ufunc_impl), False, True, False) + # array_ufunc set to None -> defer binops only + check(make_obj(object, array_ufunc=None), True, False, False) + check(make_obj(np.ndarray, array_ufunc=None), True, False, False, + check_scalar=False) + + @pytest.mark.parametrize("priority", [None, "runtime error"]) + def test_ufunc_binop_bad_array_priority(self, priority): + # Mainly checks that this does not crash. The second array has a lower + # priority than -1 ("error value"). If the __radd__ actually exists, + # bad things can happen (I think via the scalar paths). + # In principle both of these can probably just be errors in the future. + class BadPriority: + @property + def __array_priority__(self): + if priority == "runtime error": + raise RuntimeError("RuntimeError in __array_priority__!") + return priority + + def __radd__(self, other): + return "result" + + class LowPriority(np.ndarray): + __array_priority__ = -1000 + + # Priority failure uses the same as scalars (smaller -1000). So the + # LowPriority wins with 'result' for each element (inner operation). + res = np.arange(3).view(LowPriority) + BadPriority() + assert res.shape == (3,) + assert res[0] == 'result' + + @pytest.mark.parametrize("scalar", [ + np.longdouble(1), np.timedelta64(120, 'm')]) + @pytest.mark.parametrize("op", [operator.add, operator.xor]) + def test_scalar_binop_guarantees_ufunc(self, scalar, op): + # Test that __array_ufunc__ will always cause ufunc use even when + # we have to protect some other calls from recursing (see gh-26904). + class SomeClass: + def __array_ufunc__(self, ufunc, method, *inputs, **kw): + return "result" + + assert SomeClass() + scalar == "result" + assert scalar + SomeClass() == "result" + + def test_ufunc_override_normalize_signature(self): + # gh-5674 + class SomeClass: + def __array_ufunc__(self, ufunc, method, *inputs, **kw): + return kw + + a = SomeClass() + kw = np.add(a, [1]) + assert_('sig' not in kw and 'signature' not in kw) + kw = np.add(a, [1], sig='ii->i') + assert_('sig' not in kw and 'signature' in kw) + assert_equal(kw['signature'], 'ii->i') + kw = np.add(a, [1], signature='ii->i') + assert_('sig' not in kw and 'signature' in kw) + assert_equal(kw['signature'], 'ii->i') + + def test_array_ufunc_index(self): + # Check that index is set appropriately, also if only an output + # is passed on (latter is another regression tests for github bug 4753) + # This also checks implicitly that 'out' is always a tuple. + class CheckIndex: + def __array_ufunc__(self, ufunc, method, *inputs, **kw): + for i, a in enumerate(inputs): + if a is self: + return i + # calls below mean we must be in an output. + for j, a in enumerate(kw['out']): + if a is self: + return (j,) + + a = CheckIndex() + dummy = np.arange(2.) + # 1 input, 1 output + assert_equal(np.sin(a), 0) + assert_equal(np.sin(dummy, a), (0,)) + assert_equal(np.sin(dummy, out=a), (0,)) + assert_equal(np.sin(dummy, out=(a,)), (0,)) + assert_equal(np.sin(a, a), 0) + assert_equal(np.sin(a, out=a), 0) + assert_equal(np.sin(a, out=(a,)), 0) + # 1 input, 2 outputs + assert_equal(np.modf(dummy, a), (0,)) + assert_equal(np.modf(dummy, None, a), (1,)) + assert_equal(np.modf(dummy, dummy, a), (1,)) + assert_equal(np.modf(dummy, out=(a, None)), (0,)) + assert_equal(np.modf(dummy, out=(a, dummy)), (0,)) + assert_equal(np.modf(dummy, out=(None, a)), (1,)) + assert_equal(np.modf(dummy, out=(dummy, a)), (1,)) + assert_equal(np.modf(a, out=(dummy, a)), 0) + with assert_raises(TypeError): + # Out argument must be tuple, since there are multiple outputs + np.modf(dummy, out=a) + + assert_raises(ValueError, np.modf, dummy, out=(a,)) + + # 2 inputs, 1 output + assert_equal(np.add(a, dummy), 0) + assert_equal(np.add(dummy, a), 1) + assert_equal(np.add(dummy, dummy, a), (0,)) + assert_equal(np.add(dummy, a, a), 1) + assert_equal(np.add(dummy, dummy, out=a), (0,)) + assert_equal(np.add(dummy, dummy, out=(a,)), (0,)) + assert_equal(np.add(a, dummy, out=a), 0) + + def test_out_override(self): + # regression test for github bug 4753 + class OutClass(np.ndarray): + def __array_ufunc__(self, ufunc, method, *inputs, **kw): + if 'out' in kw: + tmp_kw = kw.copy() + tmp_kw.pop('out') + func = getattr(ufunc, method) + kw['out'][0][...] = func(*inputs, **tmp_kw) + + A = np.array([0]).view(OutClass) + B = np.array([5]) + C = np.array([6]) + np.multiply(C, B, A) + assert_equal(A[0], 30) + assert_(isinstance(A, OutClass)) + A[0] = 0 + np.multiply(C, B, out=A) + assert_equal(A[0], 30) + assert_(isinstance(A, OutClass)) + + def test_pow_array_object_dtype(self): + # test pow on arrays of object dtype + class SomeClass: + def __init__(self, num=None): + self.num = num + + # want to ensure a fast pow path is not taken + def __mul__(self, other): + raise AssertionError('__mul__ should not be called') + + def __truediv__(self, other): + raise AssertionError('__truediv__ should not be called') + + def __pow__(self, exp): + return SomeClass(num=self.num ** exp) + + def __eq__(self, other): + if isinstance(other, SomeClass): + return self.num == other.num + + __rpow__ = __pow__ + + def pow_for(exp, arr): + return np.array([x ** exp for x in arr]) + + obj_arr = np.array([SomeClass(1), SomeClass(2), SomeClass(3)]) + + assert_equal(obj_arr ** 0.5, pow_for(0.5, obj_arr)) + assert_equal(obj_arr ** 0, pow_for(0, obj_arr)) + assert_equal(obj_arr ** 1, pow_for(1, obj_arr)) + assert_equal(obj_arr ** -1, pow_for(-1, obj_arr)) + assert_equal(obj_arr ** 2, pow_for(2, obj_arr)) + + def test_pow_calls_square_structured_dtype(self): + # gh-29388 + dt = np.dtype([('a', 'i4'), ('b', 'i4')]) + a = np.array([(1, 2), (3, 4)], dtype=dt) + with pytest.raises(TypeError, match="ufunc 'square' not supported"): + a ** 2 + + def test_pos_array_ufunc_override(self): + class A(np.ndarray): + def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): + return getattr(ufunc, method)(*[i.view(np.ndarray) for + i in inputs], **kwargs) + tst = np.array('foo').view(A) + with assert_raises(TypeError): + +tst + + +class TestTemporaryElide: + # elision is only triggered on relatively large arrays + + def test_extension_incref_elide(self): + # test extension (e.g. cython) calling PyNumber_* slots without + # increasing the reference counts + # + # def incref_elide(a): + # d = input.copy() # refcount 1 + # return d, d + d # PyNumber_Add without increasing refcount + from numpy._core._multiarray_tests import incref_elide + d = np.ones(100000) + orig, res = incref_elide(d) + d + d + # the return original should not be changed to an inplace operation + assert_array_equal(orig, d) + assert_array_equal(res, d + d) + + def test_extension_incref_elide_stack(self): + # scanning if the refcount == 1 object is on the python stack to check + # that we are called directly from python is flawed as object may still + # be above the stack pointer and we have no access to the top of it + # + # def incref_elide_l(d): + # return l[4] + l[4] # PyNumber_Add without increasing refcount + from numpy._core._multiarray_tests import incref_elide_l + # padding with 1 makes sure the object on the stack is not overwritten + l = [1, 1, 1, 1, np.ones(100000)] + res = incref_elide_l(l) + # the return original should not be changed to an inplace operation + assert_array_equal(l[4], np.ones(100000)) + assert_array_equal(res, l[4] + l[4]) + + def test_temporary_with_cast(self): + # check that we don't elide into a temporary which would need casting + d = np.ones(200000, dtype=np.int64) + r = ((d + d) + np.array(2**222, dtype='O')) + assert_equal(r.dtype, np.dtype('O')) + + r = ((d + d) / 2) + assert_equal(r.dtype, np.dtype('f8')) + + r = np.true_divide((d + d), 2) + assert_equal(r.dtype, np.dtype('f8')) + + r = ((d + d) / 2.) + assert_equal(r.dtype, np.dtype('f8')) + + r = ((d + d) // 2) + assert_equal(r.dtype, np.dtype(np.int64)) + + # commutative elision into the astype result + f = np.ones(100000, dtype=np.float32) + assert_equal(((f + f) + f.astype(np.float64)).dtype, np.dtype('f8')) + + # no elision into lower type + d = f.astype(np.float64) + assert_equal(((f + f) + d).dtype, d.dtype) + l = np.ones(100000, dtype=np.longdouble) + assert_equal(((d + d) + l).dtype, l.dtype) + + # test unary abs with different output dtype + for dt in (np.complex64, np.complex128, np.clongdouble): + c = np.ones(100000, dtype=dt) + r = abs(c * 2.0) + assert_equal(r.dtype, np.dtype('f%d' % (c.itemsize // 2))) + + def test_elide_broadcast(self): + # test no elision on broadcast to higher dimension + # only triggers elision code path in debug mode as triggering it in + # normal mode needs 256kb large matching dimension, so a lot of memory + d = np.ones((2000, 1), dtype=int) + b = np.ones((2000), dtype=bool) + r = (1 - d) + b + assert_equal(r, 1) + assert_equal(r.shape, (2000, 2000)) + + def test_elide_scalar(self): + # check inplace op does not create ndarray from scalars + a = np.bool() + assert_(type(~(a & a)) is np.bool) + + def test_elide_scalar_readonly(self): + # The imaginary part of a real array is readonly. This needs to go + # through fast_scalar_power which is only called for powers of + # +1, -1, 0, 0.5, and 2, so use 2. Also need valid refcount for + # elision which can be gotten for the imaginary part of a real + # array. Should not error. + a = np.empty(100000, dtype=np.float64) + a.imag ** 2 + + def test_elide_readonly(self): + # don't try to elide readonly temporaries + r = np.asarray(np.broadcast_to(np.zeros(1), 100000).flat) * 0.0 + assert_equal(r, 0) + + def test_elide_updateifcopy(self): + a = np.ones(2**20)[::2] + b = a.flat.__array__() + 1 + del b + assert_equal(a, 1) + + +class TestCAPI: + def test_IsPythonScalar(self): + from numpy._core._multiarray_tests import IsPythonScalar + assert_(IsPythonScalar(b'foobar')) + assert_(IsPythonScalar(1)) + assert_(IsPythonScalar(2**80)) + assert_(IsPythonScalar(2.)) + assert_(IsPythonScalar("a")) + + @pytest.mark.parametrize("converter", + [_multiarray_tests.run_scalar_intp_converter, + _multiarray_tests.run_scalar_intp_from_sequence]) + def test_intp_sequence_converters(self, converter): + # Test simple values (-1 is special for error return paths) + assert converter(10) == (10,) + assert converter(-1) == (-1,) + # A 0-D array looks a bit like a sequence but must take the integer + # path: + assert converter(np.array(123)) == (123,) + # Test simple sequences (intp_from_sequence only supports length 1): + assert converter((10,)) == (10,) + assert converter(np.array([11])) == (11,) + + @pytest.mark.parametrize("converter", + [_multiarray_tests.run_scalar_intp_converter, + _multiarray_tests.run_scalar_intp_from_sequence]) + @pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") + def test_intp_sequence_converters_errors(self, converter): + with pytest.raises(TypeError, + match="expected a sequence of integers or a single integer, "): + converter(object()) + with pytest.raises(TypeError, + match="expected a sequence of integers or a single integer, " + "got '32.0'"): + converter(32.) + with pytest.raises(TypeError, + match="'float' object cannot be interpreted as an integer"): + converter([32.]) + with pytest.raises(ValueError, + match="Maximum allowed dimension"): + # These converters currently convert overflows to a ValueError + converter(2**64) + + +class TestSubscripting: + def test_test_zero_rank(self): + x = np.array([1, 2, 3]) + assert_(isinstance(x[0], np.int_)) + assert_(type(x[0, ...]) is np.ndarray) + + +class TestPickling: + @pytest.mark.skipif(pickle.HIGHEST_PROTOCOL >= 5, + reason=('this tests the error messages when trying to' + 'protocol 5 although it is not available')) + def test_correct_protocol5_error_message(self): + array = np.arange(10) + + def test_record_array_with_object_dtype(self): + my_object = object() + + arr_with_object = np.array( + [(my_object, 1, 2.0)], + dtype=[('a', object), ('b', int), ('c', float)]) + arr_without_object = np.array( + [('xxx', 1, 2.0)], + dtype=[('a', str), ('b', int), ('c', float)]) + + for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): + depickled_arr_with_object = pickle.loads( + pickle.dumps(arr_with_object, protocol=proto)) + depickled_arr_without_object = pickle.loads( + pickle.dumps(arr_without_object, protocol=proto)) + + assert_equal(arr_with_object.dtype, + depickled_arr_with_object.dtype) + assert_equal(arr_without_object.dtype, + depickled_arr_without_object.dtype) + + @pytest.mark.skipif(pickle.HIGHEST_PROTOCOL < 5, + reason="requires pickle protocol 5") + def test_f_contiguous_array(self): + f_contiguous_array = np.array([[1, 2, 3], [4, 5, 6]], order='F') + buffers = [] + + # When using pickle protocol 5, Fortran-contiguous arrays can be + # serialized using out-of-band buffers + bytes_string = pickle.dumps(f_contiguous_array, protocol=5, + buffer_callback=buffers.append) + + assert len(buffers) > 0 + + depickled_f_contiguous_array = pickle.loads(bytes_string, + buffers=buffers) + + assert_equal(f_contiguous_array, depickled_f_contiguous_array) + + @pytest.mark.skipif(pickle.HIGHEST_PROTOCOL < 5, reason="requires pickle protocol 5") + @pytest.mark.parametrize('transposed_contiguous_array', + [np.random.default_rng(42).random((2, 3, 4)).transpose((1, 0, 2)), + np.random.default_rng(42).random((2, 3, 4, 5)).transpose((1, 3, 0, 2))] + + [np.random.default_rng(42).random(np.arange(2, 7)).transpose(np.random.permutation(5)) for _ in range(3)]) + def test_transposed_contiguous_array(self, transposed_contiguous_array): + buffers = [] + # When using pickle protocol 5, arrays which can be transposed to c_contiguous + # can be serialized using out-of-band buffers + bytes_string = pickle.dumps(transposed_contiguous_array, protocol=5, + buffer_callback=buffers.append) + + assert len(buffers) > 0 + + depickled_transposed_contiguous_array = pickle.loads(bytes_string, + buffers=buffers) + + assert_equal(transposed_contiguous_array, depickled_transposed_contiguous_array) + + @pytest.mark.skipif(pickle.HIGHEST_PROTOCOL < 5, reason="requires pickle protocol 5") + def test_load_legacy_pkl_protocol5(self): + # legacy byte strs are dumped in 2.2.1 + c_contiguous_dumped = b'\x80\x05\x95\x90\x00\x00\x00\x00\x00\x00\x00\x8c\x13numpy._core.numeric\x94\x8c\x0b_frombuffer\x94\x93\x94(\x96\x18\x00\x00\x00\x00\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x94\x8c\x05numpy\x94\x8c\x05dtype\x94\x93\x94\x8c\x02u1\x94\x89\x88\x87\x94R\x94(K\x03\x8c\x01|\x94NNNJ\xff\xff\xff\xffJ\xff\xff\xff\xffK\x00t\x94bK\x03K\x04K\x02\x87\x94\x8c\x01C\x94t\x94R\x94.' # noqa: E501 + f_contiguous_dumped = b'\x80\x05\x95\x90\x00\x00\x00\x00\x00\x00\x00\x8c\x13numpy._core.numeric\x94\x8c\x0b_frombuffer\x94\x93\x94(\x96\x18\x00\x00\x00\x00\x00\x00\x00\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x94\x8c\x05numpy\x94\x8c\x05dtype\x94\x93\x94\x8c\x02u1\x94\x89\x88\x87\x94R\x94(K\x03\x8c\x01|\x94NNNJ\xff\xff\xff\xffJ\xff\xff\xff\xffK\x00t\x94bK\x03K\x04K\x02\x87\x94\x8c\x01F\x94t\x94R\x94.' # noqa: E501 + transposed_contiguous_dumped = b'\x80\x05\x95\xa5\x00\x00\x00\x00\x00\x00\x00\x8c\x16numpy._core.multiarray\x94\x8c\x0c_reconstruct\x94\x93\x94\x8c\x05numpy\x94\x8c\x07ndarray\x94\x93\x94K\x00\x85\x94C\x01b\x94\x87\x94R\x94(K\x01K\x04K\x03K\x02\x87\x94h\x03\x8c\x05dtype\x94\x93\x94\x8c\x02u1\x94\x89\x88\x87\x94R\x94(K\x03\x8c\x01|\x94NNNJ\xff\xff\xff\xffJ\xff\xff\xff\xffK\x00t\x94b\x89C\x18\x00\x01\x08\t\x10\x11\x02\x03\n\x0b\x12\x13\x04\x05\x0c\r\x14\x15\x06\x07\x0e\x0f\x16\x17\x94t\x94b.' # noqa: E501 + no_contiguous_dumped = b'\x80\x05\x95\x91\x00\x00\x00\x00\x00\x00\x00\x8c\x16numpy._core.multiarray\x94\x8c\x0c_reconstruct\x94\x93\x94\x8c\x05numpy\x94\x8c\x07ndarray\x94\x93\x94K\x00\x85\x94C\x01b\x94\x87\x94R\x94(K\x01K\x03K\x02\x86\x94h\x03\x8c\x05dtype\x94\x93\x94\x8c\x02u1\x94\x89\x88\x87\x94R\x94(K\x03\x8c\x01|\x94NNNJ\xff\xff\xff\xffJ\xff\xff\xff\xffK\x00t\x94b\x89C\x06\x00\x01\x04\x05\x08\t\x94t\x94b.' # noqa: E501 + x = np.arange(24, dtype='uint8').reshape(3, 4, 2) + assert_equal(x, pickle.loads(c_contiguous_dumped)) + x = np.arange(24, dtype='uint8').reshape(3, 4, 2, order='F') + assert_equal(x, pickle.loads(f_contiguous_dumped)) + x = np.arange(24, dtype='uint8').reshape(3, 4, 2).transpose((1, 0, 2)) + assert_equal(x, pickle.loads(transposed_contiguous_dumped)) + x = np.arange(12, dtype='uint8').reshape(3, 4)[:, :2] + assert_equal(x, pickle.loads(no_contiguous_dumped)) + + def test_non_contiguous_array(self): + non_contiguous_array = np.arange(12).reshape(3, 4)[:, :2] + assert not non_contiguous_array.flags.c_contiguous + assert not non_contiguous_array.flags.f_contiguous + + # make sure non-contiguous arrays can be pickled-depickled + # using any protocol + buffers = [] + for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): + depickled_non_contiguous_array = pickle.loads( + pickle.dumps(non_contiguous_array, protocol=proto, + buffer_callback=buffers.append if proto >= 5 else None)) + + assert_equal(len(buffers), 0) + assert_equal(non_contiguous_array, depickled_non_contiguous_array) + + def test_roundtrip(self): + for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): + carray = np.array([[2, 9], [7, 0], [3, 8]]) + DATA = [ + carray, + np.transpose(carray), + np.array([('xxx', 1, 2.0)], dtype=[('a', (str, 3)), ('b', int), + ('c', float)]) + ] + + refs = [weakref.ref(a) for a in DATA] + for a in DATA: + assert_equal( + a, pickle.loads(pickle.dumps(a, protocol=proto)), + err_msg=f"{a!r}") + del a, DATA, carray + break_cycles() + # check for reference leaks (gh-12793) + for ref in refs: + assert ref() is None + + def _loads(self, obj): + return pickle.loads(obj, encoding='latin1') + + # version 0 pickles, using protocol=2 to pickle + # version 0 doesn't have a version field + def test_version0_int8(self): + s = b"\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x04\x85cnumpy\ndtype\nq\x04U\x02i1K\x00K\x01\x87Rq\x05(U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x04\x01\x02\x03\x04tb." + a = np.array([1, 2, 3, 4], dtype=np.int8) + p = self._loads(s) + assert_equal(a, p) + + def test_version0_float32(self): + s = b"\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x04\x85cnumpy\ndtype\nq\x04U\x02f4K\x00K\x01\x87Rq\x05(U\x01= g2, [g1[i] >= g2[i] for i in [0, 1, 2]]) + assert_array_equal(g1 < g2, [g1[i] < g2[i] for i in [0, 1, 2]]) + assert_array_equal(g1 > g2, [g1[i] > g2[i] for i in [0, 1, 2]]) + + def test_mixed(self): + g1 = np.array(["spam", "spa", "spammer", "and eggs"]) + g2 = "spam" + assert_array_equal(g1 == g2, [x == g2 for x in g1]) + assert_array_equal(g1 != g2, [x != g2 for x in g1]) + assert_array_equal(g1 < g2, [x < g2 for x in g1]) + assert_array_equal(g1 > g2, [x > g2 for x in g1]) + assert_array_equal(g1 <= g2, [x <= g2 for x in g1]) + assert_array_equal(g1 >= g2, [x >= g2 for x in g1]) + + def test_unicode(self): + g1 = np.array(["This", "is", "example"]) + g2 = np.array(["This", "was", "example"]) + assert_array_equal(g1 == g2, [g1[i] == g2[i] for i in [0, 1, 2]]) + assert_array_equal(g1 != g2, [g1[i] != g2[i] for i in [0, 1, 2]]) + assert_array_equal(g1 <= g2, [g1[i] <= g2[i] for i in [0, 1, 2]]) + assert_array_equal(g1 >= g2, [g1[i] >= g2[i] for i in [0, 1, 2]]) + assert_array_equal(g1 < g2, [g1[i] < g2[i] for i in [0, 1, 2]]) + assert_array_equal(g1 > g2, [g1[i] > g2[i] for i in [0, 1, 2]]) + +class TestArgmaxArgminCommon: + + sizes = [(), (3,), (3, 2), (2, 3), + (3, 3), (2, 3, 4), (4, 3, 2), + (1, 2, 3, 4), (2, 3, 4, 1), + (3, 4, 1, 2), (4, 1, 2, 3), + (64,), (128,), (256,)] + + @pytest.mark.parametrize("size, axis", itertools.chain(*[[(size, axis) + for axis in list(range(-len(size), len(size))) + [None]] + for size in sizes])) + @pytest.mark.parametrize('method', [np.argmax, np.argmin]) + def test_np_argmin_argmax_keepdims(self, size, axis, method): + + arr = np.random.normal(size=size) + + # contiguous arrays + if axis is None: + new_shape = [1 for _ in range(len(size))] + else: + new_shape = list(size) + new_shape[axis] = 1 + new_shape = tuple(new_shape) + + _res_orig = method(arr, axis=axis) + res_orig = _res_orig.reshape(new_shape) + res = method(arr, axis=axis, keepdims=True) + assert_equal(res, res_orig) + assert_(res.shape == new_shape) + outarray = np.empty(res.shape, dtype=res.dtype) + res1 = method(arr, axis=axis, out=outarray, + keepdims=True) + assert_(res1 is outarray) + assert_equal(res, outarray) + + if len(size) > 0: + wrong_shape = list(new_shape) + if axis is not None: + wrong_shape[axis] = 2 + else: + wrong_shape[0] = 2 + wrong_outarray = np.empty(wrong_shape, dtype=res.dtype) + with pytest.raises(ValueError): + method(arr.T, axis=axis, + out=wrong_outarray, keepdims=True) + + # non-contiguous arrays + if axis is None: + new_shape = [1 for _ in range(len(size))] + else: + new_shape = list(size)[::-1] + new_shape[axis] = 1 + new_shape = tuple(new_shape) + + _res_orig = method(arr.T, axis=axis) + res_orig = _res_orig.reshape(new_shape) + res = method(arr.T, axis=axis, keepdims=True) + assert_equal(res, res_orig) + assert_(res.shape == new_shape) + outarray = np.empty(new_shape[::-1], dtype=res.dtype) + outarray = outarray.T + res1 = method(arr.T, axis=axis, out=outarray, + keepdims=True) + assert_(res1 is outarray) + assert_equal(res, outarray) + + if len(size) > 0: + # one dimension lesser for non-zero sized + # array should raise an error + with pytest.raises(ValueError): + method(arr[0], axis=axis, + out=outarray, keepdims=True) + + if len(size) > 0: + wrong_shape = list(new_shape) + if axis is not None: + wrong_shape[axis] = 2 + else: + wrong_shape[0] = 2 + wrong_outarray = np.empty(wrong_shape, dtype=res.dtype) + with pytest.raises(ValueError): + method(arr.T, axis=axis, + out=wrong_outarray, keepdims=True) + + @pytest.mark.parametrize('method', ['max', 'min']) + def test_all(self, method): + a = np.random.normal(0, 1, (4, 5, 6, 7, 8)) + arg_method = getattr(a, 'arg' + method) + val_method = getattr(a, method) + for i in range(a.ndim): + a_maxmin = val_method(i) + aarg_maxmin = arg_method(i) + axes = list(range(a.ndim)) + axes.remove(i) + assert_(np.all(a_maxmin == aarg_maxmin.choose( + *a.transpose(i, *axes)))) + + @pytest.mark.parametrize('method', ['argmax', 'argmin']) + def test_output_shape(self, method): + # see also gh-616 + a = np.ones((10, 5)) + arg_method = getattr(a, method) + # Check some simple shape mismatches + out = np.ones(11, dtype=np.int_) + assert_raises(ValueError, arg_method, -1, out) + + out = np.ones((2, 5), dtype=np.int_) + assert_raises(ValueError, arg_method, -1, out) + + # these could be relaxed possibly (used to allow even the previous) + out = np.ones((1, 10), dtype=np.int_) + assert_raises(ValueError, arg_method, -1, out) + + out = np.ones(10, dtype=np.int_) + arg_method(-1, out=out) + assert_equal(out, arg_method(-1)) + + @pytest.mark.parametrize('ndim', [0, 1]) + @pytest.mark.parametrize('method', ['argmax', 'argmin']) + def test_ret_is_out(self, ndim, method): + a = np.ones((4,) + (256,) * ndim) + arg_method = getattr(a, method) + out = np.empty((256,) * ndim, dtype=np.intp) + ret = arg_method(axis=0, out=out) + assert ret is out + + @pytest.mark.parametrize('np_array, method, idx, val', + [(np.zeros, 'argmax', 5942, "as"), + (np.ones, 'argmin', 6001, "0")]) + def test_unicode(self, np_array, method, idx, val): + d = np_array(6031, dtype='= cmin)) + assert_(np.all(x <= cmax)) + + def _clip_type(self, type_group, array_max, + clip_min, clip_max, inplace=False, + expected_min=None, expected_max=None): + if expected_min is None: + expected_min = clip_min + if expected_max is None: + expected_max = clip_max + + for T in np._core.sctypes[type_group]: + if sys.byteorder == 'little': + byte_orders = ['=', '>'] + else: + byte_orders = ['<', '='] + + for byteorder in byte_orders: + dtype = np.dtype(T).newbyteorder(byteorder) + + x = (np.random.random(1000) * array_max).astype(dtype) + if inplace: + # The tests that call us pass clip_min and clip_max that + # might not fit in the destination dtype. They were written + # assuming the previous unsafe casting, which now must be + # passed explicitly to avoid a warning. + x.clip(clip_min, clip_max, x, casting='unsafe') + else: + x = x.clip(clip_min, clip_max) + byteorder = '=' + + if x.dtype.byteorder == '|': + byteorder = '|' + assert_equal(x.dtype.byteorder, byteorder) + self._check_range(x, expected_min, expected_max) + return x + + def test_basic(self): + for inplace in [False, True]: + self._clip_type( + 'float', 1024, -12.8, 100.2, inplace=inplace) + self._clip_type( + 'float', 1024, 0, 0, inplace=inplace) + + self._clip_type( + 'int', 1024, -120, 100, inplace=inplace) + self._clip_type( + 'int', 1024, 0, 0, inplace=inplace) + + self._clip_type( + 'uint', 1024, 0, 0, inplace=inplace) + self._clip_type( + 'uint', 1024, 10, 100, inplace=inplace) + + @pytest.mark.parametrize("inplace", [False, True]) + def test_int_out_of_range(self, inplace): + # Simple check for out-of-bound integers, also testing the in-place + # path. + x = (np.random.random(1000) * 255).astype("uint8") + out = np.empty_like(x) + res = x.clip(-1, 300, out=out if inplace else None) + assert res is out or not inplace + assert (res == x).all() + + res = x.clip(-1, 50, out=out if inplace else None) + assert res is out or not inplace + assert (res <= 50).all() + assert (res[x <= 50] == x[x <= 50]).all() + + res = x.clip(100, 1000, out=out if inplace else None) + assert res is out or not inplace + assert (res >= 100).all() + assert (res[x >= 100] == x[x >= 100]).all() + + def test_record_array(self): + rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)], + dtype=[('x', '= 3)) + x = val.clip(min=3) + assert_(np.all(x >= 3)) + x = val.clip(max=4) + assert_(np.all(x <= 4)) + + def test_nan(self): + input_arr = np.array([-2., np.nan, 0.5, 3., 0.25, np.nan]) + result = input_arr.clip(-1, 1) + expected = np.array([-1., np.nan, 0.5, 1., 0.25, np.nan]) + assert_array_equal(result, expected) + + +class TestCompress: + def test_axis(self): + tgt = [[5, 6, 7, 8, 9]] + arr = np.arange(10).reshape(2, 5) + out = np.compress([0, 1], arr, axis=0) + assert_equal(out, tgt) + + tgt = [[1, 3], [6, 8]] + out = np.compress([0, 1, 0, 1, 0], arr, axis=1) + assert_equal(out, tgt) + + def test_truncate(self): + tgt = [[1], [6]] + arr = np.arange(10).reshape(2, 5) + out = np.compress([0, 1], arr, axis=1) + assert_equal(out, tgt) + + def test_flatten(self): + arr = np.arange(10).reshape(2, 5) + out = np.compress([0, 1], arr) + assert_equal(out, 1) + + +class TestPutmask: + def tst_basic(self, x, T, mask, val): + np.putmask(x, mask, val) + assert_equal(x[mask], np.array(val, T)) + + def test_ip_types(self): + unchecked_types = [bytes, str, np.void] + + x = np.random.random(1000) * 100 + mask = x < 40 + + for val in [-100, 0, 15]: + for types in np._core.sctypes.values(): + for T in types: + if T not in unchecked_types: + if val < 0 and np.dtype(T).kind == "u": + val = np.iinfo(T).max - 99 + self.tst_basic(x.copy().astype(T), T, mask, val) + + # Also test string of a length which uses an untypical length + dt = np.dtype("S3") + self.tst_basic(x.astype(dt), dt.type, mask, dt.type(val)[:3]) + + def test_mask_size(self): + assert_raises(ValueError, np.putmask, np.array([1, 2, 3]), [True], 5) + + @pytest.mark.parametrize('dtype', ('>i4', 'f8'), ('z', '= 2, 3) + + def test_kwargs(self): + x = np.array([0, 0]) + np.putmask(x, [0, 1], [-1, -2]) + assert_array_equal(x, [0, -2]) + + x = np.array([0, 0]) + np.putmask(x, mask=[0, 1], values=[-1, -2]) + assert_array_equal(x, [0, -2]) + + x = np.array([0, 0]) + np.putmask(x, values=[-1, -2], mask=[0, 1]) + assert_array_equal(x, [0, -2]) + + with pytest.raises(TypeError): + np.putmask(a=x, values=[-1, -2], mask=[0, 1]) + + +class TestTake: + def tst_basic(self, x): + ind = list(range(x.shape[0])) + assert_array_equal(x.take(ind, axis=0), x) + + def test_ip_types(self): + unchecked_types = [bytes, str, np.void] + + x = np.random.random(24) * 100 + x.shape = 2, 3, 4 + for types in np._core.sctypes.values(): + for T in types: + if T not in unchecked_types: + self.tst_basic(x.copy().astype(T)) + + # Also test string of a length which uses an untypical length + self.tst_basic(x.astype("S3")) + + def test_raise(self): + x = np.random.random(24) * 100 + x.shape = 2, 3, 4 + assert_raises(IndexError, x.take, [0, 1, 2], axis=0) + assert_raises(IndexError, x.take, [-3], axis=0) + assert_array_equal(x.take([-1], axis=0)[0], x[1]) + + def test_clip(self): + x = np.random.random(24) * 100 + x.shape = 2, 3, 4 + assert_array_equal(x.take([-1], axis=0, mode='clip')[0], x[0]) + assert_array_equal(x.take([2], axis=0, mode='clip')[0], x[1]) + + def test_wrap(self): + x = np.random.random(24) * 100 + x.shape = 2, 3, 4 + assert_array_equal(x.take([-1], axis=0, mode='wrap')[0], x[1]) + assert_array_equal(x.take([2], axis=0, mode='wrap')[0], x[0]) + assert_array_equal(x.take([3], axis=0, mode='wrap')[0], x[1]) + + @pytest.mark.parametrize('dtype', ('>i4', 'f8'), ('z', ' 16MB + d = np.zeros(4 * 1024 ** 2) + d.tofile(tmp_filename) + assert_equal(os.path.getsize(tmp_filename), d.nbytes) + assert_array_equal(d, np.fromfile(tmp_filename)) + # check offset + with open(tmp_filename, "r+b") as f: + f.seek(d.nbytes) + d.tofile(f) + assert_equal(os.path.getsize(tmp_filename), d.nbytes * 2) + # check append mode (gh-8329) + open(tmp_filename, "w").close() # delete file contents + with open(tmp_filename, "ab") as f: + d.tofile(f) + assert_array_equal(d, np.fromfile(tmp_filename)) + with open(tmp_filename, "ab") as f: + d.tofile(f) + assert_equal(os.path.getsize(tmp_filename), d.nbytes * 2) + + def test_io_open_buffered_fromfile(self, x, tmp_filename): + # gh-6632 + x.tofile(tmp_filename) + with open(tmp_filename, 'rb', buffering=-1) as f: + y = np.fromfile(f, dtype=x.dtype) + assert_array_equal(y, x.flat) + + def test_file_position_after_fromfile(self, tmp_filename): + # gh-4118 + sizes = [io.DEFAULT_BUFFER_SIZE // 8, + io.DEFAULT_BUFFER_SIZE, + io.DEFAULT_BUFFER_SIZE * 8] + + for size in sizes: + with open(tmp_filename, 'wb') as f: + f.seek(size - 1) + f.write(b'\0') + + for mode in ['rb', 'r+b']: + err_msg = "%d %s" % (size, mode) + + with open(tmp_filename, mode) as f: + f.read(2) + np.fromfile(f, dtype=np.float64, count=1) + pos = f.tell() + assert_equal(pos, 10, err_msg=err_msg) + + def test_file_position_after_tofile(self, tmp_filename): + # gh-4118 + sizes = [io.DEFAULT_BUFFER_SIZE // 8, + io.DEFAULT_BUFFER_SIZE, + io.DEFAULT_BUFFER_SIZE * 8] + + for size in sizes: + err_msg = "%d" % (size,) + + with open(tmp_filename, 'wb') as f: + f.seek(size - 1) + f.write(b'\0') + f.seek(10) + f.write(b'12') + np.array([0], dtype=np.float64).tofile(f) + pos = f.tell() + assert_equal(pos, 10 + 2 + 8, err_msg=err_msg) + + with open(tmp_filename, 'r+b') as f: + f.read(2) + f.seek(0, 1) # seek between read&write required by ANSI C + np.array([0], dtype=np.float64).tofile(f) + pos = f.tell() + assert_equal(pos, 10, err_msg=err_msg) + + def test_load_object_array_fromfile(self, tmp_filename): + # gh-12300 + with open(tmp_filename, 'w') as f: + # Ensure we have a file with consistent contents + pass + + with open(tmp_filename, 'rb') as f: + assert_raises_regex(ValueError, "Cannot read into object array", + np.fromfile, f, dtype=object) + + assert_raises_regex(ValueError, "Cannot read into object array", + np.fromfile, tmp_filename, dtype=object) + + def test_fromfile_offset(self, x, tmp_filename): + with open(tmp_filename, 'wb') as f: + x.tofile(f) + + with open(tmp_filename, 'rb') as f: + y = np.fromfile(f, dtype=x.dtype, offset=0) + assert_array_equal(y, x.flat) + + with open(tmp_filename, 'rb') as f: + count_items = len(x.flat) // 8 + offset_items = len(x.flat) // 4 + offset_bytes = x.dtype.itemsize * offset_items + y = np.fromfile( + f, dtype=x.dtype, count=count_items, offset=offset_bytes + ) + assert_array_equal( + y, x.flat[offset_items:offset_items + count_items] + ) + + # subsequent seeks should stack + offset_bytes = x.dtype.itemsize + z = np.fromfile(f, dtype=x.dtype, offset=offset_bytes) + assert_array_equal(z, x.flat[offset_items + count_items + 1:]) + + with open(tmp_filename, 'wb') as f: + x.tofile(f, sep=",") + + with open(tmp_filename, 'rb') as f: + assert_raises_regex( + TypeError, + "'offset' argument only permitted for binary files", + np.fromfile, tmp_filename, dtype=x.dtype, + sep=",", offset=1) + + @pytest.mark.skipif(IS_PYPY, reason="bug in PyPy's PyNumber_AsSsize_t") + def test_fromfile_bad_dup(self, x, tmp_filename): + def dup_str(fd): + return 'abc' + + def dup_bigint(fd): + return 2**68 + + old_dup = os.dup + try: + with open(tmp_filename, 'wb') as f: + x.tofile(f) + for dup, exc in ((dup_str, TypeError), (dup_bigint, OSError)): + os.dup = dup + assert_raises(exc, np.fromfile, f) + finally: + os.dup = old_dup + + def _check_from(self, s, value, filename, **kw): + if 'sep' not in kw: + y = np.frombuffer(s, **kw) + else: + y = np.fromstring(s, **kw) + assert_array_equal(y, value) + + with open(filename, 'wb') as f: + f.write(s) + y = np.fromfile(filename, **kw) + assert_array_equal(y, value) + + @pytest.fixture(params=["period", "comma"]) + def decimal_sep_localization(self, request): + """ + Including this fixture in a test will automatically + execute it with both types of decimal separator. + + So:: + + def test_decimal(decimal_sep_localization): + pass + + is equivalent to the following two tests:: + + def test_decimal_period_separator(): + pass + + def test_decimal_comma_separator(): + with CommaDecimalPointLocale(): + pass + """ + if request.param == "period": + yield + elif request.param == "comma": + with CommaDecimalPointLocale(): + yield + else: + assert False, request.param + + def test_nan(self, tmp_filename, decimal_sep_localization): + self._check_from( + b"nan +nan -nan NaN nan(foo) +NaN(BAR) -NAN(q_u_u_x_)", + [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], + tmp_filename, + sep=' ') + + def test_inf(self, tmp_filename, decimal_sep_localization): + self._check_from( + b"inf +inf -inf infinity -Infinity iNfInItY -inF", + [np.inf, np.inf, -np.inf, np.inf, -np.inf, np.inf, -np.inf], + tmp_filename, + sep=' ') + + def test_numbers(self, tmp_filename, decimal_sep_localization): + self._check_from( + b"1.234 -1.234 .3 .3e55 -123133.1231e+133", + [1.234, -1.234, .3, .3e55, -123133.1231e+133], + tmp_filename, + sep=' ') + + def test_binary(self, tmp_filename): + self._check_from( + b'\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@', + np.array([1, 2, 3, 4]), + tmp_filename, + dtype='']) + @pytest.mark.parametrize('dtype', [float, int, complex]) + def test_basic(self, byteorder, dtype): + dt = np.dtype(dtype).newbyteorder(byteorder) + x = (np.random.random((4, 7)) * 5).astype(dt) + buf = x.tobytes() + assert_array_equal(np.frombuffer(buf, dtype=dt), x.flat) + + @pytest.mark.parametrize("obj", [np.arange(10), b"12345678"]) + def test_array_base(self, obj): + # Objects (including NumPy arrays), which do not use the + # `release_buffer` slot should be directly used as a base object. + # See also gh-21612 + new = np.frombuffer(obj) + assert new.base is obj + + def test_empty(self): + assert_array_equal(np.frombuffer(b''), np.array([])) + + @pytest.mark.skipif(IS_PYPY, + reason="PyPy's memoryview currently does not track exports. See: " + "https://foss.heptapod.net/pypy/pypy/-/issues/3724") + def test_mmap_close(self): + # The old buffer protocol was not safe for some things that the new + # one is. But `frombuffer` always used the old one for a long time. + # Checks that it is safe with the new one (using memoryviews) + with tempfile.TemporaryFile(mode='wb') as tmp: + tmp.write(b"asdf") + tmp.flush() + mm = mmap.mmap(tmp.fileno(), 0) + arr = np.frombuffer(mm, dtype=np.uint8) + with pytest.raises(BufferError): + mm.close() # cannot close while array uses the buffer + del arr + mm.close() + +class TestFlat: + def setup_method(self): + a0 = np.arange(20.0) + a = a0.reshape(4, 5) + a0.shape = (4, 5) + a.flags.writeable = False + self.a = a + self.b = a[::2, ::2] + self.a0 = a0 + self.b0 = a0[::2, ::2] + + def test_contiguous(self): + testpassed = False + try: + self.a.flat[12] = 100.0 + except ValueError: + testpassed = True + assert_(testpassed) + assert_(self.a.flat[12] == 12.0) + + def test_discontiguous(self): + testpassed = False + try: + self.b.flat[4] = 100.0 + except ValueError: + testpassed = True + assert_(testpassed) + assert_(self.b.flat[4] == 12.0) + + def test___array__(self): + c = self.a.flat.__array__() + d = self.b.flat.__array__() + e = self.a0.flat.__array__() + f = self.b0.flat.__array__() + + assert_(c.flags.writeable is False) + assert_(d.flags.writeable is False) + assert_(e.flags.writeable is True) + assert_(f.flags.writeable is False) + assert_(c.flags.writebackifcopy is False) + assert_(d.flags.writebackifcopy is False) + assert_(e.flags.writebackifcopy is False) + assert_(f.flags.writebackifcopy is False) + + @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") + def test_refcount(self): + # includes regression test for reference count error gh-13165 + inds = [np.intp(0), np.array([True] * self.a.size), np.array([0]), None] + indtype = np.dtype(np.intp) + rc_indtype = sys.getrefcount(indtype) + for ind in inds: + rc_ind = sys.getrefcount(ind) + for _ in range(100): + try: + self.a.flat[ind] + except IndexError: + pass + assert_(abs(sys.getrefcount(ind) - rc_ind) < 50) + assert_(abs(sys.getrefcount(indtype) - rc_indtype) < 50) + + def test_index_getset(self): + it = np.arange(10).reshape(2, 1, 5).flat + with pytest.raises(AttributeError): + it.index = 10 + + for _ in it: + pass + # Check the value of `.index` is updated correctly (see also gh-19153) + # If the type was incorrect, this would show up on big-endian machines + assert it.index == it.base.size + + def test_maxdims(self): + # The flat iterator and thus attribute is currently unfortunately + # limited to only 32 dimensions (after bumping it to 64 for 2.0) + a = np.ones((1,) * 64) + + with pytest.raises(RuntimeError, + match=".*32 dimensions but the array has 64"): + a.flat + + +class TestResize: + + @_no_tracing + def test_basic(self): + x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) + if IS_PYPY: + x.resize((5, 5), refcheck=False) + else: + x.resize((5, 5)) + assert_array_equal(x.flat[:9], + np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]).flat) + assert_array_equal(x[9:].flat, 0) + + def test_check_reference(self): + x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) + y = x + assert_raises(ValueError, x.resize, (5, 1)) + + @_no_tracing + def test_int_shape(self): + x = np.eye(3) + if IS_PYPY: + x.resize(3, refcheck=False) + else: + x.resize(3) + assert_array_equal(x, np.eye(3)[0, :]) + + def test_none_shape(self): + x = np.eye(3) + x.resize(None) + assert_array_equal(x, np.eye(3)) + x.resize() + assert_array_equal(x, np.eye(3)) + + def test_0d_shape(self): + # to it multiple times to test it does not break alloc cache gh-9216 + for i in range(10): + x = np.empty((1,)) + x.resize(()) + assert_equal(x.shape, ()) + assert_equal(x.size, 1) + x = np.empty(()) + x.resize((1,)) + assert_equal(x.shape, (1,)) + assert_equal(x.size, 1) + + def test_invalid_arguments(self): + assert_raises(TypeError, np.eye(3).resize, 'hi') + assert_raises(ValueError, np.eye(3).resize, -1) + assert_raises(TypeError, np.eye(3).resize, order=1) + assert_raises(TypeError, np.eye(3).resize, refcheck='hi') + + @_no_tracing + def test_freeform_shape(self): + x = np.eye(3) + if IS_PYPY: + x.resize(3, 2, 1, refcheck=False) + else: + x.resize(3, 2, 1) + assert_(x.shape == (3, 2, 1)) + + @_no_tracing + def test_zeros_appended(self): + x = np.eye(3) + if IS_PYPY: + x.resize(2, 3, 3, refcheck=False) + else: + x.resize(2, 3, 3) + assert_array_equal(x[0], np.eye(3)) + assert_array_equal(x[1], np.zeros((3, 3))) + + @_no_tracing + def test_obj_obj(self): + # check memory is initialized on resize, gh-4857 + a = np.ones(10, dtype=[('k', object, 2)]) + if IS_PYPY: + a.resize(15, refcheck=False) + else: + a.resize(15,) + assert_equal(a.shape, (15,)) + assert_array_equal(a['k'][-5:], 0) + assert_array_equal(a['k'][:-5], 1) + + def test_empty_view(self): + # check that sizes containing a zero don't trigger a reallocate for + # already empty arrays + x = np.zeros((10, 0), int) + x_view = x[...] + x_view.resize((0, 10)) + x_view.resize((0, 100)) + + def test_check_weakref(self): + x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) + xref = weakref.ref(x) + assert_raises(ValueError, x.resize, (5, 1)) + + +class TestRecord: + def test_field_rename(self): + dt = np.dtype([('f', float), ('i', int)]) + dt.names = ['p', 'q'] + assert_equal(dt.names, ['p', 'q']) + + def test_multiple_field_name_occurrence(self): + def test_dtype_init(): + np.dtype([("A", "f8"), ("B", "f8"), ("A", "f8")]) + + # Error raised when multiple fields have the same name + assert_raises(ValueError, test_dtype_init) + + def test_bytes_fields(self): + # Bytes are not allowed in field names and not recognized in titles + # on Py3 + assert_raises(TypeError, np.dtype, [(b'a', int)]) + assert_raises(TypeError, np.dtype, [(('b', b'a'), int)]) + + dt = np.dtype([((b'a', 'b'), int)]) + assert_raises(TypeError, dt.__getitem__, b'a') + + x = np.array([(1,), (2,), (3,)], dtype=dt) + assert_raises(IndexError, x.__getitem__, b'a') + + y = x[0] + assert_raises(IndexError, y.__getitem__, b'a') + + def test_multiple_field_name_unicode(self): + def test_dtype_unicode(): + np.dtype([("\u20B9", "f8"), ("B", "f8"), ("\u20B9", "f8")]) + + # Error raised when multiple fields have the same name(unicode included) + assert_raises(ValueError, test_dtype_unicode) + + def test_fromarrays_unicode(self): + # A single name string provided to fromarrays() is allowed to be unicode + x = np._core.records.fromarrays( + [[0], [1]], names='a,b', formats='i4,i4') + assert_equal(x['a'][0], 0) + assert_equal(x['b'][0], 1) + + def test_unicode_order(self): + # Test that we can sort with order as a unicode field name + name = 'b' + x = np.array([1, 3, 2], dtype=[(name, int)]) + x.sort(order=name) + assert_equal(x['b'], np.array([1, 2, 3])) + + def test_field_names(self): + # Test unicode and 8-bit / byte strings can be used + a = np.zeros((1,), dtype=[('f1', 'i4'), + ('f2', 'i4'), + ('f3', [('sf1', 'i4')])]) + # byte string indexing fails gracefully + assert_raises(IndexError, a.__setitem__, b'f1', 1) + assert_raises(IndexError, a.__getitem__, b'f1') + assert_raises(IndexError, a['f1'].__setitem__, b'sf1', 1) + assert_raises(IndexError, a['f1'].__getitem__, b'sf1') + b = a.copy() + fn1 = 'f1' + b[fn1] = 1 + assert_equal(b[fn1], 1) + fnn = 'not at all' + assert_raises(ValueError, b.__setitem__, fnn, 1) + assert_raises(ValueError, b.__getitem__, fnn) + b[0][fn1] = 2 + assert_equal(b[fn1], 2) + # Subfield + assert_raises(ValueError, b[0].__setitem__, fnn, 1) + assert_raises(ValueError, b[0].__getitem__, fnn) + # Subfield + fn3 = 'f3' + sfn1 = 'sf1' + b[fn3][sfn1] = 1 + assert_equal(b[fn3][sfn1], 1) + assert_raises(ValueError, b[fn3].__setitem__, fnn, 1) + assert_raises(ValueError, b[fn3].__getitem__, fnn) + # multiple subfields + fn2 = 'f2' + b[fn2] = 3 + + assert_equal(b[['f1', 'f2']][0].tolist(), (2, 3)) + assert_equal(b[['f2', 'f1']][0].tolist(), (3, 2)) + assert_equal(b[['f1', 'f3']][0].tolist(), (2, (1,))) + + # non-ascii unicode field indexing is well behaved + assert_raises(ValueError, a.__setitem__, '\u03e0', 1) + assert_raises(ValueError, a.__getitem__, '\u03e0') + + def test_record_hash(self): + a = np.array([(1, 2), (1, 2)], dtype='i1,i2') + a.flags.writeable = False + b = np.array([(1, 2), (3, 4)], dtype=[('num1', 'i1'), ('num2', 'i2')]) + b.flags.writeable = False + c = np.array([(1, 2), (3, 4)], dtype='i1,i2') + c.flags.writeable = False + assert_(hash(a[0]) == hash(a[1])) + assert_(hash(a[0]) == hash(b[0])) + assert_(hash(a[0]) != hash(b[1])) + assert_(hash(c[0]) == hash(a[0]) and c[0] == a[0]) + + def test_record_no_hash(self): + a = np.array([(1, 2), (1, 2)], dtype='i1,i2') + assert_raises(TypeError, hash, a[0]) + + def test_empty_structure_creation(self): + # make sure these do not raise errors (gh-5631) + np.array([()], dtype={'names': [], 'formats': [], + 'offsets': [], 'itemsize': 12}) + np.array([(), (), (), (), ()], dtype={'names': [], 'formats': [], + 'offsets': [], 'itemsize': 12}) + + def test_multifield_indexing_view(self): + a = np.ones(3, dtype=[('a', 'i4'), ('b', 'f4'), ('c', 'u4')]) + v = a[['a', 'c']] + assert_(v.base is a) + assert_(v.dtype == np.dtype({'names': ['a', 'c'], + 'formats': ['i4', 'u4'], + 'offsets': [0, 8]})) + v[:] = (4, 5) + assert_equal(a[0].item(), (4, 1, 5)) + +class TestView: + def test_basic(self): + x = np.array([(1, 2, 3, 4), (5, 6, 7, 8)], + dtype=[('r', np.int8), ('g', np.int8), + ('b', np.int8), ('a', np.int8)]) + # We must be specific about the endianness here: + y = x.view(dtype=' 0) + assert_(issubclass(w[0].category, RuntimeWarning)) + + def test_empty(self): + A = np.zeros((0, 3)) + for f in self.funcs: + for axis in [0, None]: + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + assert_(np.isnan(f(A, axis=axis)).all()) + assert_(len(w) > 0) + assert_(issubclass(w[0].category, RuntimeWarning)) + for axis in [1]: + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + assert_equal(f(A, axis=axis), np.zeros([])) + + def test_mean_values(self): + for mat in [self.rmat, self.cmat, self.omat]: + for axis in [0, 1]: + tgt = mat.sum(axis=axis) + res = _mean(mat, axis=axis) * mat.shape[axis] + assert_almost_equal(res, tgt) + for axis in [None]: + tgt = mat.sum(axis=axis) + res = _mean(mat, axis=axis) * np.prod(mat.shape) + assert_almost_equal(res, tgt) + + def test_mean_float16(self): + # This fail if the sum inside mean is done in float16 instead + # of float32. + assert_(_mean(np.ones(100000, dtype='float16')) == 1) + + def test_mean_axis_error(self): + # Ensure that AxisError is raised instead of IndexError when axis is + # out of bounds, see gh-15817. + with assert_raises(np.exceptions.AxisError): + np.arange(10).mean(axis=2) + + def test_mean_where(self): + a = np.arange(16).reshape((4, 4)) + wh_full = np.array([[False, True, False, True], + [True, False, True, False], + [True, True, False, False], + [False, False, True, True]]) + wh_partial = np.array([[False], + [True], + [True], + [False]]) + _cases = [(1, True, [1.5, 5.5, 9.5, 13.5]), + (0, wh_full, [6., 5., 10., 9.]), + (1, wh_full, [2., 5., 8.5, 14.5]), + (0, wh_partial, [6., 7., 8., 9.])] + for _ax, _wh, _res in _cases: + assert_allclose(a.mean(axis=_ax, where=_wh), + np.array(_res)) + assert_allclose(np.mean(a, axis=_ax, where=_wh), + np.array(_res)) + + a3d = np.arange(16).reshape((2, 2, 4)) + _wh_partial = np.array([False, True, True, False]) + _res = [[1.5, 5.5], [9.5, 13.5]] + assert_allclose(a3d.mean(axis=2, where=_wh_partial), + np.array(_res)) + assert_allclose(np.mean(a3d, axis=2, where=_wh_partial), + np.array(_res)) + + with pytest.warns(RuntimeWarning) as w: + assert_allclose(a.mean(axis=1, where=wh_partial), + np.array([np.nan, 5.5, 9.5, np.nan])) + with pytest.warns(RuntimeWarning) as w: + assert_equal(a.mean(where=False), np.nan) + with pytest.warns(RuntimeWarning) as w: + assert_equal(np.mean(a, where=False), np.nan) + + def test_var_values(self): + for mat in [self.rmat, self.cmat, self.omat]: + for axis in [0, 1, None]: + msqr = _mean(mat * mat.conj(), axis=axis) + mean = _mean(mat, axis=axis) + tgt = msqr - mean * mean.conjugate() + res = _var(mat, axis=axis) + assert_almost_equal(res, tgt) + + @pytest.mark.parametrize(('complex_dtype', 'ndec'), ( + ('complex64', 6), + ('complex128', 7), + ('clongdouble', 7), + )) + def test_var_complex_values(self, complex_dtype, ndec): + # Test fast-paths for every builtin complex type + for axis in [0, 1, None]: + mat = self.cmat.copy().astype(complex_dtype) + msqr = _mean(mat * mat.conj(), axis=axis) + mean = _mean(mat, axis=axis) + tgt = msqr - mean * mean.conjugate() + res = _var(mat, axis=axis) + assert_almost_equal(res, tgt, decimal=ndec) + + def test_var_dimensions(self): + # _var paths for complex number introduce additions on views that + # increase dimensions. Ensure this generalizes to higher dims + mat = np.stack([self.cmat] * 3) + for axis in [0, 1, 2, -1, None]: + msqr = _mean(mat * mat.conj(), axis=axis) + mean = _mean(mat, axis=axis) + tgt = msqr - mean * mean.conjugate() + res = _var(mat, axis=axis) + assert_almost_equal(res, tgt) + + def test_var_complex_byteorder(self): + # Test that var fast-path does not cause failures for complex arrays + # with non-native byteorder + cmat = self.cmat.copy().astype('complex128') + cmat_swapped = cmat.astype(cmat.dtype.newbyteorder()) + assert_almost_equal(cmat.var(), cmat_swapped.var()) + + def test_var_axis_error(self): + # Ensure that AxisError is raised instead of IndexError when axis is + # out of bounds, see gh-15817. + with assert_raises(np.exceptions.AxisError): + np.arange(10).var(axis=2) + + def test_var_where(self): + a = np.arange(25).reshape((5, 5)) + wh_full = np.array([[False, True, False, True, True], + [True, False, True, True, False], + [True, True, False, False, True], + [False, True, True, False, True], + [True, False, True, True, False]]) + wh_partial = np.array([[False], + [True], + [True], + [False], + [True]]) + _cases = [(0, True, [50., 50., 50., 50., 50.]), + (1, True, [2., 2., 2., 2., 2.])] + for _ax, _wh, _res in _cases: + assert_allclose(a.var(axis=_ax, where=_wh), + np.array(_res)) + assert_allclose(np.var(a, axis=_ax, where=_wh), + np.array(_res)) + + a3d = np.arange(16).reshape((2, 2, 4)) + _wh_partial = np.array([False, True, True, False]) + _res = [[0.25, 0.25], [0.25, 0.25]] + assert_allclose(a3d.var(axis=2, where=_wh_partial), + np.array(_res)) + assert_allclose(np.var(a3d, axis=2, where=_wh_partial), + np.array(_res)) + + assert_allclose(np.var(a, axis=1, where=wh_full), + np.var(a[wh_full].reshape((5, 3)), axis=1)) + assert_allclose(np.var(a, axis=0, where=wh_partial), + np.var(a[wh_partial[:, 0]], axis=0)) + with pytest.warns(RuntimeWarning) as w: + assert_equal(a.var(where=False), np.nan) + with pytest.warns(RuntimeWarning) as w: + assert_equal(np.var(a, where=False), np.nan) + + def test_std_values(self): + for mat in [self.rmat, self.cmat, self.omat]: + for axis in [0, 1, None]: + tgt = np.sqrt(_var(mat, axis=axis)) + res = _std(mat, axis=axis) + assert_almost_equal(res, tgt) + + def test_std_where(self): + a = np.arange(25).reshape((5, 5))[::-1] + whf = np.array([[False, True, False, True, True], + [True, False, True, False, True], + [True, True, False, True, False], + [True, False, True, True, False], + [False, True, False, True, True]]) + whp = np.array([[False], + [False], + [True], + [True], + [False]]) + _cases = [ + (0, True, 7.07106781 * np.ones(5)), + (1, True, 1.41421356 * np.ones(5)), + (0, whf, + np.array([4.0824829, 8.16496581, 5., 7.39509973, 8.49836586])), + (0, whp, 2.5 * np.ones(5)) + ] + for _ax, _wh, _res in _cases: + assert_allclose(a.std(axis=_ax, where=_wh), _res) + assert_allclose(np.std(a, axis=_ax, where=_wh), _res) + + a3d = np.arange(16).reshape((2, 2, 4)) + _wh_partial = np.array([False, True, True, False]) + _res = [[0.5, 0.5], [0.5, 0.5]] + assert_allclose(a3d.std(axis=2, where=_wh_partial), + np.array(_res)) + assert_allclose(np.std(a3d, axis=2, where=_wh_partial), + np.array(_res)) + + assert_allclose(a.std(axis=1, where=whf), + np.std(a[whf].reshape((5, 3)), axis=1)) + assert_allclose(np.std(a, axis=1, where=whf), + (a[whf].reshape((5, 3))).std(axis=1)) + assert_allclose(a.std(axis=0, where=whp), + np.std(a[whp[:, 0]], axis=0)) + assert_allclose(np.std(a, axis=0, where=whp), + (a[whp[:, 0]]).std(axis=0)) + with pytest.warns(RuntimeWarning) as w: + assert_equal(a.std(where=False), np.nan) + with pytest.warns(RuntimeWarning) as w: + assert_equal(np.std(a, where=False), np.nan) + + def test_subclass(self): + class TestArray(np.ndarray): + def __new__(cls, data, info): + result = np.array(data) + result = result.view(cls) + result.info = info + return result + + def __array_finalize__(self, obj): + self.info = getattr(obj, "info", '') + + dat = TestArray([[1, 2, 3, 4], [5, 6, 7, 8]], 'jubba') + res = dat.mean(1) + assert_(res.info == dat.info) + res = dat.std(1) + assert_(res.info == dat.info) + res = dat.var(1) + assert_(res.info == dat.info) + + +class TestVdot: + def test_basic(self): + dt_numeric = np.typecodes['AllFloat'] + np.typecodes['AllInteger'] + dt_complex = np.typecodes['Complex'] + + # test real + a = np.eye(3) + for dt in dt_numeric + 'O': + b = a.astype(dt) + res = np.vdot(b, b) + assert_(np.isscalar(res)) + assert_equal(np.vdot(b, b), 3) + + # test complex + a = np.eye(3) * 1j + for dt in dt_complex + 'O': + b = a.astype(dt) + res = np.vdot(b, b) + assert_(np.isscalar(res)) + assert_equal(np.vdot(b, b), 3) + + # test boolean + b = np.eye(3, dtype=bool) + res = np.vdot(b, b) + assert_(np.isscalar(res)) + assert_equal(np.vdot(b, b), True) + + def test_vdot_array_order(self): + a = np.array([[1, 2], [3, 4]], order='C') + b = np.array([[1, 2], [3, 4]], order='F') + res = np.vdot(a, a) + + # integer arrays are exact + assert_equal(np.vdot(a, b), res) + assert_equal(np.vdot(b, a), res) + assert_equal(np.vdot(b, b), res) + + def test_vdot_uncontiguous(self): + for size in [2, 1000]: + # Different sizes match different branches in vdot. + a = np.zeros((size, 2, 2)) + b = np.zeros((size, 2, 2)) + a[:, 0, 0] = np.arange(size) + b[:, 0, 0] = np.arange(size) + 1 + # Make a and b uncontiguous: + a = a[..., 0] + b = b[..., 0] + + assert_equal(np.vdot(a, b), + np.vdot(a.flatten(), b.flatten())) + assert_equal(np.vdot(a, b.copy()), + np.vdot(a.flatten(), b.flatten())) + assert_equal(np.vdot(a.copy(), b), + np.vdot(a.flatten(), b.flatten())) + assert_equal(np.vdot(a.copy('F'), b), + np.vdot(a.flatten(), b.flatten())) + assert_equal(np.vdot(a, b.copy('F')), + np.vdot(a.flatten(), b.flatten())) + + +class TestDot: + def setup_method(self): + np.random.seed(128) + self.A = np.random.rand(4, 2) + self.b1 = np.random.rand(2, 1) + self.b2 = np.random.rand(2) + self.b3 = np.random.rand(1, 2) + self.b4 = np.random.rand(4) + self.N = 7 + + def test_dotmatmat(self): + A = self.A + res = np.dot(A.transpose(), A) + tgt = np.array([[1.45046013, 0.86323640], + [0.86323640, 0.84934569]]) + assert_almost_equal(res, tgt, decimal=self.N) + + def test_dotmatvec(self): + A, b1 = self.A, self.b1 + res = np.dot(A, b1) + tgt = np.array([[0.32114320], [0.04889721], + [0.15696029], [0.33612621]]) + assert_almost_equal(res, tgt, decimal=self.N) + + def test_dotmatvec2(self): + A, b2 = self.A, self.b2 + res = np.dot(A, b2) + tgt = np.array([0.29677940, 0.04518649, 0.14468333, 0.31039293]) + assert_almost_equal(res, tgt, decimal=self.N) + + def test_dotvecmat(self): + A, b4 = self.A, self.b4 + res = np.dot(b4, A) + tgt = np.array([1.23495091, 1.12222648]) + assert_almost_equal(res, tgt, decimal=self.N) + + def test_dotvecmat2(self): + b3, A = self.b3, self.A + res = np.dot(b3, A.transpose()) + tgt = np.array([[0.58793804, 0.08957460, 0.30605758, 0.62716383]]) + assert_almost_equal(res, tgt, decimal=self.N) + + def test_dotvecmat3(self): + A, b4 = self.A, self.b4 + res = np.dot(A.transpose(), b4) + tgt = np.array([1.23495091, 1.12222648]) + assert_almost_equal(res, tgt, decimal=self.N) + + def test_dotvecvecouter(self): + b1, b3 = self.b1, self.b3 + res = np.dot(b1, b3) + tgt = np.array([[0.20128610, 0.08400440], [0.07190947, 0.03001058]]) + assert_almost_equal(res, tgt, decimal=self.N) + + def test_dotvecvecinner(self): + b1, b3 = self.b1, self.b3 + res = np.dot(b3, b1) + tgt = np.array([[0.23129668]]) + assert_almost_equal(res, tgt, decimal=self.N) + + def test_dotcolumnvect1(self): + b1 = np.ones((3, 1)) + b2 = [5.3] + res = np.dot(b1, b2) + tgt = np.array([5.3, 5.3, 5.3]) + assert_almost_equal(res, tgt, decimal=self.N) + + def test_dotcolumnvect2(self): + b1 = np.ones((3, 1)).transpose() + b2 = [6.2] + res = np.dot(b2, b1) + tgt = np.array([6.2, 6.2, 6.2]) + assert_almost_equal(res, tgt, decimal=self.N) + + def test_dotvecscalar(self): + np.random.seed(100) + b1 = np.random.rand(1, 1) + b2 = np.random.rand(1, 4) + res = np.dot(b1, b2) + tgt = np.array([[0.15126730, 0.23068496, 0.45905553, 0.00256425]]) + assert_almost_equal(res, tgt, decimal=self.N) + + def test_dotvecscalar2(self): + np.random.seed(100) + b1 = np.random.rand(4, 1) + b2 = np.random.rand(1, 1) + res = np.dot(b1, b2) + tgt = np.array([[0.00256425], [0.00131359], [0.00200324], [0.00398638]]) + assert_almost_equal(res, tgt, decimal=self.N) + + def test_all(self): + dims = [(), (1,), (1, 1)] + dout = [(), (1,), (1, 1), (1,), (), (1,), (1, 1), (1,), (1, 1)] + for dim, (dim1, dim2) in zip(dout, itertools.product(dims, dims)): + b1 = np.zeros(dim1) + b2 = np.zeros(dim2) + res = np.dot(b1, b2) + tgt = np.zeros(dim) + assert_(res.shape == tgt.shape) + assert_almost_equal(res, tgt, decimal=self.N) + + def test_vecobject(self): + class Vec: + def __init__(self, sequence=None): + if sequence is None: + sequence = [] + self.array = np.array(sequence) + + def __add__(self, other): + out = Vec() + out.array = self.array + other.array + return out + + def __sub__(self, other): + out = Vec() + out.array = self.array - other.array + return out + + def __mul__(self, other): # with scalar + out = Vec(self.array.copy()) + out.array *= other + return out + + def __rmul__(self, other): + return self * other + + U_non_cont = np.transpose([[1., 1.], [1., 2.]]) + U_cont = np.ascontiguousarray(U_non_cont) + x = np.array([Vec([1., 0.]), Vec([0., 1.])]) + zeros = np.array([Vec([0., 0.]), Vec([0., 0.])]) + zeros_test = np.dot(U_cont, x) - np.dot(U_non_cont, x) + assert_equal(zeros[0].array, zeros_test[0].array) + assert_equal(zeros[1].array, zeros_test[1].array) + + def test_dot_2args(self): + + a = np.array([[1, 2], [3, 4]], dtype=float) + b = np.array([[1, 0], [1, 1]], dtype=float) + c = np.array([[3, 2], [7, 4]], dtype=float) + + d = dot(a, b) + assert_allclose(c, d) + + def test_dot_3args(self): + + np.random.seed(22) + f = np.random.random_sample((1024, 16)) + v = np.random.random_sample((16, 32)) + + r = np.empty((1024, 32)) + if HAS_REFCOUNT: + orig_refcount = sys.getrefcount(r) + for i in range(12): + dot(f, v, r) + if HAS_REFCOUNT: + assert_equal(sys.getrefcount(r), orig_refcount) + r2 = dot(f, v, out=None) + assert_array_equal(r2, r) + assert_(r is dot(f, v, out=r)) + + v = v[:, 0].copy() # v.shape == (16,) + r = r[:, 0].copy() # r.shape == (1024,) + r2 = dot(f, v) + assert_(r is dot(f, v, r)) + assert_array_equal(r2, r) + + def test_dot_3args_errors(self): + + np.random.seed(22) + f = np.random.random_sample((1024, 16)) + v = np.random.random_sample((16, 32)) + + r = np.empty((1024, 31)) + assert_raises(ValueError, dot, f, v, r) + + r = np.empty((1024,)) + assert_raises(ValueError, dot, f, v, r) + + r = np.empty((32,)) + assert_raises(ValueError, dot, f, v, r) + + r = np.empty((32, 1024)) + assert_raises(ValueError, dot, f, v, r) + assert_raises(ValueError, dot, f, v, r.T) + + r = np.empty((1024, 64)) + assert_raises(ValueError, dot, f, v, r[:, ::2]) + assert_raises(ValueError, dot, f, v, r[:, :32]) + + r = np.empty((1024, 32), dtype=np.float32) + assert_raises(ValueError, dot, f, v, r) + + r = np.empty((1024, 32), dtype=int) + assert_raises(ValueError, dot, f, v, r) + + def test_dot_out_result(self): + x = np.ones((), dtype=np.float16) + y = np.ones((5,), dtype=np.float16) + z = np.zeros((5,), dtype=np.float16) + res = x.dot(y, out=z) + assert np.array_equal(res, y) + assert np.array_equal(z, y) + + def test_dot_out_aliasing(self): + x = np.ones((), dtype=np.float16) + y = np.ones((5,), dtype=np.float16) + z = np.zeros((5,), dtype=np.float16) + res = x.dot(y, out=z) + z[0] = 2 + assert np.array_equal(res, z) + + def test_dot_array_order(self): + a = np.array([[1, 2], [3, 4]], order='C') + b = np.array([[1, 2], [3, 4]], order='F') + res = np.dot(a, a) + + # integer arrays are exact + assert_equal(np.dot(a, b), res) + assert_equal(np.dot(b, a), res) + assert_equal(np.dot(b, b), res) + + def test_accelerate_framework_sgemv_fix(self): + + def aligned_array(shape, align, dtype, order='C'): + d = dtype(0) + N = np.prod(shape) + tmp = np.zeros(N * d.nbytes + align, dtype=np.uint8) + address = tmp.__array_interface__["data"][0] + for offset in range(align): + if (address + offset) % align == 0: + break + tmp = tmp[offset:offset + N * d.nbytes].view(dtype=dtype) + return tmp.reshape(shape, order=order) + + def as_aligned(arr, align, dtype, order='C'): + aligned = aligned_array(arr.shape, align, dtype, order) + aligned[:] = arr[:] + return aligned + + def assert_dot_close(A, X, desired): + assert_allclose(np.dot(A, X), desired, rtol=1e-5, atol=1e-7) + + m = aligned_array(100, 15, np.float32) + s = aligned_array((100, 100), 15, np.float32) + np.dot(s, m) # this will always segfault if the bug is present + + testdata = itertools.product((15, 32), (10000,), (200, 89), ('C', 'F')) + for align, m, n, a_order in testdata: + # Calculation in double precision + A_d = np.random.rand(m, n) + X_d = np.random.rand(n) + desired = np.dot(A_d, X_d) + # Calculation with aligned single precision + A_f = as_aligned(A_d, align, np.float32, order=a_order) + X_f = as_aligned(X_d, align, np.float32) + assert_dot_close(A_f, X_f, desired) + # Strided A rows + A_d_2 = A_d[::2] + desired = np.dot(A_d_2, X_d) + A_f_2 = A_f[::2] + assert_dot_close(A_f_2, X_f, desired) + # Strided A columns, strided X vector + A_d_22 = A_d_2[:, ::2] + X_d_2 = X_d[::2] + desired = np.dot(A_d_22, X_d_2) + A_f_22 = A_f_2[:, ::2] + X_f_2 = X_f[::2] + assert_dot_close(A_f_22, X_f_2, desired) + # Check the strides are as expected + if a_order == 'F': + assert_equal(A_f_22.strides, (8, 8 * m)) + else: + assert_equal(A_f_22.strides, (8 * n, 8)) + assert_equal(X_f_2.strides, (8,)) + # Strides in A rows + cols only + X_f_2c = as_aligned(X_f_2, align, np.float32) + assert_dot_close(A_f_22, X_f_2c, desired) + # Strides just in A cols + A_d_12 = A_d[:, ::2] + desired = np.dot(A_d_12, X_d_2) + A_f_12 = A_f[:, ::2] + assert_dot_close(A_f_12, X_f_2c, desired) + # Strides in A cols and X + assert_dot_close(A_f_12, X_f_2, desired) + + @pytest.mark.slow + @pytest.mark.parametrize("dtype", [np.float64, np.complex128]) + @requires_memory(free_bytes=18e9) # complex case needs 18GiB+ + def test_huge_vectordot(self, dtype): + # Large vector multiplications are chunked with 32bit BLAS + # Test that the chunking does the right thing, see also gh-22262 + data = np.ones(2**30 + 100, dtype=dtype) + res = np.dot(data, data) + assert res == 2**30 + 100 + + def test_dtype_discovery_fails(self): + # See gh-14247, error checking was missing for failed dtype discovery + class BadObject: + def __array__(self, dtype=None, copy=None): + raise TypeError("just this tiny mint leaf") + + with pytest.raises(TypeError): + np.dot(BadObject(), BadObject()) + + with pytest.raises(TypeError): + np.dot(3.0, BadObject()) + + +class MatmulCommon: + """Common tests for '@' operator and numpy.matmul. + + """ + # Should work with these types. Will want to add + # "O" at some point + types = "?bhilqBHILQefdgFDGO" + + def test_exceptions(self): + dims = [ + ((1,), (2,)), # mismatched vector vector + ((2, 1,), (2,)), # mismatched matrix vector + ((2,), (1, 2)), # mismatched vector matrix + ((1, 2), (3, 1)), # mismatched matrix matrix + ((1,), ()), # vector scalar + ((), (1)), # scalar vector + ((1, 1), ()), # matrix scalar + ((), (1, 1)), # scalar matrix + ((2, 2, 1), (3, 1, 2)), # cannot broadcast + ] + + for dt, (dm1, dm2) in itertools.product(self.types, dims): + a = np.ones(dm1, dtype=dt) + b = np.ones(dm2, dtype=dt) + assert_raises(ValueError, self.matmul, a, b) + + def test_shapes(self): + dims = [ + ((1, 1), (2, 1, 1)), # broadcast first argument + ((2, 1, 1), (1, 1)), # broadcast second argument + ((2, 1, 1), (2, 1, 1)), # matrix stack sizes match + ] + + for dt, (dm1, dm2) in itertools.product(self.types, dims): + a = np.ones(dm1, dtype=dt) + b = np.ones(dm2, dtype=dt) + res = self.matmul(a, b) + assert_(res.shape == (2, 1, 1)) + + # vector vector returns scalars. + for dt in self.types: + a = np.ones((2,), dtype=dt) + b = np.ones((2,), dtype=dt) + c = self.matmul(a, b) + assert_(np.array(c).shape == ()) + + def test_result_types(self): + mat = np.ones((1, 1)) + vec = np.ones((1,)) + for dt in self.types: + m = mat.astype(dt) + v = vec.astype(dt) + for arg in [(m, v), (v, m), (m, m)]: + res = self.matmul(*arg) + assert_(res.dtype == dt) + + # vector vector returns scalars + if dt != "O": + res = self.matmul(v, v) + assert_(type(res) is np.dtype(dt).type) + + def test_scalar_output(self): + vec1 = np.array([2]) + vec2 = np.array([3, 4]).reshape(1, -1) + tgt = np.array([6, 8]) + for dt in self.types[1:]: + v1 = vec1.astype(dt) + v2 = vec2.astype(dt) + res = self.matmul(v1, v2) + assert_equal(res, tgt) + res = self.matmul(v2.T, v1) + assert_equal(res, tgt) + + # boolean type + vec = np.array([True, True], dtype='?').reshape(1, -1) + res = self.matmul(vec[:, 0], vec) + assert_equal(res, True) + + def test_vector_vector_values(self): + vec1 = np.array([1, 2]) + vec2 = np.array([3, 4]).reshape(-1, 1) + tgt1 = np.array([11]) + tgt2 = np.array([[3, 6], [4, 8]]) + for dt in self.types[1:]: + v1 = vec1.astype(dt) + v2 = vec2.astype(dt) + res = self.matmul(v1, v2) + assert_equal(res, tgt1) + # no broadcast, we must make v1 into a 2d ndarray + res = self.matmul(v2, v1.reshape(1, -1)) + assert_equal(res, tgt2) + + # boolean type + vec = np.array([True, True], dtype='?') + res = self.matmul(vec, vec) + assert_equal(res, True) + + def test_vector_matrix_values(self): + vec = np.array([1, 2]) + mat1 = np.array([[1, 2], [3, 4]]) + mat2 = np.stack([mat1] * 2, axis=0) + tgt1 = np.array([7, 10]) + tgt2 = np.stack([tgt1] * 2, axis=0) + for dt in self.types[1:]: + v = vec.astype(dt) + m1 = mat1.astype(dt) + m2 = mat2.astype(dt) + res = self.matmul(v, m1) + assert_equal(res, tgt1) + res = self.matmul(v, m2) + assert_equal(res, tgt2) + + # boolean type + vec = np.array([True, False]) + mat1 = np.array([[True, False], [False, True]]) + mat2 = np.stack([mat1] * 2, axis=0) + tgt1 = np.array([True, False]) + tgt2 = np.stack([tgt1] * 2, axis=0) + + res = self.matmul(vec, mat1) + assert_equal(res, tgt1) + res = self.matmul(vec, mat2) + assert_equal(res, tgt2) + + def test_matrix_vector_values(self): + vec = np.array([1, 2]) + mat1 = np.array([[1, 2], [3, 4]]) + mat2 = np.stack([mat1] * 2, axis=0) + tgt1 = np.array([5, 11]) + tgt2 = np.stack([tgt1] * 2, axis=0) + for dt in self.types[1:]: + v = vec.astype(dt) + m1 = mat1.astype(dt) + m2 = mat2.astype(dt) + res = self.matmul(m1, v) + assert_equal(res, tgt1) + res = self.matmul(m2, v) + assert_equal(res, tgt2) + + # boolean type + vec = np.array([True, False]) + mat1 = np.array([[True, False], [False, True]]) + mat2 = np.stack([mat1] * 2, axis=0) + tgt1 = np.array([True, False]) + tgt2 = np.stack([tgt1] * 2, axis=0) + + res = self.matmul(vec, mat1) + assert_equal(res, tgt1) + res = self.matmul(vec, mat2) + assert_equal(res, tgt2) + + def test_matrix_matrix_values(self): + mat1 = np.array([[1, 2], [3, 4]]) + mat2 = np.array([[1, 0], [1, 1]]) + mat12 = np.stack([mat1, mat2], axis=0) + mat21 = np.stack([mat2, mat1], axis=0) + tgt11 = np.array([[7, 10], [15, 22]]) + tgt12 = np.array([[3, 2], [7, 4]]) + tgt21 = np.array([[1, 2], [4, 6]]) + tgt12_21 = np.stack([tgt12, tgt21], axis=0) + tgt11_12 = np.stack((tgt11, tgt12), axis=0) + tgt11_21 = np.stack((tgt11, tgt21), axis=0) + for dt in self.types[1:]: + m1 = mat1.astype(dt) + m2 = mat2.astype(dt) + m12 = mat12.astype(dt) + m21 = mat21.astype(dt) + + # matrix @ matrix + res = self.matmul(m1, m2) + assert_equal(res, tgt12) + res = self.matmul(m2, m1) + assert_equal(res, tgt21) + + # stacked @ matrix + res = self.matmul(m12, m1) + assert_equal(res, tgt11_21) + + # matrix @ stacked + res = self.matmul(m1, m12) + assert_equal(res, tgt11_12) + + # stacked @ stacked + res = self.matmul(m12, m21) + assert_equal(res, tgt12_21) + + # boolean type + m1 = np.array([[1, 1], [0, 0]], dtype=np.bool) + m2 = np.array([[1, 0], [1, 1]], dtype=np.bool) + m12 = np.stack([m1, m2], axis=0) + m21 = np.stack([m2, m1], axis=0) + tgt11 = m1 + tgt12 = m1 + tgt21 = np.array([[1, 1], [1, 1]], dtype=np.bool) + tgt12_21 = np.stack([tgt12, tgt21], axis=0) + tgt11_12 = np.stack((tgt11, tgt12), axis=0) + tgt11_21 = np.stack((tgt11, tgt21), axis=0) + + # matrix @ matrix + res = self.matmul(m1, m2) + assert_equal(res, tgt12) + res = self.matmul(m2, m1) + assert_equal(res, tgt21) + + # stacked @ matrix + res = self.matmul(m12, m1) + assert_equal(res, tgt11_21) + + # matrix @ stacked + res = self.matmul(m1, m12) + assert_equal(res, tgt11_12) + + # stacked @ stacked + res = self.matmul(m12, m21) + assert_equal(res, tgt12_21) + + +class TestMatmul(MatmulCommon): + matmul = np.matmul + + def test_out_arg(self): + a = np.ones((5, 2), dtype=float) + b = np.array([[1, 3], [5, 7]], dtype=float) + tgt = np.dot(a, b) + + # test as positional argument + msg = "out positional argument" + out = np.zeros((5, 2), dtype=float) + self.matmul(a, b, out) + assert_array_equal(out, tgt, err_msg=msg) + + # test as keyword argument + msg = "out keyword argument" + out = np.zeros((5, 2), dtype=float) + self.matmul(a, b, out=out) + assert_array_equal(out, tgt, err_msg=msg) + + # test out with not allowed type cast (safe casting) + msg = "Cannot cast ufunc .* output" + out = np.zeros((5, 2), dtype=np.int32) + assert_raises_regex(TypeError, msg, self.matmul, a, b, out=out) + + # test out with type upcast to complex + out = np.zeros((5, 2), dtype=np.complex128) + c = self.matmul(a, b, out=out) + assert_(c is out) + with suppress_warnings() as sup: + sup.filter(ComplexWarning, '') + c = c.astype(tgt.dtype) + assert_array_equal(c, tgt) + + def test_empty_out(self): + # Check that the output cannot be broadcast, so that it cannot be + # size zero when the outer dimensions (iterator size) has size zero. + arr = np.ones((0, 1, 1)) + out = np.ones((1, 1, 1)) + assert self.matmul(arr, arr).shape == (0, 1, 1) + + with pytest.raises(ValueError, match=r"non-broadcastable"): + self.matmul(arr, arr, out=out) + + def test_out_contiguous(self): + a = np.ones((5, 2), dtype=float) + b = np.array([[1, 3], [5, 7]], dtype=float) + v = np.array([1, 3], dtype=float) + tgt = np.dot(a, b) + tgt_mv = np.dot(a, v) + + # test out non-contiguous + out = np.ones((5, 2, 2), dtype=float) + c = self.matmul(a, b, out=out[..., 0]) + assert c.base is out + assert_array_equal(c, tgt) + c = self.matmul(a, v, out=out[:, 0, 0]) + assert_array_equal(c, tgt_mv) + c = self.matmul(v, a.T, out=out[:, 0, 0]) + assert_array_equal(c, tgt_mv) + + # test out contiguous in only last dim + out = np.ones((10, 2), dtype=float) + c = self.matmul(a, b, out=out[::2, :]) + assert_array_equal(c, tgt) + + # test transposes of out, args + out = np.ones((5, 2), dtype=float) + c = self.matmul(b.T, a.T, out=out.T) + assert_array_equal(out, tgt) + + m1 = np.arange(15.).reshape(5, 3) + m2 = np.arange(21.).reshape(3, 7) + m3 = np.arange(30.).reshape(5, 6)[:, ::2] # non-contiguous + vc = np.arange(10.) + vr = np.arange(6.) + m0 = np.zeros((3, 0)) + + @pytest.mark.parametrize('args', ( + # matrix-matrix + (m1, m2), (m2.T, m1.T), (m2.T.copy(), m1.T), (m2.T, m1.T.copy()), + # matrix-matrix-transpose, contiguous and non + (m1, m1.T), (m1.T, m1), (m1, m3.T), (m3, m1.T), + (m3, m3.T), (m3.T, m3), + # matrix-matrix non-contiguous + (m3, m2), (m2.T, m3.T), (m2.T.copy(), m3.T), + # vector-matrix, matrix-vector, contiguous + (m1, vr[:3]), (vc[:5], m1), (m1.T, vc[:5]), (vr[:3], m1.T), + # vector-matrix, matrix-vector, vector non-contiguous + (m1, vr[::2]), (vc[::2], m1), (m1.T, vc[::2]), (vr[::2], m1.T), + # vector-matrix, matrix-vector, matrix non-contiguous + (m3, vr[:3]), (vc[:5], m3), (m3.T, vc[:5]), (vr[:3], m3.T), + # vector-matrix, matrix-vector, both non-contiguous + (m3, vr[::2]), (vc[::2], m3), (m3.T, vc[::2]), (vr[::2], m3.T), + # size == 0 + (m0, m0.T), (m0.T, m0), (m1, m0), (m0.T, m1.T), + )) + def test_dot_equivalent(self, args): + r1 = np.matmul(*args) + r2 = np.dot(*args) + assert_equal(r1, r2) + + r3 = np.matmul(args[0].copy(), args[1].copy()) + assert_equal(r1, r3) + + # matrix matrix, issue 29164 + if [len(args[0].shape), len(args[1].shape)] == [2, 2]: + out_f = np.zeros((r2.shape[0] * 2, r2.shape[1] * 2), order='F') + r4 = np.matmul(*args, out=out_f[::2, ::2]) + assert_equal(r2, r4) + + def test_matmul_object(self): + import fractions + + f = np.vectorize(fractions.Fraction) + + def random_ints(): + return np.random.randint(1, 1000, size=(10, 3, 3)) + M1 = f(random_ints(), random_ints()) + M2 = f(random_ints(), random_ints()) + + M3 = self.matmul(M1, M2) + + [N1, N2, N3] = [a.astype(float) for a in [M1, M2, M3]] + + assert_allclose(N3, self.matmul(N1, N2)) + + def test_matmul_object_type_scalar(self): + from fractions import Fraction as F + v = np.array([F(2, 3), F(5, 7)]) + res = self.matmul(v, v) + assert_(type(res) is F) + + def test_matmul_empty(self): + a = np.empty((3, 0), dtype=object) + b = np.empty((0, 3), dtype=object) + c = np.zeros((3, 3)) + assert_array_equal(np.matmul(a, b), c) + + def test_matmul_exception_multiply(self): + # test that matmul fails if `__mul__` is missing + class add_not_multiply: + def __add__(self, other): + return self + a = np.full((3, 3), add_not_multiply()) + with assert_raises(TypeError): + b = np.matmul(a, a) + + def test_matmul_exception_add(self): + # test that matmul fails if `__add__` is missing + class multiply_not_add: + def __mul__(self, other): + return self + a = np.full((3, 3), multiply_not_add()) + with assert_raises(TypeError): + b = np.matmul(a, a) + + def test_matmul_bool(self): + # gh-14439 + a = np.array([[1, 0], [1, 1]], dtype=bool) + assert np.max(a.view(np.uint8)) == 1 + b = np.matmul(a, a) + # matmul with boolean output should always be 0, 1 + assert np.max(b.view(np.uint8)) == 1 + + rg = np.random.default_rng(np.random.PCG64(43)) + d = rg.integers(2, size=4 * 5, dtype=np.int8) + d = d.reshape(4, 5) > 0 + out1 = np.matmul(d, d.reshape(5, 4)) + out2 = np.dot(d, d.reshape(5, 4)) + assert_equal(out1, out2) + + c = np.matmul(np.zeros((2, 0), dtype=bool), np.zeros(0, dtype=bool)) + assert not np.any(c) + + +class TestMatmulOperator(MatmulCommon): + import operator + matmul = operator.matmul + + def test_array_priority_override(self): + + class A: + __array_priority__ = 1000 + + def __matmul__(self, other): + return "A" + + def __rmatmul__(self, other): + return "A" + + a = A() + b = np.ones(2) + assert_equal(self.matmul(a, b), "A") + assert_equal(self.matmul(b, a), "A") + + def test_matmul_raises(self): + assert_raises(TypeError, self.matmul, np.int8(5), np.int8(5)) + assert_raises(TypeError, self.matmul, np.void(b'abc'), np.void(b'abc')) + assert_raises(TypeError, self.matmul, np.arange(10), np.void(b'abc')) + + +class TestMatmulInplace: + DTYPES = {} + for i in MatmulCommon.types: + for j in MatmulCommon.types: + if np.can_cast(j, i): + DTYPES[f"{i}-{j}"] = (np.dtype(i), np.dtype(j)) + + @pytest.mark.parametrize("dtype1,dtype2", DTYPES.values(), ids=DTYPES) + def test_basic(self, dtype1: np.dtype, dtype2: np.dtype) -> None: + a = np.arange(10).reshape(5, 2).astype(dtype1) + a_id = id(a) + b = np.ones((2, 2), dtype=dtype2) + + ref = a @ b + a @= b + + assert id(a) == a_id + assert a.dtype == dtype1 + assert a.shape == (5, 2) + if dtype1.kind in "fc": + np.testing.assert_allclose(a, ref) + else: + np.testing.assert_array_equal(a, ref) + + SHAPES = { + "2d_large": ((10**5, 10), (10, 10)), + "3d_large": ((10**4, 10, 10), (1, 10, 10)), + "1d": ((3,), (3,)), + "2d_1d": ((3, 3), (3,)), + "1d_2d": ((3,), (3, 3)), + "2d_broadcast": ((3, 3), (3, 1)), + "2d_broadcast_reverse": ((1, 3), (3, 3)), + "3d_broadcast1": ((3, 3, 3), (1, 3, 1)), + "3d_broadcast2": ((3, 3, 3), (1, 3, 3)), + "3d_broadcast3": ((3, 3, 3), (3, 3, 1)), + "3d_broadcast_reverse1": ((1, 3, 3), (3, 3, 3)), + "3d_broadcast_reverse2": ((3, 1, 3), (3, 3, 3)), + "3d_broadcast_reverse3": ((1, 1, 3), (3, 3, 3)), + } + + @pytest.mark.parametrize("a_shape,b_shape", SHAPES.values(), ids=SHAPES) + def test_shapes(self, a_shape: tuple[int, ...], b_shape: tuple[int, ...]): + a_size = np.prod(a_shape) + a = np.arange(a_size).reshape(a_shape).astype(np.float64) + a_id = id(a) + + b_size = np.prod(b_shape) + b = np.arange(b_size).reshape(b_shape) + + ref = a @ b + if ref.shape != a_shape: + with pytest.raises(ValueError): + a @= b + return + else: + a @= b + + assert id(a) == a_id + assert a.dtype.type == np.float64 + assert a.shape == a_shape + np.testing.assert_allclose(a, ref) + + +def test_matmul_axes(): + a = np.arange(3 * 4 * 5).reshape(3, 4, 5) + c = np.matmul(a, a, axes=[(-2, -1), (-1, -2), (1, 2)]) + assert c.shape == (3, 4, 4) + d = np.matmul(a, a, axes=[(-2, -1), (-1, -2), (0, 1)]) + assert d.shape == (4, 4, 3) + e = np.swapaxes(d, 0, 2) + assert_array_equal(e, c) + f = np.matmul(a, np.arange(3), axes=[(1, 0), (0), (0)]) + assert f.shape == (4, 5) + + +class TestInner: + + def test_inner_type_mismatch(self): + c = 1. + A = np.array((1, 1), dtype='i,i') + + assert_raises(TypeError, np.inner, c, A) + assert_raises(TypeError, np.inner, A, c) + + def test_inner_scalar_and_vector(self): + for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?': + sca = np.array(3, dtype=dt)[()] + vec = np.array([1, 2], dtype=dt) + desired = np.array([3, 6], dtype=dt) + assert_equal(np.inner(vec, sca), desired) + assert_equal(np.inner(sca, vec), desired) + + def test_vecself(self): + # Ticket 844. + # Inner product of a vector with itself segfaults or give + # meaningless result + a = np.zeros(shape=(1, 80), dtype=np.float64) + p = np.inner(a, a) + assert_almost_equal(p, 0, decimal=14) + + def test_inner_product_with_various_contiguities(self): + # github issue 6532 + for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?': + # check an inner product involving a matrix transpose + A = np.array([[1, 2], [3, 4]], dtype=dt) + B = np.array([[1, 3], [2, 4]], dtype=dt) + C = np.array([1, 1], dtype=dt) + desired = np.array([4, 6], dtype=dt) + assert_equal(np.inner(A.T, C), desired) + assert_equal(np.inner(C, A.T), desired) + assert_equal(np.inner(B, C), desired) + assert_equal(np.inner(C, B), desired) + # check a matrix product + desired = np.array([[7, 10], [15, 22]], dtype=dt) + assert_equal(np.inner(A, B), desired) + # check the syrk vs. gemm paths + desired = np.array([[5, 11], [11, 25]], dtype=dt) + assert_equal(np.inner(A, A), desired) + assert_equal(np.inner(A, A.copy()), desired) + # check an inner product involving an aliased and reversed view + a = np.arange(5).astype(dt) + b = a[::-1] + desired = np.array(10, dtype=dt).item() + assert_equal(np.inner(b, a), desired) + + def test_3d_tensor(self): + for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?': + a = np.arange(24).reshape(2, 3, 4).astype(dt) + b = np.arange(24, 48).reshape(2, 3, 4).astype(dt) + desired = np.array( + [[[[ 158, 182, 206], + [ 230, 254, 278]], + + [[ 566, 654, 742], + [ 830, 918, 1006]], + + [[ 974, 1126, 1278], + [1430, 1582, 1734]]], + + [[[1382, 1598, 1814], + [2030, 2246, 2462]], + + [[1790, 2070, 2350], + [2630, 2910, 3190]], + + [[2198, 2542, 2886], + [3230, 3574, 3918]]]] + ).astype(dt) + assert_equal(np.inner(a, b), desired) + assert_equal(np.inner(b, a).transpose(2, 3, 0, 1), desired) + + +class TestChoose: + def setup_method(self): + self.x = 2 * np.ones((3,), dtype=int) + self.y = 3 * np.ones((3,), dtype=int) + self.x2 = 2 * np.ones((2, 3), dtype=int) + self.y2 = 3 * np.ones((2, 3), dtype=int) + self.ind = [0, 0, 1] + + def test_basic(self): + A = np.choose(self.ind, (self.x, self.y)) + assert_equal(A, [2, 2, 3]) + + def test_broadcast1(self): + A = np.choose(self.ind, (self.x2, self.y2)) + assert_equal(A, [[2, 2, 3], [2, 2, 3]]) + + def test_broadcast2(self): + A = np.choose(self.ind, (self.x, self.y2)) + assert_equal(A, [[2, 2, 3], [2, 2, 3]]) + + @pytest.mark.parametrize("ops", + [(1000, np.array([1], dtype=np.uint8)), + (-1, np.array([1], dtype=np.uint8)), + (1., np.float32(3)), + (1., np.array([3], dtype=np.float32))],) + def test_output_dtype(self, ops): + expected_dt = np.result_type(*ops) + assert np.choose([0], ops).dtype == expected_dt + + def test_dimension_and_args_limit(self): + # Maxdims for the legacy iterator is 32, but the maximum number + # of arguments is actually larger (a itself also counts here) + a = np.ones((1,) * 32, dtype=np.intp) + res = a.choose([0, a] + [2] * 61) + with pytest.raises(ValueError, + match="Need at least 0 and at most 64 array objects"): + a.choose([0, a] + [2] * 62) + + assert_array_equal(res, a) + # Choose is unfortunately limited to 32 dims as of NumPy 2.0 + a = np.ones((1,) * 60, dtype=np.intp) + with pytest.raises(RuntimeError, + match=".*32 dimensions but the array has 60"): + a.choose([a, a]) + + +class TestRepeat: + def setup_method(self): + self.m = np.array([1, 2, 3, 4, 5, 6]) + self.m_rect = self.m.reshape((2, 3)) + + def test_basic(self): + A = np.repeat(self.m, [1, 3, 2, 1, 1, 2]) + assert_equal(A, [1, 2, 2, 2, 3, + 3, 4, 5, 6, 6]) + + def test_broadcast1(self): + A = np.repeat(self.m, 2) + assert_equal(A, [1, 1, 2, 2, 3, 3, + 4, 4, 5, 5, 6, 6]) + + def test_axis_spec(self): + A = np.repeat(self.m_rect, [2, 1], axis=0) + assert_equal(A, [[1, 2, 3], + [1, 2, 3], + [4, 5, 6]]) + + A = np.repeat(self.m_rect, [1, 3, 2], axis=1) + assert_equal(A, [[1, 2, 2, 2, 3, 3], + [4, 5, 5, 5, 6, 6]]) + + def test_broadcast2(self): + A = np.repeat(self.m_rect, 2, axis=0) + assert_equal(A, [[1, 2, 3], + [1, 2, 3], + [4, 5, 6], + [4, 5, 6]]) + + A = np.repeat(self.m_rect, 2, axis=1) + assert_equal(A, [[1, 1, 2, 2, 3, 3], + [4, 4, 5, 5, 6, 6]]) + + +# TODO: test for multidimensional +NEIGH_MODE = {'zero': 0, 'one': 1, 'constant': 2, 'circular': 3, 'mirror': 4} + + +@pytest.mark.parametrize('dt', [float, Decimal], ids=['float', 'object']) +class TestNeighborhoodIter: + # Simple, 2d tests + def test_simple2d(self, dt): + # Test zero and one padding for simple data type + x = np.array([[0, 1], [2, 3]], dtype=dt) + r = [np.array([[0, 0, 0], [0, 0, 1]], dtype=dt), + np.array([[0, 0, 0], [0, 1, 0]], dtype=dt), + np.array([[0, 0, 1], [0, 2, 3]], dtype=dt), + np.array([[0, 1, 0], [2, 3, 0]], dtype=dt)] + l = _multiarray_tests.test_neighborhood_iterator( + x, [-1, 0, -1, 1], x[0], NEIGH_MODE['zero']) + assert_array_equal(l, r) + + r = [np.array([[1, 1, 1], [1, 0, 1]], dtype=dt), + np.array([[1, 1, 1], [0, 1, 1]], dtype=dt), + np.array([[1, 0, 1], [1, 2, 3]], dtype=dt), + np.array([[0, 1, 1], [2, 3, 1]], dtype=dt)] + l = _multiarray_tests.test_neighborhood_iterator( + x, [-1, 0, -1, 1], x[0], NEIGH_MODE['one']) + assert_array_equal(l, r) + + r = [np.array([[4, 4, 4], [4, 0, 1]], dtype=dt), + np.array([[4, 4, 4], [0, 1, 4]], dtype=dt), + np.array([[4, 0, 1], [4, 2, 3]], dtype=dt), + np.array([[0, 1, 4], [2, 3, 4]], dtype=dt)] + l = _multiarray_tests.test_neighborhood_iterator( + x, [-1, 0, -1, 1], 4, NEIGH_MODE['constant']) + assert_array_equal(l, r) + + # Test with start in the middle + r = [np.array([[4, 0, 1], [4, 2, 3]], dtype=dt), + np.array([[0, 1, 4], [2, 3, 4]], dtype=dt)] + l = _multiarray_tests.test_neighborhood_iterator( + x, [-1, 0, -1, 1], 4, NEIGH_MODE['constant'], 2) + assert_array_equal(l, r) + + def test_mirror2d(self, dt): + x = np.array([[0, 1], [2, 3]], dtype=dt) + r = [np.array([[0, 0, 1], [0, 0, 1]], dtype=dt), + np.array([[0, 1, 1], [0, 1, 1]], dtype=dt), + np.array([[0, 0, 1], [2, 2, 3]], dtype=dt), + np.array([[0, 1, 1], [2, 3, 3]], dtype=dt)] + l = _multiarray_tests.test_neighborhood_iterator( + x, [-1, 0, -1, 1], x[0], NEIGH_MODE['mirror']) + assert_array_equal(l, r) + + # Simple, 1d tests + def test_simple(self, dt): + # Test padding with constant values + x = np.linspace(1, 5, 5).astype(dt) + r = [[0, 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 0]] + l = _multiarray_tests.test_neighborhood_iterator( + x, [-1, 1], x[0], NEIGH_MODE['zero']) + assert_array_equal(l, r) + + r = [[1, 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 1]] + l = _multiarray_tests.test_neighborhood_iterator( + x, [-1, 1], x[0], NEIGH_MODE['one']) + assert_array_equal(l, r) + + r = [[x[4], 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, x[4]]] + l = _multiarray_tests.test_neighborhood_iterator( + x, [-1, 1], x[4], NEIGH_MODE['constant']) + assert_array_equal(l, r) + + # Test mirror modes + def test_mirror(self, dt): + x = np.linspace(1, 5, 5).astype(dt) + r = np.array([[2, 1, 1, 2, 3], [1, 1, 2, 3, 4], [1, 2, 3, 4, 5], + [2, 3, 4, 5, 5], [3, 4, 5, 5, 4]], dtype=dt) + l = _multiarray_tests.test_neighborhood_iterator( + x, [-2, 2], x[1], NEIGH_MODE['mirror']) + assert_([i.dtype == dt for i in l]) + assert_array_equal(l, r) + + # Circular mode + def test_circular(self, dt): + x = np.linspace(1, 5, 5).astype(dt) + r = np.array([[4, 5, 1, 2, 3], [5, 1, 2, 3, 4], [1, 2, 3, 4, 5], + [2, 3, 4, 5, 1], [3, 4, 5, 1, 2]], dtype=dt) + l = _multiarray_tests.test_neighborhood_iterator( + x, [-2, 2], x[0], NEIGH_MODE['circular']) + assert_array_equal(l, r) + + +# Test stacking neighborhood iterators +class TestStackedNeighborhoodIter: + # Simple, 1d test: stacking 2 constant-padded neigh iterators + def test_simple_const(self): + dt = np.float64 + # Test zero and one padding for simple data type + x = np.array([1, 2, 3], dtype=dt) + r = [np.array([0], dtype=dt), + np.array([0], dtype=dt), + np.array([1], dtype=dt), + np.array([2], dtype=dt), + np.array([3], dtype=dt), + np.array([0], dtype=dt), + np.array([0], dtype=dt)] + l = _multiarray_tests.test_neighborhood_iterator_oob( + x, [-2, 4], NEIGH_MODE['zero'], [0, 0], NEIGH_MODE['zero']) + assert_array_equal(l, r) + + r = [np.array([1, 0, 1], dtype=dt), + np.array([0, 1, 2], dtype=dt), + np.array([1, 2, 3], dtype=dt), + np.array([2, 3, 0], dtype=dt), + np.array([3, 0, 1], dtype=dt)] + l = _multiarray_tests.test_neighborhood_iterator_oob( + x, [-1, 3], NEIGH_MODE['zero'], [-1, 1], NEIGH_MODE['one']) + assert_array_equal(l, r) + + # 2nd simple, 1d test: stacking 2 neigh iterators, mixing const padding and + # mirror padding + def test_simple_mirror(self): + dt = np.float64 + # Stacking zero on top of mirror + x = np.array([1, 2, 3], dtype=dt) + r = [np.array([0, 1, 1], dtype=dt), + np.array([1, 1, 2], dtype=dt), + np.array([1, 2, 3], dtype=dt), + np.array([2, 3, 3], dtype=dt), + np.array([3, 3, 0], dtype=dt)] + l = _multiarray_tests.test_neighborhood_iterator_oob( + x, [-1, 3], NEIGH_MODE['mirror'], [-1, 1], NEIGH_MODE['zero']) + assert_array_equal(l, r) + + # Stacking mirror on top of zero + x = np.array([1, 2, 3], dtype=dt) + r = [np.array([1, 0, 0], dtype=dt), + np.array([0, 0, 1], dtype=dt), + np.array([0, 1, 2], dtype=dt), + np.array([1, 2, 3], dtype=dt), + np.array([2, 3, 0], dtype=dt)] + l = _multiarray_tests.test_neighborhood_iterator_oob( + x, [-1, 3], NEIGH_MODE['zero'], [-2, 0], NEIGH_MODE['mirror']) + assert_array_equal(l, r) + + # Stacking mirror on top of zero: 2nd + x = np.array([1, 2, 3], dtype=dt) + r = [np.array([0, 1, 2], dtype=dt), + np.array([1, 2, 3], dtype=dt), + np.array([2, 3, 0], dtype=dt), + np.array([3, 0, 0], dtype=dt), + np.array([0, 0, 3], dtype=dt)] + l = _multiarray_tests.test_neighborhood_iterator_oob( + x, [-1, 3], NEIGH_MODE['zero'], [0, 2], NEIGH_MODE['mirror']) + assert_array_equal(l, r) + + # Stacking mirror on top of zero: 3rd + x = np.array([1, 2, 3], dtype=dt) + r = [np.array([1, 0, 0, 1, 2], dtype=dt), + np.array([0, 0, 1, 2, 3], dtype=dt), + np.array([0, 1, 2, 3, 0], dtype=dt), + np.array([1, 2, 3, 0, 0], dtype=dt), + np.array([2, 3, 0, 0, 3], dtype=dt)] + l = _multiarray_tests.test_neighborhood_iterator_oob( + x, [-1, 3], NEIGH_MODE['zero'], [-2, 2], NEIGH_MODE['mirror']) + assert_array_equal(l, r) + + # 3rd simple, 1d test: stacking 2 neigh iterators, mixing const padding and + # circular padding + def test_simple_circular(self): + dt = np.float64 + # Stacking zero on top of mirror + x = np.array([1, 2, 3], dtype=dt) + r = [np.array([0, 3, 1], dtype=dt), + np.array([3, 1, 2], dtype=dt), + np.array([1, 2, 3], dtype=dt), + np.array([2, 3, 1], dtype=dt), + np.array([3, 1, 0], dtype=dt)] + l = _multiarray_tests.test_neighborhood_iterator_oob( + x, [-1, 3], NEIGH_MODE['circular'], [-1, 1], NEIGH_MODE['zero']) + assert_array_equal(l, r) + + # Stacking mirror on top of zero + x = np.array([1, 2, 3], dtype=dt) + r = [np.array([3, 0, 0], dtype=dt), + np.array([0, 0, 1], dtype=dt), + np.array([0, 1, 2], dtype=dt), + np.array([1, 2, 3], dtype=dt), + np.array([2, 3, 0], dtype=dt)] + l = _multiarray_tests.test_neighborhood_iterator_oob( + x, [-1, 3], NEIGH_MODE['zero'], [-2, 0], NEIGH_MODE['circular']) + assert_array_equal(l, r) + + # Stacking mirror on top of zero: 2nd + x = np.array([1, 2, 3], dtype=dt) + r = [np.array([0, 1, 2], dtype=dt), + np.array([1, 2, 3], dtype=dt), + np.array([2, 3, 0], dtype=dt), + np.array([3, 0, 0], dtype=dt), + np.array([0, 0, 1], dtype=dt)] + l = _multiarray_tests.test_neighborhood_iterator_oob( + x, [-1, 3], NEIGH_MODE['zero'], [0, 2], NEIGH_MODE['circular']) + assert_array_equal(l, r) + + # Stacking mirror on top of zero: 3rd + x = np.array([1, 2, 3], dtype=dt) + r = [np.array([3, 0, 0, 1, 2], dtype=dt), + np.array([0, 0, 1, 2, 3], dtype=dt), + np.array([0, 1, 2, 3, 0], dtype=dt), + np.array([1, 2, 3, 0, 0], dtype=dt), + np.array([2, 3, 0, 0, 1], dtype=dt)] + l = _multiarray_tests.test_neighborhood_iterator_oob( + x, [-1, 3], NEIGH_MODE['zero'], [-2, 2], NEIGH_MODE['circular']) + assert_array_equal(l, r) + + # 4th simple, 1d test: stacking 2 neigh iterators, but with lower iterator + # being strictly within the array + def test_simple_strict_within(self): + dt = np.float64 + # Stacking zero on top of zero, first neighborhood strictly inside the + # array + x = np.array([1, 2, 3], dtype=dt) + r = [np.array([1, 2, 3, 0], dtype=dt)] + l = _multiarray_tests.test_neighborhood_iterator_oob( + x, [1, 1], NEIGH_MODE['zero'], [-1, 2], NEIGH_MODE['zero']) + assert_array_equal(l, r) + + # Stacking mirror on top of zero, first neighborhood strictly inside the + # array + x = np.array([1, 2, 3], dtype=dt) + r = [np.array([1, 2, 3, 3], dtype=dt)] + l = _multiarray_tests.test_neighborhood_iterator_oob( + x, [1, 1], NEIGH_MODE['zero'], [-1, 2], NEIGH_MODE['mirror']) + assert_array_equal(l, r) + + # Stacking mirror on top of zero, first neighborhood strictly inside the + # array + x = np.array([1, 2, 3], dtype=dt) + r = [np.array([1, 2, 3, 1], dtype=dt)] + l = _multiarray_tests.test_neighborhood_iterator_oob( + x, [1, 1], NEIGH_MODE['zero'], [-1, 2], NEIGH_MODE['circular']) + assert_array_equal(l, r) + +class TestWarnings: + + def test_complex_warning(self): + x = np.array([1, 2]) + y = np.array([1 - 2j, 1 + 2j]) + + with warnings.catch_warnings(): + warnings.simplefilter("error", ComplexWarning) + assert_raises(ComplexWarning, x.__setitem__, slice(None), y) + assert_equal(x, [1, 2]) + + +class TestMinScalarType: + + def test_usigned_shortshort(self): + dt = np.min_scalar_type(2**8 - 1) + wanted = np.dtype('uint8') + assert_equal(wanted, dt) + + def test_usigned_short(self): + dt = np.min_scalar_type(2**16 - 1) + wanted = np.dtype('uint16') + assert_equal(wanted, dt) + + def test_usigned_int(self): + dt = np.min_scalar_type(2**32 - 1) + wanted = np.dtype('uint32') + assert_equal(wanted, dt) + + def test_usigned_longlong(self): + dt = np.min_scalar_type(2**63 - 1) + wanted = np.dtype('uint64') + assert_equal(wanted, dt) + + def test_object(self): + dt = np.min_scalar_type(2**64) + wanted = np.dtype('O') + assert_equal(wanted, dt) + + +from numpy._core._internal import _dtype_from_pep3118 + + +class TestPEP3118Dtype: + def _check(self, spec, wanted): + dt = np.dtype(wanted) + actual = _dtype_from_pep3118(spec) + assert_equal(actual, dt, + err_msg=f"spec {spec!r} != dtype {wanted!r}") + + def test_native_padding(self): + align = np.dtype('i').alignment + for j in range(8): + if j == 0: + s = 'bi' + else: + s = 'b%dxi' % j + self._check('@' + s, {'f0': ('i1', 0), + 'f1': ('i', align * (1 + j // align))}) + self._check('=' + s, {'f0': ('i1', 0), + 'f1': ('i', 1 + j)}) + + def test_native_padding_2(self): + # Native padding should work also for structs and sub-arrays + self._check('x3T{xi}', {'f0': (({'f0': ('i', 4)}, (3,)), 4)}) + self._check('^x3T{xi}', {'f0': (({'f0': ('i', 1)}, (3,)), 1)}) + + def test_trailing_padding(self): + # Trailing padding should be included, *and*, the item size + # should match the alignment if in aligned mode + align = np.dtype('i').alignment + size = np.dtype('i').itemsize + + def aligned(n): + return align * (1 + (n - 1) // align) + + base = {"formats": ['i'], "names": ['f0']} + + self._check('ix', dict(itemsize=aligned(size + 1), **base)) + self._check('ixx', dict(itemsize=aligned(size + 2), **base)) + self._check('ixxx', dict(itemsize=aligned(size + 3), **base)) + self._check('ixxxx', dict(itemsize=aligned(size + 4), **base)) + self._check('i7x', dict(itemsize=aligned(size + 7), **base)) + + self._check('^ix', dict(itemsize=size + 1, **base)) + self._check('^ixx', dict(itemsize=size + 2, **base)) + self._check('^ixxx', dict(itemsize=size + 3, **base)) + self._check('^ixxxx', dict(itemsize=size + 4, **base)) + self._check('^i7x', dict(itemsize=size + 7, **base)) + + def test_native_padding_3(self): + dt = np.dtype( + [('a', 'b'), ('b', 'i'), + ('sub', np.dtype('b,i')), ('c', 'i')], + align=True) + self._check("T{b:a:xxxi:b:T{b:f0:=i:f1:}:sub:xxxi:c:}", dt) + + dt = np.dtype( + [('a', 'b'), ('b', 'i'), ('c', 'b'), ('d', 'b'), + ('e', 'b'), ('sub', np.dtype('b,i', align=True))]) + self._check("T{b:a:=i:b:b:c:b:d:b:e:T{b:f0:xxxi:f1:}:sub:}", dt) + + def test_padding_with_array_inside_struct(self): + dt = np.dtype( + [('a', 'b'), ('b', 'i'), ('c', 'b', (3,)), + ('d', 'i')], + align=True) + self._check("T{b:a:xxxi:b:3b:c:xi:d:}", dt) + + def test_byteorder_inside_struct(self): + # The byte order after @T{=i} should be '=', not '@'. + # Check this by noting the absence of native alignment. + self._check('@T{^i}xi', {'f0': ({'f0': ('i', 0)}, 0), + 'f1': ('i', 5)}) + + def test_intra_padding(self): + # Natively aligned sub-arrays may require some internal padding + align = np.dtype('i').alignment + size = np.dtype('i').itemsize + + def aligned(n): + return (align * (1 + (n - 1) // align)) + + self._check('(3)T{ix}', ({ + "names": ['f0'], + "formats": ['i'], + "offsets": [0], + "itemsize": aligned(size + 1) + }, (3,))) + + def test_char_vs_string(self): + dt = np.dtype('c') + self._check('c', dt) + + dt = np.dtype([('f0', 'S1', (4,)), ('f1', 'S4')]) + self._check('4c4s', dt) + + def test_field_order(self): + # gh-9053 - previously, we relied on dictionary key order + self._check("(0)I:a:f:b:", [('a', 'I', (0,)), ('b', 'f')]) + self._check("(0)I:b:f:a:", [('b', 'I', (0,)), ('a', 'f')]) + + def test_unnamed_fields(self): + self._check('ii', [('f0', 'i'), ('f1', 'i')]) + self._check('ii:f0:', [('f1', 'i'), ('f0', 'i')]) + + self._check('i', 'i') + self._check('i:f0:', [('f0', 'i')]) + + +class TestNewBufferProtocol: + """ Test PEP3118 buffers """ + + def _check_roundtrip(self, obj): + obj = np.asarray(obj) + x = memoryview(obj) + y = np.asarray(x) + y2 = np.array(x) + assert_(not y.flags.owndata) + assert_(y2.flags.owndata) + + assert_equal(y.dtype, obj.dtype) + assert_equal(y.shape, obj.shape) + assert_array_equal(obj, y) + + assert_equal(y2.dtype, obj.dtype) + assert_equal(y2.shape, obj.shape) + assert_array_equal(obj, y2) + + def test_roundtrip(self): + x = np.array([1, 2, 3, 4, 5], dtype='i4') + self._check_roundtrip(x) + + x = np.array([[1, 2], [3, 4]], dtype=np.float64) + self._check_roundtrip(x) + + x = np.zeros((3, 3, 3), dtype=np.float32)[:, 0, :] + self._check_roundtrip(x) + + dt = [('a', 'b'), + ('b', 'h'), + ('c', 'i'), + ('d', 'l'), + ('dx', 'q'), + ('e', 'B'), + ('f', 'H'), + ('g', 'I'), + ('h', 'L'), + ('hx', 'Q'), + ('i', np.single), + ('j', np.double), + ('k', np.longdouble), + ('ix', np.csingle), + ('jx', np.cdouble), + ('kx', np.clongdouble), + ('l', 'S4'), + ('m', 'U4'), + ('n', 'V3'), + ('o', '?'), + ('p', np.half), + ] + x = np.array( + [(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + b'aaaa', 'bbbb', b'xxx', True, 1.0)], + dtype=dt) + self._check_roundtrip(x) + + x = np.array(([[1, 2], [3, 4]],), dtype=[('a', (int, (2, 2)))]) + self._check_roundtrip(x) + + x = np.array([1, 2, 3], dtype='>i2') + self._check_roundtrip(x) + + x = np.array([1, 2, 3], dtype='') + x = np.zeros(4, dtype=dt) + self._check_roundtrip(x) + + def test_roundtrip_scalar(self): + # Issue #4015. + self._check_roundtrip(0) + + def test_invalid_buffer_format(self): + # datetime64 cannot be used fully in a buffer yet + # Should be fixed in the next Numpy major release + dt = np.dtype([('a', 'uint16'), ('b', 'M8[s]')]) + a = np.empty(3, dt) + assert_raises((ValueError, BufferError), memoryview, a) + assert_raises((ValueError, BufferError), memoryview, np.array((3), 'M8[D]')) + + def test_export_simple_1d(self): + x = np.array([1, 2, 3, 4, 5], dtype='i') + y = memoryview(x) + assert_equal(y.format, 'i') + assert_equal(y.shape, (5,)) + assert_equal(y.ndim, 1) + assert_equal(y.strides, (4,)) + assert_equal(y.suboffsets, ()) + assert_equal(y.itemsize, 4) + + def test_export_simple_nd(self): + x = np.array([[1, 2], [3, 4]], dtype=np.float64) + y = memoryview(x) + assert_equal(y.format, 'd') + assert_equal(y.shape, (2, 2)) + assert_equal(y.ndim, 2) + assert_equal(y.strides, (16, 8)) + assert_equal(y.suboffsets, ()) + assert_equal(y.itemsize, 8) + + def test_export_discontiguous(self): + x = np.zeros((3, 3, 3), dtype=np.float32)[:, 0, :] + y = memoryview(x) + assert_equal(y.format, 'f') + assert_equal(y.shape, (3, 3)) + assert_equal(y.ndim, 2) + assert_equal(y.strides, (36, 4)) + assert_equal(y.suboffsets, ()) + assert_equal(y.itemsize, 4) + + def test_export_record(self): + dt = [('a', 'b'), + ('b', 'h'), + ('c', 'i'), + ('d', 'l'), + ('dx', 'q'), + ('e', 'B'), + ('f', 'H'), + ('g', 'I'), + ('h', 'L'), + ('hx', 'Q'), + ('i', np.single), + ('j', np.double), + ('k', np.longdouble), + ('ix', np.csingle), + ('jx', np.cdouble), + ('kx', np.clongdouble), + ('l', 'S4'), + ('m', 'U4'), + ('n', 'V3'), + ('o', '?'), + ('p', np.half), + ] + x = np.array( + [(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + b'aaaa', 'bbbb', b' ', True, 1.0)], + dtype=dt) + y = memoryview(x) + assert_equal(y.shape, (1,)) + assert_equal(y.ndim, 1) + assert_equal(y.suboffsets, ()) + + sz = sum(np.dtype(b).itemsize for a, b in dt) + if np.dtype('l').itemsize == 4: + assert_equal(y.format, 'T{b:a:=h:b:i:c:l:d:q:dx:B:e:@H:f:=I:g:L:h:Q:hx:f:i:d:j:^g:k:=Zf:ix:Zd:jx:^Zg:kx:4s:l:=4w:m:3x:n:?:o:@e:p:}') + else: + assert_equal(y.format, 'T{b:a:=h:b:i:c:q:d:q:dx:B:e:@H:f:=I:g:Q:h:Q:hx:f:i:d:j:^g:k:=Zf:ix:Zd:jx:^Zg:kx:4s:l:=4w:m:3x:n:?:o:@e:p:}') + assert_equal(y.strides, (sz,)) + assert_equal(y.itemsize, sz) + + def test_export_subarray(self): + x = np.array(([[1, 2], [3, 4]],), dtype=[('a', ('i', (2, 2)))]) + y = memoryview(x) + assert_equal(y.format, 'T{(2,2)i:a:}') + assert_equal(y.shape, ()) + assert_equal(y.ndim, 0) + assert_equal(y.strides, ()) + assert_equal(y.suboffsets, ()) + assert_equal(y.itemsize, 16) + + def test_export_endian(self): + x = np.array([1, 2, 3], dtype='>i') + y = memoryview(x) + if sys.byteorder == 'little': + assert_equal(y.format, '>i') + else: + assert_equal(y.format, 'i') + + x = np.array([1, 2, 3], dtype=' np.array(0, dtype=dt1), f"type {dt1} failed") + assert_(not 1 < np.array(0, dtype=dt1), f"type {dt1} failed") + + for dt2 in np.typecodes['AllInteger']: + assert_(np.array(1, dtype=dt1) > np.array(0, dtype=dt2), + f"type {dt1} and {dt2} failed") + assert_(not np.array(1, dtype=dt1) < np.array(0, dtype=dt2), + f"type {dt1} and {dt2} failed") + + # Unsigned integers + for dt1 in 'BHILQP': + assert_(-1 < np.array(1, dtype=dt1), f"type {dt1} failed") + assert_(not -1 > np.array(1, dtype=dt1), f"type {dt1} failed") + assert_(-1 != np.array(1, dtype=dt1), f"type {dt1} failed") + + # Unsigned vs signed + for dt2 in 'bhilqp': + assert_(np.array(1, dtype=dt1) > np.array(-1, dtype=dt2), + f"type {dt1} and {dt2} failed") + assert_(not np.array(1, dtype=dt1) < np.array(-1, dtype=dt2), + f"type {dt1} and {dt2} failed") + assert_(np.array(1, dtype=dt1) != np.array(-1, dtype=dt2), + f"type {dt1} and {dt2} failed") + + # Signed integers and floats + for dt1 in 'bhlqp' + np.typecodes['Float']: + assert_(1 > np.array(-1, dtype=dt1), f"type {dt1} failed") + assert_(not 1 < np.array(-1, dtype=dt1), f"type {dt1} failed") + assert_(-1 == np.array(-1, dtype=dt1), f"type {dt1} failed") + + for dt2 in 'bhlqp' + np.typecodes['Float']: + assert_(np.array(1, dtype=dt1) > np.array(-1, dtype=dt2), + f"type {dt1} and {dt2} failed") + assert_(not np.array(1, dtype=dt1) < np.array(-1, dtype=dt2), + f"type {dt1} and {dt2} failed") + assert_(np.array(-1, dtype=dt1) == np.array(-1, dtype=dt2), + f"type {dt1} and {dt2} failed") + + def test_to_bool_scalar(self): + assert_equal(bool(np.array([False])), False) + assert_equal(bool(np.array([True])), True) + assert_equal(bool(np.array([[42]])), True) + + def test_to_bool_scalar_not_convertible(self): + + class NotConvertible: + def __bool__(self): + raise NotImplementedError + + assert_raises(NotImplementedError, bool, np.array(NotConvertible())) + assert_raises(NotImplementedError, bool, np.array([NotConvertible()])) + if IS_PYSTON: + pytest.skip("Pyston disables recursion checking") + if IS_WASM: + pytest.skip("Pyodide/WASM has limited stack size") + + self_containing = np.array([None]) + self_containing[0] = self_containing + + Error = RecursionError + + assert_raises(Error, bool, self_containing) # previously stack overflow + self_containing[0] = None # resolve circular reference + + def test_to_bool_scalar_size_errors(self): + with pytest.raises(ValueError, match=".*one element is ambiguous"): + bool(np.array([1, 2])) + + with pytest.raises(ValueError, match=".*empty array is ambiguous"): + bool(np.empty((3, 0))) + + with pytest.raises(ValueError, match=".*empty array is ambiguous"): + bool(np.empty((0,))) + + def test_to_int_scalar(self): + # gh-9972 means that these aren't always the same + int_funcs = (int, lambda x: x.__int__()) + for int_func in int_funcs: + assert_equal(int_func(np.array(0)), 0) + with assert_warns(DeprecationWarning): + assert_equal(int_func(np.array([1])), 1) + with assert_warns(DeprecationWarning): + assert_equal(int_func(np.array([[42]])), 42) + assert_raises(TypeError, int_func, np.array([1, 2])) + + # gh-9972 + assert_equal(4, int_func(np.array('4'))) + assert_equal(5, int_func(np.bytes_(b'5'))) + assert_equal(6, int_func(np.str_('6'))) + + class NotConvertible: + def __int__(self): + raise NotImplementedError + assert_raises(NotImplementedError, + int_func, np.array(NotConvertible())) + with assert_warns(DeprecationWarning): + assert_raises(NotImplementedError, + int_func, np.array([NotConvertible()])) + + +class TestWhere: + def test_basic(self): + dts = [bool, np.int16, np.int32, np.int64, np.double, np.complex128, + np.longdouble, np.clongdouble] + for dt in dts: + c = np.ones(53, dtype=bool) + assert_equal(np.where( c, dt(0), dt(1)), dt(0)) + assert_equal(np.where(~c, dt(0), dt(1)), dt(1)) + assert_equal(np.where(True, dt(0), dt(1)), dt(0)) + assert_equal(np.where(False, dt(0), dt(1)), dt(1)) + d = np.ones_like(c).astype(dt) + e = np.zeros_like(d) + r = d.astype(dt) + c[7] = False + r[7] = e[7] + assert_equal(np.where(c, e, e), e) + assert_equal(np.where(c, d, e), r) + assert_equal(np.where(c, d, e[0]), r) + assert_equal(np.where(c, d[0], e), r) + assert_equal(np.where(c[::2], d[::2], e[::2]), r[::2]) + assert_equal(np.where(c[1::2], d[1::2], e[1::2]), r[1::2]) + assert_equal(np.where(c[::3], d[::3], e[::3]), r[::3]) + assert_equal(np.where(c[1::3], d[1::3], e[1::3]), r[1::3]) + assert_equal(np.where(c[::-2], d[::-2], e[::-2]), r[::-2]) + assert_equal(np.where(c[::-3], d[::-3], e[::-3]), r[::-3]) + assert_equal(np.where(c[1::-3], d[1::-3], e[1::-3]), r[1::-3]) + + @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support") + def test_exotic(self): + # object + assert_array_equal(np.where(True, None, None), np.array(None)) + # zero sized + m = np.array([], dtype=bool).reshape(0, 3) + b = np.array([], dtype=np.float64).reshape(0, 3) + assert_array_equal(np.where(m, 0, b), np.array([]).reshape(0, 3)) + + # object cast + d = np.array([-1.34, -0.16, -0.54, -0.31, -0.08, -0.95, 0.000, 0.313, + 0.547, -0.18, 0.876, 0.236, 1.969, 0.310, 0.699, 1.013, + 1.267, 0.229, -1.39, 0.487]) + nan = float('NaN') + e = np.array(['5z', '0l', nan, 'Wz', nan, nan, 'Xq', 'cs', nan, nan, + 'QN', nan, nan, 'Fd', nan, nan, 'kp', nan, '36', 'i1'], + dtype=object) + m = np.array([0, 0, 1, 0, 1, 1, 0, 0, 1, 1, + 0, 1, 1, 0, 1, 1, 0, 1, 0, 0], dtype=bool) + + r = e[:] + r[np.where(m)] = d[np.where(m)] + assert_array_equal(np.where(m, d, e), r) + + r = e[:] + r[np.where(~m)] = d[np.where(~m)] + assert_array_equal(np.where(m, e, d), r) + + assert_array_equal(np.where(m, e, e), e) + + # minimal dtype result with NaN scalar (e.g required by pandas) + d = np.array([1., 2.], dtype=np.float32) + e = float('NaN') + assert_equal(np.where(True, d, e).dtype, np.float32) + e = float('Infinity') + assert_equal(np.where(True, d, e).dtype, np.float32) + e = float('-Infinity') + assert_equal(np.where(True, d, e).dtype, np.float32) + # With NEP 50 adopted, the float will overflow here: + e = 1e150 + with pytest.warns(RuntimeWarning, match="overflow"): + res = np.where(True, d, e) + assert res.dtype == np.float32 + + def test_ndim(self): + c = [True, False] + a = np.zeros((2, 25)) + b = np.ones((2, 25)) + r = np.where(np.array(c)[:, np.newaxis], a, b) + assert_array_equal(r[0], a[0]) + assert_array_equal(r[1], b[0]) + + a = a.T + b = b.T + r = np.where(c, a, b) + assert_array_equal(r[:, 0], a[:, 0]) + assert_array_equal(r[:, 1], b[:, 0]) + + def test_dtype_mix(self): + c = np.array([False, True, False, False, False, False, True, False, + False, False, True, False]) + a = np.uint32(1) + b = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.], + dtype=np.float64) + r = np.array([5., 1., 3., 2., -1., -4., 1., -10., 10., 1., 1., 3.], + dtype=np.float64) + assert_equal(np.where(c, a, b), r) + + a = a.astype(np.float32) + b = b.astype(np.int64) + assert_equal(np.where(c, a, b), r) + + # non bool mask + c = c.astype(int) + c[c != 0] = 34242324 + assert_equal(np.where(c, a, b), r) + # invert + tmpmask = c != 0 + c[c == 0] = 41247212 + c[tmpmask] = 0 + assert_equal(np.where(c, b, a), r) + + def test_foreign(self): + c = np.array([False, True, False, False, False, False, True, False, + False, False, True, False]) + r = np.array([5., 1., 3., 2., -1., -4., 1., -10., 10., 1., 1., 3.], + dtype=np.float64) + a = np.ones(1, dtype='>i4') + b = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.], + dtype=np.float64) + assert_equal(np.where(c, a, b), r) + + b = b.astype('>f8') + assert_equal(np.where(c, a, b), r) + + a = a.astype('i4') + assert_equal(np.where(c, a, b), r) + + def test_error(self): + c = [True, True] + a = np.ones((4, 5)) + b = np.ones((5, 5)) + assert_raises(ValueError, np.where, c, a, a) + assert_raises(ValueError, np.where, c[0], a, b) + + def test_string(self): + # gh-4778 check strings are properly filled with nulls + a = np.array("abc") + b = np.array("x" * 753) + assert_equal(np.where(True, a, b), "abc") + assert_equal(np.where(False, b, a), "abc") + + # check native datatype sized strings + a = np.array("abcd") + b = np.array("x" * 8) + assert_equal(np.where(True, a, b), "abcd") + assert_equal(np.where(False, b, a), "abcd") + + def test_empty_result(self): + # pass empty where result through an assignment which reads the data of + # empty arrays, error detectable with valgrind, see gh-8922 + x = np.zeros((1, 1)) + ibad = np.vstack(np.where(x == 99.)) + assert_array_equal(ibad, + np.atleast_2d(np.array([[], []], dtype=np.intp))) + + def test_largedim(self): + # invalid read regression gh-9304 + shape = [10, 2, 3, 4, 5, 6] + np.random.seed(2) + array = np.random.rand(*shape) + + for i in range(10): + benchmark = array.nonzero() + result = array.nonzero() + assert_array_equal(benchmark, result) + + def test_kwargs(self): + a = np.zeros(1) + with assert_raises(TypeError): + np.where(a, x=a, y=a) + + +if not IS_PYPY: + # sys.getsizeof() is not valid on PyPy + class TestSizeOf: + + def test_empty_array(self): + x = np.array([]) + assert_(sys.getsizeof(x) > 0) + + def check_array(self, dtype): + elem_size = dtype(0).itemsize + + for length in [10, 50, 100, 500]: + x = np.arange(length, dtype=dtype) + assert_(sys.getsizeof(x) > length * elem_size) + + def test_array_int32(self): + self.check_array(np.int32) + + def test_array_int64(self): + self.check_array(np.int64) + + def test_array_float32(self): + self.check_array(np.float32) + + def test_array_float64(self): + self.check_array(np.float64) + + def test_view(self): + d = np.ones(100) + assert_(sys.getsizeof(d[...]) < sys.getsizeof(d)) + + def test_reshape(self): + d = np.ones(100) + assert_(sys.getsizeof(d) < sys.getsizeof(d.reshape(100, 1, 1).copy())) + + @_no_tracing + def test_resize(self): + d = np.ones(100) + old = sys.getsizeof(d) + d.resize(50) + assert_(old > sys.getsizeof(d)) + d.resize(150) + assert_(old < sys.getsizeof(d)) + + @pytest.mark.parametrize("dtype", ["u4,f4", "u4,O"]) + def test_resize_structured(self, dtype): + a = np.array([(0, 0.0) for i in range(5)], dtype=dtype) + a.resize(1000) + assert_array_equal(a, np.zeros(1000, dtype=dtype)) + + def test_error(self): + d = np.ones(100) + assert_raises(TypeError, d.__sizeof__, "a") + + +class TestHashing: + + def test_arrays_not_hashable(self): + x = np.ones(3) + assert_raises(TypeError, hash, x) + + def test_collections_hashable(self): + x = np.array([]) + assert_(not isinstance(x, collections.abc.Hashable)) + + +class TestArrayPriority: + # This will go away when __array_priority__ is settled, meanwhile + # it serves to check unintended changes. + op = operator + binary_ops = [ + op.pow, op.add, op.sub, op.mul, op.floordiv, op.truediv, op.mod, + op.and_, op.or_, op.xor, op.lshift, op.rshift, op.mod, op.gt, + op.ge, op.lt, op.le, op.ne, op.eq + ] + + class Foo(np.ndarray): + __array_priority__ = 100. + + def __new__(cls, *args, **kwargs): + return np.array(*args, **kwargs).view(cls) + + class Bar(np.ndarray): + __array_priority__ = 101. + + def __new__(cls, *args, **kwargs): + return np.array(*args, **kwargs).view(cls) + + class Other: + __array_priority__ = 1000. + + def _all(self, other): + return self.__class__() + + __add__ = __radd__ = _all + __sub__ = __rsub__ = _all + __mul__ = __rmul__ = _all + __pow__ = __rpow__ = _all + __mod__ = __rmod__ = _all + __truediv__ = __rtruediv__ = _all + __floordiv__ = __rfloordiv__ = _all + __and__ = __rand__ = _all + __xor__ = __rxor__ = _all + __or__ = __ror__ = _all + __lshift__ = __rlshift__ = _all + __rshift__ = __rrshift__ = _all + __eq__ = _all + __ne__ = _all + __gt__ = _all + __ge__ = _all + __lt__ = _all + __le__ = _all + + def test_ndarray_subclass(self): + a = np.array([1, 2]) + b = self.Bar([1, 2]) + for f in self.binary_ops: + msg = repr(f) + assert_(isinstance(f(a, b), self.Bar), msg) + assert_(isinstance(f(b, a), self.Bar), msg) + + def test_ndarray_other(self): + a = np.array([1, 2]) + b = self.Other() + for f in self.binary_ops: + msg = repr(f) + assert_(isinstance(f(a, b), self.Other), msg) + assert_(isinstance(f(b, a), self.Other), msg) + + def test_subclass_subclass(self): + a = self.Foo([1, 2]) + b = self.Bar([1, 2]) + for f in self.binary_ops: + msg = repr(f) + assert_(isinstance(f(a, b), self.Bar), msg) + assert_(isinstance(f(b, a), self.Bar), msg) + + def test_subclass_other(self): + a = self.Foo([1, 2]) + b = self.Other() + for f in self.binary_ops: + msg = repr(f) + assert_(isinstance(f(a, b), self.Other), msg) + assert_(isinstance(f(b, a), self.Other), msg) + + +class TestBytestringArrayNonzero: + + def test_empty_bstring_array_is_falsey(self): + assert_(not np.array([''], dtype=str)) + + def test_whitespace_bstring_array_is_truthy(self): + a = np.array(['spam'], dtype=str) + a[0] = ' \0\0' + assert_(a) + + def test_all_null_bstring_array_is_falsey(self): + a = np.array(['spam'], dtype=str) + a[0] = '\0\0\0\0' + assert_(not a) + + def test_null_inside_bstring_array_is_truthy(self): + a = np.array(['spam'], dtype=str) + a[0] = ' \0 \0' + assert_(a) + + +class TestUnicodeEncoding: + """ + Tests for encoding related bugs, such as UCS2 vs UCS4, round-tripping + issues, etc + """ + def test_round_trip(self): + """ Tests that GETITEM, SETITEM, and PyArray_Scalar roundtrip """ + # gh-15363 + arr = np.zeros(shape=(), dtype="U1") + for i in range(1, sys.maxunicode + 1): + expected = chr(i) + arr[()] = expected + assert arr[()] == expected + assert arr.item() == expected + + def test_assign_scalar(self): + # gh-3258 + l = np.array(['aa', 'bb']) + l[:] = np.str_('cc') + assert_equal(l, ['cc', 'cc']) + + def test_fill_scalar(self): + # gh-7227 + l = np.array(['aa', 'bb']) + l.fill(np.str_('cc')) + assert_equal(l, ['cc', 'cc']) + + +class TestUnicodeArrayNonzero: + + def test_empty_ustring_array_is_falsey(self): + assert_(not np.array([''], dtype=np.str_)) + + def test_whitespace_ustring_array_is_truthy(self): + a = np.array(['eggs'], dtype=np.str_) + a[0] = ' \0\0' + assert_(a) + + def test_all_null_ustring_array_is_falsey(self): + a = np.array(['eggs'], dtype=np.str_) + a[0] = '\0\0\0\0' + assert_(not a) + + def test_null_inside_ustring_array_is_truthy(self): + a = np.array(['eggs'], dtype=np.str_) + a[0] = ' \0 \0' + assert_(a) + + +class TestFormat: + + def test_0d(self): + a = np.array(np.pi) + assert_equal(f'{a:0.3g}', '3.14') + assert_equal(f'{a[()]:0.3g}', '3.14') + + def test_1d_no_format(self): + a = np.array([np.pi]) + assert_equal(f'{a}', str(a)) + + def test_1d_format(self): + # until gh-5543, ensure that the behaviour matches what it used to be + a = np.array([np.pi]) + assert_raises(TypeError, '{:30}'.format, a) + + +from numpy.testing import IS_PYPY + + +class TestCTypes: + + def test_ctypes_is_available(self): + test_arr = np.array([[1, 2, 3], [4, 5, 6]]) + + assert_equal(ctypes, test_arr.ctypes._ctypes) + assert_equal(tuple(test_arr.ctypes.shape), (2, 3)) + + def test_ctypes_is_not_available(self): + from numpy._core import _internal + _internal.ctypes = None + try: + test_arr = np.array([[1, 2, 3], [4, 5, 6]]) + + assert_(isinstance(test_arr.ctypes._ctypes, + _internal._missing_ctypes)) + assert_equal(tuple(test_arr.ctypes.shape), (2, 3)) + finally: + _internal.ctypes = ctypes + + def _make_readonly(x): + x.flags.writeable = False + return x + + @pytest.mark.parametrize('arr', [ + np.array([1, 2, 3]), + np.array([['one', 'two'], ['three', 'four']]), + np.array((1, 2), dtype='i4,i4'), + np.zeros((2,), dtype=np.dtype({ + "formats": [' 2, [44, 55]) + assert_equal(a, np.array([[0, 44], [1, 55], [2, 44]])) + # hit one of the failing paths + assert_raises(ValueError, np.place, a, a > 20, []) + + def test_put_noncontiguous(self): + a = np.arange(6).reshape(2, 3).T # force non-c-contiguous + np.put(a, [0, 2], [44, 55]) + assert_equal(a, np.array([[44, 3], [55, 4], [2, 5]])) + + def test_putmask_noncontiguous(self): + a = np.arange(6).reshape(2, 3).T # force non-c-contiguous + # uses arr_putmask + np.putmask(a, a > 2, a**2) + assert_equal(a, np.array([[0, 9], [1, 16], [2, 25]])) + + def test_take_mode_raise(self): + a = np.arange(6, dtype='int') + out = np.empty(2, dtype='int') + np.take(a, [0, 2], out=out, mode='raise') + assert_equal(out, np.array([0, 2])) + + def test_choose_mod_raise(self): + a = np.array([[1, 0, 1], [0, 1, 0], [1, 0, 1]]) + out = np.empty((3, 3), dtype='int') + choices = [-10, 10] + np.choose(a, choices, out=out, mode='raise') + assert_equal(out, np.array([[ 10, -10, 10], + [-10, 10, -10], + [ 10, -10, 10]])) + + def test_flatiter__array__(self): + a = np.arange(9).reshape(3, 3) + b = a.T.flat + c = b.__array__() + # triggers the WRITEBACKIFCOPY resolution, assuming refcount semantics + del c + + def test_dot_out(self): + # if HAVE_CBLAS, will use WRITEBACKIFCOPY + a = np.arange(9, dtype=float).reshape(3, 3) + b = np.dot(a, a, out=a) + assert_equal(b, np.array([[15, 18, 21], [42, 54, 66], [69, 90, 111]])) + + def test_view_assign(self): + from numpy._core._multiarray_tests import ( + npy_create_writebackifcopy, + npy_resolve, + ) + + arr = np.arange(9).reshape(3, 3).T + arr_wb = npy_create_writebackifcopy(arr) + assert_(arr_wb.flags.writebackifcopy) + assert_(arr_wb.base is arr) + arr_wb[...] = -100 + npy_resolve(arr_wb) + # arr changes after resolve, even though we assigned to arr_wb + assert_equal(arr, -100) + # after resolve, the two arrays no longer reference each other + assert_(arr_wb.ctypes.data != 0) + assert_equal(arr_wb.base, None) + # assigning to arr_wb does not get transferred to arr + arr_wb[...] = 100 + assert_equal(arr, -100) + + @pytest.mark.leaks_references( + reason="increments self in dealloc; ignore since deprecated path.") + def test_dealloc_warning(self): + with suppress_warnings() as sup: + sup.record(RuntimeWarning) + arr = np.arange(9).reshape(3, 3) + v = arr.T + _multiarray_tests.npy_abuse_writebackifcopy(v) + assert len(sup.log) == 1 + + def test_view_discard_refcount(self): + from numpy._core._multiarray_tests import ( + npy_create_writebackifcopy, + npy_discard, + ) + + arr = np.arange(9).reshape(3, 3).T + orig = arr.copy() + if HAS_REFCOUNT: + arr_cnt = sys.getrefcount(arr) + arr_wb = npy_create_writebackifcopy(arr) + assert_(arr_wb.flags.writebackifcopy) + assert_(arr_wb.base is arr) + arr_wb[...] = -100 + npy_discard(arr_wb) + # arr remains unchanged after discard + assert_equal(arr, orig) + # after discard, the two arrays no longer reference each other + assert_(arr_wb.ctypes.data != 0) + assert_equal(arr_wb.base, None) + if HAS_REFCOUNT: + assert_equal(arr_cnt, sys.getrefcount(arr)) + # assigning to arr_wb does not get transferred to arr + arr_wb[...] = 100 + assert_equal(arr, orig) + + +class TestArange: + def test_infinite(self): + assert_raises_regex( + ValueError, "size exceeded", + np.arange, 0, np.inf + ) + + def test_nan_step(self): + assert_raises_regex( + ValueError, "cannot compute length", + np.arange, 0, 1, np.nan + ) + + def test_zero_step(self): + assert_raises(ZeroDivisionError, np.arange, 0, 10, 0) + assert_raises(ZeroDivisionError, np.arange, 0.0, 10.0, 0.0) + + # empty range + assert_raises(ZeroDivisionError, np.arange, 0, 0, 0) + assert_raises(ZeroDivisionError, np.arange, 0.0, 0.0, 0.0) + + def test_require_range(self): + assert_raises(TypeError, np.arange) + assert_raises(TypeError, np.arange, step=3) + assert_raises(TypeError, np.arange, dtype='int64') + assert_raises(TypeError, np.arange, start=4) + + def test_start_stop_kwarg(self): + keyword_stop = np.arange(stop=3) + keyword_zerotostop = np.arange(0, stop=3) + keyword_start_stop = np.arange(start=3, stop=9) + + assert len(keyword_stop) == 3 + assert len(keyword_zerotostop) == 3 + assert len(keyword_start_stop) == 6 + assert_array_equal(keyword_stop, keyword_zerotostop) + + def test_arange_booleans(self): + # Arange makes some sense for booleans and works up to length 2. + # But it is weird since `arange(2, 4, dtype=bool)` works. + # Arguably, much or all of this could be deprecated/removed. + res = np.arange(False, dtype=bool) + assert_array_equal(res, np.array([], dtype="bool")) + + res = np.arange(True, dtype="bool") + assert_array_equal(res, [False]) + + res = np.arange(2, dtype="bool") + assert_array_equal(res, [False, True]) + + # This case is especially weird, but drops out without special case: + res = np.arange(6, 8, dtype="bool") + assert_array_equal(res, [True, True]) + + with pytest.raises(TypeError): + np.arange(3, dtype="bool") + + @pytest.mark.parametrize("dtype", ["S3", "U", "5i"]) + def test_rejects_bad_dtypes(self, dtype): + dtype = np.dtype(dtype) + DType_name = re.escape(str(type(dtype))) + with pytest.raises(TypeError, + match=rf"arange\(\) not supported for inputs .* {DType_name}"): + np.arange(2, dtype=dtype) + + def test_rejects_strings(self): + # Explicitly test error for strings which may call "b" - "a": + DType_name = re.escape(str(type(np.array("a").dtype))) + with pytest.raises(TypeError, + match=rf"arange\(\) not supported for inputs .* {DType_name}"): + np.arange("a", "b") + + def test_byteswapped(self): + res_be = np.arange(1, 1000, dtype=">i4") + res_le = np.arange(1, 1000, dtype="i4" + assert res_le.dtype == " arr2 + + +@pytest.mark.parametrize("op", [ + operator.eq, operator.ne, operator.le, operator.lt, operator.ge, + operator.gt]) +def test_comparisons_forwards_error(op): + class NotArray: + def __array__(self, dtype=None, copy=None): + raise TypeError("run you fools") + + with pytest.raises(TypeError, match="run you fools"): + op(np.arange(2), NotArray()) + + with pytest.raises(TypeError, match="run you fools"): + op(NotArray(), np.arange(2)) + + +def test_richcompare_scalar_boolean_singleton_return(): + # These are currently guaranteed to be the boolean numpy singletons + assert (np.array(0) == "a") is np.bool_(False) + assert (np.array(0) != "a") is np.bool_(True) + assert (np.int16(0) == "a") is np.bool_(False) + assert (np.int16(0) != "a") is np.bool_(True) + + +@pytest.mark.parametrize("op", [ + operator.eq, operator.ne, operator.le, operator.lt, operator.ge, + operator.gt]) +def test_ragged_comparison_fails(op): + # This needs to convert the internal array to True/False, which fails: + a = np.array([1, np.array([1, 2, 3])], dtype=object) + b = np.array([1, np.array([1, 2, 3])], dtype=object) + + with pytest.raises(ValueError, match="The truth value.*ambiguous"): + op(a, b) + + +@pytest.mark.parametrize( + ["fun", "npfun"], + [ + (_multiarray_tests.npy_cabs, np.absolute), + (_multiarray_tests.npy_carg, np.angle) + ] +) +@pytest.mark.parametrize("x", [1, np.inf, -np.inf, np.nan]) +@pytest.mark.parametrize("y", [1, np.inf, -np.inf, np.nan]) +@pytest.mark.parametrize("test_dtype", np.complexfloating.__subclasses__()) +def test_npymath_complex(fun, npfun, x, y, test_dtype): + # Smoketest npymath functions + z = test_dtype(complex(x, y)) + with np.errstate(invalid='ignore'): + # Fallback implementations may emit a warning for +-inf (see gh-24876): + # RuntimeWarning: invalid value encountered in absolute + got = fun(z) + expected = npfun(z) + assert_allclose(got, expected) + + +def test_npymath_real(): + # Smoketest npymath functions + from numpy._core._multiarray_tests import ( + npy_cosh, + npy_log10, + npy_sinh, + npy_tan, + npy_tanh, + ) + + funcs = {npy_log10: np.log10, + npy_cosh: np.cosh, + npy_sinh: np.sinh, + npy_tan: np.tan, + npy_tanh: np.tanh} + vals = (1, np.inf, -np.inf, np.nan) + types = (np.float32, np.float64, np.longdouble) + + with np.errstate(all='ignore'): + for fun, npfun in funcs.items(): + for x, t in itertools.product(vals, types): + z = t(x) + got = fun(z) + expected = npfun(z) + assert_allclose(got, expected) + +def test_uintalignment_and_alignment(): + # alignment code needs to satisfy these requirements: + # 1. numpy structs match C struct layout + # 2. ufuncs/casting is safe wrt to aligned access + # 3. copy code is safe wrt to "uint alidned" access + # + # Complex types are the main problem, whose alignment may not be the same + # as their "uint alignment". + # + # This test might only fail on certain platforms, where uint64 alignment is + # not equal to complex64 alignment. The second 2 tests will only fail + # for DEBUG=1. + + d1 = np.dtype('u1,c8', align=True) + d2 = np.dtype('u4,c8', align=True) + d3 = np.dtype({'names': ['a', 'b'], 'formats': ['u1', d1]}, align=True) + + assert_equal(np.zeros(1, dtype=d1)['f1'].flags['ALIGNED'], True) + assert_equal(np.zeros(1, dtype=d2)['f1'].flags['ALIGNED'], True) + assert_equal(np.zeros(1, dtype='u1,c8')['f1'].flags['ALIGNED'], False) + + # check that C struct matches numpy struct size + s = _multiarray_tests.get_struct_alignments() + for d, (alignment, size) in zip([d1, d2, d3], s): + assert_equal(d.alignment, alignment) + assert_equal(d.itemsize, size) + + # check that ufuncs don't complain in debug mode + # (this is probably OK if the aligned flag is true above) + src = np.zeros((2, 2), dtype=d1)['f1'] # 4-byte aligned, often + np.exp(src) # assert fails? + + # check that copy code doesn't complain in debug mode + dst = np.zeros((2, 2), dtype='c8') + dst[:, 1] = src[:, 1] # assert in lowlevel_strided_loops fails? + +class TestAlignment: + # adapted from scipy._lib.tests.test__util.test__aligned_zeros + # Checks that unusual memory alignments don't trip up numpy. + + def check(self, shape, dtype, order, align): + err_msg = repr((shape, dtype, order, align)) + x = _aligned_zeros(shape, dtype, order, align=align) + if align is None: + align = np.dtype(dtype).alignment + assert_equal(x.__array_interface__['data'][0] % align, 0) + if hasattr(shape, '__len__'): + assert_equal(x.shape, shape, err_msg) + else: + assert_equal(x.shape, (shape,), err_msg) + assert_equal(x.dtype, dtype) + if order == "C": + assert_(x.flags.c_contiguous, err_msg) + elif order == "F": + if x.size > 0: + assert_(x.flags.f_contiguous, err_msg) + elif order is None: + assert_(x.flags.c_contiguous, err_msg) + else: + raise ValueError + + def test_various_alignments(self): + for align in [1, 2, 3, 4, 8, 12, 16, 32, 64, None]: + for n in [0, 1, 3, 11]: + for order in ["C", "F", None]: + for dtype in list(np.typecodes["All"]) + ['i4,i4,i4']: + if dtype == 'O': + # object dtype can't be misaligned + continue + for shape in [n, (1, 2, 3, n)]: + self.check(shape, np.dtype(dtype), order, align) + + def test_strided_loop_alignments(self): + # particularly test that complex64 and float128 use right alignment + # code-paths, since these are particularly problematic. It is useful to + # turn on USE_DEBUG for this test, so lowlevel-loop asserts are run. + for align in [1, 2, 4, 8, 12, 16, None]: + xf64 = _aligned_zeros(3, np.float64) + + xc64 = _aligned_zeros(3, np.complex64, align=align) + xf128 = _aligned_zeros(3, np.longdouble, align=align) + + # test casting, both to and from misaligned + with suppress_warnings() as sup: + sup.filter(ComplexWarning, "Casting complex values") + xc64.astype('f8') + xf64.astype(np.complex64) + test = xc64 + xf64 + + xf128.astype('f8') + xf64.astype(np.longdouble) + test = xf128 + xf64 + + test = xf128 + xc64 + + # test copy, both to and from misaligned + # contig copy + xf64[:] = xf64.copy() + xc64[:] = xc64.copy() + xf128[:] = xf128.copy() + # strided copy + xf64[::2] = xf64[::2].copy() + xc64[::2] = xc64[::2].copy() + xf128[::2] = xf128[::2].copy() + +def test_getfield(): + a = np.arange(32, dtype='uint16') + if sys.byteorder == 'little': + i = 0 + j = 1 + else: + i = 1 + j = 0 + b = a.getfield('int8', i) + assert_equal(b, a) + b = a.getfield('int8', j) + assert_equal(b, 0) + pytest.raises(ValueError, a.getfield, 'uint8', -1) + pytest.raises(ValueError, a.getfield, 'uint8', 16) + pytest.raises(ValueError, a.getfield, 'uint64', 0) + + +class TestViewDtype: + """ + Verify that making a view of a non-contiguous array works as expected. + """ + def test_smaller_dtype_multiple(self): + # x is non-contiguous + x = np.arange(10, dtype=' rc_a) + assert_(sys.getrefcount(dt) > rc_dt) + # del 'it' + it = None + assert_equal(sys.getrefcount(a), rc_a) + assert_equal(sys.getrefcount(dt), rc_dt) + + # With a copy + a = arange(6, dtype='f4') + dt = np.dtype('f4') + rc_a = sys.getrefcount(a) + rc_dt = sys.getrefcount(dt) + it = nditer(a, [], + [['readwrite']], + op_dtypes=[dt]) + rc2_a = sys.getrefcount(a) + rc2_dt = sys.getrefcount(dt) + it2 = it.copy() + assert_(sys.getrefcount(a) > rc2_a) + if sys.version_info < (3, 13): + # np.dtype('f4') is immortal after Python 3.13 + assert_(sys.getrefcount(dt) > rc2_dt) + it = None + assert_equal(sys.getrefcount(a), rc2_a) + assert_equal(sys.getrefcount(dt), rc2_dt) + it2 = None + assert_equal(sys.getrefcount(a), rc_a) + assert_equal(sys.getrefcount(dt), rc_dt) + +def test_iter_best_order(): + # The iterator should always find the iteration order + # with increasing memory addresses + + # Test the ordering for 1-D to 5-D shapes + for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]: + a = arange(np.prod(shape)) + # Test each combination of positive and negative strides + for dirs in range(2**len(shape)): + dirs_index = [slice(None)] * len(shape) + for bit in range(len(shape)): + if ((2**bit) & dirs): + dirs_index[bit] = slice(None, None, -1) + dirs_index = tuple(dirs_index) + + aview = a.reshape(shape)[dirs_index] + # C-order + i = nditer(aview, [], [['readonly']]) + assert_equal(list(i), a) + # Fortran-order + i = nditer(aview.T, [], [['readonly']]) + assert_equal(list(i), a) + # Other order + if len(shape) > 2: + i = nditer(aview.swapaxes(0, 1), [], [['readonly']]) + assert_equal(list(i), a) + +def test_iter_c_order(): + # Test forcing C order + + # Test the ordering for 1-D to 5-D shapes + for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]: + a = arange(np.prod(shape)) + # Test each combination of positive and negative strides + for dirs in range(2**len(shape)): + dirs_index = [slice(None)] * len(shape) + for bit in range(len(shape)): + if ((2**bit) & dirs): + dirs_index[bit] = slice(None, None, -1) + dirs_index = tuple(dirs_index) + + aview = a.reshape(shape)[dirs_index] + # C-order + i = nditer(aview, order='C') + assert_equal(list(i), aview.ravel(order='C')) + # Fortran-order + i = nditer(aview.T, order='C') + assert_equal(list(i), aview.T.ravel(order='C')) + # Other order + if len(shape) > 2: + i = nditer(aview.swapaxes(0, 1), order='C') + assert_equal(list(i), + aview.swapaxes(0, 1).ravel(order='C')) + +def test_iter_f_order(): + # Test forcing F order + + # Test the ordering for 1-D to 5-D shapes + for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]: + a = arange(np.prod(shape)) + # Test each combination of positive and negative strides + for dirs in range(2**len(shape)): + dirs_index = [slice(None)] * len(shape) + for bit in range(len(shape)): + if ((2**bit) & dirs): + dirs_index[bit] = slice(None, None, -1) + dirs_index = tuple(dirs_index) + + aview = a.reshape(shape)[dirs_index] + # C-order + i = nditer(aview, order='F') + assert_equal(list(i), aview.ravel(order='F')) + # Fortran-order + i = nditer(aview.T, order='F') + assert_equal(list(i), aview.T.ravel(order='F')) + # Other order + if len(shape) > 2: + i = nditer(aview.swapaxes(0, 1), order='F') + assert_equal(list(i), + aview.swapaxes(0, 1).ravel(order='F')) + +def test_iter_c_or_f_order(): + # Test forcing any contiguous (C or F) order + + # Test the ordering for 1-D to 5-D shapes + for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]: + a = arange(np.prod(shape)) + # Test each combination of positive and negative strides + for dirs in range(2**len(shape)): + dirs_index = [slice(None)] * len(shape) + for bit in range(len(shape)): + if ((2**bit) & dirs): + dirs_index[bit] = slice(None, None, -1) + dirs_index = tuple(dirs_index) + + aview = a.reshape(shape)[dirs_index] + # C-order + i = nditer(aview, order='A') + assert_equal(list(i), aview.ravel(order='A')) + # Fortran-order + i = nditer(aview.T, order='A') + assert_equal(list(i), aview.T.ravel(order='A')) + # Other order + if len(shape) > 2: + i = nditer(aview.swapaxes(0, 1), order='A') + assert_equal(list(i), + aview.swapaxes(0, 1).ravel(order='A')) + +def test_nditer_multi_index_set(): + # Test the multi_index set + a = np.arange(6).reshape(2, 3) + it = np.nditer(a, flags=['multi_index']) + + # Removes the iteration on two first elements of a[0] + it.multi_index = (0, 2,) + + assert_equal(list(it), [2, 3, 4, 5]) + +@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") +def test_nditer_multi_index_set_refcount(): + # Test if the reference count on index variable is decreased + + index = 0 + i = np.nditer(np.array([111, 222, 333, 444]), flags=['multi_index']) + + start_count = sys.getrefcount(index) + i.multi_index = (index,) + end_count = sys.getrefcount(index) + + assert_equal(start_count, end_count) + +def test_iter_best_order_multi_index_1d(): + # The multi-indices should be correct with any reordering + + a = arange(4) + # 1D order + i = nditer(a, ['multi_index'], [['readonly']]) + assert_equal(iter_multi_index(i), [(0,), (1,), (2,), (3,)]) + # 1D reversed order + i = nditer(a[::-1], ['multi_index'], [['readonly']]) + assert_equal(iter_multi_index(i), [(3,), (2,), (1,), (0,)]) + +def test_iter_best_order_multi_index_2d(): + # The multi-indices should be correct with any reordering + + a = arange(6) + # 2D C-order + i = nditer(a.reshape(2, 3), ['multi_index'], [['readonly']]) + assert_equal(iter_multi_index(i), [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)]) + # 2D Fortran-order + i = nditer(a.reshape(2, 3).copy(order='F'), ['multi_index'], [['readonly']]) + assert_equal(iter_multi_index(i), [(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2)]) + # 2D reversed C-order + i = nditer(a.reshape(2, 3)[::-1], ['multi_index'], [['readonly']]) + assert_equal(iter_multi_index(i), [(1, 0), (1, 1), (1, 2), (0, 0), (0, 1), (0, 2)]) + i = nditer(a.reshape(2, 3)[:, ::-1], ['multi_index'], [['readonly']]) + assert_equal(iter_multi_index(i), [(0, 2), (0, 1), (0, 0), (1, 2), (1, 1), (1, 0)]) + i = nditer(a.reshape(2, 3)[::-1, ::-1], ['multi_index'], [['readonly']]) + assert_equal(iter_multi_index(i), [(1, 2), (1, 1), (1, 0), (0, 2), (0, 1), (0, 0)]) + # 2D reversed Fortran-order + i = nditer(a.reshape(2, 3).copy(order='F')[::-1], ['multi_index'], [['readonly']]) + assert_equal(iter_multi_index(i), [(1, 0), (0, 0), (1, 1), (0, 1), (1, 2), (0, 2)]) + i = nditer(a.reshape(2, 3).copy(order='F')[:, ::-1], + ['multi_index'], [['readonly']]) + assert_equal(iter_multi_index(i), [(0, 2), (1, 2), (0, 1), (1, 1), (0, 0), (1, 0)]) + i = nditer(a.reshape(2, 3).copy(order='F')[::-1, ::-1], + ['multi_index'], [['readonly']]) + assert_equal(iter_multi_index(i), [(1, 2), (0, 2), (1, 1), (0, 1), (1, 0), (0, 0)]) + +def test_iter_best_order_multi_index_3d(): + # The multi-indices should be correct with any reordering + + a = arange(12) + # 3D C-order + i = nditer(a.reshape(2, 3, 2), ['multi_index'], [['readonly']]) + assert_equal(iter_multi_index(i), + [(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 2, 0), (0, 2, 1), + (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (1, 2, 0), (1, 2, 1)]) + # 3D Fortran-order + i = nditer(a.reshape(2, 3, 2).copy(order='F'), ['multi_index'], [['readonly']]) + assert_equal(iter_multi_index(i), + [(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 2, 0), (1, 2, 0), + (0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1), (0, 2, 1), (1, 2, 1)]) + # 3D reversed C-order + i = nditer(a.reshape(2, 3, 2)[::-1], ['multi_index'], [['readonly']]) + assert_equal(iter_multi_index(i), + [(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (1, 2, 0), (1, 2, 1), + (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 2, 0), (0, 2, 1)]) + i = nditer(a.reshape(2, 3, 2)[:, ::-1], ['multi_index'], [['readonly']]) + assert_equal(iter_multi_index(i), + [(0, 2, 0), (0, 2, 1), (0, 1, 0), (0, 1, 1), (0, 0, 0), (0, 0, 1), + (1, 2, 0), (1, 2, 1), (1, 1, 0), (1, 1, 1), (1, 0, 0), (1, 0, 1)]) + i = nditer(a.reshape(2, 3, 2)[:, :, ::-1], ['multi_index'], [['readonly']]) + assert_equal(iter_multi_index(i), + [(0, 0, 1), (0, 0, 0), (0, 1, 1), (0, 1, 0), (0, 2, 1), (0, 2, 0), + (1, 0, 1), (1, 0, 0), (1, 1, 1), (1, 1, 0), (1, 2, 1), (1, 2, 0)]) + # 3D reversed Fortran-order + i = nditer(a.reshape(2, 3, 2).copy(order='F')[::-1], + ['multi_index'], [['readonly']]) + assert_equal(iter_multi_index(i), + [(1, 0, 0), (0, 0, 0), (1, 1, 0), (0, 1, 0), (1, 2, 0), (0, 2, 0), + (1, 0, 1), (0, 0, 1), (1, 1, 1), (0, 1, 1), (1, 2, 1), (0, 2, 1)]) + i = nditer(a.reshape(2, 3, 2).copy(order='F')[:, ::-1], + ['multi_index'], [['readonly']]) + assert_equal(iter_multi_index(i), + [(0, 2, 0), (1, 2, 0), (0, 1, 0), (1, 1, 0), (0, 0, 0), (1, 0, 0), + (0, 2, 1), (1, 2, 1), (0, 1, 1), (1, 1, 1), (0, 0, 1), (1, 0, 1)]) + i = nditer(a.reshape(2, 3, 2).copy(order='F')[:, :, ::-1], + ['multi_index'], [['readonly']]) + assert_equal(iter_multi_index(i), + [(0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1), (0, 2, 1), (1, 2, 1), + (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 2, 0), (1, 2, 0)]) + +def test_iter_best_order_c_index_1d(): + # The C index should be correct with any reordering + + a = arange(4) + # 1D order + i = nditer(a, ['c_index'], [['readonly']]) + assert_equal(iter_indices(i), [0, 1, 2, 3]) + # 1D reversed order + i = nditer(a[::-1], ['c_index'], [['readonly']]) + assert_equal(iter_indices(i), [3, 2, 1, 0]) + +def test_iter_best_order_c_index_2d(): + # The C index should be correct with any reordering + + a = arange(6) + # 2D C-order + i = nditer(a.reshape(2, 3), ['c_index'], [['readonly']]) + assert_equal(iter_indices(i), [0, 1, 2, 3, 4, 5]) + # 2D Fortran-order + i = nditer(a.reshape(2, 3).copy(order='F'), + ['c_index'], [['readonly']]) + assert_equal(iter_indices(i), [0, 3, 1, 4, 2, 5]) + # 2D reversed C-order + i = nditer(a.reshape(2, 3)[::-1], ['c_index'], [['readonly']]) + assert_equal(iter_indices(i), [3, 4, 5, 0, 1, 2]) + i = nditer(a.reshape(2, 3)[:, ::-1], ['c_index'], [['readonly']]) + assert_equal(iter_indices(i), [2, 1, 0, 5, 4, 3]) + i = nditer(a.reshape(2, 3)[::-1, ::-1], ['c_index'], [['readonly']]) + assert_equal(iter_indices(i), [5, 4, 3, 2, 1, 0]) + # 2D reversed Fortran-order + i = nditer(a.reshape(2, 3).copy(order='F')[::-1], + ['c_index'], [['readonly']]) + assert_equal(iter_indices(i), [3, 0, 4, 1, 5, 2]) + i = nditer(a.reshape(2, 3).copy(order='F')[:, ::-1], + ['c_index'], [['readonly']]) + assert_equal(iter_indices(i), [2, 5, 1, 4, 0, 3]) + i = nditer(a.reshape(2, 3).copy(order='F')[::-1, ::-1], + ['c_index'], [['readonly']]) + assert_equal(iter_indices(i), [5, 2, 4, 1, 3, 0]) + +def test_iter_best_order_c_index_3d(): + # The C index should be correct with any reordering + + a = arange(12) + # 3D C-order + i = nditer(a.reshape(2, 3, 2), ['c_index'], [['readonly']]) + assert_equal(iter_indices(i), + [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) + # 3D Fortran-order + i = nditer(a.reshape(2, 3, 2).copy(order='F'), + ['c_index'], [['readonly']]) + assert_equal(iter_indices(i), + [0, 6, 2, 8, 4, 10, 1, 7, 3, 9, 5, 11]) + # 3D reversed C-order + i = nditer(a.reshape(2, 3, 2)[::-1], ['c_index'], [['readonly']]) + assert_equal(iter_indices(i), + [6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5]) + i = nditer(a.reshape(2, 3, 2)[:, ::-1], ['c_index'], [['readonly']]) + assert_equal(iter_indices(i), + [4, 5, 2, 3, 0, 1, 10, 11, 8, 9, 6, 7]) + i = nditer(a.reshape(2, 3, 2)[:, :, ::-1], ['c_index'], [['readonly']]) + assert_equal(iter_indices(i), + [1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10]) + # 3D reversed Fortran-order + i = nditer(a.reshape(2, 3, 2).copy(order='F')[::-1], + ['c_index'], [['readonly']]) + assert_equal(iter_indices(i), + [6, 0, 8, 2, 10, 4, 7, 1, 9, 3, 11, 5]) + i = nditer(a.reshape(2, 3, 2).copy(order='F')[:, ::-1], + ['c_index'], [['readonly']]) + assert_equal(iter_indices(i), + [4, 10, 2, 8, 0, 6, 5, 11, 3, 9, 1, 7]) + i = nditer(a.reshape(2, 3, 2).copy(order='F')[:, :, ::-1], + ['c_index'], [['readonly']]) + assert_equal(iter_indices(i), + [1, 7, 3, 9, 5, 11, 0, 6, 2, 8, 4, 10]) + +def test_iter_best_order_f_index_1d(): + # The Fortran index should be correct with any reordering + + a = arange(4) + # 1D order + i = nditer(a, ['f_index'], [['readonly']]) + assert_equal(iter_indices(i), [0, 1, 2, 3]) + # 1D reversed order + i = nditer(a[::-1], ['f_index'], [['readonly']]) + assert_equal(iter_indices(i), [3, 2, 1, 0]) + +def test_iter_best_order_f_index_2d(): + # The Fortran index should be correct with any reordering + + a = arange(6) + # 2D C-order + i = nditer(a.reshape(2, 3), ['f_index'], [['readonly']]) + assert_equal(iter_indices(i), [0, 2, 4, 1, 3, 5]) + # 2D Fortran-order + i = nditer(a.reshape(2, 3).copy(order='F'), + ['f_index'], [['readonly']]) + assert_equal(iter_indices(i), [0, 1, 2, 3, 4, 5]) + # 2D reversed C-order + i = nditer(a.reshape(2, 3)[::-1], ['f_index'], [['readonly']]) + assert_equal(iter_indices(i), [1, 3, 5, 0, 2, 4]) + i = nditer(a.reshape(2, 3)[:, ::-1], ['f_index'], [['readonly']]) + assert_equal(iter_indices(i), [4, 2, 0, 5, 3, 1]) + i = nditer(a.reshape(2, 3)[::-1, ::-1], ['f_index'], [['readonly']]) + assert_equal(iter_indices(i), [5, 3, 1, 4, 2, 0]) + # 2D reversed Fortran-order + i = nditer(a.reshape(2, 3).copy(order='F')[::-1], + ['f_index'], [['readonly']]) + assert_equal(iter_indices(i), [1, 0, 3, 2, 5, 4]) + i = nditer(a.reshape(2, 3).copy(order='F')[:, ::-1], + ['f_index'], [['readonly']]) + assert_equal(iter_indices(i), [4, 5, 2, 3, 0, 1]) + i = nditer(a.reshape(2, 3).copy(order='F')[::-1, ::-1], + ['f_index'], [['readonly']]) + assert_equal(iter_indices(i), [5, 4, 3, 2, 1, 0]) + +def test_iter_best_order_f_index_3d(): + # The Fortran index should be correct with any reordering + + a = arange(12) + # 3D C-order + i = nditer(a.reshape(2, 3, 2), ['f_index'], [['readonly']]) + assert_equal(iter_indices(i), + [0, 6, 2, 8, 4, 10, 1, 7, 3, 9, 5, 11]) + # 3D Fortran-order + i = nditer(a.reshape(2, 3, 2).copy(order='F'), + ['f_index'], [['readonly']]) + assert_equal(iter_indices(i), + [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) + # 3D reversed C-order + i = nditer(a.reshape(2, 3, 2)[::-1], ['f_index'], [['readonly']]) + assert_equal(iter_indices(i), + [1, 7, 3, 9, 5, 11, 0, 6, 2, 8, 4, 10]) + i = nditer(a.reshape(2, 3, 2)[:, ::-1], ['f_index'], [['readonly']]) + assert_equal(iter_indices(i), + [4, 10, 2, 8, 0, 6, 5, 11, 3, 9, 1, 7]) + i = nditer(a.reshape(2, 3, 2)[:, :, ::-1], ['f_index'], [['readonly']]) + assert_equal(iter_indices(i), + [6, 0, 8, 2, 10, 4, 7, 1, 9, 3, 11, 5]) + # 3D reversed Fortran-order + i = nditer(a.reshape(2, 3, 2).copy(order='F')[::-1], + ['f_index'], [['readonly']]) + assert_equal(iter_indices(i), + [1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10]) + i = nditer(a.reshape(2, 3, 2).copy(order='F')[:, ::-1], + ['f_index'], [['readonly']]) + assert_equal(iter_indices(i), + [4, 5, 2, 3, 0, 1, 10, 11, 8, 9, 6, 7]) + i = nditer(a.reshape(2, 3, 2).copy(order='F')[:, :, ::-1], + ['f_index'], [['readonly']]) + assert_equal(iter_indices(i), + [6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5]) + +def test_iter_no_inner_full_coalesce(): + # Check no_inner iterators which coalesce into a single inner loop + + for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]: + size = np.prod(shape) + a = arange(size) + # Test each combination of forward and backwards indexing + for dirs in range(2**len(shape)): + dirs_index = [slice(None)] * len(shape) + for bit in range(len(shape)): + if ((2**bit) & dirs): + dirs_index[bit] = slice(None, None, -1) + dirs_index = tuple(dirs_index) + + aview = a.reshape(shape)[dirs_index] + # C-order + i = nditer(aview, ['external_loop'], [['readonly']]) + assert_equal(i.ndim, 1) + assert_equal(i[0].shape, (size,)) + # Fortran-order + i = nditer(aview.T, ['external_loop'], [['readonly']]) + assert_equal(i.ndim, 1) + assert_equal(i[0].shape, (size,)) + # Other order + if len(shape) > 2: + i = nditer(aview.swapaxes(0, 1), + ['external_loop'], [['readonly']]) + assert_equal(i.ndim, 1) + assert_equal(i[0].shape, (size,)) + +def test_iter_no_inner_dim_coalescing(): + # Check no_inner iterators whose dimensions may not coalesce completely + + # Skipping the last element in a dimension prevents coalescing + # with the next-bigger dimension + a = arange(24).reshape(2, 3, 4)[:, :, :-1] + i = nditer(a, ['external_loop'], [['readonly']]) + assert_equal(i.ndim, 2) + assert_equal(i[0].shape, (3,)) + a = arange(24).reshape(2, 3, 4)[:, :-1, :] + i = nditer(a, ['external_loop'], [['readonly']]) + assert_equal(i.ndim, 2) + assert_equal(i[0].shape, (8,)) + a = arange(24).reshape(2, 3, 4)[:-1, :, :] + i = nditer(a, ['external_loop'], [['readonly']]) + assert_equal(i.ndim, 1) + assert_equal(i[0].shape, (12,)) + + # Even with lots of 1-sized dimensions, should still coalesce + a = arange(24).reshape(1, 1, 2, 1, 1, 3, 1, 1, 4, 1, 1) + i = nditer(a, ['external_loop'], [['readonly']]) + assert_equal(i.ndim, 1) + assert_equal(i[0].shape, (24,)) + +def test_iter_dim_coalescing(): + # Check that the correct number of dimensions are coalesced + + # Tracking a multi-index disables coalescing + a = arange(24).reshape(2, 3, 4) + i = nditer(a, ['multi_index'], [['readonly']]) + assert_equal(i.ndim, 3) + + # A tracked index can allow coalescing if it's compatible with the array + a3d = arange(24).reshape(2, 3, 4) + i = nditer(a3d, ['c_index'], [['readonly']]) + assert_equal(i.ndim, 1) + i = nditer(a3d.swapaxes(0, 1), ['c_index'], [['readonly']]) + assert_equal(i.ndim, 3) + i = nditer(a3d.T, ['c_index'], [['readonly']]) + assert_equal(i.ndim, 3) + i = nditer(a3d.T, ['f_index'], [['readonly']]) + assert_equal(i.ndim, 1) + i = nditer(a3d.T.swapaxes(0, 1), ['f_index'], [['readonly']]) + assert_equal(i.ndim, 3) + + # When C or F order is forced, coalescing may still occur + a3d = arange(24).reshape(2, 3, 4) + i = nditer(a3d, order='C') + assert_equal(i.ndim, 1) + i = nditer(a3d.T, order='C') + assert_equal(i.ndim, 3) + i = nditer(a3d, order='F') + assert_equal(i.ndim, 3) + i = nditer(a3d.T, order='F') + assert_equal(i.ndim, 1) + i = nditer(a3d, order='A') + assert_equal(i.ndim, 1) + i = nditer(a3d.T, order='A') + assert_equal(i.ndim, 1) + +def test_iter_broadcasting(): + # Standard NumPy broadcasting rules + + # 1D with scalar + i = nditer([arange(6), np.int32(2)], ['multi_index'], [['readonly']] * 2) + assert_equal(i.itersize, 6) + assert_equal(i.shape, (6,)) + + # 2D with scalar + i = nditer([arange(6).reshape(2, 3), np.int32(2)], + ['multi_index'], [['readonly']] * 2) + assert_equal(i.itersize, 6) + assert_equal(i.shape, (2, 3)) + # 2D with 1D + i = nditer([arange(6).reshape(2, 3), arange(3)], + ['multi_index'], [['readonly']] * 2) + assert_equal(i.itersize, 6) + assert_equal(i.shape, (2, 3)) + i = nditer([arange(2).reshape(2, 1), arange(3)], + ['multi_index'], [['readonly']] * 2) + assert_equal(i.itersize, 6) + assert_equal(i.shape, (2, 3)) + # 2D with 2D + i = nditer([arange(2).reshape(2, 1), arange(3).reshape(1, 3)], + ['multi_index'], [['readonly']] * 2) + assert_equal(i.itersize, 6) + assert_equal(i.shape, (2, 3)) + + # 3D with scalar + i = nditer([np.int32(2), arange(24).reshape(4, 2, 3)], + ['multi_index'], [['readonly']] * 2) + assert_equal(i.itersize, 24) + assert_equal(i.shape, (4, 2, 3)) + # 3D with 1D + i = nditer([arange(3), arange(24).reshape(4, 2, 3)], + ['multi_index'], [['readonly']] * 2) + assert_equal(i.itersize, 24) + assert_equal(i.shape, (4, 2, 3)) + i = nditer([arange(3), arange(8).reshape(4, 2, 1)], + ['multi_index'], [['readonly']] * 2) + assert_equal(i.itersize, 24) + assert_equal(i.shape, (4, 2, 3)) + # 3D with 2D + i = nditer([arange(6).reshape(2, 3), arange(24).reshape(4, 2, 3)], + ['multi_index'], [['readonly']] * 2) + assert_equal(i.itersize, 24) + assert_equal(i.shape, (4, 2, 3)) + i = nditer([arange(2).reshape(2, 1), arange(24).reshape(4, 2, 3)], + ['multi_index'], [['readonly']] * 2) + assert_equal(i.itersize, 24) + assert_equal(i.shape, (4, 2, 3)) + i = nditer([arange(3).reshape(1, 3), arange(8).reshape(4, 2, 1)], + ['multi_index'], [['readonly']] * 2) + assert_equal(i.itersize, 24) + assert_equal(i.shape, (4, 2, 3)) + # 3D with 3D + i = nditer([arange(2).reshape(1, 2, 1), arange(3).reshape(1, 1, 3), + arange(4).reshape(4, 1, 1)], + ['multi_index'], [['readonly']] * 3) + assert_equal(i.itersize, 24) + assert_equal(i.shape, (4, 2, 3)) + i = nditer([arange(6).reshape(1, 2, 3), arange(4).reshape(4, 1, 1)], + ['multi_index'], [['readonly']] * 2) + assert_equal(i.itersize, 24) + assert_equal(i.shape, (4, 2, 3)) + i = nditer([arange(24).reshape(4, 2, 3), arange(12).reshape(4, 1, 3)], + ['multi_index'], [['readonly']] * 2) + assert_equal(i.itersize, 24) + assert_equal(i.shape, (4, 2, 3)) + +def test_iter_itershape(): + # Check that allocated outputs work with a specified shape + a = np.arange(6, dtype='i2').reshape(2, 3) + i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']], + op_axes=[[0, 1, None], None], + itershape=(-1, -1, 4)) + assert_equal(i.operands[1].shape, (2, 3, 4)) + assert_equal(i.operands[1].strides, (24, 8, 2)) + + i = nditer([a.T, None], [], [['readonly'], ['writeonly', 'allocate']], + op_axes=[[0, 1, None], None], + itershape=(-1, -1, 4)) + assert_equal(i.operands[1].shape, (3, 2, 4)) + assert_equal(i.operands[1].strides, (8, 24, 2)) + + i = nditer([a.T, None], [], [['readonly'], ['writeonly', 'allocate']], + order='F', + op_axes=[[0, 1, None], None], + itershape=(-1, -1, 4)) + assert_equal(i.operands[1].shape, (3, 2, 4)) + assert_equal(i.operands[1].strides, (2, 6, 12)) + + # If we specify 1 in the itershape, it shouldn't allow broadcasting + # of that dimension to a bigger value + assert_raises(ValueError, nditer, [a, None], [], + [['readonly'], ['writeonly', 'allocate']], + op_axes=[[0, 1, None], None], + itershape=(-1, 1, 4)) + # Test bug that for no op_axes but itershape, they are NULLed correctly + i = np.nditer([np.ones(2), None, None], itershape=(2,)) + +def test_iter_broadcasting_errors(): + # Check that errors are thrown for bad broadcasting shapes + + # 1D with 1D + assert_raises(ValueError, nditer, [arange(2), arange(3)], + [], [['readonly']] * 2) + # 2D with 1D + assert_raises(ValueError, nditer, + [arange(6).reshape(2, 3), arange(2)], + [], [['readonly']] * 2) + # 2D with 2D + assert_raises(ValueError, nditer, + [arange(6).reshape(2, 3), arange(9).reshape(3, 3)], + [], [['readonly']] * 2) + assert_raises(ValueError, nditer, + [arange(6).reshape(2, 3), arange(4).reshape(2, 2)], + [], [['readonly']] * 2) + # 3D with 3D + assert_raises(ValueError, nditer, + [arange(36).reshape(3, 3, 4), arange(24).reshape(2, 3, 4)], + [], [['readonly']] * 2) + assert_raises(ValueError, nditer, + [arange(8).reshape(2, 4, 1), arange(24).reshape(2, 3, 4)], + [], [['readonly']] * 2) + + # Verify that the error message mentions the right shapes + try: + nditer([arange(2).reshape(1, 2, 1), + arange(3).reshape(1, 3), + arange(6).reshape(2, 3)], + [], + [['readonly'], ['readonly'], ['writeonly', 'no_broadcast']]) + raise AssertionError('Should have raised a broadcast error') + except ValueError as e: + msg = str(e) + # The message should contain the shape of the 3rd operand + assert_(msg.find('(2,3)') >= 0, + f'Message "{msg}" doesn\'t contain operand shape (2,3)') + # The message should contain the broadcast shape + assert_(msg.find('(1,2,3)') >= 0, + f'Message "{msg}" doesn\'t contain broadcast shape (1,2,3)') + + try: + nditer([arange(6).reshape(2, 3), arange(2)], + [], + [['readonly'], ['readonly']], + op_axes=[[0, 1], [0, np.newaxis]], + itershape=(4, 3)) + raise AssertionError('Should have raised a broadcast error') + except ValueError as e: + msg = str(e) + # The message should contain "shape->remappedshape" for each operand + assert_(msg.find('(2,3)->(2,3)') >= 0, + f'Message "{msg}" doesn\'t contain operand shape (2,3)->(2,3)') + assert_(msg.find('(2,)->(2,newaxis)') >= 0, + ('Message "%s" doesn\'t contain remapped operand shape' + '(2,)->(2,newaxis)') % msg) + # The message should contain the itershape parameter + assert_(msg.find('(4,3)') >= 0, + f'Message "{msg}" doesn\'t contain itershape parameter (4,3)') + + try: + nditer([np.zeros((2, 1, 1)), np.zeros((2,))], + [], + [['writeonly', 'no_broadcast'], ['readonly']]) + raise AssertionError('Should have raised a broadcast error') + except ValueError as e: + msg = str(e) + # The message should contain the shape of the bad operand + assert_(msg.find('(2,1,1)') >= 0, + f'Message "{msg}" doesn\'t contain operand shape (2,1,1)') + # The message should contain the broadcast shape + assert_(msg.find('(2,1,2)') >= 0, + f'Message "{msg}" doesn\'t contain the broadcast shape (2,1,2)') + +def test_iter_flags_errors(): + # Check that bad combinations of flags produce errors + + a = arange(6) + + # Not enough operands + assert_raises(ValueError, nditer, [], [], []) + # Bad global flag + assert_raises(ValueError, nditer, [a], ['bad flag'], [['readonly']]) + # Bad op flag + assert_raises(ValueError, nditer, [a], [], [['readonly', 'bad flag']]) + # Bad order parameter + assert_raises(ValueError, nditer, [a], [], [['readonly']], order='G') + # Bad casting parameter + assert_raises(ValueError, nditer, [a], [], [['readonly']], casting='noon') + # op_flags must match ops + assert_raises(ValueError, nditer, [a] * 3, [], [['readonly']] * 2) + # Cannot track both a C and an F index + assert_raises(ValueError, nditer, a, + ['c_index', 'f_index'], [['readonly']]) + # Inner iteration and multi-indices/indices are incompatible + assert_raises(ValueError, nditer, a, + ['external_loop', 'multi_index'], [['readonly']]) + assert_raises(ValueError, nditer, a, + ['external_loop', 'c_index'], [['readonly']]) + assert_raises(ValueError, nditer, a, + ['external_loop', 'f_index'], [['readonly']]) + # Must specify exactly one of readwrite/readonly/writeonly per operand + assert_raises(ValueError, nditer, a, [], [[]]) + assert_raises(ValueError, nditer, a, [], [['readonly', 'writeonly']]) + assert_raises(ValueError, nditer, a, [], [['readonly', 'readwrite']]) + assert_raises(ValueError, nditer, a, [], [['writeonly', 'readwrite']]) + assert_raises(ValueError, nditer, a, + [], [['readonly', 'writeonly', 'readwrite']]) + # Python scalars are always readonly + assert_raises(TypeError, nditer, 1.5, [], [['writeonly']]) + assert_raises(TypeError, nditer, 1.5, [], [['readwrite']]) + # Array scalars are always readonly + assert_raises(TypeError, nditer, np.int32(1), [], [['writeonly']]) + assert_raises(TypeError, nditer, np.int32(1), [], [['readwrite']]) + # Check readonly array + a.flags.writeable = False + assert_raises(ValueError, nditer, a, [], [['writeonly']]) + assert_raises(ValueError, nditer, a, [], [['readwrite']]) + a.flags.writeable = True + # Multi-indices available only with the multi_index flag + i = nditer(arange(6), [], [['readonly']]) + assert_raises(ValueError, lambda i: i.multi_index, i) + # Index available only with an index flag + assert_raises(ValueError, lambda i: i.index, i) + # GotoCoords and GotoIndex incompatible with buffering or no_inner + + def assign_multi_index(i): + i.multi_index = (0,) + + def assign_index(i): + i.index = 0 + + def assign_iterindex(i): + i.iterindex = 0 + + def assign_iterrange(i): + i.iterrange = (0, 1) + i = nditer(arange(6), ['external_loop']) + assert_raises(ValueError, assign_multi_index, i) + assert_raises(ValueError, assign_index, i) + assert_raises(ValueError, assign_iterindex, i) + assert_raises(ValueError, assign_iterrange, i) + i = nditer(arange(6), ['buffered']) + assert_raises(ValueError, assign_multi_index, i) + assert_raises(ValueError, assign_index, i) + assert_raises(ValueError, assign_iterrange, i) + # Can't iterate if size is zero + assert_raises(ValueError, nditer, np.array([])) + +def test_iter_slice(): + a, b, c = np.arange(3), np.arange(3), np.arange(3.) + i = nditer([a, b, c], [], ['readwrite']) + with i: + i[0:2] = (3, 3) + assert_equal(a, [3, 1, 2]) + assert_equal(b, [3, 1, 2]) + assert_equal(c, [0, 1, 2]) + i[1] = 12 + assert_equal(i[0:2], [3, 12]) + +def test_iter_assign_mapping(): + a = np.arange(24, dtype='f8').reshape(2, 3, 4).T + it = np.nditer(a, [], [['readwrite', 'updateifcopy']], + casting='same_kind', op_dtypes=[np.dtype('f4')]) + with it: + it.operands[0][...] = 3 + it.operands[0][...] = 14 + assert_equal(a, 14) + it = np.nditer(a, [], [['readwrite', 'updateifcopy']], + casting='same_kind', op_dtypes=[np.dtype('f4')]) + with it: + x = it.operands[0][-1:1] + x[...] = 14 + it.operands[0][...] = -1234 + assert_equal(a, -1234) + # check for no warnings on dealloc + x = None + it = None + +def test_iter_nbo_align_contig(): + # Check that byte order, alignment, and contig changes work + + # Byte order change by requesting a specific dtype + a = np.arange(6, dtype='f4') + au = a.byteswap() + au = au.view(au.dtype.newbyteorder()) + assert_(a.dtype.byteorder != au.dtype.byteorder) + i = nditer(au, [], [['readwrite', 'updateifcopy']], + casting='equiv', + op_dtypes=[np.dtype('f4')]) + with i: + # context manager triggers WRITEBACKIFCOPY on i at exit + assert_equal(i.dtypes[0].byteorder, a.dtype.byteorder) + assert_equal(i.operands[0].dtype.byteorder, a.dtype.byteorder) + assert_equal(i.operands[0], a) + i.operands[0][:] = 2 + assert_equal(au, [2] * 6) + del i # should not raise a warning + # Byte order change by requesting NBO + a = np.arange(6, dtype='f4') + au = a.byteswap() + au = au.view(au.dtype.newbyteorder()) + assert_(a.dtype.byteorder != au.dtype.byteorder) + with nditer(au, [], [['readwrite', 'updateifcopy', 'nbo']], + casting='equiv') as i: + # context manager triggers UPDATEIFCOPY on i at exit + assert_equal(i.dtypes[0].byteorder, a.dtype.byteorder) + assert_equal(i.operands[0].dtype.byteorder, a.dtype.byteorder) + assert_equal(i.operands[0], a) + i.operands[0][:] = 12345 + i.operands[0][:] = 2 + assert_equal(au, [2] * 6) + + # Unaligned input + a = np.zeros((6 * 4 + 1,), dtype='i1')[1:] + a.dtype = 'f4' + a[:] = np.arange(6, dtype='f4') + assert_(not a.flags.aligned) + # Without 'aligned', shouldn't copy + i = nditer(a, [], [['readonly']]) + assert_(not i.operands[0].flags.aligned) + assert_equal(i.operands[0], a) + # With 'aligned', should make a copy + with nditer(a, [], [['readwrite', 'updateifcopy', 'aligned']]) as i: + assert_(i.operands[0].flags.aligned) + # context manager triggers UPDATEIFCOPY on i at exit + assert_equal(i.operands[0], a) + i.operands[0][:] = 3 + assert_equal(a, [3] * 6) + + # Discontiguous input + a = arange(12) + # If it is contiguous, shouldn't copy + i = nditer(a[:6], [], [['readonly']]) + assert_(i.operands[0].flags.contiguous) + assert_equal(i.operands[0], a[:6]) + # If it isn't contiguous, should buffer + i = nditer(a[::2], ['buffered', 'external_loop'], + [['readonly', 'contig']], + buffersize=10) + assert_(i[0].flags.contiguous) + assert_equal(i[0], a[::2]) + +def test_iter_array_cast(): + # Check that arrays are cast as requested + + # No cast 'f4' -> 'f4' + a = np.arange(6, dtype='f4').reshape(2, 3) + i = nditer(a, [], [['readwrite']], op_dtypes=[np.dtype('f4')]) + with i: + assert_equal(i.operands[0], a) + assert_equal(i.operands[0].dtype, np.dtype('f4')) + + # Byte-order cast ' '>f4' + a = np.arange(6, dtype='f4')]) as i: + assert_equal(i.operands[0], a) + assert_equal(i.operands[0].dtype, np.dtype('>f4')) + + # Safe case 'f4' -> 'f8' + a = np.arange(24, dtype='f4').reshape(2, 3, 4).swapaxes(1, 2) + i = nditer(a, [], [['readonly', 'copy']], + casting='safe', + op_dtypes=[np.dtype('f8')]) + assert_equal(i.operands[0], a) + assert_equal(i.operands[0].dtype, np.dtype('f8')) + # The memory layout of the temporary should match a (a is (48,4,16)) + # except negative strides get flipped to positive strides. + assert_equal(i.operands[0].strides, (96, 8, 32)) + a = a[::-1, :, ::-1] + i = nditer(a, [], [['readonly', 'copy']], + casting='safe', + op_dtypes=[np.dtype('f8')]) + assert_equal(i.operands[0], a) + assert_equal(i.operands[0].dtype, np.dtype('f8')) + assert_equal(i.operands[0].strides, (96, 8, 32)) + + # Same-kind cast 'f8' -> 'f4' -> 'f8' + a = np.arange(24, dtype='f8').reshape(2, 3, 4).T + with nditer(a, [], + [['readwrite', 'updateifcopy']], + casting='same_kind', + op_dtypes=[np.dtype('f4')]) as i: + assert_equal(i.operands[0], a) + assert_equal(i.operands[0].dtype, np.dtype('f4')) + assert_equal(i.operands[0].strides, (4, 16, 48)) + # Check that WRITEBACKIFCOPY is activated at exit + i.operands[0][2, 1, 1] = -12.5 + assert_(a[2, 1, 1] != -12.5) + assert_equal(a[2, 1, 1], -12.5) + + a = np.arange(6, dtype='i4')[::-2] + with nditer(a, [], + [['writeonly', 'updateifcopy']], + casting='unsafe', + op_dtypes=[np.dtype('f4')]) as i: + assert_equal(i.operands[0].dtype, np.dtype('f4')) + # Even though the stride was negative in 'a', it + # becomes positive in the temporary + assert_equal(i.operands[0].strides, (4,)) + i.operands[0][:] = [1, 2, 3] + assert_equal(a, [1, 2, 3]) + +def test_iter_array_cast_errors(): + # Check that invalid casts are caught + + # Need to enable copying for casts to occur + assert_raises(TypeError, nditer, arange(2, dtype='f4'), [], + [['readonly']], op_dtypes=[np.dtype('f8')]) + # Also need to allow casting for casts to occur + assert_raises(TypeError, nditer, arange(2, dtype='f4'), [], + [['readonly', 'copy']], casting='no', + op_dtypes=[np.dtype('f8')]) + assert_raises(TypeError, nditer, arange(2, dtype='f4'), [], + [['readonly', 'copy']], casting='equiv', + op_dtypes=[np.dtype('f8')]) + assert_raises(TypeError, nditer, arange(2, dtype='f8'), [], + [['writeonly', 'updateifcopy']], + casting='no', + op_dtypes=[np.dtype('f4')]) + assert_raises(TypeError, nditer, arange(2, dtype='f8'), [], + [['writeonly', 'updateifcopy']], + casting='equiv', + op_dtypes=[np.dtype('f4')]) + # ' '>f4' should not work with casting='no' + assert_raises(TypeError, nditer, arange(2, dtype='f4')]) + # 'f4' -> 'f8' is a safe cast, but 'f8' -> 'f4' isn't + assert_raises(TypeError, nditer, arange(2, dtype='f4'), [], + [['readwrite', 'updateifcopy']], + casting='safe', + op_dtypes=[np.dtype('f8')]) + assert_raises(TypeError, nditer, arange(2, dtype='f8'), [], + [['readwrite', 'updateifcopy']], + casting='safe', + op_dtypes=[np.dtype('f4')]) + # 'f4' -> 'i4' is neither a safe nor a same-kind cast + assert_raises(TypeError, nditer, arange(2, dtype='f4'), [], + [['readonly', 'copy']], + casting='same_kind', + op_dtypes=[np.dtype('i4')]) + assert_raises(TypeError, nditer, arange(2, dtype='i4'), [], + [['writeonly', 'updateifcopy']], + casting='same_kind', + op_dtypes=[np.dtype('f4')]) + +def test_iter_scalar_cast(): + # Check that scalars are cast as requested + + # No cast 'f4' -> 'f4' + i = nditer(np.float32(2.5), [], [['readonly']], + op_dtypes=[np.dtype('f4')]) + assert_equal(i.dtypes[0], np.dtype('f4')) + assert_equal(i.value.dtype, np.dtype('f4')) + assert_equal(i.value, 2.5) + # Safe cast 'f4' -> 'f8' + i = nditer(np.float32(2.5), [], + [['readonly', 'copy']], + casting='safe', + op_dtypes=[np.dtype('f8')]) + assert_equal(i.dtypes[0], np.dtype('f8')) + assert_equal(i.value.dtype, np.dtype('f8')) + assert_equal(i.value, 2.5) + # Same-kind cast 'f8' -> 'f4' + i = nditer(np.float64(2.5), [], + [['readonly', 'copy']], + casting='same_kind', + op_dtypes=[np.dtype('f4')]) + assert_equal(i.dtypes[0], np.dtype('f4')) + assert_equal(i.value.dtype, np.dtype('f4')) + assert_equal(i.value, 2.5) + # Unsafe cast 'f8' -> 'i4' + i = nditer(np.float64(3.0), [], + [['readonly', 'copy']], + casting='unsafe', + op_dtypes=[np.dtype('i4')]) + assert_equal(i.dtypes[0], np.dtype('i4')) + assert_equal(i.value.dtype, np.dtype('i4')) + assert_equal(i.value, 3) + # Readonly scalars may be cast even without setting COPY or BUFFERED + i = nditer(3, [], [['readonly']], op_dtypes=[np.dtype('f8')]) + assert_equal(i[0].dtype, np.dtype('f8')) + assert_equal(i[0], 3.) + +def test_iter_scalar_cast_errors(): + # Check that invalid casts are caught + + # Need to allow copying/buffering for write casts of scalars to occur + assert_raises(TypeError, nditer, np.float32(2), [], + [['readwrite']], op_dtypes=[np.dtype('f8')]) + assert_raises(TypeError, nditer, 2.5, [], + [['readwrite']], op_dtypes=[np.dtype('f4')]) + # 'f8' -> 'f4' isn't a safe cast if the value would overflow + assert_raises(TypeError, nditer, np.float64(1e60), [], + [['readonly']], + casting='safe', + op_dtypes=[np.dtype('f4')]) + # 'f4' -> 'i4' is neither a safe nor a same-kind cast + assert_raises(TypeError, nditer, np.float32(2), [], + [['readonly']], + casting='same_kind', + op_dtypes=[np.dtype('i4')]) + +def test_iter_object_arrays_basic(): + # Check that object arrays work + + obj = {'a': 3, 'b': 'd'} + a = np.array([[1, 2, 3], None, obj, None], dtype='O') + if HAS_REFCOUNT: + rc = sys.getrefcount(obj) + + # Need to allow references for object arrays + assert_raises(TypeError, nditer, a) + if HAS_REFCOUNT: + assert_equal(sys.getrefcount(obj), rc) + + i = nditer(a, ['refs_ok'], ['readonly']) + vals = [x_[()] for x_ in i] + assert_equal(np.array(vals, dtype='O'), a) + vals, i, x = [None] * 3 + if HAS_REFCOUNT: + assert_equal(sys.getrefcount(obj), rc) + + i = nditer(a.reshape(2, 2).T, ['refs_ok', 'buffered'], + ['readonly'], order='C') + assert_(i.iterationneedsapi) + vals = [x_[()] for x_ in i] + assert_equal(np.array(vals, dtype='O'), a.reshape(2, 2).ravel(order='F')) + vals, i, x = [None] * 3 + if HAS_REFCOUNT: + assert_equal(sys.getrefcount(obj), rc) + + i = nditer(a.reshape(2, 2).T, ['refs_ok', 'buffered'], + ['readwrite'], order='C') + with i: + for x in i: + x[...] = None + vals, i, x = [None] * 3 + if HAS_REFCOUNT: + assert_(sys.getrefcount(obj) == rc - 1) + assert_equal(a, np.array([None] * 4, dtype='O')) + +def test_iter_object_arrays_conversions(): + # Conversions to/from objects + a = np.arange(6, dtype='O') + i = nditer(a, ['refs_ok', 'buffered'], ['readwrite'], + casting='unsafe', op_dtypes='i4') + with i: + for x in i: + x[...] += 1 + assert_equal(a, np.arange(6) + 1) + + a = np.arange(6, dtype='i4') + i = nditer(a, ['refs_ok', 'buffered'], ['readwrite'], + casting='unsafe', op_dtypes='O') + with i: + for x in i: + x[...] += 1 + assert_equal(a, np.arange(6) + 1) + + # Non-contiguous object array + a = np.zeros((6,), dtype=[('p', 'i1'), ('a', 'O')]) + a = a['a'] + a[:] = np.arange(6) + i = nditer(a, ['refs_ok', 'buffered'], ['readwrite'], + casting='unsafe', op_dtypes='i4') + with i: + for x in i: + x[...] += 1 + assert_equal(a, np.arange(6) + 1) + + # Non-contiguous value array + a = np.zeros((6,), dtype=[('p', 'i1'), ('a', 'i4')]) + a = a['a'] + a[:] = np.arange(6) + 98172488 + i = nditer(a, ['refs_ok', 'buffered'], ['readwrite'], + casting='unsafe', op_dtypes='O') + with i: + ob = i[0][()] + if HAS_REFCOUNT: + rc = sys.getrefcount(ob) + for x in i: + x[...] += 1 + if HAS_REFCOUNT: + newrc = sys.getrefcount(ob) + assert_(newrc == rc - 1) + assert_equal(a, np.arange(6) + 98172489) + +def test_iter_common_dtype(): + # Check that the iterator finds a common data type correctly + # (some checks are somewhat duplicate after adopting NEP 50) + + i = nditer([array([3], dtype='f4'), array([0], dtype='f8')], + ['common_dtype'], + [['readonly', 'copy']] * 2, + casting='safe') + assert_equal(i.dtypes[0], np.dtype('f8')) + assert_equal(i.dtypes[1], np.dtype('f8')) + i = nditer([array([3], dtype='i4'), array([0], dtype='f4')], + ['common_dtype'], + [['readonly', 'copy']] * 2, + casting='safe') + assert_equal(i.dtypes[0], np.dtype('f8')) + assert_equal(i.dtypes[1], np.dtype('f8')) + i = nditer([array([3], dtype='f4'), array(0, dtype='f8')], + ['common_dtype'], + [['readonly', 'copy']] * 2, + casting='same_kind') + assert_equal(i.dtypes[0], np.dtype('f8')) + assert_equal(i.dtypes[1], np.dtype('f8')) + i = nditer([array([3], dtype='u4'), array(0, dtype='i4')], + ['common_dtype'], + [['readonly', 'copy']] * 2, + casting='safe') + assert_equal(i.dtypes[0], np.dtype('i8')) + assert_equal(i.dtypes[1], np.dtype('i8')) + i = nditer([array([3], dtype='u4'), array(-12, dtype='i4')], + ['common_dtype'], + [['readonly', 'copy']] * 2, + casting='safe') + assert_equal(i.dtypes[0], np.dtype('i8')) + assert_equal(i.dtypes[1], np.dtype('i8')) + i = nditer([array([3], dtype='u4'), array(-12, dtype='i4'), + array([2j], dtype='c8'), array([9], dtype='f8')], + ['common_dtype'], + [['readonly', 'copy']] * 4, + casting='safe') + assert_equal(i.dtypes[0], np.dtype('c16')) + assert_equal(i.dtypes[1], np.dtype('c16')) + assert_equal(i.dtypes[2], np.dtype('c16')) + assert_equal(i.dtypes[3], np.dtype('c16')) + assert_equal(i.value, (3, -12, 2j, 9)) + + # When allocating outputs, other outputs aren't factored in + i = nditer([array([3], dtype='i4'), None, array([2j], dtype='c16')], [], + [['readonly', 'copy'], + ['writeonly', 'allocate'], + ['writeonly']], + casting='safe') + assert_equal(i.dtypes[0], np.dtype('i4')) + assert_equal(i.dtypes[1], np.dtype('i4')) + assert_equal(i.dtypes[2], np.dtype('c16')) + # But, if common data types are requested, they are + i = nditer([array([3], dtype='i4'), None, array([2j], dtype='c16')], + ['common_dtype'], + [['readonly', 'copy'], + ['writeonly', 'allocate'], + ['writeonly']], + casting='safe') + assert_equal(i.dtypes[0], np.dtype('c16')) + assert_equal(i.dtypes[1], np.dtype('c16')) + assert_equal(i.dtypes[2], np.dtype('c16')) + +def test_iter_copy_if_overlap(): + # Ensure the iterator makes copies on read/write overlap, if requested + + # Copy not needed, 1 op + for flag in ['readonly', 'writeonly', 'readwrite']: + a = arange(10) + i = nditer([a], ['copy_if_overlap'], [[flag]]) + with i: + assert_(i.operands[0] is a) + + # Copy needed, 2 ops, read-write overlap + x = arange(10) + a = x[1:] + b = x[:-1] + with nditer([a, b], ['copy_if_overlap'], [['readonly'], ['readwrite']]) as i: + assert_(not np.shares_memory(*i.operands)) + + # Copy not needed with elementwise, 2 ops, exactly same arrays + x = arange(10) + a = x + b = x + i = nditer([a, b], ['copy_if_overlap'], [['readonly', 'overlap_assume_elementwise'], + ['readwrite', 'overlap_assume_elementwise']]) + with i: + assert_(i.operands[0] is a and i.operands[1] is b) + with nditer([a, b], ['copy_if_overlap'], [['readonly'], ['readwrite']]) as i: + assert_(i.operands[0] is a and not np.shares_memory(i.operands[1], b)) + + # Copy not needed, 2 ops, no overlap + x = arange(10) + a = x[::2] + b = x[1::2] + i = nditer([a, b], ['copy_if_overlap'], [['readonly'], ['writeonly']]) + assert_(i.operands[0] is a and i.operands[1] is b) + + # Copy needed, 2 ops, read-write overlap + x = arange(4, dtype=np.int8) + a = x[3:] + b = x.view(np.int32)[:1] + with nditer([a, b], ['copy_if_overlap'], [['readonly'], ['writeonly']]) as i: + assert_(not np.shares_memory(*i.operands)) + + # Copy needed, 3 ops, read-write overlap + for flag in ['writeonly', 'readwrite']: + x = np.ones([10, 10]) + a = x + b = x.T + c = x + with nditer([a, b, c], ['copy_if_overlap'], + [['readonly'], ['readonly'], [flag]]) as i: + a2, b2, c2 = i.operands + assert_(not np.shares_memory(a2, c2)) + assert_(not np.shares_memory(b2, c2)) + + # Copy not needed, 3 ops, read-only overlap + x = np.ones([10, 10]) + a = x + b = x.T + c = x + i = nditer([a, b, c], ['copy_if_overlap'], + [['readonly'], ['readonly'], ['readonly']]) + a2, b2, c2 = i.operands + assert_(a is a2) + assert_(b is b2) + assert_(c is c2) + + # Copy not needed, 3 ops, read-only overlap + x = np.ones([10, 10]) + a = x + b = np.ones([10, 10]) + c = x.T + i = nditer([a, b, c], ['copy_if_overlap'], + [['readonly'], ['writeonly'], ['readonly']]) + a2, b2, c2 = i.operands + assert_(a is a2) + assert_(b is b2) + assert_(c is c2) + + # Copy not needed, 3 ops, write-only overlap + x = np.arange(7) + a = x[:3] + b = x[3:6] + c = x[4:7] + i = nditer([a, b, c], ['copy_if_overlap'], + [['readonly'], ['writeonly'], ['writeonly']]) + a2, b2, c2 = i.operands + assert_(a is a2) + assert_(b is b2) + assert_(c is c2) + +def test_iter_op_axes(): + # Check that custom axes work + + # Reverse the axes + a = arange(6).reshape(2, 3) + i = nditer([a, a.T], [], [['readonly']] * 2, op_axes=[[0, 1], [1, 0]]) + assert_(all([x == y for (x, y) in i])) + a = arange(24).reshape(2, 3, 4) + i = nditer([a.T, a], [], [['readonly']] * 2, op_axes=[[2, 1, 0], None]) + assert_(all([x == y for (x, y) in i])) + + # Broadcast 1D to any dimension + a = arange(1, 31).reshape(2, 3, 5) + b = arange(1, 3) + i = nditer([a, b], [], [['readonly']] * 2, op_axes=[None, [0, -1, -1]]) + assert_equal([x * y for (x, y) in i], (a * b.reshape(2, 1, 1)).ravel()) + b = arange(1, 4) + i = nditer([a, b], [], [['readonly']] * 2, op_axes=[None, [-1, 0, -1]]) + assert_equal([x * y for (x, y) in i], (a * b.reshape(1, 3, 1)).ravel()) + b = arange(1, 6) + i = nditer([a, b], [], [['readonly']] * 2, + op_axes=[None, [np.newaxis, np.newaxis, 0]]) + assert_equal([x * y for (x, y) in i], (a * b.reshape(1, 1, 5)).ravel()) + + # Inner product-style broadcasting + a = arange(24).reshape(2, 3, 4) + b = arange(40).reshape(5, 2, 4) + i = nditer([a, b], ['multi_index'], [['readonly']] * 2, + op_axes=[[0, 1, -1, -1], [-1, -1, 0, 1]]) + assert_equal(i.shape, (2, 3, 5, 2)) + + # Matrix product-style broadcasting + a = arange(12).reshape(3, 4) + b = arange(20).reshape(4, 5) + i = nditer([a, b], ['multi_index'], [['readonly']] * 2, + op_axes=[[0, -1], [-1, 1]]) + assert_equal(i.shape, (3, 5)) + +def test_iter_op_axes_errors(): + # Check that custom axes throws errors for bad inputs + + # Wrong number of items in op_axes + a = arange(6).reshape(2, 3) + assert_raises(ValueError, nditer, [a, a], [], [['readonly']] * 2, + op_axes=[[0], [1], [0]]) + # Out of bounds items in op_axes + assert_raises(ValueError, nditer, [a, a], [], [['readonly']] * 2, + op_axes=[[2, 1], [0, 1]]) + assert_raises(ValueError, nditer, [a, a], [], [['readonly']] * 2, + op_axes=[[0, 1], [2, -1]]) + # Duplicate items in op_axes + assert_raises(ValueError, nditer, [a, a], [], [['readonly']] * 2, + op_axes=[[0, 0], [0, 1]]) + assert_raises(ValueError, nditer, [a, a], [], [['readonly']] * 2, + op_axes=[[0, 1], [1, 1]]) + + # Different sized arrays in op_axes + assert_raises(ValueError, nditer, [a, a], [], [['readonly']] * 2, + op_axes=[[0, 1], [0, 1, 0]]) + + # Non-broadcastable dimensions in the result + assert_raises(ValueError, nditer, [a, a], [], [['readonly']] * 2, + op_axes=[[0, 1], [1, 0]]) + +def test_iter_copy(): + # Check that copying the iterator works correctly + a = arange(24).reshape(2, 3, 4) + + # Simple iterator + i = nditer(a) + j = i.copy() + assert_equal([x[()] for x in i], [x[()] for x in j]) + + i.iterindex = 3 + j = i.copy() + assert_equal([x[()] for x in i], [x[()] for x in j]) + + # Buffered iterator + i = nditer(a, ['buffered', 'ranged'], order='F', buffersize=3) + j = i.copy() + assert_equal([x[()] for x in i], [x[()] for x in j]) + + i.iterindex = 3 + j = i.copy() + assert_equal([x[()] for x in i], [x[()] for x in j]) + + i.iterrange = (3, 9) + j = i.copy() + assert_equal([x[()] for x in i], [x[()] for x in j]) + + i.iterrange = (2, 18) + next(i) + next(i) + j = i.copy() + assert_equal([x[()] for x in i], [x[()] for x in j]) + + # Casting iterator + with nditer(a, ['buffered'], order='F', casting='unsafe', + op_dtypes='f8', buffersize=5) as i: + j = i.copy() + assert_equal([x[()] for x in j], a.ravel(order='F')) + + a = arange(24, dtype=' unstructured (any to object), and many other + # casts, which cause this to require all steps in the casting machinery + # one level down as well as the iterator copy (which uses NpyAuxData clone) + in_dtype = np.dtype([("a", np.dtype("i,")), + ("b", np.dtype(">i,d,S17,>d,3f,O,i1"))]) + out_dtype = np.dtype([("a", np.dtype("O")), + ("b", np.dtype(">i,>i,S17,>d,>U3,3d,i1,O"))]) + arr = np.ones(1000, dtype=in_dtype) + + it = np.nditer((arr,), ["buffered", "external_loop", "refs_ok"], + op_dtypes=[out_dtype], casting="unsafe") + it_copy = it.copy() + + res1 = next(it) + del it + res2 = next(it_copy) + del it_copy + + expected = arr["a"].astype(out_dtype["a"]) + assert_array_equal(res1["a"], expected) + assert_array_equal(res2["a"], expected) + + for field in in_dtype["b"].names: + # Note that the .base avoids the subarray field + expected = arr["b"][field].astype(out_dtype["b"][field].base) + assert_array_equal(res1["b"][field], expected) + assert_array_equal(res2["b"][field], expected) + + +def test_iter_copy_casts_structured2(): + # Similar to the above, this is a fairly arcane test to cover internals + in_dtype = np.dtype([("a", np.dtype("O,O")), + ("b", np.dtype("5O,3O,(1,)O,(1,)i,(1,)O"))]) + out_dtype = np.dtype([("a", np.dtype("O")), + ("b", np.dtype("O,3i,4O,4O,4i"))]) + + arr = np.ones(1, dtype=in_dtype) + it = np.nditer((arr,), ["buffered", "external_loop", "refs_ok"], + op_dtypes=[out_dtype], casting="unsafe") + it_copy = it.copy() + + res1 = next(it) + del it + res2 = next(it_copy) + del it_copy + + # Array of two structured scalars: + for res in res1, res2: + # Cast to tuple by getitem, which may be weird and changeable?: + assert isinstance(res["a"][0], tuple) + assert res["a"][0] == (1, 1) + + for res in res1, res2: + assert_array_equal(res["b"]["f0"][0], np.ones(5, dtype=object)) + assert_array_equal(res["b"]["f1"], np.ones((1, 3), dtype="i")) + assert res["b"]["f2"].shape == (1, 4) + assert_array_equal(res["b"]["f2"][0], np.ones(4, dtype=object)) + assert_array_equal(res["b"]["f3"][0], np.ones(4, dtype=object)) + assert_array_equal(res["b"]["f3"][0], np.ones(4, dtype="i")) + + +def test_iter_allocate_output_simple(): + # Check that the iterator will properly allocate outputs + + # Simple case + a = arange(6) + i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']], + op_dtypes=[None, np.dtype('f4')]) + assert_equal(i.operands[1].shape, a.shape) + assert_equal(i.operands[1].dtype, np.dtype('f4')) + +def test_iter_allocate_output_buffered_readwrite(): + # Allocated output with buffering + delay_bufalloc + + a = arange(6) + i = nditer([a, None], ['buffered', 'delay_bufalloc'], + [['readonly'], ['allocate', 'readwrite']]) + with i: + i.operands[1][:] = 1 + i.reset() + for x in i: + x[1][...] += x[0][...] + assert_equal(i.operands[1], a + 1) + +def test_iter_allocate_output_itorder(): + # The allocated output should match the iteration order + + # C-order input, best iteration order + a = arange(6, dtype='i4').reshape(2, 3) + i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']], + op_dtypes=[None, np.dtype('f4')]) + assert_equal(i.operands[1].shape, a.shape) + assert_equal(i.operands[1].strides, a.strides) + assert_equal(i.operands[1].dtype, np.dtype('f4')) + # F-order input, best iteration order + a = arange(24, dtype='i4').reshape(2, 3, 4).T + i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']], + op_dtypes=[None, np.dtype('f4')]) + assert_equal(i.operands[1].shape, a.shape) + assert_equal(i.operands[1].strides, a.strides) + assert_equal(i.operands[1].dtype, np.dtype('f4')) + # Non-contiguous input, C iteration order + a = arange(24, dtype='i4').reshape(2, 3, 4).swapaxes(0, 1) + i = nditer([a, None], [], + [['readonly'], ['writeonly', 'allocate']], + order='C', + op_dtypes=[None, np.dtype('f4')]) + assert_equal(i.operands[1].shape, a.shape) + assert_equal(i.operands[1].strides, (32, 16, 4)) + assert_equal(i.operands[1].dtype, np.dtype('f4')) + +def test_iter_allocate_output_opaxes(): + # Specifying op_axes should work + + a = arange(24, dtype='i4').reshape(2, 3, 4) + i = nditer([None, a], [], [['writeonly', 'allocate'], ['readonly']], + op_dtypes=[np.dtype('u4'), None], + op_axes=[[1, 2, 0], None]) + assert_equal(i.operands[0].shape, (4, 2, 3)) + assert_equal(i.operands[0].strides, (4, 48, 16)) + assert_equal(i.operands[0].dtype, np.dtype('u4')) + +def test_iter_allocate_output_types_promotion(): + # Check type promotion of automatic outputs (this was more interesting + # before NEP 50...) + + i = nditer([array([3], dtype='f4'), array([0], dtype='f8'), None], [], + [['readonly']] * 2 + [['writeonly', 'allocate']]) + assert_equal(i.dtypes[2], np.dtype('f8')) + i = nditer([array([3], dtype='i4'), array([0], dtype='f4'), None], [], + [['readonly']] * 2 + [['writeonly', 'allocate']]) + assert_equal(i.dtypes[2], np.dtype('f8')) + i = nditer([array([3], dtype='f4'), array(0, dtype='f8'), None], [], + [['readonly']] * 2 + [['writeonly', 'allocate']]) + assert_equal(i.dtypes[2], np.dtype('f8')) + i = nditer([array([3], dtype='u4'), array(0, dtype='i4'), None], [], + [['readonly']] * 2 + [['writeonly', 'allocate']]) + assert_equal(i.dtypes[2], np.dtype('i8')) + i = nditer([array([3], dtype='u4'), array(-12, dtype='i4'), None], [], + [['readonly']] * 2 + [['writeonly', 'allocate']]) + assert_equal(i.dtypes[2], np.dtype('i8')) + +def test_iter_allocate_output_types_byte_order(): + # Verify the rules for byte order changes + + # When there's just one input, the output type exactly matches + a = array([3], dtype='u4') + a = a.view(a.dtype.newbyteorder()) + i = nditer([a, None], [], + [['readonly'], ['writeonly', 'allocate']]) + assert_equal(i.dtypes[0], i.dtypes[1]) + # With two or more inputs, the output type is in native byte order + i = nditer([a, a, None], [], + [['readonly'], ['readonly'], ['writeonly', 'allocate']]) + assert_(i.dtypes[0] != i.dtypes[2]) + assert_equal(i.dtypes[0].newbyteorder('='), i.dtypes[2]) + +def test_iter_allocate_output_types_scalar(): + # If the inputs are all scalars, the output should be a scalar + + i = nditer([None, 1, 2.3, np.float32(12), np.complex128(3)], [], + [['writeonly', 'allocate']] + [['readonly']] * 4) + assert_equal(i.operands[0].dtype, np.dtype('complex128')) + assert_equal(i.operands[0].ndim, 0) + +def test_iter_allocate_output_subtype(): + # Make sure that the subtype with priority wins + class MyNDArray(np.ndarray): + __array_priority__ = 15 + + # subclass vs ndarray + a = np.array([[1, 2], [3, 4]]).view(MyNDArray) + b = np.arange(4).reshape(2, 2).T + i = nditer([a, b, None], [], + [['readonly'], ['readonly'], ['writeonly', 'allocate']]) + assert_equal(type(a), type(i.operands[2])) + assert_(type(b) is not type(i.operands[2])) + assert_equal(i.operands[2].shape, (2, 2)) + + # If subtypes are disabled, we should get back an ndarray. + i = nditer([a, b, None], [], + [['readonly'], ['readonly'], + ['writeonly', 'allocate', 'no_subtype']]) + assert_equal(type(b), type(i.operands[2])) + assert_(type(a) is not type(i.operands[2])) + assert_equal(i.operands[2].shape, (2, 2)) + +def test_iter_allocate_output_errors(): + # Check that the iterator will throw errors for bad output allocations + + # Need an input if no output data type is specified + a = arange(6) + assert_raises(TypeError, nditer, [a, None], [], + [['writeonly'], ['writeonly', 'allocate']]) + # Allocated output should be flagged for writing + assert_raises(ValueError, nditer, [a, None], [], + [['readonly'], ['allocate', 'readonly']]) + # Allocated output can't have buffering without delayed bufalloc + assert_raises(ValueError, nditer, [a, None], ['buffered'], + ['allocate', 'readwrite']) + # Must specify dtype if there are no inputs (cannot promote existing ones; + # maybe this should use the 'f4' here, but it does not historically.) + assert_raises(TypeError, nditer, [None, None], [], + [['writeonly', 'allocate'], + ['writeonly', 'allocate']], + op_dtypes=[None, np.dtype('f4')]) + # If using op_axes, must specify all the axes + a = arange(24, dtype='i4').reshape(2, 3, 4) + assert_raises(ValueError, nditer, [a, None], [], + [['readonly'], ['writeonly', 'allocate']], + op_dtypes=[None, np.dtype('f4')], + op_axes=[None, [0, np.newaxis, 1]]) + # If using op_axes, the axes must be within bounds + assert_raises(ValueError, nditer, [a, None], [], + [['readonly'], ['writeonly', 'allocate']], + op_dtypes=[None, np.dtype('f4')], + op_axes=[None, [0, 3, 1]]) + # If using op_axes, there can't be duplicates + assert_raises(ValueError, nditer, [a, None], [], + [['readonly'], ['writeonly', 'allocate']], + op_dtypes=[None, np.dtype('f4')], + op_axes=[None, [0, 2, 1, 0]]) + # Not all axes may be specified if a reduction. If there is a hole + # in op_axes, this is an error. + a = arange(24, dtype='i4').reshape(2, 3, 4) + assert_raises(ValueError, nditer, [a, None], ["reduce_ok"], + [['readonly'], ['readwrite', 'allocate']], + op_dtypes=[None, np.dtype('f4')], + op_axes=[None, [0, np.newaxis, 2]]) + +def test_all_allocated(): + # When no output and no shape is given, `()` is used as shape. + i = np.nditer([None], op_dtypes=["int64"]) + assert i.operands[0].shape == () + assert i.dtypes == (np.dtype("int64"),) + + i = np.nditer([None], op_dtypes=["int64"], itershape=(2, 3, 4)) + assert i.operands[0].shape == (2, 3, 4) + +def test_iter_remove_axis(): + a = arange(24).reshape(2, 3, 4) + + i = nditer(a, ['multi_index']) + i.remove_axis(1) + assert_equal(list(i), a[:, 0, :].ravel()) + + a = a[::-1, :, :] + i = nditer(a, ['multi_index']) + i.remove_axis(0) + assert_equal(list(i), a[0, :, :].ravel()) + +def test_iter_remove_multi_index_inner_loop(): + # Check that removing multi-index support works + + a = arange(24).reshape(2, 3, 4) + + i = nditer(a, ['multi_index']) + assert_equal(i.ndim, 3) + assert_equal(i.shape, (2, 3, 4)) + assert_equal(i.itviews[0].shape, (2, 3, 4)) + + # Removing the multi-index tracking causes all dimensions to coalesce + before = list(i) + i.remove_multi_index() + after = list(i) + + assert_equal(before, after) + assert_equal(i.ndim, 1) + assert_raises(ValueError, lambda i: i.shape, i) + assert_equal(i.itviews[0].shape, (24,)) + + # Removing the inner loop means there's just one iteration + i.reset() + assert_equal(i.itersize, 24) + assert_equal(i[0].shape, ()) + i.enable_external_loop() + assert_equal(i.itersize, 24) + assert_equal(i[0].shape, (24,)) + assert_equal(i.value, arange(24)) + +def test_iter_iterindex(): + # Make sure iterindex works + + buffersize = 5 + a = arange(24).reshape(4, 3, 2) + for flags in ([], ['buffered']): + i = nditer(a, flags, buffersize=buffersize) + assert_equal(iter_iterindices(i), list(range(24))) + i.iterindex = 2 + assert_equal(iter_iterindices(i), list(range(2, 24))) + + i = nditer(a, flags, order='F', buffersize=buffersize) + assert_equal(iter_iterindices(i), list(range(24))) + i.iterindex = 5 + assert_equal(iter_iterindices(i), list(range(5, 24))) + + i = nditer(a[::-1], flags, order='F', buffersize=buffersize) + assert_equal(iter_iterindices(i), list(range(24))) + i.iterindex = 9 + assert_equal(iter_iterindices(i), list(range(9, 24))) + + i = nditer(a[::-1, ::-1], flags, order='C', buffersize=buffersize) + assert_equal(iter_iterindices(i), list(range(24))) + i.iterindex = 13 + assert_equal(iter_iterindices(i), list(range(13, 24))) + + i = nditer(a[::1, ::-1], flags, buffersize=buffersize) + assert_equal(iter_iterindices(i), list(range(24))) + i.iterindex = 23 + assert_equal(iter_iterindices(i), list(range(23, 24))) + i.reset() + i.iterindex = 2 + assert_equal(iter_iterindices(i), list(range(2, 24))) + +def test_iter_iterrange(): + # Make sure getting and resetting the iterrange works + + buffersize = 5 + a = arange(24, dtype='i4').reshape(4, 3, 2) + a_fort = a.ravel(order='F') + + i = nditer(a, ['ranged'], ['readonly'], order='F', + buffersize=buffersize) + assert_equal(i.iterrange, (0, 24)) + assert_equal([x[()] for x in i], a_fort) + for r in [(0, 24), (1, 2), (3, 24), (5, 5), (0, 20), (23, 24)]: + i.iterrange = r + assert_equal(i.iterrange, r) + assert_equal([x[()] for x in i], a_fort[r[0]:r[1]]) + + i = nditer(a, ['ranged', 'buffered'], ['readonly'], order='F', + op_dtypes='f8', buffersize=buffersize) + assert_equal(i.iterrange, (0, 24)) + assert_equal([x[()] for x in i], a_fort) + for r in [(0, 24), (1, 2), (3, 24), (5, 5), (0, 20), (23, 24)]: + i.iterrange = r + assert_equal(i.iterrange, r) + assert_equal([x[()] for x in i], a_fort[r[0]:r[1]]) + + def get_array(i): + val = np.array([], dtype='f8') + for x in i: + val = np.concatenate((val, x)) + return val + + i = nditer(a, ['ranged', 'buffered', 'external_loop'], + ['readonly'], order='F', + op_dtypes='f8', buffersize=buffersize) + assert_equal(i.iterrange, (0, 24)) + assert_equal(get_array(i), a_fort) + for r in [(0, 24), (1, 2), (3, 24), (5, 5), (0, 20), (23, 24)]: + i.iterrange = r + assert_equal(i.iterrange, r) + assert_equal(get_array(i), a_fort[r[0]:r[1]]) + +def test_iter_buffering(): + # Test buffering with several buffer sizes and types + arrays = [] + # F-order swapped array + _tmp = np.arange(24, dtype='c16').reshape(2, 3, 4).T + _tmp = _tmp.view(_tmp.dtype.newbyteorder()).byteswap() + arrays.append(_tmp) + # Contiguous 1-dimensional array + arrays.append(np.arange(10, dtype='f4')) + # Unaligned array + a = np.zeros((4 * 16 + 1,), dtype='i1')[1:] + a.dtype = 'i4' + a[:] = np.arange(16, dtype='i4') + arrays.append(a) + # 4-D F-order array + arrays.append(np.arange(120, dtype='i4').reshape(5, 3, 2, 4).T) + for a in arrays: + for buffersize in (1, 2, 3, 5, 8, 11, 16, 1024): + vals = [] + i = nditer(a, ['buffered', 'external_loop'], + [['readonly', 'nbo', 'aligned']], + order='C', + casting='equiv', + buffersize=buffersize) + while not i.finished: + assert_(i[0].size <= buffersize) + vals.append(i[0].copy()) + i.iternext() + assert_equal(np.concatenate(vals), a.ravel(order='C')) + +def test_iter_write_buffering(): + # Test that buffering of writes is working + + # F-order swapped array + a = np.arange(24).reshape(2, 3, 4).T + a = a.view(a.dtype.newbyteorder()).byteswap() + i = nditer(a, ['buffered'], + [['readwrite', 'nbo', 'aligned']], + casting='equiv', + order='C', + buffersize=16) + x = 0 + with i: + while not i.finished: + i[0] = x + x += 1 + i.iternext() + assert_equal(a.ravel(order='C'), np.arange(24)) + +def test_iter_buffering_delayed_alloc(): + # Test that delaying buffer allocation works + + a = np.arange(6) + b = np.arange(1, dtype='f4') + i = nditer([a, b], ['buffered', 'delay_bufalloc', 'multi_index', 'reduce_ok'], + ['readwrite'], + casting='unsafe', + op_dtypes='f4') + assert_(i.has_delayed_bufalloc) + assert_raises(ValueError, lambda i: i.multi_index, i) + assert_raises(ValueError, lambda i: i[0], i) + assert_raises(ValueError, lambda i: i[0:2], i) + + def assign_iter(i): + i[0] = 0 + assert_raises(ValueError, assign_iter, i) + + i.reset() + assert_(not i.has_delayed_bufalloc) + assert_equal(i.multi_index, (0,)) + with i: + assert_equal(i[0], 0) + i[1] = 1 + assert_equal(i[0:2], [0, 1]) + assert_equal([[x[0][()], x[1][()]] for x in i], list(zip(range(6), [1] * 6))) + +def test_iter_buffered_cast_simple(): + # Test that buffering can handle a simple cast + + a = np.arange(10, dtype='f4') + i = nditer(a, ['buffered', 'external_loop'], + [['readwrite', 'nbo', 'aligned']], + casting='same_kind', + op_dtypes=[np.dtype('f8')], + buffersize=3) + with i: + for v in i: + v[...] *= 2 + + assert_equal(a, 2 * np.arange(10, dtype='f4')) + +def test_iter_buffered_cast_byteswapped(): + # Test that buffering can handle a cast which requires swap->cast->swap + + a = np.arange(10, dtype='f4') + a = a.view(a.dtype.newbyteorder()).byteswap() + i = nditer(a, ['buffered', 'external_loop'], + [['readwrite', 'nbo', 'aligned']], + casting='same_kind', + op_dtypes=[np.dtype('f8').newbyteorder()], + buffersize=3) + with i: + for v in i: + v[...] *= 2 + + assert_equal(a, 2 * np.arange(10, dtype='f4')) + + with suppress_warnings() as sup: + sup.filter(np.exceptions.ComplexWarning) + + a = np.arange(10, dtype='f8') + a = a.view(a.dtype.newbyteorder()).byteswap() + i = nditer(a, ['buffered', 'external_loop'], + [['readwrite', 'nbo', 'aligned']], + casting='unsafe', + op_dtypes=[np.dtype('c8').newbyteorder()], + buffersize=3) + with i: + for v in i: + v[...] *= 2 + + assert_equal(a, 2 * np.arange(10, dtype='f8')) + +def test_iter_buffered_cast_byteswapped_complex(): + # Test that buffering can handle a cast which requires swap->cast->copy + + a = np.arange(10, dtype='c8') + a = a.view(a.dtype.newbyteorder()).byteswap() + a += 2j + i = nditer(a, ['buffered', 'external_loop'], + [['readwrite', 'nbo', 'aligned']], + casting='same_kind', + op_dtypes=[np.dtype('c16')], + buffersize=3) + with i: + for v in i: + v[...] *= 2 + assert_equal(a, 2 * np.arange(10, dtype='c8') + 4j) + + a = np.arange(10, dtype='c8') + a += 2j + i = nditer(a, ['buffered', 'external_loop'], + [['readwrite', 'nbo', 'aligned']], + casting='same_kind', + op_dtypes=[np.dtype('c16').newbyteorder()], + buffersize=3) + with i: + for v in i: + v[...] *= 2 + assert_equal(a, 2 * np.arange(10, dtype='c8') + 4j) + + a = np.arange(10, dtype=np.clongdouble) + a = a.view(a.dtype.newbyteorder()).byteswap() + a += 2j + i = nditer(a, ['buffered', 'external_loop'], + [['readwrite', 'nbo', 'aligned']], + casting='same_kind', + op_dtypes=[np.dtype('c16')], + buffersize=3) + with i: + for v in i: + v[...] *= 2 + assert_equal(a, 2 * np.arange(10, dtype=np.clongdouble) + 4j) + + a = np.arange(10, dtype=np.longdouble) + a = a.view(a.dtype.newbyteorder()).byteswap() + i = nditer(a, ['buffered', 'external_loop'], + [['readwrite', 'nbo', 'aligned']], + casting='same_kind', + op_dtypes=[np.dtype('f4')], + buffersize=7) + with i: + for v in i: + v[...] *= 2 + assert_equal(a, 2 * np.arange(10, dtype=np.longdouble)) + +def test_iter_buffered_cast_structured_type(): + # Tests buffering of structured types + + # simple -> struct type (duplicates the value) + sdt = [('a', 'f4'), ('b', 'i8'), ('c', 'c8', (2, 3)), ('d', 'O')] + a = np.arange(3, dtype='f4') + 0.5 + i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], + casting='unsafe', + op_dtypes=sdt) + vals = [np.array(x) for x in i] + assert_equal(vals[0]['a'], 0.5) + assert_equal(vals[0]['b'], 0) + assert_equal(vals[0]['c'], [[(0.5)] * 3] * 2) + assert_equal(vals[0]['d'], 0.5) + assert_equal(vals[1]['a'], 1.5) + assert_equal(vals[1]['b'], 1) + assert_equal(vals[1]['c'], [[(1.5)] * 3] * 2) + assert_equal(vals[1]['d'], 1.5) + assert_equal(vals[0].dtype, np.dtype(sdt)) + + # object -> struct type + sdt = [('a', 'f4'), ('b', 'i8'), ('c', 'c8', (2, 3)), ('d', 'O')] + a = np.zeros((3,), dtype='O') + a[0] = (0.5, 0.5, [[0.5, 0.5, 0.5], [0.5, 0.5, 0.5]], 0.5) + a[1] = (1.5, 1.5, [[1.5, 1.5, 1.5], [1.5, 1.5, 1.5]], 1.5) + a[2] = (2.5, 2.5, [[2.5, 2.5, 2.5], [2.5, 2.5, 2.5]], 2.5) + if HAS_REFCOUNT: + rc = sys.getrefcount(a[0]) + i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], + casting='unsafe', + op_dtypes=sdt) + vals = [x.copy() for x in i] + assert_equal(vals[0]['a'], 0.5) + assert_equal(vals[0]['b'], 0) + assert_equal(vals[0]['c'], [[(0.5)] * 3] * 2) + assert_equal(vals[0]['d'], 0.5) + assert_equal(vals[1]['a'], 1.5) + assert_equal(vals[1]['b'], 1) + assert_equal(vals[1]['c'], [[(1.5)] * 3] * 2) + assert_equal(vals[1]['d'], 1.5) + assert_equal(vals[0].dtype, np.dtype(sdt)) + vals, i, x = [None] * 3 + if HAS_REFCOUNT: + assert_equal(sys.getrefcount(a[0]), rc) + + # single-field struct type -> simple + sdt = [('a', 'f4')] + a = np.array([(5.5,), (8,)], dtype=sdt) + i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], + casting='unsafe', + op_dtypes='i4') + assert_equal([x_[()] for x_ in i], [5, 8]) + + # make sure multi-field struct type -> simple doesn't work + sdt = [('a', 'f4'), ('b', 'i8'), ('d', 'O')] + a = np.array([(5.5, 7, 'test'), (8, 10, 11)], dtype=sdt) + assert_raises(TypeError, lambda: ( + nditer(a, ['buffered', 'refs_ok'], ['readonly'], + casting='unsafe', + op_dtypes='i4'))) + + # struct type -> struct type (field-wise copy) + sdt1 = [('a', 'f4'), ('b', 'i8'), ('d', 'O')] + sdt2 = [('d', 'u2'), ('a', 'O'), ('b', 'f8')] + a = np.array([(1, 2, 3), (4, 5, 6)], dtype=sdt1) + i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], + casting='unsafe', + op_dtypes=sdt2) + assert_equal(i[0].dtype, np.dtype(sdt2)) + assert_equal([np.array(x_) for x_ in i], + [np.array((1, 2, 3), dtype=sdt2), + np.array((4, 5, 6), dtype=sdt2)]) + + +def test_iter_buffered_cast_structured_type_failure_with_cleanup(): + # make sure struct type -> struct type with different + # number of fields fails + sdt1 = [('a', 'f4'), ('b', 'i8'), ('d', 'O')] + sdt2 = [('b', 'O'), ('a', 'f8')] + a = np.array([(1, 2, 3), (4, 5, 6)], dtype=sdt1) + + for intent in ["readwrite", "readonly", "writeonly"]: + # This test was initially designed to test an error at a different + # place, but will now raise earlier to to the cast not being possible: + # `assert np.can_cast(a.dtype, sdt2, casting="unsafe")` fails. + # Without a faulty DType, there is probably no reliable + # way to get the initial tested behaviour. + simple_arr = np.array([1, 2], dtype="i,i") # requires clean up + with pytest.raises(TypeError): + nditer((simple_arr, a), ['buffered', 'refs_ok'], [intent, intent], + casting='unsafe', op_dtypes=["f,f", sdt2]) + + +def test_buffered_cast_error_paths(): + with pytest.raises(ValueError): + # The input is cast into an `S3` buffer + np.nditer((np.array("a", dtype="S1"),), op_dtypes=["i"], + casting="unsafe", flags=["buffered"]) + + # The `M8[ns]` is cast into the `S3` output + it = np.nditer((np.array(1, dtype="i"),), op_dtypes=["S1"], + op_flags=["writeonly"], casting="unsafe", flags=["buffered"]) + with pytest.raises(ValueError): + with it: + buf = next(it) + buf[...] = "a" # cannot be converted to int. + +@pytest.mark.skipif(IS_WASM, reason="Cannot start subprocess") +@pytest.mark.skipif(not HAS_REFCOUNT, reason="PyPy seems to not hit this.") +def test_buffered_cast_error_paths_unraisable(): + # The following gives an unraisable error. Pytest sometimes captures that + # (depending python and/or pytest version). So with Python>=3.8 this can + # probably be cleaned out in the future to check for + # pytest.PytestUnraisableExceptionWarning: + code = textwrap.dedent(""" + import numpy as np + + it = np.nditer((np.array(1, dtype="i"),), op_dtypes=["S1"], + op_flags=["writeonly"], casting="unsafe", flags=["buffered"]) + buf = next(it) + buf[...] = "a" + del buf, it # Flushing only happens during deallocate right now. + """) + res = subprocess.check_output([sys.executable, "-c", code], + stderr=subprocess.STDOUT, text=True) + assert "ValueError" in res + + +def test_iter_buffered_cast_subarray(): + # Tests buffering of subarrays + + # one element -> many (copies it to all) + sdt1 = [('a', 'f4')] + sdt2 = [('a', 'f8', (3, 2, 2))] + a = np.zeros((6,), dtype=sdt1) + a['a'] = np.arange(6) + i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], + casting='unsafe', + op_dtypes=sdt2) + assert_equal(i[0].dtype, np.dtype(sdt2)) + for x, count in zip(i, list(range(6))): + assert_(np.all(x['a'] == count)) + + # one element -> many -> back (copies it to all) + sdt1 = [('a', 'O', (1, 1))] + sdt2 = [('a', 'O', (3, 2, 2))] + a = np.zeros((6,), dtype=sdt1) + a['a'][:, 0, 0] = np.arange(6) + i = nditer(a, ['buffered', 'refs_ok'], ['readwrite'], + casting='unsafe', + op_dtypes=sdt2) + with i: + assert_equal(i[0].dtype, np.dtype(sdt2)) + count = 0 + for x in i: + assert_(np.all(x['a'] == count)) + x['a'][0] += 2 + count += 1 + assert_equal(a['a'], np.arange(6).reshape(6, 1, 1) + 2) + + # many -> one element -> back (copies just element 0) + sdt1 = [('a', 'O', (3, 2, 2))] + sdt2 = [('a', 'O', (1,))] + a = np.zeros((6,), dtype=sdt1) + a['a'][:, 0, 0, 0] = np.arange(6) + i = nditer(a, ['buffered', 'refs_ok'], ['readwrite'], + casting='unsafe', + op_dtypes=sdt2) + with i: + assert_equal(i[0].dtype, np.dtype(sdt2)) + count = 0 + for x in i: + assert_equal(x['a'], count) + x['a'] += 2 + count += 1 + assert_equal(a['a'], np.arange(6).reshape(6, 1, 1, 1) * np.ones((1, 3, 2, 2)) + 2) + + # many -> one element -> back (copies just element 0) + sdt1 = [('a', 'f8', (3, 2, 2))] + sdt2 = [('a', 'O', (1,))] + a = np.zeros((6,), dtype=sdt1) + a['a'][:, 0, 0, 0] = np.arange(6) + i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], + casting='unsafe', + op_dtypes=sdt2) + assert_equal(i[0].dtype, np.dtype(sdt2)) + count = 0 + for x in i: + assert_equal(x['a'], count) + count += 1 + + # many -> one element (copies just element 0) + sdt1 = [('a', 'O', (3, 2, 2))] + sdt2 = [('a', 'f4', (1,))] + a = np.zeros((6,), dtype=sdt1) + a['a'][:, 0, 0, 0] = np.arange(6) + i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], + casting='unsafe', + op_dtypes=sdt2) + assert_equal(i[0].dtype, np.dtype(sdt2)) + count = 0 + for x in i: + assert_equal(x['a'], count) + count += 1 + + # many -> matching shape (straightforward copy) + sdt1 = [('a', 'O', (3, 2, 2))] + sdt2 = [('a', 'f4', (3, 2, 2))] + a = np.zeros((6,), dtype=sdt1) + a['a'] = np.arange(6 * 3 * 2 * 2).reshape(6, 3, 2, 2) + i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], + casting='unsafe', + op_dtypes=sdt2) + assert_equal(i[0].dtype, np.dtype(sdt2)) + count = 0 + for x in i: + assert_equal(x['a'], a[count]['a']) + count += 1 + + # vector -> smaller vector (truncates) + sdt1 = [('a', 'f8', (6,))] + sdt2 = [('a', 'f4', (2,))] + a = np.zeros((6,), dtype=sdt1) + a['a'] = np.arange(6 * 6).reshape(6, 6) + i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], + casting='unsafe', + op_dtypes=sdt2) + assert_equal(i[0].dtype, np.dtype(sdt2)) + count = 0 + for x in i: + assert_equal(x['a'], a[count]['a'][:2]) + count += 1 + + # vector -> bigger vector (pads with zeros) + sdt1 = [('a', 'f8', (2,))] + sdt2 = [('a', 'f4', (6,))] + a = np.zeros((6,), dtype=sdt1) + a['a'] = np.arange(6 * 2).reshape(6, 2) + i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], + casting='unsafe', + op_dtypes=sdt2) + assert_equal(i[0].dtype, np.dtype(sdt2)) + count = 0 + for x in i: + assert_equal(x['a'][:2], a[count]['a']) + assert_equal(x['a'][2:], [0, 0, 0, 0]) + count += 1 + + # vector -> matrix (broadcasts) + sdt1 = [('a', 'f8', (2,))] + sdt2 = [('a', 'f4', (2, 2))] + a = np.zeros((6,), dtype=sdt1) + a['a'] = np.arange(6 * 2).reshape(6, 2) + i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], + casting='unsafe', + op_dtypes=sdt2) + assert_equal(i[0].dtype, np.dtype(sdt2)) + count = 0 + for x in i: + assert_equal(x['a'][0], a[count]['a']) + assert_equal(x['a'][1], a[count]['a']) + count += 1 + + # vector -> matrix (broadcasts and zero-pads) + sdt1 = [('a', 'f8', (2, 1))] + sdt2 = [('a', 'f4', (3, 2))] + a = np.zeros((6,), dtype=sdt1) + a['a'] = np.arange(6 * 2).reshape(6, 2, 1) + i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], + casting='unsafe', + op_dtypes=sdt2) + assert_equal(i[0].dtype, np.dtype(sdt2)) + count = 0 + for x in i: + assert_equal(x['a'][:2, 0], a[count]['a'][:, 0]) + assert_equal(x['a'][:2, 1], a[count]['a'][:, 0]) + assert_equal(x['a'][2, :], [0, 0]) + count += 1 + + # matrix -> matrix (truncates and zero-pads) + sdt1 = [('a', 'f8', (2, 3))] + sdt2 = [('a', 'f4', (3, 2))] + a = np.zeros((6,), dtype=sdt1) + a['a'] = np.arange(6 * 2 * 3).reshape(6, 2, 3) + i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], + casting='unsafe', + op_dtypes=sdt2) + assert_equal(i[0].dtype, np.dtype(sdt2)) + count = 0 + for x in i: + assert_equal(x['a'][:2, 0], a[count]['a'][:, 0]) + assert_equal(x['a'][:2, 1], a[count]['a'][:, 1]) + assert_equal(x['a'][2, :], [0, 0]) + count += 1 + +def test_iter_buffering_badwriteback(): + # Writing back from a buffer cannot combine elements + + # a needs write buffering, but had a broadcast dimension + a = np.arange(6).reshape(2, 3, 1) + b = np.arange(12).reshape(2, 3, 2) + assert_raises(ValueError, nditer, [a, b], + ['buffered', 'external_loop'], + [['readwrite'], ['writeonly']], + order='C') + + # But if a is readonly, it's fine + nditer([a, b], ['buffered', 'external_loop'], + [['readonly'], ['writeonly']], + order='C') + + # If a has just one element, it's fine too (constant 0 stride, a reduction) + a = np.arange(1).reshape(1, 1, 1) + nditer([a, b], ['buffered', 'external_loop', 'reduce_ok'], + [['readwrite'], ['writeonly']], + order='C') + + # check that it fails on other dimensions too + a = np.arange(6).reshape(1, 3, 2) + assert_raises(ValueError, nditer, [a, b], + ['buffered', 'external_loop'], + [['readwrite'], ['writeonly']], + order='C') + a = np.arange(4).reshape(2, 1, 2) + assert_raises(ValueError, nditer, [a, b], + ['buffered', 'external_loop'], + [['readwrite'], ['writeonly']], + order='C') + +def test_iter_buffering_string(): + # Safe casting disallows shrinking strings + a = np.array(['abc', 'a', 'abcd'], dtype=np.bytes_) + assert_equal(a.dtype, np.dtype('S4')) + assert_raises(TypeError, nditer, a, ['buffered'], ['readonly'], + op_dtypes='S2') + i = nditer(a, ['buffered'], ['readonly'], op_dtypes='S6') + assert_equal(i[0], b'abc') + assert_equal(i[0].dtype, np.dtype('S6')) + + a = np.array(['abc', 'a', 'abcd'], dtype=np.str_) + assert_equal(a.dtype, np.dtype('U4')) + assert_raises(TypeError, nditer, a, ['buffered'], ['readonly'], + op_dtypes='U2') + i = nditer(a, ['buffered'], ['readonly'], op_dtypes='U6') + assert_equal(i[0], 'abc') + assert_equal(i[0].dtype, np.dtype('U6')) + +def test_iter_buffering_growinner(): + # Test that the inner loop grows when no buffering is needed + a = np.arange(30) + i = nditer(a, ['buffered', 'growinner', 'external_loop'], + buffersize=5) + # Should end up with just one inner loop here + assert_equal(i[0].size, a.size) + + +@pytest.mark.parametrize("read_or_readwrite", ["readonly", "readwrite"]) +def test_iter_contig_flag_reduce_error(read_or_readwrite): + # Test that a non-contiguous operand is rejected without buffering. + # NOTE: This is true even for a reduction, where we return a 0-stride + # below! + with pytest.raises(TypeError, match="Iterator operand required buffering"): + it = np.nditer( + (np.zeros(()),), flags=["external_loop", "reduce_ok"], + op_flags=[(read_or_readwrite, "contig"),], itershape=(10,)) + + +@pytest.mark.parametrize("arr", [ + lambda: np.zeros(()), + lambda: np.zeros((20, 1))[::20], + lambda: np.zeros((1, 20))[:, ::20] + ]) +def test_iter_contig_flag_single_operand_strides(arr): + """ + Tests the strides with the contig flag for both broadcast and non-broadcast + operands in 3 cases where the logic is needed: + 1. When everything has a zero stride, the broadcast op needs to repeated + 2. When the reduce axis is the last axis (first to iterate). + 3. When the reduce axis is the first axis (last to iterate). + + NOTE: The semantics of the cast flag are not clearly defined when + it comes to reduction. It is unclear that there are any users. + """ + first_op = np.ones((10, 10)) + broadcast_op = arr() + red_op = arr() + # Add a first operand to ensure no axis-reordering and the result shape. + iterator = np.nditer( + (first_op, broadcast_op, red_op), + flags=["external_loop", "reduce_ok", "buffered", "delay_bufalloc"], + op_flags=[("readonly", "contig")] * 2 + [("readwrite", "contig")]) + + with iterator: + iterator.reset() + for f, b, r in iterator: + # The first operand is contigouos, we should have a view + assert np.shares_memory(f, first_op) + # Although broadcast, the second op always has a contiguous stride + assert b.strides[0] == 8 + assert not np.shares_memory(b, broadcast_op) + # The reduction has a contiguous stride or a 0 stride + if red_op.ndim == 0 or red_op.shape[-1] == 1: + assert r.strides[0] == 0 + else: + # The stride is 8, although it was not originally: + assert r.strides[0] == 8 + # If the reduce stride is 0, buffering makes no difference, but we + # do it anyway right now: + assert not np.shares_memory(r, red_op) + + +@pytest.mark.xfail(reason="The contig flag was always buggy.") +def test_iter_contig_flag_incorrect(): + # This case does the wrong thing... + iterator = np.nditer( + (np.ones((10, 10)).T, np.ones((1, 10))), + flags=["external_loop", "reduce_ok", "buffered", "delay_bufalloc"], + op_flags=[("readonly", "contig")] * 2) + + with iterator: + iterator.reset() + for a, b in iterator: + # Remove a and b from locals (pytest may want to format them) + a, b = a.strides, b.strides + assert a == 8 + assert b == 8 # should be 8 but is 0 due to axis reorder + + +@pytest.mark.slow +def test_iter_buffered_reduce_reuse(): + # large enough array for all views, including negative strides. + a = np.arange(2 * 3**5)[3**5:3**5 + 1] + flags = ['buffered', 'delay_bufalloc', 'multi_index', 'reduce_ok', 'refs_ok'] + op_flags = [('readonly',), ('readwrite', 'allocate')] + op_axes_list = [[(0, 1, 2), (0, 1, -1)], [(0, 1, 2), (0, -1, -1)]] + # wrong dtype to force buffering + op_dtypes = [float, a.dtype] + + def get_params(): + for xs in range(-3**2, 3**2 + 1): + for ys in range(xs, 3**2 + 1): + for op_axes in op_axes_list: + # last stride is reduced and because of that not + # important for this test, as it is the inner stride. + strides = (xs * a.itemsize, ys * a.itemsize, a.itemsize) + arr = np.lib.stride_tricks.as_strided(a, (3, 3, 3), strides) + + for skip in [0, 1]: + yield arr, op_axes, skip + + for arr, op_axes, skip in get_params(): + nditer2 = np.nditer([arr.copy(), None], + op_axes=op_axes, flags=flags, op_flags=op_flags, + op_dtypes=op_dtypes) + with nditer2: + nditer2.operands[-1][...] = 0 + nditer2.reset() + nditer2.iterindex = skip + + for (a2_in, b2_in) in nditer2: + b2_in += a2_in.astype(np.int_) + + comp_res = nditer2.operands[-1] + + for bufsize in range(3**3): + nditer1 = np.nditer([arr, None], + op_axes=op_axes, flags=flags, op_flags=op_flags, + buffersize=bufsize, op_dtypes=op_dtypes) + with nditer1: + nditer1.operands[-1][...] = 0 + nditer1.reset() + nditer1.iterindex = skip + + for (a1_in, b1_in) in nditer1: + b1_in += a1_in.astype(np.int_) + + res = nditer1.operands[-1] + assert_array_equal(res, comp_res) + + +def test_iter_buffered_reduce_reuse_core(): + # NumPy re-uses buffers for broadcast operands (as of writing when reading). + # Test this even if the offset is manually set at some point during + # the iteration. (not a particularly tricky path) + arr = np.empty((1, 6, 4, 1)).reshape(1, 6, 4, 1)[:, ::3, ::2, :] + arr[...] = np.arange(arr.size).reshape(arr.shape) + # First and last dimension are broadcast dimensions. + arr = np.broadcast_to(arr, (100, 2, 2, 2)) + + flags = ['buffered', 'reduce_ok', 'refs_ok', 'multi_index'] + op_flags = [('readonly',)] + + buffersize = 100 # small enough to not fit the whole array + it = np.nditer(arr, flags=flags, op_flags=op_flags, buffersize=100) + + # Iterate a bit (this will cause buffering internally) + expected = [next(it) for i in range(11)] + # Now, manually advance to inside the core (the +1) + it.iterindex = 10 * (2 * 2 * 2) + 1 + result = [next(it) for i in range(10)] + + assert expected[1:] == result + + +def test_iter_no_broadcast(): + # Test that the no_broadcast flag works + a = np.arange(24).reshape(2, 3, 4) + b = np.arange(6).reshape(2, 3, 1) + c = np.arange(12).reshape(3, 4) + + nditer([a, b, c], [], + [['readonly', 'no_broadcast'], + ['readonly'], ['readonly']]) + assert_raises(ValueError, nditer, [a, b, c], [], + [['readonly'], ['readonly', 'no_broadcast'], ['readonly']]) + assert_raises(ValueError, nditer, [a, b, c], [], + [['readonly'], ['readonly'], ['readonly', 'no_broadcast']]) + + +class TestIterNested: + + def test_basic(self): + # Test nested iteration basic usage + a = arange(12).reshape(2, 3, 2) + + i, j = np.nested_iters(a, [[0], [1, 2]]) + vals = [list(j) for _ in i] + assert_equal(vals, [[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]]) + + i, j = np.nested_iters(a, [[0, 1], [2]]) + vals = [list(j) for _ in i] + assert_equal(vals, [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11]]) + + i, j = np.nested_iters(a, [[0, 2], [1]]) + vals = [list(j) for _ in i] + assert_equal(vals, [[0, 2, 4], [1, 3, 5], [6, 8, 10], [7, 9, 11]]) + + def test_reorder(self): + # Test nested iteration basic usage + a = arange(12).reshape(2, 3, 2) + + # In 'K' order (default), it gets reordered + i, j = np.nested_iters(a, [[0], [2, 1]]) + vals = [list(j) for _ in i] + assert_equal(vals, [[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]]) + + i, j = np.nested_iters(a, [[1, 0], [2]]) + vals = [list(j) for _ in i] + assert_equal(vals, [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11]]) + + i, j = np.nested_iters(a, [[2, 0], [1]]) + vals = [list(j) for _ in i] + assert_equal(vals, [[0, 2, 4], [1, 3, 5], [6, 8, 10], [7, 9, 11]]) + + # In 'C' order, it doesn't + i, j = np.nested_iters(a, [[0], [2, 1]], order='C') + vals = [list(j) for _ in i] + assert_equal(vals, [[0, 2, 4, 1, 3, 5], [6, 8, 10, 7, 9, 11]]) + + i, j = np.nested_iters(a, [[1, 0], [2]], order='C') + vals = [list(j) for _ in i] + assert_equal(vals, [[0, 1], [6, 7], [2, 3], [8, 9], [4, 5], [10, 11]]) + + i, j = np.nested_iters(a, [[2, 0], [1]], order='C') + vals = [list(j) for _ in i] + assert_equal(vals, [[0, 2, 4], [6, 8, 10], [1, 3, 5], [7, 9, 11]]) + + def test_flip_axes(self): + # Test nested iteration with negative axes + a = arange(12).reshape(2, 3, 2)[::-1, ::-1, ::-1] + + # In 'K' order (default), the axes all get flipped + i, j = np.nested_iters(a, [[0], [1, 2]]) + vals = [list(j) for _ in i] + assert_equal(vals, [[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]]) + + i, j = np.nested_iters(a, [[0, 1], [2]]) + vals = [list(j) for _ in i] + assert_equal(vals, [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11]]) + + i, j = np.nested_iters(a, [[0, 2], [1]]) + vals = [list(j) for _ in i] + assert_equal(vals, [[0, 2, 4], [1, 3, 5], [6, 8, 10], [7, 9, 11]]) + + # In 'C' order, flipping axes is disabled + i, j = np.nested_iters(a, [[0], [1, 2]], order='C') + vals = [list(j) for _ in i] + assert_equal(vals, [[11, 10, 9, 8, 7, 6], [5, 4, 3, 2, 1, 0]]) + + i, j = np.nested_iters(a, [[0, 1], [2]], order='C') + vals = [list(j) for _ in i] + assert_equal(vals, [[11, 10], [9, 8], [7, 6], [5, 4], [3, 2], [1, 0]]) + + i, j = np.nested_iters(a, [[0, 2], [1]], order='C') + vals = [list(j) for _ in i] + assert_equal(vals, [[11, 9, 7], [10, 8, 6], [5, 3, 1], [4, 2, 0]]) + + def test_broadcast(self): + # Test nested iteration with broadcasting + a = arange(2).reshape(2, 1) + b = arange(3).reshape(1, 3) + + i, j = np.nested_iters([a, b], [[0], [1]]) + vals = [list(j) for _ in i] + assert_equal(vals, [[[0, 0], [0, 1], [0, 2]], [[1, 0], [1, 1], [1, 2]]]) + + i, j = np.nested_iters([a, b], [[1], [0]]) + vals = [list(j) for _ in i] + assert_equal(vals, [[[0, 0], [1, 0]], [[0, 1], [1, 1]], [[0, 2], [1, 2]]]) + + def test_dtype_copy(self): + # Test nested iteration with a copy to change dtype + + # copy + a = arange(6, dtype='i4').reshape(2, 3) + i, j = np.nested_iters(a, [[0], [1]], + op_flags=['readonly', 'copy'], + op_dtypes='f8') + assert_equal(j[0].dtype, np.dtype('f8')) + vals = [list(j) for _ in i] + assert_equal(vals, [[0, 1, 2], [3, 4, 5]]) + vals = None + + # writebackifcopy - using context manager + a = arange(6, dtype='f4').reshape(2, 3) + i, j = np.nested_iters(a, [[0], [1]], + op_flags=['readwrite', 'updateifcopy'], + casting='same_kind', + op_dtypes='f8') + with i, j: + assert_equal(j[0].dtype, np.dtype('f8')) + for x in i: + for y in j: + y[...] += 1 + assert_equal(a, [[0, 1, 2], [3, 4, 5]]) + assert_equal(a, [[1, 2, 3], [4, 5, 6]]) + + # writebackifcopy - using close() + a = arange(6, dtype='f4').reshape(2, 3) + i, j = np.nested_iters(a, [[0], [1]], + op_flags=['readwrite', 'updateifcopy'], + casting='same_kind', + op_dtypes='f8') + assert_equal(j[0].dtype, np.dtype('f8')) + for x in i: + for y in j: + y[...] += 1 + assert_equal(a, [[0, 1, 2], [3, 4, 5]]) + i.close() + j.close() + assert_equal(a, [[1, 2, 3], [4, 5, 6]]) + + def test_dtype_buffered(self): + # Test nested iteration with buffering to change dtype + + a = arange(6, dtype='f4').reshape(2, 3) + i, j = np.nested_iters(a, [[0], [1]], + flags=['buffered'], + op_flags=['readwrite'], + casting='same_kind', + op_dtypes='f8') + assert_equal(j[0].dtype, np.dtype('f8')) + for x in i: + for y in j: + y[...] += 1 + assert_equal(a, [[1, 2, 3], [4, 5, 6]]) + + def test_0d(self): + a = np.arange(12).reshape(2, 3, 2) + i, j = np.nested_iters(a, [[], [1, 0, 2]]) + vals = [list(j) for _ in i] + assert_equal(vals, [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]]) + + i, j = np.nested_iters(a, [[1, 0, 2], []]) + vals = [list(j) for _ in i] + assert_equal(vals, [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]]) + + i, j, k = np.nested_iters(a, [[2, 0], [], [1]]) + vals = [] + for x in i: + for y in j: + vals.append(list(k)) + assert_equal(vals, [[0, 2, 4], [1, 3, 5], [6, 8, 10], [7, 9, 11]]) + + def test_iter_nested_iters_dtype_buffered(self): + # Test nested iteration with buffering to change dtype + + a = arange(6, dtype='f4').reshape(2, 3) + i, j = np.nested_iters(a, [[0], [1]], + flags=['buffered'], + op_flags=['readwrite'], + casting='same_kind', + op_dtypes='f8') + with i, j: + assert_equal(j[0].dtype, np.dtype('f8')) + for x in i: + for y in j: + y[...] += 1 + assert_equal(a, [[1, 2, 3], [4, 5, 6]]) + +def test_iter_reduction_error(): + + a = np.arange(6) + assert_raises(ValueError, nditer, [a, None], [], + [['readonly'], ['readwrite', 'allocate']], + op_axes=[[0], [-1]]) + + a = np.arange(6).reshape(2, 3) + assert_raises(ValueError, nditer, [a, None], ['external_loop'], + [['readonly'], ['readwrite', 'allocate']], + op_axes=[[0, 1], [-1, -1]]) + +def test_iter_reduction(): + # Test doing reductions with the iterator + + a = np.arange(6) + i = nditer([a, None], ['reduce_ok'], + [['readonly'], ['readwrite', 'allocate']], + op_axes=[[0], [-1]]) + # Need to initialize the output operand to the addition unit + with i: + i.operands[1][...] = 0 + # Do the reduction + for x, y in i: + y[...] += x + # Since no axes were specified, should have allocated a scalar + assert_equal(i.operands[1].ndim, 0) + assert_equal(i.operands[1], np.sum(a)) + + a = np.arange(6).reshape(2, 3) + i = nditer([a, None], ['reduce_ok', 'external_loop'], + [['readonly'], ['readwrite', 'allocate']], + op_axes=[[0, 1], [-1, -1]]) + # Need to initialize the output operand to the addition unit + with i: + i.operands[1][...] = 0 + # Reduction shape/strides for the output + assert_equal(i[1].shape, (6,)) + assert_equal(i[1].strides, (0,)) + # Do the reduction + for x, y in i: + # Use a for loop instead of ``y[...] += x`` + # (equivalent to ``y[...] = y[...].copy() + x``), + # because y has zero strides we use for the reduction + for j in range(len(y)): + y[j] += x[j] + # Since no axes were specified, should have allocated a scalar + assert_equal(i.operands[1].ndim, 0) + assert_equal(i.operands[1], np.sum(a)) + + # This is a tricky reduction case for the buffering double loop + # to handle + a = np.ones((2, 3, 5)) + it1 = nditer([a, None], ['reduce_ok', 'external_loop'], + [['readonly'], ['readwrite', 'allocate']], + op_axes=[None, [0, -1, 1]]) + it2 = nditer([a, None], ['reduce_ok', 'external_loop', + 'buffered', 'delay_bufalloc'], + [['readonly'], ['readwrite', 'allocate']], + op_axes=[None, [0, -1, 1]], buffersize=10) + with it1, it2: + it1.operands[1].fill(0) + it2.operands[1].fill(0) + it2.reset() + for x in it1: + x[1][...] += x[0] + for x in it2: + x[1][...] += x[0] + assert_equal(it1.operands[1], it2.operands[1]) + assert_equal(it2.operands[1].sum(), a.size) + +def test_iter_buffering_reduction(): + # Test doing buffered reductions with the iterator + + a = np.arange(6) + b = np.array(0., dtype='f8').byteswap() + b = b.view(b.dtype.newbyteorder()) + i = nditer([a, b], ['reduce_ok', 'buffered'], + [['readonly'], ['readwrite', 'nbo']], + op_axes=[[0], [-1]]) + with i: + assert_equal(i[1].dtype, np.dtype('f8')) + assert_(i[1].dtype != b.dtype) + # Do the reduction + for x, y in i: + y[...] += x + # Since no axes were specified, should have allocated a scalar + assert_equal(b, np.sum(a)) + + a = np.arange(6).reshape(2, 3) + b = np.array([0, 0], dtype='f8').byteswap() + b = b.view(b.dtype.newbyteorder()) + i = nditer([a, b], ['reduce_ok', 'external_loop', 'buffered'], + [['readonly'], ['readwrite', 'nbo']], + op_axes=[[0, 1], [0, -1]]) + # Reduction shape/strides for the output + with i: + assert_equal(i[1].shape, (3,)) + assert_equal(i[1].strides, (0,)) + # Do the reduction + for x, y in i: + # Use a for loop instead of ``y[...] += x`` + # (equivalent to ``y[...] = y[...].copy() + x``), + # because y has zero strides we use for the reduction + for j in range(len(y)): + y[j] += x[j] + assert_equal(b, np.sum(a, axis=1)) + + # Iterator inner double loop was wrong on this one + p = np.arange(2) + 1 + it = np.nditer([p, None], + ['delay_bufalloc', 'reduce_ok', 'buffered', 'external_loop'], + [['readonly'], ['readwrite', 'allocate']], + op_axes=[[-1, 0], [-1, -1]], + itershape=(2, 2)) + with it: + it.operands[1].fill(0) + it.reset() + assert_equal(it[0], [1, 2, 1, 2]) + + # Iterator inner loop should take argument contiguity into account + x = np.ones((7, 13, 8), np.int8)[4:6, 1:11:6, 1:5].transpose(1, 2, 0) + x[...] = np.arange(x.size).reshape(x.shape) + y_base = np.arange(4 * 4, dtype=np.int8).reshape(4, 4) + y_base_copy = y_base.copy() + y = y_base[::2, :, None] + + it = np.nditer([y, x], + ['buffered', 'external_loop', 'reduce_ok'], + [['readwrite'], ['readonly']]) + with it: + for a, b in it: + a.fill(2) + + assert_equal(y_base[1::2], y_base_copy[1::2]) + assert_equal(y_base[::2], 2) + +def test_iter_buffering_reduction_reuse_reduce_loops(): + # There was a bug triggering reuse of the reduce loop inappropriately, + # which caused processing to happen in unnecessarily small chunks + # and overran the buffer. + + a = np.zeros((2, 7)) + b = np.zeros((1, 7)) + it = np.nditer([a, b], flags=['reduce_ok', 'external_loop', 'buffered'], + op_flags=[['readonly'], ['readwrite']], + buffersize=5) + + with it: + bufsizes = [x.shape[0] for x, y in it] + assert_equal(bufsizes, [5, 2, 5, 2]) + assert_equal(sum(bufsizes), a.size) + +def test_iter_writemasked_badinput(): + a = np.zeros((2, 3)) + b = np.zeros((3,)) + m = np.array([[True, True, False], [False, True, False]]) + m2 = np.array([True, True, False]) + m3 = np.array([0, 1, 1], dtype='u1') + mbad1 = np.array([0, 1, 1], dtype='i1') + mbad2 = np.array([0, 1, 1], dtype='f4') + + # Need an 'arraymask' if any operand is 'writemasked' + assert_raises(ValueError, nditer, [a, m], [], + [['readwrite', 'writemasked'], ['readonly']]) + + # A 'writemasked' operand must not be readonly + assert_raises(ValueError, nditer, [a, m], [], + [['readonly', 'writemasked'], ['readonly', 'arraymask']]) + + # 'writemasked' and 'arraymask' may not be used together + assert_raises(ValueError, nditer, [a, m], [], + [['readonly'], ['readwrite', 'arraymask', 'writemasked']]) + + # 'arraymask' may only be specified once + assert_raises(ValueError, nditer, [a, m, m2], [], + [['readwrite', 'writemasked'], + ['readonly', 'arraymask'], + ['readonly', 'arraymask']]) + + # An 'arraymask' with nothing 'writemasked' also doesn't make sense + assert_raises(ValueError, nditer, [a, m], [], + [['readwrite'], ['readonly', 'arraymask']]) + + # A writemasked reduction requires a similarly smaller mask + assert_raises(ValueError, nditer, [a, b, m], ['reduce_ok'], + [['readonly'], + ['readwrite', 'writemasked'], + ['readonly', 'arraymask']]) + # But this should work with a smaller/equal mask to the reduction operand + np.nditer([a, b, m2], ['reduce_ok'], + [['readonly'], + ['readwrite', 'writemasked'], + ['readonly', 'arraymask']]) + # The arraymask itself cannot be a reduction + assert_raises(ValueError, nditer, [a, b, m2], ['reduce_ok'], + [['readonly'], + ['readwrite', 'writemasked'], + ['readwrite', 'arraymask']]) + + # A uint8 mask is ok too + np.nditer([a, m3], ['buffered'], + [['readwrite', 'writemasked'], + ['readonly', 'arraymask']], + op_dtypes=['f4', None], + casting='same_kind') + # An int8 mask isn't ok + assert_raises(TypeError, np.nditer, [a, mbad1], ['buffered'], + [['readwrite', 'writemasked'], + ['readonly', 'arraymask']], + op_dtypes=['f4', None], + casting='same_kind') + # A float32 mask isn't ok + assert_raises(TypeError, np.nditer, [a, mbad2], ['buffered'], + [['readwrite', 'writemasked'], + ['readonly', 'arraymask']], + op_dtypes=['f4', None], + casting='same_kind') + + +def _is_buffered(iterator): + try: + iterator.itviews + except ValueError: + return True + return False + +@pytest.mark.parametrize("a", + [np.zeros((3,), dtype='f8'), + np.zeros((9876, 3 * 5), dtype='f8')[::2, :], + np.zeros((4, 312, 124, 3), dtype='f8')[::2, :, ::2, :], + # Also test with the last dimension strided (so it does not fit if + # there is repeated access) + np.zeros((9,), dtype='f8')[::3], + np.zeros((9876, 3 * 10), dtype='f8')[::2, ::5], + np.zeros((4, 312, 124, 3), dtype='f8')[::2, :, ::2, ::-1]]) +def test_iter_writemasked(a): + # Note, the slicing above is to ensure that nditer cannot combine multiple + # axes into one. The repetition is just to make things a bit more + # interesting. + shape = a.shape + reps = shape[-1] // 3 + msk = np.empty(shape, dtype=bool) + msk[...] = [True, True, False] * reps + + # When buffering is unused, 'writemasked' effectively does nothing. + # It's up to the user of the iterator to obey the requested semantics. + it = np.nditer([a, msk], [], + [['readwrite', 'writemasked'], + ['readonly', 'arraymask']]) + with it: + for x, m in it: + x[...] = 1 + # Because we violated the semantics, all the values became 1 + assert_equal(a, np.broadcast_to([1, 1, 1] * reps, shape)) + + # Even if buffering is enabled, we still may be accessing the array + # directly. + it = np.nditer([a, msk], ['buffered'], + [['readwrite', 'writemasked'], + ['readonly', 'arraymask']]) + # @seberg: I honestly don't currently understand why a "buffered" iterator + # would end up not using a buffer for the small array here at least when + # "writemasked" is used, that seems confusing... Check by testing for + # actual memory overlap! + is_buffered = True + with it: + for x, m in it: + x[...] = 2.5 + if np.may_share_memory(x, a): + is_buffered = False + + if not is_buffered: + # Because we violated the semantics, all the values became 2.5 + assert_equal(a, np.broadcast_to([2.5, 2.5, 2.5] * reps, shape)) + else: + # For large sizes, the iterator may be buffered: + assert_equal(a, np.broadcast_to([2.5, 2.5, 1] * reps, shape)) + a[...] = 2.5 + + # If buffering will definitely happening, for instance because of + # a cast, only the items selected by the mask will be copied back from + # the buffer. + it = np.nditer([a, msk], ['buffered'], + [['readwrite', 'writemasked'], + ['readonly', 'arraymask']], + op_dtypes=['i8', None], + casting='unsafe') + with it: + for x, m in it: + x[...] = 3 + # Even though we violated the semantics, only the selected values + # were copied back + assert_equal(a, np.broadcast_to([3, 3, 2.5] * reps, shape)) + + +@pytest.mark.parametrize(["mask", "mask_axes"], [ + # Allocated operand (only broadcasts with -1) + (None, [-1, 0]), + # Reduction along the first dimension (with and without op_axes) + (np.zeros((1, 4), dtype="bool"), [0, 1]), + (np.zeros((1, 4), dtype="bool"), None), + # Test 0-D and -1 op_axes + (np.zeros(4, dtype="bool"), [-1, 0]), + (np.zeros((), dtype="bool"), [-1, -1]), + (np.zeros((), dtype="bool"), None)]) +def test_iter_writemasked_broadcast_error(mask, mask_axes): + # This assumes that a readwrite mask makes sense. This is likely not the + # case and should simply be deprecated. + arr = np.zeros((3, 4)) + itflags = ["reduce_ok"] + mask_flags = ["arraymask", "readwrite", "allocate"] + a_flags = ["writeonly", "writemasked"] + if mask_axes is None: + op_axes = None + else: + op_axes = [mask_axes, [0, 1]] + + with assert_raises(ValueError): + np.nditer((mask, arr), flags=itflags, op_flags=[mask_flags, a_flags], + op_axes=op_axes) + + +def test_iter_writemasked_decref(): + # force casting (to make it interesting) by using a structured dtype. + arr = np.arange(10000).astype(">i,O") + original = arr.copy() + mask = np.random.randint(0, 2, size=10000).astype(bool) + + it = np.nditer([arr, mask], ['buffered', "refs_ok"], + [['readwrite', 'writemasked'], + ['readonly', 'arraymask']], + op_dtypes=[" string -> longdouble` for the + # conversion. But Python may refuse `str(int)` for huge ints. + # In that case, RuntimeWarning would be correct, but conversion + # fails earlier (seems to happen on 32bit linux, possibly only debug). + if dtype in "gG": + try: + str(too_big_int) + except ValueError: + pytest.skip("`huge_int -> string -> longdouble` failed") + + # Otherwise, we overflow to infinity: + with pytest.warns(RuntimeWarning): + res = scalar_type(1) + too_big_int + assert res.dtype == dtype + assert res == np.inf + + with pytest.warns(RuntimeWarning): + # We force the dtype here, since windows may otherwise pick the + # double instead of the longdouble loop. That leads to slightly + # different results (conversion of the int fails as above). + res = np.add(np.array(1, dtype=dtype), too_big_int, dtype=dtype) + assert res.dtype == dtype + assert res == np.inf + + +@pytest.mark.parametrize("op", [operator.add, operator.pow]) +def test_weak_promotion_scalar_path(op): + # Some additional paths exercising the weak scalars. + + # Integer path: + res = op(np.uint8(3), 5) + assert res == op(3, 5) + assert res.dtype == np.uint8 or res.dtype == bool # noqa: PLR1714 + + with pytest.raises(OverflowError): + op(np.uint8(3), 1000) + + # Float path: + res = op(np.float32(3), 5.) + assert res == op(3., 5.) + assert res.dtype == np.float32 or res.dtype == bool # noqa: PLR1714 + + +def test_nep50_complex_promotion(): + with pytest.warns(RuntimeWarning, match=".*overflow"): + res = np.complex64(3) + complex(2**300) + + assert type(res) == np.complex64 + + +def test_nep50_integer_conversion_errors(): + # Implementation for error paths is mostly missing (as of writing) + with pytest.raises(OverflowError, match=".*uint8"): + np.array([1], np.uint8) + 300 + + with pytest.raises(OverflowError, match=".*uint8"): + np.uint8(1) + 300 + + # Error message depends on platform (maybe unsigned int or unsigned long) + with pytest.raises(OverflowError, + match="Python integer -1 out of bounds for uint8"): + np.uint8(1) + -1 + + +def test_nep50_with_axisconcatenator(): + # Concatenate/r_ does not promote, so this has to error: + with pytest.raises(OverflowError): + np.r_[np.arange(5, dtype=np.int8), 255] + + +@pytest.mark.parametrize("ufunc", [np.add, np.power]) +def test_nep50_huge_integers(ufunc): + # Very large integers are complicated, because they go to uint64 or + # object dtype. This tests covers a few possible paths. + with pytest.raises(OverflowError): + ufunc(np.int64(0), 2**63) # 2**63 too large for int64 + + with pytest.raises(OverflowError): + ufunc(np.uint64(0), 2**64) # 2**64 cannot be represented by uint64 + + # However, 2**63 can be represented by the uint64 (and that is used): + res = ufunc(np.uint64(1), 2**63) + + assert res.dtype == np.uint64 + assert res == ufunc(1, 2**63, dtype=object) + + # The following paths fail to warn correctly about the change: + with pytest.raises(OverflowError): + ufunc(np.int64(1), 2**63) # np.array(2**63) would go to uint + + with pytest.raises(OverflowError): + ufunc(np.int64(1), 2**100) # np.array(2**100) would go to object + + # This would go to object and thus a Python float, not a NumPy one: + res = ufunc(1.0, 2**100) + assert isinstance(res, np.float64) + + +def test_nep50_in_concat_and_choose(): + res = np.concatenate([np.float32(1), 1.], axis=None) + assert res.dtype == "float32" + + res = np.choose(1, [np.float32(1), 1.]) + assert res.dtype == "float32" + + +@pytest.mark.parametrize("expected,dtypes,optional_dtypes", [ + (np.float32, [np.float32], + [np.float16, 0.0, np.uint16, np.int16, np.int8, 0]), + (np.complex64, [np.float32, 0j], + [np.float16, 0.0, np.uint16, np.int16, np.int8, 0]), + (np.float32, [np.int16, np.uint16, np.float16], + [np.int8, np.uint8, np.float32, 0., 0]), + (np.int32, [np.int16, np.uint16], + [np.int8, np.uint8, 0, np.bool]), + ]) +@hypothesis.given(data=strategies.data()) +def test_expected_promotion(expected, dtypes, optional_dtypes, data): + # Sample randomly while ensuring "dtypes" is always present: + optional = data.draw(strategies.lists( + strategies.sampled_from(dtypes + optional_dtypes))) + all_dtypes = dtypes + optional + dtypes_sample = data.draw(strategies.permutations(all_dtypes)) + + res = np.result_type(*dtypes_sample) + assert res == expected + + +@pytest.mark.parametrize("sctype", + [np.int8, np.int16, np.int32, np.int64, + np.uint8, np.uint16, np.uint32, np.uint64]) +@pytest.mark.parametrize("other_val", + [-2 * 100, -1, 0, 9, 10, 11, 2**63, 2 * 100]) +@pytest.mark.parametrize("comp", + [operator.eq, operator.ne, operator.le, operator.lt, + operator.ge, operator.gt]) +def test_integer_comparison(sctype, other_val, comp): + # Test that comparisons with integers (especially out-of-bound) ones + # works correctly. + val_obj = 10 + val = sctype(val_obj) + # Check that the scalar behaves the same as the python int: + assert comp(10, other_val) == comp(val, other_val) + assert comp(val, other_val) == comp(10, other_val) + # Except for the result type: + assert type(comp(val, other_val)) is np.bool + + # Check that the integer array and object array behave the same: + val_obj = np.array([10, 10], dtype=object) + val = val_obj.astype(sctype) + assert_array_equal(comp(val_obj, other_val), comp(val, other_val)) + assert_array_equal(comp(other_val, val_obj), comp(other_val, val)) + + +@pytest.mark.parametrize("arr", [ + np.ones((100, 100), dtype=np.uint8)[::2], # not trivially iterable + np.ones(20000, dtype=">u4"), # cast and >buffersize + np.ones(100, dtype=">u4"), # fast path compatible with cast +]) +def test_integer_comparison_with_cast(arr): + # Similar to above, but mainly test a few cases that cover the slow path + # the test is limited to unsigned ints and -1 for simplicity. + res = arr >= -1 + assert_array_equal(res, np.ones_like(arr, dtype=bool)) + res = arr < -1 + assert_array_equal(res, np.zeros_like(arr, dtype=bool)) + + +@pytest.mark.parametrize("comp", + [np.equal, np.not_equal, np.less_equal, np.less, + np.greater_equal, np.greater]) +def test_integer_integer_comparison(comp): + # Test that the NumPy comparison ufuncs work with large Python integers + assert comp(2**200, -2**200) == comp(2**200, -2**200, dtype=object) + + +def create_with_scalar(sctype, value): + return sctype(value) + + +def create_with_array(sctype, value): + return np.array([value], dtype=sctype) + + +@pytest.mark.parametrize("sctype", + [np.int8, np.int16, np.int32, np.int64, + np.uint8, np.uint16, np.uint32, np.uint64]) +@pytest.mark.parametrize("create", [create_with_scalar, create_with_array]) +def test_oob_creation(sctype, create): + iinfo = np.iinfo(sctype) + + with pytest.raises(OverflowError): + create(sctype, iinfo.min - 1) + + with pytest.raises(OverflowError): + create(sctype, iinfo.max + 1) + + with pytest.raises(OverflowError): + create(sctype, str(iinfo.min - 1)) + + with pytest.raises(OverflowError): + create(sctype, str(iinfo.max + 1)) + + assert create(sctype, iinfo.min) == iinfo.min + assert create(sctype, iinfo.max) == iinfo.max diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_numeric.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_numeric.py new file mode 100644 index 0000000..5b58b34 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_numeric.py @@ -0,0 +1,4247 @@ +import itertools +import math +import platform +import sys +import warnings +from decimal import Decimal + +import pytest +from hypothesis import given +from hypothesis import strategies as st +from hypothesis.extra import numpy as hynp +from numpy._core._rational_tests import rational + +import numpy as np +from numpy import ma +from numpy._core import sctypes +from numpy._core.numerictypes import obj2sctype +from numpy.exceptions import AxisError +from numpy.random import rand, randint, randn +from numpy.testing import ( + HAS_REFCOUNT, + IS_WASM, + assert_, + assert_almost_equal, + assert_array_almost_equal, + assert_array_equal, + assert_array_max_ulp, + assert_equal, + assert_raises, + assert_raises_regex, +) + + +class TestResize: + def test_copies(self): + A = np.array([[1, 2], [3, 4]]) + Ar1 = np.array([[1, 2, 3, 4], [1, 2, 3, 4]]) + assert_equal(np.resize(A, (2, 4)), Ar1) + + Ar2 = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) + assert_equal(np.resize(A, (4, 2)), Ar2) + + Ar3 = np.array([[1, 2, 3], [4, 1, 2], [3, 4, 1], [2, 3, 4]]) + assert_equal(np.resize(A, (4, 3)), Ar3) + + def test_repeats(self): + A = np.array([1, 2, 3]) + Ar1 = np.array([[1, 2, 3, 1], [2, 3, 1, 2]]) + assert_equal(np.resize(A, (2, 4)), Ar1) + + Ar2 = np.array([[1, 2], [3, 1], [2, 3], [1, 2]]) + assert_equal(np.resize(A, (4, 2)), Ar2) + + Ar3 = np.array([[1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 2, 3]]) + assert_equal(np.resize(A, (4, 3)), Ar3) + + def test_zeroresize(self): + A = np.array([[1, 2], [3, 4]]) + Ar = np.resize(A, (0,)) + assert_array_equal(Ar, np.array([])) + assert_equal(A.dtype, Ar.dtype) + + Ar = np.resize(A, (0, 2)) + assert_equal(Ar.shape, (0, 2)) + + Ar = np.resize(A, (2, 0)) + assert_equal(Ar.shape, (2, 0)) + + def test_reshape_from_zero(self): + # See also gh-6740 + A = np.zeros(0, dtype=[('a', np.float32)]) + Ar = np.resize(A, (2, 1)) + assert_array_equal(Ar, np.zeros((2, 1), Ar.dtype)) + assert_equal(A.dtype, Ar.dtype) + + def test_negative_resize(self): + A = np.arange(0, 10, dtype=np.float32) + new_shape = (-10, -1) + with pytest.raises(ValueError, match=r"negative"): + np.resize(A, new_shape=new_shape) + + def test_unsigned_resize(self): + # ensure unsigned integer sizes don't lead to underflows + for dt_pair in [(np.int32, np.uint32), (np.int64, np.uint64)]: + arr = np.array([[23, 95], [66, 37]]) + assert_array_equal(np.resize(arr, dt_pair[0](1)), + np.resize(arr, dt_pair[1](1))) + + def test_subclass(self): + class MyArray(np.ndarray): + __array_priority__ = 1. + + my_arr = np.array([1]).view(MyArray) + assert type(np.resize(my_arr, 5)) is MyArray + assert type(np.resize(my_arr, 0)) is MyArray + + my_arr = np.array([]).view(MyArray) + assert type(np.resize(my_arr, 5)) is MyArray + + +class TestNonarrayArgs: + # check that non-array arguments to functions wrap them in arrays + def test_choose(self): + choices = [[0, 1, 2], + [3, 4, 5], + [5, 6, 7]] + tgt = [5, 1, 5] + a = [2, 0, 1] + + out = np.choose(a, choices) + assert_equal(out, tgt) + + def test_clip(self): + arr = [-1, 5, 2, 3, 10, -4, -9] + out = np.clip(arr, 2, 7) + tgt = [2, 5, 2, 3, 7, 2, 2] + assert_equal(out, tgt) + + def test_compress(self): + arr = [[0, 1, 2, 3, 4], + [5, 6, 7, 8, 9]] + tgt = [[5, 6, 7, 8, 9]] + out = np.compress([0, 1], arr, axis=0) + assert_equal(out, tgt) + + def test_count_nonzero(self): + arr = [[0, 1, 7, 0, 0], + [3, 0, 0, 2, 19]] + tgt = np.array([2, 3]) + out = np.count_nonzero(arr, axis=1) + assert_equal(out, tgt) + + def test_diagonal(self): + a = [[0, 1, 2, 3], + [4, 5, 6, 7], + [8, 9, 10, 11]] + out = np.diagonal(a) + tgt = [0, 5, 10] + + assert_equal(out, tgt) + + def test_mean(self): + A = [[1, 2, 3], [4, 5, 6]] + assert_(np.mean(A) == 3.5) + assert_(np.all(np.mean(A, 0) == np.array([2.5, 3.5, 4.5]))) + assert_(np.all(np.mean(A, 1) == np.array([2., 5.]))) + + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', RuntimeWarning) + assert_(np.isnan(np.mean([]))) + assert_(w[0].category is RuntimeWarning) + + def test_ptp(self): + a = [3, 4, 5, 10, -3, -5, 6.0] + assert_equal(np.ptp(a, axis=0), 15.0) + + def test_prod(self): + arr = [[1, 2, 3, 4], + [5, 6, 7, 9], + [10, 3, 4, 5]] + tgt = [24, 1890, 600] + + assert_equal(np.prod(arr, axis=-1), tgt) + + def test_ravel(self): + a = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]] + tgt = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] + assert_equal(np.ravel(a), tgt) + + def test_repeat(self): + a = [1, 2, 3] + tgt = [1, 1, 2, 2, 3, 3] + + out = np.repeat(a, 2) + assert_equal(out, tgt) + + def test_reshape(self): + arr = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]] + tgt = [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]] + assert_equal(np.reshape(arr, (2, 6)), tgt) + + def test_reshape_shape_arg(self): + arr = np.arange(12) + shape = (3, 4) + expected = arr.reshape(shape) + + with pytest.raises( + TypeError, + match="You cannot specify 'newshape' and 'shape' " + "arguments at the same time." + ): + np.reshape(arr, shape=shape, newshape=shape) + with pytest.raises( + TypeError, + match=r"reshape\(\) missing 1 required positional " + "argument: 'shape'" + ): + np.reshape(arr) + + assert_equal(np.reshape(arr, shape), expected) + assert_equal(np.reshape(arr, shape, order="C"), expected) + assert_equal(np.reshape(arr, shape, "C"), expected) + assert_equal(np.reshape(arr, shape=shape), expected) + assert_equal(np.reshape(arr, shape=shape, order="C"), expected) + with pytest.warns(DeprecationWarning): + actual = np.reshape(arr, newshape=shape) + assert_equal(actual, expected) + + def test_reshape_copy_arg(self): + arr = np.arange(24).reshape(2, 3, 4) + arr_f_ord = np.array(arr, order="F") + shape = (12, 2) + + assert np.shares_memory(np.reshape(arr, shape), arr) + assert np.shares_memory(np.reshape(arr, shape, order="C"), arr) + assert np.shares_memory( + np.reshape(arr_f_ord, shape, order="F"), arr_f_ord) + assert np.shares_memory(np.reshape(arr, shape, copy=None), arr) + assert np.shares_memory(np.reshape(arr, shape, copy=False), arr) + assert np.shares_memory(arr.reshape(shape, copy=False), arr) + assert not np.shares_memory(np.reshape(arr, shape, copy=True), arr) + assert not np.shares_memory( + np.reshape(arr, shape, order="C", copy=True), arr) + assert not np.shares_memory( + np.reshape(arr, shape, order="F", copy=True), arr) + assert not np.shares_memory( + np.reshape(arr, shape, order="F", copy=None), arr) + + err_msg = "Unable to avoid creating a copy while reshaping." + with pytest.raises(ValueError, match=err_msg): + np.reshape(arr, shape, order="F", copy=False) + with pytest.raises(ValueError, match=err_msg): + np.reshape(arr_f_ord, shape, order="C", copy=False) + + def test_round(self): + arr = [1.56, 72.54, 6.35, 3.25] + tgt = [1.6, 72.5, 6.4, 3.2] + assert_equal(np.around(arr, decimals=1), tgt) + s = np.float64(1.) + assert_(isinstance(s.round(), np.float64)) + assert_equal(s.round(), 1.) + + @pytest.mark.parametrize('dtype', [ + np.int8, np.int16, np.int32, np.int64, + np.uint8, np.uint16, np.uint32, np.uint64, + np.float16, np.float32, np.float64, + ]) + def test_dunder_round(self, dtype): + s = dtype(1) + assert_(isinstance(round(s), int)) + assert_(isinstance(round(s, None), int)) + assert_(isinstance(round(s, ndigits=None), int)) + assert_equal(round(s), 1) + assert_equal(round(s, None), 1) + assert_equal(round(s, ndigits=None), 1) + + @pytest.mark.parametrize('val, ndigits', [ + pytest.param(2**31 - 1, -1, + marks=pytest.mark.skip(reason="Out of range of int32") + ), + (2**31 - 1, 1 - math.ceil(math.log10(2**31 - 1))), + (2**31 - 1, -math.ceil(math.log10(2**31 - 1))) + ]) + def test_dunder_round_edgecases(self, val, ndigits): + assert_equal(round(val, ndigits), round(np.int32(val), ndigits)) + + def test_dunder_round_accuracy(self): + f = np.float64(5.1 * 10**73) + assert_(isinstance(round(f, -73), np.float64)) + assert_array_max_ulp(round(f, -73), 5.0 * 10**73) + assert_(isinstance(round(f, ndigits=-73), np.float64)) + assert_array_max_ulp(round(f, ndigits=-73), 5.0 * 10**73) + + i = np.int64(501) + assert_(isinstance(round(i, -2), np.int64)) + assert_array_max_ulp(round(i, -2), 500) + assert_(isinstance(round(i, ndigits=-2), np.int64)) + assert_array_max_ulp(round(i, ndigits=-2), 500) + + @pytest.mark.xfail(raises=AssertionError, reason="gh-15896") + def test_round_py_consistency(self): + f = 5.1 * 10**73 + assert_equal(round(np.float64(f), -73), round(f, -73)) + + def test_searchsorted(self): + arr = [-8, -5, -1, 3, 6, 10] + out = np.searchsorted(arr, 0) + assert_equal(out, 3) + + def test_size(self): + A = [[1, 2, 3], [4, 5, 6]] + assert_(np.size(A) == 6) + assert_(np.size(A, 0) == 2) + assert_(np.size(A, 1) == 3) + + def test_squeeze(self): + A = [[[1, 1, 1], [2, 2, 2], [3, 3, 3]]] + assert_equal(np.squeeze(A).shape, (3, 3)) + assert_equal(np.squeeze(np.zeros((1, 3, 1))).shape, (3,)) + assert_equal(np.squeeze(np.zeros((1, 3, 1)), axis=0).shape, (3, 1)) + assert_equal(np.squeeze(np.zeros((1, 3, 1)), axis=-1).shape, (1, 3)) + assert_equal(np.squeeze(np.zeros((1, 3, 1)), axis=2).shape, (1, 3)) + assert_equal(np.squeeze([np.zeros((3, 1))]).shape, (3,)) + assert_equal(np.squeeze([np.zeros((3, 1))], axis=0).shape, (3, 1)) + assert_equal(np.squeeze([np.zeros((3, 1))], axis=2).shape, (1, 3)) + assert_equal(np.squeeze([np.zeros((3, 1))], axis=-1).shape, (1, 3)) + + def test_std(self): + A = [[1, 2, 3], [4, 5, 6]] + assert_almost_equal(np.std(A), 1.707825127659933) + assert_almost_equal(np.std(A, 0), np.array([1.5, 1.5, 1.5])) + assert_almost_equal(np.std(A, 1), np.array([0.81649658, 0.81649658])) + + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', RuntimeWarning) + assert_(np.isnan(np.std([]))) + assert_(w[0].category is RuntimeWarning) + + def test_swapaxes(self): + tgt = [[[0, 4], [2, 6]], [[1, 5], [3, 7]]] + a = [[[0, 1], [2, 3]], [[4, 5], [6, 7]]] + out = np.swapaxes(a, 0, 2) + assert_equal(out, tgt) + + def test_sum(self): + m = [[1, 2, 3], + [4, 5, 6], + [7, 8, 9]] + tgt = [[6], [15], [24]] + out = np.sum(m, axis=1, keepdims=True) + + assert_equal(tgt, out) + + def test_take(self): + tgt = [2, 3, 5] + indices = [1, 2, 4] + a = [1, 2, 3, 4, 5] + + out = np.take(a, indices) + assert_equal(out, tgt) + + pairs = [ + (np.int32, np.int32), (np.int32, np.int64), + (np.int64, np.int32), (np.int64, np.int64) + ] + for array_type, indices_type in pairs: + x = np.array([1, 2, 3, 4, 5], dtype=array_type) + ind = np.array([0, 2, 2, 3], dtype=indices_type) + tgt = np.array([1, 3, 3, 4], dtype=array_type) + out = np.take(x, ind) + assert_equal(out, tgt) + assert_equal(out.dtype, tgt.dtype) + + def test_trace(self): + c = [[1, 2], [3, 4], [5, 6]] + assert_equal(np.trace(c), 5) + + def test_transpose(self): + arr = [[1, 2], [3, 4], [5, 6]] + tgt = [[1, 3, 5], [2, 4, 6]] + assert_equal(np.transpose(arr, (1, 0)), tgt) + assert_equal(np.transpose(arr, (-1, -2)), tgt) + assert_equal(np.matrix_transpose(arr), tgt) + + def test_var(self): + A = [[1, 2, 3], [4, 5, 6]] + assert_almost_equal(np.var(A), 2.9166666666666665) + assert_almost_equal(np.var(A, 0), np.array([2.25, 2.25, 2.25])) + assert_almost_equal(np.var(A, 1), np.array([0.66666667, 0.66666667])) + + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', RuntimeWarning) + assert_(np.isnan(np.var([]))) + assert_(w[0].category is RuntimeWarning) + + B = np.array([None, 0]) + B[0] = 1j + assert_almost_equal(np.var(B), 0.25) + + def test_std_with_mean_keyword(self): + # Setting the seed to make the test reproducible + rng = np.random.RandomState(1234) + A = rng.randn(10, 20, 5) + 0.5 + + mean_out = np.zeros((10, 1, 5)) + std_out = np.zeros((10, 1, 5)) + + mean = np.mean(A, + out=mean_out, + axis=1, + keepdims=True) + + # The returned object should be the object specified during calling + assert mean_out is mean + + std = np.std(A, + out=std_out, + axis=1, + keepdims=True, + mean=mean) + + # The returned object should be the object specified during calling + assert std_out is std + + # Shape of returned mean and std should be same + assert std.shape == mean.shape + assert std.shape == (10, 1, 5) + + # Output should be the same as from the individual algorithms + std_old = np.std(A, axis=1, keepdims=True) + + assert std_old.shape == mean.shape + assert_almost_equal(std, std_old) + + def test_var_with_mean_keyword(self): + # Setting the seed to make the test reproducible + rng = np.random.RandomState(1234) + A = rng.randn(10, 20, 5) + 0.5 + + mean_out = np.zeros((10, 1, 5)) + var_out = np.zeros((10, 1, 5)) + + mean = np.mean(A, + out=mean_out, + axis=1, + keepdims=True) + + # The returned object should be the object specified during calling + assert mean_out is mean + + var = np.var(A, + out=var_out, + axis=1, + keepdims=True, + mean=mean) + + # The returned object should be the object specified during calling + assert var_out is var + + # Shape of returned mean and var should be same + assert var.shape == mean.shape + assert var.shape == (10, 1, 5) + + # Output should be the same as from the individual algorithms + var_old = np.var(A, axis=1, keepdims=True) + + assert var_old.shape == mean.shape + assert_almost_equal(var, var_old) + + def test_std_with_mean_keyword_keepdims_false(self): + rng = np.random.RandomState(1234) + A = rng.randn(10, 20, 5) + 0.5 + + mean = np.mean(A, + axis=1, + keepdims=True) + + std = np.std(A, + axis=1, + keepdims=False, + mean=mean) + + # Shape of returned mean and std should be same + assert std.shape == (10, 5) + + # Output should be the same as from the individual algorithms + std_old = np.std(A, axis=1, keepdims=False) + mean_old = np.mean(A, axis=1, keepdims=False) + + assert std_old.shape == mean_old.shape + assert_equal(std, std_old) + + def test_var_with_mean_keyword_keepdims_false(self): + rng = np.random.RandomState(1234) + A = rng.randn(10, 20, 5) + 0.5 + + mean = np.mean(A, + axis=1, + keepdims=True) + + var = np.var(A, + axis=1, + keepdims=False, + mean=mean) + + # Shape of returned mean and var should be same + assert var.shape == (10, 5) + + # Output should be the same as from the individual algorithms + var_old = np.var(A, axis=1, keepdims=False) + mean_old = np.mean(A, axis=1, keepdims=False) + + assert var_old.shape == mean_old.shape + assert_equal(var, var_old) + + def test_std_with_mean_keyword_where_nontrivial(self): + rng = np.random.RandomState(1234) + A = rng.randn(10, 20, 5) + 0.5 + + where = A > 0.5 + + mean = np.mean(A, + axis=1, + keepdims=True, + where=where) + + std = np.std(A, + axis=1, + keepdims=False, + mean=mean, + where=where) + + # Shape of returned mean and std should be same + assert std.shape == (10, 5) + + # Output should be the same as from the individual algorithms + std_old = np.std(A, axis=1, where=where) + mean_old = np.mean(A, axis=1, where=where) + + assert std_old.shape == mean_old.shape + assert_equal(std, std_old) + + def test_var_with_mean_keyword_where_nontrivial(self): + rng = np.random.RandomState(1234) + A = rng.randn(10, 20, 5) + 0.5 + + where = A > 0.5 + + mean = np.mean(A, + axis=1, + keepdims=True, + where=where) + + var = np.var(A, + axis=1, + keepdims=False, + mean=mean, + where=where) + + # Shape of returned mean and var should be same + assert var.shape == (10, 5) + + # Output should be the same as from the individual algorithms + var_old = np.var(A, axis=1, where=where) + mean_old = np.mean(A, axis=1, where=where) + + assert var_old.shape == mean_old.shape + assert_equal(var, var_old) + + def test_std_with_mean_keyword_multiple_axis(self): + # Setting the seed to make the test reproducible + rng = np.random.RandomState(1234) + A = rng.randn(10, 20, 5) + 0.5 + + axis = (0, 2) + + mean = np.mean(A, + out=None, + axis=axis, + keepdims=True) + + std = np.std(A, + out=None, + axis=axis, + keepdims=False, + mean=mean) + + # Shape of returned mean and std should be same + assert std.shape == (20,) + + # Output should be the same as from the individual algorithms + std_old = np.std(A, axis=axis, keepdims=False) + + assert_almost_equal(std, std_old) + + def test_std_with_mean_keyword_axis_None(self): + # Setting the seed to make the test reproducible + rng = np.random.RandomState(1234) + A = rng.randn(10, 20, 5) + 0.5 + + axis = None + + mean = np.mean(A, + out=None, + axis=axis, + keepdims=True) + + std = np.std(A, + out=None, + axis=axis, + keepdims=False, + mean=mean) + + # Shape of returned mean and std should be same + assert std.shape == () + + # Output should be the same as from the individual algorithms + std_old = np.std(A, axis=axis, keepdims=False) + + assert_almost_equal(std, std_old) + + def test_std_with_mean_keyword_keepdims_true_masked(self): + + A = ma.array([[2., 3., 4., 5.], + [1., 2., 3., 4.]], + mask=[[True, False, True, False], + [True, False, True, False]]) + + B = ma.array([[100., 3., 104., 5.], + [101., 2., 103., 4.]], + mask=[[True, False, True, False], + [True, False, True, False]]) + + mean_out = ma.array([[0., 0., 0., 0.]], + mask=[[False, False, False, False]]) + std_out = ma.array([[0., 0., 0., 0.]], + mask=[[False, False, False, False]]) + + axis = 0 + + mean = np.mean(A, out=mean_out, + axis=axis, keepdims=True) + + std = np.std(A, out=std_out, + axis=axis, keepdims=True, + mean=mean) + + # Shape of returned mean and std should be same + assert std.shape == mean.shape + assert std.shape == (1, 4) + + # Output should be the same as from the individual algorithms + std_old = np.std(A, axis=axis, keepdims=True) + mean_old = np.mean(A, axis=axis, keepdims=True) + + assert std_old.shape == mean_old.shape + assert_almost_equal(std, std_old) + assert_almost_equal(mean, mean_old) + + assert mean_out is mean + assert std_out is std + + # masked elements should be ignored + mean_b = np.mean(B, axis=axis, keepdims=True) + std_b = np.std(B, axis=axis, keepdims=True, mean=mean_b) + assert_almost_equal(std, std_b) + assert_almost_equal(mean, mean_b) + + def test_var_with_mean_keyword_keepdims_true_masked(self): + + A = ma.array([[2., 3., 4., 5.], + [1., 2., 3., 4.]], + mask=[[True, False, True, False], + [True, False, True, False]]) + + B = ma.array([[100., 3., 104., 5.], + [101., 2., 103., 4.]], + mask=[[True, False, True, False], + [True, False, True, False]]) + + mean_out = ma.array([[0., 0., 0., 0.]], + mask=[[False, False, False, False]]) + var_out = ma.array([[0., 0., 0., 0.]], + mask=[[False, False, False, False]]) + + axis = 0 + + mean = np.mean(A, out=mean_out, + axis=axis, keepdims=True) + + var = np.var(A, out=var_out, + axis=axis, keepdims=True, + mean=mean) + + # Shape of returned mean and var should be same + assert var.shape == mean.shape + assert var.shape == (1, 4) + + # Output should be the same as from the individual algorithms + var_old = np.var(A, axis=axis, keepdims=True) + mean_old = np.mean(A, axis=axis, keepdims=True) + + assert var_old.shape == mean_old.shape + assert_almost_equal(var, var_old) + assert_almost_equal(mean, mean_old) + + assert mean_out is mean + assert var_out is var + + # masked elements should be ignored + mean_b = np.mean(B, axis=axis, keepdims=True) + var_b = np.var(B, axis=axis, keepdims=True, mean=mean_b) + assert_almost_equal(var, var_b) + assert_almost_equal(mean, mean_b) + + +class TestIsscalar: + def test_isscalar(self): + assert_(np.isscalar(3.1)) + assert_(np.isscalar(np.int16(12345))) + assert_(np.isscalar(False)) + assert_(np.isscalar('numpy')) + assert_(not np.isscalar([3.1])) + assert_(not np.isscalar(None)) + + # PEP 3141 + from fractions import Fraction + assert_(np.isscalar(Fraction(5, 17))) + from numbers import Number + assert_(np.isscalar(Number())) + + +class TestBoolScalar: + def test_logical(self): + f = np.False_ + t = np.True_ + s = "xyz" + assert_((t and s) is s) + assert_((f and s) is f) + + def test_bitwise_or(self): + f = np.False_ + t = np.True_ + assert_((t | t) is t) + assert_((f | t) is t) + assert_((t | f) is t) + assert_((f | f) is f) + + def test_bitwise_and(self): + f = np.False_ + t = np.True_ + assert_((t & t) is t) + assert_((f & t) is f) + assert_((t & f) is f) + assert_((f & f) is f) + + def test_bitwise_xor(self): + f = np.False_ + t = np.True_ + assert_((t ^ t) is f) + assert_((f ^ t) is t) + assert_((t ^ f) is t) + assert_((f ^ f) is f) + + +class TestBoolArray: + def setup_method(self): + # offset for simd tests + self.t = np.array([True] * 41, dtype=bool)[1::] + self.f = np.array([False] * 41, dtype=bool)[1::] + self.o = np.array([False] * 42, dtype=bool)[2::] + self.nm = self.f.copy() + self.im = self.t.copy() + self.nm[3] = True + self.nm[-2] = True + self.im[3] = False + self.im[-2] = False + + def test_all_any(self): + assert_(self.t.all()) + assert_(self.t.any()) + assert_(not self.f.all()) + assert_(not self.f.any()) + assert_(self.nm.any()) + assert_(self.im.any()) + assert_(not self.nm.all()) + assert_(not self.im.all()) + # check bad element in all positions + for i in range(256 - 7): + d = np.array([False] * 256, dtype=bool)[7::] + d[i] = True + assert_(np.any(d)) + e = np.array([True] * 256, dtype=bool)[7::] + e[i] = False + assert_(not np.all(e)) + assert_array_equal(e, ~d) + # big array test for blocked libc loops + for i in list(range(9, 6000, 507)) + [7764, 90021, -10]: + d = np.array([False] * 100043, dtype=bool) + d[i] = True + assert_(np.any(d), msg=f"{i!r}") + e = np.array([True] * 100043, dtype=bool) + e[i] = False + assert_(not np.all(e), msg=f"{i!r}") + + def test_logical_not_abs(self): + assert_array_equal(~self.t, self.f) + assert_array_equal(np.abs(~self.t), self.f) + assert_array_equal(np.abs(~self.f), self.t) + assert_array_equal(np.abs(self.f), self.f) + assert_array_equal(~np.abs(self.f), self.t) + assert_array_equal(~np.abs(self.t), self.f) + assert_array_equal(np.abs(~self.nm), self.im) + np.logical_not(self.t, out=self.o) + assert_array_equal(self.o, self.f) + np.abs(self.t, out=self.o) + assert_array_equal(self.o, self.t) + + def test_logical_and_or_xor(self): + assert_array_equal(self.t | self.t, self.t) + assert_array_equal(self.f | self.f, self.f) + assert_array_equal(self.t | self.f, self.t) + assert_array_equal(self.f | self.t, self.t) + np.logical_or(self.t, self.t, out=self.o) + assert_array_equal(self.o, self.t) + assert_array_equal(self.t & self.t, self.t) + assert_array_equal(self.f & self.f, self.f) + assert_array_equal(self.t & self.f, self.f) + assert_array_equal(self.f & self.t, self.f) + np.logical_and(self.t, self.t, out=self.o) + assert_array_equal(self.o, self.t) + assert_array_equal(self.t ^ self.t, self.f) + assert_array_equal(self.f ^ self.f, self.f) + assert_array_equal(self.t ^ self.f, self.t) + assert_array_equal(self.f ^ self.t, self.t) + np.logical_xor(self.t, self.t, out=self.o) + assert_array_equal(self.o, self.f) + + assert_array_equal(self.nm & self.t, self.nm) + assert_array_equal(self.im & self.f, False) + assert_array_equal(self.nm & True, self.nm) + assert_array_equal(self.im & False, self.f) + assert_array_equal(self.nm | self.t, self.t) + assert_array_equal(self.im | self.f, self.im) + assert_array_equal(self.nm | True, self.t) + assert_array_equal(self.im | False, self.im) + assert_array_equal(self.nm ^ self.t, self.im) + assert_array_equal(self.im ^ self.f, self.im) + assert_array_equal(self.nm ^ True, self.im) + assert_array_equal(self.im ^ False, self.im) + + +class TestBoolCmp: + def setup_method(self): + self.f = np.ones(256, dtype=np.float32) + self.ef = np.ones(self.f.size, dtype=bool) + self.d = np.ones(128, dtype=np.float64) + self.ed = np.ones(self.d.size, dtype=bool) + # generate values for all permutation of 256bit simd vectors + s = 0 + for i in range(32): + self.f[s:s + 8] = [i & 2**x for x in range(8)] + self.ef[s:s + 8] = [(i & 2**x) != 0 for x in range(8)] + s += 8 + s = 0 + for i in range(16): + self.d[s:s + 4] = [i & 2**x for x in range(4)] + self.ed[s:s + 4] = [(i & 2**x) != 0 for x in range(4)] + s += 4 + + self.nf = self.f.copy() + self.nd = self.d.copy() + self.nf[self.ef] = np.nan + self.nd[self.ed] = np.nan + + self.inff = self.f.copy() + self.infd = self.d.copy() + self.inff[::3][self.ef[::3]] = np.inf + self.infd[::3][self.ed[::3]] = np.inf + self.inff[1::3][self.ef[1::3]] = -np.inf + self.infd[1::3][self.ed[1::3]] = -np.inf + self.inff[2::3][self.ef[2::3]] = np.nan + self.infd[2::3][self.ed[2::3]] = np.nan + self.efnonan = self.ef.copy() + self.efnonan[2::3] = False + self.ednonan = self.ed.copy() + self.ednonan[2::3] = False + + self.signf = self.f.copy() + self.signd = self.d.copy() + self.signf[self.ef] *= -1. + self.signd[self.ed] *= -1. + self.signf[1::6][self.ef[1::6]] = -np.inf + self.signd[1::6][self.ed[1::6]] = -np.inf + # On RISC-V, many operations that produce NaNs, such as converting + # a -NaN from f64 to f32, return a canonical NaN. The canonical + # NaNs are always positive. See section 11.3 NaN Generation and + # Propagation of the RISC-V Unprivileged ISA for more details. + # We disable the float32 sign test on riscv64 for -np.nan as the sign + # of the NaN will be lost when it's converted to a float32. + if platform.machine() != 'riscv64': + self.signf[3::6][self.ef[3::6]] = -np.nan + self.signd[3::6][self.ed[3::6]] = -np.nan + self.signf[4::6][self.ef[4::6]] = -0. + self.signd[4::6][self.ed[4::6]] = -0. + + def test_float(self): + # offset for alignment test + for i in range(4): + assert_array_equal(self.f[i:] > 0, self.ef[i:]) + assert_array_equal(self.f[i:] - 1 >= 0, self.ef[i:]) + assert_array_equal(self.f[i:] == 0, ~self.ef[i:]) + assert_array_equal(-self.f[i:] < 0, self.ef[i:]) + assert_array_equal(-self.f[i:] + 1 <= 0, self.ef[i:]) + r = self.f[i:] != 0 + assert_array_equal(r, self.ef[i:]) + r2 = self.f[i:] != np.zeros_like(self.f[i:]) + r3 = 0 != self.f[i:] + assert_array_equal(r, r2) + assert_array_equal(r, r3) + # check bool == 0x1 + assert_array_equal(r.view(np.int8), r.astype(np.int8)) + assert_array_equal(r2.view(np.int8), r2.astype(np.int8)) + assert_array_equal(r3.view(np.int8), r3.astype(np.int8)) + + # isnan on amd64 takes the same code path + assert_array_equal(np.isnan(self.nf[i:]), self.ef[i:]) + assert_array_equal(np.isfinite(self.nf[i:]), ~self.ef[i:]) + assert_array_equal(np.isfinite(self.inff[i:]), ~self.ef[i:]) + assert_array_equal(np.isinf(self.inff[i:]), self.efnonan[i:]) + assert_array_equal(np.signbit(self.signf[i:]), self.ef[i:]) + + def test_double(self): + # offset for alignment test + for i in range(2): + assert_array_equal(self.d[i:] > 0, self.ed[i:]) + assert_array_equal(self.d[i:] - 1 >= 0, self.ed[i:]) + assert_array_equal(self.d[i:] == 0, ~self.ed[i:]) + assert_array_equal(-self.d[i:] < 0, self.ed[i:]) + assert_array_equal(-self.d[i:] + 1 <= 0, self.ed[i:]) + r = self.d[i:] != 0 + assert_array_equal(r, self.ed[i:]) + r2 = self.d[i:] != np.zeros_like(self.d[i:]) + r3 = 0 != self.d[i:] + assert_array_equal(r, r2) + assert_array_equal(r, r3) + # check bool == 0x1 + assert_array_equal(r.view(np.int8), r.astype(np.int8)) + assert_array_equal(r2.view(np.int8), r2.astype(np.int8)) + assert_array_equal(r3.view(np.int8), r3.astype(np.int8)) + + # isnan on amd64 takes the same code path + assert_array_equal(np.isnan(self.nd[i:]), self.ed[i:]) + assert_array_equal(np.isfinite(self.nd[i:]), ~self.ed[i:]) + assert_array_equal(np.isfinite(self.infd[i:]), ~self.ed[i:]) + assert_array_equal(np.isinf(self.infd[i:]), self.ednonan[i:]) + assert_array_equal(np.signbit(self.signd[i:]), self.ed[i:]) + + +class TestSeterr: + def test_default(self): + err = np.geterr() + assert_equal(err, + {'divide': 'warn', + 'invalid': 'warn', + 'over': 'warn', + 'under': 'ignore'} + ) + + def test_set(self): + with np.errstate(): + err = np.seterr() + old = np.seterr(divide='print') + assert_(err == old) + new = np.seterr() + assert_(new['divide'] == 'print') + np.seterr(over='raise') + assert_(np.geterr()['over'] == 'raise') + assert_(new['divide'] == 'print') + np.seterr(**old) + assert_(np.geterr() == old) + + @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support") + @pytest.mark.skipif(platform.machine() == "armv5tel", reason="See gh-413.") + def test_divide_err(self): + with np.errstate(divide='raise'): + with assert_raises(FloatingPointError): + np.array([1.]) / np.array([0.]) + + np.seterr(divide='ignore') + np.array([1.]) / np.array([0.]) + + +class TestFloatExceptions: + def assert_raises_fpe(self, fpeerr, flop, x, y): + ftype = type(x) + try: + flop(x, y) + assert_(False, + f"Type {ftype} did not raise fpe error '{fpeerr}'.") + except FloatingPointError as exc: + assert_(str(exc).find(fpeerr) >= 0, + f"Type {ftype} raised wrong fpe error '{exc}'.") + + def assert_op_raises_fpe(self, fpeerr, flop, sc1, sc2): + # Check that fpe exception is raised. + # + # Given a floating operation `flop` and two scalar values, check that + # the operation raises the floating point exception specified by + # `fpeerr`. Tests all variants with 0-d array scalars as well. + + self.assert_raises_fpe(fpeerr, flop, sc1, sc2) + self.assert_raises_fpe(fpeerr, flop, sc1[()], sc2) + self.assert_raises_fpe(fpeerr, flop, sc1, sc2[()]) + self.assert_raises_fpe(fpeerr, flop, sc1[()], sc2[()]) + + # Test for all real and complex float types + @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support") + @pytest.mark.parametrize("typecode", np.typecodes["AllFloat"]) + def test_floating_exceptions(self, typecode): + if 'bsd' in sys.platform and typecode in 'gG': + pytest.skip(reason="Fallback impl for (c)longdouble may not raise " + "FPE errors as expected on BSD OSes, " + "see gh-24876, gh-23379") + + # Test basic arithmetic function errors + with np.errstate(all='raise'): + ftype = obj2sctype(typecode) + if np.dtype(ftype).kind == 'f': + # Get some extreme values for the type + fi = np.finfo(ftype) + ft_tiny = fi._machar.tiny + ft_max = fi.max + ft_eps = fi.eps + underflow = 'underflow' + divbyzero = 'divide by zero' + else: + # 'c', complex, corresponding real dtype + rtype = type(ftype(0).real) + fi = np.finfo(rtype) + ft_tiny = ftype(fi._machar.tiny) + ft_max = ftype(fi.max) + ft_eps = ftype(fi.eps) + # The complex types raise different exceptions + underflow = '' + divbyzero = '' + overflow = 'overflow' + invalid = 'invalid' + + # The value of tiny for double double is NaN, so we need to + # pass the assert + if not np.isnan(ft_tiny): + self.assert_raises_fpe(underflow, + lambda a, b: a / b, ft_tiny, ft_max) + self.assert_raises_fpe(underflow, + lambda a, b: a * b, ft_tiny, ft_tiny) + self.assert_raises_fpe(overflow, + lambda a, b: a * b, ft_max, ftype(2)) + self.assert_raises_fpe(overflow, + lambda a, b: a / b, ft_max, ftype(0.5)) + self.assert_raises_fpe(overflow, + lambda a, b: a + b, ft_max, ft_max * ft_eps) + self.assert_raises_fpe(overflow, + lambda a, b: a - b, -ft_max, ft_max * ft_eps) + self.assert_raises_fpe(overflow, + np.power, ftype(2), ftype(2**fi.nexp)) + self.assert_raises_fpe(divbyzero, + lambda a, b: a / b, ftype(1), ftype(0)) + self.assert_raises_fpe( + invalid, lambda a, b: a / b, ftype(np.inf), ftype(np.inf) + ) + self.assert_raises_fpe(invalid, + lambda a, b: a / b, ftype(0), ftype(0)) + self.assert_raises_fpe( + invalid, lambda a, b: a - b, ftype(np.inf), ftype(np.inf) + ) + self.assert_raises_fpe( + invalid, lambda a, b: a + b, ftype(np.inf), ftype(-np.inf) + ) + self.assert_raises_fpe(invalid, + lambda a, b: a * b, ftype(0), ftype(np.inf)) + + @pytest.mark.skipif(IS_WASM, reason="no wasm fp exception support") + def test_warnings(self): + # test warning code path + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter("always") + with np.errstate(all="warn"): + np.divide(1, 0.) + assert_equal(len(w), 1) + assert_("divide by zero" in str(w[0].message)) + np.array(1e300) * np.array(1e300) + assert_equal(len(w), 2) + assert_("overflow" in str(w[-1].message)) + np.array(np.inf) - np.array(np.inf) + assert_equal(len(w), 3) + assert_("invalid value" in str(w[-1].message)) + np.array(1e-300) * np.array(1e-300) + assert_equal(len(w), 4) + assert_("underflow" in str(w[-1].message)) + + +class TestTypes: + def check_promotion_cases(self, promote_func): + # tests that the scalars get coerced correctly. + b = np.bool(0) + i8, i16, i32, i64 = np.int8(0), np.int16(0), np.int32(0), np.int64(0) + u8, u16, u32, u64 = np.uint8(0), np.uint16(0), np.uint32(0), np.uint64(0) + f32, f64, fld = np.float32(0), np.float64(0), np.longdouble(0) + c64, c128, cld = np.complex64(0), np.complex128(0), np.clongdouble(0) + + # coercion within the same kind + assert_equal(promote_func(i8, i16), np.dtype(np.int16)) + assert_equal(promote_func(i32, i8), np.dtype(np.int32)) + assert_equal(promote_func(i16, i64), np.dtype(np.int64)) + assert_equal(promote_func(u8, u32), np.dtype(np.uint32)) + assert_equal(promote_func(f32, f64), np.dtype(np.float64)) + assert_equal(promote_func(fld, f32), np.dtype(np.longdouble)) + assert_equal(promote_func(f64, fld), np.dtype(np.longdouble)) + assert_equal(promote_func(c128, c64), np.dtype(np.complex128)) + assert_equal(promote_func(cld, c128), np.dtype(np.clongdouble)) + assert_equal(promote_func(c64, fld), np.dtype(np.clongdouble)) + + # coercion between kinds + assert_equal(promote_func(b, i32), np.dtype(np.int32)) + assert_equal(promote_func(b, u8), np.dtype(np.uint8)) + assert_equal(promote_func(i8, u8), np.dtype(np.int16)) + assert_equal(promote_func(u8, i32), np.dtype(np.int32)) + assert_equal(promote_func(i64, u32), np.dtype(np.int64)) + assert_equal(promote_func(u64, i32), np.dtype(np.float64)) + assert_equal(promote_func(i32, f32), np.dtype(np.float64)) + assert_equal(promote_func(i64, f32), np.dtype(np.float64)) + assert_equal(promote_func(f32, i16), np.dtype(np.float32)) + assert_equal(promote_func(f32, u32), np.dtype(np.float64)) + assert_equal(promote_func(f32, c64), np.dtype(np.complex64)) + assert_equal(promote_func(c128, f32), np.dtype(np.complex128)) + assert_equal(promote_func(cld, f64), np.dtype(np.clongdouble)) + + # coercion between scalars and 1-D arrays + assert_equal(promote_func(np.array([b]), i8), np.dtype(np.int8)) + assert_equal(promote_func(np.array([b]), u8), np.dtype(np.uint8)) + assert_equal(promote_func(np.array([b]), i32), np.dtype(np.int32)) + assert_equal(promote_func(np.array([b]), u32), np.dtype(np.uint32)) + assert_equal(promote_func(np.array([i8]), i64), np.dtype(np.int64)) + # unsigned and signed unfortunately tend to promote to float64: + assert_equal(promote_func(u64, np.array([i32])), np.dtype(np.float64)) + assert_equal(promote_func(i64, np.array([u32])), np.dtype(np.int64)) + assert_equal(promote_func(np.array([u16]), i32), np.dtype(np.int32)) + assert_equal(promote_func(np.int32(-1), np.array([u64])), + np.dtype(np.float64)) + assert_equal(promote_func(f64, np.array([f32])), np.dtype(np.float64)) + assert_equal(promote_func(fld, np.array([f32])), + np.dtype(np.longdouble)) + assert_equal(promote_func(np.array([f64]), fld), + np.dtype(np.longdouble)) + assert_equal(promote_func(fld, np.array([c64])), + np.dtype(np.clongdouble)) + assert_equal(promote_func(c64, np.array([f64])), + np.dtype(np.complex128)) + assert_equal(promote_func(np.complex64(3j), np.array([f64])), + np.dtype(np.complex128)) + assert_equal(promote_func(np.array([f32]), c128), + np.dtype(np.complex128)) + + # coercion between scalars and 1-D arrays, where + # the scalar has greater kind than the array + assert_equal(promote_func(np.array([b]), f64), np.dtype(np.float64)) + assert_equal(promote_func(np.array([b]), i64), np.dtype(np.int64)) + assert_equal(promote_func(np.array([b]), u64), np.dtype(np.uint64)) + assert_equal(promote_func(np.array([i8]), f64), np.dtype(np.float64)) + assert_equal(promote_func(np.array([u16]), f64), np.dtype(np.float64)) + + def test_coercion(self): + def res_type(a, b): + return np.add(a, b).dtype + + self.check_promotion_cases(res_type) + + # Use-case: float/complex scalar * bool/int8 array + # shouldn't narrow the float/complex type + for a in [np.array([True, False]), np.array([-3, 12], dtype=np.int8)]: + b = 1.234 * a + assert_equal(b.dtype, np.dtype('f8'), f"array type {a.dtype}") + b = np.longdouble(1.234) * a + assert_equal(b.dtype, np.dtype(np.longdouble), + f"array type {a.dtype}") + b = np.float64(1.234) * a + assert_equal(b.dtype, np.dtype('f8'), f"array type {a.dtype}") + b = np.float32(1.234) * a + assert_equal(b.dtype, np.dtype('f4'), f"array type {a.dtype}") + b = np.float16(1.234) * a + assert_equal(b.dtype, np.dtype('f2'), f"array type {a.dtype}") + + b = 1.234j * a + assert_equal(b.dtype, np.dtype('c16'), f"array type {a.dtype}") + b = np.clongdouble(1.234j) * a + assert_equal(b.dtype, np.dtype(np.clongdouble), + f"array type {a.dtype}") + b = np.complex128(1.234j) * a + assert_equal(b.dtype, np.dtype('c16'), f"array type {a.dtype}") + b = np.complex64(1.234j) * a + assert_equal(b.dtype, np.dtype('c8'), f"array type {a.dtype}") + + # The following use-case is problematic, and to resolve its + # tricky side-effects requires more changes. + # + # Use-case: (1-t)*a, where 't' is a boolean array and 'a' is + # a float32, shouldn't promote to float64 + # + # a = np.array([1.0, 1.5], dtype=np.float32) + # t = np.array([True, False]) + # b = t*a + # assert_equal(b, [1.0, 0.0]) + # assert_equal(b.dtype, np.dtype('f4')) + # b = (1-t)*a + # assert_equal(b, [0.0, 1.5]) + # assert_equal(b.dtype, np.dtype('f4')) + # + # Probably ~t (bitwise negation) is more proper to use here, + # but this is arguably less intuitive to understand at a glance, and + # would fail if 't' is actually an integer array instead of boolean: + # + # b = (~t)*a + # assert_equal(b, [0.0, 1.5]) + # assert_equal(b.dtype, np.dtype('f4')) + + def test_result_type(self): + self.check_promotion_cases(np.result_type) + assert_(np.result_type(None) == np.dtype(None)) + + def test_promote_types_endian(self): + # promote_types should always return native-endian types + assert_equal(np.promote_types('i8', '>i8'), np.dtype('i8')) + + assert_equal(np.promote_types('>i8', '>U16'), np.dtype('U21')) + assert_equal(np.promote_types('U16', '>i8'), np.dtype('U21')) + assert_equal(np.promote_types('S5', '>U8'), np.dtype('U8')) + assert_equal(np.promote_types('U8', '>S5'), np.dtype('U8')) + assert_equal(np.promote_types('U8', '>U5'), np.dtype('U8')) + + assert_equal(np.promote_types('M8', '>M8'), np.dtype('M8')) + assert_equal(np.promote_types('m8', '>m8'), np.dtype('m8')) + + def test_can_cast_and_promote_usertypes(self): + # The rational type defines safe casting for signed integers, + # boolean. Rational itself *does* cast safely to double. + # (rational does not actually cast to all signed integers, e.g. + # int64 can be both long and longlong and it registers only the first) + valid_types = ["int8", "int16", "int32", "int64", "bool"] + invalid_types = "BHILQP" + "FDG" + "mM" + "f" + "V" + + rational_dt = np.dtype(rational) + for numpy_dtype in valid_types: + numpy_dtype = np.dtype(numpy_dtype) + assert np.can_cast(numpy_dtype, rational_dt) + assert np.promote_types(numpy_dtype, rational_dt) is rational_dt + + for numpy_dtype in invalid_types: + numpy_dtype = np.dtype(numpy_dtype) + assert not np.can_cast(numpy_dtype, rational_dt) + with pytest.raises(TypeError): + np.promote_types(numpy_dtype, rational_dt) + + double_dt = np.dtype("double") + assert np.can_cast(rational_dt, double_dt) + assert np.promote_types(double_dt, rational_dt) is double_dt + + @pytest.mark.parametrize("swap", ["", "swap"]) + @pytest.mark.parametrize("string_dtype", ["U", "S"]) + def test_promote_types_strings(self, swap, string_dtype): + if swap == "swap": + promote_types = lambda a, b: np.promote_types(b, a) + else: + promote_types = np.promote_types + + S = string_dtype + + # Promote numeric with unsized string: + assert_equal(promote_types('bool', S), np.dtype(S + '5')) + assert_equal(promote_types('b', S), np.dtype(S + '4')) + assert_equal(promote_types('u1', S), np.dtype(S + '3')) + assert_equal(promote_types('u2', S), np.dtype(S + '5')) + assert_equal(promote_types('u4', S), np.dtype(S + '10')) + assert_equal(promote_types('u8', S), np.dtype(S + '20')) + assert_equal(promote_types('i1', S), np.dtype(S + '4')) + assert_equal(promote_types('i2', S), np.dtype(S + '6')) + assert_equal(promote_types('i4', S), np.dtype(S + '11')) + assert_equal(promote_types('i8', S), np.dtype(S + '21')) + # Promote numeric with sized string: + assert_equal(promote_types('bool', S + '1'), np.dtype(S + '5')) + assert_equal(promote_types('bool', S + '30'), np.dtype(S + '30')) + assert_equal(promote_types('b', S + '1'), np.dtype(S + '4')) + assert_equal(promote_types('b', S + '30'), np.dtype(S + '30')) + assert_equal(promote_types('u1', S + '1'), np.dtype(S + '3')) + assert_equal(promote_types('u1', S + '30'), np.dtype(S + '30')) + assert_equal(promote_types('u2', S + '1'), np.dtype(S + '5')) + assert_equal(promote_types('u2', S + '30'), np.dtype(S + '30')) + assert_equal(promote_types('u4', S + '1'), np.dtype(S + '10')) + assert_equal(promote_types('u4', S + '30'), np.dtype(S + '30')) + assert_equal(promote_types('u8', S + '1'), np.dtype(S + '20')) + assert_equal(promote_types('u8', S + '30'), np.dtype(S + '30')) + # Promote with object: + assert_equal(promote_types('O', S + '30'), np.dtype('O')) + + @pytest.mark.parametrize(["dtype1", "dtype2"], + [[np.dtype("V6"), np.dtype("V10")], # mismatch shape + # Mismatching names: + [np.dtype([("name1", "i8")]), np.dtype([("name2", "i8")])], + ]) + def test_invalid_void_promotion(self, dtype1, dtype2): + with pytest.raises(TypeError): + np.promote_types(dtype1, dtype2) + + @pytest.mark.parametrize(["dtype1", "dtype2"], + [[np.dtype("V10"), np.dtype("V10")], + [np.dtype([("name1", "i8")]), + np.dtype([("name1", np.dtype("i8").newbyteorder())])], + [np.dtype("i8,i8"), np.dtype("i8,>i8")], + [np.dtype("i8,i8"), np.dtype("i4,i4")], + ]) + def test_valid_void_promotion(self, dtype1, dtype2): + assert np.promote_types(dtype1, dtype2) == dtype1 + + @pytest.mark.parametrize("dtype", + list(np.typecodes["All"]) + + ["i,i", "10i", "S3", "S100", "U3", "U100", rational]) + def test_promote_identical_types_metadata(self, dtype): + # The same type passed in twice to promote types always + # preserves metadata + metadata = {1: 1} + dtype = np.dtype(dtype, metadata=metadata) + + res = np.promote_types(dtype, dtype) + assert res.metadata == dtype.metadata + + # byte-swapping preserves and makes the dtype native: + dtype = dtype.newbyteorder() + if dtype.isnative: + # The type does not have byte swapping + return + + res = np.promote_types(dtype, dtype) + + # Metadata is (currently) generally lost on byte-swapping (except for + # unicode. + if dtype.char != "U": + assert res.metadata is None + else: + assert res.metadata == metadata + assert res.isnative + + @pytest.mark.slow + @pytest.mark.filterwarnings('ignore:Promotion of numbers:FutureWarning') + @pytest.mark.parametrize(["dtype1", "dtype2"], + itertools.product( + list(np.typecodes["All"]) + + ["i,i", "S3", "S100", "U3", "U100", rational], + repeat=2)) + def test_promote_types_metadata(self, dtype1, dtype2): + """Metadata handling in promotion does not appear formalized + right now in NumPy. This test should thus be considered to + document behaviour, rather than test the correct definition of it. + + This test is very ugly, it was useful for rewriting part of the + promotion, but probably should eventually be replaced/deleted + (i.e. when metadata handling in promotion is better defined). + """ + metadata1 = {1: 1} + metadata2 = {2: 2} + dtype1 = np.dtype(dtype1, metadata=metadata1) + dtype2 = np.dtype(dtype2, metadata=metadata2) + + try: + res = np.promote_types(dtype1, dtype2) + except TypeError: + # Promotion failed, this test only checks metadata + return + + if res.char not in "USV" or res.names is not None or res.shape != (): + # All except string dtypes (and unstructured void) lose metadata + # on promotion (unless both dtypes are identical). + # At some point structured ones did not, but were restrictive. + assert res.metadata is None + elif res == dtype1: + # If one result is the result, it is usually returned unchanged: + assert res is dtype1 + elif res == dtype2: + # dtype1 may have been cast to the same type/kind as dtype2. + # If the resulting dtype is identical we currently pick the cast + # version of dtype1, which lost the metadata: + if np.promote_types(dtype1, dtype2.kind) == dtype2: + res.metadata is None + else: + res.metadata == metadata2 + else: + assert res.metadata is None + + # Try again for byteswapped version + dtype1 = dtype1.newbyteorder() + assert dtype1.metadata == metadata1 + res_bs = np.promote_types(dtype1, dtype2) + assert res_bs == res + assert res_bs.metadata == res.metadata + + def test_can_cast(self): + assert_(np.can_cast(np.int32, np.int64)) + assert_(np.can_cast(np.float64, complex)) + assert_(not np.can_cast(complex, float)) + + assert_(np.can_cast('i8', 'f8')) + assert_(not np.can_cast('i8', 'f4')) + assert_(np.can_cast('i4', 'S11')) + + assert_(np.can_cast('i8', 'i8', 'no')) + assert_(not np.can_cast('i8', 'no')) + + assert_(np.can_cast('i8', 'equiv')) + assert_(not np.can_cast('i8', 'equiv')) + + assert_(np.can_cast('i8', 'safe')) + assert_(not np.can_cast('i4', 'safe')) + + assert_(np.can_cast('i4', 'same_kind')) + assert_(not np.can_cast('u4', 'same_kind')) + + assert_(np.can_cast('u4', 'unsafe')) + + assert_(np.can_cast('bool', 'S5')) + assert_(not np.can_cast('bool', 'S4')) + + assert_(np.can_cast('b', 'S4')) + assert_(not np.can_cast('b', 'S3')) + + assert_(np.can_cast('u1', 'S3')) + assert_(not np.can_cast('u1', 'S2')) + assert_(np.can_cast('u2', 'S5')) + assert_(not np.can_cast('u2', 'S4')) + assert_(np.can_cast('u4', 'S10')) + assert_(not np.can_cast('u4', 'S9')) + assert_(np.can_cast('u8', 'S20')) + assert_(not np.can_cast('u8', 'S19')) + + assert_(np.can_cast('i1', 'S4')) + assert_(not np.can_cast('i1', 'S3')) + assert_(np.can_cast('i2', 'S6')) + assert_(not np.can_cast('i2', 'S5')) + assert_(np.can_cast('i4', 'S11')) + assert_(not np.can_cast('i4', 'S10')) + assert_(np.can_cast('i8', 'S21')) + assert_(not np.can_cast('i8', 'S20')) + + assert_(np.can_cast('bool', 'S5')) + assert_(not np.can_cast('bool', 'S4')) + + assert_(np.can_cast('b', 'U4')) + assert_(not np.can_cast('b', 'U3')) + + assert_(np.can_cast('u1', 'U3')) + assert_(not np.can_cast('u1', 'U2')) + assert_(np.can_cast('u2', 'U5')) + assert_(not np.can_cast('u2', 'U4')) + assert_(np.can_cast('u4', 'U10')) + assert_(not np.can_cast('u4', 'U9')) + assert_(np.can_cast('u8', 'U20')) + assert_(not np.can_cast('u8', 'U19')) + + assert_(np.can_cast('i1', 'U4')) + assert_(not np.can_cast('i1', 'U3')) + assert_(np.can_cast('i2', 'U6')) + assert_(not np.can_cast('i2', 'U5')) + assert_(np.can_cast('i4', 'U11')) + assert_(not np.can_cast('i4', 'U10')) + assert_(np.can_cast('i8', 'U21')) + assert_(not np.can_cast('i8', 'U20')) + + assert_raises(TypeError, np.can_cast, 'i4', None) + assert_raises(TypeError, np.can_cast, None, 'i4') + + # Also test keyword arguments + assert_(np.can_cast(from_=np.int32, to=np.int64)) + + def test_can_cast_simple_to_structured(self): + # Non-structured can only be cast to structured in 'unsafe' mode. + assert_(not np.can_cast('i4', 'i4,i4')) + assert_(not np.can_cast('i4', 'i4,i2')) + assert_(np.can_cast('i4', 'i4,i4', casting='unsafe')) + assert_(np.can_cast('i4', 'i4,i2', casting='unsafe')) + # Even if there is just a single field which is OK. + assert_(not np.can_cast('i2', [('f1', 'i4')])) + assert_(not np.can_cast('i2', [('f1', 'i4')], casting='same_kind')) + assert_(np.can_cast('i2', [('f1', 'i4')], casting='unsafe')) + # It should be the same for recursive structured or subarrays. + assert_(not np.can_cast('i2', [('f1', 'i4,i4')])) + assert_(np.can_cast('i2', [('f1', 'i4,i4')], casting='unsafe')) + assert_(not np.can_cast('i2', [('f1', '(2,3)i4')])) + assert_(np.can_cast('i2', [('f1', '(2,3)i4')], casting='unsafe')) + + def test_can_cast_structured_to_simple(self): + # Need unsafe casting for structured to simple. + assert_(not np.can_cast([('f1', 'i4')], 'i4')) + assert_(np.can_cast([('f1', 'i4')], 'i4', casting='unsafe')) + assert_(np.can_cast([('f1', 'i4')], 'i2', casting='unsafe')) + # Since it is unclear what is being cast, multiple fields to + # single should not work even for unsafe casting. + assert_(not np.can_cast('i4,i4', 'i4', casting='unsafe')) + # But a single field inside a single field is OK. + assert_(not np.can_cast([('f1', [('x', 'i4')])], 'i4')) + assert_(np.can_cast([('f1', [('x', 'i4')])], 'i4', casting='unsafe')) + # And a subarray is fine too - it will just take the first element + # (arguably not very consistently; might also take the first field). + assert_(not np.can_cast([('f0', '(3,)i4')], 'i4')) + assert_(np.can_cast([('f0', '(3,)i4')], 'i4', casting='unsafe')) + # But a structured subarray with multiple fields should fail. + assert_(not np.can_cast([('f0', ('i4,i4'), (2,))], 'i4', + casting='unsafe')) + + def test_can_cast_values(self): + # With NumPy 2 and NEP 50, can_cast errors on Python scalars. We could + # define this as (usually safe) at some point, and already do so + # in `copyto` and ufuncs (but there an error is raised if the integer + # is out of bounds and a warning for out-of-bound floats). + # Raises even for unsafe, previously checked within range (for floats + # that was approximately whether it would overflow to inf). + with pytest.raises(TypeError): + np.can_cast(4, "int8", casting="unsafe") + + with pytest.raises(TypeError): + np.can_cast(4.0, "float64", casting="unsafe") + + with pytest.raises(TypeError): + np.can_cast(4j, "complex128", casting="unsafe") + + @pytest.mark.parametrize("dtype", + list("?bhilqBHILQefdgFDG") + [rational]) + def test_can_cast_scalars(self, dtype): + # Basic test to ensure that scalars are supported in can-cast + # (does not check behavior exhaustively). + dtype = np.dtype(dtype) + scalar = dtype.type(0) + + assert np.can_cast(scalar, "int64") == np.can_cast(dtype, "int64") + assert np.can_cast(scalar, "float32", casting="unsafe") + + +# Custom exception class to test exception propagation in fromiter +class NIterError(Exception): + pass + + +class TestFromiter: + def makegen(self): + return (x**2 for x in range(24)) + + def test_types(self): + ai32 = np.fromiter(self.makegen(), np.int32) + ai64 = np.fromiter(self.makegen(), np.int64) + af = np.fromiter(self.makegen(), float) + assert_(ai32.dtype == np.dtype(np.int32)) + assert_(ai64.dtype == np.dtype(np.int64)) + assert_(af.dtype == np.dtype(float)) + + def test_lengths(self): + expected = np.array(list(self.makegen())) + a = np.fromiter(self.makegen(), int) + a20 = np.fromiter(self.makegen(), int, 20) + assert_(len(a) == len(expected)) + assert_(len(a20) == 20) + assert_raises(ValueError, np.fromiter, + self.makegen(), int, len(expected) + 10) + + def test_values(self): + expected = np.array(list(self.makegen())) + a = np.fromiter(self.makegen(), int) + a20 = np.fromiter(self.makegen(), int, 20) + assert_(np.all(a == expected, axis=0)) + assert_(np.all(a20 == expected[:20], axis=0)) + + def load_data(self, n, eindex): + # Utility method for the issue 2592 tests. + # Raise an exception at the desired index in the iterator. + for e in range(n): + if e == eindex: + raise NIterError(f'error at index {eindex}') + yield e + + @pytest.mark.parametrize("dtype", [int, object]) + @pytest.mark.parametrize(["count", "error_index"], [(10, 5), (10, 9)]) + def test_2592(self, count, error_index, dtype): + # Test iteration exceptions are correctly raised. The data/generator + # has `count` elements but errors at `error_index` + iterable = self.load_data(count, error_index) + with pytest.raises(NIterError): + np.fromiter(iterable, dtype=dtype, count=count) + + @pytest.mark.parametrize("dtype", ["S", "S0", "V0", "U0"]) + def test_empty_not_structured(self, dtype): + # Note, "S0" could be allowed at some point, so long "S" (without + # any length) is rejected. + with pytest.raises(ValueError, match="Must specify length"): + np.fromiter([], dtype=dtype) + + @pytest.mark.parametrize(["dtype", "data"], + [("d", [1, 2, 3, 4, 5, 6, 7, 8, 9]), + ("O", [1, 2, 3, 4, 5, 6, 7, 8, 9]), + ("i,O", [(1, 2), (5, 4), (2, 3), (9, 8), (6, 7)]), + # subarray dtypes (important because their dimensions end up + # in the result arrays dimension: + ("2i", [(1, 2), (5, 4), (2, 3), (9, 8), (6, 7)]), + (np.dtype(("O", (2, 3))), + [((1, 2, 3), (3, 4, 5)), ((3, 2, 1), (5, 4, 3))])]) + @pytest.mark.parametrize("length_hint", [0, 1]) + def test_growth_and_complicated_dtypes(self, dtype, data, length_hint): + dtype = np.dtype(dtype) + + data = data * 100 # make sure we realloc a bit + + class MyIter: + # Class/example from gh-15789 + def __length_hint__(self): + # only required to be an estimate, this is legal + return length_hint # 0 or 1 + + def __iter__(self): + return iter(data) + + res = np.fromiter(MyIter(), dtype=dtype) + expected = np.array(data, dtype=dtype) + + assert_array_equal(res, expected) + + def test_empty_result(self): + class MyIter: + def __length_hint__(self): + return 10 + + def __iter__(self): + return iter([]) # actual iterator is empty. + + res = np.fromiter(MyIter(), dtype="d") + assert res.shape == (0,) + assert res.dtype == "d" + + def test_too_few_items(self): + msg = "iterator too short: Expected 10 but iterator had only 3 items." + with pytest.raises(ValueError, match=msg): + np.fromiter([1, 2, 3], count=10, dtype=int) + + def test_failed_itemsetting(self): + with pytest.raises(TypeError): + np.fromiter([1, None, 3], dtype=int) + + # The following manages to hit somewhat trickier code paths: + iterable = ((2, 3, 4) for i in range(5)) + with pytest.raises(ValueError): + np.fromiter(iterable, dtype=np.dtype((int, 2))) + +class TestNonzero: + def test_nonzero_trivial(self): + assert_equal(np.count_nonzero(np.array([])), 0) + assert_equal(np.count_nonzero(np.array([], dtype='?')), 0) + assert_equal(np.nonzero(np.array([])), ([],)) + + assert_equal(np.count_nonzero(np.array([0])), 0) + assert_equal(np.count_nonzero(np.array([0], dtype='?')), 0) + assert_equal(np.nonzero(np.array([0])), ([],)) + + assert_equal(np.count_nonzero(np.array([1])), 1) + assert_equal(np.count_nonzero(np.array([1], dtype='?')), 1) + assert_equal(np.nonzero(np.array([1])), ([0],)) + + def test_nonzero_zerodim(self): + err_msg = "Calling nonzero on 0d arrays is not allowed" + with assert_raises_regex(ValueError, err_msg): + np.nonzero(np.array(0)) + with assert_raises_regex(ValueError, err_msg): + np.array(1).nonzero() + + def test_nonzero_onedim(self): + x = np.array([1, 0, 2, -1, 0, 0, 8]) + assert_equal(np.count_nonzero(x), 4) + assert_equal(np.count_nonzero(x), 4) + assert_equal(np.nonzero(x), ([0, 2, 3, 6],)) + + # x = np.array([(1, 2), (0, 0), (1, 1), (-1, 3), (0, 7)], + # dtype=[('a', 'i4'), ('b', 'i2')]) + x = np.array([(1, 2, -5, -3), (0, 0, 2, 7), (1, 1, 0, 1), (-1, 3, 1, 0), (0, 7, 0, 4)], + dtype=[('a', 'i4'), ('b', 'i2'), ('c', 'i1'), ('d', 'i8')]) + assert_equal(np.count_nonzero(x['a']), 3) + assert_equal(np.count_nonzero(x['b']), 4) + assert_equal(np.count_nonzero(x['c']), 3) + assert_equal(np.count_nonzero(x['d']), 4) + assert_equal(np.nonzero(x['a']), ([0, 2, 3],)) + assert_equal(np.nonzero(x['b']), ([0, 2, 3, 4],)) + + def test_nonzero_twodim(self): + x = np.array([[0, 1, 0], [2, 0, 3]]) + assert_equal(np.count_nonzero(x.astype('i1')), 3) + assert_equal(np.count_nonzero(x.astype('i2')), 3) + assert_equal(np.count_nonzero(x.astype('i4')), 3) + assert_equal(np.count_nonzero(x.astype('i8')), 3) + assert_equal(np.nonzero(x), ([0, 1, 1], [1, 0, 2])) + + x = np.eye(3) + assert_equal(np.count_nonzero(x.astype('i1')), 3) + assert_equal(np.count_nonzero(x.astype('i2')), 3) + assert_equal(np.count_nonzero(x.astype('i4')), 3) + assert_equal(np.count_nonzero(x.astype('i8')), 3) + assert_equal(np.nonzero(x), ([0, 1, 2], [0, 1, 2])) + + x = np.array([[(0, 1), (0, 0), (1, 11)], + [(1, 1), (1, 0), (0, 0)], + [(0, 0), (1, 5), (0, 1)]], dtype=[('a', 'f4'), ('b', 'u1')]) + assert_equal(np.count_nonzero(x['a']), 4) + assert_equal(np.count_nonzero(x['b']), 5) + assert_equal(np.nonzero(x['a']), ([0, 1, 1, 2], [2, 0, 1, 1])) + assert_equal(np.nonzero(x['b']), ([0, 0, 1, 2, 2], [0, 2, 0, 1, 2])) + + assert_(not x['a'].T.flags.aligned) + assert_equal(np.count_nonzero(x['a'].T), 4) + assert_equal(np.count_nonzero(x['b'].T), 5) + assert_equal(np.nonzero(x['a'].T), ([0, 1, 1, 2], [1, 1, 2, 0])) + assert_equal(np.nonzero(x['b'].T), ([0, 0, 1, 2, 2], [0, 1, 2, 0, 2])) + + def test_sparse(self): + # test special sparse condition boolean code path + for i in range(20): + c = np.zeros(200, dtype=bool) + c[i::20] = True + assert_equal(np.nonzero(c)[0], np.arange(i, 200 + i, 20)) + + c = np.zeros(400, dtype=bool) + c[10 + i:20 + i] = True + c[20 + i * 2] = True + assert_equal(np.nonzero(c)[0], + np.concatenate((np.arange(10 + i, 20 + i), [20 + i * 2]))) + + @pytest.mark.parametrize('dtype', [np.float32, np.float64]) + def test_nonzero_float_dtypes(self, dtype): + rng = np.random.default_rng(seed=10) + x = ((2**33) * rng.normal(size=100)).astype(dtype) + x[rng.choice(50, size=100)] = 0 + idxs = np.nonzero(x)[0] + assert_equal(np.array_equal(np.where(x != 0)[0], idxs), True) + + @pytest.mark.parametrize('dtype', [bool, np.int8, np.int16, np.int32, np.int64, + np.uint8, np.uint16, np.uint32, np.uint64]) + def test_nonzero_integer_dtypes(self, dtype): + rng = np.random.default_rng(seed=10) + x = rng.integers(0, 255, size=100).astype(dtype) + x[rng.choice(50, size=100)] = 0 + idxs = np.nonzero(x)[0] + assert_equal(np.array_equal(np.where(x != 0)[0], idxs), True) + + def test_return_type(self): + class C(np.ndarray): + pass + + for view in (C, np.ndarray): + for nd in range(1, 4): + shape = tuple(range(2, 2 + nd)) + x = np.arange(np.prod(shape)).reshape(shape).view(view) + for nzx in (np.nonzero(x), x.nonzero()): + for nzx_i in nzx: + assert_(type(nzx_i) is np.ndarray) + assert_(nzx_i.flags.writeable) + + def test_count_nonzero_axis(self): + # Basic check of functionality + m = np.array([[0, 1, 7, 0, 0], [3, 0, 0, 2, 19]]) + + expected = np.array([1, 1, 1, 1, 1]) + assert_equal(np.count_nonzero(m, axis=0), expected) + + expected = np.array([2, 3]) + assert_equal(np.count_nonzero(m, axis=1), expected) + + assert_raises(ValueError, np.count_nonzero, m, axis=(1, 1)) + assert_raises(TypeError, np.count_nonzero, m, axis='foo') + assert_raises(AxisError, np.count_nonzero, m, axis=3) + assert_raises(TypeError, np.count_nonzero, + m, axis=np.array([[1], [2]])) + + def test_count_nonzero_axis_all_dtypes(self): + # More thorough test that the axis argument is respected + # for all dtypes and responds correctly when presented with + # either integer or tuple arguments for axis + msg = "Mismatch for dtype: %s" + + def assert_equal_w_dt(a, b, err_msg): + assert_equal(a.dtype, b.dtype, err_msg=err_msg) + assert_equal(a, b, err_msg=err_msg) + + for dt in np.typecodes['All']: + err_msg = msg % (np.dtype(dt).name,) + + if dt != 'V': + if dt != 'M': + m = np.zeros((3, 3), dtype=dt) + n = np.ones(1, dtype=dt) + + m[0, 0] = n[0] + m[1, 0] = n[0] + + else: # np.zeros doesn't work for np.datetime64 + m = np.array(['1970-01-01'] * 9) + m = m.reshape((3, 3)) + + m[0, 0] = '1970-01-12' + m[1, 0] = '1970-01-12' + m = m.astype(dt) + + expected = np.array([2, 0, 0], dtype=np.intp) + assert_equal_w_dt(np.count_nonzero(m, axis=0), + expected, err_msg=err_msg) + + expected = np.array([1, 1, 0], dtype=np.intp) + assert_equal_w_dt(np.count_nonzero(m, axis=1), + expected, err_msg=err_msg) + + expected = np.array(2) + assert_equal(np.count_nonzero(m, axis=(0, 1)), + expected, err_msg=err_msg) + assert_equal(np.count_nonzero(m, axis=None), + expected, err_msg=err_msg) + assert_equal(np.count_nonzero(m), + expected, err_msg=err_msg) + + if dt == 'V': + # There are no 'nonzero' objects for np.void, so the testing + # setup is slightly different for this dtype + m = np.array([np.void(1)] * 6).reshape((2, 3)) + + expected = np.array([0, 0, 0], dtype=np.intp) + assert_equal_w_dt(np.count_nonzero(m, axis=0), + expected, err_msg=err_msg) + + expected = np.array([0, 0], dtype=np.intp) + assert_equal_w_dt(np.count_nonzero(m, axis=1), + expected, err_msg=err_msg) + + expected = np.array(0) + assert_equal(np.count_nonzero(m, axis=(0, 1)), + expected, err_msg=err_msg) + assert_equal(np.count_nonzero(m, axis=None), + expected, err_msg=err_msg) + assert_equal(np.count_nonzero(m), + expected, err_msg=err_msg) + + def test_count_nonzero_axis_consistent(self): + # Check that the axis behaviour for valid axes in + # non-special cases is consistent (and therefore + # correct) by checking it against an integer array + # that is then casted to the generic object dtype + from itertools import combinations, permutations + + axis = (0, 1, 2, 3) + size = (5, 5, 5, 5) + msg = "Mismatch for axis: %s" + + rng = np.random.RandomState(1234) + m = rng.randint(-100, 100, size=size) + n = m.astype(object) + + for length in range(len(axis)): + for combo in combinations(axis, length): + for perm in permutations(combo): + assert_equal( + np.count_nonzero(m, axis=perm), + np.count_nonzero(n, axis=perm), + err_msg=msg % (perm,)) + + def test_countnonzero_axis_empty(self): + a = np.array([[0, 0, 1], [1, 0, 1]]) + assert_equal(np.count_nonzero(a, axis=()), a.astype(bool)) + + def test_countnonzero_keepdims(self): + a = np.array([[0, 0, 1, 0], + [0, 3, 5, 0], + [7, 9, 2, 0]]) + assert_equal(np.count_nonzero(a, axis=0, keepdims=True), + [[1, 2, 3, 0]]) + assert_equal(np.count_nonzero(a, axis=1, keepdims=True), + [[1], [2], [3]]) + assert_equal(np.count_nonzero(a, keepdims=True), + [[6]]) + + def test_array_method(self): + # Tests that the array method + # call to nonzero works + m = np.array([[1, 0, 0], [4, 0, 6]]) + tgt = [[0, 1, 1], [0, 0, 2]] + + assert_equal(m.nonzero(), tgt) + + def test_nonzero_invalid_object(self): + # gh-9295 + a = np.array([np.array([1, 2]), 3], dtype=object) + assert_raises(ValueError, np.nonzero, a) + + class BoolErrors: + def __bool__(self): + raise ValueError("Not allowed") + + assert_raises(ValueError, np.nonzero, np.array([BoolErrors()])) + + def test_nonzero_sideeffect_safety(self): + # gh-13631 + class FalseThenTrue: + _val = False + + def __bool__(self): + try: + return self._val + finally: + self._val = True + + class TrueThenFalse: + _val = True + + def __bool__(self): + try: + return self._val + finally: + self._val = False + + # result grows on the second pass + a = np.array([True, FalseThenTrue()]) + assert_raises(RuntimeError, np.nonzero, a) + + a = np.array([[True], [FalseThenTrue()]]) + assert_raises(RuntimeError, np.nonzero, a) + + # result shrinks on the second pass + a = np.array([False, TrueThenFalse()]) + assert_raises(RuntimeError, np.nonzero, a) + + a = np.array([[False], [TrueThenFalse()]]) + assert_raises(RuntimeError, np.nonzero, a) + + def test_nonzero_sideffects_structured_void(self): + # Checks that structured void does not mutate alignment flag of + # original array. + arr = np.zeros(5, dtype="i1,i8,i8") # `ones` may short-circuit + assert arr.flags.aligned # structs are considered "aligned" + assert not arr["f2"].flags.aligned + # make sure that nonzero/count_nonzero do not flip the flag: + np.nonzero(arr) + assert arr.flags.aligned + np.count_nonzero(arr) + assert arr.flags.aligned + + def test_nonzero_exception_safe(self): + # gh-13930 + + class ThrowsAfter: + def __init__(self, iters): + self.iters_left = iters + + def __bool__(self): + if self.iters_left == 0: + raise ValueError("called `iters` times") + + self.iters_left -= 1 + return True + + """ + Test that a ValueError is raised instead of a SystemError + + If the __bool__ function is called after the error state is set, + Python (cpython) will raise a SystemError. + """ + + # assert that an exception in first pass is handled correctly + a = np.array([ThrowsAfter(5)] * 10) + assert_raises(ValueError, np.nonzero, a) + + # raise exception in second pass for 1-dimensional loop + a = np.array([ThrowsAfter(15)] * 10) + assert_raises(ValueError, np.nonzero, a) + + # raise exception in second pass for n-dimensional loop + a = np.array([[ThrowsAfter(15)]] * 10) + assert_raises(ValueError, np.nonzero, a) + + def test_nonzero_byteorder(self): + values = [0., -0., 1, float('nan'), 0, 1, + np.float16(0), np.float16(12.3)] + expected_values = [0, 0, 1, 1, 0, 1, 0, 1] + + for value, expected in zip(values, expected_values): + A = np.array([value]) + A_byteswapped = (A.view(A.dtype.newbyteorder()).byteswap()).copy() + + assert np.count_nonzero(A) == expected + assert np.count_nonzero(A_byteswapped) == expected + + def test_count_nonzero_non_aligned_array(self): + # gh-27523 + b = np.zeros(64 + 1, dtype=np.int8)[1:] + b = b.view(int) + b[:] = np.arange(b.size) + b[::2] = 0 + assert b.flags.aligned is False + assert np.count_nonzero(b) == b.size / 2 + + b = np.zeros(64 + 1, dtype=np.float16)[1:] + b = b.view(float) + b[:] = np.arange(b.size) + b[::2] = 0 + assert b.flags.aligned is False + assert np.count_nonzero(b) == b.size / 2 + + +class TestIndex: + def test_boolean(self): + a = rand(3, 5, 8) + V = rand(5, 8) + g1 = randint(0, 5, size=15) + g2 = randint(0, 8, size=15) + V[g1, g2] = -V[g1, g2] + assert_((np.array([a[0][V > 0], a[1][V > 0], a[2][V > 0]]) == a[:, V > 0]).all()) + + def test_boolean_edgecase(self): + a = np.array([], dtype='int32') + b = np.array([], dtype='bool') + c = a[b] + assert_equal(c, []) + assert_equal(c.dtype, np.dtype('int32')) + + +class TestBinaryRepr: + def test_zero(self): + assert_equal(np.binary_repr(0), '0') + + def test_positive(self): + assert_equal(np.binary_repr(10), '1010') + assert_equal(np.binary_repr(12522), + '11000011101010') + assert_equal(np.binary_repr(10736848), + '101000111101010011010000') + + def test_negative(self): + assert_equal(np.binary_repr(-1), '-1') + assert_equal(np.binary_repr(-10), '-1010') + assert_equal(np.binary_repr(-12522), + '-11000011101010') + assert_equal(np.binary_repr(-10736848), + '-101000111101010011010000') + + def test_sufficient_width(self): + assert_equal(np.binary_repr(0, width=5), '00000') + assert_equal(np.binary_repr(10, width=7), '0001010') + assert_equal(np.binary_repr(-5, width=7), '1111011') + + def test_neg_width_boundaries(self): + # see gh-8670 + + # Ensure that the example in the issue does not + # break before proceeding to a more thorough test. + assert_equal(np.binary_repr(-128, width=8), '10000000') + + for width in range(1, 11): + num = -2**(width - 1) + exp = '1' + (width - 1) * '0' + assert_equal(np.binary_repr(num, width=width), exp) + + def test_large_neg_int64(self): + # See gh-14289. + assert_equal(np.binary_repr(np.int64(-2**62), width=64), + '11' + '0' * 62) + + +class TestBaseRepr: + def test_base3(self): + assert_equal(np.base_repr(3**5, 3), '100000') + + def test_positive(self): + assert_equal(np.base_repr(12, 10), '12') + assert_equal(np.base_repr(12, 10, 4), '000012') + assert_equal(np.base_repr(12, 4), '30') + assert_equal(np.base_repr(3731624803700888, 36), '10QR0ROFCEW') + + def test_negative(self): + assert_equal(np.base_repr(-12, 10), '-12') + assert_equal(np.base_repr(-12, 10, 4), '-000012') + assert_equal(np.base_repr(-12, 4), '-30') + + def test_base_range(self): + with assert_raises(ValueError): + np.base_repr(1, 1) + with assert_raises(ValueError): + np.base_repr(1, 37) + + def test_minimal_signed_int(self): + assert_equal(np.base_repr(np.int8(-128)), '-10000000') + + +def _test_array_equal_parametrizations(): + """ + we pre-create arrays as we sometime want to pass the same instance + and sometime not. Passing the same instances may not mean the array are + equal, especially when containing None + """ + # those are 0-d arrays, it used to be a special case + # where (e0 == e0).all() would raise + e0 = np.array(0, dtype="int") + e1 = np.array(1, dtype="float") + # x,y, nan_equal, expected_result + yield (e0, e0.copy(), None, True) + yield (e0, e0.copy(), False, True) + yield (e0, e0.copy(), True, True) + + # + yield (e1, e1.copy(), None, True) + yield (e1, e1.copy(), False, True) + yield (e1, e1.copy(), True, True) + + # Non-nanable - those cannot hold nans + a12 = np.array([1, 2]) + a12b = a12.copy() + a123 = np.array([1, 2, 3]) + a13 = np.array([1, 3]) + a34 = np.array([3, 4]) + + aS1 = np.array(["a"], dtype="S1") + aS1b = aS1.copy() + aS1u4 = np.array([("a", 1)], dtype="S1,u4") + aS1u4b = aS1u4.copy() + + yield (a12, a12b, None, True) + yield (a12, a12, None, True) + yield (a12, a123, None, False) + yield (a12, a34, None, False) + yield (a12, a13, None, False) + yield (aS1, aS1b, None, True) + yield (aS1, aS1, None, True) + + # Non-float dtype - equal_nan should have no effect, + yield (a123, a123, None, True) + yield (a123, a123, False, True) + yield (a123, a123, True, True) + yield (a123, a123.copy(), None, True) + yield (a123, a123.copy(), False, True) + yield (a123, a123.copy(), True, True) + yield (a123.astype("float"), a123.astype("float"), None, True) + yield (a123.astype("float"), a123.astype("float"), False, True) + yield (a123.astype("float"), a123.astype("float"), True, True) + + # these can hold None + b1 = np.array([1, 2, np.nan]) + b2 = np.array([1, np.nan, 2]) + b3 = np.array([1, 2, np.inf]) + b4 = np.array(np.nan) + + # instances are the same + yield (b1, b1, None, False) + yield (b1, b1, False, False) + yield (b1, b1, True, True) + + # equal but not same instance + yield (b1, b1.copy(), None, False) + yield (b1, b1.copy(), False, False) + yield (b1, b1.copy(), True, True) + + # same once stripped of Nan + yield (b1, b2, None, False) + yield (b1, b2, False, False) + yield (b1, b2, True, False) + + # nan's not conflated with inf's + yield (b1, b3, None, False) + yield (b1, b3, False, False) + yield (b1, b3, True, False) + + # all Nan + yield (b4, b4, None, False) + yield (b4, b4, False, False) + yield (b4, b4, True, True) + yield (b4, b4.copy(), None, False) + yield (b4, b4.copy(), False, False) + yield (b4, b4.copy(), True, True) + + t1 = b1.astype("timedelta64") + t2 = b2.astype("timedelta64") + + # Timedeltas are particular + yield (t1, t1, None, False) + yield (t1, t1, False, False) + yield (t1, t1, True, True) + + yield (t1, t1.copy(), None, False) + yield (t1, t1.copy(), False, False) + yield (t1, t1.copy(), True, True) + + yield (t1, t2, None, False) + yield (t1, t2, False, False) + yield (t1, t2, True, False) + + # Multi-dimensional array + md1 = np.array([[0, 1], [np.nan, 1]]) + + yield (md1, md1, None, False) + yield (md1, md1, False, False) + yield (md1, md1, True, True) + yield (md1, md1.copy(), None, False) + yield (md1, md1.copy(), False, False) + yield (md1, md1.copy(), True, True) + # both complexes are nan+nan.j but the same instance + cplx1, cplx2 = [np.array([np.nan + np.nan * 1j])] * 2 + + # only real or img are nan. + cplx3, cplx4 = np.complex64(1, np.nan), np.complex64(np.nan, 1) + + # Complex values + yield (cplx1, cplx2, None, False) + yield (cplx1, cplx2, False, False) + yield (cplx1, cplx2, True, True) + + # Complex values, 1+nan, nan+1j + yield (cplx3, cplx4, None, False) + yield (cplx3, cplx4, False, False) + yield (cplx3, cplx4, True, True) + + +class TestArrayComparisons: + @pytest.mark.parametrize( + "bx,by,equal_nan,expected", _test_array_equal_parametrizations() + ) + def test_array_equal_equal_nan(self, bx, by, equal_nan, expected): + """ + This test array_equal for a few combinations: + + - are the two inputs the same object or not (same object may not + be equal if contains NaNs) + - Whether we should consider or not, NaNs, being equal. + + """ + if equal_nan is None: + res = np.array_equal(bx, by) + else: + res = np.array_equal(bx, by, equal_nan=equal_nan) + assert_(res is expected) + assert_(type(res) is bool) + + def test_array_equal_different_scalar_types(self): + # https://github.com/numpy/numpy/issues/27271 + a = np.array("foo") + b = np.array(1) + assert not np.array_equal(a, b) + assert not np.array_equiv(a, b) + + def test_none_compares_elementwise(self): + a = np.array([None, 1, None], dtype=object) + assert_equal(a == None, [True, False, True]) # noqa: E711 + assert_equal(a != None, [False, True, False]) # noqa: E711 + + a = np.ones(3) + assert_equal(a == None, [False, False, False]) # noqa: E711 + assert_equal(a != None, [True, True, True]) # noqa: E711 + + def test_array_equiv(self): + res = np.array_equiv(np.array([1, 2]), np.array([1, 2])) + assert_(res) + assert_(type(res) is bool) + res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3])) + assert_(not res) + assert_(type(res) is bool) + res = np.array_equiv(np.array([1, 2]), np.array([3, 4])) + assert_(not res) + assert_(type(res) is bool) + res = np.array_equiv(np.array([1, 2]), np.array([1, 3])) + assert_(not res) + assert_(type(res) is bool) + + res = np.array_equiv(np.array([1, 1]), np.array([1])) + assert_(res) + assert_(type(res) is bool) + res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]])) + assert_(res) + assert_(type(res) is bool) + res = np.array_equiv(np.array([1, 2]), np.array([2])) + assert_(not res) + assert_(type(res) is bool) + res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]])) + assert_(not res) + assert_(type(res) is bool) + res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])) + assert_(not res) + assert_(type(res) is bool) + + @pytest.mark.parametrize("dtype", ["V0", "V3", "V10"]) + def test_compare_unstructured_voids(self, dtype): + zeros = np.zeros(3, dtype=dtype) + + assert_array_equal(zeros, zeros) + assert not (zeros != zeros).any() + + if dtype == "V0": + # Can't test != of actually different data + return + + nonzeros = np.array([b"1", b"2", b"3"], dtype=dtype) + + assert not (zeros == nonzeros).any() + assert (zeros != nonzeros).all() + + +def assert_array_strict_equal(x, y): + assert_array_equal(x, y) + # Check flags, 32 bit arches typically don't provide 16 byte alignment + if ((x.dtype.alignment <= 8 or + np.intp().dtype.itemsize != 4) and + sys.platform != 'win32'): + assert_(x.flags == y.flags) + else: + assert_(x.flags.owndata == y.flags.owndata) + assert_(x.flags.writeable == y.flags.writeable) + assert_(x.flags.c_contiguous == y.flags.c_contiguous) + assert_(x.flags.f_contiguous == y.flags.f_contiguous) + assert_(x.flags.writebackifcopy == y.flags.writebackifcopy) + # check endianness + assert_(x.dtype.isnative == y.dtype.isnative) + + +class TestClip: + def setup_method(self): + self.nr = 5 + self.nc = 3 + + def fastclip(self, a, m, M, out=None, **kwargs): + return a.clip(m, M, out=out, **kwargs) + + def clip(self, a, m, M, out=None): + # use a.choose to verify fastclip result + selector = np.less(a, m) + 2 * np.greater(a, M) + return selector.choose((a, m, M), out=out) + + # Handy functions + def _generate_data(self, n, m): + return randn(n, m) + + def _generate_data_complex(self, n, m): + return randn(n, m) + 1.j * rand(n, m) + + def _generate_flt_data(self, n, m): + return (randn(n, m)).astype(np.float32) + + def _neg_byteorder(self, a): + a = np.asarray(a) + if sys.byteorder == 'little': + a = a.astype(a.dtype.newbyteorder('>')) + else: + a = a.astype(a.dtype.newbyteorder('<')) + return a + + def _generate_non_native_data(self, n, m): + data = randn(n, m) + data = self._neg_byteorder(data) + assert_(not data.dtype.isnative) + return data + + def _generate_int_data(self, n, m): + return (10 * rand(n, m)).astype(np.int64) + + def _generate_int32_data(self, n, m): + return (10 * rand(n, m)).astype(np.int32) + + # Now the real test cases + + @pytest.mark.parametrize("dtype", '?bhilqpBHILQPefdgFDGO') + def test_ones_pathological(self, dtype): + # for preservation of behavior described in + # gh-12519; amin > amax behavior may still change + # in the future + arr = np.ones(10, dtype=dtype) + expected = np.zeros(10, dtype=dtype) + actual = np.clip(arr, 1, 0) + if dtype == 'O': + assert actual.tolist() == expected.tolist() + else: + assert_equal(actual, expected) + + def test_simple_double(self): + # Test native double input with scalar min/max. + a = self._generate_data(self.nr, self.nc) + m = 0.1 + M = 0.6 + ac = self.fastclip(a, m, M) + act = self.clip(a, m, M) + assert_array_strict_equal(ac, act) + + def test_simple_int(self): + # Test native int input with scalar min/max. + a = self._generate_int_data(self.nr, self.nc) + a = a.astype(int) + m = -2 + M = 4 + ac = self.fastclip(a, m, M) + act = self.clip(a, m, M) + assert_array_strict_equal(ac, act) + + def test_array_double(self): + # Test native double input with array min/max. + a = self._generate_data(self.nr, self.nc) + m = np.zeros(a.shape) + M = m + 0.5 + ac = self.fastclip(a, m, M) + act = self.clip(a, m, M) + assert_array_strict_equal(ac, act) + + def test_simple_nonnative(self): + # Test non native double input with scalar min/max. + # Test native double input with non native double scalar min/max. + a = self._generate_non_native_data(self.nr, self.nc) + m = -0.5 + M = 0.6 + ac = self.fastclip(a, m, M) + act = self.clip(a, m, M) + assert_array_equal(ac, act) + + # Test native double input with non native double scalar min/max. + a = self._generate_data(self.nr, self.nc) + m = -0.5 + M = self._neg_byteorder(0.6) + assert_(not M.dtype.isnative) + ac = self.fastclip(a, m, M) + act = self.clip(a, m, M) + assert_array_equal(ac, act) + + def test_simple_complex(self): + # Test native complex input with native double scalar min/max. + # Test native input with complex double scalar min/max. + a = 3 * self._generate_data_complex(self.nr, self.nc) + m = -0.5 + M = 1. + ac = self.fastclip(a, m, M) + act = self.clip(a, m, M) + assert_array_strict_equal(ac, act) + + # Test native input with complex double scalar min/max. + a = 3 * self._generate_data(self.nr, self.nc) + m = -0.5 + 1.j + M = 1. + 2.j + ac = self.fastclip(a, m, M) + act = self.clip(a, m, M) + assert_array_strict_equal(ac, act) + + def test_clip_complex(self): + # Address Issue gh-5354 for clipping complex arrays + # Test native complex input without explicit min/max + # ie, either min=None or max=None + a = np.ones(10, dtype=complex) + m = a.min() + M = a.max() + am = self.fastclip(a, m, None) + aM = self.fastclip(a, None, M) + assert_array_strict_equal(am, a) + assert_array_strict_equal(aM, a) + + def test_clip_non_contig(self): + # Test clip for non contiguous native input and native scalar min/max. + a = self._generate_data(self.nr * 2, self.nc * 3) + a = a[::2, ::3] + assert_(not a.flags['F_CONTIGUOUS']) + assert_(not a.flags['C_CONTIGUOUS']) + ac = self.fastclip(a, -1.6, 1.7) + act = self.clip(a, -1.6, 1.7) + assert_array_strict_equal(ac, act) + + def test_simple_out(self): + # Test native double input with scalar min/max. + a = self._generate_data(self.nr, self.nc) + m = -0.5 + M = 0.6 + ac = np.zeros(a.shape) + act = np.zeros(a.shape) + self.fastclip(a, m, M, ac) + self.clip(a, m, M, act) + assert_array_strict_equal(ac, act) + + @pytest.mark.parametrize("casting", [None, "unsafe"]) + def test_simple_int32_inout(self, casting): + # Test native int32 input with double min/max and int32 out. + a = self._generate_int32_data(self.nr, self.nc) + m = np.float64(0) + M = np.float64(2) + ac = np.zeros(a.shape, dtype=np.int32) + act = ac.copy() + if casting is None: + with pytest.raises(TypeError): + self.fastclip(a, m, M, ac, casting=casting) + else: + # explicitly passing "unsafe" will silence warning + self.fastclip(a, m, M, ac, casting=casting) + self.clip(a, m, M, act) + assert_array_strict_equal(ac, act) + + def test_simple_int64_out(self): + # Test native int32 input with int32 scalar min/max and int64 out. + a = self._generate_int32_data(self.nr, self.nc) + m = np.int32(-1) + M = np.int32(1) + ac = np.zeros(a.shape, dtype=np.int64) + act = ac.copy() + self.fastclip(a, m, M, ac) + self.clip(a, m, M, act) + assert_array_strict_equal(ac, act) + + def test_simple_int64_inout(self): + # Test native int32 input with double array min/max and int32 out. + a = self._generate_int32_data(self.nr, self.nc) + m = np.zeros(a.shape, np.float64) + M = np.float64(1) + ac = np.zeros(a.shape, dtype=np.int32) + act = ac.copy() + self.fastclip(a, m, M, out=ac, casting="unsafe") + self.clip(a, m, M, act) + assert_array_strict_equal(ac, act) + + def test_simple_int32_out(self): + # Test native double input with scalar min/max and int out. + a = self._generate_data(self.nr, self.nc) + m = -1.0 + M = 2.0 + ac = np.zeros(a.shape, dtype=np.int32) + act = ac.copy() + self.fastclip(a, m, M, out=ac, casting="unsafe") + self.clip(a, m, M, act) + assert_array_strict_equal(ac, act) + + def test_simple_inplace_01(self): + # Test native double input with array min/max in-place. + a = self._generate_data(self.nr, self.nc) + ac = a.copy() + m = np.zeros(a.shape) + M = 1.0 + self.fastclip(a, m, M, a) + self.clip(a, m, M, ac) + assert_array_strict_equal(a, ac) + + def test_simple_inplace_02(self): + # Test native double input with scalar min/max in-place. + a = self._generate_data(self.nr, self.nc) + ac = a.copy() + m = -0.5 + M = 0.6 + self.fastclip(a, m, M, a) + self.clip(ac, m, M, ac) + assert_array_strict_equal(a, ac) + + def test_noncontig_inplace(self): + # Test non contiguous double input with double scalar min/max in-place. + a = self._generate_data(self.nr * 2, self.nc * 3) + a = a[::2, ::3] + assert_(not a.flags['F_CONTIGUOUS']) + assert_(not a.flags['C_CONTIGUOUS']) + ac = a.copy() + m = -0.5 + M = 0.6 + self.fastclip(a, m, M, a) + self.clip(ac, m, M, ac) + assert_array_equal(a, ac) + + def test_type_cast_01(self): + # Test native double input with scalar min/max. + a = self._generate_data(self.nr, self.nc) + m = -0.5 + M = 0.6 + ac = self.fastclip(a, m, M) + act = self.clip(a, m, M) + assert_array_strict_equal(ac, act) + + def test_type_cast_02(self): + # Test native int32 input with int32 scalar min/max. + a = self._generate_int_data(self.nr, self.nc) + a = a.astype(np.int32) + m = -2 + M = 4 + ac = self.fastclip(a, m, M) + act = self.clip(a, m, M) + assert_array_strict_equal(ac, act) + + def test_type_cast_03(self): + # Test native int32 input with float64 scalar min/max. + a = self._generate_int32_data(self.nr, self.nc) + m = -2 + M = 4 + ac = self.fastclip(a, np.float64(m), np.float64(M)) + act = self.clip(a, np.float64(m), np.float64(M)) + assert_array_strict_equal(ac, act) + + def test_type_cast_04(self): + # Test native int32 input with float32 scalar min/max. + a = self._generate_int32_data(self.nr, self.nc) + m = np.float32(-2) + M = np.float32(4) + act = self.fastclip(a, m, M) + ac = self.clip(a, m, M) + assert_array_strict_equal(ac, act) + + def test_type_cast_05(self): + # Test native int32 with double arrays min/max. + a = self._generate_int_data(self.nr, self.nc) + m = -0.5 + M = 1. + ac = self.fastclip(a, m * np.zeros(a.shape), M) + act = self.clip(a, m * np.zeros(a.shape), M) + assert_array_strict_equal(ac, act) + + def test_type_cast_06(self): + # Test native with NON native scalar min/max. + a = self._generate_data(self.nr, self.nc) + m = 0.5 + m_s = self._neg_byteorder(m) + M = 1. + act = self.clip(a, m_s, M) + ac = self.fastclip(a, m_s, M) + assert_array_strict_equal(ac, act) + + def test_type_cast_07(self): + # Test NON native with native array min/max. + a = self._generate_data(self.nr, self.nc) + m = -0.5 * np.ones(a.shape) + M = 1. + a_s = self._neg_byteorder(a) + assert_(not a_s.dtype.isnative) + act = a_s.clip(m, M) + ac = self.fastclip(a_s, m, M) + assert_array_strict_equal(ac, act) + + def test_type_cast_08(self): + # Test NON native with native scalar min/max. + a = self._generate_data(self.nr, self.nc) + m = -0.5 + M = 1. + a_s = self._neg_byteorder(a) + assert_(not a_s.dtype.isnative) + ac = self.fastclip(a_s, m, M) + act = a_s.clip(m, M) + assert_array_strict_equal(ac, act) + + def test_type_cast_09(self): + # Test native with NON native array min/max. + a = self._generate_data(self.nr, self.nc) + m = -0.5 * np.ones(a.shape) + M = 1. + m_s = self._neg_byteorder(m) + assert_(not m_s.dtype.isnative) + ac = self.fastclip(a, m_s, M) + act = self.clip(a, m_s, M) + assert_array_strict_equal(ac, act) + + def test_type_cast_10(self): + # Test native int32 with float min/max and float out for output argument. + a = self._generate_int_data(self.nr, self.nc) + b = np.zeros(a.shape, dtype=np.float32) + m = np.float32(-0.5) + M = np.float32(1) + act = self.clip(a, m, M, out=b) + ac = self.fastclip(a, m, M, out=b) + assert_array_strict_equal(ac, act) + + def test_type_cast_11(self): + # Test non native with native scalar, min/max, out non native + a = self._generate_non_native_data(self.nr, self.nc) + b = a.copy() + b = b.astype(b.dtype.newbyteorder('>')) + bt = b.copy() + m = -0.5 + M = 1. + self.fastclip(a, m, M, out=b) + self.clip(a, m, M, out=bt) + assert_array_strict_equal(b, bt) + + def test_type_cast_12(self): + # Test native int32 input and min/max and float out + a = self._generate_int_data(self.nr, self.nc) + b = np.zeros(a.shape, dtype=np.float32) + m = np.int32(0) + M = np.int32(1) + act = self.clip(a, m, M, out=b) + ac = self.fastclip(a, m, M, out=b) + assert_array_strict_equal(ac, act) + + def test_clip_with_out_simple(self): + # Test native double input with scalar min/max + a = self._generate_data(self.nr, self.nc) + m = -0.5 + M = 0.6 + ac = np.zeros(a.shape) + act = np.zeros(a.shape) + self.fastclip(a, m, M, ac) + self.clip(a, m, M, act) + assert_array_strict_equal(ac, act) + + def test_clip_with_out_simple2(self): + # Test native int32 input with double min/max and int32 out + a = self._generate_int32_data(self.nr, self.nc) + m = np.float64(0) + M = np.float64(2) + ac = np.zeros(a.shape, dtype=np.int32) + act = ac.copy() + self.fastclip(a, m, M, out=ac, casting="unsafe") + self.clip(a, m, M, act) + assert_array_strict_equal(ac, act) + + def test_clip_with_out_simple_int32(self): + # Test native int32 input with int32 scalar min/max and int64 out + a = self._generate_int32_data(self.nr, self.nc) + m = np.int32(-1) + M = np.int32(1) + ac = np.zeros(a.shape, dtype=np.int64) + act = ac.copy() + self.fastclip(a, m, M, ac) + self.clip(a, m, M, act) + assert_array_strict_equal(ac, act) + + def test_clip_with_out_array_int32(self): + # Test native int32 input with double array min/max and int32 out + a = self._generate_int32_data(self.nr, self.nc) + m = np.zeros(a.shape, np.float64) + M = np.float64(1) + ac = np.zeros(a.shape, dtype=np.int32) + act = ac.copy() + self.fastclip(a, m, M, out=ac, casting="unsafe") + self.clip(a, m, M, act) + assert_array_strict_equal(ac, act) + + def test_clip_with_out_array_outint32(self): + # Test native double input with scalar min/max and int out + a = self._generate_data(self.nr, self.nc) + m = -1.0 + M = 2.0 + ac = np.zeros(a.shape, dtype=np.int32) + act = ac.copy() + self.fastclip(a, m, M, out=ac, casting="unsafe") + self.clip(a, m, M, act) + assert_array_strict_equal(ac, act) + + def test_clip_with_out_transposed(self): + # Test that the out argument works when transposed + a = np.arange(16).reshape(4, 4) + out = np.empty_like(a).T + a.clip(4, 10, out=out) + expected = self.clip(a, 4, 10) + assert_array_equal(out, expected) + + def test_clip_with_out_memory_overlap(self): + # Test that the out argument works when it has memory overlap + a = np.arange(16).reshape(4, 4) + ac = a.copy() + a[:-1].clip(4, 10, out=a[1:]) + expected = self.clip(ac[:-1], 4, 10) + assert_array_equal(a[1:], expected) + + def test_clip_inplace_array(self): + # Test native double input with array min/max + a = self._generate_data(self.nr, self.nc) + ac = a.copy() + m = np.zeros(a.shape) + M = 1.0 + self.fastclip(a, m, M, a) + self.clip(a, m, M, ac) + assert_array_strict_equal(a, ac) + + def test_clip_inplace_simple(self): + # Test native double input with scalar min/max + a = self._generate_data(self.nr, self.nc) + ac = a.copy() + m = -0.5 + M = 0.6 + self.fastclip(a, m, M, a) + self.clip(a, m, M, ac) + assert_array_strict_equal(a, ac) + + def test_clip_func_takes_out(self): + # Ensure that the clip() function takes an out=argument. + a = self._generate_data(self.nr, self.nc) + ac = a.copy() + m = -0.5 + M = 0.6 + a2 = np.clip(a, m, M, out=a) + self.clip(a, m, M, ac) + assert_array_strict_equal(a2, ac) + assert_(a2 is a) + + def test_clip_nan(self): + d = np.arange(7.) + assert_equal(d.clip(min=np.nan), np.nan) + assert_equal(d.clip(max=np.nan), np.nan) + assert_equal(d.clip(min=np.nan, max=np.nan), np.nan) + assert_equal(d.clip(min=-2, max=np.nan), np.nan) + assert_equal(d.clip(min=np.nan, max=10), np.nan) + + def test_object_clip(self): + a = np.arange(10, dtype=object) + actual = np.clip(a, 1, 5) + expected = np.array([1, 1, 2, 3, 4, 5, 5, 5, 5, 5]) + assert actual.tolist() == expected.tolist() + + def test_clip_all_none(self): + arr = np.arange(10, dtype=object) + assert_equal(np.clip(arr, None, None), arr) + assert_equal(np.clip(arr), arr) + + def test_clip_invalid_casting(self): + a = np.arange(10, dtype=object) + with assert_raises_regex(ValueError, + 'casting must be one of'): + self.fastclip(a, 1, 8, casting="garbage") + + @pytest.mark.parametrize("amin, amax", [ + # two scalars + (1, 0), + # mix scalar and array + (1, np.zeros(10)), + # two arrays + (np.ones(10), np.zeros(10)), + ]) + def test_clip_value_min_max_flip(self, amin, amax): + a = np.arange(10, dtype=np.int64) + # requirement from ufunc_docstrings.py + expected = np.minimum(np.maximum(a, amin), amax) + actual = np.clip(a, amin, amax) + assert_equal(actual, expected) + + @pytest.mark.parametrize("arr, amin, amax, exp", [ + # for a bug in npy_ObjectClip, based on a + # case produced by hypothesis + (np.zeros(10, dtype=object), + 0, + -2**64 + 1, + np.full(10, -2**64 + 1, dtype=object)), + # for bugs in NPY_TIMEDELTA_MAX, based on a case + # produced by hypothesis + (np.zeros(10, dtype='m8') - 1, + 0, + 0, + np.zeros(10, dtype='m8')), + ]) + def test_clip_problem_cases(self, arr, amin, amax, exp): + actual = np.clip(arr, amin, amax) + assert_equal(actual, exp) + + @pytest.mark.parametrize("arr, amin, amax", [ + # problematic scalar nan case from hypothesis + (np.zeros(10, dtype=np.int64), + np.array(np.nan), + np.zeros(10, dtype=np.int32)), + ]) + def test_clip_scalar_nan_propagation(self, arr, amin, amax): + # enforcement of scalar nan propagation for comparisons + # called through clip() + expected = np.minimum(np.maximum(arr, amin), amax) + actual = np.clip(arr, amin, amax) + assert_equal(actual, expected) + + @pytest.mark.xfail(reason="propagation doesn't match spec") + @pytest.mark.parametrize("arr, amin, amax", [ + (np.array([1] * 10, dtype='m8'), + np.timedelta64('NaT'), + np.zeros(10, dtype=np.int32)), + ]) + @pytest.mark.filterwarnings("ignore::DeprecationWarning") + def test_NaT_propagation(self, arr, amin, amax): + # NOTE: the expected function spec doesn't + # propagate NaT, but clip() now does + expected = np.minimum(np.maximum(arr, amin), amax) + actual = np.clip(arr, amin, amax) + assert_equal(actual, expected) + + @given( + data=st.data(), + arr=hynp.arrays( + dtype=hynp.integer_dtypes() | hynp.floating_dtypes(), + shape=hynp.array_shapes() + ) + ) + def test_clip_property(self, data, arr): + """A property-based test using Hypothesis. + + This aims for maximum generality: it could in principle generate *any* + valid inputs to np.clip, and in practice generates much more varied + inputs than human testers come up with. + + Because many of the inputs have tricky dependencies - compatible dtypes + and mutually-broadcastable shapes - we use `st.data()` strategy draw + values *inside* the test function, from strategies we construct based + on previous values. An alternative would be to define a custom strategy + with `@st.composite`, but until we have duplicated code inline is fine. + + That accounts for most of the function; the actual test is just three + lines to calculate and compare actual vs expected results! + """ + numeric_dtypes = hynp.integer_dtypes() | hynp.floating_dtypes() + # Generate shapes for the bounds which can be broadcast with each other + # and with the base shape. Below, we might decide to use scalar bounds, + # but it's clearer to generate these shapes unconditionally in advance. + in_shapes, result_shape = data.draw( + hynp.mutually_broadcastable_shapes( + num_shapes=2, base_shape=arr.shape + ) + ) + # Scalar `nan` is deprecated due to the differing behaviour it shows. + s = numeric_dtypes.flatmap( + lambda x: hynp.from_dtype(x, allow_nan=False)) + amin = data.draw(s | hynp.arrays(dtype=numeric_dtypes, + shape=in_shapes[0], elements={"allow_nan": False})) + amax = data.draw(s | hynp.arrays(dtype=numeric_dtypes, + shape=in_shapes[1], elements={"allow_nan": False})) + + # Then calculate our result and expected result and check that they're + # equal! See gh-12519 and gh-19457 for discussion deciding on this + # property and the result_type argument. + result = np.clip(arr, amin, amax) + t = np.result_type(arr, amin, amax) + expected = np.minimum(amax, np.maximum(arr, amin, dtype=t), dtype=t) + assert result.dtype == t + assert_array_equal(result, expected) + + def test_clip_min_max_args(self): + arr = np.arange(5) + + assert_array_equal(np.clip(arr), arr) + assert_array_equal(np.clip(arr, min=2, max=3), np.clip(arr, 2, 3)) + assert_array_equal(np.clip(arr, min=None, max=2), + np.clip(arr, None, 2)) + + with assert_raises_regex(TypeError, "missing 1 required positional " + "argument: 'a_max'"): + np.clip(arr, 2) + with assert_raises_regex(TypeError, "missing 1 required positional " + "argument: 'a_min'"): + np.clip(arr, a_max=2) + msg = ("Passing `min` or `max` keyword argument when `a_min` and " + "`a_max` are provided is forbidden.") + with assert_raises_regex(ValueError, msg): + np.clip(arr, 2, 3, max=3) + with assert_raises_regex(ValueError, msg): + np.clip(arr, 2, 3, min=2) + + @pytest.mark.parametrize("dtype,min,max", [ + ("int32", -2**32 - 1, 2**32), + ("int32", -2**320, None), + ("int32", None, 2**300), + ("int32", -1000, 2**32), + ("int32", -2**32 - 1, 1000), + ("uint8", -1, 129), + ]) + def test_out_of_bound_pyints(self, dtype, min, max): + a = np.arange(10000).astype(dtype) + # Check min only + c = np.clip(a, min=min, max=max) + assert not np.may_share_memory(a, c) + assert c.dtype == a.dtype + if min is not None: + assert (c >= min).all() + if max is not None: + assert (c <= max).all() + +class TestAllclose: + rtol = 1e-5 + atol = 1e-8 + + def setup_method(self): + self.olderr = np.seterr(invalid='ignore') + + def teardown_method(self): + np.seterr(**self.olderr) + + def tst_allclose(self, x, y): + assert_(np.allclose(x, y), f"{x} and {y} not close") + + def tst_not_allclose(self, x, y): + assert_(not np.allclose(x, y), f"{x} and {y} shouldn't be close") + + def test_ip_allclose(self): + # Parametric test factory. + arr = np.array([100, 1000]) + aran = np.arange(125).reshape((5, 5, 5)) + + atol = self.atol + rtol = self.rtol + + data = [([1, 0], [1, 0]), + ([atol], [0]), + ([1], [1 + rtol + atol]), + (arr, arr + arr * rtol), + (arr, arr + arr * rtol + atol * 2), + (aran, aran + aran * rtol), + (np.inf, np.inf), + (np.inf, [np.inf])] + + for (x, y) in data: + self.tst_allclose(x, y) + + def test_ip_not_allclose(self): + # Parametric test factory. + aran = np.arange(125).reshape((5, 5, 5)) + + atol = self.atol + rtol = self.rtol + + data = [([np.inf, 0], [1, np.inf]), + ([np.inf, 0], [1, 0]), + ([np.inf, np.inf], [1, np.inf]), + ([np.inf, np.inf], [1, 0]), + ([-np.inf, 0], [np.inf, 0]), + ([np.nan, 0], [np.nan, 0]), + ([atol * 2], [0]), + ([1], [1 + rtol + atol * 2]), + (aran, aran + aran * atol + atol * 2), + (np.array([np.inf, 1]), np.array([0, np.inf]))] + + for (x, y) in data: + self.tst_not_allclose(x, y) + + def test_no_parameter_modification(self): + x = np.array([np.inf, 1]) + y = np.array([0, np.inf]) + np.allclose(x, y) + assert_array_equal(x, np.array([np.inf, 1])) + assert_array_equal(y, np.array([0, np.inf])) + + def test_min_int(self): + # Could make problems because of abs(min_int) == min_int + min_int = np.iinfo(np.int_).min + a = np.array([min_int], dtype=np.int_) + assert_(np.allclose(a, a)) + + def test_equalnan(self): + x = np.array([1.0, np.nan]) + assert_(np.allclose(x, x, equal_nan=True)) + + def test_return_class_is_ndarray(self): + # Issue gh-6475 + # Check that allclose does not preserve subtypes + class Foo(np.ndarray): + def __new__(cls, *args, **kwargs): + return np.array(*args, **kwargs).view(cls) + + a = Foo([1]) + assert_(type(np.allclose(a, a)) is bool) + + +class TestIsclose: + rtol = 1e-5 + atol = 1e-8 + + def _setup(self): + atol = self.atol + rtol = self.rtol + arr = np.array([100, 1000]) + aran = np.arange(125).reshape((5, 5, 5)) + + self.all_close_tests = [ + ([1, 0], [1, 0]), + ([atol], [0]), + ([1], [1 + rtol + atol]), + (arr, arr + arr * rtol), + (arr, arr + arr * rtol + atol), + (aran, aran + aran * rtol), + (np.inf, np.inf), + (np.inf, [np.inf]), + ([np.inf, -np.inf], [np.inf, -np.inf]), + ] + self.none_close_tests = [ + ([np.inf, 0], [1, np.inf]), + ([np.inf, -np.inf], [1, 0]), + ([np.inf, np.inf], [1, -np.inf]), + ([np.inf, np.inf], [1, 0]), + ([np.nan, 0], [np.nan, -np.inf]), + ([atol * 2], [0]), + ([1], [1 + rtol + atol * 2]), + (aran, aran + rtol * 1.1 * aran + atol * 1.1), + (np.array([np.inf, 1]), np.array([0, np.inf])), + ] + self.some_close_tests = [ + ([np.inf, 0], [np.inf, atol * 2]), + ([atol, 1, 1e6 * (1 + 2 * rtol) + atol], [0, np.nan, 1e6]), + (np.arange(3), [0, 1, 2.1]), + (np.nan, [np.nan, np.nan, np.nan]), + ([0], [atol, np.inf, -np.inf, np.nan]), + (0, [atol, np.inf, -np.inf, np.nan]), + ] + self.some_close_results = [ + [True, False], + [True, False, False], + [True, True, False], + [False, False, False], + [True, False, False, False], + [True, False, False, False], + ] + + def test_ip_isclose(self): + self._setup() + tests = self.some_close_tests + results = self.some_close_results + for (x, y), result in zip(tests, results): + assert_array_equal(np.isclose(x, y), result) + + x = np.array([2.1, 2.1, 2.1, 2.1, 5, np.nan]) + y = np.array([2, 2, 2, 2, np.nan, 5]) + atol = [0.11, 0.09, 1e-8, 1e-8, 1, 1] + rtol = [1e-8, 1e-8, 0.06, 0.04, 1, 1] + expected = np.array([True, False, True, False, False, False]) + assert_array_equal(np.isclose(x, y, rtol=rtol, atol=atol), expected) + + message = "operands could not be broadcast together..." + atol = np.array([1e-8, 1e-8]) + with assert_raises(ValueError, msg=message): + np.isclose(x, y, atol=atol) + + rtol = np.array([1e-5, 1e-5]) + with assert_raises(ValueError, msg=message): + np.isclose(x, y, rtol=rtol) + + def test_nep50_isclose(self): + below_one = float(1. - np.finfo('f8').eps) + f32 = np.array(below_one, 'f4') # This is just 1 at float32 precision + assert f32 > np.array(below_one) + # NEP 50 broadcasting of python scalars + assert f32 == below_one + # Test that it works for isclose arguments too (and that those fail if + # one uses a numpy float64). + assert np.isclose(f32, below_one, atol=0, rtol=0) + assert np.isclose(f32, np.float32(0), atol=below_one) + assert np.isclose(f32, 2, atol=0, rtol=below_one / 2) + assert not np.isclose(f32, np.float64(below_one), atol=0, rtol=0) + assert not np.isclose(f32, np.float32(0), atol=np.float64(below_one)) + assert not np.isclose(f32, 2, atol=0, rtol=np.float64(below_one / 2)) + + def tst_all_isclose(self, x, y): + assert_(np.all(np.isclose(x, y)), f"{x} and {y} not close") + + def tst_none_isclose(self, x, y): + msg = "%s and %s shouldn't be close" + assert_(not np.any(np.isclose(x, y)), msg % (x, y)) + + def tst_isclose_allclose(self, x, y): + msg = "isclose.all() and allclose aren't same for %s and %s" + msg2 = "isclose and allclose aren't same for %s and %s" + if np.isscalar(x) and np.isscalar(y): + assert_(np.isclose(x, y) == np.allclose(x, y), msg=msg2 % (x, y)) + else: + assert_array_equal(np.isclose(x, y).all(), np.allclose(x, y), msg % (x, y)) + + def test_ip_all_isclose(self): + self._setup() + for (x, y) in self.all_close_tests: + self.tst_all_isclose(x, y) + + x = np.array([2.3, 3.6, 4.4, np.nan]) + y = np.array([2, 3, 4, np.nan]) + atol = [0.31, 0, 0, 1] + rtol = [0, 0.21, 0.11, 1] + assert np.allclose(x, y, atol=atol, rtol=rtol, equal_nan=True) + assert not np.allclose(x, y, atol=0.1, rtol=0.1, equal_nan=True) + + # Show that gh-14330 is resolved + assert np.allclose([1, 2, float('nan')], [1, 2, float('nan')], + atol=[1, 1, 1], equal_nan=True) + + def test_ip_none_isclose(self): + self._setup() + for (x, y) in self.none_close_tests: + self.tst_none_isclose(x, y) + + def test_ip_isclose_allclose(self): + self._setup() + tests = (self.all_close_tests + self.none_close_tests + + self.some_close_tests) + for (x, y) in tests: + self.tst_isclose_allclose(x, y) + + def test_equal_nan(self): + assert_array_equal(np.isclose(np.nan, np.nan, equal_nan=True), [True]) + arr = np.array([1.0, np.nan]) + assert_array_equal(np.isclose(arr, arr, equal_nan=True), [True, True]) + + def test_masked_arrays(self): + # Make sure to test the output type when arguments are interchanged. + + x = np.ma.masked_where([True, True, False], np.arange(3)) + assert_(type(x) is type(np.isclose(2, x))) + assert_(type(x) is type(np.isclose(x, 2))) + + x = np.ma.masked_where([True, True, False], [np.nan, np.inf, np.nan]) + assert_(type(x) is type(np.isclose(np.inf, x))) + assert_(type(x) is type(np.isclose(x, np.inf))) + + x = np.ma.masked_where([True, True, False], [np.nan, np.nan, np.nan]) + y = np.isclose(np.nan, x, equal_nan=True) + assert_(type(x) is type(y)) + # Ensure that the mask isn't modified... + assert_array_equal([True, True, False], y.mask) + y = np.isclose(x, np.nan, equal_nan=True) + assert_(type(x) is type(y)) + # Ensure that the mask isn't modified... + assert_array_equal([True, True, False], y.mask) + + x = np.ma.masked_where([True, True, False], [np.nan, np.nan, np.nan]) + y = np.isclose(x, x, equal_nan=True) + assert_(type(x) is type(y)) + # Ensure that the mask isn't modified... + assert_array_equal([True, True, False], y.mask) + + def test_scalar_return(self): + assert_(np.isscalar(np.isclose(1, 1))) + + def test_no_parameter_modification(self): + x = np.array([np.inf, 1]) + y = np.array([0, np.inf]) + np.isclose(x, y) + assert_array_equal(x, np.array([np.inf, 1])) + assert_array_equal(y, np.array([0, np.inf])) + + def test_non_finite_scalar(self): + # GH7014, when two scalars are compared the output should also be a + # scalar + assert_(np.isclose(np.inf, -np.inf) is np.False_) + assert_(np.isclose(0, np.inf) is np.False_) + assert_(type(np.isclose(0, np.inf)) is np.bool) + + def test_timedelta(self): + # Allclose currently works for timedelta64 as long as `atol` is + # an integer or also a timedelta64 + a = np.array([[1, 2, 3, "NaT"]], dtype="m8[ns]") + assert np.isclose(a, a, atol=0, equal_nan=True).all() + assert np.isclose(a, a, atol=np.timedelta64(1, "ns"), equal_nan=True).all() + assert np.allclose(a, a, atol=0, equal_nan=True) + assert np.allclose(a, a, atol=np.timedelta64(1, "ns"), equal_nan=True) + + def test_tol_warnings(self): + a = np.array([1, 2, 3]) + b = np.array([np.inf, np.nan, 1]) + + for i in b: + for j in b: + # Making sure that i and j are not both numbers, because that won't create a warning + if (i == 1) and (j == 1): + continue + + with warnings.catch_warnings(record=True) as w: + + warnings.simplefilter("always") + c = np.isclose(a, a, atol=i, rtol=j) + assert len(w) == 1 + assert issubclass(w[-1].category, RuntimeWarning) + assert f"One of rtol or atol is not valid, atol: {i}, rtol: {j}" in str(w[-1].message) + + +class TestStdVar: + def setup_method(self): + self.A = np.array([1, -1, 1, -1]) + self.real_var = 1 + + def test_basic(self): + assert_almost_equal(np.var(self.A), self.real_var) + assert_almost_equal(np.std(self.A)**2, self.real_var) + + def test_scalars(self): + assert_equal(np.var(1), 0) + assert_equal(np.std(1), 0) + + def test_ddof1(self): + assert_almost_equal(np.var(self.A, ddof=1), + self.real_var * len(self.A) / (len(self.A) - 1)) + assert_almost_equal(np.std(self.A, ddof=1)**2, + self.real_var * len(self.A) / (len(self.A) - 1)) + + def test_ddof2(self): + assert_almost_equal(np.var(self.A, ddof=2), + self.real_var * len(self.A) / (len(self.A) - 2)) + assert_almost_equal(np.std(self.A, ddof=2)**2, + self.real_var * len(self.A) / (len(self.A) - 2)) + + def test_correction(self): + assert_almost_equal( + np.var(self.A, correction=1), np.var(self.A, ddof=1) + ) + assert_almost_equal( + np.std(self.A, correction=1), np.std(self.A, ddof=1) + ) + + err_msg = "ddof and correction can't be provided simultaneously." + + with assert_raises_regex(ValueError, err_msg): + np.var(self.A, ddof=1, correction=0) + + with assert_raises_regex(ValueError, err_msg): + np.std(self.A, ddof=1, correction=1) + + def test_out_scalar(self): + d = np.arange(10) + out = np.array(0.) + r = np.std(d, out=out) + assert_(r is out) + assert_array_equal(r, out) + r = np.var(d, out=out) + assert_(r is out) + assert_array_equal(r, out) + r = np.mean(d, out=out) + assert_(r is out) + assert_array_equal(r, out) + + +class TestStdVarComplex: + def test_basic(self): + A = np.array([1, 1.j, -1, -1.j]) + real_var = 1 + assert_almost_equal(np.var(A), real_var) + assert_almost_equal(np.std(A)**2, real_var) + + def test_scalars(self): + assert_equal(np.var(1j), 0) + assert_equal(np.std(1j), 0) + + +class TestCreationFuncs: + # Test ones, zeros, empty and full. + + def setup_method(self): + dtypes = {np.dtype(tp) for tp in itertools.chain(*sctypes.values())} + # void, bytes, str + variable_sized = {tp for tp in dtypes if tp.str.endswith('0')} + keyfunc = lambda dtype: dtype.str + self.dtypes = sorted(dtypes - variable_sized | + {np.dtype(tp.str.replace("0", str(i))) + for tp in variable_sized for i in range(1, 10)}, + key=keyfunc) + self.dtypes += [type(dt) for dt in sorted(dtypes, key=keyfunc)] + self.orders = {'C': 'c_contiguous', 'F': 'f_contiguous'} + self.ndims = 10 + + def check_function(self, func, fill_value=None): + par = ((0, 1, 2), + range(self.ndims), + self.orders, + self.dtypes) + fill_kwarg = {} + if fill_value is not None: + fill_kwarg = {'fill_value': fill_value} + + for size, ndims, order, dtype in itertools.product(*par): + shape = ndims * [size] + + is_void = dtype is np.dtypes.VoidDType or ( + isinstance(dtype, np.dtype) and dtype.str.startswith('|V')) + + # do not fill void type + if fill_kwarg and is_void: + continue + + arr = func(shape, order=order, dtype=dtype, + **fill_kwarg) + + if isinstance(dtype, np.dtype): + assert_equal(arr.dtype, dtype) + elif isinstance(dtype, type(np.dtype)): + if dtype in (np.dtypes.StrDType, np.dtypes.BytesDType): + dtype_str = np.dtype(dtype.type).str.replace('0', '1') + assert_equal(arr.dtype, np.dtype(dtype_str)) + else: + assert_equal(arr.dtype, np.dtype(dtype.type)) + assert_(getattr(arr.flags, self.orders[order])) + + if fill_value is not None: + if arr.dtype.str.startswith('|S'): + val = str(fill_value) + else: + val = fill_value + assert_equal(arr, dtype.type(val)) + + def test_zeros(self): + self.check_function(np.zeros) + + def test_ones(self): + self.check_function(np.ones) + + def test_empty(self): + self.check_function(np.empty) + + def test_full(self): + self.check_function(np.full, 0) + self.check_function(np.full, 1) + + @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") + def test_for_reference_leak(self): + # Make sure we have an object for reference + dim = 1 + beg = sys.getrefcount(dim) + np.zeros([dim] * 10) + assert_(sys.getrefcount(dim) == beg) + np.ones([dim] * 10) + assert_(sys.getrefcount(dim) == beg) + np.empty([dim] * 10) + assert_(sys.getrefcount(dim) == beg) + np.full([dim] * 10, 0) + assert_(sys.getrefcount(dim) == beg) + + +class TestLikeFuncs: + '''Test ones_like, zeros_like, empty_like and full_like''' + + def setup_method(self): + self.data = [ + # Array scalars + (np.array(3.), None), + (np.array(3), 'f8'), + # 1D arrays + (np.arange(6, dtype='f4'), None), + (np.arange(6), 'c16'), + # 2D C-layout arrays + (np.arange(6).reshape(2, 3), None), + (np.arange(6).reshape(3, 2), 'i1'), + # 2D F-layout arrays + (np.arange(6).reshape((2, 3), order='F'), None), + (np.arange(6).reshape((3, 2), order='F'), 'i1'), + # 3D C-layout arrays + (np.arange(24).reshape(2, 3, 4), None), + (np.arange(24).reshape(4, 3, 2), 'f4'), + # 3D F-layout arrays + (np.arange(24).reshape((2, 3, 4), order='F'), None), + (np.arange(24).reshape((4, 3, 2), order='F'), 'f4'), + # 3D non-C/F-layout arrays + (np.arange(24).reshape(2, 3, 4).swapaxes(0, 1), None), + (np.arange(24).reshape(4, 3, 2).swapaxes(0, 1), '?'), + ] + self.shapes = [(), (5,), (5, 6,), (5, 6, 7,)] + + def compare_array_value(self, dz, value, fill_value): + if value is not None: + if fill_value: + # Conversion is close to what np.full_like uses + # but we may want to convert directly in the future + # which may result in errors (where this does not). + z = np.array(value).astype(dz.dtype) + assert_(np.all(dz == z)) + else: + assert_(np.all(dz == value)) + + def check_like_function(self, like_function, value, fill_value=False): + if fill_value: + fill_kwarg = {'fill_value': value} + else: + fill_kwarg = {} + for d, dtype in self.data: + # default (K) order, dtype + dz = like_function(d, dtype=dtype, **fill_kwarg) + assert_equal(dz.shape, d.shape) + assert_equal(np.array(dz.strides) * d.dtype.itemsize, + np.array(d.strides) * dz.dtype.itemsize) + assert_equal(d.flags.c_contiguous, dz.flags.c_contiguous) + assert_equal(d.flags.f_contiguous, dz.flags.f_contiguous) + if dtype is None: + assert_equal(dz.dtype, d.dtype) + else: + assert_equal(dz.dtype, np.dtype(dtype)) + self.compare_array_value(dz, value, fill_value) + + # C order, default dtype + dz = like_function(d, order='C', dtype=dtype, **fill_kwarg) + assert_equal(dz.shape, d.shape) + assert_(dz.flags.c_contiguous) + if dtype is None: + assert_equal(dz.dtype, d.dtype) + else: + assert_equal(dz.dtype, np.dtype(dtype)) + self.compare_array_value(dz, value, fill_value) + + # F order, default dtype + dz = like_function(d, order='F', dtype=dtype, **fill_kwarg) + assert_equal(dz.shape, d.shape) + assert_(dz.flags.f_contiguous) + if dtype is None: + assert_equal(dz.dtype, d.dtype) + else: + assert_equal(dz.dtype, np.dtype(dtype)) + self.compare_array_value(dz, value, fill_value) + + # A order + dz = like_function(d, order='A', dtype=dtype, **fill_kwarg) + assert_equal(dz.shape, d.shape) + if d.flags.f_contiguous: + assert_(dz.flags.f_contiguous) + else: + assert_(dz.flags.c_contiguous) + if dtype is None: + assert_equal(dz.dtype, d.dtype) + else: + assert_equal(dz.dtype, np.dtype(dtype)) + self.compare_array_value(dz, value, fill_value) + + # Test the 'shape' parameter + for s in self.shapes: + for o in 'CFA': + sz = like_function(d, dtype=dtype, shape=s, order=o, + **fill_kwarg) + assert_equal(sz.shape, s) + if dtype is None: + assert_equal(sz.dtype, d.dtype) + else: + assert_equal(sz.dtype, np.dtype(dtype)) + if o == 'C' or (o == 'A' and d.flags.c_contiguous): + assert_(sz.flags.c_contiguous) + elif o == 'F' or (o == 'A' and d.flags.f_contiguous): + assert_(sz.flags.f_contiguous) + self.compare_array_value(sz, value, fill_value) + + if (d.ndim != len(s)): + assert_equal(np.argsort(like_function(d, dtype=dtype, + shape=s, order='K', + **fill_kwarg).strides), + np.argsort(np.empty(s, dtype=dtype, + order='C').strides)) + else: + assert_equal(np.argsort(like_function(d, dtype=dtype, + shape=s, order='K', + **fill_kwarg).strides), + np.argsort(d.strides)) + + # Test the 'subok' parameter + class MyNDArray(np.ndarray): + pass + + a = np.array([[1, 2], [3, 4]]).view(MyNDArray) + + b = like_function(a, **fill_kwarg) + assert_(type(b) is MyNDArray) + + b = like_function(a, subok=False, **fill_kwarg) + assert_(type(b) is not MyNDArray) + + # Test invalid dtype + with assert_raises(TypeError): + a = np.array(b"abc") + like_function(a, dtype="S-1", **fill_kwarg) + + def test_ones_like(self): + self.check_like_function(np.ones_like, 1) + + def test_zeros_like(self): + self.check_like_function(np.zeros_like, 0) + + def test_empty_like(self): + self.check_like_function(np.empty_like, None) + + def test_filled_like(self): + self.check_like_function(np.full_like, 0, True) + self.check_like_function(np.full_like, 1, True) + # Large integers may overflow, but using int64 is OK (casts) + # see also gh-27075 + with pytest.raises(OverflowError): + np.full_like(np.ones(3, dtype=np.int8), 1000) + self.check_like_function(np.full_like, np.int64(1000), True) + self.check_like_function(np.full_like, 123.456, True) + # Inf to integer casts cause invalid-value errors: ignore them. + with np.errstate(invalid="ignore"): + self.check_like_function(np.full_like, np.inf, True) + + @pytest.mark.parametrize('likefunc', [np.empty_like, np.full_like, + np.zeros_like, np.ones_like]) + @pytest.mark.parametrize('dtype', [str, bytes]) + def test_dtype_str_bytes(self, likefunc, dtype): + # Regression test for gh-19860 + a = np.arange(16).reshape(2, 8) + b = a[:, ::2] # Ensure b is not contiguous. + kwargs = {'fill_value': ''} if likefunc == np.full_like else {} + result = likefunc(b, dtype=dtype, **kwargs) + if dtype == str: + assert result.strides == (16, 4) + else: + # dtype is bytes + assert result.strides == (4, 1) + + +class TestCorrelate: + def _setup(self, dt): + self.x = np.array([1, 2, 3, 4, 5], dtype=dt) + self.xs = np.arange(1, 20)[::3] + self.y = np.array([-1, -2, -3], dtype=dt) + self.z1 = np.array([-3., -8., -14., -20., -26., -14., -5.], dtype=dt) + self.z1_4 = np.array([-2., -5., -8., -11., -14., -5.], dtype=dt) + self.z1r = np.array([-15., -22., -22., -16., -10., -4., -1.], dtype=dt) + self.z2 = np.array([-5., -14., -26., -20., -14., -8., -3.], dtype=dt) + self.z2r = np.array([-1., -4., -10., -16., -22., -22., -15.], dtype=dt) + self.zs = np.array([-3., -14., -30., -48., -66., -84., + -102., -54., -19.], dtype=dt) + + def test_float(self): + self._setup(float) + z = np.correlate(self.x, self.y, 'full') + assert_array_almost_equal(z, self.z1) + z = np.correlate(self.x, self.y[:-1], 'full') + assert_array_almost_equal(z, self.z1_4) + z = np.correlate(self.y, self.x, 'full') + assert_array_almost_equal(z, self.z2) + z = np.correlate(self.x[::-1], self.y, 'full') + assert_array_almost_equal(z, self.z1r) + z = np.correlate(self.y, self.x[::-1], 'full') + assert_array_almost_equal(z, self.z2r) + z = np.correlate(self.xs, self.y, 'full') + assert_array_almost_equal(z, self.zs) + + def test_object(self): + self._setup(Decimal) + z = np.correlate(self.x, self.y, 'full') + assert_array_almost_equal(z, self.z1) + z = np.correlate(self.y, self.x, 'full') + assert_array_almost_equal(z, self.z2) + + def test_no_overwrite(self): + d = np.ones(100) + k = np.ones(3) + np.correlate(d, k) + assert_array_equal(d, np.ones(100)) + assert_array_equal(k, np.ones(3)) + + def test_complex(self): + x = np.array([1, 2, 3, 4 + 1j], dtype=complex) + y = np.array([-1, -2j, 3 + 1j], dtype=complex) + r_z = np.array([3 - 1j, 6, 8 + 1j, 11 + 5j, -5 + 8j, -4 - 1j], dtype=complex) + r_z = r_z[::-1].conjugate() + z = np.correlate(y, x, mode='full') + assert_array_almost_equal(z, r_z) + + def test_zero_size(self): + with pytest.raises(ValueError): + np.correlate(np.array([]), np.ones(1000), mode='full') + with pytest.raises(ValueError): + np.correlate(np.ones(1000), np.array([]), mode='full') + + def test_mode(self): + d = np.ones(100) + k = np.ones(3) + default_mode = np.correlate(d, k, mode='valid') + with assert_raises(ValueError): + np.correlate(d, k, mode='v') + # integer mode + with assert_raises(ValueError): + np.correlate(d, k, mode=-1) + # assert_array_equal(np.correlate(d, k, mode=), default_mode) + # illegal arguments + with assert_raises(TypeError): + np.correlate(d, k, mode=None) + + +class TestConvolve: + def test_object(self): + d = [1.] * 100 + k = [1.] * 3 + assert_array_almost_equal(np.convolve(d, k)[2:-2], np.full(98, 3)) + + def test_no_overwrite(self): + d = np.ones(100) + k = np.ones(3) + np.convolve(d, k) + assert_array_equal(d, np.ones(100)) + assert_array_equal(k, np.ones(3)) + + def test_mode(self): + d = np.ones(100) + k = np.ones(3) + default_mode = np.convolve(d, k, mode='full') + with assert_raises(ValueError): + np.convolve(d, k, mode='f') + # integer mode + with assert_raises(ValueError): + np.convolve(d, k, mode=-1) + assert_array_equal(np.convolve(d, k, mode=2), default_mode) + # illegal arguments + with assert_raises(TypeError): + np.convolve(d, k, mode=None) + + +class TestArgwhere: + + @pytest.mark.parametrize('nd', [0, 1, 2]) + def test_nd(self, nd): + # get an nd array with multiple elements in every dimension + x = np.empty((2,) * nd, bool) + + # none + x[...] = False + assert_equal(np.argwhere(x).shape, (0, nd)) + + # only one + x[...] = False + x.flat[0] = True + assert_equal(np.argwhere(x).shape, (1, nd)) + + # all but one + x[...] = True + x.flat[0] = False + assert_equal(np.argwhere(x).shape, (x.size - 1, nd)) + + # all + x[...] = True + assert_equal(np.argwhere(x).shape, (x.size, nd)) + + def test_2D(self): + x = np.arange(6).reshape((2, 3)) + assert_array_equal(np.argwhere(x > 1), + [[0, 2], + [1, 0], + [1, 1], + [1, 2]]) + + def test_list(self): + assert_equal(np.argwhere([4, 0, 2, 1, 3]), [[0], [2], [3], [4]]) + + +class TestRoll: + def test_roll1d(self): + x = np.arange(10) + xr = np.roll(x, 2) + assert_equal(xr, np.array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7])) + + def test_roll2d(self): + x2 = np.reshape(np.arange(10), (2, 5)) + x2r = np.roll(x2, 1) + assert_equal(x2r, np.array([[9, 0, 1, 2, 3], [4, 5, 6, 7, 8]])) + + x2r = np.roll(x2, 1, axis=0) + assert_equal(x2r, np.array([[5, 6, 7, 8, 9], [0, 1, 2, 3, 4]])) + + x2r = np.roll(x2, 1, axis=1) + assert_equal(x2r, np.array([[4, 0, 1, 2, 3], [9, 5, 6, 7, 8]])) + + # Roll multiple axes at once. + x2r = np.roll(x2, 1, axis=(0, 1)) + assert_equal(x2r, np.array([[9, 5, 6, 7, 8], [4, 0, 1, 2, 3]])) + + x2r = np.roll(x2, (1, 0), axis=(0, 1)) + assert_equal(x2r, np.array([[5, 6, 7, 8, 9], [0, 1, 2, 3, 4]])) + + x2r = np.roll(x2, (-1, 0), axis=(0, 1)) + assert_equal(x2r, np.array([[5, 6, 7, 8, 9], [0, 1, 2, 3, 4]])) + + x2r = np.roll(x2, (0, 1), axis=(0, 1)) + assert_equal(x2r, np.array([[4, 0, 1, 2, 3], [9, 5, 6, 7, 8]])) + + x2r = np.roll(x2, (0, -1), axis=(0, 1)) + assert_equal(x2r, np.array([[1, 2, 3, 4, 0], [6, 7, 8, 9, 5]])) + + x2r = np.roll(x2, (1, 1), axis=(0, 1)) + assert_equal(x2r, np.array([[9, 5, 6, 7, 8], [4, 0, 1, 2, 3]])) + + x2r = np.roll(x2, (-1, -1), axis=(0, 1)) + assert_equal(x2r, np.array([[6, 7, 8, 9, 5], [1, 2, 3, 4, 0]])) + + # Roll the same axis multiple times. + x2r = np.roll(x2, 1, axis=(0, 0)) + assert_equal(x2r, np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]])) + + x2r = np.roll(x2, 1, axis=(1, 1)) + assert_equal(x2r, np.array([[3, 4, 0, 1, 2], [8, 9, 5, 6, 7]])) + + # Roll more than one turn in either direction. + x2r = np.roll(x2, 6, axis=1) + assert_equal(x2r, np.array([[4, 0, 1, 2, 3], [9, 5, 6, 7, 8]])) + + x2r = np.roll(x2, -4, axis=1) + assert_equal(x2r, np.array([[4, 0, 1, 2, 3], [9, 5, 6, 7, 8]])) + + def test_roll_empty(self): + x = np.array([]) + assert_equal(np.roll(x, 1), np.array([])) + + def test_roll_unsigned_shift(self): + x = np.arange(4) + shift = np.uint16(2) + assert_equal(np.roll(x, shift), np.roll(x, 2)) + + shift = np.uint64(2**63 + 2) + assert_equal(np.roll(x, shift), np.roll(x, 2)) + + def test_roll_big_int(self): + x = np.arange(4) + assert_equal(np.roll(x, 2**100), x) + + +class TestRollaxis: + + # expected shape indexed by (axis, start) for array of + # shape (1, 2, 3, 4) + tgtshape = {(0, 0): (1, 2, 3, 4), (0, 1): (1, 2, 3, 4), + (0, 2): (2, 1, 3, 4), (0, 3): (2, 3, 1, 4), + (0, 4): (2, 3, 4, 1), + (1, 0): (2, 1, 3, 4), (1, 1): (1, 2, 3, 4), + (1, 2): (1, 2, 3, 4), (1, 3): (1, 3, 2, 4), + (1, 4): (1, 3, 4, 2), + (2, 0): (3, 1, 2, 4), (2, 1): (1, 3, 2, 4), + (2, 2): (1, 2, 3, 4), (2, 3): (1, 2, 3, 4), + (2, 4): (1, 2, 4, 3), + (3, 0): (4, 1, 2, 3), (3, 1): (1, 4, 2, 3), + (3, 2): (1, 2, 4, 3), (3, 3): (1, 2, 3, 4), + (3, 4): (1, 2, 3, 4)} + + def test_exceptions(self): + a = np.arange(1 * 2 * 3 * 4).reshape(1, 2, 3, 4) + assert_raises(AxisError, np.rollaxis, a, -5, 0) + assert_raises(AxisError, np.rollaxis, a, 0, -5) + assert_raises(AxisError, np.rollaxis, a, 4, 0) + assert_raises(AxisError, np.rollaxis, a, 0, 5) + + def test_results(self): + a = np.arange(1 * 2 * 3 * 4).reshape(1, 2, 3, 4).copy() + aind = np.indices(a.shape) + assert_(a.flags['OWNDATA']) + for (i, j) in self.tgtshape: + # positive axis, positive start + res = np.rollaxis(a, axis=i, start=j) + i0, i1, i2, i3 = aind[np.array(res.shape) - 1] + assert_(np.all(res[i0, i1, i2, i3] == a)) + assert_(res.shape == self.tgtshape[(i, j)], str((i, j))) + assert_(not res.flags['OWNDATA']) + + # negative axis, positive start + ip = i + 1 + res = np.rollaxis(a, axis=-ip, start=j) + i0, i1, i2, i3 = aind[np.array(res.shape) - 1] + assert_(np.all(res[i0, i1, i2, i3] == a)) + assert_(res.shape == self.tgtshape[(4 - ip, j)]) + assert_(not res.flags['OWNDATA']) + + # positive axis, negative start + jp = j + 1 if j < 4 else j + res = np.rollaxis(a, axis=i, start=-jp) + i0, i1, i2, i3 = aind[np.array(res.shape) - 1] + assert_(np.all(res[i0, i1, i2, i3] == a)) + assert_(res.shape == self.tgtshape[(i, 4 - jp)]) + assert_(not res.flags['OWNDATA']) + + # negative axis, negative start + ip = i + 1 + jp = j + 1 if j < 4 else j + res = np.rollaxis(a, axis=-ip, start=-jp) + i0, i1, i2, i3 = aind[np.array(res.shape) - 1] + assert_(np.all(res[i0, i1, i2, i3] == a)) + assert_(res.shape == self.tgtshape[(4 - ip, 4 - jp)]) + assert_(not res.flags['OWNDATA']) + + +class TestMoveaxis: + def test_move_to_end(self): + x = np.random.randn(5, 6, 7) + for source, expected in [(0, (6, 7, 5)), + (1, (5, 7, 6)), + (2, (5, 6, 7)), + (-1, (5, 6, 7))]: + actual = np.moveaxis(x, source, -1).shape + assert_(actual, expected) + + def test_move_new_position(self): + x = np.random.randn(1, 2, 3, 4) + for source, destination, expected in [ + (0, 1, (2, 1, 3, 4)), + (1, 2, (1, 3, 2, 4)), + (1, -1, (1, 3, 4, 2)), + ]: + actual = np.moveaxis(x, source, destination).shape + assert_(actual, expected) + + def test_preserve_order(self): + x = np.zeros((1, 2, 3, 4)) + for source, destination in [ + (0, 0), + (3, -1), + (-1, 3), + ([0, -1], [0, -1]), + ([2, 0], [2, 0]), + (range(4), range(4)), + ]: + actual = np.moveaxis(x, source, destination).shape + assert_(actual, (1, 2, 3, 4)) + + def test_move_multiples(self): + x = np.zeros((0, 1, 2, 3)) + for source, destination, expected in [ + ([0, 1], [2, 3], (2, 3, 0, 1)), + ([2, 3], [0, 1], (2, 3, 0, 1)), + ([0, 1, 2], [2, 3, 0], (2, 3, 0, 1)), + ([3, 0], [1, 0], (0, 3, 1, 2)), + ([0, 3], [0, 1], (0, 3, 1, 2)), + ]: + actual = np.moveaxis(x, source, destination).shape + assert_(actual, expected) + + def test_errors(self): + x = np.random.randn(1, 2, 3) + assert_raises_regex(AxisError, 'source.*out of bounds', + np.moveaxis, x, 3, 0) + assert_raises_regex(AxisError, 'source.*out of bounds', + np.moveaxis, x, -4, 0) + assert_raises_regex(AxisError, 'destination.*out of bounds', + np.moveaxis, x, 0, 5) + assert_raises_regex(ValueError, 'repeated axis in `source`', + np.moveaxis, x, [0, 0], [0, 1]) + assert_raises_regex(ValueError, 'repeated axis in `destination`', + np.moveaxis, x, [0, 1], [1, 1]) + assert_raises_regex(ValueError, 'must have the same number', + np.moveaxis, x, 0, [0, 1]) + assert_raises_regex(ValueError, 'must have the same number', + np.moveaxis, x, [0, 1], [0]) + + def test_array_likes(self): + x = np.ma.zeros((1, 2, 3)) + result = np.moveaxis(x, 0, 0) + assert_(x.shape, result.shape) + assert_(isinstance(result, np.ma.MaskedArray)) + + x = [1, 2, 3] + result = np.moveaxis(x, 0, 0) + assert_(x, list(result)) + assert_(isinstance(result, np.ndarray)) + + +class TestCross: + @pytest.mark.filterwarnings( + "ignore:.*2-dimensional vectors.*:DeprecationWarning" + ) + def test_2x2(self): + u = [1, 2] + v = [3, 4] + z = -2 + cp = np.cross(u, v) + assert_equal(cp, z) + cp = np.cross(v, u) + assert_equal(cp, -z) + + @pytest.mark.filterwarnings( + "ignore:.*2-dimensional vectors.*:DeprecationWarning" + ) + def test_2x3(self): + u = [1, 2] + v = [3, 4, 5] + z = np.array([10, -5, -2]) + cp = np.cross(u, v) + assert_equal(cp, z) + cp = np.cross(v, u) + assert_equal(cp, -z) + + def test_3x3(self): + u = [1, 2, 3] + v = [4, 5, 6] + z = np.array([-3, 6, -3]) + cp = np.cross(u, v) + assert_equal(cp, z) + cp = np.cross(v, u) + assert_equal(cp, -z) + + @pytest.mark.filterwarnings( + "ignore:.*2-dimensional vectors.*:DeprecationWarning" + ) + def test_broadcasting(self): + # Ticket #2624 (Trac #2032) + u = np.tile([1, 2], (11, 1)) + v = np.tile([3, 4], (11, 1)) + z = -2 + assert_equal(np.cross(u, v), z) + assert_equal(np.cross(v, u), -z) + assert_equal(np.cross(u, u), 0) + + u = np.tile([1, 2], (11, 1)).T + v = np.tile([3, 4, 5], (11, 1)) + z = np.tile([10, -5, -2], (11, 1)) + assert_equal(np.cross(u, v, axisa=0), z) + assert_equal(np.cross(v, u.T), -z) + assert_equal(np.cross(v, v), 0) + + u = np.tile([1, 2, 3], (11, 1)).T + v = np.tile([3, 4], (11, 1)).T + z = np.tile([-12, 9, -2], (11, 1)) + assert_equal(np.cross(u, v, axisa=0, axisb=0), z) + assert_equal(np.cross(v.T, u.T), -z) + assert_equal(np.cross(u.T, u.T), 0) + + u = np.tile([1, 2, 3], (5, 1)) + v = np.tile([4, 5, 6], (5, 1)).T + z = np.tile([-3, 6, -3], (5, 1)) + assert_equal(np.cross(u, v, axisb=0), z) + assert_equal(np.cross(v.T, u), -z) + assert_equal(np.cross(u, u), 0) + + @pytest.mark.filterwarnings( + "ignore:.*2-dimensional vectors.*:DeprecationWarning" + ) + def test_broadcasting_shapes(self): + u = np.ones((2, 1, 3)) + v = np.ones((5, 3)) + assert_equal(np.cross(u, v).shape, (2, 5, 3)) + u = np.ones((10, 3, 5)) + v = np.ones((2, 5)) + assert_equal(np.cross(u, v, axisa=1, axisb=0).shape, (10, 5, 3)) + assert_raises(AxisError, np.cross, u, v, axisa=1, axisb=2) + assert_raises(AxisError, np.cross, u, v, axisa=3, axisb=0) + u = np.ones((10, 3, 5, 7)) + v = np.ones((5, 7, 2)) + assert_equal(np.cross(u, v, axisa=1, axisc=2).shape, (10, 5, 3, 7)) + assert_raises(AxisError, np.cross, u, v, axisa=-5, axisb=2) + assert_raises(AxisError, np.cross, u, v, axisa=1, axisb=-4) + # gh-5885 + u = np.ones((3, 4, 2)) + for axisc in range(-2, 2): + assert_equal(np.cross(u, u, axisc=axisc).shape, (3, 4)) + + def test_uint8_int32_mixed_dtypes(self): + # regression test for gh-19138 + u = np.array([[195, 8, 9]], np.uint8) + v = np.array([250, 166, 68], np.int32) + z = np.array([[950, 11010, -30370]], dtype=np.int32) + assert_equal(np.cross(v, u), z) + assert_equal(np.cross(u, v), -z) + + @pytest.mark.parametrize("a, b", [(0, [1, 2]), ([1, 2], 3)]) + def test_zero_dimension(self, a, b): + with pytest.raises(ValueError) as exc: + np.cross(a, b) + assert "At least one array has zero dimension" in str(exc.value) + + +def test_outer_out_param(): + arr1 = np.ones((5,)) + arr2 = np.ones((2,)) + arr3 = np.linspace(-2, 2, 5) + out1 = np.ndarray(shape=(5, 5)) + out2 = np.ndarray(shape=(2, 5)) + res1 = np.outer(arr1, arr3, out1) + assert_equal(res1, out1) + assert_equal(np.outer(arr2, arr3, out2), out2) + + +class TestIndices: + + def test_simple(self): + [x, y] = np.indices((4, 3)) + assert_array_equal(x, np.array([[0, 0, 0], + [1, 1, 1], + [2, 2, 2], + [3, 3, 3]])) + assert_array_equal(y, np.array([[0, 1, 2], + [0, 1, 2], + [0, 1, 2], + [0, 1, 2]])) + + def test_single_input(self): + [x] = np.indices((4,)) + assert_array_equal(x, np.array([0, 1, 2, 3])) + + [x] = np.indices((4,), sparse=True) + assert_array_equal(x, np.array([0, 1, 2, 3])) + + def test_scalar_input(self): + assert_array_equal([], np.indices(())) + assert_array_equal([], np.indices((), sparse=True)) + assert_array_equal([[]], np.indices((0,))) + assert_array_equal([[]], np.indices((0,), sparse=True)) + + def test_sparse(self): + [x, y] = np.indices((4, 3), sparse=True) + assert_array_equal(x, np.array([[0], [1], [2], [3]])) + assert_array_equal(y, np.array([[0, 1, 2]])) + + @pytest.mark.parametrize("dtype", [np.int32, np.int64, np.float32, np.float64]) + @pytest.mark.parametrize("dims", [(), (0,), (4, 3)]) + def test_return_type(self, dtype, dims): + inds = np.indices(dims, dtype=dtype) + assert_(inds.dtype == dtype) + + for arr in np.indices(dims, dtype=dtype, sparse=True): + assert_(arr.dtype == dtype) + + +class TestRequire: + flag_names = ['C', 'C_CONTIGUOUS', 'CONTIGUOUS', + 'F', 'F_CONTIGUOUS', 'FORTRAN', + 'A', 'ALIGNED', + 'W', 'WRITEABLE', + 'O', 'OWNDATA'] + + def generate_all_false(self, dtype): + arr = np.zeros((2, 2), [('junk', 'i1'), ('a', dtype)]) + arr.setflags(write=False) + a = arr['a'] + assert_(not a.flags['C']) + assert_(not a.flags['F']) + assert_(not a.flags['O']) + assert_(not a.flags['W']) + assert_(not a.flags['A']) + return a + + def set_and_check_flag(self, flag, dtype, arr): + if dtype is None: + dtype = arr.dtype + b = np.require(arr, dtype, [flag]) + assert_(b.flags[flag]) + assert_(b.dtype == dtype) + + # a further call to np.require ought to return the same array + # unless OWNDATA is specified. + c = np.require(b, None, [flag]) + if flag[0] != 'O': + assert_(c is b) + else: + assert_(c.flags[flag]) + + def test_require_each(self): + + id = ['f8', 'i4'] + fd = [None, 'f8', 'c16'] + for idtype, fdtype, flag in itertools.product(id, fd, self.flag_names): + a = self.generate_all_false(idtype) + self.set_and_check_flag(flag, fdtype, a) + + def test_unknown_requirement(self): + a = self.generate_all_false('f8') + assert_raises(KeyError, np.require, a, None, 'Q') + + def test_non_array_input(self): + a = np.require([1, 2, 3, 4], 'i4', ['C', 'A', 'O']) + assert_(a.flags['O']) + assert_(a.flags['C']) + assert_(a.flags['A']) + assert_(a.dtype == 'i4') + assert_equal(a, [1, 2, 3, 4]) + + def test_C_and_F_simul(self): + a = self.generate_all_false('f8') + assert_raises(ValueError, np.require, a, None, ['C', 'F']) + + def test_ensure_array(self): + class ArraySubclass(np.ndarray): + pass + + a = ArraySubclass((2, 2)) + b = np.require(a, None, ['E']) + assert_(type(b) is np.ndarray) + + def test_preserve_subtype(self): + class ArraySubclass(np.ndarray): + pass + + for flag in self.flag_names: + a = ArraySubclass((2, 2)) + self.set_and_check_flag(flag, None, a) + + +class TestBroadcast: + def test_broadcast_in_args(self): + # gh-5881 + arrs = [np.empty((6, 7)), np.empty((5, 6, 1)), np.empty((7,)), + np.empty((5, 1, 7))] + mits = [np.broadcast(*arrs), + np.broadcast(np.broadcast(*arrs[:0]), np.broadcast(*arrs[0:])), + np.broadcast(np.broadcast(*arrs[:1]), np.broadcast(*arrs[1:])), + np.broadcast(np.broadcast(*arrs[:2]), np.broadcast(*arrs[2:])), + np.broadcast(arrs[0], np.broadcast(*arrs[1:-1]), arrs[-1])] + for mit in mits: + assert_equal(mit.shape, (5, 6, 7)) + assert_equal(mit.ndim, 3) + assert_equal(mit.nd, 3) + assert_equal(mit.numiter, 4) + for a, ia in zip(arrs, mit.iters): + assert_(a is ia.base) + + def test_broadcast_single_arg(self): + # gh-6899 + arrs = [np.empty((5, 6, 7))] + mit = np.broadcast(*arrs) + assert_equal(mit.shape, (5, 6, 7)) + assert_equal(mit.ndim, 3) + assert_equal(mit.nd, 3) + assert_equal(mit.numiter, 1) + assert_(arrs[0] is mit.iters[0].base) + + def test_number_of_arguments(self): + arr = np.empty((5,)) + for j in range(70): + arrs = [arr] * j + if j > 64: + assert_raises(ValueError, np.broadcast, *arrs) + else: + mit = np.broadcast(*arrs) + assert_equal(mit.numiter, j) + + def test_broadcast_error_kwargs(self): + # gh-13455 + arrs = [np.empty((5, 6, 7))] + mit = np.broadcast(*arrs) + mit2 = np.broadcast(*arrs, **{}) # noqa: PIE804 + assert_equal(mit.shape, mit2.shape) + assert_equal(mit.ndim, mit2.ndim) + assert_equal(mit.nd, mit2.nd) + assert_equal(mit.numiter, mit2.numiter) + assert_(mit.iters[0].base is mit2.iters[0].base) + + assert_raises(ValueError, np.broadcast, 1, x=1) + + def test_shape_mismatch_error_message(self): + with pytest.raises(ValueError, match=r"arg 0 with shape \(1, 3\) and " + r"arg 2 with shape \(2,\)"): + np.broadcast([[1, 2, 3]], [[4], [5]], [6, 7]) + + +class TestKeepdims: + + class sub_array(np.ndarray): + def sum(self, axis=None, dtype=None, out=None): + return np.ndarray.sum(self, axis, dtype, out, keepdims=True) + + def test_raise(self): + sub_class = self.sub_array + x = np.arange(30).view(sub_class) + assert_raises(TypeError, np.sum, x, keepdims=True) + + +class TestTensordot: + + def test_zero_dimension(self): + # Test resolution to issue #5663 + a = np.ndarray((3, 0)) + b = np.ndarray((0, 4)) + td = np.tensordot(a, b, (1, 0)) + assert_array_equal(td, np.dot(a, b)) + assert_array_equal(td, np.einsum('ij,jk', a, b)) + + def test_zero_dimensional(self): + # gh-12130 + arr_0d = np.array(1) + ret = np.tensordot(arr_0d, arr_0d, ([], [])) # contracting no axes is well defined + assert_array_equal(ret, arr_0d) + + +class TestAsType: + + def test_astype(self): + data = [[1, 2], [3, 4]] + actual = np.astype( + np.array(data, dtype=np.int64), np.uint32 + ) + expected = np.array(data, dtype=np.uint32) + + assert_array_equal(actual, expected) + assert_equal(actual.dtype, expected.dtype) + + assert np.shares_memory( + actual, np.astype(actual, actual.dtype, copy=False) + ) + + actual = np.astype(np.int64(10), np.float64) + expected = np.float64(10) + assert_equal(actual, expected) + assert_equal(actual.dtype, expected.dtype) + + with pytest.raises(TypeError, match="Input should be a NumPy array"): + np.astype(data, np.float64) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_numerictypes.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_numerictypes.py new file mode 100644 index 0000000..c9a2ac0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_numerictypes.py @@ -0,0 +1,622 @@ +import itertools +import sys + +import pytest + +import numpy as np +import numpy._core.numerictypes as nt +from numpy._core.numerictypes import issctype, maximum_sctype, sctype2char, sctypes +from numpy.testing import ( + IS_PYPY, + assert_, + assert_equal, + assert_raises, + assert_raises_regex, +) + +# This is the structure of the table used for plain objects: +# +# +-+-+-+ +# |x|y|z| +# +-+-+-+ + +# Structure of a plain array description: +Pdescr = [ + ('x', 'i4', (2,)), + ('y', 'f8', (2, 2)), + ('z', 'u1')] + +# A plain list of tuples with values for testing: +PbufferT = [ + # x y z + ([3, 2], [[6., 4.], [6., 4.]], 8), + ([4, 3], [[7., 5.], [7., 5.]], 9), + ] + + +# This is the structure of the table used for nested objects (DON'T PANIC!): +# +# +-+---------------------------------+-----+----------+-+-+ +# |x|Info |color|info |y|z| +# | +-----+--+----------------+----+--+ +----+-----+ | | +# | |value|y2|Info2 |name|z2| |Name|Value| | | +# | | | +----+-----+--+--+ | | | | | | | +# | | | |name|value|y3|z3| | | | | | | | +# +-+-----+--+----+-----+--+--+----+--+-----+----+-----+-+-+ +# + +# The corresponding nested array description: +Ndescr = [ + ('x', 'i4', (2,)), + ('Info', [ + ('value', 'c16'), + ('y2', 'f8'), + ('Info2', [ + ('name', 'S2'), + ('value', 'c16', (2,)), + ('y3', 'f8', (2,)), + ('z3', 'u4', (2,))]), + ('name', 'S2'), + ('z2', 'b1')]), + ('color', 'S2'), + ('info', [ + ('Name', 'U8'), + ('Value', 'c16')]), + ('y', 'f8', (2, 2)), + ('z', 'u1')] + +NbufferT = [ + # x Info color info y z + # value y2 Info2 name z2 Name Value + # name value y3 z3 + ([3, 2], (6j, 6., (b'nn', [6j, 4j], [6., 4.], [1, 2]), b'NN', True), + b'cc', ('NN', 6j), [[6., 4.], [6., 4.]], 8), + ([4, 3], (7j, 7., (b'oo', [7j, 5j], [7., 5.], [2, 1]), b'OO', False), + b'dd', ('OO', 7j), [[7., 5.], [7., 5.]], 9), + ] + + +byteorder = {'little': '<', 'big': '>'}[sys.byteorder] + +def normalize_descr(descr): + "Normalize a description adding the platform byteorder." + + out = [] + for item in descr: + dtype = item[1] + if isinstance(dtype, str): + if dtype[0] not in ['|', '<', '>']: + onebyte = dtype[1:] == "1" + if onebyte or dtype[0] in ['S', 'V', 'b']: + dtype = "|" + dtype + else: + dtype = byteorder + dtype + if len(item) > 2 and np.prod(item[2]) > 1: + nitem = (item[0], dtype, item[2]) + else: + nitem = (item[0], dtype) + out.append(nitem) + elif isinstance(dtype, list): + l = normalize_descr(dtype) + out.append((item[0], l)) + else: + raise ValueError(f"Expected a str or list and got {type(item)}") + return out + + +############################################################ +# Creation tests +############################################################ + +class CreateZeros: + """Check the creation of heterogeneous arrays zero-valued""" + + def test_zeros0D(self): + """Check creation of 0-dimensional objects""" + h = np.zeros((), dtype=self._descr) + assert_(normalize_descr(self._descr) == h.dtype.descr) + assert_(h.dtype.fields['x'][0].name[:4] == 'void') + assert_(h.dtype.fields['x'][0].char == 'V') + assert_(h.dtype.fields['x'][0].type == np.void) + # A small check that data is ok + assert_equal(h['z'], np.zeros((), dtype='u1')) + + def test_zerosSD(self): + """Check creation of single-dimensional objects""" + h = np.zeros((2,), dtype=self._descr) + assert_(normalize_descr(self._descr) == h.dtype.descr) + assert_(h.dtype['y'].name[:4] == 'void') + assert_(h.dtype['y'].char == 'V') + assert_(h.dtype['y'].type == np.void) + # A small check that data is ok + assert_equal(h['z'], np.zeros((2,), dtype='u1')) + + def test_zerosMD(self): + """Check creation of multi-dimensional objects""" + h = np.zeros((2, 3), dtype=self._descr) + assert_(normalize_descr(self._descr) == h.dtype.descr) + assert_(h.dtype['z'].name == 'uint8') + assert_(h.dtype['z'].char == 'B') + assert_(h.dtype['z'].type == np.uint8) + # A small check that data is ok + assert_equal(h['z'], np.zeros((2, 3), dtype='u1')) + + +class TestCreateZerosPlain(CreateZeros): + """Check the creation of heterogeneous arrays zero-valued (plain)""" + _descr = Pdescr + +class TestCreateZerosNested(CreateZeros): + """Check the creation of heterogeneous arrays zero-valued (nested)""" + _descr = Ndescr + + +class CreateValues: + """Check the creation of heterogeneous arrays with values""" + + def test_tuple(self): + """Check creation from tuples""" + h = np.array(self._buffer, dtype=self._descr) + assert_(normalize_descr(self._descr) == h.dtype.descr) + if self.multiple_rows: + assert_(h.shape == (2,)) + else: + assert_(h.shape == ()) + + def test_list_of_tuple(self): + """Check creation from list of tuples""" + h = np.array([self._buffer], dtype=self._descr) + assert_(normalize_descr(self._descr) == h.dtype.descr) + if self.multiple_rows: + assert_(h.shape == (1, 2)) + else: + assert_(h.shape == (1,)) + + def test_list_of_list_of_tuple(self): + """Check creation from list of list of tuples""" + h = np.array([[self._buffer]], dtype=self._descr) + assert_(normalize_descr(self._descr) == h.dtype.descr) + if self.multiple_rows: + assert_(h.shape == (1, 1, 2)) + else: + assert_(h.shape == (1, 1)) + + +class TestCreateValuesPlainSingle(CreateValues): + """Check the creation of heterogeneous arrays (plain, single row)""" + _descr = Pdescr + multiple_rows = 0 + _buffer = PbufferT[0] + +class TestCreateValuesPlainMultiple(CreateValues): + """Check the creation of heterogeneous arrays (plain, multiple rows)""" + _descr = Pdescr + multiple_rows = 1 + _buffer = PbufferT + +class TestCreateValuesNestedSingle(CreateValues): + """Check the creation of heterogeneous arrays (nested, single row)""" + _descr = Ndescr + multiple_rows = 0 + _buffer = NbufferT[0] + +class TestCreateValuesNestedMultiple(CreateValues): + """Check the creation of heterogeneous arrays (nested, multiple rows)""" + _descr = Ndescr + multiple_rows = 1 + _buffer = NbufferT + + +############################################################ +# Reading tests +############################################################ + +class ReadValuesPlain: + """Check the reading of values in heterogeneous arrays (plain)""" + + def test_access_fields(self): + h = np.array(self._buffer, dtype=self._descr) + if not self.multiple_rows: + assert_(h.shape == ()) + assert_equal(h['x'], np.array(self._buffer[0], dtype='i4')) + assert_equal(h['y'], np.array(self._buffer[1], dtype='f8')) + assert_equal(h['z'], np.array(self._buffer[2], dtype='u1')) + else: + assert_(len(h) == 2) + assert_equal(h['x'], np.array([self._buffer[0][0], + self._buffer[1][0]], dtype='i4')) + assert_equal(h['y'], np.array([self._buffer[0][1], + self._buffer[1][1]], dtype='f8')) + assert_equal(h['z'], np.array([self._buffer[0][2], + self._buffer[1][2]], dtype='u1')) + + +class TestReadValuesPlainSingle(ReadValuesPlain): + """Check the creation of heterogeneous arrays (plain, single row)""" + _descr = Pdescr + multiple_rows = 0 + _buffer = PbufferT[0] + +class TestReadValuesPlainMultiple(ReadValuesPlain): + """Check the values of heterogeneous arrays (plain, multiple rows)""" + _descr = Pdescr + multiple_rows = 1 + _buffer = PbufferT + +class ReadValuesNested: + """Check the reading of values in heterogeneous arrays (nested)""" + + def test_access_top_fields(self): + """Check reading the top fields of a nested array""" + h = np.array(self._buffer, dtype=self._descr) + if not self.multiple_rows: + assert_(h.shape == ()) + assert_equal(h['x'], np.array(self._buffer[0], dtype='i4')) + assert_equal(h['y'], np.array(self._buffer[4], dtype='f8')) + assert_equal(h['z'], np.array(self._buffer[5], dtype='u1')) + else: + assert_(len(h) == 2) + assert_equal(h['x'], np.array([self._buffer[0][0], + self._buffer[1][0]], dtype='i4')) + assert_equal(h['y'], np.array([self._buffer[0][4], + self._buffer[1][4]], dtype='f8')) + assert_equal(h['z'], np.array([self._buffer[0][5], + self._buffer[1][5]], dtype='u1')) + + def test_nested1_acessors(self): + """Check reading the nested fields of a nested array (1st level)""" + h = np.array(self._buffer, dtype=self._descr) + if not self.multiple_rows: + assert_equal(h['Info']['value'], + np.array(self._buffer[1][0], dtype='c16')) + assert_equal(h['Info']['y2'], + np.array(self._buffer[1][1], dtype='f8')) + assert_equal(h['info']['Name'], + np.array(self._buffer[3][0], dtype='U2')) + assert_equal(h['info']['Value'], + np.array(self._buffer[3][1], dtype='c16')) + else: + assert_equal(h['Info']['value'], + np.array([self._buffer[0][1][0], + self._buffer[1][1][0]], + dtype='c16')) + assert_equal(h['Info']['y2'], + np.array([self._buffer[0][1][1], + self._buffer[1][1][1]], + dtype='f8')) + assert_equal(h['info']['Name'], + np.array([self._buffer[0][3][0], + self._buffer[1][3][0]], + dtype='U2')) + assert_equal(h['info']['Value'], + np.array([self._buffer[0][3][1], + self._buffer[1][3][1]], + dtype='c16')) + + def test_nested2_acessors(self): + """Check reading the nested fields of a nested array (2nd level)""" + h = np.array(self._buffer, dtype=self._descr) + if not self.multiple_rows: + assert_equal(h['Info']['Info2']['value'], + np.array(self._buffer[1][2][1], dtype='c16')) + assert_equal(h['Info']['Info2']['z3'], + np.array(self._buffer[1][2][3], dtype='u4')) + else: + assert_equal(h['Info']['Info2']['value'], + np.array([self._buffer[0][1][2][1], + self._buffer[1][1][2][1]], + dtype='c16')) + assert_equal(h['Info']['Info2']['z3'], + np.array([self._buffer[0][1][2][3], + self._buffer[1][1][2][3]], + dtype='u4')) + + def test_nested1_descriptor(self): + """Check access nested descriptors of a nested array (1st level)""" + h = np.array(self._buffer, dtype=self._descr) + assert_(h.dtype['Info']['value'].name == 'complex128') + assert_(h.dtype['Info']['y2'].name == 'float64') + assert_(h.dtype['info']['Name'].name == 'str256') + assert_(h.dtype['info']['Value'].name == 'complex128') + + def test_nested2_descriptor(self): + """Check access nested descriptors of a nested array (2nd level)""" + h = np.array(self._buffer, dtype=self._descr) + assert_(h.dtype['Info']['Info2']['value'].name == 'void256') + assert_(h.dtype['Info']['Info2']['z3'].name == 'void64') + + +class TestReadValuesNestedSingle(ReadValuesNested): + """Check the values of heterogeneous arrays (nested, single row)""" + _descr = Ndescr + multiple_rows = False + _buffer = NbufferT[0] + +class TestReadValuesNestedMultiple(ReadValuesNested): + """Check the values of heterogeneous arrays (nested, multiple rows)""" + _descr = Ndescr + multiple_rows = True + _buffer = NbufferT + +class TestEmptyField: + def test_assign(self): + a = np.arange(10, dtype=np.float32) + a.dtype = [("int", "<0i4"), ("float", "<2f4")] + assert_(a['int'].shape == (5, 0)) + assert_(a['float'].shape == (5, 2)) + + +class TestMultipleFields: + def setup_method(self): + self.ary = np.array([(1, 2, 3, 4), (5, 6, 7, 8)], dtype='i4,f4,i2,c8') + + def _bad_call(self): + return self.ary['f0', 'f1'] + + def test_no_tuple(self): + assert_raises(IndexError, self._bad_call) + + def test_return(self): + res = self.ary[['f0', 'f2']].tolist() + assert_(res == [(1, 3), (5, 7)]) + + +class TestIsSubDType: + # scalar types can be promoted into dtypes + wrappers = [np.dtype, lambda x: x] + + def test_both_abstract(self): + assert_(np.issubdtype(np.floating, np.inexact)) + assert_(not np.issubdtype(np.inexact, np.floating)) + + def test_same(self): + for cls in (np.float32, np.int32): + for w1, w2 in itertools.product(self.wrappers, repeat=2): + assert_(np.issubdtype(w1(cls), w2(cls))) + + def test_subclass(self): + # note we cannot promote floating to a dtype, as it would turn into a + # concrete type + for w in self.wrappers: + assert_(np.issubdtype(w(np.float32), np.floating)) + assert_(np.issubdtype(w(np.float64), np.floating)) + + def test_subclass_backwards(self): + for w in self.wrappers: + assert_(not np.issubdtype(np.floating, w(np.float32))) + assert_(not np.issubdtype(np.floating, w(np.float64))) + + def test_sibling_class(self): + for w1, w2 in itertools.product(self.wrappers, repeat=2): + assert_(not np.issubdtype(w1(np.float32), w2(np.float64))) + assert_(not np.issubdtype(w1(np.float64), w2(np.float32))) + + def test_nondtype_nonscalartype(self): + # See gh-14619 and gh-9505 which introduced the deprecation to fix + # this. These tests are directly taken from gh-9505 + assert not np.issubdtype(np.float32, 'float64') + assert not np.issubdtype(np.float32, 'f8') + assert not np.issubdtype(np.int32, str) + assert not np.issubdtype(np.int32, 'int64') + assert not np.issubdtype(np.str_, 'void') + # for the following the correct spellings are + # np.integer, np.floating, or np.complexfloating respectively: + assert not np.issubdtype(np.int8, int) # np.int8 is never np.int_ + assert not np.issubdtype(np.float32, float) + assert not np.issubdtype(np.complex64, complex) + assert not np.issubdtype(np.float32, "float") + assert not np.issubdtype(np.float64, "f") + + # Test the same for the correct first datatype and abstract one + # in the case of int, float, complex: + assert np.issubdtype(np.float64, 'float64') + assert np.issubdtype(np.float64, 'f8') + assert np.issubdtype(np.str_, str) + assert np.issubdtype(np.int64, 'int64') + assert np.issubdtype(np.void, 'void') + assert np.issubdtype(np.int8, np.integer) + assert np.issubdtype(np.float32, np.floating) + assert np.issubdtype(np.complex64, np.complexfloating) + assert np.issubdtype(np.float64, "float") + assert np.issubdtype(np.float32, "f") + + +class TestIsDType: + """ + Check correctness of `np.isdtype`. The test considers different argument + configurations: `np.isdtype(dtype, k1)` and `np.isdtype(dtype, (k1, k2))` + with concrete dtypes and dtype groups. + """ + dtype_group_dict = { + "signed integer": sctypes["int"], + "unsigned integer": sctypes["uint"], + "integral": sctypes["int"] + sctypes["uint"], + "real floating": sctypes["float"], + "complex floating": sctypes["complex"], + "numeric": ( + sctypes["int"] + sctypes["uint"] + sctypes["float"] + + sctypes["complex"] + ) + } + + @pytest.mark.parametrize( + "dtype,close_dtype", + [ + (np.int64, np.int32), (np.uint64, np.uint32), + (np.float64, np.float32), (np.complex128, np.complex64) + ] + ) + @pytest.mark.parametrize( + "dtype_group", + [ + None, "signed integer", "unsigned integer", "integral", + "real floating", "complex floating", "numeric" + ] + ) + def test_isdtype(self, dtype, close_dtype, dtype_group): + # First check if same dtypes return `true` and different ones + # give `false` (even if they're close in the dtype hierarchy!) + if dtype_group is None: + assert np.isdtype(dtype, dtype) + assert not np.isdtype(dtype, close_dtype) + assert np.isdtype(dtype, (dtype, close_dtype)) + + # Check that dtype and a dtype group that it belongs to + # return `true`, and `false` otherwise. + elif dtype in self.dtype_group_dict[dtype_group]: + assert np.isdtype(dtype, dtype_group) + assert np.isdtype(dtype, (close_dtype, dtype_group)) + else: + assert not np.isdtype(dtype, dtype_group) + + def test_isdtype_invalid_args(self): + with assert_raises_regex(TypeError, r".*must be a NumPy dtype.*"): + np.isdtype("int64", np.int64) + with assert_raises_regex(TypeError, r".*kind argument must.*"): + np.isdtype(np.int64, 1) + with assert_raises_regex(ValueError, r".*not a known kind name.*"): + np.isdtype(np.int64, "int64") + + def test_sctypes_complete(self): + # issue 26439: int32/intc were masking each other on 32-bit builds + assert np.int32 in sctypes['int'] + assert np.intc in sctypes['int'] + assert np.int64 in sctypes['int'] + assert np.uint32 in sctypes['uint'] + assert np.uintc in sctypes['uint'] + assert np.uint64 in sctypes['uint'] + +class TestSctypeDict: + def test_longdouble(self): + assert_(np._core.sctypeDict['float64'] is not np.longdouble) + assert_(np._core.sctypeDict['complex128'] is not np.clongdouble) + + def test_ulong(self): + assert np._core.sctypeDict['ulong'] is np.ulong + assert np.dtype(np.ulong) is np.dtype("ulong") + assert np.dtype(np.ulong).itemsize == np.dtype(np.long).itemsize + + +@pytest.mark.filterwarnings("ignore:.*maximum_sctype.*:DeprecationWarning") +class TestMaximumSctype: + + # note that parametrizing with sctype['int'] and similar would skip types + # with the same size (gh-11923) + + @pytest.mark.parametrize( + 't', [np.byte, np.short, np.intc, np.long, np.longlong] + ) + def test_int(self, t): + assert_equal(maximum_sctype(t), np._core.sctypes['int'][-1]) + + @pytest.mark.parametrize( + 't', [np.ubyte, np.ushort, np.uintc, np.ulong, np.ulonglong] + ) + def test_uint(self, t): + assert_equal(maximum_sctype(t), np._core.sctypes['uint'][-1]) + + @pytest.mark.parametrize('t', [np.half, np.single, np.double, np.longdouble]) + def test_float(self, t): + assert_equal(maximum_sctype(t), np._core.sctypes['float'][-1]) + + @pytest.mark.parametrize('t', [np.csingle, np.cdouble, np.clongdouble]) + def test_complex(self, t): + assert_equal(maximum_sctype(t), np._core.sctypes['complex'][-1]) + + @pytest.mark.parametrize('t', [np.bool, np.object_, np.str_, np.bytes_, + np.void]) + def test_other(self, t): + assert_equal(maximum_sctype(t), t) + + +class Test_sctype2char: + # This function is old enough that we're really just documenting the quirks + # at this point. + + def test_scalar_type(self): + assert_equal(sctype2char(np.double), 'd') + assert_equal(sctype2char(np.long), 'l') + assert_equal(sctype2char(np.int_), np.array(0).dtype.char) + assert_equal(sctype2char(np.str_), 'U') + assert_equal(sctype2char(np.bytes_), 'S') + + def test_other_type(self): + assert_equal(sctype2char(float), 'd') + assert_equal(sctype2char(list), 'O') + assert_equal(sctype2char(np.ndarray), 'O') + + def test_third_party_scalar_type(self): + from numpy._core._rational_tests import rational + assert_raises(KeyError, sctype2char, rational) + assert_raises(KeyError, sctype2char, rational(1)) + + def test_array_instance(self): + assert_equal(sctype2char(np.array([1.0, 2.0])), 'd') + + def test_abstract_type(self): + assert_raises(KeyError, sctype2char, np.floating) + + def test_non_type(self): + assert_raises(ValueError, sctype2char, 1) + +@pytest.mark.parametrize("rep, expected", [ + (np.int32, True), + (list, False), + (1.1, False), + (str, True), + (np.dtype(np.float64), True), + (np.dtype((np.int16, (3, 4))), True), + (np.dtype([('a', np.int8)]), True), + ]) +def test_issctype(rep, expected): + # ensure proper identification of scalar + # data-types by issctype() + actual = issctype(rep) + assert type(actual) is bool + assert_equal(actual, expected) + + +@pytest.mark.skipif(sys.flags.optimize > 1, + reason="no docstrings present to inspect when PYTHONOPTIMIZE/Py_OptimizeFlag > 1") +@pytest.mark.xfail(IS_PYPY, + reason="PyPy cannot modify tp_doc after PyType_Ready") +class TestDocStrings: + def test_platform_dependent_aliases(self): + if np.int64 is np.int_: + assert_('int64' in np.int_.__doc__) + elif np.int64 is np.longlong: + assert_('int64' in np.longlong.__doc__) + + +class TestScalarTypeNames: + # gh-9799 + + numeric_types = [ + np.byte, np.short, np.intc, np.long, np.longlong, + np.ubyte, np.ushort, np.uintc, np.ulong, np.ulonglong, + np.half, np.single, np.double, np.longdouble, + np.csingle, np.cdouble, np.clongdouble, + ] + + def test_names_are_unique(self): + # none of the above may be aliases for each other + assert len(set(self.numeric_types)) == len(self.numeric_types) + + # names must be unique + names = [t.__name__ for t in self.numeric_types] + assert len(set(names)) == len(names) + + @pytest.mark.parametrize('t', numeric_types) + def test_names_reflect_attributes(self, t): + """ Test that names correspond to where the type is under ``np.`` """ + assert getattr(np, t.__name__) is t + + @pytest.mark.parametrize('t', numeric_types) + def test_names_are_undersood_by_dtype(self, t): + """ Test the dtype constructor maps names back to the type """ + assert np.dtype(t.__name__).type is t + + +class TestBoolDefinition: + def test_bool_definition(self): + assert nt.bool is np.bool diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_overrides.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_overrides.py new file mode 100644 index 0000000..b0d7337 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_overrides.py @@ -0,0 +1,791 @@ +import inspect +import os +import pickle +import sys +import tempfile +from io import StringIO +from unittest import mock + +import pytest + +import numpy as np +from numpy._core.overrides import ( + _get_implementing_args, + array_function_dispatch, + verify_matching_signatures, +) +from numpy.testing import assert_, assert_equal, assert_raises, assert_raises_regex +from numpy.testing.overrides import get_overridable_numpy_array_functions + + +def _return_not_implemented(self, *args, **kwargs): + return NotImplemented + + +# need to define this at the top level to test pickling +@array_function_dispatch(lambda array: (array,)) +def dispatched_one_arg(array): + """Docstring.""" + return 'original' + + +@array_function_dispatch(lambda array1, array2: (array1, array2)) +def dispatched_two_arg(array1, array2): + """Docstring.""" + return 'original' + + +class TestGetImplementingArgs: + + def test_ndarray(self): + array = np.array(1) + + args = _get_implementing_args([array]) + assert_equal(list(args), [array]) + + args = _get_implementing_args([array, array]) + assert_equal(list(args), [array]) + + args = _get_implementing_args([array, 1]) + assert_equal(list(args), [array]) + + args = _get_implementing_args([1, array]) + assert_equal(list(args), [array]) + + def test_ndarray_subclasses(self): + + class OverrideSub(np.ndarray): + __array_function__ = _return_not_implemented + + class NoOverrideSub(np.ndarray): + pass + + array = np.array(1).view(np.ndarray) + override_sub = np.array(1).view(OverrideSub) + no_override_sub = np.array(1).view(NoOverrideSub) + + args = _get_implementing_args([array, override_sub]) + assert_equal(list(args), [override_sub, array]) + + args = _get_implementing_args([array, no_override_sub]) + assert_equal(list(args), [no_override_sub, array]) + + args = _get_implementing_args( + [override_sub, no_override_sub]) + assert_equal(list(args), [override_sub, no_override_sub]) + + def test_ndarray_and_duck_array(self): + + class Other: + __array_function__ = _return_not_implemented + + array = np.array(1) + other = Other() + + args = _get_implementing_args([other, array]) + assert_equal(list(args), [other, array]) + + args = _get_implementing_args([array, other]) + assert_equal(list(args), [array, other]) + + def test_ndarray_subclass_and_duck_array(self): + + class OverrideSub(np.ndarray): + __array_function__ = _return_not_implemented + + class Other: + __array_function__ = _return_not_implemented + + array = np.array(1) + subarray = np.array(1).view(OverrideSub) + other = Other() + + assert_equal(_get_implementing_args([array, subarray, other]), + [subarray, array, other]) + assert_equal(_get_implementing_args([array, other, subarray]), + [subarray, array, other]) + + def test_many_duck_arrays(self): + + class A: + __array_function__ = _return_not_implemented + + class B(A): + __array_function__ = _return_not_implemented + + class C(A): + __array_function__ = _return_not_implemented + + class D: + __array_function__ = _return_not_implemented + + a = A() + b = B() + c = C() + d = D() + + assert_equal(_get_implementing_args([1]), []) + assert_equal(_get_implementing_args([a]), [a]) + assert_equal(_get_implementing_args([a, 1]), [a]) + assert_equal(_get_implementing_args([a, a, a]), [a]) + assert_equal(_get_implementing_args([a, d, a]), [a, d]) + assert_equal(_get_implementing_args([a, b]), [b, a]) + assert_equal(_get_implementing_args([b, a]), [b, a]) + assert_equal(_get_implementing_args([a, b, c]), [b, c, a]) + assert_equal(_get_implementing_args([a, c, b]), [c, b, a]) + + def test_too_many_duck_arrays(self): + namespace = {'__array_function__': _return_not_implemented} + types = [type('A' + str(i), (object,), namespace) for i in range(65)] + relevant_args = [t() for t in types] + + actual = _get_implementing_args(relevant_args[:64]) + assert_equal(actual, relevant_args[:64]) + + with assert_raises_regex(TypeError, 'distinct argument types'): + _get_implementing_args(relevant_args) + + +class TestNDArrayArrayFunction: + + def test_method(self): + + class Other: + __array_function__ = _return_not_implemented + + class NoOverrideSub(np.ndarray): + pass + + class OverrideSub(np.ndarray): + __array_function__ = _return_not_implemented + + array = np.array([1]) + other = Other() + no_override_sub = array.view(NoOverrideSub) + override_sub = array.view(OverrideSub) + + result = array.__array_function__(func=dispatched_two_arg, + types=(np.ndarray,), + args=(array, 1.), kwargs={}) + assert_equal(result, 'original') + + result = array.__array_function__(func=dispatched_two_arg, + types=(np.ndarray, Other), + args=(array, other), kwargs={}) + assert_(result is NotImplemented) + + result = array.__array_function__(func=dispatched_two_arg, + types=(np.ndarray, NoOverrideSub), + args=(array, no_override_sub), + kwargs={}) + assert_equal(result, 'original') + + result = array.__array_function__(func=dispatched_two_arg, + types=(np.ndarray, OverrideSub), + args=(array, override_sub), + kwargs={}) + assert_equal(result, 'original') + + with assert_raises_regex(TypeError, 'no implementation found'): + np.concatenate((array, other)) + + expected = np.concatenate((array, array)) + result = np.concatenate((array, no_override_sub)) + assert_equal(result, expected.view(NoOverrideSub)) + result = np.concatenate((array, override_sub)) + assert_equal(result, expected.view(OverrideSub)) + + def test_no_wrapper(self): + # Regular numpy functions have wrappers, but do not presume + # all functions do (array creation ones do not): check that + # we just call the function in that case. + array = np.array(1) + func = lambda x: x * 2 + result = array.__array_function__(func=func, types=(np.ndarray,), + args=(array,), kwargs={}) + assert_equal(result, array * 2) + + def test_wrong_arguments(self): + # Check our implementation guards against wrong arguments. + a = np.array([1, 2]) + with pytest.raises(TypeError, match="args must be a tuple"): + a.__array_function__(np.reshape, (np.ndarray,), a, (2, 1)) + with pytest.raises(TypeError, match="kwargs must be a dict"): + a.__array_function__(np.reshape, (np.ndarray,), (a,), (2, 1)) + + +class TestArrayFunctionDispatch: + + def test_pickle(self): + for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): + roundtripped = pickle.loads( + pickle.dumps(dispatched_one_arg, protocol=proto)) + assert_(roundtripped is dispatched_one_arg) + + def test_name_and_docstring(self): + assert_equal(dispatched_one_arg.__name__, 'dispatched_one_arg') + if sys.flags.optimize < 2: + assert_equal(dispatched_one_arg.__doc__, 'Docstring.') + + def test_interface(self): + + class MyArray: + def __array_function__(self, func, types, args, kwargs): + return (self, func, types, args, kwargs) + + original = MyArray() + (obj, func, types, args, kwargs) = dispatched_one_arg(original) + assert_(obj is original) + assert_(func is dispatched_one_arg) + assert_equal(set(types), {MyArray}) + # assert_equal uses the overloaded np.iscomplexobj() internally + assert_(args == (original,)) + assert_equal(kwargs, {}) + + def test_not_implemented(self): + + class MyArray: + def __array_function__(self, func, types, args, kwargs): + return NotImplemented + + array = MyArray() + with assert_raises_regex(TypeError, 'no implementation found'): + dispatched_one_arg(array) + + def test_where_dispatch(self): + + class DuckArray: + def __array_function__(self, ufunc, method, *inputs, **kwargs): + return "overridden" + + array = np.array(1) + duck_array = DuckArray() + + result = np.std(array, where=duck_array) + + assert_equal(result, "overridden") + + +class TestVerifyMatchingSignatures: + + def test_verify_matching_signatures(self): + + verify_matching_signatures(lambda x: 0, lambda x: 0) + verify_matching_signatures(lambda x=None: 0, lambda x=None: 0) + verify_matching_signatures(lambda x=1: 0, lambda x=None: 0) + + with assert_raises(RuntimeError): + verify_matching_signatures(lambda a: 0, lambda b: 0) + with assert_raises(RuntimeError): + verify_matching_signatures(lambda x: 0, lambda x=None: 0) + with assert_raises(RuntimeError): + verify_matching_signatures(lambda x=None: 0, lambda y=None: 0) + with assert_raises(RuntimeError): + verify_matching_signatures(lambda x=1: 0, lambda y=1: 0) + + def test_array_function_dispatch(self): + + with assert_raises(RuntimeError): + @array_function_dispatch(lambda x: (x,)) + def f(y): + pass + + # should not raise + @array_function_dispatch(lambda x: (x,), verify=False) + def f(y): + pass + + +def _new_duck_type_and_implements(): + """Create a duck array type and implements functions.""" + HANDLED_FUNCTIONS = {} + + class MyArray: + def __array_function__(self, func, types, args, kwargs): + if func not in HANDLED_FUNCTIONS: + return NotImplemented + if not all(issubclass(t, MyArray) for t in types): + return NotImplemented + return HANDLED_FUNCTIONS[func](*args, **kwargs) + + def implements(numpy_function): + """Register an __array_function__ implementations.""" + def decorator(func): + HANDLED_FUNCTIONS[numpy_function] = func + return func + return decorator + + return (MyArray, implements) + + +class TestArrayFunctionImplementation: + + def test_one_arg(self): + MyArray, implements = _new_duck_type_and_implements() + + @implements(dispatched_one_arg) + def _(array): + return 'myarray' + + assert_equal(dispatched_one_arg(1), 'original') + assert_equal(dispatched_one_arg(MyArray()), 'myarray') + + def test_optional_args(self): + MyArray, implements = _new_duck_type_and_implements() + + @array_function_dispatch(lambda array, option=None: (array,)) + def func_with_option(array, option='default'): + return option + + @implements(func_with_option) + def my_array_func_with_option(array, new_option='myarray'): + return new_option + + # we don't need to implement every option on __array_function__ + # implementations + assert_equal(func_with_option(1), 'default') + assert_equal(func_with_option(1, option='extra'), 'extra') + assert_equal(func_with_option(MyArray()), 'myarray') + with assert_raises(TypeError): + func_with_option(MyArray(), option='extra') + + # but new options on implementations can't be used + result = my_array_func_with_option(MyArray(), new_option='yes') + assert_equal(result, 'yes') + with assert_raises(TypeError): + func_with_option(MyArray(), new_option='no') + + def test_not_implemented(self): + MyArray, implements = _new_duck_type_and_implements() + + @array_function_dispatch(lambda array: (array,), module='my') + def func(array): + return array + + array = np.array(1) + assert_(func(array) is array) + assert_equal(func.__module__, 'my') + + with assert_raises_regex( + TypeError, "no implementation found for 'my.func'"): + func(MyArray()) + + @pytest.mark.parametrize("name", ["concatenate", "mean", "asarray"]) + def test_signature_error_message_simple(self, name): + func = getattr(np, name) + try: + # all of these functions need an argument: + func() + except TypeError as e: + exc = e + + assert exc.args[0].startswith(f"{name}()") + + def test_signature_error_message(self): + # The lambda function will be named "", but the TypeError + # should show the name as "func" + def _dispatcher(): + return () + + @array_function_dispatch(_dispatcher) + def func(): + pass + + try: + func._implementation(bad_arg=3) + except TypeError as e: + expected_exception = e + + try: + func(bad_arg=3) + raise AssertionError("must fail") + except TypeError as exc: + if exc.args[0].startswith("_dispatcher"): + # We replace the qualname currently, but it used `__name__` + # (relevant functions have the same name and qualname anyway) + pytest.skip("Python version is not using __qualname__ for " + "TypeError formatting.") + + assert exc.args == expected_exception.args + + @pytest.mark.parametrize("value", [234, "this func is not replaced"]) + def test_dispatcher_error(self, value): + # If the dispatcher raises an error, we must not attempt to mutate it + error = TypeError(value) + + def dispatcher(): + raise error + + @array_function_dispatch(dispatcher) + def func(): + return 3 + + try: + func() + raise AssertionError("must fail") + except TypeError as exc: + assert exc is error # unmodified exception + + def test_properties(self): + # Check that str and repr are sensible + func = dispatched_two_arg + assert str(func) == str(func._implementation) + repr_no_id = repr(func).split("at ")[0] + repr_no_id_impl = repr(func._implementation).split("at ")[0] + assert repr_no_id == repr_no_id_impl + + @pytest.mark.parametrize("func", [ + lambda x, y: 0, # no like argument + lambda like=None: 0, # not keyword only + lambda *, like=None, a=3: 0, # not last (not that it matters) + ]) + def test_bad_like_sig(self, func): + # We sanity check the signature, and these should fail. + with pytest.raises(RuntimeError): + array_function_dispatch()(func) + + def test_bad_like_passing(self): + # Cover internal sanity check for passing like as first positional arg + def func(*, like=None): + pass + + func_with_like = array_function_dispatch()(func) + with pytest.raises(TypeError): + func_with_like() + with pytest.raises(TypeError): + func_with_like(like=234) + + def test_too_many_args(self): + # Mainly a unit-test to increase coverage + objs = [] + for i in range(80): + class MyArr: + def __array_function__(self, *args, **kwargs): + return NotImplemented + + objs.append(MyArr()) + + def _dispatch(*args): + return args + + @array_function_dispatch(_dispatch) + def func(*args): + pass + + with pytest.raises(TypeError, match="maximum number"): + func(*objs) + + +class TestNDArrayMethods: + + def test_repr(self): + # gh-12162: should still be defined even if __array_function__ doesn't + # implement np.array_repr() + + class MyArray(np.ndarray): + def __array_function__(*args, **kwargs): + return NotImplemented + + array = np.array(1).view(MyArray) + assert_equal(repr(array), 'MyArray(1)') + assert_equal(str(array), '1') + + +class TestNumPyFunctions: + + def test_set_module(self): + assert_equal(np.sum.__module__, 'numpy') + assert_equal(np.char.equal.__module__, 'numpy.char') + assert_equal(np.fft.fft.__module__, 'numpy.fft') + assert_equal(np.linalg.solve.__module__, 'numpy.linalg') + + def test_inspect_sum(self): + signature = inspect.signature(np.sum) + assert_('axis' in signature.parameters) + + def test_override_sum(self): + MyArray, implements = _new_duck_type_and_implements() + + @implements(np.sum) + def _(array): + return 'yes' + + assert_equal(np.sum(MyArray()), 'yes') + + def test_sum_on_mock_array(self): + + # We need a proxy for mocks because __array_function__ is only looked + # up in the class dict + class ArrayProxy: + def __init__(self, value): + self.value = value + + def __array_function__(self, *args, **kwargs): + return self.value.__array_function__(*args, **kwargs) + + def __array__(self, *args, **kwargs): + return self.value.__array__(*args, **kwargs) + + proxy = ArrayProxy(mock.Mock(spec=ArrayProxy)) + proxy.value.__array_function__.return_value = 1 + result = np.sum(proxy) + assert_equal(result, 1) + proxy.value.__array_function__.assert_called_once_with( + np.sum, (ArrayProxy,), (proxy,), {}) + proxy.value.__array__.assert_not_called() + + def test_sum_forwarding_implementation(self): + + class MyArray(np.ndarray): + + def sum(self, axis, out): + return 'summed' + + def __array_function__(self, func, types, args, kwargs): + return super().__array_function__(func, types, args, kwargs) + + # note: the internal implementation of np.sum() calls the .sum() method + array = np.array(1).view(MyArray) + assert_equal(np.sum(array), 'summed') + + +class TestArrayLike: + def setup_method(self): + class MyArray: + def __init__(self, function=None): + self.function = function + + def __array_function__(self, func, types, args, kwargs): + assert func is getattr(np, func.__name__) + try: + my_func = getattr(self, func.__name__) + except AttributeError: + return NotImplemented + return my_func(*args, **kwargs) + + self.MyArray = MyArray + + class MyNoArrayFunctionArray: + def __init__(self, function=None): + self.function = function + + self.MyNoArrayFunctionArray = MyNoArrayFunctionArray + + class MySubclass(np.ndarray): + def __array_function__(self, func, types, args, kwargs): + result = super().__array_function__(func, types, args, kwargs) + return result.view(self.__class__) + + self.MySubclass = MySubclass + + def add_method(self, name, arr_class, enable_value_error=False): + def _definition(*args, **kwargs): + # Check that `like=` isn't propagated downstream + assert 'like' not in kwargs + + if enable_value_error and 'value_error' in kwargs: + raise ValueError + + return arr_class(getattr(arr_class, name)) + setattr(arr_class, name, _definition) + + def func_args(*args, **kwargs): + return args, kwargs + + def test_array_like_not_implemented(self): + self.add_method('array', self.MyArray) + + ref = self.MyArray.array() + + with assert_raises_regex(TypeError, 'no implementation found'): + array_like = np.asarray(1, like=ref) + + _array_tests = [ + ('array', *func_args((1,))), + ('asarray', *func_args((1,))), + ('asanyarray', *func_args((1,))), + ('ascontiguousarray', *func_args((2, 3))), + ('asfortranarray', *func_args((2, 3))), + ('require', *func_args((np.arange(6).reshape(2, 3),), + requirements=['A', 'F'])), + ('empty', *func_args((1,))), + ('full', *func_args((1,), 2)), + ('ones', *func_args((1,))), + ('zeros', *func_args((1,))), + ('arange', *func_args(3)), + ('frombuffer', *func_args(b'\x00' * 8, dtype=int)), + ('fromiter', *func_args(range(3), dtype=int)), + ('fromstring', *func_args('1,2', dtype=int, sep=',')), + ('loadtxt', *func_args(lambda: StringIO('0 1\n2 3'))), + ('genfromtxt', *func_args(lambda: StringIO('1,2.1'), + dtype=[('int', 'i8'), ('float', 'f8')], + delimiter=',')), + ] + + def test_nep35_functions_as_array_functions(self,): + all_array_functions = get_overridable_numpy_array_functions() + like_array_functions_subset = { + getattr(np, func_name) for func_name, *_ in self.__class__._array_tests + } + assert like_array_functions_subset.issubset(all_array_functions) + + nep35_python_functions = { + np.eye, np.fromfunction, np.full, np.genfromtxt, + np.identity, np.loadtxt, np.ones, np.require, np.tri, + } + assert nep35_python_functions.issubset(all_array_functions) + + nep35_C_functions = { + np.arange, np.array, np.asanyarray, np.asarray, + np.ascontiguousarray, np.asfortranarray, np.empty, + np.frombuffer, np.fromfile, np.fromiter, np.fromstring, + np.zeros, + } + assert nep35_C_functions.issubset(all_array_functions) + + @pytest.mark.parametrize('function, args, kwargs', _array_tests) + @pytest.mark.parametrize('numpy_ref', [True, False]) + def test_array_like(self, function, args, kwargs, numpy_ref): + self.add_method('array', self.MyArray) + self.add_method(function, self.MyArray) + np_func = getattr(np, function) + my_func = getattr(self.MyArray, function) + + if numpy_ref is True: + ref = np.array(1) + else: + ref = self.MyArray.array() + + like_args = tuple(a() if callable(a) else a for a in args) + array_like = np_func(*like_args, **kwargs, like=ref) + + if numpy_ref is True: + assert type(array_like) is np.ndarray + + np_args = tuple(a() if callable(a) else a for a in args) + np_arr = np_func(*np_args, **kwargs) + + # Special-case np.empty to ensure values match + if function == "empty": + np_arr.fill(1) + array_like.fill(1) + + assert_equal(array_like, np_arr) + else: + assert type(array_like) is self.MyArray + assert array_like.function is my_func + + @pytest.mark.parametrize('function, args, kwargs', _array_tests) + @pytest.mark.parametrize('ref', [1, [1], "MyNoArrayFunctionArray"]) + def test_no_array_function_like(self, function, args, kwargs, ref): + self.add_method('array', self.MyNoArrayFunctionArray) + self.add_method(function, self.MyNoArrayFunctionArray) + np_func = getattr(np, function) + + # Instantiate ref if it's the MyNoArrayFunctionArray class + if ref == "MyNoArrayFunctionArray": + ref = self.MyNoArrayFunctionArray.array() + + like_args = tuple(a() if callable(a) else a for a in args) + + with assert_raises_regex(TypeError, + 'The `like` argument must be an array-like that implements'): + np_func(*like_args, **kwargs, like=ref) + + @pytest.mark.parametrize('function, args, kwargs', _array_tests) + def test_subclass(self, function, args, kwargs): + ref = np.array(1).view(self.MySubclass) + np_func = getattr(np, function) + like_args = tuple(a() if callable(a) else a for a in args) + array_like = np_func(*like_args, **kwargs, like=ref) + assert type(array_like) is self.MySubclass + if np_func is np.empty: + return + np_args = tuple(a() if callable(a) else a for a in args) + np_arr = np_func(*np_args, **kwargs) + assert_equal(array_like.view(np.ndarray), np_arr) + + @pytest.mark.parametrize('numpy_ref', [True, False]) + def test_array_like_fromfile(self, numpy_ref): + self.add_method('array', self.MyArray) + self.add_method("fromfile", self.MyArray) + + if numpy_ref is True: + ref = np.array(1) + else: + ref = self.MyArray.array() + + data = np.random.random(5) + + with tempfile.TemporaryDirectory() as tmpdir: + fname = os.path.join(tmpdir, "testfile") + data.tofile(fname) + + array_like = np.fromfile(fname, like=ref) + if numpy_ref is True: + assert type(array_like) is np.ndarray + np_res = np.fromfile(fname, like=ref) + assert_equal(np_res, data) + assert_equal(array_like, np_res) + else: + assert type(array_like) is self.MyArray + assert array_like.function is self.MyArray.fromfile + + def test_exception_handling(self): + self.add_method('array', self.MyArray, enable_value_error=True) + + ref = self.MyArray.array() + + with assert_raises(TypeError): + # Raises the error about `value_error` being invalid first + np.array(1, value_error=True, like=ref) + + @pytest.mark.parametrize('function, args, kwargs', _array_tests) + def test_like_as_none(self, function, args, kwargs): + self.add_method('array', self.MyArray) + self.add_method(function, self.MyArray) + np_func = getattr(np, function) + + like_args = tuple(a() if callable(a) else a for a in args) + # required for loadtxt and genfromtxt to init w/o error. + like_args_exp = tuple(a() if callable(a) else a for a in args) + + array_like = np_func(*like_args, **kwargs, like=None) + expected = np_func(*like_args_exp, **kwargs) + # Special-case np.empty to ensure values match + if function == "empty": + array_like.fill(1) + expected.fill(1) + assert_equal(array_like, expected) + + +def test_function_like(): + # We provide a `__get__` implementation, make sure it works + assert type(np.mean) is np._core._multiarray_umath._ArrayFunctionDispatcher + + class MyClass: + def __array__(self, dtype=None, copy=None): + # valid argument to mean: + return np.arange(3) + + func1 = staticmethod(np.mean) + func2 = np.mean + func3 = classmethod(np.mean) + + m = MyClass() + assert m.func1([10]) == 10 + assert m.func2() == 1 # mean of the arange + with pytest.raises(TypeError, match="unsupported operand type"): + # Tries to operate on the class + m.func3() + + # Manual binding also works (the above may shortcut): + bound = np.mean.__get__(m, MyClass) + assert bound() == 1 + + bound = np.mean.__get__(None, MyClass) # unbound actually + assert bound([10]) == 10 + + bound = np.mean.__get__(MyClass) # classmethod + with pytest.raises(TypeError, match="unsupported operand type"): + bound() diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_print.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_print.py new file mode 100644 index 0000000..d99b279 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_print.py @@ -0,0 +1,200 @@ +import sys +from io import StringIO + +import pytest + +import numpy as np +from numpy._core.tests._locales import CommaDecimalPointLocale +from numpy.testing import IS_MUSL, assert_, assert_equal + +_REF = {np.inf: 'inf', -np.inf: '-inf', np.nan: 'nan'} + + +@pytest.mark.parametrize('tp', [np.float32, np.double, np.longdouble]) +def test_float_types(tp): + """ Check formatting. + + This is only for the str function, and only for simple types. + The precision of np.float32 and np.longdouble aren't the same as the + python float precision. + + """ + for x in [0, 1, -1, 1e20]: + assert_equal(str(tp(x)), str(float(x)), + err_msg=f'Failed str formatting for type {tp}') + + if tp(1e16).itemsize > 4: + assert_equal(str(tp(1e16)), str(float('1e16')), + err_msg=f'Failed str formatting for type {tp}') + else: + ref = '1e+16' + assert_equal(str(tp(1e16)), ref, + err_msg=f'Failed str formatting for type {tp}') + + +@pytest.mark.parametrize('tp', [np.float32, np.double, np.longdouble]) +def test_nan_inf_float(tp): + """ Check formatting of nan & inf. + + This is only for the str function, and only for simple types. + The precision of np.float32 and np.longdouble aren't the same as the + python float precision. + + """ + for x in [np.inf, -np.inf, np.nan]: + assert_equal(str(tp(x)), _REF[x], + err_msg=f'Failed str formatting for type {tp}') + + +@pytest.mark.parametrize('tp', [np.complex64, np.cdouble, np.clongdouble]) +def test_complex_types(tp): + """Check formatting of complex types. + + This is only for the str function, and only for simple types. + The precision of np.float32 and np.longdouble aren't the same as the + python float precision. + + """ + for x in [0, 1, -1, 1e20]: + assert_equal(str(tp(x)), str(complex(x)), + err_msg=f'Failed str formatting for type {tp}') + assert_equal(str(tp(x * 1j)), str(complex(x * 1j)), + err_msg=f'Failed str formatting for type {tp}') + assert_equal(str(tp(x + x * 1j)), str(complex(x + x * 1j)), + err_msg=f'Failed str formatting for type {tp}') + + if tp(1e16).itemsize > 8: + assert_equal(str(tp(1e16)), str(complex(1e16)), + err_msg=f'Failed str formatting for type {tp}') + else: + ref = '(1e+16+0j)' + assert_equal(str(tp(1e16)), ref, + err_msg=f'Failed str formatting for type {tp}') + + +@pytest.mark.parametrize('dtype', [np.complex64, np.cdouble, np.clongdouble]) +def test_complex_inf_nan(dtype): + """Check inf/nan formatting of complex types.""" + TESTS = { + complex(np.inf, 0): "(inf+0j)", + complex(0, np.inf): "infj", + complex(-np.inf, 0): "(-inf+0j)", + complex(0, -np.inf): "-infj", + complex(np.inf, 1): "(inf+1j)", + complex(1, np.inf): "(1+infj)", + complex(-np.inf, 1): "(-inf+1j)", + complex(1, -np.inf): "(1-infj)", + complex(np.nan, 0): "(nan+0j)", + complex(0, np.nan): "nanj", + complex(-np.nan, 0): "(nan+0j)", + complex(0, -np.nan): "nanj", + complex(np.nan, 1): "(nan+1j)", + complex(1, np.nan): "(1+nanj)", + complex(-np.nan, 1): "(nan+1j)", + complex(1, -np.nan): "(1+nanj)", + } + for c, s in TESTS.items(): + assert_equal(str(dtype(c)), s) + + +# print tests +def _test_redirected_print(x, tp, ref=None): + file = StringIO() + file_tp = StringIO() + stdout = sys.stdout + try: + sys.stdout = file_tp + print(tp(x)) + sys.stdout = file + if ref: + print(ref) + else: + print(x) + finally: + sys.stdout = stdout + + assert_equal(file.getvalue(), file_tp.getvalue(), + err_msg=f'print failed for type{tp}') + + +@pytest.mark.parametrize('tp', [np.float32, np.double, np.longdouble]) +def test_float_type_print(tp): + """Check formatting when using print """ + for x in [0, 1, -1, 1e20]: + _test_redirected_print(float(x), tp) + + for x in [np.inf, -np.inf, np.nan]: + _test_redirected_print(float(x), tp, _REF[x]) + + if tp(1e16).itemsize > 4: + _test_redirected_print(1e16, tp) + else: + ref = '1e+16' + _test_redirected_print(1e16, tp, ref) + + +@pytest.mark.parametrize('tp', [np.complex64, np.cdouble, np.clongdouble]) +def test_complex_type_print(tp): + """Check formatting when using print """ + # We do not create complex with inf/nan directly because the feature is + # missing in python < 2.6 + for x in [0, 1, -1, 1e20]: + _test_redirected_print(complex(x), tp) + + if tp(1e16).itemsize > 8: + _test_redirected_print(complex(1e16), tp) + else: + ref = '(1e+16+0j)' + _test_redirected_print(complex(1e16), tp, ref) + + _test_redirected_print(complex(np.inf, 1), tp, '(inf+1j)') + _test_redirected_print(complex(-np.inf, 1), tp, '(-inf+1j)') + _test_redirected_print(complex(-np.nan, 1), tp, '(nan+1j)') + + +def test_scalar_format(): + """Test the str.format method with NumPy scalar types""" + tests = [('{0}', True, np.bool), + ('{0}', False, np.bool), + ('{0:d}', 130, np.uint8), + ('{0:d}', 50000, np.uint16), + ('{0:d}', 3000000000, np.uint32), + ('{0:d}', 15000000000000000000, np.uint64), + ('{0:d}', -120, np.int8), + ('{0:d}', -30000, np.int16), + ('{0:d}', -2000000000, np.int32), + ('{0:d}', -7000000000000000000, np.int64), + ('{0:g}', 1.5, np.float16), + ('{0:g}', 1.5, np.float32), + ('{0:g}', 1.5, np.float64), + ('{0:g}', 1.5, np.longdouble), + ('{0:g}', 1.5 + 0.5j, np.complex64), + ('{0:g}', 1.5 + 0.5j, np.complex128), + ('{0:g}', 1.5 + 0.5j, np.clongdouble)] + + for (fmat, val, valtype) in tests: + try: + assert_equal(fmat.format(val), fmat.format(valtype(val)), + f"failed with val {val}, type {valtype}") + except ValueError as e: + assert_(False, + "format raised exception (fmt='%s', val=%s, type=%s, exc='%s')" % + (fmat, repr(val), repr(valtype), str(e))) + + +# +# Locale tests: scalar types formatting should be independent of the locale +# + +class TestCommaDecimalPointLocale(CommaDecimalPointLocale): + + def test_locale_single(self): + assert_equal(str(np.float32(1.2)), str(1.2)) + + def test_locale_double(self): + assert_equal(str(np.double(1.2)), str(1.2)) + + @pytest.mark.skipif(IS_MUSL, + reason="test flaky on musllinux") + def test_locale_longdouble(self): + assert_equal(str(np.longdouble('1.2')), str(1.2)) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_protocols.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_protocols.py new file mode 100644 index 0000000..96bb600 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_protocols.py @@ -0,0 +1,46 @@ +import warnings + +import pytest + +import numpy as np + + +@pytest.mark.filterwarnings("error") +def test_getattr_warning(): + # issue gh-14735: make sure we clear only getattr errors, and let warnings + # through + class Wrapper: + def __init__(self, array): + self.array = array + + def __len__(self): + return len(self.array) + + def __getitem__(self, item): + return type(self)(self.array[item]) + + def __getattr__(self, name): + if name.startswith("__array_"): + warnings.warn("object got converted", UserWarning, stacklevel=1) + + return getattr(self.array, name) + + def __repr__(self): + return f"" + + array = Wrapper(np.arange(10)) + with pytest.raises(UserWarning, match="object got converted"): + np.asarray(array) + + +def test_array_called(): + class Wrapper: + val = '0' * 100 + + def __array__(self, dtype=None, copy=None): + return np.array([self.val], dtype=dtype, copy=copy) + + wrapped = Wrapper() + arr = np.array(wrapped, dtype=str) + assert arr.dtype == 'U100' + assert arr[0] == Wrapper.val diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_records.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_records.py new file mode 100644 index 0000000..b4b93ae --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_records.py @@ -0,0 +1,544 @@ +import collections.abc +import pickle +import textwrap +from io import BytesIO +from os import path +from pathlib import Path + +import pytest + +import numpy as np +from numpy.testing import ( + assert_, + assert_array_almost_equal, + assert_array_equal, + assert_equal, + assert_raises, + temppath, +) + + +class TestFromrecords: + def test_fromrecords(self): + r = np.rec.fromrecords([[456, 'dbe', 1.2], [2, 'de', 1.3]], + names='col1,col2,col3') + assert_equal(r[0].item(), (456, 'dbe', 1.2)) + assert_equal(r['col1'].dtype.kind, 'i') + assert_equal(r['col2'].dtype.kind, 'U') + assert_equal(r['col2'].dtype.itemsize, 12) + assert_equal(r['col3'].dtype.kind, 'f') + + def test_fromrecords_0len(self): + """ Verify fromrecords works with a 0-length input """ + dtype = [('a', float), ('b', float)] + r = np.rec.fromrecords([], dtype=dtype) + assert_equal(r.shape, (0,)) + + def test_fromrecords_2d(self): + data = [ + [(1, 2), (3, 4), (5, 6)], + [(6, 5), (4, 3), (2, 1)] + ] + expected_a = [[1, 3, 5], [6, 4, 2]] + expected_b = [[2, 4, 6], [5, 3, 1]] + + # try with dtype + r1 = np.rec.fromrecords(data, dtype=[('a', int), ('b', int)]) + assert_equal(r1['a'], expected_a) + assert_equal(r1['b'], expected_b) + + # try with names + r2 = np.rec.fromrecords(data, names=['a', 'b']) + assert_equal(r2['a'], expected_a) + assert_equal(r2['b'], expected_b) + + assert_equal(r1, r2) + + def test_method_array(self): + r = np.rec.array( + b'abcdefg' * 100, formats='i2,S3,i4', shape=3, byteorder='big' + ) + assert_equal(r[1].item(), (25444, b'efg', 1633837924)) + + def test_method_array2(self): + r = np.rec.array( + [ + (1, 11, 'a'), (2, 22, 'b'), (3, 33, 'c'), (4, 44, 'd'), + (5, 55, 'ex'), (6, 66, 'f'), (7, 77, 'g') + ], + formats='u1,f4,S1' + ) + assert_equal(r[1].item(), (2, 22.0, b'b')) + + def test_recarray_slices(self): + r = np.rec.array( + [ + (1, 11, 'a'), (2, 22, 'b'), (3, 33, 'c'), (4, 44, 'd'), + (5, 55, 'ex'), (6, 66, 'f'), (7, 77, 'g') + ], + formats='u1,f4,S1' + ) + assert_equal(r[1::2][1].item(), (4, 44.0, b'd')) + + def test_recarray_fromarrays(self): + x1 = np.array([1, 2, 3, 4]) + x2 = np.array(['a', 'dd', 'xyz', '12']) + x3 = np.array([1.1, 2, 3, 4]) + r = np.rec.fromarrays([x1, x2, x3], names='a,b,c') + assert_equal(r[1].item(), (2, 'dd', 2.0)) + x1[1] = 34 + assert_equal(r.a, np.array([1, 2, 3, 4])) + + def test_recarray_fromfile(self): + data_dir = path.join(path.dirname(__file__), 'data') + filename = path.join(data_dir, 'recarray_from_file.fits') + fd = open(filename, 'rb') + fd.seek(2880 * 2) + r1 = np.rec.fromfile(fd, formats='f8,i4,S5', shape=3, byteorder='big') + fd.seek(2880 * 2) + r2 = np.rec.array(fd, formats='f8,i4,S5', shape=3, byteorder='big') + fd.seek(2880 * 2) + bytes_array = BytesIO() + bytes_array.write(fd.read()) + bytes_array.seek(0) + r3 = np.rec.fromfile( + bytes_array, formats='f8,i4,S5', shape=3, byteorder='big' + ) + fd.close() + assert_equal(r1, r2) + assert_equal(r2, r3) + + def test_recarray_from_obj(self): + count = 10 + a = np.zeros(count, dtype='O') + b = np.zeros(count, dtype='f8') + c = np.zeros(count, dtype='f8') + for i in range(len(a)): + a[i] = list(range(1, 10)) + + mine = np.rec.fromarrays([a, b, c], names='date,data1,data2') + for i in range(len(a)): + assert_(mine.date[i] == list(range(1, 10))) + assert_(mine.data1[i] == 0.0) + assert_(mine.data2[i] == 0.0) + + def test_recarray_repr(self): + a = np.array([(1, 0.1), (2, 0.2)], + dtype=[('foo', ' 2) & (a < 6)) + xb = np.where((b > 2) & (b < 6)) + ya = ((a > 2) & (a < 6)) + yb = ((b > 2) & (b < 6)) + assert_array_almost_equal(xa, ya.nonzero()) + assert_array_almost_equal(xb, yb.nonzero()) + assert_(np.all(a[ya] > 0.5)) + assert_(np.all(b[yb] > 0.5)) + + def test_endian_where(self): + # GitHub issue #369 + net = np.zeros(3, dtype='>f4') + net[1] = 0.00458849 + net[2] = 0.605202 + max_net = net.max() + test = np.where(net <= 0., max_net, net) + correct = np.array([0.60520202, 0.00458849, 0.60520202]) + assert_array_almost_equal(test, correct) + + def test_endian_recarray(self): + # Ticket #2185 + dt = np.dtype([ + ('head', '>u4'), + ('data', '>u4', 2), + ]) + buf = np.recarray(1, dtype=dt) + buf[0]['head'] = 1 + buf[0]['data'][:] = [1, 1] + + h = buf[0]['head'] + d = buf[0]['data'][0] + buf[0]['head'] = h + buf[0]['data'][0] = d + assert_(buf[0]['head'] == 1) + + def test_mem_dot(self): + # Ticket #106 + x = np.random.randn(0, 1) + y = np.random.randn(10, 1) + # Dummy array to detect bad memory access: + _z = np.ones(10) + _dummy = np.empty((0, 10)) + z = np.lib.stride_tricks.as_strided(_z, _dummy.shape, _dummy.strides) + np.dot(x, np.transpose(y), out=z) + assert_equal(_z, np.ones(10)) + # Do the same for the built-in dot: + np._core.multiarray.dot(x, np.transpose(y), out=z) + assert_equal(_z, np.ones(10)) + + def test_arange_endian(self): + # Ticket #111 + ref = np.arange(10) + x = np.arange(10, dtype=' 1 and x['two'] > 2) + + def test_method_args(self): + # Make sure methods and functions have same default axis + # keyword and arguments + funcs1 = ['argmax', 'argmin', 'sum', 'any', 'all', 'cumsum', + 'cumprod', 'prod', 'std', 'var', 'mean', + 'round', 'min', 'max', 'argsort', 'sort'] + funcs2 = ['compress', 'take', 'repeat'] + + for func in funcs1: + arr = np.random.rand(8, 7) + arr2 = arr.copy() + res1 = getattr(arr, func)() + res2 = getattr(np, func)(arr2) + if res1 is None: + res1 = arr + + if res1.dtype.kind in 'uib': + assert_((res1 == res2).all(), func) + else: + assert_(abs(res1 - res2).max() < 1e-8, func) + + for func in funcs2: + arr1 = np.random.rand(8, 7) + arr2 = np.random.rand(8, 7) + res1 = None + if func == 'compress': + arr1 = arr1.ravel() + res1 = getattr(arr2, func)(arr1) + else: + arr2 = (15 * arr2).astype(int).ravel() + if res1 is None: + res1 = getattr(arr1, func)(arr2) + res2 = getattr(np, func)(arr1, arr2) + assert_(abs(res1 - res2).max() < 1e-8, func) + + def test_mem_lexsort_strings(self): + # Ticket #298 + lst = ['abc', 'cde', 'fgh'] + np.lexsort((lst,)) + + def test_fancy_index(self): + # Ticket #302 + x = np.array([1, 2])[np.array([0])] + assert_equal(x.shape, (1,)) + + def test_recarray_copy(self): + # Ticket #312 + dt = [('x', np.int16), ('y', np.float64)] + ra = np.array([(1, 2.3)], dtype=dt) + rb = np.rec.array(ra, dtype=dt) + rb['x'] = 2. + assert_(ra['x'] != rb['x']) + + def test_rec_fromarray(self): + # Ticket #322 + x1 = np.array([[1, 2], [3, 4], [5, 6]]) + x2 = np.array(['a', 'dd', 'xyz']) + x3 = np.array([1.1, 2, 3]) + np.rec.fromarrays([x1, x2, x3], formats="(2,)i4,S3,f8") + + def test_object_array_assign(self): + x = np.empty((2, 2), object) + x.flat[2] = (1, 2, 3) + assert_equal(x.flat[2], (1, 2, 3)) + + def test_ndmin_float64(self): + # Ticket #324 + x = np.array([1, 2, 3], dtype=np.float64) + assert_equal(np.array(x, dtype=np.float32, ndmin=2).ndim, 2) + assert_equal(np.array(x, dtype=np.float64, ndmin=2).ndim, 2) + + def test_ndmin_order(self): + # Issue #465 and related checks + assert_(np.array([1, 2], order='C', ndmin=3).flags.c_contiguous) + assert_(np.array([1, 2], order='F', ndmin=3).flags.f_contiguous) + assert_(np.array(np.ones((2, 2), order='F'), ndmin=3).flags.f_contiguous) + assert_(np.array(np.ones((2, 2), order='C'), ndmin=3).flags.c_contiguous) + + def test_mem_axis_minimization(self): + # Ticket #327 + data = np.arange(5) + data = np.add.outer(data, data) + + def test_mem_float_imag(self): + # Ticket #330 + np.float64(1.0).imag + + def test_dtype_tuple(self): + # Ticket #334 + assert_(np.dtype('i4') == np.dtype(('i4', ()))) + + def test_dtype_posttuple(self): + # Ticket #335 + np.dtype([('col1', '()i4')]) + + def test_numeric_carray_compare(self): + # Ticket #341 + assert_equal(np.array(['X'], 'c'), b'X') + + def test_string_array_size(self): + # Ticket #342 + assert_raises(ValueError, + np.array, [['X'], ['X', 'X', 'X']], '|S1') + + def test_dtype_repr(self): + # Ticket #344 + dt1 = np.dtype(('uint32', 2)) + dt2 = np.dtype(('uint32', (2,))) + assert_equal(dt1.__repr__(), dt2.__repr__()) + + def test_reshape_order(self): + # Make sure reshape order works. + a = np.arange(6).reshape(2, 3, order='F') + assert_equal(a, [[0, 2, 4], [1, 3, 5]]) + a = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) + b = a[:, 1] + assert_equal(b.reshape(2, 2, order='F'), [[2, 6], [4, 8]]) + + def test_reshape_zero_strides(self): + # Issue #380, test reshaping of zero strided arrays + a = np.ones(1) + a = np.lib.stride_tricks.as_strided(a, shape=(5,), strides=(0,)) + assert_(a.reshape(5, 1).strides[0] == 0) + + def test_reshape_zero_size(self): + # GitHub Issue #2700, setting shape failed for 0-sized arrays + a = np.ones((0, 2)) + a.shape = (-1, 2) + + def test_reshape_trailing_ones_strides(self): + # GitHub issue gh-2949, bad strides for trailing ones of new shape + a = np.zeros(12, dtype=np.int32)[::2] # not contiguous + strides_c = (16, 8, 8, 8) + strides_f = (8, 24, 48, 48) + assert_equal(a.reshape(3, 2, 1, 1).strides, strides_c) + assert_equal(a.reshape(3, 2, 1, 1, order='F').strides, strides_f) + assert_equal(np.array(0, dtype=np.int32).reshape(1, 1).strides, (4, 4)) + + def test_repeat_discont(self): + # Ticket #352 + a = np.arange(12).reshape(4, 3)[:, 2] + assert_equal(a.repeat(3), [2, 2, 2, 5, 5, 5, 8, 8, 8, 11, 11, 11]) + + def test_array_index(self): + # Make sure optimization is not called in this case. + a = np.array([1, 2, 3]) + a2 = np.array([[1, 2, 3]]) + assert_equal(a[np.where(a == 3)], a2[np.where(a2 == 3)]) + + def test_object_argmax(self): + a = np.array([1, 2, 3], dtype=object) + assert_(a.argmax() == 2) + + def test_recarray_fields(self): + # Ticket #372 + dt0 = np.dtype([('f0', 'i4'), ('f1', 'i4')]) + dt1 = np.dtype([('f0', 'i8'), ('f1', 'i8')]) + for a in [np.array([(1, 2), (3, 4)], "i4,i4"), + np.rec.array([(1, 2), (3, 4)], "i4,i4"), + np.rec.array([(1, 2), (3, 4)]), + np.rec.fromarrays([(1, 2), (3, 4)], "i4,i4"), + np.rec.fromarrays([(1, 2), (3, 4)])]: + assert_(a.dtype in [dt0, dt1]) + + def test_random_shuffle(self): + # Ticket #374 + a = np.arange(5).reshape((5, 1)) + b = a.copy() + np.random.shuffle(b) + assert_equal(np.sort(b, axis=0), a) + + def test_refcount_vdot(self): + # Changeset #3443 + _assert_valid_refcount(np.vdot) + + def test_startswith(self): + ca = np.char.array(['Hi', 'There']) + assert_equal(ca.startswith('H'), [True, False]) + + def test_noncommutative_reduce_accumulate(self): + # Ticket #413 + tosubtract = np.arange(5) + todivide = np.array([2.0, 0.5, 0.25]) + assert_equal(np.subtract.reduce(tosubtract), -10) + assert_equal(np.divide.reduce(todivide), 16.0) + assert_array_equal(np.subtract.accumulate(tosubtract), + np.array([0, -1, -3, -6, -10])) + assert_array_equal(np.divide.accumulate(todivide), + np.array([2., 4., 16.])) + + def test_convolve_empty(self): + # Convolve should raise an error for empty input array. + assert_raises(ValueError, np.convolve, [], [1]) + assert_raises(ValueError, np.convolve, [1], []) + + def test_multidim_byteswap(self): + # Ticket #449 + r = np.array([(1, (0, 1, 2))], dtype="i2,3i2") + assert_array_equal(r.byteswap(), + np.array([(256, (0, 256, 512))], r.dtype)) + + def test_string_NULL(self): + # Changeset 3557 + assert_equal(np.array("a\x00\x0b\x0c\x00").item(), + 'a\x00\x0b\x0c') + + def test_junk_in_string_fields_of_recarray(self): + # Ticket #483 + r = np.array([[b'abc']], dtype=[('var1', '|S20')]) + assert_(asbytes(r['var1'][0][0]) == b'abc') + + def test_take_output(self): + # Ensure that 'take' honours output parameter. + x = np.arange(12).reshape((3, 4)) + a = np.take(x, [0, 2], axis=1) + b = np.zeros_like(a) + np.take(x, [0, 2], axis=1, out=b) + assert_array_equal(a, b) + + def test_take_object_fail(self): + # Issue gh-3001 + d = 123. + a = np.array([d, 1], dtype=object) + if HAS_REFCOUNT: + ref_d = sys.getrefcount(d) + try: + a.take([0, 100]) + except IndexError: + pass + if HAS_REFCOUNT: + assert_(ref_d == sys.getrefcount(d)) + + def test_array_str_64bit(self): + # Ticket #501 + s = np.array([1, np.nan], dtype=np.float64) + with np.errstate(all='raise'): + np.array_str(s) # Should succeed + + def test_frompyfunc_endian(self): + # Ticket #503 + from math import radians + uradians = np.frompyfunc(radians, 1, 1) + big_endian = np.array([83.4, 83.5], dtype='>f8') + little_endian = np.array([83.4, 83.5], dtype=' object + # casting succeeds + def rs(): + x = np.ones([484, 286]) + y = np.zeros([484, 286]) + x |= y + + assert_raises(TypeError, rs) + + def test_unicode_scalar(self): + # Ticket #600 + x = np.array(["DROND", "DROND1"], dtype="U6") + el = x[1] + for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): + new = pickle.loads(pickle.dumps(el, protocol=proto)) + assert_equal(new, el) + + def test_arange_non_native_dtype(self): + # Ticket #616 + for T in ('>f4', ' 0)] = v + + assert_raises(IndexError, ia, x, s, np.zeros(9, dtype=float)) + assert_raises(IndexError, ia, x, s, np.zeros(11, dtype=float)) + + # Old special case (different code path): + assert_raises(ValueError, ia, x.flat, s, np.zeros(9, dtype=float)) + assert_raises(ValueError, ia, x.flat, s, np.zeros(11, dtype=float)) + + def test_mem_scalar_indexing(self): + # Ticket #603 + x = np.array([0], dtype=float) + index = np.array(0, dtype=np.int32) + x[index] + + def test_binary_repr_0_width(self): + assert_equal(np.binary_repr(0, width=3), '000') + + def test_fromstring(self): + assert_equal(np.fromstring("12:09:09", dtype=int, sep=":"), + [12, 9, 9]) + + def test_searchsorted_variable_length(self): + x = np.array(['a', 'aa', 'b']) + y = np.array(['d', 'e']) + assert_equal(x.searchsorted(y), [3, 3]) + + def test_string_argsort_with_zeros(self): + # Check argsort for strings containing zeros. + x = np.frombuffer(b"\x00\x02\x00\x01", dtype="|S2") + assert_array_equal(x.argsort(kind='m'), np.array([1, 0])) + assert_array_equal(x.argsort(kind='q'), np.array([1, 0])) + + def test_string_sort_with_zeros(self): + # Check sort for strings containing zeros. + x = np.frombuffer(b"\x00\x02\x00\x01", dtype="|S2") + y = np.frombuffer(b"\x00\x01\x00\x02", dtype="|S2") + assert_array_equal(np.sort(x, kind="q"), y) + + def test_copy_detection_zero_dim(self): + # Ticket #658 + np.indices((0, 3, 4)).T.reshape(-1, 3) + + def test_flat_byteorder(self): + # Ticket #657 + x = np.arange(10) + assert_array_equal(x.astype('>i4'), x.astype('i4').flat[:], x.astype('i4')): + x = np.array([-1, 0, 1], dtype=dt) + assert_equal(x.flat[0].dtype, x[0].dtype) + + def test_copy_detection_corner_case(self): + # Ticket #658 + np.indices((0, 3, 4)).T.reshape(-1, 3) + + def test_object_array_refcounting(self): + # Ticket #633 + if not hasattr(sys, 'getrefcount'): + return + + # NB. this is probably CPython-specific + + cnt = sys.getrefcount + + a = object() + b = object() + c = object() + + cnt0_a = cnt(a) + cnt0_b = cnt(b) + cnt0_c = cnt(c) + + # -- 0d -> 1-d broadcast slice assignment + + arr = np.zeros(5, dtype=np.object_) + + arr[:] = a + assert_equal(cnt(a), cnt0_a + 5) + + arr[:] = b + assert_equal(cnt(a), cnt0_a) + assert_equal(cnt(b), cnt0_b + 5) + + arr[:2] = c + assert_equal(cnt(b), cnt0_b + 3) + assert_equal(cnt(c), cnt0_c + 2) + + del arr + + # -- 1-d -> 2-d broadcast slice assignment + + arr = np.zeros((5, 2), dtype=np.object_) + arr0 = np.zeros(2, dtype=np.object_) + + arr0[0] = a + assert_(cnt(a) == cnt0_a + 1) + arr0[1] = b + assert_(cnt(b) == cnt0_b + 1) + + arr[:, :] = arr0 + assert_(cnt(a) == cnt0_a + 6) + assert_(cnt(b) == cnt0_b + 6) + + arr[:, 0] = None + assert_(cnt(a) == cnt0_a + 1) + + del arr, arr0 + + # -- 2-d copying + flattening + + arr = np.zeros((5, 2), dtype=np.object_) + + arr[:, 0] = a + arr[:, 1] = b + assert_(cnt(a) == cnt0_a + 5) + assert_(cnt(b) == cnt0_b + 5) + + arr2 = arr.copy() + assert_(cnt(a) == cnt0_a + 10) + assert_(cnt(b) == cnt0_b + 10) + + arr2 = arr[:, 0].copy() + assert_(cnt(a) == cnt0_a + 10) + assert_(cnt(b) == cnt0_b + 5) + + arr2 = arr.flatten() + assert_(cnt(a) == cnt0_a + 10) + assert_(cnt(b) == cnt0_b + 10) + + del arr, arr2 + + # -- concatenate, repeat, take, choose + + arr1 = np.zeros((5, 1), dtype=np.object_) + arr2 = np.zeros((5, 1), dtype=np.object_) + + arr1[...] = a + arr2[...] = b + assert_(cnt(a) == cnt0_a + 5) + assert_(cnt(b) == cnt0_b + 5) + + tmp = np.concatenate((arr1, arr2)) + assert_(cnt(a) == cnt0_a + 5 + 5) + assert_(cnt(b) == cnt0_b + 5 + 5) + + tmp = arr1.repeat(3, axis=0) + assert_(cnt(a) == cnt0_a + 5 + 3 * 5) + + tmp = arr1.take([1, 2, 3], axis=0) + assert_(cnt(a) == cnt0_a + 5 + 3) + + x = np.array([[0], [1], [0], [1], [1]], int) + tmp = x.choose(arr1, arr2) + assert_(cnt(a) == cnt0_a + 5 + 2) + assert_(cnt(b) == cnt0_b + 5 + 3) + + def test_mem_custom_float_to_array(self): + # Ticket 702 + class MyFloat: + def __float__(self): + return 1.0 + + tmp = np.atleast_1d([MyFloat()]) + tmp.astype(float) # Should succeed + + def test_object_array_refcount_self_assign(self): + # Ticket #711 + class VictimObject: + deleted = False + + def __del__(self): + self.deleted = True + + d = VictimObject() + arr = np.zeros(5, dtype=np.object_) + arr[:] = d + del d + arr[:] = arr # refcount of 'd' might hit zero here + assert_(not arr[0].deleted) + arr[:] = arr # trying to induce a segfault by doing it again... + assert_(not arr[0].deleted) + + def test_mem_fromiter_invalid_dtype_string(self): + x = [1, 2, 3] + assert_raises(ValueError, + np.fromiter, list(x), dtype='S') + + def test_reduce_big_object_array(self): + # Ticket #713 + oldsize = np.setbufsize(10 * 16) + a = np.array([None] * 161, object) + assert_(not np.any(a)) + np.setbufsize(oldsize) + + def test_mem_0d_array_index(self): + # Ticket #714 + np.zeros(10)[np.array(0)] + + def test_nonnative_endian_fill(self): + # Non-native endian arrays were incorrectly filled with scalars + # before r5034. + if sys.byteorder == 'little': + dtype = np.dtype('>i4') + else: + dtype = np.dtype('data contains non-zero floats + x = np.array([123456789e199], dtype=np.float64) + if IS_PYPY: + x.resize((m, 0), refcheck=False) + else: + x.resize((m, 0)) + y = np.array([123456789e199], dtype=np.float64) + if IS_PYPY: + y.resize((0, n), refcheck=False) + else: + y.resize((0, n)) + + # `dot` should just return zero (m, n) matrix + z = np.dot(x, y) + assert_(np.all(z == 0)) + assert_(z.shape == (m, n)) + + def test_zeros(self): + # Regression test for #1061. + # Set a size which cannot fit into a 64 bits signed integer + sz = 2 ** 64 + with assert_raises_regex(ValueError, + 'Maximum allowed dimension exceeded'): + np.empty(sz) + + def test_huge_arange(self): + # Regression test for #1062. + # Set a size which cannot fit into a 64 bits signed integer + sz = 2 ** 64 + with assert_raises_regex(ValueError, + 'Maximum allowed size exceeded'): + np.arange(sz) + assert_(np.size == sz) + + def test_fromiter_bytes(self): + # Ticket #1058 + a = np.fromiter(list(range(10)), dtype='b') + b = np.fromiter(list(range(10)), dtype='B') + assert_(np.all(a == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]))) + assert_(np.all(b == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]))) + + def test_array_from_sequence_scalar_array(self): + # Ticket #1078: segfaults when creating an array with a sequence of + # 0d arrays. + a = np.array((np.ones(2), np.array(2)), dtype=object) + assert_equal(a.shape, (2,)) + assert_equal(a.dtype, np.dtype(object)) + assert_equal(a[0], np.ones(2)) + assert_equal(a[1], np.array(2)) + + a = np.array(((1,), np.array(1)), dtype=object) + assert_equal(a.shape, (2,)) + assert_equal(a.dtype, np.dtype(object)) + assert_equal(a[0], (1,)) + assert_equal(a[1], np.array(1)) + + def test_array_from_sequence_scalar_array2(self): + # Ticket #1081: weird array with strange input... + t = np.array([np.array([]), np.array(0, object)], dtype=object) + assert_equal(t.shape, (2,)) + assert_equal(t.dtype, np.dtype(object)) + + def test_array_too_big(self): + # Ticket #1080. + assert_raises(ValueError, np.zeros, [975] * 7, np.int8) + assert_raises(ValueError, np.zeros, [26244] * 5, np.int8) + + def test_dtype_keyerrors_(self): + # Ticket #1106. + dt = np.dtype([('f1', np.uint)]) + assert_raises(KeyError, dt.__getitem__, "f2") + assert_raises(IndexError, dt.__getitem__, 1) + assert_raises(TypeError, dt.__getitem__, 0.0) + + def test_lexsort_buffer_length(self): + # Ticket #1217, don't segfault. + a = np.ones(100, dtype=np.int8) + b = np.ones(100, dtype=np.int32) + i = np.lexsort((a[::-1], b)) + assert_equal(i, np.arange(100, dtype=int)) + + def test_object_array_to_fixed_string(self): + # Ticket #1235. + a = np.array(['abcdefgh', 'ijklmnop'], dtype=np.object_) + b = np.array(a, dtype=(np.str_, 8)) + assert_equal(a, b) + c = np.array(a, dtype=(np.str_, 5)) + assert_equal(c, np.array(['abcde', 'ijklm'])) + d = np.array(a, dtype=(np.str_, 12)) + assert_equal(a, d) + e = np.empty((2, ), dtype=(np.str_, 8)) + e[:] = a[:] + assert_equal(a, e) + + def test_unicode_to_string_cast(self): + # Ticket #1240. + a = np.array([['abc', '\u03a3'], + ['asdf', 'erw']], + dtype='U') + assert_raises(UnicodeEncodeError, np.array, a, 'S4') + + def test_unicode_to_string_cast_error(self): + # gh-15790 + a = np.array(['\x80'] * 129, dtype='U3') + assert_raises(UnicodeEncodeError, np.array, a, 'S') + b = a.reshape(3, 43)[:-1, :-1] + assert_raises(UnicodeEncodeError, np.array, b, 'S') + + def test_mixed_string_byte_array_creation(self): + a = np.array(['1234', b'123']) + assert_(a.itemsize == 16) + a = np.array([b'123', '1234']) + assert_(a.itemsize == 16) + a = np.array(['1234', b'123', '12345']) + assert_(a.itemsize == 20) + a = np.array([b'123', '1234', b'12345']) + assert_(a.itemsize == 20) + a = np.array([b'123', '1234', b'1234']) + assert_(a.itemsize == 16) + + def test_misaligned_objects_segfault(self): + # Ticket #1198 and #1267 + a1 = np.zeros((10,), dtype='O,c') + a2 = np.array(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'], 'S10') + a1['f0'] = a2 + repr(a1) + np.argmax(a1['f0']) + a1['f0'][1] = "FOO" + a1['f0'] = "FOO" + np.array(a1['f0'], dtype='S') + np.nonzero(a1['f0']) + a1.sort() + copy.deepcopy(a1) + + def test_misaligned_scalars_segfault(self): + # Ticket #1267 + s1 = np.array(('a', 'Foo'), dtype='c,O') + s2 = np.array(('b', 'Bar'), dtype='c,O') + s1['f1'] = s2['f1'] + s1['f1'] = 'Baz' + + def test_misaligned_dot_product_objects(self): + # Ticket #1267 + # This didn't require a fix, but it's worth testing anyway, because + # it may fail if .dot stops enforcing the arrays to be BEHAVED + a = np.array([[(1, 'a'), (0, 'a')], [(0, 'a'), (1, 'a')]], dtype='O,c') + b = np.array([[(4, 'a'), (1, 'a')], [(2, 'a'), (2, 'a')]], dtype='O,c') + np.dot(a['f0'], b['f0']) + + def test_byteswap_complex_scalar(self): + # Ticket #1259 and gh-441 + for dtype in [np.dtype('<' + t) for t in np.typecodes['Complex']]: + z = np.array([2.2 - 1.1j], dtype) + x = z[0] # always native-endian + y = x.byteswap() + if x.dtype.byteorder == z.dtype.byteorder: + # little-endian machine + assert_equal(x, np.frombuffer(y.tobytes(), dtype=dtype.newbyteorder())) + else: + # big-endian machine + assert_equal(x, np.frombuffer(y.tobytes(), dtype=dtype)) + # double check real and imaginary parts: + assert_equal(x.real, y.real.byteswap()) + assert_equal(x.imag, y.imag.byteswap()) + + def test_structured_arrays_with_objects1(self): + # Ticket #1299 + stra = 'aaaa' + strb = 'bbbb' + x = np.array([[(0, stra), (1, strb)]], 'i8,O') + x[x.nonzero()] = x.ravel()[:1] + assert_(x[0, 1] == x[0, 0]) + + @pytest.mark.skipif( + sys.version_info >= (3, 12), + reason="Python 3.12 has immortal refcounts, this test no longer works." + ) + @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") + def test_structured_arrays_with_objects2(self): + # Ticket #1299 second test + stra = 'aaaa' + strb = 'bbbb' + numb = sys.getrefcount(strb) + numa = sys.getrefcount(stra) + x = np.array([[(0, stra), (1, strb)]], 'i8,O') + x[x.nonzero()] = x.ravel()[:1] + assert_(sys.getrefcount(strb) == numb) + assert_(sys.getrefcount(stra) == numa + 2) + + def test_duplicate_title_and_name(self): + # Ticket #1254 + dtspec = [(('a', 'a'), 'i'), ('b', 'i')] + assert_raises(ValueError, np.dtype, dtspec) + + def test_signed_integer_division_overflow(self): + # Ticket #1317. + def test_type(t): + min = np.array([np.iinfo(t).min]) + min //= -1 + + with np.errstate(over="ignore"): + for t in (np.int8, np.int16, np.int32, np.int64, int): + test_type(t) + + def test_buffer_hashlib(self): + from hashlib import sha256 + + x = np.array([1, 2, 3], dtype=np.dtype('c') + + def test_log1p_compiler_shenanigans(self): + # Check if log1p is behaving on 32 bit intel systems. + assert_(np.isfinite(np.log1p(np.exp2(-53)))) + + def test_fromiter_comparison(self): + a = np.fromiter(list(range(10)), dtype='b') + b = np.fromiter(list(range(10)), dtype='B') + assert_(np.all(a == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]))) + assert_(np.all(b == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]))) + + def test_fromstring_crash(self): + with assert_raises(ValueError): + np.fromstring(b'aa, aa, 1.0', sep=',') + + def test_ticket_1539(self): + dtypes = [x for x in np._core.sctypeDict.values() + if (issubclass(x, np.number) + and not issubclass(x, np.timedelta64))] + a = np.array([], np.bool) # not x[0] because it is unordered + failures = [] + + for x in dtypes: + b = a.astype(x) + for y in dtypes: + c = a.astype(y) + try: + d = np.dot(b, c) + except TypeError: + failures.append((x, y)) + else: + if d != 0: + failures.append((x, y)) + if failures: + raise AssertionError(f"Failures: {failures!r}") + + def test_ticket_1538(self): + x = np.finfo(np.float32) + for name in ('eps', 'epsneg', 'max', 'min', 'resolution', 'tiny'): + assert_equal(type(getattr(x, name)), np.float32, + err_msg=name) + + def test_ticket_1434(self): + # Check that the out= argument in var and std has an effect + data = np.array(((1, 2, 3), (4, 5, 6), (7, 8, 9))) + out = np.zeros((3,)) + + ret = data.var(axis=1, out=out) + assert_(ret is out) + assert_array_equal(ret, data.var(axis=1)) + + ret = data.std(axis=1, out=out) + assert_(ret is out) + assert_array_equal(ret, data.std(axis=1)) + + def test_complex_nan_maximum(self): + cnan = complex(0, np.nan) + assert_equal(np.maximum(1, cnan), cnan) + + def test_subclass_int_tuple_assignment(self): + # ticket #1563 + class Subclass(np.ndarray): + def __new__(cls, i): + return np.ones((i,)).view(cls) + + x = Subclass(5) + x[(0,)] = 2 # shouldn't raise an exception + assert_equal(x[0], 2) + + def test_ufunc_no_unnecessary_views(self): + # ticket #1548 + class Subclass(np.ndarray): + pass + x = np.array([1, 2, 3]).view(Subclass) + y = np.add(x, x, x) + assert_equal(id(x), id(y)) + + @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") + def test_take_refcount(self): + # ticket #939 + a = np.arange(16, dtype=float) + a.shape = (4, 4) + lut = np.ones((5 + 3, 4), float) + rgba = np.empty(shape=a.shape + (4,), dtype=lut.dtype) + c1 = sys.getrefcount(rgba) + try: + lut.take(a, axis=0, mode='clip', out=rgba) + except TypeError: + pass + c2 = sys.getrefcount(rgba) + assert_equal(c1, c2) + + def test_fromfile_tofile_seeks(self): + # tofile/fromfile used to get (#1610) the Python file handle out of sync + with tempfile.NamedTemporaryFile() as f: + f.write(np.arange(255, dtype='u1').tobytes()) + + f.seek(20) + ret = np.fromfile(f, count=4, dtype='u1') + assert_equal(ret, np.array([20, 21, 22, 23], dtype='u1')) + assert_equal(f.tell(), 24) + + f.seek(40) + np.array([1, 2, 3], dtype='u1').tofile(f) + assert_equal(f.tell(), 43) + + f.seek(40) + data = f.read(3) + assert_equal(data, b"\x01\x02\x03") + + f.seek(80) + f.read(4) + data = np.fromfile(f, dtype='u1', count=4) + assert_equal(data, np.array([84, 85, 86, 87], dtype='u1')) + + def test_complex_scalar_warning(self): + for tp in [np.csingle, np.cdouble, np.clongdouble]: + x = tp(1 + 2j) + assert_warns(ComplexWarning, float, x) + with suppress_warnings() as sup: + sup.filter(ComplexWarning) + assert_equal(float(x), float(x.real)) + + def test_complex_scalar_complex_cast(self): + for tp in [np.csingle, np.cdouble, np.clongdouble]: + x = tp(1 + 2j) + assert_equal(complex(x), 1 + 2j) + + def test_complex_boolean_cast(self): + # Ticket #2218 + for tp in [np.csingle, np.cdouble, np.clongdouble]: + x = np.array([0, 0 + 0.5j, 0.5 + 0j], dtype=tp) + assert_equal(x.astype(bool), np.array([0, 1, 1], dtype=bool)) + assert_(np.any(x)) + assert_(np.all(x[1:])) + + def test_uint_int_conversion(self): + x = 2**64 - 1 + assert_equal(int(np.uint64(x)), x) + + def test_duplicate_field_names_assign(self): + ra = np.fromiter(((i * 3, i * 2) for i in range(10)), dtype='i8,f8') + ra.dtype.names = ('f1', 'f2') + repr(ra) # should not cause a segmentation fault + assert_raises(ValueError, setattr, ra.dtype, 'names', ('f1', 'f1')) + + def test_eq_string_and_object_array(self): + # From e-mail thread "__eq__ with str and object" (Keith Goodman) + a1 = np.array(['a', 'b'], dtype=object) + a2 = np.array(['a', 'c']) + assert_array_equal(a1 == a2, [True, False]) + assert_array_equal(a2 == a1, [True, False]) + + def test_nonzero_byteswap(self): + a = np.array([0x80000000, 0x00000080, 0], dtype=np.uint32) + a.dtype = np.float32 + assert_equal(a.nonzero()[0], [1]) + a = a.byteswap() + a = a.view(a.dtype.newbyteorder()) + assert_equal(a.nonzero()[0], [1]) # [0] if nonzero() ignores swap + + def test_empty_mul(self): + a = np.array([1.]) + a[1:1] *= 2 + assert_equal(a, [1.]) + + def test_array_side_effect(self): + # The second use of itemsize was throwing an exception because in + # ctors.c, discover_itemsize was calling PyObject_Length without + # checking the return code. This failed to get the length of the + # number 2, and the exception hung around until something checked + # PyErr_Occurred() and returned an error. + assert_equal(np.dtype('S10').itemsize, 10) + np.array([['abc', 2], ['long ', '0123456789']], dtype=np.bytes_) + assert_equal(np.dtype('S10').itemsize, 10) + + def test_any_float(self): + # all and any for floats + a = np.array([0.1, 0.9]) + assert_(np.any(a)) + assert_(np.all(a)) + + def test_large_float_sum(self): + a = np.arange(10000, dtype='f') + assert_equal(a.sum(dtype='d'), a.astype('d').sum()) + + def test_ufunc_casting_out(self): + a = np.array(1.0, dtype=np.float32) + b = np.array(1.0, dtype=np.float64) + c = np.array(1.0, dtype=np.float32) + np.add(a, b, out=c) + assert_equal(c, 2.0) + + def test_array_scalar_contiguous(self): + # Array scalars are both C and Fortran contiguous + assert_(np.array(1.0).flags.c_contiguous) + assert_(np.array(1.0).flags.f_contiguous) + assert_(np.array(np.float32(1.0)).flags.c_contiguous) + assert_(np.array(np.float32(1.0)).flags.f_contiguous) + + def test_squeeze_contiguous(self): + # Similar to GitHub issue #387 + a = np.zeros((1, 2)).squeeze() + b = np.zeros((2, 2, 2), order='F')[:, :, ::2].squeeze() + assert_(a.flags.c_contiguous) + assert_(a.flags.f_contiguous) + assert_(b.flags.f_contiguous) + + def test_squeeze_axis_handling(self): + # Issue #10779 + # Ensure proper handling of objects + # that don't support axis specification + # when squeezing + + class OldSqueeze(np.ndarray): + + def __new__(cls, + input_array): + obj = np.asarray(input_array).view(cls) + return obj + + # it is perfectly reasonable that prior + # to numpy version 1.7.0 a subclass of ndarray + # might have been created that did not expect + # squeeze to have an axis argument + # NOTE: this example is somewhat artificial; + # it is designed to simulate an old API + # expectation to guard against regression + def squeeze(self): + return super().squeeze() + + oldsqueeze = OldSqueeze(np.array([[1], [2], [3]])) + + # if no axis argument is specified the old API + # expectation should give the correct result + assert_equal(np.squeeze(oldsqueeze), + np.array([1, 2, 3])) + + # likewise, axis=None should work perfectly well + # with the old API expectation + assert_equal(np.squeeze(oldsqueeze, axis=None), + np.array([1, 2, 3])) + + # however, specification of any particular axis + # should raise a TypeError in the context of the + # old API specification, even when using a valid + # axis specification like 1 for this array + with assert_raises(TypeError): + # this would silently succeed for array + # subclasses / objects that did not support + # squeeze axis argument handling before fixing + # Issue #10779 + np.squeeze(oldsqueeze, axis=1) + + # check for the same behavior when using an invalid + # axis specification -- in this case axis=0 does not + # have size 1, but the priority should be to raise + # a TypeError for the axis argument and NOT a + # ValueError for squeezing a non-empty dimension + with assert_raises(TypeError): + np.squeeze(oldsqueeze, axis=0) + + # the new API knows how to handle the axis + # argument and will return a ValueError if + # attempting to squeeze an axis that is not + # of length 1 + with assert_raises(ValueError): + np.squeeze(np.array([[1], [2], [3]]), axis=0) + + def test_reduce_contiguous(self): + # GitHub issue #387 + a = np.add.reduce(np.zeros((2, 1, 2)), (0, 1)) + b = np.add.reduce(np.zeros((2, 1, 2)), 1) + assert_(a.flags.c_contiguous) + assert_(a.flags.f_contiguous) + assert_(b.flags.c_contiguous) + + @pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking") + @pytest.mark.skipif(IS_WASM, reason="Pyodide/WASM has limited stack size") + def test_object_array_self_reference(self): + # Object arrays with references to themselves can cause problems + a = np.array(0, dtype=object) + a[()] = a + assert_raises(RecursionError, int, a) + assert_raises(RecursionError, float, a) + a[()] = None + + @pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking") + @pytest.mark.skipif(IS_WASM, reason="Pyodide/WASM has limited stack size") + def test_object_array_circular_reference(self): + # Test the same for a circular reference. + a = np.array(0, dtype=object) + b = np.array(0, dtype=object) + a[()] = b + b[()] = a + assert_raises(RecursionError, int, a) + # NumPy has no tp_traverse currently, so circular references + # cannot be detected. So resolve it: + a[()] = None + + # This was causing a to become like the above + a = np.array(0, dtype=object) + a[...] += 1 + assert_equal(a, 1) + + def test_object_array_nested(self): + # but is fine with a reference to a different array + a = np.array(0, dtype=object) + b = np.array(0, dtype=object) + a[()] = b + assert_equal(int(a), int(0)) # noqa: UP018 + assert_equal(float(a), float(0)) + + def test_object_array_self_copy(self): + # An object array being copied into itself DECREF'ed before INCREF'ing + # causing segmentation faults (gh-3787) + a = np.array(object(), dtype=object) + np.copyto(a, a) + if HAS_REFCOUNT: + assert_(sys.getrefcount(a[()]) == 2) + a[()].__class__ # will segfault if object was deleted + + def test_zerosize_accumulate(self): + "Ticket #1733" + x = np.array([[42, 0]], dtype=np.uint32) + assert_equal(np.add.accumulate(x[:-1, 0]), []) + + def test_objectarray_setfield(self): + # Setfield should not overwrite Object fields with non-Object data + x = np.array([1, 2, 3], dtype=object) + assert_raises(TypeError, x.setfield, 4, np.int32, 0) + + def test_setting_rank0_string(self): + "Ticket #1736" + s1 = b"hello1" + s2 = b"hello2" + a = np.zeros((), dtype="S10") + a[()] = s1 + assert_equal(a, np.array(s1)) + a[()] = np.array(s2) + assert_equal(a, np.array(s2)) + + a = np.zeros((), dtype='f4') + a[()] = 3 + assert_equal(a, np.array(3)) + a[()] = np.array(4) + assert_equal(a, np.array(4)) + + def test_string_astype(self): + "Ticket #1748" + s1 = b'black' + s2 = b'white' + s3 = b'other' + a = np.array([[s1], [s2], [s3]]) + assert_equal(a.dtype, np.dtype('S5')) + b = a.astype(np.dtype('S0')) + assert_equal(b.dtype, np.dtype('S5')) + + def test_ticket_1756(self): + # Ticket #1756 + s = b'0123456789abcdef' + a = np.array([s] * 5) + for i in range(1, 17): + a1 = np.array(a, "|S%d" % i) + a2 = np.array([s[:i]] * 5) + assert_equal(a1, a2) + + def test_fields_strides(self): + "gh-2355" + r = np.frombuffer(b'abcdefghijklmnop' * 4 * 3, dtype='i4,(2,3)u2') + assert_equal(r[0:3:2]['f1'], r['f1'][0:3:2]) + assert_equal(r[0:3:2]['f1'][0], r[0:3:2][0]['f1']) + assert_equal(r[0:3:2]['f1'][0][()], r[0:3:2][0]['f1'][()]) + assert_equal(r[0:3:2]['f1'][0].strides, r[0:3:2][0]['f1'].strides) + + def test_alignment_update(self): + # Check that alignment flag is updated on stride setting + a = np.arange(10) + assert_(a.flags.aligned) + a.strides = 3 + assert_(not a.flags.aligned) + + def test_ticket_1770(self): + "Should not segfault on python 3k" + import numpy as np + try: + a = np.zeros((1,), dtype=[('f1', 'f')]) + a['f1'] = 1 + a['f2'] = 1 + except ValueError: + pass + except Exception: + raise AssertionError + + def test_ticket_1608(self): + "x.flat shouldn't modify data" + x = np.array([[1, 2], [3, 4]]).T + np.array(x.flat) + assert_equal(x, [[1, 3], [2, 4]]) + + def test_pickle_string_overwrite(self): + import re + + data = np.array([1], dtype='b') + blob = pickle.dumps(data, protocol=1) + data = pickle.loads(blob) + + # Check that loads does not clobber interned strings + s = re.sub(r"a(.)", "\x01\\1", "a_") + assert_equal(s[0], "\x01") + data[0] = 0x6a + s = re.sub(r"a(.)", "\x01\\1", "a_") + assert_equal(s[0], "\x01") + + def test_pickle_bytes_overwrite(self): + for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): + data = np.array([1], dtype='b') + data = pickle.loads(pickle.dumps(data, protocol=proto)) + data[0] = 0x7d + bytestring = "\x01 ".encode('ascii') + assert_equal(bytestring[0:1], '\x01'.encode('ascii')) + + def test_pickle_py2_array_latin1_hack(self): + # Check that unpickling hacks in Py3 that support + # encoding='latin1' work correctly. + + # Python2 output for pickle.dumps(numpy.array([129], dtype='b')) + data = b"cnumpy.core.multiarray\n_reconstruct\np0\n(cnumpy\nndarray\np1\n(I0\ntp2\nS'b'\np3\ntp4\nRp5\n(I1\n(I1\ntp6\ncnumpy\ndtype\np7\n(S'i1'\np8\nI0\nI1\ntp9\nRp10\n(I3\nS'|'\np11\nNNNI-1\nI-1\nI0\ntp12\nbI00\nS'\\x81'\np13\ntp14\nb." + # This should work: + result = pickle.loads(data, encoding='latin1') + assert_array_equal(result, np.array([129]).astype('b')) + # Should not segfault: + assert_raises(Exception, pickle.loads, data, encoding='koi8-r') + + def test_pickle_py2_scalar_latin1_hack(self): + # Check that scalar unpickling hack in Py3 that supports + # encoding='latin1' work correctly. + + # Python2 output for pickle.dumps(...) + datas = [ + # (original, python2_pickle, koi8r_validity) + (np.str_('\u6bd2'), + b"cnumpy.core.multiarray\nscalar\np0\n(cnumpy\ndtype\np1\n(S'U1'\np2\nI0\nI1\ntp3\nRp4\n(I3\nS'<'\np5\nNNNI4\nI4\nI0\ntp6\nbS'\\xd2k\\x00\\x00'\np7\ntp8\nRp9\n.", + 'invalid'), + + (np.float64(9e123), + b"cnumpy.core.multiarray\nscalar\np0\n(cnumpy\ndtype\np1\n(S'f8'\np2\nI0\nI1\ntp3\nRp4\n(I3\nS'<'\np5\nNNNI-1\nI-1\nI0\ntp6\nbS'O\\x81\\xb7Z\\xaa:\\xabY'\np7\ntp8\nRp9\n.", + 'invalid'), + + # different 8-bit code point in KOI8-R vs latin1 + (np.bytes_(b'\x9c'), + b"cnumpy.core.multiarray\nscalar\np0\n(cnumpy\ndtype\np1\n(S'S1'\np2\nI0\nI1\ntp3\nRp4\n(I3\nS'|'\np5\nNNNI1\nI1\nI0\ntp6\nbS'\\x9c'\np7\ntp8\nRp9\n.", + 'different'), + ] + for original, data, koi8r_validity in datas: + result = pickle.loads(data, encoding='latin1') + assert_equal(result, original) + + # Decoding under non-latin1 encoding (e.g.) KOI8-R can + # produce bad results, but should not segfault. + if koi8r_validity == 'different': + # Unicode code points happen to lie within latin1, + # but are different in koi8-r, resulting to silent + # bogus results + result = pickle.loads(data, encoding='koi8-r') + assert_(result != original) + elif koi8r_validity == 'invalid': + # Unicode code points outside latin1, so results + # to an encoding exception + assert_raises( + ValueError, pickle.loads, data, encoding='koi8-r' + ) + else: + raise ValueError(koi8r_validity) + + def test_structured_type_to_object(self): + a_rec = np.array([(0, 1), (3, 2)], dtype='i4,i8') + a_obj = np.empty((2,), dtype=object) + a_obj[0] = (0, 1) + a_obj[1] = (3, 2) + # astype records -> object + assert_equal(a_rec.astype(object), a_obj) + # '=' records -> object + b = np.empty_like(a_obj) + b[...] = a_rec + assert_equal(b, a_obj) + # '=' object -> records + b = np.empty_like(a_rec) + b[...] = a_obj + assert_equal(b, a_rec) + + def test_assign_obj_listoflists(self): + # Ticket # 1870 + # The inner list should get assigned to the object elements + a = np.zeros(4, dtype=object) + b = a.copy() + a[0] = [1] + a[1] = [2] + a[2] = [3] + a[3] = [4] + b[...] = [[1], [2], [3], [4]] + assert_equal(a, b) + # The first dimension should get broadcast + a = np.zeros((2, 2), dtype=object) + a[...] = [[1, 2]] + assert_equal(a, [[1, 2], [1, 2]]) + + @pytest.mark.slow_pypy + def test_memoryleak(self): + # Ticket #1917 - ensure that array data doesn't leak + for i in range(1000): + # 100MB times 1000 would give 100GB of memory usage if it leaks + a = np.empty((100000000,), dtype='i1') + del a + + @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") + def test_ufunc_reduce_memoryleak(self): + a = np.arange(6) + acnt = sys.getrefcount(a) + np.add.reduce(a) + assert_equal(sys.getrefcount(a), acnt) + + def test_search_sorted_invalid_arguments(self): + # Ticket #2021, should not segfault. + x = np.arange(0, 4, dtype='datetime64[D]') + assert_raises(TypeError, x.searchsorted, 1) + + def test_string_truncation(self): + # Ticket #1990 - Data can be truncated in creation of an array from a + # mixed sequence of numeric values and strings (gh-2583) + for val in [True, 1234, 123.4, complex(1, 234)]: + for tostr, dtype in [(asunicode, "U"), (asbytes, "S")]: + b = np.array([val, tostr('xx')], dtype=dtype) + assert_equal(tostr(b[0]), tostr(val)) + b = np.array([tostr('xx'), val], dtype=dtype) + assert_equal(tostr(b[1]), tostr(val)) + + # test also with longer strings + b = np.array([val, tostr('xxxxxxxxxx')], dtype=dtype) + assert_equal(tostr(b[0]), tostr(val)) + b = np.array([tostr('xxxxxxxxxx'), val], dtype=dtype) + assert_equal(tostr(b[1]), tostr(val)) + + def test_string_truncation_ucs2(self): + # Ticket #2081. Python compiled with two byte unicode + # can lead to truncation if itemsize is not properly + # adjusted for NumPy's four byte unicode. + a = np.array(['abcd']) + assert_equal(a.dtype.itemsize, 16) + + def test_unique_stable(self): + # Ticket #2063 must always choose stable sort for argsort to + # get consistent results + v = np.array(([0] * 5 + [1] * 6 + [2] * 6) * 4) + res = np.unique(v, return_index=True) + tgt = (np.array([0, 1, 2]), np.array([0, 5, 11])) + assert_equal(res, tgt) + + def test_unicode_alloc_dealloc_match(self): + # Ticket #1578, the mismatch only showed up when running + # python-debug for python versions >= 2.7, and then as + # a core dump and error message. + a = np.array(['abc'], dtype=np.str_)[0] + del a + + def test_refcount_error_in_clip(self): + # Ticket #1588 + a = np.zeros((2,), dtype='>i2').clip(min=0) + x = a + a + # This used to segfault: + y = str(x) + # Check the final string: + assert_(y == "[0 0]") + + def test_searchsorted_wrong_dtype(self): + # Ticket #2189, it used to segfault, so we check that it raises the + # proper exception. + a = np.array([('a', 1)], dtype='S1, int') + assert_raises(TypeError, np.searchsorted, a, 1.2) + # Ticket #2066, similar problem: + dtype = np.rec.format_parser(['i4', 'i4'], [], []) + a = np.recarray((2,), dtype) + a[...] = [(1, 2), (3, 4)] + assert_raises(TypeError, np.searchsorted, a, 1) + + def test_complex64_alignment(self): + # Issue gh-2668 (trac 2076), segfault on sparc due to misalignment + dtt = np.complex64 + arr = np.arange(10, dtype=dtt) + # 2D array + arr2 = np.reshape(arr, (2, 5)) + # Fortran write followed by (C or F) read caused bus error + data_str = arr2.tobytes('F') + data_back = np.ndarray(arr2.shape, + arr2.dtype, + buffer=data_str, + order='F') + assert_array_equal(arr2, data_back) + + def test_structured_count_nonzero(self): + arr = np.array([0, 1]).astype('i4, 2i4')[:1] + count = np.count_nonzero(arr) + assert_equal(count, 0) + + def test_copymodule_preserves_f_contiguity(self): + a = np.empty((2, 2), order='F') + b = copy.copy(a) + c = copy.deepcopy(a) + assert_(b.flags.fortran) + assert_(b.flags.f_contiguous) + assert_(c.flags.fortran) + assert_(c.flags.f_contiguous) + + def test_fortran_order_buffer(self): + import numpy as np + a = np.array([['Hello', 'Foob']], dtype='U5', order='F') + arr = np.ndarray(shape=[1, 2, 5], dtype='U1', buffer=a) + arr2 = np.array([[['H', 'e', 'l', 'l', 'o'], + ['F', 'o', 'o', 'b', '']]]) + assert_array_equal(arr, arr2) + + def test_assign_from_sequence_error(self): + # Ticket #4024. + arr = np.array([1, 2, 3]) + assert_raises(ValueError, arr.__setitem__, slice(None), [9, 9]) + arr.__setitem__(slice(None), [9]) + assert_equal(arr, [9, 9, 9]) + + def test_format_on_flex_array_element(self): + # Ticket #4369. + dt = np.dtype([('date', ' 0: + # unpickling ndarray goes through _frombuffer for protocol 5 + assert b'numpy._core.numeric' in s + else: + assert b'numpy._core.multiarray' in s + + def test_object_casting_errors(self): + # gh-11993 update to ValueError (see gh-16909), since strings can in + # principle be converted to complex, but this string cannot. + arr = np.array(['AAAAA', 18465886.0, 18465886.0], dtype=object) + assert_raises(ValueError, arr.astype, 'c8') + + def test_eff1d_casting(self): + # gh-12711 + x = np.array([1, 2, 4, 7, 0], dtype=np.int16) + res = np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99])) + assert_equal(res, [-99, 1, 2, 3, -7, 88, 99]) + + # The use of safe casting means, that 1<<20 is cast unsafely, an + # error may be better, but currently there is no mechanism for it. + res = np.ediff1d(x, to_begin=(1 << 20), to_end=(1 << 20)) + assert_equal(res, [0, 1, 2, 3, -7, 0]) + + def test_pickle_datetime64_array(self): + # gh-12745 (would fail with pickle5 installed) + d = np.datetime64('2015-07-04 12:59:59.50', 'ns') + arr = np.array([d]) + for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): + dumped = pickle.dumps(arr, protocol=proto) + assert_equal(pickle.loads(dumped), arr) + + def test_bad_array_interface(self): + class T: + __array_interface__ = {} + + with assert_raises(ValueError): + np.array([T()]) + + def test_2d__array__shape(self): + class T: + def __array__(self, dtype=None, copy=None): + return np.ndarray(shape=(0, 0)) + + # Make sure __array__ is used instead of Sequence methods. + def __iter__(self): + return iter([]) + + def __getitem__(self, idx): + raise AssertionError("__getitem__ was called") + + def __len__(self): + return 0 + + t = T() + # gh-13659, would raise in broadcasting [x=t for x in result] + arr = np.array([t]) + assert arr.shape == (1, 0, 0) + + @pytest.mark.skipif(sys.maxsize < 2 ** 31 + 1, reason='overflows 32-bit python') + def test_to_ctypes(self): + # gh-14214 + arr = np.zeros((2 ** 31 + 1,), 'b') + assert arr.size * arr.itemsize > 2 ** 31 + c_arr = np.ctypeslib.as_ctypes(arr) + assert_equal(c_arr._length_, arr.size) + + def test_complex_conversion_error(self): + # gh-17068 + with pytest.raises(TypeError, match=r"Unable to convert dtype.*"): + complex(np.array("now", np.datetime64)) + + def test__array_interface__descr(self): + # gh-17068 + dt = np.dtype({'names': ['a', 'b'], + 'offsets': [0, 0], + 'formats': [np.int64, np.int64]}) + descr = np.array((1, 1), dtype=dt).__array_interface__['descr'] + assert descr == [('', '|V8')] # instead of [(b'', '|V8')] + + @pytest.mark.skipif(sys.maxsize < 2 ** 31 + 1, reason='overflows 32-bit python') + @requires_memory(free_bytes=9e9) + def test_dot_big_stride(self): + # gh-17111 + # blas stride = stride//itemsize > int32 max + int32_max = np.iinfo(np.int32).max + n = int32_max + 3 + a = np.empty([n], dtype=np.float32) + b = a[::n - 1] + b[...] = 1 + assert b.strides[0] > int32_max * b.dtype.itemsize + assert np.dot(b, b) == 2.0 + + def test_frompyfunc_name(self): + # name conversion was failing for python 3 strings + # resulting in the default '?' name. Also test utf-8 + # encoding using non-ascii name. + def cassé(x): + return x + + f = np.frompyfunc(cassé, 1, 1) + assert str(f) == "" + + @pytest.mark.parametrize("operation", [ + 'add', 'subtract', 'multiply', 'floor_divide', + 'conjugate', 'fmod', 'square', 'reciprocal', + 'power', 'absolute', 'negative', 'positive', + 'greater', 'greater_equal', 'less', + 'less_equal', 'equal', 'not_equal', 'logical_and', + 'logical_not', 'logical_or', 'bitwise_and', 'bitwise_or', + 'bitwise_xor', 'invert', 'left_shift', 'right_shift', + 'gcd', 'lcm' + ] + ) + @pytest.mark.parametrize("order", [ + ('b->', 'B->'), + ('h->', 'H->'), + ('i->', 'I->'), + ('l->', 'L->'), + ('q->', 'Q->'), + ] + ) + def test_ufunc_order(self, operation, order): + # gh-18075 + # Ensure signed types before unsigned + def get_idx(string, str_lst): + for i, s in enumerate(str_lst): + if string in s: + return i + raise ValueError(f"{string} not in list") + types = getattr(np, operation).types + assert get_idx(order[0], types) < get_idx(order[1], types), ( + f"Unexpected types order of ufunc in {operation}" + f"for {order}. Possible fix: Use signed before unsigned" + "in generate_umath.py") + + def test_nonbool_logical(self): + # gh-22845 + # create two arrays with bit patterns that do not overlap. + # needs to be large enough to test both SIMD and scalar paths + size = 100 + a = np.frombuffer(b'\x01' * size, dtype=np.bool) + b = np.frombuffer(b'\x80' * size, dtype=np.bool) + expected = np.ones(size, dtype=np.bool) + assert_array_equal(np.logical_and(a, b), expected) + + @pytest.mark.skipif(IS_PYPY, reason="PyPy issue 2742") + def test_gh_23737(self): + with pytest.raises(TypeError, match="not an acceptable base type"): + class Y(np.flexible): + pass + + with pytest.raises(TypeError, match="not an acceptable base type"): + class X(np.flexible, np.ma.core.MaskedArray): + pass + + def test_load_ufunc_pickle(self): + # ufuncs are pickled with a semi-private path in + # numpy.core._multiarray_umath and must be loadable without warning + # despite np.core being deprecated. + test_data = b'\x80\x04\x95(\x00\x00\x00\x00\x00\x00\x00\x8c\x1cnumpy.core._multiarray_umath\x94\x8c\x03add\x94\x93\x94.' + result = pickle.loads(test_data, encoding='bytes') + assert result is np.add + + def test__array_namespace__(self): + arr = np.arange(2) + + xp = arr.__array_namespace__() + assert xp is np + xp = arr.__array_namespace__(api_version="2021.12") + assert xp is np + xp = arr.__array_namespace__(api_version="2022.12") + assert xp is np + xp = arr.__array_namespace__(api_version="2023.12") + assert xp is np + xp = arr.__array_namespace__(api_version="2024.12") + assert xp is np + xp = arr.__array_namespace__(api_version=None) + assert xp is np + + with pytest.raises( + ValueError, + match="Version \"2025.12\" of the Array API Standard " + "is not supported." + ): + arr.__array_namespace__(api_version="2025.12") + + with pytest.raises( + ValueError, + match="Only None and strings are allowed as the Array API version" + ): + arr.__array_namespace__(api_version=2024) + + def test_isin_refcnt_bug(self): + # gh-25295 + for _ in range(1000): + np.isclose(np.int64(2), np.int64(2), atol=1e-15, rtol=1e-300) + + def test_replace_regression(self): + # gh-25513 segfault + carr = np.char.chararray((2,), itemsize=25) + test_strings = [b' 4.52173913043478315E+00', + b' 4.95652173913043548E+00'] + carr[:] = test_strings + out = carr.replace(b"E", b"D") + expected = np.char.chararray((2,), itemsize=25) + expected[:] = [s.replace(b"E", b"D") for s in test_strings] + assert_array_equal(out, expected) + + def test_logspace_base_does_not_determine_dtype(self): + # gh-24957 and cupy/cupy/issues/7946 + start = np.array([0, 2], dtype=np.float16) + stop = np.array([2, 0], dtype=np.float16) + out = np.logspace(start, stop, num=5, axis=1, dtype=np.float32) + expected = np.array([[1., 3.1621094, 10., 31.625, 100.], + [100., 31.625, 10., 3.1621094, 1.]], + dtype=np.float32) + assert_almost_equal(out, expected) + # Check test fails if the calculation is done in float64, as happened + # before when a python float base incorrectly influenced the dtype. + out2 = np.logspace(start, stop, num=5, axis=1, dtype=np.float32, + base=np.array([10.0])) + with pytest.raises(AssertionError, match="not almost equal"): + assert_almost_equal(out2, expected) + + def test_vectorize_fixed_width_string(self): + arr = np.array(["SOme wOrd DŽ ß ᾛ ΣΣ ffi⁵Å Ç Ⅰ"]).astype(np.str_) + f = str.casefold + res = np.vectorize(f, otypes=[arr.dtype])(arr) + assert res.dtype == "U30" + + def test_repeated_square_consistency(self): + # gh-26940 + buf = np.array([-5.171866611150749e-07 + 2.5618634555957426e-07j, + 0, 0, 0, 0, 0]) + # Test buffer with regular and reverse strides + for in_vec in [buf[:3], buf[:3][::-1]]: + expected_res = np.square(in_vec) + # Output vector immediately follows input vector + # to reproduce off-by-one in nomemoverlap check. + for res in [buf[3:], buf[3:][::-1]]: + res = buf[3:] + np.square(in_vec, out=res) + assert_equal(res, expected_res) + + def test_sort_unique_crash(self): + # gh-27037 + for _ in range(4): + vals = np.linspace(0, 1, num=128) + data = np.broadcast_to(vals, (128, 128, 128)) + data = data.transpose(0, 2, 1).copy() + np.unique(data) + + def test_sort_overlap(self): + # gh-27273 + size = 100 + inp = np.linspace(0, size, num=size, dtype=np.intc) + out = np.sort(inp) + assert_equal(inp, out) + + def test_searchsorted_structured(self): + # gh-28190 + x = np.array([(0, 1.)], dtype=[('time', ' None: + cls = np.dtype(code).type + value = cls(str_value) + assert not value.is_integer() + + @pytest.mark.parametrize( + "code", np.typecodes["Float"] + np.typecodes["AllInteger"] + ) + def test_true(self, code: str) -> None: + float_array = np.arange(-5, 5).astype(code) + for value in float_array: + assert value.is_integer() + + @pytest.mark.parametrize("code", np.typecodes["Float"]) + def test_false(self, code: str) -> None: + float_array = np.arange(-5, 5).astype(code) + float_array *= 1.1 + for value in float_array: + if value == 0: + continue + assert not value.is_integer() + + +class TestClassGetItem: + @pytest.mark.parametrize("cls", [ + np.number, + np.integer, + np.inexact, + np.unsignedinteger, + np.signedinteger, + np.floating, + ]) + def test_abc(self, cls: type[np.number]) -> None: + alias = cls[Any] + assert isinstance(alias, types.GenericAlias) + assert alias.__origin__ is cls + + def test_abc_complexfloating(self) -> None: + alias = np.complexfloating[Any, Any] + assert isinstance(alias, types.GenericAlias) + assert alias.__origin__ is np.complexfloating + + @pytest.mark.parametrize("arg_len", range(4)) + def test_abc_complexfloating_subscript_tuple(self, arg_len: int) -> None: + arg_tup = (Any,) * arg_len + if arg_len in (1, 2): + assert np.complexfloating[arg_tup] + else: + match = f"Too {'few' if arg_len == 0 else 'many'} arguments" + with pytest.raises(TypeError, match=match): + np.complexfloating[arg_tup] + + @pytest.mark.parametrize("cls", [np.generic, np.flexible, np.character]) + def test_abc_non_numeric(self, cls: type[np.generic]) -> None: + with pytest.raises(TypeError): + cls[Any] + + @pytest.mark.parametrize("code", np.typecodes["All"]) + def test_concrete(self, code: str) -> None: + cls = np.dtype(code).type + with pytest.raises(TypeError): + cls[Any] + + @pytest.mark.parametrize("arg_len", range(4)) + def test_subscript_tuple(self, arg_len: int) -> None: + arg_tup = (Any,) * arg_len + if arg_len == 1: + assert np.number[arg_tup] + else: + with pytest.raises(TypeError): + np.number[arg_tup] + + def test_subscript_scalar(self) -> None: + assert np.number[Any] + + +class TestBitCount: + # derived in part from the cpython test "test_bit_count" + + @pytest.mark.parametrize("itype", sctypes['int'] + sctypes['uint']) + def test_small(self, itype): + for a in range(max(np.iinfo(itype).min, 0), 128): + msg = f"Smoke test for {itype}({a}).bit_count()" + assert itype(a).bit_count() == a.bit_count(), msg + + def test_bit_count(self): + for exp in [10, 17, 63]: + a = 2**exp + assert np.uint64(a).bit_count() == 1 + assert np.uint64(a - 1).bit_count() == exp + assert np.uint64(a ^ 63).bit_count() == 7 + assert np.uint64((a - 1) ^ 510).bit_count() == exp - 8 + + +class TestDevice: + """ + Test scalar.device attribute and scalar.to_device() method. + """ + scalars = [np.bool(True), np.int64(1), np.uint64(1), np.float64(1.0), + np.complex128(1 + 1j)] + + @pytest.mark.parametrize("scalar", scalars) + def test_device(self, scalar): + assert scalar.device == "cpu" + + @pytest.mark.parametrize("scalar", scalars) + def test_to_device(self, scalar): + assert scalar.to_device("cpu") is scalar + + @pytest.mark.parametrize("scalar", scalars) + def test___array_namespace__(self, scalar): + assert scalar.__array_namespace__() is np + + +@pytest.mark.parametrize("scalar", [np.bool(True), np.int8(1), np.float64(1)]) +def test_array_wrap(scalar): + # Test scalars array wrap as long as it exists. NumPy itself should + # probably not use it, so it may not be necessary to keep it around. + + arr0d = np.array(3, dtype=np.int8) + # Third argument not passed, None, or True "decays" to scalar. + # (I don't think NumPy would pass `None`, but it seems clear to support) + assert type(scalar.__array_wrap__(arr0d)) is np.int8 + assert type(scalar.__array_wrap__(arr0d, None, None)) is np.int8 + assert type(scalar.__array_wrap__(arr0d, None, True)) is np.int8 + + # Otherwise, result should be the input + assert scalar.__array_wrap__(arr0d, None, False) is arr0d + + # An old bug. A non 0-d array cannot be converted to scalar: + arr1d = np.array([3], dtype=np.int8) + assert scalar.__array_wrap__(arr1d) is arr1d + assert scalar.__array_wrap__(arr1d, None, True) is arr1d diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarbuffer.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarbuffer.py new file mode 100644 index 0000000..4d6b5bd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarbuffer.py @@ -0,0 +1,153 @@ +""" +Test scalar buffer interface adheres to PEP 3118 +""" +import pytest +from numpy._core._multiarray_tests import get_buffer_info +from numpy._core._rational_tests import rational + +import numpy as np +from numpy.testing import assert_, assert_equal, assert_raises + +# PEP3118 format strings for native (standard alignment and byteorder) types +scalars_and_codes = [ + (np.bool, '?'), + (np.byte, 'b'), + (np.short, 'h'), + (np.intc, 'i'), + (np.long, 'l'), + (np.longlong, 'q'), + (np.ubyte, 'B'), + (np.ushort, 'H'), + (np.uintc, 'I'), + (np.ulong, 'L'), + (np.ulonglong, 'Q'), + (np.half, 'e'), + (np.single, 'f'), + (np.double, 'd'), + (np.longdouble, 'g'), + (np.csingle, 'Zf'), + (np.cdouble, 'Zd'), + (np.clongdouble, 'Zg'), +] +scalars_only, codes_only = zip(*scalars_and_codes) + + +class TestScalarPEP3118: + + @pytest.mark.parametrize('scalar', scalars_only, ids=codes_only) + def test_scalar_match_array(self, scalar): + x = scalar() + a = np.array([], dtype=np.dtype(scalar)) + mv_x = memoryview(x) + mv_a = memoryview(a) + assert_equal(mv_x.format, mv_a.format) + + @pytest.mark.parametrize('scalar', scalars_only, ids=codes_only) + def test_scalar_dim(self, scalar): + x = scalar() + mv_x = memoryview(x) + assert_equal(mv_x.itemsize, np.dtype(scalar).itemsize) + assert_equal(mv_x.ndim, 0) + assert_equal(mv_x.shape, ()) + assert_equal(mv_x.strides, ()) + assert_equal(mv_x.suboffsets, ()) + + @pytest.mark.parametrize('scalar, code', scalars_and_codes, ids=codes_only) + def test_scalar_code_and_properties(self, scalar, code): + x = scalar() + expected = {'strides': (), 'itemsize': x.dtype.itemsize, 'ndim': 0, + 'shape': (), 'format': code, 'readonly': True} + + mv_x = memoryview(x) + assert self._as_dict(mv_x) == expected + + @pytest.mark.parametrize('scalar', scalars_only, ids=codes_only) + def test_scalar_buffers_readonly(self, scalar): + x = scalar() + with pytest.raises(BufferError, match="scalar buffer is readonly"): + get_buffer_info(x, ["WRITABLE"]) + + def test_void_scalar_structured_data(self): + dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))]) + x = np.array(('ndarray_scalar', (1.2, 3.0)), dtype=dt)[()] + assert_(isinstance(x, np.void)) + mv_x = memoryview(x) + expected_size = 16 * np.dtype((np.str_, 1)).itemsize + expected_size += 2 * np.dtype(np.float64).itemsize + assert_equal(mv_x.itemsize, expected_size) + assert_equal(mv_x.ndim, 0) + assert_equal(mv_x.shape, ()) + assert_equal(mv_x.strides, ()) + assert_equal(mv_x.suboffsets, ()) + + # check scalar format string against ndarray format string + a = np.array([('Sarah', (8.0, 7.0)), ('John', (6.0, 7.0))], dtype=dt) + assert_(isinstance(a, np.ndarray)) + mv_a = memoryview(a) + assert_equal(mv_x.itemsize, mv_a.itemsize) + assert_equal(mv_x.format, mv_a.format) + + # Check that we do not allow writeable buffer export (technically + # we could allow it sometimes here...) + with pytest.raises(BufferError, match="scalar buffer is readonly"): + get_buffer_info(x, ["WRITABLE"]) + + def _as_dict(self, m): + return {'strides': m.strides, 'shape': m.shape, 'itemsize': m.itemsize, + 'ndim': m.ndim, 'format': m.format, 'readonly': m.readonly} + + def test_datetime_memoryview(self): + # gh-11656 + # Values verified with v1.13.3, shape is not () as in test_scalar_dim + + dt1 = np.datetime64('2016-01-01') + dt2 = np.datetime64('2017-01-01') + expected = {'strides': (1,), 'itemsize': 1, 'ndim': 1, 'shape': (8,), + 'format': 'B', 'readonly': True} + v = memoryview(dt1) + assert self._as_dict(v) == expected + + v = memoryview(dt2 - dt1) + assert self._as_dict(v) == expected + + dt = np.dtype([('a', 'uint16'), ('b', 'M8[s]')]) + a = np.empty(1, dt) + # Fails to create a PEP 3118 valid buffer + assert_raises((ValueError, BufferError), memoryview, a[0]) + + # Check that we do not allow writeable buffer export + with pytest.raises(BufferError, match="scalar buffer is readonly"): + get_buffer_info(dt1, ["WRITABLE"]) + + @pytest.mark.parametrize('s', [ + pytest.param("\x32\x32", id="ascii"), + pytest.param("\uFE0F\uFE0F", id="basic multilingual"), + pytest.param("\U0001f4bb\U0001f4bb", id="non-BMP"), + ]) + def test_str_ucs4(self, s): + s = np.str_(s) # only our subclass implements the buffer protocol + + # all the same, characters always encode as ucs4 + expected = {'strides': (), 'itemsize': 8, 'ndim': 0, 'shape': (), 'format': '2w', + 'readonly': True} + + v = memoryview(s) + assert self._as_dict(v) == expected + + # integers of the paltform-appropriate endianness + code_points = np.frombuffer(v, dtype='i4') + + assert_equal(code_points, [ord(c) for c in s]) + + # Check that we do not allow writeable buffer export + with pytest.raises(BufferError, match="scalar buffer is readonly"): + get_buffer_info(s, ["WRITABLE"]) + + def test_user_scalar_fails_buffer(self): + r = rational(1) + with assert_raises(TypeError): + memoryview(r) + + # Check that we do not allow writeable buffer export + with pytest.raises(BufferError, match="scalar buffer is readonly"): + get_buffer_info(r, ["WRITABLE"]) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarinherit.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarinherit.py new file mode 100644 index 0000000..746a157 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarinherit.py @@ -0,0 +1,105 @@ +""" Test printing of scalar types. + +""" +import pytest + +import numpy as np +from numpy.testing import assert_, assert_raises + + +class A: + pass +class B(A, np.float64): + pass + +class C(B): + pass +class D(C, B): + pass + +class B0(np.float64, A): + pass +class C0(B0): + pass + +class HasNew: + def __new__(cls, *args, **kwargs): + return cls, args, kwargs + +class B1(np.float64, HasNew): + pass + + +class TestInherit: + def test_init(self): + x = B(1.0) + assert_(str(x) == '1.0') + y = C(2.0) + assert_(str(y) == '2.0') + z = D(3.0) + assert_(str(z) == '3.0') + + def test_init2(self): + x = B0(1.0) + assert_(str(x) == '1.0') + y = C0(2.0) + assert_(str(y) == '2.0') + + def test_gh_15395(self): + # HasNew is the second base, so `np.float64` should have priority + x = B1(1.0) + assert_(str(x) == '1.0') + + # previously caused RecursionError!? + with pytest.raises(TypeError): + B1(1.0, 2.0) + + def test_int_repr(self): + # Test that integer repr works correctly for subclasses (gh-27106) + class my_int16(np.int16): + pass + + s = repr(my_int16(3)) + assert s == "my_int16(3)" + +class TestCharacter: + def test_char_radd(self): + # GH issue 9620, reached gentype_add and raise TypeError + np_s = np.bytes_('abc') + np_u = np.str_('abc') + s = b'def' + u = 'def' + assert_(np_s.__radd__(np_s) is NotImplemented) + assert_(np_s.__radd__(np_u) is NotImplemented) + assert_(np_s.__radd__(s) is NotImplemented) + assert_(np_s.__radd__(u) is NotImplemented) + assert_(np_u.__radd__(np_s) is NotImplemented) + assert_(np_u.__radd__(np_u) is NotImplemented) + assert_(np_u.__radd__(s) is NotImplemented) + assert_(np_u.__radd__(u) is NotImplemented) + assert_(s + np_s == b'defabc') + assert_(u + np_u == 'defabc') + + class MyStr(str, np.generic): + # would segfault + pass + + with assert_raises(TypeError): + # Previously worked, but gave completely wrong result + ret = s + MyStr('abc') + + class MyBytes(bytes, np.generic): + # would segfault + pass + + ret = s + MyBytes(b'abc') + assert type(ret) is type(s) + assert ret == b"defabc" + + def test_char_repeat(self): + np_s = np.bytes_('abc') + np_u = np.str_('abc') + res_s = b'abc' * 5 + res_u = 'abc' * 5 + assert_(np_s * 5 == res_s) + assert_(np_u * 5 == res_u) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarmath.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarmath.py new file mode 100644 index 0000000..fc37897 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarmath.py @@ -0,0 +1,1176 @@ +import contextlib +import itertools +import operator +import platform +import sys +import warnings + +import pytest +from hypothesis import given, settings +from hypothesis.extra import numpy as hynp +from hypothesis.strategies import sampled_from +from numpy._core._rational_tests import rational + +import numpy as np +from numpy._utils import _pep440 +from numpy.exceptions import ComplexWarning +from numpy.testing import ( + IS_PYPY, + _gen_alignment_data, + assert_, + assert_almost_equal, + assert_array_equal, + assert_equal, + assert_raises, + check_support_sve, + suppress_warnings, +) + +types = [np.bool, np.byte, np.ubyte, np.short, np.ushort, np.intc, np.uintc, + np.int_, np.uint, np.longlong, np.ulonglong, + np.single, np.double, np.longdouble, np.csingle, + np.cdouble, np.clongdouble] + +floating_types = np.floating.__subclasses__() +complex_floating_types = np.complexfloating.__subclasses__() + +objecty_things = [object(), None, np.array(None, dtype=object)] + +binary_operators_for_scalars = [ + operator.lt, operator.le, operator.eq, operator.ne, operator.ge, + operator.gt, operator.add, operator.floordiv, operator.mod, + operator.mul, operator.pow, operator.sub, operator.truediv +] +binary_operators_for_scalar_ints = binary_operators_for_scalars + [ + operator.xor, operator.or_, operator.and_ +] + + +# This compares scalarmath against ufuncs. + +class TestTypes: + def test_types(self): + for atype in types: + a = atype(1) + assert_(a == 1, f"error with {atype!r}: got {a!r}") + + def test_type_add(self): + # list of types + for k, atype in enumerate(types): + a_scalar = atype(3) + a_array = np.array([3], dtype=atype) + for l, btype in enumerate(types): + b_scalar = btype(1) + b_array = np.array([1], dtype=btype) + c_scalar = a_scalar + b_scalar + c_array = a_array + b_array + # It was comparing the type numbers, but the new ufunc + # function-finding mechanism finds the lowest function + # to which both inputs can be cast - which produces 'l' + # when you do 'q' + 'b'. The old function finding mechanism + # skipped ahead based on the first argument, but that + # does not produce properly symmetric results... + assert_equal(c_scalar.dtype, c_array.dtype, + "error with types (%d/'%c' + %d/'%c')" % + (k, np.dtype(atype).char, l, np.dtype(btype).char)) + + def test_type_create(self): + for atype in types: + a = np.array([1, 2, 3], atype) + b = atype([1, 2, 3]) + assert_equal(a, b) + + def test_leak(self): + # test leak of scalar objects + # a leak would show up in valgrind as still-reachable of ~2.6MB + for i in range(200000): + np.add(1, 1) + + +def check_ufunc_scalar_equivalence(op, arr1, arr2): + scalar1 = arr1[()] + scalar2 = arr2[()] + assert isinstance(scalar1, np.generic) + assert isinstance(scalar2, np.generic) + + if arr1.dtype.kind == "c" or arr2.dtype.kind == "c": + comp_ops = {operator.ge, operator.gt, operator.le, operator.lt} + if op in comp_ops and (np.isnan(scalar1) or np.isnan(scalar2)): + pytest.xfail("complex comp ufuncs use sort-order, scalars do not.") + if op == operator.pow and arr2.item() in [-1, 0, 0.5, 1, 2]: + # array**scalar special case can have different result dtype + # (Other powers may have issues also, but are not hit here.) + # TODO: It would be nice to resolve this issue. + pytest.skip("array**2 can have incorrect/weird result dtype") + + # ignore fpe's since they may just mismatch for integers anyway. + with warnings.catch_warnings(), np.errstate(all="ignore"): + # Comparisons DeprecationWarnings replacing errors (2022-03): + warnings.simplefilter("error", DeprecationWarning) + try: + res = op(arr1, arr2) + except Exception as e: + with pytest.raises(type(e)): + op(scalar1, scalar2) + else: + scalar_res = op(scalar1, scalar2) + assert_array_equal(scalar_res, res, strict=True) + + +@pytest.mark.slow +@settings(max_examples=10000, deadline=2000) +@given(sampled_from(binary_operators_for_scalars), + hynp.arrays(dtype=hynp.scalar_dtypes(), shape=()), + hynp.arrays(dtype=hynp.scalar_dtypes(), shape=())) +def test_array_scalar_ufunc_equivalence(op, arr1, arr2): + """ + This is a thorough test attempting to cover important promotion paths + and ensuring that arrays and scalars stay as aligned as possible. + However, if it creates troubles, it should maybe just be removed. + """ + check_ufunc_scalar_equivalence(op, arr1, arr2) + + +@pytest.mark.slow +@given(sampled_from(binary_operators_for_scalars), + hynp.scalar_dtypes(), hynp.scalar_dtypes()) +def test_array_scalar_ufunc_dtypes(op, dt1, dt2): + # Same as above, but don't worry about sampling weird values so that we + # do not have to sample as much + arr1 = np.array(2, dtype=dt1) + arr2 = np.array(3, dtype=dt2) # some power do weird things. + + check_ufunc_scalar_equivalence(op, arr1, arr2) + + +@pytest.mark.parametrize("fscalar", [np.float16, np.float32]) +def test_int_float_promotion_truediv(fscalar): + # Promotion for mixed int and float32/float16 must not go to float64 + i = np.int8(1) + f = fscalar(1) + expected = np.result_type(i, f) + assert (i / f).dtype == expected + assert (f / i).dtype == expected + # But normal int / int true division goes to float64: + assert (i / i).dtype == np.dtype("float64") + # For int16, result has to be ast least float32 (takes ufunc path): + assert (np.int16(1) / f).dtype == np.dtype("float32") + + +class TestBaseMath: + @pytest.mark.xfail(check_support_sve(), reason="gh-22982") + def test_blocked(self): + # test alignments offsets for simd instructions + # alignments for vz + 2 * (vs - 1) + 1 + for dt, sz in [(np.float32, 11), (np.float64, 7), (np.int32, 11)]: + for out, inp1, inp2, msg in _gen_alignment_data(dtype=dt, + type='binary', + max_size=sz): + exp1 = np.ones_like(inp1) + inp1[...] = np.ones_like(inp1) + inp2[...] = np.zeros_like(inp2) + assert_almost_equal(np.add(inp1, inp2), exp1, err_msg=msg) + assert_almost_equal(np.add(inp1, 2), exp1 + 2, err_msg=msg) + assert_almost_equal(np.add(1, inp2), exp1, err_msg=msg) + + np.add(inp1, inp2, out=out) + assert_almost_equal(out, exp1, err_msg=msg) + + inp2[...] += np.arange(inp2.size, dtype=dt) + 1 + assert_almost_equal(np.square(inp2), + np.multiply(inp2, inp2), err_msg=msg) + # skip true divide for ints + if dt != np.int32: + assert_almost_equal(np.reciprocal(inp2), + np.divide(1, inp2), err_msg=msg) + + inp1[...] = np.ones_like(inp1) + np.add(inp1, 2, out=out) + assert_almost_equal(out, exp1 + 2, err_msg=msg) + inp2[...] = np.ones_like(inp2) + np.add(2, inp2, out=out) + assert_almost_equal(out, exp1 + 2, err_msg=msg) + + def test_lower_align(self): + # check data that is not aligned to element size + # i.e doubles are aligned to 4 bytes on i386 + d = np.zeros(23 * 8, dtype=np.int8)[4:-4].view(np.float64) + o = np.zeros(23 * 8, dtype=np.int8)[4:-4].view(np.float64) + assert_almost_equal(d + d, d * 2) + np.add(d, d, out=o) + np.add(np.ones_like(d), d, out=o) + np.add(d, np.ones_like(d), out=o) + np.add(np.ones_like(d), d) + np.add(d, np.ones_like(d)) + + +class TestPower: + def test_small_types(self): + for t in [np.int8, np.int16, np.float16]: + a = t(3) + b = a ** 4 + assert_(b == 81, f"error with {t!r}: got {b!r}") + + def test_large_types(self): + for t in [np.int32, np.int64, np.float32, np.float64, np.longdouble]: + a = t(51) + b = a ** 4 + msg = f"error with {t!r}: got {b!r}" + if np.issubdtype(t, np.integer): + assert_(b == 6765201, msg) + else: + assert_almost_equal(b, 6765201, err_msg=msg) + + def test_integers_to_negative_integer_power(self): + # Note that the combination of uint64 with a signed integer + # has common type np.float64. The other combinations should all + # raise a ValueError for integer ** negative integer. + exp = [np.array(-1, dt)[()] for dt in 'bhilq'] + + # 1 ** -1 possible special case + base = [np.array(1, dt)[()] for dt in 'bhilqBHILQ'] + for i1, i2 in itertools.product(base, exp): + if i1.dtype != np.uint64: + assert_raises(ValueError, operator.pow, i1, i2) + else: + res = operator.pow(i1, i2) + assert_(res.dtype.type is np.float64) + assert_almost_equal(res, 1.) + + # -1 ** -1 possible special case + base = [np.array(-1, dt)[()] for dt in 'bhilq'] + for i1, i2 in itertools.product(base, exp): + if i1.dtype != np.uint64: + assert_raises(ValueError, operator.pow, i1, i2) + else: + res = operator.pow(i1, i2) + assert_(res.dtype.type is np.float64) + assert_almost_equal(res, -1.) + + # 2 ** -1 perhaps generic + base = [np.array(2, dt)[()] for dt in 'bhilqBHILQ'] + for i1, i2 in itertools.product(base, exp): + if i1.dtype != np.uint64: + assert_raises(ValueError, operator.pow, i1, i2) + else: + res = operator.pow(i1, i2) + assert_(res.dtype.type is np.float64) + assert_almost_equal(res, .5) + + def test_mixed_types(self): + typelist = [np.int8, np.int16, np.float16, + np.float32, np.float64, np.int8, + np.int16, np.int32, np.int64] + for t1 in typelist: + for t2 in typelist: + a = t1(3) + b = t2(2) + result = a**b + msg = f"error with {t1!r} and {t2!r}:got {result!r}, expected {9!r}" + if np.issubdtype(np.dtype(result), np.integer): + assert_(result == 9, msg) + else: + assert_almost_equal(result, 9, err_msg=msg) + + def test_modular_power(self): + # modular power is not implemented, so ensure it errors + a = 5 + b = 4 + c = 10 + expected = pow(a, b, c) # noqa: F841 + for t in (np.int32, np.float32, np.complex64): + # note that 3-operand power only dispatches on the first argument + assert_raises(TypeError, operator.pow, t(a), b, c) + assert_raises(TypeError, operator.pow, np.array(t(a)), b, c) + + +def floordiv_and_mod(x, y): + return (x // y, x % y) + + +def _signs(dt): + if dt in np.typecodes['UnsignedInteger']: + return (+1,) + else: + return (+1, -1) + + +class TestModulus: + + def test_modulus_basic(self): + dt = np.typecodes['AllInteger'] + np.typecodes['Float'] + for op in [floordiv_and_mod, divmod]: + for dt1, dt2 in itertools.product(dt, dt): + for sg1, sg2 in itertools.product(_signs(dt1), _signs(dt2)): + fmt = 'op: %s, dt1: %s, dt2: %s, sg1: %s, sg2: %s' + msg = fmt % (op.__name__, dt1, dt2, sg1, sg2) + a = np.array(sg1 * 71, dtype=dt1)[()] + b = np.array(sg2 * 19, dtype=dt2)[()] + div, rem = op(a, b) + assert_equal(div * b + rem, a, err_msg=msg) + if sg2 == -1: + assert_(b < rem <= 0, msg) + else: + assert_(b > rem >= 0, msg) + + def test_float_modulus_exact(self): + # test that float results are exact for small integers. This also + # holds for the same integers scaled by powers of two. + nlst = list(range(-127, 0)) + plst = list(range(1, 128)) + dividend = nlst + [0] + plst + divisor = nlst + plst + arg = list(itertools.product(dividend, divisor)) + tgt = [divmod(*t) for t in arg] + + a, b = np.array(arg, dtype=int).T + # convert exact integer results from Python to float so that + # signed zero can be used, it is checked. + tgtdiv, tgtrem = np.array(tgt, dtype=float).T + tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv) + tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem) + + for op in [floordiv_and_mod, divmod]: + for dt in np.typecodes['Float']: + msg = f'op: {op.__name__}, dtype: {dt}' + fa = a.astype(dt) + fb = b.astype(dt) + # use list comprehension so a_ and b_ are scalars + div, rem = zip(*[op(a_, b_) for a_, b_ in zip(fa, fb)]) + assert_equal(div, tgtdiv, err_msg=msg) + assert_equal(rem, tgtrem, err_msg=msg) + + def test_float_modulus_roundoff(self): + # gh-6127 + dt = np.typecodes['Float'] + for op in [floordiv_and_mod, divmod]: + for dt1, dt2 in itertools.product(dt, dt): + for sg1, sg2 in itertools.product((+1, -1), (+1, -1)): + fmt = 'op: %s, dt1: %s, dt2: %s, sg1: %s, sg2: %s' + msg = fmt % (op.__name__, dt1, dt2, sg1, sg2) + a = np.array(sg1 * 78 * 6e-8, dtype=dt1)[()] + b = np.array(sg2 * 6e-8, dtype=dt2)[()] + div, rem = op(a, b) + # Equal assertion should hold when fmod is used + assert_equal(div * b + rem, a, err_msg=msg) + if sg2 == -1: + assert_(b < rem <= 0, msg) + else: + assert_(b > rem >= 0, msg) + + def test_float_modulus_corner_cases(self): + # Check remainder magnitude. + for dt in np.typecodes['Float']: + b = np.array(1.0, dtype=dt) + a = np.nextafter(np.array(0.0, dtype=dt), -b) + rem = operator.mod(a, b) + assert_(rem <= b, f'dt: {dt}') + rem = operator.mod(-a, -b) + assert_(rem >= -b, f'dt: {dt}') + + # Check nans, inf + with suppress_warnings() as sup: + sup.filter(RuntimeWarning, "invalid value encountered in remainder") + sup.filter(RuntimeWarning, "divide by zero encountered in remainder") + sup.filter(RuntimeWarning, "divide by zero encountered in floor_divide") + sup.filter(RuntimeWarning, "divide by zero encountered in divmod") + sup.filter(RuntimeWarning, "invalid value encountered in divmod") + for dt in np.typecodes['Float']: + fone = np.array(1.0, dtype=dt) + fzer = np.array(0.0, dtype=dt) + finf = np.array(np.inf, dtype=dt) + fnan = np.array(np.nan, dtype=dt) + rem = operator.mod(fone, fzer) + assert_(np.isnan(rem), f'dt: {dt}') + # MSVC 2008 returns NaN here, so disable the check. + #rem = operator.mod(fone, finf) + #assert_(rem == fone, 'dt: %s' % dt) + rem = operator.mod(fone, fnan) + assert_(np.isnan(rem), f'dt: {dt}') + rem = operator.mod(finf, fone) + assert_(np.isnan(rem), f'dt: {dt}') + for op in [floordiv_and_mod, divmod]: + div, mod = op(fone, fzer) + assert_(np.isinf(div)) and assert_(np.isnan(mod)) + + def test_inplace_floordiv_handling(self): + # issue gh-12927 + # this only applies to in-place floordiv //=, because the output type + # promotes to float which does not fit + a = np.array([1, 2], np.int64) + b = np.array([1, 2], np.uint64) + with pytest.raises(TypeError, + match=r"Cannot cast ufunc 'floor_divide' output from"): + a //= b + +class TestComparison: + def test_comparision_different_types(self): + x = np.array(1) + y = np.array('s') + eq = x == y + neq = x != y + assert eq is np.bool_(False) + assert neq is np.bool_(True) + + +class TestComplexDivision: + def test_zero_division(self): + with np.errstate(all="ignore"): + for t in [np.complex64, np.complex128]: + a = t(0.0) + b = t(1.0) + assert_(np.isinf(b / a)) + b = t(complex(np.inf, np.inf)) + assert_(np.isinf(b / a)) + b = t(complex(np.inf, np.nan)) + assert_(np.isinf(b / a)) + b = t(complex(np.nan, np.inf)) + assert_(np.isinf(b / a)) + b = t(complex(np.nan, np.nan)) + assert_(np.isnan(b / a)) + b = t(0.) + assert_(np.isnan(b / a)) + + def test_signed_zeros(self): + with np.errstate(all="ignore"): + for t in [np.complex64, np.complex128]: + # tupled (numerator, denominator, expected) + # for testing as expected == numerator/denominator + data = ( + (( 0.0, -1.0), ( 0.0, 1.0), (-1.0, -0.0)), + (( 0.0, -1.0), ( 0.0, -1.0), ( 1.0, -0.0)), + (( 0.0, -1.0), (-0.0, -1.0), ( 1.0, 0.0)), + (( 0.0, -1.0), (-0.0, 1.0), (-1.0, 0.0)), + (( 0.0, 1.0), ( 0.0, -1.0), (-1.0, 0.0)), + (( 0.0, -1.0), ( 0.0, -1.0), ( 1.0, -0.0)), + ((-0.0, -1.0), ( 0.0, -1.0), ( 1.0, -0.0)), + ((-0.0, 1.0), ( 0.0, -1.0), (-1.0, -0.0)) + ) + for cases in data: + n = cases[0] + d = cases[1] + ex = cases[2] + result = t(complex(n[0], n[1])) / t(complex(d[0], d[1])) + # check real and imag parts separately to avoid comparison + # in array context, which does not account for signed zeros + assert_equal(result.real, ex[0]) + assert_equal(result.imag, ex[1]) + + def test_branches(self): + with np.errstate(all="ignore"): + for t in [np.complex64, np.complex128]: + # tupled (numerator, denominator, expected) + # for testing as expected == numerator/denominator + data = [] + + # trigger branch: real(fabs(denom)) > imag(fabs(denom)) + # followed by else condition as neither are == 0 + data.append((( 2.0, 1.0), ( 2.0, 1.0), (1.0, 0.0))) + + # trigger branch: real(fabs(denom)) > imag(fabs(denom)) + # followed by if condition as both are == 0 + # is performed in test_zero_division(), so this is skipped + + # trigger else if branch: real(fabs(denom)) < imag(fabs(denom)) + data.append(((1.0, 2.0), (1.0, 2.0), (1.0, 0.0))) + + for cases in data: + n = cases[0] + d = cases[1] + ex = cases[2] + result = t(complex(n[0], n[1])) / t(complex(d[0], d[1])) + # check real and imag parts separately to avoid comparison + # in array context, which does not account for signed zeros + assert_equal(result.real, ex[0]) + assert_equal(result.imag, ex[1]) + + +class TestConversion: + def test_int_from_long(self): + l = [1e6, 1e12, 1e18, -1e6, -1e12, -1e18] + li = [10**6, 10**12, 10**18, -10**6, -10**12, -10**18] + for T in [None, np.float64, np.int64]: + a = np.array(l, dtype=T) + assert_equal([int(_m) for _m in a], li) + + a = np.array(l[:3], dtype=np.uint64) + assert_equal([int(_m) for _m in a], li[:3]) + + def test_iinfo_long_values(self): + for code in 'bBhH': + with pytest.raises(OverflowError): + np.array(np.iinfo(code).max + 1, dtype=code) + + for code in np.typecodes['AllInteger']: + res = np.array(np.iinfo(code).max, dtype=code) + tgt = np.iinfo(code).max + assert_(res == tgt) + + for code in np.typecodes['AllInteger']: + res = np.dtype(code).type(np.iinfo(code).max) + tgt = np.iinfo(code).max + assert_(res == tgt) + + def test_int_raise_behaviour(self): + def overflow_error_func(dtype): + dtype(np.iinfo(dtype).max + 1) + + for code in [np.int_, np.uint, np.longlong, np.ulonglong]: + assert_raises(OverflowError, overflow_error_func, code) + + def test_int_from_infinite_longdouble(self): + # gh-627 + x = np.longdouble(np.inf) + assert_raises(OverflowError, int, x) + with suppress_warnings() as sup: + sup.record(ComplexWarning) + x = np.clongdouble(np.inf) + assert_raises(OverflowError, int, x) + assert_equal(len(sup.log), 1) + + @pytest.mark.skipif(not IS_PYPY, reason="Test is PyPy only (gh-9972)") + def test_int_from_infinite_longdouble___int__(self): + x = np.longdouble(np.inf) + assert_raises(OverflowError, x.__int__) + with suppress_warnings() as sup: + sup.record(ComplexWarning) + x = np.clongdouble(np.inf) + assert_raises(OverflowError, x.__int__) + assert_equal(len(sup.log), 1) + + @pytest.mark.skipif(np.finfo(np.double) == np.finfo(np.longdouble), + reason="long double is same as double") + @pytest.mark.skipif(platform.machine().startswith("ppc"), + reason="IBM double double") + def test_int_from_huge_longdouble(self): + # Produce a longdouble that would overflow a double, + # use exponent that avoids bug in Darwin pow function. + exp = np.finfo(np.double).maxexp - 1 + huge_ld = 2 * 1234 * np.longdouble(2) ** exp + huge_i = 2 * 1234 * 2 ** exp + assert_(huge_ld != np.inf) + assert_equal(int(huge_ld), huge_i) + + def test_int_from_longdouble(self): + x = np.longdouble(1.5) + assert_equal(int(x), 1) + x = np.longdouble(-10.5) + assert_equal(int(x), -10) + + def test_numpy_scalar_relational_operators(self): + # All integer + for dt1 in np.typecodes['AllInteger']: + assert_(1 > np.array(0, dtype=dt1)[()], f"type {dt1} failed") + assert_(not 1 < np.array(0, dtype=dt1)[()], f"type {dt1} failed") + + for dt2 in np.typecodes['AllInteger']: + assert_(np.array(1, dtype=dt1)[()] > np.array(0, dtype=dt2)[()], + f"type {dt1} and {dt2} failed") + assert_(not np.array(1, dtype=dt1)[()] < np.array(0, dtype=dt2)[()], + f"type {dt1} and {dt2} failed") + + # Unsigned integers + for dt1 in 'BHILQP': + assert_(-1 < np.array(1, dtype=dt1)[()], f"type {dt1} failed") + assert_(not -1 > np.array(1, dtype=dt1)[()], f"type {dt1} failed") + assert_(-1 != np.array(1, dtype=dt1)[()], f"type {dt1} failed") + + # unsigned vs signed + for dt2 in 'bhilqp': + assert_(np.array(1, dtype=dt1)[()] > np.array(-1, dtype=dt2)[()], + f"type {dt1} and {dt2} failed") + assert_(not np.array(1, dtype=dt1)[()] < np.array(-1, dtype=dt2)[()], + f"type {dt1} and {dt2} failed") + assert_(np.array(1, dtype=dt1)[()] != np.array(-1, dtype=dt2)[()], + f"type {dt1} and {dt2} failed") + + # Signed integers and floats + for dt1 in 'bhlqp' + np.typecodes['Float']: + assert_(1 > np.array(-1, dtype=dt1)[()], f"type {dt1} failed") + assert_(not 1 < np.array(-1, dtype=dt1)[()], f"type {dt1} failed") + assert_(-1 == np.array(-1, dtype=dt1)[()], f"type {dt1} failed") + + for dt2 in 'bhlqp' + np.typecodes['Float']: + assert_(np.array(1, dtype=dt1)[()] > np.array(-1, dtype=dt2)[()], + f"type {dt1} and {dt2} failed") + assert_(not np.array(1, dtype=dt1)[()] < np.array(-1, dtype=dt2)[()], + f"type {dt1} and {dt2} failed") + assert_(np.array(-1, dtype=dt1)[()] == np.array(-1, dtype=dt2)[()], + f"type {dt1} and {dt2} failed") + + def test_scalar_comparison_to_none(self): + # Scalars should just return False and not give a warnings. + # The comparisons are flagged by pep8, ignore that. + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', FutureWarning) + assert_(not np.float32(1) == None) # noqa: E711 + assert_(not np.str_('test') == None) # noqa: E711 + # This is dubious (see below): + assert_(not np.datetime64('NaT') == None) # noqa: E711 + + assert_(np.float32(1) != None) # noqa: E711 + assert_(np.str_('test') != None) # noqa: E711 + # This is dubious (see below): + assert_(np.datetime64('NaT') != None) # noqa: E711 + assert_(len(w) == 0) + + # For documentation purposes, this is why the datetime is dubious. + # At the time of deprecation this was no behaviour change, but + # it has to be considered when the deprecations are done. + assert_(np.equal(np.datetime64('NaT'), None)) + + +#class TestRepr: +# def test_repr(self): +# for t in types: +# val = t(1197346475.0137341) +# val_repr = repr(val) +# val2 = eval(val_repr) +# assert_equal( val, val2 ) + + +class TestRepr: + def _test_type_repr(self, t): + finfo = np.finfo(t) + last_fraction_bit_idx = finfo.nexp + finfo.nmant + last_exponent_bit_idx = finfo.nexp + storage_bytes = np.dtype(t).itemsize * 8 + # could add some more types to the list below + for which in ['small denorm', 'small norm']: + # Values from https://en.wikipedia.org/wiki/IEEE_754 + constr = np.array([0x00] * storage_bytes, dtype=np.uint8) + if which == 'small denorm': + byte = last_fraction_bit_idx // 8 + bytebit = 7 - (last_fraction_bit_idx % 8) + constr[byte] = 1 << bytebit + elif which == 'small norm': + byte = last_exponent_bit_idx // 8 + bytebit = 7 - (last_exponent_bit_idx % 8) + constr[byte] = 1 << bytebit + else: + raise ValueError('hmm') + val = constr.view(t)[0] + val_repr = repr(val) + val2 = t(eval(val_repr)) + if not (val2 == 0 and val < 1e-100): + assert_equal(val, val2) + + def test_float_repr(self): + # long double test cannot work, because eval goes through a python + # float + for t in [np.float32, np.float64]: + self._test_type_repr(t) + + +if not IS_PYPY: + # sys.getsizeof() is not valid on PyPy + class TestSizeOf: + + def test_equal_nbytes(self): + for type in types: + x = type(0) + assert_(sys.getsizeof(x) > x.nbytes) + + def test_error(self): + d = np.float32() + assert_raises(TypeError, d.__sizeof__, "a") + + +class TestMultiply: + def test_seq_repeat(self): + # Test that basic sequences get repeated when multiplied with + # numpy integers. And errors are raised when multiplied with others. + # Some of this behaviour may be controversial and could be open for + # change. + accepted_types = set(np.typecodes["AllInteger"]) + deprecated_types = {'?'} + forbidden_types = ( + set(np.typecodes["All"]) - accepted_types - deprecated_types) + forbidden_types -= {'V'} # can't default-construct void scalars + + for seq_type in (list, tuple): + seq = seq_type([1, 2, 3]) + for numpy_type in accepted_types: + i = np.dtype(numpy_type).type(2) + assert_equal(seq * i, seq * int(i)) + assert_equal(i * seq, int(i) * seq) + + for numpy_type in deprecated_types: + i = np.dtype(numpy_type).type() + with assert_raises(TypeError): + operator.mul(seq, i) + + for numpy_type in forbidden_types: + i = np.dtype(numpy_type).type() + assert_raises(TypeError, operator.mul, seq, i) + assert_raises(TypeError, operator.mul, i, seq) + + def test_no_seq_repeat_basic_array_like(self): + # Test that an array-like which does not know how to be multiplied + # does not attempt sequence repeat (raise TypeError). + # See also gh-7428. + class ArrayLike: + def __init__(self, arr): + self.arr = arr + + def __array__(self, dtype=None, copy=None): + return self.arr + + # Test for simple ArrayLike above and memoryviews (original report) + for arr_like in (ArrayLike(np.ones(3)), memoryview(np.ones(3))): + assert_array_equal(arr_like * np.float32(3.), np.full(3, 3.)) + assert_array_equal(np.float32(3.) * arr_like, np.full(3, 3.)) + assert_array_equal(arr_like * np.int_(3), np.full(3, 3)) + assert_array_equal(np.int_(3) * arr_like, np.full(3, 3)) + + +class TestNegative: + def test_exceptions(self): + a = np.ones((), dtype=np.bool)[()] + assert_raises(TypeError, operator.neg, a) + + def test_result(self): + types = np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + with suppress_warnings() as sup: + sup.filter(RuntimeWarning) + for dt in types: + a = np.ones((), dtype=dt)[()] + if dt in np.typecodes['UnsignedInteger']: + st = np.dtype(dt).type + max = st(np.iinfo(dt).max) + assert_equal(operator.neg(a), max) + else: + assert_equal(operator.neg(a) + a, 0) + +class TestSubtract: + def test_exceptions(self): + a = np.ones((), dtype=np.bool)[()] + assert_raises(TypeError, operator.sub, a, a) + + def test_result(self): + types = np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + with suppress_warnings() as sup: + sup.filter(RuntimeWarning) + for dt in types: + a = np.ones((), dtype=dt)[()] + assert_equal(operator.sub(a, a), 0) + + +class TestAbs: + def _test_abs_func(self, absfunc, test_dtype): + x = test_dtype(-1.5) + assert_equal(absfunc(x), 1.5) + x = test_dtype(0.0) + res = absfunc(x) + # assert_equal() checks zero signedness + assert_equal(res, 0.0) + x = test_dtype(-0.0) + res = absfunc(x) + assert_equal(res, 0.0) + + x = test_dtype(np.finfo(test_dtype).max) + assert_equal(absfunc(x), x.real) + + with suppress_warnings() as sup: + sup.filter(UserWarning) + x = test_dtype(np.finfo(test_dtype).tiny) + assert_equal(absfunc(x), x.real) + + x = test_dtype(np.finfo(test_dtype).min) + assert_equal(absfunc(x), -x.real) + + @pytest.mark.parametrize("dtype", floating_types + complex_floating_types) + def test_builtin_abs(self, dtype): + if ( + sys.platform == "cygwin" and dtype == np.clongdouble and + ( + _pep440.parse(platform.release().split("-")[0]) + < _pep440.Version("3.3.0") + ) + ): + pytest.xfail( + reason="absl is computed in double precision on cygwin < 3.3" + ) + self._test_abs_func(abs, dtype) + + @pytest.mark.parametrize("dtype", floating_types + complex_floating_types) + def test_numpy_abs(self, dtype): + if ( + sys.platform == "cygwin" and dtype == np.clongdouble and + ( + _pep440.parse(platform.release().split("-")[0]) + < _pep440.Version("3.3.0") + ) + ): + pytest.xfail( + reason="absl is computed in double precision on cygwin < 3.3" + ) + self._test_abs_func(np.abs, dtype) + +class TestBitShifts: + + @pytest.mark.parametrize('type_code', np.typecodes['AllInteger']) + @pytest.mark.parametrize('op', + [operator.rshift, operator.lshift], ids=['>>', '<<']) + def test_shift_all_bits(self, type_code, op): + """Shifts where the shift amount is the width of the type or wider """ + # gh-2449 + dt = np.dtype(type_code) + nbits = dt.itemsize * 8 + for val in [5, -5]: + for shift in [nbits, nbits + 4]: + val_scl = np.array(val).astype(dt)[()] + shift_scl = dt.type(shift) + res_scl = op(val_scl, shift_scl) + if val_scl < 0 and op is operator.rshift: + # sign bit is preserved + assert_equal(res_scl, -1) + else: + assert_equal(res_scl, 0) + + # Result on scalars should be the same as on arrays + val_arr = np.array([val_scl] * 32, dtype=dt) + shift_arr = np.array([shift] * 32, dtype=dt) + res_arr = op(val_arr, shift_arr) + assert_equal(res_arr, res_scl) + + +class TestHash: + @pytest.mark.parametrize("type_code", np.typecodes['AllInteger']) + def test_integer_hashes(self, type_code): + scalar = np.dtype(type_code).type + for i in range(128): + assert hash(i) == hash(scalar(i)) + + @pytest.mark.parametrize("type_code", np.typecodes['AllFloat']) + def test_float_and_complex_hashes(self, type_code): + scalar = np.dtype(type_code).type + for val in [np.pi, np.inf, 3, 6.]: + numpy_val = scalar(val) + # Cast back to Python, in case the NumPy scalar has less precision + if numpy_val.dtype.kind == 'c': + val = complex(numpy_val) + else: + val = float(numpy_val) + assert val == numpy_val + assert hash(val) == hash(numpy_val) + + if hash(float(np.nan)) != hash(float(np.nan)): + # If Python distinguishes different NaNs we do so too (gh-18833) + assert hash(scalar(np.nan)) != hash(scalar(np.nan)) + + @pytest.mark.parametrize("type_code", np.typecodes['Complex']) + def test_complex_hashes(self, type_code): + # Test some complex valued hashes specifically: + scalar = np.dtype(type_code).type + for val in [np.pi + 1j, np.inf - 3j, 3j, 6. + 1j]: + numpy_val = scalar(val) + assert hash(complex(numpy_val)) == hash(numpy_val) + + +@contextlib.contextmanager +def recursionlimit(n): + o = sys.getrecursionlimit() + try: + sys.setrecursionlimit(n) + yield + finally: + sys.setrecursionlimit(o) + + +@given(sampled_from(objecty_things), + sampled_from(binary_operators_for_scalar_ints), + sampled_from(types + [rational])) +def test_operator_object_left(o, op, type_): + try: + with recursionlimit(200): + op(o, type_(1)) + except TypeError: + pass + + +@given(sampled_from(objecty_things), + sampled_from(binary_operators_for_scalar_ints), + sampled_from(types + [rational])) +def test_operator_object_right(o, op, type_): + try: + with recursionlimit(200): + op(type_(1), o) + except TypeError: + pass + + +@given(sampled_from(binary_operators_for_scalars), + sampled_from(types), + sampled_from(types)) +def test_operator_scalars(op, type1, type2): + try: + op(type1(1), type2(1)) + except TypeError: + pass + + +@pytest.mark.parametrize("op", binary_operators_for_scalars) +@pytest.mark.parametrize("sctype", [np.longdouble, np.clongdouble]) +def test_longdouble_operators_with_obj(sctype, op): + # This is/used to be tricky, because NumPy generally falls back to + # using the ufunc via `np.asarray()`, this effectively might do: + # longdouble + None + # -> asarray(longdouble) + np.array(None, dtype=object) + # -> asarray(longdouble).astype(object) + np.array(None, dtype=object) + # And after getting the scalars in the inner loop: + # -> longdouble + None + # + # That would recurse infinitely. Other scalars return the python object + # on cast, so this type of things works OK. + # + # As of NumPy 2.1, this has been consolidated into the np.generic binops + # and now checks `.item()`. That also allows the below path to work now. + try: + op(sctype(3), None) + except TypeError: + pass + try: + op(None, sctype(3)) + except TypeError: + pass + + +@pytest.mark.parametrize("op", [operator.add, operator.pow, operator.sub]) +@pytest.mark.parametrize("sctype", [np.longdouble, np.clongdouble]) +def test_longdouble_with_arrlike(sctype, op): + # As of NumPy 2.1, longdouble behaves like other types and can coerce + # e.g. lists. (Not necessarily better, but consistent.) + assert_array_equal(op(sctype(3), [1, 2]), op(3, np.array([1, 2]))) + assert_array_equal(op([1, 2], sctype(3)), op(np.array([1, 2]), 3)) + + +@pytest.mark.parametrize("op", binary_operators_for_scalars) +@pytest.mark.parametrize("sctype", [np.longdouble, np.clongdouble]) +@np.errstate(all="ignore") +def test_longdouble_operators_with_large_int(sctype, op): + # (See `test_longdouble_operators_with_obj` for why longdouble is special) + # NEP 50 means that the result is clearly a (c)longdouble here: + if sctype == np.clongdouble and op in [operator.mod, operator.floordiv]: + # The above operators are not support for complex though... + with pytest.raises(TypeError): + op(sctype(3), 2**64) + with pytest.raises(TypeError): + op(sctype(3), 2**64) + else: + assert op(sctype(3), -2**64) == op(sctype(3), sctype(-2**64)) + assert op(2**64, sctype(3)) == op(sctype(2**64), sctype(3)) + + +@pytest.mark.parametrize("dtype", np.typecodes["AllInteger"]) +@pytest.mark.parametrize("operation", [ + lambda min, max: max + max, + lambda min, max: min - max, + lambda min, max: max * max], ids=["+", "-", "*"]) +def test_scalar_integer_operation_overflow(dtype, operation): + st = np.dtype(dtype).type + min = st(np.iinfo(dtype).min) + max = st(np.iinfo(dtype).max) + + with pytest.warns(RuntimeWarning, match="overflow encountered"): + operation(min, max) + + +@pytest.mark.parametrize("dtype", np.typecodes["Integer"]) +@pytest.mark.parametrize("operation", [ + lambda min, neg_1: -min, + lambda min, neg_1: abs(min), + lambda min, neg_1: min * neg_1, + pytest.param(lambda min, neg_1: min // neg_1, + marks=pytest.mark.skip(reason="broken on some platforms"))], + ids=["neg", "abs", "*", "//"]) +def test_scalar_signed_integer_overflow(dtype, operation): + # The minimum signed integer can "overflow" for some additional operations + st = np.dtype(dtype).type + min = st(np.iinfo(dtype).min) + neg_1 = st(-1) + + with pytest.warns(RuntimeWarning, match="overflow encountered"): + operation(min, neg_1) + + +@pytest.mark.parametrize("dtype", np.typecodes["UnsignedInteger"]) +def test_scalar_unsigned_integer_overflow(dtype): + val = np.dtype(dtype).type(8) + with pytest.warns(RuntimeWarning, match="overflow encountered"): + -val + + zero = np.dtype(dtype).type(0) + -zero # does not warn + +@pytest.mark.parametrize("dtype", np.typecodes["AllInteger"]) +@pytest.mark.parametrize("operation", [ + lambda val, zero: val // zero, + lambda val, zero: val % zero, ], ids=["//", "%"]) +def test_scalar_integer_operation_divbyzero(dtype, operation): + st = np.dtype(dtype).type + val = st(100) + zero = st(0) + + with pytest.warns(RuntimeWarning, match="divide by zero"): + operation(val, zero) + + +ops_with_names = [ + ("__lt__", "__gt__", operator.lt, True), + ("__le__", "__ge__", operator.le, True), + ("__eq__", "__eq__", operator.eq, True), + # Note __op__ and __rop__ may be identical here: + ("__ne__", "__ne__", operator.ne, True), + ("__gt__", "__lt__", operator.gt, True), + ("__ge__", "__le__", operator.ge, True), + ("__floordiv__", "__rfloordiv__", operator.floordiv, False), + ("__truediv__", "__rtruediv__", operator.truediv, False), + ("__add__", "__radd__", operator.add, False), + ("__mod__", "__rmod__", operator.mod, False), + ("__mul__", "__rmul__", operator.mul, False), + ("__pow__", "__rpow__", operator.pow, False), + ("__sub__", "__rsub__", operator.sub, False), +] + + +@pytest.mark.parametrize(["__op__", "__rop__", "op", "cmp"], ops_with_names) +@pytest.mark.parametrize("sctype", [np.float32, np.float64, np.longdouble]) +def test_subclass_deferral(sctype, __op__, __rop__, op, cmp): + """ + This test covers scalar subclass deferral. Note that this is exceedingly + complicated, especially since it tends to fall back to the array paths and + these additionally add the "array priority" mechanism. + + The behaviour was modified subtly in 1.22 (to make it closer to how Python + scalars work). Due to its complexity and the fact that subclassing NumPy + scalars is probably a bad idea to begin with. There is probably room + for adjustments here. + """ + class myf_simple1(sctype): + pass + + class myf_simple2(sctype): + pass + + def op_func(self, other): + return __op__ + + def rop_func(self, other): + return __rop__ + + myf_op = type("myf_op", (sctype,), {__op__: op_func, __rop__: rop_func}) + + # inheritance has to override, or this is correctly lost: + res = op(myf_simple1(1), myf_simple2(2)) + assert type(res) == sctype or type(res) == np.bool + assert op(myf_simple1(1), myf_simple2(2)) == op(1, 2) # inherited + + # Two independent subclasses do not really define an order. This could + # be attempted, but we do not since Python's `int` does neither: + assert op(myf_op(1), myf_simple1(2)) == __op__ + assert op(myf_simple1(1), myf_op(2)) == op(1, 2) # inherited + + +def test_longdouble_complex(): + # Simple test to check longdouble and complex combinations, since these + # need to go through promotion, which longdouble needs to be careful about. + x = np.longdouble(1) + assert x + 1j == 1 + 1j + assert 1j + x == 1 + 1j + + +@pytest.mark.parametrize(["__op__", "__rop__", "op", "cmp"], ops_with_names) +@pytest.mark.parametrize("subtype", [float, int, complex, np.float16]) +def test_pyscalar_subclasses(subtype, __op__, __rop__, op, cmp): + # This tests that python scalar subclasses behave like a float64 (if they + # don't override it). + # In an earlier version of NEP 50, they behaved like the Python buildins. + def op_func(self, other): + return __op__ + + def rop_func(self, other): + return __rop__ + + # Check that deferring is indicated using `__array_ufunc__`: + myt = type("myt", (subtype,), + {__op__: op_func, __rop__: rop_func, "__array_ufunc__": None}) + + # Just like normally, we should never presume we can modify the float. + assert op(myt(1), np.float64(2)) == __op__ + assert op(np.float64(1), myt(2)) == __rop__ + + if op in {operator.mod, operator.floordiv} and subtype == complex: + return # module is not support for complex. Do not test. + + if __rop__ == __op__: + return + + # When no deferring is indicated, subclasses are handled normally. + myt = type("myt", (subtype,), {__rop__: rop_func}) + behaves_like = lambda x: np.array(subtype(x))[()] + + # Check for float32, as a float subclass float64 may behave differently + res = op(myt(1), np.float16(2)) + expected = op(behaves_like(1), np.float16(2)) + assert res == expected + assert type(res) == type(expected) + res = op(np.float32(2), myt(1)) + expected = op(np.float32(2), behaves_like(1)) + assert res == expected + assert type(res) == type(expected) + + # Same check for longdouble (compare via dtype to accept float64 when + # longdouble has the identical size), which is currently not perfectly + # consistent. + res = op(myt(1), np.longdouble(2)) + expected = op(behaves_like(1), np.longdouble(2)) + assert res == expected + assert np.dtype(type(res)) == np.dtype(type(expected)) + res = op(np.float32(2), myt(1)) + expected = op(np.float32(2), behaves_like(1)) + assert res == expected + assert np.dtype(type(res)) == np.dtype(type(expected)) + + +def test_truediv_int(): + # This should work, as the result is float: + assert np.uint8(3) / 123454 == np.float64(3) / 123454 + + +@pytest.mark.slow +@pytest.mark.parametrize("op", + # TODO: Power is a bit special, but here mostly bools seem to behave oddly + [op for op in binary_operators_for_scalars if op is not operator.pow]) +@pytest.mark.parametrize("sctype", types) +@pytest.mark.parametrize("other_type", [float, int, complex]) +@pytest.mark.parametrize("rop", [True, False]) +def test_scalar_matches_array_op_with_pyscalar(op, sctype, other_type, rop): + # Check that the ufunc path matches by coercing to an array explicitly + val1 = sctype(2) + val2 = other_type(2) + + if rop: + _op = op + op = lambda x, y: _op(y, x) + + try: + res = op(val1, val2) + except TypeError: + try: + expected = op(np.asarray(val1), val2) + raise AssertionError("ufunc didn't raise.") + except TypeError: + return + else: + expected = op(np.asarray(val1), val2) + + # Note that we only check dtype equivalency, as ufuncs may pick the lower + # dtype if they are equivalent. + assert res == expected + if isinstance(val1, float) and other_type is complex and rop: + # Python complex accepts float subclasses, so we don't get a chance + # and the result may be a Python complex (thus, the `np.array()``) + assert np.array(res).dtype == expected.dtype + else: + assert res.dtype == expected.dtype diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarprint.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarprint.py new file mode 100644 index 0000000..38ed778 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_scalarprint.py @@ -0,0 +1,403 @@ +""" Test printing of scalar types. + +""" +import platform + +import pytest + +import numpy as np +from numpy.testing import IS_MUSL, assert_, assert_equal, assert_raises + + +class TestRealScalars: + def test_str(self): + svals = [0.0, -0.0, 1, -1, np.inf, -np.inf, np.nan] + styps = [np.float16, np.float32, np.float64, np.longdouble] + wanted = [ + ['0.0', '0.0', '0.0', '0.0' ], # noqa: E202 + ['-0.0', '-0.0', '-0.0', '-0.0'], + ['1.0', '1.0', '1.0', '1.0' ], # noqa: E202 + ['-1.0', '-1.0', '-1.0', '-1.0'], + ['inf', 'inf', 'inf', 'inf' ], # noqa: E202 + ['-inf', '-inf', '-inf', '-inf'], + ['nan', 'nan', 'nan', 'nan' ]] # noqa: E202 + + for wants, val in zip(wanted, svals): + for want, styp in zip(wants, styps): + msg = f'for str({np.dtype(styp).name}({val!r}))' + assert_equal(str(styp(val)), want, err_msg=msg) + + def test_scalar_cutoffs(self): + # test that both the str and repr of np.float64 behaves + # like python floats in python3. + def check(v): + assert_equal(str(np.float64(v)), str(v)) + assert_equal(str(np.float64(v)), repr(v)) + assert_equal(repr(np.float64(v)), f"np.float64({v!r})") + assert_equal(repr(np.float64(v)), f"np.float64({v})") + + # check we use the same number of significant digits + check(1.12345678901234567890) + check(0.0112345678901234567890) + + # check switch from scientific output to positional and back + check(1e-5) + check(1e-4) + check(1e15) + check(1e16) + + test_cases_gh_28679 = [ + (np.half, -0.000099, "-9.9e-05"), + (np.half, 0.0001, "0.0001"), + (np.half, 999, "999.0"), + (np.half, -1000, "-1e+03"), + (np.single, 0.000099, "9.9e-05"), + (np.single, -0.000100001, "-0.000100001"), + (np.single, 999999, "999999.0"), + (np.single, -1000000, "-1e+06") + ] + + @pytest.mark.parametrize("dtype, input_val, expected_str", test_cases_gh_28679) + def test_gh_28679(self, dtype, input_val, expected_str): + # test cutoff to exponent notation for half and single + assert_equal(str(dtype(input_val)), expected_str) + + test_cases_legacy_2_2 = [ + (np.half(65504), "65500.0"), + (np.single(1.e15), "1000000000000000.0"), + (np.single(1.e16), "1e+16"), + ] + + @pytest.mark.parametrize("input_val, expected_str", test_cases_legacy_2_2) + def test_legacy_2_2_mode(self, input_val, expected_str): + # test legacy cutoff to exponent notation for half and single + with np.printoptions(legacy='2.2'): + assert_equal(str(input_val), expected_str) + + def test_dragon4(self): + # these tests are adapted from Ryan Juckett's dragon4 implementation, + # see dragon4.c for details. + + fpos32 = lambda x, **k: np.format_float_positional(np.float32(x), **k) + fsci32 = lambda x, **k: np.format_float_scientific(np.float32(x), **k) + fpos64 = lambda x, **k: np.format_float_positional(np.float64(x), **k) + fsci64 = lambda x, **k: np.format_float_scientific(np.float64(x), **k) + + preckwd = lambda prec: {'unique': False, 'precision': prec} + + assert_equal(fpos32('1.0'), "1.") + assert_equal(fsci32('1.0'), "1.e+00") + assert_equal(fpos32('10.234'), "10.234") + assert_equal(fpos32('-10.234'), "-10.234") + assert_equal(fsci32('10.234'), "1.0234e+01") + assert_equal(fsci32('-10.234'), "-1.0234e+01") + assert_equal(fpos32('1000.0'), "1000.") + assert_equal(fpos32('1.0', precision=0), "1.") + assert_equal(fsci32('1.0', precision=0), "1.e+00") + assert_equal(fpos32('10.234', precision=0), "10.") + assert_equal(fpos32('-10.234', precision=0), "-10.") + assert_equal(fsci32('10.234', precision=0), "1.e+01") + assert_equal(fsci32('-10.234', precision=0), "-1.e+01") + assert_equal(fpos32('10.234', precision=2), "10.23") + assert_equal(fsci32('-10.234', precision=2), "-1.02e+01") + assert_equal(fsci64('9.9999999999999995e-08', **preckwd(16)), + '9.9999999999999995e-08') + assert_equal(fsci64('9.8813129168249309e-324', **preckwd(16)), + '9.8813129168249309e-324') + assert_equal(fsci64('9.9999999999999694e-311', **preckwd(16)), + '9.9999999999999694e-311') + + # test rounding + # 3.1415927410 is closest float32 to np.pi + assert_equal(fpos32('3.14159265358979323846', **preckwd(10)), + "3.1415927410") + assert_equal(fsci32('3.14159265358979323846', **preckwd(10)), + "3.1415927410e+00") + assert_equal(fpos64('3.14159265358979323846', **preckwd(10)), + "3.1415926536") + assert_equal(fsci64('3.14159265358979323846', **preckwd(10)), + "3.1415926536e+00") + # 299792448 is closest float32 to 299792458 + assert_equal(fpos32('299792458.0', **preckwd(5)), "299792448.00000") + assert_equal(fsci32('299792458.0', **preckwd(5)), "2.99792e+08") + assert_equal(fpos64('299792458.0', **preckwd(5)), "299792458.00000") + assert_equal(fsci64('299792458.0', **preckwd(5)), "2.99792e+08") + + assert_equal(fpos32('3.14159265358979323846', **preckwd(25)), + "3.1415927410125732421875000") + assert_equal(fpos64('3.14159265358979323846', **preckwd(50)), + "3.14159265358979311599796346854418516159057617187500") + assert_equal(fpos64('3.14159265358979323846'), "3.141592653589793") + + # smallest numbers + assert_equal(fpos32(0.5**(126 + 23), unique=False, precision=149), + "0.00000000000000000000000000000000000000000000140129846432" + "4817070923729583289916131280261941876515771757068283889791" + "08268586060148663818836212158203125") + + assert_equal(fpos64(5e-324, unique=False, precision=1074), + "0.00000000000000000000000000000000000000000000000000000000" + "0000000000000000000000000000000000000000000000000000000000" + "0000000000000000000000000000000000000000000000000000000000" + "0000000000000000000000000000000000000000000000000000000000" + "0000000000000000000000000000000000000000000000000000000000" + "0000000000000000000000000000000000049406564584124654417656" + "8792868221372365059802614324764425585682500675507270208751" + "8652998363616359923797965646954457177309266567103559397963" + "9877479601078187812630071319031140452784581716784898210368" + "8718636056998730723050006387409153564984387312473397273169" + "6151400317153853980741262385655911710266585566867681870395" + "6031062493194527159149245532930545654440112748012970999954" + "1931989409080416563324524757147869014726780159355238611550" + "1348035264934720193790268107107491703332226844753335720832" + "4319360923828934583680601060115061698097530783422773183292" + "4790498252473077637592724787465608477820373446969953364701" + "7972677717585125660551199131504891101451037862738167250955" + "8373897335989936648099411642057026370902792427675445652290" + "87538682506419718265533447265625") + + # largest numbers + f32x = np.finfo(np.float32).max + assert_equal(fpos32(f32x, **preckwd(0)), + "340282346638528859811704183484516925440.") + assert_equal(fpos64(np.finfo(np.float64).max, **preckwd(0)), + "1797693134862315708145274237317043567980705675258449965989" + "1747680315726078002853876058955863276687817154045895351438" + "2464234321326889464182768467546703537516986049910576551282" + "0762454900903893289440758685084551339423045832369032229481" + "6580855933212334827479782620414472316873817718091929988125" + "0404026184124858368.") + # Warning: In unique mode only the integer digits necessary for + # uniqueness are computed, the rest are 0. + assert_equal(fpos32(f32x), + "340282350000000000000000000000000000000.") + + # Further tests of zero-padding vs rounding in different combinations + # of unique, fractional, precision, min_digits + # precision can only reduce digits, not add them. + # min_digits can only extend digits, not reduce them. + assert_equal(fpos32(f32x, unique=True, fractional=True, precision=0), + "340282350000000000000000000000000000000.") + assert_equal(fpos32(f32x, unique=True, fractional=True, precision=4), + "340282350000000000000000000000000000000.") + assert_equal(fpos32(f32x, unique=True, fractional=True, min_digits=0), + "340282346638528859811704183484516925440.") + assert_equal(fpos32(f32x, unique=True, fractional=True, min_digits=4), + "340282346638528859811704183484516925440.0000") + assert_equal(fpos32(f32x, unique=True, fractional=True, + min_digits=4, precision=4), + "340282346638528859811704183484516925440.0000") + assert_raises(ValueError, fpos32, f32x, unique=True, fractional=False, + precision=0) + assert_equal(fpos32(f32x, unique=True, fractional=False, precision=4), + "340300000000000000000000000000000000000.") + assert_equal(fpos32(f32x, unique=True, fractional=False, precision=20), + "340282350000000000000000000000000000000.") + assert_equal(fpos32(f32x, unique=True, fractional=False, min_digits=4), + "340282350000000000000000000000000000000.") + assert_equal(fpos32(f32x, unique=True, fractional=False, + min_digits=20), + "340282346638528859810000000000000000000.") + assert_equal(fpos32(f32x, unique=True, fractional=False, + min_digits=15), + "340282346638529000000000000000000000000.") + assert_equal(fpos32(f32x, unique=False, fractional=False, precision=4), + "340300000000000000000000000000000000000.") + # test that unique rounding is preserved when precision is supplied + # but no extra digits need to be printed (gh-18609) + a = np.float64.fromhex('-1p-97') + assert_equal(fsci64(a, unique=True), '-6.310887241768095e-30') + assert_equal(fsci64(a, unique=False, precision=15), + '-6.310887241768094e-30') + assert_equal(fsci64(a, unique=True, precision=15), + '-6.310887241768095e-30') + assert_equal(fsci64(a, unique=True, min_digits=15), + '-6.310887241768095e-30') + assert_equal(fsci64(a, unique=True, precision=15, min_digits=15), + '-6.310887241768095e-30') + # adds/remove digits in unique mode with unbiased rnding + assert_equal(fsci64(a, unique=True, precision=14), + '-6.31088724176809e-30') + assert_equal(fsci64(a, unique=True, min_digits=16), + '-6.3108872417680944e-30') + assert_equal(fsci64(a, unique=True, precision=16), + '-6.310887241768095e-30') + assert_equal(fsci64(a, unique=True, min_digits=14), + '-6.310887241768095e-30') + # test min_digits in unique mode with different rounding cases + assert_equal(fsci64('1e120', min_digits=3), '1.000e+120') + assert_equal(fsci64('1e100', min_digits=3), '1.000e+100') + + # test trailing zeros + assert_equal(fpos32('1.0', unique=False, precision=3), "1.000") + assert_equal(fpos64('1.0', unique=False, precision=3), "1.000") + assert_equal(fsci32('1.0', unique=False, precision=3), "1.000e+00") + assert_equal(fsci64('1.0', unique=False, precision=3), "1.000e+00") + assert_equal(fpos32('1.5', unique=False, precision=3), "1.500") + assert_equal(fpos64('1.5', unique=False, precision=3), "1.500") + assert_equal(fsci32('1.5', unique=False, precision=3), "1.500e+00") + assert_equal(fsci64('1.5', unique=False, precision=3), "1.500e+00") + # gh-10713 + assert_equal(fpos64('324', unique=False, precision=5, + fractional=False), "324.00") + + available_float_dtypes = [np.float16, np.float32, np.float64, np.float128]\ + if hasattr(np, 'float128') else [np.float16, np.float32, np.float64] + + @pytest.mark.parametrize("tp", available_float_dtypes) + def test_dragon4_positional_interface(self, tp): + # test is flaky for musllinux on np.float128 + if IS_MUSL and tp == np.float128: + pytest.skip("Skipping flaky test of float128 on musllinux") + + fpos = np.format_float_positional + + # test padding + assert_equal(fpos(tp('1.0'), pad_left=4, pad_right=4), " 1. ") + assert_equal(fpos(tp('-1.0'), pad_left=4, pad_right=4), " -1. ") + assert_equal(fpos(tp('-10.2'), + pad_left=4, pad_right=4), " -10.2 ") + + # test fixed (non-unique) mode + assert_equal(fpos(tp('1.0'), unique=False, precision=4), "1.0000") + + @pytest.mark.parametrize("tp", available_float_dtypes) + def test_dragon4_positional_interface_trim(self, tp): + # test is flaky for musllinux on np.float128 + if IS_MUSL and tp == np.float128: + pytest.skip("Skipping flaky test of float128 on musllinux") + + fpos = np.format_float_positional + # test trimming + # trim of 'k' or '.' only affects non-unique mode, since unique + # mode will not output trailing 0s. + assert_equal(fpos(tp('1.'), unique=False, precision=4, trim='k'), + "1.0000") + + assert_equal(fpos(tp('1.'), unique=False, precision=4, trim='.'), + "1.") + assert_equal(fpos(tp('1.2'), unique=False, precision=4, trim='.'), + "1.2" if tp != np.float16 else "1.2002") + + assert_equal(fpos(tp('1.'), unique=False, precision=4, trim='0'), + "1.0") + assert_equal(fpos(tp('1.2'), unique=False, precision=4, trim='0'), + "1.2" if tp != np.float16 else "1.2002") + assert_equal(fpos(tp('1.'), trim='0'), "1.0") + + assert_equal(fpos(tp('1.'), unique=False, precision=4, trim='-'), + "1") + assert_equal(fpos(tp('1.2'), unique=False, precision=4, trim='-'), + "1.2" if tp != np.float16 else "1.2002") + assert_equal(fpos(tp('1.'), trim='-'), "1") + assert_equal(fpos(tp('1.001'), precision=1, trim='-'), "1") + + @pytest.mark.parametrize("tp", available_float_dtypes) + @pytest.mark.parametrize("pad_val", [10**5, np.iinfo("int32").max]) + def test_dragon4_positional_interface_overflow(self, tp, pad_val): + # test is flaky for musllinux on np.float128 + if IS_MUSL and tp == np.float128: + pytest.skip("Skipping flaky test of float128 on musllinux") + + fpos = np.format_float_positional + + # gh-28068 + with pytest.raises(RuntimeError, + match="Float formatting result too large"): + fpos(tp('1.047'), unique=False, precision=pad_val) + + with pytest.raises(RuntimeError, + match="Float formatting result too large"): + fpos(tp('1.047'), precision=2, pad_left=pad_val) + + with pytest.raises(RuntimeError, + match="Float formatting result too large"): + fpos(tp('1.047'), precision=2, pad_right=pad_val) + + @pytest.mark.parametrize("tp", available_float_dtypes) + def test_dragon4_scientific_interface(self, tp): + # test is flaky for musllinux on np.float128 + if IS_MUSL and tp == np.float128: + pytest.skip("Skipping flaky test of float128 on musllinux") + + fsci = np.format_float_scientific + + # test exp_digits + assert_equal(fsci(tp('1.23e1'), exp_digits=5), "1.23e+00001") + + # test fixed (non-unique) mode + assert_equal(fsci(tp('1.0'), unique=False, precision=4), + "1.0000e+00") + + @pytest.mark.skipif(not platform.machine().startswith("ppc64"), + reason="only applies to ppc float128 values") + def test_ppc64_ibm_double_double128(self): + # check that the precision decreases once we get into the subnormal + # range. Unlike float64, this starts around 1e-292 instead of 1e-308, + # which happens when the first double is normal and the second is + # subnormal. + x = np.float128('2.123123123123123123123123123123123e-286') + got = [str(x / np.float128('2e' + str(i))) for i in range(40)] + expected = [ + "1.06156156156156156156156156156157e-286", + "1.06156156156156156156156156156158e-287", + "1.06156156156156156156156156156159e-288", + "1.0615615615615615615615615615616e-289", + "1.06156156156156156156156156156157e-290", + "1.06156156156156156156156156156156e-291", + "1.0615615615615615615615615615616e-292", + "1.0615615615615615615615615615615e-293", + "1.061561561561561561561561561562e-294", + "1.06156156156156156156156156155e-295", + "1.0615615615615615615615615616e-296", + "1.06156156156156156156156156e-297", + "1.06156156156156156156156157e-298", + "1.0615615615615615615615616e-299", + "1.06156156156156156156156e-300", + "1.06156156156156156156155e-301", + "1.0615615615615615615616e-302", + "1.061561561561561561562e-303", + "1.06156156156156156156e-304", + "1.0615615615615615618e-305", + "1.06156156156156156e-306", + "1.06156156156156157e-307", + "1.0615615615615616e-308", + "1.06156156156156e-309", + "1.06156156156157e-310", + "1.0615615615616e-311", + "1.06156156156e-312", + "1.06156156154e-313", + "1.0615615616e-314", + "1.06156156e-315", + "1.06156155e-316", + "1.061562e-317", + "1.06156e-318", + "1.06155e-319", + "1.0617e-320", + "1.06e-321", + "1.04e-322", + "1e-323", + "0.0", + "0.0"] + assert_equal(got, expected) + + # Note: we follow glibc behavior, but it (or gcc) might not be right. + # In particular we can get two values that print the same but are not + # equal: + a = np.float128('2') / np.float128('3') + b = np.float128(str(a)) + assert_equal(str(a), str(b)) + assert_(a != b) + + def float32_roundtrip(self): + # gh-9360 + x = np.float32(1024 - 2**-14) + y = np.float32(1024 - 2**-13) + assert_(repr(x) != repr(y)) + assert_equal(np.float32(repr(x)), x) + assert_equal(np.float32(repr(y)), y) + + def float64_vs_python(self): + # gh-2643, gh-6136, gh-6908 + assert_equal(repr(np.float64(0.1)), repr(0.1)) + assert_(repr(np.float64(0.20000000000000004)) != repr(0.2)) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_shape_base.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_shape_base.py new file mode 100644 index 0000000..8de2427 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_shape_base.py @@ -0,0 +1,891 @@ +import sys + +import pytest + +import numpy as np +from numpy._core import ( + arange, + array, + atleast_1d, + atleast_2d, + atleast_3d, + block, + concatenate, + hstack, + newaxis, + stack, + vstack, +) +from numpy._core.shape_base import ( + _block_concatenate, + _block_dispatcher, + _block_setup, + _block_slicing, +) +from numpy.exceptions import AxisError +from numpy.testing import ( + IS_PYPY, + assert_, + assert_array_equal, + assert_equal, + assert_raises, + assert_raises_regex, +) +from numpy.testing._private.utils import requires_memory + + +class TestAtleast1d: + def test_0D_array(self): + a = array(1) + b = array(2) + res = [atleast_1d(a), atleast_1d(b)] + desired = [array([1]), array([2])] + assert_array_equal(res, desired) + + def test_1D_array(self): + a = array([1, 2]) + b = array([2, 3]) + res = [atleast_1d(a), atleast_1d(b)] + desired = [array([1, 2]), array([2, 3])] + assert_array_equal(res, desired) + + def test_2D_array(self): + a = array([[1, 2], [1, 2]]) + b = array([[2, 3], [2, 3]]) + res = [atleast_1d(a), atleast_1d(b)] + desired = [a, b] + assert_array_equal(res, desired) + + def test_3D_array(self): + a = array([[1, 2], [1, 2]]) + b = array([[2, 3], [2, 3]]) + a = array([a, a]) + b = array([b, b]) + res = [atleast_1d(a), atleast_1d(b)] + desired = [a, b] + assert_array_equal(res, desired) + + def test_r1array(self): + """ Test to make sure equivalent Travis O's r1array function + """ + assert_(atleast_1d(3).shape == (1,)) + assert_(atleast_1d(3j).shape == (1,)) + assert_(atleast_1d(3.0).shape == (1,)) + assert_(atleast_1d([[2, 3], [4, 5]]).shape == (2, 2)) + + +class TestAtleast2d: + def test_0D_array(self): + a = array(1) + b = array(2) + res = [atleast_2d(a), atleast_2d(b)] + desired = [array([[1]]), array([[2]])] + assert_array_equal(res, desired) + + def test_1D_array(self): + a = array([1, 2]) + b = array([2, 3]) + res = [atleast_2d(a), atleast_2d(b)] + desired = [array([[1, 2]]), array([[2, 3]])] + assert_array_equal(res, desired) + + def test_2D_array(self): + a = array([[1, 2], [1, 2]]) + b = array([[2, 3], [2, 3]]) + res = [atleast_2d(a), atleast_2d(b)] + desired = [a, b] + assert_array_equal(res, desired) + + def test_3D_array(self): + a = array([[1, 2], [1, 2]]) + b = array([[2, 3], [2, 3]]) + a = array([a, a]) + b = array([b, b]) + res = [atleast_2d(a), atleast_2d(b)] + desired = [a, b] + assert_array_equal(res, desired) + + def test_r2array(self): + """ Test to make sure equivalent Travis O's r2array function + """ + assert_(atleast_2d(3).shape == (1, 1)) + assert_(atleast_2d([3j, 1]).shape == (1, 2)) + assert_(atleast_2d([[[3, 1], [4, 5]], [[3, 5], [1, 2]]]).shape == (2, 2, 2)) + + +class TestAtleast3d: + def test_0D_array(self): + a = array(1) + b = array(2) + res = [atleast_3d(a), atleast_3d(b)] + desired = [array([[[1]]]), array([[[2]]])] + assert_array_equal(res, desired) + + def test_1D_array(self): + a = array([1, 2]) + b = array([2, 3]) + res = [atleast_3d(a), atleast_3d(b)] + desired = [array([[[1], [2]]]), array([[[2], [3]]])] + assert_array_equal(res, desired) + + def test_2D_array(self): + a = array([[1, 2], [1, 2]]) + b = array([[2, 3], [2, 3]]) + res = [atleast_3d(a), atleast_3d(b)] + desired = [a[:, :, newaxis], b[:, :, newaxis]] + assert_array_equal(res, desired) + + def test_3D_array(self): + a = array([[1, 2], [1, 2]]) + b = array([[2, 3], [2, 3]]) + a = array([a, a]) + b = array([b, b]) + res = [atleast_3d(a), atleast_3d(b)] + desired = [a, b] + assert_array_equal(res, desired) + + +class TestHstack: + def test_non_iterable(self): + assert_raises(TypeError, hstack, 1) + + def test_empty_input(self): + assert_raises(ValueError, hstack, ()) + + def test_0D_array(self): + a = array(1) + b = array(2) + res = hstack([a, b]) + desired = array([1, 2]) + assert_array_equal(res, desired) + + def test_1D_array(self): + a = array([1]) + b = array([2]) + res = hstack([a, b]) + desired = array([1, 2]) + assert_array_equal(res, desired) + + def test_2D_array(self): + a = array([[1], [2]]) + b = array([[1], [2]]) + res = hstack([a, b]) + desired = array([[1, 1], [2, 2]]) + assert_array_equal(res, desired) + + def test_generator(self): + with pytest.raises(TypeError, match="arrays to stack must be"): + hstack(np.arange(3) for _ in range(2)) + with pytest.raises(TypeError, match="arrays to stack must be"): + hstack(x for x in np.ones((3, 2))) + + def test_casting_and_dtype(self): + a = np.array([1, 2, 3]) + b = np.array([2.5, 3.5, 4.5]) + res = np.hstack((a, b), casting="unsafe", dtype=np.int64) + expected_res = np.array([1, 2, 3, 2, 3, 4]) + assert_array_equal(res, expected_res) + + def test_casting_and_dtype_type_error(self): + a = np.array([1, 2, 3]) + b = np.array([2.5, 3.5, 4.5]) + with pytest.raises(TypeError): + hstack((a, b), casting="safe", dtype=np.int64) + + +class TestVstack: + def test_non_iterable(self): + assert_raises(TypeError, vstack, 1) + + def test_empty_input(self): + assert_raises(ValueError, vstack, ()) + + def test_0D_array(self): + a = array(1) + b = array(2) + res = vstack([a, b]) + desired = array([[1], [2]]) + assert_array_equal(res, desired) + + def test_1D_array(self): + a = array([1]) + b = array([2]) + res = vstack([a, b]) + desired = array([[1], [2]]) + assert_array_equal(res, desired) + + def test_2D_array(self): + a = array([[1], [2]]) + b = array([[1], [2]]) + res = vstack([a, b]) + desired = array([[1], [2], [1], [2]]) + assert_array_equal(res, desired) + + def test_2D_array2(self): + a = array([1, 2]) + b = array([1, 2]) + res = vstack([a, b]) + desired = array([[1, 2], [1, 2]]) + assert_array_equal(res, desired) + + def test_generator(self): + with pytest.raises(TypeError, match="arrays to stack must be"): + vstack(np.arange(3) for _ in range(2)) + + def test_casting_and_dtype(self): + a = np.array([1, 2, 3]) + b = np.array([2.5, 3.5, 4.5]) + res = np.vstack((a, b), casting="unsafe", dtype=np.int64) + expected_res = np.array([[1, 2, 3], [2, 3, 4]]) + assert_array_equal(res, expected_res) + + def test_casting_and_dtype_type_error(self): + a = np.array([1, 2, 3]) + b = np.array([2.5, 3.5, 4.5]) + with pytest.raises(TypeError): + vstack((a, b), casting="safe", dtype=np.int64) + + +class TestConcatenate: + def test_returns_copy(self): + a = np.eye(3) + b = np.concatenate([a]) + b[0, 0] = 2 + assert b[0, 0] != a[0, 0] + + def test_exceptions(self): + # test axis must be in bounds + for ndim in [1, 2, 3]: + a = np.ones((1,) * ndim) + np.concatenate((a, a), axis=0) # OK + assert_raises(AxisError, np.concatenate, (a, a), axis=ndim) + assert_raises(AxisError, np.concatenate, (a, a), axis=-(ndim + 1)) + + # Scalars cannot be concatenated + assert_raises(ValueError, concatenate, (0,)) + assert_raises(ValueError, concatenate, (np.array(0),)) + + # dimensionality must match + assert_raises_regex( + ValueError, + r"all the input arrays must have same number of dimensions, but " + r"the array at index 0 has 1 dimension\(s\) and the array at " + r"index 1 has 2 dimension\(s\)", + np.concatenate, (np.zeros(1), np.zeros((1, 1)))) + + # test shapes must match except for concatenation axis + a = np.ones((1, 2, 3)) + b = np.ones((2, 2, 3)) + axis = list(range(3)) + for i in range(3): + np.concatenate((a, b), axis=axis[0]) # OK + assert_raises_regex( + ValueError, + "all the input array dimensions except for the concatenation axis " + f"must match exactly, but along dimension {i}, the array at " + "index 0 has size 1 and the array at index 1 has size 2", + np.concatenate, (a, b), axis=axis[1]) + assert_raises(ValueError, np.concatenate, (a, b), axis=axis[2]) + a = np.moveaxis(a, -1, 0) + b = np.moveaxis(b, -1, 0) + axis.append(axis.pop(0)) + + # No arrays to concatenate raises ValueError + assert_raises(ValueError, concatenate, ()) + + @pytest.mark.slow + @pytest.mark.skipif(sys.maxsize < 2**32, reason="only problematic on 64bit platforms") + @requires_memory(2 * np.iinfo(np.intc).max) + def test_huge_list_error(self): + a = np.array([1]) + max_int = np.iinfo(np.intc).max + arrs = (a,) * (max_int + 1) + msg = fr"concatenate\(\) only supports up to {max_int} arrays but got {max_int + 1}." + with pytest.raises(ValueError, match=msg): + np.concatenate(arrs) + + def test_concatenate_axis_None(self): + a = np.arange(4, dtype=np.float64).reshape((2, 2)) + b = list(range(3)) + c = ['x'] + r = np.concatenate((a, a), axis=None) + assert_equal(r.dtype, a.dtype) + assert_equal(r.ndim, 1) + r = np.concatenate((a, b), axis=None) + assert_equal(r.size, a.size + len(b)) + assert_equal(r.dtype, a.dtype) + r = np.concatenate((a, b, c), axis=None, dtype="U") + d = array(['0.0', '1.0', '2.0', '3.0', + '0', '1', '2', 'x']) + assert_array_equal(r, d) + + out = np.zeros(a.size + len(b)) + r = np.concatenate((a, b), axis=None) + rout = np.concatenate((a, b), axis=None, out=out) + assert_(out is rout) + assert_equal(r, rout) + + def test_large_concatenate_axis_None(self): + # When no axis is given, concatenate uses flattened versions. + # This also had a bug with many arrays (see gh-5979). + x = np.arange(1, 100) + r = np.concatenate(x, None) + assert_array_equal(x, r) + + # Once upon a time, this was the same as `axis=None` now it fails + # (with an unspecified error, as multiple things are wrong here) + with pytest.raises(ValueError): + np.concatenate(x, 100) + + def test_concatenate(self): + # Test concatenate function + # One sequence returns unmodified (but as array) + r4 = list(range(4)) + assert_array_equal(concatenate((r4,)), r4) + # Any sequence + assert_array_equal(concatenate((tuple(r4),)), r4) + assert_array_equal(concatenate((array(r4),)), r4) + # 1D default concatenation + r3 = list(range(3)) + assert_array_equal(concatenate((r4, r3)), r4 + r3) + # Mixed sequence types + assert_array_equal(concatenate((tuple(r4), r3)), r4 + r3) + assert_array_equal(concatenate((array(r4), r3)), r4 + r3) + # Explicit axis specification + assert_array_equal(concatenate((r4, r3), 0), r4 + r3) + # Including negative + assert_array_equal(concatenate((r4, r3), -1), r4 + r3) + # 2D + a23 = array([[10, 11, 12], [13, 14, 15]]) + a13 = array([[0, 1, 2]]) + res = array([[10, 11, 12], [13, 14, 15], [0, 1, 2]]) + assert_array_equal(concatenate((a23, a13)), res) + assert_array_equal(concatenate((a23, a13), 0), res) + assert_array_equal(concatenate((a23.T, a13.T), 1), res.T) + assert_array_equal(concatenate((a23.T, a13.T), -1), res.T) + # Arrays much match shape + assert_raises(ValueError, concatenate, (a23.T, a13.T), 0) + # 3D + res = arange(2 * 3 * 7).reshape((2, 3, 7)) + a0 = res[..., :4] + a1 = res[..., 4:6] + a2 = res[..., 6:] + assert_array_equal(concatenate((a0, a1, a2), 2), res) + assert_array_equal(concatenate((a0, a1, a2), -1), res) + assert_array_equal(concatenate((a0.T, a1.T, a2.T), 0), res.T) + + out = res.copy() + rout = concatenate((a0, a1, a2), 2, out=out) + assert_(out is rout) + assert_equal(res, rout) + + @pytest.mark.skipif(IS_PYPY, reason="PYPY handles sq_concat, nb_add differently than cpython") + def test_operator_concat(self): + import operator + a = array([1, 2]) + b = array([3, 4]) + n = [1, 2] + res = array([1, 2, 3, 4]) + assert_raises(TypeError, operator.concat, a, b) + assert_raises(TypeError, operator.concat, a, n) + assert_raises(TypeError, operator.concat, n, a) + assert_raises(TypeError, operator.concat, a, 1) + assert_raises(TypeError, operator.concat, 1, a) + + def test_bad_out_shape(self): + a = array([1, 2]) + b = array([3, 4]) + + assert_raises(ValueError, concatenate, (a, b), out=np.empty(5)) + assert_raises(ValueError, concatenate, (a, b), out=np.empty((4, 1))) + assert_raises(ValueError, concatenate, (a, b), out=np.empty((1, 4))) + concatenate((a, b), out=np.empty(4)) + + @pytest.mark.parametrize("axis", [None, 0]) + @pytest.mark.parametrize("out_dtype", ["c8", "f4", "f8", ">f8", "i8", "S4"]) + @pytest.mark.parametrize("casting", + ['no', 'equiv', 'safe', 'same_kind', 'unsafe']) + def test_out_and_dtype(self, axis, out_dtype, casting): + # Compare usage of `out=out` with `dtype=out.dtype` + out = np.empty(4, dtype=out_dtype) + to_concat = (array([1.1, 2.2]), array([3.3, 4.4])) + + if not np.can_cast(to_concat[0], out_dtype, casting=casting): + with assert_raises(TypeError): + concatenate(to_concat, out=out, axis=axis, casting=casting) + with assert_raises(TypeError): + concatenate(to_concat, dtype=out.dtype, + axis=axis, casting=casting) + else: + res_out = concatenate(to_concat, out=out, + axis=axis, casting=casting) + res_dtype = concatenate(to_concat, dtype=out.dtype, + axis=axis, casting=casting) + assert res_out is out + assert_array_equal(out, res_dtype) + assert res_dtype.dtype == out_dtype + + with assert_raises(TypeError): + concatenate(to_concat, out=out, dtype=out_dtype, axis=axis) + + @pytest.mark.parametrize("axis", [None, 0]) + @pytest.mark.parametrize("string_dt", ["S", "U", "S0", "U0"]) + @pytest.mark.parametrize("arrs", + [([0.],), ([0.], [1]), ([0], ["string"], [1.])]) + def test_dtype_with_promotion(self, arrs, string_dt, axis): + # Note that U0 and S0 should be deprecated eventually and changed to + # actually give the empty string result (together with `np.array`) + res = np.concatenate(arrs, axis=axis, dtype=string_dt, casting="unsafe") + # The actual dtype should be identical to a cast (of a double array): + assert res.dtype == np.array(1.).astype(string_dt).dtype + + @pytest.mark.parametrize("axis", [None, 0]) + def test_string_dtype_does_not_inspect(self, axis): + with pytest.raises(TypeError): + np.concatenate(([None], [1]), dtype="S", axis=axis) + with pytest.raises(TypeError): + np.concatenate(([None], [1]), dtype="U", axis=axis) + + @pytest.mark.parametrize("axis", [None, 0]) + def test_subarray_error(self, axis): + with pytest.raises(TypeError, match=".*subarray dtype"): + np.concatenate(([1], [1]), dtype="(2,)i", axis=axis) + + +def test_stack(): + # non-iterable input + assert_raises(TypeError, stack, 1) + + # 0d input + for input_ in [(1, 2, 3), + [np.int32(1), np.int32(2), np.int32(3)], + [np.array(1), np.array(2), np.array(3)]]: + assert_array_equal(stack(input_), [1, 2, 3]) + # 1d input examples + a = np.array([1, 2, 3]) + b = np.array([4, 5, 6]) + r1 = array([[1, 2, 3], [4, 5, 6]]) + assert_array_equal(np.stack((a, b)), r1) + assert_array_equal(np.stack((a, b), axis=1), r1.T) + # all input types + assert_array_equal(np.stack([a, b]), r1) + assert_array_equal(np.stack(array([a, b])), r1) + # all shapes for 1d input + arrays = [np.random.randn(3) for _ in range(10)] + axes = [0, 1, -1, -2] + expected_shapes = [(10, 3), (3, 10), (3, 10), (10, 3)] + for axis, expected_shape in zip(axes, expected_shapes): + assert_equal(np.stack(arrays, axis).shape, expected_shape) + assert_raises_regex(AxisError, 'out of bounds', stack, arrays, axis=2) + assert_raises_regex(AxisError, 'out of bounds', stack, arrays, axis=-3) + # all shapes for 2d input + arrays = [np.random.randn(3, 4) for _ in range(10)] + axes = [0, 1, 2, -1, -2, -3] + expected_shapes = [(10, 3, 4), (3, 10, 4), (3, 4, 10), + (3, 4, 10), (3, 10, 4), (10, 3, 4)] + for axis, expected_shape in zip(axes, expected_shapes): + assert_equal(np.stack(arrays, axis).shape, expected_shape) + # empty arrays + assert_(stack([[], [], []]).shape == (3, 0)) + assert_(stack([[], [], []], axis=1).shape == (0, 3)) + # out + out = np.zeros_like(r1) + np.stack((a, b), out=out) + assert_array_equal(out, r1) + # edge cases + assert_raises_regex(ValueError, 'need at least one array', stack, []) + assert_raises_regex(ValueError, 'must have the same shape', + stack, [1, np.arange(3)]) + assert_raises_regex(ValueError, 'must have the same shape', + stack, [np.arange(3), 1]) + assert_raises_regex(ValueError, 'must have the same shape', + stack, [np.arange(3), 1], axis=1) + assert_raises_regex(ValueError, 'must have the same shape', + stack, [np.zeros((3, 3)), np.zeros(3)], axis=1) + assert_raises_regex(ValueError, 'must have the same shape', + stack, [np.arange(2), np.arange(3)]) + + # do not accept generators + with pytest.raises(TypeError, match="arrays to stack must be"): + stack(x for x in range(3)) + + # casting and dtype test + a = np.array([1, 2, 3]) + b = np.array([2.5, 3.5, 4.5]) + res = np.stack((a, b), axis=1, casting="unsafe", dtype=np.int64) + expected_res = np.array([[1, 2], [2, 3], [3, 4]]) + assert_array_equal(res, expected_res) + # casting and dtype with TypeError + with assert_raises(TypeError): + stack((a, b), dtype=np.int64, axis=1, casting="safe") + + +def test_unstack(): + a = np.arange(24).reshape((2, 3, 4)) + + for stacks in [np.unstack(a), + np.unstack(a, axis=0), + np.unstack(a, axis=-3)]: + assert isinstance(stacks, tuple) + assert len(stacks) == 2 + assert_array_equal(stacks[0], a[0]) + assert_array_equal(stacks[1], a[1]) + + for stacks in [np.unstack(a, axis=1), + np.unstack(a, axis=-2)]: + assert isinstance(stacks, tuple) + assert len(stacks) == 3 + assert_array_equal(stacks[0], a[:, 0]) + assert_array_equal(stacks[1], a[:, 1]) + assert_array_equal(stacks[2], a[:, 2]) + + for stacks in [np.unstack(a, axis=2), + np.unstack(a, axis=-1)]: + assert isinstance(stacks, tuple) + assert len(stacks) == 4 + assert_array_equal(stacks[0], a[:, :, 0]) + assert_array_equal(stacks[1], a[:, :, 1]) + assert_array_equal(stacks[2], a[:, :, 2]) + assert_array_equal(stacks[3], a[:, :, 3]) + + assert_raises(ValueError, np.unstack, a, axis=3) + assert_raises(ValueError, np.unstack, a, axis=-4) + assert_raises(ValueError, np.unstack, np.array(0), axis=0) + + +@pytest.mark.parametrize("axis", [0]) +@pytest.mark.parametrize("out_dtype", ["c8", "f4", "f8", ">f8", "i8"]) +@pytest.mark.parametrize("casting", + ['no', 'equiv', 'safe', 'same_kind', 'unsafe']) +def test_stack_out_and_dtype(axis, out_dtype, casting): + to_concat = (array([1, 2]), array([3, 4])) + res = array([[1, 2], [3, 4]]) + out = np.zeros_like(res) + + if not np.can_cast(to_concat[0], out_dtype, casting=casting): + with assert_raises(TypeError): + stack(to_concat, dtype=out_dtype, + axis=axis, casting=casting) + else: + res_out = stack(to_concat, out=out, + axis=axis, casting=casting) + res_dtype = stack(to_concat, dtype=out_dtype, + axis=axis, casting=casting) + assert res_out is out + assert_array_equal(out, res_dtype) + assert res_dtype.dtype == out_dtype + + with assert_raises(TypeError): + stack(to_concat, out=out, dtype=out_dtype, axis=axis) + + +class TestBlock: + @pytest.fixture(params=['block', 'force_concatenate', 'force_slicing']) + def block(self, request): + # blocking small arrays and large arrays go through different paths. + # the algorithm is triggered depending on the number of element + # copies required. + # We define a test fixture that forces most tests to go through + # both code paths. + # Ultimately, this should be removed if a single algorithm is found + # to be faster for both small and large arrays. + def _block_force_concatenate(arrays): + arrays, list_ndim, result_ndim, _ = _block_setup(arrays) + return _block_concatenate(arrays, list_ndim, result_ndim) + + def _block_force_slicing(arrays): + arrays, list_ndim, result_ndim, _ = _block_setup(arrays) + return _block_slicing(arrays, list_ndim, result_ndim) + + if request.param == 'force_concatenate': + return _block_force_concatenate + elif request.param == 'force_slicing': + return _block_force_slicing + elif request.param == 'block': + return block + else: + raise ValueError('Unknown blocking request. There is a typo in the tests.') + + def test_returns_copy(self, block): + a = np.eye(3) + b = block(a) + b[0, 0] = 2 + assert b[0, 0] != a[0, 0] + + def test_block_total_size_estimate(self, block): + _, _, _, total_size = _block_setup([1]) + assert total_size == 1 + + _, _, _, total_size = _block_setup([[1]]) + assert total_size == 1 + + _, _, _, total_size = _block_setup([[1, 1]]) + assert total_size == 2 + + _, _, _, total_size = _block_setup([[1], [1]]) + assert total_size == 2 + + _, _, _, total_size = _block_setup([[1, 2], [3, 4]]) + assert total_size == 4 + + def test_block_simple_row_wise(self, block): + a_2d = np.ones((2, 2)) + b_2d = 2 * a_2d + desired = np.array([[1, 1, 2, 2], + [1, 1, 2, 2]]) + result = block([a_2d, b_2d]) + assert_equal(desired, result) + + def test_block_simple_column_wise(self, block): + a_2d = np.ones((2, 2)) + b_2d = 2 * a_2d + expected = np.array([[1, 1], + [1, 1], + [2, 2], + [2, 2]]) + result = block([[a_2d], [b_2d]]) + assert_equal(expected, result) + + def test_block_with_1d_arrays_row_wise(self, block): + # # # 1-D vectors are treated as row arrays + a = np.array([1, 2, 3]) + b = np.array([2, 3, 4]) + expected = np.array([1, 2, 3, 2, 3, 4]) + result = block([a, b]) + assert_equal(expected, result) + + def test_block_with_1d_arrays_multiple_rows(self, block): + a = np.array([1, 2, 3]) + b = np.array([2, 3, 4]) + expected = np.array([[1, 2, 3, 2, 3, 4], + [1, 2, 3, 2, 3, 4]]) + result = block([[a, b], [a, b]]) + assert_equal(expected, result) + + def test_block_with_1d_arrays_column_wise(self, block): + # # # 1-D vectors are treated as row arrays + a_1d = np.array([1, 2, 3]) + b_1d = np.array([2, 3, 4]) + expected = np.array([[1, 2, 3], + [2, 3, 4]]) + result = block([[a_1d], [b_1d]]) + assert_equal(expected, result) + + def test_block_mixed_1d_and_2d(self, block): + a_2d = np.ones((2, 2)) + b_1d = np.array([2, 2]) + result = block([[a_2d], [b_1d]]) + expected = np.array([[1, 1], + [1, 1], + [2, 2]]) + assert_equal(expected, result) + + def test_block_complicated(self, block): + # a bit more complicated + one_2d = np.array([[1, 1, 1]]) + two_2d = np.array([[2, 2, 2]]) + three_2d = np.array([[3, 3, 3, 3, 3, 3]]) + four_1d = np.array([4, 4, 4, 4, 4, 4]) + five_0d = np.array(5) + six_1d = np.array([6, 6, 6, 6, 6]) + zero_2d = np.zeros((2, 6)) + + expected = np.array([[1, 1, 1, 2, 2, 2], + [3, 3, 3, 3, 3, 3], + [4, 4, 4, 4, 4, 4], + [5, 6, 6, 6, 6, 6], + [0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0]]) + + result = block([[one_2d, two_2d], + [three_2d], + [four_1d], + [five_0d, six_1d], + [zero_2d]]) + assert_equal(result, expected) + + def test_nested(self, block): + one = np.array([1, 1, 1]) + two = np.array([[2, 2, 2], [2, 2, 2], [2, 2, 2]]) + three = np.array([3, 3, 3]) + four = np.array([4, 4, 4]) + five = np.array(5) + six = np.array([6, 6, 6, 6, 6]) + zero = np.zeros((2, 6)) + + result = block([ + [ + block([ + [one], + [three], + [four] + ]), + two + ], + [five, six], + [zero] + ]) + expected = np.array([[1, 1, 1, 2, 2, 2], + [3, 3, 3, 2, 2, 2], + [4, 4, 4, 2, 2, 2], + [5, 6, 6, 6, 6, 6], + [0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0]]) + + assert_equal(result, expected) + + def test_3d(self, block): + a000 = np.ones((2, 2, 2), int) * 1 + + a100 = np.ones((3, 2, 2), int) * 2 + a010 = np.ones((2, 3, 2), int) * 3 + a001 = np.ones((2, 2, 3), int) * 4 + + a011 = np.ones((2, 3, 3), int) * 5 + a101 = np.ones((3, 2, 3), int) * 6 + a110 = np.ones((3, 3, 2), int) * 7 + + a111 = np.ones((3, 3, 3), int) * 8 + + result = block([ + [ + [a000, a001], + [a010, a011], + ], + [ + [a100, a101], + [a110, a111], + ] + ]) + expected = array([[[1, 1, 4, 4, 4], + [1, 1, 4, 4, 4], + [3, 3, 5, 5, 5], + [3, 3, 5, 5, 5], + [3, 3, 5, 5, 5]], + + [[1, 1, 4, 4, 4], + [1, 1, 4, 4, 4], + [3, 3, 5, 5, 5], + [3, 3, 5, 5, 5], + [3, 3, 5, 5, 5]], + + [[2, 2, 6, 6, 6], + [2, 2, 6, 6, 6], + [7, 7, 8, 8, 8], + [7, 7, 8, 8, 8], + [7, 7, 8, 8, 8]], + + [[2, 2, 6, 6, 6], + [2, 2, 6, 6, 6], + [7, 7, 8, 8, 8], + [7, 7, 8, 8, 8], + [7, 7, 8, 8, 8]], + + [[2, 2, 6, 6, 6], + [2, 2, 6, 6, 6], + [7, 7, 8, 8, 8], + [7, 7, 8, 8, 8], + [7, 7, 8, 8, 8]]]) + + assert_array_equal(result, expected) + + def test_block_with_mismatched_shape(self, block): + a = np.array([0, 0]) + b = np.eye(2) + assert_raises(ValueError, block, [a, b]) + assert_raises(ValueError, block, [b, a]) + + to_block = [[np.ones((2, 3)), np.ones((2, 2))], + [np.ones((2, 2)), np.ones((2, 2))]] + assert_raises(ValueError, block, to_block) + + def test_no_lists(self, block): + assert_equal(block(1), np.array(1)) + assert_equal(block(np.eye(3)), np.eye(3)) + + def test_invalid_nesting(self, block): + msg = 'depths are mismatched' + assert_raises_regex(ValueError, msg, block, [1, [2]]) + assert_raises_regex(ValueError, msg, block, [1, []]) + assert_raises_regex(ValueError, msg, block, [[1], 2]) + assert_raises_regex(ValueError, msg, block, [[], 2]) + assert_raises_regex(ValueError, msg, block, [ + [[1], [2]], + [[3, 4]], + [5] # missing brackets + ]) + + def test_empty_lists(self, block): + assert_raises_regex(ValueError, 'empty', block, []) + assert_raises_regex(ValueError, 'empty', block, [[]]) + assert_raises_regex(ValueError, 'empty', block, [[1], []]) + + def test_tuple(self, block): + assert_raises_regex(TypeError, 'tuple', block, ([1, 2], [3, 4])) + assert_raises_regex(TypeError, 'tuple', block, [(1, 2), (3, 4)]) + + def test_different_ndims(self, block): + a = 1. + b = 2 * np.ones((1, 2)) + c = 3 * np.ones((1, 1, 3)) + + result = block([a, b, c]) + expected = np.array([[[1., 2., 2., 3., 3., 3.]]]) + + assert_equal(result, expected) + + def test_different_ndims_depths(self, block): + a = 1. + b = 2 * np.ones((1, 2)) + c = 3 * np.ones((1, 2, 3)) + + result = block([[a, b], [c]]) + expected = np.array([[[1., 2., 2.], + [3., 3., 3.], + [3., 3., 3.]]]) + + assert_equal(result, expected) + + def test_block_memory_order(self, block): + # 3D + arr_c = np.zeros((3,) * 3, order='C') + arr_f = np.zeros((3,) * 3, order='F') + + b_c = [[[arr_c, arr_c], + [arr_c, arr_c]], + [[arr_c, arr_c], + [arr_c, arr_c]]] + + b_f = [[[arr_f, arr_f], + [arr_f, arr_f]], + [[arr_f, arr_f], + [arr_f, arr_f]]] + + assert block(b_c).flags['C_CONTIGUOUS'] + assert block(b_f).flags['F_CONTIGUOUS'] + + arr_c = np.zeros((3, 3), order='C') + arr_f = np.zeros((3, 3), order='F') + # 2D + b_c = [[arr_c, arr_c], + [arr_c, arr_c]] + + b_f = [[arr_f, arr_f], + [arr_f, arr_f]] + + assert block(b_c).flags['C_CONTIGUOUS'] + assert block(b_f).flags['F_CONTIGUOUS'] + + +def test_block_dispatcher(): + class ArrayLike: + pass + a = ArrayLike() + b = ArrayLike() + c = ArrayLike() + assert_equal(list(_block_dispatcher(a)), [a]) + assert_equal(list(_block_dispatcher([a])), [a]) + assert_equal(list(_block_dispatcher([a, b])), [a, b]) + assert_equal(list(_block_dispatcher([[a], [b, [c]]])), [a, b, c]) + # don't recurse into non-lists + assert_equal(list(_block_dispatcher((a, b))), [(a, b)]) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_simd.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_simd.py new file mode 100644 index 0000000..697d89b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_simd.py @@ -0,0 +1,1341 @@ +# NOTE: Please avoid the use of numpy.testing since NPYV intrinsics +# may be involved in their functionality. +import itertools +import math +import operator +import re + +import pytest +from numpy._core._multiarray_umath import __cpu_baseline__ + +from numpy._core._simd import clear_floatstatus, get_floatstatus, targets + + +def check_floatstatus(divbyzero=False, overflow=False, + underflow=False, invalid=False, + all=False): + #define NPY_FPE_DIVIDEBYZERO 1 + #define NPY_FPE_OVERFLOW 2 + #define NPY_FPE_UNDERFLOW 4 + #define NPY_FPE_INVALID 8 + err = get_floatstatus() + ret = (all or divbyzero) and (err & 1) != 0 + ret |= (all or overflow) and (err & 2) != 0 + ret |= (all or underflow) and (err & 4) != 0 + ret |= (all or invalid) and (err & 8) != 0 + return ret + +class _Test_Utility: + # submodule of the desired SIMD extension, e.g. targets["AVX512F"] + npyv = None + # the current data type suffix e.g. 's8' + sfx = None + # target name can be 'baseline' or one or more of CPU features + target_name = None + + def __getattr__(self, attr): + """ + To call NPV intrinsics without the attribute 'npyv' and + auto suffixing intrinsics according to class attribute 'sfx' + """ + return getattr(self.npyv, attr + "_" + self.sfx) + + def _x2(self, intrin_name): + return getattr(self.npyv, f"{intrin_name}_{self.sfx}x2") + + def _data(self, start=None, count=None, reverse=False): + """ + Create list of consecutive numbers according to number of vector's lanes. + """ + if start is None: + start = 1 + if count is None: + count = self.nlanes + rng = range(start, start + count) + if reverse: + rng = reversed(rng) + if self._is_fp(): + return [x / 1.0 for x in rng] + return list(rng) + + def _is_unsigned(self): + return self.sfx[0] == 'u' + + def _is_signed(self): + return self.sfx[0] == 's' + + def _is_fp(self): + return self.sfx[0] == 'f' + + def _scalar_size(self): + return int(self.sfx[1:]) + + def _int_clip(self, seq): + if self._is_fp(): + return seq + max_int = self._int_max() + min_int = self._int_min() + return [min(max(v, min_int), max_int) for v in seq] + + def _int_max(self): + if self._is_fp(): + return None + max_u = self._to_unsigned(self.setall(-1))[0] + if self._is_signed(): + return max_u // 2 + return max_u + + def _int_min(self): + if self._is_fp(): + return None + if self._is_unsigned(): + return 0 + return -(self._int_max() + 1) + + def _true_mask(self): + max_unsig = getattr(self.npyv, "setall_u" + self.sfx[1:])(-1) + return max_unsig[0] + + def _to_unsigned(self, vector): + if isinstance(vector, (list, tuple)): + return getattr(self.npyv, "load_u" + self.sfx[1:])(vector) + else: + sfx = vector.__name__.replace("npyv_", "") + if sfx[0] == "b": + cvt_intrin = "cvt_u{0}_b{0}" + else: + cvt_intrin = "reinterpret_u{0}_{1}" + return getattr(self.npyv, cvt_intrin.format(sfx[1:], sfx))(vector) + + def _pinfinity(self): + return float("inf") + + def _ninfinity(self): + return -float("inf") + + def _nan(self): + return float("nan") + + def _cpu_features(self): + target = self.target_name + if target == "baseline": + target = __cpu_baseline__ + else: + target = target.split('__') # multi-target separator + return ' '.join(target) + +class _SIMD_BOOL(_Test_Utility): + """ + To test all boolean vector types at once + """ + def _nlanes(self): + return getattr(self.npyv, "nlanes_u" + self.sfx[1:]) + + def _data(self, start=None, count=None, reverse=False): + true_mask = self._true_mask() + rng = range(self._nlanes()) + if reverse: + rng = reversed(rng) + return [true_mask if x % 2 else 0 for x in rng] + + def _load_b(self, data): + len_str = self.sfx[1:] + load = getattr(self.npyv, "load_u" + len_str) + cvt = getattr(self.npyv, f"cvt_b{len_str}_u{len_str}") + return cvt(load(data)) + + def test_operators_logical(self): + """ + Logical operations for boolean types. + Test intrinsics: + npyv_xor_##SFX, npyv_and_##SFX, npyv_or_##SFX, npyv_not_##SFX, + npyv_andc_b8, npvy_orc_b8, nvpy_xnor_b8 + """ + data_a = self._data() + data_b = self._data(reverse=True) + vdata_a = self._load_b(data_a) + vdata_b = self._load_b(data_b) + + data_and = [a & b for a, b in zip(data_a, data_b)] + vand = getattr(self, "and")(vdata_a, vdata_b) + assert vand == data_and + + data_or = [a | b for a, b in zip(data_a, data_b)] + vor = getattr(self, "or")(vdata_a, vdata_b) + assert vor == data_or + + data_xor = [a ^ b for a, b in zip(data_a, data_b)] + vxor = self.xor(vdata_a, vdata_b) + assert vxor == data_xor + + vnot = getattr(self, "not")(vdata_a) + assert vnot == data_b + + # among the boolean types, andc, orc and xnor only support b8 + if self.sfx not in ("b8"): + return + + data_andc = [(a & ~b) & 0xFF for a, b in zip(data_a, data_b)] + vandc = self.andc(vdata_a, vdata_b) + assert data_andc == vandc + + data_orc = [(a | ~b) & 0xFF for a, b in zip(data_a, data_b)] + vorc = self.orc(vdata_a, vdata_b) + assert data_orc == vorc + + data_xnor = [~(a ^ b) & 0xFF for a, b in zip(data_a, data_b)] + vxnor = self.xnor(vdata_a, vdata_b) + assert data_xnor == vxnor + + def test_tobits(self): + data2bits = lambda data: sum(int(x != 0) << i for i, x in enumerate(data, 0)) + for data in (self._data(), self._data(reverse=True)): + vdata = self._load_b(data) + data_bits = data2bits(data) + tobits = self.tobits(vdata) + bin_tobits = bin(tobits) + assert bin_tobits == bin(data_bits) + + def test_pack(self): + """ + Pack multiple vectors into one + Test intrinsics: + npyv_pack_b8_b16 + npyv_pack_b8_b32 + npyv_pack_b8_b64 + """ + if self.sfx not in ("b16", "b32", "b64"): + return + # create the vectors + data = self._data() + rdata = self._data(reverse=True) + vdata = self._load_b(data) + vrdata = self._load_b(rdata) + pack_simd = getattr(self.npyv, f"pack_b8_{self.sfx}") + # for scalar execution, concatenate the elements of the multiple lists + # into a single list (spack) and then iterate over the elements of + # the created list applying a mask to capture the first byte of them. + if self.sfx == "b16": + spack = [(i & 0xFF) for i in (list(rdata) + list(data))] + vpack = pack_simd(vrdata, vdata) + elif self.sfx == "b32": + spack = [(i & 0xFF) for i in (2 * list(rdata) + 2 * list(data))] + vpack = pack_simd(vrdata, vrdata, vdata, vdata) + elif self.sfx == "b64": + spack = [(i & 0xFF) for i in (4 * list(rdata) + 4 * list(data))] + vpack = pack_simd(vrdata, vrdata, vrdata, vrdata, + vdata, vdata, vdata, vdata) + assert vpack == spack + + @pytest.mark.parametrize("intrin", ["any", "all"]) + @pytest.mark.parametrize("data", ( + [-1, 0], + [0, -1], + [-1], + [0] + )) + def test_operators_crosstest(self, intrin, data): + """ + Test intrinsics: + npyv_any_##SFX + npyv_all_##SFX + """ + data_a = self._load_b(data * self._nlanes()) + func = eval(intrin) + intrin = getattr(self, intrin) + desired = func(data_a) + simd = intrin(data_a) + assert not not simd == desired + +class _SIMD_INT(_Test_Utility): + """ + To test all integer vector types at once + """ + def test_operators_shift(self): + if self.sfx in ("u8", "s8"): + return + + data_a = self._data(self._int_max() - self.nlanes) + data_b = self._data(self._int_min(), reverse=True) + vdata_a, vdata_b = self.load(data_a), self.load(data_b) + + for count in range(self._scalar_size()): + # load to cast + data_shl_a = self.load([a << count for a in data_a]) + # left shift + shl = self.shl(vdata_a, count) + assert shl == data_shl_a + # load to cast + data_shr_a = self.load([a >> count for a in data_a]) + # right shift + shr = self.shr(vdata_a, count) + assert shr == data_shr_a + + # shift by zero or max or out-range immediate constant is not applicable and illogical + for count in range(1, self._scalar_size()): + # load to cast + data_shl_a = self.load([a << count for a in data_a]) + # left shift by an immediate constant + shli = self.shli(vdata_a, count) + assert shli == data_shl_a + # load to cast + data_shr_a = self.load([a >> count for a in data_a]) + # right shift by an immediate constant + shri = self.shri(vdata_a, count) + assert shri == data_shr_a + + def test_arithmetic_subadd_saturated(self): + if self.sfx in ("u32", "s32", "u64", "s64"): + return + + data_a = self._data(self._int_max() - self.nlanes) + data_b = self._data(self._int_min(), reverse=True) + vdata_a, vdata_b = self.load(data_a), self.load(data_b) + + data_adds = self._int_clip([a + b for a, b in zip(data_a, data_b)]) + adds = self.adds(vdata_a, vdata_b) + assert adds == data_adds + + data_subs = self._int_clip([a - b for a, b in zip(data_a, data_b)]) + subs = self.subs(vdata_a, vdata_b) + assert subs == data_subs + + def test_math_max_min(self): + data_a = self._data() + data_b = self._data(self.nlanes) + vdata_a, vdata_b = self.load(data_a), self.load(data_b) + + data_max = [max(a, b) for a, b in zip(data_a, data_b)] + simd_max = self.max(vdata_a, vdata_b) + assert simd_max == data_max + + data_min = [min(a, b) for a, b in zip(data_a, data_b)] + simd_min = self.min(vdata_a, vdata_b) + assert simd_min == data_min + + @pytest.mark.parametrize("start", [-100, -10000, 0, 100, 10000]) + def test_reduce_max_min(self, start): + """ + Test intrinsics: + npyv_reduce_max_##sfx + npyv_reduce_min_##sfx + """ + vdata_a = self.load(self._data(start)) + assert self.reduce_max(vdata_a) == max(vdata_a) + assert self.reduce_min(vdata_a) == min(vdata_a) + + +class _SIMD_FP32(_Test_Utility): + """ + To only test single precision + """ + def test_conversions(self): + """ + Round to nearest even integer, assume CPU control register is set to rounding. + Test intrinsics: + npyv_round_s32_##SFX + """ + features = self._cpu_features() + if not self.npyv.simd_f64 and re.match(r".*(NEON|ASIMD)", features): + # very costly to emulate nearest even on Armv7 + # instead we round halves to up. e.g. 0.5 -> 1, -0.5 -> -1 + _round = lambda v: int(v + (0.5 if v >= 0 else -0.5)) + else: + _round = round + vdata_a = self.load(self._data()) + vdata_a = self.sub(vdata_a, self.setall(0.5)) + data_round = [_round(x) for x in vdata_a] + vround = self.round_s32(vdata_a) + assert vround == data_round + +class _SIMD_FP64(_Test_Utility): + """ + To only test double precision + """ + def test_conversions(self): + """ + Round to nearest even integer, assume CPU control register is set to rounding. + Test intrinsics: + npyv_round_s32_##SFX + """ + vdata_a = self.load(self._data()) + vdata_a = self.sub(vdata_a, self.setall(0.5)) + vdata_b = self.mul(vdata_a, self.setall(-1.5)) + data_round = [round(x) for x in list(vdata_a) + list(vdata_b)] + vround = self.round_s32(vdata_a, vdata_b) + assert vround == data_round + +class _SIMD_FP(_Test_Utility): + """ + To test all float vector types at once + """ + def test_arithmetic_fused(self): + vdata_a, vdata_b, vdata_c = [self.load(self._data())] * 3 + vdata_cx2 = self.add(vdata_c, vdata_c) + # multiply and add, a*b + c + data_fma = self.load([a * b + c for a, b, c in zip(vdata_a, vdata_b, vdata_c)]) + fma = self.muladd(vdata_a, vdata_b, vdata_c) + assert fma == data_fma + # multiply and subtract, a*b - c + fms = self.mulsub(vdata_a, vdata_b, vdata_c) + data_fms = self.sub(data_fma, vdata_cx2) + assert fms == data_fms + # negate multiply and add, -(a*b) + c + nfma = self.nmuladd(vdata_a, vdata_b, vdata_c) + data_nfma = self.sub(vdata_cx2, data_fma) + assert nfma == data_nfma + # negate multiply and subtract, -(a*b) - c + nfms = self.nmulsub(vdata_a, vdata_b, vdata_c) + data_nfms = self.mul(data_fma, self.setall(-1)) + assert nfms == data_nfms + # multiply, add for odd elements and subtract even elements. + # (a * b) -+ c + fmas = list(self.muladdsub(vdata_a, vdata_b, vdata_c)) + assert fmas[0::2] == list(data_fms)[0::2] + assert fmas[1::2] == list(data_fma)[1::2] + + def test_abs(self): + pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan() + data = self._data() + vdata = self.load(self._data()) + + abs_cases = ((-0, 0), (ninf, pinf), (pinf, pinf), (nan, nan)) + for case, desired in abs_cases: + data_abs = [desired] * self.nlanes + vabs = self.abs(self.setall(case)) + assert vabs == pytest.approx(data_abs, nan_ok=True) + + vabs = self.abs(self.mul(vdata, self.setall(-1))) + assert vabs == data + + def test_sqrt(self): + pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan() + data = self._data() + vdata = self.load(self._data()) + + sqrt_cases = ((-0.0, -0.0), (0.0, 0.0), (-1.0, nan), (ninf, nan), (pinf, pinf)) + for case, desired in sqrt_cases: + data_sqrt = [desired] * self.nlanes + sqrt = self.sqrt(self.setall(case)) + assert sqrt == pytest.approx(data_sqrt, nan_ok=True) + + data_sqrt = self.load([math.sqrt(x) for x in data]) # load to truncate precision + sqrt = self.sqrt(vdata) + assert sqrt == data_sqrt + + def test_square(self): + pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan() + data = self._data() + vdata = self.load(self._data()) + # square + square_cases = ((nan, nan), (pinf, pinf), (ninf, pinf)) + for case, desired in square_cases: + data_square = [desired] * self.nlanes + square = self.square(self.setall(case)) + assert square == pytest.approx(data_square, nan_ok=True) + + data_square = [x * x for x in data] + square = self.square(vdata) + assert square == data_square + + @pytest.mark.parametrize("intrin, func", [("ceil", math.ceil), + ("trunc", math.trunc), ("floor", math.floor), ("rint", round)]) + def test_rounding(self, intrin, func): + """ + Test intrinsics: + npyv_rint_##SFX + npyv_ceil_##SFX + npyv_trunc_##SFX + npyv_floor##SFX + """ + intrin_name = intrin + intrin = getattr(self, intrin) + pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan() + # special cases + round_cases = ((nan, nan), (pinf, pinf), (ninf, ninf)) + for case, desired in round_cases: + data_round = [desired] * self.nlanes + _round = intrin(self.setall(case)) + assert _round == pytest.approx(data_round, nan_ok=True) + + for x in range(0, 2**20, 256**2): + for w in (-1.05, -1.10, -1.15, 1.05, 1.10, 1.15): + data = self.load([(x + a) * w for a in range(self.nlanes)]) + data_round = [func(x) for x in data] + _round = intrin(data) + assert _round == data_round + + # test large numbers + for i in ( + 1.1529215045988576e+18, 4.6116860183954304e+18, + 5.902958103546122e+20, 2.3611832414184488e+21 + ): + x = self.setall(i) + y = intrin(x) + data_round = [func(n) for n in x] + assert y == data_round + + # signed zero + if intrin_name == "floor": + data_szero = (-0.0,) + else: + data_szero = (-0.0, -0.25, -0.30, -0.45, -0.5) + + for w in data_szero: + _round = self._to_unsigned(intrin(self.setall(w))) + data_round = self._to_unsigned(self.setall(-0.0)) + assert _round == data_round + + @pytest.mark.parametrize("intrin", [ + "max", "maxp", "maxn", "min", "minp", "minn" + ]) + def test_max_min(self, intrin): + """ + Test intrinsics: + npyv_max_##sfx + npyv_maxp_##sfx + npyv_maxn_##sfx + npyv_min_##sfx + npyv_minp_##sfx + npyv_minn_##sfx + npyv_reduce_max_##sfx + npyv_reduce_maxp_##sfx + npyv_reduce_maxn_##sfx + npyv_reduce_min_##sfx + npyv_reduce_minp_##sfx + npyv_reduce_minn_##sfx + """ + pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan() + chk_nan = {"xp": 1, "np": 1, "nn": 2, "xn": 2}.get(intrin[-2:], 0) + func = eval(intrin[:3]) + reduce_intrin = getattr(self, "reduce_" + intrin) + intrin = getattr(self, intrin) + hf_nlanes = self.nlanes // 2 + + cases = ( + ([0.0, -0.0], [-0.0, 0.0]), + ([10, -10], [10, -10]), + ([pinf, 10], [10, ninf]), + ([10, pinf], [ninf, 10]), + ([10, -10], [10, -10]), + ([-10, 10], [-10, 10]) + ) + for op1, op2 in cases: + vdata_a = self.load(op1 * hf_nlanes) + vdata_b = self.load(op2 * hf_nlanes) + data = func(vdata_a, vdata_b) + simd = intrin(vdata_a, vdata_b) + assert simd == data + data = func(vdata_a) + simd = reduce_intrin(vdata_a) + assert simd == data + + if not chk_nan: + return + if chk_nan == 1: + test_nan = lambda a, b: ( + b if math.isnan(a) else a if math.isnan(b) else b + ) + else: + test_nan = lambda a, b: ( + nan if math.isnan(a) or math.isnan(b) else b + ) + cases = ( + (nan, 10), + (10, nan), + (nan, pinf), + (pinf, nan), + (nan, nan) + ) + for op1, op2 in cases: + vdata_ab = self.load([op1, op2] * hf_nlanes) + data = test_nan(op1, op2) + simd = reduce_intrin(vdata_ab) + assert simd == pytest.approx(data, nan_ok=True) + vdata_a = self.setall(op1) + vdata_b = self.setall(op2) + data = [data] * self.nlanes + simd = intrin(vdata_a, vdata_b) + assert simd == pytest.approx(data, nan_ok=True) + + def test_reciprocal(self): + pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan() + data = self._data() + vdata = self.load(self._data()) + + recip_cases = ((nan, nan), (pinf, 0.0), (ninf, -0.0), (0.0, pinf), (-0.0, ninf)) + for case, desired in recip_cases: + data_recip = [desired] * self.nlanes + recip = self.recip(self.setall(case)) + assert recip == pytest.approx(data_recip, nan_ok=True) + + data_recip = self.load([1 / x for x in data]) # load to truncate precision + recip = self.recip(vdata) + assert recip == data_recip + + def test_special_cases(self): + """ + Compare Not NaN. Test intrinsics: + npyv_notnan_##SFX + """ + nnan = self.notnan(self.setall(self._nan())) + assert nnan == [0] * self.nlanes + + @pytest.mark.parametrize("intrin_name", [ + "rint", "trunc", "ceil", "floor" + ]) + def test_unary_invalid_fpexception(self, intrin_name): + intrin = getattr(self, intrin_name) + for d in [float("nan"), float("inf"), -float("inf")]: + v = self.setall(d) + clear_floatstatus() + intrin(v) + assert check_floatstatus(invalid=True) is False + + @pytest.mark.parametrize('py_comp,np_comp', [ + (operator.lt, "cmplt"), + (operator.le, "cmple"), + (operator.gt, "cmpgt"), + (operator.ge, "cmpge"), + (operator.eq, "cmpeq"), + (operator.ne, "cmpneq") + ]) + def test_comparison_with_nan(self, py_comp, np_comp): + pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan() + mask_true = self._true_mask() + + def to_bool(vector): + return [lane == mask_true for lane in vector] + + intrin = getattr(self, np_comp) + cmp_cases = ((0, nan), (nan, 0), (nan, nan), (pinf, nan), + (ninf, nan), (-0.0, +0.0)) + for case_operand1, case_operand2 in cmp_cases: + data_a = [case_operand1] * self.nlanes + data_b = [case_operand2] * self.nlanes + vdata_a = self.setall(case_operand1) + vdata_b = self.setall(case_operand2) + vcmp = to_bool(intrin(vdata_a, vdata_b)) + data_cmp = [py_comp(a, b) for a, b in zip(data_a, data_b)] + assert vcmp == data_cmp + + @pytest.mark.parametrize("intrin", ["any", "all"]) + @pytest.mark.parametrize("data", ( + [float("nan"), 0], + [0, float("nan")], + [float("nan"), 1], + [1, float("nan")], + [float("nan"), float("nan")], + [0.0, -0.0], + [-0.0, 0.0], + [1.0, -0.0] + )) + def test_operators_crosstest(self, intrin, data): + """ + Test intrinsics: + npyv_any_##SFX + npyv_all_##SFX + """ + data_a = self.load(data * self.nlanes) + func = eval(intrin) + intrin = getattr(self, intrin) + desired = func(data_a) + simd = intrin(data_a) + assert not not simd == desired + +class _SIMD_ALL(_Test_Utility): + """ + To test all vector types at once + """ + def test_memory_load(self): + data = self._data() + # unaligned load + load_data = self.load(data) + assert load_data == data + # aligned load + loada_data = self.loada(data) + assert loada_data == data + # stream load + loads_data = self.loads(data) + assert loads_data == data + # load lower part + loadl = self.loadl(data) + loadl_half = list(loadl)[:self.nlanes // 2] + data_half = data[:self.nlanes // 2] + assert loadl_half == data_half + assert loadl != data # detect overflow + + def test_memory_store(self): + data = self._data() + vdata = self.load(data) + # unaligned store + store = [0] * self.nlanes + self.store(store, vdata) + assert store == data + # aligned store + store_a = [0] * self.nlanes + self.storea(store_a, vdata) + assert store_a == data + # stream store + store_s = [0] * self.nlanes + self.stores(store_s, vdata) + assert store_s == data + # store lower part + store_l = [0] * self.nlanes + self.storel(store_l, vdata) + assert store_l[:self.nlanes // 2] == data[:self.nlanes // 2] + assert store_l != vdata # detect overflow + # store higher part + store_h = [0] * self.nlanes + self.storeh(store_h, vdata) + assert store_h[:self.nlanes // 2] == data[self.nlanes // 2:] + assert store_h != vdata # detect overflow + + @pytest.mark.parametrize("intrin, elsizes, scale, fill", [ + ("self.load_tillz, self.load_till", (32, 64), 1, [0xffff]), + ("self.load2_tillz, self.load2_till", (32, 64), 2, [0xffff, 0x7fff]), + ]) + def test_memory_partial_load(self, intrin, elsizes, scale, fill): + if self._scalar_size() not in elsizes: + return + npyv_load_tillz, npyv_load_till = eval(intrin) + data = self._data() + lanes = list(range(1, self.nlanes + 1)) + lanes += [self.nlanes**2, self.nlanes**4] # test out of range + for n in lanes: + load_till = npyv_load_till(data, n, *fill) + load_tillz = npyv_load_tillz(data, n) + n *= scale + data_till = data[:n] + fill * ((self.nlanes - n) // scale) + assert load_till == data_till + data_tillz = data[:n] + [0] * (self.nlanes - n) + assert load_tillz == data_tillz + + @pytest.mark.parametrize("intrin, elsizes, scale", [ + ("self.store_till", (32, 64), 1), + ("self.store2_till", (32, 64), 2), + ]) + def test_memory_partial_store(self, intrin, elsizes, scale): + if self._scalar_size() not in elsizes: + return + npyv_store_till = eval(intrin) + data = self._data() + data_rev = self._data(reverse=True) + vdata = self.load(data) + lanes = list(range(1, self.nlanes + 1)) + lanes += [self.nlanes**2, self.nlanes**4] + for n in lanes: + data_till = data_rev.copy() + data_till[:n * scale] = data[:n * scale] + store_till = self._data(reverse=True) + npyv_store_till(store_till, n, vdata) + assert store_till == data_till + + @pytest.mark.parametrize("intrin, elsizes, scale", [ + ("self.loadn", (32, 64), 1), + ("self.loadn2", (32, 64), 2), + ]) + def test_memory_noncont_load(self, intrin, elsizes, scale): + if self._scalar_size() not in elsizes: + return + npyv_loadn = eval(intrin) + for stride in range(-64, 64): + if stride < 0: + data = self._data(stride, -stride * self.nlanes) + data_stride = list(itertools.chain( + *zip(*[data[-i::stride] for i in range(scale, 0, -1)]) + )) + elif stride == 0: + data = self._data() + data_stride = data[0:scale] * (self.nlanes // scale) + else: + data = self._data(count=stride * self.nlanes) + data_stride = list(itertools.chain( + *zip(*[data[i::stride] for i in range(scale)])) + ) + data_stride = self.load(data_stride) # cast unsigned + loadn = npyv_loadn(data, stride) + assert loadn == data_stride + + @pytest.mark.parametrize("intrin, elsizes, scale, fill", [ + ("self.loadn_tillz, self.loadn_till", (32, 64), 1, [0xffff]), + ("self.loadn2_tillz, self.loadn2_till", (32, 64), 2, [0xffff, 0x7fff]), + ]) + def test_memory_noncont_partial_load(self, intrin, elsizes, scale, fill): + if self._scalar_size() not in elsizes: + return + npyv_loadn_tillz, npyv_loadn_till = eval(intrin) + lanes = list(range(1, self.nlanes + 1)) + lanes += [self.nlanes**2, self.nlanes**4] + for stride in range(-64, 64): + if stride < 0: + data = self._data(stride, -stride * self.nlanes) + data_stride = list(itertools.chain( + *zip(*[data[-i::stride] for i in range(scale, 0, -1)]) + )) + elif stride == 0: + data = self._data() + data_stride = data[0:scale] * (self.nlanes // scale) + else: + data = self._data(count=stride * self.nlanes) + data_stride = list(itertools.chain( + *zip(*[data[i::stride] for i in range(scale)]) + )) + data_stride = list(self.load(data_stride)) # cast unsigned + for n in lanes: + nscale = n * scale + llanes = self.nlanes - nscale + data_stride_till = ( + data_stride[:nscale] + fill * (llanes // scale) + ) + loadn_till = npyv_loadn_till(data, stride, n, *fill) + assert loadn_till == data_stride_till + data_stride_tillz = data_stride[:nscale] + [0] * llanes + loadn_tillz = npyv_loadn_tillz(data, stride, n) + assert loadn_tillz == data_stride_tillz + + @pytest.mark.parametrize("intrin, elsizes, scale", [ + ("self.storen", (32, 64), 1), + ("self.storen2", (32, 64), 2), + ]) + def test_memory_noncont_store(self, intrin, elsizes, scale): + if self._scalar_size() not in elsizes: + return + npyv_storen = eval(intrin) + data = self._data() + vdata = self.load(data) + hlanes = self.nlanes // scale + for stride in range(1, 64): + data_storen = [0xff] * stride * self.nlanes + for s in range(0, hlanes * stride, stride): + i = (s // stride) * scale + data_storen[s:s + scale] = data[i:i + scale] + storen = [0xff] * stride * self.nlanes + storen += [0x7f] * 64 + npyv_storen(storen, stride, vdata) + assert storen[:-64] == data_storen + assert storen[-64:] == [0x7f] * 64 # detect overflow + + for stride in range(-64, 0): + data_storen = [0xff] * -stride * self.nlanes + for s in range(0, hlanes * stride, stride): + i = (s // stride) * scale + data_storen[s - scale:s or None] = data[i:i + scale] + storen = [0x7f] * 64 + storen += [0xff] * -stride * self.nlanes + npyv_storen(storen, stride, vdata) + assert storen[64:] == data_storen + assert storen[:64] == [0x7f] * 64 # detect overflow + # stride 0 + data_storen = [0x7f] * self.nlanes + storen = data_storen.copy() + data_storen[0:scale] = data[-scale:] + npyv_storen(storen, 0, vdata) + assert storen == data_storen + + @pytest.mark.parametrize("intrin, elsizes, scale", [ + ("self.storen_till", (32, 64), 1), + ("self.storen2_till", (32, 64), 2), + ]) + def test_memory_noncont_partial_store(self, intrin, elsizes, scale): + if self._scalar_size() not in elsizes: + return + npyv_storen_till = eval(intrin) + data = self._data() + vdata = self.load(data) + lanes = list(range(1, self.nlanes + 1)) + lanes += [self.nlanes**2, self.nlanes**4] + hlanes = self.nlanes // scale + for stride in range(1, 64): + for n in lanes: + data_till = [0xff] * stride * self.nlanes + tdata = data[:n * scale] + [0xff] * (self.nlanes - n * scale) + for s in range(0, hlanes * stride, stride)[:n]: + i = (s // stride) * scale + data_till[s:s + scale] = tdata[i:i + scale] + storen_till = [0xff] * stride * self.nlanes + storen_till += [0x7f] * 64 + npyv_storen_till(storen_till, stride, n, vdata) + assert storen_till[:-64] == data_till + assert storen_till[-64:] == [0x7f] * 64 # detect overflow + + for stride in range(-64, 0): + for n in lanes: + data_till = [0xff] * -stride * self.nlanes + tdata = data[:n * scale] + [0xff] * (self.nlanes - n * scale) + for s in range(0, hlanes * stride, stride)[:n]: + i = (s // stride) * scale + data_till[s - scale:s or None] = tdata[i:i + scale] + storen_till = [0x7f] * 64 + storen_till += [0xff] * -stride * self.nlanes + npyv_storen_till(storen_till, stride, n, vdata) + assert storen_till[64:] == data_till + assert storen_till[:64] == [0x7f] * 64 # detect overflow + + # stride 0 + for n in lanes: + data_till = [0x7f] * self.nlanes + storen_till = data_till.copy() + data_till[0:scale] = data[:n * scale][-scale:] + npyv_storen_till(storen_till, 0, n, vdata) + assert storen_till == data_till + + @pytest.mark.parametrize("intrin, table_size, elsize", [ + ("self.lut32", 32, 32), + ("self.lut16", 16, 64) + ]) + def test_lut(self, intrin, table_size, elsize): + """ + Test lookup table intrinsics: + npyv_lut32_##sfx + npyv_lut16_##sfx + """ + if elsize != self._scalar_size(): + return + intrin = eval(intrin) + idx_itrin = getattr(self.npyv, f"setall_u{elsize}") + table = range(table_size) + for i in table: + broadi = self.setall(i) + idx = idx_itrin(i) + lut = intrin(table, idx) + assert lut == broadi + + def test_misc(self): + broadcast_zero = self.zero() + assert broadcast_zero == [0] * self.nlanes + for i in range(1, 10): + broadcasti = self.setall(i) + assert broadcasti == [i] * self.nlanes + + data_a, data_b = self._data(), self._data(reverse=True) + vdata_a, vdata_b = self.load(data_a), self.load(data_b) + + # py level of npyv_set_* don't support ignoring the extra specified lanes or + # fill non-specified lanes with zero. + vset = self.set(*data_a) + assert vset == data_a + # py level of npyv_setf_* don't support ignoring the extra specified lanes or + # fill non-specified lanes with the specified scalar. + vsetf = self.setf(10, *data_a) + assert vsetf == data_a + + # We're testing the sanity of _simd's type-vector, + # reinterpret* intrinsics itself are tested via compiler + # during the build of _simd module + sfxes = ["u8", "s8", "u16", "s16", "u32", "s32", "u64", "s64"] + if self.npyv.simd_f64: + sfxes.append("f64") + if self.npyv.simd_f32: + sfxes.append("f32") + for sfx in sfxes: + vec_name = getattr(self, "reinterpret_" + sfx)(vdata_a).__name__ + assert vec_name == "npyv_" + sfx + + # select & mask operations + select_a = self.select(self.cmpeq(self.zero(), self.zero()), vdata_a, vdata_b) + assert select_a == data_a + select_b = self.select(self.cmpneq(self.zero(), self.zero()), vdata_a, vdata_b) + assert select_b == data_b + + # test extract elements + assert self.extract0(vdata_b) == vdata_b[0] + + # cleanup intrinsic is only used with AVX for + # zeroing registers to avoid the AVX-SSE transition penalty, + # so nothing to test here + self.npyv.cleanup() + + def test_reorder(self): + data_a, data_b = self._data(), self._data(reverse=True) + vdata_a, vdata_b = self.load(data_a), self.load(data_b) + # lower half part + data_a_lo = data_a[:self.nlanes // 2] + data_b_lo = data_b[:self.nlanes // 2] + # higher half part + data_a_hi = data_a[self.nlanes // 2:] + data_b_hi = data_b[self.nlanes // 2:] + # combine two lower parts + combinel = self.combinel(vdata_a, vdata_b) + assert combinel == data_a_lo + data_b_lo + # combine two higher parts + combineh = self.combineh(vdata_a, vdata_b) + assert combineh == data_a_hi + data_b_hi + # combine x2 + combine = self.combine(vdata_a, vdata_b) + assert combine == (data_a_lo + data_b_lo, data_a_hi + data_b_hi) + + # zip(interleave) + data_zipl = self.load([ + v for p in zip(data_a_lo, data_b_lo) for v in p + ]) + data_ziph = self.load([ + v for p in zip(data_a_hi, data_b_hi) for v in p + ]) + vzip = self.zip(vdata_a, vdata_b) + assert vzip == (data_zipl, data_ziph) + vzip = [0] * self.nlanes * 2 + self._x2("store")(vzip, (vdata_a, vdata_b)) + assert vzip == list(data_zipl) + list(data_ziph) + + # unzip(deinterleave) + unzip = self.unzip(data_zipl, data_ziph) + assert unzip == (data_a, data_b) + unzip = self._x2("load")(list(data_zipl) + list(data_ziph)) + assert unzip == (data_a, data_b) + + def test_reorder_rev64(self): + # Reverse elements of each 64-bit lane + ssize = self._scalar_size() + if ssize == 64: + return + data_rev64 = [ + y for x in range(0, self.nlanes, 64 // ssize) + for y in reversed(range(x, x + 64 // ssize)) + ] + rev64 = self.rev64(self.load(range(self.nlanes))) + assert rev64 == data_rev64 + + def test_reorder_permi128(self): + """ + Test permuting elements for each 128-bit lane. + npyv_permi128_##sfx + """ + ssize = self._scalar_size() + if ssize < 32: + return + data = self.load(self._data()) + permn = 128 // ssize + permd = permn - 1 + nlane128 = self.nlanes // permn + shfl = [0, 1] if ssize == 64 else [0, 2, 4, 6] + for i in range(permn): + indices = [(i >> shf) & permd for shf in shfl] + vperm = self.permi128(data, *indices) + data_vperm = [ + data[j + (e & -permn)] + for e, j in enumerate(indices * nlane128) + ] + assert vperm == data_vperm + + @pytest.mark.parametrize('func, intrin', [ + (operator.lt, "cmplt"), + (operator.le, "cmple"), + (operator.gt, "cmpgt"), + (operator.ge, "cmpge"), + (operator.eq, "cmpeq") + ]) + def test_operators_comparison(self, func, intrin): + if self._is_fp(): + data_a = self._data() + else: + data_a = self._data(self._int_max() - self.nlanes) + data_b = self._data(self._int_min(), reverse=True) + vdata_a, vdata_b = self.load(data_a), self.load(data_b) + intrin = getattr(self, intrin) + + mask_true = self._true_mask() + + def to_bool(vector): + return [lane == mask_true for lane in vector] + + data_cmp = [func(a, b) for a, b in zip(data_a, data_b)] + cmp = to_bool(intrin(vdata_a, vdata_b)) + assert cmp == data_cmp + + def test_operators_logical(self): + if self._is_fp(): + data_a = self._data() + else: + data_a = self._data(self._int_max() - self.nlanes) + data_b = self._data(self._int_min(), reverse=True) + vdata_a, vdata_b = self.load(data_a), self.load(data_b) + + if self._is_fp(): + data_cast_a = self._to_unsigned(vdata_a) + data_cast_b = self._to_unsigned(vdata_b) + cast, cast_data = self._to_unsigned, self._to_unsigned + else: + data_cast_a, data_cast_b = data_a, data_b + cast, cast_data = lambda a: a, self.load + + data_xor = cast_data([a ^ b for a, b in zip(data_cast_a, data_cast_b)]) + vxor = cast(self.xor(vdata_a, vdata_b)) + assert vxor == data_xor + + data_or = cast_data([a | b for a, b in zip(data_cast_a, data_cast_b)]) + vor = cast(getattr(self, "or")(vdata_a, vdata_b)) + assert vor == data_or + + data_and = cast_data([a & b for a, b in zip(data_cast_a, data_cast_b)]) + vand = cast(getattr(self, "and")(vdata_a, vdata_b)) + assert vand == data_and + + data_not = cast_data([~a for a in data_cast_a]) + vnot = cast(getattr(self, "not")(vdata_a)) + assert vnot == data_not + + if self.sfx not in ("u8"): + return + data_andc = [a & ~b for a, b in zip(data_cast_a, data_cast_b)] + vandc = cast(self.andc(vdata_a, vdata_b)) + assert vandc == data_andc + + @pytest.mark.parametrize("intrin", ["any", "all"]) + @pytest.mark.parametrize("data", ( + [1, 2, 3, 4], + [-1, -2, -3, -4], + [0, 1, 2, 3, 4], + [0x7f, 0x7fff, 0x7fffffff, 0x7fffffffffffffff], + [0, -1, -2, -3, 4], + [0], + [1], + [-1] + )) + def test_operators_crosstest(self, intrin, data): + """ + Test intrinsics: + npyv_any_##SFX + npyv_all_##SFX + """ + data_a = self.load(data * self.nlanes) + func = eval(intrin) + intrin = getattr(self, intrin) + desired = func(data_a) + simd = intrin(data_a) + assert not not simd == desired + + def test_conversion_boolean(self): + bsfx = "b" + self.sfx[1:] + to_boolean = getattr(self.npyv, f"cvt_{bsfx}_{self.sfx}") + from_boolean = getattr(self.npyv, f"cvt_{self.sfx}_{bsfx}") + + false_vb = to_boolean(self.setall(0)) + true_vb = self.cmpeq(self.setall(0), self.setall(0)) + assert false_vb != true_vb + + false_vsfx = from_boolean(false_vb) + true_vsfx = from_boolean(true_vb) + assert false_vsfx != true_vsfx + + def test_conversion_expand(self): + """ + Test expand intrinsics: + npyv_expand_u16_u8 + npyv_expand_u32_u16 + """ + if self.sfx not in ("u8", "u16"): + return + totype = self.sfx[0] + str(int(self.sfx[1:]) * 2) + expand = getattr(self.npyv, f"expand_{totype}_{self.sfx}") + # close enough from the edge to detect any deviation + data = self._data(self._int_max() - self.nlanes) + vdata = self.load(data) + edata = expand(vdata) + # lower half part + data_lo = data[:self.nlanes // 2] + # higher half part + data_hi = data[self.nlanes // 2:] + assert edata == (data_lo, data_hi) + + def test_arithmetic_subadd(self): + if self._is_fp(): + data_a = self._data() + else: + data_a = self._data(self._int_max() - self.nlanes) + data_b = self._data(self._int_min(), reverse=True) + vdata_a, vdata_b = self.load(data_a), self.load(data_b) + + # non-saturated + data_add = self.load([a + b for a, b in zip(data_a, data_b)]) # load to cast + add = self.add(vdata_a, vdata_b) + assert add == data_add + data_sub = self.load([a - b for a, b in zip(data_a, data_b)]) + sub = self.sub(vdata_a, vdata_b) + assert sub == data_sub + + def test_arithmetic_mul(self): + if self.sfx in ("u64", "s64"): + return + + if self._is_fp(): + data_a = self._data() + else: + data_a = self._data(self._int_max() - self.nlanes) + data_b = self._data(self._int_min(), reverse=True) + vdata_a, vdata_b = self.load(data_a), self.load(data_b) + + data_mul = self.load([a * b for a, b in zip(data_a, data_b)]) + mul = self.mul(vdata_a, vdata_b) + assert mul == data_mul + + def test_arithmetic_div(self): + if not self._is_fp(): + return + + data_a, data_b = self._data(), self._data(reverse=True) + vdata_a, vdata_b = self.load(data_a), self.load(data_b) + + # load to truncate f64 to precision of f32 + data_div = self.load([a / b for a, b in zip(data_a, data_b)]) + div = self.div(vdata_a, vdata_b) + assert div == data_div + + def test_arithmetic_intdiv(self): + """ + Test integer division intrinsics: + npyv_divisor_##sfx + npyv_divc_##sfx + """ + if self._is_fp(): + return + + int_min = self._int_min() + + def trunc_div(a, d): + """ + Divide towards zero works with large integers > 2^53, + and wrap around overflow similar to what C does. + """ + if d == -1 and a == int_min: + return a + sign_a, sign_d = a < 0, d < 0 + if a == 0 or sign_a == sign_d: + return a // d + return (a + sign_d - sign_a) // d + 1 + + data = [1, -int_min] # to test overflow + data += range(0, 2**8, 2**5) + data += range(0, 2**8, 2**5 - 1) + bsize = self._scalar_size() + if bsize > 8: + data += range(2**8, 2**16, 2**13) + data += range(2**8, 2**16, 2**13 - 1) + if bsize > 16: + data += range(2**16, 2**32, 2**29) + data += range(2**16, 2**32, 2**29 - 1) + if bsize > 32: + data += range(2**32, 2**64, 2**61) + data += range(2**32, 2**64, 2**61 - 1) + # negate + data += [-x for x in data] + for dividend, divisor in itertools.product(data, data): + divisor = self.setall(divisor)[0] # cast + if divisor == 0: + continue + dividend = self.load(self._data(dividend)) + data_divc = [trunc_div(a, divisor) for a in dividend] + divisor_parms = self.divisor(divisor) + divc = self.divc(dividend, divisor_parms) + assert divc == data_divc + + def test_arithmetic_reduce_sum(self): + """ + Test reduce sum intrinsics: + npyv_sum_##sfx + """ + if self.sfx not in ("u32", "u64", "f32", "f64"): + return + # reduce sum + data = self._data() + vdata = self.load(data) + + data_sum = sum(data) + vsum = self.sum(vdata) + assert vsum == data_sum + + def test_arithmetic_reduce_sumup(self): + """ + Test extend reduce sum intrinsics: + npyv_sumup_##sfx + """ + if self.sfx not in ("u8", "u16"): + return + rdata = (0, self.nlanes, self._int_min(), self._int_max() - self.nlanes) + for r in rdata: + data = self._data(r) + vdata = self.load(data) + data_sum = sum(data) + vsum = self.sumup(vdata) + assert vsum == data_sum + + def test_mask_conditional(self): + """ + Conditional addition and subtraction for all supported data types. + Test intrinsics: + npyv_ifadd_##SFX, npyv_ifsub_##SFX + """ + vdata_a = self.load(self._data()) + vdata_b = self.load(self._data(reverse=True)) + true_mask = self.cmpeq(self.zero(), self.zero()) + false_mask = self.cmpneq(self.zero(), self.zero()) + + data_sub = self.sub(vdata_b, vdata_a) + ifsub = self.ifsub(true_mask, vdata_b, vdata_a, vdata_b) + assert ifsub == data_sub + ifsub = self.ifsub(false_mask, vdata_a, vdata_b, vdata_b) + assert ifsub == vdata_b + + data_add = self.add(vdata_b, vdata_a) + ifadd = self.ifadd(true_mask, vdata_b, vdata_a, vdata_b) + assert ifadd == data_add + ifadd = self.ifadd(false_mask, vdata_a, vdata_b, vdata_b) + assert ifadd == vdata_b + + if not self._is_fp(): + return + data_div = self.div(vdata_b, vdata_a) + ifdiv = self.ifdiv(true_mask, vdata_b, vdata_a, vdata_b) + assert ifdiv == data_div + ifdivz = self.ifdivz(true_mask, vdata_b, vdata_a) + assert ifdivz == data_div + ifdiv = self.ifdiv(false_mask, vdata_a, vdata_b, vdata_b) + assert ifdiv == vdata_b + ifdivz = self.ifdivz(false_mask, vdata_a, vdata_b) + assert ifdivz == self.zero() + + +bool_sfx = ("b8", "b16", "b32", "b64") +int_sfx = ("u8", "s8", "u16", "s16", "u32", "s32", "u64", "s64") +fp_sfx = ("f32", "f64") +all_sfx = int_sfx + fp_sfx +tests_registry = { + bool_sfx: _SIMD_BOOL, + int_sfx: _SIMD_INT, + fp_sfx: _SIMD_FP, + ("f32",): _SIMD_FP32, + ("f64",): _SIMD_FP64, + all_sfx: _SIMD_ALL +} +for target_name, npyv in targets.items(): + simd_width = npyv.simd if npyv else '' + pretty_name = target_name.split('__') # multi-target separator + if len(pretty_name) > 1: + # multi-target + pretty_name = f"({' '.join(pretty_name)})" + else: + pretty_name = pretty_name[0] + + skip = "" + skip_sfx = {} + if not npyv: + skip = f"target '{pretty_name}' isn't supported by current machine" + elif not npyv.simd: + skip = f"target '{pretty_name}' isn't supported by NPYV" + else: + if not npyv.simd_f32: + skip_sfx["f32"] = f"target '{pretty_name}' "\ + "doesn't support single-precision" + if not npyv.simd_f64: + skip_sfx["f64"] = f"target '{pretty_name}' doesn't"\ + "support double-precision" + + for sfxes, cls in tests_registry.items(): + for sfx in sfxes: + skip_m = skip_sfx.get(sfx, skip) + inhr = (cls,) + attr = {"npyv": targets[target_name], "sfx": sfx, "target_name": target_name} + tcls = type(f"Test{cls.__name__}_{simd_width}_{target_name}_{sfx}", inhr, attr) + if skip_m: + pytest.mark.skip(reason=skip_m)(tcls) + globals()[tcls.__name__] = tcls diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_simd_module.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_simd_module.py new file mode 100644 index 0000000..dca83fd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_simd_module.py @@ -0,0 +1,103 @@ +import pytest + +from numpy._core._simd import targets + +""" +This testing unit only for checking the sanity of common functionality, +therefore all we need is just to take one submodule that represents any +of enabled SIMD extensions to run the test on it and the second submodule +required to run only one check related to the possibility of mixing +the data types among each submodule. +""" +npyvs = [npyv_mod for npyv_mod in targets.values() if npyv_mod and npyv_mod.simd] +npyv, npyv2 = (npyvs + [None, None])[:2] + +unsigned_sfx = ["u8", "u16", "u32", "u64"] +signed_sfx = ["s8", "s16", "s32", "s64"] +fp_sfx = [] +if npyv and npyv.simd_f32: + fp_sfx.append("f32") +if npyv and npyv.simd_f64: + fp_sfx.append("f64") + +int_sfx = unsigned_sfx + signed_sfx +all_sfx = unsigned_sfx + int_sfx + +@pytest.mark.skipif(not npyv, reason="could not find any SIMD extension with NPYV support") +class Test_SIMD_MODULE: + + @pytest.mark.parametrize('sfx', all_sfx) + def test_num_lanes(self, sfx): + nlanes = getattr(npyv, "nlanes_" + sfx) + vector = getattr(npyv, "setall_" + sfx)(1) + assert len(vector) == nlanes + + @pytest.mark.parametrize('sfx', all_sfx) + def test_type_name(self, sfx): + vector = getattr(npyv, "setall_" + sfx)(1) + assert vector.__name__ == "npyv_" + sfx + + def test_raises(self): + a, b = [npyv.setall_u32(1)] * 2 + for sfx in all_sfx: + vcb = lambda intrin: getattr(npyv, f"{intrin}_{sfx}") + pytest.raises(TypeError, vcb("add"), a) + pytest.raises(TypeError, vcb("add"), a, b, a) + pytest.raises(TypeError, vcb("setall")) + pytest.raises(TypeError, vcb("setall"), [1]) + pytest.raises(TypeError, vcb("load"), 1) + pytest.raises(ValueError, vcb("load"), [1]) + pytest.raises(ValueError, vcb("store"), [1], getattr(npyv, f"reinterpret_{sfx}_u32")(a)) + + @pytest.mark.skipif(not npyv2, reason=( + "could not find a second SIMD extension with NPYV support" + )) + def test_nomix(self): + # mix among submodules isn't allowed + a = npyv.setall_u32(1) + a2 = npyv2.setall_u32(1) + pytest.raises(TypeError, npyv.add_u32, a2, a2) + pytest.raises(TypeError, npyv2.add_u32, a, a) + + @pytest.mark.parametrize('sfx', unsigned_sfx) + def test_unsigned_overflow(self, sfx): + nlanes = getattr(npyv, "nlanes_" + sfx) + maxu = (1 << int(sfx[1:])) - 1 + maxu_72 = (1 << 72) - 1 + lane = getattr(npyv, "setall_" + sfx)(maxu_72)[0] + assert lane == maxu + lanes = getattr(npyv, "load_" + sfx)([maxu_72] * nlanes) + assert lanes == [maxu] * nlanes + lane = getattr(npyv, "setall_" + sfx)(-1)[0] + assert lane == maxu + lanes = getattr(npyv, "load_" + sfx)([-1] * nlanes) + assert lanes == [maxu] * nlanes + + @pytest.mark.parametrize('sfx', signed_sfx) + def test_signed_overflow(self, sfx): + nlanes = getattr(npyv, "nlanes_" + sfx) + maxs_72 = (1 << 71) - 1 + lane = getattr(npyv, "setall_" + sfx)(maxs_72)[0] + assert lane == -1 + lanes = getattr(npyv, "load_" + sfx)([maxs_72] * nlanes) + assert lanes == [-1] * nlanes + mins_72 = -1 << 71 + lane = getattr(npyv, "setall_" + sfx)(mins_72)[0] + assert lane == 0 + lanes = getattr(npyv, "load_" + sfx)([mins_72] * nlanes) + assert lanes == [0] * nlanes + + def test_truncate_f32(self): + if not npyv.simd_f32: + pytest.skip("F32 isn't support by the SIMD extension") + f32 = npyv.setall_f32(0.1)[0] + assert f32 != 0.1 + assert round(f32, 1) == 0.1 + + def test_compare(self): + data_range = range(npyv.nlanes_u32) + vdata = npyv.load_u32(data_range) + assert vdata == list(data_range) + assert vdata == tuple(data_range) + for i in data_range: + assert vdata[i] == data_range[i] diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_stringdtype.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_stringdtype.py new file mode 100644 index 0000000..e39d746 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_stringdtype.py @@ -0,0 +1,1807 @@ +import copy +import itertools +import os +import pickle +import sys +import tempfile + +import pytest + +import numpy as np +from numpy._core.tests._natype import get_stringdtype_dtype as get_dtype +from numpy._core.tests._natype import pd_NA +from numpy.dtypes import StringDType +from numpy.testing import IS_PYPY, assert_array_equal + + +@pytest.fixture +def string_list(): + return ["abc", "def", "ghi" * 10, "A¢☃€ 😊" * 100, "Abc" * 1000, "DEF"] + + +# second copy for cast tests to do a cartesian product over dtypes +@pytest.fixture(params=[True, False]) +def coerce2(request): + return request.param + + +@pytest.fixture( + params=["unset", None, pd_NA, np.nan, float("nan"), "__nan__"], + ids=["unset", "None", "pandas.NA", "np.nan", "float('nan')", "string nan"], +) +def na_object2(request): + return request.param + + +@pytest.fixture() +def dtype2(na_object2, coerce2): + # explicit is check for pd_NA because != with pd_NA returns pd_NA + if na_object2 is pd_NA or na_object2 != "unset": + return StringDType(na_object=na_object2, coerce=coerce2) + else: + return StringDType(coerce=coerce2) + + +def test_dtype_creation(): + hashes = set() + dt = StringDType() + assert not hasattr(dt, "na_object") and dt.coerce is True + hashes.add(hash(dt)) + + dt = StringDType(na_object=None) + assert dt.na_object is None and dt.coerce is True + hashes.add(hash(dt)) + + dt = StringDType(coerce=False) + assert not hasattr(dt, "na_object") and dt.coerce is False + hashes.add(hash(dt)) + + dt = StringDType(na_object=None, coerce=False) + assert dt.na_object is None and dt.coerce is False + hashes.add(hash(dt)) + + assert len(hashes) == 4 + + dt = np.dtype("T") + assert dt == StringDType() + assert dt.kind == "T" + assert dt.char == "T" + + hashes.add(hash(dt)) + assert len(hashes) == 4 + + +def test_dtype_equality(dtype): + assert dtype == dtype + for ch in "SU": + assert dtype != np.dtype(ch) + assert dtype != np.dtype(f"{ch}8") + + +def test_dtype_repr(dtype): + if not hasattr(dtype, "na_object") and dtype.coerce: + assert repr(dtype) == "StringDType()" + elif dtype.coerce: + assert repr(dtype) == f"StringDType(na_object={dtype.na_object!r})" + elif not hasattr(dtype, "na_object"): + assert repr(dtype) == "StringDType(coerce=False)" + else: + assert ( + repr(dtype) + == f"StringDType(na_object={dtype.na_object!r}, coerce=False)" + ) + + +def test_create_with_na(dtype): + if not hasattr(dtype, "na_object"): + pytest.skip("does not have an na object") + na_val = dtype.na_object + string_list = ["hello", na_val, "world"] + arr = np.array(string_list, dtype=dtype) + assert str(arr) == "[" + " ".join([repr(s) for s in string_list]) + "]" + assert arr[1] is dtype.na_object + + +@pytest.mark.parametrize("i", list(range(5))) +def test_set_replace_na(i): + # Test strings of various lengths can be set to NaN and then replaced. + s_empty = "" + s_short = "0123456789" + s_medium = "abcdefghijklmnopqrstuvwxyz" + s_long = "-=+" * 100 + strings = [s_medium, s_empty, s_short, s_medium, s_long] + a = np.array(strings, StringDType(na_object=np.nan)) + for s in [a[i], s_medium + s_short, s_short, s_empty, s_long]: + a[i] = np.nan + assert np.isnan(a[i]) + a[i] = s + assert a[i] == s + assert_array_equal(a, strings[:i] + [s] + strings[i + 1:]) + + +def test_null_roundtripping(): + data = ["hello\0world", "ABC\0DEF\0\0"] + arr = np.array(data, dtype="T") + assert data[0] == arr[0] + assert data[1] == arr[1] + + +def test_string_too_large_error(): + arr = np.array(["a", "b", "c"], dtype=StringDType()) + with pytest.raises(OverflowError): + arr * (sys.maxsize + 1) + + +@pytest.mark.parametrize( + "data", + [ + ["abc", "def", "ghi"], + ["🤣", "📵", "😰"], + ["🚜", "🙃", "😾"], + ["😹", "🚠", "🚌"], + ], +) +def test_array_creation_utf8(dtype, data): + arr = np.array(data, dtype=dtype) + assert str(arr) == "[" + " ".join(["'" + str(d) + "'" for d in data]) + "]" + assert arr.dtype == dtype + + +@pytest.mark.parametrize( + "data", + [ + [1, 2, 3], + [b"abc", b"def", b"ghi"], + [object, object, object], + ], +) +def test_scalars_string_conversion(data, dtype): + try: + str_vals = [str(d.decode('utf-8')) for d in data] + except AttributeError: + str_vals = [str(d) for d in data] + if dtype.coerce: + assert_array_equal( + np.array(data, dtype=dtype), + np.array(str_vals, dtype=dtype), + ) + else: + with pytest.raises(ValueError): + np.array(data, dtype=dtype) + + +@pytest.mark.parametrize( + ("strings"), + [ + ["this", "is", "an", "array"], + ["€", "", "😊"], + ["A¢☃€ 😊", " A☃€¢😊", "☃€😊 A¢", "😊☃A¢ €"], + ], +) +def test_self_casts(dtype, dtype2, strings): + if hasattr(dtype, "na_object"): + strings = strings + [dtype.na_object] + elif hasattr(dtype2, "na_object"): + strings = strings + [""] + arr = np.array(strings, dtype=dtype) + newarr = arr.astype(dtype2) + + if hasattr(dtype, "na_object") and not hasattr(dtype2, "na_object"): + assert newarr[-1] == str(dtype.na_object) + with pytest.raises(TypeError): + arr.astype(dtype2, casting="safe") + elif hasattr(dtype, "na_object") and hasattr(dtype2, "na_object"): + assert newarr[-1] is dtype2.na_object + arr.astype(dtype2, casting="safe") + elif hasattr(dtype2, "na_object"): + assert newarr[-1] == "" + arr.astype(dtype2, casting="safe") + else: + arr.astype(dtype2, casting="safe") + + if hasattr(dtype, "na_object") and hasattr(dtype2, "na_object"): + na1 = dtype.na_object + na2 = dtype2.na_object + if (na1 is not na2 and + # check for pd_NA first because bool(pd_NA) is an error + ((na1 is pd_NA or na2 is pd_NA) or + # the second check is a NaN check, spelled this way + # to avoid errors from math.isnan and np.isnan + (na1 != na2 and not (na1 != na1 and na2 != na2)))): + with pytest.raises(TypeError): + arr[:-1] == newarr[:-1] + return + assert_array_equal(arr[:-1], newarr[:-1]) + + +@pytest.mark.parametrize( + ("strings"), + [ + ["this", "is", "an", "array"], + ["€", "", "😊"], + ["A¢☃€ 😊", " A☃€¢😊", "☃€😊 A¢", "😊☃A¢ €"], + ], +) +class TestStringLikeCasts: + def test_unicode_casts(self, dtype, strings): + arr = np.array(strings, dtype=np.str_).astype(dtype) + expected = np.array(strings, dtype=dtype) + assert_array_equal(arr, expected) + + arr_as_U8 = expected.astype("U8") + assert_array_equal(arr_as_U8, np.array(strings, dtype="U8")) + assert_array_equal(arr_as_U8.astype(dtype), arr) + arr_as_U3 = expected.astype("U3") + assert_array_equal(arr_as_U3, np.array(strings, dtype="U3")) + assert_array_equal( + arr_as_U3.astype(dtype), + np.array([s[:3] for s in strings], dtype=dtype), + ) + + def test_void_casts(self, dtype, strings): + sarr = np.array(strings, dtype=dtype) + utf8_bytes = [s.encode("utf-8") for s in strings] + void_dtype = f"V{max(len(s) for s in utf8_bytes)}" + varr = np.array(utf8_bytes, dtype=void_dtype) + assert_array_equal(varr, sarr.astype(void_dtype)) + assert_array_equal(varr.astype(dtype), sarr) + + def test_bytes_casts(self, dtype, strings): + sarr = np.array(strings, dtype=dtype) + try: + utf8_bytes = [s.encode("ascii") for s in strings] + bytes_dtype = f"S{max(len(s) for s in utf8_bytes)}" + barr = np.array(utf8_bytes, dtype=bytes_dtype) + assert_array_equal(barr, sarr.astype(bytes_dtype)) + assert_array_equal(barr.astype(dtype), sarr) + if dtype.coerce: + barr = np.array(utf8_bytes, dtype=dtype) + assert_array_equal(barr, sarr) + barr = np.array(utf8_bytes, dtype="O") + assert_array_equal(barr.astype(dtype), sarr) + else: + with pytest.raises(ValueError): + np.array(utf8_bytes, dtype=dtype) + except UnicodeEncodeError: + with pytest.raises(UnicodeEncodeError): + sarr.astype("S20") + + +def test_additional_unicode_cast(random_string_list, dtype): + arr = np.array(random_string_list, dtype=dtype) + # test that this short-circuits correctly + assert_array_equal(arr, arr.astype(arr.dtype)) + # tests the casts via the comparison promoter + assert_array_equal(arr, arr.astype(random_string_list.dtype)) + + +def test_insert_scalar(dtype, string_list): + """Test that inserting a scalar works.""" + arr = np.array(string_list, dtype=dtype) + scalar_instance = "what" + arr[1] = scalar_instance + assert_array_equal( + arr, + np.array(string_list[:1] + ["what"] + string_list[2:], dtype=dtype), + ) + + +comparison_operators = [ + np.equal, + np.not_equal, + np.greater, + np.greater_equal, + np.less, + np.less_equal, +] + + +@pytest.mark.parametrize("op", comparison_operators) +@pytest.mark.parametrize("o_dtype", [np.str_, object, StringDType()]) +def test_comparisons(string_list, dtype, op, o_dtype): + sarr = np.array(string_list, dtype=dtype) + oarr = np.array(string_list, dtype=o_dtype) + + # test that comparison operators work + res = op(sarr, sarr) + ores = op(oarr, oarr) + # test that promotion works as well + orres = op(sarr, oarr) + olres = op(oarr, sarr) + + assert_array_equal(res, ores) + assert_array_equal(res, orres) + assert_array_equal(res, olres) + + # test we get the correct answer for unequal length strings + sarr2 = np.array([s + "2" for s in string_list], dtype=dtype) + oarr2 = np.array([s + "2" for s in string_list], dtype=o_dtype) + + res = op(sarr, sarr2) + ores = op(oarr, oarr2) + olres = op(oarr, sarr2) + orres = op(sarr, oarr2) + + assert_array_equal(res, ores) + assert_array_equal(res, olres) + assert_array_equal(res, orres) + + res = op(sarr2, sarr) + ores = op(oarr2, oarr) + olres = op(oarr2, sarr) + orres = op(sarr2, oarr) + + assert_array_equal(res, ores) + assert_array_equal(res, olres) + assert_array_equal(res, orres) + + +def test_isnan(dtype, string_list): + if not hasattr(dtype, "na_object"): + pytest.skip("no na support") + sarr = np.array(string_list + [dtype.na_object], dtype=dtype) + is_nan = isinstance(dtype.na_object, float) and np.isnan(dtype.na_object) + bool_errors = 0 + try: + bool(dtype.na_object) + except TypeError: + bool_errors = 1 + if is_nan or bool_errors: + # isnan is only true when na_object is a NaN + assert_array_equal( + np.isnan(sarr), + np.array([0] * len(string_list) + [1], dtype=np.bool), + ) + else: + assert not np.any(np.isnan(sarr)) + + +def test_pickle(dtype, string_list): + arr = np.array(string_list, dtype=dtype) + + with tempfile.NamedTemporaryFile("wb", delete=False) as f: + pickle.dump([arr, dtype], f) + + with open(f.name, "rb") as f: + res = pickle.load(f) + + assert_array_equal(res[0], arr) + assert res[1] == dtype + + os.remove(f.name) + + +def test_stdlib_copy(dtype, string_list): + arr = np.array(string_list, dtype=dtype) + + assert_array_equal(copy.copy(arr), arr) + assert_array_equal(copy.deepcopy(arr), arr) + + +@pytest.mark.parametrize( + "strings", + [ + ["left", "right", "leftovers", "righty", "up", "down"], + [ + "left" * 10, + "right" * 10, + "leftovers" * 10, + "righty" * 10, + "up" * 10, + ], + ["🤣🤣", "🤣", "📵", "😰"], + ["🚜", "🙃", "😾"], + ["😹", "🚠", "🚌"], + ["A¢☃€ 😊", " A☃€¢😊", "☃€😊 A¢", "😊☃A¢ €"], + ], +) +def test_sort(dtype, strings): + """Test that sorting matches python's internal sorting.""" + + def test_sort(strings, arr_sorted): + arr = np.array(strings, dtype=dtype) + na_object = getattr(arr.dtype, "na_object", "") + if na_object is None and None in strings: + with pytest.raises( + ValueError, + match="Cannot compare null that is not a nan-like value", + ): + np.argsort(arr) + argsorted = None + elif na_object is pd_NA or na_object != '': + argsorted = None + else: + argsorted = np.argsort(arr) + np.random.default_rng().shuffle(arr) + if na_object is None and None in strings: + with pytest.raises( + ValueError, + match="Cannot compare null that is not a nan-like value", + ): + arr.sort() + else: + arr.sort() + assert np.array_equal(arr, arr_sorted, equal_nan=True) + if argsorted is not None: + assert np.array_equal(argsorted, np.argsort(strings)) + + # make a copy so we don't mutate the lists in the fixture + strings = strings.copy() + arr_sorted = np.array(sorted(strings), dtype=dtype) + test_sort(strings, arr_sorted) + + if not hasattr(dtype, "na_object"): + return + + # make sure NAs get sorted to the end of the array and string NAs get + # sorted like normal strings + strings.insert(0, dtype.na_object) + strings.insert(2, dtype.na_object) + # can't use append because doing that with NA converts + # the result to object dtype + if not isinstance(dtype.na_object, str): + arr_sorted = np.array( + arr_sorted.tolist() + [dtype.na_object, dtype.na_object], + dtype=dtype, + ) + else: + arr_sorted = np.array(sorted(strings), dtype=dtype) + + test_sort(strings, arr_sorted) + + +@pytest.mark.parametrize( + "strings", + [ + ["A¢☃€ 😊", " A☃€¢😊", "☃€😊 A¢", "😊☃A¢ €"], + ["A¢☃€ 😊", "", " ", " "], + ["", "a", "😸", "ááðfáíóåéë"], + ], +) +def test_nonzero(strings, na_object): + dtype = get_dtype(na_object) + arr = np.array(strings, dtype=dtype) + is_nonzero = np.array( + [i for i, item in enumerate(strings) if len(item) != 0]) + assert_array_equal(arr.nonzero()[0], is_nonzero) + + if na_object is not pd_NA and na_object == 'unset': + return + + strings_with_na = np.array(strings + [na_object], dtype=dtype) + is_nan = np.isnan(np.array([dtype.na_object], dtype=dtype))[0] + + if is_nan: + assert strings_with_na.nonzero()[0][-1] == 4 + else: + assert strings_with_na.nonzero()[0][-1] == 3 + + # check that the casting to bool and nonzero give consistent results + assert_array_equal(strings_with_na[strings_with_na.nonzero()], + strings_with_na[strings_with_na.astype(bool)]) + + +def test_where(string_list, na_object): + dtype = get_dtype(na_object) + a = np.array(string_list, dtype=dtype) + b = a[::-1] + res = np.where([True, False, True, False, True, False], a, b) + assert_array_equal(res, [a[0], b[1], a[2], b[3], a[4], b[5]]) + + +def test_fancy_indexing(string_list): + sarr = np.array(string_list, dtype="T") + assert_array_equal(sarr, sarr[np.arange(sarr.shape[0])]) + + inds = [ + [True, True], + [0, 1], + ..., + np.array([0, 1], dtype='uint8'), + ] + + lops = [ + ['a' * 25, 'b' * 25], + ['', ''], + ['hello', 'world'], + ['hello', 'world' * 25], + ] + + # see gh-27003 and gh-27053 + for ind in inds: + for lop in lops: + a = np.array(lop, dtype="T") + assert_array_equal(a[ind], a) + rop = ['d' * 25, 'e' * 25] + for b in [rop, np.array(rop, dtype="T")]: + a[ind] = b + assert_array_equal(a, b) + assert a[0] == 'd' * 25 + + # see gh-29279 + data = [ + ["AAAAAAAAAAAAAAAAA"], + ["BBBBBBBBBBBBBBBBBBBBBBBBBBBBB"], + ["CCCCCCCCCCCCCCCCC"], + ["DDDDDDDDDDDDDDDDD"], + ] + sarr = np.array(data, dtype=np.dtypes.StringDType()) + uarr = np.array(data, dtype="U30") + for ind in [[0], [1], [2], [3], [[0, 0]], [[1, 1, 3]], [[1, 1]]]: + assert_array_equal(sarr[ind], uarr[ind]) + + +def test_creation_functions(): + assert_array_equal(np.zeros(3, dtype="T"), ["", "", ""]) + assert_array_equal(np.empty(3, dtype="T"), ["", "", ""]) + + assert np.zeros(3, dtype="T")[0] == "" + assert np.empty(3, dtype="T")[0] == "" + + +def test_concatenate(string_list): + sarr = np.array(string_list, dtype="T") + sarr_cat = np.array(string_list + string_list, dtype="T") + + assert_array_equal(np.concatenate([sarr], axis=0), sarr) + + +def test_resize_method(string_list): + sarr = np.array(string_list, dtype="T") + if IS_PYPY: + sarr.resize(len(string_list) + 3, refcheck=False) + else: + sarr.resize(len(string_list) + 3) + assert_array_equal(sarr, np.array(string_list + [''] * 3, dtype="T")) + + +def test_create_with_copy_none(string_list): + arr = np.array(string_list, dtype=StringDType()) + # create another stringdtype array with an arena that has a different + # in-memory layout than the first array + arr_rev = np.array(string_list[::-1], dtype=StringDType()) + + # this should create a copy and the resulting array + # shouldn't share an allocator or arena with arr_rev, despite + # explicitly passing arr_rev.dtype + arr_copy = np.array(arr, copy=None, dtype=arr_rev.dtype) + np.testing.assert_array_equal(arr, arr_copy) + assert arr_copy.base is None + + with pytest.raises(ValueError, match="Unable to avoid copy"): + np.array(arr, copy=False, dtype=arr_rev.dtype) + + # because we're using arr's dtype instance, the view is safe + arr_view = np.array(arr, copy=None, dtype=arr.dtype) + np.testing.assert_array_equal(arr, arr) + np.testing.assert_array_equal(arr_view[::-1], arr_rev) + assert arr_view is arr + + +def test_astype_copy_false(): + orig_dt = StringDType() + arr = np.array(["hello", "world"], dtype=StringDType()) + assert not arr.astype(StringDType(coerce=False), copy=False).dtype.coerce + + assert arr.astype(orig_dt, copy=False).dtype is orig_dt + +@pytest.mark.parametrize( + "strings", + [ + ["left", "right", "leftovers", "righty", "up", "down"], + ["🤣🤣", "🤣", "📵", "😰"], + ["🚜", "🙃", "😾"], + ["😹", "🚠", "🚌"], + ["A¢☃€ 😊", " A☃€¢😊", "☃€😊 A¢", "😊☃A¢ €"], + ], +) +def test_argmax(strings): + """Test that argmax/argmin matches what python calculates.""" + arr = np.array(strings, dtype="T") + assert np.argmax(arr) == strings.index(max(strings)) + assert np.argmin(arr) == strings.index(min(strings)) + + +@pytest.mark.parametrize( + "arrfunc,expected", + [ + [np.sort, None], + [np.nonzero, (np.array([], dtype=np.int_),)], + [np.argmax, 0], + [np.argmin, 0], + ], +) +def test_arrfuncs_zeros(arrfunc, expected): + arr = np.zeros(10, dtype="T") + result = arrfunc(arr) + if expected is None: + expected = arr + assert_array_equal(result, expected, strict=True) + + +@pytest.mark.parametrize( + ("strings", "cast_answer", "any_answer", "all_answer"), + [ + [["hello", "world"], [True, True], True, True], + [["", ""], [False, False], False, False], + [["hello", ""], [True, False], True, False], + [["", "world"], [False, True], True, False], + ], +) +def test_cast_to_bool(strings, cast_answer, any_answer, all_answer): + sarr = np.array(strings, dtype="T") + assert_array_equal(sarr.astype("bool"), cast_answer) + + assert np.any(sarr) == any_answer + assert np.all(sarr) == all_answer + + +@pytest.mark.parametrize( + ("strings", "cast_answer"), + [ + [[True, True], ["True", "True"]], + [[False, False], ["False", "False"]], + [[True, False], ["True", "False"]], + [[False, True], ["False", "True"]], + ], +) +def test_cast_from_bool(strings, cast_answer): + barr = np.array(strings, dtype=bool) + assert_array_equal(barr.astype("T"), np.array(cast_answer, dtype="T")) + + +@pytest.mark.parametrize("bitsize", [8, 16, 32, 64]) +@pytest.mark.parametrize("signed", [True, False]) +def test_sized_integer_casts(bitsize, signed): + idtype = f"int{bitsize}" + if signed: + inp = [-(2**p - 1) for p in reversed(range(bitsize - 1))] + inp += [2**p - 1 for p in range(1, bitsize - 1)] + else: + idtype = "u" + idtype + inp = [2**p - 1 for p in range(bitsize)] + ainp = np.array(inp, dtype=idtype) + assert_array_equal(ainp, ainp.astype("T").astype(idtype)) + + # safe casting works + ainp.astype("T", casting="safe") + + with pytest.raises(TypeError): + ainp.astype("T").astype(idtype, casting="safe") + + oob = [str(2**bitsize), str(-(2**bitsize))] + with pytest.raises(OverflowError): + np.array(oob, dtype="T").astype(idtype) + + with pytest.raises(ValueError): + np.array(["1", np.nan, "3"], + dtype=StringDType(na_object=np.nan)).astype(idtype) + + +@pytest.mark.parametrize("typename", ["byte", "short", "int", "longlong"]) +@pytest.mark.parametrize("signed", ["", "u"]) +def test_unsized_integer_casts(typename, signed): + idtype = f"{signed}{typename}" + + inp = [1, 2, 3, 4] + ainp = np.array(inp, dtype=idtype) + assert_array_equal(ainp, ainp.astype("T").astype(idtype)) + + +@pytest.mark.parametrize( + "typename", + [ + pytest.param( + "longdouble", + marks=pytest.mark.xfail( + np.dtypes.LongDoubleDType() != np.dtypes.Float64DType(), + reason="numpy lacks an ld2a implementation", + strict=True, + ), + ), + "float64", + "float32", + "float16", + ], +) +def test_float_casts(typename): + inp = [1.1, 2.8, -3.2, 2.7e4] + ainp = np.array(inp, dtype=typename) + assert_array_equal(ainp, ainp.astype("T").astype(typename)) + + inp = [0.1] + sres = np.array(inp, dtype=typename).astype("T") + res = sres.astype(typename) + assert_array_equal(np.array(inp, dtype=typename), res) + assert sres[0] == "0.1" + + if typename == "longdouble": + # let's not worry about platform-dependent rounding of longdouble + return + + fi = np.finfo(typename) + + inp = [1e-324, fi.smallest_subnormal, -1e-324, -fi.smallest_subnormal] + eres = [0, fi.smallest_subnormal, -0, -fi.smallest_subnormal] + res = np.array(inp, dtype=typename).astype("T").astype(typename) + assert_array_equal(eres, res) + + inp = [2e308, fi.max, -2e308, fi.min] + eres = [np.inf, fi.max, -np.inf, fi.min] + res = np.array(inp, dtype=typename).astype("T").astype(typename) + assert_array_equal(eres, res) + + +def test_float_nan_cast_na_object(): + # gh-28157 + dt = np.dtypes.StringDType(na_object=np.nan) + arr1 = np.full((1,), fill_value=np.nan, dtype=dt) + arr2 = np.full_like(arr1, fill_value=np.nan) + + assert arr1.item() is np.nan + assert arr2.item() is np.nan + + inp = [1.2, 2.3, np.nan] + arr = np.array(inp).astype(dt) + assert arr[2] is np.nan + assert arr[0] == '1.2' + + +@pytest.mark.parametrize( + "typename", + [ + "csingle", + "cdouble", + pytest.param( + "clongdouble", + marks=pytest.mark.xfail( + np.dtypes.CLongDoubleDType() != np.dtypes.Complex128DType(), + reason="numpy lacks an ld2a implementation", + strict=True, + ), + ), + ], +) +def test_cfloat_casts(typename): + inp = [1.1 + 1.1j, 2.8 + 2.8j, -3.2 - 3.2j, 2.7e4 + 2.7e4j] + ainp = np.array(inp, dtype=typename) + assert_array_equal(ainp, ainp.astype("T").astype(typename)) + + inp = [0.1 + 0.1j] + sres = np.array(inp, dtype=typename).astype("T") + res = sres.astype(typename) + assert_array_equal(np.array(inp, dtype=typename), res) + assert sres[0] == "(0.1+0.1j)" + + +def test_take(string_list): + sarr = np.array(string_list, dtype="T") + res = sarr.take(np.arange(len(string_list))) + assert_array_equal(sarr, res) + + # make sure it also works for out + out = np.empty(len(string_list), dtype="T") + out[0] = "hello" + res = sarr.take(np.arange(len(string_list)), out=out) + assert res is out + assert_array_equal(sarr, res) + + +@pytest.mark.parametrize("use_out", [True, False]) +@pytest.mark.parametrize( + "ufunc_name,func", + [ + ("min", min), + ("max", max), + ], +) +def test_ufuncs_minmax(string_list, ufunc_name, func, use_out): + """Test that the min/max ufuncs match Python builtin min/max behavior.""" + arr = np.array(string_list, dtype="T") + uarr = np.array(string_list, dtype=str) + res = np.array(func(string_list), dtype="T") + assert_array_equal(getattr(arr, ufunc_name)(), res) + + ufunc = getattr(np, ufunc_name + "imum") + + if use_out: + res = ufunc(arr, arr, out=arr) + else: + res = ufunc(arr, arr) + + assert_array_equal(uarr, res) + assert_array_equal(getattr(arr, ufunc_name)(), func(string_list)) + + +def test_max_regression(): + arr = np.array(['y', 'y', 'z'], dtype="T") + assert arr.max() == 'z' + + +@pytest.mark.parametrize("use_out", [True, False]) +@pytest.mark.parametrize( + "other_strings", + [ + ["abc", "def" * 500, "ghi" * 16, "🤣" * 100, "📵", "😰"], + ["🚜", "🙃", "😾", "😹", "🚠", "🚌"], + ["🥦", "¨", "⨯", "∰ ", "⨌ ", "⎶ "], + ], +) +def test_ufunc_add(dtype, string_list, other_strings, use_out): + arr1 = np.array(string_list, dtype=dtype) + arr2 = np.array(other_strings, dtype=dtype) + result = np.array([a + b for a, b in zip(arr1, arr2)], dtype=dtype) + + if use_out: + res = np.add(arr1, arr2, out=arr1) + else: + res = np.add(arr1, arr2) + + assert_array_equal(res, result) + + if not hasattr(dtype, "na_object"): + return + + is_nan = isinstance(dtype.na_object, float) and np.isnan(dtype.na_object) + is_str = isinstance(dtype.na_object, str) + bool_errors = 0 + try: + bool(dtype.na_object) + except TypeError: + bool_errors = 1 + + arr1 = np.array([dtype.na_object] + string_list, dtype=dtype) + arr2 = np.array(other_strings + [dtype.na_object], dtype=dtype) + + if is_nan or bool_errors or is_str: + res = np.add(arr1, arr2) + assert_array_equal(res[1:-1], arr1[1:-1] + arr2[1:-1]) + if not is_str: + assert res[0] is dtype.na_object and res[-1] is dtype.na_object + else: + assert res[0] == dtype.na_object + arr2[0] + assert res[-1] == arr1[-1] + dtype.na_object + else: + with pytest.raises(ValueError): + np.add(arr1, arr2) + + +def test_ufunc_add_reduce(dtype): + values = ["a", "this is a long string", "c"] + arr = np.array(values, dtype=dtype) + out = np.empty((), dtype=dtype) + + expected = np.array("".join(values), dtype=dtype) + assert_array_equal(np.add.reduce(arr), expected) + + np.add.reduce(arr, out=out) + assert_array_equal(out, expected) + + +def test_add_promoter(string_list): + arr = np.array(string_list, dtype=StringDType()) + lresult = np.array(["hello" + s for s in string_list], dtype=StringDType()) + rresult = np.array([s + "hello" for s in string_list], dtype=StringDType()) + + for op in ["hello", np.str_("hello"), np.array(["hello"])]: + assert_array_equal(op + arr, lresult) + assert_array_equal(arr + op, rresult) + + # The promoter should be able to handle things if users pass `dtype=` + res = np.add("hello", string_list, dtype=StringDType) + assert res.dtype == StringDType() + + # The promoter should not kick in if users override the input, + # which means arr is cast, this fails because of the unknown length. + with pytest.raises(TypeError, match="cannot cast dtype"): + np.add(arr, "add", signature=("U", "U", None), casting="unsafe") + + # But it must simply reject the following: + with pytest.raises(TypeError, match=".*did not contain a loop"): + np.add(arr, "add", signature=(None, "U", None)) + + with pytest.raises(TypeError, match=".*did not contain a loop"): + np.add("a", "b", signature=("U", "U", StringDType)) + + +def test_add_no_legacy_promote_with_signature(): + # Possibly misplaced, but useful to test with string DType. We check that + # if there is clearly no loop found, a stray `dtype=` doesn't break things + # Regression test for the bad error in gh-26735 + # (If legacy promotion is gone, this can be deleted...) + with pytest.raises(TypeError, match=".*did not contain a loop"): + np.add("3", 6, dtype=StringDType) + + +def test_add_promoter_reduce(): + # Exact TypeError could change, but ensure StringDtype doesn't match + with pytest.raises(TypeError, match="the resolved dtypes are not"): + np.add.reduce(np.array(["a", "b"], dtype="U")) + + # On the other hand, using `dtype=T` in the *ufunc* should work. + np.add.reduce(np.array(["a", "b"], dtype="U"), dtype=np.dtypes.StringDType) + + +def test_multiply_reduce(): + # At the time of writing (NumPy 2.0) this is very limited (and rather + # ridiculous anyway). But it works and actually makes some sense... + # (NumPy does not allow non-scalar initial values) + repeats = np.array([2, 3, 4]) + val = "school-🚌" + res = np.multiply.reduce(repeats, initial=val, dtype=np.dtypes.StringDType) + assert res == val * np.prod(repeats) + + +def test_multiply_two_string_raises(): + arr = np.array(["hello", "world"], dtype="T") + with pytest.raises(np._core._exceptions._UFuncNoLoopError): + np.multiply(arr, arr) + + +@pytest.mark.parametrize("use_out", [True, False]) +@pytest.mark.parametrize("other", [2, [2, 1, 3, 4, 1, 3]]) +@pytest.mark.parametrize( + "other_dtype", + [ + None, + "int8", + "int16", + "int32", + "int64", + "uint8", + "uint16", + "uint32", + "uint64", + "short", + "int", + "intp", + "long", + "longlong", + "ushort", + "uint", + "uintp", + "ulong", + "ulonglong", + ], +) +def test_ufunc_multiply(dtype, string_list, other, other_dtype, use_out): + """Test the two-argument ufuncs match python builtin behavior.""" + arr = np.array(string_list, dtype=dtype) + if other_dtype is not None: + other_dtype = np.dtype(other_dtype) + try: + len(other) + result = [s * o for s, o in zip(string_list, other)] + other = np.array(other) + if other_dtype is not None: + other = other.astype(other_dtype) + except TypeError: + if other_dtype is not None: + other = other_dtype.type(other) + result = [s * other for s in string_list] + + if use_out: + arr_cache = arr.copy() + lres = np.multiply(arr, other, out=arr) + assert_array_equal(lres, result) + arr[:] = arr_cache + assert lres is arr + arr *= other + assert_array_equal(arr, result) + arr[:] = arr_cache + rres = np.multiply(other, arr, out=arr) + assert rres is arr + assert_array_equal(rres, result) + else: + lres = arr * other + assert_array_equal(lres, result) + rres = other * arr + assert_array_equal(rres, result) + + if not hasattr(dtype, "na_object"): + return + + is_nan = np.isnan(np.array([dtype.na_object], dtype=dtype))[0] + is_str = isinstance(dtype.na_object, str) + bool_errors = 0 + try: + bool(dtype.na_object) + except TypeError: + bool_errors = 1 + + arr = np.array(string_list + [dtype.na_object], dtype=dtype) + + try: + len(other) + other = np.append(other, 3) + if other_dtype is not None: + other = other.astype(other_dtype) + except TypeError: + pass + + if is_nan or bool_errors or is_str: + for res in [arr * other, other * arr]: + assert_array_equal(res[:-1], result) + if not is_str: + assert res[-1] is dtype.na_object + else: + try: + assert res[-1] == dtype.na_object * other[-1] + except (IndexError, TypeError): + assert res[-1] == dtype.na_object * other + else: + with pytest.raises(TypeError): + arr * other + with pytest.raises(TypeError): + other * arr + + +def test_findlike_promoters(): + r = "Wally" + l = "Where's Wally?" + s = np.int32(3) + e = np.int8(13) + for dtypes in [("T", "U"), ("U", "T")]: + for function, answer in [ + (np.strings.index, 8), + (np.strings.endswith, True), + ]: + assert answer == function( + np.array(l, dtype=dtypes[0]), np.array(r, dtype=dtypes[1]), s, e + ) + + +def test_strip_promoter(): + arg = ["Hello!!!!", "Hello??!!"] + strip_char = "!" + answer = ["Hello", "Hello??"] + for dtypes in [("T", "U"), ("U", "T")]: + result = np.strings.strip( + np.array(arg, dtype=dtypes[0]), + np.array(strip_char, dtype=dtypes[1]) + ) + assert_array_equal(result, answer) + assert result.dtype.char == "T" + + +def test_replace_promoter(): + arg = ["Hello, planet!", "planet, Hello!"] + old = "planet" + new = "world" + answer = ["Hello, world!", "world, Hello!"] + for dtypes in itertools.product("TU", repeat=3): + if dtypes == ("U", "U", "U"): + continue + answer_arr = np.strings.replace( + np.array(arg, dtype=dtypes[0]), + np.array(old, dtype=dtypes[1]), + np.array(new, dtype=dtypes[2]), + ) + assert_array_equal(answer_arr, answer) + assert answer_arr.dtype.char == "T" + + +def test_center_promoter(): + arg = ["Hello", "planet!"] + fillchar = "/" + for dtypes in [("T", "U"), ("U", "T")]: + answer = np.strings.center( + np.array(arg, dtype=dtypes[0]), 9, np.array(fillchar, dtype=dtypes[1]) + ) + assert_array_equal(answer, ["//Hello//", "/planet!/"]) + assert answer.dtype.char == "T" + + +DATETIME_INPUT = [ + np.datetime64("1923-04-14T12:43:12"), + np.datetime64("1994-06-21T14:43:15"), + np.datetime64("2001-10-15T04:10:32"), + np.datetime64("NaT"), + np.datetime64("1995-11-25T16:02:16"), + np.datetime64("2005-01-04T03:14:12"), + np.datetime64("2041-12-03T14:05:03"), +] + + +TIMEDELTA_INPUT = [ + np.timedelta64(12358, "s"), + np.timedelta64(23, "s"), + np.timedelta64(74, "s"), + np.timedelta64("NaT"), + np.timedelta64(23, "s"), + np.timedelta64(73, "s"), + np.timedelta64(7, "s"), +] + + +@pytest.mark.parametrize( + "input_data, input_dtype", + [ + (DATETIME_INPUT, "M8[s]"), + (TIMEDELTA_INPUT, "m8[s]") + ] +) +def test_datetime_timedelta_cast(dtype, input_data, input_dtype): + + a = np.array(input_data, dtype=input_dtype) + + has_na = hasattr(dtype, "na_object") + is_str = isinstance(getattr(dtype, "na_object", None), str) + + if not has_na or is_str: + a = np.delete(a, 3) + + sa = a.astype(dtype) + ra = sa.astype(a.dtype) + + if has_na and not is_str: + assert sa[3] is dtype.na_object + assert np.isnat(ra[3]) + + assert_array_equal(a, ra) + + if has_na and not is_str: + # don't worry about comparing how NaT is converted + sa = np.delete(sa, 3) + a = np.delete(a, 3) + + if input_dtype.startswith("M"): + assert_array_equal(sa, a.astype("U")) + else: + # The timedelta to unicode cast produces strings + # that aren't round-trippable and we don't want to + # reproduce that behavior in stringdtype + assert_array_equal(sa, a.astype("int64").astype("U")) + + +def test_nat_casts(): + s = 'nat' + all_nats = itertools.product(*zip(s.upper(), s.lower())) + all_nats = list(map(''.join, all_nats)) + NaT_dt = np.datetime64('NaT') + NaT_td = np.timedelta64('NaT') + for na_object in [np._NoValue, None, np.nan, 'nat', '']: + # numpy treats empty string and all case combinations of 'nat' as NaT + dtype = StringDType(na_object=na_object) + arr = np.array([''] + all_nats, dtype=dtype) + dt_array = arr.astype('M8[s]') + td_array = arr.astype('m8[s]') + assert_array_equal(dt_array, NaT_dt) + assert_array_equal(td_array, NaT_td) + + if na_object is np._NoValue: + output_object = 'NaT' + else: + output_object = na_object + + for arr in [dt_array, td_array]: + assert_array_equal( + arr.astype(dtype), + np.array([output_object] * arr.size, dtype=dtype)) + + +def test_nat_conversion(): + for nat in [np.datetime64("NaT", "s"), np.timedelta64("NaT", "s")]: + with pytest.raises(ValueError, match="string coercion is disabled"): + np.array(["a", nat], dtype=StringDType(coerce=False)) + + +def test_growing_strings(dtype): + # growing a string leads to a heap allocation, this tests to make sure + # we do that bookkeeping correctly for all possible starting cases + data = [ + "hello", # a short string + "abcdefghijklmnopqestuvwxyz", # a medium heap-allocated string + "hello" * 200, # a long heap-allocated string + ] + + arr = np.array(data, dtype=dtype) + uarr = np.array(data, dtype=str) + + for _ in range(5): + arr = arr + arr + uarr = uarr + uarr + + assert_array_equal(arr, uarr) + + +def test_assign_medium_strings(): + # see gh-29261 + N = 9 + src = np.array( + ( + ['0' * 256] * 3 + ['0' * 255] + ['0' * 256] + ['0' * 255] + + ['0' * 256] * 2 + ['0' * 255] + ), dtype='T') + dst = np.array( + ( + ['0' * 255] + ['0' * 256] * 2 + ['0' * 255] + ['0' * 256] + + ['0' * 255] + [''] * 5 + ), dtype='T') + + dst[1:N + 1] = src + assert_array_equal(dst[1:N + 1], src) + + +UFUNC_TEST_DATA = [ + "hello" * 10, + "Ae¢☃€ 😊" * 20, + "entry\nwith\nnewlines", + "entry\twith\ttabs", +] + + +@pytest.fixture +def string_array(dtype): + return np.array(UFUNC_TEST_DATA, dtype=dtype) + + +@pytest.fixture +def unicode_array(): + return np.array(UFUNC_TEST_DATA, dtype=np.str_) + + +NAN_PRESERVING_FUNCTIONS = [ + "capitalize", + "expandtabs", + "lower", + "lstrip", + "rstrip", + "splitlines", + "strip", + "swapcase", + "title", + "upper", +] + +BOOL_OUTPUT_FUNCTIONS = [ + "isalnum", + "isalpha", + "isdigit", + "islower", + "isspace", + "istitle", + "isupper", + "isnumeric", + "isdecimal", +] + +UNARY_FUNCTIONS = [ + "str_len", + "capitalize", + "expandtabs", + "isalnum", + "isalpha", + "isdigit", + "islower", + "isspace", + "istitle", + "isupper", + "lower", + "lstrip", + "rstrip", + "splitlines", + "strip", + "swapcase", + "title", + "upper", + "isnumeric", + "isdecimal", + "isalnum", + "islower", + "istitle", + "isupper", +] + +UNIMPLEMENTED_VEC_STRING_FUNCTIONS = [ + "capitalize", + "expandtabs", + "lower", + "splitlines", + "swapcase", + "title", + "upper", +] + +ONLY_IN_NP_CHAR = [ + "join", + "split", + "rsplit", + "splitlines" +] + + +@pytest.mark.parametrize("function_name", UNARY_FUNCTIONS) +def test_unary(string_array, unicode_array, function_name): + if function_name in ONLY_IN_NP_CHAR: + func = getattr(np.char, function_name) + else: + func = getattr(np.strings, function_name) + dtype = string_array.dtype + sres = func(string_array) + ures = func(unicode_array) + if sres.dtype == StringDType(): + ures = ures.astype(StringDType()) + assert_array_equal(sres, ures) + + if not hasattr(dtype, "na_object"): + return + + is_nan = np.isnan(np.array([dtype.na_object], dtype=dtype))[0] + is_str = isinstance(dtype.na_object, str) + na_arr = np.insert(string_array, 0, dtype.na_object) + + if function_name in UNIMPLEMENTED_VEC_STRING_FUNCTIONS: + if not is_str: + # to avoid these errors we'd need to add NA support to _vec_string + with pytest.raises((ValueError, TypeError)): + func(na_arr) + elif function_name == "splitlines": + assert func(na_arr)[0] == func(dtype.na_object)[()] + else: + assert func(na_arr)[0] == func(dtype.na_object) + return + if function_name == "str_len" and not is_str: + # str_len always errors for any non-string null, even NA ones because + # it has an integer result + with pytest.raises(ValueError): + func(na_arr) + return + if function_name in BOOL_OUTPUT_FUNCTIONS: + if is_nan: + assert func(na_arr)[0] is np.False_ + elif is_str: + assert func(na_arr)[0] == func(dtype.na_object) + else: + with pytest.raises(ValueError): + func(na_arr) + return + if not (is_nan or is_str): + with pytest.raises(ValueError): + func(na_arr) + return + res = func(na_arr) + if is_nan and function_name in NAN_PRESERVING_FUNCTIONS: + assert res[0] is dtype.na_object + elif is_str: + assert res[0] == func(dtype.na_object) + + +unicode_bug_fail = pytest.mark.xfail( + reason="unicode output width is buggy", strict=True +) + +# None means that the argument is a string array +BINARY_FUNCTIONS = [ + ("add", (None, None)), + ("multiply", (None, 2)), + ("mod", ("format: %s", None)), + ("center", (None, 25)), + ("count", (None, "A")), + ("encode", (None, "UTF-8")), + ("endswith", (None, "lo")), + ("find", (None, "A")), + ("index", (None, "e")), + ("join", ("-", None)), + ("ljust", (None, 12)), + ("lstrip", (None, "A")), + ("partition", (None, "A")), + ("replace", (None, "A", "B")), + ("rfind", (None, "A")), + ("rindex", (None, "e")), + ("rjust", (None, 12)), + ("rsplit", (None, "A")), + ("rstrip", (None, "A")), + ("rpartition", (None, "A")), + ("split", (None, "A")), + ("strip", (None, "A")), + ("startswith", (None, "A")), + ("zfill", (None, 12)), +] + +PASSES_THROUGH_NAN_NULLS = [ + "add", + "center", + "ljust", + "multiply", + "replace", + "rjust", + "strip", + "lstrip", + "rstrip", + "replace" + "zfill", +] + +NULLS_ARE_FALSEY = [ + "startswith", + "endswith", +] + +NULLS_ALWAYS_ERROR = [ + "count", + "find", + "rfind", +] + +SUPPORTS_NULLS = ( + PASSES_THROUGH_NAN_NULLS + + NULLS_ARE_FALSEY + + NULLS_ALWAYS_ERROR +) + + +def call_func(func, args, array, sanitize=True): + if args == (None, None): + return func(array, array) + if args[0] is None: + if sanitize: + san_args = tuple( + np.array(arg, dtype=array.dtype) if isinstance(arg, str) else + arg for arg in args[1:] + ) + else: + san_args = args[1:] + return func(array, *san_args) + if args[1] is None: + return func(args[0], array) + # shouldn't ever happen + assert 0 + + +@pytest.mark.parametrize("function_name, args", BINARY_FUNCTIONS) +def test_binary(string_array, unicode_array, function_name, args): + if function_name in ONLY_IN_NP_CHAR: + func = getattr(np.char, function_name) + else: + func = getattr(np.strings, function_name) + sres = call_func(func, args, string_array) + ures = call_func(func, args, unicode_array, sanitize=False) + if not isinstance(sres, tuple) and sres.dtype == StringDType(): + ures = ures.astype(StringDType()) + assert_array_equal(sres, ures) + + dtype = string_array.dtype + if function_name not in SUPPORTS_NULLS or not hasattr(dtype, "na_object"): + return + + na_arr = np.insert(string_array, 0, dtype.na_object) + is_nan = np.isnan(np.array([dtype.na_object], dtype=dtype))[0] + is_str = isinstance(dtype.na_object, str) + should_error = not (is_nan or is_str) + + if ( + (function_name in NULLS_ALWAYS_ERROR and not is_str) + or (function_name in PASSES_THROUGH_NAN_NULLS and should_error) + or (function_name in NULLS_ARE_FALSEY and should_error) + ): + with pytest.raises((ValueError, TypeError)): + call_func(func, args, na_arr) + return + + res = call_func(func, args, na_arr) + + if is_str: + assert res[0] == call_func(func, args, na_arr[:1]) + elif function_name in NULLS_ARE_FALSEY: + assert res[0] is np.False_ + elif function_name in PASSES_THROUGH_NAN_NULLS: + assert res[0] is dtype.na_object + else: + # shouldn't ever get here + assert 0 + + +@pytest.mark.parametrize("function, expected", [ + (np.strings.find, [[2, -1], [1, -1]]), + (np.strings.startswith, [[False, False], [True, False]])]) +@pytest.mark.parametrize("start, stop", [ + (1, 4), + (np.int8(1), np.int8(4)), + (np.array([1, 1], dtype='u2'), np.array([4, 4], dtype='u2'))]) +def test_non_default_start_stop(function, start, stop, expected): + a = np.array([["--🐍--", "--🦜--"], + ["-🐍---", "-🦜---"]], "T") + indx = function(a, "🐍", start, stop) + assert_array_equal(indx, expected) + + +@pytest.mark.parametrize("count", [2, np.int8(2), np.array([2, 2], 'u2')]) +def test_replace_non_default_repeat(count): + a = np.array(["🐍--", "🦜-🦜-"], "T") + result = np.strings.replace(a, "🦜-", "🦜†", count) + assert_array_equal(result, np.array(["🐍--", "🦜†🦜†"], "T")) + + +def test_strip_ljust_rjust_consistency(string_array, unicode_array): + rjs = np.char.rjust(string_array, 1000) + rju = np.char.rjust(unicode_array, 1000) + + ljs = np.char.ljust(string_array, 1000) + lju = np.char.ljust(unicode_array, 1000) + + assert_array_equal( + np.char.lstrip(rjs), + np.char.lstrip(rju).astype(StringDType()), + ) + + assert_array_equal( + np.char.rstrip(ljs), + np.char.rstrip(lju).astype(StringDType()), + ) + + assert_array_equal( + np.char.strip(ljs), + np.char.strip(lju).astype(StringDType()), + ) + + assert_array_equal( + np.char.strip(rjs), + np.char.strip(rju).astype(StringDType()), + ) + + +def test_unset_na_coercion(): + # a dtype instance with an unset na object is compatible + # with a dtype that has one set + + # this test uses the "add" and "equal" ufunc but all ufuncs that + # accept more than one string argument and produce a string should + # behave this way + # TODO: generalize to more ufuncs + inp = ["hello", "world"] + arr = np.array(inp, dtype=StringDType(na_object=None)) + for op_dtype in [None, StringDType(), StringDType(coerce=False), + StringDType(na_object=None)]: + if op_dtype is None: + op = "2" + else: + op = np.array("2", dtype=op_dtype) + res = arr + op + assert_array_equal(res, ["hello2", "world2"]) + + # dtype instances with distinct explicitly set NA objects are incompatible + for op_dtype in [StringDType(na_object=pd_NA), StringDType(na_object="")]: + op = np.array("2", dtype=op_dtype) + with pytest.raises(TypeError): + arr + op + + # comparisons only consider the na_object + for op_dtype in [None, StringDType(), StringDType(coerce=True), + StringDType(na_object=None)]: + if op_dtype is None: + op = inp + else: + op = np.array(inp, dtype=op_dtype) + assert_array_equal(arr, op) + + for op_dtype in [StringDType(na_object=pd_NA), + StringDType(na_object=np.nan)]: + op = np.array(inp, dtype=op_dtype) + with pytest.raises(TypeError): + arr == op + + +def test_repeat(string_array): + res = string_array.repeat(1000) + # Create an empty array with expanded dimension, and fill it. Then, + # reshape it to the expected result. + expected = np.empty_like(string_array, shape=string_array.shape + (1000,)) + expected[...] = string_array[:, np.newaxis] + expected = expected.reshape(-1) + + assert_array_equal(res, expected, strict=True) + + +@pytest.mark.parametrize("tile", [1, 6, (2, 5)]) +def test_accumulation(string_array, tile): + """Accumulation is odd for StringDType but tests dtypes with references. + """ + # Fill with mostly empty strings to not create absurdly big strings + arr = np.zeros_like(string_array, shape=(100,)) + arr[:len(string_array)] = string_array + arr[-len(string_array):] = string_array + + # Bloat size a bit (get above thresholds and test >1 ndim). + arr = np.tile(string_array, tile) + + res = np.add.accumulate(arr, axis=0) + res_obj = np.add.accumulate(arr.astype(object), axis=0) + assert_array_equal(res, res_obj.astype(arr.dtype), strict=True) + + if arr.ndim > 1: + res = np.add.accumulate(arr, axis=-1) + res_obj = np.add.accumulate(arr.astype(object), axis=-1) + + assert_array_equal(res, res_obj.astype(arr.dtype), strict=True) + + +class TestImplementation: + """Check that strings are stored in the arena when possible. + + This tests implementation details, so should be adjusted if + the implementation changes. + """ + + @classmethod + def setup_class(self): + self.MISSING = 0x80 + self.INITIALIZED = 0x40 + self.OUTSIDE_ARENA = 0x20 + self.LONG = 0x10 + self.dtype = StringDType(na_object=np.nan) + self.sizeofstr = self.dtype.itemsize + sp = self.dtype.itemsize // 2 # pointer size = sizeof(size_t) + # Below, size is not strictly correct, since it really uses + # 7 (or 3) bytes, but good enough for the tests here. + self.view_dtype = np.dtype([ + ('offset', f'u{sp}'), + ('size', f'u{sp // 2}'), + ('xsiz', f'V{sp // 2 - 1}'), + ('size_and_flags', 'u1'), + ] if sys.byteorder == 'little' else [ + ('size_and_flags', 'u1'), + ('xsiz', f'V{sp // 2 - 1}'), + ('size', f'u{sp // 2}'), + ('offset', f'u{sp}'), + ]) + self.s_empty = "" + self.s_short = "01234" + self.s_medium = "abcdefghijklmnopqrstuvwxyz" + self.s_long = "-=+" * 100 + self.a = np.array( + [self.s_empty, self.s_short, self.s_medium, self.s_long], + self.dtype) + + def get_view(self, a): + # Cannot view a StringDType as anything else directly, since + # it has references. So, we use a stride trick hack. + from numpy.lib._stride_tricks_impl import DummyArray + interface = dict(a.__array_interface__) + interface['descr'] = self.view_dtype.descr + interface['typestr'] = self.view_dtype.str + return np.asarray(DummyArray(interface, base=a)) + + def get_flags(self, a): + return self.get_view(a)['size_and_flags'] & 0xf0 + + def is_short(self, a): + return self.get_flags(a) == self.INITIALIZED | self.OUTSIDE_ARENA + + def is_on_heap(self, a): + return self.get_flags(a) == (self.INITIALIZED + | self.OUTSIDE_ARENA + | self.LONG) + + def is_missing(self, a): + return self.get_flags(a) & self.MISSING == self.MISSING + + def in_arena(self, a): + return (self.get_flags(a) & (self.INITIALIZED | self.OUTSIDE_ARENA) + == self.INITIALIZED) + + def test_setup(self): + is_short = self.is_short(self.a) + length = np.strings.str_len(self.a) + assert_array_equal(is_short, (length > 0) & (length <= 15)) + assert_array_equal(self.in_arena(self.a), [False, False, True, True]) + assert_array_equal(self.is_on_heap(self.a), False) + assert_array_equal(self.is_missing(self.a), False) + view = self.get_view(self.a) + sizes = np.where(is_short, view['size_and_flags'] & 0xf, + view['size']) + assert_array_equal(sizes, np.strings.str_len(self.a)) + assert_array_equal(view['xsiz'][2:], + np.void(b'\x00' * (self.sizeofstr // 4 - 1))) + # Check that the medium string uses only 1 byte for its length + # in the arena, while the long string takes 8 (or 4). + offsets = view['offset'] + assert offsets[2] == 1 + assert offsets[3] == 1 + len(self.s_medium) + self.sizeofstr // 2 + + def test_empty(self): + e = np.empty((3,), self.dtype) + assert_array_equal(self.get_flags(e), 0) + assert_array_equal(e, "") + + def test_zeros(self): + z = np.zeros((2,), self.dtype) + assert_array_equal(self.get_flags(z), 0) + assert_array_equal(z, "") + + def test_copy(self): + for c in [self.a.copy(), copy.copy(self.a), copy.deepcopy(self.a)]: + assert_array_equal(self.get_flags(c), self.get_flags(self.a)) + assert_array_equal(c, self.a) + offsets = self.get_view(c)['offset'] + assert offsets[2] == 1 + assert offsets[3] == 1 + len(self.s_medium) + self.sizeofstr // 2 + + def test_arena_use_with_setting(self): + c = np.zeros_like(self.a) + assert_array_equal(self.get_flags(c), 0) + c[:] = self.a + assert_array_equal(self.get_flags(c), self.get_flags(self.a)) + assert_array_equal(c, self.a) + + def test_arena_reuse_with_setting(self): + c = self.a.copy() + c[:] = self.a + assert_array_equal(self.get_flags(c), self.get_flags(self.a)) + assert_array_equal(c, self.a) + + def test_arena_reuse_after_missing(self): + c = self.a.copy() + c[:] = np.nan + assert np.all(self.is_missing(c)) + # Replacing with the original strings, the arena should be reused. + c[:] = self.a + assert_array_equal(self.get_flags(c), self.get_flags(self.a)) + assert_array_equal(c, self.a) + + def test_arena_reuse_after_empty(self): + c = self.a.copy() + c[:] = "" + assert_array_equal(c, "") + # Replacing with the original strings, the arena should be reused. + c[:] = self.a + assert_array_equal(self.get_flags(c), self.get_flags(self.a)) + assert_array_equal(c, self.a) + + def test_arena_reuse_for_shorter(self): + c = self.a.copy() + # A string slightly shorter than the shortest in the arena + # should be used for all strings in the arena. + c[:] = self.s_medium[:-1] + assert_array_equal(c, self.s_medium[:-1]) + # first empty string in original was never initialized, so + # filling it in now leaves it initialized inside the arena. + # second string started as a short string so it can never live + # in the arena. + in_arena = np.array([True, False, True, True]) + assert_array_equal(self.in_arena(c), in_arena) + # But when a short string is replaced, it will go on the heap. + assert_array_equal(self.is_short(c), False) + assert_array_equal(self.is_on_heap(c), ~in_arena) + # We can put the originals back, and they'll still fit, + # and short strings are back as short strings + c[:] = self.a + assert_array_equal(c, self.a) + assert_array_equal(self.in_arena(c), in_arena) + assert_array_equal(self.is_short(c), self.is_short(self.a)) + assert_array_equal(self.is_on_heap(c), False) + + def test_arena_reuse_if_possible(self): + c = self.a.copy() + # A slightly longer string will not fit in the arena for + # the medium string, but will fit for the longer one. + c[:] = self.s_medium + "±" + assert_array_equal(c, self.s_medium + "±") + in_arena_exp = np.strings.str_len(self.a) >= len(self.s_medium) + 1 + # first entry started uninitialized and empty, so filling it leaves + # it in the arena + in_arena_exp[0] = True + assert not np.all(in_arena_exp == self.in_arena(self.a)) + assert_array_equal(self.in_arena(c), in_arena_exp) + assert_array_equal(self.is_short(c), False) + assert_array_equal(self.is_on_heap(c), ~in_arena_exp) + # And once outside arena, it stays outside, since offset is lost. + # But short strings are used again. + c[:] = self.a + is_short_exp = self.is_short(self.a) + assert_array_equal(c, self.a) + assert_array_equal(self.in_arena(c), in_arena_exp) + assert_array_equal(self.is_short(c), is_short_exp) + assert_array_equal(self.is_on_heap(c), ~in_arena_exp & ~is_short_exp) + + def test_arena_no_reuse_after_short(self): + c = self.a.copy() + # If we replace a string with a short string, it cannot + # go into the arena after because the offset is lost. + c[:] = self.s_short + assert_array_equal(c, self.s_short) + assert_array_equal(self.in_arena(c), False) + c[:] = self.a + assert_array_equal(c, self.a) + assert_array_equal(self.in_arena(c), False) + assert_array_equal(self.is_on_heap(c), self.in_arena(self.a)) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_strings.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_strings.py new file mode 100644 index 0000000..e29151a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_strings.py @@ -0,0 +1,1454 @@ +import operator +import sys + +import pytest + +import numpy as np +from numpy.testing import IS_PYPY, assert_array_equal, assert_raises +from numpy.testing._private.utils import requires_memory + +COMPARISONS = [ + (operator.eq, np.equal, "=="), + (operator.ne, np.not_equal, "!="), + (operator.lt, np.less, "<"), + (operator.le, np.less_equal, "<="), + (operator.gt, np.greater, ">"), + (operator.ge, np.greater_equal, ">="), +] + +MAX = np.iinfo(np.int64).max + +IS_PYPY_LT_7_3_16 = IS_PYPY and sys.implementation.version < (7, 3, 16) + +@pytest.mark.parametrize(["op", "ufunc", "sym"], COMPARISONS) +def test_mixed_string_comparison_ufuncs_fail(op, ufunc, sym): + arr_string = np.array(["a", "b"], dtype="S") + arr_unicode = np.array(["a", "c"], dtype="U") + + with pytest.raises(TypeError, match="did not contain a loop"): + ufunc(arr_string, arr_unicode) + + with pytest.raises(TypeError, match="did not contain a loop"): + ufunc(arr_unicode, arr_string) + +@pytest.mark.parametrize(["op", "ufunc", "sym"], COMPARISONS) +def test_mixed_string_comparisons_ufuncs_with_cast(op, ufunc, sym): + arr_string = np.array(["a", "b"], dtype="S") + arr_unicode = np.array(["a", "c"], dtype="U") + + # While there is no loop, manual casting is acceptable: + res1 = ufunc(arr_string, arr_unicode, signature="UU->?", casting="unsafe") + res2 = ufunc(arr_string, arr_unicode, signature="SS->?", casting="unsafe") + + expected = op(arr_string.astype("U"), arr_unicode) + assert_array_equal(res1, expected) + assert_array_equal(res2, expected) + + +@pytest.mark.parametrize(["op", "ufunc", "sym"], COMPARISONS) +@pytest.mark.parametrize("dtypes", [ + ("S2", "S2"), ("S2", "S10"), + ("U1"), (">U1", ">U1"), + ("U10")]) +@pytest.mark.parametrize("aligned", [True, False]) +def test_string_comparisons(op, ufunc, sym, dtypes, aligned): + # ensure native byte-order for the first view to stay within unicode range + native_dt = np.dtype(dtypes[0]).newbyteorder("=") + arr = np.arange(2**15).view(native_dt).astype(dtypes[0]) + if not aligned: + # Make `arr` unaligned: + new = np.zeros(arr.nbytes + 1, dtype=np.uint8)[1:].view(dtypes[0]) + new[...] = arr + arr = new + + arr2 = arr.astype(dtypes[1], copy=True) + np.random.shuffle(arr2) + arr[0] = arr2[0] # make sure one matches + + expected = [op(d1, d2) for d1, d2 in zip(arr.tolist(), arr2.tolist())] + assert_array_equal(op(arr, arr2), expected) + assert_array_equal(ufunc(arr, arr2), expected) + assert_array_equal( + np.char.compare_chararrays(arr, arr2, sym, False), expected + ) + + expected = [op(d2, d1) for d1, d2 in zip(arr.tolist(), arr2.tolist())] + assert_array_equal(op(arr2, arr), expected) + assert_array_equal(ufunc(arr2, arr), expected) + assert_array_equal( + np.char.compare_chararrays(arr2, arr, sym, False), expected + ) + + +@pytest.mark.parametrize(["op", "ufunc", "sym"], COMPARISONS) +@pytest.mark.parametrize("dtypes", [ + ("S2", "S2"), ("S2", "S10"), ("U10")]) +def test_string_comparisons_empty(op, ufunc, sym, dtypes): + arr = np.empty((1, 0, 1, 5), dtype=dtypes[0]) + arr2 = np.empty((100, 1, 0, 1), dtype=dtypes[1]) + + expected = np.empty(np.broadcast_shapes(arr.shape, arr2.shape), dtype=bool) + assert_array_equal(op(arr, arr2), expected) + assert_array_equal(ufunc(arr, arr2), expected) + assert_array_equal( + np.char.compare_chararrays(arr, arr2, sym, False), expected + ) + + +@pytest.mark.parametrize("str_dt", ["S", "U"]) +@pytest.mark.parametrize("float_dt", np.typecodes["AllFloat"]) +def test_float_to_string_cast(str_dt, float_dt): + float_dt = np.dtype(float_dt) + fi = np.finfo(float_dt) + arr = np.array([np.nan, np.inf, -np.inf, fi.max, fi.min], dtype=float_dt) + expected = ["nan", "inf", "-inf", str(fi.max), str(fi.min)] + if float_dt.kind == "c": + expected = [f"({r}+0j)" for r in expected] + + res = arr.astype(str_dt) + assert_array_equal(res, np.array(expected, dtype=str_dt)) + + +@pytest.mark.parametrize("str_dt", "US") +@pytest.mark.parametrize("size", [-1, np.iinfo(np.intc).max]) +def test_string_size_dtype_errors(str_dt, size): + if size > 0: + size = size // np.dtype(f"{str_dt}1").itemsize + 1 + + with pytest.raises(ValueError): + np.dtype((str_dt, size)) + with pytest.raises(TypeError): + np.dtype(f"{str_dt}{size}") + + +@pytest.mark.parametrize("str_dt", "US") +def test_string_size_dtype_large_repr(str_dt): + size = np.iinfo(np.intc).max // np.dtype(f"{str_dt}1").itemsize + size_str = str(size) + + dtype = np.dtype((str_dt, size)) + assert size_str in dtype.str + assert size_str in str(dtype) + assert size_str in repr(dtype) + + +@pytest.mark.slow +@requires_memory(2 * np.iinfo(np.intc).max) +@pytest.mark.parametrize("str_dt", "US") +def test_large_string_coercion_error(str_dt): + very_large = np.iinfo(np.intc).max // np.dtype(f"{str_dt}1").itemsize + try: + large_string = "A" * (very_large + 1) + except Exception: + # We may not be able to create this Python string on 32bit. + pytest.skip("python failed to create huge string") + + class MyStr: + def __str__(self): + return large_string + + try: + # TypeError from NumPy, or OverflowError from 32bit Python. + with pytest.raises((TypeError, OverflowError)): + np.array([large_string], dtype=str_dt) + + # Same as above, but input has to be converted to a string. + with pytest.raises((TypeError, OverflowError)): + np.array([MyStr()], dtype=str_dt) + except MemoryError: + # Catch memory errors, because `requires_memory` would do so. + raise AssertionError("Ops should raise before any large allocation.") + +@pytest.mark.slow +@requires_memory(2 * np.iinfo(np.intc).max) +@pytest.mark.parametrize("str_dt", "US") +def test_large_string_addition_error(str_dt): + very_large = np.iinfo(np.intc).max // np.dtype(f"{str_dt}1").itemsize + + a = np.array(["A" * very_large], dtype=str_dt) + b = np.array("B", dtype=str_dt) + try: + with pytest.raises(TypeError): + np.add(a, b) + with pytest.raises(TypeError): + np.add(a, a) + except MemoryError: + # Catch memory errors, because `requires_memory` would do so. + raise AssertionError("Ops should raise before any large allocation.") + + +def test_large_string_cast(): + very_large = np.iinfo(np.intc).max // 4 + # Could be nice to test very large path, but it makes too many huge + # allocations right now (need non-legacy cast loops for this). + # a = np.array([], dtype=np.dtype(("S", very_large))) + # assert a.astype("U").dtype.itemsize == very_large * 4 + + a = np.array([], dtype=np.dtype(("S", very_large + 1))) + # It is not perfect but OK if this raises a MemoryError during setup + # (this happens due clunky code and/or buffer setup.) + with pytest.raises((TypeError, MemoryError)): + a.astype("U") + + +@pytest.mark.parametrize("dt", ["S", "U", "T"]) +class TestMethods: + + @pytest.mark.parametrize("in1,in2,out", [ + ("", "", ""), + ("abc", "abc", "abcabc"), + ("12345", "12345", "1234512345"), + ("MixedCase", "MixedCase", "MixedCaseMixedCase"), + ("12345 \0 ", "12345 \0 ", "12345 \0 12345 \0 "), + ("UPPER", "UPPER", "UPPERUPPER"), + (["abc", "def"], ["hello", "world"], ["abchello", "defworld"]), + ]) + def test_add(self, in1, in2, out, dt): + in1 = np.array(in1, dtype=dt) + in2 = np.array(in2, dtype=dt) + out = np.array(out, dtype=dt) + assert_array_equal(np.strings.add(in1, in2), out) + + @pytest.mark.parametrize("in1,in2,out", [ + ("abc", 3, "abcabcabc"), + ("abc", 0, ""), + ("abc", -1, ""), + (["abc", "def"], [1, 4], ["abc", "defdefdefdef"]), + ]) + def test_multiply(self, in1, in2, out, dt): + in1 = np.array(in1, dtype=dt) + out = np.array(out, dtype=dt) + assert_array_equal(np.strings.multiply(in1, in2), out) + + def test_multiply_raises(self, dt): + with pytest.raises(TypeError, match="unsupported type"): + np.strings.multiply(np.array("abc", dtype=dt), 3.14) + + with pytest.raises(OverflowError): + np.strings.multiply(np.array("abc", dtype=dt), sys.maxsize) + + def test_inplace_multiply(self, dt): + arr = np.array(['foo ', 'bar'], dtype=dt) + arr *= 2 + if dt != "T": + assert_array_equal(arr, np.array(['foo ', 'barb'], dtype=dt)) + else: + assert_array_equal(arr, ['foo foo ', 'barbar']) + + with pytest.raises(OverflowError): + arr *= sys.maxsize + + @pytest.mark.parametrize("i_dt", [np.int8, np.int16, np.int32, + np.int64, np.int_]) + def test_multiply_integer_dtypes(self, i_dt, dt): + a = np.array("abc", dtype=dt) + i = np.array(3, dtype=i_dt) + res = np.array("abcabcabc", dtype=dt) + assert_array_equal(np.strings.multiply(a, i), res) + + @pytest.mark.parametrize("in_,out", [ + ("", False), + ("a", True), + ("A", True), + ("\n", False), + ("abc", True), + ("aBc123", False), + ("abc\n", False), + (["abc", "aBc123"], [True, False]), + ]) + def test_isalpha(self, in_, out, dt): + in_ = np.array(in_, dtype=dt) + assert_array_equal(np.strings.isalpha(in_), out) + + @pytest.mark.parametrize("in_,out", [ + ('', False), + ('a', True), + ('A', True), + ('\n', False), + ('123abc456', True), + ('a1b3c', True), + ('aBc000 ', False), + ('abc\n', False), + ]) + def test_isalnum(self, in_, out, dt): + in_ = np.array(in_, dtype=dt) + assert_array_equal(np.strings.isalnum(in_), out) + + @pytest.mark.parametrize("in_,out", [ + ("", False), + ("a", False), + ("0", True), + ("012345", True), + ("012345a", False), + (["a", "012345"], [False, True]), + ]) + def test_isdigit(self, in_, out, dt): + in_ = np.array(in_, dtype=dt) + assert_array_equal(np.strings.isdigit(in_), out) + + @pytest.mark.parametrize("in_,out", [ + ("", False), + ("a", False), + ("1", False), + (" ", True), + ("\t", True), + ("\r", True), + ("\n", True), + (" \t\r \n", True), + (" \t\r\na", False), + (["\t1", " \t\r \n"], [False, True]) + ]) + def test_isspace(self, in_, out, dt): + in_ = np.array(in_, dtype=dt) + assert_array_equal(np.strings.isspace(in_), out) + + @pytest.mark.parametrize("in_,out", [ + ('', False), + ('a', True), + ('A', False), + ('\n', False), + ('abc', True), + ('aBc', False), + ('abc\n', True), + ]) + def test_islower(self, in_, out, dt): + in_ = np.array(in_, dtype=dt) + assert_array_equal(np.strings.islower(in_), out) + + @pytest.mark.parametrize("in_,out", [ + ('', False), + ('a', False), + ('A', True), + ('\n', False), + ('ABC', True), + ('AbC', False), + ('ABC\n', True), + ]) + def test_isupper(self, in_, out, dt): + in_ = np.array(in_, dtype=dt) + assert_array_equal(np.strings.isupper(in_), out) + + @pytest.mark.parametrize("in_,out", [ + ('', False), + ('a', False), + ('A', True), + ('\n', False), + ('A Titlecased Line', True), + ('A\nTitlecased Line', True), + ('A Titlecased, Line', True), + ('Not a capitalized String', False), + ('Not\ta Titlecase String', False), + ('Not--a Titlecase String', False), + ('NOT', False), + ]) + def test_istitle(self, in_, out, dt): + in_ = np.array(in_, dtype=dt) + assert_array_equal(np.strings.istitle(in_), out) + + @pytest.mark.parametrize("in_,out", [ + ("", 0), + ("abc", 3), + ("12345", 5), + ("MixedCase", 9), + ("12345 \x00 ", 8), + ("UPPER", 5), + (["abc", "12345 \x00 "], [3, 8]), + ]) + def test_str_len(self, in_, out, dt): + in_ = np.array(in_, dtype=dt) + assert_array_equal(np.strings.str_len(in_), out) + + @pytest.mark.parametrize("a,sub,start,end,out", [ + ("abcdefghiabc", "abc", 0, None, 0), + ("abcdefghiabc", "abc", 1, None, 9), + ("abcdefghiabc", "def", 4, None, -1), + ("abc", "", 0, None, 0), + ("abc", "", 3, None, 3), + ("abc", "", 4, None, -1), + ("rrarrrrrrrrra", "a", 0, None, 2), + ("rrarrrrrrrrra", "a", 4, None, 12), + ("rrarrrrrrrrra", "a", 4, 6, -1), + ("", "", 0, None, 0), + ("", "", 1, 1, -1), + ("", "", MAX, 0, -1), + ("", "xx", 0, None, -1), + ("", "xx", 1, 1, -1), + ("", "xx", MAX, 0, -1), + pytest.param(99 * "a" + "b", "b", 0, None, 99, + id="99*a+b-b-0-None-99"), + pytest.param(98 * "a" + "ba", "ba", 0, None, 98, + id="98*a+ba-ba-0-None-98"), + pytest.param(100 * "a", "b", 0, None, -1, + id="100*a-b-0-None--1"), + pytest.param(30000 * "a" + 100 * "b", 100 * "b", 0, None, 30000, + id="30000*a+100*b-100*b-0-None-30000"), + pytest.param(30000 * "a", 100 * "b", 0, None, -1, + id="30000*a-100*b-0-None--1"), + pytest.param(15000 * "a" + 15000 * "b", 15000 * "b", 0, None, 15000, + id="15000*a+15000*b-15000*b-0-None-15000"), + pytest.param(15000 * "a" + 15000 * "b", 15000 * "c", 0, None, -1, + id="15000*a+15000*b-15000*c-0-None--1"), + (["abcdefghiabc", "rrarrrrrrrrra"], ["def", "arr"], [0, 3], + None, [3, -1]), + ("Ae¢☃€ 😊" * 2, "😊", 0, None, 6), + ("Ae¢☃€ 😊" * 2, "😊", 7, None, 13), + pytest.param("A" * (2 ** 17), r"[\w]+\Z", 0, None, -1, + id=r"A*2**17-[\w]+\Z-0-None--1"), + ]) + def test_find(self, a, sub, start, end, out, dt): + if "😊" in a and dt == "S": + pytest.skip("Bytes dtype does not support non-ascii input") + a = np.array(a, dtype=dt) + sub = np.array(sub, dtype=dt) + assert_array_equal(np.strings.find(a, sub, start, end), out) + + @pytest.mark.parametrize("a,sub,start,end,out", [ + ("abcdefghiabc", "abc", 0, None, 9), + ("abcdefghiabc", "", 0, None, 12), + ("abcdefghiabc", "abcd", 0, None, 0), + ("abcdefghiabc", "abcz", 0, None, -1), + ("abc", "", 0, None, 3), + ("abc", "", 3, None, 3), + ("abc", "", 4, None, -1), + ("rrarrrrrrrrra", "a", 0, None, 12), + ("rrarrrrrrrrra", "a", 4, None, 12), + ("rrarrrrrrrrra", "a", 4, 6, -1), + (["abcdefghiabc", "rrarrrrrrrrra"], ["abc", "a"], [0, 0], + None, [9, 12]), + ("Ae¢☃€ 😊" * 2, "😊", 0, None, 13), + ("Ae¢☃€ 😊" * 2, "😊", 0, 7, 6), + ]) + def test_rfind(self, a, sub, start, end, out, dt): + if "😊" in a and dt == "S": + pytest.skip("Bytes dtype does not support non-ascii input") + a = np.array(a, dtype=dt) + sub = np.array(sub, dtype=dt) + assert_array_equal(np.strings.rfind(a, sub, start, end), out) + + @pytest.mark.parametrize("a,sub,start,end,out", [ + ("aaa", "a", 0, None, 3), + ("aaa", "b", 0, None, 0), + ("aaa", "a", 1, None, 2), + ("aaa", "a", 10, None, 0), + ("aaa", "a", -1, None, 1), + ("aaa", "a", -10, None, 3), + ("aaa", "a", 0, 1, 1), + ("aaa", "a", 0, 10, 3), + ("aaa", "a", 0, -1, 2), + ("aaa", "a", 0, -10, 0), + ("aaa", "", 1, None, 3), + ("aaa", "", 3, None, 1), + ("aaa", "", 10, None, 0), + ("aaa", "", -1, None, 2), + ("aaa", "", -10, None, 4), + ("aaa", "aaaa", 0, None, 0), + pytest.param(98 * "a" + "ba", "ba", 0, None, 1, + id="98*a+ba-ba-0-None-1"), + pytest.param(30000 * "a" + 100 * "b", 100 * "b", 0, None, 1, + id="30000*a+100*b-100*b-0-None-1"), + pytest.param(30000 * "a", 100 * "b", 0, None, 0, + id="30000*a-100*b-0-None-0"), + pytest.param(30000 * "a" + 100 * "ab", "ab", 0, None, 100, + id="30000*a+100*ab-ab-0-None-100"), + pytest.param(15000 * "a" + 15000 * "b", 15000 * "b", 0, None, 1, + id="15000*a+15000*b-15000*b-0-None-1"), + pytest.param(15000 * "a" + 15000 * "b", 15000 * "c", 0, None, 0, + id="15000*a+15000*b-15000*c-0-None-0"), + ("", "", 0, None, 1), + ("", "", 1, 1, 0), + ("", "", MAX, 0, 0), + ("", "xx", 0, None, 0), + ("", "xx", 1, 1, 0), + ("", "xx", MAX, 0, 0), + (["aaa", ""], ["a", ""], [0, 0], None, [3, 1]), + ("Ae¢☃€ 😊" * 100, "😊", 0, None, 100), + ]) + def test_count(self, a, sub, start, end, out, dt): + if "😊" in a and dt == "S": + pytest.skip("Bytes dtype does not support non-ascii input") + a = np.array(a, dtype=dt) + sub = np.array(sub, dtype=dt) + assert_array_equal(np.strings.count(a, sub, start, end), out) + + @pytest.mark.parametrize("a,prefix,start,end,out", [ + ("hello", "he", 0, None, True), + ("hello", "hello", 0, None, True), + ("hello", "hello world", 0, None, False), + ("hello", "", 0, None, True), + ("hello", "ello", 0, None, False), + ("hello", "ello", 1, None, True), + ("hello", "o", 4, None, True), + ("hello", "o", 5, None, False), + ("hello", "", 5, None, True), + ("hello", "lo", 6, None, False), + ("helloworld", "lowo", 3, None, True), + ("helloworld", "lowo", 3, 7, True), + ("helloworld", "lowo", 3, 6, False), + ("", "", 0, 1, True), + ("", "", 0, 0, True), + ("", "", 1, 0, False), + ("hello", "he", 0, -1, True), + ("hello", "he", -53, -1, True), + ("hello", "hello", 0, -1, False), + ("hello", "hello world", -1, -10, False), + ("hello", "ello", -5, None, False), + ("hello", "ello", -4, None, True), + ("hello", "o", -2, None, False), + ("hello", "o", -1, None, True), + ("hello", "", -3, -3, True), + ("hello", "lo", -9, None, False), + (["hello", ""], ["he", ""], [0, 0], None, [True, True]), + ]) + def test_startswith(self, a, prefix, start, end, out, dt): + a = np.array(a, dtype=dt) + prefix = np.array(prefix, dtype=dt) + assert_array_equal(np.strings.startswith(a, prefix, start, end), out) + + @pytest.mark.parametrize("a,suffix,start,end,out", [ + ("hello", "lo", 0, None, True), + ("hello", "he", 0, None, False), + ("hello", "", 0, None, True), + ("hello", "hello world", 0, None, False), + ("helloworld", "worl", 0, None, False), + ("helloworld", "worl", 3, 9, True), + ("helloworld", "world", 3, 12, True), + ("helloworld", "lowo", 1, 7, True), + ("helloworld", "lowo", 2, 7, True), + ("helloworld", "lowo", 3, 7, True), + ("helloworld", "lowo", 4, 7, False), + ("helloworld", "lowo", 3, 8, False), + ("ab", "ab", 0, 1, False), + ("ab", "ab", 0, 0, False), + ("", "", 0, 1, True), + ("", "", 0, 0, True), + ("", "", 1, 0, False), + ("hello", "lo", -2, None, True), + ("hello", "he", -2, None, False), + ("hello", "", -3, -3, True), + ("hello", "hello world", -10, -2, False), + ("helloworld", "worl", -6, None, False), + ("helloworld", "worl", -5, -1, True), + ("helloworld", "worl", -5, 9, True), + ("helloworld", "world", -7, 12, True), + ("helloworld", "lowo", -99, -3, True), + ("helloworld", "lowo", -8, -3, True), + ("helloworld", "lowo", -7, -3, True), + ("helloworld", "lowo", 3, -4, False), + ("helloworld", "lowo", -8, -2, False), + (["hello", "helloworld"], ["lo", "worl"], [0, -6], None, + [True, False]), + ]) + def test_endswith(self, a, suffix, start, end, out, dt): + a = np.array(a, dtype=dt) + suffix = np.array(suffix, dtype=dt) + assert_array_equal(np.strings.endswith(a, suffix, start, end), out) + + @pytest.mark.parametrize("a,chars,out", [ + ("", None, ""), + (" hello ", None, "hello "), + ("hello", None, "hello"), + (" \t\n\r\f\vabc \t\n\r\f\v", None, "abc \t\n\r\f\v"), + ([" hello ", "hello"], None, ["hello ", "hello"]), + ("", "", ""), + ("", "xyz", ""), + ("hello", "", "hello"), + ("xyzzyhelloxyzzy", "xyz", "helloxyzzy"), + ("hello", "xyz", "hello"), + ("xyxz", "xyxz", ""), + ("xyxzx", "x", "yxzx"), + (["xyzzyhelloxyzzy", "hello"], ["xyz", "xyz"], + ["helloxyzzy", "hello"]), + (["ba", "ac", "baa", "bba"], "b", ["a", "ac", "aa", "a"]), + ]) + def test_lstrip(self, a, chars, out, dt): + a = np.array(a, dtype=dt) + out = np.array(out, dtype=dt) + if chars is not None: + chars = np.array(chars, dtype=dt) + assert_array_equal(np.strings.lstrip(a, chars), out) + else: + assert_array_equal(np.strings.lstrip(a), out) + + @pytest.mark.parametrize("a,chars,out", [ + ("", None, ""), + (" hello ", None, " hello"), + ("hello", None, "hello"), + (" \t\n\r\f\vabc \t\n\r\f\v", None, " \t\n\r\f\vabc"), + ([" hello ", "hello"], None, [" hello", "hello"]), + ("", "", ""), + ("", "xyz", ""), + ("hello", "", "hello"), + (["hello ", "abcdefghijklmnop"], None, + ["hello", "abcdefghijklmnop"]), + ("xyzzyhelloxyzzy", "xyz", "xyzzyhello"), + ("hello", "xyz", "hello"), + ("xyxz", "xyxz", ""), + (" ", None, ""), + ("xyxzx", "x", "xyxz"), + (["xyzzyhelloxyzzy", "hello"], ["xyz", "xyz"], + ["xyzzyhello", "hello"]), + (["ab", "ac", "aab", "abb"], "b", ["a", "ac", "aa", "a"]), + ]) + def test_rstrip(self, a, chars, out, dt): + a = np.array(a, dtype=dt) + out = np.array(out, dtype=dt) + if chars is not None: + chars = np.array(chars, dtype=dt) + assert_array_equal(np.strings.rstrip(a, chars), out) + else: + assert_array_equal(np.strings.rstrip(a), out) + + @pytest.mark.parametrize("a,chars,out", [ + ("", None, ""), + (" hello ", None, "hello"), + ("hello", None, "hello"), + (" \t\n\r\f\vabc \t\n\r\f\v", None, "abc"), + ([" hello ", "hello"], None, ["hello", "hello"]), + ("", "", ""), + ("", "xyz", ""), + ("hello", "", "hello"), + ("xyzzyhelloxyzzy", "xyz", "hello"), + ("hello", "xyz", "hello"), + ("xyxz", "xyxz", ""), + ("xyxzx", "x", "yxz"), + (["xyzzyhelloxyzzy", "hello"], ["xyz", "xyz"], + ["hello", "hello"]), + (["bab", "ac", "baab", "bbabb"], "b", ["a", "ac", "aa", "a"]), + ]) + def test_strip(self, a, chars, out, dt): + a = np.array(a, dtype=dt) + if chars is not None: + chars = np.array(chars, dtype=dt) + out = np.array(out, dtype=dt) + assert_array_equal(np.strings.strip(a, chars), out) + + @pytest.mark.parametrize("buf,old,new,count,res", [ + ("", "", "", -1, ""), + ("", "", "A", -1, "A"), + ("", "A", "", -1, ""), + ("", "A", "A", -1, ""), + ("", "", "", 100, ""), + ("", "", "A", 100, "A"), + ("A", "", "", -1, "A"), + ("A", "", "*", -1, "*A*"), + ("A", "", "*1", -1, "*1A*1"), + ("A", "", "*-#", -1, "*-#A*-#"), + ("AA", "", "*-", -1, "*-A*-A*-"), + ("AA", "", "*-", -1, "*-A*-A*-"), + ("AA", "", "*-", 4, "*-A*-A*-"), + ("AA", "", "*-", 3, "*-A*-A*-"), + ("AA", "", "*-", 2, "*-A*-A"), + ("AA", "", "*-", 1, "*-AA"), + ("AA", "", "*-", 0, "AA"), + ("A", "A", "", -1, ""), + ("AAA", "A", "", -1, ""), + ("AAA", "A", "", -1, ""), + ("AAA", "A", "", 4, ""), + ("AAA", "A", "", 3, ""), + ("AAA", "A", "", 2, "A"), + ("AAA", "A", "", 1, "AA"), + ("AAA", "A", "", 0, "AAA"), + ("AAAAAAAAAA", "A", "", -1, ""), + ("ABACADA", "A", "", -1, "BCD"), + ("ABACADA", "A", "", -1, "BCD"), + ("ABACADA", "A", "", 5, "BCD"), + ("ABACADA", "A", "", 4, "BCD"), + ("ABACADA", "A", "", 3, "BCDA"), + ("ABACADA", "A", "", 2, "BCADA"), + ("ABACADA", "A", "", 1, "BACADA"), + ("ABACADA", "A", "", 0, "ABACADA"), + ("ABCAD", "A", "", -1, "BCD"), + ("ABCADAA", "A", "", -1, "BCD"), + ("BCD", "A", "", -1, "BCD"), + ("*************", "A", "", -1, "*************"), + ("^" + "A" * 1000 + "^", "A", "", 999, "^A^"), + ("the", "the", "", -1, ""), + ("theater", "the", "", -1, "ater"), + ("thethe", "the", "", -1, ""), + ("thethethethe", "the", "", -1, ""), + ("theatheatheathea", "the", "", -1, "aaaa"), + ("that", "the", "", -1, "that"), + ("thaet", "the", "", -1, "thaet"), + ("here and there", "the", "", -1, "here and re"), + ("here and there and there", "the", "", -1, "here and re and re"), + ("here and there and there", "the", "", 3, "here and re and re"), + ("here and there and there", "the", "", 2, "here and re and re"), + ("here and there and there", "the", "", 1, "here and re and there"), + ("here and there and there", "the", "", 0, "here and there and there"), + ("here and there and there", "the", "", -1, "here and re and re"), + ("abc", "the", "", -1, "abc"), + ("abcdefg", "the", "", -1, "abcdefg"), + ("bbobob", "bob", "", -1, "bob"), + ("bbobobXbbobob", "bob", "", -1, "bobXbob"), + ("aaaaaaabob", "bob", "", -1, "aaaaaaa"), + ("aaaaaaa", "bob", "", -1, "aaaaaaa"), + ("Who goes there?", "o", "o", -1, "Who goes there?"), + ("Who goes there?", "o", "O", -1, "WhO gOes there?"), + ("Who goes there?", "o", "O", -1, "WhO gOes there?"), + ("Who goes there?", "o", "O", 3, "WhO gOes there?"), + ("Who goes there?", "o", "O", 2, "WhO gOes there?"), + ("Who goes there?", "o", "O", 1, "WhO goes there?"), + ("Who goes there?", "o", "O", 0, "Who goes there?"), + ("Who goes there?", "a", "q", -1, "Who goes there?"), + ("Who goes there?", "W", "w", -1, "who goes there?"), + ("WWho goes there?WW", "W", "w", -1, "wwho goes there?ww"), + ("Who goes there?", "?", "!", -1, "Who goes there!"), + ("Who goes there??", "?", "!", -1, "Who goes there!!"), + ("Who goes there?", ".", "!", -1, "Who goes there?"), + ("This is a tissue", "is", "**", -1, "Th** ** a t**sue"), + ("This is a tissue", "is", "**", -1, "Th** ** a t**sue"), + ("This is a tissue", "is", "**", 4, "Th** ** a t**sue"), + ("This is a tissue", "is", "**", 3, "Th** ** a t**sue"), + ("This is a tissue", "is", "**", 2, "Th** ** a tissue"), + ("This is a tissue", "is", "**", 1, "Th** is a tissue"), + ("This is a tissue", "is", "**", 0, "This is a tissue"), + ("bobob", "bob", "cob", -1, "cobob"), + ("bobobXbobobob", "bob", "cob", -1, "cobobXcobocob"), + ("bobob", "bot", "bot", -1, "bobob"), + ("Reykjavik", "k", "KK", -1, "ReyKKjaviKK"), + ("Reykjavik", "k", "KK", -1, "ReyKKjaviKK"), + ("Reykjavik", "k", "KK", 2, "ReyKKjaviKK"), + ("Reykjavik", "k", "KK", 1, "ReyKKjavik"), + ("Reykjavik", "k", "KK", 0, "Reykjavik"), + ("A.B.C.", ".", "----", -1, "A----B----C----"), + ("Reykjavik", "q", "KK", -1, "Reykjavik"), + ("spam, spam, eggs and spam", "spam", "ham", -1, + "ham, ham, eggs and ham"), + ("spam, spam, eggs and spam", "spam", "ham", -1, + "ham, ham, eggs and ham"), + ("spam, spam, eggs and spam", "spam", "ham", 4, + "ham, ham, eggs and ham"), + ("spam, spam, eggs and spam", "spam", "ham", 3, + "ham, ham, eggs and ham"), + ("spam, spam, eggs and spam", "spam", "ham", 2, + "ham, ham, eggs and spam"), + ("spam, spam, eggs and spam", "spam", "ham", 1, + "ham, spam, eggs and spam"), + ("spam, spam, eggs and spam", "spam", "ham", 0, + "spam, spam, eggs and spam"), + ("bobobob", "bobob", "bob", -1, "bobob"), + ("bobobobXbobobob", "bobob", "bob", -1, "bobobXbobob"), + ("BOBOBOB", "bob", "bobby", -1, "BOBOBOB"), + ("one!two!three!", "!", "@", 1, "one@two!three!"), + ("one!two!three!", "!", "", -1, "onetwothree"), + ("one!two!three!", "!", "@", 2, "one@two@three!"), + ("one!two!three!", "!", "@", 3, "one@two@three@"), + ("one!two!three!", "!", "@", 4, "one@two@three@"), + ("one!two!three!", "!", "@", 0, "one!two!three!"), + ("one!two!three!", "!", "@", -1, "one@two@three@"), + ("one!two!three!", "x", "@", -1, "one!two!three!"), + ("one!two!three!", "x", "@", 2, "one!two!three!"), + ("abc", "", "-", -1, "-a-b-c-"), + ("abc", "", "-", 3, "-a-b-c"), + ("abc", "", "-", 0, "abc"), + ("abc", "ab", "--", 0, "abc"), + ("abc", "xy", "--", -1, "abc"), + (["abbc", "abbd"], "b", "z", [1, 2], ["azbc", "azzd"]), + ]) + def test_replace(self, buf, old, new, count, res, dt): + if "😊" in buf and dt == "S": + pytest.skip("Bytes dtype does not support non-ascii input") + buf = np.array(buf, dtype=dt) + old = np.array(old, dtype=dt) + new = np.array(new, dtype=dt) + res = np.array(res, dtype=dt) + assert_array_equal(np.strings.replace(buf, old, new, count), res) + + @pytest.mark.parametrize("buf,sub,start,end,res", [ + ("abcdefghiabc", "", 0, None, 0), + ("abcdefghiabc", "def", 0, None, 3), + ("abcdefghiabc", "abc", 0, None, 0), + ("abcdefghiabc", "abc", 1, None, 9), + ]) + def test_index(self, buf, sub, start, end, res, dt): + buf = np.array(buf, dtype=dt) + sub = np.array(sub, dtype=dt) + assert_array_equal(np.strings.index(buf, sub, start, end), res) + + @pytest.mark.parametrize("buf,sub,start,end", [ + ("abcdefghiabc", "hib", 0, None), + ("abcdefghiab", "abc", 1, None), + ("abcdefghi", "ghi", 8, None), + ("abcdefghi", "ghi", -1, None), + ("rrarrrrrrrrra", "a", 4, 6), + ]) + def test_index_raises(self, buf, sub, start, end, dt): + buf = np.array(buf, dtype=dt) + sub = np.array(sub, dtype=dt) + with pytest.raises(ValueError, match="substring not found"): + np.strings.index(buf, sub, start, end) + + @pytest.mark.parametrize("buf,sub,start,end,res", [ + ("abcdefghiabc", "", 0, None, 12), + ("abcdefghiabc", "def", 0, None, 3), + ("abcdefghiabc", "abc", 0, None, 9), + ("abcdefghiabc", "abc", 0, -1, 0), + ]) + def test_rindex(self, buf, sub, start, end, res, dt): + buf = np.array(buf, dtype=dt) + sub = np.array(sub, dtype=dt) + assert_array_equal(np.strings.rindex(buf, sub, start, end), res) + + @pytest.mark.parametrize("buf,sub,start,end", [ + ("abcdefghiabc", "hib", 0, None), + ("defghiabc", "def", 1, None), + ("defghiabc", "abc", 0, -1), + ("abcdefghi", "ghi", 0, 8), + ("abcdefghi", "ghi", 0, -1), + ("rrarrrrrrrrra", "a", 4, 6), + ]) + def test_rindex_raises(self, buf, sub, start, end, dt): + buf = np.array(buf, dtype=dt) + sub = np.array(sub, dtype=dt) + with pytest.raises(ValueError, match="substring not found"): + np.strings.rindex(buf, sub, start, end) + + @pytest.mark.parametrize("buf,tabsize,res", [ + ("abc\rab\tdef\ng\thi", 8, "abc\rab def\ng hi"), + ("abc\rab\tdef\ng\thi", 4, "abc\rab def\ng hi"), + ("abc\r\nab\tdef\ng\thi", 8, "abc\r\nab def\ng hi"), + ("abc\r\nab\tdef\ng\thi", 4, "abc\r\nab def\ng hi"), + ("abc\r\nab\r\ndef\ng\r\nhi", 4, "abc\r\nab\r\ndef\ng\r\nhi"), + (" \ta\n\tb", 1, " a\n b"), + ]) + def test_expandtabs(self, buf, tabsize, res, dt): + buf = np.array(buf, dtype=dt) + res = np.array(res, dtype=dt) + assert_array_equal(np.strings.expandtabs(buf, tabsize), res) + + def test_expandtabs_raises_overflow(self, dt): + with pytest.raises(OverflowError, match="new string is too long"): + np.strings.expandtabs(np.array("\ta\n\tb", dtype=dt), sys.maxsize) + np.strings.expandtabs(np.array("\ta\n\tb", dtype=dt), 2**61) + + FILL_ERROR = "The fill character must be exactly one character long" + + def test_center_raises_multiple_character_fill(self, dt): + buf = np.array("abc", dtype=dt) + fill = np.array("**", dtype=dt) + with pytest.raises(TypeError, match=self.FILL_ERROR): + np.strings.center(buf, 10, fill) + + def test_ljust_raises_multiple_character_fill(self, dt): + buf = np.array("abc", dtype=dt) + fill = np.array("**", dtype=dt) + with pytest.raises(TypeError, match=self.FILL_ERROR): + np.strings.ljust(buf, 10, fill) + + def test_rjust_raises_multiple_character_fill(self, dt): + buf = np.array("abc", dtype=dt) + fill = np.array("**", dtype=dt) + with pytest.raises(TypeError, match=self.FILL_ERROR): + np.strings.rjust(buf, 10, fill) + + @pytest.mark.parametrize("buf,width,fillchar,res", [ + ('abc', 10, ' ', ' abc '), + ('abc', 6, ' ', ' abc '), + ('abc', 3, ' ', 'abc'), + ('abc', 2, ' ', 'abc'), + ('abc', -2, ' ', 'abc'), + ('abc', 10, '*', '***abc****'), + ]) + def test_center(self, buf, width, fillchar, res, dt): + buf = np.array(buf, dtype=dt) + fillchar = np.array(fillchar, dtype=dt) + res = np.array(res, dtype=dt) + assert_array_equal(np.strings.center(buf, width, fillchar), res) + + @pytest.mark.parametrize("buf,width,fillchar,res", [ + ('abc', 10, ' ', 'abc '), + ('abc', 6, ' ', 'abc '), + ('abc', 3, ' ', 'abc'), + ('abc', 2, ' ', 'abc'), + ('abc', -2, ' ', 'abc'), + ('abc', 10, '*', 'abc*******'), + ]) + def test_ljust(self, buf, width, fillchar, res, dt): + buf = np.array(buf, dtype=dt) + fillchar = np.array(fillchar, dtype=dt) + res = np.array(res, dtype=dt) + assert_array_equal(np.strings.ljust(buf, width, fillchar), res) + + @pytest.mark.parametrize("buf,width,fillchar,res", [ + ('abc', 10, ' ', ' abc'), + ('abc', 6, ' ', ' abc'), + ('abc', 3, ' ', 'abc'), + ('abc', 2, ' ', 'abc'), + ('abc', -2, ' ', 'abc'), + ('abc', 10, '*', '*******abc'), + ]) + def test_rjust(self, buf, width, fillchar, res, dt): + buf = np.array(buf, dtype=dt) + fillchar = np.array(fillchar, dtype=dt) + res = np.array(res, dtype=dt) + assert_array_equal(np.strings.rjust(buf, width, fillchar), res) + + @pytest.mark.parametrize("buf,width,res", [ + ('123', 2, '123'), + ('123', 3, '123'), + ('0123', 4, '0123'), + ('+123', 3, '+123'), + ('+123', 4, '+123'), + ('+123', 5, '+0123'), + ('+0123', 5, '+0123'), + ('-123', 3, '-123'), + ('-123', 4, '-123'), + ('-0123', 5, '-0123'), + ('000', 3, '000'), + ('34', 1, '34'), + ('34', -1, '34'), + ('0034', 4, '0034'), + ]) + def test_zfill(self, buf, width, res, dt): + buf = np.array(buf, dtype=dt) + res = np.array(res, dtype=dt) + assert_array_equal(np.strings.zfill(buf, width), res) + + @pytest.mark.parametrize("buf,sep,res1,res2,res3", [ + ("this is the partition method", "ti", "this is the par", + "ti", "tion method"), + ("http://www.python.org", "://", "http", "://", "www.python.org"), + ("http://www.python.org", "?", "http://www.python.org", "", ""), + ("http://www.python.org", "http://", "", "http://", "www.python.org"), + ("http://www.python.org", "org", "http://www.python.", "org", ""), + ("http://www.python.org", ["://", "?", "http://", "org"], + ["http", "http://www.python.org", "", "http://www.python."], + ["://", "", "http://", "org"], + ["www.python.org", "", "www.python.org", ""]), + ("mississippi", "ss", "mi", "ss", "issippi"), + ("mississippi", "i", "m", "i", "ssissippi"), + ("mississippi", "w", "mississippi", "", ""), + ]) + def test_partition(self, buf, sep, res1, res2, res3, dt): + buf = np.array(buf, dtype=dt) + sep = np.array(sep, dtype=dt) + res1 = np.array(res1, dtype=dt) + res2 = np.array(res2, dtype=dt) + res3 = np.array(res3, dtype=dt) + act1, act2, act3 = np.strings.partition(buf, sep) + assert_array_equal(act1, res1) + assert_array_equal(act2, res2) + assert_array_equal(act3, res3) + assert_array_equal(act1 + act2 + act3, buf) + + @pytest.mark.parametrize("buf,sep,res1,res2,res3", [ + ("this is the partition method", "ti", "this is the parti", + "ti", "on method"), + ("http://www.python.org", "://", "http", "://", "www.python.org"), + ("http://www.python.org", "?", "", "", "http://www.python.org"), + ("http://www.python.org", "http://", "", "http://", "www.python.org"), + ("http://www.python.org", "org", "http://www.python.", "org", ""), + ("http://www.python.org", ["://", "?", "http://", "org"], + ["http", "", "", "http://www.python."], + ["://", "", "http://", "org"], + ["www.python.org", "http://www.python.org", "www.python.org", ""]), + ("mississippi", "ss", "missi", "ss", "ippi"), + ("mississippi", "i", "mississipp", "i", ""), + ("mississippi", "w", "", "", "mississippi"), + ]) + def test_rpartition(self, buf, sep, res1, res2, res3, dt): + buf = np.array(buf, dtype=dt) + sep = np.array(sep, dtype=dt) + res1 = np.array(res1, dtype=dt) + res2 = np.array(res2, dtype=dt) + res3 = np.array(res3, dtype=dt) + act1, act2, act3 = np.strings.rpartition(buf, sep) + assert_array_equal(act1, res1) + assert_array_equal(act2, res2) + assert_array_equal(act3, res3) + assert_array_equal(act1 + act2 + act3, buf) + + @pytest.mark.parametrize("args", [ + (None,), + (0,), + (1,), + (3,), + (5,), + (6,), # test index past the end + (-1,), + (-3,), + ([3, 4],), + ([2, 4],), + ([-3, 5],), + ([0, -5],), + (1, 4), + (-3, 5), + (None, -1), + (0, [4, 2]), + ([1, 2], [-1, -2]), + (1, 5, 2), + (None, None, -1), + ([0, 6], [-1, 0], [2, -1]), + ]) + def test_slice(self, args, dt): + buf = np.array(["hello", "world"], dtype=dt) + act = np.strings.slice(buf, *args) + bcast_args = tuple(np.broadcast_to(arg, buf.shape) for arg in args) + res = np.array([s[slice(*arg)] + for s, arg in zip(buf, zip(*bcast_args))], + dtype=dt) + assert_array_equal(act, res) + + def test_slice_unsupported(self, dt): + with pytest.raises(TypeError, match="did not contain a loop"): + np.strings.slice(np.array([1, 2, 3]), 4) + + with pytest.raises(TypeError, match=r"Cannot cast ufunc '_slice' input .* from .* to dtype\('int(64|32)'\)"): + np.strings.slice(np.array(['foo', 'bar'], dtype=dt), np.array(['foo', 'bar'], dtype=dt)) + + @pytest.mark.parametrize("int_dt", [np.int8, np.int16, np.int32, np.int64, + np.uint8, np.uint16, np.uint32, np.uint64]) + def test_slice_int_type_promotion(self, int_dt, dt): + buf = np.array(["hello", "world"], dtype=dt) + + assert_array_equal(np.strings.slice(buf, int_dt(4)), np.array(["hell", "worl"], dtype=dt)) + assert_array_equal(np.strings.slice(buf, np.array([4, 4], dtype=int_dt)), np.array(["hell", "worl"], dtype=dt)) + + assert_array_equal(np.strings.slice(buf, int_dt(2), int_dt(4)), np.array(["ll", "rl"], dtype=dt)) + assert_array_equal(np.strings.slice(buf, np.array([2, 2], dtype=int_dt), np.array([4, 4], dtype=int_dt)), np.array(["ll", "rl"], dtype=dt)) + + assert_array_equal(np.strings.slice(buf, int_dt(0), int_dt(4), int_dt(2)), np.array(["hl", "wr"], dtype=dt)) + assert_array_equal(np.strings.slice(buf, np.array([0, 0], dtype=int_dt), np.array([4, 4], dtype=int_dt), np.array([2, 2], dtype=int_dt)), np.array(["hl", "wr"], dtype=dt)) + +@pytest.mark.parametrize("dt", ["U", "T"]) +class TestMethodsWithUnicode: + @pytest.mark.parametrize("in_,out", [ + ("", False), + ("a", False), + ("0", True), + ("\u2460", False), # CIRCLED DIGIT 1 + ("\xbc", False), # VULGAR FRACTION ONE QUARTER + ("\u0660", True), # ARABIC_INDIC DIGIT ZERO + ("012345", True), + ("012345a", False), + (["0", "a"], [True, False]), + ]) + def test_isdecimal_unicode(self, in_, out, dt): + buf = np.array(in_, dtype=dt) + assert_array_equal(np.strings.isdecimal(buf), out) + + @pytest.mark.parametrize("in_,out", [ + ("", False), + ("a", False), + ("0", True), + ("\u2460", True), # CIRCLED DIGIT 1 + ("\xbc", True), # VULGAR FRACTION ONE QUARTER + ("\u0660", True), # ARABIC_INDIC DIGIT ZERO + ("012345", True), + ("012345a", False), + (["0", "a"], [True, False]), + ]) + def test_isnumeric_unicode(self, in_, out, dt): + buf = np.array(in_, dtype=dt) + assert_array_equal(np.strings.isnumeric(buf), out) + + @pytest.mark.parametrize("buf,old,new,count,res", [ + ("...\u043c......<", "<", "<", -1, "...\u043c......<"), + ("Ae¢☃€ 😊" * 2, "A", "B", -1, "Be¢☃€ 😊Be¢☃€ 😊"), + ("Ae¢☃€ 😊" * 2, "😊", "B", -1, "Ae¢☃€ BAe¢☃€ B"), + ]) + def test_replace_unicode(self, buf, old, new, count, res, dt): + buf = np.array(buf, dtype=dt) + old = np.array(old, dtype=dt) + new = np.array(new, dtype=dt) + res = np.array(res, dtype=dt) + assert_array_equal(np.strings.replace(buf, old, new, count), res) + + @pytest.mark.parametrize("in_", [ + '\U00010401', + '\U00010427', + '\U00010429', + '\U0001044E', + '\U0001D7F6', + '\U00011066', + '\U000104A0', + pytest.param('\U0001F107', marks=pytest.mark.xfail( + sys.platform == 'win32' and IS_PYPY_LT_7_3_16, + reason="PYPY bug in Py_UNICODE_ISALNUM", + strict=True)), + ]) + def test_isalnum_unicode(self, in_, dt): + in_ = np.array(in_, dtype=dt) + assert_array_equal(np.strings.isalnum(in_), True) + + @pytest.mark.parametrize("in_,out", [ + ('\u1FFc', False), + ('\u2167', False), + ('\U00010401', False), + ('\U00010427', False), + ('\U0001F40D', False), + ('\U0001F46F', False), + ('\u2177', True), + pytest.param('\U00010429', True, marks=pytest.mark.xfail( + sys.platform == 'win32' and IS_PYPY_LT_7_3_16, + reason="PYPY bug in Py_UNICODE_ISLOWER", + strict=True)), + ('\U0001044E', True), + ]) + def test_islower_unicode(self, in_, out, dt): + in_ = np.array(in_, dtype=dt) + assert_array_equal(np.strings.islower(in_), out) + + @pytest.mark.parametrize("in_,out", [ + ('\u1FFc', False), + ('\u2167', True), + ('\U00010401', True), + ('\U00010427', True), + ('\U0001F40D', False), + ('\U0001F46F', False), + ('\u2177', False), + pytest.param('\U00010429', False, marks=pytest.mark.xfail( + sys.platform == 'win32' and IS_PYPY_LT_7_3_16, + reason="PYPY bug in Py_UNICODE_ISUPPER", + strict=True)), + ('\U0001044E', False), + ]) + def test_isupper_unicode(self, in_, out, dt): + in_ = np.array(in_, dtype=dt) + assert_array_equal(np.strings.isupper(in_), out) + + @pytest.mark.parametrize("in_,out", [ + ('\u1FFc', True), + ('Greek \u1FFcitlecases ...', True), + pytest.param('\U00010401\U00010429', True, marks=pytest.mark.xfail( + sys.platform == 'win32' and IS_PYPY_LT_7_3_16, + reason="PYPY bug in Py_UNICODE_ISISTITLE", + strict=True)), + ('\U00010427\U0001044E', True), + pytest.param('\U00010429', False, marks=pytest.mark.xfail( + sys.platform == 'win32' and IS_PYPY_LT_7_3_16, + reason="PYPY bug in Py_UNICODE_ISISTITLE", + strict=True)), + ('\U0001044E', False), + ('\U0001F40D', False), + ('\U0001F46F', False), + ]) + def test_istitle_unicode(self, in_, out, dt): + in_ = np.array(in_, dtype=dt) + assert_array_equal(np.strings.istitle(in_), out) + + @pytest.mark.parametrize("buf,sub,start,end,res", [ + ("Ae¢☃€ 😊" * 2, "😊", 0, None, 6), + ("Ae¢☃€ 😊" * 2, "😊", 7, None, 13), + ]) + def test_index_unicode(self, buf, sub, start, end, res, dt): + buf = np.array(buf, dtype=dt) + sub = np.array(sub, dtype=dt) + assert_array_equal(np.strings.index(buf, sub, start, end), res) + + def test_index_raises_unicode(self, dt): + with pytest.raises(ValueError, match="substring not found"): + np.strings.index("Ae¢☃€ 😊", "😀") + + @pytest.mark.parametrize("buf,res", [ + ("Ae¢☃€ \t 😊", "Ae¢☃€ 😊"), + ("\t\U0001044E", " \U0001044E"), + ]) + def test_expandtabs(self, buf, res, dt): + buf = np.array(buf, dtype=dt) + res = np.array(res, dtype=dt) + assert_array_equal(np.strings.expandtabs(buf), res) + + @pytest.mark.parametrize("buf,width,fillchar,res", [ + ('x', 2, '\U0001044E', 'x\U0001044E'), + ('x', 3, '\U0001044E', '\U0001044Ex\U0001044E'), + ('x', 4, '\U0001044E', '\U0001044Ex\U0001044E\U0001044E'), + ]) + def test_center(self, buf, width, fillchar, res, dt): + buf = np.array(buf, dtype=dt) + fillchar = np.array(fillchar, dtype=dt) + res = np.array(res, dtype=dt) + assert_array_equal(np.strings.center(buf, width, fillchar), res) + + @pytest.mark.parametrize("buf,width,fillchar,res", [ + ('x', 2, '\U0001044E', 'x\U0001044E'), + ('x', 3, '\U0001044E', 'x\U0001044E\U0001044E'), + ('x', 4, '\U0001044E', 'x\U0001044E\U0001044E\U0001044E'), + ]) + def test_ljust(self, buf, width, fillchar, res, dt): + buf = np.array(buf, dtype=dt) + fillchar = np.array(fillchar, dtype=dt) + res = np.array(res, dtype=dt) + assert_array_equal(np.strings.ljust(buf, width, fillchar), res) + + @pytest.mark.parametrize("buf,width,fillchar,res", [ + ('x', 2, '\U0001044E', '\U0001044Ex'), + ('x', 3, '\U0001044E', '\U0001044E\U0001044Ex'), + ('x', 4, '\U0001044E', '\U0001044E\U0001044E\U0001044Ex'), + ]) + def test_rjust(self, buf, width, fillchar, res, dt): + buf = np.array(buf, dtype=dt) + fillchar = np.array(fillchar, dtype=dt) + res = np.array(res, dtype=dt) + assert_array_equal(np.strings.rjust(buf, width, fillchar), res) + + @pytest.mark.parametrize("buf,sep,res1,res2,res3", [ + ("āāāāĀĀĀĀ", "Ă", "āāāāĀĀĀĀ", "", ""), + ("āāāāĂĀĀĀĀ", "Ă", "āāāā", "Ă", "ĀĀĀĀ"), + ("āāāāĂĂĀĀĀĀ", "ĂĂ", "āāāā", "ĂĂ", "ĀĀĀĀ"), + ("𐌁𐌁𐌁𐌁𐌀𐌀𐌀𐌀", "𐌂", "𐌁𐌁𐌁𐌁𐌀𐌀𐌀𐌀", "", ""), + ("𐌁𐌁𐌁𐌁𐌂𐌀𐌀𐌀𐌀", "𐌂", "𐌁𐌁𐌁𐌁", "𐌂", "𐌀𐌀𐌀𐌀"), + ("𐌁𐌁𐌁𐌁𐌂𐌂𐌀𐌀𐌀𐌀", "𐌂𐌂", "𐌁𐌁𐌁𐌁", "𐌂𐌂", "𐌀𐌀𐌀𐌀"), + ("𐌁𐌁𐌁𐌁𐌂𐌂𐌂𐌂𐌀𐌀𐌀𐌀", "𐌂𐌂𐌂𐌂", "𐌁𐌁𐌁𐌁", "𐌂𐌂𐌂𐌂", "𐌀𐌀𐌀𐌀"), + ]) + def test_partition(self, buf, sep, res1, res2, res3, dt): + buf = np.array(buf, dtype=dt) + sep = np.array(sep, dtype=dt) + res1 = np.array(res1, dtype=dt) + res2 = np.array(res2, dtype=dt) + res3 = np.array(res3, dtype=dt) + act1, act2, act3 = np.strings.partition(buf, sep) + assert_array_equal(act1, res1) + assert_array_equal(act2, res2) + assert_array_equal(act3, res3) + assert_array_equal(act1 + act2 + act3, buf) + + @pytest.mark.parametrize("buf,sep,res1,res2,res3", [ + ("āāāāĀĀĀĀ", "Ă", "", "", "āāāāĀĀĀĀ"), + ("āāāāĂĀĀĀĀ", "Ă", "āāāā", "Ă", "ĀĀĀĀ"), + ("āāāāĂĂĀĀĀĀ", "ĂĂ", "āāāā", "ĂĂ", "ĀĀĀĀ"), + ("𐌁𐌁𐌁𐌁𐌀𐌀𐌀𐌀", "𐌂", "", "", "𐌁𐌁𐌁𐌁𐌀𐌀𐌀𐌀"), + ("𐌁𐌁𐌁𐌁𐌂𐌀𐌀𐌀𐌀", "𐌂", "𐌁𐌁𐌁𐌁", "𐌂", "𐌀𐌀𐌀𐌀"), + ("𐌁𐌁𐌁𐌁𐌂𐌂𐌀𐌀𐌀𐌀", "𐌂𐌂", "𐌁𐌁𐌁𐌁", "𐌂𐌂", "𐌀𐌀𐌀𐌀"), + ]) + def test_rpartition(self, buf, sep, res1, res2, res3, dt): + buf = np.array(buf, dtype=dt) + sep = np.array(sep, dtype=dt) + res1 = np.array(res1, dtype=dt) + res2 = np.array(res2, dtype=dt) + res3 = np.array(res3, dtype=dt) + act1, act2, act3 = np.strings.rpartition(buf, sep) + assert_array_equal(act1, res1) + assert_array_equal(act2, res2) + assert_array_equal(act3, res3) + assert_array_equal(act1 + act2 + act3, buf) + + @pytest.mark.parametrize("method", ["strip", "lstrip", "rstrip"]) + @pytest.mark.parametrize( + "source,strip", + [ + ("λμ", "μ"), + ("λμ", "λ"), + ("λ" * 5 + "μ" * 2, "μ"), + ("λ" * 5 + "μ" * 2, "λ"), + ("λ" * 5 + "A" + "μ" * 2, "μλ"), + ("λμ" * 5, "μ"), + ("λμ" * 5, "λ"), + ]) + def test_strip_functions_unicode(self, source, strip, method, dt): + src_array = np.array([source], dtype=dt) + + npy_func = getattr(np.strings, method) + py_func = getattr(str, method) + + expected = np.array([py_func(source, strip)], dtype=dt) + actual = npy_func(src_array, strip) + + assert_array_equal(actual, expected) + + @pytest.mark.parametrize("args", [ + (None,), + (0,), + (1,), + (5,), + (15,), + (22,), + (-1,), + (-3,), + ([3, 4],), + ([-5, 5],), + ([0, -8],), + (1, 12), + (-12, 15), + (None, -1), + (0, [17, 6]), + ([1, 2], [-1, -2]), + (1, 11, 2), + (None, None, -1), + ([0, 10], [-1, 0], [2, -1]), + ]) + def test_slice(self, args, dt): + buf = np.array(["Приве́т नमस्ते שָׁלוֹם", "😀😃😄😁😆😅🤣😂🙂🙃"], + dtype=dt) + act = np.strings.slice(buf, *args) + bcast_args = tuple(np.broadcast_to(arg, buf.shape) for arg in args) + res = np.array([s[slice(*arg)] + for s, arg in zip(buf, zip(*bcast_args))], + dtype=dt) + assert_array_equal(act, res) + + +class TestMixedTypeMethods: + def test_center(self): + buf = np.array("😊", dtype="U") + fill = np.array("*", dtype="S") + res = np.array("*😊*", dtype="U") + assert_array_equal(np.strings.center(buf, 3, fill), res) + + buf = np.array("s", dtype="S") + fill = np.array("*", dtype="U") + res = np.array("*s*", dtype="S") + assert_array_equal(np.strings.center(buf, 3, fill), res) + + with pytest.raises(ValueError, match="'ascii' codec can't encode"): + buf = np.array("s", dtype="S") + fill = np.array("😊", dtype="U") + np.strings.center(buf, 3, fill) + + def test_ljust(self): + buf = np.array("😊", dtype="U") + fill = np.array("*", dtype="S") + res = np.array("😊**", dtype="U") + assert_array_equal(np.strings.ljust(buf, 3, fill), res) + + buf = np.array("s", dtype="S") + fill = np.array("*", dtype="U") + res = np.array("s**", dtype="S") + assert_array_equal(np.strings.ljust(buf, 3, fill), res) + + with pytest.raises(ValueError, match="'ascii' codec can't encode"): + buf = np.array("s", dtype="S") + fill = np.array("😊", dtype="U") + np.strings.ljust(buf, 3, fill) + + def test_rjust(self): + buf = np.array("😊", dtype="U") + fill = np.array("*", dtype="S") + res = np.array("**😊", dtype="U") + assert_array_equal(np.strings.rjust(buf, 3, fill), res) + + buf = np.array("s", dtype="S") + fill = np.array("*", dtype="U") + res = np.array("**s", dtype="S") + assert_array_equal(np.strings.rjust(buf, 3, fill), res) + + with pytest.raises(ValueError, match="'ascii' codec can't encode"): + buf = np.array("s", dtype="S") + fill = np.array("😊", dtype="U") + np.strings.rjust(buf, 3, fill) + + +class TestUnicodeOnlyMethodsRaiseWithBytes: + def test_isdecimal_raises(self): + in_ = np.array(b"1") + with assert_raises(TypeError): + np.strings.isdecimal(in_) + + def test_isnumeric_bytes(self): + in_ = np.array(b"1") + with assert_raises(TypeError): + np.strings.isnumeric(in_) + + +def check_itemsize(n_elem, dt): + if dt == "T": + return np.dtype(dt).itemsize + if dt == "S": + return n_elem + if dt == "U": + return n_elem * 4 + +@pytest.mark.parametrize("dt", ["S", "U", "T"]) +class TestReplaceOnArrays: + + def test_replace_count_and_size(self, dt): + a = np.array(["0123456789" * i for i in range(4)], dtype=dt) + r1 = np.strings.replace(a, "5", "ABCDE") + assert r1.dtype.itemsize == check_itemsize(3 * 10 + 3 * 4, dt) + r1_res = np.array(["01234ABCDE6789" * i for i in range(4)], dtype=dt) + assert_array_equal(r1, r1_res) + r2 = np.strings.replace(a, "5", "ABCDE", 1) + assert r2.dtype.itemsize == check_itemsize(3 * 10 + 4, dt) + r3 = np.strings.replace(a, "5", "ABCDE", 0) + assert r3.dtype.itemsize == a.dtype.itemsize + assert_array_equal(r3, a) + # Negative values mean to replace all. + r4 = np.strings.replace(a, "5", "ABCDE", -1) + assert r4.dtype.itemsize == check_itemsize(3 * 10 + 3 * 4, dt) + assert_array_equal(r4, r1) + # We can do count on an element-by-element basis. + r5 = np.strings.replace(a, "5", "ABCDE", [-1, -1, -1, 1]) + assert r5.dtype.itemsize == check_itemsize(3 * 10 + 4, dt) + assert_array_equal(r5, np.array( + ["01234ABCDE6789" * i for i in range(3)] + + ["01234ABCDE6789" + "0123456789" * 2], dtype=dt)) + + def test_replace_broadcasting(self, dt): + a = np.array("0,0,0", dtype=dt) + r1 = np.strings.replace(a, "0", "1", np.arange(3)) + assert r1.dtype == a.dtype + assert_array_equal(r1, np.array(["0,0,0", "1,0,0", "1,1,0"], dtype=dt)) + r2 = np.strings.replace(a, "0", [["1"], ["2"]], np.arange(1, 4)) + assert_array_equal(r2, np.array([["1,0,0", "1,1,0", "1,1,1"], + ["2,0,0", "2,2,0", "2,2,2"]], + dtype=dt)) + r3 = np.strings.replace(a, ["0", "0,0", "0,0,0"], "X") + assert_array_equal(r3, np.array(["X,X,X", "X,0", "X"], dtype=dt)) + + +class TestOverride: + @classmethod + def setup_class(cls): + class Override: + + def __array_function__(self, *args, **kwargs): + return "function" + + def __array_ufunc__(self, *args, **kwargs): + return "ufunc" + + cls.override = Override() + + @pytest.mark.parametrize("func, kwargs", [ + (np.strings.center, dict(width=10)), + (np.strings.capitalize, {}), + (np.strings.decode, {}), + (np.strings.encode, {}), + (np.strings.expandtabs, {}), + (np.strings.ljust, dict(width=10)), + (np.strings.lower, {}), + (np.strings.mod, dict(values=2)), + (np.strings.multiply, dict(i=2)), + (np.strings.partition, dict(sep="foo")), + (np.strings.rjust, dict(width=10)), + (np.strings.rpartition, dict(sep="foo")), + (np.strings.swapcase, {}), + (np.strings.title, {}), + (np.strings.translate, dict(table=None)), + (np.strings.upper, {}), + (np.strings.zfill, dict(width=10)), + ]) + def test_override_function(self, func, kwargs): + assert func(self.override, **kwargs) == "function" + + @pytest.mark.parametrize("func, args, kwargs", [ + (np.strings.add, (None, ), {}), + (np.strings.lstrip, (), {}), + (np.strings.rstrip, (), {}), + (np.strings.strip, (), {}), + (np.strings.equal, (None, ), {}), + (np.strings.not_equal, (None, ), {}), + (np.strings.greater_equal, (None, ), {}), + (np.strings.less_equal, (None, ), {}), + (np.strings.greater, (None, ), {}), + (np.strings.less, (None, ), {}), + (np.strings.count, ("foo", ), {}), + (np.strings.endswith, ("foo", ), {}), + (np.strings.find, ("foo", ), {}), + (np.strings.index, ("foo", ), {}), + (np.strings.isalnum, (), {}), + (np.strings.isalpha, (), {}), + (np.strings.isdecimal, (), {}), + (np.strings.isdigit, (), {}), + (np.strings.islower, (), {}), + (np.strings.isnumeric, (), {}), + (np.strings.isspace, (), {}), + (np.strings.istitle, (), {}), + (np.strings.isupper, (), {}), + (np.strings.rfind, ("foo", ), {}), + (np.strings.rindex, ("foo", ), {}), + (np.strings.startswith, ("foo", ), {}), + (np.strings.str_len, (), {}), + ]) + def test_override_ufunc(self, func, args, kwargs): + assert func(self.override, *args, **kwargs) == "ufunc" diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_ufunc.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_ufunc.py new file mode 100644 index 0000000..af22dce --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_ufunc.py @@ -0,0 +1,3313 @@ +import ctypes as ct +import itertools +import pickle +import sys +import warnings + +import numpy._core._operand_flag_tests as opflag_tests +import numpy._core._rational_tests as _rational_tests +import numpy._core._umath_tests as umt +import pytest +from pytest import param + +import numpy as np +import numpy._core.umath as ncu +import numpy.linalg._umath_linalg as uml +from numpy.exceptions import AxisError +from numpy.testing import ( + HAS_REFCOUNT, + IS_PYPY, + IS_WASM, + assert_, + assert_allclose, + assert_almost_equal, + assert_array_almost_equal, + assert_array_equal, + assert_equal, + assert_no_warnings, + assert_raises, + suppress_warnings, +) +from numpy.testing._private.utils import requires_memory + +UNARY_UFUNCS = [obj for obj in np._core.umath.__dict__.values() + if isinstance(obj, np.ufunc)] +UNARY_OBJECT_UFUNCS = [uf for uf in UNARY_UFUNCS if "O->O" in uf.types] + +# Remove functions that do not support `floats` +UNARY_OBJECT_UFUNCS.remove(np.bitwise_count) + + +class TestUfuncKwargs: + def test_kwarg_exact(self): + assert_raises(TypeError, np.add, 1, 2, castingx='safe') + assert_raises(TypeError, np.add, 1, 2, dtypex=int) + assert_raises(TypeError, np.add, 1, 2, extobjx=[4096]) + assert_raises(TypeError, np.add, 1, 2, outx=None) + assert_raises(TypeError, np.add, 1, 2, sigx='ii->i') + assert_raises(TypeError, np.add, 1, 2, signaturex='ii->i') + assert_raises(TypeError, np.add, 1, 2, subokx=False) + assert_raises(TypeError, np.add, 1, 2, wherex=[True]) + + def test_sig_signature(self): + assert_raises(TypeError, np.add, 1, 2, sig='ii->i', + signature='ii->i') + + def test_sig_dtype(self): + assert_raises(TypeError, np.add, 1, 2, sig='ii->i', + dtype=int) + assert_raises(TypeError, np.add, 1, 2, signature='ii->i', + dtype=int) + + def test_extobj_removed(self): + assert_raises(TypeError, np.add, 1, 2, extobj=[4096]) + + +class TestUfuncGenericLoops: + """Test generic loops. + + The loops to be tested are: + + PyUFunc_ff_f_As_dd_d + PyUFunc_ff_f + PyUFunc_dd_d + PyUFunc_gg_g + PyUFunc_FF_F_As_DD_D + PyUFunc_DD_D + PyUFunc_FF_F + PyUFunc_GG_G + PyUFunc_OO_O + PyUFunc_OO_O_method + PyUFunc_f_f_As_d_d + PyUFunc_d_d + PyUFunc_f_f + PyUFunc_g_g + PyUFunc_F_F_As_D_D + PyUFunc_F_F + PyUFunc_D_D + PyUFunc_G_G + PyUFunc_O_O + PyUFunc_O_O_method + PyUFunc_On_Om + + Where: + + f -- float + d -- double + g -- long double + F -- complex float + D -- complex double + G -- complex long double + O -- python object + + It is difficult to assure that each of these loops is entered from the + Python level as the special cased loops are a moving target and the + corresponding types are architecture dependent. We probably need to + define C level testing ufuncs to get at them. For the time being, I've + just looked at the signatures registered in the build directory to find + relevant functions. + + """ + np_dtypes = [ + (np.single, np.single), (np.single, np.double), + (np.csingle, np.csingle), (np.csingle, np.cdouble), + (np.double, np.double), (np.longdouble, np.longdouble), + (np.cdouble, np.cdouble), (np.clongdouble, np.clongdouble)] + + @pytest.mark.parametrize('input_dtype,output_dtype', np_dtypes) + def test_unary_PyUFunc(self, input_dtype, output_dtype, f=np.exp, x=0, y=1): + xs = np.full(10, input_dtype(x), dtype=output_dtype) + ys = f(xs)[::2] + assert_allclose(ys, y) + assert_equal(ys.dtype, output_dtype) + + def f2(x, y): + return x**y + + @pytest.mark.parametrize('input_dtype,output_dtype', np_dtypes) + def test_binary_PyUFunc(self, input_dtype, output_dtype, f=f2, x=0, y=1): + xs = np.full(10, input_dtype(x), dtype=output_dtype) + ys = f(xs, xs)[::2] + assert_allclose(ys, y) + assert_equal(ys.dtype, output_dtype) + + # class to use in testing object method loops + class foo: + def conjugate(self): + return np.bool(1) + + def logical_xor(self, obj): + return np.bool(1) + + def test_unary_PyUFunc_O_O(self): + x = np.ones(10, dtype=object) + assert_(np.all(np.abs(x) == 1)) + + def test_unary_PyUFunc_O_O_method_simple(self, foo=foo): + x = np.full(10, foo(), dtype=object) + assert_(np.all(np.conjugate(x) == True)) + + def test_binary_PyUFunc_OO_O(self): + x = np.ones(10, dtype=object) + assert_(np.all(np.add(x, x) == 2)) + + def test_binary_PyUFunc_OO_O_method(self, foo=foo): + x = np.full(10, foo(), dtype=object) + assert_(np.all(np.logical_xor(x, x))) + + def test_binary_PyUFunc_On_Om_method(self, foo=foo): + x = np.full((10, 2, 3), foo(), dtype=object) + assert_(np.all(np.logical_xor(x, x))) + + def test_python_complex_conjugate(self): + # The conjugate ufunc should fall back to calling the method: + arr = np.array([1 + 2j, 3 - 4j], dtype="O") + assert isinstance(arr[0], complex) + res = np.conjugate(arr) + assert res.dtype == np.dtype("O") + assert_array_equal(res, np.array([1 - 2j, 3 + 4j], dtype="O")) + + @pytest.mark.parametrize("ufunc", UNARY_OBJECT_UFUNCS) + def test_unary_PyUFunc_O_O_method_full(self, ufunc): + """Compare the result of the object loop with non-object one""" + val = np.float64(np.pi / 4) + + class MyFloat(np.float64): + def __getattr__(self, attr): + try: + return super().__getattr__(attr) + except AttributeError: + return lambda: getattr(np._core.umath, attr)(val) + + # Use 0-D arrays, to ensure the same element call + num_arr = np.array(val, dtype=np.float64) + obj_arr = np.array(MyFloat(val), dtype="O") + + with np.errstate(all="raise"): + try: + res_num = ufunc(num_arr) + except Exception as exc: + with assert_raises(type(exc)): + ufunc(obj_arr) + else: + res_obj = ufunc(obj_arr) + assert_array_almost_equal(res_num.astype("O"), res_obj) + + +def _pickleable_module_global(): + pass + + +class TestUfunc: + def test_pickle(self): + for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): + assert_(pickle.loads(pickle.dumps(np.sin, + protocol=proto)) is np.sin) + + # Check that ufunc not defined in the top level numpy namespace + # such as numpy._core._rational_tests.test_add can also be pickled + res = pickle.loads(pickle.dumps(_rational_tests.test_add, + protocol=proto)) + assert_(res is _rational_tests.test_add) + + def test_pickle_withstring(self): + astring = (b"cnumpy.core\n_ufunc_reconstruct\np0\n" + b"(S'numpy._core.umath'\np1\nS'cos'\np2\ntp3\nRp4\n.") + assert_(pickle.loads(astring) is np.cos) + + @pytest.mark.skipif(IS_PYPY, reason="'is' check does not work on PyPy") + def test_pickle_name_is_qualname(self): + # This tests that a simplification of our ufunc pickle code will + # lead to allowing qualnames as names. Future ufuncs should + # possible add a specific qualname, or a hook into pickling instead + # (dask+numba may benefit). + _pickleable_module_global.ufunc = umt._pickleable_module_global_ufunc + + obj = pickle.loads(pickle.dumps(_pickleable_module_global.ufunc)) + assert obj is umt._pickleable_module_global_ufunc + + def test_reduceat_shifting_sum(self): + L = 6 + x = np.arange(L) + idx = np.array(list(zip(np.arange(L - 2), np.arange(L - 2) + 2))).ravel() + assert_array_equal(np.add.reduceat(x, idx)[::2], [1, 3, 5, 7]) + + def test_all_ufunc(self): + """Try to check presence and results of all ufuncs. + + The list of ufuncs comes from generate_umath.py and is as follows: + + ===== ==== ============= =============== ======================== + done args function types notes + ===== ==== ============= =============== ======================== + n 1 conjugate nums + O + n 1 absolute nums + O complex -> real + n 1 negative nums + O + n 1 sign nums + O -> int + n 1 invert bool + ints + O flts raise an error + n 1 degrees real + M cmplx raise an error + n 1 radians real + M cmplx raise an error + n 1 arccos flts + M + n 1 arccosh flts + M + n 1 arcsin flts + M + n 1 arcsinh flts + M + n 1 arctan flts + M + n 1 arctanh flts + M + n 1 cos flts + M + n 1 sin flts + M + n 1 tan flts + M + n 1 cosh flts + M + n 1 sinh flts + M + n 1 tanh flts + M + n 1 exp flts + M + n 1 expm1 flts + M + n 1 log flts + M + n 1 log10 flts + M + n 1 log1p flts + M + n 1 sqrt flts + M real x < 0 raises error + n 1 ceil real + M + n 1 trunc real + M + n 1 floor real + M + n 1 fabs real + M + n 1 rint flts + M + n 1 isnan flts -> bool + n 1 isinf flts -> bool + n 1 isfinite flts -> bool + n 1 signbit real -> bool + n 1 modf real -> (frac, int) + n 1 logical_not bool + nums + M -> bool + n 2 left_shift ints + O flts raise an error + n 2 right_shift ints + O flts raise an error + n 2 add bool + nums + O boolean + is || + n 2 subtract bool + nums + O boolean - is ^ + n 2 multiply bool + nums + O boolean * is & + n 2 divide nums + O + n 2 floor_divide nums + O + n 2 true_divide nums + O bBhH -> f, iIlLqQ -> d + n 2 fmod nums + M + n 2 power nums + O + n 2 greater bool + nums + O -> bool + n 2 greater_equal bool + nums + O -> bool + n 2 less bool + nums + O -> bool + n 2 less_equal bool + nums + O -> bool + n 2 equal bool + nums + O -> bool + n 2 not_equal bool + nums + O -> bool + n 2 logical_and bool + nums + M -> bool + n 2 logical_or bool + nums + M -> bool + n 2 logical_xor bool + nums + M -> bool + n 2 maximum bool + nums + O + n 2 minimum bool + nums + O + n 2 bitwise_and bool + ints + O flts raise an error + n 2 bitwise_or bool + ints + O flts raise an error + n 2 bitwise_xor bool + ints + O flts raise an error + n 2 arctan2 real + M + n 2 remainder ints + real + O + n 2 hypot real + M + ===== ==== ============= =============== ======================== + + Types other than those listed will be accepted, but they are cast to + the smallest compatible type for which the function is defined. The + casting rules are: + + bool -> int8 -> float32 + ints -> double + + """ + pass + + # from include/numpy/ufuncobject.h + size_inferred = 2 + can_ignore = 4 + + def test_signature0(self): + # the arguments to test_signature are: nin, nout, core_signature + enabled, num_dims, ixs, flags, sizes = umt.test_signature( + 2, 1, "(i),(i)->()") + assert_equal(enabled, 1) + assert_equal(num_dims, (1, 1, 0)) + assert_equal(ixs, (0, 0)) + assert_equal(flags, (self.size_inferred,)) + assert_equal(sizes, (-1,)) + + def test_signature1(self): + # empty core signature; treat as plain ufunc (with trivial core) + enabled, num_dims, ixs, flags, sizes = umt.test_signature( + 2, 1, "(),()->()") + assert_equal(enabled, 0) + assert_equal(num_dims, (0, 0, 0)) + assert_equal(ixs, ()) + assert_equal(flags, ()) + assert_equal(sizes, ()) + + def test_signature2(self): + # more complicated names for variables + enabled, num_dims, ixs, flags, sizes = umt.test_signature( + 2, 1, "(i1,i2),(J_1)->(_kAB)") + assert_equal(enabled, 1) + assert_equal(num_dims, (2, 1, 1)) + assert_equal(ixs, (0, 1, 2, 3)) + assert_equal(flags, (self.size_inferred,) * 4) + assert_equal(sizes, (-1, -1, -1, -1)) + + def test_signature3(self): + enabled, num_dims, ixs, flags, sizes = umt.test_signature( + 2, 1, "(i1, i12), (J_1)->(i12, i2)") + assert_equal(enabled, 1) + assert_equal(num_dims, (2, 1, 2)) + assert_equal(ixs, (0, 1, 2, 1, 3)) + assert_equal(flags, (self.size_inferred,) * 4) + assert_equal(sizes, (-1, -1, -1, -1)) + + def test_signature4(self): + # matrix_multiply signature from _umath_tests + enabled, num_dims, ixs, flags, sizes = umt.test_signature( + 2, 1, "(n,k),(k,m)->(n,m)") + assert_equal(enabled, 1) + assert_equal(num_dims, (2, 2, 2)) + assert_equal(ixs, (0, 1, 1, 2, 0, 2)) + assert_equal(flags, (self.size_inferred,) * 3) + assert_equal(sizes, (-1, -1, -1)) + + def test_signature5(self): + # matmul signature from _umath_tests + enabled, num_dims, ixs, flags, sizes = umt.test_signature( + 2, 1, "(n?,k),(k,m?)->(n?,m?)") + assert_equal(enabled, 1) + assert_equal(num_dims, (2, 2, 2)) + assert_equal(ixs, (0, 1, 1, 2, 0, 2)) + assert_equal(flags, (self.size_inferred | self.can_ignore, + self.size_inferred, + self.size_inferred | self.can_ignore)) + assert_equal(sizes, (-1, -1, -1)) + + def test_signature6(self): + enabled, num_dims, ixs, flags, sizes = umt.test_signature( + 1, 1, "(3)->()") + assert_equal(enabled, 1) + assert_equal(num_dims, (1, 0)) + assert_equal(ixs, (0,)) + assert_equal(flags, (0,)) + assert_equal(sizes, (3,)) + + def test_signature7(self): + enabled, num_dims, ixs, flags, sizes = umt.test_signature( + 3, 1, "(3),(03,3),(n)->(9)") + assert_equal(enabled, 1) + assert_equal(num_dims, (1, 2, 1, 1)) + assert_equal(ixs, (0, 0, 0, 1, 2)) + assert_equal(flags, (0, self.size_inferred, 0)) + assert_equal(sizes, (3, -1, 9)) + + def test_signature8(self): + enabled, num_dims, ixs, flags, sizes = umt.test_signature( + 3, 1, "(3?),(3?,3?),(n)->(9)") + assert_equal(enabled, 1) + assert_equal(num_dims, (1, 2, 1, 1)) + assert_equal(ixs, (0, 0, 0, 1, 2)) + assert_equal(flags, (self.can_ignore, self.size_inferred, 0)) + assert_equal(sizes, (3, -1, 9)) + + def test_signature9(self): + enabled, num_dims, ixs, flags, sizes = umt.test_signature( + 1, 1, "( 3) -> ( )") + assert_equal(enabled, 1) + assert_equal(num_dims, (1, 0)) + assert_equal(ixs, (0,)) + assert_equal(flags, (0,)) + assert_equal(sizes, (3,)) + + def test_signature10(self): + enabled, num_dims, ixs, flags, sizes = umt.test_signature( + 3, 1, "( 3? ) , (3? , 3?) ,(n )-> ( 9)") + assert_equal(enabled, 1) + assert_equal(num_dims, (1, 2, 1, 1)) + assert_equal(ixs, (0, 0, 0, 1, 2)) + assert_equal(flags, (self.can_ignore, self.size_inferred, 0)) + assert_equal(sizes, (3, -1, 9)) + + def test_signature_failure_extra_parenthesis(self): + with assert_raises(ValueError): + umt.test_signature(2, 1, "((i)),(i)->()") + + def test_signature_failure_mismatching_parenthesis(self): + with assert_raises(ValueError): + umt.test_signature(2, 1, "(i),)i(->()") + + def test_signature_failure_signature_missing_input_arg(self): + with assert_raises(ValueError): + umt.test_signature(2, 1, "(i),->()") + + def test_signature_failure_signature_missing_output_arg(self): + with assert_raises(ValueError): + umt.test_signature(2, 2, "(i),(i)->()") + + def test_get_signature(self): + assert_equal(np.vecdot.signature, "(n),(n)->()") + + def test_forced_sig(self): + a = 0.5 * np.arange(3, dtype='f8') + assert_equal(np.add(a, 0.5), [0.5, 1, 1.5]) + with assert_raises(TypeError): + np.add(a, 0.5, sig='i', casting='unsafe') + assert_equal(np.add(a, 0.5, sig='ii->i', casting='unsafe'), [0, 0, 1]) + with assert_raises(TypeError): + np.add(a, 0.5, sig=('i4',), casting='unsafe') + assert_equal(np.add(a, 0.5, sig=('i4', 'i4', 'i4'), + casting='unsafe'), [0, 0, 1]) + + b = np.zeros((3,), dtype='f8') + np.add(a, 0.5, out=b) + assert_equal(b, [0.5, 1, 1.5]) + b[:] = 0 + with assert_raises(TypeError): + np.add(a, 0.5, sig='i', out=b, casting='unsafe') + assert_equal(b, [0, 0, 0]) + np.add(a, 0.5, sig='ii->i', out=b, casting='unsafe') + assert_equal(b, [0, 0, 1]) + b[:] = 0 + with assert_raises(TypeError): + np.add(a, 0.5, sig=('i4',), out=b, casting='unsafe') + assert_equal(b, [0, 0, 0]) + np.add(a, 0.5, sig=('i4', 'i4', 'i4'), out=b, casting='unsafe') + assert_equal(b, [0, 0, 1]) + + def test_signature_all_None(self): + # signature all None, is an acceptable alternative (since 1.21) + # to not providing a signature. + res1 = np.add([3], [4], sig=(None, None, None)) + res2 = np.add([3], [4]) + assert_array_equal(res1, res2) + res1 = np.maximum([3], [4], sig=(None, None, None)) + res2 = np.maximum([3], [4]) + assert_array_equal(res1, res2) + + with pytest.raises(TypeError): + # special case, that would be deprecated anyway, so errors: + np.add(3, 4, signature=(None,)) + + def test_signature_dtype_type(self): + # Since that will be the normal behaviour (past NumPy 1.21) + # we do support the types already: + float_dtype = type(np.dtype(np.float64)) + np.add(3, 4, signature=(float_dtype, float_dtype, None)) + + @pytest.mark.parametrize("get_kwarg", [ + param(lambda dt: {"dtype": dt}, id="dtype"), + param(lambda dt: {"signature": (dt, None, None)}, id="signature")]) + def test_signature_dtype_instances_allowed(self, get_kwarg): + # We allow certain dtype instances when there is a clear singleton + # and the given one is equivalent; mainly for backcompat. + int64 = np.dtype("int64") + int64_2 = pickle.loads(pickle.dumps(int64)) + # Relies on pickling behavior, if assert fails just remove test... + assert int64 is not int64_2 + + assert np.add(1, 2, **get_kwarg(int64_2)).dtype == int64 + td = np.timedelta64(2, "s") + assert np.add(td, td, **get_kwarg("m8")).dtype == "m8[s]" + + msg = "The `dtype` and `signature` arguments to ufuncs" + + with pytest.raises(TypeError, match=msg): + np.add(3, 5, **get_kwarg(np.dtype("int64").newbyteorder())) + with pytest.raises(TypeError, match=msg): + np.add(3, 5, **get_kwarg(np.dtype("m8[ns]"))) + with pytest.raises(TypeError, match=msg): + np.add(3, 5, **get_kwarg("m8[ns]")) + + @pytest.mark.parametrize("casting", ["unsafe", "same_kind", "safe"]) + def test_partial_signature_mismatch(self, casting): + # If the second argument matches already, no need to specify it: + res = np.ldexp(np.float32(1.), np.int_(2), dtype="d") + assert res.dtype == "d" + res = np.ldexp(np.float32(1.), np.int_(2), signature=(None, None, "d")) + assert res.dtype == "d" + + # ldexp only has a loop for long input as second argument, overriding + # the output cannot help with that (no matter the casting) + with pytest.raises(TypeError): + np.ldexp(1., np.uint64(3), dtype="d") + with pytest.raises(TypeError): + np.ldexp(1., np.uint64(3), signature=(None, None, "d")) + + def test_partial_signature_mismatch_with_cache(self): + with pytest.raises(TypeError): + np.add(np.float16(1), np.uint64(2), sig=("e", "d", None)) + # Ensure e,d->None is in the dispatching cache (double loop) + np.add(np.float16(1), np.float64(2)) + # The error must still be raised: + with pytest.raises(TypeError): + np.add(np.float16(1), np.uint64(2), sig=("e", "d", None)) + + def test_use_output_signature_for_all_arguments(self): + # Test that providing only `dtype=` or `signature=(None, None, dtype)` + # is sufficient if falling back to a homogeneous signature works. + # In this case, the `intp, intp -> intp` loop is chosen. + res = np.power(1.5, 2.8, dtype=np.intp, casting="unsafe") + assert res == 1 # the cast happens first. + res = np.power(1.5, 2.8, signature=(None, None, np.intp), + casting="unsafe") + assert res == 1 + with pytest.raises(TypeError): + # the unsafe casting would normally cause errors though: + np.power(1.5, 2.8, dtype=np.intp) + + def test_signature_errors(self): + with pytest.raises(TypeError, + match="the signature object to ufunc must be a string or"): + np.add(3, 4, signature=123.) # neither a string nor a tuple + + with pytest.raises(ValueError): + # bad symbols that do not translate to dtypes + np.add(3, 4, signature="%^->#") + + with pytest.raises(ValueError): + np.add(3, 4, signature=b"ii-i") # incomplete and byte string + + with pytest.raises(ValueError): + np.add(3, 4, signature="ii>i") # incomplete string + + with pytest.raises(ValueError): + np.add(3, 4, signature=(None, "f8")) # bad length + + with pytest.raises(UnicodeDecodeError): + np.add(3, 4, signature=b"\xff\xff->i") + + def test_forced_dtype_times(self): + # Signatures only set the type numbers (not the actual loop dtypes) + # so using `M` in a signature/dtype should generally work: + a = np.array(['2010-01-02', '1999-03-14', '1833-03'], dtype='>M8[D]') + np.maximum(a, a, dtype="M") + np.maximum.reduce(a, dtype="M") + + arr = np.arange(10, dtype="m8[s]") + np.add(arr, arr, dtype="m") + np.maximum(arr, arr, dtype="m") + + @pytest.mark.parametrize("ufunc", [np.add, np.sqrt]) + def test_cast_safety(self, ufunc): + """Basic test for the safest casts, because ufuncs inner loops can + indicate a cast-safety as well (which is normally always "no"). + """ + def call_ufunc(arr, **kwargs): + return ufunc(*(arr,) * ufunc.nin, **kwargs) + + arr = np.array([1., 2., 3.], dtype=np.float32) + arr_bs = arr.astype(arr.dtype.newbyteorder()) + expected = call_ufunc(arr) + # Normally, a "no" cast: + res = call_ufunc(arr, casting="no") + assert_array_equal(expected, res) + # Byte-swapping is not allowed with "no" though: + with pytest.raises(TypeError): + call_ufunc(arr_bs, casting="no") + + # But is allowed with "equiv": + res = call_ufunc(arr_bs, casting="equiv") + assert_array_equal(expected, res) + + # Casting to float64 is safe, but not equiv: + with pytest.raises(TypeError): + call_ufunc(arr_bs, dtype=np.float64, casting="equiv") + + # but it is safe cast: + res = call_ufunc(arr_bs, dtype=np.float64, casting="safe") + expected = call_ufunc(arr.astype(np.float64)) # upcast + assert_array_equal(expected, res) + + @pytest.mark.parametrize("ufunc", [np.add, np.equal]) + def test_cast_safety_scalar(self, ufunc): + # We test add and equal, because equal has special scalar handling + # Note that the "equiv" casting behavior should maybe be considered + # a current implementation detail. + with pytest.raises(TypeError): + # this picks an integer loop, which is not safe + ufunc(3., 4., dtype=int, casting="safe") + + with pytest.raises(TypeError): + # We accept python float as float64 but not float32 for equiv. + ufunc(3., 4., dtype="float32", casting="equiv") + + # Special case for object and equal (note that equiv implies safe) + ufunc(3, 4, dtype=object, casting="equiv") + # Picks a double loop for both, first is equiv, second safe: + ufunc(np.array([3.]), 3., casting="equiv") + ufunc(np.array([3.]), 3, casting="safe") + ufunc(np.array([3]), 3, casting="equiv") + + def test_cast_safety_scalar_special(self): + # We allow this (and it succeeds) via object, although the equiv + # part may not be important. + np.equal(np.array([3]), 2**300, casting="equiv") + + def test_true_divide(self): + a = np.array(10) + b = np.array(20) + tgt = np.array(0.5) + + for tc in 'bhilqBHILQefdgFDG': + dt = np.dtype(tc) + aa = a.astype(dt) + bb = b.astype(dt) + + # Check result value and dtype. + for x, y in itertools.product([aa, -aa], [bb, -bb]): + + # Check with no output type specified + if tc in 'FDG': + tgt = complex(x) / complex(y) + else: + tgt = float(x) / float(y) + + res = np.true_divide(x, y) + rtol = max(np.finfo(res).resolution, 1e-15) + assert_allclose(res, tgt, rtol=rtol) + + if tc in 'bhilqBHILQ': + assert_(res.dtype.name == 'float64') + else: + assert_(res.dtype.name == dt.name) + + # Check with output type specified. This also checks for the + # incorrect casts in issue gh-3484 because the unary '-' does + # not change types, even for unsigned types, Hence casts in the + # ufunc from signed to unsigned and vice versa will lead to + # errors in the values. + for tcout in 'bhilqBHILQ': + dtout = np.dtype(tcout) + assert_raises(TypeError, np.true_divide, x, y, dtype=dtout) + + for tcout in 'efdg': + dtout = np.dtype(tcout) + if tc in 'FDG': + # Casting complex to float is not allowed + assert_raises(TypeError, np.true_divide, x, y, dtype=dtout) + else: + tgt = float(x) / float(y) + rtol = max(np.finfo(dtout).resolution, 1e-15) + # The value of tiny for double double is NaN + with suppress_warnings() as sup: + sup.filter(UserWarning) + if not np.isnan(np.finfo(dtout).tiny): + atol = max(np.finfo(dtout).tiny, 3e-308) + else: + atol = 3e-308 + # Some test values result in invalid for float16 + # and the cast to it may overflow to inf. + with np.errstate(invalid='ignore', over='ignore'): + res = np.true_divide(x, y, dtype=dtout) + if not np.isfinite(res) and tcout == 'e': + continue + assert_allclose(res, tgt, rtol=rtol, atol=atol) + assert_(res.dtype.name == dtout.name) + + for tcout in 'FDG': + dtout = np.dtype(tcout) + tgt = complex(x) / complex(y) + rtol = max(np.finfo(dtout).resolution, 1e-15) + # The value of tiny for double double is NaN + with suppress_warnings() as sup: + sup.filter(UserWarning) + if not np.isnan(np.finfo(dtout).tiny): + atol = max(np.finfo(dtout).tiny, 3e-308) + else: + atol = 3e-308 + res = np.true_divide(x, y, dtype=dtout) + if not np.isfinite(res): + continue + assert_allclose(res, tgt, rtol=rtol, atol=atol) + assert_(res.dtype.name == dtout.name) + + # Check booleans + a = np.ones((), dtype=np.bool) + res = np.true_divide(a, a) + assert_(res == 1.0) + assert_(res.dtype.name == 'float64') + res = np.true_divide(~a, a) + assert_(res == 0.0) + assert_(res.dtype.name == 'float64') + + def test_sum_stability(self): + a = np.ones(500, dtype=np.float32) + assert_almost_equal((a / 10.).sum() - a.size / 10., 0, 4) + + a = np.ones(500, dtype=np.float64) + assert_almost_equal((a / 10.).sum() - a.size / 10., 0, 13) + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + def test_sum(self): + for dt in (int, np.float16, np.float32, np.float64, np.longdouble): + for v in (0, 1, 2, 7, 8, 9, 15, 16, 19, 127, + 128, 1024, 1235): + # warning if sum overflows, which it does in float16 + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter("always", RuntimeWarning) + + tgt = dt(v * (v + 1) / 2) + overflow = not np.isfinite(tgt) + assert_equal(len(w), 1 * overflow) + + d = np.arange(1, v + 1, dtype=dt) + + assert_almost_equal(np.sum(d), tgt) + assert_equal(len(w), 2 * overflow) + + assert_almost_equal(np.sum(d[::-1]), tgt) + assert_equal(len(w), 3 * overflow) + + d = np.ones(500, dtype=dt) + assert_almost_equal(np.sum(d[::2]), 250.) + assert_almost_equal(np.sum(d[1::2]), 250.) + assert_almost_equal(np.sum(d[::3]), 167.) + assert_almost_equal(np.sum(d[1::3]), 167.) + assert_almost_equal(np.sum(d[::-2]), 250.) + assert_almost_equal(np.sum(d[-1::-2]), 250.) + assert_almost_equal(np.sum(d[::-3]), 167.) + assert_almost_equal(np.sum(d[-1::-3]), 167.) + # sum with first reduction entry != 0 + d = np.ones((1,), dtype=dt) + d += d + assert_almost_equal(d, 2.) + + def test_sum_complex(self): + for dt in (np.complex64, np.complex128, np.clongdouble): + for v in (0, 1, 2, 7, 8, 9, 15, 16, 19, 127, + 128, 1024, 1235): + tgt = dt(v * (v + 1) / 2) - dt((v * (v + 1) / 2) * 1j) + d = np.empty(v, dtype=dt) + d.real = np.arange(1, v + 1) + d.imag = -np.arange(1, v + 1) + assert_almost_equal(np.sum(d), tgt) + assert_almost_equal(np.sum(d[::-1]), tgt) + + d = np.ones(500, dtype=dt) + 1j + assert_almost_equal(np.sum(d[::2]), 250. + 250j) + assert_almost_equal(np.sum(d[1::2]), 250. + 250j) + assert_almost_equal(np.sum(d[::3]), 167. + 167j) + assert_almost_equal(np.sum(d[1::3]), 167. + 167j) + assert_almost_equal(np.sum(d[::-2]), 250. + 250j) + assert_almost_equal(np.sum(d[-1::-2]), 250. + 250j) + assert_almost_equal(np.sum(d[::-3]), 167. + 167j) + assert_almost_equal(np.sum(d[-1::-3]), 167. + 167j) + # sum with first reduction entry != 0 + d = np.ones((1,), dtype=dt) + 1j + d += d + assert_almost_equal(d, 2. + 2j) + + def test_sum_initial(self): + # Integer, single axis + assert_equal(np.sum([3], initial=2), 5) + + # Floating point + assert_almost_equal(np.sum([0.2], initial=0.1), 0.3) + + # Multiple non-adjacent axes + assert_equal(np.sum(np.ones((2, 3, 5), dtype=np.int64), axis=(0, 2), initial=2), + [12, 12, 12]) + + def test_sum_where(self): + # More extensive tests done in test_reduction_with_where. + assert_equal(np.sum([[1., 2.], [3., 4.]], where=[True, False]), 4.) + assert_equal(np.sum([[1., 2.], [3., 4.]], axis=0, initial=5., + where=[True, False]), [9., 5.]) + + def test_vecdot(self): + arr1 = np.arange(6).reshape((2, 3)) + arr2 = np.arange(3).reshape((1, 3)) + + actual = np.vecdot(arr1, arr2) + expected = np.array([5, 14]) + + assert_array_equal(actual, expected) + + actual2 = np.vecdot(arr1.T, arr2.T, axis=-2) + assert_array_equal(actual2, expected) + + actual3 = np.vecdot(arr1.astype("object"), arr2) + assert_array_equal(actual3, expected.astype("object")) + + def test_matvec(self): + arr1 = np.arange(6).reshape((2, 3)) + arr2 = np.arange(3).reshape((1, 3)) + + actual = np.matvec(arr1, arr2) + expected = np.array([[5, 14]]) + + assert_array_equal(actual, expected) + + actual2 = np.matvec(arr1.T, arr2.T, axes=[(-1, -2), -2, -1]) + assert_array_equal(actual2, expected) + + actual3 = np.matvec(arr1.astype("object"), arr2) + assert_array_equal(actual3, expected.astype("object")) + + @pytest.mark.parametrize("vec", [ + np.array([[1., 2., 3.], [4., 5., 6.]]), + np.array([[1., 2j, 3.], [4., 5., 6j]]), + np.array([[1., 2., 3.], [4., 5., 6.]], dtype=object), + np.array([[1., 2j, 3.], [4., 5., 6j]], dtype=object)]) + @pytest.mark.parametrize("matrix", [ + None, + np.array([[1. + 1j, 0.5, -0.5j], + [0.25, 2j, 0.], + [4., 0., -1j]])]) + def test_vecmatvec_identity(self, matrix, vec): + """Check that (x†A)x equals x†(Ax).""" + mat = matrix if matrix is not None else np.eye(3) + matvec = np.matvec(mat, vec) # Ax + vecmat = np.vecmat(vec, mat) # x†A + if matrix is None: + assert_array_equal(matvec, vec) + assert_array_equal(vecmat.conj(), vec) + assert_array_equal(matvec, (mat @ vec[..., np.newaxis]).squeeze(-1)) + assert_array_equal(vecmat, (vec[..., np.newaxis].mT.conj() + @ mat).squeeze(-2)) + expected = np.einsum('...i,ij,...j', vec.conj(), mat, vec) + vec_matvec = (vec.conj() * matvec).sum(-1) + vecmat_vec = (vecmat * vec).sum(-1) + assert_array_equal(vec_matvec, expected) + assert_array_equal(vecmat_vec, expected) + + @pytest.mark.parametrize("ufunc, shape1, shape2, conj", [ + (np.vecdot, (3,), (3,), True), + (np.vecmat, (3,), (3, 1), True), + (np.matvec, (1, 3), (3,), False), + (np.matmul, (1, 3), (3, 1), False), + ]) + def test_vecdot_matvec_vecmat_complex(self, ufunc, shape1, shape2, conj): + arr1 = np.array([1, 2j, 3]) + arr2 = np.array([1, 2, 3]) + + actual1 = ufunc(arr1.reshape(shape1), arr2.reshape(shape2)) + expected1 = np.array(((arr1.conj() if conj else arr1) * arr2).sum(), + ndmin=min(len(shape1), len(shape2))) + assert_array_equal(actual1, expected1) + # This would fail for conj=True, since matmul omits the conjugate. + if not conj: + assert_array_equal(arr1.reshape(shape1) @ arr2.reshape(shape2), + expected1) + + actual2 = ufunc(arr2.reshape(shape1), arr1.reshape(shape2)) + expected2 = np.array(((arr2.conj() if conj else arr2) * arr1).sum(), + ndmin=min(len(shape1), len(shape2))) + assert_array_equal(actual2, expected2) + + actual3 = ufunc(arr1.reshape(shape1).astype("object"), + arr2.reshape(shape2).astype("object")) + expected3 = expected1.astype(object) + assert_array_equal(actual3, expected3) + + def test_vecdot_subclass(self): + class MySubclass(np.ndarray): + pass + + arr1 = np.arange(6).reshape((2, 3)).view(MySubclass) + arr2 = np.arange(3).reshape((1, 3)).view(MySubclass) + result = np.vecdot(arr1, arr2) + assert isinstance(result, MySubclass) + + def test_vecdot_object_no_conjugate(self): + arr = np.array(["1", "2"], dtype=object) + with pytest.raises(AttributeError, match="conjugate"): + np.vecdot(arr, arr) + + def test_vecdot_object_breaks_outer_loop_on_error(self): + arr1 = np.ones((3, 3)).astype(object) + arr2 = arr1.copy() + arr2[1, 1] = None + out = np.zeros(3).astype(object) + with pytest.raises(TypeError, match=r"\*: 'float' and 'NoneType'"): + np.vecdot(arr1, arr2, out=out) + assert out[0] == 3 + assert out[1] == out[2] == 0 + + def test_broadcast(self): + msg = "broadcast" + a = np.arange(4).reshape((2, 1, 2)) + b = np.arange(4).reshape((1, 2, 2)) + assert_array_equal(np.vecdot(a, b), np.sum(a * b, axis=-1), err_msg=msg) + msg = "extend & broadcast loop dimensions" + b = np.arange(4).reshape((2, 2)) + assert_array_equal(np.vecdot(a, b), np.sum(a * b, axis=-1), err_msg=msg) + # Broadcast in core dimensions should fail + a = np.arange(8).reshape((4, 2)) + b = np.arange(4).reshape((4, 1)) + assert_raises(ValueError, np.vecdot, a, b) + # Extend core dimensions should fail + a = np.arange(8).reshape((4, 2)) + b = np.array(7) + assert_raises(ValueError, np.vecdot, a, b) + # Broadcast should fail + a = np.arange(2).reshape((2, 1, 1)) + b = np.arange(3).reshape((3, 1, 1)) + assert_raises(ValueError, np.vecdot, a, b) + + # Writing to a broadcasted array with overlap should warn, gh-2705 + a = np.arange(2) + b = np.arange(4).reshape((2, 2)) + u, v = np.broadcast_arrays(a, b) + assert_equal(u.strides[0], 0) + x = u + v + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter("always") + u += v + assert_equal(len(w), 1) + assert_(x[0, 0] != u[0, 0]) + + # Output reduction should not be allowed. + # See gh-15139 + a = np.arange(6).reshape(3, 2) + b = np.ones(2) + out = np.empty(()) + assert_raises(ValueError, np.vecdot, a, b, out) + out2 = np.empty(3) + c = np.vecdot(a, b, out2) + assert_(c is out2) + + def test_out_broadcasts(self): + # For ufuncs and gufuncs (not for reductions), we currently allow + # the output to cause broadcasting of the input arrays. + # both along dimensions with shape 1 and dimensions which do not + # exist at all in the inputs. + arr = np.arange(3).reshape(1, 3) + out = np.empty((5, 4, 3)) + np.add(arr, arr, out=out) + assert (out == np.arange(3) * 2).all() + + # The same holds for gufuncs (gh-16484) + np.vecdot(arr, arr, out=out) + # the result would be just a scalar `5`, but is broadcast fully: + assert (out == 5).all() + + @pytest.mark.parametrize(["arr", "out"], [ + ([2], np.empty(())), + ([1, 2], np.empty(1)), + (np.ones((4, 3)), np.empty((4, 1)))], + ids=["(1,)->()", "(2,)->(1,)", "(4, 3)->(4, 1)"]) + def test_out_broadcast_errors(self, arr, out): + # Output is (currently) allowed to broadcast inputs, but it cannot be + # smaller than the actual result. + with pytest.raises(ValueError, match="non-broadcastable"): + np.positive(arr, out=out) + + with pytest.raises(ValueError, match="non-broadcastable"): + np.add(np.ones(()), arr, out=out) + + def test_type_cast(self): + msg = "type cast" + a = np.arange(6, dtype='short').reshape((2, 3)) + assert_array_equal(np.vecdot(a, a), np.sum(a * a, axis=-1), + err_msg=msg) + msg = "type cast on one argument" + a = np.arange(6).reshape((2, 3)) + b = a + 0.1 + assert_array_almost_equal(np.vecdot(a, b), np.sum(a * b, axis=-1), + err_msg=msg) + + def test_endian(self): + msg = "big endian" + a = np.arange(6, dtype='>i4').reshape((2, 3)) + assert_array_equal(np.vecdot(a, a), np.sum(a * a, axis=-1), + err_msg=msg) + msg = "little endian" + a = np.arange(6, dtype='()' + a = np.arange(27.).reshape((3, 3, 3)) + b = np.arange(10., 19.).reshape((3, 1, 3)) + # basic tests on inputs (outputs tested below with matrix_multiply). + c = np.vecdot(a, b) + assert_array_equal(c, (a * b).sum(-1)) + # default + c = np.vecdot(a, b, axes=[(-1,), (-1,), ()]) + assert_array_equal(c, (a * b).sum(-1)) + # integers ok for single axis. + c = np.vecdot(a, b, axes=[-1, -1, ()]) + assert_array_equal(c, (a * b).sum(-1)) + # mix fine + c = np.vecdot(a, b, axes=[(-1,), -1, ()]) + assert_array_equal(c, (a * b).sum(-1)) + # can omit last axis. + c = np.vecdot(a, b, axes=[-1, -1]) + assert_array_equal(c, (a * b).sum(-1)) + # can pass in other types of integer (with __index__ protocol) + c = np.vecdot(a, b, axes=[np.int8(-1), np.array(-1, dtype=np.int32)]) + assert_array_equal(c, (a * b).sum(-1)) + # swap some axes + c = np.vecdot(a, b, axes=[0, 0]) + assert_array_equal(c, (a * b).sum(0)) + c = np.vecdot(a, b, axes=[0, 2]) + assert_array_equal(c, (a.transpose(1, 2, 0) * b).sum(-1)) + # Check errors for improperly constructed axes arguments. + # should have list. + assert_raises(TypeError, np.vecdot, a, b, axes=-1) + # needs enough elements + assert_raises(ValueError, np.vecdot, a, b, axes=[-1]) + # should pass in indices. + assert_raises(TypeError, np.vecdot, a, b, axes=[-1.0, -1.0]) + assert_raises(TypeError, np.vecdot, a, b, axes=[(-1.0,), -1]) + assert_raises(TypeError, np.vecdot, a, b, axes=[None, 1]) + # cannot pass an index unless there is only one dimension + # (output is wrong in this case) + assert_raises(AxisError, np.vecdot, a, b, axes=[-1, -1, -1]) + # or pass in generally the wrong number of axes + assert_raises(AxisError, np.vecdot, a, b, axes=[-1, -1, (-1,)]) + assert_raises(AxisError, np.vecdot, a, b, axes=[-1, (-2, -1), ()]) + # axes need to have same length. + assert_raises(ValueError, np.vecdot, a, b, axes=[0, 1]) + + # matrix_multiply signature: '(m,n),(n,p)->(m,p)' + mm = umt.matrix_multiply + a = np.arange(12).reshape((2, 3, 2)) + b = np.arange(8).reshape((2, 2, 2, 1)) + 1 + # Sanity check. + c = mm(a, b) + assert_array_equal(c, np.matmul(a, b)) + # Default axes. + c = mm(a, b, axes=[(-2, -1), (-2, -1), (-2, -1)]) + assert_array_equal(c, np.matmul(a, b)) + # Default with explicit axes. + c = mm(a, b, axes=[(1, 2), (2, 3), (2, 3)]) + assert_array_equal(c, np.matmul(a, b)) + # swap some axes. + c = mm(a, b, axes=[(0, -1), (1, 2), (-2, -1)]) + assert_array_equal(c, np.matmul(a.transpose(1, 0, 2), + b.transpose(0, 3, 1, 2))) + # Default with output array. + c = np.empty((2, 2, 3, 1)) + d = mm(a, b, out=c, axes=[(1, 2), (2, 3), (2, 3)]) + assert_(c is d) + assert_array_equal(c, np.matmul(a, b)) + # Transposed output array + c = np.empty((1, 2, 2, 3)) + d = mm(a, b, out=c, axes=[(-2, -1), (-2, -1), (3, 0)]) + assert_(c is d) + assert_array_equal(c, np.matmul(a, b).transpose(3, 0, 1, 2)) + # Check errors for improperly constructed axes arguments. + # wrong argument + assert_raises(TypeError, mm, a, b, axis=1) + # axes should be list + assert_raises(TypeError, mm, a, b, axes=1) + assert_raises(TypeError, mm, a, b, axes=((-2, -1), (-2, -1), (-2, -1))) + # list needs to have right length + assert_raises(ValueError, mm, a, b, axes=[]) + assert_raises(ValueError, mm, a, b, axes=[(-2, -1)]) + # list should not contain None, or lists + assert_raises(TypeError, mm, a, b, axes=[None, None, None]) + assert_raises(TypeError, + mm, a, b, axes=[[-2, -1], [-2, -1], [-2, -1]]) + assert_raises(TypeError, + mm, a, b, axes=[(-2, -1), (-2, -1), [-2, -1]]) + assert_raises(TypeError, mm, a, b, axes=[(-2, -1), (-2, -1), None]) + # single integers are AxisErrors if more are required + assert_raises(AxisError, mm, a, b, axes=[-1, -1, -1]) + assert_raises(AxisError, mm, a, b, axes=[(-2, -1), (-2, -1), -1]) + # tuples should not have duplicated values + assert_raises(ValueError, mm, a, b, axes=[(-2, -1), (-2, -1), (-2, -2)]) + # arrays should have enough axes. + z = np.zeros((2, 2)) + assert_raises(ValueError, mm, z, z[0]) + assert_raises(ValueError, mm, z, z, out=z[:, 0]) + assert_raises(ValueError, mm, z[1], z, axes=[0, 1]) + assert_raises(ValueError, mm, z, z, out=z[0], axes=[0, 1]) + # Regular ufuncs should not accept axes. + assert_raises(TypeError, np.add, 1., 1., axes=[0]) + # should be able to deal with bad unrelated kwargs. + assert_raises(TypeError, mm, z, z, axes=[0, 1], parrot=True) + + def test_axis_argument(self): + # vecdot signature: '(n),(n)->()' + a = np.arange(27.).reshape((3, 3, 3)) + b = np.arange(10., 19.).reshape((3, 1, 3)) + c = np.vecdot(a, b) + assert_array_equal(c, (a * b).sum(-1)) + c = np.vecdot(a, b, axis=-1) + assert_array_equal(c, (a * b).sum(-1)) + out = np.zeros_like(c) + d = np.vecdot(a, b, axis=-1, out=out) + assert_(d is out) + assert_array_equal(d, c) + c = np.vecdot(a, b, axis=0) + assert_array_equal(c, (a * b).sum(0)) + # Sanity checks on innerwt and cumsum. + a = np.arange(6).reshape((2, 3)) + b = np.arange(10, 16).reshape((2, 3)) + w = np.arange(20, 26).reshape((2, 3)) + assert_array_equal(umt.innerwt(a, b, w, axis=0), + np.sum(a * b * w, axis=0)) + assert_array_equal(umt.cumsum(a, axis=0), np.cumsum(a, axis=0)) + assert_array_equal(umt.cumsum(a, axis=-1), np.cumsum(a, axis=-1)) + out = np.empty_like(a) + b = umt.cumsum(a, out=out, axis=0) + assert_(out is b) + assert_array_equal(b, np.cumsum(a, axis=0)) + b = umt.cumsum(a, out=out, axis=1) + assert_(out is b) + assert_array_equal(b, np.cumsum(a, axis=-1)) + # Check errors. + # Cannot pass in both axis and axes. + assert_raises(TypeError, np.vecdot, a, b, axis=0, axes=[0, 0]) + # Not an integer. + assert_raises(TypeError, np.vecdot, a, b, axis=[0]) + # more than 1 core dimensions. + mm = umt.matrix_multiply + assert_raises(TypeError, mm, a, b, axis=1) + # Output wrong size in axis. + out = np.empty((1, 2, 3), dtype=a.dtype) + assert_raises(ValueError, umt.cumsum, a, out=out, axis=0) + # Regular ufuncs should not accept axis. + assert_raises(TypeError, np.add, 1., 1., axis=0) + + def test_keepdims_argument(self): + # vecdot signature: '(n),(n)->()' + a = np.arange(27.).reshape((3, 3, 3)) + b = np.arange(10., 19.).reshape((3, 1, 3)) + c = np.vecdot(a, b) + assert_array_equal(c, (a * b).sum(-1)) + c = np.vecdot(a, b, keepdims=False) + assert_array_equal(c, (a * b).sum(-1)) + c = np.vecdot(a, b, keepdims=True) + assert_array_equal(c, (a * b).sum(-1, keepdims=True)) + out = np.zeros_like(c) + d = np.vecdot(a, b, keepdims=True, out=out) + assert_(d is out) + assert_array_equal(d, c) + # Now combined with axis and axes. + c = np.vecdot(a, b, axis=-1, keepdims=False) + assert_array_equal(c, (a * b).sum(-1, keepdims=False)) + c = np.vecdot(a, b, axis=-1, keepdims=True) + assert_array_equal(c, (a * b).sum(-1, keepdims=True)) + c = np.vecdot(a, b, axis=0, keepdims=False) + assert_array_equal(c, (a * b).sum(0, keepdims=False)) + c = np.vecdot(a, b, axis=0, keepdims=True) + assert_array_equal(c, (a * b).sum(0, keepdims=True)) + c = np.vecdot(a, b, axes=[(-1,), (-1,), ()], keepdims=False) + assert_array_equal(c, (a * b).sum(-1)) + c = np.vecdot(a, b, axes=[(-1,), (-1,), (-1,)], keepdims=True) + assert_array_equal(c, (a * b).sum(-1, keepdims=True)) + c = np.vecdot(a, b, axes=[0, 0], keepdims=False) + assert_array_equal(c, (a * b).sum(0)) + c = np.vecdot(a, b, axes=[0, 0, 0], keepdims=True) + assert_array_equal(c, (a * b).sum(0, keepdims=True)) + c = np.vecdot(a, b, axes=[0, 2], keepdims=False) + assert_array_equal(c, (a.transpose(1, 2, 0) * b).sum(-1)) + c = np.vecdot(a, b, axes=[0, 2], keepdims=True) + assert_array_equal(c, (a.transpose(1, 2, 0) * b).sum(-1, + keepdims=True)) + c = np.vecdot(a, b, axes=[0, 2, 2], keepdims=True) + assert_array_equal(c, (a.transpose(1, 2, 0) * b).sum(-1, + keepdims=True)) + c = np.vecdot(a, b, axes=[0, 2, 0], keepdims=True) + assert_array_equal(c, (a * b.transpose(2, 0, 1)).sum(0, keepdims=True)) + # Hardly useful, but should work. + c = np.vecdot(a, b, axes=[0, 2, 1], keepdims=True) + assert_array_equal(c, (a.transpose(1, 0, 2) * b.transpose(0, 2, 1)) + .sum(1, keepdims=True)) + # Check with two core dimensions. + a = np.eye(3) * np.arange(4.)[:, np.newaxis, np.newaxis] + expected = uml.det(a) + c = uml.det(a, keepdims=False) + assert_array_equal(c, expected) + c = uml.det(a, keepdims=True) + assert_array_equal(c, expected[:, np.newaxis, np.newaxis]) + a = np.eye(3) * np.arange(4.)[:, np.newaxis, np.newaxis] + expected_s, expected_l = uml.slogdet(a) + cs, cl = uml.slogdet(a, keepdims=False) + assert_array_equal(cs, expected_s) + assert_array_equal(cl, expected_l) + cs, cl = uml.slogdet(a, keepdims=True) + assert_array_equal(cs, expected_s[:, np.newaxis, np.newaxis]) + assert_array_equal(cl, expected_l[:, np.newaxis, np.newaxis]) + # Sanity check on innerwt. + a = np.arange(6).reshape((2, 3)) + b = np.arange(10, 16).reshape((2, 3)) + w = np.arange(20, 26).reshape((2, 3)) + assert_array_equal(umt.innerwt(a, b, w, keepdims=True), + np.sum(a * b * w, axis=-1, keepdims=True)) + assert_array_equal(umt.innerwt(a, b, w, axis=0, keepdims=True), + np.sum(a * b * w, axis=0, keepdims=True)) + # Check errors. + # Not a boolean + assert_raises(TypeError, np.vecdot, a, b, keepdims='true') + # More than 1 core dimension, and core output dimensions. + mm = umt.matrix_multiply + assert_raises(TypeError, mm, a, b, keepdims=True) + assert_raises(TypeError, mm, a, b, keepdims=False) + # Regular ufuncs should not accept keepdims. + assert_raises(TypeError, np.add, 1., 1., keepdims=False) + + def test_innerwt(self): + a = np.arange(6).reshape((2, 3)) + b = np.arange(10, 16).reshape((2, 3)) + w = np.arange(20, 26).reshape((2, 3)) + assert_array_equal(umt.innerwt(a, b, w), np.sum(a * b * w, axis=-1)) + a = np.arange(100, 124).reshape((2, 3, 4)) + b = np.arange(200, 224).reshape((2, 3, 4)) + w = np.arange(300, 324).reshape((2, 3, 4)) + assert_array_equal(umt.innerwt(a, b, w), np.sum(a * b * w, axis=-1)) + + def test_innerwt_empty(self): + """Test generalized ufunc with zero-sized operands""" + a = np.array([], dtype='f8') + b = np.array([], dtype='f8') + w = np.array([], dtype='f8') + assert_array_equal(umt.innerwt(a, b, w), np.sum(a * b * w, axis=-1)) + + def test_cross1d(self): + """Test with fixed-sized signature.""" + a = np.eye(3) + assert_array_equal(umt.cross1d(a, a), np.zeros((3, 3))) + out = np.zeros((3, 3)) + result = umt.cross1d(a[0], a, out) + assert_(result is out) + assert_array_equal(result, np.vstack((np.zeros(3), a[2], -a[1]))) + assert_raises(ValueError, umt.cross1d, np.eye(4), np.eye(4)) + assert_raises(ValueError, umt.cross1d, a, np.arange(4.)) + # Wrong output core dimension. + assert_raises(ValueError, umt.cross1d, a, np.arange(3.), np.zeros((3, 4))) + # Wrong output broadcast dimension (see gh-15139). + assert_raises(ValueError, umt.cross1d, a, np.arange(3.), np.zeros(3)) + + def test_can_ignore_signature(self): + # Comparing the effects of ? in signature: + # matrix_multiply: (m,n),(n,p)->(m,p) # all must be there. + # matmul: (m?,n),(n,p?)->(m?,p?) # allow missing m, p. + mat = np.arange(12).reshape((2, 3, 2)) + single_vec = np.arange(2) + col_vec = single_vec[:, np.newaxis] + col_vec_array = np.arange(8).reshape((2, 2, 2, 1)) + 1 + # matrix @ single column vector with proper dimension + mm_col_vec = umt.matrix_multiply(mat, col_vec) + # matmul does the same thing + matmul_col_vec = umt.matmul(mat, col_vec) + assert_array_equal(matmul_col_vec, mm_col_vec) + # matrix @ vector without dimension making it a column vector. + # matrix multiply fails -> missing core dim. + assert_raises(ValueError, umt.matrix_multiply, mat, single_vec) + # matmul mimicker passes, and returns a vector. + matmul_col = umt.matmul(mat, single_vec) + assert_array_equal(matmul_col, mm_col_vec.squeeze()) + # Now with a column array: same as for column vector, + # broadcasting sensibly. + mm_col_vec = umt.matrix_multiply(mat, col_vec_array) + matmul_col_vec = umt.matmul(mat, col_vec_array) + assert_array_equal(matmul_col_vec, mm_col_vec) + # As above, but for row vector + single_vec = np.arange(3) + row_vec = single_vec[np.newaxis, :] + row_vec_array = np.arange(24).reshape((4, 2, 1, 1, 3)) + 1 + # row vector @ matrix + mm_row_vec = umt.matrix_multiply(row_vec, mat) + matmul_row_vec = umt.matmul(row_vec, mat) + assert_array_equal(matmul_row_vec, mm_row_vec) + # single row vector @ matrix + assert_raises(ValueError, umt.matrix_multiply, single_vec, mat) + matmul_row = umt.matmul(single_vec, mat) + assert_array_equal(matmul_row, mm_row_vec.squeeze()) + # row vector array @ matrix + mm_row_vec = umt.matrix_multiply(row_vec_array, mat) + matmul_row_vec = umt.matmul(row_vec_array, mat) + assert_array_equal(matmul_row_vec, mm_row_vec) + # Now for vector combinations + # row vector @ column vector + col_vec = row_vec.T + col_vec_array = row_vec_array.swapaxes(-2, -1) + mm_row_col_vec = umt.matrix_multiply(row_vec, col_vec) + matmul_row_col_vec = umt.matmul(row_vec, col_vec) + assert_array_equal(matmul_row_col_vec, mm_row_col_vec) + # single row vector @ single col vector + assert_raises(ValueError, umt.matrix_multiply, single_vec, single_vec) + matmul_row_col = umt.matmul(single_vec, single_vec) + assert_array_equal(matmul_row_col, mm_row_col_vec.squeeze()) + # row vector array @ matrix + mm_row_col_array = umt.matrix_multiply(row_vec_array, col_vec_array) + matmul_row_col_array = umt.matmul(row_vec_array, col_vec_array) + assert_array_equal(matmul_row_col_array, mm_row_col_array) + # Finally, check that things are *not* squeezed if one gives an + # output. + out = np.zeros_like(mm_row_col_array) + out = umt.matrix_multiply(row_vec_array, col_vec_array, out=out) + assert_array_equal(out, mm_row_col_array) + out[:] = 0 + out = umt.matmul(row_vec_array, col_vec_array, out=out) + assert_array_equal(out, mm_row_col_array) + # And check one cannot put missing dimensions back. + out = np.zeros_like(mm_row_col_vec) + assert_raises(ValueError, umt.matrix_multiply, single_vec, single_vec, + out) + # But fine for matmul, since it is just a broadcast. + out = umt.matmul(single_vec, single_vec, out) + assert_array_equal(out, mm_row_col_vec.squeeze()) + + def test_matrix_multiply(self): + self.compare_matrix_multiply_results(np.int64) + self.compare_matrix_multiply_results(np.double) + + def test_matrix_multiply_umath_empty(self): + res = umt.matrix_multiply(np.ones((0, 10)), np.ones((10, 0))) + assert_array_equal(res, np.zeros((0, 0))) + res = umt.matrix_multiply(np.ones((10, 0)), np.ones((0, 10))) + assert_array_equal(res, np.zeros((10, 10))) + + def compare_matrix_multiply_results(self, tp): + d1 = np.array(np.random.rand(2, 3, 4), dtype=tp) + d2 = np.array(np.random.rand(2, 3, 4), dtype=tp) + msg = f"matrix multiply on type {d1.dtype.name}" + + def permute_n(n): + if n == 1: + return ([0],) + ret = () + base = permute_n(n - 1) + for perm in base: + for i in range(n): + new = perm + [n - 1] + new[n - 1] = new[i] + new[i] = n - 1 + ret += (new,) + return ret + + def slice_n(n): + if n == 0: + return ((),) + ret = () + base = slice_n(n - 1) + for sl in base: + ret += (sl + (slice(None),),) + ret += (sl + (slice(0, 1),),) + return ret + + def broadcastable(s1, s2): + return s1 == s2 or 1 in {s1, s2} + + permute_3 = permute_n(3) + slice_3 = slice_n(3) + ((slice(None, None, -1),) * 3,) + + ref = True + for p1 in permute_3: + for p2 in permute_3: + for s1 in slice_3: + for s2 in slice_3: + a1 = d1.transpose(p1)[s1] + a2 = d2.transpose(p2)[s2] + ref = ref and a1.base is not None + ref = ref and a2.base is not None + if (a1.shape[-1] == a2.shape[-2] and + broadcastable(a1.shape[0], a2.shape[0])): + assert_array_almost_equal( + umt.matrix_multiply(a1, a2), + np.sum(a2[..., np.newaxis].swapaxes(-3, -1) * + a1[..., np.newaxis, :], axis=-1), + err_msg=msg + f' {str(a1.shape)} {str(a2.shape)}') + + assert_equal(ref, True, err_msg="reference check") + + def test_euclidean_pdist(self): + a = np.arange(12, dtype=float).reshape(4, 3) + out = np.empty((a.shape[0] * (a.shape[0] - 1) // 2,), dtype=a.dtype) + umt.euclidean_pdist(a, out) + b = np.sqrt(np.sum((a[:, None] - a)**2, axis=-1)) + b = b[~np.tri(a.shape[0], dtype=bool)] + assert_almost_equal(out, b) + # An output array is required to determine p with signature (n,d)->(p) + assert_raises(ValueError, umt.euclidean_pdist, a) + + def test_cumsum(self): + a = np.arange(10) + result = umt.cumsum(a) + assert_array_equal(result, a.cumsum()) + + def test_object_logical(self): + a = np.array([3, None, True, False, "test", ""], dtype=object) + assert_equal(np.logical_or(a, None), + np.array([x or None for x in a], dtype=object)) + assert_equal(np.logical_or(a, True), + np.array([x or True for x in a], dtype=object)) + assert_equal(np.logical_or(a, 12), + np.array([x or 12 for x in a], dtype=object)) + assert_equal(np.logical_or(a, "blah"), + np.array([x or "blah" for x in a], dtype=object)) + + assert_equal(np.logical_and(a, None), + np.array([x and None for x in a], dtype=object)) + assert_equal(np.logical_and(a, True), + np.array([x and True for x in a], dtype=object)) + assert_equal(np.logical_and(a, 12), + np.array([x and 12 for x in a], dtype=object)) + assert_equal(np.logical_and(a, "blah"), + np.array([x and "blah" for x in a], dtype=object)) + + assert_equal(np.logical_not(a), + np.array([not x for x in a], dtype=object)) + + assert_equal(np.logical_or.reduce(a), 3) + assert_equal(np.logical_and.reduce(a), None) + + def test_object_comparison(self): + class HasComparisons: + def __eq__(self, other): + return '==' + + arr0d = np.array(HasComparisons()) + assert_equal(arr0d == arr0d, True) + assert_equal(np.equal(arr0d, arr0d), True) # normal behavior is a cast + + arr1d = np.array([HasComparisons()]) + assert_equal(arr1d == arr1d, np.array([True])) + assert_equal(np.equal(arr1d, arr1d), np.array([True])) # normal behavior is a cast + assert_equal(np.equal(arr1d, arr1d, dtype=object), np.array(['=='])) + + def test_object_array_reduction(self): + # Reductions on object arrays + a = np.array(['a', 'b', 'c'], dtype=object) + assert_equal(np.sum(a), 'abc') + assert_equal(np.max(a), 'c') + assert_equal(np.min(a), 'a') + a = np.array([True, False, True], dtype=object) + assert_equal(np.sum(a), 2) + assert_equal(np.prod(a), 0) + assert_equal(np.any(a), True) + assert_equal(np.all(a), False) + assert_equal(np.max(a), True) + assert_equal(np.min(a), False) + assert_equal(np.array([[1]], dtype=object).sum(), 1) + assert_equal(np.array([[[1, 2]]], dtype=object).sum((0, 1)), [1, 2]) + assert_equal(np.array([1], dtype=object).sum(initial=1), 2) + assert_equal(np.array([[1], [2, 3]], dtype=object) + .sum(initial=[0], where=[False, True]), [0, 2, 3]) + + def test_object_array_accumulate_inplace(self): + # Checks that in-place accumulates work, see also gh-7402 + arr = np.ones(4, dtype=object) + arr[:] = [[1] for i in range(4)] + # Twice reproduced also for tuples: + np.add.accumulate(arr, out=arr) + np.add.accumulate(arr, out=arr) + assert_array_equal(arr, + np.array([[1] * i for i in [1, 3, 6, 10]], dtype=object), + ) + + # And the same if the axis argument is used + arr = np.ones((2, 4), dtype=object) + arr[0, :] = [[2] for i in range(4)] + np.add.accumulate(arr, out=arr, axis=-1) + np.add.accumulate(arr, out=arr, axis=-1) + assert_array_equal(arr[0, :], + np.array([[2] * i for i in [1, 3, 6, 10]], dtype=object), + ) + + def test_object_array_accumulate_failure(self): + # Typical accumulation on object works as expected: + res = np.add.accumulate(np.array([1, 0, 2], dtype=object)) + assert_array_equal(res, np.array([1, 1, 3], dtype=object)) + # But errors are propagated from the inner-loop if they occur: + with pytest.raises(TypeError): + np.add.accumulate([1, None, 2]) + + def test_object_array_reduceat_inplace(self): + # Checks that in-place reduceats work, see also gh-7465 + arr = np.empty(4, dtype=object) + arr[:] = [[1] for i in range(4)] + out = np.empty(4, dtype=object) + out[:] = [[1] for i in range(4)] + np.add.reduceat(arr, np.arange(4), out=arr) + np.add.reduceat(arr, np.arange(4), out=arr) + assert_array_equal(arr, out) + + # And the same if the axis argument is used + arr = np.ones((2, 4), dtype=object) + arr[0, :] = [[2] for i in range(4)] + out = np.ones((2, 4), dtype=object) + out[0, :] = [[2] for i in range(4)] + np.add.reduceat(arr, np.arange(4), out=arr, axis=-1) + np.add.reduceat(arr, np.arange(4), out=arr, axis=-1) + assert_array_equal(arr, out) + + def test_object_array_reduceat_failure(self): + # Reduceat works as expected when no invalid operation occurs (None is + # not involved in an operation here) + res = np.add.reduceat(np.array([1, None, 2], dtype=object), [1, 2]) + assert_array_equal(res, np.array([None, 2], dtype=object)) + # But errors when None would be involved in an operation: + with pytest.raises(TypeError): + np.add.reduceat([1, None, 2], [0, 2]) + + def test_zerosize_reduction(self): + # Test with default dtype and object dtype + for a in [[], np.array([], dtype=object)]: + assert_equal(np.sum(a), 0) + assert_equal(np.prod(a), 1) + assert_equal(np.any(a), False) + assert_equal(np.all(a), True) + assert_raises(ValueError, np.max, a) + assert_raises(ValueError, np.min, a) + + def test_axis_out_of_bounds(self): + a = np.array([False, False]) + assert_raises(AxisError, a.all, axis=1) + a = np.array([False, False]) + assert_raises(AxisError, a.all, axis=-2) + + a = np.array([False, False]) + assert_raises(AxisError, a.any, axis=1) + a = np.array([False, False]) + assert_raises(AxisError, a.any, axis=-2) + + def test_scalar_reduction(self): + # The functions 'sum', 'prod', etc allow specifying axis=0 + # even for scalars + assert_equal(np.sum(3, axis=0), 3) + assert_equal(np.prod(3.5, axis=0), 3.5) + assert_equal(np.any(True, axis=0), True) + assert_equal(np.all(False, axis=0), False) + assert_equal(np.max(3, axis=0), 3) + assert_equal(np.min(2.5, axis=0), 2.5) + + # Check scalar behaviour for ufuncs without an identity + assert_equal(np.power.reduce(3), 3) + + # Make sure that scalars are coming out from this operation + assert_(type(np.prod(np.float32(2.5), axis=0)) is np.float32) + assert_(type(np.sum(np.float32(2.5), axis=0)) is np.float32) + assert_(type(np.max(np.float32(2.5), axis=0)) is np.float32) + assert_(type(np.min(np.float32(2.5), axis=0)) is np.float32) + + # check if scalars/0-d arrays get cast + assert_(type(np.any(0, axis=0)) is np.bool) + + # assert that 0-d arrays get wrapped + class MyArray(np.ndarray): + pass + a = np.array(1).view(MyArray) + assert_(type(np.any(a)) is MyArray) + + def test_casting_out_param(self): + # Test that it's possible to do casts on output + a = np.ones((200, 100), np.int64) + b = np.ones((200, 100), np.int64) + c = np.ones((200, 100), np.float64) + np.add(a, b, out=c) + assert_equal(c, 2) + + a = np.zeros(65536) + b = np.zeros(65536, dtype=np.float32) + np.subtract(a, 0, out=b) + assert_equal(b, 0) + + def test_where_param(self): + # Test that the where= ufunc parameter works with regular arrays + a = np.arange(7) + b = np.ones(7) + c = np.zeros(7) + np.add(a, b, out=c, where=(a % 2 == 1)) + assert_equal(c, [0, 2, 0, 4, 0, 6, 0]) + + a = np.arange(4).reshape(2, 2) + 2 + np.power(a, [2, 3], out=a, where=[[0, 1], [1, 0]]) + assert_equal(a, [[2, 27], [16, 5]]) + # Broadcasting the where= parameter + np.subtract(a, 2, out=a, where=[True, False]) + assert_equal(a, [[0, 27], [14, 5]]) + + def test_where_param_buffer_output(self): + # This test is temporarily skipped because it requires + # adding masking features to the nditer to work properly + + # With casting on output + a = np.ones(10, np.int64) + b = np.ones(10, np.int64) + c = 1.5 * np.ones(10, np.float64) + np.add(a, b, out=c, where=[1, 0, 0, 1, 0, 0, 1, 1, 1, 0]) + assert_equal(c, [2, 1.5, 1.5, 2, 1.5, 1.5, 2, 2, 2, 1.5]) + + def test_where_param_alloc(self): + # With casting and allocated output + a = np.array([1], dtype=np.int64) + m = np.array([True], dtype=bool) + assert_equal(np.sqrt(a, where=m), [1]) + + # No casting and allocated output + a = np.array([1], dtype=np.float64) + m = np.array([True], dtype=bool) + assert_equal(np.sqrt(a, where=m), [1]) + + def test_where_with_broadcasting(self): + # See gh-17198 + a = np.random.random((5000, 4)) + b = np.random.random((5000, 1)) + + where = a > 0.3 + out = np.full_like(a, 0) + np.less(a, b, where=where, out=out) + b_where = np.broadcast_to(b, a.shape)[where] + assert_array_equal((a[where] < b_where), out[where].astype(bool)) + assert not out[~where].any() # outside mask, out remains all 0 + + @staticmethod + def identityless_reduce_arrs(): + yield np.empty((2, 3, 4), order='C') + yield np.empty((2, 3, 4), order='F') + # Mixed order (reduce order differs outer) + yield np.empty((2, 4, 3), order='C').swapaxes(1, 2) + # Reversed order + yield np.empty((2, 3, 4), order='C')[::-1, ::-1, ::-1] + # Not contiguous + yield np.empty((3, 5, 4), order='C').swapaxes(1, 2)[1:, 1:, 1:] + # Not contiguous and not aligned + a = np.empty((3 * 4 * 5 * 8 + 1,), dtype='i1') + a = a[1:].view(dtype='f8') + a.shape = (3, 4, 5) + a = a[1:, 1:, 1:] + yield a + + @pytest.mark.parametrize("a", identityless_reduce_arrs()) + @pytest.mark.parametrize("pos", [(1, 0, 0), (0, 1, 0), (0, 0, 1)]) + def test_identityless_reduction(self, a, pos): + # np.minimum.reduce is an identityless reduction + a[...] = 1 + a[pos] = 0 + + for axis in [None, (0, 1), (0, 2), (1, 2), 0, 1, 2, ()]: + if axis is None: + axes = np.array([], dtype=np.intp) + else: + axes = np.delete(np.arange(a.ndim), axis) + + expected_pos = tuple(np.array(pos)[axes]) + expected = np.ones(np.array(a.shape)[axes]) + expected[expected_pos] = 0 + + res = np.minimum.reduce(a, axis=axis) + assert_equal(res, expected, strict=True) + + res = np.full_like(res, np.nan) + np.minimum.reduce(a, axis=axis, out=res) + assert_equal(res, expected, strict=True) + + @requires_memory(6 * 1024**3) + @pytest.mark.skipif(sys.maxsize < 2**32, + reason="test array too large for 32bit platform") + def test_identityless_reduction_huge_array(self): + # Regression test for gh-20921 (copying identity incorrectly failed) + arr = np.zeros((2, 2**31), 'uint8') + arr[:, 0] = [1, 3] + arr[:, -1] = [4, 1] + res = np.maximum.reduce(arr, axis=0) + del arr + assert res[0] == 3 + assert res[-1] == 4 + + def test_reduce_identity_depends_on_loop(self): + """ + The type of the result should always depend on the selected loop, not + necessarily the output (only relevant for object arrays). + """ + # For an object loop, the default value 0 with type int is used: + assert type(np.add.reduce([], dtype=object)) is int + out = np.array(None, dtype=object) + # When the loop is float64 but `out` is object this does not happen, + # the result is float64 cast to object (which gives Python `float`). + np.add.reduce([], out=out, dtype=np.float64) + assert type(out[()]) is float + + def test_initial_reduction(self): + # np.minimum.reduce is an identityless reduction + + # For cases like np.maximum(np.abs(...), initial=0) + # More generally, a supremum over non-negative numbers. + assert_equal(np.maximum.reduce([], initial=0), 0) + + # For cases like reduction of an empty array over the reals. + assert_equal(np.minimum.reduce([], initial=np.inf), np.inf) + assert_equal(np.maximum.reduce([], initial=-np.inf), -np.inf) + + # Random tests + assert_equal(np.minimum.reduce([5], initial=4), 4) + assert_equal(np.maximum.reduce([4], initial=5), 5) + assert_equal(np.maximum.reduce([5], initial=4), 5) + assert_equal(np.minimum.reduce([4], initial=5), 4) + + # Check initial=None raises ValueError for both types of ufunc reductions + assert_raises(ValueError, np.minimum.reduce, [], initial=None) + assert_raises(ValueError, np.add.reduce, [], initial=None) + # Also in the somewhat special object case: + with pytest.raises(ValueError): + np.add.reduce([], initial=None, dtype=object) + + # Check that np._NoValue gives default behavior. + assert_equal(np.add.reduce([], initial=np._NoValue), 0) + + # Check that initial kwarg behaves as intended for dtype=object + a = np.array([10], dtype=object) + res = np.add.reduce(a, initial=5) + assert_equal(res, 15) + + def test_empty_reduction_and_identity(self): + arr = np.zeros((0, 5)) + # OK, since the reduction itself is *not* empty, the result is + assert np.true_divide.reduce(arr, axis=1).shape == (0,) + # Not OK, the reduction itself is empty and we have no identity + with pytest.raises(ValueError): + np.true_divide.reduce(arr, axis=0) + + # Test that an empty reduction fails also if the result is empty + arr = np.zeros((0, 0, 5)) + with pytest.raises(ValueError): + np.true_divide.reduce(arr, axis=1) + + # Division reduction makes sense with `initial=1` (empty or not): + res = np.true_divide.reduce(arr, axis=1, initial=1) + assert_array_equal(res, np.ones((0, 5))) + + @pytest.mark.parametrize('axis', (0, 1, None)) + @pytest.mark.parametrize('where', (np.array([False, True, True]), + np.array([[True], [False], [True]]), + np.array([[True, False, False], + [False, True, False], + [False, True, True]]))) + def test_reduction_with_where(self, axis, where): + a = np.arange(9.).reshape(3, 3) + a_copy = a.copy() + a_check = np.zeros_like(a) + np.positive(a, out=a_check, where=where) + + res = np.add.reduce(a, axis=axis, where=where) + check = a_check.sum(axis) + assert_equal(res, check) + # Check we do not overwrite elements of a internally. + assert_array_equal(a, a_copy) + + @pytest.mark.parametrize(('axis', 'where'), + ((0, np.array([True, False, True])), + (1, [True, True, False]), + (None, True))) + @pytest.mark.parametrize('initial', (-np.inf, 5.)) + def test_reduction_with_where_and_initial(self, axis, where, initial): + a = np.arange(9.).reshape(3, 3) + a_copy = a.copy() + a_check = np.full(a.shape, -np.inf) + np.positive(a, out=a_check, where=where) + + res = np.maximum.reduce(a, axis=axis, where=where, initial=initial) + check = a_check.max(axis, initial=initial) + assert_equal(res, check) + + def test_reduction_where_initial_needed(self): + a = np.arange(9.).reshape(3, 3) + m = [False, True, False] + assert_raises(ValueError, np.maximum.reduce, a, where=m) + + def test_identityless_reduction_nonreorderable(self): + a = np.array([[8.0, 2.0, 2.0], [1.0, 0.5, 0.25]]) + + res = np.divide.reduce(a, axis=0) + assert_equal(res, [8.0, 4.0, 8.0]) + + res = np.divide.reduce(a, axis=1) + assert_equal(res, [2.0, 8.0]) + + res = np.divide.reduce(a, axis=()) + assert_equal(res, a) + + assert_raises(ValueError, np.divide.reduce, a, axis=(0, 1)) + + def test_reduce_zero_axis(self): + # If we have a n x m array and do a reduction with axis=1, then we are + # doing n reductions, and each reduction takes an m-element array. For + # a reduction operation without an identity, then: + # n > 0, m > 0: fine + # n = 0, m > 0: fine, doing 0 reductions of m-element arrays + # n > 0, m = 0: can't reduce a 0-element array, ValueError + # n = 0, m = 0: can't reduce a 0-element array, ValueError (for + # consistency with the above case) + # This test doesn't actually look at return values, it just checks to + # make sure that error we get an error in exactly those cases where we + # expect one, and assumes the calculations themselves are done + # correctly. + + def ok(f, *args, **kwargs): + f(*args, **kwargs) + + def err(f, *args, **kwargs): + assert_raises(ValueError, f, *args, **kwargs) + + def t(expect, func, n, m): + expect(func, np.zeros((n, m)), axis=1) + expect(func, np.zeros((m, n)), axis=0) + expect(func, np.zeros((n // 2, n // 2, m)), axis=2) + expect(func, np.zeros((n // 2, m, n // 2)), axis=1) + expect(func, np.zeros((n, m // 2, m // 2)), axis=(1, 2)) + expect(func, np.zeros((m // 2, n, m // 2)), axis=(0, 2)) + expect(func, np.zeros((m // 3, m // 3, m // 3, + n // 2, n // 2)), + axis=(0, 1, 2)) + # Check what happens if the inner (resp. outer) dimensions are a + # mix of zero and non-zero: + expect(func, np.zeros((10, m, n)), axis=(0, 1)) + expect(func, np.zeros((10, n, m)), axis=(0, 2)) + expect(func, np.zeros((m, 10, n)), axis=0) + expect(func, np.zeros((10, m, n)), axis=1) + expect(func, np.zeros((10, n, m)), axis=2) + + # np.maximum is just an arbitrary ufunc with no reduction identity + assert_equal(np.maximum.identity, None) + t(ok, np.maximum.reduce, 30, 30) + t(ok, np.maximum.reduce, 0, 30) + t(err, np.maximum.reduce, 30, 0) + t(err, np.maximum.reduce, 0, 0) + err(np.maximum.reduce, []) + np.maximum.reduce(np.zeros((0, 0)), axis=()) + + # all of the combinations are fine for a reduction that has an + # identity + t(ok, np.add.reduce, 30, 30) + t(ok, np.add.reduce, 0, 30) + t(ok, np.add.reduce, 30, 0) + t(ok, np.add.reduce, 0, 0) + np.add.reduce([]) + np.add.reduce(np.zeros((0, 0)), axis=()) + + # OTOH, accumulate always makes sense for any combination of n and m, + # because it maps an m-element array to an m-element array. These + # tests are simpler because accumulate doesn't accept multiple axes. + for uf in (np.maximum, np.add): + uf.accumulate(np.zeros((30, 0)), axis=0) + uf.accumulate(np.zeros((0, 30)), axis=0) + uf.accumulate(np.zeros((30, 30)), axis=0) + uf.accumulate(np.zeros((0, 0)), axis=0) + + def test_safe_casting(self): + # In old versions of numpy, in-place operations used the 'unsafe' + # casting rules. In versions >= 1.10, 'same_kind' is the + # default and an exception is raised instead of a warning. + # when 'same_kind' is not satisfied. + a = np.array([1, 2, 3], dtype=int) + # Non-in-place addition is fine + assert_array_equal(assert_no_warnings(np.add, a, 1.1), + [2.1, 3.1, 4.1]) + assert_raises(TypeError, np.add, a, 1.1, out=a) + + def add_inplace(a, b): + a += b + + assert_raises(TypeError, add_inplace, a, 1.1) + # Make sure that explicitly overriding the exception is allowed: + assert_no_warnings(np.add, a, 1.1, out=a, casting="unsafe") + assert_array_equal(a, [2, 3, 4]) + + def test_ufunc_custom_out(self): + # Test ufunc with built in input types and custom output type + + a = np.array([0, 1, 2], dtype='i8') + b = np.array([0, 1, 2], dtype='i8') + c = np.empty(3, dtype=_rational_tests.rational) + + # Output must be specified so numpy knows what + # ufunc signature to look for + result = _rational_tests.test_add(a, b, c) + target = np.array([0, 2, 4], dtype=_rational_tests.rational) + assert_equal(result, target) + + # The new resolution means that we can (usually) find custom loops + # as long as they match exactly: + result = _rational_tests.test_add(a, b) + assert_equal(result, target) + + # This works even more generally, so long the default common-dtype + # promoter works out: + result = _rational_tests.test_add(a, b.astype(np.uint16), out=c) + assert_equal(result, target) + + # This scalar path used to go into legacy promotion, but doesn't now: + result = _rational_tests.test_add(a, np.uint16(2)) + target = np.array([2, 3, 4], dtype=_rational_tests.rational) + assert_equal(result, target) + + def test_operand_flags(self): + a = np.arange(16, dtype=int).reshape(4, 4) + b = np.arange(9, dtype=int).reshape(3, 3) + opflag_tests.inplace_add(a[:-1, :-1], b) + assert_equal(a, np.array([[0, 2, 4, 3], [7, 9, 11, 7], + [14, 16, 18, 11], [12, 13, 14, 15]])) + + a = np.array(0) + opflag_tests.inplace_add(a, 3) + assert_equal(a, 3) + opflag_tests.inplace_add(a, [3, 4]) + assert_equal(a, 10) + + def test_struct_ufunc(self): + import numpy._core._struct_ufunc_tests as struct_ufunc + + a = np.array([(1, 2, 3)], dtype='u8,u8,u8') + b = np.array([(1, 2, 3)], dtype='u8,u8,u8') + + result = struct_ufunc.add_triplet(a, b) + assert_equal(result, np.array([(2, 4, 6)], dtype='u8,u8,u8')) + assert_raises(RuntimeError, struct_ufunc.register_fail) + + def test_custom_ufunc(self): + a = np.array( + [_rational_tests.rational(1, 2), + _rational_tests.rational(1, 3), + _rational_tests.rational(1, 4)], + dtype=_rational_tests.rational) + b = np.array( + [_rational_tests.rational(1, 2), + _rational_tests.rational(1, 3), + _rational_tests.rational(1, 4)], + dtype=_rational_tests.rational) + + result = _rational_tests.test_add_rationals(a, b) + expected = np.array( + [_rational_tests.rational(1), + _rational_tests.rational(2, 3), + _rational_tests.rational(1, 2)], + dtype=_rational_tests.rational) + assert_equal(result, expected) + + def test_custom_ufunc_forced_sig(self): + # gh-9351 - looking for a non-first userloop would previously hang + with assert_raises(TypeError): + np.multiply(_rational_tests.rational(1), 1, + signature=(_rational_tests.rational, int, None)) + + def test_custom_array_like(self): + + class MyThing: + __array_priority__ = 1000 + + rmul_count = 0 + getitem_count = 0 + + def __init__(self, shape): + self.shape = shape + + def __len__(self): + return self.shape[0] + + def __getitem__(self, i): + MyThing.getitem_count += 1 + if not isinstance(i, tuple): + i = (i,) + if len(i) > self.ndim: + raise IndexError("boo") + + return MyThing(self.shape[len(i):]) + + def __rmul__(self, other): + MyThing.rmul_count += 1 + return self + + np.float64(5) * MyThing((3, 3)) + assert_(MyThing.rmul_count == 1, MyThing.rmul_count) + assert_(MyThing.getitem_count <= 2, MyThing.getitem_count) + + def test_array_wrap_array_priority(self): + class ArrayPriorityBase(np.ndarray): + @classmethod + def __array_wrap__(cls, array, context=None, return_scalar=False): + return cls + + class ArrayPriorityMinus0(ArrayPriorityBase): + __array_priority__ = 0 + + class ArrayPriorityMinus1000(ArrayPriorityBase): + __array_priority__ = -1000 + + class ArrayPriorityMinus1000b(ArrayPriorityBase): + __array_priority__ = -1000 + + class ArrayPriorityMinus2000(ArrayPriorityBase): + __array_priority__ = -2000 + + x = np.ones(2).view(ArrayPriorityMinus1000) + xb = np.ones(2).view(ArrayPriorityMinus1000b) + y = np.ones(2).view(ArrayPriorityMinus2000) + + assert np.add(x, y) is ArrayPriorityMinus1000 + assert np.add(y, x) is ArrayPriorityMinus1000 + assert np.add(x, xb) is ArrayPriorityMinus1000 + assert np.add(xb, x) is ArrayPriorityMinus1000b + y_minus0 = np.zeros(2).view(ArrayPriorityMinus0) + assert np.add(np.zeros(2), y_minus0) is ArrayPriorityMinus0 + assert type(np.add(xb, x, np.zeros(2))) is np.ndarray + + @pytest.mark.parametrize("a", ( + np.arange(10, dtype=int), + np.arange(10, dtype=_rational_tests.rational), + )) + def test_ufunc_at_basic(self, a): + + aa = a.copy() + np.add.at(aa, [2, 5, 2], 1) + assert_equal(aa, [0, 1, 4, 3, 4, 6, 6, 7, 8, 9]) + + with pytest.raises(ValueError): + # missing second operand + np.add.at(aa, [2, 5, 3]) + + aa = a.copy() + np.negative.at(aa, [2, 5, 3]) + assert_equal(aa, [0, 1, -2, -3, 4, -5, 6, 7, 8, 9]) + + aa = a.copy() + b = np.array([100, 100, 100]) + np.add.at(aa, [2, 5, 2], b) + assert_equal(aa, [0, 1, 202, 3, 4, 105, 6, 7, 8, 9]) + + with pytest.raises(ValueError): + # extraneous second operand + np.negative.at(a, [2, 5, 3], [1, 2, 3]) + + with pytest.raises(ValueError): + # second operand cannot be converted to an array + np.add.at(a, [2, 5, 3], [[1, 2], 1]) + + # ufuncs with indexed loops for performance in ufunc.at + indexed_ufuncs = [np.add, np.subtract, np.multiply, np.floor_divide, + np.maximum, np.minimum, np.fmax, np.fmin] + + @pytest.mark.parametrize( + "typecode", np.typecodes['AllInteger'] + np.typecodes['Float']) + @pytest.mark.parametrize("ufunc", indexed_ufuncs) + def test_ufunc_at_inner_loops(self, typecode, ufunc): + if ufunc is np.divide and typecode in np.typecodes['AllInteger']: + # Avoid divide-by-zero and inf for integer divide + a = np.ones(100, dtype=typecode) + indx = np.random.randint(100, size=30, dtype=np.intp) + vals = np.arange(1, 31, dtype=typecode) + else: + a = np.ones(1000, dtype=typecode) + indx = np.random.randint(1000, size=3000, dtype=np.intp) + vals = np.arange(3000, dtype=typecode) + atag = a.copy() + # Do the calculation twice and compare the answers + with warnings.catch_warnings(record=True) as w_at: + warnings.simplefilter('always') + ufunc.at(a, indx, vals) + with warnings.catch_warnings(record=True) as w_loop: + warnings.simplefilter('always') + for i, v in zip(indx, vals): + # Make sure all the work happens inside the ufunc + # in order to duplicate error/warning handling + ufunc(atag[i], v, out=atag[i:i + 1], casting="unsafe") + assert_equal(atag, a) + # If w_loop warned, make sure w_at warned as well + if len(w_loop) > 0: + # + assert len(w_at) > 0 + assert w_at[0].category == w_loop[0].category + assert str(w_at[0].message)[:10] == str(w_loop[0].message)[:10] + + @pytest.mark.parametrize("typecode", np.typecodes['Complex']) + @pytest.mark.parametrize("ufunc", [np.add, np.subtract, np.multiply]) + def test_ufunc_at_inner_loops_complex(self, typecode, ufunc): + a = np.ones(10, dtype=typecode) + indx = np.concatenate([np.ones(6, dtype=np.intp), + np.full(18, 4, dtype=np.intp)]) + value = a.dtype.type(1j) + ufunc.at(a, indx, value) + expected = np.ones_like(a) + if ufunc is np.multiply: + expected[1] = expected[4] = -1 + else: + expected[1] += 6 * (value if ufunc is np.add else -value) + expected[4] += 18 * (value if ufunc is np.add else -value) + + assert_array_equal(a, expected) + + def test_ufunc_at_ellipsis(self): + # Make sure the indexed loop check does not choke on iters + # with subspaces + arr = np.zeros(5) + np.add.at(arr, slice(None), np.ones(5)) + assert_array_equal(arr, np.ones(5)) + + def test_ufunc_at_negative(self): + arr = np.ones(5, dtype=np.int32) + indx = np.arange(5) + umt.indexed_negative.at(arr, indx) + # If it is [-1, -1, -1, -100, 0] then the regular strided loop was used + assert np.all(arr == [-1, -1, -1, -200, -1]) + + def test_ufunc_at_large(self): + # issue gh-23457 + indices = np.zeros(8195, dtype=np.int16) + b = np.zeros(8195, dtype=float) + b[0] = 10 + b[1] = 5 + b[8192:] = 100 + a = np.zeros(1, dtype=float) + np.add.at(a, indices, b) + assert a[0] == b.sum() + + def test_cast_index_fastpath(self): + arr = np.zeros(10) + values = np.ones(100000) + # index must be cast, which may be buffered in chunks: + index = np.zeros(len(values), dtype=np.uint8) + np.add.at(arr, index, values) + assert arr[0] == len(values) + + @pytest.mark.parametrize("value", [ + np.ones(1), np.ones(()), np.float64(1.), 1.]) + def test_ufunc_at_scalar_value_fastpath(self, value): + arr = np.zeros(1000) + # index must be cast, which may be buffered in chunks: + index = np.repeat(np.arange(1000), 2) + np.add.at(arr, index, value) + assert_array_equal(arr, np.full_like(arr, 2 * value)) + + def test_ufunc_at_multiD(self): + a = np.arange(9).reshape(3, 3) + b = np.array([[100, 100, 100], [200, 200, 200], [300, 300, 300]]) + np.add.at(a, (slice(None), [1, 2, 1]), b) + assert_equal(a, [[0, 201, 102], [3, 404, 205], [6, 607, 308]]) + + a = np.arange(27).reshape(3, 3, 3) + b = np.array([100, 200, 300]) + np.add.at(a, (slice(None), slice(None), [1, 2, 1]), b) + assert_equal(a, + [[[0, 401, 202], + [3, 404, 205], + [6, 407, 208]], + + [[9, 410, 211], + [12, 413, 214], + [15, 416, 217]], + + [[18, 419, 220], + [21, 422, 223], + [24, 425, 226]]]) + + a = np.arange(9).reshape(3, 3) + b = np.array([[100, 100, 100], [200, 200, 200], [300, 300, 300]]) + np.add.at(a, ([1, 2, 1], slice(None)), b) + assert_equal(a, [[0, 1, 2], [403, 404, 405], [206, 207, 208]]) + + a = np.arange(27).reshape(3, 3, 3) + b = np.array([100, 200, 300]) + np.add.at(a, (slice(None), [1, 2, 1], slice(None)), b) + assert_equal(a, + [[[0, 1, 2], + [203, 404, 605], + [106, 207, 308]], + + [[9, 10, 11], + [212, 413, 614], + [115, 216, 317]], + + [[18, 19, 20], + [221, 422, 623], + [124, 225, 326]]]) + + a = np.arange(9).reshape(3, 3) + b = np.array([100, 200, 300]) + np.add.at(a, (0, [1, 2, 1]), b) + assert_equal(a, [[0, 401, 202], [3, 4, 5], [6, 7, 8]]) + + a = np.arange(27).reshape(3, 3, 3) + b = np.array([100, 200, 300]) + np.add.at(a, ([1, 2, 1], 0, slice(None)), b) + assert_equal(a, + [[[0, 1, 2], + [3, 4, 5], + [6, 7, 8]], + + [[209, 410, 611], + [12, 13, 14], + [15, 16, 17]], + + [[118, 219, 320], + [21, 22, 23], + [24, 25, 26]]]) + + a = np.arange(27).reshape(3, 3, 3) + b = np.array([100, 200, 300]) + np.add.at(a, (slice(None), slice(None), slice(None)), b) + assert_equal(a, + [[[100, 201, 302], + [103, 204, 305], + [106, 207, 308]], + + [[109, 210, 311], + [112, 213, 314], + [115, 216, 317]], + + [[118, 219, 320], + [121, 222, 323], + [124, 225, 326]]]) + + def test_ufunc_at_0D(self): + a = np.array(0) + np.add.at(a, (), 1) + assert_equal(a, 1) + + assert_raises(IndexError, np.add.at, a, 0, 1) + assert_raises(IndexError, np.add.at, a, [], 1) + + def test_ufunc_at_dtypes(self): + # Test mixed dtypes + a = np.arange(10) + np.power.at(a, [1, 2, 3, 2], 3.5) + assert_equal(a, np.array([0, 1, 4414, 46, 4, 5, 6, 7, 8, 9])) + + def test_ufunc_at_boolean(self): + # Test boolean indexing and boolean ufuncs + a = np.arange(10) + index = a % 2 == 0 + np.equal.at(a, index, [0, 2, 4, 6, 8]) + assert_equal(a, [1, 1, 1, 3, 1, 5, 1, 7, 1, 9]) + + # Test unary operator + a = np.arange(10, dtype='u4') + np.invert.at(a, [2, 5, 2]) + assert_equal(a, [0, 1, 2, 3, 4, 5 ^ 0xffffffff, 6, 7, 8, 9]) + + def test_ufunc_at_advanced(self): + # Test empty subspace + orig = np.arange(4) + a = orig[:, None][:, 0:0] + np.add.at(a, [0, 1], 3) + assert_array_equal(orig, np.arange(4)) + + # Test with swapped byte order + index = np.array([1, 2, 1], np.dtype('i').newbyteorder()) + values = np.array([1, 2, 3, 4], np.dtype('f').newbyteorder()) + np.add.at(values, index, 3) + assert_array_equal(values, [1, 8, 6, 4]) + + # Test exception thrown + values = np.array(['a', 1], dtype=object) + assert_raises(TypeError, np.add.at, values, [0, 1], 1) + assert_array_equal(values, np.array(['a', 1], dtype=object)) + + # Test multiple output ufuncs raise error, gh-5665 + assert_raises(ValueError, np.modf.at, np.arange(10), [1]) + + # Test maximum + a = np.array([1, 2, 3]) + np.maximum.at(a, [0], 0) + assert_equal(a, np.array([1, 2, 3])) + + @pytest.mark.parametrize("dtype", + np.typecodes['AllInteger'] + np.typecodes['Float']) + @pytest.mark.parametrize("ufunc", + [np.add, np.subtract, np.divide, np.minimum, np.maximum]) + def test_at_negative_indexes(self, dtype, ufunc): + a = np.arange(0, 10).astype(dtype) + indxs = np.array([-1, 1, -1, 2]).astype(np.intp) + vals = np.array([1, 5, 2, 10], dtype=a.dtype) + + expected = a.copy() + for i, v in zip(indxs, vals): + expected[i] = ufunc(expected[i], v) + + ufunc.at(a, indxs, vals) + assert_array_equal(a, expected) + assert np.all(indxs == [-1, 1, -1, 2]) + + def test_at_not_none_signature(self): + # Test ufuncs with non-trivial signature raise a TypeError + a = np.ones((2, 2, 2)) + b = np.ones((1, 2, 2)) + assert_raises(TypeError, np.matmul.at, a, [0], b) + + a = np.array([[[1, 2], [3, 4]]]) + assert_raises(TypeError, np.linalg._umath_linalg.det.at, a, [0]) + + def test_at_no_loop_for_op(self): + # str dtype does not have a ufunc loop for np.add + arr = np.ones(10, dtype=str) + with pytest.raises(np._core._exceptions._UFuncNoLoopError): + np.add.at(arr, [0, 1], [0, 1]) + + def test_at_output_casting(self): + arr = np.array([-1]) + np.equal.at(arr, [0], [0]) + assert arr[0] == 0 + + def test_at_broadcast_failure(self): + arr = np.arange(5) + with pytest.raises(ValueError): + np.add.at(arr, [0, 1], [1, 2, 3]) + + def test_reduce_arguments(self): + f = np.add.reduce + d = np.ones((5, 2), dtype=int) + o = np.ones((2,), dtype=d.dtype) + r = o * 5 + assert_equal(f(d), r) + # a, axis=0, dtype=None, out=None, keepdims=False + assert_equal(f(d, axis=0), r) + assert_equal(f(d, 0), r) + assert_equal(f(d, 0, dtype=None), r) + assert_equal(f(d, 0, dtype='i'), r) + assert_equal(f(d, 0, 'i'), r) + assert_equal(f(d, 0, None), r) + assert_equal(f(d, 0, None, out=None), r) + assert_equal(f(d, 0, None, out=o), r) + assert_equal(f(d, 0, None, o), r) + assert_equal(f(d, 0, None, None), r) + assert_equal(f(d, 0, None, None, keepdims=False), r) + assert_equal(f(d, 0, None, None, True), r.reshape((1,) + r.shape)) + assert_equal(f(d, 0, None, None, False, 0), r) + assert_equal(f(d, 0, None, None, False, initial=0), r) + assert_equal(f(d, 0, None, None, False, 0, True), r) + assert_equal(f(d, 0, None, None, False, 0, where=True), r) + # multiple keywords + assert_equal(f(d, axis=0, dtype=None, out=None, keepdims=False), r) + assert_equal(f(d, 0, dtype=None, out=None, keepdims=False), r) + assert_equal(f(d, 0, None, out=None, keepdims=False), r) + assert_equal(f(d, 0, None, out=None, keepdims=False, initial=0, + where=True), r) + + # too little + assert_raises(TypeError, f) + # too much + assert_raises(TypeError, f, d, 0, None, None, False, 0, True, 1) + # invalid axis + assert_raises(TypeError, f, d, "invalid") + assert_raises(TypeError, f, d, axis="invalid") + assert_raises(TypeError, f, d, axis="invalid", dtype=None, + keepdims=True) + # invalid dtype + assert_raises(TypeError, f, d, 0, "invalid") + assert_raises(TypeError, f, d, dtype="invalid") + assert_raises(TypeError, f, d, dtype="invalid", out=None) + # invalid out + assert_raises(TypeError, f, d, 0, None, "invalid") + assert_raises(TypeError, f, d, out="invalid") + assert_raises(TypeError, f, d, out="invalid", dtype=None) + # keepdims boolean, no invalid value + # assert_raises(TypeError, f, d, 0, None, None, "invalid") + # assert_raises(TypeError, f, d, keepdims="invalid", axis=0, dtype=None) + # invalid mix + assert_raises(TypeError, f, d, 0, keepdims="invalid", dtype="invalid", + out=None) + + # invalid keyword + assert_raises(TypeError, f, d, axis=0, dtype=None, invalid=0) + assert_raises(TypeError, f, d, invalid=0) + assert_raises(TypeError, f, d, 0, keepdims=True, invalid="invalid", + out=None) + assert_raises(TypeError, f, d, axis=0, dtype=None, keepdims=True, + out=None, invalid=0) + assert_raises(TypeError, f, d, axis=0, dtype=None, + out=None, invalid=0) + + def test_structured_equal(self): + # https://github.com/numpy/numpy/issues/4855 + + class MyA(np.ndarray): + def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): + return getattr(ufunc, method)(*(input.view(np.ndarray) + for input in inputs), **kwargs) + a = np.arange(12.).reshape(4, 3) + ra = a.view(dtype=('f8,f8,f8')).squeeze() + mra = ra.view(MyA) + + target = np.array([True, False, False, False], dtype=bool) + assert_equal(np.all(target == (mra == ra[0])), True) + + def test_scalar_equal(self): + # Scalar comparisons should always work, without deprecation warnings. + # even when the ufunc fails. + a = np.array(0.) + b = np.array('a') + assert_(a != b) + assert_(b != a) + assert_(not (a == b)) + assert_(not (b == a)) + + def test_NotImplemented_not_returned(self): + # See gh-5964 and gh-2091. Some of these functions are not operator + # related and were fixed for other reasons in the past. + binary_funcs = [ + np.power, np.add, np.subtract, np.multiply, np.divide, + np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or, + np.bitwise_xor, np.left_shift, np.right_shift, np.fmax, + np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2, + np.maximum, np.minimum, np.mod, + np.greater, np.greater_equal, np.less, np.less_equal, + np.equal, np.not_equal] + + a = np.array('1') + b = 1 + c = np.array([1., 2.]) + for f in binary_funcs: + assert_raises(TypeError, f, a, b) + assert_raises(TypeError, f, c, a) + + @pytest.mark.parametrize("ufunc", + [np.logical_and, np.logical_or]) # logical_xor object loop is bad + @pytest.mark.parametrize("signature", + [(None, None, object), (object, None, None), + (None, object, None)]) + def test_logical_ufuncs_object_signatures(self, ufunc, signature): + a = np.array([True, None, False], dtype=object) + res = ufunc(a, a, signature=signature) + assert res.dtype == object + + @pytest.mark.parametrize("ufunc", + [np.logical_and, np.logical_or, np.logical_xor]) + @pytest.mark.parametrize("signature", + [(bool, None, object), (object, None, bool), + (None, object, bool)]) + def test_logical_ufuncs_mixed_object_signatures(self, ufunc, signature): + # Most mixed signatures fail (except those with bool out, e.g. `OO->?`) + a = np.array([True, None, False]) + with pytest.raises(TypeError): + ufunc(a, a, signature=signature) + + @pytest.mark.parametrize("ufunc", + [np.logical_and, np.logical_or, np.logical_xor]) + def test_logical_ufuncs_support_anything(self, ufunc): + # The logical ufuncs support even input that can't be promoted: + a = np.array(b'1', dtype="V3") + c = np.array([1., 2.]) + assert_array_equal(ufunc(a, c), ufunc([True, True], True)) + assert ufunc.reduce(a) == True + # check that the output has no effect: + out = np.zeros(2, dtype=np.int32) + expected = ufunc([True, True], True).astype(out.dtype) + assert_array_equal(ufunc(a, c, out=out), expected) + out = np.zeros((), dtype=np.int32) + assert ufunc.reduce(a, out=out) == True + # Last check, test reduction when out and a match (the complexity here + # is that the "i,i->?" may seem right, but should not match. + a = np.array([3], dtype="i") + out = np.zeros((), dtype=a.dtype) + assert ufunc.reduce(a, out=out) == 1 + + @pytest.mark.parametrize("ufunc", + [np.logical_and, np.logical_or, np.logical_xor]) + @pytest.mark.parametrize("dtype", ["S", "U"]) + @pytest.mark.parametrize("values", [["1", "hi", "0"], ["", ""]]) + def test_logical_ufuncs_supports_string(self, ufunc, dtype, values): + # note that values are either all true or all false + arr = np.array(values, dtype=dtype) + obj_arr = np.array(values, dtype=object) + res = ufunc(arr, arr) + expected = ufunc(obj_arr, obj_arr, dtype=bool) + + assert_array_equal(res, expected) + + res = ufunc.reduce(arr) + expected = ufunc.reduce(obj_arr, dtype=bool) + assert_array_equal(res, expected) + + @pytest.mark.parametrize("ufunc", + [np.logical_and, np.logical_or, np.logical_xor]) + def test_logical_ufuncs_out_cast_check(self, ufunc): + a = np.array('1') + c = np.array([1., 2.]) + out = a.copy() + with pytest.raises(TypeError): + # It would be safe, but not equiv casting: + ufunc(a, c, out=out, casting="equiv") + + def test_reducelike_byteorder_resolution(self): + # See gh-20699, byte-order changes need some extra care in the type + # resolution to make the following succeed: + arr_be = np.arange(10, dtype=">i8") + arr_le = np.arange(10, dtype="i + if 'O' in typ or '?' in typ: + continue + inp, out = typ.split('->') + args = [np.ones((3, 3), t) for t in inp] + with warnings.catch_warnings(record=True): + warnings.filterwarnings("always") + res = ufunc(*args) + if isinstance(res, tuple): + outs = tuple(out) + assert len(res) == len(outs) + for r, t in zip(res, outs): + assert r.dtype == np.dtype(t) + else: + assert res.dtype == np.dtype(out) + +@pytest.mark.parametrize('ufunc', [getattr(np, x) for x in dir(np) + if isinstance(getattr(np, x), np.ufunc)]) +def test_ufunc_noncontiguous(ufunc): + ''' + Check that contiguous and non-contiguous calls to ufuncs + have the same results for values in range(9) + ''' + for typ in ufunc.types: + # types is a list of strings like ii->i + if any(set('O?mM') & set(typ)): + # bool, object, datetime are too irregular for this simple test + continue + inp, out = typ.split('->') + args_c = [np.empty((6, 6), t) for t in inp] + # non contiguous (2, 3 step on the two dimensions) + args_n = [np.empty((12, 18), t)[::2, ::3] for t in inp] + # alignment != itemsize is possible. So create an array with such + # an odd step manually. + args_o = [] + for t in inp: + orig_dt = np.dtype(t) + off_dt = f"S{orig_dt.alignment}" # offset by alignment + dtype = np.dtype([("_", off_dt), ("t", orig_dt)], align=False) + args_o.append(np.empty((6, 6), dtype=dtype)["t"]) + for a in args_c + args_n + args_o: + a.flat = range(1, 37) + + with warnings.catch_warnings(record=True): + warnings.filterwarnings("always") + res_c = ufunc(*args_c) + res_n = ufunc(*args_n) + res_o = ufunc(*args_o) + if len(out) == 1: + res_c = (res_c,) + res_n = (res_n,) + res_o = (res_o,) + for c_ar, n_ar, o_ar in zip(res_c, res_n, res_o): + dt = c_ar.dtype + if np.issubdtype(dt, np.floating): + # for floating point results allow a small fuss in comparisons + # since different algorithms (libm vs. intrinsics) can be used + # for different input strides + res_eps = np.finfo(dt).eps + tol = 3 * res_eps + assert_allclose(res_c, res_n, atol=tol, rtol=tol) + assert_allclose(res_c, res_o, atol=tol, rtol=tol) + else: + assert_equal(c_ar, n_ar) + assert_equal(c_ar, o_ar) + + +@pytest.mark.parametrize('ufunc', [np.sign, np.equal]) +def test_ufunc_warn_with_nan(ufunc): + # issue gh-15127 + # test that calling certain ufuncs with a non-standard `nan` value does not + # emit a warning + # `b` holds a 64 bit signaling nan: the most significant bit of the + # significand is zero. + b = np.array([0x7ff0000000000001], 'i8').view('f8') + assert np.isnan(b) + if ufunc.nin == 1: + ufunc(b) + elif ufunc.nin == 2: + ufunc(b, b.copy()) + else: + raise ValueError('ufunc with more than 2 inputs') + + +@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") +def test_ufunc_out_casterrors(): + # Tests that casting errors are correctly reported and buffers are + # cleared. + # The following array can be added to itself as an object array, but + # the result cannot be cast to an integer output: + value = 123 # relies on python cache (leak-check will still find it) + arr = np.array([value] * int(ncu.BUFSIZE * 1.5) + + ["string"] + + [value] * int(1.5 * ncu.BUFSIZE), dtype=object) + out = np.ones(len(arr), dtype=np.intp) + + count = sys.getrefcount(value) + with pytest.raises(ValueError): + # Output casting failure: + np.add(arr, arr, out=out, casting="unsafe") + + assert count == sys.getrefcount(value) + # output is unchanged after the error, this shows that the iteration + # was aborted (this is not necessarily defined behaviour) + assert out[-1] == 1 + + with pytest.raises(ValueError): + # Input casting failure: + np.add(arr, arr, out=out, dtype=np.intp, casting="unsafe") + + assert count == sys.getrefcount(value) + # output is unchanged after the error, this shows that the iteration + # was aborted (this is not necessarily defined behaviour) + assert out[-1] == 1 + + +@pytest.mark.parametrize("bad_offset", [0, int(ncu.BUFSIZE * 1.5)]) +def test_ufunc_input_casterrors(bad_offset): + value = 123 + arr = np.array([value] * bad_offset + + ["string"] + + [value] * int(1.5 * ncu.BUFSIZE), dtype=object) + with pytest.raises(ValueError): + # Force cast inputs, but the buffered cast of `arr` to intp fails: + np.add(arr, arr, dtype=np.intp, casting="unsafe") + + +@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") +@pytest.mark.parametrize("bad_offset", [0, int(ncu.BUFSIZE * 1.5)]) +def test_ufunc_input_floatingpoint_error(bad_offset): + value = 123 + arr = np.array([value] * bad_offset + + [np.nan] + + [value] * int(1.5 * ncu.BUFSIZE)) + with np.errstate(invalid="raise"), pytest.raises(FloatingPointError): + # Force cast inputs, but the buffered cast of `arr` to intp fails: + np.add(arr, arr, dtype=np.intp, casting="unsafe") + + +def test_trivial_loop_invalid_cast(): + # This tests the fast-path "invalid cast", see gh-19904. + with pytest.raises(TypeError, + match="cast ufunc 'add' input 0"): + # the void dtype definitely cannot cast to double: + np.add(np.array(1, "i,i"), 3, signature="dd->d") + + +@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") +@pytest.mark.parametrize("offset", + [0, ncu.BUFSIZE // 2, int(1.5 * ncu.BUFSIZE)]) +def test_reduce_casterrors(offset): + # Test reporting of casting errors in reductions, we test various + # offsets to where the casting error will occur, since these may occur + # at different places during the reduction procedure. For example + # the first item may be special. + value = 123 # relies on python cache (leak-check will still find it) + arr = np.array([value] * offset + + ["string"] + + [value] * int(1.5 * ncu.BUFSIZE), dtype=object) + out = np.array(-1, dtype=np.intp) + + count = sys.getrefcount(value) + with pytest.raises(ValueError, match="invalid literal"): + # This is an unsafe cast, but we currently always allow that. + # Note that the double loop is picked, but the cast fails. + # `initial=None` disables the use of an identity here to test failures + # while copying the first values path (not used when identity exists). + np.add.reduce(arr, dtype=np.intp, out=out, initial=None) + assert count == sys.getrefcount(value) + # If an error occurred during casting, the operation is done at most until + # the error occurs (the result of which would be `value * offset`) and -1 + # if the error happened immediately. + # This does not define behaviour, the output is invalid and thus undefined + assert out[()] < value * offset + + +@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") +def test_reduction_no_reference_leak(): + # Test that the generic reduction does not leak references. + # gh-29358 + arr = np.array([1, 2, 3], dtype=np.int32) + count = sys.getrefcount(arr) + + np.add.reduce(arr, dtype=np.int32, initial=0) + assert count == sys.getrefcount(arr) + + np.add.accumulate(arr, dtype=np.int32) + assert count == sys.getrefcount(arr) + + np.add.reduceat(arr, [0, 1], dtype=np.int32) + assert count == sys.getrefcount(arr) + + # with `out=` the reference count is not changed + out = np.empty((), dtype=np.int32) + out_count = sys.getrefcount(out) + + np.add.reduce(arr, dtype=np.int32, out=out, initial=0) + assert count == sys.getrefcount(arr) + assert out_count == sys.getrefcount(out) + + out = np.empty(arr.shape, dtype=np.int32) + out_count = sys.getrefcount(out) + + np.add.accumulate(arr, dtype=np.int32, out=out) + assert count == sys.getrefcount(arr) + assert out_count == sys.getrefcount(out) + + out = np.empty((2,), dtype=np.int32) + out_count = sys.getrefcount(out) + + np.add.reduceat(arr, [0, 1], dtype=np.int32, out=out) + assert count == sys.getrefcount(arr) + assert out_count == sys.getrefcount(out) + + +def test_object_reduce_cleanup_on_failure(): + # Test cleanup, including of the initial value (manually provided or not) + with pytest.raises(TypeError): + np.add.reduce([1, 2, None], initial=4) + + with pytest.raises(TypeError): + np.add.reduce([1, 2, None]) + + +@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") +@pytest.mark.parametrize("method", + [np.add.accumulate, np.add.reduce, + pytest.param(lambda x: np.add.reduceat(x, [0]), id="reduceat"), + pytest.param(lambda x: np.log.at(x, [2]), id="at")]) +def test_ufunc_methods_floaterrors(method): + # adding inf and -inf (or log(-inf) creates an invalid float and warns + arr = np.array([np.inf, 0, -np.inf]) + with np.errstate(all="warn"): + with pytest.warns(RuntimeWarning, match="invalid value"): + method(arr) + + arr = np.array([np.inf, 0, -np.inf]) + with np.errstate(all="raise"): + with pytest.raises(FloatingPointError): + method(arr) + + +def _check_neg_zero(value): + if value != 0.0: + return False + if not np.signbit(value.real): + return False + if value.dtype.kind == "c": + return np.signbit(value.imag) + return True + +@pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) +def test_addition_negative_zero(dtype): + dtype = np.dtype(dtype) + if dtype.kind == "c": + neg_zero = dtype.type(complex(-0.0, -0.0)) + else: + neg_zero = dtype.type(-0.0) + + arr = np.array(neg_zero) + arr2 = np.array(neg_zero) + + assert _check_neg_zero(arr + arr2) + # In-place ops may end up on a different path (reduce path) see gh-21211 + arr += arr2 + assert _check_neg_zero(arr) + + +@pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) +@pytest.mark.parametrize("use_initial", [True, False]) +def test_addition_reduce_negative_zero(dtype, use_initial): + dtype = np.dtype(dtype) + if dtype.kind == "c": + neg_zero = dtype.type(complex(-0.0, -0.0)) + else: + neg_zero = dtype.type(-0.0) + + kwargs = {} + if use_initial: + kwargs["initial"] = neg_zero + else: + pytest.xfail("-0. propagation in sum currently requires initial") + + # Test various length, in case SIMD paths or chunking play a role. + # 150 extends beyond the pairwise blocksize; probably not important. + for i in range(150): + arr = np.array([neg_zero] * i, dtype=dtype) + res = np.sum(arr, **kwargs) + if i > 0 or use_initial: + assert _check_neg_zero(res) + else: + # `sum([])` should probably be 0.0 and not -0.0 like `sum([-0.0])` + assert not np.signbit(res.real) + assert not np.signbit(res.imag) + + +@pytest.mark.parametrize(["dt1", "dt2"], + [("S", "U"), ("U", "S"), ("S", "d"), ("S", "V"), ("U", "l")]) +def test_addition_string_types(dt1, dt2): + arr1 = np.array([1234234], dtype=dt1) + arr2 = np.array([b"423"], dtype=dt2) + with pytest.raises(np._core._exceptions.UFuncTypeError) as exc: + np.add(arr1, arr2) + + +@pytest.mark.parametrize("order1,order2", + [(">", ">"), ("<", "<"), (">", "<"), ("<", ">")]) +def test_addition_unicode_inverse_byte_order(order1, order2): + element = 'abcd' + arr1 = np.array([element], dtype=f"{order1}U4") + arr2 = np.array([element], dtype=f"{order2}U4") + result = arr1 + arr2 + assert result == 2 * element + + +@pytest.mark.parametrize("dtype", [np.int8, np.int16, np.int32, np.int64]) +def test_find_non_long_args(dtype): + element = 'abcd' + start = dtype(0) + end = dtype(len(element)) + arr = np.array([element]) + result = np._core.umath.find(arr, "a", start, end) + assert result.dtype == np.dtype("intp") + assert result == 0 + + +def test_find_access_past_buffer(): + # This checks that no read past the string buffer occurs in + # string_fastsearch.h. The buffer class makes sure this is checked. + # To see it in action, you can remove the checks in the buffer and + # this test will produce an 'Invalid read' if run under valgrind. + arr = np.array([b'abcd', b'ebcd']) + result = np._core.umath.find(arr, b'cde', 0, np.iinfo(np.int64).max) + assert np.all(result == -1) + + +class TestLowlevelAPIAccess: + def test_resolve_dtypes_basic(self): + # Basic test for dtype resolution: + i4 = np.dtype("i4") + f4 = np.dtype("f4") + f8 = np.dtype("f8") + + r = np.add.resolve_dtypes((i4, f4, None)) + assert r == (f8, f8, f8) + + # Signature uses the same logic to parse as ufunc (less strict) + # the following is "same-kind" casting so works: + r = np.add.resolve_dtypes(( + i4, i4, None), signature=(None, None, "f4")) + assert r == (f4, f4, f4) + + # Check NEP 50 "weak" promotion also: + r = np.add.resolve_dtypes((f4, int, None)) + assert r == (f4, f4, f4) + + with pytest.raises(TypeError): + np.add.resolve_dtypes((i4, f4, None), casting="no") + + def test_resolve_dtypes_comparison(self): + i4 = np.dtype("i4") + i8 = np.dtype("i8") + b = np.dtype("?") + r = np.equal.resolve_dtypes((i4, i8, None)) + assert r == (i8, i8, b) + + def test_weird_dtypes(self): + S0 = np.dtype("S0") + # S0 is often converted by NumPy to S1, but not here: + r = np.equal.resolve_dtypes((S0, S0, None)) + assert r == (S0, S0, np.dtype(bool)) + + # Subarray dtypes are weird and may not work fully, we preserve them + # leading to a TypeError (currently no equal loop for void/structured) + dts = np.dtype("10i") + with pytest.raises(TypeError): + np.equal.resolve_dtypes((dts, dts, None)) + + def test_resolve_dtypes_reduction(self): + i2 = np.dtype("i2") + default_int_ = np.dtype(np.int_) + # Check special addition resolution: + res = np.add.resolve_dtypes((None, i2, None), reduction=True) + assert res == (default_int_, default_int_, default_int_) + + def test_resolve_dtypes_reduction_no_output(self): + i4 = np.dtype("i4") + with pytest.raises(TypeError): + # May be allowable at some point? + np.add.resolve_dtypes((i4, i4, i4), reduction=True) + + @pytest.mark.parametrize("dtypes", [ + (np.dtype("i"), np.dtype("i")), + (None, np.dtype("i"), np.dtype("f")), + (np.dtype("i"), None, np.dtype("f")), + ("i4", "i4", None)]) + def test_resolve_dtypes_errors(self, dtypes): + with pytest.raises(TypeError): + np.add.resolve_dtypes(dtypes) + + def test_resolve_dtypes_reduction_errors(self): + i2 = np.dtype("i2") + + with pytest.raises(TypeError): + np.add.resolve_dtypes((None, i2, i2)) + + with pytest.raises(TypeError): + np.add.signature((None, None, "i4")) + + @pytest.mark.skipif(not hasattr(ct, "pythonapi"), + reason="`ctypes.pythonapi` required for capsule unpacking.") + def test_loop_access(self): + # This is a basic test for the full strided loop access + data_t = ct.c_char_p * 2 + dim_t = ct.c_ssize_t * 1 + strides_t = ct.c_ssize_t * 2 + strided_loop_t = ct.CFUNCTYPE( + ct.c_int, ct.c_void_p, data_t, dim_t, strides_t, ct.c_void_p) + + class call_info_t(ct.Structure): + _fields_ = [ + ("strided_loop", strided_loop_t), + ("context", ct.c_void_p), + ("auxdata", ct.c_void_p), + ("requires_pyapi", ct.c_byte), + ("no_floatingpoint_errors", ct.c_byte), + ] + + i4 = np.dtype("i4") + dt, call_info_obj = np.negative._resolve_dtypes_and_context((i4, i4)) + assert dt == (i4, i4) # can be used without casting + + # Fill in the rest of the information: + np.negative._get_strided_loop(call_info_obj) + + ct.pythonapi.PyCapsule_GetPointer.restype = ct.c_void_p + call_info = ct.pythonapi.PyCapsule_GetPointer( + ct.py_object(call_info_obj), + ct.c_char_p(b"numpy_1.24_ufunc_call_info")) + + call_info = ct.cast(call_info, ct.POINTER(call_info_t)).contents + + arr = np.arange(10, dtype=i4) + call_info.strided_loop( + call_info.context, + data_t(arr.ctypes.data, arr.ctypes.data), + arr.ctypes.shape, # is a C-array with 10 here + strides_t(arr.ctypes.strides[0], arr.ctypes.strides[0]), + call_info.auxdata) + + # We just directly called the negative inner-loop in-place: + assert_array_equal(arr, -np.arange(10, dtype=i4)) + + @pytest.mark.parametrize("strides", [1, (1, 2, 3), (1, "2")]) + def test__get_strided_loop_errors_bad_strides(self, strides): + i4 = np.dtype("i4") + dt, call_info = np.negative._resolve_dtypes_and_context((i4, i4)) + + with pytest.raises(TypeError, match="fixed_strides.*tuple.*or None"): + np.negative._get_strided_loop(call_info, fixed_strides=strides) + + def test__get_strided_loop_errors_bad_call_info(self): + i4 = np.dtype("i4") + dt, call_info = np.negative._resolve_dtypes_and_context((i4, i4)) + + with pytest.raises(ValueError, match="PyCapsule"): + np.negative._get_strided_loop("not the capsule!") + + with pytest.raises(TypeError, match=".*incompatible context"): + np.add._get_strided_loop(call_info) + + np.negative._get_strided_loop(call_info) + with pytest.raises(TypeError): + # cannot call it a second time: + np.negative._get_strided_loop(call_info) + + def test_long_arrays(self): + t = np.zeros((1029, 917), dtype=np.single) + t[0][0] = 1 + t[28][414] = 1 + tc = np.cos(t) + assert_equal(tc[0][0], tc[28][414]) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_umath.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_umath.py new file mode 100644 index 0000000..13e139d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_umath.py @@ -0,0 +1,4916 @@ +import fnmatch +import itertools +import operator +import platform +import sys +import warnings +from collections import namedtuple +from fractions import Fraction +from functools import reduce + +import pytest + +import numpy as np +import numpy._core.umath as ncu +from numpy._core import _umath_tests as ncu_tests +from numpy._core import sctypes +from numpy.testing import ( + HAS_REFCOUNT, + IS_MUSL, + IS_PYPY, + IS_WASM, + _gen_alignment_data, + assert_, + assert_allclose, + assert_almost_equal, + assert_array_almost_equal, + assert_array_almost_equal_nulp, + assert_array_equal, + assert_array_max_ulp, + assert_equal, + assert_no_warnings, + assert_raises, + assert_raises_regex, + suppress_warnings, +) +from numpy.testing._private.utils import _glibc_older_than + +UFUNCS = [obj for obj in np._core.umath.__dict__.values() + if isinstance(obj, np.ufunc)] + +UFUNCS_UNARY = [ + uf for uf in UFUNCS if uf.nin == 1 +] +UFUNCS_UNARY_FP = [ + uf for uf in UFUNCS_UNARY if 'f->f' in uf.types +] + +UFUNCS_BINARY = [ + uf for uf in UFUNCS if uf.nin == 2 +] +UFUNCS_BINARY_ACC = [ + uf for uf in UFUNCS_BINARY if hasattr(uf, "accumulate") and uf.nout == 1 +] + +def interesting_binop_operands(val1, val2, dtype): + """ + Helper to create "interesting" operands to cover common code paths: + * scalar inputs + * only first "values" is an array (e.g. scalar division fast-paths) + * Longer array (SIMD) placing the value of interest at different positions + * Oddly strided arrays which may not be SIMD compatible + + It does not attempt to cover unaligned access or mixed dtypes. + These are normally handled by the casting/buffering machinery. + + This is not a fixture (currently), since I believe a fixture normally + only yields once? + """ + fill_value = 1 # could be a parameter, but maybe not an optional one? + + arr1 = np.full(10003, dtype=dtype, fill_value=fill_value) + arr2 = np.full(10003, dtype=dtype, fill_value=fill_value) + + arr1[0] = val1 + arr2[0] = val2 + + extractor = lambda res: res + yield arr1[0], arr2[0], extractor, "scalars" + + extractor = lambda res: res + yield arr1[0, ...], arr2[0, ...], extractor, "scalar-arrays" + + # reset array values to fill_value: + arr1[0] = fill_value + arr2[0] = fill_value + + for pos in [0, 1, 2, 3, 4, 5, -1, -2, -3, -4]: + arr1[pos] = val1 + arr2[pos] = val2 + + extractor = lambda res: res[pos] + yield arr1, arr2, extractor, f"off-{pos}" + yield arr1, arr2[pos], extractor, f"off-{pos}-with-scalar" + + arr1[pos] = fill_value + arr2[pos] = fill_value + + for stride in [-1, 113]: + op1 = arr1[::stride] + op2 = arr2[::stride] + op1[10] = val1 + op2[10] = val2 + + extractor = lambda res: res[10] + yield op1, op2, extractor, f"stride-{stride}" + + op1[10] = fill_value + op2[10] = fill_value + + +def on_powerpc(): + """ True if we are running on a Power PC platform.""" + return platform.processor() == 'powerpc' or \ + platform.machine().startswith('ppc') + + +def bad_arcsinh(): + """The blocklisted trig functions are not accurate on aarch64/PPC for + complex256. Rather than dig through the actual problem skip the + test. This should be fixed when we can move past glibc2.17 + which is the version in manylinux2014 + """ + if platform.machine() == 'aarch64': + x = 1.78e-10 + elif on_powerpc(): + x = 2.16e-10 + else: + return False + v1 = np.arcsinh(np.float128(x)) + v2 = np.arcsinh(np.complex256(x)).real + # The eps for float128 is 1-e33, so this is way bigger + return abs((v1 / v2) - 1.0) > 1e-23 + + +class _FilterInvalids: + def setup_method(self): + self.olderr = np.seterr(invalid='ignore') + + def teardown_method(self): + np.seterr(**self.olderr) + + +class TestConstants: + def test_pi(self): + assert_allclose(ncu.pi, 3.141592653589793, 1e-15) + + def test_e(self): + assert_allclose(ncu.e, 2.718281828459045, 1e-15) + + def test_euler_gamma(self): + assert_allclose(ncu.euler_gamma, 0.5772156649015329, 1e-15) + + +class TestOut: + def test_out_subok(self): + for subok in (True, False): + a = np.array(0.5) + o = np.empty(()) + + r = np.add(a, 2, o, subok=subok) + assert_(r is o) + r = np.add(a, 2, out=o, subok=subok) + assert_(r is o) + r = np.add(a, 2, out=(o,), subok=subok) + assert_(r is o) + + d = np.array(5.7) + o1 = np.empty(()) + o2 = np.empty((), dtype=np.int32) + + r1, r2 = np.frexp(d, o1, None, subok=subok) + assert_(r1 is o1) + r1, r2 = np.frexp(d, None, o2, subok=subok) + assert_(r2 is o2) + r1, r2 = np.frexp(d, o1, o2, subok=subok) + assert_(r1 is o1) + assert_(r2 is o2) + + r1, r2 = np.frexp(d, out=(o1, None), subok=subok) + assert_(r1 is o1) + r1, r2 = np.frexp(d, out=(None, o2), subok=subok) + assert_(r2 is o2) + r1, r2 = np.frexp(d, out=(o1, o2), subok=subok) + assert_(r1 is o1) + assert_(r2 is o2) + + with assert_raises(TypeError): + # Out argument must be tuple, since there are multiple outputs. + r1, r2 = np.frexp(d, out=o1, subok=subok) + + assert_raises(TypeError, np.add, a, 2, o, o, subok=subok) + assert_raises(TypeError, np.add, a, 2, o, out=o, subok=subok) + assert_raises(TypeError, np.add, a, 2, None, out=o, subok=subok) + assert_raises(ValueError, np.add, a, 2, out=(o, o), subok=subok) + assert_raises(ValueError, np.add, a, 2, out=(), subok=subok) + assert_raises(TypeError, np.add, a, 2, [], subok=subok) + assert_raises(TypeError, np.add, a, 2, out=[], subok=subok) + assert_raises(TypeError, np.add, a, 2, out=([],), subok=subok) + o.flags.writeable = False + assert_raises(ValueError, np.add, a, 2, o, subok=subok) + assert_raises(ValueError, np.add, a, 2, out=o, subok=subok) + assert_raises(ValueError, np.add, a, 2, out=(o,), subok=subok) + + def test_out_wrap_subok(self): + class ArrayWrap(np.ndarray): + __array_priority__ = 10 + + def __new__(cls, arr): + return np.asarray(arr).view(cls).copy() + + def __array_wrap__(self, arr, context=None, return_scalar=False): + return arr.view(type(self)) + + for subok in (True, False): + a = ArrayWrap([0.5]) + + r = np.add(a, 2, subok=subok) + if subok: + assert_(isinstance(r, ArrayWrap)) + else: + assert_(type(r) == np.ndarray) + + r = np.add(a, 2, None, subok=subok) + if subok: + assert_(isinstance(r, ArrayWrap)) + else: + assert_(type(r) == np.ndarray) + + r = np.add(a, 2, out=None, subok=subok) + if subok: + assert_(isinstance(r, ArrayWrap)) + else: + assert_(type(r) == np.ndarray) + + r = np.add(a, 2, out=(None,), subok=subok) + if subok: + assert_(isinstance(r, ArrayWrap)) + else: + assert_(type(r) == np.ndarray) + + d = ArrayWrap([5.7]) + o1 = np.empty((1,)) + o2 = np.empty((1,), dtype=np.int32) + + r1, r2 = np.frexp(d, o1, subok=subok) + if subok: + assert_(isinstance(r2, ArrayWrap)) + else: + assert_(type(r2) == np.ndarray) + + r1, r2 = np.frexp(d, o1, None, subok=subok) + if subok: + assert_(isinstance(r2, ArrayWrap)) + else: + assert_(type(r2) == np.ndarray) + + r1, r2 = np.frexp(d, None, o2, subok=subok) + if subok: + assert_(isinstance(r1, ArrayWrap)) + else: + assert_(type(r1) == np.ndarray) + + r1, r2 = np.frexp(d, out=(o1, None), subok=subok) + if subok: + assert_(isinstance(r2, ArrayWrap)) + else: + assert_(type(r2) == np.ndarray) + + r1, r2 = np.frexp(d, out=(None, o2), subok=subok) + if subok: + assert_(isinstance(r1, ArrayWrap)) + else: + assert_(type(r1) == np.ndarray) + + with assert_raises(TypeError): + # Out argument must be tuple, since there are multiple outputs. + r1, r2 = np.frexp(d, out=o1, subok=subok) + + @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") + def test_out_wrap_no_leak(self): + # Regression test for gh-26545 + class ArrSubclass(np.ndarray): + pass + + arr = np.arange(10).view(ArrSubclass) + orig_refcount = sys.getrefcount(arr) + arr *= 1 + assert sys.getrefcount(arr) == orig_refcount + + +class TestComparisons: + import operator + + @pytest.mark.parametrize('dtype', sctypes['uint'] + sctypes['int'] + + sctypes['float'] + [np.bool]) + @pytest.mark.parametrize('py_comp,np_comp', [ + (operator.lt, np.less), + (operator.le, np.less_equal), + (operator.gt, np.greater), + (operator.ge, np.greater_equal), + (operator.eq, np.equal), + (operator.ne, np.not_equal) + ]) + def test_comparison_functions(self, dtype, py_comp, np_comp): + # Initialize input arrays + if dtype == np.bool: + a = np.random.choice(a=[False, True], size=1000) + b = np.random.choice(a=[False, True], size=1000) + scalar = True + else: + a = np.random.randint(low=1, high=10, size=1000).astype(dtype) + b = np.random.randint(low=1, high=10, size=1000).astype(dtype) + scalar = 5 + np_scalar = np.dtype(dtype).type(scalar) + a_lst = a.tolist() + b_lst = b.tolist() + + # (Binary) Comparison (x1=array, x2=array) + comp_b = np_comp(a, b).view(np.uint8) + comp_b_list = [int(py_comp(x, y)) for x, y in zip(a_lst, b_lst)] + + # (Scalar1) Comparison (x1=scalar, x2=array) + comp_s1 = np_comp(np_scalar, b).view(np.uint8) + comp_s1_list = [int(py_comp(scalar, x)) for x in b_lst] + + # (Scalar2) Comparison (x1=array, x2=scalar) + comp_s2 = np_comp(a, np_scalar).view(np.uint8) + comp_s2_list = [int(py_comp(x, scalar)) for x in a_lst] + + # Sequence: Binary, Scalar1 and Scalar2 + assert_(comp_b.tolist() == comp_b_list, + f"Failed comparison ({py_comp.__name__})") + assert_(comp_s1.tolist() == comp_s1_list, + f"Failed comparison ({py_comp.__name__})") + assert_(comp_s2.tolist() == comp_s2_list, + f"Failed comparison ({py_comp.__name__})") + + def test_ignore_object_identity_in_equal(self): + # Check comparing identical objects whose comparison + # is not a simple boolean, e.g., arrays that are compared elementwise. + a = np.array([np.array([1, 2, 3]), None], dtype=object) + assert_raises(ValueError, np.equal, a, a) + + # Check error raised when comparing identical non-comparable objects. + class FunkyType: + def __eq__(self, other): + raise TypeError("I won't compare") + + a = np.array([FunkyType()]) + assert_raises(TypeError, np.equal, a, a) + + # Check identity doesn't override comparison mismatch. + a = np.array([np.nan], dtype=object) + assert_equal(np.equal(a, a), [False]) + + def test_ignore_object_identity_in_not_equal(self): + # Check comparing identical objects whose comparison + # is not a simple boolean, e.g., arrays that are compared elementwise. + a = np.array([np.array([1, 2, 3]), None], dtype=object) + assert_raises(ValueError, np.not_equal, a, a) + + # Check error raised when comparing identical non-comparable objects. + class FunkyType: + def __ne__(self, other): + raise TypeError("I won't compare") + + a = np.array([FunkyType()]) + assert_raises(TypeError, np.not_equal, a, a) + + # Check identity doesn't override comparison mismatch. + a = np.array([np.nan], dtype=object) + assert_equal(np.not_equal(a, a), [True]) + + def test_error_in_equal_reduce(self): + # gh-20929 + # make sure np.equal.reduce raises a TypeError if an array is passed + # without specifying the dtype + a = np.array([0, 0]) + assert_equal(np.equal.reduce(a, dtype=bool), True) + assert_raises(TypeError, np.equal.reduce, a) + + def test_object_dtype(self): + assert np.equal(1, [1], dtype=object).dtype == object + assert np.equal(1, [1], signature=(None, None, "O")).dtype == object + + def test_object_nonbool_dtype_error(self): + # bool output dtype is fine of course: + assert np.equal(1, [1], dtype=bool).dtype == bool + + # but the following are examples do not have a loop: + with pytest.raises(TypeError, match="No loop matching"): + np.equal(1, 1, dtype=np.int64) + + with pytest.raises(TypeError, match="No loop matching"): + np.equal(1, 1, sig=(None, None, "l")) + + @pytest.mark.parametrize("dtypes", ["qQ", "Qq"]) + @pytest.mark.parametrize('py_comp, np_comp', [ + (operator.lt, np.less), + (operator.le, np.less_equal), + (operator.gt, np.greater), + (operator.ge, np.greater_equal), + (operator.eq, np.equal), + (operator.ne, np.not_equal) + ]) + @pytest.mark.parametrize("vals", [(2**60, 2**60 + 1), (2**60 + 1, 2**60)]) + def test_large_integer_direct_comparison( + self, dtypes, py_comp, np_comp, vals): + # Note that float(2**60) + 1 == float(2**60). + a1 = np.array([2**60], dtype=dtypes[0]) + a2 = np.array([2**60 + 1], dtype=dtypes[1]) + expected = py_comp(2**60, 2**60 + 1) + + assert py_comp(a1, a2) == expected + assert np_comp(a1, a2) == expected + # Also check the scalars: + s1 = a1[0] + s2 = a2[0] + assert isinstance(s1, np.integer) + assert isinstance(s2, np.integer) + # The Python operator here is mainly interesting: + assert py_comp(s1, s2) == expected + assert np_comp(s1, s2) == expected + + @pytest.mark.parametrize("dtype", np.typecodes['UnsignedInteger']) + @pytest.mark.parametrize('py_comp_func, np_comp_func', [ + (operator.lt, np.less), + (operator.le, np.less_equal), + (operator.gt, np.greater), + (operator.ge, np.greater_equal), + (operator.eq, np.equal), + (operator.ne, np.not_equal) + ]) + @pytest.mark.parametrize("flip", [True, False]) + def test_unsigned_signed_direct_comparison( + self, dtype, py_comp_func, np_comp_func, flip): + if flip: + py_comp = lambda x, y: py_comp_func(y, x) + np_comp = lambda x, y: np_comp_func(y, x) + else: + py_comp = py_comp_func + np_comp = np_comp_func + + arr = np.array([np.iinfo(dtype).max], dtype=dtype) + expected = py_comp(int(arr[0]), -1) + + assert py_comp(arr, -1) == expected + assert np_comp(arr, -1) == expected + + scalar = arr[0] + assert isinstance(scalar, np.integer) + # The Python operator here is mainly interesting: + assert py_comp(scalar, -1) == expected + assert np_comp(scalar, -1) == expected + + +class TestAdd: + def test_reduce_alignment(self): + # gh-9876 + # make sure arrays with weird strides work with the optimizations in + # pairwise_sum_@TYPE@. On x86, the 'b' field will count as aligned at a + # 4 byte offset, even though its itemsize is 8. + a = np.zeros(2, dtype=[('a', np.int32), ('b', np.float64)]) + a['a'] = -1 + assert_equal(a['b'].sum(), 0) + + +class TestDivision: + def test_division_int(self): + # int division should follow Python + x = np.array([5, 10, 90, 100, -5, -10, -90, -100, -120]) + if 5 / 10 == 0.5: + assert_equal(x / 100, [0.05, 0.1, 0.9, 1, + -0.05, -0.1, -0.9, -1, -1.2]) + else: + assert_equal(x / 100, [0, 0, 0, 1, -1, -1, -1, -1, -2]) + assert_equal(x // 100, [0, 0, 0, 1, -1, -1, -1, -1, -2]) + assert_equal(x % 100, [5, 10, 90, 0, 95, 90, 10, 0, 80]) + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + @pytest.mark.parametrize("dtype,ex_val", itertools.product( + sctypes['int'] + sctypes['uint'], ( + ( + # dividend + "np.array(range(fo.max-lsize, fo.max)).astype(dtype)," + # divisors + "np.arange(lsize).astype(dtype)," + # scalar divisors + "range(15)" + ), + ( + # dividend + "np.arange(fo.min, fo.min+lsize).astype(dtype)," + # divisors + "np.arange(lsize//-2, lsize//2).astype(dtype)," + # scalar divisors + "range(fo.min, fo.min + 15)" + ), ( + # dividend + "np.array(range(fo.max-lsize, fo.max)).astype(dtype)," + # divisors + "np.arange(lsize).astype(dtype)," + # scalar divisors + "[1,3,9,13,neg, fo.min+1, fo.min//2, fo.max//3, fo.max//4]" + ) + ) + )) + def test_division_int_boundary(self, dtype, ex_val): + fo = np.iinfo(dtype) + neg = -1 if fo.min < 0 else 1 + # Large enough to test SIMD loops and remainder elements + lsize = 512 + 7 + a, b, divisors = eval(ex_val) + a_lst, b_lst = a.tolist(), b.tolist() + + c_div = lambda n, d: ( + 0 if d == 0 else ( + fo.min if (n and n == fo.min and d == -1) else n // d + ) + ) + with np.errstate(divide='ignore'): + ac = a.copy() + ac //= b + div_ab = a // b + div_lst = [c_div(x, y) for x, y in zip(a_lst, b_lst)] + + msg = "Integer arrays floor division check (//)" + assert all(div_ab == div_lst), msg + msg_eq = "Integer arrays floor division check (//=)" + assert all(ac == div_lst), msg_eq + + for divisor in divisors: + ac = a.copy() + with np.errstate(divide='ignore', over='ignore'): + div_a = a // divisor + ac //= divisor + div_lst = [c_div(i, divisor) for i in a_lst] + + assert all(div_a == div_lst), msg + assert all(ac == div_lst), msg_eq + + with np.errstate(divide='raise', over='raise'): + if 0 in b: + # Verify overflow case + with pytest.raises(FloatingPointError, + match="divide by zero encountered in floor_divide"): + a // b + else: + a // b + if fo.min and fo.min in a: + with pytest.raises(FloatingPointError, + match='overflow encountered in floor_divide'): + a // -1 + elif fo.min: + a // -1 + with pytest.raises(FloatingPointError, + match="divide by zero encountered in floor_divide"): + a // 0 + with pytest.raises(FloatingPointError, + match="divide by zero encountered in floor_divide"): + ac = a.copy() + ac //= 0 + + np.array([], dtype=dtype) // 0 + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + @pytest.mark.parametrize("dtype,ex_val", itertools.product( + sctypes['int'] + sctypes['uint'], ( + "np.array([fo.max, 1, 2, 1, 1, 2, 3], dtype=dtype)", + "np.array([fo.min, 1, -2, 1, 1, 2, -3]).astype(dtype)", + "np.arange(fo.min, fo.min+(100*10), 10, dtype=dtype)", + "np.array(range(fo.max-(100*7), fo.max, 7)).astype(dtype)", + ) + )) + def test_division_int_reduce(self, dtype, ex_val): + fo = np.iinfo(dtype) + a = eval(ex_val) + lst = a.tolist() + c_div = lambda n, d: ( + 0 if d == 0 or (n and n == fo.min and d == -1) else n // d + ) + + with np.errstate(divide='ignore'): + div_a = np.floor_divide.reduce(a) + div_lst = reduce(c_div, lst) + msg = "Reduce floor integer division check" + assert div_a == div_lst, msg + + with np.errstate(divide='raise', over='raise'): + with pytest.raises(FloatingPointError, + match="divide by zero encountered in reduce"): + np.floor_divide.reduce(np.arange(-100, 100).astype(dtype)) + if fo.min: + with pytest.raises(FloatingPointError, + match='overflow encountered in reduce'): + np.floor_divide.reduce( + np.array([fo.min, 1, -1], dtype=dtype) + ) + + @pytest.mark.parametrize( + "dividend,divisor,quotient", + [(np.timedelta64(2, 'Y'), np.timedelta64(2, 'M'), 12), + (np.timedelta64(2, 'Y'), np.timedelta64(-2, 'M'), -12), + (np.timedelta64(-2, 'Y'), np.timedelta64(2, 'M'), -12), + (np.timedelta64(-2, 'Y'), np.timedelta64(-2, 'M'), 12), + (np.timedelta64(2, 'M'), np.timedelta64(-2, 'Y'), -1), + (np.timedelta64(2, 'Y'), np.timedelta64(0, 'M'), 0), + (np.timedelta64(2, 'Y'), 2, np.timedelta64(1, 'Y')), + (np.timedelta64(2, 'Y'), -2, np.timedelta64(-1, 'Y')), + (np.timedelta64(-2, 'Y'), 2, np.timedelta64(-1, 'Y')), + (np.timedelta64(-2, 'Y'), -2, np.timedelta64(1, 'Y')), + (np.timedelta64(-2, 'Y'), -2, np.timedelta64(1, 'Y')), + (np.timedelta64(-2, 'Y'), -3, np.timedelta64(0, 'Y')), + (np.timedelta64(-2, 'Y'), 0, np.timedelta64('Nat', 'Y')), + ]) + def test_division_int_timedelta(self, dividend, divisor, quotient): + # If either divisor is 0 or quotient is Nat, check for division by 0 + if divisor and (isinstance(quotient, int) or not np.isnat(quotient)): + msg = "Timedelta floor division check" + assert dividend // divisor == quotient, msg + + # Test for arrays as well + msg = "Timedelta arrays floor division check" + dividend_array = np.array([dividend] * 5) + quotient_array = np.array([quotient] * 5) + assert all(dividend_array // divisor == quotient_array), msg + else: + if IS_WASM: + pytest.skip("fp errors don't work in wasm") + with np.errstate(divide='raise', invalid='raise'): + with pytest.raises(FloatingPointError): + dividend // divisor + + def test_division_complex(self): + # check that implementation is correct + msg = "Complex division implementation check" + x = np.array([1. + 1. * 1j, 1. + .5 * 1j, 1. + 2. * 1j], dtype=np.complex128) + assert_almost_equal(x**2 / x, x, err_msg=msg) + # check overflow, underflow + msg = "Complex division overflow/underflow check" + x = np.array([1.e+110, 1.e-110], dtype=np.complex128) + y = x**2 / x + assert_almost_equal(y / x, [1, 1], err_msg=msg) + + def test_zero_division_complex(self): + with np.errstate(invalid="ignore", divide="ignore"): + x = np.array([0.0], dtype=np.complex128) + y = 1.0 / x + assert_(np.isinf(y)[0]) + y = complex(np.inf, np.nan) / x + assert_(np.isinf(y)[0]) + y = complex(np.nan, np.inf) / x + assert_(np.isinf(y)[0]) + y = complex(np.inf, np.inf) / x + assert_(np.isinf(y)[0]) + y = 0.0 / x + assert_(np.isnan(y)[0]) + + def test_floor_division_complex(self): + # check that floor division, divmod and remainder raises type errors + x = np.array([.9 + 1j, -.1 + 1j, .9 + .5 * 1j, .9 + 2. * 1j], dtype=np.complex128) + with pytest.raises(TypeError): + x // 7 + with pytest.raises(TypeError): + np.divmod(x, 7) + with pytest.raises(TypeError): + np.remainder(x, 7) + + def test_floor_division_signed_zero(self): + # Check that the sign bit is correctly set when dividing positive and + # negative zero by one. + x = np.zeros(10) + assert_equal(np.signbit(x // 1), 0) + assert_equal(np.signbit((-x) // 1), 1) + + @pytest.mark.skipif(hasattr(np.__config__, "blas_ssl2_info"), + reason="gh-22982") + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + @pytest.mark.parametrize('dtype', np.typecodes['Float']) + def test_floor_division_errors(self, dtype): + fnan = np.array(np.nan, dtype=dtype) + fone = np.array(1.0, dtype=dtype) + fzer = np.array(0.0, dtype=dtype) + finf = np.array(np.inf, dtype=dtype) + # divide by zero error check + with np.errstate(divide='raise', invalid='ignore'): + assert_raises(FloatingPointError, np.floor_divide, fone, fzer) + with np.errstate(divide='ignore', invalid='raise'): + np.floor_divide(fone, fzer) + + # The following already contain a NaN and should not warn + with np.errstate(all='raise'): + np.floor_divide(fnan, fone) + np.floor_divide(fone, fnan) + np.floor_divide(fnan, fzer) + np.floor_divide(fzer, fnan) + + @pytest.mark.parametrize('dtype', np.typecodes['Float']) + def test_floor_division_corner_cases(self, dtype): + # test corner cases like 1.0//0.0 for errors and return vals + x = np.zeros(10, dtype=dtype) + y = np.ones(10, dtype=dtype) + fnan = np.array(np.nan, dtype=dtype) + fone = np.array(1.0, dtype=dtype) + fzer = np.array(0.0, dtype=dtype) + finf = np.array(np.inf, dtype=dtype) + with suppress_warnings() as sup: + sup.filter(RuntimeWarning, "invalid value encountered in floor_divide") + div = np.floor_divide(fnan, fone) + assert np.isnan(div), f"div: {div}" + div = np.floor_divide(fone, fnan) + assert np.isnan(div), f"div: {div}" + div = np.floor_divide(fnan, fzer) + assert np.isnan(div), f"div: {div}" + # verify 1.0//0.0 computations return inf + with np.errstate(divide='ignore'): + z = np.floor_divide(y, x) + assert_(np.isinf(z).all()) + +def floor_divide_and_remainder(x, y): + return (np.floor_divide(x, y), np.remainder(x, y)) + + +def _signs(dt): + if dt in np.typecodes['UnsignedInteger']: + return (+1,) + else: + return (+1, -1) + + +class TestRemainder: + + def test_remainder_basic(self): + dt = np.typecodes['AllInteger'] + np.typecodes['Float'] + for op in [floor_divide_and_remainder, np.divmod]: + for dt1, dt2 in itertools.product(dt, dt): + for sg1, sg2 in itertools.product(_signs(dt1), _signs(dt2)): + fmt = 'op: %s, dt1: %s, dt2: %s, sg1: %s, sg2: %s' + msg = fmt % (op.__name__, dt1, dt2, sg1, sg2) + a = np.array(sg1 * 71, dtype=dt1) + b = np.array(sg2 * 19, dtype=dt2) + div, rem = op(a, b) + assert_equal(div * b + rem, a, err_msg=msg) + if sg2 == -1: + assert_(b < rem <= 0, msg) + else: + assert_(b > rem >= 0, msg) + + def test_float_remainder_exact(self): + # test that float results are exact for small integers. This also + # holds for the same integers scaled by powers of two. + nlst = list(range(-127, 0)) + plst = list(range(1, 128)) + dividend = nlst + [0] + plst + divisor = nlst + plst + arg = list(itertools.product(dividend, divisor)) + tgt = [divmod(*t) for t in arg] + + a, b = np.array(arg, dtype=int).T + # convert exact integer results from Python to float so that + # signed zero can be used, it is checked. + tgtdiv, tgtrem = np.array(tgt, dtype=float).T + tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv) + tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem) + + for op in [floor_divide_and_remainder, np.divmod]: + for dt in np.typecodes['Float']: + msg = f'op: {op.__name__}, dtype: {dt}' + fa = a.astype(dt) + fb = b.astype(dt) + div, rem = op(fa, fb) + assert_equal(div, tgtdiv, err_msg=msg) + assert_equal(rem, tgtrem, err_msg=msg) + + def test_float_remainder_roundoff(self): + # gh-6127 + dt = np.typecodes['Float'] + for op in [floor_divide_and_remainder, np.divmod]: + for dt1, dt2 in itertools.product(dt, dt): + for sg1, sg2 in itertools.product((+1, -1), (+1, -1)): + fmt = 'op: %s, dt1: %s, dt2: %s, sg1: %s, sg2: %s' + msg = fmt % (op.__name__, dt1, dt2, sg1, sg2) + a = np.array(sg1 * 78 * 6e-8, dtype=dt1) + b = np.array(sg2 * 6e-8, dtype=dt2) + div, rem = op(a, b) + # Equal assertion should hold when fmod is used + assert_equal(div * b + rem, a, err_msg=msg) + if sg2 == -1: + assert_(b < rem <= 0, msg) + else: + assert_(b > rem >= 0, msg) + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + @pytest.mark.xfail(sys.platform.startswith("darwin"), + reason="MacOS seems to not give the correct 'invalid' warning for " + "`fmod`. Hopefully, others always do.") + @pytest.mark.parametrize('dtype', np.typecodes['Float']) + def test_float_divmod_errors(self, dtype): + # Check valid errors raised for divmod and remainder + fzero = np.array(0.0, dtype=dtype) + fone = np.array(1.0, dtype=dtype) + finf = np.array(np.inf, dtype=dtype) + fnan = np.array(np.nan, dtype=dtype) + # since divmod is combination of both remainder and divide + # ops it will set both dividebyzero and invalid flags + with np.errstate(divide='raise', invalid='ignore'): + assert_raises(FloatingPointError, np.divmod, fone, fzero) + with np.errstate(divide='ignore', invalid='raise'): + assert_raises(FloatingPointError, np.divmod, fone, fzero) + with np.errstate(invalid='raise'): + assert_raises(FloatingPointError, np.divmod, fzero, fzero) + with np.errstate(invalid='raise'): + assert_raises(FloatingPointError, np.divmod, finf, finf) + with np.errstate(divide='ignore', invalid='raise'): + assert_raises(FloatingPointError, np.divmod, finf, fzero) + with np.errstate(divide='raise', invalid='ignore'): + # inf / 0 does not set any flags, only the modulo creates a NaN + np.divmod(finf, fzero) + + @pytest.mark.skipif(hasattr(np.__config__, "blas_ssl2_info"), + reason="gh-22982") + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + @pytest.mark.xfail(sys.platform.startswith("darwin"), + reason="MacOS seems to not give the correct 'invalid' warning for " + "`fmod`. Hopefully, others always do.") + @pytest.mark.parametrize('dtype', np.typecodes['Float']) + @pytest.mark.parametrize('fn', [np.fmod, np.remainder]) + def test_float_remainder_errors(self, dtype, fn): + fzero = np.array(0.0, dtype=dtype) + fone = np.array(1.0, dtype=dtype) + finf = np.array(np.inf, dtype=dtype) + fnan = np.array(np.nan, dtype=dtype) + + # The following already contain a NaN and should not warn. + with np.errstate(all='raise'): + with pytest.raises(FloatingPointError, + match="invalid value"): + fn(fone, fzero) + fn(fnan, fzero) + fn(fzero, fnan) + fn(fone, fnan) + fn(fnan, fone) + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + def test_float_remainder_overflow(self): + a = np.finfo(np.float64).tiny + with np.errstate(over='ignore', invalid='ignore'): + div, mod = np.divmod(4, a) + np.isinf(div) + assert_(mod == 0) + with np.errstate(over='raise', invalid='ignore'): + assert_raises(FloatingPointError, np.divmod, 4, a) + with np.errstate(invalid='raise', over='ignore'): + assert_raises(FloatingPointError, np.divmod, 4, a) + + def test_float_divmod_corner_cases(self): + # check nan cases + for dt in np.typecodes['Float']: + fnan = np.array(np.nan, dtype=dt) + fone = np.array(1.0, dtype=dt) + fzer = np.array(0.0, dtype=dt) + finf = np.array(np.inf, dtype=dt) + with suppress_warnings() as sup: + sup.filter(RuntimeWarning, "invalid value encountered in divmod") + sup.filter(RuntimeWarning, "divide by zero encountered in divmod") + div, rem = np.divmod(fone, fzer) + assert np.isinf(div), f'dt: {dt}, div: {rem}' + assert np.isnan(rem), f'dt: {dt}, rem: {rem}' + div, rem = np.divmod(fzer, fzer) + assert np.isnan(rem), f'dt: {dt}, rem: {rem}' + assert_(np.isnan(div)), f'dt: {dt}, rem: {rem}' + div, rem = np.divmod(finf, finf) + assert np.isnan(div), f'dt: {dt}, rem: {rem}' + assert np.isnan(rem), f'dt: {dt}, rem: {rem}' + div, rem = np.divmod(finf, fzer) + assert np.isinf(div), f'dt: {dt}, rem: {rem}' + assert np.isnan(rem), f'dt: {dt}, rem: {rem}' + div, rem = np.divmod(fnan, fone) + assert np.isnan(rem), f"dt: {dt}, rem: {rem}" + assert np.isnan(div), f"dt: {dt}, rem: {rem}" + div, rem = np.divmod(fone, fnan) + assert np.isnan(rem), f"dt: {dt}, rem: {rem}" + assert np.isnan(div), f"dt: {dt}, rem: {rem}" + div, rem = np.divmod(fnan, fzer) + assert np.isnan(rem), f"dt: {dt}, rem: {rem}" + assert np.isnan(div), f"dt: {dt}, rem: {rem}" + + def test_float_remainder_corner_cases(self): + # Check remainder magnitude. + for dt in np.typecodes['Float']: + fone = np.array(1.0, dtype=dt) + fzer = np.array(0.0, dtype=dt) + fnan = np.array(np.nan, dtype=dt) + b = np.array(1.0, dtype=dt) + a = np.nextafter(np.array(0.0, dtype=dt), -b) + rem = np.remainder(a, b) + assert_(rem <= b, f'dt: {dt}') + rem = np.remainder(-a, -b) + assert_(rem >= -b, f'dt: {dt}') + + # Check nans, inf + with suppress_warnings() as sup: + sup.filter(RuntimeWarning, "invalid value encountered in remainder") + sup.filter(RuntimeWarning, "invalid value encountered in fmod") + for dt in np.typecodes['Float']: + fone = np.array(1.0, dtype=dt) + fzer = np.array(0.0, dtype=dt) + finf = np.array(np.inf, dtype=dt) + fnan = np.array(np.nan, dtype=dt) + rem = np.remainder(fone, fzer) + assert_(np.isnan(rem), f'dt: {dt}, rem: {rem}') + # MSVC 2008 returns NaN here, so disable the check. + #rem = np.remainder(fone, finf) + #assert_(rem == fone, 'dt: %s, rem: %s' % (dt, rem)) + rem = np.remainder(finf, fone) + fmod = np.fmod(finf, fone) + assert_(np.isnan(fmod), f'dt: {dt}, fmod: {fmod}') + assert_(np.isnan(rem), f'dt: {dt}, rem: {rem}') + rem = np.remainder(finf, finf) + fmod = np.fmod(finf, fone) + assert_(np.isnan(rem), f'dt: {dt}, rem: {rem}') + assert_(np.isnan(fmod), f'dt: {dt}, fmod: {fmod}') + rem = np.remainder(finf, fzer) + fmod = np.fmod(finf, fzer) + assert_(np.isnan(rem), f'dt: {dt}, rem: {rem}') + assert_(np.isnan(fmod), f'dt: {dt}, fmod: {fmod}') + rem = np.remainder(fone, fnan) + fmod = np.fmod(fone, fnan) + assert_(np.isnan(rem), f'dt: {dt}, rem: {rem}') + assert_(np.isnan(fmod), f'dt: {dt}, fmod: {fmod}') + rem = np.remainder(fnan, fzer) + fmod = np.fmod(fnan, fzer) + assert_(np.isnan(rem), f'dt: {dt}, rem: {rem}') + assert_(np.isnan(fmod), f'dt: {dt}, fmod: {rem}') + rem = np.remainder(fnan, fone) + fmod = np.fmod(fnan, fone) + assert_(np.isnan(rem), f'dt: {dt}, rem: {rem}') + assert_(np.isnan(fmod), f'dt: {dt}, fmod: {rem}') + + +class TestDivisionIntegerOverflowsAndDivideByZero: + result_type = namedtuple('result_type', + ['nocast', 'casted']) + helper_lambdas = { + 'zero': lambda dtype: 0, + 'min': lambda dtype: np.iinfo(dtype).min, + 'neg_min': lambda dtype: -np.iinfo(dtype).min, + 'min-zero': lambda dtype: (np.iinfo(dtype).min, 0), + 'neg_min-zero': lambda dtype: (-np.iinfo(dtype).min, 0), + } + overflow_results = { + np.remainder: result_type( + helper_lambdas['zero'], helper_lambdas['zero']), + np.fmod: result_type( + helper_lambdas['zero'], helper_lambdas['zero']), + operator.mod: result_type( + helper_lambdas['zero'], helper_lambdas['zero']), + operator.floordiv: result_type( + helper_lambdas['min'], helper_lambdas['neg_min']), + np.floor_divide: result_type( + helper_lambdas['min'], helper_lambdas['neg_min']), + np.divmod: result_type( + helper_lambdas['min-zero'], helper_lambdas['neg_min-zero']) + } + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + @pytest.mark.parametrize("dtype", np.typecodes["Integer"]) + def test_signed_division_overflow(self, dtype): + to_check = interesting_binop_operands(np.iinfo(dtype).min, -1, dtype) + for op1, op2, extractor, operand_identifier in to_check: + with pytest.warns(RuntimeWarning, match="overflow encountered"): + res = op1 // op2 + + assert res.dtype == op1.dtype + assert extractor(res) == np.iinfo(op1.dtype).min + + # Remainder is well defined though, and does not warn: + res = op1 % op2 + assert res.dtype == op1.dtype + assert extractor(res) == 0 + # Check fmod as well: + res = np.fmod(op1, op2) + assert extractor(res) == 0 + + # Divmod warns for the division part: + with pytest.warns(RuntimeWarning, match="overflow encountered"): + res1, res2 = np.divmod(op1, op2) + + assert res1.dtype == res2.dtype == op1.dtype + assert extractor(res1) == np.iinfo(op1.dtype).min + assert extractor(res2) == 0 + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + @pytest.mark.parametrize("dtype", np.typecodes["AllInteger"]) + def test_divide_by_zero(self, dtype): + # Note that the return value cannot be well defined here, but NumPy + # currently uses 0 consistently. This could be changed. + to_check = interesting_binop_operands(1, 0, dtype) + for op1, op2, extractor, operand_identifier in to_check: + with pytest.warns(RuntimeWarning, match="divide by zero"): + res = op1 // op2 + + assert res.dtype == op1.dtype + assert extractor(res) == 0 + + with pytest.warns(RuntimeWarning, match="divide by zero"): + res1, res2 = np.divmod(op1, op2) + + assert res1.dtype == res2.dtype == op1.dtype + assert extractor(res1) == 0 + assert extractor(res2) == 0 + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + @pytest.mark.parametrize("dividend_dtype", sctypes['int']) + @pytest.mark.parametrize("divisor_dtype", sctypes['int']) + @pytest.mark.parametrize("operation", + [np.remainder, np.fmod, np.divmod, np.floor_divide, + operator.mod, operator.floordiv]) + @np.errstate(divide='warn', over='warn') + def test_overflows(self, dividend_dtype, divisor_dtype, operation): + # SIMD tries to perform the operation on as many elements as possible + # that is a multiple of the register's size. We resort to the + # default implementation for the leftover elements. + # We try to cover all paths here. + arrays = [np.array([np.iinfo(dividend_dtype).min] * i, + dtype=dividend_dtype) for i in range(1, 129)] + divisor = np.array([-1], dtype=divisor_dtype) + # If dividend is a larger type than the divisor (`else` case), + # then, result will be a larger type than dividend and will not + # result in an overflow for `divmod` and `floor_divide`. + if np.dtype(dividend_dtype).itemsize >= np.dtype( + divisor_dtype).itemsize and operation in ( + np.divmod, np.floor_divide, operator.floordiv): + with pytest.warns( + RuntimeWarning, + match="overflow encountered in"): + result = operation( + dividend_dtype(np.iinfo(dividend_dtype).min), + divisor_dtype(-1) + ) + assert result == self.overflow_results[operation].nocast( + dividend_dtype) + + # Arrays + for a in arrays: + # In case of divmod, we need to flatten the result + # column first as we get a column vector of quotient and + # remainder and a normal flatten of the expected result. + with pytest.warns( + RuntimeWarning, + match="overflow encountered in"): + result = np.array(operation(a, divisor)).flatten('f') + expected_array = np.array( + [self.overflow_results[operation].nocast( + dividend_dtype)] * len(a)).flatten() + assert_array_equal(result, expected_array) + else: + # Scalars + result = operation( + dividend_dtype(np.iinfo(dividend_dtype).min), + divisor_dtype(-1) + ) + assert result == self.overflow_results[operation].casted( + dividend_dtype) + + # Arrays + for a in arrays: + # See above comment on flatten + result = np.array(operation(a, divisor)).flatten('f') + expected_array = np.array( + [self.overflow_results[operation].casted( + dividend_dtype)] * len(a)).flatten() + assert_array_equal(result, expected_array) + + +class TestCbrt: + def test_cbrt_scalar(self): + assert_almost_equal((np.cbrt(np.float32(-2.5)**3)), -2.5) + + def test_cbrt(self): + x = np.array([1., 2., -3., np.inf, -np.inf]) + assert_almost_equal(np.cbrt(x**3), x) + + assert_(np.isnan(np.cbrt(np.nan))) + assert_equal(np.cbrt(np.inf), np.inf) + assert_equal(np.cbrt(-np.inf), -np.inf) + + +class TestPower: + def test_power_float(self): + x = np.array([1., 2., 3.]) + assert_equal(x**0, [1., 1., 1.]) + assert_equal(x**1, x) + assert_equal(x**2, [1., 4., 9.]) + y = x.copy() + y **= 2 + assert_equal(y, [1., 4., 9.]) + assert_almost_equal(x**(-1), [1., 0.5, 1. / 3]) + assert_almost_equal(x**(0.5), [1., ncu.sqrt(2), ncu.sqrt(3)]) + + for out, inp, msg in _gen_alignment_data(dtype=np.float32, + type='unary', + max_size=11): + exp = [ncu.sqrt(i) for i in inp] + assert_almost_equal(inp**(0.5), exp, err_msg=msg) + np.sqrt(inp, out=out) + assert_equal(out, exp, err_msg=msg) + + for out, inp, msg in _gen_alignment_data(dtype=np.float64, + type='unary', + max_size=7): + exp = [ncu.sqrt(i) for i in inp] + assert_almost_equal(inp**(0.5), exp, err_msg=msg) + np.sqrt(inp, out=out) + assert_equal(out, exp, err_msg=msg) + + def test_power_complex(self): + x = np.array([1 + 2j, 2 + 3j, 3 + 4j]) + assert_equal(x**0, [1., 1., 1.]) + assert_equal(x**1, x) + assert_almost_equal(x**2, [-3 + 4j, -5 + 12j, -7 + 24j]) + assert_almost_equal(x**3, [(1 + 2j)**3, (2 + 3j)**3, (3 + 4j)**3]) + assert_almost_equal(x**4, [(1 + 2j)**4, (2 + 3j)**4, (3 + 4j)**4]) + assert_almost_equal(x**(-1), [1 / (1 + 2j), 1 / (2 + 3j), 1 / (3 + 4j)]) + assert_almost_equal(x**(-2), [1 / (1 + 2j)**2, 1 / (2 + 3j)**2, 1 / (3 + 4j)**2]) + assert_almost_equal(x**(-3), [(-11 + 2j) / 125, (-46 - 9j) / 2197, + (-117 - 44j) / 15625]) + assert_almost_equal(x**(0.5), [ncu.sqrt(1 + 2j), ncu.sqrt(2 + 3j), + ncu.sqrt(3 + 4j)]) + norm = 1. / ((x**14)[0]) + assert_almost_equal(x**14 * norm, + [i * norm for i in [-76443 + 16124j, 23161315 + 58317492j, + 5583548873 + 2465133864j]]) + + # Ticket #836 + def assert_complex_equal(x, y): + assert_array_equal(x.real, y.real) + assert_array_equal(x.imag, y.imag) + + for z in [complex(0, np.inf), complex(1, np.inf)]: + z = np.array([z], dtype=np.complex128) + with np.errstate(invalid="ignore"): + assert_complex_equal(z**1, z) + assert_complex_equal(z**2, z * z) + assert_complex_equal(z**3, z * z * z) + + def test_power_zero(self): + # ticket #1271 + zero = np.array([0j]) + one = np.array([1 + 0j]) + cnan = np.array([complex(np.nan, np.nan)]) + # FIXME cinf not tested. + #cinf = np.array([complex(np.inf, 0)]) + + def assert_complex_equal(x, y): + x, y = np.asarray(x), np.asarray(y) + assert_array_equal(x.real, y.real) + assert_array_equal(x.imag, y.imag) + + # positive powers + for p in [0.33, 0.5, 1, 1.5, 2, 3, 4, 5, 6.6]: + assert_complex_equal(np.power(zero, p), zero) + + # zero power + assert_complex_equal(np.power(zero, 0), one) + with np.errstate(invalid="ignore"): + assert_complex_equal(np.power(zero, 0 + 1j), cnan) + + # negative power + for p in [0.33, 0.5, 1, 1.5, 2, 3, 4, 5, 6.6]: + assert_complex_equal(np.power(zero, -p), cnan) + assert_complex_equal(np.power(zero, -1 + 0.2j), cnan) + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + def test_zero_power_nonzero(self): + # Testing 0^{Non-zero} issue 18378 + zero = np.array([0.0 + 0.0j]) + cnan = np.array([complex(np.nan, np.nan)]) + + def assert_complex_equal(x, y): + assert_array_equal(x.real, y.real) + assert_array_equal(x.imag, y.imag) + + # Complex powers with positive real part will not generate a warning + assert_complex_equal(np.power(zero, 1 + 4j), zero) + assert_complex_equal(np.power(zero, 2 - 3j), zero) + # Testing zero values when real part is greater than zero + assert_complex_equal(np.power(zero, 1 + 1j), zero) + assert_complex_equal(np.power(zero, 1 + 0j), zero) + assert_complex_equal(np.power(zero, 1 - 1j), zero) + # Complex powers will negative real part or 0 (provided imaginary + # part is not zero) will generate a NAN and hence a RUNTIME warning + with pytest.warns(expected_warning=RuntimeWarning) as r: + assert_complex_equal(np.power(zero, -1 + 1j), cnan) + assert_complex_equal(np.power(zero, -2 - 3j), cnan) + assert_complex_equal(np.power(zero, -7 + 0j), cnan) + assert_complex_equal(np.power(zero, 0 + 1j), cnan) + assert_complex_equal(np.power(zero, 0 - 1j), cnan) + assert len(r) == 5 + + def test_fast_power(self): + x = np.array([1, 2, 3], np.int16) + res = x**2.0 + assert_((x**2.00001).dtype is res.dtype) + assert_array_equal(res, [1, 4, 9]) + # check the inplace operation on the casted copy doesn't mess with x + assert_(not np.may_share_memory(res, x)) + assert_array_equal(x, [1, 2, 3]) + + # Check that the fast path ignores 1-element not 0-d arrays + res = x ** np.array([[[2]]]) + assert_equal(res.shape, (1, 1, 3)) + + def test_integer_power(self): + a = np.array([15, 15], 'i8') + b = np.power(a, a) + assert_equal(b, [437893890380859375, 437893890380859375]) + + def test_integer_power_with_integer_zero_exponent(self): + dtypes = np.typecodes['Integer'] + for dt in dtypes: + arr = np.arange(-10, 10, dtype=dt) + assert_equal(np.power(arr, 0), np.ones_like(arr)) + + dtypes = np.typecodes['UnsignedInteger'] + for dt in dtypes: + arr = np.arange(10, dtype=dt) + assert_equal(np.power(arr, 0), np.ones_like(arr)) + + def test_integer_power_of_1(self): + dtypes = np.typecodes['AllInteger'] + for dt in dtypes: + arr = np.arange(10, dtype=dt) + assert_equal(np.power(1, arr), np.ones_like(arr)) + + def test_integer_power_of_zero(self): + dtypes = np.typecodes['AllInteger'] + for dt in dtypes: + arr = np.arange(1, 10, dtype=dt) + assert_equal(np.power(0, arr), np.zeros_like(arr)) + + def test_integer_to_negative_power(self): + dtypes = np.typecodes['Integer'] + for dt in dtypes: + a = np.array([0, 1, 2, 3], dtype=dt) + b = np.array([0, 1, 2, -3], dtype=dt) + one = np.array(1, dtype=dt) + minusone = np.array(-1, dtype=dt) + assert_raises(ValueError, np.power, a, b) + assert_raises(ValueError, np.power, a, minusone) + assert_raises(ValueError, np.power, one, b) + assert_raises(ValueError, np.power, one, minusone) + + def test_float_to_inf_power(self): + for dt in [np.float32, np.float64]: + a = np.array([1, 1, 2, 2, -2, -2, np.inf, -np.inf], dt) + b = np.array([np.inf, -np.inf, np.inf, -np.inf, + np.inf, -np.inf, np.inf, -np.inf], dt) + r = np.array([1, 1, np.inf, 0, np.inf, 0, np.inf, 0], dt) + assert_equal(np.power(a, b), r) + + def test_power_fast_paths(self): + # gh-26055 + for dt in [np.float32, np.float64]: + a = np.array([0, 1.1, 2, 12e12, -10., np.inf, -np.inf], dt) + expected = np.array([0.0, 1.21, 4., 1.44e+26, 100, np.inf, np.inf]) + result = np.power(a, 2.) + assert_array_max_ulp(result, expected.astype(dt), maxulp=1) + + a = np.array([0, 1.1, 2, 12e12], dt) + expected = np.sqrt(a).astype(dt) + result = np.power(a, 0.5) + assert_array_max_ulp(result, expected, maxulp=1) + + +class TestFloat_power: + def test_type_conversion(self): + arg_type = '?bhilBHILefdgFDG' + res_type = 'ddddddddddddgDDG' + for dtin, dtout in zip(arg_type, res_type): + msg = f"dtin: {dtin}, dtout: {dtout}" + arg = np.ones(1, dtype=dtin) + res = np.float_power(arg, arg) + assert_(res.dtype.name == np.dtype(dtout).name, msg) + + +class TestLog2: + @pytest.mark.parametrize('dt', ['f', 'd', 'g']) + def test_log2_values(self, dt): + x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024] + y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] + xf = np.array(x, dtype=dt) + yf = np.array(y, dtype=dt) + assert_almost_equal(np.log2(xf), yf) + + @pytest.mark.parametrize("i", range(1, 65)) + def test_log2_ints(self, i): + # a good log2 implementation should provide this, + # might fail on OS with bad libm + v = np.log2(2.**i) + assert_equal(v, float(i), err_msg='at exponent %d' % i) + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + def test_log2_special(self): + assert_equal(np.log2(1.), 0.) + assert_equal(np.log2(np.inf), np.inf) + assert_(np.isnan(np.log2(np.nan))) + + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', RuntimeWarning) + assert_(np.isnan(np.log2(-1.))) + assert_(np.isnan(np.log2(-np.inf))) + assert_equal(np.log2(0.), -np.inf) + assert_(w[0].category is RuntimeWarning) + assert_(w[1].category is RuntimeWarning) + assert_(w[2].category is RuntimeWarning) + + +class TestExp2: + def test_exp2_values(self): + x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024] + y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] + for dt in ['f', 'd', 'g']: + xf = np.array(x, dtype=dt) + yf = np.array(y, dtype=dt) + assert_almost_equal(np.exp2(yf), xf) + + +class TestLogAddExp2(_FilterInvalids): + # Need test for intermediate precisions + def test_logaddexp2_values(self): + x = [1, 2, 3, 4, 5] + y = [5, 4, 3, 2, 1] + z = [6, 6, 6, 6, 6] + for dt, dec_ in zip(['f', 'd', 'g'], [6, 15, 15]): + xf = np.log2(np.array(x, dtype=dt)) + yf = np.log2(np.array(y, dtype=dt)) + zf = np.log2(np.array(z, dtype=dt)) + assert_almost_equal(np.logaddexp2(xf, yf), zf, decimal=dec_) + + def test_logaddexp2_range(self): + x = [1000000, -1000000, 1000200, -1000200] + y = [1000200, -1000200, 1000000, -1000000] + z = [1000200, -1000000, 1000200, -1000000] + for dt in ['f', 'd', 'g']: + logxf = np.array(x, dtype=dt) + logyf = np.array(y, dtype=dt) + logzf = np.array(z, dtype=dt) + assert_almost_equal(np.logaddexp2(logxf, logyf), logzf) + + def test_inf(self): + inf = np.inf + x = [inf, -inf, inf, -inf, inf, 1, -inf, 1] # noqa: E221 + y = [inf, inf, -inf, -inf, 1, inf, 1, -inf] # noqa: E221 + z = [inf, inf, inf, -inf, inf, inf, 1, 1] + with np.errstate(invalid='raise'): + for dt in ['f', 'd', 'g']: + logxf = np.array(x, dtype=dt) + logyf = np.array(y, dtype=dt) + logzf = np.array(z, dtype=dt) + assert_equal(np.logaddexp2(logxf, logyf), logzf) + + def test_nan(self): + assert_(np.isnan(np.logaddexp2(np.nan, np.inf))) + assert_(np.isnan(np.logaddexp2(np.inf, np.nan))) + assert_(np.isnan(np.logaddexp2(np.nan, 0))) + assert_(np.isnan(np.logaddexp2(0, np.nan))) + assert_(np.isnan(np.logaddexp2(np.nan, np.nan))) + + def test_reduce(self): + assert_equal(np.logaddexp2.identity, -np.inf) + assert_equal(np.logaddexp2.reduce([]), -np.inf) + assert_equal(np.logaddexp2.reduce([-np.inf]), -np.inf) + assert_equal(np.logaddexp2.reduce([-np.inf, 0]), 0) + + +class TestLog: + def test_log_values(self): + x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024] + y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] + for dt in ['f', 'd', 'g']: + log2_ = 0.69314718055994530943 + xf = np.array(x, dtype=dt) + yf = np.array(y, dtype=dt) * log2_ + assert_almost_equal(np.log(xf), yf) + + # test aliasing(issue #17761) + x = np.array([2, 0.937500, 3, 0.947500, 1.054697]) + xf = np.log(x) + assert_almost_equal(np.log(x, out=x), xf) + + def test_log_values_maxofdtype(self): + # test log() of max for dtype does not raise + dtypes = [np.float32, np.float64] + # This is failing at least on linux aarch64 (see gh-25460), and on most + # other non x86-64 platforms checking `longdouble` isn't too useful as + # it's an alias for float64. + if platform.machine() == 'x86_64': + dtypes += [np.longdouble] + + for dt in dtypes: + with np.errstate(all='raise'): + x = np.finfo(dt).max + np.log(x) + + def test_log_strides(self): + np.random.seed(42) + strides = np.array([-4, -3, -2, -1, 1, 2, 3, 4]) + sizes = np.arange(2, 100) + for ii in sizes: + x_f64 = np.float64(np.random.uniform(low=0.01, high=100.0, size=ii)) + x_special = x_f64.copy() + x_special[3:-1:4] = 1.0 + y_true = np.log(x_f64) + y_special = np.log(x_special) + for jj in strides: + assert_array_almost_equal_nulp(np.log(x_f64[::jj]), y_true[::jj], nulp=2) + assert_array_almost_equal_nulp(np.log(x_special[::jj]), y_special[::jj], nulp=2) + + # Reference values were computed with mpmath, with mp.dps = 200. + @pytest.mark.parametrize( + 'z, wref', + [(1 + 1e-12j, 5e-25 + 1e-12j), + (1.000000000000001 + 3e-08j, + 1.5602230246251546e-15 + 2.999999999999996e-08j), + (0.9999995000000417 + 0.0009999998333333417j, + 7.831475869017683e-18 + 0.001j), + (0.9999999999999996 + 2.999999999999999e-08j, + 5.9107901499372034e-18 + 3e-08j), + (0.99995000042 - 0.009999833j, + -7.015159763822903e-15 - 0.009999999665816696j)], + ) + def test_log_precision_float64(self, z, wref): + w = np.log(z) + assert_allclose(w, wref, rtol=1e-15) + + # Reference values were computed with mpmath, with mp.dps = 200. + @pytest.mark.parametrize( + 'z, wref', + [(np.complex64(1.0 + 3e-6j), np.complex64(4.5e-12 + 3e-06j)), + (np.complex64(1.0 - 2e-5j), np.complex64(1.9999999e-10 - 2e-5j)), + (np.complex64(0.9999999 + 1e-06j), + np.complex64(-1.192088e-07 + 1.0000001e-06j))], + ) + def test_log_precision_float32(self, z, wref): + w = np.log(z) + assert_allclose(w, wref, rtol=1e-6) + + +class TestExp: + def test_exp_values(self): + x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024] + y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] + for dt in ['f', 'd', 'g']: + log2_ = 0.69314718055994530943 + xf = np.array(x, dtype=dt) + yf = np.array(y, dtype=dt) * log2_ + assert_almost_equal(np.exp(yf), xf) + + def test_exp_strides(self): + np.random.seed(42) + strides = np.array([-4, -3, -2, -1, 1, 2, 3, 4]) + sizes = np.arange(2, 100) + for ii in sizes: + x_f64 = np.float64(np.random.uniform(low=0.01, high=709.1, size=ii)) + y_true = np.exp(x_f64) + for jj in strides: + assert_array_almost_equal_nulp(np.exp(x_f64[::jj]), y_true[::jj], nulp=2) + +class TestSpecialFloats: + def test_exp_values(self): + with np.errstate(under='raise', over='raise'): + x = [np.nan, np.nan, np.inf, 0.] + y = [np.nan, -np.nan, np.inf, -np.inf] + for dt in ['e', 'f', 'd', 'g']: + xf = np.array(x, dtype=dt) + yf = np.array(y, dtype=dt) + assert_equal(np.exp(yf), xf) + + # See: https://github.com/numpy/numpy/issues/19192 + @pytest.mark.xfail( + _glibc_older_than("2.17"), + reason="Older glibc versions may not raise appropriate FP exceptions" + ) + def test_exp_exceptions(self): + with np.errstate(over='raise'): + assert_raises(FloatingPointError, np.exp, np.float16(11.0899)) + assert_raises(FloatingPointError, np.exp, np.float32(100.)) + assert_raises(FloatingPointError, np.exp, np.float32(1E19)) + assert_raises(FloatingPointError, np.exp, np.float64(800.)) + assert_raises(FloatingPointError, np.exp, np.float64(1E19)) + + with np.errstate(under='raise'): + assert_raises(FloatingPointError, np.exp, np.float16(-17.5)) + assert_raises(FloatingPointError, np.exp, np.float32(-1000.)) + assert_raises(FloatingPointError, np.exp, np.float32(-1E19)) + assert_raises(FloatingPointError, np.exp, np.float64(-1000.)) + assert_raises(FloatingPointError, np.exp, np.float64(-1E19)) + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + def test_log_values(self): + with np.errstate(all='ignore'): + x = [np.nan, np.nan, np.inf, np.nan, -np.inf, np.nan] + y = [np.nan, -np.nan, np.inf, -np.inf, 0.0, -1.0] + y1p = [np.nan, -np.nan, np.inf, -np.inf, -1.0, -2.0] + for dt in ['e', 'f', 'd', 'g']: + xf = np.array(x, dtype=dt) + yf = np.array(y, dtype=dt) + yf1p = np.array(y1p, dtype=dt) + assert_equal(np.log(yf), xf) + assert_equal(np.log2(yf), xf) + assert_equal(np.log10(yf), xf) + assert_equal(np.log1p(yf1p), xf) + + with np.errstate(divide='raise'): + for dt in ['e', 'f', 'd']: + assert_raises(FloatingPointError, np.log, + np.array(0.0, dtype=dt)) + assert_raises(FloatingPointError, np.log2, + np.array(0.0, dtype=dt)) + assert_raises(FloatingPointError, np.log10, + np.array(0.0, dtype=dt)) + assert_raises(FloatingPointError, np.log1p, + np.array(-1.0, dtype=dt)) + + with np.errstate(invalid='raise'): + for dt in ['e', 'f', 'd']: + assert_raises(FloatingPointError, np.log, + np.array(-np.inf, dtype=dt)) + assert_raises(FloatingPointError, np.log, + np.array(-1.0, dtype=dt)) + assert_raises(FloatingPointError, np.log2, + np.array(-np.inf, dtype=dt)) + assert_raises(FloatingPointError, np.log2, + np.array(-1.0, dtype=dt)) + assert_raises(FloatingPointError, np.log10, + np.array(-np.inf, dtype=dt)) + assert_raises(FloatingPointError, np.log10, + np.array(-1.0, dtype=dt)) + assert_raises(FloatingPointError, np.log1p, + np.array(-np.inf, dtype=dt)) + assert_raises(FloatingPointError, np.log1p, + np.array(-2.0, dtype=dt)) + + # See https://github.com/numpy/numpy/issues/18005 + with assert_no_warnings(): + a = np.array(1e9, dtype='float32') + np.log(a) + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + @pytest.mark.parametrize('dtype', ['e', 'f', 'd', 'g']) + def test_sincos_values(self, dtype): + with np.errstate(all='ignore'): + x = [np.nan, np.nan, np.nan, np.nan] + y = [np.nan, -np.nan, np.inf, -np.inf] + xf = np.array(x, dtype=dtype) + yf = np.array(y, dtype=dtype) + assert_equal(np.sin(yf), xf) + assert_equal(np.cos(yf), xf) + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + @pytest.mark.xfail( + sys.platform.startswith("darwin"), + reason="underflow is triggered for scalar 'sin'" + ) + def test_sincos_underflow(self): + with np.errstate(under='raise'): + underflow_trigger = np.array( + float.fromhex("0x1.f37f47a03f82ap-511"), + dtype=np.float64 + ) + np.sin(underflow_trigger) + np.cos(underflow_trigger) + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + @pytest.mark.parametrize('callable', [np.sin, np.cos]) + @pytest.mark.parametrize('dtype', ['e', 'f', 'd']) + @pytest.mark.parametrize('value', [np.inf, -np.inf]) + def test_sincos_errors(self, callable, dtype, value): + with np.errstate(invalid='raise'): + assert_raises(FloatingPointError, callable, + np.array([value], dtype=dtype)) + + @pytest.mark.parametrize('callable', [np.sin, np.cos]) + @pytest.mark.parametrize('dtype', ['f', 'd']) + @pytest.mark.parametrize('stride', [-1, 1, 2, 4, 5]) + def test_sincos_overlaps(self, callable, dtype, stride): + N = 100 + M = N // abs(stride) + rng = np.random.default_rng(42) + x = rng.standard_normal(N, dtype) + y = callable(x[::stride]) + callable(x[::stride], out=x[:M]) + assert_equal(x[:M], y) + + @pytest.mark.parametrize('dt', ['e', 'f', 'd', 'g']) + def test_sqrt_values(self, dt): + with np.errstate(all='ignore'): + x = [np.nan, np.nan, np.inf, np.nan, 0.] + y = [np.nan, -np.nan, np.inf, -np.inf, 0.] + xf = np.array(x, dtype=dt) + yf = np.array(y, dtype=dt) + assert_equal(np.sqrt(yf), xf) + + # with np.errstate(invalid='raise'): + # assert_raises( + # FloatingPointError, np.sqrt, np.array(-100., dtype=dt) + # ) + + def test_abs_values(self): + x = [np.nan, np.nan, np.inf, np.inf, 0., 0., 1.0, 1.0] + y = [np.nan, -np.nan, np.inf, -np.inf, 0., -0., -1.0, 1.0] + for dt in ['e', 'f', 'd', 'g']: + xf = np.array(x, dtype=dt) + yf = np.array(y, dtype=dt) + assert_equal(np.abs(yf), xf) + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + def test_square_values(self): + x = [np.nan, np.nan, np.inf, np.inf] + y = [np.nan, -np.nan, np.inf, -np.inf] + with np.errstate(all='ignore'): + for dt in ['e', 'f', 'd', 'g']: + xf = np.array(x, dtype=dt) + yf = np.array(y, dtype=dt) + assert_equal(np.square(yf), xf) + + with np.errstate(over='raise'): + assert_raises(FloatingPointError, np.square, + np.array(1E3, dtype='e')) + assert_raises(FloatingPointError, np.square, + np.array(1E32, dtype='f')) + assert_raises(FloatingPointError, np.square, + np.array(1E200, dtype='d')) + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + def test_reciprocal_values(self): + with np.errstate(all='ignore'): + x = [np.nan, np.nan, 0.0, -0.0, np.inf, -np.inf] + y = [np.nan, -np.nan, np.inf, -np.inf, 0., -0.] + for dt in ['e', 'f', 'd', 'g']: + xf = np.array(x, dtype=dt) + yf = np.array(y, dtype=dt) + assert_equal(np.reciprocal(yf), xf) + + with np.errstate(divide='raise'): + for dt in ['e', 'f', 'd', 'g']: + assert_raises(FloatingPointError, np.reciprocal, + np.array(-0.0, dtype=dt)) + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + def test_tan(self): + with np.errstate(all='ignore'): + in_ = [np.nan, -np.nan, 0.0, -0.0, np.inf, -np.inf] + out = [np.nan, np.nan, 0.0, -0.0, np.nan, np.nan] + for dt in ['e', 'f', 'd']: + in_arr = np.array(in_, dtype=dt) + out_arr = np.array(out, dtype=dt) + assert_equal(np.tan(in_arr), out_arr) + + with np.errstate(invalid='raise'): + for dt in ['e', 'f', 'd']: + assert_raises(FloatingPointError, np.tan, + np.array(np.inf, dtype=dt)) + assert_raises(FloatingPointError, np.tan, + np.array(-np.inf, dtype=dt)) + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + def test_arcsincos(self): + with np.errstate(all='ignore'): + in_ = [np.nan, -np.nan, np.inf, -np.inf] + out = [np.nan, np.nan, np.nan, np.nan] + for dt in ['e', 'f', 'd']: + in_arr = np.array(in_, dtype=dt) + out_arr = np.array(out, dtype=dt) + assert_equal(np.arcsin(in_arr), out_arr) + assert_equal(np.arccos(in_arr), out_arr) + + for callable in [np.arcsin, np.arccos]: + for value in [np.inf, -np.inf, 2.0, -2.0]: + for dt in ['e', 'f', 'd']: + with np.errstate(invalid='raise'): + assert_raises(FloatingPointError, callable, + np.array(value, dtype=dt)) + + def test_arctan(self): + with np.errstate(all='ignore'): + in_ = [np.nan, -np.nan] + out = [np.nan, np.nan] + for dt in ['e', 'f', 'd']: + in_arr = np.array(in_, dtype=dt) + out_arr = np.array(out, dtype=dt) + assert_equal(np.arctan(in_arr), out_arr) + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + def test_sinh(self): + in_ = [np.nan, -np.nan, np.inf, -np.inf] + out = [np.nan, np.nan, np.inf, -np.inf] + for dt in ['e', 'f', 'd']: + in_arr = np.array(in_, dtype=dt) + out_arr = np.array(out, dtype=dt) + assert_equal(np.sinh(in_arr), out_arr) + + with np.errstate(over='raise'): + assert_raises(FloatingPointError, np.sinh, + np.array(12.0, dtype='e')) + assert_raises(FloatingPointError, np.sinh, + np.array(120.0, dtype='f')) + assert_raises(FloatingPointError, np.sinh, + np.array(1200.0, dtype='d')) + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + @pytest.mark.skipif('bsd' in sys.platform, + reason="fallback implementation may not raise, see gh-2487") + def test_cosh(self): + in_ = [np.nan, -np.nan, np.inf, -np.inf] + out = [np.nan, np.nan, np.inf, np.inf] + for dt in ['e', 'f', 'd']: + in_arr = np.array(in_, dtype=dt) + out_arr = np.array(out, dtype=dt) + assert_equal(np.cosh(in_arr), out_arr) + + with np.errstate(over='raise'): + assert_raises(FloatingPointError, np.cosh, + np.array(12.0, dtype='e')) + assert_raises(FloatingPointError, np.cosh, + np.array(120.0, dtype='f')) + assert_raises(FloatingPointError, np.cosh, + np.array(1200.0, dtype='d')) + + def test_tanh(self): + in_ = [np.nan, -np.nan, np.inf, -np.inf] + out = [np.nan, np.nan, 1.0, -1.0] + for dt in ['e', 'f', 'd']: + in_arr = np.array(in_, dtype=dt) + out_arr = np.array(out, dtype=dt) + assert_array_max_ulp(np.tanh(in_arr), out_arr, 3) + + def test_arcsinh(self): + in_ = [np.nan, -np.nan, np.inf, -np.inf] + out = [np.nan, np.nan, np.inf, -np.inf] + for dt in ['e', 'f', 'd']: + in_arr = np.array(in_, dtype=dt) + out_arr = np.array(out, dtype=dt) + assert_equal(np.arcsinh(in_arr), out_arr) + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + def test_arccosh(self): + with np.errstate(all='ignore'): + in_ = [np.nan, -np.nan, np.inf, -np.inf, 1.0, 0.0] + out = [np.nan, np.nan, np.inf, np.nan, 0.0, np.nan] + for dt in ['e', 'f', 'd']: + in_arr = np.array(in_, dtype=dt) + out_arr = np.array(out, dtype=dt) + assert_equal(np.arccosh(in_arr), out_arr) + + for value in [0.0, -np.inf]: + with np.errstate(invalid='raise'): + for dt in ['e', 'f', 'd']: + assert_raises(FloatingPointError, np.arccosh, + np.array(value, dtype=dt)) + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + def test_arctanh(self): + with np.errstate(all='ignore'): + in_ = [np.nan, -np.nan, np.inf, -np.inf, 1.0, -1.0, 2.0] + out = [np.nan, np.nan, np.nan, np.nan, np.inf, -np.inf, np.nan] + for dt in ['e', 'f', 'd']: + in_arr = np.array(in_, dtype=dt) + out_arr = np.array(out, dtype=dt) + assert_equal(np.arctanh(in_arr), out_arr) + + for value in [1.01, np.inf, -np.inf, 1.0, -1.0]: + with np.errstate(invalid='raise', divide='raise'): + for dt in ['e', 'f', 'd']: + assert_raises(FloatingPointError, np.arctanh, + np.array(value, dtype=dt)) + + # Make sure glibc < 2.18 atanh is not used, issue 25087 + assert np.signbit(np.arctanh(-1j).real) + + # See: https://github.com/numpy/numpy/issues/20448 + @pytest.mark.xfail( + _glibc_older_than("2.17"), + reason="Older glibc versions may not raise appropriate FP exceptions" + ) + def test_exp2(self): + with np.errstate(all='ignore'): + in_ = [np.nan, -np.nan, np.inf, -np.inf] + out = [np.nan, np.nan, np.inf, 0.0] + for dt in ['e', 'f', 'd']: + in_arr = np.array(in_, dtype=dt) + out_arr = np.array(out, dtype=dt) + assert_equal(np.exp2(in_arr), out_arr) + + for value in [2000.0, -2000.0]: + with np.errstate(over='raise', under='raise'): + for dt in ['e', 'f', 'd']: + assert_raises(FloatingPointError, np.exp2, + np.array(value, dtype=dt)) + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + def test_expm1(self): + with np.errstate(all='ignore'): + in_ = [np.nan, -np.nan, np.inf, -np.inf] + out = [np.nan, np.nan, np.inf, -1.0] + for dt in ['e', 'f', 'd']: + in_arr = np.array(in_, dtype=dt) + out_arr = np.array(out, dtype=dt) + assert_equal(np.expm1(in_arr), out_arr) + + for value in [200.0, 2000.0]: + with np.errstate(over='raise'): + for dt in ['e', 'f']: + assert_raises(FloatingPointError, np.expm1, + np.array(value, dtype=dt)) + + # test to ensure no spurious FP exceptions are raised due to SIMD + INF_INVALID_ERR = [ + np.cos, np.sin, np.tan, np.arccos, np.arcsin, np.spacing, np.arctanh + ] + NEG_INVALID_ERR = [ + np.log, np.log2, np.log10, np.log1p, np.sqrt, np.arccosh, + np.arctanh + ] + ONE_INVALID_ERR = [ + np.arctanh, + ] + LTONE_INVALID_ERR = [ + np.arccosh, + ] + BYZERO_ERR = [ + np.log, np.log2, np.log10, np.reciprocal, np.arccosh + ] + + @pytest.mark.parametrize("ufunc", UFUNCS_UNARY_FP) + @pytest.mark.parametrize("dtype", ('e', 'f', 'd')) + @pytest.mark.parametrize("data, escape", ( + ([0.03], LTONE_INVALID_ERR), + ([0.03] * 32, LTONE_INVALID_ERR), + # neg + ([-1.0], NEG_INVALID_ERR), + ([-1.0] * 32, NEG_INVALID_ERR), + # flat + ([1.0], ONE_INVALID_ERR), + ([1.0] * 32, ONE_INVALID_ERR), + # zero + ([0.0], BYZERO_ERR), + ([0.0] * 32, BYZERO_ERR), + ([-0.0], BYZERO_ERR), + ([-0.0] * 32, BYZERO_ERR), + # nan + ([0.5, 0.5, 0.5, np.nan], LTONE_INVALID_ERR), + ([0.5, 0.5, 0.5, np.nan] * 32, LTONE_INVALID_ERR), + ([np.nan, 1.0, 1.0, 1.0], ONE_INVALID_ERR), + ([np.nan, 1.0, 1.0, 1.0] * 32, ONE_INVALID_ERR), + ([np.nan], []), + ([np.nan] * 32, []), + # inf + ([0.5, 0.5, 0.5, np.inf], INF_INVALID_ERR + LTONE_INVALID_ERR), + ([0.5, 0.5, 0.5, np.inf] * 32, INF_INVALID_ERR + LTONE_INVALID_ERR), + ([np.inf, 1.0, 1.0, 1.0], INF_INVALID_ERR), + ([np.inf, 1.0, 1.0, 1.0] * 32, INF_INVALID_ERR), + ([np.inf], INF_INVALID_ERR), + ([np.inf] * 32, INF_INVALID_ERR), + # ninf + ([0.5, 0.5, 0.5, -np.inf], + NEG_INVALID_ERR + INF_INVALID_ERR + LTONE_INVALID_ERR), + ([0.5, 0.5, 0.5, -np.inf] * 32, + NEG_INVALID_ERR + INF_INVALID_ERR + LTONE_INVALID_ERR), + ([-np.inf, 1.0, 1.0, 1.0], NEG_INVALID_ERR + INF_INVALID_ERR), + ([-np.inf, 1.0, 1.0, 1.0] * 32, NEG_INVALID_ERR + INF_INVALID_ERR), + ([-np.inf], NEG_INVALID_ERR + INF_INVALID_ERR), + ([-np.inf] * 32, NEG_INVALID_ERR + INF_INVALID_ERR), + )) + def test_unary_spurious_fpexception(self, ufunc, dtype, data, escape): + if escape and ufunc in escape: + return + # FIXME: NAN raises FP invalid exception: + # - ceil/float16 on MSVC:32-bit + # - spacing/float16 on almost all platforms + # - spacing all floats on MSVC vs2022 + if ufunc == np.spacing: + return + if ufunc == np.ceil and dtype == 'e': + return + array = np.array(data, dtype=dtype) + with assert_no_warnings(): + ufunc(array) + + @pytest.mark.parametrize("dtype", ('e', 'f', 'd')) + def test_divide_spurious_fpexception(self, dtype): + dt = np.dtype(dtype) + dt_info = np.finfo(dt) + subnorm = dt_info.smallest_subnormal + # Verify a bug fix caused due to filling the remaining lanes of the + # partially loaded dividend SIMD vector with ones, which leads to + # raising an overflow warning when the divisor is denormal. + # see https://github.com/numpy/numpy/issues/25097 + with assert_no_warnings(): + np.zeros(128 + 1, dtype=dt) / subnorm + +class TestFPClass: + @pytest.mark.parametrize("stride", [-5, -4, -3, -2, -1, 1, + 2, 4, 5, 6, 7, 8, 9, 10]) + def test_fpclass(self, stride): + arr_f64 = np.array([np.nan, -np.nan, np.inf, -np.inf, -1.0, 1.0, -0.0, 0.0, 2.2251e-308, -2.2251e-308], dtype='d') + arr_f32 = np.array([np.nan, -np.nan, np.inf, -np.inf, -1.0, 1.0, -0.0, 0.0, 1.4013e-045, -1.4013e-045], dtype='f') + nan = np.array([True, True, False, False, False, False, False, False, False, False]) # noqa: E221 + inf = np.array([False, False, True, True, False, False, False, False, False, False]) # noqa: E221 + sign = np.array([False, True, False, True, True, False, True, False, False, True]) # noqa: E221 + finite = np.array([False, False, False, False, True, True, True, True, True, True]) # noqa: E221 + assert_equal(np.isnan(arr_f32[::stride]), nan[::stride]) + assert_equal(np.isnan(arr_f64[::stride]), nan[::stride]) + assert_equal(np.isinf(arr_f32[::stride]), inf[::stride]) + assert_equal(np.isinf(arr_f64[::stride]), inf[::stride]) + if platform.machine() == 'riscv64': + # On RISC-V, many operations that produce NaNs, such as converting + # a -NaN from f64 to f32, return a canonical NaN. The canonical + # NaNs are always positive. See section 11.3 NaN Generation and + # Propagation of the RISC-V Unprivileged ISA for more details. + # We disable the sign test on riscv64 for -np.nan as we + # cannot assume that its sign will be honoured in these tests. + arr_f64_rv = np.copy(arr_f64) + arr_f32_rv = np.copy(arr_f32) + arr_f64_rv[1] = -1.0 + arr_f32_rv[1] = -1.0 + assert_equal(np.signbit(arr_f32_rv[::stride]), sign[::stride]) + assert_equal(np.signbit(arr_f64_rv[::stride]), sign[::stride]) + else: + assert_equal(np.signbit(arr_f32[::stride]), sign[::stride]) + assert_equal(np.signbit(arr_f64[::stride]), sign[::stride]) + assert_equal(np.isfinite(arr_f32[::stride]), finite[::stride]) + assert_equal(np.isfinite(arr_f64[::stride]), finite[::stride]) + + @pytest.mark.parametrize("dtype", ['d', 'f']) + def test_fp_noncontiguous(self, dtype): + data = np.array([np.nan, -np.nan, np.inf, -np.inf, -1.0, + 1.0, -0.0, 0.0, 2.2251e-308, + -2.2251e-308], dtype=dtype) + nan = np.array([True, True, False, False, False, False, + False, False, False, False]) + inf = np.array([False, False, True, True, False, False, + False, False, False, False]) + sign = np.array([False, True, False, True, True, False, + True, False, False, True]) + finite = np.array([False, False, False, False, True, True, + True, True, True, True]) + out = np.ndarray(data.shape, dtype='bool') + ncontig_in = data[1::3] + ncontig_out = out[1::3] + contig_in = np.array(ncontig_in) + + if platform.machine() == 'riscv64': + # Disable the -np.nan signbit tests on riscv64. See comments in + # test_fpclass for more details. + data_rv = np.copy(data) + data_rv[1] = -1.0 + ncontig_sign_in = data_rv[1::3] + contig_sign_in = np.array(ncontig_sign_in) + else: + ncontig_sign_in = ncontig_in + contig_sign_in = contig_in + + assert_equal(ncontig_in.flags.c_contiguous, False) + assert_equal(ncontig_out.flags.c_contiguous, False) + assert_equal(contig_in.flags.c_contiguous, True) + assert_equal(ncontig_sign_in.flags.c_contiguous, False) + assert_equal(contig_sign_in.flags.c_contiguous, True) + # ncontig in, ncontig out + assert_equal(np.isnan(ncontig_in, out=ncontig_out), nan[1::3]) + assert_equal(np.isinf(ncontig_in, out=ncontig_out), inf[1::3]) + assert_equal(np.signbit(ncontig_sign_in, out=ncontig_out), sign[1::3]) + assert_equal(np.isfinite(ncontig_in, out=ncontig_out), finite[1::3]) + # contig in, ncontig out + assert_equal(np.isnan(contig_in, out=ncontig_out), nan[1::3]) + assert_equal(np.isinf(contig_in, out=ncontig_out), inf[1::3]) + assert_equal(np.signbit(contig_sign_in, out=ncontig_out), sign[1::3]) + assert_equal(np.isfinite(contig_in, out=ncontig_out), finite[1::3]) + # ncontig in, contig out + assert_equal(np.isnan(ncontig_in), nan[1::3]) + assert_equal(np.isinf(ncontig_in), inf[1::3]) + assert_equal(np.signbit(ncontig_sign_in), sign[1::3]) + assert_equal(np.isfinite(ncontig_in), finite[1::3]) + # contig in, contig out, nd stride + data_split = np.array(np.array_split(data, 2)) + nan_split = np.array(np.array_split(nan, 2)) + inf_split = np.array(np.array_split(inf, 2)) + sign_split = np.array(np.array_split(sign, 2)) + finite_split = np.array(np.array_split(finite, 2)) + assert_equal(np.isnan(data_split), nan_split) + assert_equal(np.isinf(data_split), inf_split) + if platform.machine() == 'riscv64': + data_split_rv = np.array(np.array_split(data_rv, 2)) + assert_equal(np.signbit(data_split_rv), sign_split) + else: + assert_equal(np.signbit(data_split), sign_split) + assert_equal(np.isfinite(data_split), finite_split) + +class TestLDExp: + @pytest.mark.parametrize("stride", [-4, -2, -1, 1, 2, 4]) + @pytest.mark.parametrize("dtype", ['f', 'd']) + def test_ldexp(self, dtype, stride): + mant = np.array([0.125, 0.25, 0.5, 1., 1., 2., 4., 8.], dtype=dtype) + exp = np.array([3, 2, 1, 0, 0, -1, -2, -3], dtype='i') + out = np.zeros(8, dtype=dtype) + assert_equal(np.ldexp(mant[::stride], exp[::stride], out=out[::stride]), np.ones(8, dtype=dtype)[::stride]) + assert_equal(out[::stride], np.ones(8, dtype=dtype)[::stride]) + +class TestFRExp: + @pytest.mark.parametrize("stride", [-4, -2, -1, 1, 2, 4]) + @pytest.mark.parametrize("dtype", ['f', 'd']) + @pytest.mark.skipif(not sys.platform.startswith('linux'), + reason="np.frexp gives different answers for NAN/INF on windows and linux") + @pytest.mark.xfail(IS_MUSL, reason="gh23049") + def test_frexp(self, dtype, stride): + arr = np.array([np.nan, np.nan, np.inf, -np.inf, 0.0, -0.0, 1.0, -1.0], dtype=dtype) + mant_true = np.array([np.nan, np.nan, np.inf, -np.inf, 0.0, -0.0, 0.5, -0.5], dtype=dtype) + exp_true = np.array([0, 0, 0, 0, 0, 0, 1, 1], dtype='i') + out_mant = np.ones(8, dtype=dtype) + out_exp = 2 * np.ones(8, dtype='i') + mant, exp = np.frexp(arr[::stride], out=(out_mant[::stride], out_exp[::stride])) + assert_equal(mant_true[::stride], mant) + assert_equal(exp_true[::stride], exp) + assert_equal(out_mant[::stride], mant_true[::stride]) + assert_equal(out_exp[::stride], exp_true[::stride]) + + +# func : [maxulperror, low, high] +avx_ufuncs = {'sqrt' : [1, 0., 100.], # noqa: E203 + 'absolute' : [0, -100., 100.], # noqa: E203 + 'reciprocal' : [1, 1., 100.], # noqa: E203 + 'square' : [1, -100., 100.], # noqa: E203 + 'rint' : [0, -100., 100.], # noqa: E203 + 'floor' : [0, -100., 100.], # noqa: E203 + 'ceil' : [0, -100., 100.], # noqa: E203 + 'trunc' : [0, -100., 100.]} # noqa: E203 + +class TestAVXUfuncs: + def test_avx_based_ufunc(self): + strides = np.array([-4, -3, -2, -1, 1, 2, 3, 4]) + np.random.seed(42) + for func, prop in avx_ufuncs.items(): + maxulperr = prop[0] + minval = prop[1] + maxval = prop[2] + # various array sizes to ensure masking in AVX is tested + for size in range(1, 32): + myfunc = getattr(np, func) + x_f32 = np.random.uniform(low=minval, high=maxval, + size=size).astype(np.float32) + x_f64 = x_f32.astype(np.float64) + x_f128 = x_f32.astype(np.longdouble) + y_true128 = myfunc(x_f128) + if maxulperr == 0: + assert_equal(myfunc(x_f32), y_true128.astype(np.float32)) + assert_equal(myfunc(x_f64), y_true128.astype(np.float64)) + else: + assert_array_max_ulp(myfunc(x_f32), + y_true128.astype(np.float32), + maxulp=maxulperr) + assert_array_max_ulp(myfunc(x_f64), + y_true128.astype(np.float64), + maxulp=maxulperr) + # various strides to test gather instruction + if size > 1: + y_true32 = myfunc(x_f32) + y_true64 = myfunc(x_f64) + for jj in strides: + assert_equal(myfunc(x_f64[::jj]), y_true64[::jj]) + assert_equal(myfunc(x_f32[::jj]), y_true32[::jj]) + +class TestAVXFloat32Transcendental: + def test_exp_float32(self): + np.random.seed(42) + x_f32 = np.float32(np.random.uniform(low=0.0, high=88.1, size=1000000)) + x_f64 = np.float64(x_f32) + assert_array_max_ulp(np.exp(x_f32), np.float32(np.exp(x_f64)), maxulp=3) + + def test_log_float32(self): + np.random.seed(42) + x_f32 = np.float32(np.random.uniform(low=0.0, high=1000, size=1000000)) + x_f64 = np.float64(x_f32) + assert_array_max_ulp(np.log(x_f32), np.float32(np.log(x_f64)), maxulp=4) + + def test_sincos_float32(self): + np.random.seed(42) + N = 1000000 + M = np.int_(N / 20) + index = np.random.randint(low=0, high=N, size=M) + x_f32 = np.float32(np.random.uniform(low=-100., high=100., size=N)) + if not _glibc_older_than("2.17"): + # test coverage for elements > 117435.992f for which glibc is used + # this is known to be problematic on old glibc, so skip it there + x_f32[index] = np.float32(10E+10 * np.random.rand(M)) + x_f64 = np.float64(x_f32) + assert_array_max_ulp(np.sin(x_f32), np.float32(np.sin(x_f64)), maxulp=2) + assert_array_max_ulp(np.cos(x_f32), np.float32(np.cos(x_f64)), maxulp=2) + # test aliasing(issue #17761) + tx_f32 = x_f32.copy() + assert_array_max_ulp(np.sin(x_f32, out=x_f32), np.float32(np.sin(x_f64)), maxulp=2) + assert_array_max_ulp(np.cos(tx_f32, out=tx_f32), np.float32(np.cos(x_f64)), maxulp=2) + + def test_strided_float32(self): + np.random.seed(42) + strides = np.array([-4, -3, -2, -1, 1, 2, 3, 4]) + sizes = np.arange(2, 100) + for ii in sizes: + x_f32 = np.float32(np.random.uniform(low=0.01, high=88.1, size=ii)) + x_f32_large = x_f32.copy() + x_f32_large[3:-1:4] = 120000.0 + exp_true = np.exp(x_f32) + log_true = np.log(x_f32) + sin_true = np.sin(x_f32_large) + cos_true = np.cos(x_f32_large) + for jj in strides: + assert_array_almost_equal_nulp(np.exp(x_f32[::jj]), exp_true[::jj], nulp=2) + assert_array_almost_equal_nulp(np.log(x_f32[::jj]), log_true[::jj], nulp=2) + assert_array_almost_equal_nulp(np.sin(x_f32_large[::jj]), sin_true[::jj], nulp=2) + assert_array_almost_equal_nulp(np.cos(x_f32_large[::jj]), cos_true[::jj], nulp=2) + +class TestLogAddExp(_FilterInvalids): + def test_logaddexp_values(self): + x = [1, 2, 3, 4, 5] + y = [5, 4, 3, 2, 1] + z = [6, 6, 6, 6, 6] + for dt, dec_ in zip(['f', 'd', 'g'], [6, 15, 15]): + xf = np.log(np.array(x, dtype=dt)) + yf = np.log(np.array(y, dtype=dt)) + zf = np.log(np.array(z, dtype=dt)) + assert_almost_equal(np.logaddexp(xf, yf), zf, decimal=dec_) + + def test_logaddexp_range(self): + x = [1000000, -1000000, 1000200, -1000200] + y = [1000200, -1000200, 1000000, -1000000] + z = [1000200, -1000000, 1000200, -1000000] + for dt in ['f', 'd', 'g']: + logxf = np.array(x, dtype=dt) + logyf = np.array(y, dtype=dt) + logzf = np.array(z, dtype=dt) + assert_almost_equal(np.logaddexp(logxf, logyf), logzf) + + def test_inf(self): + inf = np.inf + x = [inf, -inf, inf, -inf, inf, 1, -inf, 1] # noqa: E221 + y = [inf, inf, -inf, -inf, 1, inf, 1, -inf] # noqa: E221 + z = [inf, inf, inf, -inf, inf, inf, 1, 1] + with np.errstate(invalid='raise'): + for dt in ['f', 'd', 'g']: + logxf = np.array(x, dtype=dt) + logyf = np.array(y, dtype=dt) + logzf = np.array(z, dtype=dt) + assert_equal(np.logaddexp(logxf, logyf), logzf) + + def test_nan(self): + assert_(np.isnan(np.logaddexp(np.nan, np.inf))) + assert_(np.isnan(np.logaddexp(np.inf, np.nan))) + assert_(np.isnan(np.logaddexp(np.nan, 0))) + assert_(np.isnan(np.logaddexp(0, np.nan))) + assert_(np.isnan(np.logaddexp(np.nan, np.nan))) + + def test_reduce(self): + assert_equal(np.logaddexp.identity, -np.inf) + assert_equal(np.logaddexp.reduce([]), -np.inf) + + +class TestLog1p: + def test_log1p(self): + assert_almost_equal(ncu.log1p(0.2), ncu.log(1.2)) + assert_almost_equal(ncu.log1p(1e-6), ncu.log(1 + 1e-6)) + + def test_special(self): + with np.errstate(invalid="ignore", divide="ignore"): + assert_equal(ncu.log1p(np.nan), np.nan) + assert_equal(ncu.log1p(np.inf), np.inf) + assert_equal(ncu.log1p(-1.), -np.inf) + assert_equal(ncu.log1p(-2.), np.nan) + assert_equal(ncu.log1p(-np.inf), np.nan) + + +class TestExpm1: + def test_expm1(self): + assert_almost_equal(ncu.expm1(0.2), ncu.exp(0.2) - 1) + assert_almost_equal(ncu.expm1(1e-6), ncu.exp(1e-6) - 1) + + def test_special(self): + assert_equal(ncu.expm1(np.inf), np.inf) + assert_equal(ncu.expm1(0.), 0.) + assert_equal(ncu.expm1(-0.), -0.) + assert_equal(ncu.expm1(np.inf), np.inf) + assert_equal(ncu.expm1(-np.inf), -1.) + + def test_complex(self): + x = np.asarray(1e-12) + assert_allclose(x, ncu.expm1(x)) + x = x.astype(np.complex128) + assert_allclose(x, ncu.expm1(x)) + + +class TestHypot: + def test_simple(self): + assert_almost_equal(ncu.hypot(1, 1), ncu.sqrt(2)) + assert_almost_equal(ncu.hypot(0, 0), 0) + + def test_reduce(self): + assert_almost_equal(ncu.hypot.reduce([3.0, 4.0]), 5.0) + assert_almost_equal(ncu.hypot.reduce([3.0, 4.0, 0]), 5.0) + assert_almost_equal(ncu.hypot.reduce([9.0, 12.0, 20.0]), 25.0) + assert_equal(ncu.hypot.reduce([]), 0.0) + + +def assert_hypot_isnan(x, y): + with np.errstate(invalid='ignore'): + assert_(np.isnan(ncu.hypot(x, y)), + f"hypot({x}, {y}) is {ncu.hypot(x, y)}, not nan") + + +def assert_hypot_isinf(x, y): + with np.errstate(invalid='ignore'): + assert_(np.isinf(ncu.hypot(x, y)), + f"hypot({x}, {y}) is {ncu.hypot(x, y)}, not inf") + + +class TestHypotSpecialValues: + def test_nan_outputs(self): + assert_hypot_isnan(np.nan, np.nan) + assert_hypot_isnan(np.nan, 1) + + def test_nan_outputs2(self): + assert_hypot_isinf(np.nan, np.inf) + assert_hypot_isinf(np.inf, np.nan) + assert_hypot_isinf(np.inf, 0) + assert_hypot_isinf(0, np.inf) + assert_hypot_isinf(np.inf, np.inf) + assert_hypot_isinf(np.inf, 23.0) + + def test_no_fpe(self): + assert_no_warnings(ncu.hypot, np.inf, 0) + + +def assert_arctan2_isnan(x, y): + assert_(np.isnan(ncu.arctan2(x, y)), f"arctan({x}, {y}) is {ncu.arctan2(x, y)}, not nan") + + +def assert_arctan2_ispinf(x, y): + assert_((np.isinf(ncu.arctan2(x, y)) and ncu.arctan2(x, y) > 0), f"arctan({x}, {y}) is {ncu.arctan2(x, y)}, not +inf") + + +def assert_arctan2_isninf(x, y): + assert_((np.isinf(ncu.arctan2(x, y)) and ncu.arctan2(x, y) < 0), f"arctan({x}, {y}) is {ncu.arctan2(x, y)}, not -inf") + + +def assert_arctan2_ispzero(x, y): + assert_((ncu.arctan2(x, y) == 0 and not np.signbit(ncu.arctan2(x, y))), f"arctan({x}, {y}) is {ncu.arctan2(x, y)}, not +0") + + +def assert_arctan2_isnzero(x, y): + assert_((ncu.arctan2(x, y) == 0 and np.signbit(ncu.arctan2(x, y))), f"arctan({x}, {y}) is {ncu.arctan2(x, y)}, not -0") + + +class TestArctan2SpecialValues: + def test_one_one(self): + # atan2(1, 1) returns pi/4. + assert_almost_equal(ncu.arctan2(1, 1), 0.25 * np.pi) + assert_almost_equal(ncu.arctan2(-1, 1), -0.25 * np.pi) + assert_almost_equal(ncu.arctan2(1, -1), 0.75 * np.pi) + + def test_zero_nzero(self): + # atan2(+-0, -0) returns +-pi. + assert_almost_equal(ncu.arctan2(ncu.PZERO, ncu.NZERO), np.pi) + assert_almost_equal(ncu.arctan2(ncu.NZERO, ncu.NZERO), -np.pi) + + def test_zero_pzero(self): + # atan2(+-0, +0) returns +-0. + assert_arctan2_ispzero(ncu.PZERO, ncu.PZERO) + assert_arctan2_isnzero(ncu.NZERO, ncu.PZERO) + + def test_zero_negative(self): + # atan2(+-0, x) returns +-pi for x < 0. + assert_almost_equal(ncu.arctan2(ncu.PZERO, -1), np.pi) + assert_almost_equal(ncu.arctan2(ncu.NZERO, -1), -np.pi) + + def test_zero_positive(self): + # atan2(+-0, x) returns +-0 for x > 0. + assert_arctan2_ispzero(ncu.PZERO, 1) + assert_arctan2_isnzero(ncu.NZERO, 1) + + def test_positive_zero(self): + # atan2(y, +-0) returns +pi/2 for y > 0. + assert_almost_equal(ncu.arctan2(1, ncu.PZERO), 0.5 * np.pi) + assert_almost_equal(ncu.arctan2(1, ncu.NZERO), 0.5 * np.pi) + + def test_negative_zero(self): + # atan2(y, +-0) returns -pi/2 for y < 0. + assert_almost_equal(ncu.arctan2(-1, ncu.PZERO), -0.5 * np.pi) + assert_almost_equal(ncu.arctan2(-1, ncu.NZERO), -0.5 * np.pi) + + def test_any_ninf(self): + # atan2(+-y, -infinity) returns +-pi for finite y > 0. + assert_almost_equal(ncu.arctan2(1, -np.inf), np.pi) + assert_almost_equal(ncu.arctan2(-1, -np.inf), -np.pi) + + def test_any_pinf(self): + # atan2(+-y, +infinity) returns +-0 for finite y > 0. + assert_arctan2_ispzero(1, np.inf) + assert_arctan2_isnzero(-1, np.inf) + + def test_inf_any(self): + # atan2(+-infinity, x) returns +-pi/2 for finite x. + assert_almost_equal(ncu.arctan2( np.inf, 1), 0.5 * np.pi) + assert_almost_equal(ncu.arctan2(-np.inf, 1), -0.5 * np.pi) + + def test_inf_ninf(self): + # atan2(+-infinity, -infinity) returns +-3*pi/4. + assert_almost_equal(ncu.arctan2( np.inf, -np.inf), 0.75 * np.pi) + assert_almost_equal(ncu.arctan2(-np.inf, -np.inf), -0.75 * np.pi) + + def test_inf_pinf(self): + # atan2(+-infinity, +infinity) returns +-pi/4. + assert_almost_equal(ncu.arctan2( np.inf, np.inf), 0.25 * np.pi) + assert_almost_equal(ncu.arctan2(-np.inf, np.inf), -0.25 * np.pi) + + def test_nan_any(self): + # atan2(nan, x) returns nan for any x, including inf + assert_arctan2_isnan(np.nan, np.inf) + assert_arctan2_isnan(np.inf, np.nan) + assert_arctan2_isnan(np.nan, np.nan) + + +class TestLdexp: + def _check_ldexp(self, tp): + assert_almost_equal(ncu.ldexp(np.array(2., np.float32), + np.array(3, tp)), 16.) + assert_almost_equal(ncu.ldexp(np.array(2., np.float64), + np.array(3, tp)), 16.) + assert_almost_equal(ncu.ldexp(np.array(2., np.longdouble), + np.array(3, tp)), 16.) + + def test_ldexp(self): + # The default Python int type should work + assert_almost_equal(ncu.ldexp(2., 3), 16.) + # The following int types should all be accepted + self._check_ldexp(np.int8) + self._check_ldexp(np.int16) + self._check_ldexp(np.int32) + self._check_ldexp('i') + self._check_ldexp('l') + + def test_ldexp_overflow(self): + # silence warning emitted on overflow + with np.errstate(over="ignore"): + imax = np.iinfo(np.dtype('l')).max + imin = np.iinfo(np.dtype('l')).min + assert_equal(ncu.ldexp(2., imax), np.inf) + assert_equal(ncu.ldexp(2., imin), 0) + + +class TestMaximum(_FilterInvalids): + def test_reduce(self): + dflt = np.typecodes['AllFloat'] + dint = np.typecodes['AllInteger'] + seq1 = np.arange(11) + seq2 = seq1[::-1] + func = np.maximum.reduce + for dt in dint: + tmp1 = seq1.astype(dt) + tmp2 = seq2.astype(dt) + assert_equal(func(tmp1), 10) + assert_equal(func(tmp2), 10) + for dt in dflt: + tmp1 = seq1.astype(dt) + tmp2 = seq2.astype(dt) + assert_equal(func(tmp1), 10) + assert_equal(func(tmp2), 10) + tmp1[::2] = np.nan + tmp2[::2] = np.nan + assert_equal(func(tmp1), np.nan) + assert_equal(func(tmp2), np.nan) + + def test_reduce_complex(self): + assert_equal(np.maximum.reduce([1, 2j]), 1) + assert_equal(np.maximum.reduce([1 + 3j, 2j]), 1 + 3j) + + def test_float_nans(self): + nan = np.nan + arg1 = np.array([0, nan, nan]) + arg2 = np.array([nan, 0, nan]) + out = np.array([nan, nan, nan]) + assert_equal(np.maximum(arg1, arg2), out) + + def test_object_nans(self): + # Multiple checks to give this a chance to + # fail if cmp is used instead of rich compare. + # Failure cannot be guaranteed. + for i in range(1): + x = np.array(float('nan'), object) + y = 1.0 + z = np.array(float('nan'), object) + assert_(np.maximum(x, y) == 1.0) + assert_(np.maximum(z, y) == 1.0) + + def test_complex_nans(self): + nan = np.nan + for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]: + arg1 = np.array([0, cnan, cnan], dtype=complex) + arg2 = np.array([cnan, 0, cnan], dtype=complex) + out = np.array([nan, nan, nan], dtype=complex) + assert_equal(np.maximum(arg1, arg2), out) + + def test_object_array(self): + arg1 = np.arange(5, dtype=object) + arg2 = arg1 + 1 + assert_equal(np.maximum(arg1, arg2), arg2) + + def test_strided_array(self): + arr1 = np.array([-4.0, 1.0, 10.0, 0.0, np.nan, -np.nan, np.inf, -np.inf]) + arr2 = np.array([-2.0, -1.0, np.nan, 1.0, 0.0, np.nan, 1.0, -3.0]) # noqa: E221 + maxtrue = np.array([-2.0, 1.0, np.nan, 1.0, np.nan, np.nan, np.inf, -3.0]) + out = np.ones(8) + out_maxtrue = np.array([-2.0, 1.0, 1.0, 10.0, 1.0, 1.0, np.nan, 1.0]) + assert_equal(np.maximum(arr1, arr2), maxtrue) + assert_equal(np.maximum(arr1[::2], arr2[::2]), maxtrue[::2]) + assert_equal(np.maximum(arr1[:4:], arr2[::2]), np.array([-2.0, np.nan, 10.0, 1.0])) + assert_equal(np.maximum(arr1[::3], arr2[:3:]), np.array([-2.0, 0.0, np.nan])) + assert_equal(np.maximum(arr1[:6:2], arr2[::3], out=out[::3]), np.array([-2.0, 10., np.nan])) + assert_equal(out, out_maxtrue) + + def test_precision(self): + dtypes = [np.float16, np.float32, np.float64, np.longdouble] + + for dt in dtypes: + dtmin = np.finfo(dt).min + dtmax = np.finfo(dt).max + d1 = dt(0.1) + d1_next = np.nextafter(d1, np.inf) + + test_cases = [ + # v1 v2 expected + (dtmin, -np.inf, dtmin), + (dtmax, -np.inf, dtmax), + (d1, d1_next, d1_next), + (dtmax, np.nan, np.nan), + ] + + for v1, v2, expected in test_cases: + assert_equal(np.maximum([v1], [v2]), [expected]) + assert_equal(np.maximum.reduce([v1, v2]), expected) + + +class TestMinimum(_FilterInvalids): + def test_reduce(self): + dflt = np.typecodes['AllFloat'] + dint = np.typecodes['AllInteger'] + seq1 = np.arange(11) + seq2 = seq1[::-1] + func = np.minimum.reduce + for dt in dint: + tmp1 = seq1.astype(dt) + tmp2 = seq2.astype(dt) + assert_equal(func(tmp1), 0) + assert_equal(func(tmp2), 0) + for dt in dflt: + tmp1 = seq1.astype(dt) + tmp2 = seq2.astype(dt) + assert_equal(func(tmp1), 0) + assert_equal(func(tmp2), 0) + tmp1[::2] = np.nan + tmp2[::2] = np.nan + assert_equal(func(tmp1), np.nan) + assert_equal(func(tmp2), np.nan) + + def test_reduce_complex(self): + assert_equal(np.minimum.reduce([1, 2j]), 2j) + assert_equal(np.minimum.reduce([1 + 3j, 2j]), 2j) + + def test_float_nans(self): + nan = np.nan + arg1 = np.array([0, nan, nan]) + arg2 = np.array([nan, 0, nan]) + out = np.array([nan, nan, nan]) + assert_equal(np.minimum(arg1, arg2), out) + + def test_object_nans(self): + # Multiple checks to give this a chance to + # fail if cmp is used instead of rich compare. + # Failure cannot be guaranteed. + for i in range(1): + x = np.array(float('nan'), object) + y = 1.0 + z = np.array(float('nan'), object) + assert_(np.minimum(x, y) == 1.0) + assert_(np.minimum(z, y) == 1.0) + + def test_complex_nans(self): + nan = np.nan + for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]: + arg1 = np.array([0, cnan, cnan], dtype=complex) + arg2 = np.array([cnan, 0, cnan], dtype=complex) + out = np.array([nan, nan, nan], dtype=complex) + assert_equal(np.minimum(arg1, arg2), out) + + def test_object_array(self): + arg1 = np.arange(5, dtype=object) + arg2 = arg1 + 1 + assert_equal(np.minimum(arg1, arg2), arg1) + + def test_strided_array(self): + arr1 = np.array([-4.0, 1.0, 10.0, 0.0, np.nan, -np.nan, np.inf, -np.inf]) + arr2 = np.array([-2.0, -1.0, np.nan, 1.0, 0.0, np.nan, 1.0, -3.0]) + mintrue = np.array([-4.0, -1.0, np.nan, 0.0, np.nan, np.nan, 1.0, -np.inf]) + out = np.ones(8) + out_mintrue = np.array([-4.0, 1.0, 1.0, 1.0, 1.0, 1.0, np.nan, 1.0]) + assert_equal(np.minimum(arr1, arr2), mintrue) + assert_equal(np.minimum(arr1[::2], arr2[::2]), mintrue[::2]) + assert_equal(np.minimum(arr1[:4:], arr2[::2]), np.array([-4.0, np.nan, 0.0, 0.0])) + assert_equal(np.minimum(arr1[::3], arr2[:3:]), np.array([-4.0, -1.0, np.nan])) + assert_equal(np.minimum(arr1[:6:2], arr2[::3], out=out[::3]), np.array([-4.0, 1.0, np.nan])) + assert_equal(out, out_mintrue) + + def test_precision(self): + dtypes = [np.float16, np.float32, np.float64, np.longdouble] + + for dt in dtypes: + dtmin = np.finfo(dt).min + dtmax = np.finfo(dt).max + d1 = dt(0.1) + d1_next = np.nextafter(d1, np.inf) + + test_cases = [ + # v1 v2 expected + (dtmin, np.inf, dtmin), + (dtmax, np.inf, dtmax), + (d1, d1_next, d1), + (dtmin, np.nan, np.nan), + ] + + for v1, v2, expected in test_cases: + assert_equal(np.minimum([v1], [v2]), [expected]) + assert_equal(np.minimum.reduce([v1, v2]), expected) + + +class TestFmax(_FilterInvalids): + def test_reduce(self): + dflt = np.typecodes['AllFloat'] + dint = np.typecodes['AllInteger'] + seq1 = np.arange(11) + seq2 = seq1[::-1] + func = np.fmax.reduce + for dt in dint: + tmp1 = seq1.astype(dt) + tmp2 = seq2.astype(dt) + assert_equal(func(tmp1), 10) + assert_equal(func(tmp2), 10) + for dt in dflt: + tmp1 = seq1.astype(dt) + tmp2 = seq2.astype(dt) + assert_equal(func(tmp1), 10) + assert_equal(func(tmp2), 10) + tmp1[::2] = np.nan + tmp2[::2] = np.nan + assert_equal(func(tmp1), 9) + assert_equal(func(tmp2), 9) + + def test_reduce_complex(self): + assert_equal(np.fmax.reduce([1, 2j]), 1) + assert_equal(np.fmax.reduce([1 + 3j, 2j]), 1 + 3j) + + def test_float_nans(self): + nan = np.nan + arg1 = np.array([0, nan, nan]) + arg2 = np.array([nan, 0, nan]) + out = np.array([0, 0, nan]) + assert_equal(np.fmax(arg1, arg2), out) + + def test_complex_nans(self): + nan = np.nan + for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]: + arg1 = np.array([0, cnan, cnan], dtype=complex) + arg2 = np.array([cnan, 0, cnan], dtype=complex) + out = np.array([0, 0, nan], dtype=complex) + assert_equal(np.fmax(arg1, arg2), out) + + def test_precision(self): + dtypes = [np.float16, np.float32, np.float64, np.longdouble] + + for dt in dtypes: + dtmin = np.finfo(dt).min + dtmax = np.finfo(dt).max + d1 = dt(0.1) + d1_next = np.nextafter(d1, np.inf) + + test_cases = [ + # v1 v2 expected + (dtmin, -np.inf, dtmin), + (dtmax, -np.inf, dtmax), + (d1, d1_next, d1_next), + (dtmax, np.nan, dtmax), + ] + + for v1, v2, expected in test_cases: + assert_equal(np.fmax([v1], [v2]), [expected]) + assert_equal(np.fmax.reduce([v1, v2]), expected) + + +class TestFmin(_FilterInvalids): + def test_reduce(self): + dflt = np.typecodes['AllFloat'] + dint = np.typecodes['AllInteger'] + seq1 = np.arange(11) + seq2 = seq1[::-1] + func = np.fmin.reduce + for dt in dint: + tmp1 = seq1.astype(dt) + tmp2 = seq2.astype(dt) + assert_equal(func(tmp1), 0) + assert_equal(func(tmp2), 0) + for dt in dflt: + tmp1 = seq1.astype(dt) + tmp2 = seq2.astype(dt) + assert_equal(func(tmp1), 0) + assert_equal(func(tmp2), 0) + tmp1[::2] = np.nan + tmp2[::2] = np.nan + assert_equal(func(tmp1), 1) + assert_equal(func(tmp2), 1) + + def test_reduce_complex(self): + assert_equal(np.fmin.reduce([1, 2j]), 2j) + assert_equal(np.fmin.reduce([1 + 3j, 2j]), 2j) + + def test_float_nans(self): + nan = np.nan + arg1 = np.array([0, nan, nan]) + arg2 = np.array([nan, 0, nan]) + out = np.array([0, 0, nan]) + assert_equal(np.fmin(arg1, arg2), out) + + def test_complex_nans(self): + nan = np.nan + for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]: + arg1 = np.array([0, cnan, cnan], dtype=complex) + arg2 = np.array([cnan, 0, cnan], dtype=complex) + out = np.array([0, 0, nan], dtype=complex) + assert_equal(np.fmin(arg1, arg2), out) + + def test_precision(self): + dtypes = [np.float16, np.float32, np.float64, np.longdouble] + + for dt in dtypes: + dtmin = np.finfo(dt).min + dtmax = np.finfo(dt).max + d1 = dt(0.1) + d1_next = np.nextafter(d1, np.inf) + + test_cases = [ + # v1 v2 expected + (dtmin, np.inf, dtmin), + (dtmax, np.inf, dtmax), + (d1, d1_next, d1), + (dtmin, np.nan, dtmin), + ] + + for v1, v2, expected in test_cases: + assert_equal(np.fmin([v1], [v2]), [expected]) + assert_equal(np.fmin.reduce([v1, v2]), expected) + + +class TestBool: + def test_exceptions(self): + a = np.ones(1, dtype=np.bool) + assert_raises(TypeError, np.negative, a) + assert_raises(TypeError, np.positive, a) + assert_raises(TypeError, np.subtract, a, a) + + def test_truth_table_logical(self): + # 2, 3 and 4 serves as true values + input1 = [0, 0, 3, 2] + input2 = [0, 4, 0, 2] + + typecodes = (np.typecodes['AllFloat'] + + np.typecodes['AllInteger'] + + '?') # boolean + for dtype in map(np.dtype, typecodes): + arg1 = np.asarray(input1, dtype=dtype) + arg2 = np.asarray(input2, dtype=dtype) + + # OR + out = [False, True, True, True] + for func in (np.logical_or, np.maximum): + assert_equal(func(arg1, arg2).astype(bool), out) + # AND + out = [False, False, False, True] + for func in (np.logical_and, np.minimum): + assert_equal(func(arg1, arg2).astype(bool), out) + # XOR + out = [False, True, True, False] + for func in (np.logical_xor, np.not_equal): + assert_equal(func(arg1, arg2).astype(bool), out) + + def test_truth_table_bitwise(self): + arg1 = [False, False, True, True] + arg2 = [False, True, False, True] + + out = [False, True, True, True] + assert_equal(np.bitwise_or(arg1, arg2), out) + + out = [False, False, False, True] + assert_equal(np.bitwise_and(arg1, arg2), out) + + out = [False, True, True, False] + assert_equal(np.bitwise_xor(arg1, arg2), out) + + def test_reduce(self): + none = np.array([0, 0, 0, 0], bool) + some = np.array([1, 0, 1, 1], bool) + every = np.array([1, 1, 1, 1], bool) + empty = np.array([], bool) + + arrs = [none, some, every, empty] + + for arr in arrs: + assert_equal(np.logical_and.reduce(arr), all(arr)) + + for arr in arrs: + assert_equal(np.logical_or.reduce(arr), any(arr)) + + for arr in arrs: + assert_equal(np.logical_xor.reduce(arr), arr.sum() % 2 == 1) + + +class TestBitwiseUFuncs: + + _all_ints_bits = [ + np.dtype(c).itemsize * 8 for c in np.typecodes["AllInteger"]] + bitwise_types = [ + np.dtype(c) for c in '?' + np.typecodes["AllInteger"] + 'O'] + bitwise_bits = [ + 2, # boolean type + *_all_ints_bits, # All integers + max(_all_ints_bits) + 1, # Object_ type + ] + + def test_values(self): + for dt in self.bitwise_types: + zeros = np.array([0], dtype=dt) + ones = np.array([-1]).astype(dt) + msg = f"dt = '{dt.char}'" + + assert_equal(np.bitwise_not(zeros), ones, err_msg=msg) + assert_equal(np.bitwise_not(ones), zeros, err_msg=msg) + + assert_equal(np.bitwise_or(zeros, zeros), zeros, err_msg=msg) + assert_equal(np.bitwise_or(zeros, ones), ones, err_msg=msg) + assert_equal(np.bitwise_or(ones, zeros), ones, err_msg=msg) + assert_equal(np.bitwise_or(ones, ones), ones, err_msg=msg) + + assert_equal(np.bitwise_xor(zeros, zeros), zeros, err_msg=msg) + assert_equal(np.bitwise_xor(zeros, ones), ones, err_msg=msg) + assert_equal(np.bitwise_xor(ones, zeros), ones, err_msg=msg) + assert_equal(np.bitwise_xor(ones, ones), zeros, err_msg=msg) + + assert_equal(np.bitwise_and(zeros, zeros), zeros, err_msg=msg) + assert_equal(np.bitwise_and(zeros, ones), zeros, err_msg=msg) + assert_equal(np.bitwise_and(ones, zeros), zeros, err_msg=msg) + assert_equal(np.bitwise_and(ones, ones), ones, err_msg=msg) + + def test_types(self): + for dt in self.bitwise_types: + zeros = np.array([0], dtype=dt) + ones = np.array([-1]).astype(dt) + msg = f"dt = '{dt.char}'" + + assert_(np.bitwise_not(zeros).dtype == dt, msg) + assert_(np.bitwise_or(zeros, zeros).dtype == dt, msg) + assert_(np.bitwise_xor(zeros, zeros).dtype == dt, msg) + assert_(np.bitwise_and(zeros, zeros).dtype == dt, msg) + + def test_identity(self): + assert_(np.bitwise_or.identity == 0, 'bitwise_or') + assert_(np.bitwise_xor.identity == 0, 'bitwise_xor') + assert_(np.bitwise_and.identity == -1, 'bitwise_and') + + def test_reduction(self): + binary_funcs = (np.bitwise_or, np.bitwise_xor, np.bitwise_and) + + for dt in self.bitwise_types: + zeros = np.array([0], dtype=dt) + ones = np.array([-1]).astype(dt) + for f in binary_funcs: + msg = f"dt: '{dt}', f: '{f}'" + assert_equal(f.reduce(zeros), zeros, err_msg=msg) + assert_equal(f.reduce(ones), ones, err_msg=msg) + + # Test empty reduction, no object dtype + for dt in self.bitwise_types[:-1]: + # No object array types + empty = np.array([], dtype=dt) + for f in binary_funcs: + msg = f"dt: '{dt}', f: '{f}'" + tgt = np.array(f.identity).astype(dt) + res = f.reduce(empty) + assert_equal(res, tgt, err_msg=msg) + assert_(res.dtype == tgt.dtype, msg) + + # Empty object arrays use the identity. Note that the types may + # differ, the actual type used is determined by the assign_identity + # function and is not the same as the type returned by the identity + # method. + for f in binary_funcs: + msg = f"dt: '{f}'" + empty = np.array([], dtype=object) + tgt = f.identity + res = f.reduce(empty) + assert_equal(res, tgt, err_msg=msg) + + # Non-empty object arrays do not use the identity + for f in binary_funcs: + msg = f"dt: '{f}'" + btype = np.array([True], dtype=object) + assert_(type(f.reduce(btype)) is bool, msg) + + @pytest.mark.parametrize("input_dtype_obj, bitsize", + zip(bitwise_types, bitwise_bits)) + def test_bitwise_count(self, input_dtype_obj, bitsize): + input_dtype = input_dtype_obj.type + + for i in range(1, bitsize): + num = 2**i - 1 + msg = f"bitwise_count for {num}" + assert i == np.bitwise_count(input_dtype(num)), msg + if np.issubdtype( + input_dtype, np.signedinteger) or input_dtype == np.object_: + assert i == np.bitwise_count(input_dtype(-num)), msg + + a = np.array([2**i - 1 for i in range(1, bitsize)], dtype=input_dtype) + bitwise_count_a = np.bitwise_count(a) + expected = np.arange(1, bitsize, dtype=input_dtype) + + msg = f"array bitwise_count for {input_dtype}" + assert all(bitwise_count_a == expected), msg + + +class TestInt: + def test_logical_not(self): + x = np.ones(10, dtype=np.int16) + o = np.ones(10 * 2, dtype=bool) + tgt = o.copy() + tgt[::2] = False + os = o[::2] + assert_array_equal(np.logical_not(x, out=os), False) + assert_array_equal(o, tgt) + + +class TestFloatingPoint: + def test_floating_point(self): + assert_equal(ncu.FLOATING_POINT_SUPPORT, 1) + + +class TestDegrees: + def test_degrees(self): + assert_almost_equal(ncu.degrees(np.pi), 180.0) + assert_almost_equal(ncu.degrees(-0.5 * np.pi), -90.0) + + +class TestRadians: + def test_radians(self): + assert_almost_equal(ncu.radians(180.0), np.pi) + assert_almost_equal(ncu.radians(-90.0), -0.5 * np.pi) + + +class TestHeavside: + def test_heaviside(self): + x = np.array([[-30.0, -0.1, 0.0, 0.2], [7.5, np.nan, np.inf, -np.inf]]) + expectedhalf = np.array([[0.0, 0.0, 0.5, 1.0], [1.0, np.nan, 1.0, 0.0]]) + expected1 = expectedhalf.copy() + expected1[0, 2] = 1 + + h = ncu.heaviside(x, 0.5) + assert_equal(h, expectedhalf) + + h = ncu.heaviside(x, 1.0) + assert_equal(h, expected1) + + x = x.astype(np.float32) + + h = ncu.heaviside(x, np.float32(0.5)) + assert_equal(h, expectedhalf.astype(np.float32)) + + h = ncu.heaviside(x, np.float32(1.0)) + assert_equal(h, expected1.astype(np.float32)) + + +class TestSign: + def test_sign(self): + a = np.array([np.inf, -np.inf, np.nan, 0.0, 3.0, -3.0]) + out = np.zeros(a.shape) + tgt = np.array([1., -1., np.nan, 0.0, 1.0, -1.0]) + + with np.errstate(invalid='ignore'): + res = ncu.sign(a) + assert_equal(res, tgt) + res = ncu.sign(a, out) + assert_equal(res, tgt) + assert_equal(out, tgt) + + def test_sign_complex(self): + a = np.array([ + np.inf, -np.inf, complex(0, np.inf), complex(0, -np.inf), + complex(np.inf, np.inf), complex(np.inf, -np.inf), # nan + np.nan, complex(0, np.nan), complex(np.nan, np.nan), # nan + 0.0, # 0. + 3.0, -3.0, -2j, 3.0 + 4.0j, -8.0 + 6.0j + ]) + out = np.zeros(a.shape, a.dtype) + tgt = np.array([ + 1., -1., 1j, -1j, + ] + [complex(np.nan, np.nan)] * 5 + [ + 0.0, + 1.0, -1.0, -1j, 0.6 + 0.8j, -0.8 + 0.6j]) + + with np.errstate(invalid='ignore'): + res = ncu.sign(a) + assert_equal(res, tgt) + res = ncu.sign(a, out) + assert_(res is out) + assert_equal(res, tgt) + + def test_sign_dtype_object(self): + # In reference to github issue #6229 + + foo = np.array([-.1, 0, .1]) + a = np.sign(foo.astype(object)) + b = np.sign(foo) + + assert_array_equal(a, b) + + def test_sign_dtype_nan_object(self): + # In reference to github issue #6229 + def test_nan(): + foo = np.array([np.nan]) + # FIXME: a not used + a = np.sign(foo.astype(object)) + + assert_raises(TypeError, test_nan) + +class TestMinMax: + def test_minmax_blocked(self): + # simd tests on max/min, test all alignments, slow but important + # for 2 * vz + 2 * (vs - 1) + 1 (unrolled once) + for dt, sz in [(np.float32, 15), (np.float64, 7)]: + for out, inp, msg in _gen_alignment_data(dtype=dt, type='unary', + max_size=sz): + for i in range(inp.size): + inp[:] = np.arange(inp.size, dtype=dt) + inp[i] = np.nan + emsg = lambda: f'{inp!r}\n{msg}' + with suppress_warnings() as sup: + sup.filter(RuntimeWarning, + "invalid value encountered in reduce") + assert_(np.isnan(inp.max()), msg=emsg) + assert_(np.isnan(inp.min()), msg=emsg) + + inp[i] = 1e10 + assert_equal(inp.max(), 1e10, err_msg=msg) + inp[i] = -1e10 + assert_equal(inp.min(), -1e10, err_msg=msg) + + def test_lower_align(self): + # check data that is not aligned to element size + # i.e doubles are aligned to 4 bytes on i386 + d = np.zeros(23 * 8, dtype=np.int8)[4:-4].view(np.float64) + assert_equal(d.max(), d[0]) + assert_equal(d.min(), d[0]) + + def test_reduce_reorder(self): + # gh 10370, 11029 Some compilers reorder the call to npy_getfloatstatus + # and put it before the call to an intrinsic function that causes + # invalid status to be set. Also make sure warnings are not emitted + for n in (2, 4, 8, 16, 32): + for dt in (np.float32, np.float16, np.complex64): + for r in np.diagflat(np.array([np.nan] * n, dtype=dt)): + assert_equal(np.min(r), np.nan) + + def test_minimize_no_warns(self): + a = np.minimum(np.nan, 1) + assert_equal(a, np.nan) + + +class TestAbsoluteNegative: + def test_abs_neg_blocked(self): + # simd tests on abs, test all alignments for vz + 2 * (vs - 1) + 1 + for dt, sz in [(np.float32, 11), (np.float64, 5)]: + for out, inp, msg in _gen_alignment_data(dtype=dt, type='unary', + max_size=sz): + tgt = [ncu.absolute(i) for i in inp] + np.absolute(inp, out=out) + assert_equal(out, tgt, err_msg=msg) + assert_((out >= 0).all()) + + tgt = [-1 * (i) for i in inp] + np.negative(inp, out=out) + assert_equal(out, tgt, err_msg=msg) + + for v in [np.nan, -np.inf, np.inf]: + for i in range(inp.size): + d = np.arange(inp.size, dtype=dt) + inp[:] = -d + inp[i] = v + d[i] = -v if v == -np.inf else v + assert_array_equal(np.abs(inp), d, err_msg=msg) + np.abs(inp, out=out) + assert_array_equal(out, d, err_msg=msg) + + assert_array_equal(-inp, -1 * inp, err_msg=msg) + d = -1 * inp + np.negative(inp, out=out) + assert_array_equal(out, d, err_msg=msg) + + def test_lower_align(self): + # check data that is not aligned to element size + # i.e doubles are aligned to 4 bytes on i386 + d = np.zeros(23 * 8, dtype=np.int8)[4:-4].view(np.float64) + assert_equal(np.abs(d), d) + assert_equal(np.negative(d), -d) + np.negative(d, out=d) + np.negative(np.ones_like(d), out=d) + np.abs(d, out=d) + np.abs(np.ones_like(d), out=d) + + @pytest.mark.parametrize("dtype", ['d', 'f', 'int32', 'int64']) + @pytest.mark.parametrize("big", [True, False]) + def test_noncontiguous(self, dtype, big): + data = np.array([-1.0, 1.0, -0.0, 0.0, 2.2251e-308, -2.5, 2.5, -6, + 6, -2.2251e-308, -8, 10], dtype=dtype) + expect = np.array([1.0, -1.0, 0.0, -0.0, -2.2251e-308, 2.5, -2.5, 6, + -6, 2.2251e-308, 8, -10], dtype=dtype) + if big: + data = np.repeat(data, 10) + expect = np.repeat(expect, 10) + out = np.ndarray(data.shape, dtype=dtype) + ncontig_in = data[1::2] + ncontig_out = out[1::2] + contig_in = np.array(ncontig_in) + # contig in, contig out + assert_array_equal(np.negative(contig_in), expect[1::2]) + # contig in, ncontig out + assert_array_equal(np.negative(contig_in, out=ncontig_out), + expect[1::2]) + # ncontig in, contig out + assert_array_equal(np.negative(ncontig_in), expect[1::2]) + # ncontig in, ncontig out + assert_array_equal(np.negative(ncontig_in, out=ncontig_out), + expect[1::2]) + # contig in, contig out, nd stride + data_split = np.array(np.array_split(data, 2)) + expect_split = np.array(np.array_split(expect, 2)) + assert_equal(np.negative(data_split), expect_split) + + +class TestPositive: + def test_valid(self): + valid_dtypes = [int, float, complex, object] + for dtype in valid_dtypes: + x = np.arange(5, dtype=dtype) + result = np.positive(x) + assert_equal(x, result, err_msg=str(dtype)) + + def test_invalid(self): + with assert_raises(TypeError): + np.positive(True) + with assert_raises(TypeError): + np.positive(np.datetime64('2000-01-01')) + with assert_raises(TypeError): + np.positive(np.array(['foo'], dtype=str)) + with assert_raises(TypeError): + np.positive(np.array(['bar'], dtype=object)) + + +class TestSpecialMethods: + def test_wrap(self): + + class with_wrap: + def __array__(self, dtype=None, copy=None): + return np.zeros(1) + + def __array_wrap__(self, arr, context, return_scalar): + r = with_wrap() + r.arr = arr + r.context = context + return r + + a = with_wrap() + x = ncu.minimum(a, a) + assert_equal(x.arr, np.zeros(1)) + func, args, i = x.context + assert_(func is ncu.minimum) + assert_equal(len(args), 2) + assert_equal(args[0], a) + assert_equal(args[1], a) + assert_equal(i, 0) + + def test_wrap_out(self): + # Calling convention for out should not affect how special methods are + # called + + class StoreArrayPrepareWrap(np.ndarray): + _wrap_args = None + _prepare_args = None + + def __new__(cls): + return np.zeros(()).view(cls) + + def __array_wrap__(self, obj, context, return_scalar): + self._wrap_args = context[1] + return obj + + @property + def args(self): + # We need to ensure these are fetched at the same time, before + # any other ufuncs are called by the assertions + return self._wrap_args + + def __repr__(self): + return "a" # for short test output + + def do_test(f_call, f_expected): + a = StoreArrayPrepareWrap() + + f_call(a) + + w = a.args + expected = f_expected(a) + try: + assert w == expected + except AssertionError as e: + # assert_equal produces truly useless error messages + raise AssertionError("\n".join([ + "Bad arguments passed in ufunc call", + f" expected: {expected}", + f" __array_wrap__ got: {w}" + ])) + + # method not on the out argument + do_test(lambda a: np.add(a, 0), lambda a: (a, 0)) + do_test(lambda a: np.add(a, 0, None), lambda a: (a, 0)) + do_test(lambda a: np.add(a, 0, out=None), lambda a: (a, 0)) + do_test(lambda a: np.add(a, 0, out=(None,)), lambda a: (a, 0)) + + # method on the out argument + do_test(lambda a: np.add(0, 0, a), lambda a: (0, 0, a)) + do_test(lambda a: np.add(0, 0, out=a), lambda a: (0, 0, a)) + do_test(lambda a: np.add(0, 0, out=(a,)), lambda a: (0, 0, a)) + + # Also check the where mask handling: + do_test(lambda a: np.add(a, 0, where=False), lambda a: (a, 0)) + do_test(lambda a: np.add(0, 0, a, where=False), lambda a: (0, 0, a)) + + def test_wrap_with_iterable(self): + # test fix for bug #1026: + + class with_wrap(np.ndarray): + __array_priority__ = 10 + + def __new__(cls): + return np.asarray(1).view(cls).copy() + + def __array_wrap__(self, arr, context, return_scalar): + return arr.view(type(self)) + + a = with_wrap() + x = ncu.multiply(a, (1, 2, 3)) + assert_(isinstance(x, with_wrap)) + assert_array_equal(x, np.array((1, 2, 3))) + + def test_priority_with_scalar(self): + # test fix for bug #826: + + class A(np.ndarray): + __array_priority__ = 10 + + def __new__(cls): + return np.asarray(1.0, 'float64').view(cls).copy() + + a = A() + x = np.float64(1) * a + assert_(isinstance(x, A)) + assert_array_equal(x, np.array(1)) + + def test_priority(self): + + class A: + def __array__(self, dtype=None, copy=None): + return np.zeros(1) + + def __array_wrap__(self, arr, context, return_scalar): + r = type(self)() + r.arr = arr + r.context = context + return r + + class B(A): + __array_priority__ = 20. + + class C(A): + __array_priority__ = 40. + + x = np.zeros(1) + a = A() + b = B() + c = C() + f = ncu.minimum + assert_(type(f(x, x)) is np.ndarray) + assert_(type(f(x, a)) is A) + assert_(type(f(x, b)) is B) + assert_(type(f(x, c)) is C) + assert_(type(f(a, x)) is A) + assert_(type(f(b, x)) is B) + assert_(type(f(c, x)) is C) + + assert_(type(f(a, a)) is A) + assert_(type(f(a, b)) is B) + assert_(type(f(b, a)) is B) + assert_(type(f(b, b)) is B) + assert_(type(f(b, c)) is C) + assert_(type(f(c, b)) is C) + assert_(type(f(c, c)) is C) + + assert_(type(ncu.exp(a) is A)) + assert_(type(ncu.exp(b) is B)) + assert_(type(ncu.exp(c) is C)) + + def test_failing_wrap(self): + + class A: + def __array__(self, dtype=None, copy=None): + return np.zeros(2) + + def __array_wrap__(self, arr, context, return_scalar): + raise RuntimeError + + a = A() + assert_raises(RuntimeError, ncu.maximum, a, a) + assert_raises(RuntimeError, ncu.maximum.reduce, a) + + def test_failing_out_wrap(self): + + singleton = np.array([1.0]) + + class Ok(np.ndarray): + def __array_wrap__(self, obj, context, return_scalar): + return singleton + + class Bad(np.ndarray): + def __array_wrap__(self, obj, context, return_scalar): + raise RuntimeError + + ok = np.empty(1).view(Ok) + bad = np.empty(1).view(Bad) + # double-free (segfault) of "ok" if "bad" raises an exception + for i in range(10): + assert_raises(RuntimeError, ncu.frexp, 1, ok, bad) + + def test_none_wrap(self): + # Tests that issue #8507 is resolved. Previously, this would segfault + + class A: + def __array__(self, dtype=None, copy=None): + return np.zeros(1) + + def __array_wrap__(self, arr, context=None, return_scalar=False): + return None + + a = A() + assert_equal(ncu.maximum(a, a), None) + + def test_default_prepare(self): + + class with_wrap: + __array_priority__ = 10 + + def __array__(self, dtype=None, copy=None): + return np.zeros(1) + + def __array_wrap__(self, arr, context, return_scalar): + return arr + + a = with_wrap() + x = ncu.minimum(a, a) + assert_equal(x, np.zeros(1)) + assert_equal(type(x), np.ndarray) + + def test_array_too_many_args(self): + + class A: + def __array__(self, dtype, context, copy=None): + return np.zeros(1) + + a = A() + assert_raises_regex(TypeError, '2 required positional', np.sum, a) + + def test_ufunc_override(self): + # check override works even with instance with high priority. + class A: + def __array_ufunc__(self, func, method, *inputs, **kwargs): + return self, func, method, inputs, kwargs + + class MyNDArray(np.ndarray): + __array_priority__ = 100 + + a = A() + b = np.array([1]).view(MyNDArray) + res0 = np.multiply(a, b) + res1 = np.multiply(b, b, out=a) + + # self + assert_equal(res0[0], a) + assert_equal(res1[0], a) + assert_equal(res0[1], np.multiply) + assert_equal(res1[1], np.multiply) + assert_equal(res0[2], '__call__') + assert_equal(res1[2], '__call__') + assert_equal(res0[3], (a, b)) + assert_equal(res1[3], (b, b)) + assert_equal(res0[4], {}) + assert_equal(res1[4], {'out': (a,)}) + + def test_ufunc_override_mro(self): + + # Some multi arg functions for testing. + def tres_mul(a, b, c): + return a * b * c + + def quatro_mul(a, b, c, d): + return a * b * c * d + + # Make these into ufuncs. + three_mul_ufunc = np.frompyfunc(tres_mul, 3, 1) + four_mul_ufunc = np.frompyfunc(quatro_mul, 4, 1) + + class A: + def __array_ufunc__(self, func, method, *inputs, **kwargs): + return "A" + + class ASub(A): + def __array_ufunc__(self, func, method, *inputs, **kwargs): + return "ASub" + + class B: + def __array_ufunc__(self, func, method, *inputs, **kwargs): + return "B" + + class C: + def __init__(self): + self.count = 0 + + def __array_ufunc__(self, func, method, *inputs, **kwargs): + self.count += 1 + return NotImplemented + + class CSub(C): + def __array_ufunc__(self, func, method, *inputs, **kwargs): + self.count += 1 + return NotImplemented + + a = A() + a_sub = ASub() + b = B() + c = C() + + # Standard + res = np.multiply(a, a_sub) + assert_equal(res, "ASub") + res = np.multiply(a_sub, b) + assert_equal(res, "ASub") + + # With 1 NotImplemented + res = np.multiply(c, a) + assert_equal(res, "A") + assert_equal(c.count, 1) + # Check our counter works, so we can trust tests below. + res = np.multiply(c, a) + assert_equal(c.count, 2) + + # Both NotImplemented. + c = C() + c_sub = CSub() + assert_raises(TypeError, np.multiply, c, c_sub) + assert_equal(c.count, 1) + assert_equal(c_sub.count, 1) + c.count = c_sub.count = 0 + assert_raises(TypeError, np.multiply, c_sub, c) + assert_equal(c.count, 1) + assert_equal(c_sub.count, 1) + c.count = 0 + assert_raises(TypeError, np.multiply, c, c) + assert_equal(c.count, 1) + c.count = 0 + assert_raises(TypeError, np.multiply, 2, c) + assert_equal(c.count, 1) + + # Ternary testing. + assert_equal(three_mul_ufunc(a, 1, 2), "A") + assert_equal(three_mul_ufunc(1, a, 2), "A") + assert_equal(three_mul_ufunc(1, 2, a), "A") + + assert_equal(three_mul_ufunc(a, a, 6), "A") + assert_equal(three_mul_ufunc(a, 2, a), "A") + assert_equal(three_mul_ufunc(a, 2, b), "A") + assert_equal(three_mul_ufunc(a, 2, a_sub), "ASub") + assert_equal(three_mul_ufunc(a, a_sub, 3), "ASub") + c.count = 0 + assert_equal(three_mul_ufunc(c, a_sub, 3), "ASub") + assert_equal(c.count, 1) + c.count = 0 + assert_equal(three_mul_ufunc(1, a_sub, c), "ASub") + assert_equal(c.count, 0) + + c.count = 0 + assert_equal(three_mul_ufunc(a, b, c), "A") + assert_equal(c.count, 0) + c_sub.count = 0 + assert_equal(three_mul_ufunc(a, b, c_sub), "A") + assert_equal(c_sub.count, 0) + assert_equal(three_mul_ufunc(1, 2, b), "B") + + assert_raises(TypeError, three_mul_ufunc, 1, 2, c) + assert_raises(TypeError, three_mul_ufunc, c_sub, 2, c) + assert_raises(TypeError, three_mul_ufunc, c_sub, 2, 3) + + # Quaternary testing. + assert_equal(four_mul_ufunc(a, 1, 2, 3), "A") + assert_equal(four_mul_ufunc(1, a, 2, 3), "A") + assert_equal(four_mul_ufunc(1, 1, a, 3), "A") + assert_equal(four_mul_ufunc(1, 1, 2, a), "A") + + assert_equal(four_mul_ufunc(a, b, 2, 3), "A") + assert_equal(four_mul_ufunc(1, a, 2, b), "A") + assert_equal(four_mul_ufunc(b, 1, a, 3), "B") + assert_equal(four_mul_ufunc(a_sub, 1, 2, a), "ASub") + assert_equal(four_mul_ufunc(a, 1, 2, a_sub), "ASub") + + c = C() + c_sub = CSub() + assert_raises(TypeError, four_mul_ufunc, 1, 2, 3, c) + assert_equal(c.count, 1) + c.count = 0 + assert_raises(TypeError, four_mul_ufunc, 1, 2, c_sub, c) + assert_equal(c_sub.count, 1) + assert_equal(c.count, 1) + c2 = C() + c.count = c_sub.count = 0 + assert_raises(TypeError, four_mul_ufunc, 1, c, c_sub, c2) + assert_equal(c_sub.count, 1) + assert_equal(c.count, 1) + assert_equal(c2.count, 0) + c.count = c2.count = c_sub.count = 0 + assert_raises(TypeError, four_mul_ufunc, c2, c, c_sub, c) + assert_equal(c_sub.count, 1) + assert_equal(c.count, 0) + assert_equal(c2.count, 1) + + def test_ufunc_override_methods(self): + + class A: + def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): + return self, ufunc, method, inputs, kwargs + + # __call__ + a = A() + with assert_raises(TypeError): + np.multiply.__call__(1, a, foo='bar', answer=42) + res = np.multiply.__call__(1, a, subok='bar', where=42) + assert_equal(res[0], a) + assert_equal(res[1], np.multiply) + assert_equal(res[2], '__call__') + assert_equal(res[3], (1, a)) + assert_equal(res[4], {'subok': 'bar', 'where': 42}) + + # __call__, wrong args + assert_raises(TypeError, np.multiply, a) + assert_raises(TypeError, np.multiply, a, a, a, a) + assert_raises(TypeError, np.multiply, a, a, sig='a', signature='a') + assert_raises(TypeError, ncu_tests.inner1d, a, a, axis=0, axes=[0, 0]) + + # reduce, positional args + res = np.multiply.reduce(a, 'axis0', 'dtype0', 'out0', 'keep0') + assert_equal(res[0], a) + assert_equal(res[1], np.multiply) + assert_equal(res[2], 'reduce') + assert_equal(res[3], (a,)) + assert_equal(res[4], {'dtype': 'dtype0', + 'out': ('out0',), + 'keepdims': 'keep0', + 'axis': 'axis0'}) + + # reduce, kwargs + res = np.multiply.reduce(a, axis='axis0', dtype='dtype0', out='out0', + keepdims='keep0', initial='init0', + where='where0') + assert_equal(res[0], a) + assert_equal(res[1], np.multiply) + assert_equal(res[2], 'reduce') + assert_equal(res[3], (a,)) + assert_equal(res[4], {'dtype': 'dtype0', + 'out': ('out0',), + 'keepdims': 'keep0', + 'axis': 'axis0', + 'initial': 'init0', + 'where': 'where0'}) + + # reduce, output equal to None removed, but not other explicit ones, + # even if they are at their default value. + res = np.multiply.reduce(a, 0, None, None, False) + assert_equal(res[4], {'axis': 0, 'dtype': None, 'keepdims': False}) + res = np.multiply.reduce(a, out=None, axis=0, keepdims=True) + assert_equal(res[4], {'axis': 0, 'keepdims': True}) + res = np.multiply.reduce(a, None, out=(None,), dtype=None) + assert_equal(res[4], {'axis': None, 'dtype': None}) + res = np.multiply.reduce(a, 0, None, None, False, 2, True) + assert_equal(res[4], {'axis': 0, 'dtype': None, 'keepdims': False, + 'initial': 2, 'where': True}) + # np._NoValue ignored for initial + res = np.multiply.reduce(a, 0, None, None, False, + np._NoValue, True) + assert_equal(res[4], {'axis': 0, 'dtype': None, 'keepdims': False, + 'where': True}) + # None kept for initial, True for where. + res = np.multiply.reduce(a, 0, None, None, False, None, True) + assert_equal(res[4], {'axis': 0, 'dtype': None, 'keepdims': False, + 'initial': None, 'where': True}) + + # reduce, wrong args + assert_raises(ValueError, np.multiply.reduce, a, out=()) + assert_raises(ValueError, np.multiply.reduce, a, out=('out0', 'out1')) + assert_raises(TypeError, np.multiply.reduce, a, 'axis0', axis='axis0') + + # accumulate, pos args + res = np.multiply.accumulate(a, 'axis0', 'dtype0', 'out0') + assert_equal(res[0], a) + assert_equal(res[1], np.multiply) + assert_equal(res[2], 'accumulate') + assert_equal(res[3], (a,)) + assert_equal(res[4], {'dtype': 'dtype0', + 'out': ('out0',), + 'axis': 'axis0'}) + + # accumulate, kwargs + res = np.multiply.accumulate(a, axis='axis0', dtype='dtype0', + out='out0') + assert_equal(res[0], a) + assert_equal(res[1], np.multiply) + assert_equal(res[2], 'accumulate') + assert_equal(res[3], (a,)) + assert_equal(res[4], {'dtype': 'dtype0', + 'out': ('out0',), + 'axis': 'axis0'}) + + # accumulate, output equal to None removed. + res = np.multiply.accumulate(a, 0, None, None) + assert_equal(res[4], {'axis': 0, 'dtype': None}) + res = np.multiply.accumulate(a, out=None, axis=0, dtype='dtype1') + assert_equal(res[4], {'axis': 0, 'dtype': 'dtype1'}) + res = np.multiply.accumulate(a, None, out=(None,), dtype=None) + assert_equal(res[4], {'axis': None, 'dtype': None}) + + # accumulate, wrong args + assert_raises(ValueError, np.multiply.accumulate, a, out=()) + assert_raises(ValueError, np.multiply.accumulate, a, + out=('out0', 'out1')) + assert_raises(TypeError, np.multiply.accumulate, a, + 'axis0', axis='axis0') + + # reduceat, pos args + res = np.multiply.reduceat(a, [4, 2], 'axis0', 'dtype0', 'out0') + assert_equal(res[0], a) + assert_equal(res[1], np.multiply) + assert_equal(res[2], 'reduceat') + assert_equal(res[3], (a, [4, 2])) + assert_equal(res[4], {'dtype': 'dtype0', + 'out': ('out0',), + 'axis': 'axis0'}) + + # reduceat, kwargs + res = np.multiply.reduceat(a, [4, 2], axis='axis0', dtype='dtype0', + out='out0') + assert_equal(res[0], a) + assert_equal(res[1], np.multiply) + assert_equal(res[2], 'reduceat') + assert_equal(res[3], (a, [4, 2])) + assert_equal(res[4], {'dtype': 'dtype0', + 'out': ('out0',), + 'axis': 'axis0'}) + + # reduceat, output equal to None removed. + res = np.multiply.reduceat(a, [4, 2], 0, None, None) + assert_equal(res[4], {'axis': 0, 'dtype': None}) + res = np.multiply.reduceat(a, [4, 2], axis=None, out=None, dtype='dt') + assert_equal(res[4], {'axis': None, 'dtype': 'dt'}) + res = np.multiply.reduceat(a, [4, 2], None, None, out=(None,)) + assert_equal(res[4], {'axis': None, 'dtype': None}) + + # reduceat, wrong args + assert_raises(ValueError, np.multiply.reduce, a, [4, 2], out=()) + assert_raises(ValueError, np.multiply.reduce, a, [4, 2], + out=('out0', 'out1')) + assert_raises(TypeError, np.multiply.reduce, a, [4, 2], + 'axis0', axis='axis0') + + # outer + res = np.multiply.outer(a, 42) + assert_equal(res[0], a) + assert_equal(res[1], np.multiply) + assert_equal(res[2], 'outer') + assert_equal(res[3], (a, 42)) + assert_equal(res[4], {}) + + # outer, wrong args + assert_raises(TypeError, np.multiply.outer, a) + assert_raises(TypeError, np.multiply.outer, a, a, a, a) + assert_raises(TypeError, np.multiply.outer, a, a, sig='a', signature='a') + + # at + res = np.multiply.at(a, [4, 2], 'b0') + assert_equal(res[0], a) + assert_equal(res[1], np.multiply) + assert_equal(res[2], 'at') + assert_equal(res[3], (a, [4, 2], 'b0')) + + # at, wrong args + assert_raises(TypeError, np.multiply.at, a) + assert_raises(TypeError, np.multiply.at, a, a, a, a) + + def test_ufunc_override_out(self): + + class A: + def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): + return kwargs + + class B: + def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): + return kwargs + + a = A() + b = B() + res0 = np.multiply(a, b, 'out_arg') + res1 = np.multiply(a, b, out='out_arg') + res2 = np.multiply(2, b, 'out_arg') + res3 = np.multiply(3, b, out='out_arg') + res4 = np.multiply(a, 4, 'out_arg') + res5 = np.multiply(a, 5, out='out_arg') + + assert_equal(res0['out'][0], 'out_arg') + assert_equal(res1['out'][0], 'out_arg') + assert_equal(res2['out'][0], 'out_arg') + assert_equal(res3['out'][0], 'out_arg') + assert_equal(res4['out'][0], 'out_arg') + assert_equal(res5['out'][0], 'out_arg') + + # ufuncs with multiple output modf and frexp. + res6 = np.modf(a, 'out0', 'out1') + res7 = np.frexp(a, 'out0', 'out1') + assert_equal(res6['out'][0], 'out0') + assert_equal(res6['out'][1], 'out1') + assert_equal(res7['out'][0], 'out0') + assert_equal(res7['out'][1], 'out1') + + # While we're at it, check that default output is never passed on. + assert_(np.sin(a, None) == {}) + assert_(np.sin(a, out=None) == {}) + assert_(np.sin(a, out=(None,)) == {}) + assert_(np.modf(a, None) == {}) + assert_(np.modf(a, None, None) == {}) + assert_(np.modf(a, out=(None, None)) == {}) + with assert_raises(TypeError): + # Out argument must be tuple, since there are multiple outputs. + np.modf(a, out=None) + + # don't give positional and output argument, or too many arguments. + # wrong number of arguments in the tuple is an error too. + assert_raises(TypeError, np.multiply, a, b, 'one', out='two') + assert_raises(TypeError, np.multiply, a, b, 'one', 'two') + assert_raises(ValueError, np.multiply, a, b, out=('one', 'two')) + assert_raises(TypeError, np.multiply, a, out=()) + assert_raises(TypeError, np.modf, a, 'one', out=('two', 'three')) + assert_raises(TypeError, np.modf, a, 'one', 'two', 'three') + assert_raises(ValueError, np.modf, a, out=('one', 'two', 'three')) + assert_raises(ValueError, np.modf, a, out=('one',)) + + def test_ufunc_override_where(self): + + class OverriddenArrayOld(np.ndarray): + + def _unwrap(self, objs): + cls = type(self) + result = [] + for obj in objs: + if isinstance(obj, cls): + obj = np.array(obj) + elif type(obj) != np.ndarray: + return NotImplemented + result.append(obj) + return result + + def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): + + inputs = self._unwrap(inputs) + if inputs is NotImplemented: + return NotImplemented + + kwargs = kwargs.copy() + if "out" in kwargs: + kwargs["out"] = self._unwrap(kwargs["out"]) + if kwargs["out"] is NotImplemented: + return NotImplemented + + r = super().__array_ufunc__(ufunc, method, *inputs, **kwargs) + if r is not NotImplemented: + r = r.view(type(self)) + + return r + + class OverriddenArrayNew(OverriddenArrayOld): + def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): + + kwargs = kwargs.copy() + if "where" in kwargs: + kwargs["where"] = self._unwrap((kwargs["where"], )) + if kwargs["where"] is NotImplemented: + return NotImplemented + else: + kwargs["where"] = kwargs["where"][0] + + r = super().__array_ufunc__(ufunc, method, *inputs, **kwargs) + if r is not NotImplemented: + r = r.view(type(self)) + + return r + + ufunc = np.negative + + array = np.array([1, 2, 3]) + where = np.array([True, False, True]) + expected = ufunc(array, where=where) + + with pytest.raises(TypeError): + ufunc(array, where=where.view(OverriddenArrayOld)) + + result_1 = ufunc( + array, + where=where.view(OverriddenArrayNew) + ) + assert isinstance(result_1, OverriddenArrayNew) + assert np.all(np.array(result_1) == expected, where=where) + + result_2 = ufunc( + array.view(OverriddenArrayNew), + where=where.view(OverriddenArrayNew) + ) + assert isinstance(result_2, OverriddenArrayNew) + assert np.all(np.array(result_2) == expected, where=where) + + def test_ufunc_override_exception(self): + + class A: + def __array_ufunc__(self, *a, **kwargs): + raise ValueError("oops") + + a = A() + assert_raises(ValueError, np.negative, 1, out=a) + assert_raises(ValueError, np.negative, a) + assert_raises(ValueError, np.divide, 1., a) + + def test_ufunc_override_not_implemented(self): + + class A: + def __array_ufunc__(self, *args, **kwargs): + return NotImplemented + + msg = ("operand type(s) all returned NotImplemented from " + "__array_ufunc__(, '__call__', <*>): 'A'") + with assert_raises_regex(TypeError, fnmatch.translate(msg)): + np.negative(A()) + + msg = ("operand type(s) all returned NotImplemented from " + "__array_ufunc__(, '__call__', <*>, , " + "out=(1,)): 'A', 'object', 'int'") + with assert_raises_regex(TypeError, fnmatch.translate(msg)): + np.add(A(), object(), out=1) + + def test_ufunc_override_disabled(self): + + class OptOut: + __array_ufunc__ = None + + opt_out = OptOut() + + # ufuncs always raise + msg = "operand 'OptOut' does not support ufuncs" + with assert_raises_regex(TypeError, msg): + np.add(opt_out, 1) + with assert_raises_regex(TypeError, msg): + np.add(1, opt_out) + with assert_raises_regex(TypeError, msg): + np.negative(opt_out) + + # opt-outs still hold even when other arguments have pathological + # __array_ufunc__ implementations + + class GreedyArray: + def __array_ufunc__(self, *args, **kwargs): + return self + + greedy = GreedyArray() + assert_(np.negative(greedy) is greedy) + with assert_raises_regex(TypeError, msg): + np.add(greedy, opt_out) + with assert_raises_regex(TypeError, msg): + np.add(greedy, 1, out=opt_out) + + def test_gufunc_override(self): + # gufunc are just ufunc instances, but follow a different path, + # so check __array_ufunc__ overrides them properly. + class A: + def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): + return self, ufunc, method, inputs, kwargs + + inner1d = ncu_tests.inner1d + a = A() + res = inner1d(a, a) + assert_equal(res[0], a) + assert_equal(res[1], inner1d) + assert_equal(res[2], '__call__') + assert_equal(res[3], (a, a)) + assert_equal(res[4], {}) + + res = inner1d(1, 1, out=a) + assert_equal(res[0], a) + assert_equal(res[1], inner1d) + assert_equal(res[2], '__call__') + assert_equal(res[3], (1, 1)) + assert_equal(res[4], {'out': (a,)}) + + # wrong number of arguments in the tuple is an error too. + assert_raises(TypeError, inner1d, a, out='two') + assert_raises(TypeError, inner1d, a, a, 'one', out='two') + assert_raises(TypeError, inner1d, a, a, 'one', 'two') + assert_raises(ValueError, inner1d, a, a, out=('one', 'two')) + assert_raises(ValueError, inner1d, a, a, out=()) + + def test_ufunc_override_with_super(self): + # NOTE: this class is used in doc/source/user/basics.subclassing.rst + # if you make any changes here, do update it there too. + class A(np.ndarray): + def __array_ufunc__(self, ufunc, method, *inputs, out=None, **kwargs): + args = [] + in_no = [] + for i, input_ in enumerate(inputs): + if isinstance(input_, A): + in_no.append(i) + args.append(input_.view(np.ndarray)) + else: + args.append(input_) + + outputs = out + out_no = [] + if outputs: + out_args = [] + for j, output in enumerate(outputs): + if isinstance(output, A): + out_no.append(j) + out_args.append(output.view(np.ndarray)) + else: + out_args.append(output) + kwargs['out'] = tuple(out_args) + else: + outputs = (None,) * ufunc.nout + + info = {} + if in_no: + info['inputs'] = in_no + if out_no: + info['outputs'] = out_no + + results = super().__array_ufunc__(ufunc, method, + *args, **kwargs) + if results is NotImplemented: + return NotImplemented + + if method == 'at': + if isinstance(inputs[0], A): + inputs[0].info = info + return + + if ufunc.nout == 1: + results = (results,) + + results = tuple((np.asarray(result).view(A) + if output is None else output) + for result, output in zip(results, outputs)) + if results and isinstance(results[0], A): + results[0].info = info + + return results[0] if len(results) == 1 else results + + class B: + def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): + if any(isinstance(input_, A) for input_ in inputs): + return "A!" + else: + return NotImplemented + + d = np.arange(5.) + # 1 input, 1 output + a = np.arange(5.).view(A) + b = np.sin(a) + check = np.sin(d) + assert_(np.all(check == b)) + assert_equal(b.info, {'inputs': [0]}) + b = np.sin(d, out=(a,)) + assert_(np.all(check == b)) + assert_equal(b.info, {'outputs': [0]}) + assert_(b is a) + a = np.arange(5.).view(A) + b = np.sin(a, out=a) + assert_(np.all(check == b)) + assert_equal(b.info, {'inputs': [0], 'outputs': [0]}) + + # 1 input, 2 outputs + a = np.arange(5.).view(A) + b1, b2 = np.modf(a) + assert_equal(b1.info, {'inputs': [0]}) + b1, b2 = np.modf(d, out=(None, a)) + assert_(b2 is a) + assert_equal(b1.info, {'outputs': [1]}) + a = np.arange(5.).view(A) + b = np.arange(5.).view(A) + c1, c2 = np.modf(a, out=(a, b)) + assert_(c1 is a) + assert_(c2 is b) + assert_equal(c1.info, {'inputs': [0], 'outputs': [0, 1]}) + + # 2 input, 1 output + a = np.arange(5.).view(A) + b = np.arange(5.).view(A) + c = np.add(a, b, out=a) + assert_(c is a) + assert_equal(c.info, {'inputs': [0, 1], 'outputs': [0]}) + # some tests with a non-ndarray subclass + a = np.arange(5.) + b = B() + assert_(a.__array_ufunc__(np.add, '__call__', a, b) is NotImplemented) + assert_(b.__array_ufunc__(np.add, '__call__', a, b) is NotImplemented) + assert_raises(TypeError, np.add, a, b) + a = a.view(A) + assert_(a.__array_ufunc__(np.add, '__call__', a, b) is NotImplemented) + assert_(b.__array_ufunc__(np.add, '__call__', a, b) == "A!") + assert_(np.add(a, b) == "A!") + # regression check for gh-9102 -- tests ufunc.reduce implicitly. + d = np.array([[1, 2, 3], [1, 2, 3]]) + a = d.view(A) + c = a.any() + check = d.any() + assert_equal(c, check) + assert_(c.info, {'inputs': [0]}) + c = a.max() + check = d.max() + assert_equal(c, check) + assert_(c.info, {'inputs': [0]}) + b = np.array(0).view(A) + c = a.max(out=b) + assert_equal(c, check) + assert_(c is b) + assert_(c.info, {'inputs': [0], 'outputs': [0]}) + check = a.max(axis=0) + b = np.zeros_like(check).view(A) + c = a.max(axis=0, out=b) + assert_equal(c, check) + assert_(c is b) + assert_(c.info, {'inputs': [0], 'outputs': [0]}) + # simple explicit tests of reduce, accumulate, reduceat + check = np.add.reduce(d, axis=1) + c = np.add.reduce(a, axis=1) + assert_equal(c, check) + assert_(c.info, {'inputs': [0]}) + b = np.zeros_like(c) + c = np.add.reduce(a, 1, None, b) + assert_equal(c, check) + assert_(c is b) + assert_(c.info, {'inputs': [0], 'outputs': [0]}) + check = np.add.accumulate(d, axis=0) + c = np.add.accumulate(a, axis=0) + assert_equal(c, check) + assert_(c.info, {'inputs': [0]}) + b = np.zeros_like(c) + c = np.add.accumulate(a, 0, None, b) + assert_equal(c, check) + assert_(c is b) + assert_(c.info, {'inputs': [0], 'outputs': [0]}) + indices = [0, 2, 1] + check = np.add.reduceat(d, indices, axis=1) + c = np.add.reduceat(a, indices, axis=1) + assert_equal(c, check) + assert_(c.info, {'inputs': [0]}) + b = np.zeros_like(c) + c = np.add.reduceat(a, indices, 1, None, b) + assert_equal(c, check) + assert_(c is b) + assert_(c.info, {'inputs': [0], 'outputs': [0]}) + # and a few tests for at + d = np.array([[1, 2, 3], [1, 2, 3]]) + check = d.copy() + a = d.copy().view(A) + np.add.at(check, ([0, 1], [0, 2]), 1.) + np.add.at(a, ([0, 1], [0, 2]), 1.) + assert_equal(a, check) + assert_(a.info, {'inputs': [0]}) + b = np.array(1.).view(A) + a = d.copy().view(A) + np.add.at(a, ([0, 1], [0, 2]), b) + assert_equal(a, check) + assert_(a.info, {'inputs': [0, 2]}) + + def test_array_ufunc_direct_call(self): + # This is mainly a regression test for gh-24023 (shouldn't segfault) + a = np.array(1) + with pytest.raises(TypeError): + a.__array_ufunc__() + + # No kwargs means kwargs may be NULL on the C-level + with pytest.raises(TypeError): + a.__array_ufunc__(1, 2) + + # And the same with a valid call: + res = a.__array_ufunc__(np.add, "__call__", a, a) + assert_array_equal(res, a + a) + + def test_ufunc_docstring(self): + original_doc = np.add.__doc__ + new_doc = "new docs" + expected_dict = ( + {} if IS_PYPY else {"__module__": "numpy", "__qualname__": "add"} + ) + + np.add.__doc__ = new_doc + assert np.add.__doc__ == new_doc + assert np.add.__dict__["__doc__"] == new_doc + + del np.add.__doc__ + assert np.add.__doc__ == original_doc + assert np.add.__dict__ == expected_dict + + np.add.__dict__["other"] = 1 + np.add.__dict__["__doc__"] = new_doc + assert np.add.__doc__ == new_doc + + del np.add.__dict__["__doc__"] + assert np.add.__doc__ == original_doc + del np.add.__dict__["other"] + assert np.add.__dict__ == expected_dict + + +class TestChoose: + def test_mixed(self): + c = np.array([True, True]) + a = np.array([True, True]) + assert_equal(np.choose(c, (a, 1)), np.array([1, 1])) + + +class TestRationalFunctions: + def test_lcm(self): + self._test_lcm_inner(np.int16) + self._test_lcm_inner(np.uint16) + + def test_lcm_object(self): + self._test_lcm_inner(np.object_) + + def test_gcd(self): + self._test_gcd_inner(np.int16) + self._test_lcm_inner(np.uint16) + + def test_gcd_object(self): + self._test_gcd_inner(np.object_) + + def _test_lcm_inner(self, dtype): + # basic use + a = np.array([12, 120], dtype=dtype) + b = np.array([20, 200], dtype=dtype) + assert_equal(np.lcm(a, b), [60, 600]) + + if not issubclass(dtype, np.unsignedinteger): + # negatives are ignored + a = np.array([12, -12, 12, -12], dtype=dtype) + b = np.array([20, 20, -20, -20], dtype=dtype) + assert_equal(np.lcm(a, b), [60] * 4) + + # reduce + a = np.array([3, 12, 20], dtype=dtype) + assert_equal(np.lcm.reduce([3, 12, 20]), 60) + + # broadcasting, and a test including 0 + a = np.arange(6).astype(dtype) + b = 20 + assert_equal(np.lcm(a, b), [0, 20, 20, 60, 20, 20]) + + def _test_gcd_inner(self, dtype): + # basic use + a = np.array([12, 120], dtype=dtype) + b = np.array([20, 200], dtype=dtype) + assert_equal(np.gcd(a, b), [4, 40]) + + if not issubclass(dtype, np.unsignedinteger): + # negatives are ignored + a = np.array([12, -12, 12, -12], dtype=dtype) + b = np.array([20, 20, -20, -20], dtype=dtype) + assert_equal(np.gcd(a, b), [4] * 4) + + # reduce + a = np.array([15, 25, 35], dtype=dtype) + assert_equal(np.gcd.reduce(a), 5) + + # broadcasting, and a test including 0 + a = np.arange(6).astype(dtype) + b = 20 + assert_equal(np.gcd(a, b), [20, 1, 2, 1, 4, 5]) + + def test_lcm_overflow(self): + # verify that we don't overflow when a*b does overflow + big = np.int32(np.iinfo(np.int32).max // 11) + a = 2 * big + b = 5 * big + assert_equal(np.lcm(a, b), 10 * big) + + def test_gcd_overflow(self): + for dtype in (np.int32, np.int64): + # verify that we don't overflow when taking abs(x) + # not relevant for lcm, where the result is unrepresentable anyway + a = dtype(np.iinfo(dtype).min) # negative power of two + q = -(a // 4) + assert_equal(np.gcd(a, q * 3), q) + assert_equal(np.gcd(a, -q * 3), q) + + def test_decimal(self): + from decimal import Decimal + a = np.array([1, 1, -1, -1]) * Decimal('0.20') + b = np.array([1, -1, 1, -1]) * Decimal('0.12') + + assert_equal(np.gcd(a, b), 4 * [Decimal('0.04')]) + assert_equal(np.lcm(a, b), 4 * [Decimal('0.60')]) + + def test_float(self): + # not well-defined on float due to rounding errors + assert_raises(TypeError, np.gcd, 0.3, 0.4) + assert_raises(TypeError, np.lcm, 0.3, 0.4) + + def test_huge_integers(self): + # Converting to an array first is a bit different as it means we + # have an explicit object dtype: + assert_equal(np.array(2**200), 2**200) + # Special promotion rules should ensure that this also works for + # two Python integers (even if slow). + # (We do this for comparisons, as the result is always bool and + # we also special case array comparisons with Python integers) + np.equal(2**200, 2**200) + + # But, we cannot do this when it would affect the result dtype: + with pytest.raises(OverflowError): + np.gcd(2**100, 3**100) + + # Asking for `object` explicitly is fine, though: + assert np.gcd(2**100, 3**100, dtype=object) == 1 + + # As of now, the below work, because it is using arrays (which + # will be object arrays) + a = np.array(2**100 * 3**5) + b = np.array([2**100 * 5**7, 2**50 * 3**10]) + assert_equal(np.gcd(a, b), [2**100, 2**50 * 3**5]) + assert_equal(np.lcm(a, b), [2**100 * 3**5 * 5**7, 2**100 * 3**10]) + + def test_inf_and_nan(self): + inf = np.array([np.inf], dtype=np.object_) + assert_raises(ValueError, np.gcd, inf, 1) + assert_raises(ValueError, np.gcd, 1, inf) + assert_raises(ValueError, np.gcd, np.nan, inf) + assert_raises(TypeError, np.gcd, 4, float(np.inf)) + + +class TestRoundingFunctions: + + def test_object_direct(self): + """ test direct implementation of these magic methods """ + class C: + def __floor__(self): + return 1 + + def __ceil__(self): + return 2 + + def __trunc__(self): + return 3 + + arr = np.array([C(), C()]) + assert_equal(np.floor(arr), [1, 1]) + assert_equal(np.ceil(arr), [2, 2]) + assert_equal(np.trunc(arr), [3, 3]) + + def test_object_indirect(self): + """ test implementations via __float__ """ + class C: + def __float__(self): + return -2.5 + + arr = np.array([C(), C()]) + assert_equal(np.floor(arr), [-3, -3]) + assert_equal(np.ceil(arr), [-2, -2]) + with pytest.raises(TypeError): + np.trunc(arr) # consistent with math.trunc + + def test_fraction(self): + f = Fraction(-4, 3) + assert_equal(np.floor(f), -2) + assert_equal(np.ceil(f), -1) + assert_equal(np.trunc(f), -1) + + @pytest.mark.parametrize('func', [np.floor, np.ceil, np.trunc]) + @pytest.mark.parametrize('dtype', [np.bool, np.float64, np.float32, + np.int64, np.uint32]) + def test_output_dtype(self, func, dtype): + arr = np.array([-2, 0, 4, 8]).astype(dtype) + result = func(arr) + assert_equal(arr, result) + assert result.dtype == dtype + + +class TestComplexFunctions: + funcs = [np.arcsin, np.arccos, np.arctan, np.arcsinh, np.arccosh, + np.arctanh, np.sin, np.cos, np.tan, np.exp, + np.exp2, np.log, np.sqrt, np.log10, np.log2, + np.log1p] + + def test_it(self): + for f in self.funcs: + if f is np.arccosh: + x = 1.5 + else: + x = .5 + fr = f(x) + fz = f(complex(x)) + assert_almost_equal(fz.real, fr, err_msg=f'real part {f}') + assert_almost_equal(fz.imag, 0., err_msg=f'imag part {f}') + + @pytest.mark.xfail(IS_WASM, reason="doesn't work") + def test_precisions_consistent(self): + z = 1 + 1j + for f in self.funcs: + fcf = f(np.csingle(z)) + fcd = f(np.cdouble(z)) + fcl = f(np.clongdouble(z)) + assert_almost_equal(fcf, fcd, decimal=6, err_msg=f'fch-fcd {f}') + assert_almost_equal(fcl, fcd, decimal=15, err_msg=f'fch-fcl {f}') + + @pytest.mark.xfail(IS_WASM, reason="doesn't work") + def test_branch_cuts(self): + # check branch cuts and continuity on them + _check_branch_cut(np.log, -0.5, 1j, 1, -1, True) # noqa: E221 + _check_branch_cut(np.log2, -0.5, 1j, 1, -1, True) # noqa: E221 + _check_branch_cut(np.log10, -0.5, 1j, 1, -1, True) + _check_branch_cut(np.log1p, -1.5, 1j, 1, -1, True) + _check_branch_cut(np.sqrt, -0.5, 1j, 1, -1, True) # noqa: E221 + + _check_branch_cut(np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True) + _check_branch_cut(np.arccos, [ -2, 2], [1j, 1j], 1, -1, True) + _check_branch_cut(np.arctan, [0 - 2j, 2j], [1, 1], -1, 1, True) + + _check_branch_cut(np.arcsinh, [0 - 2j, 2j], [1, 1], -1, 1, True) + _check_branch_cut(np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True) + _check_branch_cut(np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True) + + # check against bogus branch cuts: assert continuity between quadrants + _check_branch_cut(np.arcsin, [0 - 2j, 2j], [ 1, 1], 1, 1) + _check_branch_cut(np.arccos, [0 - 2j, 2j], [ 1, 1], 1, 1) + _check_branch_cut(np.arctan, [ -2, 2], [1j, 1j], 1, 1) + + _check_branch_cut(np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1) + _check_branch_cut(np.arccosh, [0 - 2j, 2j, 2], [1, 1, 1j], 1, 1) + _check_branch_cut(np.arctanh, [0 - 2j, 2j, 0], [1, 1, 1j], 1, 1) + + @pytest.mark.xfail(IS_WASM, reason="doesn't work") + def test_branch_cuts_complex64(self): + # check branch cuts and continuity on them + _check_branch_cut(np.log, -0.5, 1j, 1, -1, True, np.complex64) # noqa: E221 + _check_branch_cut(np.log2, -0.5, 1j, 1, -1, True, np.complex64) # noqa: E221 + _check_branch_cut(np.log10, -0.5, 1j, 1, -1, True, np.complex64) + _check_branch_cut(np.log1p, -1.5, 1j, 1, -1, True, np.complex64) + _check_branch_cut(np.sqrt, -0.5, 1j, 1, -1, True, np.complex64) # noqa: E221 + + _check_branch_cut(np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64) + _check_branch_cut(np.arccos, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64) + _check_branch_cut(np.arctan, [0 - 2j, 2j], [1, 1], -1, 1, True, np.complex64) + + _check_branch_cut(np.arcsinh, [0 - 2j, 2j], [1, 1], -1, 1, True, np.complex64) + _check_branch_cut(np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True, np.complex64) + _check_branch_cut(np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64) + + # check against bogus branch cuts: assert continuity between quadrants + _check_branch_cut(np.arcsin, [0 - 2j, 2j], [ 1, 1], 1, 1, False, np.complex64) + _check_branch_cut(np.arccos, [0 - 2j, 2j], [ 1, 1], 1, 1, False, np.complex64) + _check_branch_cut(np.arctan, [ -2, 2], [1j, 1j], 1, 1, False, np.complex64) + + _check_branch_cut(np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1, False, np.complex64) + _check_branch_cut(np.arccosh, [0 - 2j, 2j, 2], [1, 1, 1j], 1, 1, False, np.complex64) + _check_branch_cut(np.arctanh, [0 - 2j, 2j, 0], [1, 1, 1j], 1, 1, False, np.complex64) + + def test_against_cmath(self): + import cmath + + points = [-1 - 1j, -1 + 1j, +1 - 1j, +1 + 1j] + name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan', + 'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'} + atol = 4 * np.finfo(complex).eps + for func in self.funcs: + fname = func.__name__.split('.')[-1] + cname = name_map.get(fname, fname) + try: + cfunc = getattr(cmath, cname) + except AttributeError: + continue + for p in points: + a = complex(func(np.complex128(p))) + b = cfunc(p) + assert_( + abs(a - b) < atol, + f"{fname} {p}: {a}; cmath: {b}" + ) + + @pytest.mark.xfail( + # manylinux2014 uses glibc2.17 + _glibc_older_than("2.18"), + reason="Older glibc versions are imprecise (maybe passes with SIMD?)" + ) + @pytest.mark.xfail(IS_WASM, reason="doesn't work") + @pytest.mark.parametrize('dtype', [ + np.complex64, np.complex128, np.clongdouble + ]) + def test_loss_of_precision(self, dtype): + """Check loss of precision in complex arc* functions""" + if dtype is np.clongdouble and platform.machine() != 'x86_64': + # Failures on musllinux, aarch64, s390x, ppc64le (see gh-17554) + pytest.skip('Only works reliably for x86-64 and recent glibc') + + # Check against known-good functions + + info = np.finfo(dtype) + real_dtype = dtype(0.).real.dtype + eps = info.eps + + def check(x, rtol): + x = x.astype(real_dtype) + + z = x.astype(dtype) + d = np.absolute(np.arcsinh(x) / np.arcsinh(z).real - 1) + assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(), + 'arcsinh')) + + z = (1j * x).astype(dtype) + d = np.absolute(np.arcsinh(x) / np.arcsin(z).imag - 1) + assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(), + 'arcsin')) + + z = x.astype(dtype) + d = np.absolute(np.arctanh(x) / np.arctanh(z).real - 1) + assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(), + 'arctanh')) + + z = (1j * x).astype(dtype) + d = np.absolute(np.arctanh(x) / np.arctan(z).imag - 1) + assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(), + 'arctan')) + + # The switchover was chosen as 1e-3; hence there can be up to + # ~eps/1e-3 of relative cancellation error before it + + x_series = np.logspace(-20, -3.001, 200) + x_basic = np.logspace(-2.999, 0, 10, endpoint=False) + + if dtype is np.clongdouble: + if bad_arcsinh(): + pytest.skip("Trig functions of np.clongdouble values known " + "to be inaccurate on aarch64 and PPC for some " + "compilation configurations.") + # It's not guaranteed that the system-provided arc functions + # are accurate down to a few epsilons. (Eg. on Linux 64-bit) + # So, give more leeway for long complex tests here: + check(x_series, 50.0 * eps) + else: + check(x_series, 2.1 * eps) + check(x_basic, 2.0 * eps / 1e-3) + + # Check a few points + + z = np.array([1e-5 * (1 + 1j)], dtype=dtype) + p = 9.999999999333333333e-6 + 1.000000000066666666e-5j + d = np.absolute(1 - np.arctanh(z) / p) + assert_(np.all(d < 1e-15)) + + p = 1.0000000000333333333e-5 + 9.999999999666666667e-6j + d = np.absolute(1 - np.arcsinh(z) / p) + assert_(np.all(d < 1e-15)) + + p = 9.999999999333333333e-6j + 1.000000000066666666e-5 + d = np.absolute(1 - np.arctan(z) / p) + assert_(np.all(d < 1e-15)) + + p = 1.0000000000333333333e-5j + 9.999999999666666667e-6 + d = np.absolute(1 - np.arcsin(z) / p) + assert_(np.all(d < 1e-15)) + + # Check continuity across switchover points + + def check(func, z0, d=1): + z0 = np.asarray(z0, dtype=dtype) + zp = z0 + abs(z0) * d * eps * 2 + zm = z0 - abs(z0) * d * eps * 2 + assert_(np.all(zp != zm), (zp, zm)) + + # NB: the cancellation error at the switchover is at least eps + good = (abs(func(zp) - func(zm)) < 2 * eps) + assert_(np.all(good), (func, z0[~good])) + + for func in (np.arcsinh, np.arcsinh, np.arcsin, np.arctanh, np.arctan): + pts = [rp + 1j * ip for rp in (-1e-3, 0, 1e-3) for ip in (-1e-3, 0, 1e-3) + if rp != 0 or ip != 0] + check(func, pts, 1) + check(func, pts, 1j) + check(func, pts, 1 + 1j) + + @np.errstate(all="ignore") + def test_promotion_corner_cases(self): + for func in self.funcs: + assert func(np.float16(1)).dtype == np.float16 + # Integer to low precision float promotion is a dubious choice: + assert func(np.uint8(1)).dtype == np.float16 + assert func(np.int16(1)).dtype == np.float32 + + +class TestAttributes: + def test_attributes(self): + add = ncu.add + assert_equal(add.__name__, 'add') + assert_(add.ntypes >= 18) # don't fail if types added + assert_('ii->i' in add.types) + assert_equal(add.nin, 2) + assert_equal(add.nout, 1) + assert_equal(add.identity, 0) + + def test_doc(self): + # don't bother checking the long list of kwargs, which are likely to + # change + assert_(ncu.add.__doc__.startswith( + "add(x1, x2, /, out=None, *, where=True")) + assert_(ncu.frexp.__doc__.startswith( + "frexp(x[, out1, out2], / [, out=(None, None)], *, where=True")) + + +class TestSubclass: + + def test_subclass_op(self): + + class simple(np.ndarray): + def __new__(subtype, shape): + self = np.ndarray.__new__(subtype, shape, dtype=object) + self.fill(0) + return self + + a = simple((3, 4)) + assert_equal(a + a, a) + + +class TestFrompyfunc: + + def test_identity(self): + def mul(a, b): + return a * b + + # with identity=value + mul_ufunc = np.frompyfunc(mul, nin=2, nout=1, identity=1) + assert_equal(mul_ufunc.reduce([2, 3, 4]), 24) + assert_equal(mul_ufunc.reduce(np.ones((2, 2)), axis=(0, 1)), 1) + assert_equal(mul_ufunc.reduce([]), 1) + + # with identity=None (reorderable) + mul_ufunc = np.frompyfunc(mul, nin=2, nout=1, identity=None) + assert_equal(mul_ufunc.reduce([2, 3, 4]), 24) + assert_equal(mul_ufunc.reduce(np.ones((2, 2)), axis=(0, 1)), 1) + assert_raises(ValueError, lambda: mul_ufunc.reduce([])) + + # with no identity (not reorderable) + mul_ufunc = np.frompyfunc(mul, nin=2, nout=1) + assert_equal(mul_ufunc.reduce([2, 3, 4]), 24) + assert_raises(ValueError, lambda: mul_ufunc.reduce(np.ones((2, 2)), axis=(0, 1))) + assert_raises(ValueError, lambda: mul_ufunc.reduce([])) + + +def _check_branch_cut(f, x0, dx, re_sign=1, im_sign=-1, sig_zero_ok=False, + dtype=complex): + """ + Check for a branch cut in a function. + + Assert that `x0` lies on a branch cut of function `f` and `f` is + continuous from the direction `dx`. + + Parameters + ---------- + f : func + Function to check + x0 : array-like + Point on branch cut + dx : array-like + Direction to check continuity in + re_sign, im_sign : {1, -1} + Change of sign of the real or imaginary part expected + sig_zero_ok : bool + Whether to check if the branch cut respects signed zero (if applicable) + dtype : dtype + Dtype to check (should be complex) + + """ + x0 = np.atleast_1d(x0).astype(dtype) + dx = np.atleast_1d(dx).astype(dtype) + + if np.dtype(dtype).char == 'F': + scale = np.finfo(dtype).eps * 1e2 + atol = np.float32(1e-2) + else: + scale = np.finfo(dtype).eps * 1e3 + atol = 1e-4 + + y0 = f(x0) + yp = f(x0 + dx * scale * np.absolute(x0) / np.absolute(dx)) + ym = f(x0 - dx * scale * np.absolute(x0) / np.absolute(dx)) + + assert_(np.all(np.absolute(y0.real - yp.real) < atol), (y0, yp)) + assert_(np.all(np.absolute(y0.imag - yp.imag) < atol), (y0, yp)) + assert_(np.all(np.absolute(y0.real - ym.real * re_sign) < atol), (y0, ym)) + assert_(np.all(np.absolute(y0.imag - ym.imag * im_sign) < atol), (y0, ym)) + + if sig_zero_ok: + # check that signed zeros also work as a displacement + jr = (x0.real == 0) & (dx.real != 0) + ji = (x0.imag == 0) & (dx.imag != 0) + if np.any(jr): + x = x0[jr] + x.real = ncu.NZERO + ym = f(x) + assert_(np.all(np.absolute(y0[jr].real - ym.real * re_sign) < atol), (y0[jr], ym)) + assert_(np.all(np.absolute(y0[jr].imag - ym.imag * im_sign) < atol), (y0[jr], ym)) + + if np.any(ji): + x = x0[ji] + x.imag = ncu.NZERO + ym = f(x) + assert_(np.all(np.absolute(y0[ji].real - ym.real * re_sign) < atol), (y0[ji], ym)) + assert_(np.all(np.absolute(y0[ji].imag - ym.imag * im_sign) < atol), (y0[ji], ym)) + +def test_copysign(): + assert_(np.copysign(1, -1) == -1) + with np.errstate(divide="ignore"): + assert_(1 / np.copysign(0, -1) < 0) + assert_(1 / np.copysign(0, 1) > 0) + assert_(np.signbit(np.copysign(np.nan, -1))) + assert_(not np.signbit(np.copysign(np.nan, 1))) + +def _test_nextafter(t): + one = t(1) + two = t(2) + zero = t(0) + eps = np.finfo(t).eps + assert_(np.nextafter(one, two) - one == eps) + assert_(np.nextafter(one, zero) - one < 0) + assert_(np.isnan(np.nextafter(np.nan, one))) + assert_(np.isnan(np.nextafter(one, np.nan))) + assert_(np.nextafter(one, one) == one) + +def test_nextafter(): + return _test_nextafter(np.float64) + + +def test_nextafterf(): + return _test_nextafter(np.float32) + + +@pytest.mark.skipif(np.finfo(np.double) == np.finfo(np.longdouble), + reason="long double is same as double") +@pytest.mark.xfail(condition=platform.machine().startswith("ppc64"), + reason="IBM double double") +def test_nextafterl(): + return _test_nextafter(np.longdouble) + + +def test_nextafter_0(): + for t, direction in itertools.product(np._core.sctypes['float'], (1, -1)): + # The value of tiny for double double is NaN, so we need to pass the + # assert + with suppress_warnings() as sup: + sup.filter(UserWarning) + if not np.isnan(np.finfo(t).tiny): + tiny = np.finfo(t).tiny + assert_( + 0. < direction * np.nextafter(t(0), t(direction)) < tiny) + assert_equal(np.nextafter(t(0), t(direction)) / t(2.1), direction * 0.0) + +def _test_spacing(t): + one = t(1) + eps = np.finfo(t).eps + nan = t(np.nan) + inf = t(np.inf) + with np.errstate(invalid='ignore'): + assert_equal(np.spacing(one), eps) + assert_(np.isnan(np.spacing(nan))) + assert_(np.isnan(np.spacing(inf))) + assert_(np.isnan(np.spacing(-inf))) + assert_(np.spacing(t(1e30)) != 0) + +def test_spacing(): + return _test_spacing(np.float64) + +def test_spacingf(): + return _test_spacing(np.float32) + + +@pytest.mark.skipif(np.finfo(np.double) == np.finfo(np.longdouble), + reason="long double is same as double") +@pytest.mark.xfail(condition=platform.machine().startswith("ppc64"), + reason="IBM double double") +def test_spacingl(): + return _test_spacing(np.longdouble) + +def test_spacing_gfortran(): + # Reference from this fortran file, built with gfortran 4.3.3 on linux + # 32bits: + # PROGRAM test_spacing + # INTEGER, PARAMETER :: SGL = SELECTED_REAL_KIND(p=6, r=37) + # INTEGER, PARAMETER :: DBL = SELECTED_REAL_KIND(p=13, r=200) + # + # WRITE(*,*) spacing(0.00001_DBL) + # WRITE(*,*) spacing(1.0_DBL) + # WRITE(*,*) spacing(1000._DBL) + # WRITE(*,*) spacing(10500._DBL) + # + # WRITE(*,*) spacing(0.00001_SGL) + # WRITE(*,*) spacing(1.0_SGL) + # WRITE(*,*) spacing(1000._SGL) + # WRITE(*,*) spacing(10500._SGL) + # END PROGRAM + ref = {np.float64: [1.69406589450860068E-021, + 2.22044604925031308E-016, + 1.13686837721616030E-013, + 1.81898940354585648E-012], + np.float32: [9.09494702E-13, + 1.19209290E-07, + 6.10351563E-05, + 9.76562500E-04]} + + for dt, dec_ in zip([np.float32, np.float64], (10, 20)): + x = np.array([1e-5, 1, 1000, 10500], dtype=dt) + assert_array_almost_equal(np.spacing(x), ref[dt], decimal=dec_) + +def test_nextafter_vs_spacing(): + # XXX: spacing does not handle long double yet + for t in [np.float32, np.float64]: + for _f in [1, 1e-5, 1000]: + f = t(_f) + f1 = t(_f + 1) + assert_(np.nextafter(f, f1) - f == np.spacing(f)) + +def test_pos_nan(): + """Check np.nan is a positive nan.""" + assert_(np.signbit(np.nan) == 0) + +def test_reduceat(): + """Test bug in reduceat when structured arrays are not copied.""" + db = np.dtype([('name', 'S11'), ('time', np.int64), ('value', np.float32)]) + a = np.empty([100], dtype=db) + a['name'] = 'Simple' + a['time'] = 10 + a['value'] = 100 + indx = [0, 7, 15, 25] + + h2 = [] + val1 = indx[0] + for val2 in indx[1:]: + h2.append(np.add.reduce(a['value'][val1:val2])) + val1 = val2 + h2.append(np.add.reduce(a['value'][val1:])) + h2 = np.array(h2) + + # test buffered -- this should work + h1 = np.add.reduceat(a['value'], indx) + assert_array_almost_equal(h1, h2) + + # This is when the error occurs. + # test no buffer + np.setbufsize(32) + h1 = np.add.reduceat(a['value'], indx) + np.setbufsize(ncu.UFUNC_BUFSIZE_DEFAULT) + assert_array_almost_equal(h1, h2) + +def test_reduceat_empty(): + """Reduceat should work with empty arrays""" + indices = np.array([], 'i4') + x = np.array([], 'f8') + result = np.add.reduceat(x, indices) + assert_equal(result.dtype, x.dtype) + assert_equal(result.shape, (0,)) + # Another case with a slightly different zero-sized shape + x = np.ones((5, 2)) + result = np.add.reduceat(x, [], axis=0) + assert_equal(result.dtype, x.dtype) + assert_equal(result.shape, (0, 2)) + result = np.add.reduceat(x, [], axis=1) + assert_equal(result.dtype, x.dtype) + assert_equal(result.shape, (5, 0)) + +def test_complex_nan_comparisons(): + nans = [complex(np.nan, 0), complex(0, np.nan), complex(np.nan, np.nan)] + fins = [complex(1, 0), complex(-1, 0), complex(0, 1), complex(0, -1), + complex(1, 1), complex(-1, -1), complex(0, 0)] + + with np.errstate(invalid='ignore'): + for x in nans + fins: + x = np.array([x]) + for y in nans + fins: + y = np.array([y]) + + if np.isfinite(x) and np.isfinite(y): + continue + + assert_equal(x < y, False, err_msg=f"{x!r} < {y!r}") + assert_equal(x > y, False, err_msg=f"{x!r} > {y!r}") + assert_equal(x <= y, False, err_msg=f"{x!r} <= {y!r}") + assert_equal(x >= y, False, err_msg=f"{x!r} >= {y!r}") + assert_equal(x == y, False, err_msg=f"{x!r} == {y!r}") + + +def test_rint_big_int(): + # np.rint bug for large integer values on Windows 32-bit and MKL + # https://github.com/numpy/numpy/issues/6685 + val = 4607998452777363968 + # This is exactly representable in floating point + assert_equal(val, int(float(val))) + # Rint should not change the value + assert_equal(val, np.rint(val)) + + +@pytest.mark.parametrize('ftype', [np.float32, np.float64]) +def test_memoverlap_accumulate(ftype): + # Reproduces bug https://github.com/numpy/numpy/issues/15597 + arr = np.array([0.61, 0.60, 0.77, 0.41, 0.19], dtype=ftype) + out_max = np.array([0.61, 0.61, 0.77, 0.77, 0.77], dtype=ftype) + out_min = np.array([0.61, 0.60, 0.60, 0.41, 0.19], dtype=ftype) + assert_equal(np.maximum.accumulate(arr), out_max) + assert_equal(np.minimum.accumulate(arr), out_min) + +@pytest.mark.parametrize("ufunc, dtype", [ + (ufunc, t[0]) + for ufunc in UFUNCS_BINARY_ACC + for t in ufunc.types + if t[-1] == '?' and t[0] not in 'DFGMmO' +]) +def test_memoverlap_accumulate_cmp(ufunc, dtype): + if ufunc.signature: + pytest.skip('For generic signatures only') + for size in (2, 8, 32, 64, 128, 256): + arr = np.array([0, 1, 1] * size, dtype=dtype) + acc = ufunc.accumulate(arr, dtype='?') + acc_u8 = acc.view(np.uint8) + exp = np.array(list(itertools.accumulate(arr, ufunc)), dtype=np.uint8) + assert_equal(exp, acc_u8) + +@pytest.mark.parametrize("ufunc, dtype", [ + (ufunc, t[0]) + for ufunc in UFUNCS_BINARY_ACC + for t in ufunc.types + if t[0] == t[1] and t[0] == t[-1] and t[0] not in 'DFGMmO?' +]) +def test_memoverlap_accumulate_symmetric(ufunc, dtype): + if ufunc.signature: + pytest.skip('For generic signatures only') + with np.errstate(all='ignore'): + for size in (2, 8, 32, 64, 128, 256): + arr = np.array([0, 1, 2] * size).astype(dtype) + acc = ufunc.accumulate(arr, dtype=dtype) + exp = np.array(list(itertools.accumulate(arr, ufunc)), dtype=dtype) + assert_equal(exp, acc) + +def test_signaling_nan_exceptions(): + with assert_no_warnings(): + a = np.ndarray(shape=(), dtype='float32', buffer=b'\x00\xe0\xbf\xff') + np.isnan(a) + +@pytest.mark.parametrize("arr", [ + np.arange(2), + np.matrix([0, 1]), + np.matrix([[0, 1], [2, 5]]), + ]) +def test_outer_subclass_preserve(arr): + # for gh-8661 + class foo(np.ndarray): + pass + actual = np.multiply.outer(arr.view(foo), arr.view(foo)) + assert actual.__class__.__name__ == 'foo' + +def test_outer_bad_subclass(): + class BadArr1(np.ndarray): + def __array_finalize__(self, obj): + # The outer call reshapes to 3 dims, try to do a bad reshape. + if self.ndim == 3: + self.shape = self.shape + (1,) + + class BadArr2(np.ndarray): + def __array_finalize__(self, obj): + if isinstance(obj, BadArr2): + # outer inserts 1-sized dims. In that case disturb them. + if self.shape[-1] == 1: + self.shape = self.shape[::-1] + + for cls in [BadArr1, BadArr2]: + arr = np.ones((2, 3)).view(cls) + with assert_raises(TypeError) as a: + # The first array gets reshaped (not the second one) + np.add.outer(arr, [1, 2]) + + # This actually works, since we only see the reshaping error: + arr = np.ones((2, 3)).view(cls) + assert type(np.add.outer([1, 2], arr)) is cls + +def test_outer_exceeds_maxdims(): + deep = np.ones((1,) * 33) + with assert_raises(ValueError): + np.add.outer(deep, deep) + +def test_bad_legacy_ufunc_silent_errors(): + # legacy ufuncs can't report errors and NumPy can't check if the GIL + # is released. So NumPy has to check after the GIL is released just to + # cover all bases. `np.power` uses/used to use this. + arr = np.arange(3).astype(np.float64) + + with pytest.raises(RuntimeError, match=r"How unexpected :\)!"): + ncu_tests.always_error(arr, arr) + + with pytest.raises(RuntimeError, match=r"How unexpected :\)!"): + # not contiguous means the fast-path cannot be taken + non_contig = arr.repeat(20).reshape(-1, 6)[:, ::2] + ncu_tests.always_error(non_contig, arr) + + with pytest.raises(RuntimeError, match=r"How unexpected :\)!"): + ncu_tests.always_error.outer(arr, arr) + + with pytest.raises(RuntimeError, match=r"How unexpected :\)!"): + ncu_tests.always_error.reduce(arr) + + with pytest.raises(RuntimeError, match=r"How unexpected :\)!"): + ncu_tests.always_error.reduceat(arr, [0, 1]) + + with pytest.raises(RuntimeError, match=r"How unexpected :\)!"): + ncu_tests.always_error.accumulate(arr) + + with pytest.raises(RuntimeError, match=r"How unexpected :\)!"): + ncu_tests.always_error.at(arr, [0, 1, 2], arr) + + +@pytest.mark.parametrize('x1', [np.arange(3.0), [0.0, 1.0, 2.0]]) +def test_bad_legacy_gufunc_silent_errors(x1): + # Verify that an exception raised in a gufunc loop propagates correctly. + # The signature of always_error_gufunc is '(i),()->()'. + with pytest.raises(RuntimeError, match=r"How unexpected :\)!"): + ncu_tests.always_error_gufunc(x1, 0.0) + + +class TestAddDocstring: + @pytest.mark.skipif(sys.flags.optimize == 2, reason="Python running -OO") + @pytest.mark.skipif(IS_PYPY, reason="PyPy does not modify tp_doc") + def test_add_same_docstring(self): + # test for attributes (which are C-level defined) + ncu.add_docstring(np.ndarray.flat, np.ndarray.flat.__doc__) + + # And typical functions: + def func(): + """docstring""" + return + + ncu.add_docstring(func, func.__doc__) + + @pytest.mark.skipif(sys.flags.optimize == 2, reason="Python running -OO") + def test_different_docstring_fails(self): + # test for attributes (which are C-level defined) + with assert_raises(RuntimeError): + ncu.add_docstring(np.ndarray.flat, "different docstring") + + # And typical functions: + def func(): + """docstring""" + return + + with assert_raises(RuntimeError): + ncu.add_docstring(func, "different docstring") + + +class TestAdd_newdoc_ufunc: + @pytest.mark.filterwarnings("ignore:_add_newdoc_ufunc:DeprecationWarning") + def test_ufunc_arg(self): + assert_raises(TypeError, ncu._add_newdoc_ufunc, 2, "blah") + assert_raises(ValueError, ncu._add_newdoc_ufunc, np.add, "blah") + + @pytest.mark.filterwarnings("ignore:_add_newdoc_ufunc:DeprecationWarning") + def test_string_arg(self): + assert_raises(TypeError, ncu._add_newdoc_ufunc, np.add, 3) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_umath_accuracy.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_umath_accuracy.py new file mode 100644 index 0000000..5707e92 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_umath_accuracy.py @@ -0,0 +1,124 @@ +import os +import sys +from ctypes import POINTER, c_double, c_float, c_int, c_longlong, cast, pointer +from os import path + +import pytest +from numpy._core._multiarray_umath import __cpu_features__ + +import numpy as np +from numpy.testing import assert_array_max_ulp +from numpy.testing._private.utils import _glibc_older_than + +UNARY_UFUNCS = [obj for obj in np._core.umath.__dict__.values() if + isinstance(obj, np.ufunc)] +UNARY_OBJECT_UFUNCS = [uf for uf in UNARY_UFUNCS if "O->O" in uf.types] + +# Remove functions that do not support `floats` +UNARY_OBJECT_UFUNCS.remove(np.invert) +UNARY_OBJECT_UFUNCS.remove(np.bitwise_count) + +IS_AVX = __cpu_features__.get('AVX512F', False) or \ + (__cpu_features__.get('FMA3', False) and __cpu_features__.get('AVX2', False)) + +IS_AVX512FP16 = __cpu_features__.get('AVX512FP16', False) + +# only run on linux with AVX, also avoid old glibc (numpy/numpy#20448). +runtest = (sys.platform.startswith('linux') + and IS_AVX and not _glibc_older_than("2.17")) +platform_skip = pytest.mark.skipif(not runtest, + reason="avoid testing inconsistent platform " + "library implementations") + +# convert string to hex function taken from: +# https://stackoverflow.com/questions/1592158/convert-hex-to-float # +def convert(s, datatype="np.float32"): + i = int(s, 16) # convert from hex to a Python int + if (datatype == "np.float64"): + cp = pointer(c_longlong(i)) # make this into a c long long integer + fp = cast(cp, POINTER(c_double)) # cast the int pointer to a double pointer + else: + cp = pointer(c_int(i)) # make this into a c integer + fp = cast(cp, POINTER(c_float)) # cast the int pointer to a float pointer + + return fp.contents.value # dereference the pointer, get the float + + +str_to_float = np.vectorize(convert) + +class TestAccuracy: + @platform_skip + def test_validate_transcendentals(self): + with np.errstate(all='ignore'): + data_dir = path.join(path.dirname(__file__), 'data') + files = os.listdir(data_dir) + files = list(filter(lambda f: f.endswith('.csv'), files)) + for filename in files: + filepath = path.join(data_dir, filename) + with open(filepath) as fid: + file_without_comments = ( + r for r in fid if r[0] not in ('$', '#') + ) + data = np.genfromtxt(file_without_comments, + dtype=('|S39', '|S39', '|S39', int), + names=('type', 'input', 'output', 'ulperr'), + delimiter=',', + skip_header=1) + npname = path.splitext(filename)[0].split('-')[3] + npfunc = getattr(np, npname) + for datatype in np.unique(data['type']): + data_subset = data[data['type'] == datatype] + inval = np.array(str_to_float(data_subset['input'].astype(str), data_subset['type'].astype(str)), dtype=eval(datatype)) + outval = np.array(str_to_float(data_subset['output'].astype(str), data_subset['type'].astype(str)), dtype=eval(datatype)) + perm = np.random.permutation(len(inval)) + inval = inval[perm] + outval = outval[perm] + maxulperr = data_subset['ulperr'].max() + assert_array_max_ulp(npfunc(inval), outval, maxulperr) + + @pytest.mark.skipif(IS_AVX512FP16, + reason="SVML FP16 have slightly higher ULP errors") + @pytest.mark.parametrize("ufunc", UNARY_OBJECT_UFUNCS) + def test_validate_fp16_transcendentals(self, ufunc): + with np.errstate(all='ignore'): + arr = np.arange(65536, dtype=np.int16) + datafp16 = np.frombuffer(arr.tobytes(), dtype=np.float16) + datafp32 = datafp16.astype(np.float32) + assert_array_max_ulp(ufunc(datafp16), ufunc(datafp32), + maxulp=1, dtype=np.float16) + + @pytest.mark.skipif(not IS_AVX512FP16, + reason="lower ULP only apply for SVML FP16") + def test_validate_svml_fp16(self): + max_ulp_err = { + "arccos": 2.54, + "arccosh": 2.09, + "arcsin": 3.06, + "arcsinh": 1.51, + "arctan": 2.61, + "arctanh": 1.88, + "cbrt": 1.57, + "cos": 1.43, + "cosh": 1.33, + "exp2": 1.33, + "exp": 1.27, + "expm1": 0.53, + "log": 1.80, + "log10": 1.27, + "log1p": 1.88, + "log2": 1.80, + "sin": 1.88, + "sinh": 2.05, + "tan": 2.26, + "tanh": 3.00, + } + + with np.errstate(all='ignore'): + arr = np.arange(65536, dtype=np.int16) + datafp16 = np.frombuffer(arr.tobytes(), dtype=np.float16) + datafp32 = datafp16.astype(np.float32) + for func in max_ulp_err: + ufunc = getattr(np, func) + ulp = np.ceil(max_ulp_err[func]) + assert_array_max_ulp(ufunc(datafp16), ufunc(datafp32), + maxulp=ulp, dtype=np.float16) diff --git a/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_umath_complex.py b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_umath_complex.py new file mode 100644 index 0000000..a97af47 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_core/tests/test_umath_complex.py @@ -0,0 +1,626 @@ +import platform +import sys + +# import the c-extension module directly since _arg is not exported via umath +import numpy._core._multiarray_umath as ncu +import pytest + +import numpy as np +from numpy.testing import ( + assert_almost_equal, + assert_array_equal, + assert_array_max_ulp, + assert_equal, + assert_raises, +) + +# TODO: branch cuts (use Pauli code) +# TODO: conj 'symmetry' +# TODO: FPU exceptions + +# At least on Windows the results of many complex functions are not conforming +# to the C99 standard. See ticket 1574. +# Ditto for Solaris (ticket 1642) and OS X on PowerPC. +# FIXME: this will probably change when we require full C99 compatibility +with np.errstate(all='ignore'): + functions_seem_flaky = ((np.exp(complex(np.inf, 0)).imag != 0) + or (np.log(complex(ncu.NZERO, 0)).imag != np.pi)) +# TODO: replace with a check on whether platform-provided C99 funcs are used +xfail_complex_tests = (not sys.platform.startswith('linux') or functions_seem_flaky) + +# TODO This can be xfail when the generator functions are got rid of. +platform_skip = pytest.mark.skipif(xfail_complex_tests, + reason="Inadequate C99 complex support") + + +class TestCexp: + def test_simple(self): + check = check_complex_value + f = np.exp + + check(f, 1, 0, np.exp(1), 0, False) + check(f, 0, 1, np.cos(1), np.sin(1), False) + + ref = np.exp(1) * complex(np.cos(1), np.sin(1)) + check(f, 1, 1, ref.real, ref.imag, False) + + @platform_skip + def test_special_values(self): + # C99: Section G 6.3.1 + + check = check_complex_value + f = np.exp + + # cexp(+-0 + 0i) is 1 + 0i + check(f, ncu.PZERO, 0, 1, 0, False) + check(f, ncu.NZERO, 0, 1, 0, False) + + # cexp(x + infi) is nan + nani for finite x and raises 'invalid' FPU + # exception + check(f, 1, np.inf, np.nan, np.nan) + check(f, -1, np.inf, np.nan, np.nan) + check(f, 0, np.inf, np.nan, np.nan) + + # cexp(inf + 0i) is inf + 0i + check(f, np.inf, 0, np.inf, 0) + + # cexp(-inf + yi) is +0 * (cos(y) + i sin(y)) for finite y + check(f, -np.inf, 1, ncu.PZERO, ncu.PZERO) + check(f, -np.inf, 0.75 * np.pi, ncu.NZERO, ncu.PZERO) + + # cexp(inf + yi) is +inf * (cos(y) + i sin(y)) for finite y + check(f, np.inf, 1, np.inf, np.inf) + check(f, np.inf, 0.75 * np.pi, -np.inf, np.inf) + + # cexp(-inf + inf i) is +-0 +- 0i (signs unspecified) + def _check_ninf_inf(dummy): + msgform = "cexp(-inf, inf) is (%f, %f), expected (+-0, +-0)" + with np.errstate(invalid='ignore'): + z = f(np.array(complex(-np.inf, np.inf))) + if z.real != 0 or z.imag != 0: + raise AssertionError(msgform % (z.real, z.imag)) + + _check_ninf_inf(None) + + # cexp(inf + inf i) is +-inf + NaNi and raised invalid FPU ex. + def _check_inf_inf(dummy): + msgform = "cexp(inf, inf) is (%f, %f), expected (+-inf, nan)" + with np.errstate(invalid='ignore'): + z = f(np.array(complex(np.inf, np.inf))) + if not np.isinf(z.real) or not np.isnan(z.imag): + raise AssertionError(msgform % (z.real, z.imag)) + + _check_inf_inf(None) + + # cexp(-inf + nan i) is +-0 +- 0i + def _check_ninf_nan(dummy): + msgform = "cexp(-inf, nan) is (%f, %f), expected (+-0, +-0)" + with np.errstate(invalid='ignore'): + z = f(np.array(complex(-np.inf, np.nan))) + if z.real != 0 or z.imag != 0: + raise AssertionError(msgform % (z.real, z.imag)) + + _check_ninf_nan(None) + + # cexp(inf + nan i) is +-inf + nan + def _check_inf_nan(dummy): + msgform = "cexp(-inf, nan) is (%f, %f), expected (+-inf, nan)" + with np.errstate(invalid='ignore'): + z = f(np.array(complex(np.inf, np.nan))) + if not np.isinf(z.real) or not np.isnan(z.imag): + raise AssertionError(msgform % (z.real, z.imag)) + + _check_inf_nan(None) + + # cexp(nan + yi) is nan + nani for y != 0 (optional: raises invalid FPU + # ex) + check(f, np.nan, 1, np.nan, np.nan) + check(f, np.nan, -1, np.nan, np.nan) + + check(f, np.nan, np.inf, np.nan, np.nan) + check(f, np.nan, -np.inf, np.nan, np.nan) + + # cexp(nan + nani) is nan + nani + check(f, np.nan, np.nan, np.nan, np.nan) + + # TODO This can be xfail when the generator functions are got rid of. + @pytest.mark.skip(reason="cexp(nan + 0I) is wrong on most platforms") + def test_special_values2(self): + # XXX: most implementations get it wrong here (including glibc <= 2.10) + # cexp(nan + 0i) is nan + 0i + check = check_complex_value + f = np.exp + + check(f, np.nan, 0, np.nan, 0) + +class TestClog: + def test_simple(self): + x = np.array([1 + 0j, 1 + 2j]) + y_r = np.log(np.abs(x)) + 1j * np.angle(x) + y = np.log(x) + assert_almost_equal(y, y_r) + + @platform_skip + @pytest.mark.skipif(platform.machine() == "armv5tel", reason="See gh-413.") + def test_special_values(self): + xl = [] + yl = [] + + # From C99 std (Sec 6.3.2) + # XXX: check exceptions raised + # --- raise for invalid fails. + + # clog(-0 + i0) returns -inf + i pi and raises the 'divide-by-zero' + # floating-point exception. + with np.errstate(divide='raise'): + x = np.array([ncu.NZERO], dtype=complex) + y = complex(-np.inf, np.pi) + assert_raises(FloatingPointError, np.log, x) + with np.errstate(divide='ignore'): + assert_almost_equal(np.log(x), y) + + xl.append(x) + yl.append(y) + + # clog(+0 + i0) returns -inf + i0 and raises the 'divide-by-zero' + # floating-point exception. + with np.errstate(divide='raise'): + x = np.array([0], dtype=complex) + y = complex(-np.inf, 0) + assert_raises(FloatingPointError, np.log, x) + with np.errstate(divide='ignore'): + assert_almost_equal(np.log(x), y) + + xl.append(x) + yl.append(y) + + # clog(x + i inf returns +inf + i pi /2, for finite x. + x = np.array([complex(1, np.inf)], dtype=complex) + y = complex(np.inf, 0.5 * np.pi) + assert_almost_equal(np.log(x), y) + xl.append(x) + yl.append(y) + + x = np.array([complex(-1, np.inf)], dtype=complex) + assert_almost_equal(np.log(x), y) + xl.append(x) + yl.append(y) + + # clog(x + iNaN) returns NaN + iNaN and optionally raises the + # 'invalid' floating- point exception, for finite x. + with np.errstate(invalid='raise'): + x = np.array([complex(1., np.nan)], dtype=complex) + y = complex(np.nan, np.nan) + #assert_raises(FloatingPointError, np.log, x) + with np.errstate(invalid='ignore'): + assert_almost_equal(np.log(x), y) + + xl.append(x) + yl.append(y) + + with np.errstate(invalid='raise'): + x = np.array([np.inf + 1j * np.nan], dtype=complex) + #assert_raises(FloatingPointError, np.log, x) + with np.errstate(invalid='ignore'): + assert_almost_equal(np.log(x), y) + + xl.append(x) + yl.append(y) + + # clog(- inf + iy) returns +inf + ipi , for finite positive-signed y. + x = np.array([-np.inf + 1j], dtype=complex) + y = complex(np.inf, np.pi) + assert_almost_equal(np.log(x), y) + xl.append(x) + yl.append(y) + + # clog(+ inf + iy) returns +inf + i0, for finite positive-signed y. + x = np.array([np.inf + 1j], dtype=complex) + y = complex(np.inf, 0) + assert_almost_equal(np.log(x), y) + xl.append(x) + yl.append(y) + + # clog(- inf + i inf) returns +inf + i3pi /4. + x = np.array([complex(-np.inf, np.inf)], dtype=complex) + y = complex(np.inf, 0.75 * np.pi) + assert_almost_equal(np.log(x), y) + xl.append(x) + yl.append(y) + + # clog(+ inf + i inf) returns +inf + ipi /4. + x = np.array([complex(np.inf, np.inf)], dtype=complex) + y = complex(np.inf, 0.25 * np.pi) + assert_almost_equal(np.log(x), y) + xl.append(x) + yl.append(y) + + # clog(+/- inf + iNaN) returns +inf + iNaN. + x = np.array([complex(np.inf, np.nan)], dtype=complex) + y = complex(np.inf, np.nan) + assert_almost_equal(np.log(x), y) + xl.append(x) + yl.append(y) + + x = np.array([complex(-np.inf, np.nan)], dtype=complex) + assert_almost_equal(np.log(x), y) + xl.append(x) + yl.append(y) + + # clog(NaN + iy) returns NaN + iNaN and optionally raises the + # 'invalid' floating-point exception, for finite y. + x = np.array([complex(np.nan, 1)], dtype=complex) + y = complex(np.nan, np.nan) + assert_almost_equal(np.log(x), y) + xl.append(x) + yl.append(y) + + # clog(NaN + i inf) returns +inf + iNaN. + x = np.array([complex(np.nan, np.inf)], dtype=complex) + y = complex(np.inf, np.nan) + assert_almost_equal(np.log(x), y) + xl.append(x) + yl.append(y) + + # clog(NaN + iNaN) returns NaN + iNaN. + x = np.array([complex(np.nan, np.nan)], dtype=complex) + y = complex(np.nan, np.nan) + assert_almost_equal(np.log(x), y) + xl.append(x) + yl.append(y) + + # clog(conj(z)) = conj(clog(z)). + xa = np.array(xl, dtype=complex) + ya = np.array(yl, dtype=complex) + with np.errstate(divide='ignore'): + for i in range(len(xa)): + assert_almost_equal(np.log(xa[i].conj()), ya[i].conj()) + + +class TestCsqrt: + + def test_simple(self): + # sqrt(1) + check_complex_value(np.sqrt, 1, 0, 1, 0) + + # sqrt(1i) + rres = 0.5 * np.sqrt(2) + ires = rres + check_complex_value(np.sqrt, 0, 1, rres, ires, False) + + # sqrt(-1) + check_complex_value(np.sqrt, -1, 0, 0, 1) + + def test_simple_conjugate(self): + ref = np.conj(np.sqrt(complex(1, 1))) + + def f(z): + return np.sqrt(np.conj(z)) + + check_complex_value(f, 1, 1, ref.real, ref.imag, False) + + #def test_branch_cut(self): + # _check_branch_cut(f, -1, 0, 1, -1) + + @platform_skip + def test_special_values(self): + # C99: Sec G 6.4.2 + + check = check_complex_value + f = np.sqrt + + # csqrt(+-0 + 0i) is 0 + 0i + check(f, ncu.PZERO, 0, 0, 0) + check(f, ncu.NZERO, 0, 0, 0) + + # csqrt(x + infi) is inf + infi for any x (including NaN) + check(f, 1, np.inf, np.inf, np.inf) + check(f, -1, np.inf, np.inf, np.inf) + + check(f, ncu.PZERO, np.inf, np.inf, np.inf) + check(f, ncu.NZERO, np.inf, np.inf, np.inf) + check(f, np.inf, np.inf, np.inf, np.inf) + check(f, -np.inf, np.inf, np.inf, np.inf) # noqa: E221 + check(f, -np.nan, np.inf, np.inf, np.inf) # noqa: E221 + + # csqrt(x + nani) is nan + nani for any finite x + check(f, 1, np.nan, np.nan, np.nan) + check(f, -1, np.nan, np.nan, np.nan) + check(f, 0, np.nan, np.nan, np.nan) + + # csqrt(-inf + yi) is +0 + infi for any finite y > 0 + check(f, -np.inf, 1, ncu.PZERO, np.inf) + + # csqrt(inf + yi) is +inf + 0i for any finite y > 0 + check(f, np.inf, 1, np.inf, ncu.PZERO) + + # csqrt(-inf + nani) is nan +- infi (both +i infi are valid) + def _check_ninf_nan(dummy): + msgform = "csqrt(-inf, nan) is (%f, %f), expected (nan, +-inf)" + z = np.sqrt(np.array(complex(-np.inf, np.nan))) + # FIXME: ugly workaround for isinf bug. + with np.errstate(invalid='ignore'): + if not (np.isnan(z.real) and np.isinf(z.imag)): + raise AssertionError(msgform % (z.real, z.imag)) + + _check_ninf_nan(None) + + # csqrt(+inf + nani) is inf + nani + check(f, np.inf, np.nan, np.inf, np.nan) + + # csqrt(nan + yi) is nan + nani for any finite y (infinite handled in x + # + nani) + check(f, np.nan, 0, np.nan, np.nan) + check(f, np.nan, 1, np.nan, np.nan) + check(f, np.nan, np.nan, np.nan, np.nan) + + # XXX: check for conj(csqrt(z)) == csqrt(conj(z)) (need to fix branch + # cuts first) + +class TestCpow: + def setup_method(self): + self.olderr = np.seterr(invalid='ignore') + + def teardown_method(self): + np.seterr(**self.olderr) + + def test_simple(self): + x = np.array([1 + 1j, 0 + 2j, 1 + 2j, np.inf, np.nan]) + y_r = x ** 2 + y = np.power(x, 2) + assert_almost_equal(y, y_r) + + def test_scalar(self): + x = np.array([1, 1j, 2, 2.5 + .37j, np.inf, np.nan]) + y = np.array([1, 1j, -0.5 + 1.5j, -0.5 + 1.5j, 2, 3]) + lx = list(range(len(x))) + + # Hardcode the expected `builtins.complex` values, + # as complex exponentiation is broken as of bpo-44698 + p_r = [ + 1 + 0j, + 0.20787957635076193 + 0j, + 0.35812203996480685 + 0.6097119028618724j, + 0.12659112128185032 + 0.48847676699581527j, + complex(np.inf, np.nan), + complex(np.nan, np.nan), + ] + + n_r = [x[i] ** y[i] for i in lx] + for i in lx: + assert_almost_equal(n_r[i], p_r[i], err_msg='Loop %d\n' % i) + + def test_array(self): + x = np.array([1, 1j, 2, 2.5 + .37j, np.inf, np.nan]) + y = np.array([1, 1j, -0.5 + 1.5j, -0.5 + 1.5j, 2, 3]) + lx = list(range(len(x))) + + # Hardcode the expected `builtins.complex` values, + # as complex exponentiation is broken as of bpo-44698 + p_r = [ + 1 + 0j, + 0.20787957635076193 + 0j, + 0.35812203996480685 + 0.6097119028618724j, + 0.12659112128185032 + 0.48847676699581527j, + complex(np.inf, np.nan), + complex(np.nan, np.nan), + ] + + n_r = x ** y + for i in lx: + assert_almost_equal(n_r[i], p_r[i], err_msg='Loop %d\n' % i) + +class TestCabs: + def setup_method(self): + self.olderr = np.seterr(invalid='ignore') + + def teardown_method(self): + np.seterr(**self.olderr) + + def test_simple(self): + x = np.array([1 + 1j, 0 + 2j, 1 + 2j, np.inf, np.nan]) + y_r = np.array([np.sqrt(2.), 2, np.sqrt(5), np.inf, np.nan]) + y = np.abs(x) + assert_almost_equal(y, y_r) + + def test_fabs(self): + # Test that np.abs(x +- 0j) == np.abs(x) (as mandated by C99 for cabs) + x = np.array([1 + 0j], dtype=complex) + assert_array_equal(np.abs(x), np.real(x)) + + x = np.array([complex(1, ncu.NZERO)], dtype=complex) + assert_array_equal(np.abs(x), np.real(x)) + + x = np.array([complex(np.inf, ncu.NZERO)], dtype=complex) + assert_array_equal(np.abs(x), np.real(x)) + + x = np.array([complex(np.nan, ncu.NZERO)], dtype=complex) + assert_array_equal(np.abs(x), np.real(x)) + + def test_cabs_inf_nan(self): + x, y = [], [] + + # cabs(+-nan + nani) returns nan + x.append(np.nan) + y.append(np.nan) + check_real_value(np.abs, np.nan, np.nan, np.nan) + + x.append(np.nan) + y.append(-np.nan) + check_real_value(np.abs, -np.nan, np.nan, np.nan) + + # According to C99 standard, if exactly one of the real/part is inf and + # the other nan, then cabs should return inf + x.append(np.inf) + y.append(np.nan) + check_real_value(np.abs, np.inf, np.nan, np.inf) + + x.append(-np.inf) + y.append(np.nan) + check_real_value(np.abs, -np.inf, np.nan, np.inf) + + # cabs(conj(z)) == conj(cabs(z)) (= cabs(z)) + def f(a): + return np.abs(np.conj(a)) + + def g(a, b): + return np.abs(complex(a, b)) + + xa = np.array(x, dtype=complex) + assert len(xa) == len(x) == len(y) + for xi, yi in zip(x, y): + ref = g(xi, yi) + check_real_value(f, xi, yi, ref) + +class TestCarg: + def test_simple(self): + check_real_value(ncu._arg, 1, 0, 0, False) + check_real_value(ncu._arg, 0, 1, 0.5 * np.pi, False) + + check_real_value(ncu._arg, 1, 1, 0.25 * np.pi, False) + check_real_value(ncu._arg, ncu.PZERO, ncu.PZERO, ncu.PZERO) + + # TODO This can be xfail when the generator functions are got rid of. + @pytest.mark.skip( + reason="Complex arithmetic with signed zero fails on most platforms") + def test_zero(self): + # carg(-0 +- 0i) returns +- pi + check_real_value(ncu._arg, ncu.NZERO, ncu.PZERO, np.pi, False) + check_real_value(ncu._arg, ncu.NZERO, ncu.NZERO, -np.pi, False) + + # carg(+0 +- 0i) returns +- 0 + check_real_value(ncu._arg, ncu.PZERO, ncu.PZERO, ncu.PZERO) + check_real_value(ncu._arg, ncu.PZERO, ncu.NZERO, ncu.NZERO) + + # carg(x +- 0i) returns +- 0 for x > 0 + check_real_value(ncu._arg, 1, ncu.PZERO, ncu.PZERO, False) + check_real_value(ncu._arg, 1, ncu.NZERO, ncu.NZERO, False) + + # carg(x +- 0i) returns +- pi for x < 0 + check_real_value(ncu._arg, -1, ncu.PZERO, np.pi, False) + check_real_value(ncu._arg, -1, ncu.NZERO, -np.pi, False) + + # carg(+- 0 + yi) returns pi/2 for y > 0 + check_real_value(ncu._arg, ncu.PZERO, 1, 0.5 * np.pi, False) + check_real_value(ncu._arg, ncu.NZERO, 1, 0.5 * np.pi, False) + + # carg(+- 0 + yi) returns -pi/2 for y < 0 + check_real_value(ncu._arg, ncu.PZERO, -1, 0.5 * np.pi, False) + check_real_value(ncu._arg, ncu.NZERO, -1, -0.5 * np.pi, False) + + #def test_branch_cuts(self): + # _check_branch_cut(ncu._arg, -1, 1j, -1, 1) + + def test_special_values(self): + # carg(-np.inf +- yi) returns +-pi for finite y > 0 + check_real_value(ncu._arg, -np.inf, 1, np.pi, False) + check_real_value(ncu._arg, -np.inf, -1, -np.pi, False) + + # carg(np.inf +- yi) returns +-0 for finite y > 0 + check_real_value(ncu._arg, np.inf, 1, ncu.PZERO, False) + check_real_value(ncu._arg, np.inf, -1, ncu.NZERO, False) + + # carg(x +- np.infi) returns +-pi/2 for finite x + check_real_value(ncu._arg, 1, np.inf, 0.5 * np.pi, False) + check_real_value(ncu._arg, 1, -np.inf, -0.5 * np.pi, False) + + # carg(-np.inf +- np.infi) returns +-3pi/4 + check_real_value(ncu._arg, -np.inf, np.inf, 0.75 * np.pi, False) + check_real_value(ncu._arg, -np.inf, -np.inf, -0.75 * np.pi, False) + + # carg(np.inf +- np.infi) returns +-pi/4 + check_real_value(ncu._arg, np.inf, np.inf, 0.25 * np.pi, False) + check_real_value(ncu._arg, np.inf, -np.inf, -0.25 * np.pi, False) + + # carg(x + yi) returns np.nan if x or y is nan + check_real_value(ncu._arg, np.nan, 0, np.nan, False) + check_real_value(ncu._arg, 0, np.nan, np.nan, False) + + check_real_value(ncu._arg, np.nan, np.inf, np.nan, False) + check_real_value(ncu._arg, np.inf, np.nan, np.nan, False) + + +def check_real_value(f, x1, y1, x, exact=True): + z1 = np.array([complex(x1, y1)]) + if exact: + assert_equal(f(z1), x) + else: + assert_almost_equal(f(z1), x) + + +def check_complex_value(f, x1, y1, x2, y2, exact=True): + z1 = np.array([complex(x1, y1)]) + z2 = complex(x2, y2) + with np.errstate(invalid='ignore'): + if exact: + assert_equal(f(z1), z2) + else: + assert_almost_equal(f(z1), z2) + +class TestSpecialComplexAVX: + @pytest.mark.parametrize("stride", [-4, -2, -1, 1, 2, 4]) + @pytest.mark.parametrize("astype", [np.complex64, np.complex128]) + def test_array(self, stride, astype): + arr = np.array([complex(np.nan, np.nan), + complex(np.nan, np.inf), + complex(np.inf, np.nan), + complex(np.inf, np.inf), + complex(0., np.inf), + complex(np.inf, 0.), + complex(0., 0.), + complex(0., np.nan), + complex(np.nan, 0.)], dtype=astype) + abs_true = np.array([np.nan, np.inf, np.inf, np.inf, np.inf, np.inf, 0., np.nan, np.nan], dtype=arr.real.dtype) + sq_true = np.array([complex(np.nan, np.nan), + complex(np.nan, np.nan), + complex(np.nan, np.nan), + complex(np.nan, np.inf), + complex(-np.inf, np.nan), + complex(np.inf, np.nan), + complex(0., 0.), + complex(np.nan, np.nan), + complex(np.nan, np.nan)], dtype=astype) + with np.errstate(invalid='ignore'): + assert_equal(np.abs(arr[::stride]), abs_true[::stride]) + assert_equal(np.square(arr[::stride]), sq_true[::stride]) + +class TestComplexAbsoluteAVX: + @pytest.mark.parametrize("arraysize", [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 18, 19]) + @pytest.mark.parametrize("stride", [-4, -3, -2, -1, 1, 2, 3, 4]) + @pytest.mark.parametrize("astype", [np.complex64, np.complex128]) + # test to ensure masking and strides work as intended in the AVX implementation + def test_array(self, arraysize, stride, astype): + arr = np.ones(arraysize, dtype=astype) + abs_true = np.ones(arraysize, dtype=arr.real.dtype) + assert_equal(np.abs(arr[::stride]), abs_true[::stride]) + +# Testcase taken as is from https://github.com/numpy/numpy/issues/16660 +class TestComplexAbsoluteMixedDTypes: + @pytest.mark.parametrize("stride", [-4, -3, -2, -1, 1, 2, 3, 4]) + @pytest.mark.parametrize("astype", [np.complex64, np.complex128]) + @pytest.mark.parametrize("func", ['abs', 'square', 'conjugate']) + def test_array(self, stride, astype, func): + dtype = [('template_id', 'U') + uni_arr2 = str_arr.astype(').itemsize` instead.", + "byte_bounds": "Now it's available under `np.lib.array_utils.byte_bounds`", + "compare_chararrays": + "It's still available as `np.char.compare_chararrays`.", + "format_parser": "It's still available as `np.rec.format_parser`.", + "alltrue": "Use `np.all` instead.", + "sometrue": "Use `np.any` instead.", +} diff --git a/.venv/lib/python3.12/site-packages/numpy/_expired_attrs_2_0.pyi b/.venv/lib/python3.12/site-packages/numpy/_expired_attrs_2_0.pyi new file mode 100644 index 0000000..1452468 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_expired_attrs_2_0.pyi @@ -0,0 +1,62 @@ +from typing import Final, TypedDict, final, type_check_only + +@final +@type_check_only +class _ExpiredAttributesType(TypedDict): + geterrobj: str + seterrobj: str + cast: str + source: str + lookfor: str + who: str + fastCopyAndTranspose: str + set_numeric_ops: str + NINF: str + PINF: str + NZERO: str + PZERO: str + add_newdoc: str + add_docstring: str + add_newdoc_ufunc: str + safe_eval: str + float_: str + complex_: str + longfloat: str + singlecomplex: str + cfloat: str + longcomplex: str + clongfloat: str + string_: str + unicode_: str + Inf: str + Infinity: str + NaN: str + infty: str + issctype: str + maximum_sctype: str + obj2sctype: str + sctype2char: str + sctypes: str + issubsctype: str + set_string_function: str + asfarray: str + issubclass_: str + tracemalloc_domain: str + mat: str + recfromcsv: str + recfromtxt: str + deprecate: str + deprecate_with_doc: str + disp: str + find_common_type: str + round_: str + get_array_wrap: str + DataSource: str + nbytes: str + byte_bounds: str + compare_chararrays: str + format_parser: str + alltrue: str + sometrue: str + +__expired_attributes__: Final[_ExpiredAttributesType] = ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_globals.py b/.venv/lib/python3.12/site-packages/numpy/_globals.py new file mode 100644 index 0000000..5f838ba --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_globals.py @@ -0,0 +1,96 @@ +""" +Module defining global singleton classes. + +This module raises a RuntimeError if an attempt to reload it is made. In that +way the identities of the classes defined here are fixed and will remain so +even if numpy itself is reloaded. In particular, a function like the following +will still work correctly after numpy is reloaded:: + + def foo(arg=np._NoValue): + if arg is np._NoValue: + ... + +That was not the case when the singleton classes were defined in the numpy +``__init__.py`` file. See gh-7844 for a discussion of the reload problem that +motivated this module. + +""" +import enum + +from ._utils import set_module as _set_module + +__all__ = ['_NoValue', '_CopyMode'] + + +# Disallow reloading this module so as to preserve the identities of the +# classes defined here. +if '_is_loaded' in globals(): + raise RuntimeError('Reloading numpy._globals is not allowed') +_is_loaded = True + + +class _NoValueType: + """Special keyword value. + + The instance of this class may be used as the default value assigned to a + keyword if no other obvious default (e.g., `None`) is suitable, + + Common reasons for using this keyword are: + + - A new keyword is added to a function, and that function forwards its + inputs to another function or method which can be defined outside of + NumPy. For example, ``np.std(x)`` calls ``x.std``, so when a ``keepdims`` + keyword was added that could only be forwarded if the user explicitly + specified ``keepdims``; downstream array libraries may not have added + the same keyword, so adding ``x.std(..., keepdims=keepdims)`` + unconditionally could have broken previously working code. + - A keyword is being deprecated, and a deprecation warning must only be + emitted when the keyword is used. + + """ + __instance = None + + def __new__(cls): + # ensure that only one instance exists + if not cls.__instance: + cls.__instance = super().__new__(cls) + return cls.__instance + + def __repr__(self): + return "" + + +_NoValue = _NoValueType() + + +@_set_module("numpy") +class _CopyMode(enum.Enum): + """ + An enumeration for the copy modes supported + by numpy.copy() and numpy.array(). The following three modes are supported, + + - ALWAYS: This means that a deep copy of the input + array will always be taken. + - IF_NEEDED: This means that a deep copy of the input + array will be taken only if necessary. + - NEVER: This means that the deep copy will never be taken. + If a copy cannot be avoided then a `ValueError` will be + raised. + + Note that the buffer-protocol could in theory do copies. NumPy currently + assumes an object exporting the buffer protocol will never do this. + """ + + ALWAYS = True + NEVER = False + IF_NEEDED = 2 + + def __bool__(self): + # For backwards compatibility + if self == _CopyMode.ALWAYS: + return True + + if self == _CopyMode.NEVER: + return False + + raise ValueError(f"{self} is neither True nor False.") diff --git a/.venv/lib/python3.12/site-packages/numpy/_globals.pyi b/.venv/lib/python3.12/site-packages/numpy/_globals.pyi new file mode 100644 index 0000000..b2231a9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_globals.pyi @@ -0,0 +1,17 @@ +__all__ = ["_CopyMode", "_NoValue"] + +import enum +from typing import Final, final + +@final +class _CopyMode(enum.Enum): + ALWAYS = True + NEVER = False + IF_NEEDED = 2 + + def __bool__(self, /) -> bool: ... + +@final +class _NoValueType: ... + +_NoValue: Final[_NoValueType] = ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/__init__.py b/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/__init__.pyi b/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/__init__.pyi new file mode 100644 index 0000000..e69de29 diff --git a/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..56c4a87 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/__pycache__/hook-numpy.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/__pycache__/hook-numpy.cpython-312.pyc new file mode 100644 index 0000000..2a1fa0b Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/__pycache__/hook-numpy.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/hook-numpy.py b/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/hook-numpy.py new file mode 100644 index 0000000..61c224b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/hook-numpy.py @@ -0,0 +1,36 @@ +"""This hook should collect all binary files and any hidden modules that numpy +needs. + +Our (some-what inadequate) docs for writing PyInstaller hooks are kept here: +https://pyinstaller.readthedocs.io/en/stable/hooks.html + +""" +from PyInstaller.compat import is_pure_conda +from PyInstaller.utils.hooks import collect_dynamic_libs + +# Collect all DLLs inside numpy's installation folder, dump them into built +# app's root. +binaries = collect_dynamic_libs("numpy", ".") + +# If using Conda without any non-conda virtual environment manager: +if is_pure_conda: + # Assume running the NumPy from Conda-forge and collect it's DLLs from the + # communal Conda bin directory. DLLs from NumPy's dependencies must also be + # collected to capture MKL, OpenBlas, OpenMP, etc. + from PyInstaller.utils.hooks import conda_support + datas = conda_support.collect_dynamic_libs("numpy", dependencies=True) + +# Submodules PyInstaller cannot detect. `_dtype_ctypes` is only imported +# from C and `_multiarray_tests` is used in tests (which are not packed). +hiddenimports = ['numpy._core._dtype_ctypes', 'numpy._core._multiarray_tests'] + +# Remove testing and building code and packages that are referenced throughout +# NumPy but are not really dependencies. +excludedimports = [ + "scipy", + "pytest", + "f2py", + "setuptools", + "distutils", + "numpy.distutils", +] diff --git a/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/hook-numpy.pyi b/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/hook-numpy.pyi new file mode 100644 index 0000000..2642996 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/hook-numpy.pyi @@ -0,0 +1,13 @@ +from typing import Final + +# from `PyInstaller.compat` +is_conda: Final[bool] +is_pure_conda: Final[bool] + +# from `PyInstaller.utils.hooks` +def is_module_satisfies(requirements: str, version: None = None, version_attr: None = None) -> bool: ... + +binaries: Final[list[tuple[str, str]]] + +hiddenimports: Final[list[str]] +excludedimports: Final[list[str]] diff --git a/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/tests/__init__.py b/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/tests/__init__.py new file mode 100644 index 0000000..4ed8fdd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/tests/__init__.py @@ -0,0 +1,16 @@ +import pytest + +from numpy.testing import IS_EDITABLE, IS_WASM + +if IS_WASM: + pytest.skip( + "WASM/Pyodide does not use or support Fortran", + allow_module_level=True + ) + + +if IS_EDITABLE: + pytest.skip( + "Editable install doesn't support tests with a compile step", + allow_module_level=True + ) diff --git a/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/tests/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/tests/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..d3f52af Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/tests/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/tests/__pycache__/pyinstaller-smoke.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/tests/__pycache__/pyinstaller-smoke.cpython-312.pyc new file mode 100644 index 0000000..95efbcb Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/tests/__pycache__/pyinstaller-smoke.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/tests/__pycache__/test_pyinstaller.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/tests/__pycache__/test_pyinstaller.cpython-312.pyc new file mode 100644 index 0000000..3e13f55 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/tests/__pycache__/test_pyinstaller.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/tests/pyinstaller-smoke.py b/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/tests/pyinstaller-smoke.py new file mode 100644 index 0000000..eb28070 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/tests/pyinstaller-smoke.py @@ -0,0 +1,32 @@ +"""A crude *bit of everything* smoke test to verify PyInstaller compatibility. + +PyInstaller typically goes wrong by forgetting to package modules, extension +modules or shared libraries. This script should aim to touch as many of those +as possible in an attempt to trip a ModuleNotFoundError or a DLL load failure +due to an uncollected resource. Missing resources are unlikely to lead to +arithmetic errors so there's generally no need to verify any calculation's +output - merely that it made it to the end OK. This script should not +explicitly import any of numpy's submodules as that gives PyInstaller undue +hints that those submodules exist and should be collected (accessing implicitly +loaded submodules is OK). + +""" +import numpy as np + +a = np.arange(1., 10.).reshape((3, 3)) % 5 +np.linalg.det(a) +a @ a +a @ a.T +np.linalg.inv(a) +np.sin(np.exp(a)) +np.linalg.svd(a) +np.linalg.eigh(a) + +np.unique(np.random.randint(0, 10, 100)) +np.sort(np.random.uniform(0, 10, 100)) + +np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8)) +np.ma.masked_array(np.arange(10), np.random.rand(10) < .5).sum() +np.polynomial.Legendre([7, 8, 9]).roots() + +print("I made it!") diff --git a/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/tests/test_pyinstaller.py b/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/tests/test_pyinstaller.py new file mode 100644 index 0000000..a9061da --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_pyinstaller/tests/test_pyinstaller.py @@ -0,0 +1,35 @@ +import subprocess +from pathlib import Path + +import pytest + + +# PyInstaller has been very unproactive about replacing 'imp' with 'importlib'. +@pytest.mark.filterwarnings('ignore::DeprecationWarning') +# It also leaks io.BytesIO()s. +@pytest.mark.filterwarnings('ignore::ResourceWarning') +@pytest.mark.parametrize("mode", ["--onedir", "--onefile"]) +@pytest.mark.slow +def test_pyinstaller(mode, tmp_path): + """Compile and run pyinstaller-smoke.py using PyInstaller.""" + + pyinstaller_cli = pytest.importorskip("PyInstaller.__main__").run + + source = Path(__file__).with_name("pyinstaller-smoke.py").resolve() + args = [ + # Place all generated files in ``tmp_path``. + '--workpath', str(tmp_path / "build"), + '--distpath', str(tmp_path / "dist"), + '--specpath', str(tmp_path), + mode, + str(source), + ] + pyinstaller_cli(args) + + if mode == "--onefile": + exe = tmp_path / "dist" / source.stem + else: + exe = tmp_path / "dist" / source.stem / source.stem + + p = subprocess.run([str(exe)], check=True, stdout=subprocess.PIPE) + assert p.stdout.strip() == b"I made it!" diff --git a/.venv/lib/python3.12/site-packages/numpy/_pytesttester.py b/.venv/lib/python3.12/site-packages/numpy/_pytesttester.py new file mode 100644 index 0000000..77342e4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_pytesttester.py @@ -0,0 +1,201 @@ +""" +Pytest test running. + +This module implements the ``test()`` function for NumPy modules. The usual +boiler plate for doing that is to put the following in the module +``__init__.py`` file:: + + from numpy._pytesttester import PytestTester + test = PytestTester(__name__) + del PytestTester + + +Warnings filtering and other runtime settings should be dealt with in the +``pytest.ini`` file in the numpy repo root. The behavior of the test depends on +whether or not that file is found as follows: + +* ``pytest.ini`` is present (develop mode) + All warnings except those explicitly filtered out are raised as error. +* ``pytest.ini`` is absent (release mode) + DeprecationWarnings and PendingDeprecationWarnings are ignored, other + warnings are passed through. + +In practice, tests run from the numpy repo are run in development mode with +``spin``, through the standard ``spin test`` invocation or from an inplace +build with ``pytest numpy``. + +This module is imported by every numpy subpackage, so lies at the top level to +simplify circular import issues. For the same reason, it contains no numpy +imports at module scope, instead importing numpy within function calls. +""" +import os +import sys + +__all__ = ['PytestTester'] + + +def _show_numpy_info(): + import numpy as np + + print(f"NumPy version {np.__version__}") + info = np.lib._utils_impl._opt_info() + print("NumPy CPU features: ", (info or 'nothing enabled')) + + +class PytestTester: + """ + Pytest test runner. + + A test function is typically added to a package's __init__.py like so:: + + from numpy._pytesttester import PytestTester + test = PytestTester(__name__).test + del PytestTester + + Calling this test function finds and runs all tests associated with the + module and all its sub-modules. + + Attributes + ---------- + module_name : str + Full path to the package to test. + + Parameters + ---------- + module_name : module name + The name of the module to test. + + Notes + ----- + Unlike the previous ``nose``-based implementation, this class is not + publicly exposed as it performs some ``numpy``-specific warning + suppression. + + """ + def __init__(self, module_name): + self.module_name = module_name + self.__module__ = module_name + + def __call__(self, label='fast', verbose=1, extra_argv=None, + doctests=False, coverage=False, durations=-1, tests=None): + """ + Run tests for module using pytest. + + Parameters + ---------- + label : {'fast', 'full'}, optional + Identifies the tests to run. When set to 'fast', tests decorated + with `pytest.mark.slow` are skipped, when 'full', the slow marker + is ignored. + verbose : int, optional + Verbosity value for test outputs, in the range 1-3. Default is 1. + extra_argv : list, optional + List with any extra arguments to pass to pytests. + doctests : bool, optional + .. note:: Not supported + coverage : bool, optional + If True, report coverage of NumPy code. Default is False. + Requires installation of (pip) pytest-cov. + durations : int, optional + If < 0, do nothing, If 0, report time of all tests, if > 0, + report the time of the slowest `timer` tests. Default is -1. + tests : test or list of tests + Tests to be executed with pytest '--pyargs' + + Returns + ------- + result : bool + Return True on success, false otherwise. + + Notes + ----- + Each NumPy module exposes `test` in its namespace to run all tests for + it. For example, to run all tests for numpy.lib: + + >>> np.lib.test() #doctest: +SKIP + + Examples + -------- + >>> result = np.lib.test() #doctest: +SKIP + ... + 1023 passed, 2 skipped, 6 deselected, 1 xfailed in 10.39 seconds + >>> result + True + + """ + import warnings + + import pytest + + module = sys.modules[self.module_name] + module_path = os.path.abspath(module.__path__[0]) + + # setup the pytest arguments + pytest_args = ["-l"] + + # offset verbosity. The "-q" cancels a "-v". + pytest_args += ["-q"] + + if sys.version_info < (3, 12): + with warnings.catch_warnings(): + warnings.simplefilter("always") + # Filter out distutils cpu warnings (could be localized to + # distutils tests). ASV has problems with top level import, + # so fetch module for suppression here. + from numpy.distutils import cpuinfo # noqa: F401 + + # Filter out annoying import messages. Want these in both develop and + # release mode. + pytest_args += [ + "-W ignore:Not importing directory", + "-W ignore:numpy.dtype size changed", + "-W ignore:numpy.ufunc size changed", + "-W ignore::UserWarning:cpuinfo", + ] + + # When testing matrices, ignore their PendingDeprecationWarnings + pytest_args += [ + "-W ignore:the matrix subclass is not", + "-W ignore:Importing from numpy.matlib is", + ] + + if doctests: + pytest_args += ["--doctest-modules"] + + if extra_argv: + pytest_args += list(extra_argv) + + if verbose > 1: + pytest_args += ["-" + "v" * (verbose - 1)] + + if coverage: + pytest_args += ["--cov=" + module_path] + + if label == "fast": + # not importing at the top level to avoid circular import of module + from numpy.testing import IS_PYPY + if IS_PYPY: + pytest_args += ["-m", "not slow and not slow_pypy"] + else: + pytest_args += ["-m", "not slow"] + + elif label != "full": + pytest_args += ["-m", label] + + if durations >= 0: + pytest_args += [f"--durations={durations}"] + + if tests is None: + tests = [self.module_name] + + pytest_args += ["--pyargs"] + list(tests) + + # run tests. + _show_numpy_info() + + try: + code = pytest.main(pytest_args) + except SystemExit as exc: + code = exc.code + + return code == 0 diff --git a/.venv/lib/python3.12/site-packages/numpy/_pytesttester.pyi b/.venv/lib/python3.12/site-packages/numpy/_pytesttester.pyi new file mode 100644 index 0000000..a12abb1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_pytesttester.pyi @@ -0,0 +1,18 @@ +from collections.abc import Iterable +from typing import Literal as L + +__all__ = ["PytestTester"] + +class PytestTester: + module_name: str + def __init__(self, module_name: str) -> None: ... + def __call__( + self, + label: L["fast", "full"] = ..., + verbose: int = ..., + extra_argv: Iterable[str] | None = ..., + doctests: L[False] = ..., + coverage: bool = ..., + durations: int = ..., + tests: Iterable[str] | None = ..., + ) -> bool: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_typing/__init__.py b/.venv/lib/python3.12/site-packages/numpy/_typing/__init__.py new file mode 100644 index 0000000..16a7eee --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_typing/__init__.py @@ -0,0 +1,148 @@ +"""Private counterpart of ``numpy.typing``.""" + +from ._array_like import ArrayLike as ArrayLike +from ._array_like import NDArray as NDArray +from ._array_like import _ArrayLike as _ArrayLike +from ._array_like import _ArrayLikeAnyString_co as _ArrayLikeAnyString_co +from ._array_like import _ArrayLikeBool_co as _ArrayLikeBool_co +from ._array_like import _ArrayLikeBytes_co as _ArrayLikeBytes_co +from ._array_like import _ArrayLikeComplex128_co as _ArrayLikeComplex128_co +from ._array_like import _ArrayLikeComplex_co as _ArrayLikeComplex_co +from ._array_like import _ArrayLikeDT64_co as _ArrayLikeDT64_co +from ._array_like import _ArrayLikeFloat64_co as _ArrayLikeFloat64_co +from ._array_like import _ArrayLikeFloat_co as _ArrayLikeFloat_co +from ._array_like import _ArrayLikeInt as _ArrayLikeInt +from ._array_like import _ArrayLikeInt_co as _ArrayLikeInt_co +from ._array_like import _ArrayLikeNumber_co as _ArrayLikeNumber_co +from ._array_like import _ArrayLikeObject_co as _ArrayLikeObject_co +from ._array_like import _ArrayLikeStr_co as _ArrayLikeStr_co +from ._array_like import _ArrayLikeString_co as _ArrayLikeString_co +from ._array_like import _ArrayLikeTD64_co as _ArrayLikeTD64_co +from ._array_like import _ArrayLikeUInt_co as _ArrayLikeUInt_co +from ._array_like import _ArrayLikeVoid_co as _ArrayLikeVoid_co +from ._array_like import _FiniteNestedSequence as _FiniteNestedSequence +from ._array_like import _SupportsArray as _SupportsArray +from ._array_like import _SupportsArrayFunc as _SupportsArrayFunc + +# +from ._char_codes import _BoolCodes as _BoolCodes +from ._char_codes import _ByteCodes as _ByteCodes +from ._char_codes import _BytesCodes as _BytesCodes +from ._char_codes import _CDoubleCodes as _CDoubleCodes +from ._char_codes import _CharacterCodes as _CharacterCodes +from ._char_codes import _CLongDoubleCodes as _CLongDoubleCodes +from ._char_codes import _Complex64Codes as _Complex64Codes +from ._char_codes import _Complex128Codes as _Complex128Codes +from ._char_codes import _ComplexFloatingCodes as _ComplexFloatingCodes +from ._char_codes import _CSingleCodes as _CSingleCodes +from ._char_codes import _DoubleCodes as _DoubleCodes +from ._char_codes import _DT64Codes as _DT64Codes +from ._char_codes import _FlexibleCodes as _FlexibleCodes +from ._char_codes import _Float16Codes as _Float16Codes +from ._char_codes import _Float32Codes as _Float32Codes +from ._char_codes import _Float64Codes as _Float64Codes +from ._char_codes import _FloatingCodes as _FloatingCodes +from ._char_codes import _GenericCodes as _GenericCodes +from ._char_codes import _HalfCodes as _HalfCodes +from ._char_codes import _InexactCodes as _InexactCodes +from ._char_codes import _Int8Codes as _Int8Codes +from ._char_codes import _Int16Codes as _Int16Codes +from ._char_codes import _Int32Codes as _Int32Codes +from ._char_codes import _Int64Codes as _Int64Codes +from ._char_codes import _IntCCodes as _IntCCodes +from ._char_codes import _IntCodes as _IntCodes +from ._char_codes import _IntegerCodes as _IntegerCodes +from ._char_codes import _IntPCodes as _IntPCodes +from ._char_codes import _LongCodes as _LongCodes +from ._char_codes import _LongDoubleCodes as _LongDoubleCodes +from ._char_codes import _LongLongCodes as _LongLongCodes +from ._char_codes import _NumberCodes as _NumberCodes +from ._char_codes import _ObjectCodes as _ObjectCodes +from ._char_codes import _ShortCodes as _ShortCodes +from ._char_codes import _SignedIntegerCodes as _SignedIntegerCodes +from ._char_codes import _SingleCodes as _SingleCodes +from ._char_codes import _StrCodes as _StrCodes +from ._char_codes import _StringCodes as _StringCodes +from ._char_codes import _TD64Codes as _TD64Codes +from ._char_codes import _UByteCodes as _UByteCodes +from ._char_codes import _UInt8Codes as _UInt8Codes +from ._char_codes import _UInt16Codes as _UInt16Codes +from ._char_codes import _UInt32Codes as _UInt32Codes +from ._char_codes import _UInt64Codes as _UInt64Codes +from ._char_codes import _UIntCCodes as _UIntCCodes +from ._char_codes import _UIntCodes as _UIntCodes +from ._char_codes import _UIntPCodes as _UIntPCodes +from ._char_codes import _ULongCodes as _ULongCodes +from ._char_codes import _ULongLongCodes as _ULongLongCodes +from ._char_codes import _UnsignedIntegerCodes as _UnsignedIntegerCodes +from ._char_codes import _UShortCodes as _UShortCodes +from ._char_codes import _VoidCodes as _VoidCodes + +# +from ._dtype_like import DTypeLike as DTypeLike +from ._dtype_like import _DTypeLike as _DTypeLike +from ._dtype_like import _DTypeLikeBool as _DTypeLikeBool +from ._dtype_like import _DTypeLikeBytes as _DTypeLikeBytes +from ._dtype_like import _DTypeLikeComplex as _DTypeLikeComplex +from ._dtype_like import _DTypeLikeComplex_co as _DTypeLikeComplex_co +from ._dtype_like import _DTypeLikeDT64 as _DTypeLikeDT64 +from ._dtype_like import _DTypeLikeFloat as _DTypeLikeFloat +from ._dtype_like import _DTypeLikeInt as _DTypeLikeInt +from ._dtype_like import _DTypeLikeObject as _DTypeLikeObject +from ._dtype_like import _DTypeLikeStr as _DTypeLikeStr +from ._dtype_like import _DTypeLikeTD64 as _DTypeLikeTD64 +from ._dtype_like import _DTypeLikeUInt as _DTypeLikeUInt +from ._dtype_like import _DTypeLikeVoid as _DTypeLikeVoid +from ._dtype_like import _SupportsDType as _SupportsDType +from ._dtype_like import _VoidDTypeLike as _VoidDTypeLike + +# +from ._nbit import _NBitByte as _NBitByte +from ._nbit import _NBitDouble as _NBitDouble +from ._nbit import _NBitHalf as _NBitHalf +from ._nbit import _NBitInt as _NBitInt +from ._nbit import _NBitIntC as _NBitIntC +from ._nbit import _NBitIntP as _NBitIntP +from ._nbit import _NBitLong as _NBitLong +from ._nbit import _NBitLongDouble as _NBitLongDouble +from ._nbit import _NBitLongLong as _NBitLongLong +from ._nbit import _NBitShort as _NBitShort +from ._nbit import _NBitSingle as _NBitSingle + +# +from ._nbit_base import ( + NBitBase as NBitBase, # type: ignore[deprecated] # pyright: ignore[reportDeprecated] +) +from ._nbit_base import _8Bit as _8Bit +from ._nbit_base import _16Bit as _16Bit +from ._nbit_base import _32Bit as _32Bit +from ._nbit_base import _64Bit as _64Bit +from ._nbit_base import _96Bit as _96Bit +from ._nbit_base import _128Bit as _128Bit + +# +from ._nested_sequence import _NestedSequence as _NestedSequence + +# +from ._scalars import _BoolLike_co as _BoolLike_co +from ._scalars import _CharLike_co as _CharLike_co +from ._scalars import _ComplexLike_co as _ComplexLike_co +from ._scalars import _FloatLike_co as _FloatLike_co +from ._scalars import _IntLike_co as _IntLike_co +from ._scalars import _NumberLike_co as _NumberLike_co +from ._scalars import _ScalarLike_co as _ScalarLike_co +from ._scalars import _TD64Like_co as _TD64Like_co +from ._scalars import _UIntLike_co as _UIntLike_co +from ._scalars import _VoidLike_co as _VoidLike_co + +# +from ._shape import _AnyShape as _AnyShape +from ._shape import _Shape as _Shape +from ._shape import _ShapeLike as _ShapeLike + +# +from ._ufunc import _GUFunc_Nin2_Nout1 as _GUFunc_Nin2_Nout1 +from ._ufunc import _UFunc_Nin1_Nout1 as _UFunc_Nin1_Nout1 +from ._ufunc import _UFunc_Nin1_Nout2 as _UFunc_Nin1_Nout2 +from ._ufunc import _UFunc_Nin2_Nout1 as _UFunc_Nin2_Nout1 +from ._ufunc import _UFunc_Nin2_Nout2 as _UFunc_Nin2_Nout2 diff --git a/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..67d4164 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_add_docstring.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_add_docstring.cpython-312.pyc new file mode 100644 index 0000000..e44c917 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_add_docstring.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_array_like.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_array_like.cpython-312.pyc new file mode 100644 index 0000000..b2f82de Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_array_like.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_char_codes.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_char_codes.cpython-312.pyc new file mode 100644 index 0000000..afdba3e Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_char_codes.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_dtype_like.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_dtype_like.cpython-312.pyc new file mode 100644 index 0000000..9253e6b Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_dtype_like.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_extended_precision.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_extended_precision.cpython-312.pyc new file mode 100644 index 0000000..2c06b47 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_extended_precision.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_nbit.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_nbit.cpython-312.pyc new file mode 100644 index 0000000..2ece775 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_nbit.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_nbit_base.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_nbit_base.cpython-312.pyc new file mode 100644 index 0000000..3794b7a Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_nbit_base.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_nested_sequence.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_nested_sequence.cpython-312.pyc new file mode 100644 index 0000000..67f2737 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_nested_sequence.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_scalars.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_scalars.cpython-312.pyc new file mode 100644 index 0000000..85f31c2 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_scalars.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_shape.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_shape.cpython-312.pyc new file mode 100644 index 0000000..b439f4b Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_shape.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_ufunc.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_ufunc.cpython-312.pyc new file mode 100644 index 0000000..c625672 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_typing/__pycache__/_ufunc.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_typing/_add_docstring.py b/.venv/lib/python3.12/site-packages/numpy/_typing/_add_docstring.py new file mode 100644 index 0000000..5330a6b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_typing/_add_docstring.py @@ -0,0 +1,153 @@ +"""A module for creating docstrings for sphinx ``data`` domains.""" + +import re +import textwrap + +from ._array_like import NDArray + +_docstrings_list = [] + + +def add_newdoc(name: str, value: str, doc: str) -> None: + """Append ``_docstrings_list`` with a docstring for `name`. + + Parameters + ---------- + name : str + The name of the object. + value : str + A string-representation of the object. + doc : str + The docstring of the object. + + """ + _docstrings_list.append((name, value, doc)) + + +def _parse_docstrings() -> str: + """Convert all docstrings in ``_docstrings_list`` into a single + sphinx-legible text block. + + """ + type_list_ret = [] + for name, value, doc in _docstrings_list: + s = textwrap.dedent(doc).replace("\n", "\n ") + + # Replace sections by rubrics + lines = s.split("\n") + new_lines = [] + indent = "" + for line in lines: + m = re.match(r'^(\s+)[-=]+\s*$', line) + if m and new_lines: + prev = textwrap.dedent(new_lines.pop()) + if prev == "Examples": + indent = "" + new_lines.append(f'{m.group(1)}.. rubric:: {prev}') + else: + indent = 4 * " " + new_lines.append(f'{m.group(1)}.. admonition:: {prev}') + new_lines.append("") + else: + new_lines.append(f"{indent}{line}") + + s = "\n".join(new_lines) + s_block = f""".. data:: {name}\n :value: {value}\n {s}""" + type_list_ret.append(s_block) + return "\n".join(type_list_ret) + + +add_newdoc('ArrayLike', 'typing.Union[...]', + """ + A `~typing.Union` representing objects that can be coerced + into an `~numpy.ndarray`. + + Among others this includes the likes of: + + * Scalars. + * (Nested) sequences. + * Objects implementing the `~class.__array__` protocol. + + .. versionadded:: 1.20 + + See Also + -------- + :term:`array_like`: + Any scalar or sequence that can be interpreted as an ndarray. + + Examples + -------- + .. code-block:: python + + >>> import numpy as np + >>> import numpy.typing as npt + + >>> def as_array(a: npt.ArrayLike) -> np.ndarray: + ... return np.array(a) + + """) + +add_newdoc('DTypeLike', 'typing.Union[...]', + """ + A `~typing.Union` representing objects that can be coerced + into a `~numpy.dtype`. + + Among others this includes the likes of: + + * :class:`type` objects. + * Character codes or the names of :class:`type` objects. + * Objects with the ``.dtype`` attribute. + + .. versionadded:: 1.20 + + See Also + -------- + :ref:`Specifying and constructing data types ` + A comprehensive overview of all objects that can be coerced + into data types. + + Examples + -------- + .. code-block:: python + + >>> import numpy as np + >>> import numpy.typing as npt + + >>> def as_dtype(d: npt.DTypeLike) -> np.dtype: + ... return np.dtype(d) + + """) + +add_newdoc('NDArray', repr(NDArray), + """ + A `np.ndarray[tuple[Any, ...], np.dtype[ScalarT]] ` + type alias :term:`generic ` w.r.t. its + `dtype.type `. + + Can be used during runtime for typing arrays with a given dtype + and unspecified shape. + + .. versionadded:: 1.21 + + Examples + -------- + .. code-block:: python + + >>> import numpy as np + >>> import numpy.typing as npt + + >>> print(npt.NDArray) + numpy.ndarray[tuple[typing.Any, ...], numpy.dtype[~_ScalarT]] + + >>> print(npt.NDArray[np.float64]) + numpy.ndarray[tuple[typing.Any, ...], numpy.dtype[numpy.float64]] + + >>> NDArrayInt = npt.NDArray[np.int_] + >>> a: NDArrayInt = np.arange(10) + + >>> def func(a: npt.ArrayLike) -> npt.NDArray[Any]: + ... return np.array(a) + + """) + +_docstrings = _parse_docstrings() diff --git a/.venv/lib/python3.12/site-packages/numpy/_typing/_array_like.py b/.venv/lib/python3.12/site-packages/numpy/_typing/_array_like.py new file mode 100644 index 0000000..6b071f4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_typing/_array_like.py @@ -0,0 +1,106 @@ +import sys +from collections.abc import Callable, Collection, Sequence +from typing import TYPE_CHECKING, Any, Protocol, TypeAlias, TypeVar, runtime_checkable + +import numpy as np +from numpy import dtype + +from ._nbit_base import _32Bit, _64Bit +from ._nested_sequence import _NestedSequence +from ._shape import _AnyShape + +if TYPE_CHECKING: + StringDType = np.dtypes.StringDType +else: + # at runtime outside of type checking importing this from numpy.dtypes + # would lead to a circular import + from numpy._core.multiarray import StringDType + +_T = TypeVar("_T") +_ScalarT = TypeVar("_ScalarT", bound=np.generic) +_DTypeT = TypeVar("_DTypeT", bound=dtype[Any]) +_DTypeT_co = TypeVar("_DTypeT_co", covariant=True, bound=dtype[Any]) + +NDArray: TypeAlias = np.ndarray[_AnyShape, dtype[_ScalarT]] + +# The `_SupportsArray` protocol only cares about the default dtype +# (i.e. `dtype=None` or no `dtype` parameter at all) of the to-be returned +# array. +# Concrete implementations of the protocol are responsible for adding +# any and all remaining overloads +@runtime_checkable +class _SupportsArray(Protocol[_DTypeT_co]): + def __array__(self) -> np.ndarray[Any, _DTypeT_co]: ... + + +@runtime_checkable +class _SupportsArrayFunc(Protocol): + """A protocol class representing `~class.__array_function__`.""" + def __array_function__( + self, + func: Callable[..., Any], + types: Collection[type[Any]], + args: tuple[Any, ...], + kwargs: dict[str, Any], + ) -> object: ... + + +# TODO: Wait until mypy supports recursive objects in combination with typevars +_FiniteNestedSequence: TypeAlias = ( + _T + | Sequence[_T] + | Sequence[Sequence[_T]] + | Sequence[Sequence[Sequence[_T]]] + | Sequence[Sequence[Sequence[Sequence[_T]]]] +) + +# A subset of `npt.ArrayLike` that can be parametrized w.r.t. `np.generic` +_ArrayLike: TypeAlias = ( + _SupportsArray[dtype[_ScalarT]] + | _NestedSequence[_SupportsArray[dtype[_ScalarT]]] +) + +# A union representing array-like objects; consists of two typevars: +# One representing types that can be parametrized w.r.t. `np.dtype` +# and another one for the rest +_DualArrayLike: TypeAlias = ( + _SupportsArray[_DTypeT] + | _NestedSequence[_SupportsArray[_DTypeT]] + | _T + | _NestedSequence[_T] +) + +if sys.version_info >= (3, 12): + from collections.abc import Buffer as _Buffer +else: + @runtime_checkable + class _Buffer(Protocol): + def __buffer__(self, flags: int, /) -> memoryview: ... + +ArrayLike: TypeAlias = _Buffer | _DualArrayLike[dtype[Any], complex | bytes | str] + +# `ArrayLike_co`: array-like objects that can be coerced into `X` +# given the casting rules `same_kind` +_ArrayLikeBool_co: TypeAlias = _DualArrayLike[dtype[np.bool], bool] +_ArrayLikeUInt_co: TypeAlias = _DualArrayLike[dtype[np.bool | np.unsignedinteger], bool] +_ArrayLikeInt_co: TypeAlias = _DualArrayLike[dtype[np.bool | np.integer], int] +_ArrayLikeFloat_co: TypeAlias = _DualArrayLike[dtype[np.bool | np.integer | np.floating], float] +_ArrayLikeComplex_co: TypeAlias = _DualArrayLike[dtype[np.bool | np.number], complex] +_ArrayLikeNumber_co: TypeAlias = _ArrayLikeComplex_co +_ArrayLikeTD64_co: TypeAlias = _DualArrayLike[dtype[np.bool | np.integer | np.timedelta64], int] +_ArrayLikeDT64_co: TypeAlias = _ArrayLike[np.datetime64] +_ArrayLikeObject_co: TypeAlias = _ArrayLike[np.object_] + +_ArrayLikeVoid_co: TypeAlias = _ArrayLike[np.void] +_ArrayLikeBytes_co: TypeAlias = _DualArrayLike[dtype[np.bytes_], bytes] +_ArrayLikeStr_co: TypeAlias = _DualArrayLike[dtype[np.str_], str] +_ArrayLikeString_co: TypeAlias = _DualArrayLike[StringDType, str] +_ArrayLikeAnyString_co: TypeAlias = _DualArrayLike[dtype[np.character] | StringDType, bytes | str] + +__Float64_co: TypeAlias = np.floating[_64Bit] | np.float32 | np.float16 | np.integer | np.bool +__Complex128_co: TypeAlias = np.number[_64Bit] | np.number[_32Bit] | np.float16 | np.integer | np.bool +_ArrayLikeFloat64_co: TypeAlias = _DualArrayLike[dtype[__Float64_co], float] +_ArrayLikeComplex128_co: TypeAlias = _DualArrayLike[dtype[__Complex128_co], complex] + +# NOTE: This includes `builtins.bool`, but not `numpy.bool`. +_ArrayLikeInt: TypeAlias = _DualArrayLike[dtype[np.integer], int] diff --git a/.venv/lib/python3.12/site-packages/numpy/_typing/_callable.pyi b/.venv/lib/python3.12/site-packages/numpy/_typing/_callable.pyi new file mode 100644 index 0000000..21df1d9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_typing/_callable.pyi @@ -0,0 +1,366 @@ +""" +A module with various ``typing.Protocol`` subclasses that implement +the ``__call__`` magic method. + +See the `Mypy documentation`_ on protocols for more details. + +.. _`Mypy documentation`: https://mypy.readthedocs.io/en/stable/protocols.html#callback-protocols + +""" + +from typing import ( + Any, + NoReturn, + Protocol, + TypeAlias, + TypeVar, + final, + overload, + type_check_only, +) + +import numpy as np +from numpy import ( + complex128, + complexfloating, + float64, + floating, + generic, + int8, + int_, + integer, + number, + signedinteger, + unsignedinteger, +) + +from . import NBitBase +from ._array_like import NDArray +from ._nbit import _NBitInt +from ._nested_sequence import _NestedSequence +from ._scalars import ( + _BoolLike_co, + _IntLike_co, + _NumberLike_co, +) + +_T1 = TypeVar("_T1") +_T2 = TypeVar("_T2") +_T1_contra = TypeVar("_T1_contra", contravariant=True) +_T2_contra = TypeVar("_T2_contra", contravariant=True) + +_2Tuple: TypeAlias = tuple[_T1, _T1] + +_NBit1 = TypeVar("_NBit1", bound=NBitBase) +_NBit2 = TypeVar("_NBit2", bound=NBitBase) + +_IntType = TypeVar("_IntType", bound=integer) +_FloatType = TypeVar("_FloatType", bound=floating) +_NumberType = TypeVar("_NumberType", bound=number) +_NumberType_co = TypeVar("_NumberType_co", covariant=True, bound=number) +_GenericType_co = TypeVar("_GenericType_co", covariant=True, bound=generic) + +@type_check_only +class _BoolOp(Protocol[_GenericType_co]): + @overload + def __call__(self, other: _BoolLike_co, /) -> _GenericType_co: ... + @overload # platform dependent + def __call__(self, other: int, /) -> int_: ... + @overload + def __call__(self, other: float, /) -> float64: ... + @overload + def __call__(self, other: complex, /) -> complex128: ... + @overload + def __call__(self, other: _NumberType, /) -> _NumberType: ... + +@type_check_only +class _BoolBitOp(Protocol[_GenericType_co]): + @overload + def __call__(self, other: _BoolLike_co, /) -> _GenericType_co: ... + @overload # platform dependent + def __call__(self, other: int, /) -> int_: ... + @overload + def __call__(self, other: _IntType, /) -> _IntType: ... + +@type_check_only +class _BoolSub(Protocol): + # Note that `other: bool` is absent here + @overload + def __call__(self, other: bool, /) -> NoReturn: ... + @overload # platform dependent + def __call__(self, other: int, /) -> int_: ... + @overload + def __call__(self, other: float, /) -> float64: ... + @overload + def __call__(self, other: complex, /) -> complex128: ... + @overload + def __call__(self, other: _NumberType, /) -> _NumberType: ... + +@type_check_only +class _BoolTrueDiv(Protocol): + @overload + def __call__(self, other: float | _IntLike_co, /) -> float64: ... + @overload + def __call__(self, other: complex, /) -> complex128: ... + @overload + def __call__(self, other: _NumberType, /) -> _NumberType: ... + +@type_check_only +class _BoolMod(Protocol): + @overload + def __call__(self, other: _BoolLike_co, /) -> int8: ... + @overload # platform dependent + def __call__(self, other: int, /) -> int_: ... + @overload + def __call__(self, other: float, /) -> float64: ... + @overload + def __call__(self, other: _IntType, /) -> _IntType: ... + @overload + def __call__(self, other: _FloatType, /) -> _FloatType: ... + +@type_check_only +class _BoolDivMod(Protocol): + @overload + def __call__(self, other: _BoolLike_co, /) -> _2Tuple[int8]: ... + @overload # platform dependent + def __call__(self, other: int, /) -> _2Tuple[int_]: ... + @overload + def __call__(self, other: float, /) -> _2Tuple[np.float64]: ... + @overload + def __call__(self, other: _IntType, /) -> _2Tuple[_IntType]: ... + @overload + def __call__(self, other: _FloatType, /) -> _2Tuple[_FloatType]: ... + +@type_check_only +class _IntTrueDiv(Protocol[_NBit1]): + @overload + def __call__(self, other: bool, /) -> floating[_NBit1]: ... + @overload + def __call__(self, other: int, /) -> floating[_NBit1] | floating[_NBitInt]: ... + @overload + def __call__(self, other: float, /) -> floating[_NBit1] | float64: ... + @overload + def __call__( + self, other: complex, / + ) -> complexfloating[_NBit1, _NBit1] | complex128: ... + @overload + def __call__( + self, other: integer[_NBit2], / + ) -> floating[_NBit1] | floating[_NBit2]: ... + +@type_check_only +class _UnsignedIntOp(Protocol[_NBit1]): + # NOTE: `uint64 + signedinteger -> float64` + @overload + def __call__(self, other: int, /) -> unsignedinteger[_NBit1]: ... + @overload + def __call__(self, other: float, /) -> float64: ... + @overload + def __call__(self, other: complex, /) -> complex128: ... + @overload + def __call__(self, other: unsignedinteger[_NBit2], /) -> unsignedinteger[_NBit1] | unsignedinteger[_NBit2]: ... + @overload + def __call__(self, other: signedinteger, /) -> Any: ... + +@type_check_only +class _UnsignedIntBitOp(Protocol[_NBit1]): + @overload + def __call__(self, other: bool, /) -> unsignedinteger[_NBit1]: ... + @overload + def __call__(self, other: int, /) -> signedinteger: ... + @overload + def __call__(self, other: signedinteger, /) -> signedinteger: ... + @overload + def __call__( + self, other: unsignedinteger[_NBit2], / + ) -> unsignedinteger[_NBit1] | unsignedinteger[_NBit2]: ... + +@type_check_only +class _UnsignedIntMod(Protocol[_NBit1]): + @overload + def __call__(self, other: bool, /) -> unsignedinteger[_NBit1]: ... + @overload + def __call__(self, other: int | signedinteger, /) -> Any: ... + @overload + def __call__(self, other: float, /) -> floating[_NBit1] | float64: ... + @overload + def __call__( + self, other: unsignedinteger[_NBit2], / + ) -> unsignedinteger[_NBit1] | unsignedinteger[_NBit2]: ... + +@type_check_only +class _UnsignedIntDivMod(Protocol[_NBit1]): + @overload + def __call__(self, other: bool, /) -> _2Tuple[signedinteger[_NBit1]]: ... + @overload + def __call__(self, other: int | signedinteger, /) -> _2Tuple[Any]: ... + @overload + def __call__(self, other: float, /) -> _2Tuple[floating[_NBit1]] | _2Tuple[float64]: ... + @overload + def __call__( + self, other: unsignedinteger[_NBit2], / + ) -> _2Tuple[unsignedinteger[_NBit1]] | _2Tuple[unsignedinteger[_NBit2]]: ... + +@type_check_only +class _SignedIntOp(Protocol[_NBit1]): + @overload + def __call__(self, other: int, /) -> signedinteger[_NBit1]: ... + @overload + def __call__(self, other: float, /) -> float64: ... + @overload + def __call__(self, other: complex, /) -> complex128: ... + @overload + def __call__(self, other: signedinteger[_NBit2], /) -> signedinteger[_NBit1] | signedinteger[_NBit2]: ... + +@type_check_only +class _SignedIntBitOp(Protocol[_NBit1]): + @overload + def __call__(self, other: bool, /) -> signedinteger[_NBit1]: ... + @overload + def __call__(self, other: int, /) -> signedinteger[_NBit1] | int_: ... + @overload + def __call__( + self, other: signedinteger[_NBit2], / + ) -> signedinteger[_NBit1] | signedinteger[_NBit2]: ... + +@type_check_only +class _SignedIntMod(Protocol[_NBit1]): + @overload + def __call__(self, other: bool, /) -> signedinteger[_NBit1]: ... + @overload + def __call__(self, other: int, /) -> signedinteger[_NBit1] | int_: ... + @overload + def __call__(self, other: float, /) -> floating[_NBit1] | float64: ... + @overload + def __call__( + self, other: signedinteger[_NBit2], / + ) -> signedinteger[_NBit1] | signedinteger[_NBit2]: ... + +@type_check_only +class _SignedIntDivMod(Protocol[_NBit1]): + @overload + def __call__(self, other: bool, /) -> _2Tuple[signedinteger[_NBit1]]: ... + @overload + def __call__(self, other: int, /) -> _2Tuple[signedinteger[_NBit1]] | _2Tuple[int_]: ... + @overload + def __call__(self, other: float, /) -> _2Tuple[floating[_NBit1]] | _2Tuple[float64]: ... + @overload + def __call__( + self, other: signedinteger[_NBit2], / + ) -> _2Tuple[signedinteger[_NBit1]] | _2Tuple[signedinteger[_NBit2]]: ... + +@type_check_only +class _FloatOp(Protocol[_NBit1]): + @overload + def __call__(self, other: int, /) -> floating[_NBit1]: ... + @overload + def __call__(self, other: float, /) -> floating[_NBit1] | float64: ... + @overload + def __call__( + self, other: complex, / + ) -> complexfloating[_NBit1, _NBit1] | complex128: ... + @overload + def __call__( + self, other: integer[_NBit2] | floating[_NBit2], / + ) -> floating[_NBit1] | floating[_NBit2]: ... + +@type_check_only +class _FloatMod(Protocol[_NBit1]): + @overload + def __call__(self, other: bool, /) -> floating[_NBit1]: ... + @overload + def __call__(self, other: int, /) -> floating[_NBit1] | floating[_NBitInt]: ... + @overload + def __call__(self, other: float, /) -> floating[_NBit1] | float64: ... + @overload + def __call__( + self, other: integer[_NBit2] | floating[_NBit2], / + ) -> floating[_NBit1] | floating[_NBit2]: ... + +class _FloatDivMod(Protocol[_NBit1]): + @overload + def __call__(self, other: bool, /) -> _2Tuple[floating[_NBit1]]: ... + @overload + def __call__( + self, other: int, / + ) -> _2Tuple[floating[_NBit1]] | _2Tuple[floating[_NBitInt]]: ... + @overload + def __call__( + self, other: float, / + ) -> _2Tuple[floating[_NBit1]] | _2Tuple[float64]: ... + @overload + def __call__( + self, other: integer[_NBit2] | floating[_NBit2], / + ) -> _2Tuple[floating[_NBit1]] | _2Tuple[floating[_NBit2]]: ... + +@type_check_only +class _NumberOp(Protocol): + def __call__(self, other: _NumberLike_co, /) -> Any: ... + +@final +@type_check_only +class _SupportsLT(Protocol): + def __lt__(self, other: Any, /) -> Any: ... + +@final +@type_check_only +class _SupportsLE(Protocol): + def __le__(self, other: Any, /) -> Any: ... + +@final +@type_check_only +class _SupportsGT(Protocol): + def __gt__(self, other: Any, /) -> Any: ... + +@final +@type_check_only +class _SupportsGE(Protocol): + def __ge__(self, other: Any, /) -> Any: ... + +@final +@type_check_only +class _ComparisonOpLT(Protocol[_T1_contra, _T2_contra]): + @overload + def __call__(self, other: _T1_contra, /) -> np.bool: ... + @overload + def __call__(self, other: _T2_contra, /) -> NDArray[np.bool]: ... + @overload + def __call__(self, other: _NestedSequence[_SupportsGT], /) -> NDArray[np.bool]: ... + @overload + def __call__(self, other: _SupportsGT, /) -> np.bool: ... + +@final +@type_check_only +class _ComparisonOpLE(Protocol[_T1_contra, _T2_contra]): + @overload + def __call__(self, other: _T1_contra, /) -> np.bool: ... + @overload + def __call__(self, other: _T2_contra, /) -> NDArray[np.bool]: ... + @overload + def __call__(self, other: _NestedSequence[_SupportsGE], /) -> NDArray[np.bool]: ... + @overload + def __call__(self, other: _SupportsGE, /) -> np.bool: ... + +@final +@type_check_only +class _ComparisonOpGT(Protocol[_T1_contra, _T2_contra]): + @overload + def __call__(self, other: _T1_contra, /) -> np.bool: ... + @overload + def __call__(self, other: _T2_contra, /) -> NDArray[np.bool]: ... + @overload + def __call__(self, other: _NestedSequence[_SupportsLT], /) -> NDArray[np.bool]: ... + @overload + def __call__(self, other: _SupportsLT, /) -> np.bool: ... + +@final +@type_check_only +class _ComparisonOpGE(Protocol[_T1_contra, _T2_contra]): + @overload + def __call__(self, other: _T1_contra, /) -> np.bool: ... + @overload + def __call__(self, other: _T2_contra, /) -> NDArray[np.bool]: ... + @overload + def __call__(self, other: _NestedSequence[_SupportsGT], /) -> NDArray[np.bool]: ... + @overload + def __call__(self, other: _SupportsGT, /) -> np.bool: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_typing/_char_codes.py b/.venv/lib/python3.12/site-packages/numpy/_typing/_char_codes.py new file mode 100644 index 0000000..7b6fad2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_typing/_char_codes.py @@ -0,0 +1,213 @@ +from typing import Literal + +_BoolCodes = Literal[ + "bool", "bool_", + "?", "|?", "=?", "?", + "b1", "|b1", "=b1", "b1", +] # fmt: skip + +_UInt8Codes = Literal["uint8", "u1", "|u1", "=u1", "u1"] +_UInt16Codes = Literal["uint16", "u2", "|u2", "=u2", "u2"] +_UInt32Codes = Literal["uint32", "u4", "|u4", "=u4", "u4"] +_UInt64Codes = Literal["uint64", "u8", "|u8", "=u8", "u8"] + +_Int8Codes = Literal["int8", "i1", "|i1", "=i1", "i1"] +_Int16Codes = Literal["int16", "i2", "|i2", "=i2", "i2"] +_Int32Codes = Literal["int32", "i4", "|i4", "=i4", "i4"] +_Int64Codes = Literal["int64", "i8", "|i8", "=i8", "i8"] + +_Float16Codes = Literal["float16", "f2", "|f2", "=f2", "f2"] +_Float32Codes = Literal["float32", "f4", "|f4", "=f4", "f4"] +_Float64Codes = Literal["float64", "f8", "|f8", "=f8", "f8"] + +_Complex64Codes = Literal["complex64", "c8", "|c8", "=c8", "c8"] +_Complex128Codes = Literal["complex128", "c16", "|c16", "=c16", "c16"] + +_ByteCodes = Literal["byte", "b", "|b", "=b", "b"] +_ShortCodes = Literal["short", "h", "|h", "=h", "h"] +_IntCCodes = Literal["intc", "i", "|i", "=i", "i"] +_IntPCodes = Literal["intp", "int", "int_", "n", "|n", "=n", "n"] +_LongCodes = Literal["long", "l", "|l", "=l", "l"] +_IntCodes = _IntPCodes +_LongLongCodes = Literal["longlong", "q", "|q", "=q", "q"] + +_UByteCodes = Literal["ubyte", "B", "|B", "=B", "B"] +_UShortCodes = Literal["ushort", "H", "|H", "=H", "H"] +_UIntCCodes = Literal["uintc", "I", "|I", "=I", "I"] +_UIntPCodes = Literal["uintp", "uint", "N", "|N", "=N", "N"] +_ULongCodes = Literal["ulong", "L", "|L", "=L", "L"] +_UIntCodes = _UIntPCodes +_ULongLongCodes = Literal["ulonglong", "Q", "|Q", "=Q", "Q"] + +_HalfCodes = Literal["half", "e", "|e", "=e", "e"] +_SingleCodes = Literal["single", "f", "|f", "=f", "f"] +_DoubleCodes = Literal["double", "float", "d", "|d", "=d", "d"] +_LongDoubleCodes = Literal["longdouble", "g", "|g", "=g", "g"] + +_CSingleCodes = Literal["csingle", "F", "|F", "=F", "F"] +_CDoubleCodes = Literal["cdouble", "complex", "D", "|D", "=D", "D"] +_CLongDoubleCodes = Literal["clongdouble", "G", "|G", "=G", "G"] + +_StrCodes = Literal["str", "str_", "unicode", "U", "|U", "=U", "U"] +_BytesCodes = Literal["bytes", "bytes_", "S", "|S", "=S", "S"] +_VoidCodes = Literal["void", "V", "|V", "=V", "V"] +_ObjectCodes = Literal["object", "object_", "O", "|O", "=O", "O"] + +_DT64Codes = Literal[ + "datetime64", "|datetime64", "=datetime64", + "datetime64", + "datetime64[Y]", "|datetime64[Y]", "=datetime64[Y]", + "datetime64[Y]", + "datetime64[M]", "|datetime64[M]", "=datetime64[M]", + "datetime64[M]", + "datetime64[W]", "|datetime64[W]", "=datetime64[W]", + "datetime64[W]", + "datetime64[D]", "|datetime64[D]", "=datetime64[D]", + "datetime64[D]", + "datetime64[h]", "|datetime64[h]", "=datetime64[h]", + "datetime64[h]", + "datetime64[m]", "|datetime64[m]", "=datetime64[m]", + "datetime64[m]", + "datetime64[s]", "|datetime64[s]", "=datetime64[s]", + "datetime64[s]", + "datetime64[ms]", "|datetime64[ms]", "=datetime64[ms]", + "datetime64[ms]", + "datetime64[us]", "|datetime64[us]", "=datetime64[us]", + "datetime64[us]", + "datetime64[ns]", "|datetime64[ns]", "=datetime64[ns]", + "datetime64[ns]", + "datetime64[ps]", "|datetime64[ps]", "=datetime64[ps]", + "datetime64[ps]", + "datetime64[fs]", "|datetime64[fs]", "=datetime64[fs]", + "datetime64[fs]", + "datetime64[as]", "|datetime64[as]", "=datetime64[as]", + "datetime64[as]", + "M", "|M", "=M", "M", + "M8", "|M8", "=M8", "M8", + "M8[Y]", "|M8[Y]", "=M8[Y]", "M8[Y]", + "M8[M]", "|M8[M]", "=M8[M]", "M8[M]", + "M8[W]", "|M8[W]", "=M8[W]", "M8[W]", + "M8[D]", "|M8[D]", "=M8[D]", "M8[D]", + "M8[h]", "|M8[h]", "=M8[h]", "M8[h]", + "M8[m]", "|M8[m]", "=M8[m]", "M8[m]", + "M8[s]", "|M8[s]", "=M8[s]", "M8[s]", + "M8[ms]", "|M8[ms]", "=M8[ms]", "M8[ms]", + "M8[us]", "|M8[us]", "=M8[us]", "M8[us]", + "M8[ns]", "|M8[ns]", "=M8[ns]", "M8[ns]", + "M8[ps]", "|M8[ps]", "=M8[ps]", "M8[ps]", + "M8[fs]", "|M8[fs]", "=M8[fs]", "M8[fs]", + "M8[as]", "|M8[as]", "=M8[as]", "M8[as]", +] +_TD64Codes = Literal[ + "timedelta64", "|timedelta64", "=timedelta64", + "timedelta64", + "timedelta64[Y]", "|timedelta64[Y]", "=timedelta64[Y]", + "timedelta64[Y]", + "timedelta64[M]", "|timedelta64[M]", "=timedelta64[M]", + "timedelta64[M]", + "timedelta64[W]", "|timedelta64[W]", "=timedelta64[W]", + "timedelta64[W]", + "timedelta64[D]", "|timedelta64[D]", "=timedelta64[D]", + "timedelta64[D]", + "timedelta64[h]", "|timedelta64[h]", "=timedelta64[h]", + "timedelta64[h]", + "timedelta64[m]", "|timedelta64[m]", "=timedelta64[m]", + "timedelta64[m]", + "timedelta64[s]", "|timedelta64[s]", "=timedelta64[s]", + "timedelta64[s]", + "timedelta64[ms]", "|timedelta64[ms]", "=timedelta64[ms]", + "timedelta64[ms]", + "timedelta64[us]", "|timedelta64[us]", "=timedelta64[us]", + "timedelta64[us]", + "timedelta64[ns]", "|timedelta64[ns]", "=timedelta64[ns]", + "timedelta64[ns]", + "timedelta64[ps]", "|timedelta64[ps]", "=timedelta64[ps]", + "timedelta64[ps]", + "timedelta64[fs]", "|timedelta64[fs]", "=timedelta64[fs]", + "timedelta64[fs]", + "timedelta64[as]", "|timedelta64[as]", "=timedelta64[as]", + "timedelta64[as]", + "m", "|m", "=m", "m", + "m8", "|m8", "=m8", "m8", + "m8[Y]", "|m8[Y]", "=m8[Y]", "m8[Y]", + "m8[M]", "|m8[M]", "=m8[M]", "m8[M]", + "m8[W]", "|m8[W]", "=m8[W]", "m8[W]", + "m8[D]", "|m8[D]", "=m8[D]", "m8[D]", + "m8[h]", "|m8[h]", "=m8[h]", "m8[h]", + "m8[m]", "|m8[m]", "=m8[m]", "m8[m]", + "m8[s]", "|m8[s]", "=m8[s]", "m8[s]", + "m8[ms]", "|m8[ms]", "=m8[ms]", "m8[ms]", + "m8[us]", "|m8[us]", "=m8[us]", "m8[us]", + "m8[ns]", "|m8[ns]", "=m8[ns]", "m8[ns]", + "m8[ps]", "|m8[ps]", "=m8[ps]", "m8[ps]", + "m8[fs]", "|m8[fs]", "=m8[fs]", "m8[fs]", + "m8[as]", "|m8[as]", "=m8[as]", "m8[as]", +] + +# NOTE: `StringDType' has no scalar type, and therefore has no name that can +# be passed to the `dtype` constructor +_StringCodes = Literal["T", "|T", "=T", "T"] + +# NOTE: Nested literals get flattened and de-duplicated at runtime, which isn't +# the case for a `Union` of `Literal`s. +# So even though they're equivalent when type-checking, they differ at runtime. +# Another advantage of nesting, is that they always have a "flat" +# `Literal.__args__`, which is a tuple of *literally* all its literal values. + +_UnsignedIntegerCodes = Literal[ + _UInt8Codes, + _UInt16Codes, + _UInt32Codes, + _UInt64Codes, + _UIntCodes, + _UByteCodes, + _UShortCodes, + _UIntCCodes, + _ULongCodes, + _ULongLongCodes, +] +_SignedIntegerCodes = Literal[ + _Int8Codes, + _Int16Codes, + _Int32Codes, + _Int64Codes, + _IntCodes, + _ByteCodes, + _ShortCodes, + _IntCCodes, + _LongCodes, + _LongLongCodes, +] +_FloatingCodes = Literal[ + _Float16Codes, + _Float32Codes, + _Float64Codes, + _HalfCodes, + _SingleCodes, + _DoubleCodes, + _LongDoubleCodes +] +_ComplexFloatingCodes = Literal[ + _Complex64Codes, + _Complex128Codes, + _CSingleCodes, + _CDoubleCodes, + _CLongDoubleCodes, +] +_IntegerCodes = Literal[_UnsignedIntegerCodes, _SignedIntegerCodes] +_InexactCodes = Literal[_FloatingCodes, _ComplexFloatingCodes] +_NumberCodes = Literal[_IntegerCodes, _InexactCodes] + +_CharacterCodes = Literal[_StrCodes, _BytesCodes] +_FlexibleCodes = Literal[_VoidCodes, _CharacterCodes] + +_GenericCodes = Literal[ + _BoolCodes, + _NumberCodes, + _FlexibleCodes, + _DT64Codes, + _TD64Codes, + _ObjectCodes, + # TODO: add `_StringCodes` once it has a scalar type + # _StringCodes, +] diff --git a/.venv/lib/python3.12/site-packages/numpy/_typing/_dtype_like.py b/.venv/lib/python3.12/site-packages/numpy/_typing/_dtype_like.py new file mode 100644 index 0000000..c406b30 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_typing/_dtype_like.py @@ -0,0 +1,114 @@ +from collections.abc import Sequence # noqa: F811 +from typing import ( + Any, + Protocol, + TypeAlias, + TypedDict, + TypeVar, + runtime_checkable, +) + +import numpy as np + +from ._char_codes import ( + _BoolCodes, + _BytesCodes, + _ComplexFloatingCodes, + _DT64Codes, + _FloatingCodes, + _NumberCodes, + _ObjectCodes, + _SignedIntegerCodes, + _StrCodes, + _TD64Codes, + _UnsignedIntegerCodes, + _VoidCodes, +) + +_ScalarT = TypeVar("_ScalarT", bound=np.generic) +_DTypeT_co = TypeVar("_DTypeT_co", bound=np.dtype, covariant=True) + +_DTypeLikeNested: TypeAlias = Any # TODO: wait for support for recursive types + + +# Mandatory keys +class _DTypeDictBase(TypedDict): + names: Sequence[str] + formats: Sequence[_DTypeLikeNested] + + +# Mandatory + optional keys +class _DTypeDict(_DTypeDictBase, total=False): + # Only `str` elements are usable as indexing aliases, + # but `titles` can in principle accept any object + offsets: Sequence[int] + titles: Sequence[Any] + itemsize: int + aligned: bool + + +# A protocol for anything with the dtype attribute +@runtime_checkable +class _SupportsDType(Protocol[_DTypeT_co]): + @property + def dtype(self) -> _DTypeT_co: ... + + +# A subset of `npt.DTypeLike` that can be parametrized w.r.t. `np.generic` +_DTypeLike: TypeAlias = type[_ScalarT] | np.dtype[_ScalarT] | _SupportsDType[np.dtype[_ScalarT]] + + +# Would create a dtype[np.void] +_VoidDTypeLike: TypeAlias = ( + # If a tuple, then it can be either: + # - (flexible_dtype, itemsize) + # - (fixed_dtype, shape) + # - (base_dtype, new_dtype) + # But because `_DTypeLikeNested = Any`, the first two cases are redundant + + # tuple[_DTypeLikeNested, int] | tuple[_DTypeLikeNested, _ShapeLike] | + tuple[_DTypeLikeNested, _DTypeLikeNested] + + # [(field_name, field_dtype, field_shape), ...] + # The type here is quite broad because NumPy accepts quite a wide + # range of inputs inside the list; see the tests for some examples. + | list[Any] + + # {'names': ..., 'formats': ..., 'offsets': ..., 'titles': ..., 'itemsize': ...} + | _DTypeDict +) + +# Aliases for commonly used dtype-like objects. +# Note that the precision of `np.number` subclasses is ignored herein. +_DTypeLikeBool: TypeAlias = type[bool] | _DTypeLike[np.bool] | _BoolCodes +_DTypeLikeInt: TypeAlias = ( + type[int] | _DTypeLike[np.signedinteger] | _SignedIntegerCodes +) +_DTypeLikeUInt: TypeAlias = _DTypeLike[np.unsignedinteger] | _UnsignedIntegerCodes +_DTypeLikeFloat: TypeAlias = type[float] | _DTypeLike[np.floating] | _FloatingCodes +_DTypeLikeComplex: TypeAlias = ( + type[complex] | _DTypeLike[np.complexfloating] | _ComplexFloatingCodes +) +_DTypeLikeComplex_co: TypeAlias = ( + type[complex] | _DTypeLike[np.bool | np.number] | _BoolCodes | _NumberCodes +) +_DTypeLikeDT64: TypeAlias = _DTypeLike[np.timedelta64] | _TD64Codes +_DTypeLikeTD64: TypeAlias = _DTypeLike[np.datetime64] | _DT64Codes +_DTypeLikeBytes: TypeAlias = type[bytes] | _DTypeLike[np.bytes_] | _BytesCodes +_DTypeLikeStr: TypeAlias = type[str] | _DTypeLike[np.str_] | _StrCodes +_DTypeLikeVoid: TypeAlias = ( + type[memoryview] | _DTypeLike[np.void] | _VoidDTypeLike | _VoidCodes +) +_DTypeLikeObject: TypeAlias = type[object] | _DTypeLike[np.object_] | _ObjectCodes + + +# Anything that can be coerced into numpy.dtype. +# Reference: https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html +DTypeLike: TypeAlias = _DTypeLike[Any] | _VoidDTypeLike | str | None + +# NOTE: while it is possible to provide the dtype as a dict of +# dtype-like objects (e.g. `{'field1': ..., 'field2': ..., ...}`), +# this syntax is officially discouraged and +# therefore not included in the type-union defining `DTypeLike`. +# +# See https://github.com/numpy/numpy/issues/16891 for more details. diff --git a/.venv/lib/python3.12/site-packages/numpy/_typing/_extended_precision.py b/.venv/lib/python3.12/site-packages/numpy/_typing/_extended_precision.py new file mode 100644 index 0000000..c707e72 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_typing/_extended_precision.py @@ -0,0 +1,15 @@ +"""A module with platform-specific extended precision +`numpy.number` subclasses. + +The subclasses are defined here (instead of ``__init__.pyi``) such +that they can be imported conditionally via the numpy's mypy plugin. +""" + +import numpy as np + +from . import _96Bit, _128Bit + +float96 = np.floating[_96Bit] +float128 = np.floating[_128Bit] +complex192 = np.complexfloating[_96Bit, _96Bit] +complex256 = np.complexfloating[_128Bit, _128Bit] diff --git a/.venv/lib/python3.12/site-packages/numpy/_typing/_nbit.py b/.venv/lib/python3.12/site-packages/numpy/_typing/_nbit.py new file mode 100644 index 0000000..60bce32 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_typing/_nbit.py @@ -0,0 +1,19 @@ +"""A module with the precisions of platform-specific `~numpy.number`s.""" + +from typing import TypeAlias + +from ._nbit_base import _8Bit, _16Bit, _32Bit, _64Bit, _96Bit, _128Bit + +# To-be replaced with a `npt.NBitBase` subclass by numpy's mypy plugin +_NBitByte: TypeAlias = _8Bit +_NBitShort: TypeAlias = _16Bit +_NBitIntC: TypeAlias = _32Bit +_NBitIntP: TypeAlias = _32Bit | _64Bit +_NBitInt: TypeAlias = _NBitIntP +_NBitLong: TypeAlias = _32Bit | _64Bit +_NBitLongLong: TypeAlias = _64Bit + +_NBitHalf: TypeAlias = _16Bit +_NBitSingle: TypeAlias = _32Bit +_NBitDouble: TypeAlias = _64Bit +_NBitLongDouble: TypeAlias = _64Bit | _96Bit | _128Bit diff --git a/.venv/lib/python3.12/site-packages/numpy/_typing/_nbit_base.py b/.venv/lib/python3.12/site-packages/numpy/_typing/_nbit_base.py new file mode 100644 index 0000000..28d3e63 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_typing/_nbit_base.py @@ -0,0 +1,94 @@ +"""A module with the precisions of generic `~numpy.number` types.""" +from typing import final + +from numpy._utils import set_module + + +@final # Disallow the creation of arbitrary `NBitBase` subclasses +@set_module("numpy.typing") +class NBitBase: + """ + A type representing `numpy.number` precision during static type checking. + + Used exclusively for the purpose of static type checking, `NBitBase` + represents the base of a hierarchical set of subclasses. + Each subsequent subclass is herein used for representing a lower level + of precision, *e.g.* ``64Bit > 32Bit > 16Bit``. + + .. versionadded:: 1.20 + + .. deprecated:: 2.3 + Use ``@typing.overload`` or a ``TypeVar`` with a scalar-type as upper + bound, instead. + + Examples + -------- + Below is a typical usage example: `NBitBase` is herein used for annotating + a function that takes a float and integer of arbitrary precision + as arguments and returns a new float of whichever precision is largest + (*e.g.* ``np.float16 + np.int64 -> np.float64``). + + .. code-block:: python + + >>> from typing import TypeVar, TYPE_CHECKING + >>> import numpy as np + >>> import numpy.typing as npt + + >>> S = TypeVar("S", bound=npt.NBitBase) + >>> T = TypeVar("T", bound=npt.NBitBase) + + >>> def add(a: np.floating[S], b: np.integer[T]) -> np.floating[S | T]: + ... return a + b + + >>> a = np.float16() + >>> b = np.int64() + >>> out = add(a, b) + + >>> if TYPE_CHECKING: + ... reveal_locals() + ... # note: Revealed local types are: + ... # note: a: numpy.floating[numpy.typing._16Bit*] + ... # note: b: numpy.signedinteger[numpy.typing._64Bit*] + ... # note: out: numpy.floating[numpy.typing._64Bit*] + + """ + # Deprecated in NumPy 2.3, 2025-05-01 + + def __init_subclass__(cls) -> None: + allowed_names = { + "NBitBase", "_128Bit", "_96Bit", "_64Bit", "_32Bit", "_16Bit", "_8Bit" + } + if cls.__name__ not in allowed_names: + raise TypeError('cannot inherit from final class "NBitBase"') + super().__init_subclass__() + +@final +@set_module("numpy._typing") +# Silence errors about subclassing a `@final`-decorated class +class _128Bit(NBitBase): # type: ignore[misc] # pyright: ignore[reportGeneralTypeIssues] + pass + +@final +@set_module("numpy._typing") +class _96Bit(_128Bit): # type: ignore[misc] # pyright: ignore[reportGeneralTypeIssues] + pass + +@final +@set_module("numpy._typing") +class _64Bit(_96Bit): # type: ignore[misc] # pyright: ignore[reportGeneralTypeIssues] + pass + +@final +@set_module("numpy._typing") +class _32Bit(_64Bit): # type: ignore[misc] # pyright: ignore[reportGeneralTypeIssues] + pass + +@final +@set_module("numpy._typing") +class _16Bit(_32Bit): # type: ignore[misc] # pyright: ignore[reportGeneralTypeIssues] + pass + +@final +@set_module("numpy._typing") +class _8Bit(_16Bit): # type: ignore[misc] # pyright: ignore[reportGeneralTypeIssues] + pass diff --git a/.venv/lib/python3.12/site-packages/numpy/_typing/_nbit_base.pyi b/.venv/lib/python3.12/site-packages/numpy/_typing/_nbit_base.pyi new file mode 100644 index 0000000..ccf8f5c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_typing/_nbit_base.pyi @@ -0,0 +1,40 @@ +# pyright: reportDeprecated=false +# pyright: reportGeneralTypeIssues=false +# mypy: disable-error-code=misc + +from typing import final + +from typing_extensions import deprecated + +# Deprecated in NumPy 2.3, 2025-05-01 +@deprecated( + "`NBitBase` is deprecated and will be removed from numpy.typing in the " + "future. Use `@typing.overload` or a `TypeVar` with a scalar-type as upper " + "bound, instead. (deprecated in NumPy 2.3)", +) +@final +class NBitBase: ... + +@final +class _256Bit(NBitBase): ... + +@final +class _128Bit(_256Bit): ... + +@final +class _96Bit(_128Bit): ... + +@final +class _80Bit(_96Bit): ... + +@final +class _64Bit(_80Bit): ... + +@final +class _32Bit(_64Bit): ... + +@final +class _16Bit(_32Bit): ... + +@final +class _8Bit(_16Bit): ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_typing/_nested_sequence.py b/.venv/lib/python3.12/site-packages/numpy/_typing/_nested_sequence.py new file mode 100644 index 0000000..e3362a9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_typing/_nested_sequence.py @@ -0,0 +1,79 @@ +"""A module containing the `_NestedSequence` protocol.""" + +from typing import TYPE_CHECKING, Any, Protocol, TypeVar, runtime_checkable + +if TYPE_CHECKING: + from collections.abc import Iterator + +__all__ = ["_NestedSequence"] + +_T_co = TypeVar("_T_co", covariant=True) + + +@runtime_checkable +class _NestedSequence(Protocol[_T_co]): + """A protocol for representing nested sequences. + + Warning + ------- + `_NestedSequence` currently does not work in combination with typevars, + *e.g.* ``def func(a: _NestedSequnce[T]) -> T: ...``. + + See Also + -------- + collections.abc.Sequence + ABCs for read-only and mutable :term:`sequences`. + + Examples + -------- + .. code-block:: python + + >>> from typing import TYPE_CHECKING + >>> import numpy as np + >>> from numpy._typing import _NestedSequence + + >>> def get_dtype(seq: _NestedSequence[float]) -> np.dtype[np.float64]: + ... return np.asarray(seq).dtype + + >>> a = get_dtype([1.0]) + >>> b = get_dtype([[1.0]]) + >>> c = get_dtype([[[1.0]]]) + >>> d = get_dtype([[[[1.0]]]]) + + >>> if TYPE_CHECKING: + ... reveal_locals() + ... # note: Revealed local types are: + ... # note: a: numpy.dtype[numpy.floating[numpy._typing._64Bit]] + ... # note: b: numpy.dtype[numpy.floating[numpy._typing._64Bit]] + ... # note: c: numpy.dtype[numpy.floating[numpy._typing._64Bit]] + ... # note: d: numpy.dtype[numpy.floating[numpy._typing._64Bit]] + + """ + + def __len__(self, /) -> int: + """Implement ``len(self)``.""" + raise NotImplementedError + + def __getitem__(self, index: int, /) -> "_T_co | _NestedSequence[_T_co]": + """Implement ``self[x]``.""" + raise NotImplementedError + + def __contains__(self, x: object, /) -> bool: + """Implement ``x in self``.""" + raise NotImplementedError + + def __iter__(self, /) -> "Iterator[_T_co | _NestedSequence[_T_co]]": + """Implement ``iter(self)``.""" + raise NotImplementedError + + def __reversed__(self, /) -> "Iterator[_T_co | _NestedSequence[_T_co]]": + """Implement ``reversed(self)``.""" + raise NotImplementedError + + def count(self, value: Any, /) -> int: + """Return the number of occurrences of `value`.""" + raise NotImplementedError + + def index(self, value: Any, /) -> int: + """Return the first index of `value`.""" + raise NotImplementedError diff --git a/.venv/lib/python3.12/site-packages/numpy/_typing/_scalars.py b/.venv/lib/python3.12/site-packages/numpy/_typing/_scalars.py new file mode 100644 index 0000000..b0de66d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_typing/_scalars.py @@ -0,0 +1,20 @@ +from typing import Any, TypeAlias + +import numpy as np + +# NOTE: `_StrLike_co` and `_BytesLike_co` are pointless, as `np.str_` and +# `np.bytes_` are already subclasses of their builtin counterpart +_CharLike_co: TypeAlias = str | bytes + +# The `Like_co` type-aliases below represent all scalars that can be +# coerced into `` (with the casting rule `same_kind`) +_BoolLike_co: TypeAlias = bool | np.bool +_UIntLike_co: TypeAlias = bool | np.unsignedinteger | np.bool +_IntLike_co: TypeAlias = int | np.integer | np.bool +_FloatLike_co: TypeAlias = float | np.floating | np.integer | np.bool +_ComplexLike_co: TypeAlias = complex | np.number | np.bool +_NumberLike_co: TypeAlias = _ComplexLike_co +_TD64Like_co: TypeAlias = int | np.timedelta64 | np.integer | np.bool +# `_VoidLike_co` is technically not a scalar, but it's close enough +_VoidLike_co: TypeAlias = tuple[Any, ...] | np.void +_ScalarLike_co: TypeAlias = complex | str | bytes | np.generic diff --git a/.venv/lib/python3.12/site-packages/numpy/_typing/_shape.py b/.venv/lib/python3.12/site-packages/numpy/_typing/_shape.py new file mode 100644 index 0000000..e297aef --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_typing/_shape.py @@ -0,0 +1,8 @@ +from collections.abc import Sequence +from typing import Any, SupportsIndex, TypeAlias + +_Shape: TypeAlias = tuple[int, ...] +_AnyShape: TypeAlias = tuple[Any, ...] + +# Anything that can be coerced to a shape tuple +_ShapeLike: TypeAlias = SupportsIndex | Sequence[SupportsIndex] diff --git a/.venv/lib/python3.12/site-packages/numpy/_typing/_ufunc.py b/.venv/lib/python3.12/site-packages/numpy/_typing/_ufunc.py new file mode 100644 index 0000000..db52a1f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_typing/_ufunc.py @@ -0,0 +1,7 @@ +from numpy import ufunc + +_UFunc_Nin1_Nout1 = ufunc +_UFunc_Nin2_Nout1 = ufunc +_UFunc_Nin1_Nout2 = ufunc +_UFunc_Nin2_Nout2 = ufunc +_GUFunc_Nin2_Nout1 = ufunc diff --git a/.venv/lib/python3.12/site-packages/numpy/_typing/_ufunc.pyi b/.venv/lib/python3.12/site-packages/numpy/_typing/_ufunc.pyi new file mode 100644 index 0000000..766cde1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_typing/_ufunc.pyi @@ -0,0 +1,941 @@ +"""A module with private type-check-only `numpy.ufunc` subclasses. + +The signatures of the ufuncs are too varied to reasonably type +with a single class. So instead, `ufunc` has been expanded into +four private subclasses, one for each combination of +`~ufunc.nin` and `~ufunc.nout`. +""" + +from typing import ( + Any, + Generic, + Literal, + LiteralString, + NoReturn, + Protocol, + SupportsIndex, + TypeAlias, + TypedDict, + TypeVar, + Unpack, + overload, + type_check_only, +) + +import numpy as np +from numpy import _CastingKind, _OrderKACF, ufunc +from numpy.typing import NDArray + +from ._array_like import ArrayLike, _ArrayLikeBool_co, _ArrayLikeInt_co +from ._dtype_like import DTypeLike +from ._scalars import _ScalarLike_co +from ._shape import _ShapeLike + +_T = TypeVar("_T") +_2Tuple: TypeAlias = tuple[_T, _T] +_3Tuple: TypeAlias = tuple[_T, _T, _T] +_4Tuple: TypeAlias = tuple[_T, _T, _T, _T] + +_2PTuple: TypeAlias = tuple[_T, _T, *tuple[_T, ...]] +_3PTuple: TypeAlias = tuple[_T, _T, _T, *tuple[_T, ...]] +_4PTuple: TypeAlias = tuple[_T, _T, _T, _T, *tuple[_T, ...]] + +_NTypes = TypeVar("_NTypes", bound=int, covariant=True) +_IDType = TypeVar("_IDType", covariant=True) +_NameType = TypeVar("_NameType", bound=LiteralString, covariant=True) +_Signature = TypeVar("_Signature", bound=LiteralString, covariant=True) + +_NIn = TypeVar("_NIn", bound=int, covariant=True) +_NOut = TypeVar("_NOut", bound=int, covariant=True) +_ReturnType_co = TypeVar("_ReturnType_co", covariant=True) +_ArrayT = TypeVar("_ArrayT", bound=np.ndarray[Any, Any]) + +@type_check_only +class _SupportsArrayUFunc(Protocol): + def __array_ufunc__( + self, + ufunc: ufunc, + method: Literal["__call__", "reduce", "reduceat", "accumulate", "outer", "at"], + *inputs: Any, + **kwargs: Any, + ) -> Any: ... + +@type_check_only +class _UFunc3Kwargs(TypedDict, total=False): + where: _ArrayLikeBool_co | None + casting: _CastingKind + order: _OrderKACF + subok: bool + signature: _3Tuple[str | None] | str | None + +# NOTE: `reduce`, `accumulate`, `reduceat` and `outer` raise a ValueError for +# ufuncs that don't accept two input arguments and return one output argument. +# In such cases the respective methods return `NoReturn` + +# NOTE: Similarly, `at` won't be defined for ufuncs that return +# multiple outputs; in such cases `at` is typed to return `NoReturn` + +# NOTE: If 2 output types are returned then `out` must be a +# 2-tuple of arrays. Otherwise `None` or a plain array are also acceptable + +# pyright: reportIncompatibleMethodOverride=false + +@type_check_only +class _UFunc_Nin1_Nout1(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: ignore[misc] + @property + def __name__(self) -> _NameType: ... + @property + def __qualname__(self) -> _NameType: ... + @property + def ntypes(self) -> _NTypes: ... + @property + def identity(self) -> _IDType: ... + @property + def nin(self) -> Literal[1]: ... + @property + def nout(self) -> Literal[1]: ... + @property + def nargs(self) -> Literal[2]: ... + @property + def signature(self) -> None: ... + + @overload + def __call__( + self, + __x1: _ScalarLike_co, + out: None = ..., + *, + where: _ArrayLikeBool_co | None = ..., + casting: _CastingKind = ..., + order: _OrderKACF = ..., + dtype: DTypeLike = ..., + subok: bool = ..., + signature: str | _2Tuple[str | None] = ..., + ) -> Any: ... + @overload + def __call__( + self, + __x1: ArrayLike, + out: NDArray[Any] | tuple[NDArray[Any]] | None = ..., + *, + where: _ArrayLikeBool_co | None = ..., + casting: _CastingKind = ..., + order: _OrderKACF = ..., + dtype: DTypeLike = ..., + subok: bool = ..., + signature: str | _2Tuple[str | None] = ..., + ) -> NDArray[Any]: ... + @overload + def __call__( + self, + __x1: _SupportsArrayUFunc, + out: NDArray[Any] | tuple[NDArray[Any]] | None = ..., + *, + where: _ArrayLikeBool_co | None = ..., + casting: _CastingKind = ..., + order: _OrderKACF = ..., + dtype: DTypeLike = ..., + subok: bool = ..., + signature: str | _2Tuple[str | None] = ..., + ) -> Any: ... + + def at( + self, + a: _SupportsArrayUFunc, + indices: _ArrayLikeInt_co, + /, + ) -> None: ... + + def reduce(self, *args, **kwargs) -> NoReturn: ... + def accumulate(self, *args, **kwargs) -> NoReturn: ... + def reduceat(self, *args, **kwargs) -> NoReturn: ... + def outer(self, *args, **kwargs) -> NoReturn: ... + +@type_check_only +class _UFunc_Nin2_Nout1(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: ignore[misc] + @property + def __name__(self) -> _NameType: ... + @property + def __qualname__(self) -> _NameType: ... + @property + def ntypes(self) -> _NTypes: ... + @property + def identity(self) -> _IDType: ... + @property + def nin(self) -> Literal[2]: ... + @property + def nout(self) -> Literal[1]: ... + @property + def nargs(self) -> Literal[3]: ... + @property + def signature(self) -> None: ... + + @overload # (scalar, scalar) -> scalar + def __call__( + self, + x1: _ScalarLike_co, + x2: _ScalarLike_co, + /, + out: None = None, + *, + dtype: DTypeLike | None = None, + **kwds: Unpack[_UFunc3Kwargs], + ) -> Any: ... + @overload # (array-like, array) -> array + def __call__( + self, + x1: ArrayLike, + x2: NDArray[np.generic], + /, + out: NDArray[np.generic] | tuple[NDArray[np.generic]] | None = None, + *, + dtype: DTypeLike | None = None, + **kwds: Unpack[_UFunc3Kwargs], + ) -> NDArray[Any]: ... + @overload # (array, array-like) -> array + def __call__( + self, + x1: NDArray[np.generic], + x2: ArrayLike, + /, + out: NDArray[np.generic] | tuple[NDArray[np.generic]] | None = None, + *, + dtype: DTypeLike | None = None, + **kwds: Unpack[_UFunc3Kwargs], + ) -> NDArray[Any]: ... + @overload # (array-like, array-like, out=array) -> array + def __call__( + self, + x1: ArrayLike, + x2: ArrayLike, + /, + out: NDArray[np.generic] | tuple[NDArray[np.generic]], + *, + dtype: DTypeLike | None = None, + **kwds: Unpack[_UFunc3Kwargs], + ) -> NDArray[Any]: ... + @overload # (array-like, array-like) -> array | scalar + def __call__( + self, + x1: ArrayLike, + x2: ArrayLike, + /, + out: NDArray[np.generic] | tuple[NDArray[np.generic]] | None = None, + *, + dtype: DTypeLike | None = None, + **kwds: Unpack[_UFunc3Kwargs], + ) -> NDArray[Any] | Any: ... + + def at( + self, + a: NDArray[Any], + indices: _ArrayLikeInt_co, + b: ArrayLike, + /, + ) -> None: ... + + def reduce( + self, + array: ArrayLike, + axis: _ShapeLike | None = ..., + dtype: DTypeLike = ..., + out: NDArray[Any] | None = ..., + keepdims: bool = ..., + initial: Any = ..., + where: _ArrayLikeBool_co = ..., + ) -> Any: ... + + def accumulate( + self, + array: ArrayLike, + axis: SupportsIndex = ..., + dtype: DTypeLike = ..., + out: NDArray[Any] | None = ..., + ) -> NDArray[Any]: ... + + def reduceat( + self, + array: ArrayLike, + indices: _ArrayLikeInt_co, + axis: SupportsIndex = ..., + dtype: DTypeLike = ..., + out: NDArray[Any] | None = ..., + ) -> NDArray[Any]: ... + + @overload # (scalar, scalar) -> scalar + def outer( + self, + A: _ScalarLike_co, + B: _ScalarLike_co, + /, + *, + out: None = None, + dtype: DTypeLike | None = None, + **kwds: Unpack[_UFunc3Kwargs], + ) -> Any: ... + @overload # (array-like, array) -> array + def outer( + self, + A: ArrayLike, + B: NDArray[np.generic], + /, + *, + out: NDArray[np.generic] | tuple[NDArray[np.generic]] | None = None, + dtype: DTypeLike | None = None, + **kwds: Unpack[_UFunc3Kwargs], + ) -> NDArray[Any]: ... + @overload # (array, array-like) -> array + def outer( + self, + A: NDArray[np.generic], + B: ArrayLike, + /, + *, + out: NDArray[np.generic] | tuple[NDArray[np.generic]] | None = None, + dtype: DTypeLike | None = None, + **kwds: Unpack[_UFunc3Kwargs], + ) -> NDArray[Any]: ... + @overload # (array-like, array-like, out=array) -> array + def outer( + self, + A: ArrayLike, + B: ArrayLike, + /, + *, + out: NDArray[np.generic] | tuple[NDArray[np.generic]], + dtype: DTypeLike | None = None, + **kwds: Unpack[_UFunc3Kwargs], + ) -> NDArray[Any]: ... + @overload # (array-like, array-like) -> array | scalar + def outer( + self, + A: ArrayLike, + B: ArrayLike, + /, + *, + out: NDArray[np.generic] | tuple[NDArray[np.generic]] | None = None, + dtype: DTypeLike | None = None, + **kwds: Unpack[_UFunc3Kwargs], + ) -> NDArray[Any] | Any: ... + +@type_check_only +class _UFunc_Nin1_Nout2(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: ignore[misc] + @property + def __name__(self) -> _NameType: ... + @property + def __qualname__(self) -> _NameType: ... + @property + def ntypes(self) -> _NTypes: ... + @property + def identity(self) -> _IDType: ... + @property + def nin(self) -> Literal[1]: ... + @property + def nout(self) -> Literal[2]: ... + @property + def nargs(self) -> Literal[3]: ... + @property + def signature(self) -> None: ... + + @overload + def __call__( + self, + __x1: _ScalarLike_co, + __out1: None = ..., + __out2: None = ..., + *, + where: _ArrayLikeBool_co | None = ..., + casting: _CastingKind = ..., + order: _OrderKACF = ..., + dtype: DTypeLike = ..., + subok: bool = ..., + signature: str | _3Tuple[str | None] = ..., + ) -> _2Tuple[Any]: ... + @overload + def __call__( + self, + __x1: ArrayLike, + __out1: NDArray[Any] | None = ..., + __out2: NDArray[Any] | None = ..., + *, + out: _2Tuple[NDArray[Any]] = ..., + where: _ArrayLikeBool_co | None = ..., + casting: _CastingKind = ..., + order: _OrderKACF = ..., + dtype: DTypeLike = ..., + subok: bool = ..., + signature: str | _3Tuple[str | None] = ..., + ) -> _2Tuple[NDArray[Any]]: ... + @overload + def __call__( + self, + __x1: _SupportsArrayUFunc, + __out1: NDArray[Any] | None = ..., + __out2: NDArray[Any] | None = ..., + *, + out: _2Tuple[NDArray[Any]] = ..., + where: _ArrayLikeBool_co | None = ..., + casting: _CastingKind = ..., + order: _OrderKACF = ..., + dtype: DTypeLike = ..., + subok: bool = ..., + signature: str | _3Tuple[str | None] = ..., + ) -> _2Tuple[Any]: ... + + def at(self, *args, **kwargs) -> NoReturn: ... + def reduce(self, *args, **kwargs) -> NoReturn: ... + def accumulate(self, *args, **kwargs) -> NoReturn: ... + def reduceat(self, *args, **kwargs) -> NoReturn: ... + def outer(self, *args, **kwargs) -> NoReturn: ... + +@type_check_only +class _UFunc_Nin2_Nout2(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: ignore[misc] + @property + def __name__(self) -> _NameType: ... + @property + def __qualname__(self) -> _NameType: ... + @property + def ntypes(self) -> _NTypes: ... + @property + def identity(self) -> _IDType: ... + @property + def nin(self) -> Literal[2]: ... + @property + def nout(self) -> Literal[2]: ... + @property + def nargs(self) -> Literal[4]: ... + @property + def signature(self) -> None: ... + + @overload + def __call__( + self, + __x1: _ScalarLike_co, + __x2: _ScalarLike_co, + __out1: None = ..., + __out2: None = ..., + *, + where: _ArrayLikeBool_co | None = ..., + casting: _CastingKind = ..., + order: _OrderKACF = ..., + dtype: DTypeLike = ..., + subok: bool = ..., + signature: str | _4Tuple[str | None] = ..., + ) -> _2Tuple[Any]: ... + @overload + def __call__( + self, + __x1: ArrayLike, + __x2: ArrayLike, + __out1: NDArray[Any] | None = ..., + __out2: NDArray[Any] | None = ..., + *, + out: _2Tuple[NDArray[Any]] = ..., + where: _ArrayLikeBool_co | None = ..., + casting: _CastingKind = ..., + order: _OrderKACF = ..., + dtype: DTypeLike = ..., + subok: bool = ..., + signature: str | _4Tuple[str | None] = ..., + ) -> _2Tuple[NDArray[Any]]: ... + + def at(self, *args, **kwargs) -> NoReturn: ... + def reduce(self, *args, **kwargs) -> NoReturn: ... + def accumulate(self, *args, **kwargs) -> NoReturn: ... + def reduceat(self, *args, **kwargs) -> NoReturn: ... + def outer(self, *args, **kwargs) -> NoReturn: ... + +@type_check_only +class _GUFunc_Nin2_Nout1(ufunc, Generic[_NameType, _NTypes, _IDType, _Signature]): # type: ignore[misc] + @property + def __name__(self) -> _NameType: ... + @property + def __qualname__(self) -> _NameType: ... + @property + def ntypes(self) -> _NTypes: ... + @property + def identity(self) -> _IDType: ... + @property + def nin(self) -> Literal[2]: ... + @property + def nout(self) -> Literal[1]: ... + @property + def nargs(self) -> Literal[3]: ... + @property + def signature(self) -> _Signature: ... + + # Scalar for 1D array-likes; ndarray otherwise + @overload + def __call__( + self, + __x1: ArrayLike, + __x2: ArrayLike, + out: None = ..., + *, + casting: _CastingKind = ..., + order: _OrderKACF = ..., + dtype: DTypeLike = ..., + subok: bool = ..., + signature: str | _3Tuple[str | None] = ..., + axes: list[_2Tuple[SupportsIndex]] = ..., + ) -> Any: ... + @overload + def __call__( + self, + __x1: ArrayLike, + __x2: ArrayLike, + out: NDArray[Any] | tuple[NDArray[Any]], + *, + casting: _CastingKind = ..., + order: _OrderKACF = ..., + dtype: DTypeLike = ..., + subok: bool = ..., + signature: str | _3Tuple[str | None] = ..., + axes: list[_2Tuple[SupportsIndex]] = ..., + ) -> NDArray[Any]: ... + + def at(self, *args, **kwargs) -> NoReturn: ... + def reduce(self, *args, **kwargs) -> NoReturn: ... + def accumulate(self, *args, **kwargs) -> NoReturn: ... + def reduceat(self, *args, **kwargs) -> NoReturn: ... + def outer(self, *args, **kwargs) -> NoReturn: ... + +@type_check_only +class _PyFunc_Kwargs_Nargs2(TypedDict, total=False): + where: _ArrayLikeBool_co | None + casting: _CastingKind + order: _OrderKACF + dtype: DTypeLike + subok: bool + signature: str | tuple[DTypeLike, DTypeLike] + +@type_check_only +class _PyFunc_Kwargs_Nargs3(TypedDict, total=False): + where: _ArrayLikeBool_co | None + casting: _CastingKind + order: _OrderKACF + dtype: DTypeLike + subok: bool + signature: str | tuple[DTypeLike, DTypeLike, DTypeLike] + +@type_check_only +class _PyFunc_Kwargs_Nargs3P(TypedDict, total=False): + where: _ArrayLikeBool_co | None + casting: _CastingKind + order: _OrderKACF + dtype: DTypeLike + subok: bool + signature: str | _3PTuple[DTypeLike] + +@type_check_only +class _PyFunc_Kwargs_Nargs4P(TypedDict, total=False): + where: _ArrayLikeBool_co | None + casting: _CastingKind + order: _OrderKACF + dtype: DTypeLike + subok: bool + signature: str | _4PTuple[DTypeLike] + +@type_check_only +class _PyFunc_Nin1_Nout1(ufunc, Generic[_ReturnType_co, _IDType]): # type: ignore[misc] + @property + def identity(self) -> _IDType: ... + @property + def nin(self) -> Literal[1]: ... + @property + def nout(self) -> Literal[1]: ... + @property + def nargs(self) -> Literal[2]: ... + @property + def ntypes(self) -> Literal[1]: ... + @property + def signature(self) -> None: ... + + @overload + def __call__( + self, + x1: _ScalarLike_co, + /, + out: None = ..., + **kwargs: Unpack[_PyFunc_Kwargs_Nargs2], + ) -> _ReturnType_co: ... + @overload + def __call__( + self, + x1: ArrayLike, + /, + out: None = ..., + **kwargs: Unpack[_PyFunc_Kwargs_Nargs2], + ) -> _ReturnType_co | NDArray[np.object_]: ... + @overload + def __call__( + self, + x1: ArrayLike, + /, + out: _ArrayT | tuple[_ArrayT], + **kwargs: Unpack[_PyFunc_Kwargs_Nargs2], + ) -> _ArrayT: ... + @overload + def __call__( + self, + x1: _SupportsArrayUFunc, + /, + out: NDArray[Any] | tuple[NDArray[Any]] | None = ..., + **kwargs: Unpack[_PyFunc_Kwargs_Nargs2], + ) -> Any: ... + + def at(self, a: _SupportsArrayUFunc, ixs: _ArrayLikeInt_co, /) -> None: ... + def reduce(self, /, *args: Any, **kwargs: Any) -> NoReturn: ... + def accumulate(self, /, *args: Any, **kwargs: Any) -> NoReturn: ... + def reduceat(self, /, *args: Any, **kwargs: Any) -> NoReturn: ... + def outer(self, /, *args: Any, **kwargs: Any) -> NoReturn: ... + +@type_check_only +class _PyFunc_Nin2_Nout1(ufunc, Generic[_ReturnType_co, _IDType]): # type: ignore[misc] + @property + def identity(self) -> _IDType: ... + @property + def nin(self) -> Literal[2]: ... + @property + def nout(self) -> Literal[1]: ... + @property + def nargs(self) -> Literal[3]: ... + @property + def ntypes(self) -> Literal[1]: ... + @property + def signature(self) -> None: ... + + @overload + def __call__( + self, + x1: _ScalarLike_co, + x2: _ScalarLike_co, + /, + out: None = ..., + **kwargs: Unpack[_PyFunc_Kwargs_Nargs3], + ) -> _ReturnType_co: ... + @overload + def __call__( + self, + x1: ArrayLike, + x2: ArrayLike, + /, + out: None = ..., + **kwargs: Unpack[_PyFunc_Kwargs_Nargs3], + ) -> _ReturnType_co | NDArray[np.object_]: ... + @overload + def __call__( + self, + x1: ArrayLike, + x2: ArrayLike, + /, + out: _ArrayT | tuple[_ArrayT], + **kwargs: Unpack[_PyFunc_Kwargs_Nargs3], + ) -> _ArrayT: ... + @overload + def __call__( + self, + x1: _SupportsArrayUFunc, + x2: _SupportsArrayUFunc | ArrayLike, + /, + out: NDArray[Any] | tuple[NDArray[Any]] | None = ..., + **kwargs: Unpack[_PyFunc_Kwargs_Nargs3], + ) -> Any: ... + @overload + def __call__( + self, + x1: ArrayLike, + x2: _SupportsArrayUFunc, + /, + out: NDArray[Any] | tuple[NDArray[Any]] | None = ..., + **kwargs: Unpack[_PyFunc_Kwargs_Nargs3], + ) -> Any: ... + + def at(self, a: _SupportsArrayUFunc, ixs: _ArrayLikeInt_co, b: ArrayLike, /) -> None: ... + + @overload + def reduce( + self, + array: ArrayLike, + axis: _ShapeLike | None, + dtype: DTypeLike, + out: _ArrayT, + /, + keepdims: bool = ..., + initial: _ScalarLike_co = ..., + where: _ArrayLikeBool_co = ..., + ) -> _ArrayT: ... + @overload + def reduce( + self, + /, + array: ArrayLike, + axis: _ShapeLike | None = ..., + dtype: DTypeLike = ..., + *, + out: _ArrayT | tuple[_ArrayT], + keepdims: bool = ..., + initial: _ScalarLike_co = ..., + where: _ArrayLikeBool_co = ..., + ) -> _ArrayT: ... + @overload + def reduce( + self, + /, + array: ArrayLike, + axis: _ShapeLike | None = ..., + dtype: DTypeLike = ..., + out: None = ..., + *, + keepdims: Literal[True], + initial: _ScalarLike_co = ..., + where: _ArrayLikeBool_co = ..., + ) -> NDArray[np.object_]: ... + @overload + def reduce( + self, + /, + array: ArrayLike, + axis: _ShapeLike | None = ..., + dtype: DTypeLike = ..., + out: None = ..., + keepdims: bool = ..., + initial: _ScalarLike_co = ..., + where: _ArrayLikeBool_co = ..., + ) -> _ReturnType_co | NDArray[np.object_]: ... + + @overload + def reduceat( + self, + array: ArrayLike, + indices: _ArrayLikeInt_co, + axis: SupportsIndex, + dtype: DTypeLike, + out: _ArrayT, + /, + ) -> _ArrayT: ... + @overload + def reduceat( + self, + /, + array: ArrayLike, + indices: _ArrayLikeInt_co, + axis: SupportsIndex = ..., + dtype: DTypeLike = ..., + *, + out: _ArrayT | tuple[_ArrayT], + ) -> _ArrayT: ... + @overload + def reduceat( + self, + /, + array: ArrayLike, + indices: _ArrayLikeInt_co, + axis: SupportsIndex = ..., + dtype: DTypeLike = ..., + out: None = ..., + ) -> NDArray[np.object_]: ... + @overload + def reduceat( + self, + /, + array: _SupportsArrayUFunc, + indices: _ArrayLikeInt_co, + axis: SupportsIndex = ..., + dtype: DTypeLike = ..., + out: NDArray[Any] | tuple[NDArray[Any]] | None = ..., + ) -> Any: ... + + @overload + def accumulate( + self, + array: ArrayLike, + axis: SupportsIndex, + dtype: DTypeLike, + out: _ArrayT, + /, + ) -> _ArrayT: ... + @overload + def accumulate( + self, + array: ArrayLike, + axis: SupportsIndex = ..., + dtype: DTypeLike = ..., + *, + out: _ArrayT | tuple[_ArrayT], + ) -> _ArrayT: ... + @overload + def accumulate( + self, + /, + array: ArrayLike, + axis: SupportsIndex = ..., + dtype: DTypeLike = ..., + out: None = ..., + ) -> NDArray[np.object_]: ... + + @overload + def outer( + self, + A: _ScalarLike_co, + B: _ScalarLike_co, + /, *, + out: None = ..., + **kwargs: Unpack[_PyFunc_Kwargs_Nargs3], + ) -> _ReturnType_co: ... + @overload + def outer( + self, + A: ArrayLike, + B: ArrayLike, + /, *, + out: None = ..., + **kwargs: Unpack[_PyFunc_Kwargs_Nargs3], + ) -> _ReturnType_co | NDArray[np.object_]: ... + @overload + def outer( + self, + A: ArrayLike, + B: ArrayLike, + /, *, + out: _ArrayT, + **kwargs: Unpack[_PyFunc_Kwargs_Nargs3], + ) -> _ArrayT: ... + @overload + def outer( + self, + A: _SupportsArrayUFunc, + B: _SupportsArrayUFunc | ArrayLike, + /, *, + out: None = ..., + **kwargs: Unpack[_PyFunc_Kwargs_Nargs3], + ) -> Any: ... + @overload + def outer( + self, + A: _ScalarLike_co, + B: _SupportsArrayUFunc | ArrayLike, + /, *, + out: None = ..., + **kwargs: Unpack[_PyFunc_Kwargs_Nargs3], + ) -> Any: ... + +@type_check_only +class _PyFunc_Nin3P_Nout1(ufunc, Generic[_ReturnType_co, _IDType, _NIn]): # type: ignore[misc] + @property + def identity(self) -> _IDType: ... + @property + def nin(self) -> _NIn: ... + @property + def nout(self) -> Literal[1]: ... + @property + def ntypes(self) -> Literal[1]: ... + @property + def signature(self) -> None: ... + + @overload + def __call__( + self, + x1: _ScalarLike_co, + x2: _ScalarLike_co, + x3: _ScalarLike_co, + /, + *xs: _ScalarLike_co, + out: None = ..., + **kwargs: Unpack[_PyFunc_Kwargs_Nargs4P], + ) -> _ReturnType_co: ... + @overload + def __call__( + self, + x1: ArrayLike, + x2: ArrayLike, + x3: ArrayLike, + /, + *xs: ArrayLike, + out: None = ..., + **kwargs: Unpack[_PyFunc_Kwargs_Nargs4P], + ) -> _ReturnType_co | NDArray[np.object_]: ... + @overload + def __call__( + self, + x1: ArrayLike, + x2: ArrayLike, + x3: ArrayLike, + /, + *xs: ArrayLike, + out: _ArrayT | tuple[_ArrayT], + **kwargs: Unpack[_PyFunc_Kwargs_Nargs4P], + ) -> _ArrayT: ... + @overload + def __call__( + self, + x1: _SupportsArrayUFunc | ArrayLike, + x2: _SupportsArrayUFunc | ArrayLike, + x3: _SupportsArrayUFunc | ArrayLike, + /, + *xs: _SupportsArrayUFunc | ArrayLike, + out: NDArray[Any] | tuple[NDArray[Any]] | None = ..., + **kwargs: Unpack[_PyFunc_Kwargs_Nargs4P], + ) -> Any: ... + + def at(self, /, *args: Any, **kwargs: Any) -> NoReturn: ... + def reduce(self, /, *args: Any, **kwargs: Any) -> NoReturn: ... + def accumulate(self, /, *args: Any, **kwargs: Any) -> NoReturn: ... + def reduceat(self, /, *args: Any, **kwargs: Any) -> NoReturn: ... + def outer(self, /, *args: Any, **kwargs: Any) -> NoReturn: ... + +@type_check_only +class _PyFunc_Nin1P_Nout2P(ufunc, Generic[_ReturnType_co, _IDType, _NIn, _NOut]): # type: ignore[misc] + @property + def identity(self) -> _IDType: ... + @property + def nin(self) -> _NIn: ... + @property + def nout(self) -> _NOut: ... + @property + def ntypes(self) -> Literal[1]: ... + @property + def signature(self) -> None: ... + + @overload + def __call__( + self, + x1: _ScalarLike_co, + /, + *xs: _ScalarLike_co, + out: None = ..., + **kwargs: Unpack[_PyFunc_Kwargs_Nargs3P], + ) -> _2PTuple[_ReturnType_co]: ... + @overload + def __call__( + self, + x1: ArrayLike, + /, + *xs: ArrayLike, + out: None = ..., + **kwargs: Unpack[_PyFunc_Kwargs_Nargs3P], + ) -> _2PTuple[_ReturnType_co | NDArray[np.object_]]: ... + @overload + def __call__( + self, + x1: ArrayLike, + /, + *xs: ArrayLike, + out: _2PTuple[_ArrayT], + **kwargs: Unpack[_PyFunc_Kwargs_Nargs3P], + ) -> _2PTuple[_ArrayT]: ... + @overload + def __call__( + self, + x1: _SupportsArrayUFunc | ArrayLike, + /, + *xs: _SupportsArrayUFunc | ArrayLike, + out: _2PTuple[NDArray[Any]] | None = ..., + **kwargs: Unpack[_PyFunc_Kwargs_Nargs3P], + ) -> Any: ... + + def at(self, /, *args: Any, **kwargs: Any) -> NoReturn: ... + def reduce(self, /, *args: Any, **kwargs: Any) -> NoReturn: ... + def accumulate(self, /, *args: Any, **kwargs: Any) -> NoReturn: ... + def reduceat(self, /, *args: Any, **kwargs: Any) -> NoReturn: ... + def outer(self, /, *args: Any, **kwargs: Any) -> NoReturn: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_utils/__init__.py b/.venv/lib/python3.12/site-packages/numpy/_utils/__init__.py new file mode 100644 index 0000000..84ee99d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_utils/__init__.py @@ -0,0 +1,95 @@ +""" +This is a module for defining private helpers which do not depend on the +rest of NumPy. + +Everything in here must be self-contained so that it can be +imported anywhere else without creating circular imports. +If a utility requires the import of NumPy, it probably belongs +in ``numpy._core``. +""" + +import functools +import warnings + +from ._convertions import asbytes, asunicode + + +def set_module(module): + """Private decorator for overriding __module__ on a function or class. + + Example usage:: + + @set_module('numpy') + def example(): + pass + + assert example.__module__ == 'numpy' + """ + def decorator(func): + if module is not None: + if isinstance(func, type): + try: + func._module_source = func.__module__ + except (AttributeError): + pass + + func.__module__ = module + return func + return decorator + + +def _rename_parameter(old_names, new_names, dep_version=None): + """ + Generate decorator for backward-compatible keyword renaming. + + Apply the decorator generated by `_rename_parameter` to functions with a + renamed parameter to maintain backward-compatibility. + + After decoration, the function behaves as follows: + If only the new parameter is passed into the function, behave as usual. + If only the old parameter is passed into the function (as a keyword), raise + a DeprecationWarning if `dep_version` is provided, and behave as usual + otherwise. + If both old and new parameters are passed into the function, raise a + DeprecationWarning if `dep_version` is provided, and raise the appropriate + TypeError (function got multiple values for argument). + + Parameters + ---------- + old_names : list of str + Old names of parameters + new_name : list of str + New names of parameters + dep_version : str, optional + Version of NumPy in which old parameter was deprecated in the format + 'X.Y.Z'. If supplied, the deprecation message will indicate that + support for the old parameter will be removed in version 'X.Y+2.Z' + + Notes + ----- + Untested with functions that accept *args. Probably won't work as written. + + """ + def decorator(fun): + @functools.wraps(fun) + def wrapper(*args, **kwargs): + __tracebackhide__ = True # Hide traceback for py.test + for old_name, new_name in zip(old_names, new_names): + if old_name in kwargs: + if dep_version: + end_version = dep_version.split('.') + end_version[1] = str(int(end_version[1]) + 2) + end_version = '.'.join(end_version) + msg = (f"Use of keyword argument `{old_name}` is " + f"deprecated and replaced by `{new_name}`. " + f"Support for `{old_name}` will be removed " + f"in NumPy {end_version}.") + warnings.warn(msg, DeprecationWarning, stacklevel=2) + if new_name in kwargs: + msg = (f"{fun.__name__}() got multiple values for " + f"argument now known as `{new_name}`") + raise TypeError(msg) + kwargs[new_name] = kwargs.pop(old_name) + return fun(*args, **kwargs) + return wrapper + return decorator diff --git a/.venv/lib/python3.12/site-packages/numpy/_utils/__init__.pyi b/.venv/lib/python3.12/site-packages/numpy/_utils/__init__.pyi new file mode 100644 index 0000000..f3472df --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_utils/__init__.pyi @@ -0,0 +1,30 @@ +from collections.abc import Callable, Iterable +from typing import Protocol, TypeVar, overload, type_check_only + +from _typeshed import IdentityFunction + +from ._convertions import asbytes as asbytes +from ._convertions import asunicode as asunicode + +### + +_T = TypeVar("_T") +_HasModuleT = TypeVar("_HasModuleT", bound=_HasModule) + +@type_check_only +class _HasModule(Protocol): + __module__: str + +### + +@overload +def set_module(module: None) -> IdentityFunction: ... +@overload +def set_module(module: str) -> Callable[[_HasModuleT], _HasModuleT]: ... + +# +def _rename_parameter( + old_names: Iterable[str], + new_names: Iterable[str], + dep_version: str | None = None, +) -> Callable[[Callable[..., _T]], Callable[..., _T]]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_utils/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_utils/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..8abeda7 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_utils/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_utils/__pycache__/_convertions.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_utils/__pycache__/_convertions.cpython-312.pyc new file mode 100644 index 0000000..282ceac Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_utils/__pycache__/_convertions.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_utils/__pycache__/_inspect.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_utils/__pycache__/_inspect.cpython-312.pyc new file mode 100644 index 0000000..3d69f9b Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_utils/__pycache__/_inspect.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_utils/__pycache__/_pep440.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/_utils/__pycache__/_pep440.cpython-312.pyc new file mode 100644 index 0000000..96f0304 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/_utils/__pycache__/_pep440.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/_utils/_convertions.py b/.venv/lib/python3.12/site-packages/numpy/_utils/_convertions.py new file mode 100644 index 0000000..ab15a8b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_utils/_convertions.py @@ -0,0 +1,18 @@ +""" +A set of methods retained from np.compat module that +are still used across codebase. +""" + +__all__ = ["asunicode", "asbytes"] + + +def asunicode(s): + if isinstance(s, bytes): + return s.decode('latin1') + return str(s) + + +def asbytes(s): + if isinstance(s, bytes): + return s + return str(s).encode('latin1') diff --git a/.venv/lib/python3.12/site-packages/numpy/_utils/_convertions.pyi b/.venv/lib/python3.12/site-packages/numpy/_utils/_convertions.pyi new file mode 100644 index 0000000..6cc599a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_utils/_convertions.pyi @@ -0,0 +1,4 @@ +__all__ = ["asbytes", "asunicode"] + +def asunicode(s: bytes | str) -> str: ... +def asbytes(s: bytes | str) -> str: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_utils/_inspect.py b/.venv/lib/python3.12/site-packages/numpy/_utils/_inspect.py new file mode 100644 index 0000000..b499f58 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_utils/_inspect.py @@ -0,0 +1,192 @@ +"""Subset of inspect module from upstream python + +We use this instead of upstream because upstream inspect is slow to import, and +significantly contributes to numpy import times. Importing this copy has almost +no overhead. + +""" +import types + +__all__ = ['getargspec', 'formatargspec'] + +# ----------------------------------------------------------- type-checking +def ismethod(object): + """Return true if the object is an instance method. + + Instance method objects provide these attributes: + __doc__ documentation string + __name__ name with which this method was defined + im_class class object in which this method belongs + im_func function object containing implementation of method + im_self instance to which this method is bound, or None + + """ + return isinstance(object, types.MethodType) + +def isfunction(object): + """Return true if the object is a user-defined function. + + Function objects provide these attributes: + __doc__ documentation string + __name__ name with which this function was defined + func_code code object containing compiled function bytecode + func_defaults tuple of any default values for arguments + func_doc (same as __doc__) + func_globals global namespace in which this function was defined + func_name (same as __name__) + + """ + return isinstance(object, types.FunctionType) + +def iscode(object): + """Return true if the object is a code object. + + Code objects provide these attributes: + co_argcount number of arguments (not including * or ** args) + co_code string of raw compiled bytecode + co_consts tuple of constants used in the bytecode + co_filename name of file in which this code object was created + co_firstlineno number of first line in Python source code + co_flags bitmap: 1=optimized | 2=newlocals | 4=*arg | 8=**arg + co_lnotab encoded mapping of line numbers to bytecode indices + co_name name with which this code object was defined + co_names tuple of names of local variables + co_nlocals number of local variables + co_stacksize virtual machine stack space required + co_varnames tuple of names of arguments and local variables + + """ + return isinstance(object, types.CodeType) + + +# ------------------------------------------------ argument list extraction +# These constants are from Python's compile.h. +CO_OPTIMIZED, CO_NEWLOCALS, CO_VARARGS, CO_VARKEYWORDS = 1, 2, 4, 8 + +def getargs(co): + """Get information about the arguments accepted by a code object. + + Three things are returned: (args, varargs, varkw), where 'args' is + a list of argument names (possibly containing nested lists), and + 'varargs' and 'varkw' are the names of the * and ** arguments or None. + + """ + + if not iscode(co): + raise TypeError('arg is not a code object') + + nargs = co.co_argcount + names = co.co_varnames + args = list(names[:nargs]) + + # The following acrobatics are for anonymous (tuple) arguments. + # Which we do not need to support, so remove to avoid importing + # the dis module. + for i in range(nargs): + if args[i][:1] in ['', '.']: + raise TypeError("tuple function arguments are not supported") + varargs = None + if co.co_flags & CO_VARARGS: + varargs = co.co_varnames[nargs] + nargs = nargs + 1 + varkw = None + if co.co_flags & CO_VARKEYWORDS: + varkw = co.co_varnames[nargs] + return args, varargs, varkw + +def getargspec(func): + """Get the names and default values of a function's arguments. + + A tuple of four things is returned: (args, varargs, varkw, defaults). + 'args' is a list of the argument names (it may contain nested lists). + 'varargs' and 'varkw' are the names of the * and ** arguments or None. + 'defaults' is an n-tuple of the default values of the last n arguments. + + """ + + if ismethod(func): + func = func.__func__ + if not isfunction(func): + raise TypeError('arg is not a Python function') + args, varargs, varkw = getargs(func.__code__) + return args, varargs, varkw, func.__defaults__ + +def getargvalues(frame): + """Get information about arguments passed into a particular frame. + + A tuple of four things is returned: (args, varargs, varkw, locals). + 'args' is a list of the argument names (it may contain nested lists). + 'varargs' and 'varkw' are the names of the * and ** arguments or None. + 'locals' is the locals dictionary of the given frame. + + """ + args, varargs, varkw = getargs(frame.f_code) + return args, varargs, varkw, frame.f_locals + +def joinseq(seq): + if len(seq) == 1: + return '(' + seq[0] + ',)' + else: + return '(' + ', '.join(seq) + ')' + +def strseq(object, convert, join=joinseq): + """Recursively walk a sequence, stringifying each element. + + """ + if type(object) in [list, tuple]: + return join([strseq(_o, convert, join) for _o in object]) + else: + return convert(object) + +def formatargspec(args, varargs=None, varkw=None, defaults=None, + formatarg=str, + formatvarargs=lambda name: '*' + name, + formatvarkw=lambda name: '**' + name, + formatvalue=lambda value: '=' + repr(value), + join=joinseq): + """Format an argument spec from the 4 values returned by getargspec. + + The first four arguments are (args, varargs, varkw, defaults). The + other four arguments are the corresponding optional formatting functions + that are called to turn names and values into strings. The ninth + argument is an optional function to format the sequence of arguments. + + """ + specs = [] + if defaults: + firstdefault = len(args) - len(defaults) + for i in range(len(args)): + spec = strseq(args[i], formatarg, join) + if defaults and i >= firstdefault: + spec = spec + formatvalue(defaults[i - firstdefault]) + specs.append(spec) + if varargs is not None: + specs.append(formatvarargs(varargs)) + if varkw is not None: + specs.append(formatvarkw(varkw)) + return '(' + ', '.join(specs) + ')' + +def formatargvalues(args, varargs, varkw, locals, + formatarg=str, + formatvarargs=lambda name: '*' + name, + formatvarkw=lambda name: '**' + name, + formatvalue=lambda value: '=' + repr(value), + join=joinseq): + """Format an argument spec from the 4 values returned by getargvalues. + + The first four arguments are (args, varargs, varkw, locals). The + next four arguments are the corresponding optional formatting functions + that are called to turn names and values into strings. The ninth + argument is an optional function to format the sequence of arguments. + + """ + def convert(name, locals=locals, + formatarg=formatarg, formatvalue=formatvalue): + return formatarg(name) + formatvalue(locals[name]) + specs = [strseq(arg, convert, join) for arg in args] + + if varargs: + specs.append(formatvarargs(varargs) + formatvalue(locals[varargs])) + if varkw: + specs.append(formatvarkw(varkw) + formatvalue(locals[varkw])) + return '(' + ', '.join(specs) + ')' diff --git a/.venv/lib/python3.12/site-packages/numpy/_utils/_inspect.pyi b/.venv/lib/python3.12/site-packages/numpy/_utils/_inspect.pyi new file mode 100644 index 0000000..d53c3c4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_utils/_inspect.pyi @@ -0,0 +1,71 @@ +import types +from collections.abc import Callable, Mapping +from typing import Any, Final, TypeAlias, TypeVar, overload + +from _typeshed import SupportsLenAndGetItem +from typing_extensions import TypeIs + +__all__ = ["formatargspec", "getargspec"] + +### + +_T = TypeVar("_T") +_RT = TypeVar("_RT") + +_StrSeq: TypeAlias = SupportsLenAndGetItem[str] +_NestedSeq: TypeAlias = list[_T | _NestedSeq[_T]] | tuple[_T | _NestedSeq[_T], ...] + +_JoinFunc: TypeAlias = Callable[[list[_T]], _T] +_FormatFunc: TypeAlias = Callable[[_T], str] + +### + +CO_OPTIMIZED: Final = 1 +CO_NEWLOCALS: Final = 2 +CO_VARARGS: Final = 4 +CO_VARKEYWORDS: Final = 8 + +### + +def ismethod(object: object) -> TypeIs[types.MethodType]: ... +def isfunction(object: object) -> TypeIs[types.FunctionType]: ... +def iscode(object: object) -> TypeIs[types.CodeType]: ... + +### + +def getargs(co: types.CodeType) -> tuple[list[str], str | None, str | None]: ... +def getargspec(func: types.MethodType | types.FunctionType) -> tuple[list[str], str | None, str | None, tuple[Any, ...]]: ... +def getargvalues(frame: types.FrameType) -> tuple[list[str], str | None, str | None, dict[str, Any]]: ... + +# +def joinseq(seq: _StrSeq) -> str: ... + +# +@overload +def strseq(object: _NestedSeq[str], convert: Callable[[Any], Any], join: _JoinFunc[str] = ...) -> str: ... +@overload +def strseq(object: _NestedSeq[_T], convert: Callable[[_T], _RT], join: _JoinFunc[_RT]) -> _RT: ... + +# +def formatargspec( + args: _StrSeq, + varargs: str | None = None, + varkw: str | None = None, + defaults: SupportsLenAndGetItem[object] | None = None, + formatarg: _FormatFunc[str] = ..., # str + formatvarargs: _FormatFunc[str] = ..., # "*{}".format + formatvarkw: _FormatFunc[str] = ..., # "**{}".format + formatvalue: _FormatFunc[object] = ..., # "={!r}".format + join: _JoinFunc[str] = ..., # joinseq +) -> str: ... +def formatargvalues( + args: _StrSeq, + varargs: str | None, + varkw: str | None, + locals: Mapping[str, object] | None, + formatarg: _FormatFunc[str] = ..., # str + formatvarargs: _FormatFunc[str] = ..., # "*{}".format + formatvarkw: _FormatFunc[str] = ..., # "**{}".format + formatvalue: _FormatFunc[object] = ..., # "={!r}".format + join: _JoinFunc[str] = ..., # joinseq +) -> str: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/_utils/_pep440.py b/.venv/lib/python3.12/site-packages/numpy/_utils/_pep440.py new file mode 100644 index 0000000..035a069 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/_utils/_pep440.py @@ -0,0 +1,486 @@ +"""Utility to compare pep440 compatible version strings. + +The LooseVersion and StrictVersion classes that distutils provides don't +work; they don't recognize anything like alpha/beta/rc/dev versions. +""" + +# Copyright (c) Donald Stufft and individual contributors. +# All rights reserved. + +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: + +# 1. Redistributions of source code must retain the above copyright notice, +# this list of conditions and the following disclaimer. + +# 2. Redistributions in binary form must reproduce the above copyright +# notice, this list of conditions and the following disclaimer in the +# documentation and/or other materials provided with the distribution. + +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE +# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +# POSSIBILITY OF SUCH DAMAGE. + +import collections +import itertools +import re + +__all__ = [ + "parse", "Version", "LegacyVersion", "InvalidVersion", "VERSION_PATTERN", +] + + +# BEGIN packaging/_structures.py + + +class Infinity: + def __repr__(self): + return "Infinity" + + def __hash__(self): + return hash(repr(self)) + + def __lt__(self, other): + return False + + def __le__(self, other): + return False + + def __eq__(self, other): + return isinstance(other, self.__class__) + + def __ne__(self, other): + return not isinstance(other, self.__class__) + + def __gt__(self, other): + return True + + def __ge__(self, other): + return True + + def __neg__(self): + return NegativeInfinity + + +Infinity = Infinity() + + +class NegativeInfinity: + def __repr__(self): + return "-Infinity" + + def __hash__(self): + return hash(repr(self)) + + def __lt__(self, other): + return True + + def __le__(self, other): + return True + + def __eq__(self, other): + return isinstance(other, self.__class__) + + def __ne__(self, other): + return not isinstance(other, self.__class__) + + def __gt__(self, other): + return False + + def __ge__(self, other): + return False + + def __neg__(self): + return Infinity + + +# BEGIN packaging/version.py + + +NegativeInfinity = NegativeInfinity() + +_Version = collections.namedtuple( + "_Version", + ["epoch", "release", "dev", "pre", "post", "local"], +) + + +def parse(version): + """ + Parse the given version string and return either a :class:`Version` object + or a :class:`LegacyVersion` object depending on if the given version is + a valid PEP 440 version or a legacy version. + """ + try: + return Version(version) + except InvalidVersion: + return LegacyVersion(version) + + +class InvalidVersion(ValueError): + """ + An invalid version was found, users should refer to PEP 440. + """ + + +class _BaseVersion: + + def __hash__(self): + return hash(self._key) + + def __lt__(self, other): + return self._compare(other, lambda s, o: s < o) + + def __le__(self, other): + return self._compare(other, lambda s, o: s <= o) + + def __eq__(self, other): + return self._compare(other, lambda s, o: s == o) + + def __ge__(self, other): + return self._compare(other, lambda s, o: s >= o) + + def __gt__(self, other): + return self._compare(other, lambda s, o: s > o) + + def __ne__(self, other): + return self._compare(other, lambda s, o: s != o) + + def _compare(self, other, method): + if not isinstance(other, _BaseVersion): + return NotImplemented + + return method(self._key, other._key) + + +class LegacyVersion(_BaseVersion): + + def __init__(self, version): + self._version = str(version) + self._key = _legacy_cmpkey(self._version) + + def __str__(self): + return self._version + + def __repr__(self): + return f"" + + @property + def public(self): + return self._version + + @property + def base_version(self): + return self._version + + @property + def local(self): + return None + + @property + def is_prerelease(self): + return False + + @property + def is_postrelease(self): + return False + + +_legacy_version_component_re = re.compile( + r"(\d+ | [a-z]+ | \.| -)", re.VERBOSE, +) + +_legacy_version_replacement_map = { + "pre": "c", "preview": "c", "-": "final-", "rc": "c", "dev": "@", +} + + +def _parse_version_parts(s): + for part in _legacy_version_component_re.split(s): + part = _legacy_version_replacement_map.get(part, part) + + if not part or part == ".": + continue + + if part[:1] in "0123456789": + # pad for numeric comparison + yield part.zfill(8) + else: + yield "*" + part + + # ensure that alpha/beta/candidate are before final + yield "*final" + + +def _legacy_cmpkey(version): + # We hardcode an epoch of -1 here. A PEP 440 version can only have an epoch + # greater than or equal to 0. This will effectively put the LegacyVersion, + # which uses the defacto standard originally implemented by setuptools, + # as before all PEP 440 versions. + epoch = -1 + + # This scheme is taken from pkg_resources.parse_version setuptools prior to + # its adoption of the packaging library. + parts = [] + for part in _parse_version_parts(version.lower()): + if part.startswith("*"): + # remove "-" before a prerelease tag + if part < "*final": + while parts and parts[-1] == "*final-": + parts.pop() + + # remove trailing zeros from each series of numeric parts + while parts and parts[-1] == "00000000": + parts.pop() + + parts.append(part) + parts = tuple(parts) + + return epoch, parts + + +# Deliberately not anchored to the start and end of the string, to make it +# easier for 3rd party code to reuse +VERSION_PATTERN = r""" + v? + (?: + (?:(?P[0-9]+)!)? # epoch + (?P[0-9]+(?:\.[0-9]+)*) # release segment + (?P
                                          # pre-release
+            [-_\.]?
+            (?P(a|b|c|rc|alpha|beta|pre|preview))
+            [-_\.]?
+            (?P[0-9]+)?
+        )?
+        (?P                                         # post release
+            (?:-(?P[0-9]+))
+            |
+            (?:
+                [-_\.]?
+                (?Ppost|rev|r)
+                [-_\.]?
+                (?P[0-9]+)?
+            )
+        )?
+        (?P                                          # dev release
+            [-_\.]?
+            (?Pdev)
+            [-_\.]?
+            (?P[0-9]+)?
+        )?
+    )
+    (?:\+(?P[a-z0-9]+(?:[-_\.][a-z0-9]+)*))?       # local version
+"""
+
+
+class Version(_BaseVersion):
+
+    _regex = re.compile(
+        r"^\s*" + VERSION_PATTERN + r"\s*$",
+        re.VERBOSE | re.IGNORECASE,
+    )
+
+    def __init__(self, version):
+        # Validate the version and parse it into pieces
+        match = self._regex.search(version)
+        if not match:
+            raise InvalidVersion(f"Invalid version: '{version}'")
+
+        # Store the parsed out pieces of the version
+        self._version = _Version(
+            epoch=int(match.group("epoch")) if match.group("epoch") else 0,
+            release=tuple(int(i) for i in match.group("release").split(".")),
+            pre=_parse_letter_version(
+                match.group("pre_l"),
+                match.group("pre_n"),
+            ),
+            post=_parse_letter_version(
+                match.group("post_l"),
+                match.group("post_n1") or match.group("post_n2"),
+            ),
+            dev=_parse_letter_version(
+                match.group("dev_l"),
+                match.group("dev_n"),
+            ),
+            local=_parse_local_version(match.group("local")),
+        )
+
+        # Generate a key which will be used for sorting
+        self._key = _cmpkey(
+            self._version.epoch,
+            self._version.release,
+            self._version.pre,
+            self._version.post,
+            self._version.dev,
+            self._version.local,
+        )
+
+    def __repr__(self):
+        return f""
+
+    def __str__(self):
+        parts = []
+
+        # Epoch
+        if self._version.epoch != 0:
+            parts.append(f"{self._version.epoch}!")
+
+        # Release segment
+        parts.append(".".join(str(x) for x in self._version.release))
+
+        # Pre-release
+        if self._version.pre is not None:
+            parts.append("".join(str(x) for x in self._version.pre))
+
+        # Post-release
+        if self._version.post is not None:
+            parts.append(f".post{self._version.post[1]}")
+
+        # Development release
+        if self._version.dev is not None:
+            parts.append(f".dev{self._version.dev[1]}")
+
+        # Local version segment
+        if self._version.local is not None:
+            parts.append(
+                f"+{'.'.join(str(x) for x in self._version.local)}"
+            )
+
+        return "".join(parts)
+
+    @property
+    def public(self):
+        return str(self).split("+", 1)[0]
+
+    @property
+    def base_version(self):
+        parts = []
+
+        # Epoch
+        if self._version.epoch != 0:
+            parts.append(f"{self._version.epoch}!")
+
+        # Release segment
+        parts.append(".".join(str(x) for x in self._version.release))
+
+        return "".join(parts)
+
+    @property
+    def local(self):
+        version_string = str(self)
+        if "+" in version_string:
+            return version_string.split("+", 1)[1]
+
+    @property
+    def is_prerelease(self):
+        return bool(self._version.dev or self._version.pre)
+
+    @property
+    def is_postrelease(self):
+        return bool(self._version.post)
+
+
+def _parse_letter_version(letter, number):
+    if letter:
+        # We assume there is an implicit 0 in a pre-release if there is
+        # no numeral associated with it.
+        if number is None:
+            number = 0
+
+        # We normalize any letters to their lower-case form
+        letter = letter.lower()
+
+        # We consider some words to be alternate spellings of other words and
+        # in those cases we want to normalize the spellings to our preferred
+        # spelling.
+        if letter == "alpha":
+            letter = "a"
+        elif letter == "beta":
+            letter = "b"
+        elif letter in ["c", "pre", "preview"]:
+            letter = "rc"
+        elif letter in ["rev", "r"]:
+            letter = "post"
+
+        return letter, int(number)
+    if not letter and number:
+        # We assume that if we are given a number but not given a letter,
+        # then this is using the implicit post release syntax (e.g., 1.0-1)
+        letter = "post"
+
+        return letter, int(number)
+
+
+_local_version_seperators = re.compile(r"[\._-]")
+
+
+def _parse_local_version(local):
+    """
+    Takes a string like abc.1.twelve and turns it into ("abc", 1, "twelve").
+    """
+    if local is not None:
+        return tuple(
+            part.lower() if not part.isdigit() else int(part)
+            for part in _local_version_seperators.split(local)
+        )
+
+
+def _cmpkey(epoch, release, pre, post, dev, local):
+    # When we compare a release version, we want to compare it with all of the
+    # trailing zeros removed. So we'll use a reverse the list, drop all the now
+    # leading zeros until we come to something non-zero, then take the rest,
+    # re-reverse it back into the correct order, and make it a tuple and use
+    # that for our sorting key.
+    release = tuple(
+        reversed(list(
+            itertools.dropwhile(
+                lambda x: x == 0,
+                reversed(release),
+            )
+        ))
+    )
+
+    # We need to "trick" the sorting algorithm to put 1.0.dev0 before 1.0a0.
+    # We'll do this by abusing the pre-segment, but we _only_ want to do this
+    # if there is no pre- or a post-segment. If we have one of those, then
+    # the normal sorting rules will handle this case correctly.
+    if pre is None and post is None and dev is not None:
+        pre = -Infinity
+    # Versions without a pre-release (except as noted above) should sort after
+    # those with one.
+    elif pre is None:
+        pre = Infinity
+
+    # Versions without a post-segment should sort before those with one.
+    if post is None:
+        post = -Infinity
+
+    # Versions without a development segment should sort after those with one.
+    if dev is None:
+        dev = Infinity
+
+    if local is None:
+        # Versions without a local segment should sort before those with one.
+        local = -Infinity
+    else:
+        # Versions with a local segment need that segment parsed to implement
+        # the sorting rules in PEP440.
+        # - Alphanumeric segments sort before numeric segments
+        # - Alphanumeric segments sort lexicographically
+        # - Numeric segments sort numerically
+        # - Shorter versions sort before longer versions when the prefixes
+        #   match exactly
+        local = tuple(
+            (i, "") if isinstance(i, int) else (-Infinity, i)
+            for i in local
+        )
+
+    return epoch, release, pre, post, dev, local
diff --git a/.venv/lib/python3.12/site-packages/numpy/_utils/_pep440.pyi b/.venv/lib/python3.12/site-packages/numpy/_utils/_pep440.pyi
new file mode 100644
index 0000000..29dd4c9
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/_utils/_pep440.pyi
@@ -0,0 +1,121 @@
+import re
+from collections.abc import Callable
+from typing import (
+    Any,
+    ClassVar,
+    Final,
+    Generic,
+    NamedTuple,
+    TypeVar,
+    final,
+    type_check_only,
+)
+from typing import (
+    Literal as L,
+)
+
+from typing_extensions import TypeIs
+
+__all__ = ["VERSION_PATTERN", "InvalidVersion", "LegacyVersion", "Version", "parse"]
+
+###
+
+_CmpKeyT = TypeVar("_CmpKeyT", bound=tuple[object, ...])
+_CmpKeyT_co = TypeVar("_CmpKeyT_co", bound=tuple[object, ...], default=tuple[Any, ...], covariant=True)
+
+###
+
+VERSION_PATTERN: Final[str] = ...
+
+class InvalidVersion(ValueError): ...
+
+@type_check_only
+@final
+class _InfinityType:
+    def __hash__(self) -> int: ...
+    def __eq__(self, other: object, /) -> TypeIs[_InfinityType]: ...
+    def __ne__(self, other: object, /) -> bool: ...
+    def __lt__(self, other: object, /) -> L[False]: ...
+    def __le__(self, other: object, /) -> L[False]: ...
+    def __gt__(self, other: object, /) -> L[True]: ...
+    def __ge__(self, other: object, /) -> L[True]: ...
+    def __neg__(self) -> _NegativeInfinityType: ...
+
+Infinity: Final[_InfinityType] = ...
+
+@type_check_only
+@final
+class _NegativeInfinityType:
+    def __hash__(self) -> int: ...
+    def __eq__(self, other: object, /) -> TypeIs[_NegativeInfinityType]: ...
+    def __ne__(self, other: object, /) -> bool: ...
+    def __lt__(self, other: object, /) -> L[True]: ...
+    def __le__(self, other: object, /) -> L[True]: ...
+    def __gt__(self, other: object, /) -> L[False]: ...
+    def __ge__(self, other: object, /) -> L[False]: ...
+    def __neg__(self) -> _InfinityType: ...
+
+NegativeInfinity: Final[_NegativeInfinityType] = ...
+
+class _Version(NamedTuple):
+    epoch: int
+    release: tuple[int, ...]
+    dev: tuple[str, int] | None
+    pre: tuple[str, int] | None
+    post: tuple[str, int] | None
+    local: tuple[str | int, ...] | None
+
+class _BaseVersion(Generic[_CmpKeyT_co]):
+    _key: _CmpKeyT_co
+    def __hash__(self) -> int: ...
+    def __eq__(self, other: _BaseVersion, /) -> bool: ...  # type: ignore[override]  # pyright: ignore[reportIncompatibleMethodOverride]
+    def __ne__(self, other: _BaseVersion, /) -> bool: ...  # type: ignore[override]  # pyright: ignore[reportIncompatibleMethodOverride]
+    def __lt__(self, other: _BaseVersion, /) -> bool: ...
+    def __le__(self, other: _BaseVersion, /) -> bool: ...
+    def __ge__(self, other: _BaseVersion, /) -> bool: ...
+    def __gt__(self, other: _BaseVersion, /) -> bool: ...
+    def _compare(self, /, other: _BaseVersion[_CmpKeyT], method: Callable[[_CmpKeyT_co, _CmpKeyT], bool]) -> bool: ...
+
+class LegacyVersion(_BaseVersion[tuple[L[-1], tuple[str, ...]]]):
+    _version: Final[str]
+    def __init__(self, /, version: str) -> None: ...
+    @property
+    def public(self) -> str: ...
+    @property
+    def base_version(self) -> str: ...
+    @property
+    def local(self) -> None: ...
+    @property
+    def is_prerelease(self) -> L[False]: ...
+    @property
+    def is_postrelease(self) -> L[False]: ...
+
+class Version(
+    _BaseVersion[
+        tuple[
+            int,  # epoch
+            tuple[int, ...],  # release
+            tuple[str, int] | _InfinityType | _NegativeInfinityType,  # pre
+            tuple[str, int] | _NegativeInfinityType,  # post
+            tuple[str, int] | _InfinityType,  # dev
+            tuple[tuple[int, L[""]] | tuple[_NegativeInfinityType, str], ...] | _NegativeInfinityType,  # local
+        ],
+    ],
+):
+    _regex: ClassVar[re.Pattern[str]] = ...
+    _version: Final[str]
+
+    def __init__(self, /, version: str) -> None: ...
+    @property
+    def public(self) -> str: ...
+    @property
+    def base_version(self) -> str: ...
+    @property
+    def local(self) -> str | None: ...
+    @property
+    def is_prerelease(self) -> bool: ...
+    @property
+    def is_postrelease(self) -> bool: ...
+
+#
+def parse(version: str) -> Version | LegacyVersion: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/char/__init__.py b/.venv/lib/python3.12/site-packages/numpy/char/__init__.py
new file mode 100644
index 0000000..d98d38c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/char/__init__.py
@@ -0,0 +1,2 @@
+from numpy._core.defchararray import *
+from numpy._core.defchararray import __all__, __doc__
diff --git a/.venv/lib/python3.12/site-packages/numpy/char/__init__.pyi b/.venv/lib/python3.12/site-packages/numpy/char/__init__.pyi
new file mode 100644
index 0000000..e151f20
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/char/__init__.pyi
@@ -0,0 +1,111 @@
+from numpy._core.defchararray import (
+    add,
+    array,
+    asarray,
+    capitalize,
+    center,
+    chararray,
+    compare_chararrays,
+    count,
+    decode,
+    encode,
+    endswith,
+    equal,
+    expandtabs,
+    find,
+    greater,
+    greater_equal,
+    index,
+    isalnum,
+    isalpha,
+    isdecimal,
+    isdigit,
+    islower,
+    isnumeric,
+    isspace,
+    istitle,
+    isupper,
+    join,
+    less,
+    less_equal,
+    ljust,
+    lower,
+    lstrip,
+    mod,
+    multiply,
+    not_equal,
+    partition,
+    replace,
+    rfind,
+    rindex,
+    rjust,
+    rpartition,
+    rsplit,
+    rstrip,
+    split,
+    splitlines,
+    startswith,
+    str_len,
+    strip,
+    swapcase,
+    title,
+    translate,
+    upper,
+    zfill,
+)
+
+__all__ = [
+    "equal",
+    "not_equal",
+    "greater_equal",
+    "less_equal",
+    "greater",
+    "less",
+    "str_len",
+    "add",
+    "multiply",
+    "mod",
+    "capitalize",
+    "center",
+    "count",
+    "decode",
+    "encode",
+    "endswith",
+    "expandtabs",
+    "find",
+    "index",
+    "isalnum",
+    "isalpha",
+    "isdigit",
+    "islower",
+    "isspace",
+    "istitle",
+    "isupper",
+    "join",
+    "ljust",
+    "lower",
+    "lstrip",
+    "partition",
+    "replace",
+    "rfind",
+    "rindex",
+    "rjust",
+    "rpartition",
+    "rsplit",
+    "rstrip",
+    "split",
+    "splitlines",
+    "startswith",
+    "strip",
+    "swapcase",
+    "title",
+    "translate",
+    "upper",
+    "zfill",
+    "isnumeric",
+    "isdecimal",
+    "array",
+    "asarray",
+    "compare_chararrays",
+    "chararray",
+]
diff --git a/.venv/lib/python3.12/site-packages/numpy/char/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/char/__pycache__/__init__.cpython-312.pyc
new file mode 100644
index 0000000..2846b9f
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/char/__pycache__/__init__.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/conftest.py b/.venv/lib/python3.12/site-packages/numpy/conftest.py
new file mode 100644
index 0000000..fde4def
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/conftest.py
@@ -0,0 +1,258 @@
+"""
+Pytest configuration and fixtures for the Numpy test suite.
+"""
+import os
+import string
+import sys
+import tempfile
+import warnings
+from contextlib import contextmanager
+
+import hypothesis
+import pytest
+
+import numpy
+import numpy as np
+from numpy._core._multiarray_tests import get_fpu_mode
+from numpy._core.tests._natype import get_stringdtype_dtype, pd_NA
+from numpy.testing._private.utils import NOGIL_BUILD
+
+try:
+    from scipy_doctest.conftest import dt_config
+    HAVE_SCPDT = True
+except ModuleNotFoundError:
+    HAVE_SCPDT = False
+
+
+_old_fpu_mode = None
+_collect_results = {}
+
+# Use a known and persistent tmpdir for hypothesis' caches, which
+# can be automatically cleared by the OS or user.
+hypothesis.configuration.set_hypothesis_home_dir(
+    os.path.join(tempfile.gettempdir(), ".hypothesis")
+)
+
+# We register two custom profiles for Numpy - for details see
+# https://hypothesis.readthedocs.io/en/latest/settings.html
+# The first is designed for our own CI runs; the latter also
+# forces determinism and is designed for use via np.test()
+hypothesis.settings.register_profile(
+    name="numpy-profile", deadline=None, print_blob=True,
+)
+hypothesis.settings.register_profile(
+    name="np.test() profile",
+    deadline=None, print_blob=True, database=None, derandomize=True,
+    suppress_health_check=list(hypothesis.HealthCheck),
+)
+# Note that the default profile is chosen based on the presence
+# of pytest.ini, but can be overridden by passing the
+# --hypothesis-profile=NAME argument to pytest.
+_pytest_ini = os.path.join(os.path.dirname(__file__), "..", "pytest.ini")
+hypothesis.settings.load_profile(
+    "numpy-profile" if os.path.isfile(_pytest_ini) else "np.test() profile"
+)
+
+# The experimentalAPI is used in _umath_tests
+os.environ["NUMPY_EXPERIMENTAL_DTYPE_API"] = "1"
+
+def pytest_configure(config):
+    config.addinivalue_line("markers",
+        "valgrind_error: Tests that are known to error under valgrind.")
+    config.addinivalue_line("markers",
+        "leaks_references: Tests that are known to leak references.")
+    config.addinivalue_line("markers",
+        "slow: Tests that are very slow.")
+    config.addinivalue_line("markers",
+        "slow_pypy: Tests that are very slow on pypy.")
+
+
+def pytest_addoption(parser):
+    parser.addoption("--available-memory", action="store", default=None,
+                     help=("Set amount of memory available for running the "
+                           "test suite. This can result to tests requiring "
+                           "especially large amounts of memory to be skipped. "
+                           "Equivalent to setting environment variable "
+                           "NPY_AVAILABLE_MEM. Default: determined"
+                           "automatically."))
+
+
+gil_enabled_at_start = True
+if NOGIL_BUILD:
+    gil_enabled_at_start = sys._is_gil_enabled()
+
+
+def pytest_sessionstart(session):
+    available_mem = session.config.getoption('available_memory')
+    if available_mem is not None:
+        os.environ['NPY_AVAILABLE_MEM'] = available_mem
+
+
+def pytest_terminal_summary(terminalreporter, exitstatus, config):
+    if NOGIL_BUILD and not gil_enabled_at_start and sys._is_gil_enabled():
+        tr = terminalreporter
+        tr.ensure_newline()
+        tr.section("GIL re-enabled", sep="=", red=True, bold=True)
+        tr.line("The GIL was re-enabled at runtime during the tests.")
+        tr.line("This can happen with no test failures if the RuntimeWarning")
+        tr.line("raised by Python when this happens is filtered by a test.")
+        tr.line("")
+        tr.line("Please ensure all new C modules declare support for running")
+        tr.line("without the GIL. Any new tests that intentionally imports ")
+        tr.line("code that re-enables the GIL should do so in a subprocess.")
+        pytest.exit("GIL re-enabled during tests", returncode=1)
+
+# FIXME when yield tests are gone.
+@pytest.hookimpl()
+def pytest_itemcollected(item):
+    """
+    Check FPU precision mode was not changed during test collection.
+
+    The clumsy way we do it here is mainly necessary because numpy
+    still uses yield tests, which can execute code at test collection
+    time.
+    """
+    global _old_fpu_mode
+
+    mode = get_fpu_mode()
+
+    if _old_fpu_mode is None:
+        _old_fpu_mode = mode
+    elif mode != _old_fpu_mode:
+        _collect_results[item] = (_old_fpu_mode, mode)
+        _old_fpu_mode = mode
+
+
+@pytest.fixture(scope="function", autouse=True)
+def check_fpu_mode(request):
+    """
+    Check FPU precision mode was not changed during the test.
+    """
+    old_mode = get_fpu_mode()
+    yield
+    new_mode = get_fpu_mode()
+
+    if old_mode != new_mode:
+        raise AssertionError(f"FPU precision mode changed from {old_mode:#x} to "
+                             f"{new_mode:#x} during the test")
+
+    collect_result = _collect_results.get(request.node)
+    if collect_result is not None:
+        old_mode, new_mode = collect_result
+        raise AssertionError(f"FPU precision mode changed from {old_mode:#x} to "
+                             f"{new_mode:#x} when collecting the test")
+
+
+@pytest.fixture(autouse=True)
+def add_np(doctest_namespace):
+    doctest_namespace['np'] = numpy
+
+@pytest.fixture(autouse=True)
+def env_setup(monkeypatch):
+    monkeypatch.setenv('PYTHONHASHSEED', '0')
+
+
+if HAVE_SCPDT:
+
+    @contextmanager
+    def warnings_errors_and_rng(test=None):
+        """Filter out the wall of DeprecationWarnings.
+        """
+        msgs = ["The numpy.linalg.linalg",
+                "The numpy.fft.helper",
+                "dep_util",
+                "pkg_resources",
+                "numpy.core.umath",
+                "msvccompiler",
+                "Deprecated call",
+                "numpy.core",
+                "Importing from numpy.matlib",
+                "This function is deprecated.",    # random_integers
+                "Data type alias 'a'",     # numpy.rec.fromfile
+                "Arrays of 2-dimensional vectors",   # matlib.cross
+                "`in1d` is deprecated", ]
+        msg = "|".join(msgs)
+
+        msgs_r = [
+            "invalid value encountered",
+            "divide by zero encountered"
+        ]
+        msg_r = "|".join(msgs_r)
+
+        with warnings.catch_warnings():
+            warnings.filterwarnings(
+                'ignore', category=DeprecationWarning, message=msg
+            )
+            warnings.filterwarnings(
+                'ignore', category=RuntimeWarning, message=msg_r
+            )
+            yield
+
+    # find and check doctests under this context manager
+    dt_config.user_context_mgr = warnings_errors_and_rng
+
+    # numpy specific tweaks from refguide-check
+    dt_config.rndm_markers.add('#uninitialized')
+    dt_config.rndm_markers.add('# uninitialized')
+
+    # make the checker pick on mismatched dtypes
+    dt_config.strict_check = True
+
+    import doctest
+    dt_config.optionflags = doctest.NORMALIZE_WHITESPACE | doctest.ELLIPSIS
+
+    # recognize the StringDType repr
+    dt_config.check_namespace['StringDType'] = numpy.dtypes.StringDType
+
+    # temporary skips
+    dt_config.skiplist = {
+        'numpy.savez',    # unclosed file
+        'numpy.matlib.savez',
+        'numpy.__array_namespace_info__',
+        'numpy.matlib.__array_namespace_info__',
+    }
+
+    # xfail problematic tutorials
+    dt_config.pytest_extra_xfail = {
+        'how-to-verify-bug.rst': '',
+        'c-info.ufunc-tutorial.rst': '',
+        'basics.interoperability.rst': 'needs pandas',
+        'basics.dispatch.rst': 'errors out in /testing/overrides.py',
+        'basics.subclassing.rst': '.. testcode:: admonitions not understood',
+        'misc.rst': 'manipulates warnings',
+    }
+
+    # ignores are for things fail doctest collection (optionals etc)
+    dt_config.pytest_extra_ignore = [
+        'numpy/distutils',
+        'numpy/_core/cversions.py',
+        'numpy/_pyinstaller',
+        'numpy/random/_examples',
+        'numpy/f2py/_backends/_distutils.py',
+    ]
+
+
+@pytest.fixture
+def random_string_list():
+    chars = list(string.ascii_letters + string.digits)
+    chars = np.array(chars, dtype="U1")
+    ret = np.random.choice(chars, size=100 * 10, replace=True)
+    return ret.view("U100")
+
+
+@pytest.fixture(params=[True, False])
+def coerce(request):
+    return request.param
+
+
+@pytest.fixture(
+    params=["unset", None, pd_NA, np.nan, float("nan"), "__nan__"],
+    ids=["unset", "None", "pandas.NA", "np.nan", "float('nan')", "string nan"],
+)
+def na_object(request):
+    return request.param
+
+
+@pytest.fixture()
+def dtype(na_object, coerce):
+    return get_stringdtype_dtype(na_object, coerce)
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/__init__.py b/.venv/lib/python3.12/site-packages/numpy/core/__init__.py
new file mode 100644
index 0000000..cfd96ed
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/__init__.py
@@ -0,0 +1,33 @@
+"""
+The `numpy.core` submodule exists solely for backward compatibility
+purposes. The original `core` was renamed to `_core` and made private.
+`numpy.core` will be removed in the future.
+"""
+from numpy import _core
+
+from ._utils import _raise_warning
+
+
+# We used to use `np.core._ufunc_reconstruct` to unpickle.
+# This is unnecessary, but old pickles saved before 1.20 will be using it,
+# and there is no reason to break loading them.
+def _ufunc_reconstruct(module, name):
+    # The `fromlist` kwarg is required to ensure that `mod` points to the
+    # inner-most module rather than the parent package when module name is
+    # nested. This makes it possible to pickle non-toplevel ufuncs such as
+    # scipy.special.expit for instance.
+    mod = __import__(module, fromlist=[name])
+    return getattr(mod, name)
+
+
+# force lazy-loading of submodules to ensure a warning is printed
+
+__all__ = ["arrayprint", "defchararray", "_dtype_ctypes", "_dtype",  # noqa: F822
+           "einsumfunc", "fromnumeric", "function_base", "getlimits",
+           "_internal", "multiarray", "_multiarray_umath", "numeric",
+           "numerictypes", "overrides", "records", "shape_base", "umath"]
+
+def __getattr__(attr_name):
+    attr = getattr(_core, attr_name)
+    _raise_warning(attr_name)
+    return attr
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/__init__.pyi b/.venv/lib/python3.12/site-packages/numpy/core/__init__.pyi
new file mode 100644
index 0000000..e69de29
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/__init__.cpython-312.pyc
new file mode 100644
index 0000000..b1cafa9
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/__init__.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/_dtype.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/_dtype.cpython-312.pyc
new file mode 100644
index 0000000..63fe96e
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/_dtype.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/_dtype_ctypes.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/_dtype_ctypes.cpython-312.pyc
new file mode 100644
index 0000000..00608ea
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/_dtype_ctypes.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/_internal.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/_internal.cpython-312.pyc
new file mode 100644
index 0000000..c6b02f4
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/_internal.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/_multiarray_umath.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/_multiarray_umath.cpython-312.pyc
new file mode 100644
index 0000000..d5fddef
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/_multiarray_umath.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/_utils.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/_utils.cpython-312.pyc
new file mode 100644
index 0000000..89d33af
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/_utils.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/arrayprint.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/arrayprint.cpython-312.pyc
new file mode 100644
index 0000000..37e6ea5
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/arrayprint.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/defchararray.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/defchararray.cpython-312.pyc
new file mode 100644
index 0000000..d7a00f9
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/defchararray.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/einsumfunc.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/einsumfunc.cpython-312.pyc
new file mode 100644
index 0000000..b51b0b4
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/einsumfunc.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/fromnumeric.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/fromnumeric.cpython-312.pyc
new file mode 100644
index 0000000..78c87ac
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/fromnumeric.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/function_base.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/function_base.cpython-312.pyc
new file mode 100644
index 0000000..71d8965
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/function_base.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/getlimits.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/getlimits.cpython-312.pyc
new file mode 100644
index 0000000..b9dba58
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/getlimits.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/multiarray.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/multiarray.cpython-312.pyc
new file mode 100644
index 0000000..c88aa9f
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/multiarray.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/numeric.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/numeric.cpython-312.pyc
new file mode 100644
index 0000000..f3785d1
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/numeric.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/numerictypes.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/numerictypes.cpython-312.pyc
new file mode 100644
index 0000000..83d421e
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/numerictypes.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/overrides.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/overrides.cpython-312.pyc
new file mode 100644
index 0000000..681b72f
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/overrides.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/records.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/records.cpython-312.pyc
new file mode 100644
index 0000000..ffb8960
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/records.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/shape_base.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/shape_base.cpython-312.pyc
new file mode 100644
index 0000000..9c55718
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/shape_base.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/umath.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/umath.cpython-312.pyc
new file mode 100644
index 0000000..03306e3
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/core/__pycache__/umath.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/_dtype.py b/.venv/lib/python3.12/site-packages/numpy/core/_dtype.py
new file mode 100644
index 0000000..5446079
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/_dtype.py
@@ -0,0 +1,10 @@
+def __getattr__(attr_name):
+    from numpy._core import _dtype
+
+    from ._utils import _raise_warning
+    ret = getattr(_dtype, attr_name, None)
+    if ret is None:
+        raise AttributeError(
+            f"module 'numpy.core._dtype' has no attribute {attr_name}")
+    _raise_warning(attr_name, "_dtype")
+    return ret
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/_dtype.pyi b/.venv/lib/python3.12/site-packages/numpy/core/_dtype.pyi
new file mode 100644
index 0000000..e69de29
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/_dtype_ctypes.py b/.venv/lib/python3.12/site-packages/numpy/core/_dtype_ctypes.py
new file mode 100644
index 0000000..10cfba2
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/_dtype_ctypes.py
@@ -0,0 +1,10 @@
+def __getattr__(attr_name):
+    from numpy._core import _dtype_ctypes
+
+    from ._utils import _raise_warning
+    ret = getattr(_dtype_ctypes, attr_name, None)
+    if ret is None:
+        raise AttributeError(
+            f"module 'numpy.core._dtype_ctypes' has no attribute {attr_name}")
+    _raise_warning(attr_name, "_dtype_ctypes")
+    return ret
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/_dtype_ctypes.pyi b/.venv/lib/python3.12/site-packages/numpy/core/_dtype_ctypes.pyi
new file mode 100644
index 0000000..e69de29
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/_internal.py b/.venv/lib/python3.12/site-packages/numpy/core/_internal.py
new file mode 100644
index 0000000..63a6ccc
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/_internal.py
@@ -0,0 +1,27 @@
+from numpy._core import _internal
+
+
+# Build a new array from the information in a pickle.
+# Note that the name numpy.core._internal._reconstruct is embedded in
+# pickles of ndarrays made with NumPy before release 1.0
+# so don't remove the name here, or you'll
+# break backward compatibility.
+def _reconstruct(subtype, shape, dtype):
+    from numpy import ndarray
+    return ndarray.__new__(subtype, shape, dtype)
+
+
+# Pybind11 (in versions <= 2.11.1) imports _dtype_from_pep3118 from the
+# _internal submodule, therefore it must be importable without a warning.
+_dtype_from_pep3118 = _internal._dtype_from_pep3118
+
+def __getattr__(attr_name):
+    from numpy._core import _internal
+
+    from ._utils import _raise_warning
+    ret = getattr(_internal, attr_name, None)
+    if ret is None:
+        raise AttributeError(
+            f"module 'numpy.core._internal' has no attribute {attr_name}")
+    _raise_warning(attr_name, "_internal")
+    return ret
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/_multiarray_umath.py b/.venv/lib/python3.12/site-packages/numpy/core/_multiarray_umath.py
new file mode 100644
index 0000000..c1e6b4e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/_multiarray_umath.py
@@ -0,0 +1,57 @@
+from numpy import ufunc
+from numpy._core import _multiarray_umath
+
+for item in _multiarray_umath.__dir__():
+    # ufuncs appear in pickles with a path in numpy.core._multiarray_umath
+    # and so must import from this namespace without warning or error
+    attr = getattr(_multiarray_umath, item)
+    if isinstance(attr, ufunc):
+        globals()[item] = attr
+
+
+def __getattr__(attr_name):
+    from numpy._core import _multiarray_umath
+
+    from ._utils import _raise_warning
+
+    if attr_name in {"_ARRAY_API", "_UFUNC_API"}:
+        import sys
+        import textwrap
+        import traceback
+
+        from numpy.version import short_version
+
+        msg = textwrap.dedent(f"""
+            A module that was compiled using NumPy 1.x cannot be run in
+            NumPy {short_version} as it may crash. To support both 1.x and 2.x
+            versions of NumPy, modules must be compiled with NumPy 2.0.
+            Some module may need to rebuild instead e.g. with 'pybind11>=2.12'.
+
+            If you are a user of the module, the easiest solution will be to
+            downgrade to 'numpy<2' or try to upgrade the affected module.
+            We expect that some modules will need time to support NumPy 2.
+
+            """)
+        tb_msg = "Traceback (most recent call last):"
+        for line in traceback.format_stack()[:-1]:
+            if "frozen importlib" in line:
+                continue
+            tb_msg += line
+
+        # Also print the message (with traceback).  This is because old versions
+        # of NumPy unfortunately set up the import to replace (and hide) the
+        # error.  The traceback shouldn't be needed, but e.g. pytest plugins
+        # seem to swallow it and we should be failing anyway...
+        sys.stderr.write(msg + tb_msg)
+        raise ImportError(msg)
+
+    ret = getattr(_multiarray_umath, attr_name, None)
+    if ret is None:
+        raise AttributeError(
+            "module 'numpy.core._multiarray_umath' has no attribute "
+            f"{attr_name}")
+    _raise_warning(attr_name, "_multiarray_umath")
+    return ret
+
+
+del _multiarray_umath, ufunc
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/_utils.py b/.venv/lib/python3.12/site-packages/numpy/core/_utils.py
new file mode 100644
index 0000000..5f47f4b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/_utils.py
@@ -0,0 +1,21 @@
+import warnings
+
+
+def _raise_warning(attr: str, submodule: str | None = None) -> None:
+    new_module = "numpy._core"
+    old_module = "numpy.core"
+    if submodule is not None:
+        new_module = f"{new_module}.{submodule}"
+        old_module = f"{old_module}.{submodule}"
+    warnings.warn(
+        f"{old_module} is deprecated and has been renamed to {new_module}. "
+        "The numpy._core namespace contains private NumPy internals and its "
+        "use is discouraged, as NumPy internals can change without warning in "
+        "any release. In practice, most real-world usage of numpy.core is to "
+        "access functionality in the public NumPy API. If that is the case, "
+        "use the public NumPy API. If not, you are using NumPy internals. "
+        "If you would still like to access an internal attribute, "
+        f"use {new_module}.{attr}.",
+        DeprecationWarning,
+        stacklevel=3
+    )
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/arrayprint.py b/.venv/lib/python3.12/site-packages/numpy/core/arrayprint.py
new file mode 100644
index 0000000..8be5c5c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/arrayprint.py
@@ -0,0 +1,10 @@
+def __getattr__(attr_name):
+    from numpy._core import arrayprint
+
+    from ._utils import _raise_warning
+    ret = getattr(arrayprint, attr_name, None)
+    if ret is None:
+        raise AttributeError(
+            f"module 'numpy.core.arrayprint' has no attribute {attr_name}")
+    _raise_warning(attr_name, "arrayprint")
+    return ret
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/defchararray.py b/.venv/lib/python3.12/site-packages/numpy/core/defchararray.py
new file mode 100644
index 0000000..1c87068
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/defchararray.py
@@ -0,0 +1,10 @@
+def __getattr__(attr_name):
+    from numpy._core import defchararray
+
+    from ._utils import _raise_warning
+    ret = getattr(defchararray, attr_name, None)
+    if ret is None:
+        raise AttributeError(
+            f"module 'numpy.core.defchararray' has no attribute {attr_name}")
+    _raise_warning(attr_name, "defchararray")
+    return ret
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/einsumfunc.py b/.venv/lib/python3.12/site-packages/numpy/core/einsumfunc.py
new file mode 100644
index 0000000..fe5aa39
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/einsumfunc.py
@@ -0,0 +1,10 @@
+def __getattr__(attr_name):
+    from numpy._core import einsumfunc
+
+    from ._utils import _raise_warning
+    ret = getattr(einsumfunc, attr_name, None)
+    if ret is None:
+        raise AttributeError(
+            f"module 'numpy.core.einsumfunc' has no attribute {attr_name}")
+    _raise_warning(attr_name, "einsumfunc")
+    return ret
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/fromnumeric.py b/.venv/lib/python3.12/site-packages/numpy/core/fromnumeric.py
new file mode 100644
index 0000000..fae7a03
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/fromnumeric.py
@@ -0,0 +1,10 @@
+def __getattr__(attr_name):
+    from numpy._core import fromnumeric
+
+    from ._utils import _raise_warning
+    ret = getattr(fromnumeric, attr_name, None)
+    if ret is None:
+        raise AttributeError(
+            f"module 'numpy.core.fromnumeric' has no attribute {attr_name}")
+    _raise_warning(attr_name, "fromnumeric")
+    return ret
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/function_base.py b/.venv/lib/python3.12/site-packages/numpy/core/function_base.py
new file mode 100644
index 0000000..e15c971
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/function_base.py
@@ -0,0 +1,10 @@
+def __getattr__(attr_name):
+    from numpy._core import function_base
+
+    from ._utils import _raise_warning
+    ret = getattr(function_base, attr_name, None)
+    if ret is None:
+        raise AttributeError(
+            f"module 'numpy.core.function_base' has no attribute {attr_name}")
+    _raise_warning(attr_name, "function_base")
+    return ret
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/getlimits.py b/.venv/lib/python3.12/site-packages/numpy/core/getlimits.py
new file mode 100644
index 0000000..dc009cb
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/getlimits.py
@@ -0,0 +1,10 @@
+def __getattr__(attr_name):
+    from numpy._core import getlimits
+
+    from ._utils import _raise_warning
+    ret = getattr(getlimits, attr_name, None)
+    if ret is None:
+        raise AttributeError(
+            f"module 'numpy.core.getlimits' has no attribute {attr_name}")
+    _raise_warning(attr_name, "getlimits")
+    return ret
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/multiarray.py b/.venv/lib/python3.12/site-packages/numpy/core/multiarray.py
new file mode 100644
index 0000000..b226709
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/multiarray.py
@@ -0,0 +1,25 @@
+from numpy._core import multiarray
+
+# these must import without warning or error from numpy.core.multiarray to
+# support old pickle files
+for item in ["_reconstruct", "scalar"]:
+    globals()[item] = getattr(multiarray, item)
+
+# Pybind11 (in versions <= 2.11.1) imports _ARRAY_API from the multiarray
+# submodule as a part of NumPy initialization, therefore it must be importable
+# without a warning.
+_ARRAY_API = multiarray._ARRAY_API
+
+def __getattr__(attr_name):
+    from numpy._core import multiarray
+
+    from ._utils import _raise_warning
+    ret = getattr(multiarray, attr_name, None)
+    if ret is None:
+        raise AttributeError(
+            f"module 'numpy.core.multiarray' has no attribute {attr_name}")
+    _raise_warning(attr_name, "multiarray")
+    return ret
+
+
+del multiarray
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/numeric.py b/.venv/lib/python3.12/site-packages/numpy/core/numeric.py
new file mode 100644
index 0000000..ddd70b3
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/numeric.py
@@ -0,0 +1,12 @@
+def __getattr__(attr_name):
+    from numpy._core import numeric
+
+    from ._utils import _raise_warning
+
+    sentinel = object()
+    ret = getattr(numeric, attr_name, sentinel)
+    if ret is sentinel:
+        raise AttributeError(
+            f"module 'numpy.core.numeric' has no attribute {attr_name}")
+    _raise_warning(attr_name, "numeric")
+    return ret
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/numerictypes.py b/.venv/lib/python3.12/site-packages/numpy/core/numerictypes.py
new file mode 100644
index 0000000..cf2ad99
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/numerictypes.py
@@ -0,0 +1,10 @@
+def __getattr__(attr_name):
+    from numpy._core import numerictypes
+
+    from ._utils import _raise_warning
+    ret = getattr(numerictypes, attr_name, None)
+    if ret is None:
+        raise AttributeError(
+            f"module 'numpy.core.numerictypes' has no attribute {attr_name}")
+    _raise_warning(attr_name, "numerictypes")
+    return ret
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/overrides.py b/.venv/lib/python3.12/site-packages/numpy/core/overrides.py
new file mode 100644
index 0000000..17830ed
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/overrides.py
@@ -0,0 +1,10 @@
+def __getattr__(attr_name):
+    from numpy._core import overrides
+
+    from ._utils import _raise_warning
+    ret = getattr(overrides, attr_name, None)
+    if ret is None:
+        raise AttributeError(
+            f"module 'numpy.core.overrides' has no attribute {attr_name}")
+    _raise_warning(attr_name, "overrides")
+    return ret
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/overrides.pyi b/.venv/lib/python3.12/site-packages/numpy/core/overrides.pyi
new file mode 100644
index 0000000..fab3512
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/overrides.pyi
@@ -0,0 +1,7 @@
+# NOTE: At runtime, this submodule dynamically re-exports any `numpy._core.overrides`
+# member, and issues a `DeprecationWarning` when accessed. But since there is no
+# `__dir__` or `__all__` present, these annotations would be unverifiable. Because
+# this module is also deprecated in favor of `numpy._core`, and therefore not part of
+# the public API, we omit the "re-exports", which in practice would require literal
+# duplication of the stubs in order for the `@deprecated` decorator to be understood
+# by type-checkers.
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/records.py b/.venv/lib/python3.12/site-packages/numpy/core/records.py
new file mode 100644
index 0000000..0cc4503
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/records.py
@@ -0,0 +1,10 @@
+def __getattr__(attr_name):
+    from numpy._core import records
+
+    from ._utils import _raise_warning
+    ret = getattr(records, attr_name, None)
+    if ret is None:
+        raise AttributeError(
+            f"module 'numpy.core.records' has no attribute {attr_name}")
+    _raise_warning(attr_name, "records")
+    return ret
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/shape_base.py b/.venv/lib/python3.12/site-packages/numpy/core/shape_base.py
new file mode 100644
index 0000000..9cffce7
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/shape_base.py
@@ -0,0 +1,10 @@
+def __getattr__(attr_name):
+    from numpy._core import shape_base
+
+    from ._utils import _raise_warning
+    ret = getattr(shape_base, attr_name, None)
+    if ret is None:
+        raise AttributeError(
+            f"module 'numpy.core.shape_base' has no attribute {attr_name}")
+    _raise_warning(attr_name, "shape_base")
+    return ret
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/umath.py b/.venv/lib/python3.12/site-packages/numpy/core/umath.py
new file mode 100644
index 0000000..25a60cc
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/umath.py
@@ -0,0 +1,10 @@
+def __getattr__(attr_name):
+    from numpy._core import umath
+
+    from ._utils import _raise_warning
+    ret = getattr(umath, attr_name, None)
+    if ret is None:
+        raise AttributeError(
+            f"module 'numpy.core.umath' has no attribute {attr_name}")
+    _raise_warning(attr_name, "umath")
+    return ret
diff --git a/.venv/lib/python3.12/site-packages/numpy/ctypeslib/__init__.py b/.venv/lib/python3.12/site-packages/numpy/ctypeslib/__init__.py
new file mode 100644
index 0000000..fd3c773
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/ctypeslib/__init__.py
@@ -0,0 +1,13 @@
+from ._ctypeslib import (
+    __all__,
+    __doc__,
+    _concrete_ndptr,
+    _ndptr,
+    as_array,
+    as_ctypes,
+    as_ctypes_type,
+    c_intp,
+    ctypes,
+    load_library,
+    ndpointer,
+)
diff --git a/.venv/lib/python3.12/site-packages/numpy/ctypeslib/__init__.pyi b/.venv/lib/python3.12/site-packages/numpy/ctypeslib/__init__.pyi
new file mode 100644
index 0000000..adc51da
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/ctypeslib/__init__.pyi
@@ -0,0 +1,33 @@
+import ctypes
+from ctypes import c_int64 as _c_intp
+
+from ._ctypeslib import (
+    __all__ as __all__,
+)
+from ._ctypeslib import (
+    __doc__ as __doc__,
+)
+from ._ctypeslib import (
+    _concrete_ndptr as _concrete_ndptr,
+)
+from ._ctypeslib import (
+    _ndptr as _ndptr,
+)
+from ._ctypeslib import (
+    as_array as as_array,
+)
+from ._ctypeslib import (
+    as_ctypes as as_ctypes,
+)
+from ._ctypeslib import (
+    as_ctypes_type as as_ctypes_type,
+)
+from ._ctypeslib import (
+    c_intp as c_intp,
+)
+from ._ctypeslib import (
+    load_library as load_library,
+)
+from ._ctypeslib import (
+    ndpointer as ndpointer,
+)
diff --git a/.venv/lib/python3.12/site-packages/numpy/ctypeslib/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/ctypeslib/__pycache__/__init__.cpython-312.pyc
new file mode 100644
index 0000000..0ba9501
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/ctypeslib/__pycache__/__init__.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/ctypeslib/__pycache__/_ctypeslib.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/ctypeslib/__pycache__/_ctypeslib.cpython-312.pyc
new file mode 100644
index 0000000..0fb927e
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/ctypeslib/__pycache__/_ctypeslib.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/ctypeslib/_ctypeslib.py b/.venv/lib/python3.12/site-packages/numpy/ctypeslib/_ctypeslib.py
new file mode 100644
index 0000000..9255603
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/ctypeslib/_ctypeslib.py
@@ -0,0 +1,603 @@
+"""
+============================
+``ctypes`` Utility Functions
+============================
+
+See Also
+--------
+load_library : Load a C library.
+ndpointer : Array restype/argtype with verification.
+as_ctypes : Create a ctypes array from an ndarray.
+as_array : Create an ndarray from a ctypes array.
+
+References
+----------
+.. [1] "SciPy Cookbook: ctypes", https://scipy-cookbook.readthedocs.io/items/Ctypes.html
+
+Examples
+--------
+Load the C library:
+
+>>> _lib = np.ctypeslib.load_library('libmystuff', '.')     #doctest: +SKIP
+
+Our result type, an ndarray that must be of type double, be 1-dimensional
+and is C-contiguous in memory:
+
+>>> array_1d_double = np.ctypeslib.ndpointer(
+...                          dtype=np.double,
+...                          ndim=1, flags='CONTIGUOUS')    #doctest: +SKIP
+
+Our C-function typically takes an array and updates its values
+in-place.  For example::
+
+    void foo_func(double* x, int length)
+    {
+        int i;
+        for (i = 0; i < length; i++) {
+            x[i] = i*i;
+        }
+    }
+
+We wrap it using:
+
+>>> _lib.foo_func.restype = None                      #doctest: +SKIP
+>>> _lib.foo_func.argtypes = [array_1d_double, c_int] #doctest: +SKIP
+
+Then, we're ready to call ``foo_func``:
+
+>>> out = np.empty(15, dtype=np.double)
+>>> _lib.foo_func(out, len(out))                #doctest: +SKIP
+
+"""
+__all__ = ['load_library', 'ndpointer', 'c_intp', 'as_ctypes', 'as_array',
+           'as_ctypes_type']
+
+import os
+
+import numpy as np
+import numpy._core.multiarray as mu
+from numpy._utils import set_module
+
+try:
+    import ctypes
+except ImportError:
+    ctypes = None
+
+if ctypes is None:
+    @set_module("numpy.ctypeslib")
+    def _dummy(*args, **kwds):
+        """
+        Dummy object that raises an ImportError if ctypes is not available.
+
+        Raises
+        ------
+        ImportError
+            If ctypes is not available.
+
+        """
+        raise ImportError("ctypes is not available.")
+    load_library = _dummy
+    as_ctypes = _dummy
+    as_ctypes_type = _dummy
+    as_array = _dummy
+    ndpointer = _dummy
+    from numpy import intp as c_intp
+    _ndptr_base = object
+else:
+    import numpy._core._internal as nic
+    c_intp = nic._getintp_ctype()
+    del nic
+    _ndptr_base = ctypes.c_void_p
+
+    # Adapted from Albert Strasheim
+    @set_module("numpy.ctypeslib")
+    def load_library(libname, loader_path):
+        """
+        It is possible to load a library using
+
+        >>> lib = ctypes.cdll[] # doctest: +SKIP
+
+        But there are cross-platform considerations, such as library file extensions,
+        plus the fact Windows will just load the first library it finds with that name.
+        NumPy supplies the load_library function as a convenience.
+
+        .. versionchanged:: 1.20.0
+            Allow libname and loader_path to take any
+            :term:`python:path-like object`.
+
+        Parameters
+        ----------
+        libname : path-like
+            Name of the library, which can have 'lib' as a prefix,
+            but without an extension.
+        loader_path : path-like
+            Where the library can be found.
+
+        Returns
+        -------
+        ctypes.cdll[libpath] : library object
+           A ctypes library object
+
+        Raises
+        ------
+        OSError
+            If there is no library with the expected extension, or the
+            library is defective and cannot be loaded.
+        """
+        # Convert path-like objects into strings
+        libname = os.fsdecode(libname)
+        loader_path = os.fsdecode(loader_path)
+
+        ext = os.path.splitext(libname)[1]
+        if not ext:
+            import sys
+            import sysconfig
+            # Try to load library with platform-specific name, otherwise
+            # default to libname.[so|dll|dylib].  Sometimes, these files are
+            # built erroneously on non-linux platforms.
+            base_ext = ".so"
+            if sys.platform.startswith("darwin"):
+                base_ext = ".dylib"
+            elif sys.platform.startswith("win"):
+                base_ext = ".dll"
+            libname_ext = [libname + base_ext]
+            so_ext = sysconfig.get_config_var("EXT_SUFFIX")
+            if not so_ext == base_ext:
+                libname_ext.insert(0, libname + so_ext)
+        else:
+            libname_ext = [libname]
+
+        loader_path = os.path.abspath(loader_path)
+        if not os.path.isdir(loader_path):
+            libdir = os.path.dirname(loader_path)
+        else:
+            libdir = loader_path
+
+        for ln in libname_ext:
+            libpath = os.path.join(libdir, ln)
+            if os.path.exists(libpath):
+                try:
+                    return ctypes.cdll[libpath]
+                except OSError:
+                    # defective lib file
+                    raise
+        # if no successful return in the libname_ext loop:
+        raise OSError("no file with expected extension")
+
+
+def _num_fromflags(flaglist):
+    num = 0
+    for val in flaglist:
+        num += mu._flagdict[val]
+    return num
+
+
+_flagnames = ['C_CONTIGUOUS', 'F_CONTIGUOUS', 'ALIGNED', 'WRITEABLE',
+              'OWNDATA', 'WRITEBACKIFCOPY']
+def _flags_fromnum(num):
+    res = []
+    for key in _flagnames:
+        value = mu._flagdict[key]
+        if (num & value):
+            res.append(key)
+    return res
+
+
+class _ndptr(_ndptr_base):
+    @classmethod
+    def from_param(cls, obj):
+        if not isinstance(obj, np.ndarray):
+            raise TypeError("argument must be an ndarray")
+        if cls._dtype_ is not None \
+               and obj.dtype != cls._dtype_:
+            raise TypeError(f"array must have data type {cls._dtype_}")
+        if cls._ndim_ is not None \
+               and obj.ndim != cls._ndim_:
+            raise TypeError("array must have %d dimension(s)" % cls._ndim_)
+        if cls._shape_ is not None \
+               and obj.shape != cls._shape_:
+            raise TypeError(f"array must have shape {str(cls._shape_)}")
+        if cls._flags_ is not None \
+               and ((obj.flags.num & cls._flags_) != cls._flags_):
+            raise TypeError(f"array must have flags {_flags_fromnum(cls._flags_)}")
+        return obj.ctypes
+
+
+class _concrete_ndptr(_ndptr):
+    """
+    Like _ndptr, but with `_shape_` and `_dtype_` specified.
+
+    Notably, this means the pointer has enough information to reconstruct
+    the array, which is not generally true.
+    """
+    def _check_retval_(self):
+        """
+        This method is called when this class is used as the .restype
+        attribute for a shared-library function, to automatically wrap the
+        pointer into an array.
+        """
+        return self.contents
+
+    @property
+    def contents(self):
+        """
+        Get an ndarray viewing the data pointed to by this pointer.
+
+        This mirrors the `contents` attribute of a normal ctypes pointer
+        """
+        full_dtype = np.dtype((self._dtype_, self._shape_))
+        full_ctype = ctypes.c_char * full_dtype.itemsize
+        buffer = ctypes.cast(self, ctypes.POINTER(full_ctype)).contents
+        return np.frombuffer(buffer, dtype=full_dtype).squeeze(axis=0)
+
+
+# Factory for an array-checking class with from_param defined for
+# use with ctypes argtypes mechanism
+_pointer_type_cache = {}
+
+@set_module("numpy.ctypeslib")
+def ndpointer(dtype=None, ndim=None, shape=None, flags=None):
+    """
+    Array-checking restype/argtypes.
+
+    An ndpointer instance is used to describe an ndarray in restypes
+    and argtypes specifications.  This approach is more flexible than
+    using, for example, ``POINTER(c_double)``, since several restrictions
+    can be specified, which are verified upon calling the ctypes function.
+    These include data type, number of dimensions, shape and flags.  If a
+    given array does not satisfy the specified restrictions,
+    a ``TypeError`` is raised.
+
+    Parameters
+    ----------
+    dtype : data-type, optional
+        Array data-type.
+    ndim : int, optional
+        Number of array dimensions.
+    shape : tuple of ints, optional
+        Array shape.
+    flags : str or tuple of str
+        Array flags; may be one or more of:
+
+        - C_CONTIGUOUS / C / CONTIGUOUS
+        - F_CONTIGUOUS / F / FORTRAN
+        - OWNDATA / O
+        - WRITEABLE / W
+        - ALIGNED / A
+        - WRITEBACKIFCOPY / X
+
+    Returns
+    -------
+    klass : ndpointer type object
+        A type object, which is an ``_ndtpr`` instance containing
+        dtype, ndim, shape and flags information.
+
+    Raises
+    ------
+    TypeError
+        If a given array does not satisfy the specified restrictions.
+
+    Examples
+    --------
+    >>> clib.somefunc.argtypes = [np.ctypeslib.ndpointer(dtype=np.float64,
+    ...                                                  ndim=1,
+    ...                                                  flags='C_CONTIGUOUS')]
+    ... #doctest: +SKIP
+    >>> clib.somefunc(np.array([1, 2, 3], dtype=np.float64))
+    ... #doctest: +SKIP
+
+    """
+
+    # normalize dtype to dtype | None
+    if dtype is not None:
+        dtype = np.dtype(dtype)
+
+    # normalize flags to int | None
+    num = None
+    if flags is not None:
+        if isinstance(flags, str):
+            flags = flags.split(',')
+        elif isinstance(flags, (int, np.integer)):
+            num = flags
+            flags = _flags_fromnum(num)
+        elif isinstance(flags, mu.flagsobj):
+            num = flags.num
+            flags = _flags_fromnum(num)
+        if num is None:
+            try:
+                flags = [x.strip().upper() for x in flags]
+            except Exception as e:
+                raise TypeError("invalid flags specification") from e
+            num = _num_fromflags(flags)
+
+    # normalize shape to tuple | None
+    if shape is not None:
+        try:
+            shape = tuple(shape)
+        except TypeError:
+            # single integer -> 1-tuple
+            shape = (shape,)
+
+    cache_key = (dtype, ndim, shape, num)
+
+    try:
+        return _pointer_type_cache[cache_key]
+    except KeyError:
+        pass
+
+    # produce a name for the new type
+    if dtype is None:
+        name = 'any'
+    elif dtype.names is not None:
+        name = str(id(dtype))
+    else:
+        name = dtype.str
+    if ndim is not None:
+        name += "_%dd" % ndim
+    if shape is not None:
+        name += "_" + "x".join(str(x) for x in shape)
+    if flags is not None:
+        name += "_" + "_".join(flags)
+
+    if dtype is not None and shape is not None:
+        base = _concrete_ndptr
+    else:
+        base = _ndptr
+
+    klass = type(f"ndpointer_{name}", (base,),
+                 {"_dtype_": dtype,
+                  "_shape_": shape,
+                  "_ndim_": ndim,
+                  "_flags_": num})
+    _pointer_type_cache[cache_key] = klass
+    return klass
+
+
+if ctypes is not None:
+    def _ctype_ndarray(element_type, shape):
+        """ Create an ndarray of the given element type and shape """
+        for dim in shape[::-1]:
+            element_type = dim * element_type
+            # prevent the type name include np.ctypeslib
+            element_type.__module__ = None
+        return element_type
+
+    def _get_scalar_type_map():
+        """
+        Return a dictionary mapping native endian scalar dtype to ctypes types
+        """
+        ct = ctypes
+        simple_types = [
+            ct.c_byte, ct.c_short, ct.c_int, ct.c_long, ct.c_longlong,
+            ct.c_ubyte, ct.c_ushort, ct.c_uint, ct.c_ulong, ct.c_ulonglong,
+            ct.c_float, ct.c_double,
+            ct.c_bool,
+        ]
+        return {np.dtype(ctype): ctype for ctype in simple_types}
+
+    _scalar_type_map = _get_scalar_type_map()
+
+    def _ctype_from_dtype_scalar(dtype):
+        # swapping twice ensure that `=` is promoted to <, >, or |
+        dtype_with_endian = dtype.newbyteorder('S').newbyteorder('S')
+        dtype_native = dtype.newbyteorder('=')
+        try:
+            ctype = _scalar_type_map[dtype_native]
+        except KeyError as e:
+            raise NotImplementedError(
+                f"Converting {dtype!r} to a ctypes type"
+            ) from None
+
+        if dtype_with_endian.byteorder == '>':
+            ctype = ctype.__ctype_be__
+        elif dtype_with_endian.byteorder == '<':
+            ctype = ctype.__ctype_le__
+
+        return ctype
+
+    def _ctype_from_dtype_subarray(dtype):
+        element_dtype, shape = dtype.subdtype
+        ctype = _ctype_from_dtype(element_dtype)
+        return _ctype_ndarray(ctype, shape)
+
+    def _ctype_from_dtype_structured(dtype):
+        # extract offsets of each field
+        field_data = []
+        for name in dtype.names:
+            field_dtype, offset = dtype.fields[name][:2]
+            field_data.append((offset, name, _ctype_from_dtype(field_dtype)))
+
+        # ctypes doesn't care about field order
+        field_data = sorted(field_data, key=lambda f: f[0])
+
+        if len(field_data) > 1 and all(offset == 0 for offset, _, _ in field_data):
+            # union, if multiple fields all at address 0
+            size = 0
+            _fields_ = []
+            for offset, name, ctype in field_data:
+                _fields_.append((name, ctype))
+                size = max(size, ctypes.sizeof(ctype))
+
+            # pad to the right size
+            if dtype.itemsize != size:
+                _fields_.append(('', ctypes.c_char * dtype.itemsize))
+
+            # we inserted manual padding, so always `_pack_`
+            return type('union', (ctypes.Union,), {
+                '_fields_': _fields_,
+                '_pack_': 1,
+                '__module__': None,
+            })
+        else:
+            last_offset = 0
+            _fields_ = []
+            for offset, name, ctype in field_data:
+                padding = offset - last_offset
+                if padding < 0:
+                    raise NotImplementedError("Overlapping fields")
+                if padding > 0:
+                    _fields_.append(('', ctypes.c_char * padding))
+
+                _fields_.append((name, ctype))
+                last_offset = offset + ctypes.sizeof(ctype)
+
+            padding = dtype.itemsize - last_offset
+            if padding > 0:
+                _fields_.append(('', ctypes.c_char * padding))
+
+            # we inserted manual padding, so always `_pack_`
+            return type('struct', (ctypes.Structure,), {
+                '_fields_': _fields_,
+                '_pack_': 1,
+                '__module__': None,
+            })
+
+    def _ctype_from_dtype(dtype):
+        if dtype.fields is not None:
+            return _ctype_from_dtype_structured(dtype)
+        elif dtype.subdtype is not None:
+            return _ctype_from_dtype_subarray(dtype)
+        else:
+            return _ctype_from_dtype_scalar(dtype)
+
+    @set_module("numpy.ctypeslib")
+    def as_ctypes_type(dtype):
+        r"""
+        Convert a dtype into a ctypes type.
+
+        Parameters
+        ----------
+        dtype : dtype
+            The dtype to convert
+
+        Returns
+        -------
+        ctype
+            A ctype scalar, union, array, or struct
+
+        Raises
+        ------
+        NotImplementedError
+            If the conversion is not possible
+
+        Notes
+        -----
+        This function does not losslessly round-trip in either direction.
+
+        ``np.dtype(as_ctypes_type(dt))`` will:
+
+        - insert padding fields
+        - reorder fields to be sorted by offset
+        - discard field titles
+
+        ``as_ctypes_type(np.dtype(ctype))`` will:
+
+        - discard the class names of `ctypes.Structure`\ s and
+          `ctypes.Union`\ s
+        - convert single-element `ctypes.Union`\ s into single-element
+          `ctypes.Structure`\ s
+        - insert padding fields
+
+        Examples
+        --------
+        Converting a simple dtype:
+
+        >>> dt = np.dtype('int8')
+        >>> ctype = np.ctypeslib.as_ctypes_type(dt)
+        >>> ctype
+        
+
+        Converting a structured dtype:
+
+        >>> dt = np.dtype([('x', 'i4'), ('y', 'f4')])
+        >>> ctype = np.ctypeslib.as_ctypes_type(dt)
+        >>> ctype
+        
+
+        """
+        return _ctype_from_dtype(np.dtype(dtype))
+
+    @set_module("numpy.ctypeslib")
+    def as_array(obj, shape=None):
+        """
+        Create a numpy array from a ctypes array or POINTER.
+
+        The numpy array shares the memory with the ctypes object.
+
+        The shape parameter must be given if converting from a ctypes POINTER.
+        The shape parameter is ignored if converting from a ctypes array
+
+        Examples
+        --------
+        Converting a ctypes integer array:
+
+        >>> import ctypes
+        >>> ctypes_array = (ctypes.c_int * 5)(0, 1, 2, 3, 4)
+        >>> np_array = np.ctypeslib.as_array(ctypes_array)
+        >>> np_array
+        array([0, 1, 2, 3, 4], dtype=int32)
+
+        Converting a ctypes POINTER:
+
+        >>> import ctypes
+        >>> buffer = (ctypes.c_int * 5)(0, 1, 2, 3, 4)
+        >>> pointer = ctypes.cast(buffer, ctypes.POINTER(ctypes.c_int))
+        >>> np_array = np.ctypeslib.as_array(pointer, (5,))
+        >>> np_array
+        array([0, 1, 2, 3, 4], dtype=int32)
+
+        """
+        if isinstance(obj, ctypes._Pointer):
+            # convert pointers to an array of the desired shape
+            if shape is None:
+                raise TypeError(
+                    'as_array() requires a shape argument when called on a '
+                    'pointer')
+            p_arr_type = ctypes.POINTER(_ctype_ndarray(obj._type_, shape))
+            obj = ctypes.cast(obj, p_arr_type).contents
+
+        return np.asarray(obj)
+
+    @set_module("numpy.ctypeslib")
+    def as_ctypes(obj):
+        """
+        Create and return a ctypes object from a numpy array.  Actually
+        anything that exposes the __array_interface__ is accepted.
+
+        Examples
+        --------
+        Create ctypes object from inferred int ``np.array``:
+
+        >>> inferred_int_array = np.array([1, 2, 3])
+        >>> c_int_array = np.ctypeslib.as_ctypes(inferred_int_array)
+        >>> type(c_int_array)
+        
+        >>> c_int_array[:]
+        [1, 2, 3]
+
+        Create ctypes object from explicit 8 bit unsigned int ``np.array`` :
+
+        >>> exp_int_array = np.array([1, 2, 3], dtype=np.uint8)
+        >>> c_int_array = np.ctypeslib.as_ctypes(exp_int_array)
+        >>> type(c_int_array)
+        
+        >>> c_int_array[:]
+        [1, 2, 3]
+
+        """
+        ai = obj.__array_interface__
+        if ai["strides"]:
+            raise TypeError("strided arrays not supported")
+        if ai["version"] != 3:
+            raise TypeError("only __array_interface__ version 3 supported")
+        addr, readonly = ai["data"]
+        if readonly:
+            raise TypeError("readonly arrays unsupported")
+
+        # can't use `_dtype((ai["typestr"], ai["shape"]))` here, as it overflows
+        # dtype.itemsize (gh-14214)
+        ctype_scalar = as_ctypes_type(ai["typestr"])
+        result_type = _ctype_ndarray(ctype_scalar, ai["shape"])
+        result = result_type.from_address(addr)
+        result.__keep = obj
+        return result
diff --git a/.venv/lib/python3.12/site-packages/numpy/ctypeslib/_ctypeslib.pyi b/.venv/lib/python3.12/site-packages/numpy/ctypeslib/_ctypeslib.pyi
new file mode 100644
index 0000000..e26d605
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/ctypeslib/_ctypeslib.pyi
@@ -0,0 +1,245 @@
+# NOTE: Numpy's mypy plugin is used for importing the correct
+# platform-specific `ctypes._SimpleCData[int]` sub-type
+import ctypes
+from collections.abc import Iterable, Sequence
+from ctypes import c_int64 as _c_intp
+from typing import (
+    Any,
+    ClassVar,
+    Generic,
+    TypeAlias,
+    TypeVar,
+    overload,
+)
+from typing import Literal as L
+
+from _typeshed import StrOrBytesPath
+
+import numpy as np
+from numpy import (
+    byte,
+    double,
+    dtype,
+    generic,
+    intc,
+    long,
+    longdouble,
+    longlong,
+    ndarray,
+    short,
+    single,
+    ubyte,
+    uintc,
+    ulong,
+    ulonglong,
+    ushort,
+    void,
+)
+from numpy._core._internal import _ctypes
+from numpy._core.multiarray import flagsobj
+from numpy._typing import (
+    DTypeLike,
+    NDArray,
+    _AnyShape,
+    _ArrayLike,
+    _BoolCodes,
+    _ByteCodes,
+    _DoubleCodes,
+    _DTypeLike,
+    _IntCCodes,
+    _LongCodes,
+    _LongDoubleCodes,
+    _LongLongCodes,
+    _ShapeLike,
+    _ShortCodes,
+    _SingleCodes,
+    _UByteCodes,
+    _UIntCCodes,
+    _ULongCodes,
+    _ULongLongCodes,
+    _UShortCodes,
+    _VoidDTypeLike,
+)
+
+__all__ = ["load_library", "ndpointer", "c_intp", "as_ctypes", "as_array", "as_ctypes_type"]
+
+# TODO: Add a proper `_Shape` bound once we've got variadic typevars
+_DTypeT = TypeVar("_DTypeT", bound=dtype)
+_DTypeOptionalT = TypeVar("_DTypeOptionalT", bound=dtype | None)
+_ScalarT = TypeVar("_ScalarT", bound=generic)
+
+_FlagsKind: TypeAlias = L[
+    'C_CONTIGUOUS', 'CONTIGUOUS', 'C',
+    'F_CONTIGUOUS', 'FORTRAN', 'F',
+    'ALIGNED', 'A',
+    'WRITEABLE', 'W',
+    'OWNDATA', 'O',
+    'WRITEBACKIFCOPY', 'X',
+]
+
+# TODO: Add a shape typevar once we have variadic typevars (PEP 646)
+class _ndptr(ctypes.c_void_p, Generic[_DTypeOptionalT]):
+    # In practice these 4 classvars are defined in the dynamic class
+    # returned by `ndpointer`
+    _dtype_: ClassVar[_DTypeOptionalT]
+    _shape_: ClassVar[None]
+    _ndim_: ClassVar[int | None]
+    _flags_: ClassVar[list[_FlagsKind] | None]
+
+    @overload
+    @classmethod
+    def from_param(cls: type[_ndptr[None]], obj: NDArray[Any]) -> _ctypes[Any]: ...
+    @overload
+    @classmethod
+    def from_param(cls: type[_ndptr[_DTypeT]], obj: ndarray[Any, _DTypeT]) -> _ctypes[Any]: ...
+
+class _concrete_ndptr(_ndptr[_DTypeT]):
+    _dtype_: ClassVar[_DTypeT]
+    _shape_: ClassVar[_AnyShape]
+    @property
+    def contents(self) -> ndarray[_AnyShape, _DTypeT]: ...
+
+def load_library(libname: StrOrBytesPath, loader_path: StrOrBytesPath) -> ctypes.CDLL: ...
+
+c_intp = _c_intp
+
+@overload
+def ndpointer(
+    dtype: None = ...,
+    ndim: int = ...,
+    shape: _ShapeLike | None = ...,
+    flags: _FlagsKind | Iterable[_FlagsKind] | int | flagsobj | None = ...,
+) -> type[_ndptr[None]]: ...
+@overload
+def ndpointer(
+    dtype: _DTypeLike[_ScalarT],
+    ndim: int = ...,
+    *,
+    shape: _ShapeLike,
+    flags: _FlagsKind | Iterable[_FlagsKind] | int | flagsobj | None = ...,
+) -> type[_concrete_ndptr[dtype[_ScalarT]]]: ...
+@overload
+def ndpointer(
+    dtype: DTypeLike,
+    ndim: int = ...,
+    *,
+    shape: _ShapeLike,
+    flags: _FlagsKind | Iterable[_FlagsKind] | int | flagsobj | None = ...,
+) -> type[_concrete_ndptr[dtype]]: ...
+@overload
+def ndpointer(
+    dtype: _DTypeLike[_ScalarT],
+    ndim: int = ...,
+    shape: None = ...,
+    flags: _FlagsKind | Iterable[_FlagsKind] | int | flagsobj | None = ...,
+) -> type[_ndptr[dtype[_ScalarT]]]: ...
+@overload
+def ndpointer(
+    dtype: DTypeLike,
+    ndim: int = ...,
+    shape: None = ...,
+    flags: _FlagsKind | Iterable[_FlagsKind] | int | flagsobj | None = ...,
+) -> type[_ndptr[dtype]]: ...
+
+@overload
+def as_ctypes_type(dtype: _BoolCodes | _DTypeLike[np.bool] | type[ctypes.c_bool]) -> type[ctypes.c_bool]: ...
+@overload
+def as_ctypes_type(dtype: _ByteCodes | _DTypeLike[byte] | type[ctypes.c_byte]) -> type[ctypes.c_byte]: ...
+@overload
+def as_ctypes_type(dtype: _ShortCodes | _DTypeLike[short] | type[ctypes.c_short]) -> type[ctypes.c_short]: ...
+@overload
+def as_ctypes_type(dtype: _IntCCodes | _DTypeLike[intc] | type[ctypes.c_int]) -> type[ctypes.c_int]: ...
+@overload
+def as_ctypes_type(dtype: _LongCodes | _DTypeLike[long] | type[ctypes.c_long]) -> type[ctypes.c_long]: ...
+@overload
+def as_ctypes_type(dtype: type[int]) -> type[c_intp]: ...
+@overload
+def as_ctypes_type(dtype: _LongLongCodes | _DTypeLike[longlong] | type[ctypes.c_longlong]) -> type[ctypes.c_longlong]: ...
+@overload
+def as_ctypes_type(dtype: _UByteCodes | _DTypeLike[ubyte] | type[ctypes.c_ubyte]) -> type[ctypes.c_ubyte]: ...
+@overload
+def as_ctypes_type(dtype: _UShortCodes | _DTypeLike[ushort] | type[ctypes.c_ushort]) -> type[ctypes.c_ushort]: ...
+@overload
+def as_ctypes_type(dtype: _UIntCCodes | _DTypeLike[uintc] | type[ctypes.c_uint]) -> type[ctypes.c_uint]: ...
+@overload
+def as_ctypes_type(dtype: _ULongCodes | _DTypeLike[ulong] | type[ctypes.c_ulong]) -> type[ctypes.c_ulong]: ...
+@overload
+def as_ctypes_type(dtype: _ULongLongCodes | _DTypeLike[ulonglong] | type[ctypes.c_ulonglong]) -> type[ctypes.c_ulonglong]: ...
+@overload
+def as_ctypes_type(dtype: _SingleCodes | _DTypeLike[single] | type[ctypes.c_float]) -> type[ctypes.c_float]: ...
+@overload
+def as_ctypes_type(dtype: _DoubleCodes | _DTypeLike[double] | type[float | ctypes.c_double]) -> type[ctypes.c_double]: ...
+@overload
+def as_ctypes_type(dtype: _LongDoubleCodes | _DTypeLike[longdouble] | type[ctypes.c_longdouble]) -> type[ctypes.c_longdouble]: ...
+@overload
+def as_ctypes_type(dtype: _VoidDTypeLike) -> type[Any]: ...  # `ctypes.Union` or `ctypes.Structure`
+@overload
+def as_ctypes_type(dtype: str) -> type[Any]: ...
+
+@overload
+def as_array(obj: ctypes._PointerLike, shape: Sequence[int]) -> NDArray[Any]: ...
+@overload
+def as_array(obj: _ArrayLike[_ScalarT], shape: _ShapeLike | None = ...) -> NDArray[_ScalarT]: ...
+@overload
+def as_array(obj: object, shape: _ShapeLike | None = ...) -> NDArray[Any]: ...
+
+@overload
+def as_ctypes(obj: np.bool) -> ctypes.c_bool: ...
+@overload
+def as_ctypes(obj: byte) -> ctypes.c_byte: ...
+@overload
+def as_ctypes(obj: short) -> ctypes.c_short: ...
+@overload
+def as_ctypes(obj: intc) -> ctypes.c_int: ...
+@overload
+def as_ctypes(obj: long) -> ctypes.c_long: ...
+@overload
+def as_ctypes(obj: longlong) -> ctypes.c_longlong: ...
+@overload
+def as_ctypes(obj: ubyte) -> ctypes.c_ubyte: ...
+@overload
+def as_ctypes(obj: ushort) -> ctypes.c_ushort: ...
+@overload
+def as_ctypes(obj: uintc) -> ctypes.c_uint: ...
+@overload
+def as_ctypes(obj: ulong) -> ctypes.c_ulong: ...
+@overload
+def as_ctypes(obj: ulonglong) -> ctypes.c_ulonglong: ...
+@overload
+def as_ctypes(obj: single) -> ctypes.c_float: ...
+@overload
+def as_ctypes(obj: double) -> ctypes.c_double: ...
+@overload
+def as_ctypes(obj: longdouble) -> ctypes.c_longdouble: ...
+@overload
+def as_ctypes(obj: void) -> Any: ...  # `ctypes.Union` or `ctypes.Structure`
+@overload
+def as_ctypes(obj: NDArray[np.bool]) -> ctypes.Array[ctypes.c_bool]: ...
+@overload
+def as_ctypes(obj: NDArray[byte]) -> ctypes.Array[ctypes.c_byte]: ...
+@overload
+def as_ctypes(obj: NDArray[short]) -> ctypes.Array[ctypes.c_short]: ...
+@overload
+def as_ctypes(obj: NDArray[intc]) -> ctypes.Array[ctypes.c_int]: ...
+@overload
+def as_ctypes(obj: NDArray[long]) -> ctypes.Array[ctypes.c_long]: ...
+@overload
+def as_ctypes(obj: NDArray[longlong]) -> ctypes.Array[ctypes.c_longlong]: ...
+@overload
+def as_ctypes(obj: NDArray[ubyte]) -> ctypes.Array[ctypes.c_ubyte]: ...
+@overload
+def as_ctypes(obj: NDArray[ushort]) -> ctypes.Array[ctypes.c_ushort]: ...
+@overload
+def as_ctypes(obj: NDArray[uintc]) -> ctypes.Array[ctypes.c_uint]: ...
+@overload
+def as_ctypes(obj: NDArray[ulong]) -> ctypes.Array[ctypes.c_ulong]: ...
+@overload
+def as_ctypes(obj: NDArray[ulonglong]) -> ctypes.Array[ctypes.c_ulonglong]: ...
+@overload
+def as_ctypes(obj: NDArray[single]) -> ctypes.Array[ctypes.c_float]: ...
+@overload
+def as_ctypes(obj: NDArray[double]) -> ctypes.Array[ctypes.c_double]: ...
+@overload
+def as_ctypes(obj: NDArray[longdouble]) -> ctypes.Array[ctypes.c_longdouble]: ...
+@overload
+def as_ctypes(obj: NDArray[void]) -> ctypes.Array[Any]: ...  # `ctypes.Union` or `ctypes.Structure`
diff --git a/.venv/lib/python3.12/site-packages/numpy/doc/__pycache__/ufuncs.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/doc/__pycache__/ufuncs.cpython-312.pyc
new file mode 100644
index 0000000..54b9714
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/doc/__pycache__/ufuncs.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/doc/ufuncs.py b/.venv/lib/python3.12/site-packages/numpy/doc/ufuncs.py
new file mode 100644
index 0000000..7324168
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/doc/ufuncs.py
@@ -0,0 +1,138 @@
+"""
+===================
+Universal Functions
+===================
+
+Ufuncs are, generally speaking, mathematical functions or operations that are
+applied element-by-element to the contents of an array. That is, the result
+in each output array element only depends on the value in the corresponding
+input array (or arrays) and on no other array elements. NumPy comes with a
+large suite of ufuncs, and scipy extends that suite substantially. The simplest
+example is the addition operator: ::
+
+ >>> np.array([0,2,3,4]) + np.array([1,1,-1,2])
+ array([1, 3, 2, 6])
+
+The ufunc module lists all the available ufuncs in numpy. Documentation on
+the specific ufuncs may be found in those modules. This documentation is
+intended to address the more general aspects of ufuncs common to most of
+them. All of the ufuncs that make use of Python operators (e.g., +, -, etc.)
+have equivalent functions defined (e.g. add() for +)
+
+Type coercion
+=============
+
+What happens when a binary operator (e.g., +,-,\\*,/, etc) deals with arrays of
+two different types? What is the type of the result? Typically, the result is
+the higher of the two types. For example: ::
+
+ float32 + float64 -> float64
+ int8 + int32 -> int32
+ int16 + float32 -> float32
+ float32 + complex64 -> complex64
+
+There are some less obvious cases generally involving mixes of types
+(e.g. uints, ints and floats) where equal bit sizes for each are not
+capable of saving all the information in a different type of equivalent
+bit size. Some examples are int32 vs float32 or uint32 vs int32.
+Generally, the result is the higher type of larger size than both
+(if available). So: ::
+
+ int32 + float32 -> float64
+ uint32 + int32 -> int64
+
+Finally, the type coercion behavior when expressions involve Python
+scalars is different than that seen for arrays. Since Python has a
+limited number of types, combining a Python int with a dtype=np.int8
+array does not coerce to the higher type but instead, the type of the
+array prevails. So the rules for Python scalars combined with arrays is
+that the result will be that of the array equivalent the Python scalar
+if the Python scalar is of a higher 'kind' than the array (e.g., float
+vs. int), otherwise the resultant type will be that of the array.
+For example: ::
+
+  Python int + int8 -> int8
+  Python float + int8 -> float64
+
+ufunc methods
+=============
+
+Binary ufuncs support 4 methods.
+
+**.reduce(arr)** applies the binary operator to elements of the array in
+  sequence. For example: ::
+
+ >>> np.add.reduce(np.arange(10))  # adds all elements of array
+ 45
+
+For multidimensional arrays, the first dimension is reduced by default: ::
+
+ >>> np.add.reduce(np.arange(10).reshape(2,5))
+     array([ 5,  7,  9, 11, 13])
+
+The axis keyword can be used to specify different axes to reduce: ::
+
+ >>> np.add.reduce(np.arange(10).reshape(2,5),axis=1)
+ array([10, 35])
+
+**.accumulate(arr)** applies the binary operator and generates an
+equivalently shaped array that includes the accumulated amount for each
+element of the array. A couple examples: ::
+
+ >>> np.add.accumulate(np.arange(10))
+ array([ 0,  1,  3,  6, 10, 15, 21, 28, 36, 45])
+ >>> np.multiply.accumulate(np.arange(1,9))
+ array([    1,     2,     6,    24,   120,   720,  5040, 40320])
+
+The behavior for multidimensional arrays is the same as for .reduce(),
+as is the use of the axis keyword).
+
+**.reduceat(arr,indices)** allows one to apply reduce to selected parts
+  of an array. It is a difficult method to understand. See the documentation
+  at:
+
+**.outer(arr1,arr2)** generates an outer operation on the two arrays arr1 and
+  arr2. It will work on multidimensional arrays (the shape of the result is
+  the concatenation of the two input shapes.: ::
+
+ >>> np.multiply.outer(np.arange(3),np.arange(4))
+ array([[0, 0, 0, 0],
+        [0, 1, 2, 3],
+        [0, 2, 4, 6]])
+
+Output arguments
+================
+
+All ufuncs accept an optional output array. The array must be of the expected
+output shape. Beware that if the type of the output array is of a different
+(and lower) type than the output result, the results may be silently truncated
+or otherwise corrupted in the downcast to the lower type. This usage is useful
+when one wants to avoid creating large temporary arrays and instead allows one
+to reuse the same array memory repeatedly (at the expense of not being able to
+use more convenient operator notation in expressions). Note that when the
+output argument is used, the ufunc still returns a reference to the result.
+
+ >>> x = np.arange(2)
+ >>> np.add(np.arange(2, dtype=float), np.arange(2, dtype=float), x,
+ ...        casting='unsafe')
+ array([0, 2])
+ >>> x
+ array([0, 2])
+
+and & or as ufuncs
+==================
+
+Invariably people try to use the python 'and' and 'or' as logical operators
+(and quite understandably). But these operators do not behave as normal
+operators since Python treats these quite differently. They cannot be
+overloaded with array equivalents. Thus using 'and' or 'or' with an array
+results in an error. There are two alternatives:
+
+ 1) use the ufunc functions logical_and() and logical_or().
+ 2) use the bitwise operators & and \\|. The drawback of these is that if
+    the arguments to these operators are not boolean arrays, the result is
+    likely incorrect. On the other hand, most usages of logical_and and
+    logical_or are with boolean arrays. As long as one is careful, this is
+    a convenient way to apply these operators.
+
+"""
diff --git a/.venv/lib/python3.12/site-packages/numpy/dtypes.py b/.venv/lib/python3.12/site-packages/numpy/dtypes.py
new file mode 100644
index 0000000..550a29e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/dtypes.py
@@ -0,0 +1,41 @@
+"""
+This module is home to specific dtypes related functionality and their classes.
+For more general information about dtypes, also see `numpy.dtype` and
+:ref:`arrays.dtypes`.
+
+Similar to the builtin ``types`` module, this submodule defines types (classes)
+that are not widely used directly.
+
+.. versionadded:: NumPy 1.25
+
+    The dtypes module is new in NumPy 1.25.  Previously DType classes were
+    only accessible indirectly.
+
+
+DType classes
+-------------
+
+The following are the classes of the corresponding NumPy dtype instances and
+NumPy scalar types.  The classes can be used in ``isinstance`` checks and can
+also be instantiated or used directly.  Direct use of these classes is not
+typical, since their scalar counterparts (e.g. ``np.float64``) or strings
+like ``"float64"`` can be used.
+"""
+
+# See doc/source/reference/routines.dtypes.rst for module-level docs
+
+__all__ = []
+
+
+def _add_dtype_helper(DType, alias):
+    # Function to add DTypes a bit more conveniently without channeling them
+    # through `numpy._core._multiarray_umath` namespace or similar.
+    from numpy import dtypes
+
+    setattr(dtypes, DType.__name__, DType)
+    __all__.append(DType.__name__)
+
+    if alias:
+        alias = alias.removeprefix("numpy.dtypes.")
+        setattr(dtypes, alias, DType)
+        __all__.append(alias)
diff --git a/.venv/lib/python3.12/site-packages/numpy/dtypes.pyi b/.venv/lib/python3.12/site-packages/numpy/dtypes.pyi
new file mode 100644
index 0000000..007dc64
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/dtypes.pyi
@@ -0,0 +1,631 @@
+# ruff: noqa: ANN401
+from typing import (
+    Any,
+    Generic,
+    LiteralString,
+    Never,
+    NoReturn,
+    Self,
+    TypeAlias,
+    final,
+    overload,
+    type_check_only,
+)
+from typing import Literal as L
+
+from typing_extensions import TypeVar
+
+import numpy as np
+
+__all__ = [  # noqa: RUF022
+    'BoolDType',
+    'Int8DType',
+    'ByteDType',
+    'UInt8DType',
+    'UByteDType',
+    'Int16DType',
+    'ShortDType',
+    'UInt16DType',
+    'UShortDType',
+    'Int32DType',
+    'IntDType',
+    'UInt32DType',
+    'UIntDType',
+    'Int64DType',
+    'LongDType',
+    'UInt64DType',
+    'ULongDType',
+    'LongLongDType',
+    'ULongLongDType',
+    'Float16DType',
+    'Float32DType',
+    'Float64DType',
+    'LongDoubleDType',
+    'Complex64DType',
+    'Complex128DType',
+    'CLongDoubleDType',
+    'ObjectDType',
+    'BytesDType',
+    'StrDType',
+    'VoidDType',
+    'DateTime64DType',
+    'TimeDelta64DType',
+    'StringDType',
+]
+
+# Helper base classes (typing-only)
+
+_ScalarT_co = TypeVar("_ScalarT_co", bound=np.generic, covariant=True)
+
+@type_check_only
+class _SimpleDType(np.dtype[_ScalarT_co], Generic[_ScalarT_co]):  # type: ignore[misc]  # pyright: ignore[reportGeneralTypeIssues]
+    names: None  # pyright: ignore[reportIncompatibleVariableOverride]
+    def __new__(cls, /) -> Self: ...
+    def __getitem__(self, key: Any, /) -> NoReturn: ...
+    @property
+    def base(self) -> np.dtype[_ScalarT_co]: ...
+    @property
+    def fields(self) -> None: ...
+    @property
+    def isalignedstruct(self) -> L[False]: ...
+    @property
+    def isnative(self) -> L[True]: ...
+    @property
+    def ndim(self) -> L[0]: ...
+    @property
+    def shape(self) -> tuple[()]: ...
+    @property
+    def subdtype(self) -> None: ...
+
+@type_check_only
+class _LiteralDType(_SimpleDType[_ScalarT_co], Generic[_ScalarT_co]):  # type: ignore[misc]
+    @property
+    def flags(self) -> L[0]: ...
+    @property
+    def hasobject(self) -> L[False]: ...
+
+# Helper mixins (typing-only):
+
+_KindT_co = TypeVar("_KindT_co", bound=LiteralString, covariant=True)
+_CharT_co = TypeVar("_CharT_co", bound=LiteralString, covariant=True)
+_NumT_co = TypeVar("_NumT_co", bound=int, covariant=True)
+
+@type_check_only
+class _TypeCodes(Generic[_KindT_co, _CharT_co, _NumT_co]):
+    @final
+    @property
+    def kind(self) -> _KindT_co: ...
+    @final
+    @property
+    def char(self) -> _CharT_co: ...
+    @final
+    @property
+    def num(self) -> _NumT_co: ...
+
+@type_check_only
+class _NoOrder:
+    @final
+    @property
+    def byteorder(self) -> L["|"]: ...
+
+@type_check_only
+class _NativeOrder:
+    @final
+    @property
+    def byteorder(self) -> L["="]: ...
+
+_DataSize_co = TypeVar("_DataSize_co", bound=int, covariant=True)
+_ItemSize_co = TypeVar("_ItemSize_co", bound=int, covariant=True, default=int)
+
+@type_check_only
+class _NBit(Generic[_DataSize_co, _ItemSize_co]):
+    @final
+    @property
+    def alignment(self) -> _DataSize_co: ...
+    @final
+    @property
+    def itemsize(self) -> _ItemSize_co: ...
+
+@type_check_only
+class _8Bit(_NoOrder, _NBit[L[1], L[1]]): ...
+
+# Boolean:
+
+@final
+class BoolDType(  # type: ignore[misc]
+    _TypeCodes[L["b"], L["?"], L[0]],
+    _8Bit,
+    _LiteralDType[np.bool],
+):
+    @property
+    def name(self) -> L["bool"]: ...
+    @property
+    def str(self) -> L["|b1"]: ...
+
+# Sized integers:
+
+@final
+class Int8DType(  # type: ignore[misc]
+    _TypeCodes[L["i"], L["b"], L[1]],
+    _8Bit,
+    _LiteralDType[np.int8],
+):
+    @property
+    def name(self) -> L["int8"]: ...
+    @property
+    def str(self) -> L["|i1"]: ...
+
+@final
+class UInt8DType(  # type: ignore[misc]
+    _TypeCodes[L["u"], L["B"], L[2]],
+    _8Bit,
+    _LiteralDType[np.uint8],
+):
+    @property
+    def name(self) -> L["uint8"]: ...
+    @property
+    def str(self) -> L["|u1"]: ...
+
+@final
+class Int16DType(  # type: ignore[misc]
+    _TypeCodes[L["i"], L["h"], L[3]],
+    _NativeOrder,
+    _NBit[L[2], L[2]],
+    _LiteralDType[np.int16],
+):
+    @property
+    def name(self) -> L["int16"]: ...
+    @property
+    def str(self) -> L["i2"]: ...
+
+@final
+class UInt16DType(  # type: ignore[misc]
+    _TypeCodes[L["u"], L["H"], L[4]],
+    _NativeOrder,
+    _NBit[L[2], L[2]],
+    _LiteralDType[np.uint16],
+):
+    @property
+    def name(self) -> L["uint16"]: ...
+    @property
+    def str(self) -> L["u2"]: ...
+
+@final
+class Int32DType(  # type: ignore[misc]
+    _TypeCodes[L["i"], L["i", "l"], L[5, 7]],
+    _NativeOrder,
+    _NBit[L[4], L[4]],
+    _LiteralDType[np.int32],
+):
+    @property
+    def name(self) -> L["int32"]: ...
+    @property
+    def str(self) -> L["i4"]: ...
+
+@final
+class UInt32DType(  # type: ignore[misc]
+    _TypeCodes[L["u"], L["I", "L"], L[6, 8]],
+    _NativeOrder,
+    _NBit[L[4], L[4]],
+    _LiteralDType[np.uint32],
+):
+    @property
+    def name(self) -> L["uint32"]: ...
+    @property
+    def str(self) -> L["u4"]: ...
+
+@final
+class Int64DType(  # type: ignore[misc]
+    _TypeCodes[L["i"], L["l", "q"], L[7, 9]],
+    _NativeOrder,
+    _NBit[L[8], L[8]],
+    _LiteralDType[np.int64],
+):
+    @property
+    def name(self) -> L["int64"]: ...
+    @property
+    def str(self) -> L["i8"]: ...
+
+@final
+class UInt64DType(  # type: ignore[misc]
+    _TypeCodes[L["u"], L["L", "Q"], L[8, 10]],
+    _NativeOrder,
+    _NBit[L[8], L[8]],
+    _LiteralDType[np.uint64],
+):
+    @property
+    def name(self) -> L["uint64"]: ...
+    @property
+    def str(self) -> L["u8"]: ...
+
+# Standard C-named version/alias:
+# NOTE: Don't make these `Final`: it will break stubtest
+ByteDType = Int8DType
+UByteDType = UInt8DType
+ShortDType = Int16DType
+UShortDType = UInt16DType
+
+@final
+class IntDType(  # type: ignore[misc]
+    _TypeCodes[L["i"], L["i"], L[5]],
+    _NativeOrder,
+    _NBit[L[4], L[4]],
+    _LiteralDType[np.intc],
+):
+    @property
+    def name(self) -> L["int32"]: ...
+    @property
+    def str(self) -> L["i4"]: ...
+
+@final
+class UIntDType(  # type: ignore[misc]
+    _TypeCodes[L["u"], L["I"], L[6]],
+    _NativeOrder,
+    _NBit[L[4], L[4]],
+    _LiteralDType[np.uintc],
+):
+    @property
+    def name(self) -> L["uint32"]: ...
+    @property
+    def str(self) -> L["u4"]: ...
+
+@final
+class LongDType(  # type: ignore[misc]
+    _TypeCodes[L["i"], L["l"], L[7]],
+    _NativeOrder,
+    _NBit[L[4, 8], L[4, 8]],
+    _LiteralDType[np.long],
+):
+    @property
+    def name(self) -> L["int32", "int64"]: ...
+    @property
+    def str(self) -> L["i4", "i8"]: ...
+
+@final
+class ULongDType(  # type: ignore[misc]
+    _TypeCodes[L["u"], L["L"], L[8]],
+    _NativeOrder,
+    _NBit[L[4, 8], L[4, 8]],
+    _LiteralDType[np.ulong],
+):
+    @property
+    def name(self) -> L["uint32", "uint64"]: ...
+    @property
+    def str(self) -> L["u4", "u8"]: ...
+
+@final
+class LongLongDType(  # type: ignore[misc]
+    _TypeCodes[L["i"], L["q"], L[9]],
+    _NativeOrder,
+    _NBit[L[8], L[8]],
+    _LiteralDType[np.longlong],
+):
+    @property
+    def name(self) -> L["int64"]: ...
+    @property
+    def str(self) -> L["i8"]: ...
+
+@final
+class ULongLongDType(  # type: ignore[misc]
+    _TypeCodes[L["u"], L["Q"], L[10]],
+    _NativeOrder,
+    _NBit[L[8], L[8]],
+    _LiteralDType[np.ulonglong],
+):
+    @property
+    def name(self) -> L["uint64"]: ...
+    @property
+    def str(self) -> L["u8"]: ...
+
+# Floats:
+
+@final
+class Float16DType(  # type: ignore[misc]
+    _TypeCodes[L["f"], L["e"], L[23]],
+    _NativeOrder,
+    _NBit[L[2], L[2]],
+    _LiteralDType[np.float16],
+):
+    @property
+    def name(self) -> L["float16"]: ...
+    @property
+    def str(self) -> L["f2"]: ...
+
+@final
+class Float32DType(  # type: ignore[misc]
+    _TypeCodes[L["f"], L["f"], L[11]],
+    _NativeOrder,
+    _NBit[L[4], L[4]],
+    _LiteralDType[np.float32],
+):
+    @property
+    def name(self) -> L["float32"]: ...
+    @property
+    def str(self) -> L["f4"]: ...
+
+@final
+class Float64DType(  # type: ignore[misc]
+    _TypeCodes[L["f"], L["d"], L[12]],
+    _NativeOrder,
+    _NBit[L[8], L[8]],
+    _LiteralDType[np.float64],
+):
+    @property
+    def name(self) -> L["float64"]: ...
+    @property
+    def str(self) -> L["f8"]: ...
+
+@final
+class LongDoubleDType(  # type: ignore[misc]
+    _TypeCodes[L["f"], L["g"], L[13]],
+    _NativeOrder,
+    _NBit[L[8, 12, 16], L[8, 12, 16]],
+    _LiteralDType[np.longdouble],
+):
+    @property
+    def name(self) -> L["float64", "float96", "float128"]: ...
+    @property
+    def str(self) -> L["f8", "f12", "f16"]: ...
+
+# Complex:
+
+@final
+class Complex64DType(  # type: ignore[misc]
+    _TypeCodes[L["c"], L["F"], L[14]],
+    _NativeOrder,
+    _NBit[L[4], L[8]],
+    _LiteralDType[np.complex64],
+):
+    @property
+    def name(self) -> L["complex64"]: ...
+    @property
+    def str(self) -> L["c8"]: ...
+
+@final
+class Complex128DType(  # type: ignore[misc]
+    _TypeCodes[L["c"], L["D"], L[15]],
+    _NativeOrder,
+    _NBit[L[8], L[16]],
+    _LiteralDType[np.complex128],
+):
+    @property
+    def name(self) -> L["complex128"]: ...
+    @property
+    def str(self) -> L["c16"]: ...
+
+@final
+class CLongDoubleDType(  # type: ignore[misc]
+    _TypeCodes[L["c"], L["G"], L[16]],
+    _NativeOrder,
+    _NBit[L[8, 12, 16], L[16, 24, 32]],
+    _LiteralDType[np.clongdouble],
+):
+    @property
+    def name(self) -> L["complex128", "complex192", "complex256"]: ...
+    @property
+    def str(self) -> L["c16", "c24", "c32"]: ...
+
+# Python objects:
+
+@final
+class ObjectDType(  # type: ignore[misc]
+    _TypeCodes[L["O"], L["O"], L[17]],
+    _NoOrder,
+    _NBit[L[8], L[8]],
+    _SimpleDType[np.object_],
+):
+    @property
+    def hasobject(self) -> L[True]: ...
+    @property
+    def name(self) -> L["object"]: ...
+    @property
+    def str(self) -> L["|O"]: ...
+
+# Flexible:
+
+@final
+class BytesDType(  # type: ignore[misc]
+    _TypeCodes[L["S"], L["S"], L[18]],
+    _NoOrder,
+    _NBit[L[1], _ItemSize_co],
+    _SimpleDType[np.bytes_],
+    Generic[_ItemSize_co],
+):
+    def __new__(cls, size: _ItemSize_co, /) -> BytesDType[_ItemSize_co]: ...
+    @property
+    def hasobject(self) -> L[False]: ...
+    @property
+    def name(self) -> LiteralString: ...
+    @property
+    def str(self) -> LiteralString: ...
+
+@final
+class StrDType(  # type: ignore[misc]
+    _TypeCodes[L["U"], L["U"], L[19]],
+    _NativeOrder,
+    _NBit[L[4], _ItemSize_co],
+    _SimpleDType[np.str_],
+    Generic[_ItemSize_co],
+):
+    def __new__(cls, size: _ItemSize_co, /) -> StrDType[_ItemSize_co]: ...
+    @property
+    def hasobject(self) -> L[False]: ...
+    @property
+    def name(self) -> LiteralString: ...
+    @property
+    def str(self) -> LiteralString: ...
+
+@final
+class VoidDType(  # type: ignore[misc]
+    _TypeCodes[L["V"], L["V"], L[20]],
+    _NoOrder,
+    _NBit[L[1], _ItemSize_co],
+    np.dtype[np.void],  # pyright: ignore[reportGeneralTypeIssues]
+    Generic[_ItemSize_co],
+):
+    # NOTE: `VoidDType(...)` raises a `TypeError` at the moment
+    def __new__(cls, length: _ItemSize_co, /) -> NoReturn: ...
+    @property
+    def base(self) -> Self: ...
+    @property
+    def isalignedstruct(self) -> L[False]: ...
+    @property
+    def isnative(self) -> L[True]: ...
+    @property
+    def ndim(self) -> L[0]: ...
+    @property
+    def shape(self) -> tuple[()]: ...
+    @property
+    def subdtype(self) -> None: ...
+    @property
+    def name(self) -> LiteralString: ...
+    @property
+    def str(self) -> LiteralString: ...
+
+# Other:
+
+_DateUnit: TypeAlias = L["Y", "M", "W", "D"]
+_TimeUnit: TypeAlias = L["h", "m", "s", "ms", "us", "ns", "ps", "fs", "as"]
+_DateTimeUnit: TypeAlias = _DateUnit | _TimeUnit
+
+@final
+class DateTime64DType(  # type: ignore[misc]
+    _TypeCodes[L["M"], L["M"], L[21]],
+    _NativeOrder,
+    _NBit[L[8], L[8]],
+    _LiteralDType[np.datetime64],
+):
+    # NOTE: `DateTime64DType(...)` raises a `TypeError` at the moment
+    # TODO: Once implemented, don't forget the`unit: L["μs"]` overload.
+    def __new__(cls, unit: _DateTimeUnit, /) -> NoReturn: ...
+    @property
+    def name(self) -> L[
+        "datetime64",
+        "datetime64[Y]",
+        "datetime64[M]",
+        "datetime64[W]",
+        "datetime64[D]",
+        "datetime64[h]",
+        "datetime64[m]",
+        "datetime64[s]",
+        "datetime64[ms]",
+        "datetime64[us]",
+        "datetime64[ns]",
+        "datetime64[ps]",
+        "datetime64[fs]",
+        "datetime64[as]",
+    ]: ...
+    @property
+    def str(self) -> L[
+        "M8",
+        "M8[Y]",
+        "M8[M]",
+        "M8[W]",
+        "M8[D]",
+        "M8[h]",
+        "M8[m]",
+        "M8[s]",
+        "M8[ms]",
+        "M8[us]",
+        "M8[ns]",
+        "M8[ps]",
+        "M8[fs]",
+        "M8[as]",
+    ]: ...
+
+@final
+class TimeDelta64DType(  # type: ignore[misc]
+    _TypeCodes[L["m"], L["m"], L[22]],
+    _NativeOrder,
+    _NBit[L[8], L[8]],
+    _LiteralDType[np.timedelta64],
+):
+    # NOTE: `TimeDelta64DType(...)` raises a `TypeError` at the moment
+    # TODO: Once implemented, don't forget to overload on `unit: L["μs"]`.
+    def __new__(cls, unit: _DateTimeUnit, /) -> NoReturn: ...
+    @property
+    def name(self) -> L[
+        "timedelta64",
+        "timedelta64[Y]",
+        "timedelta64[M]",
+        "timedelta64[W]",
+        "timedelta64[D]",
+        "timedelta64[h]",
+        "timedelta64[m]",
+        "timedelta64[s]",
+        "timedelta64[ms]",
+        "timedelta64[us]",
+        "timedelta64[ns]",
+        "timedelta64[ps]",
+        "timedelta64[fs]",
+        "timedelta64[as]",
+    ]: ...
+    @property
+    def str(self) -> L[
+        "m8",
+        "m8[Y]",
+        "m8[M]",
+        "m8[W]",
+        "m8[D]",
+        "m8[h]",
+        "m8[m]",
+        "m8[s]",
+        "m8[ms]",
+        "m8[us]",
+        "m8[ns]",
+        "m8[ps]",
+        "m8[fs]",
+        "m8[as]",
+    ]: ...
+
+_NaObjectT_co = TypeVar("_NaObjectT_co", default=Never, covariant=True)
+
+@final
+class StringDType(  # type: ignore[misc]
+    _TypeCodes[L["T"], L["T"], L[2056]],
+    _NativeOrder,
+    _NBit[L[8], L[16]],
+    # TODO(jorenham): change once we have a string scalar type:
+    # https://github.com/numpy/numpy/issues/28165
+    np.dtype[str],  # type: ignore[type-var]  # pyright: ignore[reportGeneralTypeIssues, reportInvalidTypeArguments]
+    Generic[_NaObjectT_co],
+):
+    @property
+    def na_object(self) -> _NaObjectT_co: ...
+    @property
+    def coerce(self) -> L[True]: ...
+
+    #
+    @overload
+    def __new__(cls, /, *, coerce: bool = True) -> Self: ...
+    @overload
+    def __new__(cls, /, *, na_object: _NaObjectT_co, coerce: bool = True) -> Self: ...
+
+    #
+    def __getitem__(self, key: Never, /) -> NoReturn: ...  # type: ignore[override]  # pyright: ignore[reportIncompatibleMethodOverride]
+    @property
+    def fields(self) -> None: ...
+    @property
+    def base(self) -> Self: ...
+    @property
+    def ndim(self) -> L[0]: ...
+    @property
+    def shape(self) -> tuple[()]: ...
+
+    #
+    @property
+    def name(self) -> L["StringDType64", "StringDType128"]: ...
+    @property
+    def subdtype(self) -> None: ...
+    @property
+    def type(self) -> type[str]: ...
+    @property
+    def str(self) -> L["|T8", "|T16"]: ...
+
+    #
+    @property
+    def hasobject(self) -> L[True]: ...
+    @property
+    def isalignedstruct(self) -> L[False]: ...
+    @property
+    def isnative(self) -> L[True]: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/exceptions.py b/.venv/lib/python3.12/site-packages/numpy/exceptions.py
new file mode 100644
index 0000000..0e8688a
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/exceptions.py
@@ -0,0 +1,247 @@
+"""
+Exceptions and Warnings
+=======================
+
+General exceptions used by NumPy.  Note that some exceptions may be module
+specific, such as linear algebra errors.
+
+.. versionadded:: NumPy 1.25
+
+    The exceptions module is new in NumPy 1.25.  Older exceptions remain
+    available through the main NumPy namespace for compatibility.
+
+.. currentmodule:: numpy.exceptions
+
+Warnings
+--------
+.. autosummary::
+   :toctree: generated/
+
+   ComplexWarning             Given when converting complex to real.
+   VisibleDeprecationWarning  Same as a DeprecationWarning, but more visible.
+   RankWarning                Issued when the design matrix is rank deficient.
+
+Exceptions
+----------
+.. autosummary::
+   :toctree: generated/
+
+    AxisError          Given when an axis was invalid.
+    DTypePromotionError   Given when no common dtype could be found.
+    TooHardError       Error specific to `numpy.shares_memory`.
+
+"""
+
+
+__all__ = [
+    "ComplexWarning", "VisibleDeprecationWarning", "ModuleDeprecationWarning",
+    "TooHardError", "AxisError", "DTypePromotionError"]
+
+
+# Disallow reloading this module so as to preserve the identities of the
+# classes defined here.
+if '_is_loaded' in globals():
+    raise RuntimeError('Reloading numpy._globals is not allowed')
+_is_loaded = True
+
+
+class ComplexWarning(RuntimeWarning):
+    """
+    The warning raised when casting a complex dtype to a real dtype.
+
+    As implemented, casting a complex number to a real discards its imaginary
+    part, but this behavior may not be what the user actually wants.
+
+    """
+    pass
+
+
+class ModuleDeprecationWarning(DeprecationWarning):
+    """Module deprecation warning.
+
+    .. warning::
+
+        This warning should not be used, since nose testing is not relevant
+        anymore.
+
+    The nose tester turns ordinary Deprecation warnings into test failures.
+    That makes it hard to deprecate whole modules, because they get
+    imported by default. So this is a special Deprecation warning that the
+    nose tester will let pass without making tests fail.
+
+    """
+    pass
+
+
+class VisibleDeprecationWarning(UserWarning):
+    """Visible deprecation warning.
+
+    By default, python will not show deprecation warnings, so this class
+    can be used when a very visible warning is helpful, for example because
+    the usage is most likely a user bug.
+
+    """
+    pass
+
+
+class RankWarning(RuntimeWarning):
+    """Matrix rank warning.
+
+    Issued by polynomial functions when the design matrix is rank deficient.
+
+    """
+    pass
+
+
+# Exception used in shares_memory()
+class TooHardError(RuntimeError):
+    """``max_work`` was exceeded.
+
+    This is raised whenever the maximum number of candidate solutions
+    to consider specified by the ``max_work`` parameter is exceeded.
+    Assigning a finite number to ``max_work`` may have caused the operation
+    to fail.
+
+    """
+    pass
+
+
+class AxisError(ValueError, IndexError):
+    """Axis supplied was invalid.
+
+    This is raised whenever an ``axis`` parameter is specified that is larger
+    than the number of array dimensions.
+    For compatibility with code written against older numpy versions, which
+    raised a mixture of :exc:`ValueError` and :exc:`IndexError` for this
+    situation, this exception subclasses both to ensure that
+    ``except ValueError`` and ``except IndexError`` statements continue
+    to catch ``AxisError``.
+
+    Parameters
+    ----------
+    axis : int or str
+        The out of bounds axis or a custom exception message.
+        If an axis is provided, then `ndim` should be specified as well.
+    ndim : int, optional
+        The number of array dimensions.
+    msg_prefix : str, optional
+        A prefix for the exception message.
+
+    Attributes
+    ----------
+    axis : int, optional
+        The out of bounds axis or ``None`` if a custom exception
+        message was provided. This should be the axis as passed by
+        the user, before any normalization to resolve negative indices.
+
+        .. versionadded:: 1.22
+    ndim : int, optional
+        The number of array dimensions or ``None`` if a custom exception
+        message was provided.
+
+        .. versionadded:: 1.22
+
+
+    Examples
+    --------
+    >>> import numpy as np
+    >>> array_1d = np.arange(10)
+    >>> np.cumsum(array_1d, axis=1)
+    Traceback (most recent call last):
+      ...
+    numpy.exceptions.AxisError: axis 1 is out of bounds for array of dimension 1
+
+    Negative axes are preserved:
+
+    >>> np.cumsum(array_1d, axis=-2)
+    Traceback (most recent call last):
+      ...
+    numpy.exceptions.AxisError: axis -2 is out of bounds for array of dimension 1
+
+    The class constructor generally takes the axis and arrays'
+    dimensionality as arguments:
+
+    >>> print(np.exceptions.AxisError(2, 1, msg_prefix='error'))
+    error: axis 2 is out of bounds for array of dimension 1
+
+    Alternatively, a custom exception message can be passed:
+
+    >>> print(np.exceptions.AxisError('Custom error message'))
+    Custom error message
+
+    """
+
+    __slots__ = ("_msg", "axis", "ndim")
+
+    def __init__(self, axis, ndim=None, msg_prefix=None):
+        if ndim is msg_prefix is None:
+            # single-argument form: directly set the error message
+            self._msg = axis
+            self.axis = None
+            self.ndim = None
+        else:
+            self._msg = msg_prefix
+            self.axis = axis
+            self.ndim = ndim
+
+    def __str__(self):
+        axis = self.axis
+        ndim = self.ndim
+
+        if axis is ndim is None:
+            return self._msg
+        else:
+            msg = f"axis {axis} is out of bounds for array of dimension {ndim}"
+            if self._msg is not None:
+                msg = f"{self._msg}: {msg}"
+            return msg
+
+
+class DTypePromotionError(TypeError):
+    """Multiple DTypes could not be converted to a common one.
+
+    This exception derives from ``TypeError`` and is raised whenever dtypes
+    cannot be converted to a single common one.  This can be because they
+    are of a different category/class or incompatible instances of the same
+    one (see Examples).
+
+    Notes
+    -----
+    Many functions will use promotion to find the correct result and
+    implementation.  For these functions the error will typically be chained
+    with a more specific error indicating that no implementation was found
+    for the input dtypes.
+
+    Typically promotion should be considered "invalid" between the dtypes of
+    two arrays when `arr1 == arr2` can safely return all ``False`` because the
+    dtypes are fundamentally different.
+
+    Examples
+    --------
+    Datetimes and complex numbers are incompatible classes and cannot be
+    promoted:
+
+    >>> import numpy as np
+    >>> np.result_type(np.dtype("M8[s]"), np.complex128)  # doctest: +IGNORE_EXCEPTION_DETAIL
+    Traceback (most recent call last):
+     ...
+    DTypePromotionError: The DType  could not
+    be promoted by . This means that no common
+    DType exists for the given inputs. For example they cannot be stored in a
+    single array unless the dtype is `object`. The full list of DTypes is:
+    (, )
+
+    For example for structured dtypes, the structure can mismatch and the
+    same ``DTypePromotionError`` is given when two structured dtypes with
+    a mismatch in their number of fields is given:
+
+    >>> dtype1 = np.dtype([("field1", np.float64), ("field2", np.int64)])
+    >>> dtype2 = np.dtype([("field1", np.float64)])
+    >>> np.promote_types(dtype1, dtype2)  # doctest: +IGNORE_EXCEPTION_DETAIL
+    Traceback (most recent call last):
+     ...
+    DTypePromotionError: field names `('field1', 'field2')` and `('field1',)`
+    mismatch.
+
+    """  # noqa: E501
+    pass
diff --git a/.venv/lib/python3.12/site-packages/numpy/exceptions.pyi b/.venv/lib/python3.12/site-packages/numpy/exceptions.pyi
new file mode 100644
index 0000000..9ed5092
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/exceptions.pyi
@@ -0,0 +1,25 @@
+from typing import overload
+
+__all__ = [
+    "ComplexWarning",
+    "VisibleDeprecationWarning",
+    "ModuleDeprecationWarning",
+    "TooHardError",
+    "AxisError",
+    "DTypePromotionError",
+]
+
+class ComplexWarning(RuntimeWarning): ...
+class ModuleDeprecationWarning(DeprecationWarning): ...
+class VisibleDeprecationWarning(UserWarning): ...
+class RankWarning(RuntimeWarning): ...
+class TooHardError(RuntimeError): ...
+class DTypePromotionError(TypeError): ...
+
+class AxisError(ValueError, IndexError):
+    axis: int | None
+    ndim: int | None
+    @overload
+    def __init__(self, axis: str, ndim: None = ..., msg_prefix: None = ...) -> None: ...
+    @overload
+    def __init__(self, axis: int, ndim: int, msg_prefix: str | None = ...) -> None: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/__init__.py b/.venv/lib/python3.12/site-packages/numpy/f2py/__init__.py
new file mode 100644
index 0000000..e34dd99
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/f2py/__init__.py
@@ -0,0 +1,86 @@
+"""Fortran to Python Interface Generator.
+
+Copyright 1999 -- 2011 Pearu Peterson all rights reserved.
+Copyright 2011 -- present NumPy Developers.
+Permission to use, modify, and distribute this software is given under the terms
+of the NumPy License.
+
+NO WARRANTY IS EXPRESSED OR IMPLIED.  USE AT YOUR OWN RISK.
+"""
+__all__ = ['run_main', 'get_include']
+
+import os
+import subprocess
+import sys
+import warnings
+
+from numpy.exceptions import VisibleDeprecationWarning
+
+from . import diagnose, f2py2e
+
+run_main = f2py2e.run_main
+main = f2py2e.main
+
+
+def get_include():
+    """
+    Return the directory that contains the ``fortranobject.c`` and ``.h`` files.
+
+    .. note::
+
+        This function is not needed when building an extension with
+        `numpy.distutils` directly from ``.f`` and/or ``.pyf`` files
+        in one go.
+
+    Python extension modules built with f2py-generated code need to use
+    ``fortranobject.c`` as a source file, and include the ``fortranobject.h``
+    header. This function can be used to obtain the directory containing
+    both of these files.
+
+    Returns
+    -------
+    include_path : str
+        Absolute path to the directory containing ``fortranobject.c`` and
+        ``fortranobject.h``.
+
+    Notes
+    -----
+    .. versionadded:: 1.21.1
+
+    Unless the build system you are using has specific support for f2py,
+    building a Python extension using a ``.pyf`` signature file is a two-step
+    process. For a module ``mymod``:
+
+    * Step 1: run ``python -m numpy.f2py mymod.pyf --quiet``. This
+      generates ``mymodmodule.c`` and (if needed)
+      ``mymod-f2pywrappers.f`` files next to ``mymod.pyf``.
+    * Step 2: build your Python extension module. This requires the
+      following source files:
+
+      * ``mymodmodule.c``
+      * ``mymod-f2pywrappers.f`` (if it was generated in Step 1)
+      * ``fortranobject.c``
+
+    See Also
+    --------
+    numpy.get_include : function that returns the numpy include directory
+
+    """
+    return os.path.join(os.path.dirname(__file__), 'src')
+
+
+def __getattr__(attr):
+
+    # Avoid importing things that aren't needed for building
+    # which might import the main numpy module
+    if attr == "test":
+        from numpy._pytesttester import PytestTester
+        test = PytestTester(__name__)
+        return test
+
+    else:
+        raise AttributeError(f"module {__name__!r} has no attribute {attr!r}")
+
+
+def __dir__():
+    return list(globals().keys() | {"test"})
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/__init__.pyi b/.venv/lib/python3.12/site-packages/numpy/f2py/__init__.pyi
new file mode 100644
index 0000000..d12f47e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/f2py/__init__.pyi
@@ -0,0 +1,6 @@
+from .f2py2e import main as main
+from .f2py2e import run_main
+
+__all__ = ["get_include", "run_main"]
+
+def get_include() -> str: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/__main__.py b/.venv/lib/python3.12/site-packages/numpy/f2py/__main__.py
new file mode 100644
index 0000000..936a753
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/f2py/__main__.py
@@ -0,0 +1,5 @@
+# See:
+# https://web.archive.org/web/20140822061353/http://cens.ioc.ee/projects/f2py2e
+from numpy.f2py.f2py2e import main
+
+main()
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/__init__.cpython-312.pyc
new file mode 100644
index 0000000..ab6f51d
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/__init__.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/__main__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/__main__.cpython-312.pyc
new file mode 100644
index 0000000..2026457
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/__main__.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/__version__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/__version__.cpython-312.pyc
new file mode 100644
index 0000000..048faed
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/__version__.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/_isocbind.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/_isocbind.cpython-312.pyc
new file mode 100644
index 0000000..9f07cc4
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/_isocbind.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/_src_pyf.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/_src_pyf.cpython-312.pyc
new file mode 100644
index 0000000..9a8f2e8
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/_src_pyf.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/auxfuncs.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/auxfuncs.cpython-312.pyc
new file mode 100644
index 0000000..9adc23b
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/auxfuncs.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/capi_maps.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/capi_maps.cpython-312.pyc
new file mode 100644
index 0000000..b6cd36e
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/capi_maps.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/cb_rules.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/cb_rules.cpython-312.pyc
new file mode 100644
index 0000000..b593078
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/cb_rules.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/cfuncs.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/cfuncs.cpython-312.pyc
new file mode 100644
index 0000000..2dc1138
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/cfuncs.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/common_rules.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/common_rules.cpython-312.pyc
new file mode 100644
index 0000000..8807e6a
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/common_rules.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/crackfortran.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/crackfortran.cpython-312.pyc
new file mode 100644
index 0000000..7c0fb64
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/crackfortran.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/diagnose.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/diagnose.cpython-312.pyc
new file mode 100644
index 0000000..e7e280b
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/diagnose.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/f2py2e.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/f2py2e.cpython-312.pyc
new file mode 100644
index 0000000..6e1525a
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/f2py2e.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/f90mod_rules.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/f90mod_rules.cpython-312.pyc
new file mode 100644
index 0000000..932155e
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/f90mod_rules.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/func2subr.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/func2subr.cpython-312.pyc
new file mode 100644
index 0000000..45d0037
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/func2subr.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/rules.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/rules.cpython-312.pyc
new file mode 100644
index 0000000..8af7f08
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/rules.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/symbolic.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/symbolic.cpython-312.pyc
new file mode 100644
index 0000000..eaae474
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/symbolic.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/use_rules.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/use_rules.cpython-312.pyc
new file mode 100644
index 0000000..727e167
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/__pycache__/use_rules.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/__version__.py b/.venv/lib/python3.12/site-packages/numpy/f2py/__version__.py
new file mode 100644
index 0000000..8d12d95
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/f2py/__version__.py
@@ -0,0 +1 @@
+from numpy.version import version  # noqa: F401
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/__version__.pyi b/.venv/lib/python3.12/site-packages/numpy/f2py/__version__.pyi
new file mode 100644
index 0000000..85b4225
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/f2py/__version__.pyi
@@ -0,0 +1 @@
+from numpy.version import version as version
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/__init__.py b/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/__init__.py
new file mode 100644
index 0000000..e91393c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/__init__.py
@@ -0,0 +1,9 @@
+def f2py_build_generator(name):
+    if name == "meson":
+        from ._meson import MesonBackend
+        return MesonBackend
+    elif name == "distutils":
+        from ._distutils import DistutilsBackend
+        return DistutilsBackend
+    else:
+        raise ValueError(f"Unknown backend: {name}")
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/__init__.pyi b/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/__init__.pyi
new file mode 100644
index 0000000..43625c6
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/__init__.pyi
@@ -0,0 +1,5 @@
+from typing import Literal as L
+
+from ._backend import Backend
+
+def f2py_build_generator(name: L["distutils", "meson"]) -> Backend: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/__pycache__/__init__.cpython-312.pyc
new file mode 100644
index 0000000..2133a79
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/__pycache__/__init__.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/__pycache__/_backend.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/__pycache__/_backend.cpython-312.pyc
new file mode 100644
index 0000000..bd84bd4
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/__pycache__/_backend.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/__pycache__/_distutils.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/__pycache__/_distutils.cpython-312.pyc
new file mode 100644
index 0000000..9d9594c
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/__pycache__/_distutils.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/__pycache__/_meson.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/__pycache__/_meson.cpython-312.pyc
new file mode 100644
index 0000000..e1a5d84
Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/__pycache__/_meson.cpython-312.pyc differ
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/_backend.py b/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/_backend.py
new file mode 100644
index 0000000..5dda400
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/_backend.py
@@ -0,0 +1,44 @@
+from abc import ABC, abstractmethod
+
+
+class Backend(ABC):
+    def __init__(
+        self,
+        modulename,
+        sources,
+        extra_objects,
+        build_dir,
+        include_dirs,
+        library_dirs,
+        libraries,
+        define_macros,
+        undef_macros,
+        f2py_flags,
+        sysinfo_flags,
+        fc_flags,
+        flib_flags,
+        setup_flags,
+        remove_build_dir,
+        extra_dat,
+    ):
+        self.modulename = modulename
+        self.sources = sources
+        self.extra_objects = extra_objects
+        self.build_dir = build_dir
+        self.include_dirs = include_dirs
+        self.library_dirs = library_dirs
+        self.libraries = libraries
+        self.define_macros = define_macros
+        self.undef_macros = undef_macros
+        self.f2py_flags = f2py_flags
+        self.sysinfo_flags = sysinfo_flags
+        self.fc_flags = fc_flags
+        self.flib_flags = flib_flags
+        self.setup_flags = setup_flags
+        self.remove_build_dir = remove_build_dir
+        self.extra_dat = extra_dat
+
+    @abstractmethod
+    def compile(self) -> None:
+        """Compile the wrapper."""
+        pass
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/_backend.pyi b/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/_backend.pyi
new file mode 100644
index 0000000..ed24519
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/_backend.pyi
@@ -0,0 +1,46 @@
+import abc
+from pathlib import Path
+from typing import Any, Final
+
+class Backend(abc.ABC):
+    modulename: Final[str]
+    sources: Final[list[str | Path]]
+    extra_objects: Final[list[str]]
+    build_dir: Final[str | Path]
+    include_dirs: Final[list[str | Path]]
+    library_dirs: Final[list[str | Path]]
+    libraries: Final[list[str]]
+    define_macros: Final[list[tuple[str, str | None]]]
+    undef_macros: Final[list[str]]
+    f2py_flags: Final[list[str]]
+    sysinfo_flags: Final[list[str]]
+    fc_flags: Final[list[str]]
+    flib_flags: Final[list[str]]
+    setup_flags: Final[list[str]]
+    remove_build_dir: Final[bool]
+    extra_dat: Final[dict[str, Any]]
+
+    def __init__(
+        self,
+        /,
+        modulename: str,
+        sources: list[str | Path],
+        extra_objects: list[str],
+        build_dir: str | Path,
+        include_dirs: list[str | Path],
+        library_dirs: list[str | Path],
+        libraries: list[str],
+        define_macros: list[tuple[str, str | None]],
+        undef_macros: list[str],
+        f2py_flags: list[str],
+        sysinfo_flags: list[str],
+        fc_flags: list[str],
+        flib_flags: list[str],
+        setup_flags: list[str],
+        remove_build_dir: bool,
+        extra_dat: dict[str, Any],
+    ) -> None: ...
+
+    #
+    @abc.abstractmethod
+    def compile(self) -> None: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/_distutils.py b/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/_distutils.py
new file mode 100644
index 0000000..5c8f109
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/_distutils.py
@@ -0,0 +1,76 @@
+import os
+import shutil
+import sys
+import warnings
+
+from numpy.distutils.core import Extension, setup
+from numpy.distutils.misc_util import dict_append
+from numpy.distutils.system_info import get_info
+from numpy.exceptions import VisibleDeprecationWarning
+
+from ._backend import Backend
+
+
+class DistutilsBackend(Backend):
+    def __init__(sef, *args, **kwargs):
+        warnings.warn(
+            "\ndistutils has been deprecated since NumPy 1.26.x\n"
+            "Use the Meson backend instead, or generate wrappers"
+            " without -c and use a custom build script",
+            VisibleDeprecationWarning,
+            stacklevel=2,
+        )
+        super().__init__(*args, **kwargs)
+
+    def compile(self):
+        num_info = {}
+        if num_info:
+            self.include_dirs.extend(num_info.get("include_dirs", []))
+        ext_args = {
+            "name": self.modulename,
+            "sources": self.sources,
+            "include_dirs": self.include_dirs,
+            "library_dirs": self.library_dirs,
+            "libraries": self.libraries,
+            "define_macros": self.define_macros,
+            "undef_macros": self.undef_macros,
+            "extra_objects": self.extra_objects,
+            "f2py_options": self.f2py_flags,
+        }
+
+        if self.sysinfo_flags:
+            for n in self.sysinfo_flags:
+                i = get_info(n)
+                if not i:
+                    print(
+                        f"No {n!r} resources found"
+                        "in system (try `f2py --help-link`)"
+                    )
+                dict_append(ext_args, **i)
+
+        ext = Extension(**ext_args)
+
+        sys.argv = [sys.argv[0]] + self.setup_flags
+        sys.argv.extend(
+            [
+                "build",
+                "--build-temp",
+                self.build_dir,
+                "--build-base",
+                self.build_dir,
+                "--build-platlib",
+                ".",
+                "--disable-optimization",
+            ]
+        )
+
+        if self.fc_flags:
+            sys.argv.extend(["config_fc"] + self.fc_flags)
+        if self.flib_flags:
+            sys.argv.extend(["build_ext"] + self.flib_flags)
+
+        setup(ext_modules=[ext])
+
+        if self.remove_build_dir and os.path.exists(self.build_dir):
+            print(f"Removing build directory {self.build_dir}")
+            shutil.rmtree(self.build_dir)
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/_distutils.pyi b/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/_distutils.pyi
new file mode 100644
index 0000000..56bbf7e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/_distutils.pyi
@@ -0,0 +1,13 @@
+from typing_extensions import deprecated, override
+
+from ._backend import Backend
+
+class DistutilsBackend(Backend):
+    @deprecated(
+        "distutils has been deprecated since NumPy 1.26.x. Use the Meson backend instead, or generate wrappers without -c and "
+        "use a custom build script"
+    )
+    # NOTE: the `sef` typo matches runtime
+    def __init__(sef, *args: object, **kwargs: object) -> None: ...
+    @override
+    def compile(self) -> None: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/_meson.py b/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/_meson.py
new file mode 100644
index 0000000..cbd9b0e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/_meson.py
@@ -0,0 +1,231 @@
+import errno
+import os
+import re
+import shutil
+import subprocess
+import sys
+from itertools import chain
+from pathlib import Path
+from string import Template
+
+from ._backend import Backend
+
+
+class MesonTemplate:
+    """Template meson build file generation class."""
+
+    def __init__(
+        self,
+        modulename: str,
+        sources: list[Path],
+        deps: list[str],
+        libraries: list[str],
+        library_dirs: list[Path],
+        include_dirs: list[Path],
+        object_files: list[Path],
+        linker_args: list[str],
+        fortran_args: list[str],
+        build_type: str,
+        python_exe: str,
+    ):
+        self.modulename = modulename
+        self.build_template_path = (
+            Path(__file__).parent.absolute() / "meson.build.template"
+        )
+        self.sources = sources
+        self.deps = deps
+        self.libraries = libraries
+        self.library_dirs = library_dirs
+        if include_dirs is not None:
+            self.include_dirs = include_dirs
+        else:
+            self.include_dirs = []
+        self.substitutions = {}
+        self.objects = object_files
+        # Convert args to '' wrapped variant for meson
+        self.fortran_args = [
+            f"'{x}'" if not (x.startswith("'") and x.endswith("'")) else x
+            for x in fortran_args
+        ]
+        self.pipeline = [
+            self.initialize_template,
+            self.sources_substitution,
+            self.deps_substitution,
+            self.include_substitution,
+            self.libraries_substitution,
+            self.fortran_args_substitution,
+        ]
+        self.build_type = build_type
+        self.python_exe = python_exe
+        self.indent = " " * 21
+
+    def meson_build_template(self) -> str:
+        if not self.build_template_path.is_file():
+            raise FileNotFoundError(
+                errno.ENOENT,
+                "Meson build template"
+                f" {self.build_template_path.absolute()}"
+                " does not exist.",
+            )
+        return self.build_template_path.read_text()
+
+    def initialize_template(self) -> None:
+        self.substitutions["modulename"] = self.modulename
+        self.substitutions["buildtype"] = self.build_type
+        self.substitutions["python"] = self.python_exe
+
+    def sources_substitution(self) -> None:
+        self.substitutions["source_list"] = ",\n".join(
+            [f"{self.indent}'''{source}'''," for source in self.sources]
+        )
+
+    def deps_substitution(self) -> None:
+        self.substitutions["dep_list"] = f",\n{self.indent}".join(
+            [f"{self.indent}dependency('{dep}')," for dep in self.deps]
+        )
+
+    def libraries_substitution(self) -> None:
+        self.substitutions["lib_dir_declarations"] = "\n".join(
+            [
+                f"lib_dir_{i} = declare_dependency(link_args : ['''-L{lib_dir}'''])"
+                for i, lib_dir in enumerate(self.library_dirs)
+            ]
+        )
+
+        self.substitutions["lib_declarations"] = "\n".join(
+            [
+                f"{lib.replace('.', '_')} = declare_dependency(link_args : ['-l{lib}'])"
+                for lib in self.libraries
+            ]
+        )
+
+        self.substitutions["lib_list"] = f"\n{self.indent}".join(
+            [f"{self.indent}{lib.replace('.', '_')}," for lib in self.libraries]
+        )
+        self.substitutions["lib_dir_list"] = f"\n{self.indent}".join(
+            [f"{self.indent}lib_dir_{i}," for i in range(len(self.library_dirs))]
+        )
+
+    def include_substitution(self) -> None:
+        self.substitutions["inc_list"] = f",\n{self.indent}".join(
+            [f"{self.indent}'''{inc}'''," for inc in self.include_dirs]
+        )
+
+    def fortran_args_substitution(self) -> None:
+        if self.fortran_args:
+            self.substitutions["fortran_args"] = (
+                f"{self.indent}fortran_args: [{', '.join(list(self.fortran_args))}],"
+            )
+        else:
+            self.substitutions["fortran_args"] = ""
+
+    def generate_meson_build(self):
+        for node in self.pipeline:
+            node()
+        template = Template(self.meson_build_template())
+        meson_build = template.substitute(self.substitutions)
+        meson_build = meson_build.replace(",,", ",")
+        return meson_build
+
+
+class MesonBackend(Backend):
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+        self.dependencies = self.extra_dat.get("dependencies", [])
+        self.meson_build_dir = "bbdir"
+        self.build_type = (
+            "debug" if any("debug" in flag for flag in self.fc_flags) else "release"
+        )
+        self.fc_flags = _get_flags(self.fc_flags)
+
+    def _move_exec_to_root(self, build_dir: Path):
+        walk_dir = Path(build_dir) / self.meson_build_dir
+        path_objects = chain(
+            walk_dir.glob(f"{self.modulename}*.so"),
+            walk_dir.glob(f"{self.modulename}*.pyd"),
+            walk_dir.glob(f"{self.modulename}*.dll"),
+        )
+        # Same behavior as distutils
+        # https://github.com/numpy/numpy/issues/24874#issuecomment-1835632293
+        for path_object in path_objects:
+            dest_path = Path.cwd() / path_object.name
+            if dest_path.exists():
+                dest_path.unlink()
+            shutil.copy2(path_object, dest_path)
+            os.remove(path_object)
+
+    def write_meson_build(self, build_dir: Path) -> None:
+        """Writes the meson build file at specified location"""
+        meson_template = MesonTemplate(
+            self.modulename,
+            self.sources,
+            self.dependencies,
+            self.libraries,
+            self.library_dirs,
+            self.include_dirs,
+            self.extra_objects,
+            self.flib_flags,
+            self.fc_flags,
+            self.build_type,
+            sys.executable,
+        )
+        src = meson_template.generate_meson_build()
+        Path(build_dir).mkdir(parents=True, exist_ok=True)
+        meson_build_file = Path(build_dir) / "meson.build"
+        meson_build_file.write_text(src)
+        return meson_build_file
+
+    def _run_subprocess_command(self, command, cwd):
+        subprocess.run(command, cwd=cwd, check=True)
+
+    def run_meson(self, build_dir: Path):
+        setup_command = ["meson", "setup", self.meson_build_dir]
+        self._run_subprocess_command(setup_command, build_dir)
+        compile_command = ["meson", "compile", "-C", self.meson_build_dir]
+        self._run_subprocess_command(compile_command, build_dir)
+
+    def compile(self) -> None:
+        self.sources = _prepare_sources(self.modulename, self.sources, self.build_dir)
+        self.write_meson_build(self.build_dir)
+        self.run_meson(self.build_dir)
+        self._move_exec_to_root(self.build_dir)
+
+
+def _prepare_sources(mname, sources, bdir):
+    extended_sources = sources.copy()
+    Path(bdir).mkdir(parents=True, exist_ok=True)
+    # Copy sources
+    for source in sources:
+        if Path(source).exists() and Path(source).is_file():
+            shutil.copy(source, bdir)
+    generated_sources = [
+        Path(f"{mname}module.c"),
+        Path(f"{mname}-f2pywrappers2.f90"),
+        Path(f"{mname}-f2pywrappers.f"),
+    ]
+    bdir = Path(bdir)
+    for generated_source in generated_sources:
+        if generated_source.exists():
+            shutil.copy(generated_source, bdir / generated_source.name)
+            extended_sources.append(generated_source.name)
+            generated_source.unlink()
+    extended_sources = [
+        Path(source).name
+        for source in extended_sources
+        if not Path(source).suffix == ".pyf"
+    ]
+    return extended_sources
+
+
+def _get_flags(fc_flags):
+    flag_values = []
+    flag_pattern = re.compile(r"--f(77|90)flags=(.*)")
+    for flag in fc_flags:
+        match_result = flag_pattern.match(flag)
+        if match_result:
+            values = match_result.group(2).strip().split()
+            values = [val.strip("'\"") for val in values]
+            flag_values.extend(values)
+    # Hacky way to preserve order of flags
+    unique_flags = list(dict.fromkeys(flag_values))
+    return unique_flags
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/_meson.pyi b/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/_meson.pyi
new file mode 100644
index 0000000..b9f9595
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/_meson.pyi
@@ -0,0 +1,63 @@
+from collections.abc import Callable
+from pathlib import Path
+from typing import Final
+from typing import Literal as L
+
+from typing_extensions import override
+
+from ._backend import Backend
+
+class MesonTemplate:
+    modulename: Final[str]
+    build_template_path: Final[Path]
+    sources: Final[list[str | Path]]
+    deps: Final[list[str]]
+    libraries: Final[list[str]]
+    library_dirs: Final[list[str | Path]]
+    include_dirs: Final[list[str | Path]]
+    substitutions: Final[dict[str, str]]
+    objects: Final[list[str | Path]]
+    fortran_args: Final[list[str]]
+    pipeline: Final[list[Callable[[], None]]]
+    build_type: Final[str]
+    python_exe: Final[str]
+    indent: Final[str]
+
+    def __init__(
+        self,
+        /,
+        modulename: str,
+        sources: list[Path],
+        deps: list[str],
+        libraries: list[str],
+        library_dirs: list[str | Path],
+        include_dirs: list[str | Path],
+        object_files: list[str | Path],
+        linker_args: list[str],
+        fortran_args: list[str],
+        build_type: str,
+        python_exe: str,
+    ) -> None: ...
+
+    #
+    def initialize_template(self) -> None: ...
+    def sources_substitution(self) -> None: ...
+    def deps_substitution(self) -> None: ...
+    def libraries_substitution(self) -> None: ...
+    def include_substitution(self) -> None: ...
+    def fortran_args_substitution(self) -> None: ...
+
+    #
+    def meson_build_template(self) -> str: ...
+    def generate_meson_build(self) -> str: ...
+
+class MesonBackend(Backend):
+    dependencies: list[str]
+    meson_build_dir: L["bdir"]
+    build_type: L["debug", "release"]
+
+    def __init__(self, /, *args: object, **kwargs: object) -> None: ...
+    def write_meson_build(self, /, build_dir: Path) -> None: ...
+    def run_meson(self, /, build_dir: Path) -> None: ...
+    @override
+    def compile(self) -> None: ...
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/meson.build.template b/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/meson.build.template
new file mode 100644
index 0000000..fdcc1b1
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/f2py/_backends/meson.build.template
@@ -0,0 +1,55 @@
+project('${modulename}',
+        ['c', 'fortran'],
+        version : '0.1',
+        meson_version: '>= 1.1.0',
+        default_options : [
+                            'warning_level=1',
+                            'buildtype=${buildtype}'
+                          ])
+fc = meson.get_compiler('fortran')
+
+py = import('python').find_installation('''${python}''', pure: false)
+py_dep = py.dependency()
+
+incdir_numpy = run_command(py,
+  ['-c', 'import os; os.chdir(".."); import numpy; print(numpy.get_include())'],
+  check : true
+).stdout().strip()
+
+incdir_f2py = run_command(py,
+    ['-c', 'import os; os.chdir(".."); import numpy.f2py; print(numpy.f2py.get_include())'],
+    check : true
+).stdout().strip()
+
+inc_np = include_directories(incdir_numpy)
+np_dep = declare_dependency(include_directories: inc_np)
+
+incdir_f2py = incdir_numpy / '..' / '..' / 'f2py' / 'src'
+inc_f2py = include_directories(incdir_f2py)
+fortranobject_c = incdir_f2py / 'fortranobject.c'
+
+inc_np = include_directories(incdir_numpy, incdir_f2py)
+# gh-25000
+quadmath_dep = fc.find_library('quadmath', required: false)
+
+${lib_declarations}
+${lib_dir_declarations}
+
+py.extension_module('${modulename}',
+                     [
+${source_list},
+                     fortranobject_c
+                     ],
+                     include_directories: [
+                     inc_np,
+${inc_list}
+                     ],
+                     dependencies : [
+                     py_dep,
+                     quadmath_dep,
+${dep_list}
+${lib_list}
+${lib_dir_list}
+                     ],
+${fortran_args}
+                     install : true)
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/_isocbind.py b/.venv/lib/python3.12/site-packages/numpy/f2py/_isocbind.py
new file mode 100644
index 0000000..3043c5d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/f2py/_isocbind.py
@@ -0,0 +1,62 @@
+"""
+ISO_C_BINDING maps for f2py2e.
+Only required declarations/macros/functions will be used.
+
+Copyright 1999 -- 2011 Pearu Peterson all rights reserved.
+Copyright 2011 -- present NumPy Developers.
+Permission to use, modify, and distribute this software is given under the
+terms of the NumPy License.
+
+NO WARRANTY IS EXPRESSED OR IMPLIED.  USE AT YOUR OWN RISK.
+"""
+# These map to keys in c2py_map, via forced casting for now, see gh-25229
+iso_c_binding_map = {
+    'integer': {
+        'c_int': 'int',
+        'c_short': 'short',  # 'short' <=> 'int' for now
+        'c_long': 'long',  # 'long' <=> 'int' for now
+        'c_long_long': 'long_long',
+        'c_signed_char': 'signed_char',
+        'c_size_t': 'unsigned',  # size_t <=> 'unsigned' for now
+        'c_int8_t': 'signed_char',  # int8_t <=> 'signed_char' for now
+        'c_int16_t': 'short',  # int16_t <=> 'short' for now
+        'c_int32_t': 'int',  # int32_t <=> 'int' for now
+        'c_int64_t': 'long_long',
+        'c_int_least8_t': 'signed_char',  # int_least8_t <=> 'signed_char' for now
+        'c_int_least16_t': 'short',  # int_least16_t <=> 'short' for now
+        'c_int_least32_t': 'int',  # int_least32_t <=> 'int' for now
+        'c_int_least64_t': 'long_long',
+        'c_int_fast8_t': 'signed_char',  # int_fast8_t <=> 'signed_char' for now
+        'c_int_fast16_t': 'short',  # int_fast16_t <=> 'short' for now
+        'c_int_fast32_t': 'int',  # int_fast32_t <=> 'int' for now
+        'c_int_fast64_t': 'long_long',
+        'c_intmax_t': 'long_long',  # intmax_t <=> 'long_long' for now
+        'c_intptr_t': 'long',  # intptr_t <=> 'long' for now
+        'c_ptrdiff_t': 'long',  # ptrdiff_t <=> 'long' for now
+    },
+    'real': {
+        'c_float': 'float',
+        'c_double': 'double',
+        'c_long_double': 'long_double'
+    },
+    'complex': {
+        'c_float_complex': 'complex_float',
+        'c_double_complex': 'complex_double',
+        'c_long_double_complex': 'complex_long_double'
+    },
+    'logical': {
+        'c_bool': 'unsigned_char'  # _Bool <=> 'unsigned_char' for now
+    },
+    'character': {
+        'c_char': 'char'
+    }
+}
+
+# TODO: See gh-25229
+isoc_c2pycode_map = {}
+iso_c2py_map = {}
+
+isoc_kindmap = {}
+for fortran_type, c_type_dict in iso_c_binding_map.items():
+    for c_type in c_type_dict.keys():
+        isoc_kindmap[c_type] = fortran_type
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/_isocbind.pyi b/.venv/lib/python3.12/site-packages/numpy/f2py/_isocbind.pyi
new file mode 100644
index 0000000..b972f56
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/f2py/_isocbind.pyi
@@ -0,0 +1,13 @@
+from typing import Any, Final
+
+iso_c_binding_map: Final[dict[str, dict[str, str]]] = ...
+
+isoc_c2pycode_map: Final[dict[str, Any]] = {}  # not implemented
+iso_c2py_map: Final[dict[str, Any]] = {}  # not implemented
+
+isoc_kindmap: Final[dict[str, str]] = ...
+
+# namespace pollution
+c_type: str
+c_type_dict: dict[str, str]
+fortran_type: str
diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/_src_pyf.py b/.venv/lib/python3.12/site-packages/numpy/f2py/_src_pyf.py
new file mode 100644
index 0000000..b5c424f
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/f2py/_src_pyf.py
@@ -0,0 +1,247 @@
+import os
+import re
+
+# START OF CODE VENDORED FROM `numpy.distutils.from_template`
+#############################################################
+"""
+process_file(filename)
+
+  takes templated file .xxx.src and produces .xxx file where .xxx
+  is .pyf .f90 or .f using the following template rules:
+
+  '<..>' denotes a template.
+
+  All function and subroutine blocks in a source file with names that
+  contain '<..>' will be replicated according to the rules in '<..>'.
+
+  The number of comma-separated words in '<..>' will determine the number of
+  replicates.
+
+  '<..>' may have two different forms, named and short. For example,
+
+  named:
+    where anywhere inside a block '

' will be replaced with + 'd', 's', 'z', and 'c' for each replicate of the block. + + <_c> is already defined: <_c=s,d,c,z> + <_t> is already defined: <_t=real,double precision,complex,double complex> + + short: + , a short form of the named, useful when no

appears inside + a block. + + In general, '<..>' contains a comma separated list of arbitrary + expressions. If these expression must contain a comma|leftarrow|rightarrow, + then prepend the comma|leftarrow|rightarrow with a backslash. + + If an expression matches '\\' then it will be replaced + by -th expression. + + Note that all '<..>' forms in a block must have the same number of + comma-separated entries. + + Predefined named template rules: + + + + + +""" + +routine_start_re = re.compile(r'(\n|\A)(( (\$|\*))|)\s*(subroutine|function)\b', re.I) +routine_end_re = re.compile(r'\n\s*end\s*(subroutine|function)\b.*(\n|\Z)', re.I) +function_start_re = re.compile(r'\n (\$|\*)\s*function\b', re.I) + +def parse_structure(astr): + """ Return a list of tuples for each function or subroutine each + tuple is the start and end of a subroutine or function to be + expanded. + """ + + spanlist = [] + ind = 0 + while True: + m = routine_start_re.search(astr, ind) + if m is None: + break + start = m.start() + if function_start_re.match(astr, start, m.end()): + while True: + i = astr.rfind('\n', ind, start) + if i == -1: + break + start = i + if astr[i:i + 7] != '\n $': + break + start += 1 + m = routine_end_re.search(astr, m.end()) + ind = end = (m and m.end() - 1) or len(astr) + spanlist.append((start, end)) + return spanlist + + +template_re = re.compile(r"<\s*(\w[\w\d]*)\s*>") +named_re = re.compile(r"<\s*(\w[\w\d]*)\s*=\s*(.*?)\s*>") +list_re = re.compile(r"<\s*((.*?))\s*>") + +def find_repl_patterns(astr): + reps = named_re.findall(astr) + names = {} + for rep in reps: + name = rep[0].strip() or unique_key(names) + repl = rep[1].replace(r'\,', '@comma@') + thelist = conv(repl) + names[name] = thelist + return names + +def find_and_remove_repl_patterns(astr): + names = find_repl_patterns(astr) + astr = re.subn(named_re, '', astr)[0] + return astr, names + + +item_re = re.compile(r"\A\\(?P\d+)\Z") +def conv(astr): + b = astr.split(',') + l = [x.strip() for x in b] + for i in range(len(l)): + m = item_re.match(l[i]) + if m: + j = int(m.group('index')) + l[i] = l[j] + return ','.join(l) + +def unique_key(adict): + """ Obtain a unique key given a dictionary.""" + allkeys = list(adict.keys()) + done = False + n = 1 + while not done: + newkey = f'__l{n}' + if newkey in allkeys: + n += 1 + else: + done = True + return newkey + + +template_name_re = re.compile(r'\A\s*(\w[\w\d]*)\s*\Z') +def expand_sub(substr, names): + substr = substr.replace(r'\>', '@rightarrow@') + substr = substr.replace(r'\<', '@leftarrow@') + lnames = find_repl_patterns(substr) + substr = named_re.sub(r"<\1>", substr) # get rid of definition templates + + def listrepl(mobj): + thelist = conv(mobj.group(1).replace(r'\,', '@comma@')) + if template_name_re.match(thelist): + return f"<{thelist}>" + name = None + for key in lnames.keys(): # see if list is already in dictionary + if lnames[key] == thelist: + name = key + if name is None: # this list is not in the dictionary yet + name = unique_key(lnames) + lnames[name] = thelist + return f"<{name}>" + + # convert all lists to named templates + # new names are constructed as needed + substr = list_re.sub(listrepl, substr) + + numsubs = None + base_rule = None + rules = {} + for r in template_re.findall(substr): + if r not in rules: + thelist = lnames.get(r, names.get(r, None)) + if thelist is None: + raise ValueError(f'No replicates found for <{r}>') + if r not in names and not thelist.startswith('_'): + names[r] = thelist + rule = [i.replace('@comma@', ',') for i in thelist.split(',')] + num = len(rule) + + if numsubs is None: + numsubs = num + rules[r] = rule + base_rule = r + elif num == numsubs: + rules[r] = rule + else: + rules_base_rule = ','.join(rules[base_rule]) + print("Mismatch in number of replacements " + f"(base <{base_rule}={rules_base_rule}>) " + f"for <{r}={thelist}>. Ignoring.") + if not rules: + return substr + + def namerepl(mobj): + name = mobj.group(1) + return rules.get(name, (k + 1) * [name])[k] + + newstr = '' + for k in range(numsubs): + newstr += template_re.sub(namerepl, substr) + '\n\n' + + newstr = newstr.replace('@rightarrow@', '>') + newstr = newstr.replace('@leftarrow@', '<') + return newstr + +def process_str(allstr): + newstr = allstr + writestr = '' + + struct = parse_structure(newstr) + + oldend = 0 + names = {} + names.update(_special_names) + for sub in struct: + cleanedstr, defs = find_and_remove_repl_patterns(newstr[oldend:sub[0]]) + writestr += cleanedstr + names.update(defs) + writestr += expand_sub(newstr[sub[0]:sub[1]], names) + oldend = sub[1] + writestr += newstr[oldend:] + + return writestr + + +include_src_re = re.compile(r"(\n|\A)\s*include\s*['\"](?P[\w\d./\\]+\.src)['\"]", re.I) + +def resolve_includes(source): + d = os.path.dirname(source) + with open(source) as fid: + lines = [] + for line in fid: + m = include_src_re.match(line) + if m: + fn = m.group('name') + if not os.path.isabs(fn): + fn = os.path.join(d, fn) + if os.path.isfile(fn): + lines.extend(resolve_includes(fn)) + else: + lines.append(line) + else: + lines.append(line) + return lines + +def process_file(source): + lines = resolve_includes(source) + return process_str(''.join(lines)) + + +_special_names = find_repl_patterns(''' +<_c=s,d,c,z> +<_t=real,double precision,complex,double complex> + + + + + +''') + +# END OF CODE VENDORED FROM `numpy.distutils.from_template` +########################################################### diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/_src_pyf.pyi b/.venv/lib/python3.12/site-packages/numpy/f2py/_src_pyf.pyi new file mode 100644 index 0000000..f5aecbf --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/_src_pyf.pyi @@ -0,0 +1,29 @@ +import re +from collections.abc import Mapping +from typing import Final + +from _typeshed import StrOrBytesPath + +routine_start_re: Final[re.Pattern[str]] = ... +routine_end_re: Final[re.Pattern[str]] = ... +function_start_re: Final[re.Pattern[str]] = ... +template_re: Final[re.Pattern[str]] = ... +named_re: Final[re.Pattern[str]] = ... +list_re: Final[re.Pattern[str]] = ... +item_re: Final[re.Pattern[str]] = ... +template_name_re: Final[re.Pattern[str]] = ... +include_src_re: Final[re.Pattern[str]] = ... + +def parse_structure(astr: str) -> list[tuple[int, int]]: ... +def find_repl_patterns(astr: str) -> dict[str, str]: ... +def find_and_remove_repl_patterns(astr: str) -> tuple[str, dict[str, str]]: ... +def conv(astr: str) -> str: ... + +# +def unique_key(adict: Mapping[str, object]) -> str: ... +def expand_sub(substr: str, names: dict[str, str]) -> str: ... +def process_str(allstr: str) -> str: ... + +# +def resolve_includes(source: StrOrBytesPath) -> list[str]: ... +def process_file(source: StrOrBytesPath) -> str: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/auxfuncs.py b/.venv/lib/python3.12/site-packages/numpy/f2py/auxfuncs.py new file mode 100644 index 0000000..a5af31d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/auxfuncs.py @@ -0,0 +1,1004 @@ +""" +Auxiliary functions for f2py2e. + +Copyright 1999 -- 2011 Pearu Peterson all rights reserved. +Copyright 2011 -- present NumPy Developers. +Permission to use, modify, and distribute this software is given under the +terms of the NumPy (BSD style) LICENSE. + +NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. +""" +import pprint +import re +import sys +import types +from functools import reduce + +from . import __version__, cfuncs +from .cfuncs import errmess + +__all__ = [ + 'applyrules', 'debugcapi', 'dictappend', 'errmess', 'gentitle', + 'getargs2', 'getcallprotoargument', 'getcallstatement', + 'getfortranname', 'getpymethoddef', 'getrestdoc', 'getusercode', + 'getusercode1', 'getdimension', 'hasbody', 'hascallstatement', 'hascommon', + 'hasexternals', 'hasinitvalue', 'hasnote', 'hasresultnote', + 'isallocatable', 'isarray', 'isarrayofstrings', + 'ischaracter', 'ischaracterarray', 'ischaracter_or_characterarray', + 'iscomplex', 'iscstyledirective', + 'iscomplexarray', 'iscomplexfunction', 'iscomplexfunction_warn', + 'isdouble', 'isdummyroutine', 'isexternal', 'isfunction', + 'isfunction_wrap', 'isint1', 'isint1array', 'isinteger', 'isintent_aux', + 'isintent_c', 'isintent_callback', 'isintent_copy', 'isintent_dict', + 'isintent_hide', 'isintent_in', 'isintent_inout', 'isintent_inplace', + 'isintent_nothide', 'isintent_out', 'isintent_overwrite', 'islogical', + 'islogicalfunction', 'islong_complex', 'islong_double', + 'islong_doublefunction', 'islong_long', 'islong_longfunction', + 'ismodule', 'ismoduleroutine', 'isoptional', 'isprivate', 'isvariable', + 'isrequired', 'isroutine', 'isscalar', 'issigned_long_longarray', + 'isstring', 'isstringarray', 'isstring_or_stringarray', 'isstringfunction', + 'issubroutine', 'get_f2py_modulename', 'issubroutine_wrap', 'isthreadsafe', + 'isunsigned', 'isunsigned_char', 'isunsigned_chararray', + 'isunsigned_long_long', 'isunsigned_long_longarray', 'isunsigned_short', + 'isunsigned_shortarray', 'l_and', 'l_not', 'l_or', 'outmess', 'replace', + 'show', 'stripcomma', 'throw_error', 'isattr_value', 'getuseblocks', + 'process_f2cmap_dict', 'containscommon', 'containsderivedtypes' +] + + +f2py_version = __version__.version + + +show = pprint.pprint + +options = {} +debugoptions = [] +wrapfuncs = 1 + + +def outmess(t): + if options.get('verbose', 1): + sys.stdout.write(t) + + +def debugcapi(var): + return 'capi' in debugoptions + + +def _ischaracter(var): + return 'typespec' in var and var['typespec'] == 'character' and \ + not isexternal(var) + + +def _isstring(var): + return 'typespec' in var and var['typespec'] == 'character' and \ + not isexternal(var) + + +def ischaracter_or_characterarray(var): + return _ischaracter(var) and 'charselector' not in var + + +def ischaracter(var): + return ischaracter_or_characterarray(var) and not isarray(var) + + +def ischaracterarray(var): + return ischaracter_or_characterarray(var) and isarray(var) + + +def isstring_or_stringarray(var): + return _ischaracter(var) and 'charselector' in var + + +def isstring(var): + return isstring_or_stringarray(var) and not isarray(var) + + +def isstringarray(var): + return isstring_or_stringarray(var) and isarray(var) + + +def isarrayofstrings(var): # obsolete? + # leaving out '*' for now so that `character*(*) a(m)` and `character + # a(m,*)` are treated differently. Luckily `character**` is illegal. + return isstringarray(var) and var['dimension'][-1] == '(*)' + + +def isarray(var): + return 'dimension' in var and not isexternal(var) + + +def isscalar(var): + return not (isarray(var) or isstring(var) or isexternal(var)) + + +def iscomplex(var): + return isscalar(var) and \ + var.get('typespec') in ['complex', 'double complex'] + + +def islogical(var): + return isscalar(var) and var.get('typespec') == 'logical' + + +def isinteger(var): + return isscalar(var) and var.get('typespec') == 'integer' + + +def isreal(var): + return isscalar(var) and var.get('typespec') == 'real' + + +def get_kind(var): + try: + return var['kindselector']['*'] + except KeyError: + try: + return var['kindselector']['kind'] + except KeyError: + pass + + +def isint1(var): + return var.get('typespec') == 'integer' \ + and get_kind(var) == '1' and not isarray(var) + + +def islong_long(var): + if not isscalar(var): + return 0 + if var.get('typespec') not in ['integer', 'logical']: + return 0 + return get_kind(var) == '8' + + +def isunsigned_char(var): + if not isscalar(var): + return 0 + if var.get('typespec') != 'integer': + return 0 + return get_kind(var) == '-1' + + +def isunsigned_short(var): + if not isscalar(var): + return 0 + if var.get('typespec') != 'integer': + return 0 + return get_kind(var) == '-2' + + +def isunsigned(var): + if not isscalar(var): + return 0 + if var.get('typespec') != 'integer': + return 0 + return get_kind(var) == '-4' + + +def isunsigned_long_long(var): + if not isscalar(var): + return 0 + if var.get('typespec') != 'integer': + return 0 + return get_kind(var) == '-8' + + +def isdouble(var): + if not isscalar(var): + return 0 + if not var.get('typespec') == 'real': + return 0 + return get_kind(var) == '8' + + +def islong_double(var): + if not isscalar(var): + return 0 + if not var.get('typespec') == 'real': + return 0 + return get_kind(var) == '16' + + +def islong_complex(var): + if not iscomplex(var): + return 0 + return get_kind(var) == '32' + + +def iscomplexarray(var): + return isarray(var) and \ + var.get('typespec') in ['complex', 'double complex'] + + +def isint1array(var): + return isarray(var) and var.get('typespec') == 'integer' \ + and get_kind(var) == '1' + + +def isunsigned_chararray(var): + return isarray(var) and var.get('typespec') in ['integer', 'logical']\ + and get_kind(var) == '-1' + + +def isunsigned_shortarray(var): + return isarray(var) and var.get('typespec') in ['integer', 'logical']\ + and get_kind(var) == '-2' + + +def isunsignedarray(var): + return isarray(var) and var.get('typespec') in ['integer', 'logical']\ + and get_kind(var) == '-4' + + +def isunsigned_long_longarray(var): + return isarray(var) and var.get('typespec') in ['integer', 'logical']\ + and get_kind(var) == '-8' + + +def issigned_chararray(var): + return isarray(var) and var.get('typespec') in ['integer', 'logical']\ + and get_kind(var) == '1' + + +def issigned_shortarray(var): + return isarray(var) and var.get('typespec') in ['integer', 'logical']\ + and get_kind(var) == '2' + + +def issigned_array(var): + return isarray(var) and var.get('typespec') in ['integer', 'logical']\ + and get_kind(var) == '4' + + +def issigned_long_longarray(var): + return isarray(var) and var.get('typespec') in ['integer', 'logical']\ + and get_kind(var) == '8' + + +def isallocatable(var): + return 'attrspec' in var and 'allocatable' in var['attrspec'] + + +def ismutable(var): + return not ('dimension' not in var or isstring(var)) + + +def ismoduleroutine(rout): + return 'modulename' in rout + + +def ismodule(rout): + return 'block' in rout and 'module' == rout['block'] + + +def isfunction(rout): + return 'block' in rout and 'function' == rout['block'] + + +def isfunction_wrap(rout): + if isintent_c(rout): + return 0 + return wrapfuncs and isfunction(rout) and (not isexternal(rout)) + + +def issubroutine(rout): + return 'block' in rout and 'subroutine' == rout['block'] + + +def issubroutine_wrap(rout): + if isintent_c(rout): + return 0 + return issubroutine(rout) and hasassumedshape(rout) + +def isattr_value(var): + return 'value' in var.get('attrspec', []) + + +def hasassumedshape(rout): + if rout.get('hasassumedshape'): + return True + for a in rout['args']: + for d in rout['vars'].get(a, {}).get('dimension', []): + if d == ':': + rout['hasassumedshape'] = True + return True + return False + + +def requiresf90wrapper(rout): + return ismoduleroutine(rout) or hasassumedshape(rout) + + +def isroutine(rout): + return isfunction(rout) or issubroutine(rout) + + +def islogicalfunction(rout): + if not isfunction(rout): + return 0 + if 'result' in rout: + a = rout['result'] + else: + a = rout['name'] + if a in rout['vars']: + return islogical(rout['vars'][a]) + return 0 + + +def islong_longfunction(rout): + if not isfunction(rout): + return 0 + if 'result' in rout: + a = rout['result'] + else: + a = rout['name'] + if a in rout['vars']: + return islong_long(rout['vars'][a]) + return 0 + + +def islong_doublefunction(rout): + if not isfunction(rout): + return 0 + if 'result' in rout: + a = rout['result'] + else: + a = rout['name'] + if a in rout['vars']: + return islong_double(rout['vars'][a]) + return 0 + + +def iscomplexfunction(rout): + if not isfunction(rout): + return 0 + if 'result' in rout: + a = rout['result'] + else: + a = rout['name'] + if a in rout['vars']: + return iscomplex(rout['vars'][a]) + return 0 + + +def iscomplexfunction_warn(rout): + if iscomplexfunction(rout): + outmess("""\ + ************************************************************** + Warning: code with a function returning complex value + may not work correctly with your Fortran compiler. + When using GNU gcc/g77 compilers, codes should work + correctly for callbacks with: + f2py -c -DF2PY_CB_RETURNCOMPLEX + **************************************************************\n""") + return 1 + return 0 + + +def isstringfunction(rout): + if not isfunction(rout): + return 0 + if 'result' in rout: + a = rout['result'] + else: + a = rout['name'] + if a in rout['vars']: + return isstring(rout['vars'][a]) + return 0 + + +def hasexternals(rout): + return 'externals' in rout and rout['externals'] + + +def isthreadsafe(rout): + return 'f2pyenhancements' in rout and \ + 'threadsafe' in rout['f2pyenhancements'] + + +def hasvariables(rout): + return 'vars' in rout and rout['vars'] + + +def isoptional(var): + return ('attrspec' in var and 'optional' in var['attrspec'] and + 'required' not in var['attrspec']) and isintent_nothide(var) + + +def isexternal(var): + return 'attrspec' in var and 'external' in var['attrspec'] + + +def getdimension(var): + dimpattern = r"\((.*?)\)" + if 'attrspec' in var.keys(): + if any('dimension' in s for s in var['attrspec']): + return next(re.findall(dimpattern, v) for v in var['attrspec']) + + +def isrequired(var): + return not isoptional(var) and isintent_nothide(var) + + +def iscstyledirective(f2py_line): + directives = {"callstatement", "callprotoargument", "pymethoddef"} + return any(directive in f2py_line.lower() for directive in directives) + + +def isintent_in(var): + if 'intent' not in var: + return 1 + if 'hide' in var['intent']: + return 0 + if 'inplace' in var['intent']: + return 0 + if 'in' in var['intent']: + return 1 + if 'out' in var['intent']: + return 0 + if 'inout' in var['intent']: + return 0 + if 'outin' in var['intent']: + return 0 + return 1 + + +def isintent_inout(var): + return ('intent' in var and ('inout' in var['intent'] or + 'outin' in var['intent']) and 'in' not in var['intent'] and + 'hide' not in var['intent'] and 'inplace' not in var['intent']) + + +def isintent_out(var): + return 'out' in var.get('intent', []) + + +def isintent_hide(var): + return ('intent' in var and ('hide' in var['intent'] or + ('out' in var['intent'] and 'in' not in var['intent'] and + (not l_or(isintent_inout, isintent_inplace)(var))))) + + +def isintent_nothide(var): + return not isintent_hide(var) + + +def isintent_c(var): + return 'c' in var.get('intent', []) + + +def isintent_cache(var): + return 'cache' in var.get('intent', []) + + +def isintent_copy(var): + return 'copy' in var.get('intent', []) + + +def isintent_overwrite(var): + return 'overwrite' in var.get('intent', []) + + +def isintent_callback(var): + return 'callback' in var.get('intent', []) + + +def isintent_inplace(var): + return 'inplace' in var.get('intent', []) + + +def isintent_aux(var): + return 'aux' in var.get('intent', []) + + +def isintent_aligned4(var): + return 'aligned4' in var.get('intent', []) + + +def isintent_aligned8(var): + return 'aligned8' in var.get('intent', []) + + +def isintent_aligned16(var): + return 'aligned16' in var.get('intent', []) + + +isintent_dict = {isintent_in: 'INTENT_IN', isintent_inout: 'INTENT_INOUT', + isintent_out: 'INTENT_OUT', isintent_hide: 'INTENT_HIDE', + isintent_cache: 'INTENT_CACHE', + isintent_c: 'INTENT_C', isoptional: 'OPTIONAL', + isintent_inplace: 'INTENT_INPLACE', + isintent_aligned4: 'INTENT_ALIGNED4', + isintent_aligned8: 'INTENT_ALIGNED8', + isintent_aligned16: 'INTENT_ALIGNED16', + } + + +def isprivate(var): + return 'attrspec' in var and 'private' in var['attrspec'] + + +def isvariable(var): + # heuristic to find public/private declarations of filtered subroutines + if len(var) == 1 and 'attrspec' in var and \ + var['attrspec'][0] in ('public', 'private'): + is_var = False + else: + is_var = True + return is_var + +def hasinitvalue(var): + return '=' in var + + +def hasinitvalueasstring(var): + if not hasinitvalue(var): + return 0 + return var['='][0] in ['"', "'"] + + +def hasnote(var): + return 'note' in var + + +def hasresultnote(rout): + if not isfunction(rout): + return 0 + if 'result' in rout: + a = rout['result'] + else: + a = rout['name'] + if a in rout['vars']: + return hasnote(rout['vars'][a]) + return 0 + + +def hascommon(rout): + return 'common' in rout + + +def containscommon(rout): + if hascommon(rout): + return 1 + if hasbody(rout): + for b in rout['body']: + if containscommon(b): + return 1 + return 0 + + +def hasderivedtypes(rout): + return ('block' in rout) and rout['block'] == 'type' + + +def containsderivedtypes(rout): + if hasderivedtypes(rout): + return 1 + if hasbody(rout): + for b in rout['body']: + if hasderivedtypes(b): + return 1 + return 0 + + +def containsmodule(block): + if ismodule(block): + return 1 + if not hasbody(block): + return 0 + for b in block['body']: + if containsmodule(b): + return 1 + return 0 + + +def hasbody(rout): + return 'body' in rout + + +def hascallstatement(rout): + return getcallstatement(rout) is not None + + +def istrue(var): + return 1 + + +def isfalse(var): + return 0 + + +class F2PYError(Exception): + pass + + +class throw_error: + + def __init__(self, mess): + self.mess = mess + + def __call__(self, var): + mess = f'\n\n var = {var}\n Message: {self.mess}\n' + raise F2PYError(mess) + + +def l_and(*f): + l1, l2 = 'lambda v', [] + for i in range(len(f)): + l1 = '%s,f%d=f[%d]' % (l1, i, i) + l2.append('f%d(v)' % (i)) + return eval(f"{l1}:{' and '.join(l2)}") + + +def l_or(*f): + l1, l2 = 'lambda v', [] + for i in range(len(f)): + l1 = '%s,f%d=f[%d]' % (l1, i, i) + l2.append('f%d(v)' % (i)) + return eval(f"{l1}:{' or '.join(l2)}") + + +def l_not(f): + return eval('lambda v,f=f:not f(v)') + + +def isdummyroutine(rout): + try: + return rout['f2pyenhancements']['fortranname'] == '' + except KeyError: + return 0 + + +def getfortranname(rout): + try: + name = rout['f2pyenhancements']['fortranname'] + if name == '': + raise KeyError + if not name: + errmess(f"Failed to use fortranname from {rout['f2pyenhancements']}\n") + raise KeyError + except KeyError: + name = rout['name'] + return name + + +def getmultilineblock(rout, blockname, comment=1, counter=0): + try: + r = rout['f2pyenhancements'].get(blockname) + except KeyError: + return + if not r: + return + if counter > 0 and isinstance(r, str): + return + if isinstance(r, list): + if counter >= len(r): + return + r = r[counter] + if r[:3] == "'''": + if comment: + r = '\t/* start ' + blockname + \ + ' multiline (' + repr(counter) + ') */\n' + r[3:] + else: + r = r[3:] + if r[-3:] == "'''": + if comment: + r = r[:-3] + '\n\t/* end multiline (' + repr(counter) + ')*/' + else: + r = r[:-3] + else: + errmess(f"{blockname} multiline block should end with `'''`: {repr(r)}\n") + return r + + +def getcallstatement(rout): + return getmultilineblock(rout, 'callstatement') + + +def getcallprotoargument(rout, cb_map={}): + r = getmultilineblock(rout, 'callprotoargument', comment=0) + if r: + return r + if hascallstatement(rout): + outmess( + 'warning: callstatement is defined without callprotoargument\n') + return + from .capi_maps import getctype + arg_types, arg_types2 = [], [] + if l_and(isstringfunction, l_not(isfunction_wrap))(rout): + arg_types.extend(['char*', 'size_t']) + for n in rout['args']: + var = rout['vars'][n] + if isintent_callback(var): + continue + if n in cb_map: + ctype = cb_map[n] + '_typedef' + else: + ctype = getctype(var) + if l_and(isintent_c, l_or(isscalar, iscomplex))(var): + pass + elif isstring(var): + pass + elif not isattr_value(var): + ctype = ctype + '*' + if (isstring(var) + or isarrayofstrings(var) # obsolete? + or isstringarray(var)): + arg_types2.append('size_t') + arg_types.append(ctype) + + proto_args = ','.join(arg_types + arg_types2) + if not proto_args: + proto_args = 'void' + return proto_args + + +def getusercode(rout): + return getmultilineblock(rout, 'usercode') + + +def getusercode1(rout): + return getmultilineblock(rout, 'usercode', counter=1) + + +def getpymethoddef(rout): + return getmultilineblock(rout, 'pymethoddef') + + +def getargs(rout): + sortargs, args = [], [] + if 'args' in rout: + args = rout['args'] + if 'sortvars' in rout: + for a in rout['sortvars']: + if a in args: + sortargs.append(a) + for a in args: + if a not in sortargs: + sortargs.append(a) + else: + sortargs = rout['args'] + return args, sortargs + + +def getargs2(rout): + sortargs, args = [], rout.get('args', []) + auxvars = [a for a in rout['vars'].keys() if isintent_aux(rout['vars'][a]) + and a not in args] + args = auxvars + args + if 'sortvars' in rout: + for a in rout['sortvars']: + if a in args: + sortargs.append(a) + for a in args: + if a not in sortargs: + sortargs.append(a) + else: + sortargs = auxvars + rout['args'] + return args, sortargs + + +def getrestdoc(rout): + if 'f2pymultilines' not in rout: + return None + k = None + if rout['block'] == 'python module': + k = rout['block'], rout['name'] + return rout['f2pymultilines'].get(k, None) + + +def gentitle(name): + ln = (80 - len(name) - 6) // 2 + return f"/*{ln * '*'} {name} {ln * '*'}*/" + + +def flatlist(lst): + if isinstance(lst, list): + return reduce(lambda x, y, f=flatlist: x + f(y), lst, []) + return [lst] + + +def stripcomma(s): + if s and s[-1] == ',': + return s[:-1] + return s + + +def replace(str, d, defaultsep=''): + if isinstance(d, list): + return [replace(str, _m, defaultsep) for _m in d] + if isinstance(str, list): + return [replace(_m, d, defaultsep) for _m in str] + for k in 2 * list(d.keys()): + if k == 'separatorsfor': + continue + if 'separatorsfor' in d and k in d['separatorsfor']: + sep = d['separatorsfor'][k] + else: + sep = defaultsep + if isinstance(d[k], list): + str = str.replace(f'#{k}#', sep.join(flatlist(d[k]))) + else: + str = str.replace(f'#{k}#', d[k]) + return str + + +def dictappend(rd, ar): + if isinstance(ar, list): + for a in ar: + rd = dictappend(rd, a) + return rd + for k in ar.keys(): + if k[0] == '_': + continue + if k in rd: + if isinstance(rd[k], str): + rd[k] = [rd[k]] + if isinstance(rd[k], list): + if isinstance(ar[k], list): + rd[k] = rd[k] + ar[k] + else: + rd[k].append(ar[k]) + elif isinstance(rd[k], dict): + if isinstance(ar[k], dict): + if k == 'separatorsfor': + for k1 in ar[k].keys(): + if k1 not in rd[k]: + rd[k][k1] = ar[k][k1] + else: + rd[k] = dictappend(rd[k], ar[k]) + else: + rd[k] = ar[k] + return rd + + +def applyrules(rules, d, var={}): + ret = {} + if isinstance(rules, list): + for r in rules: + rr = applyrules(r, d, var) + ret = dictappend(ret, rr) + if '_break' in rr: + break + return ret + if '_check' in rules and (not rules['_check'](var)): + return ret + if 'need' in rules: + res = applyrules({'needs': rules['need']}, d, var) + if 'needs' in res: + cfuncs.append_needs(res['needs']) + + for k in rules.keys(): + if k == 'separatorsfor': + ret[k] = rules[k] + continue + if isinstance(rules[k], str): + ret[k] = replace(rules[k], d) + elif isinstance(rules[k], list): + ret[k] = [] + for i in rules[k]: + ar = applyrules({k: i}, d, var) + if k in ar: + ret[k].append(ar[k]) + elif k[0] == '_': + continue + elif isinstance(rules[k], dict): + ret[k] = [] + for k1 in rules[k].keys(): + if isinstance(k1, types.FunctionType) and k1(var): + if isinstance(rules[k][k1], list): + for i in rules[k][k1]: + if isinstance(i, dict): + res = applyrules({'supertext': i}, d, var) + i = res.get('supertext', '') + ret[k].append(replace(i, d)) + else: + i = rules[k][k1] + if isinstance(i, dict): + res = applyrules({'supertext': i}, d) + i = res.get('supertext', '') + ret[k].append(replace(i, d)) + else: + errmess(f'applyrules: ignoring rule {repr(rules[k])}.\n') + if isinstance(ret[k], list): + if len(ret[k]) == 1: + ret[k] = ret[k][0] + if ret[k] == []: + del ret[k] + return ret + + +_f2py_module_name_match = re.compile(r'\s*python\s*module\s*(?P[\w_]+)', + re.I).match +_f2py_user_module_name_match = re.compile(r'\s*python\s*module\s*(?P[\w_]*?' + r'__user__[\w_]*)', re.I).match + +def get_f2py_modulename(source): + name = None + with open(source) as f: + for line in f: + m = _f2py_module_name_match(line) + if m: + if _f2py_user_module_name_match(line): # skip *__user__* names + continue + name = m.group('name') + break + return name + +def getuseblocks(pymod): + all_uses = [] + for inner in pymod['body']: + for modblock in inner['body']: + if modblock.get('use'): + all_uses.extend([x for x in modblock.get("use").keys() if "__" not in x]) + return all_uses + +def process_f2cmap_dict(f2cmap_all, new_map, c2py_map, verbose=False): + """ + Update the Fortran-to-C type mapping dictionary with new mappings and + return a list of successfully mapped C types. + + This function integrates a new mapping dictionary into an existing + Fortran-to-C type mapping dictionary. It ensures that all keys are in + lowercase and validates new entries against a given C-to-Python mapping + dictionary. Redefinitions and invalid entries are reported with a warning. + + Parameters + ---------- + f2cmap_all : dict + The existing Fortran-to-C type mapping dictionary that will be updated. + It should be a dictionary of dictionaries where the main keys represent + Fortran types and the nested dictionaries map Fortran type specifiers + to corresponding C types. + + new_map : dict + A dictionary containing new type mappings to be added to `f2cmap_all`. + The structure should be similar to `f2cmap_all`, with keys representing + Fortran types and values being dictionaries of type specifiers and their + C type equivalents. + + c2py_map : dict + A dictionary used for validating the C types in `new_map`. It maps C + types to corresponding Python types and is used to ensure that the C + types specified in `new_map` are valid. + + verbose : boolean + A flag used to provide information about the types mapped + + Returns + ------- + tuple of (dict, list) + The updated Fortran-to-C type mapping dictionary and a list of + successfully mapped C types. + """ + f2cmap_mapped = [] + + new_map_lower = {} + for k, d1 in new_map.items(): + d1_lower = {k1.lower(): v1 for k1, v1 in d1.items()} + new_map_lower[k.lower()] = d1_lower + + for k, d1 in new_map_lower.items(): + if k not in f2cmap_all: + f2cmap_all[k] = {} + + for k1, v1 in d1.items(): + if v1 in c2py_map: + if k1 in f2cmap_all[k]: + outmess( + "\tWarning: redefinition of {'%s':{'%s':'%s'->'%s'}}\n" + % (k, k1, f2cmap_all[k][k1], v1) + ) + f2cmap_all[k][k1] = v1 + if verbose: + outmess(f'\tMapping "{k}(kind={k1})" to "{v1}\"\n') + f2cmap_mapped.append(v1) + elif verbose: + errmess( + "\tIgnoring map {'%s':{'%s':'%s'}}: '%s' must be in %s\n" + % (k, k1, v1, v1, list(c2py_map.keys())) + ) + + return f2cmap_all, f2cmap_mapped diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/auxfuncs.pyi b/.venv/lib/python3.12/site-packages/numpy/f2py/auxfuncs.pyi new file mode 100644 index 0000000..f2ff09f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/auxfuncs.pyi @@ -0,0 +1,264 @@ +from collections.abc import Callable, Mapping +from pprint import pprint as show +from typing import Any, Final, Never, TypeAlias, TypeVar, overload +from typing import Literal as L + +from _typeshed import FileDescriptorOrPath + +from .cfuncs import errmess + +__all__ = [ + "applyrules", + "containscommon", + "containsderivedtypes", + "debugcapi", + "dictappend", + "errmess", + "gentitle", + "get_f2py_modulename", + "getargs2", + "getcallprotoargument", + "getcallstatement", + "getdimension", + "getfortranname", + "getpymethoddef", + "getrestdoc", + "getuseblocks", + "getusercode", + "getusercode1", + "hasbody", + "hascallstatement", + "hascommon", + "hasexternals", + "hasinitvalue", + "hasnote", + "hasresultnote", + "isallocatable", + "isarray", + "isarrayofstrings", + "isattr_value", + "ischaracter", + "ischaracter_or_characterarray", + "ischaracterarray", + "iscomplex", + "iscomplexarray", + "iscomplexfunction", + "iscomplexfunction_warn", + "iscstyledirective", + "isdouble", + "isdummyroutine", + "isexternal", + "isfunction", + "isfunction_wrap", + "isint1", + "isint1array", + "isinteger", + "isintent_aux", + "isintent_c", + "isintent_callback", + "isintent_copy", + "isintent_dict", + "isintent_hide", + "isintent_in", + "isintent_inout", + "isintent_inplace", + "isintent_nothide", + "isintent_out", + "isintent_overwrite", + "islogical", + "islogicalfunction", + "islong_complex", + "islong_double", + "islong_doublefunction", + "islong_long", + "islong_longfunction", + "ismodule", + "ismoduleroutine", + "isoptional", + "isprivate", + "isrequired", + "isroutine", + "isscalar", + "issigned_long_longarray", + "isstring", + "isstring_or_stringarray", + "isstringarray", + "isstringfunction", + "issubroutine", + "issubroutine_wrap", + "isthreadsafe", + "isunsigned", + "isunsigned_char", + "isunsigned_chararray", + "isunsigned_long_long", + "isunsigned_long_longarray", + "isunsigned_short", + "isunsigned_shortarray", + "isvariable", + "l_and", + "l_not", + "l_or", + "outmess", + "process_f2cmap_dict", + "replace", + "show", + "stripcomma", + "throw_error", +] + +### + +_VT = TypeVar("_VT") +_RT = TypeVar("_RT") + +_Var: TypeAlias = Mapping[str, list[str]] +_ROut: TypeAlias = Mapping[str, str] +_F2CMap: TypeAlias = Mapping[str, Mapping[str, str]] + +_Bool: TypeAlias = bool | L[0, 1] +_Intent: TypeAlias = L[ + "INTENT_IN", + "INTENT_OUT", + "INTENT_INOUT", + "INTENT_C", + "INTENT_CACHE", + "INTENT_HIDE", + "INTENT_INPLACE", + "INTENT_ALIGNED4", + "INTENT_ALIGNED8", + "INTENT_ALIGNED16", + "OPTIONAL", +] + +### + +isintent_dict: dict[Callable[[_Var], _Bool], _Intent] + +class F2PYError(Exception): ... + +class throw_error: + mess: Final[str] + def __init__(self, /, mess: str) -> None: ... + def __call__(self, /, var: _Var) -> Never: ... # raises F2PYError + +# +def l_and(*f: tuple[str, Callable[[_VT], _RT]]) -> Callable[[_VT], _RT]: ... +def l_or(*f: tuple[str, Callable[[_VT], _RT]]) -> Callable[[_VT], _RT]: ... +def l_not(f: tuple[str, Callable[[_VT], _RT]]) -> Callable[[_VT], _RT]: ... + +# +def outmess(t: str) -> None: ... +def debugcapi(var: _Var) -> bool: ... + +# +def hasinitvalue(var: _Var | str) -> bool: ... +def hasnote(var: _Var | str) -> bool: ... +def ischaracter(var: _Var) -> bool: ... +def ischaracterarray(var: _Var) -> bool: ... +def ischaracter_or_characterarray(var: _Var) -> bool: ... +def isstring(var: _Var) -> bool: ... +def isstringarray(var: _Var) -> bool: ... +def isstring_or_stringarray(var: _Var) -> bool: ... +def isarray(var: _Var) -> bool: ... +def isarrayofstrings(var: _Var) -> bool: ... +def isscalar(var: _Var) -> bool: ... +def iscomplex(var: _Var) -> bool: ... +def islogical(var: _Var) -> bool: ... +def isinteger(var: _Var) -> bool: ... +def isint1(var: _Var) -> bool: ... +def isint1array(var: _Var) -> bool: ... +def islong_long(var: _Var) -> _Bool: ... +def isunsigned(var: _Var) -> _Bool: ... +def isunsigned_char(var: _Var) -> _Bool: ... +def isunsigned_chararray(var: _Var) -> bool: ... +def isunsigned_short(var: _Var) -> _Bool: ... +def isunsigned_shortarray(var: _Var) -> bool: ... +def isunsigned_long_long(var: _Var) -> _Bool: ... +def isunsigned_long_longarray(var: _Var) -> bool: ... +def issigned_long_longarray(var: _Var) -> bool: ... +def isdouble(var: _Var) -> _Bool: ... +def islong_double(var: _Var) -> _Bool: ... +def islong_complex(var: _Var) -> _Bool: ... +def iscomplexarray(var: _Var) -> bool: ... +def isallocatable(var: _Var) -> bool: ... +def isattr_value(var: _Var) -> bool: ... +def isoptional(var: _Var) -> bool: ... +def isexternal(var: _Var) -> bool: ... +def isrequired(var: _Var) -> bool: ... +def isprivate(var: _Var) -> bool: ... +def isvariable(var: _Var) -> bool: ... +def isintent_in(var: _Var) -> _Bool: ... +def isintent_inout(var: _Var) -> bool: ... +def isintent_out(var: _Var) -> bool: ... +def isintent_hide(var: _Var) -> bool: ... +def isintent_nothide(var: _Var) -> bool: ... +def isintent_c(var: _Var) -> bool: ... +def isintent_cache(var: _Var) -> bool: ... +def isintent_copy(var: _Var) -> bool: ... +def isintent_overwrite(var: _Var) -> bool: ... +def isintent_callback(var: _Var) -> bool: ... +def isintent_inplace(var: _Var) -> bool: ... +def isintent_aux(var: _Var) -> bool: ... + +# +def containsderivedtypes(rout: _ROut) -> L[0, 1]: ... +def containscommon(rout: _ROut) -> _Bool: ... +def hasexternals(rout: _ROut) -> bool: ... +def hasresultnote(rout: _ROut) -> _Bool: ... +def hasbody(rout: _ROut) -> _Bool: ... +def hascommon(rout: _ROut) -> bool: ... +def hasderivedtypes(rout: _ROut) -> bool: ... +def hascallstatement(rout: _ROut) -> bool: ... +def isroutine(rout: _ROut) -> bool: ... +def ismodule(rout: _ROut) -> bool: ... +def ismoduleroutine(rout: _ROut) -> bool: ... +def issubroutine(rout: _ROut) -> bool: ... +def issubroutine_wrap(rout: _ROut) -> _Bool: ... +def isfunction(rout: _ROut) -> bool: ... +def isfunction_wrap(rout: _ROut) -> _Bool: ... +def islogicalfunction(rout: _ROut) -> _Bool: ... +def islong_longfunction(rout: _ROut) -> _Bool: ... +def islong_doublefunction(rout: _ROut) -> _Bool: ... +def iscomplexfunction(rout: _ROut) -> _Bool: ... +def iscomplexfunction_warn(rout: _ROut) -> _Bool: ... +def isstringfunction(rout: _ROut) -> _Bool: ... +def isthreadsafe(rout: _ROut) -> bool: ... +def isdummyroutine(rout: _ROut) -> _Bool: ... +def iscstyledirective(f2py_line: str) -> bool: ... + +# . +def getdimension(var: _Var) -> list[Any] | None: ... +def getfortranname(rout: _ROut) -> str: ... +def getmultilineblock(rout: _ROut, blockname: str, comment: _Bool = 1, counter: int = 0) -> str | None: ... +def getcallstatement(rout: _ROut) -> str | None: ... +def getcallprotoargument(rout: _ROut, cb_map: dict[str, str] = {}) -> str: ... +def getusercode(rout: _ROut) -> str | None: ... +def getusercode1(rout: _ROut) -> str | None: ... +def getpymethoddef(rout: _ROut) -> str | None: ... +def getargs(rout: _ROut) -> tuple[list[str], list[str]]: ... +def getargs2(rout: _ROut) -> tuple[list[str], list[str]]: ... +def getrestdoc(rout: _ROut) -> str | None: ... + +# +def gentitle(name: str) -> str: ... +def stripcomma(s: str) -> str: ... +@overload +def replace(str: str, d: list[str], defaultsep: str = "") -> list[str]: ... +@overload +def replace(str: list[str], d: str, defaultsep: str = "") -> list[str]: ... +@overload +def replace(str: str, d: str, defaultsep: str = "") -> str: ... + +# +def dictappend(rd: Mapping[str, object], ar: Mapping[str, object] | list[Mapping[str, object]]) -> dict[str, Any]: ... +def applyrules(rules: Mapping[str, object], d: Mapping[str, object], var: _Var = {}) -> dict[str, Any]: ... + +# +def get_f2py_modulename(source: FileDescriptorOrPath) -> str: ... +def getuseblocks(pymod: Mapping[str, Mapping[str, Mapping[str, str]]]) -> list[str]: ... +def process_f2cmap_dict( + f2cmap_all: _F2CMap, + new_map: _F2CMap, + c2py_map: _F2CMap, + verbose: bool = False, +) -> tuple[dict[str, dict[str, str]], list[str]]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/capi_maps.py b/.venv/lib/python3.12/site-packages/numpy/f2py/capi_maps.py new file mode 100644 index 0000000..290ac2f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/capi_maps.py @@ -0,0 +1,811 @@ +""" +Copyright 1999 -- 2011 Pearu Peterson all rights reserved. +Copyright 2011 -- present NumPy Developers. +Permission to use, modify, and distribute this software is given under the +terms of the NumPy License. + +NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. +""" +from . import __version__ + +f2py_version = __version__.version + +import copy +import os +import re + +from . import cb_rules +from ._isocbind import iso_c2py_map, iso_c_binding_map, isoc_c2pycode_map + +# The environment provided by auxfuncs.py is needed for some calls to eval. +# As the needed functions cannot be determined by static inspection of the +# code, it is safest to use import * pending a major refactoring of f2py. +from .auxfuncs import * +from .crackfortran import markoutercomma + +__all__ = [ + 'getctype', 'getstrlength', 'getarrdims', 'getpydocsign', + 'getarrdocsign', 'getinit', 'sign2map', 'routsign2map', 'modsign2map', + 'cb_sign2map', 'cb_routsign2map', 'common_sign2map', 'process_f2cmap_dict' +] + + +depargs = [] +lcb_map = {} +lcb2_map = {} +# forced casting: mainly caused by the fact that Python or Numeric +# C/APIs do not support the corresponding C types. +c2py_map = {'double': 'float', + 'float': 'float', # forced casting + 'long_double': 'float', # forced casting + 'char': 'int', # forced casting + 'signed_char': 'int', # forced casting + 'unsigned_char': 'int', # forced casting + 'short': 'int', # forced casting + 'unsigned_short': 'int', # forced casting + 'int': 'int', # forced casting + 'long': 'int', + 'long_long': 'long', + 'unsigned': 'int', # forced casting + 'complex_float': 'complex', # forced casting + 'complex_double': 'complex', + 'complex_long_double': 'complex', # forced casting + 'string': 'string', + 'character': 'bytes', + } + +c2capi_map = {'double': 'NPY_DOUBLE', + 'float': 'NPY_FLOAT', + 'long_double': 'NPY_LONGDOUBLE', + 'char': 'NPY_BYTE', + 'unsigned_char': 'NPY_UBYTE', + 'signed_char': 'NPY_BYTE', + 'short': 'NPY_SHORT', + 'unsigned_short': 'NPY_USHORT', + 'int': 'NPY_INT', + 'unsigned': 'NPY_UINT', + 'long': 'NPY_LONG', + 'unsigned_long': 'NPY_ULONG', + 'long_long': 'NPY_LONGLONG', + 'unsigned_long_long': 'NPY_ULONGLONG', + 'complex_float': 'NPY_CFLOAT', + 'complex_double': 'NPY_CDOUBLE', + 'complex_long_double': 'NPY_CDOUBLE', + 'string': 'NPY_STRING', + 'character': 'NPY_STRING'} + +c2pycode_map = {'double': 'd', + 'float': 'f', + 'long_double': 'g', + 'char': 'b', + 'unsigned_char': 'B', + 'signed_char': 'b', + 'short': 'h', + 'unsigned_short': 'H', + 'int': 'i', + 'unsigned': 'I', + 'long': 'l', + 'unsigned_long': 'L', + 'long_long': 'q', + 'unsigned_long_long': 'Q', + 'complex_float': 'F', + 'complex_double': 'D', + 'complex_long_double': 'G', + 'string': 'S', + 'character': 'c'} + +# https://docs.python.org/3/c-api/arg.html#building-values +c2buildvalue_map = {'double': 'd', + 'float': 'f', + 'char': 'b', + 'signed_char': 'b', + 'short': 'h', + 'int': 'i', + 'long': 'l', + 'long_long': 'L', + 'complex_float': 'N', + 'complex_double': 'N', + 'complex_long_double': 'N', + 'string': 'y', + 'character': 'c'} + +f2cmap_all = {'real': {'': 'float', '4': 'float', '8': 'double', + '12': 'long_double', '16': 'long_double'}, + 'integer': {'': 'int', '1': 'signed_char', '2': 'short', + '4': 'int', '8': 'long_long', + '-1': 'unsigned_char', '-2': 'unsigned_short', + '-4': 'unsigned', '-8': 'unsigned_long_long'}, + 'complex': {'': 'complex_float', '8': 'complex_float', + '16': 'complex_double', '24': 'complex_long_double', + '32': 'complex_long_double'}, + 'complexkind': {'': 'complex_float', '4': 'complex_float', + '8': 'complex_double', '12': 'complex_long_double', + '16': 'complex_long_double'}, + 'logical': {'': 'int', '1': 'char', '2': 'short', '4': 'int', + '8': 'long_long'}, + 'double complex': {'': 'complex_double'}, + 'double precision': {'': 'double'}, + 'byte': {'': 'char'}, + } + +# Add ISO_C handling +c2pycode_map.update(isoc_c2pycode_map) +c2py_map.update(iso_c2py_map) +f2cmap_all, _ = process_f2cmap_dict(f2cmap_all, iso_c_binding_map, c2py_map) +# End ISO_C handling +f2cmap_default = copy.deepcopy(f2cmap_all) + +f2cmap_mapped = [] + +def load_f2cmap_file(f2cmap_file): + global f2cmap_all, f2cmap_mapped + + f2cmap_all = copy.deepcopy(f2cmap_default) + + if f2cmap_file is None: + # Default value + f2cmap_file = '.f2py_f2cmap' + if not os.path.isfile(f2cmap_file): + return + + # User defined additions to f2cmap_all. + # f2cmap_file must contain a dictionary of dictionaries, only. For + # example, {'real':{'low':'float'}} means that Fortran 'real(low)' is + # interpreted as C 'float'. This feature is useful for F90/95 users if + # they use PARAMETERS in type specifications. + try: + outmess(f'Reading f2cmap from {f2cmap_file!r} ...\n') + with open(f2cmap_file) as f: + d = eval(f.read().lower(), {}, {}) + f2cmap_all, f2cmap_mapped = process_f2cmap_dict(f2cmap_all, d, c2py_map, True) + outmess('Successfully applied user defined f2cmap changes\n') + except Exception as msg: + errmess(f'Failed to apply user defined f2cmap changes: {msg}. Skipping.\n') + + +cformat_map = {'double': '%g', + 'float': '%g', + 'long_double': '%Lg', + 'char': '%d', + 'signed_char': '%d', + 'unsigned_char': '%hhu', + 'short': '%hd', + 'unsigned_short': '%hu', + 'int': '%d', + 'unsigned': '%u', + 'long': '%ld', + 'unsigned_long': '%lu', + 'long_long': '%ld', + 'complex_float': '(%g,%g)', + 'complex_double': '(%g,%g)', + 'complex_long_double': '(%Lg,%Lg)', + 'string': '\\"%s\\"', + 'character': "'%c'", + } + +# Auxiliary functions + + +def getctype(var): + """ + Determines C type + """ + ctype = 'void' + if isfunction(var): + if 'result' in var: + a = var['result'] + else: + a = var['name'] + if a in var['vars']: + return getctype(var['vars'][a]) + else: + errmess(f'getctype: function {a} has no return value?!\n') + elif issubroutine(var): + return ctype + elif ischaracter_or_characterarray(var): + return 'character' + elif isstring_or_stringarray(var): + return 'string' + elif 'typespec' in var and var['typespec'].lower() in f2cmap_all: + typespec = var['typespec'].lower() + f2cmap = f2cmap_all[typespec] + ctype = f2cmap[''] # default type + if 'kindselector' in var: + if '*' in var['kindselector']: + try: + ctype = f2cmap[var['kindselector']['*']] + except KeyError: + errmess('getctype: "%s %s %s" not supported.\n' % + (var['typespec'], '*', var['kindselector']['*'])) + elif 'kind' in var['kindselector']: + if typespec + 'kind' in f2cmap_all: + f2cmap = f2cmap_all[typespec + 'kind'] + try: + ctype = f2cmap[var['kindselector']['kind']] + except KeyError: + if typespec in f2cmap_all: + f2cmap = f2cmap_all[typespec] + try: + ctype = f2cmap[str(var['kindselector']['kind'])] + except KeyError: + errmess('getctype: "%s(kind=%s)" is mapped to C "%s" (to override define dict(%s = dict(%s="")) in %s/.f2py_f2cmap file).\n' + % (typespec, var['kindselector']['kind'], ctype, + typespec, var['kindselector']['kind'], os.getcwd())) + elif not isexternal(var): + errmess(f'getctype: No C-type found in "{var}", assuming void.\n') + return ctype + + +def f2cexpr(expr): + """Rewrite Fortran expression as f2py supported C expression. + + Due to the lack of a proper expression parser in f2py, this + function uses a heuristic approach that assumes that Fortran + arithmetic expressions are valid C arithmetic expressions when + mapping Fortran function calls to the corresponding C function/CPP + macros calls. + + """ + # TODO: support Fortran `len` function with optional kind parameter + expr = re.sub(r'\blen\b', 'f2py_slen', expr) + return expr + + +def getstrlength(var): + if isstringfunction(var): + if 'result' in var: + a = var['result'] + else: + a = var['name'] + if a in var['vars']: + return getstrlength(var['vars'][a]) + else: + errmess(f'getstrlength: function {a} has no return value?!\n') + if not isstring(var): + errmess( + f'getstrlength: expected a signature of a string but got: {repr(var)}\n') + len = '1' + if 'charselector' in var: + a = var['charselector'] + if '*' in a: + len = a['*'] + elif 'len' in a: + len = f2cexpr(a['len']) + if re.match(r'\(\s*(\*|:)\s*\)', len) or re.match(r'(\*|:)', len): + if isintent_hide(var): + errmess('getstrlength:intent(hide): expected a string with defined length but got: %s\n' % ( + repr(var))) + len = '-1' + return len + + +def getarrdims(a, var, verbose=0): + ret = {} + if isstring(var) and not isarray(var): + ret['size'] = getstrlength(var) + ret['rank'] = '0' + ret['dims'] = '' + elif isscalar(var): + ret['size'] = '1' + ret['rank'] = '0' + ret['dims'] = '' + elif isarray(var): + dim = copy.copy(var['dimension']) + ret['size'] = '*'.join(dim) + try: + ret['size'] = repr(eval(ret['size'])) + except Exception: + pass + ret['dims'] = ','.join(dim) + ret['rank'] = repr(len(dim)) + ret['rank*[-1]'] = repr(len(dim) * [-1])[1:-1] + for i in range(len(dim)): # solve dim for dependencies + v = [] + if dim[i] in depargs: + v = [dim[i]] + else: + for va in depargs: + if re.match(r'.*?\b%s\b.*' % va, dim[i]): + v.append(va) + for va in v: + if depargs.index(va) > depargs.index(a): + dim[i] = '*' + break + ret['setdims'], i = '', -1 + for d in dim: + i = i + 1 + if d not in ['*', ':', '(*)', '(:)']: + ret['setdims'] = '%s#varname#_Dims[%d]=%s,' % ( + ret['setdims'], i, d) + if ret['setdims']: + ret['setdims'] = ret['setdims'][:-1] + ret['cbsetdims'], i = '', -1 + for d in var['dimension']: + i = i + 1 + if d not in ['*', ':', '(*)', '(:)']: + ret['cbsetdims'] = '%s#varname#_Dims[%d]=%s,' % ( + ret['cbsetdims'], i, d) + elif isintent_in(var): + outmess('getarrdims:warning: assumed shape array, using 0 instead of %r\n' + % (d)) + ret['cbsetdims'] = '%s#varname#_Dims[%d]=%s,' % ( + ret['cbsetdims'], i, 0) + elif verbose: + errmess( + f'getarrdims: If in call-back function: array argument {repr(a)} must have bounded dimensions: got {repr(d)}\n') + if ret['cbsetdims']: + ret['cbsetdims'] = ret['cbsetdims'][:-1] +# if not isintent_c(var): +# var['dimension'].reverse() + return ret + + +def getpydocsign(a, var): + global lcb_map + if isfunction(var): + if 'result' in var: + af = var['result'] + else: + af = var['name'] + if af in var['vars']: + return getpydocsign(af, var['vars'][af]) + else: + errmess(f'getctype: function {af} has no return value?!\n') + return '', '' + sig, sigout = a, a + opt = '' + if isintent_in(var): + opt = 'input' + elif isintent_inout(var): + opt = 'in/output' + out_a = a + if isintent_out(var): + for k in var['intent']: + if k[:4] == 'out=': + out_a = k[4:] + break + init = '' + ctype = getctype(var) + + if hasinitvalue(var): + init, showinit = getinit(a, var) + init = f', optional\\n Default: {showinit}' + if isscalar(var): + if isintent_inout(var): + sig = '%s : %s rank-0 array(%s,\'%s\')%s' % (a, opt, c2py_map[ctype], + c2pycode_map[ctype], init) + else: + sig = f'{a} : {opt} {c2py_map[ctype]}{init}' + sigout = f'{out_a} : {c2py_map[ctype]}' + elif isstring(var): + if isintent_inout(var): + sig = '%s : %s rank-0 array(string(len=%s),\'c\')%s' % ( + a, opt, getstrlength(var), init) + else: + sig = f'{a} : {opt} string(len={getstrlength(var)}){init}' + sigout = f'{out_a} : string(len={getstrlength(var)})' + elif isarray(var): + dim = var['dimension'] + rank = repr(len(dim)) + sig = '%s : %s rank-%s array(\'%s\') with bounds (%s)%s' % (a, opt, rank, + c2pycode_map[ + ctype], + ','.join(dim), init) + if a == out_a: + sigout = '%s : rank-%s array(\'%s\') with bounds (%s)'\ + % (a, rank, c2pycode_map[ctype], ','.join(dim)) + else: + sigout = '%s : rank-%s array(\'%s\') with bounds (%s) and %s storage'\ + % (out_a, rank, c2pycode_map[ctype], ','.join(dim), a) + elif isexternal(var): + ua = '' + if a in lcb_map and lcb_map[a] in lcb2_map and 'argname' in lcb2_map[lcb_map[a]]: + ua = lcb2_map[lcb_map[a]]['argname'] + if not ua == a: + ua = f' => {ua}' + else: + ua = '' + sig = f'{a} : call-back function{ua}' + sigout = sig + else: + errmess( + f'getpydocsign: Could not resolve docsignature for "{a}".\n') + return sig, sigout + + +def getarrdocsign(a, var): + ctype = getctype(var) + if isstring(var) and (not isarray(var)): + sig = f'{a} : rank-0 array(string(len={getstrlength(var)}),\'c\')' + elif isscalar(var): + sig = f'{a} : rank-0 array({c2py_map[ctype]},\'{c2pycode_map[ctype]}\')' + elif isarray(var): + dim = var['dimension'] + rank = repr(len(dim)) + sig = '%s : rank-%s array(\'%s\') with bounds (%s)' % (a, rank, + c2pycode_map[ + ctype], + ','.join(dim)) + return sig + + +def getinit(a, var): + if isstring(var): + init, showinit = '""', "''" + else: + init, showinit = '', '' + if hasinitvalue(var): + init = var['='] + showinit = init + if iscomplex(var) or iscomplexarray(var): + ret = {} + + try: + v = var["="] + if ',' in v: + ret['init.r'], ret['init.i'] = markoutercomma( + v[1:-1]).split('@,@') + else: + v = eval(v, {}, {}) + ret['init.r'], ret['init.i'] = str(v.real), str(v.imag) + except Exception: + raise ValueError( + f'getinit: expected complex number `(r,i)\' but got `{init}\' as initial value of {a!r}.') + if isarray(var): + init = f"(capi_c.r={ret['init.r']},capi_c.i={ret['init.i']},capi_c)" + elif isstring(var): + if not init: + init, showinit = '""', "''" + if init[0] == "'": + init = '"%s"' % (init[1:-1].replace('"', '\\"')) + if init[0] == '"': + showinit = f"'{init[1:-1]}'" + return init, showinit + + +def get_elsize(var): + if isstring(var) or isstringarray(var): + elsize = getstrlength(var) + # override with user-specified length when available: + elsize = var['charselector'].get('f2py_len', elsize) + return elsize + if ischaracter(var) or ischaracterarray(var): + return '1' + # for numerical types, PyArray_New* functions ignore specified + # elsize, so we just return 1 and let elsize be determined at + # runtime, see fortranobject.c + return '1' + + +def sign2map(a, var): + """ + varname,ctype,atype + init,init.r,init.i,pytype + vardebuginfo,vardebugshowvalue,varshowvalue + varrformat + + intent + """ + out_a = a + if isintent_out(var): + for k in var['intent']: + if k[:4] == 'out=': + out_a = k[4:] + break + ret = {'varname': a, 'outvarname': out_a, 'ctype': getctype(var)} + intent_flags = [] + for f, s in isintent_dict.items(): + if f(var): + intent_flags.append(f'F2PY_{s}') + if intent_flags: + # TODO: Evaluate intent_flags here. + ret['intent'] = '|'.join(intent_flags) + else: + ret['intent'] = 'F2PY_INTENT_IN' + if isarray(var): + ret['varrformat'] = 'N' + elif ret['ctype'] in c2buildvalue_map: + ret['varrformat'] = c2buildvalue_map[ret['ctype']] + else: + ret['varrformat'] = 'O' + ret['init'], ret['showinit'] = getinit(a, var) + if hasinitvalue(var) and iscomplex(var) and not isarray(var): + ret['init.r'], ret['init.i'] = markoutercomma( + ret['init'][1:-1]).split('@,@') + if isexternal(var): + ret['cbnamekey'] = a + if a in lcb_map: + ret['cbname'] = lcb_map[a] + ret['maxnofargs'] = lcb2_map[lcb_map[a]]['maxnofargs'] + ret['nofoptargs'] = lcb2_map[lcb_map[a]]['nofoptargs'] + ret['cbdocstr'] = lcb2_map[lcb_map[a]]['docstr'] + ret['cblatexdocstr'] = lcb2_map[lcb_map[a]]['latexdocstr'] + else: + ret['cbname'] = a + errmess('sign2map: Confused: external %s is not in lcb_map%s.\n' % ( + a, list(lcb_map.keys()))) + if isstring(var): + ret['length'] = getstrlength(var) + if isarray(var): + ret = dictappend(ret, getarrdims(a, var)) + dim = copy.copy(var['dimension']) + if ret['ctype'] in c2capi_map: + ret['atype'] = c2capi_map[ret['ctype']] + ret['elsize'] = get_elsize(var) + # Debug info + if debugcapi(var): + il = [isintent_in, 'input', isintent_out, 'output', + isintent_inout, 'inoutput', isrequired, 'required', + isoptional, 'optional', isintent_hide, 'hidden', + iscomplex, 'complex scalar', + l_and(isscalar, l_not(iscomplex)), 'scalar', + isstring, 'string', isarray, 'array', + iscomplexarray, 'complex array', isstringarray, 'string array', + iscomplexfunction, 'complex function', + l_and(isfunction, l_not(iscomplexfunction)), 'function', + isexternal, 'callback', + isintent_callback, 'callback', + isintent_aux, 'auxiliary', + ] + rl = [] + for i in range(0, len(il), 2): + if il[i](var): + rl.append(il[i + 1]) + if isstring(var): + rl.append(f"slen({a})={ret['length']}") + if isarray(var): + ddim = ','.join( + map(lambda x, y: f'{x}|{y}', var['dimension'], dim)) + rl.append(f'dims({ddim})') + if isexternal(var): + ret['vardebuginfo'] = f"debug-capi:{a}=>{ret['cbname']}:{','.join(rl)}" + else: + ret['vardebuginfo'] = 'debug-capi:%s %s=%s:%s' % ( + ret['ctype'], a, ret['showinit'], ','.join(rl)) + if isscalar(var): + if ret['ctype'] in cformat_map: + ret['vardebugshowvalue'] = f"debug-capi:{a}={cformat_map[ret['ctype']]}" + if isstring(var): + ret['vardebugshowvalue'] = 'debug-capi:slen(%s)=%%d %s=\\"%%s\\"' % ( + a, a) + if isexternal(var): + ret['vardebugshowvalue'] = f'debug-capi:{a}=%p' + if ret['ctype'] in cformat_map: + ret['varshowvalue'] = f"#name#:{a}={cformat_map[ret['ctype']]}" + ret['showvalueformat'] = f"{cformat_map[ret['ctype']]}" + if isstring(var): + ret['varshowvalue'] = '#name#:slen(%s)=%%d %s=\\"%%s\\"' % (a, a) + ret['pydocsign'], ret['pydocsignout'] = getpydocsign(a, var) + if hasnote(var): + ret['note'] = var['note'] + return ret + + +def routsign2map(rout): + """ + name,NAME,begintitle,endtitle + rname,ctype,rformat + routdebugshowvalue + """ + global lcb_map + name = rout['name'] + fname = getfortranname(rout) + ret = {'name': name, + 'texname': name.replace('_', '\\_'), + 'name_lower': name.lower(), + 'NAME': name.upper(), + 'begintitle': gentitle(name), + 'endtitle': gentitle(f'end of {name}'), + 'fortranname': fname, + 'FORTRANNAME': fname.upper(), + 'callstatement': getcallstatement(rout) or '', + 'usercode': getusercode(rout) or '', + 'usercode1': getusercode1(rout) or '', + } + if '_' in fname: + ret['F_FUNC'] = 'F_FUNC_US' + else: + ret['F_FUNC'] = 'F_FUNC' + if '_' in name: + ret['F_WRAPPEDFUNC'] = 'F_WRAPPEDFUNC_US' + else: + ret['F_WRAPPEDFUNC'] = 'F_WRAPPEDFUNC' + lcb_map = {} + if 'use' in rout: + for u in rout['use'].keys(): + if u in cb_rules.cb_map: + for un in cb_rules.cb_map[u]: + ln = un[0] + if 'map' in rout['use'][u]: + for k in rout['use'][u]['map'].keys(): + if rout['use'][u]['map'][k] == un[0]: + ln = k + break + lcb_map[ln] = un[1] + elif rout.get('externals'): + errmess('routsign2map: Confused: function %s has externals %s but no "use" statement.\n' % ( + ret['name'], repr(rout['externals']))) + ret['callprotoargument'] = getcallprotoargument(rout, lcb_map) or '' + if isfunction(rout): + if 'result' in rout: + a = rout['result'] + else: + a = rout['name'] + ret['rname'] = a + ret['pydocsign'], ret['pydocsignout'] = getpydocsign(a, rout) + ret['ctype'] = getctype(rout['vars'][a]) + if hasresultnote(rout): + ret['resultnote'] = rout['vars'][a]['note'] + rout['vars'][a]['note'] = ['See elsewhere.'] + if ret['ctype'] in c2buildvalue_map: + ret['rformat'] = c2buildvalue_map[ret['ctype']] + else: + ret['rformat'] = 'O' + errmess('routsign2map: no c2buildvalue key for type %s\n' % + (repr(ret['ctype']))) + if debugcapi(rout): + if ret['ctype'] in cformat_map: + ret['routdebugshowvalue'] = 'debug-capi:%s=%s' % ( + a, cformat_map[ret['ctype']]) + if isstringfunction(rout): + ret['routdebugshowvalue'] = 'debug-capi:slen(%s)=%%d %s=\\"%%s\\"' % ( + a, a) + if isstringfunction(rout): + ret['rlength'] = getstrlength(rout['vars'][a]) + if ret['rlength'] == '-1': + errmess('routsign2map: expected explicit specification of the length of the string returned by the fortran function %s; taking 10.\n' % ( + repr(rout['name']))) + ret['rlength'] = '10' + if hasnote(rout): + ret['note'] = rout['note'] + rout['note'] = ['See elsewhere.'] + return ret + + +def modsign2map(m): + """ + modulename + """ + if ismodule(m): + ret = {'f90modulename': m['name'], + 'F90MODULENAME': m['name'].upper(), + 'texf90modulename': m['name'].replace('_', '\\_')} + else: + ret = {'modulename': m['name'], + 'MODULENAME': m['name'].upper(), + 'texmodulename': m['name'].replace('_', '\\_')} + ret['restdoc'] = getrestdoc(m) or [] + if hasnote(m): + ret['note'] = m['note'] + ret['usercode'] = getusercode(m) or '' + ret['usercode1'] = getusercode1(m) or '' + if m['body']: + ret['interface_usercode'] = getusercode(m['body'][0]) or '' + else: + ret['interface_usercode'] = '' + ret['pymethoddef'] = getpymethoddef(m) or '' + if 'gil_used' in m: + ret['gil_used'] = m['gil_used'] + if 'coutput' in m: + ret['coutput'] = m['coutput'] + if 'f2py_wrapper_output' in m: + ret['f2py_wrapper_output'] = m['f2py_wrapper_output'] + return ret + + +def cb_sign2map(a, var, index=None): + ret = {'varname': a} + ret['varname_i'] = ret['varname'] + ret['ctype'] = getctype(var) + if ret['ctype'] in c2capi_map: + ret['atype'] = c2capi_map[ret['ctype']] + ret['elsize'] = get_elsize(var) + if ret['ctype'] in cformat_map: + ret['showvalueformat'] = f"{cformat_map[ret['ctype']]}" + if isarray(var): + ret = dictappend(ret, getarrdims(a, var)) + ret['pydocsign'], ret['pydocsignout'] = getpydocsign(a, var) + if hasnote(var): + ret['note'] = var['note'] + var['note'] = ['See elsewhere.'] + return ret + + +def cb_routsign2map(rout, um): + """ + name,begintitle,endtitle,argname + ctype,rctype,maxnofargs,nofoptargs,returncptr + """ + ret = {'name': f"cb_{rout['name']}_in_{um}", + 'returncptr': ''} + if isintent_callback(rout): + if '_' in rout['name']: + F_FUNC = 'F_FUNC_US' + else: + F_FUNC = 'F_FUNC' + ret['callbackname'] = f"{F_FUNC}({rout['name'].lower()},{rout['name'].upper()})" + ret['static'] = 'extern' + else: + ret['callbackname'] = ret['name'] + ret['static'] = 'static' + ret['argname'] = rout['name'] + ret['begintitle'] = gentitle(ret['name']) + ret['endtitle'] = gentitle(f"end of {ret['name']}") + ret['ctype'] = getctype(rout) + ret['rctype'] = 'void' + if ret['ctype'] == 'string': + ret['rctype'] = 'void' + else: + ret['rctype'] = ret['ctype'] + if ret['rctype'] != 'void': + if iscomplexfunction(rout): + ret['returncptr'] = """ +#ifdef F2PY_CB_RETURNCOMPLEX +return_value= +#endif +""" + else: + ret['returncptr'] = 'return_value=' + if ret['ctype'] in cformat_map: + ret['showvalueformat'] = f"{cformat_map[ret['ctype']]}" + if isstringfunction(rout): + ret['strlength'] = getstrlength(rout) + if isfunction(rout): + if 'result' in rout: + a = rout['result'] + else: + a = rout['name'] + if hasnote(rout['vars'][a]): + ret['note'] = rout['vars'][a]['note'] + rout['vars'][a]['note'] = ['See elsewhere.'] + ret['rname'] = a + ret['pydocsign'], ret['pydocsignout'] = getpydocsign(a, rout) + if iscomplexfunction(rout): + ret['rctype'] = """ +#ifdef F2PY_CB_RETURNCOMPLEX +#ctype# +#else +void +#endif +""" + elif hasnote(rout): + ret['note'] = rout['note'] + rout['note'] = ['See elsewhere.'] + nofargs = 0 + nofoptargs = 0 + if 'args' in rout and 'vars' in rout: + for a in rout['args']: + var = rout['vars'][a] + if l_or(isintent_in, isintent_inout)(var): + nofargs = nofargs + 1 + if isoptional(var): + nofoptargs = nofoptargs + 1 + ret['maxnofargs'] = repr(nofargs) + ret['nofoptargs'] = repr(nofoptargs) + if hasnote(rout) and isfunction(rout) and 'result' in rout: + ret['routnote'] = rout['note'] + rout['note'] = ['See elsewhere.'] + return ret + + +def common_sign2map(a, var): # obsolete + ret = {'varname': a, 'ctype': getctype(var)} + if isstringarray(var): + ret['ctype'] = 'char' + if ret['ctype'] in c2capi_map: + ret['atype'] = c2capi_map[ret['ctype']] + ret['elsize'] = get_elsize(var) + if ret['ctype'] in cformat_map: + ret['showvalueformat'] = f"{cformat_map[ret['ctype']]}" + if isarray(var): + ret = dictappend(ret, getarrdims(a, var)) + elif isstring(var): + ret['size'] = getstrlength(var) + ret['rank'] = '1' + ret['pydocsign'], ret['pydocsignout'] = getpydocsign(a, var) + if hasnote(var): + ret['note'] = var['note'] + var['note'] = ['See elsewhere.'] + # for strings this returns 0-rank but actually is 1-rank + ret['arrdocstr'] = getarrdocsign(a, var) + return ret diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/capi_maps.pyi b/.venv/lib/python3.12/site-packages/numpy/f2py/capi_maps.pyi new file mode 100644 index 0000000..9266003 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/capi_maps.pyi @@ -0,0 +1,33 @@ +from .auxfuncs import _ROut, _Var, process_f2cmap_dict + +__all__ = [ + "cb_routsign2map", + "cb_sign2map", + "common_sign2map", + "getarrdims", + "getarrdocsign", + "getctype", + "getinit", + "getpydocsign", + "getstrlength", + "modsign2map", + "process_f2cmap_dict", + "routsign2map", + "sign2map", +] + +### + +def getctype(var: _Var) -> str: ... +def f2cexpr(expr: str) -> str: ... +def getstrlength(var: _Var) -> str: ... +def getarrdims(a: str, var: _Var, verbose: int = 0) -> dict[str, str]: ... +def getpydocsign(a: str, var: _Var) -> tuple[str, str]: ... +def getarrdocsign(a: str, var: _Var) -> str: ... +def getinit(a: str, var: _Var) -> tuple[str, str]: ... +def sign2map(a: str, var: _Var) -> dict[str, str]: ... +def routsign2map(rout: _ROut) -> dict[str, str]: ... +def modsign2map(m: _ROut) -> dict[str, str]: ... +def cb_sign2map(a: str, var: _Var, index: object | None = None) -> dict[str, str]: ... +def cb_routsign2map(rout: _ROut, um: str) -> dict[str, str]: ... +def common_sign2map(a: str, var: _Var) -> dict[str, str]: ... # obsolete diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/cb_rules.py b/.venv/lib/python3.12/site-packages/numpy/f2py/cb_rules.py new file mode 100644 index 0000000..238d473 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/cb_rules.py @@ -0,0 +1,665 @@ +""" +Build call-back mechanism for f2py2e. + +Copyright 1999 -- 2011 Pearu Peterson all rights reserved. +Copyright 2011 -- present NumPy Developers. +Permission to use, modify, and distribute this software is given under the +terms of the NumPy License. + +NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. +""" +from . import __version__, cfuncs +from .auxfuncs import ( + applyrules, + debugcapi, + dictappend, + errmess, + getargs, + hasnote, + isarray, + iscomplex, + iscomplexarray, + iscomplexfunction, + isfunction, + isintent_c, + isintent_hide, + isintent_in, + isintent_inout, + isintent_nothide, + isintent_out, + isoptional, + isrequired, + isscalar, + isstring, + isstringfunction, + issubroutine, + l_and, + l_not, + l_or, + outmess, + replace, + stripcomma, + throw_error, +) + +f2py_version = __version__.version + + +################## Rules for callback function ############## + +cb_routine_rules = { + 'cbtypedefs': 'typedef #rctype#(*#name#_typedef)(#optargs_td##args_td##strarglens_td##noargs#);', + 'body': """ +#begintitle# +typedef struct { + PyObject *capi; + PyTupleObject *args_capi; + int nofargs; + jmp_buf jmpbuf; +} #name#_t; + +#if defined(F2PY_THREAD_LOCAL_DECL) && !defined(F2PY_USE_PYTHON_TLS) + +static F2PY_THREAD_LOCAL_DECL #name#_t *_active_#name# = NULL; + +static #name#_t *swap_active_#name#(#name#_t *ptr) { + #name#_t *prev = _active_#name#; + _active_#name# = ptr; + return prev; +} + +static #name#_t *get_active_#name#(void) { + return _active_#name#; +} + +#else + +static #name#_t *swap_active_#name#(#name#_t *ptr) { + char *key = "__f2py_cb_#name#"; + return (#name#_t *)F2PySwapThreadLocalCallbackPtr(key, ptr); +} + +static #name#_t *get_active_#name#(void) { + char *key = "__f2py_cb_#name#"; + return (#name#_t *)F2PyGetThreadLocalCallbackPtr(key); +} + +#endif + +/*typedef #rctype#(*#name#_typedef)(#optargs_td##args_td##strarglens_td##noargs#);*/ +#static# #rctype# #callbackname# (#optargs##args##strarglens##noargs#) { + #name#_t cb_local = { NULL, NULL, 0 }; + #name#_t *cb = NULL; + PyTupleObject *capi_arglist = NULL; + PyObject *capi_return = NULL; + PyObject *capi_tmp = NULL; + PyObject *capi_arglist_list = NULL; + int capi_j,capi_i = 0; + int capi_longjmp_ok = 1; +#decl# +#ifdef F2PY_REPORT_ATEXIT +f2py_cb_start_clock(); +#endif + cb = get_active_#name#(); + if (cb == NULL) { + capi_longjmp_ok = 0; + cb = &cb_local; + } + capi_arglist = cb->args_capi; + CFUNCSMESS(\"cb:Call-back function #name# (maxnofargs=#maxnofargs#(-#nofoptargs#))\\n\"); + CFUNCSMESSPY(\"cb:#name#_capi=\",cb->capi); + if (cb->capi==NULL) { + capi_longjmp_ok = 0; + cb->capi = PyObject_GetAttrString(#modulename#_module,\"#argname#\"); + CFUNCSMESSPY(\"cb:#name#_capi=\",cb->capi); + } + if (cb->capi==NULL) { + PyErr_SetString(#modulename#_error,\"cb: Callback #argname# not defined (as an argument or module #modulename# attribute).\\n\"); + goto capi_fail; + } + if (F2PyCapsule_Check(cb->capi)) { + #name#_typedef #name#_cptr; + #name#_cptr = F2PyCapsule_AsVoidPtr(cb->capi); + #returncptr#(*#name#_cptr)(#optargs_nm##args_nm##strarglens_nm#); + #return# + } + if (capi_arglist==NULL) { + capi_longjmp_ok = 0; + capi_tmp = PyObject_GetAttrString(#modulename#_module,\"#argname#_extra_args\"); + if (capi_tmp) { + capi_arglist = (PyTupleObject *)PySequence_Tuple(capi_tmp); + Py_DECREF(capi_tmp); + if (capi_arglist==NULL) { + PyErr_SetString(#modulename#_error,\"Failed to convert #modulename#.#argname#_extra_args to tuple.\\n\"); + goto capi_fail; + } + } else { + PyErr_Clear(); + capi_arglist = (PyTupleObject *)Py_BuildValue(\"()\"); + } + } + if (capi_arglist == NULL) { + PyErr_SetString(#modulename#_error,\"Callback #argname# argument list is not set.\\n\"); + goto capi_fail; + } +#setdims# +#ifdef PYPY_VERSION +#define CAPI_ARGLIST_SETITEM(idx, value) PyList_SetItem((PyObject *)capi_arglist_list, idx, value) + capi_arglist_list = PySequence_List((PyObject *)capi_arglist); + if (capi_arglist_list == NULL) goto capi_fail; +#else +#define CAPI_ARGLIST_SETITEM(idx, value) PyTuple_SetItem((PyObject *)capi_arglist, idx, value) +#endif +#pyobjfrom# +#undef CAPI_ARGLIST_SETITEM +#ifdef PYPY_VERSION + CFUNCSMESSPY(\"cb:capi_arglist=\",capi_arglist_list); +#else + CFUNCSMESSPY(\"cb:capi_arglist=\",capi_arglist); +#endif + CFUNCSMESS(\"cb:Call-back calling Python function #argname#.\\n\"); +#ifdef F2PY_REPORT_ATEXIT +f2py_cb_start_call_clock(); +#endif +#ifdef PYPY_VERSION + capi_return = PyObject_CallObject(cb->capi,(PyObject *)capi_arglist_list); + Py_DECREF(capi_arglist_list); + capi_arglist_list = NULL; +#else + capi_return = PyObject_CallObject(cb->capi,(PyObject *)capi_arglist); +#endif +#ifdef F2PY_REPORT_ATEXIT +f2py_cb_stop_call_clock(); +#endif + CFUNCSMESSPY(\"cb:capi_return=\",capi_return); + if (capi_return == NULL) { + fprintf(stderr,\"capi_return is NULL\\n\"); + goto capi_fail; + } + if (capi_return == Py_None) { + Py_DECREF(capi_return); + capi_return = Py_BuildValue(\"()\"); + } + else if (!PyTuple_Check(capi_return)) { + capi_return = Py_BuildValue(\"(N)\",capi_return); + } + capi_j = PyTuple_Size(capi_return); + capi_i = 0; +#frompyobj# + CFUNCSMESS(\"cb:#name#:successful\\n\"); + Py_DECREF(capi_return); +#ifdef F2PY_REPORT_ATEXIT +f2py_cb_stop_clock(); +#endif + goto capi_return_pt; +capi_fail: + fprintf(stderr,\"Call-back #name# failed.\\n\"); + Py_XDECREF(capi_return); + Py_XDECREF(capi_arglist_list); + if (capi_longjmp_ok) { + longjmp(cb->jmpbuf,-1); + } +capi_return_pt: + ; +#return# +} +#endtitle# +""", + 'need': ['setjmp.h', 'CFUNCSMESS', 'F2PY_THREAD_LOCAL_DECL'], + 'maxnofargs': '#maxnofargs#', + 'nofoptargs': '#nofoptargs#', + 'docstr': """\ + def #argname#(#docsignature#): return #docreturn#\\n\\ +#docstrsigns#""", + 'latexdocstr': """ +{{}\\verb@def #argname#(#latexdocsignature#): return #docreturn#@{}} +#routnote# + +#latexdocstrsigns#""", + 'docstrshort': 'def #argname#(#docsignature#): return #docreturn#' +} +cb_rout_rules = [ + { # Init + 'separatorsfor': {'decl': '\n', + 'args': ',', 'optargs': '', 'pyobjfrom': '\n', 'freemem': '\n', + 'args_td': ',', 'optargs_td': '', + 'args_nm': ',', 'optargs_nm': '', + 'frompyobj': '\n', 'setdims': '\n', + 'docstrsigns': '\\n"\n"', + 'latexdocstrsigns': '\n', + 'latexdocstrreq': '\n', 'latexdocstropt': '\n', + 'latexdocstrout': '\n', 'latexdocstrcbs': '\n', + }, + 'decl': '/*decl*/', 'pyobjfrom': '/*pyobjfrom*/', 'frompyobj': '/*frompyobj*/', + 'args': [], 'optargs': '', 'return': '', 'strarglens': '', 'freemem': '/*freemem*/', + 'args_td': [], 'optargs_td': '', 'strarglens_td': '', + 'args_nm': [], 'optargs_nm': '', 'strarglens_nm': '', + 'noargs': '', + 'setdims': '/*setdims*/', + 'docstrsigns': '', 'latexdocstrsigns': '', + 'docstrreq': ' Required arguments:', + 'docstropt': ' Optional arguments:', + 'docstrout': ' Return objects:', + 'docstrcbs': ' Call-back functions:', + 'docreturn': '', 'docsign': '', 'docsignopt': '', + 'latexdocstrreq': '\\noindent Required arguments:', + 'latexdocstropt': '\\noindent Optional arguments:', + 'latexdocstrout': '\\noindent Return objects:', + 'latexdocstrcbs': '\\noindent Call-back functions:', + 'routnote': {hasnote: '--- #note#', l_not(hasnote): ''}, + }, { # Function + 'decl': ' #ctype# return_value = 0;', + 'frompyobj': [ + {debugcapi: ' CFUNCSMESS("cb:Getting return_value->");'}, + '''\ + if (capi_j>capi_i) { + GETSCALARFROMPYTUPLE(capi_return,capi_i++,&return_value,#ctype#, + "#ctype#_from_pyobj failed in converting return_value of" + " call-back function #name# to C #ctype#\\n"); + } else { + fprintf(stderr,"Warning: call-back function #name# did not provide" + " return value (index=%d, type=#ctype#)\\n",capi_i); + }''', + {debugcapi: + ' fprintf(stderr,"#showvalueformat#.\\n",return_value);'} + ], + 'need': ['#ctype#_from_pyobj', {debugcapi: 'CFUNCSMESS'}, 'GETSCALARFROMPYTUPLE'], + 'return': ' return return_value;', + '_check': l_and(isfunction, l_not(isstringfunction), l_not(iscomplexfunction)) + }, + { # String function + 'pyobjfrom': {debugcapi: ' fprintf(stderr,"debug-capi:cb:#name#:%d:\\n",return_value_len);'}, + 'args': '#ctype# return_value,int return_value_len', + 'args_nm': 'return_value,&return_value_len', + 'args_td': '#ctype# ,int', + 'frompyobj': [ + {debugcapi: ' CFUNCSMESS("cb:Getting return_value->\\"");'}, + """\ + if (capi_j>capi_i) { + GETSTRFROMPYTUPLE(capi_return,capi_i++,return_value,return_value_len); + } else { + fprintf(stderr,"Warning: call-back function #name# did not provide" + " return value (index=%d, type=#ctype#)\\n",capi_i); + }""", + {debugcapi: + ' fprintf(stderr,"#showvalueformat#\\".\\n",return_value);'} + ], + 'need': ['#ctype#_from_pyobj', {debugcapi: 'CFUNCSMESS'}, + 'string.h', 'GETSTRFROMPYTUPLE'], + 'return': 'return;', + '_check': isstringfunction + }, + { # Complex function + 'optargs': """ +#ifndef F2PY_CB_RETURNCOMPLEX +#ctype# *return_value +#endif +""", + 'optargs_nm': """ +#ifndef F2PY_CB_RETURNCOMPLEX +return_value +#endif +""", + 'optargs_td': """ +#ifndef F2PY_CB_RETURNCOMPLEX +#ctype# * +#endif +""", + 'decl': """ +#ifdef F2PY_CB_RETURNCOMPLEX + #ctype# return_value = {0, 0}; +#endif +""", + 'frompyobj': [ + {debugcapi: ' CFUNCSMESS("cb:Getting return_value->");'}, + """\ + if (capi_j>capi_i) { +#ifdef F2PY_CB_RETURNCOMPLEX + GETSCALARFROMPYTUPLE(capi_return,capi_i++,&return_value,#ctype#, + \"#ctype#_from_pyobj failed in converting return_value of call-back\" + \" function #name# to C #ctype#\\n\"); +#else + GETSCALARFROMPYTUPLE(capi_return,capi_i++,return_value,#ctype#, + \"#ctype#_from_pyobj failed in converting return_value of call-back\" + \" function #name# to C #ctype#\\n\"); +#endif + } else { + fprintf(stderr, + \"Warning: call-back function #name# did not provide\" + \" return value (index=%d, type=#ctype#)\\n\",capi_i); + }""", + {debugcapi: """\ +#ifdef F2PY_CB_RETURNCOMPLEX + fprintf(stderr,\"#showvalueformat#.\\n\",(return_value).r,(return_value).i); +#else + fprintf(stderr,\"#showvalueformat#.\\n\",(*return_value).r,(*return_value).i); +#endif +"""} + ], + 'return': """ +#ifdef F2PY_CB_RETURNCOMPLEX + return return_value; +#else + return; +#endif +""", + 'need': ['#ctype#_from_pyobj', {debugcapi: 'CFUNCSMESS'}, + 'string.h', 'GETSCALARFROMPYTUPLE', '#ctype#'], + '_check': iscomplexfunction + }, + {'docstrout': ' #pydocsignout#', + 'latexdocstrout': ['\\item[]{{}\\verb@#pydocsignout#@{}}', + {hasnote: '--- #note#'}], + 'docreturn': '#rname#,', + '_check': isfunction}, + {'_check': issubroutine, 'return': 'return;'} +] + +cb_arg_rules = [ + { # Doc + 'docstropt': {l_and(isoptional, isintent_nothide): ' #pydocsign#'}, + 'docstrreq': {l_and(isrequired, isintent_nothide): ' #pydocsign#'}, + 'docstrout': {isintent_out: ' #pydocsignout#'}, + 'latexdocstropt': {l_and(isoptional, isintent_nothide): ['\\item[]{{}\\verb@#pydocsign#@{}}', + {hasnote: '--- #note#'}]}, + 'latexdocstrreq': {l_and(isrequired, isintent_nothide): ['\\item[]{{}\\verb@#pydocsign#@{}}', + {hasnote: '--- #note#'}]}, + 'latexdocstrout': {isintent_out: ['\\item[]{{}\\verb@#pydocsignout#@{}}', + {l_and(hasnote, isintent_hide): '--- #note#', + l_and(hasnote, isintent_nothide): '--- See above.'}]}, + 'docsign': {l_and(isrequired, isintent_nothide): '#varname#,'}, + 'docsignopt': {l_and(isoptional, isintent_nothide): '#varname#,'}, + 'depend': '' + }, + { + 'args': { + l_and(isscalar, isintent_c): '#ctype# #varname_i#', + l_and(isscalar, l_not(isintent_c)): '#ctype# *#varname_i#_cb_capi', + isarray: '#ctype# *#varname_i#', + isstring: '#ctype# #varname_i#' + }, + 'args_nm': { + l_and(isscalar, isintent_c): '#varname_i#', + l_and(isscalar, l_not(isintent_c)): '#varname_i#_cb_capi', + isarray: '#varname_i#', + isstring: '#varname_i#' + }, + 'args_td': { + l_and(isscalar, isintent_c): '#ctype#', + l_and(isscalar, l_not(isintent_c)): '#ctype# *', + isarray: '#ctype# *', + isstring: '#ctype#' + }, + 'need': {l_or(isscalar, isarray, isstring): '#ctype#'}, + # untested with multiple args + 'strarglens': {isstring: ',int #varname_i#_cb_len'}, + 'strarglens_td': {isstring: ',int'}, # untested with multiple args + # untested with multiple args + 'strarglens_nm': {isstring: ',#varname_i#_cb_len'}, + }, + { # Scalars + 'decl': {l_not(isintent_c): ' #ctype# #varname_i#=(*#varname_i#_cb_capi);'}, + 'error': {l_and(isintent_c, isintent_out, + throw_error('intent(c,out) is forbidden for callback scalar arguments')): + ''}, + 'frompyobj': [{debugcapi: ' CFUNCSMESS("cb:Getting #varname#->");'}, + {isintent_out: + ' if (capi_j>capi_i)\n GETSCALARFROMPYTUPLE(capi_return,capi_i++,#varname_i#_cb_capi,#ctype#,"#ctype#_from_pyobj failed in converting argument #varname# of call-back function #name# to C #ctype#\\n");'}, + {l_and(debugcapi, l_and(l_not(iscomplex), isintent_c)): + ' fprintf(stderr,"#showvalueformat#.\\n",#varname_i#);'}, + {l_and(debugcapi, l_and(l_not(iscomplex), l_not(isintent_c))): + ' fprintf(stderr,"#showvalueformat#.\\n",*#varname_i#_cb_capi);'}, + {l_and(debugcapi, l_and(iscomplex, isintent_c)): + ' fprintf(stderr,"#showvalueformat#.\\n",(#varname_i#).r,(#varname_i#).i);'}, + {l_and(debugcapi, l_and(iscomplex, l_not(isintent_c))): + ' fprintf(stderr,"#showvalueformat#.\\n",(*#varname_i#_cb_capi).r,(*#varname_i#_cb_capi).i);'}, + ], + 'need': [{isintent_out: ['#ctype#_from_pyobj', 'GETSCALARFROMPYTUPLE']}, + {debugcapi: 'CFUNCSMESS'}], + '_check': isscalar + }, { + 'pyobjfrom': [{isintent_in: """\ + if (cb->nofargs>capi_i) + if (CAPI_ARGLIST_SETITEM(capi_i++,pyobj_from_#ctype#1(#varname_i#))) + goto capi_fail;"""}, + {isintent_inout: """\ + if (cb->nofargs>capi_i) + if (CAPI_ARGLIST_SETITEM(capi_i++,pyarr_from_p_#ctype#1(#varname_i#_cb_capi))) + goto capi_fail;"""}], + 'need': [{isintent_in: 'pyobj_from_#ctype#1'}, + {isintent_inout: 'pyarr_from_p_#ctype#1'}, + {iscomplex: '#ctype#'}], + '_check': l_and(isscalar, isintent_nothide), + '_optional': '' + }, { # String + 'frompyobj': [{debugcapi: ' CFUNCSMESS("cb:Getting #varname#->\\"");'}, + """ if (capi_j>capi_i) + GETSTRFROMPYTUPLE(capi_return,capi_i++,#varname_i#,#varname_i#_cb_len);""", + {debugcapi: + ' fprintf(stderr,"#showvalueformat#\\":%d:.\\n",#varname_i#,#varname_i#_cb_len);'}, + ], + 'need': ['#ctype#', 'GETSTRFROMPYTUPLE', + {debugcapi: 'CFUNCSMESS'}, 'string.h'], + '_check': l_and(isstring, isintent_out) + }, { + 'pyobjfrom': [ + {debugcapi: + (' fprintf(stderr,"debug-capi:cb:#varname#=#showvalueformat#:' + '%d:\\n",#varname_i#,#varname_i#_cb_len);')}, + {isintent_in: """\ + if (cb->nofargs>capi_i) + if (CAPI_ARGLIST_SETITEM(capi_i++,pyobj_from_#ctype#1size(#varname_i#,#varname_i#_cb_len))) + goto capi_fail;"""}, + {isintent_inout: """\ + if (cb->nofargs>capi_i) { + int #varname_i#_cb_dims[] = {#varname_i#_cb_len}; + if (CAPI_ARGLIST_SETITEM(capi_i++,pyarr_from_p_#ctype#1(#varname_i#,#varname_i#_cb_dims))) + goto capi_fail; + }"""}], + 'need': [{isintent_in: 'pyobj_from_#ctype#1size'}, + {isintent_inout: 'pyarr_from_p_#ctype#1'}], + '_check': l_and(isstring, isintent_nothide), + '_optional': '' + }, + # Array ... + { + 'decl': ' npy_intp #varname_i#_Dims[#rank#] = {#rank*[-1]#};', + 'setdims': ' #cbsetdims#;', + '_check': isarray, + '_depend': '' + }, + { + 'pyobjfrom': [{debugcapi: ' fprintf(stderr,"debug-capi:cb:#varname#\\n");'}, + {isintent_c: """\ + if (cb->nofargs>capi_i) { + /* tmp_arr will be inserted to capi_arglist_list that will be + destroyed when leaving callback function wrapper together + with tmp_arr. */ + PyArrayObject *tmp_arr = (PyArrayObject *)PyArray_New(&PyArray_Type, + #rank#,#varname_i#_Dims,#atype#,NULL,(char*)#varname_i#,#elsize#, + NPY_ARRAY_CARRAY,NULL); +""", + l_not(isintent_c): """\ + if (cb->nofargs>capi_i) { + /* tmp_arr will be inserted to capi_arglist_list that will be + destroyed when leaving callback function wrapper together + with tmp_arr. */ + PyArrayObject *tmp_arr = (PyArrayObject *)PyArray_New(&PyArray_Type, + #rank#,#varname_i#_Dims,#atype#,NULL,(char*)#varname_i#,#elsize#, + NPY_ARRAY_FARRAY,NULL); +""", + }, + """ + if (tmp_arr==NULL) + goto capi_fail; + if (CAPI_ARGLIST_SETITEM(capi_i++,(PyObject *)tmp_arr)) + goto capi_fail; +}"""], + '_check': l_and(isarray, isintent_nothide, l_or(isintent_in, isintent_inout)), + '_optional': '', + }, { + 'frompyobj': [{debugcapi: ' CFUNCSMESS("cb:Getting #varname#->");'}, + """ if (capi_j>capi_i) { + PyArrayObject *rv_cb_arr = NULL; + if ((capi_tmp = PyTuple_GetItem(capi_return,capi_i++))==NULL) goto capi_fail; + rv_cb_arr = array_from_pyobj(#atype#,#varname_i#_Dims,#rank#,F2PY_INTENT_IN""", + {isintent_c: '|F2PY_INTENT_C'}, + """,capi_tmp); + if (rv_cb_arr == NULL) { + fprintf(stderr,\"rv_cb_arr is NULL\\n\"); + goto capi_fail; + } + MEMCOPY(#varname_i#,PyArray_DATA(rv_cb_arr),PyArray_NBYTES(rv_cb_arr)); + if (capi_tmp != (PyObject *)rv_cb_arr) { + Py_DECREF(rv_cb_arr); + } + }""", + {debugcapi: ' fprintf(stderr,"<-.\\n");'}, + ], + 'need': ['MEMCOPY', {iscomplexarray: '#ctype#'}], + '_check': l_and(isarray, isintent_out) + }, { + 'docreturn': '#varname#,', + '_check': isintent_out + } +] + +################## Build call-back module ############# +cb_map = {} + + +def buildcallbacks(m): + cb_map[m['name']] = [] + for bi in m['body']: + if bi['block'] == 'interface': + for b in bi['body']: + if b: + buildcallback(b, m['name']) + else: + errmess(f"warning: empty body for {m['name']}\n") + + +def buildcallback(rout, um): + from . import capi_maps + + outmess(f" Constructing call-back function \"cb_{rout['name']}_in_{um}\"\n") + args, depargs = getargs(rout) + capi_maps.depargs = depargs + var = rout['vars'] + vrd = capi_maps.cb_routsign2map(rout, um) + rd = dictappend({}, vrd) + cb_map[um].append([rout['name'], rd['name']]) + for r in cb_rout_rules: + if ('_check' in r and r['_check'](rout)) or ('_check' not in r): + ar = applyrules(r, vrd, rout) + rd = dictappend(rd, ar) + savevrd = {} + for i, a in enumerate(args): + vrd = capi_maps.cb_sign2map(a, var[a], index=i) + savevrd[a] = vrd + for r in cb_arg_rules: + if '_depend' in r: + continue + if '_optional' in r and isoptional(var[a]): + continue + if ('_check' in r and r['_check'](var[a])) or ('_check' not in r): + ar = applyrules(r, vrd, var[a]) + rd = dictappend(rd, ar) + if '_break' in r: + break + for a in args: + vrd = savevrd[a] + for r in cb_arg_rules: + if '_depend' in r: + continue + if ('_optional' not in r) or ('_optional' in r and isrequired(var[a])): + continue + if ('_check' in r and r['_check'](var[a])) or ('_check' not in r): + ar = applyrules(r, vrd, var[a]) + rd = dictappend(rd, ar) + if '_break' in r: + break + for a in depargs: + vrd = savevrd[a] + for r in cb_arg_rules: + if '_depend' not in r: + continue + if '_optional' in r: + continue + if ('_check' in r and r['_check'](var[a])) or ('_check' not in r): + ar = applyrules(r, vrd, var[a]) + rd = dictappend(rd, ar) + if '_break' in r: + break + if 'args' in rd and 'optargs' in rd: + if isinstance(rd['optargs'], list): + rd['optargs'] = rd['optargs'] + [""" +#ifndef F2PY_CB_RETURNCOMPLEX +, +#endif +"""] + rd['optargs_nm'] = rd['optargs_nm'] + [""" +#ifndef F2PY_CB_RETURNCOMPLEX +, +#endif +"""] + rd['optargs_td'] = rd['optargs_td'] + [""" +#ifndef F2PY_CB_RETURNCOMPLEX +, +#endif +"""] + if isinstance(rd['docreturn'], list): + rd['docreturn'] = stripcomma( + replace('#docreturn#', {'docreturn': rd['docreturn']})) + optargs = stripcomma(replace('#docsignopt#', + {'docsignopt': rd['docsignopt']} + )) + if optargs == '': + rd['docsignature'] = stripcomma( + replace('#docsign#', {'docsign': rd['docsign']})) + else: + rd['docsignature'] = replace('#docsign#[#docsignopt#]', + {'docsign': rd['docsign'], + 'docsignopt': optargs, + }) + rd['latexdocsignature'] = rd['docsignature'].replace('_', '\\_') + rd['latexdocsignature'] = rd['latexdocsignature'].replace(',', ', ') + rd['docstrsigns'] = [] + rd['latexdocstrsigns'] = [] + for k in ['docstrreq', 'docstropt', 'docstrout', 'docstrcbs']: + if k in rd and isinstance(rd[k], list): + rd['docstrsigns'] = rd['docstrsigns'] + rd[k] + k = 'latex' + k + if k in rd and isinstance(rd[k], list): + rd['latexdocstrsigns'] = rd['latexdocstrsigns'] + rd[k][0:1] +\ + ['\\begin{description}'] + rd[k][1:] +\ + ['\\end{description}'] + if 'args' not in rd: + rd['args'] = '' + rd['args_td'] = '' + rd['args_nm'] = '' + if not (rd.get('args') or rd.get('optargs') or rd.get('strarglens')): + rd['noargs'] = 'void' + + ar = applyrules(cb_routine_rules, rd) + cfuncs.callbacks[rd['name']] = ar['body'] + if isinstance(ar['need'], str): + ar['need'] = [ar['need']] + + if 'need' in rd: + for t in cfuncs.typedefs.keys(): + if t in rd['need']: + ar['need'].append(t) + + cfuncs.typedefs_generated[rd['name'] + '_typedef'] = ar['cbtypedefs'] + ar['need'].append(rd['name'] + '_typedef') + cfuncs.needs[rd['name']] = ar['need'] + + capi_maps.lcb2_map[rd['name']] = {'maxnofargs': ar['maxnofargs'], + 'nofoptargs': ar['nofoptargs'], + 'docstr': ar['docstr'], + 'latexdocstr': ar['latexdocstr'], + 'argname': rd['argname'] + } + outmess(f" {ar['docstrshort']}\n") +################## Build call-back function ############# diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/cb_rules.pyi b/.venv/lib/python3.12/site-packages/numpy/f2py/cb_rules.pyi new file mode 100644 index 0000000..b22f544 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/cb_rules.pyi @@ -0,0 +1,17 @@ +from collections.abc import Mapping +from typing import Any, Final + +from .__version__ import version + +## + +f2py_version: Final = version + +cb_routine_rules: Final[dict[str, str | list[str]]] = ... +cb_rout_rules: Final[list[dict[str, str | Any]]] = ... +cb_arg_rules: Final[list[dict[str, str | Any]]] = ... + +cb_map: Final[dict[str, list[list[str]]]] = ... + +def buildcallbacks(m: Mapping[str, object]) -> None: ... +def buildcallback(rout: Mapping[str, object], um: Mapping[str, object]) -> None: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/cfuncs.py b/.venv/lib/python3.12/site-packages/numpy/f2py/cfuncs.py new file mode 100644 index 0000000..b2b1cad --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/cfuncs.py @@ -0,0 +1,1563 @@ +""" +C declarations, CPP macros, and C functions for f2py2e. +Only required declarations/macros/functions will be used. + +Copyright 1999 -- 2011 Pearu Peterson all rights reserved. +Copyright 2011 -- present NumPy Developers. +Permission to use, modify, and distribute this software is given under the +terms of the NumPy License. + +NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. +""" +import copy +import sys + +from . import __version__ + +f2py_version = __version__.version + + +def errmess(s: str) -> None: + """ + Write an error message to stderr. + + This indirection is needed because sys.stderr might not always be available (see #26862). + """ + if sys.stderr is not None: + sys.stderr.write(s) + +##################### Definitions ################## + + +outneeds = {'includes0': [], 'includes': [], 'typedefs': [], 'typedefs_generated': [], + 'userincludes': [], + 'cppmacros': [], 'cfuncs': [], 'callbacks': [], 'f90modhooks': [], + 'commonhooks': []} +needs = {} +includes0 = {'includes0': '/*need_includes0*/'} +includes = {'includes': '/*need_includes*/'} +userincludes = {'userincludes': '/*need_userincludes*/'} +typedefs = {'typedefs': '/*need_typedefs*/'} +typedefs_generated = {'typedefs_generated': '/*need_typedefs_generated*/'} +cppmacros = {'cppmacros': '/*need_cppmacros*/'} +cfuncs = {'cfuncs': '/*need_cfuncs*/'} +callbacks = {'callbacks': '/*need_callbacks*/'} +f90modhooks = {'f90modhooks': '/*need_f90modhooks*/', + 'initf90modhooksstatic': '/*initf90modhooksstatic*/', + 'initf90modhooksdynamic': '/*initf90modhooksdynamic*/', + } +commonhooks = {'commonhooks': '/*need_commonhooks*/', + 'initcommonhooks': '/*need_initcommonhooks*/', + } + +############ Includes ################### + +includes0['math.h'] = '#include ' +includes0['string.h'] = '#include ' +includes0['setjmp.h'] = '#include ' + +includes['arrayobject.h'] = '''#define PY_ARRAY_UNIQUE_SYMBOL PyArray_API +#include "arrayobject.h"''' +includes['npy_math.h'] = '#include "numpy/npy_math.h"' + +includes['arrayobject.h'] = '#include "fortranobject.h"' +includes['stdarg.h'] = '#include ' + +############# Type definitions ############### + +typedefs['unsigned_char'] = 'typedef unsigned char unsigned_char;' +typedefs['unsigned_short'] = 'typedef unsigned short unsigned_short;' +typedefs['unsigned_long'] = 'typedef unsigned long unsigned_long;' +typedefs['signed_char'] = 'typedef signed char signed_char;' +typedefs['long_long'] = """ +#if defined(NPY_OS_WIN32) +typedef __int64 long_long; +#else +typedef long long long_long; +typedef unsigned long long unsigned_long_long; +#endif +""" +typedefs['unsigned_long_long'] = """ +#if defined(NPY_OS_WIN32) +typedef __uint64 long_long; +#else +typedef unsigned long long unsigned_long_long; +#endif +""" +typedefs['long_double'] = """ +#ifndef _LONG_DOUBLE +typedef long double long_double; +#endif +""" +typedefs[ + 'complex_long_double'] = 'typedef struct {long double r,i;} complex_long_double;' +typedefs['complex_float'] = 'typedef struct {float r,i;} complex_float;' +typedefs['complex_double'] = 'typedef struct {double r,i;} complex_double;' +typedefs['string'] = """typedef char * string;""" +typedefs['character'] = """typedef char character;""" + + +############### CPP macros #################### +cppmacros['CFUNCSMESS'] = """ +#ifdef DEBUGCFUNCS +#define CFUNCSMESS(mess) fprintf(stderr,\"debug-capi:\"mess); +#define CFUNCSMESSPY(mess,obj) CFUNCSMESS(mess) \\ + PyObject_Print((PyObject *)obj,stderr,Py_PRINT_RAW);\\ + fprintf(stderr,\"\\n\"); +#else +#define CFUNCSMESS(mess) +#define CFUNCSMESSPY(mess,obj) +#endif +""" +cppmacros['F_FUNC'] = """ +#if defined(PREPEND_FORTRAN) +#if defined(NO_APPEND_FORTRAN) +#if defined(UPPERCASE_FORTRAN) +#define F_FUNC(f,F) _##F +#else +#define F_FUNC(f,F) _##f +#endif +#else +#if defined(UPPERCASE_FORTRAN) +#define F_FUNC(f,F) _##F##_ +#else +#define F_FUNC(f,F) _##f##_ +#endif +#endif +#else +#if defined(NO_APPEND_FORTRAN) +#if defined(UPPERCASE_FORTRAN) +#define F_FUNC(f,F) F +#else +#define F_FUNC(f,F) f +#endif +#else +#if defined(UPPERCASE_FORTRAN) +#define F_FUNC(f,F) F##_ +#else +#define F_FUNC(f,F) f##_ +#endif +#endif +#endif +#if defined(UNDERSCORE_G77) +#define F_FUNC_US(f,F) F_FUNC(f##_,F##_) +#else +#define F_FUNC_US(f,F) F_FUNC(f,F) +#endif +""" +cppmacros['F_WRAPPEDFUNC'] = """ +#if defined(PREPEND_FORTRAN) +#if defined(NO_APPEND_FORTRAN) +#if defined(UPPERCASE_FORTRAN) +#define F_WRAPPEDFUNC(f,F) _F2PYWRAP##F +#else +#define F_WRAPPEDFUNC(f,F) _f2pywrap##f +#endif +#else +#if defined(UPPERCASE_FORTRAN) +#define F_WRAPPEDFUNC(f,F) _F2PYWRAP##F##_ +#else +#define F_WRAPPEDFUNC(f,F) _f2pywrap##f##_ +#endif +#endif +#else +#if defined(NO_APPEND_FORTRAN) +#if defined(UPPERCASE_FORTRAN) +#define F_WRAPPEDFUNC(f,F) F2PYWRAP##F +#else +#define F_WRAPPEDFUNC(f,F) f2pywrap##f +#endif +#else +#if defined(UPPERCASE_FORTRAN) +#define F_WRAPPEDFUNC(f,F) F2PYWRAP##F##_ +#else +#define F_WRAPPEDFUNC(f,F) f2pywrap##f##_ +#endif +#endif +#endif +#if defined(UNDERSCORE_G77) +#define F_WRAPPEDFUNC_US(f,F) F_WRAPPEDFUNC(f##_,F##_) +#else +#define F_WRAPPEDFUNC_US(f,F) F_WRAPPEDFUNC(f,F) +#endif +""" +cppmacros['F_MODFUNC'] = """ +#if defined(F90MOD2CCONV1) /*E.g. Compaq Fortran */ +#if defined(NO_APPEND_FORTRAN) +#define F_MODFUNCNAME(m,f) $ ## m ## $ ## f +#else +#define F_MODFUNCNAME(m,f) $ ## m ## $ ## f ## _ +#endif +#endif + +#if defined(F90MOD2CCONV2) /*E.g. IBM XL Fortran, not tested though */ +#if defined(NO_APPEND_FORTRAN) +#define F_MODFUNCNAME(m,f) __ ## m ## _MOD_ ## f +#else +#define F_MODFUNCNAME(m,f) __ ## m ## _MOD_ ## f ## _ +#endif +#endif + +#if defined(F90MOD2CCONV3) /*E.g. MIPSPro Compilers */ +#if defined(NO_APPEND_FORTRAN) +#define F_MODFUNCNAME(m,f) f ## .in. ## m +#else +#define F_MODFUNCNAME(m,f) f ## .in. ## m ## _ +#endif +#endif +/* +#if defined(UPPERCASE_FORTRAN) +#define F_MODFUNC(m,M,f,F) F_MODFUNCNAME(M,F) +#else +#define F_MODFUNC(m,M,f,F) F_MODFUNCNAME(m,f) +#endif +*/ + +#define F_MODFUNC(m,f) (*(f2pymodstruct##m##.##f)) +""" +cppmacros['SWAPUNSAFE'] = """ +#define SWAP(a,b) (size_t)(a) = ((size_t)(a) ^ (size_t)(b));\\ + (size_t)(b) = ((size_t)(a) ^ (size_t)(b));\\ + (size_t)(a) = ((size_t)(a) ^ (size_t)(b)) +""" +cppmacros['SWAP'] = """ +#define SWAP(a,b,t) {\\ + t *c;\\ + c = a;\\ + a = b;\\ + b = c;} +""" +# cppmacros['ISCONTIGUOUS']='#define ISCONTIGUOUS(m) (PyArray_FLAGS(m) & +# NPY_ARRAY_C_CONTIGUOUS)' +cppmacros['PRINTPYOBJERR'] = """ +#define PRINTPYOBJERR(obj)\\ + fprintf(stderr,\"#modulename#.error is related to \");\\ + PyObject_Print((PyObject *)obj,stderr,Py_PRINT_RAW);\\ + fprintf(stderr,\"\\n\"); +""" +cppmacros['MINMAX'] = """ +#ifndef max +#define max(a,b) ((a > b) ? (a) : (b)) +#endif +#ifndef min +#define min(a,b) ((a < b) ? (a) : (b)) +#endif +#ifndef MAX +#define MAX(a,b) ((a > b) ? (a) : (b)) +#endif +#ifndef MIN +#define MIN(a,b) ((a < b) ? (a) : (b)) +#endif +""" +cppmacros['len..'] = """ +/* See fortranobject.h for definitions. The macros here are provided for BC. */ +#define rank f2py_rank +#define shape f2py_shape +#define fshape f2py_shape +#define len f2py_len +#define flen f2py_flen +#define slen f2py_slen +#define size f2py_size +""" +cppmacros['pyobj_from_char1'] = r""" +#define pyobj_from_char1(v) (PyLong_FromLong(v)) +""" +cppmacros['pyobj_from_short1'] = r""" +#define pyobj_from_short1(v) (PyLong_FromLong(v)) +""" +needs['pyobj_from_int1'] = ['signed_char'] +cppmacros['pyobj_from_int1'] = r""" +#define pyobj_from_int1(v) (PyLong_FromLong(v)) +""" +cppmacros['pyobj_from_long1'] = r""" +#define pyobj_from_long1(v) (PyLong_FromLong(v)) +""" +needs['pyobj_from_long_long1'] = ['long_long'] +cppmacros['pyobj_from_long_long1'] = """ +#ifdef HAVE_LONG_LONG +#define pyobj_from_long_long1(v) (PyLong_FromLongLong(v)) +#else +#warning HAVE_LONG_LONG is not available. Redefining pyobj_from_long_long. +#define pyobj_from_long_long1(v) (PyLong_FromLong(v)) +#endif +""" +needs['pyobj_from_long_double1'] = ['long_double'] +cppmacros['pyobj_from_long_double1'] = """ +#define pyobj_from_long_double1(v) (PyFloat_FromDouble(v))""" +cppmacros['pyobj_from_double1'] = """ +#define pyobj_from_double1(v) (PyFloat_FromDouble(v))""" +cppmacros['pyobj_from_float1'] = """ +#define pyobj_from_float1(v) (PyFloat_FromDouble(v))""" +needs['pyobj_from_complex_long_double1'] = ['complex_long_double'] +cppmacros['pyobj_from_complex_long_double1'] = """ +#define pyobj_from_complex_long_double1(v) (PyComplex_FromDoubles(v.r,v.i))""" +needs['pyobj_from_complex_double1'] = ['complex_double'] +cppmacros['pyobj_from_complex_double1'] = """ +#define pyobj_from_complex_double1(v) (PyComplex_FromDoubles(v.r,v.i))""" +needs['pyobj_from_complex_float1'] = ['complex_float'] +cppmacros['pyobj_from_complex_float1'] = """ +#define pyobj_from_complex_float1(v) (PyComplex_FromDoubles(v.r,v.i))""" +needs['pyobj_from_string1'] = ['string'] +cppmacros['pyobj_from_string1'] = """ +#define pyobj_from_string1(v) (PyUnicode_FromString((char *)v))""" +needs['pyobj_from_string1size'] = ['string'] +cppmacros['pyobj_from_string1size'] = """ +#define pyobj_from_string1size(v,len) (PyUnicode_FromStringAndSize((char *)v, len))""" +needs['TRYPYARRAYTEMPLATE'] = ['PRINTPYOBJERR'] +cppmacros['TRYPYARRAYTEMPLATE'] = """ +/* New SciPy */ +#define TRYPYARRAYTEMPLATECHAR case NPY_STRING: *(char *)(PyArray_DATA(arr))=*v; break; +#define TRYPYARRAYTEMPLATELONG case NPY_LONG: *(long *)(PyArray_DATA(arr))=*v; break; +#define TRYPYARRAYTEMPLATEOBJECT case NPY_OBJECT: PyArray_SETITEM(arr,PyArray_DATA(arr),pyobj_from_ ## ctype ## 1(*v)); break; + +#define TRYPYARRAYTEMPLATE(ctype,typecode) \\ + PyArrayObject *arr = NULL;\\ + if (!obj) return -2;\\ + if (!PyArray_Check(obj)) return -1;\\ + if (!(arr=(PyArrayObject *)obj)) {fprintf(stderr,\"TRYPYARRAYTEMPLATE:\");PRINTPYOBJERR(obj);return 0;}\\ + if (PyArray_DESCR(arr)->type==typecode) {*(ctype *)(PyArray_DATA(arr))=*v; return 1;}\\ + switch (PyArray_TYPE(arr)) {\\ + case NPY_DOUBLE: *(npy_double *)(PyArray_DATA(arr))=*v; break;\\ + case NPY_INT: *(npy_int *)(PyArray_DATA(arr))=*v; break;\\ + case NPY_LONG: *(npy_long *)(PyArray_DATA(arr))=*v; break;\\ + case NPY_FLOAT: *(npy_float *)(PyArray_DATA(arr))=*v; break;\\ + case NPY_CDOUBLE: *(npy_double *)(PyArray_DATA(arr))=*v; break;\\ + case NPY_CFLOAT: *(npy_float *)(PyArray_DATA(arr))=*v; break;\\ + case NPY_BOOL: *(npy_bool *)(PyArray_DATA(arr))=(*v!=0); break;\\ + case NPY_UBYTE: *(npy_ubyte *)(PyArray_DATA(arr))=*v; break;\\ + case NPY_BYTE: *(npy_byte *)(PyArray_DATA(arr))=*v; break;\\ + case NPY_SHORT: *(npy_short *)(PyArray_DATA(arr))=*v; break;\\ + case NPY_USHORT: *(npy_ushort *)(PyArray_DATA(arr))=*v; break;\\ + case NPY_UINT: *(npy_uint *)(PyArray_DATA(arr))=*v; break;\\ + case NPY_ULONG: *(npy_ulong *)(PyArray_DATA(arr))=*v; break;\\ + case NPY_LONGLONG: *(npy_longlong *)(PyArray_DATA(arr))=*v; break;\\ + case NPY_ULONGLONG: *(npy_ulonglong *)(PyArray_DATA(arr))=*v; break;\\ + case NPY_LONGDOUBLE: *(npy_longdouble *)(PyArray_DATA(arr))=*v; break;\\ + case NPY_CLONGDOUBLE: *(npy_longdouble *)(PyArray_DATA(arr))=*v; break;\\ + case NPY_OBJECT: PyArray_SETITEM(arr, PyArray_DATA(arr), pyobj_from_ ## ctype ## 1(*v)); break;\\ + default: return -2;\\ + };\\ + return 1 +""" + +needs['TRYCOMPLEXPYARRAYTEMPLATE'] = ['PRINTPYOBJERR'] +cppmacros['TRYCOMPLEXPYARRAYTEMPLATE'] = """ +#define TRYCOMPLEXPYARRAYTEMPLATEOBJECT case NPY_OBJECT: PyArray_SETITEM(arr, PyArray_DATA(arr), pyobj_from_complex_ ## ctype ## 1((*v))); break; +#define TRYCOMPLEXPYARRAYTEMPLATE(ctype,typecode)\\ + PyArrayObject *arr = NULL;\\ + if (!obj) return -2;\\ + if (!PyArray_Check(obj)) return -1;\\ + if (!(arr=(PyArrayObject *)obj)) {fprintf(stderr,\"TRYCOMPLEXPYARRAYTEMPLATE:\");PRINTPYOBJERR(obj);return 0;}\\ + if (PyArray_DESCR(arr)->type==typecode) {\\ + *(ctype *)(PyArray_DATA(arr))=(*v).r;\\ + *(ctype *)(PyArray_DATA(arr)+sizeof(ctype))=(*v).i;\\ + return 1;\\ + }\\ + switch (PyArray_TYPE(arr)) {\\ + case NPY_CDOUBLE: *(npy_double *)(PyArray_DATA(arr))=(*v).r;\\ + *(npy_double *)(PyArray_DATA(arr)+sizeof(npy_double))=(*v).i;\\ + break;\\ + case NPY_CFLOAT: *(npy_float *)(PyArray_DATA(arr))=(*v).r;\\ + *(npy_float *)(PyArray_DATA(arr)+sizeof(npy_float))=(*v).i;\\ + break;\\ + case NPY_DOUBLE: *(npy_double *)(PyArray_DATA(arr))=(*v).r; break;\\ + case NPY_LONG: *(npy_long *)(PyArray_DATA(arr))=(*v).r; break;\\ + case NPY_FLOAT: *(npy_float *)(PyArray_DATA(arr))=(*v).r; break;\\ + case NPY_INT: *(npy_int *)(PyArray_DATA(arr))=(*v).r; break;\\ + case NPY_SHORT: *(npy_short *)(PyArray_DATA(arr))=(*v).r; break;\\ + case NPY_UBYTE: *(npy_ubyte *)(PyArray_DATA(arr))=(*v).r; break;\\ + case NPY_BYTE: *(npy_byte *)(PyArray_DATA(arr))=(*v).r; break;\\ + case NPY_BOOL: *(npy_bool *)(PyArray_DATA(arr))=((*v).r!=0 && (*v).i!=0); break;\\ + case NPY_USHORT: *(npy_ushort *)(PyArray_DATA(arr))=(*v).r; break;\\ + case NPY_UINT: *(npy_uint *)(PyArray_DATA(arr))=(*v).r; break;\\ + case NPY_ULONG: *(npy_ulong *)(PyArray_DATA(arr))=(*v).r; break;\\ + case NPY_LONGLONG: *(npy_longlong *)(PyArray_DATA(arr))=(*v).r; break;\\ + case NPY_ULONGLONG: *(npy_ulonglong *)(PyArray_DATA(arr))=(*v).r; break;\\ + case NPY_LONGDOUBLE: *(npy_longdouble *)(PyArray_DATA(arr))=(*v).r; break;\\ + case NPY_CLONGDOUBLE: *(npy_longdouble *)(PyArray_DATA(arr))=(*v).r;\\ + *(npy_longdouble *)(PyArray_DATA(arr)+sizeof(npy_longdouble))=(*v).i;\\ + break;\\ + case NPY_OBJECT: PyArray_SETITEM(arr, PyArray_DATA(arr), pyobj_from_complex_ ## ctype ## 1((*v))); break;\\ + default: return -2;\\ + };\\ + return -1; +""" +# cppmacros['NUMFROMARROBJ']=""" +# define NUMFROMARROBJ(typenum,ctype) \\ +# if (PyArray_Check(obj)) arr = (PyArrayObject *)obj;\\ +# else arr = (PyArrayObject *)PyArray_ContiguousFromObject(obj,typenum,0,0);\\ +# if (arr) {\\ +# if (PyArray_TYPE(arr)==NPY_OBJECT) {\\ +# if (!ctype ## _from_pyobj(v,(PyArray_DESCR(arr)->getitem)(PyArray_DATA(arr)),\"\"))\\ +# goto capi_fail;\\ +# } else {\\ +# (PyArray_DESCR(arr)->cast[typenum])(PyArray_DATA(arr),1,(char*)v,1,1);\\ +# }\\ +# if ((PyObject *)arr != obj) { Py_DECREF(arr); }\\ +# return 1;\\ +# } +# """ +# XXX: Note that CNUMFROMARROBJ is identical with NUMFROMARROBJ +# cppmacros['CNUMFROMARROBJ']=""" +# define CNUMFROMARROBJ(typenum,ctype) \\ +# if (PyArray_Check(obj)) arr = (PyArrayObject *)obj;\\ +# else arr = (PyArrayObject *)PyArray_ContiguousFromObject(obj,typenum,0,0);\\ +# if (arr) {\\ +# if (PyArray_TYPE(arr)==NPY_OBJECT) {\\ +# if (!ctype ## _from_pyobj(v,(PyArray_DESCR(arr)->getitem)(PyArray_DATA(arr)),\"\"))\\ +# goto capi_fail;\\ +# } else {\\ +# (PyArray_DESCR(arr)->cast[typenum])((void *)(PyArray_DATA(arr)),1,(void *)(v),1,1);\\ +# }\\ +# if ((PyObject *)arr != obj) { Py_DECREF(arr); }\\ +# return 1;\\ +# } +# """ + + +needs['GETSTRFROMPYTUPLE'] = ['STRINGCOPYN', 'PRINTPYOBJERR'] +cppmacros['GETSTRFROMPYTUPLE'] = """ +#define GETSTRFROMPYTUPLE(tuple,index,str,len) {\\ + PyObject *rv_cb_str = PyTuple_GetItem((tuple),(index));\\ + if (rv_cb_str == NULL)\\ + goto capi_fail;\\ + if (PyBytes_Check(rv_cb_str)) {\\ + str[len-1]='\\0';\\ + STRINGCOPYN((str),PyBytes_AS_STRING((PyBytesObject*)rv_cb_str),(len));\\ + } else {\\ + PRINTPYOBJERR(rv_cb_str);\\ + PyErr_SetString(#modulename#_error,\"string object expected\");\\ + goto capi_fail;\\ + }\\ + } +""" +cppmacros['GETSCALARFROMPYTUPLE'] = """ +#define GETSCALARFROMPYTUPLE(tuple,index,var,ctype,mess) {\\ + if ((capi_tmp = PyTuple_GetItem((tuple),(index)))==NULL) goto capi_fail;\\ + if (!(ctype ## _from_pyobj((var),capi_tmp,mess)))\\ + goto capi_fail;\\ + } +""" + +cppmacros['FAILNULL'] = """\ +#define FAILNULL(p) do { \\ + if ((p) == NULL) { \\ + PyErr_SetString(PyExc_MemoryError, "NULL pointer found"); \\ + goto capi_fail; \\ + } \\ +} while (0) +""" +needs['MEMCOPY'] = ['string.h', 'FAILNULL'] +cppmacros['MEMCOPY'] = """ +#define MEMCOPY(to,from,n)\\ + do { FAILNULL(to); FAILNULL(from); (void)memcpy(to,from,n); } while (0) +""" +cppmacros['STRINGMALLOC'] = """ +#define STRINGMALLOC(str,len)\\ + if ((str = (string)malloc(len+1)) == NULL) {\\ + PyErr_SetString(PyExc_MemoryError, \"out of memory\");\\ + goto capi_fail;\\ + } else {\\ + (str)[len] = '\\0';\\ + } +""" +cppmacros['STRINGFREE'] = """ +#define STRINGFREE(str) do {if (!(str == NULL)) free(str);} while (0) +""" +needs['STRINGPADN'] = ['string.h'] +cppmacros['STRINGPADN'] = """ +/* +STRINGPADN replaces null values with padding values from the right. + +`to` must have size of at least N bytes. + +If the `to[N-1]` has null value, then replace it and all the +preceding, nulls with the given padding. + +STRINGPADN(to, N, PADDING, NULLVALUE) is an inverse operation. +*/ +#define STRINGPADN(to, N, NULLVALUE, PADDING) \\ + do { \\ + int _m = (N); \\ + char *_to = (to); \\ + for (_m -= 1; _m >= 0 && _to[_m] == NULLVALUE; _m--) { \\ + _to[_m] = PADDING; \\ + } \\ + } while (0) +""" +needs['STRINGCOPYN'] = ['string.h', 'FAILNULL'] +cppmacros['STRINGCOPYN'] = """ +/* +STRINGCOPYN copies N bytes. + +`to` and `from` buffers must have sizes of at least N bytes. +*/ +#define STRINGCOPYN(to,from,N) \\ + do { \\ + int _m = (N); \\ + char *_to = (to); \\ + char *_from = (from); \\ + FAILNULL(_to); FAILNULL(_from); \\ + (void)strncpy(_to, _from, _m); \\ + } while (0) +""" +needs['STRINGCOPY'] = ['string.h', 'FAILNULL'] +cppmacros['STRINGCOPY'] = """ +#define STRINGCOPY(to,from)\\ + do { FAILNULL(to); FAILNULL(from); (void)strcpy(to,from); } while (0) +""" +cppmacros['CHECKGENERIC'] = """ +#define CHECKGENERIC(check,tcheck,name) \\ + if (!(check)) {\\ + PyErr_SetString(#modulename#_error,\"(\"tcheck\") failed for \"name);\\ + /*goto capi_fail;*/\\ + } else """ +cppmacros['CHECKARRAY'] = """ +#define CHECKARRAY(check,tcheck,name) \\ + if (!(check)) {\\ + PyErr_SetString(#modulename#_error,\"(\"tcheck\") failed for \"name);\\ + /*goto capi_fail;*/\\ + } else """ +cppmacros['CHECKSTRING'] = """ +#define CHECKSTRING(check,tcheck,name,show,var)\\ + if (!(check)) {\\ + char errstring[256];\\ + sprintf(errstring, \"%s: \"show, \"(\"tcheck\") failed for \"name, slen(var), var);\\ + PyErr_SetString(#modulename#_error, errstring);\\ + /*goto capi_fail;*/\\ + } else """ +cppmacros['CHECKSCALAR'] = """ +#define CHECKSCALAR(check,tcheck,name,show,var)\\ + if (!(check)) {\\ + char errstring[256];\\ + sprintf(errstring, \"%s: \"show, \"(\"tcheck\") failed for \"name, var);\\ + PyErr_SetString(#modulename#_error,errstring);\\ + /*goto capi_fail;*/\\ + } else """ +# cppmacros['CHECKDIMS']=""" +# define CHECKDIMS(dims,rank) \\ +# for (int i=0;i<(rank);i++)\\ +# if (dims[i]<0) {\\ +# fprintf(stderr,\"Unspecified array argument requires a complete dimension specification.\\n\");\\ +# goto capi_fail;\\ +# } +# """ +cppmacros[ + 'ARRSIZE'] = '#define ARRSIZE(dims,rank) (_PyArray_multiply_list(dims,rank))' +cppmacros['OLDPYNUM'] = """ +#ifdef OLDPYNUM +#error You need to install NumPy version 0.13 or higher. See https://scipy.org/install.html +#endif +""" + +# Defining the correct value to indicate thread-local storage in C without +# running a compile-time check (which we have no control over in generated +# code used outside of NumPy) is hard. Therefore we support overriding this +# via an external define - the f2py-using package can then use the same +# compile-time checks as we use for `NPY_TLS` when building NumPy (see +# scipy#21860 for an example of that). +# +# __STDC_NO_THREADS__ should not be coupled to the availability of _Thread_local. +# In case we get a bug report, guard it with __STDC_NO_THREADS__ after all. +# +# `thread_local` has become a keyword in C23, but don't try to use that yet +# (too new, doing so while C23 support is preliminary will likely cause more +# problems than it solves). +# +# Note: do not try to use `threads.h`, its availability is very low +# *and* threads.h isn't actually used where `F2PY_THREAD_LOCAL_DECL` is +# in the generated code. See gh-27718 for more details. +cppmacros["F2PY_THREAD_LOCAL_DECL"] = """ +#ifndef F2PY_THREAD_LOCAL_DECL +#if defined(_MSC_VER) +#define F2PY_THREAD_LOCAL_DECL __declspec(thread) +#elif defined(NPY_OS_MINGW) +#define F2PY_THREAD_LOCAL_DECL __thread +#elif defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) +#define F2PY_THREAD_LOCAL_DECL _Thread_local +#elif defined(__GNUC__) \\ + && (__GNUC__ > 4 || (__GNUC__ == 4 && (__GNUC_MINOR__ >= 4))) +#define F2PY_THREAD_LOCAL_DECL __thread +#endif +#endif +""" +################# C functions ############### + +cfuncs['calcarrindex'] = """ +static int calcarrindex(int *i,PyArrayObject *arr) { + int k,ii = i[0]; + for (k=1; k < PyArray_NDIM(arr); k++) + ii += (ii*(PyArray_DIM(arr,k) - 1)+i[k]); /* assuming contiguous arr */ + return ii; +}""" +cfuncs['calcarrindextr'] = """ +static int calcarrindextr(int *i,PyArrayObject *arr) { + int k,ii = i[PyArray_NDIM(arr)-1]; + for (k=1; k < PyArray_NDIM(arr); k++) + ii += (ii*(PyArray_DIM(arr,PyArray_NDIM(arr)-k-1) - 1)+i[PyArray_NDIM(arr)-k-1]); /* assuming contiguous arr */ + return ii; +}""" +cfuncs['forcomb'] = """ +struct ForcombCache { int nd;npy_intp *d;int *i,*i_tr,tr; }; +static int initforcomb(struct ForcombCache *cache, npy_intp *dims,int nd,int tr) { + int k; + if (dims==NULL) return 0; + if (nd<0) return 0; + cache->nd = nd; + cache->d = dims; + cache->tr = tr; + + cache->i = (int *)malloc(sizeof(int)*nd); + if (cache->i==NULL) return 0; + cache->i_tr = (int *)malloc(sizeof(int)*nd); + if (cache->i_tr==NULL) {free(cache->i); return 0;}; + + for (k=1;ki[k] = cache->i_tr[nd-k-1] = 0; + } + cache->i[0] = cache->i_tr[nd-1] = -1; + return 1; +} +static int *nextforcomb(struct ForcombCache *cache) { + if (cache==NULL) return NULL; + int j,*i,*i_tr,k; + int nd=cache->nd; + if ((i=cache->i) == NULL) return NULL; + if ((i_tr=cache->i_tr) == NULL) return NULL; + if (cache->d == NULL) return NULL; + i[0]++; + if (i[0]==cache->d[0]) { + j=1; + while ((jd[j]-1)) j++; + if (j==nd) { + free(i); + free(i_tr); + return NULL; + } + for (k=0;ktr) return i_tr; + return i; +}""" +needs['try_pyarr_from_string'] = ['STRINGCOPYN', 'PRINTPYOBJERR', 'string'] +cfuncs['try_pyarr_from_string'] = """ +/* + try_pyarr_from_string copies str[:len(obj)] to the data of an `ndarray`. + + If obj is an `ndarray`, it is assumed to be contiguous. + + If the specified len==-1, str must be null-terminated. +*/ +static int try_pyarr_from_string(PyObject *obj, + const string str, const int len) { +#ifdef DEBUGCFUNCS +fprintf(stderr, "try_pyarr_from_string(str='%s', len=%d, obj=%p)\\n", + (char*)str,len, obj); +#endif + if (!obj) return -2; /* Object missing */ + if (obj == Py_None) return -1; /* None */ + if (!PyArray_Check(obj)) goto capi_fail; /* not an ndarray */ + if (PyArray_Check(obj)) { + PyArrayObject *arr = (PyArrayObject *)obj; + assert(ISCONTIGUOUS(arr)); + string buf = PyArray_DATA(arr); + npy_intp n = len; + if (n == -1) { + /* Assuming null-terminated str. */ + n = strlen(str); + } + if (n > PyArray_NBYTES(arr)) { + n = PyArray_NBYTES(arr); + } + STRINGCOPYN(buf, str, n); + return 1; + } +capi_fail: + PRINTPYOBJERR(obj); + PyErr_SetString(#modulename#_error, \"try_pyarr_from_string failed\"); + return 0; +} +""" +needs['string_from_pyobj'] = ['string', 'STRINGMALLOC', 'STRINGCOPYN'] +cfuncs['string_from_pyobj'] = """ +/* + Create a new string buffer `str` of at most length `len` from a + Python string-like object `obj`. + + The string buffer has given size (len) or the size of inistr when len==-1. + + The string buffer is padded with blanks: in Fortran, trailing blanks + are insignificant contrary to C nulls. + */ +static int +string_from_pyobj(string *str, int *len, const string inistr, PyObject *obj, + const char *errmess) +{ + PyObject *tmp = NULL; + string buf = NULL; + npy_intp n = -1; +#ifdef DEBUGCFUNCS +fprintf(stderr,\"string_from_pyobj(str='%s',len=%d,inistr='%s',obj=%p)\\n\", + (char*)str, *len, (char *)inistr, obj); +#endif + if (obj == Py_None) { + n = strlen(inistr); + buf = inistr; + } + else if (PyArray_Check(obj)) { + PyArrayObject *arr = (PyArrayObject *)obj; + if (!ISCONTIGUOUS(arr)) { + PyErr_SetString(PyExc_ValueError, + \"array object is non-contiguous.\"); + goto capi_fail; + } + n = PyArray_NBYTES(arr); + buf = PyArray_DATA(arr); + n = strnlen(buf, n); + } + else { + if (PyBytes_Check(obj)) { + tmp = obj; + Py_INCREF(tmp); + } + else if (PyUnicode_Check(obj)) { + tmp = PyUnicode_AsASCIIString(obj); + } + else { + PyObject *tmp2; + tmp2 = PyObject_Str(obj); + if (tmp2) { + tmp = PyUnicode_AsASCIIString(tmp2); + Py_DECREF(tmp2); + } + else { + tmp = NULL; + } + } + if (tmp == NULL) goto capi_fail; + n = PyBytes_GET_SIZE(tmp); + buf = PyBytes_AS_STRING(tmp); + } + if (*len == -1) { + /* TODO: change the type of `len` so that we can remove this */ + if (n > NPY_MAX_INT) { + PyErr_SetString(PyExc_OverflowError, + "object too large for a 32-bit int"); + goto capi_fail; + } + *len = n; + } + else if (*len < n) { + /* discard the last (len-n) bytes of input buf */ + n = *len; + } + if (n < 0 || *len < 0 || buf == NULL) { + goto capi_fail; + } + STRINGMALLOC(*str, *len); // *str is allocated with size (*len + 1) + if (n < *len) { + /* + Pad fixed-width string with nulls. The caller will replace + nulls with blanks when the corresponding argument is not + intent(c). + */ + memset(*str + n, '\\0', *len - n); + } + STRINGCOPYN(*str, buf, n); + Py_XDECREF(tmp); + return 1; +capi_fail: + Py_XDECREF(tmp); + { + PyObject* err = PyErr_Occurred(); + if (err == NULL) { + err = #modulename#_error; + } + PyErr_SetString(err, errmess); + } + return 0; +} +""" + +cfuncs['character_from_pyobj'] = """ +static int +character_from_pyobj(character* v, PyObject *obj, const char *errmess) { + if (PyBytes_Check(obj)) { + /* empty bytes has trailing null, so dereferencing is always safe */ + *v = PyBytes_AS_STRING(obj)[0]; + return 1; + } else if (PyUnicode_Check(obj)) { + PyObject* tmp = PyUnicode_AsASCIIString(obj); + if (tmp != NULL) { + *v = PyBytes_AS_STRING(tmp)[0]; + Py_DECREF(tmp); + return 1; + } + } else if (PyArray_Check(obj)) { + PyArrayObject* arr = (PyArrayObject*)obj; + if (F2PY_ARRAY_IS_CHARACTER_COMPATIBLE(arr)) { + *v = PyArray_BYTES(arr)[0]; + return 1; + } else if (F2PY_IS_UNICODE_ARRAY(arr)) { + // TODO: update when numpy will support 1-byte and + // 2-byte unicode dtypes + PyObject* tmp = PyUnicode_FromKindAndData( + PyUnicode_4BYTE_KIND, + PyArray_BYTES(arr), + (PyArray_NBYTES(arr)>0?1:0)); + if (tmp != NULL) { + if (character_from_pyobj(v, tmp, errmess)) { + Py_DECREF(tmp); + return 1; + } + Py_DECREF(tmp); + } + } + } else if (PySequence_Check(obj)) { + PyObject* tmp = PySequence_GetItem(obj,0); + if (tmp != NULL) { + if (character_from_pyobj(v, tmp, errmess)) { + Py_DECREF(tmp); + return 1; + } + Py_DECREF(tmp); + } + } + { + /* TODO: This error (and most other) error handling needs cleaning. */ + char mess[F2PY_MESSAGE_BUFFER_SIZE]; + strcpy(mess, errmess); + PyObject* err = PyErr_Occurred(); + if (err == NULL) { + err = PyExc_TypeError; + Py_INCREF(err); + } + else { + Py_INCREF(err); + PyErr_Clear(); + } + sprintf(mess + strlen(mess), + " -- expected str|bytes|sequence-of-str-or-bytes, got "); + f2py_describe(obj, mess + strlen(mess)); + PyErr_SetString(err, mess); + Py_DECREF(err); + } + return 0; +} +""" + +# TODO: These should be dynamically generated, too many mapped to int things, +# see note in _isocbind.py +needs['char_from_pyobj'] = ['int_from_pyobj'] +cfuncs['char_from_pyobj'] = """ +static int +char_from_pyobj(char* v, PyObject *obj, const char *errmess) { + int i = 0; + if (int_from_pyobj(&i, obj, errmess)) { + *v = (char)i; + return 1; + } + return 0; +} +""" + + +needs['signed_char_from_pyobj'] = ['int_from_pyobj', 'signed_char'] +cfuncs['signed_char_from_pyobj'] = """ +static int +signed_char_from_pyobj(signed_char* v, PyObject *obj, const char *errmess) { + int i = 0; + if (int_from_pyobj(&i, obj, errmess)) { + *v = (signed_char)i; + return 1; + } + return 0; +} +""" + + +needs['short_from_pyobj'] = ['int_from_pyobj'] +cfuncs['short_from_pyobj'] = """ +static int +short_from_pyobj(short* v, PyObject *obj, const char *errmess) { + int i = 0; + if (int_from_pyobj(&i, obj, errmess)) { + *v = (short)i; + return 1; + } + return 0; +} +""" + + +cfuncs['int_from_pyobj'] = """ +static int +int_from_pyobj(int* v, PyObject *obj, const char *errmess) +{ + PyObject* tmp = NULL; + + if (PyLong_Check(obj)) { + *v = Npy__PyLong_AsInt(obj); + return !(*v == -1 && PyErr_Occurred()); + } + + tmp = PyNumber_Long(obj); + if (tmp) { + *v = Npy__PyLong_AsInt(tmp); + Py_DECREF(tmp); + return !(*v == -1 && PyErr_Occurred()); + } + + if (PyComplex_Check(obj)) { + PyErr_Clear(); + tmp = PyObject_GetAttrString(obj,\"real\"); + } + else if (PyBytes_Check(obj) || PyUnicode_Check(obj)) { + /*pass*/; + } + else if (PySequence_Check(obj)) { + PyErr_Clear(); + tmp = PySequence_GetItem(obj, 0); + } + + if (tmp) { + if (int_from_pyobj(v, tmp, errmess)) { + Py_DECREF(tmp); + return 1; + } + Py_DECREF(tmp); + } + + { + PyObject* err = PyErr_Occurred(); + if (err == NULL) { + err = #modulename#_error; + } + PyErr_SetString(err, errmess); + } + return 0; +} +""" + + +cfuncs['long_from_pyobj'] = """ +static int +long_from_pyobj(long* v, PyObject *obj, const char *errmess) { + PyObject* tmp = NULL; + + if (PyLong_Check(obj)) { + *v = PyLong_AsLong(obj); + return !(*v == -1 && PyErr_Occurred()); + } + + tmp = PyNumber_Long(obj); + if (tmp) { + *v = PyLong_AsLong(tmp); + Py_DECREF(tmp); + return !(*v == -1 && PyErr_Occurred()); + } + + if (PyComplex_Check(obj)) { + PyErr_Clear(); + tmp = PyObject_GetAttrString(obj,\"real\"); + } + else if (PyBytes_Check(obj) || PyUnicode_Check(obj)) { + /*pass*/; + } + else if (PySequence_Check(obj)) { + PyErr_Clear(); + tmp = PySequence_GetItem(obj, 0); + } + + if (tmp) { + if (long_from_pyobj(v, tmp, errmess)) { + Py_DECREF(tmp); + return 1; + } + Py_DECREF(tmp); + } + { + PyObject* err = PyErr_Occurred(); + if (err == NULL) { + err = #modulename#_error; + } + PyErr_SetString(err, errmess); + } + return 0; +} +""" + + +needs['long_long_from_pyobj'] = ['long_long'] +cfuncs['long_long_from_pyobj'] = """ +static int +long_long_from_pyobj(long_long* v, PyObject *obj, const char *errmess) +{ + PyObject* tmp = NULL; + + if (PyLong_Check(obj)) { + *v = PyLong_AsLongLong(obj); + return !(*v == -1 && PyErr_Occurred()); + } + + tmp = PyNumber_Long(obj); + if (tmp) { + *v = PyLong_AsLongLong(tmp); + Py_DECREF(tmp); + return !(*v == -1 && PyErr_Occurred()); + } + + if (PyComplex_Check(obj)) { + PyErr_Clear(); + tmp = PyObject_GetAttrString(obj,\"real\"); + } + else if (PyBytes_Check(obj) || PyUnicode_Check(obj)) { + /*pass*/; + } + else if (PySequence_Check(obj)) { + PyErr_Clear(); + tmp = PySequence_GetItem(obj, 0); + } + + if (tmp) { + if (long_long_from_pyobj(v, tmp, errmess)) { + Py_DECREF(tmp); + return 1; + } + Py_DECREF(tmp); + } + { + PyObject* err = PyErr_Occurred(); + if (err == NULL) { + err = #modulename#_error; + } + PyErr_SetString(err,errmess); + } + return 0; +} +""" + + +needs['long_double_from_pyobj'] = ['double_from_pyobj', 'long_double'] +cfuncs['long_double_from_pyobj'] = """ +static int +long_double_from_pyobj(long_double* v, PyObject *obj, const char *errmess) +{ + double d=0; + if (PyArray_CheckScalar(obj)){ + if PyArray_IsScalar(obj, LongDouble) { + PyArray_ScalarAsCtype(obj, v); + return 1; + } + else if (PyArray_Check(obj)) { + PyArrayObject *arr = (PyArrayObject *)obj; + if (PyArray_TYPE(arr) == NPY_LONGDOUBLE) { + (*v) = *((npy_longdouble *)PyArray_DATA(arr)); + return 1; + } + } + } + if (double_from_pyobj(&d, obj, errmess)) { + *v = (long_double)d; + return 1; + } + return 0; +} +""" + + +cfuncs['double_from_pyobj'] = """ +static int +double_from_pyobj(double* v, PyObject *obj, const char *errmess) +{ + PyObject* tmp = NULL; + if (PyFloat_Check(obj)) { + *v = PyFloat_AsDouble(obj); + return !(*v == -1.0 && PyErr_Occurred()); + } + + tmp = PyNumber_Float(obj); + if (tmp) { + *v = PyFloat_AsDouble(tmp); + Py_DECREF(tmp); + return !(*v == -1.0 && PyErr_Occurred()); + } + + if (PyComplex_Check(obj)) { + PyErr_Clear(); + tmp = PyObject_GetAttrString(obj,\"real\"); + } + else if (PyBytes_Check(obj) || PyUnicode_Check(obj)) { + /*pass*/; + } + else if (PySequence_Check(obj)) { + PyErr_Clear(); + tmp = PySequence_GetItem(obj, 0); + } + + if (tmp) { + if (double_from_pyobj(v,tmp,errmess)) {Py_DECREF(tmp); return 1;} + Py_DECREF(tmp); + } + { + PyObject* err = PyErr_Occurred(); + if (err==NULL) err = #modulename#_error; + PyErr_SetString(err,errmess); + } + return 0; +} +""" + + +needs['float_from_pyobj'] = ['double_from_pyobj'] +cfuncs['float_from_pyobj'] = """ +static int +float_from_pyobj(float* v, PyObject *obj, const char *errmess) +{ + double d=0.0; + if (double_from_pyobj(&d,obj,errmess)) { + *v = (float)d; + return 1; + } + return 0; +} +""" + + +needs['complex_long_double_from_pyobj'] = ['complex_long_double', 'long_double', + 'complex_double_from_pyobj', 'npy_math.h'] +cfuncs['complex_long_double_from_pyobj'] = """ +static int +complex_long_double_from_pyobj(complex_long_double* v, PyObject *obj, const char *errmess) +{ + complex_double cd = {0.0,0.0}; + if (PyArray_CheckScalar(obj)){ + if PyArray_IsScalar(obj, CLongDouble) { + PyArray_ScalarAsCtype(obj, v); + return 1; + } + else if (PyArray_Check(obj)) { + PyArrayObject *arr = (PyArrayObject *)obj; + if (PyArray_TYPE(arr)==NPY_CLONGDOUBLE) { + (*v).r = npy_creall(*(((npy_clongdouble *)PyArray_DATA(arr)))); + (*v).i = npy_cimagl(*(((npy_clongdouble *)PyArray_DATA(arr)))); + return 1; + } + } + } + if (complex_double_from_pyobj(&cd,obj,errmess)) { + (*v).r = (long_double)cd.r; + (*v).i = (long_double)cd.i; + return 1; + } + return 0; +} +""" + + +needs['complex_double_from_pyobj'] = ['complex_double', 'npy_math.h'] +cfuncs['complex_double_from_pyobj'] = """ +static int +complex_double_from_pyobj(complex_double* v, PyObject *obj, const char *errmess) { + Py_complex c; + if (PyComplex_Check(obj)) { + c = PyComplex_AsCComplex(obj); + (*v).r = c.real; + (*v).i = c.imag; + return 1; + } + if (PyArray_IsScalar(obj, ComplexFloating)) { + if (PyArray_IsScalar(obj, CFloat)) { + npy_cfloat new; + PyArray_ScalarAsCtype(obj, &new); + (*v).r = (double)npy_crealf(new); + (*v).i = (double)npy_cimagf(new); + } + else if (PyArray_IsScalar(obj, CLongDouble)) { + npy_clongdouble new; + PyArray_ScalarAsCtype(obj, &new); + (*v).r = (double)npy_creall(new); + (*v).i = (double)npy_cimagl(new); + } + else { /* if (PyArray_IsScalar(obj, CDouble)) */ + PyArray_ScalarAsCtype(obj, v); + } + return 1; + } + if (PyArray_CheckScalar(obj)) { /* 0-dim array or still array scalar */ + PyArrayObject *arr; + if (PyArray_Check(obj)) { + arr = (PyArrayObject *)PyArray_Cast((PyArrayObject *)obj, NPY_CDOUBLE); + } + else { + arr = (PyArrayObject *)PyArray_FromScalar(obj, PyArray_DescrFromType(NPY_CDOUBLE)); + } + if (arr == NULL) { + return 0; + } + (*v).r = npy_creal(*(((npy_cdouble *)PyArray_DATA(arr)))); + (*v).i = npy_cimag(*(((npy_cdouble *)PyArray_DATA(arr)))); + Py_DECREF(arr); + return 1; + } + /* Python does not provide PyNumber_Complex function :-( */ + (*v).i = 0.0; + if (PyFloat_Check(obj)) { + (*v).r = PyFloat_AsDouble(obj); + return !((*v).r == -1.0 && PyErr_Occurred()); + } + if (PyLong_Check(obj)) { + (*v).r = PyLong_AsDouble(obj); + return !((*v).r == -1.0 && PyErr_Occurred()); + } + if (PySequence_Check(obj) && !(PyBytes_Check(obj) || PyUnicode_Check(obj))) { + PyObject *tmp = PySequence_GetItem(obj,0); + if (tmp) { + if (complex_double_from_pyobj(v,tmp,errmess)) { + Py_DECREF(tmp); + return 1; + } + Py_DECREF(tmp); + } + } + { + PyObject* err = PyErr_Occurred(); + if (err==NULL) + err = PyExc_TypeError; + PyErr_SetString(err,errmess); + } + return 0; +} +""" + + +needs['complex_float_from_pyobj'] = [ + 'complex_float', 'complex_double_from_pyobj'] +cfuncs['complex_float_from_pyobj'] = """ +static int +complex_float_from_pyobj(complex_float* v,PyObject *obj,const char *errmess) +{ + complex_double cd={0.0,0.0}; + if (complex_double_from_pyobj(&cd,obj,errmess)) { + (*v).r = (float)cd.r; + (*v).i = (float)cd.i; + return 1; + } + return 0; +} +""" + + +cfuncs['try_pyarr_from_character'] = """ +static int try_pyarr_from_character(PyObject* obj, character* v) { + PyArrayObject *arr = (PyArrayObject*)obj; + if (!obj) return -2; + if (PyArray_Check(obj)) { + if (F2PY_ARRAY_IS_CHARACTER_COMPATIBLE(arr)) { + *(character *)(PyArray_DATA(arr)) = *v; + return 1; + } + } + { + char mess[F2PY_MESSAGE_BUFFER_SIZE]; + PyObject* err = PyErr_Occurred(); + if (err == NULL) { + err = PyExc_ValueError; + strcpy(mess, "try_pyarr_from_character failed" + " -- expected bytes array-scalar|array, got "); + f2py_describe(obj, mess + strlen(mess)); + PyErr_SetString(err, mess); + } + } + return 0; +} +""" + +needs['try_pyarr_from_char'] = ['pyobj_from_char1', 'TRYPYARRAYTEMPLATE'] +cfuncs[ + 'try_pyarr_from_char'] = 'static int try_pyarr_from_char(PyObject* obj,char* v) {\n TRYPYARRAYTEMPLATE(char,\'c\');\n}\n' +needs['try_pyarr_from_signed_char'] = ['TRYPYARRAYTEMPLATE', 'unsigned_char'] +cfuncs[ + 'try_pyarr_from_unsigned_char'] = 'static int try_pyarr_from_unsigned_char(PyObject* obj,unsigned_char* v) {\n TRYPYARRAYTEMPLATE(unsigned_char,\'b\');\n}\n' +needs['try_pyarr_from_signed_char'] = ['TRYPYARRAYTEMPLATE', 'signed_char'] +cfuncs[ + 'try_pyarr_from_signed_char'] = 'static int try_pyarr_from_signed_char(PyObject* obj,signed_char* v) {\n TRYPYARRAYTEMPLATE(signed_char,\'1\');\n}\n' +needs['try_pyarr_from_short'] = ['pyobj_from_short1', 'TRYPYARRAYTEMPLATE'] +cfuncs[ + 'try_pyarr_from_short'] = 'static int try_pyarr_from_short(PyObject* obj,short* v) {\n TRYPYARRAYTEMPLATE(short,\'s\');\n}\n' +needs['try_pyarr_from_int'] = ['pyobj_from_int1', 'TRYPYARRAYTEMPLATE'] +cfuncs[ + 'try_pyarr_from_int'] = 'static int try_pyarr_from_int(PyObject* obj,int* v) {\n TRYPYARRAYTEMPLATE(int,\'i\');\n}\n' +needs['try_pyarr_from_long'] = ['pyobj_from_long1', 'TRYPYARRAYTEMPLATE'] +cfuncs[ + 'try_pyarr_from_long'] = 'static int try_pyarr_from_long(PyObject* obj,long* v) {\n TRYPYARRAYTEMPLATE(long,\'l\');\n}\n' +needs['try_pyarr_from_long_long'] = [ + 'pyobj_from_long_long1', 'TRYPYARRAYTEMPLATE', 'long_long'] +cfuncs[ + 'try_pyarr_from_long_long'] = 'static int try_pyarr_from_long_long(PyObject* obj,long_long* v) {\n TRYPYARRAYTEMPLATE(long_long,\'L\');\n}\n' +needs['try_pyarr_from_float'] = ['pyobj_from_float1', 'TRYPYARRAYTEMPLATE'] +cfuncs[ + 'try_pyarr_from_float'] = 'static int try_pyarr_from_float(PyObject* obj,float* v) {\n TRYPYARRAYTEMPLATE(float,\'f\');\n}\n' +needs['try_pyarr_from_double'] = ['pyobj_from_double1', 'TRYPYARRAYTEMPLATE'] +cfuncs[ + 'try_pyarr_from_double'] = 'static int try_pyarr_from_double(PyObject* obj,double* v) {\n TRYPYARRAYTEMPLATE(double,\'d\');\n}\n' +needs['try_pyarr_from_complex_float'] = [ + 'pyobj_from_complex_float1', 'TRYCOMPLEXPYARRAYTEMPLATE', 'complex_float'] +cfuncs[ + 'try_pyarr_from_complex_float'] = 'static int try_pyarr_from_complex_float(PyObject* obj,complex_float* v) {\n TRYCOMPLEXPYARRAYTEMPLATE(float,\'F\');\n}\n' +needs['try_pyarr_from_complex_double'] = [ + 'pyobj_from_complex_double1', 'TRYCOMPLEXPYARRAYTEMPLATE', 'complex_double'] +cfuncs[ + 'try_pyarr_from_complex_double'] = 'static int try_pyarr_from_complex_double(PyObject* obj,complex_double* v) {\n TRYCOMPLEXPYARRAYTEMPLATE(double,\'D\');\n}\n' + + +needs['create_cb_arglist'] = ['CFUNCSMESS', 'PRINTPYOBJERR', 'MINMAX'] +# create the list of arguments to be used when calling back to python +cfuncs['create_cb_arglist'] = """ +static int +create_cb_arglist(PyObject* fun, PyTupleObject* xa , const int maxnofargs, + const int nofoptargs, int *nofargs, PyTupleObject **args, + const char *errmess) +{ + PyObject *tmp = NULL; + PyObject *tmp_fun = NULL; + Py_ssize_t tot, opt, ext, siz, i, di = 0; + CFUNCSMESS(\"create_cb_arglist\\n\"); + tot=opt=ext=siz=0; + /* Get the total number of arguments */ + if (PyFunction_Check(fun)) { + tmp_fun = fun; + Py_INCREF(tmp_fun); + } + else { + di = 1; + if (PyObject_HasAttrString(fun,\"im_func\")) { + tmp_fun = PyObject_GetAttrString(fun,\"im_func\"); + } + else if (PyObject_HasAttrString(fun,\"__call__\")) { + tmp = PyObject_GetAttrString(fun,\"__call__\"); + if (PyObject_HasAttrString(tmp,\"im_func\")) + tmp_fun = PyObject_GetAttrString(tmp,\"im_func\"); + else { + tmp_fun = fun; /* built-in function */ + Py_INCREF(tmp_fun); + tot = maxnofargs; + if (PyCFunction_Check(fun)) { + /* In case the function has a co_argcount (like on PyPy) */ + di = 0; + } + if (xa != NULL) + tot += PyTuple_Size((PyObject *)xa); + } + Py_XDECREF(tmp); + } + else if (PyFortran_Check(fun) || PyFortran_Check1(fun)) { + tot = maxnofargs; + if (xa != NULL) + tot += PyTuple_Size((PyObject *)xa); + tmp_fun = fun; + Py_INCREF(tmp_fun); + } + else if (F2PyCapsule_Check(fun)) { + tot = maxnofargs; + if (xa != NULL) + ext = PyTuple_Size((PyObject *)xa); + if(ext>0) { + fprintf(stderr,\"extra arguments tuple cannot be used with PyCapsule call-back\\n\"); + goto capi_fail; + } + tmp_fun = fun; + Py_INCREF(tmp_fun); + } + } + + if (tmp_fun == NULL) { + fprintf(stderr, + \"Call-back argument must be function|instance|instance.__call__|f2py-function \" + \"but got %s.\\n\", + ((fun == NULL) ? \"NULL\" : Py_TYPE(fun)->tp_name)); + goto capi_fail; + } + + if (PyObject_HasAttrString(tmp_fun,\"__code__\")) { + if (PyObject_HasAttrString(tmp = PyObject_GetAttrString(tmp_fun,\"__code__\"),\"co_argcount\")) { + PyObject *tmp_argcount = PyObject_GetAttrString(tmp,\"co_argcount\"); + Py_DECREF(tmp); + if (tmp_argcount == NULL) { + goto capi_fail; + } + tot = PyLong_AsSsize_t(tmp_argcount) - di; + Py_DECREF(tmp_argcount); + } + } + /* Get the number of optional arguments */ + if (PyObject_HasAttrString(tmp_fun,\"__defaults__\")) { + if (PyTuple_Check(tmp = PyObject_GetAttrString(tmp_fun,\"__defaults__\"))) + opt = PyTuple_Size(tmp); + Py_XDECREF(tmp); + } + /* Get the number of extra arguments */ + if (xa != NULL) + ext = PyTuple_Size((PyObject *)xa); + /* Calculate the size of call-backs argument list */ + siz = MIN(maxnofargs+ext,tot); + *nofargs = MAX(0,siz-ext); + +#ifdef DEBUGCFUNCS + fprintf(stderr, + \"debug-capi:create_cb_arglist:maxnofargs(-nofoptargs),\" + \"tot,opt,ext,siz,nofargs = %d(-%d), %zd, %zd, %zd, %zd, %d\\n\", + maxnofargs, nofoptargs, tot, opt, ext, siz, *nofargs); +#endif + + if (siz < tot-opt) { + fprintf(stderr, + \"create_cb_arglist: Failed to build argument list \" + \"(siz) with enough arguments (tot-opt) required by \" + \"user-supplied function (siz,tot,opt=%zd, %zd, %zd).\\n\", + siz, tot, opt); + goto capi_fail; + } + + /* Initialize argument list */ + *args = (PyTupleObject *)PyTuple_New(siz); + for (i=0;i<*nofargs;i++) { + Py_INCREF(Py_None); + PyTuple_SET_ITEM((PyObject *)(*args),i,Py_None); + } + if (xa != NULL) + for (i=(*nofargs);i 0: + if outneeds[n][0] not in needs: + out.append(outneeds[n][0]) + del outneeds[n][0] + else: + flag = 0 + for k in outneeds[n][1:]: + if k in needs[outneeds[n][0]]: + flag = 1 + break + if flag: + outneeds[n] = outneeds[n][1:] + [outneeds[n][0]] + else: + out.append(outneeds[n][0]) + del outneeds[n][0] + if saveout and (0 not in map(lambda x, y: x == y, saveout, outneeds[n])) \ + and outneeds[n] != []: + print(n, saveout) + errmess( + 'get_needs: no progress in sorting needs, probably circular dependence, skipping.\n') + out = out + saveout + break + saveout = copy.copy(outneeds[n]) + if out == []: + out = [n] + res[n] = out + return res diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/cfuncs.pyi b/.venv/lib/python3.12/site-packages/numpy/f2py/cfuncs.pyi new file mode 100644 index 0000000..5887177 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/cfuncs.pyi @@ -0,0 +1,31 @@ +from typing import Final, TypeAlias + +from .__version__ import version + +### + +_NeedListDict: TypeAlias = dict[str, list[str]] +_NeedDict: TypeAlias = dict[str, str] + +### + +f2py_version: Final = version + +outneeds: Final[_NeedListDict] = ... +needs: Final[_NeedListDict] = ... + +includes0: Final[_NeedDict] = ... +includes: Final[_NeedDict] = ... +userincludes: Final[_NeedDict] = ... +typedefs: Final[_NeedDict] = ... +typedefs_generated: Final[_NeedDict] = ... +cppmacros: Final[_NeedDict] = ... +cfuncs: Final[_NeedDict] = ... +callbacks: Final[_NeedDict] = ... +f90modhooks: Final[_NeedDict] = ... +commonhooks: Final[_NeedDict] = ... + +def errmess(s: str) -> None: ... +def buildcfuncs() -> None: ... +def get_needs() -> _NeedListDict: ... +def append_needs(need: str | list[str], flag: int = 1) -> _NeedListDict: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/common_rules.py b/.venv/lib/python3.12/site-packages/numpy/f2py/common_rules.py new file mode 100644 index 0000000..cef757b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/common_rules.py @@ -0,0 +1,143 @@ +""" +Build common block mechanism for f2py2e. + +Copyright 1999 -- 2011 Pearu Peterson all rights reserved. +Copyright 2011 -- present NumPy Developers. +Permission to use, modify, and distribute this software is given under the +terms of the NumPy License + +NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. +""" +from . import __version__ + +f2py_version = __version__.version + +from . import capi_maps, func2subr +from .auxfuncs import getuseblocks, hasbody, hascommon, hasnote, isintent_hide, outmess +from .crackfortran import rmbadname + + +def findcommonblocks(block, top=1): + ret = [] + if hascommon(block): + for key, value in block['common'].items(): + vars_ = {v: block['vars'][v] for v in value} + ret.append((key, value, vars_)) + elif hasbody(block): + for b in block['body']: + ret = ret + findcommonblocks(b, 0) + if top: + tret = [] + names = [] + for t in ret: + if t[0] not in names: + names.append(t[0]) + tret.append(t) + return tret + return ret + + +def buildhooks(m): + ret = {'commonhooks': [], 'initcommonhooks': [], + 'docs': ['"COMMON blocks:\\n"']} + fwrap = [''] + + def fadd(line, s=fwrap): + s[0] = f'{s[0]}\n {line}' + chooks = [''] + + def cadd(line, s=chooks): + s[0] = f'{s[0]}\n{line}' + ihooks = [''] + + def iadd(line, s=ihooks): + s[0] = f'{s[0]}\n{line}' + doc = [''] + + def dadd(line, s=doc): + s[0] = f'{s[0]}\n{line}' + for (name, vnames, vars) in findcommonblocks(m): + lower_name = name.lower() + hnames, inames = [], [] + for n in vnames: + if isintent_hide(vars[n]): + hnames.append(n) + else: + inames.append(n) + if hnames: + outmess('\t\tConstructing COMMON block support for "%s"...\n\t\t %s\n\t\t Hidden: %s\n' % ( + name, ','.join(inames), ','.join(hnames))) + else: + outmess('\t\tConstructing COMMON block support for "%s"...\n\t\t %s\n' % ( + name, ','.join(inames))) + fadd(f'subroutine f2pyinit{name}(setupfunc)') + for usename in getuseblocks(m): + fadd(f'use {usename}') + fadd('external setupfunc') + for n in vnames: + fadd(func2subr.var2fixfortran(vars, n)) + if name == '_BLNK_': + fadd(f"common {','.join(vnames)}") + else: + fadd(f"common /{name}/ {','.join(vnames)}") + fadd(f"call setupfunc({','.join(inames)})") + fadd('end\n') + cadd('static FortranDataDef f2py_%s_def[] = {' % (name)) + idims = [] + for n in inames: + ct = capi_maps.getctype(vars[n]) + elsize = capi_maps.get_elsize(vars[n]) + at = capi_maps.c2capi_map[ct] + dm = capi_maps.getarrdims(n, vars[n]) + if dm['dims']: + idims.append(f"({dm['dims']})") + else: + idims.append('') + dms = dm['dims'].strip() + if not dms: + dms = '-1' + cadd('\t{\"%s\",%s,{{%s}},%s, %s},' + % (n, dm['rank'], dms, at, elsize)) + cadd('\t{NULL}\n};') + inames1 = rmbadname(inames) + inames1_tps = ','.join(['char *' + s for s in inames1]) + cadd('static void f2py_setup_%s(%s) {' % (name, inames1_tps)) + cadd('\tint i_f2py=0;') + for n in inames1: + cadd(f'\tf2py_{name}_def[i_f2py++].data = {n};') + cadd('}') + if '_' in lower_name: + F_FUNC = 'F_FUNC_US' + else: + F_FUNC = 'F_FUNC' + cadd('extern void %s(f2pyinit%s,F2PYINIT%s)(void(*)(%s));' + % (F_FUNC, lower_name, name.upper(), + ','.join(['char*'] * len(inames1)))) + cadd('static void f2py_init_%s(void) {' % name) + cadd('\t%s(f2pyinit%s,F2PYINIT%s)(f2py_setup_%s);' + % (F_FUNC, lower_name, name.upper(), name)) + cadd('}\n') + iadd(f'\ttmp = PyFortranObject_New(f2py_{name}_def,f2py_init_{name});') + iadd('\tif (tmp == NULL) return NULL;') + iadd(f'\tif (F2PyDict_SetItemString(d, "{name}", tmp) == -1) return NULL;') + iadd('\tPy_DECREF(tmp);') + tname = name.replace('_', '\\_') + dadd('\\subsection{Common block \\texttt{%s}}\n' % (tname)) + dadd('\\begin{description}') + for n in inames: + dadd('\\item[]{{}\\verb@%s@{}}' % + (capi_maps.getarrdocsign(n, vars[n]))) + if hasnote(vars[n]): + note = vars[n]['note'] + if isinstance(note, list): + note = '\n'.join(note) + dadd(f'--- {note}') + dadd('\\end{description}') + ret['docs'].append( + f"\"\t/{name}/ {','.join(map(lambda v, d: v + d, inames, idims))}\\n\"") + ret['commonhooks'] = chooks + ret['initcommonhooks'] = ihooks + ret['latexdoc'] = doc[0] + if len(ret['docs']) <= 1: + ret['docs'] = '' + return ret, fwrap[0] diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/common_rules.pyi b/.venv/lib/python3.12/site-packages/numpy/f2py/common_rules.pyi new file mode 100644 index 0000000..d840de0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/common_rules.pyi @@ -0,0 +1,9 @@ +from collections.abc import Mapping +from typing import Any, Final + +from .__version__ import version + +f2py_version: Final = version + +def findcommonblocks(block: Mapping[str, object], top: int = 1) -> list[tuple[str, list[str], dict[str, Any]]]: ... +def buildhooks(m: Mapping[str, object]) -> tuple[dict[str, Any], str]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/crackfortran.py b/.venv/lib/python3.12/site-packages/numpy/f2py/crackfortran.py new file mode 100644 index 0000000..22d8043 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/crackfortran.py @@ -0,0 +1,3725 @@ +""" +crackfortran --- read fortran (77,90) code and extract declaration information. + +Copyright 1999 -- 2011 Pearu Peterson all rights reserved. +Copyright 2011 -- present NumPy Developers. +Permission to use, modify, and distribute this software is given under the +terms of the NumPy License. + +NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. + + +Usage of crackfortran: +====================== +Command line keys: -quiet,-verbose,-fix,-f77,-f90,-show,-h + -m ,--ignore-contains +Functions: crackfortran, crack2fortran +The following Fortran statements/constructions are supported +(or will be if needed): + block data,byte,call,character,common,complex,contains,data, + dimension,double complex,double precision,end,external,function, + implicit,integer,intent,interface,intrinsic, + logical,module,optional,parameter,private,public, + program,real,(sequence?),subroutine,type,use,virtual, + include,pythonmodule +Note: 'virtual' is mapped to 'dimension'. +Note: 'implicit integer (z) static (z)' is 'implicit static (z)' (this is minor bug). +Note: code after 'contains' will be ignored until its scope ends. +Note: 'common' statement is extended: dimensions are moved to variable definitions +Note: f2py directive: f2py is read as +Note: pythonmodule is introduced to represent Python module + +Usage: + `postlist=crackfortran(files)` + `postlist` contains declaration information read from the list of files `files`. + `crack2fortran(postlist)` returns a fortran code to be saved to pyf-file + + `postlist` has the following structure: + *** it is a list of dictionaries containing `blocks': + B = {'block','body','vars','parent_block'[,'name','prefix','args','result', + 'implicit','externals','interfaced','common','sortvars', + 'commonvars','note']} + B['block'] = 'interface' | 'function' | 'subroutine' | 'module' | + 'program' | 'block data' | 'type' | 'pythonmodule' | + 'abstract interface' + B['body'] --- list containing `subblocks' with the same structure as `blocks' + B['parent_block'] --- dictionary of a parent block: + C['body'][]['parent_block'] is C + B['vars'] --- dictionary of variable definitions + B['sortvars'] --- dictionary of variable definitions sorted by dependence (independent first) + B['name'] --- name of the block (not if B['block']=='interface') + B['prefix'] --- prefix string (only if B['block']=='function') + B['args'] --- list of argument names if B['block']== 'function' | 'subroutine' + B['result'] --- name of the return value (only if B['block']=='function') + B['implicit'] --- dictionary {'a':,'b':...} | None + B['externals'] --- list of variables being external + B['interfaced'] --- list of variables being external and defined + B['common'] --- dictionary of common blocks (list of objects) + B['commonvars'] --- list of variables used in common blocks (dimensions are moved to variable definitions) + B['from'] --- string showing the 'parents' of the current block + B['use'] --- dictionary of modules used in current block: + {:{['only':<0|1>],['map':{:,...}]}} + B['note'] --- list of LaTeX comments on the block + B['f2pyenhancements'] --- optional dictionary + {'threadsafe':'','fortranname':, + 'callstatement':|, + 'callprotoargument':, + 'usercode':|, + 'pymethoddef:' + } + B['entry'] --- dictionary {entryname:argslist,..} + B['varnames'] --- list of variable names given in the order of reading the + Fortran code, useful for derived types. + B['saved_interface'] --- a string of scanned routine signature, defines explicit interface + *** Variable definition is a dictionary + D = B['vars'][] = + {'typespec'[,'attrspec','kindselector','charselector','=','typename']} + D['typespec'] = 'byte' | 'character' | 'complex' | 'double complex' | + 'double precision' | 'integer' | 'logical' | 'real' | 'type' + D['attrspec'] --- list of attributes (e.g. 'dimension()', + 'external','intent(in|out|inout|hide|c|callback|cache|aligned4|aligned8|aligned16)', + 'optional','required', etc) + K = D['kindselector'] = {['*','kind']} (only if D['typespec'] = + 'complex' | 'integer' | 'logical' | 'real' ) + C = D['charselector'] = {['*','len','kind','f2py_len']} + (only if D['typespec']=='character') + D['='] --- initialization expression string + D['typename'] --- name of the type if D['typespec']=='type' + D['dimension'] --- list of dimension bounds + D['intent'] --- list of intent specifications + D['depend'] --- list of variable names on which current variable depends on + D['check'] --- list of C-expressions; if C-expr returns zero, exception is raised + D['note'] --- list of LaTeX comments on the variable + *** Meaning of kind/char selectors (few examples): + D['typespec>']*K['*'] + D['typespec'](kind=K['kind']) + character*C['*'] + character(len=C['len'],kind=C['kind'], f2py_len=C['f2py_len']) + (see also fortran type declaration statement formats below) + +Fortran 90 type declaration statement format (F77 is subset of F90) +==================================================================== +(Main source: IBM XL Fortran 5.1 Language Reference Manual) +type declaration = [[]::] + = byte | + character[] | + complex[] | + double complex | + double precision | + integer[] | + logical[] | + real[] | + type() + = * | + ([len=][,[kind=]]) | + (kind=[,len=]) + = * | + ([kind=]) + = comma separated list of attributes. + Only the following attributes are used in + building up the interface: + external + (parameter --- affects '=' key) + optional + intent + Other attributes are ignored. + = in | out | inout + = comma separated list of dimension bounds. + = [[*][()] | [()]*] + [// | =] [,] + +In addition, the following attributes are used: check,depend,note + +TODO: + * Apply 'parameter' attribute (e.g. 'integer parameter :: i=2' 'real x(i)' + -> 'real x(2)') + The above may be solved by creating appropriate preprocessor program, for example. + +""" +import codecs +import copy +import fileinput +import os +import platform +import re +import string +import sys +from pathlib import Path + +try: + import charset_normalizer +except ImportError: + charset_normalizer = None + +from . import __version__, symbolic + +# The environment provided by auxfuncs.py is needed for some calls to eval. +# As the needed functions cannot be determined by static inspection of the +# code, it is safest to use import * pending a major refactoring of f2py. +from .auxfuncs import * + +f2py_version = __version__.version + +# Global flags: +strictf77 = 1 # Ignore `!' comments unless line[0]=='!' +sourcecodeform = 'fix' # 'fix','free' +quiet = 0 # Be verbose if 0 (Obsolete: not used any more) +verbose = 1 # Be quiet if 0, extra verbose if > 1. +tabchar = 4 * ' ' +pyffilename = '' +f77modulename = '' +skipemptyends = 0 # for old F77 programs without 'program' statement +ignorecontains = 1 +dolowercase = 1 +debug = [] + +# Global variables +beginpattern = '' +currentfilename = '' +expectbegin = 1 +f90modulevars = {} +filepositiontext = '' +gotnextfile = 1 +groupcache = None +groupcounter = 0 +grouplist = {groupcounter: []} +groupname = '' +include_paths = [] +neededmodule = -1 +onlyfuncs = [] +previous_context = None +skipblocksuntil = -1 +skipfuncs = [] +skipfunctions = [] +usermodules = [] + + +def reset_global_f2py_vars(): + global groupcounter, grouplist, neededmodule, expectbegin + global skipblocksuntil, usermodules, f90modulevars, gotnextfile + global filepositiontext, currentfilename, skipfunctions, skipfuncs + global onlyfuncs, include_paths, previous_context + global strictf77, sourcecodeform, quiet, verbose, tabchar, pyffilename + global f77modulename, skipemptyends, ignorecontains, dolowercase, debug + + # flags + strictf77 = 1 + sourcecodeform = 'fix' + quiet = 0 + verbose = 1 + tabchar = 4 * ' ' + pyffilename = '' + f77modulename = '' + skipemptyends = 0 + ignorecontains = 1 + dolowercase = 1 + debug = [] + # variables + groupcounter = 0 + grouplist = {groupcounter: []} + neededmodule = -1 + expectbegin = 1 + skipblocksuntil = -1 + usermodules = [] + f90modulevars = {} + gotnextfile = 1 + filepositiontext = '' + currentfilename = '' + skipfunctions = [] + skipfuncs = [] + onlyfuncs = [] + include_paths = [] + previous_context = None + + +def outmess(line, flag=1): + global filepositiontext + + if not verbose: + return + if not quiet: + if flag: + sys.stdout.write(filepositiontext) + sys.stdout.write(line) + + +re._MAXCACHE = 50 +defaultimplicitrules = {} +for c in "abcdefghopqrstuvwxyz$_": + defaultimplicitrules[c] = {'typespec': 'real'} +for c in "ijklmn": + defaultimplicitrules[c] = {'typespec': 'integer'} +badnames = {} +invbadnames = {} +for n in ['int', 'double', 'float', 'char', 'short', 'long', 'void', 'case', 'while', + 'return', 'signed', 'unsigned', 'if', 'for', 'typedef', 'sizeof', 'union', + 'struct', 'static', 'register', 'new', 'break', 'do', 'goto', 'switch', + 'continue', 'else', 'inline', 'extern', 'delete', 'const', 'auto', + 'len', 'rank', 'shape', 'index', 'slen', 'size', '_i', + 'max', 'min', + 'flen', 'fshape', + 'string', 'complex_double', 'float_double', 'stdin', 'stderr', 'stdout', + 'type', 'default']: + badnames[n] = n + '_bn' + invbadnames[n + '_bn'] = n + + +def rmbadname1(name): + if name in badnames: + errmess(f'rmbadname1: Replacing "{name}" with "{badnames[name]}".\n') + return badnames[name] + return name + + +def rmbadname(names): + return [rmbadname1(_m) for _m in names] + + +def undo_rmbadname1(name): + if name in invbadnames: + errmess(f'undo_rmbadname1: Replacing "{name}" with "{invbadnames[name]}".\n') + return invbadnames[name] + return name + + +def undo_rmbadname(names): + return [undo_rmbadname1(_m) for _m in names] + + +_has_f_header = re.compile(r'-\*-\s*fortran\s*-\*-', re.I).search +_has_f90_header = re.compile(r'-\*-\s*f90\s*-\*-', re.I).search +_has_fix_header = re.compile(r'-\*-\s*fix\s*-\*-', re.I).search +_free_f90_start = re.compile(r'[^c*]\s*[^\s\d\t]', re.I).match + +# Extensions +COMMON_FREE_EXTENSIONS = ['.f90', '.f95', '.f03', '.f08'] +COMMON_FIXED_EXTENSIONS = ['.for', '.ftn', '.f77', '.f'] + + +def openhook(filename, mode): + """Ensures that filename is opened with correct encoding parameter. + + This function uses charset_normalizer package, when available, for + determining the encoding of the file to be opened. When charset_normalizer + is not available, the function detects only UTF encodings, otherwise, ASCII + encoding is used as fallback. + """ + # Reads in the entire file. Robust detection of encoding. + # Correctly handles comments or late stage unicode characters + # gh-22871 + if charset_normalizer is not None: + encoding = charset_normalizer.from_path(filename).best().encoding + else: + # hint: install charset_normalizer for correct encoding handling + # No need to read the whole file for trying with startswith + nbytes = min(32, os.path.getsize(filename)) + with open(filename, 'rb') as fhandle: + raw = fhandle.read(nbytes) + if raw.startswith(codecs.BOM_UTF8): + encoding = 'UTF-8-SIG' + elif raw.startswith((codecs.BOM_UTF32_LE, codecs.BOM_UTF32_BE)): + encoding = 'UTF-32' + elif raw.startswith((codecs.BOM_LE, codecs.BOM_BE)): + encoding = 'UTF-16' + else: + # Fallback, without charset_normalizer + encoding = 'ascii' + return open(filename, mode, encoding=encoding) + + +def is_free_format(fname): + """Check if file is in free format Fortran.""" + # f90 allows both fixed and free format, assuming fixed unless + # signs of free format are detected. + result = False + if Path(fname).suffix.lower() in COMMON_FREE_EXTENSIONS: + result = True + with openhook(fname, 'r') as fhandle: + line = fhandle.readline() + n = 15 # the number of non-comment lines to scan for hints + if _has_f_header(line): + n = 0 + elif _has_f90_header(line): + n = 0 + result = True + while n > 0 and line: + if line[0] != '!' and line.strip(): + n -= 1 + if (line[0] != '\t' and _free_f90_start(line[:5])) or line[-2:-1] == '&': + result = True + break + line = fhandle.readline() + return result + + +# Read fortran (77,90) code +def readfortrancode(ffile, dowithline=show, istop=1): + """ + Read fortran codes from files and + 1) Get rid of comments, line continuations, and empty lines; lower cases. + 2) Call dowithline(line) on every line. + 3) Recursively call itself when statement \"include ''\" is met. + """ + global gotnextfile, filepositiontext, currentfilename, sourcecodeform, strictf77 + global beginpattern, quiet, verbose, dolowercase, include_paths + + if not istop: + saveglobals = gotnextfile, filepositiontext, currentfilename, sourcecodeform, strictf77,\ + beginpattern, quiet, verbose, dolowercase + if ffile == []: + return + localdolowercase = dolowercase + # cont: set to True when the content of the last line read + # indicates statement continuation + cont = False + finalline = '' + ll = '' + includeline = re.compile( + r'\s*include\s*(\'|")(?P[^\'"]*)(\'|")', re.I) + cont1 = re.compile(r'(?P.*)&\s*\Z') + cont2 = re.compile(r'(\s*&|)(?P.*)') + mline_mark = re.compile(r".*?'''") + if istop: + dowithline('', -1) + ll, l1 = '', '' + spacedigits = [' '] + [str(_m) for _m in range(10)] + filepositiontext = '' + fin = fileinput.FileInput(ffile, openhook=openhook) + while True: + try: + l = fin.readline() + except UnicodeDecodeError as msg: + raise Exception( + f'readfortrancode: reading {fin.filename()}#{fin.lineno()}' + f' failed with\n{msg}.\nIt is likely that installing charset_normalizer' + ' package will help f2py determine the input file encoding' + ' correctly.') + if not l: + break + if fin.isfirstline(): + filepositiontext = '' + currentfilename = fin.filename() + gotnextfile = 1 + l1 = l + strictf77 = 0 + sourcecodeform = 'fix' + ext = os.path.splitext(currentfilename)[1] + if Path(currentfilename).suffix.lower() in COMMON_FIXED_EXTENSIONS and \ + not (_has_f90_header(l) or _has_fix_header(l)): + strictf77 = 1 + elif is_free_format(currentfilename) and not _has_fix_header(l): + sourcecodeform = 'free' + if strictf77: + beginpattern = beginpattern77 + else: + beginpattern = beginpattern90 + outmess('\tReading file %s (format:%s%s)\n' + % (repr(currentfilename), sourcecodeform, + (strictf77 and ',strict') or '')) + + l = l.expandtabs().replace('\xa0', ' ') + # Get rid of newline characters + while not l == '': + if l[-1] not in "\n\r\f": + break + l = l[:-1] + # Do not lower for directives, gh-2547, gh-27697, gh-26681 + is_f2py_directive = False + # Unconditionally remove comments + (l, rl) = split_by_unquoted(l, '!') + l += ' ' + if rl[:5].lower() == '!f2py': # f2py directive + l, _ = split_by_unquoted(l + 4 * ' ' + rl[5:], '!') + is_f2py_directive = True + if l.strip() == '': # Skip empty line + if sourcecodeform == 'free': + # In free form, a statement continues in the next line + # that is not a comment line [3.3.2.4^1], lines with + # blanks are comment lines [3.3.2.3^1]. Hence, the + # line continuation flag must retain its state. + pass + else: + # In fixed form, statement continuation is determined + # by a non-blank character at the 6-th position. Empty + # line indicates a start of a new statement + # [3.3.3.3^1]. Hence, the line continuation flag must + # be reset. + cont = False + continue + if sourcecodeform == 'fix': + if l[0] in ['*', 'c', '!', 'C', '#']: + if l[1:5].lower() == 'f2py': # f2py directive + l = ' ' + l[5:] + is_f2py_directive = True + else: # Skip comment line + cont = False + is_f2py_directive = False + continue + elif strictf77: + if len(l) > 72: + l = l[:72] + if l[0] not in spacedigits: + raise Exception('readfortrancode: Found non-(space,digit) char ' + 'in the first column.\n\tAre you sure that ' + 'this code is in fix form?\n\tline=%s' % repr(l)) + + if (not cont or strictf77) and (len(l) > 5 and not l[5] == ' '): + # Continuation of a previous line + ll = ll + l[6:] + finalline = '' + origfinalline = '' + else: + r = cont1.match(l) + if r: + l = r.group('line') # Continuation follows .. + if cont: + ll = ll + cont2.match(l).group('line') + finalline = '' + origfinalline = '' + else: + # clean up line beginning from possible digits. + l = ' ' + l[5:] + # f2py directives are already stripped by this point + if localdolowercase: + finalline = ll.lower() + else: + finalline = ll + origfinalline = ll + ll = l + + elif sourcecodeform == 'free': + if not cont and ext == '.pyf' and mline_mark.match(l): + l = l + '\n' + while True: + lc = fin.readline() + if not lc: + errmess( + 'Unexpected end of file when reading multiline\n') + break + l = l + lc + if mline_mark.match(lc): + break + l = l.rstrip() + r = cont1.match(l) + if r: + l = r.group('line') # Continuation follows .. + if cont: + ll = ll + cont2.match(l).group('line') + finalline = '' + origfinalline = '' + else: + if localdolowercase: + # only skip lowering for C style constructs + # gh-2547, gh-27697, gh-26681, gh-28014 + finalline = ll.lower() if not (is_f2py_directive and iscstyledirective(ll)) else ll + else: + finalline = ll + origfinalline = ll + ll = l + cont = (r is not None) + else: + raise ValueError( + f"Flag sourcecodeform must be either 'fix' or 'free': {repr(sourcecodeform)}") + filepositiontext = 'Line #%d in %s:"%s"\n\t' % ( + fin.filelineno() - 1, currentfilename, l1) + m = includeline.match(origfinalline) + if m: + fn = m.group('name') + if os.path.isfile(fn): + readfortrancode(fn, dowithline=dowithline, istop=0) + else: + include_dirs = [ + os.path.dirname(currentfilename)] + include_paths + foundfile = 0 + for inc_dir in include_dirs: + fn1 = os.path.join(inc_dir, fn) + if os.path.isfile(fn1): + foundfile = 1 + readfortrancode(fn1, dowithline=dowithline, istop=0) + break + if not foundfile: + outmess('readfortrancode: could not find include file %s in %s. Ignoring.\n' % ( + repr(fn), os.pathsep.join(include_dirs))) + else: + dowithline(finalline) + l1 = ll + # Last line should never have an f2py directive anyway + if localdolowercase: + finalline = ll.lower() + else: + finalline = ll + origfinalline = ll + filepositiontext = 'Line #%d in %s:"%s"\n\t' % ( + fin.filelineno() - 1, currentfilename, l1) + m = includeline.match(origfinalline) + if m: + fn = m.group('name') + if os.path.isfile(fn): + readfortrancode(fn, dowithline=dowithline, istop=0) + else: + include_dirs = [os.path.dirname(currentfilename)] + include_paths + foundfile = 0 + for inc_dir in include_dirs: + fn1 = os.path.join(inc_dir, fn) + if os.path.isfile(fn1): + foundfile = 1 + readfortrancode(fn1, dowithline=dowithline, istop=0) + break + if not foundfile: + outmess('readfortrancode: could not find include file %s in %s. Ignoring.\n' % ( + repr(fn), os.pathsep.join(include_dirs))) + else: + dowithline(finalline) + filepositiontext = '' + fin.close() + if istop: + dowithline('', 1) + else: + gotnextfile, filepositiontext, currentfilename, sourcecodeform, strictf77,\ + beginpattern, quiet, verbose, dolowercase = saveglobals + + +# Crack line +beforethisafter = r'\s*(?P%s(?=\s*(\b(%s)\b)))'\ + r'\s*(?P(\b(%s)\b))'\ + r'\s*(?P%s)\s*\Z' +## +fortrantypes = r'character|logical|integer|real|complex|double\s*(precision\s*(complex|)|complex)|type(?=\s*\([\w\s,=(*)]*\))|byte' +typespattern = re.compile( + beforethisafter % ('', fortrantypes, fortrantypes, '.*'), re.I), 'type' +typespattern4implicit = re.compile(beforethisafter % ( + '', fortrantypes + '|static|automatic|undefined', fortrantypes + '|static|automatic|undefined', '.*'), re.I) +# +functionpattern = re.compile(beforethisafter % ( + r'([a-z]+[\w\s(=*+-/)]*?|)', 'function', 'function', '.*'), re.I), 'begin' +subroutinepattern = re.compile(beforethisafter % ( + r'[a-z\s]*?', 'subroutine', 'subroutine', '.*'), re.I), 'begin' +# modulepattern=re.compile(beforethisafter%('[a-z\s]*?','module','module','.*'),re.I),'begin' +# +groupbegins77 = r'program|block\s*data' +beginpattern77 = re.compile( + beforethisafter % ('', groupbegins77, groupbegins77, '.*'), re.I), 'begin' +groupbegins90 = groupbegins77 + \ + r'|module(?!\s*procedure)|python\s*module|(abstract|)\s*interface|'\ + r'type(?!\s*\()' +beginpattern90 = re.compile( + beforethisafter % ('', groupbegins90, groupbegins90, '.*'), re.I), 'begin' +groupends = (r'end|endprogram|endblockdata|endmodule|endpythonmodule|' + r'endinterface|endsubroutine|endfunction') +endpattern = re.compile( + beforethisafter % ('', groupends, groupends, '.*'), re.I), 'end' +# block, the Fortran 2008 construct needs special handling in the rest of the file +endifs = r'end\s*(if|do|where|select|while|forall|associate|'\ + r'critical|enum|team)' +endifpattern = re.compile( + beforethisafter % (r'[\w]*?', endifs, endifs, '.*'), re.I), 'endif' +# +moduleprocedures = r'module\s*procedure' +moduleprocedurepattern = re.compile( + beforethisafter % ('', moduleprocedures, moduleprocedures, '.*'), re.I), \ + 'moduleprocedure' +implicitpattern = re.compile( + beforethisafter % ('', 'implicit', 'implicit', '.*'), re.I), 'implicit' +dimensionpattern = re.compile(beforethisafter % ( + '', 'dimension|virtual', 'dimension|virtual', '.*'), re.I), 'dimension' +externalpattern = re.compile( + beforethisafter % ('', 'external', 'external', '.*'), re.I), 'external' +optionalpattern = re.compile( + beforethisafter % ('', 'optional', 'optional', '.*'), re.I), 'optional' +requiredpattern = re.compile( + beforethisafter % ('', 'required', 'required', '.*'), re.I), 'required' +publicpattern = re.compile( + beforethisafter % ('', 'public', 'public', '.*'), re.I), 'public' +privatepattern = re.compile( + beforethisafter % ('', 'private', 'private', '.*'), re.I), 'private' +intrinsicpattern = re.compile( + beforethisafter % ('', 'intrinsic', 'intrinsic', '.*'), re.I), 'intrinsic' +intentpattern = re.compile(beforethisafter % ( + '', 'intent|depend|note|check', 'intent|depend|note|check', r'\s*\(.*?\).*'), re.I), 'intent' +parameterpattern = re.compile( + beforethisafter % ('', 'parameter', 'parameter', r'\s*\(.*'), re.I), 'parameter' +datapattern = re.compile( + beforethisafter % ('', 'data', 'data', '.*'), re.I), 'data' +callpattern = re.compile( + beforethisafter % ('', 'call', 'call', '.*'), re.I), 'call' +entrypattern = re.compile( + beforethisafter % ('', 'entry', 'entry', '.*'), re.I), 'entry' +callfunpattern = re.compile( + beforethisafter % ('', 'callfun', 'callfun', '.*'), re.I), 'callfun' +commonpattern = re.compile( + beforethisafter % ('', 'common', 'common', '.*'), re.I), 'common' +usepattern = re.compile( + beforethisafter % ('', 'use', 'use', '.*'), re.I), 'use' +containspattern = re.compile( + beforethisafter % ('', 'contains', 'contains', ''), re.I), 'contains' +formatpattern = re.compile( + beforethisafter % ('', 'format', 'format', '.*'), re.I), 'format' +# Non-fortran and f2py-specific statements +f2pyenhancementspattern = re.compile(beforethisafter % ('', 'threadsafe|fortranname|callstatement|callprotoargument|usercode|pymethoddef', + 'threadsafe|fortranname|callstatement|callprotoargument|usercode|pymethoddef', '.*'), re.I | re.S), 'f2pyenhancements' +multilinepattern = re.compile( + r"\s*(?P''')(?P.*?)(?P''')\s*\Z", re.S), 'multiline' +## + +def split_by_unquoted(line, characters): + """ + Splits the line into (line[:i], line[i:]), + where i is the index of first occurrence of one of the characters + not within quotes, or len(line) if no such index exists + """ + assert not (set('"\'') & set(characters)), "cannot split by unquoted quotes" + r = re.compile( + r"\A(?P({single_quoted}|{double_quoted}|{not_quoted})*)" + r"(?P{char}.*)\Z".format( + not_quoted=f"[^\"'{re.escape(characters)}]", + char=f"[{re.escape(characters)}]", + single_quoted=r"('([^'\\]|(\\.))*')", + double_quoted=r'("([^"\\]|(\\.))*")')) + m = r.match(line) + if m: + d = m.groupdict() + return (d["before"], d["after"]) + return (line, "") + +def _simplifyargs(argsline): + a = [] + for n in markoutercomma(argsline).split('@,@'): + for r in '(),': + n = n.replace(r, '_') + a.append(n) + return ','.join(a) + + +crackline_re_1 = re.compile(r'\s*(?P\b[a-z]+\w*\b)\s*=.*', re.I) +crackline_bind_1 = re.compile(r'\s*(?P\b[a-z]+\w*\b)\s*=.*', re.I) +crackline_bindlang = re.compile(r'\s*bind\(\s*(?P[^,]+)\s*,\s*name\s*=\s*"(?P[^"]+)"\s*\)', re.I) + +def crackline(line, reset=0): + """ + reset=-1 --- initialize + reset=0 --- crack the line + reset=1 --- final check if mismatch of blocks occurred + + Cracked data is saved in grouplist[0]. + """ + global beginpattern, groupcounter, groupname, groupcache, grouplist + global filepositiontext, currentfilename, neededmodule, expectbegin + global skipblocksuntil, skipemptyends, previous_context, gotnextfile + + _, has_semicolon = split_by_unquoted(line, ";") + if has_semicolon and not (f2pyenhancementspattern[0].match(line) or + multilinepattern[0].match(line)): + # XXX: non-zero reset values need testing + assert reset == 0, repr(reset) + # split line on unquoted semicolons + line, semicolon_line = split_by_unquoted(line, ";") + while semicolon_line: + crackline(line, reset) + line, semicolon_line = split_by_unquoted(semicolon_line[1:], ";") + crackline(line, reset) + return + if reset < 0: + groupcounter = 0 + groupname = {groupcounter: ''} + groupcache = {groupcounter: {}} + grouplist = {groupcounter: []} + groupcache[groupcounter]['body'] = [] + groupcache[groupcounter]['vars'] = {} + groupcache[groupcounter]['block'] = '' + groupcache[groupcounter]['name'] = '' + neededmodule = -1 + skipblocksuntil = -1 + return + if reset > 0: + fl = 0 + if f77modulename and neededmodule == groupcounter: + fl = 2 + while groupcounter > fl: + outmess('crackline: groupcounter=%s groupname=%s\n' % + (repr(groupcounter), repr(groupname))) + outmess( + 'crackline: Mismatch of blocks encountered. Trying to fix it by assuming "end" statement.\n') + grouplist[groupcounter - 1].append(groupcache[groupcounter]) + grouplist[groupcounter - 1][-1]['body'] = grouplist[groupcounter] + del grouplist[groupcounter] + groupcounter = groupcounter - 1 + if f77modulename and neededmodule == groupcounter: + grouplist[groupcounter - 1].append(groupcache[groupcounter]) + grouplist[groupcounter - 1][-1]['body'] = grouplist[groupcounter] + del grouplist[groupcounter] + groupcounter = groupcounter - 1 # end interface + grouplist[groupcounter - 1].append(groupcache[groupcounter]) + grouplist[groupcounter - 1][-1]['body'] = grouplist[groupcounter] + del grouplist[groupcounter] + groupcounter = groupcounter - 1 # end module + neededmodule = -1 + return + if line == '': + return + flag = 0 + for pat in [dimensionpattern, externalpattern, intentpattern, optionalpattern, + requiredpattern, + parameterpattern, datapattern, publicpattern, privatepattern, + intrinsicpattern, + endifpattern, endpattern, + formatpattern, + beginpattern, functionpattern, subroutinepattern, + implicitpattern, typespattern, commonpattern, + callpattern, usepattern, containspattern, + entrypattern, + f2pyenhancementspattern, + multilinepattern, + moduleprocedurepattern + ]: + m = pat[0].match(line) + if m: + break + flag = flag + 1 + if not m: + re_1 = crackline_re_1 + if 0 <= skipblocksuntil <= groupcounter: + return + if 'externals' in groupcache[groupcounter]: + for name in groupcache[groupcounter]['externals']: + if name in invbadnames: + name = invbadnames[name] + if 'interfaced' in groupcache[groupcounter] and name in groupcache[groupcounter]['interfaced']: + continue + m1 = re.match( + r'(?P[^"]*)\b%s\b\s*@\(@(?P[^@]*)@\)@.*\Z' % name, markouterparen(line), re.I) + if m1: + m2 = re_1.match(m1.group('before')) + a = _simplifyargs(m1.group('args')) + if m2: + line = f"callfun {name}({a}) result ({m2.group('result')})" + else: + line = f'callfun {name}({a})' + m = callfunpattern[0].match(line) + if not m: + outmess( + f'crackline: could not resolve function call for line={repr(line)}.\n') + return + analyzeline(m, 'callfun', line) + return + if verbose > 1 or (verbose == 1 and currentfilename.lower().endswith('.pyf')): + previous_context = None + outmess('crackline:%d: No pattern for line\n' % (groupcounter)) + return + elif pat[1] == 'end': + if 0 <= skipblocksuntil < groupcounter: + groupcounter = groupcounter - 1 + if skipblocksuntil <= groupcounter: + return + if groupcounter <= 0: + raise Exception('crackline: groupcounter(=%s) is nonpositive. ' + 'Check the blocks.' + % (groupcounter)) + m1 = beginpattern[0].match(line) + if (m1) and (not m1.group('this') == groupname[groupcounter]): + raise Exception('crackline: End group %s does not match with ' + 'previous Begin group %s\n\t%s' % + (repr(m1.group('this')), repr(groupname[groupcounter]), + filepositiontext) + ) + if skipblocksuntil == groupcounter: + skipblocksuntil = -1 + grouplist[groupcounter - 1].append(groupcache[groupcounter]) + grouplist[groupcounter - 1][-1]['body'] = grouplist[groupcounter] + del grouplist[groupcounter] + groupcounter = groupcounter - 1 + if not skipemptyends: + expectbegin = 1 + elif pat[1] == 'begin': + if 0 <= skipblocksuntil <= groupcounter: + groupcounter = groupcounter + 1 + return + gotnextfile = 0 + analyzeline(m, pat[1], line) + expectbegin = 0 + elif pat[1] == 'endif': + pass + elif pat[1] == 'moduleprocedure': + analyzeline(m, pat[1], line) + elif pat[1] == 'contains': + if ignorecontains: + return + if 0 <= skipblocksuntil <= groupcounter: + return + skipblocksuntil = groupcounter + else: + if 0 <= skipblocksuntil <= groupcounter: + return + analyzeline(m, pat[1], line) + + +def markouterparen(line): + l = '' + f = 0 + for c in line: + if c == '(': + f = f + 1 + if f == 1: + l = l + '@(@' + continue + elif c == ')': + f = f - 1 + if f == 0: + l = l + '@)@' + continue + l = l + c + return l + + +def markoutercomma(line, comma=','): + l = '' + f = 0 + before, after = split_by_unquoted(line, comma + '()') + l += before + while after: + if (after[0] == comma) and (f == 0): + l += '@' + comma + '@' + else: + l += after[0] + if after[0] == '(': + f += 1 + elif after[0] == ')': + f -= 1 + before, after = split_by_unquoted(after[1:], comma + '()') + l += before + assert not f, repr((f, line, l)) + return l + +def unmarkouterparen(line): + r = line.replace('@(@', '(').replace('@)@', ')') + return r + + +def appenddecl(decl, decl2, force=1): + if not decl: + decl = {} + if not decl2: + return decl + if decl is decl2: + return decl + for k in list(decl2.keys()): + if k == 'typespec': + if force or k not in decl: + decl[k] = decl2[k] + elif k == 'attrspec': + for l in decl2[k]: + decl = setattrspec(decl, l, force) + elif k == 'kindselector': + decl = setkindselector(decl, decl2[k], force) + elif k == 'charselector': + decl = setcharselector(decl, decl2[k], force) + elif k in ['=', 'typename']: + if force or k not in decl: + decl[k] = decl2[k] + elif k == 'note': + pass + elif k in ['intent', 'check', 'dimension', 'optional', + 'required', 'depend']: + errmess(f'appenddecl: "{k}" not implemented.\n') + else: + raise Exception('appenddecl: Unknown variable definition key: ' + + str(k)) + return decl + + +selectpattern = re.compile( + r'\s*(?P(@\(@.*?@\)@|\*[\d*]+|\*\s*@\(@.*?@\)@|))(?P.*)\Z', re.I) +typedefpattern = re.compile( + r'(?:,(?P[\w(),]+))?(::)?(?P\b[a-z$_][\w$]*\b)' + r'(?:\((?P[\w,]*)\))?\Z', re.I) +nameargspattern = re.compile( + r'\s*(?P\b[\w$]+\b)\s*(@\(@\s*(?P[\w\s,]*)\s*@\)@|)\s*((result(\s*@\(@\s*(?P\b[\w$]+\b)\s*@\)@|))|(bind\s*@\(@\s*(?P(?:(?!@\)@).)*)\s*@\)@))*\s*\Z', re.I) +operatorpattern = re.compile( + r'\s*(?P(operator|assignment))' + r'@\(@\s*(?P[^)]+)\s*@\)@\s*\Z', re.I) +callnameargspattern = re.compile( + r'\s*(?P\b[\w$]+\b)\s*@\(@\s*(?P.*)\s*@\)@\s*\Z', re.I) +real16pattern = re.compile( + r'([-+]?(?:\d+(?:\.\d*)?|\d*\.\d+))[dD]((?:[-+]?\d+)?)') +real8pattern = re.compile( + r'([-+]?((?:\d+(?:\.\d*)?|\d*\.\d+))[eE]((?:[-+]?\d+)?)|(\d+\.\d*))') + +_intentcallbackpattern = re.compile(r'intent\s*\(.*?\bcallback\b', re.I) + + +def _is_intent_callback(vdecl): + for a in vdecl.get('attrspec', []): + if _intentcallbackpattern.match(a): + return 1 + return 0 + + +def _resolvetypedefpattern(line): + line = ''.join(line.split()) # removes whitespace + m1 = typedefpattern.match(line) + print(line, m1) + if m1: + attrs = m1.group('attributes') + attrs = [a.lower() for a in attrs.split(',')] if attrs else [] + return m1.group('name'), attrs, m1.group('params') + return None, [], None + +def parse_name_for_bind(line): + pattern = re.compile(r'bind\(\s*(?P[^,]+)(?:\s*,\s*name\s*=\s*["\'](?P[^"\']+)["\']\s*)?\)', re.I) + match = pattern.search(line) + bind_statement = None + if match: + bind_statement = match.group(0) + # Remove the 'bind' construct from the line. + line = line[:match.start()] + line[match.end():] + return line, bind_statement + +def _resolvenameargspattern(line): + line, bind_cname = parse_name_for_bind(line) + line = markouterparen(line) + m1 = nameargspattern.match(line) + if m1: + return m1.group('name'), m1.group('args'), m1.group('result'), bind_cname + m1 = operatorpattern.match(line) + if m1: + name = m1.group('scheme') + '(' + m1.group('name') + ')' + return name, [], None, None + m1 = callnameargspattern.match(line) + if m1: + return m1.group('name'), m1.group('args'), None, None + return None, [], None, None + + +def analyzeline(m, case, line): + """ + Reads each line in the input file in sequence and updates global vars. + + Effectively reads and collects information from the input file to the + global variable groupcache, a dictionary containing info about each part + of the fortran module. + + At the end of analyzeline, information is filtered into the correct dict + keys, but parameter values and dimensions are not yet interpreted. + """ + global groupcounter, groupname, groupcache, grouplist, filepositiontext + global currentfilename, f77modulename, neededinterface, neededmodule + global expectbegin, gotnextfile, previous_context + + block = m.group('this') + if case != 'multiline': + previous_context = None + if expectbegin and case not in ['begin', 'call', 'callfun', 'type'] \ + and not skipemptyends and groupcounter < 1: + newname = os.path.basename(currentfilename).split('.')[0] + outmess( + f'analyzeline: no group yet. Creating program group with name "{newname}".\n') + gotnextfile = 0 + groupcounter = groupcounter + 1 + groupname[groupcounter] = 'program' + groupcache[groupcounter] = {} + grouplist[groupcounter] = [] + groupcache[groupcounter]['body'] = [] + groupcache[groupcounter]['vars'] = {} + groupcache[groupcounter]['block'] = 'program' + groupcache[groupcounter]['name'] = newname + groupcache[groupcounter]['from'] = 'fromsky' + expectbegin = 0 + if case in ['begin', 'call', 'callfun']: + # Crack line => block,name,args,result + block = block.lower() + if re.match(r'block\s*data', block, re.I): + block = 'block data' + elif re.match(r'python\s*module', block, re.I): + block = 'python module' + elif re.match(r'abstract\s*interface', block, re.I): + block = 'abstract interface' + if block == 'type': + name, attrs, _ = _resolvetypedefpattern(m.group('after')) + groupcache[groupcounter]['vars'][name] = {'attrspec': attrs} + args = [] + result = None + else: + name, args, result, bindcline = _resolvenameargspattern(m.group('after')) + if name is None: + if block == 'block data': + name = '_BLOCK_DATA_' + else: + name = '' + if block not in ['interface', 'block data', 'abstract interface']: + outmess('analyzeline: No name/args pattern found for line.\n') + + previous_context = (block, name, groupcounter) + if args: + args = rmbadname([x.strip() + for x in markoutercomma(args).split('@,@')]) + else: + args = [] + if '' in args: + while '' in args: + args.remove('') + outmess( + 'analyzeline: argument list is malformed (missing argument).\n') + + # end of crack line => block,name,args,result + needmodule = 0 + needinterface = 0 + + if case in ['call', 'callfun']: + needinterface = 1 + if 'args' not in groupcache[groupcounter]: + return + if name not in groupcache[groupcounter]['args']: + return + for it in grouplist[groupcounter]: + if it['name'] == name: + return + if name in groupcache[groupcounter]['interfaced']: + return + block = {'call': 'subroutine', 'callfun': 'function'}[case] + if f77modulename and neededmodule == -1 and groupcounter <= 1: + neededmodule = groupcounter + 2 + needmodule = 1 + if block not in ['interface', 'abstract interface']: + needinterface = 1 + # Create new block(s) + groupcounter = groupcounter + 1 + groupcache[groupcounter] = {} + grouplist[groupcounter] = [] + if needmodule: + if verbose > 1: + outmess('analyzeline: Creating module block %s\n' % + repr(f77modulename), 0) + groupname[groupcounter] = 'module' + groupcache[groupcounter]['block'] = 'python module' + groupcache[groupcounter]['name'] = f77modulename + groupcache[groupcounter]['from'] = '' + groupcache[groupcounter]['body'] = [] + groupcache[groupcounter]['externals'] = [] + groupcache[groupcounter]['interfaced'] = [] + groupcache[groupcounter]['vars'] = {} + groupcounter = groupcounter + 1 + groupcache[groupcounter] = {} + grouplist[groupcounter] = [] + if needinterface: + if verbose > 1: + outmess('analyzeline: Creating additional interface block (groupcounter=%s).\n' % ( + groupcounter), 0) + groupname[groupcounter] = 'interface' + groupcache[groupcounter]['block'] = 'interface' + groupcache[groupcounter]['name'] = 'unknown_interface' + groupcache[groupcounter]['from'] = '%s:%s' % ( + groupcache[groupcounter - 1]['from'], groupcache[groupcounter - 1]['name']) + groupcache[groupcounter]['body'] = [] + groupcache[groupcounter]['externals'] = [] + groupcache[groupcounter]['interfaced'] = [] + groupcache[groupcounter]['vars'] = {} + groupcounter = groupcounter + 1 + groupcache[groupcounter] = {} + grouplist[groupcounter] = [] + groupname[groupcounter] = block + groupcache[groupcounter]['block'] = block + if not name: + name = 'unknown_' + block.replace(' ', '_') + groupcache[groupcounter]['prefix'] = m.group('before') + groupcache[groupcounter]['name'] = rmbadname1(name) + groupcache[groupcounter]['result'] = result + if groupcounter == 1: + groupcache[groupcounter]['from'] = currentfilename + elif f77modulename and groupcounter == 3: + groupcache[groupcounter]['from'] = '%s:%s' % ( + groupcache[groupcounter - 1]['from'], currentfilename) + else: + groupcache[groupcounter]['from'] = '%s:%s' % ( + groupcache[groupcounter - 1]['from'], groupcache[groupcounter - 1]['name']) + for k in list(groupcache[groupcounter].keys()): + if not groupcache[groupcounter][k]: + del groupcache[groupcounter][k] + + groupcache[groupcounter]['args'] = args + groupcache[groupcounter]['body'] = [] + groupcache[groupcounter]['externals'] = [] + groupcache[groupcounter]['interfaced'] = [] + groupcache[groupcounter]['vars'] = {} + groupcache[groupcounter]['entry'] = {} + # end of creation + if block == 'type': + groupcache[groupcounter]['varnames'] = [] + + if case in ['call', 'callfun']: # set parents variables + if name not in groupcache[groupcounter - 2]['externals']: + groupcache[groupcounter - 2]['externals'].append(name) + groupcache[groupcounter]['vars'] = copy.deepcopy( + groupcache[groupcounter - 2]['vars']) + try: + del groupcache[groupcounter]['vars'][name][ + groupcache[groupcounter]['vars'][name]['attrspec'].index('external')] + except Exception: + pass + if block in ['function', 'subroutine']: # set global attributes + # name is fortran name + if bindcline: + bindcdat = re.search(crackline_bindlang, bindcline) + if bindcdat: + groupcache[groupcounter]['bindlang'] = {name: {}} + groupcache[groupcounter]['bindlang'][name]["lang"] = bindcdat.group('lang') + if bindcdat.group('lang_name'): + groupcache[groupcounter]['bindlang'][name]["name"] = bindcdat.group('lang_name') + try: + groupcache[groupcounter]['vars'][name] = appenddecl( + groupcache[groupcounter]['vars'][name], groupcache[groupcounter - 2]['vars']['']) + except Exception: + pass + if case == 'callfun': # return type + if result and result in groupcache[groupcounter]['vars']: + if not name == result: + groupcache[groupcounter]['vars'][name] = appenddecl( + groupcache[groupcounter]['vars'][name], groupcache[groupcounter]['vars'][result]) + # if groupcounter>1: # name is interfaced + try: + groupcache[groupcounter - 2]['interfaced'].append(name) + except Exception: + pass + if block == 'function': + t = typespattern[0].match(m.group('before') + ' ' + name) + if t: + typespec, selector, attr, edecl = cracktypespec0( + t.group('this'), t.group('after')) + updatevars(typespec, selector, attr, edecl) + + if case in ['call', 'callfun']: + grouplist[groupcounter - 1].append(groupcache[groupcounter]) + grouplist[groupcounter - 1][-1]['body'] = grouplist[groupcounter] + del grouplist[groupcounter] + groupcounter = groupcounter - 1 # end routine + grouplist[groupcounter - 1].append(groupcache[groupcounter]) + grouplist[groupcounter - 1][-1]['body'] = grouplist[groupcounter] + del grouplist[groupcounter] + groupcounter = groupcounter - 1 # end interface + + elif case == 'entry': + name, args, result, _ = _resolvenameargspattern(m.group('after')) + if name is not None: + if args: + args = rmbadname([x.strip() + for x in markoutercomma(args).split('@,@')]) + else: + args = [] + assert result is None, repr(result) + groupcache[groupcounter]['entry'][name] = args + previous_context = ('entry', name, groupcounter) + elif case == 'type': + typespec, selector, attr, edecl = cracktypespec0( + block, m.group('after')) + last_name = updatevars(typespec, selector, attr, edecl) + if last_name is not None: + previous_context = ('variable', last_name, groupcounter) + elif case in ['dimension', 'intent', 'optional', 'required', 'external', 'public', 'private', 'intrinsic']: + edecl = groupcache[groupcounter]['vars'] + ll = m.group('after').strip() + i = ll.find('::') + if i < 0 and case == 'intent': + i = markouterparen(ll).find('@)@') - 2 + ll = ll[:i + 1] + '::' + ll[i + 1:] + i = ll.find('::') + if ll[i:] == '::' and 'args' in groupcache[groupcounter]: + outmess('All arguments will have attribute %s%s\n' % + (m.group('this'), ll[:i])) + ll = ll + ','.join(groupcache[groupcounter]['args']) + if i < 0: + i = 0 + pl = '' + else: + pl = ll[:i].strip() + ll = ll[i + 2:] + ch = markoutercomma(pl).split('@,@') + if len(ch) > 1: + pl = ch[0] + outmess('analyzeline: cannot handle multiple attributes without type specification. Ignoring %r.\n' % ( + ','.join(ch[1:]))) + last_name = None + + for e in [x.strip() for x in markoutercomma(ll).split('@,@')]: + m1 = namepattern.match(e) + if not m1: + if case in ['public', 'private']: + k = '' + else: + print(m.groupdict()) + outmess('analyzeline: no name pattern found in %s statement for %s. Skipping.\n' % ( + case, repr(e))) + continue + else: + k = rmbadname1(m1.group('name')) + if case in ['public', 'private'] and k in {'operator', 'assignment'}: + k += m1.group('after') + if k not in edecl: + edecl[k] = {} + if case == 'dimension': + ap = case + m1.group('after') + if case == 'intent': + ap = m.group('this') + pl + if _intentcallbackpattern.match(ap): + if k not in groupcache[groupcounter]['args']: + if groupcounter > 1: + if '__user__' not in groupcache[groupcounter - 2]['name']: + outmess( + 'analyzeline: missing __user__ module (could be nothing)\n') + # fixes ticket 1693 + if k != groupcache[groupcounter]['name']: + outmess('analyzeline: appending intent(callback) %s' + ' to %s arguments\n' % (k, groupcache[groupcounter]['name'])) + groupcache[groupcounter]['args'].append(k) + else: + errmess( + f'analyzeline: intent(callback) {k} is ignored\n') + else: + errmess('analyzeline: intent(callback) %s is already' + ' in argument list\n' % (k)) + if case in ['optional', 'required', 'public', 'external', 'private', 'intrinsic']: + ap = case + if 'attrspec' in edecl[k]: + edecl[k]['attrspec'].append(ap) + else: + edecl[k]['attrspec'] = [ap] + if case == 'external': + if groupcache[groupcounter]['block'] == 'program': + outmess('analyzeline: ignoring program arguments\n') + continue + if k not in groupcache[groupcounter]['args']: + continue + if 'externals' not in groupcache[groupcounter]: + groupcache[groupcounter]['externals'] = [] + groupcache[groupcounter]['externals'].append(k) + last_name = k + groupcache[groupcounter]['vars'] = edecl + if last_name is not None: + previous_context = ('variable', last_name, groupcounter) + elif case == 'moduleprocedure': + groupcache[groupcounter]['implementedby'] = \ + [x.strip() for x in m.group('after').split(',')] + elif case == 'parameter': + edecl = groupcache[groupcounter]['vars'] + ll = m.group('after').strip()[1:-1] + last_name = None + for e in markoutercomma(ll).split('@,@'): + try: + k, initexpr = [x.strip() for x in e.split('=')] + except Exception: + outmess( + f'analyzeline: could not extract name,expr in parameter statement "{e}" of "{ll}\"\n') + continue + params = get_parameters(edecl) + k = rmbadname1(k) + if k not in edecl: + edecl[k] = {} + if '=' in edecl[k] and (not edecl[k]['='] == initexpr): + outmess('analyzeline: Overwriting the value of parameter "%s" ("%s") with "%s".\n' % ( + k, edecl[k]['='], initexpr)) + t = determineexprtype(initexpr, params) + if t: + if t.get('typespec') == 'real': + tt = list(initexpr) + for m in real16pattern.finditer(initexpr): + tt[m.start():m.end()] = list( + initexpr[m.start():m.end()].lower().replace('d', 'e')) + initexpr = ''.join(tt) + elif t.get('typespec') == 'complex': + initexpr = initexpr[1:].lower().replace('d', 'e').\ + replace(',', '+1j*(') + try: + v = eval(initexpr, {}, params) + except (SyntaxError, NameError, TypeError) as msg: + errmess('analyzeline: Failed to evaluate %r. Ignoring: %s\n' + % (initexpr, msg)) + continue + edecl[k]['='] = repr(v) + if 'attrspec' in edecl[k]: + edecl[k]['attrspec'].append('parameter') + else: + edecl[k]['attrspec'] = ['parameter'] + last_name = k + groupcache[groupcounter]['vars'] = edecl + if last_name is not None: + previous_context = ('variable', last_name, groupcounter) + elif case == 'implicit': + if m.group('after').strip().lower() == 'none': + groupcache[groupcounter]['implicit'] = None + elif m.group('after'): + impl = groupcache[groupcounter].get('implicit', {}) + if impl is None: + outmess( + 'analyzeline: Overwriting earlier "implicit none" statement.\n') + impl = {} + for e in markoutercomma(m.group('after')).split('@,@'): + decl = {} + m1 = re.match( + r'\s*(?P.*?)\s*(\(\s*(?P[a-z-, ]+)\s*\)\s*|)\Z', e, re.I) + if not m1: + outmess( + f'analyzeline: could not extract info of implicit statement part "{e}\"\n') + continue + m2 = typespattern4implicit.match(m1.group('this')) + if not m2: + outmess( + f'analyzeline: could not extract types pattern of implicit statement part "{e}\"\n') + continue + typespec, selector, attr, edecl = cracktypespec0( + m2.group('this'), m2.group('after')) + kindselect, charselect, typename = cracktypespec( + typespec, selector) + decl['typespec'] = typespec + decl['kindselector'] = kindselect + decl['charselector'] = charselect + decl['typename'] = typename + for k in list(decl.keys()): + if not decl[k]: + del decl[k] + for r in markoutercomma(m1.group('after')).split('@,@'): + if '-' in r: + try: + begc, endc = [x.strip() for x in r.split('-')] + except Exception: + outmess( + f'analyzeline: expected "-" instead of "{r}" in range list of implicit statement\n') + continue + else: + begc = endc = r.strip() + if not len(begc) == len(endc) == 1: + outmess( + f'analyzeline: expected "-" instead of "{r}" in range list of implicit statement (2)\n') + continue + for o in range(ord(begc), ord(endc) + 1): + impl[chr(o)] = decl + groupcache[groupcounter]['implicit'] = impl + elif case == 'data': + ll = [] + dl = '' + il = '' + f = 0 + fc = 1 + inp = 0 + for c in m.group('after'): + if not inp: + if c == "'": + fc = not fc + if c == '/' and fc: + f = f + 1 + continue + if c == '(': + inp = inp + 1 + elif c == ')': + inp = inp - 1 + if f == 0: + dl = dl + c + elif f == 1: + il = il + c + elif f == 2: + dl = dl.strip() + if dl.startswith(','): + dl = dl[1:].strip() + ll.append([dl, il]) + dl = c + il = '' + f = 0 + if f == 2: + dl = dl.strip() + if dl.startswith(','): + dl = dl[1:].strip() + ll.append([dl, il]) + vars = groupcache[groupcounter].get('vars', {}) + last_name = None + for l in ll: + l[0], l[1] = l[0].strip().removeprefix(','), l[1].strip() + if l[0].startswith('('): + outmess(f'analyzeline: implied-DO list "{l[0]}" is not supported. Skipping.\n') + continue + for idx, v in enumerate(rmbadname([x.strip() for x in markoutercomma(l[0]).split('@,@')])): + if v.startswith('('): + outmess(f'analyzeline: implied-DO list "{v}" is not supported. Skipping.\n') + # XXX: subsequent init expressions may get wrong values. + # Ignoring since data statements are irrelevant for + # wrapping. + continue + if '!' in l[1]: + # Fixes gh-24746 pyf generation + # XXX: This essentially ignores the value for generating the pyf which is fine: + # integer dimension(3) :: mytab + # common /mycom/ mytab + # Since in any case it is initialized in the Fortran code + outmess(f'Comment line in declaration "{l[1]}" is not supported. Skipping.\n') + continue + vars.setdefault(v, {}) + vtype = vars[v].get('typespec') + vdim = getdimension(vars[v]) + matches = re.findall(r"\(.*?\)", l[1]) if vtype == 'complex' else l[1].split(',') + try: + new_val = f"(/{', '.join(matches)}/)" if vdim else matches[idx] + except IndexError: + # gh-24746 + # Runs only if above code fails. Fixes the line + # DATA IVAR1, IVAR2, IVAR3, IVAR4, EVAR5 /4*0,0.0D0/ + # by expanding to ['0', '0', '0', '0', '0.0d0'] + if any("*" in m for m in matches): + expanded_list = [] + for match in matches: + if "*" in match: + try: + multiplier, value = match.split("*") + expanded_list.extend([value.strip()] * int(multiplier)) + except ValueError: # if int(multiplier) fails + expanded_list.append(match.strip()) + else: + expanded_list.append(match.strip()) + matches = expanded_list + new_val = f"(/{', '.join(matches)}/)" if vdim else matches[idx] + current_val = vars[v].get('=') + if current_val and (current_val != new_val): + outmess(f'analyzeline: changing init expression of "{v}" ("{current_val}") to "{new_val}\"\n') + vars[v]['='] = new_val + last_name = v + groupcache[groupcounter]['vars'] = vars + if last_name: + previous_context = ('variable', last_name, groupcounter) + elif case == 'common': + line = m.group('after').strip() + if not line[0] == '/': + line = '//' + line + + cl = [] + [_, bn, ol] = re.split('/', line, maxsplit=2) # noqa: RUF039 + bn = bn.strip() + if not bn: + bn = '_BLNK_' + cl.append([bn, ol]) + commonkey = {} + if 'common' in groupcache[groupcounter]: + commonkey = groupcache[groupcounter]['common'] + for c in cl: + if c[0] not in commonkey: + commonkey[c[0]] = [] + for i in [x.strip() for x in markoutercomma(c[1]).split('@,@')]: + if i: + commonkey[c[0]].append(i) + groupcache[groupcounter]['common'] = commonkey + previous_context = ('common', bn, groupcounter) + elif case == 'use': + m1 = re.match( + r'\A\s*(?P\b\w+\b)\s*((,(\s*\bonly\b\s*:|(?P))\s*(?P.*))|)\s*\Z', m.group('after'), re.I) + if m1: + mm = m1.groupdict() + if 'use' not in groupcache[groupcounter]: + groupcache[groupcounter]['use'] = {} + name = m1.group('name') + groupcache[groupcounter]['use'][name] = {} + isonly = 0 + if 'list' in mm and mm['list'] is not None: + if 'notonly' in mm and mm['notonly'] is None: + isonly = 1 + groupcache[groupcounter]['use'][name]['only'] = isonly + ll = [x.strip() for x in mm['list'].split(',')] + rl = {} + for l in ll: + if '=' in l: + m2 = re.match( + r'\A\s*(?P\b\w+\b)\s*=\s*>\s*(?P\b\w+\b)\s*\Z', l, re.I) + if m2: + rl[m2.group('local').strip()] = m2.group( + 'use').strip() + else: + outmess( + f'analyzeline: Not local=>use pattern found in {repr(l)}\n') + else: + rl[l] = l + groupcache[groupcounter]['use'][name]['map'] = rl + else: + print(m.groupdict()) + outmess('analyzeline: Could not crack the use statement.\n') + elif case in ['f2pyenhancements']: + if 'f2pyenhancements' not in groupcache[groupcounter]: + groupcache[groupcounter]['f2pyenhancements'] = {} + d = groupcache[groupcounter]['f2pyenhancements'] + if m.group('this') == 'usercode' and 'usercode' in d: + if isinstance(d['usercode'], str): + d['usercode'] = [d['usercode']] + d['usercode'].append(m.group('after')) + else: + d[m.group('this')] = m.group('after') + elif case == 'multiline': + if previous_context is None: + if verbose: + outmess('analyzeline: No context for multiline block.\n') + return + gc = groupcounter + appendmultiline(groupcache[gc], + previous_context[:2], + m.group('this')) + elif verbose > 1: + print(m.groupdict()) + outmess('analyzeline: No code implemented for line.\n') + + +def appendmultiline(group, context_name, ml): + if 'f2pymultilines' not in group: + group['f2pymultilines'] = {} + d = group['f2pymultilines'] + if context_name not in d: + d[context_name] = [] + d[context_name].append(ml) + + +def cracktypespec0(typespec, ll): + selector = None + attr = None + if re.match(r'double\s*complex', typespec, re.I): + typespec = 'double complex' + elif re.match(r'double\s*precision', typespec, re.I): + typespec = 'double precision' + else: + typespec = typespec.strip().lower() + m1 = selectpattern.match(markouterparen(ll)) + if not m1: + outmess( + 'cracktypespec0: no kind/char_selector pattern found for line.\n') + return + d = m1.groupdict() + for k in list(d.keys()): + d[k] = unmarkouterparen(d[k]) + if typespec in ['complex', 'integer', 'logical', 'real', 'character', 'type']: + selector = d['this'] + ll = d['after'] + i = ll.find('::') + if i >= 0: + attr = ll[:i].strip() + ll = ll[i + 2:] + return typespec, selector, attr, ll + + +##### +namepattern = re.compile(r'\s*(?P\b\w+\b)\s*(?P.*)\s*\Z', re.I) +kindselector = re.compile( + r'\s*(\(\s*(kind\s*=)?\s*(?P.*)\s*\)|\*\s*(?P.*?))\s*\Z', re.I) +charselector = re.compile( + r'\s*(\((?P.*)\)|\*\s*(?P.*))\s*\Z', re.I) +lenkindpattern = re.compile( + r'\s*(kind\s*=\s*(?P.*?)\s*(@,@\s*len\s*=\s*(?P.*)|)' + r'|(len\s*=\s*|)(?P.*?)\s*(@,@\s*(kind\s*=\s*|)(?P.*)' + r'|(f2py_len\s*=\s*(?P.*))|))\s*\Z', re.I) +lenarraypattern = re.compile( + r'\s*(@\(@\s*(?!/)\s*(?P.*?)\s*@\)@\s*\*\s*(?P.*?)|(\*\s*(?P.*?)|)\s*(@\(@\s*(?!/)\s*(?P.*?)\s*@\)@|))\s*(=\s*(?P.*?)|(@\(@|)/\s*(?P.*?)\s*/(@\)@|)|)\s*\Z', re.I) + + +def removespaces(expr): + expr = expr.strip() + if len(expr) <= 1: + return expr + expr2 = expr[0] + for i in range(1, len(expr) - 1): + if (expr[i] == ' ' and + ((expr[i + 1] in "()[]{}=+-/* ") or + (expr[i - 1] in "()[]{}=+-/* "))): + continue + expr2 = expr2 + expr[i] + expr2 = expr2 + expr[-1] + return expr2 + + +def markinnerspaces(line): + """ + The function replace all spaces in the input variable line which are + surrounded with quotation marks, with the triplet "@_@". + + For instance, for the input "a 'b c'" the function returns "a 'b@_@c'" + + Parameters + ---------- + line : str + + Returns + ------- + str + + """ + fragment = '' + inside = False + current_quote = None + escaped = '' + for c in line: + if escaped == '\\' and c in ['\\', '\'', '"']: + fragment += c + escaped = c + continue + if not inside and c in ['\'', '"']: + current_quote = c + if c == current_quote: + inside = not inside + elif c == ' ' and inside: + fragment += '@_@' + continue + fragment += c + escaped = c # reset to non-backslash + return fragment + + +def updatevars(typespec, selector, attrspec, entitydecl): + """ + Returns last_name, the variable name without special chars, parenthesis + or dimension specifiers. + + Alters groupcache to add the name, typespec, attrspec (and possibly value) + of current variable. + """ + global groupcache, groupcounter + + last_name = None + kindselect, charselect, typename = cracktypespec(typespec, selector) + # Clean up outer commas, whitespace and undesired chars from attrspec + if attrspec: + attrspec = [x.strip() for x in markoutercomma(attrspec).split('@,@')] + l = [] + c = re.compile(r'(?P[a-zA-Z]+)') + for a in attrspec: + if not a: + continue + m = c.match(a) + if m: + s = m.group('start').lower() + a = s + a[len(s):] + l.append(a) + attrspec = l + el = [x.strip() for x in markoutercomma(entitydecl).split('@,@')] + el1 = [] + for e in el: + for e1 in [x.strip() for x in markoutercomma(removespaces(markinnerspaces(e)), comma=' ').split('@ @')]: + if e1: + el1.append(e1.replace('@_@', ' ')) + for e in el1: + m = namepattern.match(e) + if not m: + outmess( + f'updatevars: no name pattern found for entity={repr(e)}. Skipping.\n') + continue + ename = rmbadname1(m.group('name')) + edecl = {} + if ename in groupcache[groupcounter]['vars']: + edecl = groupcache[groupcounter]['vars'][ename].copy() + not_has_typespec = 'typespec' not in edecl + if not_has_typespec: + edecl['typespec'] = typespec + elif typespec and (not typespec == edecl['typespec']): + outmess('updatevars: attempt to change the type of "%s" ("%s") to "%s". Ignoring.\n' % ( + ename, edecl['typespec'], typespec)) + if 'kindselector' not in edecl: + edecl['kindselector'] = copy.copy(kindselect) + elif kindselect: + for k in list(kindselect.keys()): + if k in edecl['kindselector'] and (not kindselect[k] == edecl['kindselector'][k]): + outmess('updatevars: attempt to change the kindselector "%s" of "%s" ("%s") to "%s". Ignoring.\n' % ( + k, ename, edecl['kindselector'][k], kindselect[k])) + else: + edecl['kindselector'][k] = copy.copy(kindselect[k]) + if 'charselector' not in edecl and charselect: + if not_has_typespec: + edecl['charselector'] = charselect + else: + errmess('updatevars:%s: attempt to change empty charselector to %r. Ignoring.\n' + % (ename, charselect)) + elif charselect: + for k in list(charselect.keys()): + if k in edecl['charselector'] and (not charselect[k] == edecl['charselector'][k]): + outmess('updatevars: attempt to change the charselector "%s" of "%s" ("%s") to "%s". Ignoring.\n' % ( + k, ename, edecl['charselector'][k], charselect[k])) + else: + edecl['charselector'][k] = copy.copy(charselect[k]) + if 'typename' not in edecl: + edecl['typename'] = typename + elif typename and (not edecl['typename'] == typename): + outmess('updatevars: attempt to change the typename of "%s" ("%s") to "%s". Ignoring.\n' % ( + ename, edecl['typename'], typename)) + if 'attrspec' not in edecl: + edecl['attrspec'] = copy.copy(attrspec) + elif attrspec: + for a in attrspec: + if a not in edecl['attrspec']: + edecl['attrspec'].append(a) + else: + edecl['typespec'] = copy.copy(typespec) + edecl['kindselector'] = copy.copy(kindselect) + edecl['charselector'] = copy.copy(charselect) + edecl['typename'] = typename + edecl['attrspec'] = copy.copy(attrspec) + if 'external' in (edecl.get('attrspec') or []) and e in groupcache[groupcounter]['args']: + if 'externals' not in groupcache[groupcounter]: + groupcache[groupcounter]['externals'] = [] + groupcache[groupcounter]['externals'].append(e) + if m.group('after'): + m1 = lenarraypattern.match(markouterparen(m.group('after'))) + if m1: + d1 = m1.groupdict() + for lk in ['len', 'array', 'init']: + if d1[lk + '2'] is not None: + d1[lk] = d1[lk + '2'] + del d1[lk + '2'] + for k in list(d1.keys()): + if d1[k] is not None: + d1[k] = unmarkouterparen(d1[k]) + else: + del d1[k] + + if 'len' in d1 and 'array' in d1: + if d1['len'] == '': + d1['len'] = d1['array'] + del d1['array'] + elif typespec == 'character': + if ('charselector' not in edecl) or (not edecl['charselector']): + edecl['charselector'] = {} + if 'len' in edecl['charselector']: + del edecl['charselector']['len'] + edecl['charselector']['*'] = d1['len'] + del d1['len'] + else: + d1['array'] = d1['array'] + ',' + d1['len'] + del d1['len'] + errmess('updatevars: "%s %s" is mapped to "%s %s(%s)"\n' % ( + typespec, e, typespec, ename, d1['array'])) + + if 'len' in d1: + if typespec in ['complex', 'integer', 'logical', 'real']: + if ('kindselector' not in edecl) or (not edecl['kindselector']): + edecl['kindselector'] = {} + edecl['kindselector']['*'] = d1['len'] + del d1['len'] + elif typespec == 'character': + if ('charselector' not in edecl) or (not edecl['charselector']): + edecl['charselector'] = {} + if 'len' in edecl['charselector']: + del edecl['charselector']['len'] + edecl['charselector']['*'] = d1['len'] + del d1['len'] + + if 'init' in d1: + if '=' in edecl and (not edecl['='] == d1['init']): + outmess('updatevars: attempt to change the init expression of "%s" ("%s") to "%s". Ignoring.\n' % ( + ename, edecl['='], d1['init'])) + else: + edecl['='] = d1['init'] + + if 'array' in d1: + dm = f"dimension({d1['array']})" + if 'attrspec' not in edecl or (not edecl['attrspec']): + edecl['attrspec'] = [dm] + else: + edecl['attrspec'].append(dm) + for dm1 in edecl['attrspec']: + if dm1[:9] == 'dimension' and dm1 != dm: + del edecl['attrspec'][-1] + errmess('updatevars:%s: attempt to change %r to %r. Ignoring.\n' + % (ename, dm1, dm)) + break + + else: + outmess('updatevars: could not crack entity declaration "%s". Ignoring.\n' % ( + ename + m.group('after'))) + for k in list(edecl.keys()): + if not edecl[k]: + del edecl[k] + groupcache[groupcounter]['vars'][ename] = edecl + if 'varnames' in groupcache[groupcounter]: + groupcache[groupcounter]['varnames'].append(ename) + last_name = ename + return last_name + + +def cracktypespec(typespec, selector): + kindselect = None + charselect = None + typename = None + if selector: + if typespec in ['complex', 'integer', 'logical', 'real']: + kindselect = kindselector.match(selector) + if not kindselect: + outmess( + f'cracktypespec: no kindselector pattern found for {repr(selector)}\n') + return + kindselect = kindselect.groupdict() + kindselect['*'] = kindselect['kind2'] + del kindselect['kind2'] + for k in list(kindselect.keys()): + if not kindselect[k]: + del kindselect[k] + for k, i in list(kindselect.items()): + kindselect[k] = rmbadname1(i) + elif typespec == 'character': + charselect = charselector.match(selector) + if not charselect: + outmess( + f'cracktypespec: no charselector pattern found for {repr(selector)}\n') + return + charselect = charselect.groupdict() + charselect['*'] = charselect['charlen'] + del charselect['charlen'] + if charselect['lenkind']: + lenkind = lenkindpattern.match( + markoutercomma(charselect['lenkind'])) + lenkind = lenkind.groupdict() + for lk in ['len', 'kind']: + if lenkind[lk + '2']: + lenkind[lk] = lenkind[lk + '2'] + charselect[lk] = lenkind[lk] + del lenkind[lk + '2'] + if lenkind['f2py_len'] is not None: + # used to specify the length of assumed length strings + charselect['f2py_len'] = lenkind['f2py_len'] + del charselect['lenkind'] + for k in list(charselect.keys()): + if not charselect[k]: + del charselect[k] + for k, i in list(charselect.items()): + charselect[k] = rmbadname1(i) + elif typespec == 'type': + typename = re.match(r'\s*\(\s*(?P\w+)\s*\)', selector, re.I) + if typename: + typename = typename.group('name') + else: + outmess('cracktypespec: no typename found in %s\n' % + (repr(typespec + selector))) + else: + outmess(f'cracktypespec: no selector used for {repr(selector)}\n') + return kindselect, charselect, typename +###### + + +def setattrspec(decl, attr, force=0): + if not decl: + decl = {} + if not attr: + return decl + if 'attrspec' not in decl: + decl['attrspec'] = [attr] + return decl + if force: + decl['attrspec'].append(attr) + if attr in decl['attrspec']: + return decl + if attr == 'static' and 'automatic' not in decl['attrspec']: + decl['attrspec'].append(attr) + elif attr == 'automatic' and 'static' not in decl['attrspec']: + decl['attrspec'].append(attr) + elif attr == 'public': + if 'private' not in decl['attrspec']: + decl['attrspec'].append(attr) + elif attr == 'private': + if 'public' not in decl['attrspec']: + decl['attrspec'].append(attr) + else: + decl['attrspec'].append(attr) + return decl + + +def setkindselector(decl, sel, force=0): + if not decl: + decl = {} + if not sel: + return decl + if 'kindselector' not in decl: + decl['kindselector'] = sel + return decl + for k in list(sel.keys()): + if force or k not in decl['kindselector']: + decl['kindselector'][k] = sel[k] + return decl + + +def setcharselector(decl, sel, force=0): + if not decl: + decl = {} + if not sel: + return decl + if 'charselector' not in decl: + decl['charselector'] = sel + return decl + + for k in list(sel.keys()): + if force or k not in decl['charselector']: + decl['charselector'][k] = sel[k] + return decl + + +def getblockname(block, unknown='unknown'): + if 'name' in block: + return block['name'] + return unknown + +# post processing + + +def setmesstext(block): + global filepositiontext + + try: + filepositiontext = f"In: {block['from']}:{block['name']}\n" + except Exception: + pass + + +def get_usedict(block): + usedict = {} + if 'parent_block' in block: + usedict = get_usedict(block['parent_block']) + if 'use' in block: + usedict.update(block['use']) + return usedict + + +def get_useparameters(block, param_map=None): + global f90modulevars + + if param_map is None: + param_map = {} + usedict = get_usedict(block) + if not usedict: + return param_map + for usename, mapping in list(usedict.items()): + usename = usename.lower() + if usename not in f90modulevars: + outmess('get_useparameters: no module %s info used by %s\n' % + (usename, block.get('name'))) + continue + mvars = f90modulevars[usename] + params = get_parameters(mvars) + if not params: + continue + # XXX: apply mapping + if mapping: + errmess(f'get_useparameters: mapping for {mapping} not impl.\n') + for k, v in list(params.items()): + if k in param_map: + outmess('get_useparameters: overriding parameter %s with' + ' value from module %s\n' % (repr(k), repr(usename))) + param_map[k] = v + + return param_map + + +def postcrack2(block, tab='', param_map=None): + global f90modulevars + + if not f90modulevars: + return block + if isinstance(block, list): + ret = [postcrack2(g, tab=tab + '\t', param_map=param_map) + for g in block] + return ret + setmesstext(block) + outmess(f"{tab}Block: {block['name']}\n", 0) + + if param_map is None: + param_map = get_useparameters(block) + + if param_map is not None and 'vars' in block: + vars = block['vars'] + for n in list(vars.keys()): + var = vars[n] + if 'kindselector' in var: + kind = var['kindselector'] + if 'kind' in kind: + val = kind['kind'] + if val in param_map: + kind['kind'] = param_map[val] + new_body = [postcrack2(b, tab=tab + '\t', param_map=param_map) + for b in block['body']] + block['body'] = new_body + + return block + + +def postcrack(block, args=None, tab=''): + """ + TODO: + function return values + determine expression types if in argument list + """ + global usermodules, onlyfunctions + + if isinstance(block, list): + gret = [] + uret = [] + for g in block: + setmesstext(g) + g = postcrack(g, tab=tab + '\t') + # sort user routines to appear first + if 'name' in g and '__user__' in g['name']: + uret.append(g) + else: + gret.append(g) + return uret + gret + setmesstext(block) + if not isinstance(block, dict) and 'block' not in block: + raise Exception('postcrack: Expected block dictionary instead of ' + + str(block)) + if 'name' in block and not block['name'] == 'unknown_interface': + outmess(f"{tab}Block: {block['name']}\n", 0) + block = analyzeargs(block) + block = analyzecommon(block) + block['vars'] = analyzevars(block) + block['sortvars'] = sortvarnames(block['vars']) + if block.get('args'): + args = block['args'] + block['body'] = analyzebody(block, args, tab=tab) + + userisdefined = [] + if 'use' in block: + useblock = block['use'] + for k in list(useblock.keys()): + if '__user__' in k: + userisdefined.append(k) + else: + useblock = {} + name = '' + if 'name' in block: + name = block['name'] + # and not userisdefined: # Build a __user__ module + if block.get('externals'): + interfaced = [] + if 'interfaced' in block: + interfaced = block['interfaced'] + mvars = copy.copy(block['vars']) + if name: + mname = name + '__user__routines' + else: + mname = 'unknown__user__routines' + if mname in userisdefined: + i = 1 + while f"{mname}_{i}" in userisdefined: + i = i + 1 + mname = f"{mname}_{i}" + interface = {'block': 'interface', 'body': [], + 'vars': {}, 'name': name + '_user_interface'} + for e in block['externals']: + if e in interfaced: + edef = [] + j = -1 + for b in block['body']: + j = j + 1 + if b['block'] == 'interface': + i = -1 + for bb in b['body']: + i = i + 1 + if 'name' in bb and bb['name'] == e: + edef = copy.copy(bb) + del b['body'][i] + break + if edef: + if not b['body']: + del block['body'][j] + del interfaced[interfaced.index(e)] + break + interface['body'].append(edef) + elif e in mvars and not isexternal(mvars[e]): + interface['vars'][e] = mvars[e] + if interface['vars'] or interface['body']: + block['interfaced'] = interfaced + mblock = {'block': 'python module', 'body': [ + interface], 'vars': {}, 'name': mname, 'interfaced': block['externals']} + useblock[mname] = {} + usermodules.append(mblock) + if useblock: + block['use'] = useblock + return block + + +def sortvarnames(vars): + indep = [] + dep = [] + for v in list(vars.keys()): + if 'depend' in vars[v] and vars[v]['depend']: + dep.append(v) + else: + indep.append(v) + n = len(dep) + i = 0 + while dep: # XXX: How to catch dependence cycles correctly? + v = dep[0] + fl = 0 + for w in dep[1:]: + if w in vars[v]['depend']: + fl = 1 + break + if fl: + dep = dep[1:] + [v] + i = i + 1 + if i > n: + errmess('sortvarnames: failed to compute dependencies because' + ' of cyclic dependencies between ' + + ', '.join(dep) + '\n') + indep = indep + dep + break + else: + indep.append(v) + dep = dep[1:] + n = len(dep) + i = 0 + return indep + + +def analyzecommon(block): + if not hascommon(block): + return block + commonvars = [] + for k in list(block['common'].keys()): + comvars = [] + for e in block['common'][k]: + m = re.match( + r'\A\s*\b(?P.*?)\b\s*(\((?P.*?)\)|)\s*\Z', e, re.I) + if m: + dims = [] + if m.group('dims'): + dims = [x.strip() + for x in markoutercomma(m.group('dims')).split('@,@')] + n = rmbadname1(m.group('name').strip()) + if n in block['vars']: + if 'attrspec' in block['vars'][n]: + block['vars'][n]['attrspec'].append( + f"dimension({','.join(dims)})") + else: + block['vars'][n]['attrspec'] = [ + f"dimension({','.join(dims)})"] + elif dims: + block['vars'][n] = { + 'attrspec': [f"dimension({','.join(dims)})"]} + else: + block['vars'][n] = {} + if n not in commonvars: + commonvars.append(n) + else: + n = e + errmess( + f'analyzecommon: failed to extract "[()]" from "{e}" in common /{k}/.\n') + comvars.append(n) + block['common'][k] = comvars + if 'commonvars' not in block: + block['commonvars'] = commonvars + else: + block['commonvars'] = block['commonvars'] + commonvars + return block + + +def analyzebody(block, args, tab=''): + global usermodules, skipfuncs, onlyfuncs, f90modulevars + + setmesstext(block) + + maybe_private = { + key: value + for key, value in block['vars'].items() + if 'attrspec' not in value or 'public' not in value['attrspec'] + } + + body = [] + for b in block['body']: + b['parent_block'] = block + if b['block'] in ['function', 'subroutine']: + if args is not None and b['name'] not in args: + continue + else: + as_ = b['args'] + # Add private members to skipfuncs for gh-23879 + if b['name'] in maybe_private.keys(): + skipfuncs.append(b['name']) + if b['name'] in skipfuncs: + continue + if onlyfuncs and b['name'] not in onlyfuncs: + continue + b['saved_interface'] = crack2fortrangen( + b, '\n' + ' ' * 6, as_interface=True) + + else: + as_ = args + b = postcrack(b, as_, tab=tab + '\t') + if b['block'] in ['interface', 'abstract interface'] and \ + not b['body'] and not b.get('implementedby'): + if 'f2pyenhancements' not in b: + continue + if b['block'].replace(' ', '') == 'pythonmodule': + usermodules.append(b) + else: + if b['block'] == 'module': + f90modulevars[b['name']] = b['vars'] + body.append(b) + return body + + +def buildimplicitrules(block): + setmesstext(block) + implicitrules = defaultimplicitrules + attrrules = {} + if 'implicit' in block: + if block['implicit'] is None: + implicitrules = None + if verbose > 1: + outmess( + f"buildimplicitrules: no implicit rules for routine {repr(block['name'])}.\n") + else: + for k in list(block['implicit'].keys()): + if block['implicit'][k].get('typespec') not in ['static', 'automatic']: + implicitrules[k] = block['implicit'][k] + else: + attrrules[k] = block['implicit'][k]['typespec'] + return implicitrules, attrrules + + +def myeval(e, g=None, l=None): + """ Like `eval` but returns only integers and floats """ + r = eval(e, g, l) + if type(r) in [int, float]: + return r + raise ValueError(f'r={r!r}') + + +getlincoef_re_1 = re.compile(r'\A\b\w+\b\Z', re.I) + + +def getlincoef(e, xset): # e = a*x+b ; x in xset + """ + Obtain ``a`` and ``b`` when ``e == "a*x+b"``, where ``x`` is a symbol in + xset. + + >>> getlincoef('2*x + 1', {'x'}) + (2, 1, 'x') + >>> getlincoef('3*x + x*2 + 2 + 1', {'x'}) + (5, 3, 'x') + >>> getlincoef('0', {'x'}) + (0, 0, None) + >>> getlincoef('0*x', {'x'}) + (0, 0, 'x') + >>> getlincoef('x*x', {'x'}) + (None, None, None) + + This can be tricked by sufficiently complex expressions + + >>> getlincoef('(x - 0.5)*(x - 1.5)*(x - 1)*x + 2*x + 3', {'x'}) + (2.0, 3.0, 'x') + """ + try: + c = int(myeval(e, {}, {})) + return 0, c, None + except Exception: + pass + if getlincoef_re_1.match(e): + return 1, 0, e + len_e = len(e) + for x in xset: + if len(x) > len_e: + continue + if re.search(r'\w\s*\([^)]*\b' + x + r'\b', e): + # skip function calls having x as an argument, e.g max(1, x) + continue + re_1 = re.compile(r'(?P.*?)\b' + x + r'\b(?P.*)', re.I) + m = re_1.match(e) + if m: + try: + m1 = re_1.match(e) + while m1: + ee = f"{m1.group('before')}({0}){m1.group('after')}" + m1 = re_1.match(ee) + b = myeval(ee, {}, {}) + m1 = re_1.match(e) + while m1: + ee = f"{m1.group('before')}({1}){m1.group('after')}" + m1 = re_1.match(ee) + a = myeval(ee, {}, {}) - b + m1 = re_1.match(e) + while m1: + ee = f"{m1.group('before')}({0.5}){m1.group('after')}" + m1 = re_1.match(ee) + c = myeval(ee, {}, {}) + # computing another point to be sure that expression is linear + m1 = re_1.match(e) + while m1: + ee = f"{m1.group('before')}({1.5}){m1.group('after')}" + m1 = re_1.match(ee) + c2 = myeval(ee, {}, {}) + if (a * 0.5 + b == c and a * 1.5 + b == c2): + return a, b, x + except Exception: + pass + break + return None, None, None + + +word_pattern = re.compile(r'\b[a-z][\w$]*\b', re.I) + + +def _get_depend_dict(name, vars, deps): + if name in vars: + words = vars[name].get('depend', []) + + if '=' in vars[name] and not isstring(vars[name]): + for word in word_pattern.findall(vars[name]['=']): + # The word_pattern may return values that are not + # only variables, they can be string content for instance + if word not in words and word in vars and word != name: + words.append(word) + for word in words[:]: + for w in deps.get(word, []) \ + or _get_depend_dict(word, vars, deps): + if w not in words: + words.append(w) + else: + outmess(f'_get_depend_dict: no dependence info for {repr(name)}\n') + words = [] + deps[name] = words + return words + + +def _calc_depend_dict(vars): + names = list(vars.keys()) + depend_dict = {} + for n in names: + _get_depend_dict(n, vars, depend_dict) + return depend_dict + + +def get_sorted_names(vars): + depend_dict = _calc_depend_dict(vars) + names = [] + for name in list(depend_dict.keys()): + if not depend_dict[name]: + names.append(name) + del depend_dict[name] + while depend_dict: + for name, lst in list(depend_dict.items()): + new_lst = [n for n in lst if n in depend_dict] + if not new_lst: + names.append(name) + del depend_dict[name] + else: + depend_dict[name] = new_lst + return [name for name in names if name in vars] + + +def _kind_func(string): + # XXX: return something sensible. + if string[0] in "'\"": + string = string[1:-1] + if real16pattern.match(string): + return 8 + elif real8pattern.match(string): + return 4 + return 'kind(' + string + ')' + + +def _selected_int_kind_func(r): + # XXX: This should be processor dependent + m = 10 ** r + if m <= 2 ** 8: + return 1 + if m <= 2 ** 16: + return 2 + if m <= 2 ** 32: + return 4 + if m <= 2 ** 63: + return 8 + if m <= 2 ** 128: + return 16 + return -1 + + +def _selected_real_kind_func(p, r=0, radix=0): + # XXX: This should be processor dependent + # This is only verified for 0 <= p <= 20, possibly good for p <= 33 and above + if p < 7: + return 4 + if p < 16: + return 8 + machine = platform.machine().lower() + if machine.startswith(('aarch64', 'alpha', 'arm64', 'loongarch', 'mips', 'power', 'ppc', 'riscv', 's390x', 'sparc')): + if p <= 33: + return 16 + elif p < 19: + return 10 + elif p <= 33: + return 16 + return -1 + + +def get_parameters(vars, global_params={}): + params = copy.copy(global_params) + g_params = copy.copy(global_params) + for name, func in [('kind', _kind_func), + ('selected_int_kind', _selected_int_kind_func), + ('selected_real_kind', _selected_real_kind_func), ]: + if name not in g_params: + g_params[name] = func + param_names = [] + for n in get_sorted_names(vars): + if 'attrspec' in vars[n] and 'parameter' in vars[n]['attrspec']: + param_names.append(n) + kind_re = re.compile(r'\bkind\s*\(\s*(?P.*)\s*\)', re.I) + selected_int_kind_re = re.compile( + r'\bselected_int_kind\s*\(\s*(?P.*)\s*\)', re.I) + selected_kind_re = re.compile( + r'\bselected_(int|real)_kind\s*\(\s*(?P.*)\s*\)', re.I) + for n in param_names: + if '=' in vars[n]: + v = vars[n]['='] + if islogical(vars[n]): + v = v.lower() + for repl in [ + ('.false.', 'False'), + ('.true.', 'True'), + # TODO: test .eq., .neq., etc replacements. + ]: + v = v.replace(*repl) + + v = kind_re.sub(r'kind("\1")', v) + v = selected_int_kind_re.sub(r'selected_int_kind(\1)', v) + + # We need to act according to the data. + # The easy case is if the data has a kind-specifier, + # then we may easily remove those specifiers. + # However, it may be that the user uses other specifiers...(!) + is_replaced = False + + if 'kindselector' in vars[n]: + # Remove kind specifier (including those defined + # by parameters) + if 'kind' in vars[n]['kindselector']: + orig_v_len = len(v) + v = v.replace('_' + vars[n]['kindselector']['kind'], '') + # Again, this will be true if even a single specifier + # has been replaced, see comment above. + is_replaced = len(v) < orig_v_len + + if not is_replaced: + if not selected_kind_re.match(v): + v_ = v.split('_') + # In case there are additive parameters + if len(v_) > 1: + v = ''.join(v_[:-1]).lower().replace(v_[-1].lower(), '') + + # Currently this will not work for complex numbers. + # There is missing code for extracting a complex number, + # which may be defined in either of these: + # a) (Re, Im) + # b) cmplx(Re, Im) + # c) dcmplx(Re, Im) + # d) cmplx(Re, Im, ) + + if isdouble(vars[n]): + tt = list(v) + for m in real16pattern.finditer(v): + tt[m.start():m.end()] = list( + v[m.start():m.end()].lower().replace('d', 'e')) + v = ''.join(tt) + + elif iscomplex(vars[n]): + outmess(f'get_parameters[TODO]: ' + f'implement evaluation of complex expression {v}\n') + + dimspec = ([s.removeprefix('dimension').strip() + for s in vars[n]['attrspec'] + if s.startswith('dimension')] or [None])[0] + + # Handle _dp for gh-6624 + # Also fixes gh-20460 + if real16pattern.search(v): + v = 8 + elif real8pattern.search(v): + v = 4 + try: + params[n] = param_eval(v, g_params, params, dimspec=dimspec) + except Exception as msg: + params[n] = v + outmess(f'get_parameters: got "{msg}" on {n!r}\n') + + if isstring(vars[n]) and isinstance(params[n], int): + params[n] = chr(params[n]) + nl = n.lower() + if nl != n: + params[nl] = params[n] + else: + print(vars[n]) + outmess(f'get_parameters:parameter {n!r} does not have value?!\n') + return params + + +def _eval_length(length, params): + if length in ['(:)', '(*)', '*']: + return '(*)' + return _eval_scalar(length, params) + + +_is_kind_number = re.compile(r'\d+_').match + + +def _eval_scalar(value, params): + if _is_kind_number(value): + value = value.split('_')[0] + try: + # TODO: use symbolic from PR #19805 + value = eval(value, {}, params) + value = (repr if isinstance(value, str) else str)(value) + except (NameError, SyntaxError, TypeError): + return value + except Exception as msg: + errmess('"%s" in evaluating %r ' + '(available names: %s)\n' + % (msg, value, list(params.keys()))) + return value + + +def analyzevars(block): + """ + Sets correct dimension information for each variable/parameter + """ + + global f90modulevars + + setmesstext(block) + implicitrules, attrrules = buildimplicitrules(block) + vars = copy.copy(block['vars']) + if block['block'] == 'function' and block['name'] not in vars: + vars[block['name']] = {} + if '' in block['vars']: + del vars[''] + if 'attrspec' in block['vars']['']: + gen = block['vars']['']['attrspec'] + for n in set(vars) | {b['name'] for b in block['body']}: + for k in ['public', 'private']: + if k in gen: + vars[n] = setattrspec(vars.get(n, {}), k) + svars = [] + args = block['args'] + for a in args: + try: + vars[a] + svars.append(a) + except KeyError: + pass + for n in list(vars.keys()): + if n not in args: + svars.append(n) + + params = get_parameters(vars, get_useparameters(block)) + # At this point, params are read and interpreted, but + # the params used to define vars are not yet parsed + dep_matches = {} + name_match = re.compile(r'[A-Za-z][\w$]*').match + for v in list(vars.keys()): + m = name_match(v) + if m: + n = v[m.start():m.end()] + try: + dep_matches[n] + except KeyError: + dep_matches[n] = re.compile(r'.*\b%s\b' % (v), re.I).match + for n in svars: + if n[0] in list(attrrules.keys()): + vars[n] = setattrspec(vars[n], attrrules[n[0]]) + if 'typespec' not in vars[n]: + if not ('attrspec' in vars[n] and 'external' in vars[n]['attrspec']): + if implicitrules: + ln0 = n[0].lower() + for k in list(implicitrules[ln0].keys()): + if k == 'typespec' and implicitrules[ln0][k] == 'undefined': + continue + if k not in vars[n]: + vars[n][k] = implicitrules[ln0][k] + elif k == 'attrspec': + for l in implicitrules[ln0][k]: + vars[n] = setattrspec(vars[n], l) + elif n in block['args']: + outmess('analyzevars: typespec of variable %s is not defined in routine %s.\n' % ( + repr(n), block['name'])) + if 'charselector' in vars[n]: + if 'len' in vars[n]['charselector']: + l = vars[n]['charselector']['len'] + try: + l = str(eval(l, {}, params)) + except Exception: + pass + vars[n]['charselector']['len'] = l + + if 'kindselector' in vars[n]: + if 'kind' in vars[n]['kindselector']: + l = vars[n]['kindselector']['kind'] + try: + l = str(eval(l, {}, params)) + except Exception: + pass + vars[n]['kindselector']['kind'] = l + + dimension_exprs = {} + if 'attrspec' in vars[n]: + attr = vars[n]['attrspec'] + attr.reverse() + vars[n]['attrspec'] = [] + dim, intent, depend, check, note = None, None, None, None, None + for a in attr: + if a[:9] == 'dimension': + dim = (a[9:].strip())[1:-1] + elif a[:6] == 'intent': + intent = (a[6:].strip())[1:-1] + elif a[:6] == 'depend': + depend = (a[6:].strip())[1:-1] + elif a[:5] == 'check': + check = (a[5:].strip())[1:-1] + elif a[:4] == 'note': + note = (a[4:].strip())[1:-1] + else: + vars[n] = setattrspec(vars[n], a) + if intent: + if 'intent' not in vars[n]: + vars[n]['intent'] = [] + for c in [x.strip() for x in markoutercomma(intent).split('@,@')]: + # Remove spaces so that 'in out' becomes 'inout' + tmp = c.replace(' ', '') + if tmp not in vars[n]['intent']: + vars[n]['intent'].append(tmp) + intent = None + if note: + note = note.replace('\\n\\n', '\n\n') + note = note.replace('\\n ', '\n') + if 'note' not in vars[n]: + vars[n]['note'] = [note] + else: + vars[n]['note'].append(note) + note = None + if depend is not None: + if 'depend' not in vars[n]: + vars[n]['depend'] = [] + for c in rmbadname([x.strip() for x in markoutercomma(depend).split('@,@')]): + if c not in vars[n]['depend']: + vars[n]['depend'].append(c) + depend = None + if check is not None: + if 'check' not in vars[n]: + vars[n]['check'] = [] + for c in [x.strip() for x in markoutercomma(check).split('@,@')]: + if c not in vars[n]['check']: + vars[n]['check'].append(c) + check = None + if dim and 'dimension' not in vars[n]: + vars[n]['dimension'] = [] + for d in rmbadname( + [x.strip() for x in markoutercomma(dim).split('@,@')] + ): + # d is the expression inside the dimension declaration + # Evaluate `d` with respect to params + try: + # the dimension for this variable depends on a + # previously defined parameter + d = param_parse(d, params) + except (ValueError, IndexError, KeyError): + outmess( + 'analyzevars: could not parse dimension for ' + f'variable {d!r}\n' + ) + + dim_char = ':' if d == ':' else '*' + if d == dim_char: + dl = [dim_char] + else: + dl = markoutercomma(d, ':').split('@:@') + if len(dl) == 2 and '*' in dl: # e.g. dimension(5:*) + dl = ['*'] + d = '*' + if len(dl) == 1 and dl[0] != dim_char: + dl = ['1', dl[0]] + if len(dl) == 2: + d1, d2 = map(symbolic.Expr.parse, dl) + dsize = d2 - d1 + 1 + d = dsize.tostring(language=symbolic.Language.C) + # find variables v that define d as a linear + # function, `d == a * v + b`, and store + # coefficients a and b for further analysis. + solver_and_deps = {} + for v in block['vars']: + s = symbolic.as_symbol(v) + if dsize.contains(s): + try: + a, b = dsize.linear_solve(s) + + def solve_v(s, a=a, b=b): + return (s - b) / a + + all_symbols = set(a.symbols()) + all_symbols.update(b.symbols()) + except RuntimeError as msg: + # d is not a linear function of v, + # however, if v can be determined + # from d using other means, + # implement the corresponding + # solve_v function here. + solve_v = None + all_symbols = set(dsize.symbols()) + v_deps = { + s.data for s in all_symbols + if s.data in vars} + solver_and_deps[v] = solve_v, list(v_deps) + # Note that dsize may contain symbols that are + # not defined in block['vars']. Here we assume + # these correspond to Fortran/C intrinsic + # functions or that are defined by other + # means. We'll let the compiler validate the + # definiteness of such symbols. + dimension_exprs[d] = solver_and_deps + vars[n]['dimension'].append(d) + + if 'check' not in vars[n] and 'args' in block and n in block['args']: + # n is an argument that has no checks defined. Here we + # generate some consistency checks for n, and when n is an + # array, generate checks for its dimensions and construct + # initialization expressions. + n_deps = vars[n].get('depend', []) + n_checks = [] + n_is_input = l_or(isintent_in, isintent_inout, + isintent_inplace)(vars[n]) + if isarray(vars[n]): # n is array + for i, d in enumerate(vars[n]['dimension']): + coeffs_and_deps = dimension_exprs.get(d) + if coeffs_and_deps is None: + # d is `:` or `*` or a constant expression + pass + elif n_is_input: + # n is an input array argument and its shape + # may define variables used in dimension + # specifications. + for v, (solver, deps) in coeffs_and_deps.items(): + def compute_deps(v, deps): + for v1 in coeffs_and_deps.get(v, [None, []])[1]: + if v1 not in deps: + deps.add(v1) + compute_deps(v1, deps) + all_deps = set() + compute_deps(v, all_deps) + if (v in n_deps + or '=' in vars[v] + or 'depend' in vars[v]): + # Skip a variable that + # - n depends on + # - has user-defined initialization expression + # - has user-defined dependencies + continue + if solver is not None and v not in all_deps: + # v can be solved from d, hence, we + # make it an optional argument with + # initialization expression: + is_required = False + init = solver(symbolic.as_symbol( + f'shape({n}, {i})')) + init = init.tostring( + language=symbolic.Language.C) + vars[v]['='] = init + # n needs to be initialized before v. So, + # making v dependent on n and on any + # variables in solver or d. + vars[v]['depend'] = [n] + deps + if 'check' not in vars[v]: + # add check only when no + # user-specified checks exist + vars[v]['check'] = [ + f'shape({n}, {i}) == {d}'] + else: + # d is a non-linear function on v, + # hence, v must be a required input + # argument that n will depend on + is_required = True + if 'intent' not in vars[v]: + vars[v]['intent'] = [] + if 'in' not in vars[v]['intent']: + vars[v]['intent'].append('in') + # v needs to be initialized before n + n_deps.append(v) + n_checks.append( + f'shape({n}, {i}) == {d}') + v_attr = vars[v].get('attrspec', []) + if not ('optional' in v_attr + or 'required' in v_attr): + v_attr.append( + 'required' if is_required else 'optional') + if v_attr: + vars[v]['attrspec'] = v_attr + if coeffs_and_deps is not None: + # extend v dependencies with ones specified in attrspec + for v, (solver, deps) in coeffs_and_deps.items(): + v_deps = vars[v].get('depend', []) + for aa in vars[v].get('attrspec', []): + if aa.startswith('depend'): + aa = ''.join(aa.split()) + v_deps.extend(aa[7:-1].split(',')) + if v_deps: + vars[v]['depend'] = list(set(v_deps)) + if n not in v_deps: + n_deps.append(v) + elif isstring(vars[n]): + if 'charselector' in vars[n]: + if '*' in vars[n]['charselector']: + length = _eval_length(vars[n]['charselector']['*'], + params) + vars[n]['charselector']['*'] = length + elif 'len' in vars[n]['charselector']: + length = _eval_length(vars[n]['charselector']['len'], + params) + del vars[n]['charselector']['len'] + vars[n]['charselector']['*'] = length + if n_checks: + vars[n]['check'] = n_checks + if n_deps: + vars[n]['depend'] = list(set(n_deps)) + + if '=' in vars[n]: + if 'attrspec' not in vars[n]: + vars[n]['attrspec'] = [] + if ('optional' not in vars[n]['attrspec']) and \ + ('required' not in vars[n]['attrspec']): + vars[n]['attrspec'].append('optional') + if 'depend' not in vars[n]: + vars[n]['depend'] = [] + for v, m in list(dep_matches.items()): + if m(vars[n]['=']): + vars[n]['depend'].append(v) + if not vars[n]['depend']: + del vars[n]['depend'] + if isscalar(vars[n]): + vars[n]['='] = _eval_scalar(vars[n]['='], params) + + for n in list(vars.keys()): + if n == block['name']: # n is block name + if 'note' in vars[n]: + block['note'] = vars[n]['note'] + if block['block'] == 'function': + if 'result' in block and block['result'] in vars: + vars[n] = appenddecl(vars[n], vars[block['result']]) + if 'prefix' in block: + pr = block['prefix'] + pr1 = pr.replace('pure', '') + ispure = (not pr == pr1) + pr = pr1.replace('recursive', '') + isrec = (not pr == pr1) + m = typespattern[0].match(pr) + if m: + typespec, selector, attr, edecl = cracktypespec0( + m.group('this'), m.group('after')) + kindselect, charselect, typename = cracktypespec( + typespec, selector) + vars[n]['typespec'] = typespec + try: + if block['result']: + vars[block['result']]['typespec'] = typespec + except Exception: + pass + if kindselect: + if 'kind' in kindselect: + try: + kindselect['kind'] = eval( + kindselect['kind'], {}, params) + except Exception: + pass + vars[n]['kindselector'] = kindselect + if charselect: + vars[n]['charselector'] = charselect + if typename: + vars[n]['typename'] = typename + if ispure: + vars[n] = setattrspec(vars[n], 'pure') + if isrec: + vars[n] = setattrspec(vars[n], 'recursive') + else: + outmess( + f"analyzevars: prefix ({repr(block['prefix'])}) were not used\n") + if block['block'] not in ['module', 'pythonmodule', 'python module', 'block data']: + if 'commonvars' in block: + neededvars = copy.copy(block['args'] + block['commonvars']) + else: + neededvars = copy.copy(block['args']) + for n in list(vars.keys()): + if l_or(isintent_callback, isintent_aux)(vars[n]): + neededvars.append(n) + if 'entry' in block: + neededvars.extend(list(block['entry'].keys())) + for k in list(block['entry'].keys()): + for n in block['entry'][k]: + if n not in neededvars: + neededvars.append(n) + if block['block'] == 'function': + if 'result' in block: + neededvars.append(block['result']) + else: + neededvars.append(block['name']) + if block['block'] in ['subroutine', 'function']: + name = block['name'] + if name in vars and 'intent' in vars[name]: + block['intent'] = vars[name]['intent'] + if block['block'] == 'type': + neededvars.extend(list(vars.keys())) + for n in list(vars.keys()): + if n not in neededvars: + del vars[n] + return vars + + +analyzeargs_re_1 = re.compile(r'\A[a-z]+[\w$]*\Z', re.I) + + +def param_eval(v, g_params, params, dimspec=None): + """ + Creates a dictionary of indices and values for each parameter in a + parameter array to be evaluated later. + + WARNING: It is not possible to initialize multidimensional array + parameters e.g. dimension(-3:1, 4, 3:5) at this point. This is because in + Fortran initialization through array constructor requires the RESHAPE + intrinsic function. Since the right-hand side of the parameter declaration + is not executed in f2py, but rather at the compiled c/fortran extension, + later, it is not possible to execute a reshape of a parameter array. + One issue remains: if the user wants to access the array parameter from + python, we should either + 1) allow them to access the parameter array using python standard indexing + (which is often incompatible with the original fortran indexing) + 2) allow the parameter array to be accessed in python as a dictionary with + fortran indices as keys + We are choosing 2 for now. + """ + if dimspec is None: + try: + p = eval(v, g_params, params) + except Exception as msg: + p = v + outmess(f'param_eval: got "{msg}" on {v!r}\n') + return p + + # This is an array parameter. + # First, we parse the dimension information + if len(dimspec) < 2 or dimspec[::len(dimspec) - 1] != "()": + raise ValueError(f'param_eval: dimension {dimspec} can\'t be parsed') + dimrange = dimspec[1:-1].split(',') + if len(dimrange) == 1: + # e.g. dimension(2) or dimension(-1:1) + dimrange = dimrange[0].split(':') + # now, dimrange is a list of 1 or 2 elements + if len(dimrange) == 1: + bound = param_parse(dimrange[0], params) + dimrange = range(1, int(bound) + 1) + else: + lbound = param_parse(dimrange[0], params) + ubound = param_parse(dimrange[1], params) + dimrange = range(int(lbound), int(ubound) + 1) + else: + raise ValueError('param_eval: multidimensional array parameters ' + f'{dimspec} not supported') + + # Parse parameter value + v = (v[2:-2] if v.startswith('(/') else v).split(',') + v_eval = [] + for item in v: + try: + item = eval(item, g_params, params) + except Exception as msg: + outmess(f'param_eval: got "{msg}" on {item!r}\n') + v_eval.append(item) + + p = dict(zip(dimrange, v_eval)) + + return p + + +def param_parse(d, params): + """Recursively parse array dimensions. + + Parses the declaration of an array variable or parameter + `dimension` keyword, and is called recursively if the + dimension for this array is a previously defined parameter + (found in `params`). + + Parameters + ---------- + d : str + Fortran expression describing the dimension of an array. + params : dict + Previously parsed parameters declared in the Fortran source file. + + Returns + ------- + out : str + Parsed dimension expression. + + Examples + -------- + + * If the line being analyzed is + + `integer, parameter, dimension(2) :: pa = (/ 3, 5 /)` + + then `d = 2` and we return immediately, with + + >>> d = '2' + >>> param_parse(d, params) + 2 + + * If the line being analyzed is + + `integer, parameter, dimension(pa) :: pb = (/1, 2, 3/)` + + then `d = 'pa'`; since `pa` is a previously parsed parameter, + and `pa = 3`, we call `param_parse` recursively, to obtain + + >>> d = 'pa' + >>> params = {'pa': 3} + >>> param_parse(d, params) + 3 + + * If the line being analyzed is + + `integer, parameter, dimension(pa(1)) :: pb = (/1, 2, 3/)` + + then `d = 'pa(1)'`; since `pa` is a previously parsed parameter, + and `pa(1) = 3`, we call `param_parse` recursively, to obtain + + >>> d = 'pa(1)' + >>> params = dict(pa={1: 3, 2: 5}) + >>> param_parse(d, params) + 3 + """ + if "(" in d: + # this dimension expression is an array + dname = d[:d.find("(")] + ddims = d[d.find("(") + 1:d.rfind(")")] + # this dimension expression is also a parameter; + # parse it recursively + index = int(param_parse(ddims, params)) + return str(params[dname][index]) + elif d in params: + return str(params[d]) + else: + for p in params: + re_1 = re.compile( + r'(?P.*?)\b' + p + r'\b(?P.*)', re.I + ) + m = re_1.match(d) + while m: + d = m.group('before') + \ + str(params[p]) + m.group('after') + m = re_1.match(d) + return d + + +def expr2name(a, block, args=[]): + orig_a = a + a_is_expr = not analyzeargs_re_1.match(a) + if a_is_expr: # `a` is an expression + implicitrules, attrrules = buildimplicitrules(block) + at = determineexprtype(a, block['vars'], implicitrules) + na = 'e_' + for c in a: + c = c.lower() + if c not in string.ascii_lowercase + string.digits: + c = '_' + na = na + c + if na[-1] == '_': + na = na + 'e' + else: + na = na + '_e' + a = na + while a in block['vars'] or a in block['args']: + a = a + 'r' + if a in args: + k = 1 + while a + str(k) in args: + k = k + 1 + a = a + str(k) + if a_is_expr: + block['vars'][a] = at + else: + if a not in block['vars']: + block['vars'][a] = block['vars'].get(orig_a, {}) + if 'externals' in block and orig_a in block['externals'] + block['interfaced']: + block['vars'][a] = setattrspec(block['vars'][a], 'external') + return a + + +def analyzeargs(block): + setmesstext(block) + implicitrules, _ = buildimplicitrules(block) + if 'args' not in block: + block['args'] = [] + args = [] + for a in block['args']: + a = expr2name(a, block, args) + args.append(a) + block['args'] = args + if 'entry' in block: + for k, args1 in list(block['entry'].items()): + for a in args1: + if a not in block['vars']: + block['vars'][a] = {} + + for b in block['body']: + if b['name'] in args: + if 'externals' not in block: + block['externals'] = [] + if b['name'] not in block['externals']: + block['externals'].append(b['name']) + if 'result' in block and block['result'] not in block['vars']: + block['vars'][block['result']] = {} + return block + + +determineexprtype_re_1 = re.compile(r'\A\(.+?,.+?\)\Z', re.I) +determineexprtype_re_2 = re.compile(r'\A[+-]?\d+(_(?P\w+)|)\Z', re.I) +determineexprtype_re_3 = re.compile( + r'\A[+-]?[\d.]+[-\d+de.]*(_(?P\w+)|)\Z', re.I) +determineexprtype_re_4 = re.compile(r'\A\(.*\)\Z', re.I) +determineexprtype_re_5 = re.compile(r'\A(?P\w+)\s*\(.*?\)\s*\Z', re.I) + + +def _ensure_exprdict(r): + if isinstance(r, int): + return {'typespec': 'integer'} + if isinstance(r, float): + return {'typespec': 'real'} + if isinstance(r, complex): + return {'typespec': 'complex'} + if isinstance(r, dict): + return r + raise AssertionError(repr(r)) + + +def determineexprtype(expr, vars, rules={}): + if expr in vars: + return _ensure_exprdict(vars[expr]) + expr = expr.strip() + if determineexprtype_re_1.match(expr): + return {'typespec': 'complex'} + m = determineexprtype_re_2.match(expr) + if m: + if 'name' in m.groupdict() and m.group('name'): + outmess( + f'determineexprtype: selected kind types not supported ({repr(expr)})\n') + return {'typespec': 'integer'} + m = determineexprtype_re_3.match(expr) + if m: + if 'name' in m.groupdict() and m.group('name'): + outmess( + f'determineexprtype: selected kind types not supported ({repr(expr)})\n') + return {'typespec': 'real'} + for op in ['+', '-', '*', '/']: + for e in [x.strip() for x in markoutercomma(expr, comma=op).split('@' + op + '@')]: + if e in vars: + return _ensure_exprdict(vars[e]) + t = {} + if determineexprtype_re_4.match(expr): # in parenthesis + t = determineexprtype(expr[1:-1], vars, rules) + else: + m = determineexprtype_re_5.match(expr) + if m: + rn = m.group('name') + t = determineexprtype(m.group('name'), vars, rules) + if t and 'attrspec' in t: + del t['attrspec'] + if not t: + if rn[0] in rules: + return _ensure_exprdict(rules[rn[0]]) + if expr[0] in '\'"': + return {'typespec': 'character', 'charselector': {'*': '*'}} + if not t: + outmess( + f'determineexprtype: could not determine expressions ({repr(expr)}) type.\n') + return t + +###### + + +def crack2fortrangen(block, tab='\n', as_interface=False): + global skipfuncs, onlyfuncs + + setmesstext(block) + ret = '' + if isinstance(block, list): + for g in block: + if g and g['block'] in ['function', 'subroutine']: + if g['name'] in skipfuncs: + continue + if onlyfuncs and g['name'] not in onlyfuncs: + continue + ret = ret + crack2fortrangen(g, tab, as_interface=as_interface) + return ret + prefix = '' + name = '' + args = '' + blocktype = block['block'] + if blocktype == 'program': + return '' + argsl = [] + if 'name' in block: + name = block['name'] + if 'args' in block: + vars = block['vars'] + for a in block['args']: + a = expr2name(a, block, argsl) + if not isintent_callback(vars[a]): + argsl.append(a) + if block['block'] == 'function' or argsl: + args = f"({','.join(argsl)})" + f2pyenhancements = '' + if 'f2pyenhancements' in block: + for k in list(block['f2pyenhancements'].keys()): + f2pyenhancements = '%s%s%s %s' % ( + f2pyenhancements, tab + tabchar, k, block['f2pyenhancements'][k]) + intent_lst = block.get('intent', [])[:] + if blocktype == 'function' and 'callback' in intent_lst: + intent_lst.remove('callback') + if intent_lst: + f2pyenhancements = '%s%sintent(%s) %s' %\ + (f2pyenhancements, tab + tabchar, + ','.join(intent_lst), name) + use = '' + if 'use' in block: + use = use2fortran(block['use'], tab + tabchar) + common = '' + if 'common' in block: + common = common2fortran(block['common'], tab + tabchar) + if name == 'unknown_interface': + name = '' + result = '' + if 'result' in block: + result = f" result ({block['result']})" + if block['result'] not in argsl: + argsl.append(block['result']) + body = crack2fortrangen(block['body'], tab + tabchar, as_interface=as_interface) + vars = vars2fortran( + block, block['vars'], argsl, tab + tabchar, as_interface=as_interface) + mess = '' + if 'from' in block and not as_interface: + mess = f"! in {block['from']}" + if 'entry' in block: + entry_stmts = '' + for k, i in list(block['entry'].items()): + entry_stmts = f"{entry_stmts}{tab + tabchar}entry {k}({','.join(i)})" + body = body + entry_stmts + if blocktype == 'block data' and name == '_BLOCK_DATA_': + name = '' + ret = '%s%s%s %s%s%s %s%s%s%s%s%s%send %s %s' % ( + tab, prefix, blocktype, name, args, result, mess, f2pyenhancements, use, vars, common, body, tab, blocktype, name) + return ret + + +def common2fortran(common, tab=''): + ret = '' + for k in list(common.keys()): + if k == '_BLNK_': + ret = f"{ret}{tab}common {','.join(common[k])}" + else: + ret = f"{ret}{tab}common /{k}/ {','.join(common[k])}" + return ret + + +def use2fortran(use, tab=''): + ret = '' + for m in list(use.keys()): + ret = f'{ret}{tab}use {m},' + if use[m] == {}: + if ret and ret[-1] == ',': + ret = ret[:-1] + continue + if 'only' in use[m] and use[m]['only']: + ret = f'{ret} only:' + if 'map' in use[m] and use[m]['map']: + c = ' ' + for k in list(use[m]['map'].keys()): + if k == use[m]['map'][k]: + ret = f'{ret}{c}{k}' + c = ',' + else: + ret = f"{ret}{c}{k}=>{use[m]['map'][k]}" + c = ',' + if ret and ret[-1] == ',': + ret = ret[:-1] + return ret + + +def true_intent_list(var): + lst = var['intent'] + ret = [] + for intent in lst: + try: + f = globals()[f'isintent_{intent}'] + except KeyError: + pass + else: + if f(var): + ret.append(intent) + return ret + + +def vars2fortran(block, vars, args, tab='', as_interface=False): + setmesstext(block) + ret = '' + nout = [] + for a in args: + if a in block['vars']: + nout.append(a) + if 'commonvars' in block: + for a in block['commonvars']: + if a in vars: + if a not in nout: + nout.append(a) + else: + errmess( + f'vars2fortran: Confused?!: "{a}" is not defined in vars.\n') + if 'varnames' in block: + nout.extend(block['varnames']) + if not as_interface: + for a in list(vars.keys()): + if a not in nout: + nout.append(a) + for a in nout: + if 'depend' in vars[a]: + for d in vars[a]['depend']: + if d in vars and 'depend' in vars[d] and a in vars[d]['depend']: + errmess( + f'vars2fortran: Warning: cross-dependence between variables "{a}" and "{d}\"\n') + if 'externals' in block and a in block['externals']: + if isintent_callback(vars[a]): + ret = f'{ret}{tab}intent(callback) {a}' + ret = f'{ret}{tab}external {a}' + if isoptional(vars[a]): + ret = f'{ret}{tab}optional {a}' + if a in vars and 'typespec' not in vars[a]: + continue + cont = 1 + for b in block['body']: + if a == b['name'] and b['block'] == 'function': + cont = 0 + break + if cont: + continue + if a not in vars: + show(vars) + outmess(f'vars2fortran: No definition for argument "{a}".\n') + continue + if a == block['name']: + if block['block'] != 'function' or block.get('result'): + # 1) skip declaring a variable that name matches with + # subroutine name + # 2) skip declaring function when its type is + # declared via `result` construction + continue + if 'typespec' not in vars[a]: + if 'attrspec' in vars[a] and 'external' in vars[a]['attrspec']: + if a in args: + ret = f'{ret}{tab}external {a}' + continue + show(vars[a]) + outmess(f'vars2fortran: No typespec for argument "{a}".\n') + continue + vardef = vars[a]['typespec'] + if vardef == 'type' and 'typename' in vars[a]: + vardef = f"{vardef}({vars[a]['typename']})" + selector = {} + if 'kindselector' in vars[a]: + selector = vars[a]['kindselector'] + elif 'charselector' in vars[a]: + selector = vars[a]['charselector'] + if '*' in selector: + if selector['*'] in ['*', ':']: + vardef = f"{vardef}*({selector['*']})" + else: + vardef = f"{vardef}*{selector['*']}" + elif 'len' in selector: + vardef = f"{vardef}(len={selector['len']}" + if 'kind' in selector: + vardef = f"{vardef},kind={selector['kind']})" + else: + vardef = f'{vardef})' + elif 'kind' in selector: + vardef = f"{vardef}(kind={selector['kind']})" + c = ' ' + if 'attrspec' in vars[a]: + attr = [l for l in vars[a]['attrspec'] + if l not in ['external']] + if as_interface and 'intent(in)' in attr and 'intent(out)' in attr: + # In Fortran, intent(in, out) are conflicting while + # intent(in, out) can be specified only via + # `!f2py intent(out) ..`. + # So, for the Fortran interface, we'll drop + # intent(out) to resolve the conflict. + attr.remove('intent(out)') + if attr: + vardef = f"{vardef}, {','.join(attr)}" + c = ',' + if 'dimension' in vars[a]: + vardef = f"{vardef}{c}dimension({','.join(vars[a]['dimension'])})" + c = ',' + if 'intent' in vars[a]: + lst = true_intent_list(vars[a]) + if lst: + vardef = f"{vardef}{c}intent({','.join(lst)})" + c = ',' + if 'check' in vars[a]: + vardef = f"{vardef}{c}check({','.join(vars[a]['check'])})" + c = ',' + if 'depend' in vars[a]: + vardef = f"{vardef}{c}depend({','.join(vars[a]['depend'])})" + c = ',' + if '=' in vars[a]: + v = vars[a]['='] + if vars[a]['typespec'] in ['complex', 'double complex']: + try: + v = eval(v) + v = f'({v.real},{v.imag})' + except Exception: + pass + vardef = f'{vardef} :: {a}={v}' + else: + vardef = f'{vardef} :: {a}' + ret = f'{ret}{tab}{vardef}' + return ret +###### + + +# We expose post_processing_hooks as global variable so that +# user-libraries could register their own hooks to f2py. +post_processing_hooks = [] + + +def crackfortran(files): + global usermodules, post_processing_hooks + + outmess('Reading fortran codes...\n', 0) + readfortrancode(files, crackline) + outmess('Post-processing...\n', 0) + usermodules = [] + postlist = postcrack(grouplist[0]) + outmess('Applying post-processing hooks...\n', 0) + for hook in post_processing_hooks: + outmess(f' {hook.__name__}\n', 0) + postlist = traverse(postlist, hook) + outmess('Post-processing (stage 2)...\n', 0) + postlist = postcrack2(postlist) + return usermodules + postlist + + +def crack2fortran(block): + global f2py_version + + pyf = crack2fortrangen(block) + '\n' + header = """! -*- f90 -*- +! Note: the context of this file is case sensitive. +""" + footer = """ +! This file was auto-generated with f2py (version:%s). +! See: +! https://web.archive.org/web/20140822061353/http://cens.ioc.ee/projects/f2py2e +""" % (f2py_version) + return header + pyf + footer + + +def _is_visit_pair(obj): + return (isinstance(obj, tuple) + and len(obj) == 2 + and isinstance(obj[0], (int, str))) + + +def traverse(obj, visit, parents=[], result=None, *args, **kwargs): + '''Traverse f2py data structure with the following visit function: + + def visit(item, parents, result, *args, **kwargs): + """ + + parents is a list of key-"f2py data structure" pairs from which + items are taken from. + + result is a f2py data structure that is filled with the + return value of the visit function. + + item is 2-tuple (index, value) if parents[-1][1] is a list + item is 2-tuple (key, value) if parents[-1][1] is a dict + + The return value of visit must be None, or of the same kind as + item, that is, if parents[-1] is a list, the return value must + be 2-tuple (new_index, new_value), or if parents[-1] is a + dict, the return value must be 2-tuple (new_key, new_value). + + If new_index or new_value is None, the return value of visit + is ignored, that is, it will not be added to the result. + + If the return value is None, the content of obj will be + traversed, otherwise not. + """ + ''' + + if _is_visit_pair(obj): + if obj[0] == 'parent_block': + # avoid infinite recursion + return obj + new_result = visit(obj, parents, result, *args, **kwargs) + if new_result is not None: + assert _is_visit_pair(new_result) + return new_result + parent = obj + result_key, obj = obj + else: + parent = (None, obj) + result_key = None + + if isinstance(obj, list): + new_result = [] + for index, value in enumerate(obj): + new_index, new_item = traverse((index, value), visit, + parents + [parent], result, + *args, **kwargs) + if new_index is not None: + new_result.append(new_item) + elif isinstance(obj, dict): + new_result = {} + for key, value in obj.items(): + new_key, new_value = traverse((key, value), visit, + parents + [parent], result, + *args, **kwargs) + if new_key is not None: + new_result[new_key] = new_value + else: + new_result = obj + + if result_key is None: + return new_result + return result_key, new_result + + +def character_backward_compatibility_hook(item, parents, result, + *args, **kwargs): + """Previously, Fortran character was incorrectly treated as + character*1. This hook fixes the usage of the corresponding + variables in `check`, `dimension`, `=`, and `callstatement` + expressions. + + The usage of `char*` in `callprotoargument` expression can be left + unchanged because C `character` is C typedef of `char`, although, + new implementations should use `character*` in the corresponding + expressions. + + See https://github.com/numpy/numpy/pull/19388 for more information. + + """ + parent_key, parent_value = parents[-1] + key, value = item + + def fix_usage(varname, value): + value = re.sub(r'[*]\s*\b' + varname + r'\b', varname, value) + value = re.sub(r'\b' + varname + r'\b\s*[\[]\s*0\s*[\]]', + varname, value) + return value + + if parent_key in ['dimension', 'check']: + assert parents[-3][0] == 'vars' + vars_dict = parents[-3][1] + elif key == '=': + assert parents[-2][0] == 'vars' + vars_dict = parents[-2][1] + else: + vars_dict = None + + new_value = None + if vars_dict is not None: + new_value = value + for varname, vd in vars_dict.items(): + if ischaracter(vd): + new_value = fix_usage(varname, new_value) + elif key == 'callstatement': + vars_dict = parents[-2][1]['vars'] + new_value = value + for varname, vd in vars_dict.items(): + if ischaracter(vd): + # replace all occurrences of `` with + # `&` in argument passing + new_value = re.sub( + r'(? `{new_value}`\n', 1) + return (key, new_value) + + +post_processing_hooks.append(character_backward_compatibility_hook) + + +if __name__ == "__main__": + files = [] + funcs = [] + f = 1 + f2 = 0 + f3 = 0 + showblocklist = 0 + for l in sys.argv[1:]: + if l == '': + pass + elif l[0] == ':': + f = 0 + elif l == '-quiet': + quiet = 1 + verbose = 0 + elif l == '-verbose': + verbose = 2 + quiet = 0 + elif l == '-fix': + if strictf77: + outmess( + 'Use option -f90 before -fix if Fortran 90 code is in fix form.\n', 0) + skipemptyends = 1 + sourcecodeform = 'fix' + elif l == '-skipemptyends': + skipemptyends = 1 + elif l == '--ignore-contains': + ignorecontains = 1 + elif l == '-f77': + strictf77 = 1 + sourcecodeform = 'fix' + elif l == '-f90': + strictf77 = 0 + sourcecodeform = 'free' + skipemptyends = 1 + elif l == '-h': + f2 = 1 + elif l == '-show': + showblocklist = 1 + elif l == '-m': + f3 = 1 + elif l[0] == '-': + errmess(f'Unknown option {repr(l)}\n') + elif f2: + f2 = 0 + pyffilename = l + elif f3: + f3 = 0 + f77modulename = l + elif f: + try: + open(l).close() + files.append(l) + except OSError as detail: + errmess(f'OSError: {detail!s}\n') + else: + funcs.append(l) + if not strictf77 and f77modulename and not skipemptyends: + outmess("""\ + Warning: You have specified module name for non Fortran 77 code that + should not need one (expect if you are scanning F90 code for non + module blocks but then you should use flag -skipemptyends and also + be sure that the files do not contain programs without program + statement). +""", 0) + + postlist = crackfortran(files) + if pyffilename: + outmess(f'Writing fortran code to file {repr(pyffilename)}\n', 0) + pyf = crack2fortran(postlist) + with open(pyffilename, 'w') as f: + f.write(pyf) + if showblocklist: + show(postlist) diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/crackfortran.pyi b/.venv/lib/python3.12/site-packages/numpy/f2py/crackfortran.pyi new file mode 100644 index 0000000..6b08f87 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/crackfortran.pyi @@ -0,0 +1,258 @@ +import re +from collections.abc import Callable, Iterable, Mapping +from typing import IO, Any, Concatenate, Final, Never, ParamSpec, TypeAlias, overload +from typing import Literal as L + +from _typeshed import StrOrBytesPath, StrPath + +from .__version__ import version +from .auxfuncs import isintent_dict as isintent_dict + +### + +_Tss = ParamSpec("_Tss") + +_VisitResult: TypeAlias = list[Any] | dict[str, Any] | None +_VisitItem: TypeAlias = tuple[str | None, _VisitResult] +_VisitFunc: TypeAlias = Callable[Concatenate[_VisitItem, list[_VisitItem], _VisitResult, _Tss], _VisitItem | None] + +### + +COMMON_FREE_EXTENSIONS: Final[list[str]] = ... +COMMON_FIXED_EXTENSIONS: Final[list[str]] = ... + +f2py_version: Final = version +tabchar: Final[str] = " " + +f77modulename: str +pyffilename: str +sourcecodeform: L["fix", "gree"] +strictf77: L[0, 1] +quiet: L[0, 1] +verbose: L[0, 1, 2] +skipemptyends: L[0, 1] +ignorecontains: L[1] +dolowercase: L[1] + +beginpattern: str | re.Pattern[str] +currentfilename: str +filepositiontext: str +expectbegin: L[0, 1] +gotnextfile: L[0, 1] +neededmodule: int +skipblocksuntil: int +groupcounter: int +groupname: dict[int, str] | str +groupcache: dict[int, dict[str, Any]] | None +grouplist: dict[int, list[dict[str, Any]]] | None +previous_context: tuple[str, str, int] | None + +f90modulevars: dict[str, dict[str, Any]] = {} +debug: list[Never] = [] +include_paths: list[str] = [] +onlyfuncs: list[str] = [] +skipfuncs: list[str] = [] +skipfunctions: Final[list[str]] = [] +usermodules: Final[list[dict[str, Any]]] = [] + +defaultimplicitrules: Final[dict[str, dict[str, str]]] = {} +badnames: Final[dict[str, str]] = {} +invbadnames: Final[dict[str, str]] = {} + +beforethisafter: Final[str] = ... +fortrantypes: Final[str] = ... +groupbegins77: Final[str] = ... +groupbegins90: Final[str] = ... +groupends: Final[str] = ... +endifs: Final[str] = ... +moduleprocedures: Final[str] = ... + +beginpattern77: Final[tuple[re.Pattern[str], L["begin"]]] = ... +beginpattern90: Final[tuple[re.Pattern[str], L["begin"]]] = ... +callpattern: Final[tuple[re.Pattern[str], L["call"]]] = ... +callfunpattern: Final[tuple[re.Pattern[str], L["callfun"]]] = ... +commonpattern: Final[tuple[re.Pattern[str], L["common"]]] = ... +containspattern: Final[tuple[re.Pattern[str], L["contains"]]] = ... +datapattern: Final[tuple[re.Pattern[str], L["data"]]] = ... +dimensionpattern: Final[tuple[re.Pattern[str], L["dimension"]]] = ... +endifpattern: Final[tuple[re.Pattern[str], L["endif"]]] = ... +endpattern: Final[tuple[re.Pattern[str], L["end"]]] = ... +entrypattern: Final[tuple[re.Pattern[str], L["entry"]]] = ... +externalpattern: Final[tuple[re.Pattern[str], L["external"]]] = ... +f2pyenhancementspattern: Final[tuple[re.Pattern[str], L["f2pyenhancements"]]] = ... +formatpattern: Final[tuple[re.Pattern[str], L["format"]]] = ... +functionpattern: Final[tuple[re.Pattern[str], L["begin"]]] = ... +implicitpattern: Final[tuple[re.Pattern[str], L["implicit"]]] = ... +intentpattern: Final[tuple[re.Pattern[str], L["intent"]]] = ... +intrinsicpattern: Final[tuple[re.Pattern[str], L["intrinsic"]]] = ... +optionalpattern: Final[tuple[re.Pattern[str], L["optional"]]] = ... +moduleprocedurepattern: Final[tuple[re.Pattern[str], L["moduleprocedure"]]] = ... +multilinepattern: Final[tuple[re.Pattern[str], L["multiline"]]] = ... +parameterpattern: Final[tuple[re.Pattern[str], L["parameter"]]] = ... +privatepattern: Final[tuple[re.Pattern[str], L["private"]]] = ... +publicpattern: Final[tuple[re.Pattern[str], L["public"]]] = ... +requiredpattern: Final[tuple[re.Pattern[str], L["required"]]] = ... +subroutinepattern: Final[tuple[re.Pattern[str], L["begin"]]] = ... +typespattern: Final[tuple[re.Pattern[str], L["type"]]] = ... +usepattern: Final[tuple[re.Pattern[str], L["use"]]] = ... + +analyzeargs_re_1: Final[re.Pattern[str]] = ... +callnameargspattern: Final[re.Pattern[str]] = ... +charselector: Final[re.Pattern[str]] = ... +crackline_bind_1: Final[re.Pattern[str]] = ... +crackline_bindlang: Final[re.Pattern[str]] = ... +crackline_re_1: Final[re.Pattern[str]] = ... +determineexprtype_re_1: Final[re.Pattern[str]] = ... +determineexprtype_re_2: Final[re.Pattern[str]] = ... +determineexprtype_re_3: Final[re.Pattern[str]] = ... +determineexprtype_re_4: Final[re.Pattern[str]] = ... +determineexprtype_re_5: Final[re.Pattern[str]] = ... +getlincoef_re_1: Final[re.Pattern[str]] = ... +kindselector: Final[re.Pattern[str]] = ... +lenarraypattern: Final[re.Pattern[str]] = ... +lenkindpattern: Final[re.Pattern[str]] = ... +namepattern: Final[re.Pattern[str]] = ... +nameargspattern: Final[re.Pattern[str]] = ... +operatorpattern: Final[re.Pattern[str]] = ... +real16pattern: Final[re.Pattern[str]] = ... +real8pattern: Final[re.Pattern[str]] = ... +selectpattern: Final[re.Pattern[str]] = ... +typedefpattern: Final[re.Pattern[str]] = ... +typespattern4implicit: Final[re.Pattern[str]] = ... +word_pattern: Final[re.Pattern[str]] = ... + +post_processing_hooks: Final[list[_VisitFunc[...]]] = [] + +# +def outmess(line: str, flag: int = 1) -> None: ... +def reset_global_f2py_vars() -> None: ... + +# +def rmbadname1(name: str) -> str: ... +def undo_rmbadname1(name: str) -> str: ... +def rmbadname(names: Iterable[str]) -> list[str]: ... +def undo_rmbadname(names: Iterable[str]) -> list[str]: ... + +# +def openhook(filename: StrPath, mode: str) -> IO[Any]: ... +def is_free_format(fname: StrPath) -> bool: ... +def readfortrancode( + ffile: StrOrBytesPath | Iterable[StrOrBytesPath], + dowithline: Callable[[str, int], object] = ..., + istop: int = 1, +) -> None: ... + +# +def split_by_unquoted(line: str, characters: str) -> tuple[str, str]: ... + +# +def crackline(line: str, reset: int = 0) -> None: ... +def markouterparen(line: str) -> str: ... +def markoutercomma(line: str, comma: str = ",") -> str: ... +def unmarkouterparen(line: str) -> str: ... +def appenddecl(decl: Mapping[str, object] | None, decl2: Mapping[str, object] | None, force: int = 1) -> dict[str, Any]: ... + +# +def parse_name_for_bind(line: str) -> tuple[str, str | None]: ... +def analyzeline(m: re.Match[str], case: str, line: str) -> None: ... +def appendmultiline(group: dict[str, Any], context_name: str, ml: str) -> None: ... +def cracktypespec0(typespec: str, ll: str | None) -> tuple[str, str | None, str | None, str | None]: ... + +# +def removespaces(expr: str) -> str: ... +def markinnerspaces(line: str) -> str: ... +def updatevars(typespec: str, selector: str | None, attrspec: str, entitydecl: str) -> str: ... +def cracktypespec(typespec: str, selector: str | None) -> tuple[dict[str, str] | None, dict[str, str] | None, str | None]: ... + +# +def setattrspec(decl: dict[str, list[str]], attr: str | None, force: int = 0) -> dict[str, list[str]]: ... +def setkindselector(decl: dict[str, dict[str, str]], sel: dict[str, str], force: int = 0) -> dict[str, dict[str, str]]: ... +def setcharselector(decl: dict[str, dict[str, str]], sel: dict[str, str], force: int = 0) -> dict[str, dict[str, str]]: ... +def getblockname(block: Mapping[str, object], unknown: str = "unknown") -> str: ... +def setmesstext(block: Mapping[str, object]) -> None: ... +def get_usedict(block: Mapping[str, object]) -> dict[str, str]: ... +def get_useparameters(block: Mapping[str, object], param_map: Mapping[str, str] | None = None) -> dict[str, str]: ... + +# +@overload +def postcrack2( + block: dict[str, Any], + tab: str = "", + param_map: Mapping[str, str] | None = None, +) -> dict[str, str | Any]: ... +@overload +def postcrack2( + block: list[dict[str, Any]], + tab: str = "", + param_map: Mapping[str, str] | None = None, +) -> list[dict[str, str | Any]]: ... + +# +@overload +def postcrack(block: dict[str, Any], args: Mapping[str, str] | None = None, tab: str = "") -> dict[str, Any]: ... +@overload +def postcrack(block: list[dict[str, str]], args: Mapping[str, str] | None = None, tab: str = "") -> list[dict[str, Any]]: ... + +# +def sortvarnames(vars: Mapping[str, object]) -> list[str]: ... +def analyzecommon(block: Mapping[str, object]) -> dict[str, Any]: ... +def analyzebody(block: Mapping[str, object], args: Mapping[str, str], tab: str = "") -> list[dict[str, Any]]: ... +def buildimplicitrules(block: Mapping[str, object]) -> tuple[dict[str, dict[str, str]], dict[str, str]]: ... +def myeval(e: str, g: object | None = None, l: object | None = None) -> float: ... + +# +def getlincoef(e: str, xset: set[str]) -> tuple[float | None, float | None, str | None]: ... + +# +def get_sorted_names(vars: Mapping[str, Mapping[str, str]]) -> list[str]: ... +def get_parameters(vars: Mapping[str, Mapping[str, str]], global_params: dict[str, str] = {}) -> dict[str, str]: ... + +# +def analyzevars(block: Mapping[str, Any]) -> dict[str, dict[str, str]]: ... + +# +def param_eval(v: str, g_params: dict[str, Any], params: Mapping[str, object], dimspec: str | None = None) -> dict[str, Any]: ... +def param_parse(d: str, params: Mapping[str, str]) -> str: ... +def expr2name(a: str, block: Mapping[str, object], args: list[str] = []) -> str: ... +def analyzeargs(block: Mapping[str, object]) -> dict[str, Any]: ... + +# +def determineexprtype(expr: str, vars: Mapping[str, object], rules: dict[str, Any] = {}) -> dict[str, Any]: ... +def crack2fortrangen(block: Mapping[str, object], tab: str = "\n", as_interface: bool = False) -> str: ... +def common2fortran(common: Mapping[str, object], tab: str = "") -> str: ... +def use2fortran(use: Mapping[str, object], tab: str = "") -> str: ... +def true_intent_list(var: dict[str, list[str]]) -> list[str]: ... +def vars2fortran( + block: Mapping[str, Mapping[str, object]], + vars: Mapping[str, object], + args: Mapping[str, str], + tab: str = "", + as_interface: bool = False, +) -> str: ... + +# +def crackfortran(files: StrOrBytesPath | Iterable[StrOrBytesPath]) -> list[dict[str, Any]]: ... +def crack2fortran(block: Mapping[str, Any]) -> str: ... + +# +def traverse( + obj: tuple[str | None, _VisitResult], + visit: _VisitFunc[_Tss], + parents: list[tuple[str | None, _VisitResult]] = [], + result: list[Any] | dict[str, Any] | None = None, + *args: _Tss.args, + **kwargs: _Tss.kwargs, +) -> _VisitItem | _VisitResult: ... + +# +def character_backward_compatibility_hook( + item: _VisitItem, + parents: list[_VisitItem], + result: object, # ignored + *args: object, # ignored + **kwargs: object, # ignored +) -> _VisitItem | None: ... + +# namespace pollution +c: str +n: str diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/diagnose.py b/.venv/lib/python3.12/site-packages/numpy/f2py/diagnose.py new file mode 100644 index 0000000..7eb1697 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/diagnose.py @@ -0,0 +1,149 @@ +#!/usr/bin/env python3 +import os +import sys +import tempfile + + +def run(): + _path = os.getcwd() + os.chdir(tempfile.gettempdir()) + print('------') + print(f'os.name={os.name!r}') + print('------') + print(f'sys.platform={sys.platform!r}') + print('------') + print('sys.version:') + print(sys.version) + print('------') + print('sys.prefix:') + print(sys.prefix) + print('------') + print(f"sys.path={':'.join(sys.path)!r}") + print('------') + + try: + import numpy + has_newnumpy = 1 + except ImportError as e: + print('Failed to import new numpy:', e) + has_newnumpy = 0 + + try: + from numpy.f2py import f2py2e + has_f2py2e = 1 + except ImportError as e: + print('Failed to import f2py2e:', e) + has_f2py2e = 0 + + try: + import numpy.distutils + has_numpy_distutils = 2 + except ImportError: + try: + import numpy_distutils + has_numpy_distutils = 1 + except ImportError as e: + print('Failed to import numpy_distutils:', e) + has_numpy_distutils = 0 + + if has_newnumpy: + try: + print(f'Found new numpy version {numpy.__version__!r} in {numpy.__file__}') + except Exception as msg: + print('error:', msg) + print('------') + + if has_f2py2e: + try: + print('Found f2py2e version %r in %s' % + (f2py2e.__version__.version, f2py2e.__file__)) + except Exception as msg: + print('error:', msg) + print('------') + + if has_numpy_distutils: + try: + if has_numpy_distutils == 2: + print('Found numpy.distutils version %r in %r' % ( + numpy.distutils.__version__, + numpy.distutils.__file__)) + else: + print('Found numpy_distutils version %r in %r' % ( + numpy_distutils.numpy_distutils_version.numpy_distutils_version, + numpy_distutils.__file__)) + print('------') + except Exception as msg: + print('error:', msg) + print('------') + try: + if has_numpy_distutils == 1: + print( + 'Importing numpy_distutils.command.build_flib ...', end=' ') + import numpy_distutils.command.build_flib as build_flib + print('ok') + print('------') + try: + print( + 'Checking availability of supported Fortran compilers:') + for compiler_class in build_flib.all_compilers: + compiler_class(verbose=1).is_available() + print('------') + except Exception as msg: + print('error:', msg) + print('------') + except Exception as msg: + print( + 'error:', msg, '(ignore it, build_flib is obsolete for numpy.distutils 0.2.2 and up)') + print('------') + try: + if has_numpy_distutils == 2: + print('Importing numpy.distutils.fcompiler ...', end=' ') + import numpy.distutils.fcompiler as fcompiler + else: + print('Importing numpy_distutils.fcompiler ...', end=' ') + import numpy_distutils.fcompiler as fcompiler + print('ok') + print('------') + try: + print('Checking availability of supported Fortran compilers:') + fcompiler.show_fcompilers() + print('------') + except Exception as msg: + print('error:', msg) + print('------') + except Exception as msg: + print('error:', msg) + print('------') + try: + if has_numpy_distutils == 2: + print('Importing numpy.distutils.cpuinfo ...', end=' ') + from numpy.distutils.cpuinfo import cpuinfo + print('ok') + print('------') + else: + try: + print( + 'Importing numpy_distutils.command.cpuinfo ...', end=' ') + from numpy_distutils.command.cpuinfo import cpuinfo + print('ok') + print('------') + except Exception as msg: + print('error:', msg, '(ignore it)') + print('Importing numpy_distutils.cpuinfo ...', end=' ') + from numpy_distutils.cpuinfo import cpuinfo + print('ok') + print('------') + cpu = cpuinfo() + print('CPU information:', end=' ') + for name in dir(cpuinfo): + if name[0] == '_' and name[1] != '_' and getattr(cpu, name[1:])(): + print(name[1:], end=' ') + print('------') + except Exception as msg: + print('error:', msg) + print('------') + os.chdir(_path) + + +if __name__ == "__main__": + run() diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/diagnose.pyi b/.venv/lib/python3.12/site-packages/numpy/f2py/diagnose.pyi new file mode 100644 index 0000000..b88194a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/diagnose.pyi @@ -0,0 +1 @@ +def run() -> None: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/f2py2e.py b/.venv/lib/python3.12/site-packages/numpy/f2py/f2py2e.py new file mode 100644 index 0000000..459299f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/f2py2e.py @@ -0,0 +1,786 @@ +""" + +f2py2e - Fortran to Python C/API generator. 2nd Edition. + See __usage__ below. + +Copyright 1999 -- 2011 Pearu Peterson all rights reserved. +Copyright 2011 -- present NumPy Developers. +Permission to use, modify, and distribute this software is given under the +terms of the NumPy License. + +NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. +""" +import argparse +import os +import pprint +import re +import sys + +from numpy.f2py._backends import f2py_build_generator + +from . import ( + __version__, + auxfuncs, + capi_maps, + cb_rules, + cfuncs, + crackfortran, + f90mod_rules, + rules, +) +from .cfuncs import errmess + +f2py_version = __version__.version +numpy_version = __version__.version + +# outmess=sys.stdout.write +show = pprint.pprint +outmess = auxfuncs.outmess +MESON_ONLY_VER = (sys.version_info >= (3, 12)) + +__usage__ =\ +f"""Usage: + +1) To construct extension module sources: + + f2py [] [[[only:]||[skip:]] \\ + ] \\ + [: ...] + +2) To compile fortran files and build extension modules: + + f2py -c [, , ] + +3) To generate signature files: + + f2py -h ...< same options as in (1) > + +Description: This program generates a Python C/API file (module.c) + that contains wrappers for given fortran functions so that they + can be called from Python. With the -c option the corresponding + extension modules are built. + +Options: + + -h Write signatures of the fortran routines to file + and exit. You can then edit and use it instead + of . If ==stdout then the + signatures are printed to stdout. + Names of fortran routines for which Python C/API + functions will be generated. Default is all that are found + in . + Paths to fortran/signature files that will be scanned for + in order to determine their signatures. + skip: Ignore fortran functions that follow until `:'. + only: Use only fortran functions that follow until `:'. + : Get back to mode. + + -m Name of the module; f2py generates a Python/C API + file module.c or extension module . + Default is 'untitled'. + + '-include

' Writes additional headers in the C wrapper, can be passed + multiple times, generates #include
each time. + + --[no-]lower Do [not] lower the cases in . By default, + --lower is assumed with -h key, and --no-lower without -h key. + + --build-dir All f2py generated files are created in . + Default is tempfile.mkdtemp(). + + --overwrite-signature Overwrite existing signature file. + + --[no-]latex-doc Create (or not) module.tex. + Default is --no-latex-doc. + --short-latex Create 'incomplete' LaTeX document (without commands + \\documentclass, \\tableofcontents, and \\begin{{document}}, + \\end{{document}}). + + --[no-]rest-doc Create (or not) module.rst. + Default is --no-rest-doc. + + --debug-capi Create C/API code that reports the state of the wrappers + during runtime. Useful for debugging. + + --[no-]wrap-functions Create Fortran subroutine wrappers to Fortran 77 + functions. --wrap-functions is default because it ensures + maximum portability/compiler independence. + + --[no-]freethreading-compatible Create a module that declares it does or + doesn't require the GIL. The default is + --freethreading-compatible for backward + compatibility. Inspect the Fortran code you are wrapping for + thread safety issues before passing + --no-freethreading-compatible, as f2py does not analyze + fortran code for thread safety issues. + + --include-paths ::... Search include files from the given + directories. + + --help-link [..] List system resources found by system_info.py. See also + --link- switch below. [..] is optional list + of resources names. E.g. try 'f2py --help-link lapack_opt'. + + --f2cmap Load Fortran-to-Python KIND specification from the given + file. Default: .f2py_f2cmap in current directory. + + --quiet Run quietly. + --verbose Run with extra verbosity. + --skip-empty-wrappers Only generate wrapper files when needed. + -v Print f2py version ID and exit. + + +build backend options (only effective with -c) +[NO_MESON] is used to indicate an option not meant to be used +with the meson backend or above Python 3.12: + + --fcompiler= Specify Fortran compiler type by vendor [NO_MESON] + --compiler= Specify distutils C compiler type [NO_MESON] + + --help-fcompiler List available Fortran compilers and exit [NO_MESON] + --f77exec= Specify the path to F77 compiler [NO_MESON] + --f90exec= Specify the path to F90 compiler [NO_MESON] + --f77flags= Specify F77 compiler flags + --f90flags= Specify F90 compiler flags + --opt= Specify optimization flags [NO_MESON] + --arch= Specify architecture specific optimization flags [NO_MESON] + --noopt Compile without optimization [NO_MESON] + --noarch Compile without arch-dependent optimization [NO_MESON] + --debug Compile with debugging information + + --dep + Specify a meson dependency for the module. This may + be passed multiple times for multiple dependencies. + Dependencies are stored in a list for further processing. + + Example: --dep lapack --dep scalapack + This will identify "lapack" and "scalapack" as dependencies + and remove them from argv, leaving a dependencies list + containing ["lapack", "scalapack"]. + + --backend + Specify the build backend for the compilation process. + The supported backends are 'meson' and 'distutils'. + If not specified, defaults to 'distutils'. On + Python 3.12 or higher, the default is 'meson'. + +Extra options (only effective with -c): + + --link- Link extension module with as defined + by numpy.distutils/system_info.py. E.g. to link + with optimized LAPACK libraries (vecLib on MacOSX, + ATLAS elsewhere), use --link-lapack_opt. + See also --help-link switch. [NO_MESON] + + -L/path/to/lib/ -l + -D -U + -I/path/to/include/ + .o .so .a + + Using the following macros may be required with non-gcc Fortran + compilers: + -DPREPEND_FORTRAN -DNO_APPEND_FORTRAN -DUPPERCASE_FORTRAN + + When using -DF2PY_REPORT_ATEXIT, a performance report of F2PY + interface is printed out at exit (platforms: Linux). + + When using -DF2PY_REPORT_ON_ARRAY_COPY=, a message is + sent to stderr whenever F2PY interface makes a copy of an + array. Integer sets the threshold for array sizes when + a message should be shown. + +Version: {f2py_version} +numpy Version: {numpy_version} +License: NumPy license (see LICENSE.txt in the NumPy source code) +Copyright 1999 -- 2011 Pearu Peterson all rights reserved. +Copyright 2011 -- present NumPy Developers. +https://numpy.org/doc/stable/f2py/index.html\n""" + + +def scaninputline(inputline): + files, skipfuncs, onlyfuncs, debug = [], [], [], [] + f, f2, f3, f5, f6, f8, f9, f10 = 1, 0, 0, 0, 0, 0, 0, 0 + verbose = 1 + emptygen = True + dolc = -1 + dolatexdoc = 0 + dorestdoc = 0 + wrapfuncs = 1 + buildpath = '.' + include_paths, freethreading_compatible, inputline = get_newer_options(inputline) + signsfile, modulename = None, None + options = {'buildpath': buildpath, + 'coutput': None, + 'f2py_wrapper_output': None} + for l in inputline: + if l == '': + pass + elif l == 'only:': + f = 0 + elif l == 'skip:': + f = -1 + elif l == ':': + f = 1 + elif l[:8] == '--debug-': + debug.append(l[8:]) + elif l == '--lower': + dolc = 1 + elif l == '--build-dir': + f6 = 1 + elif l == '--no-lower': + dolc = 0 + elif l == '--quiet': + verbose = 0 + elif l == '--verbose': + verbose += 1 + elif l == '--latex-doc': + dolatexdoc = 1 + elif l == '--no-latex-doc': + dolatexdoc = 0 + elif l == '--rest-doc': + dorestdoc = 1 + elif l == '--no-rest-doc': + dorestdoc = 0 + elif l == '--wrap-functions': + wrapfuncs = 1 + elif l == '--no-wrap-functions': + wrapfuncs = 0 + elif l == '--short-latex': + options['shortlatex'] = 1 + elif l == '--coutput': + f8 = 1 + elif l == '--f2py-wrapper-output': + f9 = 1 + elif l == '--f2cmap': + f10 = 1 + elif l == '--overwrite-signature': + options['h-overwrite'] = 1 + elif l == '-h': + f2 = 1 + elif l == '-m': + f3 = 1 + elif l[:2] == '-v': + print(f2py_version) + sys.exit() + elif l == '--show-compilers': + f5 = 1 + elif l[:8] == '-include': + cfuncs.outneeds['userincludes'].append(l[9:-1]) + cfuncs.userincludes[l[9:-1]] = '#include ' + l[8:] + elif l == '--skip-empty-wrappers': + emptygen = False + elif l[0] == '-': + errmess(f'Unknown option {repr(l)}\n') + sys.exit() + elif f2: + f2 = 0 + signsfile = l + elif f3: + f3 = 0 + modulename = l + elif f6: + f6 = 0 + buildpath = l + elif f8: + f8 = 0 + options["coutput"] = l + elif f9: + f9 = 0 + options["f2py_wrapper_output"] = l + elif f10: + f10 = 0 + options["f2cmap_file"] = l + elif f == 1: + try: + with open(l): + pass + files.append(l) + except OSError as detail: + errmess(f'OSError: {detail!s}. Skipping file "{l!s}".\n') + elif f == -1: + skipfuncs.append(l) + elif f == 0: + onlyfuncs.append(l) + if not f5 and not files and not modulename: + print(__usage__) + sys.exit() + if not os.path.isdir(buildpath): + if not verbose: + outmess(f'Creating build directory {buildpath}\n') + os.mkdir(buildpath) + if signsfile: + signsfile = os.path.join(buildpath, signsfile) + if signsfile and os.path.isfile(signsfile) and 'h-overwrite' not in options: + errmess( + f'Signature file "{signsfile}" exists!!! Use --overwrite-signature to overwrite.\n') + sys.exit() + + options['emptygen'] = emptygen + options['debug'] = debug + options['verbose'] = verbose + if dolc == -1 and not signsfile: + options['do-lower'] = 0 + else: + options['do-lower'] = dolc + if modulename: + options['module'] = modulename + if signsfile: + options['signsfile'] = signsfile + if onlyfuncs: + options['onlyfuncs'] = onlyfuncs + if skipfuncs: + options['skipfuncs'] = skipfuncs + options['dolatexdoc'] = dolatexdoc + options['dorestdoc'] = dorestdoc + options['wrapfuncs'] = wrapfuncs + options['buildpath'] = buildpath + options['include_paths'] = include_paths + options['requires_gil'] = not freethreading_compatible + options.setdefault('f2cmap_file', None) + return files, options + + +def callcrackfortran(files, options): + rules.options = options + crackfortran.debug = options['debug'] + crackfortran.verbose = options['verbose'] + if 'module' in options: + crackfortran.f77modulename = options['module'] + if 'skipfuncs' in options: + crackfortran.skipfuncs = options['skipfuncs'] + if 'onlyfuncs' in options: + crackfortran.onlyfuncs = options['onlyfuncs'] + crackfortran.include_paths[:] = options['include_paths'] + crackfortran.dolowercase = options['do-lower'] + postlist = crackfortran.crackfortran(files) + if 'signsfile' in options: + outmess(f"Saving signatures to file \"{options['signsfile']}\"\n") + pyf = crackfortran.crack2fortran(postlist) + if options['signsfile'][-6:] == 'stdout': + sys.stdout.write(pyf) + else: + with open(options['signsfile'], 'w') as f: + f.write(pyf) + if options["coutput"] is None: + for mod in postlist: + mod["coutput"] = f"{mod['name']}module.c" + else: + for mod in postlist: + mod["coutput"] = options["coutput"] + if options["f2py_wrapper_output"] is None: + for mod in postlist: + mod["f2py_wrapper_output"] = f"{mod['name']}-f2pywrappers.f" + else: + for mod in postlist: + mod["f2py_wrapper_output"] = options["f2py_wrapper_output"] + for mod in postlist: + if options["requires_gil"]: + mod['gil_used'] = 'Py_MOD_GIL_USED' + else: + mod['gil_used'] = 'Py_MOD_GIL_NOT_USED' + return postlist + + +def buildmodules(lst): + cfuncs.buildcfuncs() + outmess('Building modules...\n') + modules, mnames, isusedby = [], [], {} + for item in lst: + if '__user__' in item['name']: + cb_rules.buildcallbacks(item) + else: + if 'use' in item: + for u in item['use'].keys(): + if u not in isusedby: + isusedby[u] = [] + isusedby[u].append(item['name']) + modules.append(item) + mnames.append(item['name']) + ret = {} + for module, name in zip(modules, mnames): + if name in isusedby: + outmess('\tSkipping module "%s" which is used by %s.\n' % ( + name, ','.join('"%s"' % s for s in isusedby[name]))) + else: + um = [] + if 'use' in module: + for u in module['use'].keys(): + if u in isusedby and u in mnames: + um.append(modules[mnames.index(u)]) + else: + outmess( + f'\tModule "{name}" uses nonexisting "{u}" ' + 'which will be ignored.\n') + ret[name] = {} + dict_append(ret[name], rules.buildmodule(module, um)) + return ret + + +def dict_append(d_out, d_in): + for (k, v) in d_in.items(): + if k not in d_out: + d_out[k] = [] + if isinstance(v, list): + d_out[k] = d_out[k] + v + else: + d_out[k].append(v) + + +def run_main(comline_list): + """ + Equivalent to running:: + + f2py + + where ``=string.join(,' ')``, but in Python. Unless + ``-h`` is used, this function returns a dictionary containing + information on generated modules and their dependencies on source + files. + + You cannot build extension modules with this function, that is, + using ``-c`` is not allowed. Use the ``compile`` command instead. + + Examples + -------- + The command ``f2py -m scalar scalar.f`` can be executed from Python as + follows. + + .. literalinclude:: ../../source/f2py/code/results/run_main_session.dat + :language: python + + """ + crackfortran.reset_global_f2py_vars() + f2pydir = os.path.dirname(os.path.abspath(cfuncs.__file__)) + fobjhsrc = os.path.join(f2pydir, 'src', 'fortranobject.h') + fobjcsrc = os.path.join(f2pydir, 'src', 'fortranobject.c') + # gh-22819 -- begin + parser = make_f2py_compile_parser() + args, comline_list = parser.parse_known_args(comline_list) + pyf_files, _ = filter_files("", "[.]pyf([.]src|)", comline_list) + # Checks that no existing modulename is defined in a pyf file + # TODO: Remove all this when scaninputline is replaced + if args.module_name: + if "-h" in comline_list: + modname = ( + args.module_name + ) # Directly use from args when -h is present + else: + modname = validate_modulename( + pyf_files, args.module_name + ) # Validate modname when -h is not present + comline_list += ['-m', modname] # needed for the rest of scaninputline + # gh-22819 -- end + files, options = scaninputline(comline_list) + auxfuncs.options = options + capi_maps.load_f2cmap_file(options['f2cmap_file']) + postlist = callcrackfortran(files, options) + isusedby = {} + for plist in postlist: + if 'use' in plist: + for u in plist['use'].keys(): + if u not in isusedby: + isusedby[u] = [] + isusedby[u].append(plist['name']) + for plist in postlist: + module_name = plist['name'] + if plist['block'] == 'python module' and '__user__' in module_name: + if module_name in isusedby: + # if not quiet: + usedby = ','.join(f'"{s}"' for s in isusedby[module_name]) + outmess( + f'Skipping Makefile build for module "{module_name}" ' + f'which is used by {usedby}\n') + if 'signsfile' in options: + if options['verbose'] > 1: + outmess( + 'Stopping. Edit the signature file and then run f2py on the signature file: ') + outmess(f"{os.path.basename(sys.argv[0])} {options['signsfile']}\n") + return + for plist in postlist: + if plist['block'] != 'python module': + if 'python module' not in options: + errmess( + 'Tip: If your original code is Fortran source then you must use -m option.\n') + raise TypeError('All blocks must be python module blocks but got %s' % ( + repr(plist['block']))) + auxfuncs.debugoptions = options['debug'] + f90mod_rules.options = options + auxfuncs.wrapfuncs = options['wrapfuncs'] + + ret = buildmodules(postlist) + + for mn in ret.keys(): + dict_append(ret[mn], {'csrc': fobjcsrc, 'h': fobjhsrc}) + return ret + + +def filter_files(prefix, suffix, files, remove_prefix=None): + """ + Filter files by prefix and suffix. + """ + filtered, rest = [], [] + match = re.compile(prefix + r'.*' + suffix + r'\Z').match + if remove_prefix: + ind = len(prefix) + else: + ind = 0 + for file in [x.strip() for x in files]: + if match(file): + filtered.append(file[ind:]) + else: + rest.append(file) + return filtered, rest + + +def get_prefix(module): + p = os.path.dirname(os.path.dirname(module.__file__)) + return p + + +class CombineIncludePaths(argparse.Action): + def __call__(self, parser, namespace, values, option_string=None): + include_paths_set = set(getattr(namespace, 'include_paths', []) or []) + if option_string == "--include_paths": + outmess("Use --include-paths or -I instead of --include_paths which will be removed") + if option_string in {"--include-paths", "--include_paths"}: + include_paths_set.update(values.split(':')) + else: + include_paths_set.add(values) + namespace.include_paths = list(include_paths_set) + +def f2py_parser(): + parser = argparse.ArgumentParser(add_help=False) + parser.add_argument("-I", dest="include_paths", action=CombineIncludePaths) + parser.add_argument("--include-paths", dest="include_paths", action=CombineIncludePaths) + parser.add_argument("--include_paths", dest="include_paths", action=CombineIncludePaths) + parser.add_argument("--freethreading-compatible", dest="ftcompat", action=argparse.BooleanOptionalAction) + return parser + +def get_newer_options(iline): + iline = (' '.join(iline)).split() + parser = f2py_parser() + args, remain = parser.parse_known_args(iline) + ipaths = args.include_paths + if args.include_paths is None: + ipaths = [] + return ipaths, args.ftcompat, remain + +def make_f2py_compile_parser(): + parser = argparse.ArgumentParser(add_help=False) + parser.add_argument("--dep", action="append", dest="dependencies") + parser.add_argument("--backend", choices=['meson', 'distutils'], default='distutils') + parser.add_argument("-m", dest="module_name") + return parser + +def preparse_sysargv(): + # To keep backwards bug compatibility, newer flags are handled by argparse, + # and `sys.argv` is passed to the rest of `f2py` as is. + parser = make_f2py_compile_parser() + + args, remaining_argv = parser.parse_known_args() + sys.argv = [sys.argv[0]] + remaining_argv + + backend_key = args.backend + if MESON_ONLY_VER and backend_key == 'distutils': + outmess("Cannot use distutils backend with Python>=3.12," + " using meson backend instead.\n") + backend_key = "meson" + + return { + "dependencies": args.dependencies or [], + "backend": backend_key, + "modulename": args.module_name, + } + +def run_compile(): + """ + Do it all in one call! + """ + import tempfile + + # Collect dependency flags, preprocess sys.argv + argy = preparse_sysargv() + modulename = argy["modulename"] + if modulename is None: + modulename = 'untitled' + dependencies = argy["dependencies"] + backend_key = argy["backend"] + build_backend = f2py_build_generator(backend_key) + + i = sys.argv.index('-c') + del sys.argv[i] + + remove_build_dir = 0 + try: + i = sys.argv.index('--build-dir') + except ValueError: + i = None + if i is not None: + build_dir = sys.argv[i + 1] + del sys.argv[i + 1] + del sys.argv[i] + else: + remove_build_dir = 1 + build_dir = tempfile.mkdtemp() + + _reg1 = re.compile(r'--link-') + sysinfo_flags = [_m for _m in sys.argv[1:] if _reg1.match(_m)] + sys.argv = [_m for _m in sys.argv if _m not in sysinfo_flags] + if sysinfo_flags: + sysinfo_flags = [f[7:] for f in sysinfo_flags] + + _reg2 = re.compile( + r'--((no-|)(wrap-functions|lower|freethreading-compatible)|debug-capi|quiet|skip-empty-wrappers)|-include') + f2py_flags = [_m for _m in sys.argv[1:] if _reg2.match(_m)] + sys.argv = [_m for _m in sys.argv if _m not in f2py_flags] + f2py_flags2 = [] + fl = 0 + for a in sys.argv[1:]: + if a in ['only:', 'skip:']: + fl = 1 + elif a == ':': + fl = 0 + if fl or a == ':': + f2py_flags2.append(a) + if f2py_flags2 and f2py_flags2[-1] != ':': + f2py_flags2.append(':') + f2py_flags.extend(f2py_flags2) + sys.argv = [_m for _m in sys.argv if _m not in f2py_flags2] + _reg3 = re.compile( + r'--((f(90)?compiler(-exec|)|compiler)=|help-compiler)') + flib_flags = [_m for _m in sys.argv[1:] if _reg3.match(_m)] + sys.argv = [_m for _m in sys.argv if _m not in flib_flags] + # TODO: Once distutils is dropped completely, i.e. min_ver >= 3.12, unify into --fflags + reg_f77_f90_flags = re.compile(r'--f(77|90)flags=') + reg_distutils_flags = re.compile(r'--((f(77|90)exec|opt|arch)=|(debug|noopt|noarch|help-fcompiler))') + fc_flags = [_m for _m in sys.argv[1:] if reg_f77_f90_flags.match(_m)] + distutils_flags = [_m for _m in sys.argv[1:] if reg_distutils_flags.match(_m)] + if not (MESON_ONLY_VER or backend_key == 'meson'): + fc_flags.extend(distutils_flags) + sys.argv = [_m for _m in sys.argv if _m not in (fc_flags + distutils_flags)] + + del_list = [] + for s in flib_flags: + v = '--fcompiler=' + if s[:len(v)] == v: + if MESON_ONLY_VER or backend_key == 'meson': + outmess( + "--fcompiler cannot be used with meson," + "set compiler with the FC environment variable\n" + ) + else: + from numpy.distutils import fcompiler + fcompiler.load_all_fcompiler_classes() + allowed_keys = list(fcompiler.fcompiler_class.keys()) + nv = ov = s[len(v):].lower() + if ov not in allowed_keys: + vmap = {} # XXX + try: + nv = vmap[ov] + except KeyError: + if ov not in vmap.values(): + print(f'Unknown vendor: "{s[len(v):]}"') + nv = ov + i = flib_flags.index(s) + flib_flags[i] = '--fcompiler=' + nv # noqa: B909 + continue + for s in del_list: + i = flib_flags.index(s) + del flib_flags[i] + assert len(flib_flags) <= 2, repr(flib_flags) + + _reg5 = re.compile(r'--(verbose)') + setup_flags = [_m for _m in sys.argv[1:] if _reg5.match(_m)] + sys.argv = [_m for _m in sys.argv if _m not in setup_flags] + + if '--quiet' in f2py_flags: + setup_flags.append('--quiet') + + # Ugly filter to remove everything but sources + sources = sys.argv[1:] + f2cmapopt = '--f2cmap' + if f2cmapopt in sys.argv: + i = sys.argv.index(f2cmapopt) + f2py_flags.extend(sys.argv[i:i + 2]) + del sys.argv[i + 1], sys.argv[i] + sources = sys.argv[1:] + + pyf_files, _sources = filter_files("", "[.]pyf([.]src|)", sources) + sources = pyf_files + _sources + modulename = validate_modulename(pyf_files, modulename) + extra_objects, sources = filter_files('', '[.](o|a|so|dylib)', sources) + library_dirs, sources = filter_files('-L', '', sources, remove_prefix=1) + libraries, sources = filter_files('-l', '', sources, remove_prefix=1) + undef_macros, sources = filter_files('-U', '', sources, remove_prefix=1) + define_macros, sources = filter_files('-D', '', sources, remove_prefix=1) + for i in range(len(define_macros)): + name_value = define_macros[i].split('=', 1) + if len(name_value) == 1: + name_value.append(None) + if len(name_value) == 2: + define_macros[i] = tuple(name_value) + else: + print('Invalid use of -D:', name_value) + + # Construct wrappers / signatures / things + if backend_key == 'meson': + if not pyf_files: + outmess('Using meson backend\nWill pass --lower to f2py\nSee https://numpy.org/doc/stable/f2py/buildtools/meson.html\n') + f2py_flags.append('--lower') + run_main(f" {' '.join(f2py_flags)} -m {modulename} {' '.join(sources)}".split()) + else: + run_main(f" {' '.join(f2py_flags)} {' '.join(pyf_files)}".split()) + + # Order matters here, includes are needed for run_main above + include_dirs, _, sources = get_newer_options(sources) + # Now use the builder + builder = build_backend( + modulename, + sources, + extra_objects, + build_dir, + include_dirs, + library_dirs, + libraries, + define_macros, + undef_macros, + f2py_flags, + sysinfo_flags, + fc_flags, + flib_flags, + setup_flags, + remove_build_dir, + {"dependencies": dependencies}, + ) + + builder.compile() + + +def validate_modulename(pyf_files, modulename='untitled'): + if len(pyf_files) > 1: + raise ValueError("Only one .pyf file per call") + if pyf_files: + pyff = pyf_files[0] + pyf_modname = auxfuncs.get_f2py_modulename(pyff) + if modulename != pyf_modname: + outmess( + f"Ignoring -m {modulename}.\n" + f"{pyff} defines {pyf_modname} to be the modulename.\n" + ) + modulename = pyf_modname + return modulename + +def main(): + if '--help-link' in sys.argv[1:]: + sys.argv.remove('--help-link') + if MESON_ONLY_VER: + outmess("Use --dep for meson builds\n") + else: + from numpy.distutils.system_info import show_all + show_all() + return + + if '-c' in sys.argv[1:]: + run_compile() + else: + run_main(sys.argv[1:]) diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/f2py2e.pyi b/.venv/lib/python3.12/site-packages/numpy/f2py/f2py2e.pyi new file mode 100644 index 0000000..dd1d0c3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/f2py2e.pyi @@ -0,0 +1,76 @@ +import argparse +import pprint +from collections.abc import Hashable, Iterable, Mapping, MutableMapping, Sequence +from types import ModuleType +from typing import Any, Final, NotRequired, TypedDict, type_check_only + +from typing_extensions import TypeVar, override + +from .__version__ import version +from .auxfuncs import _Bool +from .auxfuncs import outmess as outmess + +### + +_KT = TypeVar("_KT", bound=Hashable) +_VT = TypeVar("_VT") + +@type_check_only +class _F2PyDict(TypedDict): + csrc: list[str] + h: list[str] + fsrc: NotRequired[list[str]] + ltx: NotRequired[list[str]] + +@type_check_only +class _PreparseResult(TypedDict): + dependencies: list[str] + backend: str + modulename: str + +### + +MESON_ONLY_VER: Final[bool] +f2py_version: Final = version +numpy_version: Final = version +__usage__: Final[str] + +show = pprint.pprint + +class CombineIncludePaths(argparse.Action): + @override + def __call__( + self, + /, + parser: argparse.ArgumentParser, + namespace: argparse.Namespace, + values: str | Sequence[str] | None, + option_string: str | None = None, + ) -> None: ... + +# +def run_main(comline_list: Iterable[str]) -> dict[str, _F2PyDict]: ... +def run_compile() -> None: ... +def main() -> None: ... + +# +def scaninputline(inputline: Iterable[str]) -> tuple[list[str], dict[str, _Bool]]: ... +def callcrackfortran(files: list[str], options: dict[str, bool]) -> list[dict[str, Any]]: ... +def buildmodules(lst: Iterable[Mapping[str, object]]) -> dict[str, dict[str, Any]]: ... +def dict_append(d_out: MutableMapping[_KT, _VT], d_in: Mapping[_KT, _VT]) -> None: ... +def filter_files( + prefix: str, + suffix: str, + files: Iterable[str], + remove_prefix: _Bool | None = None, +) -> tuple[list[str], list[str]]: ... +def get_prefix(module: ModuleType) -> str: ... +def get_newer_options(iline: Iterable[str]) -> tuple[list[str], Any, list[str]]: ... + +# +def f2py_parser() -> argparse.ArgumentParser: ... +def make_f2py_compile_parser() -> argparse.ArgumentParser: ... + +# +def preparse_sysargv() -> _PreparseResult: ... +def validate_modulename(pyf_files: Sequence[str], modulename: str = "untitled") -> str: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/f90mod_rules.py b/.venv/lib/python3.12/site-packages/numpy/f2py/f90mod_rules.py new file mode 100644 index 0000000..d13a42a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/f90mod_rules.py @@ -0,0 +1,269 @@ +""" +Build F90 module support for f2py2e. + +Copyright 1999 -- 2011 Pearu Peterson all rights reserved. +Copyright 2011 -- present NumPy Developers. +Permission to use, modify, and distribute this software is given under the +terms of the NumPy License. + +NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. +""" +__version__ = "$Revision: 1.27 $"[10:-1] + +f2py_version = 'See `f2py -v`' + +import numpy as np + +from . import capi_maps, func2subr + +# The environment provided by auxfuncs.py is needed for some calls to eval. +# As the needed functions cannot be determined by static inspection of the +# code, it is safest to use import * pending a major refactoring of f2py. +from .auxfuncs import * +from .crackfortran import undo_rmbadname, undo_rmbadname1 + +options = {} + + +def findf90modules(m): + if ismodule(m): + return [m] + if not hasbody(m): + return [] + ret = [] + for b in m['body']: + if ismodule(b): + ret.append(b) + else: + ret = ret + findf90modules(b) + return ret + + +fgetdims1 = """\ + external f2pysetdata + logical ns + integer r,i + integer(%d) s(*) + ns = .FALSE. + if (allocated(d)) then + do i=1,r + if ((size(d,i).ne.s(i)).and.(s(i).ge.0)) then + ns = .TRUE. + end if + end do + if (ns) then + deallocate(d) + end if + end if + if ((.not.allocated(d)).and.(s(1).ge.1)) then""" % np.intp().itemsize + +fgetdims2 = """\ + end if + if (allocated(d)) then + do i=1,r + s(i) = size(d,i) + end do + end if + flag = 1 + call f2pysetdata(d,allocated(d))""" + +fgetdims2_sa = """\ + end if + if (allocated(d)) then + do i=1,r + s(i) = size(d,i) + end do + !s(r) must be equal to len(d(1)) + end if + flag = 2 + call f2pysetdata(d,allocated(d))""" + + +def buildhooks(pymod): + from . import rules + ret = {'f90modhooks': [], 'initf90modhooks': [], 'body': [], + 'need': ['F_FUNC', 'arrayobject.h'], + 'separatorsfor': {'includes0': '\n', 'includes': '\n'}, + 'docs': ['"Fortran 90/95 modules:\\n"'], + 'latexdoc': []} + fhooks = [''] + + def fadd(line, s=fhooks): + s[0] = f'{s[0]}\n {line}' + doc = [''] + + def dadd(line, s=doc): + s[0] = f'{s[0]}\n{line}' + + usenames = getuseblocks(pymod) + for m in findf90modules(pymod): + sargs, fargs, efargs, modobjs, notvars, onlyvars = [], [], [], [], [ + m['name']], [] + sargsp = [] + ifargs = [] + mfargs = [] + if hasbody(m): + for b in m['body']: + notvars.append(b['name']) + for n in m['vars'].keys(): + var = m['vars'][n] + + if (n not in notvars and isvariable(var)) and (not l_or(isintent_hide, isprivate)(var)): + onlyvars.append(n) + mfargs.append(n) + outmess(f"\t\tConstructing F90 module support for \"{m['name']}\"...\n") + if len(onlyvars) == 0 and len(notvars) == 1 and m['name'] in notvars: + outmess(f"\t\t\tSkipping {m['name']} since there are no public vars/func in this module...\n") + continue + + # gh-25186 + if m['name'] in usenames and containscommon(m): + outmess(f"\t\t\tSkipping {m['name']} since it is in 'use' and contains a common block...\n") + continue + # skip modules with derived types + if m['name'] in usenames and containsderivedtypes(m): + outmess(f"\t\t\tSkipping {m['name']} since it is in 'use' and contains a derived type...\n") + continue + if onlyvars: + outmess(f"\t\t Variables: {' '.join(onlyvars)}\n") + chooks = [''] + + def cadd(line, s=chooks): + s[0] = f'{s[0]}\n{line}' + ihooks = [''] + + def iadd(line, s=ihooks): + s[0] = f'{s[0]}\n{line}' + + vrd = capi_maps.modsign2map(m) + cadd('static FortranDataDef f2py_%s_def[] = {' % (m['name'])) + dadd('\\subsection{Fortran 90/95 module \\texttt{%s}}\n' % (m['name'])) + if hasnote(m): + note = m['note'] + if isinstance(note, list): + note = '\n'.join(note) + dadd(note) + if onlyvars: + dadd('\\begin{description}') + for n in onlyvars: + var = m['vars'][n] + modobjs.append(n) + ct = capi_maps.getctype(var) + at = capi_maps.c2capi_map[ct] + dm = capi_maps.getarrdims(n, var) + dms = dm['dims'].replace('*', '-1').strip() + dms = dms.replace(':', '-1').strip() + if not dms: + dms = '-1' + use_fgetdims2 = fgetdims2 + cadd('\t{"%s",%s,{{%s}},%s, %s},' % + (undo_rmbadname1(n), dm['rank'], dms, at, + capi_maps.get_elsize(var))) + dadd('\\item[]{{}\\verb@%s@{}}' % + (capi_maps.getarrdocsign(n, var))) + if hasnote(var): + note = var['note'] + if isinstance(note, list): + note = '\n'.join(note) + dadd(f'--- {note}') + if isallocatable(var): + fargs.append(f"f2py_{m['name']}_getdims_{n}") + efargs.append(fargs[-1]) + sargs.append( + f'void (*{n})(int*,npy_intp*,void(*)(char*,npy_intp*),int*)') + sargsp.append('void (*)(int*,npy_intp*,void(*)(char*,npy_intp*),int*)') + iadd(f"\tf2py_{m['name']}_def[i_f2py++].func = {n};") + fadd(f'subroutine {fargs[-1]}(r,s,f2pysetdata,flag)') + fadd(f"use {m['name']}, only: d => {undo_rmbadname1(n)}\n") + fadd('integer flag\n') + fhooks[0] = fhooks[0] + fgetdims1 + dms = range(1, int(dm['rank']) + 1) + fadd(' allocate(d(%s))\n' % + (','.join(['s(%s)' % i for i in dms]))) + fhooks[0] = fhooks[0] + use_fgetdims2 + fadd(f'end subroutine {fargs[-1]}') + else: + fargs.append(n) + sargs.append(f'char *{n}') + sargsp.append('char*') + iadd(f"\tf2py_{m['name']}_def[i_f2py++].data = {n};") + if onlyvars: + dadd('\\end{description}') + if hasbody(m): + for b in m['body']: + if not isroutine(b): + outmess("f90mod_rules.buildhooks:" + f" skipping {b['block']} {b['name']}\n") + continue + modobjs.append(f"{b['name']}()") + b['modulename'] = m['name'] + api, wrap = rules.buildapi(b) + if isfunction(b): + fhooks[0] = fhooks[0] + wrap + fargs.append(f"f2pywrap_{m['name']}_{b['name']}") + ifargs.append(func2subr.createfuncwrapper(b, signature=1)) + elif wrap: + fhooks[0] = fhooks[0] + wrap + fargs.append(f"f2pywrap_{m['name']}_{b['name']}") + ifargs.append( + func2subr.createsubrwrapper(b, signature=1)) + else: + fargs.append(b['name']) + mfargs.append(fargs[-1]) + api['externroutines'] = [] + ar = applyrules(api, vrd) + ar['docs'] = [] + ar['docshort'] = [] + ret = dictappend(ret, ar) + cadd(('\t{"%s",-1,{{-1}},0,0,NULL,(void *)' + 'f2py_rout_#modulename#_%s_%s,' + 'doc_f2py_rout_#modulename#_%s_%s},') + % (b['name'], m['name'], b['name'], m['name'], b['name'])) + sargs.append(f"char *{b['name']}") + sargsp.append('char *') + iadd(f"\tf2py_{m['name']}_def[i_f2py++].data = {b['name']};") + cadd('\t{NULL}\n};\n') + iadd('}') + ihooks[0] = 'static void f2py_setup_%s(%s) {\n\tint i_f2py=0;%s' % ( + m['name'], ','.join(sargs), ihooks[0]) + if '_' in m['name']: + F_FUNC = 'F_FUNC_US' + else: + F_FUNC = 'F_FUNC' + iadd('extern void %s(f2pyinit%s,F2PYINIT%s)(void (*)(%s));' + % (F_FUNC, m['name'], m['name'].upper(), ','.join(sargsp))) + iadd('static void f2py_init_%s(void) {' % (m['name'])) + iadd('\t%s(f2pyinit%s,F2PYINIT%s)(f2py_setup_%s);' + % (F_FUNC, m['name'], m['name'].upper(), m['name'])) + iadd('}\n') + ret['f90modhooks'] = ret['f90modhooks'] + chooks + ihooks + ret['initf90modhooks'] = ['\tPyDict_SetItemString(d, "%s", PyFortranObject_New(f2py_%s_def,f2py_init_%s));' % ( + m['name'], m['name'], m['name'])] + ret['initf90modhooks'] + fadd('') + fadd(f"subroutine f2pyinit{m['name']}(f2pysetupfunc)") + if mfargs: + for a in undo_rmbadname(mfargs): + fadd(f"use {m['name']}, only : {a}") + if ifargs: + fadd(' '.join(['interface'] + ifargs)) + fadd('end interface') + fadd('external f2pysetupfunc') + if efargs: + for a in undo_rmbadname(efargs): + fadd(f'external {a}') + fadd(f"call f2pysetupfunc({','.join(undo_rmbadname(fargs))})") + fadd(f"end subroutine f2pyinit{m['name']}\n") + + dadd('\n'.join(ret['latexdoc']).replace( + r'\subsection{', r'\subsubsection{')) + + ret['latexdoc'] = [] + ret['docs'].append(f"\"\t{m['name']} --- {','.join(undo_rmbadname(modobjs))}\"") + + ret['routine_defs'] = '' + ret['doc'] = [] + ret['docshort'] = [] + ret['latexdoc'] = doc[0] + if len(ret['docs']) <= 1: + ret['docs'] = '' + return ret, fhooks[0] diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/f90mod_rules.pyi b/.venv/lib/python3.12/site-packages/numpy/f2py/f90mod_rules.pyi new file mode 100644 index 0000000..4df004e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/f90mod_rules.pyi @@ -0,0 +1,16 @@ +from collections.abc import Mapping +from typing import Any, Final + +from .auxfuncs import isintent_dict as isintent_dict + +__version__: Final[str] = ... +f2py_version: Final = "See `f2py -v`" + +options: Final[dict[str, bool]] + +fgetdims1: Final[str] = ... +fgetdims2: Final[str] = ... +fgetdims2_sa: Final[str] = ... + +def findf90modules(m: Mapping[str, object]) -> list[dict[str, Any]]: ... +def buildhooks(pymod: Mapping[str, object]) -> dict[str, Any]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/func2subr.py b/.venv/lib/python3.12/site-packages/numpy/f2py/func2subr.py new file mode 100644 index 0000000..0a87500 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/func2subr.py @@ -0,0 +1,329 @@ +""" + +Rules for building C/API module with f2py2e. + +Copyright 1999 -- 2011 Pearu Peterson all rights reserved. +Copyright 2011 -- present NumPy Developers. +Permission to use, modify, and distribute this software is given under the +terms of the NumPy License. + +NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. +""" +import copy + +from ._isocbind import isoc_kindmap +from .auxfuncs import ( + getfortranname, + isexternal, + isfunction, + isfunction_wrap, + isintent_in, + isintent_out, + islogicalfunction, + ismoduleroutine, + isscalar, + issubroutine, + issubroutine_wrap, + outmess, + show, +) + + +def var2fixfortran(vars, a, fa=None, f90mode=None): + if fa is None: + fa = a + if a not in vars: + show(vars) + outmess(f'var2fixfortran: No definition for argument "{a}".\n') + return '' + if 'typespec' not in vars[a]: + show(vars[a]) + outmess(f'var2fixfortran: No typespec for argument "{a}".\n') + return '' + vardef = vars[a]['typespec'] + if vardef == 'type' and 'typename' in vars[a]: + vardef = f"{vardef}({vars[a]['typename']})" + selector = {} + lk = '' + if 'kindselector' in vars[a]: + selector = vars[a]['kindselector'] + lk = 'kind' + elif 'charselector' in vars[a]: + selector = vars[a]['charselector'] + lk = 'len' + if '*' in selector: + if f90mode: + if selector['*'] in ['*', ':', '(*)']: + vardef = f'{vardef}(len=*)' + else: + vardef = f"{vardef}({lk}={selector['*']})" + elif selector['*'] in ['*', ':']: + vardef = f"{vardef}*({selector['*']})" + else: + vardef = f"{vardef}*{selector['*']}" + elif 'len' in selector: + vardef = f"{vardef}(len={selector['len']}" + if 'kind' in selector: + vardef = f"{vardef},kind={selector['kind']})" + else: + vardef = f'{vardef})' + elif 'kind' in selector: + vardef = f"{vardef}(kind={selector['kind']})" + + vardef = f'{vardef} {fa}' + if 'dimension' in vars[a]: + vardef = f"{vardef}({','.join(vars[a]['dimension'])})" + return vardef + +def useiso_c_binding(rout): + useisoc = False + for key, value in rout['vars'].items(): + kind_value = value.get('kindselector', {}).get('kind') + if kind_value in isoc_kindmap: + return True + return useisoc + +def createfuncwrapper(rout, signature=0): + assert isfunction(rout) + + extra_args = [] + vars = rout['vars'] + for a in rout['args']: + v = rout['vars'][a] + for i, d in enumerate(v.get('dimension', [])): + if d == ':': + dn = f'f2py_{a}_d{i}' + dv = {'typespec': 'integer', 'intent': ['hide']} + dv['='] = f'shape({a}, {i})' + extra_args.append(dn) + vars[dn] = dv + v['dimension'][i] = dn + rout['args'].extend(extra_args) + need_interface = bool(extra_args) + + ret = [''] + + def add(line, ret=ret): + ret[0] = f'{ret[0]}\n {line}' + name = rout['name'] + fortranname = getfortranname(rout) + f90mode = ismoduleroutine(rout) + newname = f'{name}f2pywrap' + + if newname not in vars: + vars[newname] = vars[name] + args = [newname] + rout['args'][1:] + else: + args = [newname] + rout['args'] + + l_tmpl = var2fixfortran(vars, name, '@@@NAME@@@', f90mode) + if l_tmpl[:13] == 'character*(*)': + if f90mode: + l_tmpl = 'character(len=10)' + l_tmpl[13:] + else: + l_tmpl = 'character*10' + l_tmpl[13:] + charselect = vars[name]['charselector'] + if charselect.get('*', '') == '(*)': + charselect['*'] = '10' + + l1 = l_tmpl.replace('@@@NAME@@@', newname) + rl = None + + useisoc = useiso_c_binding(rout) + sargs = ', '.join(args) + if f90mode: + # gh-23598 fix warning + # Essentially, this gets called again with modules where the name of the + # function is added to the arguments, which is not required, and removed + sargs = sargs.replace(f"{name}, ", '') + args = [arg for arg in args if arg != name] + rout['args'] = args + add(f"subroutine f2pywrap_{rout['modulename']}_{name} ({sargs})") + if not signature: + add(f"use {rout['modulename']}, only : {fortranname}") + if useisoc: + add('use iso_c_binding') + else: + add(f'subroutine f2pywrap{name} ({sargs})') + if useisoc: + add('use iso_c_binding') + if not need_interface: + add(f'external {fortranname}') + rl = l_tmpl.replace('@@@NAME@@@', '') + ' ' + fortranname + + if need_interface: + for line in rout['saved_interface'].split('\n'): + if line.lstrip().startswith('use ') and '__user__' not in line: + add(line) + + args = args[1:] + dumped_args = [] + for a in args: + if isexternal(vars[a]): + add(f'external {a}') + dumped_args.append(a) + for a in args: + if a in dumped_args: + continue + if isscalar(vars[a]): + add(var2fixfortran(vars, a, f90mode=f90mode)) + dumped_args.append(a) + for a in args: + if a in dumped_args: + continue + if isintent_in(vars[a]): + add(var2fixfortran(vars, a, f90mode=f90mode)) + dumped_args.append(a) + for a in args: + if a in dumped_args: + continue + add(var2fixfortran(vars, a, f90mode=f90mode)) + + add(l1) + if rl is not None: + add(rl) + + if need_interface: + if f90mode: + # f90 module already defines needed interface + pass + else: + add('interface') + add(rout['saved_interface'].lstrip()) + add('end interface') + + sargs = ', '.join([a for a in args if a not in extra_args]) + + if not signature: + if islogicalfunction(rout): + add(f'{newname} = .not.(.not.{fortranname}({sargs}))') + else: + add(f'{newname} = {fortranname}({sargs})') + if f90mode: + add(f"end subroutine f2pywrap_{rout['modulename']}_{name}") + else: + add('end') + return ret[0] + + +def createsubrwrapper(rout, signature=0): + assert issubroutine(rout) + + extra_args = [] + vars = rout['vars'] + for a in rout['args']: + v = rout['vars'][a] + for i, d in enumerate(v.get('dimension', [])): + if d == ':': + dn = f'f2py_{a}_d{i}' + dv = {'typespec': 'integer', 'intent': ['hide']} + dv['='] = f'shape({a}, {i})' + extra_args.append(dn) + vars[dn] = dv + v['dimension'][i] = dn + rout['args'].extend(extra_args) + need_interface = bool(extra_args) + + ret = [''] + + def add(line, ret=ret): + ret[0] = f'{ret[0]}\n {line}' + name = rout['name'] + fortranname = getfortranname(rout) + f90mode = ismoduleroutine(rout) + + args = rout['args'] + + useisoc = useiso_c_binding(rout) + sargs = ', '.join(args) + if f90mode: + add(f"subroutine f2pywrap_{rout['modulename']}_{name} ({sargs})") + if useisoc: + add('use iso_c_binding') + if not signature: + add(f"use {rout['modulename']}, only : {fortranname}") + else: + add(f'subroutine f2pywrap{name} ({sargs})') + if useisoc: + add('use iso_c_binding') + if not need_interface: + add(f'external {fortranname}') + + if need_interface: + for line in rout['saved_interface'].split('\n'): + if line.lstrip().startswith('use ') and '__user__' not in line: + add(line) + + dumped_args = [] + for a in args: + if isexternal(vars[a]): + add(f'external {a}') + dumped_args.append(a) + for a in args: + if a in dumped_args: + continue + if isscalar(vars[a]): + add(var2fixfortran(vars, a, f90mode=f90mode)) + dumped_args.append(a) + for a in args: + if a in dumped_args: + continue + add(var2fixfortran(vars, a, f90mode=f90mode)) + + if need_interface: + if f90mode: + # f90 module already defines needed interface + pass + else: + add('interface') + for line in rout['saved_interface'].split('\n'): + if line.lstrip().startswith('use ') and '__user__' in line: + continue + add(line) + add('end interface') + + sargs = ', '.join([a for a in args if a not in extra_args]) + + if not signature: + add(f'call {fortranname}({sargs})') + if f90mode: + add(f"end subroutine f2pywrap_{rout['modulename']}_{name}") + else: + add('end') + return ret[0] + + +def assubr(rout): + if isfunction_wrap(rout): + fortranname = getfortranname(rout) + name = rout['name'] + outmess('\t\tCreating wrapper for Fortran function "%s"("%s")...\n' % ( + name, fortranname)) + rout = copy.copy(rout) + fname = name + rname = fname + if 'result' in rout: + rname = rout['result'] + rout['vars'][fname] = rout['vars'][rname] + fvar = rout['vars'][fname] + if not isintent_out(fvar): + if 'intent' not in fvar: + fvar['intent'] = [] + fvar['intent'].append('out') + flag = 1 + for i in fvar['intent']: + if i.startswith('out='): + flag = 0 + break + if flag: + fvar['intent'].append(f'out={rname}') + rout['args'][:] = [fname] + rout['args'] + return rout, createfuncwrapper(rout) + if issubroutine_wrap(rout): + fortranname = getfortranname(rout) + name = rout['name'] + outmess('\t\tCreating wrapper for Fortran subroutine "%s"("%s")...\n' + % (name, fortranname)) + rout = copy.copy(rout) + return rout, createsubrwrapper(rout) + return rout, '' diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/func2subr.pyi b/.venv/lib/python3.12/site-packages/numpy/f2py/func2subr.pyi new file mode 100644 index 0000000..8d2b3db --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/func2subr.pyi @@ -0,0 +1,7 @@ +from .auxfuncs import _Bool, _ROut, _Var + +def var2fixfortran(vars: _Var, a: str, fa: str | None = None, f90mode: _Bool | None = None) -> str: ... +def useiso_c_binding(rout: _ROut) -> bool: ... +def createfuncwrapper(rout: _ROut, signature: int = 0) -> str: ... +def createsubrwrapper(rout: _ROut, signature: int = 0) -> str: ... +def assubr(rout: _ROut) -> tuple[dict[str, str], str]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/rules.py b/.venv/lib/python3.12/site-packages/numpy/f2py/rules.py new file mode 100644 index 0000000..667ef28 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/rules.py @@ -0,0 +1,1629 @@ +""" + +Rules for building C/API module with f2py2e. + +Here is a skeleton of a new wrapper function (13Dec2001): + +wrapper_function(args) + declarations + get_python_arguments, say, `a' and `b' + + get_a_from_python + if (successful) { + + get_b_from_python + if (successful) { + + callfortran + if (successful) { + + put_a_to_python + if (successful) { + + put_b_to_python + if (successful) { + + buildvalue = ... + + } + + } + + } + + } + cleanup_b + + } + cleanup_a + + return buildvalue + +Copyright 1999 -- 2011 Pearu Peterson all rights reserved. +Copyright 2011 -- present NumPy Developers. +Permission to use, modify, and distribute this software is given under the +terms of the NumPy License. + +NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. +""" +import copy +import os +import sys +import time +from pathlib import Path + +# __version__.version is now the same as the NumPy version +from . import ( + __version__, + capi_maps, + cfuncs, + common_rules, + f90mod_rules, + func2subr, + use_rules, +) +from .auxfuncs import ( + applyrules, + debugcapi, + dictappend, + errmess, + gentitle, + getargs2, + hascallstatement, + hasexternals, + hasinitvalue, + hasnote, + hasresultnote, + isarray, + isarrayofstrings, + isattr_value, + ischaracter, + ischaracter_or_characterarray, + ischaracterarray, + iscomplex, + iscomplexarray, + iscomplexfunction, + iscomplexfunction_warn, + isdummyroutine, + isexternal, + isfunction, + isfunction_wrap, + isint1, + isint1array, + isintent_aux, + isintent_c, + isintent_callback, + isintent_copy, + isintent_hide, + isintent_inout, + isintent_nothide, + isintent_out, + isintent_overwrite, + islogical, + islong_complex, + islong_double, + islong_doublefunction, + islong_long, + islong_longfunction, + ismoduleroutine, + isoptional, + isrequired, + isscalar, + issigned_long_longarray, + isstring, + isstringarray, + isstringfunction, + issubroutine, + issubroutine_wrap, + isthreadsafe, + isunsigned, + isunsigned_char, + isunsigned_chararray, + isunsigned_long_long, + isunsigned_long_longarray, + isunsigned_short, + isunsigned_shortarray, + l_and, + l_not, + l_or, + outmess, + replace, + requiresf90wrapper, + stripcomma, +) + +f2py_version = __version__.version +numpy_version = __version__.version + +options = {} +sepdict = {} +# for k in ['need_cfuncs']: sepdict[k]=',' +for k in ['decl', + 'frompyobj', + 'cleanupfrompyobj', + 'topyarr', 'method', + 'pyobjfrom', 'closepyobjfrom', + 'freemem', + 'userincludes', + 'includes0', 'includes', 'typedefs', 'typedefs_generated', + 'cppmacros', 'cfuncs', 'callbacks', + 'latexdoc', + 'restdoc', + 'routine_defs', 'externroutines', + 'initf2pywraphooks', + 'commonhooks', 'initcommonhooks', + 'f90modhooks', 'initf90modhooks']: + sepdict[k] = '\n' + +#################### Rules for C/API module ################# + +generationtime = int(os.environ.get('SOURCE_DATE_EPOCH', time.time())) +module_rules = { + 'modulebody': """\ +/* File: #modulename#module.c + * This file is auto-generated with f2py (version:#f2py_version#). + * f2py is a Fortran to Python Interface Generator (FPIG), Second Edition, + * written by Pearu Peterson . + * Generation date: """ + time.asctime(time.gmtime(generationtime)) + """ + * Do not edit this file directly unless you know what you are doing!!! + */ + +#ifdef __cplusplus +extern \"C\" { +#endif + +#ifndef PY_SSIZE_T_CLEAN +#define PY_SSIZE_T_CLEAN +#endif /* PY_SSIZE_T_CLEAN */ + +/* Unconditionally included */ +#include +#include + +""" + gentitle("See f2py2e/cfuncs.py: includes") + """ +#includes# +#includes0# + +""" + gentitle("See f2py2e/rules.py: mod_rules['modulebody']") + """ +static PyObject *#modulename#_error; +static PyObject *#modulename#_module; + +""" + gentitle("See f2py2e/cfuncs.py: typedefs") + """ +#typedefs# + +""" + gentitle("See f2py2e/cfuncs.py: typedefs_generated") + """ +#typedefs_generated# + +""" + gentitle("See f2py2e/cfuncs.py: cppmacros") + """ +#cppmacros# + +""" + gentitle("See f2py2e/cfuncs.py: cfuncs") + """ +#cfuncs# + +""" + gentitle("See f2py2e/cfuncs.py: userincludes") + """ +#userincludes# + +""" + gentitle("See f2py2e/capi_rules.py: usercode") + """ +#usercode# + +/* See f2py2e/rules.py */ +#externroutines# + +""" + gentitle("See f2py2e/capi_rules.py: usercode1") + """ +#usercode1# + +""" + gentitle("See f2py2e/cb_rules.py: buildcallback") + """ +#callbacks# + +""" + gentitle("See f2py2e/rules.py: buildapi") + """ +#body# + +""" + gentitle("See f2py2e/f90mod_rules.py: buildhooks") + """ +#f90modhooks# + +""" + gentitle("See f2py2e/rules.py: module_rules['modulebody']") + """ + +""" + gentitle("See f2py2e/common_rules.py: buildhooks") + """ +#commonhooks# + +""" + gentitle("See f2py2e/rules.py") + """ + +static FortranDataDef f2py_routine_defs[] = { +#routine_defs# + {NULL} +}; + +static PyMethodDef f2py_module_methods[] = { +#pymethoddef# + {NULL,NULL} +}; + +static struct PyModuleDef moduledef = { + PyModuleDef_HEAD_INIT, + "#modulename#", + NULL, + -1, + f2py_module_methods, + NULL, + NULL, + NULL, + NULL +}; + +PyMODINIT_FUNC PyInit_#modulename#(void) { + int i; + PyObject *m,*d, *s, *tmp; + m = #modulename#_module = PyModule_Create(&moduledef); + Py_SET_TYPE(&PyFortran_Type, &PyType_Type); + import_array(); + if (PyErr_Occurred()) + {PyErr_SetString(PyExc_ImportError, \"can't initialize module #modulename# (failed to import numpy)\"); return m;} + d = PyModule_GetDict(m); + s = PyUnicode_FromString(\"#f2py_version#\"); + PyDict_SetItemString(d, \"__version__\", s); + Py_DECREF(s); + s = PyUnicode_FromString( + \"This module '#modulename#' is auto-generated with f2py (version:#f2py_version#).\\nFunctions:\\n\"\n#docs#\".\"); + PyDict_SetItemString(d, \"__doc__\", s); + Py_DECREF(s); + s = PyUnicode_FromString(\"""" + numpy_version + """\"); + PyDict_SetItemString(d, \"__f2py_numpy_version__\", s); + Py_DECREF(s); + #modulename#_error = PyErr_NewException (\"#modulename#.error\", NULL, NULL); + /* + * Store the error object inside the dict, so that it could get deallocated. + * (in practice, this is a module, so it likely will not and cannot.) + */ + PyDict_SetItemString(d, \"_#modulename#_error\", #modulename#_error); + Py_DECREF(#modulename#_error); + for(i=0;f2py_routine_defs[i].name!=NULL;i++) { + tmp = PyFortranObject_NewAsAttr(&f2py_routine_defs[i]); + PyDict_SetItemString(d, f2py_routine_defs[i].name, tmp); + Py_DECREF(tmp); + } +#initf2pywraphooks# +#initf90modhooks# +#initcommonhooks# +#interface_usercode# + +#if Py_GIL_DISABLED + // signal whether this module supports running with the GIL disabled + PyUnstable_Module_SetGIL(m , #gil_used#); +#endif + +#ifdef F2PY_REPORT_ATEXIT + if (! PyErr_Occurred()) + on_exit(f2py_report_on_exit,(void*)\"#modulename#\"); +#endif + + if (PyType_Ready(&PyFortran_Type) < 0) { + return NULL; + } + + return m; +} +#ifdef __cplusplus +} +#endif +""", + 'separatorsfor': {'latexdoc': '\n\n', + 'restdoc': '\n\n'}, + 'latexdoc': ['\\section{Module \\texttt{#texmodulename#}}\n', + '#modnote#\n', + '#latexdoc#'], + 'restdoc': ['Module #modulename#\n' + '=' * 80, + '\n#restdoc#'] +} + +defmod_rules = [ + {'body': '/*eof body*/', + 'method': '/*eof method*/', + 'externroutines': '/*eof externroutines*/', + 'routine_defs': '/*eof routine_defs*/', + 'initf90modhooks': '/*eof initf90modhooks*/', + 'initf2pywraphooks': '/*eof initf2pywraphooks*/', + 'initcommonhooks': '/*eof initcommonhooks*/', + 'latexdoc': '', + 'restdoc': '', + 'modnote': {hasnote: '#note#', l_not(hasnote): ''}, + } +] + +routine_rules = { + 'separatorsfor': sepdict, + 'body': """ +#begintitle# +static char doc_#apiname#[] = \"\\\n#docreturn##name#(#docsignatureshort#)\\n\\nWrapper for ``#name#``.\\\n\\n#docstrsigns#\"; +/* #declfortranroutine# */ +static PyObject *#apiname#(const PyObject *capi_self, + PyObject *capi_args, + PyObject *capi_keywds, + #functype# (*f2py_func)(#callprotoargument#)) { + PyObject * volatile capi_buildvalue = NULL; + volatile int f2py_success = 1; +#decl# + static char *capi_kwlist[] = {#kwlist##kwlistopt##kwlistxa#NULL}; +#usercode# +#routdebugenter# +#ifdef F2PY_REPORT_ATEXIT +f2py_start_clock(); +#endif + if (!PyArg_ParseTupleAndKeywords(capi_args,capi_keywds,\\ + \"#argformat#|#keyformat##xaformat#:#pyname#\",\\ + capi_kwlist#args_capi##keys_capi##keys_xa#))\n return NULL; +#frompyobj# +/*end of frompyobj*/ +#ifdef F2PY_REPORT_ATEXIT +f2py_start_call_clock(); +#endif +#callfortranroutine# +if (PyErr_Occurred()) + f2py_success = 0; +#ifdef F2PY_REPORT_ATEXIT +f2py_stop_call_clock(); +#endif +/*end of callfortranroutine*/ + if (f2py_success) { +#pyobjfrom# +/*end of pyobjfrom*/ + CFUNCSMESS(\"Building return value.\\n\"); + capi_buildvalue = Py_BuildValue(\"#returnformat#\"#return#); +/*closepyobjfrom*/ +#closepyobjfrom# + } /*if (f2py_success) after callfortranroutine*/ +/*cleanupfrompyobj*/ +#cleanupfrompyobj# + if (capi_buildvalue == NULL) { +#routdebugfailure# + } else { +#routdebugleave# + } + CFUNCSMESS(\"Freeing memory.\\n\"); +#freemem# +#ifdef F2PY_REPORT_ATEXIT +f2py_stop_clock(); +#endif + return capi_buildvalue; +} +#endtitle# +""", + 'routine_defs': '#routine_def#', + 'initf2pywraphooks': '#initf2pywraphook#', + 'externroutines': '#declfortranroutine#', + 'doc': '#docreturn##name#(#docsignature#)', + 'docshort': '#docreturn##name#(#docsignatureshort#)', + 'docs': '" #docreturn##name#(#docsignature#)\\n"\n', + 'need': ['arrayobject.h', 'CFUNCSMESS', 'MINMAX'], + 'cppmacros': {debugcapi: '#define DEBUGCFUNCS'}, + 'latexdoc': ['\\subsection{Wrapper function \\texttt{#texname#}}\n', + """ +\\noindent{{}\\verb@#docreturn##name#@{}}\\texttt{(#latexdocsignatureshort#)} +#routnote# + +#latexdocstrsigns# +"""], + 'restdoc': ['Wrapped function ``#name#``\n' + '-' * 80, + + ] +} + +################## Rules for C/API function ############## + +rout_rules = [ + { # Init + 'separatorsfor': {'callfortranroutine': '\n', 'routdebugenter': '\n', 'decl': '\n', + 'routdebugleave': '\n', 'routdebugfailure': '\n', + 'setjmpbuf': ' || ', + 'docstrreq': '\n', 'docstropt': '\n', 'docstrout': '\n', + 'docstrcbs': '\n', 'docstrsigns': '\\n"\n"', + 'latexdocstrsigns': '\n', + 'latexdocstrreq': '\n', 'latexdocstropt': '\n', + 'latexdocstrout': '\n', 'latexdocstrcbs': '\n', + }, + 'kwlist': '', 'kwlistopt': '', 'callfortran': '', 'callfortranappend': '', + 'docsign': '', 'docsignopt': '', 'decl': '/*decl*/', + 'freemem': '/*freemem*/', + 'docsignshort': '', 'docsignoptshort': '', + 'docstrsigns': '', 'latexdocstrsigns': '', + 'docstrreq': '\\nParameters\\n----------', + 'docstropt': '\\nOther Parameters\\n----------------', + 'docstrout': '\\nReturns\\n-------', + 'docstrcbs': '\\nNotes\\n-----\\nCall-back functions::\\n', + 'latexdocstrreq': '\\noindent Required arguments:', + 'latexdocstropt': '\\noindent Optional arguments:', + 'latexdocstrout': '\\noindent Return objects:', + 'latexdocstrcbs': '\\noindent Call-back functions:', + 'args_capi': '', 'keys_capi': '', 'functype': '', + 'frompyobj': '/*frompyobj*/', + # this list will be reversed + 'cleanupfrompyobj': ['/*end of cleanupfrompyobj*/'], + 'pyobjfrom': '/*pyobjfrom*/', + # this list will be reversed + 'closepyobjfrom': ['/*end of closepyobjfrom*/'], + 'topyarr': '/*topyarr*/', 'routdebugleave': '/*routdebugleave*/', + 'routdebugenter': '/*routdebugenter*/', + 'routdebugfailure': '/*routdebugfailure*/', + 'callfortranroutine': '/*callfortranroutine*/', + 'argformat': '', 'keyformat': '', 'need_cfuncs': '', + 'docreturn': '', 'return': '', 'returnformat': '', 'rformat': '', + 'kwlistxa': '', 'keys_xa': '', 'xaformat': '', 'docsignxa': '', 'docsignxashort': '', + 'initf2pywraphook': '', + 'routnote': {hasnote: '--- #note#', l_not(hasnote): ''}, + }, { + 'apiname': 'f2py_rout_#modulename#_#name#', + 'pyname': '#modulename#.#name#', + 'decl': '', + '_check': l_not(ismoduleroutine) + }, { + 'apiname': 'f2py_rout_#modulename#_#f90modulename#_#name#', + 'pyname': '#modulename#.#f90modulename#.#name#', + 'decl': '', + '_check': ismoduleroutine + }, { # Subroutine + 'functype': 'void', + 'declfortranroutine': {l_and(l_not(l_or(ismoduleroutine, isintent_c)), l_not(isdummyroutine)): 'extern void #F_FUNC#(#fortranname#,#FORTRANNAME#)(#callprotoargument#);', + l_and(l_not(ismoduleroutine), isintent_c, l_not(isdummyroutine)): 'extern void #fortranname#(#callprotoargument#);', + ismoduleroutine: '', + isdummyroutine: '' + }, + 'routine_def': { + l_not(l_or(ismoduleroutine, isintent_c, isdummyroutine)): + ' {\"#name#\",-1,{{-1}},0,0,(char *)' + ' #F_FUNC#(#fortranname#,#FORTRANNAME#),' + ' (f2py_init_func)#apiname#,doc_#apiname#},', + l_and(l_not(ismoduleroutine), isintent_c, l_not(isdummyroutine)): + ' {\"#name#\",-1,{{-1}},0,0,(char *)#fortranname#,' + ' (f2py_init_func)#apiname#,doc_#apiname#},', + l_and(l_not(ismoduleroutine), isdummyroutine): + ' {\"#name#\",-1,{{-1}},0,0,NULL,' + ' (f2py_init_func)#apiname#,doc_#apiname#},', + }, + 'need': {l_and(l_not(l_or(ismoduleroutine, isintent_c)), l_not(isdummyroutine)): 'F_FUNC'}, + 'callfortranroutine': [ + {debugcapi: [ + """ fprintf(stderr,\"debug-capi:Fortran subroutine `#fortranname#(#callfortran#)\'\\n\");"""]}, + {hasexternals: """\ + if (#setjmpbuf#) { + f2py_success = 0; + } else {"""}, + {isthreadsafe: ' Py_BEGIN_ALLOW_THREADS'}, + {hascallstatement: ''' #callstatement#; + /*(*f2py_func)(#callfortran#);*/'''}, + {l_not(l_or(hascallstatement, isdummyroutine)) + : ' (*f2py_func)(#callfortran#);'}, + {isthreadsafe: ' Py_END_ALLOW_THREADS'}, + {hasexternals: """ }"""} + ], + '_check': l_and(issubroutine, l_not(issubroutine_wrap)), + }, { # Wrapped function + 'functype': 'void', + 'declfortranroutine': {l_not(l_or(ismoduleroutine, isdummyroutine)): 'extern void #F_WRAPPEDFUNC#(#name_lower#,#NAME#)(#callprotoargument#);', + isdummyroutine: '', + }, + + 'routine_def': { + l_not(l_or(ismoduleroutine, isdummyroutine)): + ' {\"#name#\",-1,{{-1}},0,0,(char *)' + ' #F_WRAPPEDFUNC#(#name_lower#,#NAME#),' + ' (f2py_init_func)#apiname#,doc_#apiname#},', + isdummyroutine: + ' {\"#name#\",-1,{{-1}},0,0,NULL,' + ' (f2py_init_func)#apiname#,doc_#apiname#},', + }, + 'initf2pywraphook': {l_not(l_or(ismoduleroutine, isdummyroutine)): ''' + { + extern #ctype# #F_FUNC#(#name_lower#,#NAME#)(void); + PyObject* o = PyDict_GetItemString(d,"#name#"); + tmp = F2PyCapsule_FromVoidPtr((void*)#F_WRAPPEDFUNC#(#name_lower#,#NAME#),NULL); + PyObject_SetAttrString(o,"_cpointer", tmp); + Py_DECREF(tmp); + s = PyUnicode_FromString("#name#"); + PyObject_SetAttrString(o,"__name__", s); + Py_DECREF(s); + } + '''}, + 'need': {l_not(l_or(ismoduleroutine, isdummyroutine)): ['F_WRAPPEDFUNC', 'F_FUNC']}, + 'callfortranroutine': [ + {debugcapi: [ + """ fprintf(stderr,\"debug-capi:Fortran subroutine `f2pywrap#name_lower#(#callfortran#)\'\\n\");"""]}, + {hasexternals: """\ + if (#setjmpbuf#) { + f2py_success = 0; + } else {"""}, + {isthreadsafe: ' Py_BEGIN_ALLOW_THREADS'}, + {l_not(l_or(hascallstatement, isdummyroutine)) + : ' (*f2py_func)(#callfortran#);'}, + {hascallstatement: + ' #callstatement#;\n /*(*f2py_func)(#callfortran#);*/'}, + {isthreadsafe: ' Py_END_ALLOW_THREADS'}, + {hasexternals: ' }'} + ], + '_check': isfunction_wrap, + }, { # Wrapped subroutine + 'functype': 'void', + 'declfortranroutine': {l_not(l_or(ismoduleroutine, isdummyroutine)): 'extern void #F_WRAPPEDFUNC#(#name_lower#,#NAME#)(#callprotoargument#);', + isdummyroutine: '', + }, + + 'routine_def': { + l_not(l_or(ismoduleroutine, isdummyroutine)): + ' {\"#name#\",-1,{{-1}},0,0,(char *)' + ' #F_WRAPPEDFUNC#(#name_lower#,#NAME#),' + ' (f2py_init_func)#apiname#,doc_#apiname#},', + isdummyroutine: + ' {\"#name#\",-1,{{-1}},0,0,NULL,' + ' (f2py_init_func)#apiname#,doc_#apiname#},', + }, + 'initf2pywraphook': {l_not(l_or(ismoduleroutine, isdummyroutine)): ''' + { + extern void #F_FUNC#(#name_lower#,#NAME#)(void); + PyObject* o = PyDict_GetItemString(d,"#name#"); + tmp = F2PyCapsule_FromVoidPtr((void*)#F_FUNC#(#name_lower#,#NAME#),NULL); + PyObject_SetAttrString(o,"_cpointer", tmp); + Py_DECREF(tmp); + s = PyUnicode_FromString("#name#"); + PyObject_SetAttrString(o,"__name__", s); + Py_DECREF(s); + } + '''}, + 'need': {l_not(l_or(ismoduleroutine, isdummyroutine)): ['F_WRAPPEDFUNC', 'F_FUNC']}, + 'callfortranroutine': [ + {debugcapi: [ + """ fprintf(stderr,\"debug-capi:Fortran subroutine `f2pywrap#name_lower#(#callfortran#)\'\\n\");"""]}, + {hasexternals: """\ + if (#setjmpbuf#) { + f2py_success = 0; + } else {"""}, + {isthreadsafe: ' Py_BEGIN_ALLOW_THREADS'}, + {l_not(l_or(hascallstatement, isdummyroutine)) + : ' (*f2py_func)(#callfortran#);'}, + {hascallstatement: + ' #callstatement#;\n /*(*f2py_func)(#callfortran#);*/'}, + {isthreadsafe: ' Py_END_ALLOW_THREADS'}, + {hasexternals: ' }'} + ], + '_check': issubroutine_wrap, + }, { # Function + 'functype': '#ctype#', + 'docreturn': {l_not(isintent_hide): '#rname#,'}, + 'docstrout': '#pydocsignout#', + 'latexdocstrout': ['\\item[]{{}\\verb@#pydocsignout#@{}}', + {hasresultnote: '--- #resultnote#'}], + 'callfortranroutine': [{l_and(debugcapi, isstringfunction): """\ +#ifdef USESCOMPAQFORTRAN + fprintf(stderr,\"debug-capi:Fortran function #ctype# #fortranname#(#callcompaqfortran#)\\n\"); +#else + fprintf(stderr,\"debug-capi:Fortran function #ctype# #fortranname#(#callfortran#)\\n\"); +#endif +"""}, + {l_and(debugcapi, l_not(isstringfunction)): """\ + fprintf(stderr,\"debug-capi:Fortran function #ctype# #fortranname#(#callfortran#)\\n\"); +"""} + ], + '_check': l_and(isfunction, l_not(isfunction_wrap)) + }, { # Scalar function + 'declfortranroutine': {l_and(l_not(l_or(ismoduleroutine, isintent_c)), l_not(isdummyroutine)): 'extern #ctype# #F_FUNC#(#fortranname#,#FORTRANNAME#)(#callprotoargument#);', + l_and(l_not(ismoduleroutine), isintent_c, l_not(isdummyroutine)): 'extern #ctype# #fortranname#(#callprotoargument#);', + isdummyroutine: '' + }, + 'routine_def': { + l_and(l_not(l_or(ismoduleroutine, isintent_c)), + l_not(isdummyroutine)): + (' {\"#name#\",-1,{{-1}},0,0,(char *)' + ' #F_FUNC#(#fortranname#,#FORTRANNAME#),' + ' (f2py_init_func)#apiname#,doc_#apiname#},'), + l_and(l_not(ismoduleroutine), isintent_c, l_not(isdummyroutine)): + (' {\"#name#\",-1,{{-1}},0,0,(char *)#fortranname#,' + ' (f2py_init_func)#apiname#,doc_#apiname#},'), + isdummyroutine: + ' {\"#name#\",-1,{{-1}},0,0,NULL,' + '(f2py_init_func)#apiname#,doc_#apiname#},', + }, + 'decl': [{iscomplexfunction_warn: ' #ctype# #name#_return_value={0,0};', + l_not(iscomplexfunction): ' #ctype# #name#_return_value=0;'}, + {iscomplexfunction: + ' PyObject *#name#_return_value_capi = Py_None;'} + ], + 'callfortranroutine': [ + {hasexternals: """\ + if (#setjmpbuf#) { + f2py_success = 0; + } else {"""}, + {isthreadsafe: ' Py_BEGIN_ALLOW_THREADS'}, + {hascallstatement: ''' #callstatement#; +/* #name#_return_value = (*f2py_func)(#callfortran#);*/ +'''}, + {l_not(l_or(hascallstatement, isdummyroutine)) + : ' #name#_return_value = (*f2py_func)(#callfortran#);'}, + {isthreadsafe: ' Py_END_ALLOW_THREADS'}, + {hasexternals: ' }'}, + {l_and(debugcapi, iscomplexfunction) + : ' fprintf(stderr,"#routdebugshowvalue#\\n",#name#_return_value.r,#name#_return_value.i);'}, + {l_and(debugcapi, l_not(iscomplexfunction)): ' fprintf(stderr,"#routdebugshowvalue#\\n",#name#_return_value);'}], + 'pyobjfrom': {iscomplexfunction: ' #name#_return_value_capi = pyobj_from_#ctype#1(#name#_return_value);'}, + 'need': [{l_not(isdummyroutine): 'F_FUNC'}, + {iscomplexfunction: 'pyobj_from_#ctype#1'}, + {islong_longfunction: 'long_long'}, + {islong_doublefunction: 'long_double'}], + 'returnformat': {l_not(isintent_hide): '#rformat#'}, + 'return': {iscomplexfunction: ',#name#_return_value_capi', + l_not(l_or(iscomplexfunction, isintent_hide)): ',#name#_return_value'}, + '_check': l_and(isfunction, l_not(isstringfunction), l_not(isfunction_wrap)) + }, { # String function # in use for --no-wrap + 'declfortranroutine': 'extern void #F_FUNC#(#fortranname#,#FORTRANNAME#)(#callprotoargument#);', + 'routine_def': {l_not(l_or(ismoduleroutine, isintent_c)): + ' {\"#name#\",-1,{{-1}},0,0,(char *)#F_FUNC#(#fortranname#,#FORTRANNAME#),(f2py_init_func)#apiname#,doc_#apiname#},', + l_and(l_not(ismoduleroutine), isintent_c): + ' {\"#name#\",-1,{{-1}},0,0,(char *)#fortranname#,(f2py_init_func)#apiname#,doc_#apiname#},' + }, + 'decl': [' #ctype# #name#_return_value = NULL;', + ' int #name#_return_value_len = 0;'], + 'callfortran': '#name#_return_value,#name#_return_value_len,', + 'callfortranroutine': [' #name#_return_value_len = #rlength#;', + ' if ((#name#_return_value = (string)malloc(#name#_return_value_len+1) == NULL) {', + ' PyErr_SetString(PyExc_MemoryError, \"out of memory\");', + ' f2py_success = 0;', + ' } else {', + " (#name#_return_value)[#name#_return_value_len] = '\\0';", + ' }', + ' if (f2py_success) {', + {hasexternals: """\ + if (#setjmpbuf#) { + f2py_success = 0; + } else {"""}, + {isthreadsafe: ' Py_BEGIN_ALLOW_THREADS'}, + """\ +#ifdef USESCOMPAQFORTRAN + (*f2py_func)(#callcompaqfortran#); +#else + (*f2py_func)(#callfortran#); +#endif +""", + {isthreadsafe: ' Py_END_ALLOW_THREADS'}, + {hasexternals: ' }'}, + {debugcapi: + ' fprintf(stderr,"#routdebugshowvalue#\\n",#name#_return_value_len,#name#_return_value);'}, + ' } /* if (f2py_success) after (string)malloc */', + ], + 'returnformat': '#rformat#', + 'return': ',#name#_return_value', + 'freemem': ' STRINGFREE(#name#_return_value);', + 'need': ['F_FUNC', '#ctype#', 'STRINGFREE'], + '_check': l_and(isstringfunction, l_not(isfunction_wrap)) # ???obsolete + }, + { # Debugging + 'routdebugenter': ' fprintf(stderr,"debug-capi:Python C/API function #modulename#.#name#(#docsignature#)\\n");', + 'routdebugleave': ' fprintf(stderr,"debug-capi:Python C/API function #modulename#.#name#: successful.\\n");', + 'routdebugfailure': ' fprintf(stderr,"debug-capi:Python C/API function #modulename#.#name#: failure.\\n");', + '_check': debugcapi + } +] + +################ Rules for arguments ################## + +typedef_need_dict = {islong_long: 'long_long', + islong_double: 'long_double', + islong_complex: 'complex_long_double', + isunsigned_char: 'unsigned_char', + isunsigned_short: 'unsigned_short', + isunsigned: 'unsigned', + isunsigned_long_long: 'unsigned_long_long', + isunsigned_chararray: 'unsigned_char', + isunsigned_shortarray: 'unsigned_short', + isunsigned_long_longarray: 'unsigned_long_long', + issigned_long_longarray: 'long_long', + isint1: 'signed_char', + ischaracter_or_characterarray: 'character', + } + +aux_rules = [ + { + 'separatorsfor': sepdict + }, + { # Common + 'frompyobj': [' /* Processing auxiliary variable #varname# */', + {debugcapi: ' fprintf(stderr,"#vardebuginfo#\\n");'}, ], + 'cleanupfrompyobj': ' /* End of cleaning variable #varname# */', + 'need': typedef_need_dict, + }, + # Scalars (not complex) + { # Common + 'decl': ' #ctype# #varname# = 0;', + 'need': {hasinitvalue: 'math.h'}, + 'frompyobj': {hasinitvalue: ' #varname# = #init#;'}, + '_check': l_and(isscalar, l_not(iscomplex)), + }, + { + 'return': ',#varname#', + 'docstrout': '#pydocsignout#', + 'docreturn': '#outvarname#,', + 'returnformat': '#varrformat#', + '_check': l_and(isscalar, l_not(iscomplex), isintent_out), + }, + # Complex scalars + { # Common + 'decl': ' #ctype# #varname#;', + 'frompyobj': {hasinitvalue: ' #varname#.r = #init.r#, #varname#.i = #init.i#;'}, + '_check': iscomplex + }, + # String + { # Common + 'decl': [' #ctype# #varname# = NULL;', + ' int slen(#varname#);', + ], + 'need': ['len..'], + '_check': isstring + }, + # Array + { # Common + 'decl': [' #ctype# *#varname# = NULL;', + ' npy_intp #varname#_Dims[#rank#] = {#rank*[-1]#};', + ' const int #varname#_Rank = #rank#;', + ], + 'need': ['len..', {hasinitvalue: 'forcomb'}, {hasinitvalue: 'CFUNCSMESS'}], + '_check': isarray + }, + # Scalararray + { # Common + '_check': l_and(isarray, l_not(iscomplexarray)) + }, { # Not hidden + '_check': l_and(isarray, l_not(iscomplexarray), isintent_nothide) + }, + # Integer*1 array + {'need': '#ctype#', + '_check': isint1array, + '_depend': '' + }, + # Integer*-1 array + {'need': '#ctype#', + '_check': l_or(isunsigned_chararray, isunsigned_char), + '_depend': '' + }, + # Integer*-2 array + {'need': '#ctype#', + '_check': isunsigned_shortarray, + '_depend': '' + }, + # Integer*-8 array + {'need': '#ctype#', + '_check': isunsigned_long_longarray, + '_depend': '' + }, + # Complexarray + {'need': '#ctype#', + '_check': iscomplexarray, + '_depend': '' + }, + # Stringarray + { + 'callfortranappend': {isarrayofstrings: 'flen(#varname#),'}, + 'need': 'string', + '_check': isstringarray + } +] + +arg_rules = [ + { + 'separatorsfor': sepdict + }, + { # Common + 'frompyobj': [' /* Processing variable #varname# */', + {debugcapi: ' fprintf(stderr,"#vardebuginfo#\\n");'}, ], + 'cleanupfrompyobj': ' /* End of cleaning variable #varname# */', + '_depend': '', + 'need': typedef_need_dict, + }, + # Doc signatures + { + 'docstropt': {l_and(isoptional, isintent_nothide): '#pydocsign#'}, + 'docstrreq': {l_and(isrequired, isintent_nothide): '#pydocsign#'}, + 'docstrout': {isintent_out: '#pydocsignout#'}, + 'latexdocstropt': {l_and(isoptional, isintent_nothide): ['\\item[]{{}\\verb@#pydocsign#@{}}', + {hasnote: '--- #note#'}]}, + 'latexdocstrreq': {l_and(isrequired, isintent_nothide): ['\\item[]{{}\\verb@#pydocsign#@{}}', + {hasnote: '--- #note#'}]}, + 'latexdocstrout': {isintent_out: ['\\item[]{{}\\verb@#pydocsignout#@{}}', + {l_and(hasnote, isintent_hide): '--- #note#', + l_and(hasnote, isintent_nothide): '--- See above.'}]}, + 'depend': '' + }, + # Required/Optional arguments + { + 'kwlist': '"#varname#",', + 'docsign': '#varname#,', + '_check': l_and(isintent_nothide, l_not(isoptional)) + }, + { + 'kwlistopt': '"#varname#",', + 'docsignopt': '#varname#=#showinit#,', + 'docsignoptshort': '#varname#,', + '_check': l_and(isintent_nothide, isoptional) + }, + # Docstring/BuildValue + { + 'docreturn': '#outvarname#,', + 'returnformat': '#varrformat#', + '_check': isintent_out + }, + # Externals (call-back functions) + { # Common + 'docsignxa': {isintent_nothide: '#varname#_extra_args=(),'}, + 'docsignxashort': {isintent_nothide: '#varname#_extra_args,'}, + 'docstropt': {isintent_nothide: '#varname#_extra_args : input tuple, optional\\n Default: ()'}, + 'docstrcbs': '#cbdocstr#', + 'latexdocstrcbs': '\\item[] #cblatexdocstr#', + 'latexdocstropt': {isintent_nothide: '\\item[]{{}\\verb@#varname#_extra_args := () input tuple@{}} --- Extra arguments for call-back function {{}\\verb@#varname#@{}}.'}, + 'decl': [' #cbname#_t #varname#_cb = { Py_None, NULL, 0 };', + ' #cbname#_t *#varname#_cb_ptr = &#varname#_cb;', + ' PyTupleObject *#varname#_xa_capi = NULL;', + {l_not(isintent_callback): + ' #cbname#_typedef #varname#_cptr;'} + ], + 'kwlistxa': {isintent_nothide: '"#varname#_extra_args",'}, + 'argformat': {isrequired: 'O'}, + 'keyformat': {isoptional: 'O'}, + 'xaformat': {isintent_nothide: 'O!'}, + 'args_capi': {isrequired: ',&#varname#_cb.capi'}, + 'keys_capi': {isoptional: ',&#varname#_cb.capi'}, + 'keys_xa': ',&PyTuple_Type,&#varname#_xa_capi', + 'setjmpbuf': '(setjmp(#varname#_cb.jmpbuf))', + 'callfortran': {l_not(isintent_callback): '#varname#_cptr,'}, + 'need': ['#cbname#', 'setjmp.h'], + '_check': isexternal + }, + { + 'frompyobj': [{l_not(isintent_callback): """\ +if(F2PyCapsule_Check(#varname#_cb.capi)) { + #varname#_cptr = F2PyCapsule_AsVoidPtr(#varname#_cb.capi); +} else { + #varname#_cptr = #cbname#; +} +"""}, {isintent_callback: """\ +if (#varname#_cb.capi==Py_None) { + #varname#_cb.capi = PyObject_GetAttrString(#modulename#_module,\"#varname#\"); + if (#varname#_cb.capi) { + if (#varname#_xa_capi==NULL) { + if (PyObject_HasAttrString(#modulename#_module,\"#varname#_extra_args\")) { + PyObject* capi_tmp = PyObject_GetAttrString(#modulename#_module,\"#varname#_extra_args\"); + if (capi_tmp) { + #varname#_xa_capi = (PyTupleObject *)PySequence_Tuple(capi_tmp); + Py_DECREF(capi_tmp); + } + else { + #varname#_xa_capi = (PyTupleObject *)Py_BuildValue(\"()\"); + } + if (#varname#_xa_capi==NULL) { + PyErr_SetString(#modulename#_error,\"Failed to convert #modulename#.#varname#_extra_args to tuple.\\n\"); + return NULL; + } + } + } + } + if (#varname#_cb.capi==NULL) { + PyErr_SetString(#modulename#_error,\"Callback #varname# not defined (as an argument or module #modulename# attribute).\\n\"); + return NULL; + } +} +"""}, + """\ + if (create_cb_arglist(#varname#_cb.capi,#varname#_xa_capi,#maxnofargs#,#nofoptargs#,&#varname#_cb.nofargs,&#varname#_cb.args_capi,\"failed in processing argument list for call-back #varname#.\")) { +""", + {debugcapi: ["""\ + fprintf(stderr,\"debug-capi:Assuming %d arguments; at most #maxnofargs#(-#nofoptargs#) is expected.\\n\",#varname#_cb.nofargs); + CFUNCSMESSPY(\"for #varname#=\",#varname#_cb.capi);""", + {l_not(isintent_callback): """ fprintf(stderr,\"#vardebugshowvalue# (call-back in C).\\n\",#cbname#);"""}]}, + """\ + CFUNCSMESS(\"Saving callback variables for `#varname#`.\\n\"); + #varname#_cb_ptr = swap_active_#cbname#(#varname#_cb_ptr);""", + ], + 'cleanupfrompyobj': + """\ + CFUNCSMESS(\"Restoring callback variables for `#varname#`.\\n\"); + #varname#_cb_ptr = swap_active_#cbname#(#varname#_cb_ptr); + Py_DECREF(#varname#_cb.args_capi); + }""", + 'need': ['SWAP', 'create_cb_arglist'], + '_check': isexternal, + '_depend': '' + }, + # Scalars (not complex) + { # Common + 'decl': ' #ctype# #varname# = 0;', + 'pyobjfrom': {debugcapi: ' fprintf(stderr,"#vardebugshowvalue#\\n",#varname#);'}, + 'callfortran': {l_or(isintent_c, isattr_value): '#varname#,', l_not(l_or(isintent_c, isattr_value)): '&#varname#,'}, + 'return': {isintent_out: ',#varname#'}, + '_check': l_and(isscalar, l_not(iscomplex)) + }, { + 'need': {hasinitvalue: 'math.h'}, + '_check': l_and(isscalar, l_not(iscomplex)), + }, { # Not hidden + 'decl': ' PyObject *#varname#_capi = Py_None;', + 'argformat': {isrequired: 'O'}, + 'keyformat': {isoptional: 'O'}, + 'args_capi': {isrequired: ',&#varname#_capi'}, + 'keys_capi': {isoptional: ',&#varname#_capi'}, + 'pyobjfrom': {isintent_inout: """\ + f2py_success = try_pyarr_from_#ctype#(#varname#_capi,&#varname#); + if (f2py_success) {"""}, + 'closepyobjfrom': {isintent_inout: " } /*if (f2py_success) of #varname# pyobjfrom*/"}, + 'need': {isintent_inout: 'try_pyarr_from_#ctype#'}, + '_check': l_and(isscalar, l_not(iscomplex), l_not(isstring), + isintent_nothide) + }, { + 'frompyobj': [ + # hasinitvalue... + # if pyobj is None: + # varname = init + # else + # from_pyobj(varname) + # + # isoptional and noinitvalue... + # if pyobj is not None: + # from_pyobj(varname) + # else: + # varname is uninitialized + # + # ... + # from_pyobj(varname) + # + {hasinitvalue: ' if (#varname#_capi == Py_None) #varname# = #init#; else', + '_depend': ''}, + {l_and(isoptional, l_not(hasinitvalue)): ' if (#varname#_capi != Py_None)', + '_depend': ''}, + {l_not(islogical): '''\ + f2py_success = #ctype#_from_pyobj(&#varname#,#varname#_capi,"#pyname#() #nth# (#varname#) can\'t be converted to #ctype#"); + if (f2py_success) {'''}, + {islogical: '''\ + #varname# = (#ctype#)PyObject_IsTrue(#varname#_capi); + f2py_success = 1; + if (f2py_success) {'''}, + ], + 'cleanupfrompyobj': ' } /*if (f2py_success) of #varname#*/', + 'need': {l_not(islogical): '#ctype#_from_pyobj'}, + '_check': l_and(isscalar, l_not(iscomplex), isintent_nothide), + '_depend': '' + }, { # Hidden + 'frompyobj': {hasinitvalue: ' #varname# = #init#;'}, + 'need': typedef_need_dict, + '_check': l_and(isscalar, l_not(iscomplex), isintent_hide), + '_depend': '' + }, { # Common + 'frompyobj': {debugcapi: ' fprintf(stderr,"#vardebugshowvalue#\\n",#varname#);'}, + '_check': l_and(isscalar, l_not(iscomplex)), + '_depend': '' + }, + # Complex scalars + { # Common + 'decl': ' #ctype# #varname#;', + 'callfortran': {isintent_c: '#varname#,', l_not(isintent_c): '&#varname#,'}, + 'pyobjfrom': {debugcapi: ' fprintf(stderr,"#vardebugshowvalue#\\n",#varname#.r,#varname#.i);'}, + 'return': {isintent_out: ',#varname#_capi'}, + '_check': iscomplex + }, { # Not hidden + 'decl': ' PyObject *#varname#_capi = Py_None;', + 'argformat': {isrequired: 'O'}, + 'keyformat': {isoptional: 'O'}, + 'args_capi': {isrequired: ',&#varname#_capi'}, + 'keys_capi': {isoptional: ',&#varname#_capi'}, + 'need': {isintent_inout: 'try_pyarr_from_#ctype#'}, + 'pyobjfrom': {isintent_inout: """\ + f2py_success = try_pyarr_from_#ctype#(#varname#_capi,&#varname#); + if (f2py_success) {"""}, + 'closepyobjfrom': {isintent_inout: " } /*if (f2py_success) of #varname# pyobjfrom*/"}, + '_check': l_and(iscomplex, isintent_nothide) + }, { + 'frompyobj': [{hasinitvalue: ' if (#varname#_capi==Py_None) {#varname#.r = #init.r#, #varname#.i = #init.i#;} else'}, + {l_and(isoptional, l_not(hasinitvalue)) + : ' if (#varname#_capi != Py_None)'}, + ' f2py_success = #ctype#_from_pyobj(&#varname#,#varname#_capi,"#pyname#() #nth# (#varname#) can\'t be converted to #ctype#");' + '\n if (f2py_success) {'], + 'cleanupfrompyobj': ' } /*if (f2py_success) of #varname# frompyobj*/', + 'need': ['#ctype#_from_pyobj'], + '_check': l_and(iscomplex, isintent_nothide), + '_depend': '' + }, { # Hidden + 'decl': {isintent_out: ' PyObject *#varname#_capi = Py_None;'}, + '_check': l_and(iscomplex, isintent_hide) + }, { + 'frompyobj': {hasinitvalue: ' #varname#.r = #init.r#, #varname#.i = #init.i#;'}, + '_check': l_and(iscomplex, isintent_hide), + '_depend': '' + }, { # Common + 'pyobjfrom': {isintent_out: ' #varname#_capi = pyobj_from_#ctype#1(#varname#);'}, + 'need': ['pyobj_from_#ctype#1'], + '_check': iscomplex + }, { + 'frompyobj': {debugcapi: ' fprintf(stderr,"#vardebugshowvalue#\\n",#varname#.r,#varname#.i);'}, + '_check': iscomplex, + '_depend': '' + }, + # String + { # Common + 'decl': [' #ctype# #varname# = NULL;', + ' int slen(#varname#);', + ' PyObject *#varname#_capi = Py_None;'], + 'callfortran': '#varname#,', + 'callfortranappend': 'slen(#varname#),', + 'pyobjfrom': [ + {debugcapi: + ' fprintf(stderr,' + '"#vardebugshowvalue#\\n",slen(#varname#),#varname#);'}, + # The trailing null value for Fortran is blank. + {l_and(isintent_out, l_not(isintent_c)): + " STRINGPADN(#varname#, slen(#varname#), ' ', '\\0');"}, + ], + 'return': {isintent_out: ',#varname#'}, + 'need': ['len..', + {l_and(isintent_out, l_not(isintent_c)): 'STRINGPADN'}], + '_check': isstring + }, { # Common + 'frompyobj': [ + """\ + slen(#varname#) = #elsize#; + f2py_success = #ctype#_from_pyobj(&#varname#,&slen(#varname#),#init#,""" +"""#varname#_capi,\"#ctype#_from_pyobj failed in converting #nth#""" +"""`#varname#\' of #pyname# to C #ctype#\"); + if (f2py_success) {""", + # The trailing null value for Fortran is blank. + {l_not(isintent_c): + " STRINGPADN(#varname#, slen(#varname#), '\\0', ' ');"}, + ], + 'cleanupfrompyobj': """\ + STRINGFREE(#varname#); + } /*if (f2py_success) of #varname#*/""", + 'need': ['#ctype#_from_pyobj', 'len..', 'STRINGFREE', + {l_not(isintent_c): 'STRINGPADN'}], + '_check': isstring, + '_depend': '' + }, { # Not hidden + 'argformat': {isrequired: 'O'}, + 'keyformat': {isoptional: 'O'}, + 'args_capi': {isrequired: ',&#varname#_capi'}, + 'keys_capi': {isoptional: ',&#varname#_capi'}, + 'pyobjfrom': [ + {l_and(isintent_inout, l_not(isintent_c)): + " STRINGPADN(#varname#, slen(#varname#), ' ', '\\0');"}, + {isintent_inout: '''\ + f2py_success = try_pyarr_from_#ctype#(#varname#_capi, #varname#, + slen(#varname#)); + if (f2py_success) {'''}], + 'closepyobjfrom': {isintent_inout: ' } /*if (f2py_success) of #varname# pyobjfrom*/'}, + 'need': {isintent_inout: 'try_pyarr_from_#ctype#', + l_and(isintent_inout, l_not(isintent_c)): 'STRINGPADN'}, + '_check': l_and(isstring, isintent_nothide) + }, { # Hidden + '_check': l_and(isstring, isintent_hide) + }, { + 'frompyobj': {debugcapi: ' fprintf(stderr,"#vardebugshowvalue#\\n",slen(#varname#),#varname#);'}, + '_check': isstring, + '_depend': '' + }, + # Array + { # Common + 'decl': [' #ctype# *#varname# = NULL;', + ' npy_intp #varname#_Dims[#rank#] = {#rank*[-1]#};', + ' const int #varname#_Rank = #rank#;', + ' PyArrayObject *capi_#varname#_as_array = NULL;', + ' int capi_#varname#_intent = 0;', + {isstringarray: ' int slen(#varname#) = 0;'}, + ], + 'callfortran': '#varname#,', + 'callfortranappend': {isstringarray: 'slen(#varname#),'}, + 'return': {isintent_out: ',capi_#varname#_as_array'}, + 'need': 'len..', + '_check': isarray + }, { # intent(overwrite) array + 'decl': ' int capi_overwrite_#varname# = 1;', + 'kwlistxa': '"overwrite_#varname#",', + 'xaformat': 'i', + 'keys_xa': ',&capi_overwrite_#varname#', + 'docsignxa': 'overwrite_#varname#=1,', + 'docsignxashort': 'overwrite_#varname#,', + 'docstropt': 'overwrite_#varname# : input int, optional\\n Default: 1', + '_check': l_and(isarray, isintent_overwrite), + }, { + 'frompyobj': ' capi_#varname#_intent |= (capi_overwrite_#varname#?0:F2PY_INTENT_COPY);', + '_check': l_and(isarray, isintent_overwrite), + '_depend': '', + }, + { # intent(copy) array + 'decl': ' int capi_overwrite_#varname# = 0;', + 'kwlistxa': '"overwrite_#varname#",', + 'xaformat': 'i', + 'keys_xa': ',&capi_overwrite_#varname#', + 'docsignxa': 'overwrite_#varname#=0,', + 'docsignxashort': 'overwrite_#varname#,', + 'docstropt': 'overwrite_#varname# : input int, optional\\n Default: 0', + '_check': l_and(isarray, isintent_copy), + }, { + 'frompyobj': ' capi_#varname#_intent |= (capi_overwrite_#varname#?0:F2PY_INTENT_COPY);', + '_check': l_and(isarray, isintent_copy), + '_depend': '', + }, { + 'need': [{hasinitvalue: 'forcomb'}, {hasinitvalue: 'CFUNCSMESS'}], + '_check': isarray, + '_depend': '' + }, { # Not hidden + 'decl': ' PyObject *#varname#_capi = Py_None;', + 'argformat': {isrequired: 'O'}, + 'keyformat': {isoptional: 'O'}, + 'args_capi': {isrequired: ',&#varname#_capi'}, + 'keys_capi': {isoptional: ',&#varname#_capi'}, + '_check': l_and(isarray, isintent_nothide) + }, { + 'frompyobj': [ + ' #setdims#;', + ' capi_#varname#_intent |= #intent#;', + (' const char capi_errmess[] = "#modulename#.#pyname#:' + ' failed to create array from the #nth# `#varname#`";'), + {isintent_hide: + ' capi_#varname#_as_array = ndarray_from_pyobj(' + ' #atype#,#elsize#,#varname#_Dims,#varname#_Rank,' + ' capi_#varname#_intent,Py_None,capi_errmess);'}, + {isintent_nothide: + ' capi_#varname#_as_array = ndarray_from_pyobj(' + ' #atype#,#elsize#,#varname#_Dims,#varname#_Rank,' + ' capi_#varname#_intent,#varname#_capi,capi_errmess);'}, + """\ + if (capi_#varname#_as_array == NULL) { + PyObject* capi_err = PyErr_Occurred(); + if (capi_err == NULL) { + capi_err = #modulename#_error; + PyErr_SetString(capi_err, capi_errmess); + } + } else { + #varname# = (#ctype# *)(PyArray_DATA(capi_#varname#_as_array)); +""", + {isstringarray: + ' slen(#varname#) = f2py_itemsize(#varname#);'}, + {hasinitvalue: [ + {isintent_nothide: + ' if (#varname#_capi == Py_None) {'}, + {isintent_hide: ' {'}, + {iscomplexarray: ' #ctype# capi_c;'}, + """\ + int *_i,capi_i=0; + CFUNCSMESS(\"#name#: Initializing #varname#=#init#\\n\"); + struct ForcombCache cache; + if (initforcomb(&cache, PyArray_DIMS(capi_#varname#_as_array), + PyArray_NDIM(capi_#varname#_as_array),1)) { + while ((_i = nextforcomb(&cache))) + #varname#[capi_i++] = #init#; /* fortran way */ + } else { + PyObject *exc, *val, *tb; + PyErr_Fetch(&exc, &val, &tb); + PyErr_SetString(exc ? exc : #modulename#_error, + \"Initialization of #nth# #varname# failed (initforcomb).\"); + npy_PyErr_ChainExceptionsCause(exc, val, tb); + f2py_success = 0; + } + } + if (f2py_success) {"""]}, + ], + 'cleanupfrompyobj': [ # note that this list will be reversed + ' } ' + '/* if (capi_#varname#_as_array == NULL) ... else of #varname# */', + {l_not(l_or(isintent_out, isintent_hide)): """\ + if((PyObject *)capi_#varname#_as_array!=#varname#_capi) { + Py_XDECREF(capi_#varname#_as_array); }"""}, + {l_and(isintent_hide, l_not(isintent_out)) + : """ Py_XDECREF(capi_#varname#_as_array);"""}, + {hasinitvalue: ' } /*if (f2py_success) of #varname# init*/'}, + ], + '_check': isarray, + '_depend': '' + }, + # Scalararray + { # Common + '_check': l_and(isarray, l_not(iscomplexarray)) + }, { # Not hidden + '_check': l_and(isarray, l_not(iscomplexarray), isintent_nothide) + }, + # Integer*1 array + {'need': '#ctype#', + '_check': isint1array, + '_depend': '' + }, + # Integer*-1 array + {'need': '#ctype#', + '_check': isunsigned_chararray, + '_depend': '' + }, + # Integer*-2 array + {'need': '#ctype#', + '_check': isunsigned_shortarray, + '_depend': '' + }, + # Integer*-8 array + {'need': '#ctype#', + '_check': isunsigned_long_longarray, + '_depend': '' + }, + # Complexarray + {'need': '#ctype#', + '_check': iscomplexarray, + '_depend': '' + }, + # Character + { + 'need': 'string', + '_check': ischaracter, + }, + # Character array + { + 'need': 'string', + '_check': ischaracterarray, + }, + # Stringarray + { + 'callfortranappend': {isarrayofstrings: 'flen(#varname#),'}, + 'need': 'string', + '_check': isstringarray + } +] + +################# Rules for checking ############### + +check_rules = [ + { + 'frompyobj': {debugcapi: ' fprintf(stderr,\"debug-capi:Checking `#check#\'\\n\");'}, + 'need': 'len..' + }, { + 'frompyobj': ' CHECKSCALAR(#check#,\"#check#\",\"#nth# #varname#\",\"#varshowvalue#\",#varname#) {', + 'cleanupfrompyobj': ' } /*CHECKSCALAR(#check#)*/', + 'need': 'CHECKSCALAR', + '_check': l_and(isscalar, l_not(iscomplex)), + '_break': '' + }, { + 'frompyobj': ' CHECKSTRING(#check#,\"#check#\",\"#nth# #varname#\",\"#varshowvalue#\",#varname#) {', + 'cleanupfrompyobj': ' } /*CHECKSTRING(#check#)*/', + 'need': 'CHECKSTRING', + '_check': isstring, + '_break': '' + }, { + 'need': 'CHECKARRAY', + 'frompyobj': ' CHECKARRAY(#check#,\"#check#\",\"#nth# #varname#\") {', + 'cleanupfrompyobj': ' } /*CHECKARRAY(#check#)*/', + '_check': isarray, + '_break': '' + }, { + 'need': 'CHECKGENERIC', + 'frompyobj': ' CHECKGENERIC(#check#,\"#check#\",\"#nth# #varname#\") {', + 'cleanupfrompyobj': ' } /*CHECKGENERIC(#check#)*/', + } +] + +########## Applying the rules. No need to modify what follows ############# + +#################### Build C/API module ####################### + + +def buildmodule(m, um): + """ + Return + """ + outmess(f" Building module \"{m['name']}\"...\n") + ret = {} + mod_rules = defmod_rules[:] + vrd = capi_maps.modsign2map(m) + rd = dictappend({'f2py_version': f2py_version}, vrd) + funcwrappers = [] + funcwrappers2 = [] # F90 codes + for n in m['interfaced']: + nb = None + for bi in m['body']: + if bi['block'] not in ['interface', 'abstract interface']: + errmess('buildmodule: Expected interface block. Skipping.\n') + continue + for b in bi['body']: + if b['name'] == n: + nb = b + break + + if not nb: + print( + f'buildmodule: Could not find the body of interfaced routine "{n}". Skipping.\n', file=sys.stderr) + continue + nb_list = [nb] + if 'entry' in nb: + for k, a in nb['entry'].items(): + nb1 = copy.deepcopy(nb) + del nb1['entry'] + nb1['name'] = k + nb1['args'] = a + nb_list.append(nb1) + for nb in nb_list: + # requiresf90wrapper must be called before buildapi as it + # rewrites assumed shape arrays as automatic arrays. + isf90 = requiresf90wrapper(nb) + # options is in scope here + if options['emptygen']: + b_path = options['buildpath'] + m_name = vrd['modulename'] + outmess(' Generating possibly empty wrappers"\n') + Path(f"{b_path}/{vrd['coutput']}").touch() + if isf90: + # f77 + f90 wrappers + outmess(f' Maybe empty "{m_name}-f2pywrappers2.f90"\n') + Path(f'{b_path}/{m_name}-f2pywrappers2.f90').touch() + outmess(f' Maybe empty "{m_name}-f2pywrappers.f"\n') + Path(f'{b_path}/{m_name}-f2pywrappers.f').touch() + else: + # only f77 wrappers + outmess(f' Maybe empty "{m_name}-f2pywrappers.f"\n') + Path(f'{b_path}/{m_name}-f2pywrappers.f').touch() + api, wrap = buildapi(nb) + if wrap: + if isf90: + funcwrappers2.append(wrap) + else: + funcwrappers.append(wrap) + ar = applyrules(api, vrd) + rd = dictappend(rd, ar) + + # Construct COMMON block support + cr, wrap = common_rules.buildhooks(m) + if wrap: + funcwrappers.append(wrap) + ar = applyrules(cr, vrd) + rd = dictappend(rd, ar) + + # Construct F90 module support + mr, wrap = f90mod_rules.buildhooks(m) + if wrap: + funcwrappers2.append(wrap) + ar = applyrules(mr, vrd) + rd = dictappend(rd, ar) + + for u in um: + ar = use_rules.buildusevars(u, m['use'][u['name']]) + rd = dictappend(rd, ar) + + needs = cfuncs.get_needs() + # Add mapped definitions + needs['typedefs'] += [cvar for cvar in capi_maps.f2cmap_mapped # + if cvar in typedef_need_dict.values()] + code = {} + for n in needs.keys(): + code[n] = [] + for k in needs[n]: + c = '' + if k in cfuncs.includes0: + c = cfuncs.includes0[k] + elif k in cfuncs.includes: + c = cfuncs.includes[k] + elif k in cfuncs.userincludes: + c = cfuncs.userincludes[k] + elif k in cfuncs.typedefs: + c = cfuncs.typedefs[k] + elif k in cfuncs.typedefs_generated: + c = cfuncs.typedefs_generated[k] + elif k in cfuncs.cppmacros: + c = cfuncs.cppmacros[k] + elif k in cfuncs.cfuncs: + c = cfuncs.cfuncs[k] + elif k in cfuncs.callbacks: + c = cfuncs.callbacks[k] + elif k in cfuncs.f90modhooks: + c = cfuncs.f90modhooks[k] + elif k in cfuncs.commonhooks: + c = cfuncs.commonhooks[k] + else: + errmess(f'buildmodule: unknown need {repr(k)}.\n') + continue + code[n].append(c) + mod_rules.append(code) + for r in mod_rules: + if ('_check' in r and r['_check'](m)) or ('_check' not in r): + ar = applyrules(r, vrd, m) + rd = dictappend(rd, ar) + ar = applyrules(module_rules, rd) + + fn = os.path.join(options['buildpath'], vrd['coutput']) + ret['csrc'] = fn + with open(fn, 'w') as f: + f.write(ar['modulebody'].replace('\t', 2 * ' ')) + outmess(f" Wrote C/API module \"{m['name']}\" to file \"{fn}\"\n") + + if options['dorestdoc']: + fn = os.path.join( + options['buildpath'], vrd['modulename'] + 'module.rest') + with open(fn, 'w') as f: + f.write('.. -*- rest -*-\n') + f.write('\n'.join(ar['restdoc'])) + outmess(' ReST Documentation is saved to file "%s/%smodule.rest"\n' % + (options['buildpath'], vrd['modulename'])) + if options['dolatexdoc']: + fn = os.path.join( + options['buildpath'], vrd['modulename'] + 'module.tex') + ret['ltx'] = fn + with open(fn, 'w') as f: + f.write( + f'% This file is auto-generated with f2py (version:{f2py_version})\n') + if 'shortlatex' not in options: + f.write( + '\\documentclass{article}\n\\usepackage{a4wide}\n\\begin{document}\n\\tableofcontents\n\n') + f.write('\n'.join(ar['latexdoc'])) + if 'shortlatex' not in options: + f.write('\\end{document}') + outmess(' Documentation is saved to file "%s/%smodule.tex"\n' % + (options['buildpath'], vrd['modulename'])) + if funcwrappers: + wn = os.path.join(options['buildpath'], vrd['f2py_wrapper_output']) + ret['fsrc'] = wn + with open(wn, 'w') as f: + f.write('C -*- fortran -*-\n') + f.write( + f'C This file is autogenerated with f2py (version:{f2py_version})\n') + f.write( + 'C It contains Fortran 77 wrappers to fortran functions.\n') + lines = [] + for l in ('\n\n'.join(funcwrappers) + '\n').split('\n'): + if 0 <= l.find('!') < 66: + # don't split comment lines + lines.append(l + '\n') + elif l and l[0] == ' ': + while len(l) >= 66: + lines.append(l[:66] + '\n &') + l = l[66:] + lines.append(l + '\n') + else: + lines.append(l + '\n') + lines = ''.join(lines).replace('\n &\n', '\n') + f.write(lines) + outmess(f' Fortran 77 wrappers are saved to "{wn}\"\n') + if funcwrappers2: + wn = os.path.join( + options['buildpath'], f"{vrd['modulename']}-f2pywrappers2.f90") + ret['fsrc'] = wn + with open(wn, 'w') as f: + f.write('! -*- f90 -*-\n') + f.write( + f'! This file is autogenerated with f2py (version:{f2py_version})\n') + f.write( + '! It contains Fortran 90 wrappers to fortran functions.\n') + lines = [] + for l in ('\n\n'.join(funcwrappers2) + '\n').split('\n'): + if 0 <= l.find('!') < 72: + # don't split comment lines + lines.append(l + '\n') + elif len(l) > 72 and l[0] == ' ': + lines.append(l[:72] + '&\n &') + l = l[72:] + while len(l) > 66: + lines.append(l[:66] + '&\n &') + l = l[66:] + lines.append(l + '\n') + else: + lines.append(l + '\n') + lines = ''.join(lines).replace('\n &\n', '\n') + f.write(lines) + outmess(f' Fortran 90 wrappers are saved to "{wn}\"\n') + return ret + +################## Build C/API function ############# + + +stnd = {1: 'st', 2: 'nd', 3: 'rd', 4: 'th', 5: 'th', + 6: 'th', 7: 'th', 8: 'th', 9: 'th', 0: 'th'} + + +def buildapi(rout): + rout, wrap = func2subr.assubr(rout) + args, depargs = getargs2(rout) + capi_maps.depargs = depargs + var = rout['vars'] + + if ismoduleroutine(rout): + outmess(' Constructing wrapper function "%s.%s"...\n' % + (rout['modulename'], rout['name'])) + else: + outmess(f" Constructing wrapper function \"{rout['name']}\"...\n") + # Routine + vrd = capi_maps.routsign2map(rout) + rd = dictappend({}, vrd) + for r in rout_rules: + if ('_check' in r and r['_check'](rout)) or ('_check' not in r): + ar = applyrules(r, vrd, rout) + rd = dictappend(rd, ar) + + # Args + nth, nthk = 0, 0 + savevrd = {} + for a in args: + vrd = capi_maps.sign2map(a, var[a]) + if isintent_aux(var[a]): + _rules = aux_rules + else: + _rules = arg_rules + if not isintent_hide(var[a]): + if not isoptional(var[a]): + nth = nth + 1 + vrd['nth'] = repr(nth) + stnd[nth % 10] + ' argument' + else: + nthk = nthk + 1 + vrd['nth'] = repr(nthk) + stnd[nthk % 10] + ' keyword' + else: + vrd['nth'] = 'hidden' + savevrd[a] = vrd + for r in _rules: + if '_depend' in r: + continue + if ('_check' in r and r['_check'](var[a])) or ('_check' not in r): + ar = applyrules(r, vrd, var[a]) + rd = dictappend(rd, ar) + if '_break' in r: + break + for a in depargs: + if isintent_aux(var[a]): + _rules = aux_rules + else: + _rules = arg_rules + vrd = savevrd[a] + for r in _rules: + if '_depend' not in r: + continue + if ('_check' in r and r['_check'](var[a])) or ('_check' not in r): + ar = applyrules(r, vrd, var[a]) + rd = dictappend(rd, ar) + if '_break' in r: + break + if 'check' in var[a]: + for c in var[a]['check']: + vrd['check'] = c + ar = applyrules(check_rules, vrd, var[a]) + rd = dictappend(rd, ar) + if isinstance(rd['cleanupfrompyobj'], list): + rd['cleanupfrompyobj'].reverse() + if isinstance(rd['closepyobjfrom'], list): + rd['closepyobjfrom'].reverse() + rd['docsignature'] = stripcomma(replace('#docsign##docsignopt##docsignxa#', + {'docsign': rd['docsign'], + 'docsignopt': rd['docsignopt'], + 'docsignxa': rd['docsignxa']})) + optargs = stripcomma(replace('#docsignopt##docsignxa#', + {'docsignxa': rd['docsignxashort'], + 'docsignopt': rd['docsignoptshort']} + )) + if optargs == '': + rd['docsignatureshort'] = stripcomma( + replace('#docsign#', {'docsign': rd['docsign']})) + else: + rd['docsignatureshort'] = replace('#docsign#[#docsignopt#]', + {'docsign': rd['docsign'], + 'docsignopt': optargs, + }) + rd['latexdocsignatureshort'] = rd['docsignatureshort'].replace('_', '\\_') + rd['latexdocsignatureshort'] = rd[ + 'latexdocsignatureshort'].replace(',', ', ') + cfs = stripcomma(replace('#callfortran##callfortranappend#', { + 'callfortran': rd['callfortran'], 'callfortranappend': rd['callfortranappend']})) + if len(rd['callfortranappend']) > 1: + rd['callcompaqfortran'] = stripcomma(replace('#callfortran# 0,#callfortranappend#', { + 'callfortran': rd['callfortran'], 'callfortranappend': rd['callfortranappend']})) + else: + rd['callcompaqfortran'] = cfs + rd['callfortran'] = cfs + if isinstance(rd['docreturn'], list): + rd['docreturn'] = stripcomma( + replace('#docreturn#', {'docreturn': rd['docreturn']})) + ' = ' + rd['docstrsigns'] = [] + rd['latexdocstrsigns'] = [] + for k in ['docstrreq', 'docstropt', 'docstrout', 'docstrcbs']: + if k in rd and isinstance(rd[k], list): + rd['docstrsigns'] = rd['docstrsigns'] + rd[k] + k = 'latex' + k + if k in rd and isinstance(rd[k], list): + rd['latexdocstrsigns'] = rd['latexdocstrsigns'] + rd[k][0:1] +\ + ['\\begin{description}'] + rd[k][1:] +\ + ['\\end{description}'] + + ar = applyrules(routine_rules, rd) + if ismoduleroutine(rout): + outmess(f" {ar['docshort']}\n") + else: + outmess(f" {ar['docshort']}\n") + return ar, wrap + + +#################### EOF rules.py ####################### diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/rules.pyi b/.venv/lib/python3.12/site-packages/numpy/f2py/rules.pyi new file mode 100644 index 0000000..aa91e94 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/rules.pyi @@ -0,0 +1,43 @@ +from collections.abc import Callable, Iterable, Mapping +from typing import Any, Final, TypeAlias +from typing import Literal as L + +from typing_extensions import TypeVar + +from .__version__ import version +from .auxfuncs import _Bool, _Var + +### + +_VT = TypeVar("_VT", default=str) + +_Predicate: TypeAlias = Callable[[_Var], _Bool] +_RuleDict: TypeAlias = dict[str, _VT] +_DefDict: TypeAlias = dict[_Predicate, _VT] + +### + +f2py_version: Final = version +numpy_version: Final = version + +options: Final[dict[str, bool]] = ... +sepdict: Final[dict[str, str]] = ... + +generationtime: Final[int] = ... +typedef_need_dict: Final[_DefDict[str]] = ... + +module_rules: Final[_RuleDict[str | list[str] | _RuleDict]] = ... +routine_rules: Final[_RuleDict[str | list[str] | _DefDict | _RuleDict]] = ... +defmod_rules: Final[list[_RuleDict[str | _DefDict]]] = ... +rout_rules: Final[list[_RuleDict[str | Any]]] = ... +aux_rules: Final[list[_RuleDict[str | Any]]] = ... +arg_rules: Final[list[_RuleDict[str | Any]]] = ... +check_rules: Final[list[_RuleDict[str | Any]]] = ... + +stnd: Final[dict[L[1, 2, 3, 4, 5, 6, 7, 8, 9, 0], L["st", "nd", "rd", "th"]]] = ... + +def buildmodule(m: Mapping[str, str | Any], um: Iterable[Mapping[str, str | Any]]) -> _RuleDict: ... +def buildapi(rout: Mapping[str, str]) -> tuple[_RuleDict, str]: ... + +# namespace pollution +k: str diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/setup.cfg b/.venv/lib/python3.12/site-packages/numpy/f2py/setup.cfg new file mode 100644 index 0000000..1466954 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/setup.cfg @@ -0,0 +1,3 @@ +[bdist_rpm] +doc_files = docs/ + tests/ \ No newline at end of file diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/src/fortranobject.c b/.venv/lib/python3.12/site-packages/numpy/f2py/src/fortranobject.c new file mode 100644 index 0000000..5c2b4bd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/src/fortranobject.c @@ -0,0 +1,1436 @@ +#define FORTRANOBJECT_C +#include "fortranobject.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#include +#include +#include + +/* + This file implements: FortranObject, array_from_pyobj, copy_ND_array + + Author: Pearu Peterson + $Revision: 1.52 $ + $Date: 2005/07/11 07:44:20 $ +*/ + +int +F2PyDict_SetItemString(PyObject *dict, char *name, PyObject *obj) +{ + if (obj == NULL) { + fprintf(stderr, "Error loading %s\n", name); + if (PyErr_Occurred()) { + PyErr_Print(); + PyErr_Clear(); + } + return -1; + } + return PyDict_SetItemString(dict, name, obj); +} + +/* + * Python-only fallback for thread-local callback pointers + */ +void * +F2PySwapThreadLocalCallbackPtr(char *key, void *ptr) +{ + PyObject *local_dict, *value; + void *prev; + + local_dict = PyThreadState_GetDict(); + if (local_dict == NULL) { + Py_FatalError( + "F2PySwapThreadLocalCallbackPtr: PyThreadState_GetDict " + "failed"); + } + + value = PyDict_GetItemString(local_dict, key); + if (value != NULL) { + prev = PyLong_AsVoidPtr(value); + if (PyErr_Occurred()) { + Py_FatalError( + "F2PySwapThreadLocalCallbackPtr: PyLong_AsVoidPtr failed"); + } + } + else { + prev = NULL; + } + + value = PyLong_FromVoidPtr((void *)ptr); + if (value == NULL) { + Py_FatalError( + "F2PySwapThreadLocalCallbackPtr: PyLong_FromVoidPtr failed"); + } + + if (PyDict_SetItemString(local_dict, key, value) != 0) { + Py_FatalError( + "F2PySwapThreadLocalCallbackPtr: PyDict_SetItemString failed"); + } + + Py_DECREF(value); + + return prev; +} + +void * +F2PyGetThreadLocalCallbackPtr(char *key) +{ + PyObject *local_dict, *value; + void *prev; + + local_dict = PyThreadState_GetDict(); + if (local_dict == NULL) { + Py_FatalError( + "F2PyGetThreadLocalCallbackPtr: PyThreadState_GetDict failed"); + } + + value = PyDict_GetItemString(local_dict, key); + if (value != NULL) { + prev = PyLong_AsVoidPtr(value); + if (PyErr_Occurred()) { + Py_FatalError( + "F2PyGetThreadLocalCallbackPtr: PyLong_AsVoidPtr failed"); + } + } + else { + prev = NULL; + } + + return prev; +} + +static PyArray_Descr * +get_descr_from_type_and_elsize(const int type_num, const int elsize) { + PyArray_Descr * descr = PyArray_DescrFromType(type_num); + if (type_num == NPY_STRING) { + // PyArray_DescrFromType returns descr with elsize = 0. + PyArray_DESCR_REPLACE(descr); + if (descr == NULL) { + return NULL; + } + PyDataType_SET_ELSIZE(descr, elsize); + } + return descr; +} + +/************************* FortranObject *******************************/ + +typedef PyObject *(*fortranfunc)(PyObject *, PyObject *, PyObject *, void *); + +PyObject * +PyFortranObject_New(FortranDataDef *defs, f2py_void_func init) +{ + int i; + PyFortranObject *fp = NULL; + PyObject *v = NULL; + if (init != NULL) { /* Initialize F90 module objects */ + (*(init))(); + } + fp = PyObject_New(PyFortranObject, &PyFortran_Type); + if (fp == NULL) { + return NULL; + } + if ((fp->dict = PyDict_New()) == NULL) { + Py_DECREF(fp); + return NULL; + } + fp->len = 0; + while (defs[fp->len].name != NULL) { + fp->len++; + } + if (fp->len == 0) { + goto fail; + } + fp->defs = defs; + for (i = 0; i < fp->len; i++) { + if (fp->defs[i].rank == -1) { /* Is Fortran routine */ + v = PyFortranObject_NewAsAttr(&(fp->defs[i])); + if (v == NULL) { + goto fail; + } + PyDict_SetItemString(fp->dict, fp->defs[i].name, v); + Py_XDECREF(v); + } + else if ((fp->defs[i].data) != + NULL) { /* Is Fortran variable or array (not allocatable) */ + PyArray_Descr * + descr = get_descr_from_type_and_elsize(fp->defs[i].type, + fp->defs[i].elsize); + if (descr == NULL) { + goto fail; + } + v = PyArray_NewFromDescr(&PyArray_Type, descr, fp->defs[i].rank, + fp->defs[i].dims.d, NULL, fp->defs[i].data, + NPY_ARRAY_FARRAY, NULL); + if (v == NULL) { + Py_DECREF(descr); + goto fail; + } + PyDict_SetItemString(fp->dict, fp->defs[i].name, v); + Py_XDECREF(v); + } + } + return (PyObject *)fp; +fail: + Py_XDECREF(fp); + return NULL; +} + +PyObject * +PyFortranObject_NewAsAttr(FortranDataDef *defs) +{ /* used for calling F90 module routines */ + PyFortranObject *fp = NULL; + fp = PyObject_New(PyFortranObject, &PyFortran_Type); + if (fp == NULL) + return NULL; + if ((fp->dict = PyDict_New()) == NULL) { + PyObject_Del(fp); + return NULL; + } + fp->len = 1; + fp->defs = defs; + if (defs->rank == -1) { + PyDict_SetItemString(fp->dict, "__name__", PyUnicode_FromFormat("function %s", defs->name)); + } else if (defs->rank == 0) { + PyDict_SetItemString(fp->dict, "__name__", PyUnicode_FromFormat("scalar %s", defs->name)); + } else { + PyDict_SetItemString(fp->dict, "__name__", PyUnicode_FromFormat("array %s", defs->name)); + } + return (PyObject *)fp; +} + +/* Fortran methods */ + +static void +fortran_dealloc(PyFortranObject *fp) +{ + Py_XDECREF(fp->dict); + PyObject_Del(fp); +} + +/* Returns number of bytes consumed from buf, or -1 on error. */ +static Py_ssize_t +format_def(char *buf, Py_ssize_t size, FortranDataDef def) +{ + char *p = buf; + int i; + npy_intp n; + + n = PyOS_snprintf(p, size, "array(%" NPY_INTP_FMT, def.dims.d[0]); + if (n < 0 || n >= size) { + return -1; + } + p += n; + size -= n; + + for (i = 1; i < def.rank; i++) { + n = PyOS_snprintf(p, size, ",%" NPY_INTP_FMT, def.dims.d[i]); + if (n < 0 || n >= size) { + return -1; + } + p += n; + size -= n; + } + + if (size <= 0) { + return -1; + } + + *p++ = ')'; + size--; + + if (def.data == NULL) { + static const char notalloc[] = ", not allocated"; + if ((size_t)size < sizeof(notalloc)) { + return -1; + } + memcpy(p, notalloc, sizeof(notalloc)); + p += sizeof(notalloc); + size -= sizeof(notalloc); + } + + return p - buf; +} + +static PyObject * +fortran_doc(FortranDataDef def) +{ + char *buf, *p; + PyObject *s = NULL; + Py_ssize_t n, origsize, size = 100; + + if (def.doc != NULL) { + size += strlen(def.doc); + } + origsize = size; + buf = p = (char *)PyMem_Malloc(size); + if (buf == NULL) { + return PyErr_NoMemory(); + } + + if (def.rank == -1) { + if (def.doc) { + n = strlen(def.doc); + if (n > size) { + goto fail; + } + memcpy(p, def.doc, n); + p += n; + size -= n; + } + else { + n = PyOS_snprintf(p, size, "%s - no docs available", def.name); + if (n < 0 || n >= size) { + goto fail; + } + p += n; + size -= n; + } + } + else { + PyArray_Descr *d = PyArray_DescrFromType(def.type); + n = PyOS_snprintf(p, size, "%s : '%c'-", def.name, d->type); + Py_DECREF(d); + if (n < 0 || n >= size) { + goto fail; + } + p += n; + size -= n; + + if (def.data == NULL) { + n = format_def(p, size, def); + if (n < 0) { + goto fail; + } + p += n; + size -= n; + } + else if (def.rank > 0) { + n = format_def(p, size, def); + if (n < 0) { + goto fail; + } + p += n; + size -= n; + } + else { + n = strlen("scalar"); + if (size < n) { + goto fail; + } + memcpy(p, "scalar", n); + p += n; + size -= n; + } + } + if (size <= 1) { + goto fail; + } + *p++ = '\n'; + size--; + + /* p now points one beyond the last character of the string in buf */ + s = PyUnicode_FromStringAndSize(buf, p - buf); + + PyMem_Free(buf); + return s; + +fail: + fprintf(stderr, + "fortranobject.c: fortran_doc: len(p)=%zd>%zd=size:" + " too long docstring required, increase size\n", + p - buf, origsize); + PyMem_Free(buf); + return NULL; +} + +static FortranDataDef *save_def; /* save pointer of an allocatable array */ +static void +set_data(char *d, npy_intp *f) +{ /* callback from Fortran */ + if (*f) /* In fortran f=allocated(d) */ + save_def->data = d; + else + save_def->data = NULL; + /* printf("set_data: d=%p,f=%d\n",d,*f); */ +} + +static PyObject * +fortran_getattr(PyFortranObject *fp, char *name) +{ + int i, j, k, flag; + if (fp->dict != NULL) { + // python 3.13 added PyDict_GetItemRef +#if PY_VERSION_HEX < 0x030D0000 + PyObject *v = _PyDict_GetItemStringWithError(fp->dict, name); + if (v == NULL && PyErr_Occurred()) { + return NULL; + } + else if (v != NULL) { + Py_INCREF(v); + return v; + } +#else + PyObject *v; + int result = PyDict_GetItemStringRef(fp->dict, name, &v); + if (result == -1) { + return NULL; + } + else if (result == 1) { + return v; + } +#endif + + } + for (i = 0, j = 1; i < fp->len && (j = strcmp(name, fp->defs[i].name)); + i++) + ; + if (j == 0) + if (fp->defs[i].rank != -1) { /* F90 allocatable array */ + if (fp->defs[i].func == NULL) + return NULL; + for (k = 0; k < fp->defs[i].rank; ++k) fp->defs[i].dims.d[k] = -1; + save_def = &fp->defs[i]; + (*(fp->defs[i].func))(&fp->defs[i].rank, fp->defs[i].dims.d, + set_data, &flag); + if (flag == 2) + k = fp->defs[i].rank + 1; + else + k = fp->defs[i].rank; + if (fp->defs[i].data != NULL) { /* array is allocated */ + PyObject *v = PyArray_New( + &PyArray_Type, k, fp->defs[i].dims.d, fp->defs[i].type, + NULL, fp->defs[i].data, 0, NPY_ARRAY_FARRAY, NULL); + if (v == NULL) + return NULL; + /* Py_INCREF(v); */ + return v; + } + else { /* array is not allocated */ + Py_RETURN_NONE; + } + } + if (strcmp(name, "__dict__") == 0) { + Py_INCREF(fp->dict); + return fp->dict; + } + if (strcmp(name, "__doc__") == 0) { + PyObject *s = PyUnicode_FromString(""), *s2, *s3; + for (i = 0; i < fp->len; i++) { + s2 = fortran_doc(fp->defs[i]); + s3 = PyUnicode_Concat(s, s2); + Py_DECREF(s2); + Py_DECREF(s); + s = s3; + } + if (PyDict_SetItemString(fp->dict, name, s)) + return NULL; + return s; + } + if ((strcmp(name, "_cpointer") == 0) && (fp->len == 1)) { + PyObject *cobj = + F2PyCapsule_FromVoidPtr((void *)(fp->defs[0].data), NULL); + if (PyDict_SetItemString(fp->dict, name, cobj)) + return NULL; + return cobj; + } + PyObject *str, *ret; + str = PyUnicode_FromString(name); + ret = PyObject_GenericGetAttr((PyObject *)fp, str); + Py_DECREF(str); + return ret; +} + +static int +fortran_setattr(PyFortranObject *fp, char *name, PyObject *v) +{ + int i, j, flag; + PyArrayObject *arr = NULL; + for (i = 0, j = 1; i < fp->len && (j = strcmp(name, fp->defs[i].name)); + i++) + ; + if (j == 0) { + if (fp->defs[i].rank == -1) { + PyErr_SetString(PyExc_AttributeError, + "over-writing fortran routine"); + return -1; + } + if (fp->defs[i].func != NULL) { /* is allocatable array */ + npy_intp dims[F2PY_MAX_DIMS]; + int k; + save_def = &fp->defs[i]; + if (v != Py_None) { /* set new value (reallocate if needed -- + see f2py generated code for more + details ) */ + for (k = 0; k < fp->defs[i].rank; k++) dims[k] = -1; + if ((arr = array_from_pyobj(fp->defs[i].type, dims, + fp->defs[i].rank, F2PY_INTENT_IN, + v)) == NULL) + return -1; + (*(fp->defs[i].func))(&fp->defs[i].rank, PyArray_DIMS(arr), + set_data, &flag); + } + else { /* deallocate */ + for (k = 0; k < fp->defs[i].rank; k++) dims[k] = 0; + (*(fp->defs[i].func))(&fp->defs[i].rank, dims, set_data, + &flag); + for (k = 0; k < fp->defs[i].rank; k++) dims[k] = -1; + } + memcpy(fp->defs[i].dims.d, dims, + fp->defs[i].rank * sizeof(npy_intp)); + } + else { /* not allocatable array */ + if ((arr = array_from_pyobj(fp->defs[i].type, fp->defs[i].dims.d, + fp->defs[i].rank, F2PY_INTENT_IN, + v)) == NULL) + return -1; + } + if (fp->defs[i].data != + NULL) { /* copy Python object to Fortran array */ + npy_intp s = PyArray_MultiplyList(fp->defs[i].dims.d, + PyArray_NDIM(arr)); + if (s == -1) + s = PyArray_MultiplyList(PyArray_DIMS(arr), PyArray_NDIM(arr)); + if (s < 0 || (memcpy(fp->defs[i].data, PyArray_DATA(arr), + s * PyArray_ITEMSIZE(arr))) == NULL) { + if ((PyObject *)arr != v) { + Py_DECREF(arr); + } + return -1; + } + if ((PyObject *)arr != v) { + Py_DECREF(arr); + } + } + else + return (fp->defs[i].func == NULL ? -1 : 0); + return 0; /* successful */ + } + if (fp->dict == NULL) { + fp->dict = PyDict_New(); + if (fp->dict == NULL) + return -1; + } + if (v == NULL) { + int rv = PyDict_DelItemString(fp->dict, name); + if (rv < 0) + PyErr_SetString(PyExc_AttributeError, + "delete non-existing fortran attribute"); + return rv; + } + else + return PyDict_SetItemString(fp->dict, name, v); +} + +static PyObject * +fortran_call(PyFortranObject *fp, PyObject *arg, PyObject *kw) +{ + int i = 0; + /* printf("fortran call + name=%s,func=%p,data=%p,%p\n",fp->defs[i].name, + fp->defs[i].func,fp->defs[i].data,&fp->defs[i].data); */ + if (fp->defs[i].rank == -1) { /* is Fortran routine */ + if (fp->defs[i].func == NULL) { + PyErr_Format(PyExc_RuntimeError, "no function to call"); + return NULL; + } + else if (fp->defs[i].data == NULL) + /* dummy routine */ + return (*((fortranfunc)(fp->defs[i].func)))((PyObject *)fp, arg, + kw, NULL); + else + return (*((fortranfunc)(fp->defs[i].func)))( + (PyObject *)fp, arg, kw, (void *)fp->defs[i].data); + } + PyErr_Format(PyExc_TypeError, "this fortran object is not callable"); + return NULL; +} + +static PyObject * +fortran_repr(PyFortranObject *fp) +{ + PyObject *name = NULL, *repr = NULL; + name = PyObject_GetAttrString((PyObject *)fp, "__name__"); + PyErr_Clear(); + if (name != NULL && PyUnicode_Check(name)) { + repr = PyUnicode_FromFormat("", name); + } + else { + repr = PyUnicode_FromString(""); + } + Py_XDECREF(name); + return repr; +} + +PyTypeObject PyFortran_Type = { + PyVarObject_HEAD_INIT(NULL, 0).tp_name = "fortran", + .tp_basicsize = sizeof(PyFortranObject), + .tp_dealloc = (destructor)fortran_dealloc, + .tp_getattr = (getattrfunc)fortran_getattr, + .tp_setattr = (setattrfunc)fortran_setattr, + .tp_repr = (reprfunc)fortran_repr, + .tp_call = (ternaryfunc)fortran_call, +}; + +/************************* f2py_report_atexit *******************************/ + +#ifdef F2PY_REPORT_ATEXIT +static int passed_time = 0; +static int passed_counter = 0; +static int passed_call_time = 0; +static struct timeb start_time; +static struct timeb stop_time; +static struct timeb start_call_time; +static struct timeb stop_call_time; +static int cb_passed_time = 0; +static int cb_passed_counter = 0; +static int cb_passed_call_time = 0; +static struct timeb cb_start_time; +static struct timeb cb_stop_time; +static struct timeb cb_start_call_time; +static struct timeb cb_stop_call_time; + +extern void +f2py_start_clock(void) +{ + ftime(&start_time); +} +extern void +f2py_start_call_clock(void) +{ + f2py_stop_clock(); + ftime(&start_call_time); +} +extern void +f2py_stop_clock(void) +{ + ftime(&stop_time); + passed_time += 1000 * (stop_time.time - start_time.time); + passed_time += stop_time.millitm - start_time.millitm; +} +extern void +f2py_stop_call_clock(void) +{ + ftime(&stop_call_time); + passed_call_time += 1000 * (stop_call_time.time - start_call_time.time); + passed_call_time += stop_call_time.millitm - start_call_time.millitm; + passed_counter += 1; + f2py_start_clock(); +} + +extern void +f2py_cb_start_clock(void) +{ + ftime(&cb_start_time); +} +extern void +f2py_cb_start_call_clock(void) +{ + f2py_cb_stop_clock(); + ftime(&cb_start_call_time); +} +extern void +f2py_cb_stop_clock(void) +{ + ftime(&cb_stop_time); + cb_passed_time += 1000 * (cb_stop_time.time - cb_start_time.time); + cb_passed_time += cb_stop_time.millitm - cb_start_time.millitm; +} +extern void +f2py_cb_stop_call_clock(void) +{ + ftime(&cb_stop_call_time); + cb_passed_call_time += + 1000 * (cb_stop_call_time.time - cb_start_call_time.time); + cb_passed_call_time += + cb_stop_call_time.millitm - cb_start_call_time.millitm; + cb_passed_counter += 1; + f2py_cb_start_clock(); +} + +static int f2py_report_on_exit_been_here = 0; +extern void +f2py_report_on_exit(int exit_flag, void *name) +{ + if (f2py_report_on_exit_been_here) { + fprintf(stderr, " %s\n", (char *)name); + return; + } + f2py_report_on_exit_been_here = 1; + fprintf(stderr, " /-----------------------\\\n"); + fprintf(stderr, " < F2PY performance report >\n"); + fprintf(stderr, " \\-----------------------/\n"); + fprintf(stderr, "Overall time spent in ...\n"); + fprintf(stderr, "(a) wrapped (Fortran/C) functions : %8d msec\n", + passed_call_time); + fprintf(stderr, "(b) f2py interface, %6d calls : %8d msec\n", + passed_counter, passed_time); + fprintf(stderr, "(c) call-back (Python) functions : %8d msec\n", + cb_passed_call_time); + fprintf(stderr, "(d) f2py call-back interface, %6d calls : %8d msec\n", + cb_passed_counter, cb_passed_time); + + fprintf(stderr, + "(e) wrapped (Fortran/C) functions (actual) : %8d msec\n\n", + passed_call_time - cb_passed_call_time - cb_passed_time); + fprintf(stderr, + "Use -DF2PY_REPORT_ATEXIT_DISABLE to disable this message.\n"); + fprintf(stderr, "Exit status: %d\n", exit_flag); + fprintf(stderr, "Modules : %s\n", (char *)name); +} +#endif + +/********************** report on array copy ****************************/ + +#ifdef F2PY_REPORT_ON_ARRAY_COPY +static void +f2py_report_on_array_copy(PyArrayObject *arr) +{ + const npy_intp arr_size = PyArray_Size((PyObject *)arr); + if (arr_size > F2PY_REPORT_ON_ARRAY_COPY) { + fprintf(stderr, + "copied an array: size=%ld, elsize=%" NPY_INTP_FMT "\n", + arr_size, (npy_intp)PyArray_ITEMSIZE(arr)); + } +} +static void +f2py_report_on_array_copy_fromany(void) +{ + fprintf(stderr, "created an array from object\n"); +} + +#define F2PY_REPORT_ON_ARRAY_COPY_FROMARR \ + f2py_report_on_array_copy((PyArrayObject *)arr) +#define F2PY_REPORT_ON_ARRAY_COPY_FROMANY f2py_report_on_array_copy_fromany() +#else +#define F2PY_REPORT_ON_ARRAY_COPY_FROMARR +#define F2PY_REPORT_ON_ARRAY_COPY_FROMANY +#endif + +/************************* array_from_obj *******************************/ + +/* + * File: array_from_pyobj.c + * + * Description: + * ------------ + * Provides array_from_pyobj function that returns a contiguous array + * object with the given dimensions and required storage order, either + * in row-major (C) or column-major (Fortran) order. The function + * array_from_pyobj is very flexible about its Python object argument + * that can be any number, list, tuple, or array. + * + * array_from_pyobj is used in f2py generated Python extension + * modules. + * + * Author: Pearu Peterson + * Created: 13-16 January 2002 + * $Id: fortranobject.c,v 1.52 2005/07/11 07:44:20 pearu Exp $ + */ + +static int check_and_fix_dimensions(const PyArrayObject* arr, + const int rank, + npy_intp *dims, + const char *errmess); + +static int +find_first_negative_dimension(const int rank, const npy_intp *dims) +{ + int i; + for (i = 0; i < rank; ++i) { + if (dims[i] < 0) { + return i; + } + } + return -1; +} + +#ifdef DEBUG_COPY_ND_ARRAY +void +dump_dims(int rank, npy_intp const *dims) +{ + int i; + printf("["); + for (i = 0; i < rank; ++i) { + printf("%3" NPY_INTP_FMT, dims[i]); + } + printf("]\n"); +} +void +dump_attrs(const PyArrayObject *obj) +{ + const PyArrayObject_fields *arr = (const PyArrayObject_fields *)obj; + int rank = PyArray_NDIM(arr); + npy_intp size = PyArray_Size((PyObject *)arr); + printf("\trank = %d, flags = %d, size = %" NPY_INTP_FMT "\n", rank, + arr->flags, size); + printf("\tstrides = "); + dump_dims(rank, arr->strides); + printf("\tdimensions = "); + dump_dims(rank, arr->dimensions); +} +#endif + +#define SWAPTYPE(a, b, t) \ + { \ + t c; \ + c = (a); \ + (a) = (b); \ + (b) = c; \ + } + +static int +swap_arrays(PyArrayObject *obj1, PyArrayObject *obj2) +{ + PyArrayObject_fields *arr1 = (PyArrayObject_fields *)obj1, + *arr2 = (PyArrayObject_fields *)obj2; + SWAPTYPE(arr1->data, arr2->data, char *); + SWAPTYPE(arr1->nd, arr2->nd, int); + SWAPTYPE(arr1->dimensions, arr2->dimensions, npy_intp *); + SWAPTYPE(arr1->strides, arr2->strides, npy_intp *); + SWAPTYPE(arr1->base, arr2->base, PyObject *); + SWAPTYPE(arr1->descr, arr2->descr, PyArray_Descr *); + SWAPTYPE(arr1->flags, arr2->flags, int); + /* SWAPTYPE(arr1->weakreflist,arr2->weakreflist,PyObject*); */ + return 0; +} + +#define ARRAY_ISCOMPATIBLE(arr,type_num) \ + ((PyArray_ISINTEGER(arr) && PyTypeNum_ISINTEGER(type_num)) || \ + (PyArray_ISFLOAT(arr) && PyTypeNum_ISFLOAT(type_num)) || \ + (PyArray_ISCOMPLEX(arr) && PyTypeNum_ISCOMPLEX(type_num)) || \ + (PyArray_ISBOOL(arr) && PyTypeNum_ISBOOL(type_num)) || \ + (PyArray_ISSTRING(arr) && PyTypeNum_ISSTRING(type_num))) + +static int +get_elsize(PyObject *obj) { + /* + get_elsize determines array itemsize from a Python object. Returns + elsize if successful, -1 otherwise. + + Supported types of the input are: numpy.ndarray, bytes, str, tuple, + list. + */ + + if (PyArray_Check(obj)) { + return PyArray_ITEMSIZE((PyArrayObject *)obj); + } else if (PyBytes_Check(obj)) { + return PyBytes_GET_SIZE(obj); + } else if (PyUnicode_Check(obj)) { + return PyUnicode_GET_LENGTH(obj); + } else if (PySequence_Check(obj)) { + PyObject* fast = PySequence_Fast(obj, "f2py:fortranobject.c:get_elsize"); + if (fast != NULL) { + Py_ssize_t i, n = PySequence_Fast_GET_SIZE(fast); + int sz, elsize = 0; + for (i=0; i elsize) { + elsize = sz; + } + } + Py_DECREF(fast); + return elsize; + } + } + return -1; +} + +extern PyArrayObject * +ndarray_from_pyobj(const int type_num, + const int elsize_, + npy_intp *dims, + const int rank, + const int intent, + PyObject *obj, + const char *errmess) { + /* + * Return an array with given element type and shape from a Python + * object while taking into account the usage intent of the array. + * + * - element type is defined by type_num and elsize + * - shape is defined by dims and rank + * + * ndarray_from_pyobj is used to convert Python object arguments + * to numpy ndarrays with given type and shape that data is passed + * to interfaced Fortran or C functions. + * + * errmess (if not NULL), contains a prefix of an error message + * for an exception to be triggered within this function. + * + * Negative elsize value means that elsize is to be determined + * from the Python object in runtime. + * + * Note on strings + * --------------- + * + * String type (type_num == NPY_STRING) does not have fixed + * element size and, by default, the type object sets it to + * 0. Therefore, for string types, one has to use elsize + * argument. For other types, elsize value is ignored. + * + * NumPy defines the type of a fixed-width string as + * dtype('S'). In addition, there is also dtype('c'), that + * appears as dtype('S1') (these have the same type_num value), + * but is actually different (.char attribute is either 'S' or + * 'c', respectively). + * + * In Fortran, character arrays and strings are different + * concepts. The relation between Fortran types, NumPy dtypes, + * and type_num-elsize pairs, is defined as follows: + * + * character*5 foo | dtype('S5') | elsize=5, shape=() + * character(5) foo | dtype('S1') | elsize=1, shape=(5) + * character*5 foo(n) | dtype('S5') | elsize=5, shape=(n,) + * character(5) foo(n) | dtype('S1') | elsize=1, shape=(5, n) + * character*(*) foo | dtype('S') | elsize=-1, shape=() + * + * Note about reference counting + * ----------------------------- + * + * If the caller returns the array to Python, it must be done with + * Py_BuildValue("N",arr). Otherwise, if obj!=arr then the caller + * must call Py_DECREF(arr). + * + * Note on intent(cache,out,..) + * ---------------------------- + * Don't expect correct data when returning intent(cache) array. + * + */ + char mess[F2PY_MESSAGE_BUFFER_SIZE]; + PyArrayObject *arr = NULL; + int elsize = (elsize_ < 0 ? get_elsize(obj) : elsize_); + if (elsize < 0) { + if (errmess != NULL) { + strcpy(mess, errmess); + } + sprintf(mess + strlen(mess), + " -- failed to determine element size from %s", + Py_TYPE(obj)->tp_name); + PyErr_SetString(PyExc_SystemError, mess); + return NULL; + } + PyArray_Descr * descr = get_descr_from_type_and_elsize(type_num, elsize); // new reference + if (descr == NULL) { + return NULL; + } + elsize = PyDataType_ELSIZE(descr); + if ((intent & F2PY_INTENT_HIDE) + || ((intent & F2PY_INTENT_CACHE) && (obj == Py_None)) + || ((intent & F2PY_OPTIONAL) && (obj == Py_None)) + ) { + /* intent(cache), optional, intent(hide) */ + int ineg = find_first_negative_dimension(rank, dims); + if (ineg >= 0) { + int i; + strcpy(mess, "failed to create intent(cache|hide)|optional array" + "-- must have defined dimensions but got ("); + for(i = 0; i < rank; ++i) + sprintf(mess + strlen(mess), "%" NPY_INTP_FMT ",", dims[i]); + strcat(mess, ")"); + PyErr_SetString(PyExc_ValueError, mess); + Py_DECREF(descr); + return NULL; + } + arr = (PyArrayObject *) \ + PyArray_NewFromDescr(&PyArray_Type, descr, rank, dims, + NULL, NULL, !(intent & F2PY_INTENT_C), NULL); + if (arr == NULL) { + Py_DECREF(descr); + return NULL; + } + if (PyArray_ITEMSIZE(arr) != elsize) { + strcpy(mess, "failed to create intent(cache|hide)|optional array"); + sprintf(mess+strlen(mess)," -- expected elsize=%d got %" NPY_INTP_FMT, elsize, (npy_intp)PyArray_ITEMSIZE(arr)); + PyErr_SetString(PyExc_ValueError,mess); + Py_DECREF(arr); + return NULL; + } + if (!(intent & F2PY_INTENT_CACHE)) { + PyArray_FILLWBYTE(arr, 0); + } + return arr; + } + + if (PyArray_Check(obj)) { + arr = (PyArrayObject *)obj; + if (intent & F2PY_INTENT_CACHE) { + /* intent(cache) */ + if (PyArray_ISONESEGMENT(arr) + && PyArray_ITEMSIZE(arr) >= elsize) { + if (check_and_fix_dimensions(arr, rank, dims, errmess)) { + Py_DECREF(descr); + return NULL; + } + if (intent & F2PY_INTENT_OUT) + Py_INCREF(arr); + Py_DECREF(descr); + return arr; + } + strcpy(mess, "failed to initialize intent(cache) array"); + if (!PyArray_ISONESEGMENT(arr)) + strcat(mess, " -- input must be in one segment"); + if (PyArray_ITEMSIZE(arr) < elsize) + sprintf(mess + strlen(mess), + " -- expected at least elsize=%d but got " + "%" NPY_INTP_FMT, + elsize, (npy_intp)PyArray_ITEMSIZE(arr)); + PyErr_SetString(PyExc_ValueError, mess); + Py_DECREF(descr); + return NULL; + } + + /* here we have always intent(in) or intent(inout) or intent(inplace) + */ + + if (check_and_fix_dimensions(arr, rank, dims, errmess)) { + Py_DECREF(descr); + return NULL; + } + /* + printf("intent alignment=%d\n", F2PY_GET_ALIGNMENT(intent)); + printf("alignment check=%d\n", F2PY_CHECK_ALIGNMENT(arr, intent)); + int i; + for (i=1;i<=16;i++) + printf("i=%d isaligned=%d\n", i, ARRAY_ISALIGNED(arr, i)); + */ + if ((! (intent & F2PY_INTENT_COPY)) && + PyArray_ITEMSIZE(arr) == elsize && + ARRAY_ISCOMPATIBLE(arr,type_num) && + F2PY_CHECK_ALIGNMENT(arr, intent)) { + if ((intent & F2PY_INTENT_INOUT || intent & F2PY_INTENT_INPLACE) + ? ((intent & F2PY_INTENT_C) ? PyArray_ISCARRAY(arr) : PyArray_ISFARRAY(arr)) + : ((intent & F2PY_INTENT_C) ? PyArray_ISCARRAY_RO(arr) : PyArray_ISFARRAY_RO(arr))) { + if ((intent & F2PY_INTENT_OUT)) { + Py_INCREF(arr); + } + /* Returning input array */ + Py_DECREF(descr); + return arr; + } + } + if (intent & F2PY_INTENT_INOUT) { + strcpy(mess, "failed to initialize intent(inout) array"); + /* Must use PyArray_IS*ARRAY because intent(inout) requires + * writable input */ + if ((intent & F2PY_INTENT_C) && !PyArray_ISCARRAY(arr)) + strcat(mess, " -- input not contiguous"); + if (!(intent & F2PY_INTENT_C) && !PyArray_ISFARRAY(arr)) + strcat(mess, " -- input not fortran contiguous"); + if (PyArray_ITEMSIZE(arr) != elsize) + sprintf(mess + strlen(mess), + " -- expected elsize=%d but got %" NPY_INTP_FMT, + elsize, + (npy_intp)PyArray_ITEMSIZE(arr) + ); + if (!(ARRAY_ISCOMPATIBLE(arr, type_num))) { + sprintf(mess + strlen(mess), + " -- input '%c' not compatible to '%c'", + PyArray_DESCR(arr)->type, descr->type); + } + if (!(F2PY_CHECK_ALIGNMENT(arr, intent))) + sprintf(mess + strlen(mess), " -- input not %d-aligned", + F2PY_GET_ALIGNMENT(intent)); + PyErr_SetString(PyExc_ValueError, mess); + Py_DECREF(descr); + return NULL; + } + + /* here we have always intent(in) or intent(inplace) */ + + { + PyArrayObject * retarr = (PyArrayObject *) \ + PyArray_NewFromDescr(&PyArray_Type, descr, PyArray_NDIM(arr), PyArray_DIMS(arr), + NULL, NULL, !(intent & F2PY_INTENT_C), NULL); + if (retarr==NULL) { + Py_DECREF(descr); + return NULL; + } + F2PY_REPORT_ON_ARRAY_COPY_FROMARR; + if (PyArray_CopyInto(retarr, arr)) { + Py_DECREF(retarr); + return NULL; + } + if (intent & F2PY_INTENT_INPLACE) { + if (swap_arrays(arr,retarr)) { + Py_DECREF(retarr); + return NULL; /* XXX: set exception */ + } + Py_XDECREF(retarr); + if (intent & F2PY_INTENT_OUT) + Py_INCREF(arr); + } else { + arr = retarr; + } + } + return arr; + } + + if ((intent & F2PY_INTENT_INOUT) || (intent & F2PY_INTENT_INPLACE) || + (intent & F2PY_INTENT_CACHE)) { + PyErr_Format(PyExc_TypeError, + "failed to initialize intent(inout|inplace|cache) " + "array, input '%s' object is not an array", + Py_TYPE(obj)->tp_name); + Py_DECREF(descr); + return NULL; + } + + { + F2PY_REPORT_ON_ARRAY_COPY_FROMANY; + arr = (PyArrayObject *)PyArray_FromAny( + obj, descr, 0, 0, + ((intent & F2PY_INTENT_C) ? NPY_ARRAY_CARRAY + : NPY_ARRAY_FARRAY) | + NPY_ARRAY_FORCECAST, + NULL); + // Warning: in the case of NPY_STRING, PyArray_FromAny may + // reset descr->elsize, e.g. dtype('S0') becomes dtype('S1'). + if (arr == NULL) { + Py_DECREF(descr); + return NULL; + } + if (type_num != NPY_STRING && PyArray_ITEMSIZE(arr) != elsize) { + // This is internal sanity tests: elsize has been set to + // descr->elsize in the beginning of this function. + strcpy(mess, "failed to initialize intent(in) array"); + sprintf(mess + strlen(mess), + " -- expected elsize=%d got %" NPY_INTP_FMT, elsize, + (npy_intp)PyArray_ITEMSIZE(arr)); + PyErr_SetString(PyExc_ValueError, mess); + Py_DECREF(arr); + return NULL; + } + if (check_and_fix_dimensions(arr, rank, dims, errmess)) { + Py_DECREF(arr); + return NULL; + } + return arr; + } +} + +extern PyArrayObject * +array_from_pyobj(const int type_num, + npy_intp *dims, + const int rank, + const int intent, + PyObject *obj) { + /* + Same as ndarray_from_pyobj but with elsize determined from type, + if possible. Provided for backward compatibility. + */ + PyArray_Descr* descr = PyArray_DescrFromType(type_num); + int elsize = PyDataType_ELSIZE(descr); + Py_DECREF(descr); + return ndarray_from_pyobj(type_num, elsize, dims, rank, intent, obj, NULL); +} + +/*****************************************/ +/* Helper functions for array_from_pyobj */ +/*****************************************/ + +static int +check_and_fix_dimensions(const PyArrayObject* arr, const int rank, + npy_intp *dims, const char *errmess) +{ + /* + * This function fills in blanks (that are -1's) in dims list using + * the dimensions from arr. It also checks that non-blank dims will + * match with the corresponding values in arr dimensions. + * + * Returns 0 if the function is successful. + * + * If an error condition is detected, an exception is set and 1 is + * returned. + */ + char mess[F2PY_MESSAGE_BUFFER_SIZE]; + const npy_intp arr_size = + (PyArray_NDIM(arr)) ? PyArray_Size((PyObject *)arr) : 1; +#ifdef DEBUG_COPY_ND_ARRAY + dump_attrs(arr); + printf("check_and_fix_dimensions:init: dims="); + dump_dims(rank, dims); +#endif + if (rank > PyArray_NDIM(arr)) { /* [1,2] -> [[1],[2]]; 1 -> [[1]] */ + npy_intp new_size = 1; + int free_axe = -1; + int i; + npy_intp d; + /* Fill dims where -1 or 0; check dimensions; calc new_size; */ + for (i = 0; i < PyArray_NDIM(arr); ++i) { + d = PyArray_DIM(arr, i); + if (dims[i] >= 0) { + if (d > 1 && dims[i] != d) { + PyErr_Format( + PyExc_ValueError, + "%d-th dimension must be fixed to %" NPY_INTP_FMT + " but got %" NPY_INTP_FMT "\n", + i, dims[i], d); + return 1; + } + if (!dims[i]) + dims[i] = 1; + } + else { + dims[i] = d ? d : 1; + } + new_size *= dims[i]; + } + for (i = PyArray_NDIM(arr); i < rank; ++i) + if (dims[i] > 1) { + PyErr_Format(PyExc_ValueError, + "%d-th dimension must be %" NPY_INTP_FMT + " but got 0 (not defined).\n", + i, dims[i]); + return 1; + } + else if (free_axe < 0) + free_axe = i; + else + dims[i] = 1; + if (free_axe >= 0) { + dims[free_axe] = arr_size / new_size; + new_size *= dims[free_axe]; + } + if (new_size != arr_size) { + PyErr_Format(PyExc_ValueError, + "unexpected array size: new_size=%" NPY_INTP_FMT + ", got array with arr_size=%" NPY_INTP_FMT + " (maybe too many free indices)\n", + new_size, arr_size); + return 1; + } + } + else if (rank == PyArray_NDIM(arr)) { + npy_intp new_size = 1; + int i; + npy_intp d; + for (i = 0; i < rank; ++i) { + d = PyArray_DIM(arr, i); + if (dims[i] >= 0) { + if (d > 1 && d != dims[i]) { + if (errmess != NULL) { + strcpy(mess, errmess); + } + sprintf(mess + strlen(mess), + " -- %d-th dimension must be fixed to %" + NPY_INTP_FMT " but got %" NPY_INTP_FMT, + i, dims[i], d); + PyErr_SetString(PyExc_ValueError, mess); + return 1; + } + if (!dims[i]) + dims[i] = 1; + } + else + dims[i] = d; + new_size *= dims[i]; + } + if (new_size != arr_size) { + PyErr_Format(PyExc_ValueError, + "unexpected array size: new_size=%" NPY_INTP_FMT + ", got array with arr_size=%" NPY_INTP_FMT "\n", + new_size, arr_size); + return 1; + } + } + else { /* [[1,2]] -> [[1],[2]] */ + int i, j; + npy_intp d; + int effrank; + npy_intp size; + for (i = 0, effrank = 0; i < PyArray_NDIM(arr); ++i) + if (PyArray_DIM(arr, i) > 1) + ++effrank; + if (dims[rank - 1] >= 0) + if (effrank > rank) { + PyErr_Format(PyExc_ValueError, + "too many axes: %d (effrank=%d), " + "expected rank=%d\n", + PyArray_NDIM(arr), effrank, rank); + return 1; + } + + for (i = 0, j = 0; i < rank; ++i) { + while (j < PyArray_NDIM(arr) && PyArray_DIM(arr, j) < 2) ++j; + if (j >= PyArray_NDIM(arr)) + d = 1; + else + d = PyArray_DIM(arr, j++); + if (dims[i] >= 0) { + if (d > 1 && d != dims[i]) { + if (errmess != NULL) { + strcpy(mess, errmess); + } + sprintf(mess + strlen(mess), + " -- %d-th dimension must be fixed to %" + NPY_INTP_FMT " but got %" NPY_INTP_FMT + " (real index=%d)\n", + i, dims[i], d, j-1); + PyErr_SetString(PyExc_ValueError, mess); + return 1; + } + if (!dims[i]) + dims[i] = 1; + } + else + dims[i] = d; + } + + for (i = rank; i < PyArray_NDIM(arr); + ++i) { /* [[1,2],[3,4]] -> [1,2,3,4] */ + while (j < PyArray_NDIM(arr) && PyArray_DIM(arr, j) < 2) ++j; + if (j >= PyArray_NDIM(arr)) + d = 1; + else + d = PyArray_DIM(arr, j++); + dims[rank - 1] *= d; + } + for (i = 0, size = 1; i < rank; ++i) size *= dims[i]; + if (size != arr_size) { + char msg[200]; + int len; + snprintf(msg, sizeof(msg), + "unexpected array size: size=%" NPY_INTP_FMT + ", arr_size=%" NPY_INTP_FMT + ", rank=%d, effrank=%d, arr.nd=%d, dims=[", + size, arr_size, rank, effrank, PyArray_NDIM(arr)); + for (i = 0; i < rank; ++i) { + len = strlen(msg); + snprintf(msg + len, sizeof(msg) - len, " %" NPY_INTP_FMT, + dims[i]); + } + len = strlen(msg); + snprintf(msg + len, sizeof(msg) - len, " ], arr.dims=["); + for (i = 0; i < PyArray_NDIM(arr); ++i) { + len = strlen(msg); + snprintf(msg + len, sizeof(msg) - len, " %" NPY_INTP_FMT, + PyArray_DIM(arr, i)); + } + len = strlen(msg); + snprintf(msg + len, sizeof(msg) - len, " ]\n"); + PyErr_SetString(PyExc_ValueError, msg); + return 1; + } + } +#ifdef DEBUG_COPY_ND_ARRAY + printf("check_and_fix_dimensions:end: dims="); + dump_dims(rank, dims); +#endif + return 0; +} + +/* End of file: array_from_pyobj.c */ + +/************************* copy_ND_array *******************************/ + +extern int +copy_ND_array(const PyArrayObject *arr, PyArrayObject *out) +{ + F2PY_REPORT_ON_ARRAY_COPY_FROMARR; + return PyArray_CopyInto(out, (PyArrayObject *)arr); +} + +/********************* Various utility functions ***********************/ + +extern int +f2py_describe(PyObject *obj, char *buf) { + /* + Write the description of a Python object to buf. The caller must + provide buffer with size sufficient to write the description. + + Return 1 on success. + */ + char localbuf[F2PY_MESSAGE_BUFFER_SIZE]; + if (PyBytes_Check(obj)) { + sprintf(localbuf, "%d-%s", (npy_int)PyBytes_GET_SIZE(obj), Py_TYPE(obj)->tp_name); + } else if (PyUnicode_Check(obj)) { + sprintf(localbuf, "%d-%s", (npy_int)PyUnicode_GET_LENGTH(obj), Py_TYPE(obj)->tp_name); + } else if (PyArray_CheckScalar(obj)) { + PyArrayObject* arr = (PyArrayObject*)obj; + sprintf(localbuf, "%c%" NPY_INTP_FMT "-%s-scalar", PyArray_DESCR(arr)->kind, PyArray_ITEMSIZE(arr), Py_TYPE(obj)->tp_name); + } else if (PyArray_Check(obj)) { + int i; + PyArrayObject* arr = (PyArrayObject*)obj; + strcpy(localbuf, "("); + for (i=0; ikind, PyArray_ITEMSIZE(arr), Py_TYPE(obj)->tp_name); + } else if (PySequence_Check(obj)) { + sprintf(localbuf, "%d-%s", (npy_int)PySequence_Length(obj), Py_TYPE(obj)->tp_name); + } else { + sprintf(localbuf, "%s instance", Py_TYPE(obj)->tp_name); + } + // TODO: detect the size of buf and make sure that size(buf) >= size(localbuf). + strcpy(buf, localbuf); + return 1; +} + +extern npy_intp +f2py_size_impl(PyArrayObject* var, ...) +{ + npy_intp sz = 0; + npy_intp dim; + npy_intp rank; + va_list argp; + va_start(argp, var); + dim = va_arg(argp, npy_int); + if (dim==-1) + { + sz = PyArray_SIZE(var); + } + else + { + rank = PyArray_NDIM(var); + if (dim>=1 && dim<=rank) + sz = PyArray_DIM(var, dim-1); + else + fprintf(stderr, "f2py_size: 2nd argument value=%" NPY_INTP_FMT + " fails to satisfy 1<=value<=%" NPY_INTP_FMT + ". Result will be 0.\n", dim, rank); + } + va_end(argp); + return sz; +} + +/*********************************************/ +/* Compatibility functions for Python >= 3.0 */ +/*********************************************/ + +PyObject * +F2PyCapsule_FromVoidPtr(void *ptr, void (*dtor)(PyObject *)) +{ + PyObject *ret = PyCapsule_New(ptr, NULL, dtor); + if (ret == NULL) { + PyErr_Clear(); + } + return ret; +} + +void * +F2PyCapsule_AsVoidPtr(PyObject *obj) +{ + void *ret = PyCapsule_GetPointer(obj, NULL); + if (ret == NULL) { + PyErr_Clear(); + } + return ret; +} + +int +F2PyCapsule_Check(PyObject *ptr) +{ + return PyCapsule_CheckExact(ptr); +} + +#ifdef __cplusplus +} +#endif +/************************* EOF fortranobject.c *******************************/ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/src/fortranobject.h b/.venv/lib/python3.12/site-packages/numpy/f2py/src/fortranobject.h new file mode 100644 index 0000000..4aed2f6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/src/fortranobject.h @@ -0,0 +1,173 @@ +#ifndef Py_FORTRANOBJECT_H +#define Py_FORTRANOBJECT_H +#ifdef __cplusplus +extern "C" { +#endif + +#include + +#ifndef NPY_NO_DEPRECATED_API +#define NPY_NO_DEPRECATED_API NPY_API_VERSION +#endif +#ifdef FORTRANOBJECT_C +#define NO_IMPORT_ARRAY +#endif +#define PY_ARRAY_UNIQUE_SYMBOL _npy_f2py_ARRAY_API +#include "numpy/arrayobject.h" +#include "numpy/npy_3kcompat.h" + +#ifdef F2PY_REPORT_ATEXIT +#include +// clang-format off +extern void f2py_start_clock(void); +extern void f2py_stop_clock(void); +extern void f2py_start_call_clock(void); +extern void f2py_stop_call_clock(void); +extern void f2py_cb_start_clock(void); +extern void f2py_cb_stop_clock(void); +extern void f2py_cb_start_call_clock(void); +extern void f2py_cb_stop_call_clock(void); +extern void f2py_report_on_exit(int, void *); +// clang-format on +#endif + +#ifdef DMALLOC +#include "dmalloc.h" +#endif + +/* Fortran object interface */ + +/* +123456789-123456789-123456789-123456789-123456789-123456789-123456789-12 + +PyFortranObject represents various Fortran objects: +Fortran (module) routines, COMMON blocks, module data. + +Author: Pearu Peterson +*/ + +#define F2PY_MAX_DIMS 40 +#define F2PY_MESSAGE_BUFFER_SIZE 300 // Increase on "stack smashing detected" + +typedef void (*f2py_set_data_func)(char *, npy_intp *); +typedef void (*f2py_void_func)(void); +typedef void (*f2py_init_func)(int *, npy_intp *, f2py_set_data_func, int *); + +/*typedef void* (*f2py_c_func)(void*,...);*/ + +typedef void *(*f2pycfunc)(void); + +typedef struct { + char *name; /* attribute (array||routine) name */ + int rank; /* array rank, 0 for scalar, max is F2PY_MAX_DIMS, + || rank=-1 for Fortran routine */ + struct { + npy_intp d[F2PY_MAX_DIMS]; + } dims; /* dimensions of the array, || not used */ + int type; /* PyArray_ || not used */ + int elsize; /* Element size || not used */ + char *data; /* pointer to array || Fortran routine */ + f2py_init_func func; /* initialization function for + allocatable arrays: + func(&rank,dims,set_ptr_func,name,len(name)) + || C/API wrapper for Fortran routine */ + char *doc; /* documentation string; only recommended + for routines. */ +} FortranDataDef; + +typedef struct { + PyObject_HEAD + int len; /* Number of attributes */ + FortranDataDef *defs; /* An array of FortranDataDef's */ + PyObject *dict; /* Fortran object attribute dictionary */ +} PyFortranObject; + +#define PyFortran_Check(op) (Py_TYPE(op) == &PyFortran_Type) +#define PyFortran_Check1(op) (0 == strcmp(Py_TYPE(op)->tp_name, "fortran")) + +extern PyTypeObject PyFortran_Type; +extern int +F2PyDict_SetItemString(PyObject *dict, char *name, PyObject *obj); +extern PyObject * +PyFortranObject_New(FortranDataDef *defs, f2py_void_func init); +extern PyObject * +PyFortranObject_NewAsAttr(FortranDataDef *defs); + +PyObject * +F2PyCapsule_FromVoidPtr(void *ptr, void (*dtor)(PyObject *)); +void * +F2PyCapsule_AsVoidPtr(PyObject *obj); +int +F2PyCapsule_Check(PyObject *ptr); + +extern void * +F2PySwapThreadLocalCallbackPtr(char *key, void *ptr); +extern void * +F2PyGetThreadLocalCallbackPtr(char *key); + +#define ISCONTIGUOUS(m) (PyArray_FLAGS(m) & NPY_ARRAY_C_CONTIGUOUS) +#define F2PY_INTENT_IN 1 +#define F2PY_INTENT_INOUT 2 +#define F2PY_INTENT_OUT 4 +#define F2PY_INTENT_HIDE 8 +#define F2PY_INTENT_CACHE 16 +#define F2PY_INTENT_COPY 32 +#define F2PY_INTENT_C 64 +#define F2PY_OPTIONAL 128 +#define F2PY_INTENT_INPLACE 256 +#define F2PY_INTENT_ALIGNED4 512 +#define F2PY_INTENT_ALIGNED8 1024 +#define F2PY_INTENT_ALIGNED16 2048 + +#define ARRAY_ISALIGNED(ARR, SIZE) ((size_t)(PyArray_DATA(ARR)) % (SIZE) == 0) +#define F2PY_ALIGN4(intent) (intent & F2PY_INTENT_ALIGNED4) +#define F2PY_ALIGN8(intent) (intent & F2PY_INTENT_ALIGNED8) +#define F2PY_ALIGN16(intent) (intent & F2PY_INTENT_ALIGNED16) + +#define F2PY_GET_ALIGNMENT(intent) \ + (F2PY_ALIGN4(intent) \ + ? 4 \ + : (F2PY_ALIGN8(intent) ? 8 : (F2PY_ALIGN16(intent) ? 16 : 1))) +#define F2PY_CHECK_ALIGNMENT(arr, intent) \ + ARRAY_ISALIGNED(arr, F2PY_GET_ALIGNMENT(intent)) +#define F2PY_ARRAY_IS_CHARACTER_COMPATIBLE(arr) ((PyArray_DESCR(arr)->type_num == NPY_STRING && PyArray_ITEMSIZE(arr) >= 1) \ + || PyArray_DESCR(arr)->type_num == NPY_UINT8) +#define F2PY_IS_UNICODE_ARRAY(arr) (PyArray_DESCR(arr)->type_num == NPY_UNICODE) + +extern PyArrayObject * +ndarray_from_pyobj(const int type_num, const int elsize_, npy_intp *dims, + const int rank, const int intent, PyObject *obj, + const char *errmess); + +extern PyArrayObject * +array_from_pyobj(const int type_num, npy_intp *dims, const int rank, + const int intent, PyObject *obj); +extern int +copy_ND_array(const PyArrayObject *in, PyArrayObject *out); + +#ifdef DEBUG_COPY_ND_ARRAY +extern void +dump_attrs(const PyArrayObject *arr); +#endif + + extern int f2py_describe(PyObject *obj, char *buf); + + /* Utility CPP macros and functions that can be used in signature file + expressions. See signature-file.rst for documentation. + */ + +#define f2py_itemsize(var) (PyArray_ITEMSIZE(capi_ ## var ## _as_array)) +#define f2py_size(var, ...) f2py_size_impl((PyArrayObject *)(capi_ ## var ## _as_array), ## __VA_ARGS__, -1) +#define f2py_rank(var) var ## _Rank +#define f2py_shape(var,dim) var ## _Dims[dim] +#define f2py_len(var) f2py_shape(var,0) +#define f2py_fshape(var,dim) f2py_shape(var,rank(var)-dim-1) +#define f2py_flen(var) f2py_fshape(var,0) +#define f2py_slen(var) capi_ ## var ## _len + + extern npy_intp f2py_size_impl(PyArrayObject* var, ...); + +#ifdef __cplusplus +} +#endif +#endif /* !Py_FORTRANOBJECT_H */ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/symbolic.py b/.venv/lib/python3.12/site-packages/numpy/f2py/symbolic.py new file mode 100644 index 0000000..1164517 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/symbolic.py @@ -0,0 +1,1516 @@ +"""Fortran/C symbolic expressions + +References: +- J3/21-007: Draft Fortran 202x. https://j3-fortran.org/doc/year/21/21-007.pdf + +Copyright 1999 -- 2011 Pearu Peterson all rights reserved. +Copyright 2011 -- present NumPy Developers. +Permission to use, modify, and distribute this software is given under the +terms of the NumPy License. + +NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. +""" + +# To analyze Fortran expressions to solve dimensions specifications, +# for instances, we implement a minimal symbolic engine for parsing +# expressions into a tree of expression instances. As a first +# instance, we care only about arithmetic expressions involving +# integers and operations like addition (+), subtraction (-), +# multiplication (*), division (Fortran / is Python //, Fortran // is +# concatenate), and exponentiation (**). In addition, .pyf files may +# contain C expressions that support here is implemented as well. +# +# TODO: support logical constants (Op.BOOLEAN) +# TODO: support logical operators (.AND., ...) +# TODO: support defined operators (.MYOP., ...) +# +__all__ = ['Expr'] + + +import re +import warnings +from enum import Enum +from math import gcd + + +class Language(Enum): + """ + Used as Expr.tostring language argument. + """ + Python = 0 + Fortran = 1 + C = 2 + + +class Op(Enum): + """ + Used as Expr op attribute. + """ + INTEGER = 10 + REAL = 12 + COMPLEX = 15 + STRING = 20 + ARRAY = 30 + SYMBOL = 40 + TERNARY = 100 + APPLY = 200 + INDEXING = 210 + CONCAT = 220 + RELATIONAL = 300 + TERMS = 1000 + FACTORS = 2000 + REF = 3000 + DEREF = 3001 + + +class RelOp(Enum): + """ + Used in Op.RELATIONAL expression to specify the function part. + """ + EQ = 1 + NE = 2 + LT = 3 + LE = 4 + GT = 5 + GE = 6 + + @classmethod + def fromstring(cls, s, language=Language.C): + if language is Language.Fortran: + return {'.eq.': RelOp.EQ, '.ne.': RelOp.NE, + '.lt.': RelOp.LT, '.le.': RelOp.LE, + '.gt.': RelOp.GT, '.ge.': RelOp.GE}[s.lower()] + return {'==': RelOp.EQ, '!=': RelOp.NE, '<': RelOp.LT, + '<=': RelOp.LE, '>': RelOp.GT, '>=': RelOp.GE}[s] + + def tostring(self, language=Language.C): + if language is Language.Fortran: + return {RelOp.EQ: '.eq.', RelOp.NE: '.ne.', + RelOp.LT: '.lt.', RelOp.LE: '.le.', + RelOp.GT: '.gt.', RelOp.GE: '.ge.'}[self] + return {RelOp.EQ: '==', RelOp.NE: '!=', + RelOp.LT: '<', RelOp.LE: '<=', + RelOp.GT: '>', RelOp.GE: '>='}[self] + + +class ArithOp(Enum): + """ + Used in Op.APPLY expression to specify the function part. + """ + POS = 1 + NEG = 2 + ADD = 3 + SUB = 4 + MUL = 5 + DIV = 6 + POW = 7 + + +class OpError(Exception): + pass + + +class Precedence(Enum): + """ + Used as Expr.tostring precedence argument. + """ + ATOM = 0 + POWER = 1 + UNARY = 2 + PRODUCT = 3 + SUM = 4 + LT = 6 + EQ = 7 + LAND = 11 + LOR = 12 + TERNARY = 13 + ASSIGN = 14 + TUPLE = 15 + NONE = 100 + + +integer_types = (int,) +number_types = (int, float) + + +def _pairs_add(d, k, v): + # Internal utility method for updating terms and factors data. + c = d.get(k) + if c is None: + d[k] = v + else: + c = c + v + if c: + d[k] = c + else: + del d[k] + + +class ExprWarning(UserWarning): + pass + + +def ewarn(message): + warnings.warn(message, ExprWarning, stacklevel=2) + + +class Expr: + """Represents a Fortran expression as a op-data pair. + + Expr instances are hashable and sortable. + """ + + @staticmethod + def parse(s, language=Language.C): + """Parse a Fortran expression to a Expr. + """ + return fromstring(s, language=language) + + def __init__(self, op, data): + assert isinstance(op, Op) + + # sanity checks + if op is Op.INTEGER: + # data is a 2-tuple of numeric object and a kind value + # (default is 4) + assert isinstance(data, tuple) and len(data) == 2 + assert isinstance(data[0], int) + assert isinstance(data[1], (int, str)), data + elif op is Op.REAL: + # data is a 2-tuple of numeric object and a kind value + # (default is 4) + assert isinstance(data, tuple) and len(data) == 2 + assert isinstance(data[0], float) + assert isinstance(data[1], (int, str)), data + elif op is Op.COMPLEX: + # data is a 2-tuple of constant expressions + assert isinstance(data, tuple) and len(data) == 2 + elif op is Op.STRING: + # data is a 2-tuple of quoted string and a kind value + # (default is 1) + assert isinstance(data, tuple) and len(data) == 2 + assert (isinstance(data[0], str) + and data[0][::len(data[0]) - 1] in ('""', "''", '@@')) + assert isinstance(data[1], (int, str)), data + elif op is Op.SYMBOL: + # data is any hashable object + assert hash(data) is not None + elif op in (Op.ARRAY, Op.CONCAT): + # data is a tuple of expressions + assert isinstance(data, tuple) + assert all(isinstance(item, Expr) for item in data), data + elif op in (Op.TERMS, Op.FACTORS): + # data is {:} where dict values + # are nonzero Python integers + assert isinstance(data, dict) + elif op is Op.APPLY: + # data is (, , ) where + # operands are Expr instances + assert isinstance(data, tuple) and len(data) == 3 + # function is any hashable object + assert hash(data[0]) is not None + assert isinstance(data[1], tuple) + assert isinstance(data[2], dict) + elif op is Op.INDEXING: + # data is (, ) + assert isinstance(data, tuple) and len(data) == 2 + # function is any hashable object + assert hash(data[0]) is not None + elif op is Op.TERNARY: + # data is (, , ) + assert isinstance(data, tuple) and len(data) == 3 + elif op in (Op.REF, Op.DEREF): + # data is Expr instance + assert isinstance(data, Expr) + elif op is Op.RELATIONAL: + # data is (, , ) + assert isinstance(data, tuple) and len(data) == 3 + else: + raise NotImplementedError( + f'unknown op or missing sanity check: {op}') + + self.op = op + self.data = data + + def __eq__(self, other): + return (isinstance(other, Expr) + and self.op is other.op + and self.data == other.data) + + def __hash__(self): + if self.op in (Op.TERMS, Op.FACTORS): + data = tuple(sorted(self.data.items())) + elif self.op is Op.APPLY: + data = self.data[:2] + tuple(sorted(self.data[2].items())) + else: + data = self.data + return hash((self.op, data)) + + def __lt__(self, other): + if isinstance(other, Expr): + if self.op is not other.op: + return self.op.value < other.op.value + if self.op in (Op.TERMS, Op.FACTORS): + return (tuple(sorted(self.data.items())) + < tuple(sorted(other.data.items()))) + if self.op is Op.APPLY: + if self.data[:2] != other.data[:2]: + return self.data[:2] < other.data[:2] + return tuple(sorted(self.data[2].items())) < tuple( + sorted(other.data[2].items())) + return self.data < other.data + return NotImplemented + + def __le__(self, other): return self == other or self < other + + def __gt__(self, other): return not (self <= other) + + def __ge__(self, other): return not (self < other) + + def __repr__(self): + return f'{type(self).__name__}({self.op}, {self.data!r})' + + def __str__(self): + return self.tostring() + + def tostring(self, parent_precedence=Precedence.NONE, + language=Language.Fortran): + """Return a string representation of Expr. + """ + if self.op in (Op.INTEGER, Op.REAL): + precedence = (Precedence.SUM if self.data[0] < 0 + else Precedence.ATOM) + r = str(self.data[0]) + (f'_{self.data[1]}' + if self.data[1] != 4 else '') + elif self.op is Op.COMPLEX: + r = ', '.join(item.tostring(Precedence.TUPLE, language=language) + for item in self.data) + r = '(' + r + ')' + precedence = Precedence.ATOM + elif self.op is Op.SYMBOL: + precedence = Precedence.ATOM + r = str(self.data) + elif self.op is Op.STRING: + r = self.data[0] + if self.data[1] != 1: + r = self.data[1] + '_' + r + precedence = Precedence.ATOM + elif self.op is Op.ARRAY: + r = ', '.join(item.tostring(Precedence.TUPLE, language=language) + for item in self.data) + r = '[' + r + ']' + precedence = Precedence.ATOM + elif self.op is Op.TERMS: + terms = [] + for term, coeff in sorted(self.data.items()): + if coeff < 0: + op = ' - ' + coeff = -coeff + else: + op = ' + ' + if coeff == 1: + term = term.tostring(Precedence.SUM, language=language) + elif term == as_number(1): + term = str(coeff) + else: + term = f'{coeff} * ' + term.tostring( + Precedence.PRODUCT, language=language) + if terms: + terms.append(op) + elif op == ' - ': + terms.append('-') + terms.append(term) + r = ''.join(terms) or '0' + precedence = Precedence.SUM if terms else Precedence.ATOM + elif self.op is Op.FACTORS: + factors = [] + tail = [] + for base, exp in sorted(self.data.items()): + op = ' * ' + if exp == 1: + factor = base.tostring(Precedence.PRODUCT, + language=language) + elif language is Language.C: + if exp in range(2, 10): + factor = base.tostring(Precedence.PRODUCT, + language=language) + factor = ' * '.join([factor] * exp) + elif exp in range(-10, 0): + factor = base.tostring(Precedence.PRODUCT, + language=language) + tail += [factor] * -exp + continue + else: + factor = base.tostring(Precedence.TUPLE, + language=language) + factor = f'pow({factor}, {exp})' + else: + factor = base.tostring(Precedence.POWER, + language=language) + f' ** {exp}' + if factors: + factors.append(op) + factors.append(factor) + if tail: + if not factors: + factors += ['1'] + factors += ['/', '(', ' * '.join(tail), ')'] + r = ''.join(factors) or '1' + precedence = Precedence.PRODUCT if factors else Precedence.ATOM + elif self.op is Op.APPLY: + name, args, kwargs = self.data + if name is ArithOp.DIV and language is Language.C: + numer, denom = [arg.tostring(Precedence.PRODUCT, + language=language) + for arg in args] + r = f'{numer} / {denom}' + precedence = Precedence.PRODUCT + else: + args = [arg.tostring(Precedence.TUPLE, language=language) + for arg in args] + args += [k + '=' + v.tostring(Precedence.NONE) + for k, v in kwargs.items()] + r = f'{name}({", ".join(args)})' + precedence = Precedence.ATOM + elif self.op is Op.INDEXING: + name = self.data[0] + args = [arg.tostring(Precedence.TUPLE, language=language) + for arg in self.data[1:]] + r = f'{name}[{", ".join(args)}]' + precedence = Precedence.ATOM + elif self.op is Op.CONCAT: + args = [arg.tostring(Precedence.PRODUCT, language=language) + for arg in self.data] + r = " // ".join(args) + precedence = Precedence.PRODUCT + elif self.op is Op.TERNARY: + cond, expr1, expr2 = [a.tostring(Precedence.TUPLE, + language=language) + for a in self.data] + if language is Language.C: + r = f'({cond}?{expr1}:{expr2})' + elif language is Language.Python: + r = f'({expr1} if {cond} else {expr2})' + elif language is Language.Fortran: + r = f'merge({expr1}, {expr2}, {cond})' + else: + raise NotImplementedError( + f'tostring for {self.op} and {language}') + precedence = Precedence.ATOM + elif self.op is Op.REF: + r = '&' + self.data.tostring(Precedence.UNARY, language=language) + precedence = Precedence.UNARY + elif self.op is Op.DEREF: + r = '*' + self.data.tostring(Precedence.UNARY, language=language) + precedence = Precedence.UNARY + elif self.op is Op.RELATIONAL: + rop, left, right = self.data + precedence = (Precedence.EQ if rop in (RelOp.EQ, RelOp.NE) + else Precedence.LT) + left = left.tostring(precedence, language=language) + right = right.tostring(precedence, language=language) + rop = rop.tostring(language=language) + r = f'{left} {rop} {right}' + else: + raise NotImplementedError(f'tostring for op {self.op}') + if parent_precedence.value < precedence.value: + # If parent precedence is higher than operand precedence, + # operand will be enclosed in parenthesis. + return '(' + r + ')' + return r + + def __pos__(self): + return self + + def __neg__(self): + return self * -1 + + def __add__(self, other): + other = as_expr(other) + if isinstance(other, Expr): + if self.op is other.op: + if self.op in (Op.INTEGER, Op.REAL): + return as_number( + self.data[0] + other.data[0], + max(self.data[1], other.data[1])) + if self.op is Op.COMPLEX: + r1, i1 = self.data + r2, i2 = other.data + return as_complex(r1 + r2, i1 + i2) + if self.op is Op.TERMS: + r = Expr(self.op, dict(self.data)) + for k, v in other.data.items(): + _pairs_add(r.data, k, v) + return normalize(r) + if self.op is Op.COMPLEX and other.op in (Op.INTEGER, Op.REAL): + return self + as_complex(other) + elif self.op in (Op.INTEGER, Op.REAL) and other.op is Op.COMPLEX: + return as_complex(self) + other + elif self.op is Op.REAL and other.op is Op.INTEGER: + return self + as_real(other, kind=self.data[1]) + elif self.op is Op.INTEGER and other.op is Op.REAL: + return as_real(self, kind=other.data[1]) + other + return as_terms(self) + as_terms(other) + return NotImplemented + + def __radd__(self, other): + if isinstance(other, number_types): + return as_number(other) + self + return NotImplemented + + def __sub__(self, other): + return self + (-other) + + def __rsub__(self, other): + if isinstance(other, number_types): + return as_number(other) - self + return NotImplemented + + def __mul__(self, other): + other = as_expr(other) + if isinstance(other, Expr): + if self.op is other.op: + if self.op in (Op.INTEGER, Op.REAL): + return as_number(self.data[0] * other.data[0], + max(self.data[1], other.data[1])) + elif self.op is Op.COMPLEX: + r1, i1 = self.data + r2, i2 = other.data + return as_complex(r1 * r2 - i1 * i2, r1 * i2 + r2 * i1) + + if self.op is Op.FACTORS: + r = Expr(self.op, dict(self.data)) + for k, v in other.data.items(): + _pairs_add(r.data, k, v) + return normalize(r) + elif self.op is Op.TERMS: + r = Expr(self.op, {}) + for t1, c1 in self.data.items(): + for t2, c2 in other.data.items(): + _pairs_add(r.data, t1 * t2, c1 * c2) + return normalize(r) + + if self.op is Op.COMPLEX and other.op in (Op.INTEGER, Op.REAL): + return self * as_complex(other) + elif other.op is Op.COMPLEX and self.op in (Op.INTEGER, Op.REAL): + return as_complex(self) * other + elif self.op is Op.REAL and other.op is Op.INTEGER: + return self * as_real(other, kind=self.data[1]) + elif self.op is Op.INTEGER and other.op is Op.REAL: + return as_real(self, kind=other.data[1]) * other + + if self.op is Op.TERMS: + return self * as_terms(other) + elif other.op is Op.TERMS: + return as_terms(self) * other + + return as_factors(self) * as_factors(other) + return NotImplemented + + def __rmul__(self, other): + if isinstance(other, number_types): + return as_number(other) * self + return NotImplemented + + def __pow__(self, other): + other = as_expr(other) + if isinstance(other, Expr): + if other.op is Op.INTEGER: + exponent = other.data[0] + # TODO: other kind not used + if exponent == 0: + return as_number(1) + if exponent == 1: + return self + if exponent > 0: + if self.op is Op.FACTORS: + r = Expr(self.op, {}) + for k, v in self.data.items(): + r.data[k] = v * exponent + return normalize(r) + return self * (self ** (exponent - 1)) + elif exponent != -1: + return (self ** (-exponent)) ** -1 + return Expr(Op.FACTORS, {self: exponent}) + return as_apply(ArithOp.POW, self, other) + return NotImplemented + + def __truediv__(self, other): + other = as_expr(other) + if isinstance(other, Expr): + # Fortran / is different from Python /: + # - `/` is a truncate operation for integer operands + return normalize(as_apply(ArithOp.DIV, self, other)) + return NotImplemented + + def __rtruediv__(self, other): + other = as_expr(other) + if isinstance(other, Expr): + return other / self + return NotImplemented + + def __floordiv__(self, other): + other = as_expr(other) + if isinstance(other, Expr): + # Fortran // is different from Python //: + # - `//` is a concatenate operation for string operands + return normalize(Expr(Op.CONCAT, (self, other))) + return NotImplemented + + def __rfloordiv__(self, other): + other = as_expr(other) + if isinstance(other, Expr): + return other // self + return NotImplemented + + def __call__(self, *args, **kwargs): + # In Fortran, parenthesis () are use for both function call as + # well as indexing operations. + # + # TODO: implement a method for deciding when __call__ should + # return an INDEXING expression. + return as_apply(self, *map(as_expr, args), + **{k: as_expr(v) for k, v in kwargs.items()}) + + def __getitem__(self, index): + # Provided to support C indexing operations that .pyf files + # may contain. + index = as_expr(index) + if not isinstance(index, tuple): + index = index, + if len(index) > 1: + ewarn(f'C-index should be a single expression but got `{index}`') + return Expr(Op.INDEXING, (self,) + index) + + def substitute(self, symbols_map): + """Recursively substitute symbols with values in symbols map. + + Symbols map is a dictionary of symbol-expression pairs. + """ + if self.op is Op.SYMBOL: + value = symbols_map.get(self) + if value is None: + return self + m = re.match(r'\A(@__f2py_PARENTHESIS_(\w+)_\d+@)\Z', self.data) + if m: + # complement to fromstring method + items, paren = m.groups() + if paren in ['ROUNDDIV', 'SQUARE']: + return as_array(value) + assert paren == 'ROUND', (paren, value) + return value + if self.op in (Op.INTEGER, Op.REAL, Op.STRING): + return self + if self.op in (Op.ARRAY, Op.COMPLEX): + return Expr(self.op, tuple(item.substitute(symbols_map) + for item in self.data)) + if self.op is Op.CONCAT: + return normalize(Expr(self.op, tuple(item.substitute(symbols_map) + for item in self.data))) + if self.op is Op.TERMS: + r = None + for term, coeff in self.data.items(): + if r is None: + r = term.substitute(symbols_map) * coeff + else: + r += term.substitute(symbols_map) * coeff + if r is None: + ewarn('substitute: empty TERMS expression interpreted as' + ' int-literal 0') + return as_number(0) + return r + if self.op is Op.FACTORS: + r = None + for base, exponent in self.data.items(): + if r is None: + r = base.substitute(symbols_map) ** exponent + else: + r *= base.substitute(symbols_map) ** exponent + if r is None: + ewarn('substitute: empty FACTORS expression interpreted' + ' as int-literal 1') + return as_number(1) + return r + if self.op is Op.APPLY: + target, args, kwargs = self.data + if isinstance(target, Expr): + target = target.substitute(symbols_map) + args = tuple(a.substitute(symbols_map) for a in args) + kwargs = {k: v.substitute(symbols_map) + for k, v in kwargs.items()} + return normalize(Expr(self.op, (target, args, kwargs))) + if self.op is Op.INDEXING: + func = self.data[0] + if isinstance(func, Expr): + func = func.substitute(symbols_map) + args = tuple(a.substitute(symbols_map) for a in self.data[1:]) + return normalize(Expr(self.op, (func,) + args)) + if self.op is Op.TERNARY: + operands = tuple(a.substitute(symbols_map) for a in self.data) + return normalize(Expr(self.op, operands)) + if self.op in (Op.REF, Op.DEREF): + return normalize(Expr(self.op, self.data.substitute(symbols_map))) + if self.op is Op.RELATIONAL: + rop, left, right = self.data + left = left.substitute(symbols_map) + right = right.substitute(symbols_map) + return normalize(Expr(self.op, (rop, left, right))) + raise NotImplementedError(f'substitute method for {self.op}: {self!r}') + + def traverse(self, visit, *args, **kwargs): + """Traverse expression tree with visit function. + + The visit function is applied to an expression with given args + and kwargs. + + Traverse call returns an expression returned by visit when not + None, otherwise return a new normalized expression with + traverse-visit sub-expressions. + """ + result = visit(self, *args, **kwargs) + if result is not None: + return result + + if self.op in (Op.INTEGER, Op.REAL, Op.STRING, Op.SYMBOL): + return self + elif self.op in (Op.COMPLEX, Op.ARRAY, Op.CONCAT, Op.TERNARY): + return normalize(Expr(self.op, tuple( + item.traverse(visit, *args, **kwargs) + for item in self.data))) + elif self.op in (Op.TERMS, Op.FACTORS): + data = {} + for k, v in self.data.items(): + k = k.traverse(visit, *args, **kwargs) + v = (v.traverse(visit, *args, **kwargs) + if isinstance(v, Expr) else v) + if k in data: + v = data[k] + v + data[k] = v + return normalize(Expr(self.op, data)) + elif self.op is Op.APPLY: + obj = self.data[0] + func = (obj.traverse(visit, *args, **kwargs) + if isinstance(obj, Expr) else obj) + operands = tuple(operand.traverse(visit, *args, **kwargs) + for operand in self.data[1]) + kwoperands = {k: v.traverse(visit, *args, **kwargs) + for k, v in self.data[2].items()} + return normalize(Expr(self.op, (func, operands, kwoperands))) + elif self.op is Op.INDEXING: + obj = self.data[0] + obj = (obj.traverse(visit, *args, **kwargs) + if isinstance(obj, Expr) else obj) + indices = tuple(index.traverse(visit, *args, **kwargs) + for index in self.data[1:]) + return normalize(Expr(self.op, (obj,) + indices)) + elif self.op in (Op.REF, Op.DEREF): + return normalize(Expr(self.op, + self.data.traverse(visit, *args, **kwargs))) + elif self.op is Op.RELATIONAL: + rop, left, right = self.data + left = left.traverse(visit, *args, **kwargs) + right = right.traverse(visit, *args, **kwargs) + return normalize(Expr(self.op, (rop, left, right))) + raise NotImplementedError(f'traverse method for {self.op}') + + def contains(self, other): + """Check if self contains other. + """ + found = [] + + def visit(expr, found=found): + if found: + return expr + elif expr == other: + found.append(1) + return expr + + self.traverse(visit) + + return len(found) != 0 + + def symbols(self): + """Return a set of symbols contained in self. + """ + found = set() + + def visit(expr, found=found): + if expr.op is Op.SYMBOL: + found.add(expr) + + self.traverse(visit) + + return found + + def polynomial_atoms(self): + """Return a set of expressions used as atoms in polynomial self. + """ + found = set() + + def visit(expr, found=found): + if expr.op is Op.FACTORS: + for b in expr.data: + b.traverse(visit) + return expr + if expr.op in (Op.TERMS, Op.COMPLEX): + return + if expr.op is Op.APPLY and isinstance(expr.data[0], ArithOp): + if expr.data[0] is ArithOp.POW: + expr.data[1][0].traverse(visit) + return expr + return + if expr.op in (Op.INTEGER, Op.REAL): + return expr + + found.add(expr) + + if expr.op in (Op.INDEXING, Op.APPLY): + return expr + + self.traverse(visit) + + return found + + def linear_solve(self, symbol): + """Return a, b such that a * symbol + b == self. + + If self is not linear with respect to symbol, raise RuntimeError. + """ + b = self.substitute({symbol: as_number(0)}) + ax = self - b + a = ax.substitute({symbol: as_number(1)}) + + zero, _ = as_numer_denom(a * symbol - ax) + + if zero != as_number(0): + raise RuntimeError(f'not a {symbol}-linear equation:' + f' {a} * {symbol} + {b} == {self}') + return a, b + + +def normalize(obj): + """Normalize Expr and apply basic evaluation methods. + """ + if not isinstance(obj, Expr): + return obj + + if obj.op is Op.TERMS: + d = {} + for t, c in obj.data.items(): + if c == 0: + continue + if t.op is Op.COMPLEX and c != 1: + t = t * c + c = 1 + if t.op is Op.TERMS: + for t1, c1 in t.data.items(): + _pairs_add(d, t1, c1 * c) + else: + _pairs_add(d, t, c) + if len(d) == 0: + # TODO: determine correct kind + return as_number(0) + elif len(d) == 1: + (t, c), = d.items() + if c == 1: + return t + return Expr(Op.TERMS, d) + + if obj.op is Op.FACTORS: + coeff = 1 + d = {} + for b, e in obj.data.items(): + if e == 0: + continue + if b.op is Op.TERMS and isinstance(e, integer_types) and e > 1: + # expand integer powers of sums + b = b * (b ** (e - 1)) + e = 1 + + if b.op in (Op.INTEGER, Op.REAL): + if e == 1: + coeff *= b.data[0] + elif e > 0: + coeff *= b.data[0] ** e + else: + _pairs_add(d, b, e) + elif b.op is Op.FACTORS: + if e > 0 and isinstance(e, integer_types): + for b1, e1 in b.data.items(): + _pairs_add(d, b1, e1 * e) + else: + _pairs_add(d, b, e) + else: + _pairs_add(d, b, e) + if len(d) == 0 or coeff == 0: + # TODO: determine correct kind + assert isinstance(coeff, number_types) + return as_number(coeff) + elif len(d) == 1: + (b, e), = d.items() + if e == 1: + t = b + else: + t = Expr(Op.FACTORS, d) + if coeff == 1: + return t + return Expr(Op.TERMS, {t: coeff}) + elif coeff == 1: + return Expr(Op.FACTORS, d) + else: + return Expr(Op.TERMS, {Expr(Op.FACTORS, d): coeff}) + + if obj.op is Op.APPLY and obj.data[0] is ArithOp.DIV: + dividend, divisor = obj.data[1] + t1, c1 = as_term_coeff(dividend) + t2, c2 = as_term_coeff(divisor) + if isinstance(c1, integer_types) and isinstance(c2, integer_types): + g = gcd(c1, c2) + c1, c2 = c1 // g, c2 // g + else: + c1, c2 = c1 / c2, 1 + + if t1.op is Op.APPLY and t1.data[0] is ArithOp.DIV: + numer = t1.data[1][0] * c1 + denom = t1.data[1][1] * t2 * c2 + return as_apply(ArithOp.DIV, numer, denom) + + if t2.op is Op.APPLY and t2.data[0] is ArithOp.DIV: + numer = t2.data[1][1] * t1 * c1 + denom = t2.data[1][0] * c2 + return as_apply(ArithOp.DIV, numer, denom) + + d = dict(as_factors(t1).data) + for b, e in as_factors(t2).data.items(): + _pairs_add(d, b, -e) + numer, denom = {}, {} + for b, e in d.items(): + if e > 0: + numer[b] = e + else: + denom[b] = -e + numer = normalize(Expr(Op.FACTORS, numer)) * c1 + denom = normalize(Expr(Op.FACTORS, denom)) * c2 + + if denom.op in (Op.INTEGER, Op.REAL) and denom.data[0] == 1: + # TODO: denom kind not used + return numer + return as_apply(ArithOp.DIV, numer, denom) + + if obj.op is Op.CONCAT: + lst = [obj.data[0]] + for s in obj.data[1:]: + last = lst[-1] + if ( + last.op is Op.STRING + and s.op is Op.STRING + and last.data[0][0] in '"\'' + and s.data[0][0] == last.data[0][-1] + ): + new_last = as_string(last.data[0][:-1] + s.data[0][1:], + max(last.data[1], s.data[1])) + lst[-1] = new_last + else: + lst.append(s) + if len(lst) == 1: + return lst[0] + return Expr(Op.CONCAT, tuple(lst)) + + if obj.op is Op.TERNARY: + cond, expr1, expr2 = map(normalize, obj.data) + if cond.op is Op.INTEGER: + return expr1 if cond.data[0] else expr2 + return Expr(Op.TERNARY, (cond, expr1, expr2)) + + return obj + + +def as_expr(obj): + """Convert non-Expr objects to Expr objects. + """ + if isinstance(obj, complex): + return as_complex(obj.real, obj.imag) + if isinstance(obj, number_types): + return as_number(obj) + if isinstance(obj, str): + # STRING expression holds string with boundary quotes, hence + # applying repr: + return as_string(repr(obj)) + if isinstance(obj, tuple): + return tuple(map(as_expr, obj)) + return obj + + +def as_symbol(obj): + """Return object as SYMBOL expression (variable or unparsed expression). + """ + return Expr(Op.SYMBOL, obj) + + +def as_number(obj, kind=4): + """Return object as INTEGER or REAL constant. + """ + if isinstance(obj, int): + return Expr(Op.INTEGER, (obj, kind)) + if isinstance(obj, float): + return Expr(Op.REAL, (obj, kind)) + if isinstance(obj, Expr): + if obj.op in (Op.INTEGER, Op.REAL): + return obj + raise OpError(f'cannot convert {obj} to INTEGER or REAL constant') + + +def as_integer(obj, kind=4): + """Return object as INTEGER constant. + """ + if isinstance(obj, int): + return Expr(Op.INTEGER, (obj, kind)) + if isinstance(obj, Expr): + if obj.op is Op.INTEGER: + return obj + raise OpError(f'cannot convert {obj} to INTEGER constant') + + +def as_real(obj, kind=4): + """Return object as REAL constant. + """ + if isinstance(obj, int): + return Expr(Op.REAL, (float(obj), kind)) + if isinstance(obj, float): + return Expr(Op.REAL, (obj, kind)) + if isinstance(obj, Expr): + if obj.op is Op.REAL: + return obj + elif obj.op is Op.INTEGER: + return Expr(Op.REAL, (float(obj.data[0]), kind)) + raise OpError(f'cannot convert {obj} to REAL constant') + + +def as_string(obj, kind=1): + """Return object as STRING expression (string literal constant). + """ + return Expr(Op.STRING, (obj, kind)) + + +def as_array(obj): + """Return object as ARRAY expression (array constant). + """ + if isinstance(obj, Expr): + obj = obj, + return Expr(Op.ARRAY, obj) + + +def as_complex(real, imag=0): + """Return object as COMPLEX expression (complex literal constant). + """ + return Expr(Op.COMPLEX, (as_expr(real), as_expr(imag))) + + +def as_apply(func, *args, **kwargs): + """Return object as APPLY expression (function call, constructor, etc.) + """ + return Expr(Op.APPLY, + (func, tuple(map(as_expr, args)), + {k: as_expr(v) for k, v in kwargs.items()})) + + +def as_ternary(cond, expr1, expr2): + """Return object as TERNARY expression (cond?expr1:expr2). + """ + return Expr(Op.TERNARY, (cond, expr1, expr2)) + + +def as_ref(expr): + """Return object as referencing expression. + """ + return Expr(Op.REF, expr) + + +def as_deref(expr): + """Return object as dereferencing expression. + """ + return Expr(Op.DEREF, expr) + + +def as_eq(left, right): + return Expr(Op.RELATIONAL, (RelOp.EQ, left, right)) + + +def as_ne(left, right): + return Expr(Op.RELATIONAL, (RelOp.NE, left, right)) + + +def as_lt(left, right): + return Expr(Op.RELATIONAL, (RelOp.LT, left, right)) + + +def as_le(left, right): + return Expr(Op.RELATIONAL, (RelOp.LE, left, right)) + + +def as_gt(left, right): + return Expr(Op.RELATIONAL, (RelOp.GT, left, right)) + + +def as_ge(left, right): + return Expr(Op.RELATIONAL, (RelOp.GE, left, right)) + + +def as_terms(obj): + """Return expression as TERMS expression. + """ + if isinstance(obj, Expr): + obj = normalize(obj) + if obj.op is Op.TERMS: + return obj + if obj.op is Op.INTEGER: + return Expr(Op.TERMS, {as_integer(1, obj.data[1]): obj.data[0]}) + if obj.op is Op.REAL: + return Expr(Op.TERMS, {as_real(1, obj.data[1]): obj.data[0]}) + return Expr(Op.TERMS, {obj: 1}) + raise OpError(f'cannot convert {type(obj)} to terms Expr') + + +def as_factors(obj): + """Return expression as FACTORS expression. + """ + if isinstance(obj, Expr): + obj = normalize(obj) + if obj.op is Op.FACTORS: + return obj + if obj.op is Op.TERMS: + if len(obj.data) == 1: + (term, coeff), = obj.data.items() + if coeff == 1: + return Expr(Op.FACTORS, {term: 1}) + return Expr(Op.FACTORS, {term: 1, Expr.number(coeff): 1}) + if (obj.op is Op.APPLY + and obj.data[0] is ArithOp.DIV + and not obj.data[2]): + return Expr(Op.FACTORS, {obj.data[1][0]: 1, obj.data[1][1]: -1}) + return Expr(Op.FACTORS, {obj: 1}) + raise OpError(f'cannot convert {type(obj)} to terms Expr') + + +def as_term_coeff(obj): + """Return expression as term-coefficient pair. + """ + if isinstance(obj, Expr): + obj = normalize(obj) + if obj.op is Op.INTEGER: + return as_integer(1, obj.data[1]), obj.data[0] + if obj.op is Op.REAL: + return as_real(1, obj.data[1]), obj.data[0] + if obj.op is Op.TERMS: + if len(obj.data) == 1: + (term, coeff), = obj.data.items() + return term, coeff + # TODO: find common divisor of coefficients + if obj.op is Op.APPLY and obj.data[0] is ArithOp.DIV: + t, c = as_term_coeff(obj.data[1][0]) + return as_apply(ArithOp.DIV, t, obj.data[1][1]), c + return obj, 1 + raise OpError(f'cannot convert {type(obj)} to term and coeff') + + +def as_numer_denom(obj): + """Return expression as numer-denom pair. + """ + if isinstance(obj, Expr): + obj = normalize(obj) + if obj.op in (Op.INTEGER, Op.REAL, Op.COMPLEX, Op.SYMBOL, + Op.INDEXING, Op.TERNARY): + return obj, as_number(1) + elif obj.op is Op.APPLY: + if obj.data[0] is ArithOp.DIV and not obj.data[2]: + numers, denoms = map(as_numer_denom, obj.data[1]) + return numers[0] * denoms[1], numers[1] * denoms[0] + return obj, as_number(1) + elif obj.op is Op.TERMS: + numers, denoms = [], [] + for term, coeff in obj.data.items(): + n, d = as_numer_denom(term) + n = n * coeff + numers.append(n) + denoms.append(d) + numer, denom = as_number(0), as_number(1) + for i in range(len(numers)): + n = numers[i] + for j in range(len(numers)): + if i != j: + n *= denoms[j] + numer += n + denom *= denoms[i] + if denom.op in (Op.INTEGER, Op.REAL) and denom.data[0] < 0: + numer, denom = -numer, -denom + return numer, denom + elif obj.op is Op.FACTORS: + numer, denom = as_number(1), as_number(1) + for b, e in obj.data.items(): + bnumer, bdenom = as_numer_denom(b) + if e > 0: + numer *= bnumer ** e + denom *= bdenom ** e + elif e < 0: + numer *= bdenom ** (-e) + denom *= bnumer ** (-e) + return numer, denom + raise OpError(f'cannot convert {type(obj)} to numer and denom') + + +def _counter(): + # Used internally to generate unique dummy symbols + counter = 0 + while True: + counter += 1 + yield counter + + +COUNTER = _counter() + + +def eliminate_quotes(s): + """Replace quoted substrings of input string. + + Return a new string and a mapping of replacements. + """ + d = {} + + def repl(m): + kind, value = m.groups()[:2] + if kind: + # remove trailing underscore + kind = kind[:-1] + p = {"'": "SINGLE", '"': "DOUBLE"}[value[0]] + k = f'{kind}@__f2py_QUOTES_{p}_{COUNTER.__next__()}@' + d[k] = value + return k + + new_s = re.sub(r'({kind}_|)({single_quoted}|{double_quoted})'.format( + kind=r'\w[\w\d_]*', + single_quoted=r"('([^'\\]|(\\.))*')", + double_quoted=r'("([^"\\]|(\\.))*")'), + repl, s) + + assert '"' not in new_s + assert "'" not in new_s + + return new_s, d + + +def insert_quotes(s, d): + """Inverse of eliminate_quotes. + """ + for k, v in d.items(): + kind = k[:k.find('@')] + if kind: + kind += '_' + s = s.replace(k, kind + v) + return s + + +def replace_parenthesis(s): + """Replace substrings of input that are enclosed in parenthesis. + + Return a new string and a mapping of replacements. + """ + # Find a parenthesis pair that appears first. + + # Fortran deliminator are `(`, `)`, `[`, `]`, `(/', '/)`, `/`. + # We don't handle `/` deliminator because it is not a part of an + # expression. + left, right = None, None + mn_i = len(s) + for left_, right_ in (('(/', '/)'), + '()', + '{}', # to support C literal structs + '[]'): + i = s.find(left_) + if i == -1: + continue + if i < mn_i: + mn_i = i + left, right = left_, right_ + + if left is None: + return s, {} + + i = mn_i + j = s.find(right, i) + + while s.count(left, i + 1, j) != s.count(right, i + 1, j): + j = s.find(right, j + 1) + if j == -1: + raise ValueError(f'Mismatch of {left + right} parenthesis in {s!r}') + + p = {'(': 'ROUND', '[': 'SQUARE', '{': 'CURLY', '(/': 'ROUNDDIV'}[left] + + k = f'@__f2py_PARENTHESIS_{p}_{COUNTER.__next__()}@' + v = s[i + len(left):j] + r, d = replace_parenthesis(s[j + len(right):]) + d[k] = v + return s[:i] + k + r, d + + +def _get_parenthesis_kind(s): + assert s.startswith('@__f2py_PARENTHESIS_'), s + return s.split('_')[4] + + +def unreplace_parenthesis(s, d): + """Inverse of replace_parenthesis. + """ + for k, v in d.items(): + p = _get_parenthesis_kind(k) + left = {'ROUND': '(', 'SQUARE': '[', 'CURLY': '{', 'ROUNDDIV': '(/'}[p] + right = {'ROUND': ')', 'SQUARE': ']', 'CURLY': '}', 'ROUNDDIV': '/)'}[p] + s = s.replace(k, left + v + right) + return s + + +def fromstring(s, language=Language.C): + """Create an expression from a string. + + This is a "lazy" parser, that is, only arithmetic operations are + resolved, non-arithmetic operations are treated as symbols. + """ + r = _FromStringWorker(language=language).parse(s) + if isinstance(r, Expr): + return r + raise ValueError(f'failed to parse `{s}` to Expr instance: got `{r}`') + + +class _Pair: + # Internal class to represent a pair of expressions + + def __init__(self, left, right): + self.left = left + self.right = right + + def substitute(self, symbols_map): + left, right = self.left, self.right + if isinstance(left, Expr): + left = left.substitute(symbols_map) + if isinstance(right, Expr): + right = right.substitute(symbols_map) + return _Pair(left, right) + + def __repr__(self): + return f'{type(self).__name__}({self.left}, {self.right})' + + +class _FromStringWorker: + + def __init__(self, language=Language.C): + self.original = None + self.quotes_map = None + self.language = language + + def finalize_string(self, s): + return insert_quotes(s, self.quotes_map) + + def parse(self, inp): + self.original = inp + unquoted, self.quotes_map = eliminate_quotes(inp) + return self.process(unquoted) + + def process(self, s, context='expr'): + """Parse string within the given context. + + The context may define the result in case of ambiguous + expressions. For instance, consider expressions `f(x, y)` and + `(x, y) + (a, b)` where `f` is a function and pair `(x, y)` + denotes complex number. Specifying context as "args" or + "expr", the subexpression `(x, y)` will be parse to an + argument list or to a complex number, respectively. + """ + if isinstance(s, (list, tuple)): + return type(s)(self.process(s_, context) for s_ in s) + + assert isinstance(s, str), (type(s), s) + + # replace subexpressions in parenthesis with f2py @-names + r, raw_symbols_map = replace_parenthesis(s) + r = r.strip() + + def restore(r): + # restores subexpressions marked with f2py @-names + if isinstance(r, (list, tuple)): + return type(r)(map(restore, r)) + return unreplace_parenthesis(r, raw_symbols_map) + + # comma-separated tuple + if ',' in r: + operands = restore(r.split(',')) + if context == 'args': + return tuple(self.process(operands)) + if context == 'expr': + if len(operands) == 2: + # complex number literal + return as_complex(*self.process(operands)) + raise NotImplementedError( + f'parsing comma-separated list (context={context}): {r}') + + # ternary operation + m = re.match(r'\A([^?]+)[?]([^:]+)[:](.+)\Z', r) + if m: + assert context == 'expr', context + oper, expr1, expr2 = restore(m.groups()) + oper = self.process(oper) + expr1 = self.process(expr1) + expr2 = self.process(expr2) + return as_ternary(oper, expr1, expr2) + + # relational expression + if self.language is Language.Fortran: + m = re.match( + r'\A(.+)\s*[.](eq|ne|lt|le|gt|ge)[.]\s*(.+)\Z', r, re.I) + else: + m = re.match( + r'\A(.+)\s*([=][=]|[!][=]|[<][=]|[<]|[>][=]|[>])\s*(.+)\Z', r) + if m: + left, rop, right = m.groups() + if self.language is Language.Fortran: + rop = '.' + rop + '.' + left, right = self.process(restore((left, right))) + rop = RelOp.fromstring(rop, language=self.language) + return Expr(Op.RELATIONAL, (rop, left, right)) + + # keyword argument + m = re.match(r'\A(\w[\w\d_]*)\s*[=](.*)\Z', r) + if m: + keyname, value = m.groups() + value = restore(value) + return _Pair(keyname, self.process(value)) + + # addition/subtraction operations + operands = re.split(r'((? 1: + result = self.process(restore(operands[0] or '0')) + for op, operand in zip(operands[1::2], operands[2::2]): + operand = self.process(restore(operand)) + op = op.strip() + if op == '+': + result += operand + else: + assert op == '-' + result -= operand + return result + + # string concatenate operation + if self.language is Language.Fortran and '//' in r: + operands = restore(r.split('//')) + return Expr(Op.CONCAT, + tuple(self.process(operands))) + + # multiplication/division operations + operands = re.split(r'(?<=[@\w\d_])\s*([*]|/)', + (r if self.language is Language.C + else r.replace('**', '@__f2py_DOUBLE_STAR@'))) + if len(operands) > 1: + operands = restore(operands) + if self.language is not Language.C: + operands = [operand.replace('@__f2py_DOUBLE_STAR@', '**') + for operand in operands] + # Expression is an arithmetic product + result = self.process(operands[0]) + for op, operand in zip(operands[1::2], operands[2::2]): + operand = self.process(operand) + op = op.strip() + if op == '*': + result *= operand + else: + assert op == '/' + result /= operand + return result + + # referencing/dereferencing + if r.startswith(('*', '&')): + op = {'*': Op.DEREF, '&': Op.REF}[r[0]] + operand = self.process(restore(r[1:])) + return Expr(op, operand) + + # exponentiation operations + if self.language is not Language.C and '**' in r: + operands = list(reversed(restore(r.split('**')))) + result = self.process(operands[0]) + for operand in operands[1:]: + operand = self.process(operand) + result = operand ** result + return result + + # int-literal-constant + m = re.match(r'\A({digit_string})({kind}|)\Z'.format( + digit_string=r'\d+', + kind=r'_(\d+|\w[\w\d_]*)'), r) + if m: + value, _, kind = m.groups() + if kind and kind.isdigit(): + kind = int(kind) + return as_integer(int(value), kind or 4) + + # real-literal-constant + m = re.match(r'\A({significant}({exponent}|)|\d+{exponent})({kind}|)\Z' + .format( + significant=r'[.]\d+|\d+[.]\d*', + exponent=r'[edED][+-]?\d+', + kind=r'_(\d+|\w[\w\d_]*)'), r) + if m: + value, _, _, kind = m.groups() + if kind and kind.isdigit(): + kind = int(kind) + value = value.lower() + if 'd' in value: + return as_real(float(value.replace('d', 'e')), kind or 8) + return as_real(float(value), kind or 4) + + # string-literal-constant with kind parameter specification + if r in self.quotes_map: + kind = r[:r.find('@')] + return as_string(self.quotes_map[r], kind or 1) + + # array constructor or literal complex constant or + # parenthesized expression + if r in raw_symbols_map: + paren = _get_parenthesis_kind(r) + items = self.process(restore(raw_symbols_map[r]), + 'expr' if paren == 'ROUND' else 'args') + if paren == 'ROUND': + if isinstance(items, Expr): + return items + if paren in ['ROUNDDIV', 'SQUARE']: + # Expression is a array constructor + if isinstance(items, Expr): + items = (items,) + return as_array(items) + + # function call/indexing + m = re.match(r'\A(.+)\s*(@__f2py_PARENTHESIS_(ROUND|SQUARE)_\d+@)\Z', + r) + if m: + target, args, paren = m.groups() + target = self.process(restore(target)) + args = self.process(restore(args)[1:-1], 'args') + if not isinstance(args, tuple): + args = args, + if paren == 'ROUND': + kwargs = {a.left: a.right for a in args + if isinstance(a, _Pair)} + args = tuple(a for a in args if not isinstance(a, _Pair)) + # Warning: this could also be Fortran indexing operation.. + return as_apply(target, *args, **kwargs) + else: + # Expression is a C/Python indexing operation + # (e.g. used in .pyf files) + assert paren == 'SQUARE' + return target[args] + + # Fortran standard conforming identifier + m = re.match(r'\A\w[\w\d_]*\Z', r) + if m: + return as_symbol(r) + + # fall-back to symbol + r = self.finalize_string(restore(r)) + ewarn( + f'fromstring: treating {r!r} as symbol (original={self.original})') + return as_symbol(r) diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/symbolic.pyi b/.venv/lib/python3.12/site-packages/numpy/f2py/symbolic.pyi new file mode 100644 index 0000000..74e7a48 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/symbolic.pyi @@ -0,0 +1,221 @@ +from collections.abc import Callable, Mapping +from enum import Enum +from typing import Any, Generic, ParamSpec, Self, TypeAlias, overload +from typing import Literal as L + +from typing_extensions import TypeVar + +__all__ = ["Expr"] + +### + +_Tss = ParamSpec("_Tss") +_ExprT = TypeVar("_ExprT", bound=Expr) +_ExprT1 = TypeVar("_ExprT1", bound=Expr) +_ExprT2 = TypeVar("_ExprT2", bound=Expr) +_OpT_co = TypeVar("_OpT_co", bound=Op, default=Op, covariant=True) +_LanguageT_co = TypeVar("_LanguageT_co", bound=Language, default=Language, covariant=True) +_DataT_co = TypeVar("_DataT_co", default=Any, covariant=True) +_LeftT_co = TypeVar("_LeftT_co", default=Any, covariant=True) +_RightT_co = TypeVar("_RightT_co", default=Any, covariant=True) + +_RelCOrPy: TypeAlias = L["==", "!=", "<", "<=", ">", ">="] +_RelFortran: TypeAlias = L[".eq.", ".ne.", ".lt.", ".le.", ".gt.", ".ge."] + +_ToExpr: TypeAlias = Expr | complex | str +_ToExprN: TypeAlias = _ToExpr | tuple[_ToExprN, ...] +_NestedString: TypeAlias = str | tuple[_NestedString, ...] | list[_NestedString] + +### + +class OpError(Exception): ... +class ExprWarning(UserWarning): ... + +class Language(Enum): + Python = 0 + Fortran = 1 + C = 2 + +class Op(Enum): + INTEGER = 10 + REAL = 12 + COMPLEX = 15 + STRING = 20 + ARRAY = 30 + SYMBOL = 40 + TERNARY = 100 + APPLY = 200 + INDEXING = 210 + CONCAT = 220 + RELATIONAL = 300 + TERMS = 1_000 + FACTORS = 2_000 + REF = 3_000 + DEREF = 3_001 + +class RelOp(Enum): + EQ = 1 + NE = 2 + LT = 3 + LE = 4 + GT = 5 + GE = 6 + + @overload + @classmethod + def fromstring(cls, s: _RelCOrPy, language: L[Language.C, Language.Python] = ...) -> RelOp: ... + @overload + @classmethod + def fromstring(cls, s: _RelFortran, language: L[Language.Fortran]) -> RelOp: ... + + # + @overload + def tostring(self, /, language: L[Language.C, Language.Python] = ...) -> _RelCOrPy: ... + @overload + def tostring(self, /, language: L[Language.Fortran]) -> _RelFortran: ... + +class ArithOp(Enum): + POS = 1 + NEG = 2 + ADD = 3 + SUB = 4 + MUL = 5 + DIV = 6 + POW = 7 + +class Precedence(Enum): + ATOM = 0 + POWER = 1 + UNARY = 2 + PRODUCT = 3 + SUM = 4 + LT = 6 + EQ = 7 + LAND = 11 + LOR = 12 + TERNARY = 13 + ASSIGN = 14 + TUPLE = 15 + NONE = 100 + +class Expr(Generic[_OpT_co, _DataT_co]): + op: _OpT_co + data: _DataT_co + + @staticmethod + def parse(s: str, language: Language = ...) -> Expr: ... + + # + def __init__(self, /, op: Op, data: _DataT_co) -> None: ... + + # + def __lt__(self, other: Expr, /) -> bool: ... + def __le__(self, other: Expr, /) -> bool: ... + def __gt__(self, other: Expr, /) -> bool: ... + def __ge__(self, other: Expr, /) -> bool: ... + + # + def __pos__(self, /) -> Self: ... + def __neg__(self, /) -> Expr: ... + + # + def __add__(self, other: Expr, /) -> Expr: ... + def __radd__(self, other: Expr, /) -> Expr: ... + + # + def __sub__(self, other: Expr, /) -> Expr: ... + def __rsub__(self, other: Expr, /) -> Expr: ... + + # + def __mul__(self, other: Expr, /) -> Expr: ... + def __rmul__(self, other: Expr, /) -> Expr: ... + + # + def __pow__(self, other: Expr, /) -> Expr: ... + + # + def __truediv__(self, other: Expr, /) -> Expr: ... + def __rtruediv__(self, other: Expr, /) -> Expr: ... + + # + def __floordiv__(self, other: Expr, /) -> Expr: ... + def __rfloordiv__(self, other: Expr, /) -> Expr: ... + + # + def __call__( + self, + /, + *args: _ToExprN, + **kwargs: _ToExprN, + ) -> Expr[L[Op.APPLY], tuple[Self, tuple[Expr, ...], dict[str, Expr]]]: ... + + # + @overload + def __getitem__(self, index: _ExprT | tuple[_ExprT], /) -> Expr[L[Op.INDEXING], tuple[Self, _ExprT]]: ... + @overload + def __getitem__(self, index: _ToExpr | tuple[_ToExpr], /) -> Expr[L[Op.INDEXING], tuple[Self, Expr]]: ... + + # + def substitute(self, /, symbols_map: Mapping[Expr, Expr]) -> Expr: ... + + # + @overload + def traverse(self, /, visit: Callable[_Tss, None], *args: _Tss.args, **kwargs: _Tss.kwargs) -> Expr: ... + @overload + def traverse(self, /, visit: Callable[_Tss, _ExprT], *args: _Tss.args, **kwargs: _Tss.kwargs) -> _ExprT: ... + + # + def contains(self, /, other: Expr) -> bool: ... + + # + def symbols(self, /) -> set[Expr]: ... + def polynomial_atoms(self, /) -> set[Expr]: ... + + # + def linear_solve(self, /, symbol: Expr) -> tuple[Expr, Expr]: ... + + # + def tostring(self, /, parent_precedence: Precedence = ..., language: Language = ...) -> str: ... + +class _Pair(Generic[_LeftT_co, _RightT_co]): + left: _LeftT_co + right: _RightT_co + + def __init__(self, /, left: _LeftT_co, right: _RightT_co) -> None: ... + + # + @overload + def substitute(self: _Pair[_ExprT1, _ExprT2], /, symbols_map: Mapping[Expr, Expr]) -> _Pair[Expr, Expr]: ... + @overload + def substitute(self: _Pair[_ExprT1, object], /, symbols_map: Mapping[Expr, Expr]) -> _Pair[Expr, Any]: ... + @overload + def substitute(self: _Pair[object, _ExprT2], /, symbols_map: Mapping[Expr, Expr]) -> _Pair[Any, Expr]: ... + @overload + def substitute(self, /, symbols_map: Mapping[Expr, Expr]) -> _Pair: ... + +class _FromStringWorker(Generic[_LanguageT_co]): + language: _LanguageT_co + + original: str | None + quotes_map: dict[str, str] + + @overload + def __init__(self: _FromStringWorker[L[Language.C]], /, language: L[Language.C] = ...) -> None: ... + @overload + def __init__(self, /, language: _LanguageT_co) -> None: ... + + # + def finalize_string(self, /, s: str) -> str: ... + + # + def parse(self, /, inp: str) -> Expr | _Pair: ... + + # + @overload + def process(self, /, s: str, context: str = "expr") -> Expr | _Pair: ... + @overload + def process(self, /, s: list[str], context: str = "expr") -> list[Expr | _Pair]: ... + @overload + def process(self, /, s: tuple[str, ...], context: str = "expr") -> tuple[Expr | _Pair, ...]: ... + @overload + def process(self, /, s: _NestedString, context: str = "expr") -> Any: ... # noqa: ANN401 diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__init__.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__init__.py new file mode 100644 index 0000000..4ed8fdd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__init__.py @@ -0,0 +1,16 @@ +import pytest + +from numpy.testing import IS_EDITABLE, IS_WASM + +if IS_WASM: + pytest.skip( + "WASM/Pyodide does not use or support Fortran", + allow_module_level=True + ) + + +if IS_EDITABLE: + pytest.skip( + "Editable install doesn't support tests with a compile step", + allow_module_level=True + ) diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..b4e61fe Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_abstract_interface.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_abstract_interface.cpython-312.pyc new file mode 100644 index 0000000..afb21ae Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_abstract_interface.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_array_from_pyobj.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_array_from_pyobj.cpython-312.pyc new file mode 100644 index 0000000..bf3cfa1 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_array_from_pyobj.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_assumed_shape.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_assumed_shape.cpython-312.pyc new file mode 100644 index 0000000..d23a2ab Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_assumed_shape.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_block_docstring.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_block_docstring.cpython-312.pyc new file mode 100644 index 0000000..6c22d24 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_block_docstring.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_callback.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_callback.cpython-312.pyc new file mode 100644 index 0000000..1060810 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_callback.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_character.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_character.cpython-312.pyc new file mode 100644 index 0000000..b3fe4fe Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_character.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_common.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_common.cpython-312.pyc new file mode 100644 index 0000000..f45bf6c Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_common.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_crackfortran.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_crackfortran.cpython-312.pyc new file mode 100644 index 0000000..f7eb82b Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_crackfortran.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_data.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_data.cpython-312.pyc new file mode 100644 index 0000000..6173c49 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_data.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_docs.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_docs.cpython-312.pyc new file mode 100644 index 0000000..7e4d5ea Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_docs.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_f2cmap.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_f2cmap.cpython-312.pyc new file mode 100644 index 0000000..318354d Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_f2cmap.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_f2py2e.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_f2py2e.cpython-312.pyc new file mode 100644 index 0000000..9a4c7c7 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_f2py2e.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_isoc.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_isoc.cpython-312.pyc new file mode 100644 index 0000000..2f0a2a2 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_isoc.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_kind.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_kind.cpython-312.pyc new file mode 100644 index 0000000..d2fe85f Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_kind.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_mixed.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_mixed.cpython-312.pyc new file mode 100644 index 0000000..07e9d8c Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_mixed.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_modules.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_modules.cpython-312.pyc new file mode 100644 index 0000000..464290d Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_modules.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_parameter.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_parameter.cpython-312.pyc new file mode 100644 index 0000000..c16ffdc Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_parameter.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_pyf_src.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_pyf_src.cpython-312.pyc new file mode 100644 index 0000000..718b233 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_pyf_src.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_quoted_character.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_quoted_character.cpython-312.pyc new file mode 100644 index 0000000..3c47e3d Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_quoted_character.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_regression.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_regression.cpython-312.pyc new file mode 100644 index 0000000..12bb2a9 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_regression.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_return_character.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_return_character.cpython-312.pyc new file mode 100644 index 0000000..51955a1 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_return_character.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_return_complex.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_return_complex.cpython-312.pyc new file mode 100644 index 0000000..f4a3e44 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_return_complex.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_return_integer.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_return_integer.cpython-312.pyc new file mode 100644 index 0000000..3e59485 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_return_integer.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_return_logical.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_return_logical.cpython-312.pyc new file mode 100644 index 0000000..67ccc10 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_return_logical.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_return_real.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_return_real.cpython-312.pyc new file mode 100644 index 0000000..8fca71e Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_return_real.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_routines.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_routines.cpython-312.pyc new file mode 100644 index 0000000..481478e Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_routines.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_semicolon_split.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_semicolon_split.cpython-312.pyc new file mode 100644 index 0000000..e6b79ec Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_semicolon_split.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_size.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_size.cpython-312.pyc new file mode 100644 index 0000000..888e8de Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_size.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_string.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_string.cpython-312.pyc new file mode 100644 index 0000000..8132deb Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_string.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_symbolic.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_symbolic.cpython-312.pyc new file mode 100644 index 0000000..47c9da0 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_symbolic.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_value_attrspec.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_value_attrspec.cpython-312.pyc new file mode 100644 index 0000000..a7a2623 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/test_value_attrspec.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/util.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/util.cpython-312.pyc new file mode 100644 index 0000000..ccba96f Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/__pycache__/util.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/abstract_interface/foo.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/abstract_interface/foo.f90 new file mode 100644 index 0000000..76d16aa --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/abstract_interface/foo.f90 @@ -0,0 +1,34 @@ +module ops_module + + abstract interface + subroutine op(x, y, z) + integer, intent(in) :: x, y + integer, intent(out) :: z + end subroutine + end interface + +contains + + subroutine foo(x, y, r1, r2) + integer, intent(in) :: x, y + integer, intent(out) :: r1, r2 + procedure (op) add1, add2 + procedure (op), pointer::p + p=>add1 + call p(x, y, r1) + p=>add2 + call p(x, y, r2) + end subroutine +end module + +subroutine add1(x, y, z) + integer, intent(in) :: x, y + integer, intent(out) :: z + z = x + y +end subroutine + +subroutine add2(x, y, z) + integer, intent(in) :: x, y + integer, intent(out) :: z + z = x + 2 * y +end subroutine diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 new file mode 100644 index 0000000..36791e4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90 @@ -0,0 +1,6 @@ +module test + abstract interface + subroutine foo() + end subroutine + end interface +end module test diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c new file mode 100644 index 0000000..b66672a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c @@ -0,0 +1,235 @@ +/* + * This file was auto-generated with f2py (version:2_1330) and hand edited by + * Pearu for testing purposes. Do not edit this file unless you know what you + * are doing!!! + */ + +#ifdef __cplusplus +extern "C" { +#endif + +/*********************** See f2py2e/cfuncs.py: includes ***********************/ + +#define PY_SSIZE_T_CLEAN +#include +#include "fortranobject.h" +#include + +static PyObject *wrap_error; +static PyObject *wrap_module; + +/************************************ call ************************************/ +static char doc_f2py_rout_wrap_call[] = "\ +Function signature:\n\ + arr = call(type_num,dims,intent,obj)\n\ +Required arguments:\n" +" type_num : input int\n" +" dims : input int-sequence\n" +" intent : input int\n" +" obj : input python object\n" +"Return objects:\n" +" arr : array"; +static PyObject *f2py_rout_wrap_call(PyObject *capi_self, + PyObject *capi_args) { + PyObject * volatile capi_buildvalue = NULL; + int type_num = 0; + int elsize = 0; + npy_intp *dims = NULL; + PyObject *dims_capi = Py_None; + int rank = 0; + int intent = 0; + PyArrayObject *capi_arr_tmp = NULL; + PyObject *arr_capi = Py_None; + int i; + + if (!PyArg_ParseTuple(capi_args,"iiOiO|:wrap.call",\ + &type_num,&elsize,&dims_capi,&intent,&arr_capi)) + return NULL; + rank = PySequence_Length(dims_capi); + dims = malloc(rank*sizeof(npy_intp)); + for (i=0;ikind, + PyArray_DESCR(arr)->type, + PyArray_TYPE(arr), + PyArray_ITEMSIZE(arr), + PyDataType_ALIGNMENT(PyArray_DESCR(arr)), + PyArray_FLAGS(arr), + PyArray_ITEMSIZE(arr)); +} + +static PyMethodDef f2py_module_methods[] = { + + {"call",f2py_rout_wrap_call,METH_VARARGS,doc_f2py_rout_wrap_call}, + {"array_attrs",f2py_rout_wrap_attrs,METH_VARARGS,doc_f2py_rout_wrap_attrs}, + {NULL,NULL} +}; + +static struct PyModuleDef moduledef = { + PyModuleDef_HEAD_INIT, + "test_array_from_pyobj_ext", + NULL, + -1, + f2py_module_methods, + NULL, + NULL, + NULL, + NULL +}; + +PyMODINIT_FUNC PyInit_test_array_from_pyobj_ext(void) { + PyObject *m,*d, *s; + m = wrap_module = PyModule_Create(&moduledef); + Py_SET_TYPE(&PyFortran_Type, &PyType_Type); + import_array(); + if (PyErr_Occurred()) + Py_FatalError("can't initialize module wrap (failed to import numpy)"); + d = PyModule_GetDict(m); + s = PyUnicode_FromString("This module 'wrap' is auto-generated with f2py (version:2_1330).\nFunctions:\n" + " arr = call(type_num,dims,intent,obj)\n" + "."); + PyDict_SetItemString(d, "__doc__", s); + wrap_error = PyErr_NewException ("wrap.error", NULL, NULL); + Py_DECREF(s); + +#define ADDCONST(NAME, CONST) \ + s = PyLong_FromLong(CONST); \ + PyDict_SetItemString(d, NAME, s); \ + Py_DECREF(s) + + ADDCONST("F2PY_INTENT_IN", F2PY_INTENT_IN); + ADDCONST("F2PY_INTENT_INOUT", F2PY_INTENT_INOUT); + ADDCONST("F2PY_INTENT_OUT", F2PY_INTENT_OUT); + ADDCONST("F2PY_INTENT_HIDE", F2PY_INTENT_HIDE); + ADDCONST("F2PY_INTENT_CACHE", F2PY_INTENT_CACHE); + ADDCONST("F2PY_INTENT_COPY", F2PY_INTENT_COPY); + ADDCONST("F2PY_INTENT_C", F2PY_INTENT_C); + ADDCONST("F2PY_OPTIONAL", F2PY_OPTIONAL); + ADDCONST("F2PY_INTENT_INPLACE", F2PY_INTENT_INPLACE); + ADDCONST("NPY_BOOL", NPY_BOOL); + ADDCONST("NPY_BYTE", NPY_BYTE); + ADDCONST("NPY_UBYTE", NPY_UBYTE); + ADDCONST("NPY_SHORT", NPY_SHORT); + ADDCONST("NPY_USHORT", NPY_USHORT); + ADDCONST("NPY_INT", NPY_INT); + ADDCONST("NPY_UINT", NPY_UINT); + ADDCONST("NPY_INTP", NPY_INTP); + ADDCONST("NPY_UINTP", NPY_UINTP); + ADDCONST("NPY_LONG", NPY_LONG); + ADDCONST("NPY_ULONG", NPY_ULONG); + ADDCONST("NPY_LONGLONG", NPY_LONGLONG); + ADDCONST("NPY_ULONGLONG", NPY_ULONGLONG); + ADDCONST("NPY_FLOAT", NPY_FLOAT); + ADDCONST("NPY_DOUBLE", NPY_DOUBLE); + ADDCONST("NPY_LONGDOUBLE", NPY_LONGDOUBLE); + ADDCONST("NPY_CFLOAT", NPY_CFLOAT); + ADDCONST("NPY_CDOUBLE", NPY_CDOUBLE); + ADDCONST("NPY_CLONGDOUBLE", NPY_CLONGDOUBLE); + ADDCONST("NPY_OBJECT", NPY_OBJECT); + ADDCONST("NPY_STRING", NPY_STRING); + ADDCONST("NPY_UNICODE", NPY_UNICODE); + ADDCONST("NPY_VOID", NPY_VOID); + ADDCONST("NPY_NTYPES_LEGACY", NPY_NTYPES_LEGACY); + ADDCONST("NPY_NOTYPE", NPY_NOTYPE); + ADDCONST("NPY_USERDEF", NPY_USERDEF); + + ADDCONST("CONTIGUOUS", NPY_ARRAY_C_CONTIGUOUS); + ADDCONST("FORTRAN", NPY_ARRAY_F_CONTIGUOUS); + ADDCONST("OWNDATA", NPY_ARRAY_OWNDATA); + ADDCONST("FORCECAST", NPY_ARRAY_FORCECAST); + ADDCONST("ENSURECOPY", NPY_ARRAY_ENSURECOPY); + ADDCONST("ENSUREARRAY", NPY_ARRAY_ENSUREARRAY); + ADDCONST("ALIGNED", NPY_ARRAY_ALIGNED); + ADDCONST("WRITEABLE", NPY_ARRAY_WRITEABLE); + ADDCONST("WRITEBACKIFCOPY", NPY_ARRAY_WRITEBACKIFCOPY); + + ADDCONST("BEHAVED", NPY_ARRAY_BEHAVED); + ADDCONST("BEHAVED_NS", NPY_ARRAY_BEHAVED_NS); + ADDCONST("CARRAY", NPY_ARRAY_CARRAY); + ADDCONST("FARRAY", NPY_ARRAY_FARRAY); + ADDCONST("CARRAY_RO", NPY_ARRAY_CARRAY_RO); + ADDCONST("FARRAY_RO", NPY_ARRAY_FARRAY_RO); + ADDCONST("DEFAULT", NPY_ARRAY_DEFAULT); + ADDCONST("UPDATE_ALL", NPY_ARRAY_UPDATE_ALL); + +#undef ADDCONST + + if (PyErr_Occurred()) + Py_FatalError("can't initialize module wrap"); + +#ifdef F2PY_REPORT_ATEXIT + on_exit(f2py_report_on_exit,(void*)"array_from_pyobj.wrap.call"); +#endif + +#if Py_GIL_DISABLED + // signal whether this module supports running with the GIL disabled + PyUnstable_Module_SetGIL(m, Py_MOD_GIL_NOT_USED); +#endif + + return m; +} +#ifdef __cplusplus +} +#endif diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap new file mode 100644 index 0000000..2665f89 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap @@ -0,0 +1 @@ +dict(real=dict(rk="double")) diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/assumed_shape/foo_free.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/assumed_shape/foo_free.f90 new file mode 100644 index 0000000..b301710 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/assumed_shape/foo_free.f90 @@ -0,0 +1,34 @@ + +subroutine sum(x, res) + implicit none + real, intent(in) :: x(:) + real, intent(out) :: res + + integer :: i + + !print *, "sum: size(x) = ", size(x) + + res = 0.0 + + do i = 1, size(x) + res = res + x(i) + enddo + +end subroutine sum + +function fsum(x) result (res) + implicit none + real, intent(in) :: x(:) + real :: res + + integer :: i + + !print *, "fsum: size(x) = ", size(x) + + res = 0.0 + + do i = 1, size(x) + res = res + x(i) + enddo + +end function fsum diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/assumed_shape/foo_mod.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/assumed_shape/foo_mod.f90 new file mode 100644 index 0000000..cbe6317 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/assumed_shape/foo_mod.f90 @@ -0,0 +1,41 @@ + +module mod + +contains + +subroutine sum(x, res) + implicit none + real, intent(in) :: x(:) + real, intent(out) :: res + + integer :: i + + !print *, "sum: size(x) = ", size(x) + + res = 0.0 + + do i = 1, size(x) + res = res + x(i) + enddo + +end subroutine sum + +function fsum(x) result (res) + implicit none + real, intent(in) :: x(:) + real :: res + + integer :: i + + !print *, "fsum: size(x) = ", size(x) + + res = 0.0 + + do i = 1, size(x) + res = res + x(i) + enddo + +end function fsum + + +end module mod diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/assumed_shape/foo_use.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/assumed_shape/foo_use.f90 new file mode 100644 index 0000000..337465a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/assumed_shape/foo_use.f90 @@ -0,0 +1,19 @@ +subroutine sum_with_use(x, res) + use precision + + implicit none + + real(kind=rk), intent(in) :: x(:) + real(kind=rk), intent(out) :: res + + integer :: i + + !print *, "size(x) = ", size(x) + + res = 0.0 + + do i = 1, size(x) + res = res + x(i) + enddo + + end subroutine diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/assumed_shape/precision.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/assumed_shape/precision.f90 new file mode 100644 index 0000000..ed6c70c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/assumed_shape/precision.f90 @@ -0,0 +1,4 @@ +module precision + integer, parameter :: rk = selected_real_kind(8) + integer, parameter :: ik = selected_real_kind(4) +end module diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/block_docstring/foo.f b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/block_docstring/foo.f new file mode 100644 index 0000000..c8315f1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/block_docstring/foo.f @@ -0,0 +1,6 @@ + SUBROUTINE FOO() + INTEGER BAR(2, 3) + + COMMON /BLOCK/ BAR + RETURN + END diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/callback/foo.f b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/callback/foo.f new file mode 100644 index 0000000..ba397bb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/callback/foo.f @@ -0,0 +1,62 @@ + subroutine t(fun,a) + integer a +cf2py intent(out) a + external fun + call fun(a) + end + + subroutine func(a) +cf2py intent(in,out) a + integer a + a = a + 11 + end + + subroutine func0(a) +cf2py intent(out) a + integer a + a = 11 + end + + subroutine t2(a) +cf2py intent(callback) fun + integer a +cf2py intent(out) a + external fun + call fun(a) + end + + subroutine string_callback(callback, a) + external callback + double precision callback + double precision a + character*1 r +cf2py intent(out) a + r = 'r' + a = callback(r) + end + + subroutine string_callback_array(callback, cu, lencu, a) + external callback + integer callback + integer lencu + character*8 cu(lencu) + integer a +cf2py intent(out) a + + a = callback(cu, lencu) + end + + subroutine hidden_callback(a, r) + external global_f +cf2py intent(callback, hide) global_f + integer a, r, global_f +cf2py intent(out) r + r = global_f(a) + end + + subroutine hidden_callback2(a, r) + external global_f + integer a, r, global_f +cf2py intent(out) r + r = global_f(a) + end diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/callback/gh17797.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/callback/gh17797.f90 new file mode 100644 index 0000000..49853af --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/callback/gh17797.f90 @@ -0,0 +1,7 @@ +function gh17797(f, y) result(r) + external f + integer(8) :: r, f + integer(8), dimension(:) :: y + r = f(0) + r = r + sum(y) +end function gh17797 diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/callback/gh18335.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/callback/gh18335.f90 new file mode 100644 index 0000000..92b6d75 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/callback/gh18335.f90 @@ -0,0 +1,17 @@ + ! When gh18335_workaround is defined as an extension, + ! the issue cannot be reproduced. + !subroutine gh18335_workaround(f, y) + ! implicit none + ! external f + ! integer(kind=1) :: y(1) + ! call f(y) + !end subroutine gh18335_workaround + + function gh18335(f) result (r) + implicit none + external f + integer(kind=1) :: y(1), r + y(1) = 123 + call f(y) + r = y(1) + end function gh18335 diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/callback/gh25211.f b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/callback/gh25211.f new file mode 100644 index 0000000..ba727a1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/callback/gh25211.f @@ -0,0 +1,10 @@ + SUBROUTINE FOO(FUN,R) + EXTERNAL FUN + INTEGER I + REAL*8 R, FUN +Cf2py intent(out) r + R = 0D0 + DO I=-5,5 + R = R + FUN(I) + ENDDO + END diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/callback/gh25211.pyf b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/callback/gh25211.pyf new file mode 100644 index 0000000..f120111 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/callback/gh25211.pyf @@ -0,0 +1,18 @@ +python module __user__routines + interface + function fun(i) result (r) + integer :: i + real*8 :: r + end function fun + end interface +end python module __user__routines + +python module callback2 + interface + subroutine foo(f,r) + use __user__routines, f=>fun + external f + real*8 intent(out) :: r + end subroutine foo + end interface +end python module callback2 diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/callback/gh26681.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/callback/gh26681.f90 new file mode 100644 index 0000000..00c0ec9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/callback/gh26681.f90 @@ -0,0 +1,18 @@ +module utils + implicit none + contains + subroutine my_abort(message) + implicit none + character(len=*), intent(in) :: message + !f2py callstatement PyErr_SetString(PyExc_ValueError, message);f2py_success = 0; + !f2py callprotoargument char* + write(0,*) "THIS SHOULD NOT APPEAR" + stop 1 + end subroutine my_abort + + subroutine do_something(message) + !f2py intent(callback, hide) mypy_abort + character(len=*), intent(in) :: message + call mypy_abort(message) + end subroutine do_something +end module utils diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/cli/gh_22819.pyf b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/cli/gh_22819.pyf new file mode 100644 index 0000000..8eb5bb1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/cli/gh_22819.pyf @@ -0,0 +1,6 @@ +python module test_22819 + interface + subroutine hello() + end subroutine hello + end interface +end python module test_22819 diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/cli/hi77.f b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/cli/hi77.f new file mode 100644 index 0000000..8b916eb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/cli/hi77.f @@ -0,0 +1,3 @@ + SUBROUTINE HI + PRINT*, "HELLO WORLD" + END SUBROUTINE diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/cli/hiworld.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/cli/hiworld.f90 new file mode 100644 index 0000000..981f877 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/cli/hiworld.f90 @@ -0,0 +1,3 @@ +function hi() + print*, "Hello World" +end function diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/common/block.f b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/common/block.f new file mode 100644 index 0000000..7ea7968 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/common/block.f @@ -0,0 +1,11 @@ + SUBROUTINE INITCB + DOUBLE PRECISION LONG + CHARACTER STRING + INTEGER OK + + COMMON /BLOCK/ LONG, STRING, OK + LONG = 1.0 + STRING = '2' + OK = 3 + RETURN + END diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/common/gh19161.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/common/gh19161.f90 new file mode 100644 index 0000000..a2f4073 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/common/gh19161.f90 @@ -0,0 +1,10 @@ +module typedefmod + use iso_fortran_env, only: real32 +end module typedefmod + +module data + use typedefmod, only: real32 + implicit none + real(kind=real32) :: x + common/test/x +end module data diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/accesstype.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/accesstype.f90 new file mode 100644 index 0000000..e2cbd44 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/accesstype.f90 @@ -0,0 +1,13 @@ +module foo + public + type, private, bind(c) :: a + integer :: i + end type a + type, bind(c) :: b_ + integer :: j + end type b_ + public :: b_ + type :: c + integer :: k + end type c +end module foo diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/common_with_division.f b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/common_with_division.f new file mode 100644 index 0000000..4aa12cf --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/common_with_division.f @@ -0,0 +1,17 @@ + subroutine common_with_division + integer lmu,lb,lub,lpmin + parameter (lmu=1) + parameter (lb=20) +c crackfortran fails to parse this +c parameter (lub=(lb-1)*lmu+1) +c crackfortran can successfully parse this though + parameter (lub=lb*lmu-lmu+1) + parameter (lpmin=2) + +c crackfortran fails to parse this correctly +c common /mortmp/ ctmp((lub*(lub+1)*(lub+1))/lpmin+1) + + common /mortmp/ ctmp(lub/lpmin+1) + + return + end diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/data_common.f b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/data_common.f new file mode 100644 index 0000000..5ffd865 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/data_common.f @@ -0,0 +1,8 @@ + BLOCK DATA PARAM_INI + COMMON /MYCOM/ MYDATA + DATA MYDATA /0/ + END + SUBROUTINE SUB1 + COMMON /MYCOM/ MYDATA + MYDATA = MYDATA + 1 + END diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/data_multiplier.f b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/data_multiplier.f new file mode 100644 index 0000000..19ff8a8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/data_multiplier.f @@ -0,0 +1,5 @@ + BLOCK DATA MYBLK + IMPLICIT DOUBLE PRECISION (A-H,O-Z) + COMMON /MYCOM/ IVAR1, IVAR2, IVAR3, IVAR4, EVAR5 + DATA IVAR1, IVAR2, IVAR3, IVAR4, EVAR5 /2*3,2*2,0.0D0/ + END diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/data_stmts.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/data_stmts.f90 new file mode 100644 index 0000000..576c5e4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/data_stmts.f90 @@ -0,0 +1,20 @@ +! gh-23276 +module cmplxdat + implicit none + integer :: i, j + real :: x, y + real, dimension(2) :: z + real(kind=8) :: pi + complex(kind=8), target :: medium_ref_index + complex(kind=8), target :: ref_index_one, ref_index_two + complex(kind=8), dimension(2) :: my_array + real(kind=8), dimension(3) :: my_real_array = (/1.0d0, 2.0d0, 3.0d0/) + + data i, j / 2, 3 / + data x, y / 1.5, 2.0 / + data z / 3.5, 7.0 / + data medium_ref_index / (1.d0, 0.d0) / + data ref_index_one, ref_index_two / (13.0d0, 21.0d0), (-30.0d0, 43.0d0) / + data my_array / (1.0d0, 2.0d0), (-3.0d0, 4.0d0) / + data pi / 3.1415926535897932384626433832795028841971693993751058209749445923078164062d0 / +end module cmplxdat diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/data_with_comments.f b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/data_with_comments.f new file mode 100644 index 0000000..4128f00 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/data_with_comments.f @@ -0,0 +1,8 @@ + BLOCK DATA PARAM_INI + COMMON /MYCOM/ MYTAB + INTEGER MYTAB(3) + DATA MYTAB/ + * 0, ! 1 and more commenty stuff + * 4, ! 2 + * 0 / + END diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/foo_deps.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/foo_deps.f90 new file mode 100644 index 0000000..e327b25 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/foo_deps.f90 @@ -0,0 +1,6 @@ +module foo + type bar + character(len = 4) :: text + end type bar + type(bar), parameter :: abar = bar('abar') +end module foo diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh15035.f b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh15035.f new file mode 100644 index 0000000..1bb2e67 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh15035.f @@ -0,0 +1,16 @@ + subroutine subb(k) + real(8), intent(inout) :: k(:) + k=k+1 + endsubroutine + + subroutine subc(w,k) + real(8), intent(in) :: w(:) + real(8), intent(out) :: k(size(w)) + k=w+1 + endsubroutine + + function t0(value) + character value + character t0 + t0 = value + endfunction diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh17859.f b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh17859.f new file mode 100644 index 0000000..9959538 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh17859.f @@ -0,0 +1,12 @@ + integer(8) function external_as_statement(fcn) + implicit none + external fcn + integer(8) :: fcn + external_as_statement = fcn(0) + end + + integer(8) function external_as_attribute(fcn) + implicit none + integer(8), external :: fcn + external_as_attribute = fcn(0) + end diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh22648.pyf b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh22648.pyf new file mode 100644 index 0000000..b3454f1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh22648.pyf @@ -0,0 +1,7 @@ +python module iri16py ! in + interface ! in :iri16py + block data ! in :iri16py:iridreg_modified.for + COMMON /fircom/ eden,tabhe,tabla,tabmo,tabza,tabfl + end block data + end interface +end python module iri16py diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh23533.f b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh23533.f new file mode 100644 index 0000000..db522af --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh23533.f @@ -0,0 +1,5 @@ + SUBROUTINE EXAMPLE( ) + IF( .TRUE. ) THEN + CALL DO_SOMETHING() + END IF ! ** .TRUE. ** + END diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh23598.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh23598.f90 new file mode 100644 index 0000000..e0dffb5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh23598.f90 @@ -0,0 +1,4 @@ +integer function intproduct(a, b) result(res) + integer, intent(in) :: a, b + res = a*b +end function diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 new file mode 100644 index 0000000..3b44efc --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh23598Warn.f90 @@ -0,0 +1,11 @@ +module test_bug + implicit none + private + public :: intproduct + +contains + integer function intproduct(a, b) result(res) + integer, intent(in) :: a, b + res = a*b + end function +end module diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh23879.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh23879.f90 new file mode 100644 index 0000000..fac262d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh23879.f90 @@ -0,0 +1,20 @@ +module gh23879 + implicit none + private + public :: foo + + contains + + subroutine foo(a, b) + integer, intent(in) :: a + integer, intent(out) :: b + b = a + call bar(b) + end subroutine + + subroutine bar(x) + integer, intent(inout) :: x + x = 2*x + end subroutine + + end module gh23879 diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh27697.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh27697.f90 new file mode 100644 index 0000000..a5eae4e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh27697.f90 @@ -0,0 +1,12 @@ +module utils + implicit none + contains + subroutine my_abort(message) + implicit none + character(len=*), intent(in) :: message + !f2py callstatement PyErr_SetString(PyExc_ValueError, message);f2py_success = 0; + !f2py callprotoargument char* + write(0,*) "THIS SHOULD NOT APPEAR" + stop 1 + end subroutine my_abort +end module utils diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh2848.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh2848.f90 new file mode 100644 index 0000000..31ea932 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/gh2848.f90 @@ -0,0 +1,13 @@ + subroutine gh2848( & + ! first 2 parameters + par1, par2,& + ! last 2 parameters + par3, par4) + + integer, intent(in) :: par1, par2 + integer, intent(out) :: par3, par4 + + par3 = par1 + par4 = par2 + + end subroutine gh2848 diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/operators.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/operators.f90 new file mode 100644 index 0000000..1d060a3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/operators.f90 @@ -0,0 +1,49 @@ +module foo + type bar + character(len = 32) :: item + end type bar + interface operator(.item.) + module procedure item_int, item_real + end interface operator(.item.) + interface operator(==) + module procedure items_are_equal + end interface operator(==) + interface assignment(=) + module procedure get_int, get_real + end interface assignment(=) +contains + function item_int(val) result(elem) + integer, intent(in) :: val + type(bar) :: elem + + write(elem%item, "(I32)") val + end function item_int + + function item_real(val) result(elem) + real, intent(in) :: val + type(bar) :: elem + + write(elem%item, "(1PE32.12)") val + end function item_real + + function items_are_equal(val1, val2) result(equal) + type(bar), intent(in) :: val1, val2 + logical :: equal + + equal = (val1%item == val2%item) + end function items_are_equal + + subroutine get_real(rval, item) + real, intent(out) :: rval + type(bar), intent(in) :: item + + read(item%item, *) rval + end subroutine get_real + + subroutine get_int(rval, item) + integer, intent(out) :: rval + type(bar), intent(in) :: item + + read(item%item, *) rval + end subroutine get_int +end module foo diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/privatemod.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/privatemod.f90 new file mode 100644 index 0000000..2674c21 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/privatemod.f90 @@ -0,0 +1,11 @@ +module foo + private + integer :: a + public :: setA + integer :: b +contains + subroutine setA(v) + integer, intent(in) :: v + a = v + end subroutine setA +end module foo diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/publicmod.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/publicmod.f90 new file mode 100644 index 0000000..1db76e3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/publicmod.f90 @@ -0,0 +1,10 @@ +module foo + public + integer, private :: a + public :: setA +contains + subroutine setA(v) + integer, intent(in) :: v + a = v + end subroutine setA +end module foo diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/pubprivmod.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/pubprivmod.f90 new file mode 100644 index 0000000..46bef7c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/pubprivmod.f90 @@ -0,0 +1,10 @@ +module foo + public + integer, private :: a + integer :: b +contains + subroutine setA(v) + integer, intent(in) :: v + a = v + end subroutine setA +end module foo diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/unicode_comment.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/unicode_comment.f90 new file mode 100644 index 0000000..13515ce --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/crackfortran/unicode_comment.f90 @@ -0,0 +1,4 @@ +subroutine foo(x) + real(8), intent(in) :: x + ! Écrit à l'écran la valeur de x +end subroutine diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/f2cmap/.f2py_f2cmap b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/f2cmap/.f2py_f2cmap new file mode 100644 index 0000000..a4425f8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/f2cmap/.f2py_f2cmap @@ -0,0 +1 @@ +dict(real=dict(real32='float', real64='double'), integer=dict(int64='long_long')) diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 new file mode 100644 index 0000000..1e1dc1d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90 @@ -0,0 +1,9 @@ + subroutine func1(n, x, res) + use, intrinsic :: iso_fortran_env, only: int64, real64 + implicit none + integer(int64), intent(in) :: n + real(real64), intent(in) :: x(n) + real(real64), intent(out) :: res +!f2py intent(hide) :: n + res = sum(x) + end diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/isocintrin/isoCtests.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/isocintrin/isoCtests.f90 new file mode 100644 index 0000000..765f7c1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/isocintrin/isoCtests.f90 @@ -0,0 +1,34 @@ + module coddity + use iso_c_binding, only: c_double, c_int, c_int64_t + implicit none + contains + subroutine c_add(a, b, c) bind(c, name="c_add") + real(c_double), intent(in) :: a, b + real(c_double), intent(out) :: c + c = a + b + end subroutine c_add + ! gh-9693 + function wat(x, y) result(z) bind(c) + integer(c_int), intent(in) :: x, y + integer(c_int) :: z + + z = x + 7 + end function wat + ! gh-25207 + subroutine c_add_int64(a, b, c) bind(c) + integer(c_int64_t), intent(in) :: a, b + integer(c_int64_t), intent(out) :: c + c = a + b + end subroutine c_add_int64 + ! gh-25207 + subroutine add_arr(A, B, C) + integer(c_int64_t), intent(in) :: A(3) + integer(c_int64_t), intent(in) :: B(3) + integer(c_int64_t), intent(out) :: C(3) + integer :: j + + do j = 1, 3 + C(j) = A(j)+B(j) + end do + end subroutine + end module coddity diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/kind/foo.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/kind/foo.f90 new file mode 100644 index 0000000..d3d15cf --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/kind/foo.f90 @@ -0,0 +1,20 @@ + + +subroutine selectedrealkind(p, r, res) + implicit none + + integer, intent(in) :: p, r + !f2py integer :: r=0 + integer, intent(out) :: res + res = selected_real_kind(p, r) + +end subroutine + +subroutine selectedintkind(p, res) + implicit none + + integer, intent(in) :: p + integer, intent(out) :: res + res = selected_int_kind(p) + +end subroutine diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/mixed/foo.f b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/mixed/foo.f new file mode 100644 index 0000000..c347425 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/mixed/foo.f @@ -0,0 +1,5 @@ + subroutine bar11(a) +cf2py intent(out) a + integer a + a = 11 + end diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/mixed/foo_fixed.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/mixed/foo_fixed.f90 new file mode 100644 index 0000000..7543a6a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/mixed/foo_fixed.f90 @@ -0,0 +1,8 @@ + module foo_fixed + contains + subroutine bar12(a) +!f2py intent(out) a + integer a + a = 12 + end subroutine bar12 + end module foo_fixed diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/mixed/foo_free.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/mixed/foo_free.f90 new file mode 100644 index 0000000..c1b641f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/mixed/foo_free.f90 @@ -0,0 +1,8 @@ +module foo_free +contains + subroutine bar13(a) + !f2py intent(out) a + integer a + a = 13 + end subroutine bar13 +end module foo_free diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/modules/gh25337/data.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/modules/gh25337/data.f90 new file mode 100644 index 0000000..483d13c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/modules/gh25337/data.f90 @@ -0,0 +1,8 @@ +module data + real(8) :: shift +contains + subroutine set_shift(in_shift) + real(8), intent(in) :: in_shift + shift = in_shift + end subroutine set_shift +end module data diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/modules/gh25337/use_data.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/modules/gh25337/use_data.f90 new file mode 100644 index 0000000..b3fae8b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/modules/gh25337/use_data.f90 @@ -0,0 +1,6 @@ +subroutine shift_a(dim_a, a) + use data, only: shift + integer, intent(in) :: dim_a + real(8), intent(inout), dimension(dim_a) :: a + a = a + shift +end subroutine shift_a diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 new file mode 100644 index 0000000..07adce5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/modules/gh26920/two_mods_with_no_public_entities.f90 @@ -0,0 +1,21 @@ + module mod2 + implicit none + private mod2_func1 + contains + + subroutine mod2_func1() + print*, "mod2_func1" + end subroutine mod2_func1 + + end module mod2 + + module mod1 + implicit none + private :: mod1_func1 + contains + + subroutine mod1_func1() + print*, "mod1_func1" + end subroutine mod1_func1 + + end module mod1 diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 new file mode 100644 index 0000000..b7fb95b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/modules/gh26920/two_mods_with_one_public_routine.f90 @@ -0,0 +1,21 @@ + module mod2 + implicit none + PUBLIC :: mod2_func1 + contains + + subroutine mod2_func1() + print*, "mod2_func1" + end subroutine mod2_func1 + + end module mod2 + + module mod1 + implicit none + PUBLIC :: mod1_func1 + contains + + subroutine mod1_func1() + print*, "mod1_func1" + end subroutine mod1_func1 + + end module mod1 diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/modules/module_data_docstring.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/modules/module_data_docstring.f90 new file mode 100644 index 0000000..4505e0c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/modules/module_data_docstring.f90 @@ -0,0 +1,12 @@ +module mod + integer :: i + integer :: x(4) + real, dimension(2,3) :: a + real, allocatable, dimension(:,:) :: b +contains + subroutine foo + integer :: k + k = 1 + a(1,2) = a(1,2)+3 + end subroutine foo +end module mod diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/modules/use_modules.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/modules/use_modules.f90 new file mode 100644 index 0000000..aa40c86 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/modules/use_modules.f90 @@ -0,0 +1,20 @@ +module mathops + implicit none +contains + function add(a, b) result(c) + integer, intent(in) :: a, b + integer :: c + c = a + b + end function add +end module mathops + +module useops + use mathops, only: add + implicit none +contains + function sum_and_double(a, b) result(d) + integer, intent(in) :: a, b + integer :: d + d = 2 * add(a, b) + end function sum_and_double +end module useops diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/negative_bounds/issue_20853.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/negative_bounds/issue_20853.f90 new file mode 100644 index 0000000..bf1fa92 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/negative_bounds/issue_20853.f90 @@ -0,0 +1,7 @@ +subroutine foo(is_, ie_, arr, tout) + implicit none + integer :: is_,ie_ + real, intent(in) :: arr(is_:ie_) + real, intent(out) :: tout(is_:ie_) + tout = arr +end diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/parameter/constant_array.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/parameter/constant_array.f90 new file mode 100644 index 0000000..9a6bf81 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/parameter/constant_array.f90 @@ -0,0 +1,45 @@ +! Check that parameter arrays are correctly intercepted. +subroutine foo_array(x, y, z) + implicit none + integer, parameter :: dp = selected_real_kind(15) + integer, parameter :: pa = 2 + integer, parameter :: intparamarray(2) = (/ 3, 5 /) + integer, dimension(pa), parameter :: pb = (/ 2, 10 /) + integer, parameter, dimension(intparamarray(1)) :: pc = (/ 2, 10, 20 /) + real(dp), parameter :: doubleparamarray(3) = (/ 3.14_dp, 4._dp, 6.44_dp /) + real(dp), intent(inout) :: x(intparamarray(1)) + real(dp), intent(inout) :: y(intparamarray(2)) + real(dp), intent(out) :: z + + x = x/pb(2) + y = y*pc(2) + z = doubleparamarray(1)*doubleparamarray(2) + doubleparamarray(3) + + return +end subroutine + +subroutine foo_array_any_index(x, y) + implicit none + integer, parameter :: dp = selected_real_kind(15) + integer, parameter, dimension(-1:1) :: myparamarray = (/ 6, 3, 1 /) + integer, parameter, dimension(2) :: nested = (/ 2, 0 /) + integer, parameter :: dim = 2 + real(dp), intent(in) :: x(myparamarray(-1)) + real(dp), intent(out) :: y(nested(1), myparamarray(nested(dim))) + + y = reshape(x, (/nested(1), myparamarray(nested(2))/)) + + return +end subroutine + +subroutine foo_array_delims(x) + implicit none + integer, parameter :: dp = selected_real_kind(15) + integer, parameter, dimension(2) :: myparamarray = (/ (6), 1 /) + integer, parameter, dimension(3) :: test = (/2, 1, (3)/) + real(dp), intent(out) :: x + + x = myparamarray(1)+test(3) + + return +end subroutine diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/parameter/constant_both.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/parameter/constant_both.f90 new file mode 100644 index 0000000..ac90ced --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/parameter/constant_both.f90 @@ -0,0 +1,57 @@ +! Check that parameters are correct intercepted. +! Constants with comma separations are commonly +! used, for instance Pi = 3._dp +subroutine foo(x) + implicit none + integer, parameter :: sp = selected_real_kind(6) + integer, parameter :: dp = selected_real_kind(15) + integer, parameter :: ii = selected_int_kind(9) + integer, parameter :: il = selected_int_kind(18) + real(dp), intent(inout) :: x + dimension x(3) + real(sp), parameter :: three_s = 3._sp + real(dp), parameter :: three_d = 3._dp + integer(ii), parameter :: three_i = 3_ii + integer(il), parameter :: three_l = 3_il + x(1) = x(1) + x(2) * three_s * three_i + x(3) * three_d * three_l + x(2) = x(2) * three_s + x(3) = x(3) * three_l + return +end subroutine + + +subroutine foo_no(x) + implicit none + integer, parameter :: sp = selected_real_kind(6) + integer, parameter :: dp = selected_real_kind(15) + integer, parameter :: ii = selected_int_kind(9) + integer, parameter :: il = selected_int_kind(18) + real(dp), intent(inout) :: x + dimension x(3) + real(sp), parameter :: three_s = 3. + real(dp), parameter :: three_d = 3. + integer(ii), parameter :: three_i = 3 + integer(il), parameter :: three_l = 3 + x(1) = x(1) + x(2) * three_s * three_i + x(3) * three_d * three_l + x(2) = x(2) * three_s + x(3) = x(3) * three_l + return +end subroutine + +subroutine foo_sum(x) + implicit none + integer, parameter :: sp = selected_real_kind(6) + integer, parameter :: dp = selected_real_kind(15) + integer, parameter :: ii = selected_int_kind(9) + integer, parameter :: il = selected_int_kind(18) + real(dp), intent(inout) :: x + dimension x(3) + real(sp), parameter :: three_s = 2._sp + 1._sp + real(dp), parameter :: three_d = 1._dp + 2._dp + integer(ii), parameter :: three_i = 2_ii + 1_ii + integer(il), parameter :: three_l = 1_il + 2_il + x(1) = x(1) + x(2) * three_s * three_i + x(3) * three_d * three_l + x(2) = x(2) * three_s + x(3) = x(3) * three_l + return +end subroutine diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/parameter/constant_compound.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/parameter/constant_compound.f90 new file mode 100644 index 0000000..e51f5e9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/parameter/constant_compound.f90 @@ -0,0 +1,15 @@ +! Check that parameters are correct intercepted. +! Constants with comma separations are commonly +! used, for instance Pi = 3._dp +subroutine foo_compound_int(x) + implicit none + integer, parameter :: ii = selected_int_kind(9) + integer(ii), intent(inout) :: x + dimension x(3) + integer(ii), parameter :: three = 3_ii + integer(ii), parameter :: two = 2_ii + integer(ii), parameter :: six = three * 1_ii * two + + x(1) = x(1) + x(2) + x(3) * six + return +end subroutine diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/parameter/constant_integer.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/parameter/constant_integer.f90 new file mode 100644 index 0000000..aaa83d2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/parameter/constant_integer.f90 @@ -0,0 +1,22 @@ +! Check that parameters are correct intercepted. +! Constants with comma separations are commonly +! used, for instance Pi = 3._dp +subroutine foo_int(x) + implicit none + integer, parameter :: ii = selected_int_kind(9) + integer(ii), intent(inout) :: x + dimension x(3) + integer(ii), parameter :: three = 3_ii + x(1) = x(1) + x(2) + x(3) * three + return +end subroutine + +subroutine foo_long(x) + implicit none + integer, parameter :: ii = selected_int_kind(18) + integer(ii), intent(inout) :: x + dimension x(3) + integer(ii), parameter :: three = 3_ii + x(1) = x(1) + x(2) + x(3) * three + return +end subroutine diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/parameter/constant_non_compound.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/parameter/constant_non_compound.f90 new file mode 100644 index 0000000..62c9a5b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/parameter/constant_non_compound.f90 @@ -0,0 +1,23 @@ +! Check that parameters are correct intercepted. +! Specifically that types of constants without +! compound kind specs are correctly inferred +! adapted Gibbs iteration code from pymc +! for this test case +subroutine foo_non_compound_int(x) + implicit none + integer, parameter :: ii = selected_int_kind(9) + + integer(ii) maxiterates + parameter (maxiterates=2) + + integer(ii) maxseries + parameter (maxseries=2) + + integer(ii) wasize + parameter (wasize=maxiterates*maxseries) + integer(ii), intent(inout) :: x + dimension x(wasize) + + x(1) = x(1) + x(2) + x(3) + x(4) * wasize + return +end subroutine diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/parameter/constant_real.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/parameter/constant_real.f90 new file mode 100644 index 0000000..02ac9dd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/parameter/constant_real.f90 @@ -0,0 +1,23 @@ +! Check that parameters are correct intercepted. +! Constants with comma separations are commonly +! used, for instance Pi = 3._dp +subroutine foo_single(x) + implicit none + integer, parameter :: rp = selected_real_kind(6) + real(rp), intent(inout) :: x + dimension x(3) + real(rp), parameter :: three = 3._rp + x(1) = x(1) + x(2) + x(3) * three + return +end subroutine + +subroutine foo_double(x) + implicit none + integer, parameter :: rp = selected_real_kind(15) + real(rp), intent(inout) :: x + dimension x(3) + real(rp), parameter :: three = 3._rp + x(1) = x(1) + x(2) + x(3) * three + return +end subroutine + diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/quoted_character/foo.f b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/quoted_character/foo.f new file mode 100644 index 0000000..9dc1cfa --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/quoted_character/foo.f @@ -0,0 +1,14 @@ + SUBROUTINE FOO(OUT1, OUT2, OUT3, OUT4, OUT5, OUT6) + CHARACTER SINGLE, DOUBLE, SEMICOL, EXCLA, OPENPAR, CLOSEPAR + PARAMETER (SINGLE="'", DOUBLE='"', SEMICOL=';', EXCLA="!", + 1 OPENPAR="(", CLOSEPAR=")") + CHARACTER OUT1, OUT2, OUT3, OUT4, OUT5, OUT6 +Cf2py intent(out) OUT1, OUT2, OUT3, OUT4, OUT5, OUT6 + OUT1 = SINGLE + OUT2 = DOUBLE + OUT3 = SEMICOL + OUT4 = EXCLA + OUT5 = OPENPAR + OUT6 = CLOSEPAR + RETURN + END diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/AB.inc b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/AB.inc new file mode 100644 index 0000000..8a02f63 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/AB.inc @@ -0,0 +1 @@ +real(8) b, n, m diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/assignOnlyModule.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/assignOnlyModule.f90 new file mode 100644 index 0000000..479ac79 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/assignOnlyModule.f90 @@ -0,0 +1,25 @@ + MODULE MOD_TYPES + INTEGER, PARAMETER :: SP = SELECTED_REAL_KIND(6, 37) + INTEGER, PARAMETER :: DP = SELECTED_REAL_KIND(15, 307) + END MODULE +! + MODULE F_GLOBALS + USE MOD_TYPES + IMPLICIT NONE + INTEGER, PARAMETER :: N_MAX = 16 + INTEGER, PARAMETER :: I_MAX = 18 + INTEGER, PARAMETER :: J_MAX = 72 + REAL(SP) :: XREF + END MODULE F_GLOBALS +! + SUBROUTINE DUMMY () +! + USE F_GLOBALS + USE MOD_TYPES + IMPLICIT NONE +! + REAL(SP) :: MINIMAL + MINIMAL = 0.01*XREF + RETURN +! + END SUBROUTINE DUMMY diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/datonly.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/datonly.f90 new file mode 100644 index 0000000..67fc4ac --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/datonly.f90 @@ -0,0 +1,17 @@ +module datonly + implicit none + integer, parameter :: max_value = 100 + real, dimension(:), allocatable :: data_array +end module datonly + +module dat + implicit none + integer, parameter :: max_= 1009 +end module dat + +subroutine simple_subroutine(ain, aout) + use dat, only: max_ + integer, intent(in) :: ain + integer, intent(out) :: aout + aout = ain + max_ +end subroutine simple_subroutine diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/f77comments.f b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/f77comments.f new file mode 100644 index 0000000..452a01a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/f77comments.f @@ -0,0 +1,26 @@ + SUBROUTINE TESTSUB( + & INPUT1, INPUT2, !Input + & OUTPUT1, OUTPUT2) !Output + + IMPLICIT NONE + INTEGER, INTENT(IN) :: INPUT1, INPUT2 + INTEGER, INTENT(OUT) :: OUTPUT1, OUTPUT2 + + OUTPUT1 = INPUT1 + INPUT2 + OUTPUT2 = INPUT1 * INPUT2 + + RETURN + END SUBROUTINE TESTSUB + + SUBROUTINE TESTSUB2(OUTPUT) + IMPLICIT NONE + INTEGER, PARAMETER :: N = 10 ! Array dimension + REAL, INTENT(OUT) :: OUTPUT(N) + INTEGER :: I + + DO I = 1, N + OUTPUT(I) = I * 2.0 + END DO + + RETURN + END diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/f77fixedform.f95 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/f77fixedform.f95 new file mode 100644 index 0000000..e47a13f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/f77fixedform.f95 @@ -0,0 +1,5 @@ +C This is an invalid file, but it does compile with -ffixed-form + subroutine mwe( + & x) + real x + end subroutine mwe diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/f90continuation.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/f90continuation.f90 new file mode 100644 index 0000000..879e716 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/f90continuation.f90 @@ -0,0 +1,9 @@ +SUBROUTINE TESTSUB(INPUT1, & ! Hello +! commenty +INPUT2, OUTPUT1, OUTPUT2) ! more comments + INTEGER, INTENT(IN) :: INPUT1, INPUT2 + INTEGER, INTENT(OUT) :: OUTPUT1, OUTPUT2 + OUTPUT1 = INPUT1 + & + INPUT2 + OUTPUT2 = INPUT1 * INPUT2 +END SUBROUTINE TESTSUB diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/incfile.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/incfile.f90 new file mode 100644 index 0000000..276ef3a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/incfile.f90 @@ -0,0 +1,5 @@ +function add(n,m) result(b) + implicit none + include 'AB.inc' + b = n + m +end function add diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/inout.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/inout.f90 new file mode 100644 index 0000000..80cdad9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/inout.f90 @@ -0,0 +1,9 @@ +! Check that intent(in out) translates as intent(inout). +! The separation seems to be a common usage. + subroutine foo(x) + implicit none + real(4), intent(in out) :: x + dimension x(3) + x(1) = x(1) + x(2) + x(3) + return + end diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 new file mode 100644 index 0000000..1c4b8c1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/lower_f2py_fortran.f90 @@ -0,0 +1,5 @@ +subroutine inquire_next(IU) + IMPLICIT NONE + integer :: IU + !f2py intent(in) IU +end subroutine diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/mod_derived_types.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/mod_derived_types.f90 new file mode 100644 index 0000000..7692c82 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/regression/mod_derived_types.f90 @@ -0,0 +1,23 @@ +module mtypes + implicit none + integer, parameter :: value1 = 100 + type :: master_data + integer :: idat = 200 + end type master_data + type(master_data) :: masterdata +end module mtypes + + +subroutine no_type_subroutine(ain, aout) + use mtypes, only: value1 + integer, intent(in) :: ain + integer, intent(out) :: aout + aout = ain + value1 +end subroutine no_type_subroutine + +subroutine type_subroutine(ain, aout) + use mtypes, only: masterdata + integer, intent(in) :: ain + integer, intent(out) :: aout + aout = ain + masterdata%idat +end subroutine type_subroutine \ No newline at end of file diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_character/foo77.f b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_character/foo77.f new file mode 100644 index 0000000..facae10 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_character/foo77.f @@ -0,0 +1,45 @@ + function t0(value) + character value + character t0 + t0 = value + end + function t1(value) + character*1 value + character*1 t1 + t1 = value + end + function t5(value) + character*5 value + character*5 t5 + t5 = value + end + function ts(value) + character*(*) value + character*(*) ts + ts = value + end + + subroutine s0(t0,value) + character value + character t0 +cf2py intent(out) t0 + t0 = value + end + subroutine s1(t1,value) + character*1 value + character*1 t1 +cf2py intent(out) t1 + t1 = value + end + subroutine s5(t5,value) + character*5 value + character*5 t5 +cf2py intent(out) t5 + t5 = value + end + subroutine ss(ts,value) + character*(*) value + character*10 ts +cf2py intent(out) ts + ts = value + end diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_character/foo90.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_character/foo90.f90 new file mode 100644 index 0000000..36182bc --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_character/foo90.f90 @@ -0,0 +1,48 @@ +module f90_return_char + contains + function t0(value) + character :: value + character :: t0 + t0 = value + end function t0 + function t1(value) + character(len=1) :: value + character(len=1) :: t1 + t1 = value + end function t1 + function t5(value) + character(len=5) :: value + character(len=5) :: t5 + t5 = value + end function t5 + function ts(value) + character(len=*) :: value + character(len=10) :: ts + ts = value + end function ts + + subroutine s0(t0,value) + character :: value + character :: t0 +!f2py intent(out) t0 + t0 = value + end subroutine s0 + subroutine s1(t1,value) + character(len=1) :: value + character(len=1) :: t1 +!f2py intent(out) t1 + t1 = value + end subroutine s1 + subroutine s5(t5,value) + character(len=5) :: value + character(len=5) :: t5 +!f2py intent(out) t5 + t5 = value + end subroutine s5 + subroutine ss(ts,value) + character(len=*) :: value + character(len=10) :: ts +!f2py intent(out) ts + ts = value + end subroutine ss +end module f90_return_char diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_complex/foo77.f b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_complex/foo77.f new file mode 100644 index 0000000..37a1ec8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_complex/foo77.f @@ -0,0 +1,45 @@ + function t0(value) + complex value + complex t0 + t0 = value + end + function t8(value) + complex*8 value + complex*8 t8 + t8 = value + end + function t16(value) + complex*16 value + complex*16 t16 + t16 = value + end + function td(value) + double complex value + double complex td + td = value + end + + subroutine s0(t0,value) + complex value + complex t0 +cf2py intent(out) t0 + t0 = value + end + subroutine s8(t8,value) + complex*8 value + complex*8 t8 +cf2py intent(out) t8 + t8 = value + end + subroutine s16(t16,value) + complex*16 value + complex*16 t16 +cf2py intent(out) t16 + t16 = value + end + subroutine sd(td,value) + double complex value + double complex td +cf2py intent(out) td + td = value + end diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_complex/foo90.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_complex/foo90.f90 new file mode 100644 index 0000000..adc27b4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_complex/foo90.f90 @@ -0,0 +1,48 @@ +module f90_return_complex + contains + function t0(value) + complex :: value + complex :: t0 + t0 = value + end function t0 + function t8(value) + complex(kind=4) :: value + complex(kind=4) :: t8 + t8 = value + end function t8 + function t16(value) + complex(kind=8) :: value + complex(kind=8) :: t16 + t16 = value + end function t16 + function td(value) + double complex :: value + double complex :: td + td = value + end function td + + subroutine s0(t0,value) + complex :: value + complex :: t0 +!f2py intent(out) t0 + t0 = value + end subroutine s0 + subroutine s8(t8,value) + complex(kind=4) :: value + complex(kind=4) :: t8 +!f2py intent(out) t8 + t8 = value + end subroutine s8 + subroutine s16(t16,value) + complex(kind=8) :: value + complex(kind=8) :: t16 +!f2py intent(out) t16 + t16 = value + end subroutine s16 + subroutine sd(td,value) + double complex :: value + double complex :: td +!f2py intent(out) td + td = value + end subroutine sd +end module f90_return_complex diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_integer/foo77.f b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_integer/foo77.f new file mode 100644 index 0000000..1ab895b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_integer/foo77.f @@ -0,0 +1,56 @@ + function t0(value) + integer value + integer t0 + t0 = value + end + function t1(value) + integer*1 value + integer*1 t1 + t1 = value + end + function t2(value) + integer*2 value + integer*2 t2 + t2 = value + end + function t4(value) + integer*4 value + integer*4 t4 + t4 = value + end + function t8(value) + integer*8 value + integer*8 t8 + t8 = value + end + + subroutine s0(t0,value) + integer value + integer t0 +cf2py intent(out) t0 + t0 = value + end + subroutine s1(t1,value) + integer*1 value + integer*1 t1 +cf2py intent(out) t1 + t1 = value + end + subroutine s2(t2,value) + integer*2 value + integer*2 t2 +cf2py intent(out) t2 + t2 = value + end + subroutine s4(t4,value) + integer*4 value + integer*4 t4 +cf2py intent(out) t4 + t4 = value + end + subroutine s8(t8,value) + integer*8 value + integer*8 t8 +cf2py intent(out) t8 + t8 = value + end diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_integer/foo90.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_integer/foo90.f90 new file mode 100644 index 0000000..ba9249a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_integer/foo90.f90 @@ -0,0 +1,59 @@ +module f90_return_integer + contains + function t0(value) + integer :: value + integer :: t0 + t0 = value + end function t0 + function t1(value) + integer(kind=1) :: value + integer(kind=1) :: t1 + t1 = value + end function t1 + function t2(value) + integer(kind=2) :: value + integer(kind=2) :: t2 + t2 = value + end function t2 + function t4(value) + integer(kind=4) :: value + integer(kind=4) :: t4 + t4 = value + end function t4 + function t8(value) + integer(kind=8) :: value + integer(kind=8) :: t8 + t8 = value + end function t8 + + subroutine s0(t0,value) + integer :: value + integer :: t0 +!f2py intent(out) t0 + t0 = value + end subroutine s0 + subroutine s1(t1,value) + integer(kind=1) :: value + integer(kind=1) :: t1 +!f2py intent(out) t1 + t1 = value + end subroutine s1 + subroutine s2(t2,value) + integer(kind=2) :: value + integer(kind=2) :: t2 +!f2py intent(out) t2 + t2 = value + end subroutine s2 + subroutine s4(t4,value) + integer(kind=4) :: value + integer(kind=4) :: t4 +!f2py intent(out) t4 + t4 = value + end subroutine s4 + subroutine s8(t8,value) + integer(kind=8) :: value + integer(kind=8) :: t8 +!f2py intent(out) t8 + t8 = value + end subroutine s8 +end module f90_return_integer diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_logical/foo77.f b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_logical/foo77.f new file mode 100644 index 0000000..ef53014 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_logical/foo77.f @@ -0,0 +1,56 @@ + function t0(value) + logical value + logical t0 + t0 = value + end + function t1(value) + logical*1 value + logical*1 t1 + t1 = value + end + function t2(value) + logical*2 value + logical*2 t2 + t2 = value + end + function t4(value) + logical*4 value + logical*4 t4 + t4 = value + end +c function t8(value) +c logical*8 value +c logical*8 t8 +c t8 = value +c end + + subroutine s0(t0,value) + logical value + logical t0 +cf2py intent(out) t0 + t0 = value + end + subroutine s1(t1,value) + logical*1 value + logical*1 t1 +cf2py intent(out) t1 + t1 = value + end + subroutine s2(t2,value) + logical*2 value + logical*2 t2 +cf2py intent(out) t2 + t2 = value + end + subroutine s4(t4,value) + logical*4 value + logical*4 t4 +cf2py intent(out) t4 + t4 = value + end +c subroutine s8(t8,value) +c logical*8 value +c logical*8 t8 +cf2py intent(out) t8 +c t8 = value +c end diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_logical/foo90.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_logical/foo90.f90 new file mode 100644 index 0000000..a452646 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_logical/foo90.f90 @@ -0,0 +1,59 @@ +module f90_return_logical + contains + function t0(value) + logical :: value + logical :: t0 + t0 = value + end function t0 + function t1(value) + logical(kind=1) :: value + logical(kind=1) :: t1 + t1 = value + end function t1 + function t2(value) + logical(kind=2) :: value + logical(kind=2) :: t2 + t2 = value + end function t2 + function t4(value) + logical(kind=4) :: value + logical(kind=4) :: t4 + t4 = value + end function t4 + function t8(value) + logical(kind=8) :: value + logical(kind=8) :: t8 + t8 = value + end function t8 + + subroutine s0(t0,value) + logical :: value + logical :: t0 +!f2py intent(out) t0 + t0 = value + end subroutine s0 + subroutine s1(t1,value) + logical(kind=1) :: value + logical(kind=1) :: t1 +!f2py intent(out) t1 + t1 = value + end subroutine s1 + subroutine s2(t2,value) + logical(kind=2) :: value + logical(kind=2) :: t2 +!f2py intent(out) t2 + t2 = value + end subroutine s2 + subroutine s4(t4,value) + logical(kind=4) :: value + logical(kind=4) :: t4 +!f2py intent(out) t4 + t4 = value + end subroutine s4 + subroutine s8(t8,value) + logical(kind=8) :: value + logical(kind=8) :: t8 +!f2py intent(out) t8 + t8 = value + end subroutine s8 +end module f90_return_logical diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_real/foo77.f b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_real/foo77.f new file mode 100644 index 0000000..bf43dbf --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_real/foo77.f @@ -0,0 +1,45 @@ + function t0(value) + real value + real t0 + t0 = value + end + function t4(value) + real*4 value + real*4 t4 + t4 = value + end + function t8(value) + real*8 value + real*8 t8 + t8 = value + end + function td(value) + double precision value + double precision td + td = value + end + + subroutine s0(t0,value) + real value + real t0 +cf2py intent(out) t0 + t0 = value + end + subroutine s4(t4,value) + real*4 value + real*4 t4 +cf2py intent(out) t4 + t4 = value + end + subroutine s8(t8,value) + real*8 value + real*8 t8 +cf2py intent(out) t8 + t8 = value + end + subroutine sd(td,value) + double precision value + double precision td +cf2py intent(out) td + td = value + end diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_real/foo90.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_real/foo90.f90 new file mode 100644 index 0000000..df97199 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/return_real/foo90.f90 @@ -0,0 +1,48 @@ +module f90_return_real + contains + function t0(value) + real :: value + real :: t0 + t0 = value + end function t0 + function t4(value) + real(kind=4) :: value + real(kind=4) :: t4 + t4 = value + end function t4 + function t8(value) + real(kind=8) :: value + real(kind=8) :: t8 + t8 = value + end function t8 + function td(value) + double precision :: value + double precision :: td + td = value + end function td + + subroutine s0(t0,value) + real :: value + real :: t0 +!f2py intent(out) t0 + t0 = value + end subroutine s0 + subroutine s4(t4,value) + real(kind=4) :: value + real(kind=4) :: t4 +!f2py intent(out) t4 + t4 = value + end subroutine s4 + subroutine s8(t8,value) + real(kind=8) :: value + real(kind=8) :: t8 +!f2py intent(out) t8 + t8 = value + end subroutine s8 + subroutine sd(td,value) + double precision :: value + double precision :: td +!f2py intent(out) td + td = value + end subroutine sd +end module f90_return_real diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/routines/funcfortranname.f b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/routines/funcfortranname.f new file mode 100644 index 0000000..89be972 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/routines/funcfortranname.f @@ -0,0 +1,5 @@ + REAL*8 FUNCTION FUNCFORTRANNAME(A,B) + REAL*8 A, B + FUNCFORTRANNAME = A + B + RETURN + END FUNCTION diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/routines/funcfortranname.pyf b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/routines/funcfortranname.pyf new file mode 100644 index 0000000..8730ca6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/routines/funcfortranname.pyf @@ -0,0 +1,11 @@ +python module funcfortranname ! in + interface ! in :funcfortranname + function funcfortranname_default(a,b) ! in :funcfortranname:funcfortranname.f + fortranname funcfortranname + real*8 :: a + real*8 :: b + real*8 :: funcfortranname_default + real*8, intent(out) :: funcfortranname + end function funcfortranname_default + end interface +end python module funcfortranname diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/routines/subrout.f b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/routines/subrout.f new file mode 100644 index 0000000..1d1eeae --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/routines/subrout.f @@ -0,0 +1,4 @@ + SUBROUTINE SUBROUT(A,B,C) + REAL*8 A, B, C + C = A + B + END SUBROUTINE diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/routines/subrout.pyf b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/routines/subrout.pyf new file mode 100644 index 0000000..e27cbe1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/routines/subrout.pyf @@ -0,0 +1,10 @@ +python module subrout ! in + interface ! in :subrout + subroutine subrout_default(a,b,c) ! in :subrout:subrout.f + fortranname subrout + real*8 :: a + real*8 :: b + real*8, intent(out) :: c + end subroutine subrout_default + end interface +end python module subrout diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/size/foo.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/size/foo.f90 new file mode 100644 index 0000000..5b66f8c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/size/foo.f90 @@ -0,0 +1,44 @@ + +subroutine foo(a, n, m, b) + implicit none + + real, intent(in) :: a(n, m) + integer, intent(in) :: n, m + real, intent(out) :: b(size(a, 1)) + + integer :: i + + do i = 1, size(b) + b(i) = sum(a(i,:)) + enddo +end subroutine + +subroutine trans(x,y) + implicit none + real, intent(in), dimension(:,:) :: x + real, intent(out), dimension( size(x,2), size(x,1) ) :: y + integer :: N, M, i, j + N = size(x,1) + M = size(x,2) + DO i=1,N + do j=1,M + y(j,i) = x(i,j) + END DO + END DO +end subroutine trans + +subroutine flatten(x,y) + implicit none + real, intent(in), dimension(:,:) :: x + real, intent(out), dimension( size(x) ) :: y + integer :: N, M, i, j, k + N = size(x,1) + M = size(x,2) + k = 1 + DO i=1,N + do j=1,M + y(k) = x(i,j) + k = k + 1 + END DO + END DO +end subroutine flatten diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/char.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/char.f90 new file mode 100644 index 0000000..bb7985c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/char.f90 @@ -0,0 +1,29 @@ +MODULE char_test + +CONTAINS + +SUBROUTINE change_strings(strings, n_strs, out_strings) + IMPLICIT NONE + + ! Inputs + INTEGER, INTENT(IN) :: n_strs + CHARACTER, INTENT(IN), DIMENSION(2,n_strs) :: strings + CHARACTER, INTENT(OUT), DIMENSION(2,n_strs) :: out_strings + +!f2py INTEGER, INTENT(IN) :: n_strs +!f2py CHARACTER, INTENT(IN), DIMENSION(2,n_strs) :: strings +!f2py CHARACTER, INTENT(OUT), DIMENSION(2,n_strs) :: strings + + ! Misc. + INTEGER*4 :: j + + + DO j=1, n_strs + out_strings(1,j) = strings(1,j) + out_strings(2,j) = 'A' + END DO + +END SUBROUTINE change_strings + +END MODULE char_test + diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/fixed_string.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/fixed_string.f90 new file mode 100644 index 0000000..7fd1585 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/fixed_string.f90 @@ -0,0 +1,34 @@ +function sint(s) result(i) + implicit none + character(len=*) :: s + integer :: j, i + i = 0 + do j=len(s), 1, -1 + if (.not.((i.eq.0).and.(s(j:j).eq.' '))) then + i = i + ichar(s(j:j)) * 10 ** (j - 1) + endif + end do + return + end function sint + + function test_in_bytes4(a) result (i) + implicit none + integer :: sint + character(len=4) :: a + integer :: i + i = sint(a) + a(1:1) = 'A' + return + end function test_in_bytes4 + + function test_inout_bytes4(a) result (i) + implicit none + integer :: sint + character(len=4), intent(inout) :: a + integer :: i + if (a(1:1).ne.' ') then + a(1:1) = 'E' + endif + i = sint(a) + return + end function test_inout_bytes4 diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/gh24008.f b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/gh24008.f new file mode 100644 index 0000000..ab64cf7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/gh24008.f @@ -0,0 +1,8 @@ + SUBROUTINE GREET(NAME, GREETING) + CHARACTER NAME*(*), GREETING*(*) + CHARACTER*(50) MESSAGE + + MESSAGE = 'Hello, ' // NAME // ', ' // GREETING +c$$$ PRINT *, MESSAGE + + END SUBROUTINE GREET diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/gh24662.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/gh24662.f90 new file mode 100644 index 0000000..ca53413 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/gh24662.f90 @@ -0,0 +1,7 @@ +subroutine string_inout_optional(output) + implicit none + character*(32), optional, intent(inout) :: output + if (present(output)) then + output="output string" + endif +end subroutine diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/gh25286.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/gh25286.f90 new file mode 100644 index 0000000..db1c710 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/gh25286.f90 @@ -0,0 +1,14 @@ +subroutine charint(trans, info) + character, intent(in) :: trans + integer, intent(out) :: info + if (trans == 'N') then + info = 1 + else if (trans == 'T') then + info = 2 + else if (trans == 'C') then + info = 3 + else + info = -1 + end if + +end subroutine charint diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/gh25286.pyf b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/gh25286.pyf new file mode 100644 index 0000000..7b96090 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/gh25286.pyf @@ -0,0 +1,12 @@ +python module _char_handling_test + interface + subroutine charint(trans, info) + callstatement (*f2py_func)(&trans, &info) + callprotoargument char*, int* + + character, intent(in), check(trans=='N'||trans=='T'||trans=='C') :: trans = 'N' + integer intent(out) :: info + + end subroutine charint + end interface +end python module _char_handling_test diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/gh25286_bc.pyf b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/gh25286_bc.pyf new file mode 100644 index 0000000..e7b10fa --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/gh25286_bc.pyf @@ -0,0 +1,12 @@ +python module _char_handling_test + interface + subroutine charint(trans, info) + callstatement (*f2py_func)(&trans, &info) + callprotoargument char*, int* + + character, intent(in), check(*trans=='N'||*trans=='T'||*trans=='C') :: trans = 'N' + integer intent(out) :: info + + end subroutine charint + end interface +end python module _char_handling_test diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/scalar_string.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/scalar_string.f90 new file mode 100644 index 0000000..f8f0761 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/scalar_string.f90 @@ -0,0 +1,9 @@ +MODULE string_test + + character(len=8) :: string + character string77 * 8 + + character(len=12), dimension(5,7) :: strarr + character strarr77(5,7) * 12 + +END MODULE string_test diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/string.f b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/string.f new file mode 100644 index 0000000..5210ca4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/string/string.f @@ -0,0 +1,12 @@ +C FILE: STRING.F + SUBROUTINE FOO(A,B,C,D) + CHARACTER*5 A, B + CHARACTER*(*) C,D +Cf2py intent(in) a,c +Cf2py intent(inout) b,d + A(1:1) = 'A' + B(1:1) = 'B' + C(1:1) = 'C' + D(1:1) = 'D' + END +C END OF FILE STRING.F diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/value_attrspec/gh21665.f90 b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/value_attrspec/gh21665.f90 new file mode 100644 index 0000000..7d9dc0f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/src/value_attrspec/gh21665.f90 @@ -0,0 +1,9 @@ +module fortfuncs + implicit none +contains + subroutine square(x,y) + integer, intent(in), value :: x + integer, intent(out) :: y + y = x*x + end subroutine square +end module fortfuncs diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_abstract_interface.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_abstract_interface.py new file mode 100644 index 0000000..21e77db --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_abstract_interface.py @@ -0,0 +1,26 @@ +import pytest + +from numpy.f2py import crackfortran +from numpy.testing import IS_WASM + +from . import util + + +@pytest.mark.skipif(IS_WASM, reason="Cannot start subprocess") +@pytest.mark.slow +class TestAbstractInterface(util.F2PyTest): + sources = [util.getpath("tests", "src", "abstract_interface", "foo.f90")] + + skip = ["add1", "add2"] + + def test_abstract_interface(self): + assert self.module.ops_module.foo(3, 5) == (8, 13) + + def test_parse_abstract_interface(self): + # Test gh18403 + fpath = util.getpath("tests", "src", "abstract_interface", + "gh18403_mod.f90") + mod = crackfortran.crackfortran([str(fpath)]) + assert len(mod) == 1 + assert len(mod[0]["body"]) == 1 + assert mod[0]["body"][0]["block"] == "abstract interface" diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_array_from_pyobj.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_array_from_pyobj.py new file mode 100644 index 0000000..a8f9527 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_array_from_pyobj.py @@ -0,0 +1,678 @@ +import copy +import platform +import sys +from pathlib import Path + +import pytest + +import numpy as np +from numpy._core._type_aliases import c_names_dict as _c_names_dict + +from . import util + +wrap = None + +# Extend core typeinfo with CHARACTER to test dtype('c') +c_names_dict = dict( + CHARACTER=np.dtype("c"), + **_c_names_dict +) + + +def get_testdir(): + testroot = Path(__file__).resolve().parent / "src" + return testroot / "array_from_pyobj" + +def setup_module(): + """ + Build the required testing extension module + + """ + global wrap + + if wrap is None: + src = [ + get_testdir() / "wrapmodule.c", + ] + wrap = util.build_meson(src, module_name="test_array_from_pyobj_ext") + + +def flags_info(arr): + flags = wrap.array_attrs(arr)[6] + return flags2names(flags) + + +def flags2names(flags): + info = [] + for flagname in [ + "CONTIGUOUS", + "FORTRAN", + "OWNDATA", + "ENSURECOPY", + "ENSUREARRAY", + "ALIGNED", + "NOTSWAPPED", + "WRITEABLE", + "WRITEBACKIFCOPY", + "UPDATEIFCOPY", + "BEHAVED", + "BEHAVED_RO", + "CARRAY", + "FARRAY", + ]: + if abs(flags) & getattr(wrap, flagname, 0): + info.append(flagname) + return info + + +class Intent: + def __init__(self, intent_list=[]): + self.intent_list = intent_list[:] + flags = 0 + for i in intent_list: + if i == "optional": + flags |= wrap.F2PY_OPTIONAL + else: + flags |= getattr(wrap, "F2PY_INTENT_" + i.upper()) + self.flags = flags + + def __getattr__(self, name): + name = name.lower() + if name == "in_": + name = "in" + return self.__class__(self.intent_list + [name]) + + def __str__(self): + return f"intent({','.join(self.intent_list)})" + + def __repr__(self): + return f"Intent({self.intent_list!r})" + + def is_intent(self, *names): + return all(name in self.intent_list for name in names) + + def is_intent_exact(self, *names): + return len(self.intent_list) == len(names) and self.is_intent(*names) + + +intent = Intent() + +_type_names = [ + "BOOL", + "BYTE", + "UBYTE", + "SHORT", + "USHORT", + "INT", + "UINT", + "LONG", + "ULONG", + "LONGLONG", + "ULONGLONG", + "FLOAT", + "DOUBLE", + "CFLOAT", + "STRING1", + "STRING5", + "CHARACTER", +] + +_cast_dict = {"BOOL": ["BOOL"]} +_cast_dict["BYTE"] = _cast_dict["BOOL"] + ["BYTE"] +_cast_dict["UBYTE"] = _cast_dict["BOOL"] + ["UBYTE"] +_cast_dict["BYTE"] = ["BYTE"] +_cast_dict["UBYTE"] = ["UBYTE"] +_cast_dict["SHORT"] = _cast_dict["BYTE"] + ["UBYTE", "SHORT"] +_cast_dict["USHORT"] = _cast_dict["UBYTE"] + ["BYTE", "USHORT"] +_cast_dict["INT"] = _cast_dict["SHORT"] + ["USHORT", "INT"] +_cast_dict["UINT"] = _cast_dict["USHORT"] + ["SHORT", "UINT"] + +_cast_dict["LONG"] = _cast_dict["INT"] + ["LONG"] +_cast_dict["ULONG"] = _cast_dict["UINT"] + ["ULONG"] + +_cast_dict["LONGLONG"] = _cast_dict["LONG"] + ["LONGLONG"] +_cast_dict["ULONGLONG"] = _cast_dict["ULONG"] + ["ULONGLONG"] + +_cast_dict["FLOAT"] = _cast_dict["SHORT"] + ["USHORT", "FLOAT"] +_cast_dict["DOUBLE"] = _cast_dict["INT"] + ["UINT", "FLOAT", "DOUBLE"] + +_cast_dict["CFLOAT"] = _cast_dict["FLOAT"] + ["CFLOAT"] + +_cast_dict['STRING1'] = ['STRING1'] +_cast_dict['STRING5'] = ['STRING5'] +_cast_dict['CHARACTER'] = ['CHARACTER'] + +# 32 bit system malloc typically does not provide the alignment required by +# 16 byte long double types this means the inout intent cannot be satisfied +# and several tests fail as the alignment flag can be randomly true or false +# when numpy gains an aligned allocator the tests could be enabled again +# +# Furthermore, on macOS ARM64, LONGDOUBLE is an alias for DOUBLE. +if ((np.intp().dtype.itemsize != 4 or np.clongdouble().dtype.alignment <= 8) + and sys.platform != "win32" + and (platform.system(), platform.processor()) != ("Darwin", "arm")): + _type_names.extend(["LONGDOUBLE", "CDOUBLE", "CLONGDOUBLE"]) + _cast_dict["LONGDOUBLE"] = _cast_dict["LONG"] + [ + "ULONG", + "FLOAT", + "DOUBLE", + "LONGDOUBLE", + ] + _cast_dict["CLONGDOUBLE"] = _cast_dict["LONGDOUBLE"] + [ + "CFLOAT", + "CDOUBLE", + "CLONGDOUBLE", + ] + _cast_dict["CDOUBLE"] = _cast_dict["DOUBLE"] + ["CFLOAT", "CDOUBLE"] + + +class Type: + _type_cache = {} + + def __new__(cls, name): + if isinstance(name, np.dtype): + dtype0 = name + name = None + for n, i in c_names_dict.items(): + if not isinstance(i, type) and dtype0.type is i.type: + name = n + break + obj = cls._type_cache.get(name.upper(), None) + if obj is not None: + return obj + obj = object.__new__(cls) + obj._init(name) + cls._type_cache[name.upper()] = obj + return obj + + def _init(self, name): + self.NAME = name.upper() + + if self.NAME == 'CHARACTER': + info = c_names_dict[self.NAME] + self.type_num = wrap.NPY_STRING + self.elsize = 1 + self.dtype = np.dtype('c') + elif self.NAME.startswith('STRING'): + info = c_names_dict[self.NAME[:6]] + self.type_num = wrap.NPY_STRING + self.elsize = int(self.NAME[6:] or 0) + self.dtype = np.dtype(f'S{self.elsize}') + else: + info = c_names_dict[self.NAME] + self.type_num = getattr(wrap, 'NPY_' + self.NAME) + self.elsize = info.itemsize + self.dtype = np.dtype(info.type) + + assert self.type_num == info.num + self.type = info.type + self.dtypechar = info.char + + def __repr__(self): + return (f"Type({self.NAME})|type_num={self.type_num}," + f" dtype={self.dtype}," + f" type={self.type}, elsize={self.elsize}," + f" dtypechar={self.dtypechar}") + + def cast_types(self): + return [self.__class__(_m) for _m in _cast_dict[self.NAME]] + + def all_types(self): + return [self.__class__(_m) for _m in _type_names] + + def smaller_types(self): + bits = c_names_dict[self.NAME].alignment + types = [] + for name in _type_names: + if c_names_dict[name].alignment < bits: + types.append(Type(name)) + return types + + def equal_types(self): + bits = c_names_dict[self.NAME].alignment + types = [] + for name in _type_names: + if name == self.NAME: + continue + if c_names_dict[name].alignment == bits: + types.append(Type(name)) + return types + + def larger_types(self): + bits = c_names_dict[self.NAME].alignment + types = [] + for name in _type_names: + if c_names_dict[name].alignment > bits: + types.append(Type(name)) + return types + + +class Array: + + def __repr__(self): + return (f'Array({self.type}, {self.dims}, {self.intent},' + f' {self.obj})|arr={self.arr}') + + def __init__(self, typ, dims, intent, obj): + self.type = typ + self.dims = dims + self.intent = intent + self.obj_copy = copy.deepcopy(obj) + self.obj = obj + + # arr.dtypechar may be different from typ.dtypechar + self.arr = wrap.call(typ.type_num, + typ.elsize, + dims, intent.flags, obj) + + assert isinstance(self.arr, np.ndarray) + + self.arr_attr = wrap.array_attrs(self.arr) + + if len(dims) > 1: + if self.intent.is_intent("c"): + assert (intent.flags & wrap.F2PY_INTENT_C) + assert not self.arr.flags["FORTRAN"] + assert self.arr.flags["CONTIGUOUS"] + assert (not self.arr_attr[6] & wrap.FORTRAN) + else: + assert (not intent.flags & wrap.F2PY_INTENT_C) + assert self.arr.flags["FORTRAN"] + assert not self.arr.flags["CONTIGUOUS"] + assert (self.arr_attr[6] & wrap.FORTRAN) + + if obj is None: + self.pyarr = None + self.pyarr_attr = None + return + + if intent.is_intent("cache"): + assert isinstance(obj, np.ndarray), repr(type(obj)) + self.pyarr = np.array(obj).reshape(*dims).copy() + else: + self.pyarr = np.array( + np.array(obj, dtype=typ.dtypechar).reshape(*dims), + order=(self.intent.is_intent("c") and "C") or "F", + ) + assert self.pyarr.dtype == typ + self.pyarr.setflags(write=self.arr.flags["WRITEABLE"]) + assert self.pyarr.flags["OWNDATA"], (obj, intent) + self.pyarr_attr = wrap.array_attrs(self.pyarr) + + if len(dims) > 1: + if self.intent.is_intent("c"): + assert not self.pyarr.flags["FORTRAN"] + assert self.pyarr.flags["CONTIGUOUS"] + assert (not self.pyarr_attr[6] & wrap.FORTRAN) + else: + assert self.pyarr.flags["FORTRAN"] + assert not self.pyarr.flags["CONTIGUOUS"] + assert (self.pyarr_attr[6] & wrap.FORTRAN) + + assert self.arr_attr[1] == self.pyarr_attr[1] # nd + assert self.arr_attr[2] == self.pyarr_attr[2] # dimensions + if self.arr_attr[1] <= 1: + assert self.arr_attr[3] == self.pyarr_attr[3], repr(( + self.arr_attr[3], + self.pyarr_attr[3], + self.arr.tobytes(), + self.pyarr.tobytes(), + )) # strides + assert self.arr_attr[5][-2:] == self.pyarr_attr[5][-2:], repr(( + self.arr_attr[5], self.pyarr_attr[5] + )) # descr + assert self.arr_attr[6] == self.pyarr_attr[6], repr(( + self.arr_attr[6], + self.pyarr_attr[6], + flags2names(0 * self.arr_attr[6] - self.pyarr_attr[6]), + flags2names(self.arr_attr[6]), + intent, + )) # flags + + if intent.is_intent("cache"): + assert self.arr_attr[5][3] >= self.type.elsize + else: + assert self.arr_attr[5][3] == self.type.elsize + assert (self.arr_equal(self.pyarr, self.arr)) + + if isinstance(self.obj, np.ndarray): + if typ.elsize == Type(obj.dtype).elsize: + if not intent.is_intent("copy") and self.arr_attr[1] <= 1: + assert self.has_shared_memory() + + def arr_equal(self, arr1, arr2): + if arr1.shape != arr2.shape: + return False + return (arr1 == arr2).all() + + def __str__(self): + return str(self.arr) + + def has_shared_memory(self): + """Check that created array shares data with input array.""" + if self.obj is self.arr: + return True + if not isinstance(self.obj, np.ndarray): + return False + obj_attr = wrap.array_attrs(self.obj) + return obj_attr[0] == self.arr_attr[0] + + +class TestIntent: + def test_in_out(self): + assert str(intent.in_.out) == "intent(in,out)" + assert intent.in_.c.is_intent("c") + assert not intent.in_.c.is_intent_exact("c") + assert intent.in_.c.is_intent_exact("c", "in") + assert intent.in_.c.is_intent_exact("in", "c") + assert not intent.in_.is_intent("c") + + +class TestSharedMemory: + + @pytest.fixture(autouse=True, scope="class", params=_type_names) + def setup_type(self, request): + request.cls.type = Type(request.param) + request.cls.array = lambda self, dims, intent, obj: Array( + Type(request.param), dims, intent, obj) + + @property + def num2seq(self): + if self.type.NAME.startswith('STRING'): + elsize = self.type.elsize + return ['1' * elsize, '2' * elsize] + return [1, 2] + + @property + def num23seq(self): + if self.type.NAME.startswith('STRING'): + elsize = self.type.elsize + return [['1' * elsize, '2' * elsize, '3' * elsize], + ['4' * elsize, '5' * elsize, '6' * elsize]] + return [[1, 2, 3], [4, 5, 6]] + + def test_in_from_2seq(self): + a = self.array([2], intent.in_, self.num2seq) + assert not a.has_shared_memory() + + def test_in_from_2casttype(self): + for t in self.type.cast_types(): + obj = np.array(self.num2seq, dtype=t.dtype) + a = self.array([len(self.num2seq)], intent.in_, obj) + if t.elsize == self.type.elsize: + assert a.has_shared_memory(), repr((self.type.dtype, t.dtype)) + else: + assert not a.has_shared_memory() + + @pytest.mark.parametrize("write", ["w", "ro"]) + @pytest.mark.parametrize("order", ["C", "F"]) + @pytest.mark.parametrize("inp", ["2seq", "23seq"]) + def test_in_nocopy(self, write, order, inp): + """Test if intent(in) array can be passed without copies""" + seq = getattr(self, "num" + inp) + obj = np.array(seq, dtype=self.type.dtype, order=order) + obj.setflags(write=(write == 'w')) + a = self.array(obj.shape, + ((order == 'C' and intent.in_.c) or intent.in_), obj) + assert a.has_shared_memory() + + def test_inout_2seq(self): + obj = np.array(self.num2seq, dtype=self.type.dtype) + a = self.array([len(self.num2seq)], intent.inout, obj) + assert a.has_shared_memory() + + try: + a = self.array([2], intent.in_.inout, self.num2seq) + except TypeError as msg: + if not str(msg).startswith( + "failed to initialize intent(inout|inplace|cache) array"): + raise + else: + raise SystemError("intent(inout) should have failed on sequence") + + def test_f_inout_23seq(self): + obj = np.array(self.num23seq, dtype=self.type.dtype, order="F") + shape = (len(self.num23seq), len(self.num23seq[0])) + a = self.array(shape, intent.in_.inout, obj) + assert a.has_shared_memory() + + obj = np.array(self.num23seq, dtype=self.type.dtype, order="C") + shape = (len(self.num23seq), len(self.num23seq[0])) + try: + a = self.array(shape, intent.in_.inout, obj) + except ValueError as msg: + if not str(msg).startswith( + "failed to initialize intent(inout) array"): + raise + else: + raise SystemError( + "intent(inout) should have failed on improper array") + + def test_c_inout_23seq(self): + obj = np.array(self.num23seq, dtype=self.type.dtype) + shape = (len(self.num23seq), len(self.num23seq[0])) + a = self.array(shape, intent.in_.c.inout, obj) + assert a.has_shared_memory() + + def test_in_copy_from_2casttype(self): + for t in self.type.cast_types(): + obj = np.array(self.num2seq, dtype=t.dtype) + a = self.array([len(self.num2seq)], intent.in_.copy, obj) + assert not a.has_shared_memory() + + def test_c_in_from_23seq(self): + a = self.array( + [len(self.num23seq), len(self.num23seq[0])], intent.in_, + self.num23seq) + assert not a.has_shared_memory() + + def test_in_from_23casttype(self): + for t in self.type.cast_types(): + obj = np.array(self.num23seq, dtype=t.dtype) + a = self.array( + [len(self.num23seq), len(self.num23seq[0])], intent.in_, obj) + assert not a.has_shared_memory() + + def test_f_in_from_23casttype(self): + for t in self.type.cast_types(): + obj = np.array(self.num23seq, dtype=t.dtype, order="F") + a = self.array( + [len(self.num23seq), len(self.num23seq[0])], intent.in_, obj) + if t.elsize == self.type.elsize: + assert a.has_shared_memory() + else: + assert not a.has_shared_memory() + + def test_c_in_from_23casttype(self): + for t in self.type.cast_types(): + obj = np.array(self.num23seq, dtype=t.dtype) + a = self.array( + [len(self.num23seq), len(self.num23seq[0])], intent.in_.c, obj) + if t.elsize == self.type.elsize: + assert a.has_shared_memory() + else: + assert not a.has_shared_memory() + + def test_f_copy_in_from_23casttype(self): + for t in self.type.cast_types(): + obj = np.array(self.num23seq, dtype=t.dtype, order="F") + a = self.array( + [len(self.num23seq), len(self.num23seq[0])], intent.in_.copy, + obj) + assert not a.has_shared_memory() + + def test_c_copy_in_from_23casttype(self): + for t in self.type.cast_types(): + obj = np.array(self.num23seq, dtype=t.dtype) + a = self.array( + [len(self.num23seq), len(self.num23seq[0])], intent.in_.c.copy, + obj) + assert not a.has_shared_memory() + + def test_in_cache_from_2casttype(self): + for t in self.type.all_types(): + if t.elsize != self.type.elsize: + continue + obj = np.array(self.num2seq, dtype=t.dtype) + shape = (len(self.num2seq), ) + a = self.array(shape, intent.in_.c.cache, obj) + assert a.has_shared_memory() + + a = self.array(shape, intent.in_.cache, obj) + assert a.has_shared_memory() + + obj = np.array(self.num2seq, dtype=t.dtype, order="F") + a = self.array(shape, intent.in_.c.cache, obj) + assert a.has_shared_memory() + + a = self.array(shape, intent.in_.cache, obj) + assert a.has_shared_memory(), repr(t.dtype) + + try: + a = self.array(shape, intent.in_.cache, obj[::-1]) + except ValueError as msg: + if not str(msg).startswith( + "failed to initialize intent(cache) array"): + raise + else: + raise SystemError( + "intent(cache) should have failed on multisegmented array") + + def test_in_cache_from_2casttype_failure(self): + for t in self.type.all_types(): + if t.NAME == 'STRING': + # string elsize is 0, so skipping the test + continue + if t.elsize >= self.type.elsize: + continue + is_int = np.issubdtype(t.dtype, np.integer) + if is_int and int(self.num2seq[0]) > np.iinfo(t.dtype).max: + # skip test if num2seq would trigger an overflow error + continue + obj = np.array(self.num2seq, dtype=t.dtype) + shape = (len(self.num2seq), ) + try: + self.array(shape, intent.in_.cache, obj) # Should succeed + except ValueError as msg: + if not str(msg).startswith( + "failed to initialize intent(cache) array"): + raise + else: + raise SystemError( + "intent(cache) should have failed on smaller array") + + def test_cache_hidden(self): + shape = (2, ) + a = self.array(shape, intent.cache.hide, None) + assert a.arr.shape == shape + + shape = (2, 3) + a = self.array(shape, intent.cache.hide, None) + assert a.arr.shape == shape + + shape = (-1, 3) + try: + a = self.array(shape, intent.cache.hide, None) + except ValueError as msg: + if not str(msg).startswith( + "failed to create intent(cache|hide)|optional array"): + raise + else: + raise SystemError( + "intent(cache) should have failed on undefined dimensions") + + def test_hidden(self): + shape = (2, ) + a = self.array(shape, intent.hide, None) + assert a.arr.shape == shape + assert a.arr_equal(a.arr, np.zeros(shape, dtype=self.type.dtype)) + + shape = (2, 3) + a = self.array(shape, intent.hide, None) + assert a.arr.shape == shape + assert a.arr_equal(a.arr, np.zeros(shape, dtype=self.type.dtype)) + assert a.arr.flags["FORTRAN"] and not a.arr.flags["CONTIGUOUS"] + + shape = (2, 3) + a = self.array(shape, intent.c.hide, None) + assert a.arr.shape == shape + assert a.arr_equal(a.arr, np.zeros(shape, dtype=self.type.dtype)) + assert not a.arr.flags["FORTRAN"] and a.arr.flags["CONTIGUOUS"] + + shape = (-1, 3) + try: + a = self.array(shape, intent.hide, None) + except ValueError as msg: + if not str(msg).startswith( + "failed to create intent(cache|hide)|optional array"): + raise + else: + raise SystemError( + "intent(hide) should have failed on undefined dimensions") + + def test_optional_none(self): + shape = (2, ) + a = self.array(shape, intent.optional, None) + assert a.arr.shape == shape + assert a.arr_equal(a.arr, np.zeros(shape, dtype=self.type.dtype)) + + shape = (2, 3) + a = self.array(shape, intent.optional, None) + assert a.arr.shape == shape + assert a.arr_equal(a.arr, np.zeros(shape, dtype=self.type.dtype)) + assert a.arr.flags["FORTRAN"] and not a.arr.flags["CONTIGUOUS"] + + shape = (2, 3) + a = self.array(shape, intent.c.optional, None) + assert a.arr.shape == shape + assert a.arr_equal(a.arr, np.zeros(shape, dtype=self.type.dtype)) + assert not a.arr.flags["FORTRAN"] and a.arr.flags["CONTIGUOUS"] + + def test_optional_from_2seq(self): + obj = self.num2seq + shape = (len(obj), ) + a = self.array(shape, intent.optional, obj) + assert a.arr.shape == shape + assert not a.has_shared_memory() + + def test_optional_from_23seq(self): + obj = self.num23seq + shape = (len(obj), len(obj[0])) + a = self.array(shape, intent.optional, obj) + assert a.arr.shape == shape + assert not a.has_shared_memory() + + a = self.array(shape, intent.optional.c, obj) + assert a.arr.shape == shape + assert not a.has_shared_memory() + + def test_inplace(self): + obj = np.array(self.num23seq, dtype=self.type.dtype) + assert not obj.flags["FORTRAN"] and obj.flags["CONTIGUOUS"] + shape = obj.shape + a = self.array(shape, intent.inplace, obj) + assert obj[1][2] == a.arr[1][2], repr((obj, a.arr)) + a.arr[1][2] = 54 + assert obj[1][2] == a.arr[1][2] == np.array(54, dtype=self.type.dtype) + assert a.arr is obj + assert obj.flags["FORTRAN"] # obj attributes are changed inplace! + assert not obj.flags["CONTIGUOUS"] + + def test_inplace_from_casttype(self): + for t in self.type.cast_types(): + if t is self.type: + continue + obj = np.array(self.num23seq, dtype=t.dtype) + assert obj.dtype.type == t.type + assert obj.dtype.type is not self.type.type + assert not obj.flags["FORTRAN"] and obj.flags["CONTIGUOUS"] + shape = obj.shape + a = self.array(shape, intent.inplace, obj) + assert obj[1][2] == a.arr[1][2], repr((obj, a.arr)) + a.arr[1][2] = 54 + assert obj[1][2] == a.arr[1][2] == np.array(54, + dtype=self.type.dtype) + assert a.arr is obj + assert obj.flags["FORTRAN"] # obj attributes changed inplace! + assert not obj.flags["CONTIGUOUS"] + assert obj.dtype.type is self.type.type # obj changed inplace! diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_assumed_shape.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_assumed_shape.py new file mode 100644 index 0000000..cf75644 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_assumed_shape.py @@ -0,0 +1,50 @@ +import os +import tempfile + +import pytest + +from . import util + + +class TestAssumedShapeSumExample(util.F2PyTest): + sources = [ + util.getpath("tests", "src", "assumed_shape", "foo_free.f90"), + util.getpath("tests", "src", "assumed_shape", "foo_use.f90"), + util.getpath("tests", "src", "assumed_shape", "precision.f90"), + util.getpath("tests", "src", "assumed_shape", "foo_mod.f90"), + util.getpath("tests", "src", "assumed_shape", ".f2py_f2cmap"), + ] + + @pytest.mark.slow + def test_all(self): + r = self.module.fsum([1, 2]) + assert r == 3 + r = self.module.sum([1, 2]) + assert r == 3 + r = self.module.sum_with_use([1, 2]) + assert r == 3 + + r = self.module.mod.sum([1, 2]) + assert r == 3 + r = self.module.mod.fsum([1, 2]) + assert r == 3 + + +class TestF2cmapOption(TestAssumedShapeSumExample): + def setup_method(self): + # Use a custom file name for .f2py_f2cmap + self.sources = list(self.sources) + f2cmap_src = self.sources.pop(-1) + + self.f2cmap_file = tempfile.NamedTemporaryFile(delete=False) + with open(f2cmap_src, "rb") as f: + self.f2cmap_file.write(f.read()) + self.f2cmap_file.close() + + self.sources.append(self.f2cmap_file.name) + self.options = ["--f2cmap", self.f2cmap_file.name] + + super().setup_method() + + def teardown_method(self): + os.unlink(self.f2cmap_file.name) diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_block_docstring.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_block_docstring.py new file mode 100644 index 0000000..ba255a1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_block_docstring.py @@ -0,0 +1,20 @@ +import sys + +import pytest + +from numpy.testing import IS_PYPY + +from . import util + + +@pytest.mark.slow +class TestBlockDocString(util.F2PyTest): + sources = [util.getpath("tests", "src", "block_docstring", "foo.f")] + + @pytest.mark.skipif(sys.platform == "win32", + reason="Fails with MinGW64 Gfortran (Issue #9673)") + @pytest.mark.xfail(IS_PYPY, + reason="PyPy cannot modify tp_doc after PyType_Ready") + def test_block_docstring(self): + expected = "bar : 'i'-array(2,3)\n" + assert self.module.block.__doc__ == expected diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_callback.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_callback.py new file mode 100644 index 0000000..6614efb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_callback.py @@ -0,0 +1,263 @@ +import math +import platform +import sys +import textwrap +import threading +import time +import traceback + +import pytest + +import numpy as np +from numpy.testing import IS_PYPY + +from . import util + + +class TestF77Callback(util.F2PyTest): + sources = [util.getpath("tests", "src", "callback", "foo.f")] + + @pytest.mark.parametrize("name", ["t", "t2"]) + @pytest.mark.slow + def test_all(self, name): + self.check_function(name) + + @pytest.mark.xfail(IS_PYPY, + reason="PyPy cannot modify tp_doc after PyType_Ready") + def test_docstring(self): + expected = textwrap.dedent("""\ + a = t(fun,[fun_extra_args]) + + Wrapper for ``t``. + + Parameters + ---------- + fun : call-back function + + Other Parameters + ---------------- + fun_extra_args : input tuple, optional + Default: () + + Returns + ------- + a : int + + Notes + ----- + Call-back functions:: + + def fun(): return a + Return objects: + a : int + """) + assert self.module.t.__doc__ == expected + + def check_function(self, name): + t = getattr(self.module, name) + r = t(lambda: 4) + assert r == 4 + r = t(lambda a: 5, fun_extra_args=(6, )) + assert r == 5 + r = t(lambda a: a, fun_extra_args=(6, )) + assert r == 6 + r = t(lambda a: 5 + a, fun_extra_args=(7, )) + assert r == 12 + r = t(math.degrees, fun_extra_args=(math.pi, )) + assert r == 180 + r = t(math.degrees, fun_extra_args=(math.pi, )) + assert r == 180 + + r = t(self.module.func, fun_extra_args=(6, )) + assert r == 17 + r = t(self.module.func0) + assert r == 11 + r = t(self.module.func0._cpointer) + assert r == 11 + + class A: + def __call__(self): + return 7 + + def mth(self): + return 9 + + a = A() + r = t(a) + assert r == 7 + r = t(a.mth) + assert r == 9 + + @pytest.mark.skipif(sys.platform == 'win32', + reason='Fails with MinGW64 Gfortran (Issue #9673)') + def test_string_callback(self): + def callback(code): + if code == "r": + return 0 + else: + return 1 + + f = self.module.string_callback + r = f(callback) + assert r == 0 + + @pytest.mark.skipif(sys.platform == 'win32', + reason='Fails with MinGW64 Gfortran (Issue #9673)') + def test_string_callback_array(self): + # See gh-10027 + cu1 = np.zeros((1, ), "S8") + cu2 = np.zeros((1, 8), "c") + cu3 = np.array([""], "S8") + + def callback(cu, lencu): + if cu.shape != (lencu,): + return 1 + if cu.dtype != "S8": + return 2 + if not np.all(cu == b""): + return 3 + return 0 + + f = self.module.string_callback_array + for cu in [cu1, cu2, cu3]: + res = f(callback, cu, cu.size) + assert res == 0 + + def test_threadsafety(self): + # Segfaults if the callback handling is not threadsafe + + errors = [] + + def cb(): + # Sleep here to make it more likely for another thread + # to call their callback at the same time. + time.sleep(1e-3) + + # Check reentrancy + r = self.module.t(lambda: 123) + assert r == 123 + + return 42 + + def runner(name): + try: + for j in range(50): + r = self.module.t(cb) + assert r == 42 + self.check_function(name) + except Exception: + errors.append(traceback.format_exc()) + + threads = [ + threading.Thread(target=runner, args=(arg, )) + for arg in ("t", "t2") for n in range(20) + ] + + for t in threads: + t.start() + + for t in threads: + t.join() + + errors = "\n\n".join(errors) + if errors: + raise AssertionError(errors) + + def test_hidden_callback(self): + try: + self.module.hidden_callback(2) + except Exception as msg: + assert str(msg).startswith("Callback global_f not defined") + + try: + self.module.hidden_callback2(2) + except Exception as msg: + assert str(msg).startswith("cb: Callback global_f not defined") + + self.module.global_f = lambda x: x + 1 + r = self.module.hidden_callback(2) + assert r == 3 + + self.module.global_f = lambda x: x + 2 + r = self.module.hidden_callback(2) + assert r == 4 + + del self.module.global_f + try: + self.module.hidden_callback(2) + except Exception as msg: + assert str(msg).startswith("Callback global_f not defined") + + self.module.global_f = lambda x=0: x + 3 + r = self.module.hidden_callback(2) + assert r == 5 + + # reproducer of gh18341 + r = self.module.hidden_callback2(2) + assert r == 3 + + +class TestF77CallbackPythonTLS(TestF77Callback): + """ + Callback tests using Python thread-local storage instead of + compiler-provided + """ + + options = ["-DF2PY_USE_PYTHON_TLS"] + + +class TestF90Callback(util.F2PyTest): + sources = [util.getpath("tests", "src", "callback", "gh17797.f90")] + + @pytest.mark.slow + def test_gh17797(self): + def incr(x): + return x + 123 + + y = np.array([1, 2, 3], dtype=np.int64) + r = self.module.gh17797(incr, y) + assert r == 123 + 1 + 2 + 3 + + +class TestGH18335(util.F2PyTest): + """The reproduction of the reported issue requires specific input that + extensions may break the issue conditions, so the reproducer is + implemented as a separate test class. Do not extend this test with + other tests! + """ + sources = [util.getpath("tests", "src", "callback", "gh18335.f90")] + + @pytest.mark.slow + def test_gh18335(self): + def foo(x): + x[0] += 1 + + r = self.module.gh18335(foo) + assert r == 123 + 1 + + +class TestGH25211(util.F2PyTest): + sources = [util.getpath("tests", "src", "callback", "gh25211.f"), + util.getpath("tests", "src", "callback", "gh25211.pyf")] + module_name = "callback2" + + def test_gh25211(self): + def bar(x): + return x * x + + res = self.module.foo(bar) + assert res == 110 + + +@pytest.mark.slow +@pytest.mark.xfail(condition=(platform.system().lower() == 'darwin'), + run=False, + reason="Callback aborts cause CI failures on macOS") +class TestCBFortranCallstatement(util.F2PyTest): + sources = [util.getpath("tests", "src", "callback", "gh26681.f90")] + options = ['--lower'] + + def test_callstatement_fortran(self): + with pytest.raises(ValueError, match='helpme') as exc: + self.module.mypy_abort = self.module.utils.my_abort + self.module.utils.do_something('helpme') diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_character.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_character.py new file mode 100644 index 0000000..74868a6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_character.py @@ -0,0 +1,641 @@ +import textwrap + +import pytest + +import numpy as np +from numpy.f2py.tests import util +from numpy.testing import assert_array_equal, assert_equal, assert_raises + + +@pytest.mark.slow +class TestCharacterString(util.F2PyTest): + # options = ['--debug-capi', '--build-dir', '/tmp/test-build-f2py'] + suffix = '.f90' + fprefix = 'test_character_string' + length_list = ['1', '3', 'star'] + + code = '' + for length in length_list: + fsuffix = length + clength = {'star': '(*)'}.get(length, length) + + code += textwrap.dedent(f""" + + subroutine {fprefix}_input_{fsuffix}(c, o, n) + character*{clength}, intent(in) :: c + integer n + !f2py integer, depend(c), intent(hide) :: n = slen(c) + integer*1, dimension(n) :: o + !f2py intent(out) o + o = transfer(c, o) + end subroutine {fprefix}_input_{fsuffix} + + subroutine {fprefix}_output_{fsuffix}(c, o, n) + character*{clength}, intent(out) :: c + integer n + integer*1, dimension(n), intent(in) :: o + !f2py integer, depend(o), intent(hide) :: n = len(o) + c = transfer(o, c) + end subroutine {fprefix}_output_{fsuffix} + + subroutine {fprefix}_array_input_{fsuffix}(c, o, m, n) + integer m, i, n + character*{clength}, intent(in), dimension(m) :: c + !f2py integer, depend(c), intent(hide) :: m = len(c) + !f2py integer, depend(c), intent(hide) :: n = f2py_itemsize(c) + integer*1, dimension(m, n), intent(out) :: o + do i=1,m + o(i, :) = transfer(c(i), o(i, :)) + end do + end subroutine {fprefix}_array_input_{fsuffix} + + subroutine {fprefix}_array_output_{fsuffix}(c, o, m, n) + character*{clength}, intent(out), dimension(m) :: c + integer n + integer*1, dimension(m, n), intent(in) :: o + !f2py character(f2py_len=n) :: c + !f2py integer, depend(o), intent(hide) :: m = len(o) + !f2py integer, depend(o), intent(hide) :: n = shape(o, 1) + do i=1,m + c(i) = transfer(o(i, :), c(i)) + end do + end subroutine {fprefix}_array_output_{fsuffix} + + subroutine {fprefix}_2d_array_input_{fsuffix}(c, o, m1, m2, n) + integer m1, m2, i, j, n + character*{clength}, intent(in), dimension(m1, m2) :: c + !f2py integer, depend(c), intent(hide) :: m1 = len(c) + !f2py integer, depend(c), intent(hide) :: m2 = shape(c, 1) + !f2py integer, depend(c), intent(hide) :: n = f2py_itemsize(c) + integer*1, dimension(m1, m2, n), intent(out) :: o + do i=1,m1 + do j=1,m2 + o(i, j, :) = transfer(c(i, j), o(i, j, :)) + end do + end do + end subroutine {fprefix}_2d_array_input_{fsuffix} + """) + + @pytest.mark.parametrize("length", length_list) + def test_input(self, length): + fsuffix = {'(*)': 'star'}.get(length, length) + f = getattr(self.module, self.fprefix + '_input_' + fsuffix) + + a = {'1': 'a', '3': 'abc', 'star': 'abcde' * 3}[length] + + assert_array_equal(f(a), np.array(list(map(ord, a)), dtype='u1')) + + @pytest.mark.parametrize("length", length_list[:-1]) + def test_output(self, length): + fsuffix = length + f = getattr(self.module, self.fprefix + '_output_' + fsuffix) + + a = {'1': 'a', '3': 'abc'}[length] + + assert_array_equal(f(np.array(list(map(ord, a)), dtype='u1')), + a.encode()) + + @pytest.mark.parametrize("length", length_list) + def test_array_input(self, length): + fsuffix = length + f = getattr(self.module, self.fprefix + '_array_input_' + fsuffix) + + a = np.array([{'1': 'a', '3': 'abc', 'star': 'abcde' * 3}[length], + {'1': 'A', '3': 'ABC', 'star': 'ABCDE' * 3}[length], + ], dtype='S') + + expected = np.array([list(s) for s in a], dtype='u1') + assert_array_equal(f(a), expected) + + @pytest.mark.parametrize("length", length_list) + def test_array_output(self, length): + fsuffix = length + f = getattr(self.module, self.fprefix + '_array_output_' + fsuffix) + + expected = np.array( + [{'1': 'a', '3': 'abc', 'star': 'abcde' * 3}[length], + {'1': 'A', '3': 'ABC', 'star': 'ABCDE' * 3}[length]], dtype='S') + + a = np.array([list(s) for s in expected], dtype='u1') + assert_array_equal(f(a), expected) + + @pytest.mark.parametrize("length", length_list) + def test_2d_array_input(self, length): + fsuffix = length + f = getattr(self.module, self.fprefix + '_2d_array_input_' + fsuffix) + + a = np.array([[{'1': 'a', '3': 'abc', 'star': 'abcde' * 3}[length], + {'1': 'A', '3': 'ABC', 'star': 'ABCDE' * 3}[length]], + [{'1': 'f', '3': 'fgh', 'star': 'fghij' * 3}[length], + {'1': 'F', '3': 'FGH', 'star': 'FGHIJ' * 3}[length]]], + dtype='S') + expected = np.array([[list(item) for item in row] for row in a], + dtype='u1', order='F') + assert_array_equal(f(a), expected) + + +class TestCharacter(util.F2PyTest): + # options = ['--debug-capi', '--build-dir', '/tmp/test-build-f2py'] + suffix = '.f90' + fprefix = 'test_character' + + code = textwrap.dedent(f""" + subroutine {fprefix}_input(c, o) + character, intent(in) :: c + integer*1 o + !f2py intent(out) o + o = transfer(c, o) + end subroutine {fprefix}_input + + subroutine {fprefix}_output(c, o) + character :: c + integer*1, intent(in) :: o + !f2py intent(out) c + c = transfer(o, c) + end subroutine {fprefix}_output + + subroutine {fprefix}_input_output(c, o) + character, intent(in) :: c + character o + !f2py intent(out) o + o = c + end subroutine {fprefix}_input_output + + subroutine {fprefix}_inout(c, n) + character :: c, n + !f2py intent(in) n + !f2py intent(inout) c + c = n + end subroutine {fprefix}_inout + + function {fprefix}_return(o) result (c) + character :: c + character, intent(in) :: o + c = transfer(o, c) + end function {fprefix}_return + + subroutine {fprefix}_array_input(c, o) + character, intent(in) :: c(3) + integer*1 o(3) + !f2py intent(out) o + integer i + do i=1,3 + o(i) = transfer(c(i), o(i)) + end do + end subroutine {fprefix}_array_input + + subroutine {fprefix}_2d_array_input(c, o) + character, intent(in) :: c(2, 3) + integer*1 o(2, 3) + !f2py intent(out) o + integer i, j + do i=1,2 + do j=1,3 + o(i, j) = transfer(c(i, j), o(i, j)) + end do + end do + end subroutine {fprefix}_2d_array_input + + subroutine {fprefix}_array_output(c, o) + character :: c(3) + integer*1, intent(in) :: o(3) + !f2py intent(out) c + do i=1,3 + c(i) = transfer(o(i), c(i)) + end do + end subroutine {fprefix}_array_output + + subroutine {fprefix}_array_inout(c, n) + character :: c(3), n(3) + !f2py intent(in) n(3) + !f2py intent(inout) c(3) + do i=1,3 + c(i) = n(i) + end do + end subroutine {fprefix}_array_inout + + subroutine {fprefix}_2d_array_inout(c, n) + character :: c(2, 3), n(2, 3) + !f2py intent(in) n(2, 3) + !f2py intent(inout) c(2. 3) + integer i, j + do i=1,2 + do j=1,3 + c(i, j) = n(i, j) + end do + end do + end subroutine {fprefix}_2d_array_inout + + function {fprefix}_array_return(o) result (c) + character, dimension(3) :: c + character, intent(in) :: o(3) + do i=1,3 + c(i) = o(i) + end do + end function {fprefix}_array_return + + function {fprefix}_optional(o) result (c) + character, intent(in) :: o + !f2py character o = "a" + character :: c + c = o + end function {fprefix}_optional + """) + + @pytest.mark.parametrize("dtype", ['c', 'S1']) + def test_input(self, dtype): + f = getattr(self.module, self.fprefix + '_input') + + assert_equal(f(np.array('a', dtype=dtype)), ord('a')) + assert_equal(f(np.array(b'a', dtype=dtype)), ord('a')) + assert_equal(f(np.array(['a'], dtype=dtype)), ord('a')) + assert_equal(f(np.array('abc', dtype=dtype)), ord('a')) + assert_equal(f(np.array([['a']], dtype=dtype)), ord('a')) + + def test_input_varia(self): + f = getattr(self.module, self.fprefix + '_input') + + assert_equal(f('a'), ord('a')) + assert_equal(f(b'a'), ord(b'a')) + assert_equal(f(''), 0) + assert_equal(f(b''), 0) + assert_equal(f(b'\0'), 0) + assert_equal(f('ab'), ord('a')) + assert_equal(f(b'ab'), ord('a')) + assert_equal(f(['a']), ord('a')) + + assert_equal(f(np.array(b'a')), ord('a')) + assert_equal(f(np.array([b'a'])), ord('a')) + a = np.array('a') + assert_equal(f(a), ord('a')) + a = np.array(['a']) + assert_equal(f(a), ord('a')) + + try: + f([]) + except IndexError as msg: + if not str(msg).endswith(' got 0-list'): + raise + else: + raise SystemError(f'{f.__name__} should have failed on empty list') + + try: + f(97) + except TypeError as msg: + if not str(msg).endswith(' got int instance'): + raise + else: + raise SystemError(f'{f.__name__} should have failed on int value') + + @pytest.mark.parametrize("dtype", ['c', 'S1', 'U1']) + def test_array_input(self, dtype): + f = getattr(self.module, self.fprefix + '_array_input') + + assert_array_equal(f(np.array(['a', 'b', 'c'], dtype=dtype)), + np.array(list(map(ord, 'abc')), dtype='i1')) + assert_array_equal(f(np.array([b'a', b'b', b'c'], dtype=dtype)), + np.array(list(map(ord, 'abc')), dtype='i1')) + + def test_array_input_varia(self): + f = getattr(self.module, self.fprefix + '_array_input') + assert_array_equal(f(['a', 'b', 'c']), + np.array(list(map(ord, 'abc')), dtype='i1')) + assert_array_equal(f([b'a', b'b', b'c']), + np.array(list(map(ord, 'abc')), dtype='i1')) + + try: + f(['a', 'b', 'c', 'd']) + except ValueError as msg: + if not str(msg).endswith( + 'th dimension must be fixed to 3 but got 4'): + raise + else: + raise SystemError( + f'{f.__name__} should have failed on wrong input') + + @pytest.mark.parametrize("dtype", ['c', 'S1', 'U1']) + def test_2d_array_input(self, dtype): + f = getattr(self.module, self.fprefix + '_2d_array_input') + + a = np.array([['a', 'b', 'c'], + ['d', 'e', 'f']], dtype=dtype, order='F') + expected = a.view(np.uint32 if dtype == 'U1' else np.uint8) + assert_array_equal(f(a), expected) + + def test_output(self): + f = getattr(self.module, self.fprefix + '_output') + + assert_equal(f(ord(b'a')), b'a') + assert_equal(f(0), b'\0') + + def test_array_output(self): + f = getattr(self.module, self.fprefix + '_array_output') + + assert_array_equal(f(list(map(ord, 'abc'))), + np.array(list('abc'), dtype='S1')) + + def test_input_output(self): + f = getattr(self.module, self.fprefix + '_input_output') + + assert_equal(f(b'a'), b'a') + assert_equal(f('a'), b'a') + assert_equal(f(''), b'\0') + + @pytest.mark.parametrize("dtype", ['c', 'S1']) + def test_inout(self, dtype): + f = getattr(self.module, self.fprefix + '_inout') + + a = np.array(list('abc'), dtype=dtype) + f(a, 'A') + assert_array_equal(a, np.array(list('Abc'), dtype=a.dtype)) + f(a[1:], 'B') + assert_array_equal(a, np.array(list('ABc'), dtype=a.dtype)) + + a = np.array(['abc'], dtype=dtype) + f(a, 'A') + assert_array_equal(a, np.array(['Abc'], dtype=a.dtype)) + + def test_inout_varia(self): + f = getattr(self.module, self.fprefix + '_inout') + a = np.array('abc', dtype='S3') + f(a, 'A') + assert_array_equal(a, np.array('Abc', dtype=a.dtype)) + + a = np.array(['abc'], dtype='S3') + f(a, 'A') + assert_array_equal(a, np.array(['Abc'], dtype=a.dtype)) + + try: + f('abc', 'A') + except ValueError as msg: + if not str(msg).endswith(' got 3-str'): + raise + else: + raise SystemError(f'{f.__name__} should have failed on str value') + + @pytest.mark.parametrize("dtype", ['c', 'S1']) + def test_array_inout(self, dtype): + f = getattr(self.module, self.fprefix + '_array_inout') + n = np.array(['A', 'B', 'C'], dtype=dtype, order='F') + + a = np.array(['a', 'b', 'c'], dtype=dtype, order='F') + f(a, n) + assert_array_equal(a, n) + + a = np.array(['a', 'b', 'c', 'd'], dtype=dtype) + f(a[1:], n) + assert_array_equal(a, np.array(['a', 'A', 'B', 'C'], dtype=dtype)) + + a = np.array([['a', 'b', 'c']], dtype=dtype, order='F') + f(a, n) + assert_array_equal(a, np.array([['A', 'B', 'C']], dtype=dtype)) + + a = np.array(['a', 'b', 'c', 'd'], dtype=dtype, order='F') + try: + f(a, n) + except ValueError as msg: + if not str(msg).endswith( + 'th dimension must be fixed to 3 but got 4'): + raise + else: + raise SystemError( + f'{f.__name__} should have failed on wrong input') + + @pytest.mark.parametrize("dtype", ['c', 'S1']) + def test_2d_array_inout(self, dtype): + f = getattr(self.module, self.fprefix + '_2d_array_inout') + n = np.array([['A', 'B', 'C'], + ['D', 'E', 'F']], + dtype=dtype, order='F') + a = np.array([['a', 'b', 'c'], + ['d', 'e', 'f']], + dtype=dtype, order='F') + f(a, n) + assert_array_equal(a, n) + + def test_return(self): + f = getattr(self.module, self.fprefix + '_return') + + assert_equal(f('a'), b'a') + + @pytest.mark.skip('fortran function returning array segfaults') + def test_array_return(self): + f = getattr(self.module, self.fprefix + '_array_return') + + a = np.array(list('abc'), dtype='S1') + assert_array_equal(f(a), a) + + def test_optional(self): + f = getattr(self.module, self.fprefix + '_optional') + + assert_equal(f(), b"a") + assert_equal(f(b'B'), b"B") + + +class TestMiscCharacter(util.F2PyTest): + # options = ['--debug-capi', '--build-dir', '/tmp/test-build-f2py'] + suffix = '.f90' + fprefix = 'test_misc_character' + + code = textwrap.dedent(f""" + subroutine {fprefix}_gh18684(x, y, m) + character(len=5), dimension(m), intent(in) :: x + character*5, dimension(m), intent(out) :: y + integer i, m + !f2py integer, intent(hide), depend(x) :: m = f2py_len(x) + do i=1,m + y(i) = x(i) + end do + end subroutine {fprefix}_gh18684 + + subroutine {fprefix}_gh6308(x, i) + integer i + !f2py check(i>=0 && i<12) i + character*5 name, x + common name(12) + name(i + 1) = x + end subroutine {fprefix}_gh6308 + + subroutine {fprefix}_gh4519(x) + character(len=*), intent(in) :: x(:) + !f2py intent(out) x + integer :: i + ! Uncomment for debug printing: + !do i=1, size(x) + ! print*, "x(",i,")=", x(i) + !end do + end subroutine {fprefix}_gh4519 + + pure function {fprefix}_gh3425(x) result (y) + character(len=*), intent(in) :: x + character(len=len(x)) :: y + integer :: i + do i = 1, len(x) + j = iachar(x(i:i)) + if (j>=iachar("a") .and. j<=iachar("z") ) then + y(i:i) = achar(j-32) + else + y(i:i) = x(i:i) + endif + end do + end function {fprefix}_gh3425 + + subroutine {fprefix}_character_bc_new(x, y, z) + character, intent(in) :: x + character, intent(out) :: y + !f2py character, depend(x) :: y = x + !f2py character, dimension((x=='a'?1:2)), depend(x), intent(out) :: z + character, dimension(*) :: z + !f2py character, optional, check(x == 'a' || x == 'b') :: x = 'a' + !f2py callstatement (*f2py_func)(&x, &y, z) + !f2py callprotoargument character*, character*, character* + if (y.eq.x) then + y = x + else + y = 'e' + endif + z(1) = 'c' + end subroutine {fprefix}_character_bc_new + + subroutine {fprefix}_character_bc_old(x, y, z) + character, intent(in) :: x + character, intent(out) :: y + !f2py character, depend(x) :: y = x[0] + !f2py character, dimension((*x=='a'?1:2)), depend(x), intent(out) :: z + character, dimension(*) :: z + !f2py character, optional, check(*x == 'a' || x[0] == 'b') :: x = 'a' + !f2py callstatement (*f2py_func)(x, y, z) + !f2py callprotoargument char*, char*, char* + if (y.eq.x) then + y = x + else + y = 'e' + endif + z(1) = 'c' + end subroutine {fprefix}_character_bc_old + """) + + @pytest.mark.slow + def test_gh18684(self): + # Test character(len=5) and character*5 usages + f = getattr(self.module, self.fprefix + '_gh18684') + x = np.array(["abcde", "fghij"], dtype='S5') + y = f(x) + + assert_array_equal(x, y) + + def test_gh6308(self): + # Test character string array in a common block + f = getattr(self.module, self.fprefix + '_gh6308') + + assert_equal(self.module._BLNK_.name.dtype, np.dtype('S5')) + assert_equal(len(self.module._BLNK_.name), 12) + f("abcde", 0) + assert_equal(self.module._BLNK_.name[0], b"abcde") + f("12345", 5) + assert_equal(self.module._BLNK_.name[5], b"12345") + + def test_gh4519(self): + # Test array of assumed length strings + f = getattr(self.module, self.fprefix + '_gh4519') + + for x, expected in [ + ('a', {'shape': (), 'dtype': np.dtype('S1')}), + ('text', {'shape': (), 'dtype': np.dtype('S4')}), + (np.array(['1', '2', '3'], dtype='S1'), + {'shape': (3,), 'dtype': np.dtype('S1')}), + (['1', '2', '34'], + {'shape': (3,), 'dtype': np.dtype('S2')}), + (['', ''], {'shape': (2,), 'dtype': np.dtype('S1')})]: + r = f(x) + for k, v in expected.items(): + assert_equal(getattr(r, k), v) + + def test_gh3425(self): + # Test returning a copy of assumed length string + f = getattr(self.module, self.fprefix + '_gh3425') + # f is equivalent to bytes.upper + + assert_equal(f('abC'), b'ABC') + assert_equal(f(''), b'') + assert_equal(f('abC12d'), b'ABC12D') + + @pytest.mark.parametrize("state", ['new', 'old']) + def test_character_bc(self, state): + f = getattr(self.module, self.fprefix + '_character_bc_' + state) + + c, a = f() + assert_equal(c, b'a') + assert_equal(len(a), 1) + + c, a = f(b'b') + assert_equal(c, b'b') + assert_equal(len(a), 2) + + assert_raises(Exception, lambda: f(b'c')) + + +class TestStringScalarArr(util.F2PyTest): + sources = [util.getpath("tests", "src", "string", "scalar_string.f90")] + + def test_char(self): + for out in (self.module.string_test.string, + self.module.string_test.string77): + expected = () + assert out.shape == expected + expected = '|S8' + assert out.dtype == expected + + def test_char_arr(self): + for out in (self.module.string_test.strarr, + self.module.string_test.strarr77): + expected = (5, 7) + assert out.shape == expected + expected = '|S12' + assert out.dtype == expected + +class TestStringAssumedLength(util.F2PyTest): + sources = [util.getpath("tests", "src", "string", "gh24008.f")] + + def test_gh24008(self): + self.module.greet("joe", "bob") + +@pytest.mark.slow +class TestStringOptionalInOut(util.F2PyTest): + sources = [util.getpath("tests", "src", "string", "gh24662.f90")] + + def test_gh24662(self): + self.module.string_inout_optional() + a = np.array('hi', dtype='S32') + self.module.string_inout_optional(a) + assert "output string" in a.tobytes().decode() + with pytest.raises(Exception): # noqa: B017 + aa = "Hi" + self.module.string_inout_optional(aa) + + +@pytest.mark.slow +class TestNewCharHandling(util.F2PyTest): + # from v1.24 onwards, gh-19388 + sources = [ + util.getpath("tests", "src", "string", "gh25286.pyf"), + util.getpath("tests", "src", "string", "gh25286.f90") + ] + module_name = "_char_handling_test" + + def test_gh25286(self): + info = self.module.charint('T') + assert info == 2 + +@pytest.mark.slow +class TestBCCharHandling(util.F2PyTest): + # SciPy style, "incorrect" bindings with a hook + sources = [ + util.getpath("tests", "src", "string", "gh25286_bc.pyf"), + util.getpath("tests", "src", "string", "gh25286.f90") + ] + module_name = "_char_handling_test" + + def test_gh25286(self): + info = self.module.charint('T') + assert info == 2 diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_common.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_common.py new file mode 100644 index 0000000..b9fbd84 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_common.py @@ -0,0 +1,23 @@ +import pytest + +import numpy as np + +from . import util + + +@pytest.mark.slow +class TestCommonBlock(util.F2PyTest): + sources = [util.getpath("tests", "src", "common", "block.f")] + + def test_common_block(self): + self.module.initcb() + assert self.module.block.long_bn == np.array(1.0, dtype=np.float64) + assert self.module.block.string_bn == np.array("2", dtype="|S1") + assert self.module.block.ok == np.array(3, dtype=np.int32) + + +class TestCommonWithUse(util.F2PyTest): + sources = [util.getpath("tests", "src", "common", "gh19161.f90")] + + def test_common_gh19161(self): + assert self.module.data.x == 0 diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_crackfortran.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_crackfortran.py new file mode 100644 index 0000000..c3967cf --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_crackfortran.py @@ -0,0 +1,421 @@ +import contextlib +import importlib +import io +import textwrap +import time + +import pytest + +import numpy as np +from numpy.f2py import crackfortran +from numpy.f2py.crackfortran import markinnerspaces, nameargspattern + +from . import util + + +class TestNoSpace(util.F2PyTest): + # issue gh-15035: add handling for endsubroutine, endfunction with no space + # between "end" and the block name + sources = [util.getpath("tests", "src", "crackfortran", "gh15035.f")] + + def test_module(self): + k = np.array([1, 2, 3], dtype=np.float64) + w = np.array([1, 2, 3], dtype=np.float64) + self.module.subb(k) + assert np.allclose(k, w + 1) + self.module.subc([w, k]) + assert np.allclose(k, w + 1) + assert self.module.t0("23") == b"2" + + +class TestPublicPrivate: + def test_defaultPrivate(self): + fpath = util.getpath("tests", "src", "crackfortran", "privatemod.f90") + mod = crackfortran.crackfortran([str(fpath)]) + assert len(mod) == 1 + mod = mod[0] + assert "private" in mod["vars"]["a"]["attrspec"] + assert "public" not in mod["vars"]["a"]["attrspec"] + assert "private" in mod["vars"]["b"]["attrspec"] + assert "public" not in mod["vars"]["b"]["attrspec"] + assert "private" not in mod["vars"]["seta"]["attrspec"] + assert "public" in mod["vars"]["seta"]["attrspec"] + + def test_defaultPublic(self, tmp_path): + fpath = util.getpath("tests", "src", "crackfortran", "publicmod.f90") + mod = crackfortran.crackfortran([str(fpath)]) + assert len(mod) == 1 + mod = mod[0] + assert "private" in mod["vars"]["a"]["attrspec"] + assert "public" not in mod["vars"]["a"]["attrspec"] + assert "private" not in mod["vars"]["seta"]["attrspec"] + assert "public" in mod["vars"]["seta"]["attrspec"] + + def test_access_type(self, tmp_path): + fpath = util.getpath("tests", "src", "crackfortran", "accesstype.f90") + mod = crackfortran.crackfortran([str(fpath)]) + assert len(mod) == 1 + tt = mod[0]['vars'] + assert set(tt['a']['attrspec']) == {'private', 'bind(c)'} + assert set(tt['b_']['attrspec']) == {'public', 'bind(c)'} + assert set(tt['c']['attrspec']) == {'public'} + + def test_nowrap_private_proceedures(self, tmp_path): + fpath = util.getpath("tests", "src", "crackfortran", "gh23879.f90") + mod = crackfortran.crackfortran([str(fpath)]) + assert len(mod) == 1 + pyf = crackfortran.crack2fortran(mod) + assert 'bar' not in pyf + +class TestModuleProcedure: + def test_moduleOperators(self, tmp_path): + fpath = util.getpath("tests", "src", "crackfortran", "operators.f90") + mod = crackfortran.crackfortran([str(fpath)]) + assert len(mod) == 1 + mod = mod[0] + assert "body" in mod and len(mod["body"]) == 9 + assert mod["body"][1]["name"] == "operator(.item.)" + assert "implementedby" in mod["body"][1] + assert mod["body"][1]["implementedby"] == \ + ["item_int", "item_real"] + assert mod["body"][2]["name"] == "operator(==)" + assert "implementedby" in mod["body"][2] + assert mod["body"][2]["implementedby"] == ["items_are_equal"] + assert mod["body"][3]["name"] == "assignment(=)" + assert "implementedby" in mod["body"][3] + assert mod["body"][3]["implementedby"] == \ + ["get_int", "get_real"] + + def test_notPublicPrivate(self, tmp_path): + fpath = util.getpath("tests", "src", "crackfortran", "pubprivmod.f90") + mod = crackfortran.crackfortran([str(fpath)]) + assert len(mod) == 1 + mod = mod[0] + assert mod['vars']['a']['attrspec'] == ['private', ] + assert mod['vars']['b']['attrspec'] == ['public', ] + assert mod['vars']['seta']['attrspec'] == ['public', ] + + +class TestExternal(util.F2PyTest): + # issue gh-17859: add external attribute support + sources = [util.getpath("tests", "src", "crackfortran", "gh17859.f")] + + def test_external_as_statement(self): + def incr(x): + return x + 123 + + r = self.module.external_as_statement(incr) + assert r == 123 + + def test_external_as_attribute(self): + def incr(x): + return x + 123 + + r = self.module.external_as_attribute(incr) + assert r == 123 + + +class TestCrackFortran(util.F2PyTest): + # gh-2848: commented lines between parameters in subroutine parameter lists + sources = [util.getpath("tests", "src", "crackfortran", "gh2848.f90"), + util.getpath("tests", "src", "crackfortran", "common_with_division.f") + ] + + def test_gh2848(self): + r = self.module.gh2848(1, 2) + assert r == (1, 2) + + def test_common_with_division(self): + assert len(self.module.mortmp.ctmp) == 11 + +class TestMarkinnerspaces: + # gh-14118: markinnerspaces does not handle multiple quotations + + def test_do_not_touch_normal_spaces(self): + test_list = ["a ", " a", "a b c", "'abcdefghij'"] + for i in test_list: + assert markinnerspaces(i) == i + + def test_one_relevant_space(self): + assert markinnerspaces("a 'b c' \\' \\'") == "a 'b@_@c' \\' \\'" + assert markinnerspaces(r'a "b c" \" \"') == r'a "b@_@c" \" \"' + + def test_ignore_inner_quotes(self): + assert markinnerspaces("a 'b c\" \" d' e") == "a 'b@_@c\"@_@\"@_@d' e" + assert markinnerspaces("a \"b c' ' d\" e") == "a \"b@_@c'@_@'@_@d\" e" + + def test_multiple_relevant_spaces(self): + assert markinnerspaces("a 'b c' 'd e'") == "a 'b@_@c' 'd@_@e'" + assert markinnerspaces(r'a "b c" "d e"') == r'a "b@_@c" "d@_@e"' + + +class TestDimSpec(util.F2PyTest): + """This test suite tests various expressions that are used as dimension + specifications. + + There exists two usage cases where analyzing dimensions + specifications are important. + + In the first case, the size of output arrays must be defined based + on the inputs to a Fortran function. Because Fortran supports + arbitrary bases for indexing, for instance, `arr(lower:upper)`, + f2py has to evaluate an expression `upper - lower + 1` where + `lower` and `upper` are arbitrary expressions of input parameters. + The evaluation is performed in C, so f2py has to translate Fortran + expressions to valid C expressions (an alternative approach is + that a developer specifies the corresponding C expressions in a + .pyf file). + + In the second case, when user provides an input array with a given + size but some hidden parameters used in dimensions specifications + need to be determined based on the input array size. This is a + harder problem because f2py has to solve the inverse problem: find + a parameter `p` such that `upper(p) - lower(p) + 1` equals to the + size of input array. In the case when this equation cannot be + solved (e.g. because the input array size is wrong), raise an + error before calling the Fortran function (that otherwise would + likely crash Python process when the size of input arrays is + wrong). f2py currently supports this case only when the equation + is linear with respect to unknown parameter. + + """ + + suffix = ".f90" + + code_template = textwrap.dedent(""" + function get_arr_size_{count}(a, n) result (length) + integer, intent(in) :: n + integer, dimension({dimspec}), intent(out) :: a + integer length + length = size(a) + end function + + subroutine get_inv_arr_size_{count}(a, n) + integer :: n + ! the value of n is computed in f2py wrapper + !f2py intent(out) n + integer, dimension({dimspec}), intent(in) :: a + if (a({first}).gt.0) then + ! print*, "a=", a + endif + end subroutine + """) + + linear_dimspecs = [ + "n", "2*n", "2:n", "n/2", "5 - n/2", "3*n:20", "n*(n+1):n*(n+5)", + "2*n, n" + ] + nonlinear_dimspecs = ["2*n:3*n*n+2*n"] + all_dimspecs = linear_dimspecs + nonlinear_dimspecs + + code = "" + for count, dimspec in enumerate(all_dimspecs): + lst = [(d.split(":")[0] if ":" in d else "1") for d in dimspec.split(',')] + code += code_template.format( + count=count, + dimspec=dimspec, + first=", ".join(lst), + ) + + @pytest.mark.parametrize("dimspec", all_dimspecs) + @pytest.mark.slow + def test_array_size(self, dimspec): + + count = self.all_dimspecs.index(dimspec) + get_arr_size = getattr(self.module, f"get_arr_size_{count}") + + for n in [1, 2, 3, 4, 5]: + sz, a = get_arr_size(n) + assert a.size == sz + + @pytest.mark.parametrize("dimspec", all_dimspecs) + def test_inv_array_size(self, dimspec): + + count = self.all_dimspecs.index(dimspec) + get_arr_size = getattr(self.module, f"get_arr_size_{count}") + get_inv_arr_size = getattr(self.module, f"get_inv_arr_size_{count}") + + for n in [1, 2, 3, 4, 5]: + sz, a = get_arr_size(n) + if dimspec in self.nonlinear_dimspecs: + # one must specify n as input, the call we'll ensure + # that a and n are compatible: + n1 = get_inv_arr_size(a, n) + else: + # in case of linear dependence, n can be determined + # from the shape of a: + n1 = get_inv_arr_size(a) + # n1 may be different from n (for instance, when `a` size + # is a function of some `n` fraction) but it must produce + # the same sized array + sz1, _ = get_arr_size(n1) + assert sz == sz1, (n, n1, sz, sz1) + + +class TestModuleDeclaration: + def test_dependencies(self, tmp_path): + fpath = util.getpath("tests", "src", "crackfortran", "foo_deps.f90") + mod = crackfortran.crackfortran([str(fpath)]) + assert len(mod) == 1 + assert mod[0]["vars"]["abar"]["="] == "bar('abar')" + + +class TestEval(util.F2PyTest): + def test_eval_scalar(self): + eval_scalar = crackfortran._eval_scalar + + assert eval_scalar('123', {}) == '123' + assert eval_scalar('12 + 3', {}) == '15' + assert eval_scalar('a + b', {"a": 1, "b": 2}) == '3' + assert eval_scalar('"123"', {}) == "'123'" + + +class TestFortranReader(util.F2PyTest): + @pytest.mark.parametrize("encoding", + ['ascii', 'utf-8', 'utf-16', 'utf-32']) + def test_input_encoding(self, tmp_path, encoding): + # gh-635 + f_path = tmp_path / f"input_with_{encoding}_encoding.f90" + with f_path.open('w', encoding=encoding) as ff: + ff.write(""" + subroutine foo() + end subroutine foo + """) + mod = crackfortran.crackfortran([str(f_path)]) + assert mod[0]['name'] == 'foo' + + +@pytest.mark.slow +class TestUnicodeComment(util.F2PyTest): + sources = [util.getpath("tests", "src", "crackfortran", "unicode_comment.f90")] + + @pytest.mark.skipif( + (importlib.util.find_spec("charset_normalizer") is None), + reason="test requires charset_normalizer which is not installed", + ) + def test_encoding_comment(self): + self.module.foo(3) + + +class TestNameArgsPatternBacktracking: + @pytest.mark.parametrize( + ['adversary'], + [ + ('@)@bind@(@',), + ('@)@bind @(@',), + ('@)@bind foo bar baz@(@',) + ] + ) + def test_nameargspattern_backtracking(self, adversary): + '''address ReDOS vulnerability: + https://github.com/numpy/numpy/issues/23338''' + trials_per_batch = 12 + batches_per_regex = 4 + start_reps, end_reps = 15, 25 + for ii in range(start_reps, end_reps): + repeated_adversary = adversary * ii + # test times in small batches. + # this gives us more chances to catch a bad regex + # while still catching it before too long if it is bad + for _ in range(batches_per_regex): + times = [] + for _ in range(trials_per_batch): + t0 = time.perf_counter() + mtch = nameargspattern.search(repeated_adversary) + times.append(time.perf_counter() - t0) + # our pattern should be much faster than 0.2s per search + # it's unlikely that a bad regex will pass even on fast CPUs + assert np.median(times) < 0.2 + assert not mtch + # if the adversary is capped with @)@, it becomes acceptable + # according to the old version of the regex. + # that should still be true. + good_version_of_adversary = repeated_adversary + '@)@' + assert nameargspattern.search(good_version_of_adversary) + +class TestFunctionReturn(util.F2PyTest): + sources = [util.getpath("tests", "src", "crackfortran", "gh23598.f90")] + + @pytest.mark.slow + def test_function_rettype(self): + # gh-23598 + assert self.module.intproduct(3, 4) == 12 + + +class TestFortranGroupCounters(util.F2PyTest): + def test_end_if_comment(self): + # gh-23533 + fpath = util.getpath("tests", "src", "crackfortran", "gh23533.f") + try: + crackfortran.crackfortran([str(fpath)]) + except Exception as exc: + assert False, f"'crackfortran.crackfortran' raised an exception {exc}" + + +class TestF77CommonBlockReader: + def test_gh22648(self, tmp_path): + fpath = util.getpath("tests", "src", "crackfortran", "gh22648.pyf") + with contextlib.redirect_stdout(io.StringIO()) as stdout_f2py: + mod = crackfortran.crackfortran([str(fpath)]) + assert "Mismatch" not in stdout_f2py.getvalue() + +class TestParamEval: + # issue gh-11612, array parameter parsing + def test_param_eval_nested(self): + v = '(/3.14, 4./)' + g_params = {"kind": crackfortran._kind_func, + "selected_int_kind": crackfortran._selected_int_kind_func, + "selected_real_kind": crackfortran._selected_real_kind_func} + params = {'dp': 8, 'intparamarray': {1: 3, 2: 5}, + 'nested': {1: 1, 2: 2, 3: 3}} + dimspec = '(2)' + ret = crackfortran.param_eval(v, g_params, params, dimspec=dimspec) + assert ret == {1: 3.14, 2: 4.0} + + def test_param_eval_nonstandard_range(self): + v = '(/ 6, 3, 1 /)' + g_params = {"kind": crackfortran._kind_func, + "selected_int_kind": crackfortran._selected_int_kind_func, + "selected_real_kind": crackfortran._selected_real_kind_func} + params = {} + dimspec = '(-1:1)' + ret = crackfortran.param_eval(v, g_params, params, dimspec=dimspec) + assert ret == {-1: 6, 0: 3, 1: 1} + + def test_param_eval_empty_range(self): + v = '6' + g_params = {"kind": crackfortran._kind_func, + "selected_int_kind": crackfortran._selected_int_kind_func, + "selected_real_kind": crackfortran._selected_real_kind_func} + params = {} + dimspec = '' + pytest.raises(ValueError, crackfortran.param_eval, v, g_params, params, + dimspec=dimspec) + + def test_param_eval_non_array_param(self): + v = '3.14_dp' + g_params = {"kind": crackfortran._kind_func, + "selected_int_kind": crackfortran._selected_int_kind_func, + "selected_real_kind": crackfortran._selected_real_kind_func} + params = {} + ret = crackfortran.param_eval(v, g_params, params, dimspec=None) + assert ret == '3.14_dp' + + def test_param_eval_too_many_dims(self): + v = 'reshape((/ (i, i=1, 250) /), (/5, 10, 5/))' + g_params = {"kind": crackfortran._kind_func, + "selected_int_kind": crackfortran._selected_int_kind_func, + "selected_real_kind": crackfortran._selected_real_kind_func} + params = {} + dimspec = '(0:4, 3:12, 5)' + pytest.raises(ValueError, crackfortran.param_eval, v, g_params, params, + dimspec=dimspec) + +@pytest.mark.slow +class TestLowerF2PYDirective(util.F2PyTest): + sources = [util.getpath("tests", "src", "crackfortran", "gh27697.f90")] + options = ['--lower'] + + def test_no_lower_fail(self): + with pytest.raises(ValueError, match='aborting directly') as exc: + self.module.utils.my_abort('aborting directly') diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_data.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_data.py new file mode 100644 index 0000000..0cea556 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_data.py @@ -0,0 +1,71 @@ +import pytest + +import numpy as np +from numpy.f2py.crackfortran import crackfortran + +from . import util + + +class TestData(util.F2PyTest): + sources = [util.getpath("tests", "src", "crackfortran", "data_stmts.f90")] + + # For gh-23276 + @pytest.mark.slow + def test_data_stmts(self): + assert self.module.cmplxdat.i == 2 + assert self.module.cmplxdat.j == 3 + assert self.module.cmplxdat.x == 1.5 + assert self.module.cmplxdat.y == 2.0 + assert self.module.cmplxdat.pi == 3.1415926535897932384626433832795028841971693993751058209749445923078164062 + assert self.module.cmplxdat.medium_ref_index == np.array(1. + 0.j) + assert np.all(self.module.cmplxdat.z == np.array([3.5, 7.0])) + assert np.all(self.module.cmplxdat.my_array == np.array([ 1. + 2.j, -3. + 4.j])) + assert np.all(self.module.cmplxdat.my_real_array == np.array([ 1., 2., 3.])) + assert np.all(self.module.cmplxdat.ref_index_one == np.array([13.0 + 21.0j])) + assert np.all(self.module.cmplxdat.ref_index_two == np.array([-30.0 + 43.0j])) + + def test_crackedlines(self): + mod = crackfortran(self.sources) + assert mod[0]['vars']['x']['='] == '1.5' + assert mod[0]['vars']['y']['='] == '2.0' + assert mod[0]['vars']['pi']['='] == '3.1415926535897932384626433832795028841971693993751058209749445923078164062d0' + assert mod[0]['vars']['my_real_array']['='] == '(/1.0d0, 2.0d0, 3.0d0/)' + assert mod[0]['vars']['ref_index_one']['='] == '(13.0d0, 21.0d0)' + assert mod[0]['vars']['ref_index_two']['='] == '(-30.0d0, 43.0d0)' + assert mod[0]['vars']['my_array']['='] == '(/(1.0d0, 2.0d0), (-3.0d0, 4.0d0)/)' + assert mod[0]['vars']['z']['='] == '(/3.5, 7.0/)' + +class TestDataF77(util.F2PyTest): + sources = [util.getpath("tests", "src", "crackfortran", "data_common.f")] + + # For gh-23276 + def test_data_stmts(self): + assert self.module.mycom.mydata == 0 + + def test_crackedlines(self): + mod = crackfortran(str(self.sources[0])) + print(mod[0]['vars']) + assert mod[0]['vars']['mydata']['='] == '0' + + +class TestDataMultiplierF77(util.F2PyTest): + sources = [util.getpath("tests", "src", "crackfortran", "data_multiplier.f")] + + # For gh-23276 + def test_data_stmts(self): + assert self.module.mycom.ivar1 == 3 + assert self.module.mycom.ivar2 == 3 + assert self.module.mycom.ivar3 == 2 + assert self.module.mycom.ivar4 == 2 + assert self.module.mycom.evar5 == 0 + + +class TestDataWithCommentsF77(util.F2PyTest): + sources = [util.getpath("tests", "src", "crackfortran", "data_with_comments.f")] + + # For gh-23276 + def test_data_stmts(self): + assert len(self.module.mycom.mytab) == 3 + assert self.module.mycom.mytab[0] == 0 + assert self.module.mycom.mytab[1] == 4 + assert self.module.mycom.mytab[2] == 0 diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_docs.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_docs.py new file mode 100644 index 0000000..5d9aaac --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_docs.py @@ -0,0 +1,64 @@ +from pathlib import Path + +import pytest + +import numpy as np +from numpy.testing import assert_array_equal, assert_equal + +from . import util + + +def get_docdir(): + parents = Path(__file__).resolve().parents + try: + # Assumes that spin is used to run tests + nproot = parents[8] + except IndexError: + docdir = None + else: + docdir = nproot / "doc" / "source" / "f2py" / "code" + if docdir and docdir.is_dir(): + return docdir + # Assumes that an editable install is used to run tests + return parents[3] / "doc" / "source" / "f2py" / "code" + + +pytestmark = pytest.mark.skipif( + not get_docdir().is_dir(), + reason=f"Could not find f2py documentation sources" + f"({get_docdir()} does not exist)", +) + +def _path(*args): + return get_docdir().joinpath(*args) + +@pytest.mark.slow +class TestDocAdvanced(util.F2PyTest): + # options = ['--debug-capi', '--build-dir', '/tmp/build-f2py'] + sources = [_path('asterisk1.f90'), _path('asterisk2.f90'), + _path('ftype.f')] + + def test_asterisk1(self): + foo = self.module.foo1 + assert_equal(foo(), b'123456789A12') + + def test_asterisk2(self): + foo = self.module.foo2 + assert_equal(foo(2), b'12') + assert_equal(foo(12), b'123456789A12') + assert_equal(foo(20), b'123456789A123456789B') + + def test_ftype(self): + ftype = self.module + ftype.foo() + assert_equal(ftype.data.a, 0) + ftype.data.a = 3 + ftype.data.x = [1, 2, 3] + assert_equal(ftype.data.a, 3) + assert_array_equal(ftype.data.x, + np.array([1, 2, 3], dtype=np.float32)) + ftype.data.x[1] = 45 + assert_array_equal(ftype.data.x, + np.array([1, 45, 3], dtype=np.float32)) + + # TODO: implement test methods for other example Fortran codes diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_f2cmap.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_f2cmap.py new file mode 100644 index 0000000..a35320c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_f2cmap.py @@ -0,0 +1,17 @@ +import numpy as np + +from . import util + + +class TestF2Cmap(util.F2PyTest): + sources = [ + util.getpath("tests", "src", "f2cmap", "isoFortranEnvMap.f90"), + util.getpath("tests", "src", "f2cmap", ".f2py_f2cmap") + ] + + # gh-15095 + def test_gh15095(self): + inp = np.ones(3) + out = self.module.func1(inp) + exp_out = 3 + assert out == exp_out diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_f2py2e.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_f2py2e.py new file mode 100644 index 0000000..2f91eb7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_f2py2e.py @@ -0,0 +1,964 @@ +import platform +import re +import shlex +import subprocess +import sys +import textwrap +from collections import namedtuple +from pathlib import Path + +import pytest + +from numpy.f2py.f2py2e import main as f2pycli +from numpy.testing._private.utils import NOGIL_BUILD + +from . import util + +####################### +# F2PY Test utilities # +###################### + +# Tests for CLI commands which call meson will fail if no compilers are present, these are to be skipped + +def compiler_check_f2pycli(): + if not util.has_fortran_compiler(): + pytest.skip("CLI command needs a Fortran compiler") + else: + f2pycli() + +######################### +# CLI utils and classes # +######################### + + +PPaths = namedtuple("PPaths", "finp, f90inp, pyf, wrap77, wrap90, cmodf") + + +def get_io_paths(fname_inp, mname="untitled"): + """Takes in a temporary file for testing and returns the expected output and input paths + + Here expected output is essentially one of any of the possible generated + files. + + ..note:: + + Since this does not actually run f2py, none of these are guaranteed to + exist, and module names are typically incorrect + + Parameters + ---------- + fname_inp : str + The input filename + mname : str, optional + The name of the module, untitled by default + + Returns + ------- + genp : NamedTuple PPaths + The possible paths which are generated, not all of which exist + """ + bpath = Path(fname_inp) + return PPaths( + finp=bpath.with_suffix(".f"), + f90inp=bpath.with_suffix(".f90"), + pyf=bpath.with_suffix(".pyf"), + wrap77=bpath.with_name(f"{mname}-f2pywrappers.f"), + wrap90=bpath.with_name(f"{mname}-f2pywrappers2.f90"), + cmodf=bpath.with_name(f"{mname}module.c"), + ) + + +################ +# CLI Fixtures # +################ + + +@pytest.fixture(scope="session") +def hello_world_f90(tmpdir_factory): + """Generates a single f90 file for testing""" + fdat = util.getpath("tests", "src", "cli", "hiworld.f90").read_text() + fn = tmpdir_factory.getbasetemp() / "hello.f90" + fn.write_text(fdat, encoding="ascii") + return fn + + +@pytest.fixture(scope="session") +def gh23598_warn(tmpdir_factory): + """F90 file for testing warnings in gh23598""" + fdat = util.getpath("tests", "src", "crackfortran", "gh23598Warn.f90").read_text() + fn = tmpdir_factory.getbasetemp() / "gh23598Warn.f90" + fn.write_text(fdat, encoding="ascii") + return fn + + +@pytest.fixture(scope="session") +def gh22819_cli(tmpdir_factory): + """F90 file for testing disallowed CLI arguments in ghff819""" + fdat = util.getpath("tests", "src", "cli", "gh_22819.pyf").read_text() + fn = tmpdir_factory.getbasetemp() / "gh_22819.pyf" + fn.write_text(fdat, encoding="ascii") + return fn + + +@pytest.fixture(scope="session") +def hello_world_f77(tmpdir_factory): + """Generates a single f77 file for testing""" + fdat = util.getpath("tests", "src", "cli", "hi77.f").read_text() + fn = tmpdir_factory.getbasetemp() / "hello.f" + fn.write_text(fdat, encoding="ascii") + return fn + + +@pytest.fixture(scope="session") +def retreal_f77(tmpdir_factory): + """Generates a single f77 file for testing""" + fdat = util.getpath("tests", "src", "return_real", "foo77.f").read_text() + fn = tmpdir_factory.getbasetemp() / "foo.f" + fn.write_text(fdat, encoding="ascii") + return fn + +@pytest.fixture(scope="session") +def f2cmap_f90(tmpdir_factory): + """Generates a single f90 file for testing""" + fdat = util.getpath("tests", "src", "f2cmap", "isoFortranEnvMap.f90").read_text() + f2cmap = util.getpath("tests", "src", "f2cmap", ".f2py_f2cmap").read_text() + fn = tmpdir_factory.getbasetemp() / "f2cmap.f90" + fmap = tmpdir_factory.getbasetemp() / "mapfile" + fn.write_text(fdat, encoding="ascii") + fmap.write_text(f2cmap, encoding="ascii") + return fn + +######### +# Tests # +######### + +def test_gh22819_cli(capfd, gh22819_cli, monkeypatch): + """Check that module names are handled correctly + gh-22819 + Essentially, the -m name cannot be used to import the module, so the module + named in the .pyf needs to be used instead + + CLI :: -m and a .pyf file + """ + ipath = Path(gh22819_cli) + monkeypatch.setattr(sys, "argv", f"f2py -m blah {ipath}".split()) + with util.switchdir(ipath.parent): + f2pycli() + gen_paths = [item.name for item in ipath.parent.rglob("*") if item.is_file()] + assert "blahmodule.c" not in gen_paths # shouldn't be generated + assert "blah-f2pywrappers.f" not in gen_paths + assert "test_22819-f2pywrappers.f" in gen_paths + assert "test_22819module.c" in gen_paths + + +def test_gh22819_many_pyf(capfd, gh22819_cli, monkeypatch): + """Only one .pyf file allowed + gh-22819 + CLI :: .pyf files + """ + ipath = Path(gh22819_cli) + monkeypatch.setattr(sys, "argv", f"f2py -m blah {ipath} hello.pyf".split()) + with util.switchdir(ipath.parent): + with pytest.raises(ValueError, match="Only one .pyf file per call"): + f2pycli() + + +def test_gh23598_warn(capfd, gh23598_warn, monkeypatch): + foutl = get_io_paths(gh23598_warn, mname="test") + ipath = foutl.f90inp + monkeypatch.setattr( + sys, "argv", + f'f2py {ipath} -m test'.split()) + + with util.switchdir(ipath.parent): + f2pycli() # Generate files + wrapper = foutl.wrap90.read_text() + assert "intproductf2pywrap, intpr" not in wrapper + + +def test_gen_pyf(capfd, hello_world_f90, monkeypatch): + """Ensures that a signature file is generated via the CLI + CLI :: -h + """ + ipath = Path(hello_world_f90) + opath = Path(hello_world_f90).stem + ".pyf" + monkeypatch.setattr(sys, "argv", f'f2py -h {opath} {ipath}'.split()) + + with util.switchdir(ipath.parent): + f2pycli() # Generate wrappers + out, _ = capfd.readouterr() + assert "Saving signatures to file" in out + assert Path(f'{opath}').exists() + + +def test_gen_pyf_stdout(capfd, hello_world_f90, monkeypatch): + """Ensures that a signature file can be dumped to stdout + CLI :: -h + """ + ipath = Path(hello_world_f90) + monkeypatch.setattr(sys, "argv", f'f2py -h stdout {ipath}'.split()) + with util.switchdir(ipath.parent): + f2pycli() + out, _ = capfd.readouterr() + assert "Saving signatures to file" in out + assert "function hi() ! in " in out + + +def test_gen_pyf_no_overwrite(capfd, hello_world_f90, monkeypatch): + """Ensures that the CLI refuses to overwrite signature files + CLI :: -h without --overwrite-signature + """ + ipath = Path(hello_world_f90) + monkeypatch.setattr(sys, "argv", f'f2py -h faker.pyf {ipath}'.split()) + + with util.switchdir(ipath.parent): + Path("faker.pyf").write_text("Fake news", encoding="ascii") + with pytest.raises(SystemExit): + f2pycli() # Refuse to overwrite + _, err = capfd.readouterr() + assert "Use --overwrite-signature to overwrite" in err + + +@pytest.mark.skipif(sys.version_info <= (3, 12), reason="Python 3.12 required") +def test_untitled_cli(capfd, hello_world_f90, monkeypatch): + """Check that modules are named correctly + + CLI :: defaults + """ + ipath = Path(hello_world_f90) + monkeypatch.setattr(sys, "argv", f"f2py --backend meson -c {ipath}".split()) + with util.switchdir(ipath.parent): + compiler_check_f2pycli() + out, _ = capfd.readouterr() + assert "untitledmodule.c" in out + + +@pytest.mark.skipif((platform.system() != 'Linux') or (sys.version_info <= (3, 12)), reason='Compiler and 3.12 required') +def test_no_py312_distutils_fcompiler(capfd, hello_world_f90, monkeypatch): + """Check that no distutils imports are performed on 3.12 + CLI :: --fcompiler --help-link --backend distutils + """ + MNAME = "hi" + foutl = get_io_paths(hello_world_f90, mname=MNAME) + ipath = foutl.f90inp + monkeypatch.setattr( + sys, "argv", f"f2py {ipath} -c --fcompiler=gfortran -m {MNAME}".split() + ) + with util.switchdir(ipath.parent): + compiler_check_f2pycli() + out, _ = capfd.readouterr() + assert "--fcompiler cannot be used with meson" in out + monkeypatch.setattr( + sys, "argv", ["f2py", "--help-link"] + ) + with util.switchdir(ipath.parent): + f2pycli() + out, _ = capfd.readouterr() + assert "Use --dep for meson builds" in out + MNAME = "hi2" # Needs to be different for a new -c + monkeypatch.setattr( + sys, "argv", f"f2py {ipath} -c -m {MNAME} --backend distutils".split() + ) + with util.switchdir(ipath.parent): + f2pycli() + out, _ = capfd.readouterr() + assert "Cannot use distutils backend with Python>=3.12" in out + + +@pytest.mark.xfail +def test_f2py_skip(capfd, retreal_f77, monkeypatch): + """Tests that functions can be skipped + CLI :: skip: + """ + foutl = get_io_paths(retreal_f77, mname="test") + ipath = foutl.finp + toskip = "t0 t4 t8 sd s8 s4" + remaining = "td s0" + monkeypatch.setattr( + sys, "argv", + f'f2py {ipath} -m test skip: {toskip}'.split()) + + with util.switchdir(ipath.parent): + f2pycli() + out, err = capfd.readouterr() + for skey in toskip.split(): + assert ( + f'buildmodule: Could not found the body of interfaced routine "{skey}". Skipping.' + in err) + for rkey in remaining.split(): + assert f'Constructing wrapper function "{rkey}"' in out + + +def test_f2py_only(capfd, retreal_f77, monkeypatch): + """Test that functions can be kept by only: + CLI :: only: + """ + foutl = get_io_paths(retreal_f77, mname="test") + ipath = foutl.finp + toskip = "t0 t4 t8 sd s8 s4" + tokeep = "td s0" + monkeypatch.setattr( + sys, "argv", + f'f2py {ipath} -m test only: {tokeep}'.split()) + + with util.switchdir(ipath.parent): + f2pycli() + out, err = capfd.readouterr() + for skey in toskip.split(): + assert ( + f'buildmodule: Could not find the body of interfaced routine "{skey}". Skipping.' + in err) + for rkey in tokeep.split(): + assert f'Constructing wrapper function "{rkey}"' in out + + +def test_file_processing_switch(capfd, hello_world_f90, retreal_f77, + monkeypatch): + """Tests that it is possible to return to file processing mode + CLI :: : + BUG: numpy-gh #20520 + """ + foutl = get_io_paths(retreal_f77, mname="test") + ipath = foutl.finp + toskip = "t0 t4 t8 sd s8 s4" + ipath2 = Path(hello_world_f90) + tokeep = "td s0 hi" # hi is in ipath2 + mname = "blah" + monkeypatch.setattr( + sys, + "argv", + f'f2py {ipath} -m {mname} only: {tokeep} : {ipath2}'.split( + ), + ) + + with util.switchdir(ipath.parent): + f2pycli() + out, err = capfd.readouterr() + for skey in toskip.split(): + assert ( + f'buildmodule: Could not find the body of interfaced routine "{skey}". Skipping.' + in err) + for rkey in tokeep.split(): + assert f'Constructing wrapper function "{rkey}"' in out + + +def test_mod_gen_f77(capfd, hello_world_f90, monkeypatch): + """Checks the generation of files based on a module name + CLI :: -m + """ + MNAME = "hi" + foutl = get_io_paths(hello_world_f90, mname=MNAME) + ipath = foutl.f90inp + monkeypatch.setattr(sys, "argv", f'f2py {ipath} -m {MNAME}'.split()) + with util.switchdir(ipath.parent): + f2pycli() + + # Always generate C module + assert Path.exists(foutl.cmodf) + # File contains a function, check for F77 wrappers + assert Path.exists(foutl.wrap77) + + +def test_mod_gen_gh25263(capfd, hello_world_f77, monkeypatch): + """Check that pyf files are correctly generated with module structure + CLI :: -m -h pyf_file + BUG: numpy-gh #20520 + """ + MNAME = "hi" + foutl = get_io_paths(hello_world_f77, mname=MNAME) + ipath = foutl.finp + monkeypatch.setattr(sys, "argv", f'f2py {ipath} -m {MNAME} -h hi.pyf'.split()) + with util.switchdir(ipath.parent): + f2pycli() + with Path('hi.pyf').open() as hipyf: + pyfdat = hipyf.read() + assert "python module hi" in pyfdat + + +def test_lower_cmod(capfd, hello_world_f77, monkeypatch): + """Lowers cases by flag or when -h is present + + CLI :: --[no-]lower + """ + foutl = get_io_paths(hello_world_f77, mname="test") + ipath = foutl.finp + capshi = re.compile(r"HI\(\)") + capslo = re.compile(r"hi\(\)") + # Case I: --lower is passed + monkeypatch.setattr(sys, "argv", f'f2py {ipath} -m test --lower'.split()) + with util.switchdir(ipath.parent): + f2pycli() + out, _ = capfd.readouterr() + assert capslo.search(out) is not None + assert capshi.search(out) is None + # Case II: --no-lower is passed + monkeypatch.setattr(sys, "argv", + f'f2py {ipath} -m test --no-lower'.split()) + with util.switchdir(ipath.parent): + f2pycli() + out, _ = capfd.readouterr() + assert capslo.search(out) is None + assert capshi.search(out) is not None + + +def test_lower_sig(capfd, hello_world_f77, monkeypatch): + """Lowers cases in signature files by flag or when -h is present + + CLI :: --[no-]lower -h + """ + foutl = get_io_paths(hello_world_f77, mname="test") + ipath = foutl.finp + # Signature files + capshi = re.compile(r"Block: HI") + capslo = re.compile(r"Block: hi") + # Case I: --lower is implied by -h + # TODO: Clean up to prevent passing --overwrite-signature + monkeypatch.setattr( + sys, + "argv", + f'f2py {ipath} -h {foutl.pyf} -m test --overwrite-signature'.split(), + ) + + with util.switchdir(ipath.parent): + f2pycli() + out, _ = capfd.readouterr() + assert capslo.search(out) is not None + assert capshi.search(out) is None + + # Case II: --no-lower overrides -h + monkeypatch.setattr( + sys, + "argv", + f'f2py {ipath} -h {foutl.pyf} -m test --overwrite-signature --no-lower' + .split(), + ) + + with util.switchdir(ipath.parent): + f2pycli() + out, _ = capfd.readouterr() + assert capslo.search(out) is None + assert capshi.search(out) is not None + + +def test_build_dir(capfd, hello_world_f90, monkeypatch): + """Ensures that the build directory can be specified + + CLI :: --build-dir + """ + ipath = Path(hello_world_f90) + mname = "blah" + odir = "tttmp" + monkeypatch.setattr(sys, "argv", + f'f2py -m {mname} {ipath} --build-dir {odir}'.split()) + + with util.switchdir(ipath.parent): + f2pycli() + out, _ = capfd.readouterr() + assert f"Wrote C/API module \"{mname}\"" in out + + +def test_overwrite(capfd, hello_world_f90, monkeypatch): + """Ensures that the build directory can be specified + + CLI :: --overwrite-signature + """ + ipath = Path(hello_world_f90) + monkeypatch.setattr( + sys, "argv", + f'f2py -h faker.pyf {ipath} --overwrite-signature'.split()) + + with util.switchdir(ipath.parent): + Path("faker.pyf").write_text("Fake news", encoding="ascii") + f2pycli() + out, _ = capfd.readouterr() + assert "Saving signatures to file" in out + + +def test_latexdoc(capfd, hello_world_f90, monkeypatch): + """Ensures that TeX documentation is written out + + CLI :: --latex-doc + """ + ipath = Path(hello_world_f90) + mname = "blah" + monkeypatch.setattr(sys, "argv", + f'f2py -m {mname} {ipath} --latex-doc'.split()) + + with util.switchdir(ipath.parent): + f2pycli() + out, _ = capfd.readouterr() + assert "Documentation is saved to file" in out + with Path(f"{mname}module.tex").open() as otex: + assert "\\documentclass" in otex.read() + + +def test_nolatexdoc(capfd, hello_world_f90, monkeypatch): + """Ensures that TeX documentation is written out + + CLI :: --no-latex-doc + """ + ipath = Path(hello_world_f90) + mname = "blah" + monkeypatch.setattr(sys, "argv", + f'f2py -m {mname} {ipath} --no-latex-doc'.split()) + + with util.switchdir(ipath.parent): + f2pycli() + out, _ = capfd.readouterr() + assert "Documentation is saved to file" not in out + + +def test_shortlatex(capfd, hello_world_f90, monkeypatch): + """Ensures that truncated documentation is written out + + TODO: Test to ensure this has no effect without --latex-doc + CLI :: --latex-doc --short-latex + """ + ipath = Path(hello_world_f90) + mname = "blah" + monkeypatch.setattr( + sys, + "argv", + f'f2py -m {mname} {ipath} --latex-doc --short-latex'.split(), + ) + + with util.switchdir(ipath.parent): + f2pycli() + out, _ = capfd.readouterr() + assert "Documentation is saved to file" in out + with Path(f"./{mname}module.tex").open() as otex: + assert "\\documentclass" not in otex.read() + + +def test_restdoc(capfd, hello_world_f90, monkeypatch): + """Ensures that RsT documentation is written out + + CLI :: --rest-doc + """ + ipath = Path(hello_world_f90) + mname = "blah" + monkeypatch.setattr(sys, "argv", + f'f2py -m {mname} {ipath} --rest-doc'.split()) + + with util.switchdir(ipath.parent): + f2pycli() + out, _ = capfd.readouterr() + assert "ReST Documentation is saved to file" in out + with Path(f"./{mname}module.rest").open() as orst: + assert r".. -*- rest -*-" in orst.read() + + +def test_norestexdoc(capfd, hello_world_f90, monkeypatch): + """Ensures that TeX documentation is written out + + CLI :: --no-rest-doc + """ + ipath = Path(hello_world_f90) + mname = "blah" + monkeypatch.setattr(sys, "argv", + f'f2py -m {mname} {ipath} --no-rest-doc'.split()) + + with util.switchdir(ipath.parent): + f2pycli() + out, _ = capfd.readouterr() + assert "ReST Documentation is saved to file" not in out + + +def test_debugcapi(capfd, hello_world_f90, monkeypatch): + """Ensures that debugging wrappers are written + + CLI :: --debug-capi + """ + ipath = Path(hello_world_f90) + mname = "blah" + monkeypatch.setattr(sys, "argv", + f'f2py -m {mname} {ipath} --debug-capi'.split()) + + with util.switchdir(ipath.parent): + f2pycli() + with Path(f"./{mname}module.c").open() as ocmod: + assert r"#define DEBUGCFUNCS" in ocmod.read() + + +@pytest.mark.skip(reason="Consistently fails on CI; noisy so skip not xfail.") +def test_debugcapi_bld(hello_world_f90, monkeypatch): + """Ensures that debugging wrappers work + + CLI :: --debug-capi -c + """ + ipath = Path(hello_world_f90) + mname = "blah" + monkeypatch.setattr(sys, "argv", + f'f2py -m {mname} {ipath} -c --debug-capi'.split()) + + with util.switchdir(ipath.parent): + f2pycli() + cmd_run = shlex.split(f"{sys.executable} -c \"import blah; blah.hi()\"") + rout = subprocess.run(cmd_run, capture_output=True, encoding='UTF-8') + eout = ' Hello World\n' + eerr = textwrap.dedent("""\ +debug-capi:Python C/API function blah.hi() +debug-capi:float hi=:output,hidden,scalar +debug-capi:hi=0 +debug-capi:Fortran subroutine `f2pywraphi(&hi)' +debug-capi:hi=0 +debug-capi:Building return value. +debug-capi:Python C/API function blah.hi: successful. +debug-capi:Freeing memory. + """) + assert rout.stdout == eout + assert rout.stderr == eerr + + +def test_wrapfunc_def(capfd, hello_world_f90, monkeypatch): + """Ensures that fortran subroutine wrappers for F77 are included by default + + CLI :: --[no]-wrap-functions + """ + # Implied + ipath = Path(hello_world_f90) + mname = "blah" + monkeypatch.setattr(sys, "argv", f'f2py -m {mname} {ipath}'.split()) + + with util.switchdir(ipath.parent): + f2pycli() + out, _ = capfd.readouterr() + assert r"Fortran 77 wrappers are saved to" in out + + # Explicit + monkeypatch.setattr(sys, "argv", + f'f2py -m {mname} {ipath} --wrap-functions'.split()) + + with util.switchdir(ipath.parent): + f2pycli() + out, _ = capfd.readouterr() + assert r"Fortran 77 wrappers are saved to" in out + + +def test_nowrapfunc(capfd, hello_world_f90, monkeypatch): + """Ensures that fortran subroutine wrappers for F77 can be disabled + + CLI :: --no-wrap-functions + """ + ipath = Path(hello_world_f90) + mname = "blah" + monkeypatch.setattr(sys, "argv", + f'f2py -m {mname} {ipath} --no-wrap-functions'.split()) + + with util.switchdir(ipath.parent): + f2pycli() + out, _ = capfd.readouterr() + assert r"Fortran 77 wrappers are saved to" not in out + + +def test_inclheader(capfd, hello_world_f90, monkeypatch): + """Add to the include directories + + CLI :: -include + TODO: Document this in the help string + """ + ipath = Path(hello_world_f90) + mname = "blah" + monkeypatch.setattr( + sys, + "argv", + f'f2py -m {mname} {ipath} -include -include '. + split(), + ) + + with util.switchdir(ipath.parent): + f2pycli() + with Path(f"./{mname}module.c").open() as ocmod: + ocmr = ocmod.read() + assert "#include " in ocmr + assert "#include " in ocmr + + +def test_inclpath(): + """Add to the include directories + + CLI :: --include-paths + """ + # TODO: populate + pass + + +def test_hlink(): + """Add to the include directories + + CLI :: --help-link + """ + # TODO: populate + pass + + +def test_f2cmap(capfd, f2cmap_f90, monkeypatch): + """Check that Fortran-to-Python KIND specs can be passed + + CLI :: --f2cmap + """ + ipath = Path(f2cmap_f90) + monkeypatch.setattr(sys, "argv", f'f2py -m blah {ipath} --f2cmap mapfile'.split()) + + with util.switchdir(ipath.parent): + f2pycli() + out, _ = capfd.readouterr() + assert "Reading f2cmap from 'mapfile' ..." in out + assert "Mapping \"real(kind=real32)\" to \"float\"" in out + assert "Mapping \"real(kind=real64)\" to \"double\"" in out + assert "Mapping \"integer(kind=int64)\" to \"long_long\"" in out + assert "Successfully applied user defined f2cmap changes" in out + + +def test_quiet(capfd, hello_world_f90, monkeypatch): + """Reduce verbosity + + CLI :: --quiet + """ + ipath = Path(hello_world_f90) + monkeypatch.setattr(sys, "argv", f'f2py -m blah {ipath} --quiet'.split()) + + with util.switchdir(ipath.parent): + f2pycli() + out, _ = capfd.readouterr() + assert len(out) == 0 + + +def test_verbose(capfd, hello_world_f90, monkeypatch): + """Increase verbosity + + CLI :: --verbose + """ + ipath = Path(hello_world_f90) + monkeypatch.setattr(sys, "argv", f'f2py -m blah {ipath} --verbose'.split()) + + with util.switchdir(ipath.parent): + f2pycli() + out, _ = capfd.readouterr() + assert "analyzeline" in out + + +def test_version(capfd, monkeypatch): + """Ensure version + + CLI :: -v + """ + monkeypatch.setattr(sys, "argv", ["f2py", "-v"]) + # TODO: f2py2e should not call sys.exit() after printing the version + with pytest.raises(SystemExit): + f2pycli() + out, _ = capfd.readouterr() + import numpy as np + assert np.__version__ == out.strip() + + +@pytest.mark.skip(reason="Consistently fails on CI; noisy so skip not xfail.") +def test_npdistop(hello_world_f90, monkeypatch): + """ + CLI :: -c + """ + ipath = Path(hello_world_f90) + monkeypatch.setattr(sys, "argv", f'f2py -m blah {ipath} -c'.split()) + + with util.switchdir(ipath.parent): + f2pycli() + cmd_run = shlex.split(f"{sys.executable} -c \"import blah; blah.hi()\"") + rout = subprocess.run(cmd_run, capture_output=True, encoding='UTF-8') + eout = ' Hello World\n' + assert rout.stdout == eout + + +@pytest.mark.skipif((platform.system() != 'Linux') or sys.version_info <= (3, 12), + reason='Compiler and Python 3.12 or newer required') +def test_no_freethreading_compatible(hello_world_f90, monkeypatch): + """ + CLI :: --no-freethreading-compatible + """ + ipath = Path(hello_world_f90) + monkeypatch.setattr(sys, "argv", f'f2py -m blah {ipath} -c --no-freethreading-compatible'.split()) + + with util.switchdir(ipath.parent): + compiler_check_f2pycli() + cmd = f"{sys.executable} -c \"import blah; blah.hi();" + if NOGIL_BUILD: + cmd += "import sys; assert sys._is_gil_enabled() is True\"" + else: + cmd += "\"" + cmd_run = shlex.split(cmd) + rout = subprocess.run(cmd_run, capture_output=True, encoding='UTF-8') + eout = ' Hello World\n' + assert rout.stdout == eout + if NOGIL_BUILD: + assert "The global interpreter lock (GIL) has been enabled to load module 'blah'" in rout.stderr + assert rout.returncode == 0 + + +@pytest.mark.skipif((platform.system() != 'Linux') or sys.version_info <= (3, 12), + reason='Compiler and Python 3.12 or newer required') +def test_freethreading_compatible(hello_world_f90, monkeypatch): + """ + CLI :: --freethreading_compatible + """ + ipath = Path(hello_world_f90) + monkeypatch.setattr(sys, "argv", f'f2py -m blah {ipath} -c --freethreading-compatible'.split()) + + with util.switchdir(ipath.parent): + compiler_check_f2pycli() + cmd = f"{sys.executable} -c \"import blah; blah.hi();" + if NOGIL_BUILD: + cmd += "import sys; assert sys._is_gil_enabled() is False\"" + else: + cmd += "\"" + cmd_run = shlex.split(cmd) + rout = subprocess.run(cmd_run, capture_output=True, encoding='UTF-8') + eout = ' Hello World\n' + assert rout.stdout == eout + assert rout.stderr == "" + assert rout.returncode == 0 + + +# Numpy distutils flags +# TODO: These should be tested separately + +def test_npd_fcompiler(): + """ + CLI :: -c --fcompiler + """ + # TODO: populate + pass + + +def test_npd_compiler(): + """ + CLI :: -c --compiler + """ + # TODO: populate + pass + + +def test_npd_help_fcompiler(): + """ + CLI :: -c --help-fcompiler + """ + # TODO: populate + pass + + +def test_npd_f77exec(): + """ + CLI :: -c --f77exec + """ + # TODO: populate + pass + + +def test_npd_f90exec(): + """ + CLI :: -c --f90exec + """ + # TODO: populate + pass + + +def test_npd_f77flags(): + """ + CLI :: -c --f77flags + """ + # TODO: populate + pass + + +def test_npd_f90flags(): + """ + CLI :: -c --f90flags + """ + # TODO: populate + pass + + +def test_npd_opt(): + """ + CLI :: -c --opt + """ + # TODO: populate + pass + + +def test_npd_arch(): + """ + CLI :: -c --arch + """ + # TODO: populate + pass + + +def test_npd_noopt(): + """ + CLI :: -c --noopt + """ + # TODO: populate + pass + + +def test_npd_noarch(): + """ + CLI :: -c --noarch + """ + # TODO: populate + pass + + +def test_npd_debug(): + """ + CLI :: -c --debug + """ + # TODO: populate + pass + + +def test_npd_link_auto(): + """ + CLI :: -c --link- + """ + # TODO: populate + pass + + +def test_npd_lib(): + """ + CLI :: -c -L/path/to/lib/ -l + """ + # TODO: populate + pass + + +def test_npd_define(): + """ + CLI :: -D + """ + # TODO: populate + pass + + +def test_npd_undefine(): + """ + CLI :: -U + """ + # TODO: populate + pass + + +def test_npd_incl(): + """ + CLI :: -I/path/to/include/ + """ + # TODO: populate + pass + + +def test_npd_linker(): + """ + CLI :: .o .so .a + """ + # TODO: populate + pass diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_isoc.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_isoc.py new file mode 100644 index 0000000..f3450f1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_isoc.py @@ -0,0 +1,56 @@ +import pytest + +import numpy as np +from numpy.testing import assert_allclose + +from . import util + + +class TestISOC(util.F2PyTest): + sources = [ + util.getpath("tests", "src", "isocintrin", "isoCtests.f90"), + ] + + # gh-24553 + @pytest.mark.slow + def test_c_double(self): + out = self.module.coddity.c_add(1, 2) + exp_out = 3 + assert out == exp_out + + # gh-9693 + def test_bindc_function(self): + out = self.module.coddity.wat(1, 20) + exp_out = 8 + assert out == exp_out + + # gh-25207 + def test_bindc_kinds(self): + out = self.module.coddity.c_add_int64(1, 20) + exp_out = 21 + assert out == exp_out + + # gh-25207 + def test_bindc_add_arr(self): + a = np.array([1, 2, 3]) + b = np.array([1, 2, 3]) + out = self.module.coddity.add_arr(a, b) + exp_out = a * 2 + assert_allclose(out, exp_out) + + +def test_process_f2cmap_dict(): + from numpy.f2py.auxfuncs import process_f2cmap_dict + + f2cmap_all = {"integer": {"8": "rubbish_type"}} + new_map = {"INTEGER": {"4": "int"}} + c2py_map = {"int": "int", "rubbish_type": "long"} + + exp_map, exp_maptyp = ({"integer": {"8": "rubbish_type", "4": "int"}}, ["int"]) + + # Call the function + res_map, res_maptyp = process_f2cmap_dict(f2cmap_all, new_map, c2py_map) + + # Assert the result is as expected + assert res_map == exp_map + assert res_maptyp == exp_maptyp diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_kind.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_kind.py new file mode 100644 index 0000000..ce223a5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_kind.py @@ -0,0 +1,53 @@ +import platform +import sys + +import pytest + +from numpy.f2py.crackfortran import ( + _selected_int_kind_func as selected_int_kind, +) +from numpy.f2py.crackfortran import ( + _selected_real_kind_func as selected_real_kind, +) + +from . import util + + +class TestKind(util.F2PyTest): + sources = [util.getpath("tests", "src", "kind", "foo.f90")] + + @pytest.mark.skipif(sys.maxsize < 2 ** 31 + 1, + reason="Fails for 32 bit machines") + def test_int(self): + """Test `int` kind_func for integers up to 10**40.""" + selectedintkind = self.module.selectedintkind + + for i in range(40): + assert selectedintkind(i) == selected_int_kind( + i + ), f"selectedintkind({i}): expected {selected_int_kind(i)!r} but got {selectedintkind(i)!r}" + + def test_real(self): + """ + Test (processor-dependent) `real` kind_func for real numbers + of up to 31 digits precision (extended/quadruple). + """ + selectedrealkind = self.module.selectedrealkind + + for i in range(32): + assert selectedrealkind(i) == selected_real_kind( + i + ), f"selectedrealkind({i}): expected {selected_real_kind(i)!r} but got {selectedrealkind(i)!r}" + + @pytest.mark.xfail(platform.machine().lower().startswith("ppc"), + reason="Some PowerPC may not support full IEEE 754 precision") + def test_quad_precision(self): + """ + Test kind_func for quadruple precision [`real(16)`] of 32+ digits . + """ + selectedrealkind = self.module.selectedrealkind + + for i in range(32, 40): + assert selectedrealkind(i) == selected_real_kind( + i + ), f"selectedrealkind({i}): expected {selected_real_kind(i)!r} but got {selectedrealkind(i)!r}" diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_mixed.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_mixed.py new file mode 100644 index 0000000..07f43e2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_mixed.py @@ -0,0 +1,35 @@ +import textwrap + +import pytest + +from numpy.testing import IS_PYPY + +from . import util + + +class TestMixed(util.F2PyTest): + sources = [ + util.getpath("tests", "src", "mixed", "foo.f"), + util.getpath("tests", "src", "mixed", "foo_fixed.f90"), + util.getpath("tests", "src", "mixed", "foo_free.f90"), + ] + + @pytest.mark.slow + def test_all(self): + assert self.module.bar11() == 11 + assert self.module.foo_fixed.bar12() == 12 + assert self.module.foo_free.bar13() == 13 + + @pytest.mark.xfail(IS_PYPY, + reason="PyPy cannot modify tp_doc after PyType_Ready") + def test_docstring(self): + expected = textwrap.dedent("""\ + a = bar11() + + Wrapper for ``bar11``. + + Returns + ------- + a : int + """) + assert self.module.bar11.__doc__ == expected diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_modules.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_modules.py new file mode 100644 index 0000000..96d5ffc --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_modules.py @@ -0,0 +1,83 @@ +import textwrap + +import pytest + +from numpy.testing import IS_PYPY + +from . import util + + +@pytest.mark.slow +class TestModuleFilterPublicEntities(util.F2PyTest): + sources = [ + util.getpath( + "tests", "src", "modules", "gh26920", + "two_mods_with_one_public_routine.f90" + ) + ] + # we filter the only public function mod2 + only = ["mod1_func1", ] + + def test_gh26920(self): + # if it compiles and can be loaded, things are fine + pass + + +@pytest.mark.slow +class TestModuleWithoutPublicEntities(util.F2PyTest): + sources = [ + util.getpath( + "tests", "src", "modules", "gh26920", + "two_mods_with_no_public_entities.f90" + ) + ] + only = ["mod1_func1", ] + + def test_gh26920(self): + # if it compiles and can be loaded, things are fine + pass + + +@pytest.mark.slow +class TestModuleDocString(util.F2PyTest): + sources = [util.getpath("tests", "src", "modules", "module_data_docstring.f90")] + + @pytest.mark.xfail(IS_PYPY, reason="PyPy cannot modify tp_doc after PyType_Ready") + def test_module_docstring(self): + assert self.module.mod.__doc__ == textwrap.dedent( + """\ + i : 'i'-scalar + x : 'i'-array(4) + a : 'f'-array(2,3) + b : 'f'-array(-1,-1), not allocated\x00 + foo()\n + Wrapper for ``foo``.\n\n""" + ) + + +@pytest.mark.slow +class TestModuleAndSubroutine(util.F2PyTest): + module_name = "example" + sources = [ + util.getpath("tests", "src", "modules", "gh25337", "data.f90"), + util.getpath("tests", "src", "modules", "gh25337", "use_data.f90"), + ] + + def test_gh25337(self): + self.module.data.set_shift(3) + assert "data" in dir(self.module) + + +@pytest.mark.slow +class TestUsedModule(util.F2PyTest): + module_name = "fmath" + sources = [ + util.getpath("tests", "src", "modules", "use_modules.f90"), + ] + + def test_gh25867(self): + compiled_mods = [x for x in dir(self.module) if "__" not in x] + assert "useops" in compiled_mods + assert self.module.useops.sum_and_double(3, 7) == 20 + assert "mathops" in compiled_mods + assert self.module.mathops.add(3, 7) == 10 diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_parameter.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_parameter.py new file mode 100644 index 0000000..513d021 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_parameter.py @@ -0,0 +1,129 @@ +import pytest + +import numpy as np + +from . import util + + +class TestParameters(util.F2PyTest): + # Check that intent(in out) translates as intent(inout) + sources = [ + util.getpath("tests", "src", "parameter", "constant_real.f90"), + util.getpath("tests", "src", "parameter", "constant_integer.f90"), + util.getpath("tests", "src", "parameter", "constant_both.f90"), + util.getpath("tests", "src", "parameter", "constant_compound.f90"), + util.getpath("tests", "src", "parameter", "constant_non_compound.f90"), + util.getpath("tests", "src", "parameter", "constant_array.f90"), + ] + + @pytest.mark.slow + def test_constant_real_single(self): + # non-contiguous should raise error + x = np.arange(6, dtype=np.float32)[::2] + pytest.raises(ValueError, self.module.foo_single, x) + + # check values with contiguous array + x = np.arange(3, dtype=np.float32) + self.module.foo_single(x) + assert np.allclose(x, [0 + 1 + 2 * 3, 1, 2]) + + @pytest.mark.slow + def test_constant_real_double(self): + # non-contiguous should raise error + x = np.arange(6, dtype=np.float64)[::2] + pytest.raises(ValueError, self.module.foo_double, x) + + # check values with contiguous array + x = np.arange(3, dtype=np.float64) + self.module.foo_double(x) + assert np.allclose(x, [0 + 1 + 2 * 3, 1, 2]) + + @pytest.mark.slow + def test_constant_compound_int(self): + # non-contiguous should raise error + x = np.arange(6, dtype=np.int32)[::2] + pytest.raises(ValueError, self.module.foo_compound_int, x) + + # check values with contiguous array + x = np.arange(3, dtype=np.int32) + self.module.foo_compound_int(x) + assert np.allclose(x, [0 + 1 + 2 * 6, 1, 2]) + + @pytest.mark.slow + def test_constant_non_compound_int(self): + # check values + x = np.arange(4, dtype=np.int32) + self.module.foo_non_compound_int(x) + assert np.allclose(x, [0 + 1 + 2 + 3 * 4, 1, 2, 3]) + + @pytest.mark.slow + def test_constant_integer_int(self): + # non-contiguous should raise error + x = np.arange(6, dtype=np.int32)[::2] + pytest.raises(ValueError, self.module.foo_int, x) + + # check values with contiguous array + x = np.arange(3, dtype=np.int32) + self.module.foo_int(x) + assert np.allclose(x, [0 + 1 + 2 * 3, 1, 2]) + + @pytest.mark.slow + def test_constant_integer_long(self): + # non-contiguous should raise error + x = np.arange(6, dtype=np.int64)[::2] + pytest.raises(ValueError, self.module.foo_long, x) + + # check values with contiguous array + x = np.arange(3, dtype=np.int64) + self.module.foo_long(x) + assert np.allclose(x, [0 + 1 + 2 * 3, 1, 2]) + + @pytest.mark.slow + def test_constant_both(self): + # non-contiguous should raise error + x = np.arange(6, dtype=np.float64)[::2] + pytest.raises(ValueError, self.module.foo, x) + + # check values with contiguous array + x = np.arange(3, dtype=np.float64) + self.module.foo(x) + assert np.allclose(x, [0 + 1 * 3 * 3 + 2 * 3 * 3, 1 * 3, 2 * 3]) + + @pytest.mark.slow + def test_constant_no(self): + # non-contiguous should raise error + x = np.arange(6, dtype=np.float64)[::2] + pytest.raises(ValueError, self.module.foo_no, x) + + # check values with contiguous array + x = np.arange(3, dtype=np.float64) + self.module.foo_no(x) + assert np.allclose(x, [0 + 1 * 3 * 3 + 2 * 3 * 3, 1 * 3, 2 * 3]) + + @pytest.mark.slow + def test_constant_sum(self): + # non-contiguous should raise error + x = np.arange(6, dtype=np.float64)[::2] + pytest.raises(ValueError, self.module.foo_sum, x) + + # check values with contiguous array + x = np.arange(3, dtype=np.float64) + self.module.foo_sum(x) + assert np.allclose(x, [0 + 1 * 3 * 3 + 2 * 3 * 3, 1 * 3, 2 * 3]) + + def test_constant_array(self): + x = np.arange(3, dtype=np.float64) + y = np.arange(5, dtype=np.float64) + z = self.module.foo_array(x, y) + assert np.allclose(x, [0.0, 1. / 10, 2. / 10]) + assert np.allclose(y, [0.0, 1. * 10, 2. * 10, 3. * 10, 4. * 10]) + assert np.allclose(z, 19.0) + + def test_constant_array_any_index(self): + x = np.arange(6, dtype=np.float64) + y = self.module.foo_array_any_index(x) + assert np.allclose(y, x.reshape((2, 3), order='F')) + + def test_constant_array_delims(self): + x = self.module.foo_array_delims() + assert x == 9 diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_pyf_src.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_pyf_src.py new file mode 100644 index 0000000..2ecb0fb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_pyf_src.py @@ -0,0 +1,43 @@ +# This test is ported from numpy.distutils +from numpy.f2py._src_pyf import process_str +from numpy.testing import assert_equal + +pyf_src = """ +python module foo + <_rd=real,double precision> + interface + subroutine foosub(tol) + <_rd>, intent(in,out) :: tol + end subroutine foosub + end interface +end python module foo +""" + +expected_pyf = """ +python module foo + interface + subroutine sfoosub(tol) + real, intent(in,out) :: tol + end subroutine sfoosub + subroutine dfoosub(tol) + double precision, intent(in,out) :: tol + end subroutine dfoosub + end interface +end python module foo +""" + + +def normalize_whitespace(s): + """ + Remove leading and trailing whitespace, and convert internal + stretches of whitespace to a single space. + """ + return ' '.join(s.split()) + + +def test_from_template(): + """Regression test for gh-10712.""" + pyf = process_str(pyf_src) + normalized_pyf = normalize_whitespace(pyf) + normalized_expected_pyf = normalize_whitespace(expected_pyf) + assert_equal(normalized_pyf, normalized_expected_pyf) diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_quoted_character.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_quoted_character.py new file mode 100644 index 0000000..3cbcb3c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_quoted_character.py @@ -0,0 +1,18 @@ +"""See https://github.com/numpy/numpy/pull/10676. + +""" +import sys + +import pytest + +from . import util + + +class TestQuotedCharacter(util.F2PyTest): + sources = [util.getpath("tests", "src", "quoted_character", "foo.f")] + + @pytest.mark.skipif(sys.platform == "win32", + reason="Fails with MinGW64 Gfortran (Issue #9673)") + @pytest.mark.slow + def test_quoted_character(self): + assert self.module.foo() == (b"'", b'"', b";", b"!", b"(", b")") diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_regression.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_regression.py new file mode 100644 index 0000000..93eb29e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_regression.py @@ -0,0 +1,187 @@ +import os +import platform + +import pytest + +import numpy as np +import numpy.testing as npt + +from . import util + + +class TestIntentInOut(util.F2PyTest): + # Check that intent(in out) translates as intent(inout) + sources = [util.getpath("tests", "src", "regression", "inout.f90")] + + @pytest.mark.slow + def test_inout(self): + # non-contiguous should raise error + x = np.arange(6, dtype=np.float32)[::2] + pytest.raises(ValueError, self.module.foo, x) + + # check values with contiguous array + x = np.arange(3, dtype=np.float32) + self.module.foo(x) + assert np.allclose(x, [3, 1, 2]) + + +class TestDataOnlyMultiModule(util.F2PyTest): + # Check that modules without subroutines work + sources = [util.getpath("tests", "src", "regression", "datonly.f90")] + + @pytest.mark.slow + def test_mdat(self): + assert self.module.datonly.max_value == 100 + assert self.module.dat.max_ == 1009 + int_in = 5 + assert self.module.simple_subroutine(5) == 1014 + + +class TestModuleWithDerivedType(util.F2PyTest): + # Check that modules with derived types work + sources = [util.getpath("tests", "src", "regression", "mod_derived_types.f90")] + + @pytest.mark.slow + def test_mtypes(self): + assert self.module.no_type_subroutine(10) == 110 + assert self.module.type_subroutine(10) == 210 + + +class TestNegativeBounds(util.F2PyTest): + # Check that negative bounds work correctly + sources = [util.getpath("tests", "src", "negative_bounds", "issue_20853.f90")] + + @pytest.mark.slow + def test_negbound(self): + xvec = np.arange(12) + xlow = -6 + xhigh = 4 + + # Calculate the upper bound, + # Keeping the 1 index in mind + + def ubound(xl, xh): + return xh - xl + 1 + rval = self.module.foo(is_=xlow, ie_=xhigh, + arr=xvec[:ubound(xlow, xhigh)]) + expval = np.arange(11, dtype=np.float32) + assert np.allclose(rval, expval) + + +class TestNumpyVersionAttribute(util.F2PyTest): + # Check that th attribute __f2py_numpy_version__ is present + # in the compiled module and that has the value np.__version__. + sources = [util.getpath("tests", "src", "regression", "inout.f90")] + + @pytest.mark.slow + def test_numpy_version_attribute(self): + + # Check that self.module has an attribute named "__f2py_numpy_version__" + assert hasattr(self.module, "__f2py_numpy_version__") + + # Check that the attribute __f2py_numpy_version__ is a string + assert isinstance(self.module.__f2py_numpy_version__, str) + + # Check that __f2py_numpy_version__ has the value numpy.__version__ + assert np.__version__ == self.module.__f2py_numpy_version__ + + +def test_include_path(): + incdir = np.f2py.get_include() + fnames_in_dir = os.listdir(incdir) + for fname in ("fortranobject.c", "fortranobject.h"): + assert fname in fnames_in_dir + + +class TestIncludeFiles(util.F2PyTest): + sources = [util.getpath("tests", "src", "regression", "incfile.f90")] + options = [f"-I{util.getpath('tests', 'src', 'regression')}", + f"--include-paths {util.getpath('tests', 'src', 'regression')}"] + + @pytest.mark.slow + def test_gh25344(self): + exp = 7.0 + res = self.module.add(3.0, 4.0) + assert exp == res + +class TestF77Comments(util.F2PyTest): + # Check that comments are stripped from F77 continuation lines + sources = [util.getpath("tests", "src", "regression", "f77comments.f")] + + @pytest.mark.slow + def test_gh26148(self): + x1 = np.array(3, dtype=np.int32) + x2 = np.array(5, dtype=np.int32) + res = self.module.testsub(x1, x2) + assert res[0] == 8 + assert res[1] == 15 + + @pytest.mark.slow + def test_gh26466(self): + # Check that comments after PARAMETER directions are stripped + expected = np.arange(1, 11, dtype=np.float32) * 2 + res = self.module.testsub2() + npt.assert_allclose(expected, res) + +class TestF90Contiuation(util.F2PyTest): + # Check that comments are stripped from F90 continuation lines + sources = [util.getpath("tests", "src", "regression", "f90continuation.f90")] + + @pytest.mark.slow + def test_gh26148b(self): + x1 = np.array(3, dtype=np.int32) + x2 = np.array(5, dtype=np.int32) + res = self.module.testsub(x1, x2) + assert res[0] == 8 + assert res[1] == 15 + +class TestLowerF2PYDirectives(util.F2PyTest): + # Check variables are cased correctly + sources = [util.getpath("tests", "src", "regression", "lower_f2py_fortran.f90")] + + @pytest.mark.slow + def test_gh28014(self): + self.module.inquire_next(3) + assert True + +@pytest.mark.slow +def test_gh26623(): + # Including libraries with . should not generate an incorrect meson.build + try: + aa = util.build_module( + [util.getpath("tests", "src", "regression", "f90continuation.f90")], + ["-lfoo.bar"], + module_name="Blah", + ) + except RuntimeError as rerr: + assert "lparen got assign" not in str(rerr) + + +@pytest.mark.slow +@pytest.mark.skipif(platform.system() not in ['Linux', 'Darwin'], reason='Unsupported on this platform for now') +def test_gh25784(): + # Compile dubious file using passed flags + try: + aa = util.build_module( + [util.getpath("tests", "src", "regression", "f77fixedform.f95")], + options=[ + # Meson will collect and dedup these to pass to fortran_args: + "--f77flags='-ffixed-form -O2'", + "--f90flags=\"-ffixed-form -Og\"", + ], + module_name="Blah", + ) + except ImportError as rerr: + assert "unknown_subroutine_" in str(rerr) + + +@pytest.mark.slow +class TestAssignmentOnlyModules(util.F2PyTest): + # Ensure that variables are exposed without functions or subroutines in a module + sources = [util.getpath("tests", "src", "regression", "assignOnlyModule.f90")] + + @pytest.mark.slow + def test_gh27167(self): + assert (self.module.f_globals.n_max == 16) + assert (self.module.f_globals.i_max == 18) + assert (self.module.f_globals.j_max == 72) diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_return_character.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_return_character.py new file mode 100644 index 0000000..aae3f0f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_return_character.py @@ -0,0 +1,48 @@ +import platform + +import pytest + +from numpy import array + +from . import util + +IS_S390X = platform.machine() == "s390x" + + +@pytest.mark.slow +class TestReturnCharacter(util.F2PyTest): + def check_function(self, t, tname): + if tname in ["t0", "t1", "s0", "s1"]: + assert t("23") == b"2" + r = t("ab") + assert r == b"a" + r = t(array("ab")) + assert r == b"a" + r = t(array(77, "u1")) + assert r == b"M" + elif tname in ["ts", "ss"]: + assert t(23) == b"23" + assert t("123456789abcdef") == b"123456789a" + elif tname in ["t5", "s5"]: + assert t(23) == b"23" + assert t("ab") == b"ab" + assert t("123456789abcdef") == b"12345" + else: + raise NotImplementedError + + +class TestFReturnCharacter(TestReturnCharacter): + sources = [ + util.getpath("tests", "src", "return_character", "foo77.f"), + util.getpath("tests", "src", "return_character", "foo90.f90"), + ] + + @pytest.mark.xfail(IS_S390X, reason="callback returns ' '") + @pytest.mark.parametrize("name", ["t0", "t1", "t5", "s0", "s1", "s5", "ss"]) + def test_all_f77(self, name): + self.check_function(getattr(self.module, name), name) + + @pytest.mark.xfail(IS_S390X, reason="callback returns ' '") + @pytest.mark.parametrize("name", ["t0", "t1", "t5", "ts", "s0", "s1", "s5", "ss"]) + def test_all_f90(self, name): + self.check_function(getattr(self.module.f90_return_char, name), name) diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_return_complex.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_return_complex.py new file mode 100644 index 0000000..aa3f28e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_return_complex.py @@ -0,0 +1,67 @@ +import pytest + +from numpy import array + +from . import util + + +@pytest.mark.slow +class TestReturnComplex(util.F2PyTest): + def check_function(self, t, tname): + if tname in ["t0", "t8", "s0", "s8"]: + err = 1e-5 + else: + err = 0.0 + assert abs(t(234j) - 234.0j) <= err + assert abs(t(234.6) - 234.6) <= err + assert abs(t(234) - 234.0) <= err + assert abs(t(234.6 + 3j) - (234.6 + 3j)) <= err + # assert abs(t('234')-234.)<=err + # assert abs(t('234.6')-234.6)<=err + assert abs(t(-234) + 234.0) <= err + assert abs(t([234]) - 234.0) <= err + assert abs(t((234, )) - 234.0) <= err + assert abs(t(array(234)) - 234.0) <= err + assert abs(t(array(23 + 4j, "F")) - (23 + 4j)) <= err + assert abs(t(array([234])) - 234.0) <= err + assert abs(t(array([[234]])) - 234.0) <= err + assert abs(t(array([234]).astype("b")) + 22.0) <= err + assert abs(t(array([234], "h")) - 234.0) <= err + assert abs(t(array([234], "i")) - 234.0) <= err + assert abs(t(array([234], "l")) - 234.0) <= err + assert abs(t(array([234], "q")) - 234.0) <= err + assert abs(t(array([234], "f")) - 234.0) <= err + assert abs(t(array([234], "d")) - 234.0) <= err + assert abs(t(array([234 + 3j], "F")) - (234 + 3j)) <= err + assert abs(t(array([234], "D")) - 234.0) <= err + + # pytest.raises(TypeError, t, array([234], 'S1')) + pytest.raises(TypeError, t, "abc") + + pytest.raises(IndexError, t, []) + pytest.raises(IndexError, t, ()) + + pytest.raises(TypeError, t, t) + pytest.raises(TypeError, t, {}) + + try: + r = t(10**400) + assert repr(r) in ["(inf+0j)", "(Infinity+0j)"] + except OverflowError: + pass + + +class TestFReturnComplex(TestReturnComplex): + sources = [ + util.getpath("tests", "src", "return_complex", "foo77.f"), + util.getpath("tests", "src", "return_complex", "foo90.f90"), + ] + + @pytest.mark.parametrize("name", ["t0", "t8", "t16", "td", "s0", "s8", "s16", "sd"]) + def test_all_f77(self, name): + self.check_function(getattr(self.module, name), name) + + @pytest.mark.parametrize("name", ["t0", "t8", "t16", "td", "s0", "s8", "s16", "sd"]) + def test_all_f90(self, name): + self.check_function(getattr(self.module.f90_return_complex, name), + name) diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_return_integer.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_return_integer.py new file mode 100644 index 0000000..13a9f86 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_return_integer.py @@ -0,0 +1,55 @@ +import pytest + +from numpy import array + +from . import util + + +@pytest.mark.slow +class TestReturnInteger(util.F2PyTest): + def check_function(self, t, tname): + assert t(123) == 123 + assert t(123.6) == 123 + assert t("123") == 123 + assert t(-123) == -123 + assert t([123]) == 123 + assert t((123, )) == 123 + assert t(array(123)) == 123 + assert t(array(123, "b")) == 123 + assert t(array(123, "h")) == 123 + assert t(array(123, "i")) == 123 + assert t(array(123, "l")) == 123 + assert t(array(123, "B")) == 123 + assert t(array(123, "f")) == 123 + assert t(array(123, "d")) == 123 + + # pytest.raises(ValueError, t, array([123],'S3')) + pytest.raises(ValueError, t, "abc") + + pytest.raises(IndexError, t, []) + pytest.raises(IndexError, t, ()) + + pytest.raises(Exception, t, t) + pytest.raises(Exception, t, {}) + + if tname in ["t8", "s8"]: + pytest.raises(OverflowError, t, 100000000000000000000000) + pytest.raises(OverflowError, t, 10000000011111111111111.23) + + +class TestFReturnInteger(TestReturnInteger): + sources = [ + util.getpath("tests", "src", "return_integer", "foo77.f"), + util.getpath("tests", "src", "return_integer", "foo90.f90"), + ] + + @pytest.mark.parametrize("name", + ["t0", "t1", "t2", "t4", "t8", "s0", "s1", "s2", "s4", "s8"]) + def test_all_f77(self, name): + self.check_function(getattr(self.module, name), name) + + @pytest.mark.parametrize("name", + ["t0", "t1", "t2", "t4", "t8", "s0", "s1", "s2", "s4", "s8"]) + def test_all_f90(self, name): + self.check_function(getattr(self.module.f90_return_integer, name), + name) diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_return_logical.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_return_logical.py new file mode 100644 index 0000000..a4a3395 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_return_logical.py @@ -0,0 +1,65 @@ +import pytest + +from numpy import array + +from . import util + + +class TestReturnLogical(util.F2PyTest): + def check_function(self, t): + assert t(True) == 1 + assert t(False) == 0 + assert t(0) == 0 + assert t(None) == 0 + assert t(0.0) == 0 + assert t(0j) == 0 + assert t(1j) == 1 + assert t(234) == 1 + assert t(234.6) == 1 + assert t(234.6 + 3j) == 1 + assert t("234") == 1 + assert t("aaa") == 1 + assert t("") == 0 + assert t([]) == 0 + assert t(()) == 0 + assert t({}) == 0 + assert t(t) == 1 + assert t(-234) == 1 + assert t(10**100) == 1 + assert t([234]) == 1 + assert t((234, )) == 1 + assert t(array(234)) == 1 + assert t(array([234])) == 1 + assert t(array([[234]])) == 1 + assert t(array([127], "b")) == 1 + assert t(array([234], "h")) == 1 + assert t(array([234], "i")) == 1 + assert t(array([234], "l")) == 1 + assert t(array([234], "f")) == 1 + assert t(array([234], "d")) == 1 + assert t(array([234 + 3j], "F")) == 1 + assert t(array([234], "D")) == 1 + assert t(array(0)) == 0 + assert t(array([0])) == 0 + assert t(array([[0]])) == 0 + assert t(array([0j])) == 0 + assert t(array([1])) == 1 + pytest.raises(ValueError, t, array([0, 0])) + + +class TestFReturnLogical(TestReturnLogical): + sources = [ + util.getpath("tests", "src", "return_logical", "foo77.f"), + util.getpath("tests", "src", "return_logical", "foo90.f90"), + ] + + @pytest.mark.slow + @pytest.mark.parametrize("name", ["t0", "t1", "t2", "t4", "s0", "s1", "s2", "s4"]) + def test_all_f77(self, name): + self.check_function(getattr(self.module, name)) + + @pytest.mark.slow + @pytest.mark.parametrize("name", + ["t0", "t1", "t2", "t4", "t8", "s0", "s1", "s2", "s4", "s8"]) + def test_all_f90(self, name): + self.check_function(getattr(self.module.f90_return_logical, name)) diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_return_real.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_return_real.py new file mode 100644 index 0000000..c871ed3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_return_real.py @@ -0,0 +1,109 @@ +import platform + +import pytest + +from numpy import array +from numpy.testing import IS_64BIT + +from . import util + + +@pytest.mark.slow +class TestReturnReal(util.F2PyTest): + def check_function(self, t, tname): + if tname in ["t0", "t4", "s0", "s4"]: + err = 1e-5 + else: + err = 0.0 + assert abs(t(234) - 234.0) <= err + assert abs(t(234.6) - 234.6) <= err + assert abs(t("234") - 234) <= err + assert abs(t("234.6") - 234.6) <= err + assert abs(t(-234) + 234) <= err + assert abs(t([234]) - 234) <= err + assert abs(t((234, )) - 234.0) <= err + assert abs(t(array(234)) - 234.0) <= err + assert abs(t(array(234).astype("b")) + 22) <= err + assert abs(t(array(234, "h")) - 234.0) <= err + assert abs(t(array(234, "i")) - 234.0) <= err + assert abs(t(array(234, "l")) - 234.0) <= err + assert abs(t(array(234, "B")) - 234.0) <= err + assert abs(t(array(234, "f")) - 234.0) <= err + assert abs(t(array(234, "d")) - 234.0) <= err + if tname in ["t0", "t4", "s0", "s4"]: + assert t(1e200) == t(1e300) # inf + + # pytest.raises(ValueError, t, array([234], 'S1')) + pytest.raises(ValueError, t, "abc") + + pytest.raises(IndexError, t, []) + pytest.raises(IndexError, t, ()) + + pytest.raises(Exception, t, t) + pytest.raises(Exception, t, {}) + + try: + r = t(10**400) + assert repr(r) in ["inf", "Infinity"] + except OverflowError: + pass + + +@pytest.mark.skipif( + platform.system() == "Darwin", + reason="Prone to error when run with numpy/f2py/tests on mac os, " + "but not when run in isolation", +) +@pytest.mark.skipif( + not IS_64BIT, reason="32-bit builds are buggy" +) +class TestCReturnReal(TestReturnReal): + suffix = ".pyf" + module_name = "c_ext_return_real" + code = """ +python module c_ext_return_real +usercode \'\'\' +float t4(float value) { return value; } +void s4(float *t4, float value) { *t4 = value; } +double t8(double value) { return value; } +void s8(double *t8, double value) { *t8 = value; } +\'\'\' +interface + function t4(value) + real*4 intent(c) :: t4,value + end + function t8(value) + real*8 intent(c) :: t8,value + end + subroutine s4(t4,value) + intent(c) s4 + real*4 intent(out) :: t4 + real*4 intent(c) :: value + end + subroutine s8(t8,value) + intent(c) s8 + real*8 intent(out) :: t8 + real*8 intent(c) :: value + end +end interface +end python module c_ext_return_real + """ + + @pytest.mark.parametrize("name", ["t4", "t8", "s4", "s8"]) + def test_all(self, name): + self.check_function(getattr(self.module, name), name) + + +class TestFReturnReal(TestReturnReal): + sources = [ + util.getpath("tests", "src", "return_real", "foo77.f"), + util.getpath("tests", "src", "return_real", "foo90.f90"), + ] + + @pytest.mark.parametrize("name", ["t0", "t4", "t8", "td", "s0", "s4", "s8", "sd"]) + def test_all_f77(self, name): + self.check_function(getattr(self.module, name), name) + + @pytest.mark.parametrize("name", ["t0", "t4", "t8", "td", "s0", "s4", "s8", "sd"]) + def test_all_f90(self, name): + self.check_function(getattr(self.module.f90_return_real, name), name) diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_routines.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_routines.py new file mode 100644 index 0000000..01135dd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_routines.py @@ -0,0 +1,29 @@ +import pytest + +from . import util + + +@pytest.mark.slow +class TestRenamedFunc(util.F2PyTest): + sources = [ + util.getpath("tests", "src", "routines", "funcfortranname.f"), + util.getpath("tests", "src", "routines", "funcfortranname.pyf"), + ] + module_name = "funcfortranname" + + def test_gh25799(self): + assert dir(self.module) + assert self.module.funcfortranname_default(200, 12) == 212 + + +@pytest.mark.slow +class TestRenamedSubroutine(util.F2PyTest): + sources = [ + util.getpath("tests", "src", "routines", "subrout.f"), + util.getpath("tests", "src", "routines", "subrout.pyf"), + ] + module_name = "subrout" + + def test_renamed_subroutine(self): + assert dir(self.module) + assert self.module.subrout_default(200, 12) == 212 diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_semicolon_split.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_semicolon_split.py new file mode 100644 index 0000000..2a16b19 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_semicolon_split.py @@ -0,0 +1,75 @@ +import platform + +import pytest + +from numpy.testing import IS_64BIT + +from . import util + + +@pytest.mark.skipif( + platform.system() == "Darwin", + reason="Prone to error when run with numpy/f2py/tests on mac os, " + "but not when run in isolation", +) +@pytest.mark.skipif( + not IS_64BIT, reason="32-bit builds are buggy" +) +class TestMultiline(util.F2PyTest): + suffix = ".pyf" + module_name = "multiline" + code = f""" +python module {module_name} + usercode ''' +void foo(int* x) {{ + char dummy = ';'; + *x = 42; +}} +''' + interface + subroutine foo(x) + intent(c) foo + integer intent(out) :: x + end subroutine foo + end interface +end python module {module_name} + """ + + def test_multiline(self): + assert self.module.foo() == 42 + + +@pytest.mark.skipif( + platform.system() == "Darwin", + reason="Prone to error when run with numpy/f2py/tests on mac os, " + "but not when run in isolation", +) +@pytest.mark.skipif( + not IS_64BIT, reason="32-bit builds are buggy" +) +@pytest.mark.slow +class TestCallstatement(util.F2PyTest): + suffix = ".pyf" + module_name = "callstatement" + code = f""" +python module {module_name} + usercode ''' +void foo(int* x) {{ +}} +''' + interface + subroutine foo(x) + intent(c) foo + integer intent(out) :: x + callprotoargument int* + callstatement {{ & + ; & + x = 42; & + }} + end subroutine foo + end interface +end python module {module_name} + """ + + def test_callstatement(self): + assert self.module.foo() == 42 diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_size.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_size.py new file mode 100644 index 0000000..ac2eaf1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_size.py @@ -0,0 +1,45 @@ +import pytest + +import numpy as np + +from . import util + + +class TestSizeSumExample(util.F2PyTest): + sources = [util.getpath("tests", "src", "size", "foo.f90")] + + @pytest.mark.slow + def test_all(self): + r = self.module.foo([[]]) + assert r == [0] + + r = self.module.foo([[1, 2]]) + assert r == [3] + + r = self.module.foo([[1, 2], [3, 4]]) + assert np.allclose(r, [3, 7]) + + r = self.module.foo([[1, 2], [3, 4], [5, 6]]) + assert np.allclose(r, [3, 7, 11]) + + @pytest.mark.slow + def test_transpose(self): + r = self.module.trans([[]]) + assert np.allclose(r.T, np.array([[]])) + + r = self.module.trans([[1, 2]]) + assert np.allclose(r, [[1.], [2.]]) + + r = self.module.trans([[1, 2, 3], [4, 5, 6]]) + assert np.allclose(r, [[1, 4], [2, 5], [3, 6]]) + + @pytest.mark.slow + def test_flatten(self): + r = self.module.flatten([[]]) + assert np.allclose(r, []) + + r = self.module.flatten([[1, 2]]) + assert np.allclose(r, [1, 2]) + + r = self.module.flatten([[1, 2, 3], [4, 5, 6]]) + assert np.allclose(r, [1, 2, 3, 4, 5, 6]) diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_string.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_string.py new file mode 100644 index 0000000..f484ea3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_string.py @@ -0,0 +1,100 @@ +import pytest + +import numpy as np + +from . import util + + +class TestString(util.F2PyTest): + sources = [util.getpath("tests", "src", "string", "char.f90")] + + @pytest.mark.slow + def test_char(self): + strings = np.array(["ab", "cd", "ef"], dtype="c").T + inp, out = self.module.char_test.change_strings( + strings, strings.shape[1]) + assert inp == pytest.approx(strings) + expected = strings.copy() + expected[1, :] = "AAA" + assert out == pytest.approx(expected) + + +class TestDocStringArguments(util.F2PyTest): + sources = [util.getpath("tests", "src", "string", "string.f")] + + def test_example(self): + a = np.array(b"123\0\0") + b = np.array(b"123\0\0") + c = np.array(b"123") + d = np.array(b"123") + + self.module.foo(a, b, c, d) + + assert a.tobytes() == b"123\0\0" + assert b.tobytes() == b"B23\0\0" + assert c.tobytes() == b"123" + assert d.tobytes() == b"D23" + + +class TestFixedString(util.F2PyTest): + sources = [util.getpath("tests", "src", "string", "fixed_string.f90")] + + @staticmethod + def _sint(s, start=0, end=None): + """Return the content of a string buffer as integer value. + + For example: + _sint('1234') -> 4321 + _sint('123A') -> 17321 + """ + if isinstance(s, np.ndarray): + s = s.tobytes() + elif isinstance(s, str): + s = s.encode() + assert isinstance(s, bytes) + if end is None: + end = len(s) + i = 0 + for j in range(start, min(end, len(s))): + i += s[j] * 10**j + return i + + def _get_input(self, intent="in"): + if intent in ["in"]: + yield "" + yield "1" + yield "1234" + yield "12345" + yield b"" + yield b"\0" + yield b"1" + yield b"\01" + yield b"1\0" + yield b"1234" + yield b"12345" + yield np.ndarray((), np.bytes_, buffer=b"") # array(b'', dtype='|S0') + yield np.array(b"") # array(b'', dtype='|S1') + yield np.array(b"\0") + yield np.array(b"1") + yield np.array(b"1\0") + yield np.array(b"\01") + yield np.array(b"1234") + yield np.array(b"123\0") + yield np.array(b"12345") + + def test_intent_in(self): + for s in self._get_input(): + r = self.module.test_in_bytes4(s) + # also checks that s is not changed inplace + expected = self._sint(s, end=4) + assert r == expected, s + + def test_intent_inout(self): + for s in self._get_input(intent="inout"): + rest = self._sint(s, start=4) + r = self.module.test_inout_bytes4(s) + expected = self._sint(s, end=4) + assert r == expected + + # check that the rest of input string is preserved + assert rest == self._sint(s, start=4) diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_symbolic.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_symbolic.py new file mode 100644 index 0000000..ec23f52 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_symbolic.py @@ -0,0 +1,495 @@ +import pytest + +from numpy.f2py.symbolic import ( + ArithOp, + Expr, + Language, + Op, + as_apply, + as_array, + as_complex, + as_deref, + as_eq, + as_expr, + as_factors, + as_ge, + as_gt, + as_le, + as_lt, + as_ne, + as_number, + as_numer_denom, + as_ref, + as_string, + as_symbol, + as_terms, + as_ternary, + eliminate_quotes, + fromstring, + insert_quotes, + normalize, +) + +from . import util + + +class TestSymbolic(util.F2PyTest): + def test_eliminate_quotes(self): + def worker(s): + r, d = eliminate_quotes(s) + s1 = insert_quotes(r, d) + assert s1 == s + + for kind in ["", "mykind_"]: + worker(kind + '"1234" // "ABCD"') + worker(kind + '"1234" // ' + kind + '"ABCD"') + worker(kind + "\"1234\" // 'ABCD'") + worker(kind + '"1234" // ' + kind + "'ABCD'") + worker(kind + '"1\\"2\'AB\'34"') + worker("a = " + kind + "'1\\'2\"AB\"34'") + + def test_sanity(self): + x = as_symbol("x") + y = as_symbol("y") + z = as_symbol("z") + + assert x.op == Op.SYMBOL + assert repr(x) == "Expr(Op.SYMBOL, 'x')" + assert x == x + assert x != y + assert hash(x) is not None + + n = as_number(123) + m = as_number(456) + assert n.op == Op.INTEGER + assert repr(n) == "Expr(Op.INTEGER, (123, 4))" + assert n == n + assert n != m + assert hash(n) is not None + + fn = as_number(12.3) + fm = as_number(45.6) + assert fn.op == Op.REAL + assert repr(fn) == "Expr(Op.REAL, (12.3, 4))" + assert fn == fn + assert fn != fm + assert hash(fn) is not None + + c = as_complex(1, 2) + c2 = as_complex(3, 4) + assert c.op == Op.COMPLEX + assert repr(c) == ("Expr(Op.COMPLEX, (Expr(Op.INTEGER, (1, 4))," + " Expr(Op.INTEGER, (2, 4))))") + assert c == c + assert c != c2 + assert hash(c) is not None + + s = as_string("'123'") + s2 = as_string('"ABC"') + assert s.op == Op.STRING + assert repr(s) == "Expr(Op.STRING, (\"'123'\", 1))", repr(s) + assert s == s + assert s != s2 + + a = as_array((n, m)) + b = as_array((n, )) + assert a.op == Op.ARRAY + assert repr(a) == ("Expr(Op.ARRAY, (Expr(Op.INTEGER, (123, 4))," + " Expr(Op.INTEGER, (456, 4))))") + assert a == a + assert a != b + + t = as_terms(x) + u = as_terms(y) + assert t.op == Op.TERMS + assert repr(t) == "Expr(Op.TERMS, {Expr(Op.SYMBOL, 'x'): 1})" + assert t == t + assert t != u + assert hash(t) is not None + + v = as_factors(x) + w = as_factors(y) + assert v.op == Op.FACTORS + assert repr(v) == "Expr(Op.FACTORS, {Expr(Op.SYMBOL, 'x'): 1})" + assert v == v + assert w != v + assert hash(v) is not None + + t = as_ternary(x, y, z) + u = as_ternary(x, z, y) + assert t.op == Op.TERNARY + assert t == t + assert t != u + assert hash(t) is not None + + e = as_eq(x, y) + f = as_lt(x, y) + assert e.op == Op.RELATIONAL + assert e == e + assert e != f + assert hash(e) is not None + + def test_tostring_fortran(self): + x = as_symbol("x") + y = as_symbol("y") + z = as_symbol("z") + n = as_number(123) + m = as_number(456) + a = as_array((n, m)) + c = as_complex(n, m) + + assert str(x) == "x" + assert str(n) == "123" + assert str(a) == "[123, 456]" + assert str(c) == "(123, 456)" + + assert str(Expr(Op.TERMS, {x: 1})) == "x" + assert str(Expr(Op.TERMS, {x: 2})) == "2 * x" + assert str(Expr(Op.TERMS, {x: -1})) == "-x" + assert str(Expr(Op.TERMS, {x: -2})) == "-2 * x" + assert str(Expr(Op.TERMS, {x: 1, y: 1})) == "x + y" + assert str(Expr(Op.TERMS, {x: -1, y: -1})) == "-x - y" + assert str(Expr(Op.TERMS, {x: 2, y: 3})) == "2 * x + 3 * y" + assert str(Expr(Op.TERMS, {x: -2, y: 3})) == "-2 * x + 3 * y" + assert str(Expr(Op.TERMS, {x: 2, y: -3})) == "2 * x - 3 * y" + + assert str(Expr(Op.FACTORS, {x: 1})) == "x" + assert str(Expr(Op.FACTORS, {x: 2})) == "x ** 2" + assert str(Expr(Op.FACTORS, {x: -1})) == "x ** -1" + assert str(Expr(Op.FACTORS, {x: -2})) == "x ** -2" + assert str(Expr(Op.FACTORS, {x: 1, y: 1})) == "x * y" + assert str(Expr(Op.FACTORS, {x: 2, y: 3})) == "x ** 2 * y ** 3" + + v = Expr(Op.FACTORS, {x: 2, Expr(Op.TERMS, {x: 1, y: 1}): 3}) + assert str(v) == "x ** 2 * (x + y) ** 3", str(v) + v = Expr(Op.FACTORS, {x: 2, Expr(Op.FACTORS, {x: 1, y: 1}): 3}) + assert str(v) == "x ** 2 * (x * y) ** 3", str(v) + + assert str(Expr(Op.APPLY, ("f", (), {}))) == "f()" + assert str(Expr(Op.APPLY, ("f", (x, ), {}))) == "f(x)" + assert str(Expr(Op.APPLY, ("f", (x, y), {}))) == "f(x, y)" + assert str(Expr(Op.INDEXING, ("f", x))) == "f[x]" + + assert str(as_ternary(x, y, z)) == "merge(y, z, x)" + assert str(as_eq(x, y)) == "x .eq. y" + assert str(as_ne(x, y)) == "x .ne. y" + assert str(as_lt(x, y)) == "x .lt. y" + assert str(as_le(x, y)) == "x .le. y" + assert str(as_gt(x, y)) == "x .gt. y" + assert str(as_ge(x, y)) == "x .ge. y" + + def test_tostring_c(self): + language = Language.C + x = as_symbol("x") + y = as_symbol("y") + z = as_symbol("z") + n = as_number(123) + + assert Expr(Op.FACTORS, {x: 2}).tostring(language=language) == "x * x" + assert (Expr(Op.FACTORS, { + x + y: 2 + }).tostring(language=language) == "(x + y) * (x + y)") + assert Expr(Op.FACTORS, { + x: 12 + }).tostring(language=language) == "pow(x, 12)" + + assert as_apply(ArithOp.DIV, x, + y).tostring(language=language) == "x / y" + assert (as_apply(ArithOp.DIV, x, + x + y).tostring(language=language) == "x / (x + y)") + assert (as_apply(ArithOp.DIV, x - y, x + + y).tostring(language=language) == "(x - y) / (x + y)") + assert (x + (x - y) / (x + y) + + n).tostring(language=language) == "123 + x + (x - y) / (x + y)" + + assert as_ternary(x, y, z).tostring(language=language) == "(x?y:z)" + assert as_eq(x, y).tostring(language=language) == "x == y" + assert as_ne(x, y).tostring(language=language) == "x != y" + assert as_lt(x, y).tostring(language=language) == "x < y" + assert as_le(x, y).tostring(language=language) == "x <= y" + assert as_gt(x, y).tostring(language=language) == "x > y" + assert as_ge(x, y).tostring(language=language) == "x >= y" + + def test_operations(self): + x = as_symbol("x") + y = as_symbol("y") + z = as_symbol("z") + + assert x + x == Expr(Op.TERMS, {x: 2}) + assert x - x == Expr(Op.INTEGER, (0, 4)) + assert x + y == Expr(Op.TERMS, {x: 1, y: 1}) + assert x - y == Expr(Op.TERMS, {x: 1, y: -1}) + assert x * x == Expr(Op.FACTORS, {x: 2}) + assert x * y == Expr(Op.FACTORS, {x: 1, y: 1}) + + assert +x == x + assert -x == Expr(Op.TERMS, {x: -1}), repr(-x) + assert 2 * x == Expr(Op.TERMS, {x: 2}) + assert 2 + x == Expr(Op.TERMS, {x: 1, as_number(1): 2}) + assert 2 * x + 3 * y == Expr(Op.TERMS, {x: 2, y: 3}) + assert (x + y) * 2 == Expr(Op.TERMS, {x: 2, y: 2}) + + assert x**2 == Expr(Op.FACTORS, {x: 2}) + assert (x + y)**2 == Expr( + Op.TERMS, + { + Expr(Op.FACTORS, {x: 2}): 1, + Expr(Op.FACTORS, {y: 2}): 1, + Expr(Op.FACTORS, { + x: 1, + y: 1 + }): 2, + }, + ) + assert (x + y) * x == x**2 + x * y + assert (x + y)**2 == x**2 + 2 * x * y + y**2 + assert (x + y)**2 + (x - y)**2 == 2 * x**2 + 2 * y**2 + assert (x + y) * z == x * z + y * z + assert z * (x + y) == x * z + y * z + + assert (x / 2) == as_apply(ArithOp.DIV, x, as_number(2)) + assert (2 * x / 2) == x + assert (3 * x / 2) == as_apply(ArithOp.DIV, 3 * x, as_number(2)) + assert (4 * x / 2) == 2 * x + assert (5 * x / 2) == as_apply(ArithOp.DIV, 5 * x, as_number(2)) + assert (6 * x / 2) == 3 * x + assert ((3 * 5) * x / 6) == as_apply(ArithOp.DIV, 5 * x, as_number(2)) + assert (30 * x**2 * y**4 / (24 * x**3 * y**3)) == as_apply( + ArithOp.DIV, 5 * y, 4 * x) + assert ((15 * x / 6) / 5) == as_apply(ArithOp.DIV, x, + as_number(2)), (15 * x / 6) / 5 + assert (x / (5 / x)) == as_apply(ArithOp.DIV, x**2, as_number(5)) + + assert (x / 2.0) == Expr(Op.TERMS, {x: 0.5}) + + s = as_string('"ABC"') + t = as_string('"123"') + + assert s // t == Expr(Op.STRING, ('"ABC123"', 1)) + assert s // x == Expr(Op.CONCAT, (s, x)) + assert x // s == Expr(Op.CONCAT, (x, s)) + + c = as_complex(1.0, 2.0) + assert -c == as_complex(-1.0, -2.0) + assert c + c == as_expr((1 + 2j) * 2) + assert c * c == as_expr((1 + 2j)**2) + + def test_substitute(self): + x = as_symbol("x") + y = as_symbol("y") + z = as_symbol("z") + a = as_array((x, y)) + + assert x.substitute({x: y}) == y + assert (x + y).substitute({x: z}) == y + z + assert (x * y).substitute({x: z}) == y * z + assert (x**4).substitute({x: z}) == z**4 + assert (x / y).substitute({x: z}) == z / y + assert x.substitute({x: y + z}) == y + z + assert a.substitute({x: y + z}) == as_array((y + z, y)) + + assert as_ternary(x, y, + z).substitute({x: y + z}) == as_ternary(y + z, y, z) + assert as_eq(x, y).substitute({x: y + z}) == as_eq(y + z, y) + + def test_fromstring(self): + + x = as_symbol("x") + y = as_symbol("y") + z = as_symbol("z") + f = as_symbol("f") + s = as_string('"ABC"') + t = as_string('"123"') + a = as_array((x, y)) + + assert fromstring("x") == x + assert fromstring("+ x") == x + assert fromstring("- x") == -x + assert fromstring("x + y") == x + y + assert fromstring("x + 1") == x + 1 + assert fromstring("x * y") == x * y + assert fromstring("x * 2") == x * 2 + assert fromstring("x / y") == x / y + assert fromstring("x ** 2", language=Language.Python) == x**2 + assert fromstring("x ** 2 ** 3", language=Language.Python) == x**2**3 + assert fromstring("(x + y) * z") == (x + y) * z + + assert fromstring("f(x)") == f(x) + assert fromstring("f(x,y)") == f(x, y) + assert fromstring("f[x]") == f[x] + assert fromstring("f[x][y]") == f[x][y] + + assert fromstring('"ABC"') == s + assert (normalize( + fromstring('"ABC" // "123" ', + language=Language.Fortran)) == s // t) + assert fromstring('f("ABC")') == f(s) + assert fromstring('MYSTRKIND_"ABC"') == as_string('"ABC"', "MYSTRKIND") + + assert fromstring("(/x, y/)") == a, fromstring("(/x, y/)") + assert fromstring("f((/x, y/))") == f(a) + assert fromstring("(/(x+y)*z/)") == as_array(((x + y) * z, )) + + assert fromstring("123") == as_number(123) + assert fromstring("123_2") == as_number(123, 2) + assert fromstring("123_myintkind") == as_number(123, "myintkind") + + assert fromstring("123.0") == as_number(123.0, 4) + assert fromstring("123.0_4") == as_number(123.0, 4) + assert fromstring("123.0_8") == as_number(123.0, 8) + assert fromstring("123.0e0") == as_number(123.0, 4) + assert fromstring("123.0d0") == as_number(123.0, 8) + assert fromstring("123d0") == as_number(123.0, 8) + assert fromstring("123e-0") == as_number(123.0, 4) + assert fromstring("123d+0") == as_number(123.0, 8) + assert fromstring("123.0_myrealkind") == as_number(123.0, "myrealkind") + assert fromstring("3E4") == as_number(30000.0, 4) + + assert fromstring("(1, 2)") == as_complex(1, 2) + assert fromstring("(1e2, PI)") == as_complex(as_number(100.0), + as_symbol("PI")) + + assert fromstring("[1, 2]") == as_array((as_number(1), as_number(2))) + + assert fromstring("POINT(x, y=1)") == as_apply(as_symbol("POINT"), + x, + y=as_number(1)) + assert fromstring( + 'PERSON(name="John", age=50, shape=(/34, 23/))') == as_apply( + as_symbol("PERSON"), + name=as_string('"John"'), + age=as_number(50), + shape=as_array((as_number(34), as_number(23))), + ) + + assert fromstring("x?y:z") == as_ternary(x, y, z) + + assert fromstring("*x") == as_deref(x) + assert fromstring("**x") == as_deref(as_deref(x)) + assert fromstring("&x") == as_ref(x) + assert fromstring("(*x) * (*y)") == as_deref(x) * as_deref(y) + assert fromstring("(*x) * *y") == as_deref(x) * as_deref(y) + assert fromstring("*x * *y") == as_deref(x) * as_deref(y) + assert fromstring("*x**y") == as_deref(x) * as_deref(y) + + assert fromstring("x == y") == as_eq(x, y) + assert fromstring("x != y") == as_ne(x, y) + assert fromstring("x < y") == as_lt(x, y) + assert fromstring("x > y") == as_gt(x, y) + assert fromstring("x <= y") == as_le(x, y) + assert fromstring("x >= y") == as_ge(x, y) + + assert fromstring("x .eq. y", language=Language.Fortran) == as_eq(x, y) + assert fromstring("x .ne. y", language=Language.Fortran) == as_ne(x, y) + assert fromstring("x .lt. y", language=Language.Fortran) == as_lt(x, y) + assert fromstring("x .gt. y", language=Language.Fortran) == as_gt(x, y) + assert fromstring("x .le. y", language=Language.Fortran) == as_le(x, y) + assert fromstring("x .ge. y", language=Language.Fortran) == as_ge(x, y) + + def test_traverse(self): + x = as_symbol("x") + y = as_symbol("y") + z = as_symbol("z") + f = as_symbol("f") + + # Use traverse to substitute a symbol + def replace_visit(s, r=z): + if s == x: + return r + + assert x.traverse(replace_visit) == z + assert y.traverse(replace_visit) == y + assert z.traverse(replace_visit) == z + assert (f(y)).traverse(replace_visit) == f(y) + assert (f(x)).traverse(replace_visit) == f(z) + assert (f[y]).traverse(replace_visit) == f[y] + assert (f[z]).traverse(replace_visit) == f[z] + assert (x + y + z).traverse(replace_visit) == (2 * z + y) + assert (x + + f(y, x - z)).traverse(replace_visit) == (z + + f(y, as_number(0))) + assert as_eq(x, y).traverse(replace_visit) == as_eq(z, y) + + # Use traverse to collect symbols, method 1 + function_symbols = set() + symbols = set() + + def collect_symbols(s): + if s.op is Op.APPLY: + oper = s.data[0] + function_symbols.add(oper) + if oper in symbols: + symbols.remove(oper) + elif s.op is Op.SYMBOL and s not in function_symbols: + symbols.add(s) + + (x + f(y, x - z)).traverse(collect_symbols) + assert function_symbols == {f} + assert symbols == {x, y, z} + + # Use traverse to collect symbols, method 2 + def collect_symbols2(expr, symbols): + if expr.op is Op.SYMBOL: + symbols.add(expr) + + symbols = set() + (x + f(y, x - z)).traverse(collect_symbols2, symbols) + assert symbols == {x, y, z, f} + + # Use traverse to partially collect symbols + def collect_symbols3(expr, symbols): + if expr.op is Op.APPLY: + # skip traversing function calls + return expr + if expr.op is Op.SYMBOL: + symbols.add(expr) + + symbols = set() + (x + f(y, x - z)).traverse(collect_symbols3, symbols) + assert symbols == {x} + + def test_linear_solve(self): + x = as_symbol("x") + y = as_symbol("y") + z = as_symbol("z") + + assert x.linear_solve(x) == (as_number(1), as_number(0)) + assert (x + 1).linear_solve(x) == (as_number(1), as_number(1)) + assert (2 * x).linear_solve(x) == (as_number(2), as_number(0)) + assert (2 * x + 3).linear_solve(x) == (as_number(2), as_number(3)) + assert as_number(3).linear_solve(x) == (as_number(0), as_number(3)) + assert y.linear_solve(x) == (as_number(0), y) + assert (y * z).linear_solve(x) == (as_number(0), y * z) + + assert (x + y).linear_solve(x) == (as_number(1), y) + assert (z * x + y).linear_solve(x) == (z, y) + assert ((z + y) * x + y).linear_solve(x) == (z + y, y) + assert (z * y * x + y).linear_solve(x) == (z * y, y) + + pytest.raises(RuntimeError, lambda: (x * x).linear_solve(x)) + + def test_as_numer_denom(self): + x = as_symbol("x") + y = as_symbol("y") + n = as_number(123) + + assert as_numer_denom(x) == (x, as_number(1)) + assert as_numer_denom(x / n) == (x, n) + assert as_numer_denom(n / x) == (n, x) + assert as_numer_denom(x / y) == (x, y) + assert as_numer_denom(x * y) == (x * y, as_number(1)) + assert as_numer_denom(n + x / y) == (x + n * y, y) + assert as_numer_denom(n + x / (y - x / n)) == (y * n**2, y * n - x) + + def test_polynomial_atoms(self): + x = as_symbol("x") + y = as_symbol("y") + n = as_number(123) + + assert x.polynomial_atoms() == {x} + assert n.polynomial_atoms() == set() + assert (y[x]).polynomial_atoms() == {y[x]} + assert (y(x)).polynomial_atoms() == {y(x)} + assert (y(x) + x).polynomial_atoms() == {y(x), x} + assert (y(x) * x[y]).polynomial_atoms() == {y(x), x[y]} + assert (y(x)**x).polynomial_atoms() == {y(x)} diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_value_attrspec.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_value_attrspec.py new file mode 100644 index 0000000..1afae08 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/test_value_attrspec.py @@ -0,0 +1,15 @@ +import pytest + +from . import util + + +class TestValueAttr(util.F2PyTest): + sources = [util.getpath("tests", "src", "value_attrspec", "gh21665.f90")] + + # gh-21665 + @pytest.mark.slow + def test_gh21665(self): + inp = 2 + out = self.module.fortfuncs.square(inp) + exp_out = 4 + assert out == exp_out diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/tests/util.py b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/util.py new file mode 100644 index 0000000..35e5d3b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/tests/util.py @@ -0,0 +1,442 @@ +""" +Utility functions for + +- building and importing modules on test time, using a temporary location +- detecting if compilers are present +- determining paths to tests + +""" +import atexit +import concurrent.futures +import contextlib +import glob +import os +import shutil +import subprocess +import sys +import tempfile +from importlib import import_module +from pathlib import Path + +import pytest + +import numpy +from numpy._utils import asunicode +from numpy.f2py._backends._meson import MesonBackend +from numpy.testing import IS_WASM, temppath + +# +# Check if compilers are available at all... +# + +def check_language(lang, code_snippet=None): + if sys.platform == "win32": + pytest.skip("No Fortran tests on Windows (Issue #25134)", allow_module_level=True) + tmpdir = tempfile.mkdtemp() + try: + meson_file = os.path.join(tmpdir, "meson.build") + with open(meson_file, "w") as f: + f.write("project('check_compilers')\n") + f.write(f"add_languages('{lang}')\n") + if code_snippet: + f.write(f"{lang}_compiler = meson.get_compiler('{lang}')\n") + f.write(f"{lang}_code = '''{code_snippet}'''\n") + f.write( + f"_have_{lang}_feature =" + f"{lang}_compiler.compiles({lang}_code," + f" name: '{lang} feature check')\n" + ) + try: + runmeson = subprocess.run( + ["meson", "setup", "btmp"], + check=False, + cwd=tmpdir, + capture_output=True, + ) + except subprocess.CalledProcessError: + pytest.skip("meson not present, skipping compiler dependent test", allow_module_level=True) + return runmeson.returncode == 0 + finally: + shutil.rmtree(tmpdir) + + +fortran77_code = ''' +C Example Fortran 77 code + PROGRAM HELLO + PRINT *, 'Hello, Fortran 77!' + END +''' + +fortran90_code = ''' +! Example Fortran 90 code +program hello90 + type :: greeting + character(len=20) :: text + end type greeting + + type(greeting) :: greet + greet%text = 'hello, fortran 90!' + print *, greet%text +end program hello90 +''' + +# Dummy class for caching relevant checks +class CompilerChecker: + def __init__(self): + self.compilers_checked = False + self.has_c = False + self.has_f77 = False + self.has_f90 = False + + def check_compilers(self): + if (not self.compilers_checked) and (not sys.platform == "cygwin"): + with concurrent.futures.ThreadPoolExecutor() as executor: + futures = [ + executor.submit(check_language, "c"), + executor.submit(check_language, "fortran", fortran77_code), + executor.submit(check_language, "fortran", fortran90_code) + ] + + self.has_c = futures[0].result() + self.has_f77 = futures[1].result() + self.has_f90 = futures[2].result() + + self.compilers_checked = True + + +if not IS_WASM: + checker = CompilerChecker() + checker.check_compilers() + +def has_c_compiler(): + return checker.has_c + +def has_f77_compiler(): + return checker.has_f77 + +def has_f90_compiler(): + return checker.has_f90 + +def has_fortran_compiler(): + return (checker.has_f90 and checker.has_f77) + + +# +# Maintaining a temporary module directory +# + +_module_dir = None +_module_num = 5403 + +if sys.platform == "cygwin": + NUMPY_INSTALL_ROOT = Path(__file__).parent.parent.parent + _module_list = list(NUMPY_INSTALL_ROOT.glob("**/*.dll")) + + +def _cleanup(): + global _module_dir + if _module_dir is not None: + try: + sys.path.remove(_module_dir) + except ValueError: + pass + try: + shutil.rmtree(_module_dir) + except OSError: + pass + _module_dir = None + + +def get_module_dir(): + global _module_dir + if _module_dir is None: + _module_dir = tempfile.mkdtemp() + atexit.register(_cleanup) + if _module_dir not in sys.path: + sys.path.insert(0, _module_dir) + return _module_dir + + +def get_temp_module_name(): + # Assume single-threaded, and the module dir usable only by this thread + global _module_num + get_module_dir() + name = "_test_ext_module_%d" % _module_num + _module_num += 1 + if name in sys.modules: + # this should not be possible, but check anyway + raise RuntimeError("Temporary module name already in use.") + return name + + +def _memoize(func): + memo = {} + + def wrapper(*a, **kw): + key = repr((a, kw)) + if key not in memo: + try: + memo[key] = func(*a, **kw) + except Exception as e: + memo[key] = e + raise + ret = memo[key] + if isinstance(ret, Exception): + raise ret + return ret + + wrapper.__name__ = func.__name__ + return wrapper + + +# +# Building modules +# + + +@_memoize +def build_module(source_files, options=[], skip=[], only=[], module_name=None): + """ + Compile and import a f2py module, built from the given files. + + """ + + code = f"import sys; sys.path = {sys.path!r}; import numpy.f2py; numpy.f2py.main()" + + d = get_module_dir() + # gh-27045 : Skip if no compilers are found + if not has_fortran_compiler(): + pytest.skip("No Fortran compiler available") + + # Copy files + dst_sources = [] + f2py_sources = [] + for fn in source_files: + if not os.path.isfile(fn): + raise RuntimeError(f"{fn} is not a file") + dst = os.path.join(d, os.path.basename(fn)) + shutil.copyfile(fn, dst) + dst_sources.append(dst) + + base, ext = os.path.splitext(dst) + if ext in (".f90", ".f95", ".f", ".c", ".pyf"): + f2py_sources.append(dst) + + assert f2py_sources + + # Prepare options + if module_name is None: + module_name = get_temp_module_name() + gil_options = [] + if '--freethreading-compatible' not in options and '--no-freethreading-compatible' not in options: + # default to disabling the GIL if unset in options + gil_options = ['--freethreading-compatible'] + f2py_opts = ["-c", "-m", module_name] + options + gil_options + f2py_sources + f2py_opts += ["--backend", "meson"] + if skip: + f2py_opts += ["skip:"] + skip + if only: + f2py_opts += ["only:"] + only + + # Build + cwd = os.getcwd() + try: + os.chdir(d) + cmd = [sys.executable, "-c", code] + f2py_opts + p = subprocess.Popen(cmd, + stdout=subprocess.PIPE, + stderr=subprocess.STDOUT) + out, err = p.communicate() + if p.returncode != 0: + raise RuntimeError(f"Running f2py failed: {cmd[4:]}\n{asunicode(out)}") + finally: + os.chdir(cwd) + + # Partial cleanup + for fn in dst_sources: + os.unlink(fn) + + # Rebase (Cygwin-only) + if sys.platform == "cygwin": + # If someone starts deleting modules after import, this will + # need to change to record how big each module is, rather than + # relying on rebase being able to find that from the files. + _module_list.extend( + glob.glob(os.path.join(d, f"{module_name:s}*")) + ) + subprocess.check_call( + ["/usr/bin/rebase", "--database", "--oblivious", "--verbose"] + + _module_list + ) + + # Import + return import_module(module_name) + + +@_memoize +def build_code(source_code, + options=[], + skip=[], + only=[], + suffix=None, + module_name=None): + """ + Compile and import Fortran code using f2py. + + """ + if suffix is None: + suffix = ".f" + with temppath(suffix=suffix) as path: + with open(path, "w") as f: + f.write(source_code) + return build_module([path], + options=options, + skip=skip, + only=only, + module_name=module_name) + + +# +# Building with meson +# + + +class SimplifiedMesonBackend(MesonBackend): + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + def compile(self): + self.write_meson_build(self.build_dir) + self.run_meson(self.build_dir) + + +def build_meson(source_files, module_name=None, **kwargs): + """ + Build a module via Meson and import it. + """ + + # gh-27045 : Skip if no compilers are found + if not has_fortran_compiler(): + pytest.skip("No Fortran compiler available") + + build_dir = get_module_dir() + if module_name is None: + module_name = get_temp_module_name() + + # Initialize the MesonBackend + backend = SimplifiedMesonBackend( + modulename=module_name, + sources=source_files, + extra_objects=kwargs.get("extra_objects", []), + build_dir=build_dir, + include_dirs=kwargs.get("include_dirs", []), + library_dirs=kwargs.get("library_dirs", []), + libraries=kwargs.get("libraries", []), + define_macros=kwargs.get("define_macros", []), + undef_macros=kwargs.get("undef_macros", []), + f2py_flags=kwargs.get("f2py_flags", []), + sysinfo_flags=kwargs.get("sysinfo_flags", []), + fc_flags=kwargs.get("fc_flags", []), + flib_flags=kwargs.get("flib_flags", []), + setup_flags=kwargs.get("setup_flags", []), + remove_build_dir=kwargs.get("remove_build_dir", False), + extra_dat=kwargs.get("extra_dat", {}), + ) + + backend.compile() + + # Import the compiled module + sys.path.insert(0, f"{build_dir}/{backend.meson_build_dir}") + return import_module(module_name) + + +# +# Unittest convenience +# + + +class F2PyTest: + code = None + sources = None + options = [] + skip = [] + only = [] + suffix = ".f" + module = None + _has_c_compiler = None + _has_f77_compiler = None + _has_f90_compiler = None + + @property + def module_name(self): + cls = type(self) + return f'_{cls.__module__.rsplit(".", 1)[-1]}_{cls.__name__}_ext_module' + + @classmethod + def setup_class(cls): + if sys.platform == "win32": + pytest.skip("Fails with MinGW64 Gfortran (Issue #9673)") + F2PyTest._has_c_compiler = has_c_compiler() + F2PyTest._has_f77_compiler = has_f77_compiler() + F2PyTest._has_f90_compiler = has_f90_compiler() + F2PyTest._has_fortran_compiler = has_fortran_compiler() + + def setup_method(self): + if self.module is not None: + return + + codes = self.sources or [] + if self.code: + codes.append(self.suffix) + + needs_f77 = any(str(fn).endswith(".f") for fn in codes) + needs_f90 = any(str(fn).endswith(".f90") for fn in codes) + needs_pyf = any(str(fn).endswith(".pyf") for fn in codes) + + if needs_f77 and not self._has_f77_compiler: + pytest.skip("No Fortran 77 compiler available") + if needs_f90 and not self._has_f90_compiler: + pytest.skip("No Fortran 90 compiler available") + if needs_pyf and not self._has_fortran_compiler: + pytest.skip("No Fortran compiler available") + + # Build the module + if self.code is not None: + self.module = build_code( + self.code, + options=self.options, + skip=self.skip, + only=self.only, + suffix=self.suffix, + module_name=self.module_name, + ) + + if self.sources is not None: + self.module = build_module( + self.sources, + options=self.options, + skip=self.skip, + only=self.only, + module_name=self.module_name, + ) + + +# +# Helper functions +# + + +def getpath(*a): + # Package root + d = Path(numpy.f2py.__file__).parent.resolve() + return d.joinpath(*a) + + +@contextlib.contextmanager +def switchdir(path): + curpath = Path.cwd() + os.chdir(path) + try: + yield + finally: + os.chdir(curpath) diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/use_rules.py b/.venv/lib/python3.12/site-packages/numpy/f2py/use_rules.py new file mode 100644 index 0000000..1e06f6c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/use_rules.py @@ -0,0 +1,99 @@ +""" +Build 'use others module data' mechanism for f2py2e. + +Copyright 1999 -- 2011 Pearu Peterson all rights reserved. +Copyright 2011 -- present NumPy Developers. +Permission to use, modify, and distribute this software is given under the +terms of the NumPy License. + +NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. +""" +__version__ = "$Revision: 1.3 $"[10:-1] + +f2py_version = 'See `f2py -v`' + + +from .auxfuncs import applyrules, dictappend, gentitle, hasnote, outmess + +usemodule_rules = { + 'body': """ +#begintitle# +static char doc_#apiname#[] = \"\\\nVariable wrapper signature:\\n\\ +\t #name# = get_#name#()\\n\\ +Arguments:\\n\\ +#docstr#\"; +extern F_MODFUNC(#usemodulename#,#USEMODULENAME#,#realname#,#REALNAME#); +static PyObject *#apiname#(PyObject *capi_self, PyObject *capi_args) { +/*#decl#*/ +\tif (!PyArg_ParseTuple(capi_args, \"\")) goto capi_fail; +printf(\"c: %d\\n\",F_MODFUNC(#usemodulename#,#USEMODULENAME#,#realname#,#REALNAME#)); +\treturn Py_BuildValue(\"\"); +capi_fail: +\treturn NULL; +} +""", + 'method': '\t{\"get_#name#\",#apiname#,METH_VARARGS|METH_KEYWORDS,doc_#apiname#},', + 'need': ['F_MODFUNC'] +} + +################ + + +def buildusevars(m, r): + ret = {} + outmess( + f"\t\tBuilding use variable hooks for module \"{m['name']}\" (feature only for F90/F95)...\n") + varsmap = {} + revmap = {} + if 'map' in r: + for k in r['map'].keys(): + if r['map'][k] in revmap: + outmess('\t\t\tVariable "%s<=%s" is already mapped by "%s". Skipping.\n' % ( + r['map'][k], k, revmap[r['map'][k]])) + else: + revmap[r['map'][k]] = k + if r.get('only'): + for v in r['map'].keys(): + if r['map'][v] in m['vars']: + + if revmap[r['map'][v]] == v: + varsmap[v] = r['map'][v] + else: + outmess(f"\t\t\tIgnoring map \"{v}=>{r['map'][v]}\". See above.\n") + else: + outmess( + f"\t\t\tNo definition for variable \"{v}=>{r['map'][v]}\". Skipping.\n") + else: + for v in m['vars'].keys(): + varsmap[v] = revmap.get(v, v) + for v in varsmap.keys(): + ret = dictappend(ret, buildusevar(v, varsmap[v], m['vars'], m['name'])) + return ret + + +def buildusevar(name, realname, vars, usemodulename): + outmess('\t\t\tConstructing wrapper function for variable "%s=>%s"...\n' % ( + name, realname)) + ret = {} + vrd = {'name': name, + 'realname': realname, + 'REALNAME': realname.upper(), + 'usemodulename': usemodulename, + 'USEMODULENAME': usemodulename.upper(), + 'texname': name.replace('_', '\\_'), + 'begintitle': gentitle(f'{name}=>{realname}'), + 'endtitle': gentitle(f'end of {name}=>{realname}'), + 'apiname': f'#modulename#_use_{realname}_from_{usemodulename}' + } + nummap = {0: 'Ro', 1: 'Ri', 2: 'Rii', 3: 'Riii', 4: 'Riv', + 5: 'Rv', 6: 'Rvi', 7: 'Rvii', 8: 'Rviii', 9: 'Rix'} + vrd['texnamename'] = name + for i in nummap.keys(): + vrd['texnamename'] = vrd['texnamename'].replace(repr(i), nummap[i]) + if hasnote(vars[realname]): + vrd['note'] = vars[realname]['note'] + rd = dictappend({}, vrd) + + print(name, realname, vars[realname]) + ret = applyrules(usemodule_rules, rd) + return ret diff --git a/.venv/lib/python3.12/site-packages/numpy/f2py/use_rules.pyi b/.venv/lib/python3.12/site-packages/numpy/f2py/use_rules.pyi new file mode 100644 index 0000000..58c7f9b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/f2py/use_rules.pyi @@ -0,0 +1,9 @@ +from collections.abc import Mapping +from typing import Any, Final + +__version__: Final[str] = ... +f2py_version: Final = "See `f2py -v`" +usemodule_rules: Final[dict[str, str | list[str]]] = ... + +def buildusevars(m: Mapping[str, object], r: Mapping[str, Mapping[str, object]]) -> dict[str, Any]: ... +def buildusevar(name: str, realname: str, vars: Mapping[str, Mapping[str, object]], usemodulename: str) -> dict[str, Any]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/fft/__init__.py b/.venv/lib/python3.12/site-packages/numpy/fft/__init__.py new file mode 100644 index 0000000..55f7320 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/fft/__init__.py @@ -0,0 +1,215 @@ +""" +Discrete Fourier Transform +========================== + +.. currentmodule:: numpy.fft + +The SciPy module `scipy.fft` is a more comprehensive superset +of `numpy.fft`, which includes only a basic set of routines. + +Standard FFTs +------------- + +.. autosummary:: + :toctree: generated/ + + fft Discrete Fourier transform. + ifft Inverse discrete Fourier transform. + fft2 Discrete Fourier transform in two dimensions. + ifft2 Inverse discrete Fourier transform in two dimensions. + fftn Discrete Fourier transform in N-dimensions. + ifftn Inverse discrete Fourier transform in N dimensions. + +Real FFTs +--------- + +.. autosummary:: + :toctree: generated/ + + rfft Real discrete Fourier transform. + irfft Inverse real discrete Fourier transform. + rfft2 Real discrete Fourier transform in two dimensions. + irfft2 Inverse real discrete Fourier transform in two dimensions. + rfftn Real discrete Fourier transform in N dimensions. + irfftn Inverse real discrete Fourier transform in N dimensions. + +Hermitian FFTs +-------------- + +.. autosummary:: + :toctree: generated/ + + hfft Hermitian discrete Fourier transform. + ihfft Inverse Hermitian discrete Fourier transform. + +Helper routines +--------------- + +.. autosummary:: + :toctree: generated/ + + fftfreq Discrete Fourier Transform sample frequencies. + rfftfreq DFT sample frequencies (for usage with rfft, irfft). + fftshift Shift zero-frequency component to center of spectrum. + ifftshift Inverse of fftshift. + + +Background information +---------------------- + +Fourier analysis is fundamentally a method for expressing a function as a +sum of periodic components, and for recovering the function from those +components. When both the function and its Fourier transform are +replaced with discretized counterparts, it is called the discrete Fourier +transform (DFT). The DFT has become a mainstay of numerical computing in +part because of a very fast algorithm for computing it, called the Fast +Fourier Transform (FFT), which was known to Gauss (1805) and was brought +to light in its current form by Cooley and Tukey [CT]_. Press et al. [NR]_ +provide an accessible introduction to Fourier analysis and its +applications. + +Because the discrete Fourier transform separates its input into +components that contribute at discrete frequencies, it has a great number +of applications in digital signal processing, e.g., for filtering, and in +this context the discretized input to the transform is customarily +referred to as a *signal*, which exists in the *time domain*. The output +is called a *spectrum* or *transform* and exists in the *frequency +domain*. + +Implementation details +---------------------- + +There are many ways to define the DFT, varying in the sign of the +exponent, normalization, etc. In this implementation, the DFT is defined +as + +.. math:: + A_k = \\sum_{m=0}^{n-1} a_m \\exp\\left\\{-2\\pi i{mk \\over n}\\right\\} + \\qquad k = 0,\\ldots,n-1. + +The DFT is in general defined for complex inputs and outputs, and a +single-frequency component at linear frequency :math:`f` is +represented by a complex exponential +:math:`a_m = \\exp\\{2\\pi i\\,f m\\Delta t\\}`, where :math:`\\Delta t` +is the sampling interval. + +The values in the result follow so-called "standard" order: If ``A = +fft(a, n)``, then ``A[0]`` contains the zero-frequency term (the sum of +the signal), which is always purely real for real inputs. Then ``A[1:n/2]`` +contains the positive-frequency terms, and ``A[n/2+1:]`` contains the +negative-frequency terms, in order of decreasingly negative frequency. +For an even number of input points, ``A[n/2]`` represents both positive and +negative Nyquist frequency, and is also purely real for real input. For +an odd number of input points, ``A[(n-1)/2]`` contains the largest positive +frequency, while ``A[(n+1)/2]`` contains the largest negative frequency. +The routine ``np.fft.fftfreq(n)`` returns an array giving the frequencies +of corresponding elements in the output. The routine +``np.fft.fftshift(A)`` shifts transforms and their frequencies to put the +zero-frequency components in the middle, and ``np.fft.ifftshift(A)`` undoes +that shift. + +When the input `a` is a time-domain signal and ``A = fft(a)``, ``np.abs(A)`` +is its amplitude spectrum and ``np.abs(A)**2`` is its power spectrum. +The phase spectrum is obtained by ``np.angle(A)``. + +The inverse DFT is defined as + +.. math:: + a_m = \\frac{1}{n}\\sum_{k=0}^{n-1}A_k\\exp\\left\\{2\\pi i{mk\\over n}\\right\\} + \\qquad m = 0,\\ldots,n-1. + +It differs from the forward transform by the sign of the exponential +argument and the default normalization by :math:`1/n`. + +Type Promotion +-------------- + +`numpy.fft` promotes ``float32`` and ``complex64`` arrays to ``float64`` and +``complex128`` arrays respectively. For an FFT implementation that does not +promote input arrays, see `scipy.fftpack`. + +Normalization +------------- + +The argument ``norm`` indicates which direction of the pair of direct/inverse +transforms is scaled and with what normalization factor. +The default normalization (``"backward"``) has the direct (forward) transforms +unscaled and the inverse (backward) transforms scaled by :math:`1/n`. It is +possible to obtain unitary transforms by setting the keyword argument ``norm`` +to ``"ortho"`` so that both direct and inverse transforms are scaled by +:math:`1/\\sqrt{n}`. Finally, setting the keyword argument ``norm`` to +``"forward"`` has the direct transforms scaled by :math:`1/n` and the inverse +transforms unscaled (i.e. exactly opposite to the default ``"backward"``). +`None` is an alias of the default option ``"backward"`` for backward +compatibility. + +Real and Hermitian transforms +----------------------------- + +When the input is purely real, its transform is Hermitian, i.e., the +component at frequency :math:`f_k` is the complex conjugate of the +component at frequency :math:`-f_k`, which means that for real +inputs there is no information in the negative frequency components that +is not already available from the positive frequency components. +The family of `rfft` functions is +designed to operate on real inputs, and exploits this symmetry by +computing only the positive frequency components, up to and including the +Nyquist frequency. Thus, ``n`` input points produce ``n/2+1`` complex +output points. The inverses of this family assumes the same symmetry of +its input, and for an output of ``n`` points uses ``n/2+1`` input points. + +Correspondingly, when the spectrum is purely real, the signal is +Hermitian. The `hfft` family of functions exploits this symmetry by +using ``n/2+1`` complex points in the input (time) domain for ``n`` real +points in the frequency domain. + +In higher dimensions, FFTs are used, e.g., for image analysis and +filtering. The computational efficiency of the FFT means that it can +also be a faster way to compute large convolutions, using the property +that a convolution in the time domain is equivalent to a point-by-point +multiplication in the frequency domain. + +Higher dimensions +----------------- + +In two dimensions, the DFT is defined as + +.. math:: + A_{kl} = \\sum_{m=0}^{M-1} \\sum_{n=0}^{N-1} + a_{mn}\\exp\\left\\{-2\\pi i \\left({mk\\over M}+{nl\\over N}\\right)\\right\\} + \\qquad k = 0, \\ldots, M-1;\\quad l = 0, \\ldots, N-1, + +which extends in the obvious way to higher dimensions, and the inverses +in higher dimensions also extend in the same way. + +References +---------- + +.. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the + machine calculation of complex Fourier series," *Math. Comput.* + 19: 297-301. + +.. [NR] Press, W., Teukolsky, S., Vetterline, W.T., and Flannery, B.P., + 2007, *Numerical Recipes: The Art of Scientific Computing*, ch. + 12-13. Cambridge Univ. Press, Cambridge, UK. + +Examples +-------- + +For examples, see the various functions. + +""" + +# TODO: `numpy.fft.helper`` was deprecated in NumPy 2.0. It should +# be deleted once downstream libraries move to `numpy.fft`. +from . import _helper, _pocketfft, helper +from ._helper import * +from ._pocketfft import * + +__all__ = _pocketfft.__all__.copy() # noqa: PLE0605 +__all__ += _helper.__all__ + +from numpy._pytesttester import PytestTester + +test = PytestTester(__name__) +del PytestTester diff --git a/.venv/lib/python3.12/site-packages/numpy/fft/__init__.pyi b/.venv/lib/python3.12/site-packages/numpy/fft/__init__.pyi new file mode 100644 index 0000000..54d0ea8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/fft/__init__.pyi @@ -0,0 +1,43 @@ +from ._helper import ( + fftfreq, + fftshift, + ifftshift, + rfftfreq, +) +from ._pocketfft import ( + fft, + fft2, + fftn, + hfft, + ifft, + ifft2, + ifftn, + ihfft, + irfft, + irfft2, + irfftn, + rfft, + rfft2, + rfftn, +) + +__all__ = [ + "fft", + "ifft", + "rfft", + "irfft", + "hfft", + "ihfft", + "rfftn", + "irfftn", + "rfft2", + "irfft2", + "fft2", + "ifft2", + "fftn", + "ifftn", + "fftshift", + "ifftshift", + "fftfreq", + "rfftfreq", +] diff --git a/.venv/lib/python3.12/site-packages/numpy/fft/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/fft/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..83e5e34 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/fft/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/fft/__pycache__/_helper.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/fft/__pycache__/_helper.cpython-312.pyc new file mode 100644 index 0000000..d39f4fe Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/fft/__pycache__/_helper.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/fft/__pycache__/_pocketfft.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/fft/__pycache__/_pocketfft.cpython-312.pyc new file mode 100644 index 0000000..0705dbb Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/fft/__pycache__/_pocketfft.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/fft/__pycache__/helper.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/fft/__pycache__/helper.cpython-312.pyc new file mode 100644 index 0000000..ec32c53 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/fft/__pycache__/helper.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/fft/_helper.py b/.venv/lib/python3.12/site-packages/numpy/fft/_helper.py new file mode 100644 index 0000000..77adeac --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/fft/_helper.py @@ -0,0 +1,235 @@ +""" +Discrete Fourier Transforms - _helper.py + +""" +from numpy._core import arange, asarray, empty, integer, roll +from numpy._core.overrides import array_function_dispatch, set_module + +# Created by Pearu Peterson, September 2002 + +__all__ = ['fftshift', 'ifftshift', 'fftfreq', 'rfftfreq'] + +integer_types = (int, integer) + + +def _fftshift_dispatcher(x, axes=None): + return (x,) + + +@array_function_dispatch(_fftshift_dispatcher, module='numpy.fft') +def fftshift(x, axes=None): + """ + Shift the zero-frequency component to the center of the spectrum. + + This function swaps half-spaces for all axes listed (defaults to all). + Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even. + + Parameters + ---------- + x : array_like + Input array. + axes : int or shape tuple, optional + Axes over which to shift. Default is None, which shifts all axes. + + Returns + ------- + y : ndarray + The shifted array. + + See Also + -------- + ifftshift : The inverse of `fftshift`. + + Examples + -------- + >>> import numpy as np + >>> freqs = np.fft.fftfreq(10, 0.1) + >>> freqs + array([ 0., 1., 2., ..., -3., -2., -1.]) + >>> np.fft.fftshift(freqs) + array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.]) + + Shift the zero-frequency component only along the second axis: + + >>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3) + >>> freqs + array([[ 0., 1., 2.], + [ 3., 4., -4.], + [-3., -2., -1.]]) + >>> np.fft.fftshift(freqs, axes=(1,)) + array([[ 2., 0., 1.], + [-4., 3., 4.], + [-1., -3., -2.]]) + + """ + x = asarray(x) + if axes is None: + axes = tuple(range(x.ndim)) + shift = [dim // 2 for dim in x.shape] + elif isinstance(axes, integer_types): + shift = x.shape[axes] // 2 + else: + shift = [x.shape[ax] // 2 for ax in axes] + + return roll(x, shift, axes) + + +@array_function_dispatch(_fftshift_dispatcher, module='numpy.fft') +def ifftshift(x, axes=None): + """ + The inverse of `fftshift`. Although identical for even-length `x`, the + functions differ by one sample for odd-length `x`. + + Parameters + ---------- + x : array_like + Input array. + axes : int or shape tuple, optional + Axes over which to calculate. Defaults to None, which shifts all axes. + + Returns + ------- + y : ndarray + The shifted array. + + See Also + -------- + fftshift : Shift zero-frequency component to the center of the spectrum. + + Examples + -------- + >>> import numpy as np + >>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3) + >>> freqs + array([[ 0., 1., 2.], + [ 3., 4., -4.], + [-3., -2., -1.]]) + >>> np.fft.ifftshift(np.fft.fftshift(freqs)) + array([[ 0., 1., 2.], + [ 3., 4., -4.], + [-3., -2., -1.]]) + + """ + x = asarray(x) + if axes is None: + axes = tuple(range(x.ndim)) + shift = [-(dim // 2) for dim in x.shape] + elif isinstance(axes, integer_types): + shift = -(x.shape[axes] // 2) + else: + shift = [-(x.shape[ax] // 2) for ax in axes] + + return roll(x, shift, axes) + + +@set_module('numpy.fft') +def fftfreq(n, d=1.0, device=None): + """ + Return the Discrete Fourier Transform sample frequencies. + + The returned float array `f` contains the frequency bin centers in cycles + per unit of the sample spacing (with zero at the start). For instance, if + the sample spacing is in seconds, then the frequency unit is cycles/second. + + Given a window length `n` and a sample spacing `d`:: + + f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even + f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd + + Parameters + ---------- + n : int + Window length. + d : scalar, optional + Sample spacing (inverse of the sampling rate). Defaults to 1. + device : str, optional + The device on which to place the created array. Default: ``None``. + For Array-API interoperability only, so must be ``"cpu"`` if passed. + + .. versionadded:: 2.0.0 + + Returns + ------- + f : ndarray + Array of length `n` containing the sample frequencies. + + Examples + -------- + >>> import numpy as np + >>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float) + >>> fourier = np.fft.fft(signal) + >>> n = signal.size + >>> timestep = 0.1 + >>> freq = np.fft.fftfreq(n, d=timestep) + >>> freq + array([ 0. , 1.25, 2.5 , ..., -3.75, -2.5 , -1.25]) + + """ + if not isinstance(n, integer_types): + raise ValueError("n should be an integer") + val = 1.0 / (n * d) + results = empty(n, int, device=device) + N = (n - 1) // 2 + 1 + p1 = arange(0, N, dtype=int, device=device) + results[:N] = p1 + p2 = arange(-(n // 2), 0, dtype=int, device=device) + results[N:] = p2 + return results * val + + +@set_module('numpy.fft') +def rfftfreq(n, d=1.0, device=None): + """ + Return the Discrete Fourier Transform sample frequencies + (for usage with rfft, irfft). + + The returned float array `f` contains the frequency bin centers in cycles + per unit of the sample spacing (with zero at the start). For instance, if + the sample spacing is in seconds, then the frequency unit is cycles/second. + + Given a window length `n` and a sample spacing `d`:: + + f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even + f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd + + Unlike `fftfreq` (but like `scipy.fftpack.rfftfreq`) + the Nyquist frequency component is considered to be positive. + + Parameters + ---------- + n : int + Window length. + d : scalar, optional + Sample spacing (inverse of the sampling rate). Defaults to 1. + device : str, optional + The device on which to place the created array. Default: ``None``. + For Array-API interoperability only, so must be ``"cpu"`` if passed. + + .. versionadded:: 2.0.0 + + Returns + ------- + f : ndarray + Array of length ``n//2 + 1`` containing the sample frequencies. + + Examples + -------- + >>> import numpy as np + >>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float) + >>> fourier = np.fft.rfft(signal) + >>> n = signal.size + >>> sample_rate = 100 + >>> freq = np.fft.fftfreq(n, d=1./sample_rate) + >>> freq + array([ 0., 10., 20., ..., -30., -20., -10.]) + >>> freq = np.fft.rfftfreq(n, d=1./sample_rate) + >>> freq + array([ 0., 10., 20., 30., 40., 50.]) + + """ + if not isinstance(n, integer_types): + raise ValueError("n should be an integer") + val = 1.0 / (n * d) + N = n // 2 + 1 + results = arange(0, N, dtype=int, device=device) + return results * val diff --git a/.venv/lib/python3.12/site-packages/numpy/fft/_helper.pyi b/.venv/lib/python3.12/site-packages/numpy/fft/_helper.pyi new file mode 100644 index 0000000..d06bda7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/fft/_helper.pyi @@ -0,0 +1,45 @@ +from typing import Any, Final, TypeVar, overload +from typing import Literal as L + +from numpy import complexfloating, floating, generic, integer +from numpy._typing import ( + ArrayLike, + NDArray, + _ArrayLike, + _ArrayLikeComplex_co, + _ArrayLikeFloat_co, + _ShapeLike, +) + +__all__ = ["fftfreq", "fftshift", "ifftshift", "rfftfreq"] + +_ScalarT = TypeVar("_ScalarT", bound=generic) + +### + +integer_types: Final[tuple[type[int], type[integer]]] = ... + +### + +@overload +def fftshift(x: _ArrayLike[_ScalarT], axes: _ShapeLike | None = None) -> NDArray[_ScalarT]: ... +@overload +def fftshift(x: ArrayLike, axes: _ShapeLike | None = None) -> NDArray[Any]: ... + +# +@overload +def ifftshift(x: _ArrayLike[_ScalarT], axes: _ShapeLike | None = None) -> NDArray[_ScalarT]: ... +@overload +def ifftshift(x: ArrayLike, axes: _ShapeLike | None = None) -> NDArray[Any]: ... + +# +@overload +def fftfreq(n: int | integer, d: _ArrayLikeFloat_co = 1.0, device: L["cpu"] | None = None) -> NDArray[floating]: ... +@overload +def fftfreq(n: int | integer, d: _ArrayLikeComplex_co = 1.0, device: L["cpu"] | None = None) -> NDArray[complexfloating]: ... + +# +@overload +def rfftfreq(n: int | integer, d: _ArrayLikeFloat_co = 1.0, device: L["cpu"] | None = None) -> NDArray[floating]: ... +@overload +def rfftfreq(n: int | integer, d: _ArrayLikeComplex_co = 1.0, device: L["cpu"] | None = None) -> NDArray[complexfloating]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/fft/_pocketfft.py b/.venv/lib/python3.12/site-packages/numpy/fft/_pocketfft.py new file mode 100644 index 0000000..c7f2f6a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/fft/_pocketfft.py @@ -0,0 +1,1693 @@ +""" +Discrete Fourier Transforms + +Routines in this module: + +fft(a, n=None, axis=-1, norm="backward") +ifft(a, n=None, axis=-1, norm="backward") +rfft(a, n=None, axis=-1, norm="backward") +irfft(a, n=None, axis=-1, norm="backward") +hfft(a, n=None, axis=-1, norm="backward") +ihfft(a, n=None, axis=-1, norm="backward") +fftn(a, s=None, axes=None, norm="backward") +ifftn(a, s=None, axes=None, norm="backward") +rfftn(a, s=None, axes=None, norm="backward") +irfftn(a, s=None, axes=None, norm="backward") +fft2(a, s=None, axes=(-2,-1), norm="backward") +ifft2(a, s=None, axes=(-2, -1), norm="backward") +rfft2(a, s=None, axes=(-2,-1), norm="backward") +irfft2(a, s=None, axes=(-2, -1), norm="backward") + +i = inverse transform +r = transform of purely real data +h = Hermite transform +n = n-dimensional transform +2 = 2-dimensional transform +(Note: 2D routines are just nD routines with different default +behavior.) + +""" +__all__ = ['fft', 'ifft', 'rfft', 'irfft', 'hfft', 'ihfft', 'rfftn', + 'irfftn', 'rfft2', 'irfft2', 'fft2', 'ifft2', 'fftn', 'ifftn'] + +import functools +import warnings + +from numpy._core import ( + asarray, + conjugate, + empty_like, + overrides, + reciprocal, + result_type, + sqrt, + take, +) +from numpy.lib.array_utils import normalize_axis_index + +from . import _pocketfft_umath as pfu + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy.fft') + + +# `inv_norm` is a float by which the result of the transform needs to be +# divided. This replaces the original, more intuitive 'fct` parameter to avoid +# divisions by zero (or alternatively additional checks) in the case of +# zero-length axes during its computation. +def _raw_fft(a, n, axis, is_real, is_forward, norm, out=None): + if n < 1: + raise ValueError(f"Invalid number of FFT data points ({n}) specified.") + + # Calculate the normalization factor, passing in the array dtype to + # avoid precision loss in the possible sqrt or reciprocal. + if not is_forward: + norm = _swap_direction(norm) + + real_dtype = result_type(a.real.dtype, 1.0) + if norm is None or norm == "backward": + fct = 1 + elif norm == "ortho": + fct = reciprocal(sqrt(n, dtype=real_dtype)) + elif norm == "forward": + fct = reciprocal(n, dtype=real_dtype) + else: + raise ValueError(f'Invalid norm value {norm}; should be "backward",' + '"ortho" or "forward".') + + n_out = n + if is_real: + if is_forward: + ufunc = pfu.rfft_n_even if n % 2 == 0 else pfu.rfft_n_odd + n_out = n // 2 + 1 + else: + ufunc = pfu.irfft + else: + ufunc = pfu.fft if is_forward else pfu.ifft + + axis = normalize_axis_index(axis, a.ndim) + + if out is None: + if is_real and not is_forward: # irfft, complex in, real output. + out_dtype = real_dtype + else: # Others, complex output. + out_dtype = result_type(a.dtype, 1j) + out = empty_like(a, shape=a.shape[:axis] + (n_out,) + a.shape[axis + 1:], + dtype=out_dtype) + elif ((shape := getattr(out, "shape", None)) is not None + and (len(shape) != a.ndim or shape[axis] != n_out)): + raise ValueError("output array has wrong shape.") + + return ufunc(a, fct, axes=[(axis,), (), (axis,)], out=out) + + +_SWAP_DIRECTION_MAP = {"backward": "forward", None: "forward", + "ortho": "ortho", "forward": "backward"} + + +def _swap_direction(norm): + try: + return _SWAP_DIRECTION_MAP[norm] + except KeyError: + raise ValueError(f'Invalid norm value {norm}; should be "backward", ' + '"ortho" or "forward".') from None + + +def _fft_dispatcher(a, n=None, axis=None, norm=None, out=None): + return (a, out) + + +@array_function_dispatch(_fft_dispatcher) +def fft(a, n=None, axis=-1, norm=None, out=None): + """ + Compute the one-dimensional discrete Fourier Transform. + + This function computes the one-dimensional *n*-point discrete Fourier + Transform (DFT) with the efficient Fast Fourier Transform (FFT) + algorithm [CT]. + + Parameters + ---------- + a : array_like + Input array, can be complex. + n : int, optional + Length of the transformed axis of the output. + If `n` is smaller than the length of the input, the input is cropped. + If it is larger, the input is padded with zeros. If `n` is not given, + the length of the input along the axis specified by `axis` is used. + axis : int, optional + Axis over which to compute the FFT. If not given, the last axis is + used. + norm : {"backward", "ortho", "forward"}, optional + Normalization mode (see `numpy.fft`). Default is "backward". + Indicates which direction of the forward/backward pair of transforms + is scaled and with what normalization factor. + + .. versionadded:: 1.20.0 + + The "backward", "forward" values were added. + out : complex ndarray, optional + If provided, the result will be placed in this array. It should be + of the appropriate shape and dtype. + + .. versionadded:: 2.0.0 + + Returns + ------- + out : complex ndarray + The truncated or zero-padded input, transformed along the axis + indicated by `axis`, or the last one if `axis` is not specified. + + Raises + ------ + IndexError + If `axis` is not a valid axis of `a`. + + See Also + -------- + numpy.fft : for definition of the DFT and conventions used. + ifft : The inverse of `fft`. + fft2 : The two-dimensional FFT. + fftn : The *n*-dimensional FFT. + rfftn : The *n*-dimensional FFT of real input. + fftfreq : Frequency bins for given FFT parameters. + + Notes + ----- + FFT (Fast Fourier Transform) refers to a way the discrete Fourier + Transform (DFT) can be calculated efficiently, by using symmetries in the + calculated terms. The symmetry is highest when `n` is a power of 2, and + the transform is therefore most efficient for these sizes. + + The DFT is defined, with the conventions used in this implementation, in + the documentation for the `numpy.fft` module. + + References + ---------- + .. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the + machine calculation of complex Fourier series," *Math. Comput.* + 19: 297-301. + + Examples + -------- + >>> import numpy as np + >>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8)) + array([-2.33486982e-16+1.14423775e-17j, 8.00000000e+00-1.25557246e-15j, + 2.33486982e-16+2.33486982e-16j, 0.00000000e+00+1.22464680e-16j, + -1.14423775e-17+2.33486982e-16j, 0.00000000e+00+5.20784380e-16j, + 1.14423775e-17+1.14423775e-17j, 0.00000000e+00+1.22464680e-16j]) + + In this example, real input has an FFT which is Hermitian, i.e., symmetric + in the real part and anti-symmetric in the imaginary part, as described in + the `numpy.fft` documentation: + + >>> import matplotlib.pyplot as plt + >>> t = np.arange(256) + >>> sp = np.fft.fft(np.sin(t)) + >>> freq = np.fft.fftfreq(t.shape[-1]) + >>> _ = plt.plot(freq, sp.real, freq, sp.imag) + >>> plt.show() + + """ + a = asarray(a) + if n is None: + n = a.shape[axis] + output = _raw_fft(a, n, axis, False, True, norm, out) + return output + + +@array_function_dispatch(_fft_dispatcher) +def ifft(a, n=None, axis=-1, norm=None, out=None): + """ + Compute the one-dimensional inverse discrete Fourier Transform. + + This function computes the inverse of the one-dimensional *n*-point + discrete Fourier transform computed by `fft`. In other words, + ``ifft(fft(a)) == a`` to within numerical accuracy. + For a general description of the algorithm and definitions, + see `numpy.fft`. + + The input should be ordered in the same way as is returned by `fft`, + i.e., + + * ``a[0]`` should contain the zero frequency term, + * ``a[1:n//2]`` should contain the positive-frequency terms, + * ``a[n//2 + 1:]`` should contain the negative-frequency terms, in + increasing order starting from the most negative frequency. + + For an even number of input points, ``A[n//2]`` represents the sum of + the values at the positive and negative Nyquist frequencies, as the two + are aliased together. See `numpy.fft` for details. + + Parameters + ---------- + a : array_like + Input array, can be complex. + n : int, optional + Length of the transformed axis of the output. + If `n` is smaller than the length of the input, the input is cropped. + If it is larger, the input is padded with zeros. If `n` is not given, + the length of the input along the axis specified by `axis` is used. + See notes about padding issues. + axis : int, optional + Axis over which to compute the inverse DFT. If not given, the last + axis is used. + norm : {"backward", "ortho", "forward"}, optional + Normalization mode (see `numpy.fft`). Default is "backward". + Indicates which direction of the forward/backward pair of transforms + is scaled and with what normalization factor. + + .. versionadded:: 1.20.0 + + The "backward", "forward" values were added. + + out : complex ndarray, optional + If provided, the result will be placed in this array. It should be + of the appropriate shape and dtype. + + .. versionadded:: 2.0.0 + + Returns + ------- + out : complex ndarray + The truncated or zero-padded input, transformed along the axis + indicated by `axis`, or the last one if `axis` is not specified. + + Raises + ------ + IndexError + If `axis` is not a valid axis of `a`. + + See Also + -------- + numpy.fft : An introduction, with definitions and general explanations. + fft : The one-dimensional (forward) FFT, of which `ifft` is the inverse + ifft2 : The two-dimensional inverse FFT. + ifftn : The n-dimensional inverse FFT. + + Notes + ----- + If the input parameter `n` is larger than the size of the input, the input + is padded by appending zeros at the end. Even though this is the common + approach, it might lead to surprising results. If a different padding is + desired, it must be performed before calling `ifft`. + + Examples + -------- + >>> import numpy as np + >>> np.fft.ifft([0, 4, 0, 0]) + array([ 1.+0.j, 0.+1.j, -1.+0.j, 0.-1.j]) # may vary + + Create and plot a band-limited signal with random phases: + + >>> import matplotlib.pyplot as plt + >>> t = np.arange(400) + >>> n = np.zeros((400,), dtype=complex) + >>> n[40:60] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20,))) + >>> s = np.fft.ifft(n) + >>> plt.plot(t, s.real, label='real') + [] + >>> plt.plot(t, s.imag, '--', label='imaginary') + [] + >>> plt.legend() + + >>> plt.show() + + """ + a = asarray(a) + if n is None: + n = a.shape[axis] + output = _raw_fft(a, n, axis, False, False, norm, out=out) + return output + + +@array_function_dispatch(_fft_dispatcher) +def rfft(a, n=None, axis=-1, norm=None, out=None): + """ + Compute the one-dimensional discrete Fourier Transform for real input. + + This function computes the one-dimensional *n*-point discrete Fourier + Transform (DFT) of a real-valued array by means of an efficient algorithm + called the Fast Fourier Transform (FFT). + + Parameters + ---------- + a : array_like + Input array + n : int, optional + Number of points along transformation axis in the input to use. + If `n` is smaller than the length of the input, the input is cropped. + If it is larger, the input is padded with zeros. If `n` is not given, + the length of the input along the axis specified by `axis` is used. + axis : int, optional + Axis over which to compute the FFT. If not given, the last axis is + used. + norm : {"backward", "ortho", "forward"}, optional + Normalization mode (see `numpy.fft`). Default is "backward". + Indicates which direction of the forward/backward pair of transforms + is scaled and with what normalization factor. + + .. versionadded:: 1.20.0 + + The "backward", "forward" values were added. + + out : complex ndarray, optional + If provided, the result will be placed in this array. It should be + of the appropriate shape and dtype. + + .. versionadded:: 2.0.0 + + Returns + ------- + out : complex ndarray + The truncated or zero-padded input, transformed along the axis + indicated by `axis`, or the last one if `axis` is not specified. + If `n` is even, the length of the transformed axis is ``(n/2)+1``. + If `n` is odd, the length is ``(n+1)/2``. + + Raises + ------ + IndexError + If `axis` is not a valid axis of `a`. + + See Also + -------- + numpy.fft : For definition of the DFT and conventions used. + irfft : The inverse of `rfft`. + fft : The one-dimensional FFT of general (complex) input. + fftn : The *n*-dimensional FFT. + rfftn : The *n*-dimensional FFT of real input. + + Notes + ----- + When the DFT is computed for purely real input, the output is + Hermitian-symmetric, i.e. the negative frequency terms are just the complex + conjugates of the corresponding positive-frequency terms, and the + negative-frequency terms are therefore redundant. This function does not + compute the negative frequency terms, and the length of the transformed + axis of the output is therefore ``n//2 + 1``. + + When ``A = rfft(a)`` and fs is the sampling frequency, ``A[0]`` contains + the zero-frequency term 0*fs, which is real due to Hermitian symmetry. + + If `n` is even, ``A[-1]`` contains the term representing both positive + and negative Nyquist frequency (+fs/2 and -fs/2), and must also be purely + real. If `n` is odd, there is no term at fs/2; ``A[-1]`` contains + the largest positive frequency (fs/2*(n-1)/n), and is complex in the + general case. + + If the input `a` contains an imaginary part, it is silently discarded. + + Examples + -------- + >>> import numpy as np + >>> np.fft.fft([0, 1, 0, 0]) + array([ 1.+0.j, 0.-1.j, -1.+0.j, 0.+1.j]) # may vary + >>> np.fft.rfft([0, 1, 0, 0]) + array([ 1.+0.j, 0.-1.j, -1.+0.j]) # may vary + + Notice how the final element of the `fft` output is the complex conjugate + of the second element, for real input. For `rfft`, this symmetry is + exploited to compute only the non-negative frequency terms. + + """ + a = asarray(a) + if n is None: + n = a.shape[axis] + output = _raw_fft(a, n, axis, True, True, norm, out=out) + return output + + +@array_function_dispatch(_fft_dispatcher) +def irfft(a, n=None, axis=-1, norm=None, out=None): + """ + Computes the inverse of `rfft`. + + This function computes the inverse of the one-dimensional *n*-point + discrete Fourier Transform of real input computed by `rfft`. + In other words, ``irfft(rfft(a), len(a)) == a`` to within numerical + accuracy. (See Notes below for why ``len(a)`` is necessary here.) + + The input is expected to be in the form returned by `rfft`, i.e. the + real zero-frequency term followed by the complex positive frequency terms + in order of increasing frequency. Since the discrete Fourier Transform of + real input is Hermitian-symmetric, the negative frequency terms are taken + to be the complex conjugates of the corresponding positive frequency terms. + + Parameters + ---------- + a : array_like + The input array. + n : int, optional + Length of the transformed axis of the output. + For `n` output points, ``n//2+1`` input points are necessary. If the + input is longer than this, it is cropped. If it is shorter than this, + it is padded with zeros. If `n` is not given, it is taken to be + ``2*(m-1)`` where ``m`` is the length of the input along the axis + specified by `axis`. + axis : int, optional + Axis over which to compute the inverse FFT. If not given, the last + axis is used. + norm : {"backward", "ortho", "forward"}, optional + Normalization mode (see `numpy.fft`). Default is "backward". + Indicates which direction of the forward/backward pair of transforms + is scaled and with what normalization factor. + + .. versionadded:: 1.20.0 + + The "backward", "forward" values were added. + + out : ndarray, optional + If provided, the result will be placed in this array. It should be + of the appropriate shape and dtype. + + .. versionadded:: 2.0.0 + + Returns + ------- + out : ndarray + The truncated or zero-padded input, transformed along the axis + indicated by `axis`, or the last one if `axis` is not specified. + The length of the transformed axis is `n`, or, if `n` is not given, + ``2*(m-1)`` where ``m`` is the length of the transformed axis of the + input. To get an odd number of output points, `n` must be specified. + + Raises + ------ + IndexError + If `axis` is not a valid axis of `a`. + + See Also + -------- + numpy.fft : For definition of the DFT and conventions used. + rfft : The one-dimensional FFT of real input, of which `irfft` is inverse. + fft : The one-dimensional FFT. + irfft2 : The inverse of the two-dimensional FFT of real input. + irfftn : The inverse of the *n*-dimensional FFT of real input. + + Notes + ----- + Returns the real valued `n`-point inverse discrete Fourier transform + of `a`, where `a` contains the non-negative frequency terms of a + Hermitian-symmetric sequence. `n` is the length of the result, not the + input. + + If you specify an `n` such that `a` must be zero-padded or truncated, the + extra/removed values will be added/removed at high frequencies. One can + thus resample a series to `m` points via Fourier interpolation by: + ``a_resamp = irfft(rfft(a), m)``. + + The correct interpretation of the hermitian input depends on the length of + the original data, as given by `n`. This is because each input shape could + correspond to either an odd or even length signal. By default, `irfft` + assumes an even output length which puts the last entry at the Nyquist + frequency; aliasing with its symmetric counterpart. By Hermitian symmetry, + the value is thus treated as purely real. To avoid losing information, the + correct length of the real input **must** be given. + + Examples + -------- + >>> import numpy as np + >>> np.fft.ifft([1, -1j, -1, 1j]) + array([0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]) # may vary + >>> np.fft.irfft([1, -1j, -1]) + array([0., 1., 0., 0.]) + + Notice how the last term in the input to the ordinary `ifft` is the + complex conjugate of the second term, and the output has zero imaginary + part everywhere. When calling `irfft`, the negative frequencies are not + specified, and the output array is purely real. + + """ + a = asarray(a) + if n is None: + n = (a.shape[axis] - 1) * 2 + output = _raw_fft(a, n, axis, True, False, norm, out=out) + return output + + +@array_function_dispatch(_fft_dispatcher) +def hfft(a, n=None, axis=-1, norm=None, out=None): + """ + Compute the FFT of a signal that has Hermitian symmetry, i.e., a real + spectrum. + + Parameters + ---------- + a : array_like + The input array. + n : int, optional + Length of the transformed axis of the output. For `n` output + points, ``n//2 + 1`` input points are necessary. If the input is + longer than this, it is cropped. If it is shorter than this, it is + padded with zeros. If `n` is not given, it is taken to be ``2*(m-1)`` + where ``m`` is the length of the input along the axis specified by + `axis`. + axis : int, optional + Axis over which to compute the FFT. If not given, the last + axis is used. + norm : {"backward", "ortho", "forward"}, optional + Normalization mode (see `numpy.fft`). Default is "backward". + Indicates which direction of the forward/backward pair of transforms + is scaled and with what normalization factor. + + .. versionadded:: 1.20.0 + + The "backward", "forward" values were added. + + out : ndarray, optional + If provided, the result will be placed in this array. It should be + of the appropriate shape and dtype. + + .. versionadded:: 2.0.0 + + Returns + ------- + out : ndarray + The truncated or zero-padded input, transformed along the axis + indicated by `axis`, or the last one if `axis` is not specified. + The length of the transformed axis is `n`, or, if `n` is not given, + ``2*m - 2`` where ``m`` is the length of the transformed axis of + the input. To get an odd number of output points, `n` must be + specified, for instance as ``2*m - 1`` in the typical case, + + Raises + ------ + IndexError + If `axis` is not a valid axis of `a`. + + See also + -------- + rfft : Compute the one-dimensional FFT for real input. + ihfft : The inverse of `hfft`. + + Notes + ----- + `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the + opposite case: here the signal has Hermitian symmetry in the time + domain and is real in the frequency domain. So here it's `hfft` for + which you must supply the length of the result if it is to be odd. + + * even: ``ihfft(hfft(a, 2*len(a) - 2)) == a``, within roundoff error, + * odd: ``ihfft(hfft(a, 2*len(a) - 1)) == a``, within roundoff error. + + The correct interpretation of the hermitian input depends on the length of + the original data, as given by `n`. This is because each input shape could + correspond to either an odd or even length signal. By default, `hfft` + assumes an even output length which puts the last entry at the Nyquist + frequency; aliasing with its symmetric counterpart. By Hermitian symmetry, + the value is thus treated as purely real. To avoid losing information, the + shape of the full signal **must** be given. + + Examples + -------- + >>> import numpy as np + >>> signal = np.array([1, 2, 3, 4, 3, 2]) + >>> np.fft.fft(signal) + array([15.+0.j, -4.+0.j, 0.+0.j, -1.-0.j, 0.+0.j, -4.+0.j]) # may vary + >>> np.fft.hfft(signal[:4]) # Input first half of signal + array([15., -4., 0., -1., 0., -4.]) + >>> np.fft.hfft(signal, 6) # Input entire signal and truncate + array([15., -4., 0., -1., 0., -4.]) + + + >>> signal = np.array([[1, 1.j], [-1.j, 2]]) + >>> np.conj(signal.T) - signal # check Hermitian symmetry + array([[ 0.-0.j, -0.+0.j], # may vary + [ 0.+0.j, 0.-0.j]]) + >>> freq_spectrum = np.fft.hfft(signal) + >>> freq_spectrum + array([[ 1., 1.], + [ 2., -2.]]) + + """ + a = asarray(a) + if n is None: + n = (a.shape[axis] - 1) * 2 + new_norm = _swap_direction(norm) + output = irfft(conjugate(a), n, axis, norm=new_norm, out=None) + return output + + +@array_function_dispatch(_fft_dispatcher) +def ihfft(a, n=None, axis=-1, norm=None, out=None): + """ + Compute the inverse FFT of a signal that has Hermitian symmetry. + + Parameters + ---------- + a : array_like + Input array. + n : int, optional + Length of the inverse FFT, the number of points along + transformation axis in the input to use. If `n` is smaller than + the length of the input, the input is cropped. If it is larger, + the input is padded with zeros. If `n` is not given, the length of + the input along the axis specified by `axis` is used. + axis : int, optional + Axis over which to compute the inverse FFT. If not given, the last + axis is used. + norm : {"backward", "ortho", "forward"}, optional + Normalization mode (see `numpy.fft`). Default is "backward". + Indicates which direction of the forward/backward pair of transforms + is scaled and with what normalization factor. + + .. versionadded:: 1.20.0 + + The "backward", "forward" values were added. + + out : complex ndarray, optional + If provided, the result will be placed in this array. It should be + of the appropriate shape and dtype. + + .. versionadded:: 2.0.0 + + Returns + ------- + out : complex ndarray + The truncated or zero-padded input, transformed along the axis + indicated by `axis`, or the last one if `axis` is not specified. + The length of the transformed axis is ``n//2 + 1``. + + See also + -------- + hfft, irfft + + Notes + ----- + `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the + opposite case: here the signal has Hermitian symmetry in the time + domain and is real in the frequency domain. So here it's `hfft` for + which you must supply the length of the result if it is to be odd: + + * even: ``ihfft(hfft(a, 2*len(a) - 2)) == a``, within roundoff error, + * odd: ``ihfft(hfft(a, 2*len(a) - 1)) == a``, within roundoff error. + + Examples + -------- + >>> import numpy as np + >>> spectrum = np.array([ 15, -4, 0, -1, 0, -4]) + >>> np.fft.ifft(spectrum) + array([1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.+0.j]) # may vary + >>> np.fft.ihfft(spectrum) + array([ 1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j]) # may vary + + """ + a = asarray(a) + if n is None: + n = a.shape[axis] + new_norm = _swap_direction(norm) + out = rfft(a, n, axis, norm=new_norm, out=out) + return conjugate(out, out=out) + + +def _cook_nd_args(a, s=None, axes=None, invreal=0): + if s is None: + shapeless = True + if axes is None: + s = list(a.shape) + else: + s = take(a.shape, axes) + else: + shapeless = False + s = list(s) + if axes is None: + if not shapeless: + msg = ("`axes` should not be `None` if `s` is not `None` " + "(Deprecated in NumPy 2.0). In a future version of NumPy, " + "this will raise an error and `s[i]` will correspond to " + "the size along the transformed axis specified by " + "`axes[i]`. To retain current behaviour, pass a sequence " + "[0, ..., k-1] to `axes` for an array of dimension k.") + warnings.warn(msg, DeprecationWarning, stacklevel=3) + axes = list(range(-len(s), 0)) + if len(s) != len(axes): + raise ValueError("Shape and axes have different lengths.") + if invreal and shapeless: + s[-1] = (a.shape[axes[-1]] - 1) * 2 + if None in s: + msg = ("Passing an array containing `None` values to `s` is " + "deprecated in NumPy 2.0 and will raise an error in " + "a future version of NumPy. To use the default behaviour " + "of the corresponding 1-D transform, pass the value matching " + "the default for its `n` parameter. To use the default " + "behaviour for every axis, the `s` argument can be omitted.") + warnings.warn(msg, DeprecationWarning, stacklevel=3) + # use the whole input array along axis `i` if `s[i] == -1` + s = [a.shape[_a] if _s == -1 else _s for _s, _a in zip(s, axes)] + return s, axes + + +def _raw_fftnd(a, s=None, axes=None, function=fft, norm=None, out=None): + a = asarray(a) + s, axes = _cook_nd_args(a, s, axes) + itl = list(range(len(axes))) + itl.reverse() + for ii in itl: + a = function(a, n=s[ii], axis=axes[ii], norm=norm, out=out) + return a + + +def _fftn_dispatcher(a, s=None, axes=None, norm=None, out=None): + return (a, out) + + +@array_function_dispatch(_fftn_dispatcher) +def fftn(a, s=None, axes=None, norm=None, out=None): + """ + Compute the N-dimensional discrete Fourier Transform. + + This function computes the *N*-dimensional discrete Fourier Transform over + any number of axes in an *M*-dimensional array by means of the Fast Fourier + Transform (FFT). + + Parameters + ---------- + a : array_like + Input array, can be complex. + s : sequence of ints, optional + Shape (length of each transformed axis) of the output + (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). + This corresponds to ``n`` for ``fft(x, n)``. + Along any axis, if the given shape is smaller than that of the input, + the input is cropped. If it is larger, the input is padded with zeros. + + .. versionchanged:: 2.0 + + If it is ``-1``, the whole input is used (no padding/trimming). + + If `s` is not given, the shape of the input along the axes specified + by `axes` is used. + + .. deprecated:: 2.0 + + If `s` is not ``None``, `axes` must not be ``None`` either. + + .. deprecated:: 2.0 + + `s` must contain only ``int`` s, not ``None`` values. ``None`` + values currently mean that the default value for ``n`` is used + in the corresponding 1-D transform, but this behaviour is + deprecated. + + axes : sequence of ints, optional + Axes over which to compute the FFT. If not given, the last ``len(s)`` + axes are used, or all axes if `s` is also not specified. + Repeated indices in `axes` means that the transform over that axis is + performed multiple times. + + .. deprecated:: 2.0 + + If `s` is specified, the corresponding `axes` to be transformed + must be explicitly specified too. + + norm : {"backward", "ortho", "forward"}, optional + Normalization mode (see `numpy.fft`). Default is "backward". + Indicates which direction of the forward/backward pair of transforms + is scaled and with what normalization factor. + + .. versionadded:: 1.20.0 + + The "backward", "forward" values were added. + + out : complex ndarray, optional + If provided, the result will be placed in this array. It should be + of the appropriate shape and dtype for all axes (and hence is + incompatible with passing in all but the trivial ``s``). + + .. versionadded:: 2.0.0 + + Returns + ------- + out : complex ndarray + The truncated or zero-padded input, transformed along the axes + indicated by `axes`, or by a combination of `s` and `a`, + as explained in the parameters section above. + + Raises + ------ + ValueError + If `s` and `axes` have different length. + IndexError + If an element of `axes` is larger than than the number of axes of `a`. + + See Also + -------- + numpy.fft : Overall view of discrete Fourier transforms, with definitions + and conventions used. + ifftn : The inverse of `fftn`, the inverse *n*-dimensional FFT. + fft : The one-dimensional FFT, with definitions and conventions used. + rfftn : The *n*-dimensional FFT of real input. + fft2 : The two-dimensional FFT. + fftshift : Shifts zero-frequency terms to centre of array + + Notes + ----- + The output, analogously to `fft`, contains the term for zero frequency in + the low-order corner of all axes, the positive frequency terms in the + first half of all axes, the term for the Nyquist frequency in the middle + of all axes and the negative frequency terms in the second half of all + axes, in order of decreasingly negative frequency. + + See `numpy.fft` for details, definitions and conventions used. + + Examples + -------- + >>> import numpy as np + >>> a = np.mgrid[:3, :3, :3][0] + >>> np.fft.fftn(a, axes=(1, 2)) + array([[[ 0.+0.j, 0.+0.j, 0.+0.j], # may vary + [ 0.+0.j, 0.+0.j, 0.+0.j], + [ 0.+0.j, 0.+0.j, 0.+0.j]], + [[ 9.+0.j, 0.+0.j, 0.+0.j], + [ 0.+0.j, 0.+0.j, 0.+0.j], + [ 0.+0.j, 0.+0.j, 0.+0.j]], + [[18.+0.j, 0.+0.j, 0.+0.j], + [ 0.+0.j, 0.+0.j, 0.+0.j], + [ 0.+0.j, 0.+0.j, 0.+0.j]]]) + >>> np.fft.fftn(a, (2, 2), axes=(0, 1)) + array([[[ 2.+0.j, 2.+0.j, 2.+0.j], # may vary + [ 0.+0.j, 0.+0.j, 0.+0.j]], + [[-2.+0.j, -2.+0.j, -2.+0.j], + [ 0.+0.j, 0.+0.j, 0.+0.j]]]) + + >>> import matplotlib.pyplot as plt + >>> [X, Y] = np.meshgrid(2 * np.pi * np.arange(200) / 12, + ... 2 * np.pi * np.arange(200) / 34) + >>> S = np.sin(X) + np.cos(Y) + np.random.uniform(0, 1, X.shape) + >>> FS = np.fft.fftn(S) + >>> plt.imshow(np.log(np.abs(np.fft.fftshift(FS))**2)) + + >>> plt.show() + + """ + return _raw_fftnd(a, s, axes, fft, norm, out=out) + + +@array_function_dispatch(_fftn_dispatcher) +def ifftn(a, s=None, axes=None, norm=None, out=None): + """ + Compute the N-dimensional inverse discrete Fourier Transform. + + This function computes the inverse of the N-dimensional discrete + Fourier Transform over any number of axes in an M-dimensional array by + means of the Fast Fourier Transform (FFT). In other words, + ``ifftn(fftn(a)) == a`` to within numerical accuracy. + For a description of the definitions and conventions used, see `numpy.fft`. + + The input, analogously to `ifft`, should be ordered in the same way as is + returned by `fftn`, i.e. it should have the term for zero frequency + in all axes in the low-order corner, the positive frequency terms in the + first half of all axes, the term for the Nyquist frequency in the middle + of all axes and the negative frequency terms in the second half of all + axes, in order of decreasingly negative frequency. + + Parameters + ---------- + a : array_like + Input array, can be complex. + s : sequence of ints, optional + Shape (length of each transformed axis) of the output + (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). + This corresponds to ``n`` for ``ifft(x, n)``. + Along any axis, if the given shape is smaller than that of the input, + the input is cropped. If it is larger, the input is padded with zeros. + + .. versionchanged:: 2.0 + + If it is ``-1``, the whole input is used (no padding/trimming). + + If `s` is not given, the shape of the input along the axes specified + by `axes` is used. See notes for issue on `ifft` zero padding. + + .. deprecated:: 2.0 + + If `s` is not ``None``, `axes` must not be ``None`` either. + + .. deprecated:: 2.0 + + `s` must contain only ``int`` s, not ``None`` values. ``None`` + values currently mean that the default value for ``n`` is used + in the corresponding 1-D transform, but this behaviour is + deprecated. + + axes : sequence of ints, optional + Axes over which to compute the IFFT. If not given, the last ``len(s)`` + axes are used, or all axes if `s` is also not specified. + Repeated indices in `axes` means that the inverse transform over that + axis is performed multiple times. + + .. deprecated:: 2.0 + + If `s` is specified, the corresponding `axes` to be transformed + must be explicitly specified too. + + norm : {"backward", "ortho", "forward"}, optional + Normalization mode (see `numpy.fft`). Default is "backward". + Indicates which direction of the forward/backward pair of transforms + is scaled and with what normalization factor. + + .. versionadded:: 1.20.0 + + The "backward", "forward" values were added. + + out : complex ndarray, optional + If provided, the result will be placed in this array. It should be + of the appropriate shape and dtype for all axes (and hence is + incompatible with passing in all but the trivial ``s``). + + .. versionadded:: 2.0.0 + + Returns + ------- + out : complex ndarray + The truncated or zero-padded input, transformed along the axes + indicated by `axes`, or by a combination of `s` or `a`, + as explained in the parameters section above. + + Raises + ------ + ValueError + If `s` and `axes` have different length. + IndexError + If an element of `axes` is larger than than the number of axes of `a`. + + See Also + -------- + numpy.fft : Overall view of discrete Fourier transforms, with definitions + and conventions used. + fftn : The forward *n*-dimensional FFT, of which `ifftn` is the inverse. + ifft : The one-dimensional inverse FFT. + ifft2 : The two-dimensional inverse FFT. + ifftshift : Undoes `fftshift`, shifts zero-frequency terms to beginning + of array. + + Notes + ----- + See `numpy.fft` for definitions and conventions used. + + Zero-padding, analogously with `ifft`, is performed by appending zeros to + the input along the specified dimension. Although this is the common + approach, it might lead to surprising results. If another form of zero + padding is desired, it must be performed before `ifftn` is called. + + Examples + -------- + >>> import numpy as np + >>> a = np.eye(4) + >>> np.fft.ifftn(np.fft.fftn(a, axes=(0,)), axes=(1,)) + array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], # may vary + [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j], + [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j], + [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]]) + + + Create and plot an image with band-limited frequency content: + + >>> import matplotlib.pyplot as plt + >>> n = np.zeros((200,200), dtype=complex) + >>> n[60:80, 20:40] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20, 20))) + >>> im = np.fft.ifftn(n).real + >>> plt.imshow(im) + + >>> plt.show() + + """ + return _raw_fftnd(a, s, axes, ifft, norm, out=out) + + +@array_function_dispatch(_fftn_dispatcher) +def fft2(a, s=None, axes=(-2, -1), norm=None, out=None): + """ + Compute the 2-dimensional discrete Fourier Transform. + + This function computes the *n*-dimensional discrete Fourier Transform + over any axes in an *M*-dimensional array by means of the + Fast Fourier Transform (FFT). By default, the transform is computed over + the last two axes of the input array, i.e., a 2-dimensional FFT. + + Parameters + ---------- + a : array_like + Input array, can be complex + s : sequence of ints, optional + Shape (length of each transformed axis) of the output + (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). + This corresponds to ``n`` for ``fft(x, n)``. + Along each axis, if the given shape is smaller than that of the input, + the input is cropped. If it is larger, the input is padded with zeros. + + .. versionchanged:: 2.0 + + If it is ``-1``, the whole input is used (no padding/trimming). + + If `s` is not given, the shape of the input along the axes specified + by `axes` is used. + + .. deprecated:: 2.0 + + If `s` is not ``None``, `axes` must not be ``None`` either. + + .. deprecated:: 2.0 + + `s` must contain only ``int`` s, not ``None`` values. ``None`` + values currently mean that the default value for ``n`` is used + in the corresponding 1-D transform, but this behaviour is + deprecated. + + axes : sequence of ints, optional + Axes over which to compute the FFT. If not given, the last two + axes are used. A repeated index in `axes` means the transform over + that axis is performed multiple times. A one-element sequence means + that a one-dimensional FFT is performed. Default: ``(-2, -1)``. + + .. deprecated:: 2.0 + + If `s` is specified, the corresponding `axes` to be transformed + must not be ``None``. + + norm : {"backward", "ortho", "forward"}, optional + Normalization mode (see `numpy.fft`). Default is "backward". + Indicates which direction of the forward/backward pair of transforms + is scaled and with what normalization factor. + + .. versionadded:: 1.20.0 + + The "backward", "forward" values were added. + + out : complex ndarray, optional + If provided, the result will be placed in this array. It should be + of the appropriate shape and dtype for all axes (and hence only the + last axis can have ``s`` not equal to the shape at that axis). + + .. versionadded:: 2.0.0 + + Returns + ------- + out : complex ndarray + The truncated or zero-padded input, transformed along the axes + indicated by `axes`, or the last two axes if `axes` is not given. + + Raises + ------ + ValueError + If `s` and `axes` have different length, or `axes` not given and + ``len(s) != 2``. + IndexError + If an element of `axes` is larger than than the number of axes of `a`. + + See Also + -------- + numpy.fft : Overall view of discrete Fourier transforms, with definitions + and conventions used. + ifft2 : The inverse two-dimensional FFT. + fft : The one-dimensional FFT. + fftn : The *n*-dimensional FFT. + fftshift : Shifts zero-frequency terms to the center of the array. + For two-dimensional input, swaps first and third quadrants, and second + and fourth quadrants. + + Notes + ----- + `fft2` is just `fftn` with a different default for `axes`. + + The output, analogously to `fft`, contains the term for zero frequency in + the low-order corner of the transformed axes, the positive frequency terms + in the first half of these axes, the term for the Nyquist frequency in the + middle of the axes and the negative frequency terms in the second half of + the axes, in order of decreasingly negative frequency. + + See `fftn` for details and a plotting example, and `numpy.fft` for + definitions and conventions used. + + + Examples + -------- + >>> import numpy as np + >>> a = np.mgrid[:5, :5][0] + >>> np.fft.fft2(a) + array([[ 50. +0.j , 0. +0.j , 0. +0.j , # may vary + 0. +0.j , 0. +0.j ], + [-12.5+17.20477401j, 0. +0.j , 0. +0.j , + 0. +0.j , 0. +0.j ], + [-12.5 +4.0614962j , 0. +0.j , 0. +0.j , + 0. +0.j , 0. +0.j ], + [-12.5 -4.0614962j , 0. +0.j , 0. +0.j , + 0. +0.j , 0. +0.j ], + [-12.5-17.20477401j, 0. +0.j , 0. +0.j , + 0. +0.j , 0. +0.j ]]) + + """ + return _raw_fftnd(a, s, axes, fft, norm, out=out) + + +@array_function_dispatch(_fftn_dispatcher) +def ifft2(a, s=None, axes=(-2, -1), norm=None, out=None): + """ + Compute the 2-dimensional inverse discrete Fourier Transform. + + This function computes the inverse of the 2-dimensional discrete Fourier + Transform over any number of axes in an M-dimensional array by means of + the Fast Fourier Transform (FFT). In other words, ``ifft2(fft2(a)) == a`` + to within numerical accuracy. By default, the inverse transform is + computed over the last two axes of the input array. + + The input, analogously to `ifft`, should be ordered in the same way as is + returned by `fft2`, i.e. it should have the term for zero frequency + in the low-order corner of the two axes, the positive frequency terms in + the first half of these axes, the term for the Nyquist frequency in the + middle of the axes and the negative frequency terms in the second half of + both axes, in order of decreasingly negative frequency. + + Parameters + ---------- + a : array_like + Input array, can be complex. + s : sequence of ints, optional + Shape (length of each axis) of the output (``s[0]`` refers to axis 0, + ``s[1]`` to axis 1, etc.). This corresponds to `n` for ``ifft(x, n)``. + Along each axis, if the given shape is smaller than that of the input, + the input is cropped. If it is larger, the input is padded with zeros. + + .. versionchanged:: 2.0 + + If it is ``-1``, the whole input is used (no padding/trimming). + + If `s` is not given, the shape of the input along the axes specified + by `axes` is used. See notes for issue on `ifft` zero padding. + + .. deprecated:: 2.0 + + If `s` is not ``None``, `axes` must not be ``None`` either. + + .. deprecated:: 2.0 + + `s` must contain only ``int`` s, not ``None`` values. ``None`` + values currently mean that the default value for ``n`` is used + in the corresponding 1-D transform, but this behaviour is + deprecated. + + axes : sequence of ints, optional + Axes over which to compute the FFT. If not given, the last two + axes are used. A repeated index in `axes` means the transform over + that axis is performed multiple times. A one-element sequence means + that a one-dimensional FFT is performed. Default: ``(-2, -1)``. + + .. deprecated:: 2.0 + + If `s` is specified, the corresponding `axes` to be transformed + must not be ``None``. + + norm : {"backward", "ortho", "forward"}, optional + Normalization mode (see `numpy.fft`). Default is "backward". + Indicates which direction of the forward/backward pair of transforms + is scaled and with what normalization factor. + + .. versionadded:: 1.20.0 + + The "backward", "forward" values were added. + + out : complex ndarray, optional + If provided, the result will be placed in this array. It should be + of the appropriate shape and dtype for all axes (and hence is + incompatible with passing in all but the trivial ``s``). + + .. versionadded:: 2.0.0 + + Returns + ------- + out : complex ndarray + The truncated or zero-padded input, transformed along the axes + indicated by `axes`, or the last two axes if `axes` is not given. + + Raises + ------ + ValueError + If `s` and `axes` have different length, or `axes` not given and + ``len(s) != 2``. + IndexError + If an element of `axes` is larger than than the number of axes of `a`. + + See Also + -------- + numpy.fft : Overall view of discrete Fourier transforms, with definitions + and conventions used. + fft2 : The forward 2-dimensional FFT, of which `ifft2` is the inverse. + ifftn : The inverse of the *n*-dimensional FFT. + fft : The one-dimensional FFT. + ifft : The one-dimensional inverse FFT. + + Notes + ----- + `ifft2` is just `ifftn` with a different default for `axes`. + + See `ifftn` for details and a plotting example, and `numpy.fft` for + definition and conventions used. + + Zero-padding, analogously with `ifft`, is performed by appending zeros to + the input along the specified dimension. Although this is the common + approach, it might lead to surprising results. If another form of zero + padding is desired, it must be performed before `ifft2` is called. + + Examples + -------- + >>> import numpy as np + >>> a = 4 * np.eye(4) + >>> np.fft.ifft2(a) + array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], # may vary + [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j], + [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j], + [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]]) + + """ + return _raw_fftnd(a, s, axes, ifft, norm, out=None) + + +@array_function_dispatch(_fftn_dispatcher) +def rfftn(a, s=None, axes=None, norm=None, out=None): + """ + Compute the N-dimensional discrete Fourier Transform for real input. + + This function computes the N-dimensional discrete Fourier Transform over + any number of axes in an M-dimensional real array by means of the Fast + Fourier Transform (FFT). By default, all axes are transformed, with the + real transform performed over the last axis, while the remaining + transforms are complex. + + Parameters + ---------- + a : array_like + Input array, taken to be real. + s : sequence of ints, optional + Shape (length along each transformed axis) to use from the input. + (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). + The final element of `s` corresponds to `n` for ``rfft(x, n)``, while + for the remaining axes, it corresponds to `n` for ``fft(x, n)``. + Along any axis, if the given shape is smaller than that of the input, + the input is cropped. If it is larger, the input is padded with zeros. + + .. versionchanged:: 2.0 + + If it is ``-1``, the whole input is used (no padding/trimming). + + If `s` is not given, the shape of the input along the axes specified + by `axes` is used. + + .. deprecated:: 2.0 + + If `s` is not ``None``, `axes` must not be ``None`` either. + + .. deprecated:: 2.0 + + `s` must contain only ``int`` s, not ``None`` values. ``None`` + values currently mean that the default value for ``n`` is used + in the corresponding 1-D transform, but this behaviour is + deprecated. + + axes : sequence of ints, optional + Axes over which to compute the FFT. If not given, the last ``len(s)`` + axes are used, or all axes if `s` is also not specified. + + .. deprecated:: 2.0 + + If `s` is specified, the corresponding `axes` to be transformed + must be explicitly specified too. + + norm : {"backward", "ortho", "forward"}, optional + Normalization mode (see `numpy.fft`). Default is "backward". + Indicates which direction of the forward/backward pair of transforms + is scaled and with what normalization factor. + + .. versionadded:: 1.20.0 + + The "backward", "forward" values were added. + + out : complex ndarray, optional + If provided, the result will be placed in this array. It should be + of the appropriate shape and dtype for all axes (and hence is + incompatible with passing in all but the trivial ``s``). + + .. versionadded:: 2.0.0 + + Returns + ------- + out : complex ndarray + The truncated or zero-padded input, transformed along the axes + indicated by `axes`, or by a combination of `s` and `a`, + as explained in the parameters section above. + The length of the last axis transformed will be ``s[-1]//2+1``, + while the remaining transformed axes will have lengths according to + `s`, or unchanged from the input. + + Raises + ------ + ValueError + If `s` and `axes` have different length. + IndexError + If an element of `axes` is larger than than the number of axes of `a`. + + See Also + -------- + irfftn : The inverse of `rfftn`, i.e. the inverse of the n-dimensional FFT + of real input. + fft : The one-dimensional FFT, with definitions and conventions used. + rfft : The one-dimensional FFT of real input. + fftn : The n-dimensional FFT. + rfft2 : The two-dimensional FFT of real input. + + Notes + ----- + The transform for real input is performed over the last transformation + axis, as by `rfft`, then the transform over the remaining axes is + performed as by `fftn`. The order of the output is as for `rfft` for the + final transformation axis, and as for `fftn` for the remaining + transformation axes. + + See `fft` for details, definitions and conventions used. + + Examples + -------- + >>> import numpy as np + >>> a = np.ones((2, 2, 2)) + >>> np.fft.rfftn(a) + array([[[8.+0.j, 0.+0.j], # may vary + [0.+0.j, 0.+0.j]], + [[0.+0.j, 0.+0.j], + [0.+0.j, 0.+0.j]]]) + + >>> np.fft.rfftn(a, axes=(2, 0)) + array([[[4.+0.j, 0.+0.j], # may vary + [4.+0.j, 0.+0.j]], + [[0.+0.j, 0.+0.j], + [0.+0.j, 0.+0.j]]]) + + """ + a = asarray(a) + s, axes = _cook_nd_args(a, s, axes) + a = rfft(a, s[-1], axes[-1], norm, out=out) + for ii in range(len(axes) - 2, -1, -1): + a = fft(a, s[ii], axes[ii], norm, out=out) + return a + + +@array_function_dispatch(_fftn_dispatcher) +def rfft2(a, s=None, axes=(-2, -1), norm=None, out=None): + """ + Compute the 2-dimensional FFT of a real array. + + Parameters + ---------- + a : array + Input array, taken to be real. + s : sequence of ints, optional + Shape of the FFT. + + .. versionchanged:: 2.0 + + If it is ``-1``, the whole input is used (no padding/trimming). + + .. deprecated:: 2.0 + + If `s` is not ``None``, `axes` must not be ``None`` either. + + .. deprecated:: 2.0 + + `s` must contain only ``int`` s, not ``None`` values. ``None`` + values currently mean that the default value for ``n`` is used + in the corresponding 1-D transform, but this behaviour is + deprecated. + + axes : sequence of ints, optional + Axes over which to compute the FFT. Default: ``(-2, -1)``. + + .. deprecated:: 2.0 + + If `s` is specified, the corresponding `axes` to be transformed + must not be ``None``. + + norm : {"backward", "ortho", "forward"}, optional + Normalization mode (see `numpy.fft`). Default is "backward". + Indicates which direction of the forward/backward pair of transforms + is scaled and with what normalization factor. + + .. versionadded:: 1.20.0 + + The "backward", "forward" values were added. + + out : complex ndarray, optional + If provided, the result will be placed in this array. It should be + of the appropriate shape and dtype for the last inverse transform. + incompatible with passing in all but the trivial ``s``). + + .. versionadded:: 2.0.0 + + Returns + ------- + out : ndarray + The result of the real 2-D FFT. + + See Also + -------- + rfftn : Compute the N-dimensional discrete Fourier Transform for real + input. + + Notes + ----- + This is really just `rfftn` with different default behavior. + For more details see `rfftn`. + + Examples + -------- + >>> import numpy as np + >>> a = np.mgrid[:5, :5][0] + >>> np.fft.rfft2(a) + array([[ 50. +0.j , 0. +0.j , 0. +0.j ], + [-12.5+17.20477401j, 0. +0.j , 0. +0.j ], + [-12.5 +4.0614962j , 0. +0.j , 0. +0.j ], + [-12.5 -4.0614962j , 0. +0.j , 0. +0.j ], + [-12.5-17.20477401j, 0. +0.j , 0. +0.j ]]) + """ + return rfftn(a, s, axes, norm, out=out) + + +@array_function_dispatch(_fftn_dispatcher) +def irfftn(a, s=None, axes=None, norm=None, out=None): + """ + Computes the inverse of `rfftn`. + + This function computes the inverse of the N-dimensional discrete + Fourier Transform for real input over any number of axes in an + M-dimensional array by means of the Fast Fourier Transform (FFT). In + other words, ``irfftn(rfftn(a), a.shape) == a`` to within numerical + accuracy. (The ``a.shape`` is necessary like ``len(a)`` is for `irfft`, + and for the same reason.) + + The input should be ordered in the same way as is returned by `rfftn`, + i.e. as for `irfft` for the final transformation axis, and as for `ifftn` + along all the other axes. + + Parameters + ---------- + a : array_like + Input array. + s : sequence of ints, optional + Shape (length of each transformed axis) of the output + (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). `s` is also the + number of input points used along this axis, except for the last axis, + where ``s[-1]//2+1`` points of the input are used. + Along any axis, if the shape indicated by `s` is smaller than that of + the input, the input is cropped. If it is larger, the input is padded + with zeros. + + .. versionchanged:: 2.0 + + If it is ``-1``, the whole input is used (no padding/trimming). + + If `s` is not given, the shape of the input along the axes + specified by axes is used. Except for the last axis which is taken to + be ``2*(m-1)`` where ``m`` is the length of the input along that axis. + + .. deprecated:: 2.0 + + If `s` is not ``None``, `axes` must not be ``None`` either. + + .. deprecated:: 2.0 + + `s` must contain only ``int`` s, not ``None`` values. ``None`` + values currently mean that the default value for ``n`` is used + in the corresponding 1-D transform, but this behaviour is + deprecated. + + axes : sequence of ints, optional + Axes over which to compute the inverse FFT. If not given, the last + `len(s)` axes are used, or all axes if `s` is also not specified. + Repeated indices in `axes` means that the inverse transform over that + axis is performed multiple times. + + .. deprecated:: 2.0 + + If `s` is specified, the corresponding `axes` to be transformed + must be explicitly specified too. + + norm : {"backward", "ortho", "forward"}, optional + Normalization mode (see `numpy.fft`). Default is "backward". + Indicates which direction of the forward/backward pair of transforms + is scaled and with what normalization factor. + + .. versionadded:: 1.20.0 + + The "backward", "forward" values were added. + + out : ndarray, optional + If provided, the result will be placed in this array. It should be + of the appropriate shape and dtype for the last transformation. + + .. versionadded:: 2.0.0 + + Returns + ------- + out : ndarray + The truncated or zero-padded input, transformed along the axes + indicated by `axes`, or by a combination of `s` or `a`, + as explained in the parameters section above. + The length of each transformed axis is as given by the corresponding + element of `s`, or the length of the input in every axis except for the + last one if `s` is not given. In the final transformed axis the length + of the output when `s` is not given is ``2*(m-1)`` where ``m`` is the + length of the final transformed axis of the input. To get an odd + number of output points in the final axis, `s` must be specified. + + Raises + ------ + ValueError + If `s` and `axes` have different length. + IndexError + If an element of `axes` is larger than than the number of axes of `a`. + + See Also + -------- + rfftn : The forward n-dimensional FFT of real input, + of which `ifftn` is the inverse. + fft : The one-dimensional FFT, with definitions and conventions used. + irfft : The inverse of the one-dimensional FFT of real input. + irfft2 : The inverse of the two-dimensional FFT of real input. + + Notes + ----- + See `fft` for definitions and conventions used. + + See `rfft` for definitions and conventions used for real input. + + The correct interpretation of the hermitian input depends on the shape of + the original data, as given by `s`. This is because each input shape could + correspond to either an odd or even length signal. By default, `irfftn` + assumes an even output length which puts the last entry at the Nyquist + frequency; aliasing with its symmetric counterpart. When performing the + final complex to real transform, the last value is thus treated as purely + real. To avoid losing information, the correct shape of the real input + **must** be given. + + Examples + -------- + >>> import numpy as np + >>> a = np.zeros((3, 2, 2)) + >>> a[0, 0, 0] = 3 * 2 * 2 + >>> np.fft.irfftn(a) + array([[[1., 1.], + [1., 1.]], + [[1., 1.], + [1., 1.]], + [[1., 1.], + [1., 1.]]]) + + """ + a = asarray(a) + s, axes = _cook_nd_args(a, s, axes, invreal=1) + for ii in range(len(axes) - 1): + a = ifft(a, s[ii], axes[ii], norm) + a = irfft(a, s[-1], axes[-1], norm, out=out) + return a + + +@array_function_dispatch(_fftn_dispatcher) +def irfft2(a, s=None, axes=(-2, -1), norm=None, out=None): + """ + Computes the inverse of `rfft2`. + + Parameters + ---------- + a : array_like + The input array + s : sequence of ints, optional + Shape of the real output to the inverse FFT. + + .. versionchanged:: 2.0 + + If it is ``-1``, the whole input is used (no padding/trimming). + + .. deprecated:: 2.0 + + If `s` is not ``None``, `axes` must not be ``None`` either. + + .. deprecated:: 2.0 + + `s` must contain only ``int`` s, not ``None`` values. ``None`` + values currently mean that the default value for ``n`` is used + in the corresponding 1-D transform, but this behaviour is + deprecated. + + axes : sequence of ints, optional + The axes over which to compute the inverse fft. + Default: ``(-2, -1)``, the last two axes. + + .. deprecated:: 2.0 + + If `s` is specified, the corresponding `axes` to be transformed + must not be ``None``. + + norm : {"backward", "ortho", "forward"}, optional + Normalization mode (see `numpy.fft`). Default is "backward". + Indicates which direction of the forward/backward pair of transforms + is scaled and with what normalization factor. + + .. versionadded:: 1.20.0 + + The "backward", "forward" values were added. + + out : ndarray, optional + If provided, the result will be placed in this array. It should be + of the appropriate shape and dtype for the last transformation. + + .. versionadded:: 2.0.0 + + Returns + ------- + out : ndarray + The result of the inverse real 2-D FFT. + + See Also + -------- + rfft2 : The forward two-dimensional FFT of real input, + of which `irfft2` is the inverse. + rfft : The one-dimensional FFT for real input. + irfft : The inverse of the one-dimensional FFT of real input. + irfftn : Compute the inverse of the N-dimensional FFT of real input. + + Notes + ----- + This is really `irfftn` with different defaults. + For more details see `irfftn`. + + Examples + -------- + >>> import numpy as np + >>> a = np.mgrid[:5, :5][0] + >>> A = np.fft.rfft2(a) + >>> np.fft.irfft2(A, s=a.shape) + array([[0., 0., 0., 0., 0.], + [1., 1., 1., 1., 1.], + [2., 2., 2., 2., 2.], + [3., 3., 3., 3., 3.], + [4., 4., 4., 4., 4.]]) + """ + return irfftn(a, s, axes, norm, out=None) diff --git a/.venv/lib/python3.12/site-packages/numpy/fft/_pocketfft.pyi b/.venv/lib/python3.12/site-packages/numpy/fft/_pocketfft.pyi new file mode 100644 index 0000000..215cf14 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/fft/_pocketfft.pyi @@ -0,0 +1,138 @@ +from collections.abc import Sequence +from typing import Literal as L +from typing import TypeAlias + +from numpy import complex128, float64 +from numpy._typing import ArrayLike, NDArray, _ArrayLikeNumber_co + +__all__ = [ + "fft", + "ifft", + "rfft", + "irfft", + "hfft", + "ihfft", + "rfftn", + "irfftn", + "rfft2", + "irfft2", + "fft2", + "ifft2", + "fftn", + "ifftn", +] + +_NormKind: TypeAlias = L["backward", "ortho", "forward"] | None + +def fft( + a: ArrayLike, + n: int | None = ..., + axis: int = ..., + norm: _NormKind = ..., + out: NDArray[complex128] | None = ..., +) -> NDArray[complex128]: ... + +def ifft( + a: ArrayLike, + n: int | None = ..., + axis: int = ..., + norm: _NormKind = ..., + out: NDArray[complex128] | None = ..., +) -> NDArray[complex128]: ... + +def rfft( + a: ArrayLike, + n: int | None = ..., + axis: int = ..., + norm: _NormKind = ..., + out: NDArray[complex128] | None = ..., +) -> NDArray[complex128]: ... + +def irfft( + a: ArrayLike, + n: int | None = ..., + axis: int = ..., + norm: _NormKind = ..., + out: NDArray[float64] | None = ..., +) -> NDArray[float64]: ... + +# Input array must be compatible with `np.conjugate` +def hfft( + a: _ArrayLikeNumber_co, + n: int | None = ..., + axis: int = ..., + norm: _NormKind = ..., + out: NDArray[float64] | None = ..., +) -> NDArray[float64]: ... + +def ihfft( + a: ArrayLike, + n: int | None = ..., + axis: int = ..., + norm: _NormKind = ..., + out: NDArray[complex128] | None = ..., +) -> NDArray[complex128]: ... + +def fftn( + a: ArrayLike, + s: Sequence[int] | None = ..., + axes: Sequence[int] | None = ..., + norm: _NormKind = ..., + out: NDArray[complex128] | None = ..., +) -> NDArray[complex128]: ... + +def ifftn( + a: ArrayLike, + s: Sequence[int] | None = ..., + axes: Sequence[int] | None = ..., + norm: _NormKind = ..., + out: NDArray[complex128] | None = ..., +) -> NDArray[complex128]: ... + +def rfftn( + a: ArrayLike, + s: Sequence[int] | None = ..., + axes: Sequence[int] | None = ..., + norm: _NormKind = ..., + out: NDArray[complex128] | None = ..., +) -> NDArray[complex128]: ... + +def irfftn( + a: ArrayLike, + s: Sequence[int] | None = ..., + axes: Sequence[int] | None = ..., + norm: _NormKind = ..., + out: NDArray[float64] | None = ..., +) -> NDArray[float64]: ... + +def fft2( + a: ArrayLike, + s: Sequence[int] | None = ..., + axes: Sequence[int] | None = ..., + norm: _NormKind = ..., + out: NDArray[complex128] | None = ..., +) -> NDArray[complex128]: ... + +def ifft2( + a: ArrayLike, + s: Sequence[int] | None = ..., + axes: Sequence[int] | None = ..., + norm: _NormKind = ..., + out: NDArray[complex128] | None = ..., +) -> NDArray[complex128]: ... + +def rfft2( + a: ArrayLike, + s: Sequence[int] | None = ..., + axes: Sequence[int] | None = ..., + norm: _NormKind = ..., + out: NDArray[complex128] | None = ..., +) -> NDArray[complex128]: ... + +def irfft2( + a: ArrayLike, + s: Sequence[int] | None = ..., + axes: Sequence[int] | None = ..., + norm: _NormKind = ..., + out: NDArray[float64] | None = ..., +) -> NDArray[float64]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/fft/_pocketfft_umath.cpython-312-x86_64-linux-gnu.so b/.venv/lib/python3.12/site-packages/numpy/fft/_pocketfft_umath.cpython-312-x86_64-linux-gnu.so new file mode 100755 index 0000000..df57850 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/fft/_pocketfft_umath.cpython-312-x86_64-linux-gnu.so differ diff --git a/.venv/lib/python3.12/site-packages/numpy/fft/helper.py b/.venv/lib/python3.12/site-packages/numpy/fft/helper.py new file mode 100644 index 0000000..08d5662 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/fft/helper.py @@ -0,0 +1,17 @@ +def __getattr__(attr_name): + import warnings + + from numpy.fft import _helper + ret = getattr(_helper, attr_name, None) + if ret is None: + raise AttributeError( + f"module 'numpy.fft.helper' has no attribute {attr_name}") + warnings.warn( + "The numpy.fft.helper has been made private and renamed to " + "numpy.fft._helper. All four functions exported by it (i.e. fftshift, " + "ifftshift, fftfreq, rfftfreq) are available from numpy.fft. " + f"Please use numpy.fft.{attr_name} instead.", + DeprecationWarning, + stacklevel=3 + ) + return ret diff --git a/.venv/lib/python3.12/site-packages/numpy/fft/helper.pyi b/.venv/lib/python3.12/site-packages/numpy/fft/helper.pyi new file mode 100644 index 0000000..887cbe7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/fft/helper.pyi @@ -0,0 +1,22 @@ +from typing import Any +from typing import Literal as L + +from typing_extensions import deprecated + +import numpy as np +from numpy._typing import ArrayLike, NDArray, _ShapeLike + +from ._helper import integer_types as integer_types + +__all__ = ["fftfreq", "fftshift", "ifftshift", "rfftfreq"] + +### + +@deprecated("Please use `numpy.fft.fftshift` instead.") +def fftshift(x: ArrayLike, axes: _ShapeLike | None = None) -> NDArray[Any]: ... +@deprecated("Please use `numpy.fft.ifftshift` instead.") +def ifftshift(x: ArrayLike, axes: _ShapeLike | None = None) -> NDArray[Any]: ... +@deprecated("Please use `numpy.fft.fftfreq` instead.") +def fftfreq(n: int | np.integer, d: ArrayLike = 1.0, device: L["cpu"] | None = None) -> NDArray[Any]: ... +@deprecated("Please use `numpy.fft.rfftfreq` instead.") +def rfftfreq(n: int | np.integer, d: ArrayLike = 1.0, device: L["cpu"] | None = None) -> NDArray[Any]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/fft/tests/__init__.py b/.venv/lib/python3.12/site-packages/numpy/fft/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/.venv/lib/python3.12/site-packages/numpy/fft/tests/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/fft/tests/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..f2fb847 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/fft/tests/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/fft/tests/__pycache__/test_helper.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/fft/tests/__pycache__/test_helper.cpython-312.pyc new file mode 100644 index 0000000..a1e4182 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/fft/tests/__pycache__/test_helper.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/fft/tests/__pycache__/test_pocketfft.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/fft/tests/__pycache__/test_pocketfft.cpython-312.pyc new file mode 100644 index 0000000..853bb4e Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/fft/tests/__pycache__/test_pocketfft.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/fft/tests/test_helper.py b/.venv/lib/python3.12/site-packages/numpy/fft/tests/test_helper.py new file mode 100644 index 0000000..c02a736 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/fft/tests/test_helper.py @@ -0,0 +1,167 @@ +"""Test functions for fftpack.helper module + +Copied from fftpack.helper by Pearu Peterson, October 2005 + +""" +import numpy as np +from numpy import fft, pi +from numpy.testing import assert_array_almost_equal + + +class TestFFTShift: + + def test_definition(self): + x = [0, 1, 2, 3, 4, -4, -3, -2, -1] + y = [-4, -3, -2, -1, 0, 1, 2, 3, 4] + assert_array_almost_equal(fft.fftshift(x), y) + assert_array_almost_equal(fft.ifftshift(y), x) + x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1] + y = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4] + assert_array_almost_equal(fft.fftshift(x), y) + assert_array_almost_equal(fft.ifftshift(y), x) + + def test_inverse(self): + for n in [1, 4, 9, 100, 211]: + x = np.random.random((n,)) + assert_array_almost_equal(fft.ifftshift(fft.fftshift(x)), x) + + def test_axes_keyword(self): + freqs = [[0, 1, 2], [3, 4, -4], [-3, -2, -1]] + shifted = [[-1, -3, -2], [2, 0, 1], [-4, 3, 4]] + assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shifted) + assert_array_almost_equal(fft.fftshift(freqs, axes=0), + fft.fftshift(freqs, axes=(0,))) + assert_array_almost_equal(fft.ifftshift(shifted, axes=(0, 1)), freqs) + assert_array_almost_equal(fft.ifftshift(shifted, axes=0), + fft.ifftshift(shifted, axes=(0,))) + + assert_array_almost_equal(fft.fftshift(freqs), shifted) + assert_array_almost_equal(fft.ifftshift(shifted), freqs) + + def test_uneven_dims(self): + """ Test 2D input, which has uneven dimension sizes """ + freqs = [ + [0, 1], + [2, 3], + [4, 5] + ] + + # shift in dimension 0 + shift_dim0 = [ + [4, 5], + [0, 1], + [2, 3] + ] + assert_array_almost_equal(fft.fftshift(freqs, axes=0), shift_dim0) + assert_array_almost_equal(fft.ifftshift(shift_dim0, axes=0), freqs) + assert_array_almost_equal(fft.fftshift(freqs, axes=(0,)), shift_dim0) + assert_array_almost_equal(fft.ifftshift(shift_dim0, axes=[0]), freqs) + + # shift in dimension 1 + shift_dim1 = [ + [1, 0], + [3, 2], + [5, 4] + ] + assert_array_almost_equal(fft.fftshift(freqs, axes=1), shift_dim1) + assert_array_almost_equal(fft.ifftshift(shift_dim1, axes=1), freqs) + + # shift in both dimensions + shift_dim_both = [ + [5, 4], + [1, 0], + [3, 2] + ] + assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shift_dim_both) + assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=(0, 1)), freqs) + assert_array_almost_equal(fft.fftshift(freqs, axes=[0, 1]), shift_dim_both) + assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=[0, 1]), freqs) + + # axes=None (default) shift in all dimensions + assert_array_almost_equal(fft.fftshift(freqs, axes=None), shift_dim_both) + assert_array_almost_equal(fft.ifftshift(shift_dim_both, axes=None), freqs) + assert_array_almost_equal(fft.fftshift(freqs), shift_dim_both) + assert_array_almost_equal(fft.ifftshift(shift_dim_both), freqs) + + def test_equal_to_original(self): + """ Test the new (>=v1.15) and old implementations are equal (see #10073) """ + from numpy._core import arange, asarray, concatenate, take + + def original_fftshift(x, axes=None): + """ How fftshift was implemented in v1.14""" + tmp = asarray(x) + ndim = tmp.ndim + if axes is None: + axes = list(range(ndim)) + elif isinstance(axes, int): + axes = (axes,) + y = tmp + for k in axes: + n = tmp.shape[k] + p2 = (n + 1) // 2 + mylist = concatenate((arange(p2, n), arange(p2))) + y = take(y, mylist, k) + return y + + def original_ifftshift(x, axes=None): + """ How ifftshift was implemented in v1.14 """ + tmp = asarray(x) + ndim = tmp.ndim + if axes is None: + axes = list(range(ndim)) + elif isinstance(axes, int): + axes = (axes,) + y = tmp + for k in axes: + n = tmp.shape[k] + p2 = n - (n + 1) // 2 + mylist = concatenate((arange(p2, n), arange(p2))) + y = take(y, mylist, k) + return y + + # create possible 2d array combinations and try all possible keywords + # compare output to original functions + for i in range(16): + for j in range(16): + for axes_keyword in [0, 1, None, (0,), (0, 1)]: + inp = np.random.rand(i, j) + + assert_array_almost_equal(fft.fftshift(inp, axes_keyword), + original_fftshift(inp, axes_keyword)) + + assert_array_almost_equal(fft.ifftshift(inp, axes_keyword), + original_ifftshift(inp, axes_keyword)) + + +class TestFFTFreq: + + def test_definition(self): + x = [0, 1, 2, 3, 4, -4, -3, -2, -1] + assert_array_almost_equal(9 * fft.fftfreq(9), x) + assert_array_almost_equal(9 * pi * fft.fftfreq(9, pi), x) + x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1] + assert_array_almost_equal(10 * fft.fftfreq(10), x) + assert_array_almost_equal(10 * pi * fft.fftfreq(10, pi), x) + + +class TestRFFTFreq: + + def test_definition(self): + x = [0, 1, 2, 3, 4] + assert_array_almost_equal(9 * fft.rfftfreq(9), x) + assert_array_almost_equal(9 * pi * fft.rfftfreq(9, pi), x) + x = [0, 1, 2, 3, 4, 5] + assert_array_almost_equal(10 * fft.rfftfreq(10), x) + assert_array_almost_equal(10 * pi * fft.rfftfreq(10, pi), x) + + +class TestIRFFTN: + + def test_not_last_axis_success(self): + ar, ai = np.random.random((2, 16, 8, 32)) + a = ar + 1j * ai + + axes = (-2,) + + # Should not raise error + fft.irfftn(a, axes=axes) diff --git a/.venv/lib/python3.12/site-packages/numpy/fft/tests/test_pocketfft.py b/.venv/lib/python3.12/site-packages/numpy/fft/tests/test_pocketfft.py new file mode 100644 index 0000000..0211818 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/fft/tests/test_pocketfft.py @@ -0,0 +1,589 @@ +import queue +import threading + +import pytest + +import numpy as np +from numpy.random import random +from numpy.testing import IS_WASM, assert_allclose, assert_array_equal, assert_raises + + +def fft1(x): + L = len(x) + phase = -2j * np.pi * (np.arange(L) / L) + phase = np.arange(L).reshape(-1, 1) * phase + return np.sum(x * np.exp(phase), axis=1) + + +class TestFFTShift: + + def test_fft_n(self): + assert_raises(ValueError, np.fft.fft, [1, 2, 3], 0) + + +class TestFFT1D: + + def test_identity(self): + maxlen = 512 + x = random(maxlen) + 1j * random(maxlen) + xr = random(maxlen) + for i in range(1, maxlen): + assert_allclose(np.fft.ifft(np.fft.fft(x[0:i])), x[0:i], + atol=1e-12) + assert_allclose(np.fft.irfft(np.fft.rfft(xr[0:i]), i), + xr[0:i], atol=1e-12) + + @pytest.mark.parametrize("dtype", [np.single, np.double, np.longdouble]) + def test_identity_long_short(self, dtype): + # Test with explicitly given number of points, both for n + # smaller and for n larger than the input size. + maxlen = 16 + atol = 5 * np.spacing(np.array(1., dtype=dtype)) + x = random(maxlen).astype(dtype) + 1j * random(maxlen).astype(dtype) + xx = np.concatenate([x, np.zeros_like(x)]) + xr = random(maxlen).astype(dtype) + xxr = np.concatenate([xr, np.zeros_like(xr)]) + for i in range(1, maxlen * 2): + check_c = np.fft.ifft(np.fft.fft(x, n=i), n=i) + assert check_c.real.dtype == dtype + assert_allclose(check_c, xx[0:i], atol=atol, rtol=0) + check_r = np.fft.irfft(np.fft.rfft(xr, n=i), n=i) + assert check_r.dtype == dtype + assert_allclose(check_r, xxr[0:i], atol=atol, rtol=0) + + @pytest.mark.parametrize("dtype", [np.single, np.double, np.longdouble]) + def test_identity_long_short_reversed(self, dtype): + # Also test explicitly given number of points in reversed order. + maxlen = 16 + atol = 5 * np.spacing(np.array(1., dtype=dtype)) + x = random(maxlen).astype(dtype) + 1j * random(maxlen).astype(dtype) + xx = np.concatenate([x, np.zeros_like(x)]) + for i in range(1, maxlen * 2): + check_via_c = np.fft.fft(np.fft.ifft(x, n=i), n=i) + assert check_via_c.dtype == x.dtype + assert_allclose(check_via_c, xx[0:i], atol=atol, rtol=0) + # For irfft, we can neither recover the imaginary part of + # the first element, nor the imaginary part of the last + # element if npts is even. So, set to 0 for the comparison. + y = x.copy() + n = i // 2 + 1 + y.imag[0] = 0 + if i % 2 == 0: + y.imag[n - 1:] = 0 + yy = np.concatenate([y, np.zeros_like(y)]) + check_via_r = np.fft.rfft(np.fft.irfft(x, n=i), n=i) + assert check_via_r.dtype == x.dtype + assert_allclose(check_via_r, yy[0:n], atol=atol, rtol=0) + + def test_fft(self): + x = random(30) + 1j * random(30) + assert_allclose(fft1(x), np.fft.fft(x), atol=1e-6) + assert_allclose(fft1(x), np.fft.fft(x, norm="backward"), atol=1e-6) + assert_allclose(fft1(x) / np.sqrt(30), + np.fft.fft(x, norm="ortho"), atol=1e-6) + assert_allclose(fft1(x) / 30., + np.fft.fft(x, norm="forward"), atol=1e-6) + + @pytest.mark.parametrize("axis", (0, 1)) + @pytest.mark.parametrize("dtype", (complex, float)) + @pytest.mark.parametrize("transpose", (True, False)) + def test_fft_out_argument(self, dtype, transpose, axis): + def zeros_like(x): + if transpose: + return np.zeros_like(x.T).T + else: + return np.zeros_like(x) + + # tests below only test the out parameter + if dtype is complex: + y = random((10, 20)) + 1j * random((10, 20)) + fft, ifft = np.fft.fft, np.fft.ifft + else: + y = random((10, 20)) + fft, ifft = np.fft.rfft, np.fft.irfft + + expected = fft(y, axis=axis) + out = zeros_like(expected) + result = fft(y, out=out, axis=axis) + assert result is out + assert_array_equal(result, expected) + + expected2 = ifft(expected, axis=axis) + out2 = out if dtype is complex else zeros_like(expected2) + result2 = ifft(out, out=out2, axis=axis) + assert result2 is out2 + assert_array_equal(result2, expected2) + + @pytest.mark.parametrize("axis", [0, 1]) + def test_fft_inplace_out(self, axis): + # Test some weirder in-place combinations + y = random((20, 20)) + 1j * random((20, 20)) + # Fully in-place. + y1 = y.copy() + expected1 = np.fft.fft(y1, axis=axis) + result1 = np.fft.fft(y1, axis=axis, out=y1) + assert result1 is y1 + assert_array_equal(result1, expected1) + # In-place of part of the array; rest should be unchanged. + y2 = y.copy() + out2 = y2[:10] if axis == 0 else y2[:, :10] + expected2 = np.fft.fft(y2, n=10, axis=axis) + result2 = np.fft.fft(y2, n=10, axis=axis, out=out2) + assert result2 is out2 + assert_array_equal(result2, expected2) + if axis == 0: + assert_array_equal(y2[10:], y[10:]) + else: + assert_array_equal(y2[:, 10:], y[:, 10:]) + # In-place of another part of the array. + y3 = y.copy() + y3_sel = y3[5:] if axis == 0 else y3[:, 5:] + out3 = y3[5:15] if axis == 0 else y3[:, 5:15] + expected3 = np.fft.fft(y3_sel, n=10, axis=axis) + result3 = np.fft.fft(y3_sel, n=10, axis=axis, out=out3) + assert result3 is out3 + assert_array_equal(result3, expected3) + if axis == 0: + assert_array_equal(y3[:5], y[:5]) + assert_array_equal(y3[15:], y[15:]) + else: + assert_array_equal(y3[:, :5], y[:, :5]) + assert_array_equal(y3[:, 15:], y[:, 15:]) + # In-place with n > nin; rest should be unchanged. + y4 = y.copy() + y4_sel = y4[:10] if axis == 0 else y4[:, :10] + out4 = y4[:15] if axis == 0 else y4[:, :15] + expected4 = np.fft.fft(y4_sel, n=15, axis=axis) + result4 = np.fft.fft(y4_sel, n=15, axis=axis, out=out4) + assert result4 is out4 + assert_array_equal(result4, expected4) + if axis == 0: + assert_array_equal(y4[15:], y[15:]) + else: + assert_array_equal(y4[:, 15:], y[:, 15:]) + # Overwrite in a transpose. + y5 = y.copy() + out5 = y5.T + result5 = np.fft.fft(y5, axis=axis, out=out5) + assert result5 is out5 + assert_array_equal(result5, expected1) + # Reverse strides. + y6 = y.copy() + out6 = y6[::-1] if axis == 0 else y6[:, ::-1] + result6 = np.fft.fft(y6, axis=axis, out=out6) + assert result6 is out6 + assert_array_equal(result6, expected1) + + def test_fft_bad_out(self): + x = np.arange(30.) + with pytest.raises(TypeError, match="must be of ArrayType"): + np.fft.fft(x, out="") + with pytest.raises(ValueError, match="has wrong shape"): + np.fft.fft(x, out=np.zeros_like(x).reshape(5, -1)) + with pytest.raises(TypeError, match="Cannot cast"): + np.fft.fft(x, out=np.zeros_like(x, dtype=float)) + + @pytest.mark.parametrize('norm', (None, 'backward', 'ortho', 'forward')) + def test_ifft(self, norm): + x = random(30) + 1j * random(30) + assert_allclose( + x, np.fft.ifft(np.fft.fft(x, norm=norm), norm=norm), + atol=1e-6) + # Ensure we get the correct error message + with pytest.raises(ValueError, + match='Invalid number of FFT data points'): + np.fft.ifft([], norm=norm) + + def test_fft2(self): + x = random((30, 20)) + 1j * random((30, 20)) + assert_allclose(np.fft.fft(np.fft.fft(x, axis=1), axis=0), + np.fft.fft2(x), atol=1e-6) + assert_allclose(np.fft.fft2(x), + np.fft.fft2(x, norm="backward"), atol=1e-6) + assert_allclose(np.fft.fft2(x) / np.sqrt(30 * 20), + np.fft.fft2(x, norm="ortho"), atol=1e-6) + assert_allclose(np.fft.fft2(x) / (30. * 20.), + np.fft.fft2(x, norm="forward"), atol=1e-6) + + def test_ifft2(self): + x = random((30, 20)) + 1j * random((30, 20)) + assert_allclose(np.fft.ifft(np.fft.ifft(x, axis=1), axis=0), + np.fft.ifft2(x), atol=1e-6) + assert_allclose(np.fft.ifft2(x), + np.fft.ifft2(x, norm="backward"), atol=1e-6) + assert_allclose(np.fft.ifft2(x) * np.sqrt(30 * 20), + np.fft.ifft2(x, norm="ortho"), atol=1e-6) + assert_allclose(np.fft.ifft2(x) * (30. * 20.), + np.fft.ifft2(x, norm="forward"), atol=1e-6) + + def test_fftn(self): + x = random((30, 20, 10)) + 1j * random((30, 20, 10)) + assert_allclose( + np.fft.fft(np.fft.fft(np.fft.fft(x, axis=2), axis=1), axis=0), + np.fft.fftn(x), atol=1e-6) + assert_allclose(np.fft.fftn(x), + np.fft.fftn(x, norm="backward"), atol=1e-6) + assert_allclose(np.fft.fftn(x) / np.sqrt(30 * 20 * 10), + np.fft.fftn(x, norm="ortho"), atol=1e-6) + assert_allclose(np.fft.fftn(x) / (30. * 20. * 10.), + np.fft.fftn(x, norm="forward"), atol=1e-6) + + def test_ifftn(self): + x = random((30, 20, 10)) + 1j * random((30, 20, 10)) + assert_allclose( + np.fft.ifft(np.fft.ifft(np.fft.ifft(x, axis=2), axis=1), axis=0), + np.fft.ifftn(x), atol=1e-6) + assert_allclose(np.fft.ifftn(x), + np.fft.ifftn(x, norm="backward"), atol=1e-6) + assert_allclose(np.fft.ifftn(x) * np.sqrt(30 * 20 * 10), + np.fft.ifftn(x, norm="ortho"), atol=1e-6) + assert_allclose(np.fft.ifftn(x) * (30. * 20. * 10.), + np.fft.ifftn(x, norm="forward"), atol=1e-6) + + def test_rfft(self): + x = random(30) + for n in [x.size, 2 * x.size]: + for norm in [None, 'backward', 'ortho', 'forward']: + assert_allclose( + np.fft.fft(x, n=n, norm=norm)[:(n // 2 + 1)], + np.fft.rfft(x, n=n, norm=norm), atol=1e-6) + assert_allclose( + np.fft.rfft(x, n=n), + np.fft.rfft(x, n=n, norm="backward"), atol=1e-6) + assert_allclose( + np.fft.rfft(x, n=n) / np.sqrt(n), + np.fft.rfft(x, n=n, norm="ortho"), atol=1e-6) + assert_allclose( + np.fft.rfft(x, n=n) / n, + np.fft.rfft(x, n=n, norm="forward"), atol=1e-6) + + def test_rfft_even(self): + x = np.arange(8) + n = 4 + y = np.fft.rfft(x, n) + assert_allclose(y, np.fft.fft(x[:n])[:n // 2 + 1], rtol=1e-14) + + def test_rfft_odd(self): + x = np.array([1, 0, 2, 3, -3]) + y = np.fft.rfft(x) + assert_allclose(y, np.fft.fft(x)[:3], rtol=1e-14) + + def test_irfft(self): + x = random(30) + assert_allclose(x, np.fft.irfft(np.fft.rfft(x)), atol=1e-6) + assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="backward"), + norm="backward"), atol=1e-6) + assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="ortho"), + norm="ortho"), atol=1e-6) + assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="forward"), + norm="forward"), atol=1e-6) + + def test_rfft2(self): + x = random((30, 20)) + assert_allclose(np.fft.fft2(x)[:, :11], np.fft.rfft2(x), atol=1e-6) + assert_allclose(np.fft.rfft2(x), + np.fft.rfft2(x, norm="backward"), atol=1e-6) + assert_allclose(np.fft.rfft2(x) / np.sqrt(30 * 20), + np.fft.rfft2(x, norm="ortho"), atol=1e-6) + assert_allclose(np.fft.rfft2(x) / (30. * 20.), + np.fft.rfft2(x, norm="forward"), atol=1e-6) + + def test_irfft2(self): + x = random((30, 20)) + assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x)), atol=1e-6) + assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="backward"), + norm="backward"), atol=1e-6) + assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="ortho"), + norm="ortho"), atol=1e-6) + assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="forward"), + norm="forward"), atol=1e-6) + + def test_rfftn(self): + x = random((30, 20, 10)) + assert_allclose(np.fft.fftn(x)[:, :, :6], np.fft.rfftn(x), atol=1e-6) + assert_allclose(np.fft.rfftn(x), + np.fft.rfftn(x, norm="backward"), atol=1e-6) + assert_allclose(np.fft.rfftn(x) / np.sqrt(30 * 20 * 10), + np.fft.rfftn(x, norm="ortho"), atol=1e-6) + assert_allclose(np.fft.rfftn(x) / (30. * 20. * 10.), + np.fft.rfftn(x, norm="forward"), atol=1e-6) + # Regression test for gh-27159 + x = np.ones((2, 3)) + result = np.fft.rfftn(x, axes=(0, 0, 1), s=(10, 20, 40)) + assert result.shape == (10, 21) + expected = np.fft.fft(np.fft.fft(np.fft.rfft(x, axis=1, n=40), + axis=0, n=20), axis=0, n=10) + assert expected.shape == (10, 21) + assert_allclose(result, expected, atol=1e-6) + + def test_irfftn(self): + x = random((30, 20, 10)) + assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x)), atol=1e-6) + assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="backward"), + norm="backward"), atol=1e-6) + assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="ortho"), + norm="ortho"), atol=1e-6) + assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="forward"), + norm="forward"), atol=1e-6) + + def test_hfft(self): + x = random(14) + 1j * random(14) + x_herm = np.concatenate((random(1), x, random(1))) + x = np.concatenate((x_herm, x[::-1].conj())) + assert_allclose(np.fft.fft(x), np.fft.hfft(x_herm), atol=1e-6) + assert_allclose(np.fft.hfft(x_herm), + np.fft.hfft(x_herm, norm="backward"), atol=1e-6) + assert_allclose(np.fft.hfft(x_herm) / np.sqrt(30), + np.fft.hfft(x_herm, norm="ortho"), atol=1e-6) + assert_allclose(np.fft.hfft(x_herm) / 30., + np.fft.hfft(x_herm, norm="forward"), atol=1e-6) + + def test_ihfft(self): + x = random(14) + 1j * random(14) + x_herm = np.concatenate((random(1), x, random(1))) + x = np.concatenate((x_herm, x[::-1].conj())) + assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm)), atol=1e-6) + assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm, + norm="backward"), norm="backward"), atol=1e-6) + assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm, + norm="ortho"), norm="ortho"), atol=1e-6) + assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm, + norm="forward"), norm="forward"), atol=1e-6) + + @pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn, + np.fft.rfftn, np.fft.irfftn]) + def test_axes(self, op): + x = random((30, 20, 10)) + axes = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)] + for a in axes: + op_tr = op(np.transpose(x, a)) + tr_op = np.transpose(op(x, axes=a), a) + assert_allclose(op_tr, tr_op, atol=1e-6) + + @pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn, + np.fft.fft2, np.fft.ifft2]) + def test_s_negative_1(self, op): + x = np.arange(100).reshape(10, 10) + # should use the whole input array along the first axis + assert op(x, s=(-1, 5), axes=(0, 1)).shape == (10, 5) + + @pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn, + np.fft.rfftn, np.fft.irfftn]) + def test_s_axes_none(self, op): + x = np.arange(100).reshape(10, 10) + with pytest.warns(match='`axes` should not be `None` if `s`'): + op(x, s=(-1, 5)) + + @pytest.mark.parametrize("op", [np.fft.fft2, np.fft.ifft2]) + def test_s_axes_none_2D(self, op): + x = np.arange(100).reshape(10, 10) + with pytest.warns(match='`axes` should not be `None` if `s`'): + op(x, s=(-1, 5), axes=None) + + @pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn, + np.fft.rfftn, np.fft.irfftn, + np.fft.fft2, np.fft.ifft2]) + def test_s_contains_none(self, op): + x = random((30, 20, 10)) + with pytest.warns(match='array containing `None` values to `s`'): + op(x, s=(10, None, 10), axes=(0, 1, 2)) + + def test_all_1d_norm_preserving(self): + # verify that round-trip transforms are norm-preserving + x = random(30) + x_norm = np.linalg.norm(x) + n = x.size * 2 + func_pairs = [(np.fft.fft, np.fft.ifft), + (np.fft.rfft, np.fft.irfft), + # hfft: order so the first function takes x.size samples + # (necessary for comparison to x_norm above) + (np.fft.ihfft, np.fft.hfft), + ] + for forw, back in func_pairs: + for n in [x.size, 2 * x.size]: + for norm in [None, 'backward', 'ortho', 'forward']: + tmp = forw(x, n=n, norm=norm) + tmp = back(tmp, n=n, norm=norm) + assert_allclose(x_norm, + np.linalg.norm(tmp), atol=1e-6) + + @pytest.mark.parametrize("axes", [(0, 1), (0, 2), None]) + @pytest.mark.parametrize("dtype", (complex, float)) + @pytest.mark.parametrize("transpose", (True, False)) + def test_fftn_out_argument(self, dtype, transpose, axes): + def zeros_like(x): + if transpose: + return np.zeros_like(x.T).T + else: + return np.zeros_like(x) + + # tests below only test the out parameter + if dtype is complex: + x = random((10, 5, 6)) + 1j * random((10, 5, 6)) + fft, ifft = np.fft.fftn, np.fft.ifftn + else: + x = random((10, 5, 6)) + fft, ifft = np.fft.rfftn, np.fft.irfftn + + expected = fft(x, axes=axes) + out = zeros_like(expected) + result = fft(x, out=out, axes=axes) + assert result is out + assert_array_equal(result, expected) + + expected2 = ifft(expected, axes=axes) + out2 = out if dtype is complex else zeros_like(expected2) + result2 = ifft(out, out=out2, axes=axes) + assert result2 is out2 + assert_array_equal(result2, expected2) + + @pytest.mark.parametrize("fft", [np.fft.fftn, np.fft.ifftn, np.fft.rfftn]) + def test_fftn_out_and_s_interaction(self, fft): + # With s, shape varies, so generally one cannot pass in out. + if fft is np.fft.rfftn: + x = random((10, 5, 6)) + else: + x = random((10, 5, 6)) + 1j * random((10, 5, 6)) + with pytest.raises(ValueError, match="has wrong shape"): + fft(x, out=np.zeros_like(x), s=(3, 3, 3), axes=(0, 1, 2)) + # Except on the first axis done (which is the last of axes). + s = (10, 5, 5) + expected = fft(x, s=s, axes=(0, 1, 2)) + out = np.zeros_like(expected) + result = fft(x, s=s, axes=(0, 1, 2), out=out) + assert result is out + assert_array_equal(result, expected) + + @pytest.mark.parametrize("s", [(9, 5, 5), (3, 3, 3)]) + def test_irfftn_out_and_s_interaction(self, s): + # Since for irfftn, the output is real and thus cannot be used for + # intermediate steps, it should always work. + x = random((9, 5, 6, 2)) + 1j * random((9, 5, 6, 2)) + expected = np.fft.irfftn(x, s=s, axes=(0, 1, 2)) + out = np.zeros_like(expected) + result = np.fft.irfftn(x, s=s, axes=(0, 1, 2), out=out) + assert result is out + assert_array_equal(result, expected) + + +@pytest.mark.parametrize( + "dtype", + [np.float32, np.float64, np.complex64, np.complex128]) +@pytest.mark.parametrize("order", ["F", 'non-contiguous']) +@pytest.mark.parametrize( + "fft", + [np.fft.fft, np.fft.fft2, np.fft.fftn, + np.fft.ifft, np.fft.ifft2, np.fft.ifftn]) +def test_fft_with_order(dtype, order, fft): + # Check that FFT/IFFT produces identical results for C, Fortran and + # non contiguous arrays + rng = np.random.RandomState(42) + X = rng.rand(8, 7, 13).astype(dtype, copy=False) + # See discussion in pull/14178 + _tol = 8.0 * np.sqrt(np.log2(X.size)) * np.finfo(X.dtype).eps + if order == 'F': + Y = np.asfortranarray(X) + else: + # Make a non contiguous array + Y = X[::-1] + X = np.ascontiguousarray(X[::-1]) + + if fft.__name__.endswith('fft'): + for axis in range(3): + X_res = fft(X, axis=axis) + Y_res = fft(Y, axis=axis) + assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol) + elif fft.__name__.endswith(('fft2', 'fftn')): + axes = [(0, 1), (1, 2), (0, 2)] + if fft.__name__.endswith('fftn'): + axes.extend([(0,), (1,), (2,), None]) + for ax in axes: + X_res = fft(X, axes=ax) + Y_res = fft(Y, axes=ax) + assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol) + else: + raise ValueError + + +@pytest.mark.parametrize("order", ["F", "C"]) +@pytest.mark.parametrize("n", [None, 7, 12]) +def test_fft_output_order(order, n): + rng = np.random.RandomState(42) + x = rng.rand(10) + x = np.asarray(x, dtype=np.complex64, order=order) + res = np.fft.fft(x, n=n) + assert res.flags.c_contiguous == x.flags.c_contiguous + assert res.flags.f_contiguous == x.flags.f_contiguous + +@pytest.mark.skipif(IS_WASM, reason="Cannot start thread") +class TestFFTThreadSafe: + threads = 16 + input_shape = (800, 200) + + def _test_mtsame(self, func, *args): + def worker(args, q): + q.put(func(*args)) + + q = queue.Queue() + expected = func(*args) + + # Spin off a bunch of threads to call the same function simultaneously + t = [threading.Thread(target=worker, args=(args, q)) + for i in range(self.threads)] + [x.start() for x in t] + + [x.join() for x in t] + # Make sure all threads returned the correct value + for i in range(self.threads): + assert_array_equal(q.get(timeout=5), expected, + 'Function returned wrong value in multithreaded context') + + def test_fft(self): + a = np.ones(self.input_shape) * 1 + 0j + self._test_mtsame(np.fft.fft, a) + + def test_ifft(self): + a = np.ones(self.input_shape) * 1 + 0j + self._test_mtsame(np.fft.ifft, a) + + def test_rfft(self): + a = np.ones(self.input_shape) + self._test_mtsame(np.fft.rfft, a) + + def test_irfft(self): + a = np.ones(self.input_shape) * 1 + 0j + self._test_mtsame(np.fft.irfft, a) + + +def test_irfft_with_n_1_regression(): + # Regression test for gh-25661 + x = np.arange(10) + np.fft.irfft(x, n=1) + np.fft.hfft(x, n=1) + np.fft.irfft(np.array([0], complex), n=10) + + +def test_irfft_with_n_large_regression(): + # Regression test for gh-25679 + x = np.arange(5) * (1 + 1j) + result = np.fft.hfft(x, n=10) + expected = np.array([20., 9.91628173, -11.8819096, 7.1048486, + -6.62459848, 4., -3.37540152, -0.16057669, + 1.8819096, -20.86055364]) + assert_allclose(result, expected) + + +@pytest.mark.parametrize("fft", [ + np.fft.fft, np.fft.ifft, np.fft.rfft, np.fft.irfft +]) +@pytest.mark.parametrize("data", [ + np.array([False, True, False]), + np.arange(10, dtype=np.uint8), + np.arange(5, dtype=np.int16), +]) +def test_fft_with_integer_or_bool_input(data, fft): + # Regression test for gh-25819 + result = fft(data) + float_data = data.astype(np.result_type(data, 1.)) + expected = fft(float_data) + assert_array_equal(result, expected) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__init__.py b/.venv/lib/python3.12/site-packages/numpy/lib/__init__.py new file mode 100644 index 0000000..a248d04 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__init__.py @@ -0,0 +1,97 @@ +""" +``numpy.lib`` is mostly a space for implementing functions that don't +belong in core or in another NumPy submodule with a clear purpose +(e.g. ``random``, ``fft``, ``linalg``, ``ma``). + +``numpy.lib``'s private submodules contain basic functions that are used by +other public modules and are useful to have in the main name-space. + +""" + +# Public submodules +# Note: recfunctions is public, but not imported +from numpy._core._multiarray_umath import add_docstring, tracemalloc_domain +from numpy._core.function_base import add_newdoc + +# Private submodules +# load module names. See https://github.com/networkx/networkx/issues/5838 +from . import ( + _arraypad_impl, + _arraysetops_impl, + _arrayterator_impl, + _function_base_impl, + _histograms_impl, + _index_tricks_impl, + _nanfunctions_impl, + _npyio_impl, + _polynomial_impl, + _shape_base_impl, + _stride_tricks_impl, + _twodim_base_impl, + _type_check_impl, + _ufunclike_impl, + _utils_impl, + _version, + array_utils, + format, + introspect, + mixins, + npyio, + scimath, + stride_tricks, +) + +# numpy.lib namespace members +from ._arrayterator_impl import Arrayterator +from ._version import NumpyVersion + +__all__ = [ + "Arrayterator", "add_docstring", "add_newdoc", "array_utils", + "format", "introspect", "mixins", "NumpyVersion", "npyio", "scimath", + "stride_tricks", "tracemalloc_domain", +] + +add_newdoc.__module__ = "numpy.lib" + +from numpy._pytesttester import PytestTester + +test = PytestTester(__name__) +del PytestTester + +def __getattr__(attr): + # Warn for deprecated/removed aliases + import math + import warnings + + if attr == "math": + warnings.warn( + "`np.lib.math` is a deprecated alias for the standard library " + "`math` module (Deprecated Numpy 1.25). Replace usages of " + "`numpy.lib.math` with `math`", DeprecationWarning, stacklevel=2) + return math + elif attr == "emath": + raise AttributeError( + "numpy.lib.emath was an alias for emath module that was removed " + "in NumPy 2.0. Replace usages of numpy.lib.emath with " + "numpy.emath.", + name=None + ) + elif attr in ( + "histograms", "type_check", "nanfunctions", "function_base", + "arraypad", "arraysetops", "ufunclike", "utils", "twodim_base", + "shape_base", "polynomial", "index_tricks", + ): + raise AttributeError( + f"numpy.lib.{attr} is now private. If you are using a public " + "function, it should be available in the main numpy namespace, " + "otherwise check the NumPy 2.0 migration guide.", + name=None + ) + elif attr == "arrayterator": + raise AttributeError( + "numpy.lib.arrayterator submodule is now private. To access " + "Arrayterator class use numpy.lib.Arrayterator.", + name=None + ) + else: + raise AttributeError(f"module {__name__!r} has no attribute {attr!r}") diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__init__.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/__init__.pyi new file mode 100644 index 0000000..6185a49 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/__init__.pyi @@ -0,0 +1,44 @@ +from numpy._core.function_base import add_newdoc +from numpy._core.multiarray import add_docstring, tracemalloc_domain + +# all submodules of `lib` are accessible at runtime through `__getattr__`, +# so we implicitly re-export them here +from . import _array_utils_impl as _array_utils_impl +from . import _arraypad_impl as _arraypad_impl +from . import _arraysetops_impl as _arraysetops_impl +from . import _arrayterator_impl as _arrayterator_impl +from . import _datasource as _datasource +from . import _format_impl as _format_impl +from . import _function_base_impl as _function_base_impl +from . import _histograms_impl as _histograms_impl +from . import _index_tricks_impl as _index_tricks_impl +from . import _iotools as _iotools +from . import _nanfunctions_impl as _nanfunctions_impl +from . import _npyio_impl as _npyio_impl +from . import _polynomial_impl as _polynomial_impl +from . import _scimath_impl as _scimath_impl +from . import _shape_base_impl as _shape_base_impl +from . import _stride_tricks_impl as _stride_tricks_impl +from . import _twodim_base_impl as _twodim_base_impl +from . import _type_check_impl as _type_check_impl +from . import _ufunclike_impl as _ufunclike_impl +from . import _utils_impl as _utils_impl +from . import _version as _version +from . import array_utils, format, introspect, mixins, npyio, scimath, stride_tricks +from ._arrayterator_impl import Arrayterator +from ._version import NumpyVersion + +__all__ = [ + "Arrayterator", + "add_docstring", + "add_newdoc", + "array_utils", + "format", + "introspect", + "mixins", + "NumpyVersion", + "npyio", + "scimath", + "stride_tricks", + "tracemalloc_domain", +] diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..1c5fea7 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_array_utils_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_array_utils_impl.cpython-312.pyc new file mode 100644 index 0000000..9d1bad4 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_array_utils_impl.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_arraypad_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_arraypad_impl.cpython-312.pyc new file mode 100644 index 0000000..cab5c63 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_arraypad_impl.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_arraysetops_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_arraysetops_impl.cpython-312.pyc new file mode 100644 index 0000000..a234cd7 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_arraysetops_impl.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_arrayterator_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_arrayterator_impl.cpython-312.pyc new file mode 100644 index 0000000..4cb830a Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_arrayterator_impl.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_datasource.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_datasource.cpython-312.pyc new file mode 100644 index 0000000..5c27b16 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_datasource.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_format_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_format_impl.cpython-312.pyc new file mode 100644 index 0000000..0948a7b Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_format_impl.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_function_base_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_function_base_impl.cpython-312.pyc new file mode 100644 index 0000000..124bec3 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_function_base_impl.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_histograms_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_histograms_impl.cpython-312.pyc new file mode 100644 index 0000000..eb55724 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_histograms_impl.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_index_tricks_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_index_tricks_impl.cpython-312.pyc new file mode 100644 index 0000000..d49d7a3 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_index_tricks_impl.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_iotools.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_iotools.cpython-312.pyc new file mode 100644 index 0000000..9c76d6c Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_iotools.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_nanfunctions_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_nanfunctions_impl.cpython-312.pyc new file mode 100644 index 0000000..66783aa Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_nanfunctions_impl.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_npyio_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_npyio_impl.cpython-312.pyc new file mode 100644 index 0000000..55e9a46 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_npyio_impl.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_polynomial_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_polynomial_impl.cpython-312.pyc new file mode 100644 index 0000000..6dd6ded Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_polynomial_impl.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_scimath_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_scimath_impl.cpython-312.pyc new file mode 100644 index 0000000..3b62648 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_scimath_impl.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_shape_base_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_shape_base_impl.cpython-312.pyc new file mode 100644 index 0000000..e3c1fe4 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_shape_base_impl.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_stride_tricks_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_stride_tricks_impl.cpython-312.pyc new file mode 100644 index 0000000..8cebc75 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_stride_tricks_impl.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_twodim_base_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_twodim_base_impl.cpython-312.pyc new file mode 100644 index 0000000..753465d Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_twodim_base_impl.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_type_check_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_type_check_impl.cpython-312.pyc new file mode 100644 index 0000000..0baef8e Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_type_check_impl.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_ufunclike_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_ufunclike_impl.cpython-312.pyc new file mode 100644 index 0000000..2d4780d Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_ufunclike_impl.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_user_array_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_user_array_impl.cpython-312.pyc new file mode 100644 index 0000000..1ec40c3 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_user_array_impl.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_utils_impl.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_utils_impl.cpython-312.pyc new file mode 100644 index 0000000..f82bdde Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_utils_impl.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_version.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_version.cpython-312.pyc new file mode 100644 index 0000000..903b5a1 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/_version.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/array_utils.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/array_utils.cpython-312.pyc new file mode 100644 index 0000000..3b05c66 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/array_utils.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/format.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/format.cpython-312.pyc new file mode 100644 index 0000000..a5bf7ce Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/format.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/introspect.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/introspect.cpython-312.pyc new file mode 100644 index 0000000..202121b Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/introspect.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/mixins.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/mixins.cpython-312.pyc new file mode 100644 index 0000000..a7e79bc Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/mixins.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/npyio.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/npyio.cpython-312.pyc new file mode 100644 index 0000000..c1d402b Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/npyio.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/recfunctions.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/recfunctions.cpython-312.pyc new file mode 100644 index 0000000..a819167 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/recfunctions.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/scimath.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/scimath.cpython-312.pyc new file mode 100644 index 0000000..d3275b8 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/scimath.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/stride_tricks.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/stride_tricks.cpython-312.pyc new file mode 100644 index 0000000..a9dc97b Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/stride_tricks.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/user_array.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/user_array.cpython-312.pyc new file mode 100644 index 0000000..f083806 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/__pycache__/user_array.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_array_utils_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_array_utils_impl.py new file mode 100644 index 0000000..c3996e1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_array_utils_impl.py @@ -0,0 +1,62 @@ +""" +Miscellaneous utils. +""" +from numpy._core import asarray +from numpy._core.numeric import normalize_axis_index, normalize_axis_tuple +from numpy._utils import set_module + +__all__ = ["byte_bounds", "normalize_axis_tuple", "normalize_axis_index"] + + +@set_module("numpy.lib.array_utils") +def byte_bounds(a): + """ + Returns pointers to the end-points of an array. + + Parameters + ---------- + a : ndarray + Input array. It must conform to the Python-side of the array + interface. + + Returns + ------- + (low, high) : tuple of 2 integers + The first integer is the first byte of the array, the second + integer is just past the last byte of the array. If `a` is not + contiguous it will not use every byte between the (`low`, `high`) + values. + + Examples + -------- + >>> import numpy as np + >>> I = np.eye(2, dtype='f'); I.dtype + dtype('float32') + >>> low, high = np.lib.array_utils.byte_bounds(I) + >>> high - low == I.size*I.itemsize + True + >>> I = np.eye(2); I.dtype + dtype('float64') + >>> low, high = np.lib.array_utils.byte_bounds(I) + >>> high - low == I.size*I.itemsize + True + + """ + ai = a.__array_interface__ + a_data = ai['data'][0] + astrides = ai['strides'] + ashape = ai['shape'] + bytes_a = asarray(a).dtype.itemsize + + a_low = a_high = a_data + if astrides is None: + # contiguous case + a_high += a.size * bytes_a + else: + for shape, stride in zip(ashape, astrides): + if stride < 0: + a_low += (shape - 1) * stride + else: + a_high += (shape - 1) * stride + a_high += bytes_a + return a_low, a_high diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_array_utils_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_array_utils_impl.pyi new file mode 100644 index 0000000..d3e0714 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_array_utils_impl.pyi @@ -0,0 +1,26 @@ +from collections.abc import Iterable +from typing import Any + +from numpy import generic +from numpy.typing import NDArray + +__all__ = ["byte_bounds", "normalize_axis_tuple", "normalize_axis_index"] + +# NOTE: In practice `byte_bounds` can (potentially) take any object +# implementing the `__array_interface__` protocol. The caveat is +# that certain keys, marked as optional in the spec, must be present for +# `byte_bounds`. This concerns `"strides"` and `"data"`. +def byte_bounds(a: generic | NDArray[Any]) -> tuple[int, int]: ... + +def normalize_axis_tuple( + axis: int | Iterable[int], + ndim: int = ..., + argname: str | None = ..., + allow_duplicate: bool | None = ..., +) -> tuple[int, int]: ... + +def normalize_axis_index( + axis: int = ..., + ndim: int = ..., + msg_prefix: str | None = ..., +) -> int: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_arraypad_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_arraypad_impl.py new file mode 100644 index 0000000..507a0ab --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_arraypad_impl.py @@ -0,0 +1,890 @@ +""" +The arraypad module contains a group of functions to pad values onto the edges +of an n-dimensional array. + +""" +import numpy as np +from numpy._core.overrides import array_function_dispatch +from numpy.lib._index_tricks_impl import ndindex + +__all__ = ['pad'] + + +############################################################################### +# Private utility functions. + + +def _round_if_needed(arr, dtype): + """ + Rounds arr inplace if destination dtype is integer. + + Parameters + ---------- + arr : ndarray + Input array. + dtype : dtype + The dtype of the destination array. + """ + if np.issubdtype(dtype, np.integer): + arr.round(out=arr) + + +def _slice_at_axis(sl, axis): + """ + Construct tuple of slices to slice an array in the given dimension. + + Parameters + ---------- + sl : slice + The slice for the given dimension. + axis : int + The axis to which `sl` is applied. All other dimensions are left + "unsliced". + + Returns + ------- + sl : tuple of slices + A tuple with slices matching `shape` in length. + + Examples + -------- + >>> np._slice_at_axis(slice(None, 3, -1), 1) + (slice(None, None, None), slice(None, 3, -1), (...,)) + """ + return (slice(None),) * axis + (sl,) + (...,) + + +def _view_roi(array, original_area_slice, axis): + """ + Get a view of the current region of interest during iterative padding. + + When padding multiple dimensions iteratively corner values are + unnecessarily overwritten multiple times. This function reduces the + working area for the first dimensions so that corners are excluded. + + Parameters + ---------- + array : ndarray + The array with the region of interest. + original_area_slice : tuple of slices + Denotes the area with original values of the unpadded array. + axis : int + The currently padded dimension assuming that `axis` is padded before + `axis` + 1. + + Returns + ------- + roi : ndarray + The region of interest of the original `array`. + """ + axis += 1 + sl = (slice(None),) * axis + original_area_slice[axis:] + return array[sl] + + +def _pad_simple(array, pad_width, fill_value=None): + """ + Pad array on all sides with either a single value or undefined values. + + Parameters + ---------- + array : ndarray + Array to grow. + pad_width : sequence of tuple[int, int] + Pad width on both sides for each dimension in `arr`. + fill_value : scalar, optional + If provided the padded area is filled with this value, otherwise + the pad area left undefined. + + Returns + ------- + padded : ndarray + The padded array with the same dtype as`array`. Its order will default + to C-style if `array` is not F-contiguous. + original_area_slice : tuple + A tuple of slices pointing to the area of the original array. + """ + # Allocate grown array + new_shape = tuple( + left + size + right + for size, (left, right) in zip(array.shape, pad_width) + ) + order = 'F' if array.flags.fnc else 'C' # Fortran and not also C-order + padded = np.empty(new_shape, dtype=array.dtype, order=order) + + if fill_value is not None: + padded.fill(fill_value) + + # Copy old array into correct space + original_area_slice = tuple( + slice(left, left + size) + for size, (left, right) in zip(array.shape, pad_width) + ) + padded[original_area_slice] = array + + return padded, original_area_slice + + +def _set_pad_area(padded, axis, width_pair, value_pair): + """ + Set empty-padded area in given dimension. + + Parameters + ---------- + padded : ndarray + Array with the pad area which is modified inplace. + axis : int + Dimension with the pad area to set. + width_pair : (int, int) + Pair of widths that mark the pad area on both sides in the given + dimension. + value_pair : tuple of scalars or ndarrays + Values inserted into the pad area on each side. It must match or be + broadcastable to the shape of `arr`. + """ + left_slice = _slice_at_axis(slice(None, width_pair[0]), axis) + padded[left_slice] = value_pair[0] + + right_slice = _slice_at_axis( + slice(padded.shape[axis] - width_pair[1], None), axis) + padded[right_slice] = value_pair[1] + + +def _get_edges(padded, axis, width_pair): + """ + Retrieve edge values from empty-padded array in given dimension. + + Parameters + ---------- + padded : ndarray + Empty-padded array. + axis : int + Dimension in which the edges are considered. + width_pair : (int, int) + Pair of widths that mark the pad area on both sides in the given + dimension. + + Returns + ------- + left_edge, right_edge : ndarray + Edge values of the valid area in `padded` in the given dimension. Its + shape will always match `padded` except for the dimension given by + `axis` which will have a length of 1. + """ + left_index = width_pair[0] + left_slice = _slice_at_axis(slice(left_index, left_index + 1), axis) + left_edge = padded[left_slice] + + right_index = padded.shape[axis] - width_pair[1] + right_slice = _slice_at_axis(slice(right_index - 1, right_index), axis) + right_edge = padded[right_slice] + + return left_edge, right_edge + + +def _get_linear_ramps(padded, axis, width_pair, end_value_pair): + """ + Construct linear ramps for empty-padded array in given dimension. + + Parameters + ---------- + padded : ndarray + Empty-padded array. + axis : int + Dimension in which the ramps are constructed. + width_pair : (int, int) + Pair of widths that mark the pad area on both sides in the given + dimension. + end_value_pair : (scalar, scalar) + End values for the linear ramps which form the edge of the fully padded + array. These values are included in the linear ramps. + + Returns + ------- + left_ramp, right_ramp : ndarray + Linear ramps to set on both sides of `padded`. + """ + edge_pair = _get_edges(padded, axis, width_pair) + + left_ramp, right_ramp = ( + np.linspace( + start=end_value, + stop=edge.squeeze(axis), # Dimension is replaced by linspace + num=width, + endpoint=False, + dtype=padded.dtype, + axis=axis + ) + for end_value, edge, width in zip( + end_value_pair, edge_pair, width_pair + ) + ) + + # Reverse linear space in appropriate dimension + right_ramp = right_ramp[_slice_at_axis(slice(None, None, -1), axis)] + + return left_ramp, right_ramp + + +def _get_stats(padded, axis, width_pair, length_pair, stat_func): + """ + Calculate statistic for the empty-padded array in given dimension. + + Parameters + ---------- + padded : ndarray + Empty-padded array. + axis : int + Dimension in which the statistic is calculated. + width_pair : (int, int) + Pair of widths that mark the pad area on both sides in the given + dimension. + length_pair : 2-element sequence of None or int + Gives the number of values in valid area from each side that is + taken into account when calculating the statistic. If None the entire + valid area in `padded` is considered. + stat_func : function + Function to compute statistic. The expected signature is + ``stat_func(x: ndarray, axis: int, keepdims: bool) -> ndarray``. + + Returns + ------- + left_stat, right_stat : ndarray + Calculated statistic for both sides of `padded`. + """ + # Calculate indices of the edges of the area with original values + left_index = width_pair[0] + right_index = padded.shape[axis] - width_pair[1] + # as well as its length + max_length = right_index - left_index + + # Limit stat_lengths to max_length + left_length, right_length = length_pair + if left_length is None or max_length < left_length: + left_length = max_length + if right_length is None or max_length < right_length: + right_length = max_length + + if (left_length == 0 or right_length == 0) \ + and stat_func in {np.amax, np.amin}: + # amax and amin can't operate on an empty array, + # raise a more descriptive warning here instead of the default one + raise ValueError("stat_length of 0 yields no value for padding") + + # Calculate statistic for the left side + left_slice = _slice_at_axis( + slice(left_index, left_index + left_length), axis) + left_chunk = padded[left_slice] + left_stat = stat_func(left_chunk, axis=axis, keepdims=True) + _round_if_needed(left_stat, padded.dtype) + + if left_length == right_length == max_length: + # return early as right_stat must be identical to left_stat + return left_stat, left_stat + + # Calculate statistic for the right side + right_slice = _slice_at_axis( + slice(right_index - right_length, right_index), axis) + right_chunk = padded[right_slice] + right_stat = stat_func(right_chunk, axis=axis, keepdims=True) + _round_if_needed(right_stat, padded.dtype) + + return left_stat, right_stat + + +def _set_reflect_both(padded, axis, width_pair, method, + original_period, include_edge=False): + """ + Pad `axis` of `arr` with reflection. + + Parameters + ---------- + padded : ndarray + Input array of arbitrary shape. + axis : int + Axis along which to pad `arr`. + width_pair : (int, int) + Pair of widths that mark the pad area on both sides in the given + dimension. + method : str + Controls method of reflection; options are 'even' or 'odd'. + original_period : int + Original length of data on `axis` of `arr`. + include_edge : bool + If true, edge value is included in reflection, otherwise the edge + value forms the symmetric axis to the reflection. + + Returns + ------- + pad_amt : tuple of ints, length 2 + New index positions of padding to do along the `axis`. If these are + both 0, padding is done in this dimension. + """ + left_pad, right_pad = width_pair + old_length = padded.shape[axis] - right_pad - left_pad + + if include_edge: + # Avoid wrapping with only a subset of the original area + # by ensuring period can only be a multiple of the original + # area's length. + old_length = old_length // original_period * original_period + # Edge is included, we need to offset the pad amount by 1 + edge_offset = 1 + else: + # Avoid wrapping with only a subset of the original area + # by ensuring period can only be a multiple of the original + # area's length. + old_length = ((old_length - 1) // (original_period - 1) + * (original_period - 1) + 1) + edge_offset = 0 # Edge is not included, no need to offset pad amount + old_length -= 1 # but must be omitted from the chunk + + if left_pad > 0: + # Pad with reflected values on left side: + # First limit chunk size which can't be larger than pad area + chunk_length = min(old_length, left_pad) + # Slice right to left, stop on or next to edge, start relative to stop + stop = left_pad - edge_offset + start = stop + chunk_length + left_slice = _slice_at_axis(slice(start, stop, -1), axis) + left_chunk = padded[left_slice] + + if method == "odd": + # Negate chunk and align with edge + edge_slice = _slice_at_axis(slice(left_pad, left_pad + 1), axis) + left_chunk = 2 * padded[edge_slice] - left_chunk + + # Insert chunk into padded area + start = left_pad - chunk_length + stop = left_pad + pad_area = _slice_at_axis(slice(start, stop), axis) + padded[pad_area] = left_chunk + # Adjust pointer to left edge for next iteration + left_pad -= chunk_length + + if right_pad > 0: + # Pad with reflected values on right side: + # First limit chunk size which can't be larger than pad area + chunk_length = min(old_length, right_pad) + # Slice right to left, start on or next to edge, stop relative to start + start = -right_pad + edge_offset - 2 + stop = start - chunk_length + right_slice = _slice_at_axis(slice(start, stop, -1), axis) + right_chunk = padded[right_slice] + + if method == "odd": + # Negate chunk and align with edge + edge_slice = _slice_at_axis( + slice(-right_pad - 1, -right_pad), axis) + right_chunk = 2 * padded[edge_slice] - right_chunk + + # Insert chunk into padded area + start = padded.shape[axis] - right_pad + stop = start + chunk_length + pad_area = _slice_at_axis(slice(start, stop), axis) + padded[pad_area] = right_chunk + # Adjust pointer to right edge for next iteration + right_pad -= chunk_length + + return left_pad, right_pad + + +def _set_wrap_both(padded, axis, width_pair, original_period): + """ + Pad `axis` of `arr` with wrapped values. + + Parameters + ---------- + padded : ndarray + Input array of arbitrary shape. + axis : int + Axis along which to pad `arr`. + width_pair : (int, int) + Pair of widths that mark the pad area on both sides in the given + dimension. + original_period : int + Original length of data on `axis` of `arr`. + + Returns + ------- + pad_amt : tuple of ints, length 2 + New index positions of padding to do along the `axis`. If these are + both 0, padding is done in this dimension. + """ + left_pad, right_pad = width_pair + period = padded.shape[axis] - right_pad - left_pad + # Avoid wrapping with only a subset of the original area by ensuring period + # can only be a multiple of the original area's length. + period = period // original_period * original_period + + # If the current dimension of `arr` doesn't contain enough valid values + # (not part of the undefined pad area) we need to pad multiple times. + # Each time the pad area shrinks on both sides which is communicated with + # these variables. + new_left_pad = 0 + new_right_pad = 0 + + if left_pad > 0: + # Pad with wrapped values on left side + # First slice chunk from left side of the non-pad area. + # Use min(period, left_pad) to ensure that chunk is not larger than + # pad area. + slice_end = left_pad + period + slice_start = slice_end - min(period, left_pad) + right_slice = _slice_at_axis(slice(slice_start, slice_end), axis) + right_chunk = padded[right_slice] + + if left_pad > period: + # Chunk is smaller than pad area + pad_area = _slice_at_axis(slice(left_pad - period, left_pad), axis) + new_left_pad = left_pad - period + else: + # Chunk matches pad area + pad_area = _slice_at_axis(slice(None, left_pad), axis) + padded[pad_area] = right_chunk + + if right_pad > 0: + # Pad with wrapped values on right side + # First slice chunk from right side of the non-pad area. + # Use min(period, right_pad) to ensure that chunk is not larger than + # pad area. + slice_start = -right_pad - period + slice_end = slice_start + min(period, right_pad) + left_slice = _slice_at_axis(slice(slice_start, slice_end), axis) + left_chunk = padded[left_slice] + + if right_pad > period: + # Chunk is smaller than pad area + pad_area = _slice_at_axis( + slice(-right_pad, -right_pad + period), axis) + new_right_pad = right_pad - period + else: + # Chunk matches pad area + pad_area = _slice_at_axis(slice(-right_pad, None), axis) + padded[pad_area] = left_chunk + + return new_left_pad, new_right_pad + + +def _as_pairs(x, ndim, as_index=False): + """ + Broadcast `x` to an array with the shape (`ndim`, 2). + + A helper function for `pad` that prepares and validates arguments like + `pad_width` for iteration in pairs. + + Parameters + ---------- + x : {None, scalar, array-like} + The object to broadcast to the shape (`ndim`, 2). + ndim : int + Number of pairs the broadcasted `x` will have. + as_index : bool, optional + If `x` is not None, try to round each element of `x` to an integer + (dtype `np.intp`) and ensure every element is positive. + + Returns + ------- + pairs : nested iterables, shape (`ndim`, 2) + The broadcasted version of `x`. + + Raises + ------ + ValueError + If `as_index` is True and `x` contains negative elements. + Or if `x` is not broadcastable to the shape (`ndim`, 2). + """ + if x is None: + # Pass through None as a special case, otherwise np.round(x) fails + # with an AttributeError + return ((None, None),) * ndim + + x = np.array(x) + if as_index: + x = np.round(x).astype(np.intp, copy=False) + + if x.ndim < 3: + # Optimization: Possibly use faster paths for cases where `x` has + # only 1 or 2 elements. `np.broadcast_to` could handle these as well + # but is currently slower + + if x.size == 1: + # x was supplied as a single value + x = x.ravel() # Ensure x[0] works for x.ndim == 0, 1, 2 + if as_index and x < 0: + raise ValueError("index can't contain negative values") + return ((x[0], x[0]),) * ndim + + if x.size == 2 and x.shape != (2, 1): + # x was supplied with a single value for each side + # but except case when each dimension has a single value + # which should be broadcasted to a pair, + # e.g. [[1], [2]] -> [[1, 1], [2, 2]] not [[1, 2], [1, 2]] + x = x.ravel() # Ensure x[0], x[1] works + if as_index and (x[0] < 0 or x[1] < 0): + raise ValueError("index can't contain negative values") + return ((x[0], x[1]),) * ndim + + if as_index and x.min() < 0: + raise ValueError("index can't contain negative values") + + # Converting the array with `tolist` seems to improve performance + # when iterating and indexing the result (see usage in `pad`) + return np.broadcast_to(x, (ndim, 2)).tolist() + + +def _pad_dispatcher(array, pad_width, mode=None, **kwargs): + return (array,) + + +############################################################################### +# Public functions + + +@array_function_dispatch(_pad_dispatcher, module='numpy') +def pad(array, pad_width, mode='constant', **kwargs): + """ + Pad an array. + + Parameters + ---------- + array : array_like of rank N + The array to pad. + pad_width : {sequence, array_like, int} + Number of values padded to the edges of each axis. + ``((before_1, after_1), ... (before_N, after_N))`` unique pad widths + for each axis. + ``(before, after)`` or ``((before, after),)`` yields same before + and after pad for each axis. + ``(pad,)`` or ``int`` is a shortcut for before = after = pad width + for all axes. + mode : str or function, optional + One of the following string values or a user supplied function. + + 'constant' (default) + Pads with a constant value. + 'edge' + Pads with the edge values of array. + 'linear_ramp' + Pads with the linear ramp between end_value and the + array edge value. + 'maximum' + Pads with the maximum value of all or part of the + vector along each axis. + 'mean' + Pads with the mean value of all or part of the + vector along each axis. + 'median' + Pads with the median value of all or part of the + vector along each axis. + 'minimum' + Pads with the minimum value of all or part of the + vector along each axis. + 'reflect' + Pads with the reflection of the vector mirrored on + the first and last values of the vector along each + axis. + 'symmetric' + Pads with the reflection of the vector mirrored + along the edge of the array. + 'wrap' + Pads with the wrap of the vector along the axis. + The first values are used to pad the end and the + end values are used to pad the beginning. + 'empty' + Pads with undefined values. + + + Padding function, see Notes. + stat_length : sequence or int, optional + Used in 'maximum', 'mean', 'median', and 'minimum'. Number of + values at edge of each axis used to calculate the statistic value. + + ``((before_1, after_1), ... (before_N, after_N))`` unique statistic + lengths for each axis. + + ``(before, after)`` or ``((before, after),)`` yields same before + and after statistic lengths for each axis. + + ``(stat_length,)`` or ``int`` is a shortcut for + ``before = after = statistic`` length for all axes. + + Default is ``None``, to use the entire axis. + constant_values : sequence or scalar, optional + Used in 'constant'. The values to set the padded values for each + axis. + + ``((before_1, after_1), ... (before_N, after_N))`` unique pad constants + for each axis. + + ``(before, after)`` or ``((before, after),)`` yields same before + and after constants for each axis. + + ``(constant,)`` or ``constant`` is a shortcut for + ``before = after = constant`` for all axes. + + Default is 0. + end_values : sequence or scalar, optional + Used in 'linear_ramp'. The values used for the ending value of the + linear_ramp and that will form the edge of the padded array. + + ``((before_1, after_1), ... (before_N, after_N))`` unique end values + for each axis. + + ``(before, after)`` or ``((before, after),)`` yields same before + and after end values for each axis. + + ``(constant,)`` or ``constant`` is a shortcut for + ``before = after = constant`` for all axes. + + Default is 0. + reflect_type : {'even', 'odd'}, optional + Used in 'reflect', and 'symmetric'. The 'even' style is the + default with an unaltered reflection around the edge value. For + the 'odd' style, the extended part of the array is created by + subtracting the reflected values from two times the edge value. + + Returns + ------- + pad : ndarray + Padded array of rank equal to `array` with shape increased + according to `pad_width`. + + Notes + ----- + For an array with rank greater than 1, some of the padding of later + axes is calculated from padding of previous axes. This is easiest to + think about with a rank 2 array where the corners of the padded array + are calculated by using padded values from the first axis. + + The padding function, if used, should modify a rank 1 array in-place. It + has the following signature:: + + padding_func(vector, iaxis_pad_width, iaxis, kwargs) + + where + + vector : ndarray + A rank 1 array already padded with zeros. Padded values are + vector[:iaxis_pad_width[0]] and vector[-iaxis_pad_width[1]:]. + iaxis_pad_width : tuple + A 2-tuple of ints, iaxis_pad_width[0] represents the number of + values padded at the beginning of vector where + iaxis_pad_width[1] represents the number of values padded at + the end of vector. + iaxis : int + The axis currently being calculated. + kwargs : dict + Any keyword arguments the function requires. + + Examples + -------- + >>> import numpy as np + >>> a = [1, 2, 3, 4, 5] + >>> np.pad(a, (2, 3), 'constant', constant_values=(4, 6)) + array([4, 4, 1, ..., 6, 6, 6]) + + >>> np.pad(a, (2, 3), 'edge') + array([1, 1, 1, ..., 5, 5, 5]) + + >>> np.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4)) + array([ 5, 3, 1, 2, 3, 4, 5, 2, -1, -4]) + + >>> np.pad(a, (2,), 'maximum') + array([5, 5, 1, 2, 3, 4, 5, 5, 5]) + + >>> np.pad(a, (2,), 'mean') + array([3, 3, 1, 2, 3, 4, 5, 3, 3]) + + >>> np.pad(a, (2,), 'median') + array([3, 3, 1, 2, 3, 4, 5, 3, 3]) + + >>> a = [[1, 2], [3, 4]] + >>> np.pad(a, ((3, 2), (2, 3)), 'minimum') + array([[1, 1, 1, 2, 1, 1, 1], + [1, 1, 1, 2, 1, 1, 1], + [1, 1, 1, 2, 1, 1, 1], + [1, 1, 1, 2, 1, 1, 1], + [3, 3, 3, 4, 3, 3, 3], + [1, 1, 1, 2, 1, 1, 1], + [1, 1, 1, 2, 1, 1, 1]]) + + >>> a = [1, 2, 3, 4, 5] + >>> np.pad(a, (2, 3), 'reflect') + array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2]) + + >>> np.pad(a, (2, 3), 'reflect', reflect_type='odd') + array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8]) + + >>> np.pad(a, (2, 3), 'symmetric') + array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3]) + + >>> np.pad(a, (2, 3), 'symmetric', reflect_type='odd') + array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7]) + + >>> np.pad(a, (2, 3), 'wrap') + array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3]) + + >>> def pad_with(vector, pad_width, iaxis, kwargs): + ... pad_value = kwargs.get('padder', 10) + ... vector[:pad_width[0]] = pad_value + ... vector[-pad_width[1]:] = pad_value + >>> a = np.arange(6) + >>> a = a.reshape((2, 3)) + >>> np.pad(a, 2, pad_with) + array([[10, 10, 10, 10, 10, 10, 10], + [10, 10, 10, 10, 10, 10, 10], + [10, 10, 0, 1, 2, 10, 10], + [10, 10, 3, 4, 5, 10, 10], + [10, 10, 10, 10, 10, 10, 10], + [10, 10, 10, 10, 10, 10, 10]]) + >>> np.pad(a, 2, pad_with, padder=100) + array([[100, 100, 100, 100, 100, 100, 100], + [100, 100, 100, 100, 100, 100, 100], + [100, 100, 0, 1, 2, 100, 100], + [100, 100, 3, 4, 5, 100, 100], + [100, 100, 100, 100, 100, 100, 100], + [100, 100, 100, 100, 100, 100, 100]]) + """ + array = np.asarray(array) + pad_width = np.asarray(pad_width) + + if not pad_width.dtype.kind == 'i': + raise TypeError('`pad_width` must be of integral type.') + + # Broadcast to shape (array.ndim, 2) + pad_width = _as_pairs(pad_width, array.ndim, as_index=True) + + if callable(mode): + # Old behavior: Use user-supplied function with np.apply_along_axis + function = mode + # Create a new zero padded array + padded, _ = _pad_simple(array, pad_width, fill_value=0) + # And apply along each axis + + for axis in range(padded.ndim): + # Iterate using ndindex as in apply_along_axis, but assuming that + # function operates inplace on the padded array. + + # view with the iteration axis at the end + view = np.moveaxis(padded, axis, -1) + + # compute indices for the iteration axes, and append a trailing + # ellipsis to prevent 0d arrays decaying to scalars (gh-8642) + inds = ndindex(view.shape[:-1]) + inds = (ind + (Ellipsis,) for ind in inds) + for ind in inds: + function(view[ind], pad_width[axis], axis, kwargs) + + return padded + + # Make sure that no unsupported keywords were passed for the current mode + allowed_kwargs = { + 'empty': [], 'edge': [], 'wrap': [], + 'constant': ['constant_values'], + 'linear_ramp': ['end_values'], + 'maximum': ['stat_length'], + 'mean': ['stat_length'], + 'median': ['stat_length'], + 'minimum': ['stat_length'], + 'reflect': ['reflect_type'], + 'symmetric': ['reflect_type'], + } + try: + unsupported_kwargs = set(kwargs) - set(allowed_kwargs[mode]) + except KeyError: + raise ValueError(f"mode '{mode}' is not supported") from None + if unsupported_kwargs: + raise ValueError("unsupported keyword arguments for mode " + f"'{mode}': {unsupported_kwargs}") + + stat_functions = {"maximum": np.amax, "minimum": np.amin, + "mean": np.mean, "median": np.median} + + # Create array with final shape and original values + # (padded area is undefined) + padded, original_area_slice = _pad_simple(array, pad_width) + # And prepare iteration over all dimensions + # (zipping may be more readable than using enumerate) + axes = range(padded.ndim) + + if mode == "constant": + values = kwargs.get("constant_values", 0) + values = _as_pairs(values, padded.ndim) + for axis, width_pair, value_pair in zip(axes, pad_width, values): + roi = _view_roi(padded, original_area_slice, axis) + _set_pad_area(roi, axis, width_pair, value_pair) + + elif mode == "empty": + pass # Do nothing as _pad_simple already returned the correct result + + elif array.size == 0: + # Only modes "constant" and "empty" can extend empty axes, all other + # modes depend on `array` not being empty + # -> ensure every empty axis is only "padded with 0" + for axis, width_pair in zip(axes, pad_width): + if array.shape[axis] == 0 and any(width_pair): + raise ValueError( + f"can't extend empty axis {axis} using modes other than " + "'constant' or 'empty'" + ) + # passed, don't need to do anything more as _pad_simple already + # returned the correct result + + elif mode == "edge": + for axis, width_pair in zip(axes, pad_width): + roi = _view_roi(padded, original_area_slice, axis) + edge_pair = _get_edges(roi, axis, width_pair) + _set_pad_area(roi, axis, width_pair, edge_pair) + + elif mode == "linear_ramp": + end_values = kwargs.get("end_values", 0) + end_values = _as_pairs(end_values, padded.ndim) + for axis, width_pair, value_pair in zip(axes, pad_width, end_values): + roi = _view_roi(padded, original_area_slice, axis) + ramp_pair = _get_linear_ramps(roi, axis, width_pair, value_pair) + _set_pad_area(roi, axis, width_pair, ramp_pair) + + elif mode in stat_functions: + func = stat_functions[mode] + length = kwargs.get("stat_length") + length = _as_pairs(length, padded.ndim, as_index=True) + for axis, width_pair, length_pair in zip(axes, pad_width, length): + roi = _view_roi(padded, original_area_slice, axis) + stat_pair = _get_stats(roi, axis, width_pair, length_pair, func) + _set_pad_area(roi, axis, width_pair, stat_pair) + + elif mode in {"reflect", "symmetric"}: + method = kwargs.get("reflect_type", "even") + include_edge = mode == "symmetric" + for axis, (left_index, right_index) in zip(axes, pad_width): + if array.shape[axis] == 1 and (left_index > 0 or right_index > 0): + # Extending singleton dimension for 'reflect' is legacy + # behavior; it really should raise an error. + edge_pair = _get_edges(padded, axis, (left_index, right_index)) + _set_pad_area( + padded, axis, (left_index, right_index), edge_pair) + continue + + roi = _view_roi(padded, original_area_slice, axis) + while left_index > 0 or right_index > 0: + # Iteratively pad until dimension is filled with reflected + # values. This is necessary if the pad area is larger than + # the length of the original values in the current dimension. + left_index, right_index = _set_reflect_both( + roi, axis, (left_index, right_index), + method, array.shape[axis], include_edge + ) + + elif mode == "wrap": + for axis, (left_index, right_index) in zip(axes, pad_width): + roi = _view_roi(padded, original_area_slice, axis) + original_period = padded.shape[axis] - right_index - left_index + while left_index > 0 or right_index > 0: + # Iteratively pad until dimension is filled with wrapped + # values. This is necessary if the pad area is larger than + # the length of the original values in the current dimension. + left_index, right_index = _set_wrap_both( + roi, axis, (left_index, right_index), original_period) + + return padded diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_arraypad_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_arraypad_impl.pyi new file mode 100644 index 0000000..46b4376 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_arraypad_impl.pyi @@ -0,0 +1,89 @@ +from typing import ( + Any, + Protocol, + TypeAlias, + TypeVar, + overload, + type_check_only, +) +from typing import ( + Literal as L, +) + +from numpy import generic +from numpy._typing import ( + ArrayLike, + NDArray, + _ArrayLike, + _ArrayLikeInt, +) + +__all__ = ["pad"] + +_ScalarT = TypeVar("_ScalarT", bound=generic) + +@type_check_only +class _ModeFunc(Protocol): + def __call__( + self, + vector: NDArray[Any], + iaxis_pad_width: tuple[int, int], + iaxis: int, + kwargs: dict[str, Any], + /, + ) -> None: ... + +_ModeKind: TypeAlias = L[ + "constant", + "edge", + "linear_ramp", + "maximum", + "mean", + "median", + "minimum", + "reflect", + "symmetric", + "wrap", + "empty", +] + +# TODO: In practice each keyword argument is exclusive to one or more +# specific modes. Consider adding more overloads to express this in the future. + +# Expand `**kwargs` into explicit keyword-only arguments +@overload +def pad( + array: _ArrayLike[_ScalarT], + pad_width: _ArrayLikeInt, + mode: _ModeKind = ..., + *, + stat_length: _ArrayLikeInt | None = ..., + constant_values: ArrayLike = ..., + end_values: ArrayLike = ..., + reflect_type: L["odd", "even"] = ..., +) -> NDArray[_ScalarT]: ... +@overload +def pad( + array: ArrayLike, + pad_width: _ArrayLikeInt, + mode: _ModeKind = ..., + *, + stat_length: _ArrayLikeInt | None = ..., + constant_values: ArrayLike = ..., + end_values: ArrayLike = ..., + reflect_type: L["odd", "even"] = ..., +) -> NDArray[Any]: ... +@overload +def pad( + array: _ArrayLike[_ScalarT], + pad_width: _ArrayLikeInt, + mode: _ModeFunc, + **kwargs: Any, +) -> NDArray[_ScalarT]: ... +@overload +def pad( + array: ArrayLike, + pad_width: _ArrayLikeInt, + mode: _ModeFunc, + **kwargs: Any, +) -> NDArray[Any]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_arraysetops_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_arraysetops_impl.py new file mode 100644 index 0000000..ef0739b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_arraysetops_impl.py @@ -0,0 +1,1260 @@ +""" +Set operations for arrays based on sorting. + +Notes +----- + +For floating point arrays, inaccurate results may appear due to usual round-off +and floating point comparison issues. + +Speed could be gained in some operations by an implementation of +`numpy.sort`, that can provide directly the permutation vectors, thus avoiding +calls to `numpy.argsort`. + +Original author: Robert Cimrman + +""" +import functools +import warnings +from typing import NamedTuple + +import numpy as np +from numpy._core import overrides +from numpy._core._multiarray_umath import _array_converter, _unique_hash + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy') + + +__all__ = [ + "ediff1d", "in1d", "intersect1d", "isin", "setdiff1d", "setxor1d", + "union1d", "unique", "unique_all", "unique_counts", "unique_inverse", + "unique_values" +] + + +def _ediff1d_dispatcher(ary, to_end=None, to_begin=None): + return (ary, to_end, to_begin) + + +@array_function_dispatch(_ediff1d_dispatcher) +def ediff1d(ary, to_end=None, to_begin=None): + """ + The differences between consecutive elements of an array. + + Parameters + ---------- + ary : array_like + If necessary, will be flattened before the differences are taken. + to_end : array_like, optional + Number(s) to append at the end of the returned differences. + to_begin : array_like, optional + Number(s) to prepend at the beginning of the returned differences. + + Returns + ------- + ediff1d : ndarray + The differences. Loosely, this is ``ary.flat[1:] - ary.flat[:-1]``. + + See Also + -------- + diff, gradient + + Notes + ----- + When applied to masked arrays, this function drops the mask information + if the `to_begin` and/or `to_end` parameters are used. + + Examples + -------- + >>> import numpy as np + >>> x = np.array([1, 2, 4, 7, 0]) + >>> np.ediff1d(x) + array([ 1, 2, 3, -7]) + + >>> np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99])) + array([-99, 1, 2, ..., -7, 88, 99]) + + The returned array is always 1D. + + >>> y = [[1, 2, 4], [1, 6, 24]] + >>> np.ediff1d(y) + array([ 1, 2, -3, 5, 18]) + + """ + conv = _array_converter(ary) + # Convert to (any) array and ravel: + ary = conv[0].ravel() + + # enforce that the dtype of `ary` is used for the output + dtype_req = ary.dtype + + # fast track default case + if to_begin is None and to_end is None: + return ary[1:] - ary[:-1] + + if to_begin is None: + l_begin = 0 + else: + to_begin = np.asanyarray(to_begin) + if not np.can_cast(to_begin, dtype_req, casting="same_kind"): + raise TypeError("dtype of `to_begin` must be compatible " + "with input `ary` under the `same_kind` rule.") + + to_begin = to_begin.ravel() + l_begin = len(to_begin) + + if to_end is None: + l_end = 0 + else: + to_end = np.asanyarray(to_end) + if not np.can_cast(to_end, dtype_req, casting="same_kind"): + raise TypeError("dtype of `to_end` must be compatible " + "with input `ary` under the `same_kind` rule.") + + to_end = to_end.ravel() + l_end = len(to_end) + + # do the calculation in place and copy to_begin and to_end + l_diff = max(len(ary) - 1, 0) + result = np.empty_like(ary, shape=l_diff + l_begin + l_end) + + if l_begin > 0: + result[:l_begin] = to_begin + if l_end > 0: + result[l_begin + l_diff:] = to_end + np.subtract(ary[1:], ary[:-1], result[l_begin:l_begin + l_diff]) + + return conv.wrap(result) + + +def _unpack_tuple(x): + """ Unpacks one-element tuples for use as return values """ + if len(x) == 1: + return x[0] + else: + return x + + +def _unique_dispatcher(ar, return_index=None, return_inverse=None, + return_counts=None, axis=None, *, equal_nan=None, + sorted=True): + return (ar,) + + +@array_function_dispatch(_unique_dispatcher) +def unique(ar, return_index=False, return_inverse=False, + return_counts=False, axis=None, *, equal_nan=True, + sorted=True): + """ + Find the unique elements of an array. + + Returns the sorted unique elements of an array. There are three optional + outputs in addition to the unique elements: + + * the indices of the input array that give the unique values + * the indices of the unique array that reconstruct the input array + * the number of times each unique value comes up in the input array + + Parameters + ---------- + ar : array_like + Input array. Unless `axis` is specified, this will be flattened if it + is not already 1-D. + return_index : bool, optional + If True, also return the indices of `ar` (along the specified axis, + if provided, or in the flattened array) that result in the unique array. + return_inverse : bool, optional + If True, also return the indices of the unique array (for the specified + axis, if provided) that can be used to reconstruct `ar`. + return_counts : bool, optional + If True, also return the number of times each unique item appears + in `ar`. + axis : int or None, optional + The axis to operate on. If None, `ar` will be flattened. If an integer, + the subarrays indexed by the given axis will be flattened and treated + as the elements of a 1-D array with the dimension of the given axis, + see the notes for more details. Object arrays or structured arrays + that contain objects are not supported if the `axis` kwarg is used. The + default is None. + + equal_nan : bool, optional + If True, collapses multiple NaN values in the return array into one. + + .. versionadded:: 1.24 + + sorted : bool, optional + If True, the unique elements are sorted. Elements may be sorted in + practice even if ``sorted=False``, but this could change without + notice. + + .. versionadded:: 2.3 + + Returns + ------- + unique : ndarray + The sorted unique values. + unique_indices : ndarray, optional + The indices of the first occurrences of the unique values in the + original array. Only provided if `return_index` is True. + unique_inverse : ndarray, optional + The indices to reconstruct the original array from the + unique array. Only provided if `return_inverse` is True. + unique_counts : ndarray, optional + The number of times each of the unique values comes up in the + original array. Only provided if `return_counts` is True. + + See Also + -------- + repeat : Repeat elements of an array. + sort : Return a sorted copy of an array. + + Notes + ----- + When an axis is specified the subarrays indexed by the axis are sorted. + This is done by making the specified axis the first dimension of the array + (move the axis to the first dimension to keep the order of the other axes) + and then flattening the subarrays in C order. The flattened subarrays are + then viewed as a structured type with each element given a label, with the + effect that we end up with a 1-D array of structured types that can be + treated in the same way as any other 1-D array. The result is that the + flattened subarrays are sorted in lexicographic order starting with the + first element. + + .. versionchanged:: 1.21 + Like np.sort, NaN will sort to the end of the values. + For complex arrays all NaN values are considered equivalent + (no matter whether the NaN is in the real or imaginary part). + As the representant for the returned array the smallest one in the + lexicographical order is chosen - see np.sort for how the lexicographical + order is defined for complex arrays. + + .. versionchanged:: 2.0 + For multi-dimensional inputs, ``unique_inverse`` is reshaped + such that the input can be reconstructed using + ``np.take(unique, unique_inverse, axis=axis)``. The result is + now not 1-dimensional when ``axis=None``. + + Note that in NumPy 2.0.0 a higher dimensional array was returned also + when ``axis`` was not ``None``. This was reverted, but + ``inverse.reshape(-1)`` can be used to ensure compatibility with both + versions. + + Examples + -------- + >>> import numpy as np + >>> np.unique([1, 1, 2, 2, 3, 3]) + array([1, 2, 3]) + >>> a = np.array([[1, 1], [2, 3]]) + >>> np.unique(a) + array([1, 2, 3]) + + Return the unique rows of a 2D array + + >>> a = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]]) + >>> np.unique(a, axis=0) + array([[1, 0, 0], [2, 3, 4]]) + + Return the indices of the original array that give the unique values: + + >>> a = np.array(['a', 'b', 'b', 'c', 'a']) + >>> u, indices = np.unique(a, return_index=True) + >>> u + array(['a', 'b', 'c'], dtype='>> indices + array([0, 1, 3]) + >>> a[indices] + array(['a', 'b', 'c'], dtype='>> a = np.array([1, 2, 6, 4, 2, 3, 2]) + >>> u, indices = np.unique(a, return_inverse=True) + >>> u + array([1, 2, 3, 4, 6]) + >>> indices + array([0, 1, 4, 3, 1, 2, 1]) + >>> u[indices] + array([1, 2, 6, 4, 2, 3, 2]) + + Reconstruct the input values from the unique values and counts: + + >>> a = np.array([1, 2, 6, 4, 2, 3, 2]) + >>> values, counts = np.unique(a, return_counts=True) + >>> values + array([1, 2, 3, 4, 6]) + >>> counts + array([1, 3, 1, 1, 1]) + >>> np.repeat(values, counts) + array([1, 2, 2, 2, 3, 4, 6]) # original order not preserved + + """ + ar = np.asanyarray(ar) + if axis is None: + ret = _unique1d(ar, return_index, return_inverse, return_counts, + equal_nan=equal_nan, inverse_shape=ar.shape, axis=None, + sorted=sorted) + return _unpack_tuple(ret) + + # axis was specified and not None + try: + ar = np.moveaxis(ar, axis, 0) + except np.exceptions.AxisError: + # this removes the "axis1" or "axis2" prefix from the error message + raise np.exceptions.AxisError(axis, ar.ndim) from None + inverse_shape = [1] * ar.ndim + inverse_shape[axis] = ar.shape[0] + + # Must reshape to a contiguous 2D array for this to work... + orig_shape, orig_dtype = ar.shape, ar.dtype + ar = ar.reshape(orig_shape[0], np.prod(orig_shape[1:], dtype=np.intp)) + ar = np.ascontiguousarray(ar) + dtype = [(f'f{i}', ar.dtype) for i in range(ar.shape[1])] + + # At this point, `ar` has shape `(n, m)`, and `dtype` is a structured + # data type with `m` fields where each field has the data type of `ar`. + # In the following, we create the array `consolidated`, which has + # shape `(n,)` with data type `dtype`. + try: + if ar.shape[1] > 0: + consolidated = ar.view(dtype) + else: + # If ar.shape[1] == 0, then dtype will be `np.dtype([])`, which is + # a data type with itemsize 0, and the call `ar.view(dtype)` will + # fail. Instead, we'll use `np.empty` to explicitly create the + # array with shape `(len(ar),)`. Because `dtype` in this case has + # itemsize 0, the total size of the result is still 0 bytes. + consolidated = np.empty(len(ar), dtype=dtype) + except TypeError as e: + # There's no good way to do this for object arrays, etc... + msg = 'The axis argument to unique is not supported for dtype {dt}' + raise TypeError(msg.format(dt=ar.dtype)) from e + + def reshape_uniq(uniq): + n = len(uniq) + uniq = uniq.view(orig_dtype) + uniq = uniq.reshape(n, *orig_shape[1:]) + uniq = np.moveaxis(uniq, 0, axis) + return uniq + + output = _unique1d(consolidated, return_index, + return_inverse, return_counts, + equal_nan=equal_nan, inverse_shape=inverse_shape, + axis=axis, sorted=sorted) + output = (reshape_uniq(output[0]),) + output[1:] + return _unpack_tuple(output) + + +def _unique1d(ar, return_index=False, return_inverse=False, + return_counts=False, *, equal_nan=True, inverse_shape=None, + axis=None, sorted=True): + """ + Find the unique elements of an array, ignoring shape. + + Uses a hash table to find the unique elements if possible. + """ + ar = np.asanyarray(ar).flatten() + if len(ar.shape) != 1: + # np.matrix, and maybe some other array subclasses, insist on keeping + # two dimensions for all operations. Coerce to an ndarray in such cases. + ar = np.asarray(ar).flatten() + + optional_indices = return_index or return_inverse + + # masked arrays are not supported yet. + if not optional_indices and not return_counts and not np.ma.is_masked(ar): + # First we convert the array to a numpy array, later we wrap it back + # in case it was a subclass of numpy.ndarray. + conv = _array_converter(ar) + ar_, = conv + + if (hash_unique := _unique_hash(ar_)) is not NotImplemented: + if sorted: + hash_unique.sort() + # We wrap the result back in case it was a subclass of numpy.ndarray. + return (conv.wrap(hash_unique),) + + # If we don't use the hash map, we use the slower sorting method. + if optional_indices: + perm = ar.argsort(kind='mergesort' if return_index else 'quicksort') + aux = ar[perm] + else: + ar.sort() + aux = ar + mask = np.empty(aux.shape, dtype=np.bool) + mask[:1] = True + if (equal_nan and aux.shape[0] > 0 and aux.dtype.kind in "cfmM" and + np.isnan(aux[-1])): + if aux.dtype.kind == "c": # for complex all NaNs are considered equivalent + aux_firstnan = np.searchsorted(np.isnan(aux), True, side='left') + else: + aux_firstnan = np.searchsorted(aux, aux[-1], side='left') + if aux_firstnan > 0: + mask[1:aux_firstnan] = ( + aux[1:aux_firstnan] != aux[:aux_firstnan - 1]) + mask[aux_firstnan] = True + mask[aux_firstnan + 1:] = False + else: + mask[1:] = aux[1:] != aux[:-1] + + ret = (aux[mask],) + if return_index: + ret += (perm[mask],) + if return_inverse: + imask = np.cumsum(mask) - 1 + inv_idx = np.empty(mask.shape, dtype=np.intp) + inv_idx[perm] = imask + ret += (inv_idx.reshape(inverse_shape) if axis is None else inv_idx,) + if return_counts: + idx = np.concatenate(np.nonzero(mask) + ([mask.size],)) + ret += (np.diff(idx),) + return ret + + +# Array API set functions + +class UniqueAllResult(NamedTuple): + values: np.ndarray + indices: np.ndarray + inverse_indices: np.ndarray + counts: np.ndarray + + +class UniqueCountsResult(NamedTuple): + values: np.ndarray + counts: np.ndarray + + +class UniqueInverseResult(NamedTuple): + values: np.ndarray + inverse_indices: np.ndarray + + +def _unique_all_dispatcher(x, /): + return (x,) + + +@array_function_dispatch(_unique_all_dispatcher) +def unique_all(x): + """ + Find the unique elements of an array, and counts, inverse, and indices. + + This function is an Array API compatible alternative to:: + + np.unique(x, return_index=True, return_inverse=True, + return_counts=True, equal_nan=False, sorted=False) + + but returns a namedtuple for easier access to each output. + + .. note:: + This function currently always returns a sorted result, however, + this could change in any NumPy minor release. + + Parameters + ---------- + x : array_like + Input array. It will be flattened if it is not already 1-D. + + Returns + ------- + out : namedtuple + The result containing: + + * values - The unique elements of an input array. + * indices - The first occurring indices for each unique element. + * inverse_indices - The indices from the set of unique elements + that reconstruct `x`. + * counts - The corresponding counts for each unique element. + + See Also + -------- + unique : Find the unique elements of an array. + + Examples + -------- + >>> import numpy as np + >>> x = [1, 1, 2] + >>> uniq = np.unique_all(x) + >>> uniq.values + array([1, 2]) + >>> uniq.indices + array([0, 2]) + >>> uniq.inverse_indices + array([0, 0, 1]) + >>> uniq.counts + array([2, 1]) + """ + result = unique( + x, + return_index=True, + return_inverse=True, + return_counts=True, + equal_nan=False, + ) + return UniqueAllResult(*result) + + +def _unique_counts_dispatcher(x, /): + return (x,) + + +@array_function_dispatch(_unique_counts_dispatcher) +def unique_counts(x): + """ + Find the unique elements and counts of an input array `x`. + + This function is an Array API compatible alternative to:: + + np.unique(x, return_counts=True, equal_nan=False, sorted=False) + + but returns a namedtuple for easier access to each output. + + .. note:: + This function currently always returns a sorted result, however, + this could change in any NumPy minor release. + + Parameters + ---------- + x : array_like + Input array. It will be flattened if it is not already 1-D. + + Returns + ------- + out : namedtuple + The result containing: + + * values - The unique elements of an input array. + * counts - The corresponding counts for each unique element. + + See Also + -------- + unique : Find the unique elements of an array. + + Examples + -------- + >>> import numpy as np + >>> x = [1, 1, 2] + >>> uniq = np.unique_counts(x) + >>> uniq.values + array([1, 2]) + >>> uniq.counts + array([2, 1]) + """ + result = unique( + x, + return_index=False, + return_inverse=False, + return_counts=True, + equal_nan=False, + ) + return UniqueCountsResult(*result) + + +def _unique_inverse_dispatcher(x, /): + return (x,) + + +@array_function_dispatch(_unique_inverse_dispatcher) +def unique_inverse(x): + """ + Find the unique elements of `x` and indices to reconstruct `x`. + + This function is an Array API compatible alternative to:: + + np.unique(x, return_inverse=True, equal_nan=False, sorted=False) + + but returns a namedtuple for easier access to each output. + + .. note:: + This function currently always returns a sorted result, however, + this could change in any NumPy minor release. + + Parameters + ---------- + x : array_like + Input array. It will be flattened if it is not already 1-D. + + Returns + ------- + out : namedtuple + The result containing: + + * values - The unique elements of an input array. + * inverse_indices - The indices from the set of unique elements + that reconstruct `x`. + + See Also + -------- + unique : Find the unique elements of an array. + + Examples + -------- + >>> import numpy as np + >>> x = [1, 1, 2] + >>> uniq = np.unique_inverse(x) + >>> uniq.values + array([1, 2]) + >>> uniq.inverse_indices + array([0, 0, 1]) + """ + result = unique( + x, + return_index=False, + return_inverse=True, + return_counts=False, + equal_nan=False, + ) + return UniqueInverseResult(*result) + + +def _unique_values_dispatcher(x, /): + return (x,) + + +@array_function_dispatch(_unique_values_dispatcher) +def unique_values(x): + """ + Returns the unique elements of an input array `x`. + + This function is an Array API compatible alternative to:: + + np.unique(x, equal_nan=False, sorted=False) + + .. versionchanged:: 2.3 + The algorithm was changed to a faster one that does not rely on + sorting, and hence the results are no longer implicitly sorted. + + Parameters + ---------- + x : array_like + Input array. It will be flattened if it is not already 1-D. + + Returns + ------- + out : ndarray + The unique elements of an input array. + + See Also + -------- + unique : Find the unique elements of an array. + + Examples + -------- + >>> import numpy as np + >>> np.unique_values([1, 1, 2]) + array([1, 2]) # may vary + + """ + return unique( + x, + return_index=False, + return_inverse=False, + return_counts=False, + equal_nan=False, + sorted=False, + ) + + +def _intersect1d_dispatcher( + ar1, ar2, assume_unique=None, return_indices=None): + return (ar1, ar2) + + +@array_function_dispatch(_intersect1d_dispatcher) +def intersect1d(ar1, ar2, assume_unique=False, return_indices=False): + """ + Find the intersection of two arrays. + + Return the sorted, unique values that are in both of the input arrays. + + Parameters + ---------- + ar1, ar2 : array_like + Input arrays. Will be flattened if not already 1D. + assume_unique : bool + If True, the input arrays are both assumed to be unique, which + can speed up the calculation. If True but ``ar1`` or ``ar2`` are not + unique, incorrect results and out-of-bounds indices could result. + Default is False. + return_indices : bool + If True, the indices which correspond to the intersection of the two + arrays are returned. The first instance of a value is used if there are + multiple. Default is False. + + Returns + ------- + intersect1d : ndarray + Sorted 1D array of common and unique elements. + comm1 : ndarray + The indices of the first occurrences of the common values in `ar1`. + Only provided if `return_indices` is True. + comm2 : ndarray + The indices of the first occurrences of the common values in `ar2`. + Only provided if `return_indices` is True. + + Examples + -------- + >>> import numpy as np + >>> np.intersect1d([1, 3, 4, 3], [3, 1, 2, 1]) + array([1, 3]) + + To intersect more than two arrays, use functools.reduce: + + >>> from functools import reduce + >>> reduce(np.intersect1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2])) + array([3]) + + To return the indices of the values common to the input arrays + along with the intersected values: + + >>> x = np.array([1, 1, 2, 3, 4]) + >>> y = np.array([2, 1, 4, 6]) + >>> xy, x_ind, y_ind = np.intersect1d(x, y, return_indices=True) + >>> x_ind, y_ind + (array([0, 2, 4]), array([1, 0, 2])) + >>> xy, x[x_ind], y[y_ind] + (array([1, 2, 4]), array([1, 2, 4]), array([1, 2, 4])) + + """ + ar1 = np.asanyarray(ar1) + ar2 = np.asanyarray(ar2) + + if not assume_unique: + if return_indices: + ar1, ind1 = unique(ar1, return_index=True) + ar2, ind2 = unique(ar2, return_index=True) + else: + ar1 = unique(ar1) + ar2 = unique(ar2) + else: + ar1 = ar1.ravel() + ar2 = ar2.ravel() + + aux = np.concatenate((ar1, ar2)) + if return_indices: + aux_sort_indices = np.argsort(aux, kind='mergesort') + aux = aux[aux_sort_indices] + else: + aux.sort() + + mask = aux[1:] == aux[:-1] + int1d = aux[:-1][mask] + + if return_indices: + ar1_indices = aux_sort_indices[:-1][mask] + ar2_indices = aux_sort_indices[1:][mask] - ar1.size + if not assume_unique: + ar1_indices = ind1[ar1_indices] + ar2_indices = ind2[ar2_indices] + + return int1d, ar1_indices, ar2_indices + else: + return int1d + + +def _setxor1d_dispatcher(ar1, ar2, assume_unique=None): + return (ar1, ar2) + + +@array_function_dispatch(_setxor1d_dispatcher) +def setxor1d(ar1, ar2, assume_unique=False): + """ + Find the set exclusive-or of two arrays. + + Return the sorted, unique values that are in only one (not both) of the + input arrays. + + Parameters + ---------- + ar1, ar2 : array_like + Input arrays. + assume_unique : bool + If True, the input arrays are both assumed to be unique, which + can speed up the calculation. Default is False. + + Returns + ------- + setxor1d : ndarray + Sorted 1D array of unique values that are in only one of the input + arrays. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([1, 2, 3, 2, 4]) + >>> b = np.array([2, 3, 5, 7, 5]) + >>> np.setxor1d(a,b) + array([1, 4, 5, 7]) + + """ + if not assume_unique: + ar1 = unique(ar1) + ar2 = unique(ar2) + + aux = np.concatenate((ar1, ar2), axis=None) + if aux.size == 0: + return aux + + aux.sort() + flag = np.concatenate(([True], aux[1:] != aux[:-1], [True])) + return aux[flag[1:] & flag[:-1]] + + +def _in1d_dispatcher(ar1, ar2, assume_unique=None, invert=None, *, + kind=None): + return (ar1, ar2) + + +@array_function_dispatch(_in1d_dispatcher) +def in1d(ar1, ar2, assume_unique=False, invert=False, *, kind=None): + """ + Test whether each element of a 1-D array is also present in a second array. + + .. deprecated:: 2.0 + Use :func:`isin` instead of `in1d` for new code. + + Returns a boolean array the same length as `ar1` that is True + where an element of `ar1` is in `ar2` and False otherwise. + + Parameters + ---------- + ar1 : (M,) array_like + Input array. + ar2 : array_like + The values against which to test each value of `ar1`. + assume_unique : bool, optional + If True, the input arrays are both assumed to be unique, which + can speed up the calculation. Default is False. + invert : bool, optional + If True, the values in the returned array are inverted (that is, + False where an element of `ar1` is in `ar2` and True otherwise). + Default is False. ``np.in1d(a, b, invert=True)`` is equivalent + to (but is faster than) ``np.invert(in1d(a, b))``. + kind : {None, 'sort', 'table'}, optional + The algorithm to use. This will not affect the final result, + but will affect the speed and memory use. The default, None, + will select automatically based on memory considerations. + + * If 'sort', will use a mergesort-based approach. This will have + a memory usage of roughly 6 times the sum of the sizes of + `ar1` and `ar2`, not accounting for size of dtypes. + * If 'table', will use a lookup table approach similar + to a counting sort. This is only available for boolean and + integer arrays. This will have a memory usage of the + size of `ar1` plus the max-min value of `ar2`. `assume_unique` + has no effect when the 'table' option is used. + * If None, will automatically choose 'table' if + the required memory allocation is less than or equal to + 6 times the sum of the sizes of `ar1` and `ar2`, + otherwise will use 'sort'. This is done to not use + a large amount of memory by default, even though + 'table' may be faster in most cases. If 'table' is chosen, + `assume_unique` will have no effect. + + Returns + ------- + in1d : (M,) ndarray, bool + The values `ar1[in1d]` are in `ar2`. + + See Also + -------- + isin : Version of this function that preserves the + shape of ar1. + + Notes + ----- + `in1d` can be considered as an element-wise function version of the + python keyword `in`, for 1-D sequences. ``in1d(a, b)`` is roughly + equivalent to ``np.array([item in b for item in a])``. + However, this idea fails if `ar2` is a set, or similar (non-sequence) + container: As ``ar2`` is converted to an array, in those cases + ``asarray(ar2)`` is an object array rather than the expected array of + contained values. + + Using ``kind='table'`` tends to be faster than `kind='sort'` if the + following relationship is true: + ``log10(len(ar2)) > (log10(max(ar2)-min(ar2)) - 2.27) / 0.927``, + but may use greater memory. The default value for `kind` will + be automatically selected based only on memory usage, so one may + manually set ``kind='table'`` if memory constraints can be relaxed. + + Examples + -------- + >>> import numpy as np + >>> test = np.array([0, 1, 2, 5, 0]) + >>> states = [0, 2] + >>> mask = np.in1d(test, states) + >>> mask + array([ True, False, True, False, True]) + >>> test[mask] + array([0, 2, 0]) + >>> mask = np.in1d(test, states, invert=True) + >>> mask + array([False, True, False, True, False]) + >>> test[mask] + array([1, 5]) + """ + + # Deprecated in NumPy 2.0, 2023-08-18 + warnings.warn( + "`in1d` is deprecated. Use `np.isin` instead.", + DeprecationWarning, + stacklevel=2 + ) + + return _in1d(ar1, ar2, assume_unique, invert, kind=kind) + + +def _in1d(ar1, ar2, assume_unique=False, invert=False, *, kind=None): + # Ravel both arrays, behavior for the first array could be different + ar1 = np.asarray(ar1).ravel() + ar2 = np.asarray(ar2).ravel() + + # Ensure that iteration through object arrays yields size-1 arrays + if ar2.dtype == object: + ar2 = ar2.reshape(-1, 1) + + if kind not in {None, 'sort', 'table'}: + raise ValueError( + f"Invalid kind: '{kind}'. Please use None, 'sort' or 'table'.") + + # Can use the table method if all arrays are integers or boolean: + is_int_arrays = all(ar.dtype.kind in ("u", "i", "b") for ar in (ar1, ar2)) + use_table_method = is_int_arrays and kind in {None, 'table'} + + if use_table_method: + if ar2.size == 0: + if invert: + return np.ones_like(ar1, dtype=bool) + else: + return np.zeros_like(ar1, dtype=bool) + + # Convert booleans to uint8 so we can use the fast integer algorithm + if ar1.dtype == bool: + ar1 = ar1.astype(np.uint8) + if ar2.dtype == bool: + ar2 = ar2.astype(np.uint8) + + ar2_min = int(np.min(ar2)) + ar2_max = int(np.max(ar2)) + + ar2_range = ar2_max - ar2_min + + # Constraints on whether we can actually use the table method: + # 1. Assert memory usage is not too large + below_memory_constraint = ar2_range <= 6 * (ar1.size + ar2.size) + # 2. Check overflows for (ar2 - ar2_min); dtype=ar2.dtype + range_safe_from_overflow = ar2_range <= np.iinfo(ar2.dtype).max + + # Optimal performance is for approximately + # log10(size) > (log10(range) - 2.27) / 0.927. + # However, here we set the requirement that by default + # the intermediate array can only be 6x + # the combined memory allocation of the original + # arrays. See discussion on + # https://github.com/numpy/numpy/pull/12065. + + if ( + range_safe_from_overflow and + (below_memory_constraint or kind == 'table') + ): + + if invert: + outgoing_array = np.ones_like(ar1, dtype=bool) + else: + outgoing_array = np.zeros_like(ar1, dtype=bool) + + # Make elements 1 where the integer exists in ar2 + if invert: + isin_helper_ar = np.ones(ar2_range + 1, dtype=bool) + isin_helper_ar[ar2 - ar2_min] = 0 + else: + isin_helper_ar = np.zeros(ar2_range + 1, dtype=bool) + isin_helper_ar[ar2 - ar2_min] = 1 + + # Mask out elements we know won't work + basic_mask = (ar1 <= ar2_max) & (ar1 >= ar2_min) + in_range_ar1 = ar1[basic_mask] + if in_range_ar1.size == 0: + # Nothing more to do, since all values are out of range. + return outgoing_array + + # Unfortunately, ar2_min can be out of range for `intp` even + # if the calculation result must fit in range (and be positive). + # In that case, use ar2.dtype which must work for all unmasked + # values. + try: + ar2_min = np.array(ar2_min, dtype=np.intp) + dtype = np.intp + except OverflowError: + dtype = ar2.dtype + + out = np.empty_like(in_range_ar1, dtype=np.intp) + outgoing_array[basic_mask] = isin_helper_ar[ + np.subtract(in_range_ar1, ar2_min, dtype=dtype, + out=out, casting="unsafe")] + + return outgoing_array + elif kind == 'table': # not range_safe_from_overflow + raise RuntimeError( + "You have specified kind='table', " + "but the range of values in `ar2` or `ar1` exceed the " + "maximum integer of the datatype. " + "Please set `kind` to None or 'sort'." + ) + elif kind == 'table': + raise ValueError( + "The 'table' method is only " + "supported for boolean or integer arrays. " + "Please select 'sort' or None for kind." + ) + + # Check if one of the arrays may contain arbitrary objects + contains_object = ar1.dtype.hasobject or ar2.dtype.hasobject + + # This code is run when + # a) the first condition is true, making the code significantly faster + # b) the second condition is true (i.e. `ar1` or `ar2` may contain + # arbitrary objects), since then sorting is not guaranteed to work + if len(ar2) < 10 * len(ar1) ** 0.145 or contains_object: + if invert: + mask = np.ones(len(ar1), dtype=bool) + for a in ar2: + mask &= (ar1 != a) + else: + mask = np.zeros(len(ar1), dtype=bool) + for a in ar2: + mask |= (ar1 == a) + return mask + + # Otherwise use sorting + if not assume_unique: + ar1, rev_idx = np.unique(ar1, return_inverse=True) + ar2 = np.unique(ar2) + + ar = np.concatenate((ar1, ar2)) + # We need this to be a stable sort, so always use 'mergesort' + # here. The values from the first array should always come before + # the values from the second array. + order = ar.argsort(kind='mergesort') + sar = ar[order] + if invert: + bool_ar = (sar[1:] != sar[:-1]) + else: + bool_ar = (sar[1:] == sar[:-1]) + flag = np.concatenate((bool_ar, [invert])) + ret = np.empty(ar.shape, dtype=bool) + ret[order] = flag + + if assume_unique: + return ret[:len(ar1)] + else: + return ret[rev_idx] + + +def _isin_dispatcher(element, test_elements, assume_unique=None, invert=None, + *, kind=None): + return (element, test_elements) + + +@array_function_dispatch(_isin_dispatcher) +def isin(element, test_elements, assume_unique=False, invert=False, *, + kind=None): + """ + Calculates ``element in test_elements``, broadcasting over `element` only. + Returns a boolean array of the same shape as `element` that is True + where an element of `element` is in `test_elements` and False otherwise. + + Parameters + ---------- + element : array_like + Input array. + test_elements : array_like + The values against which to test each value of `element`. + This argument is flattened if it is an array or array_like. + See notes for behavior with non-array-like parameters. + assume_unique : bool, optional + If True, the input arrays are both assumed to be unique, which + can speed up the calculation. Default is False. + invert : bool, optional + If True, the values in the returned array are inverted, as if + calculating `element not in test_elements`. Default is False. + ``np.isin(a, b, invert=True)`` is equivalent to (but faster + than) ``np.invert(np.isin(a, b))``. + kind : {None, 'sort', 'table'}, optional + The algorithm to use. This will not affect the final result, + but will affect the speed and memory use. The default, None, + will select automatically based on memory considerations. + + * If 'sort', will use a mergesort-based approach. This will have + a memory usage of roughly 6 times the sum of the sizes of + `element` and `test_elements`, not accounting for size of dtypes. + * If 'table', will use a lookup table approach similar + to a counting sort. This is only available for boolean and + integer arrays. This will have a memory usage of the + size of `element` plus the max-min value of `test_elements`. + `assume_unique` has no effect when the 'table' option is used. + * If None, will automatically choose 'table' if + the required memory allocation is less than or equal to + 6 times the sum of the sizes of `element` and `test_elements`, + otherwise will use 'sort'. This is done to not use + a large amount of memory by default, even though + 'table' may be faster in most cases. If 'table' is chosen, + `assume_unique` will have no effect. + + + Returns + ------- + isin : ndarray, bool + Has the same shape as `element`. The values `element[isin]` + are in `test_elements`. + + Notes + ----- + `isin` is an element-wise function version of the python keyword `in`. + ``isin(a, b)`` is roughly equivalent to + ``np.array([item in b for item in a])`` if `a` and `b` are 1-D sequences. + + `element` and `test_elements` are converted to arrays if they are not + already. If `test_elements` is a set (or other non-sequence collection) + it will be converted to an object array with one element, rather than an + array of the values contained in `test_elements`. This is a consequence + of the `array` constructor's way of handling non-sequence collections. + Converting the set to a list usually gives the desired behavior. + + Using ``kind='table'`` tends to be faster than `kind='sort'` if the + following relationship is true: + ``log10(len(test_elements)) > + (log10(max(test_elements)-min(test_elements)) - 2.27) / 0.927``, + but may use greater memory. The default value for `kind` will + be automatically selected based only on memory usage, so one may + manually set ``kind='table'`` if memory constraints can be relaxed. + + Examples + -------- + >>> import numpy as np + >>> element = 2*np.arange(4).reshape((2, 2)) + >>> element + array([[0, 2], + [4, 6]]) + >>> test_elements = [1, 2, 4, 8] + >>> mask = np.isin(element, test_elements) + >>> mask + array([[False, True], + [ True, False]]) + >>> element[mask] + array([2, 4]) + + The indices of the matched values can be obtained with `nonzero`: + + >>> np.nonzero(mask) + (array([0, 1]), array([1, 0])) + + The test can also be inverted: + + >>> mask = np.isin(element, test_elements, invert=True) + >>> mask + array([[ True, False], + [False, True]]) + >>> element[mask] + array([0, 6]) + + Because of how `array` handles sets, the following does not + work as expected: + + >>> test_set = {1, 2, 4, 8} + >>> np.isin(element, test_set) + array([[False, False], + [False, False]]) + + Casting the set to a list gives the expected result: + + >>> np.isin(element, list(test_set)) + array([[False, True], + [ True, False]]) + """ + element = np.asarray(element) + return _in1d(element, test_elements, assume_unique=assume_unique, + invert=invert, kind=kind).reshape(element.shape) + + +def _union1d_dispatcher(ar1, ar2): + return (ar1, ar2) + + +@array_function_dispatch(_union1d_dispatcher) +def union1d(ar1, ar2): + """ + Find the union of two arrays. + + Return the unique, sorted array of values that are in either of the two + input arrays. + + Parameters + ---------- + ar1, ar2 : array_like + Input arrays. They are flattened if they are not already 1D. + + Returns + ------- + union1d : ndarray + Unique, sorted union of the input arrays. + + Examples + -------- + >>> import numpy as np + >>> np.union1d([-1, 0, 1], [-2, 0, 2]) + array([-2, -1, 0, 1, 2]) + + To find the union of more than two arrays, use functools.reduce: + + >>> from functools import reduce + >>> reduce(np.union1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2])) + array([1, 2, 3, 4, 6]) + """ + return unique(np.concatenate((ar1, ar2), axis=None)) + + +def _setdiff1d_dispatcher(ar1, ar2, assume_unique=None): + return (ar1, ar2) + + +@array_function_dispatch(_setdiff1d_dispatcher) +def setdiff1d(ar1, ar2, assume_unique=False): + """ + Find the set difference of two arrays. + + Return the unique values in `ar1` that are not in `ar2`. + + Parameters + ---------- + ar1 : array_like + Input array. + ar2 : array_like + Input comparison array. + assume_unique : bool + If True, the input arrays are both assumed to be unique, which + can speed up the calculation. Default is False. + + Returns + ------- + setdiff1d : ndarray + 1D array of values in `ar1` that are not in `ar2`. The result + is sorted when `assume_unique=False`, but otherwise only sorted + if the input is sorted. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([1, 2, 3, 2, 4, 1]) + >>> b = np.array([3, 4, 5, 6]) + >>> np.setdiff1d(a, b) + array([1, 2]) + + """ + if assume_unique: + ar1 = np.asarray(ar1).ravel() + else: + ar1 = unique(ar1) + ar2 = unique(ar2) + return ar1[_in1d(ar1, ar2, assume_unique=True, invert=True)] diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_arraysetops_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_arraysetops_impl.pyi new file mode 100644 index 0000000..a7ad5b9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_arraysetops_impl.pyi @@ -0,0 +1,444 @@ +from typing import Any, Generic, NamedTuple, SupportsIndex, TypeAlias, overload +from typing import Literal as L + +from typing_extensions import TypeVar, deprecated + +import numpy as np +from numpy._typing import ( + ArrayLike, + NDArray, + _ArrayLike, + _ArrayLikeBool_co, + _ArrayLikeNumber_co, +) + +__all__ = [ + "ediff1d", + "in1d", + "intersect1d", + "isin", + "setdiff1d", + "setxor1d", + "union1d", + "unique", + "unique_all", + "unique_counts", + "unique_inverse", + "unique_values", +] + +_ScalarT = TypeVar("_ScalarT", bound=np.generic) +_NumericT = TypeVar("_NumericT", bound=np.number | np.timedelta64 | np.object_) + +# Explicitly set all allowed values to prevent accidental castings to +# abstract dtypes (their common super-type). +# Only relevant if two or more arguments are parametrized, (e.g. `setdiff1d`) +# which could result in, for example, `int64` and `float64`producing a +# `number[_64Bit]` array +_EitherSCT = TypeVar( + "_EitherSCT", + np.bool, + np.int8, np.int16, np.int32, np.int64, np.intp, + np.uint8, np.uint16, np.uint32, np.uint64, np.uintp, + np.float16, np.float32, np.float64, np.longdouble, + np.complex64, np.complex128, np.clongdouble, + np.timedelta64, np.datetime64, + np.bytes_, np.str_, np.void, np.object_, + np.integer, np.floating, np.complexfloating, np.character, +) # fmt: skip + +_AnyArray: TypeAlias = NDArray[Any] +_IntArray: TypeAlias = NDArray[np.intp] + +### + +class UniqueAllResult(NamedTuple, Generic[_ScalarT]): + values: NDArray[_ScalarT] + indices: _IntArray + inverse_indices: _IntArray + counts: _IntArray + +class UniqueCountsResult(NamedTuple, Generic[_ScalarT]): + values: NDArray[_ScalarT] + counts: _IntArray + +class UniqueInverseResult(NamedTuple, Generic[_ScalarT]): + values: NDArray[_ScalarT] + inverse_indices: _IntArray + +# +@overload +def ediff1d( + ary: _ArrayLikeBool_co, + to_end: ArrayLike | None = None, + to_begin: ArrayLike | None = None, +) -> NDArray[np.int8]: ... +@overload +def ediff1d( + ary: _ArrayLike[_NumericT], + to_end: ArrayLike | None = None, + to_begin: ArrayLike | None = None, +) -> NDArray[_NumericT]: ... +@overload +def ediff1d( + ary: _ArrayLike[np.datetime64[Any]], + to_end: ArrayLike | None = None, + to_begin: ArrayLike | None = None, +) -> NDArray[np.timedelta64]: ... +@overload +def ediff1d( + ary: _ArrayLikeNumber_co, + to_end: ArrayLike | None = None, + to_begin: ArrayLike | None = None, +) -> _AnyArray: ... + +# +@overload # known scalar-type, FFF +def unique( + ar: _ArrayLike[_ScalarT], + return_index: L[False] = False, + return_inverse: L[False] = False, + return_counts: L[False] = False, + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> NDArray[_ScalarT]: ... +@overload # unknown scalar-type, FFF +def unique( + ar: ArrayLike, + return_index: L[False] = False, + return_inverse: L[False] = False, + return_counts: L[False] = False, + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> _AnyArray: ... +@overload # known scalar-type, TFF +def unique( + ar: _ArrayLike[_ScalarT], + return_index: L[True], + return_inverse: L[False] = False, + return_counts: L[False] = False, + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[NDArray[_ScalarT], _IntArray]: ... +@overload # unknown scalar-type, TFF +def unique( + ar: ArrayLike, + return_index: L[True], + return_inverse: L[False] = False, + return_counts: L[False] = False, + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[_AnyArray, _IntArray]: ... +@overload # known scalar-type, FTF (positional) +def unique( + ar: _ArrayLike[_ScalarT], + return_index: L[False], + return_inverse: L[True], + return_counts: L[False] = False, + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[NDArray[_ScalarT], _IntArray]: ... +@overload # known scalar-type, FTF (keyword) +def unique( + ar: _ArrayLike[_ScalarT], + return_index: L[False] = False, + *, + return_inverse: L[True], + return_counts: L[False] = False, + axis: SupportsIndex | None = None, + equal_nan: bool = True, +) -> tuple[NDArray[_ScalarT], _IntArray]: ... +@overload # unknown scalar-type, FTF (positional) +def unique( + ar: ArrayLike, + return_index: L[False], + return_inverse: L[True], + return_counts: L[False] = False, + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[_AnyArray, _IntArray]: ... +@overload # unknown scalar-type, FTF (keyword) +def unique( + ar: ArrayLike, + return_index: L[False] = False, + *, + return_inverse: L[True], + return_counts: L[False] = False, + axis: SupportsIndex | None = None, + equal_nan: bool = True, +) -> tuple[_AnyArray, _IntArray]: ... +@overload # known scalar-type, FFT (positional) +def unique( + ar: _ArrayLike[_ScalarT], + return_index: L[False], + return_inverse: L[False], + return_counts: L[True], + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[NDArray[_ScalarT], _IntArray]: ... +@overload # known scalar-type, FFT (keyword) +def unique( + ar: _ArrayLike[_ScalarT], + return_index: L[False] = False, + return_inverse: L[False] = False, + *, + return_counts: L[True], + axis: SupportsIndex | None = None, + equal_nan: bool = True, +) -> tuple[NDArray[_ScalarT], _IntArray]: ... +@overload # unknown scalar-type, FFT (positional) +def unique( + ar: ArrayLike, + return_index: L[False], + return_inverse: L[False], + return_counts: L[True], + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[_AnyArray, _IntArray]: ... +@overload # unknown scalar-type, FFT (keyword) +def unique( + ar: ArrayLike, + return_index: L[False] = False, + return_inverse: L[False] = False, + *, + return_counts: L[True], + axis: SupportsIndex | None = None, + equal_nan: bool = True, +) -> tuple[_AnyArray, _IntArray]: ... +@overload # known scalar-type, TTF +def unique( + ar: _ArrayLike[_ScalarT], + return_index: L[True], + return_inverse: L[True], + return_counts: L[False] = False, + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[NDArray[_ScalarT], _IntArray, _IntArray]: ... +@overload # unknown scalar-type, TTF +def unique( + ar: ArrayLike, + return_index: L[True], + return_inverse: L[True], + return_counts: L[False] = False, + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[_AnyArray, _IntArray, _IntArray]: ... +@overload # known scalar-type, TFT (positional) +def unique( + ar: _ArrayLike[_ScalarT], + return_index: L[True], + return_inverse: L[False], + return_counts: L[True], + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[NDArray[_ScalarT], _IntArray, _IntArray]: ... +@overload # known scalar-type, TFT (keyword) +def unique( + ar: _ArrayLike[_ScalarT], + return_index: L[True], + return_inverse: L[False] = False, + *, + return_counts: L[True], + axis: SupportsIndex | None = None, + equal_nan: bool = True, +) -> tuple[NDArray[_ScalarT], _IntArray, _IntArray]: ... +@overload # unknown scalar-type, TFT (positional) +def unique( + ar: ArrayLike, + return_index: L[True], + return_inverse: L[False], + return_counts: L[True], + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[_AnyArray, _IntArray, _IntArray]: ... +@overload # unknown scalar-type, TFT (keyword) +def unique( + ar: ArrayLike, + return_index: L[True], + return_inverse: L[False] = False, + *, + return_counts: L[True], + axis: SupportsIndex | None = None, + equal_nan: bool = True, +) -> tuple[_AnyArray, _IntArray, _IntArray]: ... +@overload # known scalar-type, FTT (positional) +def unique( + ar: _ArrayLike[_ScalarT], + return_index: L[False], + return_inverse: L[True], + return_counts: L[True], + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[NDArray[_ScalarT], _IntArray, _IntArray]: ... +@overload # known scalar-type, FTT (keyword) +def unique( + ar: _ArrayLike[_ScalarT], + return_index: L[False] = False, + *, + return_inverse: L[True], + return_counts: L[True], + axis: SupportsIndex | None = None, + equal_nan: bool = True, +) -> tuple[NDArray[_ScalarT], _IntArray, _IntArray]: ... +@overload # unknown scalar-type, FTT (positional) +def unique( + ar: ArrayLike, + return_index: L[False], + return_inverse: L[True], + return_counts: L[True], + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[_AnyArray, _IntArray, _IntArray]: ... +@overload # unknown scalar-type, FTT (keyword) +def unique( + ar: ArrayLike, + return_index: L[False] = False, + *, + return_inverse: L[True], + return_counts: L[True], + axis: SupportsIndex | None = None, + equal_nan: bool = True, +) -> tuple[_AnyArray, _IntArray, _IntArray]: ... +@overload # known scalar-type, TTT +def unique( + ar: _ArrayLike[_ScalarT], + return_index: L[True], + return_inverse: L[True], + return_counts: L[True], + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[NDArray[_ScalarT], _IntArray, _IntArray, _IntArray]: ... +@overload # unknown scalar-type, TTT +def unique( + ar: ArrayLike, + return_index: L[True], + return_inverse: L[True], + return_counts: L[True], + axis: SupportsIndex | None = None, + *, + equal_nan: bool = True, +) -> tuple[_AnyArray, _IntArray, _IntArray, _IntArray]: ... + +# +@overload +def unique_all(x: _ArrayLike[_ScalarT]) -> UniqueAllResult[_ScalarT]: ... +@overload +def unique_all(x: ArrayLike) -> UniqueAllResult[Any]: ... + +# +@overload +def unique_counts(x: _ArrayLike[_ScalarT]) -> UniqueCountsResult[_ScalarT]: ... +@overload +def unique_counts(x: ArrayLike) -> UniqueCountsResult[Any]: ... + +# +@overload +def unique_inverse(x: _ArrayLike[_ScalarT]) -> UniqueInverseResult[_ScalarT]: ... +@overload +def unique_inverse(x: ArrayLike) -> UniqueInverseResult[Any]: ... + +# +@overload +def unique_values(x: _ArrayLike[_ScalarT]) -> NDArray[_ScalarT]: ... +@overload +def unique_values(x: ArrayLike) -> _AnyArray: ... + +# +@overload # known scalar-type, return_indices=False (default) +def intersect1d( + ar1: _ArrayLike[_EitherSCT], + ar2: _ArrayLike[_EitherSCT], + assume_unique: bool = False, + return_indices: L[False] = False, +) -> NDArray[_EitherSCT]: ... +@overload # known scalar-type, return_indices=True (positional) +def intersect1d( + ar1: _ArrayLike[_EitherSCT], + ar2: _ArrayLike[_EitherSCT], + assume_unique: bool, + return_indices: L[True], +) -> tuple[NDArray[_EitherSCT], _IntArray, _IntArray]: ... +@overload # known scalar-type, return_indices=True (keyword) +def intersect1d( + ar1: _ArrayLike[_EitherSCT], + ar2: _ArrayLike[_EitherSCT], + assume_unique: bool = False, + *, + return_indices: L[True], +) -> tuple[NDArray[_EitherSCT], _IntArray, _IntArray]: ... +@overload # unknown scalar-type, return_indices=False (default) +def intersect1d( + ar1: ArrayLike, + ar2: ArrayLike, + assume_unique: bool = False, + return_indices: L[False] = False, +) -> _AnyArray: ... +@overload # unknown scalar-type, return_indices=True (positional) +def intersect1d( + ar1: ArrayLike, + ar2: ArrayLike, + assume_unique: bool, + return_indices: L[True], +) -> tuple[_AnyArray, _IntArray, _IntArray]: ... +@overload # unknown scalar-type, return_indices=True (keyword) +def intersect1d( + ar1: ArrayLike, + ar2: ArrayLike, + assume_unique: bool = False, + *, + return_indices: L[True], +) -> tuple[_AnyArray, _IntArray, _IntArray]: ... + +# +@overload +def setxor1d(ar1: _ArrayLike[_EitherSCT], ar2: _ArrayLike[_EitherSCT], assume_unique: bool = False) -> NDArray[_EitherSCT]: ... +@overload +def setxor1d(ar1: ArrayLike, ar2: ArrayLike, assume_unique: bool = False) -> _AnyArray: ... + +# +@overload +def union1d(ar1: _ArrayLike[_EitherSCT], ar2: _ArrayLike[_EitherSCT]) -> NDArray[_EitherSCT]: ... +@overload +def union1d(ar1: ArrayLike, ar2: ArrayLike) -> _AnyArray: ... + +# +@overload +def setdiff1d(ar1: _ArrayLike[_EitherSCT], ar2: _ArrayLike[_EitherSCT], assume_unique: bool = False) -> NDArray[_EitherSCT]: ... +@overload +def setdiff1d(ar1: ArrayLike, ar2: ArrayLike, assume_unique: bool = False) -> _AnyArray: ... + +# +def isin( + element: ArrayLike, + test_elements: ArrayLike, + assume_unique: bool = False, + invert: bool = False, + *, + kind: L["sort", "table"] | None = None, +) -> NDArray[np.bool]: ... + +# +@deprecated("Use 'isin' instead") +def in1d( + element: ArrayLike, + test_elements: ArrayLike, + assume_unique: bool = False, + invert: bool = False, + *, + kind: L["sort", "table"] | None = None, +) -> NDArray[np.bool]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_arrayterator_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_arrayterator_impl.py new file mode 100644 index 0000000..5f7c5fc --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_arrayterator_impl.py @@ -0,0 +1,224 @@ +""" +A buffered iterator for big arrays. + +This module solves the problem of iterating over a big file-based array +without having to read it into memory. The `Arrayterator` class wraps +an array object, and when iterated it will return sub-arrays with at most +a user-specified number of elements. + +""" +from functools import reduce +from operator import mul + +__all__ = ['Arrayterator'] + + +class Arrayterator: + """ + Buffered iterator for big arrays. + + `Arrayterator` creates a buffered iterator for reading big arrays in small + contiguous blocks. The class is useful for objects stored in the + file system. It allows iteration over the object *without* reading + everything in memory; instead, small blocks are read and iterated over. + + `Arrayterator` can be used with any object that supports multidimensional + slices. This includes NumPy arrays, but also variables from + Scientific.IO.NetCDF or pynetcdf for example. + + Parameters + ---------- + var : array_like + The object to iterate over. + buf_size : int, optional + The buffer size. If `buf_size` is supplied, the maximum amount of + data that will be read into memory is `buf_size` elements. + Default is None, which will read as many element as possible + into memory. + + Attributes + ---------- + var + buf_size + start + stop + step + shape + flat + + See Also + -------- + numpy.ndenumerate : Multidimensional array iterator. + numpy.flatiter : Flat array iterator. + numpy.memmap : Create a memory-map to an array stored + in a binary file on disk. + + Notes + ----- + The algorithm works by first finding a "running dimension", along which + the blocks will be extracted. Given an array of dimensions + ``(d1, d2, ..., dn)``, e.g. if `buf_size` is smaller than ``d1``, the + first dimension will be used. If, on the other hand, + ``d1 < buf_size < d1*d2`` the second dimension will be used, and so on. + Blocks are extracted along this dimension, and when the last block is + returned the process continues from the next dimension, until all + elements have been read. + + Examples + -------- + >>> import numpy as np + >>> a = np.arange(3 * 4 * 5 * 6).reshape(3, 4, 5, 6) + >>> a_itor = np.lib.Arrayterator(a, 2) + >>> a_itor.shape + (3, 4, 5, 6) + + Now we can iterate over ``a_itor``, and it will return arrays of size + two. Since `buf_size` was smaller than any dimension, the first + dimension will be iterated over first: + + >>> for subarr in a_itor: + ... if not subarr.all(): + ... print(subarr, subarr.shape) # doctest: +SKIP + >>> # [[[[0 1]]]] (1, 1, 1, 2) + + """ + + __module__ = "numpy.lib" + + def __init__(self, var, buf_size=None): + self.var = var + self.buf_size = buf_size + + self.start = [0 for dim in var.shape] + self.stop = list(var.shape) + self.step = [1 for dim in var.shape] + + def __getattr__(self, attr): + return getattr(self.var, attr) + + def __getitem__(self, index): + """ + Return a new arrayterator. + + """ + # Fix index, handling ellipsis and incomplete slices. + if not isinstance(index, tuple): + index = (index,) + fixed = [] + length, dims = len(index), self.ndim + for slice_ in index: + if slice_ is Ellipsis: + fixed.extend([slice(None)] * (dims - length + 1)) + length = len(fixed) + elif isinstance(slice_, int): + fixed.append(slice(slice_, slice_ + 1, 1)) + else: + fixed.append(slice_) + index = tuple(fixed) + if len(index) < dims: + index += (slice(None),) * (dims - len(index)) + + # Return a new arrayterator object. + out = self.__class__(self.var, self.buf_size) + for i, (start, stop, step, slice_) in enumerate( + zip(self.start, self.stop, self.step, index)): + out.start[i] = start + (slice_.start or 0) + out.step[i] = step * (slice_.step or 1) + out.stop[i] = start + (slice_.stop or stop - start) + out.stop[i] = min(stop, out.stop[i]) + return out + + def __array__(self, dtype=None, copy=None): + """ + Return corresponding data. + + """ + slice_ = tuple(slice(*t) for t in zip( + self.start, self.stop, self.step)) + return self.var[slice_] + + @property + def flat(self): + """ + A 1-D flat iterator for Arrayterator objects. + + This iterator returns elements of the array to be iterated over in + `~lib.Arrayterator` one by one. + It is similar to `flatiter`. + + See Also + -------- + lib.Arrayterator + flatiter + + Examples + -------- + >>> a = np.arange(3 * 4 * 5 * 6).reshape(3, 4, 5, 6) + >>> a_itor = np.lib.Arrayterator(a, 2) + + >>> for subarr in a_itor.flat: + ... if not subarr: + ... print(subarr, type(subarr)) + ... + 0 + + """ + for block in self: + yield from block.flat + + @property + def shape(self): + """ + The shape of the array to be iterated over. + + For an example, see `Arrayterator`. + + """ + return tuple(((stop - start - 1) // step + 1) for start, stop, step in + zip(self.start, self.stop, self.step)) + + def __iter__(self): + # Skip arrays with degenerate dimensions + if [dim for dim in self.shape if dim <= 0]: + return + + start = self.start[:] + stop = self.stop[:] + step = self.step[:] + ndims = self.var.ndim + + while True: + count = self.buf_size or reduce(mul, self.shape) + + # iterate over each dimension, looking for the + # running dimension (ie, the dimension along which + # the blocks will be built from) + rundim = 0 + for i in range(ndims - 1, -1, -1): + # if count is zero we ran out of elements to read + # along higher dimensions, so we read only a single position + if count == 0: + stop[i] = start[i] + 1 + elif count <= self.shape[i]: + # limit along this dimension + stop[i] = start[i] + count * step[i] + rundim = i + else: + # read everything along this dimension + stop[i] = self.stop[i] + stop[i] = min(self.stop[i], stop[i]) + count = count // self.shape[i] + + # yield a block + slice_ = tuple(slice(*t) for t in zip(start, stop, step)) + yield self.var[slice_] + + # Update start position, taking care of overflow to + # other dimensions + start[rundim] = stop[rundim] # start where we stopped + for i in range(ndims - 1, 0, -1): + if start[i] >= self.stop[i]: + start[i] = self.start[i] + start[i - 1] += self.step[i - 1] + if start[0] >= self.stop[0]: + return diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_arrayterator_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_arrayterator_impl.pyi new file mode 100644 index 0000000..e1a9e05 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_arrayterator_impl.pyi @@ -0,0 +1,46 @@ +# pyright: reportIncompatibleMethodOverride=false + +from collections.abc import Generator +from types import EllipsisType +from typing import Any, Final, TypeAlias, overload + +from typing_extensions import TypeVar + +import numpy as np +from numpy._typing import _AnyShape, _Shape + +__all__ = ["Arrayterator"] + +_ShapeT_co = TypeVar("_ShapeT_co", bound=_Shape, default=_AnyShape, covariant=True) +_DTypeT = TypeVar("_DTypeT", bound=np.dtype) +_DTypeT_co = TypeVar("_DTypeT_co", bound=np.dtype, default=np.dtype, covariant=True) +_ScalarT = TypeVar("_ScalarT", bound=np.generic) + +_AnyIndex: TypeAlias = EllipsisType | int | slice | tuple[EllipsisType | int | slice, ...] + +# NOTE: In reality `Arrayterator` does not actually inherit from `ndarray`, +# but its ``__getattr__` method does wrap around the former and thus has +# access to all its methods + +class Arrayterator(np.ndarray[_ShapeT_co, _DTypeT_co]): + var: np.ndarray[_ShapeT_co, _DTypeT_co] # type: ignore[assignment] + buf_size: Final[int | None] + start: Final[list[int]] + stop: Final[list[int]] + step: Final[list[int]] + + @property # type: ignore[misc] + def shape(self) -> _ShapeT_co: ... + @property + def flat(self: Arrayterator[Any, np.dtype[_ScalarT]]) -> Generator[_ScalarT]: ... # type: ignore[override] + + # + def __init__(self, /, var: np.ndarray[_ShapeT_co, _DTypeT_co], buf_size: int | None = None) -> None: ... + def __getitem__(self, index: _AnyIndex, /) -> Arrayterator[_AnyShape, _DTypeT_co]: ... # type: ignore[override] + def __iter__(self) -> Generator[np.ndarray[_AnyShape, _DTypeT_co]]: ... + + # + @overload # type: ignore[override] + def __array__(self, /, dtype: None = None, copy: bool | None = None) -> np.ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __array__(self, /, dtype: _DTypeT, copy: bool | None = None) -> np.ndarray[_ShapeT_co, _DTypeT]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_datasource.py b/.venv/lib/python3.12/site-packages/numpy/lib/_datasource.py new file mode 100644 index 0000000..72398c5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_datasource.py @@ -0,0 +1,700 @@ +"""A file interface for handling local and remote data files. + +The goal of datasource is to abstract some of the file system operations +when dealing with data files so the researcher doesn't have to know all the +low-level details. Through datasource, a researcher can obtain and use a +file with one function call, regardless of location of the file. + +DataSource is meant to augment standard python libraries, not replace them. +It should work seamlessly with standard file IO operations and the os +module. + +DataSource files can originate locally or remotely: + +- local files : '/home/guido/src/local/data.txt' +- URLs (http, ftp, ...) : 'http://www.scipy.org/not/real/data.txt' + +DataSource files can also be compressed or uncompressed. Currently only +gzip, bz2 and xz are supported. + +Example:: + + >>> # Create a DataSource, use os.curdir (default) for local storage. + >>> from numpy import DataSource + >>> ds = DataSource() + >>> + >>> # Open a remote file. + >>> # DataSource downloads the file, stores it locally in: + >>> # './www.google.com/index.html' + >>> # opens the file and returns a file object. + >>> fp = ds.open('http://www.google.com/') # doctest: +SKIP + >>> + >>> # Use the file as you normally would + >>> fp.read() # doctest: +SKIP + >>> fp.close() # doctest: +SKIP + +""" +import os + +from numpy._utils import set_module + +_open = open + + +def _check_mode(mode, encoding, newline): + """Check mode and that encoding and newline are compatible. + + Parameters + ---------- + mode : str + File open mode. + encoding : str + File encoding. + newline : str + Newline for text files. + + """ + if "t" in mode: + if "b" in mode: + raise ValueError(f"Invalid mode: {mode!r}") + else: + if encoding is not None: + raise ValueError("Argument 'encoding' not supported in binary mode") + if newline is not None: + raise ValueError("Argument 'newline' not supported in binary mode") + + +# Using a class instead of a module-level dictionary +# to reduce the initial 'import numpy' overhead by +# deferring the import of lzma, bz2 and gzip until needed + +# TODO: .zip support, .tar support? +class _FileOpeners: + """ + Container for different methods to open (un-)compressed files. + + `_FileOpeners` contains a dictionary that holds one method for each + supported file format. Attribute lookup is implemented in such a way + that an instance of `_FileOpeners` itself can be indexed with the keys + of that dictionary. Currently uncompressed files as well as files + compressed with ``gzip``, ``bz2`` or ``xz`` compression are supported. + + Notes + ----- + `_file_openers`, an instance of `_FileOpeners`, is made available for + use in the `_datasource` module. + + Examples + -------- + >>> import gzip + >>> np.lib._datasource._file_openers.keys() + [None, '.bz2', '.gz', '.xz', '.lzma'] + >>> np.lib._datasource._file_openers['.gz'] is gzip.open + True + + """ + + def __init__(self): + self._loaded = False + self._file_openers = {None: open} + + def _load(self): + if self._loaded: + return + + try: + import bz2 + self._file_openers[".bz2"] = bz2.open + except ImportError: + pass + + try: + import gzip + self._file_openers[".gz"] = gzip.open + except ImportError: + pass + + try: + import lzma + self._file_openers[".xz"] = lzma.open + self._file_openers[".lzma"] = lzma.open + except (ImportError, AttributeError): + # There are incompatible backports of lzma that do not have the + # lzma.open attribute, so catch that as well as ImportError. + pass + + self._loaded = True + + def keys(self): + """ + Return the keys of currently supported file openers. + + Parameters + ---------- + None + + Returns + ------- + keys : list + The keys are None for uncompressed files and the file extension + strings (i.e. ``'.gz'``, ``'.xz'``) for supported compression + methods. + + """ + self._load() + return list(self._file_openers.keys()) + + def __getitem__(self, key): + self._load() + return self._file_openers[key] + + +_file_openers = _FileOpeners() + +def open(path, mode='r', destpath=os.curdir, encoding=None, newline=None): + """ + Open `path` with `mode` and return the file object. + + If ``path`` is an URL, it will be downloaded, stored in the + `DataSource` `destpath` directory and opened from there. + + Parameters + ---------- + path : str or pathlib.Path + Local file path or URL to open. + mode : str, optional + Mode to open `path`. Mode 'r' for reading, 'w' for writing, 'a' to + append. Available modes depend on the type of object specified by + path. Default is 'r'. + destpath : str, optional + Path to the directory where the source file gets downloaded to for + use. If `destpath` is None, a temporary directory will be created. + The default path is the current directory. + encoding : {None, str}, optional + Open text file with given encoding. The default encoding will be + what `open` uses. + newline : {None, str}, optional + Newline to use when reading text file. + + Returns + ------- + out : file object + The opened file. + + Notes + ----- + This is a convenience function that instantiates a `DataSource` and + returns the file object from ``DataSource.open(path)``. + + """ + + ds = DataSource(destpath) + return ds.open(path, mode, encoding=encoding, newline=newline) + + +@set_module('numpy.lib.npyio') +class DataSource: + """ + DataSource(destpath='.') + + A generic data source file (file, http, ftp, ...). + + DataSources can be local files or remote files/URLs. The files may + also be compressed or uncompressed. DataSource hides some of the + low-level details of downloading the file, allowing you to simply pass + in a valid file path (or URL) and obtain a file object. + + Parameters + ---------- + destpath : str or None, optional + Path to the directory where the source file gets downloaded to for + use. If `destpath` is None, a temporary directory will be created. + The default path is the current directory. + + Notes + ----- + URLs require a scheme string (``http://``) to be used, without it they + will fail:: + + >>> repos = np.lib.npyio.DataSource() + >>> repos.exists('www.google.com/index.html') + False + >>> repos.exists('http://www.google.com/index.html') + True + + Temporary directories are deleted when the DataSource is deleted. + + Examples + -------- + :: + + >>> ds = np.lib.npyio.DataSource('/home/guido') + >>> urlname = 'http://www.google.com/' + >>> gfile = ds.open('http://www.google.com/') + >>> ds.abspath(urlname) + '/home/guido/www.google.com/index.html' + + >>> ds = np.lib.npyio.DataSource(None) # use with temporary file + >>> ds.open('/home/guido/foobar.txt') + + >>> ds.abspath('/home/guido/foobar.txt') + '/tmp/.../home/guido/foobar.txt' + + """ + + def __init__(self, destpath=os.curdir): + """Create a DataSource with a local path at destpath.""" + if destpath: + self._destpath = os.path.abspath(destpath) + self._istmpdest = False + else: + import tempfile # deferring import to improve startup time + self._destpath = tempfile.mkdtemp() + self._istmpdest = True + + def __del__(self): + # Remove temp directories + if hasattr(self, '_istmpdest') and self._istmpdest: + import shutil + + shutil.rmtree(self._destpath) + + def _iszip(self, filename): + """Test if the filename is a zip file by looking at the file extension. + + """ + fname, ext = os.path.splitext(filename) + return ext in _file_openers.keys() + + def _iswritemode(self, mode): + """Test if the given mode will open a file for writing.""" + + # Currently only used to test the bz2 files. + _writemodes = ("w", "+") + return any(c in _writemodes for c in mode) + + def _splitzipext(self, filename): + """Split zip extension from filename and return filename. + + Returns + ------- + base, zip_ext : {tuple} + + """ + + if self._iszip(filename): + return os.path.splitext(filename) + else: + return filename, None + + def _possible_names(self, filename): + """Return a tuple containing compressed filename variations.""" + names = [filename] + if not self._iszip(filename): + for zipext in _file_openers.keys(): + if zipext: + names.append(filename + zipext) + return names + + def _isurl(self, path): + """Test if path is a net location. Tests the scheme and netloc.""" + + # We do this here to reduce the 'import numpy' initial import time. + from urllib.parse import urlparse + + # BUG : URLs require a scheme string ('http://') to be used. + # www.google.com will fail. + # Should we prepend the scheme for those that don't have it and + # test that also? Similar to the way we append .gz and test for + # for compressed versions of files. + + scheme, netloc, upath, uparams, uquery, ufrag = urlparse(path) + return bool(scheme and netloc) + + def _cache(self, path): + """Cache the file specified by path. + + Creates a copy of the file in the datasource cache. + + """ + # We import these here because importing them is slow and + # a significant fraction of numpy's total import time. + import shutil + from urllib.request import urlopen + + upath = self.abspath(path) + + # ensure directory exists + if not os.path.exists(os.path.dirname(upath)): + os.makedirs(os.path.dirname(upath)) + + # TODO: Doesn't handle compressed files! + if self._isurl(path): + with urlopen(path) as openedurl: + with _open(upath, 'wb') as f: + shutil.copyfileobj(openedurl, f) + else: + shutil.copyfile(path, upath) + return upath + + def _findfile(self, path): + """Searches for ``path`` and returns full path if found. + + If path is an URL, _findfile will cache a local copy and return the + path to the cached file. If path is a local file, _findfile will + return a path to that local file. + + The search will include possible compressed versions of the file + and return the first occurrence found. + + """ + + # Build list of possible local file paths + if not self._isurl(path): + # Valid local paths + filelist = self._possible_names(path) + # Paths in self._destpath + filelist += self._possible_names(self.abspath(path)) + else: + # Cached URLs in self._destpath + filelist = self._possible_names(self.abspath(path)) + # Remote URLs + filelist = filelist + self._possible_names(path) + + for name in filelist: + if self.exists(name): + if self._isurl(name): + name = self._cache(name) + return name + return None + + def abspath(self, path): + """ + Return absolute path of file in the DataSource directory. + + If `path` is an URL, then `abspath` will return either the location + the file exists locally or the location it would exist when opened + using the `open` method. + + Parameters + ---------- + path : str or pathlib.Path + Can be a local file or a remote URL. + + Returns + ------- + out : str + Complete path, including the `DataSource` destination directory. + + Notes + ----- + The functionality is based on `os.path.abspath`. + + """ + # We do this here to reduce the 'import numpy' initial import time. + from urllib.parse import urlparse + + # TODO: This should be more robust. Handles case where path includes + # the destpath, but not other sub-paths. Failing case: + # path = /home/guido/datafile.txt + # destpath = /home/alex/ + # upath = self.abspath(path) + # upath == '/home/alex/home/guido/datafile.txt' + + # handle case where path includes self._destpath + splitpath = path.split(self._destpath, 2) + if len(splitpath) > 1: + path = splitpath[1] + scheme, netloc, upath, uparams, uquery, ufrag = urlparse(path) + netloc = self._sanitize_relative_path(netloc) + upath = self._sanitize_relative_path(upath) + return os.path.join(self._destpath, netloc, upath) + + def _sanitize_relative_path(self, path): + """Return a sanitised relative path for which + os.path.abspath(os.path.join(base, path)).startswith(base) + """ + last = None + path = os.path.normpath(path) + while path != last: + last = path + # Note: os.path.join treats '/' as os.sep on Windows + path = path.lstrip(os.sep).lstrip('/') + path = path.lstrip(os.pardir).removeprefix('..') + drive, path = os.path.splitdrive(path) # for Windows + return path + + def exists(self, path): + """ + Test if path exists. + + Test if `path` exists as (and in this order): + + - a local file. + - a remote URL that has been downloaded and stored locally in the + `DataSource` directory. + - a remote URL that has not been downloaded, but is valid and + accessible. + + Parameters + ---------- + path : str or pathlib.Path + Can be a local file or a remote URL. + + Returns + ------- + out : bool + True if `path` exists. + + Notes + ----- + When `path` is an URL, `exists` will return True if it's either + stored locally in the `DataSource` directory, or is a valid remote + URL. `DataSource` does not discriminate between the two, the file + is accessible if it exists in either location. + + """ + + # First test for local path + if os.path.exists(path): + return True + + # We import this here because importing urllib is slow and + # a significant fraction of numpy's total import time. + from urllib.error import URLError + from urllib.request import urlopen + + # Test cached url + upath = self.abspath(path) + if os.path.exists(upath): + return True + + # Test remote url + if self._isurl(path): + try: + netfile = urlopen(path) + netfile.close() + del netfile + return True + except URLError: + return False + return False + + def open(self, path, mode='r', encoding=None, newline=None): + """ + Open and return file-like object. + + If `path` is an URL, it will be downloaded, stored in the + `DataSource` directory and opened from there. + + Parameters + ---------- + path : str or pathlib.Path + Local file path or URL to open. + mode : {'r', 'w', 'a'}, optional + Mode to open `path`. Mode 'r' for reading, 'w' for writing, + 'a' to append. Available modes depend on the type of object + specified by `path`. Default is 'r'. + encoding : {None, str}, optional + Open text file with given encoding. The default encoding will be + what `open` uses. + newline : {None, str}, optional + Newline to use when reading text file. + + Returns + ------- + out : file object + File object. + + """ + + # TODO: There is no support for opening a file for writing which + # doesn't exist yet (creating a file). Should there be? + + # TODO: Add a ``subdir`` parameter for specifying the subdirectory + # used to store URLs in self._destpath. + + if self._isurl(path) and self._iswritemode(mode): + raise ValueError("URLs are not writeable") + + # NOTE: _findfile will fail on a new file opened for writing. + found = self._findfile(path) + if found: + _fname, ext = self._splitzipext(found) + if ext == 'bz2': + mode.replace("+", "") + return _file_openers[ext](found, mode=mode, + encoding=encoding, newline=newline) + else: + raise FileNotFoundError(f"{path} not found.") + + +class Repository (DataSource): + """ + Repository(baseurl, destpath='.') + + A data repository where multiple DataSource's share a base + URL/directory. + + `Repository` extends `DataSource` by prepending a base URL (or + directory) to all the files it handles. Use `Repository` when you will + be working with multiple files from one base URL. Initialize + `Repository` with the base URL, then refer to each file by its filename + only. + + Parameters + ---------- + baseurl : str + Path to the local directory or remote location that contains the + data files. + destpath : str or None, optional + Path to the directory where the source file gets downloaded to for + use. If `destpath` is None, a temporary directory will be created. + The default path is the current directory. + + Examples + -------- + To analyze all files in the repository, do something like this + (note: this is not self-contained code):: + + >>> repos = np.lib._datasource.Repository('/home/user/data/dir/') + >>> for filename in filelist: + ... fp = repos.open(filename) + ... fp.analyze() + ... fp.close() + + Similarly you could use a URL for a repository:: + + >>> repos = np.lib._datasource.Repository('http://www.xyz.edu/data') + + """ + + def __init__(self, baseurl, destpath=os.curdir): + """Create a Repository with a shared url or directory of baseurl.""" + DataSource.__init__(self, destpath=destpath) + self._baseurl = baseurl + + def __del__(self): + DataSource.__del__(self) + + def _fullpath(self, path): + """Return complete path for path. Prepends baseurl if necessary.""" + splitpath = path.split(self._baseurl, 2) + if len(splitpath) == 1: + result = os.path.join(self._baseurl, path) + else: + result = path # path contains baseurl already + return result + + def _findfile(self, path): + """Extend DataSource method to prepend baseurl to ``path``.""" + return DataSource._findfile(self, self._fullpath(path)) + + def abspath(self, path): + """ + Return absolute path of file in the Repository directory. + + If `path` is an URL, then `abspath` will return either the location + the file exists locally or the location it would exist when opened + using the `open` method. + + Parameters + ---------- + path : str or pathlib.Path + Can be a local file or a remote URL. This may, but does not + have to, include the `baseurl` with which the `Repository` was + initialized. + + Returns + ------- + out : str + Complete path, including the `DataSource` destination directory. + + """ + return DataSource.abspath(self, self._fullpath(path)) + + def exists(self, path): + """ + Test if path exists prepending Repository base URL to path. + + Test if `path` exists as (and in this order): + + - a local file. + - a remote URL that has been downloaded and stored locally in the + `DataSource` directory. + - a remote URL that has not been downloaded, but is valid and + accessible. + + Parameters + ---------- + path : str or pathlib.Path + Can be a local file or a remote URL. This may, but does not + have to, include the `baseurl` with which the `Repository` was + initialized. + + Returns + ------- + out : bool + True if `path` exists. + + Notes + ----- + When `path` is an URL, `exists` will return True if it's either + stored locally in the `DataSource` directory, or is a valid remote + URL. `DataSource` does not discriminate between the two, the file + is accessible if it exists in either location. + + """ + return DataSource.exists(self, self._fullpath(path)) + + def open(self, path, mode='r', encoding=None, newline=None): + """ + Open and return file-like object prepending Repository base URL. + + If `path` is an URL, it will be downloaded, stored in the + DataSource directory and opened from there. + + Parameters + ---------- + path : str or pathlib.Path + Local file path or URL to open. This may, but does not have to, + include the `baseurl` with which the `Repository` was + initialized. + mode : {'r', 'w', 'a'}, optional + Mode to open `path`. Mode 'r' for reading, 'w' for writing, + 'a' to append. Available modes depend on the type of object + specified by `path`. Default is 'r'. + encoding : {None, str}, optional + Open text file with given encoding. The default encoding will be + what `open` uses. + newline : {None, str}, optional + Newline to use when reading text file. + + Returns + ------- + out : file object + File object. + + """ + return DataSource.open(self, self._fullpath(path), mode, + encoding=encoding, newline=newline) + + def listdir(self): + """ + List files in the source Repository. + + Returns + ------- + files : list of str or pathlib.Path + List of file names (not containing a directory part). + + Notes + ----- + Does not currently work for remote repositories. + + """ + if self._isurl(self._baseurl): + raise NotImplementedError( + "Directory listing of URLs, not supported yet.") + else: + return os.listdir(self._baseurl) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_datasource.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_datasource.pyi new file mode 100644 index 0000000..9f91fdf --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_datasource.pyi @@ -0,0 +1,31 @@ +from pathlib import Path +from typing import IO, Any, TypeAlias + +from _typeshed import OpenBinaryMode, OpenTextMode + +_Mode: TypeAlias = OpenBinaryMode | OpenTextMode + +### + +# exported in numpy.lib.nppyio +class DataSource: + def __init__(self, /, destpath: Path | str | None = ...) -> None: ... + def __del__(self, /) -> None: ... + def abspath(self, /, path: str) -> str: ... + def exists(self, /, path: str) -> bool: ... + + # Whether the file-object is opened in string or bytes mode (by default) + # depends on the file-extension of `path` + def open(self, /, path: str, mode: _Mode = "r", encoding: str | None = None, newline: str | None = None) -> IO[Any]: ... + +class Repository(DataSource): + def __init__(self, /, baseurl: str, destpath: str | None = ...) -> None: ... + def listdir(self, /) -> list[str]: ... + +def open( + path: str, + mode: _Mode = "r", + destpath: str | None = ..., + encoding: str | None = None, + newline: str | None = None, +) -> IO[Any]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_format_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_format_impl.py new file mode 100644 index 0000000..7378ba5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_format_impl.py @@ -0,0 +1,1036 @@ +""" +Binary serialization + +NPY format +========== + +A simple format for saving numpy arrays to disk with the full +information about them. + +The ``.npy`` format is the standard binary file format in NumPy for +persisting a *single* arbitrary NumPy array on disk. The format stores all +of the shape and dtype information necessary to reconstruct the array +correctly even on another machine with a different architecture. +The format is designed to be as simple as possible while achieving +its limited goals. + +The ``.npz`` format is the standard format for persisting *multiple* NumPy +arrays on disk. A ``.npz`` file is a zip file containing multiple ``.npy`` +files, one for each array. + +Capabilities +------------ + +- Can represent all NumPy arrays including nested record arrays and + object arrays. + +- Represents the data in its native binary form. + +- Supports Fortran-contiguous arrays directly. + +- Stores all of the necessary information to reconstruct the array + including shape and dtype on a machine of a different + architecture. Both little-endian and big-endian arrays are + supported, and a file with little-endian numbers will yield + a little-endian array on any machine reading the file. The + types are described in terms of their actual sizes. For example, + if a machine with a 64-bit C "long int" writes out an array with + "long ints", a reading machine with 32-bit C "long ints" will yield + an array with 64-bit integers. + +- Is straightforward to reverse engineer. Datasets often live longer than + the programs that created them. A competent developer should be + able to create a solution in their preferred programming language to + read most ``.npy`` files that they have been given without much + documentation. + +- Allows memory-mapping of the data. See `open_memmap`. + +- Can be read from a filelike stream object instead of an actual file. + +- Stores object arrays, i.e. arrays containing elements that are arbitrary + Python objects. Files with object arrays are not to be mmapable, but + can be read and written to disk. + +Limitations +----------- + +- Arbitrary subclasses of numpy.ndarray are not completely preserved. + Subclasses will be accepted for writing, but only the array data will + be written out. A regular numpy.ndarray object will be created + upon reading the file. + +.. warning:: + + Due to limitations in the interpretation of structured dtypes, dtypes + with fields with empty names will have the names replaced by 'f0', 'f1', + etc. Such arrays will not round-trip through the format entirely + accurately. The data is intact; only the field names will differ. We are + working on a fix for this. This fix will not require a change in the + file format. The arrays with such structures can still be saved and + restored, and the correct dtype may be restored by using the + ``loadedarray.view(correct_dtype)`` method. + +File extensions +--------------- + +We recommend using the ``.npy`` and ``.npz`` extensions for files saved +in this format. This is by no means a requirement; applications may wish +to use these file formats but use an extension specific to the +application. In the absence of an obvious alternative, however, +we suggest using ``.npy`` and ``.npz``. + +Version numbering +----------------- + +The version numbering of these formats is independent of NumPy version +numbering. If the format is upgraded, the code in `numpy.io` will still +be able to read and write Version 1.0 files. + +Format Version 1.0 +------------------ + +The first 6 bytes are a magic string: exactly ``\\x93NUMPY``. + +The next 1 byte is an unsigned byte: the major version number of the file +format, e.g. ``\\x01``. + +The next 1 byte is an unsigned byte: the minor version number of the file +format, e.g. ``\\x00``. Note: the version of the file format is not tied +to the version of the numpy package. + +The next 2 bytes form a little-endian unsigned short int: the length of +the header data HEADER_LEN. + +The next HEADER_LEN bytes form the header data describing the array's +format. It is an ASCII string which contains a Python literal expression +of a dictionary. It is terminated by a newline (``\\n``) and padded with +spaces (``\\x20``) to make the total of +``len(magic string) + 2 + len(length) + HEADER_LEN`` be evenly divisible +by 64 for alignment purposes. + +The dictionary contains three keys: + + "descr" : dtype.descr + An object that can be passed as an argument to the `numpy.dtype` + constructor to create the array's dtype. + "fortran_order" : bool + Whether the array data is Fortran-contiguous or not. Since + Fortran-contiguous arrays are a common form of non-C-contiguity, + we allow them to be written directly to disk for efficiency. + "shape" : tuple of int + The shape of the array. + +For repeatability and readability, the dictionary keys are sorted in +alphabetic order. This is for convenience only. A writer SHOULD implement +this if possible. A reader MUST NOT depend on this. + +Following the header comes the array data. If the dtype contains Python +objects (i.e. ``dtype.hasobject is True``), then the data is a Python +pickle of the array. Otherwise the data is the contiguous (either C- +or Fortran-, depending on ``fortran_order``) bytes of the array. +Consumers can figure out the number of bytes by multiplying the number +of elements given by the shape (noting that ``shape=()`` means there is +1 element) by ``dtype.itemsize``. + +Format Version 2.0 +------------------ + +The version 1.0 format only allowed the array header to have a total size of +65535 bytes. This can be exceeded by structured arrays with a large number of +columns. The version 2.0 format extends the header size to 4 GiB. +`numpy.save` will automatically save in 2.0 format if the data requires it, +else it will always use the more compatible 1.0 format. + +The description of the fourth element of the header therefore has become: +"The next 4 bytes form a little-endian unsigned int: the length of the header +data HEADER_LEN." + +Format Version 3.0 +------------------ + +This version replaces the ASCII string (which in practice was latin1) with +a utf8-encoded string, so supports structured types with any unicode field +names. + +Notes +----- +The ``.npy`` format, including motivation for creating it and a comparison of +alternatives, is described in the +:doc:`"npy-format" NEP `, however details have +evolved with time and this document is more current. + +""" +import io +import os +import pickle +import warnings + +import numpy +from numpy._utils import set_module +from numpy.lib._utils_impl import drop_metadata + +__all__ = [] + +drop_metadata.__module__ = "numpy.lib.format" + +EXPECTED_KEYS = {'descr', 'fortran_order', 'shape'} +MAGIC_PREFIX = b'\x93NUMPY' +MAGIC_LEN = len(MAGIC_PREFIX) + 2 +ARRAY_ALIGN = 64 # plausible values are powers of 2 between 16 and 4096 +BUFFER_SIZE = 2**18 # size of buffer for reading npz files in bytes +# allow growth within the address space of a 64 bit machine along one axis +GROWTH_AXIS_MAX_DIGITS = 21 # = len(str(8*2**64-1)) hypothetical int1 dtype + +# difference between version 1.0 and 2.0 is a 4 byte (I) header length +# instead of 2 bytes (H) allowing storage of large structured arrays +_header_size_info = { + (1, 0): (' 255: + raise ValueError("major version must be 0 <= major < 256") + if minor < 0 or minor > 255: + raise ValueError("minor version must be 0 <= minor < 256") + return MAGIC_PREFIX + bytes([major, minor]) + + +@set_module("numpy.lib.format") +def read_magic(fp): + """ Read the magic string to get the version of the file format. + + Parameters + ---------- + fp : filelike object + + Returns + ------- + major : int + minor : int + """ + magic_str = _read_bytes(fp, MAGIC_LEN, "magic string") + if magic_str[:-2] != MAGIC_PREFIX: + msg = "the magic string is not correct; expected %r, got %r" + raise ValueError(msg % (MAGIC_PREFIX, magic_str[:-2])) + major, minor = magic_str[-2:] + return major, minor + + +@set_module("numpy.lib.format") +def dtype_to_descr(dtype): + """ + Get a serializable descriptor from the dtype. + + The .descr attribute of a dtype object cannot be round-tripped through + the dtype() constructor. Simple types, like dtype('float32'), have + a descr which looks like a record array with one field with '' as + a name. The dtype() constructor interprets this as a request to give + a default name. Instead, we construct descriptor that can be passed to + dtype(). + + Parameters + ---------- + dtype : dtype + The dtype of the array that will be written to disk. + + Returns + ------- + descr : object + An object that can be passed to `numpy.dtype()` in order to + replicate the input dtype. + + """ + # NOTE: that drop_metadata may not return the right dtype e.g. for user + # dtypes. In that case our code below would fail the same, though. + new_dtype = drop_metadata(dtype) + if new_dtype is not dtype: + warnings.warn("metadata on a dtype is not saved to an npy/npz. " + "Use another format (such as pickle) to store it.", + UserWarning, stacklevel=2) + dtype = new_dtype + + if dtype.names is not None: + # This is a record array. The .descr is fine. XXX: parts of the + # record array with an empty name, like padding bytes, still get + # fiddled with. This needs to be fixed in the C implementation of + # dtype(). + return dtype.descr + elif not type(dtype)._legacy: + # this must be a user-defined dtype since numpy does not yet expose any + # non-legacy dtypes in the public API + # + # non-legacy dtypes don't yet have __array_interface__ + # support. Instead, as a hack, we use pickle to save the array, and lie + # that the dtype is object. When the array is loaded, the descriptor is + # unpickled with the array and the object dtype in the header is + # discarded. + # + # a future NEP should define a way to serialize user-defined + # descriptors and ideally work out the possible security implications + warnings.warn("Custom dtypes are saved as python objects using the " + "pickle protocol. Loading this file requires " + "allow_pickle=True to be set.", + UserWarning, stacklevel=2) + return "|O" + else: + return dtype.str + + +@set_module("numpy.lib.format") +def descr_to_dtype(descr): + """ + Returns a dtype based off the given description. + + This is essentially the reverse of `~lib.format.dtype_to_descr`. It will + remove the valueless padding fields created by, i.e. simple fields like + dtype('float32'), and then convert the description to its corresponding + dtype. + + Parameters + ---------- + descr : object + The object retrieved by dtype.descr. Can be passed to + `numpy.dtype` in order to replicate the input dtype. + + Returns + ------- + dtype : dtype + The dtype constructed by the description. + + """ + if isinstance(descr, str): + # No padding removal needed + return numpy.dtype(descr) + elif isinstance(descr, tuple): + # subtype, will always have a shape descr[1] + dt = descr_to_dtype(descr[0]) + return numpy.dtype((dt, descr[1])) + + titles = [] + names = [] + formats = [] + offsets = [] + offset = 0 + for field in descr: + if len(field) == 2: + name, descr_str = field + dt = descr_to_dtype(descr_str) + else: + name, descr_str, shape = field + dt = numpy.dtype((descr_to_dtype(descr_str), shape)) + + # Ignore padding bytes, which will be void bytes with '' as name + # Once support for blank names is removed, only "if name == ''" needed) + is_pad = (name == '' and dt.type is numpy.void and dt.names is None) + if not is_pad: + title, name = name if isinstance(name, tuple) else (None, name) + titles.append(title) + names.append(name) + formats.append(dt) + offsets.append(offset) + offset += dt.itemsize + + return numpy.dtype({'names': names, 'formats': formats, 'titles': titles, + 'offsets': offsets, 'itemsize': offset}) + + +@set_module("numpy.lib.format") +def header_data_from_array_1_0(array): + """ Get the dictionary of header metadata from a numpy.ndarray. + + Parameters + ---------- + array : numpy.ndarray + + Returns + ------- + d : dict + This has the appropriate entries for writing its string representation + to the header of the file. + """ + d = {'shape': array.shape} + if array.flags.c_contiguous: + d['fortran_order'] = False + elif array.flags.f_contiguous: + d['fortran_order'] = True + else: + # Totally non-contiguous data. We will have to make it C-contiguous + # before writing. Note that we need to test for C_CONTIGUOUS first + # because a 1-D array is both C_CONTIGUOUS and F_CONTIGUOUS. + d['fortran_order'] = False + + d['descr'] = dtype_to_descr(array.dtype) + return d + + +def _wrap_header(header, version): + """ + Takes a stringified header, and attaches the prefix and padding to it + """ + import struct + assert version is not None + fmt, encoding = _header_size_info[version] + header = header.encode(encoding) + hlen = len(header) + 1 + padlen = ARRAY_ALIGN - ((MAGIC_LEN + struct.calcsize(fmt) + hlen) % ARRAY_ALIGN) + try: + header_prefix = magic(*version) + struct.pack(fmt, hlen + padlen) + except struct.error: + msg = f"Header length {hlen} too big for version={version}" + raise ValueError(msg) from None + + # Pad the header with spaces and a final newline such that the magic + # string, the header-length short and the header are aligned on a + # ARRAY_ALIGN byte boundary. This supports memory mapping of dtypes + # aligned up to ARRAY_ALIGN on systems like Linux where mmap() + # offset must be page-aligned (i.e. the beginning of the file). + return header_prefix + header + b' ' * padlen + b'\n' + + +def _wrap_header_guess_version(header): + """ + Like `_wrap_header`, but chooses an appropriate version given the contents + """ + try: + return _wrap_header(header, (1, 0)) + except ValueError: + pass + + try: + ret = _wrap_header(header, (2, 0)) + except UnicodeEncodeError: + pass + else: + warnings.warn("Stored array in format 2.0. It can only be" + "read by NumPy >= 1.9", UserWarning, stacklevel=2) + return ret + + header = _wrap_header(header, (3, 0)) + warnings.warn("Stored array in format 3.0. It can only be " + "read by NumPy >= 1.17", UserWarning, stacklevel=2) + return header + + +def _write_array_header(fp, d, version=None): + """ Write the header for an array and returns the version used + + Parameters + ---------- + fp : filelike object + d : dict + This has the appropriate entries for writing its string representation + to the header of the file. + version : tuple or None + None means use oldest that works. Providing an explicit version will + raise a ValueError if the format does not allow saving this data. + Default: None + """ + header = ["{"] + for key, value in sorted(d.items()): + # Need to use repr here, since we eval these when reading + header.append(f"'{key}': {repr(value)}, ") + header.append("}") + header = "".join(header) + + # Add some spare space so that the array header can be modified in-place + # when changing the array size, e.g. when growing it by appending data at + # the end. + shape = d['shape'] + header += " " * ((GROWTH_AXIS_MAX_DIGITS - len(repr( + shape[-1 if d['fortran_order'] else 0] + ))) if len(shape) > 0 else 0) + + if version is None: + header = _wrap_header_guess_version(header) + else: + header = _wrap_header(header, version) + fp.write(header) + + +@set_module("numpy.lib.format") +def write_array_header_1_0(fp, d): + """ Write the header for an array using the 1.0 format. + + Parameters + ---------- + fp : filelike object + d : dict + This has the appropriate entries for writing its string + representation to the header of the file. + """ + _write_array_header(fp, d, (1, 0)) + + +@set_module("numpy.lib.format") +def write_array_header_2_0(fp, d): + """ Write the header for an array using the 2.0 format. + The 2.0 format allows storing very large structured arrays. + + Parameters + ---------- + fp : filelike object + d : dict + This has the appropriate entries for writing its string + representation to the header of the file. + """ + _write_array_header(fp, d, (2, 0)) + + +@set_module("numpy.lib.format") +def read_array_header_1_0(fp, max_header_size=_MAX_HEADER_SIZE): + """ + Read an array header from a filelike object using the 1.0 file format + version. + + This will leave the file object located just after the header. + + Parameters + ---------- + fp : filelike object + A file object or something with a `.read()` method like a file. + + Returns + ------- + shape : tuple of int + The shape of the array. + fortran_order : bool + The array data will be written out directly if it is either + C-contiguous or Fortran-contiguous. Otherwise, it will be made + contiguous before writing it out. + dtype : dtype + The dtype of the file's data. + max_header_size : int, optional + Maximum allowed size of the header. Large headers may not be safe + to load securely and thus require explicitly passing a larger value. + See :py:func:`ast.literal_eval()` for details. + + Raises + ------ + ValueError + If the data is invalid. + + """ + return _read_array_header( + fp, version=(1, 0), max_header_size=max_header_size) + + +@set_module("numpy.lib.format") +def read_array_header_2_0(fp, max_header_size=_MAX_HEADER_SIZE): + """ + Read an array header from a filelike object using the 2.0 file format + version. + + This will leave the file object located just after the header. + + Parameters + ---------- + fp : filelike object + A file object or something with a `.read()` method like a file. + max_header_size : int, optional + Maximum allowed size of the header. Large headers may not be safe + to load securely and thus require explicitly passing a larger value. + See :py:func:`ast.literal_eval()` for details. + + Returns + ------- + shape : tuple of int + The shape of the array. + fortran_order : bool + The array data will be written out directly if it is either + C-contiguous or Fortran-contiguous. Otherwise, it will be made + contiguous before writing it out. + dtype : dtype + The dtype of the file's data. + + Raises + ------ + ValueError + If the data is invalid. + + """ + return _read_array_header( + fp, version=(2, 0), max_header_size=max_header_size) + + +def _filter_header(s): + """Clean up 'L' in npz header ints. + + Cleans up the 'L' in strings representing integers. Needed to allow npz + headers produced in Python2 to be read in Python3. + + Parameters + ---------- + s : string + Npy file header. + + Returns + ------- + header : str + Cleaned up header. + + """ + import tokenize + from io import StringIO + + tokens = [] + last_token_was_number = False + for token in tokenize.generate_tokens(StringIO(s).readline): + token_type = token[0] + token_string = token[1] + if (last_token_was_number and + token_type == tokenize.NAME and + token_string == "L"): + continue + else: + tokens.append(token) + last_token_was_number = (token_type == tokenize.NUMBER) + return tokenize.untokenize(tokens) + + +def _read_array_header(fp, version, max_header_size=_MAX_HEADER_SIZE): + """ + see read_array_header_1_0 + """ + # Read an unsigned, little-endian short int which has the length of the + # header. + import ast + import struct + hinfo = _header_size_info.get(version) + if hinfo is None: + raise ValueError(f"Invalid version {version!r}") + hlength_type, encoding = hinfo + + hlength_str = _read_bytes(fp, struct.calcsize(hlength_type), "array header length") + header_length = struct.unpack(hlength_type, hlength_str)[0] + header = _read_bytes(fp, header_length, "array header") + header = header.decode(encoding) + if len(header) > max_header_size: + raise ValueError( + f"Header info length ({len(header)}) is large and may not be safe " + "to load securely.\n" + "To allow loading, adjust `max_header_size` or fully trust " + "the `.npy` file using `allow_pickle=True`.\n" + "For safety against large resource use or crashes, sandboxing " + "may be necessary.") + + # The header is a pretty-printed string representation of a literal + # Python dictionary with trailing newlines padded to a ARRAY_ALIGN byte + # boundary. The keys are strings. + # "shape" : tuple of int + # "fortran_order" : bool + # "descr" : dtype.descr + # Versions (2, 0) and (1, 0) could have been created by a Python 2 + # implementation before header filtering was implemented. + # + # For performance reasons, we try without _filter_header first though + try: + d = ast.literal_eval(header) + except SyntaxError as e: + if version <= (2, 0): + header = _filter_header(header) + try: + d = ast.literal_eval(header) + except SyntaxError as e2: + msg = "Cannot parse header: {!r}" + raise ValueError(msg.format(header)) from e2 + else: + warnings.warn( + "Reading `.npy` or `.npz` file required additional " + "header parsing as it was created on Python 2. Save the " + "file again to speed up loading and avoid this warning.", + UserWarning, stacklevel=4) + else: + msg = "Cannot parse header: {!r}" + raise ValueError(msg.format(header)) from e + if not isinstance(d, dict): + msg = "Header is not a dictionary: {!r}" + raise ValueError(msg.format(d)) + + if EXPECTED_KEYS != d.keys(): + keys = sorted(d.keys()) + msg = "Header does not contain the correct keys: {!r}" + raise ValueError(msg.format(keys)) + + # Sanity-check the values. + if (not isinstance(d['shape'], tuple) or + not all(isinstance(x, int) for x in d['shape'])): + msg = "shape is not valid: {!r}" + raise ValueError(msg.format(d['shape'])) + if not isinstance(d['fortran_order'], bool): + msg = "fortran_order is not a valid bool: {!r}" + raise ValueError(msg.format(d['fortran_order'])) + try: + dtype = descr_to_dtype(d['descr']) + except TypeError as e: + msg = "descr is not a valid dtype descriptor: {!r}" + raise ValueError(msg.format(d['descr'])) from e + + return d['shape'], d['fortran_order'], dtype + + +@set_module("numpy.lib.format") +def write_array(fp, array, version=None, allow_pickle=True, pickle_kwargs=None): + """ + Write an array to an NPY file, including a header. + + If the array is neither C-contiguous nor Fortran-contiguous AND the + file_like object is not a real file object, this function will have to + copy data in memory. + + Parameters + ---------- + fp : file_like object + An open, writable file object, or similar object with a + ``.write()`` method. + array : ndarray + The array to write to disk. + version : (int, int) or None, optional + The version number of the format. None means use the oldest + supported version that is able to store the data. Default: None + allow_pickle : bool, optional + Whether to allow writing pickled data. Default: True + pickle_kwargs : dict, optional + Additional keyword arguments to pass to pickle.dump, excluding + 'protocol'. These are only useful when pickling objects in object + arrays to Python 2 compatible format. + + Raises + ------ + ValueError + If the array cannot be persisted. This includes the case of + allow_pickle=False and array being an object array. + Various other errors + If the array contains Python objects as part of its dtype, the + process of pickling them may raise various errors if the objects + are not picklable. + + """ + _check_version(version) + _write_array_header(fp, header_data_from_array_1_0(array), version) + + if array.itemsize == 0: + buffersize = 0 + else: + # Set buffer size to 16 MiB to hide the Python loop overhead. + buffersize = max(16 * 1024 ** 2 // array.itemsize, 1) + + dtype_class = type(array.dtype) + + if array.dtype.hasobject or not dtype_class._legacy: + # We contain Python objects so we cannot write out the data + # directly. Instead, we will pickle it out + if not allow_pickle: + if array.dtype.hasobject: + raise ValueError("Object arrays cannot be saved when " + "allow_pickle=False") + if not dtype_class._legacy: + raise ValueError("User-defined dtypes cannot be saved " + "when allow_pickle=False") + if pickle_kwargs is None: + pickle_kwargs = {} + pickle.dump(array, fp, protocol=4, **pickle_kwargs) + elif array.flags.f_contiguous and not array.flags.c_contiguous: + if isfileobj(fp): + array.T.tofile(fp) + else: + for chunk in numpy.nditer( + array, flags=['external_loop', 'buffered', 'zerosize_ok'], + buffersize=buffersize, order='F'): + fp.write(chunk.tobytes('C')) + elif isfileobj(fp): + array.tofile(fp) + else: + for chunk in numpy.nditer( + array, flags=['external_loop', 'buffered', 'zerosize_ok'], + buffersize=buffersize, order='C'): + fp.write(chunk.tobytes('C')) + + +@set_module("numpy.lib.format") +def read_array(fp, allow_pickle=False, pickle_kwargs=None, *, + max_header_size=_MAX_HEADER_SIZE): + """ + Read an array from an NPY file. + + Parameters + ---------- + fp : file_like object + If this is not a real file object, then this may take extra memory + and time. + allow_pickle : bool, optional + Whether to allow writing pickled data. Default: False + pickle_kwargs : dict + Additional keyword arguments to pass to pickle.load. These are only + useful when loading object arrays saved on Python 2. + max_header_size : int, optional + Maximum allowed size of the header. Large headers may not be safe + to load securely and thus require explicitly passing a larger value. + See :py:func:`ast.literal_eval()` for details. + This option is ignored when `allow_pickle` is passed. In that case + the file is by definition trusted and the limit is unnecessary. + + Returns + ------- + array : ndarray + The array from the data on disk. + + Raises + ------ + ValueError + If the data is invalid, or allow_pickle=False and the file contains + an object array. + + """ + if allow_pickle: + # Effectively ignore max_header_size, since `allow_pickle` indicates + # that the input is fully trusted. + max_header_size = 2**64 + + version = read_magic(fp) + _check_version(version) + shape, fortran_order, dtype = _read_array_header( + fp, version, max_header_size=max_header_size) + if len(shape) == 0: + count = 1 + else: + count = numpy.multiply.reduce(shape, dtype=numpy.int64) + + # Now read the actual data. + if dtype.hasobject: + # The array contained Python objects. We need to unpickle the data. + if not allow_pickle: + raise ValueError("Object arrays cannot be loaded when " + "allow_pickle=False") + if pickle_kwargs is None: + pickle_kwargs = {} + try: + array = pickle.load(fp, **pickle_kwargs) + except UnicodeError as err: + # Friendlier error message + raise UnicodeError("Unpickling a python object failed: %r\n" + "You may need to pass the encoding= option " + "to numpy.load" % (err,)) from err + else: + if isfileobj(fp): + # We can use the fast fromfile() function. + array = numpy.fromfile(fp, dtype=dtype, count=count) + else: + # This is not a real file. We have to read it the + # memory-intensive way. + # crc32 module fails on reads greater than 2 ** 32 bytes, + # breaking large reads from gzip streams. Chunk reads to + # BUFFER_SIZE bytes to avoid issue and reduce memory overhead + # of the read. In non-chunked case count < max_read_count, so + # only one read is performed. + + # Use np.ndarray instead of np.empty since the latter does + # not correctly instantiate zero-width string dtypes; see + # https://github.com/numpy/numpy/pull/6430 + array = numpy.ndarray(count, dtype=dtype) + + if dtype.itemsize > 0: + # If dtype.itemsize == 0 then there's nothing more to read + max_read_count = BUFFER_SIZE // min(BUFFER_SIZE, dtype.itemsize) + + for i in range(0, count, max_read_count): + read_count = min(max_read_count, count - i) + read_size = int(read_count * dtype.itemsize) + data = _read_bytes(fp, read_size, "array data") + array[i:i + read_count] = numpy.frombuffer(data, dtype=dtype, + count=read_count) + + if array.size != count: + raise ValueError( + "Failed to read all data for array. " + f"Expected {shape} = {count} elements, " + f"could only read {array.size} elements. " + "(file seems not fully written?)" + ) + + if fortran_order: + array.shape = shape[::-1] + array = array.transpose() + else: + array.shape = shape + + return array + + +@set_module("numpy.lib.format") +def open_memmap(filename, mode='r+', dtype=None, shape=None, + fortran_order=False, version=None, *, + max_header_size=_MAX_HEADER_SIZE): + """ + Open a .npy file as a memory-mapped array. + + This may be used to read an existing file or create a new one. + + Parameters + ---------- + filename : str or path-like + The name of the file on disk. This may *not* be a file-like + object. + mode : str, optional + The mode in which to open the file; the default is 'r+'. In + addition to the standard file modes, 'c' is also accepted to mean + "copy on write." See `memmap` for the available mode strings. + dtype : data-type, optional + The data type of the array if we are creating a new file in "write" + mode, if not, `dtype` is ignored. The default value is None, which + results in a data-type of `float64`. + shape : tuple of int + The shape of the array if we are creating a new file in "write" + mode, in which case this parameter is required. Otherwise, this + parameter is ignored and is thus optional. + fortran_order : bool, optional + Whether the array should be Fortran-contiguous (True) or + C-contiguous (False, the default) if we are creating a new file in + "write" mode. + version : tuple of int (major, minor) or None + If the mode is a "write" mode, then this is the version of the file + format used to create the file. None means use the oldest + supported version that is able to store the data. Default: None + max_header_size : int, optional + Maximum allowed size of the header. Large headers may not be safe + to load securely and thus require explicitly passing a larger value. + See :py:func:`ast.literal_eval()` for details. + + Returns + ------- + marray : memmap + The memory-mapped array. + + Raises + ------ + ValueError + If the data or the mode is invalid. + OSError + If the file is not found or cannot be opened correctly. + + See Also + -------- + numpy.memmap + + """ + if isfileobj(filename): + raise ValueError("Filename must be a string or a path-like object." + " Memmap cannot use existing file handles.") + + if 'w' in mode: + # We are creating the file, not reading it. + # Check if we ought to create the file. + _check_version(version) + # Ensure that the given dtype is an authentic dtype object rather + # than just something that can be interpreted as a dtype object. + dtype = numpy.dtype(dtype) + if dtype.hasobject: + msg = "Array can't be memory-mapped: Python objects in dtype." + raise ValueError(msg) + d = { + "descr": dtype_to_descr(dtype), + "fortran_order": fortran_order, + "shape": shape, + } + # If we got here, then it should be safe to create the file. + with open(os.fspath(filename), mode + 'b') as fp: + _write_array_header(fp, d, version) + offset = fp.tell() + else: + # Read the header of the file first. + with open(os.fspath(filename), 'rb') as fp: + version = read_magic(fp) + _check_version(version) + + shape, fortran_order, dtype = _read_array_header( + fp, version, max_header_size=max_header_size) + if dtype.hasobject: + msg = "Array can't be memory-mapped: Python objects in dtype." + raise ValueError(msg) + offset = fp.tell() + + if fortran_order: + order = 'F' + else: + order = 'C' + + # We need to change a write-only mode to a read-write mode since we've + # already written data to the file. + if mode == 'w+': + mode = 'r+' + + marray = numpy.memmap(filename, dtype=dtype, shape=shape, order=order, + mode=mode, offset=offset) + + return marray + + +def _read_bytes(fp, size, error_template="ran out of data"): + """ + Read from file-like object until size bytes are read. + Raises ValueError if not EOF is encountered before size bytes are read. + Non-blocking objects only supported if they derive from io objects. + + Required as e.g. ZipExtFile in python 2.6 can return less data than + requested. + """ + data = b"" + while True: + # io files (default in python3) return None or raise on + # would-block, python2 file will truncate, probably nothing can be + # done about that. note that regular files can't be non-blocking + try: + r = fp.read(size - len(data)) + data += r + if len(r) == 0 or len(data) == size: + break + except BlockingIOError: + pass + if len(data) != size: + msg = "EOF: reading %s, expected %d bytes got %d" + raise ValueError(msg % (error_template, size, len(data))) + else: + return data + + +@set_module("numpy.lib.format") +def isfileobj(f): + if not isinstance(f, (io.FileIO, io.BufferedReader, io.BufferedWriter)): + return False + try: + # BufferedReader/Writer may raise OSError when + # fetching `fileno()` (e.g. when wrapping BytesIO). + f.fileno() + return True + except OSError: + return False diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_format_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_format_impl.pyi new file mode 100644 index 0000000..f4898d9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_format_impl.pyi @@ -0,0 +1,26 @@ +from typing import Final, Literal + +from numpy.lib._utils_impl import drop_metadata # noqa: F401 + +__all__: list[str] = [] + +EXPECTED_KEYS: Final[set[str]] +MAGIC_PREFIX: Final[bytes] +MAGIC_LEN: Literal[8] +ARRAY_ALIGN: Literal[64] +BUFFER_SIZE: Literal[262144] # 2**18 +GROWTH_AXIS_MAX_DIGITS: Literal[21] + +def magic(major, minor): ... +def read_magic(fp): ... +def dtype_to_descr(dtype): ... +def descr_to_dtype(descr): ... +def header_data_from_array_1_0(array): ... +def write_array_header_1_0(fp, d): ... +def write_array_header_2_0(fp, d): ... +def read_array_header_1_0(fp): ... +def read_array_header_2_0(fp): ... +def write_array(fp, array, version=..., allow_pickle=..., pickle_kwargs=...): ... +def read_array(fp, allow_pickle=..., pickle_kwargs=...): ... +def open_memmap(filename, mode=..., dtype=..., shape=..., fortran_order=..., version=...): ... +def isfileobj(f): ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_function_base_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_function_base_impl.py new file mode 100644 index 0000000..9ee5944 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_function_base_impl.py @@ -0,0 +1,5844 @@ +import builtins +import collections.abc +import functools +import re +import sys +import warnings + +import numpy as np +import numpy._core.numeric as _nx +from numpy._core import overrides, transpose +from numpy._core._multiarray_umath import _array_converter +from numpy._core.fromnumeric import any, mean, nonzero, partition, ravel, sum +from numpy._core.multiarray import _monotonicity, _place, bincount, normalize_axis_index +from numpy._core.multiarray import interp as compiled_interp +from numpy._core.multiarray import interp_complex as compiled_interp_complex +from numpy._core.numeric import ( + absolute, + arange, + array, + asanyarray, + asarray, + concatenate, + dot, + empty, + integer, + intp, + isscalar, + ndarray, + ones, + take, + where, + zeros_like, +) +from numpy._core.numerictypes import typecodes +from numpy._core.umath import ( + add, + arctan2, + cos, + exp, + frompyfunc, + less_equal, + minimum, + mod, + not_equal, + pi, + sin, + sqrt, + subtract, +) +from numpy._utils import set_module + +# needed in this module for compatibility +from numpy.lib._histograms_impl import histogram, histogramdd # noqa: F401 +from numpy.lib._twodim_base_impl import diag + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy') + + +__all__ = [ + 'select', 'piecewise', 'trim_zeros', 'copy', 'iterable', 'percentile', + 'diff', 'gradient', 'angle', 'unwrap', 'sort_complex', 'flip', + 'rot90', 'extract', 'place', 'vectorize', 'asarray_chkfinite', 'average', + 'bincount', 'digitize', 'cov', 'corrcoef', + 'median', 'sinc', 'hamming', 'hanning', 'bartlett', + 'blackman', 'kaiser', 'trapezoid', 'trapz', 'i0', + 'meshgrid', 'delete', 'insert', 'append', 'interp', + 'quantile' + ] + +# _QuantileMethods is a dictionary listing all the supported methods to +# compute quantile/percentile. +# +# Below virtual_index refers to the index of the element where the percentile +# would be found in the sorted sample. +# When the sample contains exactly the percentile wanted, the virtual_index is +# an integer to the index of this element. +# When the percentile wanted is in between two elements, the virtual_index +# is made of a integer part (a.k.a 'i' or 'left') and a fractional part +# (a.k.a 'g' or 'gamma') +# +# Each method in _QuantileMethods has two properties +# get_virtual_index : Callable +# The function used to compute the virtual_index. +# fix_gamma : Callable +# A function used for discrete methods to force the index to a specific value. +_QuantileMethods = { + # --- HYNDMAN and FAN METHODS + # Discrete methods + 'inverted_cdf': { + 'get_virtual_index': lambda n, quantiles: _inverted_cdf(n, quantiles), # noqa: PLW0108 + 'fix_gamma': None, # should never be called + }, + 'averaged_inverted_cdf': { + 'get_virtual_index': lambda n, quantiles: (n * quantiles) - 1, + 'fix_gamma': lambda gamma, _: _get_gamma_mask( + shape=gamma.shape, + default_value=1., + conditioned_value=0.5, + where=gamma == 0), + }, + 'closest_observation': { + 'get_virtual_index': lambda n, quantiles: _closest_observation(n, quantiles), # noqa: PLW0108 + 'fix_gamma': None, # should never be called + }, + # Continuous methods + 'interpolated_inverted_cdf': { + 'get_virtual_index': lambda n, quantiles: + _compute_virtual_index(n, quantiles, 0, 1), + 'fix_gamma': lambda gamma, _: gamma, + }, + 'hazen': { + 'get_virtual_index': lambda n, quantiles: + _compute_virtual_index(n, quantiles, 0.5, 0.5), + 'fix_gamma': lambda gamma, _: gamma, + }, + 'weibull': { + 'get_virtual_index': lambda n, quantiles: + _compute_virtual_index(n, quantiles, 0, 0), + 'fix_gamma': lambda gamma, _: gamma, + }, + # Default method. + # To avoid some rounding issues, `(n-1) * quantiles` is preferred to + # `_compute_virtual_index(n, quantiles, 1, 1)`. + # They are mathematically equivalent. + 'linear': { + 'get_virtual_index': lambda n, quantiles: (n - 1) * quantiles, + 'fix_gamma': lambda gamma, _: gamma, + }, + 'median_unbiased': { + 'get_virtual_index': lambda n, quantiles: + _compute_virtual_index(n, quantiles, 1 / 3.0, 1 / 3.0), + 'fix_gamma': lambda gamma, _: gamma, + }, + 'normal_unbiased': { + 'get_virtual_index': lambda n, quantiles: + _compute_virtual_index(n, quantiles, 3 / 8.0, 3 / 8.0), + 'fix_gamma': lambda gamma, _: gamma, + }, + # --- OTHER METHODS + 'lower': { + 'get_virtual_index': lambda n, quantiles: np.floor( + (n - 1) * quantiles).astype(np.intp), + 'fix_gamma': None, # should never be called, index dtype is int + }, + 'higher': { + 'get_virtual_index': lambda n, quantiles: np.ceil( + (n - 1) * quantiles).astype(np.intp), + 'fix_gamma': None, # should never be called, index dtype is int + }, + 'midpoint': { + 'get_virtual_index': lambda n, quantiles: 0.5 * ( + np.floor((n - 1) * quantiles) + + np.ceil((n - 1) * quantiles)), + 'fix_gamma': lambda gamma, index: _get_gamma_mask( + shape=gamma.shape, + default_value=0.5, + conditioned_value=0., + where=index % 1 == 0), + }, + 'nearest': { + 'get_virtual_index': lambda n, quantiles: np.around( + (n - 1) * quantiles).astype(np.intp), + 'fix_gamma': None, + # should never be called, index dtype is int + }} + + +def _rot90_dispatcher(m, k=None, axes=None): + return (m,) + + +@array_function_dispatch(_rot90_dispatcher) +def rot90(m, k=1, axes=(0, 1)): + """ + Rotate an array by 90 degrees in the plane specified by axes. + + Rotation direction is from the first towards the second axis. + This means for a 2D array with the default `k` and `axes`, the + rotation will be counterclockwise. + + Parameters + ---------- + m : array_like + Array of two or more dimensions. + k : integer + Number of times the array is rotated by 90 degrees. + axes : (2,) array_like + The array is rotated in the plane defined by the axes. + Axes must be different. + + Returns + ------- + y : ndarray + A rotated view of `m`. + + See Also + -------- + flip : Reverse the order of elements in an array along the given axis. + fliplr : Flip an array horizontally. + flipud : Flip an array vertically. + + Notes + ----- + ``rot90(m, k=1, axes=(1,0))`` is the reverse of + ``rot90(m, k=1, axes=(0,1))`` + + ``rot90(m, k=1, axes=(1,0))`` is equivalent to + ``rot90(m, k=-1, axes=(0,1))`` + + Examples + -------- + >>> import numpy as np + >>> m = np.array([[1,2],[3,4]], int) + >>> m + array([[1, 2], + [3, 4]]) + >>> np.rot90(m) + array([[2, 4], + [1, 3]]) + >>> np.rot90(m, 2) + array([[4, 3], + [2, 1]]) + >>> m = np.arange(8).reshape((2,2,2)) + >>> np.rot90(m, 1, (1,2)) + array([[[1, 3], + [0, 2]], + [[5, 7], + [4, 6]]]) + + """ + axes = tuple(axes) + if len(axes) != 2: + raise ValueError("len(axes) must be 2.") + + m = asanyarray(m) + + if axes[0] == axes[1] or absolute(axes[0] - axes[1]) == m.ndim: + raise ValueError("Axes must be different.") + + if (axes[0] >= m.ndim or axes[0] < -m.ndim + or axes[1] >= m.ndim or axes[1] < -m.ndim): + raise ValueError(f"Axes={axes} out of range for array of ndim={m.ndim}.") + + k %= 4 + + if k == 0: + return m[:] + if k == 2: + return flip(flip(m, axes[0]), axes[1]) + + axes_list = arange(0, m.ndim) + (axes_list[axes[0]], axes_list[axes[1]]) = (axes_list[axes[1]], + axes_list[axes[0]]) + + if k == 1: + return transpose(flip(m, axes[1]), axes_list) + else: + # k == 3 + return flip(transpose(m, axes_list), axes[1]) + + +def _flip_dispatcher(m, axis=None): + return (m,) + + +@array_function_dispatch(_flip_dispatcher) +def flip(m, axis=None): + """ + Reverse the order of elements in an array along the given axis. + + The shape of the array is preserved, but the elements are reordered. + + Parameters + ---------- + m : array_like + Input array. + axis : None or int or tuple of ints, optional + Axis or axes along which to flip over. The default, + axis=None, will flip over all of the axes of the input array. + If axis is negative it counts from the last to the first axis. + + If axis is a tuple of ints, flipping is performed on all of the axes + specified in the tuple. + + Returns + ------- + out : array_like + A view of `m` with the entries of axis reversed. Since a view is + returned, this operation is done in constant time. + + See Also + -------- + flipud : Flip an array vertically (axis=0). + fliplr : Flip an array horizontally (axis=1). + + Notes + ----- + flip(m, 0) is equivalent to flipud(m). + + flip(m, 1) is equivalent to fliplr(m). + + flip(m, n) corresponds to ``m[...,::-1,...]`` with ``::-1`` at position n. + + flip(m) corresponds to ``m[::-1,::-1,...,::-1]`` with ``::-1`` at all + positions. + + flip(m, (0, 1)) corresponds to ``m[::-1,::-1,...]`` with ``::-1`` at + position 0 and position 1. + + Examples + -------- + >>> import numpy as np + >>> A = np.arange(8).reshape((2,2,2)) + >>> A + array([[[0, 1], + [2, 3]], + [[4, 5], + [6, 7]]]) + >>> np.flip(A, 0) + array([[[4, 5], + [6, 7]], + [[0, 1], + [2, 3]]]) + >>> np.flip(A, 1) + array([[[2, 3], + [0, 1]], + [[6, 7], + [4, 5]]]) + >>> np.flip(A) + array([[[7, 6], + [5, 4]], + [[3, 2], + [1, 0]]]) + >>> np.flip(A, (0, 2)) + array([[[5, 4], + [7, 6]], + [[1, 0], + [3, 2]]]) + >>> rng = np.random.default_rng() + >>> A = rng.normal(size=(3,4,5)) + >>> np.all(np.flip(A,2) == A[:,:,::-1,...]) + True + """ + if not hasattr(m, 'ndim'): + m = asarray(m) + if axis is None: + indexer = (np.s_[::-1],) * m.ndim + else: + axis = _nx.normalize_axis_tuple(axis, m.ndim) + indexer = [np.s_[:]] * m.ndim + for ax in axis: + indexer[ax] = np.s_[::-1] + indexer = tuple(indexer) + return m[indexer] + + +@set_module('numpy') +def iterable(y): + """ + Check whether or not an object can be iterated over. + + Parameters + ---------- + y : object + Input object. + + Returns + ------- + b : bool + Return ``True`` if the object has an iterator method or is a + sequence and ``False`` otherwise. + + + Examples + -------- + >>> import numpy as np + >>> np.iterable([1, 2, 3]) + True + >>> np.iterable(2) + False + + Notes + ----- + In most cases, the results of ``np.iterable(obj)`` are consistent with + ``isinstance(obj, collections.abc.Iterable)``. One notable exception is + the treatment of 0-dimensional arrays:: + + >>> from collections.abc import Iterable + >>> a = np.array(1.0) # 0-dimensional numpy array + >>> isinstance(a, Iterable) + True + >>> np.iterable(a) + False + + """ + try: + iter(y) + except TypeError: + return False + return True + + +def _weights_are_valid(weights, a, axis): + """Validate weights array. + + We assume, weights is not None. + """ + wgt = np.asanyarray(weights) + + # Sanity checks + if a.shape != wgt.shape: + if axis is None: + raise TypeError( + "Axis must be specified when shapes of a and weights " + "differ.") + if wgt.shape != tuple(a.shape[ax] for ax in axis): + raise ValueError( + "Shape of weights must be consistent with " + "shape of a along specified axis.") + + # setup wgt to broadcast along axis + wgt = wgt.transpose(np.argsort(axis)) + wgt = wgt.reshape(tuple((s if ax in axis else 1) + for ax, s in enumerate(a.shape))) + return wgt + + +def _average_dispatcher(a, axis=None, weights=None, returned=None, *, + keepdims=None): + return (a, weights) + + +@array_function_dispatch(_average_dispatcher) +def average(a, axis=None, weights=None, returned=False, *, + keepdims=np._NoValue): + """ + Compute the weighted average along the specified axis. + + Parameters + ---------- + a : array_like + Array containing data to be averaged. If `a` is not an array, a + conversion is attempted. + axis : None or int or tuple of ints, optional + Axis or axes along which to average `a`. The default, + `axis=None`, will average over all of the elements of the input array. + If axis is negative it counts from the last to the first axis. + If axis is a tuple of ints, averaging is performed on all of the axes + specified in the tuple instead of a single axis or all the axes as + before. + weights : array_like, optional + An array of weights associated with the values in `a`. Each value in + `a` contributes to the average according to its associated weight. + The array of weights must be the same shape as `a` if no axis is + specified, otherwise the weights must have dimensions and shape + consistent with `a` along the specified axis. + If `weights=None`, then all data in `a` are assumed to have a + weight equal to one. + The calculation is:: + + avg = sum(a * weights) / sum(weights) + + where the sum is over all included elements. + The only constraint on the values of `weights` is that `sum(weights)` + must not be 0. + returned : bool, optional + Default is `False`. If `True`, the tuple (`average`, `sum_of_weights`) + is returned, otherwise only the average is returned. + If `weights=None`, `sum_of_weights` is equivalent to the number of + elements over which the average is taken. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the original `a`. + *Note:* `keepdims` will not work with instances of `numpy.matrix` + or other classes whose methods do not support `keepdims`. + + .. versionadded:: 1.23.0 + + Returns + ------- + retval, [sum_of_weights] : array_type or double + Return the average along the specified axis. When `returned` is `True`, + return a tuple with the average as the first element and the sum + of the weights as the second element. `sum_of_weights` is of the + same type as `retval`. The result dtype follows a general pattern. + If `weights` is None, the result dtype will be that of `a` , or ``float64`` + if `a` is integral. Otherwise, if `weights` is not None and `a` is non- + integral, the result type will be the type of lowest precision capable of + representing values of both `a` and `weights`. If `a` happens to be + integral, the previous rules still applies but the result dtype will + at least be ``float64``. + + Raises + ------ + ZeroDivisionError + When all weights along axis are zero. See `numpy.ma.average` for a + version robust to this type of error. + TypeError + When `weights` does not have the same shape as `a`, and `axis=None`. + ValueError + When `weights` does not have dimensions and shape consistent with `a` + along specified `axis`. + + See Also + -------- + mean + + ma.average : average for masked arrays -- useful if your data contains + "missing" values + numpy.result_type : Returns the type that results from applying the + numpy type promotion rules to the arguments. + + Examples + -------- + >>> import numpy as np + >>> data = np.arange(1, 5) + >>> data + array([1, 2, 3, 4]) + >>> np.average(data) + 2.5 + >>> np.average(np.arange(1, 11), weights=np.arange(10, 0, -1)) + 4.0 + + >>> data = np.arange(6).reshape((3, 2)) + >>> data + array([[0, 1], + [2, 3], + [4, 5]]) + >>> np.average(data, axis=1, weights=[1./4, 3./4]) + array([0.75, 2.75, 4.75]) + >>> np.average(data, weights=[1./4, 3./4]) + Traceback (most recent call last): + ... + TypeError: Axis must be specified when shapes of a and weights differ. + + With ``keepdims=True``, the following result has shape (3, 1). + + >>> np.average(data, axis=1, keepdims=True) + array([[0.5], + [2.5], + [4.5]]) + + >>> data = np.arange(8).reshape((2, 2, 2)) + >>> data + array([[[0, 1], + [2, 3]], + [[4, 5], + [6, 7]]]) + >>> np.average(data, axis=(0, 1), weights=[[1./4, 3./4], [1., 1./2]]) + array([3.4, 4.4]) + >>> np.average(data, axis=0, weights=[[1./4, 3./4], [1., 1./2]]) + Traceback (most recent call last): + ... + ValueError: Shape of weights must be consistent + with shape of a along specified axis. + """ + a = np.asanyarray(a) + + if axis is not None: + axis = _nx.normalize_axis_tuple(axis, a.ndim, argname="axis") + + if keepdims is np._NoValue: + # Don't pass on the keepdims argument if one wasn't given. + keepdims_kw = {} + else: + keepdims_kw = {'keepdims': keepdims} + + if weights is None: + avg = a.mean(axis, **keepdims_kw) + avg_as_array = np.asanyarray(avg) + scl = avg_as_array.dtype.type(a.size / avg_as_array.size) + else: + wgt = _weights_are_valid(weights=weights, a=a, axis=axis) + + if issubclass(a.dtype.type, (np.integer, np.bool)): + result_dtype = np.result_type(a.dtype, wgt.dtype, 'f8') + else: + result_dtype = np.result_type(a.dtype, wgt.dtype) + + scl = wgt.sum(axis=axis, dtype=result_dtype, **keepdims_kw) + if np.any(scl == 0.0): + raise ZeroDivisionError( + "Weights sum to zero, can't be normalized") + + avg = avg_as_array = np.multiply(a, wgt, + dtype=result_dtype).sum(axis, **keepdims_kw) / scl + + if returned: + if scl.shape != avg_as_array.shape: + scl = np.broadcast_to(scl, avg_as_array.shape).copy() + return avg, scl + else: + return avg + + +@set_module('numpy') +def asarray_chkfinite(a, dtype=None, order=None): + """Convert the input to an array, checking for NaNs or Infs. + + Parameters + ---------- + a : array_like + Input data, in any form that can be converted to an array. This + includes lists, lists of tuples, tuples, tuples of tuples, tuples + of lists and ndarrays. Success requires no NaNs or Infs. + dtype : data-type, optional + By default, the data-type is inferred from the input data. + order : {'C', 'F', 'A', 'K'}, optional + Memory layout. 'A' and 'K' depend on the order of input array a. + 'C' row-major (C-style), + 'F' column-major (Fortran-style) memory representation. + 'A' (any) means 'F' if `a` is Fortran contiguous, 'C' otherwise + 'K' (keep) preserve input order + Defaults to 'C'. + + Returns + ------- + out : ndarray + Array interpretation of `a`. No copy is performed if the input + is already an ndarray. If `a` is a subclass of ndarray, a base + class ndarray is returned. + + Raises + ------ + ValueError + Raises ValueError if `a` contains NaN (Not a Number) or Inf (Infinity). + + See Also + -------- + asarray : Create and array. + asanyarray : Similar function which passes through subclasses. + ascontiguousarray : Convert input to a contiguous array. + asfortranarray : Convert input to an ndarray with column-major + memory order. + fromiter : Create an array from an iterator. + fromfunction : Construct an array by executing a function on grid + positions. + + Examples + -------- + >>> import numpy as np + + Convert a list into an array. If all elements are finite, then + ``asarray_chkfinite`` is identical to ``asarray``. + + >>> a = [1, 2] + >>> np.asarray_chkfinite(a, dtype=float) + array([1., 2.]) + + Raises ValueError if array_like contains Nans or Infs. + + >>> a = [1, 2, np.inf] + >>> try: + ... np.asarray_chkfinite(a) + ... except ValueError: + ... print('ValueError') + ... + ValueError + + """ + a = asarray(a, dtype=dtype, order=order) + if a.dtype.char in typecodes['AllFloat'] and not np.isfinite(a).all(): + raise ValueError( + "array must not contain infs or NaNs") + return a + + +def _piecewise_dispatcher(x, condlist, funclist, *args, **kw): + yield x + # support the undocumented behavior of allowing scalars + if np.iterable(condlist): + yield from condlist + + +@array_function_dispatch(_piecewise_dispatcher) +def piecewise(x, condlist, funclist, *args, **kw): + """ + Evaluate a piecewise-defined function. + + Given a set of conditions and corresponding functions, evaluate each + function on the input data wherever its condition is true. + + Parameters + ---------- + x : ndarray or scalar + The input domain. + condlist : list of bool arrays or bool scalars + Each boolean array corresponds to a function in `funclist`. Wherever + `condlist[i]` is True, `funclist[i](x)` is used as the output value. + + Each boolean array in `condlist` selects a piece of `x`, + and should therefore be of the same shape as `x`. + + The length of `condlist` must correspond to that of `funclist`. + If one extra function is given, i.e. if + ``len(funclist) == len(condlist) + 1``, then that extra function + is the default value, used wherever all conditions are false. + funclist : list of callables, f(x,*args,**kw), or scalars + Each function is evaluated over `x` wherever its corresponding + condition is True. It should take a 1d array as input and give an 1d + array or a scalar value as output. If, instead of a callable, + a scalar is provided then a constant function (``lambda x: scalar``) is + assumed. + args : tuple, optional + Any further arguments given to `piecewise` are passed to the functions + upon execution, i.e., if called ``piecewise(..., ..., 1, 'a')``, then + each function is called as ``f(x, 1, 'a')``. + kw : dict, optional + Keyword arguments used in calling `piecewise` are passed to the + functions upon execution, i.e., if called + ``piecewise(..., ..., alpha=1)``, then each function is called as + ``f(x, alpha=1)``. + + Returns + ------- + out : ndarray + The output is the same shape and type as x and is found by + calling the functions in `funclist` on the appropriate portions of `x`, + as defined by the boolean arrays in `condlist`. Portions not covered + by any condition have a default value of 0. + + + See Also + -------- + choose, select, where + + Notes + ----- + This is similar to choose or select, except that functions are + evaluated on elements of `x` that satisfy the corresponding condition from + `condlist`. + + The result is:: + + |-- + |funclist[0](x[condlist[0]]) + out = |funclist[1](x[condlist[1]]) + |... + |funclist[n2](x[condlist[n2]]) + |-- + + Examples + -------- + >>> import numpy as np + + Define the signum function, which is -1 for ``x < 0`` and +1 for ``x >= 0``. + + >>> x = np.linspace(-2.5, 2.5, 6) + >>> np.piecewise(x, [x < 0, x >= 0], [-1, 1]) + array([-1., -1., -1., 1., 1., 1.]) + + Define the absolute value, which is ``-x`` for ``x <0`` and ``x`` for + ``x >= 0``. + + >>> np.piecewise(x, [x < 0, x >= 0], [lambda x: -x, lambda x: x]) + array([2.5, 1.5, 0.5, 0.5, 1.5, 2.5]) + + Apply the same function to a scalar value. + + >>> y = -2 + >>> np.piecewise(y, [y < 0, y >= 0], [lambda x: -x, lambda x: x]) + array(2) + + """ + x = asanyarray(x) + n2 = len(funclist) + + # undocumented: single condition is promoted to a list of one condition + if isscalar(condlist) or ( + not isinstance(condlist[0], (list, ndarray)) and x.ndim != 0): + condlist = [condlist] + + condlist = asarray(condlist, dtype=bool) + n = len(condlist) + + if n == n2 - 1: # compute the "otherwise" condition. + condelse = ~np.any(condlist, axis=0, keepdims=True) + condlist = np.concatenate([condlist, condelse], axis=0) + n += 1 + elif n != n2: + raise ValueError( + f"with {n} condition(s), either {n} or {n + 1} functions are expected" + ) + + y = zeros_like(x) + for cond, func in zip(condlist, funclist): + if not isinstance(func, collections.abc.Callable): + y[cond] = func + else: + vals = x[cond] + if vals.size > 0: + y[cond] = func(vals, *args, **kw) + + return y + + +def _select_dispatcher(condlist, choicelist, default=None): + yield from condlist + yield from choicelist + + +@array_function_dispatch(_select_dispatcher) +def select(condlist, choicelist, default=0): + """ + Return an array drawn from elements in choicelist, depending on conditions. + + Parameters + ---------- + condlist : list of bool ndarrays + The list of conditions which determine from which array in `choicelist` + the output elements are taken. When multiple conditions are satisfied, + the first one encountered in `condlist` is used. + choicelist : list of ndarrays + The list of arrays from which the output elements are taken. It has + to be of the same length as `condlist`. + default : scalar, optional + The element inserted in `output` when all conditions evaluate to False. + + Returns + ------- + output : ndarray + The output at position m is the m-th element of the array in + `choicelist` where the m-th element of the corresponding array in + `condlist` is True. + + See Also + -------- + where : Return elements from one of two arrays depending on condition. + take, choose, compress, diag, diagonal + + Examples + -------- + >>> import numpy as np + + Beginning with an array of integers from 0 to 5 (inclusive), + elements less than ``3`` are negated, elements greater than ``3`` + are squared, and elements not meeting either of these conditions + (exactly ``3``) are replaced with a `default` value of ``42``. + + >>> x = np.arange(6) + >>> condlist = [x<3, x>3] + >>> choicelist = [-x, x**2] + >>> np.select(condlist, choicelist, 42) + array([ 0, -1, -2, 42, 16, 25]) + + When multiple conditions are satisfied, the first one encountered in + `condlist` is used. + + >>> condlist = [x<=4, x>3] + >>> choicelist = [x, x**2] + >>> np.select(condlist, choicelist, 55) + array([ 0, 1, 2, 3, 4, 25]) + + """ + # Check the size of condlist and choicelist are the same, or abort. + if len(condlist) != len(choicelist): + raise ValueError( + 'list of cases must be same length as list of conditions') + + # Now that the dtype is known, handle the deprecated select([], []) case + if len(condlist) == 0: + raise ValueError("select with an empty condition list is not possible") + + # TODO: This preserves the Python int, float, complex manually to get the + # right `result_type` with NEP 50. Most likely we will grow a better + # way to spell this (and this can be replaced). + choicelist = [ + choice if type(choice) in (int, float, complex) else np.asarray(choice) + for choice in choicelist] + choicelist.append(default if type(default) in (int, float, complex) + else np.asarray(default)) + + try: + dtype = np.result_type(*choicelist) + except TypeError as e: + msg = f'Choicelist and default value do not have a common dtype: {e}' + raise TypeError(msg) from None + + # Convert conditions to arrays and broadcast conditions and choices + # as the shape is needed for the result. Doing it separately optimizes + # for example when all choices are scalars. + condlist = np.broadcast_arrays(*condlist) + choicelist = np.broadcast_arrays(*choicelist) + + # If cond array is not an ndarray in boolean format or scalar bool, abort. + for i, cond in enumerate(condlist): + if cond.dtype.type is not np.bool: + raise TypeError( + f'invalid entry {i} in condlist: should be boolean ndarray') + + if choicelist[0].ndim == 0: + # This may be common, so avoid the call. + result_shape = condlist[0].shape + else: + result_shape = np.broadcast_arrays(condlist[0], choicelist[0])[0].shape + + result = np.full(result_shape, choicelist[-1], dtype) + + # Use np.copyto to burn each choicelist array onto result, using the + # corresponding condlist as a boolean mask. This is done in reverse + # order since the first choice should take precedence. + choicelist = choicelist[-2::-1] + condlist = condlist[::-1] + for choice, cond in zip(choicelist, condlist): + np.copyto(result, choice, where=cond) + + return result + + +def _copy_dispatcher(a, order=None, subok=None): + return (a,) + + +@array_function_dispatch(_copy_dispatcher) +def copy(a, order='K', subok=False): + """ + Return an array copy of the given object. + + Parameters + ---------- + a : array_like + Input data. + order : {'C', 'F', 'A', 'K'}, optional + Controls the memory layout of the copy. 'C' means C-order, + 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous, + 'C' otherwise. 'K' means match the layout of `a` as closely + as possible. (Note that this function and :meth:`ndarray.copy` are very + similar, but have different default values for their order= + arguments.) + subok : bool, optional + If True, then sub-classes will be passed-through, otherwise the + returned array will be forced to be a base-class array (defaults to False). + + Returns + ------- + arr : ndarray + Array interpretation of `a`. + + See Also + -------- + ndarray.copy : Preferred method for creating an array copy + + Notes + ----- + This is equivalent to: + + >>> np.array(a, copy=True) #doctest: +SKIP + + The copy made of the data is shallow, i.e., for arrays with object dtype, + the new array will point to the same objects. + See Examples from `ndarray.copy`. + + Examples + -------- + >>> import numpy as np + + Create an array x, with a reference y and a copy z: + + >>> x = np.array([1, 2, 3]) + >>> y = x + >>> z = np.copy(x) + + Note that, when we modify x, y changes, but not z: + + >>> x[0] = 10 + >>> x[0] == y[0] + True + >>> x[0] == z[0] + False + + Note that, np.copy clears previously set WRITEABLE=False flag. + + >>> a = np.array([1, 2, 3]) + >>> a.flags["WRITEABLE"] = False + >>> b = np.copy(a) + >>> b.flags["WRITEABLE"] + True + >>> b[0] = 3 + >>> b + array([3, 2, 3]) + """ + return array(a, order=order, subok=subok, copy=True) + +# Basic operations + + +def _gradient_dispatcher(f, *varargs, axis=None, edge_order=None): + yield f + yield from varargs + + +@array_function_dispatch(_gradient_dispatcher) +def gradient(f, *varargs, axis=None, edge_order=1): + """ + Return the gradient of an N-dimensional array. + + The gradient is computed using second order accurate central differences + in the interior points and either first or second order accurate one-sides + (forward or backwards) differences at the boundaries. + The returned gradient hence has the same shape as the input array. + + Parameters + ---------- + f : array_like + An N-dimensional array containing samples of a scalar function. + varargs : list of scalar or array, optional + Spacing between f values. Default unitary spacing for all dimensions. + Spacing can be specified using: + + 1. single scalar to specify a sample distance for all dimensions. + 2. N scalars to specify a constant sample distance for each dimension. + i.e. `dx`, `dy`, `dz`, ... + 3. N arrays to specify the coordinates of the values along each + dimension of F. The length of the array must match the size of + the corresponding dimension + 4. Any combination of N scalars/arrays with the meaning of 2. and 3. + + If `axis` is given, the number of varargs must equal the number of axes + specified in the axis parameter. + Default: 1. (see Examples below). + + edge_order : {1, 2}, optional + Gradient is calculated using N-th order accurate differences + at the boundaries. Default: 1. + axis : None or int or tuple of ints, optional + Gradient is calculated only along the given axis or axes + The default (axis = None) is to calculate the gradient for all the axes + of the input array. axis may be negative, in which case it counts from + the last to the first axis. + + Returns + ------- + gradient : ndarray or tuple of ndarray + A tuple of ndarrays (or a single ndarray if there is only one + dimension) corresponding to the derivatives of f with respect + to each dimension. Each derivative has the same shape as f. + + Examples + -------- + >>> import numpy as np + >>> f = np.array([1, 2, 4, 7, 11, 16]) + >>> np.gradient(f) + array([1. , 1.5, 2.5, 3.5, 4.5, 5. ]) + >>> np.gradient(f, 2) + array([0.5 , 0.75, 1.25, 1.75, 2.25, 2.5 ]) + + Spacing can be also specified with an array that represents the coordinates + of the values F along the dimensions. + For instance a uniform spacing: + + >>> x = np.arange(f.size) + >>> np.gradient(f, x) + array([1. , 1.5, 2.5, 3.5, 4.5, 5. ]) + + Or a non uniform one: + + >>> x = np.array([0., 1., 1.5, 3.5, 4., 6.]) + >>> np.gradient(f, x) + array([1. , 3. , 3.5, 6.7, 6.9, 2.5]) + + For two dimensional arrays, the return will be two arrays ordered by + axis. In this example the first array stands for the gradient in + rows and the second one in columns direction: + + >>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]])) + (array([[ 2., 2., -1.], + [ 2., 2., -1.]]), + array([[1. , 2.5, 4. ], + [1. , 1. , 1. ]])) + + In this example the spacing is also specified: + uniform for axis=0 and non uniform for axis=1 + + >>> dx = 2. + >>> y = [1., 1.5, 3.5] + >>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]]), dx, y) + (array([[ 1. , 1. , -0.5], + [ 1. , 1. , -0.5]]), + array([[2. , 2. , 2. ], + [2. , 1.7, 0.5]])) + + It is possible to specify how boundaries are treated using `edge_order` + + >>> x = np.array([0, 1, 2, 3, 4]) + >>> f = x**2 + >>> np.gradient(f, edge_order=1) + array([1., 2., 4., 6., 7.]) + >>> np.gradient(f, edge_order=2) + array([0., 2., 4., 6., 8.]) + + The `axis` keyword can be used to specify a subset of axes of which the + gradient is calculated + + >>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]]), axis=0) + array([[ 2., 2., -1.], + [ 2., 2., -1.]]) + + The `varargs` argument defines the spacing between sample points in the + input array. It can take two forms: + + 1. An array, specifying coordinates, which may be unevenly spaced: + + >>> x = np.array([0., 2., 3., 6., 8.]) + >>> y = x ** 2 + >>> np.gradient(y, x, edge_order=2) + array([ 0., 4., 6., 12., 16.]) + + 2. A scalar, representing the fixed sample distance: + + >>> dx = 2 + >>> x = np.array([0., 2., 4., 6., 8.]) + >>> y = x ** 2 + >>> np.gradient(y, dx, edge_order=2) + array([ 0., 4., 8., 12., 16.]) + + It's possible to provide different data for spacing along each dimension. + The number of arguments must match the number of dimensions in the input + data. + + >>> dx = 2 + >>> dy = 3 + >>> x = np.arange(0, 6, dx) + >>> y = np.arange(0, 9, dy) + >>> xs, ys = np.meshgrid(x, y) + >>> zs = xs + 2 * ys + >>> np.gradient(zs, dy, dx) # Passing two scalars + (array([[2., 2., 2.], + [2., 2., 2.], + [2., 2., 2.]]), + array([[1., 1., 1.], + [1., 1., 1.], + [1., 1., 1.]])) + + Mixing scalars and arrays is also allowed: + + >>> np.gradient(zs, y, dx) # Passing one array and one scalar + (array([[2., 2., 2.], + [2., 2., 2.], + [2., 2., 2.]]), + array([[1., 1., 1.], + [1., 1., 1.], + [1., 1., 1.]])) + + Notes + ----- + Assuming that :math:`f\\in C^{3}` (i.e., :math:`f` has at least 3 continuous + derivatives) and let :math:`h_{*}` be a non-homogeneous stepsize, we + minimize the "consistency error" :math:`\\eta_{i}` between the true gradient + and its estimate from a linear combination of the neighboring grid-points: + + .. math:: + + \\eta_{i} = f_{i}^{\\left(1\\right)} - + \\left[ \\alpha f\\left(x_{i}\\right) + + \\beta f\\left(x_{i} + h_{d}\\right) + + \\gamma f\\left(x_{i}-h_{s}\\right) + \\right] + + By substituting :math:`f(x_{i} + h_{d})` and :math:`f(x_{i} - h_{s})` + with their Taylor series expansion, this translates into solving + the following the linear system: + + .. math:: + + \\left\\{ + \\begin{array}{r} + \\alpha+\\beta+\\gamma=0 \\\\ + \\beta h_{d}-\\gamma h_{s}=1 \\\\ + \\beta h_{d}^{2}+\\gamma h_{s}^{2}=0 + \\end{array} + \\right. + + The resulting approximation of :math:`f_{i}^{(1)}` is the following: + + .. math:: + + \\hat f_{i}^{(1)} = + \\frac{ + h_{s}^{2}f\\left(x_{i} + h_{d}\\right) + + \\left(h_{d}^{2} - h_{s}^{2}\\right)f\\left(x_{i}\\right) + - h_{d}^{2}f\\left(x_{i}-h_{s}\\right)} + { h_{s}h_{d}\\left(h_{d} + h_{s}\\right)} + + \\mathcal{O}\\left(\\frac{h_{d}h_{s}^{2} + + h_{s}h_{d}^{2}}{h_{d} + + h_{s}}\\right) + + It is worth noting that if :math:`h_{s}=h_{d}` + (i.e., data are evenly spaced) + we find the standard second order approximation: + + .. math:: + + \\hat f_{i}^{(1)}= + \\frac{f\\left(x_{i+1}\\right) - f\\left(x_{i-1}\\right)}{2h} + + \\mathcal{O}\\left(h^{2}\\right) + + With a similar procedure the forward/backward approximations used for + boundaries can be derived. + + References + ---------- + .. [1] Quarteroni A., Sacco R., Saleri F. (2007) Numerical Mathematics + (Texts in Applied Mathematics). New York: Springer. + .. [2] Durran D. R. (1999) Numerical Methods for Wave Equations + in Geophysical Fluid Dynamics. New York: Springer. + .. [3] Fornberg B. (1988) Generation of Finite Difference Formulas on + Arbitrarily Spaced Grids, + Mathematics of Computation 51, no. 184 : 699-706. + `PDF `_. + """ + f = np.asanyarray(f) + N = f.ndim # number of dimensions + + if axis is None: + axes = tuple(range(N)) + else: + axes = _nx.normalize_axis_tuple(axis, N) + + len_axes = len(axes) + n = len(varargs) + if n == 0: + # no spacing argument - use 1 in all axes + dx = [1.0] * len_axes + elif n == 1 and np.ndim(varargs[0]) == 0: + # single scalar for all axes + dx = varargs * len_axes + elif n == len_axes: + # scalar or 1d array for each axis + dx = list(varargs) + for i, distances in enumerate(dx): + distances = np.asanyarray(distances) + if distances.ndim == 0: + continue + elif distances.ndim != 1: + raise ValueError("distances must be either scalars or 1d") + if len(distances) != f.shape[axes[i]]: + raise ValueError("when 1d, distances must match " + "the length of the corresponding dimension") + if np.issubdtype(distances.dtype, np.integer): + # Convert numpy integer types to float64 to avoid modular + # arithmetic in np.diff(distances). + distances = distances.astype(np.float64) + diffx = np.diff(distances) + # if distances are constant reduce to the scalar case + # since it brings a consistent speedup + if (diffx == diffx[0]).all(): + diffx = diffx[0] + dx[i] = diffx + else: + raise TypeError("invalid number of arguments") + + if edge_order > 2: + raise ValueError("'edge_order' greater than 2 not supported") + + # use central differences on interior and one-sided differences on the + # endpoints. This preserves second order-accuracy over the full domain. + + outvals = [] + + # create slice objects --- initially all are [:, :, ..., :] + slice1 = [slice(None)] * N + slice2 = [slice(None)] * N + slice3 = [slice(None)] * N + slice4 = [slice(None)] * N + + otype = f.dtype + if otype.type is np.datetime64: + # the timedelta dtype with the same unit information + otype = np.dtype(otype.name.replace('datetime', 'timedelta')) + # view as timedelta to allow addition + f = f.view(otype) + elif otype.type is np.timedelta64: + pass + elif np.issubdtype(otype, np.inexact): + pass + else: + # All other types convert to floating point. + # First check if f is a numpy integer type; if so, convert f to float64 + # to avoid modular arithmetic when computing the changes in f. + if np.issubdtype(otype, np.integer): + f = f.astype(np.float64) + otype = np.float64 + + for axis, ax_dx in zip(axes, dx): + if f.shape[axis] < edge_order + 1: + raise ValueError( + "Shape of array too small to calculate a numerical gradient, " + "at least (edge_order + 1) elements are required.") + # result allocation + out = np.empty_like(f, dtype=otype) + + # spacing for the current axis + uniform_spacing = np.ndim(ax_dx) == 0 + + # Numerical differentiation: 2nd order interior + slice1[axis] = slice(1, -1) + slice2[axis] = slice(None, -2) + slice3[axis] = slice(1, -1) + slice4[axis] = slice(2, None) + + if uniform_spacing: + out[tuple(slice1)] = (f[tuple(slice4)] - f[tuple(slice2)]) / (2. * ax_dx) + else: + dx1 = ax_dx[0:-1] + dx2 = ax_dx[1:] + a = -(dx2) / (dx1 * (dx1 + dx2)) + b = (dx2 - dx1) / (dx1 * dx2) + c = dx1 / (dx2 * (dx1 + dx2)) + # fix the shape for broadcasting + shape = np.ones(N, dtype=int) + shape[axis] = -1 + a.shape = b.shape = c.shape = shape + # 1D equivalent -- out[1:-1] = a * f[:-2] + b * f[1:-1] + c * f[2:] + out[tuple(slice1)] = a * f[tuple(slice2)] + b * f[tuple(slice3)] \ + + c * f[tuple(slice4)] + + # Numerical differentiation: 1st order edges + if edge_order == 1: + slice1[axis] = 0 + slice2[axis] = 1 + slice3[axis] = 0 + dx_0 = ax_dx if uniform_spacing else ax_dx[0] + # 1D equivalent -- out[0] = (f[1] - f[0]) / (x[1] - x[0]) + out[tuple(slice1)] = (f[tuple(slice2)] - f[tuple(slice3)]) / dx_0 + + slice1[axis] = -1 + slice2[axis] = -1 + slice3[axis] = -2 + dx_n = ax_dx if uniform_spacing else ax_dx[-1] + # 1D equivalent -- out[-1] = (f[-1] - f[-2]) / (x[-1] - x[-2]) + out[tuple(slice1)] = (f[tuple(slice2)] - f[tuple(slice3)]) / dx_n + + # Numerical differentiation: 2nd order edges + else: + slice1[axis] = 0 + slice2[axis] = 0 + slice3[axis] = 1 + slice4[axis] = 2 + if uniform_spacing: + a = -1.5 / ax_dx + b = 2. / ax_dx + c = -0.5 / ax_dx + else: + dx1 = ax_dx[0] + dx2 = ax_dx[1] + a = -(2. * dx1 + dx2) / (dx1 * (dx1 + dx2)) + b = (dx1 + dx2) / (dx1 * dx2) + c = - dx1 / (dx2 * (dx1 + dx2)) + # 1D equivalent -- out[0] = a * f[0] + b * f[1] + c * f[2] + out[tuple(slice1)] = a * f[tuple(slice2)] + b * f[tuple(slice3)] \ + + c * f[tuple(slice4)] + + slice1[axis] = -1 + slice2[axis] = -3 + slice3[axis] = -2 + slice4[axis] = -1 + if uniform_spacing: + a = 0.5 / ax_dx + b = -2. / ax_dx + c = 1.5 / ax_dx + else: + dx1 = ax_dx[-2] + dx2 = ax_dx[-1] + a = (dx2) / (dx1 * (dx1 + dx2)) + b = - (dx2 + dx1) / (dx1 * dx2) + c = (2. * dx2 + dx1) / (dx2 * (dx1 + dx2)) + # 1D equivalent -- out[-1] = a * f[-3] + b * f[-2] + c * f[-1] + out[tuple(slice1)] = a * f[tuple(slice2)] + b * f[tuple(slice3)] \ + + c * f[tuple(slice4)] + + outvals.append(out) + + # reset the slice object in this dimension to ":" + slice1[axis] = slice(None) + slice2[axis] = slice(None) + slice3[axis] = slice(None) + slice4[axis] = slice(None) + + if len_axes == 1: + return outvals[0] + return tuple(outvals) + + +def _diff_dispatcher(a, n=None, axis=None, prepend=None, append=None): + return (a, prepend, append) + + +@array_function_dispatch(_diff_dispatcher) +def diff(a, n=1, axis=-1, prepend=np._NoValue, append=np._NoValue): + """ + Calculate the n-th discrete difference along the given axis. + + The first difference is given by ``out[i] = a[i+1] - a[i]`` along + the given axis, higher differences are calculated by using `diff` + recursively. + + Parameters + ---------- + a : array_like + Input array + n : int, optional + The number of times values are differenced. If zero, the input + is returned as-is. + axis : int, optional + The axis along which the difference is taken, default is the + last axis. + prepend, append : array_like, optional + Values to prepend or append to `a` along axis prior to + performing the difference. Scalar values are expanded to + arrays with length 1 in the direction of axis and the shape + of the input array in along all other axes. Otherwise the + dimension and shape must match `a` except along axis. + + Returns + ------- + diff : ndarray + The n-th differences. The shape of the output is the same as `a` + except along `axis` where the dimension is smaller by `n`. The + type of the output is the same as the type of the difference + between any two elements of `a`. This is the same as the type of + `a` in most cases. A notable exception is `datetime64`, which + results in a `timedelta64` output array. + + See Also + -------- + gradient, ediff1d, cumsum + + Notes + ----- + Type is preserved for boolean arrays, so the result will contain + `False` when consecutive elements are the same and `True` when they + differ. + + For unsigned integer arrays, the results will also be unsigned. This + should not be surprising, as the result is consistent with + calculating the difference directly: + + >>> u8_arr = np.array([1, 0], dtype=np.uint8) + >>> np.diff(u8_arr) + array([255], dtype=uint8) + >>> u8_arr[1,...] - u8_arr[0,...] + np.uint8(255) + + If this is not desirable, then the array should be cast to a larger + integer type first: + + >>> i16_arr = u8_arr.astype(np.int16) + >>> np.diff(i16_arr) + array([-1], dtype=int16) + + Examples + -------- + >>> import numpy as np + >>> x = np.array([1, 2, 4, 7, 0]) + >>> np.diff(x) + array([ 1, 2, 3, -7]) + >>> np.diff(x, n=2) + array([ 1, 1, -10]) + + >>> x = np.array([[1, 3, 6, 10], [0, 5, 6, 8]]) + >>> np.diff(x) + array([[2, 3, 4], + [5, 1, 2]]) + >>> np.diff(x, axis=0) + array([[-1, 2, 0, -2]]) + + >>> x = np.arange('1066-10-13', '1066-10-16', dtype=np.datetime64) + >>> np.diff(x) + array([1, 1], dtype='timedelta64[D]') + + """ + if n == 0: + return a + if n < 0: + raise ValueError( + "order must be non-negative but got " + repr(n)) + + a = asanyarray(a) + nd = a.ndim + if nd == 0: + raise ValueError("diff requires input that is at least one dimensional") + axis = normalize_axis_index(axis, nd) + + combined = [] + if prepend is not np._NoValue: + prepend = np.asanyarray(prepend) + if prepend.ndim == 0: + shape = list(a.shape) + shape[axis] = 1 + prepend = np.broadcast_to(prepend, tuple(shape)) + combined.append(prepend) + + combined.append(a) + + if append is not np._NoValue: + append = np.asanyarray(append) + if append.ndim == 0: + shape = list(a.shape) + shape[axis] = 1 + append = np.broadcast_to(append, tuple(shape)) + combined.append(append) + + if len(combined) > 1: + a = np.concatenate(combined, axis) + + slice1 = [slice(None)] * nd + slice2 = [slice(None)] * nd + slice1[axis] = slice(1, None) + slice2[axis] = slice(None, -1) + slice1 = tuple(slice1) + slice2 = tuple(slice2) + + op = not_equal if a.dtype == np.bool else subtract + for _ in range(n): + a = op(a[slice1], a[slice2]) + + return a + + +def _interp_dispatcher(x, xp, fp, left=None, right=None, period=None): + return (x, xp, fp) + + +@array_function_dispatch(_interp_dispatcher) +def interp(x, xp, fp, left=None, right=None, period=None): + """ + One-dimensional linear interpolation for monotonically increasing sample points. + + Returns the one-dimensional piecewise linear interpolant to a function + with given discrete data points (`xp`, `fp`), evaluated at `x`. + + Parameters + ---------- + x : array_like + The x-coordinates at which to evaluate the interpolated values. + + xp : 1-D sequence of floats + The x-coordinates of the data points, must be increasing if argument + `period` is not specified. Otherwise, `xp` is internally sorted after + normalizing the periodic boundaries with ``xp = xp % period``. + + fp : 1-D sequence of float or complex + The y-coordinates of the data points, same length as `xp`. + + left : optional float or complex corresponding to fp + Value to return for `x < xp[0]`, default is `fp[0]`. + + right : optional float or complex corresponding to fp + Value to return for `x > xp[-1]`, default is `fp[-1]`. + + period : None or float, optional + A period for the x-coordinates. This parameter allows the proper + interpolation of angular x-coordinates. Parameters `left` and `right` + are ignored if `period` is specified. + + Returns + ------- + y : float or complex (corresponding to fp) or ndarray + The interpolated values, same shape as `x`. + + Raises + ------ + ValueError + If `xp` and `fp` have different length + If `xp` or `fp` are not 1-D sequences + If `period == 0` + + See Also + -------- + scipy.interpolate + + Warnings + -------- + The x-coordinate sequence is expected to be increasing, but this is not + explicitly enforced. However, if the sequence `xp` is non-increasing, + interpolation results are meaningless. + + Note that, since NaN is unsortable, `xp` also cannot contain NaNs. + + A simple check for `xp` being strictly increasing is:: + + np.all(np.diff(xp) > 0) + + Examples + -------- + >>> import numpy as np + >>> xp = [1, 2, 3] + >>> fp = [3, 2, 0] + >>> np.interp(2.5, xp, fp) + 1.0 + >>> np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp) + array([3. , 3. , 2.5 , 0.56, 0. ]) + >>> UNDEF = -99.0 + >>> np.interp(3.14, xp, fp, right=UNDEF) + -99.0 + + Plot an interpolant to the sine function: + + >>> x = np.linspace(0, 2*np.pi, 10) + >>> y = np.sin(x) + >>> xvals = np.linspace(0, 2*np.pi, 50) + >>> yinterp = np.interp(xvals, x, y) + >>> import matplotlib.pyplot as plt + >>> plt.plot(x, y, 'o') + [] + >>> plt.plot(xvals, yinterp, '-x') + [] + >>> plt.show() + + Interpolation with periodic x-coordinates: + + >>> x = [-180, -170, -185, 185, -10, -5, 0, 365] + >>> xp = [190, -190, 350, -350] + >>> fp = [5, 10, 3, 4] + >>> np.interp(x, xp, fp, period=360) + array([7.5 , 5. , 8.75, 6.25, 3. , 3.25, 3.5 , 3.75]) + + Complex interpolation: + + >>> x = [1.5, 4.0] + >>> xp = [2,3,5] + >>> fp = [1.0j, 0, 2+3j] + >>> np.interp(x, xp, fp) + array([0.+1.j , 1.+1.5j]) + + """ + + fp = np.asarray(fp) + + if np.iscomplexobj(fp): + interp_func = compiled_interp_complex + input_dtype = np.complex128 + else: + interp_func = compiled_interp + input_dtype = np.float64 + + if period is not None: + if period == 0: + raise ValueError("period must be a non-zero value") + period = abs(period) + left = None + right = None + + x = np.asarray(x, dtype=np.float64) + xp = np.asarray(xp, dtype=np.float64) + fp = np.asarray(fp, dtype=input_dtype) + + if xp.ndim != 1 or fp.ndim != 1: + raise ValueError("Data points must be 1-D sequences") + if xp.shape[0] != fp.shape[0]: + raise ValueError("fp and xp are not of the same length") + # normalizing periodic boundaries + x = x % period + xp = xp % period + asort_xp = np.argsort(xp) + xp = xp[asort_xp] + fp = fp[asort_xp] + xp = np.concatenate((xp[-1:] - period, xp, xp[0:1] + period)) + fp = np.concatenate((fp[-1:], fp, fp[0:1])) + + return interp_func(x, xp, fp, left, right) + + +def _angle_dispatcher(z, deg=None): + return (z,) + + +@array_function_dispatch(_angle_dispatcher) +def angle(z, deg=False): + """ + Return the angle of the complex argument. + + Parameters + ---------- + z : array_like + A complex number or sequence of complex numbers. + deg : bool, optional + Return angle in degrees if True, radians if False (default). + + Returns + ------- + angle : ndarray or scalar + The counterclockwise angle from the positive real axis on the complex + plane in the range ``(-pi, pi]``, with dtype as numpy.float64. + + See Also + -------- + arctan2 + absolute + + Notes + ----- + This function passes the imaginary and real parts of the argument to + `arctan2` to compute the result; consequently, it follows the convention + of `arctan2` when the magnitude of the argument is zero. See example. + + Examples + -------- + >>> import numpy as np + >>> np.angle([1.0, 1.0j, 1+1j]) # in radians + array([ 0. , 1.57079633, 0.78539816]) # may vary + >>> np.angle(1+1j, deg=True) # in degrees + 45.0 + >>> np.angle([0., -0., complex(0., -0.), complex(-0., -0.)]) # convention + array([ 0. , 3.14159265, -0. , -3.14159265]) + + """ + z = asanyarray(z) + if issubclass(z.dtype.type, _nx.complexfloating): + zimag = z.imag + zreal = z.real + else: + zimag = 0 + zreal = z + + a = arctan2(zimag, zreal) + if deg: + a *= 180 / pi + return a + + +def _unwrap_dispatcher(p, discont=None, axis=None, *, period=None): + return (p,) + + +@array_function_dispatch(_unwrap_dispatcher) +def unwrap(p, discont=None, axis=-1, *, period=2 * pi): + r""" + Unwrap by taking the complement of large deltas with respect to the period. + + This unwraps a signal `p` by changing elements which have an absolute + difference from their predecessor of more than ``max(discont, period/2)`` + to their `period`-complementary values. + + For the default case where `period` is :math:`2\pi` and `discont` is + :math:`\pi`, this unwraps a radian phase `p` such that adjacent differences + are never greater than :math:`\pi` by adding :math:`2k\pi` for some + integer :math:`k`. + + Parameters + ---------- + p : array_like + Input array. + discont : float, optional + Maximum discontinuity between values, default is ``period/2``. + Values below ``period/2`` are treated as if they were ``period/2``. + To have an effect different from the default, `discont` should be + larger than ``period/2``. + axis : int, optional + Axis along which unwrap will operate, default is the last axis. + period : float, optional + Size of the range over which the input wraps. By default, it is + ``2 pi``. + + .. versionadded:: 1.21.0 + + Returns + ------- + out : ndarray + Output array. + + See Also + -------- + rad2deg, deg2rad + + Notes + ----- + If the discontinuity in `p` is smaller than ``period/2``, + but larger than `discont`, no unwrapping is done because taking + the complement would only make the discontinuity larger. + + Examples + -------- + >>> import numpy as np + >>> phase = np.linspace(0, np.pi, num=5) + >>> phase[3:] += np.pi + >>> phase + array([ 0. , 0.78539816, 1.57079633, 5.49778714, 6.28318531]) # may vary + >>> np.unwrap(phase) + array([ 0. , 0.78539816, 1.57079633, -0.78539816, 0. ]) # may vary + >>> np.unwrap([0, 1, 2, -1, 0], period=4) + array([0, 1, 2, 3, 4]) + >>> np.unwrap([ 1, 2, 3, 4, 5, 6, 1, 2, 3], period=6) + array([1, 2, 3, 4, 5, 6, 7, 8, 9]) + >>> np.unwrap([2, 3, 4, 5, 2, 3, 4, 5], period=4) + array([2, 3, 4, 5, 6, 7, 8, 9]) + >>> phase_deg = np.mod(np.linspace(0 ,720, 19), 360) - 180 + >>> np.unwrap(phase_deg, period=360) + array([-180., -140., -100., -60., -20., 20., 60., 100., 140., + 180., 220., 260., 300., 340., 380., 420., 460., 500., + 540.]) + """ + p = asarray(p) + nd = p.ndim + dd = diff(p, axis=axis) + if discont is None: + discont = period / 2 + slice1 = [slice(None, None)] * nd # full slices + slice1[axis] = slice(1, None) + slice1 = tuple(slice1) + dtype = np.result_type(dd, period) + if _nx.issubdtype(dtype, _nx.integer): + interval_high, rem = divmod(period, 2) + boundary_ambiguous = rem == 0 + else: + interval_high = period / 2 + boundary_ambiguous = True + interval_low = -interval_high + ddmod = mod(dd - interval_low, period) + interval_low + if boundary_ambiguous: + # for `mask = (abs(dd) == period/2)`, the above line made + # `ddmod[mask] == -period/2`. correct these such that + # `ddmod[mask] == sign(dd[mask])*period/2`. + _nx.copyto(ddmod, interval_high, + where=(ddmod == interval_low) & (dd > 0)) + ph_correct = ddmod - dd + _nx.copyto(ph_correct, 0, where=abs(dd) < discont) + up = array(p, copy=True, dtype=dtype) + up[slice1] = p[slice1] + ph_correct.cumsum(axis) + return up + + +def _sort_complex(a): + return (a,) + + +@array_function_dispatch(_sort_complex) +def sort_complex(a): + """ + Sort a complex array using the real part first, then the imaginary part. + + Parameters + ---------- + a : array_like + Input array + + Returns + ------- + out : complex ndarray + Always returns a sorted complex array. + + Examples + -------- + >>> import numpy as np + >>> np.sort_complex([5, 3, 6, 2, 1]) + array([1.+0.j, 2.+0.j, 3.+0.j, 5.+0.j, 6.+0.j]) + + >>> np.sort_complex([1 + 2j, 2 - 1j, 3 - 2j, 3 - 3j, 3 + 5j]) + array([1.+2.j, 2.-1.j, 3.-3.j, 3.-2.j, 3.+5.j]) + + """ + b = array(a, copy=True) + b.sort() + if not issubclass(b.dtype.type, _nx.complexfloating): + if b.dtype.char in 'bhBH': + return b.astype('F') + elif b.dtype.char == 'g': + return b.astype('G') + else: + return b.astype('D') + else: + return b + + +def _arg_trim_zeros(filt): + """Return indices of the first and last non-zero element. + + Parameters + ---------- + filt : array_like + Input array. + + Returns + ------- + start, stop : ndarray + Two arrays containing the indices of the first and last non-zero + element in each dimension. + + See also + -------- + trim_zeros + + Examples + -------- + >>> import numpy as np + >>> _arg_trim_zeros(np.array([0, 0, 1, 1, 0])) + (array([2]), array([3])) + """ + nonzero = ( + np.argwhere(filt) + if filt.dtype != np.object_ + # Historically, `trim_zeros` treats `None` in an object array + # as non-zero while argwhere doesn't, account for that + else np.argwhere(filt != 0) + ) + if nonzero.size == 0: + start = stop = np.array([], dtype=np.intp) + else: + start = nonzero.min(axis=0) + stop = nonzero.max(axis=0) + return start, stop + + +def _trim_zeros(filt, trim=None, axis=None): + return (filt,) + + +@array_function_dispatch(_trim_zeros) +def trim_zeros(filt, trim='fb', axis=None): + """Remove values along a dimension which are zero along all other. + + Parameters + ---------- + filt : array_like + Input array. + trim : {"fb", "f", "b"}, optional + A string with 'f' representing trim from front and 'b' to trim from + back. By default, zeros are trimmed on both sides. + Front and back refer to the edges of a dimension, with "front" referring + to the side with the lowest index 0, and "back" referring to the highest + index (or index -1). + axis : int or sequence, optional + If None, `filt` is cropped such that the smallest bounding box is + returned that still contains all values which are not zero. + If an axis is specified, `filt` will be sliced in that dimension only + on the sides specified by `trim`. The remaining area will be the + smallest that still contains all values wich are not zero. + + .. versionadded:: 2.2.0 + + Returns + ------- + trimmed : ndarray or sequence + The result of trimming the input. The number of dimensions and the + input data type are preserved. + + Notes + ----- + For all-zero arrays, the first axis is trimmed first. + + Examples + -------- + >>> import numpy as np + >>> a = np.array((0, 0, 0, 1, 2, 3, 0, 2, 1, 0)) + >>> np.trim_zeros(a) + array([1, 2, 3, 0, 2, 1]) + + >>> np.trim_zeros(a, trim='b') + array([0, 0, 0, ..., 0, 2, 1]) + + Multiple dimensions are supported. + + >>> b = np.array([[0, 0, 2, 3, 0, 0], + ... [0, 1, 0, 3, 0, 0], + ... [0, 0, 0, 0, 0, 0]]) + >>> np.trim_zeros(b) + array([[0, 2, 3], + [1, 0, 3]]) + + >>> np.trim_zeros(b, axis=-1) + array([[0, 2, 3], + [1, 0, 3], + [0, 0, 0]]) + + The input data type is preserved, list/tuple in means list/tuple out. + + >>> np.trim_zeros([0, 1, 2, 0]) + [1, 2] + + """ + filt_ = np.asarray(filt) + + trim = trim.lower() + if trim not in {"fb", "bf", "f", "b"}: + raise ValueError(f"unexpected character(s) in `trim`: {trim!r}") + + start, stop = _arg_trim_zeros(filt_) + stop += 1 # Adjust for slicing + + if start.size == 0: + # filt is all-zero -> assign same values to start and stop so that + # resulting slice will be empty + start = stop = np.zeros(filt_.ndim, dtype=np.intp) + else: + if 'f' not in trim: + start = (None,) * filt_.ndim + if 'b' not in trim: + stop = (None,) * filt_.ndim + + if len(start) == 1: + # filt is 1D -> don't use multi-dimensional slicing to preserve + # non-array input types + sl = slice(start[0], stop[0]) + elif axis is None: + # trim all axes + sl = tuple(slice(*x) for x in zip(start, stop)) + else: + # only trim single axis + axis = normalize_axis_index(axis, filt_.ndim) + sl = (slice(None),) * axis + (slice(start[axis], stop[axis]),) + (...,) + + trimmed = filt[sl] + return trimmed + + +def _extract_dispatcher(condition, arr): + return (condition, arr) + + +@array_function_dispatch(_extract_dispatcher) +def extract(condition, arr): + """ + Return the elements of an array that satisfy some condition. + + This is equivalent to ``np.compress(ravel(condition), ravel(arr))``. If + `condition` is boolean ``np.extract`` is equivalent to ``arr[condition]``. + + Note that `place` does the exact opposite of `extract`. + + Parameters + ---------- + condition : array_like + An array whose nonzero or True entries indicate the elements of `arr` + to extract. + arr : array_like + Input array of the same size as `condition`. + + Returns + ------- + extract : ndarray + Rank 1 array of values from `arr` where `condition` is True. + + See Also + -------- + take, put, copyto, compress, place + + Examples + -------- + >>> import numpy as np + >>> arr = np.arange(12).reshape((3, 4)) + >>> arr + array([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]) + >>> condition = np.mod(arr, 3)==0 + >>> condition + array([[ True, False, False, True], + [False, False, True, False], + [False, True, False, False]]) + >>> np.extract(condition, arr) + array([0, 3, 6, 9]) + + + If `condition` is boolean: + + >>> arr[condition] + array([0, 3, 6, 9]) + + """ + return _nx.take(ravel(arr), nonzero(ravel(condition))[0]) + + +def _place_dispatcher(arr, mask, vals): + return (arr, mask, vals) + + +@array_function_dispatch(_place_dispatcher) +def place(arr, mask, vals): + """ + Change elements of an array based on conditional and input values. + + Similar to ``np.copyto(arr, vals, where=mask)``, the difference is that + `place` uses the first N elements of `vals`, where N is the number of + True values in `mask`, while `copyto` uses the elements where `mask` + is True. + + Note that `extract` does the exact opposite of `place`. + + Parameters + ---------- + arr : ndarray + Array to put data into. + mask : array_like + Boolean mask array. Must have the same size as `a`. + vals : 1-D sequence + Values to put into `a`. Only the first N elements are used, where + N is the number of True values in `mask`. If `vals` is smaller + than N, it will be repeated, and if elements of `a` are to be masked, + this sequence must be non-empty. + + See Also + -------- + copyto, put, take, extract + + Examples + -------- + >>> import numpy as np + >>> arr = np.arange(6).reshape(2, 3) + >>> np.place(arr, arr>2, [44, 55]) + >>> arr + array([[ 0, 1, 2], + [44, 55, 44]]) + + """ + return _place(arr, mask, vals) + + +def disp(mesg, device=None, linefeed=True): + """ + Display a message on a device. + + .. deprecated:: 2.0 + Use your own printing function instead. + + Parameters + ---------- + mesg : str + Message to display. + device : object + Device to write message. If None, defaults to ``sys.stdout`` which is + very similar to ``print``. `device` needs to have ``write()`` and + ``flush()`` methods. + linefeed : bool, optional + Option whether to print a line feed or not. Defaults to True. + + Raises + ------ + AttributeError + If `device` does not have a ``write()`` or ``flush()`` method. + + Examples + -------- + >>> import numpy as np + + Besides ``sys.stdout``, a file-like object can also be used as it has + both required methods: + + >>> from io import StringIO + >>> buf = StringIO() + >>> np.disp('"Display" in a file', device=buf) + >>> buf.getvalue() + '"Display" in a file\\n' + + """ + + # Deprecated in NumPy 2.0, 2023-07-11 + warnings.warn( + "`disp` is deprecated, " + "use your own printing function instead. " + "(deprecated in NumPy 2.0)", + DeprecationWarning, + stacklevel=2 + ) + + if device is None: + device = sys.stdout + if linefeed: + device.write(f'{mesg}\n') + else: + device.write(f'{mesg}') + device.flush() + + +# See https://docs.scipy.org/doc/numpy/reference/c-api.generalized-ufuncs.html +_DIMENSION_NAME = r'\w+' +_CORE_DIMENSION_LIST = f'(?:{_DIMENSION_NAME}(?:,{_DIMENSION_NAME})*)?' +_ARGUMENT = fr'\({_CORE_DIMENSION_LIST}\)' +_ARGUMENT_LIST = f'{_ARGUMENT}(?:,{_ARGUMENT})*' +_SIGNATURE = f'^{_ARGUMENT_LIST}->{_ARGUMENT_LIST}$' + + +def _parse_gufunc_signature(signature): + """ + Parse string signatures for a generalized universal function. + + Arguments + --------- + signature : string + Generalized universal function signature, e.g., ``(m,n),(n,p)->(m,p)`` + for ``np.matmul``. + + Returns + ------- + Tuple of input and output core dimensions parsed from the signature, each + of the form List[Tuple[str, ...]]. + """ + signature = re.sub(r'\s+', '', signature) + + if not re.match(_SIGNATURE, signature): + raise ValueError( + f'not a valid gufunc signature: {signature}') + return tuple([tuple(re.findall(_DIMENSION_NAME, arg)) + for arg in re.findall(_ARGUMENT, arg_list)] + for arg_list in signature.split('->')) + + +def _update_dim_sizes(dim_sizes, arg, core_dims): + """ + Incrementally check and update core dimension sizes for a single argument. + + Arguments + --------- + dim_sizes : Dict[str, int] + Sizes of existing core dimensions. Will be updated in-place. + arg : ndarray + Argument to examine. + core_dims : Tuple[str, ...] + Core dimensions for this argument. + """ + if not core_dims: + return + + num_core_dims = len(core_dims) + if arg.ndim < num_core_dims: + raise ValueError( + '%d-dimensional argument does not have enough ' + 'dimensions for all core dimensions %r' + % (arg.ndim, core_dims)) + + core_shape = arg.shape[-num_core_dims:] + for dim, size in zip(core_dims, core_shape): + if dim in dim_sizes: + if size != dim_sizes[dim]: + raise ValueError( + 'inconsistent size for core dimension %r: %r vs %r' + % (dim, size, dim_sizes[dim])) + else: + dim_sizes[dim] = size + + +def _parse_input_dimensions(args, input_core_dims): + """ + Parse broadcast and core dimensions for vectorize with a signature. + + Arguments + --------- + args : Tuple[ndarray, ...] + Tuple of input arguments to examine. + input_core_dims : List[Tuple[str, ...]] + List of core dimensions corresponding to each input. + + Returns + ------- + broadcast_shape : Tuple[int, ...] + Common shape to broadcast all non-core dimensions to. + dim_sizes : Dict[str, int] + Common sizes for named core dimensions. + """ + broadcast_args = [] + dim_sizes = {} + for arg, core_dims in zip(args, input_core_dims): + _update_dim_sizes(dim_sizes, arg, core_dims) + ndim = arg.ndim - len(core_dims) + dummy_array = np.lib.stride_tricks.as_strided(0, arg.shape[:ndim]) + broadcast_args.append(dummy_array) + broadcast_shape = np.lib._stride_tricks_impl._broadcast_shape( + *broadcast_args + ) + return broadcast_shape, dim_sizes + + +def _calculate_shapes(broadcast_shape, dim_sizes, list_of_core_dims): + """Helper for calculating broadcast shapes with core dimensions.""" + return [broadcast_shape + tuple(dim_sizes[dim] for dim in core_dims) + for core_dims in list_of_core_dims] + + +def _create_arrays(broadcast_shape, dim_sizes, list_of_core_dims, dtypes, + results=None): + """Helper for creating output arrays in vectorize.""" + shapes = _calculate_shapes(broadcast_shape, dim_sizes, list_of_core_dims) + if dtypes is None: + dtypes = [None] * len(shapes) + if results is None: + arrays = tuple(np.empty(shape=shape, dtype=dtype) + for shape, dtype in zip(shapes, dtypes)) + else: + arrays = tuple(np.empty_like(result, shape=shape, dtype=dtype) + for result, shape, dtype + in zip(results, shapes, dtypes)) + return arrays + + +def _get_vectorize_dtype(dtype): + if dtype.char in "SU": + return dtype.char + return dtype + + +@set_module('numpy') +class vectorize: + """ + vectorize(pyfunc=np._NoValue, otypes=None, doc=None, excluded=None, + cache=False, signature=None) + + Returns an object that acts like pyfunc, but takes arrays as input. + + Define a vectorized function which takes a nested sequence of objects or + numpy arrays as inputs and returns a single numpy array or a tuple of numpy + arrays. The vectorized function evaluates `pyfunc` over successive tuples + of the input arrays like the python map function, except it uses the + broadcasting rules of numpy. + + The data type of the output of `vectorized` is determined by calling + the function with the first element of the input. This can be avoided + by specifying the `otypes` argument. + + Parameters + ---------- + pyfunc : callable, optional + A python function or method. + Can be omitted to produce a decorator with keyword arguments. + otypes : str or list of dtypes, optional + The output data type. It must be specified as either a string of + typecode characters or a list of data type specifiers. There should + be one data type specifier for each output. + doc : str, optional + The docstring for the function. If None, the docstring will be the + ``pyfunc.__doc__``. + excluded : set, optional + Set of strings or integers representing the positional or keyword + arguments for which the function will not be vectorized. These will be + passed directly to `pyfunc` unmodified. + + cache : bool, optional + If `True`, then cache the first function call that determines the number + of outputs if `otypes` is not provided. + + signature : string, optional + Generalized universal function signature, e.g., ``(m,n),(n)->(m)`` for + vectorized matrix-vector multiplication. If provided, ``pyfunc`` will + be called with (and expected to return) arrays with shapes given by the + size of corresponding core dimensions. By default, ``pyfunc`` is + assumed to take scalars as input and output. + + Returns + ------- + out : callable + A vectorized function if ``pyfunc`` was provided, + a decorator otherwise. + + See Also + -------- + frompyfunc : Takes an arbitrary Python function and returns a ufunc + + Notes + ----- + The `vectorize` function is provided primarily for convenience, not for + performance. The implementation is essentially a for loop. + + If `otypes` is not specified, then a call to the function with the + first argument will be used to determine the number of outputs. The + results of this call will be cached if `cache` is `True` to prevent + calling the function twice. However, to implement the cache, the + original function must be wrapped which will slow down subsequent + calls, so only do this if your function is expensive. + + The new keyword argument interface and `excluded` argument support + further degrades performance. + + References + ---------- + .. [1] :doc:`/reference/c-api/generalized-ufuncs` + + Examples + -------- + >>> import numpy as np + >>> def myfunc(a, b): + ... "Return a-b if a>b, otherwise return a+b" + ... if a > b: + ... return a - b + ... else: + ... return a + b + + >>> vfunc = np.vectorize(myfunc) + >>> vfunc([1, 2, 3, 4], 2) + array([3, 4, 1, 2]) + + The docstring is taken from the input function to `vectorize` unless it + is specified: + + >>> vfunc.__doc__ + 'Return a-b if a>b, otherwise return a+b' + >>> vfunc = np.vectorize(myfunc, doc='Vectorized `myfunc`') + >>> vfunc.__doc__ + 'Vectorized `myfunc`' + + The output type is determined by evaluating the first element of the input, + unless it is specified: + + >>> out = vfunc([1, 2, 3, 4], 2) + >>> type(out[0]) + + >>> vfunc = np.vectorize(myfunc, otypes=[float]) + >>> out = vfunc([1, 2, 3, 4], 2) + >>> type(out[0]) + + + The `excluded` argument can be used to prevent vectorizing over certain + arguments. This can be useful for array-like arguments of a fixed length + such as the coefficients for a polynomial as in `polyval`: + + >>> def mypolyval(p, x): + ... _p = list(p) + ... res = _p.pop(0) + ... while _p: + ... res = res*x + _p.pop(0) + ... return res + + Here, we exclude the zeroth argument from vectorization whether it is + passed by position or keyword. + + >>> vpolyval = np.vectorize(mypolyval, excluded={0, 'p'}) + >>> vpolyval([1, 2, 3], x=[0, 1]) + array([3, 6]) + >>> vpolyval(p=[1, 2, 3], x=[0, 1]) + array([3, 6]) + + The `signature` argument allows for vectorizing functions that act on + non-scalar arrays of fixed length. For example, you can use it for a + vectorized calculation of Pearson correlation coefficient and its p-value: + + >>> import scipy.stats + >>> pearsonr = np.vectorize(scipy.stats.pearsonr, + ... signature='(n),(n)->(),()') + >>> pearsonr([[0, 1, 2, 3]], [[1, 2, 3, 4], [4, 3, 2, 1]]) + (array([ 1., -1.]), array([ 0., 0.])) + + Or for a vectorized convolution: + + >>> convolve = np.vectorize(np.convolve, signature='(n),(m)->(k)') + >>> convolve(np.eye(4), [1, 2, 1]) + array([[1., 2., 1., 0., 0., 0.], + [0., 1., 2., 1., 0., 0.], + [0., 0., 1., 2., 1., 0.], + [0., 0., 0., 1., 2., 1.]]) + + Decorator syntax is supported. The decorator can be called as + a function to provide keyword arguments: + + >>> @np.vectorize + ... def identity(x): + ... return x + ... + >>> identity([0, 1, 2]) + array([0, 1, 2]) + >>> @np.vectorize(otypes=[float]) + ... def as_float(x): + ... return x + ... + >>> as_float([0, 1, 2]) + array([0., 1., 2.]) + """ + def __init__(self, pyfunc=np._NoValue, otypes=None, doc=None, + excluded=None, cache=False, signature=None): + + if (pyfunc != np._NoValue) and (not callable(pyfunc)): + # Splitting the error message to keep + # the length below 79 characters. + part1 = "When used as a decorator, " + part2 = "only accepts keyword arguments." + raise TypeError(part1 + part2) + + self.pyfunc = pyfunc + self.cache = cache + self.signature = signature + if pyfunc != np._NoValue and hasattr(pyfunc, '__name__'): + self.__name__ = pyfunc.__name__ + + self._ufunc = {} # Caching to improve default performance + self._doc = None + self.__doc__ = doc + if doc is None and hasattr(pyfunc, '__doc__'): + self.__doc__ = pyfunc.__doc__ + else: + self._doc = doc + + if isinstance(otypes, str): + for char in otypes: + if char not in typecodes['All']: + raise ValueError(f"Invalid otype specified: {char}") + elif iterable(otypes): + otypes = [_get_vectorize_dtype(_nx.dtype(x)) for x in otypes] + elif otypes is not None: + raise ValueError("Invalid otype specification") + self.otypes = otypes + + # Excluded variable support + if excluded is None: + excluded = set() + self.excluded = set(excluded) + + if signature is not None: + self._in_and_out_core_dims = _parse_gufunc_signature(signature) + else: + self._in_and_out_core_dims = None + + def _init_stage_2(self, pyfunc, *args, **kwargs): + self.__name__ = pyfunc.__name__ + self.pyfunc = pyfunc + if self._doc is None: + self.__doc__ = pyfunc.__doc__ + else: + self.__doc__ = self._doc + + def _call_as_normal(self, *args, **kwargs): + """ + Return arrays with the results of `pyfunc` broadcast (vectorized) over + `args` and `kwargs` not in `excluded`. + """ + excluded = self.excluded + if not kwargs and not excluded: + func = self.pyfunc + vargs = args + else: + # The wrapper accepts only positional arguments: we use `names` and + # `inds` to mutate `the_args` and `kwargs` to pass to the original + # function. + nargs = len(args) + + names = [_n for _n in kwargs if _n not in excluded] + inds = [_i for _i in range(nargs) if _i not in excluded] + the_args = list(args) + + def func(*vargs): + for _n, _i in enumerate(inds): + the_args[_i] = vargs[_n] + kwargs.update(zip(names, vargs[len(inds):])) + return self.pyfunc(*the_args, **kwargs) + + vargs = [args[_i] for _i in inds] + vargs.extend([kwargs[_n] for _n in names]) + + return self._vectorize_call(func=func, args=vargs) + + def __call__(self, *args, **kwargs): + if self.pyfunc is np._NoValue: + self._init_stage_2(*args, **kwargs) + return self + + return self._call_as_normal(*args, **kwargs) + + def _get_ufunc_and_otypes(self, func, args): + """Return (ufunc, otypes).""" + # frompyfunc will fail if args is empty + if not args: + raise ValueError('args can not be empty') + + if self.otypes is not None: + otypes = self.otypes + + # self._ufunc is a dictionary whose keys are the number of + # arguments (i.e. len(args)) and whose values are ufuncs created + # by frompyfunc. len(args) can be different for different calls if + # self.pyfunc has parameters with default values. We only use the + # cache when func is self.pyfunc, which occurs when the call uses + # only positional arguments and no arguments are excluded. + + nin = len(args) + nout = len(self.otypes) + if func is not self.pyfunc or nin not in self._ufunc: + ufunc = frompyfunc(func, nin, nout) + else: + ufunc = None # We'll get it from self._ufunc + if func is self.pyfunc: + ufunc = self._ufunc.setdefault(nin, ufunc) + else: + # Get number of outputs and output types by calling the function on + # the first entries of args. We also cache the result to prevent + # the subsequent call when the ufunc is evaluated. + # Assumes that ufunc first evaluates the 0th elements in the input + # arrays (the input values are not checked to ensure this) + args = [asarray(a) for a in args] + if builtins.any(arg.size == 0 for arg in args): + raise ValueError('cannot call `vectorize` on size 0 inputs ' + 'unless `otypes` is set') + + inputs = [arg.flat[0] for arg in args] + outputs = func(*inputs) + + # Performance note: profiling indicates that -- for simple + # functions at least -- this wrapping can almost double the + # execution time. + # Hence we make it optional. + if self.cache: + _cache = [outputs] + + def _func(*vargs): + if _cache: + return _cache.pop() + else: + return func(*vargs) + else: + _func = func + + if isinstance(outputs, tuple): + nout = len(outputs) + else: + nout = 1 + outputs = (outputs,) + + otypes = ''.join([asarray(outputs[_k]).dtype.char + for _k in range(nout)]) + + # Performance note: profiling indicates that creating the ufunc is + # not a significant cost compared with wrapping so it seems not + # worth trying to cache this. + ufunc = frompyfunc(_func, len(args), nout) + + return ufunc, otypes + + def _vectorize_call(self, func, args): + """Vectorized call to `func` over positional `args`.""" + if self.signature is not None: + res = self._vectorize_call_with_signature(func, args) + elif not args: + res = func() + else: + ufunc, otypes = self._get_ufunc_and_otypes(func=func, args=args) + # gh-29196: `dtype=object` should eventually be removed + args = [asanyarray(a, dtype=object) for a in args] + outputs = ufunc(*args, out=...) + + if ufunc.nout == 1: + res = asanyarray(outputs, dtype=otypes[0]) + else: + res = tuple(asanyarray(x, dtype=t) + for x, t in zip(outputs, otypes)) + return res + + def _vectorize_call_with_signature(self, func, args): + """Vectorized call over positional arguments with a signature.""" + input_core_dims, output_core_dims = self._in_and_out_core_dims + + if len(args) != len(input_core_dims): + raise TypeError('wrong number of positional arguments: ' + 'expected %r, got %r' + % (len(input_core_dims), len(args))) + args = tuple(asanyarray(arg) for arg in args) + + broadcast_shape, dim_sizes = _parse_input_dimensions( + args, input_core_dims) + input_shapes = _calculate_shapes(broadcast_shape, dim_sizes, + input_core_dims) + args = [np.broadcast_to(arg, shape, subok=True) + for arg, shape in zip(args, input_shapes)] + + outputs = None + otypes = self.otypes + nout = len(output_core_dims) + + for index in np.ndindex(*broadcast_shape): + results = func(*(arg[index] for arg in args)) + + n_results = len(results) if isinstance(results, tuple) else 1 + + if nout != n_results: + raise ValueError( + 'wrong number of outputs from pyfunc: expected %r, got %r' + % (nout, n_results)) + + if nout == 1: + results = (results,) + + if outputs is None: + for result, core_dims in zip(results, output_core_dims): + _update_dim_sizes(dim_sizes, result, core_dims) + + outputs = _create_arrays(broadcast_shape, dim_sizes, + output_core_dims, otypes, results) + + for output, result in zip(outputs, results): + output[index] = result + + if outputs is None: + # did not call the function even once + if otypes is None: + raise ValueError('cannot call `vectorize` on size 0 inputs ' + 'unless `otypes` is set') + if builtins.any(dim not in dim_sizes + for dims in output_core_dims + for dim in dims): + raise ValueError('cannot call `vectorize` with a signature ' + 'including new output dimensions on size 0 ' + 'inputs') + outputs = _create_arrays(broadcast_shape, dim_sizes, + output_core_dims, otypes) + + return outputs[0] if nout == 1 else outputs + + +def _cov_dispatcher(m, y=None, rowvar=None, bias=None, ddof=None, + fweights=None, aweights=None, *, dtype=None): + return (m, y, fweights, aweights) + + +@array_function_dispatch(_cov_dispatcher) +def cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, + aweights=None, *, dtype=None): + """ + Estimate a covariance matrix, given data and weights. + + Covariance indicates the level to which two variables vary together. + If we examine N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]^T`, + then the covariance matrix element :math:`C_{ij}` is the covariance of + :math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance + of :math:`x_i`. + + See the notes for an outline of the algorithm. + + Parameters + ---------- + m : array_like + A 1-D or 2-D array containing multiple variables and observations. + Each row of `m` represents a variable, and each column a single + observation of all those variables. Also see `rowvar` below. + y : array_like, optional + An additional set of variables and observations. `y` has the same form + as that of `m`. + rowvar : bool, optional + If `rowvar` is True (default), then each row represents a + variable, with observations in the columns. Otherwise, the relationship + is transposed: each column represents a variable, while the rows + contain observations. + bias : bool, optional + Default normalization (False) is by ``(N - 1)``, where ``N`` is the + number of observations given (unbiased estimate). If `bias` is True, + then normalization is by ``N``. These values can be overridden by using + the keyword ``ddof`` in numpy versions >= 1.5. + ddof : int, optional + If not ``None`` the default value implied by `bias` is overridden. + Note that ``ddof=1`` will return the unbiased estimate, even if both + `fweights` and `aweights` are specified, and ``ddof=0`` will return + the simple average. See the notes for the details. The default value + is ``None``. + fweights : array_like, int, optional + 1-D array of integer frequency weights; the number of times each + observation vector should be repeated. + aweights : array_like, optional + 1-D array of observation vector weights. These relative weights are + typically large for observations considered "important" and smaller for + observations considered less "important". If ``ddof=0`` the array of + weights can be used to assign probabilities to observation vectors. + dtype : data-type, optional + Data-type of the result. By default, the return data-type will have + at least `numpy.float64` precision. + + .. versionadded:: 1.20 + + Returns + ------- + out : ndarray + The covariance matrix of the variables. + + See Also + -------- + corrcoef : Normalized covariance matrix + + Notes + ----- + Assume that the observations are in the columns of the observation + array `m` and let ``f = fweights`` and ``a = aweights`` for brevity. The + steps to compute the weighted covariance are as follows:: + + >>> m = np.arange(10, dtype=np.float64) + >>> f = np.arange(10) * 2 + >>> a = np.arange(10) ** 2. + >>> ddof = 1 + >>> w = f * a + >>> v1 = np.sum(w) + >>> v2 = np.sum(w * a) + >>> m -= np.sum(m * w, axis=None, keepdims=True) / v1 + >>> cov = np.dot(m * w, m.T) * v1 / (v1**2 - ddof * v2) + + Note that when ``a == 1``, the normalization factor + ``v1 / (v1**2 - ddof * v2)`` goes over to ``1 / (np.sum(f) - ddof)`` + as it should. + + Examples + -------- + >>> import numpy as np + + Consider two variables, :math:`x_0` and :math:`x_1`, which + correlate perfectly, but in opposite directions: + + >>> x = np.array([[0, 2], [1, 1], [2, 0]]).T + >>> x + array([[0, 1, 2], + [2, 1, 0]]) + + Note how :math:`x_0` increases while :math:`x_1` decreases. The covariance + matrix shows this clearly: + + >>> np.cov(x) + array([[ 1., -1.], + [-1., 1.]]) + + Note that element :math:`C_{0,1}`, which shows the correlation between + :math:`x_0` and :math:`x_1`, is negative. + + Further, note how `x` and `y` are combined: + + >>> x = [-2.1, -1, 4.3] + >>> y = [3, 1.1, 0.12] + >>> X = np.stack((x, y), axis=0) + >>> np.cov(X) + array([[11.71 , -4.286 ], # may vary + [-4.286 , 2.144133]]) + >>> np.cov(x, y) + array([[11.71 , -4.286 ], # may vary + [-4.286 , 2.144133]]) + >>> np.cov(x) + array(11.71) + + """ + # Check inputs + if ddof is not None and ddof != int(ddof): + raise ValueError( + "ddof must be integer") + + # Handles complex arrays too + m = np.asarray(m) + if m.ndim > 2: + raise ValueError("m has more than 2 dimensions") + + if y is not None: + y = np.asarray(y) + if y.ndim > 2: + raise ValueError("y has more than 2 dimensions") + + if dtype is None: + if y is None: + dtype = np.result_type(m, np.float64) + else: + dtype = np.result_type(m, y, np.float64) + + X = array(m, ndmin=2, dtype=dtype) + if not rowvar and m.ndim != 1: + X = X.T + if X.shape[0] == 0: + return np.array([]).reshape(0, 0) + if y is not None: + y = array(y, copy=None, ndmin=2, dtype=dtype) + if not rowvar and y.shape[0] != 1: + y = y.T + X = np.concatenate((X, y), axis=0) + + if ddof is None: + if bias == 0: + ddof = 1 + else: + ddof = 0 + + # Get the product of frequencies and weights + w = None + if fweights is not None: + fweights = np.asarray(fweights, dtype=float) + if not np.all(fweights == np.around(fweights)): + raise TypeError( + "fweights must be integer") + if fweights.ndim > 1: + raise RuntimeError( + "cannot handle multidimensional fweights") + if fweights.shape[0] != X.shape[1]: + raise RuntimeError( + "incompatible numbers of samples and fweights") + if any(fweights < 0): + raise ValueError( + "fweights cannot be negative") + w = fweights + if aweights is not None: + aweights = np.asarray(aweights, dtype=float) + if aweights.ndim > 1: + raise RuntimeError( + "cannot handle multidimensional aweights") + if aweights.shape[0] != X.shape[1]: + raise RuntimeError( + "incompatible numbers of samples and aweights") + if any(aweights < 0): + raise ValueError( + "aweights cannot be negative") + if w is None: + w = aweights + else: + w *= aweights + + avg, w_sum = average(X, axis=1, weights=w, returned=True) + w_sum = w_sum[0] + + # Determine the normalization + if w is None: + fact = X.shape[1] - ddof + elif ddof == 0: + fact = w_sum + elif aweights is None: + fact = w_sum - ddof + else: + fact = w_sum - ddof * sum(w * aweights) / w_sum + + if fact <= 0: + warnings.warn("Degrees of freedom <= 0 for slice", + RuntimeWarning, stacklevel=2) + fact = 0.0 + + X -= avg[:, None] + if w is None: + X_T = X.T + else: + X_T = (X * w).T + c = dot(X, X_T.conj()) + c *= np.true_divide(1, fact) + return c.squeeze() + + +def _corrcoef_dispatcher(x, y=None, rowvar=None, bias=None, ddof=None, *, + dtype=None): + return (x, y) + + +@array_function_dispatch(_corrcoef_dispatcher) +def corrcoef(x, y=None, rowvar=True, bias=np._NoValue, ddof=np._NoValue, *, + dtype=None): + """ + Return Pearson product-moment correlation coefficients. + + Please refer to the documentation for `cov` for more detail. The + relationship between the correlation coefficient matrix, `R`, and the + covariance matrix, `C`, is + + .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} C_{jj} } } + + The values of `R` are between -1 and 1, inclusive. + + Parameters + ---------- + x : array_like + A 1-D or 2-D array containing multiple variables and observations. + Each row of `x` represents a variable, and each column a single + observation of all those variables. Also see `rowvar` below. + y : array_like, optional + An additional set of variables and observations. `y` has the same + shape as `x`. + rowvar : bool, optional + If `rowvar` is True (default), then each row represents a + variable, with observations in the columns. Otherwise, the relationship + is transposed: each column represents a variable, while the rows + contain observations. + bias : _NoValue, optional + Has no effect, do not use. + + .. deprecated:: 1.10.0 + ddof : _NoValue, optional + Has no effect, do not use. + + .. deprecated:: 1.10.0 + dtype : data-type, optional + Data-type of the result. By default, the return data-type will have + at least `numpy.float64` precision. + + .. versionadded:: 1.20 + + Returns + ------- + R : ndarray + The correlation coefficient matrix of the variables. + + See Also + -------- + cov : Covariance matrix + + Notes + ----- + Due to floating point rounding the resulting array may not be Hermitian, + the diagonal elements may not be 1, and the elements may not satisfy the + inequality abs(a) <= 1. The real and imaginary parts are clipped to the + interval [-1, 1] in an attempt to improve on that situation but is not + much help in the complex case. + + This function accepts but discards arguments `bias` and `ddof`. This is + for backwards compatibility with previous versions of this function. These + arguments had no effect on the return values of the function and can be + safely ignored in this and previous versions of numpy. + + Examples + -------- + >>> import numpy as np + + In this example we generate two random arrays, ``xarr`` and ``yarr``, and + compute the row-wise and column-wise Pearson correlation coefficients, + ``R``. Since ``rowvar`` is true by default, we first find the row-wise + Pearson correlation coefficients between the variables of ``xarr``. + + >>> import numpy as np + >>> rng = np.random.default_rng(seed=42) + >>> xarr = rng.random((3, 3)) + >>> xarr + array([[0.77395605, 0.43887844, 0.85859792], + [0.69736803, 0.09417735, 0.97562235], + [0.7611397 , 0.78606431, 0.12811363]]) + >>> R1 = np.corrcoef(xarr) + >>> R1 + array([[ 1. , 0.99256089, -0.68080986], + [ 0.99256089, 1. , -0.76492172], + [-0.68080986, -0.76492172, 1. ]]) + + If we add another set of variables and observations ``yarr``, we can + compute the row-wise Pearson correlation coefficients between the + variables in ``xarr`` and ``yarr``. + + >>> yarr = rng.random((3, 3)) + >>> yarr + array([[0.45038594, 0.37079802, 0.92676499], + [0.64386512, 0.82276161, 0.4434142 ], + [0.22723872, 0.55458479, 0.06381726]]) + >>> R2 = np.corrcoef(xarr, yarr) + >>> R2 + array([[ 1. , 0.99256089, -0.68080986, 0.75008178, -0.934284 , + -0.99004057], + [ 0.99256089, 1. , -0.76492172, 0.82502011, -0.97074098, + -0.99981569], + [-0.68080986, -0.76492172, 1. , -0.99507202, 0.89721355, + 0.77714685], + [ 0.75008178, 0.82502011, -0.99507202, 1. , -0.93657855, + -0.83571711], + [-0.934284 , -0.97074098, 0.89721355, -0.93657855, 1. , + 0.97517215], + [-0.99004057, -0.99981569, 0.77714685, -0.83571711, 0.97517215, + 1. ]]) + + Finally if we use the option ``rowvar=False``, the columns are now + being treated as the variables and we will find the column-wise Pearson + correlation coefficients between variables in ``xarr`` and ``yarr``. + + >>> R3 = np.corrcoef(xarr, yarr, rowvar=False) + >>> R3 + array([[ 1. , 0.77598074, -0.47458546, -0.75078643, -0.9665554 , + 0.22423734], + [ 0.77598074, 1. , -0.92346708, -0.99923895, -0.58826587, + -0.44069024], + [-0.47458546, -0.92346708, 1. , 0.93773029, 0.23297648, + 0.75137473], + [-0.75078643, -0.99923895, 0.93773029, 1. , 0.55627469, + 0.47536961], + [-0.9665554 , -0.58826587, 0.23297648, 0.55627469, 1. , + -0.46666491], + [ 0.22423734, -0.44069024, 0.75137473, 0.47536961, -0.46666491, + 1. ]]) + + """ + if bias is not np._NoValue or ddof is not np._NoValue: + # 2015-03-15, 1.10 + warnings.warn('bias and ddof have no effect and are deprecated', + DeprecationWarning, stacklevel=2) + c = cov(x, y, rowvar, dtype=dtype) + try: + d = diag(c) + except ValueError: + # scalar covariance + # nan if incorrect value (nan, inf, 0), 1 otherwise + return c / c + stddev = sqrt(d.real) + c /= stddev[:, None] + c /= stddev[None, :] + + # Clip real and imaginary parts to [-1, 1]. This does not guarantee + # abs(a[i,j]) <= 1 for complex arrays, but is the best we can do without + # excessive work. + np.clip(c.real, -1, 1, out=c.real) + if np.iscomplexobj(c): + np.clip(c.imag, -1, 1, out=c.imag) + + return c + + +@set_module('numpy') +def blackman(M): + """ + Return the Blackman window. + + The Blackman window is a taper formed by using the first three + terms of a summation of cosines. It was designed to have close to the + minimal leakage possible. It is close to optimal, only slightly worse + than a Kaiser window. + + Parameters + ---------- + M : int + Number of points in the output window. If zero or less, an empty + array is returned. + + Returns + ------- + out : ndarray + The window, with the maximum value normalized to one (the value one + appears only if the number of samples is odd). + + See Also + -------- + bartlett, hamming, hanning, kaiser + + Notes + ----- + The Blackman window is defined as + + .. math:: w(n) = 0.42 - 0.5 \\cos(2\\pi n/M) + 0.08 \\cos(4\\pi n/M) + + Most references to the Blackman window come from the signal processing + literature, where it is used as one of many windowing functions for + smoothing values. It is also known as an apodization (which means + "removing the foot", i.e. smoothing discontinuities at the beginning + and end of the sampled signal) or tapering function. It is known as a + "near optimal" tapering function, almost as good (by some measures) + as the kaiser window. + + References + ---------- + Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, + Dover Publications, New York. + + Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. + Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471. + + Examples + -------- + >>> import numpy as np + >>> import matplotlib.pyplot as plt + >>> np.blackman(12) + array([-1.38777878e-17, 3.26064346e-02, 1.59903635e-01, # may vary + 4.14397981e-01, 7.36045180e-01, 9.67046769e-01, + 9.67046769e-01, 7.36045180e-01, 4.14397981e-01, + 1.59903635e-01, 3.26064346e-02, -1.38777878e-17]) + + Plot the window and the frequency response. + + .. plot:: + :include-source: + + import matplotlib.pyplot as plt + from numpy.fft import fft, fftshift + window = np.blackman(51) + plt.plot(window) + plt.title("Blackman window") + plt.ylabel("Amplitude") + plt.xlabel("Sample") + plt.show() # doctest: +SKIP + + plt.figure() + A = fft(window, 2048) / 25.5 + mag = np.abs(fftshift(A)) + freq = np.linspace(-0.5, 0.5, len(A)) + with np.errstate(divide='ignore', invalid='ignore'): + response = 20 * np.log10(mag) + response = np.clip(response, -100, 100) + plt.plot(freq, response) + plt.title("Frequency response of Blackman window") + plt.ylabel("Magnitude [dB]") + plt.xlabel("Normalized frequency [cycles per sample]") + plt.axis('tight') + plt.show() + + """ + # Ensures at least float64 via 0.0. M should be an integer, but conversion + # to double is safe for a range. + values = np.array([0.0, M]) + M = values[1] + + if M < 1: + return array([], dtype=values.dtype) + if M == 1: + return ones(1, dtype=values.dtype) + n = arange(1 - M, M, 2) + return 0.42 + 0.5 * cos(pi * n / (M - 1)) + 0.08 * cos(2.0 * pi * n / (M - 1)) + + +@set_module('numpy') +def bartlett(M): + """ + Return the Bartlett window. + + The Bartlett window is very similar to a triangular window, except + that the end points are at zero. It is often used in signal + processing for tapering a signal, without generating too much + ripple in the frequency domain. + + Parameters + ---------- + M : int + Number of points in the output window. If zero or less, an + empty array is returned. + + Returns + ------- + out : array + The triangular window, with the maximum value normalized to one + (the value one appears only if the number of samples is odd), with + the first and last samples equal to zero. + + See Also + -------- + blackman, hamming, hanning, kaiser + + Notes + ----- + The Bartlett window is defined as + + .. math:: w(n) = \\frac{2}{M-1} \\left( + \\frac{M-1}{2} - \\left|n - \\frac{M-1}{2}\\right| + \\right) + + Most references to the Bartlett window come from the signal processing + literature, where it is used as one of many windowing functions for + smoothing values. Note that convolution with this window produces linear + interpolation. It is also known as an apodization (which means "removing + the foot", i.e. smoothing discontinuities at the beginning and end of the + sampled signal) or tapering function. The Fourier transform of the + Bartlett window is the product of two sinc functions. Note the excellent + discussion in Kanasewich [2]_. + + References + ---------- + .. [1] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra", + Biometrika 37, 1-16, 1950. + .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", + The University of Alberta Press, 1975, pp. 109-110. + .. [3] A.V. Oppenheim and R.W. Schafer, "Discrete-Time Signal + Processing", Prentice-Hall, 1999, pp. 468-471. + .. [4] Wikipedia, "Window function", + https://en.wikipedia.org/wiki/Window_function + .. [5] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, + "Numerical Recipes", Cambridge University Press, 1986, page 429. + + Examples + -------- + >>> import numpy as np + >>> import matplotlib.pyplot as plt + >>> np.bartlett(12) + array([ 0. , 0.18181818, 0.36363636, 0.54545455, 0.72727273, # may vary + 0.90909091, 0.90909091, 0.72727273, 0.54545455, 0.36363636, + 0.18181818, 0. ]) + + Plot the window and its frequency response (requires SciPy and matplotlib). + + .. plot:: + :include-source: + + import matplotlib.pyplot as plt + from numpy.fft import fft, fftshift + window = np.bartlett(51) + plt.plot(window) + plt.title("Bartlett window") + plt.ylabel("Amplitude") + plt.xlabel("Sample") + plt.show() + plt.figure() + A = fft(window, 2048) / 25.5 + mag = np.abs(fftshift(A)) + freq = np.linspace(-0.5, 0.5, len(A)) + with np.errstate(divide='ignore', invalid='ignore'): + response = 20 * np.log10(mag) + response = np.clip(response, -100, 100) + plt.plot(freq, response) + plt.title("Frequency response of Bartlett window") + plt.ylabel("Magnitude [dB]") + plt.xlabel("Normalized frequency [cycles per sample]") + plt.axis('tight') + plt.show() + + """ + # Ensures at least float64 via 0.0. M should be an integer, but conversion + # to double is safe for a range. + values = np.array([0.0, M]) + M = values[1] + + if M < 1: + return array([], dtype=values.dtype) + if M == 1: + return ones(1, dtype=values.dtype) + n = arange(1 - M, M, 2) + return where(less_equal(n, 0), 1 + n / (M - 1), 1 - n / (M - 1)) + + +@set_module('numpy') +def hanning(M): + """ + Return the Hanning window. + + The Hanning window is a taper formed by using a weighted cosine. + + Parameters + ---------- + M : int + Number of points in the output window. If zero or less, an + empty array is returned. + + Returns + ------- + out : ndarray, shape(M,) + The window, with the maximum value normalized to one (the value + one appears only if `M` is odd). + + See Also + -------- + bartlett, blackman, hamming, kaiser + + Notes + ----- + The Hanning window is defined as + + .. math:: w(n) = 0.5 - 0.5\\cos\\left(\\frac{2\\pi{n}}{M-1}\\right) + \\qquad 0 \\leq n \\leq M-1 + + The Hanning was named for Julius von Hann, an Austrian meteorologist. + It is also known as the Cosine Bell. Some authors prefer that it be + called a Hann window, to help avoid confusion with the very similar + Hamming window. + + Most references to the Hanning window come from the signal processing + literature, where it is used as one of many windowing functions for + smoothing values. It is also known as an apodization (which means + "removing the foot", i.e. smoothing discontinuities at the beginning + and end of the sampled signal) or tapering function. + + References + ---------- + .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power + spectra, Dover Publications, New York. + .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", + The University of Alberta Press, 1975, pp. 106-108. + .. [3] Wikipedia, "Window function", + https://en.wikipedia.org/wiki/Window_function + .. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, + "Numerical Recipes", Cambridge University Press, 1986, page 425. + + Examples + -------- + >>> import numpy as np + >>> np.hanning(12) + array([0. , 0.07937323, 0.29229249, 0.57115742, 0.82743037, + 0.97974649, 0.97974649, 0.82743037, 0.57115742, 0.29229249, + 0.07937323, 0. ]) + + Plot the window and its frequency response. + + .. plot:: + :include-source: + + import matplotlib.pyplot as plt + from numpy.fft import fft, fftshift + window = np.hanning(51) + plt.plot(window) + plt.title("Hann window") + plt.ylabel("Amplitude") + plt.xlabel("Sample") + plt.show() + + plt.figure() + A = fft(window, 2048) / 25.5 + mag = np.abs(fftshift(A)) + freq = np.linspace(-0.5, 0.5, len(A)) + with np.errstate(divide='ignore', invalid='ignore'): + response = 20 * np.log10(mag) + response = np.clip(response, -100, 100) + plt.plot(freq, response) + plt.title("Frequency response of the Hann window") + plt.ylabel("Magnitude [dB]") + plt.xlabel("Normalized frequency [cycles per sample]") + plt.axis('tight') + plt.show() + + """ + # Ensures at least float64 via 0.0. M should be an integer, but conversion + # to double is safe for a range. + values = np.array([0.0, M]) + M = values[1] + + if M < 1: + return array([], dtype=values.dtype) + if M == 1: + return ones(1, dtype=values.dtype) + n = arange(1 - M, M, 2) + return 0.5 + 0.5 * cos(pi * n / (M - 1)) + + +@set_module('numpy') +def hamming(M): + """ + Return the Hamming window. + + The Hamming window is a taper formed by using a weighted cosine. + + Parameters + ---------- + M : int + Number of points in the output window. If zero or less, an + empty array is returned. + + Returns + ------- + out : ndarray + The window, with the maximum value normalized to one (the value + one appears only if the number of samples is odd). + + See Also + -------- + bartlett, blackman, hanning, kaiser + + Notes + ----- + The Hamming window is defined as + + .. math:: w(n) = 0.54 - 0.46\\cos\\left(\\frac{2\\pi{n}}{M-1}\\right) + \\qquad 0 \\leq n \\leq M-1 + + The Hamming was named for R. W. Hamming, an associate of J. W. Tukey + and is described in Blackman and Tukey. It was recommended for + smoothing the truncated autocovariance function in the time domain. + Most references to the Hamming window come from the signal processing + literature, where it is used as one of many windowing functions for + smoothing values. It is also known as an apodization (which means + "removing the foot", i.e. smoothing discontinuities at the beginning + and end of the sampled signal) or tapering function. + + References + ---------- + .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power + spectra, Dover Publications, New York. + .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The + University of Alberta Press, 1975, pp. 109-110. + .. [3] Wikipedia, "Window function", + https://en.wikipedia.org/wiki/Window_function + .. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, + "Numerical Recipes", Cambridge University Press, 1986, page 425. + + Examples + -------- + >>> import numpy as np + >>> np.hamming(12) + array([ 0.08 , 0.15302337, 0.34890909, 0.60546483, 0.84123594, # may vary + 0.98136677, 0.98136677, 0.84123594, 0.60546483, 0.34890909, + 0.15302337, 0.08 ]) + + Plot the window and the frequency response. + + .. plot:: + :include-source: + + import matplotlib.pyplot as plt + from numpy.fft import fft, fftshift + window = np.hamming(51) + plt.plot(window) + plt.title("Hamming window") + plt.ylabel("Amplitude") + plt.xlabel("Sample") + plt.show() + + plt.figure() + A = fft(window, 2048) / 25.5 + mag = np.abs(fftshift(A)) + freq = np.linspace(-0.5, 0.5, len(A)) + response = 20 * np.log10(mag) + response = np.clip(response, -100, 100) + plt.plot(freq, response) + plt.title("Frequency response of Hamming window") + plt.ylabel("Magnitude [dB]") + plt.xlabel("Normalized frequency [cycles per sample]") + plt.axis('tight') + plt.show() + + """ + # Ensures at least float64 via 0.0. M should be an integer, but conversion + # to double is safe for a range. + values = np.array([0.0, M]) + M = values[1] + + if M < 1: + return array([], dtype=values.dtype) + if M == 1: + return ones(1, dtype=values.dtype) + n = arange(1 - M, M, 2) + return 0.54 + 0.46 * cos(pi * n / (M - 1)) + + +## Code from cephes for i0 + +_i0A = [ + -4.41534164647933937950E-18, + 3.33079451882223809783E-17, + -2.43127984654795469359E-16, + 1.71539128555513303061E-15, + -1.16853328779934516808E-14, + 7.67618549860493561688E-14, + -4.85644678311192946090E-13, + 2.95505266312963983461E-12, + -1.72682629144155570723E-11, + 9.67580903537323691224E-11, + -5.18979560163526290666E-10, + 2.65982372468238665035E-9, + -1.30002500998624804212E-8, + 6.04699502254191894932E-8, + -2.67079385394061173391E-7, + 1.11738753912010371815E-6, + -4.41673835845875056359E-6, + 1.64484480707288970893E-5, + -5.75419501008210370398E-5, + 1.88502885095841655729E-4, + -5.76375574538582365885E-4, + 1.63947561694133579842E-3, + -4.32430999505057594430E-3, + 1.05464603945949983183E-2, + -2.37374148058994688156E-2, + 4.93052842396707084878E-2, + -9.49010970480476444210E-2, + 1.71620901522208775349E-1, + -3.04682672343198398683E-1, + 6.76795274409476084995E-1 + ] + +_i0B = [ + -7.23318048787475395456E-18, + -4.83050448594418207126E-18, + 4.46562142029675999901E-17, + 3.46122286769746109310E-17, + -2.82762398051658348494E-16, + -3.42548561967721913462E-16, + 1.77256013305652638360E-15, + 3.81168066935262242075E-15, + -9.55484669882830764870E-15, + -4.15056934728722208663E-14, + 1.54008621752140982691E-14, + 3.85277838274214270114E-13, + 7.18012445138366623367E-13, + -1.79417853150680611778E-12, + -1.32158118404477131188E-11, + -3.14991652796324136454E-11, + 1.18891471078464383424E-11, + 4.94060238822496958910E-10, + 3.39623202570838634515E-9, + 2.26666899049817806459E-8, + 2.04891858946906374183E-7, + 2.89137052083475648297E-6, + 6.88975834691682398426E-5, + 3.36911647825569408990E-3, + 8.04490411014108831608E-1 + ] + + +def _chbevl(x, vals): + b0 = vals[0] + b1 = 0.0 + + for i in range(1, len(vals)): + b2 = b1 + b1 = b0 + b0 = x * b1 - b2 + vals[i] + + return 0.5 * (b0 - b2) + + +def _i0_1(x): + return exp(x) * _chbevl(x / 2.0 - 2, _i0A) + + +def _i0_2(x): + return exp(x) * _chbevl(32.0 / x - 2.0, _i0B) / sqrt(x) + + +def _i0_dispatcher(x): + return (x,) + + +@array_function_dispatch(_i0_dispatcher) +def i0(x): + """ + Modified Bessel function of the first kind, order 0. + + Usually denoted :math:`I_0`. + + Parameters + ---------- + x : array_like of float + Argument of the Bessel function. + + Returns + ------- + out : ndarray, shape = x.shape, dtype = float + The modified Bessel function evaluated at each of the elements of `x`. + + See Also + -------- + scipy.special.i0, scipy.special.iv, scipy.special.ive + + Notes + ----- + The scipy implementation is recommended over this function: it is a + proper ufunc written in C, and more than an order of magnitude faster. + + We use the algorithm published by Clenshaw [1]_ and referenced by + Abramowitz and Stegun [2]_, for which the function domain is + partitioned into the two intervals [0,8] and (8,inf), and Chebyshev + polynomial expansions are employed in each interval. Relative error on + the domain [0,30] using IEEE arithmetic is documented [3]_ as having a + peak of 5.8e-16 with an rms of 1.4e-16 (n = 30000). + + References + ---------- + .. [1] C. W. Clenshaw, "Chebyshev series for mathematical functions", in + *National Physical Laboratory Mathematical Tables*, vol. 5, London: + Her Majesty's Stationery Office, 1962. + .. [2] M. Abramowitz and I. A. Stegun, *Handbook of Mathematical + Functions*, 10th printing, New York: Dover, 1964, pp. 379. + https://personal.math.ubc.ca/~cbm/aands/page_379.htm + .. [3] https://metacpan.org/pod/distribution/Math-Cephes/lib/Math/Cephes.pod#i0:-Modified-Bessel-function-of-order-zero + + Examples + -------- + >>> import numpy as np + >>> np.i0(0.) + array(1.0) + >>> np.i0([0, 1, 2, 3]) + array([1. , 1.26606588, 2.2795853 , 4.88079259]) + + """ + x = np.asanyarray(x) + if x.dtype.kind == 'c': + raise TypeError("i0 not supported for complex values") + if x.dtype.kind != 'f': + x = x.astype(float) + x = np.abs(x) + return piecewise(x, [x <= 8.0], [_i0_1, _i0_2]) + +## End of cephes code for i0 + + +@set_module('numpy') +def kaiser(M, beta): + """ + Return the Kaiser window. + + The Kaiser window is a taper formed by using a Bessel function. + + Parameters + ---------- + M : int + Number of points in the output window. If zero or less, an + empty array is returned. + beta : float + Shape parameter for window. + + Returns + ------- + out : array + The window, with the maximum value normalized to one (the value + one appears only if the number of samples is odd). + + See Also + -------- + bartlett, blackman, hamming, hanning + + Notes + ----- + The Kaiser window is defined as + + .. math:: w(n) = I_0\\left( \\beta \\sqrt{1-\\frac{4n^2}{(M-1)^2}} + \\right)/I_0(\\beta) + + with + + .. math:: \\quad -\\frac{M-1}{2} \\leq n \\leq \\frac{M-1}{2}, + + where :math:`I_0` is the modified zeroth-order Bessel function. + + The Kaiser was named for Jim Kaiser, who discovered a simple + approximation to the DPSS window based on Bessel functions. The Kaiser + window is a very good approximation to the Digital Prolate Spheroidal + Sequence, or Slepian window, which is the transform which maximizes the + energy in the main lobe of the window relative to total energy. + + The Kaiser can approximate many other windows by varying the beta + parameter. + + ==== ======================= + beta Window shape + ==== ======================= + 0 Rectangular + 5 Similar to a Hamming + 6 Similar to a Hanning + 8.6 Similar to a Blackman + ==== ======================= + + A beta value of 14 is probably a good starting point. Note that as beta + gets large, the window narrows, and so the number of samples needs to be + large enough to sample the increasingly narrow spike, otherwise NaNs will + get returned. + + Most references to the Kaiser window come from the signal processing + literature, where it is used as one of many windowing functions for + smoothing values. It is also known as an apodization (which means + "removing the foot", i.e. smoothing discontinuities at the beginning + and end of the sampled signal) or tapering function. + + References + ---------- + .. [1] J. F. Kaiser, "Digital Filters" - Ch 7 in "Systems analysis by + digital computer", Editors: F.F. Kuo and J.F. Kaiser, p 218-285. + John Wiley and Sons, New York, (1966). + .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The + University of Alberta Press, 1975, pp. 177-178. + .. [3] Wikipedia, "Window function", + https://en.wikipedia.org/wiki/Window_function + + Examples + -------- + >>> import numpy as np + >>> import matplotlib.pyplot as plt + >>> np.kaiser(12, 14) + array([7.72686684e-06, 3.46009194e-03, 4.65200189e-02, # may vary + 2.29737120e-01, 5.99885316e-01, 9.45674898e-01, + 9.45674898e-01, 5.99885316e-01, 2.29737120e-01, + 4.65200189e-02, 3.46009194e-03, 7.72686684e-06]) + + + Plot the window and the frequency response. + + .. plot:: + :include-source: + + import matplotlib.pyplot as plt + from numpy.fft import fft, fftshift + window = np.kaiser(51, 14) + plt.plot(window) + plt.title("Kaiser window") + plt.ylabel("Amplitude") + plt.xlabel("Sample") + plt.show() + + plt.figure() + A = fft(window, 2048) / 25.5 + mag = np.abs(fftshift(A)) + freq = np.linspace(-0.5, 0.5, len(A)) + response = 20 * np.log10(mag) + response = np.clip(response, -100, 100) + plt.plot(freq, response) + plt.title("Frequency response of Kaiser window") + plt.ylabel("Magnitude [dB]") + plt.xlabel("Normalized frequency [cycles per sample]") + plt.axis('tight') + plt.show() + + """ + # Ensures at least float64 via 0.0. M should be an integer, but conversion + # to double is safe for a range. (Simplified result_type with 0.0 + # strongly typed. result-type is not/less order sensitive, but that mainly + # matters for integers anyway.) + values = np.array([0.0, M, beta]) + M = values[1] + beta = values[2] + + if M == 1: + return np.ones(1, dtype=values.dtype) + n = arange(0, M) + alpha = (M - 1) / 2.0 + return i0(beta * sqrt(1 - ((n - alpha) / alpha)**2.0)) / i0(beta) + + +def _sinc_dispatcher(x): + return (x,) + + +@array_function_dispatch(_sinc_dispatcher) +def sinc(x): + r""" + Return the normalized sinc function. + + The sinc function is equal to :math:`\sin(\pi x)/(\pi x)` for any argument + :math:`x\ne 0`. ``sinc(0)`` takes the limit value 1, making ``sinc`` not + only everywhere continuous but also infinitely differentiable. + + .. note:: + + Note the normalization factor of ``pi`` used in the definition. + This is the most commonly used definition in signal processing. + Use ``sinc(x / np.pi)`` to obtain the unnormalized sinc function + :math:`\sin(x)/x` that is more common in mathematics. + + Parameters + ---------- + x : ndarray + Array (possibly multi-dimensional) of values for which to calculate + ``sinc(x)``. + + Returns + ------- + out : ndarray + ``sinc(x)``, which has the same shape as the input. + + Notes + ----- + The name sinc is short for "sine cardinal" or "sinus cardinalis". + + The sinc function is used in various signal processing applications, + including in anti-aliasing, in the construction of a Lanczos resampling + filter, and in interpolation. + + For bandlimited interpolation of discrete-time signals, the ideal + interpolation kernel is proportional to the sinc function. + + References + ---------- + .. [1] Weisstein, Eric W. "Sinc Function." From MathWorld--A Wolfram Web + Resource. https://mathworld.wolfram.com/SincFunction.html + .. [2] Wikipedia, "Sinc function", + https://en.wikipedia.org/wiki/Sinc_function + + Examples + -------- + >>> import numpy as np + >>> import matplotlib.pyplot as plt + >>> x = np.linspace(-4, 4, 41) + >>> np.sinc(x) + array([-3.89804309e-17, -4.92362781e-02, -8.40918587e-02, # may vary + -8.90384387e-02, -5.84680802e-02, 3.89804309e-17, + 6.68206631e-02, 1.16434881e-01, 1.26137788e-01, + 8.50444803e-02, -3.89804309e-17, -1.03943254e-01, + -1.89206682e-01, -2.16236208e-01, -1.55914881e-01, + 3.89804309e-17, 2.33872321e-01, 5.04551152e-01, + 7.56826729e-01, 9.35489284e-01, 1.00000000e+00, + 9.35489284e-01, 7.56826729e-01, 5.04551152e-01, + 2.33872321e-01, 3.89804309e-17, -1.55914881e-01, + -2.16236208e-01, -1.89206682e-01, -1.03943254e-01, + -3.89804309e-17, 8.50444803e-02, 1.26137788e-01, + 1.16434881e-01, 6.68206631e-02, 3.89804309e-17, + -5.84680802e-02, -8.90384387e-02, -8.40918587e-02, + -4.92362781e-02, -3.89804309e-17]) + + >>> plt.plot(x, np.sinc(x)) + [] + >>> plt.title("Sinc Function") + Text(0.5, 1.0, 'Sinc Function') + >>> plt.ylabel("Amplitude") + Text(0, 0.5, 'Amplitude') + >>> plt.xlabel("X") + Text(0.5, 0, 'X') + >>> plt.show() + + """ + x = np.asanyarray(x) + x = pi * x + # Hope that 1e-20 is sufficient for objects... + eps = np.finfo(x.dtype).eps if x.dtype.kind == "f" else 1e-20 + y = where(x, x, eps) + return sin(y) / y + + +def _ureduce(a, func, keepdims=False, **kwargs): + """ + Internal Function. + Call `func` with `a` as first argument swapping the axes to use extended + axis on functions that don't support it natively. + + Returns result and a.shape with axis dims set to 1. + + Parameters + ---------- + a : array_like + Input array or object that can be converted to an array. + func : callable + Reduction function capable of receiving a single axis argument. + It is called with `a` as first argument followed by `kwargs`. + kwargs : keyword arguments + additional keyword arguments to pass to `func`. + + Returns + ------- + result : tuple + Result of func(a, **kwargs) and a.shape with axis dims set to 1 + which can be used to reshape the result to the same shape a ufunc with + keepdims=True would produce. + + """ + a = np.asanyarray(a) + axis = kwargs.get('axis') + out = kwargs.get('out') + + if keepdims is np._NoValue: + keepdims = False + + nd = a.ndim + if axis is not None: + axis = _nx.normalize_axis_tuple(axis, nd) + + if keepdims and out is not None: + index_out = tuple( + 0 if i in axis else slice(None) for i in range(nd)) + kwargs['out'] = out[(Ellipsis, ) + index_out] + + if len(axis) == 1: + kwargs['axis'] = axis[0] + else: + keep = set(range(nd)) - set(axis) + nkeep = len(keep) + # swap axis that should not be reduced to front + for i, s in enumerate(sorted(keep)): + a = a.swapaxes(i, s) + # merge reduced axis + a = a.reshape(a.shape[:nkeep] + (-1,)) + kwargs['axis'] = -1 + elif keepdims and out is not None: + index_out = (0, ) * nd + kwargs['out'] = out[(Ellipsis, ) + index_out] + + r = func(a, **kwargs) + + if out is not None: + return out + + if keepdims: + if axis is None: + index_r = (np.newaxis, ) * nd + else: + index_r = tuple( + np.newaxis if i in axis else slice(None) + for i in range(nd)) + r = r[(Ellipsis, ) + index_r] + + return r + + +def _median_dispatcher( + a, axis=None, out=None, overwrite_input=None, keepdims=None): + return (a, out) + + +@array_function_dispatch(_median_dispatcher) +def median(a, axis=None, out=None, overwrite_input=False, keepdims=False): + """ + Compute the median along the specified axis. + + Returns the median of the array elements. + + Parameters + ---------- + a : array_like + Input array or object that can be converted to an array. + axis : {int, sequence of int, None}, optional + Axis or axes along which the medians are computed. The default, + axis=None, will compute the median along a flattened version of + the array. If a sequence of axes, the array is first flattened + along the given axes, then the median is computed along the + resulting flattened axis. + out : ndarray, optional + Alternative output array in which to place the result. It must + have the same shape and buffer length as the expected output, + but the type (of the output) will be cast if necessary. + overwrite_input : bool, optional + If True, then allow use of memory of input array `a` for + calculations. The input array will be modified by the call to + `median`. This will save memory when you do not need to preserve + the contents of the input array. Treat the input as undefined, + but it will probably be fully or partially sorted. Default is + False. If `overwrite_input` is ``True`` and `a` is not already an + `ndarray`, an error will be raised. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the original `arr`. + + Returns + ------- + median : ndarray + A new array holding the result. If the input contains integers + or floats smaller than ``float64``, then the output data-type is + ``np.float64``. Otherwise, the data-type of the output is the + same as that of the input. If `out` is specified, that array is + returned instead. + + See Also + -------- + mean, percentile + + Notes + ----- + Given a vector ``V`` of length ``N``, the median of ``V`` is the + middle value of a sorted copy of ``V``, ``V_sorted`` - i + e., ``V_sorted[(N-1)/2]``, when ``N`` is odd, and the average of the + two middle values of ``V_sorted`` when ``N`` is even. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[10, 7, 4], [3, 2, 1]]) + >>> a + array([[10, 7, 4], + [ 3, 2, 1]]) + >>> np.median(a) + np.float64(3.5) + >>> np.median(a, axis=0) + array([6.5, 4.5, 2.5]) + >>> np.median(a, axis=1) + array([7., 2.]) + >>> np.median(a, axis=(0, 1)) + np.float64(3.5) + >>> m = np.median(a, axis=0) + >>> out = np.zeros_like(m) + >>> np.median(a, axis=0, out=m) + array([6.5, 4.5, 2.5]) + >>> m + array([6.5, 4.5, 2.5]) + >>> b = a.copy() + >>> np.median(b, axis=1, overwrite_input=True) + array([7., 2.]) + >>> assert not np.all(a==b) + >>> b = a.copy() + >>> np.median(b, axis=None, overwrite_input=True) + np.float64(3.5) + >>> assert not np.all(a==b) + + """ + return _ureduce(a, func=_median, keepdims=keepdims, axis=axis, out=out, + overwrite_input=overwrite_input) + + +def _median(a, axis=None, out=None, overwrite_input=False): + # can't be reasonably be implemented in terms of percentile as we have to + # call mean to not break astropy + a = np.asanyarray(a) + + # Set the partition indexes + if axis is None: + sz = a.size + else: + sz = a.shape[axis] + if sz % 2 == 0: + szh = sz // 2 + kth = [szh - 1, szh] + else: + kth = [(sz - 1) // 2] + + # We have to check for NaNs (as of writing 'M' doesn't actually work). + supports_nans = np.issubdtype(a.dtype, np.inexact) or a.dtype.kind in 'Mm' + if supports_nans: + kth.append(-1) + + if overwrite_input: + if axis is None: + part = a.ravel() + part.partition(kth) + else: + a.partition(kth, axis=axis) + part = a + else: + part = partition(a, kth, axis=axis) + + if part.shape == (): + # make 0-D arrays work + return part.item() + if axis is None: + axis = 0 + + indexer = [slice(None)] * part.ndim + index = part.shape[axis] // 2 + if part.shape[axis] % 2 == 1: + # index with slice to allow mean (below) to work + indexer[axis] = slice(index, index + 1) + else: + indexer[axis] = slice(index - 1, index + 1) + indexer = tuple(indexer) + + # Use mean in both odd and even case to coerce data type, + # using out array if needed. + rout = mean(part[indexer], axis=axis, out=out) + if supports_nans and sz > 0: + # If nans are possible, warn and replace by nans like mean would. + rout = np.lib._utils_impl._median_nancheck(part, rout, axis) + + return rout + + +def _percentile_dispatcher(a, q, axis=None, out=None, overwrite_input=None, + method=None, keepdims=None, *, weights=None, + interpolation=None): + return (a, q, out, weights) + + +@array_function_dispatch(_percentile_dispatcher) +def percentile(a, + q, + axis=None, + out=None, + overwrite_input=False, + method="linear", + keepdims=False, + *, + weights=None, + interpolation=None): + """ + Compute the q-th percentile of the data along the specified axis. + + Returns the q-th percentile(s) of the array elements. + + Parameters + ---------- + a : array_like of real numbers + Input array or object that can be converted to an array. + q : array_like of float + Percentage or sequence of percentages for the percentiles to compute. + Values must be between 0 and 100 inclusive. + axis : {int, tuple of int, None}, optional + Axis or axes along which the percentiles are computed. The + default is to compute the percentile(s) along a flattened + version of the array. + out : ndarray, optional + Alternative output array in which to place the result. It must + have the same shape and buffer length as the expected output, + but the type (of the output) will be cast if necessary. + overwrite_input : bool, optional + If True, then allow the input array `a` to be modified by intermediate + calculations, to save memory. In this case, the contents of the input + `a` after this function completes is undefined. + method : str, optional + This parameter specifies the method to use for estimating the + percentile. There are many different methods, some unique to NumPy. + See the notes for explanation. The options sorted by their R type + as summarized in the H&F paper [1]_ are: + + 1. 'inverted_cdf' + 2. 'averaged_inverted_cdf' + 3. 'closest_observation' + 4. 'interpolated_inverted_cdf' + 5. 'hazen' + 6. 'weibull' + 7. 'linear' (default) + 8. 'median_unbiased' + 9. 'normal_unbiased' + + The first three methods are discontinuous. NumPy further defines the + following discontinuous variations of the default 'linear' (7.) option: + + * 'lower' + * 'higher', + * 'midpoint' + * 'nearest' + + .. versionchanged:: 1.22.0 + This argument was previously called "interpolation" and only + offered the "linear" default and last four options. + + keepdims : bool, optional + If this is set to True, the axes which are reduced are left in + the result as dimensions with size one. With this option, the + result will broadcast correctly against the original array `a`. + + weights : array_like, optional + An array of weights associated with the values in `a`. Each value in + `a` contributes to the percentile according to its associated weight. + The weights array can either be 1-D (in which case its length must be + the size of `a` along the given axis) or of the same shape as `a`. + If `weights=None`, then all data in `a` are assumed to have a + weight equal to one. + Only `method="inverted_cdf"` supports weights. + See the notes for more details. + + .. versionadded:: 2.0.0 + + interpolation : str, optional + Deprecated name for the method keyword argument. + + .. deprecated:: 1.22.0 + + Returns + ------- + percentile : scalar or ndarray + If `q` is a single percentile and `axis=None`, then the result + is a scalar. If multiple percentiles are given, first axis of + the result corresponds to the percentiles. The other axes are + the axes that remain after the reduction of `a`. If the input + contains integers or floats smaller than ``float64``, the output + data-type is ``float64``. Otherwise, the output data-type is the + same as that of the input. If `out` is specified, that array is + returned instead. + + See Also + -------- + mean + median : equivalent to ``percentile(..., 50)`` + nanpercentile + quantile : equivalent to percentile, except q in the range [0, 1]. + + Notes + ----- + The behavior of `numpy.percentile` with percentage `q` is + that of `numpy.quantile` with argument ``q/100``. + For more information, please see `numpy.quantile`. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[10, 7, 4], [3, 2, 1]]) + >>> a + array([[10, 7, 4], + [ 3, 2, 1]]) + >>> np.percentile(a, 50) + 3.5 + >>> np.percentile(a, 50, axis=0) + array([6.5, 4.5, 2.5]) + >>> np.percentile(a, 50, axis=1) + array([7., 2.]) + >>> np.percentile(a, 50, axis=1, keepdims=True) + array([[7.], + [2.]]) + + >>> m = np.percentile(a, 50, axis=0) + >>> out = np.zeros_like(m) + >>> np.percentile(a, 50, axis=0, out=out) + array([6.5, 4.5, 2.5]) + >>> m + array([6.5, 4.5, 2.5]) + + >>> b = a.copy() + >>> np.percentile(b, 50, axis=1, overwrite_input=True) + array([7., 2.]) + >>> assert not np.all(a == b) + + The different methods can be visualized graphically: + + .. plot:: + + import matplotlib.pyplot as plt + + a = np.arange(4) + p = np.linspace(0, 100, 6001) + ax = plt.gca() + lines = [ + ('linear', '-', 'C0'), + ('inverted_cdf', ':', 'C1'), + # Almost the same as `inverted_cdf`: + ('averaged_inverted_cdf', '-.', 'C1'), + ('closest_observation', ':', 'C2'), + ('interpolated_inverted_cdf', '--', 'C1'), + ('hazen', '--', 'C3'), + ('weibull', '-.', 'C4'), + ('median_unbiased', '--', 'C5'), + ('normal_unbiased', '-.', 'C6'), + ] + for method, style, color in lines: + ax.plot( + p, np.percentile(a, p, method=method), + label=method, linestyle=style, color=color) + ax.set( + title='Percentiles for different methods and data: ' + str(a), + xlabel='Percentile', + ylabel='Estimated percentile value', + yticks=a) + ax.legend(bbox_to_anchor=(1.03, 1)) + plt.tight_layout() + plt.show() + + References + ---------- + .. [1] R. J. Hyndman and Y. Fan, + "Sample quantiles in statistical packages," + The American Statistician, 50(4), pp. 361-365, 1996 + + """ + if interpolation is not None: + method = _check_interpolation_as_method( + method, interpolation, "percentile") + + a = np.asanyarray(a) + if a.dtype.kind == "c": + raise TypeError("a must be an array of real numbers") + + # Use dtype of array if possible (e.g., if q is a python int or float) + # by making the divisor have the dtype of the data array. + q = np.true_divide(q, a.dtype.type(100) if a.dtype.kind == "f" else 100, out=...) + if not _quantile_is_valid(q): + raise ValueError("Percentiles must be in the range [0, 100]") + + if weights is not None: + if method != "inverted_cdf": + msg = ("Only method 'inverted_cdf' supports weights. " + f"Got: {method}.") + raise ValueError(msg) + if axis is not None: + axis = _nx.normalize_axis_tuple(axis, a.ndim, argname="axis") + weights = _weights_are_valid(weights=weights, a=a, axis=axis) + if np.any(weights < 0): + raise ValueError("Weights must be non-negative.") + + return _quantile_unchecked( + a, q, axis, out, overwrite_input, method, keepdims, weights) + + +def _quantile_dispatcher(a, q, axis=None, out=None, overwrite_input=None, + method=None, keepdims=None, *, weights=None, + interpolation=None): + return (a, q, out, weights) + + +@array_function_dispatch(_quantile_dispatcher) +def quantile(a, + q, + axis=None, + out=None, + overwrite_input=False, + method="linear", + keepdims=False, + *, + weights=None, + interpolation=None): + """ + Compute the q-th quantile of the data along the specified axis. + + Parameters + ---------- + a : array_like of real numbers + Input array or object that can be converted to an array. + q : array_like of float + Probability or sequence of probabilities of the quantiles to compute. + Values must be between 0 and 1 inclusive. + axis : {int, tuple of int, None}, optional + Axis or axes along which the quantiles are computed. The default is + to compute the quantile(s) along a flattened version of the array. + out : ndarray, optional + Alternative output array in which to place the result. It must have + the same shape and buffer length as the expected output, but the + type (of the output) will be cast if necessary. + overwrite_input : bool, optional + If True, then allow the input array `a` to be modified by + intermediate calculations, to save memory. In this case, the + contents of the input `a` after this function completes is + undefined. + method : str, optional + This parameter specifies the method to use for estimating the + quantile. There are many different methods, some unique to NumPy. + The recommended options, numbered as they appear in [1]_, are: + + 1. 'inverted_cdf' + 2. 'averaged_inverted_cdf' + 3. 'closest_observation' + 4. 'interpolated_inverted_cdf' + 5. 'hazen' + 6. 'weibull' + 7. 'linear' (default) + 8. 'median_unbiased' + 9. 'normal_unbiased' + + The first three methods are discontinuous. For backward compatibility + with previous versions of NumPy, the following discontinuous variations + of the default 'linear' (7.) option are available: + + * 'lower' + * 'higher', + * 'midpoint' + * 'nearest' + + See Notes for details. + + .. versionchanged:: 1.22.0 + This argument was previously called "interpolation" and only + offered the "linear" default and last four options. + + keepdims : bool, optional + If this is set to True, the axes which are reduced are left in + the result as dimensions with size one. With this option, the + result will broadcast correctly against the original array `a`. + + weights : array_like, optional + An array of weights associated with the values in `a`. Each value in + `a` contributes to the quantile according to its associated weight. + The weights array can either be 1-D (in which case its length must be + the size of `a` along the given axis) or of the same shape as `a`. + If `weights=None`, then all data in `a` are assumed to have a + weight equal to one. + Only `method="inverted_cdf"` supports weights. + See the notes for more details. + + .. versionadded:: 2.0.0 + + interpolation : str, optional + Deprecated name for the method keyword argument. + + .. deprecated:: 1.22.0 + + Returns + ------- + quantile : scalar or ndarray + If `q` is a single probability and `axis=None`, then the result + is a scalar. If multiple probability levels are given, first axis + of the result corresponds to the quantiles. The other axes are + the axes that remain after the reduction of `a`. If the input + contains integers or floats smaller than ``float64``, the output + data-type is ``float64``. Otherwise, the output data-type is the + same as that of the input. If `out` is specified, that array is + returned instead. + + See Also + -------- + mean + percentile : equivalent to quantile, but with q in the range [0, 100]. + median : equivalent to ``quantile(..., 0.5)`` + nanquantile + + Notes + ----- + Given a sample `a` from an underlying distribution, `quantile` provides a + nonparametric estimate of the inverse cumulative distribution function. + + By default, this is done by interpolating between adjacent elements in + ``y``, a sorted copy of `a`:: + + (1-g)*y[j] + g*y[j+1] + + where the index ``j`` and coefficient ``g`` are the integral and + fractional components of ``q * (n-1)``, and ``n`` is the number of + elements in the sample. + + This is a special case of Equation 1 of H&F [1]_. More generally, + + - ``j = (q*n + m - 1) // 1``, and + - ``g = (q*n + m - 1) % 1``, + + where ``m`` may be defined according to several different conventions. + The preferred convention may be selected using the ``method`` parameter: + + =============================== =============== =============== + ``method`` number in H&F ``m`` + =============================== =============== =============== + ``interpolated_inverted_cdf`` 4 ``0`` + ``hazen`` 5 ``1/2`` + ``weibull`` 6 ``q`` + ``linear`` (default) 7 ``1 - q`` + ``median_unbiased`` 8 ``q/3 + 1/3`` + ``normal_unbiased`` 9 ``q/4 + 3/8`` + =============================== =============== =============== + + Note that indices ``j`` and ``j + 1`` are clipped to the range ``0`` to + ``n - 1`` when the results of the formula would be outside the allowed + range of non-negative indices. The ``- 1`` in the formulas for ``j`` and + ``g`` accounts for Python's 0-based indexing. + + The table above includes only the estimators from H&F that are continuous + functions of probability `q` (estimators 4-9). NumPy also provides the + three discontinuous estimators from H&F (estimators 1-3), where ``j`` is + defined as above, ``m`` is defined as follows, and ``g`` is a function + of the real-valued ``index = q*n + m - 1`` and ``j``. + + 1. ``inverted_cdf``: ``m = 0`` and ``g = int(index - j > 0)`` + 2. ``averaged_inverted_cdf``: ``m = 0`` and + ``g = (1 + int(index - j > 0)) / 2`` + 3. ``closest_observation``: ``m = -1/2`` and + ``g = 1 - int((index == j) & (j%2 == 1))`` + + For backward compatibility with previous versions of NumPy, `quantile` + provides four additional discontinuous estimators. Like + ``method='linear'``, all have ``m = 1 - q`` so that ``j = q*(n-1) // 1``, + but ``g`` is defined as follows. + + - ``lower``: ``g = 0`` + - ``midpoint``: ``g = 0.5`` + - ``higher``: ``g = 1`` + - ``nearest``: ``g = (q*(n-1) % 1) > 0.5`` + + **Weighted quantiles:** + More formally, the quantile at probability level :math:`q` of a cumulative + distribution function :math:`F(y)=P(Y \\leq y)` with probability measure + :math:`P` is defined as any number :math:`x` that fulfills the + *coverage conditions* + + .. math:: P(Y < x) \\leq q \\quad\\text{and}\\quad P(Y \\leq x) \\geq q + + with random variable :math:`Y\\sim P`. + Sample quantiles, the result of `quantile`, provide nonparametric + estimation of the underlying population counterparts, represented by the + unknown :math:`F`, given a data vector `a` of length ``n``. + + Some of the estimators above arise when one considers :math:`F` as the + empirical distribution function of the data, i.e. + :math:`F(y) = \\frac{1}{n} \\sum_i 1_{a_i \\leq y}`. + Then, different methods correspond to different choices of :math:`x` that + fulfill the above coverage conditions. Methods that follow this approach + are ``inverted_cdf`` and ``averaged_inverted_cdf``. + + For weighted quantiles, the coverage conditions still hold. The + empirical cumulative distribution is simply replaced by its weighted + version, i.e. + :math:`P(Y \\leq t) = \\frac{1}{\\sum_i w_i} \\sum_i w_i 1_{x_i \\leq t}`. + Only ``method="inverted_cdf"`` supports weights. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[10, 7, 4], [3, 2, 1]]) + >>> a + array([[10, 7, 4], + [ 3, 2, 1]]) + >>> np.quantile(a, 0.5) + 3.5 + >>> np.quantile(a, 0.5, axis=0) + array([6.5, 4.5, 2.5]) + >>> np.quantile(a, 0.5, axis=1) + array([7., 2.]) + >>> np.quantile(a, 0.5, axis=1, keepdims=True) + array([[7.], + [2.]]) + >>> m = np.quantile(a, 0.5, axis=0) + >>> out = np.zeros_like(m) + >>> np.quantile(a, 0.5, axis=0, out=out) + array([6.5, 4.5, 2.5]) + >>> m + array([6.5, 4.5, 2.5]) + >>> b = a.copy() + >>> np.quantile(b, 0.5, axis=1, overwrite_input=True) + array([7., 2.]) + >>> assert not np.all(a == b) + + See also `numpy.percentile` for a visualization of most methods. + + References + ---------- + .. [1] R. J. Hyndman and Y. Fan, + "Sample quantiles in statistical packages," + The American Statistician, 50(4), pp. 361-365, 1996 + + """ + if interpolation is not None: + method = _check_interpolation_as_method( + method, interpolation, "quantile") + + a = np.asanyarray(a) + if a.dtype.kind == "c": + raise TypeError("a must be an array of real numbers") + + # Use dtype of array if possible (e.g., if q is a python int or float). + if isinstance(q, (int, float)) and a.dtype.kind == "f": + q = np.asanyarray(q, dtype=a.dtype) + else: + q = np.asanyarray(q) + + if not _quantile_is_valid(q): + raise ValueError("Quantiles must be in the range [0, 1]") + + if weights is not None: + if method != "inverted_cdf": + msg = ("Only method 'inverted_cdf' supports weights. " + f"Got: {method}.") + raise ValueError(msg) + if axis is not None: + axis = _nx.normalize_axis_tuple(axis, a.ndim, argname="axis") + weights = _weights_are_valid(weights=weights, a=a, axis=axis) + if np.any(weights < 0): + raise ValueError("Weights must be non-negative.") + + return _quantile_unchecked( + a, q, axis, out, overwrite_input, method, keepdims, weights) + + +def _quantile_unchecked(a, + q, + axis=None, + out=None, + overwrite_input=False, + method="linear", + keepdims=False, + weights=None): + """Assumes that q is in [0, 1], and is an ndarray""" + return _ureduce(a, + func=_quantile_ureduce_func, + q=q, + weights=weights, + keepdims=keepdims, + axis=axis, + out=out, + overwrite_input=overwrite_input, + method=method) + + +def _quantile_is_valid(q): + # avoid expensive reductions, relevant for arrays with < O(1000) elements + if q.ndim == 1 and q.size < 10: + for i in range(q.size): + if not (0.0 <= q[i] <= 1.0): + return False + elif not (q.min() >= 0 and q.max() <= 1): + return False + return True + + +def _check_interpolation_as_method(method, interpolation, fname): + # Deprecated NumPy 1.22, 2021-11-08 + warnings.warn( + f"the `interpolation=` argument to {fname} was renamed to " + "`method=`, which has additional options.\n" + "Users of the modes 'nearest', 'lower', 'higher', or " + "'midpoint' are encouraged to review the method they used. " + "(Deprecated NumPy 1.22)", + DeprecationWarning, stacklevel=4) + if method != "linear": + # sanity check, we assume this basically never happens + raise TypeError( + "You shall not pass both `method` and `interpolation`!\n" + "(`interpolation` is Deprecated in favor of `method`)") + return interpolation + + +def _compute_virtual_index(n, quantiles, alpha: float, beta: float): + """ + Compute the floating point indexes of an array for the linear + interpolation of quantiles. + n : array_like + The sample sizes. + quantiles : array_like + The quantiles values. + alpha : float + A constant used to correct the index computed. + beta : float + A constant used to correct the index computed. + + alpha and beta values depend on the chosen method + (see quantile documentation) + + Reference: + Hyndman&Fan paper "Sample Quantiles in Statistical Packages", + DOI: 10.1080/00031305.1996.10473566 + """ + return n * quantiles + ( + alpha + quantiles * (1 - alpha - beta) + ) - 1 + + +def _get_gamma(virtual_indexes, previous_indexes, method): + """ + Compute gamma (a.k.a 'm' or 'weight') for the linear interpolation + of quantiles. + + virtual_indexes : array_like + The indexes where the percentile is supposed to be found in the sorted + sample. + previous_indexes : array_like + The floor values of virtual_indexes. + interpolation : dict + The interpolation method chosen, which may have a specific rule + modifying gamma. + + gamma is usually the fractional part of virtual_indexes but can be modified + by the interpolation method. + """ + gamma = np.asanyarray(virtual_indexes - previous_indexes) + gamma = method["fix_gamma"](gamma, virtual_indexes) + # Ensure both that we have an array, and that we keep the dtype + # (which may have been matched to the input array). + return np.asanyarray(gamma, dtype=virtual_indexes.dtype) + + +def _lerp(a, b, t, out=None): + """ + Compute the linear interpolation weighted by gamma on each point of + two same shape array. + + a : array_like + Left bound. + b : array_like + Right bound. + t : array_like + The interpolation weight. + out : array_like + Output array. + """ + diff_b_a = subtract(b, a) + # asanyarray is a stop-gap until gh-13105 + lerp_interpolation = asanyarray(add(a, diff_b_a * t, out=out)) + subtract(b, diff_b_a * (1 - t), out=lerp_interpolation, where=t >= 0.5, + casting='unsafe', dtype=type(lerp_interpolation.dtype)) + if lerp_interpolation.ndim == 0 and out is None: + lerp_interpolation = lerp_interpolation[()] # unpack 0d arrays + return lerp_interpolation + + +def _get_gamma_mask(shape, default_value, conditioned_value, where): + out = np.full(shape, default_value) + np.copyto(out, conditioned_value, where=where, casting="unsafe") + return out + + +def _discrete_interpolation_to_boundaries(index, gamma_condition_fun): + previous = np.floor(index) + next = previous + 1 + gamma = index - previous + res = _get_gamma_mask(shape=index.shape, + default_value=next, + conditioned_value=previous, + where=gamma_condition_fun(gamma, index) + ).astype(np.intp) + # Some methods can lead to out-of-bound integers, clip them: + res[res < 0] = 0 + return res + + +def _closest_observation(n, quantiles): + # "choose the nearest even order statistic at g=0" (H&F (1996) pp. 362). + # Order is 1-based so for zero-based indexing round to nearest odd index. + gamma_fun = lambda gamma, index: (gamma == 0) & (np.floor(index) % 2 == 1) + return _discrete_interpolation_to_boundaries((n * quantiles) - 1 - 0.5, + gamma_fun) + + +def _inverted_cdf(n, quantiles): + gamma_fun = lambda gamma, _: (gamma == 0) + return _discrete_interpolation_to_boundaries((n * quantiles) - 1, + gamma_fun) + + +def _quantile_ureduce_func( + a: np.array, + q: np.array, + weights: np.array, + axis: int | None = None, + out=None, + overwrite_input: bool = False, + method="linear", +) -> np.array: + if q.ndim > 2: + # The code below works fine for nd, but it might not have useful + # semantics. For now, keep the supported dimensions the same as it was + # before. + raise ValueError("q must be a scalar or 1d") + if overwrite_input: + if axis is None: + axis = 0 + arr = a.ravel() + wgt = None if weights is None else weights.ravel() + else: + arr = a + wgt = weights + elif axis is None: + axis = 0 + arr = a.flatten() + wgt = None if weights is None else weights.flatten() + else: + arr = a.copy() + wgt = weights + result = _quantile(arr, + quantiles=q, + axis=axis, + method=method, + out=out, + weights=wgt) + return result + + +def _get_indexes(arr, virtual_indexes, valid_values_count): + """ + Get the valid indexes of arr neighbouring virtual_indexes. + Note + This is a companion function to linear interpolation of + Quantiles + + Returns + ------- + (previous_indexes, next_indexes): Tuple + A Tuple of virtual_indexes neighbouring indexes + """ + previous_indexes = np.asanyarray(np.floor(virtual_indexes)) + next_indexes = np.asanyarray(previous_indexes + 1) + indexes_above_bounds = virtual_indexes >= valid_values_count - 1 + # When indexes is above max index, take the max value of the array + if indexes_above_bounds.any(): + previous_indexes[indexes_above_bounds] = -1 + next_indexes[indexes_above_bounds] = -1 + # When indexes is below min index, take the min value of the array + indexes_below_bounds = virtual_indexes < 0 + if indexes_below_bounds.any(): + previous_indexes[indexes_below_bounds] = 0 + next_indexes[indexes_below_bounds] = 0 + if np.issubdtype(arr.dtype, np.inexact): + # After the sort, slices having NaNs will have for last element a NaN + virtual_indexes_nans = np.isnan(virtual_indexes) + if virtual_indexes_nans.any(): + previous_indexes[virtual_indexes_nans] = -1 + next_indexes[virtual_indexes_nans] = -1 + previous_indexes = previous_indexes.astype(np.intp) + next_indexes = next_indexes.astype(np.intp) + return previous_indexes, next_indexes + + +def _quantile( + arr: np.array, + quantiles: np.array, + axis: int = -1, + method="linear", + out=None, + weights=None, +): + """ + Private function that doesn't support extended axis or keepdims. + These methods are extended to this function using _ureduce + See nanpercentile for parameter usage + It computes the quantiles of the array for the given axis. + A linear interpolation is performed based on the `interpolation`. + + By default, the method is "linear" where alpha == beta == 1 which + performs the 7th method of Hyndman&Fan. + With "median_unbiased" we get alpha == beta == 1/3 + thus the 8th method of Hyndman&Fan. + """ + # --- Setup + arr = np.asanyarray(arr) + values_count = arr.shape[axis] + # The dimensions of `q` are prepended to the output shape, so we need the + # axis being sampled from `arr` to be last. + if axis != 0: # But moveaxis is slow, so only call it if necessary. + arr = np.moveaxis(arr, axis, destination=0) + supports_nans = ( + np.issubdtype(arr.dtype, np.inexact) or arr.dtype.kind in 'Mm' + ) + + if weights is None: + # --- Computation of indexes + # Index where to find the value in the sorted array. + # Virtual because it is a floating point value, not an valid index. + # The nearest neighbours are used for interpolation + try: + method_props = _QuantileMethods[method] + except KeyError: + raise ValueError( + f"{method!r} is not a valid method. Use one of: " + f"{_QuantileMethods.keys()}") from None + virtual_indexes = method_props["get_virtual_index"](values_count, + quantiles) + virtual_indexes = np.asanyarray(virtual_indexes) + + if method_props["fix_gamma"] is None: + supports_integers = True + else: + int_virtual_indices = np.issubdtype(virtual_indexes.dtype, + np.integer) + supports_integers = method == 'linear' and int_virtual_indices + + if supports_integers: + # No interpolation needed, take the points along axis + if supports_nans: + # may contain nan, which would sort to the end + arr.partition( + concatenate((virtual_indexes.ravel(), [-1])), axis=0, + ) + slices_having_nans = np.isnan(arr[-1, ...]) + else: + # cannot contain nan + arr.partition(virtual_indexes.ravel(), axis=0) + slices_having_nans = np.array(False, dtype=bool) + result = take(arr, virtual_indexes, axis=0, out=out) + else: + previous_indexes, next_indexes = _get_indexes(arr, + virtual_indexes, + values_count) + # --- Sorting + arr.partition( + np.unique(np.concatenate(([0, -1], + previous_indexes.ravel(), + next_indexes.ravel(), + ))), + axis=0) + if supports_nans: + slices_having_nans = np.isnan(arr[-1, ...]) + else: + slices_having_nans = None + # --- Get values from indexes + previous = arr[previous_indexes] + next = arr[next_indexes] + # --- Linear interpolation + gamma = _get_gamma(virtual_indexes, previous_indexes, method_props) + result_shape = virtual_indexes.shape + (1,) * (arr.ndim - 1) + gamma = gamma.reshape(result_shape) + result = _lerp(previous, + next, + gamma, + out=out) + else: + # Weighted case + # This implements method="inverted_cdf", the only supported weighted + # method, which needs to sort anyway. + weights = np.asanyarray(weights) + if axis != 0: + weights = np.moveaxis(weights, axis, destination=0) + index_array = np.argsort(arr, axis=0, kind="stable") + + # arr = arr[index_array, ...] # but this adds trailing dimensions of + # 1. + arr = np.take_along_axis(arr, index_array, axis=0) + if weights.shape == arr.shape: + weights = np.take_along_axis(weights, index_array, axis=0) + else: + # weights is 1d + weights = weights.reshape(-1)[index_array, ...] + + if supports_nans: + # may contain nan, which would sort to the end + slices_having_nans = np.isnan(arr[-1, ...]) + else: + # cannot contain nan + slices_having_nans = np.array(False, dtype=bool) + + # We use the weights to calculate the empirical cumulative + # distribution function cdf + cdf = weights.cumsum(axis=0, dtype=np.float64) + cdf /= cdf[-1, ...] # normalization to 1 + # Search index i such that + # sum(weights[j], j=0..i-1) < quantile <= sum(weights[j], j=0..i) + # is then equivalent to + # cdf[i-1] < quantile <= cdf[i] + # Unfortunately, searchsorted only accepts 1-d arrays as first + # argument, so we will need to iterate over dimensions. + + # Without the following cast, searchsorted can return surprising + # results, e.g. + # np.searchsorted(np.array([0.2, 0.4, 0.6, 0.8, 1.]), + # np.array(0.4, dtype=np.float32), side="left") + # returns 2 instead of 1 because 0.4 is not binary representable. + if quantiles.dtype.kind == "f": + cdf = cdf.astype(quantiles.dtype) + # Weights must be non-negative, so we might have zero weights at the + # beginning leading to some leading zeros in cdf. The call to + # np.searchsorted for quantiles=0 will then pick the first element, + # but should pick the first one larger than zero. We + # therefore simply set 0 values in cdf to -1. + if np.any(cdf[0, ...] == 0): + cdf[cdf == 0] = -1 + + def find_cdf_1d(arr, cdf): + indices = np.searchsorted(cdf, quantiles, side="left") + # We might have reached the maximum with i = len(arr), e.g. for + # quantiles = 1, and need to cut it to len(arr) - 1. + indices = minimum(indices, values_count - 1) + result = take(arr, indices, axis=0) + return result + + r_shape = arr.shape[1:] + if quantiles.ndim > 0: + r_shape = quantiles.shape + r_shape + if out is None: + result = np.empty_like(arr, shape=r_shape) + else: + if out.shape != r_shape: + msg = (f"Wrong shape of argument 'out', shape={r_shape} is " + f"required; got shape={out.shape}.") + raise ValueError(msg) + result = out + + # See apply_along_axis, which we do for axis=0. Note that Ni = (,) + # always, so we remove it here. + Nk = arr.shape[1:] + for kk in np.ndindex(Nk): + result[(...,) + kk] = find_cdf_1d( + arr[np.s_[:, ] + kk], cdf[np.s_[:, ] + kk] + ) + + # Make result the same as in unweighted inverted_cdf. + if result.shape == () and result.dtype == np.dtype("O"): + result = result.item() + + if np.any(slices_having_nans): + if result.ndim == 0 and out is None: + # can't write to a scalar, but indexing will be correct + result = arr[-1] + else: + np.copyto(result, arr[-1, ...], where=slices_having_nans) + return result + + +def _trapezoid_dispatcher(y, x=None, dx=None, axis=None): + return (y, x) + + +@array_function_dispatch(_trapezoid_dispatcher) +def trapezoid(y, x=None, dx=1.0, axis=-1): + r""" + Integrate along the given axis using the composite trapezoidal rule. + + If `x` is provided, the integration happens in sequence along its + elements - they are not sorted. + + Integrate `y` (`x`) along each 1d slice on the given axis, compute + :math:`\int y(x) dx`. + When `x` is specified, this integrates along the parametric curve, + computing :math:`\int_t y(t) dt = + \int_t y(t) \left.\frac{dx}{dt}\right|_{x=x(t)} dt`. + + .. versionadded:: 2.0.0 + + Parameters + ---------- + y : array_like + Input array to integrate. + x : array_like, optional + The sample points corresponding to the `y` values. If `x` is None, + the sample points are assumed to be evenly spaced `dx` apart. The + default is None. + dx : scalar, optional + The spacing between sample points when `x` is None. The default is 1. + axis : int, optional + The axis along which to integrate. + + Returns + ------- + trapezoid : float or ndarray + Definite integral of `y` = n-dimensional array as approximated along + a single axis by the trapezoidal rule. If `y` is a 1-dimensional array, + then the result is a float. If `n` is greater than 1, then the result + is an `n`-1 dimensional array. + + See Also + -------- + sum, cumsum + + Notes + ----- + Image [2]_ illustrates trapezoidal rule -- y-axis locations of points + will be taken from `y` array, by default x-axis distances between + points will be 1.0, alternatively they can be provided with `x` array + or with `dx` scalar. Return value will be equal to combined area under + the red lines. + + + References + ---------- + .. [1] Wikipedia page: https://en.wikipedia.org/wiki/Trapezoidal_rule + + .. [2] Illustration image: + https://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png + + Examples + -------- + >>> import numpy as np + + Use the trapezoidal rule on evenly spaced points: + + >>> np.trapezoid([1, 2, 3]) + 4.0 + + The spacing between sample points can be selected by either the + ``x`` or ``dx`` arguments: + + >>> np.trapezoid([1, 2, 3], x=[4, 6, 8]) + 8.0 + >>> np.trapezoid([1, 2, 3], dx=2) + 8.0 + + Using a decreasing ``x`` corresponds to integrating in reverse: + + >>> np.trapezoid([1, 2, 3], x=[8, 6, 4]) + -8.0 + + More generally ``x`` is used to integrate along a parametric curve. We can + estimate the integral :math:`\int_0^1 x^2 = 1/3` using: + + >>> x = np.linspace(0, 1, num=50) + >>> y = x**2 + >>> np.trapezoid(y, x) + 0.33340274885464394 + + Or estimate the area of a circle, noting we repeat the sample which closes + the curve: + + >>> theta = np.linspace(0, 2 * np.pi, num=1000, endpoint=True) + >>> np.trapezoid(np.cos(theta), x=np.sin(theta)) + 3.141571941375841 + + ``np.trapezoid`` can be applied along a specified axis to do multiple + computations in one call: + + >>> a = np.arange(6).reshape(2, 3) + >>> a + array([[0, 1, 2], + [3, 4, 5]]) + >>> np.trapezoid(a, axis=0) + array([1.5, 2.5, 3.5]) + >>> np.trapezoid(a, axis=1) + array([2., 8.]) + """ + + y = asanyarray(y) + if x is None: + d = dx + else: + x = asanyarray(x) + if x.ndim == 1: + d = diff(x) + # reshape to correct shape + shape = [1] * y.ndim + shape[axis] = d.shape[0] + d = d.reshape(shape) + else: + d = diff(x, axis=axis) + nd = y.ndim + slice1 = [slice(None)] * nd + slice2 = [slice(None)] * nd + slice1[axis] = slice(1, None) + slice2[axis] = slice(None, -1) + try: + ret = (d * (y[tuple(slice1)] + y[tuple(slice2)]) / 2.0).sum(axis) + except ValueError: + # Operations didn't work, cast to ndarray + d = np.asarray(d) + y = np.asarray(y) + ret = add.reduce(d * (y[tuple(slice1)] + y[tuple(slice2)]) / 2.0, axis) + return ret + + +@set_module('numpy') +def trapz(y, x=None, dx=1.0, axis=-1): + """ + `trapz` is deprecated in NumPy 2.0. + + Please use `trapezoid` instead, or one of the numerical integration + functions in `scipy.integrate`. + """ + # Deprecated in NumPy 2.0, 2023-08-18 + warnings.warn( + "`trapz` is deprecated. Use `trapezoid` instead, or one of the " + "numerical integration functions in `scipy.integrate`.", + DeprecationWarning, + stacklevel=2 + ) + return trapezoid(y, x=x, dx=dx, axis=axis) + + +def _meshgrid_dispatcher(*xi, copy=None, sparse=None, indexing=None): + return xi + + +# Based on scitools meshgrid +@array_function_dispatch(_meshgrid_dispatcher) +def meshgrid(*xi, copy=True, sparse=False, indexing='xy'): + """ + Return a tuple of coordinate matrices from coordinate vectors. + + Make N-D coordinate arrays for vectorized evaluations of + N-D scalar/vector fields over N-D grids, given + one-dimensional coordinate arrays x1, x2,..., xn. + + Parameters + ---------- + x1, x2,..., xn : array_like + 1-D arrays representing the coordinates of a grid. + indexing : {'xy', 'ij'}, optional + Cartesian ('xy', default) or matrix ('ij') indexing of output. + See Notes for more details. + sparse : bool, optional + If True the shape of the returned coordinate array for dimension *i* + is reduced from ``(N1, ..., Ni, ... Nn)`` to + ``(1, ..., 1, Ni, 1, ..., 1)``. These sparse coordinate grids are + intended to be used with :ref:`basics.broadcasting`. When all + coordinates are used in an expression, broadcasting still leads to a + fully-dimensonal result array. + + Default is False. + + copy : bool, optional + If False, a view into the original arrays are returned in order to + conserve memory. Default is True. Please note that + ``sparse=False, copy=False`` will likely return non-contiguous + arrays. Furthermore, more than one element of a broadcast array + may refer to a single memory location. If you need to write to the + arrays, make copies first. + + Returns + ------- + X1, X2,..., XN : tuple of ndarrays + For vectors `x1`, `x2`,..., `xn` with lengths ``Ni=len(xi)``, + returns ``(N1, N2, N3,..., Nn)`` shaped arrays if indexing='ij' + or ``(N2, N1, N3,..., Nn)`` shaped arrays if indexing='xy' + with the elements of `xi` repeated to fill the matrix along + the first dimension for `x1`, the second for `x2` and so on. + + Notes + ----- + This function supports both indexing conventions through the indexing + keyword argument. Giving the string 'ij' returns a meshgrid with + matrix indexing, while 'xy' returns a meshgrid with Cartesian indexing. + In the 2-D case with inputs of length M and N, the outputs are of shape + (N, M) for 'xy' indexing and (M, N) for 'ij' indexing. In the 3-D case + with inputs of length M, N and P, outputs are of shape (N, M, P) for + 'xy' indexing and (M, N, P) for 'ij' indexing. The difference is + illustrated by the following code snippet:: + + xv, yv = np.meshgrid(x, y, indexing='ij') + for i in range(nx): + for j in range(ny): + # treat xv[i,j], yv[i,j] + + xv, yv = np.meshgrid(x, y, indexing='xy') + for i in range(nx): + for j in range(ny): + # treat xv[j,i], yv[j,i] + + In the 1-D and 0-D case, the indexing and sparse keywords have no effect. + + See Also + -------- + mgrid : Construct a multi-dimensional "meshgrid" using indexing notation. + ogrid : Construct an open multi-dimensional "meshgrid" using indexing + notation. + :ref:`how-to-index` + + Examples + -------- + >>> import numpy as np + >>> nx, ny = (3, 2) + >>> x = np.linspace(0, 1, nx) + >>> y = np.linspace(0, 1, ny) + >>> xv, yv = np.meshgrid(x, y) + >>> xv + array([[0. , 0.5, 1. ], + [0. , 0.5, 1. ]]) + >>> yv + array([[0., 0., 0.], + [1., 1., 1.]]) + + The result of `meshgrid` is a coordinate grid: + + >>> import matplotlib.pyplot as plt + >>> plt.plot(xv, yv, marker='o', color='k', linestyle='none') + >>> plt.show() + + You can create sparse output arrays to save memory and computation time. + + >>> xv, yv = np.meshgrid(x, y, sparse=True) + >>> xv + array([[0. , 0.5, 1. ]]) + >>> yv + array([[0.], + [1.]]) + + `meshgrid` is very useful to evaluate functions on a grid. If the + function depends on all coordinates, both dense and sparse outputs can be + used. + + >>> x = np.linspace(-5, 5, 101) + >>> y = np.linspace(-5, 5, 101) + >>> # full coordinate arrays + >>> xx, yy = np.meshgrid(x, y) + >>> zz = np.sqrt(xx**2 + yy**2) + >>> xx.shape, yy.shape, zz.shape + ((101, 101), (101, 101), (101, 101)) + >>> # sparse coordinate arrays + >>> xs, ys = np.meshgrid(x, y, sparse=True) + >>> zs = np.sqrt(xs**2 + ys**2) + >>> xs.shape, ys.shape, zs.shape + ((1, 101), (101, 1), (101, 101)) + >>> np.array_equal(zz, zs) + True + + >>> h = plt.contourf(x, y, zs) + >>> plt.axis('scaled') + >>> plt.colorbar() + >>> plt.show() + """ + ndim = len(xi) + + if indexing not in ['xy', 'ij']: + raise ValueError( + "Valid values for `indexing` are 'xy' and 'ij'.") + + s0 = (1,) * ndim + output = [np.asanyarray(x).reshape(s0[:i] + (-1,) + s0[i + 1:]) + for i, x in enumerate(xi)] + + if indexing == 'xy' and ndim > 1: + # switch first and second axis + output[0].shape = (1, -1) + s0[2:] + output[1].shape = (-1, 1) + s0[2:] + + if not sparse: + # Return the full N-D matrix (not only the 1-D vector) + output = np.broadcast_arrays(*output, subok=True) + + if copy: + output = tuple(x.copy() for x in output) + + return output + + +def _delete_dispatcher(arr, obj, axis=None): + return (arr, obj) + + +@array_function_dispatch(_delete_dispatcher) +def delete(arr, obj, axis=None): + """ + Return a new array with sub-arrays along an axis deleted. For a one + dimensional array, this returns those entries not returned by + `arr[obj]`. + + Parameters + ---------- + arr : array_like + Input array. + obj : slice, int, array-like of ints or bools + Indicate indices of sub-arrays to remove along the specified axis. + + .. versionchanged:: 1.19.0 + Boolean indices are now treated as a mask of elements to remove, + rather than being cast to the integers 0 and 1. + + axis : int, optional + The axis along which to delete the subarray defined by `obj`. + If `axis` is None, `obj` is applied to the flattened array. + + Returns + ------- + out : ndarray + A copy of `arr` with the elements specified by `obj` removed. Note + that `delete` does not occur in-place. If `axis` is None, `out` is + a flattened array. + + See Also + -------- + insert : Insert elements into an array. + append : Append elements at the end of an array. + + Notes + ----- + Often it is preferable to use a boolean mask. For example: + + >>> arr = np.arange(12) + 1 + >>> mask = np.ones(len(arr), dtype=bool) + >>> mask[[0,2,4]] = False + >>> result = arr[mask,...] + + Is equivalent to ``np.delete(arr, [0,2,4], axis=0)``, but allows further + use of `mask`. + + Examples + -------- + >>> import numpy as np + >>> arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) + >>> arr + array([[ 1, 2, 3, 4], + [ 5, 6, 7, 8], + [ 9, 10, 11, 12]]) + >>> np.delete(arr, 1, 0) + array([[ 1, 2, 3, 4], + [ 9, 10, 11, 12]]) + + >>> np.delete(arr, np.s_[::2], 1) + array([[ 2, 4], + [ 6, 8], + [10, 12]]) + >>> np.delete(arr, [1,3,5], None) + array([ 1, 3, 5, 7, 8, 9, 10, 11, 12]) + + """ + conv = _array_converter(arr) + arr, = conv.as_arrays(subok=False) + + ndim = arr.ndim + arrorder = 'F' if arr.flags.fnc else 'C' + if axis is None: + if ndim != 1: + arr = arr.ravel() + # needed for np.matrix, which is still not 1d after being ravelled + ndim = arr.ndim + axis = ndim - 1 + else: + axis = normalize_axis_index(axis, ndim) + + slobj = [slice(None)] * ndim + N = arr.shape[axis] + newshape = list(arr.shape) + + if isinstance(obj, slice): + start, stop, step = obj.indices(N) + xr = range(start, stop, step) + numtodel = len(xr) + + if numtodel <= 0: + return conv.wrap(arr.copy(order=arrorder), to_scalar=False) + + # Invert if step is negative: + if step < 0: + step = -step + start = xr[-1] + stop = xr[0] + 1 + + newshape[axis] -= numtodel + new = empty(newshape, arr.dtype, arrorder) + # copy initial chunk + if start == 0: + pass + else: + slobj[axis] = slice(None, start) + new[tuple(slobj)] = arr[tuple(slobj)] + # copy end chunk + if stop == N: + pass + else: + slobj[axis] = slice(stop - numtodel, None) + slobj2 = [slice(None)] * ndim + slobj2[axis] = slice(stop, None) + new[tuple(slobj)] = arr[tuple(slobj2)] + # copy middle pieces + if step == 1: + pass + else: # use array indexing. + keep = ones(stop - start, dtype=bool) + keep[:stop - start:step] = False + slobj[axis] = slice(start, stop - numtodel) + slobj2 = [slice(None)] * ndim + slobj2[axis] = slice(start, stop) + arr = arr[tuple(slobj2)] + slobj2[axis] = keep + new[tuple(slobj)] = arr[tuple(slobj2)] + + return conv.wrap(new, to_scalar=False) + + if isinstance(obj, (int, integer)) and not isinstance(obj, bool): + single_value = True + else: + single_value = False + _obj = obj + obj = np.asarray(obj) + # `size == 0` to allow empty lists similar to indexing, but (as there) + # is really too generic: + if obj.size == 0 and not isinstance(_obj, np.ndarray): + obj = obj.astype(intp) + elif obj.size == 1 and obj.dtype.kind in "ui": + # For a size 1 integer array we can use the single-value path + # (most dtypes, except boolean, should just fail later). + obj = obj.item() + single_value = True + + if single_value: + # optimization for a single value + if (obj < -N or obj >= N): + raise IndexError( + f"index {obj} is out of bounds for axis {axis} with " + f"size {N}") + if (obj < 0): + obj += N + newshape[axis] -= 1 + new = empty(newshape, arr.dtype, arrorder) + slobj[axis] = slice(None, obj) + new[tuple(slobj)] = arr[tuple(slobj)] + slobj[axis] = slice(obj, None) + slobj2 = [slice(None)] * ndim + slobj2[axis] = slice(obj + 1, None) + new[tuple(slobj)] = arr[tuple(slobj2)] + else: + if obj.dtype == bool: + if obj.shape != (N,): + raise ValueError('boolean array argument obj to delete ' + 'must be one dimensional and match the axis ' + f'length of {N}') + + # optimization, the other branch is slower + keep = ~obj + else: + keep = ones(N, dtype=bool) + keep[obj,] = False + + slobj[axis] = keep + new = arr[tuple(slobj)] + + return conv.wrap(new, to_scalar=False) + + +def _insert_dispatcher(arr, obj, values, axis=None): + return (arr, obj, values) + + +@array_function_dispatch(_insert_dispatcher) +def insert(arr, obj, values, axis=None): + """ + Insert values along the given axis before the given indices. + + Parameters + ---------- + arr : array_like + Input array. + obj : slice, int, array-like of ints or bools + Object that defines the index or indices before which `values` is + inserted. + + .. versionchanged:: 2.1.2 + Boolean indices are now treated as a mask of elements to insert, + rather than being cast to the integers 0 and 1. + + Support for multiple insertions when `obj` is a single scalar or a + sequence with one element (similar to calling insert multiple + times). + values : array_like + Values to insert into `arr`. If the type of `values` is different + from that of `arr`, `values` is converted to the type of `arr`. + `values` should be shaped so that ``arr[...,obj,...] = values`` + is legal. + axis : int, optional + Axis along which to insert `values`. If `axis` is None then `arr` + is flattened first. + + Returns + ------- + out : ndarray + A copy of `arr` with `values` inserted. Note that `insert` + does not occur in-place: a new array is returned. If + `axis` is None, `out` is a flattened array. + + See Also + -------- + append : Append elements at the end of an array. + concatenate : Join a sequence of arrays along an existing axis. + delete : Delete elements from an array. + + Notes + ----- + Note that for higher dimensional inserts ``obj=0`` behaves very different + from ``obj=[0]`` just like ``arr[:,0,:] = values`` is different from + ``arr[:,[0],:] = values``. This is because of the difference between basic + and advanced :ref:`indexing `. + + Examples + -------- + >>> import numpy as np + >>> a = np.arange(6).reshape(3, 2) + >>> a + array([[0, 1], + [2, 3], + [4, 5]]) + >>> np.insert(a, 1, 6) + array([0, 6, 1, 2, 3, 4, 5]) + >>> np.insert(a, 1, 6, axis=1) + array([[0, 6, 1], + [2, 6, 3], + [4, 6, 5]]) + + Difference between sequence and scalars, + showing how ``obj=[1]`` behaves different from ``obj=1``: + + >>> np.insert(a, [1], [[7],[8],[9]], axis=1) + array([[0, 7, 1], + [2, 8, 3], + [4, 9, 5]]) + >>> np.insert(a, 1, [[7],[8],[9]], axis=1) + array([[0, 7, 8, 9, 1], + [2, 7, 8, 9, 3], + [4, 7, 8, 9, 5]]) + >>> np.array_equal(np.insert(a, 1, [7, 8, 9], axis=1), + ... np.insert(a, [1], [[7],[8],[9]], axis=1)) + True + + >>> b = a.flatten() + >>> b + array([0, 1, 2, 3, 4, 5]) + >>> np.insert(b, [2, 2], [6, 7]) + array([0, 1, 6, 7, 2, 3, 4, 5]) + + >>> np.insert(b, slice(2, 4), [7, 8]) + array([0, 1, 7, 2, 8, 3, 4, 5]) + + >>> np.insert(b, [2, 2], [7.13, False]) # type casting + array([0, 1, 7, 0, 2, 3, 4, 5]) + + >>> x = np.arange(8).reshape(2, 4) + >>> idx = (1, 3) + >>> np.insert(x, idx, 999, axis=1) + array([[ 0, 999, 1, 2, 999, 3], + [ 4, 999, 5, 6, 999, 7]]) + + """ + conv = _array_converter(arr) + arr, = conv.as_arrays(subok=False) + + ndim = arr.ndim + arrorder = 'F' if arr.flags.fnc else 'C' + if axis is None: + if ndim != 1: + arr = arr.ravel() + # needed for np.matrix, which is still not 1d after being ravelled + ndim = arr.ndim + axis = ndim - 1 + else: + axis = normalize_axis_index(axis, ndim) + slobj = [slice(None)] * ndim + N = arr.shape[axis] + newshape = list(arr.shape) + + if isinstance(obj, slice): + # turn it into a range object + indices = arange(*obj.indices(N), dtype=intp) + else: + # need to copy obj, because indices will be changed in-place + indices = np.array(obj) + if indices.dtype == bool: + if obj.ndim != 1: + raise ValueError('boolean array argument obj to insert ' + 'must be one dimensional') + indices = np.flatnonzero(obj) + elif indices.ndim > 1: + raise ValueError( + "index array argument obj to insert must be one dimensional " + "or scalar") + if indices.size == 1: + index = indices.item() + if index < -N or index > N: + raise IndexError(f"index {obj} is out of bounds for axis {axis} " + f"with size {N}") + if (index < 0): + index += N + + # There are some object array corner cases here, but we cannot avoid + # that: + values = array(values, copy=None, ndmin=arr.ndim, dtype=arr.dtype) + if indices.ndim == 0: + # broadcasting is very different here, since a[:,0,:] = ... behaves + # very different from a[:,[0],:] = ...! This changes values so that + # it works likes the second case. (here a[:,0:1,:]) + values = np.moveaxis(values, 0, axis) + numnew = values.shape[axis] + newshape[axis] += numnew + new = empty(newshape, arr.dtype, arrorder) + slobj[axis] = slice(None, index) + new[tuple(slobj)] = arr[tuple(slobj)] + slobj[axis] = slice(index, index + numnew) + new[tuple(slobj)] = values + slobj[axis] = slice(index + numnew, None) + slobj2 = [slice(None)] * ndim + slobj2[axis] = slice(index, None) + new[tuple(slobj)] = arr[tuple(slobj2)] + + return conv.wrap(new, to_scalar=False) + + elif indices.size == 0 and not isinstance(obj, np.ndarray): + # Can safely cast the empty list to intp + indices = indices.astype(intp) + + indices[indices < 0] += N + + numnew = len(indices) + order = indices.argsort(kind='mergesort') # stable sort + indices[order] += np.arange(numnew) + + newshape[axis] += numnew + old_mask = ones(newshape[axis], dtype=bool) + old_mask[indices] = False + + new = empty(newshape, arr.dtype, arrorder) + slobj2 = [slice(None)] * ndim + slobj[axis] = indices + slobj2[axis] = old_mask + new[tuple(slobj)] = values + new[tuple(slobj2)] = arr + + return conv.wrap(new, to_scalar=False) + + +def _append_dispatcher(arr, values, axis=None): + return (arr, values) + + +@array_function_dispatch(_append_dispatcher) +def append(arr, values, axis=None): + """ + Append values to the end of an array. + + Parameters + ---------- + arr : array_like + Values are appended to a copy of this array. + values : array_like + These values are appended to a copy of `arr`. It must be of the + correct shape (the same shape as `arr`, excluding `axis`). If + `axis` is not specified, `values` can be any shape and will be + flattened before use. + axis : int, optional + The axis along which `values` are appended. If `axis` is not + given, both `arr` and `values` are flattened before use. + + Returns + ------- + append : ndarray + A copy of `arr` with `values` appended to `axis`. Note that + `append` does not occur in-place: a new array is allocated and + filled. If `axis` is None, `out` is a flattened array. + + See Also + -------- + insert : Insert elements into an array. + delete : Delete elements from an array. + + Examples + -------- + >>> import numpy as np + >>> np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]]) + array([1, 2, 3, ..., 7, 8, 9]) + + When `axis` is specified, `values` must have the correct shape. + + >>> np.append([[1, 2, 3], [4, 5, 6]], [[7, 8, 9]], axis=0) + array([[1, 2, 3], + [4, 5, 6], + [7, 8, 9]]) + + >>> np.append([[1, 2, 3], [4, 5, 6]], [7, 8, 9], axis=0) + Traceback (most recent call last): + ... + ValueError: all the input arrays must have same number of dimensions, but + the array at index 0 has 2 dimension(s) and the array at index 1 has 1 + dimension(s) + + >>> a = np.array([1, 2], dtype=int) + >>> c = np.append(a, []) + >>> c + array([1., 2.]) + >>> c.dtype + float64 + + Default dtype for empty ndarrays is `float64` thus making the output of dtype + `float64` when appended with dtype `int64` + + """ + arr = asanyarray(arr) + if axis is None: + if arr.ndim != 1: + arr = arr.ravel() + values = ravel(values) + axis = arr.ndim - 1 + return concatenate((arr, values), axis=axis) + + +def _digitize_dispatcher(x, bins, right=None): + return (x, bins) + + +@array_function_dispatch(_digitize_dispatcher) +def digitize(x, bins, right=False): + """ + Return the indices of the bins to which each value in input array belongs. + + ========= ============= ============================ + `right` order of bins returned index `i` satisfies + ========= ============= ============================ + ``False`` increasing ``bins[i-1] <= x < bins[i]`` + ``True`` increasing ``bins[i-1] < x <= bins[i]`` + ``False`` decreasing ``bins[i-1] > x >= bins[i]`` + ``True`` decreasing ``bins[i-1] >= x > bins[i]`` + ========= ============= ============================ + + If values in `x` are beyond the bounds of `bins`, 0 or ``len(bins)`` is + returned as appropriate. + + Parameters + ---------- + x : array_like + Input array to be binned. Prior to NumPy 1.10.0, this array had to + be 1-dimensional, but can now have any shape. + bins : array_like + Array of bins. It has to be 1-dimensional and monotonic. + right : bool, optional + Indicating whether the intervals include the right or the left bin + edge. Default behavior is (right==False) indicating that the interval + does not include the right edge. The left bin end is open in this + case, i.e., bins[i-1] <= x < bins[i] is the default behavior for + monotonically increasing bins. + + Returns + ------- + indices : ndarray of ints + Output array of indices, of same shape as `x`. + + Raises + ------ + ValueError + If `bins` is not monotonic. + TypeError + If the type of the input is complex. + + See Also + -------- + bincount, histogram, unique, searchsorted + + Notes + ----- + If values in `x` are such that they fall outside the bin range, + attempting to index `bins` with the indices that `digitize` returns + will result in an IndexError. + + .. versionadded:: 1.10.0 + + `numpy.digitize` is implemented in terms of `numpy.searchsorted`. + This means that a binary search is used to bin the values, which scales + much better for larger number of bins than the previous linear search. + It also removes the requirement for the input array to be 1-dimensional. + + For monotonically *increasing* `bins`, the following are equivalent:: + + np.digitize(x, bins, right=True) + np.searchsorted(bins, x, side='left') + + Note that as the order of the arguments are reversed, the side must be too. + The `searchsorted` call is marginally faster, as it does not do any + monotonicity checks. Perhaps more importantly, it supports all dtypes. + + Examples + -------- + >>> import numpy as np + >>> x = np.array([0.2, 6.4, 3.0, 1.6]) + >>> bins = np.array([0.0, 1.0, 2.5, 4.0, 10.0]) + >>> inds = np.digitize(x, bins) + >>> inds + array([1, 4, 3, 2]) + >>> for n in range(x.size): + ... print(bins[inds[n]-1], "<=", x[n], "<", bins[inds[n]]) + ... + 0.0 <= 0.2 < 1.0 + 4.0 <= 6.4 < 10.0 + 2.5 <= 3.0 < 4.0 + 1.0 <= 1.6 < 2.5 + + >>> x = np.array([1.2, 10.0, 12.4, 15.5, 20.]) + >>> bins = np.array([0, 5, 10, 15, 20]) + >>> np.digitize(x,bins,right=True) + array([1, 2, 3, 4, 4]) + >>> np.digitize(x,bins,right=False) + array([1, 3, 3, 4, 5]) + """ + x = _nx.asarray(x) + bins = _nx.asarray(bins) + + # here for compatibility, searchsorted below is happy to take this + if np.issubdtype(x.dtype, _nx.complexfloating): + raise TypeError("x may not be complex") + + mono = _monotonicity(bins) + if mono == 0: + raise ValueError("bins must be monotonically increasing or decreasing") + + # this is backwards because the arguments below are swapped + side = 'left' if right else 'right' + if mono == -1: + # reverse the bins, and invert the results + return len(bins) - _nx.searchsorted(bins[::-1], x, side=side) + else: + return _nx.searchsorted(bins, x, side=side) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_function_base_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_function_base_impl.pyi new file mode 100644 index 0000000..090fb23 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_function_base_impl.pyi @@ -0,0 +1,985 @@ +# ruff: noqa: ANN401 +from collections.abc import Callable, Iterable, Sequence +from typing import ( + Any, + Concatenate, + ParamSpec, + Protocol, + SupportsIndex, + SupportsInt, + TypeAlias, + TypeVar, + overload, + type_check_only, +) +from typing import Literal as L + +from _typeshed import Incomplete +from typing_extensions import TypeIs, deprecated + +import numpy as np +from numpy import ( + _OrderKACF, + bool_, + complex128, + complexfloating, + datetime64, + float64, + floating, + generic, + integer, + intp, + object_, + timedelta64, + vectorize, +) +from numpy._core.multiarray import bincount +from numpy._globals import _NoValueType +from numpy._typing import ( + ArrayLike, + DTypeLike, + NDArray, + _ArrayLike, + _ArrayLikeBool_co, + _ArrayLikeComplex_co, + _ArrayLikeDT64_co, + _ArrayLikeFloat_co, + _ArrayLikeInt_co, + _ArrayLikeNumber_co, + _ArrayLikeObject_co, + _ArrayLikeTD64_co, + _ComplexLike_co, + _DTypeLike, + _FloatLike_co, + _NestedSequence, + _NumberLike_co, + _ScalarLike_co, + _ShapeLike, +) + +__all__ = [ + "select", + "piecewise", + "trim_zeros", + "copy", + "iterable", + "percentile", + "diff", + "gradient", + "angle", + "unwrap", + "sort_complex", + "flip", + "rot90", + "extract", + "place", + "vectorize", + "asarray_chkfinite", + "average", + "bincount", + "digitize", + "cov", + "corrcoef", + "median", + "sinc", + "hamming", + "hanning", + "bartlett", + "blackman", + "kaiser", + "trapezoid", + "trapz", + "i0", + "meshgrid", + "delete", + "insert", + "append", + "interp", + "quantile", +] + +_T = TypeVar("_T") +_T_co = TypeVar("_T_co", covariant=True) +# The `{}ss` suffix refers to the Python 3.12 syntax: `**P` +_Pss = ParamSpec("_Pss") +_ScalarT = TypeVar("_ScalarT", bound=generic) +_ScalarT1 = TypeVar("_ScalarT1", bound=generic) +_ScalarT2 = TypeVar("_ScalarT2", bound=generic) +_ArrayT = TypeVar("_ArrayT", bound=np.ndarray) + +_2Tuple: TypeAlias = tuple[_T, _T] +_MeshgridIdx: TypeAlias = L['ij', 'xy'] + +@type_check_only +class _TrimZerosSequence(Protocol[_T_co]): + def __len__(self, /) -> int: ... + @overload + def __getitem__(self, key: int, /) -> object: ... + @overload + def __getitem__(self, key: slice, /) -> _T_co: ... + +### + +@overload +def rot90( + m: _ArrayLike[_ScalarT], + k: int = ..., + axes: tuple[int, int] = ..., +) -> NDArray[_ScalarT]: ... +@overload +def rot90( + m: ArrayLike, + k: int = ..., + axes: tuple[int, int] = ..., +) -> NDArray[Any]: ... + +@overload +def flip(m: _ScalarT, axis: None = ...) -> _ScalarT: ... +@overload +def flip(m: _ScalarLike_co, axis: None = ...) -> Any: ... +@overload +def flip(m: _ArrayLike[_ScalarT], axis: _ShapeLike | None = ...) -> NDArray[_ScalarT]: ... +@overload +def flip(m: ArrayLike, axis: _ShapeLike | None = ...) -> NDArray[Any]: ... + +def iterable(y: object) -> TypeIs[Iterable[Any]]: ... + +@overload +def average( + a: _ArrayLikeFloat_co, + axis: None = None, + weights: _ArrayLikeFloat_co | None = None, + returned: L[False] = False, + *, + keepdims: L[False] | _NoValueType = ..., +) -> floating: ... +@overload +def average( + a: _ArrayLikeFloat_co, + axis: None = None, + weights: _ArrayLikeFloat_co | None = None, + *, + returned: L[True], + keepdims: L[False] | _NoValueType = ..., +) -> _2Tuple[floating]: ... +@overload +def average( + a: _ArrayLikeComplex_co, + axis: None = None, + weights: _ArrayLikeComplex_co | None = None, + returned: L[False] = False, + *, + keepdims: L[False] | _NoValueType = ..., +) -> complexfloating: ... +@overload +def average( + a: _ArrayLikeComplex_co, + axis: None = None, + weights: _ArrayLikeComplex_co | None = None, + *, + returned: L[True], + keepdims: L[False] | _NoValueType = ..., +) -> _2Tuple[complexfloating]: ... +@overload +def average( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: _ShapeLike | None = None, + weights: object | None = None, + *, + returned: L[True], + keepdims: bool | bool_ | _NoValueType = ..., +) -> _2Tuple[Incomplete]: ... +@overload +def average( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + axis: _ShapeLike | None = None, + weights: object | None = None, + returned: bool | bool_ = False, + *, + keepdims: bool | bool_ | _NoValueType = ..., +) -> Incomplete: ... + +@overload +def asarray_chkfinite( + a: _ArrayLike[_ScalarT], + dtype: None = ..., + order: _OrderKACF = ..., +) -> NDArray[_ScalarT]: ... +@overload +def asarray_chkfinite( + a: object, + dtype: None = ..., + order: _OrderKACF = ..., +) -> NDArray[Any]: ... +@overload +def asarray_chkfinite( + a: Any, + dtype: _DTypeLike[_ScalarT], + order: _OrderKACF = ..., +) -> NDArray[_ScalarT]: ... +@overload +def asarray_chkfinite( + a: Any, + dtype: DTypeLike, + order: _OrderKACF = ..., +) -> NDArray[Any]: ... + +@overload +def piecewise( + x: _ArrayLike[_ScalarT], + condlist: _ArrayLike[bool_] | Sequence[_ArrayLikeBool_co], + funclist: Sequence[ + Callable[Concatenate[NDArray[_ScalarT], _Pss], NDArray[_ScalarT | Any]] + | _ScalarT | object + ], + /, + *args: _Pss.args, + **kw: _Pss.kwargs, +) -> NDArray[_ScalarT]: ... +@overload +def piecewise( + x: ArrayLike, + condlist: _ArrayLike[bool_] | Sequence[_ArrayLikeBool_co], + funclist: Sequence[ + Callable[Concatenate[NDArray[Any], _Pss], NDArray[Any]] + | object + ], + /, + *args: _Pss.args, + **kw: _Pss.kwargs, +) -> NDArray[Any]: ... + +def select( + condlist: Sequence[ArrayLike], + choicelist: Sequence[ArrayLike], + default: ArrayLike = ..., +) -> NDArray[Any]: ... + +@overload +def copy( + a: _ArrayT, + order: _OrderKACF, + subok: L[True], +) -> _ArrayT: ... +@overload +def copy( + a: _ArrayT, + order: _OrderKACF = ..., + *, + subok: L[True], +) -> _ArrayT: ... +@overload +def copy( + a: _ArrayLike[_ScalarT], + order: _OrderKACF = ..., + subok: L[False] = ..., +) -> NDArray[_ScalarT]: ... +@overload +def copy( + a: ArrayLike, + order: _OrderKACF = ..., + subok: L[False] = ..., +) -> NDArray[Any]: ... + +def gradient( + f: ArrayLike, + *varargs: ArrayLike, + axis: _ShapeLike | None = ..., + edge_order: L[1, 2] = ..., +) -> Any: ... + +@overload +def diff( + a: _T, + n: L[0], + axis: SupportsIndex = ..., + prepend: ArrayLike = ..., + append: ArrayLike = ..., +) -> _T: ... +@overload +def diff( + a: ArrayLike, + n: int = ..., + axis: SupportsIndex = ..., + prepend: ArrayLike = ..., + append: ArrayLike = ..., +) -> NDArray[Any]: ... + +@overload # float scalar +def interp( + x: _FloatLike_co, + xp: _ArrayLikeFloat_co, + fp: _ArrayLikeFloat_co, + left: _FloatLike_co | None = None, + right: _FloatLike_co | None = None, + period: _FloatLike_co | None = None, +) -> float64: ... +@overload # float array +def interp( + x: NDArray[floating | integer | np.bool] | _NestedSequence[_FloatLike_co], + xp: _ArrayLikeFloat_co, + fp: _ArrayLikeFloat_co, + left: _FloatLike_co | None = None, + right: _FloatLike_co | None = None, + period: _FloatLike_co | None = None, +) -> NDArray[float64]: ... +@overload # float scalar or array +def interp( + x: _ArrayLikeFloat_co, + xp: _ArrayLikeFloat_co, + fp: _ArrayLikeFloat_co, + left: _FloatLike_co | None = None, + right: _FloatLike_co | None = None, + period: _FloatLike_co | None = None, +) -> NDArray[float64] | float64: ... +@overload # complex scalar +def interp( + x: _FloatLike_co, + xp: _ArrayLikeFloat_co, + fp: _ArrayLike[complexfloating], + left: _NumberLike_co | None = None, + right: _NumberLike_co | None = None, + period: _FloatLike_co | None = None, +) -> complex128: ... +@overload # complex or float scalar +def interp( + x: _FloatLike_co, + xp: _ArrayLikeFloat_co, + fp: Sequence[complex | complexfloating], + left: _NumberLike_co | None = None, + right: _NumberLike_co | None = None, + period: _FloatLike_co | None = None, +) -> complex128 | float64: ... +@overload # complex array +def interp( + x: NDArray[floating | integer | np.bool] | _NestedSequence[_FloatLike_co], + xp: _ArrayLikeFloat_co, + fp: _ArrayLike[complexfloating], + left: _NumberLike_co | None = None, + right: _NumberLike_co | None = None, + period: _FloatLike_co | None = None, +) -> NDArray[complex128]: ... +@overload # complex or float array +def interp( + x: NDArray[floating | integer | np.bool] | _NestedSequence[_FloatLike_co], + xp: _ArrayLikeFloat_co, + fp: Sequence[complex | complexfloating], + left: _NumberLike_co | None = None, + right: _NumberLike_co | None = None, + period: _FloatLike_co | None = None, +) -> NDArray[complex128 | float64]: ... +@overload # complex scalar or array +def interp( + x: _ArrayLikeFloat_co, + xp: _ArrayLikeFloat_co, + fp: _ArrayLike[complexfloating], + left: _NumberLike_co | None = None, + right: _NumberLike_co | None = None, + period: _FloatLike_co | None = None, +) -> NDArray[complex128] | complex128: ... +@overload # complex or float scalar or array +def interp( + x: _ArrayLikeFloat_co, + xp: _ArrayLikeFloat_co, + fp: _ArrayLikeNumber_co, + left: _NumberLike_co | None = None, + right: _NumberLike_co | None = None, + period: _FloatLike_co | None = None, +) -> NDArray[complex128 | float64] | complex128 | float64: ... + +@overload +def angle(z: _ComplexLike_co, deg: bool = ...) -> floating: ... +@overload +def angle(z: object_, deg: bool = ...) -> Any: ... +@overload +def angle(z: _ArrayLikeComplex_co, deg: bool = ...) -> NDArray[floating]: ... +@overload +def angle(z: _ArrayLikeObject_co, deg: bool = ...) -> NDArray[object_]: ... + +@overload +def unwrap( + p: _ArrayLikeFloat_co, + discont: float | None = ..., + axis: int = ..., + *, + period: float = ..., +) -> NDArray[floating]: ... +@overload +def unwrap( + p: _ArrayLikeObject_co, + discont: float | None = ..., + axis: int = ..., + *, + period: float = ..., +) -> NDArray[object_]: ... + +def sort_complex(a: ArrayLike) -> NDArray[complexfloating]: ... + +def trim_zeros( + filt: _TrimZerosSequence[_T], + trim: L["f", "b", "fb", "bf"] = ..., +) -> _T: ... + +@overload +def extract(condition: ArrayLike, arr: _ArrayLike[_ScalarT]) -> NDArray[_ScalarT]: ... +@overload +def extract(condition: ArrayLike, arr: ArrayLike) -> NDArray[Any]: ... + +def place(arr: NDArray[Any], mask: ArrayLike, vals: Any) -> None: ... + +@overload +def cov( + m: _ArrayLikeFloat_co, + y: _ArrayLikeFloat_co | None = ..., + rowvar: bool = ..., + bias: bool = ..., + ddof: SupportsIndex | SupportsInt | None = ..., + fweights: ArrayLike | None = ..., + aweights: ArrayLike | None = ..., + *, + dtype: None = ..., +) -> NDArray[floating]: ... +@overload +def cov( + m: _ArrayLikeComplex_co, + y: _ArrayLikeComplex_co | None = ..., + rowvar: bool = ..., + bias: bool = ..., + ddof: SupportsIndex | SupportsInt | None = ..., + fweights: ArrayLike | None = ..., + aweights: ArrayLike | None = ..., + *, + dtype: None = ..., +) -> NDArray[complexfloating]: ... +@overload +def cov( + m: _ArrayLikeComplex_co, + y: _ArrayLikeComplex_co | None = ..., + rowvar: bool = ..., + bias: bool = ..., + ddof: SupportsIndex | SupportsInt | None = ..., + fweights: ArrayLike | None = ..., + aweights: ArrayLike | None = ..., + *, + dtype: _DTypeLike[_ScalarT], +) -> NDArray[_ScalarT]: ... +@overload +def cov( + m: _ArrayLikeComplex_co, + y: _ArrayLikeComplex_co | None = ..., + rowvar: bool = ..., + bias: bool = ..., + ddof: SupportsIndex | SupportsInt | None = ..., + fweights: ArrayLike | None = ..., + aweights: ArrayLike | None = ..., + *, + dtype: DTypeLike, +) -> NDArray[Any]: ... + +# NOTE `bias` and `ddof` are deprecated and ignored +@overload +def corrcoef( + m: _ArrayLikeFloat_co, + y: _ArrayLikeFloat_co | None = None, + rowvar: bool = True, + bias: _NoValueType = ..., + ddof: _NoValueType = ..., + *, + dtype: None = None, +) -> NDArray[floating]: ... +@overload +def corrcoef( + m: _ArrayLikeComplex_co, + y: _ArrayLikeComplex_co | None = None, + rowvar: bool = True, + bias: _NoValueType = ..., + ddof: _NoValueType = ..., + *, + dtype: None = None, +) -> NDArray[complexfloating]: ... +@overload +def corrcoef( + m: _ArrayLikeComplex_co, + y: _ArrayLikeComplex_co | None = None, + rowvar: bool = True, + bias: _NoValueType = ..., + ddof: _NoValueType = ..., + *, + dtype: _DTypeLike[_ScalarT], +) -> NDArray[_ScalarT]: ... +@overload +def corrcoef( + m: _ArrayLikeComplex_co, + y: _ArrayLikeComplex_co | None = None, + rowvar: bool = True, + bias: _NoValueType = ..., + ddof: _NoValueType = ..., + *, + dtype: DTypeLike | None = None, +) -> NDArray[Any]: ... + +def blackman(M: _FloatLike_co) -> NDArray[floating]: ... + +def bartlett(M: _FloatLike_co) -> NDArray[floating]: ... + +def hanning(M: _FloatLike_co) -> NDArray[floating]: ... + +def hamming(M: _FloatLike_co) -> NDArray[floating]: ... + +def i0(x: _ArrayLikeFloat_co) -> NDArray[floating]: ... + +def kaiser( + M: _FloatLike_co, + beta: _FloatLike_co, +) -> NDArray[floating]: ... + +@overload +def sinc(x: _FloatLike_co) -> floating: ... +@overload +def sinc(x: _ComplexLike_co) -> complexfloating: ... +@overload +def sinc(x: _ArrayLikeFloat_co) -> NDArray[floating]: ... +@overload +def sinc(x: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ... + +@overload +def median( + a: _ArrayLikeFloat_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + keepdims: L[False] = ..., +) -> floating: ... +@overload +def median( + a: _ArrayLikeComplex_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + keepdims: L[False] = ..., +) -> complexfloating: ... +@overload +def median( + a: _ArrayLikeTD64_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + keepdims: L[False] = ..., +) -> timedelta64: ... +@overload +def median( + a: _ArrayLikeObject_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + keepdims: L[False] = ..., +) -> Any: ... +@overload +def median( + a: _ArrayLikeFloat_co | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, + axis: _ShapeLike | None = ..., + out: None = ..., + overwrite_input: bool = ..., + keepdims: bool = ..., +) -> Any: ... +@overload +def median( + a: _ArrayLikeFloat_co | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, + axis: _ShapeLike | None, + out: _ArrayT, + overwrite_input: bool = ..., + keepdims: bool = ..., +) -> _ArrayT: ... +@overload +def median( + a: _ArrayLikeFloat_co | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, + axis: _ShapeLike | None = ..., + *, + out: _ArrayT, + overwrite_input: bool = ..., + keepdims: bool = ..., +) -> _ArrayT: ... + +_MethodKind = L[ + "inverted_cdf", + "averaged_inverted_cdf", + "closest_observation", + "interpolated_inverted_cdf", + "hazen", + "weibull", + "linear", + "median_unbiased", + "normal_unbiased", + "lower", + "higher", + "midpoint", + "nearest", +] + +@overload +def percentile( + a: _ArrayLikeFloat_co, + q: _FloatLike_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + method: _MethodKind = ..., + keepdims: L[False] = ..., + *, + weights: _ArrayLikeFloat_co | None = ..., +) -> floating: ... +@overload +def percentile( + a: _ArrayLikeComplex_co, + q: _FloatLike_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + method: _MethodKind = ..., + keepdims: L[False] = ..., + *, + weights: _ArrayLikeFloat_co | None = ..., +) -> complexfloating: ... +@overload +def percentile( + a: _ArrayLikeTD64_co, + q: _FloatLike_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + method: _MethodKind = ..., + keepdims: L[False] = ..., + *, + weights: _ArrayLikeFloat_co | None = ..., +) -> timedelta64: ... +@overload +def percentile( + a: _ArrayLikeDT64_co, + q: _FloatLike_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + method: _MethodKind = ..., + keepdims: L[False] = ..., + *, + weights: _ArrayLikeFloat_co | None = ..., +) -> datetime64: ... +@overload +def percentile( + a: _ArrayLikeObject_co, + q: _FloatLike_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + method: _MethodKind = ..., + keepdims: L[False] = ..., + *, + weights: _ArrayLikeFloat_co | None = ..., +) -> Any: ... +@overload +def percentile( + a: _ArrayLikeFloat_co, + q: _ArrayLikeFloat_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + method: _MethodKind = ..., + keepdims: L[False] = ..., + *, + weights: _ArrayLikeFloat_co | None = ..., +) -> NDArray[floating]: ... +@overload +def percentile( + a: _ArrayLikeComplex_co, + q: _ArrayLikeFloat_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + method: _MethodKind = ..., + keepdims: L[False] = ..., + *, + weights: _ArrayLikeFloat_co | None = ..., +) -> NDArray[complexfloating]: ... +@overload +def percentile( + a: _ArrayLikeTD64_co, + q: _ArrayLikeFloat_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + method: _MethodKind = ..., + keepdims: L[False] = ..., + *, + weights: _ArrayLikeFloat_co | None = ..., +) -> NDArray[timedelta64]: ... +@overload +def percentile( + a: _ArrayLikeDT64_co, + q: _ArrayLikeFloat_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + method: _MethodKind = ..., + keepdims: L[False] = ..., + *, + weights: _ArrayLikeFloat_co | None = ..., +) -> NDArray[datetime64]: ... +@overload +def percentile( + a: _ArrayLikeObject_co, + q: _ArrayLikeFloat_co, + axis: None = ..., + out: None = ..., + overwrite_input: bool = ..., + method: _MethodKind = ..., + keepdims: L[False] = ..., + *, + weights: _ArrayLikeFloat_co | None = ..., +) -> NDArray[object_]: ... +@overload +def percentile( + a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeDT64_co | _ArrayLikeObject_co, + q: _ArrayLikeFloat_co, + axis: _ShapeLike | None = ..., + out: None = ..., + overwrite_input: bool = ..., + method: _MethodKind = ..., + keepdims: bool = ..., + *, + weights: _ArrayLikeFloat_co | None = ..., +) -> Any: ... +@overload +def percentile( + a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeDT64_co | _ArrayLikeObject_co, + q: _ArrayLikeFloat_co, + axis: _ShapeLike | None, + out: _ArrayT, + overwrite_input: bool = ..., + method: _MethodKind = ..., + keepdims: bool = ..., + *, + weights: _ArrayLikeFloat_co | None = ..., +) -> _ArrayT: ... +@overload +def percentile( + a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeDT64_co | _ArrayLikeObject_co, + q: _ArrayLikeFloat_co, + axis: _ShapeLike | None = ..., + *, + out: _ArrayT, + overwrite_input: bool = ..., + method: _MethodKind = ..., + keepdims: bool = ..., + weights: _ArrayLikeFloat_co | None = ..., +) -> _ArrayT: ... + +# NOTE: Not an alias, but they do have identical signatures +# (that we can reuse) +quantile = percentile + +_ScalarT_fm = TypeVar( + "_ScalarT_fm", + bound=floating | complexfloating | timedelta64, +) + +class _SupportsRMulFloat(Protocol[_T_co]): + def __rmul__(self, other: float, /) -> _T_co: ... + +@overload +def trapezoid( # type: ignore[overload-overlap] + y: Sequence[_FloatLike_co], + x: Sequence[_FloatLike_co] | None = ..., + dx: float = ..., + axis: SupportsIndex = ..., +) -> float64: ... +@overload +def trapezoid( + y: Sequence[_ComplexLike_co], + x: Sequence[_ComplexLike_co] | None = ..., + dx: float = ..., + axis: SupportsIndex = ..., +) -> complex128: ... +@overload +def trapezoid( + y: _ArrayLike[bool_ | integer], + x: _ArrayLike[bool_ | integer] | None = ..., + dx: float = ..., + axis: SupportsIndex = ..., +) -> float64 | NDArray[float64]: ... +@overload +def trapezoid( # type: ignore[overload-overlap] + y: _ArrayLikeObject_co, + x: _ArrayLikeFloat_co | _ArrayLikeObject_co | None = ..., + dx: float = ..., + axis: SupportsIndex = ..., +) -> float | NDArray[object_]: ... +@overload +def trapezoid( + y: _ArrayLike[_ScalarT_fm], + x: _ArrayLike[_ScalarT_fm] | _ArrayLikeInt_co | None = ..., + dx: float = ..., + axis: SupportsIndex = ..., +) -> _ScalarT_fm | NDArray[_ScalarT_fm]: ... +@overload +def trapezoid( + y: Sequence[_SupportsRMulFloat[_T]], + x: Sequence[_SupportsRMulFloat[_T] | _T] | None = ..., + dx: float = ..., + axis: SupportsIndex = ..., +) -> _T: ... +@overload +def trapezoid( + y: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, + x: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co | None = ..., + dx: float = ..., + axis: SupportsIndex = ..., +) -> ( + floating | complexfloating | timedelta64 + | NDArray[floating | complexfloating | timedelta64 | object_] +): ... + +@deprecated("Use 'trapezoid' instead") +def trapz(y: ArrayLike, x: ArrayLike | None = None, dx: float = 1.0, axis: int = -1) -> generic | NDArray[generic]: ... + +@overload +def meshgrid( + *, + copy: bool = ..., + sparse: bool = ..., + indexing: _MeshgridIdx = ..., +) -> tuple[()]: ... +@overload +def meshgrid( + x1: _ArrayLike[_ScalarT], + /, + *, + copy: bool = ..., + sparse: bool = ..., + indexing: _MeshgridIdx = ..., +) -> tuple[NDArray[_ScalarT]]: ... +@overload +def meshgrid( + x1: ArrayLike, + /, + *, + copy: bool = ..., + sparse: bool = ..., + indexing: _MeshgridIdx = ..., +) -> tuple[NDArray[Any]]: ... +@overload +def meshgrid( + x1: _ArrayLike[_ScalarT1], + x2: _ArrayLike[_ScalarT2], + /, + *, + copy: bool = ..., + sparse: bool = ..., + indexing: _MeshgridIdx = ..., +) -> tuple[NDArray[_ScalarT1], NDArray[_ScalarT2]]: ... +@overload +def meshgrid( + x1: ArrayLike, + x2: _ArrayLike[_ScalarT], + /, + *, + copy: bool = ..., + sparse: bool = ..., + indexing: _MeshgridIdx = ..., +) -> tuple[NDArray[Any], NDArray[_ScalarT]]: ... +@overload +def meshgrid( + x1: _ArrayLike[_ScalarT], + x2: ArrayLike, + /, + *, + copy: bool = ..., + sparse: bool = ..., + indexing: _MeshgridIdx = ..., +) -> tuple[NDArray[_ScalarT], NDArray[Any]]: ... +@overload +def meshgrid( + x1: ArrayLike, + x2: ArrayLike, + /, + *, + copy: bool = ..., + sparse: bool = ..., + indexing: _MeshgridIdx = ..., +) -> tuple[NDArray[Any], NDArray[Any]]: ... +@overload +def meshgrid( + x1: ArrayLike, + x2: ArrayLike, + x3: ArrayLike, + /, + *, + copy: bool = ..., + sparse: bool = ..., + indexing: _MeshgridIdx = ..., +) -> tuple[NDArray[Any], NDArray[Any], NDArray[Any]]: ... +@overload +def meshgrid( + x1: ArrayLike, + x2: ArrayLike, + x3: ArrayLike, + x4: ArrayLike, + /, + *, + copy: bool = ..., + sparse: bool = ..., + indexing: _MeshgridIdx = ..., +) -> tuple[NDArray[Any], NDArray[Any], NDArray[Any], NDArray[Any]]: ... +@overload +def meshgrid( + *xi: ArrayLike, + copy: bool = ..., + sparse: bool = ..., + indexing: _MeshgridIdx = ..., +) -> tuple[NDArray[Any], ...]: ... + +@overload +def delete( + arr: _ArrayLike[_ScalarT], + obj: slice | _ArrayLikeInt_co, + axis: SupportsIndex | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def delete( + arr: ArrayLike, + obj: slice | _ArrayLikeInt_co, + axis: SupportsIndex | None = ..., +) -> NDArray[Any]: ... + +@overload +def insert( + arr: _ArrayLike[_ScalarT], + obj: slice | _ArrayLikeInt_co, + values: ArrayLike, + axis: SupportsIndex | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def insert( + arr: ArrayLike, + obj: slice | _ArrayLikeInt_co, + values: ArrayLike, + axis: SupportsIndex | None = ..., +) -> NDArray[Any]: ... + +def append( + arr: ArrayLike, + values: ArrayLike, + axis: SupportsIndex | None = ..., +) -> NDArray[Any]: ... + +@overload +def digitize( + x: _FloatLike_co, + bins: _ArrayLikeFloat_co, + right: bool = ..., +) -> intp: ... +@overload +def digitize( + x: _ArrayLikeFloat_co, + bins: _ArrayLikeFloat_co, + right: bool = ..., +) -> NDArray[intp]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_histograms_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_histograms_impl.py new file mode 100644 index 0000000..b4aacd0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_histograms_impl.py @@ -0,0 +1,1085 @@ +""" +Histogram-related functions +""" +import contextlib +import functools +import operator +import warnings + +import numpy as np +from numpy._core import overrides + +__all__ = ['histogram', 'histogramdd', 'histogram_bin_edges'] + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy') + +# range is a keyword argument to many functions, so save the builtin so they can +# use it. +_range = range + + +def _ptp(x): + """Peak-to-peak value of x. + + This implementation avoids the problem of signed integer arrays having a + peak-to-peak value that cannot be represented with the array's data type. + This function returns an unsigned value for signed integer arrays. + """ + return _unsigned_subtract(x.max(), x.min()) + + +def _hist_bin_sqrt(x, range): + """ + Square root histogram bin estimator. + + Bin width is inversely proportional to the data size. Used by many + programs for its simplicity. + + Parameters + ---------- + x : array_like + Input data that is to be histogrammed, trimmed to range. May not + be empty. + + Returns + ------- + h : An estimate of the optimal bin width for the given data. + """ + del range # unused + return _ptp(x) / np.sqrt(x.size) + + +def _hist_bin_sturges(x, range): + """ + Sturges histogram bin estimator. + + A very simplistic estimator based on the assumption of normality of + the data. This estimator has poor performance for non-normal data, + which becomes especially obvious for large data sets. The estimate + depends only on size of the data. + + Parameters + ---------- + x : array_like + Input data that is to be histogrammed, trimmed to range. May not + be empty. + + Returns + ------- + h : An estimate of the optimal bin width for the given data. + """ + del range # unused + return _ptp(x) / (np.log2(x.size) + 1.0) + + +def _hist_bin_rice(x, range): + """ + Rice histogram bin estimator. + + Another simple estimator with no normality assumption. It has better + performance for large data than Sturges, but tends to overestimate + the number of bins. The number of bins is proportional to the cube + root of data size (asymptotically optimal). The estimate depends + only on size of the data. + + Parameters + ---------- + x : array_like + Input data that is to be histogrammed, trimmed to range. May not + be empty. + + Returns + ------- + h : An estimate of the optimal bin width for the given data. + """ + del range # unused + return _ptp(x) / (2.0 * x.size ** (1.0 / 3)) + + +def _hist_bin_scott(x, range): + """ + Scott histogram bin estimator. + + The binwidth is proportional to the standard deviation of the data + and inversely proportional to the cube root of data size + (asymptotically optimal). + + Parameters + ---------- + x : array_like + Input data that is to be histogrammed, trimmed to range. May not + be empty. + + Returns + ------- + h : An estimate of the optimal bin width for the given data. + """ + del range # unused + return (24.0 * np.pi**0.5 / x.size)**(1.0 / 3.0) * np.std(x) + + +def _hist_bin_stone(x, range): + """ + Histogram bin estimator based on minimizing the estimated integrated squared error (ISE). + + The number of bins is chosen by minimizing the estimated ISE against the unknown + true distribution. The ISE is estimated using cross-validation and can be regarded + as a generalization of Scott's rule. + https://en.wikipedia.org/wiki/Histogram#Scott.27s_normal_reference_rule + + This paper by Stone appears to be the origination of this rule. + https://digitalassets.lib.berkeley.edu/sdtr/ucb/text/34.pdf + + Parameters + ---------- + x : array_like + Input data that is to be histogrammed, trimmed to range. May not + be empty. + range : (float, float) + The lower and upper range of the bins. + + Returns + ------- + h : An estimate of the optimal bin width for the given data. + """ # noqa: E501 + + n = x.size + ptp_x = _ptp(x) + if n <= 1 or ptp_x == 0: + return 0 + + def jhat(nbins): + hh = ptp_x / nbins + p_k = np.histogram(x, bins=nbins, range=range)[0] / n + return (2 - (n + 1) * p_k.dot(p_k)) / hh + + nbins_upper_bound = max(100, int(np.sqrt(n))) + nbins = min(_range(1, nbins_upper_bound + 1), key=jhat) + if nbins == nbins_upper_bound: + warnings.warn("The number of bins estimated may be suboptimal.", + RuntimeWarning, stacklevel=3) + return ptp_x / nbins + + +def _hist_bin_doane(x, range): + """ + Doane's histogram bin estimator. + + Improved version of Sturges' formula which works better for + non-normal data. See + stats.stackexchange.com/questions/55134/doanes-formula-for-histogram-binning + + Parameters + ---------- + x : array_like + Input data that is to be histogrammed, trimmed to range. May not + be empty. + + Returns + ------- + h : An estimate of the optimal bin width for the given data. + """ + del range # unused + if x.size > 2: + sg1 = np.sqrt(6.0 * (x.size - 2) / ((x.size + 1.0) * (x.size + 3))) + sigma = np.std(x) + if sigma > 0.0: + # These three operations add up to + # g1 = np.mean(((x - np.mean(x)) / sigma)**3) + # but use only one temp array instead of three + temp = x - np.mean(x) + np.true_divide(temp, sigma, temp) + np.power(temp, 3, temp) + g1 = np.mean(temp) + return _ptp(x) / (1.0 + np.log2(x.size) + + np.log2(1.0 + np.absolute(g1) / sg1)) + return 0.0 + + +def _hist_bin_fd(x, range): + """ + The Freedman-Diaconis histogram bin estimator. + + The Freedman-Diaconis rule uses interquartile range (IQR) to + estimate binwidth. It is considered a variation of the Scott rule + with more robustness as the IQR is less affected by outliers than + the standard deviation. However, the IQR depends on fewer points + than the standard deviation, so it is less accurate, especially for + long tailed distributions. + + If the IQR is 0, this function returns 0 for the bin width. + Binwidth is inversely proportional to the cube root of data size + (asymptotically optimal). + + Parameters + ---------- + x : array_like + Input data that is to be histogrammed, trimmed to range. May not + be empty. + + Returns + ------- + h : An estimate of the optimal bin width for the given data. + """ + del range # unused + iqr = np.subtract(*np.percentile(x, [75, 25])) + return 2.0 * iqr * x.size ** (-1.0 / 3.0) + + +def _hist_bin_auto(x, range): + """ + Histogram bin estimator that uses the minimum width of a relaxed + Freedman-Diaconis and Sturges estimators if the FD bin width does + not result in a large number of bins. The relaxed Freedman-Diaconis estimator + limits the bin width to half the sqrt estimated to avoid small bins. + + The FD estimator is usually the most robust method, but its width + estimate tends to be too large for small `x` and bad for data with limited + variance. The Sturges estimator is quite good for small (<1000) datasets + and is the default in the R language. This method gives good off-the-shelf + behaviour. + + + Parameters + ---------- + x : array_like + Input data that is to be histogrammed, trimmed to range. May not + be empty. + range : Tuple with range for the histogram + + Returns + ------- + h : An estimate of the optimal bin width for the given data. + + See Also + -------- + _hist_bin_fd, _hist_bin_sturges + """ + fd_bw = _hist_bin_fd(x, range) + sturges_bw = _hist_bin_sturges(x, range) + sqrt_bw = _hist_bin_sqrt(x, range) + # heuristic to limit the maximal number of bins + fd_bw_corrected = max(fd_bw, sqrt_bw / 2) + return min(fd_bw_corrected, sturges_bw) + + +# Private dict initialized at module load time +_hist_bin_selectors = {'stone': _hist_bin_stone, + 'auto': _hist_bin_auto, + 'doane': _hist_bin_doane, + 'fd': _hist_bin_fd, + 'rice': _hist_bin_rice, + 'scott': _hist_bin_scott, + 'sqrt': _hist_bin_sqrt, + 'sturges': _hist_bin_sturges} + + +def _ravel_and_check_weights(a, weights): + """ Check a and weights have matching shapes, and ravel both """ + a = np.asarray(a) + + # Ensure that the array is a "subtractable" dtype + if a.dtype == np.bool: + msg = f"Converting input from {a.dtype} to {np.uint8} for compatibility." + warnings.warn(msg, RuntimeWarning, stacklevel=3) + a = a.astype(np.uint8) + + if weights is not None: + weights = np.asarray(weights) + if weights.shape != a.shape: + raise ValueError( + 'weights should have the same shape as a.') + weights = weights.ravel() + a = a.ravel() + return a, weights + + +def _get_outer_edges(a, range): + """ + Determine the outer bin edges to use, from either the data or the range + argument + """ + if range is not None: + first_edge, last_edge = range + if first_edge > last_edge: + raise ValueError( + 'max must be larger than min in range parameter.') + if not (np.isfinite(first_edge) and np.isfinite(last_edge)): + raise ValueError( + f"supplied range of [{first_edge}, {last_edge}] is not finite") + elif a.size == 0: + # handle empty arrays. Can't determine range, so use 0-1. + first_edge, last_edge = 0, 1 + else: + first_edge, last_edge = a.min(), a.max() + if not (np.isfinite(first_edge) and np.isfinite(last_edge)): + raise ValueError( + f"autodetected range of [{first_edge}, {last_edge}] is not finite") + + # expand empty range to avoid divide by zero + if first_edge == last_edge: + first_edge = first_edge - 0.5 + last_edge = last_edge + 0.5 + + return first_edge, last_edge + + +def _unsigned_subtract(a, b): + """ + Subtract two values where a >= b, and produce an unsigned result + + This is needed when finding the difference between the upper and lower + bound of an int16 histogram + """ + # coerce to a single type + signed_to_unsigned = { + np.byte: np.ubyte, + np.short: np.ushort, + np.intc: np.uintc, + np.int_: np.uint, + np.longlong: np.ulonglong + } + dt = np.result_type(a, b) + try: + unsigned_dt = signed_to_unsigned[dt.type] + except KeyError: + return np.subtract(a, b, dtype=dt) + else: + # we know the inputs are integers, and we are deliberately casting + # signed to unsigned. The input may be negative python integers so + # ensure we pass in arrays with the initial dtype (related to NEP 50). + return np.subtract(np.asarray(a, dtype=dt), np.asarray(b, dtype=dt), + casting='unsafe', dtype=unsigned_dt) + + +def _get_bin_edges(a, bins, range, weights): + """ + Computes the bins used internally by `histogram`. + + Parameters + ========== + a : ndarray + Ravelled data array + bins, range + Forwarded arguments from `histogram`. + weights : ndarray, optional + Ravelled weights array, or None + + Returns + ======= + bin_edges : ndarray + Array of bin edges + uniform_bins : (Number, Number, int): + The upper bound, lowerbound, and number of bins, used in the optimized + implementation of `histogram` that works on uniform bins. + """ + # parse the overloaded bins argument + n_equal_bins = None + bin_edges = None + + if isinstance(bins, str): + bin_name = bins + # if `bins` is a string for an automatic method, + # this will replace it with the number of bins calculated + if bin_name not in _hist_bin_selectors: + raise ValueError( + f"{bin_name!r} is not a valid estimator for `bins`") + if weights is not None: + raise TypeError("Automated estimation of the number of " + "bins is not supported for weighted data") + + first_edge, last_edge = _get_outer_edges(a, range) + + # truncate the range if needed + if range is not None: + keep = (a >= first_edge) + keep &= (a <= last_edge) + if not np.logical_and.reduce(keep): + a = a[keep] + + if a.size == 0: + n_equal_bins = 1 + else: + # Do not call selectors on empty arrays + width = _hist_bin_selectors[bin_name](a, (first_edge, last_edge)) + if width: + if np.issubdtype(a.dtype, np.integer) and width < 1: + width = 1 + delta = _unsigned_subtract(last_edge, first_edge) + n_equal_bins = int(np.ceil(delta / width)) + else: + # Width can be zero for some estimators, e.g. FD when + # the IQR of the data is zero. + n_equal_bins = 1 + + elif np.ndim(bins) == 0: + try: + n_equal_bins = operator.index(bins) + except TypeError as e: + raise TypeError( + '`bins` must be an integer, a string, or an array') from e + if n_equal_bins < 1: + raise ValueError('`bins` must be positive, when an integer') + + first_edge, last_edge = _get_outer_edges(a, range) + + elif np.ndim(bins) == 1: + bin_edges = np.asarray(bins) + if np.any(bin_edges[:-1] > bin_edges[1:]): + raise ValueError( + '`bins` must increase monotonically, when an array') + + else: + raise ValueError('`bins` must be 1d, when an array') + + if n_equal_bins is not None: + # gh-10322 means that type resolution rules are dependent on array + # shapes. To avoid this causing problems, we pick a type now and stick + # with it throughout. + bin_type = np.result_type(first_edge, last_edge, a) + if np.issubdtype(bin_type, np.integer): + bin_type = np.result_type(bin_type, float) + + # bin edges must be computed + bin_edges = np.linspace( + first_edge, last_edge, n_equal_bins + 1, + endpoint=True, dtype=bin_type) + if np.any(bin_edges[:-1] >= bin_edges[1:]): + raise ValueError( + f'Too many bins for data range. Cannot create {n_equal_bins} ' + f'finite-sized bins.') + return bin_edges, (first_edge, last_edge, n_equal_bins) + else: + return bin_edges, None + + +def _search_sorted_inclusive(a, v): + """ + Like `searchsorted`, but where the last item in `v` is placed on the right. + + In the context of a histogram, this makes the last bin edge inclusive + """ + return np.concatenate(( + a.searchsorted(v[:-1], 'left'), + a.searchsorted(v[-1:], 'right') + )) + + +def _histogram_bin_edges_dispatcher(a, bins=None, range=None, weights=None): + return (a, bins, weights) + + +@array_function_dispatch(_histogram_bin_edges_dispatcher) +def histogram_bin_edges(a, bins=10, range=None, weights=None): + r""" + Function to calculate only the edges of the bins used by the `histogram` + function. + + Parameters + ---------- + a : array_like + Input data. The histogram is computed over the flattened array. + bins : int or sequence of scalars or str, optional + If `bins` is an int, it defines the number of equal-width + bins in the given range (10, by default). If `bins` is a + sequence, it defines the bin edges, including the rightmost + edge, allowing for non-uniform bin widths. + + If `bins` is a string from the list below, `histogram_bin_edges` will + use the method chosen to calculate the optimal bin width and + consequently the number of bins (see the Notes section for more detail + on the estimators) from the data that falls within the requested range. + While the bin width will be optimal for the actual data + in the range, the number of bins will be computed to fill the + entire range, including the empty portions. For visualisation, + using the 'auto' option is suggested. Weighted data is not + supported for automated bin size selection. + + 'auto' + Minimum bin width between the 'sturges' and 'fd' estimators. + Provides good all-around performance. + + 'fd' (Freedman Diaconis Estimator) + Robust (resilient to outliers) estimator that takes into + account data variability and data size. + + 'doane' + An improved version of Sturges' estimator that works better + with non-normal datasets. + + 'scott' + Less robust estimator that takes into account data variability + and data size. + + 'stone' + Estimator based on leave-one-out cross-validation estimate of + the integrated squared error. Can be regarded as a generalization + of Scott's rule. + + 'rice' + Estimator does not take variability into account, only data + size. Commonly overestimates number of bins required. + + 'sturges' + R's default method, only accounts for data size. Only + optimal for gaussian data and underestimates number of bins + for large non-gaussian datasets. + + 'sqrt' + Square root (of data size) estimator, used by Excel and + other programs for its speed and simplicity. + + range : (float, float), optional + The lower and upper range of the bins. If not provided, range + is simply ``(a.min(), a.max())``. Values outside the range are + ignored. The first element of the range must be less than or + equal to the second. `range` affects the automatic bin + computation as well. While bin width is computed to be optimal + based on the actual data within `range`, the bin count will fill + the entire range including portions containing no data. + + weights : array_like, optional + An array of weights, of the same shape as `a`. Each value in + `a` only contributes its associated weight towards the bin count + (instead of 1). This is currently not used by any of the bin estimators, + but may be in the future. + + Returns + ------- + bin_edges : array of dtype float + The edges to pass into `histogram` + + See Also + -------- + histogram + + Notes + ----- + The methods to estimate the optimal number of bins are well founded + in literature, and are inspired by the choices R provides for + histogram visualisation. Note that having the number of bins + proportional to :math:`n^{1/3}` is asymptotically optimal, which is + why it appears in most estimators. These are simply plug-in methods + that give good starting points for number of bins. In the equations + below, :math:`h` is the binwidth and :math:`n_h` is the number of + bins. All estimators that compute bin counts are recast to bin width + using the `ptp` of the data. The final bin count is obtained from + ``np.round(np.ceil(range / h))``. The final bin width is often less + than what is returned by the estimators below. + + 'auto' (minimum bin width of the 'sturges' and 'fd' estimators) + A compromise to get a good value. For small datasets the Sturges + value will usually be chosen, while larger datasets will usually + default to FD. Avoids the overly conservative behaviour of FD + and Sturges for small and large datasets respectively. + Switchover point is usually :math:`a.size \approx 1000`. + + 'fd' (Freedman Diaconis Estimator) + .. math:: h = 2 \frac{IQR}{n^{1/3}} + + The binwidth is proportional to the interquartile range (IQR) + and inversely proportional to cube root of a.size. Can be too + conservative for small datasets, but is quite good for large + datasets. The IQR is very robust to outliers. + + 'scott' + .. math:: h = \sigma \sqrt[3]{\frac{24 \sqrt{\pi}}{n}} + + The binwidth is proportional to the standard deviation of the + data and inversely proportional to cube root of ``x.size``. Can + be too conservative for small datasets, but is quite good for + large datasets. The standard deviation is not very robust to + outliers. Values are very similar to the Freedman-Diaconis + estimator in the absence of outliers. + + 'rice' + .. math:: n_h = 2n^{1/3} + + The number of bins is only proportional to cube root of + ``a.size``. It tends to overestimate the number of bins and it + does not take into account data variability. + + 'sturges' + .. math:: n_h = \log _{2}(n) + 1 + + The number of bins is the base 2 log of ``a.size``. This + estimator assumes normality of data and is too conservative for + larger, non-normal datasets. This is the default method in R's + ``hist`` method. + + 'doane' + .. math:: n_h = 1 + \log_{2}(n) + + \log_{2}\left(1 + \frac{|g_1|}{\sigma_{g_1}}\right) + + g_1 = mean\left[\left(\frac{x - \mu}{\sigma}\right)^3\right] + + \sigma_{g_1} = \sqrt{\frac{6(n - 2)}{(n + 1)(n + 3)}} + + An improved version of Sturges' formula that produces better + estimates for non-normal datasets. This estimator attempts to + account for the skew of the data. + + 'sqrt' + .. math:: n_h = \sqrt n + + The simplest and fastest estimator. Only takes into account the + data size. + + Additionally, if the data is of integer dtype, then the binwidth will never + be less than 1. + + Examples + -------- + >>> import numpy as np + >>> arr = np.array([0, 0, 0, 1, 2, 3, 3, 4, 5]) + >>> np.histogram_bin_edges(arr, bins='auto', range=(0, 1)) + array([0. , 0.25, 0.5 , 0.75, 1. ]) + >>> np.histogram_bin_edges(arr, bins=2) + array([0. , 2.5, 5. ]) + + For consistency with histogram, an array of pre-computed bins is + passed through unmodified: + + >>> np.histogram_bin_edges(arr, [1, 2]) + array([1, 2]) + + This function allows one set of bins to be computed, and reused across + multiple histograms: + + >>> shared_bins = np.histogram_bin_edges(arr, bins='auto') + >>> shared_bins + array([0., 1., 2., 3., 4., 5.]) + + >>> group_id = np.array([0, 1, 1, 0, 1, 1, 0, 1, 1]) + >>> hist_0, _ = np.histogram(arr[group_id == 0], bins=shared_bins) + >>> hist_1, _ = np.histogram(arr[group_id == 1], bins=shared_bins) + + >>> hist_0; hist_1 + array([1, 1, 0, 1, 0]) + array([2, 0, 1, 1, 2]) + + Which gives more easily comparable results than using separate bins for + each histogram: + + >>> hist_0, bins_0 = np.histogram(arr[group_id == 0], bins='auto') + >>> hist_1, bins_1 = np.histogram(arr[group_id == 1], bins='auto') + >>> hist_0; hist_1 + array([1, 1, 1]) + array([2, 1, 1, 2]) + >>> bins_0; bins_1 + array([0., 1., 2., 3.]) + array([0. , 1.25, 2.5 , 3.75, 5. ]) + + """ + a, weights = _ravel_and_check_weights(a, weights) + bin_edges, _ = _get_bin_edges(a, bins, range, weights) + return bin_edges + + +def _histogram_dispatcher( + a, bins=None, range=None, density=None, weights=None): + return (a, bins, weights) + + +@array_function_dispatch(_histogram_dispatcher) +def histogram(a, bins=10, range=None, density=None, weights=None): + r""" + Compute the histogram of a dataset. + + Parameters + ---------- + a : array_like + Input data. The histogram is computed over the flattened array. + bins : int or sequence of scalars or str, optional + If `bins` is an int, it defines the number of equal-width + bins in the given range (10, by default). If `bins` is a + sequence, it defines a monotonically increasing array of bin edges, + including the rightmost edge, allowing for non-uniform bin widths. + + If `bins` is a string, it defines the method used to calculate the + optimal bin width, as defined by `histogram_bin_edges`. + + range : (float, float), optional + The lower and upper range of the bins. If not provided, range + is simply ``(a.min(), a.max())``. Values outside the range are + ignored. The first element of the range must be less than or + equal to the second. `range` affects the automatic bin + computation as well. While bin width is computed to be optimal + based on the actual data within `range`, the bin count will fill + the entire range including portions containing no data. + weights : array_like, optional + An array of weights, of the same shape as `a`. Each value in + `a` only contributes its associated weight towards the bin count + (instead of 1). If `density` is True, the weights are + normalized, so that the integral of the density over the range + remains 1. + Please note that the ``dtype`` of `weights` will also become the + ``dtype`` of the returned accumulator (`hist`), so it must be + large enough to hold accumulated values as well. + density : bool, optional + If ``False``, the result will contain the number of samples in + each bin. If ``True``, the result is the value of the + probability *density* function at the bin, normalized such that + the *integral* over the range is 1. Note that the sum of the + histogram values will not be equal to 1 unless bins of unity + width are chosen; it is not a probability *mass* function. + + Returns + ------- + hist : array + The values of the histogram. See `density` and `weights` for a + description of the possible semantics. If `weights` are given, + ``hist.dtype`` will be taken from `weights`. + bin_edges : array of dtype float + Return the bin edges ``(length(hist)+1)``. + + + See Also + -------- + histogramdd, bincount, searchsorted, digitize, histogram_bin_edges + + Notes + ----- + All but the last (righthand-most) bin is half-open. In other words, + if `bins` is:: + + [1, 2, 3, 4] + + then the first bin is ``[1, 2)`` (including 1, but excluding 2) and + the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which + *includes* 4. + + + Examples + -------- + >>> import numpy as np + >>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3]) + (array([0, 2, 1]), array([0, 1, 2, 3])) + >>> np.histogram(np.arange(4), bins=np.arange(5), density=True) + (array([0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4])) + >>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3]) + (array([1, 4, 1]), array([0, 1, 2, 3])) + + >>> a = np.arange(5) + >>> hist, bin_edges = np.histogram(a, density=True) + >>> hist + array([0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5]) + >>> hist.sum() + 2.4999999999999996 + >>> np.sum(hist * np.diff(bin_edges)) + 1.0 + + Automated Bin Selection Methods example, using 2 peak random data + with 2000 points. + + .. plot:: + :include-source: + + import matplotlib.pyplot as plt + import numpy as np + + rng = np.random.RandomState(10) # deterministic random data + a = np.hstack((rng.normal(size=1000), + rng.normal(loc=5, scale=2, size=1000))) + plt.hist(a, bins='auto') # arguments are passed to np.histogram + plt.title("Histogram with 'auto' bins") + plt.show() + + """ + a, weights = _ravel_and_check_weights(a, weights) + + bin_edges, uniform_bins = _get_bin_edges(a, bins, range, weights) + + # Histogram is an integer or a float array depending on the weights. + if weights is None: + ntype = np.dtype(np.intp) + else: + ntype = weights.dtype + + # We set a block size, as this allows us to iterate over chunks when + # computing histograms, to minimize memory usage. + BLOCK = 65536 + + # The fast path uses bincount, but that only works for certain types + # of weight + simple_weights = ( + weights is None or + np.can_cast(weights.dtype, np.double) or + np.can_cast(weights.dtype, complex) + ) + + if uniform_bins is not None and simple_weights: + # Fast algorithm for equal bins + # We now convert values of a to bin indices, under the assumption of + # equal bin widths (which is valid here). + first_edge, last_edge, n_equal_bins = uniform_bins + + # Initialize empty histogram + n = np.zeros(n_equal_bins, ntype) + + # Pre-compute histogram scaling factor + norm_numerator = n_equal_bins + norm_denom = _unsigned_subtract(last_edge, first_edge) + + # We iterate over blocks here for two reasons: the first is that for + # large arrays, it is actually faster (for example for a 10^8 array it + # is 2x as fast) and it results in a memory footprint 3x lower in the + # limit of large arrays. + for i in _range(0, len(a), BLOCK): + tmp_a = a[i:i + BLOCK] + if weights is None: + tmp_w = None + else: + tmp_w = weights[i:i + BLOCK] + + # Only include values in the right range + keep = (tmp_a >= first_edge) + keep &= (tmp_a <= last_edge) + if not np.logical_and.reduce(keep): + tmp_a = tmp_a[keep] + if tmp_w is not None: + tmp_w = tmp_w[keep] + + # This cast ensures no type promotions occur below, which gh-10322 + # make unpredictable. Getting it wrong leads to precision errors + # like gh-8123. + tmp_a = tmp_a.astype(bin_edges.dtype, copy=False) + + # Compute the bin indices, and for values that lie exactly on + # last_edge we need to subtract one + f_indices = ((_unsigned_subtract(tmp_a, first_edge) / norm_denom) + * norm_numerator) + indices = f_indices.astype(np.intp) + indices[indices == n_equal_bins] -= 1 + + # The index computation is not guaranteed to give exactly + # consistent results within ~1 ULP of the bin edges. + decrement = tmp_a < bin_edges[indices] + indices[decrement] -= 1 + # The last bin includes the right edge. The other bins do not. + increment = ((tmp_a >= bin_edges[indices + 1]) + & (indices != n_equal_bins - 1)) + indices[increment] += 1 + + # We now compute the histogram using bincount + if ntype.kind == 'c': + n.real += np.bincount(indices, weights=tmp_w.real, + minlength=n_equal_bins) + n.imag += np.bincount(indices, weights=tmp_w.imag, + minlength=n_equal_bins) + else: + n += np.bincount(indices, weights=tmp_w, + minlength=n_equal_bins).astype(ntype) + else: + # Compute via cumulative histogram + cum_n = np.zeros(bin_edges.shape, ntype) + if weights is None: + for i in _range(0, len(a), BLOCK): + sa = np.sort(a[i:i + BLOCK]) + cum_n += _search_sorted_inclusive(sa, bin_edges) + else: + zero = np.zeros(1, dtype=ntype) + for i in _range(0, len(a), BLOCK): + tmp_a = a[i:i + BLOCK] + tmp_w = weights[i:i + BLOCK] + sorting_index = np.argsort(tmp_a) + sa = tmp_a[sorting_index] + sw = tmp_w[sorting_index] + cw = np.concatenate((zero, sw.cumsum())) + bin_index = _search_sorted_inclusive(sa, bin_edges) + cum_n += cw[bin_index] + + n = np.diff(cum_n) + + if density: + db = np.array(np.diff(bin_edges), float) + return n / db / n.sum(), bin_edges + + return n, bin_edges + + +def _histogramdd_dispatcher(sample, bins=None, range=None, density=None, + weights=None): + if hasattr(sample, 'shape'): # same condition as used in histogramdd + yield sample + else: + yield from sample + with contextlib.suppress(TypeError): + yield from bins + yield weights + + +@array_function_dispatch(_histogramdd_dispatcher) +def histogramdd(sample, bins=10, range=None, density=None, weights=None): + """ + Compute the multidimensional histogram of some data. + + Parameters + ---------- + sample : (N, D) array, or (N, D) array_like + The data to be histogrammed. + + Note the unusual interpretation of sample when an array_like: + + * When an array, each row is a coordinate in a D-dimensional space - + such as ``histogramdd(np.array([p1, p2, p3]))``. + * When an array_like, each element is the list of values for single + coordinate - such as ``histogramdd((X, Y, Z))``. + + The first form should be preferred. + + bins : sequence or int, optional + The bin specification: + + * A sequence of arrays describing the monotonically increasing bin + edges along each dimension. + * The number of bins for each dimension (nx, ny, ... =bins) + * The number of bins for all dimensions (nx=ny=...=bins). + + range : sequence, optional + A sequence of length D, each an optional (lower, upper) tuple giving + the outer bin edges to be used if the edges are not given explicitly in + `bins`. + An entry of None in the sequence results in the minimum and maximum + values being used for the corresponding dimension. + The default, None, is equivalent to passing a tuple of D None values. + density : bool, optional + If False, the default, returns the number of samples in each bin. + If True, returns the probability *density* function at the bin, + ``bin_count / sample_count / bin_volume``. + weights : (N,) array_like, optional + An array of values `w_i` weighing each sample `(x_i, y_i, z_i, ...)`. + Weights are normalized to 1 if density is True. If density is False, + the values of the returned histogram are equal to the sum of the + weights belonging to the samples falling into each bin. + + Returns + ------- + H : ndarray + The multidimensional histogram of sample x. See density and weights + for the different possible semantics. + edges : tuple of ndarrays + A tuple of D arrays describing the bin edges for each dimension. + + See Also + -------- + histogram: 1-D histogram + histogram2d: 2-D histogram + + Examples + -------- + >>> import numpy as np + >>> rng = np.random.default_rng() + >>> r = rng.normal(size=(100,3)) + >>> H, edges = np.histogramdd(r, bins = (5, 8, 4)) + >>> H.shape, edges[0].size, edges[1].size, edges[2].size + ((5, 8, 4), 6, 9, 5) + + """ + + try: + # Sample is an ND-array. + N, D = sample.shape + except (AttributeError, ValueError): + # Sample is a sequence of 1D arrays. + sample = np.atleast_2d(sample).T + N, D = sample.shape + + nbin = np.empty(D, np.intp) + edges = D * [None] + dedges = D * [None] + if weights is not None: + weights = np.asarray(weights) + + try: + M = len(bins) + if M != D: + raise ValueError( + 'The dimension of bins must be equal to the dimension of the ' + 'sample x.') + except TypeError: + # bins is an integer + bins = D * [bins] + + # normalize the range argument + if range is None: + range = (None,) * D + elif len(range) != D: + raise ValueError('range argument must have one entry per dimension') + + # Create edge arrays + for i in _range(D): + if np.ndim(bins[i]) == 0: + if bins[i] < 1: + raise ValueError( + f'`bins[{i}]` must be positive, when an integer') + smin, smax = _get_outer_edges(sample[:, i], range[i]) + try: + n = operator.index(bins[i]) + + except TypeError as e: + raise TypeError( + f"`bins[{i}]` must be an integer, when a scalar" + ) from e + + edges[i] = np.linspace(smin, smax, n + 1) + elif np.ndim(bins[i]) == 1: + edges[i] = np.asarray(bins[i]) + if np.any(edges[i][:-1] > edges[i][1:]): + raise ValueError( + f'`bins[{i}]` must be monotonically increasing, when an array') + else: + raise ValueError( + f'`bins[{i}]` must be a scalar or 1d array') + + nbin[i] = len(edges[i]) + 1 # includes an outlier on each end + dedges[i] = np.diff(edges[i]) + + # Compute the bin number each sample falls into. + Ncount = tuple( + # avoid np.digitize to work around gh-11022 + np.searchsorted(edges[i], sample[:, i], side='right') + for i in _range(D) + ) + + # Using digitize, values that fall on an edge are put in the right bin. + # For the rightmost bin, we want values equal to the right edge to be + # counted in the last bin, and not as an outlier. + for i in _range(D): + # Find which points are on the rightmost edge. + on_edge = (sample[:, i] == edges[i][-1]) + # Shift these points one bin to the left. + Ncount[i][on_edge] -= 1 + + # Compute the sample indices in the flattened histogram matrix. + # This raises an error if the array is too large. + xy = np.ravel_multi_index(Ncount, nbin) + + # Compute the number of repetitions in xy and assign it to the + # flattened histmat. + hist = np.bincount(xy, weights, minlength=nbin.prod()) + + # Shape into a proper matrix + hist = hist.reshape(nbin) + + # This preserves the (bad) behavior observed in gh-7845, for now. + hist = hist.astype(float, casting='safe') + + # Remove outliers (indices 0 and -1 for each dimension). + core = D * (slice(1, -1),) + hist = hist[core] + + if density: + # calculate the probability density function + s = hist.sum() + for i in _range(D): + shape = np.ones(D, int) + shape[i] = nbin[i] - 2 + hist = hist / dedges[i].reshape(shape) + hist /= s + + if (hist.shape != nbin - 2).any(): + raise RuntimeError( + "Internal Shape Error") + return hist, edges diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_histograms_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_histograms_impl.pyi new file mode 100644 index 0000000..5e7afb5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_histograms_impl.pyi @@ -0,0 +1,50 @@ +from collections.abc import Sequence +from typing import ( + Any, + SupportsIndex, + TypeAlias, +) +from typing import ( + Literal as L, +) + +from numpy._typing import ( + ArrayLike, + NDArray, +) + +__all__ = ["histogram", "histogramdd", "histogram_bin_edges"] + +_BinKind: TypeAlias = L[ + "stone", + "auto", + "doane", + "fd", + "rice", + "scott", + "sqrt", + "sturges", +] + +def histogram_bin_edges( + a: ArrayLike, + bins: _BinKind | SupportsIndex | ArrayLike = ..., + range: tuple[float, float] | None = ..., + weights: ArrayLike | None = ..., +) -> NDArray[Any]: ... + +def histogram( + a: ArrayLike, + bins: _BinKind | SupportsIndex | ArrayLike = ..., + range: tuple[float, float] | None = ..., + density: bool = ..., + weights: ArrayLike | None = ..., +) -> tuple[NDArray[Any], NDArray[Any]]: ... + +def histogramdd( + sample: ArrayLike, + bins: SupportsIndex | ArrayLike = ..., + range: Sequence[tuple[float, float]] = ..., + density: bool | None = ..., + weights: ArrayLike | None = ..., +) -> tuple[NDArray[Any], tuple[NDArray[Any], ...]]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_index_tricks_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_index_tricks_impl.py new file mode 100644 index 0000000..131bbae --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_index_tricks_impl.py @@ -0,0 +1,1067 @@ +import functools +import math +import sys +import warnings + +import numpy as np +import numpy._core.numeric as _nx +import numpy.matrixlib as matrixlib +from numpy._core import linspace, overrides +from numpy._core.multiarray import ravel_multi_index, unravel_index +from numpy._core.numeric import ScalarType, array +from numpy._core.numerictypes import issubdtype +from numpy._utils import set_module +from numpy.lib._function_base_impl import diff +from numpy.lib.stride_tricks import as_strided + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy') + + +__all__ = [ + 'ravel_multi_index', 'unravel_index', 'mgrid', 'ogrid', 'r_', 'c_', + 's_', 'index_exp', 'ix_', 'ndenumerate', 'ndindex', 'fill_diagonal', + 'diag_indices', 'diag_indices_from' +] + + +def _ix__dispatcher(*args): + return args + + +@array_function_dispatch(_ix__dispatcher) +def ix_(*args): + """ + Construct an open mesh from multiple sequences. + + This function takes N 1-D sequences and returns N outputs with N + dimensions each, such that the shape is 1 in all but one dimension + and the dimension with the non-unit shape value cycles through all + N dimensions. + + Using `ix_` one can quickly construct index arrays that will index + the cross product. ``a[np.ix_([1,3],[2,5])]`` returns the array + ``[[a[1,2] a[1,5]], [a[3,2] a[3,5]]]``. + + Parameters + ---------- + args : 1-D sequences + Each sequence should be of integer or boolean type. + Boolean sequences will be interpreted as boolean masks for the + corresponding dimension (equivalent to passing in + ``np.nonzero(boolean_sequence)``). + + Returns + ------- + out : tuple of ndarrays + N arrays with N dimensions each, with N the number of input + sequences. Together these arrays form an open mesh. + + See Also + -------- + ogrid, mgrid, meshgrid + + Examples + -------- + >>> import numpy as np + >>> a = np.arange(10).reshape(2, 5) + >>> a + array([[0, 1, 2, 3, 4], + [5, 6, 7, 8, 9]]) + >>> ixgrid = np.ix_([0, 1], [2, 4]) + >>> ixgrid + (array([[0], + [1]]), array([[2, 4]])) + >>> ixgrid[0].shape, ixgrid[1].shape + ((2, 1), (1, 2)) + >>> a[ixgrid] + array([[2, 4], + [7, 9]]) + + >>> ixgrid = np.ix_([True, True], [2, 4]) + >>> a[ixgrid] + array([[2, 4], + [7, 9]]) + >>> ixgrid = np.ix_([True, True], [False, False, True, False, True]) + >>> a[ixgrid] + array([[2, 4], + [7, 9]]) + + """ + out = [] + nd = len(args) + for k, new in enumerate(args): + if not isinstance(new, _nx.ndarray): + new = np.asarray(new) + if new.size == 0: + # Explicitly type empty arrays to avoid float default + new = new.astype(_nx.intp) + if new.ndim != 1: + raise ValueError("Cross index must be 1 dimensional") + if issubdtype(new.dtype, _nx.bool): + new, = new.nonzero() + new = new.reshape((1,) * k + (new.size,) + (1,) * (nd - k - 1)) + out.append(new) + return tuple(out) + + +class nd_grid: + """ + Construct a multi-dimensional "meshgrid". + + ``grid = nd_grid()`` creates an instance which will return a mesh-grid + when indexed. The dimension and number of the output arrays are equal + to the number of indexing dimensions. If the step length is not a + complex number, then the stop is not inclusive. + + However, if the step length is a **complex number** (e.g. 5j), then the + integer part of its magnitude is interpreted as specifying the + number of points to create between the start and stop values, where + the stop value **is inclusive**. + + If instantiated with an argument of ``sparse=True``, the mesh-grid is + open (or not fleshed out) so that only one-dimension of each returned + argument is greater than 1. + + Parameters + ---------- + sparse : bool, optional + Whether the grid is sparse or not. Default is False. + + Notes + ----- + Two instances of `nd_grid` are made available in the NumPy namespace, + `mgrid` and `ogrid`, approximately defined as:: + + mgrid = nd_grid(sparse=False) + ogrid = nd_grid(sparse=True) + + Users should use these pre-defined instances instead of using `nd_grid` + directly. + """ + __slots__ = ('sparse',) + + def __init__(self, sparse=False): + self.sparse = sparse + + def __getitem__(self, key): + try: + size = [] + # Mimic the behavior of `np.arange` and use a data type + # which is at least as large as `np.int_` + num_list = [0] + for k in range(len(key)): + step = key[k].step + start = key[k].start + stop = key[k].stop + if start is None: + start = 0 + if step is None: + step = 1 + if isinstance(step, (_nx.complexfloating, complex)): + step = abs(step) + size.append(int(step)) + else: + size.append( + math.ceil((stop - start) / step)) + num_list += [start, stop, step] + typ = _nx.result_type(*num_list) + if self.sparse: + nn = [_nx.arange(_x, dtype=_t) + for _x, _t in zip(size, (typ,) * len(size))] + else: + nn = _nx.indices(size, typ) + for k, kk in enumerate(key): + step = kk.step + start = kk.start + if start is None: + start = 0 + if step is None: + step = 1 + if isinstance(step, (_nx.complexfloating, complex)): + step = int(abs(step)) + if step != 1: + step = (kk.stop - start) / float(step - 1) + nn[k] = (nn[k] * step + start) + if self.sparse: + slobj = [_nx.newaxis] * len(size) + for k in range(len(size)): + slobj[k] = slice(None, None) + nn[k] = nn[k][tuple(slobj)] + slobj[k] = _nx.newaxis + return tuple(nn) # ogrid -> tuple of arrays + return nn # mgrid -> ndarray + except (IndexError, TypeError): + step = key.step + stop = key.stop + start = key.start + if start is None: + start = 0 + if isinstance(step, (_nx.complexfloating, complex)): + # Prevent the (potential) creation of integer arrays + step_float = abs(step) + step = length = int(step_float) + if step != 1: + step = (key.stop - start) / float(step - 1) + typ = _nx.result_type(start, stop, step_float) + return _nx.arange(0, length, 1, dtype=typ) * step + start + else: + return _nx.arange(start, stop, step) + + +class MGridClass(nd_grid): + """ + An instance which returns a dense multi-dimensional "meshgrid". + + An instance which returns a dense (or fleshed out) mesh-grid + when indexed, so that each returned argument has the same shape. + The dimensions and number of the output arrays are equal to the + number of indexing dimensions. If the step length is not a complex + number, then the stop is not inclusive. + + However, if the step length is a **complex number** (e.g. 5j), then + the integer part of its magnitude is interpreted as specifying the + number of points to create between the start and stop values, where + the stop value **is inclusive**. + + Returns + ------- + mesh-grid : ndarray + A single array, containing a set of `ndarray`\\ s all of the same + dimensions. stacked along the first axis. + + See Also + -------- + ogrid : like `mgrid` but returns open (not fleshed out) mesh grids + meshgrid: return coordinate matrices from coordinate vectors + r_ : array concatenator + :ref:`how-to-partition` + + Examples + -------- + >>> import numpy as np + >>> np.mgrid[0:5, 0:5] + array([[[0, 0, 0, 0, 0], + [1, 1, 1, 1, 1], + [2, 2, 2, 2, 2], + [3, 3, 3, 3, 3], + [4, 4, 4, 4, 4]], + [[0, 1, 2, 3, 4], + [0, 1, 2, 3, 4], + [0, 1, 2, 3, 4], + [0, 1, 2, 3, 4], + [0, 1, 2, 3, 4]]]) + >>> np.mgrid[-1:1:5j] + array([-1. , -0.5, 0. , 0.5, 1. ]) + + >>> np.mgrid[0:4].shape + (4,) + >>> np.mgrid[0:4, 0:5].shape + (2, 4, 5) + >>> np.mgrid[0:4, 0:5, 0:6].shape + (3, 4, 5, 6) + + """ + __slots__ = () + + def __init__(self): + super().__init__(sparse=False) + + +mgrid = MGridClass() + + +class OGridClass(nd_grid): + """ + An instance which returns an open multi-dimensional "meshgrid". + + An instance which returns an open (i.e. not fleshed out) mesh-grid + when indexed, so that only one dimension of each returned array is + greater than 1. The dimension and number of the output arrays are + equal to the number of indexing dimensions. If the step length is + not a complex number, then the stop is not inclusive. + + However, if the step length is a **complex number** (e.g. 5j), then + the integer part of its magnitude is interpreted as specifying the + number of points to create between the start and stop values, where + the stop value **is inclusive**. + + Returns + ------- + mesh-grid : ndarray or tuple of ndarrays + If the input is a single slice, returns an array. + If the input is multiple slices, returns a tuple of arrays, with + only one dimension not equal to 1. + + See Also + -------- + mgrid : like `ogrid` but returns dense (or fleshed out) mesh grids + meshgrid: return coordinate matrices from coordinate vectors + r_ : array concatenator + :ref:`how-to-partition` + + Examples + -------- + >>> from numpy import ogrid + >>> ogrid[-1:1:5j] + array([-1. , -0.5, 0. , 0.5, 1. ]) + >>> ogrid[0:5, 0:5] + (array([[0], + [1], + [2], + [3], + [4]]), + array([[0, 1, 2, 3, 4]])) + + """ + __slots__ = () + + def __init__(self): + super().__init__(sparse=True) + + +ogrid = OGridClass() + + +class AxisConcatenator: + """ + Translates slice objects to concatenation along an axis. + + For detailed documentation on usage, see `r_`. + """ + __slots__ = ('axis', 'matrix', 'ndmin', 'trans1d') + + # allow ma.mr_ to override this + concatenate = staticmethod(_nx.concatenate) + makemat = staticmethod(matrixlib.matrix) + + def __init__(self, axis=0, matrix=False, ndmin=1, trans1d=-1): + self.axis = axis + self.matrix = matrix + self.trans1d = trans1d + self.ndmin = ndmin + + def __getitem__(self, key): + # handle matrix builder syntax + if isinstance(key, str): + frame = sys._getframe().f_back + mymat = matrixlib.bmat(key, frame.f_globals, frame.f_locals) + return mymat + + if not isinstance(key, tuple): + key = (key,) + + # copy attributes, since they can be overridden in the first argument + trans1d = self.trans1d + ndmin = self.ndmin + matrix = self.matrix + axis = self.axis + + objs = [] + # dtypes or scalars for weak scalar handling in result_type + result_type_objs = [] + + for k, item in enumerate(key): + scalar = False + if isinstance(item, slice): + step = item.step + start = item.start + stop = item.stop + if start is None: + start = 0 + if step is None: + step = 1 + if isinstance(step, (_nx.complexfloating, complex)): + size = int(abs(step)) + newobj = linspace(start, stop, num=size) + else: + newobj = _nx.arange(start, stop, step) + if ndmin > 1: + newobj = array(newobj, copy=None, ndmin=ndmin) + if trans1d != -1: + newobj = newobj.swapaxes(-1, trans1d) + elif isinstance(item, str): + if k != 0: + raise ValueError("special directives must be the " + "first entry.") + if item in ('r', 'c'): + matrix = True + col = (item == 'c') + continue + if ',' in item: + vec = item.split(',') + try: + axis, ndmin = [int(x) for x in vec[:2]] + if len(vec) == 3: + trans1d = int(vec[2]) + continue + except Exception as e: + raise ValueError( + f"unknown special directive {item!r}" + ) from e + try: + axis = int(item) + continue + except (ValueError, TypeError) as e: + raise ValueError("unknown special directive") from e + elif type(item) in ScalarType: + scalar = True + newobj = item + else: + item_ndim = np.ndim(item) + newobj = array(item, copy=None, subok=True, ndmin=ndmin) + if trans1d != -1 and item_ndim < ndmin: + k2 = ndmin - item_ndim + k1 = trans1d + if k1 < 0: + k1 += k2 + 1 + defaxes = list(range(ndmin)) + axes = defaxes[:k1] + defaxes[k2:] + defaxes[k1:k2] + newobj = newobj.transpose(axes) + + objs.append(newobj) + if scalar: + result_type_objs.append(item) + else: + result_type_objs.append(newobj.dtype) + + # Ensure that scalars won't up-cast unless warranted, for 0, drops + # through to error in concatenate. + if len(result_type_objs) != 0: + final_dtype = _nx.result_type(*result_type_objs) + # concatenate could do cast, but that can be overridden: + objs = [array(obj, copy=None, subok=True, + ndmin=ndmin, dtype=final_dtype) for obj in objs] + + res = self.concatenate(tuple(objs), axis=axis) + + if matrix: + oldndim = res.ndim + res = self.makemat(res) + if oldndim == 1 and col: + res = res.T + return res + + def __len__(self): + return 0 + +# separate classes are used here instead of just making r_ = concatenator(0), +# etc. because otherwise we couldn't get the doc string to come out right +# in help(r_) + + +class RClass(AxisConcatenator): + """ + Translates slice objects to concatenation along the first axis. + + This is a simple way to build up arrays quickly. There are two use cases. + + 1. If the index expression contains comma separated arrays, then stack + them along their first axis. + 2. If the index expression contains slice notation or scalars then create + a 1-D array with a range indicated by the slice notation. + + If slice notation is used, the syntax ``start:stop:step`` is equivalent + to ``np.arange(start, stop, step)`` inside of the brackets. However, if + ``step`` is an imaginary number (i.e. 100j) then its integer portion is + interpreted as a number-of-points desired and the start and stop are + inclusive. In other words ``start:stop:stepj`` is interpreted as + ``np.linspace(start, stop, step, endpoint=1)`` inside of the brackets. + After expansion of slice notation, all comma separated sequences are + concatenated together. + + Optional character strings placed as the first element of the index + expression can be used to change the output. The strings 'r' or 'c' result + in matrix output. If the result is 1-D and 'r' is specified a 1 x N (row) + matrix is produced. If the result is 1-D and 'c' is specified, then a N x 1 + (column) matrix is produced. If the result is 2-D then both provide the + same matrix result. + + A string integer specifies which axis to stack multiple comma separated + arrays along. A string of two comma-separated integers allows indication + of the minimum number of dimensions to force each entry into as the + second integer (the axis to concatenate along is still the first integer). + + A string with three comma-separated integers allows specification of the + axis to concatenate along, the minimum number of dimensions to force the + entries to, and which axis should contain the start of the arrays which + are less than the specified number of dimensions. In other words the third + integer allows you to specify where the 1's should be placed in the shape + of the arrays that have their shapes upgraded. By default, they are placed + in the front of the shape tuple. The third argument allows you to specify + where the start of the array should be instead. Thus, a third argument of + '0' would place the 1's at the end of the array shape. Negative integers + specify where in the new shape tuple the last dimension of upgraded arrays + should be placed, so the default is '-1'. + + Parameters + ---------- + Not a function, so takes no parameters + + + Returns + ------- + A concatenated ndarray or matrix. + + See Also + -------- + concatenate : Join a sequence of arrays along an existing axis. + c_ : Translates slice objects to concatenation along the second axis. + + Examples + -------- + >>> import numpy as np + >>> np.r_[np.array([1,2,3]), 0, 0, np.array([4,5,6])] + array([1, 2, 3, ..., 4, 5, 6]) + >>> np.r_[-1:1:6j, [0]*3, 5, 6] + array([-1. , -0.6, -0.2, 0.2, 0.6, 1. , 0. , 0. , 0. , 5. , 6. ]) + + String integers specify the axis to concatenate along or the minimum + number of dimensions to force entries into. + + >>> a = np.array([[0, 1, 2], [3, 4, 5]]) + >>> np.r_['-1', a, a] # concatenate along last axis + array([[0, 1, 2, 0, 1, 2], + [3, 4, 5, 3, 4, 5]]) + >>> np.r_['0,2', [1,2,3], [4,5,6]] # concatenate along first axis, dim>=2 + array([[1, 2, 3], + [4, 5, 6]]) + + >>> np.r_['0,2,0', [1,2,3], [4,5,6]] + array([[1], + [2], + [3], + [4], + [5], + [6]]) + >>> np.r_['1,2,0', [1,2,3], [4,5,6]] + array([[1, 4], + [2, 5], + [3, 6]]) + + Using 'r' or 'c' as a first string argument creates a matrix. + + >>> np.r_['r',[1,2,3], [4,5,6]] + matrix([[1, 2, 3, 4, 5, 6]]) + + """ + __slots__ = () + + def __init__(self): + AxisConcatenator.__init__(self, 0) + + +r_ = RClass() + + +class CClass(AxisConcatenator): + """ + Translates slice objects to concatenation along the second axis. + + This is short-hand for ``np.r_['-1,2,0', index expression]``, which is + useful because of its common occurrence. In particular, arrays will be + stacked along their last axis after being upgraded to at least 2-D with + 1's post-pended to the shape (column vectors made out of 1-D arrays). + + See Also + -------- + column_stack : Stack 1-D arrays as columns into a 2-D array. + r_ : For more detailed documentation. + + Examples + -------- + >>> import numpy as np + >>> np.c_[np.array([1,2,3]), np.array([4,5,6])] + array([[1, 4], + [2, 5], + [3, 6]]) + >>> np.c_[np.array([[1,2,3]]), 0, 0, np.array([[4,5,6]])] + array([[1, 2, 3, ..., 4, 5, 6]]) + + """ + __slots__ = () + + def __init__(self): + AxisConcatenator.__init__(self, -1, ndmin=2, trans1d=0) + + +c_ = CClass() + + +@set_module('numpy') +class ndenumerate: + """ + Multidimensional index iterator. + + Return an iterator yielding pairs of array coordinates and values. + + Parameters + ---------- + arr : ndarray + Input array. + + See Also + -------- + ndindex, flatiter + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1, 2], [3, 4]]) + >>> for index, x in np.ndenumerate(a): + ... print(index, x) + (0, 0) 1 + (0, 1) 2 + (1, 0) 3 + (1, 1) 4 + + """ + + def __init__(self, arr): + self.iter = np.asarray(arr).flat + + def __next__(self): + """ + Standard iterator method, returns the index tuple and array value. + + Returns + ------- + coords : tuple of ints + The indices of the current iteration. + val : scalar + The array element of the current iteration. + + """ + return self.iter.coords, next(self.iter) + + def __iter__(self): + return self + + +@set_module('numpy') +class ndindex: + """ + An N-dimensional iterator object to index arrays. + + Given the shape of an array, an `ndindex` instance iterates over + the N-dimensional index of the array. At each iteration a tuple + of indices is returned, the last dimension is iterated over first. + + Parameters + ---------- + shape : ints, or a single tuple of ints + The size of each dimension of the array can be passed as + individual parameters or as the elements of a tuple. + + See Also + -------- + ndenumerate, flatiter + + Examples + -------- + >>> import numpy as np + + Dimensions as individual arguments + + >>> for index in np.ndindex(3, 2, 1): + ... print(index) + (0, 0, 0) + (0, 1, 0) + (1, 0, 0) + (1, 1, 0) + (2, 0, 0) + (2, 1, 0) + + Same dimensions - but in a tuple ``(3, 2, 1)`` + + >>> for index in np.ndindex((3, 2, 1)): + ... print(index) + (0, 0, 0) + (0, 1, 0) + (1, 0, 0) + (1, 1, 0) + (2, 0, 0) + (2, 1, 0) + + """ + + def __init__(self, *shape): + if len(shape) == 1 and isinstance(shape[0], tuple): + shape = shape[0] + x = as_strided(_nx.zeros(1), shape=shape, + strides=_nx.zeros_like(shape)) + self._it = _nx.nditer(x, flags=['multi_index', 'zerosize_ok'], + order='C') + + def __iter__(self): + return self + + def ndincr(self): + """ + Increment the multi-dimensional index by one. + + This method is for backward compatibility only: do not use. + + .. deprecated:: 1.20.0 + This method has been advised against since numpy 1.8.0, but only + started emitting DeprecationWarning as of this version. + """ + # NumPy 1.20.0, 2020-09-08 + warnings.warn( + "`ndindex.ndincr()` is deprecated, use `next(ndindex)` instead", + DeprecationWarning, stacklevel=2) + next(self) + + def __next__(self): + """ + Standard iterator method, updates the index and returns the index + tuple. + + Returns + ------- + val : tuple of ints + Returns a tuple containing the indices of the current + iteration. + + """ + next(self._it) + return self._it.multi_index + + +# You can do all this with slice() plus a few special objects, +# but there's a lot to remember. This version is simpler because +# it uses the standard array indexing syntax. +# +# Written by Konrad Hinsen +# last revision: 1999-7-23 +# +# Cosmetic changes by T. Oliphant 2001 +# +# + +class IndexExpression: + """ + A nicer way to build up index tuples for arrays. + + .. note:: + Use one of the two predefined instances ``index_exp`` or `s_` + rather than directly using `IndexExpression`. + + For any index combination, including slicing and axis insertion, + ``a[indices]`` is the same as ``a[np.index_exp[indices]]`` for any + array `a`. However, ``np.index_exp[indices]`` can be used anywhere + in Python code and returns a tuple of slice objects that can be + used in the construction of complex index expressions. + + Parameters + ---------- + maketuple : bool + If True, always returns a tuple. + + See Also + -------- + s_ : Predefined instance without tuple conversion: + `s_ = IndexExpression(maketuple=False)`. + The ``index_exp`` is another predefined instance that + always returns a tuple: + `index_exp = IndexExpression(maketuple=True)`. + + Notes + ----- + You can do all this with :class:`slice` plus a few special objects, + but there's a lot to remember and this version is simpler because + it uses the standard array indexing syntax. + + Examples + -------- + >>> import numpy as np + >>> np.s_[2::2] + slice(2, None, 2) + >>> np.index_exp[2::2] + (slice(2, None, 2),) + + >>> np.array([0, 1, 2, 3, 4])[np.s_[2::2]] + array([2, 4]) + + """ + __slots__ = ('maketuple',) + + def __init__(self, maketuple): + self.maketuple = maketuple + + def __getitem__(self, item): + if self.maketuple and not isinstance(item, tuple): + return (item,) + else: + return item + + +index_exp = IndexExpression(maketuple=True) +s_ = IndexExpression(maketuple=False) + +# End contribution from Konrad. + + +# The following functions complement those in twodim_base, but are +# applicable to N-dimensions. + + +def _fill_diagonal_dispatcher(a, val, wrap=None): + return (a,) + + +@array_function_dispatch(_fill_diagonal_dispatcher) +def fill_diagonal(a, val, wrap=False): + """Fill the main diagonal of the given array of any dimensionality. + + For an array `a` with ``a.ndim >= 2``, the diagonal is the list of + values ``a[i, ..., i]`` with indices ``i`` all identical. This function + modifies the input array in-place without returning a value. + + Parameters + ---------- + a : array, at least 2-D. + Array whose diagonal is to be filled in-place. + val : scalar or array_like + Value(s) to write on the diagonal. If `val` is scalar, the value is + written along the diagonal. If array-like, the flattened `val` is + written along the diagonal, repeating if necessary to fill all + diagonal entries. + + wrap : bool + For tall matrices in NumPy version up to 1.6.2, the + diagonal "wrapped" after N columns. You can have this behavior + with this option. This affects only tall matrices. + + See also + -------- + diag_indices, diag_indices_from + + Notes + ----- + This functionality can be obtained via `diag_indices`, but internally + this version uses a much faster implementation that never constructs the + indices and uses simple slicing. + + Examples + -------- + >>> import numpy as np + >>> a = np.zeros((3, 3), int) + >>> np.fill_diagonal(a, 5) + >>> a + array([[5, 0, 0], + [0, 5, 0], + [0, 0, 5]]) + + The same function can operate on a 4-D array: + + >>> a = np.zeros((3, 3, 3, 3), int) + >>> np.fill_diagonal(a, 4) + + We only show a few blocks for clarity: + + >>> a[0, 0] + array([[4, 0, 0], + [0, 0, 0], + [0, 0, 0]]) + >>> a[1, 1] + array([[0, 0, 0], + [0, 4, 0], + [0, 0, 0]]) + >>> a[2, 2] + array([[0, 0, 0], + [0, 0, 0], + [0, 0, 4]]) + + The wrap option affects only tall matrices: + + >>> # tall matrices no wrap + >>> a = np.zeros((5, 3), int) + >>> np.fill_diagonal(a, 4) + >>> a + array([[4, 0, 0], + [0, 4, 0], + [0, 0, 4], + [0, 0, 0], + [0, 0, 0]]) + + >>> # tall matrices wrap + >>> a = np.zeros((5, 3), int) + >>> np.fill_diagonal(a, 4, wrap=True) + >>> a + array([[4, 0, 0], + [0, 4, 0], + [0, 0, 4], + [0, 0, 0], + [4, 0, 0]]) + + >>> # wide matrices + >>> a = np.zeros((3, 5), int) + >>> np.fill_diagonal(a, 4, wrap=True) + >>> a + array([[4, 0, 0, 0, 0], + [0, 4, 0, 0, 0], + [0, 0, 4, 0, 0]]) + + The anti-diagonal can be filled by reversing the order of elements + using either `numpy.flipud` or `numpy.fliplr`. + + >>> a = np.zeros((3, 3), int); + >>> np.fill_diagonal(np.fliplr(a), [1,2,3]) # Horizontal flip + >>> a + array([[0, 0, 1], + [0, 2, 0], + [3, 0, 0]]) + >>> np.fill_diagonal(np.flipud(a), [1,2,3]) # Vertical flip + >>> a + array([[0, 0, 3], + [0, 2, 0], + [1, 0, 0]]) + + Note that the order in which the diagonal is filled varies depending + on the flip function. + """ + if a.ndim < 2: + raise ValueError("array must be at least 2-d") + end = None + if a.ndim == 2: + # Explicit, fast formula for the common case. For 2-d arrays, we + # accept rectangular ones. + step = a.shape[1] + 1 + # This is needed to don't have tall matrix have the diagonal wrap. + if not wrap: + end = a.shape[1] * a.shape[1] + else: + # For more than d=2, the strided formula is only valid for arrays with + # all dimensions equal, so we check first. + if not np.all(diff(a.shape) == 0): + raise ValueError("All dimensions of input must be of equal length") + step = 1 + (np.cumprod(a.shape[:-1])).sum() + + # Write the value out into the diagonal. + a.flat[:end:step] = val + + +@set_module('numpy') +def diag_indices(n, ndim=2): + """ + Return the indices to access the main diagonal of an array. + + This returns a tuple of indices that can be used to access the main + diagonal of an array `a` with ``a.ndim >= 2`` dimensions and shape + (n, n, ..., n). For ``a.ndim = 2`` this is the usual diagonal, for + ``a.ndim > 2`` this is the set of indices to access ``a[i, i, ..., i]`` + for ``i = [0..n-1]``. + + Parameters + ---------- + n : int + The size, along each dimension, of the arrays for which the returned + indices can be used. + + ndim : int, optional + The number of dimensions. + + See Also + -------- + diag_indices_from + + Examples + -------- + >>> import numpy as np + + Create a set of indices to access the diagonal of a (4, 4) array: + + >>> di = np.diag_indices(4) + >>> di + (array([0, 1, 2, 3]), array([0, 1, 2, 3])) + >>> a = np.arange(16).reshape(4, 4) + >>> a + array([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11], + [12, 13, 14, 15]]) + >>> a[di] = 100 + >>> a + array([[100, 1, 2, 3], + [ 4, 100, 6, 7], + [ 8, 9, 100, 11], + [ 12, 13, 14, 100]]) + + Now, we create indices to manipulate a 3-D array: + + >>> d3 = np.diag_indices(2, 3) + >>> d3 + (array([0, 1]), array([0, 1]), array([0, 1])) + + And use it to set the diagonal of an array of zeros to 1: + + >>> a = np.zeros((2, 2, 2), dtype=int) + >>> a[d3] = 1 + >>> a + array([[[1, 0], + [0, 0]], + [[0, 0], + [0, 1]]]) + + """ + idx = np.arange(n) + return (idx,) * ndim + + +def _diag_indices_from(arr): + return (arr,) + + +@array_function_dispatch(_diag_indices_from) +def diag_indices_from(arr): + """ + Return the indices to access the main diagonal of an n-dimensional array. + + See `diag_indices` for full details. + + Parameters + ---------- + arr : array, at least 2-D + + See Also + -------- + diag_indices + + Examples + -------- + >>> import numpy as np + + Create a 4 by 4 array. + + >>> a = np.arange(16).reshape(4, 4) + >>> a + array([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11], + [12, 13, 14, 15]]) + + Get the indices of the diagonal elements. + + >>> di = np.diag_indices_from(a) + >>> di + (array([0, 1, 2, 3]), array([0, 1, 2, 3])) + + >>> a[di] + array([ 0, 5, 10, 15]) + + This is simply syntactic sugar for diag_indices. + + >>> np.diag_indices(a.shape[0]) + (array([0, 1, 2, 3]), array([0, 1, 2, 3])) + + """ + + if not arr.ndim >= 2: + raise ValueError("input array must be at least 2-d") + # For more than d=2, the strided formula is only valid for arrays with + # all dimensions equal, so we check first. + if not np.all(diff(arr.shape) == 0): + raise ValueError("All dimensions of input must be of equal length") + + return diag_indices(arr.shape[0], arr.ndim) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_index_tricks_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_index_tricks_impl.pyi new file mode 100644 index 0000000..7ac2b3a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_index_tricks_impl.pyi @@ -0,0 +1,196 @@ +from collections.abc import Sequence +from typing import Any, ClassVar, Final, Generic, Self, SupportsIndex, final, overload +from typing import Literal as L + +from _typeshed import Incomplete +from typing_extensions import TypeVar, deprecated + +import numpy as np +from numpy._core.multiarray import ravel_multi_index, unravel_index +from numpy._typing import ( + ArrayLike, + NDArray, + _AnyShape, + _FiniteNestedSequence, + _NestedSequence, + _SupportsArray, + _SupportsDType, +) + +__all__ = [ # noqa: RUF022 + "ravel_multi_index", + "unravel_index", + "mgrid", + "ogrid", + "r_", + "c_", + "s_", + "index_exp", + "ix_", + "ndenumerate", + "ndindex", + "fill_diagonal", + "diag_indices", + "diag_indices_from", +] + +### + +_T = TypeVar("_T") +_TupleT = TypeVar("_TupleT", bound=tuple[Any, ...]) +_ArrayT = TypeVar("_ArrayT", bound=NDArray[Any]) +_DTypeT = TypeVar("_DTypeT", bound=np.dtype) +_ScalarT = TypeVar("_ScalarT", bound=np.generic) +_ScalarT_co = TypeVar("_ScalarT_co", bound=np.generic, covariant=True) +_BoolT_co = TypeVar("_BoolT_co", bound=bool, default=bool, covariant=True) + +_AxisT_co = TypeVar("_AxisT_co", bound=int, default=L[0], covariant=True) +_MatrixT_co = TypeVar("_MatrixT_co", bound=bool, default=L[False], covariant=True) +_NDMinT_co = TypeVar("_NDMinT_co", bound=int, default=L[1], covariant=True) +_Trans1DT_co = TypeVar("_Trans1DT_co", bound=int, default=L[-1], covariant=True) + +### + +class ndenumerate(Generic[_ScalarT_co]): + @overload + def __new__(cls, arr: _FiniteNestedSequence[_SupportsArray[np.dtype[_ScalarT]]]) -> ndenumerate[_ScalarT]: ... + @overload + def __new__(cls, arr: str | _NestedSequence[str]) -> ndenumerate[np.str_]: ... + @overload + def __new__(cls, arr: bytes | _NestedSequence[bytes]) -> ndenumerate[np.bytes_]: ... + @overload + def __new__(cls, arr: bool | _NestedSequence[bool]) -> ndenumerate[np.bool]: ... + @overload + def __new__(cls, arr: int | _NestedSequence[int]) -> ndenumerate[np.intp]: ... + @overload + def __new__(cls, arr: float | _NestedSequence[float]) -> ndenumerate[np.float64]: ... + @overload + def __new__(cls, arr: complex | _NestedSequence[complex]) -> ndenumerate[np.complex128]: ... + @overload + def __new__(cls, arr: object) -> ndenumerate[Any]: ... + + # The first overload is a (semi-)workaround for a mypy bug (tested with v1.10 and v1.11) + @overload + def __next__( + self: ndenumerate[np.bool | np.number | np.flexible | np.datetime64 | np.timedelta64], + /, + ) -> tuple[_AnyShape, _ScalarT_co]: ... + @overload + def __next__(self: ndenumerate[np.object_], /) -> tuple[_AnyShape, Incomplete]: ... + @overload + def __next__(self, /) -> tuple[_AnyShape, _ScalarT_co]: ... + + # + def __iter__(self) -> Self: ... + +class ndindex: + @overload + def __init__(self, shape: tuple[SupportsIndex, ...], /) -> None: ... + @overload + def __init__(self, /, *shape: SupportsIndex) -> None: ... + + # + def __iter__(self) -> Self: ... + def __next__(self) -> _AnyShape: ... + + # + @deprecated("Deprecated since 1.20.0.") + def ndincr(self, /) -> None: ... + +class nd_grid(Generic[_BoolT_co]): + sparse: _BoolT_co + def __init__(self, sparse: _BoolT_co = ...) -> None: ... + @overload + def __getitem__(self: nd_grid[L[False]], key: slice | Sequence[slice]) -> NDArray[Incomplete]: ... + @overload + def __getitem__(self: nd_grid[L[True]], key: slice | Sequence[slice]) -> tuple[NDArray[Incomplete], ...]: ... + +@final +class MGridClass(nd_grid[L[False]]): + def __init__(self) -> None: ... + +@final +class OGridClass(nd_grid[L[True]]): + def __init__(self) -> None: ... + +class AxisConcatenator(Generic[_AxisT_co, _MatrixT_co, _NDMinT_co, _Trans1DT_co]): + __slots__ = "axis", "matrix", "ndmin", "trans1d" + + makemat: ClassVar[type[np.matrix[tuple[int, int], np.dtype]]] + + axis: _AxisT_co + matrix: _MatrixT_co + ndmin: _NDMinT_co + trans1d: _Trans1DT_co + + # + def __init__( + self, + /, + axis: _AxisT_co = ..., + matrix: _MatrixT_co = ..., + ndmin: _NDMinT_co = ..., + trans1d: _Trans1DT_co = ..., + ) -> None: ... + + # TODO(jorenham): annotate this + def __getitem__(self, key: Incomplete, /) -> Incomplete: ... + def __len__(self, /) -> L[0]: ... + + # + @staticmethod + @overload + def concatenate(*a: ArrayLike, axis: SupportsIndex | None = 0, out: _ArrayT) -> _ArrayT: ... + @staticmethod + @overload + def concatenate(*a: ArrayLike, axis: SupportsIndex | None = 0, out: None = None) -> NDArray[Incomplete]: ... + +@final +class RClass(AxisConcatenator[L[0], L[False], L[1], L[-1]]): + def __init__(self, /) -> None: ... + +@final +class CClass(AxisConcatenator[L[-1], L[False], L[2], L[0]]): + def __init__(self, /) -> None: ... + +class IndexExpression(Generic[_BoolT_co]): + maketuple: _BoolT_co + def __init__(self, maketuple: _BoolT_co) -> None: ... + @overload + def __getitem__(self, item: _TupleT) -> _TupleT: ... + @overload + def __getitem__(self: IndexExpression[L[True]], item: _T) -> tuple[_T]: ... + @overload + def __getitem__(self: IndexExpression[L[False]], item: _T) -> _T: ... + +@overload +def ix_(*args: _FiniteNestedSequence[_SupportsDType[_DTypeT]]) -> tuple[np.ndarray[_AnyShape, _DTypeT], ...]: ... +@overload +def ix_(*args: str | _NestedSequence[str]) -> tuple[NDArray[np.str_], ...]: ... +@overload +def ix_(*args: bytes | _NestedSequence[bytes]) -> tuple[NDArray[np.bytes_], ...]: ... +@overload +def ix_(*args: bool | _NestedSequence[bool]) -> tuple[NDArray[np.bool], ...]: ... +@overload +def ix_(*args: int | _NestedSequence[int]) -> tuple[NDArray[np.intp], ...]: ... +@overload +def ix_(*args: float | _NestedSequence[float]) -> tuple[NDArray[np.float64], ...]: ... +@overload +def ix_(*args: complex | _NestedSequence[complex]) -> tuple[NDArray[np.complex128], ...]: ... + +# +def fill_diagonal(a: NDArray[Any], val: object, wrap: bool = ...) -> None: ... + +# +def diag_indices(n: int, ndim: int = ...) -> tuple[NDArray[np.intp], ...]: ... +def diag_indices_from(arr: ArrayLike) -> tuple[NDArray[np.intp], ...]: ... + +# +mgrid: Final[MGridClass] = ... +ogrid: Final[OGridClass] = ... + +r_: Final[RClass] = ... +c_: Final[CClass] = ... + +index_exp: Final[IndexExpression[L[True]]] = ... +s_: Final[IndexExpression[L[False]]] = ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_iotools.py b/.venv/lib/python3.12/site-packages/numpy/lib/_iotools.py new file mode 100644 index 0000000..3586b41 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_iotools.py @@ -0,0 +1,900 @@ +"""A collection of functions designed to help I/O with ascii files. + +""" +__docformat__ = "restructuredtext en" + +import itertools + +import numpy as np +import numpy._core.numeric as nx +from numpy._utils import asbytes, asunicode + + +def _decode_line(line, encoding=None): + """Decode bytes from binary input streams. + + Defaults to decoding from 'latin1'. + + Parameters + ---------- + line : str or bytes + Line to be decoded. + encoding : str + Encoding used to decode `line`. + + Returns + ------- + decoded_line : str + + """ + if type(line) is bytes: + if encoding is None: + encoding = "latin1" + line = line.decode(encoding) + + return line + + +def _is_string_like(obj): + """ + Check whether obj behaves like a string. + """ + try: + obj + '' + except (TypeError, ValueError): + return False + return True + + +def _is_bytes_like(obj): + """ + Check whether obj behaves like a bytes object. + """ + try: + obj + b'' + except (TypeError, ValueError): + return False + return True + + +def has_nested_fields(ndtype): + """ + Returns whether one or several fields of a dtype are nested. + + Parameters + ---------- + ndtype : dtype + Data-type of a structured array. + + Raises + ------ + AttributeError + If `ndtype` does not have a `names` attribute. + + Examples + -------- + >>> import numpy as np + >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float)]) + >>> np.lib._iotools.has_nested_fields(dt) + False + + """ + return any(ndtype[name].names is not None for name in ndtype.names or ()) + + +def flatten_dtype(ndtype, flatten_base=False): + """ + Unpack a structured data-type by collapsing nested fields and/or fields + with a shape. + + Note that the field names are lost. + + Parameters + ---------- + ndtype : dtype + The datatype to collapse + flatten_base : bool, optional + If True, transform a field with a shape into several fields. Default is + False. + + Examples + -------- + >>> import numpy as np + >>> dt = np.dtype([('name', 'S4'), ('x', float), ('y', float), + ... ('block', int, (2, 3))]) + >>> np.lib._iotools.flatten_dtype(dt) + [dtype('S4'), dtype('float64'), dtype('float64'), dtype('int64')] + >>> np.lib._iotools.flatten_dtype(dt, flatten_base=True) + [dtype('S4'), + dtype('float64'), + dtype('float64'), + dtype('int64'), + dtype('int64'), + dtype('int64'), + dtype('int64'), + dtype('int64'), + dtype('int64')] + + """ + names = ndtype.names + if names is None: + if flatten_base: + return [ndtype.base] * int(np.prod(ndtype.shape)) + return [ndtype.base] + else: + types = [] + for field in names: + info = ndtype.fields[field] + flat_dt = flatten_dtype(info[0], flatten_base) + types.extend(flat_dt) + return types + + +class LineSplitter: + """ + Object to split a string at a given delimiter or at given places. + + Parameters + ---------- + delimiter : str, int, or sequence of ints, optional + If a string, character used to delimit consecutive fields. + If an integer or a sequence of integers, width(s) of each field. + comments : str, optional + Character used to mark the beginning of a comment. Default is '#'. + autostrip : bool, optional + Whether to strip each individual field. Default is True. + + """ + + def autostrip(self, method): + """ + Wrapper to strip each member of the output of `method`. + + Parameters + ---------- + method : function + Function that takes a single argument and returns a sequence of + strings. + + Returns + ------- + wrapped : function + The result of wrapping `method`. `wrapped` takes a single input + argument and returns a list of strings that are stripped of + white-space. + + """ + return lambda input: [_.strip() for _ in method(input)] + + def __init__(self, delimiter=None, comments='#', autostrip=True, + encoding=None): + delimiter = _decode_line(delimiter) + comments = _decode_line(comments) + + self.comments = comments + + # Delimiter is a character + if (delimiter is None) or isinstance(delimiter, str): + delimiter = delimiter or None + _handyman = self._delimited_splitter + # Delimiter is a list of field widths + elif hasattr(delimiter, '__iter__'): + _handyman = self._variablewidth_splitter + idx = np.cumsum([0] + list(delimiter)) + delimiter = [slice(i, j) for (i, j) in itertools.pairwise(idx)] + # Delimiter is a single integer + elif int(delimiter): + (_handyman, delimiter) = ( + self._fixedwidth_splitter, int(delimiter)) + else: + (_handyman, delimiter) = (self._delimited_splitter, None) + self.delimiter = delimiter + if autostrip: + self._handyman = self.autostrip(_handyman) + else: + self._handyman = _handyman + self.encoding = encoding + + def _delimited_splitter(self, line): + """Chop off comments, strip, and split at delimiter. """ + if self.comments is not None: + line = line.split(self.comments)[0] + line = line.strip(" \r\n") + if not line: + return [] + return line.split(self.delimiter) + + def _fixedwidth_splitter(self, line): + if self.comments is not None: + line = line.split(self.comments)[0] + line = line.strip("\r\n") + if not line: + return [] + fixed = self.delimiter + slices = [slice(i, i + fixed) for i in range(0, len(line), fixed)] + return [line[s] for s in slices] + + def _variablewidth_splitter(self, line): + if self.comments is not None: + line = line.split(self.comments)[0] + if not line: + return [] + slices = self.delimiter + return [line[s] for s in slices] + + def __call__(self, line): + return self._handyman(_decode_line(line, self.encoding)) + + +class NameValidator: + """ + Object to validate a list of strings to use as field names. + + The strings are stripped of any non alphanumeric character, and spaces + are replaced by '_'. During instantiation, the user can define a list + of names to exclude, as well as a list of invalid characters. Names in + the exclusion list are appended a '_' character. + + Once an instance has been created, it can be called with a list of + names, and a list of valid names will be created. The `__call__` + method accepts an optional keyword "default" that sets the default name + in case of ambiguity. By default this is 'f', so that names will + default to `f0`, `f1`, etc. + + Parameters + ---------- + excludelist : sequence, optional + A list of names to exclude. This list is appended to the default + list ['return', 'file', 'print']. Excluded names are appended an + underscore: for example, `file` becomes `file_` if supplied. + deletechars : str, optional + A string combining invalid characters that must be deleted from the + names. + case_sensitive : {True, False, 'upper', 'lower'}, optional + * If True, field names are case-sensitive. + * If False or 'upper', field names are converted to upper case. + * If 'lower', field names are converted to lower case. + + The default value is True. + replace_space : '_', optional + Character(s) used in replacement of white spaces. + + Notes + ----- + Calling an instance of `NameValidator` is the same as calling its + method `validate`. + + Examples + -------- + >>> import numpy as np + >>> validator = np.lib._iotools.NameValidator() + >>> validator(['file', 'field2', 'with space', 'CaSe']) + ('file_', 'field2', 'with_space', 'CaSe') + + >>> validator = np.lib._iotools.NameValidator(excludelist=['excl'], + ... deletechars='q', + ... case_sensitive=False) + >>> validator(['excl', 'field2', 'no_q', 'with space', 'CaSe']) + ('EXCL', 'FIELD2', 'NO_Q', 'WITH_SPACE', 'CASE') + + """ + + defaultexcludelist = 'return', 'file', 'print' + defaultdeletechars = frozenset(r"""~!@#$%^&*()-=+~\|]}[{';: /?.>,<""") + + def __init__(self, excludelist=None, deletechars=None, + case_sensitive=None, replace_space='_'): + # Process the exclusion list .. + if excludelist is None: + excludelist = [] + excludelist.extend(self.defaultexcludelist) + self.excludelist = excludelist + # Process the list of characters to delete + if deletechars is None: + delete = set(self.defaultdeletechars) + else: + delete = set(deletechars) + delete.add('"') + self.deletechars = delete + # Process the case option ..... + if (case_sensitive is None) or (case_sensitive is True): + self.case_converter = lambda x: x + elif (case_sensitive is False) or case_sensitive.startswith('u'): + self.case_converter = lambda x: x.upper() + elif case_sensitive.startswith('l'): + self.case_converter = lambda x: x.lower() + else: + msg = f'unrecognized case_sensitive value {case_sensitive}.' + raise ValueError(msg) + + self.replace_space = replace_space + + def validate(self, names, defaultfmt="f%i", nbfields=None): + """ + Validate a list of strings as field names for a structured array. + + Parameters + ---------- + names : sequence of str + Strings to be validated. + defaultfmt : str, optional + Default format string, used if validating a given string + reduces its length to zero. + nbfields : integer, optional + Final number of validated names, used to expand or shrink the + initial list of names. + + Returns + ------- + validatednames : list of str + The list of validated field names. + + Notes + ----- + A `NameValidator` instance can be called directly, which is the + same as calling `validate`. For examples, see `NameValidator`. + + """ + # Initial checks .............. + if (names is None): + if (nbfields is None): + return None + names = [] + if isinstance(names, str): + names = [names, ] + if nbfields is not None: + nbnames = len(names) + if (nbnames < nbfields): + names = list(names) + [''] * (nbfields - nbnames) + elif (nbnames > nbfields): + names = names[:nbfields] + # Set some shortcuts ........... + deletechars = self.deletechars + excludelist = self.excludelist + case_converter = self.case_converter + replace_space = self.replace_space + # Initializes some variables ... + validatednames = [] + seen = {} + nbempty = 0 + + for item in names: + item = case_converter(item).strip() + if replace_space: + item = item.replace(' ', replace_space) + item = ''.join([c for c in item if c not in deletechars]) + if item == '': + item = defaultfmt % nbempty + while item in names: + nbempty += 1 + item = defaultfmt % nbempty + nbempty += 1 + elif item in excludelist: + item += '_' + cnt = seen.get(item, 0) + if cnt > 0: + validatednames.append(item + '_%d' % cnt) + else: + validatednames.append(item) + seen[item] = cnt + 1 + return tuple(validatednames) + + def __call__(self, names, defaultfmt="f%i", nbfields=None): + return self.validate(names, defaultfmt=defaultfmt, nbfields=nbfields) + + +def str2bool(value): + """ + Tries to transform a string supposed to represent a boolean to a boolean. + + Parameters + ---------- + value : str + The string that is transformed to a boolean. + + Returns + ------- + boolval : bool + The boolean representation of `value`. + + Raises + ------ + ValueError + If the string is not 'True' or 'False' (case independent) + + Examples + -------- + >>> import numpy as np + >>> np.lib._iotools.str2bool('TRUE') + True + >>> np.lib._iotools.str2bool('false') + False + + """ + value = value.upper() + if value == 'TRUE': + return True + elif value == 'FALSE': + return False + else: + raise ValueError("Invalid boolean") + + +class ConverterError(Exception): + """ + Exception raised when an error occurs in a converter for string values. + + """ + pass + + +class ConverterLockError(ConverterError): + """ + Exception raised when an attempt is made to upgrade a locked converter. + + """ + pass + + +class ConversionWarning(UserWarning): + """ + Warning issued when a string converter has a problem. + + Notes + ----- + In `genfromtxt` a `ConversionWarning` is issued if raising exceptions + is explicitly suppressed with the "invalid_raise" keyword. + + """ + pass + + +class StringConverter: + """ + Factory class for function transforming a string into another object + (int, float). + + After initialization, an instance can be called to transform a string + into another object. If the string is recognized as representing a + missing value, a default value is returned. + + Attributes + ---------- + func : function + Function used for the conversion. + default : any + Default value to return when the input corresponds to a missing + value. + type : type + Type of the output. + _status : int + Integer representing the order of the conversion. + _mapper : sequence of tuples + Sequence of tuples (dtype, function, default value) to evaluate in + order. + _locked : bool + Holds `locked` parameter. + + Parameters + ---------- + dtype_or_func : {None, dtype, function}, optional + If a `dtype`, specifies the input data type, used to define a basic + function and a default value for missing data. For example, when + `dtype` is float, the `func` attribute is set to `float` and the + default value to `np.nan`. If a function, this function is used to + convert a string to another object. In this case, it is recommended + to give an associated default value as input. + default : any, optional + Value to return by default, that is, when the string to be + converted is flagged as missing. If not given, `StringConverter` + tries to supply a reasonable default value. + missing_values : {None, sequence of str}, optional + ``None`` or sequence of strings indicating a missing value. If ``None`` + then missing values are indicated by empty entries. The default is + ``None``. + locked : bool, optional + Whether the StringConverter should be locked to prevent automatic + upgrade or not. Default is False. + + """ + _mapper = [(nx.bool, str2bool, False), + (nx.int_, int, -1),] + + # On 32-bit systems, we need to make sure that we explicitly include + # nx.int64 since ns.int_ is nx.int32. + if nx.dtype(nx.int_).itemsize < nx.dtype(nx.int64).itemsize: + _mapper.append((nx.int64, int, -1)) + + _mapper.extend([(nx.float64, float, nx.nan), + (nx.complex128, complex, nx.nan + 0j), + (nx.longdouble, nx.longdouble, nx.nan), + # If a non-default dtype is passed, fall back to generic + # ones (should only be used for the converter) + (nx.integer, int, -1), + (nx.floating, float, nx.nan), + (nx.complexfloating, complex, nx.nan + 0j), + # Last, try with the string types (must be last, because + # `_mapper[-1]` is used as default in some cases) + (nx.str_, asunicode, '???'), + (nx.bytes_, asbytes, '???'), + ]) + + @classmethod + def _getdtype(cls, val): + """Returns the dtype of the input variable.""" + return np.array(val).dtype + + @classmethod + def _getsubdtype(cls, val): + """Returns the type of the dtype of the input variable.""" + return np.array(val).dtype.type + + @classmethod + def _dtypeortype(cls, dtype): + """Returns dtype for datetime64 and type of dtype otherwise.""" + + # This is a bit annoying. We want to return the "general" type in most + # cases (ie. "string" rather than "S10"), but we want to return the + # specific type for datetime64 (ie. "datetime64[us]" rather than + # "datetime64"). + if dtype.type == np.datetime64: + return dtype + return dtype.type + + @classmethod + def upgrade_mapper(cls, func, default=None): + """ + Upgrade the mapper of a StringConverter by adding a new function and + its corresponding default. + + The input function (or sequence of functions) and its associated + default value (if any) is inserted in penultimate position of the + mapper. The corresponding type is estimated from the dtype of the + default value. + + Parameters + ---------- + func : var + Function, or sequence of functions + + Examples + -------- + >>> import dateutil.parser + >>> import datetime + >>> dateparser = dateutil.parser.parse + >>> defaultdate = datetime.date(2000, 1, 1) + >>> StringConverter.upgrade_mapper(dateparser, default=defaultdate) + """ + # Func is a single functions + if callable(func): + cls._mapper.insert(-1, (cls._getsubdtype(default), func, default)) + return + elif hasattr(func, '__iter__'): + if isinstance(func[0], (tuple, list)): + for _ in func: + cls._mapper.insert(-1, _) + return + if default is None: + default = [None] * len(func) + else: + default = list(default) + default.append([None] * (len(func) - len(default))) + for fct, dft in zip(func, default): + cls._mapper.insert(-1, (cls._getsubdtype(dft), fct, dft)) + + @classmethod + def _find_map_entry(cls, dtype): + # if a converter for the specific dtype is available use that + for i, (deftype, func, default_def) in enumerate(cls._mapper): + if dtype.type == deftype: + return i, (deftype, func, default_def) + + # otherwise find an inexact match + for i, (deftype, func, default_def) in enumerate(cls._mapper): + if np.issubdtype(dtype.type, deftype): + return i, (deftype, func, default_def) + + raise LookupError + + def __init__(self, dtype_or_func=None, default=None, missing_values=None, + locked=False): + # Defines a lock for upgrade + self._locked = bool(locked) + # No input dtype: minimal initialization + if dtype_or_func is None: + self.func = str2bool + self._status = 0 + self.default = default or False + dtype = np.dtype('bool') + else: + # Is the input a np.dtype ? + try: + self.func = None + dtype = np.dtype(dtype_or_func) + except TypeError: + # dtype_or_func must be a function, then + if not callable(dtype_or_func): + errmsg = ("The input argument `dtype` is neither a" + " function nor a dtype (got '%s' instead)") + raise TypeError(errmsg % type(dtype_or_func)) + # Set the function + self.func = dtype_or_func + # If we don't have a default, try to guess it or set it to + # None + if default is None: + try: + default = self.func('0') + except ValueError: + default = None + dtype = self._getdtype(default) + + # find the best match in our mapper + try: + self._status, (_, func, default_def) = self._find_map_entry(dtype) + except LookupError: + # no match + self.default = default + _, func, _ = self._mapper[-1] + self._status = 0 + else: + # use the found default only if we did not already have one + if default is None: + self.default = default_def + else: + self.default = default + + # If the input was a dtype, set the function to the last we saw + if self.func is None: + self.func = func + + # If the status is 1 (int), change the function to + # something more robust. + if self.func == self._mapper[1][1]: + if issubclass(dtype.type, np.uint64): + self.func = np.uint64 + elif issubclass(dtype.type, np.int64): + self.func = np.int64 + else: + self.func = lambda x: int(float(x)) + # Store the list of strings corresponding to missing values. + if missing_values is None: + self.missing_values = {''} + else: + if isinstance(missing_values, str): + missing_values = missing_values.split(",") + self.missing_values = set(list(missing_values) + ['']) + + self._callingfunction = self._strict_call + self.type = self._dtypeortype(dtype) + self._checked = False + self._initial_default = default + + def _loose_call(self, value): + try: + return self.func(value) + except ValueError: + return self.default + + def _strict_call(self, value): + try: + + # We check if we can convert the value using the current function + new_value = self.func(value) + + # In addition to having to check whether func can convert the + # value, we also have to make sure that we don't get overflow + # errors for integers. + if self.func is int: + try: + np.array(value, dtype=self.type) + except OverflowError: + raise ValueError + + # We're still here so we can now return the new value + return new_value + + except ValueError: + if value.strip() in self.missing_values: + if not self._status: + self._checked = False + return self.default + raise ValueError(f"Cannot convert string '{value}'") + + def __call__(self, value): + return self._callingfunction(value) + + def _do_upgrade(self): + # Raise an exception if we locked the converter... + if self._locked: + errmsg = "Converter is locked and cannot be upgraded" + raise ConverterLockError(errmsg) + _statusmax = len(self._mapper) + # Complains if we try to upgrade by the maximum + _status = self._status + if _status == _statusmax: + errmsg = "Could not find a valid conversion function" + raise ConverterError(errmsg) + elif _status < _statusmax - 1: + _status += 1 + self.type, self.func, default = self._mapper[_status] + self._status = _status + if self._initial_default is not None: + self.default = self._initial_default + else: + self.default = default + + def upgrade(self, value): + """ + Find the best converter for a given string, and return the result. + + The supplied string `value` is converted by testing different + converters in order. First the `func` method of the + `StringConverter` instance is tried, if this fails other available + converters are tried. The order in which these other converters + are tried is determined by the `_status` attribute of the instance. + + Parameters + ---------- + value : str + The string to convert. + + Returns + ------- + out : any + The result of converting `value` with the appropriate converter. + + """ + self._checked = True + try: + return self._strict_call(value) + except ValueError: + self._do_upgrade() + return self.upgrade(value) + + def iterupgrade(self, value): + self._checked = True + if not hasattr(value, '__iter__'): + value = (value,) + _strict_call = self._strict_call + try: + for _m in value: + _strict_call(_m) + except ValueError: + self._do_upgrade() + self.iterupgrade(value) + + def update(self, func, default=None, testing_value=None, + missing_values='', locked=False): + """ + Set StringConverter attributes directly. + + Parameters + ---------- + func : function + Conversion function. + default : any, optional + Value to return by default, that is, when the string to be + converted is flagged as missing. If not given, + `StringConverter` tries to supply a reasonable default value. + testing_value : str, optional + A string representing a standard input value of the converter. + This string is used to help defining a reasonable default + value. + missing_values : {sequence of str, None}, optional + Sequence of strings indicating a missing value. If ``None``, then + the existing `missing_values` are cleared. The default is ``''``. + locked : bool, optional + Whether the StringConverter should be locked to prevent + automatic upgrade or not. Default is False. + + Notes + ----- + `update` takes the same parameters as the constructor of + `StringConverter`, except that `func` does not accept a `dtype` + whereas `dtype_or_func` in the constructor does. + + """ + self.func = func + self._locked = locked + + # Don't reset the default to None if we can avoid it + if default is not None: + self.default = default + self.type = self._dtypeortype(self._getdtype(default)) + else: + try: + tester = func(testing_value or '1') + except (TypeError, ValueError): + tester = None + self.type = self._dtypeortype(self._getdtype(tester)) + + # Add the missing values to the existing set or clear it. + if missing_values is None: + # Clear all missing values even though the ctor initializes it to + # set(['']) when the argument is None. + self.missing_values = set() + else: + if not np.iterable(missing_values): + missing_values = [missing_values] + if not all(isinstance(v, str) for v in missing_values): + raise TypeError("missing_values must be strings or unicode") + self.missing_values.update(missing_values) + + +def easy_dtype(ndtype, names=None, defaultfmt="f%i", **validationargs): + """ + Convenience function to create a `np.dtype` object. + + The function processes the input `dtype` and matches it with the given + names. + + Parameters + ---------- + ndtype : var + Definition of the dtype. Can be any string or dictionary recognized + by the `np.dtype` function, or a sequence of types. + names : str or sequence, optional + Sequence of strings to use as field names for a structured dtype. + For convenience, `names` can be a string of a comma-separated list + of names. + defaultfmt : str, optional + Format string used to define missing names, such as ``"f%i"`` + (default) or ``"fields_%02i"``. + validationargs : optional + A series of optional arguments used to initialize a + `NameValidator`. + + Examples + -------- + >>> import numpy as np + >>> np.lib._iotools.easy_dtype(float) + dtype('float64') + >>> np.lib._iotools.easy_dtype("i4, f8") + dtype([('f0', '>> np.lib._iotools.easy_dtype("i4, f8", defaultfmt="field_%03i") + dtype([('field_000', '>> np.lib._iotools.easy_dtype((int, float, float), names="a,b,c") + dtype([('a', '>> np.lib._iotools.easy_dtype(float, names="a,b,c") + dtype([('a', ' None: ... + def __call__(self, /, line: str | bytes) -> list[str]: ... + def autostrip(self, /, method: Callable[[_T], Iterable[str]]) -> Callable[[_T], list[str]]: ... + +class NameValidator: + defaultexcludelist: ClassVar[Sequence[str]] + defaultdeletechars: ClassVar[Sequence[str]] + excludelist: list[str] + deletechars: set[str] + case_converter: Callable[[str], str] + replace_space: str + + def __init__( + self, + /, + excludelist: Iterable[str] | None = None, + deletechars: Iterable[str] | None = None, + case_sensitive: Literal["upper", "lower"] | bool | None = None, + replace_space: str = "_", + ) -> None: ... + def __call__(self, /, names: Iterable[str], defaultfmt: str = "f%i", nbfields: int | None = None) -> tuple[str, ...]: ... + def validate(self, /, names: Iterable[str], defaultfmt: str = "f%i", nbfields: int | None = None) -> tuple[str, ...]: ... + +class StringConverter: + func: Callable[[str], Any] | None + default: Any + missing_values: set[str] + type: np.dtype[np.datetime64] | np.generic + + def __init__( + self, + /, + dtype_or_func: npt.DTypeLike | None = None, + default: None = None, + missing_values: Iterable[str] | None = None, + locked: bool = False, + ) -> None: ... + def update( + self, + /, + func: Callable[[str], Any], + default: object | None = None, + testing_value: str | None = None, + missing_values: str = "", + locked: bool = False, + ) -> None: ... + # + def __call__(self, /, value: str) -> Any: ... + def upgrade(self, /, value: str) -> Any: ... + def iterupgrade(self, /, value: Iterable[str] | str) -> None: ... + + # + @classmethod + def upgrade_mapper(cls, func: Callable[[str], Any], default: object | None = None) -> None: ... + +@overload +def str2bool(value: Literal["false", "False", "FALSE"]) -> Literal[False]: ... +@overload +def str2bool(value: Literal["true", "True", "TRUE"]) -> Literal[True]: ... + +# +def has_nested_fields(ndtype: np.dtype[np.void]) -> bool: ... +def flatten_dtype(ndtype: np.dtype[np.void], flatten_base: bool = False) -> type[np.dtype]: ... +def easy_dtype( + ndtype: npt.DTypeLike, + names: Iterable[str] | None = None, + defaultfmt: str = "f%i", + **validationargs: Unpack[_ValidationKwargs], +) -> np.dtype[np.void]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_nanfunctions_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_nanfunctions_impl.py new file mode 100644 index 0000000..4a01490 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_nanfunctions_impl.py @@ -0,0 +1,2024 @@ +""" +Functions that ignore NaN. + +Functions +--------- + +- `nanmin` -- minimum non-NaN value +- `nanmax` -- maximum non-NaN value +- `nanargmin` -- index of minimum non-NaN value +- `nanargmax` -- index of maximum non-NaN value +- `nansum` -- sum of non-NaN values +- `nanprod` -- product of non-NaN values +- `nancumsum` -- cumulative sum of non-NaN values +- `nancumprod` -- cumulative product of non-NaN values +- `nanmean` -- mean of non-NaN values +- `nanvar` -- variance of non-NaN values +- `nanstd` -- standard deviation of non-NaN values +- `nanmedian` -- median of non-NaN values +- `nanquantile` -- qth quantile of non-NaN values +- `nanpercentile` -- qth percentile of non-NaN values + +""" +import functools +import warnings + +import numpy as np +import numpy._core.numeric as _nx +from numpy._core import overrides +from numpy.lib import _function_base_impl as fnb +from numpy.lib._function_base_impl import _weights_are_valid + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy') + + +__all__ = [ + 'nansum', 'nanmax', 'nanmin', 'nanargmax', 'nanargmin', 'nanmean', + 'nanmedian', 'nanpercentile', 'nanvar', 'nanstd', 'nanprod', + 'nancumsum', 'nancumprod', 'nanquantile' + ] + + +def _nan_mask(a, out=None): + """ + Parameters + ---------- + a : array-like + Input array with at least 1 dimension. + out : ndarray, optional + Alternate output array in which to place the result. The default + is ``None``; if provided, it must have the same shape as the + expected output and will prevent the allocation of a new array. + + Returns + ------- + y : bool ndarray or True + A bool array where ``np.nan`` positions are marked with ``False`` + and other positions are marked with ``True``. If the type of ``a`` + is such that it can't possibly contain ``np.nan``, returns ``True``. + """ + # we assume that a is an array for this private function + + if a.dtype.kind not in 'fc': + return True + + y = np.isnan(a, out=out) + y = np.invert(y, out=y) + return y + +def _replace_nan(a, val): + """ + If `a` is of inexact type, make a copy of `a`, replace NaNs with + the `val` value, and return the copy together with a boolean mask + marking the locations where NaNs were present. If `a` is not of + inexact type, do nothing and return `a` together with a mask of None. + + Note that scalars will end up as array scalars, which is important + for using the result as the value of the out argument in some + operations. + + Parameters + ---------- + a : array-like + Input array. + val : float + NaN values are set to val before doing the operation. + + Returns + ------- + y : ndarray + If `a` is of inexact type, return a copy of `a` with the NaNs + replaced by the fill value, otherwise return `a`. + mask: {bool, None} + If `a` is of inexact type, return a boolean mask marking locations of + NaNs, otherwise return None. + + """ + a = np.asanyarray(a) + + if a.dtype == np.object_: + # object arrays do not support `isnan` (gh-9009), so make a guess + mask = np.not_equal(a, a, dtype=bool) + elif issubclass(a.dtype.type, np.inexact): + mask = np.isnan(a) + else: + mask = None + + if mask is not None: + a = np.array(a, subok=True, copy=True) + np.copyto(a, val, where=mask) + + return a, mask + + +def _copyto(a, val, mask): + """ + Replace values in `a` with NaN where `mask` is True. This differs from + copyto in that it will deal with the case where `a` is a numpy scalar. + + Parameters + ---------- + a : ndarray or numpy scalar + Array or numpy scalar some of whose values are to be replaced + by val. + val : numpy scalar + Value used a replacement. + mask : ndarray, scalar + Boolean array. Where True the corresponding element of `a` is + replaced by `val`. Broadcasts. + + Returns + ------- + res : ndarray, scalar + Array with elements replaced or scalar `val`. + + """ + if isinstance(a, np.ndarray): + np.copyto(a, val, where=mask, casting='unsafe') + else: + a = a.dtype.type(val) + return a + + +def _remove_nan_1d(arr1d, second_arr1d=None, overwrite_input=False): + """ + Equivalent to arr1d[~arr1d.isnan()], but in a different order + + Presumably faster as it incurs fewer copies + + Parameters + ---------- + arr1d : ndarray + Array to remove nans from + second_arr1d : ndarray or None + A second array which will have the same positions removed as arr1d. + overwrite_input : bool + True if `arr1d` can be modified in place + + Returns + ------- + res : ndarray + Array with nan elements removed + second_res : ndarray or None + Second array with nan element positions of first array removed. + overwrite_input : bool + True if `res` can be modified in place, given the constraint on the + input + """ + if arr1d.dtype == object: + # object arrays do not support `isnan` (gh-9009), so make a guess + c = np.not_equal(arr1d, arr1d, dtype=bool) + else: + c = np.isnan(arr1d) + + s = np.nonzero(c)[0] + if s.size == arr1d.size: + warnings.warn("All-NaN slice encountered", RuntimeWarning, + stacklevel=6) + if second_arr1d is None: + return arr1d[:0], None, True + else: + return arr1d[:0], second_arr1d[:0], True + elif s.size == 0: + return arr1d, second_arr1d, overwrite_input + else: + if not overwrite_input: + arr1d = arr1d.copy() + # select non-nans at end of array + enonan = arr1d[-s.size:][~c[-s.size:]] + # fill nans in beginning of array with non-nans of end + arr1d[s[:enonan.size]] = enonan + + if second_arr1d is None: + return arr1d[:-s.size], None, True + else: + if not overwrite_input: + second_arr1d = second_arr1d.copy() + enonan = second_arr1d[-s.size:][~c[-s.size:]] + second_arr1d[s[:enonan.size]] = enonan + + return arr1d[:-s.size], second_arr1d[:-s.size], True + + +def _divide_by_count(a, b, out=None): + """ + Compute a/b ignoring invalid results. If `a` is an array the division + is done in place. If `a` is a scalar, then its type is preserved in the + output. If out is None, then a is used instead so that the division + is in place. Note that this is only called with `a` an inexact type. + + Parameters + ---------- + a : {ndarray, numpy scalar} + Numerator. Expected to be of inexact type but not checked. + b : {ndarray, numpy scalar} + Denominator. + out : ndarray, optional + Alternate output array in which to place the result. The default + is ``None``; if provided, it must have the same shape as the + expected output, but the type will be cast if necessary. + + Returns + ------- + ret : {ndarray, numpy scalar} + The return value is a/b. If `a` was an ndarray the division is done + in place. If `a` is a numpy scalar, the division preserves its type. + + """ + with np.errstate(invalid='ignore', divide='ignore'): + if isinstance(a, np.ndarray): + if out is None: + return np.divide(a, b, out=a, casting='unsafe') + else: + return np.divide(a, b, out=out, casting='unsafe') + elif out is None: + # Precaution against reduced object arrays + try: + return a.dtype.type(a / b) + except AttributeError: + return a / b + else: + # This is questionable, but currently a numpy scalar can + # be output to a zero dimensional array. + return np.divide(a, b, out=out, casting='unsafe') + + +def _nanmin_dispatcher(a, axis=None, out=None, keepdims=None, + initial=None, where=None): + return (a, out) + + +@array_function_dispatch(_nanmin_dispatcher) +def nanmin(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue, + where=np._NoValue): + """ + Return minimum of an array or minimum along an axis, ignoring any NaNs. + When all-NaN slices are encountered a ``RuntimeWarning`` is raised and + Nan is returned for that slice. + + Parameters + ---------- + a : array_like + Array containing numbers whose minimum is desired. If `a` is not an + array, a conversion is attempted. + axis : {int, tuple of int, None}, optional + Axis or axes along which the minimum is computed. The default is to compute + the minimum of the flattened array. + out : ndarray, optional + Alternate output array in which to place the result. The default + is ``None``; if provided, it must have the same shape as the + expected output, but the type will be cast if necessary. See + :ref:`ufuncs-output-type` for more details. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the original `a`. + + If the value is anything but the default, then + `keepdims` will be passed through to the `min` method + of sub-classes of `ndarray`. If the sub-classes methods + does not implement `keepdims` any exceptions will be raised. + initial : scalar, optional + The maximum value of an output element. Must be present to allow + computation on empty slice. See `~numpy.ufunc.reduce` for details. + + .. versionadded:: 1.22.0 + where : array_like of bool, optional + Elements to compare for the minimum. See `~numpy.ufunc.reduce` + for details. + + .. versionadded:: 1.22.0 + + Returns + ------- + nanmin : ndarray + An array with the same shape as `a`, with the specified axis + removed. If `a` is a 0-d array, or if axis is None, an ndarray + scalar is returned. The same dtype as `a` is returned. + + See Also + -------- + nanmax : + The maximum value of an array along a given axis, ignoring any NaNs. + amin : + The minimum value of an array along a given axis, propagating any NaNs. + fmin : + Element-wise minimum of two arrays, ignoring any NaNs. + minimum : + Element-wise minimum of two arrays, propagating any NaNs. + isnan : + Shows which elements are Not a Number (NaN). + isfinite: + Shows which elements are neither NaN nor infinity. + + amax, fmax, maximum + + Notes + ----- + NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic + (IEEE 754). This means that Not a Number is not equivalent to infinity. + Positive infinity is treated as a very large number and negative + infinity is treated as a very small (i.e. negative) number. + + If the input has a integer type the function is equivalent to np.min. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1, 2], [3, np.nan]]) + >>> np.nanmin(a) + 1.0 + >>> np.nanmin(a, axis=0) + array([1., 2.]) + >>> np.nanmin(a, axis=1) + array([1., 3.]) + + When positive infinity and negative infinity are present: + + >>> np.nanmin([1, 2, np.nan, np.inf]) + 1.0 + >>> np.nanmin([1, 2, np.nan, -np.inf]) + -inf + + """ + kwargs = {} + if keepdims is not np._NoValue: + kwargs['keepdims'] = keepdims + if initial is not np._NoValue: + kwargs['initial'] = initial + if where is not np._NoValue: + kwargs['where'] = where + + if (type(a) is np.ndarray or type(a) is np.memmap) and a.dtype != np.object_: + # Fast, but not safe for subclasses of ndarray, or object arrays, + # which do not implement isnan (gh-9009), or fmin correctly (gh-8975) + res = np.fmin.reduce(a, axis=axis, out=out, **kwargs) + if np.isnan(res).any(): + warnings.warn("All-NaN slice encountered", RuntimeWarning, + stacklevel=2) + else: + # Slow, but safe for subclasses of ndarray + a, mask = _replace_nan(a, +np.inf) + res = np.amin(a, axis=axis, out=out, **kwargs) + if mask is None: + return res + + # Check for all-NaN axis + kwargs.pop("initial", None) + mask = np.all(mask, axis=axis, **kwargs) + if np.any(mask): + res = _copyto(res, np.nan, mask) + warnings.warn("All-NaN axis encountered", RuntimeWarning, + stacklevel=2) + return res + + +def _nanmax_dispatcher(a, axis=None, out=None, keepdims=None, + initial=None, where=None): + return (a, out) + + +@array_function_dispatch(_nanmax_dispatcher) +def nanmax(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue, + where=np._NoValue): + """ + Return the maximum of an array or maximum along an axis, ignoring any + NaNs. When all-NaN slices are encountered a ``RuntimeWarning`` is + raised and NaN is returned for that slice. + + Parameters + ---------- + a : array_like + Array containing numbers whose maximum is desired. If `a` is not an + array, a conversion is attempted. + axis : {int, tuple of int, None}, optional + Axis or axes along which the maximum is computed. The default is to compute + the maximum of the flattened array. + out : ndarray, optional + Alternate output array in which to place the result. The default + is ``None``; if provided, it must have the same shape as the + expected output, but the type will be cast if necessary. See + :ref:`ufuncs-output-type` for more details. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the original `a`. + If the value is anything but the default, then + `keepdims` will be passed through to the `max` method + of sub-classes of `ndarray`. If the sub-classes methods + does not implement `keepdims` any exceptions will be raised. + initial : scalar, optional + The minimum value of an output element. Must be present to allow + computation on empty slice. See `~numpy.ufunc.reduce` for details. + + .. versionadded:: 1.22.0 + where : array_like of bool, optional + Elements to compare for the maximum. See `~numpy.ufunc.reduce` + for details. + + .. versionadded:: 1.22.0 + + Returns + ------- + nanmax : ndarray + An array with the same shape as `a`, with the specified axis removed. + If `a` is a 0-d array, or if axis is None, an ndarray scalar is + returned. The same dtype as `a` is returned. + + See Also + -------- + nanmin : + The minimum value of an array along a given axis, ignoring any NaNs. + amax : + The maximum value of an array along a given axis, propagating any NaNs. + fmax : + Element-wise maximum of two arrays, ignoring any NaNs. + maximum : + Element-wise maximum of two arrays, propagating any NaNs. + isnan : + Shows which elements are Not a Number (NaN). + isfinite: + Shows which elements are neither NaN nor infinity. + + amin, fmin, minimum + + Notes + ----- + NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic + (IEEE 754). This means that Not a Number is not equivalent to infinity. + Positive infinity is treated as a very large number and negative + infinity is treated as a very small (i.e. negative) number. + + If the input has a integer type the function is equivalent to np.max. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1, 2], [3, np.nan]]) + >>> np.nanmax(a) + 3.0 + >>> np.nanmax(a, axis=0) + array([3., 2.]) + >>> np.nanmax(a, axis=1) + array([2., 3.]) + + When positive infinity and negative infinity are present: + + >>> np.nanmax([1, 2, np.nan, -np.inf]) + 2.0 + >>> np.nanmax([1, 2, np.nan, np.inf]) + inf + + """ + kwargs = {} + if keepdims is not np._NoValue: + kwargs['keepdims'] = keepdims + if initial is not np._NoValue: + kwargs['initial'] = initial + if where is not np._NoValue: + kwargs['where'] = where + + if (type(a) is np.ndarray or type(a) is np.memmap) and a.dtype != np.object_: + # Fast, but not safe for subclasses of ndarray, or object arrays, + # which do not implement isnan (gh-9009), or fmax correctly (gh-8975) + res = np.fmax.reduce(a, axis=axis, out=out, **kwargs) + if np.isnan(res).any(): + warnings.warn("All-NaN slice encountered", RuntimeWarning, + stacklevel=2) + else: + # Slow, but safe for subclasses of ndarray + a, mask = _replace_nan(a, -np.inf) + res = np.amax(a, axis=axis, out=out, **kwargs) + if mask is None: + return res + + # Check for all-NaN axis + kwargs.pop("initial", None) + mask = np.all(mask, axis=axis, **kwargs) + if np.any(mask): + res = _copyto(res, np.nan, mask) + warnings.warn("All-NaN axis encountered", RuntimeWarning, + stacklevel=2) + return res + + +def _nanargmin_dispatcher(a, axis=None, out=None, *, keepdims=None): + return (a,) + + +@array_function_dispatch(_nanargmin_dispatcher) +def nanargmin(a, axis=None, out=None, *, keepdims=np._NoValue): + """ + Return the indices of the minimum values in the specified axis ignoring + NaNs. For all-NaN slices ``ValueError`` is raised. Warning: the results + cannot be trusted if a slice contains only NaNs and Infs. + + Parameters + ---------- + a : array_like + Input data. + axis : int, optional + Axis along which to operate. By default flattened input is used. + out : array, optional + If provided, the result will be inserted into this array. It should + be of the appropriate shape and dtype. + + .. versionadded:: 1.22.0 + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the array. + + .. versionadded:: 1.22.0 + + Returns + ------- + index_array : ndarray + An array of indices or a single index value. + + See Also + -------- + argmin, nanargmax + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[np.nan, 4], [2, 3]]) + >>> np.argmin(a) + 0 + >>> np.nanargmin(a) + 2 + >>> np.nanargmin(a, axis=0) + array([1, 1]) + >>> np.nanargmin(a, axis=1) + array([1, 0]) + + """ + a, mask = _replace_nan(a, np.inf) + if mask is not None and mask.size: + mask = np.all(mask, axis=axis) + if np.any(mask): + raise ValueError("All-NaN slice encountered") + res = np.argmin(a, axis=axis, out=out, keepdims=keepdims) + return res + + +def _nanargmax_dispatcher(a, axis=None, out=None, *, keepdims=None): + return (a,) + + +@array_function_dispatch(_nanargmax_dispatcher) +def nanargmax(a, axis=None, out=None, *, keepdims=np._NoValue): + """ + Return the indices of the maximum values in the specified axis ignoring + NaNs. For all-NaN slices ``ValueError`` is raised. Warning: the + results cannot be trusted if a slice contains only NaNs and -Infs. + + + Parameters + ---------- + a : array_like + Input data. + axis : int, optional + Axis along which to operate. By default flattened input is used. + out : array, optional + If provided, the result will be inserted into this array. It should + be of the appropriate shape and dtype. + + .. versionadded:: 1.22.0 + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the array. + + .. versionadded:: 1.22.0 + + Returns + ------- + index_array : ndarray + An array of indices or a single index value. + + See Also + -------- + argmax, nanargmin + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[np.nan, 4], [2, 3]]) + >>> np.argmax(a) + 0 + >>> np.nanargmax(a) + 1 + >>> np.nanargmax(a, axis=0) + array([1, 0]) + >>> np.nanargmax(a, axis=1) + array([1, 1]) + + """ + a, mask = _replace_nan(a, -np.inf) + if mask is not None and mask.size: + mask = np.all(mask, axis=axis) + if np.any(mask): + raise ValueError("All-NaN slice encountered") + res = np.argmax(a, axis=axis, out=out, keepdims=keepdims) + return res + + +def _nansum_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None, + initial=None, where=None): + return (a, out) + + +@array_function_dispatch(_nansum_dispatcher) +def nansum(a, axis=None, dtype=None, out=None, keepdims=np._NoValue, + initial=np._NoValue, where=np._NoValue): + """ + Return the sum of array elements over a given axis treating Not a + Numbers (NaNs) as zero. + + In NumPy versions <= 1.9.0 Nan is returned for slices that are all-NaN or + empty. In later versions zero is returned. + + Parameters + ---------- + a : array_like + Array containing numbers whose sum is desired. If `a` is not an + array, a conversion is attempted. + axis : {int, tuple of int, None}, optional + Axis or axes along which the sum is computed. The default is to compute the + sum of the flattened array. + dtype : data-type, optional + The type of the returned array and of the accumulator in which the + elements are summed. By default, the dtype of `a` is used. An + exception is when `a` has an integer type with less precision than + the platform (u)intp. In that case, the default will be either + (u)int32 or (u)int64 depending on whether the platform is 32 or 64 + bits. For inexact inputs, dtype must be inexact. + out : ndarray, optional + Alternate output array in which to place the result. The default + is ``None``. If provided, it must have the same shape as the + expected output, but the type will be cast if necessary. See + :ref:`ufuncs-output-type` for more details. The casting of NaN to integer + can yield unexpected results. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the original `a`. + + If the value is anything but the default, then + `keepdims` will be passed through to the `mean` or `sum` methods + of sub-classes of `ndarray`. If the sub-classes methods + does not implement `keepdims` any exceptions will be raised. + initial : scalar, optional + Starting value for the sum. See `~numpy.ufunc.reduce` for details. + + .. versionadded:: 1.22.0 + where : array_like of bool, optional + Elements to include in the sum. See `~numpy.ufunc.reduce` for details. + + .. versionadded:: 1.22.0 + + Returns + ------- + nansum : ndarray. + A new array holding the result is returned unless `out` is + specified, in which it is returned. The result has the same + size as `a`, and the same shape as `a` if `axis` is not None + or `a` is a 1-d array. + + See Also + -------- + numpy.sum : Sum across array propagating NaNs. + isnan : Show which elements are NaN. + isfinite : Show which elements are not NaN or +/-inf. + + Notes + ----- + If both positive and negative infinity are present, the sum will be Not + A Number (NaN). + + Examples + -------- + >>> import numpy as np + >>> np.nansum(1) + 1 + >>> np.nansum([1]) + 1 + >>> np.nansum([1, np.nan]) + 1.0 + >>> a = np.array([[1, 1], [1, np.nan]]) + >>> np.nansum(a) + 3.0 + >>> np.nansum(a, axis=0) + array([2., 1.]) + >>> np.nansum([1, np.nan, np.inf]) + inf + >>> np.nansum([1, np.nan, -np.inf]) + -inf + >>> from numpy.testing import suppress_warnings + >>> with np.errstate(invalid="ignore"): + ... np.nansum([1, np.nan, np.inf, -np.inf]) # both +/- infinity present + np.float64(nan) + + """ + a, mask = _replace_nan(a, 0) + return np.sum(a, axis=axis, dtype=dtype, out=out, keepdims=keepdims, + initial=initial, where=where) + + +def _nanprod_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None, + initial=None, where=None): + return (a, out) + + +@array_function_dispatch(_nanprod_dispatcher) +def nanprod(a, axis=None, dtype=None, out=None, keepdims=np._NoValue, + initial=np._NoValue, where=np._NoValue): + """ + Return the product of array elements over a given axis treating Not a + Numbers (NaNs) as ones. + + One is returned for slices that are all-NaN or empty. + + Parameters + ---------- + a : array_like + Array containing numbers whose product is desired. If `a` is not an + array, a conversion is attempted. + axis : {int, tuple of int, None}, optional + Axis or axes along which the product is computed. The default is to compute + the product of the flattened array. + dtype : data-type, optional + The type of the returned array and of the accumulator in which the + elements are summed. By default, the dtype of `a` is used. An + exception is when `a` has an integer type with less precision than + the platform (u)intp. In that case, the default will be either + (u)int32 or (u)int64 depending on whether the platform is 32 or 64 + bits. For inexact inputs, dtype must be inexact. + out : ndarray, optional + Alternate output array in which to place the result. The default + is ``None``. If provided, it must have the same shape as the + expected output, but the type will be cast if necessary. See + :ref:`ufuncs-output-type` for more details. The casting of NaN to integer + can yield unexpected results. + keepdims : bool, optional + If True, the axes which are reduced are left in the result as + dimensions with size one. With this option, the result will + broadcast correctly against the original `arr`. + initial : scalar, optional + The starting value for this product. See `~numpy.ufunc.reduce` + for details. + + .. versionadded:: 1.22.0 + where : array_like of bool, optional + Elements to include in the product. See `~numpy.ufunc.reduce` + for details. + + .. versionadded:: 1.22.0 + + Returns + ------- + nanprod : ndarray + A new array holding the result is returned unless `out` is + specified, in which case it is returned. + + See Also + -------- + numpy.prod : Product across array propagating NaNs. + isnan : Show which elements are NaN. + + Examples + -------- + >>> import numpy as np + >>> np.nanprod(1) + 1 + >>> np.nanprod([1]) + 1 + >>> np.nanprod([1, np.nan]) + 1.0 + >>> a = np.array([[1, 2], [3, np.nan]]) + >>> np.nanprod(a) + 6.0 + >>> np.nanprod(a, axis=0) + array([3., 2.]) + + """ + a, mask = _replace_nan(a, 1) + return np.prod(a, axis=axis, dtype=dtype, out=out, keepdims=keepdims, + initial=initial, where=where) + + +def _nancumsum_dispatcher(a, axis=None, dtype=None, out=None): + return (a, out) + + +@array_function_dispatch(_nancumsum_dispatcher) +def nancumsum(a, axis=None, dtype=None, out=None): + """ + Return the cumulative sum of array elements over a given axis treating Not a + Numbers (NaNs) as zero. The cumulative sum does not change when NaNs are + encountered and leading NaNs are replaced by zeros. + + Zeros are returned for slices that are all-NaN or empty. + + Parameters + ---------- + a : array_like + Input array. + axis : int, optional + Axis along which the cumulative sum is computed. The default + (None) is to compute the cumsum over the flattened array. + dtype : dtype, optional + Type of the returned array and of the accumulator in which the + elements are summed. If `dtype` is not specified, it defaults + to the dtype of `a`, unless `a` has an integer dtype with a + precision less than that of the default platform integer. In + that case, the default platform integer is used. + out : ndarray, optional + Alternative output array in which to place the result. It must + have the same shape and buffer length as the expected output + but the type will be cast if necessary. See :ref:`ufuncs-output-type` for + more details. + + Returns + ------- + nancumsum : ndarray. + A new array holding the result is returned unless `out` is + specified, in which it is returned. The result has the same + size as `a`, and the same shape as `a` if `axis` is not None + or `a` is a 1-d array. + + See Also + -------- + numpy.cumsum : Cumulative sum across array propagating NaNs. + isnan : Show which elements are NaN. + + Examples + -------- + >>> import numpy as np + >>> np.nancumsum(1) + array([1]) + >>> np.nancumsum([1]) + array([1]) + >>> np.nancumsum([1, np.nan]) + array([1., 1.]) + >>> a = np.array([[1, 2], [3, np.nan]]) + >>> np.nancumsum(a) + array([1., 3., 6., 6.]) + >>> np.nancumsum(a, axis=0) + array([[1., 2.], + [4., 2.]]) + >>> np.nancumsum(a, axis=1) + array([[1., 3.], + [3., 3.]]) + + """ + a, mask = _replace_nan(a, 0) + return np.cumsum(a, axis=axis, dtype=dtype, out=out) + + +def _nancumprod_dispatcher(a, axis=None, dtype=None, out=None): + return (a, out) + + +@array_function_dispatch(_nancumprod_dispatcher) +def nancumprod(a, axis=None, dtype=None, out=None): + """ + Return the cumulative product of array elements over a given axis treating Not a + Numbers (NaNs) as one. The cumulative product does not change when NaNs are + encountered and leading NaNs are replaced by ones. + + Ones are returned for slices that are all-NaN or empty. + + Parameters + ---------- + a : array_like + Input array. + axis : int, optional + Axis along which the cumulative product is computed. By default + the input is flattened. + dtype : dtype, optional + Type of the returned array, as well as of the accumulator in which + the elements are multiplied. If *dtype* is not specified, it + defaults to the dtype of `a`, unless `a` has an integer dtype with + a precision less than that of the default platform integer. In + that case, the default platform integer is used instead. + out : ndarray, optional + Alternative output array in which to place the result. It must + have the same shape and buffer length as the expected output + but the type of the resulting values will be cast if necessary. + + Returns + ------- + nancumprod : ndarray + A new array holding the result is returned unless `out` is + specified, in which case it is returned. + + See Also + -------- + numpy.cumprod : Cumulative product across array propagating NaNs. + isnan : Show which elements are NaN. + + Examples + -------- + >>> import numpy as np + >>> np.nancumprod(1) + array([1]) + >>> np.nancumprod([1]) + array([1]) + >>> np.nancumprod([1, np.nan]) + array([1., 1.]) + >>> a = np.array([[1, 2], [3, np.nan]]) + >>> np.nancumprod(a) + array([1., 2., 6., 6.]) + >>> np.nancumprod(a, axis=0) + array([[1., 2.], + [3., 2.]]) + >>> np.nancumprod(a, axis=1) + array([[1., 2.], + [3., 3.]]) + + """ + a, mask = _replace_nan(a, 1) + return np.cumprod(a, axis=axis, dtype=dtype, out=out) + + +def _nanmean_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None, + *, where=None): + return (a, out) + + +@array_function_dispatch(_nanmean_dispatcher) +def nanmean(a, axis=None, dtype=None, out=None, keepdims=np._NoValue, + *, where=np._NoValue): + """ + Compute the arithmetic mean along the specified axis, ignoring NaNs. + + Returns the average of the array elements. The average is taken over + the flattened array by default, otherwise over the specified axis. + `float64` intermediate and return values are used for integer inputs. + + For all-NaN slices, NaN is returned and a `RuntimeWarning` is raised. + + Parameters + ---------- + a : array_like + Array containing numbers whose mean is desired. If `a` is not an + array, a conversion is attempted. + axis : {int, tuple of int, None}, optional + Axis or axes along which the means are computed. The default is to compute + the mean of the flattened array. + dtype : data-type, optional + Type to use in computing the mean. For integer inputs, the default + is `float64`; for inexact inputs, it is the same as the input + dtype. + out : ndarray, optional + Alternate output array in which to place the result. The default + is ``None``; if provided, it must have the same shape as the + expected output, but the type will be cast if necessary. + See :ref:`ufuncs-output-type` for more details. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the original `a`. + + If the value is anything but the default, then + `keepdims` will be passed through to the `mean` or `sum` methods + of sub-classes of `ndarray`. If the sub-classes methods + does not implement `keepdims` any exceptions will be raised. + where : array_like of bool, optional + Elements to include in the mean. See `~numpy.ufunc.reduce` for details. + + .. versionadded:: 1.22.0 + + Returns + ------- + m : ndarray, see dtype parameter above + If `out=None`, returns a new array containing the mean values, + otherwise a reference to the output array is returned. Nan is + returned for slices that contain only NaNs. + + See Also + -------- + average : Weighted average + mean : Arithmetic mean taken while not ignoring NaNs + var, nanvar + + Notes + ----- + The arithmetic mean is the sum of the non-NaN elements along the axis + divided by the number of non-NaN elements. + + Note that for floating-point input, the mean is computed using the same + precision the input has. Depending on the input data, this can cause + the results to be inaccurate, especially for `float32`. Specifying a + higher-precision accumulator using the `dtype` keyword can alleviate + this issue. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1, np.nan], [3, 4]]) + >>> np.nanmean(a) + 2.6666666666666665 + >>> np.nanmean(a, axis=0) + array([2., 4.]) + >>> np.nanmean(a, axis=1) + array([1., 3.5]) # may vary + + """ + arr, mask = _replace_nan(a, 0) + if mask is None: + return np.mean(arr, axis=axis, dtype=dtype, out=out, keepdims=keepdims, + where=where) + + if dtype is not None: + dtype = np.dtype(dtype) + if dtype is not None and not issubclass(dtype.type, np.inexact): + raise TypeError("If a is inexact, then dtype must be inexact") + if out is not None and not issubclass(out.dtype.type, np.inexact): + raise TypeError("If a is inexact, then out must be inexact") + + cnt = np.sum(~mask, axis=axis, dtype=np.intp, keepdims=keepdims, + where=where) + tot = np.sum(arr, axis=axis, dtype=dtype, out=out, keepdims=keepdims, + where=where) + avg = _divide_by_count(tot, cnt, out=out) + + isbad = (cnt == 0) + if isbad.any(): + warnings.warn("Mean of empty slice", RuntimeWarning, stacklevel=2) + # NaN is the only possible bad value, so no further + # action is needed to handle bad results. + return avg + + +def _nanmedian1d(arr1d, overwrite_input=False): + """ + Private function for rank 1 arrays. Compute the median ignoring NaNs. + See nanmedian for parameter usage + """ + arr1d_parsed, _, overwrite_input = _remove_nan_1d( + arr1d, overwrite_input=overwrite_input, + ) + + if arr1d_parsed.size == 0: + # Ensure that a nan-esque scalar of the appropriate type (and unit) + # is returned for `timedelta64` and `complexfloating` + return arr1d[-1] + + return np.median(arr1d_parsed, overwrite_input=overwrite_input) + + +def _nanmedian(a, axis=None, out=None, overwrite_input=False): + """ + Private function that doesn't support extended axis or keepdims. + These methods are extended to this function using _ureduce + See nanmedian for parameter usage + + """ + if axis is None or a.ndim == 1: + part = a.ravel() + if out is None: + return _nanmedian1d(part, overwrite_input) + else: + out[...] = _nanmedian1d(part, overwrite_input) + return out + else: + # for small medians use sort + indexing which is still faster than + # apply_along_axis + # benchmarked with shuffled (50, 50, x) containing a few NaN + if a.shape[axis] < 600: + return _nanmedian_small(a, axis, out, overwrite_input) + result = np.apply_along_axis(_nanmedian1d, axis, a, overwrite_input) + if out is not None: + out[...] = result + return result + + +def _nanmedian_small(a, axis=None, out=None, overwrite_input=False): + """ + sort + indexing median, faster for small medians along multiple + dimensions due to the high overhead of apply_along_axis + + see nanmedian for parameter usage + """ + a = np.ma.masked_array(a, np.isnan(a)) + m = np.ma.median(a, axis=axis, overwrite_input=overwrite_input) + for i in range(np.count_nonzero(m.mask.ravel())): + warnings.warn("All-NaN slice encountered", RuntimeWarning, + stacklevel=5) + + fill_value = np.timedelta64("NaT") if m.dtype.kind == "m" else np.nan + if out is not None: + out[...] = m.filled(fill_value) + return out + return m.filled(fill_value) + + +def _nanmedian_dispatcher( + a, axis=None, out=None, overwrite_input=None, keepdims=None): + return (a, out) + + +@array_function_dispatch(_nanmedian_dispatcher) +def nanmedian(a, axis=None, out=None, overwrite_input=False, keepdims=np._NoValue): + """ + Compute the median along the specified axis, while ignoring NaNs. + + Returns the median of the array elements. + + Parameters + ---------- + a : array_like + Input array or object that can be converted to an array. + axis : {int, sequence of int, None}, optional + Axis or axes along which the medians are computed. The default + is to compute the median along a flattened version of the array. + A sequence of axes is supported since version 1.9.0. + out : ndarray, optional + Alternative output array in which to place the result. It must + have the same shape and buffer length as the expected output, + but the type (of the output) will be cast if necessary. + overwrite_input : bool, optional + If True, then allow use of memory of input array `a` for + calculations. The input array will be modified by the call to + `median`. This will save memory when you do not need to preserve + the contents of the input array. Treat the input as undefined, + but it will probably be fully or partially sorted. Default is + False. If `overwrite_input` is ``True`` and `a` is not already an + `ndarray`, an error will be raised. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the original `a`. + + If this is anything but the default value it will be passed + through (in the special case of an empty array) to the + `mean` function of the underlying array. If the array is + a sub-class and `mean` does not have the kwarg `keepdims` this + will raise a RuntimeError. + + Returns + ------- + median : ndarray + A new array holding the result. If the input contains integers + or floats smaller than ``float64``, then the output data-type is + ``np.float64``. Otherwise, the data-type of the output is the + same as that of the input. If `out` is specified, that array is + returned instead. + + See Also + -------- + mean, median, percentile + + Notes + ----- + Given a vector ``V`` of length ``N``, the median of ``V`` is the + middle value of a sorted copy of ``V``, ``V_sorted`` - i.e., + ``V_sorted[(N-1)/2]``, when ``N`` is odd and the average of the two + middle values of ``V_sorted`` when ``N`` is even. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[10.0, 7, 4], [3, 2, 1]]) + >>> a[0, 1] = np.nan + >>> a + array([[10., nan, 4.], + [ 3., 2., 1.]]) + >>> np.median(a) + np.float64(nan) + >>> np.nanmedian(a) + 3.0 + >>> np.nanmedian(a, axis=0) + array([6.5, 2. , 2.5]) + >>> np.median(a, axis=1) + array([nan, 2.]) + >>> b = a.copy() + >>> np.nanmedian(b, axis=1, overwrite_input=True) + array([7., 2.]) + >>> assert not np.all(a==b) + >>> b = a.copy() + >>> np.nanmedian(b, axis=None, overwrite_input=True) + 3.0 + >>> assert not np.all(a==b) + + """ + a = np.asanyarray(a) + # apply_along_axis in _nanmedian doesn't handle empty arrays well, + # so deal them upfront + if a.size == 0: + return np.nanmean(a, axis, out=out, keepdims=keepdims) + + return fnb._ureduce(a, func=_nanmedian, keepdims=keepdims, + axis=axis, out=out, + overwrite_input=overwrite_input) + + +def _nanpercentile_dispatcher( + a, q, axis=None, out=None, overwrite_input=None, + method=None, keepdims=None, *, weights=None, interpolation=None): + return (a, q, out, weights) + + +@array_function_dispatch(_nanpercentile_dispatcher) +def nanpercentile( + a, + q, + axis=None, + out=None, + overwrite_input=False, + method="linear", + keepdims=np._NoValue, + *, + weights=None, + interpolation=None, +): + """ + Compute the qth percentile of the data along the specified axis, + while ignoring nan values. + + Returns the qth percentile(s) of the array elements. + + Parameters + ---------- + a : array_like + Input array or object that can be converted to an array, containing + nan values to be ignored. + q : array_like of float + Percentile or sequence of percentiles to compute, which must be + between 0 and 100 inclusive. + axis : {int, tuple of int, None}, optional + Axis or axes along which the percentiles are computed. The default + is to compute the percentile(s) along a flattened version of the + array. + out : ndarray, optional + Alternative output array in which to place the result. It must have + the same shape and buffer length as the expected output, but the + type (of the output) will be cast if necessary. + overwrite_input : bool, optional + If True, then allow the input array `a` to be modified by + intermediate calculations, to save memory. In this case, the + contents of the input `a` after this function completes is + undefined. + method : str, optional + This parameter specifies the method to use for estimating the + percentile. There are many different methods, some unique to NumPy. + See the notes for explanation. The options sorted by their R type + as summarized in the H&F paper [1]_ are: + + 1. 'inverted_cdf' + 2. 'averaged_inverted_cdf' + 3. 'closest_observation' + 4. 'interpolated_inverted_cdf' + 5. 'hazen' + 6. 'weibull' + 7. 'linear' (default) + 8. 'median_unbiased' + 9. 'normal_unbiased' + + The first three methods are discontinuous. NumPy further defines the + following discontinuous variations of the default 'linear' (7.) option: + + * 'lower' + * 'higher', + * 'midpoint' + * 'nearest' + + .. versionchanged:: 1.22.0 + This argument was previously called "interpolation" and only + offered the "linear" default and last four options. + + keepdims : bool, optional + If this is set to True, the axes which are reduced are left in + the result as dimensions with size one. With this option, the + result will broadcast correctly against the original array `a`. + + If this is anything but the default value it will be passed + through (in the special case of an empty array) to the + `mean` function of the underlying array. If the array is + a sub-class and `mean` does not have the kwarg `keepdims` this + will raise a RuntimeError. + + weights : array_like, optional + An array of weights associated with the values in `a`. Each value in + `a` contributes to the percentile according to its associated weight. + The weights array can either be 1-D (in which case its length must be + the size of `a` along the given axis) or of the same shape as `a`. + If `weights=None`, then all data in `a` are assumed to have a + weight equal to one. + Only `method="inverted_cdf"` supports weights. + + .. versionadded:: 2.0.0 + + interpolation : str, optional + Deprecated name for the method keyword argument. + + .. deprecated:: 1.22.0 + + Returns + ------- + percentile : scalar or ndarray + If `q` is a single percentile and `axis=None`, then the result + is a scalar. If multiple percentiles are given, first axis of + the result corresponds to the percentiles. The other axes are + the axes that remain after the reduction of `a`. If the input + contains integers or floats smaller than ``float64``, the output + data-type is ``float64``. Otherwise, the output data-type is the + same as that of the input. If `out` is specified, that array is + returned instead. + + See Also + -------- + nanmean + nanmedian : equivalent to ``nanpercentile(..., 50)`` + percentile, median, mean + nanquantile : equivalent to nanpercentile, except q in range [0, 1]. + + Notes + ----- + The behavior of `numpy.nanpercentile` with percentage `q` is that of + `numpy.quantile` with argument ``q/100`` (ignoring nan values). + For more information, please see `numpy.quantile`. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[10., 7., 4.], [3., 2., 1.]]) + >>> a[0][1] = np.nan + >>> a + array([[10., nan, 4.], + [ 3., 2., 1.]]) + >>> np.percentile(a, 50) + np.float64(nan) + >>> np.nanpercentile(a, 50) + 3.0 + >>> np.nanpercentile(a, 50, axis=0) + array([6.5, 2. , 2.5]) + >>> np.nanpercentile(a, 50, axis=1, keepdims=True) + array([[7.], + [2.]]) + >>> m = np.nanpercentile(a, 50, axis=0) + >>> out = np.zeros_like(m) + >>> np.nanpercentile(a, 50, axis=0, out=out) + array([6.5, 2. , 2.5]) + >>> m + array([6.5, 2. , 2.5]) + + >>> b = a.copy() + >>> np.nanpercentile(b, 50, axis=1, overwrite_input=True) + array([7., 2.]) + >>> assert not np.all(a==b) + + References + ---------- + .. [1] R. J. Hyndman and Y. Fan, + "Sample quantiles in statistical packages," + The American Statistician, 50(4), pp. 361-365, 1996 + + """ + if interpolation is not None: + method = fnb._check_interpolation_as_method( + method, interpolation, "nanpercentile") + + a = np.asanyarray(a) + if a.dtype.kind == "c": + raise TypeError("a must be an array of real numbers") + + q = np.true_divide(q, a.dtype.type(100) if a.dtype.kind == "f" else 100, out=...) + if not fnb._quantile_is_valid(q): + raise ValueError("Percentiles must be in the range [0, 100]") + + if weights is not None: + if method != "inverted_cdf": + msg = ("Only method 'inverted_cdf' supports weights. " + f"Got: {method}.") + raise ValueError(msg) + if axis is not None: + axis = _nx.normalize_axis_tuple(axis, a.ndim, argname="axis") + weights = _weights_are_valid(weights=weights, a=a, axis=axis) + if np.any(weights < 0): + raise ValueError("Weights must be non-negative.") + + return _nanquantile_unchecked( + a, q, axis, out, overwrite_input, method, keepdims, weights) + + +def _nanquantile_dispatcher(a, q, axis=None, out=None, overwrite_input=None, + method=None, keepdims=None, *, weights=None, + interpolation=None): + return (a, q, out, weights) + + +@array_function_dispatch(_nanquantile_dispatcher) +def nanquantile( + a, + q, + axis=None, + out=None, + overwrite_input=False, + method="linear", + keepdims=np._NoValue, + *, + weights=None, + interpolation=None, +): + """ + Compute the qth quantile of the data along the specified axis, + while ignoring nan values. + Returns the qth quantile(s) of the array elements. + + Parameters + ---------- + a : array_like + Input array or object that can be converted to an array, containing + nan values to be ignored + q : array_like of float + Probability or sequence of probabilities for the quantiles to compute. + Values must be between 0 and 1 inclusive. + axis : {int, tuple of int, None}, optional + Axis or axes along which the quantiles are computed. The + default is to compute the quantile(s) along a flattened + version of the array. + out : ndarray, optional + Alternative output array in which to place the result. It must + have the same shape and buffer length as the expected output, + but the type (of the output) will be cast if necessary. + overwrite_input : bool, optional + If True, then allow the input array `a` to be modified by intermediate + calculations, to save memory. In this case, the contents of the input + `a` after this function completes is undefined. + method : str, optional + This parameter specifies the method to use for estimating the + quantile. There are many different methods, some unique to NumPy. + See the notes for explanation. The options sorted by their R type + as summarized in the H&F paper [1]_ are: + + 1. 'inverted_cdf' + 2. 'averaged_inverted_cdf' + 3. 'closest_observation' + 4. 'interpolated_inverted_cdf' + 5. 'hazen' + 6. 'weibull' + 7. 'linear' (default) + 8. 'median_unbiased' + 9. 'normal_unbiased' + + The first three methods are discontinuous. NumPy further defines the + following discontinuous variations of the default 'linear' (7.) option: + + * 'lower' + * 'higher', + * 'midpoint' + * 'nearest' + + .. versionchanged:: 1.22.0 + This argument was previously called "interpolation" and only + offered the "linear" default and last four options. + + keepdims : bool, optional + If this is set to True, the axes which are reduced are left in + the result as dimensions with size one. With this option, the + result will broadcast correctly against the original array `a`. + + If this is anything but the default value it will be passed + through (in the special case of an empty array) to the + `mean` function of the underlying array. If the array is + a sub-class and `mean` does not have the kwarg `keepdims` this + will raise a RuntimeError. + + weights : array_like, optional + An array of weights associated with the values in `a`. Each value in + `a` contributes to the quantile according to its associated weight. + The weights array can either be 1-D (in which case its length must be + the size of `a` along the given axis) or of the same shape as `a`. + If `weights=None`, then all data in `a` are assumed to have a + weight equal to one. + Only `method="inverted_cdf"` supports weights. + + .. versionadded:: 2.0.0 + + interpolation : str, optional + Deprecated name for the method keyword argument. + + .. deprecated:: 1.22.0 + + Returns + ------- + quantile : scalar or ndarray + If `q` is a single probability and `axis=None`, then the result + is a scalar. If multiple probability levels are given, first axis of + the result corresponds to the quantiles. The other axes are + the axes that remain after the reduction of `a`. If the input + contains integers or floats smaller than ``float64``, the output + data-type is ``float64``. Otherwise, the output data-type is the + same as that of the input. If `out` is specified, that array is + returned instead. + + See Also + -------- + quantile + nanmean, nanmedian + nanmedian : equivalent to ``nanquantile(..., 0.5)`` + nanpercentile : same as nanquantile, but with q in the range [0, 100]. + + Notes + ----- + The behavior of `numpy.nanquantile` is the same as that of + `numpy.quantile` (ignoring nan values). + For more information, please see `numpy.quantile`. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[10., 7., 4.], [3., 2., 1.]]) + >>> a[0][1] = np.nan + >>> a + array([[10., nan, 4.], + [ 3., 2., 1.]]) + >>> np.quantile(a, 0.5) + np.float64(nan) + >>> np.nanquantile(a, 0.5) + 3.0 + >>> np.nanquantile(a, 0.5, axis=0) + array([6.5, 2. , 2.5]) + >>> np.nanquantile(a, 0.5, axis=1, keepdims=True) + array([[7.], + [2.]]) + >>> m = np.nanquantile(a, 0.5, axis=0) + >>> out = np.zeros_like(m) + >>> np.nanquantile(a, 0.5, axis=0, out=out) + array([6.5, 2. , 2.5]) + >>> m + array([6.5, 2. , 2.5]) + >>> b = a.copy() + >>> np.nanquantile(b, 0.5, axis=1, overwrite_input=True) + array([7., 2.]) + >>> assert not np.all(a==b) + + References + ---------- + .. [1] R. J. Hyndman and Y. Fan, + "Sample quantiles in statistical packages," + The American Statistician, 50(4), pp. 361-365, 1996 + + """ + + if interpolation is not None: + method = fnb._check_interpolation_as_method( + method, interpolation, "nanquantile") + + a = np.asanyarray(a) + if a.dtype.kind == "c": + raise TypeError("a must be an array of real numbers") + + # Use dtype of array if possible (e.g., if q is a python int or float). + if isinstance(q, (int, float)) and a.dtype.kind == "f": + q = np.asanyarray(q, dtype=a.dtype) + else: + q = np.asanyarray(q) + + if not fnb._quantile_is_valid(q): + raise ValueError("Quantiles must be in the range [0, 1]") + + if weights is not None: + if method != "inverted_cdf": + msg = ("Only method 'inverted_cdf' supports weights. " + f"Got: {method}.") + raise ValueError(msg) + if axis is not None: + axis = _nx.normalize_axis_tuple(axis, a.ndim, argname="axis") + weights = _weights_are_valid(weights=weights, a=a, axis=axis) + if np.any(weights < 0): + raise ValueError("Weights must be non-negative.") + + return _nanquantile_unchecked( + a, q, axis, out, overwrite_input, method, keepdims, weights) + + +def _nanquantile_unchecked( + a, + q, + axis=None, + out=None, + overwrite_input=False, + method="linear", + keepdims=np._NoValue, + weights=None, +): + """Assumes that q is in [0, 1], and is an ndarray""" + # apply_along_axis in _nanpercentile doesn't handle empty arrays well, + # so deal them upfront + if a.size == 0: + return np.nanmean(a, axis, out=out, keepdims=keepdims) + return fnb._ureduce(a, + func=_nanquantile_ureduce_func, + q=q, + weights=weights, + keepdims=keepdims, + axis=axis, + out=out, + overwrite_input=overwrite_input, + method=method) + + +def _nanquantile_ureduce_func( + a: np.array, + q: np.array, + weights: np.array, + axis: int | None = None, + out=None, + overwrite_input: bool = False, + method="linear", +): + """ + Private function that doesn't support extended axis or keepdims. + These methods are extended to this function using _ureduce + See nanpercentile for parameter usage + """ + if axis is None or a.ndim == 1: + part = a.ravel() + wgt = None if weights is None else weights.ravel() + result = _nanquantile_1d(part, q, overwrite_input, method, weights=wgt) + # Note that this code could try to fill in `out` right away + elif weights is None: + result = np.apply_along_axis(_nanquantile_1d, axis, a, q, + overwrite_input, method, weights) + # apply_along_axis fills in collapsed axis with results. + # Move those axes to the beginning to match percentile's + # convention. + if q.ndim != 0: + from_ax = [axis + i for i in range(q.ndim)] + result = np.moveaxis(result, from_ax, list(range(q.ndim))) + else: + # We need to apply along axis over 2 arrays, a and weights. + # move operation axes to end for simplicity: + a = np.moveaxis(a, axis, -1) + if weights is not None: + weights = np.moveaxis(weights, axis, -1) + if out is not None: + result = out + else: + # weights are limited to `inverted_cdf` so the result dtype + # is known to be identical to that of `a` here: + result = np.empty_like(a, shape=q.shape + a.shape[:-1]) + + for ii in np.ndindex(a.shape[:-1]): + result[(...,) + ii] = _nanquantile_1d( + a[ii], q, weights=weights[ii], + overwrite_input=overwrite_input, method=method, + ) + # This path dealt with `out` already... + return result + + if out is not None: + out[...] = result + return result + + +def _nanquantile_1d( + arr1d, q, overwrite_input=False, method="linear", weights=None, +): + """ + Private function for rank 1 arrays. Compute quantile ignoring NaNs. + See nanpercentile for parameter usage + """ + # TODO: What to do when arr1d = [1, np.nan] and weights = [0, 1]? + arr1d, weights, overwrite_input = _remove_nan_1d(arr1d, + second_arr1d=weights, overwrite_input=overwrite_input) + if arr1d.size == 0: + # convert to scalar + return np.full(q.shape, np.nan, dtype=arr1d.dtype)[()] + + return fnb._quantile_unchecked( + arr1d, + q, + overwrite_input=overwrite_input, + method=method, + weights=weights, + ) + + +def _nanvar_dispatcher(a, axis=None, dtype=None, out=None, ddof=None, + keepdims=None, *, where=None, mean=None, + correction=None): + return (a, out) + + +@array_function_dispatch(_nanvar_dispatcher) +def nanvar(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue, + *, where=np._NoValue, mean=np._NoValue, correction=np._NoValue): + """ + Compute the variance along the specified axis, while ignoring NaNs. + + Returns the variance of the array elements, a measure of the spread of + a distribution. The variance is computed for the flattened array by + default, otherwise over the specified axis. + + For all-NaN slices or slices with zero degrees of freedom, NaN is + returned and a `RuntimeWarning` is raised. + + Parameters + ---------- + a : array_like + Array containing numbers whose variance is desired. If `a` is not an + array, a conversion is attempted. + axis : {int, tuple of int, None}, optional + Axis or axes along which the variance is computed. The default is to compute + the variance of the flattened array. + dtype : data-type, optional + Type to use in computing the variance. For arrays of integer type + the default is `float64`; for arrays of float types it is the same as + the array type. + out : ndarray, optional + Alternate output array in which to place the result. It must have + the same shape as the expected output, but the type is cast if + necessary. + ddof : {int, float}, optional + "Delta Degrees of Freedom": the divisor used in the calculation is + ``N - ddof``, where ``N`` represents the number of non-NaN + elements. By default `ddof` is zero. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the original `a`. + where : array_like of bool, optional + Elements to include in the variance. See `~numpy.ufunc.reduce` for + details. + + .. versionadded:: 1.22.0 + + mean : array_like, optional + Provide the mean to prevent its recalculation. The mean should have + a shape as if it was calculated with ``keepdims=True``. + The axis for the calculation of the mean should be the same as used in + the call to this var function. + + .. versionadded:: 2.0.0 + + correction : {int, float}, optional + Array API compatible name for the ``ddof`` parameter. Only one of them + can be provided at the same time. + + .. versionadded:: 2.0.0 + + Returns + ------- + variance : ndarray, see dtype parameter above + If `out` is None, return a new array containing the variance, + otherwise return a reference to the output array. If ddof is >= the + number of non-NaN elements in a slice or the slice contains only + NaNs, then the result for that slice is NaN. + + See Also + -------- + std : Standard deviation + mean : Average + var : Variance while not ignoring NaNs + nanstd, nanmean + :ref:`ufuncs-output-type` + + Notes + ----- + The variance is the average of the squared deviations from the mean, + i.e., ``var = mean(abs(x - x.mean())**2)``. + + The mean is normally calculated as ``x.sum() / N``, where ``N = len(x)``. + If, however, `ddof` is specified, the divisor ``N - ddof`` is used + instead. In standard statistical practice, ``ddof=1`` provides an + unbiased estimator of the variance of a hypothetical infinite + population. ``ddof=0`` provides a maximum likelihood estimate of the + variance for normally distributed variables. + + Note that for complex numbers, the absolute value is taken before + squaring, so that the result is always real and nonnegative. + + For floating-point input, the variance is computed using the same + precision the input has. Depending on the input data, this can cause + the results to be inaccurate, especially for `float32` (see example + below). Specifying a higher-accuracy accumulator using the ``dtype`` + keyword can alleviate this issue. + + For this function to work on sub-classes of ndarray, they must define + `sum` with the kwarg `keepdims` + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1, np.nan], [3, 4]]) + >>> np.nanvar(a) + 1.5555555555555554 + >>> np.nanvar(a, axis=0) + array([1., 0.]) + >>> np.nanvar(a, axis=1) + array([0., 0.25]) # may vary + + """ + arr, mask = _replace_nan(a, 0) + if mask is None: + return np.var(arr, axis=axis, dtype=dtype, out=out, ddof=ddof, + keepdims=keepdims, where=where, mean=mean, + correction=correction) + + if dtype is not None: + dtype = np.dtype(dtype) + if dtype is not None and not issubclass(dtype.type, np.inexact): + raise TypeError("If a is inexact, then dtype must be inexact") + if out is not None and not issubclass(out.dtype.type, np.inexact): + raise TypeError("If a is inexact, then out must be inexact") + + if correction != np._NoValue: + if ddof != 0: + raise ValueError( + "ddof and correction can't be provided simultaneously." + ) + else: + ddof = correction + + # Compute mean + if type(arr) is np.matrix: + _keepdims = np._NoValue + else: + _keepdims = True + + cnt = np.sum(~mask, axis=axis, dtype=np.intp, keepdims=_keepdims, + where=where) + + if mean is not np._NoValue: + avg = mean + else: + # we need to special case matrix for reverse compatibility + # in order for this to work, these sums need to be called with + # keepdims=True, however matrix now raises an error in this case, but + # the reason that it drops the keepdims kwarg is to force keepdims=True + # so this used to work by serendipity. + avg = np.sum(arr, axis=axis, dtype=dtype, + keepdims=_keepdims, where=where) + avg = _divide_by_count(avg, cnt) + + # Compute squared deviation from mean. + np.subtract(arr, avg, out=arr, casting='unsafe', where=where) + arr = _copyto(arr, 0, mask) + if issubclass(arr.dtype.type, np.complexfloating): + sqr = np.multiply(arr, arr.conj(), out=arr, where=where).real + else: + sqr = np.multiply(arr, arr, out=arr, where=where) + + # Compute variance. + var = np.sum(sqr, axis=axis, dtype=dtype, out=out, keepdims=keepdims, + where=where) + + # Precaution against reduced object arrays + try: + var_ndim = var.ndim + except AttributeError: + var_ndim = np.ndim(var) + if var_ndim < cnt.ndim: + # Subclasses of ndarray may ignore keepdims, so check here. + cnt = cnt.squeeze(axis) + dof = cnt - ddof + var = _divide_by_count(var, dof) + + isbad = (dof <= 0) + if np.any(isbad): + warnings.warn("Degrees of freedom <= 0 for slice.", RuntimeWarning, + stacklevel=2) + # NaN, inf, or negative numbers are all possible bad + # values, so explicitly replace them with NaN. + var = _copyto(var, np.nan, isbad) + return var + + +def _nanstd_dispatcher(a, axis=None, dtype=None, out=None, ddof=None, + keepdims=None, *, where=None, mean=None, + correction=None): + return (a, out) + + +@array_function_dispatch(_nanstd_dispatcher) +def nanstd(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue, + *, where=np._NoValue, mean=np._NoValue, correction=np._NoValue): + """ + Compute the standard deviation along the specified axis, while + ignoring NaNs. + + Returns the standard deviation, a measure of the spread of a + distribution, of the non-NaN array elements. The standard deviation is + computed for the flattened array by default, otherwise over the + specified axis. + + For all-NaN slices or slices with zero degrees of freedom, NaN is + returned and a `RuntimeWarning` is raised. + + Parameters + ---------- + a : array_like + Calculate the standard deviation of the non-NaN values. + axis : {int, tuple of int, None}, optional + Axis or axes along which the standard deviation is computed. The default is + to compute the standard deviation of the flattened array. + dtype : dtype, optional + Type to use in computing the standard deviation. For arrays of + integer type the default is float64, for arrays of float types it + is the same as the array type. + out : ndarray, optional + Alternative output array in which to place the result. It must have + the same shape as the expected output but the type (of the + calculated values) will be cast if necessary. + ddof : {int, float}, optional + Means Delta Degrees of Freedom. The divisor used in calculations + is ``N - ddof``, where ``N`` represents the number of non-NaN + elements. By default `ddof` is zero. + + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the original `a`. + + If this value is anything but the default it is passed through + as-is to the relevant functions of the sub-classes. If these + functions do not have a `keepdims` kwarg, a RuntimeError will + be raised. + where : array_like of bool, optional + Elements to include in the standard deviation. + See `~numpy.ufunc.reduce` for details. + + .. versionadded:: 1.22.0 + + mean : array_like, optional + Provide the mean to prevent its recalculation. The mean should have + a shape as if it was calculated with ``keepdims=True``. + The axis for the calculation of the mean should be the same as used in + the call to this std function. + + .. versionadded:: 2.0.0 + + correction : {int, float}, optional + Array API compatible name for the ``ddof`` parameter. Only one of them + can be provided at the same time. + + .. versionadded:: 2.0.0 + + Returns + ------- + standard_deviation : ndarray, see dtype parameter above. + If `out` is None, return a new array containing the standard + deviation, otherwise return a reference to the output array. If + ddof is >= the number of non-NaN elements in a slice or the slice + contains only NaNs, then the result for that slice is NaN. + + See Also + -------- + var, mean, std + nanvar, nanmean + :ref:`ufuncs-output-type` + + Notes + ----- + The standard deviation is the square root of the average of the squared + deviations from the mean: ``std = sqrt(mean(abs(x - x.mean())**2))``. + + The average squared deviation is normally calculated as + ``x.sum() / N``, where ``N = len(x)``. If, however, `ddof` is + specified, the divisor ``N - ddof`` is used instead. In standard + statistical practice, ``ddof=1`` provides an unbiased estimator of the + variance of the infinite population. ``ddof=0`` provides a maximum + likelihood estimate of the variance for normally distributed variables. + The standard deviation computed in this function is the square root of + the estimated variance, so even with ``ddof=1``, it will not be an + unbiased estimate of the standard deviation per se. + + Note that, for complex numbers, `std` takes the absolute value before + squaring, so that the result is always real and nonnegative. + + For floating-point input, the *std* is computed using the same + precision the input has. Depending on the input data, this can cause + the results to be inaccurate, especially for float32 (see example + below). Specifying a higher-accuracy accumulator using the `dtype` + keyword can alleviate this issue. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([[1, np.nan], [3, 4]]) + >>> np.nanstd(a) + 1.247219128924647 + >>> np.nanstd(a, axis=0) + array([1., 0.]) + >>> np.nanstd(a, axis=1) + array([0., 0.5]) # may vary + + """ + var = nanvar(a, axis=axis, dtype=dtype, out=out, ddof=ddof, + keepdims=keepdims, where=where, mean=mean, + correction=correction) + if isinstance(var, np.ndarray): + std = np.sqrt(var, out=var) + elif hasattr(var, 'dtype'): + std = var.dtype.type(np.sqrt(var)) + else: + std = np.sqrt(var) + return std diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_nanfunctions_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_nanfunctions_impl.pyi new file mode 100644 index 0000000..f39800d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_nanfunctions_impl.pyi @@ -0,0 +1,52 @@ +from numpy._core.fromnumeric import ( + amax, + amin, + argmax, + argmin, + cumprod, + cumsum, + mean, + prod, + std, + sum, + var, +) +from numpy.lib._function_base_impl import ( + median, + percentile, + quantile, +) + +__all__ = [ + "nansum", + "nanmax", + "nanmin", + "nanargmax", + "nanargmin", + "nanmean", + "nanmedian", + "nanpercentile", + "nanvar", + "nanstd", + "nanprod", + "nancumsum", + "nancumprod", + "nanquantile", +] + +# NOTE: In reality these functions are not aliases but distinct functions +# with identical signatures. +nanmin = amin +nanmax = amax +nanargmin = argmin +nanargmax = argmax +nansum = sum +nanprod = prod +nancumsum = cumsum +nancumprod = cumprod +nanmean = mean +nanvar = var +nanstd = std +nanmedian = median +nanpercentile = percentile +nanquantile = quantile diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_npyio_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_npyio_impl.py new file mode 100644 index 0000000..6aea567 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_npyio_impl.py @@ -0,0 +1,2596 @@ +""" +IO related functions. +""" +import contextlib +import functools +import itertools +import operator +import os +import pickle +import re +import warnings +import weakref +from collections.abc import Mapping +from operator import itemgetter + +import numpy as np +from numpy._core import overrides +from numpy._core._multiarray_umath import _load_from_filelike +from numpy._core.multiarray import packbits, unpackbits +from numpy._core.overrides import finalize_array_function_like, set_module +from numpy._utils import asbytes, asunicode + +from . import format +from ._datasource import DataSource # noqa: F401 +from ._format_impl import _MAX_HEADER_SIZE +from ._iotools import ( + ConversionWarning, + ConverterError, + ConverterLockError, + LineSplitter, + NameValidator, + StringConverter, + _decode_line, + _is_string_like, + easy_dtype, + flatten_dtype, + has_nested_fields, +) + +__all__ = [ + 'savetxt', 'loadtxt', 'genfromtxt', 'load', 'save', 'savez', + 'savez_compressed', 'packbits', 'unpackbits', 'fromregex' + ] + + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy') + + +class BagObj: + """ + BagObj(obj) + + Convert attribute look-ups to getitems on the object passed in. + + Parameters + ---------- + obj : class instance + Object on which attribute look-up is performed. + + Examples + -------- + >>> import numpy as np + >>> from numpy.lib._npyio_impl import BagObj as BO + >>> class BagDemo: + ... def __getitem__(self, key): # An instance of BagObj(BagDemo) + ... # will call this method when any + ... # attribute look-up is required + ... result = "Doesn't matter what you want, " + ... return result + "you're gonna get this" + ... + >>> demo_obj = BagDemo() + >>> bagobj = BO(demo_obj) + >>> bagobj.hello_there + "Doesn't matter what you want, you're gonna get this" + >>> bagobj.I_can_be_anything + "Doesn't matter what you want, you're gonna get this" + + """ + + def __init__(self, obj): + # Use weakref to make NpzFile objects collectable by refcount + self._obj = weakref.proxy(obj) + + def __getattribute__(self, key): + try: + return object.__getattribute__(self, '_obj')[key] + except KeyError: + raise AttributeError(key) from None + + def __dir__(self): + """ + Enables dir(bagobj) to list the files in an NpzFile. + + This also enables tab-completion in an interpreter or IPython. + """ + return list(object.__getattribute__(self, '_obj').keys()) + + +def zipfile_factory(file, *args, **kwargs): + """ + Create a ZipFile. + + Allows for Zip64, and the `file` argument can accept file, str, or + pathlib.Path objects. `args` and `kwargs` are passed to the zipfile.ZipFile + constructor. + """ + if not hasattr(file, 'read'): + file = os.fspath(file) + import zipfile + kwargs['allowZip64'] = True + return zipfile.ZipFile(file, *args, **kwargs) + + +@set_module('numpy.lib.npyio') +class NpzFile(Mapping): + """ + NpzFile(fid) + + A dictionary-like object with lazy-loading of files in the zipped + archive provided on construction. + + `NpzFile` is used to load files in the NumPy ``.npz`` data archive + format. It assumes that files in the archive have a ``.npy`` extension, + other files are ignored. + + The arrays and file strings are lazily loaded on either + getitem access using ``obj['key']`` or attribute lookup using + ``obj.f.key``. A list of all files (without ``.npy`` extensions) can + be obtained with ``obj.files`` and the ZipFile object itself using + ``obj.zip``. + + Attributes + ---------- + files : list of str + List of all files in the archive with a ``.npy`` extension. + zip : ZipFile instance + The ZipFile object initialized with the zipped archive. + f : BagObj instance + An object on which attribute can be performed as an alternative + to getitem access on the `NpzFile` instance itself. + allow_pickle : bool, optional + Allow loading pickled data. Default: False + pickle_kwargs : dict, optional + Additional keyword arguments to pass on to pickle.load. + These are only useful when loading object arrays saved on + Python 2. + max_header_size : int, optional + Maximum allowed size of the header. Large headers may not be safe + to load securely and thus require explicitly passing a larger value. + See :py:func:`ast.literal_eval()` for details. + This option is ignored when `allow_pickle` is passed. In that case + the file is by definition trusted and the limit is unnecessary. + + Parameters + ---------- + fid : file, str, or pathlib.Path + The zipped archive to open. This is either a file-like object + or a string containing the path to the archive. + own_fid : bool, optional + Whether NpzFile should close the file handle. + Requires that `fid` is a file-like object. + + Examples + -------- + >>> import numpy as np + >>> from tempfile import TemporaryFile + >>> outfile = TemporaryFile() + >>> x = np.arange(10) + >>> y = np.sin(x) + >>> np.savez(outfile, x=x, y=y) + >>> _ = outfile.seek(0) + + >>> npz = np.load(outfile) + >>> isinstance(npz, np.lib.npyio.NpzFile) + True + >>> npz + NpzFile 'object' with keys: x, y + >>> sorted(npz.files) + ['x', 'y'] + >>> npz['x'] # getitem access + array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) + >>> npz.f.x # attribute lookup + array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) + + """ + # Make __exit__ safe if zipfile_factory raises an exception + zip = None + fid = None + _MAX_REPR_ARRAY_COUNT = 5 + + def __init__(self, fid, own_fid=False, allow_pickle=False, + pickle_kwargs=None, *, + max_header_size=_MAX_HEADER_SIZE): + # Import is postponed to here since zipfile depends on gzip, an + # optional component of the so-called standard library. + _zip = zipfile_factory(fid) + _files = _zip.namelist() + self.files = [name.removesuffix(".npy") for name in _files] + self._files = dict(zip(self.files, _files)) + self._files.update(zip(_files, _files)) + self.allow_pickle = allow_pickle + self.max_header_size = max_header_size + self.pickle_kwargs = pickle_kwargs + self.zip = _zip + self.f = BagObj(self) + if own_fid: + self.fid = fid + + def __enter__(self): + return self + + def __exit__(self, exc_type, exc_value, traceback): + self.close() + + def close(self): + """ + Close the file. + + """ + if self.zip is not None: + self.zip.close() + self.zip = None + if self.fid is not None: + self.fid.close() + self.fid = None + self.f = None # break reference cycle + + def __del__(self): + self.close() + + # Implement the Mapping ABC + def __iter__(self): + return iter(self.files) + + def __len__(self): + return len(self.files) + + def __getitem__(self, key): + try: + key = self._files[key] + except KeyError: + raise KeyError(f"{key} is not a file in the archive") from None + else: + with self.zip.open(key) as bytes: + magic = bytes.read(len(format.MAGIC_PREFIX)) + bytes.seek(0) + if magic == format.MAGIC_PREFIX: + # FIXME: This seems like it will copy strings around + # more than is strictly necessary. The zipfile + # will read the string and then + # the format.read_array will copy the string + # to another place in memory. + # It would be better if the zipfile could read + # (or at least uncompress) the data + # directly into the array memory. + return format.read_array( + bytes, + allow_pickle=self.allow_pickle, + pickle_kwargs=self.pickle_kwargs, + max_header_size=self.max_header_size + ) + else: + return bytes.read() + + def __contains__(self, key): + return (key in self._files) + + def __repr__(self): + # Get filename or default to `object` + if isinstance(self.fid, str): + filename = self.fid + else: + filename = getattr(self.fid, "name", "object") + + # Get the name of arrays + array_names = ', '.join(self.files[:self._MAX_REPR_ARRAY_COUNT]) + if len(self.files) > self._MAX_REPR_ARRAY_COUNT: + array_names += "..." + return f"NpzFile {filename!r} with keys: {array_names}" + + # Work around problems with the docstrings in the Mapping methods + # They contain a `->`, which confuses the type annotation interpretations + # of sphinx-docs. See gh-25964 + + def get(self, key, default=None, /): + """ + D.get(k,[,d]) returns D[k] if k in D, else d. d defaults to None. + """ + return Mapping.get(self, key, default) + + def items(self): + """ + D.items() returns a set-like object providing a view on the items + """ + return Mapping.items(self) + + def keys(self): + """ + D.keys() returns a set-like object providing a view on the keys + """ + return Mapping.keys(self) + + def values(self): + """ + D.values() returns a set-like object providing a view on the values + """ + return Mapping.values(self) + + +@set_module('numpy') +def load(file, mmap_mode=None, allow_pickle=False, fix_imports=True, + encoding='ASCII', *, max_header_size=_MAX_HEADER_SIZE): + """ + Load arrays or pickled objects from ``.npy``, ``.npz`` or pickled files. + + .. warning:: Loading files that contain object arrays uses the ``pickle`` + module, which is not secure against erroneous or maliciously + constructed data. Consider passing ``allow_pickle=False`` to + load data that is known not to contain object arrays for the + safer handling of untrusted sources. + + Parameters + ---------- + file : file-like object, string, or pathlib.Path + The file to read. File-like objects must support the + ``seek()`` and ``read()`` methods and must always + be opened in binary mode. Pickled files require that the + file-like object support the ``readline()`` method as well. + mmap_mode : {None, 'r+', 'r', 'w+', 'c'}, optional + If not None, then memory-map the file, using the given mode (see + `numpy.memmap` for a detailed description of the modes). A + memory-mapped array is kept on disk. However, it can be accessed + and sliced like any ndarray. Memory mapping is especially useful + for accessing small fragments of large files without reading the + entire file into memory. + allow_pickle : bool, optional + Allow loading pickled object arrays stored in npy files. Reasons for + disallowing pickles include security, as loading pickled data can + execute arbitrary code. If pickles are disallowed, loading object + arrays will fail. Default: False + fix_imports : bool, optional + Only useful when loading Python 2 generated pickled files, + which includes npy/npz files containing object arrays. If `fix_imports` + is True, pickle will try to map the old Python 2 names to the new names + used in Python 3. + encoding : str, optional + What encoding to use when reading Python 2 strings. Only useful when + loading Python 2 generated pickled files, which includes + npy/npz files containing object arrays. Values other than 'latin1', + 'ASCII', and 'bytes' are not allowed, as they can corrupt numerical + data. Default: 'ASCII' + max_header_size : int, optional + Maximum allowed size of the header. Large headers may not be safe + to load securely and thus require explicitly passing a larger value. + See :py:func:`ast.literal_eval()` for details. + This option is ignored when `allow_pickle` is passed. In that case + the file is by definition trusted and the limit is unnecessary. + + Returns + ------- + result : array, tuple, dict, etc. + Data stored in the file. For ``.npz`` files, the returned instance + of NpzFile class must be closed to avoid leaking file descriptors. + + Raises + ------ + OSError + If the input file does not exist or cannot be read. + UnpicklingError + If ``allow_pickle=True``, but the file cannot be loaded as a pickle. + ValueError + The file contains an object array, but ``allow_pickle=False`` given. + EOFError + When calling ``np.load`` multiple times on the same file handle, + if all data has already been read + + See Also + -------- + save, savez, savez_compressed, loadtxt + memmap : Create a memory-map to an array stored in a file on disk. + lib.format.open_memmap : Create or load a memory-mapped ``.npy`` file. + + Notes + ----- + - If the file contains pickle data, then whatever object is stored + in the pickle is returned. + - If the file is a ``.npy`` file, then a single array is returned. + - If the file is a ``.npz`` file, then a dictionary-like object is + returned, containing ``{filename: array}`` key-value pairs, one for + each file in the archive. + - If the file is a ``.npz`` file, the returned value supports the + context manager protocol in a similar fashion to the open function:: + + with load('foo.npz') as data: + a = data['a'] + + The underlying file descriptor is closed when exiting the 'with' + block. + + Examples + -------- + >>> import numpy as np + + Store data to disk, and load it again: + + >>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]])) + >>> np.load('/tmp/123.npy') + array([[1, 2, 3], + [4, 5, 6]]) + + Store compressed data to disk, and load it again: + + >>> a=np.array([[1, 2, 3], [4, 5, 6]]) + >>> b=np.array([1, 2]) + >>> np.savez('/tmp/123.npz', a=a, b=b) + >>> data = np.load('/tmp/123.npz') + >>> data['a'] + array([[1, 2, 3], + [4, 5, 6]]) + >>> data['b'] + array([1, 2]) + >>> data.close() + + Mem-map the stored array, and then access the second row + directly from disk: + + >>> X = np.load('/tmp/123.npy', mmap_mode='r') + >>> X[1, :] + memmap([4, 5, 6]) + + """ + if encoding not in ('ASCII', 'latin1', 'bytes'): + # The 'encoding' value for pickle also affects what encoding + # the serialized binary data of NumPy arrays is loaded + # in. Pickle does not pass on the encoding information to + # NumPy. The unpickling code in numpy._core.multiarray is + # written to assume that unicode data appearing where binary + # should be is in 'latin1'. 'bytes' is also safe, as is 'ASCII'. + # + # Other encoding values can corrupt binary data, and we + # purposefully disallow them. For the same reason, the errors= + # argument is not exposed, as values other than 'strict' + # result can similarly silently corrupt numerical data. + raise ValueError("encoding must be 'ASCII', 'latin1', or 'bytes'") + + pickle_kwargs = {'encoding': encoding, 'fix_imports': fix_imports} + + with contextlib.ExitStack() as stack: + if hasattr(file, 'read'): + fid = file + own_fid = False + else: + fid = stack.enter_context(open(os.fspath(file), "rb")) + own_fid = True + + # Code to distinguish from NumPy binary files and pickles. + _ZIP_PREFIX = b'PK\x03\x04' + _ZIP_SUFFIX = b'PK\x05\x06' # empty zip files start with this + N = len(format.MAGIC_PREFIX) + magic = fid.read(N) + if not magic: + raise EOFError("No data left in file") + # If the file size is less than N, we need to make sure not + # to seek past the beginning of the file + fid.seek(-min(N, len(magic)), 1) # back-up + if magic.startswith((_ZIP_PREFIX, _ZIP_SUFFIX)): + # zip-file (assume .npz) + # Potentially transfer file ownership to NpzFile + stack.pop_all() + ret = NpzFile(fid, own_fid=own_fid, allow_pickle=allow_pickle, + pickle_kwargs=pickle_kwargs, + max_header_size=max_header_size) + return ret + elif magic == format.MAGIC_PREFIX: + # .npy file + if mmap_mode: + if allow_pickle: + max_header_size = 2**64 + return format.open_memmap(file, mode=mmap_mode, + max_header_size=max_header_size) + else: + return format.read_array(fid, allow_pickle=allow_pickle, + pickle_kwargs=pickle_kwargs, + max_header_size=max_header_size) + else: + # Try a pickle + if not allow_pickle: + raise ValueError( + "This file contains pickled (object) data. If you trust " + "the file you can load it unsafely using the " + "`allow_pickle=` keyword argument or `pickle.load()`.") + try: + return pickle.load(fid, **pickle_kwargs) + except Exception as e: + raise pickle.UnpicklingError( + f"Failed to interpret file {file!r} as a pickle") from e + + +def _save_dispatcher(file, arr, allow_pickle=None, fix_imports=None): + return (arr,) + + +@array_function_dispatch(_save_dispatcher) +def save(file, arr, allow_pickle=True, fix_imports=np._NoValue): + """ + Save an array to a binary file in NumPy ``.npy`` format. + + Parameters + ---------- + file : file, str, or pathlib.Path + File or filename to which the data is saved. If file is a file-object, + then the filename is unchanged. If file is a string or Path, + a ``.npy`` extension will be appended to the filename if it does not + already have one. + arr : array_like + Array data to be saved. + allow_pickle : bool, optional + Allow saving object arrays using Python pickles. Reasons for + disallowing pickles include security (loading pickled data can execute + arbitrary code) and portability (pickled objects may not be loadable + on different Python installations, for example if the stored objects + require libraries that are not available, and not all pickled data is + compatible between different versions of Python). + Default: True + fix_imports : bool, optional + The `fix_imports` flag is deprecated and has no effect. + + .. deprecated:: 2.1 + This flag is ignored since NumPy 1.17 and was only needed to + support loading in Python 2 some files written in Python 3. + + See Also + -------- + savez : Save several arrays into a ``.npz`` archive + savetxt, load + + Notes + ----- + For a description of the ``.npy`` format, see :py:mod:`numpy.lib.format`. + + Any data saved to the file is appended to the end of the file. + + Examples + -------- + >>> import numpy as np + + >>> from tempfile import TemporaryFile + >>> outfile = TemporaryFile() + + >>> x = np.arange(10) + >>> np.save(outfile, x) + + >>> _ = outfile.seek(0) # Only needed to simulate closing & reopening file + >>> np.load(outfile) + array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) + + + >>> with open('test.npy', 'wb') as f: + ... np.save(f, np.array([1, 2])) + ... np.save(f, np.array([1, 3])) + >>> with open('test.npy', 'rb') as f: + ... a = np.load(f) + ... b = np.load(f) + >>> print(a, b) + # [1 2] [1 3] + """ + if fix_imports is not np._NoValue: + # Deprecated 2024-05-16, NumPy 2.1 + warnings.warn( + "The 'fix_imports' flag is deprecated and has no effect. " + "(Deprecated in NumPy 2.1)", + DeprecationWarning, stacklevel=2) + if hasattr(file, 'write'): + file_ctx = contextlib.nullcontext(file) + else: + file = os.fspath(file) + if not file.endswith('.npy'): + file = file + '.npy' + file_ctx = open(file, "wb") + + with file_ctx as fid: + arr = np.asanyarray(arr) + format.write_array(fid, arr, allow_pickle=allow_pickle, + pickle_kwargs={'fix_imports': fix_imports}) + + +def _savez_dispatcher(file, *args, allow_pickle=True, **kwds): + yield from args + yield from kwds.values() + + +@array_function_dispatch(_savez_dispatcher) +def savez(file, *args, allow_pickle=True, **kwds): + """Save several arrays into a single file in uncompressed ``.npz`` format. + + Provide arrays as keyword arguments to store them under the + corresponding name in the output file: ``savez(fn, x=x, y=y)``. + + If arrays are specified as positional arguments, i.e., ``savez(fn, + x, y)``, their names will be `arr_0`, `arr_1`, etc. + + Parameters + ---------- + file : file, str, or pathlib.Path + Either the filename (string) or an open file (file-like object) + where the data will be saved. If file is a string or a Path, the + ``.npz`` extension will be appended to the filename if it is not + already there. + args : Arguments, optional + Arrays to save to the file. Please use keyword arguments (see + `kwds` below) to assign names to arrays. Arrays specified as + args will be named "arr_0", "arr_1", and so on. + allow_pickle : bool, optional + Allow saving object arrays using Python pickles. Reasons for + disallowing pickles include security (loading pickled data can execute + arbitrary code) and portability (pickled objects may not be loadable + on different Python installations, for example if the stored objects + require libraries that are not available, and not all pickled data is + compatible between different versions of Python). + Default: True + kwds : Keyword arguments, optional + Arrays to save to the file. Each array will be saved to the + output file with its corresponding keyword name. + + Returns + ------- + None + + See Also + -------- + save : Save a single array to a binary file in NumPy format. + savetxt : Save an array to a file as plain text. + savez_compressed : Save several arrays into a compressed ``.npz`` archive + + Notes + ----- + The ``.npz`` file format is a zipped archive of files named after the + variables they contain. The archive is not compressed and each file + in the archive contains one variable in ``.npy`` format. For a + description of the ``.npy`` format, see :py:mod:`numpy.lib.format`. + + When opening the saved ``.npz`` file with `load` a `~lib.npyio.NpzFile` + object is returned. This is a dictionary-like object which can be queried + for its list of arrays (with the ``.files`` attribute), and for the arrays + themselves. + + Keys passed in `kwds` are used as filenames inside the ZIP archive. + Therefore, keys should be valid filenames; e.g., avoid keys that begin with + ``/`` or contain ``.``. + + When naming variables with keyword arguments, it is not possible to name a + variable ``file``, as this would cause the ``file`` argument to be defined + twice in the call to ``savez``. + + Examples + -------- + >>> import numpy as np + >>> from tempfile import TemporaryFile + >>> outfile = TemporaryFile() + >>> x = np.arange(10) + >>> y = np.sin(x) + + Using `savez` with \\*args, the arrays are saved with default names. + + >>> np.savez(outfile, x, y) + >>> _ = outfile.seek(0) # Only needed to simulate closing & reopening file + >>> npzfile = np.load(outfile) + >>> npzfile.files + ['arr_0', 'arr_1'] + >>> npzfile['arr_0'] + array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) + + Using `savez` with \\**kwds, the arrays are saved with the keyword names. + + >>> outfile = TemporaryFile() + >>> np.savez(outfile, x=x, y=y) + >>> _ = outfile.seek(0) + >>> npzfile = np.load(outfile) + >>> sorted(npzfile.files) + ['x', 'y'] + >>> npzfile['x'] + array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) + + """ + _savez(file, args, kwds, False, allow_pickle=allow_pickle) + + +def _savez_compressed_dispatcher(file, *args, allow_pickle=True, **kwds): + yield from args + yield from kwds.values() + + +@array_function_dispatch(_savez_compressed_dispatcher) +def savez_compressed(file, *args, allow_pickle=True, **kwds): + """ + Save several arrays into a single file in compressed ``.npz`` format. + + Provide arrays as keyword arguments to store them under the + corresponding name in the output file: ``savez_compressed(fn, x=x, y=y)``. + + If arrays are specified as positional arguments, i.e., + ``savez_compressed(fn, x, y)``, their names will be `arr_0`, `arr_1`, etc. + + Parameters + ---------- + file : file, str, or pathlib.Path + Either the filename (string) or an open file (file-like object) + where the data will be saved. If file is a string or a Path, the + ``.npz`` extension will be appended to the filename if it is not + already there. + args : Arguments, optional + Arrays to save to the file. Please use keyword arguments (see + `kwds` below) to assign names to arrays. Arrays specified as + args will be named "arr_0", "arr_1", and so on. + allow_pickle : bool, optional + Allow saving object arrays using Python pickles. Reasons for + disallowing pickles include security (loading pickled data can execute + arbitrary code) and portability (pickled objects may not be loadable + on different Python installations, for example if the stored objects + require libraries that are not available, and not all pickled data is + compatible between different versions of Python). + Default: True + kwds : Keyword arguments, optional + Arrays to save to the file. Each array will be saved to the + output file with its corresponding keyword name. + + Returns + ------- + None + + See Also + -------- + numpy.save : Save a single array to a binary file in NumPy format. + numpy.savetxt : Save an array to a file as plain text. + numpy.savez : Save several arrays into an uncompressed ``.npz`` file format + numpy.load : Load the files created by savez_compressed. + + Notes + ----- + The ``.npz`` file format is a zipped archive of files named after the + variables they contain. The archive is compressed with + ``zipfile.ZIP_DEFLATED`` and each file in the archive contains one variable + in ``.npy`` format. For a description of the ``.npy`` format, see + :py:mod:`numpy.lib.format`. + + + When opening the saved ``.npz`` file with `load` a `~lib.npyio.NpzFile` + object is returned. This is a dictionary-like object which can be queried + for its list of arrays (with the ``.files`` attribute), and for the arrays + themselves. + + Examples + -------- + >>> import numpy as np + >>> test_array = np.random.rand(3, 2) + >>> test_vector = np.random.rand(4) + >>> np.savez_compressed('/tmp/123', a=test_array, b=test_vector) + >>> loaded = np.load('/tmp/123.npz') + >>> print(np.array_equal(test_array, loaded['a'])) + True + >>> print(np.array_equal(test_vector, loaded['b'])) + True + + """ + _savez(file, args, kwds, True, allow_pickle=allow_pickle) + + +def _savez(file, args, kwds, compress, allow_pickle=True, pickle_kwargs=None): + # Import is postponed to here since zipfile depends on gzip, an optional + # component of the so-called standard library. + import zipfile + + if not hasattr(file, 'write'): + file = os.fspath(file) + if not file.endswith('.npz'): + file = file + '.npz' + + namedict = kwds + for i, val in enumerate(args): + key = 'arr_%d' % i + if key in namedict.keys(): + raise ValueError( + f"Cannot use un-named variables and keyword {key}") + namedict[key] = val + + if compress: + compression = zipfile.ZIP_DEFLATED + else: + compression = zipfile.ZIP_STORED + + zipf = zipfile_factory(file, mode="w", compression=compression) + try: + for key, val in namedict.items(): + fname = key + '.npy' + val = np.asanyarray(val) + # always force zip64, gh-10776 + with zipf.open(fname, 'w', force_zip64=True) as fid: + format.write_array(fid, val, + allow_pickle=allow_pickle, + pickle_kwargs=pickle_kwargs) + finally: + zipf.close() + + +def _ensure_ndmin_ndarray_check_param(ndmin): + """Just checks if the param ndmin is supported on + _ensure_ndmin_ndarray. It is intended to be used as + verification before running anything expensive. + e.g. loadtxt, genfromtxt + """ + # Check correctness of the values of `ndmin` + if ndmin not in [0, 1, 2]: + raise ValueError(f"Illegal value of ndmin keyword: {ndmin}") + +def _ensure_ndmin_ndarray(a, *, ndmin: int): + """This is a helper function of loadtxt and genfromtxt to ensure + proper minimum dimension as requested + + ndim : int. Supported values 1, 2, 3 + ^^ whenever this changes, keep in sync with + _ensure_ndmin_ndarray_check_param + """ + # Verify that the array has at least dimensions `ndmin`. + # Tweak the size and shape of the arrays - remove extraneous dimensions + if a.ndim > ndmin: + a = np.squeeze(a) + # and ensure we have the minimum number of dimensions asked for + # - has to be in this order for the odd case ndmin=1, a.squeeze().ndim=0 + if a.ndim < ndmin: + if ndmin == 1: + a = np.atleast_1d(a) + elif ndmin == 2: + a = np.atleast_2d(a).T + + return a + + +# amount of lines loadtxt reads in one chunk, can be overridden for testing +_loadtxt_chunksize = 50000 + + +def _check_nonneg_int(value, name="argument"): + try: + operator.index(value) + except TypeError: + raise TypeError(f"{name} must be an integer") from None + if value < 0: + raise ValueError(f"{name} must be nonnegative") + + +def _preprocess_comments(iterable, comments, encoding): + """ + Generator that consumes a line iterated iterable and strips out the + multiple (or multi-character) comments from lines. + This is a pre-processing step to achieve feature parity with loadtxt + (we assume that this feature is a nieche feature). + """ + for line in iterable: + if isinstance(line, bytes): + # Need to handle conversion here, or the splitting would fail + line = line.decode(encoding) + + for c in comments: + line = line.split(c, 1)[0] + + yield line + + +# The number of rows we read in one go if confronted with a parametric dtype +_loadtxt_chunksize = 50000 + + +def _read(fname, *, delimiter=',', comment='#', quote='"', + imaginary_unit='j', usecols=None, skiplines=0, + max_rows=None, converters=None, ndmin=None, unpack=False, + dtype=np.float64, encoding=None): + r""" + Read a NumPy array from a text file. + This is a helper function for loadtxt. + + Parameters + ---------- + fname : file, str, or pathlib.Path + The filename or the file to be read. + delimiter : str, optional + Field delimiter of the fields in line of the file. + Default is a comma, ','. If None any sequence of whitespace is + considered a delimiter. + comment : str or sequence of str or None, optional + Character that begins a comment. All text from the comment + character to the end of the line is ignored. + Multiple comments or multiple-character comment strings are supported, + but may be slower and `quote` must be empty if used. + Use None to disable all use of comments. + quote : str or None, optional + Character that is used to quote string fields. Default is '"' + (a double quote). Use None to disable quote support. + imaginary_unit : str, optional + Character that represent the imaginary unit `sqrt(-1)`. + Default is 'j'. + usecols : array_like, optional + A one-dimensional array of integer column numbers. These are the + columns from the file to be included in the array. If this value + is not given, all the columns are used. + skiplines : int, optional + Number of lines to skip before interpreting the data in the file. + max_rows : int, optional + Maximum number of rows of data to read. Default is to read the + entire file. + converters : dict or callable, optional + A function to parse all columns strings into the desired value, or + a dictionary mapping column number to a parser function. + E.g. if column 0 is a date string: ``converters = {0: datestr2num}``. + Converters can also be used to provide a default value for missing + data, e.g. ``converters = lambda s: float(s.strip() or 0)`` will + convert empty fields to 0. + Default: None + ndmin : int, optional + Minimum dimension of the array returned. + Allowed values are 0, 1 or 2. Default is 0. + unpack : bool, optional + If True, the returned array is transposed, so that arguments may be + unpacked using ``x, y, z = read(...)``. When used with a structured + data-type, arrays are returned for each field. Default is False. + dtype : numpy data type + A NumPy dtype instance, can be a structured dtype to map to the + columns of the file. + encoding : str, optional + Encoding used to decode the inputfile. The special value 'bytes' + (the default) enables backwards-compatible behavior for `converters`, + ensuring that inputs to the converter functions are encoded + bytes objects. The special value 'bytes' has no additional effect if + ``converters=None``. If encoding is ``'bytes'`` or ``None``, the + default system encoding is used. + + Returns + ------- + ndarray + NumPy array. + """ + # Handle special 'bytes' keyword for encoding + byte_converters = False + if encoding == 'bytes': + encoding = None + byte_converters = True + + if dtype is None: + raise TypeError("a dtype must be provided.") + dtype = np.dtype(dtype) + + read_dtype_via_object_chunks = None + if dtype.kind in 'SUM' and dtype in { + np.dtype("S0"), np.dtype("U0"), np.dtype("M8"), np.dtype("m8")}: + # This is a legacy "flexible" dtype. We do not truly support + # parametric dtypes currently (no dtype discovery step in the core), + # but have to support these for backward compatibility. + read_dtype_via_object_chunks = dtype + dtype = np.dtype(object) + + if usecols is not None: + # Allow usecols to be a single int or a sequence of ints, the C-code + # handles the rest + try: + usecols = list(usecols) + except TypeError: + usecols = [usecols] + + _ensure_ndmin_ndarray_check_param(ndmin) + + if comment is None: + comments = None + else: + # assume comments are a sequence of strings + if "" in comment: + raise ValueError( + "comments cannot be an empty string. Use comments=None to " + "disable comments." + ) + comments = tuple(comment) + comment = None + if len(comments) == 0: + comments = None # No comments at all + elif len(comments) == 1: + # If there is only one comment, and that comment has one character, + # the normal parsing can deal with it just fine. + if isinstance(comments[0], str) and len(comments[0]) == 1: + comment = comments[0] + comments = None + # Input validation if there are multiple comment characters + elif delimiter in comments: + raise TypeError( + f"Comment characters '{comments}' cannot include the " + f"delimiter '{delimiter}'" + ) + + # comment is now either a 1 or 0 character string or a tuple: + if comments is not None: + # Note: An earlier version support two character comments (and could + # have been extended to multiple characters, we assume this is + # rare enough to not optimize for. + if quote is not None: + raise ValueError( + "when multiple comments or a multi-character comment is " + "given, quotes are not supported. In this case quotechar " + "must be set to None.") + + if len(imaginary_unit) != 1: + raise ValueError('len(imaginary_unit) must be 1.') + + _check_nonneg_int(skiplines) + if max_rows is not None: + _check_nonneg_int(max_rows) + else: + # Passing -1 to the C code means "read the entire file". + max_rows = -1 + + fh_closing_ctx = contextlib.nullcontext() + filelike = False + try: + if isinstance(fname, os.PathLike): + fname = os.fspath(fname) + if isinstance(fname, str): + fh = np.lib._datasource.open(fname, 'rt', encoding=encoding) + if encoding is None: + encoding = getattr(fh, 'encoding', 'latin1') + + fh_closing_ctx = contextlib.closing(fh) + data = fh + filelike = True + else: + if encoding is None: + encoding = getattr(fname, 'encoding', 'latin1') + data = iter(fname) + except TypeError as e: + raise ValueError( + f"fname must be a string, filehandle, list of strings,\n" + f"or generator. Got {type(fname)} instead.") from e + + with fh_closing_ctx: + if comments is not None: + if filelike: + data = iter(data) + filelike = False + data = _preprocess_comments(data, comments, encoding) + + if read_dtype_via_object_chunks is None: + arr = _load_from_filelike( + data, delimiter=delimiter, comment=comment, quote=quote, + imaginary_unit=imaginary_unit, + usecols=usecols, skiplines=skiplines, max_rows=max_rows, + converters=converters, dtype=dtype, + encoding=encoding, filelike=filelike, + byte_converters=byte_converters) + + else: + # This branch reads the file into chunks of object arrays and then + # casts them to the desired actual dtype. This ensures correct + # string-length and datetime-unit discovery (like `arr.astype()`). + # Due to chunking, certain error reports are less clear, currently. + if filelike: + data = iter(data) # cannot chunk when reading from file + filelike = False + + c_byte_converters = False + if read_dtype_via_object_chunks == "S": + c_byte_converters = True # Use latin1 rather than ascii + + chunks = [] + while max_rows != 0: + if max_rows < 0: + chunk_size = _loadtxt_chunksize + else: + chunk_size = min(_loadtxt_chunksize, max_rows) + + next_arr = _load_from_filelike( + data, delimiter=delimiter, comment=comment, quote=quote, + imaginary_unit=imaginary_unit, + usecols=usecols, skiplines=skiplines, max_rows=chunk_size, + converters=converters, dtype=dtype, + encoding=encoding, filelike=filelike, + byte_converters=byte_converters, + c_byte_converters=c_byte_converters) + # Cast here already. We hope that this is better even for + # large files because the storage is more compact. It could + # be adapted (in principle the concatenate could cast). + chunks.append(next_arr.astype(read_dtype_via_object_chunks)) + + skiplines = 0 # Only have to skip for first chunk + if max_rows >= 0: + max_rows -= chunk_size + if len(next_arr) < chunk_size: + # There was less data than requested, so we are done. + break + + # Need at least one chunk, but if empty, the last one may have + # the wrong shape. + if len(chunks) > 1 and len(chunks[-1]) == 0: + del chunks[-1] + if len(chunks) == 1: + arr = chunks[0] + else: + arr = np.concatenate(chunks, axis=0) + + # NOTE: ndmin works as advertised for structured dtypes, but normally + # these would return a 1D result plus the structured dimension, + # so ndmin=2 adds a third dimension even when no squeezing occurs. + # A `squeeze=False` could be a better solution (pandas uses squeeze). + arr = _ensure_ndmin_ndarray(arr, ndmin=ndmin) + + if arr.shape: + if arr.shape[0] == 0: + warnings.warn( + f'loadtxt: input contained no data: "{fname}"', + category=UserWarning, + stacklevel=3 + ) + + if unpack: + # Unpack structured dtypes if requested: + dt = arr.dtype + if dt.names is not None: + # For structured arrays, return an array for each field. + return [arr[field] for field in dt.names] + else: + return arr.T + else: + return arr + + +@finalize_array_function_like +@set_module('numpy') +def loadtxt(fname, dtype=float, comments='#', delimiter=None, + converters=None, skiprows=0, usecols=None, unpack=False, + ndmin=0, encoding=None, max_rows=None, *, quotechar=None, + like=None): + r""" + Load data from a text file. + + Parameters + ---------- + fname : file, str, pathlib.Path, list of str, generator + File, filename, list, or generator to read. If the filename + extension is ``.gz`` or ``.bz2``, the file is first decompressed. Note + that generators must return bytes or strings. The strings + in a list or produced by a generator are treated as lines. + dtype : data-type, optional + Data-type of the resulting array; default: float. If this is a + structured data-type, the resulting array will be 1-dimensional, and + each row will be interpreted as an element of the array. In this + case, the number of columns used must match the number of fields in + the data-type. + comments : str or sequence of str or None, optional + The characters or list of characters used to indicate the start of a + comment. None implies no comments. For backwards compatibility, byte + strings will be decoded as 'latin1'. The default is '#'. + delimiter : str, optional + The character used to separate the values. For backwards compatibility, + byte strings will be decoded as 'latin1'. The default is whitespace. + + .. versionchanged:: 1.23.0 + Only single character delimiters are supported. Newline characters + cannot be used as the delimiter. + + converters : dict or callable, optional + Converter functions to customize value parsing. If `converters` is + callable, the function is applied to all columns, else it must be a + dict that maps column number to a parser function. + See examples for further details. + Default: None. + + .. versionchanged:: 1.23.0 + The ability to pass a single callable to be applied to all columns + was added. + + skiprows : int, optional + Skip the first `skiprows` lines, including comments; default: 0. + usecols : int or sequence, optional + Which columns to read, with 0 being the first. For example, + ``usecols = (1,4,5)`` will extract the 2nd, 5th and 6th columns. + The default, None, results in all columns being read. + unpack : bool, optional + If True, the returned array is transposed, so that arguments may be + unpacked using ``x, y, z = loadtxt(...)``. When used with a + structured data-type, arrays are returned for each field. + Default is False. + ndmin : int, optional + The returned array will have at least `ndmin` dimensions. + Otherwise mono-dimensional axes will be squeezed. + Legal values: 0 (default), 1 or 2. + encoding : str, optional + Encoding used to decode the inputfile. Does not apply to input streams. + The special value 'bytes' enables backward compatibility workarounds + that ensures you receive byte arrays as results if possible and passes + 'latin1' encoded strings to converters. Override this value to receive + unicode arrays and pass strings as input to converters. If set to None + the system default is used. The default value is None. + + .. versionchanged:: 2.0 + Before NumPy 2, the default was ``'bytes'`` for Python 2 + compatibility. The default is now ``None``. + + max_rows : int, optional + Read `max_rows` rows of content after `skiprows` lines. The default is + to read all the rows. Note that empty rows containing no data such as + empty lines and comment lines are not counted towards `max_rows`, + while such lines are counted in `skiprows`. + + .. versionchanged:: 1.23.0 + Lines containing no data, including comment lines (e.g., lines + starting with '#' or as specified via `comments`) are not counted + towards `max_rows`. + quotechar : unicode character or None, optional + The character used to denote the start and end of a quoted item. + Occurrences of the delimiter or comment characters are ignored within + a quoted item. The default value is ``quotechar=None``, which means + quoting support is disabled. + + If two consecutive instances of `quotechar` are found within a quoted + field, the first is treated as an escape character. See examples. + + .. versionadded:: 1.23.0 + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray + Data read from the text file. + + See Also + -------- + load, fromstring, fromregex + genfromtxt : Load data with missing values handled as specified. + scipy.io.loadmat : reads MATLAB data files + + Notes + ----- + This function aims to be a fast reader for simply formatted files. The + `genfromtxt` function provides more sophisticated handling of, e.g., + lines with missing values. + + Each row in the input text file must have the same number of values to be + able to read all values. If all rows do not have same number of values, a + subset of up to n columns (where n is the least number of values present + in all rows) can be read by specifying the columns via `usecols`. + + The strings produced by the Python float.hex method can be used as + input for floats. + + Examples + -------- + >>> import numpy as np + >>> from io import StringIO # StringIO behaves like a file object + >>> c = StringIO("0 1\n2 3") + >>> np.loadtxt(c) + array([[0., 1.], + [2., 3.]]) + + >>> d = StringIO("M 21 72\nF 35 58") + >>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'), + ... 'formats': ('S1', 'i4', 'f4')}) + array([(b'M', 21, 72.), (b'F', 35, 58.)], + dtype=[('gender', 'S1'), ('age', '>> c = StringIO("1,0,2\n3,0,4") + >>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True) + >>> x + array([1., 3.]) + >>> y + array([2., 4.]) + + The `converters` argument is used to specify functions to preprocess the + text prior to parsing. `converters` can be a dictionary that maps + preprocessing functions to each column: + + >>> s = StringIO("1.618, 2.296\n3.141, 4.669\n") + >>> conv = { + ... 0: lambda x: np.floor(float(x)), # conversion fn for column 0 + ... 1: lambda x: np.ceil(float(x)), # conversion fn for column 1 + ... } + >>> np.loadtxt(s, delimiter=",", converters=conv) + array([[1., 3.], + [3., 5.]]) + + `converters` can be a callable instead of a dictionary, in which case it + is applied to all columns: + + >>> s = StringIO("0xDE 0xAD\n0xC0 0xDE") + >>> import functools + >>> conv = functools.partial(int, base=16) + >>> np.loadtxt(s, converters=conv) + array([[222., 173.], + [192., 222.]]) + + This example shows how `converters` can be used to convert a field + with a trailing minus sign into a negative number. + + >>> s = StringIO("10.01 31.25-\n19.22 64.31\n17.57- 63.94") + >>> def conv(fld): + ... return -float(fld[:-1]) if fld.endswith("-") else float(fld) + ... + >>> np.loadtxt(s, converters=conv) + array([[ 10.01, -31.25], + [ 19.22, 64.31], + [-17.57, 63.94]]) + + Using a callable as the converter can be particularly useful for handling + values with different formatting, e.g. floats with underscores: + + >>> s = StringIO("1 2.7 100_000") + >>> np.loadtxt(s, converters=float) + array([1.e+00, 2.7e+00, 1.e+05]) + + This idea can be extended to automatically handle values specified in + many different formats, such as hex values: + + >>> def conv(val): + ... try: + ... return float(val) + ... except ValueError: + ... return float.fromhex(val) + >>> s = StringIO("1, 2.5, 3_000, 0b4, 0x1.4000000000000p+2") + >>> np.loadtxt(s, delimiter=",", converters=conv) + array([1.0e+00, 2.5e+00, 3.0e+03, 1.8e+02, 5.0e+00]) + + Or a format where the ``-`` sign comes after the number: + + >>> s = StringIO("10.01 31.25-\n19.22 64.31\n17.57- 63.94") + >>> conv = lambda x: -float(x[:-1]) if x.endswith("-") else float(x) + >>> np.loadtxt(s, converters=conv) + array([[ 10.01, -31.25], + [ 19.22, 64.31], + [-17.57, 63.94]]) + + Support for quoted fields is enabled with the `quotechar` parameter. + Comment and delimiter characters are ignored when they appear within a + quoted item delineated by `quotechar`: + + >>> s = StringIO('"alpha, #42", 10.0\n"beta, #64", 2.0\n') + >>> dtype = np.dtype([("label", "U12"), ("value", float)]) + >>> np.loadtxt(s, dtype=dtype, delimiter=",", quotechar='"') + array([('alpha, #42', 10.), ('beta, #64', 2.)], + dtype=[('label', '>> s = StringIO('"alpha, #42" 10.0\n"beta, #64" 2.0\n') + >>> dtype = np.dtype([("label", "U12"), ("value", float)]) + >>> np.loadtxt(s, dtype=dtype, delimiter=None, quotechar='"') + array([('alpha, #42', 10.), ('beta, #64', 2.)], + dtype=[('label', '>> s = StringIO('"Hello, my name is ""Monty""!"') + >>> np.loadtxt(s, dtype="U", delimiter=",", quotechar='"') + array('Hello, my name is "Monty"!', dtype='>> d = StringIO("1 2\n2 4\n3 9 12\n4 16 20") + >>> np.loadtxt(d, usecols=(0, 1)) + array([[ 1., 2.], + [ 2., 4.], + [ 3., 9.], + [ 4., 16.]]) + + """ + + if like is not None: + return _loadtxt_with_like( + like, fname, dtype=dtype, comments=comments, delimiter=delimiter, + converters=converters, skiprows=skiprows, usecols=usecols, + unpack=unpack, ndmin=ndmin, encoding=encoding, + max_rows=max_rows + ) + + if isinstance(delimiter, bytes): + delimiter.decode("latin1") + + if dtype is None: + dtype = np.float64 + + comment = comments + # Control character type conversions for Py3 convenience + if comment is not None: + if isinstance(comment, (str, bytes)): + comment = [comment] + comment = [ + x.decode('latin1') if isinstance(x, bytes) else x for x in comment] + if isinstance(delimiter, bytes): + delimiter = delimiter.decode('latin1') + + arr = _read(fname, dtype=dtype, comment=comment, delimiter=delimiter, + converters=converters, skiplines=skiprows, usecols=usecols, + unpack=unpack, ndmin=ndmin, encoding=encoding, + max_rows=max_rows, quote=quotechar) + + return arr + + +_loadtxt_with_like = array_function_dispatch()(loadtxt) + + +def _savetxt_dispatcher(fname, X, fmt=None, delimiter=None, newline=None, + header=None, footer=None, comments=None, + encoding=None): + return (X,) + + +@array_function_dispatch(_savetxt_dispatcher) +def savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='', + footer='', comments='# ', encoding=None): + """ + Save an array to a text file. + + Parameters + ---------- + fname : filename, file handle or pathlib.Path + If the filename ends in ``.gz``, the file is automatically saved in + compressed gzip format. `loadtxt` understands gzipped files + transparently. + X : 1D or 2D array_like + Data to be saved to a text file. + fmt : str or sequence of strs, optional + A single format (%10.5f), a sequence of formats, or a + multi-format string, e.g. 'Iteration %d -- %10.5f', in which + case `delimiter` is ignored. For complex `X`, the legal options + for `fmt` are: + + * a single specifier, ``fmt='%.4e'``, resulting in numbers formatted + like ``' (%s+%sj)' % (fmt, fmt)`` + * a full string specifying every real and imaginary part, e.g. + ``' %.4e %+.4ej %.4e %+.4ej %.4e %+.4ej'`` for 3 columns + * a list of specifiers, one per column - in this case, the real + and imaginary part must have separate specifiers, + e.g. ``['%.3e + %.3ej', '(%.15e%+.15ej)']`` for 2 columns + delimiter : str, optional + String or character separating columns. + newline : str, optional + String or character separating lines. + header : str, optional + String that will be written at the beginning of the file. + footer : str, optional + String that will be written at the end of the file. + comments : str, optional + String that will be prepended to the ``header`` and ``footer`` strings, + to mark them as comments. Default: '# ', as expected by e.g. + ``numpy.loadtxt``. + encoding : {None, str}, optional + Encoding used to encode the outputfile. Does not apply to output + streams. If the encoding is something other than 'bytes' or 'latin1' + you will not be able to load the file in NumPy versions < 1.14. Default + is 'latin1'. + + See Also + -------- + save : Save an array to a binary file in NumPy ``.npy`` format + savez : Save several arrays into an uncompressed ``.npz`` archive + savez_compressed : Save several arrays into a compressed ``.npz`` archive + + Notes + ----- + Further explanation of the `fmt` parameter + (``%[flag]width[.precision]specifier``): + + flags: + ``-`` : left justify + + ``+`` : Forces to precede result with + or -. + + ``0`` : Left pad the number with zeros instead of space (see width). + + width: + Minimum number of characters to be printed. The value is not truncated + if it has more characters. + + precision: + - For integer specifiers (eg. ``d,i,o,x``), the minimum number of + digits. + - For ``e, E`` and ``f`` specifiers, the number of digits to print + after the decimal point. + - For ``g`` and ``G``, the maximum number of significant digits. + - For ``s``, the maximum number of characters. + + specifiers: + ``c`` : character + + ``d`` or ``i`` : signed decimal integer + + ``e`` or ``E`` : scientific notation with ``e`` or ``E``. + + ``f`` : decimal floating point + + ``g,G`` : use the shorter of ``e,E`` or ``f`` + + ``o`` : signed octal + + ``s`` : string of characters + + ``u`` : unsigned decimal integer + + ``x,X`` : unsigned hexadecimal integer + + This explanation of ``fmt`` is not complete, for an exhaustive + specification see [1]_. + + References + ---------- + .. [1] `Format Specification Mini-Language + `_, + Python Documentation. + + Examples + -------- + >>> import numpy as np + >>> x = y = z = np.arange(0.0,5.0,1.0) + >>> np.savetxt('test.out', x, delimiter=',') # X is an array + >>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays + >>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation + + """ + + class WriteWrap: + """Convert to bytes on bytestream inputs. + + """ + def __init__(self, fh, encoding): + self.fh = fh + self.encoding = encoding + self.do_write = self.first_write + + def close(self): + self.fh.close() + + def write(self, v): + self.do_write(v) + + def write_bytes(self, v): + if isinstance(v, bytes): + self.fh.write(v) + else: + self.fh.write(v.encode(self.encoding)) + + def write_normal(self, v): + self.fh.write(asunicode(v)) + + def first_write(self, v): + try: + self.write_normal(v) + self.write = self.write_normal + except TypeError: + # input is probably a bytestream + self.write_bytes(v) + self.write = self.write_bytes + + own_fh = False + if isinstance(fname, os.PathLike): + fname = os.fspath(fname) + if _is_string_like(fname): + # datasource doesn't support creating a new file ... + open(fname, 'wt').close() + fh = np.lib._datasource.open(fname, 'wt', encoding=encoding) + own_fh = True + elif hasattr(fname, 'write'): + # wrap to handle byte output streams + fh = WriteWrap(fname, encoding or 'latin1') + else: + raise ValueError('fname must be a string or file handle') + + try: + X = np.asarray(X) + + # Handle 1-dimensional arrays + if X.ndim == 0 or X.ndim > 2: + raise ValueError( + "Expected 1D or 2D array, got %dD array instead" % X.ndim) + elif X.ndim == 1: + # Common case -- 1d array of numbers + if X.dtype.names is None: + X = np.atleast_2d(X).T + ncol = 1 + + # Complex dtype -- each field indicates a separate column + else: + ncol = len(X.dtype.names) + else: + ncol = X.shape[1] + + iscomplex_X = np.iscomplexobj(X) + # `fmt` can be a string with multiple insertion points or a + # list of formats. E.g. '%10.5f\t%10d' or ('%10.5f', '$10d') + if type(fmt) in (list, tuple): + if len(fmt) != ncol: + raise AttributeError(f'fmt has wrong shape. {str(fmt)}') + format = delimiter.join(fmt) + elif isinstance(fmt, str): + n_fmt_chars = fmt.count('%') + error = ValueError(f'fmt has wrong number of % formats: {fmt}') + if n_fmt_chars == 1: + if iscomplex_X: + fmt = [f' ({fmt}+{fmt}j)', ] * ncol + else: + fmt = [fmt, ] * ncol + format = delimiter.join(fmt) + elif iscomplex_X and n_fmt_chars != (2 * ncol): + raise error + elif ((not iscomplex_X) and n_fmt_chars != ncol): + raise error + else: + format = fmt + else: + raise ValueError(f'invalid fmt: {fmt!r}') + + if len(header) > 0: + header = header.replace('\n', '\n' + comments) + fh.write(comments + header + newline) + if iscomplex_X: + for row in X: + row2 = [] + for number in row: + row2.extend((number.real, number.imag)) + s = format % tuple(row2) + newline + fh.write(s.replace('+-', '-')) + else: + for row in X: + try: + v = format % tuple(row) + newline + except TypeError as e: + raise TypeError("Mismatch between array dtype ('%s') and " + "format specifier ('%s')" + % (str(X.dtype), format)) from e + fh.write(v) + + if len(footer) > 0: + footer = footer.replace('\n', '\n' + comments) + fh.write(comments + footer + newline) + finally: + if own_fh: + fh.close() + + +@set_module('numpy') +def fromregex(file, regexp, dtype, encoding=None): + r""" + Construct an array from a text file, using regular expression parsing. + + The returned array is always a structured array, and is constructed from + all matches of the regular expression in the file. Groups in the regular + expression are converted to fields of the structured array. + + Parameters + ---------- + file : file, str, or pathlib.Path + Filename or file object to read. + + .. versionchanged:: 1.22.0 + Now accepts `os.PathLike` implementations. + + regexp : str or regexp + Regular expression used to parse the file. + Groups in the regular expression correspond to fields in the dtype. + dtype : dtype or list of dtypes + Dtype for the structured array; must be a structured datatype. + encoding : str, optional + Encoding used to decode the inputfile. Does not apply to input streams. + + Returns + ------- + output : ndarray + The output array, containing the part of the content of `file` that + was matched by `regexp`. `output` is always a structured array. + + Raises + ------ + TypeError + When `dtype` is not a valid dtype for a structured array. + + See Also + -------- + fromstring, loadtxt + + Notes + ----- + Dtypes for structured arrays can be specified in several forms, but all + forms specify at least the data type and field name. For details see + `basics.rec`. + + Examples + -------- + >>> import numpy as np + >>> from io import StringIO + >>> text = StringIO("1312 foo\n1534 bar\n444 qux") + + >>> regexp = r"(\d+)\s+(...)" # match [digits, whitespace, anything] + >>> output = np.fromregex(text, regexp, + ... [('num', np.int64), ('key', 'S3')]) + >>> output + array([(1312, b'foo'), (1534, b'bar'), ( 444, b'qux')], + dtype=[('num', '>> output['num'] + array([1312, 1534, 444]) + + """ + own_fh = False + if not hasattr(file, "read"): + file = os.fspath(file) + file = np.lib._datasource.open(file, 'rt', encoding=encoding) + own_fh = True + + try: + if not isinstance(dtype, np.dtype): + dtype = np.dtype(dtype) + if dtype.names is None: + raise TypeError('dtype must be a structured datatype.') + + content = file.read() + if isinstance(content, bytes) and isinstance(regexp, str): + regexp = asbytes(regexp) + + if not hasattr(regexp, 'match'): + regexp = re.compile(regexp) + seq = regexp.findall(content) + if seq and not isinstance(seq[0], tuple): + # Only one group is in the regexp. + # Create the new array as a single data-type and then + # re-interpret as a single-field structured array. + newdtype = np.dtype(dtype[dtype.names[0]]) + output = np.array(seq, dtype=newdtype) + output.dtype = dtype + else: + output = np.array(seq, dtype=dtype) + + return output + finally: + if own_fh: + file.close() + + +#####-------------------------------------------------------------------------- +#---- --- ASCII functions --- +#####-------------------------------------------------------------------------- + + +@finalize_array_function_like +@set_module('numpy') +def genfromtxt(fname, dtype=float, comments='#', delimiter=None, + skip_header=0, skip_footer=0, converters=None, + missing_values=None, filling_values=None, usecols=None, + names=None, excludelist=None, + deletechars=''.join(sorted(NameValidator.defaultdeletechars)), # noqa: B008 + replace_space='_', autostrip=False, case_sensitive=True, + defaultfmt="f%i", unpack=None, usemask=False, loose=True, + invalid_raise=True, max_rows=None, encoding=None, + *, ndmin=0, like=None): + """ + Load data from a text file, with missing values handled as specified. + + Each line past the first `skip_header` lines is split at the `delimiter` + character, and characters following the `comments` character are discarded. + + Parameters + ---------- + fname : file, str, pathlib.Path, list of str, generator + File, filename, list, or generator to read. If the filename + extension is ``.gz`` or ``.bz2``, the file is first decompressed. Note + that generators must return bytes or strings. The strings + in a list or produced by a generator are treated as lines. + dtype : dtype, optional + Data type of the resulting array. + If None, the dtypes will be determined by the contents of each + column, individually. + comments : str, optional + The character used to indicate the start of a comment. + All the characters occurring on a line after a comment are discarded. + delimiter : str, int, or sequence, optional + The string used to separate values. By default, any consecutive + whitespaces act as delimiter. An integer or sequence of integers + can also be provided as width(s) of each field. + skiprows : int, optional + `skiprows` was removed in numpy 1.10. Please use `skip_header` instead. + skip_header : int, optional + The number of lines to skip at the beginning of the file. + skip_footer : int, optional + The number of lines to skip at the end of the file. + converters : variable, optional + The set of functions that convert the data of a column to a value. + The converters can also be used to provide a default value + for missing data: ``converters = {3: lambda s: float(s or 0)}``. + missing : variable, optional + `missing` was removed in numpy 1.10. Please use `missing_values` + instead. + missing_values : variable, optional + The set of strings corresponding to missing data. + filling_values : variable, optional + The set of values to be used as default when the data are missing. + usecols : sequence, optional + Which columns to read, with 0 being the first. For example, + ``usecols = (1, 4, 5)`` will extract the 2nd, 5th and 6th columns. + names : {None, True, str, sequence}, optional + If `names` is True, the field names are read from the first line after + the first `skip_header` lines. This line can optionally be preceded + by a comment delimiter. Any content before the comment delimiter is + discarded. If `names` is a sequence or a single-string of + comma-separated names, the names will be used to define the field + names in a structured dtype. If `names` is None, the names of the + dtype fields will be used, if any. + excludelist : sequence, optional + A list of names to exclude. This list is appended to the default list + ['return','file','print']. Excluded names are appended with an + underscore: for example, `file` would become `file_`. + deletechars : str, optional + A string combining invalid characters that must be deleted from the + names. + defaultfmt : str, optional + A format used to define default field names, such as "f%i" or "f_%02i". + autostrip : bool, optional + Whether to automatically strip white spaces from the variables. + replace_space : char, optional + Character(s) used in replacement of white spaces in the variable + names. By default, use a '_'. + case_sensitive : {True, False, 'upper', 'lower'}, optional + If True, field names are case sensitive. + If False or 'upper', field names are converted to upper case. + If 'lower', field names are converted to lower case. + unpack : bool, optional + If True, the returned array is transposed, so that arguments may be + unpacked using ``x, y, z = genfromtxt(...)``. When used with a + structured data-type, arrays are returned for each field. + Default is False. + usemask : bool, optional + If True, return a masked array. + If False, return a regular array. + loose : bool, optional + If True, do not raise errors for invalid values. + invalid_raise : bool, optional + If True, an exception is raised if an inconsistency is detected in the + number of columns. + If False, a warning is emitted and the offending lines are skipped. + max_rows : int, optional + The maximum number of rows to read. Must not be used with skip_footer + at the same time. If given, the value must be at least 1. Default is + to read the entire file. + encoding : str, optional + Encoding used to decode the inputfile. Does not apply when `fname` + is a file object. The special value 'bytes' enables backward + compatibility workarounds that ensure that you receive byte arrays + when possible and passes latin1 encoded strings to converters. + Override this value to receive unicode arrays and pass strings + as input to converters. If set to None the system default is used. + The default value is 'bytes'. + + .. versionchanged:: 2.0 + Before NumPy 2, the default was ``'bytes'`` for Python 2 + compatibility. The default is now ``None``. + + ndmin : int, optional + Same parameter as `loadtxt` + + .. versionadded:: 1.23.0 + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + out : ndarray + Data read from the text file. If `usemask` is True, this is a + masked array. + + See Also + -------- + numpy.loadtxt : equivalent function when no data is missing. + + Notes + ----- + * When spaces are used as delimiters, or when no delimiter has been given + as input, there should not be any missing data between two fields. + * When variables are named (either by a flexible dtype or with a `names` + sequence), there must not be any header in the file (else a ValueError + exception is raised). + * Individual values are not stripped of spaces by default. + When using a custom converter, make sure the function does remove spaces. + * Custom converters may receive unexpected values due to dtype + discovery. + + References + ---------- + .. [1] NumPy User Guide, section `I/O with NumPy + `_. + + Examples + -------- + >>> from io import StringIO + >>> import numpy as np + + Comma delimited file with mixed dtype + + >>> s = StringIO("1,1.3,abcde") + >>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'), + ... ('mystring','S5')], delimiter=",") + >>> data + array((1, 1.3, b'abcde'), + dtype=[('myint', '>> _ = s.seek(0) # needed for StringIO example only + >>> data = np.genfromtxt(s, dtype=None, + ... names = ['myint','myfloat','mystring'], delimiter=",") + >>> data + array((1, 1.3, 'abcde'), + dtype=[('myint', '>> _ = s.seek(0) + >>> data = np.genfromtxt(s, dtype="i8,f8,S5", + ... names=['myint','myfloat','mystring'], delimiter=",") + >>> data + array((1, 1.3, b'abcde'), + dtype=[('myint', '>> s = StringIO("11.3abcde") + >>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'], + ... delimiter=[1,3,5]) + >>> data + array((1, 1.3, 'abcde'), + dtype=[('intvar', '>> f = StringIO(''' + ... text,# of chars + ... hello world,11 + ... numpy,5''') + >>> np.genfromtxt(f, dtype='S12,S12', delimiter=',') + array([(b'text', b''), (b'hello world', b'11'), (b'numpy', b'5')], + dtype=[('f0', 'S12'), ('f1', 'S12')]) + + """ + + if like is not None: + return _genfromtxt_with_like( + like, fname, dtype=dtype, comments=comments, delimiter=delimiter, + skip_header=skip_header, skip_footer=skip_footer, + converters=converters, missing_values=missing_values, + filling_values=filling_values, usecols=usecols, names=names, + excludelist=excludelist, deletechars=deletechars, + replace_space=replace_space, autostrip=autostrip, + case_sensitive=case_sensitive, defaultfmt=defaultfmt, + unpack=unpack, usemask=usemask, loose=loose, + invalid_raise=invalid_raise, max_rows=max_rows, encoding=encoding, + ndmin=ndmin, + ) + + _ensure_ndmin_ndarray_check_param(ndmin) + + if max_rows is not None: + if skip_footer: + raise ValueError( + "The keywords 'skip_footer' and 'max_rows' can not be " + "specified at the same time.") + if max_rows < 1: + raise ValueError("'max_rows' must be at least 1.") + + if usemask: + from numpy.ma import MaskedArray, make_mask_descr + # Check the input dictionary of converters + user_converters = converters or {} + if not isinstance(user_converters, dict): + raise TypeError( + "The input argument 'converter' should be a valid dictionary " + "(got '%s' instead)" % type(user_converters)) + + if encoding == 'bytes': + encoding = None + byte_converters = True + else: + byte_converters = False + + # Initialize the filehandle, the LineSplitter and the NameValidator + if isinstance(fname, os.PathLike): + fname = os.fspath(fname) + if isinstance(fname, str): + fid = np.lib._datasource.open(fname, 'rt', encoding=encoding) + fid_ctx = contextlib.closing(fid) + else: + fid = fname + fid_ctx = contextlib.nullcontext(fid) + try: + fhd = iter(fid) + except TypeError as e: + raise TypeError( + "fname must be a string, a filehandle, a sequence of strings,\n" + f"or an iterator of strings. Got {type(fname)} instead." + ) from e + with fid_ctx: + split_line = LineSplitter(delimiter=delimiter, comments=comments, + autostrip=autostrip, encoding=encoding) + validate_names = NameValidator(excludelist=excludelist, + deletechars=deletechars, + case_sensitive=case_sensitive, + replace_space=replace_space) + + # Skip the first `skip_header` rows + try: + for i in range(skip_header): + next(fhd) + + # Keep on until we find the first valid values + first_values = None + + while not first_values: + first_line = _decode_line(next(fhd), encoding) + if (names is True) and (comments is not None): + if comments in first_line: + first_line = ( + ''.join(first_line.split(comments)[1:])) + first_values = split_line(first_line) + except StopIteration: + # return an empty array if the datafile is empty + first_line = '' + first_values = [] + warnings.warn( + f'genfromtxt: Empty input file: "{fname}"', stacklevel=2 + ) + + # Should we take the first values as names ? + if names is True: + fval = first_values[0].strip() + if comments is not None: + if fval in comments: + del first_values[0] + + # Check the columns to use: make sure `usecols` is a list + if usecols is not None: + try: + usecols = [_.strip() for _ in usecols.split(",")] + except AttributeError: + try: + usecols = list(usecols) + except TypeError: + usecols = [usecols, ] + nbcols = len(usecols or first_values) + + # Check the names and overwrite the dtype.names if needed + if names is True: + names = validate_names([str(_.strip()) for _ in first_values]) + first_line = '' + elif _is_string_like(names): + names = validate_names([_.strip() for _ in names.split(',')]) + elif names: + names = validate_names(names) + # Get the dtype + if dtype is not None: + dtype = easy_dtype(dtype, defaultfmt=defaultfmt, names=names, + excludelist=excludelist, + deletechars=deletechars, + case_sensitive=case_sensitive, + replace_space=replace_space) + # Make sure the names is a list (for 2.5) + if names is not None: + names = list(names) + + if usecols: + for (i, current) in enumerate(usecols): + # if usecols is a list of names, convert to a list of indices + if _is_string_like(current): + usecols[i] = names.index(current) + elif current < 0: + usecols[i] = current + len(first_values) + # If the dtype is not None, make sure we update it + if (dtype is not None) and (len(dtype) > nbcols): + descr = dtype.descr + dtype = np.dtype([descr[_] for _ in usecols]) + names = list(dtype.names) + # If `names` is not None, update the names + elif (names is not None) and (len(names) > nbcols): + names = [names[_] for _ in usecols] + elif (names is not None) and (dtype is not None): + names = list(dtype.names) + + # Process the missing values ............................... + # Rename missing_values for convenience + user_missing_values = missing_values or () + if isinstance(user_missing_values, bytes): + user_missing_values = user_missing_values.decode('latin1') + + # Define the list of missing_values (one column: one list) + missing_values = [[''] for _ in range(nbcols)] + + # We have a dictionary: process it field by field + if isinstance(user_missing_values, dict): + # Loop on the items + for (key, val) in user_missing_values.items(): + # Is the key a string ? + if _is_string_like(key): + try: + # Transform it into an integer + key = names.index(key) + except ValueError: + # We couldn't find it: the name must have been dropped + continue + # Redefine the key as needed if it's a column number + if usecols: + try: + key = usecols.index(key) + except ValueError: + pass + # Transform the value as a list of string + if isinstance(val, (list, tuple)): + val = [str(_) for _ in val] + else: + val = [str(val), ] + # Add the value(s) to the current list of missing + if key is None: + # None acts as default + for miss in missing_values: + miss.extend(val) + else: + missing_values[key].extend(val) + # We have a sequence : each item matches a column + elif isinstance(user_missing_values, (list, tuple)): + for (value, entry) in zip(user_missing_values, missing_values): + value = str(value) + if value not in entry: + entry.append(value) + # We have a string : apply it to all entries + elif isinstance(user_missing_values, str): + user_value = user_missing_values.split(",") + for entry in missing_values: + entry.extend(user_value) + # We have something else: apply it to all entries + else: + for entry in missing_values: + entry.extend([str(user_missing_values)]) + + # Process the filling_values ............................... + # Rename the input for convenience + user_filling_values = filling_values + if user_filling_values is None: + user_filling_values = [] + # Define the default + filling_values = [None] * nbcols + # We have a dictionary : update each entry individually + if isinstance(user_filling_values, dict): + for (key, val) in user_filling_values.items(): + if _is_string_like(key): + try: + # Transform it into an integer + key = names.index(key) + except ValueError: + # We couldn't find it: the name must have been dropped + continue + # Redefine the key if it's a column number + # and usecols is defined + if usecols: + try: + key = usecols.index(key) + except ValueError: + pass + # Add the value to the list + filling_values[key] = val + # We have a sequence : update on a one-to-one basis + elif isinstance(user_filling_values, (list, tuple)): + n = len(user_filling_values) + if (n <= nbcols): + filling_values[:n] = user_filling_values + else: + filling_values = user_filling_values[:nbcols] + # We have something else : use it for all entries + else: + filling_values = [user_filling_values] * nbcols + + # Initialize the converters ................................ + if dtype is None: + # Note: we can't use a [...]*nbcols, as we would have 3 times + # the same converter, instead of 3 different converters. + converters = [ + StringConverter(None, missing_values=miss, default=fill) + for (miss, fill) in zip(missing_values, filling_values) + ] + else: + dtype_flat = flatten_dtype(dtype, flatten_base=True) + # Initialize the converters + if len(dtype_flat) > 1: + # Flexible type : get a converter from each dtype + zipit = zip(dtype_flat, missing_values, filling_values) + converters = [StringConverter(dt, + locked=True, + missing_values=miss, + default=fill) + for (dt, miss, fill) in zipit] + else: + # Set to a default converter (but w/ different missing values) + zipit = zip(missing_values, filling_values) + converters = [StringConverter(dtype, + locked=True, + missing_values=miss, + default=fill) + for (miss, fill) in zipit] + # Update the converters to use the user-defined ones + uc_update = [] + for (j, conv) in user_converters.items(): + # If the converter is specified by column names, + # use the index instead + if _is_string_like(j): + try: + j = names.index(j) + i = j + except ValueError: + continue + elif usecols: + try: + i = usecols.index(j) + except ValueError: + # Unused converter specified + continue + else: + i = j + # Find the value to test - first_line is not filtered by usecols: + if len(first_line): + testing_value = first_values[j] + else: + testing_value = None + if conv is bytes: + user_conv = asbytes + elif byte_converters: + # Converters may use decode to workaround numpy's old + # behavior, so encode the string again before passing + # to the user converter. + def tobytes_first(x, conv): + if type(x) is bytes: + return conv(x) + return conv(x.encode("latin1")) + user_conv = functools.partial(tobytes_first, conv=conv) + else: + user_conv = conv + converters[i].update(user_conv, locked=True, + testing_value=testing_value, + default=filling_values[i], + missing_values=missing_values[i],) + uc_update.append((i, user_conv)) + # Make sure we have the corrected keys in user_converters... + user_converters.update(uc_update) + + # Fixme: possible error as following variable never used. + # miss_chars = [_.missing_values for _ in converters] + + # Initialize the output lists ... + # ... rows + rows = [] + append_to_rows = rows.append + # ... masks + if usemask: + masks = [] + append_to_masks = masks.append + # ... invalid + invalid = [] + append_to_invalid = invalid.append + + # Parse each line + for (i, line) in enumerate(itertools.chain([first_line, ], fhd)): + values = split_line(line) + nbvalues = len(values) + # Skip an empty line + if nbvalues == 0: + continue + if usecols: + # Select only the columns we need + try: + values = [values[_] for _ in usecols] + except IndexError: + append_to_invalid((i + skip_header + 1, nbvalues)) + continue + elif nbvalues != nbcols: + append_to_invalid((i + skip_header + 1, nbvalues)) + continue + # Store the values + append_to_rows(tuple(values)) + if usemask: + append_to_masks(tuple(v.strip() in m + for (v, m) in zip(values, + missing_values))) + if len(rows) == max_rows: + break + + # Upgrade the converters (if needed) + if dtype is None: + for (i, converter) in enumerate(converters): + current_column = [itemgetter(i)(_m) for _m in rows] + try: + converter.iterupgrade(current_column) + except ConverterLockError: + errmsg = f"Converter #{i} is locked and cannot be upgraded: " + current_column = map(itemgetter(i), rows) + for (j, value) in enumerate(current_column): + try: + converter.upgrade(value) + except (ConverterError, ValueError): + line_number = j + 1 + skip_header + errmsg += f"(occurred line #{line_number} for value '{value}')" + raise ConverterError(errmsg) + + # Check that we don't have invalid values + nbinvalid = len(invalid) + if nbinvalid > 0: + nbrows = len(rows) + nbinvalid - skip_footer + # Construct the error message + template = f" Line #%i (got %i columns instead of {nbcols})" + if skip_footer > 0: + nbinvalid_skipped = len([_ for _ in invalid + if _[0] > nbrows + skip_header]) + invalid = invalid[:nbinvalid - nbinvalid_skipped] + skip_footer -= nbinvalid_skipped +# +# nbrows -= skip_footer +# errmsg = [template % (i, nb) +# for (i, nb) in invalid if i < nbrows] +# else: + errmsg = [template % (i, nb) + for (i, nb) in invalid] + if len(errmsg): + errmsg.insert(0, "Some errors were detected !") + errmsg = "\n".join(errmsg) + # Raise an exception ? + if invalid_raise: + raise ValueError(errmsg) + # Issue a warning ? + else: + warnings.warn(errmsg, ConversionWarning, stacklevel=2) + + # Strip the last skip_footer data + if skip_footer > 0: + rows = rows[:-skip_footer] + if usemask: + masks = masks[:-skip_footer] + + # Convert each value according to the converter: + # We want to modify the list in place to avoid creating a new one... + if loose: + rows = list( + zip(*[[conv._loose_call(_r) for _r in map(itemgetter(i), rows)] + for (i, conv) in enumerate(converters)])) + else: + rows = list( + zip(*[[conv._strict_call(_r) for _r in map(itemgetter(i), rows)] + for (i, conv) in enumerate(converters)])) + + # Reset the dtype + data = rows + if dtype is None: + # Get the dtypes from the types of the converters + column_types = [conv.type for conv in converters] + # Find the columns with strings... + strcolidx = [i for (i, v) in enumerate(column_types) + if v == np.str_] + + if byte_converters and strcolidx: + # convert strings back to bytes for backward compatibility + warnings.warn( + "Reading unicode strings without specifying the encoding " + "argument is deprecated. Set the encoding, use None for the " + "system default.", + np.exceptions.VisibleDeprecationWarning, stacklevel=2) + + def encode_unicode_cols(row_tup): + row = list(row_tup) + for i in strcolidx: + row[i] = row[i].encode('latin1') + return tuple(row) + + try: + data = [encode_unicode_cols(r) for r in data] + except UnicodeEncodeError: + pass + else: + for i in strcolidx: + column_types[i] = np.bytes_ + + # Update string types to be the right length + sized_column_types = column_types.copy() + for i, col_type in enumerate(column_types): + if np.issubdtype(col_type, np.character): + n_chars = max(len(row[i]) for row in data) + sized_column_types[i] = (col_type, n_chars) + + if names is None: + # If the dtype is uniform (before sizing strings) + base = { + c_type + for c, c_type in zip(converters, column_types) + if c._checked} + if len(base) == 1: + uniform_type, = base + (ddtype, mdtype) = (uniform_type, bool) + else: + ddtype = [(defaultfmt % i, dt) + for (i, dt) in enumerate(sized_column_types)] + if usemask: + mdtype = [(defaultfmt % i, bool) + for (i, dt) in enumerate(sized_column_types)] + else: + ddtype = list(zip(names, sized_column_types)) + mdtype = list(zip(names, [bool] * len(sized_column_types))) + output = np.array(data, dtype=ddtype) + if usemask: + outputmask = np.array(masks, dtype=mdtype) + else: + # Overwrite the initial dtype names if needed + if names and dtype.names is not None: + dtype.names = names + # Case 1. We have a structured type + if len(dtype_flat) > 1: + # Nested dtype, eg [('a', int), ('b', [('b0', int), ('b1', 'f4')])] + # First, create the array using a flattened dtype: + # [('a', int), ('b1', int), ('b2', float)] + # Then, view the array using the specified dtype. + if 'O' in (_.char for _ in dtype_flat): + if has_nested_fields(dtype): + raise NotImplementedError( + "Nested fields involving objects are not supported...") + else: + output = np.array(data, dtype=dtype) + else: + rows = np.array(data, dtype=[('', _) for _ in dtype_flat]) + output = rows.view(dtype) + # Now, process the rowmasks the same way + if usemask: + rowmasks = np.array( + masks, dtype=np.dtype([('', bool) for t in dtype_flat])) + # Construct the new dtype + mdtype = make_mask_descr(dtype) + outputmask = rowmasks.view(mdtype) + # Case #2. We have a basic dtype + else: + # We used some user-defined converters + if user_converters: + ishomogeneous = True + descr = [] + for i, ttype in enumerate([conv.type for conv in converters]): + # Keep the dtype of the current converter + if i in user_converters: + ishomogeneous &= (ttype == dtype.type) + if np.issubdtype(ttype, np.character): + ttype = (ttype, max(len(row[i]) for row in data)) + descr.append(('', ttype)) + else: + descr.append(('', dtype)) + # So we changed the dtype ? + if not ishomogeneous: + # We have more than one field + if len(descr) > 1: + dtype = np.dtype(descr) + # We have only one field: drop the name if not needed. + else: + dtype = np.dtype(ttype) + # + output = np.array(data, dtype) + if usemask: + if dtype.names is not None: + mdtype = [(_, bool) for _ in dtype.names] + else: + mdtype = bool + outputmask = np.array(masks, dtype=mdtype) + # Try to take care of the missing data we missed + names = output.dtype.names + if usemask and names: + for (name, conv) in zip(names, converters): + missing_values = [conv(_) for _ in conv.missing_values + if _ != ''] + for mval in missing_values: + outputmask[name] |= (output[name] == mval) + # Construct the final array + if usemask: + output = output.view(MaskedArray) + output._mask = outputmask + + output = _ensure_ndmin_ndarray(output, ndmin=ndmin) + + if unpack: + if names is None: + return output.T + elif len(names) == 1: + # squeeze single-name dtypes too + return output[names[0]] + else: + # For structured arrays with multiple fields, + # return an array for each field. + return [output[field] for field in names] + return output + + +_genfromtxt_with_like = array_function_dispatch()(genfromtxt) + + +def recfromtxt(fname, **kwargs): + """ + Load ASCII data from a file and return it in a record array. + + If ``usemask=False`` a standard `recarray` is returned, + if ``usemask=True`` a MaskedRecords array is returned. + + .. deprecated:: 2.0 + Use `numpy.genfromtxt` instead. + + Parameters + ---------- + fname, kwargs : For a description of input parameters, see `genfromtxt`. + + See Also + -------- + numpy.genfromtxt : generic function + + Notes + ----- + By default, `dtype` is None, which means that the data-type of the output + array will be determined from the data. + + """ + + # Deprecated in NumPy 2.0, 2023-07-11 + warnings.warn( + "`recfromtxt` is deprecated, " + "use `numpy.genfromtxt` instead." + "(deprecated in NumPy 2.0)", + DeprecationWarning, + stacklevel=2 + ) + + kwargs.setdefault("dtype", None) + usemask = kwargs.get('usemask', False) + output = genfromtxt(fname, **kwargs) + if usemask: + from numpy.ma.mrecords import MaskedRecords + output = output.view(MaskedRecords) + else: + output = output.view(np.recarray) + return output + + +def recfromcsv(fname, **kwargs): + """ + Load ASCII data stored in a comma-separated file. + + The returned array is a record array (if ``usemask=False``, see + `recarray`) or a masked record array (if ``usemask=True``, + see `ma.mrecords.MaskedRecords`). + + .. deprecated:: 2.0 + Use `numpy.genfromtxt` with comma as `delimiter` instead. + + Parameters + ---------- + fname, kwargs : For a description of input parameters, see `genfromtxt`. + + See Also + -------- + numpy.genfromtxt : generic function to load ASCII data. + + Notes + ----- + By default, `dtype` is None, which means that the data-type of the output + array will be determined from the data. + + """ + + # Deprecated in NumPy 2.0, 2023-07-11 + warnings.warn( + "`recfromcsv` is deprecated, " + "use `numpy.genfromtxt` with comma as `delimiter` instead. " + "(deprecated in NumPy 2.0)", + DeprecationWarning, + stacklevel=2 + ) + + # Set default kwargs for genfromtxt as relevant to csv import. + kwargs.setdefault("case_sensitive", "lower") + kwargs.setdefault("names", True) + kwargs.setdefault("delimiter", ",") + kwargs.setdefault("dtype", None) + output = genfromtxt(fname, **kwargs) + + usemask = kwargs.get("usemask", False) + if usemask: + from numpy.ma.mrecords import MaskedRecords + output = output.view(MaskedRecords) + else: + output = output.view(np.recarray) + return output diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_npyio_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_npyio_impl.pyi new file mode 100644 index 0000000..40369c5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_npyio_impl.pyi @@ -0,0 +1,301 @@ +import types +import zipfile +from collections.abc import Callable, Collection, Iterable, Iterator, Mapping, Sequence +from re import Pattern +from typing import ( + IO, + Any, + ClassVar, + Generic, + Protocol, + Self, + TypeAlias, + overload, + type_check_only, +) +from typing import Literal as L + +from _typeshed import ( + StrOrBytesPath, + StrPath, + SupportsKeysAndGetItem, + SupportsRead, + SupportsWrite, +) +from typing_extensions import TypeVar, deprecated, override + +import numpy as np +from numpy._core.multiarray import packbits, unpackbits +from numpy._typing import ArrayLike, DTypeLike, NDArray, _DTypeLike, _SupportsArrayFunc +from numpy.ma.mrecords import MaskedRecords + +from ._datasource import DataSource as DataSource + +__all__ = [ + "fromregex", + "genfromtxt", + "load", + "loadtxt", + "packbits", + "save", + "savetxt", + "savez", + "savez_compressed", + "unpackbits", +] + +_T_co = TypeVar("_T_co", covariant=True) +_ScalarT = TypeVar("_ScalarT", bound=np.generic) +_ScalarT_co = TypeVar("_ScalarT_co", bound=np.generic, default=Any, covariant=True) + +_FName: TypeAlias = StrPath | Iterable[str] | Iterable[bytes] +_FNameRead: TypeAlias = StrPath | SupportsRead[str] | SupportsRead[bytes] +_FNameWriteBytes: TypeAlias = StrPath | SupportsWrite[bytes] +_FNameWrite: TypeAlias = _FNameWriteBytes | SupportsWrite[str] + +@type_check_only +class _SupportsReadSeek(SupportsRead[_T_co], Protocol[_T_co]): + def seek(self, offset: int, whence: int, /) -> object: ... + +class BagObj(Generic[_T_co]): + def __init__(self, /, obj: SupportsKeysAndGetItem[str, _T_co]) -> None: ... + def __getattribute__(self, key: str, /) -> _T_co: ... + def __dir__(self) -> list[str]: ... + +class NpzFile(Mapping[str, NDArray[_ScalarT_co]]): + _MAX_REPR_ARRAY_COUNT: ClassVar[int] = 5 + + zip: zipfile.ZipFile + fid: IO[str] | None + files: list[str] + allow_pickle: bool + pickle_kwargs: Mapping[str, Any] | None + f: BagObj[NpzFile[_ScalarT_co]] + + # + def __init__( + self, + /, + fid: IO[Any], + own_fid: bool = False, + allow_pickle: bool = False, + pickle_kwargs: Mapping[str, object] | None = None, + *, + max_header_size: int = 10_000, + ) -> None: ... + def __del__(self) -> None: ... + def __enter__(self) -> Self: ... + def __exit__(self, cls: type[BaseException] | None, e: BaseException | None, tb: types.TracebackType | None, /) -> None: ... + @override + def __len__(self) -> int: ... + @override + def __iter__(self) -> Iterator[str]: ... + @override + def __getitem__(self, key: str, /) -> NDArray[_ScalarT_co]: ... + def close(self) -> None: ... + +# NOTE: Returns a `NpzFile` if file is a zip file; +# returns an `ndarray`/`memmap` otherwise +def load( + file: StrOrBytesPath | _SupportsReadSeek[bytes], + mmap_mode: L["r+", "r", "w+", "c"] | None = None, + allow_pickle: bool = False, + fix_imports: bool = True, + encoding: L["ASCII", "latin1", "bytes"] = "ASCII", + *, + max_header_size: int = 10_000, +) -> Any: ... + +@overload +def save(file: _FNameWriteBytes, arr: ArrayLike, allow_pickle: bool = True) -> None: ... +@overload +@deprecated("The 'fix_imports' flag is deprecated in NumPy 2.1.") +def save(file: _FNameWriteBytes, arr: ArrayLike, allow_pickle: bool, fix_imports: bool) -> None: ... +@overload +@deprecated("The 'fix_imports' flag is deprecated in NumPy 2.1.") +def save(file: _FNameWriteBytes, arr: ArrayLike, allow_pickle: bool = True, *, fix_imports: bool) -> None: ... + +# +def savez(file: _FNameWriteBytes, *args: ArrayLike, allow_pickle: bool = True, **kwds: ArrayLike) -> None: ... + +# +def savez_compressed(file: _FNameWriteBytes, *args: ArrayLike, allow_pickle: bool = True, **kwds: ArrayLike) -> None: ... + +# File-like objects only have to implement `__iter__` and, +# optionally, `encoding` +@overload +def loadtxt( + fname: _FName, + dtype: None = None, + comments: str | Sequence[str] | None = "#", + delimiter: str | None = None, + converters: Mapping[int | str, Callable[[str], Any]] | Callable[[str], Any] | None = None, + skiprows: int = 0, + usecols: int | Sequence[int] | None = None, + unpack: bool = False, + ndmin: L[0, 1, 2] = 0, + encoding: str | None = None, + max_rows: int | None = None, + *, + quotechar: str | None = None, + like: _SupportsArrayFunc | None = None, +) -> NDArray[np.float64]: ... +@overload +def loadtxt( + fname: _FName, + dtype: _DTypeLike[_ScalarT], + comments: str | Sequence[str] | None = "#", + delimiter: str | None = None, + converters: Mapping[int | str, Callable[[str], Any]] | Callable[[str], Any] | None = None, + skiprows: int = 0, + usecols: int | Sequence[int] | None = None, + unpack: bool = False, + ndmin: L[0, 1, 2] = 0, + encoding: str | None = None, + max_rows: int | None = None, + *, + quotechar: str | None = None, + like: _SupportsArrayFunc | None = None, +) -> NDArray[_ScalarT]: ... +@overload +def loadtxt( + fname: _FName, + dtype: DTypeLike, + comments: str | Sequence[str] | None = "#", + delimiter: str | None = None, + converters: Mapping[int | str, Callable[[str], Any]] | Callable[[str], Any] | None = None, + skiprows: int = 0, + usecols: int | Sequence[int] | None = None, + unpack: bool = False, + ndmin: L[0, 1, 2] = 0, + encoding: str | None = None, + max_rows: int | None = None, + *, + quotechar: str | None = None, + like: _SupportsArrayFunc | None = None, +) -> NDArray[Any]: ... + +def savetxt( + fname: _FNameWrite, + X: ArrayLike, + fmt: str | Sequence[str] = "%.18e", + delimiter: str = " ", + newline: str = "\n", + header: str = "", + footer: str = "", + comments: str = "# ", + encoding: str | None = None, +) -> None: ... + +@overload +def fromregex( + file: _FNameRead, + regexp: str | bytes | Pattern[Any], + dtype: _DTypeLike[_ScalarT], + encoding: str | None = None, +) -> NDArray[_ScalarT]: ... +@overload +def fromregex( + file: _FNameRead, + regexp: str | bytes | Pattern[Any], + dtype: DTypeLike, + encoding: str | None = None, +) -> NDArray[Any]: ... + +@overload +def genfromtxt( + fname: _FName, + dtype: None = None, + comments: str = ..., + delimiter: str | int | Iterable[int] | None = ..., + skip_header: int = ..., + skip_footer: int = ..., + converters: Mapping[int | str, Callable[[str], Any]] | None = ..., + missing_values: Any = ..., + filling_values: Any = ..., + usecols: Sequence[int] | None = ..., + names: L[True] | str | Collection[str] | None = ..., + excludelist: Sequence[str] | None = ..., + deletechars: str = ..., + replace_space: str = ..., + autostrip: bool = ..., + case_sensitive: bool | L["upper", "lower"] = ..., + defaultfmt: str = ..., + unpack: bool | None = ..., + usemask: bool = ..., + loose: bool = ..., + invalid_raise: bool = ..., + max_rows: int | None = ..., + encoding: str = ..., + *, + ndmin: L[0, 1, 2] = ..., + like: _SupportsArrayFunc | None = ..., +) -> NDArray[Any]: ... +@overload +def genfromtxt( + fname: _FName, + dtype: _DTypeLike[_ScalarT], + comments: str = ..., + delimiter: str | int | Iterable[int] | None = ..., + skip_header: int = ..., + skip_footer: int = ..., + converters: Mapping[int | str, Callable[[str], Any]] | None = ..., + missing_values: Any = ..., + filling_values: Any = ..., + usecols: Sequence[int] | None = ..., + names: L[True] | str | Collection[str] | None = ..., + excludelist: Sequence[str] | None = ..., + deletechars: str = ..., + replace_space: str = ..., + autostrip: bool = ..., + case_sensitive: bool | L["upper", "lower"] = ..., + defaultfmt: str = ..., + unpack: bool | None = ..., + usemask: bool = ..., + loose: bool = ..., + invalid_raise: bool = ..., + max_rows: int | None = ..., + encoding: str = ..., + *, + ndmin: L[0, 1, 2] = ..., + like: _SupportsArrayFunc | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def genfromtxt( + fname: _FName, + dtype: DTypeLike, + comments: str = ..., + delimiter: str | int | Iterable[int] | None = ..., + skip_header: int = ..., + skip_footer: int = ..., + converters: Mapping[int | str, Callable[[str], Any]] | None = ..., + missing_values: Any = ..., + filling_values: Any = ..., + usecols: Sequence[int] | None = ..., + names: L[True] | str | Collection[str] | None = ..., + excludelist: Sequence[str] | None = ..., + deletechars: str = ..., + replace_space: str = ..., + autostrip: bool = ..., + case_sensitive: bool | L["upper", "lower"] = ..., + defaultfmt: str = ..., + unpack: bool | None = ..., + usemask: bool = ..., + loose: bool = ..., + invalid_raise: bool = ..., + max_rows: int | None = ..., + encoding: str = ..., + *, + ndmin: L[0, 1, 2] = ..., + like: _SupportsArrayFunc | None = ..., +) -> NDArray[Any]: ... + +@overload +def recfromtxt(fname: _FName, *, usemask: L[False] = False, **kwargs: object) -> np.recarray[Any, np.dtype[np.record]]: ... +@overload +def recfromtxt(fname: _FName, *, usemask: L[True], **kwargs: object) -> MaskedRecords[Any, np.dtype[np.void]]: ... + +@overload +def recfromcsv(fname: _FName, *, usemask: L[False] = False, **kwargs: object) -> np.recarray[Any, np.dtype[np.record]]: ... +@overload +def recfromcsv(fname: _FName, *, usemask: L[True], **kwargs: object) -> MaskedRecords[Any, np.dtype[np.void]]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_polynomial_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_polynomial_impl.py new file mode 100644 index 0000000..a58ca76 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_polynomial_impl.py @@ -0,0 +1,1465 @@ +""" +Functions to operate on polynomials. + +""" +__all__ = ['poly', 'roots', 'polyint', 'polyder', 'polyadd', + 'polysub', 'polymul', 'polydiv', 'polyval', 'poly1d', + 'polyfit'] + +import functools +import re +import warnings + +import numpy._core.numeric as NX +from numpy._core import ( + abs, + array, + atleast_1d, + dot, + finfo, + hstack, + isscalar, + ones, + overrides, +) +from numpy._utils import set_module +from numpy.exceptions import RankWarning +from numpy.lib._function_base_impl import trim_zeros +from numpy.lib._twodim_base_impl import diag, vander +from numpy.lib._type_check_impl import imag, iscomplex, mintypecode, real +from numpy.linalg import eigvals, inv, lstsq + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy') + + +def _poly_dispatcher(seq_of_zeros): + return seq_of_zeros + + +@array_function_dispatch(_poly_dispatcher) +def poly(seq_of_zeros): + """ + Find the coefficients of a polynomial with the given sequence of roots. + + .. note:: + This forms part of the old polynomial API. Since version 1.4, the + new polynomial API defined in `numpy.polynomial` is preferred. + A summary of the differences can be found in the + :doc:`transition guide `. + + Returns the coefficients of the polynomial whose leading coefficient + is one for the given sequence of zeros (multiple roots must be included + in the sequence as many times as their multiplicity; see Examples). + A square matrix (or array, which will be treated as a matrix) can also + be given, in which case the coefficients of the characteristic polynomial + of the matrix are returned. + + Parameters + ---------- + seq_of_zeros : array_like, shape (N,) or (N, N) + A sequence of polynomial roots, or a square array or matrix object. + + Returns + ------- + c : ndarray + 1D array of polynomial coefficients from highest to lowest degree: + + ``c[0] * x**(N) + c[1] * x**(N-1) + ... + c[N-1] * x + c[N]`` + where c[0] always equals 1. + + Raises + ------ + ValueError + If input is the wrong shape (the input must be a 1-D or square + 2-D array). + + See Also + -------- + polyval : Compute polynomial values. + roots : Return the roots of a polynomial. + polyfit : Least squares polynomial fit. + poly1d : A one-dimensional polynomial class. + + Notes + ----- + Specifying the roots of a polynomial still leaves one degree of + freedom, typically represented by an undetermined leading + coefficient. [1]_ In the case of this function, that coefficient - + the first one in the returned array - is always taken as one. (If + for some reason you have one other point, the only automatic way + presently to leverage that information is to use ``polyfit``.) + + The characteristic polynomial, :math:`p_a(t)`, of an `n`-by-`n` + matrix **A** is given by + + :math:`p_a(t) = \\mathrm{det}(t\\, \\mathbf{I} - \\mathbf{A})`, + + where **I** is the `n`-by-`n` identity matrix. [2]_ + + References + ---------- + .. [1] M. Sullivan and M. Sullivan, III, "Algebra and Trigonometry, + Enhanced With Graphing Utilities," Prentice-Hall, pg. 318, 1996. + + .. [2] G. Strang, "Linear Algebra and Its Applications, 2nd Edition," + Academic Press, pg. 182, 1980. + + Examples + -------- + + Given a sequence of a polynomial's zeros: + + >>> import numpy as np + + >>> np.poly((0, 0, 0)) # Multiple root example + array([1., 0., 0., 0.]) + + The line above represents z**3 + 0*z**2 + 0*z + 0. + + >>> np.poly((-1./2, 0, 1./2)) + array([ 1. , 0. , -0.25, 0. ]) + + The line above represents z**3 - z/4 + + >>> np.poly((np.random.random(1)[0], 0, np.random.random(1)[0])) + array([ 1. , -0.77086955, 0.08618131, 0. ]) # random + + Given a square array object: + + >>> P = np.array([[0, 1./3], [-1./2, 0]]) + >>> np.poly(P) + array([1. , 0. , 0.16666667]) + + Note how in all cases the leading coefficient is always 1. + + """ + seq_of_zeros = atleast_1d(seq_of_zeros) + sh = seq_of_zeros.shape + + if len(sh) == 2 and sh[0] == sh[1] and sh[0] != 0: + seq_of_zeros = eigvals(seq_of_zeros) + elif len(sh) == 1: + dt = seq_of_zeros.dtype + # Let object arrays slip through, e.g. for arbitrary precision + if dt != object: + seq_of_zeros = seq_of_zeros.astype(mintypecode(dt.char)) + else: + raise ValueError("input must be 1d or non-empty square 2d array.") + + if len(seq_of_zeros) == 0: + return 1.0 + dt = seq_of_zeros.dtype + a = ones((1,), dtype=dt) + for zero in seq_of_zeros: + a = NX.convolve(a, array([1, -zero], dtype=dt), mode='full') + + if issubclass(a.dtype.type, NX.complexfloating): + # if complex roots are all complex conjugates, the roots are real. + roots = NX.asarray(seq_of_zeros, complex) + if NX.all(NX.sort(roots) == NX.sort(roots.conjugate())): + a = a.real.copy() + + return a + + +def _roots_dispatcher(p): + return p + + +@array_function_dispatch(_roots_dispatcher) +def roots(p): + """ + Return the roots of a polynomial with coefficients given in p. + + .. note:: + This forms part of the old polynomial API. Since version 1.4, the + new polynomial API defined in `numpy.polynomial` is preferred. + A summary of the differences can be found in the + :doc:`transition guide `. + + The values in the rank-1 array `p` are coefficients of a polynomial. + If the length of `p` is n+1 then the polynomial is described by:: + + p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n] + + Parameters + ---------- + p : array_like + Rank-1 array of polynomial coefficients. + + Returns + ------- + out : ndarray + An array containing the roots of the polynomial. + + Raises + ------ + ValueError + When `p` cannot be converted to a rank-1 array. + + See also + -------- + poly : Find the coefficients of a polynomial with a given sequence + of roots. + polyval : Compute polynomial values. + polyfit : Least squares polynomial fit. + poly1d : A one-dimensional polynomial class. + + Notes + ----- + The algorithm relies on computing the eigenvalues of the + companion matrix [1]_. + + References + ---------- + .. [1] R. A. Horn & C. R. Johnson, *Matrix Analysis*. Cambridge, UK: + Cambridge University Press, 1999, pp. 146-7. + + Examples + -------- + >>> import numpy as np + >>> coeff = [3.2, 2, 1] + >>> np.roots(coeff) + array([-0.3125+0.46351241j, -0.3125-0.46351241j]) + + """ + # If input is scalar, this makes it an array + p = atleast_1d(p) + if p.ndim != 1: + raise ValueError("Input must be a rank-1 array.") + + # find non-zero array entries + non_zero = NX.nonzero(NX.ravel(p))[0] + + # Return an empty array if polynomial is all zeros + if len(non_zero) == 0: + return NX.array([]) + + # find the number of trailing zeros -- this is the number of roots at 0. + trailing_zeros = len(p) - non_zero[-1] - 1 + + # strip leading and trailing zeros + p = p[int(non_zero[0]):int(non_zero[-1]) + 1] + + # casting: if incoming array isn't floating point, make it floating point. + if not issubclass(p.dtype.type, (NX.floating, NX.complexfloating)): + p = p.astype(float) + + N = len(p) + if N > 1: + # build companion matrix and find its eigenvalues (the roots) + A = diag(NX.ones((N - 2,), p.dtype), -1) + A[0, :] = -p[1:] / p[0] + roots = eigvals(A) + else: + roots = NX.array([]) + + # tack any zeros onto the back of the array + roots = hstack((roots, NX.zeros(trailing_zeros, roots.dtype))) + return roots + + +def _polyint_dispatcher(p, m=None, k=None): + return (p,) + + +@array_function_dispatch(_polyint_dispatcher) +def polyint(p, m=1, k=None): + """ + Return an antiderivative (indefinite integral) of a polynomial. + + .. note:: + This forms part of the old polynomial API. Since version 1.4, the + new polynomial API defined in `numpy.polynomial` is preferred. + A summary of the differences can be found in the + :doc:`transition guide `. + + The returned order `m` antiderivative `P` of polynomial `p` satisfies + :math:`\\frac{d^m}{dx^m}P(x) = p(x)` and is defined up to `m - 1` + integration constants `k`. The constants determine the low-order + polynomial part + + .. math:: \\frac{k_{m-1}}{0!} x^0 + \\ldots + \\frac{k_0}{(m-1)!}x^{m-1} + + of `P` so that :math:`P^{(j)}(0) = k_{m-j-1}`. + + Parameters + ---------- + p : array_like or poly1d + Polynomial to integrate. + A sequence is interpreted as polynomial coefficients, see `poly1d`. + m : int, optional + Order of the antiderivative. (Default: 1) + k : list of `m` scalars or scalar, optional + Integration constants. They are given in the order of integration: + those corresponding to highest-order terms come first. + + If ``None`` (default), all constants are assumed to be zero. + If `m = 1`, a single scalar can be given instead of a list. + + See Also + -------- + polyder : derivative of a polynomial + poly1d.integ : equivalent method + + Examples + -------- + + The defining property of the antiderivative: + + >>> import numpy as np + + >>> p = np.poly1d([1,1,1]) + >>> P = np.polyint(p) + >>> P + poly1d([ 0.33333333, 0.5 , 1. , 0. ]) # may vary + >>> np.polyder(P) == p + True + + The integration constants default to zero, but can be specified: + + >>> P = np.polyint(p, 3) + >>> P(0) + 0.0 + >>> np.polyder(P)(0) + 0.0 + >>> np.polyder(P, 2)(0) + 0.0 + >>> P = np.polyint(p, 3, k=[6,5,3]) + >>> P + poly1d([ 0.01666667, 0.04166667, 0.16666667, 3. , 5. , 3. ]) # may vary + + Note that 3 = 6 / 2!, and that the constants are given in the order of + integrations. Constant of the highest-order polynomial term comes first: + + >>> np.polyder(P, 2)(0) + 6.0 + >>> np.polyder(P, 1)(0) + 5.0 + >>> P(0) + 3.0 + + """ + m = int(m) + if m < 0: + raise ValueError("Order of integral must be positive (see polyder)") + if k is None: + k = NX.zeros(m, float) + k = atleast_1d(k) + if len(k) == 1 and m > 1: + k = k[0] * NX.ones(m, float) + if len(k) < m: + raise ValueError( + "k must be a scalar or a rank-1 array of length 1 or >m.") + + truepoly = isinstance(p, poly1d) + p = NX.asarray(p) + if m == 0: + if truepoly: + return poly1d(p) + return p + else: + # Note: this must work also with object and integer arrays + y = NX.concatenate((p.__truediv__(NX.arange(len(p), 0, -1)), [k[0]])) + val = polyint(y, m - 1, k=k[1:]) + if truepoly: + return poly1d(val) + return val + + +def _polyder_dispatcher(p, m=None): + return (p,) + + +@array_function_dispatch(_polyder_dispatcher) +def polyder(p, m=1): + """ + Return the derivative of the specified order of a polynomial. + + .. note:: + This forms part of the old polynomial API. Since version 1.4, the + new polynomial API defined in `numpy.polynomial` is preferred. + A summary of the differences can be found in the + :doc:`transition guide `. + + Parameters + ---------- + p : poly1d or sequence + Polynomial to differentiate. + A sequence is interpreted as polynomial coefficients, see `poly1d`. + m : int, optional + Order of differentiation (default: 1) + + Returns + ------- + der : poly1d + A new polynomial representing the derivative. + + See Also + -------- + polyint : Anti-derivative of a polynomial. + poly1d : Class for one-dimensional polynomials. + + Examples + -------- + + The derivative of the polynomial :math:`x^3 + x^2 + x^1 + 1` is: + + >>> import numpy as np + + >>> p = np.poly1d([1,1,1,1]) + >>> p2 = np.polyder(p) + >>> p2 + poly1d([3, 2, 1]) + + which evaluates to: + + >>> p2(2.) + 17.0 + + We can verify this, approximating the derivative with + ``(f(x + h) - f(x))/h``: + + >>> (p(2. + 0.001) - p(2.)) / 0.001 + 17.007000999997857 + + The fourth-order derivative of a 3rd-order polynomial is zero: + + >>> np.polyder(p, 2) + poly1d([6, 2]) + >>> np.polyder(p, 3) + poly1d([6]) + >>> np.polyder(p, 4) + poly1d([0]) + + """ + m = int(m) + if m < 0: + raise ValueError("Order of derivative must be positive (see polyint)") + + truepoly = isinstance(p, poly1d) + p = NX.asarray(p) + n = len(p) - 1 + y = p[:-1] * NX.arange(n, 0, -1) + if m == 0: + val = p + else: + val = polyder(y, m - 1) + if truepoly: + val = poly1d(val) + return val + + +def _polyfit_dispatcher(x, y, deg, rcond=None, full=None, w=None, cov=None): + return (x, y, w) + + +@array_function_dispatch(_polyfit_dispatcher) +def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False): + """ + Least squares polynomial fit. + + .. note:: + This forms part of the old polynomial API. Since version 1.4, the + new polynomial API defined in `numpy.polynomial` is preferred. + A summary of the differences can be found in the + :doc:`transition guide `. + + Fit a polynomial ``p(x) = p[0] * x**deg + ... + p[deg]`` of degree `deg` + to points `(x, y)`. Returns a vector of coefficients `p` that minimises + the squared error in the order `deg`, `deg-1`, ... `0`. + + The `Polynomial.fit ` class + method is recommended for new code as it is more stable numerically. See + the documentation of the method for more information. + + Parameters + ---------- + x : array_like, shape (M,) + x-coordinates of the M sample points ``(x[i], y[i])``. + y : array_like, shape (M,) or (M, K) + y-coordinates of the sample points. Several data sets of sample + points sharing the same x-coordinates can be fitted at once by + passing in a 2D-array that contains one dataset per column. + deg : int + Degree of the fitting polynomial + rcond : float, optional + Relative condition number of the fit. Singular values smaller than + this relative to the largest singular value will be ignored. The + default value is len(x)*eps, where eps is the relative precision of + the float type, about 2e-16 in most cases. + full : bool, optional + Switch determining nature of return value. When it is False (the + default) just the coefficients are returned, when True diagnostic + information from the singular value decomposition is also returned. + w : array_like, shape (M,), optional + Weights. If not None, the weight ``w[i]`` applies to the unsquared + residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are + chosen so that the errors of the products ``w[i]*y[i]`` all have the + same variance. When using inverse-variance weighting, use + ``w[i] = 1/sigma(y[i])``. The default value is None. + cov : bool or str, optional + If given and not `False`, return not just the estimate but also its + covariance matrix. By default, the covariance are scaled by + chi2/dof, where dof = M - (deg + 1), i.e., the weights are presumed + to be unreliable except in a relative sense and everything is scaled + such that the reduced chi2 is unity. This scaling is omitted if + ``cov='unscaled'``, as is relevant for the case that the weights are + w = 1/sigma, with sigma known to be a reliable estimate of the + uncertainty. + + Returns + ------- + p : ndarray, shape (deg + 1,) or (deg + 1, K) + Polynomial coefficients, highest power first. If `y` was 2-D, the + coefficients for `k`-th data set are in ``p[:,k]``. + + residuals, rank, singular_values, rcond + These values are only returned if ``full == True`` + + - residuals -- sum of squared residuals of the least squares fit + - rank -- the effective rank of the scaled Vandermonde + coefficient matrix + - singular_values -- singular values of the scaled Vandermonde + coefficient matrix + - rcond -- value of `rcond`. + + For more details, see `numpy.linalg.lstsq`. + + V : ndarray, shape (deg + 1, deg + 1) or (deg + 1, deg + 1, K) + Present only if ``full == False`` and ``cov == True``. The covariance + matrix of the polynomial coefficient estimates. The diagonal of + this matrix are the variance estimates for each coefficient. If y + is a 2-D array, then the covariance matrix for the `k`-th data set + are in ``V[:,:,k]`` + + + Warns + ----- + RankWarning + The rank of the coefficient matrix in the least-squares fit is + deficient. The warning is only raised if ``full == False``. + + The warnings can be turned off by + + >>> import warnings + >>> warnings.simplefilter('ignore', np.exceptions.RankWarning) + + See Also + -------- + polyval : Compute polynomial values. + linalg.lstsq : Computes a least-squares fit. + scipy.interpolate.UnivariateSpline : Computes spline fits. + + Notes + ----- + The solution minimizes the squared error + + .. math:: + E = \\sum_{j=0}^k |p(x_j) - y_j|^2 + + in the equations:: + + x[0]**n * p[0] + ... + x[0] * p[n-1] + p[n] = y[0] + x[1]**n * p[0] + ... + x[1] * p[n-1] + p[n] = y[1] + ... + x[k]**n * p[0] + ... + x[k] * p[n-1] + p[n] = y[k] + + The coefficient matrix of the coefficients `p` is a Vandermonde matrix. + + `polyfit` issues a `~exceptions.RankWarning` when the least-squares fit is + badly conditioned. This implies that the best fit is not well-defined due + to numerical error. The results may be improved by lowering the polynomial + degree or by replacing `x` by `x` - `x`.mean(). The `rcond` parameter + can also be set to a value smaller than its default, but the resulting + fit may be spurious: including contributions from the small singular + values can add numerical noise to the result. + + Note that fitting polynomial coefficients is inherently badly conditioned + when the degree of the polynomial is large or the interval of sample points + is badly centered. The quality of the fit should always be checked in these + cases. When polynomial fits are not satisfactory, splines may be a good + alternative. + + References + ---------- + .. [1] Wikipedia, "Curve fitting", + https://en.wikipedia.org/wiki/Curve_fitting + .. [2] Wikipedia, "Polynomial interpolation", + https://en.wikipedia.org/wiki/Polynomial_interpolation + + Examples + -------- + >>> import numpy as np + >>> import warnings + >>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0]) + >>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0]) + >>> z = np.polyfit(x, y, 3) + >>> z + array([ 0.08703704, -0.81349206, 1.69312169, -0.03968254]) # may vary + + It is convenient to use `poly1d` objects for dealing with polynomials: + + >>> p = np.poly1d(z) + >>> p(0.5) + 0.6143849206349179 # may vary + >>> p(3.5) + -0.34732142857143039 # may vary + >>> p(10) + 22.579365079365115 # may vary + + High-order polynomials may oscillate wildly: + + >>> with warnings.catch_warnings(): + ... warnings.simplefilter('ignore', np.exceptions.RankWarning) + ... p30 = np.poly1d(np.polyfit(x, y, 30)) + ... + >>> p30(4) + -0.80000000000000204 # may vary + >>> p30(5) + -0.99999999999999445 # may vary + >>> p30(4.5) + -0.10547061179440398 # may vary + + Illustration: + + >>> import matplotlib.pyplot as plt + >>> xp = np.linspace(-2, 6, 100) + >>> _ = plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--') + >>> plt.ylim(-2,2) + (-2, 2) + >>> plt.show() + + """ + order = int(deg) + 1 + x = NX.asarray(x) + 0.0 + y = NX.asarray(y) + 0.0 + + # check arguments. + if deg < 0: + raise ValueError("expected deg >= 0") + if x.ndim != 1: + raise TypeError("expected 1D vector for x") + if x.size == 0: + raise TypeError("expected non-empty vector for x") + if y.ndim < 1 or y.ndim > 2: + raise TypeError("expected 1D or 2D array for y") + if x.shape[0] != y.shape[0]: + raise TypeError("expected x and y to have same length") + + # set rcond + if rcond is None: + rcond = len(x) * finfo(x.dtype).eps + + # set up least squares equation for powers of x + lhs = vander(x, order) + rhs = y + + # apply weighting + if w is not None: + w = NX.asarray(w) + 0.0 + if w.ndim != 1: + raise TypeError("expected a 1-d array for weights") + if w.shape[0] != y.shape[0]: + raise TypeError("expected w and y to have the same length") + lhs *= w[:, NX.newaxis] + if rhs.ndim == 2: + rhs *= w[:, NX.newaxis] + else: + rhs *= w + + # scale lhs to improve condition number and solve + scale = NX.sqrt((lhs * lhs).sum(axis=0)) + lhs /= scale + c, resids, rank, s = lstsq(lhs, rhs, rcond) + c = (c.T / scale).T # broadcast scale coefficients + + # warn on rank reduction, which indicates an ill conditioned matrix + if rank != order and not full: + msg = "Polyfit may be poorly conditioned" + warnings.warn(msg, RankWarning, stacklevel=2) + + if full: + return c, resids, rank, s, rcond + elif cov: + Vbase = inv(dot(lhs.T, lhs)) + Vbase /= NX.outer(scale, scale) + if cov == "unscaled": + fac = 1 + else: + if len(x) <= order: + raise ValueError("the number of data points must exceed order " + "to scale the covariance matrix") + # note, this used to be: fac = resids / (len(x) - order - 2.0) + # it was decided that the "- 2" (originally justified by "Bayesian + # uncertainty analysis") is not what the user expects + # (see gh-11196 and gh-11197) + fac = resids / (len(x) - order) + if y.ndim == 1: + return c, Vbase * fac + else: + return c, Vbase[:, :, NX.newaxis] * fac + else: + return c + + +def _polyval_dispatcher(p, x): + return (p, x) + + +@array_function_dispatch(_polyval_dispatcher) +def polyval(p, x): + """ + Evaluate a polynomial at specific values. + + .. note:: + This forms part of the old polynomial API. Since version 1.4, the + new polynomial API defined in `numpy.polynomial` is preferred. + A summary of the differences can be found in the + :doc:`transition guide `. + + If `p` is of length N, this function returns the value:: + + p[0]*x**(N-1) + p[1]*x**(N-2) + ... + p[N-2]*x + p[N-1] + + If `x` is a sequence, then ``p(x)`` is returned for each element of ``x``. + If `x` is another polynomial then the composite polynomial ``p(x(t))`` + is returned. + + Parameters + ---------- + p : array_like or poly1d object + 1D array of polynomial coefficients (including coefficients equal + to zero) from highest degree to the constant term, or an + instance of poly1d. + x : array_like or poly1d object + A number, an array of numbers, or an instance of poly1d, at + which to evaluate `p`. + + Returns + ------- + values : ndarray or poly1d + If `x` is a poly1d instance, the result is the composition of the two + polynomials, i.e., `x` is "substituted" in `p` and the simplified + result is returned. In addition, the type of `x` - array_like or + poly1d - governs the type of the output: `x` array_like => `values` + array_like, `x` a poly1d object => `values` is also. + + See Also + -------- + poly1d: A polynomial class. + + Notes + ----- + Horner's scheme [1]_ is used to evaluate the polynomial. Even so, + for polynomials of high degree the values may be inaccurate due to + rounding errors. Use carefully. + + If `x` is a subtype of `ndarray` the return value will be of the same type. + + References + ---------- + .. [1] I. N. Bronshtein, K. A. Semendyayev, and K. A. Hirsch (Eng. + trans. Ed.), *Handbook of Mathematics*, New York, Van Nostrand + Reinhold Co., 1985, pg. 720. + + Examples + -------- + >>> import numpy as np + >>> np.polyval([3,0,1], 5) # 3 * 5**2 + 0 * 5**1 + 1 + 76 + >>> np.polyval([3,0,1], np.poly1d(5)) + poly1d([76]) + >>> np.polyval(np.poly1d([3,0,1]), 5) + 76 + >>> np.polyval(np.poly1d([3,0,1]), np.poly1d(5)) + poly1d([76]) + + """ + p = NX.asarray(p) + if isinstance(x, poly1d): + y = 0 + else: + x = NX.asanyarray(x) + y = NX.zeros_like(x) + for pv in p: + y = y * x + pv + return y + + +def _binary_op_dispatcher(a1, a2): + return (a1, a2) + + +@array_function_dispatch(_binary_op_dispatcher) +def polyadd(a1, a2): + """ + Find the sum of two polynomials. + + .. note:: + This forms part of the old polynomial API. Since version 1.4, the + new polynomial API defined in `numpy.polynomial` is preferred. + A summary of the differences can be found in the + :doc:`transition guide `. + + Returns the polynomial resulting from the sum of two input polynomials. + Each input must be either a poly1d object or a 1D sequence of polynomial + coefficients, from highest to lowest degree. + + Parameters + ---------- + a1, a2 : array_like or poly1d object + Input polynomials. + + Returns + ------- + out : ndarray or poly1d object + The sum of the inputs. If either input is a poly1d object, then the + output is also a poly1d object. Otherwise, it is a 1D array of + polynomial coefficients from highest to lowest degree. + + See Also + -------- + poly1d : A one-dimensional polynomial class. + poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval + + Examples + -------- + >>> import numpy as np + >>> np.polyadd([1, 2], [9, 5, 4]) + array([9, 6, 6]) + + Using poly1d objects: + + >>> p1 = np.poly1d([1, 2]) + >>> p2 = np.poly1d([9, 5, 4]) + >>> print(p1) + 1 x + 2 + >>> print(p2) + 2 + 9 x + 5 x + 4 + >>> print(np.polyadd(p1, p2)) + 2 + 9 x + 6 x + 6 + + """ + truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) + a1 = atleast_1d(a1) + a2 = atleast_1d(a2) + diff = len(a2) - len(a1) + if diff == 0: + val = a1 + a2 + elif diff > 0: + zr = NX.zeros(diff, a1.dtype) + val = NX.concatenate((zr, a1)) + a2 + else: + zr = NX.zeros(abs(diff), a2.dtype) + val = a1 + NX.concatenate((zr, a2)) + if truepoly: + val = poly1d(val) + return val + + +@array_function_dispatch(_binary_op_dispatcher) +def polysub(a1, a2): + """ + Difference (subtraction) of two polynomials. + + .. note:: + This forms part of the old polynomial API. Since version 1.4, the + new polynomial API defined in `numpy.polynomial` is preferred. + A summary of the differences can be found in the + :doc:`transition guide `. + + Given two polynomials `a1` and `a2`, returns ``a1 - a2``. + `a1` and `a2` can be either array_like sequences of the polynomials' + coefficients (including coefficients equal to zero), or `poly1d` objects. + + Parameters + ---------- + a1, a2 : array_like or poly1d + Minuend and subtrahend polynomials, respectively. + + Returns + ------- + out : ndarray or poly1d + Array or `poly1d` object of the difference polynomial's coefficients. + + See Also + -------- + polyval, polydiv, polymul, polyadd + + Examples + -------- + + .. math:: (2 x^2 + 10 x - 2) - (3 x^2 + 10 x -4) = (-x^2 + 2) + + >>> import numpy as np + + >>> np.polysub([2, 10, -2], [3, 10, -4]) + array([-1, 0, 2]) + + """ + truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) + a1 = atleast_1d(a1) + a2 = atleast_1d(a2) + diff = len(a2) - len(a1) + if diff == 0: + val = a1 - a2 + elif diff > 0: + zr = NX.zeros(diff, a1.dtype) + val = NX.concatenate((zr, a1)) - a2 + else: + zr = NX.zeros(abs(diff), a2.dtype) + val = a1 - NX.concatenate((zr, a2)) + if truepoly: + val = poly1d(val) + return val + + +@array_function_dispatch(_binary_op_dispatcher) +def polymul(a1, a2): + """ + Find the product of two polynomials. + + .. note:: + This forms part of the old polynomial API. Since version 1.4, the + new polynomial API defined in `numpy.polynomial` is preferred. + A summary of the differences can be found in the + :doc:`transition guide `. + + Finds the polynomial resulting from the multiplication of the two input + polynomials. Each input must be either a poly1d object or a 1D sequence + of polynomial coefficients, from highest to lowest degree. + + Parameters + ---------- + a1, a2 : array_like or poly1d object + Input polynomials. + + Returns + ------- + out : ndarray or poly1d object + The polynomial resulting from the multiplication of the inputs. If + either inputs is a poly1d object, then the output is also a poly1d + object. Otherwise, it is a 1D array of polynomial coefficients from + highest to lowest degree. + + See Also + -------- + poly1d : A one-dimensional polynomial class. + poly, polyadd, polyder, polydiv, polyfit, polyint, polysub, polyval + convolve : Array convolution. Same output as polymul, but has parameter + for overlap mode. + + Examples + -------- + >>> import numpy as np + >>> np.polymul([1, 2, 3], [9, 5, 1]) + array([ 9, 23, 38, 17, 3]) + + Using poly1d objects: + + >>> p1 = np.poly1d([1, 2, 3]) + >>> p2 = np.poly1d([9, 5, 1]) + >>> print(p1) + 2 + 1 x + 2 x + 3 + >>> print(p2) + 2 + 9 x + 5 x + 1 + >>> print(np.polymul(p1, p2)) + 4 3 2 + 9 x + 23 x + 38 x + 17 x + 3 + + """ + truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d)) + a1, a2 = poly1d(a1), poly1d(a2) + val = NX.convolve(a1, a2) + if truepoly: + val = poly1d(val) + return val + + +def _polydiv_dispatcher(u, v): + return (u, v) + + +@array_function_dispatch(_polydiv_dispatcher) +def polydiv(u, v): + """ + Returns the quotient and remainder of polynomial division. + + .. note:: + This forms part of the old polynomial API. Since version 1.4, the + new polynomial API defined in `numpy.polynomial` is preferred. + A summary of the differences can be found in the + :doc:`transition guide `. + + The input arrays are the coefficients (including any coefficients + equal to zero) of the "numerator" (dividend) and "denominator" + (divisor) polynomials, respectively. + + Parameters + ---------- + u : array_like or poly1d + Dividend polynomial's coefficients. + + v : array_like or poly1d + Divisor polynomial's coefficients. + + Returns + ------- + q : ndarray + Coefficients, including those equal to zero, of the quotient. + r : ndarray + Coefficients, including those equal to zero, of the remainder. + + See Also + -------- + poly, polyadd, polyder, polydiv, polyfit, polyint, polymul, polysub + polyval + + Notes + ----- + Both `u` and `v` must be 0-d or 1-d (ndim = 0 or 1), but `u.ndim` need + not equal `v.ndim`. In other words, all four possible combinations - + ``u.ndim = v.ndim = 0``, ``u.ndim = v.ndim = 1``, + ``u.ndim = 1, v.ndim = 0``, and ``u.ndim = 0, v.ndim = 1`` - work. + + Examples + -------- + + .. math:: \\frac{3x^2 + 5x + 2}{2x + 1} = 1.5x + 1.75, remainder 0.25 + + >>> import numpy as np + + >>> x = np.array([3.0, 5.0, 2.0]) + >>> y = np.array([2.0, 1.0]) + >>> np.polydiv(x, y) + (array([1.5 , 1.75]), array([0.25])) + + """ + truepoly = (isinstance(u, poly1d) or isinstance(v, poly1d)) + u = atleast_1d(u) + 0.0 + v = atleast_1d(v) + 0.0 + # w has the common type + w = u[0] + v[0] + m = len(u) - 1 + n = len(v) - 1 + scale = 1. / v[0] + q = NX.zeros((max(m - n + 1, 1),), w.dtype) + r = u.astype(w.dtype) + for k in range(m - n + 1): + d = scale * r[k] + q[k] = d + r[k:k + n + 1] -= d * v + while NX.allclose(r[0], 0, rtol=1e-14) and (r.shape[-1] > 1): + r = r[1:] + if truepoly: + return poly1d(q), poly1d(r) + return q, r + + +_poly_mat = re.compile(r"\*\*([0-9]*)") +def _raise_power(astr, wrap=70): + n = 0 + line1 = '' + line2 = '' + output = ' ' + while True: + mat = _poly_mat.search(astr, n) + if mat is None: + break + span = mat.span() + power = mat.groups()[0] + partstr = astr[n:span[0]] + n = span[1] + toadd2 = partstr + ' ' * (len(power) - 1) + toadd1 = ' ' * (len(partstr) - 1) + power + if ((len(line2) + len(toadd2) > wrap) or + (len(line1) + len(toadd1) > wrap)): + output += line1 + "\n" + line2 + "\n " + line1 = toadd1 + line2 = toadd2 + else: + line2 += partstr + ' ' * (len(power) - 1) + line1 += ' ' * (len(partstr) - 1) + power + output += line1 + "\n" + line2 + return output + astr[n:] + + +@set_module('numpy') +class poly1d: + """ + A one-dimensional polynomial class. + + .. note:: + This forms part of the old polynomial API. Since version 1.4, the + new polynomial API defined in `numpy.polynomial` is preferred. + A summary of the differences can be found in the + :doc:`transition guide `. + + A convenience class, used to encapsulate "natural" operations on + polynomials so that said operations may take on their customary + form in code (see Examples). + + Parameters + ---------- + c_or_r : array_like + The polynomial's coefficients, in decreasing powers, or if + the value of the second parameter is True, the polynomial's + roots (values where the polynomial evaluates to 0). For example, + ``poly1d([1, 2, 3])`` returns an object that represents + :math:`x^2 + 2x + 3`, whereas ``poly1d([1, 2, 3], True)`` returns + one that represents :math:`(x-1)(x-2)(x-3) = x^3 - 6x^2 + 11x -6`. + r : bool, optional + If True, `c_or_r` specifies the polynomial's roots; the default + is False. + variable : str, optional + Changes the variable used when printing `p` from `x` to `variable` + (see Examples). + + Examples + -------- + >>> import numpy as np + + Construct the polynomial :math:`x^2 + 2x + 3`: + + >>> import numpy as np + + >>> p = np.poly1d([1, 2, 3]) + >>> print(np.poly1d(p)) + 2 + 1 x + 2 x + 3 + + Evaluate the polynomial at :math:`x = 0.5`: + + >>> p(0.5) + 4.25 + + Find the roots: + + >>> p.r + array([-1.+1.41421356j, -1.-1.41421356j]) + >>> p(p.r) + array([ -4.44089210e-16+0.j, -4.44089210e-16+0.j]) # may vary + + These numbers in the previous line represent (0, 0) to machine precision + + Show the coefficients: + + >>> p.c + array([1, 2, 3]) + + Display the order (the leading zero-coefficients are removed): + + >>> p.order + 2 + + Show the coefficient of the k-th power in the polynomial + (which is equivalent to ``p.c[-(i+1)]``): + + >>> p[1] + 2 + + Polynomials can be added, subtracted, multiplied, and divided + (returns quotient and remainder): + + >>> p * p + poly1d([ 1, 4, 10, 12, 9]) + + >>> (p**3 + 4) / p + (poly1d([ 1., 4., 10., 12., 9.]), poly1d([4.])) + + ``asarray(p)`` gives the coefficient array, so polynomials can be + used in all functions that accept arrays: + + >>> p**2 # square of polynomial + poly1d([ 1, 4, 10, 12, 9]) + + >>> np.square(p) # square of individual coefficients + array([1, 4, 9]) + + The variable used in the string representation of `p` can be modified, + using the `variable` parameter: + + >>> p = np.poly1d([1,2,3], variable='z') + >>> print(p) + 2 + 1 z + 2 z + 3 + + Construct a polynomial from its roots: + + >>> np.poly1d([1, 2], True) + poly1d([ 1., -3., 2.]) + + This is the same polynomial as obtained by: + + >>> np.poly1d([1, -1]) * np.poly1d([1, -2]) + poly1d([ 1, -3, 2]) + + """ + __hash__ = None + + @property + def coeffs(self): + """ The polynomial coefficients """ + return self._coeffs + + @coeffs.setter + def coeffs(self, value): + # allowing this makes p.coeffs *= 2 legal + if value is not self._coeffs: + raise AttributeError("Cannot set attribute") + + @property + def variable(self): + """ The name of the polynomial variable """ + return self._variable + + # calculated attributes + @property + def order(self): + """ The order or degree of the polynomial """ + return len(self._coeffs) - 1 + + @property + def roots(self): + """ The roots of the polynomial, where self(x) == 0 """ + return roots(self._coeffs) + + # our internal _coeffs property need to be backed by __dict__['coeffs'] for + # scipy to work correctly. + @property + def _coeffs(self): + return self.__dict__['coeffs'] + + @_coeffs.setter + def _coeffs(self, coeffs): + self.__dict__['coeffs'] = coeffs + + # alias attributes + r = roots + c = coef = coefficients = coeffs + o = order + + def __init__(self, c_or_r, r=False, variable=None): + if isinstance(c_or_r, poly1d): + self._variable = c_or_r._variable + self._coeffs = c_or_r._coeffs + + if set(c_or_r.__dict__) - set(self.__dict__): + msg = ("In the future extra properties will not be copied " + "across when constructing one poly1d from another") + warnings.warn(msg, FutureWarning, stacklevel=2) + self.__dict__.update(c_or_r.__dict__) + + if variable is not None: + self._variable = variable + return + if r: + c_or_r = poly(c_or_r) + c_or_r = atleast_1d(c_or_r) + if c_or_r.ndim > 1: + raise ValueError("Polynomial must be 1d only.") + c_or_r = trim_zeros(c_or_r, trim='f') + if len(c_or_r) == 0: + c_or_r = NX.array([0], dtype=c_or_r.dtype) + self._coeffs = c_or_r + if variable is None: + variable = 'x' + self._variable = variable + + def __array__(self, t=None, copy=None): + if t: + return NX.asarray(self.coeffs, t, copy=copy) + else: + return NX.asarray(self.coeffs, copy=copy) + + def __repr__(self): + vals = repr(self.coeffs) + vals = vals[6:-1] + return f"poly1d({vals})" + + def __len__(self): + return self.order + + def __str__(self): + thestr = "0" + var = self.variable + + # Remove leading zeros + coeffs = self.coeffs[NX.logical_or.accumulate(self.coeffs != 0)] + N = len(coeffs) - 1 + + def fmt_float(q): + s = f'{q:.4g}' + s = s.removesuffix('.0000') + return s + + for k, coeff in enumerate(coeffs): + if not iscomplex(coeff): + coefstr = fmt_float(real(coeff)) + elif real(coeff) == 0: + coefstr = f'{fmt_float(imag(coeff))}j' + else: + coefstr = f'({fmt_float(real(coeff))} + {fmt_float(imag(coeff))}j)' + + power = (N - k) + if power == 0: + if coefstr != '0': + newstr = f'{coefstr}' + elif k == 0: + newstr = '0' + else: + newstr = '' + elif power == 1: + if coefstr == '0': + newstr = '' + elif coefstr == 'b': + newstr = var + else: + newstr = f'{coefstr} {var}' + elif coefstr == '0': + newstr = '' + elif coefstr == 'b': + newstr = '%s**%d' % (var, power,) + else: + newstr = '%s %s**%d' % (coefstr, var, power) + + if k > 0: + if newstr != '': + if newstr.startswith('-'): + thestr = f"{thestr} - {newstr[1:]}" + else: + thestr = f"{thestr} + {newstr}" + else: + thestr = newstr + return _raise_power(thestr) + + def __call__(self, val): + return polyval(self.coeffs, val) + + def __neg__(self): + return poly1d(-self.coeffs) + + def __pos__(self): + return self + + def __mul__(self, other): + if isscalar(other): + return poly1d(self.coeffs * other) + else: + other = poly1d(other) + return poly1d(polymul(self.coeffs, other.coeffs)) + + def __rmul__(self, other): + if isscalar(other): + return poly1d(other * self.coeffs) + else: + other = poly1d(other) + return poly1d(polymul(self.coeffs, other.coeffs)) + + def __add__(self, other): + other = poly1d(other) + return poly1d(polyadd(self.coeffs, other.coeffs)) + + def __radd__(self, other): + other = poly1d(other) + return poly1d(polyadd(self.coeffs, other.coeffs)) + + def __pow__(self, val): + if not isscalar(val) or int(val) != val or val < 0: + raise ValueError("Power to non-negative integers only.") + res = [1] + for _ in range(val): + res = polymul(self.coeffs, res) + return poly1d(res) + + def __sub__(self, other): + other = poly1d(other) + return poly1d(polysub(self.coeffs, other.coeffs)) + + def __rsub__(self, other): + other = poly1d(other) + return poly1d(polysub(other.coeffs, self.coeffs)) + + def __truediv__(self, other): + if isscalar(other): + return poly1d(self.coeffs / other) + else: + other = poly1d(other) + return polydiv(self, other) + + def __rtruediv__(self, other): + if isscalar(other): + return poly1d(other / self.coeffs) + else: + other = poly1d(other) + return polydiv(other, self) + + def __eq__(self, other): + if not isinstance(other, poly1d): + return NotImplemented + if self.coeffs.shape != other.coeffs.shape: + return False + return (self.coeffs == other.coeffs).all() + + def __ne__(self, other): + if not isinstance(other, poly1d): + return NotImplemented + return not self.__eq__(other) + + def __getitem__(self, val): + ind = self.order - val + if val > self.order: + return self.coeffs.dtype.type(0) + if val < 0: + return self.coeffs.dtype.type(0) + return self.coeffs[ind] + + def __setitem__(self, key, val): + ind = self.order - key + if key < 0: + raise ValueError("Does not support negative powers.") + if key > self.order: + zr = NX.zeros(key - self.order, self.coeffs.dtype) + self._coeffs = NX.concatenate((zr, self.coeffs)) + ind = 0 + self._coeffs[ind] = val + + def __iter__(self): + return iter(self.coeffs) + + def integ(self, m=1, k=0): + """ + Return an antiderivative (indefinite integral) of this polynomial. + + Refer to `polyint` for full documentation. + + See Also + -------- + polyint : equivalent function + + """ + return poly1d(polyint(self.coeffs, m=m, k=k)) + + def deriv(self, m=1): + """ + Return a derivative of this polynomial. + + Refer to `polyder` for full documentation. + + See Also + -------- + polyder : equivalent function + + """ + return poly1d(polyder(self.coeffs, m=m)) + +# Stuff to do on module import + + +warnings.simplefilter('always', RankWarning) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_polynomial_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_polynomial_impl.pyi new file mode 100644 index 0000000..faf2f01 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_polynomial_impl.pyi @@ -0,0 +1,316 @@ +from typing import ( + Any, + NoReturn, + SupportsIndex, + SupportsInt, + TypeAlias, + TypeVar, + overload, +) +from typing import ( + Literal as L, +) + +import numpy as np +from numpy import ( + complex128, + complexfloating, + float64, + floating, + int32, + int64, + object_, + poly1d, + signedinteger, + unsignedinteger, +) +from numpy._typing import ( + ArrayLike, + NDArray, + _ArrayLikeBool_co, + _ArrayLikeComplex_co, + _ArrayLikeFloat_co, + _ArrayLikeInt_co, + _ArrayLikeObject_co, + _ArrayLikeUInt_co, +) + +_T = TypeVar("_T") + +_2Tup: TypeAlias = tuple[_T, _T] +_5Tup: TypeAlias = tuple[ + _T, + NDArray[float64], + NDArray[int32], + NDArray[float64], + NDArray[float64], +] + +__all__ = [ + "poly", + "roots", + "polyint", + "polyder", + "polyadd", + "polysub", + "polymul", + "polydiv", + "polyval", + "poly1d", + "polyfit", +] + +def poly(seq_of_zeros: ArrayLike) -> NDArray[floating]: ... + +# Returns either a float or complex array depending on the input values. +# See `np.linalg.eigvals`. +def roots(p: ArrayLike) -> NDArray[complexfloating] | NDArray[floating]: ... + +@overload +def polyint( + p: poly1d, + m: SupportsInt | SupportsIndex = ..., + k: _ArrayLikeComplex_co | _ArrayLikeObject_co | None = ..., +) -> poly1d: ... +@overload +def polyint( + p: _ArrayLikeFloat_co, + m: SupportsInt | SupportsIndex = ..., + k: _ArrayLikeFloat_co | None = ..., +) -> NDArray[floating]: ... +@overload +def polyint( + p: _ArrayLikeComplex_co, + m: SupportsInt | SupportsIndex = ..., + k: _ArrayLikeComplex_co | None = ..., +) -> NDArray[complexfloating]: ... +@overload +def polyint( + p: _ArrayLikeObject_co, + m: SupportsInt | SupportsIndex = ..., + k: _ArrayLikeObject_co | None = ..., +) -> NDArray[object_]: ... + +@overload +def polyder( + p: poly1d, + m: SupportsInt | SupportsIndex = ..., +) -> poly1d: ... +@overload +def polyder( + p: _ArrayLikeFloat_co, + m: SupportsInt | SupportsIndex = ..., +) -> NDArray[floating]: ... +@overload +def polyder( + p: _ArrayLikeComplex_co, + m: SupportsInt | SupportsIndex = ..., +) -> NDArray[complexfloating]: ... +@overload +def polyder( + p: _ArrayLikeObject_co, + m: SupportsInt | SupportsIndex = ..., +) -> NDArray[object_]: ... + +@overload +def polyfit( + x: _ArrayLikeFloat_co, + y: _ArrayLikeFloat_co, + deg: SupportsIndex | SupportsInt, + rcond: float | None = ..., + full: L[False] = ..., + w: _ArrayLikeFloat_co | None = ..., + cov: L[False] = ..., +) -> NDArray[float64]: ... +@overload +def polyfit( + x: _ArrayLikeComplex_co, + y: _ArrayLikeComplex_co, + deg: SupportsIndex | SupportsInt, + rcond: float | None = ..., + full: L[False] = ..., + w: _ArrayLikeFloat_co | None = ..., + cov: L[False] = ..., +) -> NDArray[complex128]: ... +@overload +def polyfit( + x: _ArrayLikeFloat_co, + y: _ArrayLikeFloat_co, + deg: SupportsIndex | SupportsInt, + rcond: float | None = ..., + full: L[False] = ..., + w: _ArrayLikeFloat_co | None = ..., + cov: L[True, "unscaled"] = ..., +) -> _2Tup[NDArray[float64]]: ... +@overload +def polyfit( + x: _ArrayLikeComplex_co, + y: _ArrayLikeComplex_co, + deg: SupportsIndex | SupportsInt, + rcond: float | None = ..., + full: L[False] = ..., + w: _ArrayLikeFloat_co | None = ..., + cov: L[True, "unscaled"] = ..., +) -> _2Tup[NDArray[complex128]]: ... +@overload +def polyfit( + x: _ArrayLikeFloat_co, + y: _ArrayLikeFloat_co, + deg: SupportsIndex | SupportsInt, + rcond: float | None = ..., + full: L[True] = ..., + w: _ArrayLikeFloat_co | None = ..., + cov: bool | L["unscaled"] = ..., +) -> _5Tup[NDArray[float64]]: ... +@overload +def polyfit( + x: _ArrayLikeComplex_co, + y: _ArrayLikeComplex_co, + deg: SupportsIndex | SupportsInt, + rcond: float | None = ..., + full: L[True] = ..., + w: _ArrayLikeFloat_co | None = ..., + cov: bool | L["unscaled"] = ..., +) -> _5Tup[NDArray[complex128]]: ... + +@overload +def polyval( + p: _ArrayLikeBool_co, + x: _ArrayLikeBool_co, +) -> NDArray[int64]: ... +@overload +def polyval( + p: _ArrayLikeUInt_co, + x: _ArrayLikeUInt_co, +) -> NDArray[unsignedinteger]: ... +@overload +def polyval( + p: _ArrayLikeInt_co, + x: _ArrayLikeInt_co, +) -> NDArray[signedinteger]: ... +@overload +def polyval( + p: _ArrayLikeFloat_co, + x: _ArrayLikeFloat_co, +) -> NDArray[floating]: ... +@overload +def polyval( + p: _ArrayLikeComplex_co, + x: _ArrayLikeComplex_co, +) -> NDArray[complexfloating]: ... +@overload +def polyval( + p: _ArrayLikeObject_co, + x: _ArrayLikeObject_co, +) -> NDArray[object_]: ... + +@overload +def polyadd( + a1: poly1d, + a2: _ArrayLikeComplex_co | _ArrayLikeObject_co, +) -> poly1d: ... +@overload +def polyadd( + a1: _ArrayLikeComplex_co | _ArrayLikeObject_co, + a2: poly1d, +) -> poly1d: ... +@overload +def polyadd( + a1: _ArrayLikeBool_co, + a2: _ArrayLikeBool_co, +) -> NDArray[np.bool]: ... +@overload +def polyadd( + a1: _ArrayLikeUInt_co, + a2: _ArrayLikeUInt_co, +) -> NDArray[unsignedinteger]: ... +@overload +def polyadd( + a1: _ArrayLikeInt_co, + a2: _ArrayLikeInt_co, +) -> NDArray[signedinteger]: ... +@overload +def polyadd( + a1: _ArrayLikeFloat_co, + a2: _ArrayLikeFloat_co, +) -> NDArray[floating]: ... +@overload +def polyadd( + a1: _ArrayLikeComplex_co, + a2: _ArrayLikeComplex_co, +) -> NDArray[complexfloating]: ... +@overload +def polyadd( + a1: _ArrayLikeObject_co, + a2: _ArrayLikeObject_co, +) -> NDArray[object_]: ... + +@overload +def polysub( + a1: poly1d, + a2: _ArrayLikeComplex_co | _ArrayLikeObject_co, +) -> poly1d: ... +@overload +def polysub( + a1: _ArrayLikeComplex_co | _ArrayLikeObject_co, + a2: poly1d, +) -> poly1d: ... +@overload +def polysub( + a1: _ArrayLikeBool_co, + a2: _ArrayLikeBool_co, +) -> NoReturn: ... +@overload +def polysub( + a1: _ArrayLikeUInt_co, + a2: _ArrayLikeUInt_co, +) -> NDArray[unsignedinteger]: ... +@overload +def polysub( + a1: _ArrayLikeInt_co, + a2: _ArrayLikeInt_co, +) -> NDArray[signedinteger]: ... +@overload +def polysub( + a1: _ArrayLikeFloat_co, + a2: _ArrayLikeFloat_co, +) -> NDArray[floating]: ... +@overload +def polysub( + a1: _ArrayLikeComplex_co, + a2: _ArrayLikeComplex_co, +) -> NDArray[complexfloating]: ... +@overload +def polysub( + a1: _ArrayLikeObject_co, + a2: _ArrayLikeObject_co, +) -> NDArray[object_]: ... + +# NOTE: Not an alias, but they do have the same signature (that we can reuse) +polymul = polyadd + +@overload +def polydiv( + u: poly1d, + v: _ArrayLikeComplex_co | _ArrayLikeObject_co, +) -> _2Tup[poly1d]: ... +@overload +def polydiv( + u: _ArrayLikeComplex_co | _ArrayLikeObject_co, + v: poly1d, +) -> _2Tup[poly1d]: ... +@overload +def polydiv( + u: _ArrayLikeFloat_co, + v: _ArrayLikeFloat_co, +) -> _2Tup[NDArray[floating]]: ... +@overload +def polydiv( + u: _ArrayLikeComplex_co, + v: _ArrayLikeComplex_co, +) -> _2Tup[NDArray[complexfloating]]: ... +@overload +def polydiv( + u: _ArrayLikeObject_co, + v: _ArrayLikeObject_co, +) -> _2Tup[NDArray[Any]]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_scimath_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_scimath_impl.py new file mode 100644 index 0000000..8136a7d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_scimath_impl.py @@ -0,0 +1,642 @@ +""" +Wrapper functions to more user-friendly calling of certain math functions +whose output data-type is different than the input data-type in certain +domains of the input. + +For example, for functions like `log` with branch cuts, the versions in this +module provide the mathematically valid answers in the complex plane:: + + >>> import math + >>> np.emath.log(-math.exp(1)) == (1+1j*math.pi) + True + +Similarly, `sqrt`, other base logarithms, `power` and trig functions are +correctly handled. See their respective docstrings for specific examples. + +""" +import numpy._core.numeric as nx +import numpy._core.numerictypes as nt +from numpy._core.numeric import any, asarray +from numpy._core.overrides import array_function_dispatch, set_module +from numpy.lib._type_check_impl import isreal + +__all__ = [ + 'sqrt', 'log', 'log2', 'logn', 'log10', 'power', 'arccos', 'arcsin', + 'arctanh' + ] + + +_ln2 = nx.log(2.0) + + +def _tocomplex(arr): + """Convert its input `arr` to a complex array. + + The input is returned as a complex array of the smallest type that will fit + the original data: types like single, byte, short, etc. become csingle, + while others become cdouble. + + A copy of the input is always made. + + Parameters + ---------- + arr : array + + Returns + ------- + array + An array with the same input data as the input but in complex form. + + Examples + -------- + >>> import numpy as np + + First, consider an input of type short: + + >>> a = np.array([1,2,3],np.short) + + >>> ac = np.lib.scimath._tocomplex(a); ac + array([1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64) + + >>> ac.dtype + dtype('complex64') + + If the input is of type double, the output is correspondingly of the + complex double type as well: + + >>> b = np.array([1,2,3],np.double) + + >>> bc = np.lib.scimath._tocomplex(b); bc + array([1.+0.j, 2.+0.j, 3.+0.j]) + + >>> bc.dtype + dtype('complex128') + + Note that even if the input was complex to begin with, a copy is still + made, since the astype() method always copies: + + >>> c = np.array([1,2,3],np.csingle) + + >>> cc = np.lib.scimath._tocomplex(c); cc + array([1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64) + + >>> c *= 2; c + array([2.+0.j, 4.+0.j, 6.+0.j], dtype=complex64) + + >>> cc + array([1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64) + """ + if issubclass(arr.dtype.type, (nt.single, nt.byte, nt.short, nt.ubyte, + nt.ushort, nt.csingle)): + return arr.astype(nt.csingle) + else: + return arr.astype(nt.cdouble) + + +def _fix_real_lt_zero(x): + """Convert `x` to complex if it has real, negative components. + + Otherwise, output is just the array version of the input (via asarray). + + Parameters + ---------- + x : array_like + + Returns + ------- + array + + Examples + -------- + >>> import numpy as np + >>> np.lib.scimath._fix_real_lt_zero([1,2]) + array([1, 2]) + + >>> np.lib.scimath._fix_real_lt_zero([-1,2]) + array([-1.+0.j, 2.+0.j]) + + """ + x = asarray(x) + if any(isreal(x) & (x < 0)): + x = _tocomplex(x) + return x + + +def _fix_int_lt_zero(x): + """Convert `x` to double if it has real, negative components. + + Otherwise, output is just the array version of the input (via asarray). + + Parameters + ---------- + x : array_like + + Returns + ------- + array + + Examples + -------- + >>> import numpy as np + >>> np.lib.scimath._fix_int_lt_zero([1,2]) + array([1, 2]) + + >>> np.lib.scimath._fix_int_lt_zero([-1,2]) + array([-1., 2.]) + """ + x = asarray(x) + if any(isreal(x) & (x < 0)): + x = x * 1.0 + return x + + +def _fix_real_abs_gt_1(x): + """Convert `x` to complex if it has real components x_i with abs(x_i)>1. + + Otherwise, output is just the array version of the input (via asarray). + + Parameters + ---------- + x : array_like + + Returns + ------- + array + + Examples + -------- + >>> import numpy as np + >>> np.lib.scimath._fix_real_abs_gt_1([0,1]) + array([0, 1]) + + >>> np.lib.scimath._fix_real_abs_gt_1([0,2]) + array([0.+0.j, 2.+0.j]) + """ + x = asarray(x) + if any(isreal(x) & (abs(x) > 1)): + x = _tocomplex(x) + return x + + +def _unary_dispatcher(x): + return (x,) + + +@set_module('numpy.lib.scimath') +@array_function_dispatch(_unary_dispatcher) +def sqrt(x): + """ + Compute the square root of x. + + For negative input elements, a complex value is returned + (unlike `numpy.sqrt` which returns NaN). + + Parameters + ---------- + x : array_like + The input value(s). + + Returns + ------- + out : ndarray or scalar + The square root of `x`. If `x` was a scalar, so is `out`, + otherwise an array is returned. + + See Also + -------- + numpy.sqrt + + Examples + -------- + For real, non-negative inputs this works just like `numpy.sqrt`: + + >>> import numpy as np + + >>> np.emath.sqrt(1) + 1.0 + >>> np.emath.sqrt([1, 4]) + array([1., 2.]) + + But it automatically handles negative inputs: + + >>> np.emath.sqrt(-1) + 1j + >>> np.emath.sqrt([-1,4]) + array([0.+1.j, 2.+0.j]) + + Different results are expected because: + floating point 0.0 and -0.0 are distinct. + + For more control, explicitly use complex() as follows: + + >>> np.emath.sqrt(complex(-4.0, 0.0)) + 2j + >>> np.emath.sqrt(complex(-4.0, -0.0)) + -2j + """ + x = _fix_real_lt_zero(x) + return nx.sqrt(x) + + +@set_module('numpy.lib.scimath') +@array_function_dispatch(_unary_dispatcher) +def log(x): + """ + Compute the natural logarithm of `x`. + + Return the "principal value" (for a description of this, see `numpy.log`) + of :math:`log_e(x)`. For real `x > 0`, this is a real number (``log(0)`` + returns ``-inf`` and ``log(np.inf)`` returns ``inf``). Otherwise, the + complex principle value is returned. + + Parameters + ---------- + x : array_like + The value(s) whose log is (are) required. + + Returns + ------- + out : ndarray or scalar + The log of the `x` value(s). If `x` was a scalar, so is `out`, + otherwise an array is returned. + + See Also + -------- + numpy.log + + Notes + ----- + For a log() that returns ``NAN`` when real `x < 0`, use `numpy.log` + (note, however, that otherwise `numpy.log` and this `log` are identical, + i.e., both return ``-inf`` for `x = 0`, ``inf`` for `x = inf`, and, + notably, the complex principle value if ``x.imag != 0``). + + Examples + -------- + >>> import numpy as np + >>> np.emath.log(np.exp(1)) + 1.0 + + Negative arguments are handled "correctly" (recall that + ``exp(log(x)) == x`` does *not* hold for real ``x < 0``): + + >>> np.emath.log(-np.exp(1)) == (1 + np.pi * 1j) + True + + """ + x = _fix_real_lt_zero(x) + return nx.log(x) + + +@set_module('numpy.lib.scimath') +@array_function_dispatch(_unary_dispatcher) +def log10(x): + """ + Compute the logarithm base 10 of `x`. + + Return the "principal value" (for a description of this, see + `numpy.log10`) of :math:`log_{10}(x)`. For real `x > 0`, this + is a real number (``log10(0)`` returns ``-inf`` and ``log10(np.inf)`` + returns ``inf``). Otherwise, the complex principle value is returned. + + Parameters + ---------- + x : array_like or scalar + The value(s) whose log base 10 is (are) required. + + Returns + ------- + out : ndarray or scalar + The log base 10 of the `x` value(s). If `x` was a scalar, so is `out`, + otherwise an array object is returned. + + See Also + -------- + numpy.log10 + + Notes + ----- + For a log10() that returns ``NAN`` when real `x < 0`, use `numpy.log10` + (note, however, that otherwise `numpy.log10` and this `log10` are + identical, i.e., both return ``-inf`` for `x = 0`, ``inf`` for `x = inf`, + and, notably, the complex principle value if ``x.imag != 0``). + + Examples + -------- + >>> import numpy as np + + (We set the printing precision so the example can be auto-tested) + + >>> np.set_printoptions(precision=4) + + >>> np.emath.log10(10**1) + 1.0 + + >>> np.emath.log10([-10**1, -10**2, 10**2]) + array([1.+1.3644j, 2.+1.3644j, 2.+0.j ]) + + """ + x = _fix_real_lt_zero(x) + return nx.log10(x) + + +def _logn_dispatcher(n, x): + return (n, x,) + + +@set_module('numpy.lib.scimath') +@array_function_dispatch(_logn_dispatcher) +def logn(n, x): + """ + Take log base n of x. + + If `x` contains negative inputs, the answer is computed and returned in the + complex domain. + + Parameters + ---------- + n : array_like + The integer base(s) in which the log is taken. + x : array_like + The value(s) whose log base `n` is (are) required. + + Returns + ------- + out : ndarray or scalar + The log base `n` of the `x` value(s). If `x` was a scalar, so is + `out`, otherwise an array is returned. + + Examples + -------- + >>> import numpy as np + >>> np.set_printoptions(precision=4) + + >>> np.emath.logn(2, [4, 8]) + array([2., 3.]) + >>> np.emath.logn(2, [-4, -8, 8]) + array([2.+4.5324j, 3.+4.5324j, 3.+0.j ]) + + """ + x = _fix_real_lt_zero(x) + n = _fix_real_lt_zero(n) + return nx.log(x) / nx.log(n) + + +@set_module('numpy.lib.scimath') +@array_function_dispatch(_unary_dispatcher) +def log2(x): + """ + Compute the logarithm base 2 of `x`. + + Return the "principal value" (for a description of this, see + `numpy.log2`) of :math:`log_2(x)`. For real `x > 0`, this is + a real number (``log2(0)`` returns ``-inf`` and ``log2(np.inf)`` returns + ``inf``). Otherwise, the complex principle value is returned. + + Parameters + ---------- + x : array_like + The value(s) whose log base 2 is (are) required. + + Returns + ------- + out : ndarray or scalar + The log base 2 of the `x` value(s). If `x` was a scalar, so is `out`, + otherwise an array is returned. + + See Also + -------- + numpy.log2 + + Notes + ----- + For a log2() that returns ``NAN`` when real `x < 0`, use `numpy.log2` + (note, however, that otherwise `numpy.log2` and this `log2` are + identical, i.e., both return ``-inf`` for `x = 0`, ``inf`` for `x = inf`, + and, notably, the complex principle value if ``x.imag != 0``). + + Examples + -------- + + We set the printing precision so the example can be auto-tested: + + >>> np.set_printoptions(precision=4) + + >>> np.emath.log2(8) + 3.0 + >>> np.emath.log2([-4, -8, 8]) + array([2.+4.5324j, 3.+4.5324j, 3.+0.j ]) + + """ + x = _fix_real_lt_zero(x) + return nx.log2(x) + + +def _power_dispatcher(x, p): + return (x, p) + + +@set_module('numpy.lib.scimath') +@array_function_dispatch(_power_dispatcher) +def power(x, p): + """ + Return x to the power p, (x**p). + + If `x` contains negative values, the output is converted to the + complex domain. + + Parameters + ---------- + x : array_like + The input value(s). + p : array_like of ints + The power(s) to which `x` is raised. If `x` contains multiple values, + `p` has to either be a scalar, or contain the same number of values + as `x`. In the latter case, the result is + ``x[0]**p[0], x[1]**p[1], ...``. + + Returns + ------- + out : ndarray or scalar + The result of ``x**p``. If `x` and `p` are scalars, so is `out`, + otherwise an array is returned. + + See Also + -------- + numpy.power + + Examples + -------- + >>> import numpy as np + >>> np.set_printoptions(precision=4) + + >>> np.emath.power(2, 2) + 4 + + >>> np.emath.power([2, 4], 2) + array([ 4, 16]) + + >>> np.emath.power([2, 4], -2) + array([0.25 , 0.0625]) + + >>> np.emath.power([-2, 4], 2) + array([ 4.-0.j, 16.+0.j]) + + >>> np.emath.power([2, 4], [2, 4]) + array([ 4, 256]) + + """ + x = _fix_real_lt_zero(x) + p = _fix_int_lt_zero(p) + return nx.power(x, p) + + +@set_module('numpy.lib.scimath') +@array_function_dispatch(_unary_dispatcher) +def arccos(x): + """ + Compute the inverse cosine of x. + + Return the "principal value" (for a description of this, see + `numpy.arccos`) of the inverse cosine of `x`. For real `x` such that + `abs(x) <= 1`, this is a real number in the closed interval + :math:`[0, \\pi]`. Otherwise, the complex principle value is returned. + + Parameters + ---------- + x : array_like or scalar + The value(s) whose arccos is (are) required. + + Returns + ------- + out : ndarray or scalar + The inverse cosine(s) of the `x` value(s). If `x` was a scalar, so + is `out`, otherwise an array object is returned. + + See Also + -------- + numpy.arccos + + Notes + ----- + For an arccos() that returns ``NAN`` when real `x` is not in the + interval ``[-1,1]``, use `numpy.arccos`. + + Examples + -------- + >>> import numpy as np + >>> np.set_printoptions(precision=4) + + >>> np.emath.arccos(1) # a scalar is returned + 0.0 + + >>> np.emath.arccos([1,2]) + array([0.-0.j , 0.-1.317j]) + + """ + x = _fix_real_abs_gt_1(x) + return nx.arccos(x) + + +@set_module('numpy.lib.scimath') +@array_function_dispatch(_unary_dispatcher) +def arcsin(x): + """ + Compute the inverse sine of x. + + Return the "principal value" (for a description of this, see + `numpy.arcsin`) of the inverse sine of `x`. For real `x` such that + `abs(x) <= 1`, this is a real number in the closed interval + :math:`[-\\pi/2, \\pi/2]`. Otherwise, the complex principle value is + returned. + + Parameters + ---------- + x : array_like or scalar + The value(s) whose arcsin is (are) required. + + Returns + ------- + out : ndarray or scalar + The inverse sine(s) of the `x` value(s). If `x` was a scalar, so + is `out`, otherwise an array object is returned. + + See Also + -------- + numpy.arcsin + + Notes + ----- + For an arcsin() that returns ``NAN`` when real `x` is not in the + interval ``[-1,1]``, use `numpy.arcsin`. + + Examples + -------- + >>> import numpy as np + >>> np.set_printoptions(precision=4) + + >>> np.emath.arcsin(0) + 0.0 + + >>> np.emath.arcsin([0,1]) + array([0. , 1.5708]) + + """ + x = _fix_real_abs_gt_1(x) + return nx.arcsin(x) + + +@set_module('numpy.lib.scimath') +@array_function_dispatch(_unary_dispatcher) +def arctanh(x): + """ + Compute the inverse hyperbolic tangent of `x`. + + Return the "principal value" (for a description of this, see + `numpy.arctanh`) of ``arctanh(x)``. For real `x` such that + ``abs(x) < 1``, this is a real number. If `abs(x) > 1`, or if `x` is + complex, the result is complex. Finally, `x = 1` returns``inf`` and + ``x=-1`` returns ``-inf``. + + Parameters + ---------- + x : array_like + The value(s) whose arctanh is (are) required. + + Returns + ------- + out : ndarray or scalar + The inverse hyperbolic tangent(s) of the `x` value(s). If `x` was + a scalar so is `out`, otherwise an array is returned. + + + See Also + -------- + numpy.arctanh + + Notes + ----- + For an arctanh() that returns ``NAN`` when real `x` is not in the + interval ``(-1,1)``, use `numpy.arctanh` (this latter, however, does + return +/-inf for ``x = +/-1``). + + Examples + -------- + >>> import numpy as np + >>> np.set_printoptions(precision=4) + + >>> np.emath.arctanh(0.5) + 0.5493061443340549 + + >>> from numpy.testing import suppress_warnings + >>> with suppress_warnings() as sup: + ... sup.filter(RuntimeWarning) + ... np.emath.arctanh(np.eye(2)) + array([[inf, 0.], + [ 0., inf]]) + >>> np.emath.arctanh([1j]) + array([0.+0.7854j]) + + """ + x = _fix_real_abs_gt_1(x) + return nx.arctanh(x) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_scimath_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_scimath_impl.pyi new file mode 100644 index 0000000..e6390c2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_scimath_impl.pyi @@ -0,0 +1,93 @@ +from typing import Any, overload + +from numpy import complexfloating +from numpy._typing import ( + NDArray, + _ArrayLikeComplex_co, + _ArrayLikeFloat_co, + _ComplexLike_co, + _FloatLike_co, +) + +__all__ = ["sqrt", "log", "log2", "logn", "log10", "power", "arccos", "arcsin", "arctanh"] + +@overload +def sqrt(x: _FloatLike_co) -> Any: ... +@overload +def sqrt(x: _ComplexLike_co) -> complexfloating: ... +@overload +def sqrt(x: _ArrayLikeFloat_co) -> NDArray[Any]: ... +@overload +def sqrt(x: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ... + +@overload +def log(x: _FloatLike_co) -> Any: ... +@overload +def log(x: _ComplexLike_co) -> complexfloating: ... +@overload +def log(x: _ArrayLikeFloat_co) -> NDArray[Any]: ... +@overload +def log(x: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ... + +@overload +def log10(x: _FloatLike_co) -> Any: ... +@overload +def log10(x: _ComplexLike_co) -> complexfloating: ... +@overload +def log10(x: _ArrayLikeFloat_co) -> NDArray[Any]: ... +@overload +def log10(x: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ... + +@overload +def log2(x: _FloatLike_co) -> Any: ... +@overload +def log2(x: _ComplexLike_co) -> complexfloating: ... +@overload +def log2(x: _ArrayLikeFloat_co) -> NDArray[Any]: ... +@overload +def log2(x: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ... + +@overload +def logn(n: _FloatLike_co, x: _FloatLike_co) -> Any: ... +@overload +def logn(n: _ComplexLike_co, x: _ComplexLike_co) -> complexfloating: ... +@overload +def logn(n: _ArrayLikeFloat_co, x: _ArrayLikeFloat_co) -> NDArray[Any]: ... +@overload +def logn(n: _ArrayLikeComplex_co, x: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ... + +@overload +def power(x: _FloatLike_co, p: _FloatLike_co) -> Any: ... +@overload +def power(x: _ComplexLike_co, p: _ComplexLike_co) -> complexfloating: ... +@overload +def power(x: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co) -> NDArray[Any]: ... +@overload +def power(x: _ArrayLikeComplex_co, p: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ... + +@overload +def arccos(x: _FloatLike_co) -> Any: ... +@overload +def arccos(x: _ComplexLike_co) -> complexfloating: ... +@overload +def arccos(x: _ArrayLikeFloat_co) -> NDArray[Any]: ... +@overload +def arccos(x: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ... + +@overload +def arcsin(x: _FloatLike_co) -> Any: ... +@overload +def arcsin(x: _ComplexLike_co) -> complexfloating: ... +@overload +def arcsin(x: _ArrayLikeFloat_co) -> NDArray[Any]: ... +@overload +def arcsin(x: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ... + +@overload +def arctanh(x: _FloatLike_co) -> Any: ... +@overload +def arctanh(x: _ComplexLike_co) -> complexfloating: ... +@overload +def arctanh(x: _ArrayLikeFloat_co) -> NDArray[Any]: ... +@overload +def arctanh(x: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_shape_base_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_shape_base_impl.py new file mode 100644 index 0000000..89b86c8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_shape_base_impl.py @@ -0,0 +1,1301 @@ +import functools +import warnings + +import numpy._core.numeric as _nx +from numpy._core import atleast_3d, overrides, vstack +from numpy._core._multiarray_umath import _array_converter +from numpy._core.fromnumeric import reshape, transpose +from numpy._core.multiarray import normalize_axis_index +from numpy._core.numeric import ( + array, + asanyarray, + asarray, + normalize_axis_tuple, + zeros, + zeros_like, +) +from numpy._core.overrides import set_module +from numpy._core.shape_base import _arrays_for_stack_dispatcher +from numpy.lib._index_tricks_impl import ndindex +from numpy.matrixlib.defmatrix import matrix # this raises all the right alarm bells + +__all__ = [ + 'column_stack', 'row_stack', 'dstack', 'array_split', 'split', + 'hsplit', 'vsplit', 'dsplit', 'apply_over_axes', 'expand_dims', + 'apply_along_axis', 'kron', 'tile', 'take_along_axis', + 'put_along_axis' + ] + + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy') + + +def _make_along_axis_idx(arr_shape, indices, axis): + # compute dimensions to iterate over + if not _nx.issubdtype(indices.dtype, _nx.integer): + raise IndexError('`indices` must be an integer array') + if len(arr_shape) != indices.ndim: + raise ValueError( + "`indices` and `arr` must have the same number of dimensions") + shape_ones = (1,) * indices.ndim + dest_dims = list(range(axis)) + [None] + list(range(axis + 1, indices.ndim)) + + # build a fancy index, consisting of orthogonal aranges, with the + # requested index inserted at the right location + fancy_index = [] + for dim, n in zip(dest_dims, arr_shape): + if dim is None: + fancy_index.append(indices) + else: + ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim + 1:] + fancy_index.append(_nx.arange(n).reshape(ind_shape)) + + return tuple(fancy_index) + + +def _take_along_axis_dispatcher(arr, indices, axis=None): + return (arr, indices) + + +@array_function_dispatch(_take_along_axis_dispatcher) +def take_along_axis(arr, indices, axis=-1): + """ + Take values from the input array by matching 1d index and data slices. + + This iterates over matching 1d slices oriented along the specified axis in + the index and data arrays, and uses the former to look up values in the + latter. These slices can be different lengths. + + Functions returning an index along an axis, like `argsort` and + `argpartition`, produce suitable indices for this function. + + Parameters + ---------- + arr : ndarray (Ni..., M, Nk...) + Source array + indices : ndarray (Ni..., J, Nk...) + Indices to take along each 1d slice of ``arr``. This must match the + dimension of ``arr``, but dimensions Ni and Nj only need to broadcast + against ``arr``. + axis : int or None, optional + The axis to take 1d slices along. If axis is None, the input array is + treated as if it had first been flattened to 1d, for consistency with + `sort` and `argsort`. + + .. versionchanged:: 2.3 + The default value is now ``-1``. + + Returns + ------- + out: ndarray (Ni..., J, Nk...) + The indexed result. + + Notes + ----- + This is equivalent to (but faster than) the following use of `ndindex` and + `s_`, which sets each of ``ii`` and ``kk`` to a tuple of indices:: + + Ni, M, Nk = a.shape[:axis], a.shape[axis], a.shape[axis+1:] + J = indices.shape[axis] # Need not equal M + out = np.empty(Ni + (J,) + Nk) + + for ii in ndindex(Ni): + for kk in ndindex(Nk): + a_1d = a [ii + s_[:,] + kk] + indices_1d = indices[ii + s_[:,] + kk] + out_1d = out [ii + s_[:,] + kk] + for j in range(J): + out_1d[j] = a_1d[indices_1d[j]] + + Equivalently, eliminating the inner loop, the last two lines would be:: + + out_1d[:] = a_1d[indices_1d] + + See Also + -------- + take : Take along an axis, using the same indices for every 1d slice + put_along_axis : + Put values into the destination array by matching 1d index and data slices + + Examples + -------- + >>> import numpy as np + + For this sample array + + >>> a = np.array([[10, 30, 20], [60, 40, 50]]) + + We can sort either by using sort directly, or argsort and this function + + >>> np.sort(a, axis=1) + array([[10, 20, 30], + [40, 50, 60]]) + >>> ai = np.argsort(a, axis=1) + >>> ai + array([[0, 2, 1], + [1, 2, 0]]) + >>> np.take_along_axis(a, ai, axis=1) + array([[10, 20, 30], + [40, 50, 60]]) + + The same works for max and min, if you maintain the trivial dimension + with ``keepdims``: + + >>> np.max(a, axis=1, keepdims=True) + array([[30], + [60]]) + >>> ai = np.argmax(a, axis=1, keepdims=True) + >>> ai + array([[1], + [0]]) + >>> np.take_along_axis(a, ai, axis=1) + array([[30], + [60]]) + + If we want to get the max and min at the same time, we can stack the + indices first + + >>> ai_min = np.argmin(a, axis=1, keepdims=True) + >>> ai_max = np.argmax(a, axis=1, keepdims=True) + >>> ai = np.concatenate([ai_min, ai_max], axis=1) + >>> ai + array([[0, 1], + [1, 0]]) + >>> np.take_along_axis(a, ai, axis=1) + array([[10, 30], + [40, 60]]) + """ + # normalize inputs + if axis is None: + if indices.ndim != 1: + raise ValueError( + 'when axis=None, `indices` must have a single dimension.') + arr = arr.flat + arr_shape = (len(arr),) # flatiter has no .shape + axis = 0 + else: + axis = normalize_axis_index(axis, arr.ndim) + arr_shape = arr.shape + + # use the fancy index + return arr[_make_along_axis_idx(arr_shape, indices, axis)] + + +def _put_along_axis_dispatcher(arr, indices, values, axis): + return (arr, indices, values) + + +@array_function_dispatch(_put_along_axis_dispatcher) +def put_along_axis(arr, indices, values, axis): + """ + Put values into the destination array by matching 1d index and data slices. + + This iterates over matching 1d slices oriented along the specified axis in + the index and data arrays, and uses the former to place values into the + latter. These slices can be different lengths. + + Functions returning an index along an axis, like `argsort` and + `argpartition`, produce suitable indices for this function. + + Parameters + ---------- + arr : ndarray (Ni..., M, Nk...) + Destination array. + indices : ndarray (Ni..., J, Nk...) + Indices to change along each 1d slice of `arr`. This must match the + dimension of arr, but dimensions in Ni and Nj may be 1 to broadcast + against `arr`. + values : array_like (Ni..., J, Nk...) + values to insert at those indices. Its shape and dimension are + broadcast to match that of `indices`. + axis : int + The axis to take 1d slices along. If axis is None, the destination + array is treated as if a flattened 1d view had been created of it. + + Notes + ----- + This is equivalent to (but faster than) the following use of `ndindex` and + `s_`, which sets each of ``ii`` and ``kk`` to a tuple of indices:: + + Ni, M, Nk = a.shape[:axis], a.shape[axis], a.shape[axis+1:] + J = indices.shape[axis] # Need not equal M + + for ii in ndindex(Ni): + for kk in ndindex(Nk): + a_1d = a [ii + s_[:,] + kk] + indices_1d = indices[ii + s_[:,] + kk] + values_1d = values [ii + s_[:,] + kk] + for j in range(J): + a_1d[indices_1d[j]] = values_1d[j] + + Equivalently, eliminating the inner loop, the last two lines would be:: + + a_1d[indices_1d] = values_1d + + See Also + -------- + take_along_axis : + Take values from the input array by matching 1d index and data slices + + Examples + -------- + >>> import numpy as np + + For this sample array + + >>> a = np.array([[10, 30, 20], [60, 40, 50]]) + + We can replace the maximum values with: + + >>> ai = np.argmax(a, axis=1, keepdims=True) + >>> ai + array([[1], + [0]]) + >>> np.put_along_axis(a, ai, 99, axis=1) + >>> a + array([[10, 99, 20], + [99, 40, 50]]) + + """ + # normalize inputs + if axis is None: + if indices.ndim != 1: + raise ValueError( + 'when axis=None, `indices` must have a single dimension.') + arr = arr.flat + axis = 0 + arr_shape = (len(arr),) # flatiter has no .shape + else: + axis = normalize_axis_index(axis, arr.ndim) + arr_shape = arr.shape + + # use the fancy index + arr[_make_along_axis_idx(arr_shape, indices, axis)] = values + + +def _apply_along_axis_dispatcher(func1d, axis, arr, *args, **kwargs): + return (arr,) + + +@array_function_dispatch(_apply_along_axis_dispatcher) +def apply_along_axis(func1d, axis, arr, *args, **kwargs): + """ + Apply a function to 1-D slices along the given axis. + + Execute `func1d(a, *args, **kwargs)` where `func1d` operates on 1-D arrays + and `a` is a 1-D slice of `arr` along `axis`. + + This is equivalent to (but faster than) the following use of `ndindex` and + `s_`, which sets each of ``ii``, ``jj``, and ``kk`` to a tuple of indices:: + + Ni, Nk = a.shape[:axis], a.shape[axis+1:] + for ii in ndindex(Ni): + for kk in ndindex(Nk): + f = func1d(arr[ii + s_[:,] + kk]) + Nj = f.shape + for jj in ndindex(Nj): + out[ii + jj + kk] = f[jj] + + Equivalently, eliminating the inner loop, this can be expressed as:: + + Ni, Nk = a.shape[:axis], a.shape[axis+1:] + for ii in ndindex(Ni): + for kk in ndindex(Nk): + out[ii + s_[...,] + kk] = func1d(arr[ii + s_[:,] + kk]) + + Parameters + ---------- + func1d : function (M,) -> (Nj...) + This function should accept 1-D arrays. It is applied to 1-D + slices of `arr` along the specified axis. + axis : integer + Axis along which `arr` is sliced. + arr : ndarray (Ni..., M, Nk...) + Input array. + args : any + Additional arguments to `func1d`. + kwargs : any + Additional named arguments to `func1d`. + + Returns + ------- + out : ndarray (Ni..., Nj..., Nk...) + The output array. The shape of `out` is identical to the shape of + `arr`, except along the `axis` dimension. This axis is removed, and + replaced with new dimensions equal to the shape of the return value + of `func1d`. So if `func1d` returns a scalar `out` will have one + fewer dimensions than `arr`. + + See Also + -------- + apply_over_axes : Apply a function repeatedly over multiple axes. + + Examples + -------- + >>> import numpy as np + >>> def my_func(a): + ... \"\"\"Average first and last element of a 1-D array\"\"\" + ... return (a[0] + a[-1]) * 0.5 + >>> b = np.array([[1,2,3], [4,5,6], [7,8,9]]) + >>> np.apply_along_axis(my_func, 0, b) + array([4., 5., 6.]) + >>> np.apply_along_axis(my_func, 1, b) + array([2., 5., 8.]) + + For a function that returns a 1D array, the number of dimensions in + `outarr` is the same as `arr`. + + >>> b = np.array([[8,1,7], [4,3,9], [5,2,6]]) + >>> np.apply_along_axis(sorted, 1, b) + array([[1, 7, 8], + [3, 4, 9], + [2, 5, 6]]) + + For a function that returns a higher dimensional array, those dimensions + are inserted in place of the `axis` dimension. + + >>> b = np.array([[1,2,3], [4,5,6], [7,8,9]]) + >>> np.apply_along_axis(np.diag, -1, b) + array([[[1, 0, 0], + [0, 2, 0], + [0, 0, 3]], + [[4, 0, 0], + [0, 5, 0], + [0, 0, 6]], + [[7, 0, 0], + [0, 8, 0], + [0, 0, 9]]]) + """ + # handle negative axes + conv = _array_converter(arr) + arr = conv[0] + + nd = arr.ndim + axis = normalize_axis_index(axis, nd) + + # arr, with the iteration axis at the end + in_dims = list(range(nd)) + inarr_view = transpose(arr, in_dims[:axis] + in_dims[axis + 1:] + [axis]) + + # compute indices for the iteration axes, and append a trailing ellipsis to + # prevent 0d arrays decaying to scalars, which fixes gh-8642 + inds = ndindex(inarr_view.shape[:-1]) + inds = (ind + (Ellipsis,) for ind in inds) + + # invoke the function on the first item + try: + ind0 = next(inds) + except StopIteration: + raise ValueError( + 'Cannot apply_along_axis when any iteration dimensions are 0' + ) from None + res = asanyarray(func1d(inarr_view[ind0], *args, **kwargs)) + + # build a buffer for storing evaluations of func1d. + # remove the requested axis, and add the new ones on the end. + # laid out so that each write is contiguous. + # for a tuple index inds, buff[inds] = func1d(inarr_view[inds]) + if not isinstance(res, matrix): + buff = zeros_like(res, shape=inarr_view.shape[:-1] + res.shape) + else: + # Matrices are nasty with reshaping, so do not preserve them here. + buff = zeros(inarr_view.shape[:-1] + res.shape, dtype=res.dtype) + + # permutation of axes such that out = buff.transpose(buff_permute) + buff_dims = list(range(buff.ndim)) + buff_permute = ( + buff_dims[0 : axis] + + buff_dims[buff.ndim - res.ndim : buff.ndim] + + buff_dims[axis : buff.ndim - res.ndim] + ) + + # save the first result, then compute and save all remaining results + buff[ind0] = res + for ind in inds: + buff[ind] = asanyarray(func1d(inarr_view[ind], *args, **kwargs)) + + res = transpose(buff, buff_permute) + return conv.wrap(res) + + +def _apply_over_axes_dispatcher(func, a, axes): + return (a,) + + +@array_function_dispatch(_apply_over_axes_dispatcher) +def apply_over_axes(func, a, axes): + """ + Apply a function repeatedly over multiple axes. + + `func` is called as `res = func(a, axis)`, where `axis` is the first + element of `axes`. The result `res` of the function call must have + either the same dimensions as `a` or one less dimension. If `res` + has one less dimension than `a`, a dimension is inserted before + `axis`. The call to `func` is then repeated for each axis in `axes`, + with `res` as the first argument. + + Parameters + ---------- + func : function + This function must take two arguments, `func(a, axis)`. + a : array_like + Input array. + axes : array_like + Axes over which `func` is applied; the elements must be integers. + + Returns + ------- + apply_over_axis : ndarray + The output array. The number of dimensions is the same as `a`, + but the shape can be different. This depends on whether `func` + changes the shape of its output with respect to its input. + + See Also + -------- + apply_along_axis : + Apply a function to 1-D slices of an array along the given axis. + + Notes + ----- + This function is equivalent to tuple axis arguments to reorderable ufuncs + with keepdims=True. Tuple axis arguments to ufuncs have been available since + version 1.7.0. + + Examples + -------- + >>> import numpy as np + >>> a = np.arange(24).reshape(2,3,4) + >>> a + array([[[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]], + [[12, 13, 14, 15], + [16, 17, 18, 19], + [20, 21, 22, 23]]]) + + Sum over axes 0 and 2. The result has same number of dimensions + as the original array: + + >>> np.apply_over_axes(np.sum, a, [0,2]) + array([[[ 60], + [ 92], + [124]]]) + + Tuple axis arguments to ufuncs are equivalent: + + >>> np.sum(a, axis=(0,2), keepdims=True) + array([[[ 60], + [ 92], + [124]]]) + + """ + val = asarray(a) + N = a.ndim + if array(axes).ndim == 0: + axes = (axes,) + for axis in axes: + if axis < 0: + axis = N + axis + args = (val, axis) + res = func(*args) + if res.ndim == val.ndim: + val = res + else: + res = expand_dims(res, axis) + if res.ndim == val.ndim: + val = res + else: + raise ValueError("function is not returning " + "an array of the correct shape") + return val + + +def _expand_dims_dispatcher(a, axis): + return (a,) + + +@array_function_dispatch(_expand_dims_dispatcher) +def expand_dims(a, axis): + """ + Expand the shape of an array. + + Insert a new axis that will appear at the `axis` position in the expanded + array shape. + + Parameters + ---------- + a : array_like + Input array. + axis : int or tuple of ints + Position in the expanded axes where the new axis (or axes) is placed. + + .. deprecated:: 1.13.0 + Passing an axis where ``axis > a.ndim`` will be treated as + ``axis == a.ndim``, and passing ``axis < -a.ndim - 1`` will + be treated as ``axis == 0``. This behavior is deprecated. + + Returns + ------- + result : ndarray + View of `a` with the number of dimensions increased. + + See Also + -------- + squeeze : The inverse operation, removing singleton dimensions + reshape : Insert, remove, and combine dimensions, and resize existing ones + atleast_1d, atleast_2d, atleast_3d + + Examples + -------- + >>> import numpy as np + >>> x = np.array([1, 2]) + >>> x.shape + (2,) + + The following is equivalent to ``x[np.newaxis, :]`` or ``x[np.newaxis]``: + + >>> y = np.expand_dims(x, axis=0) + >>> y + array([[1, 2]]) + >>> y.shape + (1, 2) + + The following is equivalent to ``x[:, np.newaxis]``: + + >>> y = np.expand_dims(x, axis=1) + >>> y + array([[1], + [2]]) + >>> y.shape + (2, 1) + + ``axis`` may also be a tuple: + + >>> y = np.expand_dims(x, axis=(0, 1)) + >>> y + array([[[1, 2]]]) + + >>> y = np.expand_dims(x, axis=(2, 0)) + >>> y + array([[[1], + [2]]]) + + Note that some examples may use ``None`` instead of ``np.newaxis``. These + are the same objects: + + >>> np.newaxis is None + True + + """ + if isinstance(a, matrix): + a = asarray(a) + else: + a = asanyarray(a) + + if not isinstance(axis, (tuple, list)): + axis = (axis,) + + out_ndim = len(axis) + a.ndim + axis = normalize_axis_tuple(axis, out_ndim) + + shape_it = iter(a.shape) + shape = [1 if ax in axis else next(shape_it) for ax in range(out_ndim)] + + return a.reshape(shape) + + +# NOTE: Remove once deprecation period passes +@set_module("numpy") +def row_stack(tup, *, dtype=None, casting="same_kind"): + # Deprecated in NumPy 2.0, 2023-08-18 + warnings.warn( + "`row_stack` alias is deprecated. " + "Use `np.vstack` directly.", + DeprecationWarning, + stacklevel=2 + ) + return vstack(tup, dtype=dtype, casting=casting) + + +row_stack.__doc__ = vstack.__doc__ + + +def _column_stack_dispatcher(tup): + return _arrays_for_stack_dispatcher(tup) + + +@array_function_dispatch(_column_stack_dispatcher) +def column_stack(tup): + """ + Stack 1-D arrays as columns into a 2-D array. + + Take a sequence of 1-D arrays and stack them as columns + to make a single 2-D array. 2-D arrays are stacked as-is, + just like with `hstack`. 1-D arrays are turned into 2-D columns + first. + + Parameters + ---------- + tup : sequence of 1-D or 2-D arrays. + Arrays to stack. All of them must have the same first dimension. + + Returns + ------- + stacked : 2-D array + The array formed by stacking the given arrays. + + See Also + -------- + stack, hstack, vstack, concatenate + + Examples + -------- + >>> import numpy as np + >>> a = np.array((1,2,3)) + >>> b = np.array((2,3,4)) + >>> np.column_stack((a,b)) + array([[1, 2], + [2, 3], + [3, 4]]) + + """ + arrays = [] + for v in tup: + arr = asanyarray(v) + if arr.ndim < 2: + arr = array(arr, copy=None, subok=True, ndmin=2).T + arrays.append(arr) + return _nx.concatenate(arrays, 1) + + +def _dstack_dispatcher(tup): + return _arrays_for_stack_dispatcher(tup) + + +@array_function_dispatch(_dstack_dispatcher) +def dstack(tup): + """ + Stack arrays in sequence depth wise (along third axis). + + This is equivalent to concatenation along the third axis after 2-D arrays + of shape `(M,N)` have been reshaped to `(M,N,1)` and 1-D arrays of shape + `(N,)` have been reshaped to `(1,N,1)`. Rebuilds arrays divided by + `dsplit`. + + This function makes most sense for arrays with up to 3 dimensions. For + instance, for pixel-data with a height (first axis), width (second axis), + and r/g/b channels (third axis). The functions `concatenate`, `stack` and + `block` provide more general stacking and concatenation operations. + + Parameters + ---------- + tup : sequence of arrays + The arrays must have the same shape along all but the third axis. + 1-D or 2-D arrays must have the same shape. + + Returns + ------- + stacked : ndarray + The array formed by stacking the given arrays, will be at least 3-D. + + See Also + -------- + concatenate : Join a sequence of arrays along an existing axis. + stack : Join a sequence of arrays along a new axis. + block : Assemble an nd-array from nested lists of blocks. + vstack : Stack arrays in sequence vertically (row wise). + hstack : Stack arrays in sequence horizontally (column wise). + column_stack : Stack 1-D arrays as columns into a 2-D array. + dsplit : Split array along third axis. + + Examples + -------- + >>> import numpy as np + >>> a = np.array((1,2,3)) + >>> b = np.array((2,3,4)) + >>> np.dstack((a,b)) + array([[[1, 2], + [2, 3], + [3, 4]]]) + + >>> a = np.array([[1],[2],[3]]) + >>> b = np.array([[2],[3],[4]]) + >>> np.dstack((a,b)) + array([[[1, 2]], + [[2, 3]], + [[3, 4]]]) + + """ + arrs = atleast_3d(*tup) + if not isinstance(arrs, tuple): + arrs = (arrs,) + return _nx.concatenate(arrs, 2) + + +def _replace_zero_by_x_arrays(sub_arys): + for i in range(len(sub_arys)): + if _nx.ndim(sub_arys[i]) == 0: + sub_arys[i] = _nx.empty(0, dtype=sub_arys[i].dtype) + elif _nx.sometrue(_nx.equal(_nx.shape(sub_arys[i]), 0)): + sub_arys[i] = _nx.empty(0, dtype=sub_arys[i].dtype) + return sub_arys + + +def _array_split_dispatcher(ary, indices_or_sections, axis=None): + return (ary, indices_or_sections) + + +@array_function_dispatch(_array_split_dispatcher) +def array_split(ary, indices_or_sections, axis=0): + """ + Split an array into multiple sub-arrays. + + Please refer to the ``split`` documentation. The only difference + between these functions is that ``array_split`` allows + `indices_or_sections` to be an integer that does *not* equally + divide the axis. For an array of length l that should be split + into n sections, it returns l % n sub-arrays of size l//n + 1 + and the rest of size l//n. + + See Also + -------- + split : Split array into multiple sub-arrays of equal size. + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(8.0) + >>> np.array_split(x, 3) + [array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7.])] + + >>> x = np.arange(9) + >>> np.array_split(x, 4) + [array([0, 1, 2]), array([3, 4]), array([5, 6]), array([7, 8])] + + """ + try: + Ntotal = ary.shape[axis] + except AttributeError: + Ntotal = len(ary) + try: + # handle array case. + Nsections = len(indices_or_sections) + 1 + div_points = [0] + list(indices_or_sections) + [Ntotal] + except TypeError: + # indices_or_sections is a scalar, not an array. + Nsections = int(indices_or_sections) + if Nsections <= 0: + raise ValueError('number sections must be larger than 0.') from None + Neach_section, extras = divmod(Ntotal, Nsections) + section_sizes = ([0] + + extras * [Neach_section + 1] + + (Nsections - extras) * [Neach_section]) + div_points = _nx.array(section_sizes, dtype=_nx.intp).cumsum() + + sub_arys = [] + sary = _nx.swapaxes(ary, axis, 0) + for i in range(Nsections): + st = div_points[i] + end = div_points[i + 1] + sub_arys.append(_nx.swapaxes(sary[st:end], axis, 0)) + + return sub_arys + + +def _split_dispatcher(ary, indices_or_sections, axis=None): + return (ary, indices_or_sections) + + +@array_function_dispatch(_split_dispatcher) +def split(ary, indices_or_sections, axis=0): + """ + Split an array into multiple sub-arrays as views into `ary`. + + Parameters + ---------- + ary : ndarray + Array to be divided into sub-arrays. + indices_or_sections : int or 1-D array + If `indices_or_sections` is an integer, N, the array will be divided + into N equal arrays along `axis`. If such a split is not possible, + an error is raised. + + If `indices_or_sections` is a 1-D array of sorted integers, the entries + indicate where along `axis` the array is split. For example, + ``[2, 3]`` would, for ``axis=0``, result in + + - ary[:2] + - ary[2:3] + - ary[3:] + + If an index exceeds the dimension of the array along `axis`, + an empty sub-array is returned correspondingly. + axis : int, optional + The axis along which to split, default is 0. + + Returns + ------- + sub-arrays : list of ndarrays + A list of sub-arrays as views into `ary`. + + Raises + ------ + ValueError + If `indices_or_sections` is given as an integer, but + a split does not result in equal division. + + See Also + -------- + array_split : Split an array into multiple sub-arrays of equal or + near-equal size. Does not raise an exception if + an equal division cannot be made. + hsplit : Split array into multiple sub-arrays horizontally (column-wise). + vsplit : Split array into multiple sub-arrays vertically (row wise). + dsplit : Split array into multiple sub-arrays along the 3rd axis (depth). + concatenate : Join a sequence of arrays along an existing axis. + stack : Join a sequence of arrays along a new axis. + hstack : Stack arrays in sequence horizontally (column wise). + vstack : Stack arrays in sequence vertically (row wise). + dstack : Stack arrays in sequence depth wise (along third dimension). + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(9.0) + >>> np.split(x, 3) + [array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7., 8.])] + + >>> x = np.arange(8.0) + >>> np.split(x, [3, 5, 6, 10]) + [array([0., 1., 2.]), + array([3., 4.]), + array([5.]), + array([6., 7.]), + array([], dtype=float64)] + + """ + try: + len(indices_or_sections) + except TypeError: + sections = indices_or_sections + N = ary.shape[axis] + if N % sections: + raise ValueError( + 'array split does not result in an equal division') from None + return array_split(ary, indices_or_sections, axis) + + +def _hvdsplit_dispatcher(ary, indices_or_sections): + return (ary, indices_or_sections) + + +@array_function_dispatch(_hvdsplit_dispatcher) +def hsplit(ary, indices_or_sections): + """ + Split an array into multiple sub-arrays horizontally (column-wise). + + Please refer to the `split` documentation. `hsplit` is equivalent + to `split` with ``axis=1``, the array is always split along the second + axis except for 1-D arrays, where it is split at ``axis=0``. + + See Also + -------- + split : Split an array into multiple sub-arrays of equal size. + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(16.0).reshape(4, 4) + >>> x + array([[ 0., 1., 2., 3.], + [ 4., 5., 6., 7.], + [ 8., 9., 10., 11.], + [12., 13., 14., 15.]]) + >>> np.hsplit(x, 2) + [array([[ 0., 1.], + [ 4., 5.], + [ 8., 9.], + [12., 13.]]), + array([[ 2., 3.], + [ 6., 7.], + [10., 11.], + [14., 15.]])] + >>> np.hsplit(x, np.array([3, 6])) + [array([[ 0., 1., 2.], + [ 4., 5., 6.], + [ 8., 9., 10.], + [12., 13., 14.]]), + array([[ 3.], + [ 7.], + [11.], + [15.]]), + array([], shape=(4, 0), dtype=float64)] + + With a higher dimensional array the split is still along the second axis. + + >>> x = np.arange(8.0).reshape(2, 2, 2) + >>> x + array([[[0., 1.], + [2., 3.]], + [[4., 5.], + [6., 7.]]]) + >>> np.hsplit(x, 2) + [array([[[0., 1.]], + [[4., 5.]]]), + array([[[2., 3.]], + [[6., 7.]]])] + + With a 1-D array, the split is along axis 0. + + >>> x = np.array([0, 1, 2, 3, 4, 5]) + >>> np.hsplit(x, 2) + [array([0, 1, 2]), array([3, 4, 5])] + + """ + if _nx.ndim(ary) == 0: + raise ValueError('hsplit only works on arrays of 1 or more dimensions') + if ary.ndim > 1: + return split(ary, indices_or_sections, 1) + else: + return split(ary, indices_or_sections, 0) + + +@array_function_dispatch(_hvdsplit_dispatcher) +def vsplit(ary, indices_or_sections): + """ + Split an array into multiple sub-arrays vertically (row-wise). + + Please refer to the ``split`` documentation. ``vsplit`` is equivalent + to ``split`` with `axis=0` (default), the array is always split along the + first axis regardless of the array dimension. + + See Also + -------- + split : Split an array into multiple sub-arrays of equal size. + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(16.0).reshape(4, 4) + >>> x + array([[ 0., 1., 2., 3.], + [ 4., 5., 6., 7.], + [ 8., 9., 10., 11.], + [12., 13., 14., 15.]]) + >>> np.vsplit(x, 2) + [array([[0., 1., 2., 3.], + [4., 5., 6., 7.]]), + array([[ 8., 9., 10., 11.], + [12., 13., 14., 15.]])] + >>> np.vsplit(x, np.array([3, 6])) + [array([[ 0., 1., 2., 3.], + [ 4., 5., 6., 7.], + [ 8., 9., 10., 11.]]), + array([[12., 13., 14., 15.]]), + array([], shape=(0, 4), dtype=float64)] + + With a higher dimensional array the split is still along the first axis. + + >>> x = np.arange(8.0).reshape(2, 2, 2) + >>> x + array([[[0., 1.], + [2., 3.]], + [[4., 5.], + [6., 7.]]]) + >>> np.vsplit(x, 2) + [array([[[0., 1.], + [2., 3.]]]), + array([[[4., 5.], + [6., 7.]]])] + + """ + if _nx.ndim(ary) < 2: + raise ValueError('vsplit only works on arrays of 2 or more dimensions') + return split(ary, indices_or_sections, 0) + + +@array_function_dispatch(_hvdsplit_dispatcher) +def dsplit(ary, indices_or_sections): + """ + Split array into multiple sub-arrays along the 3rd axis (depth). + + Please refer to the `split` documentation. `dsplit` is equivalent + to `split` with ``axis=2``, the array is always split along the third + axis provided the array dimension is greater than or equal to 3. + + See Also + -------- + split : Split an array into multiple sub-arrays of equal size. + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(16.0).reshape(2, 2, 4) + >>> x + array([[[ 0., 1., 2., 3.], + [ 4., 5., 6., 7.]], + [[ 8., 9., 10., 11.], + [12., 13., 14., 15.]]]) + >>> np.dsplit(x, 2) + [array([[[ 0., 1.], + [ 4., 5.]], + [[ 8., 9.], + [12., 13.]]]), array([[[ 2., 3.], + [ 6., 7.]], + [[10., 11.], + [14., 15.]]])] + >>> np.dsplit(x, np.array([3, 6])) + [array([[[ 0., 1., 2.], + [ 4., 5., 6.]], + [[ 8., 9., 10.], + [12., 13., 14.]]]), + array([[[ 3.], + [ 7.]], + [[11.], + [15.]]]), + array([], shape=(2, 2, 0), dtype=float64)] + """ + if _nx.ndim(ary) < 3: + raise ValueError('dsplit only works on arrays of 3 or more dimensions') + return split(ary, indices_or_sections, 2) + + +def get_array_wrap(*args): + """Find the wrapper for the array with the highest priority. + + In case of ties, leftmost wins. If no wrapper is found, return None. + + .. deprecated:: 2.0 + """ + + # Deprecated in NumPy 2.0, 2023-07-11 + warnings.warn( + "`get_array_wrap` is deprecated. " + "(deprecated in NumPy 2.0)", + DeprecationWarning, + stacklevel=2 + ) + + wrappers = sorted((getattr(x, '__array_priority__', 0), -i, + x.__array_wrap__) for i, x in enumerate(args) + if hasattr(x, '__array_wrap__')) + if wrappers: + return wrappers[-1][-1] + return None + + +def _kron_dispatcher(a, b): + return (a, b) + + +@array_function_dispatch(_kron_dispatcher) +def kron(a, b): + """ + Kronecker product of two arrays. + + Computes the Kronecker product, a composite array made of blocks of the + second array scaled by the first. + + Parameters + ---------- + a, b : array_like + + Returns + ------- + out : ndarray + + See Also + -------- + outer : The outer product + + Notes + ----- + The function assumes that the number of dimensions of `a` and `b` + are the same, if necessary prepending the smallest with ones. + If ``a.shape = (r0,r1,..,rN)`` and ``b.shape = (s0,s1,...,sN)``, + the Kronecker product has shape ``(r0*s0, r1*s1, ..., rN*SN)``. + The elements are products of elements from `a` and `b`, organized + explicitly by:: + + kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN] + + where:: + + kt = it * st + jt, t = 0,...,N + + In the common 2-D case (N=1), the block structure can be visualized:: + + [[ a[0,0]*b, a[0,1]*b, ... , a[0,-1]*b ], + [ ... ... ], + [ a[-1,0]*b, a[-1,1]*b, ... , a[-1,-1]*b ]] + + + Examples + -------- + >>> import numpy as np + >>> np.kron([1,10,100], [5,6,7]) + array([ 5, 6, 7, ..., 500, 600, 700]) + >>> np.kron([5,6,7], [1,10,100]) + array([ 5, 50, 500, ..., 7, 70, 700]) + + >>> np.kron(np.eye(2), np.ones((2,2))) + array([[1., 1., 0., 0.], + [1., 1., 0., 0.], + [0., 0., 1., 1.], + [0., 0., 1., 1.]]) + + >>> a = np.arange(100).reshape((2,5,2,5)) + >>> b = np.arange(24).reshape((2,3,4)) + >>> c = np.kron(a,b) + >>> c.shape + (2, 10, 6, 20) + >>> I = (1,3,0,2) + >>> J = (0,2,1) + >>> J1 = (0,) + J # extend to ndim=4 + >>> S1 = (1,) + b.shape + >>> K = tuple(np.array(I) * np.array(S1) + np.array(J1)) + >>> c[K] == a[I]*b[J] + True + + """ + # Working: + # 1. Equalise the shapes by prepending smaller array with 1s + # 2. Expand shapes of both the arrays by adding new axes at + # odd positions for 1st array and even positions for 2nd + # 3. Compute the product of the modified array + # 4. The inner most array elements now contain the rows of + # the Kronecker product + # 5. Reshape the result to kron's shape, which is same as + # product of shapes of the two arrays. + b = asanyarray(b) + a = array(a, copy=None, subok=True, ndmin=b.ndim) + is_any_mat = isinstance(a, matrix) or isinstance(b, matrix) + ndb, nda = b.ndim, a.ndim + nd = max(ndb, nda) + + if (nda == 0 or ndb == 0): + return _nx.multiply(a, b) + + as_ = a.shape + bs = b.shape + if not a.flags.contiguous: + a = reshape(a, as_) + if not b.flags.contiguous: + b = reshape(b, bs) + + # Equalise the shapes by prepending smaller one with 1s + as_ = (1,) * max(0, ndb - nda) + as_ + bs = (1,) * max(0, nda - ndb) + bs + + # Insert empty dimensions + a_arr = expand_dims(a, axis=tuple(range(ndb - nda))) + b_arr = expand_dims(b, axis=tuple(range(nda - ndb))) + + # Compute the product + a_arr = expand_dims(a_arr, axis=tuple(range(1, nd * 2, 2))) + b_arr = expand_dims(b_arr, axis=tuple(range(0, nd * 2, 2))) + # In case of `mat`, convert result to `array` + result = _nx.multiply(a_arr, b_arr, subok=(not is_any_mat)) + + # Reshape back + result = result.reshape(_nx.multiply(as_, bs)) + + return result if not is_any_mat else matrix(result, copy=False) + + +def _tile_dispatcher(A, reps): + return (A, reps) + + +@array_function_dispatch(_tile_dispatcher) +def tile(A, reps): + """ + Construct an array by repeating A the number of times given by reps. + + If `reps` has length ``d``, the result will have dimension of + ``max(d, A.ndim)``. + + If ``A.ndim < d``, `A` is promoted to be d-dimensional by prepending new + axes. So a shape (3,) array is promoted to (1, 3) for 2-D replication, + or shape (1, 1, 3) for 3-D replication. If this is not the desired + behavior, promote `A` to d-dimensions manually before calling this + function. + + If ``A.ndim > d``, `reps` is promoted to `A`.ndim by prepending 1's to it. + Thus for an `A` of shape (2, 3, 4, 5), a `reps` of (2, 2) is treated as + (1, 1, 2, 2). + + Note : Although tile may be used for broadcasting, it is strongly + recommended to use numpy's broadcasting operations and functions. + + Parameters + ---------- + A : array_like + The input array. + reps : array_like + The number of repetitions of `A` along each axis. + + Returns + ------- + c : ndarray + The tiled output array. + + See Also + -------- + repeat : Repeat elements of an array. + broadcast_to : Broadcast an array to a new shape + + Examples + -------- + >>> import numpy as np + >>> a = np.array([0, 1, 2]) + >>> np.tile(a, 2) + array([0, 1, 2, 0, 1, 2]) + >>> np.tile(a, (2, 2)) + array([[0, 1, 2, 0, 1, 2], + [0, 1, 2, 0, 1, 2]]) + >>> np.tile(a, (2, 1, 2)) + array([[[0, 1, 2, 0, 1, 2]], + [[0, 1, 2, 0, 1, 2]]]) + + >>> b = np.array([[1, 2], [3, 4]]) + >>> np.tile(b, 2) + array([[1, 2, 1, 2], + [3, 4, 3, 4]]) + >>> np.tile(b, (2, 1)) + array([[1, 2], + [3, 4], + [1, 2], + [3, 4]]) + + >>> c = np.array([1,2,3,4]) + >>> np.tile(c,(4,1)) + array([[1, 2, 3, 4], + [1, 2, 3, 4], + [1, 2, 3, 4], + [1, 2, 3, 4]]) + """ + try: + tup = tuple(reps) + except TypeError: + tup = (reps,) + d = len(tup) + if all(x == 1 for x in tup) and isinstance(A, _nx.ndarray): + # Fixes the problem that the function does not make a copy if A is a + # numpy array and the repetitions are 1 in all dimensions + return _nx.array(A, copy=True, subok=True, ndmin=d) + else: + # Note that no copy of zero-sized arrays is made. However since they + # have no data there is no risk of an inadvertent overwrite. + c = _nx.array(A, copy=None, subok=True, ndmin=d) + if (d < c.ndim): + tup = (1,) * (c.ndim - d) + tup + shape_out = tuple(s * t for s, t in zip(c.shape, tup)) + n = c.size + if n > 0: + for dim_in, nrep in zip(c.shape, tup): + if nrep != 1: + c = c.reshape(-1, n).repeat(nrep, 0) + n //= dim_in + return c.reshape(shape_out) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_shape_base_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_shape_base_impl.pyi new file mode 100644 index 0000000..a50d372 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_shape_base_impl.pyi @@ -0,0 +1,235 @@ +from collections.abc import Callable, Sequence +from typing import ( + Any, + Concatenate, + ParamSpec, + Protocol, + SupportsIndex, + TypeVar, + overload, + type_check_only, +) + +from typing_extensions import deprecated + +import numpy as np +from numpy import ( + _CastingKind, + complexfloating, + floating, + generic, + integer, + object_, + signedinteger, + ufunc, + unsignedinteger, +) +from numpy._typing import ( + ArrayLike, + DTypeLike, + NDArray, + _ArrayLike, + _ArrayLikeBool_co, + _ArrayLikeComplex_co, + _ArrayLikeFloat_co, + _ArrayLikeInt_co, + _ArrayLikeObject_co, + _ArrayLikeUInt_co, + _ShapeLike, +) + +__all__ = [ + "column_stack", + "row_stack", + "dstack", + "array_split", + "split", + "hsplit", + "vsplit", + "dsplit", + "apply_over_axes", + "expand_dims", + "apply_along_axis", + "kron", + "tile", + "take_along_axis", + "put_along_axis", +] + +_P = ParamSpec("_P") +_ScalarT = TypeVar("_ScalarT", bound=generic) + +# Signature of `__array_wrap__` +@type_check_only +class _ArrayWrap(Protocol): + def __call__( + self, + array: NDArray[Any], + context: tuple[ufunc, tuple[Any, ...], int] | None = ..., + return_scalar: bool = ..., + /, + ) -> Any: ... + +@type_check_only +class _SupportsArrayWrap(Protocol): + @property + def __array_wrap__(self) -> _ArrayWrap: ... + +### + +def take_along_axis( + arr: _ScalarT | NDArray[_ScalarT], + indices: NDArray[integer], + axis: int | None = ..., +) -> NDArray[_ScalarT]: ... + +def put_along_axis( + arr: NDArray[_ScalarT], + indices: NDArray[integer], + values: ArrayLike, + axis: int | None, +) -> None: ... + +@overload +def apply_along_axis( + func1d: Callable[Concatenate[NDArray[Any], _P], _ArrayLike[_ScalarT]], + axis: SupportsIndex, + arr: ArrayLike, + *args: _P.args, + **kwargs: _P.kwargs, +) -> NDArray[_ScalarT]: ... +@overload +def apply_along_axis( + func1d: Callable[Concatenate[NDArray[Any], _P], Any], + axis: SupportsIndex, + arr: ArrayLike, + *args: _P.args, + **kwargs: _P.kwargs, +) -> NDArray[Any]: ... + +def apply_over_axes( + func: Callable[[NDArray[Any], int], NDArray[_ScalarT]], + a: ArrayLike, + axes: int | Sequence[int], +) -> NDArray[_ScalarT]: ... + +@overload +def expand_dims( + a: _ArrayLike[_ScalarT], + axis: _ShapeLike, +) -> NDArray[_ScalarT]: ... +@overload +def expand_dims( + a: ArrayLike, + axis: _ShapeLike, +) -> NDArray[Any]: ... + +# Deprecated in NumPy 2.0, 2023-08-18 +@deprecated("`row_stack` alias is deprecated. Use `np.vstack` directly.") +def row_stack( + tup: Sequence[ArrayLike], + *, + dtype: DTypeLike | None = None, + casting: _CastingKind = "same_kind", +) -> NDArray[Any]: ... + +# +@overload +def column_stack(tup: Sequence[_ArrayLike[_ScalarT]]) -> NDArray[_ScalarT]: ... +@overload +def column_stack(tup: Sequence[ArrayLike]) -> NDArray[Any]: ... + +@overload +def dstack(tup: Sequence[_ArrayLike[_ScalarT]]) -> NDArray[_ScalarT]: ... +@overload +def dstack(tup: Sequence[ArrayLike]) -> NDArray[Any]: ... + +@overload +def array_split( + ary: _ArrayLike[_ScalarT], + indices_or_sections: _ShapeLike, + axis: SupportsIndex = ..., +) -> list[NDArray[_ScalarT]]: ... +@overload +def array_split( + ary: ArrayLike, + indices_or_sections: _ShapeLike, + axis: SupportsIndex = ..., +) -> list[NDArray[Any]]: ... + +@overload +def split( + ary: _ArrayLike[_ScalarT], + indices_or_sections: _ShapeLike, + axis: SupportsIndex = ..., +) -> list[NDArray[_ScalarT]]: ... +@overload +def split( + ary: ArrayLike, + indices_or_sections: _ShapeLike, + axis: SupportsIndex = ..., +) -> list[NDArray[Any]]: ... + +@overload +def hsplit( + ary: _ArrayLike[_ScalarT], + indices_or_sections: _ShapeLike, +) -> list[NDArray[_ScalarT]]: ... +@overload +def hsplit( + ary: ArrayLike, + indices_or_sections: _ShapeLike, +) -> list[NDArray[Any]]: ... + +@overload +def vsplit( + ary: _ArrayLike[_ScalarT], + indices_or_sections: _ShapeLike, +) -> list[NDArray[_ScalarT]]: ... +@overload +def vsplit( + ary: ArrayLike, + indices_or_sections: _ShapeLike, +) -> list[NDArray[Any]]: ... + +@overload +def dsplit( + ary: _ArrayLike[_ScalarT], + indices_or_sections: _ShapeLike, +) -> list[NDArray[_ScalarT]]: ... +@overload +def dsplit( + ary: ArrayLike, + indices_or_sections: _ShapeLike, +) -> list[NDArray[Any]]: ... + +@overload +def get_array_wrap(*args: _SupportsArrayWrap) -> _ArrayWrap: ... +@overload +def get_array_wrap(*args: object) -> _ArrayWrap | None: ... + +@overload +def kron(a: _ArrayLikeBool_co, b: _ArrayLikeBool_co) -> NDArray[np.bool]: ... # type: ignore[misc] +@overload +def kron(a: _ArrayLikeUInt_co, b: _ArrayLikeUInt_co) -> NDArray[unsignedinteger]: ... # type: ignore[misc] +@overload +def kron(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co) -> NDArray[signedinteger]: ... # type: ignore[misc] +@overload +def kron(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co) -> NDArray[floating]: ... # type: ignore[misc] +@overload +def kron(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ... +@overload +def kron(a: _ArrayLikeObject_co, b: Any) -> NDArray[object_]: ... +@overload +def kron(a: Any, b: _ArrayLikeObject_co) -> NDArray[object_]: ... + +@overload +def tile( + A: _ArrayLike[_ScalarT], + reps: int | Sequence[int], +) -> NDArray[_ScalarT]: ... +@overload +def tile( + A: ArrayLike, + reps: int | Sequence[int], +) -> NDArray[Any]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_stride_tricks_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_stride_tricks_impl.py new file mode 100644 index 0000000..d478078 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_stride_tricks_impl.py @@ -0,0 +1,549 @@ +""" +Utilities that manipulate strides to achieve desirable effects. + +An explanation of strides can be found in the :ref:`arrays.ndarray`. + +""" +import numpy as np +from numpy._core.numeric import normalize_axis_tuple +from numpy._core.overrides import array_function_dispatch, set_module + +__all__ = ['broadcast_to', 'broadcast_arrays', 'broadcast_shapes'] + + +class DummyArray: + """Dummy object that just exists to hang __array_interface__ dictionaries + and possibly keep alive a reference to a base array. + """ + + def __init__(self, interface, base=None): + self.__array_interface__ = interface + self.base = base + + +def _maybe_view_as_subclass(original_array, new_array): + if type(original_array) is not type(new_array): + # if input was an ndarray subclass and subclasses were OK, + # then view the result as that subclass. + new_array = new_array.view(type=type(original_array)) + # Since we have done something akin to a view from original_array, we + # should let the subclass finalize (if it has it implemented, i.e., is + # not None). + if new_array.__array_finalize__: + new_array.__array_finalize__(original_array) + return new_array + + +@set_module("numpy.lib.stride_tricks") +def as_strided(x, shape=None, strides=None, subok=False, writeable=True): + """ + Create a view into the array with the given shape and strides. + + .. warning:: This function has to be used with extreme care, see notes. + + Parameters + ---------- + x : ndarray + Array to create a new. + shape : sequence of int, optional + The shape of the new array. Defaults to ``x.shape``. + strides : sequence of int, optional + The strides of the new array. Defaults to ``x.strides``. + subok : bool, optional + If True, subclasses are preserved. + writeable : bool, optional + If set to False, the returned array will always be readonly. + Otherwise it will be writable if the original array was. It + is advisable to set this to False if possible (see Notes). + + Returns + ------- + view : ndarray + + See also + -------- + broadcast_to : broadcast an array to a given shape. + reshape : reshape an array. + lib.stride_tricks.sliding_window_view : + userfriendly and safe function for a creation of sliding window views. + + Notes + ----- + ``as_strided`` creates a view into the array given the exact strides + and shape. This means it manipulates the internal data structure of + ndarray and, if done incorrectly, the array elements can point to + invalid memory and can corrupt results or crash your program. + It is advisable to always use the original ``x.strides`` when + calculating new strides to avoid reliance on a contiguous memory + layout. + + Furthermore, arrays created with this function often contain self + overlapping memory, so that two elements are identical. + Vectorized write operations on such arrays will typically be + unpredictable. They may even give different results for small, large, + or transposed arrays. + + Since writing to these arrays has to be tested and done with great + care, you may want to use ``writeable=False`` to avoid accidental write + operations. + + For these reasons it is advisable to avoid ``as_strided`` when + possible. + """ + # first convert input to array, possibly keeping subclass + x = np.array(x, copy=None, subok=subok) + interface = dict(x.__array_interface__) + if shape is not None: + interface['shape'] = tuple(shape) + if strides is not None: + interface['strides'] = tuple(strides) + + array = np.asarray(DummyArray(interface, base=x)) + # The route via `__interface__` does not preserve structured + # dtypes. Since dtype should remain unchanged, we set it explicitly. + array.dtype = x.dtype + + view = _maybe_view_as_subclass(x, array) + + if view.flags.writeable and not writeable: + view.flags.writeable = False + + return view + + +def _sliding_window_view_dispatcher(x, window_shape, axis=None, *, + subok=None, writeable=None): + return (x,) + + +@array_function_dispatch( + _sliding_window_view_dispatcher, module="numpy.lib.stride_tricks" +) +def sliding_window_view(x, window_shape, axis=None, *, + subok=False, writeable=False): + """ + Create a sliding window view into the array with the given window shape. + + Also known as rolling or moving window, the window slides across all + dimensions of the array and extracts subsets of the array at all window + positions. + + .. versionadded:: 1.20.0 + + Parameters + ---------- + x : array_like + Array to create the sliding window view from. + window_shape : int or tuple of int + Size of window over each axis that takes part in the sliding window. + If `axis` is not present, must have same length as the number of input + array dimensions. Single integers `i` are treated as if they were the + tuple `(i,)`. + axis : int or tuple of int, optional + Axis or axes along which the sliding window is applied. + By default, the sliding window is applied to all axes and + `window_shape[i]` will refer to axis `i` of `x`. + If `axis` is given as a `tuple of int`, `window_shape[i]` will refer to + the axis `axis[i]` of `x`. + Single integers `i` are treated as if they were the tuple `(i,)`. + subok : bool, optional + If True, sub-classes will be passed-through, otherwise the returned + array will be forced to be a base-class array (default). + writeable : bool, optional + When true, allow writing to the returned view. The default is false, + as this should be used with caution: the returned view contains the + same memory location multiple times, so writing to one location will + cause others to change. + + Returns + ------- + view : ndarray + Sliding window view of the array. The sliding window dimensions are + inserted at the end, and the original dimensions are trimmed as + required by the size of the sliding window. + That is, ``view.shape = x_shape_trimmed + window_shape``, where + ``x_shape_trimmed`` is ``x.shape`` with every entry reduced by one less + than the corresponding window size. + + See Also + -------- + lib.stride_tricks.as_strided: A lower-level and less safe routine for + creating arbitrary views from custom shape and strides. + broadcast_to: broadcast an array to a given shape. + + Notes + ----- + For many applications using a sliding window view can be convenient, but + potentially very slow. Often specialized solutions exist, for example: + + - `scipy.signal.fftconvolve` + + - filtering functions in `scipy.ndimage` + + - moving window functions provided by + `bottleneck `_. + + As a rough estimate, a sliding window approach with an input size of `N` + and a window size of `W` will scale as `O(N*W)` where frequently a special + algorithm can achieve `O(N)`. That means that the sliding window variant + for a window size of 100 can be a 100 times slower than a more specialized + version. + + Nevertheless, for small window sizes, when no custom algorithm exists, or + as a prototyping and developing tool, this function can be a good solution. + + Examples + -------- + >>> import numpy as np + >>> from numpy.lib.stride_tricks import sliding_window_view + >>> x = np.arange(6) + >>> x.shape + (6,) + >>> v = sliding_window_view(x, 3) + >>> v.shape + (4, 3) + >>> v + array([[0, 1, 2], + [1, 2, 3], + [2, 3, 4], + [3, 4, 5]]) + + This also works in more dimensions, e.g. + + >>> i, j = np.ogrid[:3, :4] + >>> x = 10*i + j + >>> x.shape + (3, 4) + >>> x + array([[ 0, 1, 2, 3], + [10, 11, 12, 13], + [20, 21, 22, 23]]) + >>> shape = (2,2) + >>> v = sliding_window_view(x, shape) + >>> v.shape + (2, 3, 2, 2) + >>> v + array([[[[ 0, 1], + [10, 11]], + [[ 1, 2], + [11, 12]], + [[ 2, 3], + [12, 13]]], + [[[10, 11], + [20, 21]], + [[11, 12], + [21, 22]], + [[12, 13], + [22, 23]]]]) + + The axis can be specified explicitly: + + >>> v = sliding_window_view(x, 3, 0) + >>> v.shape + (1, 4, 3) + >>> v + array([[[ 0, 10, 20], + [ 1, 11, 21], + [ 2, 12, 22], + [ 3, 13, 23]]]) + + The same axis can be used several times. In that case, every use reduces + the corresponding original dimension: + + >>> v = sliding_window_view(x, (2, 3), (1, 1)) + >>> v.shape + (3, 1, 2, 3) + >>> v + array([[[[ 0, 1, 2], + [ 1, 2, 3]]], + [[[10, 11, 12], + [11, 12, 13]]], + [[[20, 21, 22], + [21, 22, 23]]]]) + + Combining with stepped slicing (`::step`), this can be used to take sliding + views which skip elements: + + >>> x = np.arange(7) + >>> sliding_window_view(x, 5)[:, ::2] + array([[0, 2, 4], + [1, 3, 5], + [2, 4, 6]]) + + or views which move by multiple elements + + >>> x = np.arange(7) + >>> sliding_window_view(x, 3)[::2, :] + array([[0, 1, 2], + [2, 3, 4], + [4, 5, 6]]) + + A common application of `sliding_window_view` is the calculation of running + statistics. The simplest example is the + `moving average `_: + + >>> x = np.arange(6) + >>> x.shape + (6,) + >>> v = sliding_window_view(x, 3) + >>> v.shape + (4, 3) + >>> v + array([[0, 1, 2], + [1, 2, 3], + [2, 3, 4], + [3, 4, 5]]) + >>> moving_average = v.mean(axis=-1) + >>> moving_average + array([1., 2., 3., 4.]) + + Note that a sliding window approach is often **not** optimal (see Notes). + """ + window_shape = (tuple(window_shape) + if np.iterable(window_shape) + else (window_shape,)) + # first convert input to array, possibly keeping subclass + x = np.array(x, copy=None, subok=subok) + + window_shape_array = np.array(window_shape) + if np.any(window_shape_array < 0): + raise ValueError('`window_shape` cannot contain negative values') + + if axis is None: + axis = tuple(range(x.ndim)) + if len(window_shape) != len(axis): + raise ValueError(f'Since axis is `None`, must provide ' + f'window_shape for all dimensions of `x`; ' + f'got {len(window_shape)} window_shape elements ' + f'and `x.ndim` is {x.ndim}.') + else: + axis = normalize_axis_tuple(axis, x.ndim, allow_duplicate=True) + if len(window_shape) != len(axis): + raise ValueError(f'Must provide matching length window_shape and ' + f'axis; got {len(window_shape)} window_shape ' + f'elements and {len(axis)} axes elements.') + + out_strides = x.strides + tuple(x.strides[ax] for ax in axis) + + # note: same axis can be windowed repeatedly + x_shape_trimmed = list(x.shape) + for ax, dim in zip(axis, window_shape): + if x_shape_trimmed[ax] < dim: + raise ValueError( + 'window shape cannot be larger than input array shape') + x_shape_trimmed[ax] -= dim - 1 + out_shape = tuple(x_shape_trimmed) + window_shape + return as_strided(x, strides=out_strides, shape=out_shape, + subok=subok, writeable=writeable) + + +def _broadcast_to(array, shape, subok, readonly): + shape = tuple(shape) if np.iterable(shape) else (shape,) + array = np.array(array, copy=None, subok=subok) + if not shape and array.shape: + raise ValueError('cannot broadcast a non-scalar to a scalar array') + if any(size < 0 for size in shape): + raise ValueError('all elements of broadcast shape must be non-' + 'negative') + extras = [] + it = np.nditer( + (array,), flags=['multi_index', 'refs_ok', 'zerosize_ok'] + extras, + op_flags=['readonly'], itershape=shape, order='C') + with it: + # never really has writebackifcopy semantics + broadcast = it.itviews[0] + result = _maybe_view_as_subclass(array, broadcast) + # In a future version this will go away + if not readonly and array.flags._writeable_no_warn: + result.flags.writeable = True + result.flags._warn_on_write = True + return result + + +def _broadcast_to_dispatcher(array, shape, subok=None): + return (array,) + + +@array_function_dispatch(_broadcast_to_dispatcher, module='numpy') +def broadcast_to(array, shape, subok=False): + """Broadcast an array to a new shape. + + Parameters + ---------- + array : array_like + The array to broadcast. + shape : tuple or int + The shape of the desired array. A single integer ``i`` is interpreted + as ``(i,)``. + subok : bool, optional + If True, then sub-classes will be passed-through, otherwise + the returned array will be forced to be a base-class array (default). + + Returns + ------- + broadcast : array + A readonly view on the original array with the given shape. It is + typically not contiguous. Furthermore, more than one element of a + broadcasted array may refer to a single memory location. + + Raises + ------ + ValueError + If the array is not compatible with the new shape according to NumPy's + broadcasting rules. + + See Also + -------- + broadcast + broadcast_arrays + broadcast_shapes + + Examples + -------- + >>> import numpy as np + >>> x = np.array([1, 2, 3]) + >>> np.broadcast_to(x, (3, 3)) + array([[1, 2, 3], + [1, 2, 3], + [1, 2, 3]]) + """ + return _broadcast_to(array, shape, subok=subok, readonly=True) + + +def _broadcast_shape(*args): + """Returns the shape of the arrays that would result from broadcasting the + supplied arrays against each other. + """ + # use the old-iterator because np.nditer does not handle size 0 arrays + # consistently + b = np.broadcast(*args[:32]) + # unfortunately, it cannot handle 32 or more arguments directly + for pos in range(32, len(args), 31): + # ironically, np.broadcast does not properly handle np.broadcast + # objects (it treats them as scalars) + # use broadcasting to avoid allocating the full array + b = broadcast_to(0, b.shape) + b = np.broadcast(b, *args[pos:(pos + 31)]) + return b.shape + + +_size0_dtype = np.dtype([]) + + +@set_module('numpy') +def broadcast_shapes(*args): + """ + Broadcast the input shapes into a single shape. + + :ref:`Learn more about broadcasting here `. + + .. versionadded:: 1.20.0 + + Parameters + ---------- + *args : tuples of ints, or ints + The shapes to be broadcast against each other. + + Returns + ------- + tuple + Broadcasted shape. + + Raises + ------ + ValueError + If the shapes are not compatible and cannot be broadcast according + to NumPy's broadcasting rules. + + See Also + -------- + broadcast + broadcast_arrays + broadcast_to + + Examples + -------- + >>> import numpy as np + >>> np.broadcast_shapes((1, 2), (3, 1), (3, 2)) + (3, 2) + + >>> np.broadcast_shapes((6, 7), (5, 6, 1), (7,), (5, 1, 7)) + (5, 6, 7) + """ + arrays = [np.empty(x, dtype=_size0_dtype) for x in args] + return _broadcast_shape(*arrays) + + +def _broadcast_arrays_dispatcher(*args, subok=None): + return args + + +@array_function_dispatch(_broadcast_arrays_dispatcher, module='numpy') +def broadcast_arrays(*args, subok=False): + """ + Broadcast any number of arrays against each other. + + Parameters + ---------- + *args : array_likes + The arrays to broadcast. + + subok : bool, optional + If True, then sub-classes will be passed-through, otherwise + the returned arrays will be forced to be a base-class array (default). + + Returns + ------- + broadcasted : tuple of arrays + These arrays are views on the original arrays. They are typically + not contiguous. Furthermore, more than one element of a + broadcasted array may refer to a single memory location. If you need + to write to the arrays, make copies first. While you can set the + ``writable`` flag True, writing to a single output value may end up + changing more than one location in the output array. + + .. deprecated:: 1.17 + The output is currently marked so that if written to, a deprecation + warning will be emitted. A future version will set the + ``writable`` flag False so writing to it will raise an error. + + See Also + -------- + broadcast + broadcast_to + broadcast_shapes + + Examples + -------- + >>> import numpy as np + >>> x = np.array([[1,2,3]]) + >>> y = np.array([[4],[5]]) + >>> np.broadcast_arrays(x, y) + (array([[1, 2, 3], + [1, 2, 3]]), + array([[4, 4, 4], + [5, 5, 5]])) + + Here is a useful idiom for getting contiguous copies instead of + non-contiguous views. + + >>> [np.array(a) for a in np.broadcast_arrays(x, y)] + [array([[1, 2, 3], + [1, 2, 3]]), + array([[4, 4, 4], + [5, 5, 5]])] + + """ + # nditer is not used here to avoid the limit of 32 arrays. + # Otherwise, something like the following one-liner would suffice: + # return np.nditer(args, flags=['multi_index', 'zerosize_ok'], + # order='C').itviews + + args = [np.array(_m, copy=None, subok=subok) for _m in args] + + shape = _broadcast_shape(*args) + + result = [array if array.shape == shape + else _broadcast_to(array, shape, subok=subok, readonly=False) + for array in args] + return tuple(result) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_stride_tricks_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_stride_tricks_impl.pyi new file mode 100644 index 0000000..a7005d7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_stride_tricks_impl.pyi @@ -0,0 +1,74 @@ +from collections.abc import Iterable +from typing import Any, SupportsIndex, TypeVar, overload + +from numpy import generic +from numpy._typing import ArrayLike, NDArray, _AnyShape, _ArrayLike, _ShapeLike + +__all__ = ["broadcast_to", "broadcast_arrays", "broadcast_shapes"] + +_ScalarT = TypeVar("_ScalarT", bound=generic) + +class DummyArray: + __array_interface__: dict[str, Any] + base: NDArray[Any] | None + def __init__( + self, + interface: dict[str, Any], + base: NDArray[Any] | None = ..., + ) -> None: ... + +@overload +def as_strided( + x: _ArrayLike[_ScalarT], + shape: Iterable[int] | None = ..., + strides: Iterable[int] | None = ..., + subok: bool = ..., + writeable: bool = ..., +) -> NDArray[_ScalarT]: ... +@overload +def as_strided( + x: ArrayLike, + shape: Iterable[int] | None = ..., + strides: Iterable[int] | None = ..., + subok: bool = ..., + writeable: bool = ..., +) -> NDArray[Any]: ... + +@overload +def sliding_window_view( + x: _ArrayLike[_ScalarT], + window_shape: int | Iterable[int], + axis: SupportsIndex | None = ..., + *, + subok: bool = ..., + writeable: bool = ..., +) -> NDArray[_ScalarT]: ... +@overload +def sliding_window_view( + x: ArrayLike, + window_shape: int | Iterable[int], + axis: SupportsIndex | None = ..., + *, + subok: bool = ..., + writeable: bool = ..., +) -> NDArray[Any]: ... + +@overload +def broadcast_to( + array: _ArrayLike[_ScalarT], + shape: int | Iterable[int], + subok: bool = ..., +) -> NDArray[_ScalarT]: ... +@overload +def broadcast_to( + array: ArrayLike, + shape: int | Iterable[int], + subok: bool = ..., +) -> NDArray[Any]: ... + +def broadcast_shapes(*args: _ShapeLike) -> _AnyShape: ... + +def broadcast_arrays( + *args: ArrayLike, + subok: bool = ..., +) -> tuple[NDArray[Any], ...]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_twodim_base_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_twodim_base_impl.py new file mode 100644 index 0000000..dc6a558 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_twodim_base_impl.py @@ -0,0 +1,1201 @@ +""" Basic functions for manipulating 2d arrays + +""" +import functools +import operator + +from numpy._core import iinfo, overrides +from numpy._core._multiarray_umath import _array_converter +from numpy._core.numeric import ( + arange, + asanyarray, + asarray, + diagonal, + empty, + greater_equal, + indices, + int8, + int16, + int32, + int64, + intp, + multiply, + nonzero, + ones, + promote_types, + where, + zeros, +) +from numpy._core.overrides import finalize_array_function_like, set_module +from numpy.lib._stride_tricks_impl import broadcast_to + +__all__ = [ + 'diag', 'diagflat', 'eye', 'fliplr', 'flipud', 'tri', 'triu', + 'tril', 'vander', 'histogram2d', 'mask_indices', 'tril_indices', + 'tril_indices_from', 'triu_indices', 'triu_indices_from', ] + + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy') + + +i1 = iinfo(int8) +i2 = iinfo(int16) +i4 = iinfo(int32) + + +def _min_int(low, high): + """ get small int that fits the range """ + if high <= i1.max and low >= i1.min: + return int8 + if high <= i2.max and low >= i2.min: + return int16 + if high <= i4.max and low >= i4.min: + return int32 + return int64 + + +def _flip_dispatcher(m): + return (m,) + + +@array_function_dispatch(_flip_dispatcher) +def fliplr(m): + """ + Reverse the order of elements along axis 1 (left/right). + + For a 2-D array, this flips the entries in each row in the left/right + direction. Columns are preserved, but appear in a different order than + before. + + Parameters + ---------- + m : array_like + Input array, must be at least 2-D. + + Returns + ------- + f : ndarray + A view of `m` with the columns reversed. Since a view + is returned, this operation is :math:`\\mathcal O(1)`. + + See Also + -------- + flipud : Flip array in the up/down direction. + flip : Flip array in one or more dimensions. + rot90 : Rotate array counterclockwise. + + Notes + ----- + Equivalent to ``m[:,::-1]`` or ``np.flip(m, axis=1)``. + Requires the array to be at least 2-D. + + Examples + -------- + >>> import numpy as np + >>> A = np.diag([1.,2.,3.]) + >>> A + array([[1., 0., 0.], + [0., 2., 0.], + [0., 0., 3.]]) + >>> np.fliplr(A) + array([[0., 0., 1.], + [0., 2., 0.], + [3., 0., 0.]]) + + >>> rng = np.random.default_rng() + >>> A = rng.normal(size=(2,3,5)) + >>> np.all(np.fliplr(A) == A[:,::-1,...]) + True + + """ + m = asanyarray(m) + if m.ndim < 2: + raise ValueError("Input must be >= 2-d.") + return m[:, ::-1] + + +@array_function_dispatch(_flip_dispatcher) +def flipud(m): + """ + Reverse the order of elements along axis 0 (up/down). + + For a 2-D array, this flips the entries in each column in the up/down + direction. Rows are preserved, but appear in a different order than before. + + Parameters + ---------- + m : array_like + Input array. + + Returns + ------- + out : array_like + A view of `m` with the rows reversed. Since a view is + returned, this operation is :math:`\\mathcal O(1)`. + + See Also + -------- + fliplr : Flip array in the left/right direction. + flip : Flip array in one or more dimensions. + rot90 : Rotate array counterclockwise. + + Notes + ----- + Equivalent to ``m[::-1, ...]`` or ``np.flip(m, axis=0)``. + Requires the array to be at least 1-D. + + Examples + -------- + >>> import numpy as np + >>> A = np.diag([1.0, 2, 3]) + >>> A + array([[1., 0., 0.], + [0., 2., 0.], + [0., 0., 3.]]) + >>> np.flipud(A) + array([[0., 0., 3.], + [0., 2., 0.], + [1., 0., 0.]]) + + >>> rng = np.random.default_rng() + >>> A = rng.normal(size=(2,3,5)) + >>> np.all(np.flipud(A) == A[::-1,...]) + True + + >>> np.flipud([1,2]) + array([2, 1]) + + """ + m = asanyarray(m) + if m.ndim < 1: + raise ValueError("Input must be >= 1-d.") + return m[::-1, ...] + + +@finalize_array_function_like +@set_module('numpy') +def eye(N, M=None, k=0, dtype=float, order='C', *, device=None, like=None): + """ + Return a 2-D array with ones on the diagonal and zeros elsewhere. + + Parameters + ---------- + N : int + Number of rows in the output. + M : int, optional + Number of columns in the output. If None, defaults to `N`. + k : int, optional + Index of the diagonal: 0 (the default) refers to the main diagonal, + a positive value refers to an upper diagonal, and a negative value + to a lower diagonal. + dtype : data-type, optional + Data-type of the returned array. + order : {'C', 'F'}, optional + Whether the output should be stored in row-major (C-style) or + column-major (Fortran-style) order in memory. + device : str, optional + The device on which to place the created array. Default: None. + For Array-API interoperability only, so must be ``"cpu"`` if passed. + + .. versionadded:: 2.0.0 + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + I : ndarray of shape (N,M) + An array where all elements are equal to zero, except for the `k`-th + diagonal, whose values are equal to one. + + See Also + -------- + identity : (almost) equivalent function + diag : diagonal 2-D array from a 1-D array specified by the user. + + Examples + -------- + >>> import numpy as np + >>> np.eye(2, dtype=int) + array([[1, 0], + [0, 1]]) + >>> np.eye(3, k=1) + array([[0., 1., 0.], + [0., 0., 1.], + [0., 0., 0.]]) + + """ + if like is not None: + return _eye_with_like( + like, N, M=M, k=k, dtype=dtype, order=order, device=device + ) + if M is None: + M = N + m = zeros((N, M), dtype=dtype, order=order, device=device) + if k >= M: + return m + # Ensure M and k are integers, so we don't get any surprise casting + # results in the expressions `M-k` and `M+1` used below. This avoids + # a problem with inputs with type (for example) np.uint64. + M = operator.index(M) + k = operator.index(k) + if k >= 0: + i = k + else: + i = (-k) * M + m[:M - k].flat[i::M + 1] = 1 + return m + + +_eye_with_like = array_function_dispatch()(eye) + + +def _diag_dispatcher(v, k=None): + return (v,) + + +@array_function_dispatch(_diag_dispatcher) +def diag(v, k=0): + """ + Extract a diagonal or construct a diagonal array. + + See the more detailed documentation for ``numpy.diagonal`` if you use this + function to extract a diagonal and wish to write to the resulting array; + whether it returns a copy or a view depends on what version of numpy you + are using. + + Parameters + ---------- + v : array_like + If `v` is a 2-D array, return a copy of its `k`-th diagonal. + If `v` is a 1-D array, return a 2-D array with `v` on the `k`-th + diagonal. + k : int, optional + Diagonal in question. The default is 0. Use `k>0` for diagonals + above the main diagonal, and `k<0` for diagonals below the main + diagonal. + + Returns + ------- + out : ndarray + The extracted diagonal or constructed diagonal array. + + See Also + -------- + diagonal : Return specified diagonals. + diagflat : Create a 2-D array with the flattened input as a diagonal. + trace : Sum along diagonals. + triu : Upper triangle of an array. + tril : Lower triangle of an array. + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(9).reshape((3,3)) + >>> x + array([[0, 1, 2], + [3, 4, 5], + [6, 7, 8]]) + + >>> np.diag(x) + array([0, 4, 8]) + >>> np.diag(x, k=1) + array([1, 5]) + >>> np.diag(x, k=-1) + array([3, 7]) + + >>> np.diag(np.diag(x)) + array([[0, 0, 0], + [0, 4, 0], + [0, 0, 8]]) + + """ + v = asanyarray(v) + s = v.shape + if len(s) == 1: + n = s[0] + abs(k) + res = zeros((n, n), v.dtype) + if k >= 0: + i = k + else: + i = (-k) * n + res[:n - k].flat[i::n + 1] = v + return res + elif len(s) == 2: + return diagonal(v, k) + else: + raise ValueError("Input must be 1- or 2-d.") + + +@array_function_dispatch(_diag_dispatcher) +def diagflat(v, k=0): + """ + Create a two-dimensional array with the flattened input as a diagonal. + + Parameters + ---------- + v : array_like + Input data, which is flattened and set as the `k`-th + diagonal of the output. + k : int, optional + Diagonal to set; 0, the default, corresponds to the "main" diagonal, + a positive (negative) `k` giving the number of the diagonal above + (below) the main. + + Returns + ------- + out : ndarray + The 2-D output array. + + See Also + -------- + diag : MATLAB work-alike for 1-D and 2-D arrays. + diagonal : Return specified diagonals. + trace : Sum along diagonals. + + Examples + -------- + >>> import numpy as np + >>> np.diagflat([[1,2], [3,4]]) + array([[1, 0, 0, 0], + [0, 2, 0, 0], + [0, 0, 3, 0], + [0, 0, 0, 4]]) + + >>> np.diagflat([1,2], 1) + array([[0, 1, 0], + [0, 0, 2], + [0, 0, 0]]) + + """ + conv = _array_converter(v) + v, = conv.as_arrays(subok=False) + v = v.ravel() + s = len(v) + n = s + abs(k) + res = zeros((n, n), v.dtype) + if (k >= 0): + i = arange(0, n - k, dtype=intp) + fi = i + k + i * n + else: + i = arange(0, n + k, dtype=intp) + fi = i + (i - k) * n + res.flat[fi] = v + + return conv.wrap(res) + + +@finalize_array_function_like +@set_module('numpy') +def tri(N, M=None, k=0, dtype=float, *, like=None): + """ + An array with ones at and below the given diagonal and zeros elsewhere. + + Parameters + ---------- + N : int + Number of rows in the array. + M : int, optional + Number of columns in the array. + By default, `M` is taken equal to `N`. + k : int, optional + The sub-diagonal at and below which the array is filled. + `k` = 0 is the main diagonal, while `k` < 0 is below it, + and `k` > 0 is above. The default is 0. + dtype : dtype, optional + Data type of the returned array. The default is float. + ${ARRAY_FUNCTION_LIKE} + + .. versionadded:: 1.20.0 + + Returns + ------- + tri : ndarray of shape (N, M) + Array with its lower triangle filled with ones and zero elsewhere; + in other words ``T[i,j] == 1`` for ``j <= i + k``, 0 otherwise. + + Examples + -------- + >>> import numpy as np + >>> np.tri(3, 5, 2, dtype=int) + array([[1, 1, 1, 0, 0], + [1, 1, 1, 1, 0], + [1, 1, 1, 1, 1]]) + + >>> np.tri(3, 5, -1) + array([[0., 0., 0., 0., 0.], + [1., 0., 0., 0., 0.], + [1., 1., 0., 0., 0.]]) + + """ + if like is not None: + return _tri_with_like(like, N, M=M, k=k, dtype=dtype) + + if M is None: + M = N + + m = greater_equal.outer(arange(N, dtype=_min_int(0, N)), + arange(-k, M - k, dtype=_min_int(-k, M - k))) + + # Avoid making a copy if the requested type is already bool + m = m.astype(dtype, copy=False) + + return m + + +_tri_with_like = array_function_dispatch()(tri) + + +def _trilu_dispatcher(m, k=None): + return (m,) + + +@array_function_dispatch(_trilu_dispatcher) +def tril(m, k=0): + """ + Lower triangle of an array. + + Return a copy of an array with elements above the `k`-th diagonal zeroed. + For arrays with ``ndim`` exceeding 2, `tril` will apply to the final two + axes. + + Parameters + ---------- + m : array_like, shape (..., M, N) + Input array. + k : int, optional + Diagonal above which to zero elements. `k = 0` (the default) is the + main diagonal, `k < 0` is below it and `k > 0` is above. + + Returns + ------- + tril : ndarray, shape (..., M, N) + Lower triangle of `m`, of same shape and data-type as `m`. + + See Also + -------- + triu : same thing, only for the upper triangle + + Examples + -------- + >>> import numpy as np + >>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) + array([[ 0, 0, 0], + [ 4, 0, 0], + [ 7, 8, 0], + [10, 11, 12]]) + + >>> np.tril(np.arange(3*4*5).reshape(3, 4, 5)) + array([[[ 0, 0, 0, 0, 0], + [ 5, 6, 0, 0, 0], + [10, 11, 12, 0, 0], + [15, 16, 17, 18, 0]], + [[20, 0, 0, 0, 0], + [25, 26, 0, 0, 0], + [30, 31, 32, 0, 0], + [35, 36, 37, 38, 0]], + [[40, 0, 0, 0, 0], + [45, 46, 0, 0, 0], + [50, 51, 52, 0, 0], + [55, 56, 57, 58, 0]]]) + + """ + m = asanyarray(m) + mask = tri(*m.shape[-2:], k=k, dtype=bool) + + return where(mask, m, zeros(1, m.dtype)) + + +@array_function_dispatch(_trilu_dispatcher) +def triu(m, k=0): + """ + Upper triangle of an array. + + Return a copy of an array with the elements below the `k`-th diagonal + zeroed. For arrays with ``ndim`` exceeding 2, `triu` will apply to the + final two axes. + + Please refer to the documentation for `tril` for further details. + + See Also + -------- + tril : lower triangle of an array + + Examples + -------- + >>> import numpy as np + >>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) + array([[ 1, 2, 3], + [ 4, 5, 6], + [ 0, 8, 9], + [ 0, 0, 12]]) + + >>> np.triu(np.arange(3*4*5).reshape(3, 4, 5)) + array([[[ 0, 1, 2, 3, 4], + [ 0, 6, 7, 8, 9], + [ 0, 0, 12, 13, 14], + [ 0, 0, 0, 18, 19]], + [[20, 21, 22, 23, 24], + [ 0, 26, 27, 28, 29], + [ 0, 0, 32, 33, 34], + [ 0, 0, 0, 38, 39]], + [[40, 41, 42, 43, 44], + [ 0, 46, 47, 48, 49], + [ 0, 0, 52, 53, 54], + [ 0, 0, 0, 58, 59]]]) + + """ + m = asanyarray(m) + mask = tri(*m.shape[-2:], k=k - 1, dtype=bool) + + return where(mask, zeros(1, m.dtype), m) + + +def _vander_dispatcher(x, N=None, increasing=None): + return (x,) + + +# Originally borrowed from John Hunter and matplotlib +@array_function_dispatch(_vander_dispatcher) +def vander(x, N=None, increasing=False): + """ + Generate a Vandermonde matrix. + + The columns of the output matrix are powers of the input vector. The + order of the powers is determined by the `increasing` boolean argument. + Specifically, when `increasing` is False, the `i`-th output column is + the input vector raised element-wise to the power of ``N - i - 1``. Such + a matrix with a geometric progression in each row is named for Alexandre- + Theophile Vandermonde. + + Parameters + ---------- + x : array_like + 1-D input array. + N : int, optional + Number of columns in the output. If `N` is not specified, a square + array is returned (``N = len(x)``). + increasing : bool, optional + Order of the powers of the columns. If True, the powers increase + from left to right, if False (the default) they are reversed. + + Returns + ------- + out : ndarray + Vandermonde matrix. If `increasing` is False, the first column is + ``x^(N-1)``, the second ``x^(N-2)`` and so forth. If `increasing` is + True, the columns are ``x^0, x^1, ..., x^(N-1)``. + + See Also + -------- + polynomial.polynomial.polyvander + + Examples + -------- + >>> import numpy as np + >>> x = np.array([1, 2, 3, 5]) + >>> N = 3 + >>> np.vander(x, N) + array([[ 1, 1, 1], + [ 4, 2, 1], + [ 9, 3, 1], + [25, 5, 1]]) + + >>> np.column_stack([x**(N-1-i) for i in range(N)]) + array([[ 1, 1, 1], + [ 4, 2, 1], + [ 9, 3, 1], + [25, 5, 1]]) + + >>> x = np.array([1, 2, 3, 5]) + >>> np.vander(x) + array([[ 1, 1, 1, 1], + [ 8, 4, 2, 1], + [ 27, 9, 3, 1], + [125, 25, 5, 1]]) + >>> np.vander(x, increasing=True) + array([[ 1, 1, 1, 1], + [ 1, 2, 4, 8], + [ 1, 3, 9, 27], + [ 1, 5, 25, 125]]) + + The determinant of a square Vandermonde matrix is the product + of the differences between the values of the input vector: + + >>> np.linalg.det(np.vander(x)) + 48.000000000000043 # may vary + >>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1) + 48 + + """ + x = asarray(x) + if x.ndim != 1: + raise ValueError("x must be a one-dimensional array or sequence.") + if N is None: + N = len(x) + + v = empty((len(x), N), dtype=promote_types(x.dtype, int)) + tmp = v[:, ::-1] if not increasing else v + + if N > 0: + tmp[:, 0] = 1 + if N > 1: + tmp[:, 1:] = x[:, None] + multiply.accumulate(tmp[:, 1:], out=tmp[:, 1:], axis=1) + + return v + + +def _histogram2d_dispatcher(x, y, bins=None, range=None, density=None, + weights=None): + yield x + yield y + + # This terrible logic is adapted from the checks in histogram2d + try: + N = len(bins) + except TypeError: + N = 1 + if N == 2: + yield from bins # bins=[x, y] + else: + yield bins + + yield weights + + +@array_function_dispatch(_histogram2d_dispatcher) +def histogram2d(x, y, bins=10, range=None, density=None, weights=None): + """ + Compute the bi-dimensional histogram of two data samples. + + Parameters + ---------- + x : array_like, shape (N,) + An array containing the x coordinates of the points to be + histogrammed. + y : array_like, shape (N,) + An array containing the y coordinates of the points to be + histogrammed. + bins : int or array_like or [int, int] or [array, array], optional + The bin specification: + + * If int, the number of bins for the two dimensions (nx=ny=bins). + * If array_like, the bin edges for the two dimensions + (x_edges=y_edges=bins). + * If [int, int], the number of bins in each dimension + (nx, ny = bins). + * If [array, array], the bin edges in each dimension + (x_edges, y_edges = bins). + * A combination [int, array] or [array, int], where int + is the number of bins and array is the bin edges. + + range : array_like, shape(2,2), optional + The leftmost and rightmost edges of the bins along each dimension + (if not specified explicitly in the `bins` parameters): + ``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range + will be considered outliers and not tallied in the histogram. + density : bool, optional + If False, the default, returns the number of samples in each bin. + If True, returns the probability *density* function at the bin, + ``bin_count / sample_count / bin_area``. + weights : array_like, shape(N,), optional + An array of values ``w_i`` weighing each sample ``(x_i, y_i)``. + Weights are normalized to 1 if `density` is True. If `density` is + False, the values of the returned histogram are equal to the sum of + the weights belonging to the samples falling into each bin. + + Returns + ------- + H : ndarray, shape(nx, ny) + The bi-dimensional histogram of samples `x` and `y`. Values in `x` + are histogrammed along the first dimension and values in `y` are + histogrammed along the second dimension. + xedges : ndarray, shape(nx+1,) + The bin edges along the first dimension. + yedges : ndarray, shape(ny+1,) + The bin edges along the second dimension. + + See Also + -------- + histogram : 1D histogram + histogramdd : Multidimensional histogram + + Notes + ----- + When `density` is True, then the returned histogram is the sample + density, defined such that the sum over bins of the product + ``bin_value * bin_area`` is 1. + + Please note that the histogram does not follow the Cartesian convention + where `x` values are on the abscissa and `y` values on the ordinate + axis. Rather, `x` is histogrammed along the first dimension of the + array (vertical), and `y` along the second dimension of the array + (horizontal). This ensures compatibility with `histogramdd`. + + Examples + -------- + >>> import numpy as np + >>> from matplotlib.image import NonUniformImage + >>> import matplotlib.pyplot as plt + + Construct a 2-D histogram with variable bin width. First define the bin + edges: + + >>> xedges = [0, 1, 3, 5] + >>> yedges = [0, 2, 3, 4, 6] + + Next we create a histogram H with random bin content: + + >>> x = np.random.normal(2, 1, 100) + >>> y = np.random.normal(1, 1, 100) + >>> H, xedges, yedges = np.histogram2d(x, y, bins=(xedges, yedges)) + >>> # Histogram does not follow Cartesian convention (see Notes), + >>> # therefore transpose H for visualization purposes. + >>> H = H.T + + :func:`imshow ` can only display square bins: + + >>> fig = plt.figure(figsize=(7, 3)) + >>> ax = fig.add_subplot(131, title='imshow: square bins') + >>> plt.imshow(H, interpolation='nearest', origin='lower', + ... extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]]) + + + :func:`pcolormesh ` can display actual edges: + + >>> ax = fig.add_subplot(132, title='pcolormesh: actual edges', + ... aspect='equal') + >>> X, Y = np.meshgrid(xedges, yedges) + >>> ax.pcolormesh(X, Y, H) + + + :class:`NonUniformImage ` can be used to + display actual bin edges with interpolation: + + >>> ax = fig.add_subplot(133, title='NonUniformImage: interpolated', + ... aspect='equal', xlim=xedges[[0, -1]], ylim=yedges[[0, -1]]) + >>> im = NonUniformImage(ax, interpolation='bilinear') + >>> xcenters = (xedges[:-1] + xedges[1:]) / 2 + >>> ycenters = (yedges[:-1] + yedges[1:]) / 2 + >>> im.set_data(xcenters, ycenters, H) + >>> ax.add_image(im) + >>> plt.show() + + It is also possible to construct a 2-D histogram without specifying bin + edges: + + >>> # Generate non-symmetric test data + >>> n = 10000 + >>> x = np.linspace(1, 100, n) + >>> y = 2*np.log(x) + np.random.rand(n) - 0.5 + >>> # Compute 2d histogram. Note the order of x/y and xedges/yedges + >>> H, yedges, xedges = np.histogram2d(y, x, bins=20) + + Now we can plot the histogram using + :func:`pcolormesh `, and a + :func:`hexbin ` for comparison. + + >>> # Plot histogram using pcolormesh + >>> fig, (ax1, ax2) = plt.subplots(ncols=2, sharey=True) + >>> ax1.pcolormesh(xedges, yedges, H, cmap='rainbow') + >>> ax1.plot(x, 2*np.log(x), 'k-') + >>> ax1.set_xlim(x.min(), x.max()) + >>> ax1.set_ylim(y.min(), y.max()) + >>> ax1.set_xlabel('x') + >>> ax1.set_ylabel('y') + >>> ax1.set_title('histogram2d') + >>> ax1.grid() + + >>> # Create hexbin plot for comparison + >>> ax2.hexbin(x, y, gridsize=20, cmap='rainbow') + >>> ax2.plot(x, 2*np.log(x), 'k-') + >>> ax2.set_title('hexbin') + >>> ax2.set_xlim(x.min(), x.max()) + >>> ax2.set_xlabel('x') + >>> ax2.grid() + + >>> plt.show() + """ + from numpy import histogramdd + + if len(x) != len(y): + raise ValueError('x and y must have the same length.') + + try: + N = len(bins) + except TypeError: + N = 1 + + if N not in {1, 2}: + xedges = yedges = asarray(bins) + bins = [xedges, yedges] + hist, edges = histogramdd([x, y], bins, range, density, weights) + return hist, edges[0], edges[1] + + +@set_module('numpy') +def mask_indices(n, mask_func, k=0): + """ + Return the indices to access (n, n) arrays, given a masking function. + + Assume `mask_func` is a function that, for a square array a of size + ``(n, n)`` with a possible offset argument `k`, when called as + ``mask_func(a, k)`` returns a new array with zeros in certain locations + (functions like `triu` or `tril` do precisely this). Then this function + returns the indices where the non-zero values would be located. + + Parameters + ---------- + n : int + The returned indices will be valid to access arrays of shape (n, n). + mask_func : callable + A function whose call signature is similar to that of `triu`, `tril`. + That is, ``mask_func(x, k)`` returns a boolean array, shaped like `x`. + `k` is an optional argument to the function. + k : scalar + An optional argument which is passed through to `mask_func`. Functions + like `triu`, `tril` take a second argument that is interpreted as an + offset. + + Returns + ------- + indices : tuple of arrays. + The `n` arrays of indices corresponding to the locations where + ``mask_func(np.ones((n, n)), k)`` is True. + + See Also + -------- + triu, tril, triu_indices, tril_indices + + Examples + -------- + >>> import numpy as np + + These are the indices that would allow you to access the upper triangular + part of any 3x3 array: + + >>> iu = np.mask_indices(3, np.triu) + + For example, if `a` is a 3x3 array: + + >>> a = np.arange(9).reshape(3, 3) + >>> a + array([[0, 1, 2], + [3, 4, 5], + [6, 7, 8]]) + >>> a[iu] + array([0, 1, 2, 4, 5, 8]) + + An offset can be passed also to the masking function. This gets us the + indices starting on the first diagonal right of the main one: + + >>> iu1 = np.mask_indices(3, np.triu, 1) + + with which we now extract only three elements: + + >>> a[iu1] + array([1, 2, 5]) + + """ + m = ones((n, n), int) + a = mask_func(m, k) + return nonzero(a != 0) + + +@set_module('numpy') +def tril_indices(n, k=0, m=None): + """ + Return the indices for the lower-triangle of an (n, m) array. + + Parameters + ---------- + n : int + The row dimension of the arrays for which the returned + indices will be valid. + k : int, optional + Diagonal offset (see `tril` for details). + m : int, optional + The column dimension of the arrays for which the returned + arrays will be valid. + By default `m` is taken equal to `n`. + + + Returns + ------- + inds : tuple of arrays + The row and column indices, respectively. The row indices are sorted + in non-decreasing order, and the correspdonding column indices are + strictly increasing for each row. + + See also + -------- + triu_indices : similar function, for upper-triangular. + mask_indices : generic function accepting an arbitrary mask function. + tril, triu + + Examples + -------- + >>> import numpy as np + + Compute two different sets of indices to access 4x4 arrays, one for the + lower triangular part starting at the main diagonal, and one starting two + diagonals further right: + + >>> il1 = np.tril_indices(4) + >>> il1 + (array([0, 1, 1, 2, 2, 2, 3, 3, 3, 3]), array([0, 0, 1, 0, 1, 2, 0, 1, 2, 3])) + + Note that row indices (first array) are non-decreasing, and the corresponding + column indices (second array) are strictly increasing for each row. + Here is how they can be used with a sample array: + + >>> a = np.arange(16).reshape(4, 4) + >>> a + array([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11], + [12, 13, 14, 15]]) + + Both for indexing: + + >>> a[il1] + array([ 0, 4, 5, ..., 13, 14, 15]) + + And for assigning values: + + >>> a[il1] = -1 + >>> a + array([[-1, 1, 2, 3], + [-1, -1, 6, 7], + [-1, -1, -1, 11], + [-1, -1, -1, -1]]) + + These cover almost the whole array (two diagonals right of the main one): + + >>> il2 = np.tril_indices(4, 2) + >>> a[il2] = -10 + >>> a + array([[-10, -10, -10, 3], + [-10, -10, -10, -10], + [-10, -10, -10, -10], + [-10, -10, -10, -10]]) + + """ + tri_ = tri(n, m, k=k, dtype=bool) + + return tuple(broadcast_to(inds, tri_.shape)[tri_] + for inds in indices(tri_.shape, sparse=True)) + + +def _trilu_indices_form_dispatcher(arr, k=None): + return (arr,) + + +@array_function_dispatch(_trilu_indices_form_dispatcher) +def tril_indices_from(arr, k=0): + """ + Return the indices for the lower-triangle of arr. + + See `tril_indices` for full details. + + Parameters + ---------- + arr : array_like + The indices will be valid for square arrays whose dimensions are + the same as arr. + k : int, optional + Diagonal offset (see `tril` for details). + + Examples + -------- + >>> import numpy as np + + Create a 4 by 4 array + + >>> a = np.arange(16).reshape(4, 4) + >>> a + array([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11], + [12, 13, 14, 15]]) + + Pass the array to get the indices of the lower triangular elements. + + >>> trili = np.tril_indices_from(a) + >>> trili + (array([0, 1, 1, 2, 2, 2, 3, 3, 3, 3]), array([0, 0, 1, 0, 1, 2, 0, 1, 2, 3])) + + >>> a[trili] + array([ 0, 4, 5, 8, 9, 10, 12, 13, 14, 15]) + + This is syntactic sugar for tril_indices(). + + >>> np.tril_indices(a.shape[0]) + (array([0, 1, 1, 2, 2, 2, 3, 3, 3, 3]), array([0, 0, 1, 0, 1, 2, 0, 1, 2, 3])) + + Use the `k` parameter to return the indices for the lower triangular array + up to the k-th diagonal. + + >>> trili1 = np.tril_indices_from(a, k=1) + >>> a[trili1] + array([ 0, 1, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15]) + + See Also + -------- + tril_indices, tril, triu_indices_from + """ + if arr.ndim != 2: + raise ValueError("input array must be 2-d") + return tril_indices(arr.shape[-2], k=k, m=arr.shape[-1]) + + +@set_module('numpy') +def triu_indices(n, k=0, m=None): + """ + Return the indices for the upper-triangle of an (n, m) array. + + Parameters + ---------- + n : int + The size of the arrays for which the returned indices will + be valid. + k : int, optional + Diagonal offset (see `triu` for details). + m : int, optional + The column dimension of the arrays for which the returned + arrays will be valid. + By default `m` is taken equal to `n`. + + + Returns + ------- + inds : tuple, shape(2) of ndarrays, shape(`n`) + The row and column indices, respectively. The row indices are sorted + in non-decreasing order, and the correspdonding column indices are + strictly increasing for each row. + + See also + -------- + tril_indices : similar function, for lower-triangular. + mask_indices : generic function accepting an arbitrary mask function. + triu, tril + + Examples + -------- + >>> import numpy as np + + Compute two different sets of indices to access 4x4 arrays, one for the + upper triangular part starting at the main diagonal, and one starting two + diagonals further right: + + >>> iu1 = np.triu_indices(4) + >>> iu1 + (array([0, 0, 0, 0, 1, 1, 1, 2, 2, 3]), array([0, 1, 2, 3, 1, 2, 3, 2, 3, 3])) + + Note that row indices (first array) are non-decreasing, and the corresponding + column indices (second array) are strictly increasing for each row. + + Here is how they can be used with a sample array: + + >>> a = np.arange(16).reshape(4, 4) + >>> a + array([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11], + [12, 13, 14, 15]]) + + Both for indexing: + + >>> a[iu1] + array([ 0, 1, 2, ..., 10, 11, 15]) + + And for assigning values: + + >>> a[iu1] = -1 + >>> a + array([[-1, -1, -1, -1], + [ 4, -1, -1, -1], + [ 8, 9, -1, -1], + [12, 13, 14, -1]]) + + These cover only a small part of the whole array (two diagonals right + of the main one): + + >>> iu2 = np.triu_indices(4, 2) + >>> a[iu2] = -10 + >>> a + array([[ -1, -1, -10, -10], + [ 4, -1, -1, -10], + [ 8, 9, -1, -1], + [ 12, 13, 14, -1]]) + + """ + tri_ = ~tri(n, m, k=k - 1, dtype=bool) + + return tuple(broadcast_to(inds, tri_.shape)[tri_] + for inds in indices(tri_.shape, sparse=True)) + + +@array_function_dispatch(_trilu_indices_form_dispatcher) +def triu_indices_from(arr, k=0): + """ + Return the indices for the upper-triangle of arr. + + See `triu_indices` for full details. + + Parameters + ---------- + arr : ndarray, shape(N, N) + The indices will be valid for square arrays. + k : int, optional + Diagonal offset (see `triu` for details). + + Returns + ------- + triu_indices_from : tuple, shape(2) of ndarray, shape(N) + Indices for the upper-triangle of `arr`. + + Examples + -------- + >>> import numpy as np + + Create a 4 by 4 array + + >>> a = np.arange(16).reshape(4, 4) + >>> a + array([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11], + [12, 13, 14, 15]]) + + Pass the array to get the indices of the upper triangular elements. + + >>> triui = np.triu_indices_from(a) + >>> triui + (array([0, 0, 0, 0, 1, 1, 1, 2, 2, 3]), array([0, 1, 2, 3, 1, 2, 3, 2, 3, 3])) + + >>> a[triui] + array([ 0, 1, 2, 3, 5, 6, 7, 10, 11, 15]) + + This is syntactic sugar for triu_indices(). + + >>> np.triu_indices(a.shape[0]) + (array([0, 0, 0, 0, 1, 1, 1, 2, 2, 3]), array([0, 1, 2, 3, 1, 2, 3, 2, 3, 3])) + + Use the `k` parameter to return the indices for the upper triangular array + from the k-th diagonal. + + >>> triuim1 = np.triu_indices_from(a, k=1) + >>> a[triuim1] + array([ 1, 2, 3, 6, 7, 11]) + + + See Also + -------- + triu_indices, triu, tril_indices_from + """ + if arr.ndim != 2: + raise ValueError("input array must be 2-d") + return triu_indices(arr.shape[-2], k=k, m=arr.shape[-1]) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_twodim_base_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_twodim_base_impl.pyi new file mode 100644 index 0000000..43df38e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_twodim_base_impl.pyi @@ -0,0 +1,438 @@ +from collections.abc import Callable, Sequence +from typing import ( + Any, + TypeAlias, + TypeVar, + overload, +) +from typing import ( + Literal as L, +) + +import numpy as np +from numpy import ( + _OrderCF, + complex128, + complexfloating, + datetime64, + float64, + floating, + generic, + int_, + intp, + object_, + signedinteger, + timedelta64, +) +from numpy._typing import ( + ArrayLike, + DTypeLike, + NDArray, + _ArrayLike, + _ArrayLikeComplex_co, + _ArrayLikeFloat_co, + _ArrayLikeInt_co, + _ArrayLikeObject_co, + _DTypeLike, + _SupportsArray, + _SupportsArrayFunc, +) + +__all__ = [ + "diag", + "diagflat", + "eye", + "fliplr", + "flipud", + "tri", + "triu", + "tril", + "vander", + "histogram2d", + "mask_indices", + "tril_indices", + "tril_indices_from", + "triu_indices", + "triu_indices_from", +] + +### + +_T = TypeVar("_T") +_ScalarT = TypeVar("_ScalarT", bound=generic) +_ComplexFloatingT = TypeVar("_ComplexFloatingT", bound=np.complexfloating) +_InexactT = TypeVar("_InexactT", bound=np.inexact) +_NumberCoT = TypeVar("_NumberCoT", bound=_Number_co) + +# The returned arrays dtype must be compatible with `np.equal` +_MaskFunc: TypeAlias = Callable[[NDArray[int_], _T], NDArray[_Number_co | timedelta64 | datetime64 | object_]] + +_Int_co: TypeAlias = np.integer | np.bool +_Float_co: TypeAlias = np.floating | _Int_co +_Number_co: TypeAlias = np.number | np.bool + +_ArrayLike1D: TypeAlias = _SupportsArray[np.dtype[_ScalarT]] | Sequence[_ScalarT] +_ArrayLike1DInt_co: TypeAlias = _SupportsArray[np.dtype[_Int_co]] | Sequence[int | _Int_co] +_ArrayLike1DFloat_co: TypeAlias = _SupportsArray[np.dtype[_Float_co]] | Sequence[float | _Float_co] +_ArrayLike2DFloat_co: TypeAlias = _SupportsArray[np.dtype[_Float_co]] | Sequence[_ArrayLike1DFloat_co] +_ArrayLike1DNumber_co: TypeAlias = _SupportsArray[np.dtype[_Number_co]] | Sequence[complex | _Number_co] + +### + +@overload +def fliplr(m: _ArrayLike[_ScalarT]) -> NDArray[_ScalarT]: ... +@overload +def fliplr(m: ArrayLike) -> NDArray[Any]: ... + +@overload +def flipud(m: _ArrayLike[_ScalarT]) -> NDArray[_ScalarT]: ... +@overload +def flipud(m: ArrayLike) -> NDArray[Any]: ... + +@overload +def eye( + N: int, + M: int | None = ..., + k: int = ..., + dtype: None = ..., + order: _OrderCF = ..., + *, + device: L["cpu"] | None = ..., + like: _SupportsArrayFunc | None = ..., +) -> NDArray[float64]: ... +@overload +def eye( + N: int, + M: int | None, + k: int, + dtype: _DTypeLike[_ScalarT], + order: _OrderCF = ..., + *, + device: L["cpu"] | None = ..., + like: _SupportsArrayFunc | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def eye( + N: int, + M: int | None = ..., + k: int = ..., + *, + dtype: _DTypeLike[_ScalarT], + order: _OrderCF = ..., + device: L["cpu"] | None = ..., + like: _SupportsArrayFunc | None = ..., +) -> NDArray[_ScalarT]: ... +@overload +def eye( + N: int, + M: int | None = ..., + k: int = ..., + dtype: DTypeLike = ..., + order: _OrderCF = ..., + *, + device: L["cpu"] | None = ..., + like: _SupportsArrayFunc | None = ..., +) -> NDArray[Any]: ... + +@overload +def diag(v: _ArrayLike[_ScalarT], k: int = ...) -> NDArray[_ScalarT]: ... +@overload +def diag(v: ArrayLike, k: int = ...) -> NDArray[Any]: ... + +@overload +def diagflat(v: _ArrayLike[_ScalarT], k: int = ...) -> NDArray[_ScalarT]: ... +@overload +def diagflat(v: ArrayLike, k: int = ...) -> NDArray[Any]: ... + +@overload +def tri( + N: int, + M: int | None = ..., + k: int = ..., + dtype: None = ..., + *, + like: _SupportsArrayFunc | None = ... +) -> NDArray[float64]: ... +@overload +def tri( + N: int, + M: int | None, + k: int, + dtype: _DTypeLike[_ScalarT], + *, + like: _SupportsArrayFunc | None = ... +) -> NDArray[_ScalarT]: ... +@overload +def tri( + N: int, + M: int | None = ..., + k: int = ..., + *, + dtype: _DTypeLike[_ScalarT], + like: _SupportsArrayFunc | None = ... +) -> NDArray[_ScalarT]: ... +@overload +def tri( + N: int, + M: int | None = ..., + k: int = ..., + dtype: DTypeLike = ..., + *, + like: _SupportsArrayFunc | None = ... +) -> NDArray[Any]: ... + +@overload +def tril(m: _ArrayLike[_ScalarT], k: int = 0) -> NDArray[_ScalarT]: ... +@overload +def tril(m: ArrayLike, k: int = 0) -> NDArray[Any]: ... + +@overload +def triu(m: _ArrayLike[_ScalarT], k: int = 0) -> NDArray[_ScalarT]: ... +@overload +def triu(m: ArrayLike, k: int = 0) -> NDArray[Any]: ... + +@overload +def vander( # type: ignore[misc] + x: _ArrayLikeInt_co, + N: int | None = ..., + increasing: bool = ..., +) -> NDArray[signedinteger]: ... +@overload +def vander( # type: ignore[misc] + x: _ArrayLikeFloat_co, + N: int | None = ..., + increasing: bool = ..., +) -> NDArray[floating]: ... +@overload +def vander( + x: _ArrayLikeComplex_co, + N: int | None = ..., + increasing: bool = ..., +) -> NDArray[complexfloating]: ... +@overload +def vander( + x: _ArrayLikeObject_co, + N: int | None = ..., + increasing: bool = ..., +) -> NDArray[object_]: ... + +@overload +def histogram2d( + x: _ArrayLike1D[_ComplexFloatingT], + y: _ArrayLike1D[_ComplexFloatingT | _Float_co], + bins: int | Sequence[int] = ..., + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[_ComplexFloatingT], + NDArray[_ComplexFloatingT], +]: ... +@overload +def histogram2d( + x: _ArrayLike1D[_ComplexFloatingT | _Float_co], + y: _ArrayLike1D[_ComplexFloatingT], + bins: int | Sequence[int] = ..., + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[_ComplexFloatingT], + NDArray[_ComplexFloatingT], +]: ... +@overload +def histogram2d( + x: _ArrayLike1D[_InexactT], + y: _ArrayLike1D[_InexactT | _Int_co], + bins: int | Sequence[int] = ..., + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[_InexactT], + NDArray[_InexactT], +]: ... +@overload +def histogram2d( + x: _ArrayLike1D[_InexactT | _Int_co], + y: _ArrayLike1D[_InexactT], + bins: int | Sequence[int] = ..., + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[_InexactT], + NDArray[_InexactT], +]: ... +@overload +def histogram2d( + x: _ArrayLike1DInt_co | Sequence[float], + y: _ArrayLike1DInt_co | Sequence[float], + bins: int | Sequence[int] = ..., + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[float64], + NDArray[float64], +]: ... +@overload +def histogram2d( + x: Sequence[complex], + y: Sequence[complex], + bins: int | Sequence[int] = ..., + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[complex128 | float64], + NDArray[complex128 | float64], +]: ... +@overload +def histogram2d( + x: _ArrayLike1DNumber_co, + y: _ArrayLike1DNumber_co, + bins: _ArrayLike1D[_NumberCoT] | Sequence[_ArrayLike1D[_NumberCoT]], + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[_NumberCoT], + NDArray[_NumberCoT], +]: ... +@overload +def histogram2d( + x: _ArrayLike1D[_InexactT], + y: _ArrayLike1D[_InexactT], + bins: Sequence[_ArrayLike1D[_NumberCoT] | int], + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[_NumberCoT | _InexactT], + NDArray[_NumberCoT | _InexactT], +]: ... +@overload +def histogram2d( + x: _ArrayLike1DInt_co | Sequence[float], + y: _ArrayLike1DInt_co | Sequence[float], + bins: Sequence[_ArrayLike1D[_NumberCoT] | int], + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[_NumberCoT | float64], + NDArray[_NumberCoT | float64], +]: ... +@overload +def histogram2d( + x: Sequence[complex], + y: Sequence[complex], + bins: Sequence[_ArrayLike1D[_NumberCoT] | int], + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[_NumberCoT | complex128 | float64], + NDArray[_NumberCoT | complex128 | float64], +]: ... +@overload +def histogram2d( + x: _ArrayLike1DNumber_co, + y: _ArrayLike1DNumber_co, + bins: Sequence[Sequence[bool]], + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[np.bool], + NDArray[np.bool], +]: ... +@overload +def histogram2d( + x: _ArrayLike1DNumber_co, + y: _ArrayLike1DNumber_co, + bins: Sequence[Sequence[int]], + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[np.int_ | np.bool], + NDArray[np.int_ | np.bool], +]: ... +@overload +def histogram2d( + x: _ArrayLike1DNumber_co, + y: _ArrayLike1DNumber_co, + bins: Sequence[Sequence[float]], + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[np.float64 | np.int_ | np.bool], + NDArray[np.float64 | np.int_ | np.bool], +]: ... +@overload +def histogram2d( + x: _ArrayLike1DNumber_co, + y: _ArrayLike1DNumber_co, + bins: Sequence[Sequence[complex]], + range: _ArrayLike2DFloat_co | None = ..., + density: bool | None = ..., + weights: _ArrayLike1DFloat_co | None = ..., +) -> tuple[ + NDArray[float64], + NDArray[np.complex128 | np.float64 | np.int_ | np.bool], + NDArray[np.complex128 | np.float64 | np.int_ | np.bool], +]: ... + +# NOTE: we're assuming/demanding here the `mask_func` returns +# an ndarray of shape `(n, n)`; otherwise there is the possibility +# of the output tuple having more or less than 2 elements +@overload +def mask_indices( + n: int, + mask_func: _MaskFunc[int], + k: int = ..., +) -> tuple[NDArray[intp], NDArray[intp]]: ... +@overload +def mask_indices( + n: int, + mask_func: _MaskFunc[_T], + k: _T, +) -> tuple[NDArray[intp], NDArray[intp]]: ... + +def tril_indices( + n: int, + k: int = ..., + m: int | None = ..., +) -> tuple[NDArray[int_], NDArray[int_]]: ... + +def tril_indices_from( + arr: NDArray[Any], + k: int = ..., +) -> tuple[NDArray[int_], NDArray[int_]]: ... + +def triu_indices( + n: int, + k: int = ..., + m: int | None = ..., +) -> tuple[NDArray[int_], NDArray[int_]]: ... + +def triu_indices_from( + arr: NDArray[Any], + k: int = ..., +) -> tuple[NDArray[int_], NDArray[int_]]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_type_check_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_type_check_impl.py new file mode 100644 index 0000000..977609c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_type_check_impl.py @@ -0,0 +1,699 @@ +"""Automatically adapted for numpy Sep 19, 2005 by convertcode.py + +""" +import functools + +__all__ = ['iscomplexobj', 'isrealobj', 'imag', 'iscomplex', + 'isreal', 'nan_to_num', 'real', 'real_if_close', + 'typename', 'mintypecode', + 'common_type'] + +import numpy._core.numeric as _nx +from numpy._core import getlimits, overrides +from numpy._core.numeric import asanyarray, asarray, isnan, zeros +from numpy._utils import set_module + +from ._ufunclike_impl import isneginf, isposinf + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy') + + +_typecodes_by_elsize = 'GDFgdfQqLlIiHhBb?' + + +@set_module('numpy') +def mintypecode(typechars, typeset='GDFgdf', default='d'): + """ + Return the character for the minimum-size type to which given types can + be safely cast. + + The returned type character must represent the smallest size dtype such + that an array of the returned type can handle the data from an array of + all types in `typechars` (or if `typechars` is an array, then its + dtype.char). + + Parameters + ---------- + typechars : list of str or array_like + If a list of strings, each string should represent a dtype. + If array_like, the character representation of the array dtype is used. + typeset : str or list of str, optional + The set of characters that the returned character is chosen from. + The default set is 'GDFgdf'. + default : str, optional + The default character, this is returned if none of the characters in + `typechars` matches a character in `typeset`. + + Returns + ------- + typechar : str + The character representing the minimum-size type that was found. + + See Also + -------- + dtype + + Examples + -------- + >>> import numpy as np + >>> np.mintypecode(['d', 'f', 'S']) + 'd' + >>> x = np.array([1.1, 2-3.j]) + >>> np.mintypecode(x) + 'D' + + >>> np.mintypecode('abceh', default='G') + 'G' + + """ + typecodes = ((isinstance(t, str) and t) or asarray(t).dtype.char + for t in typechars) + intersection = {t for t in typecodes if t in typeset} + if not intersection: + return default + if 'F' in intersection and 'd' in intersection: + return 'D' + return min(intersection, key=_typecodes_by_elsize.index) + + +def _real_dispatcher(val): + return (val,) + + +@array_function_dispatch(_real_dispatcher) +def real(val): + """ + Return the real part of the complex argument. + + Parameters + ---------- + val : array_like + Input array. + + Returns + ------- + out : ndarray or scalar + The real component of the complex argument. If `val` is real, the type + of `val` is used for the output. If `val` has complex elements, the + returned type is float. + + See Also + -------- + real_if_close, imag, angle + + Examples + -------- + >>> import numpy as np + >>> a = np.array([1+2j, 3+4j, 5+6j]) + >>> a.real + array([1., 3., 5.]) + >>> a.real = 9 + >>> a + array([9.+2.j, 9.+4.j, 9.+6.j]) + >>> a.real = np.array([9, 8, 7]) + >>> a + array([9.+2.j, 8.+4.j, 7.+6.j]) + >>> np.real(1 + 1j) + 1.0 + + """ + try: + return val.real + except AttributeError: + return asanyarray(val).real + + +def _imag_dispatcher(val): + return (val,) + + +@array_function_dispatch(_imag_dispatcher) +def imag(val): + """ + Return the imaginary part of the complex argument. + + Parameters + ---------- + val : array_like + Input array. + + Returns + ------- + out : ndarray or scalar + The imaginary component of the complex argument. If `val` is real, + the type of `val` is used for the output. If `val` has complex + elements, the returned type is float. + + See Also + -------- + real, angle, real_if_close + + Examples + -------- + >>> import numpy as np + >>> a = np.array([1+2j, 3+4j, 5+6j]) + >>> a.imag + array([2., 4., 6.]) + >>> a.imag = np.array([8, 10, 12]) + >>> a + array([1. +8.j, 3.+10.j, 5.+12.j]) + >>> np.imag(1 + 1j) + 1.0 + + """ + try: + return val.imag + except AttributeError: + return asanyarray(val).imag + + +def _is_type_dispatcher(x): + return (x,) + + +@array_function_dispatch(_is_type_dispatcher) +def iscomplex(x): + """ + Returns a bool array, where True if input element is complex. + + What is tested is whether the input has a non-zero imaginary part, not if + the input type is complex. + + Parameters + ---------- + x : array_like + Input array. + + Returns + ------- + out : ndarray of bools + Output array. + + See Also + -------- + isreal + iscomplexobj : Return True if x is a complex type or an array of complex + numbers. + + Examples + -------- + >>> import numpy as np + >>> np.iscomplex([1+1j, 1+0j, 4.5, 3, 2, 2j]) + array([ True, False, False, False, False, True]) + + """ + ax = asanyarray(x) + if issubclass(ax.dtype.type, _nx.complexfloating): + return ax.imag != 0 + res = zeros(ax.shape, bool) + return res[()] # convert to scalar if needed + + +@array_function_dispatch(_is_type_dispatcher) +def isreal(x): + """ + Returns a bool array, where True if input element is real. + + If element has complex type with zero imaginary part, the return value + for that element is True. + + Parameters + ---------- + x : array_like + Input array. + + Returns + ------- + out : ndarray, bool + Boolean array of same shape as `x`. + + Notes + ----- + `isreal` may behave unexpectedly for string or object arrays (see examples) + + See Also + -------- + iscomplex + isrealobj : Return True if x is not a complex type. + + Examples + -------- + >>> import numpy as np + >>> a = np.array([1+1j, 1+0j, 4.5, 3, 2, 2j], dtype=complex) + >>> np.isreal(a) + array([False, True, True, True, True, False]) + + The function does not work on string arrays. + + >>> a = np.array([2j, "a"], dtype="U") + >>> np.isreal(a) # Warns about non-elementwise comparison + False + + Returns True for all elements in input array of ``dtype=object`` even if + any of the elements is complex. + + >>> a = np.array([1, "2", 3+4j], dtype=object) + >>> np.isreal(a) + array([ True, True, True]) + + isreal should not be used with object arrays + + >>> a = np.array([1+2j, 2+1j], dtype=object) + >>> np.isreal(a) + array([ True, True]) + + """ + return imag(x) == 0 + + +@array_function_dispatch(_is_type_dispatcher) +def iscomplexobj(x): + """ + Check for a complex type or an array of complex numbers. + + The type of the input is checked, not the value. Even if the input + has an imaginary part equal to zero, `iscomplexobj` evaluates to True. + + Parameters + ---------- + x : any + The input can be of any type and shape. + + Returns + ------- + iscomplexobj : bool + The return value, True if `x` is of a complex type or has at least + one complex element. + + See Also + -------- + isrealobj, iscomplex + + Examples + -------- + >>> import numpy as np + >>> np.iscomplexobj(1) + False + >>> np.iscomplexobj(1+0j) + True + >>> np.iscomplexobj([3, 1+0j, True]) + True + + """ + try: + dtype = x.dtype + type_ = dtype.type + except AttributeError: + type_ = asarray(x).dtype.type + return issubclass(type_, _nx.complexfloating) + + +@array_function_dispatch(_is_type_dispatcher) +def isrealobj(x): + """ + Return True if x is a not complex type or an array of complex numbers. + + The type of the input is checked, not the value. So even if the input + has an imaginary part equal to zero, `isrealobj` evaluates to False + if the data type is complex. + + Parameters + ---------- + x : any + The input can be of any type and shape. + + Returns + ------- + y : bool + The return value, False if `x` is of a complex type. + + See Also + -------- + iscomplexobj, isreal + + Notes + ----- + The function is only meant for arrays with numerical values but it + accepts all other objects. Since it assumes array input, the return + value of other objects may be True. + + >>> np.isrealobj('A string') + True + >>> np.isrealobj(False) + True + >>> np.isrealobj(None) + True + + Examples + -------- + >>> import numpy as np + >>> np.isrealobj(1) + True + >>> np.isrealobj(1+0j) + False + >>> np.isrealobj([3, 1+0j, True]) + False + + """ + return not iscomplexobj(x) + +#----------------------------------------------------------------------------- + +def _getmaxmin(t): + from numpy._core import getlimits + f = getlimits.finfo(t) + return f.max, f.min + + +def _nan_to_num_dispatcher(x, copy=None, nan=None, posinf=None, neginf=None): + return (x,) + + +@array_function_dispatch(_nan_to_num_dispatcher) +def nan_to_num(x, copy=True, nan=0.0, posinf=None, neginf=None): + """ + Replace NaN with zero and infinity with large finite numbers (default + behaviour) or with the numbers defined by the user using the `nan`, + `posinf` and/or `neginf` keywords. + + If `x` is inexact, NaN is replaced by zero or by the user defined value in + `nan` keyword, infinity is replaced by the largest finite floating point + values representable by ``x.dtype`` or by the user defined value in + `posinf` keyword and -infinity is replaced by the most negative finite + floating point values representable by ``x.dtype`` or by the user defined + value in `neginf` keyword. + + For complex dtypes, the above is applied to each of the real and + imaginary components of `x` separately. + + If `x` is not inexact, then no replacements are made. + + Parameters + ---------- + x : scalar or array_like + Input data. + copy : bool, optional + Whether to create a copy of `x` (True) or to replace values + in-place (False). The in-place operation only occurs if + casting to an array does not require a copy. + Default is True. + nan : int, float, optional + Value to be used to fill NaN values. If no value is passed + then NaN values will be replaced with 0.0. + posinf : int, float, optional + Value to be used to fill positive infinity values. If no value is + passed then positive infinity values will be replaced with a very + large number. + neginf : int, float, optional + Value to be used to fill negative infinity values. If no value is + passed then negative infinity values will be replaced with a very + small (or negative) number. + + Returns + ------- + out : ndarray + `x`, with the non-finite values replaced. If `copy` is False, this may + be `x` itself. + + See Also + -------- + isinf : Shows which elements are positive or negative infinity. + isneginf : Shows which elements are negative infinity. + isposinf : Shows which elements are positive infinity. + isnan : Shows which elements are Not a Number (NaN). + isfinite : Shows which elements are finite (not NaN, not infinity) + + Notes + ----- + NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic + (IEEE 754). This means that Not a Number is not equivalent to infinity. + + Examples + -------- + >>> import numpy as np + >>> np.nan_to_num(np.inf) + 1.7976931348623157e+308 + >>> np.nan_to_num(-np.inf) + -1.7976931348623157e+308 + >>> np.nan_to_num(np.nan) + 0.0 + >>> x = np.array([np.inf, -np.inf, np.nan, -128, 128]) + >>> np.nan_to_num(x) + array([ 1.79769313e+308, -1.79769313e+308, 0.00000000e+000, # may vary + -1.28000000e+002, 1.28000000e+002]) + >>> np.nan_to_num(x, nan=-9999, posinf=33333333, neginf=33333333) + array([ 3.3333333e+07, 3.3333333e+07, -9.9990000e+03, + -1.2800000e+02, 1.2800000e+02]) + >>> y = np.array([complex(np.inf, np.nan), np.nan, complex(np.nan, np.inf)]) + array([ 1.79769313e+308, -1.79769313e+308, 0.00000000e+000, # may vary + -1.28000000e+002, 1.28000000e+002]) + >>> np.nan_to_num(y) + array([ 1.79769313e+308 +0.00000000e+000j, # may vary + 0.00000000e+000 +0.00000000e+000j, + 0.00000000e+000 +1.79769313e+308j]) + >>> np.nan_to_num(y, nan=111111, posinf=222222) + array([222222.+111111.j, 111111. +0.j, 111111.+222222.j]) + """ + x = _nx.array(x, subok=True, copy=copy) + xtype = x.dtype.type + + isscalar = (x.ndim == 0) + + if not issubclass(xtype, _nx.inexact): + return x[()] if isscalar else x + + iscomplex = issubclass(xtype, _nx.complexfloating) + + dest = (x.real, x.imag) if iscomplex else (x,) + maxf, minf = _getmaxmin(x.real.dtype) + if posinf is not None: + maxf = posinf + if neginf is not None: + minf = neginf + for d in dest: + idx_nan = isnan(d) + idx_posinf = isposinf(d) + idx_neginf = isneginf(d) + _nx.copyto(d, nan, where=idx_nan) + _nx.copyto(d, maxf, where=idx_posinf) + _nx.copyto(d, minf, where=idx_neginf) + return x[()] if isscalar else x + +#----------------------------------------------------------------------------- + +def _real_if_close_dispatcher(a, tol=None): + return (a,) + + +@array_function_dispatch(_real_if_close_dispatcher) +def real_if_close(a, tol=100): + """ + If input is complex with all imaginary parts close to zero, return + real parts. + + "Close to zero" is defined as `tol` * (machine epsilon of the type for + `a`). + + Parameters + ---------- + a : array_like + Input array. + tol : float + Tolerance in machine epsilons for the complex part of the elements + in the array. If the tolerance is <=1, then the absolute tolerance + is used. + + Returns + ------- + out : ndarray + If `a` is real, the type of `a` is used for the output. If `a` + has complex elements, the returned type is float. + + See Also + -------- + real, imag, angle + + Notes + ----- + Machine epsilon varies from machine to machine and between data types + but Python floats on most platforms have a machine epsilon equal to + 2.2204460492503131e-16. You can use 'np.finfo(float).eps' to print + out the machine epsilon for floats. + + Examples + -------- + >>> import numpy as np + >>> np.finfo(float).eps + 2.2204460492503131e-16 # may vary + + >>> np.real_if_close([2.1 + 4e-14j, 5.2 + 3e-15j], tol=1000) + array([2.1, 5.2]) + >>> np.real_if_close([2.1 + 4e-13j, 5.2 + 3e-15j], tol=1000) + array([2.1+4.e-13j, 5.2 + 3e-15j]) + + """ + a = asanyarray(a) + type_ = a.dtype.type + if not issubclass(type_, _nx.complexfloating): + return a + if tol > 1: + f = getlimits.finfo(type_) + tol = f.eps * tol + if _nx.all(_nx.absolute(a.imag) < tol): + a = a.real + return a + + +#----------------------------------------------------------------------------- + +_namefromtype = {'S1': 'character', + '?': 'bool', + 'b': 'signed char', + 'B': 'unsigned char', + 'h': 'short', + 'H': 'unsigned short', + 'i': 'integer', + 'I': 'unsigned integer', + 'l': 'long integer', + 'L': 'unsigned long integer', + 'q': 'long long integer', + 'Q': 'unsigned long long integer', + 'f': 'single precision', + 'd': 'double precision', + 'g': 'long precision', + 'F': 'complex single precision', + 'D': 'complex double precision', + 'G': 'complex long double precision', + 'S': 'string', + 'U': 'unicode', + 'V': 'void', + 'O': 'object' + } + +@set_module('numpy') +def typename(char): + """ + Return a description for the given data type code. + + Parameters + ---------- + char : str + Data type code. + + Returns + ------- + out : str + Description of the input data type code. + + See Also + -------- + dtype + + Examples + -------- + >>> import numpy as np + >>> typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q', + ... 'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q'] + >>> for typechar in typechars: + ... print(typechar, ' : ', np.typename(typechar)) + ... + S1 : character + ? : bool + B : unsigned char + D : complex double precision + G : complex long double precision + F : complex single precision + I : unsigned integer + H : unsigned short + L : unsigned long integer + O : object + Q : unsigned long long integer + S : string + U : unicode + V : void + b : signed char + d : double precision + g : long precision + f : single precision + i : integer + h : short + l : long integer + q : long long integer + + """ + return _namefromtype[char] + +#----------------------------------------------------------------------------- + + +#determine the "minimum common type" for a group of arrays. +array_type = [[_nx.float16, _nx.float32, _nx.float64, _nx.longdouble], + [None, _nx.complex64, _nx.complex128, _nx.clongdouble]] +array_precision = {_nx.float16: 0, + _nx.float32: 1, + _nx.float64: 2, + _nx.longdouble: 3, + _nx.complex64: 1, + _nx.complex128: 2, + _nx.clongdouble: 3} + + +def _common_type_dispatcher(*arrays): + return arrays + + +@array_function_dispatch(_common_type_dispatcher) +def common_type(*arrays): + """ + Return a scalar type which is common to the input arrays. + + The return type will always be an inexact (i.e. floating point) scalar + type, even if all the arrays are integer arrays. If one of the inputs is + an integer array, the minimum precision type that is returned is a + 64-bit floating point dtype. + + All input arrays except int64 and uint64 can be safely cast to the + returned dtype without loss of information. + + Parameters + ---------- + array1, array2, ... : ndarrays + Input arrays. + + Returns + ------- + out : data type code + Data type code. + + See Also + -------- + dtype, mintypecode + + Examples + -------- + >>> np.common_type(np.arange(2, dtype=np.float32)) + + >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2)) + + >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0])) + + + """ + is_complex = False + precision = 0 + for a in arrays: + t = a.dtype.type + if iscomplexobj(a): + is_complex = True + if issubclass(t, _nx.integer): + p = 2 # array_precision[_nx.double] + else: + p = array_precision.get(t) + if p is None: + raise TypeError("can't get common type for non-numeric array") + precision = max(precision, p) + if is_complex: + return array_type[1][precision] + else: + return array_type[0][precision] diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_type_check_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_type_check_impl.pyi new file mode 100644 index 0000000..944015e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_type_check_impl.pyi @@ -0,0 +1,350 @@ +from collections.abc import Container, Iterable +from typing import Any, Protocol, TypeAlias, overload, type_check_only +from typing import Literal as L + +from _typeshed import Incomplete +from typing_extensions import TypeVar + +import numpy as np +from numpy._typing import ( + ArrayLike, + NDArray, + _16Bit, + _32Bit, + _64Bit, + _ArrayLike, + _NestedSequence, + _ScalarLike_co, + _SupportsArray, +) + +__all__ = [ + "common_type", + "imag", + "iscomplex", + "iscomplexobj", + "isreal", + "isrealobj", + "mintypecode", + "nan_to_num", + "real", + "real_if_close", + "typename", +] + +_T = TypeVar("_T") +_T_co = TypeVar("_T_co", covariant=True) +_ScalarT = TypeVar("_ScalarT", bound=np.generic) +_ScalarT_co = TypeVar("_ScalarT_co", bound=np.generic, covariant=True) +_RealT = TypeVar("_RealT", bound=np.floating | np.integer | np.bool) + +_FloatMax32: TypeAlias = np.float32 | np.float16 +_ComplexMax128: TypeAlias = np.complex128 | np.complex64 +_RealMax64: TypeAlias = np.float64 | np.float32 | np.float16 | np.integer +_Real: TypeAlias = np.floating | np.integer +_InexactMax32: TypeAlias = np.inexact[_32Bit] | np.float16 +_NumberMax64: TypeAlias = np.number[_64Bit] | np.number[_32Bit] | np.number[_16Bit] | np.integer + +@type_check_only +class _HasReal(Protocol[_T_co]): + @property + def real(self, /) -> _T_co: ... + +@type_check_only +class _HasImag(Protocol[_T_co]): + @property + def imag(self, /) -> _T_co: ... + +@type_check_only +class _HasDType(Protocol[_ScalarT_co]): + @property + def dtype(self, /) -> np.dtype[_ScalarT_co]: ... + +### + +def mintypecode(typechars: Iterable[str | ArrayLike], typeset: str | Container[str] = "GDFgdf", default: str = "d") -> str: ... + +# +@overload +def real(val: _HasReal[_T]) -> _T: ... # type: ignore[overload-overlap] +@overload +def real(val: _ArrayLike[_RealT]) -> NDArray[_RealT]: ... +@overload +def real(val: ArrayLike) -> NDArray[Any]: ... + +# +@overload +def imag(val: _HasImag[_T]) -> _T: ... # type: ignore[overload-overlap] +@overload +def imag(val: _ArrayLike[_RealT]) -> NDArray[_RealT]: ... +@overload +def imag(val: ArrayLike) -> NDArray[Any]: ... + +# +@overload +def iscomplex(x: _ScalarLike_co) -> np.bool: ... +@overload +def iscomplex(x: NDArray[Any] | _NestedSequence[ArrayLike]) -> NDArray[np.bool]: ... +@overload +def iscomplex(x: ArrayLike) -> np.bool | NDArray[np.bool]: ... + +# +@overload +def isreal(x: _ScalarLike_co) -> np.bool: ... +@overload +def isreal(x: NDArray[Any] | _NestedSequence[ArrayLike]) -> NDArray[np.bool]: ... +@overload +def isreal(x: ArrayLike) -> np.bool | NDArray[np.bool]: ... + +# +def iscomplexobj(x: _HasDType[Any] | ArrayLike) -> bool: ... +def isrealobj(x: _HasDType[Any] | ArrayLike) -> bool: ... + +# +@overload +def nan_to_num( + x: _ScalarT, + copy: bool = True, + nan: float = 0.0, + posinf: float | None = None, + neginf: float | None = None, +) -> _ScalarT: ... +@overload +def nan_to_num( + x: NDArray[_ScalarT] | _NestedSequence[_ArrayLike[_ScalarT]], + copy: bool = True, + nan: float = 0.0, + posinf: float | None = None, + neginf: float | None = None, +) -> NDArray[_ScalarT]: ... +@overload +def nan_to_num( + x: _SupportsArray[np.dtype[_ScalarT]], + copy: bool = True, + nan: float = 0.0, + posinf: float | None = None, + neginf: float | None = None, +) -> _ScalarT | NDArray[_ScalarT]: ... +@overload +def nan_to_num( + x: _NestedSequence[ArrayLike], + copy: bool = True, + nan: float = 0.0, + posinf: float | None = None, + neginf: float | None = None, +) -> NDArray[Incomplete]: ... +@overload +def nan_to_num( + x: ArrayLike, + copy: bool = True, + nan: float = 0.0, + posinf: float | None = None, + neginf: float | None = None, +) -> Incomplete: ... + +# NOTE: The [overload-overlap] mypy error is a false positive +@overload +def real_if_close(a: _ArrayLike[np.complex64], tol: float = 100) -> NDArray[np.float32 | np.complex64]: ... # type: ignore[overload-overlap] +@overload +def real_if_close(a: _ArrayLike[np.complex128], tol: float = 100) -> NDArray[np.float64 | np.complex128]: ... +@overload +def real_if_close(a: _ArrayLike[np.clongdouble], tol: float = 100) -> NDArray[np.longdouble | np.clongdouble]: ... +@overload +def real_if_close(a: _ArrayLike[_RealT], tol: float = 100) -> NDArray[_RealT]: ... +@overload +def real_if_close(a: ArrayLike, tol: float = 100) -> NDArray[Any]: ... + +# +@overload +def typename(char: L['S1']) -> L['character']: ... +@overload +def typename(char: L['?']) -> L['bool']: ... +@overload +def typename(char: L['b']) -> L['signed char']: ... +@overload +def typename(char: L['B']) -> L['unsigned char']: ... +@overload +def typename(char: L['h']) -> L['short']: ... +@overload +def typename(char: L['H']) -> L['unsigned short']: ... +@overload +def typename(char: L['i']) -> L['integer']: ... +@overload +def typename(char: L['I']) -> L['unsigned integer']: ... +@overload +def typename(char: L['l']) -> L['long integer']: ... +@overload +def typename(char: L['L']) -> L['unsigned long integer']: ... +@overload +def typename(char: L['q']) -> L['long long integer']: ... +@overload +def typename(char: L['Q']) -> L['unsigned long long integer']: ... +@overload +def typename(char: L['f']) -> L['single precision']: ... +@overload +def typename(char: L['d']) -> L['double precision']: ... +@overload +def typename(char: L['g']) -> L['long precision']: ... +@overload +def typename(char: L['F']) -> L['complex single precision']: ... +@overload +def typename(char: L['D']) -> L['complex double precision']: ... +@overload +def typename(char: L['G']) -> L['complex long double precision']: ... +@overload +def typename(char: L['S']) -> L['string']: ... +@overload +def typename(char: L['U']) -> L['unicode']: ... +@overload +def typename(char: L['V']) -> L['void']: ... +@overload +def typename(char: L['O']) -> L['object']: ... + +# NOTE: The [overload-overlap] mypy errors are false positives +@overload +def common_type() -> type[np.float16]: ... +@overload +def common_type(a0: _HasDType[np.float16], /, *ai: _HasDType[np.float16]) -> type[np.float16]: ... # type: ignore[overload-overlap] +@overload +def common_type(a0: _HasDType[np.float32], /, *ai: _HasDType[_FloatMax32]) -> type[np.float32]: ... # type: ignore[overload-overlap] +@overload +def common_type( # type: ignore[overload-overlap] + a0: _HasDType[np.float64 | np.integer], + /, + *ai: _HasDType[_RealMax64], +) -> type[np.float64]: ... +@overload +def common_type( # type: ignore[overload-overlap] + a0: _HasDType[np.longdouble], + /, + *ai: _HasDType[_Real], +) -> type[np.longdouble]: ... +@overload +def common_type( # type: ignore[overload-overlap] + a0: _HasDType[np.complex64], + /, + *ai: _HasDType[_InexactMax32], +) -> type[np.complex64]: ... +@overload +def common_type( # type: ignore[overload-overlap] + a0: _HasDType[np.complex128], + /, + *ai: _HasDType[_NumberMax64], +) -> type[np.complex128]: ... +@overload +def common_type( # type: ignore[overload-overlap] + a0: _HasDType[np.clongdouble], + /, + *ai: _HasDType[np.number], +) -> type[np.clongdouble]: ... +@overload +def common_type( # type: ignore[overload-overlap] + a0: _HasDType[_FloatMax32], + array1: _HasDType[np.float32], + /, + *ai: _HasDType[_FloatMax32], +) -> type[np.float32]: ... +@overload +def common_type( + a0: _HasDType[_RealMax64], + array1: _HasDType[np.float64 | np.integer], + /, + *ai: _HasDType[_RealMax64], +) -> type[np.float64]: ... +@overload +def common_type( + a0: _HasDType[_Real], + array1: _HasDType[np.longdouble], + /, + *ai: _HasDType[_Real], +) -> type[np.longdouble]: ... +@overload +def common_type( # type: ignore[overload-overlap] + a0: _HasDType[_InexactMax32], + array1: _HasDType[np.complex64], + /, + *ai: _HasDType[_InexactMax32], +) -> type[np.complex64]: ... +@overload +def common_type( + a0: _HasDType[np.float64], + array1: _HasDType[_ComplexMax128], + /, + *ai: _HasDType[_NumberMax64], +) -> type[np.complex128]: ... +@overload +def common_type( + a0: _HasDType[_ComplexMax128], + array1: _HasDType[np.float64], + /, + *ai: _HasDType[_NumberMax64], +) -> type[np.complex128]: ... +@overload +def common_type( + a0: _HasDType[_NumberMax64], + array1: _HasDType[np.complex128], + /, + *ai: _HasDType[_NumberMax64], +) -> type[np.complex128]: ... +@overload +def common_type( + a0: _HasDType[_ComplexMax128], + array1: _HasDType[np.complex128 | np.integer], + /, + *ai: _HasDType[_NumberMax64], +) -> type[np.complex128]: ... +@overload +def common_type( + a0: _HasDType[np.complex128 | np.integer], + array1: _HasDType[_ComplexMax128], + /, + *ai: _HasDType[_NumberMax64], +) -> type[np.complex128]: ... +@overload +def common_type( + a0: _HasDType[_Real], + /, + *ai: _HasDType[_Real], +) -> type[np.floating]: ... +@overload +def common_type( + a0: _HasDType[np.number], + array1: _HasDType[np.clongdouble], + /, + *ai: _HasDType[np.number], +) -> type[np.clongdouble]: ... +@overload +def common_type( + a0: _HasDType[np.longdouble], + array1: _HasDType[np.complexfloating], + /, + *ai: _HasDType[np.number], +) -> type[np.clongdouble]: ... +@overload +def common_type( + a0: _HasDType[np.complexfloating], + array1: _HasDType[np.longdouble], + /, + *ai: _HasDType[np.number], +) -> type[np.clongdouble]: ... +@overload +def common_type( + a0: _HasDType[np.complexfloating], + array1: _HasDType[np.number], + /, + *ai: _HasDType[np.number], +) -> type[np.complexfloating]: ... +@overload +def common_type( + a0: _HasDType[np.number], + array1: _HasDType[np.complexfloating], + /, + *ai: _HasDType[np.number], +) -> type[np.complexfloating]: ... +@overload +def common_type( + a0: _HasDType[np.number], + array1: _HasDType[np.number], + /, + *ai: _HasDType[np.number], +) -> type[Any]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_ufunclike_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_ufunclike_impl.py new file mode 100644 index 0000000..695aab1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_ufunclike_impl.py @@ -0,0 +1,207 @@ +""" +Module of functions that are like ufuncs in acting on arrays and optionally +storing results in an output array. + +""" +__all__ = ['fix', 'isneginf', 'isposinf'] + +import numpy._core.numeric as nx +from numpy._core.overrides import array_function_dispatch + + +def _dispatcher(x, out=None): + return (x, out) + + +@array_function_dispatch(_dispatcher, verify=False, module='numpy') +def fix(x, out=None): + """ + Round to nearest integer towards zero. + + Round an array of floats element-wise to nearest integer towards zero. + The rounded values have the same data-type as the input. + + Parameters + ---------- + x : array_like + An array to be rounded + out : ndarray, optional + A location into which the result is stored. If provided, it must have + a shape that the input broadcasts to. If not provided or None, a + freshly-allocated array is returned. + + Returns + ------- + out : ndarray of floats + An array with the same dimensions and data-type as the input. + If second argument is not supplied then a new array is returned + with the rounded values. + + If a second argument is supplied the result is stored there. + The return value ``out`` is then a reference to that array. + + See Also + -------- + rint, trunc, floor, ceil + around : Round to given number of decimals + + Examples + -------- + >>> import numpy as np + >>> np.fix(3.14) + 3.0 + >>> np.fix(3) + 3 + >>> np.fix([2.1, 2.9, -2.1, -2.9]) + array([ 2., 2., -2., -2.]) + + """ + # promote back to an array if flattened + res = nx.asanyarray(nx.ceil(x, out=out)) + res = nx.floor(x, out=res, where=nx.greater_equal(x, 0)) + + # when no out argument is passed and no subclasses are involved, flatten + # scalars + if out is None and type(res) is nx.ndarray: + res = res[()] + return res + + +@array_function_dispatch(_dispatcher, verify=False, module='numpy') +def isposinf(x, out=None): + """ + Test element-wise for positive infinity, return result as bool array. + + Parameters + ---------- + x : array_like + The input array. + out : array_like, optional + A location into which the result is stored. If provided, it must have a + shape that the input broadcasts to. If not provided or None, a + freshly-allocated boolean array is returned. + + Returns + ------- + out : ndarray + A boolean array with the same dimensions as the input. + If second argument is not supplied then a boolean array is returned + with values True where the corresponding element of the input is + positive infinity and values False where the element of the input is + not positive infinity. + + If a second argument is supplied the result is stored there. If the + type of that array is a numeric type the result is represented as zeros + and ones, if the type is boolean then as False and True. + The return value `out` is then a reference to that array. + + See Also + -------- + isinf, isneginf, isfinite, isnan + + Notes + ----- + NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic + (IEEE 754). + + Errors result if the second argument is also supplied when x is a scalar + input, if first and second arguments have different shapes, or if the + first argument has complex values + + Examples + -------- + >>> import numpy as np + >>> np.isposinf(np.inf) + True + >>> np.isposinf(-np.inf) + False + >>> np.isposinf([-np.inf, 0., np.inf]) + array([False, False, True]) + + >>> x = np.array([-np.inf, 0., np.inf]) + >>> y = np.array([2, 2, 2]) + >>> np.isposinf(x, y) + array([0, 0, 1]) + >>> y + array([0, 0, 1]) + + """ + is_inf = nx.isinf(x) + try: + signbit = ~nx.signbit(x) + except TypeError as e: + dtype = nx.asanyarray(x).dtype + raise TypeError(f'This operation is not supported for {dtype} values ' + 'because it would be ambiguous.') from e + else: + return nx.logical_and(is_inf, signbit, out) + + +@array_function_dispatch(_dispatcher, verify=False, module='numpy') +def isneginf(x, out=None): + """ + Test element-wise for negative infinity, return result as bool array. + + Parameters + ---------- + x : array_like + The input array. + out : array_like, optional + A location into which the result is stored. If provided, it must have a + shape that the input broadcasts to. If not provided or None, a + freshly-allocated boolean array is returned. + + Returns + ------- + out : ndarray + A boolean array with the same dimensions as the input. + If second argument is not supplied then a numpy boolean array is + returned with values True where the corresponding element of the + input is negative infinity and values False where the element of + the input is not negative infinity. + + If a second argument is supplied the result is stored there. If the + type of that array is a numeric type the result is represented as + zeros and ones, if the type is boolean then as False and True. The + return value `out` is then a reference to that array. + + See Also + -------- + isinf, isposinf, isnan, isfinite + + Notes + ----- + NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic + (IEEE 754). + + Errors result if the second argument is also supplied when x is a scalar + input, if first and second arguments have different shapes, or if the + first argument has complex values. + + Examples + -------- + >>> import numpy as np + >>> np.isneginf(-np.inf) + True + >>> np.isneginf(np.inf) + False + >>> np.isneginf([-np.inf, 0., np.inf]) + array([ True, False, False]) + + >>> x = np.array([-np.inf, 0., np.inf]) + >>> y = np.array([2, 2, 2]) + >>> np.isneginf(x, y) + array([1, 0, 0]) + >>> y + array([1, 0, 0]) + + """ + is_inf = nx.isinf(x) + try: + signbit = nx.signbit(x) + except TypeError as e: + dtype = nx.asanyarray(x).dtype + raise TypeError(f'This operation is not supported for {dtype} values ' + 'because it would be ambiguous.') from e + else: + return nx.logical_and(is_inf, signbit, out) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_ufunclike_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_ufunclike_impl.pyi new file mode 100644 index 0000000..a673f05 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_ufunclike_impl.pyi @@ -0,0 +1,67 @@ +from typing import Any, TypeVar, overload + +import numpy as np +from numpy import floating, object_ +from numpy._typing import ( + NDArray, + _ArrayLikeFloat_co, + _ArrayLikeObject_co, + _FloatLike_co, +) + +__all__ = ["fix", "isneginf", "isposinf"] + +_ArrayT = TypeVar("_ArrayT", bound=NDArray[Any]) + +@overload +def fix( # type: ignore[misc] + x: _FloatLike_co, + out: None = ..., +) -> floating: ... +@overload +def fix( + x: _ArrayLikeFloat_co, + out: None = ..., +) -> NDArray[floating]: ... +@overload +def fix( + x: _ArrayLikeObject_co, + out: None = ..., +) -> NDArray[object_]: ... +@overload +def fix( + x: _ArrayLikeFloat_co | _ArrayLikeObject_co, + out: _ArrayT, +) -> _ArrayT: ... + +@overload +def isposinf( # type: ignore[misc] + x: _FloatLike_co, + out: None = ..., +) -> np.bool: ... +@overload +def isposinf( + x: _ArrayLikeFloat_co, + out: None = ..., +) -> NDArray[np.bool]: ... +@overload +def isposinf( + x: _ArrayLikeFloat_co, + out: _ArrayT, +) -> _ArrayT: ... + +@overload +def isneginf( # type: ignore[misc] + x: _FloatLike_co, + out: None = ..., +) -> np.bool: ... +@overload +def isneginf( + x: _ArrayLikeFloat_co, + out: None = ..., +) -> NDArray[np.bool]: ... +@overload +def isneginf( + x: _ArrayLikeFloat_co, + out: _ArrayT, +) -> _ArrayT: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_user_array_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_user_array_impl.py new file mode 100644 index 0000000..f3a6c0f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_user_array_impl.py @@ -0,0 +1,299 @@ +""" +Container class for backward compatibility with NumArray. + +The user_array.container class exists for backward compatibility with NumArray +and is not meant to be used in new code. If you need to create an array +container class, we recommend either creating a class that wraps an ndarray +or subclasses ndarray. + +""" +from numpy._core import ( + absolute, + add, + arange, + array, + asarray, + bitwise_and, + bitwise_or, + bitwise_xor, + divide, + equal, + greater, + greater_equal, + invert, + left_shift, + less, + less_equal, + multiply, + not_equal, + power, + remainder, + reshape, + right_shift, + shape, + sin, + sqrt, + subtract, + transpose, +) +from numpy._core.overrides import set_module + + +@set_module("numpy.lib.user_array") +class container: + """ + container(data, dtype=None, copy=True) + + Standard container-class for easy multiple-inheritance. + + Methods + ------- + copy + byteswap + astype + + """ + def __init__(self, data, dtype=None, copy=True): + self.array = array(data, dtype, copy=copy) + + def __repr__(self): + if self.ndim > 0: + return self.__class__.__name__ + repr(self.array)[len("array"):] + else: + return self.__class__.__name__ + "(" + repr(self.array) + ")" + + def __array__(self, t=None): + if t: + return self.array.astype(t) + return self.array + + # Array as sequence + def __len__(self): + return len(self.array) + + def __getitem__(self, index): + return self._rc(self.array[index]) + + def __setitem__(self, index, value): + self.array[index] = asarray(value, self.dtype) + + def __abs__(self): + return self._rc(absolute(self.array)) + + def __neg__(self): + return self._rc(-self.array) + + def __add__(self, other): + return self._rc(self.array + asarray(other)) + + __radd__ = __add__ + + def __iadd__(self, other): + add(self.array, other, self.array) + return self + + def __sub__(self, other): + return self._rc(self.array - asarray(other)) + + def __rsub__(self, other): + return self._rc(asarray(other) - self.array) + + def __isub__(self, other): + subtract(self.array, other, self.array) + return self + + def __mul__(self, other): + return self._rc(multiply(self.array, asarray(other))) + + __rmul__ = __mul__ + + def __imul__(self, other): + multiply(self.array, other, self.array) + return self + + def __mod__(self, other): + return self._rc(remainder(self.array, other)) + + def __rmod__(self, other): + return self._rc(remainder(other, self.array)) + + def __imod__(self, other): + remainder(self.array, other, self.array) + return self + + def __divmod__(self, other): + return (self._rc(divide(self.array, other)), + self._rc(remainder(self.array, other))) + + def __rdivmod__(self, other): + return (self._rc(divide(other, self.array)), + self._rc(remainder(other, self.array))) + + def __pow__(self, other): + return self._rc(power(self.array, asarray(other))) + + def __rpow__(self, other): + return self._rc(power(asarray(other), self.array)) + + def __ipow__(self, other): + power(self.array, other, self.array) + return self + + def __lshift__(self, other): + return self._rc(left_shift(self.array, other)) + + def __rshift__(self, other): + return self._rc(right_shift(self.array, other)) + + def __rlshift__(self, other): + return self._rc(left_shift(other, self.array)) + + def __rrshift__(self, other): + return self._rc(right_shift(other, self.array)) + + def __ilshift__(self, other): + left_shift(self.array, other, self.array) + return self + + def __irshift__(self, other): + right_shift(self.array, other, self.array) + return self + + def __and__(self, other): + return self._rc(bitwise_and(self.array, other)) + + def __rand__(self, other): + return self._rc(bitwise_and(other, self.array)) + + def __iand__(self, other): + bitwise_and(self.array, other, self.array) + return self + + def __xor__(self, other): + return self._rc(bitwise_xor(self.array, other)) + + def __rxor__(self, other): + return self._rc(bitwise_xor(other, self.array)) + + def __ixor__(self, other): + bitwise_xor(self.array, other, self.array) + return self + + def __or__(self, other): + return self._rc(bitwise_or(self.array, other)) + + def __ror__(self, other): + return self._rc(bitwise_or(other, self.array)) + + def __ior__(self, other): + bitwise_or(self.array, other, self.array) + return self + + def __pos__(self): + return self._rc(self.array) + + def __invert__(self): + return self._rc(invert(self.array)) + + def _scalarfunc(self, func): + if self.ndim == 0: + return func(self[0]) + else: + raise TypeError( + "only rank-0 arrays can be converted to Python scalars.") + + def __complex__(self): + return self._scalarfunc(complex) + + def __float__(self): + return self._scalarfunc(float) + + def __int__(self): + return self._scalarfunc(int) + + def __hex__(self): + return self._scalarfunc(hex) + + def __oct__(self): + return self._scalarfunc(oct) + + def __lt__(self, other): + return self._rc(less(self.array, other)) + + def __le__(self, other): + return self._rc(less_equal(self.array, other)) + + def __eq__(self, other): + return self._rc(equal(self.array, other)) + + def __ne__(self, other): + return self._rc(not_equal(self.array, other)) + + def __gt__(self, other): + return self._rc(greater(self.array, other)) + + def __ge__(self, other): + return self._rc(greater_equal(self.array, other)) + + def copy(self): + "" + return self._rc(self.array.copy()) + + def tobytes(self): + "" + return self.array.tobytes() + + def byteswap(self): + "" + return self._rc(self.array.byteswap()) + + def astype(self, typecode): + "" + return self._rc(self.array.astype(typecode)) + + def _rc(self, a): + if len(shape(a)) == 0: + return a + else: + return self.__class__(a) + + def __array_wrap__(self, *args): + return self.__class__(args[0]) + + def __setattr__(self, attr, value): + if attr == 'array': + object.__setattr__(self, attr, value) + return + try: + self.array.__setattr__(attr, value) + except AttributeError: + object.__setattr__(self, attr, value) + + # Only called after other approaches fail. + def __getattr__(self, attr): + if (attr == 'array'): + return object.__getattribute__(self, attr) + return self.array.__getattribute__(attr) + + +############################################################# +# Test of class container +############################################################# +if __name__ == '__main__': + temp = reshape(arange(10000), (100, 100)) + + ua = container(temp) + # new object created begin test + print(dir(ua)) + print(shape(ua), ua.shape) # I have changed Numeric.py + + ua_small = ua[:3, :5] + print(ua_small) + # this did not change ua[0,0], which is not normal behavior + ua_small[0, 0] = 10 + print(ua_small[0, 0], ua[0, 0]) + print(sin(ua_small) / 3. * 6. + sqrt(ua_small ** 2)) + print(less(ua_small, 103), type(less(ua_small, 103))) + print(type(ua_small * reshape(arange(15), shape(ua_small)))) + print(reshape(ua_small, (5, 3))) + print(transpose(ua_small)) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_user_array_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_user_array_impl.pyi new file mode 100644 index 0000000..13c0a01 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_user_array_impl.pyi @@ -0,0 +1,225 @@ +from types import EllipsisType +from typing import Any, Generic, Self, SupportsIndex, TypeAlias, overload + +from _typeshed import Incomplete +from typing_extensions import TypeVar, override + +import numpy as np +import numpy.typing as npt +from numpy._typing import ( + _AnyShape, + _ArrayLike, + _ArrayLikeBool_co, + _ArrayLikeInt_co, + _DTypeLike, +) + +### + +_ScalarT = TypeVar("_ScalarT", bound=np.generic) +_ShapeT = TypeVar("_ShapeT", bound=tuple[int, ...]) +_ShapeT_co = TypeVar("_ShapeT_co", bound=tuple[int, ...], default=_AnyShape, covariant=True) +_DTypeT = TypeVar("_DTypeT", bound=np.dtype) +_DTypeT_co = TypeVar("_DTypeT_co", bound=np.dtype, default=np.dtype, covariant=True) + +_BoolArrayT = TypeVar("_BoolArrayT", bound=container[Any, np.dtype[np.bool]]) +_IntegralArrayT = TypeVar("_IntegralArrayT", bound=container[Any, np.dtype[np.bool | np.integer | np.object_]]) +_RealContainerT = TypeVar( + "_RealContainerT", + bound=container[Any, np.dtype[np.bool | np.integer | np.floating | np.timedelta64 | np.object_]], +) +_NumericContainerT = TypeVar("_NumericContainerT", bound=container[Any, np.dtype[np.number | np.timedelta64 | np.object_]]) + +_ArrayInt_co: TypeAlias = npt.NDArray[np.integer | np.bool] + +_ToIndexSlice: TypeAlias = slice | EllipsisType | _ArrayInt_co | None +_ToIndexSlices: TypeAlias = _ToIndexSlice | tuple[_ToIndexSlice, ...] +_ToIndex: TypeAlias = SupportsIndex | _ToIndexSlice +_ToIndices: TypeAlias = _ToIndex | tuple[_ToIndex, ...] + +### + +class container(Generic[_ShapeT_co, _DTypeT_co]): + array: np.ndarray[_ShapeT_co, _DTypeT_co] + + @overload + def __init__( + self, + /, + data: container[_ShapeT_co, _DTypeT_co] | np.ndarray[_ShapeT_co, _DTypeT_co], + dtype: None = None, + copy: bool = True, + ) -> None: ... + @overload + def __init__( + self: container[Any, np.dtype[_ScalarT]], + /, + data: _ArrayLike[_ScalarT], + dtype: None = None, + copy: bool = True, + ) -> None: ... + @overload + def __init__( + self: container[Any, np.dtype[_ScalarT]], + /, + data: npt.ArrayLike, + dtype: _DTypeLike[_ScalarT], + copy: bool = True, + ) -> None: ... + @overload + def __init__(self, /, data: npt.ArrayLike, dtype: npt.DTypeLike | None = None, copy: bool = True) -> None: ... + + # + def __complex__(self, /) -> complex: ... + def __float__(self, /) -> float: ... + def __int__(self, /) -> int: ... + def __hex__(self, /) -> str: ... + def __oct__(self, /) -> str: ... + + # + @override + def __eq__(self, other: object, /) -> container[_ShapeT_co, np.dtype[np.bool]]: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride] + @override + def __ne__(self, other: object, /) -> container[_ShapeT_co, np.dtype[np.bool]]: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride] + + # + def __lt__(self, other: npt.ArrayLike, /) -> container[_ShapeT_co, np.dtype[np.bool]]: ... + def __le__(self, other: npt.ArrayLike, /) -> container[_ShapeT_co, np.dtype[np.bool]]: ... + def __gt__(self, other: npt.ArrayLike, /) -> container[_ShapeT_co, np.dtype[np.bool]]: ... + def __ge__(self, other: npt.ArrayLike, /) -> container[_ShapeT_co, np.dtype[np.bool]]: ... + + # + def __len__(self, /) -> int: ... + + # keep in sync with np.ndarray + @overload + def __getitem__(self, key: _ArrayInt_co | tuple[_ArrayInt_co, ...], /) -> container[_ShapeT_co, _DTypeT_co]: ... + @overload + def __getitem__(self, key: _ToIndexSlices, /) -> container[_AnyShape, _DTypeT_co]: ... + @overload + def __getitem__(self, key: _ToIndices, /) -> Any: ... + @overload + def __getitem__(self: container[Any, np.dtype[np.void]], key: list[str], /) -> container[_ShapeT_co, np.dtype[np.void]]: ... + @overload + def __getitem__(self: container[Any, np.dtype[np.void]], key: str, /) -> container[_ShapeT_co, np.dtype]: ... + + # keep in sync with np.ndarray + @overload + def __setitem__(self, index: _ToIndices, value: object, /) -> None: ... + @overload + def __setitem__(self: container[Any, np.dtype[np.void]], key: str | list[str], value: object, /) -> None: ... + + # keep in sync with np.ndarray + @overload + def __abs__(self: container[_ShapeT, np.dtype[np.complex64]], /) -> container[_ShapeT, np.dtype[np.float32]]: ... # type: ignore[overload-overlap] + @overload + def __abs__(self: container[_ShapeT, np.dtype[np.complex128]], /) -> container[_ShapeT, np.dtype[np.float64]]: ... + @overload + def __abs__(self: container[_ShapeT, np.dtype[np.complex192]], /) -> container[_ShapeT, np.dtype[np.float96]]: ... + @overload + def __abs__(self: container[_ShapeT, np.dtype[np.complex256]], /) -> container[_ShapeT, np.dtype[np.float128]]: ... + @overload + def __abs__(self: _RealContainerT, /) -> _RealContainerT: ... + + # + def __neg__(self: _NumericContainerT, /) -> _NumericContainerT: ... # noqa: PYI019 + def __pos__(self: _NumericContainerT, /) -> _NumericContainerT: ... # noqa: PYI019 + def __invert__(self: _IntegralArrayT, /) -> _IntegralArrayT: ... # noqa: PYI019 + + # TODO(jorenham): complete these binary ops + + # + def __add__(self, other: npt.ArrayLike, /) -> Incomplete: ... + def __radd__(self, other: npt.ArrayLike, /) -> Incomplete: ... + def __iadd__(self, other: npt.ArrayLike, /) -> Self: ... + + # + def __sub__(self, other: npt.ArrayLike, /) -> Incomplete: ... + def __rsub__(self, other: npt.ArrayLike, /) -> Incomplete: ... + def __isub__(self, other: npt.ArrayLike, /) -> Self: ... + + # + def __mul__(self, other: npt.ArrayLike, /) -> Incomplete: ... + def __rmul__(self, other: npt.ArrayLike, /) -> Incomplete: ... + def __imul__(self, other: npt.ArrayLike, /) -> Self: ... + + # + def __mod__(self, other: npt.ArrayLike, /) -> Incomplete: ... + def __rmod__(self, other: npt.ArrayLike, /) -> Incomplete: ... + def __imod__(self, other: npt.ArrayLike, /) -> Self: ... + + # + def __divmod__(self, other: npt.ArrayLike, /) -> tuple[Incomplete, Incomplete]: ... + def __rdivmod__(self, other: npt.ArrayLike, /) -> tuple[Incomplete, Incomplete]: ... + + # + def __pow__(self, other: npt.ArrayLike, /) -> Incomplete: ... + def __rpow__(self, other: npt.ArrayLike, /) -> Incomplete: ... + def __ipow__(self, other: npt.ArrayLike, /) -> Self: ... + + # + def __lshift__(self, other: _ArrayLikeInt_co, /) -> container[_AnyShape, np.dtype[np.integer]]: ... + def __rlshift__(self, other: _ArrayLikeInt_co, /) -> container[_AnyShape, np.dtype[np.integer]]: ... + def __ilshift__(self, other: _ArrayLikeInt_co, /) -> Self: ... + + # + def __rshift__(self, other: _ArrayLikeInt_co, /) -> container[_AnyShape, np.dtype[np.integer]]: ... + def __rrshift__(self, other: _ArrayLikeInt_co, /) -> container[_AnyShape, np.dtype[np.integer]]: ... + def __irshift__(self, other: _ArrayLikeInt_co, /) -> Self: ... + + # + @overload + def __and__( + self: container[Any, np.dtype[np.bool]], other: _ArrayLikeBool_co, / + ) -> container[_AnyShape, np.dtype[np.bool]]: ... + @overload + def __and__(self, other: _ArrayLikeInt_co, /) -> container[_AnyShape, np.dtype[np.bool | np.integer]]: ... + __rand__ = __and__ + @overload + def __iand__(self: _BoolArrayT, other: _ArrayLikeBool_co, /) -> _BoolArrayT: ... + @overload + def __iand__(self, other: _ArrayLikeInt_co, /) -> Self: ... + + # + @overload + def __xor__( + self: container[Any, np.dtype[np.bool]], other: _ArrayLikeBool_co, / + ) -> container[_AnyShape, np.dtype[np.bool]]: ... + @overload + def __xor__(self, other: _ArrayLikeInt_co, /) -> container[_AnyShape, np.dtype[np.bool | np.integer]]: ... + __rxor__ = __xor__ + @overload + def __ixor__(self: _BoolArrayT, other: _ArrayLikeBool_co, /) -> _BoolArrayT: ... + @overload + def __ixor__(self, other: _ArrayLikeInt_co, /) -> Self: ... + + # + @overload + def __or__( + self: container[Any, np.dtype[np.bool]], other: _ArrayLikeBool_co, / + ) -> container[_AnyShape, np.dtype[np.bool]]: ... + @overload + def __or__(self, other: _ArrayLikeInt_co, /) -> container[_AnyShape, np.dtype[np.bool | np.integer]]: ... + __ror__ = __or__ + @overload + def __ior__(self: _BoolArrayT, other: _ArrayLikeBool_co, /) -> _BoolArrayT: ... + @overload + def __ior__(self, other: _ArrayLikeInt_co, /) -> Self: ... + + # + @overload + def __array__(self, /, t: None = None) -> np.ndarray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __array__(self, /, t: _DTypeT) -> np.ndarray[_ShapeT_co, _DTypeT]: ... + + # + @overload + def __array_wrap__(self, arg0: npt.ArrayLike, /) -> container[_ShapeT_co, _DTypeT_co]: ... + @overload + def __array_wrap__(self, a: np.ndarray[_ShapeT, _DTypeT], c: Any = ..., s: Any = ..., /) -> container[_ShapeT, _DTypeT]: ... + + # + def copy(self, /) -> Self: ... + def tobytes(self, /) -> bytes: ... + def byteswap(self, /) -> Self: ... + def astype(self, /, typecode: _DTypeLike[_ScalarT]) -> container[_ShapeT_co, np.dtype[_ScalarT]]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_utils_impl.py b/.venv/lib/python3.12/site-packages/numpy/lib/_utils_impl.py new file mode 100644 index 0000000..2e1ee23 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_utils_impl.py @@ -0,0 +1,779 @@ +import functools +import os +import platform +import sys +import textwrap +import types +import warnings + +import numpy as np +from numpy._core import ndarray +from numpy._utils import set_module + +__all__ = [ + 'get_include', 'info', 'show_runtime' +] + + +@set_module('numpy') +def show_runtime(): + """ + Print information about various resources in the system + including available intrinsic support and BLAS/LAPACK library + in use + + .. versionadded:: 1.24.0 + + See Also + -------- + show_config : Show libraries in the system on which NumPy was built. + + Notes + ----- + 1. Information is derived with the help of `threadpoolctl `_ + library if available. + 2. SIMD related information is derived from ``__cpu_features__``, + ``__cpu_baseline__`` and ``__cpu_dispatch__`` + + """ + from pprint import pprint + + from numpy._core._multiarray_umath import ( + __cpu_baseline__, + __cpu_dispatch__, + __cpu_features__, + ) + config_found = [{ + "numpy_version": np.__version__, + "python": sys.version, + "uname": platform.uname(), + }] + features_found, features_not_found = [], [] + for feature in __cpu_dispatch__: + if __cpu_features__[feature]: + features_found.append(feature) + else: + features_not_found.append(feature) + config_found.append({ + "simd_extensions": { + "baseline": __cpu_baseline__, + "found": features_found, + "not_found": features_not_found + } + }) + try: + from threadpoolctl import threadpool_info + config_found.extend(threadpool_info()) + except ImportError: + print("WARNING: `threadpoolctl` not found in system!" + " Install it by `pip install threadpoolctl`." + " Once installed, try `np.show_runtime` again" + " for more detailed build information") + pprint(config_found) + + +@set_module('numpy') +def get_include(): + """ + Return the directory that contains the NumPy \\*.h header files. + + Extension modules that need to compile against NumPy may need to use this + function to locate the appropriate include directory. + + Notes + ----- + When using ``setuptools``, for example in ``setup.py``:: + + import numpy as np + ... + Extension('extension_name', ... + include_dirs=[np.get_include()]) + ... + + Note that a CLI tool ``numpy-config`` was introduced in NumPy 2.0, using + that is likely preferred for build systems other than ``setuptools``:: + + $ numpy-config --cflags + -I/path/to/site-packages/numpy/_core/include + + # Or rely on pkg-config: + $ export PKG_CONFIG_PATH=$(numpy-config --pkgconfigdir) + $ pkg-config --cflags + -I/path/to/site-packages/numpy/_core/include + + Examples + -------- + >>> np.get_include() + '.../site-packages/numpy/core/include' # may vary + + """ + import numpy + if numpy.show_config is None: + # running from numpy source directory + d = os.path.join(os.path.dirname(numpy.__file__), '_core', 'include') + else: + # using installed numpy core headers + import numpy._core as _core + d = os.path.join(os.path.dirname(_core.__file__), 'include') + return d + + +class _Deprecate: + """ + Decorator class to deprecate old functions. + + Refer to `deprecate` for details. + + See Also + -------- + deprecate + + """ + + def __init__(self, old_name=None, new_name=None, message=None): + self.old_name = old_name + self.new_name = new_name + self.message = message + + def __call__(self, func, *args, **kwargs): + """ + Decorator call. Refer to ``decorate``. + + """ + old_name = self.old_name + new_name = self.new_name + message = self.message + + if old_name is None: + old_name = func.__name__ + if new_name is None: + depdoc = f"`{old_name}` is deprecated!" + else: + depdoc = f"`{old_name}` is deprecated, use `{new_name}` instead!" + + if message is not None: + depdoc += "\n" + message + + @functools.wraps(func) + def newfunc(*args, **kwds): + warnings.warn(depdoc, DeprecationWarning, stacklevel=2) + return func(*args, **kwds) + + newfunc.__name__ = old_name + doc = func.__doc__ + if doc is None: + doc = depdoc + else: + lines = doc.expandtabs().split('\n') + indent = _get_indent(lines[1:]) + if lines[0].lstrip(): + # Indent the original first line to let inspect.cleandoc() + # dedent the docstring despite the deprecation notice. + doc = indent * ' ' + doc + else: + # Remove the same leading blank lines as cleandoc() would. + skip = len(lines[0]) + 1 + for line in lines[1:]: + if len(line) > indent: + break + skip += len(line) + 1 + doc = doc[skip:] + depdoc = textwrap.indent(depdoc, ' ' * indent) + doc = f'{depdoc}\n\n{doc}' + newfunc.__doc__ = doc + + return newfunc + + +def _get_indent(lines): + """ + Determines the leading whitespace that could be removed from all the lines. + """ + indent = sys.maxsize + for line in lines: + content = len(line.lstrip()) + if content: + indent = min(indent, len(line) - content) + if indent == sys.maxsize: + indent = 0 + return indent + + +def deprecate(*args, **kwargs): + """ + Issues a DeprecationWarning, adds warning to `old_name`'s + docstring, rebinds ``old_name.__name__`` and returns the new + function object. + + This function may also be used as a decorator. + + .. deprecated:: 2.0 + Use `~warnings.warn` with :exc:`DeprecationWarning` instead. + + Parameters + ---------- + func : function + The function to be deprecated. + old_name : str, optional + The name of the function to be deprecated. Default is None, in + which case the name of `func` is used. + new_name : str, optional + The new name for the function. Default is None, in which case the + deprecation message is that `old_name` is deprecated. If given, the + deprecation message is that `old_name` is deprecated and `new_name` + should be used instead. + message : str, optional + Additional explanation of the deprecation. Displayed in the + docstring after the warning. + + Returns + ------- + old_func : function + The deprecated function. + + Examples + -------- + Note that ``olduint`` returns a value after printing Deprecation + Warning: + + >>> olduint = np.lib.utils.deprecate(np.uint) + DeprecationWarning: `uint64` is deprecated! # may vary + >>> olduint(6) + 6 + + """ + # Deprecate may be run as a function or as a decorator + # If run as a function, we initialise the decorator class + # and execute its __call__ method. + + # Deprecated in NumPy 2.0, 2023-07-11 + warnings.warn( + "`deprecate` is deprecated, " + "use `warn` with `DeprecationWarning` instead. " + "(deprecated in NumPy 2.0)", + DeprecationWarning, + stacklevel=2 + ) + + if args: + fn = args[0] + args = args[1:] + + return _Deprecate(*args, **kwargs)(fn) + else: + return _Deprecate(*args, **kwargs) + + +def deprecate_with_doc(msg): + """ + Deprecates a function and includes the deprecation in its docstring. + + .. deprecated:: 2.0 + Use `~warnings.warn` with :exc:`DeprecationWarning` instead. + + This function is used as a decorator. It returns an object that can be + used to issue a DeprecationWarning, by passing the to-be decorated + function as argument, this adds warning to the to-be decorated function's + docstring and returns the new function object. + + See Also + -------- + deprecate : Decorate a function such that it issues a + :exc:`DeprecationWarning` + + Parameters + ---------- + msg : str + Additional explanation of the deprecation. Displayed in the + docstring after the warning. + + Returns + ------- + obj : object + + """ + + # Deprecated in NumPy 2.0, 2023-07-11 + warnings.warn( + "`deprecate` is deprecated, " + "use `warn` with `DeprecationWarning` instead. " + "(deprecated in NumPy 2.0)", + DeprecationWarning, + stacklevel=2 + ) + + return _Deprecate(message=msg) + + +#----------------------------------------------------------------------------- + + +# NOTE: pydoc defines a help function which works similarly to this +# except it uses a pager to take over the screen. + +# combine name and arguments and split to multiple lines of width +# characters. End lines on a comma and begin argument list indented with +# the rest of the arguments. +def _split_line(name, arguments, width): + firstwidth = len(name) + k = firstwidth + newstr = name + sepstr = ", " + arglist = arguments.split(sepstr) + for argument in arglist: + if k == firstwidth: + addstr = "" + else: + addstr = sepstr + k = k + len(argument) + len(addstr) + if k > width: + k = firstwidth + 1 + len(argument) + newstr = newstr + ",\n" + " " * (firstwidth + 2) + argument + else: + newstr = newstr + addstr + argument + return newstr + + +_namedict = None +_dictlist = None + +# Traverse all module directories underneath globals +# to see if something is defined +def _makenamedict(module='numpy'): + module = __import__(module, globals(), locals(), []) + thedict = {module.__name__: module.__dict__} + dictlist = [module.__name__] + totraverse = [module.__dict__] + while True: + if len(totraverse) == 0: + break + thisdict = totraverse.pop(0) + for x in thisdict.keys(): + if isinstance(thisdict[x], types.ModuleType): + modname = thisdict[x].__name__ + if modname not in dictlist: + moddict = thisdict[x].__dict__ + dictlist.append(modname) + totraverse.append(moddict) + thedict[modname] = moddict + return thedict, dictlist + + +def _info(obj, output=None): + """Provide information about ndarray obj. + + Parameters + ---------- + obj : ndarray + Must be ndarray, not checked. + output + Where printed output goes. + + Notes + ----- + Copied over from the numarray module prior to its removal. + Adapted somewhat as only numpy is an option now. + + Called by info. + + """ + extra = "" + tic = "" + bp = lambda x: x + cls = getattr(obj, '__class__', type(obj)) + nm = getattr(cls, '__name__', cls) + strides = obj.strides + endian = obj.dtype.byteorder + + if output is None: + output = sys.stdout + + print("class: ", nm, file=output) + print("shape: ", obj.shape, file=output) + print("strides: ", strides, file=output) + print("itemsize: ", obj.itemsize, file=output) + print("aligned: ", bp(obj.flags.aligned), file=output) + print("contiguous: ", bp(obj.flags.contiguous), file=output) + print("fortran: ", obj.flags.fortran, file=output) + print( + f"data pointer: {hex(obj.ctypes._as_parameter_.value)}{extra}", + file=output + ) + print("byteorder: ", end=' ', file=output) + if endian in ['|', '=']: + print(f"{tic}{sys.byteorder}{tic}", file=output) + byteswap = False + elif endian == '>': + print(f"{tic}big{tic}", file=output) + byteswap = sys.byteorder != "big" + else: + print(f"{tic}little{tic}", file=output) + byteswap = sys.byteorder != "little" + print("byteswap: ", bp(byteswap), file=output) + print(f"type: {obj.dtype}", file=output) + + +@set_module('numpy') +def info(object=None, maxwidth=76, output=None, toplevel='numpy'): + """ + Get help information for an array, function, class, or module. + + Parameters + ---------- + object : object or str, optional + Input object or name to get information about. If `object` is + an `ndarray` instance, information about the array is printed. + If `object` is a numpy object, its docstring is given. If it is + a string, available modules are searched for matching objects. + If None, information about `info` itself is returned. + maxwidth : int, optional + Printing width. + output : file like object, optional + File like object that the output is written to, default is + ``None``, in which case ``sys.stdout`` will be used. + The object has to be opened in 'w' or 'a' mode. + toplevel : str, optional + Start search at this level. + + Notes + ----- + When used interactively with an object, ``np.info(obj)`` is equivalent + to ``help(obj)`` on the Python prompt or ``obj?`` on the IPython + prompt. + + Examples + -------- + >>> np.info(np.polyval) # doctest: +SKIP + polyval(p, x) + Evaluate the polynomial p at x. + ... + + When using a string for `object` it is possible to get multiple results. + + >>> np.info('fft') # doctest: +SKIP + *** Found in numpy *** + Core FFT routines + ... + *** Found in numpy.fft *** + fft(a, n=None, axis=-1) + ... + *** Repeat reference found in numpy.fft.fftpack *** + *** Total of 3 references found. *** + + When the argument is an array, information about the array is printed. + + >>> a = np.array([[1 + 2j, 3, -4], [-5j, 6, 0]], dtype=np.complex64) + >>> np.info(a) + class: ndarray + shape: (2, 3) + strides: (24, 8) + itemsize: 8 + aligned: True + contiguous: True + fortran: False + data pointer: 0x562b6e0d2860 # may vary + byteorder: little + byteswap: False + type: complex64 + + """ + global _namedict, _dictlist + # Local import to speed up numpy's import time. + import inspect + import pydoc + + if (hasattr(object, '_ppimport_importer') or + hasattr(object, '_ppimport_module')): + object = object._ppimport_module + elif hasattr(object, '_ppimport_attr'): + object = object._ppimport_attr + + if output is None: + output = sys.stdout + + if object is None: + info(info) + elif isinstance(object, ndarray): + _info(object, output=output) + elif isinstance(object, str): + if _namedict is None: + _namedict, _dictlist = _makenamedict(toplevel) + numfound = 0 + objlist = [] + for namestr in _dictlist: + try: + obj = _namedict[namestr][object] + if id(obj) in objlist: + print(f"\n *** Repeat reference found in {namestr} *** ", + file=output + ) + else: + objlist.append(id(obj)) + print(f" *** Found in {namestr} ***", file=output) + info(obj) + print("-" * maxwidth, file=output) + numfound += 1 + except KeyError: + pass + if numfound == 0: + print(f"Help for {object} not found.", file=output) + else: + print("\n " + "*** Total of %d references found. ***" % numfound, + file=output + ) + + elif inspect.isfunction(object) or inspect.ismethod(object): + name = object.__name__ + try: + arguments = str(inspect.signature(object)) + except Exception: + arguments = "()" + + if len(name + arguments) > maxwidth: + argstr = _split_line(name, arguments, maxwidth) + else: + argstr = name + arguments + + print(" " + argstr + "\n", file=output) + print(inspect.getdoc(object), file=output) + + elif inspect.isclass(object): + name = object.__name__ + try: + arguments = str(inspect.signature(object)) + except Exception: + arguments = "()" + + if len(name + arguments) > maxwidth: + argstr = _split_line(name, arguments, maxwidth) + else: + argstr = name + arguments + + print(" " + argstr + "\n", file=output) + doc1 = inspect.getdoc(object) + if doc1 is None: + if hasattr(object, '__init__'): + print(inspect.getdoc(object.__init__), file=output) + else: + print(inspect.getdoc(object), file=output) + + methods = pydoc.allmethods(object) + + public_methods = [meth for meth in methods if meth[0] != '_'] + if public_methods: + print("\n\nMethods:\n", file=output) + for meth in public_methods: + thisobj = getattr(object, meth, None) + if thisobj is not None: + methstr, other = pydoc.splitdoc( + inspect.getdoc(thisobj) or "None" + ) + print(f" {meth} -- {methstr}", file=output) + + elif hasattr(object, '__doc__'): + print(inspect.getdoc(object), file=output) + + +def safe_eval(source): + """ + Protected string evaluation. + + .. deprecated:: 2.0 + Use `ast.literal_eval` instead. + + Evaluate a string containing a Python literal expression without + allowing the execution of arbitrary non-literal code. + + .. warning:: + + This function is identical to :py:meth:`ast.literal_eval` and + has the same security implications. It may not always be safe + to evaluate large input strings. + + Parameters + ---------- + source : str + The string to evaluate. + + Returns + ------- + obj : object + The result of evaluating `source`. + + Raises + ------ + SyntaxError + If the code has invalid Python syntax, or if it contains + non-literal code. + + Examples + -------- + >>> np.safe_eval('1') + 1 + >>> np.safe_eval('[1, 2, 3]') + [1, 2, 3] + >>> np.safe_eval('{"foo": ("bar", 10.0)}') + {'foo': ('bar', 10.0)} + + >>> np.safe_eval('import os') + Traceback (most recent call last): + ... + SyntaxError: invalid syntax + + >>> np.safe_eval('open("/home/user/.ssh/id_dsa").read()') + Traceback (most recent call last): + ... + ValueError: malformed node or string: <_ast.Call object at 0x...> + + """ + + # Deprecated in NumPy 2.0, 2023-07-11 + warnings.warn( + "`safe_eval` is deprecated. Use `ast.literal_eval` instead. " + "Be aware of security implications, such as memory exhaustion " + "based attacks (deprecated in NumPy 2.0)", + DeprecationWarning, + stacklevel=2 + ) + + # Local import to speed up numpy's import time. + import ast + return ast.literal_eval(source) + + +def _median_nancheck(data, result, axis): + """ + Utility function to check median result from data for NaN values at the end + and return NaN in that case. Input result can also be a MaskedArray. + + Parameters + ---------- + data : array + Sorted input data to median function + result : Array or MaskedArray + Result of median function. + axis : int + Axis along which the median was computed. + + Returns + ------- + result : scalar or ndarray + Median or NaN in axes which contained NaN in the input. If the input + was an array, NaN will be inserted in-place. If a scalar, either the + input itself or a scalar NaN. + """ + if data.size == 0: + return result + potential_nans = data.take(-1, axis=axis) + n = np.isnan(potential_nans) + # masked NaN values are ok, although for masked the copyto may fail for + # unmasked ones (this was always broken) when the result is a scalar. + if np.ma.isMaskedArray(n): + n = n.filled(False) + + if not n.any(): + return result + + # Without given output, it is possible that the current result is a + # numpy scalar, which is not writeable. If so, just return nan. + if isinstance(result, np.generic): + return potential_nans + + # Otherwise copy NaNs (if there are any) + np.copyto(result, potential_nans, where=n) + return result + +def _opt_info(): + """ + Returns a string containing the CPU features supported + by the current build. + + The format of the string can be explained as follows: + - Dispatched features supported by the running machine end with `*`. + - Dispatched features not supported by the running machine + end with `?`. + - Remaining features represent the baseline. + + Returns: + str: A formatted string indicating the supported CPU features. + """ + from numpy._core._multiarray_umath import ( + __cpu_baseline__, + __cpu_dispatch__, + __cpu_features__, + ) + + if len(__cpu_baseline__) == 0 and len(__cpu_dispatch__) == 0: + return '' + + enabled_features = ' '.join(__cpu_baseline__) + for feature in __cpu_dispatch__: + if __cpu_features__[feature]: + enabled_features += f" {feature}*" + else: + enabled_features += f" {feature}?" + + return enabled_features + +def drop_metadata(dtype, /): + """ + Returns the dtype unchanged if it contained no metadata or a copy of the + dtype if it (or any of its structure dtypes) contained metadata. + + This utility is used by `np.save` and `np.savez` to drop metadata before + saving. + + .. note:: + + Due to its limitation this function may move to a more appropriate + home or change in the future and is considered semi-public API only. + + .. warning:: + + This function does not preserve more strange things like record dtypes + and user dtypes may simply return the wrong thing. If you need to be + sure about the latter, check the result with: + ``np.can_cast(new_dtype, dtype, casting="no")``. + + """ + if dtype.fields is not None: + found_metadata = dtype.metadata is not None + + names = [] + formats = [] + offsets = [] + titles = [] + for name, field in dtype.fields.items(): + field_dt = drop_metadata(field[0]) + if field_dt is not field[0]: + found_metadata = True + + names.append(name) + formats.append(field_dt) + offsets.append(field[1]) + titles.append(None if len(field) < 3 else field[2]) + + if not found_metadata: + return dtype + + structure = { + 'names': names, 'formats': formats, 'offsets': offsets, 'titles': titles, + 'itemsize': dtype.itemsize} + + # NOTE: Could pass (dtype.type, structure) to preserve record dtypes... + return np.dtype(structure, align=dtype.isalignedstruct) + elif dtype.subdtype is not None: + # subarray dtype + subdtype, shape = dtype.subdtype + new_subdtype = drop_metadata(subdtype) + if dtype.metadata is None and new_subdtype is subdtype: + return dtype + + return np.dtype((new_subdtype, shape)) + else: + # Normal unstructured dtype + if dtype.metadata is None: + return dtype + # Note that `dt.str` doesn't round-trip e.g. for user-dtypes. + return np.dtype(dtype.str) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_utils_impl.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_utils_impl.pyi new file mode 100644 index 0000000..00ed47c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_utils_impl.pyi @@ -0,0 +1,10 @@ +from _typeshed import SupportsWrite + +from numpy._typing import DTypeLike + +__all__ = ["get_include", "info", "show_runtime"] + +def get_include() -> str: ... +def show_runtime() -> None: ... +def info(object: object = ..., maxwidth: int = ..., output: SupportsWrite[str] | None = ..., toplevel: str = ...) -> None: ... +def drop_metadata(dtype: DTypeLike, /) -> DTypeLike: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_version.py b/.venv/lib/python3.12/site-packages/numpy/lib/_version.py new file mode 100644 index 0000000..f7a3538 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_version.py @@ -0,0 +1,154 @@ +"""Utility to compare (NumPy) version strings. + +The NumpyVersion class allows properly comparing numpy version strings. +The LooseVersion and StrictVersion classes that distutils provides don't +work; they don't recognize anything like alpha/beta/rc/dev versions. + +""" +import re + +__all__ = ['NumpyVersion'] + + +class NumpyVersion: + """Parse and compare numpy version strings. + + NumPy has the following versioning scheme (numbers given are examples; they + can be > 9 in principle): + + - Released version: '1.8.0', '1.8.1', etc. + - Alpha: '1.8.0a1', '1.8.0a2', etc. + - Beta: '1.8.0b1', '1.8.0b2', etc. + - Release candidates: '1.8.0rc1', '1.8.0rc2', etc. + - Development versions: '1.8.0.dev-f1234afa' (git commit hash appended) + - Development versions after a1: '1.8.0a1.dev-f1234afa', + '1.8.0b2.dev-f1234afa', + '1.8.1rc1.dev-f1234afa', etc. + - Development versions (no git hash available): '1.8.0.dev-Unknown' + + Comparing needs to be done against a valid version string or other + `NumpyVersion` instance. Note that all development versions of the same + (pre-)release compare equal. + + Parameters + ---------- + vstring : str + NumPy version string (``np.__version__``). + + Examples + -------- + >>> from numpy.lib import NumpyVersion + >>> if NumpyVersion(np.__version__) < '1.7.0': + ... print('skip') + >>> # skip + + >>> NumpyVersion('1.7') # raises ValueError, add ".0" + Traceback (most recent call last): + ... + ValueError: Not a valid numpy version string + + """ + + __module__ = "numpy.lib" + + def __init__(self, vstring): + self.vstring = vstring + ver_main = re.match(r'\d+\.\d+\.\d+', vstring) + if not ver_main: + raise ValueError("Not a valid numpy version string") + + self.version = ver_main.group() + self.major, self.minor, self.bugfix = [int(x) for x in + self.version.split('.')] + if len(vstring) == ver_main.end(): + self.pre_release = 'final' + else: + alpha = re.match(r'a\d', vstring[ver_main.end():]) + beta = re.match(r'b\d', vstring[ver_main.end():]) + rc = re.match(r'rc\d', vstring[ver_main.end():]) + pre_rel = [m for m in [alpha, beta, rc] if m is not None] + if pre_rel: + self.pre_release = pre_rel[0].group() + else: + self.pre_release = '' + + self.is_devversion = bool(re.search(r'.dev', vstring)) + + def _compare_version(self, other): + """Compare major.minor.bugfix""" + if self.major == other.major: + if self.minor == other.minor: + if self.bugfix == other.bugfix: + vercmp = 0 + elif self.bugfix > other.bugfix: + vercmp = 1 + else: + vercmp = -1 + elif self.minor > other.minor: + vercmp = 1 + else: + vercmp = -1 + elif self.major > other.major: + vercmp = 1 + else: + vercmp = -1 + + return vercmp + + def _compare_pre_release(self, other): + """Compare alpha/beta/rc/final.""" + if self.pre_release == other.pre_release: + vercmp = 0 + elif self.pre_release == 'final': + vercmp = 1 + elif other.pre_release == 'final': + vercmp = -1 + elif self.pre_release > other.pre_release: + vercmp = 1 + else: + vercmp = -1 + + return vercmp + + def _compare(self, other): + if not isinstance(other, (str, NumpyVersion)): + raise ValueError("Invalid object to compare with NumpyVersion.") + + if isinstance(other, str): + other = NumpyVersion(other) + + vercmp = self._compare_version(other) + if vercmp == 0: + # Same x.y.z version, check for alpha/beta/rc + vercmp = self._compare_pre_release(other) + if vercmp == 0: + # Same version and same pre-release, check if dev version + if self.is_devversion is other.is_devversion: + vercmp = 0 + elif self.is_devversion: + vercmp = -1 + else: + vercmp = 1 + + return vercmp + + def __lt__(self, other): + return self._compare(other) < 0 + + def __le__(self, other): + return self._compare(other) <= 0 + + def __eq__(self, other): + return self._compare(other) == 0 + + def __ne__(self, other): + return self._compare(other) != 0 + + def __gt__(self, other): + return self._compare(other) > 0 + + def __ge__(self, other): + return self._compare(other) >= 0 + + def __repr__(self): + return f"NumpyVersion({self.vstring})" diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/_version.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/_version.pyi new file mode 100644 index 0000000..c53ef79 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/_version.pyi @@ -0,0 +1,17 @@ +__all__ = ["NumpyVersion"] + +class NumpyVersion: + vstring: str + version: str + major: int + minor: int + bugfix: int + pre_release: str + is_devversion: bool + def __init__(self, vstring: str) -> None: ... + def __lt__(self, other: str | NumpyVersion) -> bool: ... + def __le__(self, other: str | NumpyVersion) -> bool: ... + def __eq__(self, other: str | NumpyVersion) -> bool: ... # type: ignore[override] + def __ne__(self, other: str | NumpyVersion) -> bool: ... # type: ignore[override] + def __gt__(self, other: str | NumpyVersion) -> bool: ... + def __ge__(self, other: str | NumpyVersion) -> bool: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/array_utils.py b/.venv/lib/python3.12/site-packages/numpy/lib/array_utils.py new file mode 100644 index 0000000..c267eb0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/array_utils.py @@ -0,0 +1,7 @@ +from ._array_utils_impl import ( # noqa: F401 + __all__, + __doc__, + byte_bounds, + normalize_axis_index, + normalize_axis_tuple, +) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/array_utils.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/array_utils.pyi new file mode 100644 index 0000000..8adc3c5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/array_utils.pyi @@ -0,0 +1,12 @@ +from ._array_utils_impl import ( + __all__ as __all__, +) +from ._array_utils_impl import ( + byte_bounds as byte_bounds, +) +from ._array_utils_impl import ( + normalize_axis_index as normalize_axis_index, +) +from ._array_utils_impl import ( + normalize_axis_tuple as normalize_axis_tuple, +) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/format.py b/.venv/lib/python3.12/site-packages/numpy/lib/format.py new file mode 100644 index 0000000..8e0c799 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/format.py @@ -0,0 +1,24 @@ +from ._format_impl import ( # noqa: F401 + ARRAY_ALIGN, + BUFFER_SIZE, + EXPECTED_KEYS, + GROWTH_AXIS_MAX_DIGITS, + MAGIC_LEN, + MAGIC_PREFIX, + __all__, + __doc__, + descr_to_dtype, + drop_metadata, + dtype_to_descr, + header_data_from_array_1_0, + isfileobj, + magic, + open_memmap, + read_array, + read_array_header_1_0, + read_array_header_2_0, + read_magic, + write_array, + write_array_header_1_0, + write_array_header_2_0, +) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/format.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/format.pyi new file mode 100644 index 0000000..dd9470e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/format.pyi @@ -0,0 +1,66 @@ +from ._format_impl import ( + ARRAY_ALIGN as ARRAY_ALIGN, +) +from ._format_impl import ( + BUFFER_SIZE as BUFFER_SIZE, +) +from ._format_impl import ( + EXPECTED_KEYS as EXPECTED_KEYS, +) +from ._format_impl import ( + GROWTH_AXIS_MAX_DIGITS as GROWTH_AXIS_MAX_DIGITS, +) +from ._format_impl import ( + MAGIC_LEN as MAGIC_LEN, +) +from ._format_impl import ( + MAGIC_PREFIX as MAGIC_PREFIX, +) +from ._format_impl import ( + __all__ as __all__, +) +from ._format_impl import ( + __doc__ as __doc__, +) +from ._format_impl import ( + descr_to_dtype as descr_to_dtype, +) +from ._format_impl import ( + drop_metadata as drop_metadata, +) +from ._format_impl import ( + dtype_to_descr as dtype_to_descr, +) +from ._format_impl import ( + header_data_from_array_1_0 as header_data_from_array_1_0, +) +from ._format_impl import ( + isfileobj as isfileobj, +) +from ._format_impl import ( + magic as magic, +) +from ._format_impl import ( + open_memmap as open_memmap, +) +from ._format_impl import ( + read_array as read_array, +) +from ._format_impl import ( + read_array_header_1_0 as read_array_header_1_0, +) +from ._format_impl import ( + read_array_header_2_0 as read_array_header_2_0, +) +from ._format_impl import ( + read_magic as read_magic, +) +from ._format_impl import ( + write_array as write_array, +) +from ._format_impl import ( + write_array_header_1_0 as write_array_header_1_0, +) +from ._format_impl import ( + write_array_header_2_0 as write_array_header_2_0, +) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/introspect.py b/.venv/lib/python3.12/site-packages/numpy/lib/introspect.py new file mode 100644 index 0000000..f4a0f32 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/introspect.py @@ -0,0 +1,95 @@ +""" +Introspection helper functions. +""" + +__all__ = ['opt_func_info'] + + +def opt_func_info(func_name=None, signature=None): + """ + Returns a dictionary containing the currently supported CPU dispatched + features for all optimized functions. + + Parameters + ---------- + func_name : str (optional) + Regular expression to filter by function name. + + signature : str (optional) + Regular expression to filter by data type. + + Returns + ------- + dict + A dictionary where keys are optimized function names and values are + nested dictionaries indicating supported targets based on data types. + + Examples + -------- + Retrieve dispatch information for functions named 'add' or 'sub' and + data types 'float64' or 'float32': + + >>> import numpy as np + >>> dict = np.lib.introspect.opt_func_info( + ... func_name="add|abs", signature="float64|complex64" + ... ) + >>> import json + >>> print(json.dumps(dict, indent=2)) + { + "absolute": { + "dd": { + "current": "SSE41", + "available": "SSE41 baseline(SSE SSE2 SSE3)" + }, + "Ff": { + "current": "FMA3__AVX2", + "available": "AVX512F FMA3__AVX2 baseline(SSE SSE2 SSE3)" + }, + "Dd": { + "current": "FMA3__AVX2", + "available": "AVX512F FMA3__AVX2 baseline(SSE SSE2 SSE3)" + } + }, + "add": { + "ddd": { + "current": "FMA3__AVX2", + "available": "FMA3__AVX2 baseline(SSE SSE2 SSE3)" + }, + "FFF": { + "current": "FMA3__AVX2", + "available": "FMA3__AVX2 baseline(SSE SSE2 SSE3)" + } + } + } + + """ + import re + + from numpy._core._multiarray_umath import __cpu_targets_info__ as targets + from numpy._core._multiarray_umath import dtype + + if func_name is not None: + func_pattern = re.compile(func_name) + matching_funcs = { + k: v for k, v in targets.items() + if func_pattern.search(k) + } + else: + matching_funcs = targets + + if signature is not None: + sig_pattern = re.compile(signature) + matching_sigs = {} + for k, v in matching_funcs.items(): + matching_chars = {} + for chars, targets in v.items(): + if any( + sig_pattern.search(c) or sig_pattern.search(dtype(c).name) + for c in chars + ): + matching_chars[chars] = targets + if matching_chars: + matching_sigs[k] = matching_chars + else: + matching_sigs = matching_funcs + return matching_sigs diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/introspect.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/introspect.pyi new file mode 100644 index 0000000..7929981 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/introspect.pyi @@ -0,0 +1,3 @@ +__all__ = ["opt_func_info"] + +def opt_func_info(func_name: str | None = None, signature: str | None = None) -> dict[str, dict[str, dict[str, str]]]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/mixins.py b/.venv/lib/python3.12/site-packages/numpy/lib/mixins.py new file mode 100644 index 0000000..831bb34 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/mixins.py @@ -0,0 +1,180 @@ +""" +Mixin classes for custom array types that don't inherit from ndarray. +""" + +__all__ = ['NDArrayOperatorsMixin'] + + +def _disables_array_ufunc(obj): + """True when __array_ufunc__ is set to None.""" + try: + return obj.__array_ufunc__ is None + except AttributeError: + return False + + +def _binary_method(ufunc, name): + """Implement a forward binary method with a ufunc, e.g., __add__.""" + def func(self, other): + if _disables_array_ufunc(other): + return NotImplemented + return ufunc(self, other) + func.__name__ = f'__{name}__' + return func + + +def _reflected_binary_method(ufunc, name): + """Implement a reflected binary method with a ufunc, e.g., __radd__.""" + def func(self, other): + if _disables_array_ufunc(other): + return NotImplemented + return ufunc(other, self) + func.__name__ = f'__r{name}__' + return func + + +def _inplace_binary_method(ufunc, name): + """Implement an in-place binary method with a ufunc, e.g., __iadd__.""" + def func(self, other): + return ufunc(self, other, out=(self,)) + func.__name__ = f'__i{name}__' + return func + + +def _numeric_methods(ufunc, name): + """Implement forward, reflected and inplace binary methods with a ufunc.""" + return (_binary_method(ufunc, name), + _reflected_binary_method(ufunc, name), + _inplace_binary_method(ufunc, name)) + + +def _unary_method(ufunc, name): + """Implement a unary special method with a ufunc.""" + def func(self): + return ufunc(self) + func.__name__ = f'__{name}__' + return func + + +class NDArrayOperatorsMixin: + """Mixin defining all operator special methods using __array_ufunc__. + + This class implements the special methods for almost all of Python's + builtin operators defined in the `operator` module, including comparisons + (``==``, ``>``, etc.) and arithmetic (``+``, ``*``, ``-``, etc.), by + deferring to the ``__array_ufunc__`` method, which subclasses must + implement. + + It is useful for writing classes that do not inherit from `numpy.ndarray`, + but that should support arithmetic and numpy universal functions like + arrays as described in :external+neps:doc:`nep-0013-ufunc-overrides`. + + As an trivial example, consider this implementation of an ``ArrayLike`` + class that simply wraps a NumPy array and ensures that the result of any + arithmetic operation is also an ``ArrayLike`` object: + + >>> import numbers + >>> class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin): + ... def __init__(self, value): + ... self.value = np.asarray(value) + ... + ... # One might also consider adding the built-in list type to this + ... # list, to support operations like np.add(array_like, list) + ... _HANDLED_TYPES = (np.ndarray, numbers.Number) + ... + ... def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): + ... out = kwargs.get('out', ()) + ... for x in inputs + out: + ... # Only support operations with instances of + ... # _HANDLED_TYPES. Use ArrayLike instead of type(self) + ... # for isinstance to allow subclasses that don't + ... # override __array_ufunc__ to handle ArrayLike objects. + ... if not isinstance( + ... x, self._HANDLED_TYPES + (ArrayLike,) + ... ): + ... return NotImplemented + ... + ... # Defer to the implementation of the ufunc + ... # on unwrapped values. + ... inputs = tuple(x.value if isinstance(x, ArrayLike) else x + ... for x in inputs) + ... if out: + ... kwargs['out'] = tuple( + ... x.value if isinstance(x, ArrayLike) else x + ... for x in out) + ... result = getattr(ufunc, method)(*inputs, **kwargs) + ... + ... if type(result) is tuple: + ... # multiple return values + ... return tuple(type(self)(x) for x in result) + ... elif method == 'at': + ... # no return value + ... return None + ... else: + ... # one return value + ... return type(self)(result) + ... + ... def __repr__(self): + ... return '%s(%r)' % (type(self).__name__, self.value) + + In interactions between ``ArrayLike`` objects and numbers or numpy arrays, + the result is always another ``ArrayLike``: + + >>> x = ArrayLike([1, 2, 3]) + >>> x - 1 + ArrayLike(array([0, 1, 2])) + >>> 1 - x + ArrayLike(array([ 0, -1, -2])) + >>> np.arange(3) - x + ArrayLike(array([-1, -1, -1])) + >>> x - np.arange(3) + ArrayLike(array([1, 1, 1])) + + Note that unlike ``numpy.ndarray``, ``ArrayLike`` does not allow operations + with arbitrary, unrecognized types. This ensures that interactions with + ArrayLike preserve a well-defined casting hierarchy. + + """ + from numpy._core import umath as um + + __slots__ = () + # Like np.ndarray, this mixin class implements "Option 1" from the ufunc + # overrides NEP. + + # comparisons don't have reflected and in-place versions + __lt__ = _binary_method(um.less, 'lt') + __le__ = _binary_method(um.less_equal, 'le') + __eq__ = _binary_method(um.equal, 'eq') + __ne__ = _binary_method(um.not_equal, 'ne') + __gt__ = _binary_method(um.greater, 'gt') + __ge__ = _binary_method(um.greater_equal, 'ge') + + # numeric methods + __add__, __radd__, __iadd__ = _numeric_methods(um.add, 'add') + __sub__, __rsub__, __isub__ = _numeric_methods(um.subtract, 'sub') + __mul__, __rmul__, __imul__ = _numeric_methods(um.multiply, 'mul') + __matmul__, __rmatmul__, __imatmul__ = _numeric_methods( + um.matmul, 'matmul') + __truediv__, __rtruediv__, __itruediv__ = _numeric_methods( + um.true_divide, 'truediv') + __floordiv__, __rfloordiv__, __ifloordiv__ = _numeric_methods( + um.floor_divide, 'floordiv') + __mod__, __rmod__, __imod__ = _numeric_methods(um.remainder, 'mod') + __divmod__ = _binary_method(um.divmod, 'divmod') + __rdivmod__ = _reflected_binary_method(um.divmod, 'divmod') + # __idivmod__ does not exist + # TODO: handle the optional third argument for __pow__? + __pow__, __rpow__, __ipow__ = _numeric_methods(um.power, 'pow') + __lshift__, __rlshift__, __ilshift__ = _numeric_methods( + um.left_shift, 'lshift') + __rshift__, __rrshift__, __irshift__ = _numeric_methods( + um.right_shift, 'rshift') + __and__, __rand__, __iand__ = _numeric_methods(um.bitwise_and, 'and') + __xor__, __rxor__, __ixor__ = _numeric_methods(um.bitwise_xor, 'xor') + __or__, __ror__, __ior__ = _numeric_methods(um.bitwise_or, 'or') + + # unary methods + __neg__ = _unary_method(um.negative, 'neg') + __pos__ = _unary_method(um.positive, 'pos') + __abs__ = _unary_method(um.absolute, 'abs') + __invert__ = _unary_method(um.invert, 'invert') diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/mixins.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/mixins.pyi new file mode 100644 index 0000000..4f4801f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/mixins.pyi @@ -0,0 +1,75 @@ +from abc import ABC, abstractmethod +from typing import Any +from typing import Literal as L + +from numpy import ufunc + +__all__ = ["NDArrayOperatorsMixin"] + +# NOTE: `NDArrayOperatorsMixin` is not formally an abstract baseclass, +# even though it's reliant on subclasses implementing `__array_ufunc__` + +# NOTE: The accepted input- and output-types of the various dunders are +# completely dependent on how `__array_ufunc__` is implemented. +# As such, only little type safety can be provided here. + +class NDArrayOperatorsMixin(ABC): + @abstractmethod + def __array_ufunc__( + self, + ufunc: ufunc, + method: L["__call__", "reduce", "reduceat", "accumulate", "outer", "at"], + *inputs: Any, + **kwargs: Any, + ) -> Any: ... + def __lt__(self, other: Any) -> Any: ... + def __le__(self, other: Any) -> Any: ... + def __eq__(self, other: Any) -> Any: ... + def __ne__(self, other: Any) -> Any: ... + def __gt__(self, other: Any) -> Any: ... + def __ge__(self, other: Any) -> Any: ... + def __add__(self, other: Any) -> Any: ... + def __radd__(self, other: Any) -> Any: ... + def __iadd__(self, other: Any) -> Any: ... + def __sub__(self, other: Any) -> Any: ... + def __rsub__(self, other: Any) -> Any: ... + def __isub__(self, other: Any) -> Any: ... + def __mul__(self, other: Any) -> Any: ... + def __rmul__(self, other: Any) -> Any: ... + def __imul__(self, other: Any) -> Any: ... + def __matmul__(self, other: Any) -> Any: ... + def __rmatmul__(self, other: Any) -> Any: ... + def __imatmul__(self, other: Any) -> Any: ... + def __truediv__(self, other: Any) -> Any: ... + def __rtruediv__(self, other: Any) -> Any: ... + def __itruediv__(self, other: Any) -> Any: ... + def __floordiv__(self, other: Any) -> Any: ... + def __rfloordiv__(self, other: Any) -> Any: ... + def __ifloordiv__(self, other: Any) -> Any: ... + def __mod__(self, other: Any) -> Any: ... + def __rmod__(self, other: Any) -> Any: ... + def __imod__(self, other: Any) -> Any: ... + def __divmod__(self, other: Any) -> Any: ... + def __rdivmod__(self, other: Any) -> Any: ... + def __pow__(self, other: Any) -> Any: ... + def __rpow__(self, other: Any) -> Any: ... + def __ipow__(self, other: Any) -> Any: ... + def __lshift__(self, other: Any) -> Any: ... + def __rlshift__(self, other: Any) -> Any: ... + def __ilshift__(self, other: Any) -> Any: ... + def __rshift__(self, other: Any) -> Any: ... + def __rrshift__(self, other: Any) -> Any: ... + def __irshift__(self, other: Any) -> Any: ... + def __and__(self, other: Any) -> Any: ... + def __rand__(self, other: Any) -> Any: ... + def __iand__(self, other: Any) -> Any: ... + def __xor__(self, other: Any) -> Any: ... + def __rxor__(self, other: Any) -> Any: ... + def __ixor__(self, other: Any) -> Any: ... + def __or__(self, other: Any) -> Any: ... + def __ror__(self, other: Any) -> Any: ... + def __ior__(self, other: Any) -> Any: ... + def __neg__(self) -> Any: ... + def __pos__(self) -> Any: ... + def __abs__(self) -> Any: ... + def __invert__(self) -> Any: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/npyio.py b/.venv/lib/python3.12/site-packages/numpy/lib/npyio.py new file mode 100644 index 0000000..84d8079 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/npyio.py @@ -0,0 +1 @@ +from ._npyio_impl import DataSource, NpzFile, __doc__ # noqa: F401 diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/npyio.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/npyio.pyi new file mode 100644 index 0000000..49fb4d1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/npyio.pyi @@ -0,0 +1,9 @@ +from numpy.lib._npyio_impl import ( + DataSource as DataSource, +) +from numpy.lib._npyio_impl import ( + NpzFile as NpzFile, +) +from numpy.lib._npyio_impl import ( + __doc__ as __doc__, +) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/recfunctions.py b/.venv/lib/python3.12/site-packages/numpy/lib/recfunctions.py new file mode 100644 index 0000000..c8a6dd8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/recfunctions.py @@ -0,0 +1,1681 @@ +""" +Collection of utilities to manipulate structured arrays. + +Most of these functions were initially implemented by John Hunter for +matplotlib. They have been rewritten and extended for convenience. + +""" +import itertools + +import numpy as np +import numpy.ma as ma +import numpy.ma.mrecords as mrec +from numpy._core.overrides import array_function_dispatch +from numpy.lib._iotools import _is_string_like + +__all__ = [ + 'append_fields', 'apply_along_fields', 'assign_fields_by_name', + 'drop_fields', 'find_duplicates', 'flatten_descr', + 'get_fieldstructure', 'get_names', 'get_names_flat', + 'join_by', 'merge_arrays', 'rec_append_fields', + 'rec_drop_fields', 'rec_join', 'recursive_fill_fields', + 'rename_fields', 'repack_fields', 'require_fields', + 'stack_arrays', 'structured_to_unstructured', 'unstructured_to_structured', + ] + + +def _recursive_fill_fields_dispatcher(input, output): + return (input, output) + + +@array_function_dispatch(_recursive_fill_fields_dispatcher) +def recursive_fill_fields(input, output): + """ + Fills fields from output with fields from input, + with support for nested structures. + + Parameters + ---------- + input : ndarray + Input array. + output : ndarray + Output array. + + Notes + ----- + * `output` should be at least the same size as `input` + + Examples + -------- + >>> import numpy as np + >>> from numpy.lib import recfunctions as rfn + >>> a = np.array([(1, 10.), (2, 20.)], dtype=[('A', np.int64), ('B', np.float64)]) + >>> b = np.zeros((3,), dtype=a.dtype) + >>> rfn.recursive_fill_fields(a, b) + array([(1, 10.), (2, 20.), (0, 0.)], dtype=[('A', '>> import numpy as np + >>> dt = np.dtype([(('a', 'A'), np.int64), ('b', np.double, 3)]) + >>> dt.descr + [(('a', 'A'), '>> _get_fieldspec(dt) + [(('a', 'A'), dtype('int64')), ('b', dtype(('>> import numpy as np + >>> from numpy.lib import recfunctions as rfn + >>> rfn.get_names(np.empty((1,), dtype=[('A', int)]).dtype) + ('A',) + >>> rfn.get_names(np.empty((1,), dtype=[('A',int), ('B', float)]).dtype) + ('A', 'B') + >>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])]) + >>> rfn.get_names(adtype) + ('a', ('b', ('ba', 'bb'))) + """ + listnames = [] + names = adtype.names + for name in names: + current = adtype[name] + if current.names is not None: + listnames.append((name, tuple(get_names(current)))) + else: + listnames.append(name) + return tuple(listnames) + + +def get_names_flat(adtype): + """ + Returns the field names of the input datatype as a tuple. Input datatype + must have fields otherwise error is raised. + Nested structure are flattened beforehand. + + Parameters + ---------- + adtype : dtype + Input datatype + + Examples + -------- + >>> import numpy as np + >>> from numpy.lib import recfunctions as rfn + >>> rfn.get_names_flat(np.empty((1,), dtype=[('A', int)]).dtype) is None + False + >>> rfn.get_names_flat(np.empty((1,), dtype=[('A',int), ('B', str)]).dtype) + ('A', 'B') + >>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])]) + >>> rfn.get_names_flat(adtype) + ('a', 'b', 'ba', 'bb') + """ + listnames = [] + names = adtype.names + for name in names: + listnames.append(name) + current = adtype[name] + if current.names is not None: + listnames.extend(get_names_flat(current)) + return tuple(listnames) + + +def flatten_descr(ndtype): + """ + Flatten a structured data-type description. + + Examples + -------- + >>> import numpy as np + >>> from numpy.lib import recfunctions as rfn + >>> ndtype = np.dtype([('a', '>> rfn.flatten_descr(ndtype) + (('a', dtype('int32')), ('ba', dtype('float64')), ('bb', dtype('int32'))) + + """ + names = ndtype.names + if names is None: + return (('', ndtype),) + else: + descr = [] + for field in names: + (typ, _) = ndtype.fields[field] + if typ.names is not None: + descr.extend(flatten_descr(typ)) + else: + descr.append((field, typ)) + return tuple(descr) + + +def _zip_dtype(seqarrays, flatten=False): + newdtype = [] + if flatten: + for a in seqarrays: + newdtype.extend(flatten_descr(a.dtype)) + else: + for a in seqarrays: + current = a.dtype + if current.names is not None and len(current.names) == 1: + # special case - dtypes of 1 field are flattened + newdtype.extend(_get_fieldspec(current)) + else: + newdtype.append(('', current)) + return np.dtype(newdtype) + + +def _zip_descr(seqarrays, flatten=False): + """ + Combine the dtype description of a series of arrays. + + Parameters + ---------- + seqarrays : sequence of arrays + Sequence of arrays + flatten : {boolean}, optional + Whether to collapse nested descriptions. + """ + return _zip_dtype(seqarrays, flatten=flatten).descr + + +def get_fieldstructure(adtype, lastname=None, parents=None,): + """ + Returns a dictionary with fields indexing lists of their parent fields. + + This function is used to simplify access to fields nested in other fields. + + Parameters + ---------- + adtype : np.dtype + Input datatype + lastname : optional + Last processed field name (used internally during recursion). + parents : dictionary + Dictionary of parent fields (used internally during recursion). + + Examples + -------- + >>> import numpy as np + >>> from numpy.lib import recfunctions as rfn + >>> ndtype = np.dtype([('A', int), + ... ('B', [('BA', int), + ... ('BB', [('BBA', int), ('BBB', int)])])]) + >>> rfn.get_fieldstructure(ndtype) + ... # XXX: possible regression, order of BBA and BBB is swapped + {'A': [], 'B': [], 'BA': ['B'], 'BB': ['B'], 'BBA': ['B', 'BB'], 'BBB': ['B', 'BB']} + + """ + if parents is None: + parents = {} + names = adtype.names + for name in names: + current = adtype[name] + if current.names is not None: + if lastname: + parents[name] = [lastname, ] + else: + parents[name] = [] + parents.update(get_fieldstructure(current, name, parents)) + else: + lastparent = list(parents.get(lastname, []) or []) + if lastparent: + lastparent.append(lastname) + elif lastname: + lastparent = [lastname, ] + parents[name] = lastparent or [] + return parents + + +def _izip_fields_flat(iterable): + """ + Returns an iterator of concatenated fields from a sequence of arrays, + collapsing any nested structure. + + """ + for element in iterable: + if isinstance(element, np.void): + yield from _izip_fields_flat(tuple(element)) + else: + yield element + + +def _izip_fields(iterable): + """ + Returns an iterator of concatenated fields from a sequence of arrays. + + """ + for element in iterable: + if (hasattr(element, '__iter__') and + not isinstance(element, str)): + yield from _izip_fields(element) + elif isinstance(element, np.void) and len(tuple(element)) == 1: + # this statement is the same from the previous expression + yield from _izip_fields(element) + else: + yield element + + +def _izip_records(seqarrays, fill_value=None, flatten=True): + """ + Returns an iterator of concatenated items from a sequence of arrays. + + Parameters + ---------- + seqarrays : sequence of arrays + Sequence of arrays. + fill_value : {None, integer} + Value used to pad shorter iterables. + flatten : {True, False}, + Whether to + """ + + # Should we flatten the items, or just use a nested approach + if flatten: + zipfunc = _izip_fields_flat + else: + zipfunc = _izip_fields + + for tup in itertools.zip_longest(*seqarrays, fillvalue=fill_value): + yield tuple(zipfunc(tup)) + + +def _fix_output(output, usemask=True, asrecarray=False): + """ + Private function: return a recarray, a ndarray, a MaskedArray + or a MaskedRecords depending on the input parameters + """ + if not isinstance(output, ma.MaskedArray): + usemask = False + if usemask: + if asrecarray: + output = output.view(mrec.MaskedRecords) + else: + output = ma.filled(output) + if asrecarray: + output = output.view(np.recarray) + return output + + +def _fix_defaults(output, defaults=None): + """ + Update the fill_value and masked data of `output` + from the default given in a dictionary defaults. + """ + names = output.dtype.names + (data, mask, fill_value) = (output.data, output.mask, output.fill_value) + for (k, v) in (defaults or {}).items(): + if k in names: + fill_value[k] = v + data[k][mask[k]] = v + return output + + +def _merge_arrays_dispatcher(seqarrays, fill_value=None, flatten=None, + usemask=None, asrecarray=None): + return seqarrays + + +@array_function_dispatch(_merge_arrays_dispatcher) +def merge_arrays(seqarrays, fill_value=-1, flatten=False, + usemask=False, asrecarray=False): + """ + Merge arrays field by field. + + Parameters + ---------- + seqarrays : sequence of ndarrays + Sequence of arrays + fill_value : {float}, optional + Filling value used to pad missing data on the shorter arrays. + flatten : {False, True}, optional + Whether to collapse nested fields. + usemask : {False, True}, optional + Whether to return a masked array or not. + asrecarray : {False, True}, optional + Whether to return a recarray (MaskedRecords) or not. + + Examples + -------- + >>> import numpy as np + >>> from numpy.lib import recfunctions as rfn + >>> rfn.merge_arrays((np.array([1, 2]), np.array([10., 20., 30.]))) + array([( 1, 10.), ( 2, 20.), (-1, 30.)], + dtype=[('f0', '>> rfn.merge_arrays((np.array([1, 2], dtype=np.int64), + ... np.array([10., 20., 30.])), usemask=False) + array([(1, 10.0), (2, 20.0), (-1, 30.0)], + dtype=[('f0', '>> rfn.merge_arrays((np.array([1, 2]).view([('a', np.int64)]), + ... np.array([10., 20., 30.])), + ... usemask=False, asrecarray=True) + rec.array([( 1, 10.), ( 2, 20.), (-1, 30.)], + dtype=[('a', '>> import numpy as np + >>> from numpy.lib import recfunctions as rfn + >>> a = np.array([(1, (2, 3.0)), (4, (5, 6.0))], + ... dtype=[('a', np.int64), ('b', [('ba', np.double), ('bb', np.int64)])]) + >>> rfn.drop_fields(a, 'a') + array([((2., 3),), ((5., 6),)], + dtype=[('b', [('ba', '>> rfn.drop_fields(a, 'ba') + array([(1, (3,)), (4, (6,))], dtype=[('a', '>> rfn.drop_fields(a, ['ba', 'bb']) + array([(1,), (4,)], dtype=[('a', '>> import numpy as np + >>> from numpy.lib import recfunctions as rfn + >>> a = np.array([(1, (2, [3.0, 30.])), (4, (5, [6.0, 60.]))], + ... dtype=[('a', int),('b', [('ba', float), ('bb', (float, 2))])]) + >>> rfn.rename_fields(a, {'a':'A', 'bb':'BB'}) + array([(1, (2., [ 3., 30.])), (4, (5., [ 6., 60.]))], + dtype=[('A', ' 1: + data = merge_arrays(data, flatten=True, usemask=usemask, + fill_value=fill_value) + else: + data = data.pop() + # + output = ma.masked_all( + max(len(base), len(data)), + dtype=_get_fieldspec(base.dtype) + _get_fieldspec(data.dtype)) + output = recursive_fill_fields(base, output) + output = recursive_fill_fields(data, output) + # + return _fix_output(output, usemask=usemask, asrecarray=asrecarray) + + +def _rec_append_fields_dispatcher(base, names, data, dtypes=None): + yield base + yield from data + + +@array_function_dispatch(_rec_append_fields_dispatcher) +def rec_append_fields(base, names, data, dtypes=None): + """ + Add new fields to an existing array. + + The names of the fields are given with the `names` arguments, + the corresponding values with the `data` arguments. + If a single field is appended, `names`, `data` and `dtypes` do not have + to be lists but just values. + + Parameters + ---------- + base : array + Input array to extend. + names : string, sequence + String or sequence of strings corresponding to the names + of the new fields. + data : array or sequence of arrays + Array or sequence of arrays storing the fields to add to the base. + dtypes : sequence of datatypes, optional + Datatype or sequence of datatypes. + If None, the datatypes are estimated from the `data`. + + See Also + -------- + append_fields + + Returns + ------- + appended_array : np.recarray + """ + return append_fields(base, names, data=data, dtypes=dtypes, + asrecarray=True, usemask=False) + + +def _repack_fields_dispatcher(a, align=None, recurse=None): + return (a,) + + +@array_function_dispatch(_repack_fields_dispatcher) +def repack_fields(a, align=False, recurse=False): + """ + Re-pack the fields of a structured array or dtype in memory. + + The memory layout of structured datatypes allows fields at arbitrary + byte offsets. This means the fields can be separated by padding bytes, + their offsets can be non-monotonically increasing, and they can overlap. + + This method removes any overlaps and reorders the fields in memory so they + have increasing byte offsets, and adds or removes padding bytes depending + on the `align` option, which behaves like the `align` option to + `numpy.dtype`. + + If `align=False`, this method produces a "packed" memory layout in which + each field starts at the byte the previous field ended, and any padding + bytes are removed. + + If `align=True`, this methods produces an "aligned" memory layout in which + each field's offset is a multiple of its alignment, and the total itemsize + is a multiple of the largest alignment, by adding padding bytes as needed. + + Parameters + ---------- + a : ndarray or dtype + array or dtype for which to repack the fields. + align : boolean + If true, use an "aligned" memory layout, otherwise use a "packed" layout. + recurse : boolean + If True, also repack nested structures. + + Returns + ------- + repacked : ndarray or dtype + Copy of `a` with fields repacked, or `a` itself if no repacking was + needed. + + Examples + -------- + >>> import numpy as np + + >>> from numpy.lib import recfunctions as rfn + >>> def print_offsets(d): + ... print("offsets:", [d.fields[name][1] for name in d.names]) + ... print("itemsize:", d.itemsize) + ... + >>> dt = np.dtype('u1, >> dt + dtype({'names': ['f0', 'f1', 'f2'], 'formats': ['u1', '>> print_offsets(dt) + offsets: [0, 8, 16] + itemsize: 24 + >>> packed_dt = rfn.repack_fields(dt) + >>> packed_dt + dtype([('f0', 'u1'), ('f1', '>> print_offsets(packed_dt) + offsets: [0, 1, 9] + itemsize: 17 + + """ + if not isinstance(a, np.dtype): + dt = repack_fields(a.dtype, align=align, recurse=recurse) + return a.astype(dt, copy=False) + + if a.names is None: + return a + + fieldinfo = [] + for name in a.names: + tup = a.fields[name] + if recurse: + fmt = repack_fields(tup[0], align=align, recurse=True) + else: + fmt = tup[0] + + if len(tup) == 3: + name = (tup[2], name) + + fieldinfo.append((name, fmt)) + + dt = np.dtype(fieldinfo, align=align) + return np.dtype((a.type, dt)) + +def _get_fields_and_offsets(dt, offset=0): + """ + Returns a flat list of (dtype, count, offset) tuples of all the + scalar fields in the dtype "dt", including nested fields, in left + to right order. + """ + + # counts up elements in subarrays, including nested subarrays, and returns + # base dtype and count + def count_elem(dt): + count = 1 + while dt.shape != (): + for size in dt.shape: + count *= size + dt = dt.base + return dt, count + + fields = [] + for name in dt.names: + field = dt.fields[name] + f_dt, f_offset = field[0], field[1] + f_dt, n = count_elem(f_dt) + + if f_dt.names is None: + fields.append((np.dtype((f_dt, (n,))), n, f_offset + offset)) + else: + subfields = _get_fields_and_offsets(f_dt, f_offset + offset) + size = f_dt.itemsize + + for i in range(n): + if i == 0: + # optimization: avoid list comprehension if no subarray + fields.extend(subfields) + else: + fields.extend([(d, c, o + i * size) for d, c, o in subfields]) + return fields + +def _common_stride(offsets, counts, itemsize): + """ + Returns the stride between the fields, or None if the stride is not + constant. The values in "counts" designate the lengths of + subarrays. Subarrays are treated as many contiguous fields, with + always positive stride. + """ + if len(offsets) <= 1: + return itemsize + + negative = offsets[1] < offsets[0] # negative stride + if negative: + # reverse, so offsets will be ascending + it = zip(reversed(offsets), reversed(counts)) + else: + it = zip(offsets, counts) + + prev_offset = None + stride = None + for offset, count in it: + if count != 1: # subarray: always c-contiguous + if negative: + return None # subarrays can never have a negative stride + if stride is None: + stride = itemsize + if stride != itemsize: + return None + end_offset = offset + (count - 1) * itemsize + else: + end_offset = offset + + if prev_offset is not None: + new_stride = offset - prev_offset + if stride is None: + stride = new_stride + if stride != new_stride: + return None + + prev_offset = end_offset + + if negative: + return -stride + return stride + + +def _structured_to_unstructured_dispatcher(arr, dtype=None, copy=None, + casting=None): + return (arr,) + +@array_function_dispatch(_structured_to_unstructured_dispatcher) +def structured_to_unstructured(arr, dtype=None, copy=False, casting='unsafe'): + """ + Converts an n-D structured array into an (n+1)-D unstructured array. + + The new array will have a new last dimension equal in size to the + number of field-elements of the input array. If not supplied, the output + datatype is determined from the numpy type promotion rules applied to all + the field datatypes. + + Nested fields, as well as each element of any subarray fields, all count + as a single field-elements. + + Parameters + ---------- + arr : ndarray + Structured array or dtype to convert. Cannot contain object datatype. + dtype : dtype, optional + The dtype of the output unstructured array. + copy : bool, optional + If true, always return a copy. If false, a view is returned if + possible, such as when the `dtype` and strides of the fields are + suitable and the array subtype is one of `numpy.ndarray`, + `numpy.recarray` or `numpy.memmap`. + + .. versionchanged:: 1.25.0 + A view can now be returned if the fields are separated by a + uniform stride. + + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional + See casting argument of `numpy.ndarray.astype`. Controls what kind of + data casting may occur. + + Returns + ------- + unstructured : ndarray + Unstructured array with one more dimension. + + Examples + -------- + >>> import numpy as np + + >>> from numpy.lib import recfunctions as rfn + >>> a = np.zeros(4, dtype=[('a', 'i4'), ('b', 'f4,u2'), ('c', 'f4', 2)]) + >>> a + array([(0, (0., 0), [0., 0.]), (0, (0., 0), [0., 0.]), + (0, (0., 0), [0., 0.]), (0, (0., 0), [0., 0.])], + dtype=[('a', '>> rfn.structured_to_unstructured(a) + array([[0., 0., 0., 0., 0.], + [0., 0., 0., 0., 0.], + [0., 0., 0., 0., 0.], + [0., 0., 0., 0., 0.]]) + + >>> b = np.array([(1, 2, 5), (4, 5, 7), (7, 8 ,11), (10, 11, 12)], + ... dtype=[('x', 'i4'), ('y', 'f4'), ('z', 'f8')]) + >>> np.mean(rfn.structured_to_unstructured(b[['x', 'z']]), axis=-1) + array([ 3. , 5.5, 9. , 11. ]) + + """ # noqa: E501 + if arr.dtype.names is None: + raise ValueError('arr must be a structured array') + + fields = _get_fields_and_offsets(arr.dtype) + n_fields = len(fields) + if n_fields == 0 and dtype is None: + raise ValueError("arr has no fields. Unable to guess dtype") + elif n_fields == 0: + # too many bugs elsewhere for this to work now + raise NotImplementedError("arr with no fields is not supported") + + dts, counts, offsets = zip(*fields) + names = [f'f{n}' for n in range(n_fields)] + + if dtype is None: + out_dtype = np.result_type(*[dt.base for dt in dts]) + else: + out_dtype = np.dtype(dtype) + + # Use a series of views and casts to convert to an unstructured array: + + # first view using flattened fields (doesn't work for object arrays) + # Note: dts may include a shape for subarrays + flattened_fields = np.dtype({'names': names, + 'formats': dts, + 'offsets': offsets, + 'itemsize': arr.dtype.itemsize}) + arr = arr.view(flattened_fields) + + # we only allow a few types to be unstructured by manipulating the + # strides, because we know it won't work with, for example, np.matrix nor + # np.ma.MaskedArray. + can_view = type(arr) in (np.ndarray, np.recarray, np.memmap) + if (not copy) and can_view and all(dt.base == out_dtype for dt in dts): + # all elements have the right dtype already; if they have a common + # stride, we can just return a view + common_stride = _common_stride(offsets, counts, out_dtype.itemsize) + if common_stride is not None: + wrap = arr.__array_wrap__ + + new_shape = arr.shape + (sum(counts), out_dtype.itemsize) + new_strides = arr.strides + (abs(common_stride), 1) + + arr = arr[..., np.newaxis].view(np.uint8) # view as bytes + arr = arr[..., min(offsets):] # remove the leading unused data + arr = np.lib.stride_tricks.as_strided(arr, + new_shape, + new_strides, + subok=True) + + # cast and drop the last dimension again + arr = arr.view(out_dtype)[..., 0] + + if common_stride < 0: + arr = arr[..., ::-1] # reverse, if the stride was negative + if type(arr) is not type(wrap.__self__): + # Some types (e.g. recarray) turn into an ndarray along the + # way, so we have to wrap it again in order to match the + # behavior with copy=True. + arr = wrap(arr) + return arr + + # next cast to a packed format with all fields converted to new dtype + packed_fields = np.dtype({'names': names, + 'formats': [(out_dtype, dt.shape) for dt in dts]}) + arr = arr.astype(packed_fields, copy=copy, casting=casting) + + # finally is it safe to view the packed fields as the unstructured type + return arr.view((out_dtype, (sum(counts),))) + + +def _unstructured_to_structured_dispatcher(arr, dtype=None, names=None, + align=None, copy=None, casting=None): + return (arr,) + +@array_function_dispatch(_unstructured_to_structured_dispatcher) +def unstructured_to_structured(arr, dtype=None, names=None, align=False, + copy=False, casting='unsafe'): + """ + Converts an n-D unstructured array into an (n-1)-D structured array. + + The last dimension of the input array is converted into a structure, with + number of field-elements equal to the size of the last dimension of the + input array. By default all output fields have the input array's dtype, but + an output structured dtype with an equal number of fields-elements can be + supplied instead. + + Nested fields, as well as each element of any subarray fields, all count + towards the number of field-elements. + + Parameters + ---------- + arr : ndarray + Unstructured array or dtype to convert. + dtype : dtype, optional + The structured dtype of the output array + names : list of strings, optional + If dtype is not supplied, this specifies the field names for the output + dtype, in order. The field dtypes will be the same as the input array. + align : boolean, optional + Whether to create an aligned memory layout. + copy : bool, optional + See copy argument to `numpy.ndarray.astype`. If true, always return a + copy. If false, and `dtype` requirements are satisfied, a view is + returned. + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional + See casting argument of `numpy.ndarray.astype`. Controls what kind of + data casting may occur. + + Returns + ------- + structured : ndarray + Structured array with fewer dimensions. + + Examples + -------- + >>> import numpy as np + + >>> from numpy.lib import recfunctions as rfn + >>> dt = np.dtype([('a', 'i4'), ('b', 'f4,u2'), ('c', 'f4', 2)]) + >>> a = np.arange(20).reshape((4,5)) + >>> a + array([[ 0, 1, 2, 3, 4], + [ 5, 6, 7, 8, 9], + [10, 11, 12, 13, 14], + [15, 16, 17, 18, 19]]) + >>> rfn.unstructured_to_structured(a, dt) + array([( 0, ( 1., 2), [ 3., 4.]), ( 5, ( 6., 7), [ 8., 9.]), + (10, (11., 12), [13., 14.]), (15, (16., 17), [18., 19.])], + dtype=[('a', '>> import numpy as np + + >>> from numpy.lib import recfunctions as rfn + >>> b = np.array([(1, 2, 5), (4, 5, 7), (7, 8 ,11), (10, 11, 12)], + ... dtype=[('x', 'i4'), ('y', 'f4'), ('z', 'f8')]) + >>> rfn.apply_along_fields(np.mean, b) + array([ 2.66666667, 5.33333333, 8.66666667, 11. ]) + >>> rfn.apply_along_fields(np.mean, b[['x', 'z']]) + array([ 3. , 5.5, 9. , 11. ]) + + """ + if arr.dtype.names is None: + raise ValueError('arr must be a structured array') + + uarr = structured_to_unstructured(arr) + return func(uarr, axis=-1) + # works and avoids axis requirement, but very, very slow: + #return np.apply_along_axis(func, -1, uarr) + +def _assign_fields_by_name_dispatcher(dst, src, zero_unassigned=None): + return dst, src + +@array_function_dispatch(_assign_fields_by_name_dispatcher) +def assign_fields_by_name(dst, src, zero_unassigned=True): + """ + Assigns values from one structured array to another by field name. + + Normally in numpy >= 1.14, assignment of one structured array to another + copies fields "by position", meaning that the first field from the src is + copied to the first field of the dst, and so on, regardless of field name. + + This function instead copies "by field name", such that fields in the dst + are assigned from the identically named field in the src. This applies + recursively for nested structures. This is how structure assignment worked + in numpy >= 1.6 to <= 1.13. + + Parameters + ---------- + dst : ndarray + src : ndarray + The source and destination arrays during assignment. + zero_unassigned : bool, optional + If True, fields in the dst for which there was no matching + field in the src are filled with the value 0 (zero). This + was the behavior of numpy <= 1.13. If False, those fields + are not modified. + """ + + if dst.dtype.names is None: + dst[...] = src + return + + for name in dst.dtype.names: + if name not in src.dtype.names: + if zero_unassigned: + dst[name] = 0 + else: + assign_fields_by_name(dst[name], src[name], + zero_unassigned) + +def _require_fields_dispatcher(array, required_dtype): + return (array,) + +@array_function_dispatch(_require_fields_dispatcher) +def require_fields(array, required_dtype): + """ + Casts a structured array to a new dtype using assignment by field-name. + + This function assigns from the old to the new array by name, so the + value of a field in the output array is the value of the field with the + same name in the source array. This has the effect of creating a new + ndarray containing only the fields "required" by the required_dtype. + + If a field name in the required_dtype does not exist in the + input array, that field is created and set to 0 in the output array. + + Parameters + ---------- + a : ndarray + array to cast + required_dtype : dtype + datatype for output array + + Returns + ------- + out : ndarray + array with the new dtype, with field values copied from the fields in + the input array with the same name + + Examples + -------- + >>> import numpy as np + + >>> from numpy.lib import recfunctions as rfn + >>> a = np.ones(4, dtype=[('a', 'i4'), ('b', 'f8'), ('c', 'u1')]) + >>> rfn.require_fields(a, [('b', 'f4'), ('c', 'u1')]) + array([(1., 1), (1., 1), (1., 1), (1., 1)], + dtype=[('b', '>> rfn.require_fields(a, [('b', 'f4'), ('newf', 'u1')]) + array([(1., 0), (1., 0), (1., 0), (1., 0)], + dtype=[('b', '>> import numpy as np + >>> from numpy.lib import recfunctions as rfn + >>> x = np.array([1, 2,]) + >>> rfn.stack_arrays(x) is x + True + >>> z = np.array([('A', 1), ('B', 2)], dtype=[('A', '|S3'), ('B', float)]) + >>> zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)], + ... dtype=[('A', '|S3'), ('B', np.double), ('C', np.double)]) + >>> test = rfn.stack_arrays((z,zz)) + >>> test + masked_array(data=[(b'A', 1.0, --), (b'B', 2.0, --), (b'a', 10.0, 100.0), + (b'b', 20.0, 200.0), (b'c', 30.0, 300.0)], + mask=[(False, False, True), (False, False, True), + (False, False, False), (False, False, False), + (False, False, False)], + fill_value=(b'N/A', 1e+20, 1e+20), + dtype=[('A', 'S3'), ('B', ' '{fdtype}'") + # Only one field: use concatenate + if len(newdescr) == 1: + output = ma.concatenate(seqarrays) + else: + # + output = ma.masked_all((np.sum(nrecords),), newdescr) + offset = np.cumsum(np.r_[0, nrecords]) + seen = [] + for (a, n, i, j) in zip(seqarrays, fldnames, offset[:-1], offset[1:]): + names = a.dtype.names + if names is None: + output[f'f{len(seen)}'][i:j] = a + else: + for name in n: + output[name][i:j] = a[name] + if name not in seen: + seen.append(name) + # + return _fix_output(_fix_defaults(output, defaults), + usemask=usemask, asrecarray=asrecarray) + + +def _find_duplicates_dispatcher( + a, key=None, ignoremask=None, return_index=None): + return (a,) + + +@array_function_dispatch(_find_duplicates_dispatcher) +def find_duplicates(a, key=None, ignoremask=True, return_index=False): + """ + Find the duplicates in a structured array along a given key + + Parameters + ---------- + a : array-like + Input array + key : {string, None}, optional + Name of the fields along which to check the duplicates. + If None, the search is performed by records + ignoremask : {True, False}, optional + Whether masked data should be discarded or considered as duplicates. + return_index : {False, True}, optional + Whether to return the indices of the duplicated values. + + Examples + -------- + >>> import numpy as np + >>> from numpy.lib import recfunctions as rfn + >>> ndtype = [('a', int)] + >>> a = np.ma.array([1, 1, 1, 2, 2, 3, 3], + ... mask=[0, 0, 1, 0, 0, 0, 1]).view(ndtype) + >>> rfn.find_duplicates(a, ignoremask=True, return_index=True) + (masked_array(data=[(1,), (1,), (2,), (2,)], + mask=[(False,), (False,), (False,), (False,)], + fill_value=(999999,), + dtype=[('a', '= nb1)] - nb1 + (r1cmn, r2cmn) = (len(idx_1), len(idx_2)) + if jointype == 'inner': + (r1spc, r2spc) = (0, 0) + elif jointype == 'outer': + idx_out = idx_sort[~flag_in] + idx_1 = np.concatenate((idx_1, idx_out[(idx_out < nb1)])) + idx_2 = np.concatenate((idx_2, idx_out[(idx_out >= nb1)] - nb1)) + (r1spc, r2spc) = (len(idx_1) - r1cmn, len(idx_2) - r2cmn) + elif jointype == 'leftouter': + idx_out = idx_sort[~flag_in] + idx_1 = np.concatenate((idx_1, idx_out[(idx_out < nb1)])) + (r1spc, r2spc) = (len(idx_1) - r1cmn, 0) + # Select the entries from each input + (s1, s2) = (r1[idx_1], r2[idx_2]) + # + # Build the new description of the output array ....... + # Start with the key fields + ndtype = _get_fieldspec(r1k.dtype) + + # Add the fields from r1 + for fname, fdtype in _get_fieldspec(r1.dtype): + if fname not in key: + ndtype.append((fname, fdtype)) + + # Add the fields from r2 + for fname, fdtype in _get_fieldspec(r2.dtype): + # Have we seen the current name already ? + # we need to rebuild this list every time + names = [name for name, dtype in ndtype] + try: + nameidx = names.index(fname) + except ValueError: + #... we haven't: just add the description to the current list + ndtype.append((fname, fdtype)) + else: + # collision + _, cdtype = ndtype[nameidx] + if fname in key: + # The current field is part of the key: take the largest dtype + ndtype[nameidx] = (fname, max(fdtype, cdtype)) + else: + # The current field is not part of the key: add the suffixes, + # and place the new field adjacent to the old one + ndtype[nameidx:nameidx + 1] = [ + (fname + r1postfix, cdtype), + (fname + r2postfix, fdtype) + ] + # Rebuild a dtype from the new fields + ndtype = np.dtype(ndtype) + # Find the largest nb of common fields : + # r1cmn and r2cmn should be equal, but... + cmn = max(r1cmn, r2cmn) + # Construct an empty array + output = ma.masked_all((cmn + r1spc + r2spc,), dtype=ndtype) + names = output.dtype.names + for f in r1names: + selected = s1[f] + if f not in names or (f in r2names and not r2postfix and f not in key): + f += r1postfix + current = output[f] + current[:r1cmn] = selected[:r1cmn] + if jointype in ('outer', 'leftouter'): + current[cmn:cmn + r1spc] = selected[r1cmn:] + for f in r2names: + selected = s2[f] + if f not in names or (f in r1names and not r1postfix and f not in key): + f += r2postfix + current = output[f] + current[:r2cmn] = selected[:r2cmn] + if (jointype == 'outer') and r2spc: + current[-r2spc:] = selected[r2cmn:] + # Sort and finalize the output + output.sort(order=key) + kwargs = {'usemask': usemask, 'asrecarray': asrecarray} + return _fix_output(_fix_defaults(output, defaults), **kwargs) + + +def _rec_join_dispatcher( + key, r1, r2, jointype=None, r1postfix=None, r2postfix=None, + defaults=None): + return (r1, r2) + + +@array_function_dispatch(_rec_join_dispatcher) +def rec_join(key, r1, r2, jointype='inner', r1postfix='1', r2postfix='2', + defaults=None): + """ + Join arrays `r1` and `r2` on keys. + Alternative to join_by, that always returns a np.recarray. + + See Also + -------- + join_by : equivalent function + """ + kwargs = {'jointype': jointype, 'r1postfix': r1postfix, 'r2postfix': r2postfix, + 'defaults': defaults, 'usemask': False, 'asrecarray': True} + return join_by(key, r1, r2, **kwargs) + + +del array_function_dispatch diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/recfunctions.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/recfunctions.pyi new file mode 100644 index 0000000..0736429 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/recfunctions.pyi @@ -0,0 +1,435 @@ +from collections.abc import Callable, Iterable, Mapping, Sequence +from typing import Any, Literal, TypeAlias, overload + +from _typeshed import Incomplete +from typing_extensions import TypeVar + +import numpy as np +import numpy.typing as npt +from numpy._typing import _AnyShape, _DTypeLike, _DTypeLikeVoid +from numpy.ma.mrecords import MaskedRecords + +__all__ = [ + "append_fields", + "apply_along_fields", + "assign_fields_by_name", + "drop_fields", + "find_duplicates", + "flatten_descr", + "get_fieldstructure", + "get_names", + "get_names_flat", + "join_by", + "merge_arrays", + "rec_append_fields", + "rec_drop_fields", + "rec_join", + "recursive_fill_fields", + "rename_fields", + "repack_fields", + "require_fields", + "stack_arrays", + "structured_to_unstructured", + "unstructured_to_structured", +] + +_T = TypeVar("_T") +_ShapeT = TypeVar("_ShapeT", bound=tuple[int, ...]) +_ScalarT = TypeVar("_ScalarT", bound=np.generic) +_DTypeT = TypeVar("_DTypeT", bound=np.dtype) +_ArrayT = TypeVar("_ArrayT", bound=npt.NDArray[Any]) +_VoidArrayT = TypeVar("_VoidArrayT", bound=npt.NDArray[np.void]) +_NonVoidDTypeT = TypeVar("_NonVoidDTypeT", bound=_NonVoidDType) + +_OneOrMany: TypeAlias = _T | Iterable[_T] +_BuiltinSequence: TypeAlias = tuple[_T, ...] | list[_T] + +_NestedNames: TypeAlias = tuple[str | _NestedNames, ...] +_NonVoid: TypeAlias = np.bool | np.number | np.character | np.datetime64 | np.timedelta64 | np.object_ +_NonVoidDType: TypeAlias = np.dtype[_NonVoid] | np.dtypes.StringDType + +_JoinType: TypeAlias = Literal["inner", "outer", "leftouter"] + +### + +def recursive_fill_fields(input: npt.NDArray[np.void], output: _VoidArrayT) -> _VoidArrayT: ... + +# +def get_names(adtype: np.dtype[np.void]) -> _NestedNames: ... +def get_names_flat(adtype: np.dtype[np.void]) -> tuple[str, ...]: ... + +# +@overload +def flatten_descr(ndtype: _NonVoidDTypeT) -> tuple[tuple[Literal[""], _NonVoidDTypeT]]: ... +@overload +def flatten_descr(ndtype: np.dtype[np.void]) -> tuple[tuple[str, np.dtype]]: ... + +# +def get_fieldstructure( + adtype: np.dtype[np.void], + lastname: str | None = None, + parents: dict[str, list[str]] | None = None, +) -> dict[str, list[str]]: ... + +# +@overload +def merge_arrays( + seqarrays: Sequence[np.ndarray[_ShapeT, np.dtype]] | np.ndarray[_ShapeT, np.dtype], + fill_value: float = -1, + flatten: bool = False, + usemask: bool = False, + asrecarray: bool = False, +) -> np.recarray[_ShapeT, np.dtype[np.void]]: ... +@overload +def merge_arrays( + seqarrays: Sequence[npt.ArrayLike] | np.void, + fill_value: float = -1, + flatten: bool = False, + usemask: bool = False, + asrecarray: bool = False, +) -> np.recarray[_AnyShape, np.dtype[np.void]]: ... + +# +@overload +def drop_fields( + base: np.ndarray[_ShapeT, np.dtype[np.void]], + drop_names: str | Iterable[str], + usemask: bool = True, + asrecarray: Literal[False] = False, +) -> np.ndarray[_ShapeT, np.dtype[np.void]]: ... +@overload +def drop_fields( + base: np.ndarray[_ShapeT, np.dtype[np.void]], + drop_names: str | Iterable[str], + usemask: bool, + asrecarray: Literal[True], +) -> np.recarray[_ShapeT, np.dtype[np.void]]: ... +@overload +def drop_fields( + base: np.ndarray[_ShapeT, np.dtype[np.void]], + drop_names: str | Iterable[str], + usemask: bool = True, + *, + asrecarray: Literal[True], +) -> np.recarray[_ShapeT, np.dtype[np.void]]: ... + +# +@overload +def rename_fields( + base: MaskedRecords[_ShapeT, np.dtype[np.void]], + namemapper: Mapping[str, str], +) -> MaskedRecords[_ShapeT, np.dtype[np.void]]: ... +@overload +def rename_fields( + base: np.ma.MaskedArray[_ShapeT, np.dtype[np.void]], + namemapper: Mapping[str, str], +) -> np.ma.MaskedArray[_ShapeT, np.dtype[np.void]]: ... +@overload +def rename_fields( + base: np.recarray[_ShapeT, np.dtype[np.void]], + namemapper: Mapping[str, str], +) -> np.recarray[_ShapeT, np.dtype[np.void]]: ... +@overload +def rename_fields( + base: np.ndarray[_ShapeT, np.dtype[np.void]], + namemapper: Mapping[str, str], +) -> np.ndarray[_ShapeT, np.dtype[np.void]]: ... + +# +@overload +def append_fields( + base: np.ndarray[_ShapeT, np.dtype[np.void]], + names: _OneOrMany[str], + data: _OneOrMany[npt.NDArray[Any]], + dtypes: _BuiltinSequence[np.dtype] | None, + fill_value: int, + usemask: Literal[False], + asrecarray: Literal[False] = False, +) -> np.ndarray[_ShapeT, np.dtype[np.void]]: ... +@overload +def append_fields( + base: np.ndarray[_ShapeT, np.dtype[np.void]], + names: _OneOrMany[str], + data: _OneOrMany[npt.NDArray[Any]], + dtypes: _BuiltinSequence[np.dtype] | None = None, + fill_value: int = -1, + *, + usemask: Literal[False], + asrecarray: Literal[False] = False, +) -> np.ndarray[_ShapeT, np.dtype[np.void]]: ... +@overload +def append_fields( + base: np.ndarray[_ShapeT, np.dtype[np.void]], + names: _OneOrMany[str], + data: _OneOrMany[npt.NDArray[Any]], + dtypes: _BuiltinSequence[np.dtype] | None, + fill_value: int, + usemask: Literal[False], + asrecarray: Literal[True], +) -> np.recarray[_ShapeT, np.dtype[np.void]]: ... +@overload +def append_fields( + base: np.ndarray[_ShapeT, np.dtype[np.void]], + names: _OneOrMany[str], + data: _OneOrMany[npt.NDArray[Any]], + dtypes: _BuiltinSequence[np.dtype] | None = None, + fill_value: int = -1, + *, + usemask: Literal[False], + asrecarray: Literal[True], +) -> np.recarray[_ShapeT, np.dtype[np.void]]: ... +@overload +def append_fields( + base: np.ndarray[_ShapeT, np.dtype[np.void]], + names: _OneOrMany[str], + data: _OneOrMany[npt.NDArray[Any]], + dtypes: _BuiltinSequence[np.dtype] | None = None, + fill_value: int = -1, + usemask: Literal[True] = True, + asrecarray: Literal[False] = False, +) -> np.ma.MaskedArray[_ShapeT, np.dtype[np.void]]: ... +@overload +def append_fields( + base: np.ndarray[_ShapeT, np.dtype[np.void]], + names: _OneOrMany[str], + data: _OneOrMany[npt.NDArray[Any]], + dtypes: _BuiltinSequence[np.dtype] | None, + fill_value: int, + usemask: Literal[True], + asrecarray: Literal[True], +) -> MaskedRecords[_ShapeT, np.dtype[np.void]]: ... +@overload +def append_fields( + base: np.ndarray[_ShapeT, np.dtype[np.void]], + names: _OneOrMany[str], + data: _OneOrMany[npt.NDArray[Any]], + dtypes: _BuiltinSequence[np.dtype] | None = None, + fill_value: int = -1, + usemask: Literal[True] = True, + *, + asrecarray: Literal[True], +) -> MaskedRecords[_ShapeT, np.dtype[np.void]]: ... + +# +def rec_drop_fields( + base: np.ndarray[_ShapeT, np.dtype[np.void]], + drop_names: str | Iterable[str], +) -> np.recarray[_ShapeT, np.dtype[np.void]]: ... + +# +def rec_append_fields( + base: np.ndarray[_ShapeT, np.dtype[np.void]], + names: _OneOrMany[str], + data: _OneOrMany[npt.NDArray[Any]], + dtypes: _BuiltinSequence[np.dtype] | None = None, +) -> np.ma.MaskedArray[_ShapeT, np.dtype[np.void]]: ... + +# TODO(jorenham): Stop passing `void` directly once structured dtypes are implemented, +# e.g. using a `TypeVar` with constraints. +# https://github.com/numpy/numtype/issues/92 +@overload +def repack_fields(a: _DTypeT, align: bool = False, recurse: bool = False) -> _DTypeT: ... +@overload +def repack_fields(a: _ScalarT, align: bool = False, recurse: bool = False) -> _ScalarT: ... +@overload +def repack_fields(a: _ArrayT, align: bool = False, recurse: bool = False) -> _ArrayT: ... + +# TODO(jorenham): Attempt shape-typing (return type has ndim == arr.ndim + 1) +@overload +def structured_to_unstructured( + arr: npt.NDArray[np.void], + dtype: _DTypeLike[_ScalarT], + copy: bool = False, + casting: np._CastingKind = "unsafe", +) -> npt.NDArray[_ScalarT]: ... +@overload +def structured_to_unstructured( + arr: npt.NDArray[np.void], + dtype: npt.DTypeLike | None = None, + copy: bool = False, + casting: np._CastingKind = "unsafe", +) -> npt.NDArray[Any]: ... + +# +@overload +def unstructured_to_structured( + arr: npt.NDArray[Any], + dtype: npt.DTypeLike, + names: None = None, + align: bool = False, + copy: bool = False, + casting: str = "unsafe", +) -> npt.NDArray[np.void]: ... +@overload +def unstructured_to_structured( + arr: npt.NDArray[Any], + dtype: None, + names: _OneOrMany[str], + align: bool = False, + copy: bool = False, + casting: str = "unsafe", +) -> npt.NDArray[np.void]: ... + +# +def apply_along_fields( + func: Callable[[np.ndarray[_ShapeT, Any]], npt.NDArray[Any]], + arr: np.ndarray[_ShapeT, np.dtype[np.void]], +) -> np.ndarray[_ShapeT, np.dtype[np.void]]: ... + +# +def assign_fields_by_name(dst: npt.NDArray[np.void], src: npt.NDArray[np.void], zero_unassigned: bool = True) -> None: ... + +# +def require_fields( + array: np.ndarray[_ShapeT, np.dtype[np.void]], + required_dtype: _DTypeLikeVoid, +) -> np.ndarray[_ShapeT, np.dtype[np.void]]: ... + +# TODO(jorenham): Attempt shape-typing +@overload +def stack_arrays( + arrays: _ArrayT, + defaults: Mapping[str, object] | None = None, + usemask: bool = True, + asrecarray: bool = False, + autoconvert: bool = False, +) -> _ArrayT: ... +@overload +def stack_arrays( + arrays: Sequence[npt.NDArray[Any]], + defaults: Mapping[str, Incomplete] | None, + usemask: Literal[False], + asrecarray: Literal[False] = False, + autoconvert: bool = False, +) -> npt.NDArray[np.void]: ... +@overload +def stack_arrays( + arrays: Sequence[npt.NDArray[Any]], + defaults: Mapping[str, Incomplete] | None = None, + *, + usemask: Literal[False], + asrecarray: Literal[False] = False, + autoconvert: bool = False, +) -> npt.NDArray[np.void]: ... +@overload +def stack_arrays( + arrays: Sequence[npt.NDArray[Any]], + defaults: Mapping[str, Incomplete] | None = None, + *, + usemask: Literal[False], + asrecarray: Literal[True], + autoconvert: bool = False, +) -> np.recarray[_AnyShape, np.dtype[np.void]]: ... +@overload +def stack_arrays( + arrays: Sequence[npt.NDArray[Any]], + defaults: Mapping[str, Incomplete] | None = None, + usemask: Literal[True] = True, + asrecarray: Literal[False] = False, + autoconvert: bool = False, +) -> np.ma.MaskedArray[_AnyShape, np.dtype[np.void]]: ... +@overload +def stack_arrays( + arrays: Sequence[npt.NDArray[Any]], + defaults: Mapping[str, Incomplete] | None, + usemask: Literal[True], + asrecarray: Literal[True], + autoconvert: bool = False, +) -> MaskedRecords[_AnyShape, np.dtype[np.void]]: ... +@overload +def stack_arrays( + arrays: Sequence[npt.NDArray[Any]], + defaults: Mapping[str, Incomplete] | None = None, + usemask: Literal[True] = True, + *, + asrecarray: Literal[True], + autoconvert: bool = False, +) -> MaskedRecords[_AnyShape, np.dtype[np.void]]: ... + +# +@overload +def find_duplicates( + a: np.ma.MaskedArray[_ShapeT, np.dtype[np.void]], + key: str | None = None, + ignoremask: bool = True, + return_index: Literal[False] = False, +) -> np.ma.MaskedArray[_ShapeT, np.dtype[np.void]]: ... +@overload +def find_duplicates( + a: np.ma.MaskedArray[_ShapeT, np.dtype[np.void]], + key: str | None, + ignoremask: bool, + return_index: Literal[True], +) -> tuple[np.ma.MaskedArray[_ShapeT, np.dtype[np.void]], np.ndarray[_ShapeT, np.dtype[np.int_]]]: ... +@overload +def find_duplicates( + a: np.ma.MaskedArray[_ShapeT, np.dtype[np.void]], + key: str | None = None, + ignoremask: bool = True, + *, + return_index: Literal[True], +) -> tuple[np.ma.MaskedArray[_ShapeT, np.dtype[np.void]], np.ndarray[_ShapeT, np.dtype[np.int_]]]: ... + +# +@overload +def join_by( + key: str | Sequence[str], + r1: npt.NDArray[np.void], + r2: npt.NDArray[np.void], + jointype: _JoinType = "inner", + r1postfix: str = "1", + r2postfix: str = "2", + defaults: Mapping[str, object] | None = None, + *, + usemask: Literal[False], + asrecarray: Literal[False] = False, +) -> np.ndarray[tuple[int], np.dtype[np.void]]: ... +@overload +def join_by( + key: str | Sequence[str], + r1: npt.NDArray[np.void], + r2: npt.NDArray[np.void], + jointype: _JoinType = "inner", + r1postfix: str = "1", + r2postfix: str = "2", + defaults: Mapping[str, object] | None = None, + *, + usemask: Literal[False], + asrecarray: Literal[True], +) -> np.recarray[tuple[int], np.dtype[np.void]]: ... +@overload +def join_by( + key: str | Sequence[str], + r1: npt.NDArray[np.void], + r2: npt.NDArray[np.void], + jointype: _JoinType = "inner", + r1postfix: str = "1", + r2postfix: str = "2", + defaults: Mapping[str, object] | None = None, + usemask: Literal[True] = True, + asrecarray: Literal[False] = False, +) -> np.ma.MaskedArray[tuple[int], np.dtype[np.void]]: ... +@overload +def join_by( + key: str | Sequence[str], + r1: npt.NDArray[np.void], + r2: npt.NDArray[np.void], + jointype: _JoinType = "inner", + r1postfix: str = "1", + r2postfix: str = "2", + defaults: Mapping[str, object] | None = None, + usemask: Literal[True] = True, + *, + asrecarray: Literal[True], +) -> MaskedRecords[tuple[int], np.dtype[np.void]]: ... + +# +def rec_join( + key: str | Sequence[str], + r1: npt.NDArray[np.void], + r2: npt.NDArray[np.void], + jointype: _JoinType = "inner", + r1postfix: str = "1", + r2postfix: str = "2", + defaults: Mapping[str, object] | None = None, +) -> np.recarray[tuple[int], np.dtype[np.void]]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/scimath.py b/.venv/lib/python3.12/site-packages/numpy/lib/scimath.py new file mode 100644 index 0000000..fb6824d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/scimath.py @@ -0,0 +1,13 @@ +from ._scimath_impl import ( # noqa: F401 + __all__, + __doc__, + arccos, + arcsin, + arctanh, + log, + log2, + log10, + logn, + power, + sqrt, +) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/scimath.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/scimath.pyi new file mode 100644 index 0000000..253235d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/scimath.pyi @@ -0,0 +1,30 @@ +from ._scimath_impl import ( + __all__ as __all__, +) +from ._scimath_impl import ( + arccos as arccos, +) +from ._scimath_impl import ( + arcsin as arcsin, +) +from ._scimath_impl import ( + arctanh as arctanh, +) +from ._scimath_impl import ( + log as log, +) +from ._scimath_impl import ( + log2 as log2, +) +from ._scimath_impl import ( + log10 as log10, +) +from ._scimath_impl import ( + logn as logn, +) +from ._scimath_impl import ( + power as power, +) +from ._scimath_impl import ( + sqrt as sqrt, +) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/stride_tricks.py b/.venv/lib/python3.12/site-packages/numpy/lib/stride_tricks.py new file mode 100644 index 0000000..721a548 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/stride_tricks.py @@ -0,0 +1 @@ +from ._stride_tricks_impl import __doc__, as_strided, sliding_window_view # noqa: F401 diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/stride_tricks.pyi b/.venv/lib/python3.12/site-packages/numpy/lib/stride_tricks.pyi new file mode 100644 index 0000000..42d8fe9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/stride_tricks.pyi @@ -0,0 +1,6 @@ +from numpy.lib._stride_tricks_impl import ( + as_strided as as_strided, +) +from numpy.lib._stride_tricks_impl import ( + sliding_window_view as sliding_window_view, +) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__init__.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..08ba67e Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test__datasource.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test__datasource.cpython-312.pyc new file mode 100644 index 0000000..f6ce1a4 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test__datasource.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test__iotools.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test__iotools.cpython-312.pyc new file mode 100644 index 0000000..064d4eb Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test__iotools.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test__version.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test__version.cpython-312.pyc new file mode 100644 index 0000000..a212b0b Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test__version.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_array_utils.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_array_utils.cpython-312.pyc new file mode 100644 index 0000000..72fd67e Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_array_utils.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_arraypad.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_arraypad.cpython-312.pyc new file mode 100644 index 0000000..673f7c1 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_arraypad.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_arraysetops.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_arraysetops.cpython-312.pyc new file mode 100644 index 0000000..3edbed0 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_arraysetops.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_arrayterator.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_arrayterator.cpython-312.pyc new file mode 100644 index 0000000..a9a8259 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_arrayterator.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_format.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_format.cpython-312.pyc new file mode 100644 index 0000000..4b905ea Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_format.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_function_base.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_function_base.cpython-312.pyc new file mode 100644 index 0000000..beaa22d Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_function_base.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_histograms.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_histograms.cpython-312.pyc new file mode 100644 index 0000000..2b1a824 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_histograms.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_index_tricks.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_index_tricks.cpython-312.pyc new file mode 100644 index 0000000..2610bc0 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_index_tricks.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_io.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_io.cpython-312.pyc new file mode 100644 index 0000000..20e6590 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_io.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_loadtxt.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_loadtxt.cpython-312.pyc new file mode 100644 index 0000000..9d3d392 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_loadtxt.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_mixins.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_mixins.cpython-312.pyc new file mode 100644 index 0000000..f390886 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_mixins.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_nanfunctions.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_nanfunctions.cpython-312.pyc new file mode 100644 index 0000000..c4c3dfe Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_nanfunctions.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_packbits.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_packbits.cpython-312.pyc new file mode 100644 index 0000000..c7d50a1 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_packbits.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_polynomial.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_polynomial.cpython-312.pyc new file mode 100644 index 0000000..17dd09f Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_polynomial.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_recfunctions.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_recfunctions.cpython-312.pyc new file mode 100644 index 0000000..7850412 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_recfunctions.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_regression.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_regression.cpython-312.pyc new file mode 100644 index 0000000..bd89d0d Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_regression.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_shape_base.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_shape_base.cpython-312.pyc new file mode 100644 index 0000000..69e2029 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_shape_base.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_stride_tricks.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_stride_tricks.cpython-312.pyc new file mode 100644 index 0000000..6af642b Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_stride_tricks.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_twodim_base.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_twodim_base.cpython-312.pyc new file mode 100644 index 0000000..268e30e Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_twodim_base.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_type_check.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_type_check.cpython-312.pyc new file mode 100644 index 0000000..f06fa5f Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_type_check.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_ufunclike.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_ufunclike.cpython-312.pyc new file mode 100644 index 0000000..bf8e207 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_ufunclike.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_utils.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_utils.cpython-312.pyc new file mode 100644 index 0000000..2f4fba6 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/__pycache__/test_utils.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py2-np0-objarr.npy b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py2-np0-objarr.npy new file mode 100644 index 0000000..a6e9e23 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py2-np0-objarr.npy differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py2-objarr.npy b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py2-objarr.npy new file mode 100644 index 0000000..12936c9 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py2-objarr.npy differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py2-objarr.npz b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py2-objarr.npz new file mode 100644 index 0000000..68a3b53 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py2-objarr.npz differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py3-objarr.npy b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py3-objarr.npy new file mode 100644 index 0000000..c9f33b0 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py3-objarr.npy differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py3-objarr.npz b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py3-objarr.npz new file mode 100644 index 0000000..fd7d9d3 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/py3-objarr.npz differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/python3.npy b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/python3.npy new file mode 100644 index 0000000..7c6997d Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/python3.npy differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/win64python2.npy b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/win64python2.npy new file mode 100644 index 0000000..d9bc36a Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/lib/tests/data/win64python2.npy differ diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test__datasource.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test__datasource.py new file mode 100644 index 0000000..6513732 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test__datasource.py @@ -0,0 +1,352 @@ +import os +import urllib.request as urllib_request +from shutil import rmtree +from tempfile import NamedTemporaryFile, mkdtemp, mkstemp +from urllib.error import URLError +from urllib.parse import urlparse + +import pytest + +import numpy.lib._datasource as datasource +from numpy.testing import assert_, assert_equal, assert_raises + + +def urlopen_stub(url, data=None): + '''Stub to replace urlopen for testing.''' + if url == valid_httpurl(): + tmpfile = NamedTemporaryFile(prefix='urltmp_') + return tmpfile + else: + raise URLError('Name or service not known') + + +# setup and teardown +old_urlopen = None + + +def setup_module(): + global old_urlopen + + old_urlopen = urllib_request.urlopen + urllib_request.urlopen = urlopen_stub + + +def teardown_module(): + urllib_request.urlopen = old_urlopen + + +# A valid website for more robust testing +http_path = 'http://www.google.com/' +http_file = 'index.html' + +http_fakepath = 'http://fake.abc.web/site/' +http_fakefile = 'fake.txt' + +malicious_files = ['/etc/shadow', '../../shadow', + '..\\system.dat', 'c:\\windows\\system.dat'] + +magic_line = b'three is the magic number' + + +# Utility functions used by many tests +def valid_textfile(filedir): + # Generate and return a valid temporary file. + fd, path = mkstemp(suffix='.txt', prefix='dstmp_', dir=filedir, text=True) + os.close(fd) + return path + + +def invalid_textfile(filedir): + # Generate and return an invalid filename. + fd, path = mkstemp(suffix='.txt', prefix='dstmp_', dir=filedir) + os.close(fd) + os.remove(path) + return path + + +def valid_httpurl(): + return http_path + http_file + + +def invalid_httpurl(): + return http_fakepath + http_fakefile + + +def valid_baseurl(): + return http_path + + +def invalid_baseurl(): + return http_fakepath + + +def valid_httpfile(): + return http_file + + +def invalid_httpfile(): + return http_fakefile + + +class TestDataSourceOpen: + def setup_method(self): + self.tmpdir = mkdtemp() + self.ds = datasource.DataSource(self.tmpdir) + + def teardown_method(self): + rmtree(self.tmpdir) + del self.ds + + def test_ValidHTTP(self): + fh = self.ds.open(valid_httpurl()) + assert_(fh) + fh.close() + + def test_InvalidHTTP(self): + url = invalid_httpurl() + assert_raises(OSError, self.ds.open, url) + try: + self.ds.open(url) + except OSError as e: + # Regression test for bug fixed in r4342. + assert_(e.errno is None) + + def test_InvalidHTTPCacheURLError(self): + assert_raises(URLError, self.ds._cache, invalid_httpurl()) + + def test_ValidFile(self): + local_file = valid_textfile(self.tmpdir) + fh = self.ds.open(local_file) + assert_(fh) + fh.close() + + def test_InvalidFile(self): + invalid_file = invalid_textfile(self.tmpdir) + assert_raises(OSError, self.ds.open, invalid_file) + + def test_ValidGzipFile(self): + try: + import gzip + except ImportError: + # We don't have the gzip capabilities to test. + pytest.skip() + # Test datasource's internal file_opener for Gzip files. + filepath = os.path.join(self.tmpdir, 'foobar.txt.gz') + fp = gzip.open(filepath, 'w') + fp.write(magic_line) + fp.close() + fp = self.ds.open(filepath) + result = fp.readline() + fp.close() + assert_equal(magic_line, result) + + def test_ValidBz2File(self): + try: + import bz2 + except ImportError: + # We don't have the bz2 capabilities to test. + pytest.skip() + # Test datasource's internal file_opener for BZip2 files. + filepath = os.path.join(self.tmpdir, 'foobar.txt.bz2') + fp = bz2.BZ2File(filepath, 'w') + fp.write(magic_line) + fp.close() + fp = self.ds.open(filepath) + result = fp.readline() + fp.close() + assert_equal(magic_line, result) + + +class TestDataSourceExists: + def setup_method(self): + self.tmpdir = mkdtemp() + self.ds = datasource.DataSource(self.tmpdir) + + def teardown_method(self): + rmtree(self.tmpdir) + del self.ds + + def test_ValidHTTP(self): + assert_(self.ds.exists(valid_httpurl())) + + def test_InvalidHTTP(self): + assert_equal(self.ds.exists(invalid_httpurl()), False) + + def test_ValidFile(self): + # Test valid file in destpath + tmpfile = valid_textfile(self.tmpdir) + assert_(self.ds.exists(tmpfile)) + # Test valid local file not in destpath + localdir = mkdtemp() + tmpfile = valid_textfile(localdir) + assert_(self.ds.exists(tmpfile)) + rmtree(localdir) + + def test_InvalidFile(self): + tmpfile = invalid_textfile(self.tmpdir) + assert_equal(self.ds.exists(tmpfile), False) + + +class TestDataSourceAbspath: + def setup_method(self): + self.tmpdir = os.path.abspath(mkdtemp()) + self.ds = datasource.DataSource(self.tmpdir) + + def teardown_method(self): + rmtree(self.tmpdir) + del self.ds + + def test_ValidHTTP(self): + scheme, netloc, upath, pms, qry, frg = urlparse(valid_httpurl()) + local_path = os.path.join(self.tmpdir, netloc, + upath.strip(os.sep).strip('/')) + assert_equal(local_path, self.ds.abspath(valid_httpurl())) + + def test_ValidFile(self): + tmpfile = valid_textfile(self.tmpdir) + tmpfilename = os.path.split(tmpfile)[-1] + # Test with filename only + assert_equal(tmpfile, self.ds.abspath(tmpfilename)) + # Test filename with complete path + assert_equal(tmpfile, self.ds.abspath(tmpfile)) + + def test_InvalidHTTP(self): + scheme, netloc, upath, pms, qry, frg = urlparse(invalid_httpurl()) + invalidhttp = os.path.join(self.tmpdir, netloc, + upath.strip(os.sep).strip('/')) + assert_(invalidhttp != self.ds.abspath(valid_httpurl())) + + def test_InvalidFile(self): + invalidfile = valid_textfile(self.tmpdir) + tmpfile = valid_textfile(self.tmpdir) + tmpfilename = os.path.split(tmpfile)[-1] + # Test with filename only + assert_(invalidfile != self.ds.abspath(tmpfilename)) + # Test filename with complete path + assert_(invalidfile != self.ds.abspath(tmpfile)) + + def test_sandboxing(self): + tmpfile = valid_textfile(self.tmpdir) + tmpfilename = os.path.split(tmpfile)[-1] + + tmp_path = lambda x: os.path.abspath(self.ds.abspath(x)) + + assert_(tmp_path(valid_httpurl()).startswith(self.tmpdir)) + assert_(tmp_path(invalid_httpurl()).startswith(self.tmpdir)) + assert_(tmp_path(tmpfile).startswith(self.tmpdir)) + assert_(tmp_path(tmpfilename).startswith(self.tmpdir)) + for fn in malicious_files: + assert_(tmp_path(http_path + fn).startswith(self.tmpdir)) + assert_(tmp_path(fn).startswith(self.tmpdir)) + + def test_windows_os_sep(self): + orig_os_sep = os.sep + try: + os.sep = '\\' + self.test_ValidHTTP() + self.test_ValidFile() + self.test_InvalidHTTP() + self.test_InvalidFile() + self.test_sandboxing() + finally: + os.sep = orig_os_sep + + +class TestRepositoryAbspath: + def setup_method(self): + self.tmpdir = os.path.abspath(mkdtemp()) + self.repos = datasource.Repository(valid_baseurl(), self.tmpdir) + + def teardown_method(self): + rmtree(self.tmpdir) + del self.repos + + def test_ValidHTTP(self): + scheme, netloc, upath, pms, qry, frg = urlparse(valid_httpurl()) + local_path = os.path.join(self.repos._destpath, netloc, + upath.strip(os.sep).strip('/')) + filepath = self.repos.abspath(valid_httpfile()) + assert_equal(local_path, filepath) + + def test_sandboxing(self): + tmp_path = lambda x: os.path.abspath(self.repos.abspath(x)) + assert_(tmp_path(valid_httpfile()).startswith(self.tmpdir)) + for fn in malicious_files: + assert_(tmp_path(http_path + fn).startswith(self.tmpdir)) + assert_(tmp_path(fn).startswith(self.tmpdir)) + + def test_windows_os_sep(self): + orig_os_sep = os.sep + try: + os.sep = '\\' + self.test_ValidHTTP() + self.test_sandboxing() + finally: + os.sep = orig_os_sep + + +class TestRepositoryExists: + def setup_method(self): + self.tmpdir = mkdtemp() + self.repos = datasource.Repository(valid_baseurl(), self.tmpdir) + + def teardown_method(self): + rmtree(self.tmpdir) + del self.repos + + def test_ValidFile(self): + # Create local temp file + tmpfile = valid_textfile(self.tmpdir) + assert_(self.repos.exists(tmpfile)) + + def test_InvalidFile(self): + tmpfile = invalid_textfile(self.tmpdir) + assert_equal(self.repos.exists(tmpfile), False) + + def test_RemoveHTTPFile(self): + assert_(self.repos.exists(valid_httpurl())) + + def test_CachedHTTPFile(self): + localfile = valid_httpurl() + # Create a locally cached temp file with an URL based + # directory structure. This is similar to what Repository.open + # would do. + scheme, netloc, upath, pms, qry, frg = urlparse(localfile) + local_path = os.path.join(self.repos._destpath, netloc) + os.mkdir(local_path, 0o0700) + tmpfile = valid_textfile(local_path) + assert_(self.repos.exists(tmpfile)) + + +class TestOpenFunc: + def setup_method(self): + self.tmpdir = mkdtemp() + + def teardown_method(self): + rmtree(self.tmpdir) + + def test_DataSourceOpen(self): + local_file = valid_textfile(self.tmpdir) + # Test case where destpath is passed in + fp = datasource.open(local_file, destpath=self.tmpdir) + assert_(fp) + fp.close() + # Test case where default destpath is used + fp = datasource.open(local_file) + assert_(fp) + fp.close() + +def test_del_attr_handling(): + # DataSource __del__ can be called + # even if __init__ fails when the + # Exception object is caught by the + # caller as happens in refguide_check + # is_deprecated() function + + ds = datasource.DataSource() + # simulate failed __init__ by removing key attribute + # produced within __init__ and expected by __del__ + del ds._istmpdest + # should not raise an AttributeError if __del__ + # gracefully handles failed __init__: + ds.__del__() diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test__iotools.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test__iotools.py new file mode 100644 index 0000000..1581ffb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test__iotools.py @@ -0,0 +1,360 @@ +import time +from datetime import date + +import numpy as np +from numpy.lib._iotools import ( + LineSplitter, + NameValidator, + StringConverter, + easy_dtype, + flatten_dtype, + has_nested_fields, +) +from numpy.testing import ( + assert_, + assert_allclose, + assert_equal, + assert_raises, +) + + +class TestLineSplitter: + "Tests the LineSplitter class." + + def test_no_delimiter(self): + "Test LineSplitter w/o delimiter" + strg = " 1 2 3 4 5 # test" + test = LineSplitter()(strg) + assert_equal(test, ['1', '2', '3', '4', '5']) + test = LineSplitter('')(strg) + assert_equal(test, ['1', '2', '3', '4', '5']) + + def test_space_delimiter(self): + "Test space delimiter" + strg = " 1 2 3 4 5 # test" + test = LineSplitter(' ')(strg) + assert_equal(test, ['1', '2', '3', '4', '', '5']) + test = LineSplitter(' ')(strg) + assert_equal(test, ['1 2 3 4', '5']) + + def test_tab_delimiter(self): + "Test tab delimiter" + strg = " 1\t 2\t 3\t 4\t 5 6" + test = LineSplitter('\t')(strg) + assert_equal(test, ['1', '2', '3', '4', '5 6']) + strg = " 1 2\t 3 4\t 5 6" + test = LineSplitter('\t')(strg) + assert_equal(test, ['1 2', '3 4', '5 6']) + + def test_other_delimiter(self): + "Test LineSplitter on delimiter" + strg = "1,2,3,4,,5" + test = LineSplitter(',')(strg) + assert_equal(test, ['1', '2', '3', '4', '', '5']) + # + strg = " 1,2,3,4,,5 # test" + test = LineSplitter(',')(strg) + assert_equal(test, ['1', '2', '3', '4', '', '5']) + + # gh-11028 bytes comment/delimiters should get encoded + strg = b" 1,2,3,4,,5 % test" + test = LineSplitter(delimiter=b',', comments=b'%')(strg) + assert_equal(test, ['1', '2', '3', '4', '', '5']) + + def test_constant_fixed_width(self): + "Test LineSplitter w/ fixed-width fields" + strg = " 1 2 3 4 5 # test" + test = LineSplitter(3)(strg) + assert_equal(test, ['1', '2', '3', '4', '', '5', '']) + # + strg = " 1 3 4 5 6# test" + test = LineSplitter(20)(strg) + assert_equal(test, ['1 3 4 5 6']) + # + strg = " 1 3 4 5 6# test" + test = LineSplitter(30)(strg) + assert_equal(test, ['1 3 4 5 6']) + + def test_variable_fixed_width(self): + strg = " 1 3 4 5 6# test" + test = LineSplitter((3, 6, 6, 3))(strg) + assert_equal(test, ['1', '3', '4 5', '6']) + # + strg = " 1 3 4 5 6# test" + test = LineSplitter((6, 6, 9))(strg) + assert_equal(test, ['1', '3 4', '5 6']) + +# ----------------------------------------------------------------------------- + + +class TestNameValidator: + + def test_case_sensitivity(self): + "Test case sensitivity" + names = ['A', 'a', 'b', 'c'] + test = NameValidator().validate(names) + assert_equal(test, ['A', 'a', 'b', 'c']) + test = NameValidator(case_sensitive=False).validate(names) + assert_equal(test, ['A', 'A_1', 'B', 'C']) + test = NameValidator(case_sensitive='upper').validate(names) + assert_equal(test, ['A', 'A_1', 'B', 'C']) + test = NameValidator(case_sensitive='lower').validate(names) + assert_equal(test, ['a', 'a_1', 'b', 'c']) + + # check exceptions + assert_raises(ValueError, NameValidator, case_sensitive='foobar') + + def test_excludelist(self): + "Test excludelist" + names = ['dates', 'data', 'Other Data', 'mask'] + validator = NameValidator(excludelist=['dates', 'data', 'mask']) + test = validator.validate(names) + assert_equal(test, ['dates_', 'data_', 'Other_Data', 'mask_']) + + def test_missing_names(self): + "Test validate missing names" + namelist = ('a', 'b', 'c') + validator = NameValidator() + assert_equal(validator(namelist), ['a', 'b', 'c']) + namelist = ('', 'b', 'c') + assert_equal(validator(namelist), ['f0', 'b', 'c']) + namelist = ('a', 'b', '') + assert_equal(validator(namelist), ['a', 'b', 'f0']) + namelist = ('', 'f0', '') + assert_equal(validator(namelist), ['f1', 'f0', 'f2']) + + def test_validate_nb_names(self): + "Test validate nb names" + namelist = ('a', 'b', 'c') + validator = NameValidator() + assert_equal(validator(namelist, nbfields=1), ('a',)) + assert_equal(validator(namelist, nbfields=5, defaultfmt="g%i"), + ['a', 'b', 'c', 'g0', 'g1']) + + def test_validate_wo_names(self): + "Test validate no names" + namelist = None + validator = NameValidator() + assert_(validator(namelist) is None) + assert_equal(validator(namelist, nbfields=3), ['f0', 'f1', 'f2']) + +# ----------------------------------------------------------------------------- + + +def _bytes_to_date(s): + return date(*time.strptime(s, "%Y-%m-%d")[:3]) + + +class TestStringConverter: + "Test StringConverter" + + def test_creation(self): + "Test creation of a StringConverter" + converter = StringConverter(int, -99999) + assert_equal(converter._status, 1) + assert_equal(converter.default, -99999) + + def test_upgrade(self): + "Tests the upgrade method." + + converter = StringConverter() + assert_equal(converter._status, 0) + + # test int + assert_equal(converter.upgrade('0'), 0) + assert_equal(converter._status, 1) + + # On systems where long defaults to 32-bit, the statuses will be + # offset by one, so we check for this here. + import numpy._core.numeric as nx + status_offset = int(nx.dtype(nx.int_).itemsize < nx.dtype(nx.int64).itemsize) + + # test int > 2**32 + assert_equal(converter.upgrade('17179869184'), 17179869184) + assert_equal(converter._status, 1 + status_offset) + + # test float + assert_allclose(converter.upgrade('0.'), 0.0) + assert_equal(converter._status, 2 + status_offset) + + # test complex + assert_equal(converter.upgrade('0j'), complex('0j')) + assert_equal(converter._status, 3 + status_offset) + + # test str + # note that the longdouble type has been skipped, so the + # _status increases by 2. Everything should succeed with + # unicode conversion (8). + for s in ['a', b'a']: + res = converter.upgrade(s) + assert_(type(res) is str) + assert_equal(res, 'a') + assert_equal(converter._status, 8 + status_offset) + + def test_missing(self): + "Tests the use of missing values." + converter = StringConverter(missing_values=('missing', + 'missed')) + converter.upgrade('0') + assert_equal(converter('0'), 0) + assert_equal(converter(''), converter.default) + assert_equal(converter('missing'), converter.default) + assert_equal(converter('missed'), converter.default) + try: + converter('miss') + except ValueError: + pass + + def test_upgrademapper(self): + "Tests updatemapper" + dateparser = _bytes_to_date + _original_mapper = StringConverter._mapper[:] + try: + StringConverter.upgrade_mapper(dateparser, date(2000, 1, 1)) + convert = StringConverter(dateparser, date(2000, 1, 1)) + test = convert('2001-01-01') + assert_equal(test, date(2001, 1, 1)) + test = convert('2009-01-01') + assert_equal(test, date(2009, 1, 1)) + test = convert('') + assert_equal(test, date(2000, 1, 1)) + finally: + StringConverter._mapper = _original_mapper + + def test_string_to_object(self): + "Make sure that string-to-object functions are properly recognized" + old_mapper = StringConverter._mapper[:] # copy of list + conv = StringConverter(_bytes_to_date) + assert_equal(conv._mapper, old_mapper) + assert_(hasattr(conv, 'default')) + + def test_keep_default(self): + "Make sure we don't lose an explicit default" + converter = StringConverter(None, missing_values='', + default=-999) + converter.upgrade('3.14159265') + assert_equal(converter.default, -999) + assert_equal(converter.type, np.dtype(float)) + # + converter = StringConverter( + None, missing_values='', default=0) + converter.upgrade('3.14159265') + assert_equal(converter.default, 0) + assert_equal(converter.type, np.dtype(float)) + + def test_keep_default_zero(self): + "Check that we don't lose a default of 0" + converter = StringConverter(int, default=0, + missing_values="N/A") + assert_equal(converter.default, 0) + + def test_keep_missing_values(self): + "Check that we're not losing missing values" + converter = StringConverter(int, default=0, + missing_values="N/A") + assert_equal( + converter.missing_values, {'', 'N/A'}) + + def test_int64_dtype(self): + "Check that int64 integer types can be specified" + converter = StringConverter(np.int64, default=0) + val = "-9223372036854775807" + assert_(converter(val) == -9223372036854775807) + val = "9223372036854775807" + assert_(converter(val) == 9223372036854775807) + + def test_uint64_dtype(self): + "Check that uint64 integer types can be specified" + converter = StringConverter(np.uint64, default=0) + val = "9223372043271415339" + assert_(converter(val) == 9223372043271415339) + + +class TestMiscFunctions: + + def test_has_nested_dtype(self): + "Test has_nested_dtype" + ndtype = np.dtype(float) + assert_equal(has_nested_fields(ndtype), False) + ndtype = np.dtype([('A', '|S3'), ('B', float)]) + assert_equal(has_nested_fields(ndtype), False) + ndtype = np.dtype([('A', int), ('B', [('BA', float), ('BB', '|S1')])]) + assert_equal(has_nested_fields(ndtype), True) + + def test_easy_dtype(self): + "Test ndtype on dtypes" + # Simple case + ndtype = float + assert_equal(easy_dtype(ndtype), np.dtype(float)) + # As string w/o names + ndtype = "i4, f8" + assert_equal(easy_dtype(ndtype), + np.dtype([('f0', "i4"), ('f1', "f8")])) + # As string w/o names but different default format + assert_equal(easy_dtype(ndtype, defaultfmt="field_%03i"), + np.dtype([('field_000', "i4"), ('field_001', "f8")])) + # As string w/ names + ndtype = "i4, f8" + assert_equal(easy_dtype(ndtype, names="a, b"), + np.dtype([('a', "i4"), ('b', "f8")])) + # As string w/ names (too many) + ndtype = "i4, f8" + assert_equal(easy_dtype(ndtype, names="a, b, c"), + np.dtype([('a', "i4"), ('b', "f8")])) + # As string w/ names (not enough) + ndtype = "i4, f8" + assert_equal(easy_dtype(ndtype, names=", b"), + np.dtype([('f0', "i4"), ('b', "f8")])) + # ... (with different default format) + assert_equal(easy_dtype(ndtype, names="a", defaultfmt="f%02i"), + np.dtype([('a', "i4"), ('f00', "f8")])) + # As list of tuples w/o names + ndtype = [('A', int), ('B', float)] + assert_equal(easy_dtype(ndtype), np.dtype([('A', int), ('B', float)])) + # As list of tuples w/ names + assert_equal(easy_dtype(ndtype, names="a,b"), + np.dtype([('a', int), ('b', float)])) + # As list of tuples w/ not enough names + assert_equal(easy_dtype(ndtype, names="a"), + np.dtype([('a', int), ('f0', float)])) + # As list of tuples w/ too many names + assert_equal(easy_dtype(ndtype, names="a,b,c"), + np.dtype([('a', int), ('b', float)])) + # As list of types w/o names + ndtype = (int, float, float) + assert_equal(easy_dtype(ndtype), + np.dtype([('f0', int), ('f1', float), ('f2', float)])) + # As list of types w names + ndtype = (int, float, float) + assert_equal(easy_dtype(ndtype, names="a, b, c"), + np.dtype([('a', int), ('b', float), ('c', float)])) + # As simple dtype w/ names + ndtype = np.dtype(float) + assert_equal(easy_dtype(ndtype, names="a, b, c"), + np.dtype([(_, float) for _ in ('a', 'b', 'c')])) + # As simple dtype w/o names (but multiple fields) + ndtype = np.dtype(float) + assert_equal( + easy_dtype(ndtype, names=['', '', ''], defaultfmt="f%02i"), + np.dtype([(_, float) for _ in ('f00', 'f01', 'f02')])) + + def test_flatten_dtype(self): + "Testing flatten_dtype" + # Standard dtype + dt = np.dtype([("a", "f8"), ("b", "f8")]) + dt_flat = flatten_dtype(dt) + assert_equal(dt_flat, [float, float]) + # Recursive dtype + dt = np.dtype([("a", [("aa", '|S1'), ("ab", '|S2')]), ("b", int)]) + dt_flat = flatten_dtype(dt) + assert_equal(dt_flat, [np.dtype('|S1'), np.dtype('|S2'), int]) + # dtype with shaped fields + dt = np.dtype([("a", (float, 2)), ("b", (int, 3))]) + dt_flat = flatten_dtype(dt) + assert_equal(dt_flat, [float, int]) + dt_flat = flatten_dtype(dt, True) + assert_equal(dt_flat, [float] * 2 + [int] * 3) + # dtype w/ titles + dt = np.dtype([(("a", "A"), "f8"), (("b", "B"), "f8")]) + dt_flat = flatten_dtype(dt) + assert_equal(dt_flat, [float, float]) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test__version.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test__version.py new file mode 100644 index 0000000..6e6a34a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test__version.py @@ -0,0 +1,64 @@ +"""Tests for the NumpyVersion class. + +""" +from numpy.lib import NumpyVersion +from numpy.testing import assert_, assert_raises + + +def test_main_versions(): + assert_(NumpyVersion('1.8.0') == '1.8.0') + for ver in ['1.9.0', '2.0.0', '1.8.1', '10.0.1']: + assert_(NumpyVersion('1.8.0') < ver) + + for ver in ['1.7.0', '1.7.1', '0.9.9']: + assert_(NumpyVersion('1.8.0') > ver) + + +def test_version_1_point_10(): + # regression test for gh-2998. + assert_(NumpyVersion('1.9.0') < '1.10.0') + assert_(NumpyVersion('1.11.0') < '1.11.1') + assert_(NumpyVersion('1.11.0') == '1.11.0') + assert_(NumpyVersion('1.99.11') < '1.99.12') + + +def test_alpha_beta_rc(): + assert_(NumpyVersion('1.8.0rc1') == '1.8.0rc1') + for ver in ['1.8.0', '1.8.0rc2']: + assert_(NumpyVersion('1.8.0rc1') < ver) + + for ver in ['1.8.0a2', '1.8.0b3', '1.7.2rc4']: + assert_(NumpyVersion('1.8.0rc1') > ver) + + assert_(NumpyVersion('1.8.0b1') > '1.8.0a2') + + +def test_dev_version(): + assert_(NumpyVersion('1.9.0.dev-Unknown') < '1.9.0') + for ver in ['1.9.0', '1.9.0a1', '1.9.0b2', '1.9.0b2.dev-ffffffff']: + assert_(NumpyVersion('1.9.0.dev-f16acvda') < ver) + + assert_(NumpyVersion('1.9.0.dev-f16acvda') == '1.9.0.dev-11111111') + + +def test_dev_a_b_rc_mixed(): + assert_(NumpyVersion('1.9.0a2.dev-f16acvda') == '1.9.0a2.dev-11111111') + assert_(NumpyVersion('1.9.0a2.dev-6acvda54') < '1.9.0a2') + + +def test_dev0_version(): + assert_(NumpyVersion('1.9.0.dev0+Unknown') < '1.9.0') + for ver in ['1.9.0', '1.9.0a1', '1.9.0b2', '1.9.0b2.dev0+ffffffff']: + assert_(NumpyVersion('1.9.0.dev0+f16acvda') < ver) + + assert_(NumpyVersion('1.9.0.dev0+f16acvda') == '1.9.0.dev0+11111111') + + +def test_dev0_a_b_rc_mixed(): + assert_(NumpyVersion('1.9.0a2.dev0+f16acvda') == '1.9.0a2.dev0+11111111') + assert_(NumpyVersion('1.9.0a2.dev0+6acvda54') < '1.9.0a2') + + +def test_raises(): + for ver in ['1.9', '1,9.0', '1.7.x']: + assert_raises(ValueError, NumpyVersion, ver) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_array_utils.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_array_utils.py new file mode 100644 index 0000000..55b9d28 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_array_utils.py @@ -0,0 +1,32 @@ +import numpy as np +from numpy.lib import array_utils +from numpy.testing import assert_equal + + +class TestByteBounds: + def test_byte_bounds(self): + # pointer difference matches size * itemsize + # due to contiguity + a = np.arange(12).reshape(3, 4) + low, high = array_utils.byte_bounds(a) + assert_equal(high - low, a.size * a.itemsize) + + def test_unusual_order_positive_stride(self): + a = np.arange(12).reshape(3, 4) + b = a.T + low, high = array_utils.byte_bounds(b) + assert_equal(high - low, b.size * b.itemsize) + + def test_unusual_order_negative_stride(self): + a = np.arange(12).reshape(3, 4) + b = a.T[::-1] + low, high = array_utils.byte_bounds(b) + assert_equal(high - low, b.size * b.itemsize) + + def test_strided(self): + a = np.arange(12) + b = a[::2] + low, high = array_utils.byte_bounds(b) + # the largest pointer address is lost (even numbers only in the + # stride), and compensate addresses for striding by 2 + assert_equal(high - low, b.size * 2 * b.itemsize - b.itemsize) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_arraypad.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_arraypad.py new file mode 100644 index 0000000..6efbe34 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_arraypad.py @@ -0,0 +1,1415 @@ +"""Tests for the array padding functions. + +""" +import pytest + +import numpy as np +from numpy.lib._arraypad_impl import _as_pairs +from numpy.testing import assert_allclose, assert_array_equal, assert_equal + +_numeric_dtypes = ( + np._core.sctypes["uint"] + + np._core.sctypes["int"] + + np._core.sctypes["float"] + + np._core.sctypes["complex"] +) +_all_modes = { + 'constant': {'constant_values': 0}, + 'edge': {}, + 'linear_ramp': {'end_values': 0}, + 'maximum': {'stat_length': None}, + 'mean': {'stat_length': None}, + 'median': {'stat_length': None}, + 'minimum': {'stat_length': None}, + 'reflect': {'reflect_type': 'even'}, + 'symmetric': {'reflect_type': 'even'}, + 'wrap': {}, + 'empty': {} +} + + +class TestAsPairs: + def test_single_value(self): + """Test casting for a single value.""" + expected = np.array([[3, 3]] * 10) + for x in (3, [3], [[3]]): + result = _as_pairs(x, 10) + assert_equal(result, expected) + # Test with dtype=object + obj = object() + assert_equal( + _as_pairs(obj, 10), + np.array([[obj, obj]] * 10) + ) + + def test_two_values(self): + """Test proper casting for two different values.""" + # Broadcasting in the first dimension with numbers + expected = np.array([[3, 4]] * 10) + for x in ([3, 4], [[3, 4]]): + result = _as_pairs(x, 10) + assert_equal(result, expected) + # and with dtype=object + obj = object() + assert_equal( + _as_pairs(["a", obj], 10), + np.array([["a", obj]] * 10) + ) + + # Broadcasting in the second / last dimension with numbers + assert_equal( + _as_pairs([[3], [4]], 2), + np.array([[3, 3], [4, 4]]) + ) + # and with dtype=object + assert_equal( + _as_pairs([["a"], [obj]], 2), + np.array([["a", "a"], [obj, obj]]) + ) + + def test_with_none(self): + expected = ((None, None), (None, None), (None, None)) + assert_equal( + _as_pairs(None, 3, as_index=False), + expected + ) + assert_equal( + _as_pairs(None, 3, as_index=True), + expected + ) + + def test_pass_through(self): + """Test if `x` already matching desired output are passed through.""" + expected = np.arange(12).reshape((6, 2)) + assert_equal( + _as_pairs(expected, 6), + expected + ) + + def test_as_index(self): + """Test results if `as_index=True`.""" + assert_equal( + _as_pairs([2.6, 3.3], 10, as_index=True), + np.array([[3, 3]] * 10, dtype=np.intp) + ) + assert_equal( + _as_pairs([2.6, 4.49], 10, as_index=True), + np.array([[3, 4]] * 10, dtype=np.intp) + ) + for x in (-3, [-3], [[-3]], [-3, 4], [3, -4], [[-3, 4]], [[4, -3]], + [[1, 2]] * 9 + [[1, -2]]): + with pytest.raises(ValueError, match="negative values"): + _as_pairs(x, 10, as_index=True) + + def test_exceptions(self): + """Ensure faulty usage is discovered.""" + with pytest.raises(ValueError, match="more dimensions than allowed"): + _as_pairs([[[3]]], 10) + with pytest.raises(ValueError, match="could not be broadcast"): + _as_pairs([[1, 2], [3, 4]], 3) + with pytest.raises(ValueError, match="could not be broadcast"): + _as_pairs(np.ones((2, 3)), 3) + + +class TestConditionalShortcuts: + @pytest.mark.parametrize("mode", _all_modes.keys()) + def test_zero_padding_shortcuts(self, mode): + test = np.arange(120).reshape(4, 5, 6) + pad_amt = [(0, 0) for _ in test.shape] + assert_array_equal(test, np.pad(test, pad_amt, mode=mode)) + + @pytest.mark.parametrize("mode", ['maximum', 'mean', 'median', 'minimum',]) + def test_shallow_statistic_range(self, mode): + test = np.arange(120).reshape(4, 5, 6) + pad_amt = [(1, 1) for _ in test.shape] + assert_array_equal(np.pad(test, pad_amt, mode='edge'), + np.pad(test, pad_amt, mode=mode, stat_length=1)) + + @pytest.mark.parametrize("mode", ['maximum', 'mean', 'median', 'minimum',]) + def test_clip_statistic_range(self, mode): + test = np.arange(30).reshape(5, 6) + pad_amt = [(3, 3) for _ in test.shape] + assert_array_equal(np.pad(test, pad_amt, mode=mode), + np.pad(test, pad_amt, mode=mode, stat_length=30)) + + +class TestStatistic: + def test_check_mean_stat_length(self): + a = np.arange(100).astype('f') + a = np.pad(a, ((25, 20), ), 'mean', stat_length=((2, 3), )) + b = np.array( + [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, + 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, + 0.5, 0.5, 0.5, 0.5, 0.5, + + 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., + 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., + 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., + 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., + 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., + 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., + 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., + 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., + 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., + 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., + + 98., 98., 98., 98., 98., 98., 98., 98., 98., 98., + 98., 98., 98., 98., 98., 98., 98., 98., 98., 98. + ]) + assert_array_equal(a, b) + + def test_check_maximum_1(self): + a = np.arange(100) + a = np.pad(a, (25, 20), 'maximum') + b = np.array( + [99, 99, 99, 99, 99, 99, 99, 99, 99, 99, + 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, + 99, 99, 99, 99, 99, + + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, + 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, + 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, + 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, + 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, + + 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, + 99, 99, 99, 99, 99, 99, 99, 99, 99, 99] + ) + assert_array_equal(a, b) + + def test_check_maximum_2(self): + a = np.arange(100) + 1 + a = np.pad(a, (25, 20), 'maximum') + b = np.array( + [100, 100, 100, 100, 100, 100, 100, 100, 100, 100, + 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, + 100, 100, 100, 100, 100, + + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, + 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, + 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, + 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, + 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, + 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, + 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, + 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, + 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, + 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, + + 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, + 100, 100, 100, 100, 100, 100, 100, 100, 100, 100] + ) + assert_array_equal(a, b) + + def test_check_maximum_stat_length(self): + a = np.arange(100) + 1 + a = np.pad(a, (25, 20), 'maximum', stat_length=10) + b = np.array( + [10, 10, 10, 10, 10, 10, 10, 10, 10, 10, + 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, + 10, 10, 10, 10, 10, + + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, + 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, + 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, + 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, + 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, + 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, + 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, + 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, + 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, + 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, + + 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, + 100, 100, 100, 100, 100, 100, 100, 100, 100, 100] + ) + assert_array_equal(a, b) + + def test_check_minimum_1(self): + a = np.arange(100) + a = np.pad(a, (25, 20), 'minimum') + b = np.array( + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, + + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, + 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, + 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, + 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, + 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, + + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] + ) + assert_array_equal(a, b) + + def test_check_minimum_2(self): + a = np.arange(100) + 2 + a = np.pad(a, (25, 20), 'minimum') + b = np.array( + [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, + + 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, + 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, + 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, + 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, + 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, + 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, + 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, + 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, + 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, + 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, + + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] + ) + assert_array_equal(a, b) + + def test_check_minimum_stat_length(self): + a = np.arange(100) + 1 + a = np.pad(a, (25, 20), 'minimum', stat_length=10) + b = np.array( + [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, + + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, + 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, + 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, + 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, + 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, + 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, + 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, + 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, + 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, + 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, + + 91, 91, 91, 91, 91, 91, 91, 91, 91, 91, + 91, 91, 91, 91, 91, 91, 91, 91, 91, 91] + ) + assert_array_equal(a, b) + + def test_check_median(self): + a = np.arange(100).astype('f') + a = np.pad(a, (25, 20), 'median') + b = np.array( + [49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, + 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, + 49.5, 49.5, 49.5, 49.5, 49.5, + + 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., + 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., + 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., + 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., + 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., + 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., + 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., + 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., + 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., + 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., + + 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, + 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5] + ) + assert_array_equal(a, b) + + def test_check_median_01(self): + a = np.array([[3, 1, 4], [4, 5, 9], [9, 8, 2]]) + a = np.pad(a, 1, 'median') + b = np.array( + [[4, 4, 5, 4, 4], + + [3, 3, 1, 4, 3], + [5, 4, 5, 9, 5], + [8, 9, 8, 2, 8], + + [4, 4, 5, 4, 4]] + ) + assert_array_equal(a, b) + + def test_check_median_02(self): + a = np.array([[3, 1, 4], [4, 5, 9], [9, 8, 2]]) + a = np.pad(a.T, 1, 'median').T + b = np.array( + [[5, 4, 5, 4, 5], + + [3, 3, 1, 4, 3], + [5, 4, 5, 9, 5], + [8, 9, 8, 2, 8], + + [5, 4, 5, 4, 5]] + ) + assert_array_equal(a, b) + + def test_check_median_stat_length(self): + a = np.arange(100).astype('f') + a[1] = 2. + a[97] = 96. + a = np.pad(a, (25, 20), 'median', stat_length=(3, 5)) + b = np.array( + [ 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., + 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., + 2., 2., 2., 2., 2., + + 0., 2., 2., 3., 4., 5., 6., 7., 8., 9., + 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., + 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., + 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., + 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., + 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., + 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., + 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., + 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., + 90., 91., 92., 93., 94., 95., 96., 96., 98., 99., + + 96., 96., 96., 96., 96., 96., 96., 96., 96., 96., + 96., 96., 96., 96., 96., 96., 96., 96., 96., 96.] + ) + assert_array_equal(a, b) + + def test_check_mean_shape_one(self): + a = [[4, 5, 6]] + a = np.pad(a, (5, 7), 'mean', stat_length=2) + b = np.array( + [[4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6], + [4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6]] + ) + assert_array_equal(a, b) + + def test_check_mean_2(self): + a = np.arange(100).astype('f') + a = np.pad(a, (25, 20), 'mean') + b = np.array( + [49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, + 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, + 49.5, 49.5, 49.5, 49.5, 49.5, + + 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., + 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., + 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., + 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., + 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., + 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., + 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., + 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., + 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., + 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., + + 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, + 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5] + ) + assert_array_equal(a, b) + + @pytest.mark.parametrize("mode", [ + "mean", + "median", + "minimum", + "maximum" + ]) + def test_same_prepend_append(self, mode): + """ Test that appended and prepended values are equal """ + # This test is constructed to trigger floating point rounding errors in + # a way that caused gh-11216 for mode=='mean' + a = np.array([-1, 2, -1]) + np.array([0, 1e-12, 0], dtype=np.float64) + a = np.pad(a, (1, 1), mode) + assert_equal(a[0], a[-1]) + + @pytest.mark.parametrize("mode", ["mean", "median", "minimum", "maximum"]) + @pytest.mark.parametrize( + "stat_length", [-2, (-2,), (3, -1), ((5, 2), (-2, 3)), ((-4,), (2,))] + ) + def test_check_negative_stat_length(self, mode, stat_length): + arr = np.arange(30).reshape((6, 5)) + match = "index can't contain negative values" + with pytest.raises(ValueError, match=match): + np.pad(arr, 2, mode, stat_length=stat_length) + + def test_simple_stat_length(self): + a = np.arange(30) + a = np.reshape(a, (6, 5)) + a = np.pad(a, ((2, 3), (3, 2)), mode='mean', stat_length=(3,)) + b = np.array( + [[6, 6, 6, 5, 6, 7, 8, 9, 8, 8], + [6, 6, 6, 5, 6, 7, 8, 9, 8, 8], + + [1, 1, 1, 0, 1, 2, 3, 4, 3, 3], + [6, 6, 6, 5, 6, 7, 8, 9, 8, 8], + [11, 11, 11, 10, 11, 12, 13, 14, 13, 13], + [16, 16, 16, 15, 16, 17, 18, 19, 18, 18], + [21, 21, 21, 20, 21, 22, 23, 24, 23, 23], + [26, 26, 26, 25, 26, 27, 28, 29, 28, 28], + + [21, 21, 21, 20, 21, 22, 23, 24, 23, 23], + [21, 21, 21, 20, 21, 22, 23, 24, 23, 23], + [21, 21, 21, 20, 21, 22, 23, 24, 23, 23]] + ) + assert_array_equal(a, b) + + @pytest.mark.filterwarnings("ignore:Mean of empty slice:RuntimeWarning") + @pytest.mark.filterwarnings( + "ignore:invalid value encountered in( scalar)? divide:RuntimeWarning" + ) + @pytest.mark.parametrize("mode", ["mean", "median"]) + def test_zero_stat_length_valid(self, mode): + arr = np.pad([1., 2.], (1, 2), mode, stat_length=0) + expected = np.array([np.nan, 1., 2., np.nan, np.nan]) + assert_equal(arr, expected) + + @pytest.mark.parametrize("mode", ["minimum", "maximum"]) + def test_zero_stat_length_invalid(self, mode): + match = "stat_length of 0 yields no value for padding" + with pytest.raises(ValueError, match=match): + np.pad([1., 2.], 0, mode, stat_length=0) + with pytest.raises(ValueError, match=match): + np.pad([1., 2.], 0, mode, stat_length=(1, 0)) + with pytest.raises(ValueError, match=match): + np.pad([1., 2.], 1, mode, stat_length=0) + with pytest.raises(ValueError, match=match): + np.pad([1., 2.], 1, mode, stat_length=(1, 0)) + + +class TestConstant: + def test_check_constant(self): + a = np.arange(100) + a = np.pad(a, (25, 20), 'constant', constant_values=(10, 20)) + b = np.array( + [10, 10, 10, 10, 10, 10, 10, 10, 10, 10, + 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, + 10, 10, 10, 10, 10, + + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, + 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, + 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, + 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, + 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, + + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, + 20, 20, 20, 20, 20, 20, 20, 20, 20, 20] + ) + assert_array_equal(a, b) + + def test_check_constant_zeros(self): + a = np.arange(100) + a = np.pad(a, (25, 20), 'constant') + b = np.array( + [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, + + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, + 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, + 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, + 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, + 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, + + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] + ) + assert_array_equal(a, b) + + def test_check_constant_float(self): + # If input array is int, but constant_values are float, the dtype of + # the array to be padded is kept + arr = np.arange(30).reshape(5, 6) + test = np.pad(arr, (1, 2), mode='constant', + constant_values=1.1) + expected = np.array( + [[1, 1, 1, 1, 1, 1, 1, 1, 1], + + [1, 0, 1, 2, 3, 4, 5, 1, 1], + [1, 6, 7, 8, 9, 10, 11, 1, 1], + [1, 12, 13, 14, 15, 16, 17, 1, 1], + [1, 18, 19, 20, 21, 22, 23, 1, 1], + [1, 24, 25, 26, 27, 28, 29, 1, 1], + + [1, 1, 1, 1, 1, 1, 1, 1, 1], + [1, 1, 1, 1, 1, 1, 1, 1, 1]] + ) + assert_allclose(test, expected) + + def test_check_constant_float2(self): + # If input array is float, and constant_values are float, the dtype of + # the array to be padded is kept - here retaining the float constants + arr = np.arange(30).reshape(5, 6) + arr_float = arr.astype(np.float64) + test = np.pad(arr_float, ((1, 2), (1, 2)), mode='constant', + constant_values=1.1) + expected = np.array( + [[1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1], + + [1.1, 0. , 1. , 2. , 3. , 4. , 5. , 1.1, 1.1], # noqa: E203 + [1.1, 6. , 7. , 8. , 9. , 10. , 11. , 1.1, 1.1], # noqa: E203 + [1.1, 12. , 13. , 14. , 15. , 16. , 17. , 1.1, 1.1], # noqa: E203 + [1.1, 18. , 19. , 20. , 21. , 22. , 23. , 1.1, 1.1], # noqa: E203 + [1.1, 24. , 25. , 26. , 27. , 28. , 29. , 1.1, 1.1], # noqa: E203 + + [1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1], + [1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1]] + ) + assert_allclose(test, expected) + + def test_check_constant_float3(self): + a = np.arange(100, dtype=float) + a = np.pad(a, (25, 20), 'constant', constant_values=(-1.1, -1.2)) + b = np.array( + [-1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, + -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, + -1.1, -1.1, -1.1, -1.1, -1.1, + + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, + 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, + 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, + 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, + 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, + + -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, + -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2] + ) + assert_allclose(a, b) + + def test_check_constant_odd_pad_amount(self): + arr = np.arange(30).reshape(5, 6) + test = np.pad(arr, ((1,), (2,)), mode='constant', + constant_values=3) + expected = np.array( + [[3, 3, 3, 3, 3, 3, 3, 3, 3, 3], + + [3, 3, 0, 1, 2, 3, 4, 5, 3, 3], + [3, 3, 6, 7, 8, 9, 10, 11, 3, 3], + [3, 3, 12, 13, 14, 15, 16, 17, 3, 3], + [3, 3, 18, 19, 20, 21, 22, 23, 3, 3], + [3, 3, 24, 25, 26, 27, 28, 29, 3, 3], + + [3, 3, 3, 3, 3, 3, 3, 3, 3, 3]] + ) + assert_allclose(test, expected) + + def test_check_constant_pad_2d(self): + arr = np.arange(4).reshape(2, 2) + test = np.pad(arr, ((1, 2), (1, 3)), mode='constant', + constant_values=((1, 2), (3, 4))) + expected = np.array( + [[3, 1, 1, 4, 4, 4], + [3, 0, 1, 4, 4, 4], + [3, 2, 3, 4, 4, 4], + [3, 2, 2, 4, 4, 4], + [3, 2, 2, 4, 4, 4]] + ) + assert_allclose(test, expected) + + def test_check_large_integers(self): + uint64_max = 2 ** 64 - 1 + arr = np.full(5, uint64_max, dtype=np.uint64) + test = np.pad(arr, 1, mode="constant", constant_values=arr.min()) + expected = np.full(7, uint64_max, dtype=np.uint64) + assert_array_equal(test, expected) + + int64_max = 2 ** 63 - 1 + arr = np.full(5, int64_max, dtype=np.int64) + test = np.pad(arr, 1, mode="constant", constant_values=arr.min()) + expected = np.full(7, int64_max, dtype=np.int64) + assert_array_equal(test, expected) + + def test_check_object_array(self): + arr = np.empty(1, dtype=object) + obj_a = object() + arr[0] = obj_a + obj_b = object() + obj_c = object() + arr = np.pad(arr, pad_width=1, mode='constant', + constant_values=(obj_b, obj_c)) + + expected = np.empty((3,), dtype=object) + expected[0] = obj_b + expected[1] = obj_a + expected[2] = obj_c + + assert_array_equal(arr, expected) + + def test_pad_empty_dimension(self): + arr = np.zeros((3, 0, 2)) + result = np.pad(arr, [(0,), (2,), (1,)], mode="constant") + assert result.shape == (3, 4, 4) + + +class TestLinearRamp: + def test_check_simple(self): + a = np.arange(100).astype('f') + a = np.pad(a, (25, 20), 'linear_ramp', end_values=(4, 5)) + b = np.array( + [4.00, 3.84, 3.68, 3.52, 3.36, 3.20, 3.04, 2.88, 2.72, 2.56, + 2.40, 2.24, 2.08, 1.92, 1.76, 1.60, 1.44, 1.28, 1.12, 0.96, + 0.80, 0.64, 0.48, 0.32, 0.16, + + 0.00, 1.00, 2.00, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00, + 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, + 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, + 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0, + 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 49.0, + 50.0, 51.0, 52.0, 53.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, + 60.0, 61.0, 62.0, 63.0, 64.0, 65.0, 66.0, 67.0, 68.0, 69.0, + 70.0, 71.0, 72.0, 73.0, 74.0, 75.0, 76.0, 77.0, 78.0, 79.0, + 80.0, 81.0, 82.0, 83.0, 84.0, 85.0, 86.0, 87.0, 88.0, 89.0, + 90.0, 91.0, 92.0, 93.0, 94.0, 95.0, 96.0, 97.0, 98.0, 99.0, + + 94.3, 89.6, 84.9, 80.2, 75.5, 70.8, 66.1, 61.4, 56.7, 52.0, + 47.3, 42.6, 37.9, 33.2, 28.5, 23.8, 19.1, 14.4, 9.7, 5.] + ) + assert_allclose(a, b, rtol=1e-5, atol=1e-5) + + def test_check_2d(self): + arr = np.arange(20).reshape(4, 5).astype(np.float64) + test = np.pad(arr, (2, 2), mode='linear_ramp', end_values=(0, 0)) + expected = np.array( + [[0., 0., 0., 0., 0., 0., 0., 0., 0.], + [0., 0., 0., 0.5, 1., 1.5, 2., 1., 0.], + [0., 0., 0., 1., 2., 3., 4., 2., 0.], + [0., 2.5, 5., 6., 7., 8., 9., 4.5, 0.], + [0., 5., 10., 11., 12., 13., 14., 7., 0.], + [0., 7.5, 15., 16., 17., 18., 19., 9.5, 0.], + [0., 3.75, 7.5, 8., 8.5, 9., 9.5, 4.75, 0.], + [0., 0., 0., 0., 0., 0., 0., 0., 0.]]) + assert_allclose(test, expected) + + @pytest.mark.xfail(exceptions=(AssertionError,)) + def test_object_array(self): + from fractions import Fraction + arr = np.array([Fraction(1, 2), Fraction(-1, 2)]) + actual = np.pad(arr, (2, 3), mode='linear_ramp', end_values=0) + + # deliberately chosen to have a non-power-of-2 denominator such that + # rounding to floats causes a failure. + expected = np.array([ + Fraction( 0, 12), + Fraction( 3, 12), + Fraction( 6, 12), + Fraction(-6, 12), + Fraction(-4, 12), + Fraction(-2, 12), + Fraction(-0, 12), + ]) + assert_equal(actual, expected) + + def test_end_values(self): + """Ensure that end values are exact.""" + a = np.pad(np.ones(10).reshape(2, 5), (223, 123), mode="linear_ramp") + assert_equal(a[:, 0], 0.) + assert_equal(a[:, -1], 0.) + assert_equal(a[0, :], 0.) + assert_equal(a[-1, :], 0.) + + @pytest.mark.parametrize("dtype", _numeric_dtypes) + def test_negative_difference(self, dtype): + """ + Check correct behavior of unsigned dtypes if there is a negative + difference between the edge to pad and `end_values`. Check both cases + to be independent of implementation. Test behavior for all other dtypes + in case dtype casting interferes with complex dtypes. See gh-14191. + """ + x = np.array([3], dtype=dtype) + result = np.pad(x, 3, mode="linear_ramp", end_values=0) + expected = np.array([0, 1, 2, 3, 2, 1, 0], dtype=dtype) + assert_equal(result, expected) + + x = np.array([0], dtype=dtype) + result = np.pad(x, 3, mode="linear_ramp", end_values=3) + expected = np.array([3, 2, 1, 0, 1, 2, 3], dtype=dtype) + assert_equal(result, expected) + + +class TestReflect: + def test_check_simple(self): + a = np.arange(100) + a = np.pad(a, (25, 20), 'reflect') + b = np.array( + [25, 24, 23, 22, 21, 20, 19, 18, 17, 16, + 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, + 5, 4, 3, 2, 1, + + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, + 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, + 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, + 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, + 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, + + 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, + 88, 87, 86, 85, 84, 83, 82, 81, 80, 79] + ) + assert_array_equal(a, b) + + def test_check_odd_method(self): + a = np.arange(100) + a = np.pad(a, (25, 20), 'reflect', reflect_type='odd') + b = np.array( + [-25, -24, -23, -22, -21, -20, -19, -18, -17, -16, + -15, -14, -13, -12, -11, -10, -9, -8, -7, -6, + -5, -4, -3, -2, -1, + + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, + 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, + 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, + 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, + 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, + + 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, + 110, 111, 112, 113, 114, 115, 116, 117, 118, 119] + ) + assert_array_equal(a, b) + + def test_check_large_pad(self): + a = [[4, 5, 6], [6, 7, 8]] + a = np.pad(a, (5, 7), 'reflect') + b = np.array( + [[7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], + + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], + + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5]] + ) + assert_array_equal(a, b) + + def test_check_shape(self): + a = [[4, 5, 6]] + a = np.pad(a, (5, 7), 'reflect') + b = np.array( + [[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5], + [5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5]] + ) + assert_array_equal(a, b) + + def test_check_01(self): + a = np.pad([1, 2, 3], 2, 'reflect') + b = np.array([3, 2, 1, 2, 3, 2, 1]) + assert_array_equal(a, b) + + def test_check_02(self): + a = np.pad([1, 2, 3], 3, 'reflect') + b = np.array([2, 3, 2, 1, 2, 3, 2, 1, 2]) + assert_array_equal(a, b) + + def test_check_03(self): + a = np.pad([1, 2, 3], 4, 'reflect') + b = np.array([1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3]) + assert_array_equal(a, b) + + def test_check_04(self): + a = np.pad([1, 2, 3], [1, 10], 'reflect') + b = np.array([2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1]) + assert_array_equal(a, b) + + def test_check_05(self): + a = np.pad([1, 2, 3, 4], [45, 10], 'reflect') + b = np.array( + [4, 3, 2, 1, 2, 3, 4, 3, 2, 1, + 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, + 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, + 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, + 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, + 2, 1, 2, 3, 4, 3, 2, 1, 2]) + assert_array_equal(a, b) + + def test_check_06(self): + a = np.pad([1, 2, 3, 4], [15, 2], 'symmetric') + b = np.array( + [2, 3, 4, 4, 3, 2, 1, 1, 2, 3, + 4, 4, 3, 2, 1, 1, 2, 3, 4, 4, + 3] + ) + assert_array_equal(a, b) + + def test_check_07(self): + a = np.pad([1, 2, 3, 4, 5, 6], [45, 3], 'symmetric') + b = np.array( + [4, 5, 6, 6, 5, 4, 3, 2, 1, 1, + 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, + 1, 1, 2, 3, 4, 5, 6, 6, 5, 4, + 3, 2, 1, 1, 2, 3, 4, 5, 6, 6, + 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, + 6, 6, 5, 4]) + assert_array_equal(a, b) + + +class TestEmptyArray: + """Check how padding behaves on arrays with an empty dimension.""" + + @pytest.mark.parametrize( + # Keep parametrization ordered, otherwise pytest-xdist might believe + # that different tests were collected during parallelization + "mode", sorted(_all_modes.keys() - {"constant", "empty"}) + ) + def test_pad_empty_dimension(self, mode): + match = ("can't extend empty axis 0 using modes other than 'constant' " + "or 'empty'") + with pytest.raises(ValueError, match=match): + np.pad([], 4, mode=mode) + with pytest.raises(ValueError, match=match): + np.pad(np.ndarray(0), 4, mode=mode) + with pytest.raises(ValueError, match=match): + np.pad(np.zeros((0, 3)), ((1,), (0,)), mode=mode) + + @pytest.mark.parametrize("mode", _all_modes.keys()) + def test_pad_non_empty_dimension(self, mode): + result = np.pad(np.ones((2, 0, 2)), ((3,), (0,), (1,)), mode=mode) + assert result.shape == (8, 0, 4) + + +class TestSymmetric: + def test_check_simple(self): + a = np.arange(100) + a = np.pad(a, (25, 20), 'symmetric') + b = np.array( + [24, 23, 22, 21, 20, 19, 18, 17, 16, 15, + 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, + 4, 3, 2, 1, 0, + + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, + 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, + 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, + 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, + 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, + + 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, + 89, 88, 87, 86, 85, 84, 83, 82, 81, 80] + ) + assert_array_equal(a, b) + + def test_check_odd_method(self): + a = np.arange(100) + a = np.pad(a, (25, 20), 'symmetric', reflect_type='odd') + b = np.array( + [-24, -23, -22, -21, -20, -19, -18, -17, -16, -15, + -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, + -4, -3, -2, -1, 0, + + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, + 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, + 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, + 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, + 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, + + 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, + 109, 110, 111, 112, 113, 114, 115, 116, 117, 118] + ) + assert_array_equal(a, b) + + def test_check_large_pad(self): + a = [[4, 5, 6], [6, 7, 8]] + a = np.pad(a, (5, 7), 'symmetric') + b = np.array( + [[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8], + [7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8], + + [7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8], + [7, 8, 8, 7, 6, 6, 7, 8, 8, 7, 6, 6, 7, 8, 8], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6]] + ) + + assert_array_equal(a, b) + + def test_check_large_pad_odd(self): + a = [[4, 5, 6], [6, 7, 8]] + a = np.pad(a, (5, 7), 'symmetric', reflect_type='odd') + b = np.array( + [[-3, -2, -2, -1, 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6], + [-3, -2, -2, -1, 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6], + [-1, 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8], + [-1, 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8], + [ 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10], + + [ 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10], + [ 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12], + + [ 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12], + [ 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14], + [ 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14], + [ 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 16], + [ 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 16], + [ 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18], + [ 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18]] + ) + assert_array_equal(a, b) + + def test_check_shape(self): + a = [[4, 5, 6]] + a = np.pad(a, (5, 7), 'symmetric') + b = np.array( + [[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6], + [5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6]] + ) + assert_array_equal(a, b) + + def test_check_01(self): + a = np.pad([1, 2, 3], 2, 'symmetric') + b = np.array([2, 1, 1, 2, 3, 3, 2]) + assert_array_equal(a, b) + + def test_check_02(self): + a = np.pad([1, 2, 3], 3, 'symmetric') + b = np.array([3, 2, 1, 1, 2, 3, 3, 2, 1]) + assert_array_equal(a, b) + + def test_check_03(self): + a = np.pad([1, 2, 3], 6, 'symmetric') + b = np.array([1, 2, 3, 3, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3]) + assert_array_equal(a, b) + + +class TestWrap: + def test_check_simple(self): + a = np.arange(100) + a = np.pad(a, (25, 20), 'wrap') + b = np.array( + [75, 76, 77, 78, 79, 80, 81, 82, 83, 84, + 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, + 95, 96, 97, 98, 99, + + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, + 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, + 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, + 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, + 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, + 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, + + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, + 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] + ) + assert_array_equal(a, b) + + def test_check_large_pad(self): + a = np.arange(12) + a = np.reshape(a, (3, 4)) + a = np.pad(a, (10, 12), 'wrap') + b = np.array( + [[10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, + 11, 8, 9, 10, 11, 8, 9, 10, 11], + [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, + 3, 0, 1, 2, 3, 0, 1, 2, 3], + [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, + 7, 4, 5, 6, 7, 4, 5, 6, 7], + [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, + 11, 8, 9, 10, 11, 8, 9, 10, 11], + [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, + 3, 0, 1, 2, 3, 0, 1, 2, 3], + [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, + 7, 4, 5, 6, 7, 4, 5, 6, 7], + [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, + 11, 8, 9, 10, 11, 8, 9, 10, 11], + [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, + 3, 0, 1, 2, 3, 0, 1, 2, 3], + [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, + 7, 4, 5, 6, 7, 4, 5, 6, 7], + [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, + 11, 8, 9, 10, 11, 8, 9, 10, 11], + + [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, + 3, 0, 1, 2, 3, 0, 1, 2, 3], + [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, + 7, 4, 5, 6, 7, 4, 5, 6, 7], + [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, + 11, 8, 9, 10, 11, 8, 9, 10, 11], + + [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, + 3, 0, 1, 2, 3, 0, 1, 2, 3], + [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, + 7, 4, 5, 6, 7, 4, 5, 6, 7], + [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, + 11, 8, 9, 10, 11, 8, 9, 10, 11], + [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, + 3, 0, 1, 2, 3, 0, 1, 2, 3], + [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, + 7, 4, 5, 6, 7, 4, 5, 6, 7], + [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, + 11, 8, 9, 10, 11, 8, 9, 10, 11], + [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, + 3, 0, 1, 2, 3, 0, 1, 2, 3], + [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, + 7, 4, 5, 6, 7, 4, 5, 6, 7], + [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, + 11, 8, 9, 10, 11, 8, 9, 10, 11], + [2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, + 3, 0, 1, 2, 3, 0, 1, 2, 3], + [6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, + 7, 4, 5, 6, 7, 4, 5, 6, 7], + [10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, + 11, 8, 9, 10, 11, 8, 9, 10, 11]] + ) + assert_array_equal(a, b) + + def test_check_01(self): + a = np.pad([1, 2, 3], 3, 'wrap') + b = np.array([1, 2, 3, 1, 2, 3, 1, 2, 3]) + assert_array_equal(a, b) + + def test_check_02(self): + a = np.pad([1, 2, 3], 4, 'wrap') + b = np.array([3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1]) + assert_array_equal(a, b) + + def test_pad_with_zero(self): + a = np.ones((3, 5)) + b = np.pad(a, (0, 5), mode="wrap") + assert_array_equal(a, b[:-5, :-5]) + + def test_repeated_wrapping(self): + """ + Check wrapping on each side individually if the wrapped area is longer + than the original array. + """ + a = np.arange(5) + b = np.pad(a, (12, 0), mode="wrap") + assert_array_equal(np.r_[a, a, a, a][3:], b) + + a = np.arange(5) + b = np.pad(a, (0, 12), mode="wrap") + assert_array_equal(np.r_[a, a, a, a][:-3], b) + + def test_repeated_wrapping_multiple_origin(self): + """ + Assert that 'wrap' pads only with multiples of the original area if + the pad width is larger than the original array. + """ + a = np.arange(4).reshape(2, 2) + a = np.pad(a, [(1, 3), (3, 1)], mode='wrap') + b = np.array( + [[3, 2, 3, 2, 3, 2], + [1, 0, 1, 0, 1, 0], + [3, 2, 3, 2, 3, 2], + [1, 0, 1, 0, 1, 0], + [3, 2, 3, 2, 3, 2], + [1, 0, 1, 0, 1, 0]] + ) + assert_array_equal(a, b) + + +class TestEdge: + def test_check_simple(self): + a = np.arange(12) + a = np.reshape(a, (4, 3)) + a = np.pad(a, ((2, 3), (3, 2)), 'edge') + b = np.array( + [[0, 0, 0, 0, 1, 2, 2, 2], + [0, 0, 0, 0, 1, 2, 2, 2], + + [0, 0, 0, 0, 1, 2, 2, 2], + [3, 3, 3, 3, 4, 5, 5, 5], + [6, 6, 6, 6, 7, 8, 8, 8], + [9, 9, 9, 9, 10, 11, 11, 11], + + [9, 9, 9, 9, 10, 11, 11, 11], + [9, 9, 9, 9, 10, 11, 11, 11], + [9, 9, 9, 9, 10, 11, 11, 11]] + ) + assert_array_equal(a, b) + + def test_check_width_shape_1_2(self): + # Check a pad_width of the form ((1, 2),). + # Regression test for issue gh-7808. + a = np.array([1, 2, 3]) + padded = np.pad(a, ((1, 2),), 'edge') + expected = np.array([1, 1, 2, 3, 3, 3]) + assert_array_equal(padded, expected) + + a = np.array([[1, 2, 3], [4, 5, 6]]) + padded = np.pad(a, ((1, 2),), 'edge') + expected = np.pad(a, ((1, 2), (1, 2)), 'edge') + assert_array_equal(padded, expected) + + a = np.arange(24).reshape(2, 3, 4) + padded = np.pad(a, ((1, 2),), 'edge') + expected = np.pad(a, ((1, 2), (1, 2), (1, 2)), 'edge') + assert_array_equal(padded, expected) + + +class TestEmpty: + def test_simple(self): + arr = np.arange(24).reshape(4, 6) + result = np.pad(arr, [(2, 3), (3, 1)], mode="empty") + assert result.shape == (9, 10) + assert_equal(arr, result[2:-3, 3:-1]) + + def test_pad_empty_dimension(self): + arr = np.zeros((3, 0, 2)) + result = np.pad(arr, [(0,), (2,), (1,)], mode="empty") + assert result.shape == (3, 4, 4) + + +def test_legacy_vector_functionality(): + def _padwithtens(vector, pad_width, iaxis, kwargs): + vector[:pad_width[0]] = 10 + vector[-pad_width[1]:] = 10 + + a = np.arange(6).reshape(2, 3) + a = np.pad(a, 2, _padwithtens) + b = np.array( + [[10, 10, 10, 10, 10, 10, 10], + [10, 10, 10, 10, 10, 10, 10], + + [10, 10, 0, 1, 2, 10, 10], + [10, 10, 3, 4, 5, 10, 10], + + [10, 10, 10, 10, 10, 10, 10], + [10, 10, 10, 10, 10, 10, 10]] + ) + assert_array_equal(a, b) + + +def test_unicode_mode(): + a = np.pad([1], 2, mode='constant') + b = np.array([0, 0, 1, 0, 0]) + assert_array_equal(a, b) + + +@pytest.mark.parametrize("mode", ["edge", "symmetric", "reflect", "wrap"]) +def test_object_input(mode): + # Regression test for issue gh-11395. + a = np.full((4, 3), fill_value=None) + pad_amt = ((2, 3), (3, 2)) + b = np.full((9, 8), fill_value=None) + assert_array_equal(np.pad(a, pad_amt, mode=mode), b) + + +class TestPadWidth: + @pytest.mark.parametrize("pad_width", [ + (4, 5, 6, 7), + ((1,), (2,), (3,)), + ((1, 2), (3, 4), (5, 6)), + ((3, 4, 5), (0, 1, 2)), + ]) + @pytest.mark.parametrize("mode", _all_modes.keys()) + def test_misshaped_pad_width(self, pad_width, mode): + arr = np.arange(30).reshape((6, 5)) + match = "operands could not be broadcast together" + with pytest.raises(ValueError, match=match): + np.pad(arr, pad_width, mode) + + @pytest.mark.parametrize("mode", _all_modes.keys()) + def test_misshaped_pad_width_2(self, mode): + arr = np.arange(30).reshape((6, 5)) + match = ("input operand has more dimensions than allowed by the axis " + "remapping") + with pytest.raises(ValueError, match=match): + np.pad(arr, (((3,), (4,), (5,)), ((0,), (1,), (2,))), mode) + + @pytest.mark.parametrize( + "pad_width", [-2, (-2,), (3, -1), ((5, 2), (-2, 3)), ((-4,), (2,))]) + @pytest.mark.parametrize("mode", _all_modes.keys()) + def test_negative_pad_width(self, pad_width, mode): + arr = np.arange(30).reshape((6, 5)) + match = "index can't contain negative values" + with pytest.raises(ValueError, match=match): + np.pad(arr, pad_width, mode) + + @pytest.mark.parametrize("pad_width, dtype", [ + ("3", None), + ("word", None), + (None, None), + (object(), None), + (3.4, None), + (((2, 3, 4), (3, 2)), object), + (complex(1, -1), None), + (((-2.1, 3), (3, 2)), None), + ]) + @pytest.mark.parametrize("mode", _all_modes.keys()) + def test_bad_type(self, pad_width, dtype, mode): + arr = np.arange(30).reshape((6, 5)) + match = "`pad_width` must be of integral type." + if dtype is not None: + # avoid DeprecationWarning when not specifying dtype + with pytest.raises(TypeError, match=match): + np.pad(arr, np.array(pad_width, dtype=dtype), mode) + else: + with pytest.raises(TypeError, match=match): + np.pad(arr, pad_width, mode) + with pytest.raises(TypeError, match=match): + np.pad(arr, np.array(pad_width), mode) + + def test_pad_width_as_ndarray(self): + a = np.arange(12) + a = np.reshape(a, (4, 3)) + a = np.pad(a, np.array(((2, 3), (3, 2))), 'edge') + b = np.array( + [[0, 0, 0, 0, 1, 2, 2, 2], + [0, 0, 0, 0, 1, 2, 2, 2], + + [0, 0, 0, 0, 1, 2, 2, 2], + [3, 3, 3, 3, 4, 5, 5, 5], + [6, 6, 6, 6, 7, 8, 8, 8], + [9, 9, 9, 9, 10, 11, 11, 11], + + [9, 9, 9, 9, 10, 11, 11, 11], + [9, 9, 9, 9, 10, 11, 11, 11], + [9, 9, 9, 9, 10, 11, 11, 11]] + ) + assert_array_equal(a, b) + + @pytest.mark.parametrize("pad_width", [0, (0, 0), ((0, 0), (0, 0))]) + @pytest.mark.parametrize("mode", _all_modes.keys()) + def test_zero_pad_width(self, pad_width, mode): + arr = np.arange(30).reshape(6, 5) + assert_array_equal(arr, np.pad(arr, pad_width, mode=mode)) + + +@pytest.mark.parametrize("mode", _all_modes.keys()) +def test_kwargs(mode): + """Test behavior of pad's kwargs for the given mode.""" + allowed = _all_modes[mode] + not_allowed = {} + for kwargs in _all_modes.values(): + if kwargs != allowed: + not_allowed.update(kwargs) + # Test if allowed keyword arguments pass + np.pad([1, 2, 3], 1, mode, **allowed) + # Test if prohibited keyword arguments of other modes raise an error + for key, value in not_allowed.items(): + match = f"unsupported keyword arguments for mode '{mode}'" + with pytest.raises(ValueError, match=match): + np.pad([1, 2, 3], 1, mode, **{key: value}) + + +def test_constant_zero_default(): + arr = np.array([1, 1]) + assert_array_equal(np.pad(arr, 2), [0, 0, 1, 1, 0, 0]) + + +@pytest.mark.parametrize("mode", [1, "const", object(), None, True, False]) +def test_unsupported_mode(mode): + match = f"mode '{mode}' is not supported" + with pytest.raises(ValueError, match=match): + np.pad([1, 2, 3], 4, mode=mode) + + +@pytest.mark.parametrize("mode", _all_modes.keys()) +def test_non_contiguous_array(mode): + arr = np.arange(24).reshape(4, 6)[::2, ::2] + result = np.pad(arr, (2, 3), mode) + assert result.shape == (7, 8) + assert_equal(result[2:-3, 2:-3], arr) + + +@pytest.mark.parametrize("mode", _all_modes.keys()) +def test_memory_layout_persistence(mode): + """Test if C and F order is preserved for all pad modes.""" + x = np.ones((5, 10), order='C') + assert np.pad(x, 5, mode).flags["C_CONTIGUOUS"] + x = np.ones((5, 10), order='F') + assert np.pad(x, 5, mode).flags["F_CONTIGUOUS"] + + +@pytest.mark.parametrize("dtype", _numeric_dtypes) +@pytest.mark.parametrize("mode", _all_modes.keys()) +def test_dtype_persistence(dtype, mode): + arr = np.zeros((3, 2, 1), dtype=dtype) + result = np.pad(arr, 1, mode=mode) + assert result.dtype == dtype diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_arraysetops.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_arraysetops.py new file mode 100644 index 0000000..7865e1b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_arraysetops.py @@ -0,0 +1,1074 @@ +"""Test functions for 1D array set operations. + +""" +import pytest + +import numpy as np +from numpy import ediff1d, intersect1d, isin, setdiff1d, setxor1d, union1d, unique +from numpy.exceptions import AxisError +from numpy.testing import ( + assert_array_equal, + assert_equal, + assert_raises, + assert_raises_regex, +) + + +class TestSetOps: + + def test_intersect1d(self): + # unique inputs + a = np.array([5, 7, 1, 2]) + b = np.array([2, 4, 3, 1, 5]) + + ec = np.array([1, 2, 5]) + c = intersect1d(a, b, assume_unique=True) + assert_array_equal(c, ec) + + # non-unique inputs + a = np.array([5, 5, 7, 1, 2]) + b = np.array([2, 1, 4, 3, 3, 1, 5]) + + ed = np.array([1, 2, 5]) + c = intersect1d(a, b) + assert_array_equal(c, ed) + assert_array_equal([], intersect1d([], [])) + + def test_intersect1d_array_like(self): + # See gh-11772 + class Test: + def __array__(self, dtype=None, copy=None): + return np.arange(3) + + a = Test() + res = intersect1d(a, a) + assert_array_equal(res, a) + res = intersect1d([1, 2, 3], [1, 2, 3]) + assert_array_equal(res, [1, 2, 3]) + + def test_intersect1d_indices(self): + # unique inputs + a = np.array([1, 2, 3, 4]) + b = np.array([2, 1, 4, 6]) + c, i1, i2 = intersect1d(a, b, assume_unique=True, return_indices=True) + ee = np.array([1, 2, 4]) + assert_array_equal(c, ee) + assert_array_equal(a[i1], ee) + assert_array_equal(b[i2], ee) + + # non-unique inputs + a = np.array([1, 2, 2, 3, 4, 3, 2]) + b = np.array([1, 8, 4, 2, 2, 3, 2, 3]) + c, i1, i2 = intersect1d(a, b, return_indices=True) + ef = np.array([1, 2, 3, 4]) + assert_array_equal(c, ef) + assert_array_equal(a[i1], ef) + assert_array_equal(b[i2], ef) + + # non1d, unique inputs + a = np.array([[2, 4, 5, 6], [7, 8, 1, 15]]) + b = np.array([[3, 2, 7, 6], [10, 12, 8, 9]]) + c, i1, i2 = intersect1d(a, b, assume_unique=True, return_indices=True) + ui1 = np.unravel_index(i1, a.shape) + ui2 = np.unravel_index(i2, b.shape) + ea = np.array([2, 6, 7, 8]) + assert_array_equal(ea, a[ui1]) + assert_array_equal(ea, b[ui2]) + + # non1d, not assumed to be uniqueinputs + a = np.array([[2, 4, 5, 6, 6], [4, 7, 8, 7, 2]]) + b = np.array([[3, 2, 7, 7], [10, 12, 8, 7]]) + c, i1, i2 = intersect1d(a, b, return_indices=True) + ui1 = np.unravel_index(i1, a.shape) + ui2 = np.unravel_index(i2, b.shape) + ea = np.array([2, 7, 8]) + assert_array_equal(ea, a[ui1]) + assert_array_equal(ea, b[ui2]) + + def test_setxor1d(self): + a = np.array([5, 7, 1, 2]) + b = np.array([2, 4, 3, 1, 5]) + + ec = np.array([3, 4, 7]) + c = setxor1d(a, b) + assert_array_equal(c, ec) + + a = np.array([1, 2, 3]) + b = np.array([6, 5, 4]) + + ec = np.array([1, 2, 3, 4, 5, 6]) + c = setxor1d(a, b) + assert_array_equal(c, ec) + + a = np.array([1, 8, 2, 3]) + b = np.array([6, 5, 4, 8]) + + ec = np.array([1, 2, 3, 4, 5, 6]) + c = setxor1d(a, b) + assert_array_equal(c, ec) + + assert_array_equal([], setxor1d([], [])) + + def test_setxor1d_unique(self): + a = np.array([1, 8, 2, 3]) + b = np.array([6, 5, 4, 8]) + + ec = np.array([1, 2, 3, 4, 5, 6]) + c = setxor1d(a, b, assume_unique=True) + assert_array_equal(c, ec) + + a = np.array([[1], [8], [2], [3]]) + b = np.array([[6, 5], [4, 8]]) + + ec = np.array([1, 2, 3, 4, 5, 6]) + c = setxor1d(a, b, assume_unique=True) + assert_array_equal(c, ec) + + def test_ediff1d(self): + zero_elem = np.array([]) + one_elem = np.array([1]) + two_elem = np.array([1, 2]) + + assert_array_equal([], ediff1d(zero_elem)) + assert_array_equal([0], ediff1d(zero_elem, to_begin=0)) + assert_array_equal([0], ediff1d(zero_elem, to_end=0)) + assert_array_equal([-1, 0], ediff1d(zero_elem, to_begin=-1, to_end=0)) + assert_array_equal([], ediff1d(one_elem)) + assert_array_equal([1], ediff1d(two_elem)) + assert_array_equal([7, 1, 9], ediff1d(two_elem, to_begin=7, to_end=9)) + assert_array_equal([5, 6, 1, 7, 8], + ediff1d(two_elem, to_begin=[5, 6], to_end=[7, 8])) + assert_array_equal([1, 9], ediff1d(two_elem, to_end=9)) + assert_array_equal([1, 7, 8], ediff1d(two_elem, to_end=[7, 8])) + assert_array_equal([7, 1], ediff1d(two_elem, to_begin=7)) + assert_array_equal([5, 6, 1], ediff1d(two_elem, to_begin=[5, 6])) + + @pytest.mark.parametrize("ary, prepend, append, expected", [ + # should fail because trying to cast + # np.nan standard floating point value + # into an integer array: + (np.array([1, 2, 3], dtype=np.int64), + None, + np.nan, + 'to_end'), + # should fail because attempting + # to downcast to int type: + (np.array([1, 2, 3], dtype=np.int64), + np.array([5, 7, 2], dtype=np.float32), + None, + 'to_begin'), + # should fail because attempting to cast + # two special floating point values + # to integers (on both sides of ary), + # `to_begin` is in the error message as the impl checks this first: + (np.array([1., 3., 9.], dtype=np.int8), + np.nan, + np.nan, + 'to_begin'), + ]) + def test_ediff1d_forbidden_type_casts(self, ary, prepend, append, expected): + # verify resolution of gh-11490 + + # specifically, raise an appropriate + # Exception when attempting to append or + # prepend with an incompatible type + msg = f'dtype of `{expected}` must be compatible' + with assert_raises_regex(TypeError, msg): + ediff1d(ary=ary, + to_end=append, + to_begin=prepend) + + @pytest.mark.parametrize( + "ary,prepend,append,expected", + [ + (np.array([1, 2, 3], dtype=np.int16), + 2**16, # will be cast to int16 under same kind rule. + 2**16 + 4, + np.array([0, 1, 1, 4], dtype=np.int16)), + (np.array([1, 2, 3], dtype=np.float32), + np.array([5], dtype=np.float64), + None, + np.array([5, 1, 1], dtype=np.float32)), + (np.array([1, 2, 3], dtype=np.int32), + 0, + 0, + np.array([0, 1, 1, 0], dtype=np.int32)), + (np.array([1, 2, 3], dtype=np.int64), + 3, + -9, + np.array([3, 1, 1, -9], dtype=np.int64)), + ] + ) + def test_ediff1d_scalar_handling(self, + ary, + prepend, + append, + expected): + # maintain backwards-compatibility + # of scalar prepend / append behavior + # in ediff1d following fix for gh-11490 + actual = np.ediff1d(ary=ary, + to_end=append, + to_begin=prepend) + assert_equal(actual, expected) + assert actual.dtype == expected.dtype + + @pytest.mark.parametrize("kind", [None, "sort", "table"]) + def test_isin(self, kind): + def _isin_slow(a, b): + b = np.asarray(b).flatten().tolist() + return a in b + isin_slow = np.vectorize(_isin_slow, otypes=[bool], excluded={1}) + + def assert_isin_equal(a, b): + x = isin(a, b, kind=kind) + y = isin_slow(a, b) + assert_array_equal(x, y) + + # multidimensional arrays in both arguments + a = np.arange(24).reshape([2, 3, 4]) + b = np.array([[10, 20, 30], [0, 1, 3], [11, 22, 33]]) + assert_isin_equal(a, b) + + # array-likes as both arguments + c = [(9, 8), (7, 6)] + d = (9, 7) + assert_isin_equal(c, d) + + # zero-d array: + f = np.array(3) + assert_isin_equal(f, b) + assert_isin_equal(a, f) + assert_isin_equal(f, f) + + # scalar: + assert_isin_equal(5, b) + assert_isin_equal(a, 6) + assert_isin_equal(5, 6) + + # empty array-like: + if kind != "table": + # An empty list will become float64, + # which is invalid for kind="table" + x = [] + assert_isin_equal(x, b) + assert_isin_equal(a, x) + assert_isin_equal(x, x) + + # empty array with various types: + for dtype in [bool, np.int64, np.float64]: + if kind == "table" and dtype == np.float64: + continue + + if dtype in {np.int64, np.float64}: + ar = np.array([10, 20, 30], dtype=dtype) + elif dtype in {bool}: + ar = np.array([True, False, False]) + + empty_array = np.array([], dtype=dtype) + + assert_isin_equal(empty_array, ar) + assert_isin_equal(ar, empty_array) + assert_isin_equal(empty_array, empty_array) + + @pytest.mark.parametrize("kind", [None, "sort", "table"]) + def test_isin_additional(self, kind): + # we use two different sizes for the b array here to test the + # two different paths in isin(). + for mult in (1, 10): + # One check without np.array to make sure lists are handled correct + a = [5, 7, 1, 2] + b = [2, 4, 3, 1, 5] * mult + ec = np.array([True, False, True, True]) + c = isin(a, b, assume_unique=True, kind=kind) + assert_array_equal(c, ec) + + a[0] = 8 + ec = np.array([False, False, True, True]) + c = isin(a, b, assume_unique=True, kind=kind) + assert_array_equal(c, ec) + + a[0], a[3] = 4, 8 + ec = np.array([True, False, True, False]) + c = isin(a, b, assume_unique=True, kind=kind) + assert_array_equal(c, ec) + + a = np.array([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5]) + b = [2, 3, 4] * mult + ec = [False, True, False, True, True, True, True, True, True, + False, True, False, False, False] + c = isin(a, b, kind=kind) + assert_array_equal(c, ec) + + b = b + [5, 5, 4] * mult + ec = [True, True, True, True, True, True, True, True, True, True, + True, False, True, True] + c = isin(a, b, kind=kind) + assert_array_equal(c, ec) + + a = np.array([5, 7, 1, 2]) + b = np.array([2, 4, 3, 1, 5] * mult) + ec = np.array([True, False, True, True]) + c = isin(a, b, kind=kind) + assert_array_equal(c, ec) + + a = np.array([5, 7, 1, 1, 2]) + b = np.array([2, 4, 3, 3, 1, 5] * mult) + ec = np.array([True, False, True, True, True]) + c = isin(a, b, kind=kind) + assert_array_equal(c, ec) + + a = np.array([5, 5]) + b = np.array([2, 2] * mult) + ec = np.array([False, False]) + c = isin(a, b, kind=kind) + assert_array_equal(c, ec) + + a = np.array([5]) + b = np.array([2]) + ec = np.array([False]) + c = isin(a, b, kind=kind) + assert_array_equal(c, ec) + + if kind in {None, "sort"}: + assert_array_equal(isin([], [], kind=kind), []) + + def test_isin_char_array(self): + a = np.array(['a', 'b', 'c', 'd', 'e', 'c', 'e', 'b']) + b = np.array(['a', 'c']) + + ec = np.array([True, False, True, False, False, True, False, False]) + c = isin(a, b) + + assert_array_equal(c, ec) + + @pytest.mark.parametrize("kind", [None, "sort", "table"]) + def test_isin_invert(self, kind): + "Test isin's invert parameter" + # We use two different sizes for the b array here to test the + # two different paths in isin(). + for mult in (1, 10): + a = np.array([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5]) + b = [2, 3, 4] * mult + assert_array_equal(np.invert(isin(a, b, kind=kind)), + isin(a, b, invert=True, kind=kind)) + + # float: + if kind in {None, "sort"}: + for mult in (1, 10): + a = np.array([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5], + dtype=np.float32) + b = [2, 3, 4] * mult + b = np.array(b, dtype=np.float32) + assert_array_equal(np.invert(isin(a, b, kind=kind)), + isin(a, b, invert=True, kind=kind)) + + def test_isin_hit_alternate_algorithm(self): + """Hit the standard isin code with integers""" + # Need extreme range to hit standard code + # This hits it without the use of kind='table' + a = np.array([5, 4, 5, 3, 4, 4, 1e9], dtype=np.int64) + b = np.array([2, 3, 4, 1e9], dtype=np.int64) + expected = np.array([0, 1, 0, 1, 1, 1, 1], dtype=bool) + assert_array_equal(expected, isin(a, b)) + assert_array_equal(np.invert(expected), isin(a, b, invert=True)) + + a = np.array([5, 7, 1, 2], dtype=np.int64) + b = np.array([2, 4, 3, 1, 5, 1e9], dtype=np.int64) + ec = np.array([True, False, True, True]) + c = isin(a, b, assume_unique=True) + assert_array_equal(c, ec) + + @pytest.mark.parametrize("kind", [None, "sort", "table"]) + def test_isin_boolean(self, kind): + """Test that isin works for boolean input""" + a = np.array([True, False]) + b = np.array([False, False, False]) + expected = np.array([False, True]) + assert_array_equal(expected, + isin(a, b, kind=kind)) + assert_array_equal(np.invert(expected), + isin(a, b, invert=True, kind=kind)) + + @pytest.mark.parametrize("kind", [None, "sort"]) + def test_isin_timedelta(self, kind): + """Test that isin works for timedelta input""" + rstate = np.random.RandomState(0) + a = rstate.randint(0, 100, size=10) + b = rstate.randint(0, 100, size=10) + truth = isin(a, b) + a_timedelta = a.astype("timedelta64[s]") + b_timedelta = b.astype("timedelta64[s]") + assert_array_equal(truth, isin(a_timedelta, b_timedelta, kind=kind)) + + def test_isin_table_timedelta_fails(self): + a = np.array([0, 1, 2], dtype="timedelta64[s]") + b = a + # Make sure it raises a value error: + with pytest.raises(ValueError): + isin(a, b, kind="table") + + @pytest.mark.parametrize( + "dtype1,dtype2", + [ + (np.int8, np.int16), + (np.int16, np.int8), + (np.uint8, np.uint16), + (np.uint16, np.uint8), + (np.uint8, np.int16), + (np.int16, np.uint8), + (np.uint64, np.int64), + ] + ) + @pytest.mark.parametrize("kind", [None, "sort", "table"]) + def test_isin_mixed_dtype(self, dtype1, dtype2, kind): + """Test that isin works as expected for mixed dtype input.""" + is_dtype2_signed = np.issubdtype(dtype2, np.signedinteger) + ar1 = np.array([0, 0, 1, 1], dtype=dtype1) + + if is_dtype2_signed: + ar2 = np.array([-128, 0, 127], dtype=dtype2) + else: + ar2 = np.array([127, 0, 255], dtype=dtype2) + + expected = np.array([True, True, False, False]) + + expect_failure = kind == "table" and ( + dtype1 == np.int16 and dtype2 == np.int8) + + if expect_failure: + with pytest.raises(RuntimeError, match="exceed the maximum"): + isin(ar1, ar2, kind=kind) + else: + assert_array_equal(isin(ar1, ar2, kind=kind), expected) + + @pytest.mark.parametrize("data", [ + np.array([2**63, 2**63 + 1], dtype=np.uint64), + np.array([-2**62, -2**62 - 1], dtype=np.int64), + ]) + @pytest.mark.parametrize("kind", [None, "sort", "table"]) + def test_isin_mixed_huge_vals(self, kind, data): + """Test values outside intp range (negative ones if 32bit system)""" + query = data[1] + res = np.isin(data, query, kind=kind) + assert_array_equal(res, [False, True]) + # Also check that nothing weird happens for values can't possibly + # in range. + data = data.astype(np.int32) # clearly different values + res = np.isin(data, query, kind=kind) + assert_array_equal(res, [False, False]) + + @pytest.mark.parametrize("kind", [None, "sort", "table"]) + def test_isin_mixed_boolean(self, kind): + """Test that isin works as expected for bool/int input.""" + for dtype in np.typecodes["AllInteger"]: + a = np.array([True, False, False], dtype=bool) + b = np.array([0, 0, 0, 0], dtype=dtype) + expected = np.array([False, True, True], dtype=bool) + assert_array_equal(isin(a, b, kind=kind), expected) + + a, b = b, a + expected = np.array([True, True, True, True], dtype=bool) + assert_array_equal(isin(a, b, kind=kind), expected) + + def test_isin_first_array_is_object(self): + ar1 = [None] + ar2 = np.array([1] * 10) + expected = np.array([False]) + result = np.isin(ar1, ar2) + assert_array_equal(result, expected) + + def test_isin_second_array_is_object(self): + ar1 = 1 + ar2 = np.array([None] * 10) + expected = np.array([False]) + result = np.isin(ar1, ar2) + assert_array_equal(result, expected) + + def test_isin_both_arrays_are_object(self): + ar1 = [None] + ar2 = np.array([None] * 10) + expected = np.array([True]) + result = np.isin(ar1, ar2) + assert_array_equal(result, expected) + + def test_isin_both_arrays_have_structured_dtype(self): + # Test arrays of a structured data type containing an integer field + # and a field of dtype `object` allowing for arbitrary Python objects + dt = np.dtype([('field1', int), ('field2', object)]) + ar1 = np.array([(1, None)], dtype=dt) + ar2 = np.array([(1, None)] * 10, dtype=dt) + expected = np.array([True]) + result = np.isin(ar1, ar2) + assert_array_equal(result, expected) + + def test_isin_with_arrays_containing_tuples(self): + ar1 = np.array([(1,), 2], dtype=object) + ar2 = np.array([(1,), 2], dtype=object) + expected = np.array([True, True]) + result = np.isin(ar1, ar2) + assert_array_equal(result, expected) + result = np.isin(ar1, ar2, invert=True) + assert_array_equal(result, np.invert(expected)) + + # An integer is added at the end of the array to make sure + # that the array builder will create the array with tuples + # and after it's created the integer is removed. + # There's a bug in the array constructor that doesn't handle + # tuples properly and adding the integer fixes that. + ar1 = np.array([(1,), (2, 1), 1], dtype=object) + ar1 = ar1[:-1] + ar2 = np.array([(1,), (2, 1), 1], dtype=object) + ar2 = ar2[:-1] + expected = np.array([True, True]) + result = np.isin(ar1, ar2) + assert_array_equal(result, expected) + result = np.isin(ar1, ar2, invert=True) + assert_array_equal(result, np.invert(expected)) + + ar1 = np.array([(1,), (2, 3), 1], dtype=object) + ar1 = ar1[:-1] + ar2 = np.array([(1,), 2], dtype=object) + expected = np.array([True, False]) + result = np.isin(ar1, ar2) + assert_array_equal(result, expected) + result = np.isin(ar1, ar2, invert=True) + assert_array_equal(result, np.invert(expected)) + + def test_isin_errors(self): + """Test that isin raises expected errors.""" + + # Error 1: `kind` is not one of 'sort' 'table' or None. + ar1 = np.array([1, 2, 3, 4, 5]) + ar2 = np.array([2, 4, 6, 8, 10]) + assert_raises(ValueError, isin, ar1, ar2, kind='quicksort') + + # Error 2: `kind="table"` does not work for non-integral arrays. + obj_ar1 = np.array([1, 'a', 3, 'b', 5], dtype=object) + obj_ar2 = np.array([1, 'a', 3, 'b', 5], dtype=object) + assert_raises(ValueError, isin, obj_ar1, obj_ar2, kind='table') + + for dtype in [np.int32, np.int64]: + ar1 = np.array([-1, 2, 3, 4, 5], dtype=dtype) + # The range of this array will overflow: + overflow_ar2 = np.array([-1, np.iinfo(dtype).max], dtype=dtype) + + # Error 3: `kind="table"` will trigger a runtime error + # if there is an integer overflow expected when computing the + # range of ar2 + assert_raises( + RuntimeError, + isin, ar1, overflow_ar2, kind='table' + ) + + # Non-error: `kind=None` will *not* trigger a runtime error + # if there is an integer overflow, it will switch to + # the `sort` algorithm. + result = np.isin(ar1, overflow_ar2, kind=None) + assert_array_equal(result, [True] + [False] * 4) + result = np.isin(ar1, overflow_ar2, kind='sort') + assert_array_equal(result, [True] + [False] * 4) + + def test_union1d(self): + a = np.array([5, 4, 7, 1, 2]) + b = np.array([2, 4, 3, 3, 2, 1, 5]) + + ec = np.array([1, 2, 3, 4, 5, 7]) + c = union1d(a, b) + assert_array_equal(c, ec) + + # Tests gh-10340, arguments to union1d should be + # flattened if they are not already 1D + x = np.array([[0, 1, 2], [3, 4, 5]]) + y = np.array([0, 1, 2, 3, 4]) + ez = np.array([0, 1, 2, 3, 4, 5]) + z = union1d(x, y) + assert_array_equal(z, ez) + + assert_array_equal([], union1d([], [])) + + def test_setdiff1d(self): + a = np.array([6, 5, 4, 7, 1, 2, 7, 4]) + b = np.array([2, 4, 3, 3, 2, 1, 5]) + + ec = np.array([6, 7]) + c = setdiff1d(a, b) + assert_array_equal(c, ec) + + a = np.arange(21) + b = np.arange(19) + ec = np.array([19, 20]) + c = setdiff1d(a, b) + assert_array_equal(c, ec) + + assert_array_equal([], setdiff1d([], [])) + a = np.array((), np.uint32) + assert_equal(setdiff1d(a, []).dtype, np.uint32) + + def test_setdiff1d_unique(self): + a = np.array([3, 2, 1]) + b = np.array([7, 5, 2]) + expected = np.array([3, 1]) + actual = setdiff1d(a, b, assume_unique=True) + assert_equal(actual, expected) + + def test_setdiff1d_char_array(self): + a = np.array(['a', 'b', 'c']) + b = np.array(['a', 'b', 's']) + assert_array_equal(setdiff1d(a, b), np.array(['c'])) + + def test_manyways(self): + a = np.array([5, 7, 1, 2, 8]) + b = np.array([9, 8, 2, 4, 3, 1, 5]) + + c1 = setxor1d(a, b) + aux1 = intersect1d(a, b) + aux2 = union1d(a, b) + c2 = setdiff1d(aux2, aux1) + assert_array_equal(c1, c2) + + +class TestUnique: + + def check_all(self, a, b, i1, i2, c, dt): + base_msg = 'check {0} failed for type {1}' + + msg = base_msg.format('values', dt) + v = unique(a) + assert_array_equal(v, b, msg) + assert type(v) == type(b) + + msg = base_msg.format('return_index', dt) + v, j = unique(a, True, False, False) + assert_array_equal(v, b, msg) + assert_array_equal(j, i1, msg) + assert type(v) == type(b) + + msg = base_msg.format('return_inverse', dt) + v, j = unique(a, False, True, False) + assert_array_equal(v, b, msg) + assert_array_equal(j, i2, msg) + assert type(v) == type(b) + + msg = base_msg.format('return_counts', dt) + v, j = unique(a, False, False, True) + assert_array_equal(v, b, msg) + assert_array_equal(j, c, msg) + assert type(v) == type(b) + + msg = base_msg.format('return_index and return_inverse', dt) + v, j1, j2 = unique(a, True, True, False) + assert_array_equal(v, b, msg) + assert_array_equal(j1, i1, msg) + assert_array_equal(j2, i2, msg) + assert type(v) == type(b) + + msg = base_msg.format('return_index and return_counts', dt) + v, j1, j2 = unique(a, True, False, True) + assert_array_equal(v, b, msg) + assert_array_equal(j1, i1, msg) + assert_array_equal(j2, c, msg) + assert type(v) == type(b) + + msg = base_msg.format('return_inverse and return_counts', dt) + v, j1, j2 = unique(a, False, True, True) + assert_array_equal(v, b, msg) + assert_array_equal(j1, i2, msg) + assert_array_equal(j2, c, msg) + assert type(v) == type(b) + + msg = base_msg.format(('return_index, return_inverse ' + 'and return_counts'), dt) + v, j1, j2, j3 = unique(a, True, True, True) + assert_array_equal(v, b, msg) + assert_array_equal(j1, i1, msg) + assert_array_equal(j2, i2, msg) + assert_array_equal(j3, c, msg) + assert type(v) == type(b) + + def get_types(self): + types = [] + types.extend(np.typecodes['AllInteger']) + types.extend(np.typecodes['AllFloat']) + types.append('datetime64[D]') + types.append('timedelta64[D]') + return types + + def test_unique_1d(self): + + a = [5, 7, 1, 2, 1, 5, 7] * 10 + b = [1, 2, 5, 7] + i1 = [2, 3, 0, 1] + i2 = [2, 3, 0, 1, 0, 2, 3] * 10 + c = np.multiply([2, 1, 2, 2], 10) + + # test for numeric arrays + types = self.get_types() + for dt in types: + aa = np.array(a, dt) + bb = np.array(b, dt) + self.check_all(aa, bb, i1, i2, c, dt) + + # test for object arrays + dt = 'O' + aa = np.empty(len(a), dt) + aa[:] = a + bb = np.empty(len(b), dt) + bb[:] = b + self.check_all(aa, bb, i1, i2, c, dt) + + # test for structured arrays + dt = [('', 'i'), ('', 'i')] + aa = np.array(list(zip(a, a)), dt) + bb = np.array(list(zip(b, b)), dt) + self.check_all(aa, bb, i1, i2, c, dt) + + # test for ticket #2799 + aa = [1. + 0.j, 1 - 1.j, 1] + assert_array_equal(np.unique(aa), [1. - 1.j, 1. + 0.j]) + + # test for ticket #4785 + a = [(1, 2), (1, 2), (2, 3)] + unq = [1, 2, 3] + inv = [[0, 1], [0, 1], [1, 2]] + a1 = unique(a) + assert_array_equal(a1, unq) + a2, a2_inv = unique(a, return_inverse=True) + assert_array_equal(a2, unq) + assert_array_equal(a2_inv, inv) + + # test for chararrays with return_inverse (gh-5099) + a = np.char.chararray(5) + a[...] = '' + a2, a2_inv = np.unique(a, return_inverse=True) + assert_array_equal(a2_inv, np.zeros(5)) + + # test for ticket #9137 + a = [] + a1_idx = np.unique(a, return_index=True)[1] + a2_inv = np.unique(a, return_inverse=True)[1] + a3_idx, a3_inv = np.unique(a, return_index=True, + return_inverse=True)[1:] + assert_equal(a1_idx.dtype, np.intp) + assert_equal(a2_inv.dtype, np.intp) + assert_equal(a3_idx.dtype, np.intp) + assert_equal(a3_inv.dtype, np.intp) + + # test for ticket 2111 - float + a = [2.0, np.nan, 1.0, np.nan] + ua = [1.0, 2.0, np.nan] + ua_idx = [2, 0, 1] + ua_inv = [1, 2, 0, 2] + ua_cnt = [1, 1, 2] + assert_equal(np.unique(a), ua) + assert_equal(np.unique(a, return_index=True), (ua, ua_idx)) + assert_equal(np.unique(a, return_inverse=True), (ua, ua_inv)) + assert_equal(np.unique(a, return_counts=True), (ua, ua_cnt)) + + # test for ticket 2111 - complex + a = [2.0 - 1j, np.nan, 1.0 + 1j, complex(0.0, np.nan), complex(1.0, np.nan)] + ua = [1.0 + 1j, 2.0 - 1j, complex(0.0, np.nan)] + ua_idx = [2, 0, 3] + ua_inv = [1, 2, 0, 2, 2] + ua_cnt = [1, 1, 3] + assert_equal(np.unique(a), ua) + assert_equal(np.unique(a, return_index=True), (ua, ua_idx)) + assert_equal(np.unique(a, return_inverse=True), (ua, ua_inv)) + assert_equal(np.unique(a, return_counts=True), (ua, ua_cnt)) + + # test for ticket 2111 - datetime64 + nat = np.datetime64('nat') + a = [np.datetime64('2020-12-26'), nat, np.datetime64('2020-12-24'), nat] + ua = [np.datetime64('2020-12-24'), np.datetime64('2020-12-26'), nat] + ua_idx = [2, 0, 1] + ua_inv = [1, 2, 0, 2] + ua_cnt = [1, 1, 2] + assert_equal(np.unique(a), ua) + assert_equal(np.unique(a, return_index=True), (ua, ua_idx)) + assert_equal(np.unique(a, return_inverse=True), (ua, ua_inv)) + assert_equal(np.unique(a, return_counts=True), (ua, ua_cnt)) + + # test for ticket 2111 - timedelta + nat = np.timedelta64('nat') + a = [np.timedelta64(1, 'D'), nat, np.timedelta64(1, 'h'), nat] + ua = [np.timedelta64(1, 'h'), np.timedelta64(1, 'D'), nat] + ua_idx = [2, 0, 1] + ua_inv = [1, 2, 0, 2] + ua_cnt = [1, 1, 2] + assert_equal(np.unique(a), ua) + assert_equal(np.unique(a, return_index=True), (ua, ua_idx)) + assert_equal(np.unique(a, return_inverse=True), (ua, ua_inv)) + assert_equal(np.unique(a, return_counts=True), (ua, ua_cnt)) + + # test for gh-19300 + all_nans = [np.nan] * 4 + ua = [np.nan] + ua_idx = [0] + ua_inv = [0, 0, 0, 0] + ua_cnt = [4] + assert_equal(np.unique(all_nans), ua) + assert_equal(np.unique(all_nans, return_index=True), (ua, ua_idx)) + assert_equal(np.unique(all_nans, return_inverse=True), (ua, ua_inv)) + assert_equal(np.unique(all_nans, return_counts=True), (ua, ua_cnt)) + + def test_unique_zero_sized(self): + # test for zero-sized arrays + for dt in self.get_types(): + a = np.array([], dt) + b = np.array([], dt) + i1 = np.array([], np.int64) + i2 = np.array([], np.int64) + c = np.array([], np.int64) + self.check_all(a, b, i1, i2, c, dt) + + def test_unique_subclass(self): + class Subclass(np.ndarray): + pass + + i1 = [2, 3, 0, 1] + i2 = [2, 3, 0, 1, 0, 2, 3] * 10 + c = np.multiply([2, 1, 2, 2], 10) + + # test for numeric arrays + types = self.get_types() + for dt in types: + a = np.array([5, 7, 1, 2, 1, 5, 7] * 10, dtype=dt) + b = np.array([1, 2, 5, 7], dtype=dt) + aa = Subclass(a.shape, dtype=dt, buffer=a) + bb = Subclass(b.shape, dtype=dt, buffer=b) + self.check_all(aa, bb, i1, i2, c, dt) + + @pytest.mark.parametrize("arg", ["return_index", "return_inverse", "return_counts"]) + def test_unsupported_hash_based(self, arg): + """These currently never use the hash-based solution. However, + it seems easier to just allow it. + + When the hash-based solution is added, this test should fail and be + replaced with something more comprehensive. + """ + a = np.array([1, 5, 2, 3, 4, 8, 199, 1, 3, 5]) + + res_not_sorted = np.unique([1, 1], sorted=False, **{arg: True}) + res_sorted = np.unique([1, 1], sorted=True, **{arg: True}) + # The following should fail without first sorting `res_not_sorted`. + for arr, expected in zip(res_not_sorted, res_sorted): + assert_array_equal(arr, expected) + + def test_unique_axis_errors(self): + assert_raises(TypeError, self._run_axis_tests, object) + assert_raises(TypeError, self._run_axis_tests, + [('a', int), ('b', object)]) + + assert_raises(AxisError, unique, np.arange(10), axis=2) + assert_raises(AxisError, unique, np.arange(10), axis=-2) + + def test_unique_axis_list(self): + msg = "Unique failed on list of lists" + inp = [[0, 1, 0], [0, 1, 0]] + inp_arr = np.asarray(inp) + assert_array_equal(unique(inp, axis=0), unique(inp_arr, axis=0), msg) + assert_array_equal(unique(inp, axis=1), unique(inp_arr, axis=1), msg) + + def test_unique_axis(self): + types = [] + types.extend(np.typecodes['AllInteger']) + types.extend(np.typecodes['AllFloat']) + types.append('datetime64[D]') + types.append('timedelta64[D]') + types.append([('a', int), ('b', int)]) + types.append([('a', int), ('b', float)]) + + for dtype in types: + self._run_axis_tests(dtype) + + msg = 'Non-bitwise-equal booleans test failed' + data = np.arange(10, dtype=np.uint8).reshape(-1, 2).view(bool) + result = np.array([[False, True], [True, True]], dtype=bool) + assert_array_equal(unique(data, axis=0), result, msg) + + msg = 'Negative zero equality test failed' + data = np.array([[-0.0, 0.0], [0.0, -0.0], [-0.0, 0.0], [0.0, -0.0]]) + result = np.array([[-0.0, 0.0]]) + assert_array_equal(unique(data, axis=0), result, msg) + + @pytest.mark.parametrize("axis", [0, -1]) + def test_unique_1d_with_axis(self, axis): + x = np.array([4, 3, 2, 3, 2, 1, 2, 2]) + uniq = unique(x, axis=axis) + assert_array_equal(uniq, [1, 2, 3, 4]) + + @pytest.mark.parametrize("axis", [None, 0, -1]) + def test_unique_inverse_with_axis(self, axis): + x = np.array([[4, 4, 3], [2, 2, 1], [2, 2, 1], [4, 4, 3]]) + uniq, inv = unique(x, return_inverse=True, axis=axis) + assert_equal(inv.ndim, x.ndim if axis is None else 1) + assert_array_equal(x, np.take(uniq, inv, axis=axis)) + + def test_unique_axis_zeros(self): + # issue 15559 + single_zero = np.empty(shape=(2, 0), dtype=np.int8) + uniq, idx, inv, cnt = unique(single_zero, axis=0, return_index=True, + return_inverse=True, return_counts=True) + + # there's 1 element of shape (0,) along axis 0 + assert_equal(uniq.dtype, single_zero.dtype) + assert_array_equal(uniq, np.empty(shape=(1, 0))) + assert_array_equal(idx, np.array([0])) + assert_array_equal(inv, np.array([0, 0])) + assert_array_equal(cnt, np.array([2])) + + # there's 0 elements of shape (2,) along axis 1 + uniq, idx, inv, cnt = unique(single_zero, axis=1, return_index=True, + return_inverse=True, return_counts=True) + + assert_equal(uniq.dtype, single_zero.dtype) + assert_array_equal(uniq, np.empty(shape=(2, 0))) + assert_array_equal(idx, np.array([])) + assert_array_equal(inv, np.array([])) + assert_array_equal(cnt, np.array([])) + + # test a "complicated" shape + shape = (0, 2, 0, 3, 0, 4, 0) + multiple_zeros = np.empty(shape=shape) + for axis in range(len(shape)): + expected_shape = list(shape) + if shape[axis] == 0: + expected_shape[axis] = 0 + else: + expected_shape[axis] = 1 + + assert_array_equal(unique(multiple_zeros, axis=axis), + np.empty(shape=expected_shape)) + + def test_unique_masked(self): + # issue 8664 + x = np.array([64, 0, 1, 2, 3, 63, 63, 0, 0, 0, 1, 2, 0, 63, 0], + dtype='uint8') + y = np.ma.masked_equal(x, 0) + + v = np.unique(y) + v2, i, c = np.unique(y, return_index=True, return_counts=True) + + msg = 'Unique returned different results when asked for index' + assert_array_equal(v.data, v2.data, msg) + assert_array_equal(v.mask, v2.mask, msg) + + def test_unique_sort_order_with_axis(self): + # These tests fail if sorting along axis is done by treating subarrays + # as unsigned byte strings. See gh-10495. + fmt = "sort order incorrect for integer type '%s'" + for dt in 'bhilq': + a = np.array([[-1], [0]], dt) + b = np.unique(a, axis=0) + assert_array_equal(a, b, fmt % dt) + + def _run_axis_tests(self, dtype): + data = np.array([[0, 1, 0, 0], + [1, 0, 0, 0], + [0, 1, 0, 0], + [1, 0, 0, 0]]).astype(dtype) + + msg = 'Unique with 1d array and axis=0 failed' + result = np.array([0, 1]) + assert_array_equal(unique(data), result.astype(dtype), msg) + + msg = 'Unique with 2d array and axis=0 failed' + result = np.array([[0, 1, 0, 0], [1, 0, 0, 0]]) + assert_array_equal(unique(data, axis=0), result.astype(dtype), msg) + + msg = 'Unique with 2d array and axis=1 failed' + result = np.array([[0, 0, 1], [0, 1, 0], [0, 0, 1], [0, 1, 0]]) + assert_array_equal(unique(data, axis=1), result.astype(dtype), msg) + + msg = 'Unique with 3d array and axis=2 failed' + data3d = np.array([[[1, 1], + [1, 0]], + [[0, 1], + [0, 0]]]).astype(dtype) + result = np.take(data3d, [1, 0], axis=2) + assert_array_equal(unique(data3d, axis=2), result, msg) + + uniq, idx, inv, cnt = unique(data, axis=0, return_index=True, + return_inverse=True, return_counts=True) + msg = "Unique's return_index=True failed with axis=0" + assert_array_equal(data[idx], uniq, msg) + msg = "Unique's return_inverse=True failed with axis=0" + assert_array_equal(np.take(uniq, inv, axis=0), data) + msg = "Unique's return_counts=True failed with axis=0" + assert_array_equal(cnt, np.array([2, 2]), msg) + + uniq, idx, inv, cnt = unique(data, axis=1, return_index=True, + return_inverse=True, return_counts=True) + msg = "Unique's return_index=True failed with axis=1" + assert_array_equal(data[:, idx], uniq) + msg = "Unique's return_inverse=True failed with axis=1" + assert_array_equal(np.take(uniq, inv, axis=1), data) + msg = "Unique's return_counts=True failed with axis=1" + assert_array_equal(cnt, np.array([2, 1, 1]), msg) + + def test_unique_nanequals(self): + # issue 20326 + a = np.array([1, 1, np.nan, np.nan, np.nan]) + unq = np.unique(a) + not_unq = np.unique(a, equal_nan=False) + assert_array_equal(unq, np.array([1, np.nan])) + assert_array_equal(not_unq, np.array([1, np.nan, np.nan, np.nan])) + + def test_unique_array_api_functions(self): + arr = np.array([np.nan, 1, 4, 1, 3, 4, np.nan, 5, 1]) + + for res_unique_array_api, res_unique in [ + ( + np.unique_values(arr), + np.unique(arr, equal_nan=False) + ), + ( + np.unique_counts(arr), + np.unique(arr, return_counts=True, equal_nan=False) + ), + ( + np.unique_inverse(arr), + np.unique(arr, return_inverse=True, equal_nan=False) + ), + ( + np.unique_all(arr), + np.unique( + arr, + return_index=True, + return_inverse=True, + return_counts=True, + equal_nan=False + ) + ) + ]: + assert len(res_unique_array_api) == len(res_unique) + for actual, expected in zip(res_unique_array_api, res_unique): + assert_array_equal(actual, expected) + + def test_unique_inverse_shape(self): + # Regression test for https://github.com/numpy/numpy/issues/25552 + arr = np.array([[1, 2, 3], [2, 3, 1]]) + expected_values, expected_inverse = np.unique(arr, return_inverse=True) + expected_inverse = expected_inverse.reshape(arr.shape) + for func in np.unique_inverse, np.unique_all: + result = func(arr) + assert_array_equal(expected_values, result.values) + assert_array_equal(expected_inverse, result.inverse_indices) + assert_array_equal(arr, result.values[result.inverse_indices]) + + @pytest.mark.parametrize( + 'data', + [[[1, 1, 1], + [1, 1, 1]], + [1, 3, 2], + 1], + ) + @pytest.mark.parametrize('transpose', [False, True]) + @pytest.mark.parametrize('dtype', [np.int32, np.float64]) + def test_unique_with_matrix(self, data, transpose, dtype): + mat = np.matrix(data).astype(dtype) + if transpose: + mat = mat.T + u = np.unique(mat) + expected = np.unique(np.asarray(mat)) + assert_array_equal(u, expected, strict=True) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_arrayterator.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_arrayterator.py new file mode 100644 index 0000000..800c9a2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_arrayterator.py @@ -0,0 +1,46 @@ +from functools import reduce +from operator import mul + +import numpy as np +from numpy.lib import Arrayterator +from numpy.random import randint +from numpy.testing import assert_ + + +def test(): + np.random.seed(np.arange(10)) + + # Create a random array + ndims = randint(5) + 1 + shape = tuple(randint(10) + 1 for dim in range(ndims)) + els = reduce(mul, shape) + a = np.arange(els) + a.shape = shape + + buf_size = randint(2 * els) + b = Arrayterator(a, buf_size) + + # Check that each block has at most ``buf_size`` elements + for block in b: + assert_(len(block.flat) <= (buf_size or els)) + + # Check that all elements are iterated correctly + assert_(list(b.flat) == list(a.flat)) + + # Slice arrayterator + start = [randint(dim) for dim in shape] + stop = [randint(dim) + 1 for dim in shape] + step = [randint(dim) + 1 for dim in shape] + slice_ = tuple(slice(*t) for t in zip(start, stop, step)) + c = b[slice_] + d = a[slice_] + + # Check that each block has at most ``buf_size`` elements + for block in c: + assert_(len(block.flat) <= (buf_size or els)) + + # Check that the arrayterator is sliced correctly + assert_(np.all(c.__array__() == d)) + + # Check that all elements are iterated correctly + assert_(list(c.flat) == list(d.flat)) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_format.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_format.py new file mode 100644 index 0000000..d805d34 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_format.py @@ -0,0 +1,1054 @@ +# doctest +r''' Test the .npy file format. + +Set up: + + >>> import sys + >>> from io import BytesIO + >>> from numpy.lib import format + >>> + >>> scalars = [ + ... np.uint8, + ... np.int8, + ... np.uint16, + ... np.int16, + ... np.uint32, + ... np.int32, + ... np.uint64, + ... np.int64, + ... np.float32, + ... np.float64, + ... np.complex64, + ... np.complex128, + ... object, + ... ] + >>> + >>> basic_arrays = [] + >>> + >>> for scalar in scalars: + ... for endian in '<>': + ... dtype = np.dtype(scalar).newbyteorder(endian) + ... basic = np.arange(15).astype(dtype) + ... basic_arrays.extend([ + ... np.array([], dtype=dtype), + ... np.array(10, dtype=dtype), + ... basic, + ... basic.reshape((3,5)), + ... basic.reshape((3,5)).T, + ... basic.reshape((3,5))[::-1,::2], + ... ]) + ... + >>> + >>> Pdescr = [ + ... ('x', 'i4', (2,)), + ... ('y', 'f8', (2, 2)), + ... ('z', 'u1')] + >>> + >>> + >>> PbufferT = [ + ... ([3,2], [[6.,4.],[6.,4.]], 8), + ... ([4,3], [[7.,5.],[7.,5.]], 9), + ... ] + >>> + >>> + >>> Ndescr = [ + ... ('x', 'i4', (2,)), + ... ('Info', [ + ... ('value', 'c16'), + ... ('y2', 'f8'), + ... ('Info2', [ + ... ('name', 'S2'), + ... ('value', 'c16', (2,)), + ... ('y3', 'f8', (2,)), + ... ('z3', 'u4', (2,))]), + ... ('name', 'S2'), + ... ('z2', 'b1')]), + ... ('color', 'S2'), + ... ('info', [ + ... ('Name', 'U8'), + ... ('Value', 'c16')]), + ... ('y', 'f8', (2, 2)), + ... ('z', 'u1')] + >>> + >>> + >>> NbufferT = [ + ... ([3,2], (6j, 6., ('nn', [6j,4j], [6.,4.], [1,2]), 'NN', True), 'cc', ('NN', 6j), [[6.,4.],[6.,4.]], 8), + ... ([4,3], (7j, 7., ('oo', [7j,5j], [7.,5.], [2,1]), 'OO', False), 'dd', ('OO', 7j), [[7.,5.],[7.,5.]], 9), + ... ] + >>> + >>> + >>> record_arrays = [ + ... np.array(PbufferT, dtype=np.dtype(Pdescr).newbyteorder('<')), + ... np.array(NbufferT, dtype=np.dtype(Ndescr).newbyteorder('<')), + ... np.array(PbufferT, dtype=np.dtype(Pdescr).newbyteorder('>')), + ... np.array(NbufferT, dtype=np.dtype(Ndescr).newbyteorder('>')), + ... ] + +Test the magic string writing. + + >>> format.magic(1, 0) + '\x93NUMPY\x01\x00' + >>> format.magic(0, 0) + '\x93NUMPY\x00\x00' + >>> format.magic(255, 255) + '\x93NUMPY\xff\xff' + >>> format.magic(2, 5) + '\x93NUMPY\x02\x05' + +Test the magic string reading. + + >>> format.read_magic(BytesIO(format.magic(1, 0))) + (1, 0) + >>> format.read_magic(BytesIO(format.magic(0, 0))) + (0, 0) + >>> format.read_magic(BytesIO(format.magic(255, 255))) + (255, 255) + >>> format.read_magic(BytesIO(format.magic(2, 5))) + (2, 5) + +Test the header writing. + + >>> for arr in basic_arrays + record_arrays: + ... f = BytesIO() + ... format.write_array_header_1_0(f, arr) # XXX: arr is not a dict, items gets called on it + ... print(repr(f.getvalue())) + ... + "F\x00{'descr': '|u1', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '|u1', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '|u1', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '|u1', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '|u1', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '|u1', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': '|u1', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '|u1', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '|u1', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '|u1', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '|u1', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '|u1', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': '|i1', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '|i1', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '|i1', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '|i1', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '|i1', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '|i1', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': '|i1', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '|i1', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '|i1', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '|i1', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '|i1', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '|i1', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': 'u2', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '>u2', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '>u2', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '>u2', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '>u2', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '>u2', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': 'i2', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '>i2', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '>i2', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '>i2', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '>i2', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '>i2', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': 'u4', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '>u4', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '>u4', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '>u4', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '>u4', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '>u4', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': 'i4', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '>i4', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '>i4', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '>i4', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '>i4', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '>i4', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': 'u8', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '>u8', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '>u8', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '>u8', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '>u8', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '>u8', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': 'i8', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '>i8', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '>i8', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '>i8', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '>i8', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '>i8', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': 'f4', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '>f4', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '>f4', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '>f4', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '>f4', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '>f4', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': 'f8', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '>f8', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '>f8', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '>f8', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '>f8', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '>f8', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': 'c8', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '>c8', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '>c8', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '>c8', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '>c8', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '>c8', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': 'c16', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': '>c16', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': '>c16', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': '>c16', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': '>c16', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': '>c16', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': 'O', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': 'O', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': 'O', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': 'O', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': 'O', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': 'O', 'fortran_order': False, 'shape': (3, 3)} \n" + "F\x00{'descr': 'O', 'fortran_order': False, 'shape': (0,)} \n" + "F\x00{'descr': 'O', 'fortran_order': False, 'shape': ()} \n" + "F\x00{'descr': 'O', 'fortran_order': False, 'shape': (15,)} \n" + "F\x00{'descr': 'O', 'fortran_order': False, 'shape': (3, 5)} \n" + "F\x00{'descr': 'O', 'fortran_order': True, 'shape': (5, 3)} \n" + "F\x00{'descr': 'O', 'fortran_order': False, 'shape': (3, 3)} \n" + "v\x00{'descr': [('x', 'i4', (2,)), ('y', '>f8', (2, 2)), ('z', '|u1')],\n 'fortran_order': False,\n 'shape': (2,)} \n" + "\x16\x02{'descr': [('x', '>i4', (2,)),\n ('Info',\n [('value', '>c16'),\n ('y2', '>f8'),\n ('Info2',\n [('name', '|S2'),\n ('value', '>c16', (2,)),\n ('y3', '>f8', (2,)),\n ('z3', '>u4', (2,))]),\n ('name', '|S2'),\n ('z2', '|b1')]),\n ('color', '|S2'),\n ('info', [('Name', '>U8'), ('Value', '>c16')]),\n ('y', '>f8', (2, 2)),\n ('z', '|u1')],\n 'fortran_order': False,\n 'shape': (2,)} \n" +''' +import os +import sys +import warnings +from io import BytesIO + +import pytest + +import numpy as np +from numpy.lib import format +from numpy.testing import ( + IS_64BIT, + IS_PYPY, + IS_WASM, + assert_, + assert_array_equal, + assert_raises, + assert_raises_regex, + assert_warns, +) +from numpy.testing._private.utils import requires_memory + +# Generate some basic arrays to test with. +scalars = [ + np.uint8, + np.int8, + np.uint16, + np.int16, + np.uint32, + np.int32, + np.uint64, + np.int64, + np.float32, + np.float64, + np.complex64, + np.complex128, + object, +] +basic_arrays = [] +for scalar in scalars: + for endian in '<>': + dtype = np.dtype(scalar).newbyteorder(endian) + basic = np.arange(1500).astype(dtype) + basic_arrays.extend([ + # Empty + np.array([], dtype=dtype), + # Rank-0 + np.array(10, dtype=dtype), + # 1-D + basic, + # 2-D C-contiguous + basic.reshape((30, 50)), + # 2-D F-contiguous + basic.reshape((30, 50)).T, + # 2-D non-contiguous + basic.reshape((30, 50))[::-1, ::2], + ]) + +# More complicated record arrays. +# This is the structure of the table used for plain objects: +# +# +-+-+-+ +# |x|y|z| +# +-+-+-+ + +# Structure of a plain array description: +Pdescr = [ + ('x', 'i4', (2,)), + ('y', 'f8', (2, 2)), + ('z', 'u1')] + +# A plain list of tuples with values for testing: +PbufferT = [ + # x y z + ([3, 2], [[6., 4.], [6., 4.]], 8), + ([4, 3], [[7., 5.], [7., 5.]], 9), + ] + + +# This is the structure of the table used for nested objects (DON'T PANIC!): +# +# +-+---------------------------------+-----+----------+-+-+ +# |x|Info |color|info |y|z| +# | +-----+--+----------------+----+--+ +----+-----+ | | +# | |value|y2|Info2 |name|z2| |Name|Value| | | +# | | | +----+-----+--+--+ | | | | | | | +# | | | |name|value|y3|z3| | | | | | | | +# +-+-----+--+----+-----+--+--+----+--+-----+----+-----+-+-+ +# + +# The corresponding nested array description: +Ndescr = [ + ('x', 'i4', (2,)), + ('Info', [ + ('value', 'c16'), + ('y2', 'f8'), + ('Info2', [ + ('name', 'S2'), + ('value', 'c16', (2,)), + ('y3', 'f8', (2,)), + ('z3', 'u4', (2,))]), + ('name', 'S2'), + ('z2', 'b1')]), + ('color', 'S2'), + ('info', [ + ('Name', 'U8'), + ('Value', 'c16')]), + ('y', 'f8', (2, 2)), + ('z', 'u1')] + +NbufferT = [ + # x Info color info y z + # value y2 Info2 name z2 Name Value + # name value y3 z3 + ([3, 2], (6j, 6., ('nn', [6j, 4j], [6., 4.], [1, 2]), 'NN', True), + 'cc', ('NN', 6j), [[6., 4.], [6., 4.]], 8), + ([4, 3], (7j, 7., ('oo', [7j, 5j], [7., 5.], [2, 1]), 'OO', False), + 'dd', ('OO', 7j), [[7., 5.], [7., 5.]], 9), + ] + +record_arrays = [ + np.array(PbufferT, dtype=np.dtype(Pdescr).newbyteorder('<')), + np.array(NbufferT, dtype=np.dtype(Ndescr).newbyteorder('<')), + np.array(PbufferT, dtype=np.dtype(Pdescr).newbyteorder('>')), + np.array(NbufferT, dtype=np.dtype(Ndescr).newbyteorder('>')), + np.zeros(1, dtype=[('c', ('= (3, 12), reason="see gh-23988") +@pytest.mark.xfail(IS_WASM, reason="Emscripten NODEFS has a buggy dup") +def test_python2_python3_interoperability(): + fname = 'win64python2.npy' + path = os.path.join(os.path.dirname(__file__), 'data', fname) + with pytest.warns(UserWarning, match="Reading.*this warning\\."): + data = np.load(path) + assert_array_equal(data, np.ones(2)) + + +def test_pickle_python2_python3(): + # Test that loading object arrays saved on Python 2 works both on + # Python 2 and Python 3 and vice versa + data_dir = os.path.join(os.path.dirname(__file__), 'data') + + expected = np.array([None, range, '\u512a\u826f', + b'\xe4\xb8\x8d\xe8\x89\xaf'], + dtype=object) + + for fname in ['py2-np0-objarr.npy', 'py2-objarr.npy', 'py2-objarr.npz', + 'py3-objarr.npy', 'py3-objarr.npz']: + path = os.path.join(data_dir, fname) + + for encoding in ['bytes', 'latin1']: + data_f = np.load(path, allow_pickle=True, encoding=encoding) + if fname.endswith('.npz'): + data = data_f['x'] + data_f.close() + else: + data = data_f + + if encoding == 'latin1' and fname.startswith('py2'): + assert_(isinstance(data[3], str)) + assert_array_equal(data[:-1], expected[:-1]) + # mojibake occurs + assert_array_equal(data[-1].encode(encoding), expected[-1]) + else: + assert_(isinstance(data[3], bytes)) + assert_array_equal(data, expected) + + if fname.startswith('py2'): + if fname.endswith('.npz'): + data = np.load(path, allow_pickle=True) + assert_raises(UnicodeError, data.__getitem__, 'x') + data.close() + data = np.load(path, allow_pickle=True, fix_imports=False, + encoding='latin1') + assert_raises(ImportError, data.__getitem__, 'x') + data.close() + else: + assert_raises(UnicodeError, np.load, path, + allow_pickle=True) + assert_raises(ImportError, np.load, path, + allow_pickle=True, fix_imports=False, + encoding='latin1') + + +def test_pickle_disallow(tmpdir): + data_dir = os.path.join(os.path.dirname(__file__), 'data') + + path = os.path.join(data_dir, 'py2-objarr.npy') + assert_raises(ValueError, np.load, path, + allow_pickle=False, encoding='latin1') + + path = os.path.join(data_dir, 'py2-objarr.npz') + with np.load(path, allow_pickle=False, encoding='latin1') as f: + assert_raises(ValueError, f.__getitem__, 'x') + + path = os.path.join(tmpdir, 'pickle-disabled.npy') + assert_raises(ValueError, np.save, path, np.array([None], dtype=object), + allow_pickle=False) + +@pytest.mark.parametrize('dt', [ + np.dtype(np.dtype([('a', np.int8), + ('b', np.int16), + ('c', np.int32), + ], align=True), + (3,)), + np.dtype([('x', np.dtype({'names': ['a', 'b'], + 'formats': ['i1', 'i1'], + 'offsets': [0, 4], + 'itemsize': 8, + }, + (3,)), + (4,), + )]), + np.dtype([('x', + (' 1, a) + assert_array_equal(b, [3, 2, 2, 3, 3]) + + def test_place(self): + # Make sure that non-np.ndarray objects + # raise an error instead of doing nothing + assert_raises(TypeError, place, [1, 2, 3], [True, False], [0, 1]) + + a = np.array([1, 4, 3, 2, 5, 8, 7]) + place(a, [0, 1, 0, 1, 0, 1, 0], [2, 4, 6]) + assert_array_equal(a, [1, 2, 3, 4, 5, 6, 7]) + + place(a, np.zeros(7), []) + assert_array_equal(a, np.arange(1, 8)) + + place(a, [1, 0, 1, 0, 1, 0, 1], [8, 9]) + assert_array_equal(a, [8, 2, 9, 4, 8, 6, 9]) + assert_raises_regex(ValueError, "Cannot insert from an empty array", + lambda: place(a, [0, 0, 0, 0, 0, 1, 0], [])) + + # See Issue #6974 + a = np.array(['12', '34']) + place(a, [0, 1], '9') + assert_array_equal(a, ['12', '9']) + + def test_both(self): + a = rand(10) + mask = a > 0.5 + ac = a.copy() + c = extract(mask, a) + place(a, mask, 0) + place(a, mask, c) + assert_array_equal(a, ac) + + +# _foo1 and _foo2 are used in some tests in TestVectorize. + +def _foo1(x, y=1.0): + return y * math.floor(x) + + +def _foo2(x, y=1.0, z=0.0): + return y * math.floor(x) + z + + +class TestVectorize: + + def test_simple(self): + def addsubtract(a, b): + if a > b: + return a - b + else: + return a + b + + f = vectorize(addsubtract) + r = f([0, 3, 6, 9], [1, 3, 5, 7]) + assert_array_equal(r, [1, 6, 1, 2]) + + def test_scalar(self): + def addsubtract(a, b): + if a > b: + return a - b + else: + return a + b + + f = vectorize(addsubtract) + r = f([0, 3, 6, 9], 5) + assert_array_equal(r, [5, 8, 1, 4]) + + def test_large(self): + x = np.linspace(-3, 2, 10000) + f = vectorize(lambda x: x) + y = f(x) + assert_array_equal(y, x) + + def test_ufunc(self): + f = vectorize(math.cos) + args = np.array([0, 0.5 * np.pi, np.pi, 1.5 * np.pi, 2 * np.pi]) + r1 = f(args) + r2 = np.cos(args) + assert_array_almost_equal(r1, r2) + + def test_keywords(self): + + def foo(a, b=1): + return a + b + + f = vectorize(foo) + args = np.array([1, 2, 3]) + r1 = f(args) + r2 = np.array([2, 3, 4]) + assert_array_equal(r1, r2) + r1 = f(args, 2) + r2 = np.array([3, 4, 5]) + assert_array_equal(r1, r2) + + def test_keywords_with_otypes_order1(self): + # gh-1620: The second call of f would crash with + # `ValueError: invalid number of arguments`. + f = vectorize(_foo1, otypes=[float]) + # We're testing the caching of ufuncs by vectorize, so the order + # of these function calls is an important part of the test. + r1 = f(np.arange(3.0), 1.0) + r2 = f(np.arange(3.0)) + assert_array_equal(r1, r2) + + def test_keywords_with_otypes_order2(self): + # gh-1620: The second call of f would crash with + # `ValueError: non-broadcastable output operand with shape () + # doesn't match the broadcast shape (3,)`. + f = vectorize(_foo1, otypes=[float]) + # We're testing the caching of ufuncs by vectorize, so the order + # of these function calls is an important part of the test. + r1 = f(np.arange(3.0)) + r2 = f(np.arange(3.0), 1.0) + assert_array_equal(r1, r2) + + def test_keywords_with_otypes_order3(self): + # gh-1620: The third call of f would crash with + # `ValueError: invalid number of arguments`. + f = vectorize(_foo1, otypes=[float]) + # We're testing the caching of ufuncs by vectorize, so the order + # of these function calls is an important part of the test. + r1 = f(np.arange(3.0)) + r2 = f(np.arange(3.0), y=1.0) + r3 = f(np.arange(3.0)) + assert_array_equal(r1, r2) + assert_array_equal(r1, r3) + + def test_keywords_with_otypes_several_kwd_args1(self): + # gh-1620 Make sure different uses of keyword arguments + # don't break the vectorized function. + f = vectorize(_foo2, otypes=[float]) + # We're testing the caching of ufuncs by vectorize, so the order + # of these function calls is an important part of the test. + r1 = f(10.4, z=100) + r2 = f(10.4, y=-1) + r3 = f(10.4) + assert_equal(r1, _foo2(10.4, z=100)) + assert_equal(r2, _foo2(10.4, y=-1)) + assert_equal(r3, _foo2(10.4)) + + def test_keywords_with_otypes_several_kwd_args2(self): + # gh-1620 Make sure different uses of keyword arguments + # don't break the vectorized function. + f = vectorize(_foo2, otypes=[float]) + # We're testing the caching of ufuncs by vectorize, so the order + # of these function calls is an important part of the test. + r1 = f(z=100, x=10.4, y=-1) + r2 = f(1, 2, 3) + assert_equal(r1, _foo2(z=100, x=10.4, y=-1)) + assert_equal(r2, _foo2(1, 2, 3)) + + def test_keywords_no_func_code(self): + # This needs to test a function that has keywords but + # no func_code attribute, since otherwise vectorize will + # inspect the func_code. + import random + try: + vectorize(random.randrange) # Should succeed + except Exception: + raise AssertionError + + def test_keywords2_ticket_2100(self): + # Test kwarg support: enhancement ticket 2100 + + def foo(a, b=1): + return a + b + + f = vectorize(foo) + args = np.array([1, 2, 3]) + r1 = f(a=args) + r2 = np.array([2, 3, 4]) + assert_array_equal(r1, r2) + r1 = f(b=1, a=args) + assert_array_equal(r1, r2) + r1 = f(args, b=2) + r2 = np.array([3, 4, 5]) + assert_array_equal(r1, r2) + + def test_keywords3_ticket_2100(self): + # Test excluded with mixed positional and kwargs: ticket 2100 + def mypolyval(x, p): + _p = list(p) + res = _p.pop(0) + while _p: + res = res * x + _p.pop(0) + return res + + vpolyval = np.vectorize(mypolyval, excluded=['p', 1]) + ans = [3, 6] + assert_array_equal(ans, vpolyval(x=[0, 1], p=[1, 2, 3])) + assert_array_equal(ans, vpolyval([0, 1], p=[1, 2, 3])) + assert_array_equal(ans, vpolyval([0, 1], [1, 2, 3])) + + def test_keywords4_ticket_2100(self): + # Test vectorizing function with no positional args. + @vectorize + def f(**kw): + res = 1.0 + for _k in kw: + res *= kw[_k] + return res + + assert_array_equal(f(a=[1, 2], b=[3, 4]), [3, 8]) + + def test_keywords5_ticket_2100(self): + # Test vectorizing function with no kwargs args. + @vectorize + def f(*v): + return np.prod(v) + + assert_array_equal(f([1, 2], [3, 4]), [3, 8]) + + def test_coverage1_ticket_2100(self): + def foo(): + return 1 + + f = vectorize(foo) + assert_array_equal(f(), 1) + + def test_assigning_docstring(self): + def foo(x): + """Original documentation""" + return x + + f = vectorize(foo) + assert_equal(f.__doc__, foo.__doc__) + + doc = "Provided documentation" + f = vectorize(foo, doc=doc) + assert_equal(f.__doc__, doc) + + def test_UnboundMethod_ticket_1156(self): + # Regression test for issue 1156 + class Foo: + b = 2 + + def bar(self, a): + return a ** self.b + + assert_array_equal(vectorize(Foo().bar)(np.arange(9)), + np.arange(9) ** 2) + assert_array_equal(vectorize(Foo.bar)(Foo(), np.arange(9)), + np.arange(9) ** 2) + + def test_execution_order_ticket_1487(self): + # Regression test for dependence on execution order: issue 1487 + f1 = vectorize(lambda x: x) + res1a = f1(np.arange(3)) + res1b = f1(np.arange(0.1, 3)) + f2 = vectorize(lambda x: x) + res2b = f2(np.arange(0.1, 3)) + res2a = f2(np.arange(3)) + assert_equal(res1a, res2a) + assert_equal(res1b, res2b) + + def test_string_ticket_1892(self): + # Test vectorization over strings: issue 1892. + f = np.vectorize(lambda x: x) + s = '0123456789' * 10 + assert_equal(s, f(s)) + + def test_dtype_promotion_gh_29189(self): + # dtype should not be silently promoted (int32 -> int64) + dtypes = [np.int16, np.int32, np.int64, np.float16, np.float32, np.float64] + + for dtype in dtypes: + x = np.asarray([1, 2, 3], dtype=dtype) + y = np.vectorize(lambda x: x + x)(x) + assert x.dtype == y.dtype + + def test_cache(self): + # Ensure that vectorized func called exactly once per argument. + _calls = [0] + + @vectorize + def f(x): + _calls[0] += 1 + return x ** 2 + + f.cache = True + x = np.arange(5) + assert_array_equal(f(x), x * x) + assert_equal(_calls[0], len(x)) + + def test_otypes(self): + f = np.vectorize(lambda x: x) + f.otypes = 'i' + x = np.arange(5) + assert_array_equal(f(x), x) + + def test_otypes_object_28624(self): + # with object otype, the vectorized function should return y + # wrapped into an object array + y = np.arange(3) + f = vectorize(lambda x: y, otypes=[object]) + + assert f(None).item() is y + assert f([None]).item() is y + + y = [1, 2, 3] + f = vectorize(lambda x: y, otypes=[object]) + + assert f(None).item() is y + assert f([None]).item() is y + + def test_parse_gufunc_signature(self): + assert_equal(nfb._parse_gufunc_signature('(x)->()'), ([('x',)], [()])) + assert_equal(nfb._parse_gufunc_signature('(x,y)->()'), + ([('x', 'y')], [()])) + assert_equal(nfb._parse_gufunc_signature('(x),(y)->()'), + ([('x',), ('y',)], [()])) + assert_equal(nfb._parse_gufunc_signature('(x)->(y)'), + ([('x',)], [('y',)])) + assert_equal(nfb._parse_gufunc_signature('(x)->(y),()'), + ([('x',)], [('y',), ()])) + assert_equal(nfb._parse_gufunc_signature('(),(a,b,c),(d)->(d,e)'), + ([(), ('a', 'b', 'c'), ('d',)], [('d', 'e')])) + + # Tests to check if whitespaces are ignored + assert_equal(nfb._parse_gufunc_signature('(x )->()'), ([('x',)], [()])) + assert_equal(nfb._parse_gufunc_signature('( x , y )->( )'), + ([('x', 'y')], [()])) + assert_equal(nfb._parse_gufunc_signature('(x),( y) ->()'), + ([('x',), ('y',)], [()])) + assert_equal(nfb._parse_gufunc_signature('( x)-> (y ) '), + ([('x',)], [('y',)])) + assert_equal(nfb._parse_gufunc_signature(' (x)->( y),( )'), + ([('x',)], [('y',), ()])) + assert_equal(nfb._parse_gufunc_signature( + '( ), ( a, b,c ) ,( d) -> (d , e)'), + ([(), ('a', 'b', 'c'), ('d',)], [('d', 'e')])) + + with assert_raises(ValueError): + nfb._parse_gufunc_signature('(x)(y)->()') + with assert_raises(ValueError): + nfb._parse_gufunc_signature('(x),(y)->') + with assert_raises(ValueError): + nfb._parse_gufunc_signature('((x))->(x)') + + def test_signature_simple(self): + def addsubtract(a, b): + if a > b: + return a - b + else: + return a + b + + f = vectorize(addsubtract, signature='(),()->()') + r = f([0, 3, 6, 9], [1, 3, 5, 7]) + assert_array_equal(r, [1, 6, 1, 2]) + + def test_signature_mean_last(self): + def mean(a): + return a.mean() + + f = vectorize(mean, signature='(n)->()') + r = f([[1, 3], [2, 4]]) + assert_array_equal(r, [2, 3]) + + def test_signature_center(self): + def center(a): + return a - a.mean() + + f = vectorize(center, signature='(n)->(n)') + r = f([[1, 3], [2, 4]]) + assert_array_equal(r, [[-1, 1], [-1, 1]]) + + def test_signature_two_outputs(self): + f = vectorize(lambda x: (x, x), signature='()->(),()') + r = f([1, 2, 3]) + assert_(isinstance(r, tuple) and len(r) == 2) + assert_array_equal(r[0], [1, 2, 3]) + assert_array_equal(r[1], [1, 2, 3]) + + def test_signature_outer(self): + f = vectorize(np.outer, signature='(a),(b)->(a,b)') + r = f([1, 2], [1, 2, 3]) + assert_array_equal(r, [[1, 2, 3], [2, 4, 6]]) + + r = f([[[1, 2]]], [1, 2, 3]) + assert_array_equal(r, [[[[1, 2, 3], [2, 4, 6]]]]) + + r = f([[1, 0], [2, 0]], [1, 2, 3]) + assert_array_equal(r, [[[1, 2, 3], [0, 0, 0]], + [[2, 4, 6], [0, 0, 0]]]) + + r = f([1, 2], [[1, 2, 3], [0, 0, 0]]) + assert_array_equal(r, [[[1, 2, 3], [2, 4, 6]], + [[0, 0, 0], [0, 0, 0]]]) + + def test_signature_computed_size(self): + f = vectorize(lambda x: x[:-1], signature='(n)->(m)') + r = f([1, 2, 3]) + assert_array_equal(r, [1, 2]) + + r = f([[1, 2, 3], [2, 3, 4]]) + assert_array_equal(r, [[1, 2], [2, 3]]) + + def test_signature_excluded(self): + + def foo(a, b=1): + return a + b + + f = vectorize(foo, signature='()->()', excluded={'b'}) + assert_array_equal(f([1, 2, 3]), [2, 3, 4]) + assert_array_equal(f([1, 2, 3], b=0), [1, 2, 3]) + + def test_signature_otypes(self): + f = vectorize(lambda x: x, signature='(n)->(n)', otypes=['float64']) + r = f([1, 2, 3]) + assert_equal(r.dtype, np.dtype('float64')) + assert_array_equal(r, [1, 2, 3]) + + def test_signature_invalid_inputs(self): + f = vectorize(operator.add, signature='(n),(n)->(n)') + with assert_raises_regex(TypeError, 'wrong number of positional'): + f([1, 2]) + with assert_raises_regex( + ValueError, 'does not have enough dimensions'): + f(1, 2) + with assert_raises_regex( + ValueError, 'inconsistent size for core dimension'): + f([1, 2], [1, 2, 3]) + + f = vectorize(operator.add, signature='()->()') + with assert_raises_regex(TypeError, 'wrong number of positional'): + f(1, 2) + + def test_signature_invalid_outputs(self): + + f = vectorize(lambda x: x[:-1], signature='(n)->(n)') + with assert_raises_regex( + ValueError, 'inconsistent size for core dimension'): + f([1, 2, 3]) + + f = vectorize(lambda x: x, signature='()->(),()') + with assert_raises_regex(ValueError, 'wrong number of outputs'): + f(1) + + f = vectorize(lambda x: (x, x), signature='()->()') + with assert_raises_regex(ValueError, 'wrong number of outputs'): + f([1, 2]) + + def test_size_zero_output(self): + # see issue 5868 + f = np.vectorize(lambda x: x) + x = np.zeros([0, 5], dtype=int) + with assert_raises_regex(ValueError, 'otypes'): + f(x) + + f.otypes = 'i' + assert_array_equal(f(x), x) + + f = np.vectorize(lambda x: x, signature='()->()') + with assert_raises_regex(ValueError, 'otypes'): + f(x) + + f = np.vectorize(lambda x: x, signature='()->()', otypes='i') + assert_array_equal(f(x), x) + + f = np.vectorize(lambda x: x, signature='(n)->(n)', otypes='i') + assert_array_equal(f(x), x) + + f = np.vectorize(lambda x: x, signature='(n)->(n)') + assert_array_equal(f(x.T), x.T) + + f = np.vectorize(lambda x: [x], signature='()->(n)', otypes='i') + with assert_raises_regex(ValueError, 'new output dimensions'): + f(x) + + def test_subclasses(self): + class subclass(np.ndarray): + pass + + m = np.array([[1., 0., 0.], + [0., 0., 1.], + [0., 1., 0.]]).view(subclass) + v = np.array([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]).view(subclass) + # generalized (gufunc) + matvec = np.vectorize(np.matmul, signature='(m,m),(m)->(m)') + r = matvec(m, v) + assert_equal(type(r), subclass) + assert_equal(r, [[1., 3., 2.], [4., 6., 5.], [7., 9., 8.]]) + + # element-wise (ufunc) + mult = np.vectorize(lambda x, y: x * y) + r = mult(m, v) + assert_equal(type(r), subclass) + assert_equal(r, m * v) + + def test_name(self): + # gh-23021 + @np.vectorize + def f2(a, b): + return a + b + + assert f2.__name__ == 'f2' + + def test_decorator(self): + @vectorize + def addsubtract(a, b): + if a > b: + return a - b + else: + return a + b + + r = addsubtract([0, 3, 6, 9], [1, 3, 5, 7]) + assert_array_equal(r, [1, 6, 1, 2]) + + def test_docstring(self): + @vectorize + def f(x): + """Docstring""" + return x + + if sys.flags.optimize < 2: + assert f.__doc__ == "Docstring" + + def test_partial(self): + def foo(x, y): + return x + y + + bar = partial(foo, 3) + vbar = np.vectorize(bar) + assert vbar(1) == 4 + + def test_signature_otypes_decorator(self): + @vectorize(signature='(n)->(n)', otypes=['float64']) + def f(x): + return x + + r = f([1, 2, 3]) + assert_equal(r.dtype, np.dtype('float64')) + assert_array_equal(r, [1, 2, 3]) + assert f.__name__ == 'f' + + def test_bad_input(self): + with assert_raises(TypeError): + A = np.vectorize(pyfunc=3) + + def test_no_keywords(self): + with assert_raises(TypeError): + @np.vectorize("string") + def foo(): + return "bar" + + def test_positional_regression_9477(self): + # This supplies the first keyword argument as a positional, + # to ensure that they are still properly forwarded after the + # enhancement for #9477 + f = vectorize((lambda x: x), ['float64']) + r = f([2]) + assert_equal(r.dtype, np.dtype('float64')) + + def test_datetime_conversion(self): + otype = "datetime64[ns]" + arr = np.array(['2024-01-01', '2024-01-02', '2024-01-03'], + dtype='datetime64[ns]') + assert_array_equal(np.vectorize(lambda x: x, signature="(i)->(j)", + otypes=[otype])(arr), arr) + + +class TestLeaks: + class A: + iters = 20 + + def bound(self, *args): + return 0 + + @staticmethod + def unbound(*args): + return 0 + + @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") + @pytest.mark.skipif(NOGIL_BUILD, + reason=("Functions are immortalized if a thread is " + "launched, making this test flaky")) + @pytest.mark.parametrize('name, incr', [ + ('bound', A.iters), + ('unbound', 0), + ]) + def test_frompyfunc_leaks(self, name, incr): + # exposed in gh-11867 as np.vectorized, but the problem stems from + # frompyfunc. + # class.attribute = np.frompyfunc() creates a + # reference cycle if is a bound class method. + # It requires a gc collection cycle to break the cycle. + import gc + A_func = getattr(self.A, name) + gc.disable() + try: + refcount = sys.getrefcount(A_func) + for i in range(self.A.iters): + a = self.A() + a.f = np.frompyfunc(getattr(a, name), 1, 1) + out = a.f(np.arange(10)) + a = None + # A.func is part of a reference cycle if incr is non-zero + assert_equal(sys.getrefcount(A_func), refcount + incr) + for i in range(5): + gc.collect() + assert_equal(sys.getrefcount(A_func), refcount) + finally: + gc.enable() + + +class TestDigitize: + + def test_forward(self): + x = np.arange(-6, 5) + bins = np.arange(-5, 5) + assert_array_equal(digitize(x, bins), np.arange(11)) + + def test_reverse(self): + x = np.arange(5, -6, -1) + bins = np.arange(5, -5, -1) + assert_array_equal(digitize(x, bins), np.arange(11)) + + def test_random(self): + x = rand(10) + bin = np.linspace(x.min(), x.max(), 10) + assert_(np.all(digitize(x, bin) != 0)) + + def test_right_basic(self): + x = [1, 5, 4, 10, 8, 11, 0] + bins = [1, 5, 10] + default_answer = [1, 2, 1, 3, 2, 3, 0] + assert_array_equal(digitize(x, bins), default_answer) + right_answer = [0, 1, 1, 2, 2, 3, 0] + assert_array_equal(digitize(x, bins, True), right_answer) + + def test_right_open(self): + x = np.arange(-6, 5) + bins = np.arange(-6, 4) + assert_array_equal(digitize(x, bins, True), np.arange(11)) + + def test_right_open_reverse(self): + x = np.arange(5, -6, -1) + bins = np.arange(4, -6, -1) + assert_array_equal(digitize(x, bins, True), np.arange(11)) + + def test_right_open_random(self): + x = rand(10) + bins = np.linspace(x.min(), x.max(), 10) + assert_(np.all(digitize(x, bins, True) != 10)) + + def test_monotonic(self): + x = [-1, 0, 1, 2] + bins = [0, 0, 1] + assert_array_equal(digitize(x, bins, False), [0, 2, 3, 3]) + assert_array_equal(digitize(x, bins, True), [0, 0, 2, 3]) + bins = [1, 1, 0] + assert_array_equal(digitize(x, bins, False), [3, 2, 0, 0]) + assert_array_equal(digitize(x, bins, True), [3, 3, 2, 0]) + bins = [1, 1, 1, 1] + assert_array_equal(digitize(x, bins, False), [0, 0, 4, 4]) + assert_array_equal(digitize(x, bins, True), [0, 0, 0, 4]) + bins = [0, 0, 1, 0] + assert_raises(ValueError, digitize, x, bins) + bins = [1, 1, 0, 1] + assert_raises(ValueError, digitize, x, bins) + + def test_casting_error(self): + x = [1, 2, 3 + 1.j] + bins = [1, 2, 3] + assert_raises(TypeError, digitize, x, bins) + x, bins = bins, x + assert_raises(TypeError, digitize, x, bins) + + def test_return_type(self): + # Functions returning indices should always return base ndarrays + class A(np.ndarray): + pass + a = np.arange(5).view(A) + b = np.arange(1, 3).view(A) + assert_(not isinstance(digitize(b, a, False), A)) + assert_(not isinstance(digitize(b, a, True), A)) + + def test_large_integers_increasing(self): + # gh-11022 + x = 2**54 # loses precision in a float + assert_equal(np.digitize(x, [x - 1, x + 1]), 1) + + @pytest.mark.xfail( + reason="gh-11022: np._core.multiarray._monoticity loses precision") + def test_large_integers_decreasing(self): + # gh-11022 + x = 2**54 # loses precision in a float + assert_equal(np.digitize(x, [x + 1, x - 1]), 1) + + +class TestUnwrap: + + def test_simple(self): + # check that unwrap removes jumps greater that 2*pi + assert_array_equal(unwrap([1, 1 + 2 * np.pi]), [1, 1]) + # check that unwrap maintains continuity + assert_(np.all(diff(unwrap(rand(10) * 100)) < np.pi)) + + def test_period(self): + # check that unwrap removes jumps greater that 255 + assert_array_equal(unwrap([1, 1 + 256], period=255), [1, 2]) + # check that unwrap maintains continuity + assert_(np.all(diff(unwrap(rand(10) * 1000, period=255)) < 255)) + # check simple case + simple_seq = np.array([0, 75, 150, 225, 300]) + wrap_seq = np.mod(simple_seq, 255) + assert_array_equal(unwrap(wrap_seq, period=255), simple_seq) + # check custom discont value + uneven_seq = np.array([0, 75, 150, 225, 300, 430]) + wrap_uneven = np.mod(uneven_seq, 250) + no_discont = unwrap(wrap_uneven, period=250) + assert_array_equal(no_discont, [0, 75, 150, 225, 300, 180]) + sm_discont = unwrap(wrap_uneven, period=250, discont=140) + assert_array_equal(sm_discont, [0, 75, 150, 225, 300, 430]) + assert sm_discont.dtype == wrap_uneven.dtype + + +@pytest.mark.parametrize( + "dtype", "O" + np.typecodes["AllInteger"] + np.typecodes["Float"] +) +@pytest.mark.parametrize("M", [0, 1, 10]) +class TestFilterwindows: + + def test_hanning(self, dtype: str, M: int) -> None: + scalar = np.array(M, dtype=dtype)[()] + + w = hanning(scalar) + if dtype == "O": + ref_dtype = np.float64 + else: + ref_dtype = np.result_type(scalar.dtype, np.float64) + assert w.dtype == ref_dtype + + # check symmetry + assert_equal(w, flipud(w)) + + # check known value + if scalar < 1: + assert_array_equal(w, np.array([])) + elif scalar == 1: + assert_array_equal(w, np.ones(1)) + else: + assert_almost_equal(np.sum(w, axis=0), 4.500, 4) + + def test_hamming(self, dtype: str, M: int) -> None: + scalar = np.array(M, dtype=dtype)[()] + + w = hamming(scalar) + if dtype == "O": + ref_dtype = np.float64 + else: + ref_dtype = np.result_type(scalar.dtype, np.float64) + assert w.dtype == ref_dtype + + # check symmetry + assert_equal(w, flipud(w)) + + # check known value + if scalar < 1: + assert_array_equal(w, np.array([])) + elif scalar == 1: + assert_array_equal(w, np.ones(1)) + else: + assert_almost_equal(np.sum(w, axis=0), 4.9400, 4) + + def test_bartlett(self, dtype: str, M: int) -> None: + scalar = np.array(M, dtype=dtype)[()] + + w = bartlett(scalar) + if dtype == "O": + ref_dtype = np.float64 + else: + ref_dtype = np.result_type(scalar.dtype, np.float64) + assert w.dtype == ref_dtype + + # check symmetry + assert_equal(w, flipud(w)) + + # check known value + if scalar < 1: + assert_array_equal(w, np.array([])) + elif scalar == 1: + assert_array_equal(w, np.ones(1)) + else: + assert_almost_equal(np.sum(w, axis=0), 4.4444, 4) + + def test_blackman(self, dtype: str, M: int) -> None: + scalar = np.array(M, dtype=dtype)[()] + + w = blackman(scalar) + if dtype == "O": + ref_dtype = np.float64 + else: + ref_dtype = np.result_type(scalar.dtype, np.float64) + assert w.dtype == ref_dtype + + # check symmetry + assert_equal(w, flipud(w)) + + # check known value + if scalar < 1: + assert_array_equal(w, np.array([])) + elif scalar == 1: + assert_array_equal(w, np.ones(1)) + else: + assert_almost_equal(np.sum(w, axis=0), 3.7800, 4) + + def test_kaiser(self, dtype: str, M: int) -> None: + scalar = np.array(M, dtype=dtype)[()] + + w = kaiser(scalar, 0) + if dtype == "O": + ref_dtype = np.float64 + else: + ref_dtype = np.result_type(scalar.dtype, np.float64) + assert w.dtype == ref_dtype + + # check symmetry + assert_equal(w, flipud(w)) + + # check known value + if scalar < 1: + assert_array_equal(w, np.array([])) + elif scalar == 1: + assert_array_equal(w, np.ones(1)) + else: + assert_almost_equal(np.sum(w, axis=0), 10, 15) + + +class TestTrapezoid: + + def test_simple(self): + x = np.arange(-10, 10, .1) + r = trapezoid(np.exp(-.5 * x ** 2) / np.sqrt(2 * np.pi), dx=0.1) + # check integral of normal equals 1 + assert_almost_equal(r, 1, 7) + + def test_ndim(self): + x = np.linspace(0, 1, 3) + y = np.linspace(0, 2, 8) + z = np.linspace(0, 3, 13) + + wx = np.ones_like(x) * (x[1] - x[0]) + wx[0] /= 2 + wx[-1] /= 2 + wy = np.ones_like(y) * (y[1] - y[0]) + wy[0] /= 2 + wy[-1] /= 2 + wz = np.ones_like(z) * (z[1] - z[0]) + wz[0] /= 2 + wz[-1] /= 2 + + q = x[:, None, None] + y[None, :, None] + z[None, None, :] + + qx = (q * wx[:, None, None]).sum(axis=0) + qy = (q * wy[None, :, None]).sum(axis=1) + qz = (q * wz[None, None, :]).sum(axis=2) + + # n-d `x` + r = trapezoid(q, x=x[:, None, None], axis=0) + assert_almost_equal(r, qx) + r = trapezoid(q, x=y[None, :, None], axis=1) + assert_almost_equal(r, qy) + r = trapezoid(q, x=z[None, None, :], axis=2) + assert_almost_equal(r, qz) + + # 1-d `x` + r = trapezoid(q, x=x, axis=0) + assert_almost_equal(r, qx) + r = trapezoid(q, x=y, axis=1) + assert_almost_equal(r, qy) + r = trapezoid(q, x=z, axis=2) + assert_almost_equal(r, qz) + + def test_masked(self): + # Testing that masked arrays behave as if the function is 0 where + # masked + x = np.arange(5) + y = x * x + mask = x == 2 + ym = np.ma.array(y, mask=mask) + r = 13.0 # sum(0.5 * (0 + 1) * 1.0 + 0.5 * (9 + 16)) + assert_almost_equal(trapezoid(ym, x), r) + + xm = np.ma.array(x, mask=mask) + assert_almost_equal(trapezoid(ym, xm), r) + + xm = np.ma.array(x, mask=mask) + assert_almost_equal(trapezoid(y, xm), r) + + +class TestSinc: + + def test_simple(self): + assert_(sinc(0) == 1) + w = sinc(np.linspace(-1, 1, 100)) + # check symmetry + assert_array_almost_equal(w, flipud(w), 7) + + def test_array_like(self): + x = [0, 0.5] + y1 = sinc(np.array(x)) + y2 = sinc(list(x)) + y3 = sinc(tuple(x)) + assert_array_equal(y1, y2) + assert_array_equal(y1, y3) + + def test_bool_dtype(self): + x = (np.arange(4, dtype=np.uint8) % 2 == 1) + actual = sinc(x) + expected = sinc(x.astype(np.float64)) + assert_allclose(actual, expected) + assert actual.dtype == np.float64 + + @pytest.mark.parametrize('dtype', [np.uint8, np.int16, np.uint64]) + def test_int_dtypes(self, dtype): + x = np.arange(4, dtype=dtype) + actual = sinc(x) + expected = sinc(x.astype(np.float64)) + assert_allclose(actual, expected) + assert actual.dtype == np.float64 + + @pytest.mark.parametrize( + 'dtype', + [np.float16, np.float32, np.longdouble, np.complex64, np.complex128] + ) + def test_float_dtypes(self, dtype): + x = np.arange(4, dtype=dtype) + assert sinc(x).dtype == x.dtype + + def test_float16_underflow(self): + x = np.float16(0) + # before gh-27784, fill value for 0 in input would underflow float16, + # resulting in nan + assert_array_equal(sinc(x), np.asarray(1.0)) + +class TestUnique: + + def test_simple(self): + x = np.array([4, 3, 2, 1, 1, 2, 3, 4, 0]) + assert_(np.all(unique(x) == [0, 1, 2, 3, 4])) + assert_(unique(np.array([1, 1, 1, 1, 1])) == np.array([1])) + x = ['widget', 'ham', 'foo', 'bar', 'foo', 'ham'] + assert_(np.all(unique(x) == ['bar', 'foo', 'ham', 'widget'])) + x = np.array([5 + 6j, 1 + 1j, 1 + 10j, 10, 5 + 6j]) + assert_(np.all(unique(x) == [1 + 1j, 1 + 10j, 5 + 6j, 10])) + + +class TestCheckFinite: + + def test_simple(self): + a = [1, 2, 3] + b = [1, 2, np.inf] + c = [1, 2, np.nan] + np.asarray_chkfinite(a) + assert_raises(ValueError, np.asarray_chkfinite, b) + assert_raises(ValueError, np.asarray_chkfinite, c) + + def test_dtype_order(self): + # Regression test for missing dtype and order arguments + a = [1, 2, 3] + a = np.asarray_chkfinite(a, order='F', dtype=np.float64) + assert_(a.dtype == np.float64) + + +class TestCorrCoef: + A = np.array( + [[0.15391142, 0.18045767, 0.14197213], + [0.70461506, 0.96474128, 0.27906989], + [0.9297531, 0.32296769, 0.19267156]]) + B = np.array( + [[0.10377691, 0.5417086, 0.49807457], + [0.82872117, 0.77801674, 0.39226705], + [0.9314666, 0.66800209, 0.03538394]]) + res1 = np.array( + [[1., 0.9379533, -0.04931983], + [0.9379533, 1., 0.30007991], + [-0.04931983, 0.30007991, 1.]]) + res2 = np.array( + [[1., 0.9379533, -0.04931983, 0.30151751, 0.66318558, 0.51532523], + [0.9379533, 1., 0.30007991, -0.04781421, 0.88157256, 0.78052386], + [-0.04931983, 0.30007991, 1., -0.96717111, 0.71483595, 0.83053601], + [0.30151751, -0.04781421, -0.96717111, 1., -0.51366032, -0.66173113], + [0.66318558, 0.88157256, 0.71483595, -0.51366032, 1., 0.98317823], + [0.51532523, 0.78052386, 0.83053601, -0.66173113, 0.98317823, 1.]]) + + def test_non_array(self): + assert_almost_equal(np.corrcoef([0, 1, 0], [1, 0, 1]), + [[1., -1.], [-1., 1.]]) + + def test_simple(self): + tgt1 = corrcoef(self.A) + assert_almost_equal(tgt1, self.res1) + assert_(np.all(np.abs(tgt1) <= 1.0)) + + tgt2 = corrcoef(self.A, self.B) + assert_almost_equal(tgt2, self.res2) + assert_(np.all(np.abs(tgt2) <= 1.0)) + + def test_ddof(self): + # ddof raises DeprecationWarning + with suppress_warnings() as sup: + warnings.simplefilter("always") + assert_warns(DeprecationWarning, corrcoef, self.A, ddof=-1) + sup.filter(DeprecationWarning) + # ddof has no or negligible effect on the function + assert_almost_equal(corrcoef(self.A, ddof=-1), self.res1) + assert_almost_equal(corrcoef(self.A, self.B, ddof=-1), self.res2) + assert_almost_equal(corrcoef(self.A, ddof=3), self.res1) + assert_almost_equal(corrcoef(self.A, self.B, ddof=3), self.res2) + + def test_bias(self): + # bias raises DeprecationWarning + with suppress_warnings() as sup: + warnings.simplefilter("always") + assert_warns(DeprecationWarning, corrcoef, self.A, self.B, 1, 0) + assert_warns(DeprecationWarning, corrcoef, self.A, bias=0) + sup.filter(DeprecationWarning) + # bias has no or negligible effect on the function + assert_almost_equal(corrcoef(self.A, bias=1), self.res1) + + def test_complex(self): + x = np.array([[1, 2, 3], [1j, 2j, 3j]]) + res = corrcoef(x) + tgt = np.array([[1., -1.j], [1.j, 1.]]) + assert_allclose(res, tgt) + assert_(np.all(np.abs(res) <= 1.0)) + + def test_xy(self): + x = np.array([[1, 2, 3]]) + y = np.array([[1j, 2j, 3j]]) + assert_allclose(np.corrcoef(x, y), np.array([[1., -1.j], [1.j, 1.]])) + + def test_empty(self): + with warnings.catch_warnings(record=True): + warnings.simplefilter('always', RuntimeWarning) + assert_array_equal(corrcoef(np.array([])), np.nan) + assert_array_equal(corrcoef(np.array([]).reshape(0, 2)), + np.array([]).reshape(0, 0)) + assert_array_equal(corrcoef(np.array([]).reshape(2, 0)), + np.array([[np.nan, np.nan], [np.nan, np.nan]])) + + def test_extreme(self): + x = [[1e-100, 1e100], [1e100, 1e-100]] + with np.errstate(all='raise'): + c = corrcoef(x) + assert_array_almost_equal(c, np.array([[1., -1.], [-1., 1.]])) + assert_(np.all(np.abs(c) <= 1.0)) + + @pytest.mark.parametrize("test_type", [np.half, np.single, np.double, np.longdouble]) + def test_corrcoef_dtype(self, test_type): + cast_A = self.A.astype(test_type) + res = corrcoef(cast_A, dtype=test_type) + assert test_type == res.dtype + + +class TestCov: + x1 = np.array([[0, 2], [1, 1], [2, 0]]).T + res1 = np.array([[1., -1.], [-1., 1.]]) + x2 = np.array([0.0, 1.0, 2.0], ndmin=2) + frequencies = np.array([1, 4, 1]) + x2_repeats = np.array([[0.0], [1.0], [1.0], [1.0], [1.0], [2.0]]).T + res2 = np.array([[0.4, -0.4], [-0.4, 0.4]]) + unit_frequencies = np.ones(3, dtype=np.int_) + weights = np.array([1.0, 4.0, 1.0]) + res3 = np.array([[2. / 3., -2. / 3.], [-2. / 3., 2. / 3.]]) + unit_weights = np.ones(3) + x3 = np.array([0.3942, 0.5969, 0.7730, 0.9918, 0.7964]) + + def test_basic(self): + assert_allclose(cov(self.x1), self.res1) + + def test_complex(self): + x = np.array([[1, 2, 3], [1j, 2j, 3j]]) + res = np.array([[1., -1.j], [1.j, 1.]]) + assert_allclose(cov(x), res) + assert_allclose(cov(x, aweights=np.ones(3)), res) + + def test_xy(self): + x = np.array([[1, 2, 3]]) + y = np.array([[1j, 2j, 3j]]) + assert_allclose(cov(x, y), np.array([[1., -1.j], [1.j, 1.]])) + + def test_empty(self): + with warnings.catch_warnings(record=True): + warnings.simplefilter('always', RuntimeWarning) + assert_array_equal(cov(np.array([])), np.nan) + assert_array_equal(cov(np.array([]).reshape(0, 2)), + np.array([]).reshape(0, 0)) + assert_array_equal(cov(np.array([]).reshape(2, 0)), + np.array([[np.nan, np.nan], [np.nan, np.nan]])) + + def test_wrong_ddof(self): + with warnings.catch_warnings(record=True): + warnings.simplefilter('always', RuntimeWarning) + assert_array_equal(cov(self.x1, ddof=5), + np.array([[np.inf, -np.inf], + [-np.inf, np.inf]])) + + def test_1D_rowvar(self): + assert_allclose(cov(self.x3), cov(self.x3, rowvar=False)) + y = np.array([0.0780, 0.3107, 0.2111, 0.0334, 0.8501]) + assert_allclose(cov(self.x3, y), cov(self.x3, y, rowvar=False)) + + def test_1D_variance(self): + assert_allclose(cov(self.x3, ddof=1), np.var(self.x3, ddof=1)) + + def test_fweights(self): + assert_allclose(cov(self.x2, fweights=self.frequencies), + cov(self.x2_repeats)) + assert_allclose(cov(self.x1, fweights=self.frequencies), + self.res2) + assert_allclose(cov(self.x1, fweights=self.unit_frequencies), + self.res1) + nonint = self.frequencies + 0.5 + assert_raises(TypeError, cov, self.x1, fweights=nonint) + f = np.ones((2, 3), dtype=np.int_) + assert_raises(RuntimeError, cov, self.x1, fweights=f) + f = np.ones(2, dtype=np.int_) + assert_raises(RuntimeError, cov, self.x1, fweights=f) + f = -1 * np.ones(3, dtype=np.int_) + assert_raises(ValueError, cov, self.x1, fweights=f) + + def test_aweights(self): + assert_allclose(cov(self.x1, aweights=self.weights), self.res3) + assert_allclose(cov(self.x1, aweights=3.0 * self.weights), + cov(self.x1, aweights=self.weights)) + assert_allclose(cov(self.x1, aweights=self.unit_weights), self.res1) + w = np.ones((2, 3)) + assert_raises(RuntimeError, cov, self.x1, aweights=w) + w = np.ones(2) + assert_raises(RuntimeError, cov, self.x1, aweights=w) + w = -1.0 * np.ones(3) + assert_raises(ValueError, cov, self.x1, aweights=w) + + def test_unit_fweights_and_aweights(self): + assert_allclose(cov(self.x2, fweights=self.frequencies, + aweights=self.unit_weights), + cov(self.x2_repeats)) + assert_allclose(cov(self.x1, fweights=self.frequencies, + aweights=self.unit_weights), + self.res2) + assert_allclose(cov(self.x1, fweights=self.unit_frequencies, + aweights=self.unit_weights), + self.res1) + assert_allclose(cov(self.x1, fweights=self.unit_frequencies, + aweights=self.weights), + self.res3) + assert_allclose(cov(self.x1, fweights=self.unit_frequencies, + aweights=3.0 * self.weights), + cov(self.x1, aweights=self.weights)) + assert_allclose(cov(self.x1, fweights=self.unit_frequencies, + aweights=self.unit_weights), + self.res1) + + @pytest.mark.parametrize("test_type", [np.half, np.single, np.double, np.longdouble]) + def test_cov_dtype(self, test_type): + cast_x1 = self.x1.astype(test_type) + res = cov(cast_x1, dtype=test_type) + assert test_type == res.dtype + + def test_gh_27658(self): + x = np.ones((3, 1)) + expected = np.cov(x, ddof=0, rowvar=True) + actual = np.cov(x.T, ddof=0, rowvar=False) + assert_allclose(actual, expected, strict=True) + + +class Test_I0: + + def test_simple(self): + assert_almost_equal( + i0(0.5), + np.array(1.0634833707413234)) + + # need at least one test above 8, as the implementation is piecewise + A = np.array([0.49842636, 0.6969809, 0.22011976, 0.0155549, 10.0]) + expected = np.array([1.06307822, 1.12518299, 1.01214991, 1.00006049, 2815.71662847]) + assert_almost_equal(i0(A), expected) + assert_almost_equal(i0(-A), expected) + + B = np.array([[0.827002, 0.99959078], + [0.89694769, 0.39298162], + [0.37954418, 0.05206293], + [0.36465447, 0.72446427], + [0.48164949, 0.50324519]]) + assert_almost_equal( + i0(B), + np.array([[1.17843223, 1.26583466], + [1.21147086, 1.03898290], + [1.03633899, 1.00067775], + [1.03352052, 1.13557954], + [1.05884290, 1.06432317]])) + # Regression test for gh-11205 + i0_0 = np.i0([0.]) + assert_equal(i0_0.shape, (1,)) + assert_array_equal(np.i0([0.]), np.array([1.])) + + def test_non_array(self): + a = np.arange(4) + + class array_like: + __array_interface__ = a.__array_interface__ + + def __array_wrap__(self, arr, context, return_scalar): + return self + + # E.g. pandas series survive ufunc calls through array-wrap: + assert isinstance(np.abs(array_like()), array_like) + exp = np.i0(a) + res = np.i0(array_like()) + + assert_array_equal(exp, res) + + def test_complex(self): + a = np.array([0, 1 + 2j]) + with pytest.raises(TypeError, match="i0 not supported for complex values"): + res = i0(a) + + +class TestKaiser: + + def test_simple(self): + assert_(np.isfinite(kaiser(1, 1.0))) + assert_almost_equal(kaiser(0, 1.0), + np.array([])) + assert_almost_equal(kaiser(2, 1.0), + np.array([0.78984831, 0.78984831])) + assert_almost_equal(kaiser(5, 1.0), + np.array([0.78984831, 0.94503323, 1., + 0.94503323, 0.78984831])) + assert_almost_equal(kaiser(5, 1.56789), + np.array([0.58285404, 0.88409679, 1., + 0.88409679, 0.58285404])) + + def test_int_beta(self): + kaiser(3, 4) + + +class TestMeshgrid: + + def test_simple(self): + [X, Y] = meshgrid([1, 2, 3], [4, 5, 6, 7]) + assert_array_equal(X, np.array([[1, 2, 3], + [1, 2, 3], + [1, 2, 3], + [1, 2, 3]])) + assert_array_equal(Y, np.array([[4, 4, 4], + [5, 5, 5], + [6, 6, 6], + [7, 7, 7]])) + + def test_single_input(self): + [X] = meshgrid([1, 2, 3, 4]) + assert_array_equal(X, np.array([1, 2, 3, 4])) + + def test_no_input(self): + args = [] + assert_array_equal([], meshgrid(*args)) + assert_array_equal([], meshgrid(*args, copy=False)) + + def test_indexing(self): + x = [1, 2, 3] + y = [4, 5, 6, 7] + [X, Y] = meshgrid(x, y, indexing='ij') + assert_array_equal(X, np.array([[1, 1, 1, 1], + [2, 2, 2, 2], + [3, 3, 3, 3]])) + assert_array_equal(Y, np.array([[4, 5, 6, 7], + [4, 5, 6, 7], + [4, 5, 6, 7]])) + + # Test expected shapes: + z = [8, 9] + assert_(meshgrid(x, y)[0].shape == (4, 3)) + assert_(meshgrid(x, y, indexing='ij')[0].shape == (3, 4)) + assert_(meshgrid(x, y, z)[0].shape == (4, 3, 2)) + assert_(meshgrid(x, y, z, indexing='ij')[0].shape == (3, 4, 2)) + + assert_raises(ValueError, meshgrid, x, y, indexing='notvalid') + + def test_sparse(self): + [X, Y] = meshgrid([1, 2, 3], [4, 5, 6, 7], sparse=True) + assert_array_equal(X, np.array([[1, 2, 3]])) + assert_array_equal(Y, np.array([[4], [5], [6], [7]])) + + def test_invalid_arguments(self): + # Test that meshgrid complains about invalid arguments + # Regression test for issue #4755: + # https://github.com/numpy/numpy/issues/4755 + assert_raises(TypeError, meshgrid, + [1, 2, 3], [4, 5, 6, 7], indices='ij') + + def test_return_type(self): + # Test for appropriate dtype in returned arrays. + # Regression test for issue #5297 + # https://github.com/numpy/numpy/issues/5297 + x = np.arange(0, 10, dtype=np.float32) + y = np.arange(10, 20, dtype=np.float64) + + X, Y = np.meshgrid(x, y) + + assert_(X.dtype == x.dtype) + assert_(Y.dtype == y.dtype) + + # copy + X, Y = np.meshgrid(x, y, copy=True) + + assert_(X.dtype == x.dtype) + assert_(Y.dtype == y.dtype) + + # sparse + X, Y = np.meshgrid(x, y, sparse=True) + + assert_(X.dtype == x.dtype) + assert_(Y.dtype == y.dtype) + + def test_writeback(self): + # Issue 8561 + X = np.array([1.1, 2.2]) + Y = np.array([3.3, 4.4]) + x, y = np.meshgrid(X, Y, sparse=False, copy=True) + + x[0, :] = 0 + assert_equal(x[0, :], 0) + assert_equal(x[1, :], X) + + def test_nd_shape(self): + a, b, c, d, e = np.meshgrid(*([0] * i for i in range(1, 6))) + expected_shape = (2, 1, 3, 4, 5) + assert_equal(a.shape, expected_shape) + assert_equal(b.shape, expected_shape) + assert_equal(c.shape, expected_shape) + assert_equal(d.shape, expected_shape) + assert_equal(e.shape, expected_shape) + + def test_nd_values(self): + a, b, c = np.meshgrid([0], [1, 2], [3, 4, 5]) + assert_equal(a, [[[0, 0, 0]], [[0, 0, 0]]]) + assert_equal(b, [[[1, 1, 1]], [[2, 2, 2]]]) + assert_equal(c, [[[3, 4, 5]], [[3, 4, 5]]]) + + def test_nd_indexing(self): + a, b, c = np.meshgrid([0], [1, 2], [3, 4, 5], indexing='ij') + assert_equal(a, [[[0, 0, 0], [0, 0, 0]]]) + assert_equal(b, [[[1, 1, 1], [2, 2, 2]]]) + assert_equal(c, [[[3, 4, 5], [3, 4, 5]]]) + + +class TestPiecewise: + + def test_simple(self): + # Condition is single bool list + x = piecewise([0, 0], [True, False], [1]) + assert_array_equal(x, [1, 0]) + + # List of conditions: single bool list + x = piecewise([0, 0], [[True, False]], [1]) + assert_array_equal(x, [1, 0]) + + # Conditions is single bool array + x = piecewise([0, 0], np.array([True, False]), [1]) + assert_array_equal(x, [1, 0]) + + # Condition is single int array + x = piecewise([0, 0], np.array([1, 0]), [1]) + assert_array_equal(x, [1, 0]) + + # List of conditions: int array + x = piecewise([0, 0], [np.array([1, 0])], [1]) + assert_array_equal(x, [1, 0]) + + x = piecewise([0, 0], [[False, True]], [lambda x:-1]) + assert_array_equal(x, [0, -1]) + + assert_raises_regex(ValueError, '1 or 2 functions are expected', + piecewise, [0, 0], [[False, True]], []) + assert_raises_regex(ValueError, '1 or 2 functions are expected', + piecewise, [0, 0], [[False, True]], [1, 2, 3]) + + def test_two_conditions(self): + x = piecewise([1, 2], [[True, False], [False, True]], [3, 4]) + assert_array_equal(x, [3, 4]) + + def test_scalar_domains_three_conditions(self): + x = piecewise(3, [True, False, False], [4, 2, 0]) + assert_equal(x, 4) + + def test_default(self): + # No value specified for x[1], should be 0 + x = piecewise([1, 2], [True, False], [2]) + assert_array_equal(x, [2, 0]) + + # Should set x[1] to 3 + x = piecewise([1, 2], [True, False], [2, 3]) + assert_array_equal(x, [2, 3]) + + def test_0d(self): + x = np.array(3) + y = piecewise(x, x > 3, [4, 0]) + assert_(y.ndim == 0) + assert_(y == 0) + + x = 5 + y = piecewise(x, [True, False], [1, 0]) + assert_(y.ndim == 0) + assert_(y == 1) + + # With 3 ranges (It was failing, before) + y = piecewise(x, [False, False, True], [1, 2, 3]) + assert_array_equal(y, 3) + + def test_0d_comparison(self): + x = 3 + y = piecewise(x, [x <= 3, x > 3], [4, 0]) # Should succeed. + assert_equal(y, 4) + + # With 3 ranges (It was failing, before) + x = 4 + y = piecewise(x, [x <= 3, (x > 3) * (x <= 5), x > 5], [1, 2, 3]) + assert_array_equal(y, 2) + + assert_raises_regex(ValueError, '2 or 3 functions are expected', + piecewise, x, [x <= 3, x > 3], [1]) + assert_raises_regex(ValueError, '2 or 3 functions are expected', + piecewise, x, [x <= 3, x > 3], [1, 1, 1, 1]) + + def test_0d_0d_condition(self): + x = np.array(3) + c = np.array(x > 3) + y = piecewise(x, [c], [1, 2]) + assert_equal(y, 2) + + def test_multidimensional_extrafunc(self): + x = np.array([[-2.5, -1.5, -0.5], + [0.5, 1.5, 2.5]]) + y = piecewise(x, [x < 0, x >= 2], [-1, 1, 3]) + assert_array_equal(y, np.array([[-1., -1., -1.], + [3., 3., 1.]])) + + def test_subclasses(self): + class subclass(np.ndarray): + pass + x = np.arange(5.).view(subclass) + r = piecewise(x, [x < 2., x >= 4], [-1., 1., 0.]) + assert_equal(type(r), subclass) + assert_equal(r, [-1., -1., 0., 0., 1.]) + + +class TestBincount: + + def test_simple(self): + y = np.bincount(np.arange(4)) + assert_array_equal(y, np.ones(4)) + + def test_simple2(self): + y = np.bincount(np.array([1, 5, 2, 4, 1])) + assert_array_equal(y, np.array([0, 2, 1, 0, 1, 1])) + + def test_simple_weight(self): + x = np.arange(4) + w = np.array([0.2, 0.3, 0.5, 0.1]) + y = np.bincount(x, w) + assert_array_equal(y, w) + + def test_simple_weight2(self): + x = np.array([1, 2, 4, 5, 2]) + w = np.array([0.2, 0.3, 0.5, 0.1, 0.2]) + y = np.bincount(x, w) + assert_array_equal(y, np.array([0, 0.2, 0.5, 0, 0.5, 0.1])) + + def test_with_minlength(self): + x = np.array([0, 1, 0, 1, 1]) + y = np.bincount(x, minlength=3) + assert_array_equal(y, np.array([2, 3, 0])) + x = [] + y = np.bincount(x, minlength=0) + assert_array_equal(y, np.array([])) + + def test_with_minlength_smaller_than_maxvalue(self): + x = np.array([0, 1, 1, 2, 2, 3, 3]) + y = np.bincount(x, minlength=2) + assert_array_equal(y, np.array([1, 2, 2, 2])) + y = np.bincount(x, minlength=0) + assert_array_equal(y, np.array([1, 2, 2, 2])) + + def test_with_minlength_and_weights(self): + x = np.array([1, 2, 4, 5, 2]) + w = np.array([0.2, 0.3, 0.5, 0.1, 0.2]) + y = np.bincount(x, w, 8) + assert_array_equal(y, np.array([0, 0.2, 0.5, 0, 0.5, 0.1, 0, 0])) + + def test_empty(self): + x = np.array([], dtype=int) + y = np.bincount(x) + assert_array_equal(x, y) + + def test_empty_with_minlength(self): + x = np.array([], dtype=int) + y = np.bincount(x, minlength=5) + assert_array_equal(y, np.zeros(5, dtype=int)) + + @pytest.mark.parametrize('minlength', [0, 3]) + def test_empty_list(self, minlength): + assert_array_equal(np.bincount([], minlength=minlength), + np.zeros(minlength, dtype=int)) + + def test_with_incorrect_minlength(self): + x = np.array([], dtype=int) + assert_raises_regex(TypeError, + "'str' object cannot be interpreted", + lambda: np.bincount(x, minlength="foobar")) + assert_raises_regex(ValueError, + "must not be negative", + lambda: np.bincount(x, minlength=-1)) + + x = np.arange(5) + assert_raises_regex(TypeError, + "'str' object cannot be interpreted", + lambda: np.bincount(x, minlength="foobar")) + assert_raises_regex(ValueError, + "must not be negative", + lambda: np.bincount(x, minlength=-1)) + + @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") + def test_dtype_reference_leaks(self): + # gh-6805 + intp_refcount = sys.getrefcount(np.dtype(np.intp)) + double_refcount = sys.getrefcount(np.dtype(np.double)) + + for j in range(10): + np.bincount([1, 2, 3]) + assert_equal(sys.getrefcount(np.dtype(np.intp)), intp_refcount) + assert_equal(sys.getrefcount(np.dtype(np.double)), double_refcount) + + for j in range(10): + np.bincount([1, 2, 3], [4, 5, 6]) + assert_equal(sys.getrefcount(np.dtype(np.intp)), intp_refcount) + assert_equal(sys.getrefcount(np.dtype(np.double)), double_refcount) + + @pytest.mark.parametrize("vals", [[[2, 2]], 2]) + def test_error_not_1d(self, vals): + # Test that values has to be 1-D (both as array and nested list) + vals_arr = np.asarray(vals) + with assert_raises(ValueError): + np.bincount(vals_arr) + with assert_raises(ValueError): + np.bincount(vals) + + @pytest.mark.parametrize("dt", np.typecodes["AllInteger"]) + def test_gh_28354(self, dt): + a = np.array([0, 1, 1, 3, 2, 1, 7], dtype=dt) + actual = np.bincount(a) + expected = [1, 3, 1, 1, 0, 0, 0, 1] + assert_array_equal(actual, expected) + + def test_contiguous_handling(self): + # check for absence of hard crash + np.bincount(np.arange(10000)[::2]) + + def test_gh_28354_array_like(self): + class A: + def __array__(self): + return np.array([0, 1, 1, 3, 2, 1, 7], dtype=np.uint64) + + a = A() + actual = np.bincount(a) + expected = [1, 3, 1, 1, 0, 0, 0, 1] + assert_array_equal(actual, expected) + + +class TestInterp: + + def test_exceptions(self): + assert_raises(ValueError, interp, 0, [], []) + assert_raises(ValueError, interp, 0, [0], [1, 2]) + assert_raises(ValueError, interp, 0, [0, 1], [1, 2], period=0) + assert_raises(ValueError, interp, 0, [], [], period=360) + assert_raises(ValueError, interp, 0, [0], [1, 2], period=360) + + def test_basic(self): + x = np.linspace(0, 1, 5) + y = np.linspace(0, 1, 5) + x0 = np.linspace(0, 1, 50) + assert_almost_equal(np.interp(x0, x, y), x0) + + def test_right_left_behavior(self): + # Needs range of sizes to test different code paths. + # size ==1 is special cased, 1 < size < 5 is linear search, and + # size >= 5 goes through local search and possibly binary search. + for size in range(1, 10): + xp = np.arange(size, dtype=np.double) + yp = np.ones(size, dtype=np.double) + incpts = np.array([-1, 0, size - 1, size], dtype=np.double) + decpts = incpts[::-1] + + incres = interp(incpts, xp, yp) + decres = interp(decpts, xp, yp) + inctgt = np.array([1, 1, 1, 1], dtype=float) + dectgt = inctgt[::-1] + assert_equal(incres, inctgt) + assert_equal(decres, dectgt) + + incres = interp(incpts, xp, yp, left=0) + decres = interp(decpts, xp, yp, left=0) + inctgt = np.array([0, 1, 1, 1], dtype=float) + dectgt = inctgt[::-1] + assert_equal(incres, inctgt) + assert_equal(decres, dectgt) + + incres = interp(incpts, xp, yp, right=2) + decres = interp(decpts, xp, yp, right=2) + inctgt = np.array([1, 1, 1, 2], dtype=float) + dectgt = inctgt[::-1] + assert_equal(incres, inctgt) + assert_equal(decres, dectgt) + + incres = interp(incpts, xp, yp, left=0, right=2) + decres = interp(decpts, xp, yp, left=0, right=2) + inctgt = np.array([0, 1, 1, 2], dtype=float) + dectgt = inctgt[::-1] + assert_equal(incres, inctgt) + assert_equal(decres, dectgt) + + def test_scalar_interpolation_point(self): + x = np.linspace(0, 1, 5) + y = np.linspace(0, 1, 5) + x0 = 0 + assert_almost_equal(np.interp(x0, x, y), x0) + x0 = .3 + assert_almost_equal(np.interp(x0, x, y), x0) + x0 = np.float32(.3) + assert_almost_equal(np.interp(x0, x, y), x0) + x0 = np.float64(.3) + assert_almost_equal(np.interp(x0, x, y), x0) + x0 = np.nan + assert_almost_equal(np.interp(x0, x, y), x0) + + def test_non_finite_behavior_exact_x(self): + x = [1, 2, 2.5, 3, 4] + xp = [1, 2, 3, 4] + fp = [1, 2, np.inf, 4] + assert_almost_equal(np.interp(x, xp, fp), [1, 2, np.inf, np.inf, 4]) + fp = [1, 2, np.nan, 4] + assert_almost_equal(np.interp(x, xp, fp), [1, 2, np.nan, np.nan, 4]) + + @pytest.fixture(params=[ + np.float64, + lambda x: _make_complex(x, 0), + lambda x: _make_complex(0, x), + lambda x: _make_complex(x, np.multiply(x, -2)) + ], ids=[ + 'real', + 'complex-real', + 'complex-imag', + 'complex-both' + ]) + def sc(self, request): + """ scale function used by the below tests """ + return request.param + + def test_non_finite_any_nan(self, sc): + """ test that nans are propagated """ + assert_equal(np.interp(0.5, [np.nan, 1], sc([ 0, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, np.nan], sc([ 0, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, 1], sc([np.nan, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, 1], sc([ 0, np.nan])), sc(np.nan)) + + def test_non_finite_inf(self, sc): + """ Test that interp between opposite infs gives nan """ + assert_equal(np.interp(0.5, [-np.inf, +np.inf], sc([ 0, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, 1], sc([-np.inf, +np.inf])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, 1], sc([+np.inf, -np.inf])), sc(np.nan)) + + # unless the y values are equal + assert_equal(np.interp(0.5, [-np.inf, +np.inf], sc([ 10, 10])), sc(10)) + + def test_non_finite_half_inf_xf(self, sc): + """ Test that interp where both axes have a bound at inf gives nan """ + assert_equal(np.interp(0.5, [-np.inf, 1], sc([-np.inf, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [-np.inf, 1], sc([+np.inf, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [-np.inf, 1], sc([ 0, -np.inf])), sc(np.nan)) + assert_equal(np.interp(0.5, [-np.inf, 1], sc([ 0, +np.inf])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, +np.inf], sc([-np.inf, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, +np.inf], sc([+np.inf, 10])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, +np.inf], sc([ 0, -np.inf])), sc(np.nan)) + assert_equal(np.interp(0.5, [ 0, +np.inf], sc([ 0, +np.inf])), sc(np.nan)) + + def test_non_finite_half_inf_x(self, sc): + """ Test interp where the x axis has a bound at inf """ + assert_equal(np.interp(0.5, [-np.inf, -np.inf], sc([0, 10])), sc(10)) + assert_equal(np.interp(0.5, [-np.inf, 1 ], sc([0, 10])), sc(10)) # noqa: E202 + assert_equal(np.interp(0.5, [ 0, +np.inf], sc([0, 10])), sc(0)) + assert_equal(np.interp(0.5, [+np.inf, +np.inf], sc([0, 10])), sc(0)) + + def test_non_finite_half_inf_f(self, sc): + """ Test interp where the f axis has a bound at inf """ + assert_equal(np.interp(0.5, [0, 1], sc([ 0, -np.inf])), sc(-np.inf)) + assert_equal(np.interp(0.5, [0, 1], sc([ 0, +np.inf])), sc(+np.inf)) + assert_equal(np.interp(0.5, [0, 1], sc([-np.inf, 10])), sc(-np.inf)) + assert_equal(np.interp(0.5, [0, 1], sc([+np.inf, 10])), sc(+np.inf)) + assert_equal(np.interp(0.5, [0, 1], sc([-np.inf, -np.inf])), sc(-np.inf)) + assert_equal(np.interp(0.5, [0, 1], sc([+np.inf, +np.inf])), sc(+np.inf)) + + def test_complex_interp(self): + # test complex interpolation + x = np.linspace(0, 1, 5) + y = np.linspace(0, 1, 5) + (1 + np.linspace(0, 1, 5)) * 1.0j + x0 = 0.3 + y0 = x0 + (1 + x0) * 1.0j + assert_almost_equal(np.interp(x0, x, y), y0) + # test complex left and right + x0 = -1 + left = 2 + 3.0j + assert_almost_equal(np.interp(x0, x, y, left=left), left) + x0 = 2.0 + right = 2 + 3.0j + assert_almost_equal(np.interp(x0, x, y, right=right), right) + # test complex non finite + x = [1, 2, 2.5, 3, 4] + xp = [1, 2, 3, 4] + fp = [1, 2 + 1j, np.inf, 4] + y = [1, 2 + 1j, np.inf + 0.5j, np.inf, 4] + assert_almost_equal(np.interp(x, xp, fp), y) + # test complex periodic + x = [-180, -170, -185, 185, -10, -5, 0, 365] + xp = [190, -190, 350, -350] + fp = [5 + 1.0j, 10 + 2j, 3 + 3j, 4 + 4j] + y = [7.5 + 1.5j, 5. + 1.0j, 8.75 + 1.75j, 6.25 + 1.25j, 3. + 3j, 3.25 + 3.25j, + 3.5 + 3.5j, 3.75 + 3.75j] + assert_almost_equal(np.interp(x, xp, fp, period=360), y) + + def test_zero_dimensional_interpolation_point(self): + x = np.linspace(0, 1, 5) + y = np.linspace(0, 1, 5) + x0 = np.array(.3) + assert_almost_equal(np.interp(x0, x, y), x0) + + xp = np.array([0, 2, 4]) + fp = np.array([1, -1, 1]) + + actual = np.interp(np.array(1), xp, fp) + assert_equal(actual, 0) + assert_(isinstance(actual, np.float64)) + + actual = np.interp(np.array(4.5), xp, fp, period=4) + assert_equal(actual, 0.5) + assert_(isinstance(actual, np.float64)) + + def test_if_len_x_is_small(self): + xp = np.arange(0, 10, 0.0001) + fp = np.sin(xp) + assert_almost_equal(np.interp(np.pi, xp, fp), 0.0) + + def test_period(self): + x = [-180, -170, -185, 185, -10, -5, 0, 365] + xp = [190, -190, 350, -350] + fp = [5, 10, 3, 4] + y = [7.5, 5., 8.75, 6.25, 3., 3.25, 3.5, 3.75] + assert_almost_equal(np.interp(x, xp, fp, period=360), y) + x = np.array(x, order='F').reshape(2, -1) + y = np.array(y, order='C').reshape(2, -1) + assert_almost_equal(np.interp(x, xp, fp, period=360), y) + + +class TestPercentile: + + def test_basic(self): + x = np.arange(8) * 0.5 + assert_equal(np.percentile(x, 0), 0.) + assert_equal(np.percentile(x, 100), 3.5) + assert_equal(np.percentile(x, 50), 1.75) + x[1] = np.nan + assert_equal(np.percentile(x, 0), np.nan) + assert_equal(np.percentile(x, 0, method='nearest'), np.nan) + assert_equal(np.percentile(x, 0, method='inverted_cdf'), np.nan) + assert_equal( + np.percentile(x, 0, method='inverted_cdf', + weights=np.ones_like(x)), + np.nan, + ) + + def test_fraction(self): + x = [Fraction(i, 2) for i in range(8)] + + p = np.percentile(x, Fraction(0)) + assert_equal(p, Fraction(0)) + assert_equal(type(p), Fraction) + + p = np.percentile(x, Fraction(100)) + assert_equal(p, Fraction(7, 2)) + assert_equal(type(p), Fraction) + + p = np.percentile(x, Fraction(50)) + assert_equal(p, Fraction(7, 4)) + assert_equal(type(p), Fraction) + + p = np.percentile(x, [Fraction(50)]) + assert_equal(p, np.array([Fraction(7, 4)])) + assert_equal(type(p), np.ndarray) + + def test_api(self): + d = np.ones(5) + np.percentile(d, 5, None, None, False) + np.percentile(d, 5, None, None, False, 'linear') + o = np.ones((1,)) + np.percentile(d, 5, None, o, False, 'linear') + + def test_complex(self): + arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='G') + assert_raises(TypeError, np.percentile, arr_c, 0.5) + arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='D') + assert_raises(TypeError, np.percentile, arr_c, 0.5) + arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='F') + assert_raises(TypeError, np.percentile, arr_c, 0.5) + + def test_2D(self): + x = np.array([[1, 1, 1], + [1, 1, 1], + [4, 4, 3], + [1, 1, 1], + [1, 1, 1]]) + assert_array_equal(np.percentile(x, 50, axis=0), [1, 1, 1]) + + @pytest.mark.parametrize("dtype", np.typecodes["Float"]) + def test_linear_nan_1D(self, dtype): + # METHOD 1 of H&F + arr = np.asarray([15.0, np.nan, 35.0, 40.0, 50.0], dtype=dtype) + res = np.percentile( + arr, + 40.0, + method="linear") + np.testing.assert_equal(res, np.nan) + np.testing.assert_equal(res.dtype, arr.dtype) + + H_F_TYPE_CODES = [(int_type, np.float64) + for int_type in np.typecodes["AllInteger"] + ] + [(np.float16, np.float16), + (np.float32, np.float32), + (np.float64, np.float64), + (np.longdouble, np.longdouble), + (np.dtype("O"), np.float64)] + + @pytest.mark.parametrize(["function", "quantile"], + [(np.quantile, 0.4), + (np.percentile, 40.0)]) + @pytest.mark.parametrize(["input_dtype", "expected_dtype"], H_F_TYPE_CODES) + @pytest.mark.parametrize(["method", "weighted", "expected"], + [("inverted_cdf", False, 20), + ("inverted_cdf", True, 20), + ("averaged_inverted_cdf", False, 27.5), + ("closest_observation", False, 20), + ("interpolated_inverted_cdf", False, 20), + ("hazen", False, 27.5), + ("weibull", False, 26), + ("linear", False, 29), + ("median_unbiased", False, 27), + ("normal_unbiased", False, 27.125), + ]) + def test_linear_interpolation(self, + function, + quantile, + method, + weighted, + expected, + input_dtype, + expected_dtype): + expected_dtype = np.dtype(expected_dtype) + + arr = np.asarray([15.0, 20.0, 35.0, 40.0, 50.0], dtype=input_dtype) + weights = np.ones_like(arr) if weighted else None + if input_dtype is np.longdouble: + if function is np.quantile: + # 0.4 is not exactly representable and it matters + # for "averaged_inverted_cdf", so we need to cheat. + quantile = input_dtype("0.4") + # We want to use nulp, but that does not work for longdouble + test_function = np.testing.assert_almost_equal + else: + test_function = np.testing.assert_array_almost_equal_nulp + + actual = function(arr, quantile, method=method, weights=weights) + + test_function(actual, expected_dtype.type(expected)) + + if method in ["inverted_cdf", "closest_observation"]: + if input_dtype == "O": + np.testing.assert_equal(np.asarray(actual).dtype, np.float64) + else: + np.testing.assert_equal(np.asarray(actual).dtype, + np.dtype(input_dtype)) + else: + np.testing.assert_equal(np.asarray(actual).dtype, + np.dtype(expected_dtype)) + + TYPE_CODES = np.typecodes["AllInteger"] + np.typecodes["Float"] + "O" + + @pytest.mark.parametrize("dtype", TYPE_CODES) + def test_lower_higher(self, dtype): + assert_equal(np.percentile(np.arange(10, dtype=dtype), 50, + method='lower'), 4) + assert_equal(np.percentile(np.arange(10, dtype=dtype), 50, + method='higher'), 5) + + @pytest.mark.parametrize("dtype", TYPE_CODES) + def test_midpoint(self, dtype): + assert_equal(np.percentile(np.arange(10, dtype=dtype), 51, + method='midpoint'), 4.5) + assert_equal(np.percentile(np.arange(9, dtype=dtype) + 1, 50, + method='midpoint'), 5) + assert_equal(np.percentile(np.arange(11, dtype=dtype), 51, + method='midpoint'), 5.5) + assert_equal(np.percentile(np.arange(11, dtype=dtype), 50, + method='midpoint'), 5) + + @pytest.mark.parametrize("dtype", TYPE_CODES) + def test_nearest(self, dtype): + assert_equal(np.percentile(np.arange(10, dtype=dtype), 51, + method='nearest'), 5) + assert_equal(np.percentile(np.arange(10, dtype=dtype), 49, + method='nearest'), 4) + + def test_linear_interpolation_extrapolation(self): + arr = np.random.rand(5) + + actual = np.percentile(arr, 100) + np.testing.assert_equal(actual, arr.max()) + + actual = np.percentile(arr, 0) + np.testing.assert_equal(actual, arr.min()) + + def test_sequence(self): + x = np.arange(8) * 0.5 + assert_equal(np.percentile(x, [0, 100, 50]), [0, 3.5, 1.75]) + + def test_axis(self): + x = np.arange(12).reshape(3, 4) + + assert_equal(np.percentile(x, (25, 50, 100)), [2.75, 5.5, 11.0]) + + r0 = [[2, 3, 4, 5], [4, 5, 6, 7], [8, 9, 10, 11]] + assert_equal(np.percentile(x, (25, 50, 100), axis=0), r0) + + r1 = [[0.75, 1.5, 3], [4.75, 5.5, 7], [8.75, 9.5, 11]] + assert_equal(np.percentile(x, (25, 50, 100), axis=1), np.array(r1).T) + + # ensure qth axis is always first as with np.array(old_percentile(..)) + x = np.arange(3 * 4 * 5 * 6).reshape(3, 4, 5, 6) + assert_equal(np.percentile(x, (25, 50)).shape, (2,)) + assert_equal(np.percentile(x, (25, 50, 75)).shape, (3,)) + assert_equal(np.percentile(x, (25, 50), axis=0).shape, (2, 4, 5, 6)) + assert_equal(np.percentile(x, (25, 50), axis=1).shape, (2, 3, 5, 6)) + assert_equal(np.percentile(x, (25, 50), axis=2).shape, (2, 3, 4, 6)) + assert_equal(np.percentile(x, (25, 50), axis=3).shape, (2, 3, 4, 5)) + assert_equal( + np.percentile(x, (25, 50, 75), axis=1).shape, (3, 3, 5, 6)) + assert_equal(np.percentile(x, (25, 50), + method="higher").shape, (2,)) + assert_equal(np.percentile(x, (25, 50, 75), + method="higher").shape, (3,)) + assert_equal(np.percentile(x, (25, 50), axis=0, + method="higher").shape, (2, 4, 5, 6)) + assert_equal(np.percentile(x, (25, 50), axis=1, + method="higher").shape, (2, 3, 5, 6)) + assert_equal(np.percentile(x, (25, 50), axis=2, + method="higher").shape, (2, 3, 4, 6)) + assert_equal(np.percentile(x, (25, 50), axis=3, + method="higher").shape, (2, 3, 4, 5)) + assert_equal(np.percentile(x, (25, 50, 75), axis=1, + method="higher").shape, (3, 3, 5, 6)) + + def test_scalar_q(self): + # test for no empty dimensions for compatibility with old percentile + x = np.arange(12).reshape(3, 4) + assert_equal(np.percentile(x, 50), 5.5) + assert_(np.isscalar(np.percentile(x, 50))) + r0 = np.array([4., 5., 6., 7.]) + assert_equal(np.percentile(x, 50, axis=0), r0) + assert_equal(np.percentile(x, 50, axis=0).shape, r0.shape) + r1 = np.array([1.5, 5.5, 9.5]) + assert_almost_equal(np.percentile(x, 50, axis=1), r1) + assert_equal(np.percentile(x, 50, axis=1).shape, r1.shape) + + out = np.empty(1) + assert_equal(np.percentile(x, 50, out=out), 5.5) + assert_equal(out, 5.5) + out = np.empty(4) + assert_equal(np.percentile(x, 50, axis=0, out=out), r0) + assert_equal(out, r0) + out = np.empty(3) + assert_equal(np.percentile(x, 50, axis=1, out=out), r1) + assert_equal(out, r1) + + # test for no empty dimensions for compatibility with old percentile + x = np.arange(12).reshape(3, 4) + assert_equal(np.percentile(x, 50, method='lower'), 5.) + assert_(np.isscalar(np.percentile(x, 50))) + r0 = np.array([4., 5., 6., 7.]) + c0 = np.percentile(x, 50, method='lower', axis=0) + assert_equal(c0, r0) + assert_equal(c0.shape, r0.shape) + r1 = np.array([1., 5., 9.]) + c1 = np.percentile(x, 50, method='lower', axis=1) + assert_almost_equal(c1, r1) + assert_equal(c1.shape, r1.shape) + + out = np.empty((), dtype=x.dtype) + c = np.percentile(x, 50, method='lower', out=out) + assert_equal(c, 5) + assert_equal(out, 5) + out = np.empty(4, dtype=x.dtype) + c = np.percentile(x, 50, method='lower', axis=0, out=out) + assert_equal(c, r0) + assert_equal(out, r0) + out = np.empty(3, dtype=x.dtype) + c = np.percentile(x, 50, method='lower', axis=1, out=out) + assert_equal(c, r1) + assert_equal(out, r1) + + def test_exception(self): + assert_raises(ValueError, np.percentile, [1, 2], 56, + method='foobar') + assert_raises(ValueError, np.percentile, [1], 101) + assert_raises(ValueError, np.percentile, [1], -1) + assert_raises(ValueError, np.percentile, [1], list(range(50)) + [101]) + assert_raises(ValueError, np.percentile, [1], list(range(50)) + [-0.1]) + + def test_percentile_list(self): + assert_equal(np.percentile([1, 2, 3], 0), 1) + + @pytest.mark.parametrize( + "percentile, with_weights", + [ + (np.percentile, False), + (partial(np.percentile, method="inverted_cdf"), True), + ] + ) + def test_percentile_out(self, percentile, with_weights): + out_dtype = int if with_weights else float + x = np.array([1, 2, 3]) + y = np.zeros((3,), dtype=out_dtype) + p = (1, 2, 3) + weights = np.ones_like(x) if with_weights else None + r = percentile(x, p, out=y, weights=weights) + assert r is y + assert_equal(percentile(x, p, weights=weights), y) + + x = np.array([[1, 2, 3], + [4, 5, 6]]) + y = np.zeros((3, 3), dtype=out_dtype) + weights = np.ones_like(x) if with_weights else None + r = percentile(x, p, axis=0, out=y, weights=weights) + assert r is y + assert_equal(percentile(x, p, weights=weights, axis=0), y) + + y = np.zeros((3, 2), dtype=out_dtype) + percentile(x, p, axis=1, out=y, weights=weights) + assert_equal(percentile(x, p, weights=weights, axis=1), y) + + x = np.arange(12).reshape(3, 4) + # q.dim > 1, float + if with_weights: + r0 = np.array([[0, 1, 2, 3], [4, 5, 6, 7]]) + else: + r0 = np.array([[2., 3., 4., 5.], [4., 5., 6., 7.]]) + out = np.empty((2, 4), dtype=out_dtype) + weights = np.ones_like(x) if with_weights else None + assert_equal( + percentile(x, (25, 50), axis=0, out=out, weights=weights), r0 + ) + assert_equal(out, r0) + r1 = np.array([[0.75, 4.75, 8.75], [1.5, 5.5, 9.5]]) + out = np.empty((2, 3)) + assert_equal(np.percentile(x, (25, 50), axis=1, out=out), r1) + assert_equal(out, r1) + + # q.dim > 1, int + r0 = np.array([[0, 1, 2, 3], [4, 5, 6, 7]]) + out = np.empty((2, 4), dtype=x.dtype) + c = np.percentile(x, (25, 50), method='lower', axis=0, out=out) + assert_equal(c, r0) + assert_equal(out, r0) + r1 = np.array([[0, 4, 8], [1, 5, 9]]) + out = np.empty((2, 3), dtype=x.dtype) + c = np.percentile(x, (25, 50), method='lower', axis=1, out=out) + assert_equal(c, r1) + assert_equal(out, r1) + + def test_percentile_empty_dim(self): + # empty dims are preserved + d = np.arange(11 * 2).reshape(11, 1, 2, 1) + assert_array_equal(np.percentile(d, 50, axis=0).shape, (1, 2, 1)) + assert_array_equal(np.percentile(d, 50, axis=1).shape, (11, 2, 1)) + assert_array_equal(np.percentile(d, 50, axis=2).shape, (11, 1, 1)) + assert_array_equal(np.percentile(d, 50, axis=3).shape, (11, 1, 2)) + assert_array_equal(np.percentile(d, 50, axis=-1).shape, (11, 1, 2)) + assert_array_equal(np.percentile(d, 50, axis=-2).shape, (11, 1, 1)) + assert_array_equal(np.percentile(d, 50, axis=-3).shape, (11, 2, 1)) + assert_array_equal(np.percentile(d, 50, axis=-4).shape, (1, 2, 1)) + + assert_array_equal(np.percentile(d, 50, axis=2, + method='midpoint').shape, + (11, 1, 1)) + assert_array_equal(np.percentile(d, 50, axis=-2, + method='midpoint').shape, + (11, 1, 1)) + + assert_array_equal(np.array(np.percentile(d, [10, 50], axis=0)).shape, + (2, 1, 2, 1)) + assert_array_equal(np.array(np.percentile(d, [10, 50], axis=1)).shape, + (2, 11, 2, 1)) + assert_array_equal(np.array(np.percentile(d, [10, 50], axis=2)).shape, + (2, 11, 1, 1)) + assert_array_equal(np.array(np.percentile(d, [10, 50], axis=3)).shape, + (2, 11, 1, 2)) + + def test_percentile_no_overwrite(self): + a = np.array([2, 3, 4, 1]) + np.percentile(a, [50], overwrite_input=False) + assert_equal(a, np.array([2, 3, 4, 1])) + + a = np.array([2, 3, 4, 1]) + np.percentile(a, [50]) + assert_equal(a, np.array([2, 3, 4, 1])) + + def test_no_p_overwrite(self): + p = np.linspace(0., 100., num=5) + np.percentile(np.arange(100.), p, method="midpoint") + assert_array_equal(p, np.linspace(0., 100., num=5)) + p = np.linspace(0., 100., num=5).tolist() + np.percentile(np.arange(100.), p, method="midpoint") + assert_array_equal(p, np.linspace(0., 100., num=5).tolist()) + + def test_percentile_overwrite(self): + a = np.array([2, 3, 4, 1]) + b = np.percentile(a, [50], overwrite_input=True) + assert_equal(b, np.array([2.5])) + + b = np.percentile([2, 3, 4, 1], [50], overwrite_input=True) + assert_equal(b, np.array([2.5])) + + def test_extended_axis(self): + o = np.random.normal(size=(71, 23)) + x = np.dstack([o] * 10) + assert_equal(np.percentile(x, 30, axis=(0, 1)), np.percentile(o, 30)) + x = np.moveaxis(x, -1, 0) + assert_equal(np.percentile(x, 30, axis=(-2, -1)), np.percentile(o, 30)) + x = x.swapaxes(0, 1).copy() + assert_equal(np.percentile(x, 30, axis=(0, -1)), np.percentile(o, 30)) + x = x.swapaxes(0, 1).copy() + + assert_equal(np.percentile(x, [25, 60], axis=(0, 1, 2)), + np.percentile(x, [25, 60], axis=None)) + assert_equal(np.percentile(x, [25, 60], axis=(0,)), + np.percentile(x, [25, 60], axis=0)) + + d = np.arange(3 * 5 * 7 * 11).reshape((3, 5, 7, 11)) + np.random.shuffle(d.ravel()) + assert_equal(np.percentile(d, 25, axis=(0, 1, 2))[0], + np.percentile(d[:, :, :, 0].flatten(), 25)) + assert_equal(np.percentile(d, [10, 90], axis=(0, 1, 3))[:, 1], + np.percentile(d[:, :, 1, :].flatten(), [10, 90])) + assert_equal(np.percentile(d, 25, axis=(3, 1, -4))[2], + np.percentile(d[:, :, 2, :].flatten(), 25)) + assert_equal(np.percentile(d, 25, axis=(3, 1, 2))[2], + np.percentile(d[2, :, :, :].flatten(), 25)) + assert_equal(np.percentile(d, 25, axis=(3, 2))[2, 1], + np.percentile(d[2, 1, :, :].flatten(), 25)) + assert_equal(np.percentile(d, 25, axis=(1, -2))[2, 1], + np.percentile(d[2, :, :, 1].flatten(), 25)) + assert_equal(np.percentile(d, 25, axis=(1, 3))[2, 2], + np.percentile(d[2, :, 2, :].flatten(), 25)) + + def test_extended_axis_invalid(self): + d = np.ones((3, 5, 7, 11)) + assert_raises(AxisError, np.percentile, d, axis=-5, q=25) + assert_raises(AxisError, np.percentile, d, axis=(0, -5), q=25) + assert_raises(AxisError, np.percentile, d, axis=4, q=25) + assert_raises(AxisError, np.percentile, d, axis=(0, 4), q=25) + # each of these refers to the same axis twice + assert_raises(ValueError, np.percentile, d, axis=(1, 1), q=25) + assert_raises(ValueError, np.percentile, d, axis=(-1, -1), q=25) + assert_raises(ValueError, np.percentile, d, axis=(3, -1), q=25) + + def test_keepdims(self): + d = np.ones((3, 5, 7, 11)) + assert_equal(np.percentile(d, 7, axis=None, keepdims=True).shape, + (1, 1, 1, 1)) + assert_equal(np.percentile(d, 7, axis=(0, 1), keepdims=True).shape, + (1, 1, 7, 11)) + assert_equal(np.percentile(d, 7, axis=(0, 3), keepdims=True).shape, + (1, 5, 7, 1)) + assert_equal(np.percentile(d, 7, axis=(1,), keepdims=True).shape, + (3, 1, 7, 11)) + assert_equal(np.percentile(d, 7, (0, 1, 2, 3), keepdims=True).shape, + (1, 1, 1, 1)) + assert_equal(np.percentile(d, 7, axis=(0, 1, 3), keepdims=True).shape, + (1, 1, 7, 1)) + + assert_equal(np.percentile(d, [1, 7], axis=(0, 1, 3), + keepdims=True).shape, (2, 1, 1, 7, 1)) + assert_equal(np.percentile(d, [1, 7], axis=(0, 3), + keepdims=True).shape, (2, 1, 5, 7, 1)) + + @pytest.mark.parametrize('q', [7, [1, 7]]) + @pytest.mark.parametrize( + argnames='axis', + argvalues=[ + None, + 1, + (1,), + (0, 1), + (-3, -1), + ] + ) + def test_keepdims_out(self, q, axis): + d = np.ones((3, 5, 7, 11)) + if axis is None: + shape_out = (1,) * d.ndim + else: + axis_norm = normalize_axis_tuple(axis, d.ndim) + shape_out = tuple( + 1 if i in axis_norm else d.shape[i] for i in range(d.ndim)) + shape_out = np.shape(q) + shape_out + + out = np.empty(shape_out) + result = np.percentile(d, q, axis=axis, keepdims=True, out=out) + assert result is out + assert_equal(result.shape, shape_out) + + def test_out(self): + o = np.zeros((4,)) + d = np.ones((3, 4)) + assert_equal(np.percentile(d, 0, 0, out=o), o) + assert_equal(np.percentile(d, 0, 0, method='nearest', out=o), o) + o = np.zeros((3,)) + assert_equal(np.percentile(d, 1, 1, out=o), o) + assert_equal(np.percentile(d, 1, 1, method='nearest', out=o), o) + + o = np.zeros(()) + assert_equal(np.percentile(d, 2, out=o), o) + assert_equal(np.percentile(d, 2, method='nearest', out=o), o) + + @pytest.mark.parametrize("method, weighted", [ + ("linear", False), + ("nearest", False), + ("inverted_cdf", False), + ("inverted_cdf", True), + ]) + def test_out_nan(self, method, weighted): + if weighted: + kwargs = {"weights": np.ones((3, 4)), "method": method} + else: + kwargs = {"method": method} + with warnings.catch_warnings(record=True): + warnings.filterwarnings('always', '', RuntimeWarning) + o = np.zeros((4,)) + d = np.ones((3, 4)) + d[2, 1] = np.nan + assert_equal(np.percentile(d, 0, 0, out=o, **kwargs), o) + + o = np.zeros((3,)) + assert_equal(np.percentile(d, 1, 1, out=o, **kwargs), o) + + o = np.zeros(()) + assert_equal(np.percentile(d, 1, out=o, **kwargs), o) + + def test_nan_behavior(self): + a = np.arange(24, dtype=float) + a[2] = np.nan + assert_equal(np.percentile(a, 0.3), np.nan) + assert_equal(np.percentile(a, 0.3, axis=0), np.nan) + assert_equal(np.percentile(a, [0.3, 0.6], axis=0), + np.array([np.nan] * 2)) + + a = np.arange(24, dtype=float).reshape(2, 3, 4) + a[1, 2, 3] = np.nan + a[1, 1, 2] = np.nan + + # no axis + assert_equal(np.percentile(a, 0.3), np.nan) + assert_equal(np.percentile(a, 0.3).ndim, 0) + + # axis0 zerod + b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, 0) + b[2, 3] = np.nan + b[1, 2] = np.nan + assert_equal(np.percentile(a, 0.3, 0), b) + + # axis0 not zerod + b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), + [0.3, 0.6], 0) + b[:, 2, 3] = np.nan + b[:, 1, 2] = np.nan + assert_equal(np.percentile(a, [0.3, 0.6], 0), b) + + # axis1 zerod + b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, 1) + b[1, 3] = np.nan + b[1, 2] = np.nan + assert_equal(np.percentile(a, 0.3, 1), b) + # axis1 not zerod + b = np.percentile( + np.arange(24, dtype=float).reshape(2, 3, 4), [0.3, 0.6], 1) + b[:, 1, 3] = np.nan + b[:, 1, 2] = np.nan + assert_equal(np.percentile(a, [0.3, 0.6], 1), b) + + # axis02 zerod + b = np.percentile( + np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, (0, 2)) + b[1] = np.nan + b[2] = np.nan + assert_equal(np.percentile(a, 0.3, (0, 2)), b) + # axis02 not zerod + b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), + [0.3, 0.6], (0, 2)) + b[:, 1] = np.nan + b[:, 2] = np.nan + assert_equal(np.percentile(a, [0.3, 0.6], (0, 2)), b) + # axis02 not zerod with method='nearest' + b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), + [0.3, 0.6], (0, 2), method='nearest') + b[:, 1] = np.nan + b[:, 2] = np.nan + assert_equal(np.percentile( + a, [0.3, 0.6], (0, 2), method='nearest'), b) + + def test_nan_q(self): + # GH18830 + with pytest.raises(ValueError, match="Percentiles must be in"): + np.percentile([1, 2, 3, 4.0], np.nan) + with pytest.raises(ValueError, match="Percentiles must be in"): + np.percentile([1, 2, 3, 4.0], [np.nan]) + q = np.linspace(1.0, 99.0, 16) + q[0] = np.nan + with pytest.raises(ValueError, match="Percentiles must be in"): + np.percentile([1, 2, 3, 4.0], q) + + @pytest.mark.parametrize("dtype", ["m8[D]", "M8[s]"]) + @pytest.mark.parametrize("pos", [0, 23, 10]) + def test_nat_basic(self, dtype, pos): + # TODO: Note that times have dubious rounding as of fixing NaTs! + # NaT and NaN should behave the same, do basic tests for NaT: + a = np.arange(0, 24, dtype=dtype) + a[pos] = "NaT" + res = np.percentile(a, 30) + assert res.dtype == dtype + assert np.isnat(res) + res = np.percentile(a, [30, 60]) + assert res.dtype == dtype + assert np.isnat(res).all() + + a = np.arange(0, 24 * 3, dtype=dtype).reshape(-1, 3) + a[pos, 1] = "NaT" + res = np.percentile(a, 30, axis=0) + assert_array_equal(np.isnat(res), [False, True, False]) + + +quantile_methods = [ + 'inverted_cdf', 'averaged_inverted_cdf', 'closest_observation', + 'interpolated_inverted_cdf', 'hazen', 'weibull', 'linear', + 'median_unbiased', 'normal_unbiased', 'nearest', 'lower', 'higher', + 'midpoint'] + + +methods_supporting_weights = ["inverted_cdf"] + + +class TestQuantile: + # most of this is already tested by TestPercentile + + def V(self, x, y, alpha): + # Identification function used in several tests. + return (x >= y) - alpha + + def test_max_ulp(self): + x = [0.0, 0.2, 0.4] + a = np.quantile(x, 0.45) + # The default linear method would result in 0 + 0.2 * (0.45/2) = 0.18. + # 0.18 is not exactly representable and the formula leads to a 1 ULP + # different result. Ensure it is this exact within 1 ULP, see gh-20331. + np.testing.assert_array_max_ulp(a, 0.18, maxulp=1) + + def test_basic(self): + x = np.arange(8) * 0.5 + assert_equal(np.quantile(x, 0), 0.) + assert_equal(np.quantile(x, 1), 3.5) + assert_equal(np.quantile(x, 0.5), 1.75) + + def test_correct_quantile_value(self): + a = np.array([True]) + tf_quant = np.quantile(True, False) + assert_equal(tf_quant, a[0]) + assert_equal(type(tf_quant), a.dtype) + a = np.array([False, True, True]) + quant_res = np.quantile(a, a) + assert_array_equal(quant_res, a) + assert_equal(quant_res.dtype, a.dtype) + + def test_fraction(self): + # fractional input, integral quantile + x = [Fraction(i, 2) for i in range(8)] + q = np.quantile(x, 0) + assert_equal(q, 0) + assert_equal(type(q), Fraction) + + q = np.quantile(x, 1) + assert_equal(q, Fraction(7, 2)) + assert_equal(type(q), Fraction) + + q = np.quantile(x, .5) + assert_equal(q, 1.75) + assert_equal(type(q), np.float64) + + q = np.quantile(x, Fraction(1, 2)) + assert_equal(q, Fraction(7, 4)) + assert_equal(type(q), Fraction) + + q = np.quantile(x, [Fraction(1, 2)]) + assert_equal(q, np.array([Fraction(7, 4)])) + assert_equal(type(q), np.ndarray) + + q = np.quantile(x, [[Fraction(1, 2)]]) + assert_equal(q, np.array([[Fraction(7, 4)]])) + assert_equal(type(q), np.ndarray) + + # repeat with integral input but fractional quantile + x = np.arange(8) + assert_equal(np.quantile(x, Fraction(1, 2)), Fraction(7, 2)) + + def test_complex(self): + # gh-22652 + arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='G') + assert_raises(TypeError, np.quantile, arr_c, 0.5) + arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='D') + assert_raises(TypeError, np.quantile, arr_c, 0.5) + arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='F') + assert_raises(TypeError, np.quantile, arr_c, 0.5) + + def test_no_p_overwrite(self): + # this is worth retesting, because quantile does not make a copy + p0 = np.array([0, 0.75, 0.25, 0.5, 1.0]) + p = p0.copy() + np.quantile(np.arange(100.), p, method="midpoint") + assert_array_equal(p, p0) + + p0 = p0.tolist() + p = p.tolist() + np.quantile(np.arange(100.), p, method="midpoint") + assert_array_equal(p, p0) + + @pytest.mark.parametrize("dtype", np.typecodes["AllInteger"]) + def test_quantile_preserve_int_type(self, dtype): + res = np.quantile(np.array([1, 2], dtype=dtype), [0.5], + method="nearest") + assert res.dtype == dtype + + @pytest.mark.parametrize("method", quantile_methods) + def test_q_zero_one(self, method): + # gh-24710 + arr = [10, 11, 12] + quantile = np.quantile(arr, q=[0, 1], method=method) + assert_equal(quantile, np.array([10, 12])) + + @pytest.mark.parametrize("method", quantile_methods) + def test_quantile_monotonic(self, method): + # GH 14685 + # test that the return value of quantile is monotonic if p0 is ordered + # Also tests that the boundary values are not mishandled. + p0 = np.linspace(0, 1, 101) + quantile = np.quantile(np.array([0, 1, 1, 2, 2, 3, 3, 4, 5, 5, 1, 1, 9, 9, 9, + 8, 8, 7]) * 0.1, p0, method=method) + assert_equal(np.sort(quantile), quantile) + + # Also test one where the number of data points is clearly divisible: + quantile = np.quantile([0., 1., 2., 3.], p0, method=method) + assert_equal(np.sort(quantile), quantile) + + @hypothesis.given( + arr=arrays(dtype=np.float64, + shape=st.integers(min_value=3, max_value=1000), + elements=st.floats(allow_infinity=False, allow_nan=False, + min_value=-1e300, max_value=1e300))) + def test_quantile_monotonic_hypo(self, arr): + p0 = np.arange(0, 1, 0.01) + quantile = np.quantile(arr, p0) + assert_equal(np.sort(quantile), quantile) + + def test_quantile_scalar_nan(self): + a = np.array([[10., 7., 4.], [3., 2., 1.]]) + a[0][1] = np.nan + actual = np.quantile(a, 0.5) + assert np.isscalar(actual) + assert_equal(np.quantile(a, 0.5), np.nan) + + @pytest.mark.parametrize("weights", [False, True]) + @pytest.mark.parametrize("method", quantile_methods) + @pytest.mark.parametrize("alpha", [0.2, 0.5, 0.9]) + def test_quantile_identification_equation(self, weights, method, alpha): + # Test that the identification equation holds for the empirical + # CDF: + # E[V(x, Y)] = 0 <=> x is quantile + # with Y the random variable for which we have observed values and + # V(x, y) the canonical identification function for the quantile (at + # level alpha), see + # https://doi.org/10.48550/arXiv.0912.0902 + if weights and method not in methods_supporting_weights: + pytest.skip("Weights not supported by method.") + rng = np.random.default_rng(4321) + # We choose n and alpha such that we cover 3 cases: + # - n * alpha is an integer + # - n * alpha is a float that gets rounded down + # - n * alpha is a float that gest rounded up + n = 102 # n * alpha = 20.4, 51. , 91.8 + y = rng.random(n) + w = rng.integers(low=0, high=10, size=n) if weights else None + x = np.quantile(y, alpha, method=method, weights=w) + + if method in ("higher",): + # These methods do not fulfill the identification equation. + assert np.abs(np.mean(self.V(x, y, alpha))) > 0.1 / n + elif int(n * alpha) == n * alpha and not weights: + # We can expect exact results, up to machine precision. + assert_allclose( + np.average(self.V(x, y, alpha), weights=w), 0, atol=1e-14, + ) + else: + # V = (x >= y) - alpha cannot sum to zero exactly but within + # "sample precision". + assert_allclose(np.average(self.V(x, y, alpha), weights=w), 0, + atol=1 / n / np.amin([alpha, 1 - alpha])) + + @pytest.mark.parametrize("weights", [False, True]) + @pytest.mark.parametrize("method", quantile_methods) + @pytest.mark.parametrize("alpha", [0.2, 0.5, 0.9]) + def test_quantile_add_and_multiply_constant(self, weights, method, alpha): + # Test that + # 1. quantile(c + x) = c + quantile(x) + # 2. quantile(c * x) = c * quantile(x) + # 3. quantile(-x) = -quantile(x, 1 - alpha) + # On empirical quantiles, this equation does not hold exactly. + # Koenker (2005) "Quantile Regression" Chapter 2.2.3 calls these + # properties equivariance. + if weights and method not in methods_supporting_weights: + pytest.skip("Weights not supported by method.") + rng = np.random.default_rng(4321) + # We choose n and alpha such that we have cases for + # - n * alpha is an integer + # - n * alpha is a float that gets rounded down + # - n * alpha is a float that gest rounded up + n = 102 # n * alpha = 20.4, 51. , 91.8 + y = rng.random(n) + w = rng.integers(low=0, high=10, size=n) if weights else None + q = np.quantile(y, alpha, method=method, weights=w) + c = 13.5 + + # 1 + assert_allclose(np.quantile(c + y, alpha, method=method, weights=w), + c + q) + # 2 + assert_allclose(np.quantile(c * y, alpha, method=method, weights=w), + c * q) + # 3 + if weights: + # From here on, we would need more methods to support weights. + return + q = -np.quantile(-y, 1 - alpha, method=method) + if method == "inverted_cdf": + if ( + n * alpha == int(n * alpha) + or np.round(n * alpha) == int(n * alpha) + 1 + ): + assert_allclose(q, np.quantile(y, alpha, method="higher")) + else: + assert_allclose(q, np.quantile(y, alpha, method="lower")) + elif method == "closest_observation": + if n * alpha == int(n * alpha): + assert_allclose(q, np.quantile(y, alpha, method="higher")) + elif np.round(n * alpha) == int(n * alpha) + 1: + assert_allclose( + q, np.quantile(y, alpha + 1 / n, method="higher")) + else: + assert_allclose(q, np.quantile(y, alpha, method="lower")) + elif method == "interpolated_inverted_cdf": + assert_allclose(q, np.quantile(y, alpha + 1 / n, method=method)) + elif method == "nearest": + if n * alpha == int(n * alpha): + assert_allclose(q, np.quantile(y, alpha + 1 / n, method=method)) + else: + assert_allclose(q, np.quantile(y, alpha, method=method)) + elif method == "lower": + assert_allclose(q, np.quantile(y, alpha, method="higher")) + elif method == "higher": + assert_allclose(q, np.quantile(y, alpha, method="lower")) + else: + # "averaged_inverted_cdf", "hazen", "weibull", "linear", + # "median_unbiased", "normal_unbiased", "midpoint" + assert_allclose(q, np.quantile(y, alpha, method=method)) + + @pytest.mark.parametrize("method", methods_supporting_weights) + @pytest.mark.parametrize("alpha", [0.2, 0.5, 0.9]) + def test_quantile_constant_weights(self, method, alpha): + rng = np.random.default_rng(4321) + # We choose n and alpha such that we have cases for + # - n * alpha is an integer + # - n * alpha is a float that gets rounded down + # - n * alpha is a float that gest rounded up + n = 102 # n * alpha = 20.4, 51. , 91.8 + y = rng.random(n) + q = np.quantile(y, alpha, method=method) + + w = np.ones_like(y) + qw = np.quantile(y, alpha, method=method, weights=w) + assert_allclose(qw, q) + + w = 8.125 * np.ones_like(y) + qw = np.quantile(y, alpha, method=method, weights=w) + assert_allclose(qw, q) + + @pytest.mark.parametrize("method", methods_supporting_weights) + @pytest.mark.parametrize("alpha", [0, 0.2, 0.5, 0.9, 1]) + def test_quantile_with_integer_weights(self, method, alpha): + # Integer weights can be interpreted as repeated observations. + rng = np.random.default_rng(4321) + # We choose n and alpha such that we have cases for + # - n * alpha is an integer + # - n * alpha is a float that gets rounded down + # - n * alpha is a float that gest rounded up + n = 102 # n * alpha = 20.4, 51. , 91.8 + y = rng.random(n) + w = rng.integers(low=0, high=10, size=n, dtype=np.int32) + + qw = np.quantile(y, alpha, method=method, weights=w) + q = np.quantile(np.repeat(y, w), alpha, method=method) + assert_allclose(qw, q) + + @pytest.mark.parametrize("method", methods_supporting_weights) + def test_quantile_with_weights_and_axis(self, method): + rng = np.random.default_rng(4321) + + # 1d weight and single alpha + y = rng.random((2, 10, 3)) + w = np.abs(rng.random(10)) + alpha = 0.5 + q = np.quantile(y, alpha, weights=w, method=method, axis=1) + q_res = np.zeros(shape=(2, 3)) + for i in range(2): + for j in range(3): + q_res[i, j] = np.quantile( + y[i, :, j], alpha, method=method, weights=w + ) + assert_allclose(q, q_res) + + # 1d weight and 1d alpha + alpha = [0, 0.2, 0.4, 0.6, 0.8, 1] # shape (6,) + q = np.quantile(y, alpha, weights=w, method=method, axis=1) + q_res = np.zeros(shape=(6, 2, 3)) + for i in range(2): + for j in range(3): + q_res[:, i, j] = np.quantile( + y[i, :, j], alpha, method=method, weights=w + ) + assert_allclose(q, q_res) + + # 1d weight and 2d alpha + alpha = [[0, 0.2], [0.4, 0.6], [0.8, 1]] # shape (3, 2) + q = np.quantile(y, alpha, weights=w, method=method, axis=1) + q_res = q_res.reshape((3, 2, 2, 3)) + assert_allclose(q, q_res) + + # shape of weights equals shape of y + w = np.abs(rng.random((2, 10, 3))) + alpha = 0.5 + q = np.quantile(y, alpha, weights=w, method=method, axis=1) + q_res = np.zeros(shape=(2, 3)) + for i in range(2): + for j in range(3): + q_res[i, j] = np.quantile( + y[i, :, j], alpha, method=method, weights=w[i, :, j] + ) + assert_allclose(q, q_res) + + @pytest.mark.parametrize("method", methods_supporting_weights) + def test_quantile_weights_min_max(self, method): + # Test weighted quantile at 0 and 1 with leading and trailing zero + # weights. + w = [0, 0, 1, 2, 3, 0] + y = np.arange(6) + y_min = np.quantile(y, 0, weights=w, method="inverted_cdf") + y_max = np.quantile(y, 1, weights=w, method="inverted_cdf") + assert y_min == y[2] # == 2 + assert y_max == y[4] # == 4 + + def test_quantile_weights_raises_negative_weights(self): + y = [1, 2] + w = [-0.5, 1] + with pytest.raises(ValueError, match="Weights must be non-negative"): + np.quantile(y, 0.5, weights=w, method="inverted_cdf") + + @pytest.mark.parametrize( + "method", + sorted(set(quantile_methods) - set(methods_supporting_weights)), + ) + def test_quantile_weights_raises_unsupported_methods(self, method): + y = [1, 2] + w = [0.5, 1] + msg = "Only method 'inverted_cdf' supports weights" + with pytest.raises(ValueError, match=msg): + np.quantile(y, 0.5, weights=w, method=method) + + def test_weibull_fraction(self): + arr = [Fraction(0, 1), Fraction(1, 10)] + quantile = np.quantile(arr, [0, ], method='weibull') + assert_equal(quantile, np.array(Fraction(0, 1))) + quantile = np.quantile(arr, [Fraction(1, 2)], method='weibull') + assert_equal(quantile, np.array(Fraction(1, 20))) + + def test_closest_observation(self): + # Round ties to nearest even order statistic (see #26656) + m = 'closest_observation' + q = 0.5 + arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] + assert_equal(2, np.quantile(arr[0:3], q, method=m)) + assert_equal(2, np.quantile(arr[0:4], q, method=m)) + assert_equal(2, np.quantile(arr[0:5], q, method=m)) + assert_equal(3, np.quantile(arr[0:6], q, method=m)) + assert_equal(4, np.quantile(arr[0:7], q, method=m)) + assert_equal(4, np.quantile(arr[0:8], q, method=m)) + assert_equal(4, np.quantile(arr[0:9], q, method=m)) + assert_equal(5, np.quantile(arr, q, method=m)) + + +class TestLerp: + @hypothesis.given(t0=st.floats(allow_nan=False, allow_infinity=False, + min_value=0, max_value=1), + t1=st.floats(allow_nan=False, allow_infinity=False, + min_value=0, max_value=1), + a=st.floats(allow_nan=False, allow_infinity=False, + min_value=-1e300, max_value=1e300), + b=st.floats(allow_nan=False, allow_infinity=False, + min_value=-1e300, max_value=1e300)) + def test_linear_interpolation_formula_monotonic(self, t0, t1, a, b): + l0 = nfb._lerp(a, b, t0) + l1 = nfb._lerp(a, b, t1) + if t0 == t1 or a == b: + assert l0 == l1 # uninteresting + elif (t0 < t1) == (a < b): + assert l0 <= l1 + else: + assert l0 >= l1 + + @hypothesis.given(t=st.floats(allow_nan=False, allow_infinity=False, + min_value=0, max_value=1), + a=st.floats(allow_nan=False, allow_infinity=False, + min_value=-1e300, max_value=1e300), + b=st.floats(allow_nan=False, allow_infinity=False, + min_value=-1e300, max_value=1e300)) + def test_linear_interpolation_formula_bounded(self, t, a, b): + if a <= b: + assert a <= nfb._lerp(a, b, t) <= b + else: + assert b <= nfb._lerp(a, b, t) <= a + + @hypothesis.given(t=st.floats(allow_nan=False, allow_infinity=False, + min_value=0, max_value=1), + a=st.floats(allow_nan=False, allow_infinity=False, + min_value=-1e300, max_value=1e300), + b=st.floats(allow_nan=False, allow_infinity=False, + min_value=-1e300, max_value=1e300)) + def test_linear_interpolation_formula_symmetric(self, t, a, b): + # double subtraction is needed to remove the extra precision of t < 0.5 + left = nfb._lerp(a, b, 1 - (1 - t)) + right = nfb._lerp(b, a, 1 - t) + assert_allclose(left, right) + + def test_linear_interpolation_formula_0d_inputs(self): + a = np.array(2) + b = np.array(5) + t = np.array(0.2) + assert nfb._lerp(a, b, t) == 2.6 + + +class TestMedian: + + def test_basic(self): + a0 = np.array(1) + a1 = np.arange(2) + a2 = np.arange(6).reshape(2, 3) + assert_equal(np.median(a0), 1) + assert_allclose(np.median(a1), 0.5) + assert_allclose(np.median(a2), 2.5) + assert_allclose(np.median(a2, axis=0), [1.5, 2.5, 3.5]) + assert_equal(np.median(a2, axis=1), [1, 4]) + assert_allclose(np.median(a2, axis=None), 2.5) + + a = np.array([0.0444502, 0.0463301, 0.141249, 0.0606775]) + assert_almost_equal((a[1] + a[3]) / 2., np.median(a)) + a = np.array([0.0463301, 0.0444502, 0.141249]) + assert_equal(a[0], np.median(a)) + a = np.array([0.0444502, 0.141249, 0.0463301]) + assert_equal(a[-1], np.median(a)) + # check array scalar result + assert_equal(np.median(a).ndim, 0) + a[1] = np.nan + assert_equal(np.median(a).ndim, 0) + + def test_axis_keyword(self): + a3 = np.array([[2, 3], + [0, 1], + [6, 7], + [4, 5]]) + for a in [a3, np.random.randint(0, 100, size=(2, 3, 4))]: + orig = a.copy() + np.median(a, axis=None) + for ax in range(a.ndim): + np.median(a, axis=ax) + assert_array_equal(a, orig) + + assert_allclose(np.median(a3, axis=0), [3, 4]) + assert_allclose(np.median(a3.T, axis=1), [3, 4]) + assert_allclose(np.median(a3), 3.5) + assert_allclose(np.median(a3, axis=None), 3.5) + assert_allclose(np.median(a3.T), 3.5) + + def test_overwrite_keyword(self): + a3 = np.array([[2, 3], + [0, 1], + [6, 7], + [4, 5]]) + a0 = np.array(1) + a1 = np.arange(2) + a2 = np.arange(6).reshape(2, 3) + assert_allclose(np.median(a0.copy(), overwrite_input=True), 1) + assert_allclose(np.median(a1.copy(), overwrite_input=True), 0.5) + assert_allclose(np.median(a2.copy(), overwrite_input=True), 2.5) + assert_allclose( + np.median(a2.copy(), overwrite_input=True, axis=0), [1.5, 2.5, 3.5]) + assert_allclose( + np.median(a2.copy(), overwrite_input=True, axis=1), [1, 4]) + assert_allclose( + np.median(a2.copy(), overwrite_input=True, axis=None), 2.5) + assert_allclose( + np.median(a3.copy(), overwrite_input=True, axis=0), [3, 4]) + assert_allclose( + np.median(a3.T.copy(), overwrite_input=True, axis=1), [3, 4]) + + a4 = np.arange(3 * 4 * 5, dtype=np.float32).reshape((3, 4, 5)) + np.random.shuffle(a4.ravel()) + assert_allclose(np.median(a4, axis=None), + np.median(a4.copy(), axis=None, overwrite_input=True)) + assert_allclose(np.median(a4, axis=0), + np.median(a4.copy(), axis=0, overwrite_input=True)) + assert_allclose(np.median(a4, axis=1), + np.median(a4.copy(), axis=1, overwrite_input=True)) + assert_allclose(np.median(a4, axis=2), + np.median(a4.copy(), axis=2, overwrite_input=True)) + + def test_array_like(self): + x = [1, 2, 3] + assert_almost_equal(np.median(x), 2) + x2 = [x] + assert_almost_equal(np.median(x2), 2) + assert_allclose(np.median(x2, axis=0), x) + + def test_subclass(self): + # gh-3846 + class MySubClass(np.ndarray): + + def __new__(cls, input_array, info=None): + obj = np.asarray(input_array).view(cls) + obj.info = info + return obj + + def mean(self, axis=None, dtype=None, out=None): + return -7 + + a = MySubClass([1, 2, 3]) + assert_equal(np.median(a), -7) + + @pytest.mark.parametrize('arr', + ([1., 2., 3.], [1., np.nan, 3.], np.nan, 0.)) + def test_subclass2(self, arr): + """Check that we return subclasses, even if a NaN scalar.""" + class MySubclass(np.ndarray): + pass + + m = np.median(np.array(arr).view(MySubclass)) + assert isinstance(m, MySubclass) + + def test_out(self): + o = np.zeros((4,)) + d = np.ones((3, 4)) + assert_equal(np.median(d, 0, out=o), o) + o = np.zeros((3,)) + assert_equal(np.median(d, 1, out=o), o) + o = np.zeros(()) + assert_equal(np.median(d, out=o), o) + + def test_out_nan(self): + with warnings.catch_warnings(record=True): + warnings.filterwarnings('always', '', RuntimeWarning) + o = np.zeros((4,)) + d = np.ones((3, 4)) + d[2, 1] = np.nan + assert_equal(np.median(d, 0, out=o), o) + o = np.zeros((3,)) + assert_equal(np.median(d, 1, out=o), o) + o = np.zeros(()) + assert_equal(np.median(d, out=o), o) + + def test_nan_behavior(self): + a = np.arange(24, dtype=float) + a[2] = np.nan + assert_equal(np.median(a), np.nan) + assert_equal(np.median(a, axis=0), np.nan) + + a = np.arange(24, dtype=float).reshape(2, 3, 4) + a[1, 2, 3] = np.nan + a[1, 1, 2] = np.nan + + # no axis + assert_equal(np.median(a), np.nan) + assert_equal(np.median(a).ndim, 0) + + # axis0 + b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), 0) + b[2, 3] = np.nan + b[1, 2] = np.nan + assert_equal(np.median(a, 0), b) + + # axis1 + b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), 1) + b[1, 3] = np.nan + b[1, 2] = np.nan + assert_equal(np.median(a, 1), b) + + # axis02 + b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), (0, 2)) + b[1] = np.nan + b[2] = np.nan + assert_equal(np.median(a, (0, 2)), b) + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work correctly") + def test_empty(self): + # mean(empty array) emits two warnings: empty slice and divide by 0 + a = np.array([], dtype=float) + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', RuntimeWarning) + assert_equal(np.median(a), np.nan) + assert_(w[0].category is RuntimeWarning) + assert_equal(len(w), 2) + + # multiple dimensions + a = np.array([], dtype=float, ndmin=3) + # no axis + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', RuntimeWarning) + assert_equal(np.median(a), np.nan) + assert_(w[0].category is RuntimeWarning) + + # axis 0 and 1 + b = np.array([], dtype=float, ndmin=2) + assert_equal(np.median(a, axis=0), b) + assert_equal(np.median(a, axis=1), b) + + # axis 2 + b = np.array(np.nan, dtype=float, ndmin=2) + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', RuntimeWarning) + assert_equal(np.median(a, axis=2), b) + assert_(w[0].category is RuntimeWarning) + + def test_object(self): + o = np.arange(7.) + assert_(type(np.median(o.astype(object))), float) + o[2] = np.nan + assert_(type(np.median(o.astype(object))), float) + + def test_extended_axis(self): + o = np.random.normal(size=(71, 23)) + x = np.dstack([o] * 10) + assert_equal(np.median(x, axis=(0, 1)), np.median(o)) + x = np.moveaxis(x, -1, 0) + assert_equal(np.median(x, axis=(-2, -1)), np.median(o)) + x = x.swapaxes(0, 1).copy() + assert_equal(np.median(x, axis=(0, -1)), np.median(o)) + + assert_equal(np.median(x, axis=(0, 1, 2)), np.median(x, axis=None)) + assert_equal(np.median(x, axis=(0, )), np.median(x, axis=0)) + assert_equal(np.median(x, axis=(-1, )), np.median(x, axis=-1)) + + d = np.arange(3 * 5 * 7 * 11).reshape((3, 5, 7, 11)) + np.random.shuffle(d.ravel()) + assert_equal(np.median(d, axis=(0, 1, 2))[0], + np.median(d[:, :, :, 0].flatten())) + assert_equal(np.median(d, axis=(0, 1, 3))[1], + np.median(d[:, :, 1, :].flatten())) + assert_equal(np.median(d, axis=(3, 1, -4))[2], + np.median(d[:, :, 2, :].flatten())) + assert_equal(np.median(d, axis=(3, 1, 2))[2], + np.median(d[2, :, :, :].flatten())) + assert_equal(np.median(d, axis=(3, 2))[2, 1], + np.median(d[2, 1, :, :].flatten())) + assert_equal(np.median(d, axis=(1, -2))[2, 1], + np.median(d[2, :, :, 1].flatten())) + assert_equal(np.median(d, axis=(1, 3))[2, 2], + np.median(d[2, :, 2, :].flatten())) + + def test_extended_axis_invalid(self): + d = np.ones((3, 5, 7, 11)) + assert_raises(AxisError, np.median, d, axis=-5) + assert_raises(AxisError, np.median, d, axis=(0, -5)) + assert_raises(AxisError, np.median, d, axis=4) + assert_raises(AxisError, np.median, d, axis=(0, 4)) + assert_raises(ValueError, np.median, d, axis=(1, 1)) + + def test_keepdims(self): + d = np.ones((3, 5, 7, 11)) + assert_equal(np.median(d, axis=None, keepdims=True).shape, + (1, 1, 1, 1)) + assert_equal(np.median(d, axis=(0, 1), keepdims=True).shape, + (1, 1, 7, 11)) + assert_equal(np.median(d, axis=(0, 3), keepdims=True).shape, + (1, 5, 7, 1)) + assert_equal(np.median(d, axis=(1,), keepdims=True).shape, + (3, 1, 7, 11)) + assert_equal(np.median(d, axis=(0, 1, 2, 3), keepdims=True).shape, + (1, 1, 1, 1)) + assert_equal(np.median(d, axis=(0, 1, 3), keepdims=True).shape, + (1, 1, 7, 1)) + + @pytest.mark.parametrize( + argnames='axis', + argvalues=[ + None, + 1, + (1, ), + (0, 1), + (-3, -1), + ] + ) + def test_keepdims_out(self, axis): + d = np.ones((3, 5, 7, 11)) + if axis is None: + shape_out = (1,) * d.ndim + else: + axis_norm = normalize_axis_tuple(axis, d.ndim) + shape_out = tuple( + 1 if i in axis_norm else d.shape[i] for i in range(d.ndim)) + out = np.empty(shape_out) + result = np.median(d, axis=axis, keepdims=True, out=out) + assert result is out + assert_equal(result.shape, shape_out) + + @pytest.mark.parametrize("dtype", ["m8[s]"]) + @pytest.mark.parametrize("pos", [0, 23, 10]) + def test_nat_behavior(self, dtype, pos): + # TODO: Median does not support Datetime, due to `mean`. + # NaT and NaN should behave the same, do basic tests for NaT. + a = np.arange(0, 24, dtype=dtype) + a[pos] = "NaT" + res = np.median(a) + assert res.dtype == dtype + assert np.isnat(res) + res = np.percentile(a, [30, 60]) + assert res.dtype == dtype + assert np.isnat(res).all() + + a = np.arange(0, 24 * 3, dtype=dtype).reshape(-1, 3) + a[pos, 1] = "NaT" + res = np.median(a, axis=0) + assert_array_equal(np.isnat(res), [False, True, False]) + + +class TestSortComplex: + + @pytest.mark.parametrize("type_in, type_out", [ + ('l', 'D'), + ('h', 'F'), + ('H', 'F'), + ('b', 'F'), + ('B', 'F'), + ('g', 'G'), + ]) + def test_sort_real(self, type_in, type_out): + # sort_complex() type casting for real input types + a = np.array([5, 3, 6, 2, 1], dtype=type_in) + actual = np.sort_complex(a) + expected = np.sort(a).astype(type_out) + assert_equal(actual, expected) + assert_equal(actual.dtype, expected.dtype) + + def test_sort_complex(self): + # sort_complex() handling of complex input + a = np.array([2 + 3j, 1 - 2j, 1 - 3j, 2 + 1j], dtype='D') + expected = np.array([1 - 3j, 1 - 2j, 2 + 1j, 2 + 3j], dtype='D') + actual = np.sort_complex(a) + assert_equal(actual, expected) + assert_equal(actual.dtype, expected.dtype) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_histograms.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_histograms.py new file mode 100644 index 0000000..b7752d1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_histograms.py @@ -0,0 +1,855 @@ +import pytest + +import numpy as np +from numpy import histogram, histogram_bin_edges, histogramdd +from numpy.testing import ( + assert_, + assert_allclose, + assert_almost_equal, + assert_array_almost_equal, + assert_array_equal, + assert_array_max_ulp, + assert_equal, + assert_raises, + assert_raises_regex, + suppress_warnings, +) + + +class TestHistogram: + + def setup_method(self): + pass + + def teardown_method(self): + pass + + def test_simple(self): + n = 100 + v = np.random.rand(n) + (a, b) = histogram(v) + # check if the sum of the bins equals the number of samples + assert_equal(np.sum(a, axis=0), n) + # check that the bin counts are evenly spaced when the data is from + # a linear function + (a, b) = histogram(np.linspace(0, 10, 100)) + assert_array_equal(a, 10) + + def test_one_bin(self): + # Ticket 632 + hist, edges = histogram([1, 2, 3, 4], [1, 2]) + assert_array_equal(hist, [2, ]) + assert_array_equal(edges, [1, 2]) + assert_raises(ValueError, histogram, [1, 2], bins=0) + h, e = histogram([1, 2], bins=1) + assert_equal(h, np.array([2])) + assert_allclose(e, np.array([1., 2.])) + + def test_density(self): + # Check that the integral of the density equals 1. + n = 100 + v = np.random.rand(n) + a, b = histogram(v, density=True) + area = np.sum(a * np.diff(b)) + assert_almost_equal(area, 1) + + # Check with non-constant bin widths + v = np.arange(10) + bins = [0, 1, 3, 6, 10] + a, b = histogram(v, bins, density=True) + assert_array_equal(a, .1) + assert_equal(np.sum(a * np.diff(b)), 1) + + # Test that passing False works too + a, b = histogram(v, bins, density=False) + assert_array_equal(a, [1, 2, 3, 4]) + + # Variable bin widths are especially useful to deal with + # infinities. + v = np.arange(10) + bins = [0, 1, 3, 6, np.inf] + a, b = histogram(v, bins, density=True) + assert_array_equal(a, [.1, .1, .1, 0.]) + + # Taken from a bug report from N. Becker on the numpy-discussion + # mailing list Aug. 6, 2010. + counts, dmy = np.histogram( + [1, 2, 3, 4], [0.5, 1.5, np.inf], density=True) + assert_equal(counts, [.25, 0]) + + def test_outliers(self): + # Check that outliers are not tallied + a = np.arange(10) + .5 + + # Lower outliers + h, b = histogram(a, range=[0, 9]) + assert_equal(h.sum(), 9) + + # Upper outliers + h, b = histogram(a, range=[1, 10]) + assert_equal(h.sum(), 9) + + # Normalization + h, b = histogram(a, range=[1, 9], density=True) + assert_almost_equal((h * np.diff(b)).sum(), 1, decimal=15) + + # Weights + w = np.arange(10) + .5 + h, b = histogram(a, range=[1, 9], weights=w, density=True) + assert_equal((h * np.diff(b)).sum(), 1) + + h, b = histogram(a, bins=8, range=[1, 9], weights=w) + assert_equal(h, w[1:-1]) + + def test_arr_weights_mismatch(self): + a = np.arange(10) + .5 + w = np.arange(11) + .5 + with assert_raises_regex(ValueError, "same shape as"): + h, b = histogram(a, range=[1, 9], weights=w, density=True) + + def test_type(self): + # Check the type of the returned histogram + a = np.arange(10) + .5 + h, b = histogram(a) + assert_(np.issubdtype(h.dtype, np.integer)) + + h, b = histogram(a, density=True) + assert_(np.issubdtype(h.dtype, np.floating)) + + h, b = histogram(a, weights=np.ones(10, int)) + assert_(np.issubdtype(h.dtype, np.integer)) + + h, b = histogram(a, weights=np.ones(10, float)) + assert_(np.issubdtype(h.dtype, np.floating)) + + def test_f32_rounding(self): + # gh-4799, check that the rounding of the edges works with float32 + x = np.array([276.318359, -69.593948, 21.329449], dtype=np.float32) + y = np.array([5005.689453, 4481.327637, 6010.369629], dtype=np.float32) + counts_hist, xedges, yedges = np.histogram2d(x, y, bins=100) + assert_equal(counts_hist.sum(), 3.) + + def test_bool_conversion(self): + # gh-12107 + # Reference integer histogram + a = np.array([1, 1, 0], dtype=np.uint8) + int_hist, int_edges = np.histogram(a) + + # Should raise an warning on booleans + # Ensure that the histograms are equivalent, need to suppress + # the warnings to get the actual outputs + with suppress_warnings() as sup: + rec = sup.record(RuntimeWarning, 'Converting input from .*') + hist, edges = np.histogram([True, True, False]) + # A warning should be issued + assert_equal(len(rec), 1) + assert_array_equal(hist, int_hist) + assert_array_equal(edges, int_edges) + + def test_weights(self): + v = np.random.rand(100) + w = np.ones(100) * 5 + a, b = histogram(v) + na, nb = histogram(v, density=True) + wa, wb = histogram(v, weights=w) + nwa, nwb = histogram(v, weights=w, density=True) + assert_array_almost_equal(a * 5, wa) + assert_array_almost_equal(na, nwa) + + # Check weights are properly applied. + v = np.linspace(0, 10, 10) + w = np.concatenate((np.zeros(5), np.ones(5))) + wa, wb = histogram(v, bins=np.arange(11), weights=w) + assert_array_almost_equal(wa, w) + + # Check with integer weights + wa, wb = histogram([1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1]) + assert_array_equal(wa, [4, 5, 0, 1]) + wa, wb = histogram( + [1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1], density=True) + assert_array_almost_equal(wa, np.array([4, 5, 0, 1]) / 10. / 3. * 4) + + # Check weights with non-uniform bin widths + a, b = histogram( + np.arange(9), [0, 1, 3, 6, 10], + weights=[2, 1, 1, 1, 1, 1, 1, 1, 1], density=True) + assert_almost_equal(a, [.2, .1, .1, .075]) + + def test_exotic_weights(self): + + # Test the use of weights that are not integer or floats, but e.g. + # complex numbers or object types. + + # Complex weights + values = np.array([1.3, 2.5, 2.3]) + weights = np.array([1, -1, 2]) + 1j * np.array([2, 1, 2]) + + # Check with custom bins + wa, wb = histogram(values, bins=[0, 2, 3], weights=weights) + assert_array_almost_equal(wa, np.array([1, 1]) + 1j * np.array([2, 3])) + + # Check with even bins + wa, wb = histogram(values, bins=2, range=[1, 3], weights=weights) + assert_array_almost_equal(wa, np.array([1, 1]) + 1j * np.array([2, 3])) + + # Decimal weights + from decimal import Decimal + values = np.array([1.3, 2.5, 2.3]) + weights = np.array([Decimal(1), Decimal(2), Decimal(3)]) + + # Check with custom bins + wa, wb = histogram(values, bins=[0, 2, 3], weights=weights) + assert_array_almost_equal(wa, [Decimal(1), Decimal(5)]) + + # Check with even bins + wa, wb = histogram(values, bins=2, range=[1, 3], weights=weights) + assert_array_almost_equal(wa, [Decimal(1), Decimal(5)]) + + def test_no_side_effects(self): + # This is a regression test that ensures that values passed to + # ``histogram`` are unchanged. + values = np.array([1.3, 2.5, 2.3]) + np.histogram(values, range=[-10, 10], bins=100) + assert_array_almost_equal(values, [1.3, 2.5, 2.3]) + + def test_empty(self): + a, b = histogram([], bins=([0, 1])) + assert_array_equal(a, np.array([0])) + assert_array_equal(b, np.array([0, 1])) + + def test_error_binnum_type(self): + # Tests if right Error is raised if bins argument is float + vals = np.linspace(0.0, 1.0, num=100) + histogram(vals, 5) + assert_raises(TypeError, histogram, vals, 2.4) + + def test_finite_range(self): + # Normal ranges should be fine + vals = np.linspace(0.0, 1.0, num=100) + histogram(vals, range=[0.25, 0.75]) + assert_raises(ValueError, histogram, vals, range=[np.nan, 0.75]) + assert_raises(ValueError, histogram, vals, range=[0.25, np.inf]) + + def test_invalid_range(self): + # start of range must be < end of range + vals = np.linspace(0.0, 1.0, num=100) + with assert_raises_regex(ValueError, "max must be larger than"): + np.histogram(vals, range=[0.1, 0.01]) + + def test_bin_edge_cases(self): + # Ensure that floating-point computations correctly place edge cases. + arr = np.array([337, 404, 739, 806, 1007, 1811, 2012]) + hist, edges = np.histogram(arr, bins=8296, range=(2, 2280)) + mask = hist > 0 + left_edges = edges[:-1][mask] + right_edges = edges[1:][mask] + for x, left, right in zip(arr, left_edges, right_edges): + assert_(x >= left) + assert_(x < right) + + def test_last_bin_inclusive_range(self): + arr = np.array([0., 0., 0., 1., 2., 3., 3., 4., 5.]) + hist, edges = np.histogram(arr, bins=30, range=(-0.5, 5)) + assert_equal(hist[-1], 1) + + def test_bin_array_dims(self): + # gracefully handle bins object > 1 dimension + vals = np.linspace(0.0, 1.0, num=100) + bins = np.array([[0, 0.5], [0.6, 1.0]]) + with assert_raises_regex(ValueError, "must be 1d"): + np.histogram(vals, bins=bins) + + def test_unsigned_monotonicity_check(self): + # Ensures ValueError is raised if bins not increasing monotonically + # when bins contain unsigned values (see #9222) + arr = np.array([2]) + bins = np.array([1, 3, 1], dtype='uint64') + with assert_raises(ValueError): + hist, edges = np.histogram(arr, bins=bins) + + def test_object_array_of_0d(self): + # gh-7864 + assert_raises(ValueError, + histogram, [np.array(0.4) for i in range(10)] + [-np.inf]) + assert_raises(ValueError, + histogram, [np.array(0.4) for i in range(10)] + [np.inf]) + + # these should not crash + np.histogram([np.array(0.5) for i in range(10)] + [.500000000000002]) + np.histogram([np.array(0.5) for i in range(10)] + [.5]) + + def test_some_nan_values(self): + # gh-7503 + one_nan = np.array([0, 1, np.nan]) + all_nan = np.array([np.nan, np.nan]) + + # the internal comparisons with NaN give warnings + sup = suppress_warnings() + sup.filter(RuntimeWarning) + with sup: + # can't infer range with nan + assert_raises(ValueError, histogram, one_nan, bins='auto') + assert_raises(ValueError, histogram, all_nan, bins='auto') + + # explicit range solves the problem + h, b = histogram(one_nan, bins='auto', range=(0, 1)) + assert_equal(h.sum(), 2) # nan is not counted + h, b = histogram(all_nan, bins='auto', range=(0, 1)) + assert_equal(h.sum(), 0) # nan is not counted + + # as does an explicit set of bins + h, b = histogram(one_nan, bins=[0, 1]) + assert_equal(h.sum(), 2) # nan is not counted + h, b = histogram(all_nan, bins=[0, 1]) + assert_equal(h.sum(), 0) # nan is not counted + + def test_datetime(self): + begin = np.datetime64('2000-01-01', 'D') + offsets = np.array([0, 0, 1, 1, 2, 3, 5, 10, 20]) + bins = np.array([0, 2, 7, 20]) + dates = begin + offsets + date_bins = begin + bins + + td = np.dtype('timedelta64[D]') + + # Results should be the same for integer offsets or datetime values. + # For now, only explicit bins are supported, since linspace does not + # work on datetimes or timedeltas + d_count, d_edge = histogram(dates, bins=date_bins) + t_count, t_edge = histogram(offsets.astype(td), bins=bins.astype(td)) + i_count, i_edge = histogram(offsets, bins=bins) + + assert_equal(d_count, i_count) + assert_equal(t_count, i_count) + + assert_equal((d_edge - begin).astype(int), i_edge) + assert_equal(t_edge.astype(int), i_edge) + + assert_equal(d_edge.dtype, dates.dtype) + assert_equal(t_edge.dtype, td) + + def do_signed_overflow_bounds(self, dtype): + exponent = 8 * np.dtype(dtype).itemsize - 1 + arr = np.array([-2**exponent + 4, 2**exponent - 4], dtype=dtype) + hist, e = histogram(arr, bins=2) + assert_equal(e, [-2**exponent + 4, 0, 2**exponent - 4]) + assert_equal(hist, [1, 1]) + + def test_signed_overflow_bounds(self): + self.do_signed_overflow_bounds(np.byte) + self.do_signed_overflow_bounds(np.short) + self.do_signed_overflow_bounds(np.intc) + self.do_signed_overflow_bounds(np.int_) + self.do_signed_overflow_bounds(np.longlong) + + def do_precision_lower_bound(self, float_small, float_large): + eps = np.finfo(float_large).eps + + arr = np.array([1.0], float_small) + range = np.array([1.0 + eps, 2.0], float_large) + + # test is looking for behavior when the bounds change between dtypes + if range.astype(float_small)[0] != 1: + return + + # previously crashed + count, x_loc = np.histogram(arr, bins=1, range=range) + assert_equal(count, [0]) + assert_equal(x_loc.dtype, float_large) + + def do_precision_upper_bound(self, float_small, float_large): + eps = np.finfo(float_large).eps + + arr = np.array([1.0], float_small) + range = np.array([0.0, 1.0 - eps], float_large) + + # test is looking for behavior when the bounds change between dtypes + if range.astype(float_small)[-1] != 1: + return + + # previously crashed + count, x_loc = np.histogram(arr, bins=1, range=range) + assert_equal(count, [0]) + + assert_equal(x_loc.dtype, float_large) + + def do_precision(self, float_small, float_large): + self.do_precision_lower_bound(float_small, float_large) + self.do_precision_upper_bound(float_small, float_large) + + def test_precision(self): + # not looping results in a useful stack trace upon failure + self.do_precision(np.half, np.single) + self.do_precision(np.half, np.double) + self.do_precision(np.half, np.longdouble) + self.do_precision(np.single, np.double) + self.do_precision(np.single, np.longdouble) + self.do_precision(np.double, np.longdouble) + + def test_histogram_bin_edges(self): + hist, e = histogram([1, 2, 3, 4], [1, 2]) + edges = histogram_bin_edges([1, 2, 3, 4], [1, 2]) + assert_array_equal(edges, e) + + arr = np.array([0., 0., 0., 1., 2., 3., 3., 4., 5.]) + hist, e = histogram(arr, bins=30, range=(-0.5, 5)) + edges = histogram_bin_edges(arr, bins=30, range=(-0.5, 5)) + assert_array_equal(edges, e) + + hist, e = histogram(arr, bins='auto', range=(0, 1)) + edges = histogram_bin_edges(arr, bins='auto', range=(0, 1)) + assert_array_equal(edges, e) + + def test_small_value_range(self): + arr = np.array([1, 1 + 2e-16] * 10) + with pytest.raises(ValueError, match="Too many bins for data range"): + histogram(arr, bins=10) + + # @requires_memory(free_bytes=1e10) + # @pytest.mark.slow + @pytest.mark.skip(reason="Bad memory reports lead to OOM in ci testing") + def test_big_arrays(self): + sample = np.zeros([100000000, 3]) + xbins = 400 + ybins = 400 + zbins = np.arange(16000) + hist = np.histogramdd(sample=sample, bins=(xbins, ybins, zbins)) + assert_equal(type(hist), type((1, 2))) + + def test_gh_23110(self): + hist, e = np.histogram(np.array([-0.9e-308], dtype='>f8'), + bins=2, + range=(-1e-308, -2e-313)) + expected_hist = np.array([1, 0]) + assert_array_equal(hist, expected_hist) + + def test_gh_28400(self): + e = 1 + 1e-12 + Z = [0, 1, 1, 1, 1, 1, e, e, e, e, e, e, 2] + counts, edges = np.histogram(Z, bins="auto") + assert len(counts) < 10 + assert edges[0] == Z[0] + assert edges[-1] == Z[-1] + +class TestHistogramOptimBinNums: + """ + Provide test coverage when using provided estimators for optimal number of + bins + """ + + def test_empty(self): + estimator_list = ['fd', 'scott', 'rice', 'sturges', + 'doane', 'sqrt', 'auto', 'stone'] + # check it can deal with empty data + for estimator in estimator_list: + a, b = histogram([], bins=estimator) + assert_array_equal(a, np.array([0])) + assert_array_equal(b, np.array([0, 1])) + + def test_simple(self): + """ + Straightforward testing with a mixture of linspace data (for + consistency). All test values have been precomputed and the values + shouldn't change + """ + # Some basic sanity checking, with some fixed data. + # Checking for the correct number of bins + basic_test = {50: {'fd': 4, 'scott': 4, 'rice': 8, 'sturges': 7, + 'doane': 8, 'sqrt': 8, 'auto': 7, 'stone': 2}, + 500: {'fd': 8, 'scott': 8, 'rice': 16, 'sturges': 10, + 'doane': 12, 'sqrt': 23, 'auto': 10, 'stone': 9}, + 5000: {'fd': 17, 'scott': 17, 'rice': 35, 'sturges': 14, + 'doane': 17, 'sqrt': 71, 'auto': 17, 'stone': 20}} + + for testlen, expectedResults in basic_test.items(): + # Create some sort of non uniform data to test with + # (2 peak uniform mixture) + x1 = np.linspace(-10, -1, testlen // 5 * 2) + x2 = np.linspace(1, 10, testlen // 5 * 3) + x = np.concatenate((x1, x2)) + for estimator, numbins in expectedResults.items(): + a, b = np.histogram(x, estimator) + assert_equal(len(a), numbins, err_msg=f"For the {estimator} estimator " + f"with datasize of {testlen}") + + def test_small(self): + """ + Smaller datasets have the potential to cause issues with the data + adaptive methods, especially the FD method. All bin numbers have been + precalculated. + """ + small_dat = {1: {'fd': 1, 'scott': 1, 'rice': 1, 'sturges': 1, + 'doane': 1, 'sqrt': 1, 'stone': 1}, + 2: {'fd': 2, 'scott': 1, 'rice': 3, 'sturges': 2, + 'doane': 1, 'sqrt': 2, 'stone': 1}, + 3: {'fd': 2, 'scott': 2, 'rice': 3, 'sturges': 3, + 'doane': 3, 'sqrt': 2, 'stone': 1}} + + for testlen, expectedResults in small_dat.items(): + testdat = np.arange(testlen).astype(float) + for estimator, expbins in expectedResults.items(): + a, b = np.histogram(testdat, estimator) + assert_equal(len(a), expbins, err_msg=f"For the {estimator} estimator " + f"with datasize of {testlen}") + + def test_incorrect_methods(self): + """ + Check a Value Error is thrown when an unknown string is passed in + """ + check_list = ['mad', 'freeman', 'histograms', 'IQR'] + for estimator in check_list: + assert_raises(ValueError, histogram, [1, 2, 3], estimator) + + def test_novariance(self): + """ + Check that methods handle no variance in data + Primarily for Scott and FD as the SD and IQR are both 0 in this case + """ + novar_dataset = np.ones(100) + novar_resultdict = {'fd': 1, 'scott': 1, 'rice': 1, 'sturges': 1, + 'doane': 1, 'sqrt': 1, 'auto': 1, 'stone': 1} + + for estimator, numbins in novar_resultdict.items(): + a, b = np.histogram(novar_dataset, estimator) + assert_equal(len(a), numbins, + err_msg=f"{estimator} estimator, No Variance test") + + def test_limited_variance(self): + """ + Check when IQR is 0, but variance exists, we return a reasonable value. + """ + lim_var_data = np.ones(1000) + lim_var_data[:3] = 0 + lim_var_data[-4:] = 100 + + edges_auto = histogram_bin_edges(lim_var_data, 'auto') + assert_equal(edges_auto[0], 0) + assert_equal(edges_auto[-1], 100.) + assert len(edges_auto) < 100 + + edges_fd = histogram_bin_edges(lim_var_data, 'fd') + assert_equal(edges_fd, np.array([0, 100])) + + edges_sturges = histogram_bin_edges(lim_var_data, 'sturges') + assert_equal(edges_sturges, np.linspace(0, 100, 12)) + + def test_outlier(self): + """ + Check the FD, Scott and Doane with outliers. + + The FD estimates a smaller binwidth since it's less affected by + outliers. Since the range is so (artificially) large, this means more + bins, most of which will be empty, but the data of interest usually is + unaffected. The Scott estimator is more affected and returns fewer bins, + despite most of the variance being in one area of the data. The Doane + estimator lies somewhere between the other two. + """ + xcenter = np.linspace(-10, 10, 50) + outlier_dataset = np.hstack((np.linspace(-110, -100, 5), xcenter)) + + outlier_resultdict = {'fd': 21, 'scott': 5, 'doane': 11, 'stone': 6} + + for estimator, numbins in outlier_resultdict.items(): + a, b = np.histogram(outlier_dataset, estimator) + assert_equal(len(a), numbins) + + def test_scott_vs_stone(self): + """Verify that Scott's rule and Stone's rule converges for normally distributed data""" + + def nbins_ratio(seed, size): + rng = np.random.RandomState(seed) + x = rng.normal(loc=0, scale=2, size=size) + a, b = len(np.histogram(x, 'stone')[0]), len(np.histogram(x, 'scott')[0]) + return a / (a + b) + + ll = [[nbins_ratio(seed, size) for size in np.geomspace(start=10, stop=100, num=4).round().astype(int)] + for seed in range(10)] + + # the average difference between the two methods decreases as the dataset size increases. + avg = abs(np.mean(ll, axis=0) - 0.5) + assert_almost_equal(avg, [0.15, 0.09, 0.08, 0.03], decimal=2) + + def test_simple_range(self): + """ + Straightforward testing with a mixture of linspace data (for + consistency). Adding in a 3rd mixture that will then be + completely ignored. All test values have been precomputed and + the shouldn't change. + """ + # some basic sanity checking, with some fixed data. + # Checking for the correct number of bins + basic_test = { + 50: {'fd': 8, 'scott': 8, 'rice': 15, + 'sturges': 14, 'auto': 14, 'stone': 8}, + 500: {'fd': 15, 'scott': 16, 'rice': 32, + 'sturges': 20, 'auto': 20, 'stone': 80}, + 5000: {'fd': 33, 'scott': 33, 'rice': 69, + 'sturges': 27, 'auto': 33, 'stone': 80} + } + + for testlen, expectedResults in basic_test.items(): + # create some sort of non uniform data to test with + # (3 peak uniform mixture) + x1 = np.linspace(-10, -1, testlen // 5 * 2) + x2 = np.linspace(1, 10, testlen // 5 * 3) + x3 = np.linspace(-100, -50, testlen) + x = np.hstack((x1, x2, x3)) + for estimator, numbins in expectedResults.items(): + a, b = np.histogram(x, estimator, range=(-20, 20)) + msg = f"For the {estimator} estimator" + msg += f" with datasize of {testlen}" + assert_equal(len(a), numbins, err_msg=msg) + + @pytest.mark.parametrize("bins", ['auto', 'fd', 'doane', 'scott', + 'stone', 'rice', 'sturges']) + def test_signed_integer_data(self, bins): + # Regression test for gh-14379. + a = np.array([-2, 0, 127], dtype=np.int8) + hist, edges = np.histogram(a, bins=bins) + hist32, edges32 = np.histogram(a.astype(np.int32), bins=bins) + assert_array_equal(hist, hist32) + assert_array_equal(edges, edges32) + + @pytest.mark.parametrize("bins", ['auto', 'fd', 'doane', 'scott', + 'stone', 'rice', 'sturges']) + def test_integer(self, bins): + """ + Test that bin width for integer data is at least 1. + """ + with suppress_warnings() as sup: + if bins == 'stone': + sup.filter(RuntimeWarning) + assert_equal( + np.histogram_bin_edges(np.tile(np.arange(9), 1000), bins), + np.arange(9)) + + def test_integer_non_auto(self): + """ + Test that the bin-width>=1 requirement *only* applies to auto binning. + """ + assert_equal( + np.histogram_bin_edges(np.tile(np.arange(9), 1000), 16), + np.arange(17) / 2) + assert_equal( + np.histogram_bin_edges(np.tile(np.arange(9), 1000), [.1, .2]), + [.1, .2]) + + def test_simple_weighted(self): + """ + Check that weighted data raises a TypeError + """ + estimator_list = ['fd', 'scott', 'rice', 'sturges', 'auto'] + for estimator in estimator_list: + assert_raises(TypeError, histogram, [1, 2, 3], + estimator, weights=[1, 2, 3]) + + +class TestHistogramdd: + + def test_simple(self): + x = np.array([[-.5, .5, 1.5], [-.5, 1.5, 2.5], [-.5, 2.5, .5], + [.5, .5, 1.5], [.5, 1.5, 2.5], [.5, 2.5, 2.5]]) + H, edges = histogramdd(x, (2, 3, 3), + range=[[-1, 1], [0, 3], [0, 3]]) + answer = np.array([[[0, 1, 0], [0, 0, 1], [1, 0, 0]], + [[0, 1, 0], [0, 0, 1], [0, 0, 1]]]) + assert_array_equal(H, answer) + + # Check normalization + ed = [[-2, 0, 2], [0, 1, 2, 3], [0, 1, 2, 3]] + H, edges = histogramdd(x, bins=ed, density=True) + assert_(np.all(H == answer / 12.)) + + # Check that H has the correct shape. + H, edges = histogramdd(x, (2, 3, 4), + range=[[-1, 1], [0, 3], [0, 4]], + density=True) + answer = np.array([[[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]], + [[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0]]]) + assert_array_almost_equal(H, answer / 6., 4) + # Check that a sequence of arrays is accepted and H has the correct + # shape. + z = [np.squeeze(y) for y in np.split(x, 3, axis=1)] + H, edges = histogramdd( + z, bins=(4, 3, 2), range=[[-2, 2], [0, 3], [0, 2]]) + answer = np.array([[[0, 0], [0, 0], [0, 0]], + [[0, 1], [0, 0], [1, 0]], + [[0, 1], [0, 0], [0, 0]], + [[0, 0], [0, 0], [0, 0]]]) + assert_array_equal(H, answer) + + Z = np.zeros((5, 5, 5)) + Z[list(range(5)), list(range(5)), list(range(5))] = 1. + H, edges = histogramdd([np.arange(5), np.arange(5), np.arange(5)], 5) + assert_array_equal(H, Z) + + def test_shape_3d(self): + # All possible permutations for bins of different lengths in 3D. + bins = ((5, 4, 6), (6, 4, 5), (5, 6, 4), (4, 6, 5), (6, 5, 4), + (4, 5, 6)) + r = np.random.rand(10, 3) + for b in bins: + H, edges = histogramdd(r, b) + assert_(H.shape == b) + + def test_shape_4d(self): + # All possible permutations for bins of different lengths in 4D. + bins = ((7, 4, 5, 6), (4, 5, 7, 6), (5, 6, 4, 7), (7, 6, 5, 4), + (5, 7, 6, 4), (4, 6, 7, 5), (6, 5, 7, 4), (7, 5, 4, 6), + (7, 4, 6, 5), (6, 4, 7, 5), (6, 7, 5, 4), (4, 6, 5, 7), + (4, 7, 5, 6), (5, 4, 6, 7), (5, 7, 4, 6), (6, 7, 4, 5), + (6, 5, 4, 7), (4, 7, 6, 5), (4, 5, 6, 7), (7, 6, 4, 5), + (5, 4, 7, 6), (5, 6, 7, 4), (6, 4, 5, 7), (7, 5, 6, 4)) + + r = np.random.rand(10, 4) + for b in bins: + H, edges = histogramdd(r, b) + assert_(H.shape == b) + + def test_weights(self): + v = np.random.rand(100, 2) + hist, edges = histogramdd(v) + n_hist, edges = histogramdd(v, density=True) + w_hist, edges = histogramdd(v, weights=np.ones(100)) + assert_array_equal(w_hist, hist) + w_hist, edges = histogramdd(v, weights=np.ones(100) * 2, density=True) + assert_array_equal(w_hist, n_hist) + w_hist, edges = histogramdd(v, weights=np.ones(100, int) * 2) + assert_array_equal(w_hist, 2 * hist) + + def test_identical_samples(self): + x = np.zeros((10, 2), int) + hist, edges = histogramdd(x, bins=2) + assert_array_equal(edges[0], np.array([-0.5, 0., 0.5])) + + def test_empty(self): + a, b = histogramdd([[], []], bins=([0, 1], [0, 1])) + assert_array_max_ulp(a, np.array([[0.]])) + a, b = np.histogramdd([[], [], []], bins=2) + assert_array_max_ulp(a, np.zeros((2, 2, 2))) + + def test_bins_errors(self): + # There are two ways to specify bins. Check for the right errors + # when mixing those. + x = np.arange(8).reshape(2, 4) + assert_raises(ValueError, np.histogramdd, x, bins=[-1, 2, 4, 5]) + assert_raises(ValueError, np.histogramdd, x, bins=[1, 0.99, 1, 1]) + assert_raises( + ValueError, np.histogramdd, x, bins=[1, 1, 1, [1, 2, 3, -3]]) + assert_(np.histogramdd(x, bins=[1, 1, 1, [1, 2, 3, 4]])) + + def test_inf_edges(self): + # Test using +/-inf bin edges works. See #1788. + with np.errstate(invalid='ignore'): + x = np.arange(6).reshape(3, 2) + expected = np.array([[1, 0], [0, 1], [0, 1]]) + h, e = np.histogramdd(x, bins=[3, [-np.inf, 2, 10]]) + assert_allclose(h, expected) + h, e = np.histogramdd(x, bins=[3, np.array([-1, 2, np.inf])]) + assert_allclose(h, expected) + h, e = np.histogramdd(x, bins=[3, [-np.inf, 3, np.inf]]) + assert_allclose(h, expected) + + def test_rightmost_binedge(self): + # Test event very close to rightmost binedge. See Github issue #4266 + x = [0.9999999995] + bins = [[0., 0.5, 1.0]] + hist, _ = histogramdd(x, bins=bins) + assert_(hist[0] == 0.0) + assert_(hist[1] == 1.) + x = [1.0] + bins = [[0., 0.5, 1.0]] + hist, _ = histogramdd(x, bins=bins) + assert_(hist[0] == 0.0) + assert_(hist[1] == 1.) + x = [1.0000000001] + bins = [[0., 0.5, 1.0]] + hist, _ = histogramdd(x, bins=bins) + assert_(hist[0] == 0.0) + assert_(hist[1] == 0.0) + x = [1.0001] + bins = [[0., 0.5, 1.0]] + hist, _ = histogramdd(x, bins=bins) + assert_(hist[0] == 0.0) + assert_(hist[1] == 0.0) + + def test_finite_range(self): + vals = np.random.random((100, 3)) + histogramdd(vals, range=[[0.0, 1.0], [0.25, 0.75], [0.25, 0.5]]) + assert_raises(ValueError, histogramdd, vals, + range=[[0.0, 1.0], [0.25, 0.75], [0.25, np.inf]]) + assert_raises(ValueError, histogramdd, vals, + range=[[0.0, 1.0], [np.nan, 0.75], [0.25, 0.5]]) + + def test_equal_edges(self): + """ Test that adjacent entries in an edge array can be equal """ + x = np.array([0, 1, 2]) + y = np.array([0, 1, 2]) + x_edges = np.array([0, 2, 2]) + y_edges = 1 + hist, edges = histogramdd((x, y), bins=(x_edges, y_edges)) + + hist_expected = np.array([ + [2.], + [1.], # x == 2 falls in the final bin + ]) + assert_equal(hist, hist_expected) + + def test_edge_dtype(self): + """ Test that if an edge array is input, its type is preserved """ + x = np.array([0, 10, 20]) + y = x / 10 + x_edges = np.array([0, 5, 15, 20]) + y_edges = x_edges / 10 + hist, edges = histogramdd((x, y), bins=(x_edges, y_edges)) + + assert_equal(edges[0].dtype, x_edges.dtype) + assert_equal(edges[1].dtype, y_edges.dtype) + + def test_large_integers(self): + big = 2**60 # Too large to represent with a full precision float + + x = np.array([0], np.int64) + x_edges = np.array([-1, +1], np.int64) + y = big + x + y_edges = big + x_edges + + hist, edges = histogramdd((x, y), bins=(x_edges, y_edges)) + + assert_equal(hist[0, 0], 1) + + def test_density_non_uniform_2d(self): + # Defines the following grid: + # + # 0 2 8 + # 0+-+-----+ + # + | + + # + | + + # 6+-+-----+ + # 8+-+-----+ + x_edges = np.array([0, 2, 8]) + y_edges = np.array([0, 6, 8]) + relative_areas = np.array([ + [3, 9], + [1, 3]]) + + # ensure the number of points in each region is proportional to its area + x = np.array([1] + [1] * 3 + [7] * 3 + [7] * 9) + y = np.array([7] + [1] * 3 + [7] * 3 + [1] * 9) + + # sanity check that the above worked as intended + hist, edges = histogramdd((y, x), bins=(y_edges, x_edges)) + assert_equal(hist, relative_areas) + + # resulting histogram should be uniform, since counts and areas are proportional + hist, edges = histogramdd((y, x), bins=(y_edges, x_edges), density=True) + assert_equal(hist, 1 / (8 * 8)) + + def test_density_non_uniform_1d(self): + # compare to histogram to show the results are the same + v = np.arange(10) + bins = np.array([0, 1, 3, 6, 10]) + hist, edges = histogram(v, bins, density=True) + hist_dd, edges_dd = histogramdd((v,), (bins,), density=True) + assert_equal(hist, hist_dd) + assert_equal(edges, edges_dd[0]) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_index_tricks.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_index_tricks.py new file mode 100644 index 0000000..ed8709d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_index_tricks.py @@ -0,0 +1,568 @@ +import pytest + +import numpy as np +from numpy.lib._index_tricks_impl import ( + c_, + diag_indices, + diag_indices_from, + fill_diagonal, + index_exp, + ix_, + mgrid, + ndenumerate, + ndindex, + ogrid, + r_, + s_, +) +from numpy.testing import ( + assert_, + assert_almost_equal, + assert_array_almost_equal, + assert_array_equal, + assert_equal, + assert_raises, + assert_raises_regex, +) + + +class TestRavelUnravelIndex: + def test_basic(self): + assert_equal(np.unravel_index(2, (2, 2)), (1, 0)) + + # test that new shape argument works properly + assert_equal(np.unravel_index(indices=2, + shape=(2, 2)), + (1, 0)) + + # test that an invalid second keyword argument + # is properly handled, including the old name `dims`. + with assert_raises(TypeError): + np.unravel_index(indices=2, hape=(2, 2)) + + with assert_raises(TypeError): + np.unravel_index(2, hape=(2, 2)) + + with assert_raises(TypeError): + np.unravel_index(254, ims=(17, 94)) + + with assert_raises(TypeError): + np.unravel_index(254, dims=(17, 94)) + + assert_equal(np.ravel_multi_index((1, 0), (2, 2)), 2) + assert_equal(np.unravel_index(254, (17, 94)), (2, 66)) + assert_equal(np.ravel_multi_index((2, 66), (17, 94)), 254) + assert_raises(ValueError, np.unravel_index, -1, (2, 2)) + assert_raises(TypeError, np.unravel_index, 0.5, (2, 2)) + assert_raises(ValueError, np.unravel_index, 4, (2, 2)) + assert_raises(ValueError, np.ravel_multi_index, (-3, 1), (2, 2)) + assert_raises(ValueError, np.ravel_multi_index, (2, 1), (2, 2)) + assert_raises(ValueError, np.ravel_multi_index, (0, -3), (2, 2)) + assert_raises(ValueError, np.ravel_multi_index, (0, 2), (2, 2)) + assert_raises(TypeError, np.ravel_multi_index, (0.1, 0.), (2, 2)) + + assert_equal(np.unravel_index((2 * 3 + 1) * 6 + 4, (4, 3, 6)), [2, 1, 4]) + assert_equal( + np.ravel_multi_index([2, 1, 4], (4, 3, 6)), (2 * 3 + 1) * 6 + 4) + + arr = np.array([[3, 6, 6], [4, 5, 1]]) + assert_equal(np.ravel_multi_index(arr, (7, 6)), [22, 41, 37]) + assert_equal( + np.ravel_multi_index(arr, (7, 6), order='F'), [31, 41, 13]) + assert_equal( + np.ravel_multi_index(arr, (4, 6), mode='clip'), [22, 23, 19]) + assert_equal(np.ravel_multi_index(arr, (4, 4), mode=('clip', 'wrap')), + [12, 13, 13]) + assert_equal(np.ravel_multi_index((3, 1, 4, 1), (6, 7, 8, 9)), 1621) + + assert_equal(np.unravel_index(np.array([22, 41, 37]), (7, 6)), + [[3, 6, 6], [4, 5, 1]]) + assert_equal( + np.unravel_index(np.array([31, 41, 13]), (7, 6), order='F'), + [[3, 6, 6], [4, 5, 1]]) + assert_equal(np.unravel_index(1621, (6, 7, 8, 9)), [3, 1, 4, 1]) + + def test_empty_indices(self): + msg1 = 'indices must be integral: the provided empty sequence was' + msg2 = 'only int indices permitted' + assert_raises_regex(TypeError, msg1, np.unravel_index, [], (10, 3, 5)) + assert_raises_regex(TypeError, msg1, np.unravel_index, (), (10, 3, 5)) + assert_raises_regex(TypeError, msg2, np.unravel_index, np.array([]), + (10, 3, 5)) + assert_equal(np.unravel_index(np.array([], dtype=int), (10, 3, 5)), + [[], [], []]) + assert_raises_regex(TypeError, msg1, np.ravel_multi_index, ([], []), + (10, 3)) + assert_raises_regex(TypeError, msg1, np.ravel_multi_index, ([], ['abc']), + (10, 3)) + assert_raises_regex(TypeError, msg2, np.ravel_multi_index, + (np.array([]), np.array([])), (5, 3)) + assert_equal(np.ravel_multi_index( + (np.array([], dtype=int), np.array([], dtype=int)), (5, 3)), []) + assert_equal(np.ravel_multi_index(np.array([[], []], dtype=int), + (5, 3)), []) + + def test_big_indices(self): + # ravel_multi_index for big indices (issue #7546) + if np.intp == np.int64: + arr = ([1, 29], [3, 5], [3, 117], [19, 2], + [2379, 1284], [2, 2], [0, 1]) + assert_equal( + np.ravel_multi_index(arr, (41, 7, 120, 36, 2706, 8, 6)), + [5627771580, 117259570957]) + + # test unravel_index for big indices (issue #9538) + assert_raises(ValueError, np.unravel_index, 1, (2**32 - 1, 2**31 + 1)) + + # test overflow checking for too big array (issue #7546) + dummy_arr = ([0], [0]) + half_max = np.iinfo(np.intp).max // 2 + assert_equal( + np.ravel_multi_index(dummy_arr, (half_max, 2)), [0]) + assert_raises(ValueError, + np.ravel_multi_index, dummy_arr, (half_max + 1, 2)) + assert_equal( + np.ravel_multi_index(dummy_arr, (half_max, 2), order='F'), [0]) + assert_raises(ValueError, + np.ravel_multi_index, dummy_arr, (half_max + 1, 2), order='F') + + def test_dtypes(self): + # Test with different data types + for dtype in [np.int16, np.uint16, np.int32, + np.uint32, np.int64, np.uint64]: + coords = np.array( + [[1, 0, 1, 2, 3, 4], [1, 6, 1, 3, 2, 0]], dtype=dtype) + shape = (5, 8) + uncoords = 8 * coords[0] + coords[1] + assert_equal(np.ravel_multi_index(coords, shape), uncoords) + assert_equal(coords, np.unravel_index(uncoords, shape)) + uncoords = coords[0] + 5 * coords[1] + assert_equal( + np.ravel_multi_index(coords, shape, order='F'), uncoords) + assert_equal(coords, np.unravel_index(uncoords, shape, order='F')) + + coords = np.array( + [[1, 0, 1, 2, 3, 4], [1, 6, 1, 3, 2, 0], [1, 3, 1, 0, 9, 5]], + dtype=dtype) + shape = (5, 8, 10) + uncoords = 10 * (8 * coords[0] + coords[1]) + coords[2] + assert_equal(np.ravel_multi_index(coords, shape), uncoords) + assert_equal(coords, np.unravel_index(uncoords, shape)) + uncoords = coords[0] + 5 * (coords[1] + 8 * coords[2]) + assert_equal( + np.ravel_multi_index(coords, shape, order='F'), uncoords) + assert_equal(coords, np.unravel_index(uncoords, shape, order='F')) + + def test_clipmodes(self): + # Test clipmodes + assert_equal( + np.ravel_multi_index([5, 1, -1, 2], (4, 3, 7, 12), mode='wrap'), + np.ravel_multi_index([1, 1, 6, 2], (4, 3, 7, 12))) + assert_equal(np.ravel_multi_index([5, 1, -1, 2], (4, 3, 7, 12), + mode=( + 'wrap', 'raise', 'clip', 'raise')), + np.ravel_multi_index([1, 1, 0, 2], (4, 3, 7, 12))) + assert_raises( + ValueError, np.ravel_multi_index, [5, 1, -1, 2], (4, 3, 7, 12)) + + def test_writeability(self): + # gh-7269 + x, y = np.unravel_index([1, 2, 3], (4, 5)) + assert_(x.flags.writeable) + assert_(y.flags.writeable) + + def test_0d(self): + # gh-580 + x = np.unravel_index(0, ()) + assert_equal(x, ()) + + assert_raises_regex(ValueError, "0d array", np.unravel_index, [0], ()) + assert_raises_regex( + ValueError, "out of bounds", np.unravel_index, [1], ()) + + @pytest.mark.parametrize("mode", ["clip", "wrap", "raise"]) + def test_empty_array_ravel(self, mode): + res = np.ravel_multi_index( + np.zeros((3, 0), dtype=np.intp), (2, 1, 0), mode=mode) + assert res.shape == (0,) + + with assert_raises(ValueError): + np.ravel_multi_index( + np.zeros((3, 1), dtype=np.intp), (2, 1, 0), mode=mode) + + def test_empty_array_unravel(self): + res = np.unravel_index(np.zeros(0, dtype=np.intp), (2, 1, 0)) + # res is a tuple of three empty arrays + assert len(res) == 3 + assert all(a.shape == (0,) for a in res) + + with assert_raises(ValueError): + np.unravel_index([1], (2, 1, 0)) + +class TestGrid: + def test_basic(self): + a = mgrid[-1:1:10j] + b = mgrid[-1:1:0.1] + assert_(a.shape == (10,)) + assert_(b.shape == (20,)) + assert_(a[0] == -1) + assert_almost_equal(a[-1], 1) + assert_(b[0] == -1) + assert_almost_equal(b[1] - b[0], 0.1, 11) + assert_almost_equal(b[-1], b[0] + 19 * 0.1, 11) + assert_almost_equal(a[1] - a[0], 2.0 / 9.0, 11) + + def test_linspace_equivalence(self): + y, st = np.linspace(2, 10, retstep=True) + assert_almost_equal(st, 8 / 49.0) + assert_array_almost_equal(y, mgrid[2:10:50j], 13) + + def test_nd(self): + c = mgrid[-1:1:10j, -2:2:10j] + d = mgrid[-1:1:0.1, -2:2:0.2] + assert_(c.shape == (2, 10, 10)) + assert_(d.shape == (2, 20, 20)) + assert_array_equal(c[0][0, :], -np.ones(10, 'd')) + assert_array_equal(c[1][:, 0], -2 * np.ones(10, 'd')) + assert_array_almost_equal(c[0][-1, :], np.ones(10, 'd'), 11) + assert_array_almost_equal(c[1][:, -1], 2 * np.ones(10, 'd'), 11) + assert_array_almost_equal(d[0, 1, :] - d[0, 0, :], + 0.1 * np.ones(20, 'd'), 11) + assert_array_almost_equal(d[1, :, 1] - d[1, :, 0], + 0.2 * np.ones(20, 'd'), 11) + + def test_sparse(self): + grid_full = mgrid[-1:1:10j, -2:2:10j] + grid_sparse = ogrid[-1:1:10j, -2:2:10j] + + # sparse grids can be made dense by broadcasting + grid_broadcast = np.broadcast_arrays(*grid_sparse) + for f, b in zip(grid_full, grid_broadcast): + assert_equal(f, b) + + @pytest.mark.parametrize("start, stop, step, expected", [ + (None, 10, 10j, (200, 10)), + (-10, 20, None, (1800, 30)), + ]) + def test_mgrid_size_none_handling(self, start, stop, step, expected): + # regression test None value handling for + # start and step values used by mgrid; + # internally, this aims to cover previously + # unexplored code paths in nd_grid() + grid = mgrid[start:stop:step, start:stop:step] + # need a smaller grid to explore one of the + # untested code paths + grid_small = mgrid[start:stop:step] + assert_equal(grid.size, expected[0]) + assert_equal(grid_small.size, expected[1]) + + def test_accepts_npfloating(self): + # regression test for #16466 + grid64 = mgrid[0.1:0.33:0.1, ] + grid32 = mgrid[np.float32(0.1):np.float32(0.33):np.float32(0.1), ] + assert_array_almost_equal(grid64, grid32) + # At some point this was float64, but NEP 50 changed it: + assert grid32.dtype == np.float32 + assert grid64.dtype == np.float64 + + # different code path for single slice + grid64 = mgrid[0.1:0.33:0.1] + grid32 = mgrid[np.float32(0.1):np.float32(0.33):np.float32(0.1)] + assert_(grid32.dtype == np.float64) + assert_array_almost_equal(grid64, grid32) + + def test_accepts_longdouble(self): + # regression tests for #16945 + grid64 = mgrid[0.1:0.33:0.1, ] + grid128 = mgrid[ + np.longdouble(0.1):np.longdouble(0.33):np.longdouble(0.1), + ] + assert_(grid128.dtype == np.longdouble) + assert_array_almost_equal(grid64, grid128) + + grid128c_a = mgrid[0:np.longdouble(1):3.4j] + grid128c_b = mgrid[0:np.longdouble(1):3.4j, ] + assert_(grid128c_a.dtype == grid128c_b.dtype == np.longdouble) + assert_array_equal(grid128c_a, grid128c_b[0]) + + # different code path for single slice + grid64 = mgrid[0.1:0.33:0.1] + grid128 = mgrid[ + np.longdouble(0.1):np.longdouble(0.33):np.longdouble(0.1) + ] + assert_(grid128.dtype == np.longdouble) + assert_array_almost_equal(grid64, grid128) + + def test_accepts_npcomplexfloating(self): + # Related to #16466 + assert_array_almost_equal( + mgrid[0.1:0.3:3j, ], mgrid[0.1:0.3:np.complex64(3j), ] + ) + + # different code path for single slice + assert_array_almost_equal( + mgrid[0.1:0.3:3j], mgrid[0.1:0.3:np.complex64(3j)] + ) + + # Related to #16945 + grid64_a = mgrid[0.1:0.3:3.3j] + grid64_b = mgrid[0.1:0.3:3.3j, ][0] + assert_(grid64_a.dtype == grid64_b.dtype == np.float64) + assert_array_equal(grid64_a, grid64_b) + + grid128_a = mgrid[0.1:0.3:np.clongdouble(3.3j)] + grid128_b = mgrid[0.1:0.3:np.clongdouble(3.3j), ][0] + assert_(grid128_a.dtype == grid128_b.dtype == np.longdouble) + assert_array_equal(grid64_a, grid64_b) + + +class TestConcatenator: + def test_1d(self): + assert_array_equal(r_[1, 2, 3, 4, 5, 6], np.array([1, 2, 3, 4, 5, 6])) + b = np.ones(5) + c = r_[b, 0, 0, b] + assert_array_equal(c, [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1]) + + def test_mixed_type(self): + g = r_[10.1, 1:10] + assert_(g.dtype == 'f8') + + def test_more_mixed_type(self): + g = r_[-10.1, np.array([1]), np.array([2, 3, 4]), 10.0] + assert_(g.dtype == 'f8') + + def test_complex_step(self): + # Regression test for #12262 + g = r_[0:36:100j] + assert_(g.shape == (100,)) + + # Related to #16466 + g = r_[0:36:np.complex64(100j)] + assert_(g.shape == (100,)) + + def test_2d(self): + b = np.random.rand(5, 5) + c = np.random.rand(5, 5) + d = r_['1', b, c] # append columns + assert_(d.shape == (5, 10)) + assert_array_equal(d[:, :5], b) + assert_array_equal(d[:, 5:], c) + d = r_[b, c] + assert_(d.shape == (10, 5)) + assert_array_equal(d[:5, :], b) + assert_array_equal(d[5:, :], c) + + def test_0d(self): + assert_equal(r_[0, np.array(1), 2], [0, 1, 2]) + assert_equal(r_[[0, 1, 2], np.array(3)], [0, 1, 2, 3]) + assert_equal(r_[np.array(0), [1, 2, 3]], [0, 1, 2, 3]) + + +class TestNdenumerate: + def test_basic(self): + a = np.array([[1, 2], [3, 4]]) + assert_equal(list(ndenumerate(a)), + [((0, 0), 1), ((0, 1), 2), ((1, 0), 3), ((1, 1), 4)]) + + +class TestIndexExpression: + def test_regression_1(self): + # ticket #1196 + a = np.arange(2) + assert_equal(a[:-1], a[s_[:-1]]) + assert_equal(a[:-1], a[index_exp[:-1]]) + + def test_simple_1(self): + a = np.random.rand(4, 5, 6) + + assert_equal(a[:, :3, [1, 2]], a[index_exp[:, :3, [1, 2]]]) + assert_equal(a[:, :3, [1, 2]], a[s_[:, :3, [1, 2]]]) + + +class TestIx_: + def test_regression_1(self): + # Test empty untyped inputs create outputs of indexing type, gh-5804 + a, = np.ix_(range(0)) + assert_equal(a.dtype, np.intp) + + a, = np.ix_([]) + assert_equal(a.dtype, np.intp) + + # but if the type is specified, don't change it + a, = np.ix_(np.array([], dtype=np.float32)) + assert_equal(a.dtype, np.float32) + + def test_shape_and_dtype(self): + sizes = (4, 5, 3, 2) + # Test both lists and arrays + for func in (range, np.arange): + arrays = np.ix_(*[func(sz) for sz in sizes]) + for k, (a, sz) in enumerate(zip(arrays, sizes)): + assert_equal(a.shape[k], sz) + assert_(all(sh == 1 for j, sh in enumerate(a.shape) if j != k)) + assert_(np.issubdtype(a.dtype, np.integer)) + + def test_bool(self): + bool_a = [True, False, True, True] + int_a, = np.nonzero(bool_a) + assert_equal(np.ix_(bool_a)[0], int_a) + + def test_1d_only(self): + idx2d = [[1, 2, 3], [4, 5, 6]] + assert_raises(ValueError, np.ix_, idx2d) + + def test_repeated_input(self): + length_of_vector = 5 + x = np.arange(length_of_vector) + out = ix_(x, x) + assert_equal(out[0].shape, (length_of_vector, 1)) + assert_equal(out[1].shape, (1, length_of_vector)) + # check that input shape is not modified + assert_equal(x.shape, (length_of_vector,)) + + +def test_c_(): + a = c_[np.array([[1, 2, 3]]), 0, 0, np.array([[4, 5, 6]])] + assert_equal(a, [[1, 2, 3, 0, 0, 4, 5, 6]]) + + +class TestFillDiagonal: + def test_basic(self): + a = np.zeros((3, 3), int) + fill_diagonal(a, 5) + assert_array_equal( + a, np.array([[5, 0, 0], + [0, 5, 0], + [0, 0, 5]]) + ) + + def test_tall_matrix(self): + a = np.zeros((10, 3), int) + fill_diagonal(a, 5) + assert_array_equal( + a, np.array([[5, 0, 0], + [0, 5, 0], + [0, 0, 5], + [0, 0, 0], + [0, 0, 0], + [0, 0, 0], + [0, 0, 0], + [0, 0, 0], + [0, 0, 0], + [0, 0, 0]]) + ) + + def test_tall_matrix_wrap(self): + a = np.zeros((10, 3), int) + fill_diagonal(a, 5, True) + assert_array_equal( + a, np.array([[5, 0, 0], + [0, 5, 0], + [0, 0, 5], + [0, 0, 0], + [5, 0, 0], + [0, 5, 0], + [0, 0, 5], + [0, 0, 0], + [5, 0, 0], + [0, 5, 0]]) + ) + + def test_wide_matrix(self): + a = np.zeros((3, 10), int) + fill_diagonal(a, 5) + assert_array_equal( + a, np.array([[5, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 5, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 5, 0, 0, 0, 0, 0, 0, 0]]) + ) + + def test_operate_4d_array(self): + a = np.zeros((3, 3, 3, 3), int) + fill_diagonal(a, 4) + i = np.array([0, 1, 2]) + assert_equal(np.where(a != 0), (i, i, i, i)) + + def test_low_dim_handling(self): + # raise error with low dimensionality + a = np.zeros(3, int) + with assert_raises_regex(ValueError, "at least 2-d"): + fill_diagonal(a, 5) + + def test_hetero_shape_handling(self): + # raise error with high dimensionality and + # shape mismatch + a = np.zeros((3, 3, 7, 3), int) + with assert_raises_regex(ValueError, "equal length"): + fill_diagonal(a, 2) + + +def test_diag_indices(): + di = diag_indices(4) + a = np.array([[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12], + [13, 14, 15, 16]]) + a[di] = 100 + assert_array_equal( + a, np.array([[100, 2, 3, 4], + [5, 100, 7, 8], + [9, 10, 100, 12], + [13, 14, 15, 100]]) + ) + + # Now, we create indices to manipulate a 3-d array: + d3 = diag_indices(2, 3) + + # And use it to set the diagonal of a zeros array to 1: + a = np.zeros((2, 2, 2), int) + a[d3] = 1 + assert_array_equal( + a, np.array([[[1, 0], + [0, 0]], + [[0, 0], + [0, 1]]]) + ) + + +class TestDiagIndicesFrom: + + def test_diag_indices_from(self): + x = np.random.random((4, 4)) + r, c = diag_indices_from(x) + assert_array_equal(r, np.arange(4)) + assert_array_equal(c, np.arange(4)) + + def test_error_small_input(self): + x = np.ones(7) + with assert_raises_regex(ValueError, "at least 2-d"): + diag_indices_from(x) + + def test_error_shape_mismatch(self): + x = np.zeros((3, 3, 2, 3), int) + with assert_raises_regex(ValueError, "equal length"): + diag_indices_from(x) + + +def test_ndindex(): + x = list(ndindex(1, 2, 3)) + expected = [ix for ix, e in ndenumerate(np.zeros((1, 2, 3)))] + assert_array_equal(x, expected) + + x = list(ndindex((1, 2, 3))) + assert_array_equal(x, expected) + + # Test use of scalars and tuples + x = list(ndindex((3,))) + assert_array_equal(x, list(ndindex(3))) + + # Make sure size argument is optional + x = list(ndindex()) + assert_equal(x, [()]) + + x = list(ndindex(())) + assert_equal(x, [()]) + + # Make sure 0-sized ndindex works correctly + x = list(ndindex(*[0])) + assert_equal(x, []) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_io.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_io.py new file mode 100644 index 0000000..303dcfe --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_io.py @@ -0,0 +1,2848 @@ +import gc +import gzip +import locale +import os +import re +import sys +import threading +import time +import warnings +import zipfile +from ctypes import c_bool +from datetime import datetime +from io import BytesIO, StringIO +from multiprocessing import Value, get_context +from pathlib import Path +from tempfile import NamedTemporaryFile + +import pytest + +import numpy as np +import numpy.ma as ma +from numpy._utils import asbytes +from numpy.exceptions import VisibleDeprecationWarning +from numpy.lib import _npyio_impl +from numpy.lib._iotools import ConversionWarning, ConverterError +from numpy.lib._npyio_impl import recfromcsv, recfromtxt +from numpy.ma.testutils import assert_equal +from numpy.testing import ( + HAS_REFCOUNT, + IS_PYPY, + IS_WASM, + assert_, + assert_allclose, + assert_array_equal, + assert_no_gc_cycles, + assert_no_warnings, + assert_raises, + assert_raises_regex, + assert_warns, + break_cycles, + suppress_warnings, + tempdir, + temppath, +) +from numpy.testing._private.utils import requires_memory + + +class TextIO(BytesIO): + """Helper IO class. + + Writes encode strings to bytes if needed, reads return bytes. + This makes it easier to emulate files opened in binary mode + without needing to explicitly convert strings to bytes in + setting up the test data. + + """ + def __init__(self, s=""): + BytesIO.__init__(self, asbytes(s)) + + def write(self, s): + BytesIO.write(self, asbytes(s)) + + def writelines(self, lines): + BytesIO.writelines(self, [asbytes(s) for s in lines]) + + +IS_64BIT = sys.maxsize > 2**32 +try: + import bz2 + HAS_BZ2 = True +except ImportError: + HAS_BZ2 = False +try: + import lzma + HAS_LZMA = True +except ImportError: + HAS_LZMA = False + + +def strptime(s, fmt=None): + """ + This function is available in the datetime module only from Python >= + 2.5. + + """ + if isinstance(s, bytes): + s = s.decode("latin1") + return datetime(*time.strptime(s, fmt)[:3]) + + +class RoundtripTest: + def roundtrip(self, save_func, *args, **kwargs): + """ + save_func : callable + Function used to save arrays to file. + file_on_disk : bool + If true, store the file on disk, instead of in a + string buffer. + save_kwds : dict + Parameters passed to `save_func`. + load_kwds : dict + Parameters passed to `numpy.load`. + args : tuple of arrays + Arrays stored to file. + + """ + save_kwds = kwargs.get('save_kwds', {}) + load_kwds = kwargs.get('load_kwds', {"allow_pickle": True}) + file_on_disk = kwargs.get('file_on_disk', False) + + if file_on_disk: + target_file = NamedTemporaryFile(delete=False) + load_file = target_file.name + else: + target_file = BytesIO() + load_file = target_file + + try: + arr = args + + save_func(target_file, *arr, **save_kwds) + target_file.flush() + target_file.seek(0) + + if sys.platform == 'win32' and not isinstance(target_file, BytesIO): + target_file.close() + + arr_reloaded = np.load(load_file, **load_kwds) + + self.arr = arr + self.arr_reloaded = arr_reloaded + finally: + if not isinstance(target_file, BytesIO): + target_file.close() + # holds an open file descriptor so it can't be deleted on win + if 'arr_reloaded' in locals(): + if not isinstance(arr_reloaded, np.lib.npyio.NpzFile): + os.remove(target_file.name) + + def check_roundtrips(self, a): + self.roundtrip(a) + self.roundtrip(a, file_on_disk=True) + self.roundtrip(np.asfortranarray(a)) + self.roundtrip(np.asfortranarray(a), file_on_disk=True) + if a.shape[0] > 1: + # neither C nor Fortran contiguous for 2D arrays or more + self.roundtrip(np.asfortranarray(a)[1:]) + self.roundtrip(np.asfortranarray(a)[1:], file_on_disk=True) + + def test_array(self): + a = np.array([], float) + self.check_roundtrips(a) + + a = np.array([[1, 2], [3, 4]], float) + self.check_roundtrips(a) + + a = np.array([[1, 2], [3, 4]], int) + self.check_roundtrips(a) + + a = np.array([[1 + 5j, 2 + 6j], [3 + 7j, 4 + 8j]], dtype=np.csingle) + self.check_roundtrips(a) + + a = np.array([[1 + 5j, 2 + 6j], [3 + 7j, 4 + 8j]], dtype=np.cdouble) + self.check_roundtrips(a) + + def test_array_object(self): + a = np.array([], object) + self.check_roundtrips(a) + + a = np.array([[1, 2], [3, 4]], object) + self.check_roundtrips(a) + + def test_1D(self): + a = np.array([1, 2, 3, 4], int) + self.roundtrip(a) + + @pytest.mark.skipif(sys.platform == 'win32', reason="Fails on Win32") + def test_mmap(self): + a = np.array([[1, 2.5], [4, 7.3]]) + self.roundtrip(a, file_on_disk=True, load_kwds={'mmap_mode': 'r'}) + + a = np.asfortranarray([[1, 2.5], [4, 7.3]]) + self.roundtrip(a, file_on_disk=True, load_kwds={'mmap_mode': 'r'}) + + def test_record(self): + a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) + self.check_roundtrips(a) + + @pytest.mark.slow + def test_format_2_0(self): + dt = [(("%d" % i) * 100, float) for i in range(500)] + a = np.ones(1000, dtype=dt) + with warnings.catch_warnings(record=True): + warnings.filterwarnings('always', '', UserWarning) + self.check_roundtrips(a) + + +class TestSaveLoad(RoundtripTest): + def roundtrip(self, *args, **kwargs): + RoundtripTest.roundtrip(self, np.save, *args, **kwargs) + assert_equal(self.arr[0], self.arr_reloaded) + assert_equal(self.arr[0].dtype, self.arr_reloaded.dtype) + assert_equal(self.arr[0].flags.fnc, self.arr_reloaded.flags.fnc) + + +class TestSavezLoad(RoundtripTest): + def roundtrip(self, *args, **kwargs): + RoundtripTest.roundtrip(self, np.savez, *args, **kwargs) + try: + for n, arr in enumerate(self.arr): + reloaded = self.arr_reloaded['arr_%d' % n] + assert_equal(arr, reloaded) + assert_equal(arr.dtype, reloaded.dtype) + assert_equal(arr.flags.fnc, reloaded.flags.fnc) + finally: + # delete tempfile, must be done here on windows + if self.arr_reloaded.fid: + self.arr_reloaded.fid.close() + os.remove(self.arr_reloaded.fid.name) + + def test_load_non_npy(self): + """Test loading non-.npy files and name mapping in .npz.""" + with temppath(prefix="numpy_test_npz_load_non_npy_", suffix=".npz") as tmp: + with zipfile.ZipFile(tmp, "w") as npz: + with npz.open("test1.npy", "w") as out_file: + np.save(out_file, np.arange(10)) + with npz.open("test2", "w") as out_file: + np.save(out_file, np.arange(10)) + with npz.open("metadata", "w") as out_file: + out_file.write(b"Name: Test") + with np.load(tmp) as npz: + assert len(npz["test1"]) == 10 + assert len(npz["test1.npy"]) == 10 + assert len(npz["test2"]) == 10 + assert npz["metadata"] == b"Name: Test" + + @pytest.mark.skipif(IS_PYPY, reason="Hangs on PyPy") + @pytest.mark.skipif(not IS_64BIT, reason="Needs 64bit platform") + @pytest.mark.slow + def test_big_arrays(self): + L = (1 << 31) + 100000 + a = np.empty(L, dtype=np.uint8) + with temppath(prefix="numpy_test_big_arrays_", suffix=".npz") as tmp: + np.savez(tmp, a=a) + del a + npfile = np.load(tmp) + a = npfile['a'] # Should succeed + npfile.close() + + def test_multiple_arrays(self): + a = np.array([[1, 2], [3, 4]], float) + b = np.array([[1 + 2j, 2 + 7j], [3 - 6j, 4 + 12j]], complex) + self.roundtrip(a, b) + + def test_named_arrays(self): + a = np.array([[1, 2], [3, 4]], float) + b = np.array([[1 + 2j, 2 + 7j], [3 - 6j, 4 + 12j]], complex) + c = BytesIO() + np.savez(c, file_a=a, file_b=b) + c.seek(0) + l = np.load(c) + assert_equal(a, l['file_a']) + assert_equal(b, l['file_b']) + + def test_tuple_getitem_raises(self): + # gh-23748 + a = np.array([1, 2, 3]) + f = BytesIO() + np.savez(f, a=a) + f.seek(0) + l = np.load(f) + with pytest.raises(KeyError, match="(1, 2)"): + l[1, 2] + + def test_BagObj(self): + a = np.array([[1, 2], [3, 4]], float) + b = np.array([[1 + 2j, 2 + 7j], [3 - 6j, 4 + 12j]], complex) + c = BytesIO() + np.savez(c, file_a=a, file_b=b) + c.seek(0) + l = np.load(c) + assert_equal(sorted(dir(l.f)), ['file_a', 'file_b']) + assert_equal(a, l.f.file_a) + assert_equal(b, l.f.file_b) + + @pytest.mark.skipif(IS_WASM, reason="Cannot start thread") + def test_savez_filename_clashes(self): + # Test that issue #852 is fixed + # and savez functions in multithreaded environment + + def writer(error_list): + with temppath(suffix='.npz') as tmp: + arr = np.random.randn(500, 500) + try: + np.savez(tmp, arr=arr) + except OSError as err: + error_list.append(err) + + errors = [] + threads = [threading.Thread(target=writer, args=(errors,)) + for j in range(3)] + for t in threads: + t.start() + for t in threads: + t.join() + + if errors: + raise AssertionError(errors) + + def test_not_closing_opened_fid(self): + # Test that issue #2178 is fixed: + # verify could seek on 'loaded' file + with temppath(suffix='.npz') as tmp: + with open(tmp, 'wb') as fp: + np.savez(fp, data='LOVELY LOAD') + with open(tmp, 'rb', 10000) as fp: + fp.seek(0) + assert_(not fp.closed) + np.load(fp)['data'] + # fp must not get closed by .load + assert_(not fp.closed) + fp.seek(0) + assert_(not fp.closed) + + @pytest.mark.slow_pypy + def test_closing_fid(self): + # Test that issue #1517 (too many opened files) remains closed + # It might be a "weak" test since failed to get triggered on + # e.g. Debian sid of 2012 Jul 05 but was reported to + # trigger the failure on Ubuntu 10.04: + # http://projects.scipy.org/numpy/ticket/1517#comment:2 + with temppath(suffix='.npz') as tmp: + np.savez(tmp, data='LOVELY LOAD') + # We need to check if the garbage collector can properly close + # numpy npz file returned by np.load when their reference count + # goes to zero. Python running in debug mode raises a + # ResourceWarning when file closing is left to the garbage + # collector, so we catch the warnings. + with suppress_warnings() as sup: + sup.filter(ResourceWarning) # TODO: specify exact message + for i in range(1, 1025): + try: + np.load(tmp)["data"] + except Exception as e: + msg = f"Failed to load data from a file: {e}" + raise AssertionError(msg) + finally: + if IS_PYPY: + gc.collect() + + def test_closing_zipfile_after_load(self): + # Check that zipfile owns file and can close it. This needs to + # pass a file name to load for the test. On windows failure will + # cause a second error will be raised when the attempt to remove + # the open file is made. + prefix = 'numpy_test_closing_zipfile_after_load_' + with temppath(suffix='.npz', prefix=prefix) as tmp: + np.savez(tmp, lab='place holder') + data = np.load(tmp) + fp = data.zip.fp + data.close() + assert_(fp.closed) + + @pytest.mark.parametrize("count, expected_repr", [ + (1, "NpzFile {fname!r} with keys: arr_0"), + (5, "NpzFile {fname!r} with keys: arr_0, arr_1, arr_2, arr_3, arr_4"), + # _MAX_REPR_ARRAY_COUNT is 5, so files with more than 5 keys are + # expected to end in '...' + (6, "NpzFile {fname!r} with keys: arr_0, arr_1, arr_2, arr_3, arr_4..."), + ]) + def test_repr_lists_keys(self, count, expected_repr): + a = np.array([[1, 2], [3, 4]], float) + with temppath(suffix='.npz') as tmp: + np.savez(tmp, *[a] * count) + l = np.load(tmp) + assert repr(l) == expected_repr.format(fname=tmp) + l.close() + + +class TestSaveTxt: + def test_array(self): + a = np.array([[1, 2], [3, 4]], float) + fmt = "%.18e" + c = BytesIO() + np.savetxt(c, a, fmt=fmt) + c.seek(0) + assert_equal(c.readlines(), + [asbytes((fmt + ' ' + fmt + '\n') % (1, 2)), + asbytes((fmt + ' ' + fmt + '\n') % (3, 4))]) + + a = np.array([[1, 2], [3, 4]], int) + c = BytesIO() + np.savetxt(c, a, fmt='%d') + c.seek(0) + assert_equal(c.readlines(), [b'1 2\n', b'3 4\n']) + + def test_1D(self): + a = np.array([1, 2, 3, 4], int) + c = BytesIO() + np.savetxt(c, a, fmt='%d') + c.seek(0) + lines = c.readlines() + assert_equal(lines, [b'1\n', b'2\n', b'3\n', b'4\n']) + + def test_0D_3D(self): + c = BytesIO() + assert_raises(ValueError, np.savetxt, c, np.array(1)) + assert_raises(ValueError, np.savetxt, c, np.array([[[1], [2]]])) + + def test_structured(self): + a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) + c = BytesIO() + np.savetxt(c, a, fmt='%d') + c.seek(0) + assert_equal(c.readlines(), [b'1 2\n', b'3 4\n']) + + def test_structured_padded(self): + # gh-13297 + a = np.array([(1, 2, 3), (4, 5, 6)], dtype=[ + ('foo', 'i4'), ('bar', 'i4'), ('baz', 'i4') + ]) + c = BytesIO() + np.savetxt(c, a[['foo', 'baz']], fmt='%d') + c.seek(0) + assert_equal(c.readlines(), [b'1 3\n', b'4 6\n']) + + def test_multifield_view(self): + a = np.ones(1, dtype=[('x', 'i4'), ('y', 'i4'), ('z', 'f4')]) + v = a[['x', 'z']] + with temppath(suffix='.npy') as path: + path = Path(path) + np.save(path, v) + data = np.load(path) + assert_array_equal(data, v) + + def test_delimiter(self): + a = np.array([[1., 2.], [3., 4.]]) + c = BytesIO() + np.savetxt(c, a, delimiter=',', fmt='%d') + c.seek(0) + assert_equal(c.readlines(), [b'1,2\n', b'3,4\n']) + + def test_format(self): + a = np.array([(1, 2), (3, 4)]) + c = BytesIO() + # Sequence of formats + np.savetxt(c, a, fmt=['%02d', '%3.1f']) + c.seek(0) + assert_equal(c.readlines(), [b'01 2.0\n', b'03 4.0\n']) + + # A single multiformat string + c = BytesIO() + np.savetxt(c, a, fmt='%02d : %3.1f') + c.seek(0) + lines = c.readlines() + assert_equal(lines, [b'01 : 2.0\n', b'03 : 4.0\n']) + + # Specify delimiter, should be overridden + c = BytesIO() + np.savetxt(c, a, fmt='%02d : %3.1f', delimiter=',') + c.seek(0) + lines = c.readlines() + assert_equal(lines, [b'01 : 2.0\n', b'03 : 4.0\n']) + + # Bad fmt, should raise a ValueError + c = BytesIO() + assert_raises(ValueError, np.savetxt, c, a, fmt=99) + + def test_header_footer(self): + # Test the functionality of the header and footer keyword argument. + + c = BytesIO() + a = np.array([(1, 2), (3, 4)], dtype=int) + test_header_footer = 'Test header / footer' + # Test the header keyword argument + np.savetxt(c, a, fmt='%1d', header=test_header_footer) + c.seek(0) + assert_equal(c.read(), + asbytes('# ' + test_header_footer + '\n1 2\n3 4\n')) + # Test the footer keyword argument + c = BytesIO() + np.savetxt(c, a, fmt='%1d', footer=test_header_footer) + c.seek(0) + assert_equal(c.read(), + asbytes('1 2\n3 4\n# ' + test_header_footer + '\n')) + # Test the commentstr keyword argument used on the header + c = BytesIO() + commentstr = '% ' + np.savetxt(c, a, fmt='%1d', + header=test_header_footer, comments=commentstr) + c.seek(0) + assert_equal(c.read(), + asbytes(commentstr + test_header_footer + '\n' + '1 2\n3 4\n')) + # Test the commentstr keyword argument used on the footer + c = BytesIO() + commentstr = '% ' + np.savetxt(c, a, fmt='%1d', + footer=test_header_footer, comments=commentstr) + c.seek(0) + assert_equal(c.read(), + asbytes('1 2\n3 4\n' + commentstr + test_header_footer + '\n')) + + @pytest.mark.parametrize("filename_type", [Path, str]) + def test_file_roundtrip(self, filename_type): + with temppath() as name: + a = np.array([(1, 2), (3, 4)]) + np.savetxt(filename_type(name), a) + b = np.loadtxt(filename_type(name)) + assert_array_equal(a, b) + + def test_complex_arrays(self): + ncols = 2 + nrows = 2 + a = np.zeros((ncols, nrows), dtype=np.complex128) + re = np.pi + im = np.e + a[:] = re + 1.0j * im + + # One format only + c = BytesIO() + np.savetxt(c, a, fmt=' %+.3e') + c.seek(0) + lines = c.readlines() + assert_equal( + lines, + [b' ( +3.142e+00+ +2.718e+00j) ( +3.142e+00+ +2.718e+00j)\n', + b' ( +3.142e+00+ +2.718e+00j) ( +3.142e+00+ +2.718e+00j)\n']) + + # One format for each real and imaginary part + c = BytesIO() + np.savetxt(c, a, fmt=' %+.3e' * 2 * ncols) + c.seek(0) + lines = c.readlines() + assert_equal( + lines, + [b' +3.142e+00 +2.718e+00 +3.142e+00 +2.718e+00\n', + b' +3.142e+00 +2.718e+00 +3.142e+00 +2.718e+00\n']) + + # One format for each complex number + c = BytesIO() + np.savetxt(c, a, fmt=['(%.3e%+.3ej)'] * ncols) + c.seek(0) + lines = c.readlines() + assert_equal( + lines, + [b'(3.142e+00+2.718e+00j) (3.142e+00+2.718e+00j)\n', + b'(3.142e+00+2.718e+00j) (3.142e+00+2.718e+00j)\n']) + + def test_complex_negative_exponent(self): + # Previous to 1.15, some formats generated x+-yj, gh 7895 + ncols = 2 + nrows = 2 + a = np.zeros((ncols, nrows), dtype=np.complex128) + re = np.pi + im = np.e + a[:] = re - 1.0j * im + c = BytesIO() + np.savetxt(c, a, fmt='%.3e') + c.seek(0) + lines = c.readlines() + assert_equal( + lines, + [b' (3.142e+00-2.718e+00j) (3.142e+00-2.718e+00j)\n', + b' (3.142e+00-2.718e+00j) (3.142e+00-2.718e+00j)\n']) + + def test_custom_writer(self): + + class CustomWriter(list): + def write(self, text): + self.extend(text.split(b'\n')) + + w = CustomWriter() + a = np.array([(1, 2), (3, 4)]) + np.savetxt(w, a) + b = np.loadtxt(w) + assert_array_equal(a, b) + + def test_unicode(self): + utf8 = b'\xcf\x96'.decode('UTF-8') + a = np.array([utf8], dtype=np.str_) + with tempdir() as tmpdir: + # set encoding as on windows it may not be unicode even on py3 + np.savetxt(os.path.join(tmpdir, 'test.csv'), a, fmt=['%s'], + encoding='UTF-8') + + def test_unicode_roundtrip(self): + utf8 = b'\xcf\x96'.decode('UTF-8') + a = np.array([utf8], dtype=np.str_) + # our gz wrapper support encoding + suffixes = ['', '.gz'] + if HAS_BZ2: + suffixes.append('.bz2') + if HAS_LZMA: + suffixes.extend(['.xz', '.lzma']) + with tempdir() as tmpdir: + for suffix in suffixes: + np.savetxt(os.path.join(tmpdir, 'test.csv' + suffix), a, + fmt=['%s'], encoding='UTF-16-LE') + b = np.loadtxt(os.path.join(tmpdir, 'test.csv' + suffix), + encoding='UTF-16-LE', dtype=np.str_) + assert_array_equal(a, b) + + def test_unicode_bytestream(self): + utf8 = b'\xcf\x96'.decode('UTF-8') + a = np.array([utf8], dtype=np.str_) + s = BytesIO() + np.savetxt(s, a, fmt=['%s'], encoding='UTF-8') + s.seek(0) + assert_equal(s.read().decode('UTF-8'), utf8 + '\n') + + def test_unicode_stringstream(self): + utf8 = b'\xcf\x96'.decode('UTF-8') + a = np.array([utf8], dtype=np.str_) + s = StringIO() + np.savetxt(s, a, fmt=['%s'], encoding='UTF-8') + s.seek(0) + assert_equal(s.read(), utf8 + '\n') + + @pytest.mark.parametrize("iotype", [StringIO, BytesIO]) + def test_unicode_and_bytes_fmt(self, iotype): + # string type of fmt should not matter, see also gh-4053 + a = np.array([1.]) + s = iotype() + np.savetxt(s, a, fmt="%f") + s.seek(0) + if iotype is StringIO: + assert_equal(s.read(), "%f\n" % 1.) + else: + assert_equal(s.read(), b"%f\n" % 1.) + + @pytest.mark.skipif(sys.platform == 'win32', reason="files>4GB may not work") + @pytest.mark.slow + @requires_memory(free_bytes=7e9) + def test_large_zip(self): + def check_large_zip(memoryerror_raised): + memoryerror_raised.value = False + try: + # The test takes at least 6GB of memory, writes a file larger + # than 4GB. This tests the ``allowZip64`` kwarg to ``zipfile`` + test_data = np.asarray([np.random.rand( + np.random.randint(50, 100), 4) + for i in range(800000)], dtype=object) + with tempdir() as tmpdir: + np.savez(os.path.join(tmpdir, 'test.npz'), + test_data=test_data) + except MemoryError: + memoryerror_raised.value = True + raise + # run in a subprocess to ensure memory is released on PyPy, see gh-15775 + # Use an object in shared memory to re-raise the MemoryError exception + # in our process if needed, see gh-16889 + memoryerror_raised = Value(c_bool) + + # Since Python 3.8, the default start method for multiprocessing has + # been changed from 'fork' to 'spawn' on macOS, causing inconsistency + # on memory sharing model, leading to failed test for check_large_zip + ctx = get_context('fork') + p = ctx.Process(target=check_large_zip, args=(memoryerror_raised,)) + p.start() + p.join() + if memoryerror_raised.value: + raise MemoryError("Child process raised a MemoryError exception") + # -9 indicates a SIGKILL, probably an OOM. + if p.exitcode == -9: + pytest.xfail("subprocess got a SIGKILL, apparently free memory was not sufficient") + assert p.exitcode == 0 + +class LoadTxtBase: + def check_compressed(self, fopen, suffixes): + # Test that we can load data from a compressed file + wanted = np.arange(6).reshape((2, 3)) + linesep = ('\n', '\r\n', '\r') + for sep in linesep: + data = '0 1 2' + sep + '3 4 5' + for suffix in suffixes: + with temppath(suffix=suffix) as name: + with fopen(name, mode='wt', encoding='UTF-32-LE') as f: + f.write(data) + res = self.loadfunc(name, encoding='UTF-32-LE') + assert_array_equal(res, wanted) + with fopen(name, "rt", encoding='UTF-32-LE') as f: + res = self.loadfunc(f) + assert_array_equal(res, wanted) + + def test_compressed_gzip(self): + self.check_compressed(gzip.open, ('.gz',)) + + @pytest.mark.skipif(not HAS_BZ2, reason="Needs bz2") + def test_compressed_bz2(self): + self.check_compressed(bz2.open, ('.bz2',)) + + @pytest.mark.skipif(not HAS_LZMA, reason="Needs lzma") + def test_compressed_lzma(self): + self.check_compressed(lzma.open, ('.xz', '.lzma')) + + def test_encoding(self): + with temppath() as path: + with open(path, "wb") as f: + f.write('0.\n1.\n2.'.encode("UTF-16")) + x = self.loadfunc(path, encoding="UTF-16") + assert_array_equal(x, [0., 1., 2.]) + + def test_stringload(self): + # umlaute + nonascii = b'\xc3\xb6\xc3\xbc\xc3\xb6'.decode("UTF-8") + with temppath() as path: + with open(path, "wb") as f: + f.write(nonascii.encode("UTF-16")) + x = self.loadfunc(path, encoding="UTF-16", dtype=np.str_) + assert_array_equal(x, nonascii) + + def test_binary_decode(self): + utf16 = b'\xff\xfeh\x04 \x00i\x04 \x00j\x04' + v = self.loadfunc(BytesIO(utf16), dtype=np.str_, encoding='UTF-16') + assert_array_equal(v, np.array(utf16.decode('UTF-16').split())) + + def test_converters_decode(self): + # test converters that decode strings + c = TextIO() + c.write(b'\xcf\x96') + c.seek(0) + x = self.loadfunc(c, dtype=np.str_, encoding="bytes", + converters={0: lambda x: x.decode('UTF-8')}) + a = np.array([b'\xcf\x96'.decode('UTF-8')]) + assert_array_equal(x, a) + + def test_converters_nodecode(self): + # test native string converters enabled by setting an encoding + utf8 = b'\xcf\x96'.decode('UTF-8') + with temppath() as path: + with open(path, 'wt', encoding='UTF-8') as f: + f.write(utf8) + x = self.loadfunc(path, dtype=np.str_, + converters={0: lambda x: x + 't'}, + encoding='UTF-8') + a = np.array([utf8 + 't']) + assert_array_equal(x, a) + + +class TestLoadTxt(LoadTxtBase): + loadfunc = staticmethod(np.loadtxt) + + def setup_method(self): + # lower chunksize for testing + self.orig_chunk = _npyio_impl._loadtxt_chunksize + _npyio_impl._loadtxt_chunksize = 1 + + def teardown_method(self): + _npyio_impl._loadtxt_chunksize = self.orig_chunk + + def test_record(self): + c = TextIO() + c.write('1 2\n3 4') + c.seek(0) + x = np.loadtxt(c, dtype=[('x', np.int32), ('y', np.int32)]) + a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) + assert_array_equal(x, a) + + d = TextIO() + d.write('M 64 75.0\nF 25 60.0') + d.seek(0) + mydescriptor = {'names': ('gender', 'age', 'weight'), + 'formats': ('S1', 'i4', 'f4')} + b = np.array([('M', 64.0, 75.0), + ('F', 25.0, 60.0)], dtype=mydescriptor) + y = np.loadtxt(d, dtype=mydescriptor) + assert_array_equal(y, b) + + def test_array(self): + c = TextIO() + c.write('1 2\n3 4') + + c.seek(0) + x = np.loadtxt(c, dtype=int) + a = np.array([[1, 2], [3, 4]], int) + assert_array_equal(x, a) + + c.seek(0) + x = np.loadtxt(c, dtype=float) + a = np.array([[1, 2], [3, 4]], float) + assert_array_equal(x, a) + + def test_1D(self): + c = TextIO() + c.write('1\n2\n3\n4\n') + c.seek(0) + x = np.loadtxt(c, dtype=int) + a = np.array([1, 2, 3, 4], int) + assert_array_equal(x, a) + + c = TextIO() + c.write('1,2,3,4\n') + c.seek(0) + x = np.loadtxt(c, dtype=int, delimiter=',') + a = np.array([1, 2, 3, 4], int) + assert_array_equal(x, a) + + def test_missing(self): + c = TextIO() + c.write('1,2,3,,5\n') + c.seek(0) + x = np.loadtxt(c, dtype=int, delimiter=',', + converters={3: lambda s: int(s or - 999)}) + a = np.array([1, 2, 3, -999, 5], int) + assert_array_equal(x, a) + + def test_converters_with_usecols(self): + c = TextIO() + c.write('1,2,3,,5\n6,7,8,9,10\n') + c.seek(0) + x = np.loadtxt(c, dtype=int, delimiter=',', + converters={3: lambda s: int(s or - 999)}, + usecols=(1, 3,)) + a = np.array([[2, -999], [7, 9]], int) + assert_array_equal(x, a) + + def test_comments_unicode(self): + c = TextIO() + c.write('# comment\n1,2,3,5\n') + c.seek(0) + x = np.loadtxt(c, dtype=int, delimiter=',', + comments='#') + a = np.array([1, 2, 3, 5], int) + assert_array_equal(x, a) + + def test_comments_byte(self): + c = TextIO() + c.write('# comment\n1,2,3,5\n') + c.seek(0) + x = np.loadtxt(c, dtype=int, delimiter=',', + comments=b'#') + a = np.array([1, 2, 3, 5], int) + assert_array_equal(x, a) + + def test_comments_multiple(self): + c = TextIO() + c.write('# comment\n1,2,3\n@ comment2\n4,5,6 // comment3') + c.seek(0) + x = np.loadtxt(c, dtype=int, delimiter=',', + comments=['#', '@', '//']) + a = np.array([[1, 2, 3], [4, 5, 6]], int) + assert_array_equal(x, a) + + @pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") + def test_comments_multi_chars(self): + c = TextIO() + c.write('/* comment\n1,2,3,5\n') + c.seek(0) + x = np.loadtxt(c, dtype=int, delimiter=',', + comments='/*') + a = np.array([1, 2, 3, 5], int) + assert_array_equal(x, a) + + # Check that '/*' is not transformed to ['/', '*'] + c = TextIO() + c.write('*/ comment\n1,2,3,5\n') + c.seek(0) + assert_raises(ValueError, np.loadtxt, c, dtype=int, delimiter=',', + comments='/*') + + def test_skiprows(self): + c = TextIO() + c.write('comment\n1,2,3,5\n') + c.seek(0) + x = np.loadtxt(c, dtype=int, delimiter=',', + skiprows=1) + a = np.array([1, 2, 3, 5], int) + assert_array_equal(x, a) + + c = TextIO() + c.write('# comment\n1,2,3,5\n') + c.seek(0) + x = np.loadtxt(c, dtype=int, delimiter=',', + skiprows=1) + a = np.array([1, 2, 3, 5], int) + assert_array_equal(x, a) + + def test_usecols(self): + a = np.array([[1, 2], [3, 4]], float) + c = BytesIO() + np.savetxt(c, a) + c.seek(0) + x = np.loadtxt(c, dtype=float, usecols=(1,)) + assert_array_equal(x, a[:, 1]) + + a = np.array([[1, 2, 3], [3, 4, 5]], float) + c = BytesIO() + np.savetxt(c, a) + c.seek(0) + x = np.loadtxt(c, dtype=float, usecols=(1, 2)) + assert_array_equal(x, a[:, 1:]) + + # Testing with arrays instead of tuples. + c.seek(0) + x = np.loadtxt(c, dtype=float, usecols=np.array([1, 2])) + assert_array_equal(x, a[:, 1:]) + + # Testing with an integer instead of a sequence + for int_type in [int, np.int8, np.int16, + np.int32, np.int64, np.uint8, np.uint16, + np.uint32, np.uint64]: + to_read = int_type(1) + c.seek(0) + x = np.loadtxt(c, dtype=float, usecols=to_read) + assert_array_equal(x, a[:, 1]) + + # Testing with some crazy custom integer type + class CrazyInt: + def __index__(self): + return 1 + + crazy_int = CrazyInt() + c.seek(0) + x = np.loadtxt(c, dtype=float, usecols=crazy_int) + assert_array_equal(x, a[:, 1]) + + c.seek(0) + x = np.loadtxt(c, dtype=float, usecols=(crazy_int,)) + assert_array_equal(x, a[:, 1]) + + # Checking with dtypes defined converters. + data = '''JOE 70.1 25.3 + BOB 60.5 27.9 + ''' + c = TextIO(data) + names = ['stid', 'temp'] + dtypes = ['S4', 'f8'] + arr = np.loadtxt(c, usecols=(0, 2), dtype=list(zip(names, dtypes))) + assert_equal(arr['stid'], [b"JOE", b"BOB"]) + assert_equal(arr['temp'], [25.3, 27.9]) + + # Testing non-ints in usecols + c.seek(0) + bogus_idx = 1.5 + assert_raises_regex( + TypeError, + f'^usecols must be.*{type(bogus_idx).__name__}', + np.loadtxt, c, usecols=bogus_idx + ) + + assert_raises_regex( + TypeError, + f'^usecols must be.*{type(bogus_idx).__name__}', + np.loadtxt, c, usecols=[0, bogus_idx, 0] + ) + + def test_bad_usecols(self): + with pytest.raises(OverflowError): + np.loadtxt(["1\n"], usecols=[2**64], delimiter=",") + with pytest.raises((ValueError, OverflowError)): + # Overflow error on 32bit platforms + np.loadtxt(["1\n"], usecols=[2**62], delimiter=",") + with pytest.raises(TypeError, + match="If a structured dtype .*. But 1 usecols were given and " + "the number of fields is 3."): + np.loadtxt(["1,1\n"], dtype="i,2i", usecols=[0], delimiter=",") + + def test_fancy_dtype(self): + c = TextIO() + c.write('1,2,3.0\n4,5,6.0\n') + c.seek(0) + dt = np.dtype([('x', int), ('y', [('t', int), ('s', float)])]) + x = np.loadtxt(c, dtype=dt, delimiter=',') + a = np.array([(1, (2, 3.0)), (4, (5, 6.0))], dt) + assert_array_equal(x, a) + + def test_shaped_dtype(self): + c = TextIO("aaaa 1.0 8.0 1 2 3 4 5 6") + dt = np.dtype([('name', 'S4'), ('x', float), ('y', float), + ('block', int, (2, 3))]) + x = np.loadtxt(c, dtype=dt) + a = np.array([('aaaa', 1.0, 8.0, [[1, 2, 3], [4, 5, 6]])], + dtype=dt) + assert_array_equal(x, a) + + def test_3d_shaped_dtype(self): + c = TextIO("aaaa 1.0 8.0 1 2 3 4 5 6 7 8 9 10 11 12") + dt = np.dtype([('name', 'S4'), ('x', float), ('y', float), + ('block', int, (2, 2, 3))]) + x = np.loadtxt(c, dtype=dt) + a = np.array([('aaaa', 1.0, 8.0, + [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])], + dtype=dt) + assert_array_equal(x, a) + + def test_str_dtype(self): + # see gh-8033 + c = ["str1", "str2"] + + for dt in (str, np.bytes_): + a = np.array(["str1", "str2"], dtype=dt) + x = np.loadtxt(c, dtype=dt) + assert_array_equal(x, a) + + def test_empty_file(self): + with pytest.warns(UserWarning, match="input contained no data"): + c = TextIO() + x = np.loadtxt(c) + assert_equal(x.shape, (0,)) + x = np.loadtxt(c, dtype=np.int64) + assert_equal(x.shape, (0,)) + assert_(x.dtype == np.int64) + + def test_unused_converter(self): + c = TextIO() + c.writelines(['1 21\n', '3 42\n']) + c.seek(0) + data = np.loadtxt(c, usecols=(1,), + converters={0: lambda s: int(s, 16)}) + assert_array_equal(data, [21, 42]) + + c.seek(0) + data = np.loadtxt(c, usecols=(1,), + converters={1: lambda s: int(s, 16)}) + assert_array_equal(data, [33, 66]) + + def test_dtype_with_object(self): + # Test using an explicit dtype with an object + data = """ 1; 2001-01-01 + 2; 2002-01-31 """ + ndtype = [('idx', int), ('code', object)] + func = lambda s: strptime(s.strip(), "%Y-%m-%d") + converters = {1: func} + test = np.loadtxt(TextIO(data), delimiter=";", dtype=ndtype, + converters=converters) + control = np.array( + [(1, datetime(2001, 1, 1)), (2, datetime(2002, 1, 31))], + dtype=ndtype) + assert_equal(test, control) + + def test_uint64_type(self): + tgt = (9223372043271415339, 9223372043271415853) + c = TextIO() + c.write("%s %s" % tgt) + c.seek(0) + res = np.loadtxt(c, dtype=np.uint64) + assert_equal(res, tgt) + + def test_int64_type(self): + tgt = (-9223372036854775807, 9223372036854775807) + c = TextIO() + c.write("%s %s" % tgt) + c.seek(0) + res = np.loadtxt(c, dtype=np.int64) + assert_equal(res, tgt) + + def test_from_float_hex(self): + # IEEE doubles and floats only, otherwise the float32 + # conversion may fail. + tgt = np.logspace(-10, 10, 5).astype(np.float32) + tgt = np.hstack((tgt, -tgt)).astype(float) + inp = '\n'.join(map(float.hex, tgt)) + c = TextIO() + c.write(inp) + for dt in [float, np.float32]: + c.seek(0) + res = np.loadtxt( + c, dtype=dt, converters=float.fromhex, encoding="latin1") + assert_equal(res, tgt, err_msg=f"{dt}") + + @pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") + def test_default_float_converter_no_default_hex_conversion(self): + """ + Ensure that fromhex is only used for values with the correct prefix and + is not called by default. Regression test related to gh-19598. + """ + c = TextIO("a b c") + with pytest.raises(ValueError, + match=".*convert string 'a' to float64 at row 0, column 1"): + np.loadtxt(c) + + @pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") + def test_default_float_converter_exception(self): + """ + Ensure that the exception message raised during failed floating point + conversion is correct. Regression test related to gh-19598. + """ + c = TextIO("qrs tuv") # Invalid values for default float converter + with pytest.raises(ValueError, + match="could not convert string 'qrs' to float64"): + np.loadtxt(c) + + def test_from_complex(self): + tgt = (complex(1, 1), complex(1, -1)) + c = TextIO() + c.write("%s %s" % tgt) + c.seek(0) + res = np.loadtxt(c, dtype=complex) + assert_equal(res, tgt) + + def test_complex_misformatted(self): + # test for backward compatibility + # some complex formats used to generate x+-yj + a = np.zeros((2, 2), dtype=np.complex128) + re = np.pi + im = np.e + a[:] = re - 1.0j * im + c = BytesIO() + np.savetxt(c, a, fmt='%.16e') + c.seek(0) + txt = c.read() + c.seek(0) + # misformat the sign on the imaginary part, gh 7895 + txt_bad = txt.replace(b'e+00-', b'e00+-') + assert_(txt_bad != txt) + c.write(txt_bad) + c.seek(0) + res = np.loadtxt(c, dtype=complex) + assert_equal(res, a) + + def test_universal_newline(self): + with temppath() as name: + with open(name, 'w') as f: + f.write('1 21\r3 42\r') + data = np.loadtxt(name) + assert_array_equal(data, [[1, 21], [3, 42]]) + + def test_empty_field_after_tab(self): + c = TextIO() + c.write('1 \t2 \t3\tstart \n4\t5\t6\t \n7\t8\t9.5\t') + c.seek(0) + dt = {'names': ('x', 'y', 'z', 'comment'), + 'formats': (' num rows + c = TextIO() + c.write('comment\n1,2,3,5\n4,5,7,8\n2,1,4,5') + c.seek(0) + x = np.loadtxt(c, dtype=int, delimiter=',', + skiprows=1, max_rows=6) + a = np.array([[1, 2, 3, 5], [4, 5, 7, 8], [2, 1, 4, 5]], int) + assert_array_equal(x, a) + + @pytest.mark.parametrize(["skip", "data"], [ + (1, ["ignored\n", "1,2\n", "\n", "3,4\n"]), + # "Bad" lines that do not end in newlines: + (1, ["ignored", "1,2", "", "3,4"]), + (1, StringIO("ignored\n1,2\n\n3,4")), + # Same as above, but do not skip any lines: + (0, ["-1,0\n", "1,2\n", "\n", "3,4\n"]), + (0, ["-1,0", "1,2", "", "3,4"]), + (0, StringIO("-1,0\n1,2\n\n3,4"))]) + def test_max_rows_empty_lines(self, skip, data): + with pytest.warns(UserWarning, + match=f"Input line 3.*max_rows={3 - skip}"): + res = np.loadtxt(data, dtype=int, skiprows=skip, delimiter=",", + max_rows=3 - skip) + assert_array_equal(res, [[-1, 0], [1, 2], [3, 4]][skip:]) + + if isinstance(data, StringIO): + data.seek(0) + + with warnings.catch_warnings(): + warnings.simplefilter("error", UserWarning) + with pytest.raises(UserWarning): + np.loadtxt(data, dtype=int, skiprows=skip, delimiter=",", + max_rows=3 - skip) + +class Testfromregex: + def test_record(self): + c = TextIO() + c.write('1.312 foo\n1.534 bar\n4.444 qux') + c.seek(0) + + dt = [('num', np.float64), ('val', 'S3')] + x = np.fromregex(c, r"([0-9.]+)\s+(...)", dt) + a = np.array([(1.312, 'foo'), (1.534, 'bar'), (4.444, 'qux')], + dtype=dt) + assert_array_equal(x, a) + + def test_record_2(self): + c = TextIO() + c.write('1312 foo\n1534 bar\n4444 qux') + c.seek(0) + + dt = [('num', np.int32), ('val', 'S3')] + x = np.fromregex(c, r"(\d+)\s+(...)", dt) + a = np.array([(1312, 'foo'), (1534, 'bar'), (4444, 'qux')], + dtype=dt) + assert_array_equal(x, a) + + def test_record_3(self): + c = TextIO() + c.write('1312 foo\n1534 bar\n4444 qux') + c.seek(0) + + dt = [('num', np.float64)] + x = np.fromregex(c, r"(\d+)\s+...", dt) + a = np.array([(1312,), (1534,), (4444,)], dtype=dt) + assert_array_equal(x, a) + + @pytest.mark.parametrize("path_type", [str, Path]) + def test_record_unicode(self, path_type): + utf8 = b'\xcf\x96' + with temppath() as str_path: + path = path_type(str_path) + with open(path, 'wb') as f: + f.write(b'1.312 foo' + utf8 + b' \n1.534 bar\n4.444 qux') + + dt = [('num', np.float64), ('val', 'U4')] + x = np.fromregex(path, r"(?u)([0-9.]+)\s+(\w+)", dt, encoding='UTF-8') + a = np.array([(1.312, 'foo' + utf8.decode('UTF-8')), (1.534, 'bar'), + (4.444, 'qux')], dtype=dt) + assert_array_equal(x, a) + + regexp = re.compile(r"([0-9.]+)\s+(\w+)", re.UNICODE) + x = np.fromregex(path, regexp, dt, encoding='UTF-8') + assert_array_equal(x, a) + + def test_compiled_bytes(self): + regexp = re.compile(br'(\d)') + c = BytesIO(b'123') + dt = [('num', np.float64)] + a = np.array([1, 2, 3], dtype=dt) + x = np.fromregex(c, regexp, dt) + assert_array_equal(x, a) + + def test_bad_dtype_not_structured(self): + regexp = re.compile(br'(\d)') + c = BytesIO(b'123') + with pytest.raises(TypeError, match='structured datatype'): + np.fromregex(c, regexp, dtype=np.float64) + + +#####-------------------------------------------------------------------------- + + +class TestFromTxt(LoadTxtBase): + loadfunc = staticmethod(np.genfromtxt) + + def test_record(self): + # Test w/ explicit dtype + data = TextIO('1 2\n3 4') + test = np.genfromtxt(data, dtype=[('x', np.int32), ('y', np.int32)]) + control = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) + assert_equal(test, control) + # + data = TextIO('M 64.0 75.0\nF 25.0 60.0') + descriptor = {'names': ('gender', 'age', 'weight'), + 'formats': ('S1', 'i4', 'f4')} + control = np.array([('M', 64.0, 75.0), ('F', 25.0, 60.0)], + dtype=descriptor) + test = np.genfromtxt(data, dtype=descriptor) + assert_equal(test, control) + + def test_array(self): + # Test outputting a standard ndarray + data = TextIO('1 2\n3 4') + control = np.array([[1, 2], [3, 4]], dtype=int) + test = np.genfromtxt(data, dtype=int) + assert_array_equal(test, control) + # + data.seek(0) + control = np.array([[1, 2], [3, 4]], dtype=float) + test = np.loadtxt(data, dtype=float) + assert_array_equal(test, control) + + def test_1D(self): + # Test squeezing to 1D + control = np.array([1, 2, 3, 4], int) + # + data = TextIO('1\n2\n3\n4\n') + test = np.genfromtxt(data, dtype=int) + assert_array_equal(test, control) + # + data = TextIO('1,2,3,4\n') + test = np.genfromtxt(data, dtype=int, delimiter=',') + assert_array_equal(test, control) + + def test_comments(self): + # Test the stripping of comments + control = np.array([1, 2, 3, 5], int) + # Comment on its own line + data = TextIO('# comment\n1,2,3,5\n') + test = np.genfromtxt(data, dtype=int, delimiter=',', comments='#') + assert_equal(test, control) + # Comment at the end of a line + data = TextIO('1,2,3,5# comment\n') + test = np.genfromtxt(data, dtype=int, delimiter=',', comments='#') + assert_equal(test, control) + + def test_skiprows(self): + # Test row skipping + control = np.array([1, 2, 3, 5], int) + kwargs = {"dtype": int, "delimiter": ','} + # + data = TextIO('comment\n1,2,3,5\n') + test = np.genfromtxt(data, skip_header=1, **kwargs) + assert_equal(test, control) + # + data = TextIO('# comment\n1,2,3,5\n') + test = np.loadtxt(data, skiprows=1, **kwargs) + assert_equal(test, control) + + def test_skip_footer(self): + data = [f"# {i}" for i in range(1, 6)] + data.append("A, B, C") + data.extend([f"{i},{i:3.1f},{i:03d}" for i in range(51)]) + data[-1] = "99,99" + kwargs = {"delimiter": ",", "names": True, "skip_header": 5, "skip_footer": 10} + test = np.genfromtxt(TextIO("\n".join(data)), **kwargs) + ctrl = np.array([(f"{i:f}", f"{i:f}", f"{i:f}") for i in range(41)], + dtype=[(_, float) for _ in "ABC"]) + assert_equal(test, ctrl) + + def test_skip_footer_with_invalid(self): + with suppress_warnings() as sup: + sup.filter(ConversionWarning) + basestr = '1 1\n2 2\n3 3\n4 4\n5 \n6 \n7 \n' + # Footer too small to get rid of all invalid values + assert_raises(ValueError, np.genfromtxt, + TextIO(basestr), skip_footer=1) + # except ValueError: + # pass + a = np.genfromtxt( + TextIO(basestr), skip_footer=1, invalid_raise=False) + assert_equal(a, np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]])) + # + a = np.genfromtxt(TextIO(basestr), skip_footer=3) + assert_equal(a, np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]])) + # + basestr = '1 1\n2 \n3 3\n4 4\n5 \n6 6\n7 7\n' + a = np.genfromtxt( + TextIO(basestr), skip_footer=1, invalid_raise=False) + assert_equal(a, np.array([[1., 1.], [3., 3.], [4., 4.], [6., 6.]])) + a = np.genfromtxt( + TextIO(basestr), skip_footer=3, invalid_raise=False) + assert_equal(a, np.array([[1., 1.], [3., 3.], [4., 4.]])) + + def test_header(self): + # Test retrieving a header + data = TextIO('gender age weight\nM 64.0 75.0\nF 25.0 60.0') + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', VisibleDeprecationWarning) + test = np.genfromtxt(data, dtype=None, names=True, + encoding='bytes') + assert_(w[0].category is VisibleDeprecationWarning) + control = {'gender': np.array([b'M', b'F']), + 'age': np.array([64.0, 25.0]), + 'weight': np.array([75.0, 60.0])} + assert_equal(test['gender'], control['gender']) + assert_equal(test['age'], control['age']) + assert_equal(test['weight'], control['weight']) + + def test_auto_dtype(self): + # Test the automatic definition of the output dtype + data = TextIO('A 64 75.0 3+4j True\nBCD 25 60.0 5+6j False') + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', VisibleDeprecationWarning) + test = np.genfromtxt(data, dtype=None, encoding='bytes') + assert_(w[0].category is VisibleDeprecationWarning) + control = [np.array([b'A', b'BCD']), + np.array([64, 25]), + np.array([75.0, 60.0]), + np.array([3 + 4j, 5 + 6j]), + np.array([True, False]), ] + assert_equal(test.dtype.names, ['f0', 'f1', 'f2', 'f3', 'f4']) + for (i, ctrl) in enumerate(control): + assert_equal(test[f'f{i}'], ctrl) + + def test_auto_dtype_uniform(self): + # Tests whether the output dtype can be uniformized + data = TextIO('1 2 3 4\n5 6 7 8\n') + test = np.genfromtxt(data, dtype=None) + control = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) + assert_equal(test, control) + + def test_fancy_dtype(self): + # Check that a nested dtype isn't MIA + data = TextIO('1,2,3.0\n4,5,6.0\n') + fancydtype = np.dtype([('x', int), ('y', [('t', int), ('s', float)])]) + test = np.genfromtxt(data, dtype=fancydtype, delimiter=',') + control = np.array([(1, (2, 3.0)), (4, (5, 6.0))], dtype=fancydtype) + assert_equal(test, control) + + def test_names_overwrite(self): + # Test overwriting the names of the dtype + descriptor = {'names': ('g', 'a', 'w'), + 'formats': ('S1', 'i4', 'f4')} + data = TextIO(b'M 64.0 75.0\nF 25.0 60.0') + names = ('gender', 'age', 'weight') + test = np.genfromtxt(data, dtype=descriptor, names=names) + descriptor['names'] = names + control = np.array([('M', 64.0, 75.0), + ('F', 25.0, 60.0)], dtype=descriptor) + assert_equal(test, control) + + def test_bad_fname(self): + with pytest.raises(TypeError, match='fname must be a string,'): + np.genfromtxt(123) + + def test_commented_header(self): + # Check that names can be retrieved even if the line is commented out. + data = TextIO(""" +#gender age weight +M 21 72.100000 +F 35 58.330000 +M 33 21.99 + """) + # The # is part of the first name and should be deleted automatically. + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', VisibleDeprecationWarning) + test = np.genfromtxt(data, names=True, dtype=None, + encoding="bytes") + assert_(w[0].category is VisibleDeprecationWarning) + ctrl = np.array([('M', 21, 72.1), ('F', 35, 58.33), ('M', 33, 21.99)], + dtype=[('gender', '|S1'), ('age', int), ('weight', float)]) + assert_equal(test, ctrl) + # Ditto, but we should get rid of the first element + data = TextIO(b""" +# gender age weight +M 21 72.100000 +F 35 58.330000 +M 33 21.99 + """) + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', VisibleDeprecationWarning) + test = np.genfromtxt(data, names=True, dtype=None, + encoding="bytes") + assert_(w[0].category is VisibleDeprecationWarning) + assert_equal(test, ctrl) + + def test_names_and_comments_none(self): + # Tests case when names is true but comments is None (gh-10780) + data = TextIO('col1 col2\n 1 2\n 3 4') + test = np.genfromtxt(data, dtype=(int, int), comments=None, names=True) + control = np.array([(1, 2), (3, 4)], dtype=[('col1', int), ('col2', int)]) + assert_equal(test, control) + + def test_file_is_closed_on_error(self): + # gh-13200 + with tempdir() as tmpdir: + fpath = os.path.join(tmpdir, "test.csv") + with open(fpath, "wb") as f: + f.write('\N{GREEK PI SYMBOL}'.encode()) + + # ResourceWarnings are emitted from a destructor, so won't be + # detected by regular propagation to errors. + with assert_no_warnings(): + with pytest.raises(UnicodeDecodeError): + np.genfromtxt(fpath, encoding="ascii") + + def test_autonames_and_usecols(self): + # Tests names and usecols + data = TextIO('A B C D\n aaaa 121 45 9.1') + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', VisibleDeprecationWarning) + test = np.genfromtxt(data, usecols=('A', 'C', 'D'), + names=True, dtype=None, encoding="bytes") + assert_(w[0].category is VisibleDeprecationWarning) + control = np.array(('aaaa', 45, 9.1), + dtype=[('A', '|S4'), ('C', int), ('D', float)]) + assert_equal(test, control) + + def test_converters_with_usecols(self): + # Test the combination user-defined converters and usecol + data = TextIO('1,2,3,,5\n6,7,8,9,10\n') + test = np.genfromtxt(data, dtype=int, delimiter=',', + converters={3: lambda s: int(s or - 999)}, + usecols=(1, 3,)) + control = np.array([[2, -999], [7, 9]], int) + assert_equal(test, control) + + def test_converters_with_usecols_and_names(self): + # Tests names and usecols + data = TextIO('A B C D\n aaaa 121 45 9.1') + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', VisibleDeprecationWarning) + test = np.genfromtxt(data, usecols=('A', 'C', 'D'), names=True, + dtype=None, encoding="bytes", + converters={'C': lambda s: 2 * int(s)}) + assert_(w[0].category is VisibleDeprecationWarning) + control = np.array(('aaaa', 90, 9.1), + dtype=[('A', '|S4'), ('C', int), ('D', float)]) + assert_equal(test, control) + + def test_converters_cornercases(self): + # Test the conversion to datetime. + converter = { + 'date': lambda s: strptime(s, '%Y-%m-%d %H:%M:%SZ')} + data = TextIO('2009-02-03 12:00:00Z, 72214.0') + test = np.genfromtxt(data, delimiter=',', dtype=None, + names=['date', 'stid'], converters=converter) + control = np.array((datetime(2009, 2, 3), 72214.), + dtype=[('date', np.object_), ('stid', float)]) + assert_equal(test, control) + + def test_converters_cornercases2(self): + # Test the conversion to datetime64. + converter = { + 'date': lambda s: np.datetime64(strptime(s, '%Y-%m-%d %H:%M:%SZ'))} + data = TextIO('2009-02-03 12:00:00Z, 72214.0') + test = np.genfromtxt(data, delimiter=',', dtype=None, + names=['date', 'stid'], converters=converter) + control = np.array((datetime(2009, 2, 3), 72214.), + dtype=[('date', 'datetime64[us]'), ('stid', float)]) + assert_equal(test, control) + + def test_unused_converter(self): + # Test whether unused converters are forgotten + data = TextIO("1 21\n 3 42\n") + test = np.genfromtxt(data, usecols=(1,), + converters={0: lambda s: int(s, 16)}) + assert_equal(test, [21, 42]) + # + data.seek(0) + test = np.genfromtxt(data, usecols=(1,), + converters={1: lambda s: int(s, 16)}) + assert_equal(test, [33, 66]) + + def test_invalid_converter(self): + strip_rand = lambda x: float((b'r' in x.lower() and x.split()[-1]) or + ((b'r' not in x.lower() and x.strip()) or 0.0)) + strip_per = lambda x: float((b'%' in x.lower() and x.split()[0]) or + ((b'%' not in x.lower() and x.strip()) or 0.0)) + s = TextIO("D01N01,10/1/2003 ,1 %,R 75,400,600\r\n" + "L24U05,12/5/2003, 2 %,1,300, 150.5\r\n" + "D02N03,10/10/2004,R 1,,7,145.55") + kwargs = { + "converters": {2: strip_per, 3: strip_rand}, "delimiter": ",", + "dtype": None, "encoding": "bytes"} + assert_raises(ConverterError, np.genfromtxt, s, **kwargs) + + def test_tricky_converter_bug1666(self): + # Test some corner cases + s = TextIO('q1,2\nq3,4') + cnv = lambda s: float(s[1:]) + test = np.genfromtxt(s, delimiter=',', converters={0: cnv}) + control = np.array([[1., 2.], [3., 4.]]) + assert_equal(test, control) + + def test_dtype_with_converters(self): + dstr = "2009; 23; 46" + test = np.genfromtxt(TextIO(dstr,), + delimiter=";", dtype=float, converters={0: bytes}) + control = np.array([('2009', 23., 46)], + dtype=[('f0', '|S4'), ('f1', float), ('f2', float)]) + assert_equal(test, control) + test = np.genfromtxt(TextIO(dstr,), + delimiter=";", dtype=float, converters={0: float}) + control = np.array([2009., 23., 46],) + assert_equal(test, control) + + @pytest.mark.filterwarnings("ignore:.*recfromcsv.*:DeprecationWarning") + def test_dtype_with_converters_and_usecols(self): + dstr = "1,5,-1,1:1\n2,8,-1,1:n\n3,3,-2,m:n\n" + dmap = {'1:1': 0, '1:n': 1, 'm:1': 2, 'm:n': 3} + dtyp = [('e1', 'i4'), ('e2', 'i4'), ('e3', 'i2'), ('n', 'i1')] + conv = {0: int, 1: int, 2: int, 3: lambda r: dmap[r.decode()]} + test = recfromcsv(TextIO(dstr,), dtype=dtyp, delimiter=',', + names=None, converters=conv, encoding="bytes") + control = np.rec.array([(1, 5, -1, 0), (2, 8, -1, 1), (3, 3, -2, 3)], dtype=dtyp) + assert_equal(test, control) + dtyp = [('e1', 'i4'), ('e2', 'i4'), ('n', 'i1')] + test = recfromcsv(TextIO(dstr,), dtype=dtyp, delimiter=',', + usecols=(0, 1, 3), names=None, converters=conv, + encoding="bytes") + control = np.rec.array([(1, 5, 0), (2, 8, 1), (3, 3, 3)], dtype=dtyp) + assert_equal(test, control) + + def test_dtype_with_object(self): + # Test using an explicit dtype with an object + data = """ 1; 2001-01-01 + 2; 2002-01-31 """ + ndtype = [('idx', int), ('code', object)] + func = lambda s: strptime(s.strip(), "%Y-%m-%d") + converters = {1: func} + test = np.genfromtxt(TextIO(data), delimiter=";", dtype=ndtype, + converters=converters) + control = np.array( + [(1, datetime(2001, 1, 1)), (2, datetime(2002, 1, 31))], + dtype=ndtype) + assert_equal(test, control) + + ndtype = [('nest', [('idx', int), ('code', object)])] + with assert_raises_regex(NotImplementedError, + 'Nested fields.* not supported.*'): + test = np.genfromtxt(TextIO(data), delimiter=";", + dtype=ndtype, converters=converters) + + # nested but empty fields also aren't supported + ndtype = [('idx', int), ('code', object), ('nest', [])] + with assert_raises_regex(NotImplementedError, + 'Nested fields.* not supported.*'): + test = np.genfromtxt(TextIO(data), delimiter=";", + dtype=ndtype, converters=converters) + + def test_dtype_with_object_no_converter(self): + # Object without a converter uses bytes: + parsed = np.genfromtxt(TextIO("1"), dtype=object) + assert parsed[()] == b"1" + parsed = np.genfromtxt(TextIO("string"), dtype=object) + assert parsed[()] == b"string" + + def test_userconverters_with_explicit_dtype(self): + # Test user_converters w/ explicit (standard) dtype + data = TextIO('skip,skip,2001-01-01,1.0,skip') + test = np.genfromtxt(data, delimiter=",", names=None, dtype=float, + usecols=(2, 3), converters={2: bytes}) + control = np.array([('2001-01-01', 1.)], + dtype=[('', '|S10'), ('', float)]) + assert_equal(test, control) + + def test_utf8_userconverters_with_explicit_dtype(self): + utf8 = b'\xcf\x96' + with temppath() as path: + with open(path, 'wb') as f: + f.write(b'skip,skip,2001-01-01' + utf8 + b',1.0,skip') + test = np.genfromtxt(path, delimiter=",", names=None, dtype=float, + usecols=(2, 3), converters={2: str}, + encoding='UTF-8') + control = np.array([('2001-01-01' + utf8.decode('UTF-8'), 1.)], + dtype=[('', '|U11'), ('', float)]) + assert_equal(test, control) + + def test_spacedelimiter(self): + # Test space delimiter + data = TextIO("1 2 3 4 5\n6 7 8 9 10") + test = np.genfromtxt(data) + control = np.array([[1., 2., 3., 4., 5.], + [6., 7., 8., 9., 10.]]) + assert_equal(test, control) + + def test_integer_delimiter(self): + # Test using an integer for delimiter + data = " 1 2 3\n 4 5 67\n890123 4" + test = np.genfromtxt(TextIO(data), delimiter=3) + control = np.array([[1, 2, 3], [4, 5, 67], [890, 123, 4]]) + assert_equal(test, control) + + def test_missing(self): + data = TextIO('1,2,3,,5\n') + test = np.genfromtxt(data, dtype=int, delimiter=',', + converters={3: lambda s: int(s or - 999)}) + control = np.array([1, 2, 3, -999, 5], int) + assert_equal(test, control) + + def test_missing_with_tabs(self): + # Test w/ a delimiter tab + txt = "1\t2\t3\n\t2\t\n1\t\t3" + test = np.genfromtxt(TextIO(txt), delimiter="\t", + usemask=True,) + ctrl_d = np.array([(1, 2, 3), (np.nan, 2, np.nan), (1, np.nan, 3)],) + ctrl_m = np.array([(0, 0, 0), (1, 0, 1), (0, 1, 0)], dtype=bool) + assert_equal(test.data, ctrl_d) + assert_equal(test.mask, ctrl_m) + + def test_usecols(self): + # Test the selection of columns + # Select 1 column + control = np.array([[1, 2], [3, 4]], float) + data = TextIO() + np.savetxt(data, control) + data.seek(0) + test = np.genfromtxt(data, dtype=float, usecols=(1,)) + assert_equal(test, control[:, 1]) + # + control = np.array([[1, 2, 3], [3, 4, 5]], float) + data = TextIO() + np.savetxt(data, control) + data.seek(0) + test = np.genfromtxt(data, dtype=float, usecols=(1, 2)) + assert_equal(test, control[:, 1:]) + # Testing with arrays instead of tuples. + data.seek(0) + test = np.genfromtxt(data, dtype=float, usecols=np.array([1, 2])) + assert_equal(test, control[:, 1:]) + + def test_usecols_as_css(self): + # Test giving usecols with a comma-separated string + data = "1 2 3\n4 5 6" + test = np.genfromtxt(TextIO(data), + names="a, b, c", usecols="a, c") + ctrl = np.array([(1, 3), (4, 6)], dtype=[(_, float) for _ in "ac"]) + assert_equal(test, ctrl) + + def test_usecols_with_structured_dtype(self): + # Test usecols with an explicit structured dtype + data = TextIO("JOE 70.1 25.3\nBOB 60.5 27.9") + names = ['stid', 'temp'] + dtypes = ['S4', 'f8'] + test = np.genfromtxt( + data, usecols=(0, 2), dtype=list(zip(names, dtypes))) + assert_equal(test['stid'], [b"JOE", b"BOB"]) + assert_equal(test['temp'], [25.3, 27.9]) + + def test_usecols_with_integer(self): + # Test usecols with an integer + test = np.genfromtxt(TextIO(b"1 2 3\n4 5 6"), usecols=0) + assert_equal(test, np.array([1., 4.])) + + def test_usecols_with_named_columns(self): + # Test usecols with named columns + ctrl = np.array([(1, 3), (4, 6)], dtype=[('a', float), ('c', float)]) + data = "1 2 3\n4 5 6" + kwargs = {"names": "a, b, c"} + test = np.genfromtxt(TextIO(data), usecols=(0, -1), **kwargs) + assert_equal(test, ctrl) + test = np.genfromtxt(TextIO(data), + usecols=('a', 'c'), **kwargs) + assert_equal(test, ctrl) + + def test_empty_file(self): + # Test that an empty file raises the proper warning. + with suppress_warnings() as sup: + sup.filter(message="genfromtxt: Empty input file:") + data = TextIO() + test = np.genfromtxt(data) + assert_equal(test, np.array([])) + + # when skip_header > 0 + test = np.genfromtxt(data, skip_header=1) + assert_equal(test, np.array([])) + + def test_fancy_dtype_alt(self): + # Check that a nested dtype isn't MIA + data = TextIO('1,2,3.0\n4,5,6.0\n') + fancydtype = np.dtype([('x', int), ('y', [('t', int), ('s', float)])]) + test = np.genfromtxt(data, dtype=fancydtype, delimiter=',', usemask=True) + control = ma.array([(1, (2, 3.0)), (4, (5, 6.0))], dtype=fancydtype) + assert_equal(test, control) + + def test_shaped_dtype(self): + c = TextIO("aaaa 1.0 8.0 1 2 3 4 5 6") + dt = np.dtype([('name', 'S4'), ('x', float), ('y', float), + ('block', int, (2, 3))]) + x = np.genfromtxt(c, dtype=dt) + a = np.array([('aaaa', 1.0, 8.0, [[1, 2, 3], [4, 5, 6]])], + dtype=dt) + assert_array_equal(x, a) + + def test_withmissing(self): + data = TextIO('A,B\n0,1\n2,N/A') + kwargs = {"delimiter": ",", "missing_values": "N/A", "names": True} + test = np.genfromtxt(data, dtype=None, usemask=True, **kwargs) + control = ma.array([(0, 1), (2, -1)], + mask=[(False, False), (False, True)], + dtype=[('A', int), ('B', int)]) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + # + data.seek(0) + test = np.genfromtxt(data, usemask=True, **kwargs) + control = ma.array([(0, 1), (2, -1)], + mask=[(False, False), (False, True)], + dtype=[('A', float), ('B', float)]) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + + def test_user_missing_values(self): + data = "A, B, C\n0, 0., 0j\n1, N/A, 1j\n-9, 2.2, N/A\n3, -99, 3j" + basekwargs = {"dtype": None, "delimiter": ",", "names": True} + mdtype = [('A', int), ('B', float), ('C', complex)] + # + test = np.genfromtxt(TextIO(data), missing_values="N/A", + **basekwargs) + control = ma.array([(0, 0.0, 0j), (1, -999, 1j), + (-9, 2.2, -999j), (3, -99, 3j)], + mask=[(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)], + dtype=mdtype) + assert_equal(test, control) + # + basekwargs['dtype'] = mdtype + test = np.genfromtxt(TextIO(data), + missing_values={0: -9, 1: -99, 2: -999j}, usemask=True, **basekwargs) + control = ma.array([(0, 0.0, 0j), (1, -999, 1j), + (-9, 2.2, -999j), (3, -99, 3j)], + mask=[(0, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 0)], + dtype=mdtype) + assert_equal(test, control) + # + test = np.genfromtxt(TextIO(data), + missing_values={0: -9, 'B': -99, 'C': -999j}, + usemask=True, + **basekwargs) + control = ma.array([(0, 0.0, 0j), (1, -999, 1j), + (-9, 2.2, -999j), (3, -99, 3j)], + mask=[(0, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 0)], + dtype=mdtype) + assert_equal(test, control) + + def test_user_filling_values(self): + # Test with missing and filling values + ctrl = np.array([(0, 3), (4, -999)], dtype=[('a', int), ('b', int)]) + data = "N/A, 2, 3\n4, ,???" + kwargs = {"delimiter": ",", + "dtype": int, + "names": "a,b,c", + "missing_values": {0: "N/A", 'b': " ", 2: "???"}, + "filling_values": {0: 0, 'b': 0, 2: -999}} + test = np.genfromtxt(TextIO(data), **kwargs) + ctrl = np.array([(0, 2, 3), (4, 0, -999)], + dtype=[(_, int) for _ in "abc"]) + assert_equal(test, ctrl) + # + test = np.genfromtxt(TextIO(data), usecols=(0, -1), **kwargs) + ctrl = np.array([(0, 3), (4, -999)], dtype=[(_, int) for _ in "ac"]) + assert_equal(test, ctrl) + + data2 = "1,2,*,4\n5,*,7,8\n" + test = np.genfromtxt(TextIO(data2), delimiter=',', dtype=int, + missing_values="*", filling_values=0) + ctrl = np.array([[1, 2, 0, 4], [5, 0, 7, 8]]) + assert_equal(test, ctrl) + test = np.genfromtxt(TextIO(data2), delimiter=',', dtype=int, + missing_values="*", filling_values=-1) + ctrl = np.array([[1, 2, -1, 4], [5, -1, 7, 8]]) + assert_equal(test, ctrl) + + def test_withmissing_float(self): + data = TextIO('A,B\n0,1.5\n2,-999.00') + test = np.genfromtxt(data, dtype=None, delimiter=',', + missing_values='-999.0', names=True, usemask=True) + control = ma.array([(0, 1.5), (2, -1.)], + mask=[(False, False), (False, True)], + dtype=[('A', int), ('B', float)]) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + + def test_with_masked_column_uniform(self): + # Test masked column + data = TextIO('1 2 3\n4 5 6\n') + test = np.genfromtxt(data, dtype=None, + missing_values='2,5', usemask=True) + control = ma.array([[1, 2, 3], [4, 5, 6]], mask=[[0, 1, 0], [0, 1, 0]]) + assert_equal(test, control) + + def test_with_masked_column_various(self): + # Test masked column + data = TextIO('True 2 3\nFalse 5 6\n') + test = np.genfromtxt(data, dtype=None, + missing_values='2,5', usemask=True) + control = ma.array([(1, 2, 3), (0, 5, 6)], + mask=[(0, 1, 0), (0, 1, 0)], + dtype=[('f0', bool), ('f1', bool), ('f2', int)]) + assert_equal(test, control) + + def test_invalid_raise(self): + # Test invalid raise + data = ["1, 1, 1, 1, 1"] * 50 + for i in range(5): + data[10 * i] = "2, 2, 2, 2 2" + data.insert(0, "a, b, c, d, e") + mdata = TextIO("\n".join(data)) + + kwargs = {"delimiter": ",", "dtype": None, "names": True} + + def f(): + return np.genfromtxt(mdata, invalid_raise=False, **kwargs) + mtest = assert_warns(ConversionWarning, f) + assert_equal(len(mtest), 45) + assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde'])) + # + mdata.seek(0) + assert_raises(ValueError, np.genfromtxt, mdata, + delimiter=",", names=True) + + def test_invalid_raise_with_usecols(self): + # Test invalid_raise with usecols + data = ["1, 1, 1, 1, 1"] * 50 + for i in range(5): + data[10 * i] = "2, 2, 2, 2 2" + data.insert(0, "a, b, c, d, e") + mdata = TextIO("\n".join(data)) + + kwargs = {"delimiter": ",", "dtype": None, "names": True, + "invalid_raise": False} + + def f(): + return np.genfromtxt(mdata, usecols=(0, 4), **kwargs) + mtest = assert_warns(ConversionWarning, f) + assert_equal(len(mtest), 45) + assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'ae'])) + # + mdata.seek(0) + mtest = np.genfromtxt(mdata, usecols=(0, 1), **kwargs) + assert_equal(len(mtest), 50) + control = np.ones(50, dtype=[(_, int) for _ in 'ab']) + control[[10 * _ for _ in range(5)]] = (2, 2) + assert_equal(mtest, control) + + def test_inconsistent_dtype(self): + # Test inconsistent dtype + data = ["1, 1, 1, 1, -1.1"] * 50 + mdata = TextIO("\n".join(data)) + + converters = {4: lambda x: f"({x.decode()})"} + kwargs = {"delimiter": ",", "converters": converters, + "dtype": [(_, int) for _ in 'abcde'], "encoding": "bytes"} + assert_raises(ValueError, np.genfromtxt, mdata, **kwargs) + + def test_default_field_format(self): + # Test default format + data = "0, 1, 2.3\n4, 5, 6.7" + mtest = np.genfromtxt(TextIO(data), + delimiter=",", dtype=None, defaultfmt="f%02i") + ctrl = np.array([(0, 1, 2.3), (4, 5, 6.7)], + dtype=[("f00", int), ("f01", int), ("f02", float)]) + assert_equal(mtest, ctrl) + + def test_single_dtype_wo_names(self): + # Test single dtype w/o names + data = "0, 1, 2.3\n4, 5, 6.7" + mtest = np.genfromtxt(TextIO(data), + delimiter=",", dtype=float, defaultfmt="f%02i") + ctrl = np.array([[0., 1., 2.3], [4., 5., 6.7]], dtype=float) + assert_equal(mtest, ctrl) + + def test_single_dtype_w_explicit_names(self): + # Test single dtype w explicit names + data = "0, 1, 2.3\n4, 5, 6.7" + mtest = np.genfromtxt(TextIO(data), + delimiter=",", dtype=float, names="a, b, c") + ctrl = np.array([(0., 1., 2.3), (4., 5., 6.7)], + dtype=[(_, float) for _ in "abc"]) + assert_equal(mtest, ctrl) + + def test_single_dtype_w_implicit_names(self): + # Test single dtype w implicit names + data = "a, b, c\n0, 1, 2.3\n4, 5, 6.7" + mtest = np.genfromtxt(TextIO(data), + delimiter=",", dtype=float, names=True) + ctrl = np.array([(0., 1., 2.3), (4., 5., 6.7)], + dtype=[(_, float) for _ in "abc"]) + assert_equal(mtest, ctrl) + + def test_easy_structured_dtype(self): + # Test easy structured dtype + data = "0, 1, 2.3\n4, 5, 6.7" + mtest = np.genfromtxt(TextIO(data), delimiter=",", + dtype=(int, float, float), defaultfmt="f_%02i") + ctrl = np.array([(0, 1., 2.3), (4, 5., 6.7)], + dtype=[("f_00", int), ("f_01", float), ("f_02", float)]) + assert_equal(mtest, ctrl) + + def test_autostrip(self): + # Test autostrip + data = "01/01/2003 , 1.3, abcde" + kwargs = {"delimiter": ",", "dtype": None, "encoding": "bytes"} + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', VisibleDeprecationWarning) + mtest = np.genfromtxt(TextIO(data), **kwargs) + assert_(w[0].category is VisibleDeprecationWarning) + ctrl = np.array([('01/01/2003 ', 1.3, ' abcde')], + dtype=[('f0', '|S12'), ('f1', float), ('f2', '|S8')]) + assert_equal(mtest, ctrl) + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', VisibleDeprecationWarning) + mtest = np.genfromtxt(TextIO(data), autostrip=True, **kwargs) + assert_(w[0].category is VisibleDeprecationWarning) + ctrl = np.array([('01/01/2003', 1.3, 'abcde')], + dtype=[('f0', '|S10'), ('f1', float), ('f2', '|S5')]) + assert_equal(mtest, ctrl) + + def test_replace_space(self): + # Test the 'replace_space' option + txt = "A.A, B (B), C:C\n1, 2, 3.14" + # Test default: replace ' ' by '_' and delete non-alphanum chars + test = np.genfromtxt(TextIO(txt), + delimiter=",", names=True, dtype=None) + ctrl_dtype = [("AA", int), ("B_B", int), ("CC", float)] + ctrl = np.array((1, 2, 3.14), dtype=ctrl_dtype) + assert_equal(test, ctrl) + # Test: no replace, no delete + test = np.genfromtxt(TextIO(txt), + delimiter=",", names=True, dtype=None, + replace_space='', deletechars='') + ctrl_dtype = [("A.A", int), ("B (B)", int), ("C:C", float)] + ctrl = np.array((1, 2, 3.14), dtype=ctrl_dtype) + assert_equal(test, ctrl) + # Test: no delete (spaces are replaced by _) + test = np.genfromtxt(TextIO(txt), + delimiter=",", names=True, dtype=None, + deletechars='') + ctrl_dtype = [("A.A", int), ("B_(B)", int), ("C:C", float)] + ctrl = np.array((1, 2, 3.14), dtype=ctrl_dtype) + assert_equal(test, ctrl) + + def test_replace_space_known_dtype(self): + # Test the 'replace_space' (and related) options when dtype != None + txt = "A.A, B (B), C:C\n1, 2, 3" + # Test default: replace ' ' by '_' and delete non-alphanum chars + test = np.genfromtxt(TextIO(txt), + delimiter=",", names=True, dtype=int) + ctrl_dtype = [("AA", int), ("B_B", int), ("CC", int)] + ctrl = np.array((1, 2, 3), dtype=ctrl_dtype) + assert_equal(test, ctrl) + # Test: no replace, no delete + test = np.genfromtxt(TextIO(txt), + delimiter=",", names=True, dtype=int, + replace_space='', deletechars='') + ctrl_dtype = [("A.A", int), ("B (B)", int), ("C:C", int)] + ctrl = np.array((1, 2, 3), dtype=ctrl_dtype) + assert_equal(test, ctrl) + # Test: no delete (spaces are replaced by _) + test = np.genfromtxt(TextIO(txt), + delimiter=",", names=True, dtype=int, + deletechars='') + ctrl_dtype = [("A.A", int), ("B_(B)", int), ("C:C", int)] + ctrl = np.array((1, 2, 3), dtype=ctrl_dtype) + assert_equal(test, ctrl) + + def test_incomplete_names(self): + # Test w/ incomplete names + data = "A,,C\n0,1,2\n3,4,5" + kwargs = {"delimiter": ",", "names": True} + # w/ dtype=None + ctrl = np.array([(0, 1, 2), (3, 4, 5)], + dtype=[(_, int) for _ in ('A', 'f0', 'C')]) + test = np.genfromtxt(TextIO(data), dtype=None, **kwargs) + assert_equal(test, ctrl) + # w/ default dtype + ctrl = np.array([(0, 1, 2), (3, 4, 5)], + dtype=[(_, float) for _ in ('A', 'f0', 'C')]) + test = np.genfromtxt(TextIO(data), **kwargs) + + def test_names_auto_completion(self): + # Make sure that names are properly completed + data = "1 2 3\n 4 5 6" + test = np.genfromtxt(TextIO(data), + dtype=(int, float, int), names="a") + ctrl = np.array([(1, 2, 3), (4, 5, 6)], + dtype=[('a', int), ('f0', float), ('f1', int)]) + assert_equal(test, ctrl) + + def test_names_with_usecols_bug1636(self): + # Make sure we pick up the right names w/ usecols + data = "A,B,C,D,E\n0,1,2,3,4\n0,1,2,3,4\n0,1,2,3,4" + ctrl_names = ("A", "C", "E") + test = np.genfromtxt(TextIO(data), + dtype=(int, int, int), delimiter=",", + usecols=(0, 2, 4), names=True) + assert_equal(test.dtype.names, ctrl_names) + # + test = np.genfromtxt(TextIO(data), + dtype=(int, int, int), delimiter=",", + usecols=("A", "C", "E"), names=True) + assert_equal(test.dtype.names, ctrl_names) + # + test = np.genfromtxt(TextIO(data), + dtype=int, delimiter=",", + usecols=("A", "C", "E"), names=True) + assert_equal(test.dtype.names, ctrl_names) + + def test_fixed_width_names(self): + # Test fix-width w/ names + data = " A B C\n 0 1 2.3\n 45 67 9." + kwargs = {"delimiter": (5, 5, 4), "names": True, "dtype": None} + ctrl = np.array([(0, 1, 2.3), (45, 67, 9.)], + dtype=[('A', int), ('B', int), ('C', float)]) + test = np.genfromtxt(TextIO(data), **kwargs) + assert_equal(test, ctrl) + # + kwargs = {"delimiter": 5, "names": True, "dtype": None} + ctrl = np.array([(0, 1, 2.3), (45, 67, 9.)], + dtype=[('A', int), ('B', int), ('C', float)]) + test = np.genfromtxt(TextIO(data), **kwargs) + assert_equal(test, ctrl) + + def test_filling_values(self): + # Test missing values + data = b"1, 2, 3\n1, , 5\n0, 6, \n" + kwargs = {"delimiter": ",", "dtype": None, "filling_values": -999} + ctrl = np.array([[1, 2, 3], [1, -999, 5], [0, 6, -999]], dtype=int) + test = np.genfromtxt(TextIO(data), **kwargs) + assert_equal(test, ctrl) + + def test_comments_is_none(self): + # Github issue 329 (None was previously being converted to 'None'). + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', VisibleDeprecationWarning) + test = np.genfromtxt(TextIO("test1,testNonetherestofthedata"), + dtype=None, comments=None, delimiter=',', + encoding="bytes") + assert_(w[0].category is VisibleDeprecationWarning) + assert_equal(test[1], b'testNonetherestofthedata') + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', VisibleDeprecationWarning) + test = np.genfromtxt(TextIO("test1, testNonetherestofthedata"), + dtype=None, comments=None, delimiter=',', + encoding="bytes") + assert_(w[0].category is VisibleDeprecationWarning) + assert_equal(test[1], b' testNonetherestofthedata') + + def test_latin1(self): + latin1 = b'\xf6\xfc\xf6' + norm = b"norm1,norm2,norm3\n" + enc = b"test1,testNonethe" + latin1 + b",test3\n" + s = norm + enc + norm + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', VisibleDeprecationWarning) + test = np.genfromtxt(TextIO(s), + dtype=None, comments=None, delimiter=',', + encoding="bytes") + assert_(w[0].category is VisibleDeprecationWarning) + assert_equal(test[1, 0], b"test1") + assert_equal(test[1, 1], b"testNonethe" + latin1) + assert_equal(test[1, 2], b"test3") + test = np.genfromtxt(TextIO(s), + dtype=None, comments=None, delimiter=',', + encoding='latin1') + assert_equal(test[1, 0], "test1") + assert_equal(test[1, 1], "testNonethe" + latin1.decode('latin1')) + assert_equal(test[1, 2], "test3") + + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', VisibleDeprecationWarning) + test = np.genfromtxt(TextIO(b"0,testNonethe" + latin1), + dtype=None, comments=None, delimiter=',', + encoding="bytes") + assert_(w[0].category is VisibleDeprecationWarning) + assert_equal(test['f0'], 0) + assert_equal(test['f1'], b"testNonethe" + latin1) + + def test_binary_decode_autodtype(self): + utf16 = b'\xff\xfeh\x04 \x00i\x04 \x00j\x04' + v = self.loadfunc(BytesIO(utf16), dtype=None, encoding='UTF-16') + assert_array_equal(v, np.array(utf16.decode('UTF-16').split())) + + def test_utf8_byte_encoding(self): + utf8 = b"\xcf\x96" + norm = b"norm1,norm2,norm3\n" + enc = b"test1,testNonethe" + utf8 + b",test3\n" + s = norm + enc + norm + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', VisibleDeprecationWarning) + test = np.genfromtxt(TextIO(s), + dtype=None, comments=None, delimiter=',', + encoding="bytes") + assert_(w[0].category is VisibleDeprecationWarning) + ctl = np.array([ + [b'norm1', b'norm2', b'norm3'], + [b'test1', b'testNonethe' + utf8, b'test3'], + [b'norm1', b'norm2', b'norm3']]) + assert_array_equal(test, ctl) + + def test_utf8_file(self): + utf8 = b"\xcf\x96" + with temppath() as path: + with open(path, "wb") as f: + f.write((b"test1,testNonethe" + utf8 + b",test3\n") * 2) + test = np.genfromtxt(path, dtype=None, comments=None, + delimiter=',', encoding="UTF-8") + ctl = np.array([ + ["test1", "testNonethe" + utf8.decode("UTF-8"), "test3"], + ["test1", "testNonethe" + utf8.decode("UTF-8"), "test3"]], + dtype=np.str_) + assert_array_equal(test, ctl) + + # test a mixed dtype + with open(path, "wb") as f: + f.write(b"0,testNonethe" + utf8) + test = np.genfromtxt(path, dtype=None, comments=None, + delimiter=',', encoding="UTF-8") + assert_equal(test['f0'], 0) + assert_equal(test['f1'], "testNonethe" + utf8.decode("UTF-8")) + + def test_utf8_file_nodtype_unicode(self): + # bytes encoding with non-latin1 -> unicode upcast + utf8 = '\u03d6' + latin1 = '\xf6\xfc\xf6' + + # skip test if cannot encode utf8 test string with preferred + # encoding. The preferred encoding is assumed to be the default + # encoding of open. Will need to change this for PyTest, maybe + # using pytest.mark.xfail(raises=***). + try: + encoding = locale.getpreferredencoding() + utf8.encode(encoding) + except (UnicodeError, ImportError): + pytest.skip('Skipping test_utf8_file_nodtype_unicode, ' + 'unable to encode utf8 in preferred encoding') + + with temppath() as path: + with open(path, "wt") as f: + f.write("norm1,norm2,norm3\n") + f.write("norm1," + latin1 + ",norm3\n") + f.write("test1,testNonethe" + utf8 + ",test3\n") + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', + VisibleDeprecationWarning) + test = np.genfromtxt(path, dtype=None, comments=None, + delimiter=',', encoding="bytes") + # Check for warning when encoding not specified. + assert_(w[0].category is VisibleDeprecationWarning) + ctl = np.array([ + ["norm1", "norm2", "norm3"], + ["norm1", latin1, "norm3"], + ["test1", "testNonethe" + utf8, "test3"]], + dtype=np.str_) + assert_array_equal(test, ctl) + + @pytest.mark.filterwarnings("ignore:.*recfromtxt.*:DeprecationWarning") + def test_recfromtxt(self): + # + data = TextIO('A,B\n0,1\n2,3') + kwargs = {"delimiter": ",", "missing_values": "N/A", "names": True} + test = recfromtxt(data, **kwargs) + control = np.array([(0, 1), (2, 3)], + dtype=[('A', int), ('B', int)]) + assert_(isinstance(test, np.recarray)) + assert_equal(test, control) + # + data = TextIO('A,B\n0,1\n2,N/A') + test = recfromtxt(data, dtype=None, usemask=True, **kwargs) + control = ma.array([(0, 1), (2, -1)], + mask=[(False, False), (False, True)], + dtype=[('A', int), ('B', int)]) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + assert_equal(test.A, [0, 2]) + + @pytest.mark.filterwarnings("ignore:.*recfromcsv.*:DeprecationWarning") + def test_recfromcsv(self): + # + data = TextIO('A,B\n0,1\n2,3') + kwargs = {"missing_values": "N/A", "names": True, "case_sensitive": True, + "encoding": "bytes"} + test = recfromcsv(data, dtype=None, **kwargs) + control = np.array([(0, 1), (2, 3)], + dtype=[('A', int), ('B', int)]) + assert_(isinstance(test, np.recarray)) + assert_equal(test, control) + # + data = TextIO('A,B\n0,1\n2,N/A') + test = recfromcsv(data, dtype=None, usemask=True, **kwargs) + control = ma.array([(0, 1), (2, -1)], + mask=[(False, False), (False, True)], + dtype=[('A', int), ('B', int)]) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + assert_equal(test.A, [0, 2]) + # + data = TextIO('A,B\n0,1\n2,3') + test = recfromcsv(data, missing_values='N/A',) + control = np.array([(0, 1), (2, 3)], + dtype=[('a', int), ('b', int)]) + assert_(isinstance(test, np.recarray)) + assert_equal(test, control) + # + data = TextIO('A,B\n0,1\n2,3') + dtype = [('a', int), ('b', float)] + test = recfromcsv(data, missing_values='N/A', dtype=dtype) + control = np.array([(0, 1), (2, 3)], + dtype=dtype) + assert_(isinstance(test, np.recarray)) + assert_equal(test, control) + + # gh-10394 + data = TextIO('color\n"red"\n"blue"') + test = recfromcsv(data, converters={0: lambda x: x.strip('\"')}) + control = np.array([('red',), ('blue',)], dtype=[('color', (str, 4))]) + assert_equal(test.dtype, control.dtype) + assert_equal(test, control) + + def test_max_rows(self): + # Test the `max_rows` keyword argument. + data = '1 2\n3 4\n5 6\n7 8\n9 10\n' + txt = TextIO(data) + a1 = np.genfromtxt(txt, max_rows=3) + a2 = np.genfromtxt(txt) + assert_equal(a1, [[1, 2], [3, 4], [5, 6]]) + assert_equal(a2, [[7, 8], [9, 10]]) + + # max_rows must be at least 1. + assert_raises(ValueError, np.genfromtxt, TextIO(data), max_rows=0) + + # An input with several invalid rows. + data = '1 1\n2 2\n0 \n3 3\n4 4\n5 \n6 \n7 \n' + + test = np.genfromtxt(TextIO(data), max_rows=2) + control = np.array([[1., 1.], [2., 2.]]) + assert_equal(test, control) + + # Test keywords conflict + assert_raises(ValueError, np.genfromtxt, TextIO(data), skip_footer=1, + max_rows=4) + + # Test with invalid value + assert_raises(ValueError, np.genfromtxt, TextIO(data), max_rows=4) + + # Test with invalid not raise + with suppress_warnings() as sup: + sup.filter(ConversionWarning) + + test = np.genfromtxt(TextIO(data), max_rows=4, invalid_raise=False) + control = np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]]) + assert_equal(test, control) + + test = np.genfromtxt(TextIO(data), max_rows=5, invalid_raise=False) + control = np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]]) + assert_equal(test, control) + + # Structured array with field names. + data = 'a b\n#c d\n1 1\n2 2\n#0 \n3 3\n4 4\n5 5\n' + + # Test with header, names and comments + txt = TextIO(data) + test = np.genfromtxt(txt, skip_header=1, max_rows=3, names=True) + control = np.array([(1.0, 1.0), (2.0, 2.0), (3.0, 3.0)], + dtype=[('c', ' should convert to float + # 2**34 = 17179869184 => should convert to int64 + # 2**10 = 1024 => should convert to int (int32 on 32-bit systems, + # int64 on 64-bit systems) + + data = TextIO('73786976294838206464 17179869184 1024') + + test = np.genfromtxt(data, dtype=None) + + assert_equal(test.dtype.names, ['f0', 'f1', 'f2']) + + assert_(test.dtype['f0'] == float) + assert_(test.dtype['f1'] == np.int64) + assert_(test.dtype['f2'] == np.int_) + + assert_allclose(test['f0'], 73786976294838206464.) + assert_equal(test['f1'], 17179869184) + assert_equal(test['f2'], 1024) + + def test_unpack_float_data(self): + txt = TextIO("1,2,3\n4,5,6\n7,8,9\n0.0,1.0,2.0") + a, b, c = np.loadtxt(txt, delimiter=",", unpack=True) + assert_array_equal(a, np.array([1.0, 4.0, 7.0, 0.0])) + assert_array_equal(b, np.array([2.0, 5.0, 8.0, 1.0])) + assert_array_equal(c, np.array([3.0, 6.0, 9.0, 2.0])) + + def test_unpack_structured(self): + # Regression test for gh-4341 + # Unpacking should work on structured arrays + txt = TextIO("M 21 72\nF 35 58") + dt = {'names': ('a', 'b', 'c'), 'formats': ('S1', 'i4', 'f4')} + a, b, c = np.genfromtxt(txt, dtype=dt, unpack=True) + assert_equal(a.dtype, np.dtype('S1')) + assert_equal(b.dtype, np.dtype('i4')) + assert_equal(c.dtype, np.dtype('f4')) + assert_array_equal(a, np.array([b'M', b'F'])) + assert_array_equal(b, np.array([21, 35])) + assert_array_equal(c, np.array([72., 58.])) + + def test_unpack_auto_dtype(self): + # Regression test for gh-4341 + # Unpacking should work when dtype=None + txt = TextIO("M 21 72.\nF 35 58.") + expected = (np.array(["M", "F"]), np.array([21, 35]), np.array([72., 58.])) + test = np.genfromtxt(txt, dtype=None, unpack=True, encoding="utf-8") + for arr, result in zip(expected, test): + assert_array_equal(arr, result) + assert_equal(arr.dtype, result.dtype) + + def test_unpack_single_name(self): + # Regression test for gh-4341 + # Unpacking should work when structured dtype has only one field + txt = TextIO("21\n35") + dt = {'names': ('a',), 'formats': ('i4',)} + expected = np.array([21, 35], dtype=np.int32) + test = np.genfromtxt(txt, dtype=dt, unpack=True) + assert_array_equal(expected, test) + assert_equal(expected.dtype, test.dtype) + + def test_squeeze_scalar(self): + # Regression test for gh-4341 + # Unpacking a scalar should give zero-dim output, + # even if dtype is structured + txt = TextIO("1") + dt = {'names': ('a',), 'formats': ('i4',)} + expected = np.array((1,), dtype=np.int32) + test = np.genfromtxt(txt, dtype=dt, unpack=True) + assert_array_equal(expected, test) + assert_equal((), test.shape) + assert_equal(expected.dtype, test.dtype) + + @pytest.mark.parametrize("ndim", [0, 1, 2]) + def test_ndmin_keyword(self, ndim: int): + # lets have the same behaviour of ndmin as loadtxt + # as they should be the same for non-missing values + txt = "42" + + a = np.loadtxt(StringIO(txt), ndmin=ndim) + b = np.genfromtxt(StringIO(txt), ndmin=ndim) + + assert_array_equal(a, b) + + +class TestPathUsage: + # Test that pathlib.Path can be used + def test_loadtxt(self): + with temppath(suffix='.txt') as path: + path = Path(path) + a = np.array([[1.1, 2], [3, 4]]) + np.savetxt(path, a) + x = np.loadtxt(path) + assert_array_equal(x, a) + + def test_save_load(self): + # Test that pathlib.Path instances can be used with save. + with temppath(suffix='.npy') as path: + path = Path(path) + a = np.array([[1, 2], [3, 4]], int) + np.save(path, a) + data = np.load(path) + assert_array_equal(data, a) + + def test_save_load_memmap(self): + # Test that pathlib.Path instances can be loaded mem-mapped. + with temppath(suffix='.npy') as path: + path = Path(path) + a = np.array([[1, 2], [3, 4]], int) + np.save(path, a) + data = np.load(path, mmap_mode='r') + assert_array_equal(data, a) + # close the mem-mapped file + del data + if IS_PYPY: + break_cycles() + break_cycles() + + @pytest.mark.xfail(IS_WASM, reason="memmap doesn't work correctly") + @pytest.mark.parametrize("filename_type", [Path, str]) + def test_save_load_memmap_readwrite(self, filename_type): + with temppath(suffix='.npy') as path: + path = filename_type(path) + a = np.array([[1, 2], [3, 4]], int) + np.save(path, a) + b = np.load(path, mmap_mode='r+') + a[0][0] = 5 + b[0][0] = 5 + del b # closes the file + if IS_PYPY: + break_cycles() + break_cycles() + data = np.load(path) + assert_array_equal(data, a) + + @pytest.mark.parametrize("filename_type", [Path, str]) + def test_savez_load(self, filename_type): + with temppath(suffix='.npz') as path: + path = filename_type(path) + np.savez(path, lab='place holder') + with np.load(path) as data: + assert_array_equal(data['lab'], 'place holder') + + @pytest.mark.parametrize("filename_type", [Path, str]) + def test_savez_compressed_load(self, filename_type): + with temppath(suffix='.npz') as path: + path = filename_type(path) + np.savez_compressed(path, lab='place holder') + data = np.load(path) + assert_array_equal(data['lab'], 'place holder') + data.close() + + @pytest.mark.parametrize("filename_type", [Path, str]) + def test_genfromtxt(self, filename_type): + with temppath(suffix='.txt') as path: + path = filename_type(path) + a = np.array([(1, 2), (3, 4)]) + np.savetxt(path, a) + data = np.genfromtxt(path) + assert_array_equal(a, data) + + @pytest.mark.parametrize("filename_type", [Path, str]) + @pytest.mark.filterwarnings("ignore:.*recfromtxt.*:DeprecationWarning") + def test_recfromtxt(self, filename_type): + with temppath(suffix='.txt') as path: + path = filename_type(path) + with open(path, 'w') as f: + f.write('A,B\n0,1\n2,3') + + kwargs = {"delimiter": ",", "missing_values": "N/A", "names": True} + test = recfromtxt(path, **kwargs) + control = np.array([(0, 1), (2, 3)], + dtype=[('A', int), ('B', int)]) + assert_(isinstance(test, np.recarray)) + assert_equal(test, control) + + @pytest.mark.parametrize("filename_type", [Path, str]) + @pytest.mark.filterwarnings("ignore:.*recfromcsv.*:DeprecationWarning") + def test_recfromcsv(self, filename_type): + with temppath(suffix='.txt') as path: + path = filename_type(path) + with open(path, 'w') as f: + f.write('A,B\n0,1\n2,3') + + kwargs = { + "missing_values": "N/A", "names": True, "case_sensitive": True + } + test = recfromcsv(path, dtype=None, **kwargs) + control = np.array([(0, 1), (2, 3)], + dtype=[('A', int), ('B', int)]) + assert_(isinstance(test, np.recarray)) + assert_equal(test, control) + + +def test_gzip_load(): + a = np.random.random((5, 5)) + + s = BytesIO() + f = gzip.GzipFile(fileobj=s, mode="w") + + np.save(f, a) + f.close() + s.seek(0) + + f = gzip.GzipFile(fileobj=s, mode="r") + assert_array_equal(np.load(f), a) + + +# These next two classes encode the minimal API needed to save()/load() arrays. +# The `test_ducktyping` ensures they work correctly +class JustWriter: + def __init__(self, base): + self.base = base + + def write(self, s): + return self.base.write(s) + + def flush(self): + return self.base.flush() + +class JustReader: + def __init__(self, base): + self.base = base + + def read(self, n): + return self.base.read(n) + + def seek(self, off, whence=0): + return self.base.seek(off, whence) + + +def test_ducktyping(): + a = np.random.random((5, 5)) + + s = BytesIO() + f = JustWriter(s) + + np.save(f, a) + f.flush() + s.seek(0) + + f = JustReader(s) + assert_array_equal(np.load(f), a) + + +def test_gzip_loadtxt(): + # Thanks to another windows brokenness, we can't use + # NamedTemporaryFile: a file created from this function cannot be + # reopened by another open call. So we first put the gzipped string + # of the test reference array, write it to a securely opened file, + # which is then read from by the loadtxt function + s = BytesIO() + g = gzip.GzipFile(fileobj=s, mode='w') + g.write(b'1 2 3\n') + g.close() + + s.seek(0) + with temppath(suffix='.gz') as name: + with open(name, 'wb') as f: + f.write(s.read()) + res = np.loadtxt(name) + s.close() + + assert_array_equal(res, [1, 2, 3]) + + +def test_gzip_loadtxt_from_string(): + s = BytesIO() + f = gzip.GzipFile(fileobj=s, mode="w") + f.write(b'1 2 3\n') + f.close() + s.seek(0) + + f = gzip.GzipFile(fileobj=s, mode="r") + assert_array_equal(np.loadtxt(f), [1, 2, 3]) + + +def test_npzfile_dict(): + s = BytesIO() + x = np.zeros((3, 3)) + y = np.zeros((3, 3)) + + np.savez(s, x=x, y=y) + s.seek(0) + + z = np.load(s) + + assert_('x' in z) + assert_('y' in z) + assert_('x' in z.keys()) + assert_('y' in z.keys()) + + for f, a in z.items(): + assert_(f in ['x', 'y']) + assert_equal(a.shape, (3, 3)) + + for a in z.values(): + assert_equal(a.shape, (3, 3)) + + assert_(len(z.items()) == 2) + + for f in z: + assert_(f in ['x', 'y']) + + assert_('x' in z.keys()) + assert (z.get('x') == z['x']).all() + + +@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") +def test_load_refcount(): + # Check that objects returned by np.load are directly freed based on + # their refcount, rather than needing the gc to collect them. + + f = BytesIO() + np.savez(f, [1, 2, 3]) + f.seek(0) + + with assert_no_gc_cycles(): + np.load(f) + + f.seek(0) + dt = [("a", 'u1', 2), ("b", 'u1', 2)] + with assert_no_gc_cycles(): + x = np.loadtxt(TextIO("0 1 2 3"), dtype=dt) + assert_equal(x, np.array([((0, 1), (2, 3))], dtype=dt)) + + +def test_load_multiple_arrays_until_eof(): + f = BytesIO() + np.save(f, 1) + np.save(f, 2) + f.seek(0) + out1 = np.load(f) + assert out1 == 1 + out2 = np.load(f) + assert out2 == 2 + with pytest.raises(EOFError): + np.load(f) + + +def test_savez_nopickle(): + obj_array = np.array([1, 'hello'], dtype=object) + with temppath(suffix='.npz') as tmp: + np.savez(tmp, obj_array) + + with temppath(suffix='.npz') as tmp: + with pytest.raises(ValueError, match="Object arrays cannot be saved when.*"): + np.savez(tmp, obj_array, allow_pickle=False) + + with temppath(suffix='.npz') as tmp: + np.savez_compressed(tmp, obj_array) + + with temppath(suffix='.npz') as tmp: + with pytest.raises(ValueError, match="Object arrays cannot be saved when.*"): + np.savez_compressed(tmp, obj_array, allow_pickle=False) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_loadtxt.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_loadtxt.py new file mode 100644 index 0000000..a2022a0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_loadtxt.py @@ -0,0 +1,1101 @@ +""" +Tests specific to `np.loadtxt` added during the move of loadtxt to be backed +by C code. +These tests complement those found in `test_io.py`. +""" + +import os +import sys +from io import StringIO +from tempfile import NamedTemporaryFile, mkstemp + +import pytest + +import numpy as np +from numpy.ma.testutils import assert_equal +from numpy.testing import HAS_REFCOUNT, IS_PYPY, assert_array_equal + + +def test_scientific_notation(): + """Test that both 'e' and 'E' are parsed correctly.""" + data = StringIO( + + "1.0e-1,2.0E1,3.0\n" + "4.0e-2,5.0E-1,6.0\n" + "7.0e-3,8.0E1,9.0\n" + "0.0e-4,1.0E-1,2.0" + + ) + expected = np.array( + [[0.1, 20., 3.0], [0.04, 0.5, 6], [0.007, 80., 9], [0, 0.1, 2]] + ) + assert_array_equal(np.loadtxt(data, delimiter=","), expected) + + +@pytest.mark.parametrize("comment", ["..", "//", "@-", "this is a comment:"]) +def test_comment_multiple_chars(comment): + content = "# IGNORE\n1.5, 2.5# ABC\n3.0,4.0# XXX\n5.5,6.0\n" + txt = StringIO(content.replace("#", comment)) + a = np.loadtxt(txt, delimiter=",", comments=comment) + assert_equal(a, [[1.5, 2.5], [3.0, 4.0], [5.5, 6.0]]) + + +@pytest.fixture +def mixed_types_structured(): + """ + Fixture providing heterogeneous input data with a structured dtype, along + with the associated structured array. + """ + data = StringIO( + + "1000;2.4;alpha;-34\n" + "2000;3.1;beta;29\n" + "3500;9.9;gamma;120\n" + "4090;8.1;delta;0\n" + "5001;4.4;epsilon;-99\n" + "6543;7.8;omega;-1\n" + + ) + dtype = np.dtype( + [('f0', np.uint16), ('f1', np.float64), ('f2', 'S7'), ('f3', np.int8)] + ) + expected = np.array( + [ + (1000, 2.4, "alpha", -34), + (2000, 3.1, "beta", 29), + (3500, 9.9, "gamma", 120), + (4090, 8.1, "delta", 0), + (5001, 4.4, "epsilon", -99), + (6543, 7.8, "omega", -1) + ], + dtype=dtype + ) + return data, dtype, expected + + +@pytest.mark.parametrize('skiprows', [0, 1, 2, 3]) +def test_structured_dtype_and_skiprows_no_empty_lines( + skiprows, mixed_types_structured): + data, dtype, expected = mixed_types_structured + a = np.loadtxt(data, dtype=dtype, delimiter=";", skiprows=skiprows) + assert_array_equal(a, expected[skiprows:]) + + +def test_unpack_structured(mixed_types_structured): + data, dtype, expected = mixed_types_structured + + a, b, c, d = np.loadtxt(data, dtype=dtype, delimiter=";", unpack=True) + assert_array_equal(a, expected["f0"]) + assert_array_equal(b, expected["f1"]) + assert_array_equal(c, expected["f2"]) + assert_array_equal(d, expected["f3"]) + + +def test_structured_dtype_with_shape(): + dtype = np.dtype([("a", "u1", 2), ("b", "u1", 2)]) + data = StringIO("0,1,2,3\n6,7,8,9\n") + expected = np.array([((0, 1), (2, 3)), ((6, 7), (8, 9))], dtype=dtype) + assert_array_equal(np.loadtxt(data, delimiter=",", dtype=dtype), expected) + + +def test_structured_dtype_with_multi_shape(): + dtype = np.dtype([("a", "u1", (2, 2))]) + data = StringIO("0 1 2 3\n") + expected = np.array([(((0, 1), (2, 3)),)], dtype=dtype) + assert_array_equal(np.loadtxt(data, dtype=dtype), expected) + + +def test_nested_structured_subarray(): + # Test from gh-16678 + point = np.dtype([('x', float), ('y', float)]) + dt = np.dtype([('code', int), ('points', point, (2,))]) + data = StringIO("100,1,2,3,4\n200,5,6,7,8\n") + expected = np.array( + [ + (100, [(1., 2.), (3., 4.)]), + (200, [(5., 6.), (7., 8.)]), + ], + dtype=dt + ) + assert_array_equal(np.loadtxt(data, dtype=dt, delimiter=","), expected) + + +def test_structured_dtype_offsets(): + # An aligned structured dtype will have additional padding + dt = np.dtype("i1, i4, i1, i4, i1, i4", align=True) + data = StringIO("1,2,3,4,5,6\n7,8,9,10,11,12\n") + expected = np.array([(1, 2, 3, 4, 5, 6), (7, 8, 9, 10, 11, 12)], dtype=dt) + assert_array_equal(np.loadtxt(data, delimiter=",", dtype=dt), expected) + + +@pytest.mark.parametrize("param", ("skiprows", "max_rows")) +def test_exception_negative_row_limits(param): + """skiprows and max_rows should raise for negative parameters.""" + with pytest.raises(ValueError, match="argument must be nonnegative"): + np.loadtxt("foo.bar", **{param: -3}) + + +@pytest.mark.parametrize("param", ("skiprows", "max_rows")) +def test_exception_noninteger_row_limits(param): + with pytest.raises(TypeError, match="argument must be an integer"): + np.loadtxt("foo.bar", **{param: 1.0}) + + +@pytest.mark.parametrize( + "data, shape", + [ + ("1 2 3 4 5\n", (1, 5)), # Single row + ("1\n2\n3\n4\n5\n", (5, 1)), # Single column + ] +) +def test_ndmin_single_row_or_col(data, shape): + arr = np.array([1, 2, 3, 4, 5]) + arr2d = arr.reshape(shape) + + assert_array_equal(np.loadtxt(StringIO(data), dtype=int), arr) + assert_array_equal(np.loadtxt(StringIO(data), dtype=int, ndmin=0), arr) + assert_array_equal(np.loadtxt(StringIO(data), dtype=int, ndmin=1), arr) + assert_array_equal(np.loadtxt(StringIO(data), dtype=int, ndmin=2), arr2d) + + +@pytest.mark.parametrize("badval", [-1, 3, None, "plate of shrimp"]) +def test_bad_ndmin(badval): + with pytest.raises(ValueError, match="Illegal value of ndmin keyword"): + np.loadtxt("foo.bar", ndmin=badval) + + +@pytest.mark.parametrize( + "ws", + ( + " ", # space + "\t", # tab + "\u2003", # em + "\u00A0", # non-break + "\u3000", # ideographic space + ) +) +def test_blank_lines_spaces_delimit(ws): + txt = StringIO( + f"1 2{ws}30\n\n{ws}\n" + f"4 5 60{ws}\n {ws} \n" + f"7 8 {ws} 90\n # comment\n" + f"3 2 1" + ) + # NOTE: It is unclear that the ` # comment` should succeed. Except + # for delimiter=None, which should use any whitespace (and maybe + # should just be implemented closer to Python + expected = np.array([[1, 2, 30], [4, 5, 60], [7, 8, 90], [3, 2, 1]]) + assert_equal( + np.loadtxt(txt, dtype=int, delimiter=None, comments="#"), expected + ) + + +def test_blank_lines_normal_delimiter(): + txt = StringIO('1,2,30\n\n4,5,60\n\n7,8,90\n# comment\n3,2,1') + expected = np.array([[1, 2, 30], [4, 5, 60], [7, 8, 90], [3, 2, 1]]) + assert_equal( + np.loadtxt(txt, dtype=int, delimiter=',', comments="#"), expected + ) + + +@pytest.mark.parametrize("dtype", (float, object)) +def test_maxrows_no_blank_lines(dtype): + txt = StringIO("1.5,2.5\n3.0,4.0\n5.5,6.0") + res = np.loadtxt(txt, dtype=dtype, delimiter=",", max_rows=2) + assert_equal(res.dtype, dtype) + assert_equal(res, np.array([["1.5", "2.5"], ["3.0", "4.0"]], dtype=dtype)) + + +@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") +@pytest.mark.parametrize("dtype", (np.dtype("f8"), np.dtype("i2"))) +def test_exception_message_bad_values(dtype): + txt = StringIO("1,2\n3,XXX\n5,6") + msg = f"could not convert string 'XXX' to {dtype} at row 1, column 2" + with pytest.raises(ValueError, match=msg): + np.loadtxt(txt, dtype=dtype, delimiter=",") + + +def test_converters_negative_indices(): + txt = StringIO('1.5,2.5\n3.0,XXX\n5.5,6.0') + conv = {-1: lambda s: np.nan if s == 'XXX' else float(s)} + expected = np.array([[1.5, 2.5], [3.0, np.nan], [5.5, 6.0]]) + res = np.loadtxt(txt, dtype=np.float64, delimiter=",", converters=conv) + assert_equal(res, expected) + + +def test_converters_negative_indices_with_usecols(): + txt = StringIO('1.5,2.5,3.5\n3.0,4.0,XXX\n5.5,6.0,7.5\n') + conv = {-1: lambda s: np.nan if s == 'XXX' else float(s)} + expected = np.array([[1.5, 3.5], [3.0, np.nan], [5.5, 7.5]]) + res = np.loadtxt( + txt, + dtype=np.float64, + delimiter=",", + converters=conv, + usecols=[0, -1], + ) + assert_equal(res, expected) + + # Second test with variable number of rows: + res = np.loadtxt(StringIO('''0,1,2\n0,1,2,3,4'''), delimiter=",", + usecols=[0, -1], converters={-1: (lambda x: -1)}) + assert_array_equal(res, [[0, -1], [0, -1]]) + + +def test_ragged_error(): + rows = ["1,2,3", "1,2,3", "4,3,2,1"] + with pytest.raises(ValueError, + match="the number of columns changed from 3 to 4 at row 3"): + np.loadtxt(rows, delimiter=",") + + +def test_ragged_usecols(): + # usecols, and negative ones, work even with varying number of columns. + txt = StringIO("0,0,XXX\n0,XXX,0,XXX\n0,XXX,XXX,0,XXX\n") + expected = np.array([[0, 0], [0, 0], [0, 0]]) + res = np.loadtxt(txt, dtype=float, delimiter=",", usecols=[0, -2]) + assert_equal(res, expected) + + txt = StringIO("0,0,XXX\n0\n0,XXX,XXX,0,XXX\n") + with pytest.raises(ValueError, + match="invalid column index -2 at row 2 with 1 columns"): + # There is no -2 column in the second row: + np.loadtxt(txt, dtype=float, delimiter=",", usecols=[0, -2]) + + +def test_empty_usecols(): + txt = StringIO("0,0,XXX\n0,XXX,0,XXX\n0,XXX,XXX,0,XXX\n") + res = np.loadtxt(txt, dtype=np.dtype([]), delimiter=",", usecols=[]) + assert res.shape == (3,) + assert res.dtype == np.dtype([]) + + +@pytest.mark.parametrize("c1", ["a", "の", "🫕"]) +@pytest.mark.parametrize("c2", ["a", "の", "🫕"]) +def test_large_unicode_characters(c1, c2): + # c1 and c2 span ascii, 16bit and 32bit range. + txt = StringIO(f"a,{c1},c,1.0\ne,{c2},2.0,g") + res = np.loadtxt(txt, dtype=np.dtype('U12'), delimiter=",") + expected = np.array( + [f"a,{c1},c,1.0".split(","), f"e,{c2},2.0,g".split(",")], + dtype=np.dtype('U12') + ) + assert_equal(res, expected) + + +def test_unicode_with_converter(): + txt = StringIO("cat,dog\nαβγ,δεζ\nabc,def\n") + conv = {0: lambda s: s.upper()} + res = np.loadtxt( + txt, + dtype=np.dtype("U12"), + converters=conv, + delimiter=",", + encoding=None + ) + expected = np.array([['CAT', 'dog'], ['ΑΒΓ', 'δεζ'], ['ABC', 'def']]) + assert_equal(res, expected) + + +def test_converter_with_structured_dtype(): + txt = StringIO('1.5,2.5,Abc\n3.0,4.0,dEf\n5.5,6.0,ghI\n') + dt = np.dtype([('m', np.int32), ('r', np.float32), ('code', 'U8')]) + conv = {0: lambda s: int(10 * float(s)), -1: lambda s: s.upper()} + res = np.loadtxt(txt, dtype=dt, delimiter=",", converters=conv) + expected = np.array( + [(15, 2.5, 'ABC'), (30, 4.0, 'DEF'), (55, 6.0, 'GHI')], dtype=dt + ) + assert_equal(res, expected) + + +def test_converter_with_unicode_dtype(): + """ + With the 'bytes' encoding, tokens are encoded prior to being + passed to the converter. This means that the output of the converter may + be bytes instead of unicode as expected by `read_rows`. + + This test checks that outputs from the above scenario are properly decoded + prior to parsing by `read_rows`. + """ + txt = StringIO('abc,def\nrst,xyz') + conv = bytes.upper + res = np.loadtxt( + txt, dtype=np.dtype("U3"), converters=conv, delimiter=",", + encoding="bytes") + expected = np.array([['ABC', 'DEF'], ['RST', 'XYZ']]) + assert_equal(res, expected) + + +def test_read_huge_row(): + row = "1.5, 2.5," * 50000 + row = row[:-1] + "\n" + txt = StringIO(row * 2) + res = np.loadtxt(txt, delimiter=",", dtype=float) + assert_equal(res, np.tile([1.5, 2.5], (2, 50000))) + + +@pytest.mark.parametrize("dtype", "edfgFDG") +def test_huge_float(dtype): + # Covers a non-optimized path that is rarely taken: + field = "0" * 1000 + ".123456789" + dtype = np.dtype(dtype) + value = np.loadtxt([field], dtype=dtype)[()] + assert value == dtype.type("0.123456789") + + +@pytest.mark.parametrize( + ("given_dtype", "expected_dtype"), + [ + ("S", np.dtype("S5")), + ("U", np.dtype("U5")), + ], +) +def test_string_no_length_given(given_dtype, expected_dtype): + """ + The given dtype is just 'S' or 'U' with no length. In these cases, the + length of the resulting dtype is determined by the longest string found + in the file. + """ + txt = StringIO("AAA,5-1\nBBBBB,0-3\nC,4-9\n") + res = np.loadtxt(txt, dtype=given_dtype, delimiter=",") + expected = np.array( + [['AAA', '5-1'], ['BBBBB', '0-3'], ['C', '4-9']], dtype=expected_dtype + ) + assert_equal(res, expected) + assert_equal(res.dtype, expected_dtype) + + +def test_float_conversion(): + """ + Some tests that the conversion to float64 works as accurately as the + Python built-in `float` function. In a naive version of the float parser, + these strings resulted in values that were off by an ULP or two. + """ + strings = [ + '0.9999999999999999', + '9876543210.123456', + '5.43215432154321e+300', + '0.901', + '0.333', + ] + txt = StringIO('\n'.join(strings)) + res = np.loadtxt(txt) + expected = np.array([float(s) for s in strings]) + assert_equal(res, expected) + + +def test_bool(): + # Simple test for bool via integer + txt = StringIO("1, 0\n10, -1") + res = np.loadtxt(txt, dtype=bool, delimiter=",") + assert res.dtype == bool + assert_array_equal(res, [[True, False], [True, True]]) + # Make sure we use only 1 and 0 on the byte level: + assert_array_equal(res.view(np.uint8), [[1, 0], [1, 1]]) + + +@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") +@pytest.mark.parametrize("dtype", np.typecodes["AllInteger"]) +@pytest.mark.filterwarnings("error:.*integer via a float.*:DeprecationWarning") +def test_integer_signs(dtype): + dtype = np.dtype(dtype) + assert np.loadtxt(["+2"], dtype=dtype) == 2 + if dtype.kind == "u": + with pytest.raises(ValueError): + np.loadtxt(["-1\n"], dtype=dtype) + else: + assert np.loadtxt(["-2\n"], dtype=dtype) == -2 + + for sign in ["++", "+-", "--", "-+"]: + with pytest.raises(ValueError): + np.loadtxt([f"{sign}2\n"], dtype=dtype) + + +@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") +@pytest.mark.parametrize("dtype", np.typecodes["AllInteger"]) +@pytest.mark.filterwarnings("error:.*integer via a float.*:DeprecationWarning") +def test_implicit_cast_float_to_int_fails(dtype): + txt = StringIO("1.0, 2.1, 3.7\n4, 5, 6") + with pytest.raises(ValueError): + np.loadtxt(txt, dtype=dtype, delimiter=",") + +@pytest.mark.parametrize("dtype", (np.complex64, np.complex128)) +@pytest.mark.parametrize("with_parens", (False, True)) +def test_complex_parsing(dtype, with_parens): + s = "(1.0-2.5j),3.75,(7+-5.0j)\n(4),(-19e2j),(0)" + if not with_parens: + s = s.replace("(", "").replace(")", "") + + res = np.loadtxt(StringIO(s), dtype=dtype, delimiter=",") + expected = np.array( + [[1.0 - 2.5j, 3.75, 7 - 5j], [4.0, -1900j, 0]], dtype=dtype + ) + assert_equal(res, expected) + + +def test_read_from_generator(): + def gen(): + for i in range(4): + yield f"{i},{2 * i},{i**2}" + + res = np.loadtxt(gen(), dtype=int, delimiter=",") + expected = np.array([[0, 0, 0], [1, 2, 1], [2, 4, 4], [3, 6, 9]]) + assert_equal(res, expected) + + +def test_read_from_generator_multitype(): + def gen(): + for i in range(3): + yield f"{i} {i / 4}" + + res = np.loadtxt(gen(), dtype="i, d", delimiter=" ") + expected = np.array([(0, 0.0), (1, 0.25), (2, 0.5)], dtype="i, d") + assert_equal(res, expected) + + +def test_read_from_bad_generator(): + def gen(): + yield from ["1,2", b"3, 5", 12738] + + with pytest.raises( + TypeError, match=r"non-string returned while reading data"): + np.loadtxt(gen(), dtype="i, i", delimiter=",") + + +@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") +def test_object_cleanup_on_read_error(): + sentinel = object() + already_read = 0 + + def conv(x): + nonlocal already_read + if already_read > 4999: + raise ValueError("failed half-way through!") + already_read += 1 + return sentinel + + txt = StringIO("x\n" * 10000) + + with pytest.raises(ValueError, match="at row 5000, column 1"): + np.loadtxt(txt, dtype=object, converters={0: conv}) + + assert sys.getrefcount(sentinel) == 2 + + +@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") +def test_character_not_bytes_compatible(): + """Test exception when a character cannot be encoded as 'S'.""" + data = StringIO("–") # == \u2013 + with pytest.raises(ValueError): + np.loadtxt(data, dtype="S5") + + +@pytest.mark.parametrize("conv", (0, [float], "")) +def test_invalid_converter(conv): + msg = ( + "converters must be a dictionary mapping columns to converter " + "functions or a single callable." + ) + with pytest.raises(TypeError, match=msg): + np.loadtxt(StringIO("1 2\n3 4"), converters=conv) + + +@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") +def test_converters_dict_raises_non_integer_key(): + with pytest.raises(TypeError, match="keys of the converters dict"): + np.loadtxt(StringIO("1 2\n3 4"), converters={"a": int}) + with pytest.raises(TypeError, match="keys of the converters dict"): + np.loadtxt(StringIO("1 2\n3 4"), converters={"a": int}, usecols=0) + + +@pytest.mark.parametrize("bad_col_ind", (3, -3)) +def test_converters_dict_raises_non_col_key(bad_col_ind): + data = StringIO("1 2\n3 4") + with pytest.raises(ValueError, match="converter specified for column"): + np.loadtxt(data, converters={bad_col_ind: int}) + + +def test_converters_dict_raises_val_not_callable(): + with pytest.raises(TypeError, + match="values of the converters dictionary must be callable"): + np.loadtxt(StringIO("1 2\n3 4"), converters={0: 1}) + + +@pytest.mark.parametrize("q", ('"', "'", "`")) +def test_quoted_field(q): + txt = StringIO( + f"{q}alpha, x{q}, 2.5\n{q}beta, y{q}, 4.5\n{q}gamma, z{q}, 5.0\n" + ) + dtype = np.dtype([('f0', 'U8'), ('f1', np.float64)]) + expected = np.array( + [("alpha, x", 2.5), ("beta, y", 4.5), ("gamma, z", 5.0)], dtype=dtype + ) + + res = np.loadtxt(txt, dtype=dtype, delimiter=",", quotechar=q) + assert_array_equal(res, expected) + + +@pytest.mark.parametrize("q", ('"', "'", "`")) +def test_quoted_field_with_whitepace_delimiter(q): + txt = StringIO( + f"{q}alpha, x{q} 2.5\n{q}beta, y{q} 4.5\n{q}gamma, z{q} 5.0\n" + ) + dtype = np.dtype([('f0', 'U8'), ('f1', np.float64)]) + expected = np.array( + [("alpha, x", 2.5), ("beta, y", 4.5), ("gamma, z", 5.0)], dtype=dtype + ) + + res = np.loadtxt(txt, dtype=dtype, delimiter=None, quotechar=q) + assert_array_equal(res, expected) + + +def test_quote_support_default(): + """Support for quoted fields is disabled by default.""" + txt = StringIO('"lat,long", 45, 30\n') + dtype = np.dtype([('f0', 'U24'), ('f1', np.float64), ('f2', np.float64)]) + + with pytest.raises(ValueError, + match="the dtype passed requires 3 columns but 4 were"): + np.loadtxt(txt, dtype=dtype, delimiter=",") + + # Enable quoting support with non-None value for quotechar param + txt.seek(0) + expected = np.array([("lat,long", 45., 30.)], dtype=dtype) + + res = np.loadtxt(txt, dtype=dtype, delimiter=",", quotechar='"') + assert_array_equal(res, expected) + + +@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") +def test_quotechar_multichar_error(): + txt = StringIO("1,2\n3,4") + msg = r".*must be a single unicode character or None" + with pytest.raises(TypeError, match=msg): + np.loadtxt(txt, delimiter=",", quotechar="''") + + +def test_comment_multichar_error_with_quote(): + txt = StringIO("1,2\n3,4") + msg = ( + "when multiple comments or a multi-character comment is given, " + "quotes are not supported." + ) + with pytest.raises(ValueError, match=msg): + np.loadtxt(txt, delimiter=",", comments="123", quotechar='"') + with pytest.raises(ValueError, match=msg): + np.loadtxt(txt, delimiter=",", comments=["#", "%"], quotechar='"') + + # A single character string in a tuple is unpacked though: + res = np.loadtxt(txt, delimiter=",", comments=("#",), quotechar="'") + assert_equal(res, [[1, 2], [3, 4]]) + + +def test_structured_dtype_with_quotes(): + data = StringIO( + + "1000;2.4;'alpha';-34\n" + "2000;3.1;'beta';29\n" + "3500;9.9;'gamma';120\n" + "4090;8.1;'delta';0\n" + "5001;4.4;'epsilon';-99\n" + "6543;7.8;'omega';-1\n" + + ) + dtype = np.dtype( + [('f0', np.uint16), ('f1', np.float64), ('f2', 'S7'), ('f3', np.int8)] + ) + expected = np.array( + [ + (1000, 2.4, "alpha", -34), + (2000, 3.1, "beta", 29), + (3500, 9.9, "gamma", 120), + (4090, 8.1, "delta", 0), + (5001, 4.4, "epsilon", -99), + (6543, 7.8, "omega", -1) + ], + dtype=dtype + ) + res = np.loadtxt(data, dtype=dtype, delimiter=";", quotechar="'") + assert_array_equal(res, expected) + + +def test_quoted_field_is_not_empty(): + txt = StringIO('1\n\n"4"\n""') + expected = np.array(["1", "4", ""], dtype="U1") + res = np.loadtxt(txt, delimiter=",", dtype="U1", quotechar='"') + assert_equal(res, expected) + +def test_quoted_field_is_not_empty_nonstrict(): + # Same as test_quoted_field_is_not_empty but check that we are not strict + # about missing closing quote (this is the `csv.reader` default also) + txt = StringIO('1\n\n"4"\n"') + expected = np.array(["1", "4", ""], dtype="U1") + res = np.loadtxt(txt, delimiter=",", dtype="U1", quotechar='"') + assert_equal(res, expected) + +def test_consecutive_quotechar_escaped(): + txt = StringIO('"Hello, my name is ""Monty""!"') + expected = np.array('Hello, my name is "Monty"!', dtype="U40") + res = np.loadtxt(txt, dtype="U40", delimiter=",", quotechar='"') + assert_equal(res, expected) + + +@pytest.mark.parametrize("data", ("", "\n\n\n", "# 1 2 3\n# 4 5 6\n")) +@pytest.mark.parametrize("ndmin", (0, 1, 2)) +@pytest.mark.parametrize("usecols", [None, (1, 2, 3)]) +def test_warn_on_no_data(data, ndmin, usecols): + """Check that a UserWarning is emitted when no data is read from input.""" + if usecols is not None: + expected_shape = (0, 3) + elif ndmin == 2: + expected_shape = (0, 1) # guess a single column?! + else: + expected_shape = (0,) + + txt = StringIO(data) + with pytest.warns(UserWarning, match="input contained no data"): + res = np.loadtxt(txt, ndmin=ndmin, usecols=usecols) + assert res.shape == expected_shape + + with NamedTemporaryFile(mode="w") as fh: + fh.write(data) + fh.seek(0) + with pytest.warns(UserWarning, match="input contained no data"): + res = np.loadtxt(txt, ndmin=ndmin, usecols=usecols) + assert res.shape == expected_shape + +@pytest.mark.parametrize("skiprows", (2, 3)) +def test_warn_on_skipped_data(skiprows): + data = "1 2 3\n4 5 6" + txt = StringIO(data) + with pytest.warns(UserWarning, match="input contained no data"): + np.loadtxt(txt, skiprows=skiprows) + + +@pytest.mark.parametrize(["dtype", "value"], [ + ("i2", 0x0001), ("u2", 0x0001), + ("i4", 0x00010203), ("u4", 0x00010203), + ("i8", 0x0001020304050607), ("u8", 0x0001020304050607), + # The following values are constructed to lead to unique bytes: + ("float16", 3.07e-05), + ("float32", 9.2557e-41), ("complex64", 9.2557e-41 + 2.8622554e-29j), + ("float64", -1.758571353180402e-24), + # Here and below, the repr side-steps a small loss of precision in + # complex `str` in PyPy (which is probably fine, as repr works): + ("complex128", repr(5.406409232372729e-29 - 1.758571353180402e-24j)), + # Use integer values that fit into double. Everything else leads to + # problems due to longdoubles going via double and decimal strings + # causing rounding errors. + ("longdouble", 0x01020304050607), + ("clongdouble", repr(0x01020304050607 + (0x00121314151617 * 1j))), + ("U2", "\U00010203\U000a0b0c")]) +@pytest.mark.parametrize("swap", [True, False]) +def test_byteswapping_and_unaligned(dtype, value, swap): + # Try to create "interesting" values within the valid unicode range: + dtype = np.dtype(dtype) + data = [f"x,{value}\n"] # repr as PyPy `str` truncates some + if swap: + dtype = dtype.newbyteorder() + full_dt = np.dtype([("a", "S1"), ("b", dtype)], align=False) + # The above ensures that the interesting "b" field is unaligned: + assert full_dt.fields["b"][1] == 1 + res = np.loadtxt(data, dtype=full_dt, delimiter=",", + max_rows=1) # max-rows prevents over-allocation + assert res["b"] == dtype.type(value) + + +@pytest.mark.parametrize("dtype", + np.typecodes["AllInteger"] + "efdFD" + "?") +def test_unicode_whitespace_stripping(dtype): + # Test that all numeric types (and bool) strip whitespace correctly + # \u202F is a narrow no-break space, `\n` is just a whitespace if quoted. + # Currently, skip float128 as it did not always support this and has no + # "custom" parsing: + txt = StringIO(' 3 ,"\u202F2\n"') + res = np.loadtxt(txt, dtype=dtype, delimiter=",", quotechar='"') + assert_array_equal(res, np.array([3, 2]).astype(dtype)) + + +@pytest.mark.parametrize("dtype", "FD") +def test_unicode_whitespace_stripping_complex(dtype): + # Complex has a few extra cases since it has two components and + # parentheses + line = " 1 , 2+3j , ( 4+5j ), ( 6+-7j ) , 8j , ( 9j ) \n" + data = [line, line.replace(" ", "\u202F")] + res = np.loadtxt(data, dtype=dtype, delimiter=',') + assert_array_equal(res, np.array([[1, 2 + 3j, 4 + 5j, 6 - 7j, 8j, 9j]] * 2)) + + +@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") +@pytest.mark.parametrize("dtype", "FD") +@pytest.mark.parametrize("field", + ["1 +2j", "1+ 2j", "1+2 j", "1+-+3", "(1j", "(1", "(1+2j", "1+2j)"]) +def test_bad_complex(dtype, field): + with pytest.raises(ValueError): + np.loadtxt([field + "\n"], dtype=dtype, delimiter=",") + + +@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") +@pytest.mark.parametrize("dtype", + np.typecodes["AllInteger"] + "efgdFDG" + "?") +def test_nul_character_error(dtype): + # Test that a \0 character is correctly recognized as an error even if + # what comes before is valid (not everything gets parsed internally). + if dtype.lower() == "g": + pytest.xfail("longdouble/clongdouble assignment may misbehave.") + with pytest.raises(ValueError): + np.loadtxt(["1\000"], dtype=dtype, delimiter=",", quotechar='"') + + +@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") +@pytest.mark.parametrize("dtype", + np.typecodes["AllInteger"] + "efgdFDG" + "?") +def test_no_thousands_support(dtype): + # Mainly to document behaviour, Python supports thousands like 1_1. + # (e and G may end up using different conversion and support it, this is + # a bug but happens...) + if dtype == "e": + pytest.skip("half assignment currently uses Python float converter") + if dtype in "eG": + pytest.xfail("clongdouble assignment is buggy (uses `complex`?).") + + assert int("1_1") == float("1_1") == complex("1_1") == 11 + with pytest.raises(ValueError): + np.loadtxt(["1_1\n"], dtype=dtype) + + +@pytest.mark.parametrize("data", [ + ["1,2\n", "2\n,3\n"], + ["1,2\n", "2\r,3\n"]]) +def test_bad_newline_in_iterator(data): + # In NumPy <=1.22 this was accepted, because newlines were completely + # ignored when the input was an iterable. This could be changed, but right + # now, we raise an error. + msg = "Found an unquoted embedded newline within a single line" + with pytest.raises(ValueError, match=msg): + np.loadtxt(data, delimiter=",") + + +@pytest.mark.parametrize("data", [ + ["1,2\n", "2,3\r\n"], # a universal newline + ["1,2\n", "'2\n',3\n"], # a quoted newline + ["1,2\n", "'2\r',3\n"], + ["1,2\n", "'2\r\n',3\n"], +]) +def test_good_newline_in_iterator(data): + # The quoted newlines will be untransformed here, but are just whitespace. + res = np.loadtxt(data, delimiter=",", quotechar="'") + assert_array_equal(res, [[1., 2.], [2., 3.]]) + + +@pytest.mark.parametrize("newline", ["\n", "\r", "\r\n"]) +def test_universal_newlines_quoted(newline): + # Check that universal newline support within the tokenizer is not applied + # to quoted fields. (note that lines must end in newline or quoted + # fields will not include a newline at all) + data = ['1,"2\n"\n', '3,"4\n', '1"\n'] + data = [row.replace("\n", newline) for row in data] + res = np.loadtxt(data, dtype=object, delimiter=",", quotechar='"') + assert_array_equal(res, [['1', f'2{newline}'], ['3', f'4{newline}1']]) + + +def test_null_character(): + # Basic tests to check that the NUL character is not special: + res = np.loadtxt(["1\0002\0003\n", "4\0005\0006"], delimiter="\000") + assert_array_equal(res, [[1, 2, 3], [4, 5, 6]]) + + # Also not as part of a field (avoid unicode/arrays as unicode strips \0) + res = np.loadtxt(["1\000,2\000,3\n", "4\000,5\000,6"], + delimiter=",", dtype=object) + assert res.tolist() == [["1\000", "2\000", "3"], ["4\000", "5\000", "6"]] + + +def test_iterator_fails_getting_next_line(): + class BadSequence: + def __len__(self): + return 100 + + def __getitem__(self, item): + if item == 50: + raise RuntimeError("Bad things happened!") + return f"{item}, {item + 1}" + + with pytest.raises(RuntimeError, match="Bad things happened!"): + np.loadtxt(BadSequence(), dtype=int, delimiter=",") + + +class TestCReaderUnitTests: + # These are internal tests for path that should not be possible to hit + # unless things go very very wrong somewhere. + def test_not_an_filelike(self): + with pytest.raises(AttributeError, match=".*read"): + np._core._multiarray_umath._load_from_filelike( + object(), dtype=np.dtype("i"), filelike=True) + + def test_filelike_read_fails(self): + # Can only be reached if loadtxt opens the file, so it is hard to do + # via the public interface (although maybe not impossible considering + # the current "DataClass" backing). + class BadFileLike: + counter = 0 + + def read(self, size): + self.counter += 1 + if self.counter > 20: + raise RuntimeError("Bad bad bad!") + return "1,2,3\n" + + with pytest.raises(RuntimeError, match="Bad bad bad!"): + np._core._multiarray_umath._load_from_filelike( + BadFileLike(), dtype=np.dtype("i"), filelike=True) + + def test_filelike_bad_read(self): + # Can only be reached if loadtxt opens the file, so it is hard to do + # via the public interface (although maybe not impossible considering + # the current "DataClass" backing). + + class BadFileLike: + counter = 0 + + def read(self, size): + return 1234 # not a string! + + with pytest.raises(TypeError, + match="non-string returned while reading data"): + np._core._multiarray_umath._load_from_filelike( + BadFileLike(), dtype=np.dtype("i"), filelike=True) + + def test_not_an_iter(self): + with pytest.raises(TypeError, + match="error reading from object, expected an iterable"): + np._core._multiarray_umath._load_from_filelike( + object(), dtype=np.dtype("i"), filelike=False) + + def test_bad_type(self): + with pytest.raises(TypeError, match="internal error: dtype must"): + np._core._multiarray_umath._load_from_filelike( + object(), dtype="i", filelike=False) + + def test_bad_encoding(self): + with pytest.raises(TypeError, match="encoding must be a unicode"): + np._core._multiarray_umath._load_from_filelike( + object(), dtype=np.dtype("i"), filelike=False, encoding=123) + + @pytest.mark.parametrize("newline", ["\r", "\n", "\r\n"]) + def test_manual_universal_newlines(self, newline): + # This is currently not available to users, because we should always + # open files with universal newlines enabled `newlines=None`. + # (And reading from an iterator uses slightly different code paths.) + # We have no real support for `newline="\r"` or `newline="\n" as the + # user cannot specify those options. + data = StringIO('0\n1\n"2\n"\n3\n4 #\n'.replace("\n", newline), + newline="") + + res = np._core._multiarray_umath._load_from_filelike( + data, dtype=np.dtype("U10"), filelike=True, + quote='"', comment="#", skiplines=1) + assert_array_equal(res[:, 0], ["1", f"2{newline}", "3", "4 "]) + + +def test_delimiter_comment_collision_raises(): + with pytest.raises(TypeError, match=".*control characters.*incompatible"): + np.loadtxt(StringIO("1, 2, 3"), delimiter=",", comments=",") + + +def test_delimiter_quotechar_collision_raises(): + with pytest.raises(TypeError, match=".*control characters.*incompatible"): + np.loadtxt(StringIO("1, 2, 3"), delimiter=",", quotechar=",") + + +def test_comment_quotechar_collision_raises(): + with pytest.raises(TypeError, match=".*control characters.*incompatible"): + np.loadtxt(StringIO("1 2 3"), comments="#", quotechar="#") + + +def test_delimiter_and_multiple_comments_collision_raises(): + with pytest.raises( + TypeError, match="Comment characters.*cannot include the delimiter" + ): + np.loadtxt(StringIO("1, 2, 3"), delimiter=",", comments=["#", ","]) + + +@pytest.mark.parametrize( + "ws", + ( + " ", # space + "\t", # tab + "\u2003", # em + "\u00A0", # non-break + "\u3000", # ideographic space + ) +) +def test_collision_with_default_delimiter_raises(ws): + with pytest.raises(TypeError, match=".*control characters.*incompatible"): + np.loadtxt(StringIO(f"1{ws}2{ws}3\n4{ws}5{ws}6\n"), comments=ws) + with pytest.raises(TypeError, match=".*control characters.*incompatible"): + np.loadtxt(StringIO(f"1{ws}2{ws}3\n4{ws}5{ws}6\n"), quotechar=ws) + + +@pytest.mark.parametrize("nl", ("\n", "\r")) +def test_control_character_newline_raises(nl): + txt = StringIO(f"1{nl}2{nl}3{nl}{nl}4{nl}5{nl}6{nl}{nl}") + msg = "control character.*cannot be a newline" + with pytest.raises(TypeError, match=msg): + np.loadtxt(txt, delimiter=nl) + with pytest.raises(TypeError, match=msg): + np.loadtxt(txt, comments=nl) + with pytest.raises(TypeError, match=msg): + np.loadtxt(txt, quotechar=nl) + + +@pytest.mark.parametrize( + ("generic_data", "long_datum", "unitless_dtype", "expected_dtype"), + [ + ("2012-03", "2013-01-15", "M8", "M8[D]"), # Datetimes + ("spam-a-lot", "tis_but_a_scratch", "U", "U17"), # str + ], +) +@pytest.mark.parametrize("nrows", (10, 50000, 60000)) # lt, eq, gt chunksize +def test_parametric_unit_discovery( + generic_data, long_datum, unitless_dtype, expected_dtype, nrows +): + """Check that the correct unit (e.g. month, day, second) is discovered from + the data when a user specifies a unitless datetime.""" + # Unit should be "D" (days) due to last entry + data = [generic_data] * nrows + [long_datum] + expected = np.array(data, dtype=expected_dtype) + assert len(data) == nrows + 1 + assert len(data) == len(expected) + + # file-like path + txt = StringIO("\n".join(data)) + a = np.loadtxt(txt, dtype=unitless_dtype) + assert len(a) == len(expected) + assert a.dtype == expected.dtype + assert_equal(a, expected) + + # file-obj path + fd, fname = mkstemp() + os.close(fd) + with open(fname, "w") as fh: + fh.write("\n".join(data) + "\n") + # loading the full file... + a = np.loadtxt(fname, dtype=unitless_dtype) + assert len(a) == len(expected) + assert a.dtype == expected.dtype + assert_equal(a, expected) + # loading half of the file... + a = np.loadtxt(fname, dtype=unitless_dtype, max_rows=int(nrows / 2)) + os.remove(fname) + assert len(a) == int(nrows / 2) + assert_equal(a, expected[:int(nrows / 2)]) + + +def test_str_dtype_unit_discovery_with_converter(): + data = ["spam-a-lot"] * 60000 + ["XXXtis_but_a_scratch"] + expected = np.array( + ["spam-a-lot"] * 60000 + ["tis_but_a_scratch"], dtype="U17" + ) + conv = lambda s: s.removeprefix("XXX") + + # file-like path + txt = StringIO("\n".join(data)) + a = np.loadtxt(txt, dtype="U", converters=conv) + assert a.dtype == expected.dtype + assert_equal(a, expected) + + # file-obj path + fd, fname = mkstemp() + os.close(fd) + with open(fname, "w") as fh: + fh.write("\n".join(data)) + a = np.loadtxt(fname, dtype="U", converters=conv) + os.remove(fname) + assert a.dtype == expected.dtype + assert_equal(a, expected) + + +@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8), + reason="PyPy bug in error formatting") +def test_control_character_empty(): + with pytest.raises(TypeError, match="Text reading control character must"): + np.loadtxt(StringIO("1 2 3"), delimiter="") + with pytest.raises(TypeError, match="Text reading control character must"): + np.loadtxt(StringIO("1 2 3"), quotechar="") + with pytest.raises(ValueError, match="comments cannot be an empty string"): + np.loadtxt(StringIO("1 2 3"), comments="") + with pytest.raises(ValueError, match="comments cannot be an empty string"): + np.loadtxt(StringIO("1 2 3"), comments=["#", ""]) + + +def test_control_characters_as_bytes(): + """Byte control characters (comments, delimiter) are supported.""" + a = np.loadtxt(StringIO("#header\n1,2,3"), comments=b"#", delimiter=b",") + assert_equal(a, [1, 2, 3]) + + +@pytest.mark.filterwarnings('ignore::UserWarning') +def test_field_growing_cases(): + # Test empty field appending/growing (each field still takes 1 character) + # to see if the final field appending does not create issues. + res = np.loadtxt([""], delimiter=",", dtype=bytes) + assert len(res) == 0 + + for i in range(1, 1024): + res = np.loadtxt(["," * i], delimiter=",", dtype=bytes, max_rows=10) + assert len(res) == i + 1 + +@pytest.mark.parametrize("nmax", (10000, 50000, 55000, 60000)) +def test_maxrows_exceeding_chunksize(nmax): + # tries to read all of the file, + # or less, equal, greater than _loadtxt_chunksize + file_length = 60000 + + # file-like path + data = ["a 0.5 1"] * file_length + txt = StringIO("\n".join(data)) + res = np.loadtxt(txt, dtype=str, delimiter=" ", max_rows=nmax) + assert len(res) == nmax + + # file-obj path + fd, fname = mkstemp() + os.close(fd) + with open(fname, "w") as fh: + fh.write("\n".join(data)) + res = np.loadtxt(fname, dtype=str, delimiter=" ", max_rows=nmax) + os.remove(fname) + assert len(res) == nmax + +@pytest.mark.parametrize("nskip", (0, 10000, 12345, 50000, 67891, 100000)) +def test_skiprow_exceeding_maxrows_exceeding_chunksize(tmpdir, nskip): + # tries to read a file in chunks by skipping a variable amount of lines, + # less, equal, greater than max_rows + file_length = 110000 + data = "\n".join(f"{i} a 0.5 1" for i in range(1, file_length + 1)) + expected_length = min(60000, file_length - nskip) + expected = np.arange(nskip + 1, nskip + 1 + expected_length).astype(str) + + # file-like path + txt = StringIO(data) + res = np.loadtxt(txt, dtype='str', delimiter=" ", skiprows=nskip, max_rows=60000) + assert len(res) == expected_length + # are the right lines read in res? + assert_array_equal(expected, res[:, 0]) + + # file-obj path + tmp_file = tmpdir / "test_data.txt" + tmp_file.write(data) + fname = str(tmp_file) + res = np.loadtxt(fname, dtype='str', delimiter=" ", skiprows=nskip, max_rows=60000) + assert len(res) == expected_length + # are the right lines read in res? + assert_array_equal(expected, res[:, 0]) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_mixins.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_mixins.py new file mode 100644 index 0000000..f0aec15 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_mixins.py @@ -0,0 +1,215 @@ +import numbers +import operator + +import numpy as np +from numpy.testing import assert_, assert_equal, assert_raises + +# NOTE: This class should be kept as an exact copy of the example from the +# docstring for NDArrayOperatorsMixin. + +class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin): + def __init__(self, value): + self.value = np.asarray(value) + + # One might also consider adding the built-in list type to this + # list, to support operations like np.add(array_like, list) + _HANDLED_TYPES = (np.ndarray, numbers.Number) + + def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): + out = kwargs.get('out', ()) + for x in inputs + out: + # Only support operations with instances of _HANDLED_TYPES. + # Use ArrayLike instead of type(self) for isinstance to + # allow subclasses that don't override __array_ufunc__ to + # handle ArrayLike objects. + if not isinstance(x, self._HANDLED_TYPES + (ArrayLike,)): + return NotImplemented + + # Defer to the implementation of the ufunc on unwrapped values. + inputs = tuple(x.value if isinstance(x, ArrayLike) else x + for x in inputs) + if out: + kwargs['out'] = tuple( + x.value if isinstance(x, ArrayLike) else x + for x in out) + result = getattr(ufunc, method)(*inputs, **kwargs) + + if type(result) is tuple: + # multiple return values + return tuple(type(self)(x) for x in result) + elif method == 'at': + # no return value + return None + else: + # one return value + return type(self)(result) + + def __repr__(self): + return f'{type(self).__name__}({self.value!r})' + + +def wrap_array_like(result): + if type(result) is tuple: + return tuple(ArrayLike(r) for r in result) + else: + return ArrayLike(result) + + +def _assert_equal_type_and_value(result, expected, err_msg=None): + assert_equal(type(result), type(expected), err_msg=err_msg) + if isinstance(result, tuple): + assert_equal(len(result), len(expected), err_msg=err_msg) + for result_item, expected_item in zip(result, expected): + _assert_equal_type_and_value(result_item, expected_item, err_msg) + else: + assert_equal(result.value, expected.value, err_msg=err_msg) + assert_equal(getattr(result.value, 'dtype', None), + getattr(expected.value, 'dtype', None), err_msg=err_msg) + + +_ALL_BINARY_OPERATORS = [ + operator.lt, + operator.le, + operator.eq, + operator.ne, + operator.gt, + operator.ge, + operator.add, + operator.sub, + operator.mul, + operator.truediv, + operator.floordiv, + operator.mod, + divmod, + pow, + operator.lshift, + operator.rshift, + operator.and_, + operator.xor, + operator.or_, +] + + +class TestNDArrayOperatorsMixin: + + def test_array_like_add(self): + + def check(result): + _assert_equal_type_and_value(result, ArrayLike(0)) + + check(ArrayLike(0) + 0) + check(0 + ArrayLike(0)) + + check(ArrayLike(0) + np.array(0)) + check(np.array(0) + ArrayLike(0)) + + check(ArrayLike(np.array(0)) + 0) + check(0 + ArrayLike(np.array(0))) + + check(ArrayLike(np.array(0)) + np.array(0)) + check(np.array(0) + ArrayLike(np.array(0))) + + def test_inplace(self): + array_like = ArrayLike(np.array([0])) + array_like += 1 + _assert_equal_type_and_value(array_like, ArrayLike(np.array([1]))) + + array = np.array([0]) + array += ArrayLike(1) + _assert_equal_type_and_value(array, ArrayLike(np.array([1]))) + + def test_opt_out(self): + + class OptOut: + """Object that opts out of __array_ufunc__.""" + __array_ufunc__ = None + + def __add__(self, other): + return self + + def __radd__(self, other): + return self + + array_like = ArrayLike(1) + opt_out = OptOut() + + # supported operations + assert_(array_like + opt_out is opt_out) + assert_(opt_out + array_like is opt_out) + + # not supported + with assert_raises(TypeError): + # don't use the Python default, array_like = array_like + opt_out + array_like += opt_out + with assert_raises(TypeError): + array_like - opt_out + with assert_raises(TypeError): + opt_out - array_like + + def test_subclass(self): + + class SubArrayLike(ArrayLike): + """Should take precedence over ArrayLike.""" + + x = ArrayLike(0) + y = SubArrayLike(1) + _assert_equal_type_and_value(x + y, y) + _assert_equal_type_and_value(y + x, y) + + def test_object(self): + x = ArrayLike(0) + obj = object() + with assert_raises(TypeError): + x + obj + with assert_raises(TypeError): + obj + x + with assert_raises(TypeError): + x += obj + + def test_unary_methods(self): + array = np.array([-1, 0, 1, 2]) + array_like = ArrayLike(array) + for op in [operator.neg, + operator.pos, + abs, + operator.invert]: + _assert_equal_type_and_value(op(array_like), ArrayLike(op(array))) + + def test_forward_binary_methods(self): + array = np.array([-1, 0, 1, 2]) + array_like = ArrayLike(array) + for op in _ALL_BINARY_OPERATORS: + expected = wrap_array_like(op(array, 1)) + actual = op(array_like, 1) + err_msg = f'failed for operator {op}' + _assert_equal_type_and_value(expected, actual, err_msg=err_msg) + + def test_reflected_binary_methods(self): + for op in _ALL_BINARY_OPERATORS: + expected = wrap_array_like(op(2, 1)) + actual = op(2, ArrayLike(1)) + err_msg = f'failed for operator {op}' + _assert_equal_type_and_value(expected, actual, err_msg=err_msg) + + def test_matmul(self): + array = np.array([1, 2], dtype=np.float64) + array_like = ArrayLike(array) + expected = ArrayLike(np.float64(5)) + _assert_equal_type_and_value(expected, np.matmul(array_like, array)) + _assert_equal_type_and_value( + expected, operator.matmul(array_like, array)) + _assert_equal_type_and_value( + expected, operator.matmul(array, array_like)) + + def test_ufunc_at(self): + array = ArrayLike(np.array([1, 2, 3, 4])) + assert_(np.negative.at(array, np.array([0, 1])) is None) + _assert_equal_type_and_value(array, ArrayLike([-1, -2, 3, 4])) + + def test_ufunc_two_outputs(self): + mantissa, exponent = np.frexp(2 ** -3) + expected = (ArrayLike(mantissa), ArrayLike(exponent)) + _assert_equal_type_and_value( + np.frexp(ArrayLike(2 ** -3)), expected) + _assert_equal_type_and_value( + np.frexp(ArrayLike(np.array(2 ** -3))), expected) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_nanfunctions.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_nanfunctions.py new file mode 100644 index 0000000..89a6d1f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_nanfunctions.py @@ -0,0 +1,1438 @@ +import inspect +import warnings +from functools import partial + +import pytest + +import numpy as np +from numpy._core.numeric import normalize_axis_tuple +from numpy.exceptions import AxisError, ComplexWarning +from numpy.lib._nanfunctions_impl import _nan_mask, _replace_nan +from numpy.testing import ( + assert_, + assert_almost_equal, + assert_array_equal, + assert_equal, + assert_raises, + assert_raises_regex, + suppress_warnings, +) + +# Test data +_ndat = np.array([[0.6244, np.nan, 0.2692, 0.0116, np.nan, 0.1170], + [0.5351, -0.9403, np.nan, 0.2100, 0.4759, 0.2833], + [np.nan, np.nan, np.nan, 0.1042, np.nan, -0.5954], + [0.1610, np.nan, np.nan, 0.1859, 0.3146, np.nan]]) + + +# Rows of _ndat with nans removed +_rdat = [np.array([0.6244, 0.2692, 0.0116, 0.1170]), + np.array([0.5351, -0.9403, 0.2100, 0.4759, 0.2833]), + np.array([0.1042, -0.5954]), + np.array([0.1610, 0.1859, 0.3146])] + +# Rows of _ndat with nans converted to ones +_ndat_ones = np.array([[0.6244, 1.0, 0.2692, 0.0116, 1.0, 0.1170], + [0.5351, -0.9403, 1.0, 0.2100, 0.4759, 0.2833], + [1.0, 1.0, 1.0, 0.1042, 1.0, -0.5954], + [0.1610, 1.0, 1.0, 0.1859, 0.3146, 1.0]]) + +# Rows of _ndat with nans converted to zeros +_ndat_zeros = np.array([[0.6244, 0.0, 0.2692, 0.0116, 0.0, 0.1170], + [0.5351, -0.9403, 0.0, 0.2100, 0.4759, 0.2833], + [0.0, 0.0, 0.0, 0.1042, 0.0, -0.5954], + [0.1610, 0.0, 0.0, 0.1859, 0.3146, 0.0]]) + + +class TestSignatureMatch: + NANFUNCS = { + np.nanmin: np.amin, + np.nanmax: np.amax, + np.nanargmin: np.argmin, + np.nanargmax: np.argmax, + np.nansum: np.sum, + np.nanprod: np.prod, + np.nancumsum: np.cumsum, + np.nancumprod: np.cumprod, + np.nanmean: np.mean, + np.nanmedian: np.median, + np.nanpercentile: np.percentile, + np.nanquantile: np.quantile, + np.nanvar: np.var, + np.nanstd: np.std, + } + IDS = [k.__name__ for k in NANFUNCS] + + @staticmethod + def get_signature(func, default="..."): + """Construct a signature and replace all default parameter-values.""" + prm_list = [] + signature = inspect.signature(func) + for prm in signature.parameters.values(): + if prm.default is inspect.Parameter.empty: + prm_list.append(prm) + else: + prm_list.append(prm.replace(default=default)) + return inspect.Signature(prm_list) + + @pytest.mark.parametrize("nan_func,func", NANFUNCS.items(), ids=IDS) + def test_signature_match(self, nan_func, func): + # Ignore the default parameter-values as they can sometimes differ + # between the two functions (*e.g.* one has `False` while the other + # has `np._NoValue`) + signature = self.get_signature(func) + nan_signature = self.get_signature(nan_func) + np.testing.assert_equal(signature, nan_signature) + + def test_exhaustiveness(self): + """Validate that all nan functions are actually tested.""" + np.testing.assert_equal( + set(self.IDS), set(np.lib._nanfunctions_impl.__all__) + ) + + +class TestNanFunctions_MinMax: + + nanfuncs = [np.nanmin, np.nanmax] + stdfuncs = [np.min, np.max] + + def test_mutation(self): + # Check that passed array is not modified. + ndat = _ndat.copy() + for f in self.nanfuncs: + f(ndat) + assert_equal(ndat, _ndat) + + def test_keepdims(self): + mat = np.eye(3) + for nf, rf in zip(self.nanfuncs, self.stdfuncs): + for axis in [None, 0, 1]: + tgt = rf(mat, axis=axis, keepdims=True) + res = nf(mat, axis=axis, keepdims=True) + assert_(res.ndim == tgt.ndim) + + def test_out(self): + mat = np.eye(3) + for nf, rf in zip(self.nanfuncs, self.stdfuncs): + resout = np.zeros(3) + tgt = rf(mat, axis=1) + res = nf(mat, axis=1, out=resout) + assert_almost_equal(res, resout) + assert_almost_equal(res, tgt) + + def test_dtype_from_input(self): + codes = 'efdgFDG' + for nf, rf in zip(self.nanfuncs, self.stdfuncs): + for c in codes: + mat = np.eye(3, dtype=c) + tgt = rf(mat, axis=1).dtype.type + res = nf(mat, axis=1).dtype.type + assert_(res is tgt) + # scalar case + tgt = rf(mat, axis=None).dtype.type + res = nf(mat, axis=None).dtype.type + assert_(res is tgt) + + def test_result_values(self): + for nf, rf in zip(self.nanfuncs, self.stdfuncs): + tgt = [rf(d) for d in _rdat] + res = nf(_ndat, axis=1) + assert_almost_equal(res, tgt) + + @pytest.mark.parametrize("axis", [None, 0, 1]) + @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) + @pytest.mark.parametrize("array", [ + np.array(np.nan), + np.full((3, 3), np.nan), + ], ids=["0d", "2d"]) + def test_allnans(self, axis, dtype, array): + if axis is not None and array.ndim == 0: + pytest.skip("`axis != None` not supported for 0d arrays") + + array = array.astype(dtype) + match = "All-NaN slice encountered" + for func in self.nanfuncs: + with pytest.warns(RuntimeWarning, match=match): + out = func(array, axis=axis) + assert np.isnan(out).all() + assert out.dtype == array.dtype + + def test_masked(self): + mat = np.ma.fix_invalid(_ndat) + msk = mat._mask.copy() + for f in [np.nanmin]: + res = f(mat, axis=1) + tgt = f(_ndat, axis=1) + assert_equal(res, tgt) + assert_equal(mat._mask, msk) + assert_(not np.isinf(mat).any()) + + def test_scalar(self): + for f in self.nanfuncs: + assert_(f(0.) == 0.) + + def test_subclass(self): + class MyNDArray(np.ndarray): + pass + + # Check that it works and that type and + # shape are preserved + mine = np.eye(3).view(MyNDArray) + for f in self.nanfuncs: + res = f(mine, axis=0) + assert_(isinstance(res, MyNDArray)) + assert_(res.shape == (3,)) + res = f(mine, axis=1) + assert_(isinstance(res, MyNDArray)) + assert_(res.shape == (3,)) + res = f(mine) + assert_(res.shape == ()) + + # check that rows of nan are dealt with for subclasses (#4628) + mine[1] = np.nan + for f in self.nanfuncs: + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + res = f(mine, axis=0) + assert_(isinstance(res, MyNDArray)) + assert_(not np.any(np.isnan(res))) + assert_(len(w) == 0) + + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + res = f(mine, axis=1) + assert_(isinstance(res, MyNDArray)) + assert_(np.isnan(res[1]) and not np.isnan(res[0]) + and not np.isnan(res[2])) + assert_(len(w) == 1, 'no warning raised') + assert_(issubclass(w[0].category, RuntimeWarning)) + + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + res = f(mine) + assert_(res.shape == ()) + assert_(res != np.nan) + assert_(len(w) == 0) + + def test_object_array(self): + arr = np.array([[1.0, 2.0], [np.nan, 4.0], [np.nan, np.nan]], dtype=object) + assert_equal(np.nanmin(arr), 1.0) + assert_equal(np.nanmin(arr, axis=0), [1.0, 2.0]) + + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + # assert_equal does not work on object arrays of nan + assert_equal(list(np.nanmin(arr, axis=1)), [1.0, 4.0, np.nan]) + assert_(len(w) == 1, 'no warning raised') + assert_(issubclass(w[0].category, RuntimeWarning)) + + @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) + def test_initial(self, dtype): + class MyNDArray(np.ndarray): + pass + + ar = np.arange(9).astype(dtype) + ar[:5] = np.nan + + for f in self.nanfuncs: + initial = 100 if f is np.nanmax else 0 + + ret1 = f(ar, initial=initial) + assert ret1.dtype == dtype + assert ret1 == initial + + ret2 = f(ar.view(MyNDArray), initial=initial) + assert ret2.dtype == dtype + assert ret2 == initial + + @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) + def test_where(self, dtype): + class MyNDArray(np.ndarray): + pass + + ar = np.arange(9).reshape(3, 3).astype(dtype) + ar[0, :] = np.nan + where = np.ones_like(ar, dtype=np.bool) + where[:, 0] = False + + for f in self.nanfuncs: + reference = 4 if f is np.nanmin else 8 + + ret1 = f(ar, where=where, initial=5) + assert ret1.dtype == dtype + assert ret1 == reference + + ret2 = f(ar.view(MyNDArray), where=where, initial=5) + assert ret2.dtype == dtype + assert ret2 == reference + + +class TestNanFunctions_ArgminArgmax: + + nanfuncs = [np.nanargmin, np.nanargmax] + + def test_mutation(self): + # Check that passed array is not modified. + ndat = _ndat.copy() + for f in self.nanfuncs: + f(ndat) + assert_equal(ndat, _ndat) + + def test_result_values(self): + for f, fcmp in zip(self.nanfuncs, [np.greater, np.less]): + for row in _ndat: + with suppress_warnings() as sup: + sup.filter(RuntimeWarning, "invalid value encountered in") + ind = f(row) + val = row[ind] + # comparing with NaN is tricky as the result + # is always false except for NaN != NaN + assert_(not np.isnan(val)) + assert_(not fcmp(val, row).any()) + assert_(not np.equal(val, row[:ind]).any()) + + @pytest.mark.parametrize("axis", [None, 0, 1]) + @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) + @pytest.mark.parametrize("array", [ + np.array(np.nan), + np.full((3, 3), np.nan), + ], ids=["0d", "2d"]) + def test_allnans(self, axis, dtype, array): + if axis is not None and array.ndim == 0: + pytest.skip("`axis != None` not supported for 0d arrays") + + array = array.astype(dtype) + for func in self.nanfuncs: + with pytest.raises(ValueError, match="All-NaN slice encountered"): + func(array, axis=axis) + + def test_empty(self): + mat = np.zeros((0, 3)) + for f in self.nanfuncs: + for axis in [0, None]: + assert_raises_regex( + ValueError, + "attempt to get argm.. of an empty sequence", + f, mat, axis=axis) + for axis in [1]: + res = f(mat, axis=axis) + assert_equal(res, np.zeros(0)) + + def test_scalar(self): + for f in self.nanfuncs: + assert_(f(0.) == 0.) + + def test_subclass(self): + class MyNDArray(np.ndarray): + pass + + # Check that it works and that type and + # shape are preserved + mine = np.eye(3).view(MyNDArray) + for f in self.nanfuncs: + res = f(mine, axis=0) + assert_(isinstance(res, MyNDArray)) + assert_(res.shape == (3,)) + res = f(mine, axis=1) + assert_(isinstance(res, MyNDArray)) + assert_(res.shape == (3,)) + res = f(mine) + assert_(res.shape == ()) + + @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) + def test_keepdims(self, dtype): + ar = np.arange(9).astype(dtype) + ar[:5] = np.nan + + for f in self.nanfuncs: + reference = 5 if f is np.nanargmin else 8 + ret = f(ar, keepdims=True) + assert ret.ndim == ar.ndim + assert ret == reference + + @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) + def test_out(self, dtype): + ar = np.arange(9).astype(dtype) + ar[:5] = np.nan + + for f in self.nanfuncs: + out = np.zeros((), dtype=np.intp) + reference = 5 if f is np.nanargmin else 8 + ret = f(ar, out=out) + assert ret is out + assert ret == reference + + +_TEST_ARRAYS = { + "0d": np.array(5), + "1d": np.array([127, 39, 93, 87, 46]) +} +for _v in _TEST_ARRAYS.values(): + _v.setflags(write=False) + + +@pytest.mark.parametrize( + "dtype", + np.typecodes["AllInteger"] + np.typecodes["AllFloat"] + "O", +) +@pytest.mark.parametrize("mat", _TEST_ARRAYS.values(), ids=_TEST_ARRAYS.keys()) +class TestNanFunctions_NumberTypes: + nanfuncs = { + np.nanmin: np.min, + np.nanmax: np.max, + np.nanargmin: np.argmin, + np.nanargmax: np.argmax, + np.nansum: np.sum, + np.nanprod: np.prod, + np.nancumsum: np.cumsum, + np.nancumprod: np.cumprod, + np.nanmean: np.mean, + np.nanmedian: np.median, + np.nanvar: np.var, + np.nanstd: np.std, + } + nanfunc_ids = [i.__name__ for i in nanfuncs] + + @pytest.mark.parametrize("nanfunc,func", nanfuncs.items(), ids=nanfunc_ids) + @np.errstate(over="ignore") + def test_nanfunc(self, mat, dtype, nanfunc, func): + mat = mat.astype(dtype) + tgt = func(mat) + out = nanfunc(mat) + + assert_almost_equal(out, tgt) + if dtype == "O": + assert type(out) is type(tgt) + else: + assert out.dtype == tgt.dtype + + @pytest.mark.parametrize( + "nanfunc,func", + [(np.nanquantile, np.quantile), (np.nanpercentile, np.percentile)], + ids=["nanquantile", "nanpercentile"], + ) + def test_nanfunc_q(self, mat, dtype, nanfunc, func): + mat = mat.astype(dtype) + if mat.dtype.kind == "c": + assert_raises(TypeError, func, mat, q=1) + assert_raises(TypeError, nanfunc, mat, q=1) + + else: + tgt = func(mat, q=1) + out = nanfunc(mat, q=1) + + assert_almost_equal(out, tgt) + + if dtype == "O": + assert type(out) is type(tgt) + else: + assert out.dtype == tgt.dtype + + @pytest.mark.parametrize( + "nanfunc,func", + [(np.nanvar, np.var), (np.nanstd, np.std)], + ids=["nanvar", "nanstd"], + ) + def test_nanfunc_ddof(self, mat, dtype, nanfunc, func): + mat = mat.astype(dtype) + tgt = func(mat, ddof=0.5) + out = nanfunc(mat, ddof=0.5) + + assert_almost_equal(out, tgt) + if dtype == "O": + assert type(out) is type(tgt) + else: + assert out.dtype == tgt.dtype + + @pytest.mark.parametrize( + "nanfunc", [np.nanvar, np.nanstd] + ) + def test_nanfunc_correction(self, mat, dtype, nanfunc): + mat = mat.astype(dtype) + assert_almost_equal( + nanfunc(mat, correction=0.5), nanfunc(mat, ddof=0.5) + ) + + err_msg = "ddof and correction can't be provided simultaneously." + with assert_raises_regex(ValueError, err_msg): + nanfunc(mat, ddof=0.5, correction=0.5) + + with assert_raises_regex(ValueError, err_msg): + nanfunc(mat, ddof=1, correction=0) + + +class SharedNanFunctionsTestsMixin: + def test_mutation(self): + # Check that passed array is not modified. + ndat = _ndat.copy() + for f in self.nanfuncs: + f(ndat) + assert_equal(ndat, _ndat) + + def test_keepdims(self): + mat = np.eye(3) + for nf, rf in zip(self.nanfuncs, self.stdfuncs): + for axis in [None, 0, 1]: + tgt = rf(mat, axis=axis, keepdims=True) + res = nf(mat, axis=axis, keepdims=True) + assert_(res.ndim == tgt.ndim) + + def test_out(self): + mat = np.eye(3) + for nf, rf in zip(self.nanfuncs, self.stdfuncs): + resout = np.zeros(3) + tgt = rf(mat, axis=1) + res = nf(mat, axis=1, out=resout) + assert_almost_equal(res, resout) + assert_almost_equal(res, tgt) + + def test_dtype_from_dtype(self): + mat = np.eye(3) + codes = 'efdgFDG' + for nf, rf in zip(self.nanfuncs, self.stdfuncs): + for c in codes: + with suppress_warnings() as sup: + if nf in {np.nanstd, np.nanvar} and c in 'FDG': + # Giving the warning is a small bug, see gh-8000 + sup.filter(ComplexWarning) + tgt = rf(mat, dtype=np.dtype(c), axis=1).dtype.type + res = nf(mat, dtype=np.dtype(c), axis=1).dtype.type + assert_(res is tgt) + # scalar case + tgt = rf(mat, dtype=np.dtype(c), axis=None).dtype.type + res = nf(mat, dtype=np.dtype(c), axis=None).dtype.type + assert_(res is tgt) + + def test_dtype_from_char(self): + mat = np.eye(3) + codes = 'efdgFDG' + for nf, rf in zip(self.nanfuncs, self.stdfuncs): + for c in codes: + with suppress_warnings() as sup: + if nf in {np.nanstd, np.nanvar} and c in 'FDG': + # Giving the warning is a small bug, see gh-8000 + sup.filter(ComplexWarning) + tgt = rf(mat, dtype=c, axis=1).dtype.type + res = nf(mat, dtype=c, axis=1).dtype.type + assert_(res is tgt) + # scalar case + tgt = rf(mat, dtype=c, axis=None).dtype.type + res = nf(mat, dtype=c, axis=None).dtype.type + assert_(res is tgt) + + def test_dtype_from_input(self): + codes = 'efdgFDG' + for nf, rf in zip(self.nanfuncs, self.stdfuncs): + for c in codes: + mat = np.eye(3, dtype=c) + tgt = rf(mat, axis=1).dtype.type + res = nf(mat, axis=1).dtype.type + assert_(res is tgt, f"res {res}, tgt {tgt}") + # scalar case + tgt = rf(mat, axis=None).dtype.type + res = nf(mat, axis=None).dtype.type + assert_(res is tgt) + + def test_result_values(self): + for nf, rf in zip(self.nanfuncs, self.stdfuncs): + tgt = [rf(d) for d in _rdat] + res = nf(_ndat, axis=1) + assert_almost_equal(res, tgt) + + def test_scalar(self): + for f in self.nanfuncs: + assert_(f(0.) == 0.) + + def test_subclass(self): + class MyNDArray(np.ndarray): + pass + + # Check that it works and that type and + # shape are preserved + array = np.eye(3) + mine = array.view(MyNDArray) + for f in self.nanfuncs: + expected_shape = f(array, axis=0).shape + res = f(mine, axis=0) + assert_(isinstance(res, MyNDArray)) + assert_(res.shape == expected_shape) + expected_shape = f(array, axis=1).shape + res = f(mine, axis=1) + assert_(isinstance(res, MyNDArray)) + assert_(res.shape == expected_shape) + expected_shape = f(array).shape + res = f(mine) + assert_(isinstance(res, MyNDArray)) + assert_(res.shape == expected_shape) + + +class TestNanFunctions_SumProd(SharedNanFunctionsTestsMixin): + + nanfuncs = [np.nansum, np.nanprod] + stdfuncs = [np.sum, np.prod] + + @pytest.mark.parametrize("axis", [None, 0, 1]) + @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) + @pytest.mark.parametrize("array", [ + np.array(np.nan), + np.full((3, 3), np.nan), + ], ids=["0d", "2d"]) + def test_allnans(self, axis, dtype, array): + if axis is not None and array.ndim == 0: + pytest.skip("`axis != None` not supported for 0d arrays") + + array = array.astype(dtype) + for func, identity in zip(self.nanfuncs, [0, 1]): + out = func(array, axis=axis) + assert np.all(out == identity) + assert out.dtype == array.dtype + + def test_empty(self): + for f, tgt_value in zip([np.nansum, np.nanprod], [0, 1]): + mat = np.zeros((0, 3)) + tgt = [tgt_value] * 3 + res = f(mat, axis=0) + assert_equal(res, tgt) + tgt = [] + res = f(mat, axis=1) + assert_equal(res, tgt) + tgt = tgt_value + res = f(mat, axis=None) + assert_equal(res, tgt) + + @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) + def test_initial(self, dtype): + ar = np.arange(9).astype(dtype) + ar[:5] = np.nan + + for f in self.nanfuncs: + reference = 28 if f is np.nansum else 3360 + ret = f(ar, initial=2) + assert ret.dtype == dtype + assert ret == reference + + @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) + def test_where(self, dtype): + ar = np.arange(9).reshape(3, 3).astype(dtype) + ar[0, :] = np.nan + where = np.ones_like(ar, dtype=np.bool) + where[:, 0] = False + + for f in self.nanfuncs: + reference = 26 if f is np.nansum else 2240 + ret = f(ar, where=where, initial=2) + assert ret.dtype == dtype + assert ret == reference + + +class TestNanFunctions_CumSumProd(SharedNanFunctionsTestsMixin): + + nanfuncs = [np.nancumsum, np.nancumprod] + stdfuncs = [np.cumsum, np.cumprod] + + @pytest.mark.parametrize("axis", [None, 0, 1]) + @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) + @pytest.mark.parametrize("array", [ + np.array(np.nan), + np.full((3, 3), np.nan) + ], ids=["0d", "2d"]) + def test_allnans(self, axis, dtype, array): + if axis is not None and array.ndim == 0: + pytest.skip("`axis != None` not supported for 0d arrays") + + array = array.astype(dtype) + for func, identity in zip(self.nanfuncs, [0, 1]): + out = func(array) + assert np.all(out == identity) + assert out.dtype == array.dtype + + def test_empty(self): + for f, tgt_value in zip(self.nanfuncs, [0, 1]): + mat = np.zeros((0, 3)) + tgt = tgt_value * np.ones((0, 3)) + res = f(mat, axis=0) + assert_equal(res, tgt) + tgt = mat + res = f(mat, axis=1) + assert_equal(res, tgt) + tgt = np.zeros(0) + res = f(mat, axis=None) + assert_equal(res, tgt) + + def test_keepdims(self): + for f, g in zip(self.nanfuncs, self.stdfuncs): + mat = np.eye(3) + for axis in [None, 0, 1]: + tgt = f(mat, axis=axis, out=None) + res = g(mat, axis=axis, out=None) + assert_(res.ndim == tgt.ndim) + + for f in self.nanfuncs: + d = np.ones((3, 5, 7, 11)) + # Randomly set some elements to NaN: + rs = np.random.RandomState(0) + d[rs.rand(*d.shape) < 0.5] = np.nan + res = f(d, axis=None) + assert_equal(res.shape, (1155,)) + for axis in np.arange(4): + res = f(d, axis=axis) + assert_equal(res.shape, (3, 5, 7, 11)) + + def test_result_values(self): + for axis in (-2, -1, 0, 1, None): + tgt = np.cumprod(_ndat_ones, axis=axis) + res = np.nancumprod(_ndat, axis=axis) + assert_almost_equal(res, tgt) + tgt = np.cumsum(_ndat_zeros, axis=axis) + res = np.nancumsum(_ndat, axis=axis) + assert_almost_equal(res, tgt) + + def test_out(self): + mat = np.eye(3) + for nf, rf in zip(self.nanfuncs, self.stdfuncs): + resout = np.eye(3) + for axis in (-2, -1, 0, 1): + tgt = rf(mat, axis=axis) + res = nf(mat, axis=axis, out=resout) + assert_almost_equal(res, resout) + assert_almost_equal(res, tgt) + + +class TestNanFunctions_MeanVarStd(SharedNanFunctionsTestsMixin): + + nanfuncs = [np.nanmean, np.nanvar, np.nanstd] + stdfuncs = [np.mean, np.var, np.std] + + def test_dtype_error(self): + for f in self.nanfuncs: + for dtype in [np.bool, np.int_, np.object_]: + assert_raises(TypeError, f, _ndat, axis=1, dtype=dtype) + + def test_out_dtype_error(self): + for f in self.nanfuncs: + for dtype in [np.bool, np.int_, np.object_]: + out = np.empty(_ndat.shape[0], dtype=dtype) + assert_raises(TypeError, f, _ndat, axis=1, out=out) + + def test_ddof(self): + nanfuncs = [np.nanvar, np.nanstd] + stdfuncs = [np.var, np.std] + for nf, rf in zip(nanfuncs, stdfuncs): + for ddof in [0, 1]: + tgt = [rf(d, ddof=ddof) for d in _rdat] + res = nf(_ndat, axis=1, ddof=ddof) + assert_almost_equal(res, tgt) + + def test_ddof_too_big(self): + nanfuncs = [np.nanvar, np.nanstd] + stdfuncs = [np.var, np.std] + dsize = [len(d) for d in _rdat] + for nf, rf in zip(nanfuncs, stdfuncs): + for ddof in range(5): + with suppress_warnings() as sup: + sup.record(RuntimeWarning) + sup.filter(ComplexWarning) + tgt = [ddof >= d for d in dsize] + res = nf(_ndat, axis=1, ddof=ddof) + assert_equal(np.isnan(res), tgt) + if any(tgt): + assert_(len(sup.log) == 1) + else: + assert_(len(sup.log) == 0) + + @pytest.mark.parametrize("axis", [None, 0, 1]) + @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) + @pytest.mark.parametrize("array", [ + np.array(np.nan), + np.full((3, 3), np.nan), + ], ids=["0d", "2d"]) + def test_allnans(self, axis, dtype, array): + if axis is not None and array.ndim == 0: + pytest.skip("`axis != None` not supported for 0d arrays") + + array = array.astype(dtype) + match = "(Degrees of freedom <= 0 for slice.)|(Mean of empty slice)" + for func in self.nanfuncs: + with pytest.warns(RuntimeWarning, match=match): + out = func(array, axis=axis) + assert np.isnan(out).all() + + # `nanvar` and `nanstd` convert complex inputs to their + # corresponding floating dtype + if func is np.nanmean: + assert out.dtype == array.dtype + else: + assert out.dtype == np.abs(array).dtype + + def test_empty(self): + mat = np.zeros((0, 3)) + for f in self.nanfuncs: + for axis in [0, None]: + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + assert_(np.isnan(f(mat, axis=axis)).all()) + assert_(len(w) == 1) + assert_(issubclass(w[0].category, RuntimeWarning)) + for axis in [1]: + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + assert_equal(f(mat, axis=axis), np.zeros([])) + assert_(len(w) == 0) + + @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"]) + def test_where(self, dtype): + ar = np.arange(9).reshape(3, 3).astype(dtype) + ar[0, :] = np.nan + where = np.ones_like(ar, dtype=np.bool) + where[:, 0] = False + + for f, f_std in zip(self.nanfuncs, self.stdfuncs): + reference = f_std(ar[where][2:]) + dtype_reference = dtype if f is np.nanmean else ar.real.dtype + + ret = f(ar, where=where) + assert ret.dtype == dtype_reference + np.testing.assert_allclose(ret, reference) + + def test_nanstd_with_mean_keyword(self): + # Setting the seed to make the test reproducible + rng = np.random.RandomState(1234) + A = rng.randn(10, 20, 5) + 0.5 + A[:, 5, :] = np.nan + + mean_out = np.zeros((10, 1, 5)) + std_out = np.zeros((10, 1, 5)) + + mean = np.nanmean(A, + out=mean_out, + axis=1, + keepdims=True) + + # The returned object should be the object specified during calling + assert mean_out is mean + + std = np.nanstd(A, + out=std_out, + axis=1, + keepdims=True, + mean=mean) + + # The returned object should be the object specified during calling + assert std_out is std + + # Shape of returned mean and std should be same + assert std.shape == mean.shape + assert std.shape == (10, 1, 5) + + # Output should be the same as from the individual algorithms + std_old = np.nanstd(A, axis=1, keepdims=True) + + assert std_old.shape == mean.shape + assert_almost_equal(std, std_old) + + +_TIME_UNITS = ( + "Y", "M", "W", "D", "h", "m", "s", "ms", "us", "ns", "ps", "fs", "as" +) + +# All `inexact` + `timdelta64` type codes +_TYPE_CODES = list(np.typecodes["AllFloat"]) +_TYPE_CODES += [f"m8[{unit}]" for unit in _TIME_UNITS] + + +class TestNanFunctions_Median: + + def test_mutation(self): + # Check that passed array is not modified. + ndat = _ndat.copy() + np.nanmedian(ndat) + assert_equal(ndat, _ndat) + + def test_keepdims(self): + mat = np.eye(3) + for axis in [None, 0, 1]: + tgt = np.median(mat, axis=axis, out=None, overwrite_input=False) + res = np.nanmedian(mat, axis=axis, out=None, overwrite_input=False) + assert_(res.ndim == tgt.ndim) + + d = np.ones((3, 5, 7, 11)) + # Randomly set some elements to NaN: + w = np.random.random((4, 200)) * np.array(d.shape)[:, None] + w = w.astype(np.intp) + d[tuple(w)] = np.nan + with suppress_warnings() as sup: + sup.filter(RuntimeWarning) + res = np.nanmedian(d, axis=None, keepdims=True) + assert_equal(res.shape, (1, 1, 1, 1)) + res = np.nanmedian(d, axis=(0, 1), keepdims=True) + assert_equal(res.shape, (1, 1, 7, 11)) + res = np.nanmedian(d, axis=(0, 3), keepdims=True) + assert_equal(res.shape, (1, 5, 7, 1)) + res = np.nanmedian(d, axis=(1,), keepdims=True) + assert_equal(res.shape, (3, 1, 7, 11)) + res = np.nanmedian(d, axis=(0, 1, 2, 3), keepdims=True) + assert_equal(res.shape, (1, 1, 1, 1)) + res = np.nanmedian(d, axis=(0, 1, 3), keepdims=True) + assert_equal(res.shape, (1, 1, 7, 1)) + + @pytest.mark.parametrize( + argnames='axis', + argvalues=[ + None, + 1, + (1, ), + (0, 1), + (-3, -1), + ] + ) + @pytest.mark.filterwarnings("ignore:All-NaN slice:RuntimeWarning") + def test_keepdims_out(self, axis): + d = np.ones((3, 5, 7, 11)) + # Randomly set some elements to NaN: + w = np.random.random((4, 200)) * np.array(d.shape)[:, None] + w = w.astype(np.intp) + d[tuple(w)] = np.nan + if axis is None: + shape_out = (1,) * d.ndim + else: + axis_norm = normalize_axis_tuple(axis, d.ndim) + shape_out = tuple( + 1 if i in axis_norm else d.shape[i] for i in range(d.ndim)) + out = np.empty(shape_out) + result = np.nanmedian(d, axis=axis, keepdims=True, out=out) + assert result is out + assert_equal(result.shape, shape_out) + + def test_out(self): + mat = np.random.rand(3, 3) + nan_mat = np.insert(mat, [0, 2], np.nan, axis=1) + resout = np.zeros(3) + tgt = np.median(mat, axis=1) + res = np.nanmedian(nan_mat, axis=1, out=resout) + assert_almost_equal(res, resout) + assert_almost_equal(res, tgt) + # 0-d output: + resout = np.zeros(()) + tgt = np.median(mat, axis=None) + res = np.nanmedian(nan_mat, axis=None, out=resout) + assert_almost_equal(res, resout) + assert_almost_equal(res, tgt) + res = np.nanmedian(nan_mat, axis=(0, 1), out=resout) + assert_almost_equal(res, resout) + assert_almost_equal(res, tgt) + + def test_small_large(self): + # test the small and large code paths, current cutoff 400 elements + for s in [5, 20, 51, 200, 1000]: + d = np.random.randn(4, s) + # Randomly set some elements to NaN: + w = np.random.randint(0, d.size, size=d.size // 5) + d.ravel()[w] = np.nan + d[:, 0] = 1. # ensure at least one good value + # use normal median without nans to compare + tgt = [] + for x in d: + nonan = np.compress(~np.isnan(x), x) + tgt.append(np.median(nonan, overwrite_input=True)) + + assert_array_equal(np.nanmedian(d, axis=-1), tgt) + + def test_result_values(self): + tgt = [np.median(d) for d in _rdat] + res = np.nanmedian(_ndat, axis=1) + assert_almost_equal(res, tgt) + + @pytest.mark.parametrize("axis", [None, 0, 1]) + @pytest.mark.parametrize("dtype", _TYPE_CODES) + def test_allnans(self, dtype, axis): + mat = np.full((3, 3), np.nan).astype(dtype) + with suppress_warnings() as sup: + sup.record(RuntimeWarning) + + output = np.nanmedian(mat, axis=axis) + assert output.dtype == mat.dtype + assert np.isnan(output).all() + + if axis is None: + assert_(len(sup.log) == 1) + else: + assert_(len(sup.log) == 3) + + # Check scalar + scalar = np.array(np.nan).astype(dtype)[()] + output_scalar = np.nanmedian(scalar) + assert output_scalar.dtype == scalar.dtype + assert np.isnan(output_scalar) + + if axis is None: + assert_(len(sup.log) == 2) + else: + assert_(len(sup.log) == 4) + + def test_empty(self): + mat = np.zeros((0, 3)) + for axis in [0, None]: + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + assert_(np.isnan(np.nanmedian(mat, axis=axis)).all()) + assert_(len(w) == 1) + assert_(issubclass(w[0].category, RuntimeWarning)) + for axis in [1]: + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + assert_equal(np.nanmedian(mat, axis=axis), np.zeros([])) + assert_(len(w) == 0) + + def test_scalar(self): + assert_(np.nanmedian(0.) == 0.) + + def test_extended_axis_invalid(self): + d = np.ones((3, 5, 7, 11)) + assert_raises(AxisError, np.nanmedian, d, axis=-5) + assert_raises(AxisError, np.nanmedian, d, axis=(0, -5)) + assert_raises(AxisError, np.nanmedian, d, axis=4) + assert_raises(AxisError, np.nanmedian, d, axis=(0, 4)) + assert_raises(ValueError, np.nanmedian, d, axis=(1, 1)) + + def test_float_special(self): + with suppress_warnings() as sup: + sup.filter(RuntimeWarning) + for inf in [np.inf, -np.inf]: + a = np.array([[inf, np.nan], [np.nan, np.nan]]) + assert_equal(np.nanmedian(a, axis=0), [inf, np.nan]) + assert_equal(np.nanmedian(a, axis=1), [inf, np.nan]) + assert_equal(np.nanmedian(a), inf) + + # minimum fill value check + a = np.array([[np.nan, np.nan, inf], + [np.nan, np.nan, inf]]) + assert_equal(np.nanmedian(a), inf) + assert_equal(np.nanmedian(a, axis=0), [np.nan, np.nan, inf]) + assert_equal(np.nanmedian(a, axis=1), inf) + + # no mask path + a = np.array([[inf, inf], [inf, inf]]) + assert_equal(np.nanmedian(a, axis=1), inf) + + a = np.array([[inf, 7, -inf, -9], + [-10, np.nan, np.nan, 5], + [4, np.nan, np.nan, inf]], + dtype=np.float32) + if inf > 0: + assert_equal(np.nanmedian(a, axis=0), [4., 7., -inf, 5.]) + assert_equal(np.nanmedian(a), 4.5) + else: + assert_equal(np.nanmedian(a, axis=0), [-10., 7., -inf, -9.]) + assert_equal(np.nanmedian(a), -2.5) + assert_equal(np.nanmedian(a, axis=-1), [-1., -2.5, inf]) + + for i in range(10): + for j in range(1, 10): + a = np.array([([np.nan] * i) + ([inf] * j)] * 2) + assert_equal(np.nanmedian(a), inf) + assert_equal(np.nanmedian(a, axis=1), inf) + assert_equal(np.nanmedian(a, axis=0), + ([np.nan] * i) + [inf] * j) + + a = np.array([([np.nan] * i) + ([-inf] * j)] * 2) + assert_equal(np.nanmedian(a), -inf) + assert_equal(np.nanmedian(a, axis=1), -inf) + assert_equal(np.nanmedian(a, axis=0), + ([np.nan] * i) + [-inf] * j) + + +class TestNanFunctions_Percentile: + + def test_mutation(self): + # Check that passed array is not modified. + ndat = _ndat.copy() + np.nanpercentile(ndat, 30) + assert_equal(ndat, _ndat) + + def test_keepdims(self): + mat = np.eye(3) + for axis in [None, 0, 1]: + tgt = np.percentile(mat, 70, axis=axis, out=None, + overwrite_input=False) + res = np.nanpercentile(mat, 70, axis=axis, out=None, + overwrite_input=False) + assert_(res.ndim == tgt.ndim) + + d = np.ones((3, 5, 7, 11)) + # Randomly set some elements to NaN: + w = np.random.random((4, 200)) * np.array(d.shape)[:, None] + w = w.astype(np.intp) + d[tuple(w)] = np.nan + with suppress_warnings() as sup: + sup.filter(RuntimeWarning) + res = np.nanpercentile(d, 90, axis=None, keepdims=True) + assert_equal(res.shape, (1, 1, 1, 1)) + res = np.nanpercentile(d, 90, axis=(0, 1), keepdims=True) + assert_equal(res.shape, (1, 1, 7, 11)) + res = np.nanpercentile(d, 90, axis=(0, 3), keepdims=True) + assert_equal(res.shape, (1, 5, 7, 1)) + res = np.nanpercentile(d, 90, axis=(1,), keepdims=True) + assert_equal(res.shape, (3, 1, 7, 11)) + res = np.nanpercentile(d, 90, axis=(0, 1, 2, 3), keepdims=True) + assert_equal(res.shape, (1, 1, 1, 1)) + res = np.nanpercentile(d, 90, axis=(0, 1, 3), keepdims=True) + assert_equal(res.shape, (1, 1, 7, 1)) + + @pytest.mark.parametrize('q', [7, [1, 7]]) + @pytest.mark.parametrize( + argnames='axis', + argvalues=[ + None, + 1, + (1,), + (0, 1), + (-3, -1), + ] + ) + @pytest.mark.filterwarnings("ignore:All-NaN slice:RuntimeWarning") + def test_keepdims_out(self, q, axis): + d = np.ones((3, 5, 7, 11)) + # Randomly set some elements to NaN: + w = np.random.random((4, 200)) * np.array(d.shape)[:, None] + w = w.astype(np.intp) + d[tuple(w)] = np.nan + if axis is None: + shape_out = (1,) * d.ndim + else: + axis_norm = normalize_axis_tuple(axis, d.ndim) + shape_out = tuple( + 1 if i in axis_norm else d.shape[i] for i in range(d.ndim)) + shape_out = np.shape(q) + shape_out + + out = np.empty(shape_out) + result = np.nanpercentile(d, q, axis=axis, keepdims=True, out=out) + assert result is out + assert_equal(result.shape, shape_out) + + @pytest.mark.parametrize("weighted", [False, True]) + def test_out(self, weighted): + mat = np.random.rand(3, 3) + nan_mat = np.insert(mat, [0, 2], np.nan, axis=1) + resout = np.zeros(3) + if weighted: + w_args = {"weights": np.ones_like(mat), "method": "inverted_cdf"} + nan_w_args = { + "weights": np.ones_like(nan_mat), "method": "inverted_cdf" + } + else: + w_args = {} + nan_w_args = {} + tgt = np.percentile(mat, 42, axis=1, **w_args) + res = np.nanpercentile(nan_mat, 42, axis=1, out=resout, **nan_w_args) + assert_almost_equal(res, resout) + assert_almost_equal(res, tgt) + # 0-d output: + resout = np.zeros(()) + tgt = np.percentile(mat, 42, axis=None, **w_args) + res = np.nanpercentile( + nan_mat, 42, axis=None, out=resout, **nan_w_args + ) + assert_almost_equal(res, resout) + assert_almost_equal(res, tgt) + res = np.nanpercentile( + nan_mat, 42, axis=(0, 1), out=resout, **nan_w_args + ) + assert_almost_equal(res, resout) + assert_almost_equal(res, tgt) + + def test_complex(self): + arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='G') + assert_raises(TypeError, np.nanpercentile, arr_c, 0.5) + arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='D') + assert_raises(TypeError, np.nanpercentile, arr_c, 0.5) + arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='F') + assert_raises(TypeError, np.nanpercentile, arr_c, 0.5) + + @pytest.mark.parametrize("weighted", [False, True]) + @pytest.mark.parametrize("use_out", [False, True]) + def test_result_values(self, weighted, use_out): + if weighted: + percentile = partial(np.percentile, method="inverted_cdf") + nanpercentile = partial(np.nanpercentile, method="inverted_cdf") + + def gen_weights(d): + return np.ones_like(d) + + else: + percentile = np.percentile + nanpercentile = np.nanpercentile + + def gen_weights(d): + return None + + tgt = [percentile(d, 28, weights=gen_weights(d)) for d in _rdat] + out = np.empty_like(tgt) if use_out else None + res = nanpercentile(_ndat, 28, axis=1, + weights=gen_weights(_ndat), out=out) + assert_almost_equal(res, tgt) + # Transpose the array to fit the output convention of numpy.percentile + tgt = np.transpose([percentile(d, (28, 98), weights=gen_weights(d)) + for d in _rdat]) + out = np.empty_like(tgt) if use_out else None + res = nanpercentile(_ndat, (28, 98), axis=1, + weights=gen_weights(_ndat), out=out) + assert_almost_equal(res, tgt) + + @pytest.mark.parametrize("axis", [None, 0, 1]) + @pytest.mark.parametrize("dtype", np.typecodes["Float"]) + @pytest.mark.parametrize("array", [ + np.array(np.nan), + np.full((3, 3), np.nan), + ], ids=["0d", "2d"]) + def test_allnans(self, axis, dtype, array): + if axis is not None and array.ndim == 0: + pytest.skip("`axis != None` not supported for 0d arrays") + + array = array.astype(dtype) + with pytest.warns(RuntimeWarning, match="All-NaN slice encountered"): + out = np.nanpercentile(array, 60, axis=axis) + assert np.isnan(out).all() + assert out.dtype == array.dtype + + def test_empty(self): + mat = np.zeros((0, 3)) + for axis in [0, None]: + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + assert_(np.isnan(np.nanpercentile(mat, 40, axis=axis)).all()) + assert_(len(w) == 1) + assert_(issubclass(w[0].category, RuntimeWarning)) + for axis in [1]: + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + assert_equal(np.nanpercentile(mat, 40, axis=axis), np.zeros([])) + assert_(len(w) == 0) + + def test_scalar(self): + assert_equal(np.nanpercentile(0., 100), 0.) + a = np.arange(6) + r = np.nanpercentile(a, 50, axis=0) + assert_equal(r, 2.5) + assert_(np.isscalar(r)) + + def test_extended_axis_invalid(self): + d = np.ones((3, 5, 7, 11)) + assert_raises(AxisError, np.nanpercentile, d, q=5, axis=-5) + assert_raises(AxisError, np.nanpercentile, d, q=5, axis=(0, -5)) + assert_raises(AxisError, np.nanpercentile, d, q=5, axis=4) + assert_raises(AxisError, np.nanpercentile, d, q=5, axis=(0, 4)) + assert_raises(ValueError, np.nanpercentile, d, q=5, axis=(1, 1)) + + def test_multiple_percentiles(self): + perc = [50, 100] + mat = np.ones((4, 3)) + nan_mat = np.nan * mat + # For checking consistency in higher dimensional case + large_mat = np.ones((3, 4, 5)) + large_mat[:, 0:2:4, :] = 0 + large_mat[:, :, 3:] *= 2 + for axis in [None, 0, 1]: + for keepdim in [False, True]: + with suppress_warnings() as sup: + sup.filter(RuntimeWarning, "All-NaN slice encountered") + val = np.percentile(mat, perc, axis=axis, keepdims=keepdim) + nan_val = np.nanpercentile(nan_mat, perc, axis=axis, + keepdims=keepdim) + assert_equal(nan_val.shape, val.shape) + + val = np.percentile(large_mat, perc, axis=axis, + keepdims=keepdim) + nan_val = np.nanpercentile(large_mat, perc, axis=axis, + keepdims=keepdim) + assert_equal(nan_val, val) + + megamat = np.ones((3, 4, 5, 6)) + assert_equal( + np.nanpercentile(megamat, perc, axis=(1, 2)).shape, (2, 3, 6) + ) + + @pytest.mark.parametrize("nan_weight", [0, 1, 2, 3, 1e200]) + def test_nan_value_with_weight(self, nan_weight): + x = [1, np.nan, 2, 3] + result = np.float64(2.0) + q_unweighted = np.nanpercentile(x, 50, method="inverted_cdf") + assert_equal(q_unweighted, result) + + # The weight value at the nan position should not matter. + w = [1.0, nan_weight, 1.0, 1.0] + q_weighted = np.nanpercentile(x, 50, weights=w, method="inverted_cdf") + assert_equal(q_weighted, result) + + @pytest.mark.parametrize("axis", [0, 1, 2]) + def test_nan_value_with_weight_ndim(self, axis): + # Create a multi-dimensional array to test + np.random.seed(1) + x_no_nan = np.random.random(size=(100, 99, 2)) + # Set some places to NaN (not particularly smart) so there is always + # some non-Nan. + x = x_no_nan.copy() + x[np.arange(99), np.arange(99), 0] = np.nan + + p = np.array([[20., 50., 30], [70, 33, 80]]) + + # We just use ones as weights, but replace it with 0 or 1e200 at the + # NaN positions below. + weights = np.ones_like(x) + + # For comparison use weighted normal percentile with nan weights at + # 0 (and no NaNs); not sure this is strictly identical but should be + # sufficiently so (if a percentile lies exactly on a 0 value). + weights[np.isnan(x)] = 0 + p_expected = np.percentile( + x_no_nan, p, axis=axis, weights=weights, method="inverted_cdf") + + p_unweighted = np.nanpercentile( + x, p, axis=axis, method="inverted_cdf") + # The normal and unweighted versions should be identical: + assert_equal(p_unweighted, p_expected) + + weights[np.isnan(x)] = 1e200 # huge value, shouldn't matter + p_weighted = np.nanpercentile( + x, p, axis=axis, weights=weights, method="inverted_cdf") + assert_equal(p_weighted, p_expected) + # Also check with out passed: + out = np.empty_like(p_weighted) + res = np.nanpercentile( + x, p, axis=axis, weights=weights, out=out, method="inverted_cdf") + + assert res is out + assert_equal(out, p_expected) + + +class TestNanFunctions_Quantile: + # most of this is already tested by TestPercentile + + @pytest.mark.parametrize("weighted", [False, True]) + def test_regression(self, weighted): + ar = np.arange(24).reshape(2, 3, 4).astype(float) + ar[0][1] = np.nan + if weighted: + w_args = {"weights": np.ones_like(ar), "method": "inverted_cdf"} + else: + w_args = {} + + assert_equal(np.nanquantile(ar, q=0.5, **w_args), + np.nanpercentile(ar, q=50, **w_args)) + assert_equal(np.nanquantile(ar, q=0.5, axis=0, **w_args), + np.nanpercentile(ar, q=50, axis=0, **w_args)) + assert_equal(np.nanquantile(ar, q=0.5, axis=1, **w_args), + np.nanpercentile(ar, q=50, axis=1, **w_args)) + assert_equal(np.nanquantile(ar, q=[0.5], axis=1, **w_args), + np.nanpercentile(ar, q=[50], axis=1, **w_args)) + assert_equal(np.nanquantile(ar, q=[0.25, 0.5, 0.75], axis=1, **w_args), + np.nanpercentile(ar, q=[25, 50, 75], axis=1, **w_args)) + + def test_basic(self): + x = np.arange(8) * 0.5 + assert_equal(np.nanquantile(x, 0), 0.) + assert_equal(np.nanquantile(x, 1), 3.5) + assert_equal(np.nanquantile(x, 0.5), 1.75) + + def test_complex(self): + arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='G') + assert_raises(TypeError, np.nanquantile, arr_c, 0.5) + arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='D') + assert_raises(TypeError, np.nanquantile, arr_c, 0.5) + arr_c = np.array([0.5 + 3.0j, 2.1 + 0.5j, 1.6 + 2.3j], dtype='F') + assert_raises(TypeError, np.nanquantile, arr_c, 0.5) + + def test_no_p_overwrite(self): + # this is worth retesting, because quantile does not make a copy + p0 = np.array([0, 0.75, 0.25, 0.5, 1.0]) + p = p0.copy() + np.nanquantile(np.arange(100.), p, method="midpoint") + assert_array_equal(p, p0) + + p0 = p0.tolist() + p = p.tolist() + np.nanquantile(np.arange(100.), p, method="midpoint") + assert_array_equal(p, p0) + + @pytest.mark.parametrize("axis", [None, 0, 1]) + @pytest.mark.parametrize("dtype", np.typecodes["Float"]) + @pytest.mark.parametrize("array", [ + np.array(np.nan), + np.full((3, 3), np.nan), + ], ids=["0d", "2d"]) + def test_allnans(self, axis, dtype, array): + if axis is not None and array.ndim == 0: + pytest.skip("`axis != None` not supported for 0d arrays") + + array = array.astype(dtype) + with pytest.warns(RuntimeWarning, match="All-NaN slice encountered"): + out = np.nanquantile(array, 1, axis=axis) + assert np.isnan(out).all() + assert out.dtype == array.dtype + +@pytest.mark.parametrize("arr, expected", [ + # array of floats with some nans + (np.array([np.nan, 5.0, np.nan, np.inf]), + np.array([False, True, False, True])), + # int64 array that can't possibly have nans + (np.array([1, 5, 7, 9], dtype=np.int64), + True), + # bool array that can't possibly have nans + (np.array([False, True, False, True]), + True), + # 2-D complex array with nans + (np.array([[np.nan, 5.0], + [np.nan, np.inf]], dtype=np.complex64), + np.array([[False, True], + [False, True]])), + ]) +def test__nan_mask(arr, expected): + for out in [None, np.empty(arr.shape, dtype=np.bool)]: + actual = _nan_mask(arr, out=out) + assert_equal(actual, expected) + # the above won't distinguish between True proper + # and an array of True values; we want True proper + # for types that can't possibly contain NaN + if type(expected) is not np.ndarray: + assert actual is True + + +def test__replace_nan(): + """ Test that _replace_nan returns the original array if there are no + NaNs, not a copy. + """ + for dtype in [np.bool, np.int32, np.int64]: + arr = np.array([0, 1], dtype=dtype) + result, mask = _replace_nan(arr, 0) + assert mask is None + # do not make a copy if there are no nans + assert result is arr + + for dtype in [np.float32, np.float64]: + arr = np.array([0, 1], dtype=dtype) + result, mask = _replace_nan(arr, 2) + assert (mask == False).all() + # mask is not None, so we make a copy + assert result is not arr + assert_equal(result, arr) + + arr_nan = np.array([0, 1, np.nan], dtype=dtype) + result_nan, mask_nan = _replace_nan(arr_nan, 2) + assert_equal(mask_nan, np.array([False, False, True])) + assert result_nan is not arr_nan + assert_equal(result_nan, np.array([0, 1, 2])) + assert np.isnan(arr_nan[-1]) + + +def test_memmap_takes_fast_route(tmpdir): + # We want memory mapped arrays to take the fast route through nanmax, + # which avoids creating a mask by using fmax.reduce (see gh-28721). So we + # check that on bad input, the error is from fmax (rather than maximum). + a = np.arange(10., dtype=float) + with open(tmpdir.join("data.bin"), "w+b") as fh: + fh.write(a.tobytes()) + mm = np.memmap(fh, dtype=a.dtype, shape=a.shape) + with pytest.raises(ValueError, match="reduction operation fmax"): + np.nanmax(mm, out=np.zeros(2)) + # For completeness, same for nanmin. + with pytest.raises(ValueError, match="reduction operation fmin"): + np.nanmin(mm, out=np.zeros(2)) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_packbits.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_packbits.py new file mode 100644 index 0000000..0b0e9d1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_packbits.py @@ -0,0 +1,376 @@ +from itertools import chain + +import pytest + +import numpy as np +from numpy.testing import assert_array_equal, assert_equal, assert_raises + + +def test_packbits(): + # Copied from the docstring. + a = [[[1, 0, 1], [0, 1, 0]], + [[1, 1, 0], [0, 0, 1]]] + for dt in '?bBhHiIlLqQ': + arr = np.array(a, dtype=dt) + b = np.packbits(arr, axis=-1) + assert_equal(b.dtype, np.uint8) + assert_array_equal(b, np.array([[[160], [64]], [[192], [32]]])) + + assert_raises(TypeError, np.packbits, np.array(a, dtype=float)) + + +def test_packbits_empty(): + shapes = [ + (0,), (10, 20, 0), (10, 0, 20), (0, 10, 20), (20, 0, 0), (0, 20, 0), + (0, 0, 20), (0, 0, 0), + ] + for dt in '?bBhHiIlLqQ': + for shape in shapes: + a = np.empty(shape, dtype=dt) + b = np.packbits(a) + assert_equal(b.dtype, np.uint8) + assert_equal(b.shape, (0,)) + + +def test_packbits_empty_with_axis(): + # Original shapes and lists of packed shapes for different axes. + shapes = [ + ((0,), [(0,)]), + ((10, 20, 0), [(2, 20, 0), (10, 3, 0), (10, 20, 0)]), + ((10, 0, 20), [(2, 0, 20), (10, 0, 20), (10, 0, 3)]), + ((0, 10, 20), [(0, 10, 20), (0, 2, 20), (0, 10, 3)]), + ((20, 0, 0), [(3, 0, 0), (20, 0, 0), (20, 0, 0)]), + ((0, 20, 0), [(0, 20, 0), (0, 3, 0), (0, 20, 0)]), + ((0, 0, 20), [(0, 0, 20), (0, 0, 20), (0, 0, 3)]), + ((0, 0, 0), [(0, 0, 0), (0, 0, 0), (0, 0, 0)]), + ] + for dt in '?bBhHiIlLqQ': + for in_shape, out_shapes in shapes: + for ax, out_shape in enumerate(out_shapes): + a = np.empty(in_shape, dtype=dt) + b = np.packbits(a, axis=ax) + assert_equal(b.dtype, np.uint8) + assert_equal(b.shape, out_shape) + +@pytest.mark.parametrize('bitorder', ('little', 'big')) +def test_packbits_large(bitorder): + # test data large enough for 16 byte vectorization + a = np.array([1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, + 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, + 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, + 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, + 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, + 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, + 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, + 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, + 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, + 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, + 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, + 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, + 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, + 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, + 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0]) + a = a.repeat(3) + for dtype in '?bBhHiIlLqQ': + arr = np.array(a, dtype=dtype) + b = np.packbits(arr, axis=None, bitorder=bitorder) + assert_equal(b.dtype, np.uint8) + r = [252, 127, 192, 3, 254, 7, 252, 0, 7, 31, 240, 0, 28, 1, 255, 252, + 113, 248, 3, 255, 192, 28, 15, 192, 28, 126, 0, 224, 127, 255, + 227, 142, 7, 31, 142, 63, 28, 126, 56, 227, 240, 0, 227, 128, 63, + 224, 14, 56, 252, 112, 56, 255, 241, 248, 3, 240, 56, 224, 112, + 63, 255, 255, 199, 224, 14, 0, 31, 143, 192, 3, 255, 199, 0, 1, + 255, 224, 1, 255, 252, 126, 63, 0, 1, 192, 252, 14, 63, 0, 15, + 199, 252, 113, 255, 3, 128, 56, 252, 14, 7, 0, 113, 255, 255, 142, 56, 227, + 129, 248, 227, 129, 199, 31, 128] + if bitorder == 'big': + assert_array_equal(b, r) + # equal for size being multiple of 8 + assert_array_equal(np.unpackbits(b, bitorder=bitorder)[:-4], a) + + # check last byte of different remainders (16 byte vectorization) + b = [np.packbits(arr[:-i], axis=None)[-1] for i in range(1, 16)] + assert_array_equal(b, [128, 128, 128, 31, 30, 28, 24, 16, 0, 0, 0, 199, + 198, 196, 192]) + + arr = arr.reshape(36, 25) + b = np.packbits(arr, axis=0) + assert_equal(b.dtype, np.uint8) + assert_array_equal(b, [[190, 186, 178, 178, 150, 215, 87, 83, 83, 195, + 199, 206, 204, 204, 140, 140, 136, 136, 8, 40, 105, + 107, 75, 74, 88], + [72, 216, 248, 241, 227, 195, 202, 90, 90, 83, + 83, 119, 127, 109, 73, 64, 208, 244, 189, 45, + 41, 104, 122, 90, 18], + [113, 120, 248, 216, 152, 24, 60, 52, 182, 150, + 150, 150, 146, 210, 210, 246, 255, 255, 223, + 151, 21, 17, 17, 131, 163], + [214, 210, 210, 64, 68, 5, 5, 1, 72, 88, 92, + 92, 78, 110, 39, 181, 149, 220, 222, 218, 218, + 202, 234, 170, 168], + [0, 128, 128, 192, 80, 112, 48, 160, 160, 224, + 240, 208, 144, 128, 160, 224, 240, 208, 144, + 144, 176, 240, 224, 192, 128]]) + + b = np.packbits(arr, axis=1) + assert_equal(b.dtype, np.uint8) + assert_array_equal(b, [[252, 127, 192, 0], + [ 7, 252, 15, 128], + [240, 0, 28, 0], + [255, 128, 0, 128], + [192, 31, 255, 128], + [142, 63, 0, 0], + [255, 240, 7, 0], + [ 7, 224, 14, 0], + [126, 0, 224, 0], + [255, 255, 199, 0], + [ 56, 28, 126, 0], + [113, 248, 227, 128], + [227, 142, 63, 0], + [ 0, 28, 112, 0], + [ 15, 248, 3, 128], + [ 28, 126, 56, 0], + [ 56, 255, 241, 128], + [240, 7, 224, 0], + [227, 129, 192, 128], + [255, 255, 254, 0], + [126, 0, 224, 0], + [ 3, 241, 248, 0], + [ 0, 255, 241, 128], + [128, 0, 255, 128], + [224, 1, 255, 128], + [248, 252, 126, 0], + [ 0, 7, 3, 128], + [224, 113, 248, 0], + [ 0, 252, 127, 128], + [142, 63, 224, 0], + [224, 14, 63, 0], + [ 7, 3, 128, 0], + [113, 255, 255, 128], + [ 28, 113, 199, 0], + [ 7, 227, 142, 0], + [ 14, 56, 252, 0]]) + + arr = arr.T.copy() + b = np.packbits(arr, axis=0) + assert_equal(b.dtype, np.uint8) + assert_array_equal(b, [[252, 7, 240, 255, 192, 142, 255, 7, 126, 255, + 56, 113, 227, 0, 15, 28, 56, 240, 227, 255, + 126, 3, 0, 128, 224, 248, 0, 224, 0, 142, 224, + 7, 113, 28, 7, 14], + [127, 252, 0, 128, 31, 63, 240, 224, 0, 255, + 28, 248, 142, 28, 248, 126, 255, 7, 129, 255, + 0, 241, 255, 0, 1, 252, 7, 113, 252, 63, 14, + 3, 255, 113, 227, 56], + [192, 15, 28, 0, 255, 0, 7, 14, 224, 199, 126, + 227, 63, 112, 3, 56, 241, 224, 192, 254, 224, + 248, 241, 255, 255, 126, 3, 248, 127, 224, 63, + 128, 255, 199, 142, 252], + [0, 128, 0, 128, 128, 0, 0, 0, 0, 0, 0, 128, 0, + 0, 128, 0, 128, 0, 128, 0, 0, 0, 128, 128, + 128, 0, 128, 0, 128, 0, 0, 0, 128, 0, 0, 0]]) + + b = np.packbits(arr, axis=1) + assert_equal(b.dtype, np.uint8) + assert_array_equal(b, [[190, 72, 113, 214, 0], + [186, 216, 120, 210, 128], + [178, 248, 248, 210, 128], + [178, 241, 216, 64, 192], + [150, 227, 152, 68, 80], + [215, 195, 24, 5, 112], + [ 87, 202, 60, 5, 48], + [ 83, 90, 52, 1, 160], + [ 83, 90, 182, 72, 160], + [195, 83, 150, 88, 224], + [199, 83, 150, 92, 240], + [206, 119, 150, 92, 208], + [204, 127, 146, 78, 144], + [204, 109, 210, 110, 128], + [140, 73, 210, 39, 160], + [140, 64, 246, 181, 224], + [136, 208, 255, 149, 240], + [136, 244, 255, 220, 208], + [ 8, 189, 223, 222, 144], + [ 40, 45, 151, 218, 144], + [105, 41, 21, 218, 176], + [107, 104, 17, 202, 240], + [ 75, 122, 17, 234, 224], + [ 74, 90, 131, 170, 192], + [ 88, 18, 163, 168, 128]]) + + # result is the same if input is multiplied with a nonzero value + for dtype in 'bBhHiIlLqQ': + arr = np.array(a, dtype=dtype) + rnd = np.random.randint(low=np.iinfo(dtype).min, + high=np.iinfo(dtype).max, size=arr.size, + dtype=dtype) + rnd[rnd == 0] = 1 + arr *= rnd.astype(dtype) + b = np.packbits(arr, axis=-1) + assert_array_equal(np.unpackbits(b)[:-4], a) + + assert_raises(TypeError, np.packbits, np.array(a, dtype=float)) + + +def test_packbits_very_large(): + # test some with a larger arrays gh-8637 + # code is covered earlier but larger array makes crash on bug more likely + for s in range(950, 1050): + for dt in '?bBhHiIlLqQ': + x = np.ones((200, s), dtype=bool) + np.packbits(x, axis=1) + + +def test_unpackbits(): + # Copied from the docstring. + a = np.array([[2], [7], [23]], dtype=np.uint8) + b = np.unpackbits(a, axis=1) + assert_equal(b.dtype, np.uint8) + assert_array_equal(b, np.array([[0, 0, 0, 0, 0, 0, 1, 0], + [0, 0, 0, 0, 0, 1, 1, 1], + [0, 0, 0, 1, 0, 1, 1, 1]])) + +def test_pack_unpack_order(): + a = np.array([[2], [7], [23]], dtype=np.uint8) + b = np.unpackbits(a, axis=1) + assert_equal(b.dtype, np.uint8) + b_little = np.unpackbits(a, axis=1, bitorder='little') + b_big = np.unpackbits(a, axis=1, bitorder='big') + assert_array_equal(b, b_big) + assert_array_equal(a, np.packbits(b_little, axis=1, bitorder='little')) + assert_array_equal(b[:, ::-1], b_little) + assert_array_equal(a, np.packbits(b_big, axis=1, bitorder='big')) + assert_raises(ValueError, np.unpackbits, a, bitorder='r') + assert_raises(TypeError, np.unpackbits, a, bitorder=10) + + +def test_unpackbits_empty(): + a = np.empty((0,), dtype=np.uint8) + b = np.unpackbits(a) + assert_equal(b.dtype, np.uint8) + assert_array_equal(b, np.empty((0,))) + + +def test_unpackbits_empty_with_axis(): + # Lists of packed shapes for different axes and unpacked shapes. + shapes = [ + ([(0,)], (0,)), + ([(2, 24, 0), (16, 3, 0), (16, 24, 0)], (16, 24, 0)), + ([(2, 0, 24), (16, 0, 24), (16, 0, 3)], (16, 0, 24)), + ([(0, 16, 24), (0, 2, 24), (0, 16, 3)], (0, 16, 24)), + ([(3, 0, 0), (24, 0, 0), (24, 0, 0)], (24, 0, 0)), + ([(0, 24, 0), (0, 3, 0), (0, 24, 0)], (0, 24, 0)), + ([(0, 0, 24), (0, 0, 24), (0, 0, 3)], (0, 0, 24)), + ([(0, 0, 0), (0, 0, 0), (0, 0, 0)], (0, 0, 0)), + ] + for in_shapes, out_shape in shapes: + for ax, in_shape in enumerate(in_shapes): + a = np.empty(in_shape, dtype=np.uint8) + b = np.unpackbits(a, axis=ax) + assert_equal(b.dtype, np.uint8) + assert_equal(b.shape, out_shape) + + +def test_unpackbits_large(): + # test all possible numbers via comparison to already tested packbits + d = np.arange(277, dtype=np.uint8) + assert_array_equal(np.packbits(np.unpackbits(d)), d) + assert_array_equal(np.packbits(np.unpackbits(d[::2])), d[::2]) + d = np.tile(d, (3, 1)) + assert_array_equal(np.packbits(np.unpackbits(d, axis=1), axis=1), d) + d = d.T.copy() + assert_array_equal(np.packbits(np.unpackbits(d, axis=0), axis=0), d) + + +class TestCount: + x = np.array([ + [1, 0, 1, 0, 0, 1, 0], + [0, 1, 1, 1, 0, 0, 0], + [0, 0, 1, 0, 0, 1, 1], + [1, 1, 0, 0, 0, 1, 1], + [1, 0, 1, 0, 1, 0, 1], + [0, 0, 1, 1, 1, 0, 0], + [0, 1, 0, 1, 0, 1, 0], + ], dtype=np.uint8) + padded1 = np.zeros(57, dtype=np.uint8) + padded1[:49] = x.ravel() + padded1b = np.zeros(57, dtype=np.uint8) + padded1b[:49] = x[::-1].copy().ravel() + padded2 = np.zeros((9, 9), dtype=np.uint8) + padded2[:7, :7] = x + + @pytest.mark.parametrize('bitorder', ('little', 'big')) + @pytest.mark.parametrize('count', chain(range(58), range(-1, -57, -1))) + def test_roundtrip(self, bitorder, count): + if count < 0: + # one extra zero of padding + cutoff = count - 1 + else: + cutoff = count + # test complete invertibility of packbits and unpackbits with count + packed = np.packbits(self.x, bitorder=bitorder) + unpacked = np.unpackbits(packed, count=count, bitorder=bitorder) + assert_equal(unpacked.dtype, np.uint8) + assert_array_equal(unpacked, self.padded1[:cutoff]) + + @pytest.mark.parametrize('kwargs', [ + {}, {'count': None}, + ]) + def test_count(self, kwargs): + packed = np.packbits(self.x) + unpacked = np.unpackbits(packed, **kwargs) + assert_equal(unpacked.dtype, np.uint8) + assert_array_equal(unpacked, self.padded1[:-1]) + + @pytest.mark.parametrize('bitorder', ('little', 'big')) + # delta==-1 when count<0 because one extra zero of padding + @pytest.mark.parametrize('count', chain(range(8), range(-1, -9, -1))) + def test_roundtrip_axis(self, bitorder, count): + if count < 0: + # one extra zero of padding + cutoff = count - 1 + else: + cutoff = count + packed0 = np.packbits(self.x, axis=0, bitorder=bitorder) + unpacked0 = np.unpackbits(packed0, axis=0, count=count, + bitorder=bitorder) + assert_equal(unpacked0.dtype, np.uint8) + assert_array_equal(unpacked0, self.padded2[:cutoff, :self.x.shape[1]]) + + packed1 = np.packbits(self.x, axis=1, bitorder=bitorder) + unpacked1 = np.unpackbits(packed1, axis=1, count=count, + bitorder=bitorder) + assert_equal(unpacked1.dtype, np.uint8) + assert_array_equal(unpacked1, self.padded2[:self.x.shape[0], :cutoff]) + + @pytest.mark.parametrize('kwargs', [ + {}, {'count': None}, + {'bitorder': 'little'}, + {'bitorder': 'little', 'count': None}, + {'bitorder': 'big'}, + {'bitorder': 'big', 'count': None}, + ]) + def test_axis_count(self, kwargs): + packed0 = np.packbits(self.x, axis=0) + unpacked0 = np.unpackbits(packed0, axis=0, **kwargs) + assert_equal(unpacked0.dtype, np.uint8) + if kwargs.get('bitorder', 'big') == 'big': + assert_array_equal(unpacked0, self.padded2[:-1, :self.x.shape[1]]) + else: + assert_array_equal(unpacked0[::-1, :], self.padded2[:-1, :self.x.shape[1]]) + + packed1 = np.packbits(self.x, axis=1) + unpacked1 = np.unpackbits(packed1, axis=1, **kwargs) + assert_equal(unpacked1.dtype, np.uint8) + if kwargs.get('bitorder', 'big') == 'big': + assert_array_equal(unpacked1, self.padded2[:self.x.shape[0], :-1]) + else: + assert_array_equal(unpacked1[:, ::-1], self.padded2[:self.x.shape[0], :-1]) + + def test_bad_count(self): + packed0 = np.packbits(self.x, axis=0) + assert_raises(ValueError, np.unpackbits, packed0, axis=0, count=-9) + packed1 = np.packbits(self.x, axis=1) + assert_raises(ValueError, np.unpackbits, packed1, axis=1, count=-9) + packed = np.packbits(self.x) + assert_raises(ValueError, np.unpackbits, packed, count=-57) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_polynomial.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_polynomial.py new file mode 100644 index 0000000..c173ac3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_polynomial.py @@ -0,0 +1,320 @@ +import pytest + +import numpy as np +import numpy.polynomial.polynomial as poly +from numpy.testing import ( + assert_, + assert_allclose, + assert_almost_equal, + assert_array_almost_equal, + assert_array_equal, + assert_equal, + assert_raises, +) + +# `poly1d` has some support for `np.bool` and `np.timedelta64`, +# but it is limited and they are therefore excluded here +TYPE_CODES = np.typecodes["AllInteger"] + np.typecodes["AllFloat"] + "O" + + +class TestPolynomial: + def test_poly1d_str_and_repr(self): + p = np.poly1d([1., 2, 3]) + assert_equal(repr(p), 'poly1d([1., 2., 3.])') + assert_equal(str(p), + ' 2\n' + '1 x + 2 x + 3') + + q = np.poly1d([3., 2, 1]) + assert_equal(repr(q), 'poly1d([3., 2., 1.])') + assert_equal(str(q), + ' 2\n' + '3 x + 2 x + 1') + + r = np.poly1d([1.89999 + 2j, -3j, -5.12345678, 2 + 1j]) + assert_equal(str(r), + ' 3 2\n' + '(1.9 + 2j) x - 3j x - 5.123 x + (2 + 1j)') + + assert_equal(str(np.poly1d([-3, -2, -1])), + ' 2\n' + '-3 x - 2 x - 1') + + def test_poly1d_resolution(self): + p = np.poly1d([1., 2, 3]) + q = np.poly1d([3., 2, 1]) + assert_equal(p(0), 3.0) + assert_equal(p(5), 38.0) + assert_equal(q(0), 1.0) + assert_equal(q(5), 86.0) + + def test_poly1d_math(self): + # here we use some simple coeffs to make calculations easier + p = np.poly1d([1., 2, 4]) + q = np.poly1d([4., 2, 1]) + assert_equal(p / q, (np.poly1d([0.25]), np.poly1d([1.5, 3.75]))) + assert_equal(p.integ(), np.poly1d([1 / 3, 1., 4., 0.])) + assert_equal(p.integ(1), np.poly1d([1 / 3, 1., 4., 0.])) + + p = np.poly1d([1., 2, 3]) + q = np.poly1d([3., 2, 1]) + assert_equal(p * q, np.poly1d([3., 8., 14., 8., 3.])) + assert_equal(p + q, np.poly1d([4., 4., 4.])) + assert_equal(p - q, np.poly1d([-2., 0., 2.])) + assert_equal(p ** 4, np.poly1d([1., 8., 36., 104., 214., 312., 324., 216., 81.])) + assert_equal(p(q), np.poly1d([9., 12., 16., 8., 6.])) + assert_equal(q(p), np.poly1d([3., 12., 32., 40., 34.])) + assert_equal(p.deriv(), np.poly1d([2., 2.])) + assert_equal(p.deriv(2), np.poly1d([2.])) + assert_equal(np.polydiv(np.poly1d([1, 0, -1]), np.poly1d([1, 1])), + (np.poly1d([1., -1.]), np.poly1d([0.]))) + + @pytest.mark.parametrize("type_code", TYPE_CODES) + def test_poly1d_misc(self, type_code: str) -> None: + dtype = np.dtype(type_code) + ar = np.array([1, 2, 3], dtype=dtype) + p = np.poly1d(ar) + + # `__eq__` + assert_equal(np.asarray(p), ar) + assert_equal(np.asarray(p).dtype, dtype) + assert_equal(len(p), 2) + + # `__getitem__` + comparison_dct = {-1: 0, 0: 3, 1: 2, 2: 1, 3: 0} + for index, ref in comparison_dct.items(): + scalar = p[index] + assert_equal(scalar, ref) + if dtype == np.object_: + assert isinstance(scalar, int) + else: + assert_equal(scalar.dtype, dtype) + + def test_poly1d_variable_arg(self): + q = np.poly1d([1., 2, 3], variable='y') + assert_equal(str(q), + ' 2\n' + '1 y + 2 y + 3') + q = np.poly1d([1., 2, 3], variable='lambda') + assert_equal(str(q), + ' 2\n' + '1 lambda + 2 lambda + 3') + + def test_poly(self): + assert_array_almost_equal(np.poly([3, -np.sqrt(2), np.sqrt(2)]), + [1, -3, -2, 6]) + + # From matlab docs + A = [[1, 2, 3], [4, 5, 6], [7, 8, 0]] + assert_array_almost_equal(np.poly(A), [1, -6, -72, -27]) + + # Should produce real output for perfect conjugates + assert_(np.isrealobj(np.poly([+1.082j, +2.613j, -2.613j, -1.082j]))) + assert_(np.isrealobj(np.poly([0 + 1j, -0 + -1j, 1 + 2j, + 1 - 2j, 1. + 3.5j, 1 - 3.5j]))) + assert_(np.isrealobj(np.poly([1j, -1j, 1 + 2j, 1 - 2j, 1 + 3j, 1 - 3.j]))) + assert_(np.isrealobj(np.poly([1j, -1j, 1 + 2j, 1 - 2j]))) + assert_(np.isrealobj(np.poly([1j, -1j, 2j, -2j]))) + assert_(np.isrealobj(np.poly([1j, -1j]))) + assert_(np.isrealobj(np.poly([1, -1]))) + + assert_(np.iscomplexobj(np.poly([1j, -1.0000001j]))) + + np.random.seed(42) + a = np.random.randn(100) + 1j * np.random.randn(100) + assert_(np.isrealobj(np.poly(np.concatenate((a, np.conjugate(a)))))) + + def test_roots(self): + assert_array_equal(np.roots([1, 0, 0]), [0, 0]) + + # Testing for larger root values + for i in np.logspace(10, 25, num=1000, base=10): + tgt = np.array([-1, 1, i]) + res = np.sort(np.roots(poly.polyfromroots(tgt)[::-1])) + assert_almost_equal(res, tgt, 14 - int(np.log10(i))) # Adapting the expected precision according to the root value, to take into account numerical calculation error + + for i in np.logspace(10, 25, num=1000, base=10): + tgt = np.array([-1, 1.01, i]) + res = np.sort(np.roots(poly.polyfromroots(tgt)[::-1])) + assert_almost_equal(res, tgt, 14 - int(np.log10(i))) # Adapting the expected precision according to the root value, to take into account numerical calculation error + + def test_str_leading_zeros(self): + p = np.poly1d([4, 3, 2, 1]) + p[3] = 0 + assert_equal(str(p), + " 2\n" + "3 x + 2 x + 1") + + p = np.poly1d([1, 2]) + p[0] = 0 + p[1] = 0 + assert_equal(str(p), " \n0") + + def test_polyfit(self): + c = np.array([3., 2., 1.]) + x = np.linspace(0, 2, 7) + y = np.polyval(c, x) + err = [1, -1, 1, -1, 1, -1, 1] + weights = np.arange(8, 1, -1)**2 / 7.0 + + # Check exception when too few points for variance estimate. Note that + # the estimate requires the number of data points to exceed + # degree + 1 + assert_raises(ValueError, np.polyfit, + [1], [1], deg=0, cov=True) + + # check 1D case + m, cov = np.polyfit(x, y + err, 2, cov=True) + est = [3.8571, 0.2857, 1.619] + assert_almost_equal(est, m, decimal=4) + val0 = [[ 1.4694, -2.9388, 0.8163], + [-2.9388, 6.3673, -2.1224], + [ 0.8163, -2.1224, 1.161 ]] # noqa: E202 + assert_almost_equal(val0, cov, decimal=4) + + m2, cov2 = np.polyfit(x, y + err, 2, w=weights, cov=True) + assert_almost_equal([4.8927, -1.0177, 1.7768], m2, decimal=4) + val = [[ 4.3964, -5.0052, 0.4878], + [-5.0052, 6.8067, -0.9089], + [ 0.4878, -0.9089, 0.3337]] + assert_almost_equal(val, cov2, decimal=4) + + m3, cov3 = np.polyfit(x, y + err, 2, w=weights, cov="unscaled") + assert_almost_equal([4.8927, -1.0177, 1.7768], m3, decimal=4) + val = [[ 0.1473, -0.1677, 0.0163], + [-0.1677, 0.228 , -0.0304], # noqa: E203 + [ 0.0163, -0.0304, 0.0112]] + assert_almost_equal(val, cov3, decimal=4) + + # check 2D (n,1) case + y = y[:, np.newaxis] + c = c[:, np.newaxis] + assert_almost_equal(c, np.polyfit(x, y, 2)) + # check 2D (n,2) case + yy = np.concatenate((y, y), axis=1) + cc = np.concatenate((c, c), axis=1) + assert_almost_equal(cc, np.polyfit(x, yy, 2)) + + m, cov = np.polyfit(x, yy + np.array(err)[:, np.newaxis], 2, cov=True) + assert_almost_equal(est, m[:, 0], decimal=4) + assert_almost_equal(est, m[:, 1], decimal=4) + assert_almost_equal(val0, cov[:, :, 0], decimal=4) + assert_almost_equal(val0, cov[:, :, 1], decimal=4) + + # check order 1 (deg=0) case, were the analytic results are simple + np.random.seed(123) + y = np.random.normal(size=(4, 10000)) + mean, cov = np.polyfit(np.zeros(y.shape[0]), y, deg=0, cov=True) + # Should get sigma_mean = sigma/sqrt(N) = 1./sqrt(4) = 0.5. + assert_allclose(mean.std(), 0.5, atol=0.01) + assert_allclose(np.sqrt(cov.mean()), 0.5, atol=0.01) + # Without scaling, since reduced chi2 is 1, the result should be the same. + mean, cov = np.polyfit(np.zeros(y.shape[0]), y, w=np.ones(y.shape[0]), + deg=0, cov="unscaled") + assert_allclose(mean.std(), 0.5, atol=0.01) + assert_almost_equal(np.sqrt(cov.mean()), 0.5) + # If we estimate our errors wrong, no change with scaling: + w = np.full(y.shape[0], 1. / 0.5) + mean, cov = np.polyfit(np.zeros(y.shape[0]), y, w=w, deg=0, cov=True) + assert_allclose(mean.std(), 0.5, atol=0.01) + assert_allclose(np.sqrt(cov.mean()), 0.5, atol=0.01) + # But if we do not scale, our estimate for the error in the mean will + # differ. + mean, cov = np.polyfit(np.zeros(y.shape[0]), y, w=w, deg=0, cov="unscaled") + assert_allclose(mean.std(), 0.5, atol=0.01) + assert_almost_equal(np.sqrt(cov.mean()), 0.25) + + def test_objects(self): + from decimal import Decimal + p = np.poly1d([Decimal('4.0'), Decimal('3.0'), Decimal('2.0')]) + p2 = p * Decimal('1.333333333333333') + assert_(p2[1] == Decimal("3.9999999999999990")) + p2 = p.deriv() + assert_(p2[1] == Decimal('8.0')) + p2 = p.integ() + assert_(p2[3] == Decimal("1.333333333333333333333333333")) + assert_(p2[2] == Decimal('1.5')) + assert_(np.issubdtype(p2.coeffs.dtype, np.object_)) + p = np.poly([Decimal(1), Decimal(2)]) + assert_equal(np.poly([Decimal(1), Decimal(2)]), + [1, Decimal(-3), Decimal(2)]) + + def test_complex(self): + p = np.poly1d([3j, 2j, 1j]) + p2 = p.integ() + assert_((p2.coeffs == [1j, 1j, 1j, 0]).all()) + p2 = p.deriv() + assert_((p2.coeffs == [6j, 2j]).all()) + + def test_integ_coeffs(self): + p = np.poly1d([3, 2, 1]) + p2 = p.integ(3, k=[9, 7, 6]) + assert_( + (p2.coeffs == [1 / 4. / 5., 1 / 3. / 4., 1 / 2. / 3., 9 / 1. / 2., 7, 6]).all()) + + def test_zero_dims(self): + try: + np.poly(np.zeros((0, 0))) + except ValueError: + pass + + def test_poly_int_overflow(self): + """ + Regression test for gh-5096. + """ + v = np.arange(1, 21) + assert_almost_equal(np.poly(v), np.poly(np.diag(v))) + + def test_zero_poly_dtype(self): + """ + Regression test for gh-16354. + """ + z = np.array([0, 0, 0]) + p = np.poly1d(z.astype(np.int64)) + assert_equal(p.coeffs.dtype, np.int64) + + p = np.poly1d(z.astype(np.float32)) + assert_equal(p.coeffs.dtype, np.float32) + + p = np.poly1d(z.astype(np.complex64)) + assert_equal(p.coeffs.dtype, np.complex64) + + def test_poly_eq(self): + p = np.poly1d([1, 2, 3]) + p2 = np.poly1d([1, 2, 4]) + assert_equal(p == None, False) # noqa: E711 + assert_equal(p != None, True) # noqa: E711 + assert_equal(p == p, True) + assert_equal(p == p2, False) + assert_equal(p != p2, True) + + def test_polydiv(self): + b = np.poly1d([2, 6, 6, 1]) + a = np.poly1d([-1j, (1 + 2j), -(2 + 1j), 1]) + q, r = np.polydiv(b, a) + assert_equal(q.coeffs.dtype, np.complex128) + assert_equal(r.coeffs.dtype, np.complex128) + assert_equal(q * a + r, b) + + c = [1, 2, 3] + d = np.poly1d([1, 2, 3]) + s, t = np.polydiv(c, d) + assert isinstance(s, np.poly1d) + assert isinstance(t, np.poly1d) + u, v = np.polydiv(d, c) + assert isinstance(u, np.poly1d) + assert isinstance(v, np.poly1d) + + def test_poly_coeffs_mutable(self): + """ Coefficients should be modifiable """ + p = np.poly1d([1, 2, 3]) + + p.coeffs += 1 + assert_equal(p.coeffs, [2, 3, 4]) + + p.coeffs[2] += 10 + assert_equal(p.coeffs, [2, 3, 14]) + + # this never used to be allowed - let's not add features to deprecated + # APIs + assert_raises(AttributeError, setattr, p, 'coeffs', np.array(1)) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_recfunctions.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_recfunctions.py new file mode 100644 index 0000000..eee1f47 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_recfunctions.py @@ -0,0 +1,1052 @@ + +import numpy as np +import numpy.ma as ma +from numpy.lib.recfunctions import ( + append_fields, + apply_along_fields, + assign_fields_by_name, + drop_fields, + find_duplicates, + get_fieldstructure, + join_by, + merge_arrays, + recursive_fill_fields, + rename_fields, + repack_fields, + require_fields, + stack_arrays, + structured_to_unstructured, + unstructured_to_structured, +) +from numpy.ma.mrecords import MaskedRecords +from numpy.ma.testutils import assert_equal +from numpy.testing import assert_, assert_raises + +get_fieldspec = np.lib.recfunctions._get_fieldspec +get_names = np.lib.recfunctions.get_names +get_names_flat = np.lib.recfunctions.get_names_flat +zip_descr = np.lib.recfunctions._zip_descr +zip_dtype = np.lib.recfunctions._zip_dtype + + +class TestRecFunctions: + # Misc tests + + def setup_method(self): + x = np.array([1, 2, ]) + y = np.array([10, 20, 30]) + z = np.array([('A', 1.), ('B', 2.)], + dtype=[('A', '|S3'), ('B', float)]) + w = np.array([(1, (2, 3.0)), (4, (5, 6.0))], + dtype=[('a', int), ('b', [('ba', float), ('bb', int)])]) + self.data = (w, x, y, z) + + def test_zip_descr(self): + # Test zip_descr + (w, x, y, z) = self.data + + # Std array + test = zip_descr((x, x), flatten=True) + assert_equal(test, + np.dtype([('', int), ('', int)])) + test = zip_descr((x, x), flatten=False) + assert_equal(test, + np.dtype([('', int), ('', int)])) + + # Std & flexible-dtype + test = zip_descr((x, z), flatten=True) + assert_equal(test, + np.dtype([('', int), ('A', '|S3'), ('B', float)])) + test = zip_descr((x, z), flatten=False) + assert_equal(test, + np.dtype([('', int), + ('', [('A', '|S3'), ('B', float)])])) + + # Standard & nested dtype + test = zip_descr((x, w), flatten=True) + assert_equal(test, + np.dtype([('', int), + ('a', int), + ('ba', float), ('bb', int)])) + test = zip_descr((x, w), flatten=False) + assert_equal(test, + np.dtype([('', int), + ('', [('a', int), + ('b', [('ba', float), ('bb', int)])])])) + + def test_drop_fields(self): + # Test drop_fields + a = np.array([(1, (2, 3.0)), (4, (5, 6.0))], + dtype=[('a', int), ('b', [('ba', float), ('bb', int)])]) + + # A basic field + test = drop_fields(a, 'a') + control = np.array([((2, 3.0),), ((5, 6.0),)], + dtype=[('b', [('ba', float), ('bb', int)])]) + assert_equal(test, control) + + # Another basic field (but nesting two fields) + test = drop_fields(a, 'b') + control = np.array([(1,), (4,)], dtype=[('a', int)]) + assert_equal(test, control) + + # A nested sub-field + test = drop_fields(a, ['ba', ]) + control = np.array([(1, (3.0,)), (4, (6.0,))], + dtype=[('a', int), ('b', [('bb', int)])]) + assert_equal(test, control) + + # All the nested sub-field from a field: zap that field + test = drop_fields(a, ['ba', 'bb']) + control = np.array([(1,), (4,)], dtype=[('a', int)]) + assert_equal(test, control) + + # dropping all fields results in an array with no fields + test = drop_fields(a, ['a', 'b']) + control = np.array([(), ()], dtype=[]) + assert_equal(test, control) + + def test_rename_fields(self): + # Test rename fields + a = np.array([(1, (2, [3.0, 30.])), (4, (5, [6.0, 60.]))], + dtype=[('a', int), + ('b', [('ba', float), ('bb', (float, 2))])]) + test = rename_fields(a, {'a': 'A', 'bb': 'BB'}) + newdtype = [('A', int), ('b', [('ba', float), ('BB', (float, 2))])] + control = a.view(newdtype) + assert_equal(test.dtype, newdtype) + assert_equal(test, control) + + def test_get_names(self): + # Test get_names + ndtype = np.dtype([('A', '|S3'), ('B', float)]) + test = get_names(ndtype) + assert_equal(test, ('A', 'B')) + + ndtype = np.dtype([('a', int), ('b', [('ba', float), ('bb', int)])]) + test = get_names(ndtype) + assert_equal(test, ('a', ('b', ('ba', 'bb')))) + + ndtype = np.dtype([('a', int), ('b', [])]) + test = get_names(ndtype) + assert_equal(test, ('a', ('b', ()))) + + ndtype = np.dtype([]) + test = get_names(ndtype) + assert_equal(test, ()) + + def test_get_names_flat(self): + # Test get_names_flat + ndtype = np.dtype([('A', '|S3'), ('B', float)]) + test = get_names_flat(ndtype) + assert_equal(test, ('A', 'B')) + + ndtype = np.dtype([('a', int), ('b', [('ba', float), ('bb', int)])]) + test = get_names_flat(ndtype) + assert_equal(test, ('a', 'b', 'ba', 'bb')) + + ndtype = np.dtype([('a', int), ('b', [])]) + test = get_names_flat(ndtype) + assert_equal(test, ('a', 'b')) + + ndtype = np.dtype([]) + test = get_names_flat(ndtype) + assert_equal(test, ()) + + def test_get_fieldstructure(self): + # Test get_fieldstructure + + # No nested fields + ndtype = np.dtype([('A', '|S3'), ('B', float)]) + test = get_fieldstructure(ndtype) + assert_equal(test, {'A': [], 'B': []}) + + # One 1-nested field + ndtype = np.dtype([('A', int), ('B', [('BA', float), ('BB', '|S1')])]) + test = get_fieldstructure(ndtype) + assert_equal(test, {'A': [], 'B': [], 'BA': ['B', ], 'BB': ['B']}) + + # One 2-nested fields + ndtype = np.dtype([('A', int), + ('B', [('BA', int), + ('BB', [('BBA', int), ('BBB', int)])])]) + test = get_fieldstructure(ndtype) + control = {'A': [], 'B': [], 'BA': ['B'], 'BB': ['B'], + 'BBA': ['B', 'BB'], 'BBB': ['B', 'BB']} + assert_equal(test, control) + + # 0 fields + ndtype = np.dtype([]) + test = get_fieldstructure(ndtype) + assert_equal(test, {}) + + def test_find_duplicates(self): + # Test find_duplicates + a = ma.array([(2, (2., 'B')), (1, (2., 'B')), (2, (2., 'B')), + (1, (1., 'B')), (2, (2., 'B')), (2, (2., 'C'))], + mask=[(0, (0, 0)), (0, (0, 0)), (0, (0, 0)), + (0, (0, 0)), (1, (0, 0)), (0, (1, 0))], + dtype=[('A', int), ('B', [('BA', float), ('BB', '|S1')])]) + + test = find_duplicates(a, ignoremask=False, return_index=True) + control = [0, 2] + assert_equal(sorted(test[-1]), control) + assert_equal(test[0], a[test[-1]]) + + test = find_duplicates(a, key='A', return_index=True) + control = [0, 1, 2, 3, 5] + assert_equal(sorted(test[-1]), control) + assert_equal(test[0], a[test[-1]]) + + test = find_duplicates(a, key='B', return_index=True) + control = [0, 1, 2, 4] + assert_equal(sorted(test[-1]), control) + assert_equal(test[0], a[test[-1]]) + + test = find_duplicates(a, key='BA', return_index=True) + control = [0, 1, 2, 4] + assert_equal(sorted(test[-1]), control) + assert_equal(test[0], a[test[-1]]) + + test = find_duplicates(a, key='BB', return_index=True) + control = [0, 1, 2, 3, 4] + assert_equal(sorted(test[-1]), control) + assert_equal(test[0], a[test[-1]]) + + def test_find_duplicates_ignoremask(self): + # Test the ignoremask option of find_duplicates + ndtype = [('a', int)] + a = ma.array([1, 1, 1, 2, 2, 3, 3], + mask=[0, 0, 1, 0, 0, 0, 1]).view(ndtype) + test = find_duplicates(a, ignoremask=True, return_index=True) + control = [0, 1, 3, 4] + assert_equal(sorted(test[-1]), control) + assert_equal(test[0], a[test[-1]]) + + test = find_duplicates(a, ignoremask=False, return_index=True) + control = [0, 1, 2, 3, 4, 6] + assert_equal(sorted(test[-1]), control) + assert_equal(test[0], a[test[-1]]) + + def test_repack_fields(self): + dt = np.dtype('u1,f4,i8', align=True) + a = np.zeros(2, dtype=dt) + + assert_equal(repack_fields(dt), np.dtype('u1,f4,i8')) + assert_equal(repack_fields(a).itemsize, 13) + assert_equal(repack_fields(repack_fields(dt), align=True), dt) + + # make sure type is preserved + dt = np.dtype((np.record, dt)) + assert_(repack_fields(dt).type is np.record) + + def test_structured_to_unstructured(self, tmp_path): + a = np.zeros(4, dtype=[('a', 'i4'), ('b', 'f4,u2'), ('c', 'f4', 2)]) + out = structured_to_unstructured(a) + assert_equal(out, np.zeros((4, 5), dtype='f8')) + + b = np.array([(1, 2, 5), (4, 5, 7), (7, 8, 11), (10, 11, 12)], + dtype=[('x', 'i4'), ('y', 'f4'), ('z', 'f8')]) + out = np.mean(structured_to_unstructured(b[['x', 'z']]), axis=-1) + assert_equal(out, np.array([3., 5.5, 9., 11.])) + out = np.mean(structured_to_unstructured(b[['x']]), axis=-1) + assert_equal(out, np.array([1., 4. , 7., 10.])) # noqa: E203 + + c = np.arange(20).reshape((4, 5)) + out = unstructured_to_structured(c, a.dtype) + want = np.array([( 0, ( 1., 2), [ 3., 4.]), + ( 5, ( 6., 7), [ 8., 9.]), + (10, (11., 12), [13., 14.]), + (15, (16., 17), [18., 19.])], + dtype=[('a', 'i4'), + ('b', [('f0', 'f4'), ('f1', 'u2')]), + ('c', 'f4', (2,))]) + assert_equal(out, want) + + d = np.array([(1, 2, 5), (4, 5, 7), (7, 8, 11), (10, 11, 12)], + dtype=[('x', 'i4'), ('y', 'f4'), ('z', 'f8')]) + assert_equal(apply_along_fields(np.mean, d), + np.array([ 8.0 / 3, 16.0 / 3, 26.0 / 3, 11.])) + assert_equal(apply_along_fields(np.mean, d[['x', 'z']]), + np.array([ 3., 5.5, 9., 11.])) + + # check that for uniform field dtypes we get a view, not a copy: + d = np.array([(1, 2, 5), (4, 5, 7), (7, 8, 11), (10, 11, 12)], + dtype=[('x', 'i4'), ('y', 'i4'), ('z', 'i4')]) + dd = structured_to_unstructured(d) + ddd = unstructured_to_structured(dd, d.dtype) + assert_(np.shares_memory(dd, d)) + assert_(np.shares_memory(ddd, d)) + + # check that reversing the order of attributes works + dd_attrib_rev = structured_to_unstructured(d[['z', 'x']]) + assert_equal(dd_attrib_rev, [[5, 1], [7, 4], [11, 7], [12, 10]]) + assert_(np.shares_memory(dd_attrib_rev, d)) + + # including uniform fields with subarrays unpacked + d = np.array([(1, [2, 3], [[ 4, 5], [ 6, 7]]), + (8, [9, 10], [[11, 12], [13, 14]])], + dtype=[('x0', 'i4'), ('x1', ('i4', 2)), + ('x2', ('i4', (2, 2)))]) + dd = structured_to_unstructured(d) + ddd = unstructured_to_structured(dd, d.dtype) + assert_(np.shares_memory(dd, d)) + assert_(np.shares_memory(ddd, d)) + + # check that reversing with sub-arrays works as expected + d_rev = d[::-1] + dd_rev = structured_to_unstructured(d_rev) + assert_equal(dd_rev, [[8, 9, 10, 11, 12, 13, 14], + [1, 2, 3, 4, 5, 6, 7]]) + + # check that sub-arrays keep the order of their values + d_attrib_rev = d[['x2', 'x1', 'x0']] + dd_attrib_rev = structured_to_unstructured(d_attrib_rev) + assert_equal(dd_attrib_rev, [[4, 5, 6, 7, 2, 3, 1], + [11, 12, 13, 14, 9, 10, 8]]) + + # with ignored field at the end + d = np.array([(1, [2, 3], [[4, 5], [6, 7]], 32), + (8, [9, 10], [[11, 12], [13, 14]], 64)], + dtype=[('x0', 'i4'), ('x1', ('i4', 2)), + ('x2', ('i4', (2, 2))), ('ignored', 'u1')]) + dd = structured_to_unstructured(d[['x0', 'x1', 'x2']]) + assert_(np.shares_memory(dd, d)) + assert_equal(dd, [[1, 2, 3, 4, 5, 6, 7], + [8, 9, 10, 11, 12, 13, 14]]) + + # test that nested fields with identical names don't break anything + point = np.dtype([('x', int), ('y', int)]) + triangle = np.dtype([('a', point), ('b', point), ('c', point)]) + arr = np.zeros(10, triangle) + res = structured_to_unstructured(arr, dtype=int) + assert_equal(res, np.zeros((10, 6), dtype=int)) + + # test nested combinations of subarrays and structured arrays, gh-13333 + def subarray(dt, shape): + return np.dtype((dt, shape)) + + def structured(*dts): + return np.dtype([(f'x{i}', dt) for i, dt in enumerate(dts)]) + + def inspect(dt, dtype=None): + arr = np.zeros((), dt) + ret = structured_to_unstructured(arr, dtype=dtype) + backarr = unstructured_to_structured(ret, dt) + return ret.shape, ret.dtype, backarr.dtype + + dt = structured(subarray(structured(np.int32, np.int32), 3)) + assert_equal(inspect(dt), ((6,), np.int32, dt)) + + dt = structured(subarray(subarray(np.int32, 2), 2)) + assert_equal(inspect(dt), ((4,), np.int32, dt)) + + dt = structured(np.int32) + assert_equal(inspect(dt), ((1,), np.int32, dt)) + + dt = structured(np.int32, subarray(subarray(np.int32, 2), 2)) + assert_equal(inspect(dt), ((5,), np.int32, dt)) + + dt = structured() + assert_raises(ValueError, structured_to_unstructured, np.zeros(3, dt)) + + # these currently don't work, but we may make it work in the future + assert_raises(NotImplementedError, structured_to_unstructured, + np.zeros(3, dt), dtype=np.int32) + assert_raises(NotImplementedError, unstructured_to_structured, + np.zeros((3, 0), dtype=np.int32)) + + # test supported ndarray subclasses + d_plain = np.array([(1, 2), (3, 4)], dtype=[('a', 'i4'), ('b', 'i4')]) + dd_expected = structured_to_unstructured(d_plain, copy=True) + + # recarray + d = d_plain.view(np.recarray) + + dd = structured_to_unstructured(d, copy=False) + ddd = structured_to_unstructured(d, copy=True) + assert_(np.shares_memory(d, dd)) + assert_(type(dd) is np.recarray) + assert_(type(ddd) is np.recarray) + assert_equal(dd, dd_expected) + assert_equal(ddd, dd_expected) + + # memmap + d = np.memmap(tmp_path / 'memmap', + mode='w+', + dtype=d_plain.dtype, + shape=d_plain.shape) + d[:] = d_plain + dd = structured_to_unstructured(d, copy=False) + ddd = structured_to_unstructured(d, copy=True) + assert_(np.shares_memory(d, dd)) + assert_(type(dd) is np.memmap) + assert_(type(ddd) is np.memmap) + assert_equal(dd, dd_expected) + assert_equal(ddd, dd_expected) + + def test_unstructured_to_structured(self): + # test if dtype is the args of np.dtype + a = np.zeros((20, 2)) + test_dtype_args = [('x', float), ('y', float)] + test_dtype = np.dtype(test_dtype_args) + field1 = unstructured_to_structured(a, dtype=test_dtype_args) # now + field2 = unstructured_to_structured(a, dtype=test_dtype) # before + assert_equal(field1, field2) + + def test_field_assignment_by_name(self): + a = np.ones(2, dtype=[('a', 'i4'), ('b', 'f8'), ('c', 'u1')]) + newdt = [('b', 'f4'), ('c', 'u1')] + + assert_equal(require_fields(a, newdt), np.ones(2, newdt)) + + b = np.array([(1, 2), (3, 4)], dtype=newdt) + assign_fields_by_name(a, b, zero_unassigned=False) + assert_equal(a, np.array([(1, 1, 2), (1, 3, 4)], dtype=a.dtype)) + assign_fields_by_name(a, b) + assert_equal(a, np.array([(0, 1, 2), (0, 3, 4)], dtype=a.dtype)) + + # test nested fields + a = np.ones(2, dtype=[('a', [('b', 'f8'), ('c', 'u1')])]) + newdt = [('a', [('c', 'u1')])] + assert_equal(require_fields(a, newdt), np.ones(2, newdt)) + b = np.array([((2,),), ((3,),)], dtype=newdt) + assign_fields_by_name(a, b, zero_unassigned=False) + assert_equal(a, np.array([((1, 2),), ((1, 3),)], dtype=a.dtype)) + assign_fields_by_name(a, b) + assert_equal(a, np.array([((0, 2),), ((0, 3),)], dtype=a.dtype)) + + # test unstructured code path for 0d arrays + a, b = np.array(3), np.array(0) + assign_fields_by_name(b, a) + assert_equal(b[()], 3) + + +class TestRecursiveFillFields: + # Test recursive_fill_fields. + def test_simple_flexible(self): + # Test recursive_fill_fields on flexible-array + a = np.array([(1, 10.), (2, 20.)], dtype=[('A', int), ('B', float)]) + b = np.zeros((3,), dtype=a.dtype) + test = recursive_fill_fields(a, b) + control = np.array([(1, 10.), (2, 20.), (0, 0.)], + dtype=[('A', int), ('B', float)]) + assert_equal(test, control) + + def test_masked_flexible(self): + # Test recursive_fill_fields on masked flexible-array + a = ma.array([(1, 10.), (2, 20.)], mask=[(0, 1), (1, 0)], + dtype=[('A', int), ('B', float)]) + b = ma.zeros((3,), dtype=a.dtype) + test = recursive_fill_fields(a, b) + control = ma.array([(1, 10.), (2, 20.), (0, 0.)], + mask=[(0, 1), (1, 0), (0, 0)], + dtype=[('A', int), ('B', float)]) + assert_equal(test, control) + + +class TestMergeArrays: + # Test merge_arrays + + def setup_method(self): + x = np.array([1, 2, ]) + y = np.array([10, 20, 30]) + z = np.array( + [('A', 1.), ('B', 2.)], dtype=[('A', '|S3'), ('B', float)]) + w = np.array( + [(1, (2, 3.0, ())), (4, (5, 6.0, ()))], + dtype=[('a', int), ('b', [('ba', float), ('bb', int), ('bc', [])])]) + self.data = (w, x, y, z) + + def test_solo(self): + # Test merge_arrays on a single array. + (_, x, _, z) = self.data + + test = merge_arrays(x) + control = np.array([(1,), (2,)], dtype=[('f0', int)]) + assert_equal(test, control) + test = merge_arrays((x,)) + assert_equal(test, control) + + test = merge_arrays(z, flatten=False) + assert_equal(test, z) + test = merge_arrays(z, flatten=True) + assert_equal(test, z) + + def test_solo_w_flatten(self): + # Test merge_arrays on a single array w & w/o flattening + w = self.data[0] + test = merge_arrays(w, flatten=False) + assert_equal(test, w) + + test = merge_arrays(w, flatten=True) + control = np.array([(1, 2, 3.0), (4, 5, 6.0)], + dtype=[('a', int), ('ba', float), ('bb', int)]) + assert_equal(test, control) + + def test_standard(self): + # Test standard & standard + # Test merge arrays + (_, x, y, _) = self.data + test = merge_arrays((x, y), usemask=False) + control = np.array([(1, 10), (2, 20), (-1, 30)], + dtype=[('f0', int), ('f1', int)]) + assert_equal(test, control) + + test = merge_arrays((x, y), usemask=True) + control = ma.array([(1, 10), (2, 20), (-1, 30)], + mask=[(0, 0), (0, 0), (1, 0)], + dtype=[('f0', int), ('f1', int)]) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + + def test_flatten(self): + # Test standard & flexible + (_, x, _, z) = self.data + test = merge_arrays((x, z), flatten=True) + control = np.array([(1, 'A', 1.), (2, 'B', 2.)], + dtype=[('f0', int), ('A', '|S3'), ('B', float)]) + assert_equal(test, control) + + test = merge_arrays((x, z), flatten=False) + control = np.array([(1, ('A', 1.)), (2, ('B', 2.))], + dtype=[('f0', int), + ('f1', [('A', '|S3'), ('B', float)])]) + assert_equal(test, control) + + def test_flatten_wflexible(self): + # Test flatten standard & nested + (w, x, _, _) = self.data + test = merge_arrays((x, w), flatten=True) + control = np.array([(1, 1, 2, 3.0), (2, 4, 5, 6.0)], + dtype=[('f0', int), + ('a', int), ('ba', float), ('bb', int)]) + assert_equal(test, control) + + test = merge_arrays((x, w), flatten=False) + controldtype = [('f0', int), + ('f1', [('a', int), + ('b', [('ba', float), ('bb', int), ('bc', [])])])] + control = np.array([(1., (1, (2, 3.0, ()))), (2, (4, (5, 6.0, ())))], + dtype=controldtype) + assert_equal(test, control) + + def test_wmasked_arrays(self): + # Test merge_arrays masked arrays + (_, x, _, _) = self.data + mx = ma.array([1, 2, 3], mask=[1, 0, 0]) + test = merge_arrays((x, mx), usemask=True) + control = ma.array([(1, 1), (2, 2), (-1, 3)], + mask=[(0, 1), (0, 0), (1, 0)], + dtype=[('f0', int), ('f1', int)]) + assert_equal(test, control) + test = merge_arrays((x, mx), usemask=True, asrecarray=True) + assert_equal(test, control) + assert_(isinstance(test, MaskedRecords)) + + def test_w_singlefield(self): + # Test single field + test = merge_arrays((np.array([1, 2]).view([('a', int)]), + np.array([10., 20., 30.])),) + control = ma.array([(1, 10.), (2, 20.), (-1, 30.)], + mask=[(0, 0), (0, 0), (1, 0)], + dtype=[('a', int), ('f1', float)]) + assert_equal(test, control) + + def test_w_shorter_flex(self): + # Test merge_arrays w/ a shorter flexndarray. + z = self.data[-1] + + # Fixme, this test looks incomplete and broken + #test = merge_arrays((z, np.array([10, 20, 30]).view([('C', int)]))) + #control = np.array([('A', 1., 10), ('B', 2., 20), ('-1', -1, 20)], + # dtype=[('A', '|S3'), ('B', float), ('C', int)]) + #assert_equal(test, control) + + merge_arrays((z, np.array([10, 20, 30]).view([('C', int)]))) + np.array([('A', 1., 10), ('B', 2., 20), ('-1', -1, 20)], + dtype=[('A', '|S3'), ('B', float), ('C', int)]) + + def test_singlerecord(self): + (_, x, y, z) = self.data + test = merge_arrays((x[0], y[0], z[0]), usemask=False) + control = np.array([(1, 10, ('A', 1))], + dtype=[('f0', int), + ('f1', int), + ('f2', [('A', '|S3'), ('B', float)])]) + assert_equal(test, control) + + +class TestAppendFields: + # Test append_fields + + def setup_method(self): + x = np.array([1, 2, ]) + y = np.array([10, 20, 30]) + z = np.array( + [('A', 1.), ('B', 2.)], dtype=[('A', '|S3'), ('B', float)]) + w = np.array([(1, (2, 3.0)), (4, (5, 6.0))], + dtype=[('a', int), ('b', [('ba', float), ('bb', int)])]) + self.data = (w, x, y, z) + + def test_append_single(self): + # Test simple case + (_, x, _, _) = self.data + test = append_fields(x, 'A', data=[10, 20, 30]) + control = ma.array([(1, 10), (2, 20), (-1, 30)], + mask=[(0, 0), (0, 0), (1, 0)], + dtype=[('f0', int), ('A', int)],) + assert_equal(test, control) + + def test_append_double(self): + # Test simple case + (_, x, _, _) = self.data + test = append_fields(x, ('A', 'B'), data=[[10, 20, 30], [100, 200]]) + control = ma.array([(1, 10, 100), (2, 20, 200), (-1, 30, -1)], + mask=[(0, 0, 0), (0, 0, 0), (1, 0, 1)], + dtype=[('f0', int), ('A', int), ('B', int)],) + assert_equal(test, control) + + def test_append_on_flex(self): + # Test append_fields on flexible type arrays + z = self.data[-1] + test = append_fields(z, 'C', data=[10, 20, 30]) + control = ma.array([('A', 1., 10), ('B', 2., 20), (-1, -1., 30)], + mask=[(0, 0, 0), (0, 0, 0), (1, 1, 0)], + dtype=[('A', '|S3'), ('B', float), ('C', int)],) + assert_equal(test, control) + + def test_append_on_nested(self): + # Test append_fields on nested fields + w = self.data[0] + test = append_fields(w, 'C', data=[10, 20, 30]) + control = ma.array([(1, (2, 3.0), 10), + (4, (5, 6.0), 20), + (-1, (-1, -1.), 30)], + mask=[( + 0, (0, 0), 0), (0, (0, 0), 0), (1, (1, 1), 0)], + dtype=[('a', int), + ('b', [('ba', float), ('bb', int)]), + ('C', int)],) + assert_equal(test, control) + + +class TestStackArrays: + # Test stack_arrays + def setup_method(self): + x = np.array([1, 2, ]) + y = np.array([10, 20, 30]) + z = np.array( + [('A', 1.), ('B', 2.)], dtype=[('A', '|S3'), ('B', float)]) + w = np.array([(1, (2, 3.0)), (4, (5, 6.0))], + dtype=[('a', int), ('b', [('ba', float), ('bb', int)])]) + self.data = (w, x, y, z) + + def test_solo(self): + # Test stack_arrays on single arrays + (_, x, _, _) = self.data + test = stack_arrays((x,)) + assert_equal(test, x) + assert_(test is x) + + test = stack_arrays(x) + assert_equal(test, x) + assert_(test is x) + + def test_unnamed_fields(self): + # Tests combinations of arrays w/o named fields + (_, x, y, _) = self.data + + test = stack_arrays((x, x), usemask=False) + control = np.array([1, 2, 1, 2]) + assert_equal(test, control) + + test = stack_arrays((x, y), usemask=False) + control = np.array([1, 2, 10, 20, 30]) + assert_equal(test, control) + + test = stack_arrays((y, x), usemask=False) + control = np.array([10, 20, 30, 1, 2]) + assert_equal(test, control) + + def test_unnamed_and_named_fields(self): + # Test combination of arrays w/ & w/o named fields + (_, x, _, z) = self.data + + test = stack_arrays((x, z)) + control = ma.array([(1, -1, -1), (2, -1, -1), + (-1, 'A', 1), (-1, 'B', 2)], + mask=[(0, 1, 1), (0, 1, 1), + (1, 0, 0), (1, 0, 0)], + dtype=[('f0', int), ('A', '|S3'), ('B', float)]) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + + test = stack_arrays((z, x)) + control = ma.array([('A', 1, -1), ('B', 2, -1), + (-1, -1, 1), (-1, -1, 2), ], + mask=[(0, 0, 1), (0, 0, 1), + (1, 1, 0), (1, 1, 0)], + dtype=[('A', '|S3'), ('B', float), ('f2', int)]) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + + test = stack_arrays((z, z, x)) + control = ma.array([('A', 1, -1), ('B', 2, -1), + ('A', 1, -1), ('B', 2, -1), + (-1, -1, 1), (-1, -1, 2), ], + mask=[(0, 0, 1), (0, 0, 1), + (0, 0, 1), (0, 0, 1), + (1, 1, 0), (1, 1, 0)], + dtype=[('A', '|S3'), ('B', float), ('f2', int)]) + assert_equal(test, control) + + def test_matching_named_fields(self): + # Test combination of arrays w/ matching field names + (_, x, _, z) = self.data + zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)], + dtype=[('A', '|S3'), ('B', float), ('C', float)]) + test = stack_arrays((z, zz)) + control = ma.array([('A', 1, -1), ('B', 2, -1), + ( + 'a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)], + dtype=[('A', '|S3'), ('B', float), ('C', float)], + mask=[(0, 0, 1), (0, 0, 1), + (0, 0, 0), (0, 0, 0), (0, 0, 0)]) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + + test = stack_arrays((z, zz, x)) + ndtype = [('A', '|S3'), ('B', float), ('C', float), ('f3', int)] + control = ma.array([('A', 1, -1, -1), ('B', 2, -1, -1), + ('a', 10., 100., -1), ('b', 20., 200., -1), + ('c', 30., 300., -1), + (-1, -1, -1, 1), (-1, -1, -1, 2)], + dtype=ndtype, + mask=[(0, 0, 1, 1), (0, 0, 1, 1), + (0, 0, 0, 1), (0, 0, 0, 1), (0, 0, 0, 1), + (1, 1, 1, 0), (1, 1, 1, 0)]) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + + def test_defaults(self): + # Test defaults: no exception raised if keys of defaults are not fields. + (_, _, _, z) = self.data + zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)], + dtype=[('A', '|S3'), ('B', float), ('C', float)]) + defaults = {'A': '???', 'B': -999., 'C': -9999., 'D': -99999.} + test = stack_arrays((z, zz), defaults=defaults) + control = ma.array([('A', 1, -9999.), ('B', 2, -9999.), + ( + 'a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)], + dtype=[('A', '|S3'), ('B', float), ('C', float)], + mask=[(0, 0, 1), (0, 0, 1), + (0, 0, 0), (0, 0, 0), (0, 0, 0)]) + assert_equal(test, control) + assert_equal(test.data, control.data) + assert_equal(test.mask, control.mask) + + def test_autoconversion(self): + # Tests autoconversion + adtype = [('A', int), ('B', bool), ('C', float)] + a = ma.array([(1, 2, 3)], mask=[(0, 1, 0)], dtype=adtype) + bdtype = [('A', int), ('B', float), ('C', float)] + b = ma.array([(4, 5, 6)], dtype=bdtype) + control = ma.array([(1, 2, 3), (4, 5, 6)], mask=[(0, 1, 0), (0, 0, 0)], + dtype=bdtype) + test = stack_arrays((a, b), autoconvert=True) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + with assert_raises(TypeError): + stack_arrays((a, b), autoconvert=False) + + def test_checktitles(self): + # Test using titles in the field names + adtype = [(('a', 'A'), int), (('b', 'B'), bool), (('c', 'C'), float)] + a = ma.array([(1, 2, 3)], mask=[(0, 1, 0)], dtype=adtype) + bdtype = [(('a', 'A'), int), (('b', 'B'), bool), (('c', 'C'), float)] + b = ma.array([(4, 5, 6)], dtype=bdtype) + test = stack_arrays((a, b)) + control = ma.array([(1, 2, 3), (4, 5, 6)], mask=[(0, 1, 0), (0, 0, 0)], + dtype=bdtype) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + + def test_subdtype(self): + z = np.array([ + ('A', 1), ('B', 2) + ], dtype=[('A', '|S3'), ('B', float, (1,))]) + zz = np.array([ + ('a', [10.], 100.), ('b', [20.], 200.), ('c', [30.], 300.) + ], dtype=[('A', '|S3'), ('B', float, (1,)), ('C', float)]) + + res = stack_arrays((z, zz)) + expected = ma.array( + data=[ + (b'A', [1.0], 0), + (b'B', [2.0], 0), + (b'a', [10.0], 100.0), + (b'b', [20.0], 200.0), + (b'c', [30.0], 300.0)], + mask=[ + (False, [False], True), + (False, [False], True), + (False, [False], False), + (False, [False], False), + (False, [False], False) + ], + dtype=zz.dtype + ) + assert_equal(res.dtype, expected.dtype) + assert_equal(res, expected) + assert_equal(res.mask, expected.mask) + + +class TestJoinBy: + def setup_method(self): + self.a = np.array(list(zip(np.arange(10), np.arange(50, 60), + np.arange(100, 110))), + dtype=[('a', int), ('b', int), ('c', int)]) + self.b = np.array(list(zip(np.arange(5, 15), np.arange(65, 75), + np.arange(100, 110))), + dtype=[('a', int), ('b', int), ('d', int)]) + + def test_inner_join(self): + # Basic test of join_by + a, b = self.a, self.b + + test = join_by('a', a, b, jointype='inner') + control = np.array([(5, 55, 65, 105, 100), (6, 56, 66, 106, 101), + (7, 57, 67, 107, 102), (8, 58, 68, 108, 103), + (9, 59, 69, 109, 104)], + dtype=[('a', int), ('b1', int), ('b2', int), + ('c', int), ('d', int)]) + assert_equal(test, control) + + def test_join(self): + a, b = self.a, self.b + + # Fixme, this test is broken + #test = join_by(('a', 'b'), a, b) + #control = np.array([(5, 55, 105, 100), (6, 56, 106, 101), + # (7, 57, 107, 102), (8, 58, 108, 103), + # (9, 59, 109, 104)], + # dtype=[('a', int), ('b', int), + # ('c', int), ('d', int)]) + #assert_equal(test, control) + + join_by(('a', 'b'), a, b) + np.array([(5, 55, 105, 100), (6, 56, 106, 101), + (7, 57, 107, 102), (8, 58, 108, 103), + (9, 59, 109, 104)], + dtype=[('a', int), ('b', int), + ('c', int), ('d', int)]) + + def test_join_subdtype(self): + # tests the bug in https://stackoverflow.com/q/44769632/102441 + foo = np.array([(1,)], + dtype=[('key', int)]) + bar = np.array([(1, np.array([1, 2, 3]))], + dtype=[('key', int), ('value', 'uint16', 3)]) + res = join_by('key', foo, bar) + assert_equal(res, bar.view(ma.MaskedArray)) + + def test_outer_join(self): + a, b = self.a, self.b + + test = join_by(('a', 'b'), a, b, 'outer') + control = ma.array([(0, 50, 100, -1), (1, 51, 101, -1), + (2, 52, 102, -1), (3, 53, 103, -1), + (4, 54, 104, -1), (5, 55, 105, -1), + (5, 65, -1, 100), (6, 56, 106, -1), + (6, 66, -1, 101), (7, 57, 107, -1), + (7, 67, -1, 102), (8, 58, 108, -1), + (8, 68, -1, 103), (9, 59, 109, -1), + (9, 69, -1, 104), (10, 70, -1, 105), + (11, 71, -1, 106), (12, 72, -1, 107), + (13, 73, -1, 108), (14, 74, -1, 109)], + mask=[(0, 0, 0, 1), (0, 0, 0, 1), + (0, 0, 0, 1), (0, 0, 0, 1), + (0, 0, 0, 1), (0, 0, 0, 1), + (0, 0, 1, 0), (0, 0, 0, 1), + (0, 0, 1, 0), (0, 0, 0, 1), + (0, 0, 1, 0), (0, 0, 0, 1), + (0, 0, 1, 0), (0, 0, 0, 1), + (0, 0, 1, 0), (0, 0, 1, 0), + (0, 0, 1, 0), (0, 0, 1, 0), + (0, 0, 1, 0), (0, 0, 1, 0)], + dtype=[('a', int), ('b', int), + ('c', int), ('d', int)]) + assert_equal(test, control) + + def test_leftouter_join(self): + a, b = self.a, self.b + + test = join_by(('a', 'b'), a, b, 'leftouter') + control = ma.array([(0, 50, 100, -1), (1, 51, 101, -1), + (2, 52, 102, -1), (3, 53, 103, -1), + (4, 54, 104, -1), (5, 55, 105, -1), + (6, 56, 106, -1), (7, 57, 107, -1), + (8, 58, 108, -1), (9, 59, 109, -1)], + mask=[(0, 0, 0, 1), (0, 0, 0, 1), + (0, 0, 0, 1), (0, 0, 0, 1), + (0, 0, 0, 1), (0, 0, 0, 1), + (0, 0, 0, 1), (0, 0, 0, 1), + (0, 0, 0, 1), (0, 0, 0, 1)], + dtype=[('a', int), ('b', int), ('c', int), ('d', int)]) + assert_equal(test, control) + + def test_different_field_order(self): + # gh-8940 + a = np.zeros(3, dtype=[('a', 'i4'), ('b', 'f4'), ('c', 'u1')]) + b = np.ones(3, dtype=[('c', 'u1'), ('b', 'f4'), ('a', 'i4')]) + # this should not give a FutureWarning: + j = join_by(['c', 'b'], a, b, jointype='inner', usemask=False) + assert_equal(j.dtype.names, ['b', 'c', 'a1', 'a2']) + + def test_duplicate_keys(self): + a = np.zeros(3, dtype=[('a', 'i4'), ('b', 'f4'), ('c', 'u1')]) + b = np.ones(3, dtype=[('c', 'u1'), ('b', 'f4'), ('a', 'i4')]) + assert_raises(ValueError, join_by, ['a', 'b', 'b'], a, b) + + def test_same_name_different_dtypes_key(self): + a_dtype = np.dtype([('key', 'S5'), ('value', ' 2**32 + + +def _add_keepdims(func): + """ hack in keepdims behavior into a function taking an axis """ + @functools.wraps(func) + def wrapped(a, axis, **kwargs): + res = func(a, axis=axis, **kwargs) + if axis is None: + axis = 0 # res is now a scalar, so we can insert this anywhere + return np.expand_dims(res, axis=axis) + return wrapped + + +class TestTakeAlongAxis: + def test_argequivalent(self): + """ Test it translates from arg to """ + from numpy.random import rand + a = rand(3, 4, 5) + + funcs = [ + (np.sort, np.argsort, {}), + (_add_keepdims(np.min), _add_keepdims(np.argmin), {}), + (_add_keepdims(np.max), _add_keepdims(np.argmax), {}), + #(np.partition, np.argpartition, dict(kth=2)), + ] + + for func, argfunc, kwargs in funcs: + for axis in list(range(a.ndim)) + [None]: + a_func = func(a, axis=axis, **kwargs) + ai_func = argfunc(a, axis=axis, **kwargs) + assert_equal(a_func, take_along_axis(a, ai_func, axis=axis)) + + def test_invalid(self): + """ Test it errors when indices has too few dimensions """ + a = np.ones((10, 10)) + ai = np.ones((10, 2), dtype=np.intp) + + # sanity check + take_along_axis(a, ai, axis=1) + + # not enough indices + assert_raises(ValueError, take_along_axis, a, np.array(1), axis=1) + # bool arrays not allowed + assert_raises(IndexError, take_along_axis, a, ai.astype(bool), axis=1) + # float arrays not allowed + assert_raises(IndexError, take_along_axis, a, ai.astype(float), axis=1) + # invalid axis + assert_raises(AxisError, take_along_axis, a, ai, axis=10) + # invalid indices + assert_raises(ValueError, take_along_axis, a, ai, axis=None) + + def test_empty(self): + """ Test everything is ok with empty results, even with inserted dims """ + a = np.ones((3, 4, 5)) + ai = np.ones((3, 0, 5), dtype=np.intp) + + actual = take_along_axis(a, ai, axis=1) + assert_equal(actual.shape, ai.shape) + + def test_broadcast(self): + """ Test that non-indexing dimensions are broadcast in both directions """ + a = np.ones((3, 4, 1)) + ai = np.ones((1, 2, 5), dtype=np.intp) + actual = take_along_axis(a, ai, axis=1) + assert_equal(actual.shape, (3, 2, 5)) + + +class TestPutAlongAxis: + def test_replace_max(self): + a_base = np.array([[10, 30, 20], [60, 40, 50]]) + + for axis in list(range(a_base.ndim)) + [None]: + # we mutate this in the loop + a = a_base.copy() + + # replace the max with a small value + i_max = _add_keepdims(np.argmax)(a, axis=axis) + put_along_axis(a, i_max, -99, axis=axis) + + # find the new minimum, which should max + i_min = _add_keepdims(np.argmin)(a, axis=axis) + + assert_equal(i_min, i_max) + + def test_broadcast(self): + """ Test that non-indexing dimensions are broadcast in both directions """ + a = np.ones((3, 4, 1)) + ai = np.arange(10, dtype=np.intp).reshape((1, 2, 5)) % 4 + put_along_axis(a, ai, 20, axis=1) + assert_equal(take_along_axis(a, ai, axis=1), 20) + + def test_invalid(self): + """ Test invalid inputs """ + a_base = np.array([[10, 30, 20], [60, 40, 50]]) + indices = np.array([[0], [1]]) + values = np.array([[2], [1]]) + + # sanity check + a = a_base.copy() + put_along_axis(a, indices, values, axis=0) + assert np.all(a == [[2, 2, 2], [1, 1, 1]]) + + # invalid indices + a = a_base.copy() + with assert_raises(ValueError) as exc: + put_along_axis(a, indices, values, axis=None) + assert "single dimension" in str(exc.exception) + + +class TestApplyAlongAxis: + def test_simple(self): + a = np.ones((20, 10), 'd') + assert_array_equal( + apply_along_axis(len, 0, a), len(a) * np.ones(a.shape[1])) + + def test_simple101(self): + a = np.ones((10, 101), 'd') + assert_array_equal( + apply_along_axis(len, 0, a), len(a) * np.ones(a.shape[1])) + + def test_3d(self): + a = np.arange(27).reshape((3, 3, 3)) + assert_array_equal(apply_along_axis(np.sum, 0, a), + [[27, 30, 33], [36, 39, 42], [45, 48, 51]]) + + def test_preserve_subclass(self): + def double(row): + return row * 2 + + class MyNDArray(np.ndarray): + pass + + m = np.array([[0, 1], [2, 3]]).view(MyNDArray) + expected = np.array([[0, 2], [4, 6]]).view(MyNDArray) + + result = apply_along_axis(double, 0, m) + assert_(isinstance(result, MyNDArray)) + assert_array_equal(result, expected) + + result = apply_along_axis(double, 1, m) + assert_(isinstance(result, MyNDArray)) + assert_array_equal(result, expected) + + def test_subclass(self): + class MinimalSubclass(np.ndarray): + data = 1 + + def minimal_function(array): + return array.data + + a = np.zeros((6, 3)).view(MinimalSubclass) + + assert_array_equal( + apply_along_axis(minimal_function, 0, a), np.array([1, 1, 1]) + ) + + def test_scalar_array(self, cls=np.ndarray): + a = np.ones((6, 3)).view(cls) + res = apply_along_axis(np.sum, 0, a) + assert_(isinstance(res, cls)) + assert_array_equal(res, np.array([6, 6, 6]).view(cls)) + + def test_0d_array(self, cls=np.ndarray): + def sum_to_0d(x): + """ Sum x, returning a 0d array of the same class """ + assert_equal(x.ndim, 1) + return np.squeeze(np.sum(x, keepdims=True)) + a = np.ones((6, 3)).view(cls) + res = apply_along_axis(sum_to_0d, 0, a) + assert_(isinstance(res, cls)) + assert_array_equal(res, np.array([6, 6, 6]).view(cls)) + + res = apply_along_axis(sum_to_0d, 1, a) + assert_(isinstance(res, cls)) + assert_array_equal(res, np.array([3, 3, 3, 3, 3, 3]).view(cls)) + + def test_axis_insertion(self, cls=np.ndarray): + def f1to2(x): + """produces an asymmetric non-square matrix from x""" + assert_equal(x.ndim, 1) + return (x[::-1] * x[1:, None]).view(cls) + + a2d = np.arange(6 * 3).reshape((6, 3)) + + # 2d insertion along first axis + actual = apply_along_axis(f1to2, 0, a2d) + expected = np.stack([ + f1to2(a2d[:, i]) for i in range(a2d.shape[1]) + ], axis=-1).view(cls) + assert_equal(type(actual), type(expected)) + assert_equal(actual, expected) + + # 2d insertion along last axis + actual = apply_along_axis(f1to2, 1, a2d) + expected = np.stack([ + f1to2(a2d[i, :]) for i in range(a2d.shape[0]) + ], axis=0).view(cls) + assert_equal(type(actual), type(expected)) + assert_equal(actual, expected) + + # 3d insertion along middle axis + a3d = np.arange(6 * 5 * 3).reshape((6, 5, 3)) + + actual = apply_along_axis(f1to2, 1, a3d) + expected = np.stack([ + np.stack([ + f1to2(a3d[i, :, j]) for i in range(a3d.shape[0]) + ], axis=0) + for j in range(a3d.shape[2]) + ], axis=-1).view(cls) + assert_equal(type(actual), type(expected)) + assert_equal(actual, expected) + + def test_subclass_preservation(self): + class MinimalSubclass(np.ndarray): + pass + self.test_scalar_array(MinimalSubclass) + self.test_0d_array(MinimalSubclass) + self.test_axis_insertion(MinimalSubclass) + + def test_axis_insertion_ma(self): + def f1to2(x): + """produces an asymmetric non-square matrix from x""" + assert_equal(x.ndim, 1) + res = x[::-1] * x[1:, None] + return np.ma.masked_where(res % 5 == 0, res) + a = np.arange(6 * 3).reshape((6, 3)) + res = apply_along_axis(f1to2, 0, a) + assert_(isinstance(res, np.ma.masked_array)) + assert_equal(res.ndim, 3) + assert_array_equal(res[:, :, 0].mask, f1to2(a[:, 0]).mask) + assert_array_equal(res[:, :, 1].mask, f1to2(a[:, 1]).mask) + assert_array_equal(res[:, :, 2].mask, f1to2(a[:, 2]).mask) + + def test_tuple_func1d(self): + def sample_1d(x): + return x[1], x[0] + res = np.apply_along_axis(sample_1d, 1, np.array([[1, 2], [3, 4]])) + assert_array_equal(res, np.array([[2, 1], [4, 3]])) + + def test_empty(self): + # can't apply_along_axis when there's no chance to call the function + def never_call(x): + assert_(False) # should never be reached + + a = np.empty((0, 0)) + assert_raises(ValueError, np.apply_along_axis, never_call, 0, a) + assert_raises(ValueError, np.apply_along_axis, never_call, 1, a) + + # but it's sometimes ok with some non-zero dimensions + def empty_to_1(x): + assert_(len(x) == 0) + return 1 + + a = np.empty((10, 0)) + actual = np.apply_along_axis(empty_to_1, 1, a) + assert_equal(actual, np.ones(10)) + assert_raises(ValueError, np.apply_along_axis, empty_to_1, 0, a) + + def test_with_iterable_object(self): + # from issue 5248 + d = np.array([ + [{1, 11}, {2, 22}, {3, 33}], + [{4, 44}, {5, 55}, {6, 66}] + ]) + actual = np.apply_along_axis(lambda a: set.union(*a), 0, d) + expected = np.array([{1, 11, 4, 44}, {2, 22, 5, 55}, {3, 33, 6, 66}]) + + assert_equal(actual, expected) + + # issue 8642 - assert_equal doesn't detect this! + for i in np.ndindex(actual.shape): + assert_equal(type(actual[i]), type(expected[i])) + + +class TestApplyOverAxes: + def test_simple(self): + a = np.arange(24).reshape(2, 3, 4) + aoa_a = apply_over_axes(np.sum, a, [0, 2]) + assert_array_equal(aoa_a, np.array([[[60], [92], [124]]])) + + +class TestExpandDims: + def test_functionality(self): + s = (2, 3, 4, 5) + a = np.empty(s) + for axis in range(-5, 4): + b = expand_dims(a, axis) + assert_(b.shape[axis] == 1) + assert_(np.squeeze(b).shape == s) + + def test_axis_tuple(self): + a = np.empty((3, 3, 3)) + assert np.expand_dims(a, axis=(0, 1, 2)).shape == (1, 1, 1, 3, 3, 3) + assert np.expand_dims(a, axis=(0, -1, -2)).shape == (1, 3, 3, 3, 1, 1) + assert np.expand_dims(a, axis=(0, 3, 5)).shape == (1, 3, 3, 1, 3, 1) + assert np.expand_dims(a, axis=(0, -3, -5)).shape == (1, 1, 3, 1, 3, 3) + + def test_axis_out_of_range(self): + s = (2, 3, 4, 5) + a = np.empty(s) + assert_raises(AxisError, expand_dims, a, -6) + assert_raises(AxisError, expand_dims, a, 5) + + a = np.empty((3, 3, 3)) + assert_raises(AxisError, expand_dims, a, (0, -6)) + assert_raises(AxisError, expand_dims, a, (0, 5)) + + def test_repeated_axis(self): + a = np.empty((3, 3, 3)) + assert_raises(ValueError, expand_dims, a, axis=(1, 1)) + + def test_subclasses(self): + a = np.arange(10).reshape((2, 5)) + a = np.ma.array(a, mask=a % 3 == 0) + + expanded = np.expand_dims(a, axis=1) + assert_(isinstance(expanded, np.ma.MaskedArray)) + assert_equal(expanded.shape, (2, 1, 5)) + assert_equal(expanded.mask.shape, (2, 1, 5)) + + +class TestArraySplit: + def test_integer_0_split(self): + a = np.arange(10) + assert_raises(ValueError, array_split, a, 0) + + def test_integer_split(self): + a = np.arange(10) + res = array_split(a, 1) + desired = [np.arange(10)] + compare_results(res, desired) + + res = array_split(a, 2) + desired = [np.arange(5), np.arange(5, 10)] + compare_results(res, desired) + + res = array_split(a, 3) + desired = [np.arange(4), np.arange(4, 7), np.arange(7, 10)] + compare_results(res, desired) + + res = array_split(a, 4) + desired = [np.arange(3), np.arange(3, 6), np.arange(6, 8), + np.arange(8, 10)] + compare_results(res, desired) + + res = array_split(a, 5) + desired = [np.arange(2), np.arange(2, 4), np.arange(4, 6), + np.arange(6, 8), np.arange(8, 10)] + compare_results(res, desired) + + res = array_split(a, 6) + desired = [np.arange(2), np.arange(2, 4), np.arange(4, 6), + np.arange(6, 8), np.arange(8, 9), np.arange(9, 10)] + compare_results(res, desired) + + res = array_split(a, 7) + desired = [np.arange(2), np.arange(2, 4), np.arange(4, 6), + np.arange(6, 7), np.arange(7, 8), np.arange(8, 9), + np.arange(9, 10)] + compare_results(res, desired) + + res = array_split(a, 8) + desired = [np.arange(2), np.arange(2, 4), np.arange(4, 5), + np.arange(5, 6), np.arange(6, 7), np.arange(7, 8), + np.arange(8, 9), np.arange(9, 10)] + compare_results(res, desired) + + res = array_split(a, 9) + desired = [np.arange(2), np.arange(2, 3), np.arange(3, 4), + np.arange(4, 5), np.arange(5, 6), np.arange(6, 7), + np.arange(7, 8), np.arange(8, 9), np.arange(9, 10)] + compare_results(res, desired) + + res = array_split(a, 10) + desired = [np.arange(1), np.arange(1, 2), np.arange(2, 3), + np.arange(3, 4), np.arange(4, 5), np.arange(5, 6), + np.arange(6, 7), np.arange(7, 8), np.arange(8, 9), + np.arange(9, 10)] + compare_results(res, desired) + + res = array_split(a, 11) + desired = [np.arange(1), np.arange(1, 2), np.arange(2, 3), + np.arange(3, 4), np.arange(4, 5), np.arange(5, 6), + np.arange(6, 7), np.arange(7, 8), np.arange(8, 9), + np.arange(9, 10), np.array([])] + compare_results(res, desired) + + def test_integer_split_2D_rows(self): + a = np.array([np.arange(10), np.arange(10)]) + res = array_split(a, 3, axis=0) + tgt = [np.array([np.arange(10)]), np.array([np.arange(10)]), + np.zeros((0, 10))] + compare_results(res, tgt) + assert_(a.dtype.type is res[-1].dtype.type) + + # Same thing for manual splits: + res = array_split(a, [0, 1], axis=0) + tgt = [np.zeros((0, 10)), np.array([np.arange(10)]), + np.array([np.arange(10)])] + compare_results(res, tgt) + assert_(a.dtype.type is res[-1].dtype.type) + + def test_integer_split_2D_cols(self): + a = np.array([np.arange(10), np.arange(10)]) + res = array_split(a, 3, axis=-1) + desired = [np.array([np.arange(4), np.arange(4)]), + np.array([np.arange(4, 7), np.arange(4, 7)]), + np.array([np.arange(7, 10), np.arange(7, 10)])] + compare_results(res, desired) + + def test_integer_split_2D_default(self): + """ This will fail if we change default axis + """ + a = np.array([np.arange(10), np.arange(10)]) + res = array_split(a, 3) + tgt = [np.array([np.arange(10)]), np.array([np.arange(10)]), + np.zeros((0, 10))] + compare_results(res, tgt) + assert_(a.dtype.type is res[-1].dtype.type) + # perhaps should check higher dimensions + + @pytest.mark.skipif(not IS_64BIT, reason="Needs 64bit platform") + def test_integer_split_2D_rows_greater_max_int32(self): + a = np.broadcast_to([0], (1 << 32, 2)) + res = array_split(a, 4) + chunk = np.broadcast_to([0], (1 << 30, 2)) + tgt = [chunk] * 4 + for i in range(len(tgt)): + assert_equal(res[i].shape, tgt[i].shape) + + def test_index_split_simple(self): + a = np.arange(10) + indices = [1, 5, 7] + res = array_split(a, indices, axis=-1) + desired = [np.arange(0, 1), np.arange(1, 5), np.arange(5, 7), + np.arange(7, 10)] + compare_results(res, desired) + + def test_index_split_low_bound(self): + a = np.arange(10) + indices = [0, 5, 7] + res = array_split(a, indices, axis=-1) + desired = [np.array([]), np.arange(0, 5), np.arange(5, 7), + np.arange(7, 10)] + compare_results(res, desired) + + def test_index_split_high_bound(self): + a = np.arange(10) + indices = [0, 5, 7, 10, 12] + res = array_split(a, indices, axis=-1) + desired = [np.array([]), np.arange(0, 5), np.arange(5, 7), + np.arange(7, 10), np.array([]), np.array([])] + compare_results(res, desired) + + +class TestSplit: + # The split function is essentially the same as array_split, + # except that it test if splitting will result in an + # equal split. Only test for this case. + + def test_equal_split(self): + a = np.arange(10) + res = split(a, 2) + desired = [np.arange(5), np.arange(5, 10)] + compare_results(res, desired) + + def test_unequal_split(self): + a = np.arange(10) + assert_raises(ValueError, split, a, 3) + + +class TestColumnStack: + def test_non_iterable(self): + assert_raises(TypeError, column_stack, 1) + + def test_1D_arrays(self): + # example from docstring + a = np.array((1, 2, 3)) + b = np.array((2, 3, 4)) + expected = np.array([[1, 2], + [2, 3], + [3, 4]]) + actual = np.column_stack((a, b)) + assert_equal(actual, expected) + + def test_2D_arrays(self): + # same as hstack 2D docstring example + a = np.array([[1], [2], [3]]) + b = np.array([[2], [3], [4]]) + expected = np.array([[1, 2], + [2, 3], + [3, 4]]) + actual = np.column_stack((a, b)) + assert_equal(actual, expected) + + def test_generator(self): + with pytest.raises(TypeError, match="arrays to stack must be"): + column_stack(np.arange(3) for _ in range(2)) + + +class TestDstack: + def test_non_iterable(self): + assert_raises(TypeError, dstack, 1) + + def test_0D_array(self): + a = np.array(1) + b = np.array(2) + res = dstack([a, b]) + desired = np.array([[[1, 2]]]) + assert_array_equal(res, desired) + + def test_1D_array(self): + a = np.array([1]) + b = np.array([2]) + res = dstack([a, b]) + desired = np.array([[[1, 2]]]) + assert_array_equal(res, desired) + + def test_2D_array(self): + a = np.array([[1], [2]]) + b = np.array([[1], [2]]) + res = dstack([a, b]) + desired = np.array([[[1, 1]], [[2, 2, ]]]) + assert_array_equal(res, desired) + + def test_2D_array2(self): + a = np.array([1, 2]) + b = np.array([1, 2]) + res = dstack([a, b]) + desired = np.array([[[1, 1], [2, 2]]]) + assert_array_equal(res, desired) + + def test_generator(self): + with pytest.raises(TypeError, match="arrays to stack must be"): + dstack(np.arange(3) for _ in range(2)) + + +# array_split has more comprehensive test of splitting. +# only do simple test on hsplit, vsplit, and dsplit +class TestHsplit: + """Only testing for integer splits. + + """ + def test_non_iterable(self): + assert_raises(ValueError, hsplit, 1, 1) + + def test_0D_array(self): + a = np.array(1) + try: + hsplit(a, 2) + assert_(0) + except ValueError: + pass + + def test_1D_array(self): + a = np.array([1, 2, 3, 4]) + res = hsplit(a, 2) + desired = [np.array([1, 2]), np.array([3, 4])] + compare_results(res, desired) + + def test_2D_array(self): + a = np.array([[1, 2, 3, 4], + [1, 2, 3, 4]]) + res = hsplit(a, 2) + desired = [np.array([[1, 2], [1, 2]]), np.array([[3, 4], [3, 4]])] + compare_results(res, desired) + + +class TestVsplit: + """Only testing for integer splits. + + """ + def test_non_iterable(self): + assert_raises(ValueError, vsplit, 1, 1) + + def test_0D_array(self): + a = np.array(1) + assert_raises(ValueError, vsplit, a, 2) + + def test_1D_array(self): + a = np.array([1, 2, 3, 4]) + try: + vsplit(a, 2) + assert_(0) + except ValueError: + pass + + def test_2D_array(self): + a = np.array([[1, 2, 3, 4], + [1, 2, 3, 4]]) + res = vsplit(a, 2) + desired = [np.array([[1, 2, 3, 4]]), np.array([[1, 2, 3, 4]])] + compare_results(res, desired) + + +class TestDsplit: + # Only testing for integer splits. + def test_non_iterable(self): + assert_raises(ValueError, dsplit, 1, 1) + + def test_0D_array(self): + a = np.array(1) + assert_raises(ValueError, dsplit, a, 2) + + def test_1D_array(self): + a = np.array([1, 2, 3, 4]) + assert_raises(ValueError, dsplit, a, 2) + + def test_2D_array(self): + a = np.array([[1, 2, 3, 4], + [1, 2, 3, 4]]) + try: + dsplit(a, 2) + assert_(0) + except ValueError: + pass + + def test_3D_array(self): + a = np.array([[[1, 2, 3, 4], + [1, 2, 3, 4]], + [[1, 2, 3, 4], + [1, 2, 3, 4]]]) + res = dsplit(a, 2) + desired = [np.array([[[1, 2], [1, 2]], [[1, 2], [1, 2]]]), + np.array([[[3, 4], [3, 4]], [[3, 4], [3, 4]]])] + compare_results(res, desired) + + +class TestSqueeze: + def test_basic(self): + from numpy.random import rand + + a = rand(20, 10, 10, 1, 1) + b = rand(20, 1, 10, 1, 20) + c = rand(1, 1, 20, 10) + assert_array_equal(np.squeeze(a), np.reshape(a, (20, 10, 10))) + assert_array_equal(np.squeeze(b), np.reshape(b, (20, 10, 20))) + assert_array_equal(np.squeeze(c), np.reshape(c, (20, 10))) + + # Squeezing to 0-dim should still give an ndarray + a = [[[1.5]]] + res = np.squeeze(a) + assert_equal(res, 1.5) + assert_equal(res.ndim, 0) + assert_equal(type(res), np.ndarray) + + +class TestKron: + def test_basic(self): + # Using 0-dimensional ndarray + a = np.array(1) + b = np.array([[1, 2], [3, 4]]) + k = np.array([[1, 2], [3, 4]]) + assert_array_equal(np.kron(a, b), k) + a = np.array([[1, 2], [3, 4]]) + b = np.array(1) + assert_array_equal(np.kron(a, b), k) + + # Using 1-dimensional ndarray + a = np.array([3]) + b = np.array([[1, 2], [3, 4]]) + k = np.array([[3, 6], [9, 12]]) + assert_array_equal(np.kron(a, b), k) + a = np.array([[1, 2], [3, 4]]) + b = np.array([3]) + assert_array_equal(np.kron(a, b), k) + + # Using 3-dimensional ndarray + a = np.array([[[1]], [[2]]]) + b = np.array([[1, 2], [3, 4]]) + k = np.array([[[1, 2], [3, 4]], [[2, 4], [6, 8]]]) + assert_array_equal(np.kron(a, b), k) + a = np.array([[1, 2], [3, 4]]) + b = np.array([[[1]], [[2]]]) + k = np.array([[[1, 2], [3, 4]], [[2, 4], [6, 8]]]) + assert_array_equal(np.kron(a, b), k) + + def test_return_type(self): + class myarray(np.ndarray): + __array_priority__ = 1.0 + + a = np.ones([2, 2]) + ma = myarray(a.shape, a.dtype, a.data) + assert_equal(type(kron(a, a)), np.ndarray) + assert_equal(type(kron(ma, ma)), myarray) + assert_equal(type(kron(a, ma)), myarray) + assert_equal(type(kron(ma, a)), myarray) + + @pytest.mark.parametrize( + "array_class", [np.asarray, np.asmatrix] + ) + def test_kron_smoke(self, array_class): + a = array_class(np.ones([3, 3])) + b = array_class(np.ones([3, 3])) + k = array_class(np.ones([9, 9])) + + assert_array_equal(np.kron(a, b), k) + + def test_kron_ma(self): + x = np.ma.array([[1, 2], [3, 4]], mask=[[0, 1], [1, 0]]) + k = np.ma.array(np.diag([1, 4, 4, 16]), + mask=~np.array(np.identity(4), dtype=bool)) + + assert_array_equal(k, np.kron(x, x)) + + @pytest.mark.parametrize( + "shape_a,shape_b", [ + ((1, 1), (1, 1)), + ((1, 2, 3), (4, 5, 6)), + ((2, 2), (2, 2, 2)), + ((1, 0), (1, 1)), + ((2, 0, 2), (2, 2)), + ((2, 0, 0, 2), (2, 0, 2)), + ]) + def test_kron_shape(self, shape_a, shape_b): + a = np.ones(shape_a) + b = np.ones(shape_b) + normalised_shape_a = (1,) * max(0, len(shape_b) - len(shape_a)) + shape_a + normalised_shape_b = (1,) * max(0, len(shape_a) - len(shape_b)) + shape_b + expected_shape = np.multiply(normalised_shape_a, normalised_shape_b) + + k = np.kron(a, b) + assert np.array_equal( + k.shape, expected_shape), "Unexpected shape from kron" + + +class TestTile: + def test_basic(self): + a = np.array([0, 1, 2]) + b = [[1, 2], [3, 4]] + assert_equal(tile(a, 2), [0, 1, 2, 0, 1, 2]) + assert_equal(tile(a, (2, 2)), [[0, 1, 2, 0, 1, 2], [0, 1, 2, 0, 1, 2]]) + assert_equal(tile(a, (1, 2)), [[0, 1, 2, 0, 1, 2]]) + assert_equal(tile(b, 2), [[1, 2, 1, 2], [3, 4, 3, 4]]) + assert_equal(tile(b, (2, 1)), [[1, 2], [3, 4], [1, 2], [3, 4]]) + assert_equal(tile(b, (2, 2)), [[1, 2, 1, 2], [3, 4, 3, 4], + [1, 2, 1, 2], [3, 4, 3, 4]]) + + def test_tile_one_repetition_on_array_gh4679(self): + a = np.arange(5) + b = tile(a, 1) + b += 2 + assert_equal(a, np.arange(5)) + + def test_empty(self): + a = np.array([[[]]]) + b = np.array([[], []]) + c = tile(b, 2).shape + d = tile(a, (3, 2, 5)).shape + assert_equal(c, (2, 0)) + assert_equal(d, (3, 2, 0)) + + def test_kroncompare(self): + from numpy.random import randint + + reps = [(2,), (1, 2), (2, 1), (2, 2), (2, 3, 2), (3, 2)] + shape = [(3,), (2, 3), (3, 4, 3), (3, 2, 3), (4, 3, 2, 4), (2, 2)] + for s in shape: + b = randint(0, 10, size=s) + for r in reps: + a = np.ones(r, b.dtype) + large = tile(b, r) + klarge = kron(a, b) + assert_equal(large, klarge) + + +class TestMayShareMemory: + def test_basic(self): + d = np.ones((50, 60)) + d2 = np.ones((30, 60, 6)) + assert_(np.may_share_memory(d, d)) + assert_(np.may_share_memory(d, d[::-1])) + assert_(np.may_share_memory(d, d[::2])) + assert_(np.may_share_memory(d, d[1:, ::-1])) + + assert_(not np.may_share_memory(d[::-1], d2)) + assert_(not np.may_share_memory(d[::2], d2)) + assert_(not np.may_share_memory(d[1:, ::-1], d2)) + assert_(np.may_share_memory(d2[1:, ::-1], d2)) + + +# Utility +def compare_results(res, desired): + """Compare lists of arrays.""" + for x, y in zip(res, desired, strict=False): + assert_array_equal(x, y) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_stride_tricks.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_stride_tricks.py new file mode 100644 index 0000000..fe40c95 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_stride_tricks.py @@ -0,0 +1,656 @@ +import pytest + +import numpy as np +from numpy._core._rational_tests import rational +from numpy.lib._stride_tricks_impl import ( + _broadcast_shape, + as_strided, + broadcast_arrays, + broadcast_shapes, + broadcast_to, + sliding_window_view, +) +from numpy.testing import ( + assert_, + assert_array_equal, + assert_equal, + assert_raises, + assert_raises_regex, + assert_warns, +) + + +def assert_shapes_correct(input_shapes, expected_shape): + # Broadcast a list of arrays with the given input shapes and check the + # common output shape. + + inarrays = [np.zeros(s) for s in input_shapes] + outarrays = broadcast_arrays(*inarrays) + outshapes = [a.shape for a in outarrays] + expected = [expected_shape] * len(inarrays) + assert_equal(outshapes, expected) + + +def assert_incompatible_shapes_raise(input_shapes): + # Broadcast a list of arrays with the given (incompatible) input shapes + # and check that they raise a ValueError. + + inarrays = [np.zeros(s) for s in input_shapes] + assert_raises(ValueError, broadcast_arrays, *inarrays) + + +def assert_same_as_ufunc(shape0, shape1, transposed=False, flipped=False): + # Broadcast two shapes against each other and check that the data layout + # is the same as if a ufunc did the broadcasting. + + x0 = np.zeros(shape0, dtype=int) + # Note that multiply.reduce's identity element is 1.0, so when shape1==(), + # this gives the desired n==1. + n = int(np.multiply.reduce(shape1)) + x1 = np.arange(n).reshape(shape1) + if transposed: + x0 = x0.T + x1 = x1.T + if flipped: + x0 = x0[::-1] + x1 = x1[::-1] + # Use the add ufunc to do the broadcasting. Since we're adding 0s to x1, the + # result should be exactly the same as the broadcasted view of x1. + y = x0 + x1 + b0, b1 = broadcast_arrays(x0, x1) + assert_array_equal(y, b1) + + +def test_same(): + x = np.arange(10) + y = np.arange(10) + bx, by = broadcast_arrays(x, y) + assert_array_equal(x, bx) + assert_array_equal(y, by) + +def test_broadcast_kwargs(): + # ensure that a TypeError is appropriately raised when + # np.broadcast_arrays() is called with any keyword + # argument other than 'subok' + x = np.arange(10) + y = np.arange(10) + + with assert_raises_regex(TypeError, 'got an unexpected keyword'): + broadcast_arrays(x, y, dtype='float64') + + +def test_one_off(): + x = np.array([[1, 2, 3]]) + y = np.array([[1], [2], [3]]) + bx, by = broadcast_arrays(x, y) + bx0 = np.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]]) + by0 = bx0.T + assert_array_equal(bx0, bx) + assert_array_equal(by0, by) + + +def test_same_input_shapes(): + # Check that the final shape is just the input shape. + + data = [ + (), + (1,), + (3,), + (0, 1), + (0, 3), + (1, 0), + (3, 0), + (1, 3), + (3, 1), + (3, 3), + ] + for shape in data: + input_shapes = [shape] + # Single input. + assert_shapes_correct(input_shapes, shape) + # Double input. + input_shapes2 = [shape, shape] + assert_shapes_correct(input_shapes2, shape) + # Triple input. + input_shapes3 = [shape, shape, shape] + assert_shapes_correct(input_shapes3, shape) + + +def test_two_compatible_by_ones_input_shapes(): + # Check that two different input shapes of the same length, but some have + # ones, broadcast to the correct shape. + + data = [ + [[(1,), (3,)], (3,)], + [[(1, 3), (3, 3)], (3, 3)], + [[(3, 1), (3, 3)], (3, 3)], + [[(1, 3), (3, 1)], (3, 3)], + [[(1, 1), (3, 3)], (3, 3)], + [[(1, 1), (1, 3)], (1, 3)], + [[(1, 1), (3, 1)], (3, 1)], + [[(1, 0), (0, 0)], (0, 0)], + [[(0, 1), (0, 0)], (0, 0)], + [[(1, 0), (0, 1)], (0, 0)], + [[(1, 1), (0, 0)], (0, 0)], + [[(1, 1), (1, 0)], (1, 0)], + [[(1, 1), (0, 1)], (0, 1)], + ] + for input_shapes, expected_shape in data: + assert_shapes_correct(input_shapes, expected_shape) + # Reverse the input shapes since broadcasting should be symmetric. + assert_shapes_correct(input_shapes[::-1], expected_shape) + + +def test_two_compatible_by_prepending_ones_input_shapes(): + # Check that two different input shapes (of different lengths) broadcast + # to the correct shape. + + data = [ + [[(), (3,)], (3,)], + [[(3,), (3, 3)], (3, 3)], + [[(3,), (3, 1)], (3, 3)], + [[(1,), (3, 3)], (3, 3)], + [[(), (3, 3)], (3, 3)], + [[(1, 1), (3,)], (1, 3)], + [[(1,), (3, 1)], (3, 1)], + [[(1,), (1, 3)], (1, 3)], + [[(), (1, 3)], (1, 3)], + [[(), (3, 1)], (3, 1)], + [[(), (0,)], (0,)], + [[(0,), (0, 0)], (0, 0)], + [[(0,), (0, 1)], (0, 0)], + [[(1,), (0, 0)], (0, 0)], + [[(), (0, 0)], (0, 0)], + [[(1, 1), (0,)], (1, 0)], + [[(1,), (0, 1)], (0, 1)], + [[(1,), (1, 0)], (1, 0)], + [[(), (1, 0)], (1, 0)], + [[(), (0, 1)], (0, 1)], + ] + for input_shapes, expected_shape in data: + assert_shapes_correct(input_shapes, expected_shape) + # Reverse the input shapes since broadcasting should be symmetric. + assert_shapes_correct(input_shapes[::-1], expected_shape) + + +def test_incompatible_shapes_raise_valueerror(): + # Check that a ValueError is raised for incompatible shapes. + + data = [ + [(3,), (4,)], + [(2, 3), (2,)], + [(3,), (3,), (4,)], + [(1, 3, 4), (2, 3, 3)], + ] + for input_shapes in data: + assert_incompatible_shapes_raise(input_shapes) + # Reverse the input shapes since broadcasting should be symmetric. + assert_incompatible_shapes_raise(input_shapes[::-1]) + + +def test_same_as_ufunc(): + # Check that the data layout is the same as if a ufunc did the operation. + + data = [ + [[(1,), (3,)], (3,)], + [[(1, 3), (3, 3)], (3, 3)], + [[(3, 1), (3, 3)], (3, 3)], + [[(1, 3), (3, 1)], (3, 3)], + [[(1, 1), (3, 3)], (3, 3)], + [[(1, 1), (1, 3)], (1, 3)], + [[(1, 1), (3, 1)], (3, 1)], + [[(1, 0), (0, 0)], (0, 0)], + [[(0, 1), (0, 0)], (0, 0)], + [[(1, 0), (0, 1)], (0, 0)], + [[(1, 1), (0, 0)], (0, 0)], + [[(1, 1), (1, 0)], (1, 0)], + [[(1, 1), (0, 1)], (0, 1)], + [[(), (3,)], (3,)], + [[(3,), (3, 3)], (3, 3)], + [[(3,), (3, 1)], (3, 3)], + [[(1,), (3, 3)], (3, 3)], + [[(), (3, 3)], (3, 3)], + [[(1, 1), (3,)], (1, 3)], + [[(1,), (3, 1)], (3, 1)], + [[(1,), (1, 3)], (1, 3)], + [[(), (1, 3)], (1, 3)], + [[(), (3, 1)], (3, 1)], + [[(), (0,)], (0,)], + [[(0,), (0, 0)], (0, 0)], + [[(0,), (0, 1)], (0, 0)], + [[(1,), (0, 0)], (0, 0)], + [[(), (0, 0)], (0, 0)], + [[(1, 1), (0,)], (1, 0)], + [[(1,), (0, 1)], (0, 1)], + [[(1,), (1, 0)], (1, 0)], + [[(), (1, 0)], (1, 0)], + [[(), (0, 1)], (0, 1)], + ] + for input_shapes, expected_shape in data: + assert_same_as_ufunc(input_shapes[0], input_shapes[1], + f"Shapes: {input_shapes[0]} {input_shapes[1]}") + # Reverse the input shapes since broadcasting should be symmetric. + assert_same_as_ufunc(input_shapes[1], input_shapes[0]) + # Try them transposed, too. + assert_same_as_ufunc(input_shapes[0], input_shapes[1], True) + # ... and flipped for non-rank-0 inputs in order to test negative + # strides. + if () not in input_shapes: + assert_same_as_ufunc(input_shapes[0], input_shapes[1], False, True) + assert_same_as_ufunc(input_shapes[0], input_shapes[1], True, True) + + +def test_broadcast_to_succeeds(): + data = [ + [np.array(0), (0,), np.array(0)], + [np.array(0), (1,), np.zeros(1)], + [np.array(0), (3,), np.zeros(3)], + [np.ones(1), (1,), np.ones(1)], + [np.ones(1), (2,), np.ones(2)], + [np.ones(1), (1, 2, 3), np.ones((1, 2, 3))], + [np.arange(3), (3,), np.arange(3)], + [np.arange(3), (1, 3), np.arange(3).reshape(1, -1)], + [np.arange(3), (2, 3), np.array([[0, 1, 2], [0, 1, 2]])], + # test if shape is not a tuple + [np.ones(0), 0, np.ones(0)], + [np.ones(1), 1, np.ones(1)], + [np.ones(1), 2, np.ones(2)], + # these cases with size 0 are strange, but they reproduce the behavior + # of broadcasting with ufuncs (see test_same_as_ufunc above) + [np.ones(1), (0,), np.ones(0)], + [np.ones((1, 2)), (0, 2), np.ones((0, 2))], + [np.ones((2, 1)), (2, 0), np.ones((2, 0))], + ] + for input_array, shape, expected in data: + actual = broadcast_to(input_array, shape) + assert_array_equal(expected, actual) + + +def test_broadcast_to_raises(): + data = [ + [(0,), ()], + [(1,), ()], + [(3,), ()], + [(3,), (1,)], + [(3,), (2,)], + [(3,), (4,)], + [(1, 2), (2, 1)], + [(1, 1), (1,)], + [(1,), -1], + [(1,), (-1,)], + [(1, 2), (-1, 2)], + ] + for orig_shape, target_shape in data: + arr = np.zeros(orig_shape) + assert_raises(ValueError, lambda: broadcast_to(arr, target_shape)) + + +def test_broadcast_shape(): + # tests internal _broadcast_shape + # _broadcast_shape is already exercised indirectly by broadcast_arrays + # _broadcast_shape is also exercised by the public broadcast_shapes function + assert_equal(_broadcast_shape(), ()) + assert_equal(_broadcast_shape([1, 2]), (2,)) + assert_equal(_broadcast_shape(np.ones((1, 1))), (1, 1)) + assert_equal(_broadcast_shape(np.ones((1, 1)), np.ones((3, 4))), (3, 4)) + assert_equal(_broadcast_shape(*([np.ones((1, 2))] * 32)), (1, 2)) + assert_equal(_broadcast_shape(*([np.ones((1, 2))] * 100)), (1, 2)) + + # regression tests for gh-5862 + assert_equal(_broadcast_shape(*([np.ones(2)] * 32 + [1])), (2,)) + bad_args = [np.ones(2)] * 32 + [np.ones(3)] * 32 + assert_raises(ValueError, lambda: _broadcast_shape(*bad_args)) + + +def test_broadcast_shapes_succeeds(): + # tests public broadcast_shapes + data = [ + [[], ()], + [[()], ()], + [[(7,)], (7,)], + [[(1, 2), (2,)], (1, 2)], + [[(1, 1)], (1, 1)], + [[(1, 1), (3, 4)], (3, 4)], + [[(6, 7), (5, 6, 1), (7,), (5, 1, 7)], (5, 6, 7)], + [[(5, 6, 1)], (5, 6, 1)], + [[(1, 3), (3, 1)], (3, 3)], + [[(1, 0), (0, 0)], (0, 0)], + [[(0, 1), (0, 0)], (0, 0)], + [[(1, 0), (0, 1)], (0, 0)], + [[(1, 1), (0, 0)], (0, 0)], + [[(1, 1), (1, 0)], (1, 0)], + [[(1, 1), (0, 1)], (0, 1)], + [[(), (0,)], (0,)], + [[(0,), (0, 0)], (0, 0)], + [[(0,), (0, 1)], (0, 0)], + [[(1,), (0, 0)], (0, 0)], + [[(), (0, 0)], (0, 0)], + [[(1, 1), (0,)], (1, 0)], + [[(1,), (0, 1)], (0, 1)], + [[(1,), (1, 0)], (1, 0)], + [[(), (1, 0)], (1, 0)], + [[(), (0, 1)], (0, 1)], + [[(1,), (3,)], (3,)], + [[2, (3, 2)], (3, 2)], + ] + for input_shapes, target_shape in data: + assert_equal(broadcast_shapes(*input_shapes), target_shape) + + assert_equal(broadcast_shapes(*([(1, 2)] * 32)), (1, 2)) + assert_equal(broadcast_shapes(*([(1, 2)] * 100)), (1, 2)) + + # regression tests for gh-5862 + assert_equal(broadcast_shapes(*([(2,)] * 32)), (2,)) + + +def test_broadcast_shapes_raises(): + # tests public broadcast_shapes + data = [ + [(3,), (4,)], + [(2, 3), (2,)], + [(3,), (3,), (4,)], + [(1, 3, 4), (2, 3, 3)], + [(1, 2), (3, 1), (3, 2), (10, 5)], + [2, (2, 3)], + ] + for input_shapes in data: + assert_raises(ValueError, lambda: broadcast_shapes(*input_shapes)) + + bad_args = [(2,)] * 32 + [(3,)] * 32 + assert_raises(ValueError, lambda: broadcast_shapes(*bad_args)) + + +def test_as_strided(): + a = np.array([None]) + a_view = as_strided(a) + expected = np.array([None]) + assert_array_equal(a_view, np.array([None])) + + a = np.array([1, 2, 3, 4]) + a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,)) + expected = np.array([1, 3]) + assert_array_equal(a_view, expected) + + a = np.array([1, 2, 3, 4]) + a_view = as_strided(a, shape=(3, 4), strides=(0, 1 * a.itemsize)) + expected = np.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]) + assert_array_equal(a_view, expected) + + # Regression test for gh-5081 + dt = np.dtype([('num', 'i4'), ('obj', 'O')]) + a = np.empty((4,), dtype=dt) + a['num'] = np.arange(1, 5) + a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize)) + expected_num = [[1, 2, 3, 4]] * 3 + expected_obj = [[None] * 4] * 3 + assert_equal(a_view.dtype, dt) + assert_array_equal(expected_num, a_view['num']) + assert_array_equal(expected_obj, a_view['obj']) + + # Make sure that void types without fields are kept unchanged + a = np.empty((4,), dtype='V4') + a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize)) + assert_equal(a.dtype, a_view.dtype) + + # Make sure that the only type that could fail is properly handled + dt = np.dtype({'names': [''], 'formats': ['V4']}) + a = np.empty((4,), dtype=dt) + a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize)) + assert_equal(a.dtype, a_view.dtype) + + # Custom dtypes should not be lost (gh-9161) + r = [rational(i) for i in range(4)] + a = np.array(r, dtype=rational) + a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize)) + assert_equal(a.dtype, a_view.dtype) + assert_array_equal([r] * 3, a_view) + + +class TestSlidingWindowView: + def test_1d(self): + arr = np.arange(5) + arr_view = sliding_window_view(arr, 2) + expected = np.array([[0, 1], + [1, 2], + [2, 3], + [3, 4]]) + assert_array_equal(arr_view, expected) + + def test_2d(self): + i, j = np.ogrid[:3, :4] + arr = 10 * i + j + shape = (2, 2) + arr_view = sliding_window_view(arr, shape) + expected = np.array([[[[0, 1], [10, 11]], + [[1, 2], [11, 12]], + [[2, 3], [12, 13]]], + [[[10, 11], [20, 21]], + [[11, 12], [21, 22]], + [[12, 13], [22, 23]]]]) + assert_array_equal(arr_view, expected) + + def test_2d_with_axis(self): + i, j = np.ogrid[:3, :4] + arr = 10 * i + j + arr_view = sliding_window_view(arr, 3, 0) + expected = np.array([[[0, 10, 20], + [1, 11, 21], + [2, 12, 22], + [3, 13, 23]]]) + assert_array_equal(arr_view, expected) + + def test_2d_repeated_axis(self): + i, j = np.ogrid[:3, :4] + arr = 10 * i + j + arr_view = sliding_window_view(arr, (2, 3), (1, 1)) + expected = np.array([[[[0, 1, 2], + [1, 2, 3]]], + [[[10, 11, 12], + [11, 12, 13]]], + [[[20, 21, 22], + [21, 22, 23]]]]) + assert_array_equal(arr_view, expected) + + def test_2d_without_axis(self): + i, j = np.ogrid[:4, :4] + arr = 10 * i + j + shape = (2, 3) + arr_view = sliding_window_view(arr, shape) + expected = np.array([[[[0, 1, 2], [10, 11, 12]], + [[1, 2, 3], [11, 12, 13]]], + [[[10, 11, 12], [20, 21, 22]], + [[11, 12, 13], [21, 22, 23]]], + [[[20, 21, 22], [30, 31, 32]], + [[21, 22, 23], [31, 32, 33]]]]) + assert_array_equal(arr_view, expected) + + def test_errors(self): + i, j = np.ogrid[:4, :4] + arr = 10 * i + j + with pytest.raises(ValueError, match='cannot contain negative values'): + sliding_window_view(arr, (-1, 3)) + with pytest.raises( + ValueError, + match='must provide window_shape for all dimensions of `x`'): + sliding_window_view(arr, (1,)) + with pytest.raises( + ValueError, + match='Must provide matching length window_shape and axis'): + sliding_window_view(arr, (1, 3, 4), axis=(0, 1)) + with pytest.raises( + ValueError, + match='window shape cannot be larger than input array'): + sliding_window_view(arr, (5, 5)) + + def test_writeable(self): + arr = np.arange(5) + view = sliding_window_view(arr, 2, writeable=False) + assert_(not view.flags.writeable) + with pytest.raises( + ValueError, + match='assignment destination is read-only'): + view[0, 0] = 3 + view = sliding_window_view(arr, 2, writeable=True) + assert_(view.flags.writeable) + view[0, 1] = 3 + assert_array_equal(arr, np.array([0, 3, 2, 3, 4])) + + def test_subok(self): + class MyArray(np.ndarray): + pass + + arr = np.arange(5).view(MyArray) + assert_(not isinstance(sliding_window_view(arr, 2, + subok=False), + MyArray)) + assert_(isinstance(sliding_window_view(arr, 2, subok=True), MyArray)) + # Default behavior + assert_(not isinstance(sliding_window_view(arr, 2), MyArray)) + + +def as_strided_writeable(): + arr = np.ones(10) + view = as_strided(arr, writeable=False) + assert_(not view.flags.writeable) + + # Check that writeable also is fine: + view = as_strided(arr, writeable=True) + assert_(view.flags.writeable) + view[...] = 3 + assert_array_equal(arr, np.full_like(arr, 3)) + + # Test that things do not break down for readonly: + arr.flags.writeable = False + view = as_strided(arr, writeable=False) + view = as_strided(arr, writeable=True) + assert_(not view.flags.writeable) + + +class VerySimpleSubClass(np.ndarray): + def __new__(cls, *args, **kwargs): + return np.array(*args, subok=True, **kwargs).view(cls) + + +class SimpleSubClass(VerySimpleSubClass): + def __new__(cls, *args, **kwargs): + self = np.array(*args, subok=True, **kwargs).view(cls) + self.info = 'simple' + return self + + def __array_finalize__(self, obj): + self.info = getattr(obj, 'info', '') + ' finalized' + + +def test_subclasses(): + # test that subclass is preserved only if subok=True + a = VerySimpleSubClass([1, 2, 3, 4]) + assert_(type(a) is VerySimpleSubClass) + a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,)) + assert_(type(a_view) is np.ndarray) + a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,), subok=True) + assert_(type(a_view) is VerySimpleSubClass) + # test that if a subclass has __array_finalize__, it is used + a = SimpleSubClass([1, 2, 3, 4]) + a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,), subok=True) + assert_(type(a_view) is SimpleSubClass) + assert_(a_view.info == 'simple finalized') + + # similar tests for broadcast_arrays + b = np.arange(len(a)).reshape(-1, 1) + a_view, b_view = broadcast_arrays(a, b) + assert_(type(a_view) is np.ndarray) + assert_(type(b_view) is np.ndarray) + assert_(a_view.shape == b_view.shape) + a_view, b_view = broadcast_arrays(a, b, subok=True) + assert_(type(a_view) is SimpleSubClass) + assert_(a_view.info == 'simple finalized') + assert_(type(b_view) is np.ndarray) + assert_(a_view.shape == b_view.shape) + + # and for broadcast_to + shape = (2, 4) + a_view = broadcast_to(a, shape) + assert_(type(a_view) is np.ndarray) + assert_(a_view.shape == shape) + a_view = broadcast_to(a, shape, subok=True) + assert_(type(a_view) is SimpleSubClass) + assert_(a_view.info == 'simple finalized') + assert_(a_view.shape == shape) + + +def test_writeable(): + # broadcast_to should return a readonly array + original = np.array([1, 2, 3]) + result = broadcast_to(original, (2, 3)) + assert_equal(result.flags.writeable, False) + assert_raises(ValueError, result.__setitem__, slice(None), 0) + + # but the result of broadcast_arrays needs to be writeable, to + # preserve backwards compatibility + test_cases = [((False,), broadcast_arrays(original,)), + ((True, False), broadcast_arrays(0, original))] + for is_broadcast, results in test_cases: + for array_is_broadcast, result in zip(is_broadcast, results): + # This will change to False in a future version + if array_is_broadcast: + with assert_warns(FutureWarning): + assert_equal(result.flags.writeable, True) + with assert_warns(DeprecationWarning): + result[:] = 0 + # Warning not emitted, writing to the array resets it + assert_equal(result.flags.writeable, True) + else: + # No warning: + assert_equal(result.flags.writeable, True) + + for results in [broadcast_arrays(original), + broadcast_arrays(0, original)]: + for result in results: + # resets the warn_on_write DeprecationWarning + result.flags.writeable = True + # check: no warning emitted + assert_equal(result.flags.writeable, True) + result[:] = 0 + + # keep readonly input readonly + original.flags.writeable = False + _, result = broadcast_arrays(0, original) + assert_equal(result.flags.writeable, False) + + # regression test for GH6491 + shape = (2,) + strides = [0] + tricky_array = as_strided(np.array(0), shape, strides) + other = np.zeros((1,)) + first, second = broadcast_arrays(tricky_array, other) + assert_(first.shape == second.shape) + + +def test_writeable_memoryview(): + # The result of broadcast_arrays exports as a non-writeable memoryview + # because otherwise there is no good way to opt in to the new behaviour + # (i.e. you would need to set writeable to False explicitly). + # See gh-13929. + original = np.array([1, 2, 3]) + + test_cases = [((False, ), broadcast_arrays(original,)), + ((True, False), broadcast_arrays(0, original))] + for is_broadcast, results in test_cases: + for array_is_broadcast, result in zip(is_broadcast, results): + # This will change to False in a future version + if array_is_broadcast: + # memoryview(result, writable=True) will give warning but cannot + # be tested using the python API. + assert memoryview(result).readonly + else: + assert not memoryview(result).readonly + + +def test_reference_types(): + input_array = np.array('a', dtype=object) + expected = np.array(['a'] * 3, dtype=object) + actual = broadcast_to(input_array, (3,)) + assert_array_equal(expected, actual) + + actual, _ = broadcast_arrays(input_array, np.ones(3)) + assert_array_equal(expected, actual) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_twodim_base.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_twodim_base.py new file mode 100644 index 0000000..eb6aa69 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_twodim_base.py @@ -0,0 +1,559 @@ +"""Test functions for matrix module + +""" +import pytest + +import numpy as np +from numpy import ( + add, + arange, + array, + diag, + eye, + fliplr, + flipud, + histogram2d, + mask_indices, + ones, + tri, + tril_indices, + tril_indices_from, + triu_indices, + triu_indices_from, + vander, + zeros, +) +from numpy.testing import ( + assert_, + assert_array_almost_equal, + assert_array_equal, + assert_array_max_ulp, + assert_equal, + assert_raises, +) + + +def get_mat(n): + data = arange(n) + data = add.outer(data, data) + return data + + +class TestEye: + def test_basic(self): + assert_equal(eye(4), + array([[1, 0, 0, 0], + [0, 1, 0, 0], + [0, 0, 1, 0], + [0, 0, 0, 1]])) + + assert_equal(eye(4, dtype='f'), + array([[1, 0, 0, 0], + [0, 1, 0, 0], + [0, 0, 1, 0], + [0, 0, 0, 1]], 'f')) + + assert_equal(eye(3) == 1, + eye(3, dtype=bool)) + + def test_uint64(self): + # Regression test for gh-9982 + assert_equal(eye(np.uint64(2), dtype=int), array([[1, 0], [0, 1]])) + assert_equal(eye(np.uint64(2), M=np.uint64(4), k=np.uint64(1)), + array([[0, 1, 0, 0], [0, 0, 1, 0]])) + + def test_diag(self): + assert_equal(eye(4, k=1), + array([[0, 1, 0, 0], + [0, 0, 1, 0], + [0, 0, 0, 1], + [0, 0, 0, 0]])) + + assert_equal(eye(4, k=-1), + array([[0, 0, 0, 0], + [1, 0, 0, 0], + [0, 1, 0, 0], + [0, 0, 1, 0]])) + + def test_2d(self): + assert_equal(eye(4, 3), + array([[1, 0, 0], + [0, 1, 0], + [0, 0, 1], + [0, 0, 0]])) + + assert_equal(eye(3, 4), + array([[1, 0, 0, 0], + [0, 1, 0, 0], + [0, 0, 1, 0]])) + + def test_diag2d(self): + assert_equal(eye(3, 4, k=2), + array([[0, 0, 1, 0], + [0, 0, 0, 1], + [0, 0, 0, 0]])) + + assert_equal(eye(4, 3, k=-2), + array([[0, 0, 0], + [0, 0, 0], + [1, 0, 0], + [0, 1, 0]])) + + def test_eye_bounds(self): + assert_equal(eye(2, 2, 1), [[0, 1], [0, 0]]) + assert_equal(eye(2, 2, -1), [[0, 0], [1, 0]]) + assert_equal(eye(2, 2, 2), [[0, 0], [0, 0]]) + assert_equal(eye(2, 2, -2), [[0, 0], [0, 0]]) + assert_equal(eye(3, 2, 2), [[0, 0], [0, 0], [0, 0]]) + assert_equal(eye(3, 2, 1), [[0, 1], [0, 0], [0, 0]]) + assert_equal(eye(3, 2, -1), [[0, 0], [1, 0], [0, 1]]) + assert_equal(eye(3, 2, -2), [[0, 0], [0, 0], [1, 0]]) + assert_equal(eye(3, 2, -3), [[0, 0], [0, 0], [0, 0]]) + + def test_strings(self): + assert_equal(eye(2, 2, dtype='S3'), + [[b'1', b''], [b'', b'1']]) + + def test_bool(self): + assert_equal(eye(2, 2, dtype=bool), [[True, False], [False, True]]) + + def test_order(self): + mat_c = eye(4, 3, k=-1) + mat_f = eye(4, 3, k=-1, order='F') + assert_equal(mat_c, mat_f) + assert mat_c.flags.c_contiguous + assert not mat_c.flags.f_contiguous + assert not mat_f.flags.c_contiguous + assert mat_f.flags.f_contiguous + + +class TestDiag: + def test_vector(self): + vals = (100 * arange(5)).astype('l') + b = zeros((5, 5)) + for k in range(5): + b[k, k] = vals[k] + assert_equal(diag(vals), b) + b = zeros((7, 7)) + c = b.copy() + for k in range(5): + b[k, k + 2] = vals[k] + c[k + 2, k] = vals[k] + assert_equal(diag(vals, k=2), b) + assert_equal(diag(vals, k=-2), c) + + def test_matrix(self, vals=None): + if vals is None: + vals = (100 * get_mat(5) + 1).astype('l') + b = zeros((5,)) + for k in range(5): + b[k] = vals[k, k] + assert_equal(diag(vals), b) + b = b * 0 + for k in range(3): + b[k] = vals[k, k + 2] + assert_equal(diag(vals, 2), b[:3]) + for k in range(3): + b[k] = vals[k + 2, k] + assert_equal(diag(vals, -2), b[:3]) + + def test_fortran_order(self): + vals = array((100 * get_mat(5) + 1), order='F', dtype='l') + self.test_matrix(vals) + + def test_diag_bounds(self): + A = [[1, 2], [3, 4], [5, 6]] + assert_equal(diag(A, k=2), []) + assert_equal(diag(A, k=1), [2]) + assert_equal(diag(A, k=0), [1, 4]) + assert_equal(diag(A, k=-1), [3, 6]) + assert_equal(diag(A, k=-2), [5]) + assert_equal(diag(A, k=-3), []) + + def test_failure(self): + assert_raises(ValueError, diag, [[[1]]]) + + +class TestFliplr: + def test_basic(self): + assert_raises(ValueError, fliplr, ones(4)) + a = get_mat(4) + b = a[:, ::-1] + assert_equal(fliplr(a), b) + a = [[0, 1, 2], + [3, 4, 5]] + b = [[2, 1, 0], + [5, 4, 3]] + assert_equal(fliplr(a), b) + + +class TestFlipud: + def test_basic(self): + a = get_mat(4) + b = a[::-1, :] + assert_equal(flipud(a), b) + a = [[0, 1, 2], + [3, 4, 5]] + b = [[3, 4, 5], + [0, 1, 2]] + assert_equal(flipud(a), b) + + +class TestHistogram2d: + def test_simple(self): + x = array( + [0.41702200, 0.72032449, 1.1437481e-4, 0.302332573, 0.146755891]) + y = array( + [0.09233859, 0.18626021, 0.34556073, 0.39676747, 0.53881673]) + xedges = np.linspace(0, 1, 10) + yedges = np.linspace(0, 1, 10) + H = histogram2d(x, y, (xedges, yedges))[0] + answer = array( + [[0, 0, 0, 1, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 1, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [1, 0, 1, 0, 0, 0, 0, 0, 0], + [0, 1, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 0, 0, 0, 0]]) + assert_array_equal(H.T, answer) + H = histogram2d(x, y, xedges)[0] + assert_array_equal(H.T, answer) + H, xedges, yedges = histogram2d(list(range(10)), list(range(10))) + assert_array_equal(H, eye(10, 10)) + assert_array_equal(xedges, np.linspace(0, 9, 11)) + assert_array_equal(yedges, np.linspace(0, 9, 11)) + + def test_asym(self): + x = array([1, 1, 2, 3, 4, 4, 4, 5]) + y = array([1, 3, 2, 0, 1, 2, 3, 4]) + H, xed, yed = histogram2d( + x, y, (6, 5), range=[[0, 6], [0, 5]], density=True) + answer = array( + [[0., 0, 0, 0, 0], + [0, 1, 0, 1, 0], + [0, 0, 1, 0, 0], + [1, 0, 0, 0, 0], + [0, 1, 1, 1, 0], + [0, 0, 0, 0, 1]]) + assert_array_almost_equal(H, answer / 8., 3) + assert_array_equal(xed, np.linspace(0, 6, 7)) + assert_array_equal(yed, np.linspace(0, 5, 6)) + + def test_density(self): + x = array([1, 2, 3, 1, 2, 3, 1, 2, 3]) + y = array([1, 1, 1, 2, 2, 2, 3, 3, 3]) + H, xed, yed = histogram2d( + x, y, [[1, 2, 3, 5], [1, 2, 3, 5]], density=True) + answer = array([[1, 1, .5], + [1, 1, .5], + [.5, .5, .25]]) / 9. + assert_array_almost_equal(H, answer, 3) + + def test_all_outliers(self): + r = np.random.rand(100) + 1. + 1e6 # histogramdd rounds by decimal=6 + H, xed, yed = histogram2d(r, r, (4, 5), range=([0, 1], [0, 1])) + assert_array_equal(H, 0) + + def test_empty(self): + a, edge1, edge2 = histogram2d([], [], bins=([0, 1], [0, 1])) + assert_array_max_ulp(a, array([[0.]])) + + a, edge1, edge2 = histogram2d([], [], bins=4) + assert_array_max_ulp(a, np.zeros((4, 4))) + + def test_binparameter_combination(self): + x = array( + [0, 0.09207008, 0.64575234, 0.12875982, 0.47390599, + 0.59944483, 1]) + y = array( + [0, 0.14344267, 0.48988575, 0.30558665, 0.44700682, + 0.15886423, 1]) + edges = (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) + H, xe, ye = histogram2d(x, y, (edges, 4)) + answer = array( + [[2., 0., 0., 0.], + [0., 1., 0., 0.], + [0., 0., 0., 0.], + [0., 0., 0., 0.], + [0., 1., 0., 0.], + [1., 0., 0., 0.], + [0., 1., 0., 0.], + [0., 0., 0., 0.], + [0., 0., 0., 0.], + [0., 0., 0., 1.]]) + assert_array_equal(H, answer) + assert_array_equal(ye, array([0., 0.25, 0.5, 0.75, 1])) + H, xe, ye = histogram2d(x, y, (4, edges)) + answer = array( + [[1., 1., 0., 1., 0., 0., 0., 0., 0., 0.], + [0., 0., 0., 0., 1., 0., 0., 0., 0., 0.], + [0., 1., 0., 0., 1., 0., 0., 0., 0., 0.], + [0., 0., 0., 0., 0., 0., 0., 0., 0., 1.]]) + assert_array_equal(H, answer) + assert_array_equal(xe, array([0., 0.25, 0.5, 0.75, 1])) + + def test_dispatch(self): + class ShouldDispatch: + def __array_function__(self, function, types, args, kwargs): + return types, args, kwargs + + xy = [1, 2] + s_d = ShouldDispatch() + r = histogram2d(s_d, xy) + # Cannot use assert_equal since that dispatches... + assert_(r == ((ShouldDispatch,), (s_d, xy), {})) + r = histogram2d(xy, s_d) + assert_(r == ((ShouldDispatch,), (xy, s_d), {})) + r = histogram2d(xy, xy, bins=s_d) + assert_(r, ((ShouldDispatch,), (xy, xy), {'bins': s_d})) + r = histogram2d(xy, xy, bins=[s_d, 5]) + assert_(r, ((ShouldDispatch,), (xy, xy), {'bins': [s_d, 5]})) + assert_raises(Exception, histogram2d, xy, xy, bins=[s_d]) + r = histogram2d(xy, xy, weights=s_d) + assert_(r, ((ShouldDispatch,), (xy, xy), {'weights': s_d})) + + @pytest.mark.parametrize(("x_len", "y_len"), [(10, 11), (20, 19)]) + def test_bad_length(self, x_len, y_len): + x, y = np.ones(x_len), np.ones(y_len) + with pytest.raises(ValueError, + match='x and y must have the same length.'): + histogram2d(x, y) + + +class TestTri: + def test_dtype(self): + out = array([[1, 0, 0], + [1, 1, 0], + [1, 1, 1]]) + assert_array_equal(tri(3), out) + assert_array_equal(tri(3, dtype=bool), out.astype(bool)) + + +def test_tril_triu_ndim2(): + for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']: + a = np.ones((2, 2), dtype=dtype) + b = np.tril(a) + c = np.triu(a) + assert_array_equal(b, [[1, 0], [1, 1]]) + assert_array_equal(c, b.T) + # should return the same dtype as the original array + assert_equal(b.dtype, a.dtype) + assert_equal(c.dtype, a.dtype) + + +def test_tril_triu_ndim3(): + for dtype in np.typecodes['AllFloat'] + np.typecodes['AllInteger']: + a = np.array([ + [[1, 1], [1, 1]], + [[1, 1], [1, 0]], + [[1, 1], [0, 0]], + ], dtype=dtype) + a_tril_desired = np.array([ + [[1, 0], [1, 1]], + [[1, 0], [1, 0]], + [[1, 0], [0, 0]], + ], dtype=dtype) + a_triu_desired = np.array([ + [[1, 1], [0, 1]], + [[1, 1], [0, 0]], + [[1, 1], [0, 0]], + ], dtype=dtype) + a_triu_observed = np.triu(a) + a_tril_observed = np.tril(a) + assert_array_equal(a_triu_observed, a_triu_desired) + assert_array_equal(a_tril_observed, a_tril_desired) + assert_equal(a_triu_observed.dtype, a.dtype) + assert_equal(a_tril_observed.dtype, a.dtype) + + +def test_tril_triu_with_inf(): + # Issue 4859 + arr = np.array([[1, 1, np.inf], + [1, 1, 1], + [np.inf, 1, 1]]) + out_tril = np.array([[1, 0, 0], + [1, 1, 0], + [np.inf, 1, 1]]) + out_triu = out_tril.T + assert_array_equal(np.triu(arr), out_triu) + assert_array_equal(np.tril(arr), out_tril) + + +def test_tril_triu_dtype(): + # Issue 4916 + # tril and triu should return the same dtype as input + for c in np.typecodes['All']: + if c == 'V': + continue + arr = np.zeros((3, 3), dtype=c) + assert_equal(np.triu(arr).dtype, arr.dtype) + assert_equal(np.tril(arr).dtype, arr.dtype) + + # check special cases + arr = np.array([['2001-01-01T12:00', '2002-02-03T13:56'], + ['2004-01-01T12:00', '2003-01-03T13:45']], + dtype='datetime64') + assert_equal(np.triu(arr).dtype, arr.dtype) + assert_equal(np.tril(arr).dtype, arr.dtype) + + arr = np.zeros((3, 3), dtype='f4,f4') + assert_equal(np.triu(arr).dtype, arr.dtype) + assert_equal(np.tril(arr).dtype, arr.dtype) + + +def test_mask_indices(): + # simple test without offset + iu = mask_indices(3, np.triu) + a = np.arange(9).reshape(3, 3) + assert_array_equal(a[iu], array([0, 1, 2, 4, 5, 8])) + # Now with an offset + iu1 = mask_indices(3, np.triu, 1) + assert_array_equal(a[iu1], array([1, 2, 5])) + + +def test_tril_indices(): + # indices without and with offset + il1 = tril_indices(4) + il2 = tril_indices(4, k=2) + il3 = tril_indices(4, m=5) + il4 = tril_indices(4, k=2, m=5) + + a = np.array([[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12], + [13, 14, 15, 16]]) + b = np.arange(1, 21).reshape(4, 5) + + # indexing: + assert_array_equal(a[il1], + array([1, 5, 6, 9, 10, 11, 13, 14, 15, 16])) + assert_array_equal(b[il3], + array([1, 6, 7, 11, 12, 13, 16, 17, 18, 19])) + + # And for assigning values: + a[il1] = -1 + assert_array_equal(a, + array([[-1, 2, 3, 4], + [-1, -1, 7, 8], + [-1, -1, -1, 12], + [-1, -1, -1, -1]])) + b[il3] = -1 + assert_array_equal(b, + array([[-1, 2, 3, 4, 5], + [-1, -1, 8, 9, 10], + [-1, -1, -1, 14, 15], + [-1, -1, -1, -1, 20]])) + # These cover almost the whole array (two diagonals right of the main one): + a[il2] = -10 + assert_array_equal(a, + array([[-10, -10, -10, 4], + [-10, -10, -10, -10], + [-10, -10, -10, -10], + [-10, -10, -10, -10]])) + b[il4] = -10 + assert_array_equal(b, + array([[-10, -10, -10, 4, 5], + [-10, -10, -10, -10, 10], + [-10, -10, -10, -10, -10], + [-10, -10, -10, -10, -10]])) + + +class TestTriuIndices: + def test_triu_indices(self): + iu1 = triu_indices(4) + iu2 = triu_indices(4, k=2) + iu3 = triu_indices(4, m=5) + iu4 = triu_indices(4, k=2, m=5) + + a = np.array([[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12], + [13, 14, 15, 16]]) + b = np.arange(1, 21).reshape(4, 5) + + # Both for indexing: + assert_array_equal(a[iu1], + array([1, 2, 3, 4, 6, 7, 8, 11, 12, 16])) + assert_array_equal(b[iu3], + array([1, 2, 3, 4, 5, 7, 8, 9, + 10, 13, 14, 15, 19, 20])) + + # And for assigning values: + a[iu1] = -1 + assert_array_equal(a, + array([[-1, -1, -1, -1], + [5, -1, -1, -1], + [9, 10, -1, -1], + [13, 14, 15, -1]])) + b[iu3] = -1 + assert_array_equal(b, + array([[-1, -1, -1, -1, -1], + [6, -1, -1, -1, -1], + [11, 12, -1, -1, -1], + [16, 17, 18, -1, -1]])) + + # These cover almost the whole array (two diagonals right of the + # main one): + a[iu2] = -10 + assert_array_equal(a, + array([[-1, -1, -10, -10], + [5, -1, -1, -10], + [9, 10, -1, -1], + [13, 14, 15, -1]])) + b[iu4] = -10 + assert_array_equal(b, + array([[-1, -1, -10, -10, -10], + [6, -1, -1, -10, -10], + [11, 12, -1, -1, -10], + [16, 17, 18, -1, -1]])) + + +class TestTrilIndicesFrom: + def test_exceptions(self): + assert_raises(ValueError, tril_indices_from, np.ones((2,))) + assert_raises(ValueError, tril_indices_from, np.ones((2, 2, 2))) + # assert_raises(ValueError, tril_indices_from, np.ones((2, 3))) + + +class TestTriuIndicesFrom: + def test_exceptions(self): + assert_raises(ValueError, triu_indices_from, np.ones((2,))) + assert_raises(ValueError, triu_indices_from, np.ones((2, 2, 2))) + # assert_raises(ValueError, triu_indices_from, np.ones((2, 3))) + + +class TestVander: + def test_basic(self): + c = np.array([0, 1, -2, 3]) + v = vander(c) + powers = np.array([[0, 0, 0, 0, 1], + [1, 1, 1, 1, 1], + [16, -8, 4, -2, 1], + [81, 27, 9, 3, 1]]) + # Check default value of N: + assert_array_equal(v, powers[:, 1:]) + # Check a range of N values, including 0 and 5 (greater than default) + m = powers.shape[1] + for n in range(6): + v = vander(c, N=n) + assert_array_equal(v, powers[:, m - n:m]) + + def test_dtypes(self): + c = array([11, -12, 13], dtype=np.int8) + v = vander(c) + expected = np.array([[121, 11, 1], + [144, -12, 1], + [169, 13, 1]]) + assert_array_equal(v, expected) + + c = array([1.0 + 1j, 1.0 - 1j]) + v = vander(c, N=3) + expected = np.array([[2j, 1 + 1j, 1], + [-2j, 1 - 1j, 1]]) + # The data is floating point, but the values are small integers, + # so assert_array_equal *should* be safe here (rather than, say, + # assert_array_almost_equal). + assert_array_equal(v, expected) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_type_check.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_type_check.py new file mode 100644 index 0000000..447c2c3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_type_check.py @@ -0,0 +1,473 @@ +import numpy as np +from numpy import ( + common_type, + iscomplex, + iscomplexobj, + isneginf, + isposinf, + isreal, + isrealobj, + mintypecode, + nan_to_num, + real_if_close, +) +from numpy.testing import assert_, assert_array_equal, assert_equal + + +def assert_all(x): + assert_(np.all(x), x) + + +class TestCommonType: + def test_basic(self): + ai32 = np.array([[1, 2], [3, 4]], dtype=np.int32) + af16 = np.array([[1, 2], [3, 4]], dtype=np.float16) + af32 = np.array([[1, 2], [3, 4]], dtype=np.float32) + af64 = np.array([[1, 2], [3, 4]], dtype=np.float64) + acs = np.array([[1 + 5j, 2 + 6j], [3 + 7j, 4 + 8j]], dtype=np.complex64) + acd = np.array([[1 + 5j, 2 + 6j], [3 + 7j, 4 + 8j]], dtype=np.complex128) + assert_(common_type(ai32) == np.float64) + assert_(common_type(af16) == np.float16) + assert_(common_type(af32) == np.float32) + assert_(common_type(af64) == np.float64) + assert_(common_type(acs) == np.complex64) + assert_(common_type(acd) == np.complex128) + + +class TestMintypecode: + + def test_default_1(self): + for itype in '1bcsuwil': + assert_equal(mintypecode(itype), 'd') + assert_equal(mintypecode('f'), 'f') + assert_equal(mintypecode('d'), 'd') + assert_equal(mintypecode('F'), 'F') + assert_equal(mintypecode('D'), 'D') + + def test_default_2(self): + for itype in '1bcsuwil': + assert_equal(mintypecode(itype + 'f'), 'f') + assert_equal(mintypecode(itype + 'd'), 'd') + assert_equal(mintypecode(itype + 'F'), 'F') + assert_equal(mintypecode(itype + 'D'), 'D') + assert_equal(mintypecode('ff'), 'f') + assert_equal(mintypecode('fd'), 'd') + assert_equal(mintypecode('fF'), 'F') + assert_equal(mintypecode('fD'), 'D') + assert_equal(mintypecode('df'), 'd') + assert_equal(mintypecode('dd'), 'd') + #assert_equal(mintypecode('dF',savespace=1),'F') + assert_equal(mintypecode('dF'), 'D') + assert_equal(mintypecode('dD'), 'D') + assert_equal(mintypecode('Ff'), 'F') + #assert_equal(mintypecode('Fd',savespace=1),'F') + assert_equal(mintypecode('Fd'), 'D') + assert_equal(mintypecode('FF'), 'F') + assert_equal(mintypecode('FD'), 'D') + assert_equal(mintypecode('Df'), 'D') + assert_equal(mintypecode('Dd'), 'D') + assert_equal(mintypecode('DF'), 'D') + assert_equal(mintypecode('DD'), 'D') + + def test_default_3(self): + assert_equal(mintypecode('fdF'), 'D') + #assert_equal(mintypecode('fdF',savespace=1),'F') + assert_equal(mintypecode('fdD'), 'D') + assert_equal(mintypecode('fFD'), 'D') + assert_equal(mintypecode('dFD'), 'D') + + assert_equal(mintypecode('ifd'), 'd') + assert_equal(mintypecode('ifF'), 'F') + assert_equal(mintypecode('ifD'), 'D') + assert_equal(mintypecode('idF'), 'D') + #assert_equal(mintypecode('idF',savespace=1),'F') + assert_equal(mintypecode('idD'), 'D') + + +class TestIsscalar: + + def test_basic(self): + assert_(np.isscalar(3)) + assert_(not np.isscalar([3])) + assert_(not np.isscalar((3,))) + assert_(np.isscalar(3j)) + assert_(np.isscalar(4.0)) + + +class TestReal: + + def test_real(self): + y = np.random.rand(10,) + assert_array_equal(y, np.real(y)) + + y = np.array(1) + out = np.real(y) + assert_array_equal(y, out) + assert_(isinstance(out, np.ndarray)) + + y = 1 + out = np.real(y) + assert_equal(y, out) + assert_(not isinstance(out, np.ndarray)) + + def test_cmplx(self): + y = np.random.rand(10,) + 1j * np.random.rand(10,) + assert_array_equal(y.real, np.real(y)) + + y = np.array(1 + 1j) + out = np.real(y) + assert_array_equal(y.real, out) + assert_(isinstance(out, np.ndarray)) + + y = 1 + 1j + out = np.real(y) + assert_equal(1.0, out) + assert_(not isinstance(out, np.ndarray)) + + +class TestImag: + + def test_real(self): + y = np.random.rand(10,) + assert_array_equal(0, np.imag(y)) + + y = np.array(1) + out = np.imag(y) + assert_array_equal(0, out) + assert_(isinstance(out, np.ndarray)) + + y = 1 + out = np.imag(y) + assert_equal(0, out) + assert_(not isinstance(out, np.ndarray)) + + def test_cmplx(self): + y = np.random.rand(10,) + 1j * np.random.rand(10,) + assert_array_equal(y.imag, np.imag(y)) + + y = np.array(1 + 1j) + out = np.imag(y) + assert_array_equal(y.imag, out) + assert_(isinstance(out, np.ndarray)) + + y = 1 + 1j + out = np.imag(y) + assert_equal(1.0, out) + assert_(not isinstance(out, np.ndarray)) + + +class TestIscomplex: + + def test_fail(self): + z = np.array([-1, 0, 1]) + res = iscomplex(z) + assert_(not np.any(res, axis=0)) + + def test_pass(self): + z = np.array([-1j, 1, 0]) + res = iscomplex(z) + assert_array_equal(res, [1, 0, 0]) + + +class TestIsreal: + + def test_pass(self): + z = np.array([-1, 0, 1j]) + res = isreal(z) + assert_array_equal(res, [1, 1, 0]) + + def test_fail(self): + z = np.array([-1j, 1, 0]) + res = isreal(z) + assert_array_equal(res, [0, 1, 1]) + + +class TestIscomplexobj: + + def test_basic(self): + z = np.array([-1, 0, 1]) + assert_(not iscomplexobj(z)) + z = np.array([-1j, 0, -1]) + assert_(iscomplexobj(z)) + + def test_scalar(self): + assert_(not iscomplexobj(1.0)) + assert_(iscomplexobj(1 + 0j)) + + def test_list(self): + assert_(iscomplexobj([3, 1 + 0j, True])) + assert_(not iscomplexobj([3, 1, True])) + + def test_duck(self): + class DummyComplexArray: + @property + def dtype(self): + return np.dtype(complex) + dummy = DummyComplexArray() + assert_(iscomplexobj(dummy)) + + def test_pandas_duck(self): + # This tests a custom np.dtype duck-typed class, such as used by pandas + # (pandas.core.dtypes) + class PdComplex(np.complex128): + pass + + class PdDtype: + name = 'category' + names = None + type = PdComplex + kind = 'c' + str = ' 1e10) and assert_all(np.isfinite(vals[2])) + assert_equal(type(vals), np.ndarray) + + # perform the same tests but with nan, posinf and neginf keywords + with np.errstate(divide='ignore', invalid='ignore'): + vals = nan_to_num(np.array((-1., 0, 1)) / 0., + nan=10, posinf=20, neginf=30) + assert_equal(vals, [30, 10, 20]) + assert_all(np.isfinite(vals[[0, 2]])) + assert_equal(type(vals), np.ndarray) + + # perform the same test but in-place + with np.errstate(divide='ignore', invalid='ignore'): + vals = np.array((-1., 0, 1)) / 0. + result = nan_to_num(vals, copy=False) + + assert_(result is vals) + assert_all(vals[0] < -1e10) and assert_all(np.isfinite(vals[0])) + assert_(vals[1] == 0) + assert_all(vals[2] > 1e10) and assert_all(np.isfinite(vals[2])) + assert_equal(type(vals), np.ndarray) + + # perform the same test but in-place + with np.errstate(divide='ignore', invalid='ignore'): + vals = np.array((-1., 0, 1)) / 0. + result = nan_to_num(vals, copy=False, nan=10, posinf=20, neginf=30) + + assert_(result is vals) + assert_equal(vals, [30, 10, 20]) + assert_all(np.isfinite(vals[[0, 2]])) + assert_equal(type(vals), np.ndarray) + + def test_array(self): + vals = nan_to_num([1]) + assert_array_equal(vals, np.array([1], int)) + assert_equal(type(vals), np.ndarray) + vals = nan_to_num([1], nan=10, posinf=20, neginf=30) + assert_array_equal(vals, np.array([1], int)) + assert_equal(type(vals), np.ndarray) + + def test_integer(self): + vals = nan_to_num(1) + assert_all(vals == 1) + assert_equal(type(vals), np.int_) + vals = nan_to_num(1, nan=10, posinf=20, neginf=30) + assert_all(vals == 1) + assert_equal(type(vals), np.int_) + + def test_float(self): + vals = nan_to_num(1.0) + assert_all(vals == 1.0) + assert_equal(type(vals), np.float64) + vals = nan_to_num(1.1, nan=10, posinf=20, neginf=30) + assert_all(vals == 1.1) + assert_equal(type(vals), np.float64) + + def test_complex_good(self): + vals = nan_to_num(1 + 1j) + assert_all(vals == 1 + 1j) + assert_equal(type(vals), np.complex128) + vals = nan_to_num(1 + 1j, nan=10, posinf=20, neginf=30) + assert_all(vals == 1 + 1j) + assert_equal(type(vals), np.complex128) + + def test_complex_bad(self): + with np.errstate(divide='ignore', invalid='ignore'): + v = 1 + 1j + v += np.array(0 + 1.j) / 0. + vals = nan_to_num(v) + # !! This is actually (unexpectedly) zero + assert_all(np.isfinite(vals)) + assert_equal(type(vals), np.complex128) + + def test_complex_bad2(self): + with np.errstate(divide='ignore', invalid='ignore'): + v = 1 + 1j + v += np.array(-1 + 1.j) / 0. + vals = nan_to_num(v) + assert_all(np.isfinite(vals)) + assert_equal(type(vals), np.complex128) + # Fixme + #assert_all(vals.imag > 1e10) and assert_all(np.isfinite(vals)) + # !! This is actually (unexpectedly) positive + # !! inf. Comment out for now, and see if it + # !! changes + #assert_all(vals.real < -1e10) and assert_all(np.isfinite(vals)) + + def test_do_not_rewrite_previous_keyword(self): + # This is done to test that when, for instance, nan=np.inf then these + # values are not rewritten by posinf keyword to the posinf value. + with np.errstate(divide='ignore', invalid='ignore'): + vals = nan_to_num(np.array((-1., 0, 1)) / 0., nan=np.inf, posinf=999) + assert_all(np.isfinite(vals[[0, 2]])) + assert_all(vals[0] < -1e10) + assert_equal(vals[[1, 2]], [np.inf, 999]) + assert_equal(type(vals), np.ndarray) + + +class TestRealIfClose: + + def test_basic(self): + a = np.random.rand(10) + b = real_if_close(a + 1e-15j) + assert_all(isrealobj(b)) + assert_array_equal(a, b) + b = real_if_close(a + 1e-7j) + assert_all(iscomplexobj(b)) + b = real_if_close(a + 1e-7j, tol=1e-6) + assert_all(isrealobj(b)) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_ufunclike.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_ufunclike.py new file mode 100644 index 0000000..b4257eb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_ufunclike.py @@ -0,0 +1,97 @@ +import numpy as np +from numpy import fix, isneginf, isposinf +from numpy.testing import assert_, assert_array_equal, assert_equal, assert_raises + + +class TestUfunclike: + + def test_isposinf(self): + a = np.array([np.inf, -np.inf, np.nan, 0.0, 3.0, -3.0]) + out = np.zeros(a.shape, bool) + tgt = np.array([True, False, False, False, False, False]) + + res = isposinf(a) + assert_equal(res, tgt) + res = isposinf(a, out) + assert_equal(res, tgt) + assert_equal(out, tgt) + + a = a.astype(np.complex128) + with assert_raises(TypeError): + isposinf(a) + + def test_isneginf(self): + a = np.array([np.inf, -np.inf, np.nan, 0.0, 3.0, -3.0]) + out = np.zeros(a.shape, bool) + tgt = np.array([False, True, False, False, False, False]) + + res = isneginf(a) + assert_equal(res, tgt) + res = isneginf(a, out) + assert_equal(res, tgt) + assert_equal(out, tgt) + + a = a.astype(np.complex128) + with assert_raises(TypeError): + isneginf(a) + + def test_fix(self): + a = np.array([[1.0, 1.1, 1.5, 1.8], [-1.0, -1.1, -1.5, -1.8]]) + out = np.zeros(a.shape, float) + tgt = np.array([[1., 1., 1., 1.], [-1., -1., -1., -1.]]) + + res = fix(a) + assert_equal(res, tgt) + res = fix(a, out) + assert_equal(res, tgt) + assert_equal(out, tgt) + assert_equal(fix(3.14), 3) + + def test_fix_with_subclass(self): + class MyArray(np.ndarray): + def __new__(cls, data, metadata=None): + res = np.array(data, copy=True).view(cls) + res.metadata = metadata + return res + + def __array_wrap__(self, obj, context=None, return_scalar=False): + if not isinstance(obj, MyArray): + obj = obj.view(MyArray) + if obj.metadata is None: + obj.metadata = self.metadata + return obj + + def __array_finalize__(self, obj): + self.metadata = getattr(obj, 'metadata', None) + return self + + a = np.array([1.1, -1.1]) + m = MyArray(a, metadata='foo') + f = fix(m) + assert_array_equal(f, np.array([1, -1])) + assert_(isinstance(f, MyArray)) + assert_equal(f.metadata, 'foo') + + # check 0d arrays don't decay to scalars + m0d = m[0, ...] + m0d.metadata = 'bar' + f0d = fix(m0d) + assert_(isinstance(f0d, MyArray)) + assert_equal(f0d.metadata, 'bar') + + def test_scalar(self): + x = np.inf + actual = np.isposinf(x) + expected = np.True_ + assert_equal(actual, expected) + assert_equal(type(actual), type(expected)) + + x = -3.4 + actual = np.fix(x) + expected = np.float64(-3.0) + assert_equal(actual, expected) + assert_equal(type(actual), type(expected)) + + out = np.array(0.0) + actual = np.fix(x, out=out) + assert_(actual is out) diff --git a/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_utils.py b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_utils.py new file mode 100644 index 0000000..0106ee0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/lib/tests/test_utils.py @@ -0,0 +1,80 @@ +from io import StringIO + +import pytest + +import numpy as np +import numpy.lib._utils_impl as _utils_impl +from numpy.testing import assert_raises_regex + + +def test_assert_raises_regex_context_manager(): + with assert_raises_regex(ValueError, 'no deprecation warning'): + raise ValueError('no deprecation warning') + + +def test_info_method_heading(): + # info(class) should only print "Methods:" heading if methods exist + + class NoPublicMethods: + pass + + class WithPublicMethods: + def first_method(): + pass + + def _has_method_heading(cls): + out = StringIO() + np.info(cls, output=out) + return 'Methods:' in out.getvalue() + + assert _has_method_heading(WithPublicMethods) + assert not _has_method_heading(NoPublicMethods) + + +def test_drop_metadata(): + def _compare_dtypes(dt1, dt2): + return np.can_cast(dt1, dt2, casting='no') + + # structured dtype + dt = np.dtype([('l1', [('l2', np.dtype('S8', metadata={'msg': 'toto'}))])], + metadata={'msg': 'titi'}) + dt_m = _utils_impl.drop_metadata(dt) + assert _compare_dtypes(dt, dt_m) is True + assert dt_m.metadata is None + assert dt_m['l1'].metadata is None + assert dt_m['l1']['l2'].metadata is None + + # alignment + dt = np.dtype([('x', '>> from numpy import linalg as LA + >>> LA.inv(np.zeros((2,2))) + Traceback (most recent call last): + File "", line 1, in + File "...linalg.py", line 350, + in inv return wrap(solve(a, identity(a.shape[0], dtype=a.dtype))) + File "...linalg.py", line 249, + in solve + raise LinAlgError('Singular matrix') + numpy.linalg.LinAlgError: Singular matrix + + """ + + +def _raise_linalgerror_singular(err, flag): + raise LinAlgError("Singular matrix") + +def _raise_linalgerror_nonposdef(err, flag): + raise LinAlgError("Matrix is not positive definite") + +def _raise_linalgerror_eigenvalues_nonconvergence(err, flag): + raise LinAlgError("Eigenvalues did not converge") + +def _raise_linalgerror_svd_nonconvergence(err, flag): + raise LinAlgError("SVD did not converge") + +def _raise_linalgerror_lstsq(err, flag): + raise LinAlgError("SVD did not converge in Linear Least Squares") + +def _raise_linalgerror_qr(err, flag): + raise LinAlgError("Incorrect argument found while performing " + "QR factorization") + + +def _makearray(a): + new = asarray(a) + wrap = getattr(a, "__array_wrap__", new.__array_wrap__) + return new, wrap + +def isComplexType(t): + return issubclass(t, complexfloating) + + +_real_types_map = {single: single, + double: double, + csingle: single, + cdouble: double} + +_complex_types_map = {single: csingle, + double: cdouble, + csingle: csingle, + cdouble: cdouble} + +def _realType(t, default=double): + return _real_types_map.get(t, default) + +def _complexType(t, default=cdouble): + return _complex_types_map.get(t, default) + +def _commonType(*arrays): + # in lite version, use higher precision (always double or cdouble) + result_type = single + is_complex = False + for a in arrays: + type_ = a.dtype.type + if issubclass(type_, inexact): + if isComplexType(type_): + is_complex = True + rt = _realType(type_, default=None) + if rt is double: + result_type = double + elif rt is None: + # unsupported inexact scalar + raise TypeError(f"array type {a.dtype.name} is unsupported in linalg") + else: + result_type = double + if is_complex: + result_type = _complex_types_map[result_type] + return cdouble, result_type + else: + return double, result_type + + +def _to_native_byte_order(*arrays): + ret = [] + for arr in arrays: + if arr.dtype.byteorder not in ('=', '|'): + ret.append(asarray(arr, dtype=arr.dtype.newbyteorder('='))) + else: + ret.append(arr) + if len(ret) == 1: + return ret[0] + else: + return ret + + +def _assert_2d(*arrays): + for a in arrays: + if a.ndim != 2: + raise LinAlgError('%d-dimensional array given. Array must be ' + 'two-dimensional' % a.ndim) + +def _assert_stacked_2d(*arrays): + for a in arrays: + if a.ndim < 2: + raise LinAlgError('%d-dimensional array given. Array must be ' + 'at least two-dimensional' % a.ndim) + +def _assert_stacked_square(*arrays): + for a in arrays: + try: + m, n = a.shape[-2:] + except ValueError: + raise LinAlgError('%d-dimensional array given. Array must be ' + 'at least two-dimensional' % a.ndim) + if m != n: + raise LinAlgError('Last 2 dimensions of the array must be square') + +def _assert_finite(*arrays): + for a in arrays: + if not isfinite(a).all(): + raise LinAlgError("Array must not contain infs or NaNs") + +def _is_empty_2d(arr): + # check size first for efficiency + return arr.size == 0 and prod(arr.shape[-2:]) == 0 + + +def transpose(a): + """ + Transpose each matrix in a stack of matrices. + + Unlike np.transpose, this only swaps the last two axes, rather than all of + them + + Parameters + ---------- + a : (...,M,N) array_like + + Returns + ------- + aT : (...,N,M) ndarray + """ + return swapaxes(a, -1, -2) + +# Linear equations + +def _tensorsolve_dispatcher(a, b, axes=None): + return (a, b) + + +@array_function_dispatch(_tensorsolve_dispatcher) +def tensorsolve(a, b, axes=None): + """ + Solve the tensor equation ``a x = b`` for x. + + It is assumed that all indices of `x` are summed over in the product, + together with the rightmost indices of `a`, as is done in, for example, + ``tensordot(a, x, axes=x.ndim)``. + + Parameters + ---------- + a : array_like + Coefficient tensor, of shape ``b.shape + Q``. `Q`, a tuple, equals + the shape of that sub-tensor of `a` consisting of the appropriate + number of its rightmost indices, and must be such that + ``prod(Q) == prod(b.shape)`` (in which sense `a` is said to be + 'square'). + b : array_like + Right-hand tensor, which can be of any shape. + axes : tuple of ints, optional + Axes in `a` to reorder to the right, before inversion. + If None (default), no reordering is done. + + Returns + ------- + x : ndarray, shape Q + + Raises + ------ + LinAlgError + If `a` is singular or not 'square' (in the above sense). + + See Also + -------- + numpy.tensordot, tensorinv, numpy.einsum + + Examples + -------- + >>> import numpy as np + >>> a = np.eye(2*3*4) + >>> a.shape = (2*3, 4, 2, 3, 4) + >>> rng = np.random.default_rng() + >>> b = rng.normal(size=(2*3, 4)) + >>> x = np.linalg.tensorsolve(a, b) + >>> x.shape + (2, 3, 4) + >>> np.allclose(np.tensordot(a, x, axes=3), b) + True + + """ + a, wrap = _makearray(a) + b = asarray(b) + an = a.ndim + + if axes is not None: + allaxes = list(range(an)) + for k in axes: + allaxes.remove(k) + allaxes.insert(an, k) + a = a.transpose(allaxes) + + oldshape = a.shape[-(an - b.ndim):] + prod = 1 + for k in oldshape: + prod *= k + + if a.size != prod ** 2: + raise LinAlgError( + "Input arrays must satisfy the requirement \ + prod(a.shape[b.ndim:]) == prod(a.shape[:b.ndim])" + ) + + a = a.reshape(prod, prod) + b = b.ravel() + res = wrap(solve(a, b)) + res.shape = oldshape + return res + + +def _solve_dispatcher(a, b): + return (a, b) + + +@array_function_dispatch(_solve_dispatcher) +def solve(a, b): + """ + Solve a linear matrix equation, or system of linear scalar equations. + + Computes the "exact" solution, `x`, of the well-determined, i.e., full + rank, linear matrix equation `ax = b`. + + Parameters + ---------- + a : (..., M, M) array_like + Coefficient matrix. + b : {(M,), (..., M, K)}, array_like + Ordinate or "dependent variable" values. + + Returns + ------- + x : {(..., M,), (..., M, K)} ndarray + Solution to the system a x = b. Returned shape is (..., M) if b is + shape (M,) and (..., M, K) if b is (..., M, K), where the "..." part is + broadcasted between a and b. + + Raises + ------ + LinAlgError + If `a` is singular or not square. + + See Also + -------- + scipy.linalg.solve : Similar function in SciPy. + + Notes + ----- + Broadcasting rules apply, see the `numpy.linalg` documentation for + details. + + The solutions are computed using LAPACK routine ``_gesv``. + + `a` must be square and of full-rank, i.e., all rows (or, equivalently, + columns) must be linearly independent; if either is not true, use + `lstsq` for the least-squares best "solution" of the + system/equation. + + .. versionchanged:: 2.0 + + The b array is only treated as a shape (M,) column vector if it is + exactly 1-dimensional. In all other instances it is treated as a stack + of (M, K) matrices. Previously b would be treated as a stack of (M,) + vectors if b.ndim was equal to a.ndim - 1. + + References + ---------- + .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, + FL, Academic Press, Inc., 1980, pg. 22. + + Examples + -------- + Solve the system of equations: + ``x0 + 2 * x1 = 1`` and + ``3 * x0 + 5 * x1 = 2``: + + >>> import numpy as np + >>> a = np.array([[1, 2], [3, 5]]) + >>> b = np.array([1, 2]) + >>> x = np.linalg.solve(a, b) + >>> x + array([-1., 1.]) + + Check that the solution is correct: + + >>> np.allclose(np.dot(a, x), b) + True + + """ + a, _ = _makearray(a) + _assert_stacked_square(a) + b, wrap = _makearray(b) + t, result_t = _commonType(a, b) + + # We use the b = (..., M,) logic, only if the number of extra dimensions + # match exactly + if b.ndim == 1: + gufunc = _umath_linalg.solve1 + else: + gufunc = _umath_linalg.solve + + signature = 'DD->D' if isComplexType(t) else 'dd->d' + with errstate(call=_raise_linalgerror_singular, invalid='call', + over='ignore', divide='ignore', under='ignore'): + r = gufunc(a, b, signature=signature) + + return wrap(r.astype(result_t, copy=False)) + + +def _tensorinv_dispatcher(a, ind=None): + return (a,) + + +@array_function_dispatch(_tensorinv_dispatcher) +def tensorinv(a, ind=2): + """ + Compute the 'inverse' of an N-dimensional array. + + The result is an inverse for `a` relative to the tensordot operation + ``tensordot(a, b, ind)``, i. e., up to floating-point accuracy, + ``tensordot(tensorinv(a), a, ind)`` is the "identity" tensor for the + tensordot operation. + + Parameters + ---------- + a : array_like + Tensor to 'invert'. Its shape must be 'square', i. e., + ``prod(a.shape[:ind]) == prod(a.shape[ind:])``. + ind : int, optional + Number of first indices that are involved in the inverse sum. + Must be a positive integer, default is 2. + + Returns + ------- + b : ndarray + `a`'s tensordot inverse, shape ``a.shape[ind:] + a.shape[:ind]``. + + Raises + ------ + LinAlgError + If `a` is singular or not 'square' (in the above sense). + + See Also + -------- + numpy.tensordot, tensorsolve + + Examples + -------- + >>> import numpy as np + >>> a = np.eye(4*6) + >>> a.shape = (4, 6, 8, 3) + >>> ainv = np.linalg.tensorinv(a, ind=2) + >>> ainv.shape + (8, 3, 4, 6) + >>> rng = np.random.default_rng() + >>> b = rng.normal(size=(4, 6)) + >>> np.allclose(np.tensordot(ainv, b), np.linalg.tensorsolve(a, b)) + True + + >>> a = np.eye(4*6) + >>> a.shape = (24, 8, 3) + >>> ainv = np.linalg.tensorinv(a, ind=1) + >>> ainv.shape + (8, 3, 24) + >>> rng = np.random.default_rng() + >>> b = rng.normal(size=24) + >>> np.allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b)) + True + + """ + a = asarray(a) + oldshape = a.shape + prod = 1 + if ind > 0: + invshape = oldshape[ind:] + oldshape[:ind] + for k in oldshape[ind:]: + prod *= k + else: + raise ValueError("Invalid ind argument.") + a = a.reshape(prod, -1) + ia = inv(a) + return ia.reshape(*invshape) + + +# Matrix inversion + +def _unary_dispatcher(a): + return (a,) + + +@array_function_dispatch(_unary_dispatcher) +def inv(a): + """ + Compute the inverse of a matrix. + + Given a square matrix `a`, return the matrix `ainv` satisfying + ``a @ ainv = ainv @ a = eye(a.shape[0])``. + + Parameters + ---------- + a : (..., M, M) array_like + Matrix to be inverted. + + Returns + ------- + ainv : (..., M, M) ndarray or matrix + Inverse of the matrix `a`. + + Raises + ------ + LinAlgError + If `a` is not square or inversion fails. + + See Also + -------- + scipy.linalg.inv : Similar function in SciPy. + numpy.linalg.cond : Compute the condition number of a matrix. + numpy.linalg.svd : Compute the singular value decomposition of a matrix. + + Notes + ----- + Broadcasting rules apply, see the `numpy.linalg` documentation for + details. + + If `a` is detected to be singular, a `LinAlgError` is raised. If `a` is + ill-conditioned, a `LinAlgError` may or may not be raised, and results may + be inaccurate due to floating-point errors. + + References + ---------- + .. [1] Wikipedia, "Condition number", + https://en.wikipedia.org/wiki/Condition_number + + Examples + -------- + >>> import numpy as np + >>> from numpy.linalg import inv + >>> a = np.array([[1., 2.], [3., 4.]]) + >>> ainv = inv(a) + >>> np.allclose(a @ ainv, np.eye(2)) + True + >>> np.allclose(ainv @ a, np.eye(2)) + True + + If a is a matrix object, then the return value is a matrix as well: + + >>> ainv = inv(np.matrix(a)) + >>> ainv + matrix([[-2. , 1. ], + [ 1.5, -0.5]]) + + Inverses of several matrices can be computed at once: + + >>> a = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]]) + >>> inv(a) + array([[[-2. , 1. ], + [ 1.5 , -0.5 ]], + [[-1.25, 0.75], + [ 0.75, -0.25]]]) + + If a matrix is close to singular, the computed inverse may not satisfy + ``a @ ainv = ainv @ a = eye(a.shape[0])`` even if a `LinAlgError` + is not raised: + + >>> a = np.array([[2,4,6],[2,0,2],[6,8,14]]) + >>> inv(a) # No errors raised + array([[-1.12589991e+15, -5.62949953e+14, 5.62949953e+14], + [-1.12589991e+15, -5.62949953e+14, 5.62949953e+14], + [ 1.12589991e+15, 5.62949953e+14, -5.62949953e+14]]) + >>> a @ inv(a) + array([[ 0. , -0.5 , 0. ], # may vary + [-0.5 , 0.625, 0.25 ], + [ 0. , 0. , 1. ]]) + + To detect ill-conditioned matrices, you can use `numpy.linalg.cond` to + compute its *condition number* [1]_. The larger the condition number, the + more ill-conditioned the matrix is. As a rule of thumb, if the condition + number ``cond(a) = 10**k``, then you may lose up to ``k`` digits of + accuracy on top of what would be lost to the numerical method due to loss + of precision from arithmetic methods. + + >>> from numpy.linalg import cond + >>> cond(a) + np.float64(8.659885634118668e+17) # may vary + + It is also possible to detect ill-conditioning by inspecting the matrix's + singular values directly. The ratio between the largest and the smallest + singular value is the condition number: + + >>> from numpy.linalg import svd + >>> sigma = svd(a, compute_uv=False) # Do not compute singular vectors + >>> sigma.max()/sigma.min() + 8.659885634118668e+17 # may vary + + """ + a, wrap = _makearray(a) + _assert_stacked_square(a) + t, result_t = _commonType(a) + + signature = 'D->D' if isComplexType(t) else 'd->d' + with errstate(call=_raise_linalgerror_singular, invalid='call', + over='ignore', divide='ignore', under='ignore'): + ainv = _umath_linalg.inv(a, signature=signature) + return wrap(ainv.astype(result_t, copy=False)) + + +def _matrix_power_dispatcher(a, n): + return (a,) + + +@array_function_dispatch(_matrix_power_dispatcher) +def matrix_power(a, n): + """ + Raise a square matrix to the (integer) power `n`. + + For positive integers `n`, the power is computed by repeated matrix + squarings and matrix multiplications. If ``n == 0``, the identity matrix + of the same shape as M is returned. If ``n < 0``, the inverse + is computed and then raised to the ``abs(n)``. + + .. note:: Stacks of object matrices are not currently supported. + + Parameters + ---------- + a : (..., M, M) array_like + Matrix to be "powered". + n : int + The exponent can be any integer or long integer, positive, + negative, or zero. + + Returns + ------- + a**n : (..., M, M) ndarray or matrix object + The return value is the same shape and type as `M`; + if the exponent is positive or zero then the type of the + elements is the same as those of `M`. If the exponent is + negative the elements are floating-point. + + Raises + ------ + LinAlgError + For matrices that are not square or that (for negative powers) cannot + be inverted numerically. + + Examples + -------- + >>> import numpy as np + >>> from numpy.linalg import matrix_power + >>> i = np.array([[0, 1], [-1, 0]]) # matrix equiv. of the imaginary unit + >>> matrix_power(i, 3) # should = -i + array([[ 0, -1], + [ 1, 0]]) + >>> matrix_power(i, 0) + array([[1, 0], + [0, 1]]) + >>> matrix_power(i, -3) # should = 1/(-i) = i, but w/ f.p. elements + array([[ 0., 1.], + [-1., 0.]]) + + Somewhat more sophisticated example + + >>> q = np.zeros((4, 4)) + >>> q[0:2, 0:2] = -i + >>> q[2:4, 2:4] = i + >>> q # one of the three quaternion units not equal to 1 + array([[ 0., -1., 0., 0.], + [ 1., 0., 0., 0.], + [ 0., 0., 0., 1.], + [ 0., 0., -1., 0.]]) + >>> matrix_power(q, 2) # = -np.eye(4) + array([[-1., 0., 0., 0.], + [ 0., -1., 0., 0.], + [ 0., 0., -1., 0.], + [ 0., 0., 0., -1.]]) + + """ + a = asanyarray(a) + _assert_stacked_square(a) + + try: + n = operator.index(n) + except TypeError as e: + raise TypeError("exponent must be an integer") from e + + # Fall back on dot for object arrays. Object arrays are not supported by + # the current implementation of matmul using einsum + if a.dtype != object: + fmatmul = matmul + elif a.ndim == 2: + fmatmul = dot + else: + raise NotImplementedError( + "matrix_power not supported for stacks of object arrays") + + if n == 0: + a = empty_like(a) + a[...] = eye(a.shape[-2], dtype=a.dtype) + return a + + elif n < 0: + a = inv(a) + n = abs(n) + + # short-cuts. + if n == 1: + return a + + elif n == 2: + return fmatmul(a, a) + + elif n == 3: + return fmatmul(fmatmul(a, a), a) + + # Use binary decomposition to reduce the number of matrix multiplications. + # Here, we iterate over the bits of n, from LSB to MSB, raise `a` to + # increasing powers of 2, and multiply into the result as needed. + z = result = None + while n > 0: + z = a if z is None else fmatmul(z, z) + n, bit = divmod(n, 2) + if bit: + result = z if result is None else fmatmul(result, z) + + return result + + +# Cholesky decomposition + +def _cholesky_dispatcher(a, /, *, upper=None): + return (a,) + + +@array_function_dispatch(_cholesky_dispatcher) +def cholesky(a, /, *, upper=False): + """ + Cholesky decomposition. + + Return the lower or upper Cholesky decomposition, ``L * L.H`` or + ``U.H * U``, of the square matrix ``a``, where ``L`` is lower-triangular, + ``U`` is upper-triangular, and ``.H`` is the conjugate transpose operator + (which is the ordinary transpose if ``a`` is real-valued). ``a`` must be + Hermitian (symmetric if real-valued) and positive-definite. No checking is + performed to verify whether ``a`` is Hermitian or not. In addition, only + the lower or upper-triangular and diagonal elements of ``a`` are used. + Only ``L`` or ``U`` is actually returned. + + Parameters + ---------- + a : (..., M, M) array_like + Hermitian (symmetric if all elements are real), positive-definite + input matrix. + upper : bool + If ``True``, the result must be the upper-triangular Cholesky factor. + If ``False``, the result must be the lower-triangular Cholesky factor. + Default: ``False``. + + Returns + ------- + L : (..., M, M) array_like + Lower or upper-triangular Cholesky factor of `a`. Returns a matrix + object if `a` is a matrix object. + + Raises + ------ + LinAlgError + If the decomposition fails, for example, if `a` is not + positive-definite. + + See Also + -------- + scipy.linalg.cholesky : Similar function in SciPy. + scipy.linalg.cholesky_banded : Cholesky decompose a banded Hermitian + positive-definite matrix. + scipy.linalg.cho_factor : Cholesky decomposition of a matrix, to use in + `scipy.linalg.cho_solve`. + + Notes + ----- + Broadcasting rules apply, see the `numpy.linalg` documentation for + details. + + The Cholesky decomposition is often used as a fast way of solving + + .. math:: A \\mathbf{x} = \\mathbf{b} + + (when `A` is both Hermitian/symmetric and positive-definite). + + First, we solve for :math:`\\mathbf{y}` in + + .. math:: L \\mathbf{y} = \\mathbf{b}, + + and then for :math:`\\mathbf{x}` in + + .. math:: L^{H} \\mathbf{x} = \\mathbf{y}. + + Examples + -------- + >>> import numpy as np + >>> A = np.array([[1,-2j],[2j,5]]) + >>> A + array([[ 1.+0.j, -0.-2.j], + [ 0.+2.j, 5.+0.j]]) + >>> L = np.linalg.cholesky(A) + >>> L + array([[1.+0.j, 0.+0.j], + [0.+2.j, 1.+0.j]]) + >>> np.dot(L, L.T.conj()) # verify that L * L.H = A + array([[1.+0.j, 0.-2.j], + [0.+2.j, 5.+0.j]]) + >>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like? + >>> np.linalg.cholesky(A) # an ndarray object is returned + array([[1.+0.j, 0.+0.j], + [0.+2.j, 1.+0.j]]) + >>> # But a matrix object is returned if A is a matrix object + >>> np.linalg.cholesky(np.matrix(A)) + matrix([[ 1.+0.j, 0.+0.j], + [ 0.+2.j, 1.+0.j]]) + >>> # The upper-triangular Cholesky factor can also be obtained. + >>> np.linalg.cholesky(A, upper=True) + array([[1.-0.j, 0.-2.j], + [0.-0.j, 1.-0.j]]) + + """ + gufunc = _umath_linalg.cholesky_up if upper else _umath_linalg.cholesky_lo + a, wrap = _makearray(a) + _assert_stacked_square(a) + t, result_t = _commonType(a) + signature = 'D->D' if isComplexType(t) else 'd->d' + with errstate(call=_raise_linalgerror_nonposdef, invalid='call', + over='ignore', divide='ignore', under='ignore'): + r = gufunc(a, signature=signature) + return wrap(r.astype(result_t, copy=False)) + + +# outer product + + +def _outer_dispatcher(x1, x2): + return (x1, x2) + + +@array_function_dispatch(_outer_dispatcher) +def outer(x1, x2, /): + """ + Compute the outer product of two vectors. + + This function is Array API compatible. Compared to ``np.outer`` + it accepts 1-dimensional inputs only. + + Parameters + ---------- + x1 : (M,) array_like + One-dimensional input array of size ``N``. + Must have a numeric data type. + x2 : (N,) array_like + One-dimensional input array of size ``M``. + Must have a numeric data type. + + Returns + ------- + out : (M, N) ndarray + ``out[i, j] = a[i] * b[j]`` + + See also + -------- + outer + + Examples + -------- + Make a (*very* coarse) grid for computing a Mandelbrot set: + + >>> rl = np.linalg.outer(np.ones((5,)), np.linspace(-2, 2, 5)) + >>> rl + array([[-2., -1., 0., 1., 2.], + [-2., -1., 0., 1., 2.], + [-2., -1., 0., 1., 2.], + [-2., -1., 0., 1., 2.], + [-2., -1., 0., 1., 2.]]) + >>> im = np.linalg.outer(1j*np.linspace(2, -2, 5), np.ones((5,))) + >>> im + array([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j], + [0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j], + [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], + [0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j], + [0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]]) + >>> grid = rl + im + >>> grid + array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j], + [-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j], + [-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j], + [-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j], + [-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]]) + + An example using a "vector" of letters: + + >>> x = np.array(['a', 'b', 'c'], dtype=object) + >>> np.linalg.outer(x, [1, 2, 3]) + array([['a', 'aa', 'aaa'], + ['b', 'bb', 'bbb'], + ['c', 'cc', 'ccc']], dtype=object) + + """ + x1 = asanyarray(x1) + x2 = asanyarray(x2) + if x1.ndim != 1 or x2.ndim != 1: + raise ValueError( + "Input arrays must be one-dimensional, but they are " + f"{x1.ndim=} and {x2.ndim=}." + ) + return _core_outer(x1, x2, out=None) + + +# QR decomposition + + +def _qr_dispatcher(a, mode=None): + return (a,) + + +@array_function_dispatch(_qr_dispatcher) +def qr(a, mode='reduced'): + """ + Compute the qr factorization of a matrix. + + Factor the matrix `a` as *qr*, where `q` is orthonormal and `r` is + upper-triangular. + + Parameters + ---------- + a : array_like, shape (..., M, N) + An array-like object with the dimensionality of at least 2. + mode : {'reduced', 'complete', 'r', 'raw'}, optional, default: 'reduced' + If K = min(M, N), then + + * 'reduced' : returns Q, R with dimensions (..., M, K), (..., K, N) + * 'complete' : returns Q, R with dimensions (..., M, M), (..., M, N) + * 'r' : returns R only with dimensions (..., K, N) + * 'raw' : returns h, tau with dimensions (..., N, M), (..., K,) + + The options 'reduced', 'complete, and 'raw' are new in numpy 1.8, + see the notes for more information. The default is 'reduced', and to + maintain backward compatibility with earlier versions of numpy both + it and the old default 'full' can be omitted. Note that array h + returned in 'raw' mode is transposed for calling Fortran. The + 'economic' mode is deprecated. The modes 'full' and 'economic' may + be passed using only the first letter for backwards compatibility, + but all others must be spelled out. See the Notes for more + explanation. + + + Returns + ------- + When mode is 'reduced' or 'complete', the result will be a namedtuple with + the attributes `Q` and `R`. + + Q : ndarray of float or complex, optional + A matrix with orthonormal columns. When mode = 'complete' the + result is an orthogonal/unitary matrix depending on whether or not + a is real/complex. The determinant may be either +/- 1 in that + case. In case the number of dimensions in the input array is + greater than 2 then a stack of the matrices with above properties + is returned. + R : ndarray of float or complex, optional + The upper-triangular matrix or a stack of upper-triangular + matrices if the number of dimensions in the input array is greater + than 2. + (h, tau) : ndarrays of np.double or np.cdouble, optional + The array h contains the Householder reflectors that generate q + along with r. The tau array contains scaling factors for the + reflectors. In the deprecated 'economic' mode only h is returned. + + Raises + ------ + LinAlgError + If factoring fails. + + See Also + -------- + scipy.linalg.qr : Similar function in SciPy. + scipy.linalg.rq : Compute RQ decomposition of a matrix. + + Notes + ----- + This is an interface to the LAPACK routines ``dgeqrf``, ``zgeqrf``, + ``dorgqr``, and ``zungqr``. + + For more information on the qr factorization, see for example: + https://en.wikipedia.org/wiki/QR_factorization + + Subclasses of `ndarray` are preserved except for the 'raw' mode. So if + `a` is of type `matrix`, all the return values will be matrices too. + + New 'reduced', 'complete', and 'raw' options for mode were added in + NumPy 1.8.0 and the old option 'full' was made an alias of 'reduced'. In + addition the options 'full' and 'economic' were deprecated. Because + 'full' was the previous default and 'reduced' is the new default, + backward compatibility can be maintained by letting `mode` default. + The 'raw' option was added so that LAPACK routines that can multiply + arrays by q using the Householder reflectors can be used. Note that in + this case the returned arrays are of type np.double or np.cdouble and + the h array is transposed to be FORTRAN compatible. No routines using + the 'raw' return are currently exposed by numpy, but some are available + in lapack_lite and just await the necessary work. + + Examples + -------- + >>> import numpy as np + >>> rng = np.random.default_rng() + >>> a = rng.normal(size=(9, 6)) + >>> Q, R = np.linalg.qr(a) + >>> np.allclose(a, np.dot(Q, R)) # a does equal QR + True + >>> R2 = np.linalg.qr(a, mode='r') + >>> np.allclose(R, R2) # mode='r' returns the same R as mode='full' + True + >>> a = np.random.normal(size=(3, 2, 2)) # Stack of 2 x 2 matrices as input + >>> Q, R = np.linalg.qr(a) + >>> Q.shape + (3, 2, 2) + >>> R.shape + (3, 2, 2) + >>> np.allclose(a, np.matmul(Q, R)) + True + + Example illustrating a common use of `qr`: solving of least squares + problems + + What are the least-squares-best `m` and `y0` in ``y = y0 + mx`` for + the following data: {(0,1), (1,0), (1,2), (2,1)}. (Graph the points + and you'll see that it should be y0 = 0, m = 1.) The answer is provided + by solving the over-determined matrix equation ``Ax = b``, where:: + + A = array([[0, 1], [1, 1], [1, 1], [2, 1]]) + x = array([[y0], [m]]) + b = array([[1], [0], [2], [1]]) + + If A = QR such that Q is orthonormal (which is always possible via + Gram-Schmidt), then ``x = inv(R) * (Q.T) * b``. (In numpy practice, + however, we simply use `lstsq`.) + + >>> A = np.array([[0, 1], [1, 1], [1, 1], [2, 1]]) + >>> A + array([[0, 1], + [1, 1], + [1, 1], + [2, 1]]) + >>> b = np.array([1, 2, 2, 3]) + >>> Q, R = np.linalg.qr(A) + >>> p = np.dot(Q.T, b) + >>> np.dot(np.linalg.inv(R), p) + array([ 1., 1.]) + + """ + if mode not in ('reduced', 'complete', 'r', 'raw'): + if mode in ('f', 'full'): + # 2013-04-01, 1.8 + msg = ( + "The 'full' option is deprecated in favor of 'reduced'.\n" + "For backward compatibility let mode default." + ) + warnings.warn(msg, DeprecationWarning, stacklevel=2) + mode = 'reduced' + elif mode in ('e', 'economic'): + # 2013-04-01, 1.8 + msg = "The 'economic' option is deprecated." + warnings.warn(msg, DeprecationWarning, stacklevel=2) + mode = 'economic' + else: + raise ValueError(f"Unrecognized mode '{mode}'") + + a, wrap = _makearray(a) + _assert_stacked_2d(a) + m, n = a.shape[-2:] + t, result_t = _commonType(a) + a = a.astype(t, copy=True) + a = _to_native_byte_order(a) + mn = min(m, n) + + signature = 'D->D' if isComplexType(t) else 'd->d' + with errstate(call=_raise_linalgerror_qr, invalid='call', + over='ignore', divide='ignore', under='ignore'): + tau = _umath_linalg.qr_r_raw(a, signature=signature) + + # handle modes that don't return q + if mode == 'r': + r = triu(a[..., :mn, :]) + r = r.astype(result_t, copy=False) + return wrap(r) + + if mode == 'raw': + q = transpose(a) + q = q.astype(result_t, copy=False) + tau = tau.astype(result_t, copy=False) + return wrap(q), tau + + if mode == 'economic': + a = a.astype(result_t, copy=False) + return wrap(a) + + # mc is the number of columns in the resulting q + # matrix. If the mode is complete then it is + # same as number of rows, and if the mode is reduced, + # then it is the minimum of number of rows and columns. + if mode == 'complete' and m > n: + mc = m + gufunc = _umath_linalg.qr_complete + else: + mc = mn + gufunc = _umath_linalg.qr_reduced + + signature = 'DD->D' if isComplexType(t) else 'dd->d' + with errstate(call=_raise_linalgerror_qr, invalid='call', + over='ignore', divide='ignore', under='ignore'): + q = gufunc(a, tau, signature=signature) + r = triu(a[..., :mc, :]) + + q = q.astype(result_t, copy=False) + r = r.astype(result_t, copy=False) + + return QRResult(wrap(q), wrap(r)) + +# Eigenvalues + + +@array_function_dispatch(_unary_dispatcher) +def eigvals(a): + """ + Compute the eigenvalues of a general matrix. + + Main difference between `eigvals` and `eig`: the eigenvectors aren't + returned. + + Parameters + ---------- + a : (..., M, M) array_like + A complex- or real-valued matrix whose eigenvalues will be computed. + + Returns + ------- + w : (..., M,) ndarray + The eigenvalues, each repeated according to its multiplicity. + They are not necessarily ordered, nor are they necessarily + real for real matrices. + + Raises + ------ + LinAlgError + If the eigenvalue computation does not converge. + + See Also + -------- + eig : eigenvalues and right eigenvectors of general arrays + eigvalsh : eigenvalues of real symmetric or complex Hermitian + (conjugate symmetric) arrays. + eigh : eigenvalues and eigenvectors of real symmetric or complex + Hermitian (conjugate symmetric) arrays. + scipy.linalg.eigvals : Similar function in SciPy. + + Notes + ----- + Broadcasting rules apply, see the `numpy.linalg` documentation for + details. + + This is implemented using the ``_geev`` LAPACK routines which compute + the eigenvalues and eigenvectors of general square arrays. + + Examples + -------- + Illustration, using the fact that the eigenvalues of a diagonal matrix + are its diagonal elements, that multiplying a matrix on the left + by an orthogonal matrix, `Q`, and on the right by `Q.T` (the transpose + of `Q`), preserves the eigenvalues of the "middle" matrix. In other words, + if `Q` is orthogonal, then ``Q * A * Q.T`` has the same eigenvalues as + ``A``: + + >>> import numpy as np + >>> from numpy import linalg as LA + >>> x = np.random.random() + >>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]]) + >>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :]) + (1.0, 1.0, 0.0) + + Now multiply a diagonal matrix by ``Q`` on one side and + by ``Q.T`` on the other: + + >>> D = np.diag((-1,1)) + >>> LA.eigvals(D) + array([-1., 1.]) + >>> A = np.dot(Q, D) + >>> A = np.dot(A, Q.T) + >>> LA.eigvals(A) + array([ 1., -1.]) # random + + """ + a, wrap = _makearray(a) + _assert_stacked_square(a) + _assert_finite(a) + t, result_t = _commonType(a) + + signature = 'D->D' if isComplexType(t) else 'd->D' + with errstate(call=_raise_linalgerror_eigenvalues_nonconvergence, + invalid='call', over='ignore', divide='ignore', + under='ignore'): + w = _umath_linalg.eigvals(a, signature=signature) + + if not isComplexType(t): + if all(w.imag == 0): + w = w.real + result_t = _realType(result_t) + else: + result_t = _complexType(result_t) + + return w.astype(result_t, copy=False) + + +def _eigvalsh_dispatcher(a, UPLO=None): + return (a,) + + +@array_function_dispatch(_eigvalsh_dispatcher) +def eigvalsh(a, UPLO='L'): + """ + Compute the eigenvalues of a complex Hermitian or real symmetric matrix. + + Main difference from eigh: the eigenvectors are not computed. + + Parameters + ---------- + a : (..., M, M) array_like + A complex- or real-valued matrix whose eigenvalues are to be + computed. + UPLO : {'L', 'U'}, optional + Specifies whether the calculation is done with the lower triangular + part of `a` ('L', default) or the upper triangular part ('U'). + Irrespective of this value only the real parts of the diagonal will + be considered in the computation to preserve the notion of a Hermitian + matrix. It therefore follows that the imaginary part of the diagonal + will always be treated as zero. + + Returns + ------- + w : (..., M,) ndarray + The eigenvalues in ascending order, each repeated according to + its multiplicity. + + Raises + ------ + LinAlgError + If the eigenvalue computation does not converge. + + See Also + -------- + eigh : eigenvalues and eigenvectors of real symmetric or complex Hermitian + (conjugate symmetric) arrays. + eigvals : eigenvalues of general real or complex arrays. + eig : eigenvalues and right eigenvectors of general real or complex + arrays. + scipy.linalg.eigvalsh : Similar function in SciPy. + + Notes + ----- + Broadcasting rules apply, see the `numpy.linalg` documentation for + details. + + The eigenvalues are computed using LAPACK routines ``_syevd``, ``_heevd``. + + Examples + -------- + >>> import numpy as np + >>> from numpy import linalg as LA + >>> a = np.array([[1, -2j], [2j, 5]]) + >>> LA.eigvalsh(a) + array([ 0.17157288, 5.82842712]) # may vary + + >>> # demonstrate the treatment of the imaginary part of the diagonal + >>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]]) + >>> a + array([[5.+2.j, 9.-2.j], + [0.+2.j, 2.-1.j]]) + >>> # with UPLO='L' this is numerically equivalent to using LA.eigvals() + >>> # with: + >>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]]) + >>> b + array([[5.+0.j, 0.-2.j], + [0.+2.j, 2.+0.j]]) + >>> wa = LA.eigvalsh(a) + >>> wb = LA.eigvals(b) + >>> wa + array([1., 6.]) + >>> wb + array([6.+0.j, 1.+0.j]) + + """ + UPLO = UPLO.upper() + if UPLO not in ('L', 'U'): + raise ValueError("UPLO argument must be 'L' or 'U'") + + if UPLO == 'L': + gufunc = _umath_linalg.eigvalsh_lo + else: + gufunc = _umath_linalg.eigvalsh_up + + a, wrap = _makearray(a) + _assert_stacked_square(a) + t, result_t = _commonType(a) + signature = 'D->d' if isComplexType(t) else 'd->d' + with errstate(call=_raise_linalgerror_eigenvalues_nonconvergence, + invalid='call', over='ignore', divide='ignore', + under='ignore'): + w = gufunc(a, signature=signature) + return w.astype(_realType(result_t), copy=False) + + +# Eigenvectors + + +@array_function_dispatch(_unary_dispatcher) +def eig(a): + """ + Compute the eigenvalues and right eigenvectors of a square array. + + Parameters + ---------- + a : (..., M, M) array + Matrices for which the eigenvalues and right eigenvectors will + be computed + + Returns + ------- + A namedtuple with the following attributes: + + eigenvalues : (..., M) array + The eigenvalues, each repeated according to its multiplicity. + The eigenvalues are not necessarily ordered. The resulting + array will be of complex type, unless the imaginary part is + zero in which case it will be cast to a real type. When `a` + is real the resulting eigenvalues will be real (0 imaginary + part) or occur in conjugate pairs + + eigenvectors : (..., M, M) array + The normalized (unit "length") eigenvectors, such that the + column ``eigenvectors[:,i]`` is the eigenvector corresponding to the + eigenvalue ``eigenvalues[i]``. + + Raises + ------ + LinAlgError + If the eigenvalue computation does not converge. + + See Also + -------- + eigvals : eigenvalues of a non-symmetric array. + eigh : eigenvalues and eigenvectors of a real symmetric or complex + Hermitian (conjugate symmetric) array. + eigvalsh : eigenvalues of a real symmetric or complex Hermitian + (conjugate symmetric) array. + scipy.linalg.eig : Similar function in SciPy that also solves the + generalized eigenvalue problem. + scipy.linalg.schur : Best choice for unitary and other non-Hermitian + normal matrices. + + Notes + ----- + Broadcasting rules apply, see the `numpy.linalg` documentation for + details. + + This is implemented using the ``_geev`` LAPACK routines which compute + the eigenvalues and eigenvectors of general square arrays. + + The number `w` is an eigenvalue of `a` if there exists a vector `v` such + that ``a @ v = w * v``. Thus, the arrays `a`, `eigenvalues`, and + `eigenvectors` satisfy the equations ``a @ eigenvectors[:,i] = + eigenvalues[i] * eigenvectors[:,i]`` for :math:`i \\in \\{0,...,M-1\\}`. + + The array `eigenvectors` may not be of maximum rank, that is, some of the + columns may be linearly dependent, although round-off error may obscure + that fact. If the eigenvalues are all different, then theoretically the + eigenvectors are linearly independent and `a` can be diagonalized by a + similarity transformation using `eigenvectors`, i.e, ``inv(eigenvectors) @ + a @ eigenvectors`` is diagonal. + + For non-Hermitian normal matrices the SciPy function `scipy.linalg.schur` + is preferred because the matrix `eigenvectors` is guaranteed to be + unitary, which is not the case when using `eig`. The Schur factorization + produces an upper triangular matrix rather than a diagonal matrix, but for + normal matrices only the diagonal of the upper triangular matrix is + needed, the rest is roundoff error. + + Finally, it is emphasized that `eigenvectors` consists of the *right* (as + in right-hand side) eigenvectors of `a`. A vector `y` satisfying ``y.T @ a + = z * y.T`` for some number `z` is called a *left* eigenvector of `a`, + and, in general, the left and right eigenvectors of a matrix are not + necessarily the (perhaps conjugate) transposes of each other. + + References + ---------- + G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, + Academic Press, Inc., 1980, Various pp. + + Examples + -------- + >>> import numpy as np + >>> from numpy import linalg as LA + + (Almost) trivial example with real eigenvalues and eigenvectors. + + >>> eigenvalues, eigenvectors = LA.eig(np.diag((1, 2, 3))) + >>> eigenvalues + array([1., 2., 3.]) + >>> eigenvectors + array([[1., 0., 0.], + [0., 1., 0.], + [0., 0., 1.]]) + + Real matrix possessing complex eigenvalues and eigenvectors; + note that the eigenvalues are complex conjugates of each other. + + >>> eigenvalues, eigenvectors = LA.eig(np.array([[1, -1], [1, 1]])) + >>> eigenvalues + array([1.+1.j, 1.-1.j]) + >>> eigenvectors + array([[0.70710678+0.j , 0.70710678-0.j ], + [0. -0.70710678j, 0. +0.70710678j]]) + + Complex-valued matrix with real eigenvalues (but complex-valued + eigenvectors); note that ``a.conj().T == a``, i.e., `a` is Hermitian. + + >>> a = np.array([[1, 1j], [-1j, 1]]) + >>> eigenvalues, eigenvectors = LA.eig(a) + >>> eigenvalues + array([2.+0.j, 0.+0.j]) + >>> eigenvectors + array([[ 0. +0.70710678j, 0.70710678+0.j ], # may vary + [ 0.70710678+0.j , -0. +0.70710678j]]) + + Be careful about round-off error! + + >>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]]) + >>> # Theor. eigenvalues are 1 +/- 1e-9 + >>> eigenvalues, eigenvectors = LA.eig(a) + >>> eigenvalues + array([1., 1.]) + >>> eigenvectors + array([[1., 0.], + [0., 1.]]) + + """ + a, wrap = _makearray(a) + _assert_stacked_square(a) + _assert_finite(a) + t, result_t = _commonType(a) + + signature = 'D->DD' if isComplexType(t) else 'd->DD' + with errstate(call=_raise_linalgerror_eigenvalues_nonconvergence, + invalid='call', over='ignore', divide='ignore', + under='ignore'): + w, vt = _umath_linalg.eig(a, signature=signature) + + if not isComplexType(t) and all(w.imag == 0.0): + w = w.real + vt = vt.real + result_t = _realType(result_t) + else: + result_t = _complexType(result_t) + + vt = vt.astype(result_t, copy=False) + return EigResult(w.astype(result_t, copy=False), wrap(vt)) + + +@array_function_dispatch(_eigvalsh_dispatcher) +def eigh(a, UPLO='L'): + """ + Return the eigenvalues and eigenvectors of a complex Hermitian + (conjugate symmetric) or a real symmetric matrix. + + Returns two objects, a 1-D array containing the eigenvalues of `a`, and + a 2-D square array or matrix (depending on the input type) of the + corresponding eigenvectors (in columns). + + Parameters + ---------- + a : (..., M, M) array + Hermitian or real symmetric matrices whose eigenvalues and + eigenvectors are to be computed. + UPLO : {'L', 'U'}, optional + Specifies whether the calculation is done with the lower triangular + part of `a` ('L', default) or the upper triangular part ('U'). + Irrespective of this value only the real parts of the diagonal will + be considered in the computation to preserve the notion of a Hermitian + matrix. It therefore follows that the imaginary part of the diagonal + will always be treated as zero. + + Returns + ------- + A namedtuple with the following attributes: + + eigenvalues : (..., M) ndarray + The eigenvalues in ascending order, each repeated according to + its multiplicity. + eigenvectors : {(..., M, M) ndarray, (..., M, M) matrix} + The column ``eigenvectors[:, i]`` is the normalized eigenvector + corresponding to the eigenvalue ``eigenvalues[i]``. Will return a + matrix object if `a` is a matrix object. + + Raises + ------ + LinAlgError + If the eigenvalue computation does not converge. + + See Also + -------- + eigvalsh : eigenvalues of real symmetric or complex Hermitian + (conjugate symmetric) arrays. + eig : eigenvalues and right eigenvectors for non-symmetric arrays. + eigvals : eigenvalues of non-symmetric arrays. + scipy.linalg.eigh : Similar function in SciPy (but also solves the + generalized eigenvalue problem). + + Notes + ----- + Broadcasting rules apply, see the `numpy.linalg` documentation for + details. + + The eigenvalues/eigenvectors are computed using LAPACK routines ``_syevd``, + ``_heevd``. + + The eigenvalues of real symmetric or complex Hermitian matrices are always + real. [1]_ The array `eigenvalues` of (column) eigenvectors is unitary and + `a`, `eigenvalues`, and `eigenvectors` satisfy the equations ``dot(a, + eigenvectors[:, i]) = eigenvalues[i] * eigenvectors[:, i]``. + + References + ---------- + .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, + FL, Academic Press, Inc., 1980, pg. 222. + + Examples + -------- + >>> import numpy as np + >>> from numpy import linalg as LA + >>> a = np.array([[1, -2j], [2j, 5]]) + >>> a + array([[ 1.+0.j, -0.-2.j], + [ 0.+2.j, 5.+0.j]]) + >>> eigenvalues, eigenvectors = LA.eigh(a) + >>> eigenvalues + array([0.17157288, 5.82842712]) + >>> eigenvectors + array([[-0.92387953+0.j , -0.38268343+0.j ], # may vary + [ 0. +0.38268343j, 0. -0.92387953j]]) + + >>> (np.dot(a, eigenvectors[:, 0]) - + ... eigenvalues[0] * eigenvectors[:, 0]) # verify 1st eigenval/vec pair + array([5.55111512e-17+0.0000000e+00j, 0.00000000e+00+1.2490009e-16j]) + >>> (np.dot(a, eigenvectors[:, 1]) - + ... eigenvalues[1] * eigenvectors[:, 1]) # verify 2nd eigenval/vec pair + array([0.+0.j, 0.+0.j]) + + >>> A = np.matrix(a) # what happens if input is a matrix object + >>> A + matrix([[ 1.+0.j, -0.-2.j], + [ 0.+2.j, 5.+0.j]]) + >>> eigenvalues, eigenvectors = LA.eigh(A) + >>> eigenvalues + array([0.17157288, 5.82842712]) + >>> eigenvectors + matrix([[-0.92387953+0.j , -0.38268343+0.j ], # may vary + [ 0. +0.38268343j, 0. -0.92387953j]]) + + >>> # demonstrate the treatment of the imaginary part of the diagonal + >>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]]) + >>> a + array([[5.+2.j, 9.-2.j], + [0.+2.j, 2.-1.j]]) + >>> # with UPLO='L' this is numerically equivalent to using LA.eig() with: + >>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]]) + >>> b + array([[5.+0.j, 0.-2.j], + [0.+2.j, 2.+0.j]]) + >>> wa, va = LA.eigh(a) + >>> wb, vb = LA.eig(b) + >>> wa + array([1., 6.]) + >>> wb + array([6.+0.j, 1.+0.j]) + >>> va + array([[-0.4472136 +0.j , -0.89442719+0.j ], # may vary + [ 0. +0.89442719j, 0. -0.4472136j ]]) + >>> vb + array([[ 0.89442719+0.j , -0. +0.4472136j], + [-0. +0.4472136j, 0.89442719+0.j ]]) + + """ + UPLO = UPLO.upper() + if UPLO not in ('L', 'U'): + raise ValueError("UPLO argument must be 'L' or 'U'") + + a, wrap = _makearray(a) + _assert_stacked_square(a) + t, result_t = _commonType(a) + + if UPLO == 'L': + gufunc = _umath_linalg.eigh_lo + else: + gufunc = _umath_linalg.eigh_up + + signature = 'D->dD' if isComplexType(t) else 'd->dd' + with errstate(call=_raise_linalgerror_eigenvalues_nonconvergence, + invalid='call', over='ignore', divide='ignore', + under='ignore'): + w, vt = gufunc(a, signature=signature) + w = w.astype(_realType(result_t), copy=False) + vt = vt.astype(result_t, copy=False) + return EighResult(w, wrap(vt)) + + +# Singular value decomposition + +def _svd_dispatcher(a, full_matrices=None, compute_uv=None, hermitian=None): + return (a,) + + +@array_function_dispatch(_svd_dispatcher) +def svd(a, full_matrices=True, compute_uv=True, hermitian=False): + """ + Singular Value Decomposition. + + When `a` is a 2D array, and ``full_matrices=False``, then it is + factorized as ``u @ np.diag(s) @ vh = (u * s) @ vh``, where + `u` and the Hermitian transpose of `vh` are 2D arrays with + orthonormal columns and `s` is a 1D array of `a`'s singular + values. When `a` is higher-dimensional, SVD is applied in + stacked mode as explained below. + + Parameters + ---------- + a : (..., M, N) array_like + A real or complex array with ``a.ndim >= 2``. + full_matrices : bool, optional + If True (default), `u` and `vh` have the shapes ``(..., M, M)`` and + ``(..., N, N)``, respectively. Otherwise, the shapes are + ``(..., M, K)`` and ``(..., K, N)``, respectively, where + ``K = min(M, N)``. + compute_uv : bool, optional + Whether or not to compute `u` and `vh` in addition to `s`. True + by default. + hermitian : bool, optional + If True, `a` is assumed to be Hermitian (symmetric if real-valued), + enabling a more efficient method for finding singular values. + Defaults to False. + + Returns + ------- + When `compute_uv` is True, the result is a namedtuple with the following + attribute names: + + U : { (..., M, M), (..., M, K) } array + Unitary array(s). The first ``a.ndim - 2`` dimensions have the same + size as those of the input `a`. The size of the last two dimensions + depends on the value of `full_matrices`. Only returned when + `compute_uv` is True. + S : (..., K) array + Vector(s) with the singular values, within each vector sorted in + descending order. The first ``a.ndim - 2`` dimensions have the same + size as those of the input `a`. + Vh : { (..., N, N), (..., K, N) } array + Unitary array(s). The first ``a.ndim - 2`` dimensions have the same + size as those of the input `a`. The size of the last two dimensions + depends on the value of `full_matrices`. Only returned when + `compute_uv` is True. + + Raises + ------ + LinAlgError + If SVD computation does not converge. + + See Also + -------- + scipy.linalg.svd : Similar function in SciPy. + scipy.linalg.svdvals : Compute singular values of a matrix. + + Notes + ----- + The decomposition is performed using LAPACK routine ``_gesdd``. + + SVD is usually described for the factorization of a 2D matrix :math:`A`. + The higher-dimensional case will be discussed below. In the 2D case, SVD is + written as :math:`A = U S V^H`, where :math:`A = a`, :math:`U= u`, + :math:`S= \\mathtt{np.diag}(s)` and :math:`V^H = vh`. The 1D array `s` + contains the singular values of `a` and `u` and `vh` are unitary. The rows + of `vh` are the eigenvectors of :math:`A^H A` and the columns of `u` are + the eigenvectors of :math:`A A^H`. In both cases the corresponding + (possibly non-zero) eigenvalues are given by ``s**2``. + + If `a` has more than two dimensions, then broadcasting rules apply, as + explained in :ref:`routines.linalg-broadcasting`. This means that SVD is + working in "stacked" mode: it iterates over all indices of the first + ``a.ndim - 2`` dimensions and for each combination SVD is applied to the + last two indices. The matrix `a` can be reconstructed from the + decomposition with either ``(u * s[..., None, :]) @ vh`` or + ``u @ (s[..., None] * vh)``. (The ``@`` operator can be replaced by the + function ``np.matmul`` for python versions below 3.5.) + + If `a` is a ``matrix`` object (as opposed to an ``ndarray``), then so are + all the return values. + + Examples + -------- + >>> import numpy as np + >>> rng = np.random.default_rng() + >>> a = rng.normal(size=(9, 6)) + 1j*rng.normal(size=(9, 6)) + >>> b = rng.normal(size=(2, 7, 8, 3)) + 1j*rng.normal(size=(2, 7, 8, 3)) + + + Reconstruction based on full SVD, 2D case: + + >>> U, S, Vh = np.linalg.svd(a, full_matrices=True) + >>> U.shape, S.shape, Vh.shape + ((9, 9), (6,), (6, 6)) + >>> np.allclose(a, np.dot(U[:, :6] * S, Vh)) + True + >>> smat = np.zeros((9, 6), dtype=complex) + >>> smat[:6, :6] = np.diag(S) + >>> np.allclose(a, np.dot(U, np.dot(smat, Vh))) + True + + Reconstruction based on reduced SVD, 2D case: + + >>> U, S, Vh = np.linalg.svd(a, full_matrices=False) + >>> U.shape, S.shape, Vh.shape + ((9, 6), (6,), (6, 6)) + >>> np.allclose(a, np.dot(U * S, Vh)) + True + >>> smat = np.diag(S) + >>> np.allclose(a, np.dot(U, np.dot(smat, Vh))) + True + + Reconstruction based on full SVD, 4D case: + + >>> U, S, Vh = np.linalg.svd(b, full_matrices=True) + >>> U.shape, S.shape, Vh.shape + ((2, 7, 8, 8), (2, 7, 3), (2, 7, 3, 3)) + >>> np.allclose(b, np.matmul(U[..., :3] * S[..., None, :], Vh)) + True + >>> np.allclose(b, np.matmul(U[..., :3], S[..., None] * Vh)) + True + + Reconstruction based on reduced SVD, 4D case: + + >>> U, S, Vh = np.linalg.svd(b, full_matrices=False) + >>> U.shape, S.shape, Vh.shape + ((2, 7, 8, 3), (2, 7, 3), (2, 7, 3, 3)) + >>> np.allclose(b, np.matmul(U * S[..., None, :], Vh)) + True + >>> np.allclose(b, np.matmul(U, S[..., None] * Vh)) + True + + """ + import numpy as np + a, wrap = _makearray(a) + + if hermitian: + # note: lapack svd returns eigenvalues with s ** 2 sorted descending, + # but eig returns s sorted ascending, so we re-order the eigenvalues + # and related arrays to have the correct order + if compute_uv: + s, u = eigh(a) + sgn = sign(s) + s = abs(s) + sidx = argsort(s)[..., ::-1] + sgn = np.take_along_axis(sgn, sidx, axis=-1) + s = np.take_along_axis(s, sidx, axis=-1) + u = np.take_along_axis(u, sidx[..., None, :], axis=-1) + # singular values are unsigned, move the sign into v + vt = transpose(u * sgn[..., None, :]).conjugate() + return SVDResult(wrap(u), s, wrap(vt)) + else: + s = eigvalsh(a) + s = abs(s) + return sort(s)[..., ::-1] + + _assert_stacked_2d(a) + t, result_t = _commonType(a) + + m, n = a.shape[-2:] + if compute_uv: + if full_matrices: + gufunc = _umath_linalg.svd_f + else: + gufunc = _umath_linalg.svd_s + + signature = 'D->DdD' if isComplexType(t) else 'd->ddd' + with errstate(call=_raise_linalgerror_svd_nonconvergence, + invalid='call', over='ignore', divide='ignore', + under='ignore'): + u, s, vh = gufunc(a, signature=signature) + u = u.astype(result_t, copy=False) + s = s.astype(_realType(result_t), copy=False) + vh = vh.astype(result_t, copy=False) + return SVDResult(wrap(u), s, wrap(vh)) + else: + signature = 'D->d' if isComplexType(t) else 'd->d' + with errstate(call=_raise_linalgerror_svd_nonconvergence, + invalid='call', over='ignore', divide='ignore', + under='ignore'): + s = _umath_linalg.svd(a, signature=signature) + s = s.astype(_realType(result_t), copy=False) + return s + + +def _svdvals_dispatcher(x): + return (x,) + + +@array_function_dispatch(_svdvals_dispatcher) +def svdvals(x, /): + """ + Returns the singular values of a matrix (or a stack of matrices) ``x``. + When x is a stack of matrices, the function will compute the singular + values for each matrix in the stack. + + This function is Array API compatible. + + Calling ``np.svdvals(x)`` to get singular values is the same as + ``np.svd(x, compute_uv=False, hermitian=False)``. + + Parameters + ---------- + x : (..., M, N) array_like + Input array having shape (..., M, N) and whose last two + dimensions form matrices on which to perform singular value + decomposition. Should have a floating-point data type. + + Returns + ------- + out : ndarray + An array with shape (..., K) that contains the vector(s) + of singular values of length K, where K = min(M, N). + + See Also + -------- + scipy.linalg.svdvals : Compute singular values of a matrix. + + Examples + -------- + + >>> np.linalg.svdvals([[1, 2, 3, 4, 5], + ... [1, 4, 9, 16, 25], + ... [1, 8, 27, 64, 125]]) + array([146.68862757, 5.57510612, 0.60393245]) + + Determine the rank of a matrix using singular values: + + >>> s = np.linalg.svdvals([[1, 2, 3], + ... [2, 4, 6], + ... [-1, 1, -1]]); s + array([8.38434191e+00, 1.64402274e+00, 2.31534378e-16]) + >>> np.count_nonzero(s > 1e-10) # Matrix of rank 2 + 2 + + """ + return svd(x, compute_uv=False, hermitian=False) + + +def _cond_dispatcher(x, p=None): + return (x,) + + +@array_function_dispatch(_cond_dispatcher) +def cond(x, p=None): + """ + Compute the condition number of a matrix. + + This function is capable of returning the condition number using + one of seven different norms, depending on the value of `p` (see + Parameters below). + + Parameters + ---------- + x : (..., M, N) array_like + The matrix whose condition number is sought. + p : {None, 1, -1, 2, -2, inf, -inf, 'fro'}, optional + Order of the norm used in the condition number computation: + + ===== ============================ + p norm for matrices + ===== ============================ + None 2-norm, computed directly using the ``SVD`` + 'fro' Frobenius norm + inf max(sum(abs(x), axis=1)) + -inf min(sum(abs(x), axis=1)) + 1 max(sum(abs(x), axis=0)) + -1 min(sum(abs(x), axis=0)) + 2 2-norm (largest sing. value) + -2 smallest singular value + ===== ============================ + + inf means the `numpy.inf` object, and the Frobenius norm is + the root-of-sum-of-squares norm. + + Returns + ------- + c : {float, inf} + The condition number of the matrix. May be infinite. + + See Also + -------- + numpy.linalg.norm + + Notes + ----- + The condition number of `x` is defined as the norm of `x` times the + norm of the inverse of `x` [1]_; the norm can be the usual L2-norm + (root-of-sum-of-squares) or one of a number of other matrix norms. + + References + ---------- + .. [1] G. Strang, *Linear Algebra and Its Applications*, Orlando, FL, + Academic Press, Inc., 1980, pg. 285. + + Examples + -------- + >>> import numpy as np + >>> from numpy import linalg as LA + >>> a = np.array([[1, 0, -1], [0, 1, 0], [1, 0, 1]]) + >>> a + array([[ 1, 0, -1], + [ 0, 1, 0], + [ 1, 0, 1]]) + >>> LA.cond(a) + 1.4142135623730951 + >>> LA.cond(a, 'fro') + 3.1622776601683795 + >>> LA.cond(a, np.inf) + 2.0 + >>> LA.cond(a, -np.inf) + 1.0 + >>> LA.cond(a, 1) + 2.0 + >>> LA.cond(a, -1) + 1.0 + >>> LA.cond(a, 2) + 1.4142135623730951 + >>> LA.cond(a, -2) + 0.70710678118654746 # may vary + >>> (min(LA.svd(a, compute_uv=False)) * + ... min(LA.svd(LA.inv(a), compute_uv=False))) + 0.70710678118654746 # may vary + + """ + x = asarray(x) # in case we have a matrix + if _is_empty_2d(x): + raise LinAlgError("cond is not defined on empty arrays") + if p is None or p in {2, -2}: + s = svd(x, compute_uv=False) + with errstate(all='ignore'): + if p == -2: + r = s[..., -1] / s[..., 0] + else: + r = s[..., 0] / s[..., -1] + else: + # Call inv(x) ignoring errors. The result array will + # contain nans in the entries where inversion failed. + _assert_stacked_square(x) + t, result_t = _commonType(x) + signature = 'D->D' if isComplexType(t) else 'd->d' + with errstate(all='ignore'): + invx = _umath_linalg.inv(x, signature=signature) + r = norm(x, p, axis=(-2, -1)) * norm(invx, p, axis=(-2, -1)) + r = r.astype(result_t, copy=False) + + # Convert nans to infs unless the original array had nan entries + r = asarray(r) + nan_mask = isnan(r) + if nan_mask.any(): + nan_mask &= ~isnan(x).any(axis=(-2, -1)) + if r.ndim > 0: + r[nan_mask] = inf + elif nan_mask: + r[()] = inf + + # Convention is to return scalars instead of 0d arrays + if r.ndim == 0: + r = r[()] + + return r + + +def _matrix_rank_dispatcher(A, tol=None, hermitian=None, *, rtol=None): + return (A,) + + +@array_function_dispatch(_matrix_rank_dispatcher) +def matrix_rank(A, tol=None, hermitian=False, *, rtol=None): + """ + Return matrix rank of array using SVD method + + Rank of the array is the number of singular values of the array that are + greater than `tol`. + + Parameters + ---------- + A : {(M,), (..., M, N)} array_like + Input vector or stack of matrices. + tol : (...) array_like, float, optional + Threshold below which SVD values are considered zero. If `tol` is + None, and ``S`` is an array with singular values for `M`, and + ``eps`` is the epsilon value for datatype of ``S``, then `tol` is + set to ``S.max() * max(M, N) * eps``. + hermitian : bool, optional + If True, `A` is assumed to be Hermitian (symmetric if real-valued), + enabling a more efficient method for finding singular values. + Defaults to False. + rtol : (...) array_like, float, optional + Parameter for the relative tolerance component. Only ``tol`` or + ``rtol`` can be set at a time. Defaults to ``max(M, N) * eps``. + + .. versionadded:: 2.0.0 + + Returns + ------- + rank : (...) array_like + Rank of A. + + Notes + ----- + The default threshold to detect rank deficiency is a test on the magnitude + of the singular values of `A`. By default, we identify singular values + less than ``S.max() * max(M, N) * eps`` as indicating rank deficiency + (with the symbols defined above). This is the algorithm MATLAB uses [1]. + It also appears in *Numerical recipes* in the discussion of SVD solutions + for linear least squares [2]. + + This default threshold is designed to detect rank deficiency accounting + for the numerical errors of the SVD computation. Imagine that there + is a column in `A` that is an exact (in floating point) linear combination + of other columns in `A`. Computing the SVD on `A` will not produce + a singular value exactly equal to 0 in general: any difference of + the smallest SVD value from 0 will be caused by numerical imprecision + in the calculation of the SVD. Our threshold for small SVD values takes + this numerical imprecision into account, and the default threshold will + detect such numerical rank deficiency. The threshold may declare a matrix + `A` rank deficient even if the linear combination of some columns of `A` + is not exactly equal to another column of `A` but only numerically very + close to another column of `A`. + + We chose our default threshold because it is in wide use. Other thresholds + are possible. For example, elsewhere in the 2007 edition of *Numerical + recipes* there is an alternative threshold of ``S.max() * + np.finfo(A.dtype).eps / 2. * np.sqrt(m + n + 1.)``. The authors describe + this threshold as being based on "expected roundoff error" (p 71). + + The thresholds above deal with floating point roundoff error in the + calculation of the SVD. However, you may have more information about + the sources of error in `A` that would make you consider other tolerance + values to detect *effective* rank deficiency. The most useful measure + of the tolerance depends on the operations you intend to use on your + matrix. For example, if your data come from uncertain measurements with + uncertainties greater than floating point epsilon, choosing a tolerance + near that uncertainty may be preferable. The tolerance may be absolute + if the uncertainties are absolute rather than relative. + + References + ---------- + .. [1] MATLAB reference documentation, "Rank" + https://www.mathworks.com/help/techdoc/ref/rank.html + .. [2] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, + "Numerical Recipes (3rd edition)", Cambridge University Press, 2007, + page 795. + + Examples + -------- + >>> import numpy as np + >>> from numpy.linalg import matrix_rank + >>> matrix_rank(np.eye(4)) # Full rank matrix + 4 + >>> I=np.eye(4); I[-1,-1] = 0. # rank deficient matrix + >>> matrix_rank(I) + 3 + >>> matrix_rank(np.ones((4,))) # 1 dimension - rank 1 unless all 0 + 1 + >>> matrix_rank(np.zeros((4,))) + 0 + """ + if rtol is not None and tol is not None: + raise ValueError("`tol` and `rtol` can't be both set.") + + A = asarray(A) + if A.ndim < 2: + return int(not all(A == 0)) + S = svd(A, compute_uv=False, hermitian=hermitian) + + if tol is None: + if rtol is None: + rtol = max(A.shape[-2:]) * finfo(S.dtype).eps + else: + rtol = asarray(rtol)[..., newaxis] + tol = S.max(axis=-1, keepdims=True) * rtol + else: + tol = asarray(tol)[..., newaxis] + + return count_nonzero(S > tol, axis=-1) + + +# Generalized inverse + +def _pinv_dispatcher(a, rcond=None, hermitian=None, *, rtol=None): + return (a,) + + +@array_function_dispatch(_pinv_dispatcher) +def pinv(a, rcond=None, hermitian=False, *, rtol=_NoValue): + """ + Compute the (Moore-Penrose) pseudo-inverse of a matrix. + + Calculate the generalized inverse of a matrix using its + singular-value decomposition (SVD) and including all + *large* singular values. + + Parameters + ---------- + a : (..., M, N) array_like + Matrix or stack of matrices to be pseudo-inverted. + rcond : (...) array_like of float, optional + Cutoff for small singular values. + Singular values less than or equal to + ``rcond * largest_singular_value`` are set to zero. + Broadcasts against the stack of matrices. Default: ``1e-15``. + hermitian : bool, optional + If True, `a` is assumed to be Hermitian (symmetric if real-valued), + enabling a more efficient method for finding singular values. + Defaults to False. + rtol : (...) array_like of float, optional + Same as `rcond`, but it's an Array API compatible parameter name. + Only `rcond` or `rtol` can be set at a time. If none of them are + provided then NumPy's ``1e-15`` default is used. If ``rtol=None`` + is passed then the API standard default is used. + + .. versionadded:: 2.0.0 + + Returns + ------- + B : (..., N, M) ndarray + The pseudo-inverse of `a`. If `a` is a `matrix` instance, then so + is `B`. + + Raises + ------ + LinAlgError + If the SVD computation does not converge. + + See Also + -------- + scipy.linalg.pinv : Similar function in SciPy. + scipy.linalg.pinvh : Compute the (Moore-Penrose) pseudo-inverse of a + Hermitian matrix. + + Notes + ----- + The pseudo-inverse of a matrix A, denoted :math:`A^+`, is + defined as: "the matrix that 'solves' [the least-squares problem] + :math:`Ax = b`," i.e., if :math:`\\bar{x}` is said solution, then + :math:`A^+` is that matrix such that :math:`\\bar{x} = A^+b`. + + It can be shown that if :math:`Q_1 \\Sigma Q_2^T = A` is the singular + value decomposition of A, then + :math:`A^+ = Q_2 \\Sigma^+ Q_1^T`, where :math:`Q_{1,2}` are + orthogonal matrices, :math:`\\Sigma` is a diagonal matrix consisting + of A's so-called singular values, (followed, typically, by + zeros), and then :math:`\\Sigma^+` is simply the diagonal matrix + consisting of the reciprocals of A's singular values + (again, followed by zeros). [1]_ + + References + ---------- + .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, + FL, Academic Press, Inc., 1980, pp. 139-142. + + Examples + -------- + The following example checks that ``a * a+ * a == a`` and + ``a+ * a * a+ == a+``: + + >>> import numpy as np + >>> rng = np.random.default_rng() + >>> a = rng.normal(size=(9, 6)) + >>> B = np.linalg.pinv(a) + >>> np.allclose(a, np.dot(a, np.dot(B, a))) + True + >>> np.allclose(B, np.dot(B, np.dot(a, B))) + True + + """ + a, wrap = _makearray(a) + if rcond is None: + if rtol is _NoValue: + rcond = 1e-15 + elif rtol is None: + rcond = max(a.shape[-2:]) * finfo(a.dtype).eps + else: + rcond = rtol + elif rtol is not _NoValue: + raise ValueError("`rtol` and `rcond` can't be both set.") + else: + # NOTE: Deprecate `rcond` in a few versions. + pass + + rcond = asarray(rcond) + if _is_empty_2d(a): + m, n = a.shape[-2:] + res = empty(a.shape[:-2] + (n, m), dtype=a.dtype) + return wrap(res) + a = a.conjugate() + u, s, vt = svd(a, full_matrices=False, hermitian=hermitian) + + # discard small singular values + cutoff = rcond[..., newaxis] * amax(s, axis=-1, keepdims=True) + large = s > cutoff + s = divide(1, s, where=large, out=s) + s[~large] = 0 + + res = matmul(transpose(vt), multiply(s[..., newaxis], transpose(u))) + return wrap(res) + + +# Determinant + + +@array_function_dispatch(_unary_dispatcher) +def slogdet(a): + """ + Compute the sign and (natural) logarithm of the determinant of an array. + + If an array has a very small or very large determinant, then a call to + `det` may overflow or underflow. This routine is more robust against such + issues, because it computes the logarithm of the determinant rather than + the determinant itself. + + Parameters + ---------- + a : (..., M, M) array_like + Input array, has to be a square 2-D array. + + Returns + ------- + A namedtuple with the following attributes: + + sign : (...) array_like + A number representing the sign of the determinant. For a real matrix, + this is 1, 0, or -1. For a complex matrix, this is a complex number + with absolute value 1 (i.e., it is on the unit circle), or else 0. + logabsdet : (...) array_like + The natural log of the absolute value of the determinant. + + If the determinant is zero, then `sign` will be 0 and `logabsdet` + will be -inf. In all cases, the determinant is equal to + ``sign * np.exp(logabsdet)``. + + See Also + -------- + det + + Notes + ----- + Broadcasting rules apply, see the `numpy.linalg` documentation for + details. + + The determinant is computed via LU factorization using the LAPACK + routine ``z/dgetrf``. + + Examples + -------- + The determinant of a 2-D array ``[[a, b], [c, d]]`` is ``ad - bc``: + + >>> import numpy as np + >>> a = np.array([[1, 2], [3, 4]]) + >>> (sign, logabsdet) = np.linalg.slogdet(a) + >>> (sign, logabsdet) + (-1, 0.69314718055994529) # may vary + >>> sign * np.exp(logabsdet) + -2.0 + + Computing log-determinants for a stack of matrices: + + >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ]) + >>> a.shape + (3, 2, 2) + >>> sign, logabsdet = np.linalg.slogdet(a) + >>> (sign, logabsdet) + (array([-1., -1., -1.]), array([ 0.69314718, 1.09861229, 2.07944154])) + >>> sign * np.exp(logabsdet) + array([-2., -3., -8.]) + + This routine succeeds where ordinary `det` does not: + + >>> np.linalg.det(np.eye(500) * 0.1) + 0.0 + >>> np.linalg.slogdet(np.eye(500) * 0.1) + (1, -1151.2925464970228) + + """ + a = asarray(a) + _assert_stacked_square(a) + t, result_t = _commonType(a) + real_t = _realType(result_t) + signature = 'D->Dd' if isComplexType(t) else 'd->dd' + sign, logdet = _umath_linalg.slogdet(a, signature=signature) + sign = sign.astype(result_t, copy=False) + logdet = logdet.astype(real_t, copy=False) + return SlogdetResult(sign, logdet) + + +@array_function_dispatch(_unary_dispatcher) +def det(a): + """ + Compute the determinant of an array. + + Parameters + ---------- + a : (..., M, M) array_like + Input array to compute determinants for. + + Returns + ------- + det : (...) array_like + Determinant of `a`. + + See Also + -------- + slogdet : Another way to represent the determinant, more suitable + for large matrices where underflow/overflow may occur. + scipy.linalg.det : Similar function in SciPy. + + Notes + ----- + Broadcasting rules apply, see the `numpy.linalg` documentation for + details. + + The determinant is computed via LU factorization using the LAPACK + routine ``z/dgetrf``. + + Examples + -------- + The determinant of a 2-D array [[a, b], [c, d]] is ad - bc: + + >>> import numpy as np + >>> a = np.array([[1, 2], [3, 4]]) + >>> np.linalg.det(a) + -2.0 # may vary + + Computing determinants for a stack of matrices: + + >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ]) + >>> a.shape + (3, 2, 2) + >>> np.linalg.det(a) + array([-2., -3., -8.]) + + """ + a = asarray(a) + _assert_stacked_square(a) + t, result_t = _commonType(a) + signature = 'D->D' if isComplexType(t) else 'd->d' + r = _umath_linalg.det(a, signature=signature) + r = r.astype(result_t, copy=False) + return r + + +# Linear Least Squares + +def _lstsq_dispatcher(a, b, rcond=None): + return (a, b) + + +@array_function_dispatch(_lstsq_dispatcher) +def lstsq(a, b, rcond=None): + r""" + Return the least-squares solution to a linear matrix equation. + + Computes the vector `x` that approximately solves the equation + ``a @ x = b``. The equation may be under-, well-, or over-determined + (i.e., the number of linearly independent rows of `a` can be less than, + equal to, or greater than its number of linearly independent columns). + If `a` is square and of full rank, then `x` (but for round-off error) + is the "exact" solution of the equation. Else, `x` minimizes the + Euclidean 2-norm :math:`||b - ax||`. If there are multiple minimizing + solutions, the one with the smallest 2-norm :math:`||x||` is returned. + + Parameters + ---------- + a : (M, N) array_like + "Coefficient" matrix. + b : {(M,), (M, K)} array_like + Ordinate or "dependent variable" values. If `b` is two-dimensional, + the least-squares solution is calculated for each of the `K` columns + of `b`. + rcond : float, optional + Cut-off ratio for small singular values of `a`. + For the purposes of rank determination, singular values are treated + as zero if they are smaller than `rcond` times the largest singular + value of `a`. + The default uses the machine precision times ``max(M, N)``. Passing + ``-1`` will use machine precision. + + .. versionchanged:: 2.0 + Previously, the default was ``-1``, but a warning was given that + this would change. + + Returns + ------- + x : {(N,), (N, K)} ndarray + Least-squares solution. If `b` is two-dimensional, + the solutions are in the `K` columns of `x`. + residuals : {(1,), (K,), (0,)} ndarray + Sums of squared residuals: Squared Euclidean 2-norm for each column in + ``b - a @ x``. + If the rank of `a` is < N or M <= N, this is an empty array. + If `b` is 1-dimensional, this is a (1,) shape array. + Otherwise the shape is (K,). + rank : int + Rank of matrix `a`. + s : (min(M, N),) ndarray + Singular values of `a`. + + Raises + ------ + LinAlgError + If computation does not converge. + + See Also + -------- + scipy.linalg.lstsq : Similar function in SciPy. + + Notes + ----- + If `b` is a matrix, then all array results are returned as matrices. + + Examples + -------- + Fit a line, ``y = mx + c``, through some noisy data-points: + + >>> import numpy as np + >>> x = np.array([0, 1, 2, 3]) + >>> y = np.array([-1, 0.2, 0.9, 2.1]) + + By examining the coefficients, we see that the line should have a + gradient of roughly 1 and cut the y-axis at, more or less, -1. + + We can rewrite the line equation as ``y = Ap``, where ``A = [[x 1]]`` + and ``p = [[m], [c]]``. Now use `lstsq` to solve for `p`: + + >>> A = np.vstack([x, np.ones(len(x))]).T + >>> A + array([[ 0., 1.], + [ 1., 1.], + [ 2., 1.], + [ 3., 1.]]) + + >>> m, c = np.linalg.lstsq(A, y)[0] + >>> m, c + (1.0 -0.95) # may vary + + Plot the data along with the fitted line: + + >>> import matplotlib.pyplot as plt + >>> _ = plt.plot(x, y, 'o', label='Original data', markersize=10) + >>> _ = plt.plot(x, m*x + c, 'r', label='Fitted line') + >>> _ = plt.legend() + >>> plt.show() + + """ + a, _ = _makearray(a) + b, wrap = _makearray(b) + is_1d = b.ndim == 1 + if is_1d: + b = b[:, newaxis] + _assert_2d(a, b) + m, n = a.shape[-2:] + m2, n_rhs = b.shape[-2:] + if m != m2: + raise LinAlgError('Incompatible dimensions') + + t, result_t = _commonType(a, b) + result_real_t = _realType(result_t) + + if rcond is None: + rcond = finfo(t).eps * max(n, m) + + signature = 'DDd->Ddid' if isComplexType(t) else 'ddd->ddid' + if n_rhs == 0: + # lapack can't handle n_rhs = 0 - so allocate + # the array one larger in that axis + b = zeros(b.shape[:-2] + (m, n_rhs + 1), dtype=b.dtype) + + with errstate(call=_raise_linalgerror_lstsq, invalid='call', + over='ignore', divide='ignore', under='ignore'): + x, resids, rank, s = _umath_linalg.lstsq(a, b, rcond, + signature=signature) + if m == 0: + x[...] = 0 + if n_rhs == 0: + # remove the item we added + x = x[..., :n_rhs] + resids = resids[..., :n_rhs] + + # remove the axis we added + if is_1d: + x = x.squeeze(axis=-1) + # we probably should squeeze resids too, but we can't + # without breaking compatibility. + + # as documented + if rank != n or m <= n: + resids = array([], result_real_t) + + # coerce output arrays + s = s.astype(result_real_t, copy=False) + resids = resids.astype(result_real_t, copy=False) + # Copying lets the memory in r_parts be freed + x = x.astype(result_t, copy=True) + return wrap(x), wrap(resids), rank, s + + +def _multi_svd_norm(x, row_axis, col_axis, op, initial=None): + """Compute a function of the singular values of the 2-D matrices in `x`. + + This is a private utility function used by `numpy.linalg.norm()`. + + Parameters + ---------- + x : ndarray + row_axis, col_axis : int + The axes of `x` that hold the 2-D matrices. + op : callable + This should be either numpy.amin or `numpy.amax` or `numpy.sum`. + + Returns + ------- + result : float or ndarray + If `x` is 2-D, the return values is a float. + Otherwise, it is an array with ``x.ndim - 2`` dimensions. + The return values are either the minimum or maximum or sum of the + singular values of the matrices, depending on whether `op` + is `numpy.amin` or `numpy.amax` or `numpy.sum`. + + """ + y = moveaxis(x, (row_axis, col_axis), (-2, -1)) + result = op(svd(y, compute_uv=False), axis=-1, initial=initial) + return result + + +def _norm_dispatcher(x, ord=None, axis=None, keepdims=None): + return (x,) + + +@array_function_dispatch(_norm_dispatcher) +def norm(x, ord=None, axis=None, keepdims=False): + """ + Matrix or vector norm. + + This function is able to return one of eight different matrix norms, + or one of an infinite number of vector norms (described below), depending + on the value of the ``ord`` parameter. + + Parameters + ---------- + x : array_like + Input array. If `axis` is None, `x` must be 1-D or 2-D, unless `ord` + is None. If both `axis` and `ord` are None, the 2-norm of + ``x.ravel`` will be returned. + ord : {int, float, inf, -inf, 'fro', 'nuc'}, optional + Order of the norm (see table under ``Notes`` for what values are + supported for matrices and vectors respectively). inf means numpy's + `inf` object. The default is None. + axis : {None, int, 2-tuple of ints}, optional. + If `axis` is an integer, it specifies the axis of `x` along which to + compute the vector norms. If `axis` is a 2-tuple, it specifies the + axes that hold 2-D matrices, and the matrix norms of these matrices + are computed. If `axis` is None then either a vector norm (when `x` + is 1-D) or a matrix norm (when `x` is 2-D) is returned. The default + is None. + + keepdims : bool, optional + If this is set to True, the axes which are normed over are left in the + result as dimensions with size one. With this option the result will + broadcast correctly against the original `x`. + + Returns + ------- + n : float or ndarray + Norm of the matrix or vector(s). + + See Also + -------- + scipy.linalg.norm : Similar function in SciPy. + + Notes + ----- + For values of ``ord < 1``, the result is, strictly speaking, not a + mathematical 'norm', but it may still be useful for various numerical + purposes. + + The following norms can be calculated: + + ===== ============================ ========================== + ord norm for matrices norm for vectors + ===== ============================ ========================== + None Frobenius norm 2-norm + 'fro' Frobenius norm -- + 'nuc' nuclear norm -- + inf max(sum(abs(x), axis=1)) max(abs(x)) + -inf min(sum(abs(x), axis=1)) min(abs(x)) + 0 -- sum(x != 0) + 1 max(sum(abs(x), axis=0)) as below + -1 min(sum(abs(x), axis=0)) as below + 2 2-norm (largest sing. value) as below + -2 smallest singular value as below + other -- sum(abs(x)**ord)**(1./ord) + ===== ============================ ========================== + + The Frobenius norm is given by [1]_: + + :math:`||A||_F = [\\sum_{i,j} abs(a_{i,j})^2]^{1/2}` + + The nuclear norm is the sum of the singular values. + + Both the Frobenius and nuclear norm orders are only defined for + matrices and raise a ValueError when ``x.ndim != 2``. + + References + ---------- + .. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*, + Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15 + + Examples + -------- + + >>> import numpy as np + >>> from numpy import linalg as LA + >>> a = np.arange(9) - 4 + >>> a + array([-4, -3, -2, ..., 2, 3, 4]) + >>> b = a.reshape((3, 3)) + >>> b + array([[-4, -3, -2], + [-1, 0, 1], + [ 2, 3, 4]]) + + >>> LA.norm(a) + 7.745966692414834 + >>> LA.norm(b) + 7.745966692414834 + >>> LA.norm(b, 'fro') + 7.745966692414834 + >>> LA.norm(a, np.inf) + 4.0 + >>> LA.norm(b, np.inf) + 9.0 + >>> LA.norm(a, -np.inf) + 0.0 + >>> LA.norm(b, -np.inf) + 2.0 + + >>> LA.norm(a, 1) + 20.0 + >>> LA.norm(b, 1) + 7.0 + >>> LA.norm(a, -1) + -4.6566128774142013e-010 + >>> LA.norm(b, -1) + 6.0 + >>> LA.norm(a, 2) + 7.745966692414834 + >>> LA.norm(b, 2) + 7.3484692283495345 + + >>> LA.norm(a, -2) + 0.0 + >>> LA.norm(b, -2) + 1.8570331885190563e-016 # may vary + >>> LA.norm(a, 3) + 5.8480354764257312 # may vary + >>> LA.norm(a, -3) + 0.0 + + Using the `axis` argument to compute vector norms: + + >>> c = np.array([[ 1, 2, 3], + ... [-1, 1, 4]]) + >>> LA.norm(c, axis=0) + array([ 1.41421356, 2.23606798, 5. ]) + >>> LA.norm(c, axis=1) + array([ 3.74165739, 4.24264069]) + >>> LA.norm(c, ord=1, axis=1) + array([ 6., 6.]) + + Using the `axis` argument to compute matrix norms: + + >>> m = np.arange(8).reshape(2,2,2) + >>> LA.norm(m, axis=(1,2)) + array([ 3.74165739, 11.22497216]) + >>> LA.norm(m[0, :, :]), LA.norm(m[1, :, :]) + (3.7416573867739413, 11.224972160321824) + + """ + x = asarray(x) + + if not issubclass(x.dtype.type, (inexact, object_)): + x = x.astype(float) + + # Immediately handle some default, simple, fast, and common cases. + if axis is None: + ndim = x.ndim + if ( + (ord is None) or + (ord in ('f', 'fro') and ndim == 2) or + (ord == 2 and ndim == 1) + ): + x = x.ravel(order='K') + if isComplexType(x.dtype.type): + x_real = x.real + x_imag = x.imag + sqnorm = x_real.dot(x_real) + x_imag.dot(x_imag) + else: + sqnorm = x.dot(x) + ret = sqrt(sqnorm) + if keepdims: + ret = ret.reshape(ndim * [1]) + return ret + + # Normalize the `axis` argument to a tuple. + nd = x.ndim + if axis is None: + axis = tuple(range(nd)) + elif not isinstance(axis, tuple): + try: + axis = int(axis) + except Exception as e: + raise TypeError( + "'axis' must be None, an integer or a tuple of integers" + ) from e + axis = (axis,) + + if len(axis) == 1: + if ord == inf: + return abs(x).max(axis=axis, keepdims=keepdims, initial=0) + elif ord == -inf: + return abs(x).min(axis=axis, keepdims=keepdims) + elif ord == 0: + # Zero norm + return ( + (x != 0) + .astype(x.real.dtype) + .sum(axis=axis, keepdims=keepdims) + ) + elif ord == 1: + # special case for speedup + return add.reduce(abs(x), axis=axis, keepdims=keepdims) + elif ord is None or ord == 2: + # special case for speedup + s = (x.conj() * x).real + return sqrt(add.reduce(s, axis=axis, keepdims=keepdims)) + # None of the str-type keywords for ord ('fro', 'nuc') + # are valid for vectors + elif isinstance(ord, str): + raise ValueError(f"Invalid norm order '{ord}' for vectors") + else: + absx = abs(x) + absx **= ord + ret = add.reduce(absx, axis=axis, keepdims=keepdims) + ret **= reciprocal(ord, dtype=ret.dtype) + return ret + elif len(axis) == 2: + row_axis, col_axis = axis + row_axis = normalize_axis_index(row_axis, nd) + col_axis = normalize_axis_index(col_axis, nd) + if row_axis == col_axis: + raise ValueError('Duplicate axes given.') + if ord == 2: + ret = _multi_svd_norm(x, row_axis, col_axis, amax, 0) + elif ord == -2: + ret = _multi_svd_norm(x, row_axis, col_axis, amin) + elif ord == 1: + if col_axis > row_axis: + col_axis -= 1 + ret = add.reduce(abs(x), axis=row_axis).max(axis=col_axis, initial=0) + elif ord == inf: + if row_axis > col_axis: + row_axis -= 1 + ret = add.reduce(abs(x), axis=col_axis).max(axis=row_axis, initial=0) + elif ord == -1: + if col_axis > row_axis: + col_axis -= 1 + ret = add.reduce(abs(x), axis=row_axis).min(axis=col_axis) + elif ord == -inf: + if row_axis > col_axis: + row_axis -= 1 + ret = add.reduce(abs(x), axis=col_axis).min(axis=row_axis) + elif ord in [None, 'fro', 'f']: + ret = sqrt(add.reduce((x.conj() * x).real, axis=axis)) + elif ord == 'nuc': + ret = _multi_svd_norm(x, row_axis, col_axis, sum, 0) + else: + raise ValueError("Invalid norm order for matrices.") + if keepdims: + ret_shape = list(x.shape) + ret_shape[axis[0]] = 1 + ret_shape[axis[1]] = 1 + ret = ret.reshape(ret_shape) + return ret + else: + raise ValueError("Improper number of dimensions to norm.") + + +# multi_dot + +def _multidot_dispatcher(arrays, *, out=None): + yield from arrays + yield out + + +@array_function_dispatch(_multidot_dispatcher) +def multi_dot(arrays, *, out=None): + """ + Compute the dot product of two or more arrays in a single function call, + while automatically selecting the fastest evaluation order. + + `multi_dot` chains `numpy.dot` and uses optimal parenthesization + of the matrices [1]_ [2]_. Depending on the shapes of the matrices, + this can speed up the multiplication a lot. + + If the first argument is 1-D it is treated as a row vector. + If the last argument is 1-D it is treated as a column vector. + The other arguments must be 2-D. + + Think of `multi_dot` as:: + + def multi_dot(arrays): return functools.reduce(np.dot, arrays) + + + Parameters + ---------- + arrays : sequence of array_like + If the first argument is 1-D it is treated as row vector. + If the last argument is 1-D it is treated as column vector. + The other arguments must be 2-D. + out : ndarray, optional + Output argument. This must have the exact kind that would be returned + if it was not used. In particular, it must have the right type, must be + C-contiguous, and its dtype must be the dtype that would be returned + for `dot(a, b)`. This is a performance feature. Therefore, if these + conditions are not met, an exception is raised, instead of attempting + to be flexible. + + Returns + ------- + output : ndarray + Returns the dot product of the supplied arrays. + + See Also + -------- + numpy.dot : dot multiplication with two arguments. + + References + ---------- + + .. [1] Cormen, "Introduction to Algorithms", Chapter 15.2, p. 370-378 + .. [2] https://en.wikipedia.org/wiki/Matrix_chain_multiplication + + Examples + -------- + `multi_dot` allows you to write:: + + >>> import numpy as np + >>> from numpy.linalg import multi_dot + >>> # Prepare some data + >>> A = np.random.random((10000, 100)) + >>> B = np.random.random((100, 1000)) + >>> C = np.random.random((1000, 5)) + >>> D = np.random.random((5, 333)) + >>> # the actual dot multiplication + >>> _ = multi_dot([A, B, C, D]) + + instead of:: + + >>> _ = np.dot(np.dot(np.dot(A, B), C), D) + >>> # or + >>> _ = A.dot(B).dot(C).dot(D) + + Notes + ----- + The cost for a matrix multiplication can be calculated with the + following function:: + + def cost(A, B): + return A.shape[0] * A.shape[1] * B.shape[1] + + Assume we have three matrices + :math:`A_{10 \times 100}, B_{100 \times 5}, C_{5 \times 50}`. + + The costs for the two different parenthesizations are as follows:: + + cost((AB)C) = 10*100*5 + 10*5*50 = 5000 + 2500 = 7500 + cost(A(BC)) = 10*100*50 + 100*5*50 = 50000 + 25000 = 75000 + + """ + n = len(arrays) + # optimization only makes sense for len(arrays) > 2 + if n < 2: + raise ValueError("Expecting at least two arrays.") + elif n == 2: + return dot(arrays[0], arrays[1], out=out) + + arrays = [asanyarray(a) for a in arrays] + + # save original ndim to reshape the result array into the proper form later + ndim_first, ndim_last = arrays[0].ndim, arrays[-1].ndim + # Explicitly convert vectors to 2D arrays to keep the logic of the internal + # _multi_dot_* functions as simple as possible. + if arrays[0].ndim == 1: + arrays[0] = atleast_2d(arrays[0]) + if arrays[-1].ndim == 1: + arrays[-1] = atleast_2d(arrays[-1]).T + _assert_2d(*arrays) + + # _multi_dot_three is much faster than _multi_dot_matrix_chain_order + if n == 3: + result = _multi_dot_three(arrays[0], arrays[1], arrays[2], out=out) + else: + order = _multi_dot_matrix_chain_order(arrays) + result = _multi_dot(arrays, order, 0, n - 1, out=out) + + # return proper shape + if ndim_first == 1 and ndim_last == 1: + return result[0, 0] # scalar + elif ndim_first == 1 or ndim_last == 1: + return result.ravel() # 1-D + else: + return result + + +def _multi_dot_three(A, B, C, out=None): + """ + Find the best order for three arrays and do the multiplication. + + For three arguments `_multi_dot_three` is approximately 15 times faster + than `_multi_dot_matrix_chain_order` + + """ + a0, a1b0 = A.shape + b1c0, c1 = C.shape + # cost1 = cost((AB)C) = a0*a1b0*b1c0 + a0*b1c0*c1 + cost1 = a0 * b1c0 * (a1b0 + c1) + # cost2 = cost(A(BC)) = a1b0*b1c0*c1 + a0*a1b0*c1 + cost2 = a1b0 * c1 * (a0 + b1c0) + + if cost1 < cost2: + return dot(dot(A, B), C, out=out) + else: + return dot(A, dot(B, C), out=out) + + +def _multi_dot_matrix_chain_order(arrays, return_costs=False): + """ + Return a np.array that encodes the optimal order of multiplications. + + The optimal order array is then used by `_multi_dot()` to do the + multiplication. + + Also return the cost matrix if `return_costs` is `True` + + The implementation CLOSELY follows Cormen, "Introduction to Algorithms", + Chapter 15.2, p. 370-378. Note that Cormen uses 1-based indices. + + cost[i, j] = min([ + cost[prefix] + cost[suffix] + cost_mult(prefix, suffix) + for k in range(i, j)]) + + """ + n = len(arrays) + # p stores the dimensions of the matrices + # Example for p: A_{10x100}, B_{100x5}, C_{5x50} --> p = [10, 100, 5, 50] + p = [a.shape[0] for a in arrays] + [arrays[-1].shape[1]] + # m is a matrix of costs of the subproblems + # m[i,j]: min number of scalar multiplications needed to compute A_{i..j} + m = zeros((n, n), dtype=double) + # s is the actual ordering + # s[i, j] is the value of k at which we split the product A_i..A_j + s = empty((n, n), dtype=intp) + + for l in range(1, n): + for i in range(n - l): + j = i + l + m[i, j] = inf + for k in range(i, j): + q = m[i, k] + m[k + 1, j] + p[i] * p[k + 1] * p[j + 1] + if q < m[i, j]: + m[i, j] = q + s[i, j] = k # Note that Cormen uses 1-based index + + return (s, m) if return_costs else s + + +def _multi_dot(arrays, order, i, j, out=None): + """Actually do the multiplication with the given order.""" + if i == j: + # the initial call with non-None out should never get here + assert out is None + + return arrays[i] + else: + return dot(_multi_dot(arrays, order, i, order[i, j]), + _multi_dot(arrays, order, order[i, j] + 1, j), + out=out) + + +# diagonal + +def _diagonal_dispatcher(x, /, *, offset=None): + return (x,) + + +@array_function_dispatch(_diagonal_dispatcher) +def diagonal(x, /, *, offset=0): + """ + Returns specified diagonals of a matrix (or a stack of matrices) ``x``. + + This function is Array API compatible, contrary to + :py:func:`numpy.diagonal`, the matrix is assumed + to be defined by the last two dimensions. + + Parameters + ---------- + x : (...,M,N) array_like + Input array having shape (..., M, N) and whose innermost two + dimensions form MxN matrices. + offset : int, optional + Offset specifying the off-diagonal relative to the main diagonal, + where:: + + * offset = 0: the main diagonal. + * offset > 0: off-diagonal above the main diagonal. + * offset < 0: off-diagonal below the main diagonal. + + Returns + ------- + out : (...,min(N,M)) ndarray + An array containing the diagonals and whose shape is determined by + removing the last two dimensions and appending a dimension equal to + the size of the resulting diagonals. The returned array must have + the same data type as ``x``. + + See Also + -------- + numpy.diagonal + + Examples + -------- + >>> a = np.arange(4).reshape(2, 2); a + array([[0, 1], + [2, 3]]) + >>> np.linalg.diagonal(a) + array([0, 3]) + + A 3-D example: + + >>> a = np.arange(8).reshape(2, 2, 2); a + array([[[0, 1], + [2, 3]], + [[4, 5], + [6, 7]]]) + >>> np.linalg.diagonal(a) + array([[0, 3], + [4, 7]]) + + Diagonals adjacent to the main diagonal can be obtained by using the + `offset` argument: + + >>> a = np.arange(9).reshape(3, 3) + >>> a + array([[0, 1, 2], + [3, 4, 5], + [6, 7, 8]]) + >>> np.linalg.diagonal(a, offset=1) # First superdiagonal + array([1, 5]) + >>> np.linalg.diagonal(a, offset=2) # Second superdiagonal + array([2]) + >>> np.linalg.diagonal(a, offset=-1) # First subdiagonal + array([3, 7]) + >>> np.linalg.diagonal(a, offset=-2) # Second subdiagonal + array([6]) + + The anti-diagonal can be obtained by reversing the order of elements + using either `numpy.flipud` or `numpy.fliplr`. + + >>> a = np.arange(9).reshape(3, 3) + >>> a + array([[0, 1, 2], + [3, 4, 5], + [6, 7, 8]]) + >>> np.linalg.diagonal(np.fliplr(a)) # Horizontal flip + array([2, 4, 6]) + >>> np.linalg.diagonal(np.flipud(a)) # Vertical flip + array([6, 4, 2]) + + Note that the order in which the diagonal is retrieved varies depending + on the flip function. + + """ + return _core_diagonal(x, offset, axis1=-2, axis2=-1) + + +# trace + +def _trace_dispatcher(x, /, *, offset=None, dtype=None): + return (x,) + + +@array_function_dispatch(_trace_dispatcher) +def trace(x, /, *, offset=0, dtype=None): + """ + Returns the sum along the specified diagonals of a matrix + (or a stack of matrices) ``x``. + + This function is Array API compatible, contrary to + :py:func:`numpy.trace`. + + Parameters + ---------- + x : (...,M,N) array_like + Input array having shape (..., M, N) and whose innermost two + dimensions form MxN matrices. + offset : int, optional + Offset specifying the off-diagonal relative to the main diagonal, + where:: + + * offset = 0: the main diagonal. + * offset > 0: off-diagonal above the main diagonal. + * offset < 0: off-diagonal below the main diagonal. + + dtype : dtype, optional + Data type of the returned array. + + Returns + ------- + out : ndarray + An array containing the traces and whose shape is determined by + removing the last two dimensions and storing the traces in the last + array dimension. For example, if x has rank k and shape: + (I, J, K, ..., L, M, N), then an output array has rank k-2 and shape: + (I, J, K, ..., L) where:: + + out[i, j, k, ..., l] = trace(a[i, j, k, ..., l, :, :]) + + The returned array must have a data type as described by the dtype + parameter above. + + See Also + -------- + numpy.trace + + Examples + -------- + >>> np.linalg.trace(np.eye(3)) + 3.0 + >>> a = np.arange(8).reshape((2, 2, 2)) + >>> np.linalg.trace(a) + array([3, 11]) + + Trace is computed with the last two axes as the 2-d sub-arrays. + This behavior differs from :py:func:`numpy.trace` which uses the first two + axes by default. + + >>> a = np.arange(24).reshape((3, 2, 2, 2)) + >>> np.linalg.trace(a).shape + (3, 2) + + Traces adjacent to the main diagonal can be obtained by using the + `offset` argument: + + >>> a = np.arange(9).reshape((3, 3)); a + array([[0, 1, 2], + [3, 4, 5], + [6, 7, 8]]) + >>> np.linalg.trace(a, offset=1) # First superdiagonal + 6 + >>> np.linalg.trace(a, offset=2) # Second superdiagonal + 2 + >>> np.linalg.trace(a, offset=-1) # First subdiagonal + 10 + >>> np.linalg.trace(a, offset=-2) # Second subdiagonal + 6 + + """ + return _core_trace(x, offset, axis1=-2, axis2=-1, dtype=dtype) + + +# cross + +def _cross_dispatcher(x1, x2, /, *, axis=None): + return (x1, x2,) + + +@array_function_dispatch(_cross_dispatcher) +def cross(x1, x2, /, *, axis=-1): + """ + Returns the cross product of 3-element vectors. + + If ``x1`` and/or ``x2`` are multi-dimensional arrays, then + the cross-product of each pair of corresponding 3-element vectors + is independently computed. + + This function is Array API compatible, contrary to + :func:`numpy.cross`. + + Parameters + ---------- + x1 : array_like + The first input array. + x2 : array_like + The second input array. Must be compatible with ``x1`` for all + non-compute axes. The size of the axis over which to compute + the cross-product must be the same size as the respective axis + in ``x1``. + axis : int, optional + The axis (dimension) of ``x1`` and ``x2`` containing the vectors for + which to compute the cross-product. Default: ``-1``. + + Returns + ------- + out : ndarray + An array containing the cross products. + + See Also + -------- + numpy.cross + + Examples + -------- + Vector cross-product. + + >>> x = np.array([1, 2, 3]) + >>> y = np.array([4, 5, 6]) + >>> np.linalg.cross(x, y) + array([-3, 6, -3]) + + Multiple vector cross-products. Note that the direction of the cross + product vector is defined by the *right-hand rule*. + + >>> x = np.array([[1,2,3], [4,5,6]]) + >>> y = np.array([[4,5,6], [1,2,3]]) + >>> np.linalg.cross(x, y) + array([[-3, 6, -3], + [ 3, -6, 3]]) + + >>> x = np.array([[1, 2], [3, 4], [5, 6]]) + >>> y = np.array([[4, 5], [6, 1], [2, 3]]) + >>> np.linalg.cross(x, y, axis=0) + array([[-24, 6], + [ 18, 24], + [-6, -18]]) + + """ + x1 = asanyarray(x1) + x2 = asanyarray(x2) + + if x1.shape[axis] != 3 or x2.shape[axis] != 3: + raise ValueError( + "Both input arrays must be (arrays of) 3-dimensional vectors, " + f"but they are {x1.shape[axis]} and {x2.shape[axis]} " + "dimensional instead." + ) + + return _core_cross(x1, x2, axis=axis) + + +# matmul + +def _matmul_dispatcher(x1, x2, /): + return (x1, x2) + + +@array_function_dispatch(_matmul_dispatcher) +def matmul(x1, x2, /): + """ + Computes the matrix product. + + This function is Array API compatible, contrary to + :func:`numpy.matmul`. + + Parameters + ---------- + x1 : array_like + The first input array. + x2 : array_like + The second input array. + + Returns + ------- + out : ndarray + The matrix product of the inputs. + This is a scalar only when both ``x1``, ``x2`` are 1-d vectors. + + Raises + ------ + ValueError + If the last dimension of ``x1`` is not the same size as + the second-to-last dimension of ``x2``. + + If a scalar value is passed in. + + See Also + -------- + numpy.matmul + + Examples + -------- + For 2-D arrays it is the matrix product: + + >>> a = np.array([[1, 0], + ... [0, 1]]) + >>> b = np.array([[4, 1], + ... [2, 2]]) + >>> np.linalg.matmul(a, b) + array([[4, 1], + [2, 2]]) + + For 2-D mixed with 1-D, the result is the usual. + + >>> a = np.array([[1, 0], + ... [0, 1]]) + >>> b = np.array([1, 2]) + >>> np.linalg.matmul(a, b) + array([1, 2]) + >>> np.linalg.matmul(b, a) + array([1, 2]) + + + Broadcasting is conventional for stacks of arrays + + >>> a = np.arange(2 * 2 * 4).reshape((2, 2, 4)) + >>> b = np.arange(2 * 2 * 4).reshape((2, 4, 2)) + >>> np.linalg.matmul(a,b).shape + (2, 2, 2) + >>> np.linalg.matmul(a, b)[0, 1, 1] + 98 + >>> sum(a[0, 1, :] * b[0 , :, 1]) + 98 + + Vector, vector returns the scalar inner product, but neither argument + is complex-conjugated: + + >>> np.linalg.matmul([2j, 3j], [2j, 3j]) + (-13+0j) + + Scalar multiplication raises an error. + + >>> np.linalg.matmul([1,2], 3) + Traceback (most recent call last): + ... + ValueError: matmul: Input operand 1 does not have enough dimensions ... + + """ + return _core_matmul(x1, x2) + + +# tensordot + +def _tensordot_dispatcher(x1, x2, /, *, axes=None): + return (x1, x2) + + +@array_function_dispatch(_tensordot_dispatcher) +def tensordot(x1, x2, /, *, axes=2): + return _core_tensordot(x1, x2, axes=axes) + + +tensordot.__doc__ = _core_tensordot.__doc__ + + +# matrix_transpose + +def _matrix_transpose_dispatcher(x): + return (x,) + +@array_function_dispatch(_matrix_transpose_dispatcher) +def matrix_transpose(x, /): + return _core_matrix_transpose(x) + + +matrix_transpose.__doc__ = f"""{_core_matrix_transpose.__doc__} + + Notes + ----- + This function is an alias of `numpy.matrix_transpose`. +""" + + +# matrix_norm + +def _matrix_norm_dispatcher(x, /, *, keepdims=None, ord=None): + return (x,) + +@array_function_dispatch(_matrix_norm_dispatcher) +def matrix_norm(x, /, *, keepdims=False, ord="fro"): + """ + Computes the matrix norm of a matrix (or a stack of matrices) ``x``. + + This function is Array API compatible. + + Parameters + ---------- + x : array_like + Input array having shape (..., M, N) and whose two innermost + dimensions form ``MxN`` matrices. + keepdims : bool, optional + If this is set to True, the axes which are normed over are left in + the result as dimensions with size one. Default: False. + ord : {1, -1, 2, -2, inf, -inf, 'fro', 'nuc'}, optional + The order of the norm. For details see the table under ``Notes`` + in `numpy.linalg.norm`. + + See Also + -------- + numpy.linalg.norm : Generic norm function + + Examples + -------- + >>> from numpy import linalg as LA + >>> a = np.arange(9) - 4 + >>> a + array([-4, -3, -2, ..., 2, 3, 4]) + >>> b = a.reshape((3, 3)) + >>> b + array([[-4, -3, -2], + [-1, 0, 1], + [ 2, 3, 4]]) + + >>> LA.matrix_norm(b) + 7.745966692414834 + >>> LA.matrix_norm(b, ord='fro') + 7.745966692414834 + >>> LA.matrix_norm(b, ord=np.inf) + 9.0 + >>> LA.matrix_norm(b, ord=-np.inf) + 2.0 + + >>> LA.matrix_norm(b, ord=1) + 7.0 + >>> LA.matrix_norm(b, ord=-1) + 6.0 + >>> LA.matrix_norm(b, ord=2) + 7.3484692283495345 + >>> LA.matrix_norm(b, ord=-2) + 1.8570331885190563e-016 # may vary + + """ + x = asanyarray(x) + return norm(x, axis=(-2, -1), keepdims=keepdims, ord=ord) + + +# vector_norm + +def _vector_norm_dispatcher(x, /, *, axis=None, keepdims=None, ord=None): + return (x,) + +@array_function_dispatch(_vector_norm_dispatcher) +def vector_norm(x, /, *, axis=None, keepdims=False, ord=2): + """ + Computes the vector norm of a vector (or batch of vectors) ``x``. + + This function is Array API compatible. + + Parameters + ---------- + x : array_like + Input array. + axis : {None, int, 2-tuple of ints}, optional + If an integer, ``axis`` specifies the axis (dimension) along which + to compute vector norms. If an n-tuple, ``axis`` specifies the axes + (dimensions) along which to compute batched vector norms. If ``None``, + the vector norm must be computed over all array values (i.e., + equivalent to computing the vector norm of a flattened array). + Default: ``None``. + keepdims : bool, optional + If this is set to True, the axes which are normed over are left in + the result as dimensions with size one. Default: False. + ord : {int, float, inf, -inf}, optional + The order of the norm. For details see the table under ``Notes`` + in `numpy.linalg.norm`. + + See Also + -------- + numpy.linalg.norm : Generic norm function + + Examples + -------- + >>> from numpy import linalg as LA + >>> a = np.arange(9) + 1 + >>> a + array([1, 2, 3, 4, 5, 6, 7, 8, 9]) + >>> b = a.reshape((3, 3)) + >>> b + array([[1, 2, 3], + [4, 5, 6], + [7, 8, 9]]) + + >>> LA.vector_norm(b) + 16.881943016134134 + >>> LA.vector_norm(b, ord=np.inf) + 9.0 + >>> LA.vector_norm(b, ord=-np.inf) + 1.0 + + >>> LA.vector_norm(b, ord=0) + 9.0 + >>> LA.vector_norm(b, ord=1) + 45.0 + >>> LA.vector_norm(b, ord=-1) + 0.3534857623790153 + >>> LA.vector_norm(b, ord=2) + 16.881943016134134 + >>> LA.vector_norm(b, ord=-2) + 0.8058837395885292 + + """ + x = asanyarray(x) + shape = list(x.shape) + if axis is None: + # Note: np.linalg.norm() doesn't handle 0-D arrays + x = x.ravel() + _axis = 0 + elif isinstance(axis, tuple): + # Note: The axis argument supports any number of axes, whereas + # np.linalg.norm() only supports a single axis for vector norm. + normalized_axis = normalize_axis_tuple(axis, x.ndim) + rest = tuple(i for i in range(x.ndim) if i not in normalized_axis) + newshape = axis + rest + x = _core_transpose(x, newshape).reshape( + ( + prod([x.shape[i] for i in axis], dtype=int), + *[x.shape[i] for i in rest] + ) + ) + _axis = 0 + else: + _axis = axis + + res = norm(x, axis=_axis, ord=ord) + + if keepdims: + # We can't reuse np.linalg.norm(keepdims) because of the reshape hacks + # above to avoid matrix norm logic. + _axis = normalize_axis_tuple( + range(len(shape)) if axis is None else axis, len(shape) + ) + for i in _axis: + shape[i] = 1 + res = res.reshape(tuple(shape)) + + return res + + +# vecdot + +def _vecdot_dispatcher(x1, x2, /, *, axis=None): + return (x1, x2) + +@array_function_dispatch(_vecdot_dispatcher) +def vecdot(x1, x2, /, *, axis=-1): + """ + Computes the vector dot product. + + This function is restricted to arguments compatible with the Array API, + contrary to :func:`numpy.vecdot`. + + Let :math:`\\mathbf{a}` be a vector in ``x1`` and :math:`\\mathbf{b}` be + a corresponding vector in ``x2``. The dot product is defined as: + + .. math:: + \\mathbf{a} \\cdot \\mathbf{b} = \\sum_{i=0}^{n-1} \\overline{a_i}b_i + + over the dimension specified by ``axis`` and where :math:`\\overline{a_i}` + denotes the complex conjugate if :math:`a_i` is complex and the identity + otherwise. + + Parameters + ---------- + x1 : array_like + First input array. + x2 : array_like + Second input array. + axis : int, optional + Axis over which to compute the dot product. Default: ``-1``. + + Returns + ------- + output : ndarray + The vector dot product of the input. + + See Also + -------- + numpy.vecdot + + Examples + -------- + Get the projected size along a given normal for an array of vectors. + + >>> v = np.array([[0., 5., 0.], [0., 0., 10.], [0., 6., 8.]]) + >>> n = np.array([0., 0.6, 0.8]) + >>> np.linalg.vecdot(v, n) + array([ 3., 8., 10.]) + + """ + return _core_vecdot(x1, x2, axis=axis) diff --git a/.venv/lib/python3.12/site-packages/numpy/linalg/_linalg.pyi b/.venv/lib/python3.12/site-packages/numpy/linalg/_linalg.pyi new file mode 100644 index 0000000..3f318a8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/linalg/_linalg.pyi @@ -0,0 +1,482 @@ +from collections.abc import Iterable +from typing import ( + Any, + NamedTuple, + Never, + SupportsIndex, + SupportsInt, + TypeAlias, + TypeVar, + overload, +) +from typing import Literal as L + +import numpy as np +from numpy import ( + complex128, + complexfloating, + float64, + # other + floating, + int32, + object_, + signedinteger, + timedelta64, + unsignedinteger, + # re-exports + vecdot, +) +from numpy._core.fromnumeric import matrix_transpose +from numpy._core.numeric import tensordot +from numpy._typing import ( + ArrayLike, + DTypeLike, + NDArray, + _ArrayLike, + _ArrayLikeBool_co, + _ArrayLikeComplex_co, + _ArrayLikeFloat_co, + _ArrayLikeInt_co, + _ArrayLikeObject_co, + _ArrayLikeTD64_co, + _ArrayLikeUInt_co, +) +from numpy.linalg import LinAlgError + +__all__ = [ + "matrix_power", + "solve", + "tensorsolve", + "tensorinv", + "inv", + "cholesky", + "eigvals", + "eigvalsh", + "pinv", + "slogdet", + "det", + "svd", + "svdvals", + "eig", + "eigh", + "lstsq", + "norm", + "qr", + "cond", + "matrix_rank", + "LinAlgError", + "multi_dot", + "trace", + "diagonal", + "cross", + "outer", + "tensordot", + "matmul", + "matrix_transpose", + "matrix_norm", + "vector_norm", + "vecdot", +] + +_ArrayT = TypeVar("_ArrayT", bound=NDArray[Any]) + +_ModeKind: TypeAlias = L["reduced", "complete", "r", "raw"] + +### + +fortran_int = np.intc + +class EigResult(NamedTuple): + eigenvalues: NDArray[Any] + eigenvectors: NDArray[Any] + +class EighResult(NamedTuple): + eigenvalues: NDArray[Any] + eigenvectors: NDArray[Any] + +class QRResult(NamedTuple): + Q: NDArray[Any] + R: NDArray[Any] + +class SlogdetResult(NamedTuple): + # TODO: `sign` and `logabsdet` are scalars for input 2D arrays and + # a `(x.ndim - 2)`` dimensionl arrays otherwise + sign: Any + logabsdet: Any + +class SVDResult(NamedTuple): + U: NDArray[Any] + S: NDArray[Any] + Vh: NDArray[Any] + +@overload +def tensorsolve( + a: _ArrayLikeInt_co, + b: _ArrayLikeInt_co, + axes: Iterable[int] | None = ..., +) -> NDArray[float64]: ... +@overload +def tensorsolve( + a: _ArrayLikeFloat_co, + b: _ArrayLikeFloat_co, + axes: Iterable[int] | None = ..., +) -> NDArray[floating]: ... +@overload +def tensorsolve( + a: _ArrayLikeComplex_co, + b: _ArrayLikeComplex_co, + axes: Iterable[int] | None = ..., +) -> NDArray[complexfloating]: ... + +@overload +def solve( + a: _ArrayLikeInt_co, + b: _ArrayLikeInt_co, +) -> NDArray[float64]: ... +@overload +def solve( + a: _ArrayLikeFloat_co, + b: _ArrayLikeFloat_co, +) -> NDArray[floating]: ... +@overload +def solve( + a: _ArrayLikeComplex_co, + b: _ArrayLikeComplex_co, +) -> NDArray[complexfloating]: ... + +@overload +def tensorinv( + a: _ArrayLikeInt_co, + ind: int = ..., +) -> NDArray[float64]: ... +@overload +def tensorinv( + a: _ArrayLikeFloat_co, + ind: int = ..., +) -> NDArray[floating]: ... +@overload +def tensorinv( + a: _ArrayLikeComplex_co, + ind: int = ..., +) -> NDArray[complexfloating]: ... + +@overload +def inv(a: _ArrayLikeInt_co) -> NDArray[float64]: ... +@overload +def inv(a: _ArrayLikeFloat_co) -> NDArray[floating]: ... +@overload +def inv(a: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ... + +# TODO: The supported input and output dtypes are dependent on the value of `n`. +# For example: `n < 0` always casts integer types to float64 +def matrix_power( + a: _ArrayLikeComplex_co | _ArrayLikeObject_co, + n: SupportsIndex, +) -> NDArray[Any]: ... + +@overload +def cholesky(a: _ArrayLikeInt_co, /, *, upper: bool = False) -> NDArray[float64]: ... +@overload +def cholesky(a: _ArrayLikeFloat_co, /, *, upper: bool = False) -> NDArray[floating]: ... +@overload +def cholesky(a: _ArrayLikeComplex_co, /, *, upper: bool = False) -> NDArray[complexfloating]: ... + +@overload +def outer(x1: _ArrayLike[Never], x2: _ArrayLike[Never]) -> NDArray[Any]: ... +@overload +def outer(x1: _ArrayLikeBool_co, x2: _ArrayLikeBool_co) -> NDArray[np.bool]: ... +@overload +def outer(x1: _ArrayLikeUInt_co, x2: _ArrayLikeUInt_co) -> NDArray[unsignedinteger]: ... +@overload +def outer(x1: _ArrayLikeInt_co, x2: _ArrayLikeInt_co) -> NDArray[signedinteger]: ... +@overload +def outer(x1: _ArrayLikeFloat_co, x2: _ArrayLikeFloat_co) -> NDArray[floating]: ... +@overload +def outer( + x1: _ArrayLikeComplex_co, + x2: _ArrayLikeComplex_co, +) -> NDArray[complexfloating]: ... +@overload +def outer( + x1: _ArrayLikeTD64_co, + x2: _ArrayLikeTD64_co, + out: None = ..., +) -> NDArray[timedelta64]: ... +@overload +def outer(x1: _ArrayLikeObject_co, x2: _ArrayLikeObject_co) -> NDArray[object_]: ... +@overload +def outer( + x1: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, + x2: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co, +) -> _ArrayT: ... + +@overload +def qr(a: _ArrayLikeInt_co, mode: _ModeKind = ...) -> QRResult: ... +@overload +def qr(a: _ArrayLikeFloat_co, mode: _ModeKind = ...) -> QRResult: ... +@overload +def qr(a: _ArrayLikeComplex_co, mode: _ModeKind = ...) -> QRResult: ... + +@overload +def eigvals(a: _ArrayLikeInt_co) -> NDArray[float64] | NDArray[complex128]: ... +@overload +def eigvals(a: _ArrayLikeFloat_co) -> NDArray[floating] | NDArray[complexfloating]: ... +@overload +def eigvals(a: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ... + +@overload +def eigvalsh(a: _ArrayLikeInt_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[float64]: ... +@overload +def eigvalsh(a: _ArrayLikeComplex_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[floating]: ... + +@overload +def eig(a: _ArrayLikeInt_co) -> EigResult: ... +@overload +def eig(a: _ArrayLikeFloat_co) -> EigResult: ... +@overload +def eig(a: _ArrayLikeComplex_co) -> EigResult: ... + +@overload +def eigh( + a: _ArrayLikeInt_co, + UPLO: L["L", "U", "l", "u"] = ..., +) -> EighResult: ... +@overload +def eigh( + a: _ArrayLikeFloat_co, + UPLO: L["L", "U", "l", "u"] = ..., +) -> EighResult: ... +@overload +def eigh( + a: _ArrayLikeComplex_co, + UPLO: L["L", "U", "l", "u"] = ..., +) -> EighResult: ... + +@overload +def svd( + a: _ArrayLikeInt_co, + full_matrices: bool = ..., + compute_uv: L[True] = ..., + hermitian: bool = ..., +) -> SVDResult: ... +@overload +def svd( + a: _ArrayLikeFloat_co, + full_matrices: bool = ..., + compute_uv: L[True] = ..., + hermitian: bool = ..., +) -> SVDResult: ... +@overload +def svd( + a: _ArrayLikeComplex_co, + full_matrices: bool = ..., + compute_uv: L[True] = ..., + hermitian: bool = ..., +) -> SVDResult: ... +@overload +def svd( + a: _ArrayLikeInt_co, + full_matrices: bool = ..., + compute_uv: L[False] = ..., + hermitian: bool = ..., +) -> NDArray[float64]: ... +@overload +def svd( + a: _ArrayLikeComplex_co, + full_matrices: bool = ..., + compute_uv: L[False] = ..., + hermitian: bool = ..., +) -> NDArray[floating]: ... + +def svdvals( + x: _ArrayLikeInt_co | _ArrayLikeFloat_co | _ArrayLikeComplex_co +) -> NDArray[floating]: ... + +# TODO: Returns a scalar for 2D arrays and +# a `(x.ndim - 2)`` dimensionl array otherwise +def cond(x: _ArrayLikeComplex_co, p: float | L["fro", "nuc"] | None = ...) -> Any: ... + +# TODO: Returns `int` for <2D arrays and `intp` otherwise +def matrix_rank( + A: _ArrayLikeComplex_co, + tol: _ArrayLikeFloat_co | None = ..., + hermitian: bool = ..., + *, + rtol: _ArrayLikeFloat_co | None = ..., +) -> Any: ... + +@overload +def pinv( + a: _ArrayLikeInt_co, + rcond: _ArrayLikeFloat_co = ..., + hermitian: bool = ..., +) -> NDArray[float64]: ... +@overload +def pinv( + a: _ArrayLikeFloat_co, + rcond: _ArrayLikeFloat_co = ..., + hermitian: bool = ..., +) -> NDArray[floating]: ... +@overload +def pinv( + a: _ArrayLikeComplex_co, + rcond: _ArrayLikeFloat_co = ..., + hermitian: bool = ..., +) -> NDArray[complexfloating]: ... + +# TODO: Returns a 2-tuple of scalars for 2D arrays and +# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise +def slogdet(a: _ArrayLikeComplex_co) -> SlogdetResult: ... + +# TODO: Returns a 2-tuple of scalars for 2D arrays and +# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise +def det(a: _ArrayLikeComplex_co) -> Any: ... + +@overload +def lstsq(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co, rcond: float | None = ...) -> tuple[ + NDArray[float64], + NDArray[float64], + int32, + NDArray[float64], +]: ... +@overload +def lstsq(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, rcond: float | None = ...) -> tuple[ + NDArray[floating], + NDArray[floating], + int32, + NDArray[floating], +]: ... +@overload +def lstsq(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co, rcond: float | None = ...) -> tuple[ + NDArray[complexfloating], + NDArray[floating], + int32, + NDArray[floating], +]: ... + +@overload +def norm( + x: ArrayLike, + ord: float | L["fro", "nuc"] | None = ..., + axis: None = ..., + keepdims: bool = ..., +) -> floating: ... +@overload +def norm( + x: ArrayLike, + ord: float | L["fro", "nuc"] | None = ..., + axis: SupportsInt | SupportsIndex | tuple[int, ...] = ..., + keepdims: bool = ..., +) -> Any: ... + +@overload +def matrix_norm( + x: ArrayLike, + /, + *, + ord: float | L["fro", "nuc"] | None = ..., + keepdims: bool = ..., +) -> floating: ... +@overload +def matrix_norm( + x: ArrayLike, + /, + *, + ord: float | L["fro", "nuc"] | None = ..., + keepdims: bool = ..., +) -> Any: ... + +@overload +def vector_norm( + x: ArrayLike, + /, + *, + axis: None = ..., + ord: float | None = ..., + keepdims: bool = ..., +) -> floating: ... +@overload +def vector_norm( + x: ArrayLike, + /, + *, + axis: SupportsInt | SupportsIndex | tuple[int, ...] = ..., + ord: float | None = ..., + keepdims: bool = ..., +) -> Any: ... + +# TODO: Returns a scalar or array +def multi_dot( + arrays: Iterable[_ArrayLikeComplex_co | _ArrayLikeObject_co | _ArrayLikeTD64_co], + *, + out: NDArray[Any] | None = ..., +) -> Any: ... + +def diagonal( + x: ArrayLike, # >= 2D array + /, + *, + offset: SupportsIndex = ..., +) -> NDArray[Any]: ... + +def trace( + x: ArrayLike, # >= 2D array + /, + *, + offset: SupportsIndex = ..., + dtype: DTypeLike = ..., +) -> Any: ... + +@overload +def cross( + x1: _ArrayLikeUInt_co, + x2: _ArrayLikeUInt_co, + /, + *, + axis: int = ..., +) -> NDArray[unsignedinteger]: ... +@overload +def cross( + x1: _ArrayLikeInt_co, + x2: _ArrayLikeInt_co, + /, + *, + axis: int = ..., +) -> NDArray[signedinteger]: ... +@overload +def cross( + x1: _ArrayLikeFloat_co, + x2: _ArrayLikeFloat_co, + /, + *, + axis: int = ..., +) -> NDArray[floating]: ... +@overload +def cross( + x1: _ArrayLikeComplex_co, + x2: _ArrayLikeComplex_co, + /, + *, + axis: int = ..., +) -> NDArray[complexfloating]: ... + +@overload +def matmul( + x1: _ArrayLikeInt_co, + x2: _ArrayLikeInt_co, +) -> NDArray[signedinteger]: ... +@overload +def matmul( + x1: _ArrayLikeUInt_co, + x2: _ArrayLikeUInt_co, +) -> NDArray[unsignedinteger]: ... +@overload +def matmul( + x1: _ArrayLikeFloat_co, + x2: _ArrayLikeFloat_co, +) -> NDArray[floating]: ... +@overload +def matmul( + x1: _ArrayLikeComplex_co, + x2: _ArrayLikeComplex_co, +) -> NDArray[complexfloating]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/linalg/_umath_linalg.cpython-312-x86_64-linux-gnu.so b/.venv/lib/python3.12/site-packages/numpy/linalg/_umath_linalg.cpython-312-x86_64-linux-gnu.so new file mode 100755 index 0000000..6fbf940 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/linalg/_umath_linalg.cpython-312-x86_64-linux-gnu.so differ diff --git a/.venv/lib/python3.12/site-packages/numpy/linalg/_umath_linalg.pyi b/.venv/lib/python3.12/site-packages/numpy/linalg/_umath_linalg.pyi new file mode 100644 index 0000000..cd07acd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/linalg/_umath_linalg.pyi @@ -0,0 +1,61 @@ +from typing import Final +from typing import Literal as L + +import numpy as np +from numpy._typing._ufunc import _GUFunc_Nin2_Nout1 + +__version__: Final[str] = ... +_ilp64: Final[bool] = ... + +### +# 1 -> 1 + +# (m,m) -> () +det: Final[np.ufunc] = ... +# (m,m) -> (m) +cholesky_lo: Final[np.ufunc] = ... +cholesky_up: Final[np.ufunc] = ... +eigvals: Final[np.ufunc] = ... +eigvalsh_lo: Final[np.ufunc] = ... +eigvalsh_up: Final[np.ufunc] = ... +# (m,m) -> (m,m) +inv: Final[np.ufunc] = ... +# (m,n) -> (p) +qr_r_raw: Final[np.ufunc] = ... +svd: Final[np.ufunc] = ... + +### +# 1 -> 2 + +# (m,m) -> (), () +slogdet: Final[np.ufunc] = ... +# (m,m) -> (m), (m,m) +eig: Final[np.ufunc] = ... +eigh_lo: Final[np.ufunc] = ... +eigh_up: Final[np.ufunc] = ... + +### +# 2 -> 1 + +# (m,n), (n) -> (m,m) +qr_complete: Final[_GUFunc_Nin2_Nout1[L["qr_complete"], L[2], None, L["(m,n),(n)->(m,m)"]]] = ... +# (m,n), (k) -> (m,k) +qr_reduced: Final[_GUFunc_Nin2_Nout1[L["qr_reduced"], L[2], None, L["(m,n),(k)->(m,k)"]]] = ... +# (m,m), (m,n) -> (m,n) +solve: Final[_GUFunc_Nin2_Nout1[L["solve"], L[4], None, L["(m,m),(m,n)->(m,n)"]]] = ... +# (m,m), (m) -> (m) +solve1: Final[_GUFunc_Nin2_Nout1[L["solve1"], L[4], None, L["(m,m),(m)->(m)"]]] = ... + +### +# 1 -> 3 + +# (m,n) -> (m,m), (p), (n,n) +svd_f: Final[np.ufunc] = ... +# (m,n) -> (m,p), (p), (p,n) +svd_s: Final[np.ufunc] = ... + +### +# 3 -> 4 + +# (m,n), (m,k), () -> (n,k), (k), (), (p) +lstsq: Final[np.ufunc] = ... diff --git a/.venv/lib/python3.12/site-packages/numpy/linalg/lapack_lite.cpython-312-x86_64-linux-gnu.so b/.venv/lib/python3.12/site-packages/numpy/linalg/lapack_lite.cpython-312-x86_64-linux-gnu.so new file mode 100755 index 0000000..aa39da7 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/linalg/lapack_lite.cpython-312-x86_64-linux-gnu.so differ diff --git a/.venv/lib/python3.12/site-packages/numpy/linalg/lapack_lite.pyi b/.venv/lib/python3.12/site-packages/numpy/linalg/lapack_lite.pyi new file mode 100644 index 0000000..835293a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/linalg/lapack_lite.pyi @@ -0,0 +1,141 @@ +from typing import Final, TypedDict, type_check_only + +import numpy as np +from numpy._typing import NDArray + +from ._linalg import fortran_int + +### + +@type_check_only +class _GELSD(TypedDict): + m: int + n: int + nrhs: int + lda: int + ldb: int + rank: int + lwork: int + info: int + +@type_check_only +class _DGELSD(_GELSD): + dgelsd_: int + rcond: float + +@type_check_only +class _ZGELSD(_GELSD): + zgelsd_: int + +@type_check_only +class _GEQRF(TypedDict): + m: int + n: int + lda: int + lwork: int + info: int + +@type_check_only +class _DGEQRF(_GEQRF): + dgeqrf_: int + +@type_check_only +class _ZGEQRF(_GEQRF): + zgeqrf_: int + +@type_check_only +class _DORGQR(TypedDict): + dorgqr_: int + info: int + +@type_check_only +class _ZUNGQR(TypedDict): + zungqr_: int + info: int + +### + +_ilp64: Final[bool] = ... + +def dgelsd( + m: int, + n: int, + nrhs: int, + a: NDArray[np.float64], + lda: int, + b: NDArray[np.float64], + ldb: int, + s: NDArray[np.float64], + rcond: float, + rank: int, + work: NDArray[np.float64], + lwork: int, + iwork: NDArray[fortran_int], + info: int, +) -> _DGELSD: ... +def zgelsd( + m: int, + n: int, + nrhs: int, + a: NDArray[np.complex128], + lda: int, + b: NDArray[np.complex128], + ldb: int, + s: NDArray[np.float64], + rcond: float, + rank: int, + work: NDArray[np.complex128], + lwork: int, + rwork: NDArray[np.float64], + iwork: NDArray[fortran_int], + info: int, +) -> _ZGELSD: ... + +# +def dgeqrf( + m: int, + n: int, + a: NDArray[np.float64], # in/out, shape: (lda, n) + lda: int, + tau: NDArray[np.float64], # out, shape: (min(m, n),) + work: NDArray[np.float64], # out, shape: (max(1, lwork),) + lwork: int, + info: int, # out +) -> _DGEQRF: ... +def zgeqrf( + m: int, + n: int, + a: NDArray[np.complex128], # in/out, shape: (lda, n) + lda: int, + tau: NDArray[np.complex128], # out, shape: (min(m, n),) + work: NDArray[np.complex128], # out, shape: (max(1, lwork),) + lwork: int, + info: int, # out +) -> _ZGEQRF: ... + +# +def dorgqr( + m: int, # >=0 + n: int, # m >= n >= 0 + k: int, # n >= k >= 0 + a: NDArray[np.float64], # in/out, shape: (lda, n) + lda: int, # >= max(1, m) + tau: NDArray[np.float64], # in, shape: (k,) + work: NDArray[np.float64], # out, shape: (max(1, lwork),) + lwork: int, + info: int, # out +) -> _DORGQR: ... +def zungqr( + m: int, + n: int, + k: int, + a: NDArray[np.complex128], + lda: int, + tau: NDArray[np.complex128], + work: NDArray[np.complex128], + lwork: int, + info: int, +) -> _ZUNGQR: ... + +# +def xerbla(srname: object, info: int) -> None: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/linalg/linalg.py b/.venv/lib/python3.12/site-packages/numpy/linalg/linalg.py new file mode 100644 index 0000000..81c80d0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/linalg/linalg.py @@ -0,0 +1,17 @@ +def __getattr__(attr_name): + import warnings + + from numpy.linalg import _linalg + ret = getattr(_linalg, attr_name, None) + if ret is None: + raise AttributeError( + f"module 'numpy.linalg.linalg' has no attribute {attr_name}") + warnings.warn( + "The numpy.linalg.linalg has been made private and renamed to " + "numpy.linalg._linalg. All public functions exported by it are " + f"available from numpy.linalg. Please use numpy.linalg.{attr_name} " + "instead.", + DeprecationWarning, + stacklevel=3 + ) + return ret diff --git a/.venv/lib/python3.12/site-packages/numpy/linalg/linalg.pyi b/.venv/lib/python3.12/site-packages/numpy/linalg/linalg.pyi new file mode 100644 index 0000000..dbe9bec --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/linalg/linalg.pyi @@ -0,0 +1,69 @@ +from ._linalg import ( + LinAlgError, + cholesky, + cond, + cross, + det, + diagonal, + eig, + eigh, + eigvals, + eigvalsh, + inv, + lstsq, + matmul, + matrix_norm, + matrix_power, + matrix_rank, + matrix_transpose, + multi_dot, + norm, + outer, + pinv, + qr, + slogdet, + solve, + svd, + svdvals, + tensordot, + tensorinv, + tensorsolve, + trace, + vecdot, + vector_norm, +) + +__all__ = [ + "LinAlgError", + "cholesky", + "cond", + "cross", + "det", + "diagonal", + "eig", + "eigh", + "eigvals", + "eigvalsh", + "inv", + "lstsq", + "matmul", + "matrix_norm", + "matrix_power", + "matrix_rank", + "matrix_transpose", + "multi_dot", + "norm", + "outer", + "pinv", + "qr", + "slogdet", + "solve", + "svd", + "svdvals", + "tensordot", + "tensorinv", + "tensorsolve", + "trace", + "vecdot", + "vector_norm", +] diff --git a/.venv/lib/python3.12/site-packages/numpy/linalg/tests/__init__.py b/.venv/lib/python3.12/site-packages/numpy/linalg/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/.venv/lib/python3.12/site-packages/numpy/linalg/tests/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/linalg/tests/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..cc537ca Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/linalg/tests/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/linalg/tests/__pycache__/test_deprecations.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/linalg/tests/__pycache__/test_deprecations.cpython-312.pyc new file mode 100644 index 0000000..38df258 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/linalg/tests/__pycache__/test_deprecations.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/linalg/tests/__pycache__/test_linalg.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/linalg/tests/__pycache__/test_linalg.cpython-312.pyc new file mode 100644 index 0000000..8afeed5 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/linalg/tests/__pycache__/test_linalg.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/linalg/tests/__pycache__/test_regression.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/linalg/tests/__pycache__/test_regression.cpython-312.pyc new file mode 100644 index 0000000..4320f33 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/linalg/tests/__pycache__/test_regression.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/linalg/tests/test_deprecations.py b/.venv/lib/python3.12/site-packages/numpy/linalg/tests/test_deprecations.py new file mode 100644 index 0000000..cd4c108 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/linalg/tests/test_deprecations.py @@ -0,0 +1,20 @@ +"""Test deprecation and future warnings. + +""" +import numpy as np +from numpy.testing import assert_warns + + +def test_qr_mode_full_future_warning(): + """Check mode='full' FutureWarning. + + In numpy 1.8 the mode options 'full' and 'economic' in linalg.qr were + deprecated. The release date will probably be sometime in the summer + of 2013. + + """ + a = np.eye(2) + assert_warns(DeprecationWarning, np.linalg.qr, a, mode='full') + assert_warns(DeprecationWarning, np.linalg.qr, a, mode='f') + assert_warns(DeprecationWarning, np.linalg.qr, a, mode='economic') + assert_warns(DeprecationWarning, np.linalg.qr, a, mode='e') diff --git a/.venv/lib/python3.12/site-packages/numpy/linalg/tests/test_linalg.py b/.venv/lib/python3.12/site-packages/numpy/linalg/tests/test_linalg.py new file mode 100644 index 0000000..cbf7dd6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/linalg/tests/test_linalg.py @@ -0,0 +1,2430 @@ +""" Test functions for linalg module + +""" +import itertools +import os +import subprocess +import sys +import textwrap +import threading +import traceback + +import pytest + +import numpy as np +from numpy import ( + array, + asarray, + atleast_2d, + cdouble, + csingle, + dot, + double, + identity, + inf, + linalg, + matmul, + multiply, + single, +) +from numpy._core import swapaxes +from numpy.exceptions import AxisError +from numpy.linalg import LinAlgError, matrix_power, matrix_rank, multi_dot, norm +from numpy.linalg._linalg import _multi_dot_matrix_chain_order +from numpy.testing import ( + HAS_LAPACK64, + IS_WASM, + NOGIL_BUILD, + assert_, + assert_allclose, + assert_almost_equal, + assert_array_equal, + assert_equal, + assert_raises, + assert_raises_regex, + suppress_warnings, +) + +try: + import numpy.linalg.lapack_lite +except ImportError: + # May be broken when numpy was built without BLAS/LAPACK present + # If so, ensure we don't break the whole test suite - the `lapack_lite` + # submodule should be removed, it's only used in two tests in this file. + pass + + +def consistent_subclass(out, in_): + # For ndarray subclass input, our output should have the same subclass + # (non-ndarray input gets converted to ndarray). + return type(out) is (type(in_) if isinstance(in_, np.ndarray) + else np.ndarray) + + +old_assert_almost_equal = assert_almost_equal + + +def assert_almost_equal(a, b, single_decimal=6, double_decimal=12, **kw): + if asarray(a).dtype.type in (single, csingle): + decimal = single_decimal + else: + decimal = double_decimal + old_assert_almost_equal(a, b, decimal=decimal, **kw) + + +def get_real_dtype(dtype): + return {single: single, double: double, + csingle: single, cdouble: double}[dtype] + + +def get_complex_dtype(dtype): + return {single: csingle, double: cdouble, + csingle: csingle, cdouble: cdouble}[dtype] + + +def get_rtol(dtype): + # Choose a safe rtol + if dtype in (single, csingle): + return 1e-5 + else: + return 1e-11 + + +# used to categorize tests +all_tags = { + 'square', 'nonsquare', 'hermitian', # mutually exclusive + 'generalized', 'size-0', 'strided' # optional additions +} + + +class LinalgCase: + def __init__(self, name, a, b, tags=set()): + """ + A bundle of arguments to be passed to a test case, with an identifying + name, the operands a and b, and a set of tags to filter the tests + """ + assert_(isinstance(name, str)) + self.name = name + self.a = a + self.b = b + self.tags = frozenset(tags) # prevent shared tags + + def check(self, do): + """ + Run the function `do` on this test case, expanding arguments + """ + do(self.a, self.b, tags=self.tags) + + def __repr__(self): + return f'' + + +def apply_tag(tag, cases): + """ + Add the given tag (a string) to each of the cases (a list of LinalgCase + objects) + """ + assert tag in all_tags, "Invalid tag" + for case in cases: + case.tags = case.tags | {tag} + return cases + + +# +# Base test cases +# + +np.random.seed(1234) + +CASES = [] + +# square test cases +CASES += apply_tag('square', [ + LinalgCase("single", + array([[1., 2.], [3., 4.]], dtype=single), + array([2., 1.], dtype=single)), + LinalgCase("double", + array([[1., 2.], [3., 4.]], dtype=double), + array([2., 1.], dtype=double)), + LinalgCase("double_2", + array([[1., 2.], [3., 4.]], dtype=double), + array([[2., 1., 4.], [3., 4., 6.]], dtype=double)), + LinalgCase("csingle", + array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=csingle), + array([2. + 1j, 1. + 2j], dtype=csingle)), + LinalgCase("cdouble", + array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble), + array([2. + 1j, 1. + 2j], dtype=cdouble)), + LinalgCase("cdouble_2", + array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble), + array([[2. + 1j, 1. + 2j, 1 + 3j], [1 - 2j, 1 - 3j, 1 - 6j]], dtype=cdouble)), + LinalgCase("0x0", + np.empty((0, 0), dtype=double), + np.empty((0,), dtype=double), + tags={'size-0'}), + LinalgCase("8x8", + np.random.rand(8, 8), + np.random.rand(8)), + LinalgCase("1x1", + np.random.rand(1, 1), + np.random.rand(1)), + LinalgCase("nonarray", + [[1, 2], [3, 4]], + [2, 1]), +]) + +# non-square test-cases +CASES += apply_tag('nonsquare', [ + LinalgCase("single_nsq_1", + array([[1., 2., 3.], [3., 4., 6.]], dtype=single), + array([2., 1.], dtype=single)), + LinalgCase("single_nsq_2", + array([[1., 2.], [3., 4.], [5., 6.]], dtype=single), + array([2., 1., 3.], dtype=single)), + LinalgCase("double_nsq_1", + array([[1., 2., 3.], [3., 4., 6.]], dtype=double), + array([2., 1.], dtype=double)), + LinalgCase("double_nsq_2", + array([[1., 2.], [3., 4.], [5., 6.]], dtype=double), + array([2., 1., 3.], dtype=double)), + LinalgCase("csingle_nsq_1", + array( + [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=csingle), + array([2. + 1j, 1. + 2j], dtype=csingle)), + LinalgCase("csingle_nsq_2", + array( + [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=csingle), + array([2. + 1j, 1. + 2j, 3. - 3j], dtype=csingle)), + LinalgCase("cdouble_nsq_1", + array( + [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble), + array([2. + 1j, 1. + 2j], dtype=cdouble)), + LinalgCase("cdouble_nsq_2", + array( + [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble), + array([2. + 1j, 1. + 2j, 3. - 3j], dtype=cdouble)), + LinalgCase("cdouble_nsq_1_2", + array( + [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble), + array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)), + LinalgCase("cdouble_nsq_2_2", + array( + [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble), + array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)), + LinalgCase("8x11", + np.random.rand(8, 11), + np.random.rand(8)), + LinalgCase("1x5", + np.random.rand(1, 5), + np.random.rand(1)), + LinalgCase("5x1", + np.random.rand(5, 1), + np.random.rand(5)), + LinalgCase("0x4", + np.random.rand(0, 4), + np.random.rand(0), + tags={'size-0'}), + LinalgCase("4x0", + np.random.rand(4, 0), + np.random.rand(4), + tags={'size-0'}), +]) + +# hermitian test-cases +CASES += apply_tag('hermitian', [ + LinalgCase("hsingle", + array([[1., 2.], [2., 1.]], dtype=single), + None), + LinalgCase("hdouble", + array([[1., 2.], [2., 1.]], dtype=double), + None), + LinalgCase("hcsingle", + array([[1., 2 + 3j], [2 - 3j, 1]], dtype=csingle), + None), + LinalgCase("hcdouble", + array([[1., 2 + 3j], [2 - 3j, 1]], dtype=cdouble), + None), + LinalgCase("hempty", + np.empty((0, 0), dtype=double), + None, + tags={'size-0'}), + LinalgCase("hnonarray", + [[1, 2], [2, 1]], + None), + LinalgCase("matrix_b_only", + array([[1., 2.], [2., 1.]]), + None), + LinalgCase("hmatrix_1x1", + np.random.rand(1, 1), + None), +]) + + +# +# Gufunc test cases +# +def _make_generalized_cases(): + new_cases = [] + + for case in CASES: + if not isinstance(case.a, np.ndarray): + continue + + a = np.array([case.a, 2 * case.a, 3 * case.a]) + if case.b is None: + b = None + elif case.b.ndim == 1: + b = case.b + else: + b = np.array([case.b, 7 * case.b, 6 * case.b]) + new_case = LinalgCase(case.name + "_tile3", a, b, + tags=case.tags | {'generalized'}) + new_cases.append(new_case) + + a = np.array([case.a] * 2 * 3).reshape((3, 2) + case.a.shape) + if case.b is None: + b = None + elif case.b.ndim == 1: + b = np.array([case.b] * 2 * 3 * a.shape[-1])\ + .reshape((3, 2) + case.a.shape[-2:]) + else: + b = np.array([case.b] * 2 * 3).reshape((3, 2) + case.b.shape) + new_case = LinalgCase(case.name + "_tile213", a, b, + tags=case.tags | {'generalized'}) + new_cases.append(new_case) + + return new_cases + + +CASES += _make_generalized_cases() + + +# +# Generate stride combination variations of the above +# +def _stride_comb_iter(x): + """ + Generate cartesian product of strides for all axes + """ + + if not isinstance(x, np.ndarray): + yield x, "nop" + return + + stride_set = [(1,)] * x.ndim + stride_set[-1] = (1, 3, -4) + if x.ndim > 1: + stride_set[-2] = (1, 3, -4) + if x.ndim > 2: + stride_set[-3] = (1, -4) + + for repeats in itertools.product(*tuple(stride_set)): + new_shape = [abs(a * b) for a, b in zip(x.shape, repeats)] + slices = tuple(slice(None, None, repeat) for repeat in repeats) + + # new array with different strides, but same data + xi = np.empty(new_shape, dtype=x.dtype) + xi.view(np.uint32).fill(0xdeadbeef) + xi = xi[slices] + xi[...] = x + xi = xi.view(x.__class__) + assert_(np.all(xi == x)) + yield xi, "stride_" + "_".join(["%+d" % j for j in repeats]) + + # generate also zero strides if possible + if x.ndim >= 1 and x.shape[-1] == 1: + s = list(x.strides) + s[-1] = 0 + xi = np.lib.stride_tricks.as_strided(x, strides=s) + yield xi, "stride_xxx_0" + if x.ndim >= 2 and x.shape[-2] == 1: + s = list(x.strides) + s[-2] = 0 + xi = np.lib.stride_tricks.as_strided(x, strides=s) + yield xi, "stride_xxx_0_x" + if x.ndim >= 2 and x.shape[:-2] == (1, 1): + s = list(x.strides) + s[-1] = 0 + s[-2] = 0 + xi = np.lib.stride_tricks.as_strided(x, strides=s) + yield xi, "stride_xxx_0_0" + + +def _make_strided_cases(): + new_cases = [] + for case in CASES: + for a, a_label in _stride_comb_iter(case.a): + for b, b_label in _stride_comb_iter(case.b): + new_case = LinalgCase(case.name + "_" + a_label + "_" + b_label, a, b, + tags=case.tags | {'strided'}) + new_cases.append(new_case) + return new_cases + + +CASES += _make_strided_cases() + + +# +# Test different routines against the above cases +# +class LinalgTestCase: + TEST_CASES = CASES + + def check_cases(self, require=set(), exclude=set()): + """ + Run func on each of the cases with all of the tags in require, and none + of the tags in exclude + """ + for case in self.TEST_CASES: + # filter by require and exclude + if case.tags & require != require: + continue + if case.tags & exclude: + continue + + try: + case.check(self.do) + except Exception as e: + msg = f'In test case: {case!r}\n\n' + msg += traceback.format_exc() + raise AssertionError(msg) from e + + +class LinalgSquareTestCase(LinalgTestCase): + + def test_sq_cases(self): + self.check_cases(require={'square'}, + exclude={'generalized', 'size-0'}) + + def test_empty_sq_cases(self): + self.check_cases(require={'square', 'size-0'}, + exclude={'generalized'}) + + +class LinalgNonsquareTestCase(LinalgTestCase): + + def test_nonsq_cases(self): + self.check_cases(require={'nonsquare'}, + exclude={'generalized', 'size-0'}) + + def test_empty_nonsq_cases(self): + self.check_cases(require={'nonsquare', 'size-0'}, + exclude={'generalized'}) + + +class HermitianTestCase(LinalgTestCase): + + def test_herm_cases(self): + self.check_cases(require={'hermitian'}, + exclude={'generalized', 'size-0'}) + + def test_empty_herm_cases(self): + self.check_cases(require={'hermitian', 'size-0'}, + exclude={'generalized'}) + + +class LinalgGeneralizedSquareTestCase(LinalgTestCase): + + @pytest.mark.slow + def test_generalized_sq_cases(self): + self.check_cases(require={'generalized', 'square'}, + exclude={'size-0'}) + + @pytest.mark.slow + def test_generalized_empty_sq_cases(self): + self.check_cases(require={'generalized', 'square', 'size-0'}) + + +class LinalgGeneralizedNonsquareTestCase(LinalgTestCase): + + @pytest.mark.slow + def test_generalized_nonsq_cases(self): + self.check_cases(require={'generalized', 'nonsquare'}, + exclude={'size-0'}) + + @pytest.mark.slow + def test_generalized_empty_nonsq_cases(self): + self.check_cases(require={'generalized', 'nonsquare', 'size-0'}) + + +class HermitianGeneralizedTestCase(LinalgTestCase): + + @pytest.mark.slow + def test_generalized_herm_cases(self): + self.check_cases(require={'generalized', 'hermitian'}, + exclude={'size-0'}) + + @pytest.mark.slow + def test_generalized_empty_herm_cases(self): + self.check_cases(require={'generalized', 'hermitian', 'size-0'}, + exclude={'none'}) + + +def identity_like_generalized(a): + a = asarray(a) + if a.ndim >= 3: + r = np.empty(a.shape, dtype=a.dtype) + r[...] = identity(a.shape[-2]) + return r + else: + return identity(a.shape[0]) + + +class SolveCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): + # kept apart from TestSolve for use for testing with matrices. + def do(self, a, b, tags): + x = linalg.solve(a, b) + if np.array(b).ndim == 1: + # When a is (..., M, M) and b is (M,), it is the same as when b is + # (M, 1), except the result has shape (..., M) + adotx = matmul(a, x[..., None])[..., 0] + assert_almost_equal(np.broadcast_to(b, adotx.shape), adotx) + else: + adotx = matmul(a, x) + assert_almost_equal(b, adotx) + assert_(consistent_subclass(x, b)) + + +class TestSolve(SolveCases): + @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble]) + def test_types(self, dtype): + x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) + assert_equal(linalg.solve(x, x).dtype, dtype) + + def test_1_d(self): + class ArraySubclass(np.ndarray): + pass + a = np.arange(8).reshape(2, 2, 2) + b = np.arange(2).view(ArraySubclass) + result = linalg.solve(a, b) + assert result.shape == (2, 2) + + # If b is anything other than 1-D it should be treated as a stack of + # matrices + b = np.arange(4).reshape(2, 2).view(ArraySubclass) + result = linalg.solve(a, b) + assert result.shape == (2, 2, 2) + + b = np.arange(2).reshape(1, 2).view(ArraySubclass) + assert_raises(ValueError, linalg.solve, a, b) + + def test_0_size(self): + class ArraySubclass(np.ndarray): + pass + # Test system of 0x0 matrices + a = np.arange(8).reshape(2, 2, 2) + b = np.arange(6).reshape(1, 2, 3).view(ArraySubclass) + + expected = linalg.solve(a, b)[:, 0:0, :] + result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, :]) + assert_array_equal(result, expected) + assert_(isinstance(result, ArraySubclass)) + + # Test errors for non-square and only b's dimension being 0 + assert_raises(linalg.LinAlgError, linalg.solve, a[:, 0:0, 0:1], b) + assert_raises(ValueError, linalg.solve, a, b[:, 0:0, :]) + + # Test broadcasting error + b = np.arange(6).reshape(1, 3, 2) # broadcasting error + assert_raises(ValueError, linalg.solve, a, b) + assert_raises(ValueError, linalg.solve, a[0:0], b[0:0]) + + # Test zero "single equations" with 0x0 matrices. + b = np.arange(2).view(ArraySubclass) + expected = linalg.solve(a, b)[:, 0:0] + result = linalg.solve(a[:, 0:0, 0:0], b[0:0]) + assert_array_equal(result, expected) + assert_(isinstance(result, ArraySubclass)) + + b = np.arange(3).reshape(1, 3) + assert_raises(ValueError, linalg.solve, a, b) + assert_raises(ValueError, linalg.solve, a[0:0], b[0:0]) + assert_raises(ValueError, linalg.solve, a[:, 0:0, 0:0], b) + + def test_0_size_k(self): + # test zero multiple equation (K=0) case. + class ArraySubclass(np.ndarray): + pass + a = np.arange(4).reshape(1, 2, 2) + b = np.arange(6).reshape(3, 2, 1).view(ArraySubclass) + + expected = linalg.solve(a, b)[:, :, 0:0] + result = linalg.solve(a, b[:, :, 0:0]) + assert_array_equal(result, expected) + assert_(isinstance(result, ArraySubclass)) + + # test both zero. + expected = linalg.solve(a, b)[:, 0:0, 0:0] + result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, 0:0]) + assert_array_equal(result, expected) + assert_(isinstance(result, ArraySubclass)) + + +class InvCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): + + def do(self, a, b, tags): + a_inv = linalg.inv(a) + assert_almost_equal(matmul(a, a_inv), + identity_like_generalized(a)) + assert_(consistent_subclass(a_inv, a)) + + +class TestInv(InvCases): + @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble]) + def test_types(self, dtype): + x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) + assert_equal(linalg.inv(x).dtype, dtype) + + def test_0_size(self): + # Check that all kinds of 0-sized arrays work + class ArraySubclass(np.ndarray): + pass + a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) + res = linalg.inv(a) + assert_(res.dtype.type is np.float64) + assert_equal(a.shape, res.shape) + assert_(isinstance(res, ArraySubclass)) + + a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) + res = linalg.inv(a) + assert_(res.dtype.type is np.complex64) + assert_equal(a.shape, res.shape) + assert_(isinstance(res, ArraySubclass)) + + +class EigvalsCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): + + def do(self, a, b, tags): + ev = linalg.eigvals(a) + evalues, evectors = linalg.eig(a) + assert_almost_equal(ev, evalues) + + +class TestEigvals(EigvalsCases): + @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble]) + def test_types(self, dtype): + x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) + assert_equal(linalg.eigvals(x).dtype, dtype) + x = np.array([[1, 0.5], [-1, 1]], dtype=dtype) + assert_equal(linalg.eigvals(x).dtype, get_complex_dtype(dtype)) + + def test_0_size(self): + # Check that all kinds of 0-sized arrays work + class ArraySubclass(np.ndarray): + pass + a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) + res = linalg.eigvals(a) + assert_(res.dtype.type is np.float64) + assert_equal((0, 1), res.shape) + # This is just for documentation, it might make sense to change: + assert_(isinstance(res, np.ndarray)) + + a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) + res = linalg.eigvals(a) + assert_(res.dtype.type is np.complex64) + assert_equal((0,), res.shape) + # This is just for documentation, it might make sense to change: + assert_(isinstance(res, np.ndarray)) + + +class EigCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): + + def do(self, a, b, tags): + res = linalg.eig(a) + eigenvalues, eigenvectors = res.eigenvalues, res.eigenvectors + assert_allclose(matmul(a, eigenvectors), + np.asarray(eigenvectors) * np.asarray(eigenvalues)[..., None, :], + rtol=get_rtol(eigenvalues.dtype)) + assert_(consistent_subclass(eigenvectors, a)) + + +class TestEig(EigCases): + @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble]) + def test_types(self, dtype): + x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) + w, v = np.linalg.eig(x) + assert_equal(w.dtype, dtype) + assert_equal(v.dtype, dtype) + + x = np.array([[1, 0.5], [-1, 1]], dtype=dtype) + w, v = np.linalg.eig(x) + assert_equal(w.dtype, get_complex_dtype(dtype)) + assert_equal(v.dtype, get_complex_dtype(dtype)) + + def test_0_size(self): + # Check that all kinds of 0-sized arrays work + class ArraySubclass(np.ndarray): + pass + a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) + res, res_v = linalg.eig(a) + assert_(res_v.dtype.type is np.float64) + assert_(res.dtype.type is np.float64) + assert_equal(a.shape, res_v.shape) + assert_equal((0, 1), res.shape) + # This is just for documentation, it might make sense to change: + assert_(isinstance(a, np.ndarray)) + + a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) + res, res_v = linalg.eig(a) + assert_(res_v.dtype.type is np.complex64) + assert_(res.dtype.type is np.complex64) + assert_equal(a.shape, res_v.shape) + assert_equal((0,), res.shape) + # This is just for documentation, it might make sense to change: + assert_(isinstance(a, np.ndarray)) + + +class SVDBaseTests: + hermitian = False + + @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble]) + def test_types(self, dtype): + x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) + res = linalg.svd(x) + U, S, Vh = res.U, res.S, res.Vh + assert_equal(U.dtype, dtype) + assert_equal(S.dtype, get_real_dtype(dtype)) + assert_equal(Vh.dtype, dtype) + s = linalg.svd(x, compute_uv=False, hermitian=self.hermitian) + assert_equal(s.dtype, get_real_dtype(dtype)) + + +class SVDCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): + + def do(self, a, b, tags): + u, s, vt = linalg.svd(a, False) + assert_allclose(a, matmul(np.asarray(u) * np.asarray(s)[..., None, :], + np.asarray(vt)), + rtol=get_rtol(u.dtype)) + assert_(consistent_subclass(u, a)) + assert_(consistent_subclass(vt, a)) + + +class TestSVD(SVDCases, SVDBaseTests): + def test_empty_identity(self): + """ Empty input should put an identity matrix in u or vh """ + x = np.empty((4, 0)) + u, s, vh = linalg.svd(x, compute_uv=True, hermitian=self.hermitian) + assert_equal(u.shape, (4, 4)) + assert_equal(vh.shape, (0, 0)) + assert_equal(u, np.eye(4)) + + x = np.empty((0, 4)) + u, s, vh = linalg.svd(x, compute_uv=True, hermitian=self.hermitian) + assert_equal(u.shape, (0, 0)) + assert_equal(vh.shape, (4, 4)) + assert_equal(vh, np.eye(4)) + + def test_svdvals(self): + x = np.array([[1, 0.5], [0.5, 1]]) + s_from_svd = linalg.svd(x, compute_uv=False, hermitian=self.hermitian) + s_from_svdvals = linalg.svdvals(x) + assert_almost_equal(s_from_svd, s_from_svdvals) + + +class SVDHermitianCases(HermitianTestCase, HermitianGeneralizedTestCase): + + def do(self, a, b, tags): + u, s, vt = linalg.svd(a, False, hermitian=True) + assert_allclose(a, matmul(np.asarray(u) * np.asarray(s)[..., None, :], + np.asarray(vt)), + rtol=get_rtol(u.dtype)) + + def hermitian(mat): + axes = list(range(mat.ndim)) + axes[-1], axes[-2] = axes[-2], axes[-1] + return np.conj(np.transpose(mat, axes=axes)) + + assert_almost_equal(np.matmul(u, hermitian(u)), np.broadcast_to(np.eye(u.shape[-1]), u.shape)) + assert_almost_equal(np.matmul(vt, hermitian(vt)), np.broadcast_to(np.eye(vt.shape[-1]), vt.shape)) + assert_equal(np.sort(s)[..., ::-1], s) + assert_(consistent_subclass(u, a)) + assert_(consistent_subclass(vt, a)) + + +class TestSVDHermitian(SVDHermitianCases, SVDBaseTests): + hermitian = True + + +class CondCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): + # cond(x, p) for p in (None, 2, -2) + + def do(self, a, b, tags): + c = asarray(a) # a might be a matrix + if 'size-0' in tags: + assert_raises(LinAlgError, linalg.cond, c) + return + + # +-2 norms + s = linalg.svd(c, compute_uv=False) + assert_almost_equal( + linalg.cond(a), s[..., 0] / s[..., -1], + single_decimal=5, double_decimal=11) + assert_almost_equal( + linalg.cond(a, 2), s[..., 0] / s[..., -1], + single_decimal=5, double_decimal=11) + assert_almost_equal( + linalg.cond(a, -2), s[..., -1] / s[..., 0], + single_decimal=5, double_decimal=11) + + # Other norms + cinv = np.linalg.inv(c) + assert_almost_equal( + linalg.cond(a, 1), + abs(c).sum(-2).max(-1) * abs(cinv).sum(-2).max(-1), + single_decimal=5, double_decimal=11) + assert_almost_equal( + linalg.cond(a, -1), + abs(c).sum(-2).min(-1) * abs(cinv).sum(-2).min(-1), + single_decimal=5, double_decimal=11) + assert_almost_equal( + linalg.cond(a, np.inf), + abs(c).sum(-1).max(-1) * abs(cinv).sum(-1).max(-1), + single_decimal=5, double_decimal=11) + assert_almost_equal( + linalg.cond(a, -np.inf), + abs(c).sum(-1).min(-1) * abs(cinv).sum(-1).min(-1), + single_decimal=5, double_decimal=11) + assert_almost_equal( + linalg.cond(a, 'fro'), + np.sqrt((abs(c)**2).sum(-1).sum(-1) + * (abs(cinv)**2).sum(-1).sum(-1)), + single_decimal=5, double_decimal=11) + + +class TestCond(CondCases): + def test_basic_nonsvd(self): + # Smoketest the non-svd norms + A = array([[1., 0, 1], [0, -2., 0], [0, 0, 3.]]) + assert_almost_equal(linalg.cond(A, inf), 4) + assert_almost_equal(linalg.cond(A, -inf), 2 / 3) + assert_almost_equal(linalg.cond(A, 1), 4) + assert_almost_equal(linalg.cond(A, -1), 0.5) + assert_almost_equal(linalg.cond(A, 'fro'), np.sqrt(265 / 12)) + + def test_singular(self): + # Singular matrices have infinite condition number for + # positive norms, and negative norms shouldn't raise + # exceptions + As = [np.zeros((2, 2)), np.ones((2, 2))] + p_pos = [None, 1, 2, 'fro'] + p_neg = [-1, -2] + for A, p in itertools.product(As, p_pos): + # Inversion may not hit exact infinity, so just check the + # number is large + assert_(linalg.cond(A, p) > 1e15) + for A, p in itertools.product(As, p_neg): + linalg.cond(A, p) + + @pytest.mark.xfail(True, run=False, + reason="Platform/LAPACK-dependent failure, " + "see gh-18914") + def test_nan(self): + # nans should be passed through, not converted to infs + ps = [None, 1, -1, 2, -2, 'fro'] + p_pos = [None, 1, 2, 'fro'] + + A = np.ones((2, 2)) + A[0, 1] = np.nan + for p in ps: + c = linalg.cond(A, p) + assert_(isinstance(c, np.float64)) + assert_(np.isnan(c)) + + A = np.ones((3, 2, 2)) + A[1, 0, 1] = np.nan + for p in ps: + c = linalg.cond(A, p) + assert_(np.isnan(c[1])) + if p in p_pos: + assert_(c[0] > 1e15) + assert_(c[2] > 1e15) + else: + assert_(not np.isnan(c[0])) + assert_(not np.isnan(c[2])) + + def test_stacked_singular(self): + # Check behavior when only some of the stacked matrices are + # singular + np.random.seed(1234) + A = np.random.rand(2, 2, 2, 2) + A[0, 0] = 0 + A[1, 1] = 0 + + for p in (None, 1, 2, 'fro', -1, -2): + c = linalg.cond(A, p) + assert_equal(c[0, 0], np.inf) + assert_equal(c[1, 1], np.inf) + assert_(np.isfinite(c[0, 1])) + assert_(np.isfinite(c[1, 0])) + + +class PinvCases(LinalgSquareTestCase, + LinalgNonsquareTestCase, + LinalgGeneralizedSquareTestCase, + LinalgGeneralizedNonsquareTestCase): + + def do(self, a, b, tags): + a_ginv = linalg.pinv(a) + # `a @ a_ginv == I` does not hold if a is singular + dot = matmul + assert_almost_equal(dot(dot(a, a_ginv), a), a, single_decimal=5, double_decimal=11) + assert_(consistent_subclass(a_ginv, a)) + + +class TestPinv(PinvCases): + pass + + +class PinvHermitianCases(HermitianTestCase, HermitianGeneralizedTestCase): + + def do(self, a, b, tags): + a_ginv = linalg.pinv(a, hermitian=True) + # `a @ a_ginv == I` does not hold if a is singular + dot = matmul + assert_almost_equal(dot(dot(a, a_ginv), a), a, single_decimal=5, double_decimal=11) + assert_(consistent_subclass(a_ginv, a)) + + +class TestPinvHermitian(PinvHermitianCases): + pass + + +def test_pinv_rtol_arg(): + a = np.array([[1, 2, 3], [4, 1, 1], [2, 3, 1]]) + + assert_almost_equal( + np.linalg.pinv(a, rcond=0.5), + np.linalg.pinv(a, rtol=0.5), + ) + + with pytest.raises( + ValueError, match=r"`rtol` and `rcond` can't be both set." + ): + np.linalg.pinv(a, rcond=0.5, rtol=0.5) + + +class DetCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): + + def do(self, a, b, tags): + d = linalg.det(a) + res = linalg.slogdet(a) + s, ld = res.sign, res.logabsdet + if asarray(a).dtype.type in (single, double): + ad = asarray(a).astype(double) + else: + ad = asarray(a).astype(cdouble) + ev = linalg.eigvals(ad) + assert_almost_equal(d, multiply.reduce(ev, axis=-1)) + assert_almost_equal(s * np.exp(ld), multiply.reduce(ev, axis=-1)) + + s = np.atleast_1d(s) + ld = np.atleast_1d(ld) + m = (s != 0) + assert_almost_equal(np.abs(s[m]), 1) + assert_equal(ld[~m], -inf) + + +class TestDet(DetCases): + def test_zero(self): + assert_equal(linalg.det([[0.0]]), 0.0) + assert_equal(type(linalg.det([[0.0]])), double) + assert_equal(linalg.det([[0.0j]]), 0.0) + assert_equal(type(linalg.det([[0.0j]])), cdouble) + + assert_equal(linalg.slogdet([[0.0]]), (0.0, -inf)) + assert_equal(type(linalg.slogdet([[0.0]])[0]), double) + assert_equal(type(linalg.slogdet([[0.0]])[1]), double) + assert_equal(linalg.slogdet([[0.0j]]), (0.0j, -inf)) + assert_equal(type(linalg.slogdet([[0.0j]])[0]), cdouble) + assert_equal(type(linalg.slogdet([[0.0j]])[1]), double) + + @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble]) + def test_types(self, dtype): + x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) + assert_equal(np.linalg.det(x).dtype, dtype) + ph, s = np.linalg.slogdet(x) + assert_equal(s.dtype, get_real_dtype(dtype)) + assert_equal(ph.dtype, dtype) + + def test_0_size(self): + a = np.zeros((0, 0), dtype=np.complex64) + res = linalg.det(a) + assert_equal(res, 1.) + assert_(res.dtype.type is np.complex64) + res = linalg.slogdet(a) + assert_equal(res, (1, 0)) + assert_(res[0].dtype.type is np.complex64) + assert_(res[1].dtype.type is np.float32) + + a = np.zeros((0, 0), dtype=np.float64) + res = linalg.det(a) + assert_equal(res, 1.) + assert_(res.dtype.type is np.float64) + res = linalg.slogdet(a) + assert_equal(res, (1, 0)) + assert_(res[0].dtype.type is np.float64) + assert_(res[1].dtype.type is np.float64) + + +class LstsqCases(LinalgSquareTestCase, LinalgNonsquareTestCase): + + def do(self, a, b, tags): + arr = np.asarray(a) + m, n = arr.shape + u, s, vt = linalg.svd(a, False) + x, residuals, rank, sv = linalg.lstsq(a, b, rcond=-1) + if m == 0: + assert_((x == 0).all()) + if m <= n: + assert_almost_equal(b, dot(a, x)) + assert_equal(rank, m) + else: + assert_equal(rank, n) + assert_almost_equal(sv, sv.__array_wrap__(s)) + if rank == n and m > n: + expect_resids = ( + np.asarray(abs(np.dot(a, x) - b)) ** 2).sum(axis=0) + expect_resids = np.asarray(expect_resids) + if np.asarray(b).ndim == 1: + expect_resids.shape = (1,) + assert_equal(residuals.shape, expect_resids.shape) + else: + expect_resids = np.array([]).view(type(x)) + assert_almost_equal(residuals, expect_resids) + assert_(np.issubdtype(residuals.dtype, np.floating)) + assert_(consistent_subclass(x, b)) + assert_(consistent_subclass(residuals, b)) + + +class TestLstsq(LstsqCases): + def test_rcond(self): + a = np.array([[0., 1., 0., 1., 2., 0.], + [0., 2., 0., 0., 1., 0.], + [1., 0., 1., 0., 0., 4.], + [0., 0., 0., 2., 3., 0.]]).T + + b = np.array([1, 0, 0, 0, 0, 0]) + + x, residuals, rank, s = linalg.lstsq(a, b, rcond=-1) + assert_(rank == 4) + x, residuals, rank, s = linalg.lstsq(a, b) + assert_(rank == 3) + x, residuals, rank, s = linalg.lstsq(a, b, rcond=None) + assert_(rank == 3) + + @pytest.mark.parametrize(["m", "n", "n_rhs"], [ + (4, 2, 2), + (0, 4, 1), + (0, 4, 2), + (4, 0, 1), + (4, 0, 2), + (4, 2, 0), + (0, 0, 0) + ]) + def test_empty_a_b(self, m, n, n_rhs): + a = np.arange(m * n).reshape(m, n) + b = np.ones((m, n_rhs)) + x, residuals, rank, s = linalg.lstsq(a, b, rcond=None) + if m == 0: + assert_((x == 0).all()) + assert_equal(x.shape, (n, n_rhs)) + assert_equal(residuals.shape, ((n_rhs,) if m > n else (0,))) + if m > n and n_rhs > 0: + # residuals are exactly the squared norms of b's columns + r = b - np.dot(a, x) + assert_almost_equal(residuals, (r * r).sum(axis=-2)) + assert_equal(rank, min(m, n)) + assert_equal(s.shape, (min(m, n),)) + + def test_incompatible_dims(self): + # use modified version of docstring example + x = np.array([0, 1, 2, 3]) + y = np.array([-1, 0.2, 0.9, 2.1, 3.3]) + A = np.vstack([x, np.ones(len(x))]).T + with assert_raises_regex(LinAlgError, "Incompatible dimensions"): + linalg.lstsq(A, y, rcond=None) + + +@pytest.mark.parametrize('dt', [np.dtype(c) for c in '?bBhHiIqQefdgFDGO']) +class TestMatrixPower: + + rshft_0 = np.eye(4) + rshft_1 = rshft_0[[3, 0, 1, 2]] + rshft_2 = rshft_0[[2, 3, 0, 1]] + rshft_3 = rshft_0[[1, 2, 3, 0]] + rshft_all = [rshft_0, rshft_1, rshft_2, rshft_3] + noninv = array([[1, 0], [0, 0]]) + stacked = np.block([[[rshft_0]]] * 2) + # FIXME the 'e' dtype might work in future + dtnoinv = [object, np.dtype('e'), np.dtype('g'), np.dtype('G')] + + def test_large_power(self, dt): + rshft = self.rshft_1.astype(dt) + assert_equal( + matrix_power(rshft, 2**100 + 2**10 + 2**5 + 0), self.rshft_0) + assert_equal( + matrix_power(rshft, 2**100 + 2**10 + 2**5 + 1), self.rshft_1) + assert_equal( + matrix_power(rshft, 2**100 + 2**10 + 2**5 + 2), self.rshft_2) + assert_equal( + matrix_power(rshft, 2**100 + 2**10 + 2**5 + 3), self.rshft_3) + + def test_power_is_zero(self, dt): + def tz(M): + mz = matrix_power(M, 0) + assert_equal(mz, identity_like_generalized(M)) + assert_equal(mz.dtype, M.dtype) + + for mat in self.rshft_all: + tz(mat.astype(dt)) + if dt != object: + tz(self.stacked.astype(dt)) + + def test_power_is_one(self, dt): + def tz(mat): + mz = matrix_power(mat, 1) + assert_equal(mz, mat) + assert_equal(mz.dtype, mat.dtype) + + for mat in self.rshft_all: + tz(mat.astype(dt)) + if dt != object: + tz(self.stacked.astype(dt)) + + def test_power_is_two(self, dt): + def tz(mat): + mz = matrix_power(mat, 2) + mmul = matmul if mat.dtype != object else dot + assert_equal(mz, mmul(mat, mat)) + assert_equal(mz.dtype, mat.dtype) + + for mat in self.rshft_all: + tz(mat.astype(dt)) + if dt != object: + tz(self.stacked.astype(dt)) + + def test_power_is_minus_one(self, dt): + def tz(mat): + invmat = matrix_power(mat, -1) + mmul = matmul if mat.dtype != object else dot + assert_almost_equal( + mmul(invmat, mat), identity_like_generalized(mat)) + + for mat in self.rshft_all: + if dt not in self.dtnoinv: + tz(mat.astype(dt)) + + def test_exceptions_bad_power(self, dt): + mat = self.rshft_0.astype(dt) + assert_raises(TypeError, matrix_power, mat, 1.5) + assert_raises(TypeError, matrix_power, mat, [1]) + + def test_exceptions_non_square(self, dt): + assert_raises(LinAlgError, matrix_power, np.array([1], dt), 1) + assert_raises(LinAlgError, matrix_power, np.array([[1], [2]], dt), 1) + assert_raises(LinAlgError, matrix_power, np.ones((4, 3, 2), dt), 1) + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + def test_exceptions_not_invertible(self, dt): + if dt in self.dtnoinv: + return + mat = self.noninv.astype(dt) + assert_raises(LinAlgError, matrix_power, mat, -1) + + +class TestEigvalshCases(HermitianTestCase, HermitianGeneralizedTestCase): + + def do(self, a, b, tags): + # note that eigenvalue arrays returned by eig must be sorted since + # their order isn't guaranteed. + ev = linalg.eigvalsh(a, 'L') + evalues, evectors = linalg.eig(a) + evalues.sort(axis=-1) + assert_allclose(ev, evalues, rtol=get_rtol(ev.dtype)) + + ev2 = linalg.eigvalsh(a, 'U') + assert_allclose(ev2, evalues, rtol=get_rtol(ev.dtype)) + + +class TestEigvalsh: + @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble]) + def test_types(self, dtype): + x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) + w = np.linalg.eigvalsh(x) + assert_equal(w.dtype, get_real_dtype(dtype)) + + def test_invalid(self): + x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32) + assert_raises(ValueError, np.linalg.eigvalsh, x, UPLO="lrong") + assert_raises(ValueError, np.linalg.eigvalsh, x, "lower") + assert_raises(ValueError, np.linalg.eigvalsh, x, "upper") + + def test_UPLO(self): + Klo = np.array([[0, 0], [1, 0]], dtype=np.double) + Kup = np.array([[0, 1], [0, 0]], dtype=np.double) + tgt = np.array([-1, 1], dtype=np.double) + rtol = get_rtol(np.double) + + # Check default is 'L' + w = np.linalg.eigvalsh(Klo) + assert_allclose(w, tgt, rtol=rtol) + # Check 'L' + w = np.linalg.eigvalsh(Klo, UPLO='L') + assert_allclose(w, tgt, rtol=rtol) + # Check 'l' + w = np.linalg.eigvalsh(Klo, UPLO='l') + assert_allclose(w, tgt, rtol=rtol) + # Check 'U' + w = np.linalg.eigvalsh(Kup, UPLO='U') + assert_allclose(w, tgt, rtol=rtol) + # Check 'u' + w = np.linalg.eigvalsh(Kup, UPLO='u') + assert_allclose(w, tgt, rtol=rtol) + + def test_0_size(self): + # Check that all kinds of 0-sized arrays work + class ArraySubclass(np.ndarray): + pass + a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) + res = linalg.eigvalsh(a) + assert_(res.dtype.type is np.float64) + assert_equal((0, 1), res.shape) + # This is just for documentation, it might make sense to change: + assert_(isinstance(res, np.ndarray)) + + a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) + res = linalg.eigvalsh(a) + assert_(res.dtype.type is np.float32) + assert_equal((0,), res.shape) + # This is just for documentation, it might make sense to change: + assert_(isinstance(res, np.ndarray)) + + +class TestEighCases(HermitianTestCase, HermitianGeneralizedTestCase): + + def do(self, a, b, tags): + # note that eigenvalue arrays returned by eig must be sorted since + # their order isn't guaranteed. + res = linalg.eigh(a) + ev, evc = res.eigenvalues, res.eigenvectors + evalues, evectors = linalg.eig(a) + evalues.sort(axis=-1) + assert_almost_equal(ev, evalues) + + assert_allclose(matmul(a, evc), + np.asarray(ev)[..., None, :] * np.asarray(evc), + rtol=get_rtol(ev.dtype)) + + ev2, evc2 = linalg.eigh(a, 'U') + assert_almost_equal(ev2, evalues) + + assert_allclose(matmul(a, evc2), + np.asarray(ev2)[..., None, :] * np.asarray(evc2), + rtol=get_rtol(ev.dtype), err_msg=repr(a)) + + +class TestEigh: + @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble]) + def test_types(self, dtype): + x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) + w, v = np.linalg.eigh(x) + assert_equal(w.dtype, get_real_dtype(dtype)) + assert_equal(v.dtype, dtype) + + def test_invalid(self): + x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32) + assert_raises(ValueError, np.linalg.eigh, x, UPLO="lrong") + assert_raises(ValueError, np.linalg.eigh, x, "lower") + assert_raises(ValueError, np.linalg.eigh, x, "upper") + + def test_UPLO(self): + Klo = np.array([[0, 0], [1, 0]], dtype=np.double) + Kup = np.array([[0, 1], [0, 0]], dtype=np.double) + tgt = np.array([-1, 1], dtype=np.double) + rtol = get_rtol(np.double) + + # Check default is 'L' + w, v = np.linalg.eigh(Klo) + assert_allclose(w, tgt, rtol=rtol) + # Check 'L' + w, v = np.linalg.eigh(Klo, UPLO='L') + assert_allclose(w, tgt, rtol=rtol) + # Check 'l' + w, v = np.linalg.eigh(Klo, UPLO='l') + assert_allclose(w, tgt, rtol=rtol) + # Check 'U' + w, v = np.linalg.eigh(Kup, UPLO='U') + assert_allclose(w, tgt, rtol=rtol) + # Check 'u' + w, v = np.linalg.eigh(Kup, UPLO='u') + assert_allclose(w, tgt, rtol=rtol) + + def test_0_size(self): + # Check that all kinds of 0-sized arrays work + class ArraySubclass(np.ndarray): + pass + a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) + res, res_v = linalg.eigh(a) + assert_(res_v.dtype.type is np.float64) + assert_(res.dtype.type is np.float64) + assert_equal(a.shape, res_v.shape) + assert_equal((0, 1), res.shape) + # This is just for documentation, it might make sense to change: + assert_(isinstance(a, np.ndarray)) + + a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) + res, res_v = linalg.eigh(a) + assert_(res_v.dtype.type is np.complex64) + assert_(res.dtype.type is np.float32) + assert_equal(a.shape, res_v.shape) + assert_equal((0,), res.shape) + # This is just for documentation, it might make sense to change: + assert_(isinstance(a, np.ndarray)) + + +class _TestNormBase: + dt = None + dec = None + + @staticmethod + def check_dtype(x, res): + if issubclass(x.dtype.type, np.inexact): + assert_equal(res.dtype, x.real.dtype) + else: + # For integer input, don't have to test float precision of output. + assert_(issubclass(res.dtype.type, np.floating)) + + +class _TestNormGeneral(_TestNormBase): + + def test_empty(self): + assert_equal(norm([]), 0.0) + assert_equal(norm(array([], dtype=self.dt)), 0.0) + assert_equal(norm(atleast_2d(array([], dtype=self.dt))), 0.0) + + def test_vector_return_type(self): + a = np.array([1, 0, 1]) + + exact_types = np.typecodes['AllInteger'] + inexact_types = np.typecodes['AllFloat'] + + all_types = exact_types + inexact_types + + for each_type in all_types: + at = a.astype(each_type) + + an = norm(at, -np.inf) + self.check_dtype(at, an) + assert_almost_equal(an, 0.0) + + with suppress_warnings() as sup: + sup.filter(RuntimeWarning, "divide by zero encountered") + an = norm(at, -1) + self.check_dtype(at, an) + assert_almost_equal(an, 0.0) + + an = norm(at, 0) + self.check_dtype(at, an) + assert_almost_equal(an, 2) + + an = norm(at, 1) + self.check_dtype(at, an) + assert_almost_equal(an, 2.0) + + an = norm(at, 2) + self.check_dtype(at, an) + assert_almost_equal(an, an.dtype.type(2.0)**an.dtype.type(1.0 / 2.0)) + + an = norm(at, 4) + self.check_dtype(at, an) + assert_almost_equal(an, an.dtype.type(2.0)**an.dtype.type(1.0 / 4.0)) + + an = norm(at, np.inf) + self.check_dtype(at, an) + assert_almost_equal(an, 1.0) + + def test_vector(self): + a = [1, 2, 3, 4] + b = [-1, -2, -3, -4] + c = [-1, 2, -3, 4] + + def _test(v): + np.testing.assert_almost_equal(norm(v), 30 ** 0.5, + decimal=self.dec) + np.testing.assert_almost_equal(norm(v, inf), 4.0, + decimal=self.dec) + np.testing.assert_almost_equal(norm(v, -inf), 1.0, + decimal=self.dec) + np.testing.assert_almost_equal(norm(v, 1), 10.0, + decimal=self.dec) + np.testing.assert_almost_equal(norm(v, -1), 12.0 / 25, + decimal=self.dec) + np.testing.assert_almost_equal(norm(v, 2), 30 ** 0.5, + decimal=self.dec) + np.testing.assert_almost_equal(norm(v, -2), ((205. / 144) ** -0.5), + decimal=self.dec) + np.testing.assert_almost_equal(norm(v, 0), 4, + decimal=self.dec) + + for v in (a, b, c,): + _test(v) + + for v in (array(a, dtype=self.dt), array(b, dtype=self.dt), + array(c, dtype=self.dt)): + _test(v) + + def test_axis(self): + # Vector norms. + # Compare the use of `axis` with computing the norm of each row + # or column separately. + A = array([[1, 2, 3], [4, 5, 6]], dtype=self.dt) + for order in [None, -1, 0, 1, 2, 3, np.inf, -np.inf]: + expected0 = [norm(A[:, k], ord=order) for k in range(A.shape[1])] + assert_almost_equal(norm(A, ord=order, axis=0), expected0) + expected1 = [norm(A[k, :], ord=order) for k in range(A.shape[0])] + assert_almost_equal(norm(A, ord=order, axis=1), expected1) + + # Matrix norms. + B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4) + nd = B.ndim + for order in [None, -2, 2, -1, 1, np.inf, -np.inf, 'fro']: + for axis in itertools.combinations(range(-nd, nd), 2): + row_axis, col_axis = axis + if row_axis < 0: + row_axis += nd + if col_axis < 0: + col_axis += nd + if row_axis == col_axis: + assert_raises(ValueError, norm, B, ord=order, axis=axis) + else: + n = norm(B, ord=order, axis=axis) + + # The logic using k_index only works for nd = 3. + # This has to be changed if nd is increased. + k_index = nd - (row_axis + col_axis) + if row_axis < col_axis: + expected = [norm(B[:].take(k, axis=k_index), ord=order) + for k in range(B.shape[k_index])] + else: + expected = [norm(B[:].take(k, axis=k_index).T, ord=order) + for k in range(B.shape[k_index])] + assert_almost_equal(n, expected) + + def test_keepdims(self): + A = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4) + + allclose_err = 'order {0}, axis = {1}' + shape_err = 'Shape mismatch found {0}, expected {1}, order={2}, axis={3}' + + # check the order=None, axis=None case + expected = norm(A, ord=None, axis=None) + found = norm(A, ord=None, axis=None, keepdims=True) + assert_allclose(np.squeeze(found), expected, + err_msg=allclose_err.format(None, None)) + expected_shape = (1, 1, 1) + assert_(found.shape == expected_shape, + shape_err.format(found.shape, expected_shape, None, None)) + + # Vector norms. + for order in [None, -1, 0, 1, 2, 3, np.inf, -np.inf]: + for k in range(A.ndim): + expected = norm(A, ord=order, axis=k) + found = norm(A, ord=order, axis=k, keepdims=True) + assert_allclose(np.squeeze(found), expected, + err_msg=allclose_err.format(order, k)) + expected_shape = list(A.shape) + expected_shape[k] = 1 + expected_shape = tuple(expected_shape) + assert_(found.shape == expected_shape, + shape_err.format(found.shape, expected_shape, order, k)) + + # Matrix norms. + for order in [None, -2, 2, -1, 1, np.inf, -np.inf, 'fro', 'nuc']: + for k in itertools.permutations(range(A.ndim), 2): + expected = norm(A, ord=order, axis=k) + found = norm(A, ord=order, axis=k, keepdims=True) + assert_allclose(np.squeeze(found), expected, + err_msg=allclose_err.format(order, k)) + expected_shape = list(A.shape) + expected_shape[k[0]] = 1 + expected_shape[k[1]] = 1 + expected_shape = tuple(expected_shape) + assert_(found.shape == expected_shape, + shape_err.format(found.shape, expected_shape, order, k)) + + +class _TestNorm2D(_TestNormBase): + # Define the part for 2d arrays separately, so we can subclass this + # and run the tests using np.matrix in matrixlib.tests.test_matrix_linalg. + array = np.array + + def test_matrix_empty(self): + assert_equal(norm(self.array([[]], dtype=self.dt)), 0.0) + + def test_matrix_return_type(self): + a = self.array([[1, 0, 1], [0, 1, 1]]) + + exact_types = np.typecodes['AllInteger'] + + # float32, complex64, float64, complex128 types are the only types + # allowed by `linalg`, which performs the matrix operations used + # within `norm`. + inexact_types = 'fdFD' + + all_types = exact_types + inexact_types + + for each_type in all_types: + at = a.astype(each_type) + + an = norm(at, -np.inf) + self.check_dtype(at, an) + assert_almost_equal(an, 2.0) + + with suppress_warnings() as sup: + sup.filter(RuntimeWarning, "divide by zero encountered") + an = norm(at, -1) + self.check_dtype(at, an) + assert_almost_equal(an, 1.0) + + an = norm(at, 1) + self.check_dtype(at, an) + assert_almost_equal(an, 2.0) + + an = norm(at, 2) + self.check_dtype(at, an) + assert_almost_equal(an, 3.0**(1.0 / 2.0)) + + an = norm(at, -2) + self.check_dtype(at, an) + assert_almost_equal(an, 1.0) + + an = norm(at, np.inf) + self.check_dtype(at, an) + assert_almost_equal(an, 2.0) + + an = norm(at, 'fro') + self.check_dtype(at, an) + assert_almost_equal(an, 2.0) + + an = norm(at, 'nuc') + self.check_dtype(at, an) + # Lower bar needed to support low precision floats. + # They end up being off by 1 in the 7th place. + np.testing.assert_almost_equal(an, 2.7320508075688772, decimal=6) + + def test_matrix_2x2(self): + A = self.array([[1, 3], [5, 7]], dtype=self.dt) + assert_almost_equal(norm(A), 84 ** 0.5) + assert_almost_equal(norm(A, 'fro'), 84 ** 0.5) + assert_almost_equal(norm(A, 'nuc'), 10.0) + assert_almost_equal(norm(A, inf), 12.0) + assert_almost_equal(norm(A, -inf), 4.0) + assert_almost_equal(norm(A, 1), 10.0) + assert_almost_equal(norm(A, -1), 6.0) + assert_almost_equal(norm(A, 2), 9.1231056256176615) + assert_almost_equal(norm(A, -2), 0.87689437438234041) + + assert_raises(ValueError, norm, A, 'nofro') + assert_raises(ValueError, norm, A, -3) + assert_raises(ValueError, norm, A, 0) + + def test_matrix_3x3(self): + # This test has been added because the 2x2 example + # happened to have equal nuclear norm and induced 1-norm. + # The 1/10 scaling factor accommodates the absolute tolerance + # used in assert_almost_equal. + A = (1 / 10) * \ + self.array([[1, 2, 3], [6, 0, 5], [3, 2, 1]], dtype=self.dt) + assert_almost_equal(norm(A), (1 / 10) * 89 ** 0.5) + assert_almost_equal(norm(A, 'fro'), (1 / 10) * 89 ** 0.5) + assert_almost_equal(norm(A, 'nuc'), 1.3366836911774836) + assert_almost_equal(norm(A, inf), 1.1) + assert_almost_equal(norm(A, -inf), 0.6) + assert_almost_equal(norm(A, 1), 1.0) + assert_almost_equal(norm(A, -1), 0.4) + assert_almost_equal(norm(A, 2), 0.88722940323461277) + assert_almost_equal(norm(A, -2), 0.19456584790481812) + + def test_bad_args(self): + # Check that bad arguments raise the appropriate exceptions. + + A = self.array([[1, 2, 3], [4, 5, 6]], dtype=self.dt) + B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4) + + # Using `axis=` or passing in a 1-D array implies vector + # norms are being computed, so also using `ord='fro'` + # or `ord='nuc'` or any other string raises a ValueError. + assert_raises(ValueError, norm, A, 'fro', 0) + assert_raises(ValueError, norm, A, 'nuc', 0) + assert_raises(ValueError, norm, [3, 4], 'fro', None) + assert_raises(ValueError, norm, [3, 4], 'nuc', None) + assert_raises(ValueError, norm, [3, 4], 'test', None) + + # Similarly, norm should raise an exception when ord is any finite + # number other than 1, 2, -1 or -2 when computing matrix norms. + for order in [0, 3]: + assert_raises(ValueError, norm, A, order, None) + assert_raises(ValueError, norm, A, order, (0, 1)) + assert_raises(ValueError, norm, B, order, (1, 2)) + + # Invalid axis + assert_raises(AxisError, norm, B, None, 3) + assert_raises(AxisError, norm, B, None, (2, 3)) + assert_raises(ValueError, norm, B, None, (0, 1, 2)) + + +class _TestNorm(_TestNorm2D, _TestNormGeneral): + pass + + +class TestNorm_NonSystematic: + + def test_longdouble_norm(self): + # Non-regression test: p-norm of longdouble would previously raise + # UnboundLocalError. + x = np.arange(10, dtype=np.longdouble) + old_assert_almost_equal(norm(x, ord=3), 12.65, decimal=2) + + def test_intmin(self): + # Non-regression test: p-norm of signed integer would previously do + # float cast and abs in the wrong order. + x = np.array([-2 ** 31], dtype=np.int32) + old_assert_almost_equal(norm(x, ord=3), 2 ** 31, decimal=5) + + def test_complex_high_ord(self): + # gh-4156 + d = np.empty((2,), dtype=np.clongdouble) + d[0] = 6 + 7j + d[1] = -6 + 7j + res = 11.615898132184 + old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=10) + d = d.astype(np.complex128) + old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=9) + d = d.astype(np.complex64) + old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=5) + + +# Separate definitions so we can use them for matrix tests. +class _TestNormDoubleBase(_TestNormBase): + dt = np.double + dec = 12 + + +class _TestNormSingleBase(_TestNormBase): + dt = np.float32 + dec = 6 + + +class _TestNormInt64Base(_TestNormBase): + dt = np.int64 + dec = 12 + + +class TestNormDouble(_TestNorm, _TestNormDoubleBase): + pass + + +class TestNormSingle(_TestNorm, _TestNormSingleBase): + pass + + +class TestNormInt64(_TestNorm, _TestNormInt64Base): + pass + + +class TestMatrixRank: + + def test_matrix_rank(self): + # Full rank matrix + assert_equal(4, matrix_rank(np.eye(4))) + # rank deficient matrix + I = np.eye(4) + I[-1, -1] = 0. + assert_equal(matrix_rank(I), 3) + # All zeros - zero rank + assert_equal(matrix_rank(np.zeros((4, 4))), 0) + # 1 dimension - rank 1 unless all 0 + assert_equal(matrix_rank([1, 0, 0, 0]), 1) + assert_equal(matrix_rank(np.zeros((4,))), 0) + # accepts array-like + assert_equal(matrix_rank([1]), 1) + # greater than 2 dimensions treated as stacked matrices + ms = np.array([I, np.eye(4), np.zeros((4, 4))]) + assert_equal(matrix_rank(ms), np.array([3, 4, 0])) + # works on scalar + assert_equal(matrix_rank(1), 1) + + with assert_raises_regex( + ValueError, "`tol` and `rtol` can\'t be both set." + ): + matrix_rank(I, tol=0.01, rtol=0.01) + + def test_symmetric_rank(self): + assert_equal(4, matrix_rank(np.eye(4), hermitian=True)) + assert_equal(1, matrix_rank(np.ones((4, 4)), hermitian=True)) + assert_equal(0, matrix_rank(np.zeros((4, 4)), hermitian=True)) + # rank deficient matrix + I = np.eye(4) + I[-1, -1] = 0. + assert_equal(3, matrix_rank(I, hermitian=True)) + # manually supplied tolerance + I[-1, -1] = 1e-8 + assert_equal(4, matrix_rank(I, hermitian=True, tol=0.99e-8)) + assert_equal(3, matrix_rank(I, hermitian=True, tol=1.01e-8)) + + +def test_reduced_rank(): + # Test matrices with reduced rank + rng = np.random.RandomState(20120714) + for i in range(100): + # Make a rank deficient matrix + X = rng.normal(size=(40, 10)) + X[:, 0] = X[:, 1] + X[:, 2] + # Assert that matrix_rank detected deficiency + assert_equal(matrix_rank(X), 9) + X[:, 3] = X[:, 4] + X[:, 5] + assert_equal(matrix_rank(X), 8) + + +class TestQR: + # Define the array class here, so run this on matrices elsewhere. + array = np.array + + def check_qr(self, a): + # This test expects the argument `a` to be an ndarray or + # a subclass of an ndarray of inexact type. + a_type = type(a) + a_dtype = a.dtype + m, n = a.shape + k = min(m, n) + + # mode == 'complete' + res = linalg.qr(a, mode='complete') + Q, R = res.Q, res.R + assert_(Q.dtype == a_dtype) + assert_(R.dtype == a_dtype) + assert_(isinstance(Q, a_type)) + assert_(isinstance(R, a_type)) + assert_(Q.shape == (m, m)) + assert_(R.shape == (m, n)) + assert_almost_equal(dot(Q, R), a) + assert_almost_equal(dot(Q.T.conj(), Q), np.eye(m)) + assert_almost_equal(np.triu(R), R) + + # mode == 'reduced' + q1, r1 = linalg.qr(a, mode='reduced') + assert_(q1.dtype == a_dtype) + assert_(r1.dtype == a_dtype) + assert_(isinstance(q1, a_type)) + assert_(isinstance(r1, a_type)) + assert_(q1.shape == (m, k)) + assert_(r1.shape == (k, n)) + assert_almost_equal(dot(q1, r1), a) + assert_almost_equal(dot(q1.T.conj(), q1), np.eye(k)) + assert_almost_equal(np.triu(r1), r1) + + # mode == 'r' + r2 = linalg.qr(a, mode='r') + assert_(r2.dtype == a_dtype) + assert_(isinstance(r2, a_type)) + assert_almost_equal(r2, r1) + + @pytest.mark.parametrize(["m", "n"], [ + (3, 0), + (0, 3), + (0, 0) + ]) + def test_qr_empty(self, m, n): + k = min(m, n) + a = np.empty((m, n)) + + self.check_qr(a) + + h, tau = np.linalg.qr(a, mode='raw') + assert_equal(h.dtype, np.double) + assert_equal(tau.dtype, np.double) + assert_equal(h.shape, (n, m)) + assert_equal(tau.shape, (k,)) + + def test_mode_raw(self): + # The factorization is not unique and varies between libraries, + # so it is not possible to check against known values. Functional + # testing is a possibility, but awaits the exposure of more + # of the functions in lapack_lite. Consequently, this test is + # very limited in scope. Note that the results are in FORTRAN + # order, hence the h arrays are transposed. + a = self.array([[1, 2], [3, 4], [5, 6]], dtype=np.double) + + # Test double + h, tau = linalg.qr(a, mode='raw') + assert_(h.dtype == np.double) + assert_(tau.dtype == np.double) + assert_(h.shape == (2, 3)) + assert_(tau.shape == (2,)) + + h, tau = linalg.qr(a.T, mode='raw') + assert_(h.dtype == np.double) + assert_(tau.dtype == np.double) + assert_(h.shape == (3, 2)) + assert_(tau.shape == (2,)) + + def test_mode_all_but_economic(self): + a = self.array([[1, 2], [3, 4]]) + b = self.array([[1, 2], [3, 4], [5, 6]]) + for dt in "fd": + m1 = a.astype(dt) + m2 = b.astype(dt) + self.check_qr(m1) + self.check_qr(m2) + self.check_qr(m2.T) + + for dt in "fd": + m1 = 1 + 1j * a.astype(dt) + m2 = 1 + 1j * b.astype(dt) + self.check_qr(m1) + self.check_qr(m2) + self.check_qr(m2.T) + + def check_qr_stacked(self, a): + # This test expects the argument `a` to be an ndarray or + # a subclass of an ndarray of inexact type. + a_type = type(a) + a_dtype = a.dtype + m, n = a.shape[-2:] + k = min(m, n) + + # mode == 'complete' + q, r = linalg.qr(a, mode='complete') + assert_(q.dtype == a_dtype) + assert_(r.dtype == a_dtype) + assert_(isinstance(q, a_type)) + assert_(isinstance(r, a_type)) + assert_(q.shape[-2:] == (m, m)) + assert_(r.shape[-2:] == (m, n)) + assert_almost_equal(matmul(q, r), a) + I_mat = np.identity(q.shape[-1]) + stack_I_mat = np.broadcast_to(I_mat, + q.shape[:-2] + (q.shape[-1],) * 2) + assert_almost_equal(matmul(swapaxes(q, -1, -2).conj(), q), stack_I_mat) + assert_almost_equal(np.triu(r[..., :, :]), r) + + # mode == 'reduced' + q1, r1 = linalg.qr(a, mode='reduced') + assert_(q1.dtype == a_dtype) + assert_(r1.dtype == a_dtype) + assert_(isinstance(q1, a_type)) + assert_(isinstance(r1, a_type)) + assert_(q1.shape[-2:] == (m, k)) + assert_(r1.shape[-2:] == (k, n)) + assert_almost_equal(matmul(q1, r1), a) + I_mat = np.identity(q1.shape[-1]) + stack_I_mat = np.broadcast_to(I_mat, + q1.shape[:-2] + (q1.shape[-1],) * 2) + assert_almost_equal(matmul(swapaxes(q1, -1, -2).conj(), q1), + stack_I_mat) + assert_almost_equal(np.triu(r1[..., :, :]), r1) + + # mode == 'r' + r2 = linalg.qr(a, mode='r') + assert_(r2.dtype == a_dtype) + assert_(isinstance(r2, a_type)) + assert_almost_equal(r2, r1) + + @pytest.mark.parametrize("size", [ + (3, 4), (4, 3), (4, 4), + (3, 0), (0, 3)]) + @pytest.mark.parametrize("outer_size", [ + (2, 2), (2,), (2, 3, 4)]) + @pytest.mark.parametrize("dt", [ + np.single, np.double, + np.csingle, np.cdouble]) + def test_stacked_inputs(self, outer_size, size, dt): + + rng = np.random.default_rng(123) + A = rng.normal(size=outer_size + size).astype(dt) + B = rng.normal(size=outer_size + size).astype(dt) + self.check_qr_stacked(A) + self.check_qr_stacked(A + 1.j * B) + + +class TestCholesky: + + @pytest.mark.parametrize( + 'shape', [(1, 1), (2, 2), (3, 3), (50, 50), (3, 10, 10)] + ) + @pytest.mark.parametrize( + 'dtype', (np.float32, np.float64, np.complex64, np.complex128) + ) + @pytest.mark.parametrize( + 'upper', [False, True]) + def test_basic_property(self, shape, dtype, upper): + np.random.seed(1) + a = np.random.randn(*shape) + if np.issubdtype(dtype, np.complexfloating): + a = a + 1j * np.random.randn(*shape) + + t = list(range(len(shape))) + t[-2:] = -1, -2 + + a = np.matmul(a.transpose(t).conj(), a) + a = np.asarray(a, dtype=dtype) + + c = np.linalg.cholesky(a, upper=upper) + + # Check A = L L^H or A = U^H U + if upper: + b = np.matmul(c.transpose(t).conj(), c) + else: + b = np.matmul(c, c.transpose(t).conj()) + + atol = 500 * a.shape[0] * np.finfo(dtype).eps + assert_allclose(b, a, atol=atol, err_msg=f'{shape} {dtype}\n{a}\n{c}') + + # Check diag(L or U) is real and positive + d = np.diagonal(c, axis1=-2, axis2=-1) + assert_(np.all(np.isreal(d))) + assert_(np.all(d >= 0)) + + def test_0_size(self): + class ArraySubclass(np.ndarray): + pass + a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) + res = linalg.cholesky(a) + assert_equal(a.shape, res.shape) + assert_(res.dtype.type is np.float64) + # for documentation purpose: + assert_(isinstance(res, np.ndarray)) + + a = np.zeros((1, 0, 0), dtype=np.complex64).view(ArraySubclass) + res = linalg.cholesky(a) + assert_equal(a.shape, res.shape) + assert_(res.dtype.type is np.complex64) + assert_(isinstance(res, np.ndarray)) + + def test_upper_lower_arg(self): + # Explicit test of upper argument that also checks the default. + a = np.array([[1 + 0j, 0 - 2j], [0 + 2j, 5 + 0j]]) + + assert_equal(linalg.cholesky(a), linalg.cholesky(a, upper=False)) + + assert_equal( + linalg.cholesky(a, upper=True), + linalg.cholesky(a).T.conj() + ) + + +class TestOuter: + arr1 = np.arange(3) + arr2 = np.arange(3) + expected = np.array( + [[0, 0, 0], + [0, 1, 2], + [0, 2, 4]] + ) + + assert_array_equal(np.linalg.outer(arr1, arr2), expected) + + with assert_raises_regex( + ValueError, "Input arrays must be one-dimensional" + ): + np.linalg.outer(arr1[:, np.newaxis], arr2) + + +def test_byteorder_check(): + # Byte order check should pass for native order + if sys.byteorder == 'little': + native = '<' + else: + native = '>' + + for dtt in (np.float32, np.float64): + arr = np.eye(4, dtype=dtt) + n_arr = arr.view(arr.dtype.newbyteorder(native)) + sw_arr = arr.view(arr.dtype.newbyteorder("S")).byteswap() + assert_equal(arr.dtype.byteorder, '=') + for routine in (linalg.inv, linalg.det, linalg.pinv): + # Normal call + res = routine(arr) + # Native but not '=' + assert_array_equal(res, routine(n_arr)) + # Swapped + assert_array_equal(res, routine(sw_arr)) + + +@pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") +def test_generalized_raise_multiloop(): + # It should raise an error even if the error doesn't occur in the + # last iteration of the ufunc inner loop + + invertible = np.array([[1, 2], [3, 4]]) + non_invertible = np.array([[1, 1], [1, 1]]) + + x = np.zeros([4, 4, 2, 2])[1::2] + x[...] = invertible + x[0, 0] = non_invertible + + assert_raises(np.linalg.LinAlgError, np.linalg.inv, x) + + +@pytest.mark.skipif( + threading.active_count() > 1, + reason="skipping test that uses fork because there are multiple threads") +@pytest.mark.skipif( + NOGIL_BUILD, + reason="Cannot safely use fork in tests on the free-threaded build") +def test_xerbla_override(): + # Check that our xerbla has been successfully linked in. If it is not, + # the default xerbla routine is called, which prints a message to stdout + # and may, or may not, abort the process depending on the LAPACK package. + + XERBLA_OK = 255 + + try: + pid = os.fork() + except (OSError, AttributeError): + # fork failed, or not running on POSIX + pytest.skip("Not POSIX or fork failed.") + + if pid == 0: + # child; close i/o file handles + os.close(1) + os.close(0) + # Avoid producing core files. + import resource + resource.setrlimit(resource.RLIMIT_CORE, (0, 0)) + # These calls may abort. + try: + np.linalg.lapack_lite.xerbla() + except ValueError: + pass + except Exception: + os._exit(os.EX_CONFIG) + + try: + a = np.array([[1.]]) + np.linalg.lapack_lite.dorgqr( + 1, 1, 1, a, + 0, # <- invalid value + a, a, 0, 0) + except ValueError as e: + if "DORGQR parameter number 5" in str(e): + # success, reuse error code to mark success as + # FORTRAN STOP returns as success. + os._exit(XERBLA_OK) + + # Did not abort, but our xerbla was not linked in. + os._exit(os.EX_CONFIG) + else: + # parent + pid, status = os.wait() + if os.WEXITSTATUS(status) != XERBLA_OK: + pytest.skip('Numpy xerbla not linked in.') + + +@pytest.mark.skipif(IS_WASM, reason="Cannot start subprocess") +@pytest.mark.slow +def test_sdot_bug_8577(): + # Regression test that loading certain other libraries does not + # result to wrong results in float32 linear algebra. + # + # There's a bug gh-8577 on OSX that can trigger this, and perhaps + # there are also other situations in which it occurs. + # + # Do the check in a separate process. + + bad_libs = ['PyQt5.QtWidgets', 'IPython'] + + template = textwrap.dedent(""" + import sys + {before} + try: + import {bad_lib} + except ImportError: + sys.exit(0) + {after} + x = np.ones(2, dtype=np.float32) + sys.exit(0 if np.allclose(x.dot(x), 2.0) else 1) + """) + + for bad_lib in bad_libs: + code = template.format(before="import numpy as np", after="", + bad_lib=bad_lib) + subprocess.check_call([sys.executable, "-c", code]) + + # Swapped import order + code = template.format(after="import numpy as np", before="", + bad_lib=bad_lib) + subprocess.check_call([sys.executable, "-c", code]) + + +class TestMultiDot: + + def test_basic_function_with_three_arguments(self): + # multi_dot with three arguments uses a fast hand coded algorithm to + # determine the optimal order. Therefore test it separately. + A = np.random.random((6, 2)) + B = np.random.random((2, 6)) + C = np.random.random((6, 2)) + + assert_almost_equal(multi_dot([A, B, C]), A.dot(B).dot(C)) + assert_almost_equal(multi_dot([A, B, C]), np.dot(A, np.dot(B, C))) + + def test_basic_function_with_two_arguments(self): + # separate code path with two arguments + A = np.random.random((6, 2)) + B = np.random.random((2, 6)) + + assert_almost_equal(multi_dot([A, B]), A.dot(B)) + assert_almost_equal(multi_dot([A, B]), np.dot(A, B)) + + def test_basic_function_with_dynamic_programming_optimization(self): + # multi_dot with four or more arguments uses the dynamic programming + # optimization and therefore deserve a separate + A = np.random.random((6, 2)) + B = np.random.random((2, 6)) + C = np.random.random((6, 2)) + D = np.random.random((2, 1)) + assert_almost_equal(multi_dot([A, B, C, D]), A.dot(B).dot(C).dot(D)) + + def test_vector_as_first_argument(self): + # The first argument can be 1-D + A1d = np.random.random(2) # 1-D + B = np.random.random((2, 6)) + C = np.random.random((6, 2)) + D = np.random.random((2, 2)) + + # the result should be 1-D + assert_equal(multi_dot([A1d, B, C, D]).shape, (2,)) + + def test_vector_as_last_argument(self): + # The last argument can be 1-D + A = np.random.random((6, 2)) + B = np.random.random((2, 6)) + C = np.random.random((6, 2)) + D1d = np.random.random(2) # 1-D + + # the result should be 1-D + assert_equal(multi_dot([A, B, C, D1d]).shape, (6,)) + + def test_vector_as_first_and_last_argument(self): + # The first and last arguments can be 1-D + A1d = np.random.random(2) # 1-D + B = np.random.random((2, 6)) + C = np.random.random((6, 2)) + D1d = np.random.random(2) # 1-D + + # the result should be a scalar + assert_equal(multi_dot([A1d, B, C, D1d]).shape, ()) + + def test_three_arguments_and_out(self): + # multi_dot with three arguments uses a fast hand coded algorithm to + # determine the optimal order. Therefore test it separately. + A = np.random.random((6, 2)) + B = np.random.random((2, 6)) + C = np.random.random((6, 2)) + + out = np.zeros((6, 2)) + ret = multi_dot([A, B, C], out=out) + assert out is ret + assert_almost_equal(out, A.dot(B).dot(C)) + assert_almost_equal(out, np.dot(A, np.dot(B, C))) + + def test_two_arguments_and_out(self): + # separate code path with two arguments + A = np.random.random((6, 2)) + B = np.random.random((2, 6)) + out = np.zeros((6, 6)) + ret = multi_dot([A, B], out=out) + assert out is ret + assert_almost_equal(out, A.dot(B)) + assert_almost_equal(out, np.dot(A, B)) + + def test_dynamic_programming_optimization_and_out(self): + # multi_dot with four or more arguments uses the dynamic programming + # optimization and therefore deserve a separate test + A = np.random.random((6, 2)) + B = np.random.random((2, 6)) + C = np.random.random((6, 2)) + D = np.random.random((2, 1)) + out = np.zeros((6, 1)) + ret = multi_dot([A, B, C, D], out=out) + assert out is ret + assert_almost_equal(out, A.dot(B).dot(C).dot(D)) + + def test_dynamic_programming_logic(self): + # Test for the dynamic programming part + # This test is directly taken from Cormen page 376. + arrays = [np.random.random((30, 35)), + np.random.random((35, 15)), + np.random.random((15, 5)), + np.random.random((5, 10)), + np.random.random((10, 20)), + np.random.random((20, 25))] + m_expected = np.array([[0., 15750., 7875., 9375., 11875., 15125.], + [0., 0., 2625., 4375., 7125., 10500.], + [0., 0., 0., 750., 2500., 5375.], + [0., 0., 0., 0., 1000., 3500.], + [0., 0., 0., 0., 0., 5000.], + [0., 0., 0., 0., 0., 0.]]) + s_expected = np.array([[0, 1, 1, 3, 3, 3], + [0, 0, 2, 3, 3, 3], + [0, 0, 0, 3, 3, 3], + [0, 0, 0, 0, 4, 5], + [0, 0, 0, 0, 0, 5], + [0, 0, 0, 0, 0, 0]], dtype=int) + s_expected -= 1 # Cormen uses 1-based index, python does not. + + s, m = _multi_dot_matrix_chain_order(arrays, return_costs=True) + + # Only the upper triangular part (without the diagonal) is interesting. + assert_almost_equal(np.triu(s[:-1, 1:]), + np.triu(s_expected[:-1, 1:])) + assert_almost_equal(np.triu(m), np.triu(m_expected)) + + def test_too_few_input_arrays(self): + assert_raises(ValueError, multi_dot, []) + assert_raises(ValueError, multi_dot, [np.random.random((3, 3))]) + + +class TestTensorinv: + + @pytest.mark.parametrize("arr, ind", [ + (np.ones((4, 6, 8, 2)), 2), + (np.ones((3, 3, 2)), 1), + ]) + def test_non_square_handling(self, arr, ind): + with assert_raises(LinAlgError): + linalg.tensorinv(arr, ind=ind) + + @pytest.mark.parametrize("shape, ind", [ + # examples from docstring + ((4, 6, 8, 3), 2), + ((24, 8, 3), 1), + ]) + def test_tensorinv_shape(self, shape, ind): + a = np.eye(24) + a.shape = shape + ainv = linalg.tensorinv(a=a, ind=ind) + expected = a.shape[ind:] + a.shape[:ind] + actual = ainv.shape + assert_equal(actual, expected) + + @pytest.mark.parametrize("ind", [ + 0, -2, + ]) + def test_tensorinv_ind_limit(self, ind): + a = np.eye(24) + a.shape = (4, 6, 8, 3) + with assert_raises(ValueError): + linalg.tensorinv(a=a, ind=ind) + + def test_tensorinv_result(self): + # mimic a docstring example + a = np.eye(24) + a.shape = (24, 8, 3) + ainv = linalg.tensorinv(a, ind=1) + b = np.ones(24) + assert_allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b)) + + +class TestTensorsolve: + + @pytest.mark.parametrize("a, axes", [ + (np.ones((4, 6, 8, 2)), None), + (np.ones((3, 3, 2)), (0, 2)), + ]) + def test_non_square_handling(self, a, axes): + with assert_raises(LinAlgError): + b = np.ones(a.shape[:2]) + linalg.tensorsolve(a, b, axes=axes) + + @pytest.mark.parametrize("shape", + [(2, 3, 6), (3, 4, 4, 3), (0, 3, 3, 0)], + ) + def test_tensorsolve_result(self, shape): + a = np.random.randn(*shape) + b = np.ones(a.shape[:2]) + x = np.linalg.tensorsolve(a, b) + assert_allclose(np.tensordot(a, x, axes=len(x.shape)), b) + + +def test_unsupported_commontype(): + # linalg gracefully handles unsupported type + arr = np.array([[1, -2], [2, 5]], dtype='float16') + with assert_raises_regex(TypeError, "unsupported in linalg"): + linalg.cholesky(arr) + + +#@pytest.mark.slow +#@pytest.mark.xfail(not HAS_LAPACK64, run=False, +# reason="Numpy not compiled with 64-bit BLAS/LAPACK") +#@requires_memory(free_bytes=16e9) +@pytest.mark.skip(reason="Bad memory reports lead to OOM in ci testing") +def test_blas64_dot(): + n = 2**32 + a = np.zeros([1, n], dtype=np.float32) + b = np.ones([1, 1], dtype=np.float32) + a[0, -1] = 1 + c = np.dot(b, a) + assert_equal(c[0, -1], 1) + + +@pytest.mark.xfail(not HAS_LAPACK64, + reason="Numpy not compiled with 64-bit BLAS/LAPACK") +def test_blas64_geqrf_lwork_smoketest(): + # Smoke test LAPACK geqrf lwork call with 64-bit integers + dtype = np.float64 + lapack_routine = np.linalg.lapack_lite.dgeqrf + + m = 2**32 + 1 + n = 2**32 + 1 + lda = m + + # Dummy arrays, not referenced by the lapack routine, so don't + # need to be of the right size + a = np.zeros([1, 1], dtype=dtype) + work = np.zeros([1], dtype=dtype) + tau = np.zeros([1], dtype=dtype) + + # Size query + results = lapack_routine(m, n, a, lda, tau, work, -1, 0) + assert_equal(results['info'], 0) + assert_equal(results['m'], m) + assert_equal(results['n'], m) + + # Should result to an integer of a reasonable size + lwork = int(work.item()) + assert_(2**32 < lwork < 2**42) + + +def test_diagonal(): + # Here we only test if selected axes are compatible + # with Array API (last two). Core implementation + # of `diagonal` is tested in `test_multiarray.py`. + x = np.arange(60).reshape((3, 4, 5)) + actual = np.linalg.diagonal(x) + expected = np.array( + [ + [0, 6, 12, 18], + [20, 26, 32, 38], + [40, 46, 52, 58], + ] + ) + assert_equal(actual, expected) + + +def test_trace(): + # Here we only test if selected axes are compatible + # with Array API (last two). Core implementation + # of `trace` is tested in `test_multiarray.py`. + x = np.arange(60).reshape((3, 4, 5)) + actual = np.linalg.trace(x) + expected = np.array([36, 116, 196]) + + assert_equal(actual, expected) + + +def test_cross(): + x = np.arange(9).reshape((3, 3)) + actual = np.linalg.cross(x, x + 1) + expected = np.array([ + [-1, 2, -1], + [-1, 2, -1], + [-1, 2, -1], + ]) + + assert_equal(actual, expected) + + # We test that lists are converted to arrays. + u = [1, 2, 3] + v = [4, 5, 6] + actual = np.linalg.cross(u, v) + expected = array([-3, 6, -3]) + + assert_equal(actual, expected) + + with assert_raises_regex( + ValueError, + r"input arrays must be \(arrays of\) 3-dimensional vectors" + ): + x_2dim = x[:, 1:] + np.linalg.cross(x_2dim, x_2dim) + + +def test_tensordot(): + # np.linalg.tensordot is just an alias for np.tensordot + x = np.arange(6).reshape((2, 3)) + + assert np.linalg.tensordot(x, x) == 55 + assert np.linalg.tensordot(x, x, axes=[(0, 1), (0, 1)]) == 55 + + +def test_matmul(): + # np.linalg.matmul and np.matmul only differs in the number + # of arguments in the signature + x = np.arange(6).reshape((2, 3)) + actual = np.linalg.matmul(x, x.T) + expected = np.array([[5, 14], [14, 50]]) + + assert_equal(actual, expected) + + +def test_matrix_transpose(): + x = np.arange(6).reshape((2, 3)) + actual = np.linalg.matrix_transpose(x) + expected = x.T + + assert_equal(actual, expected) + + with assert_raises_regex( + ValueError, "array must be at least 2-dimensional" + ): + np.linalg.matrix_transpose(x[:, 0]) + + +def test_matrix_norm(): + x = np.arange(9).reshape((3, 3)) + actual = np.linalg.matrix_norm(x) + + assert_almost_equal(actual, np.float64(14.2828), double_decimal=3) + + actual = np.linalg.matrix_norm(x, keepdims=True) + + assert_almost_equal(actual, np.array([[14.2828]]), double_decimal=3) + + +def test_matrix_norm_empty(): + for shape in [(0, 2), (2, 0), (0, 0)]: + for dtype in [np.float64, np.float32, np.int32]: + x = np.zeros(shape, dtype) + assert_equal(np.linalg.matrix_norm(x, ord="fro"), 0) + assert_equal(np.linalg.matrix_norm(x, ord="nuc"), 0) + assert_equal(np.linalg.matrix_norm(x, ord=1), 0) + assert_equal(np.linalg.matrix_norm(x, ord=2), 0) + assert_equal(np.linalg.matrix_norm(x, ord=np.inf), 0) + +def test_vector_norm(): + x = np.arange(9).reshape((3, 3)) + actual = np.linalg.vector_norm(x) + + assert_almost_equal(actual, np.float64(14.2828), double_decimal=3) + + actual = np.linalg.vector_norm(x, axis=0) + + assert_almost_equal( + actual, np.array([6.7082, 8.124, 9.6436]), double_decimal=3 + ) + + actual = np.linalg.vector_norm(x, keepdims=True) + expected = np.full((1, 1), 14.2828, dtype='float64') + assert_equal(actual.shape, expected.shape) + assert_almost_equal(actual, expected, double_decimal=3) + + +def test_vector_norm_empty(): + for dtype in [np.float64, np.float32, np.int32]: + x = np.zeros(0, dtype) + assert_equal(np.linalg.vector_norm(x, ord=1), 0) + assert_equal(np.linalg.vector_norm(x, ord=2), 0) + assert_equal(np.linalg.vector_norm(x, ord=np.inf), 0) diff --git a/.venv/lib/python3.12/site-packages/numpy/linalg/tests/test_regression.py b/.venv/lib/python3.12/site-packages/numpy/linalg/tests/test_regression.py new file mode 100644 index 0000000..c46f83a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/linalg/tests/test_regression.py @@ -0,0 +1,181 @@ +""" Test functions for linalg module +""" + +import pytest + +import numpy as np +from numpy import arange, array, dot, float64, linalg, transpose +from numpy.testing import ( + assert_, + assert_array_almost_equal, + assert_array_equal, + assert_array_less, + assert_equal, + assert_raises, +) + + +class TestRegression: + + def test_eig_build(self): + # Ticket #652 + rva = array([1.03221168e+02 + 0.j, + -1.91843603e+01 + 0.j, + -6.04004526e-01 + 15.84422474j, + -6.04004526e-01 - 15.84422474j, + -1.13692929e+01 + 0.j, + -6.57612485e-01 + 10.41755503j, + -6.57612485e-01 - 10.41755503j, + 1.82126812e+01 + 0.j, + 1.06011014e+01 + 0.j, + 7.80732773e+00 + 0.j, + -7.65390898e-01 + 0.j, + 1.51971555e-15 + 0.j, + -1.51308713e-15 + 0.j]) + a = arange(13 * 13, dtype=float64) + a.shape = (13, 13) + a = a % 17 + va, ve = linalg.eig(a) + va.sort() + rva.sort() + assert_array_almost_equal(va, rva) + + def test_eigh_build(self): + # Ticket 662. + rvals = [68.60568999, 89.57756725, 106.67185574] + + cov = array([[77.70273908, 3.51489954, 15.64602427], + [ 3.51489954, 88.97013878, -1.07431931], + [15.64602427, -1.07431931, 98.18223512]]) + + vals, vecs = linalg.eigh(cov) + assert_array_almost_equal(vals, rvals) + + def test_svd_build(self): + # Ticket 627. + a = array([[0., 1.], [1., 1.], [2., 1.], [3., 1.]]) + m, n = a.shape + u, s, vh = linalg.svd(a) + + b = dot(transpose(u[:, n:]), a) + + assert_array_almost_equal(b, np.zeros((2, 2))) + + def test_norm_vector_badarg(self): + # Regression for #786: Frobenius norm for vectors raises + # ValueError. + assert_raises(ValueError, linalg.norm, array([1., 2., 3.]), 'fro') + + def test_lapack_endian(self): + # For bug #1482 + a = array([[ 5.7998084, -2.1825367], + [-2.1825367, 9.85910595]], dtype='>f8') + b = array(a, dtype=' 0.5) + assert_equal(c, 1) + assert_equal(np.linalg.matrix_rank(a), 1) + assert_array_less(1, np.linalg.norm(a, ord=2)) + + w_svdvals = linalg.svdvals(a) + assert_array_almost_equal(w, w_svdvals) + + def test_norm_object_array(self): + # gh-7575 + testvector = np.array([np.array([0, 1]), 0, 0], dtype=object) + + norm = linalg.norm(testvector) + assert_array_equal(norm, [0, 1]) + assert_(norm.dtype == np.dtype('float64')) + + norm = linalg.norm(testvector, ord=1) + assert_array_equal(norm, [0, 1]) + assert_(norm.dtype != np.dtype('float64')) + + norm = linalg.norm(testvector, ord=2) + assert_array_equal(norm, [0, 1]) + assert_(norm.dtype == np.dtype('float64')) + + assert_raises(ValueError, linalg.norm, testvector, ord='fro') + assert_raises(ValueError, linalg.norm, testvector, ord='nuc') + assert_raises(ValueError, linalg.norm, testvector, ord=np.inf) + assert_raises(ValueError, linalg.norm, testvector, ord=-np.inf) + assert_raises(ValueError, linalg.norm, testvector, ord=0) + assert_raises(ValueError, linalg.norm, testvector, ord=-1) + assert_raises(ValueError, linalg.norm, testvector, ord=-2) + + testmatrix = np.array([[np.array([0, 1]), 0, 0], + [0, 0, 0]], dtype=object) + + norm = linalg.norm(testmatrix) + assert_array_equal(norm, [0, 1]) + assert_(norm.dtype == np.dtype('float64')) + + norm = linalg.norm(testmatrix, ord='fro') + assert_array_equal(norm, [0, 1]) + assert_(norm.dtype == np.dtype('float64')) + + assert_raises(TypeError, linalg.norm, testmatrix, ord='nuc') + assert_raises(ValueError, linalg.norm, testmatrix, ord=np.inf) + assert_raises(ValueError, linalg.norm, testmatrix, ord=-np.inf) + assert_raises(ValueError, linalg.norm, testmatrix, ord=0) + assert_raises(ValueError, linalg.norm, testmatrix, ord=1) + assert_raises(ValueError, linalg.norm, testmatrix, ord=-1) + assert_raises(TypeError, linalg.norm, testmatrix, ord=2) + assert_raises(TypeError, linalg.norm, testmatrix, ord=-2) + assert_raises(ValueError, linalg.norm, testmatrix, ord=3) + + def test_lstsq_complex_larger_rhs(self): + # gh-9891 + size = 20 + n_rhs = 70 + G = np.random.randn(size, size) + 1j * np.random.randn(size, size) + u = np.random.randn(size, n_rhs) + 1j * np.random.randn(size, n_rhs) + b = G.dot(u) + # This should work without segmentation fault. + u_lstsq, res, rank, sv = linalg.lstsq(G, b, rcond=None) + # check results just in case + assert_array_almost_equal(u_lstsq, u) + + @pytest.mark.parametrize("upper", [True, False]) + def test_cholesky_empty_array(self, upper): + # gh-25840 - upper=True hung before. + res = np.linalg.cholesky(np.zeros((0, 0)), upper=upper) + assert res.size == 0 + + @pytest.mark.parametrize("rtol", [0.0, [0.0] * 4, np.zeros((4,))]) + def test_matrix_rank_rtol_argument(self, rtol): + # gh-25877 + x = np.zeros((4, 3, 2)) + res = np.linalg.matrix_rank(x, rtol=rtol) + assert res.shape == (4,) + + def test_openblas_threading(self): + # gh-27036 + # Test whether matrix multiplication involving a large matrix always + # gives the same (correct) answer + x = np.arange(500000, dtype=np.float64) + src = np.vstack((x, -10 * x)).T + matrix = np.array([[0, 1], [1, 0]]) + expected = np.vstack((-10 * x, x)).T # src @ matrix + for i in range(200): + result = src @ matrix + mismatches = (~np.isclose(result, expected)).sum() + if mismatches != 0: + assert False, ("unexpected result from matmul, " + "probably due to OpenBLAS threading issues") diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/API_CHANGES.txt b/.venv/lib/python3.12/site-packages/numpy/ma/API_CHANGES.txt new file mode 100644 index 0000000..a3d792a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/ma/API_CHANGES.txt @@ -0,0 +1,135 @@ +.. -*- rest -*- + +================================================== +API changes in the new masked array implementation +================================================== + +Masked arrays are subclasses of ndarray +--------------------------------------- + +Contrary to the original implementation, masked arrays are now regular +ndarrays:: + + >>> x = masked_array([1,2,3],mask=[0,0,1]) + >>> print isinstance(x, numpy.ndarray) + True + + +``_data`` returns a view of the masked array +-------------------------------------------- + +Masked arrays are composed of a ``_data`` part and a ``_mask``. Accessing the +``_data`` part will return a regular ndarray or any of its subclass, depending +on the initial data:: + + >>> x = masked_array(numpy.matrix([[1,2],[3,4]]),mask=[[0,0],[0,1]]) + >>> print x._data + [[1 2] + [3 4]] + >>> print type(x._data) + + + +In practice, ``_data`` is implemented as a property, not as an attribute. +Therefore, you cannot access it directly, and some simple tests such as the +following one will fail:: + + >>>x._data is x._data + False + + +``filled(x)`` can return a subclass of ndarray +---------------------------------------------- +The function ``filled(a)`` returns an array of the same type as ``a._data``:: + + >>> x = masked_array(numpy.matrix([[1,2],[3,4]]),mask=[[0,0],[0,1]]) + >>> y = filled(x) + >>> print type(y) + + >>> print y + matrix([[ 1, 2], + [ 3, 999999]]) + + +``put``, ``putmask`` behave like their ndarray counterparts +----------------------------------------------------------- + +Previously, ``putmask`` was used like this:: + + mask = [False,True,True] + x = array([1,4,7],mask=mask) + putmask(x,mask,[3]) + +which translated to:: + + x[~mask] = [3] + +(Note that a ``True``-value in a mask suppresses a value.) + +In other words, the mask had the same length as ``x``, whereas +``values`` had ``sum(~mask)`` elements. + +Now, the behaviour is similar to that of ``ndarray.putmask``, where +the mask and the values are both the same length as ``x``, i.e. + +:: + + putmask(x,mask,[3,0,0]) + + +``fill_value`` is a property +---------------------------- + +``fill_value`` is no longer a method, but a property:: + + >>> print x.fill_value + 999999 + +``cumsum`` and ``cumprod`` ignore missing values +------------------------------------------------ + +Missing values are assumed to be the identity element, i.e. 0 for +``cumsum`` and 1 for ``cumprod``:: + + >>> x = N.ma.array([1,2,3,4],mask=[False,True,False,False]) + >>> print x + [1 -- 3 4] + >>> print x.cumsum() + [1 -- 4 8] + >> print x.cumprod() + [1 -- 3 12] + +``bool(x)`` raises a ValueError +------------------------------- + +Masked arrays now behave like regular ``ndarrays``, in that they cannot be +converted to booleans: + +:: + + >>> x = N.ma.array([1,2,3]) + >>> bool(x) + Traceback (most recent call last): + File "", line 1, in + ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all() + + +================================== +New features (non exhaustive list) +================================== + +``mr_`` +------- + +``mr_`` mimics the behavior of ``r_`` for masked arrays:: + + >>> np.ma.mr_[3,4,5] + masked_array(data = [3 4 5], + mask = False, + fill_value=999999) + + +``anom`` +-------- + +The ``anom`` method returns the deviations from the average (anomalies). diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/LICENSE b/.venv/lib/python3.12/site-packages/numpy/ma/LICENSE new file mode 100644 index 0000000..b41aae0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/ma/LICENSE @@ -0,0 +1,24 @@ +* Copyright (c) 2006, University of Georgia and Pierre G.F. Gerard-Marchant +* All rights reserved. +* Redistribution and use in source and binary forms, with or without +* modification, are permitted provided that the following conditions are met: +* +* * Redistributions of source code must retain the above copyright +* notice, this list of conditions and the following disclaimer. +* * Redistributions in binary form must reproduce the above copyright +* notice, this list of conditions and the following disclaimer in the +* documentation and/or other materials provided with the distribution. +* * Neither the name of the University of Georgia nor the +* names of its contributors may be used to endorse or promote products +* derived from this software without specific prior written permission. +* +* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY +* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY +* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND +* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. \ No newline at end of file diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/README.rst b/.venv/lib/python3.12/site-packages/numpy/ma/README.rst new file mode 100644 index 0000000..cd10103 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/ma/README.rst @@ -0,0 +1,236 @@ +================================== +A guide to masked arrays in NumPy +================================== + +.. Contents:: + +See http://www.scipy.org/scipy/numpy/wiki/MaskedArray (dead link) +for updates of this document. + + +History +------- + +As a regular user of MaskedArray, I (Pierre G.F. Gerard-Marchant) became +increasingly frustrated with the subclassing of masked arrays (even if +I can only blame my inexperience). I needed to develop a class of arrays +that could store some additional information along with numerical values, +while keeping the possibility for missing data (picture storing a series +of dates along with measurements, what would later become the `TimeSeries +Scikit `__ +(dead link). + +I started to implement such a class, but then quickly realized that +any additional information disappeared when processing these subarrays +(for example, adding a constant value to a subarray would erase its +dates). I ended up writing the equivalent of *numpy.core.ma* for my +particular class, ufuncs included. Everything went fine until I needed to +subclass my new class, when more problems showed up: some attributes of +the new subclass were lost during processing. I identified the culprit as +MaskedArray, which returns masked ndarrays when I expected masked +arrays of my class. I was preparing myself to rewrite *numpy.core.ma* +when I forced myself to learn how to subclass ndarrays. As I became more +familiar with the *__new__* and *__array_finalize__* methods, +I started to wonder why masked arrays were objects, and not ndarrays, +and whether it wouldn't be more convenient for subclassing if they did +behave like regular ndarrays. + +The new *maskedarray* is what I eventually come up with. The +main differences with the initial *numpy.core.ma* package are +that MaskedArray is now a subclass of *ndarray* and that the +*_data* section can now be any subclass of *ndarray*. Apart from a +couple of issues listed below, the behavior of the new MaskedArray +class reproduces the old one. Initially the *maskedarray* +implementation was marginally slower than *numpy.ma* in some areas, +but work is underway to speed it up; the expectation is that it can be +made substantially faster than the present *numpy.ma*. + + +Note that if the subclass has some special methods and +attributes, they are not propagated to the masked version: +this would require a modification of the *__getattribute__* +method (first trying *ndarray.__getattribute__*, then trying +*self._data.__getattribute__* if an exception is raised in the first +place), which really slows things down. + +Main differences +---------------- + + * The *_data* part of the masked array can be any subclass of ndarray (but not recarray, cf below). + * *fill_value* is now a property, not a function. + * in the majority of cases, the mask is forced to *nomask* when no value is actually masked. A notable exception is when a masked array (with no masked values) has just been unpickled. + * I got rid of the *share_mask* flag, I never understood its purpose. + * *put*, *putmask* and *take* now mimic the ndarray methods, to avoid unpleasant surprises. Moreover, *put* and *putmask* both update the mask when needed. * if *a* is a masked array, *bool(a)* raises a *ValueError*, as it does with ndarrays. + * in the same way, the comparison of two masked arrays is a masked array, not a boolean + * *filled(a)* returns an array of the same subclass as *a._data*, and no test is performed on whether it is contiguous or not. + * the mask is always printed, even if it's *nomask*, which makes things easy (for me at least) to remember that a masked array is used. + * *cumsum* works as if the *_data* array was filled with 0. The mask is preserved, but not updated. + * *cumprod* works as if the *_data* array was filled with 1. The mask is preserved, but not updated. + +New features +------------ + +This list is non-exhaustive... + + * the *mr_* function mimics *r_* for masked arrays. + * the *anom* method returns the anomalies (deviations from the average) + +Using the new package with numpy.core.ma +---------------------------------------- + +I tried to make sure that the new package can understand old masked +arrays. Unfortunately, there's no upward compatibility. + +For example: + +>>> import numpy.core.ma as old_ma +>>> import maskedarray as new_ma +>>> x = old_ma.array([1,2,3,4,5], mask=[0,0,1,0,0]) +>>> x +array(data = + [ 1 2 999999 4 5], + mask = + [False False True False False], + fill_value=999999) +>>> y = new_ma.array([1,2,3,4,5], mask=[0,0,1,0,0]) +>>> y +array(data = [1 2 -- 4 5], + mask = [False False True False False], + fill_value=999999) +>>> x==y +array(data = + [True True True True True], + mask = + [False False True False False], + fill_value=?) +>>> old_ma.getmask(x) == new_ma.getmask(x) +array([True, True, True, True, True]) +>>> old_ma.getmask(y) == new_ma.getmask(y) +array([True, True, False, True, True]) +>>> old_ma.getmask(y) +False + + +Using maskedarray with matplotlib +--------------------------------- + +Starting with matplotlib 0.91.2, the masked array importing will work with +the maskedarray branch) as well as with earlier versions. + +By default matplotlib still uses numpy.ma, but there is an rcParams setting +that you can use to select maskedarray instead. In the matplotlibrc file +you will find:: + + #maskedarray : False # True to use external maskedarray module + # instead of numpy.ma; this is a temporary # + setting for testing maskedarray. + + +Uncomment and set to True to select maskedarray everywhere. +Alternatively, you can test a script with maskedarray by using a +command-line option, e.g.:: + + python simple_plot.py --maskedarray + + +Masked records +-------------- + +Like *numpy.ma.core*, the *ndarray*-based implementation +of MaskedArray is limited when working with records: you can +mask any record of the array, but not a field in a record. If you +need this feature, you may want to give the *mrecords* package +a try (available in the *maskedarray* directory in the scipy +sandbox). This module defines a new class, *MaskedRecord*. An +instance of this class accepts a *recarray* as data, and uses two +masks: the *fieldmask* has as many entries as records in the array, +each entry with the same fields as a record, but of boolean types: +they indicate whether the field is masked or not; a record entry +is flagged as masked in the *mask* array if all the fields are +masked. A few examples in the file should give you an idea of what +can be done. Note that *mrecords* is still experimental... + +Optimizing maskedarray +---------------------- + +Should masked arrays be filled before processing or not? +-------------------------------------------------------- + +In the current implementation, most operations on masked arrays involve +the following steps: + + * the input arrays are filled + * the operation is performed on the filled arrays + * the mask is set for the results, from the combination of the input masks and the mask corresponding to the domain of the operation. + +For example, consider the division of two masked arrays:: + + import numpy + import maskedarray as ma + x = ma.array([1,2,3,4],mask=[1,0,0,0], dtype=numpy.float64) + y = ma.array([-1,0,1,2], mask=[0,0,0,1], dtype=numpy.float64) + +The division of x by y is then computed as:: + + d1 = x.filled(0) # d1 = array([0., 2., 3., 4.]) + d2 = y.filled(1) # array([-1., 0., 1., 1.]) + m = ma.mask_or(ma.getmask(x), ma.getmask(y)) # m = + array([True,False,False,True]) + dm = ma.divide.domain(d1,d2) # array([False, True, False, False]) + result = (d1/d2).view(MaskedArray) # masked_array([-0. inf, 3., 4.]) + result._mask = logical_or(m, dm) + +Note that a division by zero takes place. To avoid it, we can consider +to fill the input arrays, taking the domain mask into account, so that:: + + d1 = x._data.copy() # d1 = array([1., 2., 3., 4.]) + d2 = y._data.copy() # array([-1., 0., 1., 2.]) + dm = ma.divide.domain(d1,d2) # array([False, True, False, False]) + numpy.putmask(d2, dm, 1) # d2 = array([-1., 1., 1., 2.]) + m = ma.mask_or(ma.getmask(x), ma.getmask(y)) # m = + array([True,False,False,True]) + result = (d1/d2).view(MaskedArray) # masked_array([-1. 0., 3., 2.]) + result._mask = logical_or(m, dm) + +Note that the *.copy()* is required to avoid updating the inputs with +*putmask*. The *.filled()* method also involves a *.copy()*. + +A third possibility consists in avoid filling the arrays:: + + d1 = x._data # d1 = array([1., 2., 3., 4.]) + d2 = y._data # array([-1., 0., 1., 2.]) + dm = ma.divide.domain(d1,d2) # array([False, True, False, False]) + m = ma.mask_or(ma.getmask(x), ma.getmask(y)) # m = + array([True,False,False,True]) + result = (d1/d2).view(MaskedArray) # masked_array([-1. inf, 3., 2.]) + result._mask = logical_or(m, dm) + +Note that here again the division by zero takes place. + +A quick benchmark gives the following results: + + * *numpy.ma.divide* : 2.69 ms per loop + * classical division : 2.21 ms per loop + * division w/ prefilling : 2.34 ms per loop + * division w/o filling : 1.55 ms per loop + +So, is it worth filling the arrays beforehand ? Yes, if we are interested +in avoiding floating-point exceptions that may fill the result with infs +and nans. No, if we are only interested into speed... + + +Thanks +------ + +I'd like to thank Paul Dubois, Travis Oliphant and Sasha for the +original masked array package: without you, I would never have started +that (it might be argued that I shouldn't have anyway, but that's +another story...). I also wish to extend these thanks to Reggie Dugard +and Eric Firing for their suggestions and numerous improvements. + + +Revision notes +-------------- + + * 08/25/2007 : Creation of this page + * 01/23/2007 : The package has been moved to the SciPy sandbox, and is regularly updated: please check out your SVN version! diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/__init__.py b/.venv/lib/python3.12/site-packages/numpy/ma/__init__.py new file mode 100644 index 0000000..e2a742e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/ma/__init__.py @@ -0,0 +1,53 @@ +""" +============= +Masked Arrays +============= + +Arrays sometimes contain invalid or missing data. When doing operations +on such arrays, we wish to suppress invalid values, which is the purpose masked +arrays fulfill (an example of typical use is given below). + +For example, examine the following array: + +>>> x = np.array([2, 1, 3, np.nan, 5, 2, 3, np.nan]) + +When we try to calculate the mean of the data, the result is undetermined: + +>>> np.mean(x) +nan + +The mean is calculated using roughly ``np.sum(x)/len(x)``, but since +any number added to ``NaN`` [1]_ produces ``NaN``, this doesn't work. Enter +masked arrays: + +>>> m = np.ma.masked_array(x, np.isnan(x)) +>>> m +masked_array(data=[2.0, 1.0, 3.0, --, 5.0, 2.0, 3.0, --], + mask=[False, False, False, True, False, False, False, True], + fill_value=1e+20) + +Here, we construct a masked array that suppress all ``NaN`` values. We +may now proceed to calculate the mean of the other values: + +>>> np.mean(m) +2.6666666666666665 + +.. [1] Not-a-Number, a floating point value that is the result of an + invalid operation. + +.. moduleauthor:: Pierre Gerard-Marchant +.. moduleauthor:: Jarrod Millman + +""" +from . import core, extras +from .core import * +from .extras import * + +__all__ = ['core', 'extras'] +__all__ += core.__all__ +__all__ += extras.__all__ + +from numpy._pytesttester import PytestTester + +test = PytestTester(__name__) +del PytestTester diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/__init__.pyi b/.venv/lib/python3.12/site-packages/numpy/ma/__init__.pyi new file mode 100644 index 0000000..176e929 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/ma/__init__.pyi @@ -0,0 +1,458 @@ +from . import core, extras +from .core import ( + MAError, + MaskedArray, + MaskError, + MaskType, + abs, + absolute, + add, + all, + allclose, + allequal, + alltrue, + amax, + amin, + angle, + anom, + anomalies, + any, + append, + arange, + arccos, + arccosh, + arcsin, + arcsinh, + arctan, + arctan2, + arctanh, + argmax, + argmin, + argsort, + around, + array, + asanyarray, + asarray, + bitwise_and, + bitwise_or, + bitwise_xor, + bool_, + ceil, + choose, + clip, + common_fill_value, + compress, + compressed, + concatenate, + conjugate, + convolve, + copy, + correlate, + cos, + cosh, + count, + cumprod, + cumsum, + default_fill_value, + diag, + diagonal, + diff, + divide, + empty, + empty_like, + equal, + exp, + expand_dims, + fabs, + filled, + fix_invalid, + flatten_mask, + flatten_structured_array, + floor, + floor_divide, + fmod, + frombuffer, + fromflex, + fromfunction, + getdata, + getmask, + getmaskarray, + greater, + greater_equal, + harden_mask, + hypot, + identity, + ids, + indices, + inner, + innerproduct, + is_mask, + is_masked, + isarray, + isMA, + isMaskedArray, + left_shift, + less, + less_equal, + log, + log2, + log10, + logical_and, + logical_not, + logical_or, + logical_xor, + make_mask, + make_mask_descr, + make_mask_none, + mask_or, + masked, + masked_array, + masked_equal, + masked_greater, + masked_greater_equal, + masked_inside, + masked_invalid, + masked_less, + masked_less_equal, + masked_not_equal, + masked_object, + masked_outside, + masked_print_option, + masked_singleton, + masked_values, + masked_where, + max, + maximum, + maximum_fill_value, + mean, + min, + minimum, + minimum_fill_value, + mod, + multiply, + mvoid, + ndim, + negative, + nomask, + nonzero, + not_equal, + ones, + ones_like, + outer, + outerproduct, + power, + prod, + product, + ptp, + put, + putmask, + ravel, + remainder, + repeat, + reshape, + resize, + right_shift, + round, + round_, + set_fill_value, + shape, + sin, + sinh, + size, + soften_mask, + sometrue, + sort, + sqrt, + squeeze, + std, + subtract, + sum, + swapaxes, + take, + tan, + tanh, + trace, + transpose, + true_divide, + var, + where, + zeros, + zeros_like, +) +from .extras import ( + apply_along_axis, + apply_over_axes, + atleast_1d, + atleast_2d, + atleast_3d, + average, + clump_masked, + clump_unmasked, + column_stack, + compress_cols, + compress_nd, + compress_rowcols, + compress_rows, + corrcoef, + count_masked, + cov, + diagflat, + dot, + dstack, + ediff1d, + flatnotmasked_contiguous, + flatnotmasked_edges, + hsplit, + hstack, + in1d, + intersect1d, + isin, + mask_cols, + mask_rowcols, + mask_rows, + masked_all, + masked_all_like, + median, + mr_, + ndenumerate, + notmasked_contiguous, + notmasked_edges, + polyfit, + row_stack, + setdiff1d, + setxor1d, + stack, + union1d, + unique, + vander, + vstack, +) + +__all__ = [ + "core", + "extras", + "MAError", + "MaskError", + "MaskType", + "MaskedArray", + "abs", + "absolute", + "add", + "all", + "allclose", + "allequal", + "alltrue", + "amax", + "amin", + "angle", + "anom", + "anomalies", + "any", + "append", + "arange", + "arccos", + "arccosh", + "arcsin", + "arcsinh", + "arctan", + "arctan2", + "arctanh", + "argmax", + "argmin", + "argsort", + "around", + "array", + "asanyarray", + "asarray", + "bitwise_and", + "bitwise_or", + "bitwise_xor", + "bool_", + "ceil", + "choose", + "clip", + "common_fill_value", + "compress", + "compressed", + "concatenate", + "conjugate", + "convolve", + "copy", + "correlate", + "cos", + "cosh", + "count", + "cumprod", + "cumsum", + "default_fill_value", + "diag", + "diagonal", + "diff", + "divide", + "empty", + "empty_like", + "equal", + "exp", + "expand_dims", + "fabs", + "filled", + "fix_invalid", + "flatten_mask", + "flatten_structured_array", + "floor", + "floor_divide", + "fmod", + "frombuffer", + "fromflex", + "fromfunction", + "getdata", + "getmask", + "getmaskarray", + "greater", + "greater_equal", + "harden_mask", + "hypot", + "identity", + "ids", + "indices", + "inner", + "innerproduct", + "isMA", + "isMaskedArray", + "is_mask", + "is_masked", + "isarray", + "left_shift", + "less", + "less_equal", + "log", + "log10", + "log2", + "logical_and", + "logical_not", + "logical_or", + "logical_xor", + "make_mask", + "make_mask_descr", + "make_mask_none", + "mask_or", + "masked", + "masked_array", + "masked_equal", + "masked_greater", + "masked_greater_equal", + "masked_inside", + "masked_invalid", + "masked_less", + "masked_less_equal", + "masked_not_equal", + "masked_object", + "masked_outside", + "masked_print_option", + "masked_singleton", + "masked_values", + "masked_where", + "max", + "maximum", + "maximum_fill_value", + "mean", + "min", + "minimum", + "minimum_fill_value", + "mod", + "multiply", + "mvoid", + "ndim", + "negative", + "nomask", + "nonzero", + "not_equal", + "ones", + "ones_like", + "outer", + "outerproduct", + "power", + "prod", + "product", + "ptp", + "put", + "putmask", + "ravel", + "remainder", + "repeat", + "reshape", + "resize", + "right_shift", + "round", + "round_", + "set_fill_value", + "shape", + "sin", + "sinh", + "size", + "soften_mask", + "sometrue", + "sort", + "sqrt", + "squeeze", + "std", + "subtract", + "sum", + "swapaxes", + "take", + "tan", + "tanh", + "trace", + "transpose", + "true_divide", + "var", + "where", + "zeros", + "zeros_like", + "apply_along_axis", + "apply_over_axes", + "atleast_1d", + "atleast_2d", + "atleast_3d", + "average", + "clump_masked", + "clump_unmasked", + "column_stack", + "compress_cols", + "compress_nd", + "compress_rowcols", + "compress_rows", + "count_masked", + "corrcoef", + "cov", + "diagflat", + "dot", + "dstack", + "ediff1d", + "flatnotmasked_contiguous", + "flatnotmasked_edges", + "hsplit", + "hstack", + "isin", + "in1d", + "intersect1d", + "mask_cols", + "mask_rowcols", + "mask_rows", + "masked_all", + "masked_all_like", + "median", + "mr_", + "ndenumerate", + "notmasked_contiguous", + "notmasked_edges", + "polyfit", + "row_stack", + "setdiff1d", + "setxor1d", + "stack", + "unique", + "union1d", + "vander", + "vstack", +] diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/ma/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..f5ec9b3 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/ma/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/__pycache__/core.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/ma/__pycache__/core.cpython-312.pyc new file mode 100644 index 0000000..7f4ce11 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/ma/__pycache__/core.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/__pycache__/extras.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/ma/__pycache__/extras.cpython-312.pyc new file mode 100644 index 0000000..c35336f Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/ma/__pycache__/extras.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/__pycache__/mrecords.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/ma/__pycache__/mrecords.cpython-312.pyc new file mode 100644 index 0000000..7524ee6 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/ma/__pycache__/mrecords.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/__pycache__/testutils.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/ma/__pycache__/testutils.cpython-312.pyc new file mode 100644 index 0000000..d5f2731 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/ma/__pycache__/testutils.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/core.py b/.venv/lib/python3.12/site-packages/numpy/ma/core.py new file mode 100644 index 0000000..05ea373 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/ma/core.py @@ -0,0 +1,8936 @@ +""" +numpy.ma : a package to handle missing or invalid values. + +This package was initially written for numarray by Paul F. Dubois +at Lawrence Livermore National Laboratory. +In 2006, the package was completely rewritten by Pierre Gerard-Marchant +(University of Georgia) to make the MaskedArray class a subclass of ndarray, +and to improve support of structured arrays. + + +Copyright 1999, 2000, 2001 Regents of the University of California. +Released for unlimited redistribution. + +* Adapted for numpy_core 2005 by Travis Oliphant and (mainly) Paul Dubois. +* Subclassing of the base `ndarray` 2006 by Pierre Gerard-Marchant + (pgmdevlist_AT_gmail_DOT_com) +* Improvements suggested by Reggie Dugard (reggie_AT_merfinllc_DOT_com) + +.. moduleauthor:: Pierre Gerard-Marchant + +""" +import builtins +import functools +import inspect +import operator +import re +import textwrap +import warnings + +import numpy as np +import numpy._core.numerictypes as ntypes +import numpy._core.umath as umath +from numpy import ( + _NoValue, + amax, + amin, + angle, + bool_, + expand_dims, + finfo, # noqa: F401 + iinfo, # noqa: F401 + iscomplexobj, + ndarray, +) +from numpy import array as narray # noqa: F401 +from numpy._core import multiarray as mu +from numpy._core.numeric import normalize_axis_tuple +from numpy._utils import set_module +from numpy._utils._inspect import formatargspec, getargspec + +__all__ = [ + 'MAError', 'MaskError', 'MaskType', 'MaskedArray', 'abs', 'absolute', + 'add', 'all', 'allclose', 'allequal', 'alltrue', 'amax', 'amin', + 'angle', 'anom', 'anomalies', 'any', 'append', 'arange', 'arccos', + 'arccosh', 'arcsin', 'arcsinh', 'arctan', 'arctan2', 'arctanh', + 'argmax', 'argmin', 'argsort', 'around', 'array', 'asanyarray', + 'asarray', 'bitwise_and', 'bitwise_or', 'bitwise_xor', 'bool_', 'ceil', + 'choose', 'clip', 'common_fill_value', 'compress', 'compressed', + 'concatenate', 'conjugate', 'convolve', 'copy', 'correlate', 'cos', 'cosh', + 'count', 'cumprod', 'cumsum', 'default_fill_value', 'diag', 'diagonal', + 'diff', 'divide', 'empty', 'empty_like', 'equal', 'exp', + 'expand_dims', 'fabs', 'filled', 'fix_invalid', 'flatten_mask', + 'flatten_structured_array', 'floor', 'floor_divide', 'fmod', + 'frombuffer', 'fromflex', 'fromfunction', 'getdata', 'getmask', + 'getmaskarray', 'greater', 'greater_equal', 'harden_mask', 'hypot', + 'identity', 'ids', 'indices', 'inner', 'innerproduct', 'isMA', + 'isMaskedArray', 'is_mask', 'is_masked', 'isarray', 'left_shift', + 'less', 'less_equal', 'log', 'log10', 'log2', + 'logical_and', 'logical_not', 'logical_or', 'logical_xor', 'make_mask', + 'make_mask_descr', 'make_mask_none', 'mask_or', 'masked', + 'masked_array', 'masked_equal', 'masked_greater', + 'masked_greater_equal', 'masked_inside', 'masked_invalid', + 'masked_less', 'masked_less_equal', 'masked_not_equal', + 'masked_object', 'masked_outside', 'masked_print_option', + 'masked_singleton', 'masked_values', 'masked_where', 'max', 'maximum', + 'maximum_fill_value', 'mean', 'min', 'minimum', 'minimum_fill_value', + 'mod', 'multiply', 'mvoid', 'ndim', 'negative', 'nomask', 'nonzero', + 'not_equal', 'ones', 'ones_like', 'outer', 'outerproduct', 'power', 'prod', + 'product', 'ptp', 'put', 'putmask', 'ravel', 'remainder', + 'repeat', 'reshape', 'resize', 'right_shift', 'round', 'round_', + 'set_fill_value', 'shape', 'sin', 'sinh', 'size', 'soften_mask', + 'sometrue', 'sort', 'sqrt', 'squeeze', 'std', 'subtract', 'sum', + 'swapaxes', 'take', 'tan', 'tanh', 'trace', 'transpose', 'true_divide', + 'var', 'where', 'zeros', 'zeros_like', + ] + +MaskType = np.bool +nomask = MaskType(0) + +class MaskedArrayFutureWarning(FutureWarning): + pass + +def _deprecate_argsort_axis(arr): + """ + Adjust the axis passed to argsort, warning if necessary + + Parameters + ---------- + arr + The array which argsort was called on + + np.ma.argsort has a long-term bug where the default of the axis argument + is wrong (gh-8701), which now must be kept for backwards compatibility. + Thankfully, this only makes a difference when arrays are 2- or more- + dimensional, so we only need a warning then. + """ + if arr.ndim <= 1: + # no warning needed - but switch to -1 anyway, to avoid surprising + # subclasses, which are more likely to implement scalar axes. + return -1 + else: + # 2017-04-11, Numpy 1.13.0, gh-8701: warn on axis default + warnings.warn( + "In the future the default for argsort will be axis=-1, not the " + "current None, to match its documentation and np.argsort. " + "Explicitly pass -1 or None to silence this warning.", + MaskedArrayFutureWarning, stacklevel=3) + return None + + +def doc_note(initialdoc, note): + """ + Adds a Notes section to an existing docstring. + + """ + if initialdoc is None: + return + if note is None: + return initialdoc + + notesplit = re.split(r'\n\s*?Notes\n\s*?-----', inspect.cleandoc(initialdoc)) + notedoc = f"\n\nNotes\n-----\n{inspect.cleandoc(note)}\n" + + return ''.join(notesplit[:1] + [notedoc] + notesplit[1:]) + + +def get_object_signature(obj): + """ + Get the signature from obj + + """ + try: + sig = formatargspec(*getargspec(obj)) + except TypeError: + sig = '' + return sig + + +############################################################################### +# Exceptions # +############################################################################### + + +class MAError(Exception): + """ + Class for masked array related errors. + + """ + pass + + +class MaskError(MAError): + """ + Class for mask related errors. + + """ + pass + + +############################################################################### +# Filling options # +############################################################################### + + +# b: boolean - c: complex - f: floats - i: integer - O: object - S: string +default_filler = {'b': True, + 'c': 1.e20 + 0.0j, + 'f': 1.e20, + 'i': 999999, + 'O': '?', + 'S': b'N/A', + 'u': 999999, + 'V': b'???', + 'U': 'N/A' + } + +# Add datetime64 and timedelta64 types +for v in ["Y", "M", "W", "D", "h", "m", "s", "ms", "us", "ns", "ps", + "fs", "as"]: + default_filler["M8[" + v + "]"] = np.datetime64("NaT", v) + default_filler["m8[" + v + "]"] = np.timedelta64("NaT", v) + +float_types_list = [np.half, np.single, np.double, np.longdouble, + np.csingle, np.cdouble, np.clongdouble] + +_minvals: dict[type, int] = {} +_maxvals: dict[type, int] = {} + +for sctype in ntypes.sctypeDict.values(): + scalar_dtype = np.dtype(sctype) + + if scalar_dtype.kind in "Mm": + info = np.iinfo(np.int64) + min_val, max_val = info.min + 1, info.max + elif np.issubdtype(scalar_dtype, np.integer): + info = np.iinfo(sctype) + min_val, max_val = info.min, info.max + elif np.issubdtype(scalar_dtype, np.floating): + info = np.finfo(sctype) + min_val, max_val = info.min, info.max + elif scalar_dtype.kind == "b": + min_val, max_val = 0, 1 + else: + min_val, max_val = None, None + + _minvals[sctype] = min_val + _maxvals[sctype] = max_val + +max_filler = _minvals +max_filler.update([(k, -np.inf) for k in float_types_list[:4]]) +max_filler.update([(k, complex(-np.inf, -np.inf)) for k in float_types_list[-3:]]) + +min_filler = _maxvals +min_filler.update([(k, +np.inf) for k in float_types_list[:4]]) +min_filler.update([(k, complex(+np.inf, +np.inf)) for k in float_types_list[-3:]]) + +del float_types_list + +def _recursive_fill_value(dtype, f): + """ + Recursively produce a fill value for `dtype`, calling f on scalar dtypes + """ + if dtype.names is not None: + # We wrap into `array` here, which ensures we use NumPy cast rules + # for integer casts, this allows the use of 99999 as a fill value + # for int8. + # TODO: This is probably a mess, but should best preserve behavior? + vals = tuple( + np.array(_recursive_fill_value(dtype[name], f)) + for name in dtype.names) + return np.array(vals, dtype=dtype)[()] # decay to void scalar from 0d + elif dtype.subdtype: + subtype, shape = dtype.subdtype + subval = _recursive_fill_value(subtype, f) + return np.full(shape, subval) + else: + return f(dtype) + + +def _get_dtype_of(obj): + """ Convert the argument for *_fill_value into a dtype """ + if isinstance(obj, np.dtype): + return obj + elif hasattr(obj, 'dtype'): + return obj.dtype + else: + return np.asanyarray(obj).dtype + + +def default_fill_value(obj): + """ + Return the default fill value for the argument object. + + The default filling value depends on the datatype of the input + array or the type of the input scalar: + + ======== ======== + datatype default + ======== ======== + bool True + int 999999 + float 1.e20 + complex 1.e20+0j + object '?' + string 'N/A' + ======== ======== + + For structured types, a structured scalar is returned, with each field the + default fill value for its type. + + For subarray types, the fill value is an array of the same size containing + the default scalar fill value. + + Parameters + ---------- + obj : ndarray, dtype or scalar + The array data-type or scalar for which the default fill value + is returned. + + Returns + ------- + fill_value : scalar + The default fill value. + + Examples + -------- + >>> import numpy as np + >>> np.ma.default_fill_value(1) + 999999 + >>> np.ma.default_fill_value(np.array([1.1, 2., np.pi])) + 1e+20 + >>> np.ma.default_fill_value(np.dtype(complex)) + (1e+20+0j) + + """ + def _scalar_fill_value(dtype): + if dtype.kind in 'Mm': + return default_filler.get(dtype.str[1:], '?') + else: + return default_filler.get(dtype.kind, '?') + + dtype = _get_dtype_of(obj) + return _recursive_fill_value(dtype, _scalar_fill_value) + + +def _extremum_fill_value(obj, extremum, extremum_name): + + def _scalar_fill_value(dtype): + try: + return extremum[dtype.type] + except KeyError as e: + raise TypeError( + f"Unsuitable type {dtype} for calculating {extremum_name}." + ) from None + + dtype = _get_dtype_of(obj) + return _recursive_fill_value(dtype, _scalar_fill_value) + + +def minimum_fill_value(obj): + """ + Return the maximum value that can be represented by the dtype of an object. + + This function is useful for calculating a fill value suitable for + taking the minimum of an array with a given dtype. + + Parameters + ---------- + obj : ndarray, dtype or scalar + An object that can be queried for it's numeric type. + + Returns + ------- + val : scalar + The maximum representable value. + + Raises + ------ + TypeError + If `obj` isn't a suitable numeric type. + + See Also + -------- + maximum_fill_value : The inverse function. + set_fill_value : Set the filling value of a masked array. + MaskedArray.fill_value : Return current fill value. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> a = np.int8() + >>> ma.minimum_fill_value(a) + 127 + >>> a = np.int32() + >>> ma.minimum_fill_value(a) + 2147483647 + + An array of numeric data can also be passed. + + >>> a = np.array([1, 2, 3], dtype=np.int8) + >>> ma.minimum_fill_value(a) + 127 + >>> a = np.array([1, 2, 3], dtype=np.float32) + >>> ma.minimum_fill_value(a) + inf + + """ + return _extremum_fill_value(obj, min_filler, "minimum") + + +def maximum_fill_value(obj): + """ + Return the minimum value that can be represented by the dtype of an object. + + This function is useful for calculating a fill value suitable for + taking the maximum of an array with a given dtype. + + Parameters + ---------- + obj : ndarray, dtype or scalar + An object that can be queried for it's numeric type. + + Returns + ------- + val : scalar + The minimum representable value. + + Raises + ------ + TypeError + If `obj` isn't a suitable numeric type. + + See Also + -------- + minimum_fill_value : The inverse function. + set_fill_value : Set the filling value of a masked array. + MaskedArray.fill_value : Return current fill value. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> a = np.int8() + >>> ma.maximum_fill_value(a) + -128 + >>> a = np.int32() + >>> ma.maximum_fill_value(a) + -2147483648 + + An array of numeric data can also be passed. + + >>> a = np.array([1, 2, 3], dtype=np.int8) + >>> ma.maximum_fill_value(a) + -128 + >>> a = np.array([1, 2, 3], dtype=np.float32) + >>> ma.maximum_fill_value(a) + -inf + + """ + return _extremum_fill_value(obj, max_filler, "maximum") + + +def _recursive_set_fill_value(fillvalue, dt): + """ + Create a fill value for a structured dtype. + + Parameters + ---------- + fillvalue : scalar or array_like + Scalar or array representing the fill value. If it is of shorter + length than the number of fields in dt, it will be resized. + dt : dtype + The structured dtype for which to create the fill value. + + Returns + ------- + val : tuple + A tuple of values corresponding to the structured fill value. + + """ + fillvalue = np.resize(fillvalue, len(dt.names)) + output_value = [] + for (fval, name) in zip(fillvalue, dt.names): + cdtype = dt[name] + if cdtype.subdtype: + cdtype = cdtype.subdtype[0] + + if cdtype.names is not None: + output_value.append(tuple(_recursive_set_fill_value(fval, cdtype))) + else: + output_value.append(np.array(fval, dtype=cdtype).item()) + return tuple(output_value) + + +def _check_fill_value(fill_value, ndtype): + """ + Private function validating the given `fill_value` for the given dtype. + + If fill_value is None, it is set to the default corresponding to the dtype. + + If fill_value is not None, its value is forced to the given dtype. + + The result is always a 0d array. + + """ + ndtype = np.dtype(ndtype) + if fill_value is None: + fill_value = default_fill_value(ndtype) + # TODO: It seems better to always store a valid fill_value, the oddity + # about is that `_fill_value = None` would behave even more + # different then. + # (e.g. this allows arr_uint8.astype(int64) to have the default + # fill value again...) + # The one thing that changed in 2.0/2.1 around cast safety is that the + # default `int(99...)` is not a same-kind cast anymore, so if we + # have a uint, use the default uint. + if ndtype.kind == "u": + fill_value = np.uint(fill_value) + elif ndtype.names is not None: + if isinstance(fill_value, (ndarray, np.void)): + try: + fill_value = np.asarray(fill_value, dtype=ndtype) + except ValueError as e: + err_msg = "Unable to transform %s to dtype %s" + raise ValueError(err_msg % (fill_value, ndtype)) from e + else: + fill_value = np.asarray(fill_value, dtype=object) + fill_value = np.array(_recursive_set_fill_value(fill_value, ndtype), + dtype=ndtype) + elif isinstance(fill_value, str) and (ndtype.char not in 'OSVU'): + # Note this check doesn't work if fill_value is not a scalar + err_msg = "Cannot set fill value of string with array of dtype %s" + raise TypeError(err_msg % ndtype) + else: + # In case we want to convert 1e20 to int. + # Also in case of converting string arrays. + try: + fill_value = np.asarray(fill_value, dtype=ndtype) + except (OverflowError, ValueError) as e: + # Raise TypeError instead of OverflowError or ValueError. + # OverflowError is seldom used, and the real problem here is + # that the passed fill_value is not compatible with the ndtype. + err_msg = "Cannot convert fill_value %s to dtype %s" + raise TypeError(err_msg % (fill_value, ndtype)) from e + return np.array(fill_value) + + +def set_fill_value(a, fill_value): + """ + Set the filling value of a, if a is a masked array. + + This function changes the fill value of the masked array `a` in place. + If `a` is not a masked array, the function returns silently, without + doing anything. + + Parameters + ---------- + a : array_like + Input array. + fill_value : dtype + Filling value. A consistency test is performed to make sure + the value is compatible with the dtype of `a`. + + Returns + ------- + None + Nothing returned by this function. + + See Also + -------- + maximum_fill_value : Return the default fill value for a dtype. + MaskedArray.fill_value : Return current fill value. + MaskedArray.set_fill_value : Equivalent method. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> a = np.arange(5) + >>> a + array([0, 1, 2, 3, 4]) + >>> a = ma.masked_where(a < 3, a) + >>> a + masked_array(data=[--, --, --, 3, 4], + mask=[ True, True, True, False, False], + fill_value=999999) + >>> ma.set_fill_value(a, -999) + >>> a + masked_array(data=[--, --, --, 3, 4], + mask=[ True, True, True, False, False], + fill_value=-999) + + Nothing happens if `a` is not a masked array. + + >>> a = list(range(5)) + >>> a + [0, 1, 2, 3, 4] + >>> ma.set_fill_value(a, 100) + >>> a + [0, 1, 2, 3, 4] + >>> a = np.arange(5) + >>> a + array([0, 1, 2, 3, 4]) + >>> ma.set_fill_value(a, 100) + >>> a + array([0, 1, 2, 3, 4]) + + """ + if isinstance(a, MaskedArray): + a.set_fill_value(fill_value) + + +def get_fill_value(a): + """ + Return the filling value of a, if any. Otherwise, returns the + default filling value for that type. + + """ + if isinstance(a, MaskedArray): + result = a.fill_value + else: + result = default_fill_value(a) + return result + + +def common_fill_value(a, b): + """ + Return the common filling value of two masked arrays, if any. + + If ``a.fill_value == b.fill_value``, return the fill value, + otherwise return None. + + Parameters + ---------- + a, b : MaskedArray + The masked arrays for which to compare fill values. + + Returns + ------- + fill_value : scalar or None + The common fill value, or None. + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.array([0, 1.], fill_value=3) + >>> y = np.ma.array([0, 1.], fill_value=3) + >>> np.ma.common_fill_value(x, y) + 3.0 + + """ + t1 = get_fill_value(a) + t2 = get_fill_value(b) + if t1 == t2: + return t1 + return None + + +def filled(a, fill_value=None): + """ + Return input as an `~numpy.ndarray`, with masked values replaced by + `fill_value`. + + If `a` is not a `MaskedArray`, `a` itself is returned. + If `a` is a `MaskedArray` with no masked values, then ``a.data`` is + returned. + If `a` is a `MaskedArray` and `fill_value` is None, `fill_value` is set to + ``a.fill_value``. + + Parameters + ---------- + a : MaskedArray or array_like + An input object. + fill_value : array_like, optional. + Can be scalar or non-scalar. If non-scalar, the + resulting filled array should be broadcastable + over input array. Default is None. + + Returns + ------- + a : ndarray + The filled array. + + See Also + -------- + compressed + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> x = ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0], + ... [1, 0, 0], + ... [0, 0, 0]]) + >>> x.filled() + array([[999999, 1, 2], + [999999, 4, 5], + [ 6, 7, 8]]) + >>> x.filled(fill_value=333) + array([[333, 1, 2], + [333, 4, 5], + [ 6, 7, 8]]) + >>> x.filled(fill_value=np.arange(3)) + array([[0, 1, 2], + [0, 4, 5], + [6, 7, 8]]) + + """ + if hasattr(a, 'filled'): + return a.filled(fill_value) + + elif isinstance(a, ndarray): + # Should we check for contiguity ? and a.flags['CONTIGUOUS']: + return a + elif isinstance(a, dict): + return np.array(a, 'O') + else: + return np.array(a) + + +def get_masked_subclass(*arrays): + """ + Return the youngest subclass of MaskedArray from a list of (masked) arrays. + + In case of siblings, the first listed takes over. + + """ + if len(arrays) == 1: + arr = arrays[0] + if isinstance(arr, MaskedArray): + rcls = type(arr) + else: + rcls = MaskedArray + else: + arrcls = [type(a) for a in arrays] + rcls = arrcls[0] + if not issubclass(rcls, MaskedArray): + rcls = MaskedArray + for cls in arrcls[1:]: + if issubclass(cls, rcls): + rcls = cls + # Don't return MaskedConstant as result: revert to MaskedArray + if rcls.__name__ == 'MaskedConstant': + return MaskedArray + return rcls + + +def getdata(a, subok=True): + """ + Return the data of a masked array as an ndarray. + + Return the data of `a` (if any) as an ndarray if `a` is a ``MaskedArray``, + else return `a` as a ndarray or subclass (depending on `subok`) if not. + + Parameters + ---------- + a : array_like + Input ``MaskedArray``, alternatively a ndarray or a subclass thereof. + subok : bool + Whether to force the output to be a `pure` ndarray (False) or to + return a subclass of ndarray if appropriate (True, default). + + See Also + -------- + getmask : Return the mask of a masked array, or nomask. + getmaskarray : Return the mask of a masked array, or full array of False. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> a = ma.masked_equal([[1,2],[3,4]], 2) + >>> a + masked_array( + data=[[1, --], + [3, 4]], + mask=[[False, True], + [False, False]], + fill_value=2) + >>> ma.getdata(a) + array([[1, 2], + [3, 4]]) + + Equivalently use the ``MaskedArray`` `data` attribute. + + >>> a.data + array([[1, 2], + [3, 4]]) + + """ + try: + data = a._data + except AttributeError: + data = np.array(a, copy=None, subok=subok) + if not subok: + return data.view(ndarray) + return data + + +get_data = getdata + + +def fix_invalid(a, mask=nomask, copy=True, fill_value=None): + """ + Return input with invalid data masked and replaced by a fill value. + + Invalid data means values of `nan`, `inf`, etc. + + Parameters + ---------- + a : array_like + Input array, a (subclass of) ndarray. + mask : sequence, optional + Mask. Must be convertible to an array of booleans with the same + shape as `data`. True indicates a masked (i.e. invalid) data. + copy : bool, optional + Whether to use a copy of `a` (True) or to fix `a` in place (False). + Default is True. + fill_value : scalar, optional + Value used for fixing invalid data. Default is None, in which case + the ``a.fill_value`` is used. + + Returns + ------- + b : MaskedArray + The input array with invalid entries fixed. + + Notes + ----- + A copy is performed by default. + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.array([1., -1, np.nan, np.inf], mask=[1] + [0]*3) + >>> x + masked_array(data=[--, -1.0, nan, inf], + mask=[ True, False, False, False], + fill_value=1e+20) + >>> np.ma.fix_invalid(x) + masked_array(data=[--, -1.0, --, --], + mask=[ True, False, True, True], + fill_value=1e+20) + + >>> fixed = np.ma.fix_invalid(x) + >>> fixed.data + array([ 1.e+00, -1.e+00, 1.e+20, 1.e+20]) + >>> x.data + array([ 1., -1., nan, inf]) + + """ + a = masked_array(a, copy=copy, mask=mask, subok=True) + invalid = np.logical_not(np.isfinite(a._data)) + if not invalid.any(): + return a + a._mask |= invalid + if fill_value is None: + fill_value = a.fill_value + a._data[invalid] = fill_value + return a + +def is_string_or_list_of_strings(val): + return (isinstance(val, str) or + (isinstance(val, list) and val and + builtins.all(isinstance(s, str) for s in val))) + +############################################################################### +# Ufuncs # +############################################################################### + + +ufunc_domain = {} +ufunc_fills = {} + + +class _DomainCheckInterval: + """ + Define a valid interval, so that : + + ``domain_check_interval(a,b)(x) == True`` where + ``x < a`` or ``x > b``. + + """ + + def __init__(self, a, b): + "domain_check_interval(a,b)(x) = true where x < a or y > b" + if a > b: + (a, b) = (b, a) + self.a = a + self.b = b + + def __call__(self, x): + "Execute the call behavior." + # nans at masked positions cause RuntimeWarnings, even though + # they are masked. To avoid this we suppress warnings. + with np.errstate(invalid='ignore'): + return umath.logical_or(umath.greater(x, self.b), + umath.less(x, self.a)) + + +class _DomainTan: + """ + Define a valid interval for the `tan` function, so that: + + ``domain_tan(eps) = True`` where ``abs(cos(x)) < eps`` + + """ + + def __init__(self, eps): + "domain_tan(eps) = true where abs(cos(x)) < eps)" + self.eps = eps + + def __call__(self, x): + "Executes the call behavior." + with np.errstate(invalid='ignore'): + return umath.less(umath.absolute(umath.cos(x)), self.eps) + + +class _DomainSafeDivide: + """ + Define a domain for safe division. + + """ + + def __init__(self, tolerance=None): + self.tolerance = tolerance + + def __call__(self, a, b): + # Delay the selection of the tolerance to here in order to reduce numpy + # import times. The calculation of these parameters is a substantial + # component of numpy's import time. + if self.tolerance is None: + self.tolerance = np.finfo(float).tiny + # don't call ma ufuncs from __array_wrap__ which would fail for scalars + a, b = np.asarray(a), np.asarray(b) + with np.errstate(all='ignore'): + return umath.absolute(a) * self.tolerance >= umath.absolute(b) + + +class _DomainGreater: + """ + DomainGreater(v)(x) is True where x <= v. + + """ + + def __init__(self, critical_value): + "DomainGreater(v)(x) = true where x <= v" + self.critical_value = critical_value + + def __call__(self, x): + "Executes the call behavior." + with np.errstate(invalid='ignore'): + return umath.less_equal(x, self.critical_value) + + +class _DomainGreaterEqual: + """ + DomainGreaterEqual(v)(x) is True where x < v. + + """ + + def __init__(self, critical_value): + "DomainGreaterEqual(v)(x) = true where x < v" + self.critical_value = critical_value + + def __call__(self, x): + "Executes the call behavior." + with np.errstate(invalid='ignore'): + return umath.less(x, self.critical_value) + + +class _MaskedUFunc: + def __init__(self, ufunc): + self.f = ufunc + self.__doc__ = ufunc.__doc__ + self.__name__ = ufunc.__name__ + self.__qualname__ = ufunc.__qualname__ + + def __str__(self): + return f"Masked version of {self.f}" + + +class _MaskedUnaryOperation(_MaskedUFunc): + """ + Defines masked version of unary operations, where invalid values are + pre-masked. + + Parameters + ---------- + mufunc : callable + The function for which to define a masked version. Made available + as ``_MaskedUnaryOperation.f``. + fill : scalar, optional + Filling value, default is 0. + domain : class instance + Domain for the function. Should be one of the ``_Domain*`` + classes. Default is None. + + """ + + def __init__(self, mufunc, fill=0, domain=None): + super().__init__(mufunc) + self.fill = fill + self.domain = domain + ufunc_domain[mufunc] = domain + ufunc_fills[mufunc] = fill + + def __call__(self, a, *args, **kwargs): + """ + Execute the call behavior. + + """ + d = getdata(a) + # Deal with domain + if self.domain is not None: + # Case 1.1. : Domained function + # nans at masked positions cause RuntimeWarnings, even though + # they are masked. To avoid this we suppress warnings. + with np.errstate(divide='ignore', invalid='ignore'): + result = self.f(d, *args, **kwargs) + # Make a mask + m = ~umath.isfinite(result) + m |= self.domain(d) + m |= getmask(a) + else: + # Case 1.2. : Function without a domain + # Get the result and the mask + with np.errstate(divide='ignore', invalid='ignore'): + result = self.f(d, *args, **kwargs) + m = getmask(a) + + if not result.ndim: + # Case 2.1. : The result is scalarscalar + if m: + return masked + return result + + if m is not nomask: + # Case 2.2. The result is an array + # We need to fill the invalid data back w/ the input Now, + # that's plain silly: in C, we would just skip the element and + # keep the original, but we do have to do it that way in Python + + # In case result has a lower dtype than the inputs (as in + # equal) + try: + np.copyto(result, d, where=m) + except TypeError: + pass + # Transform to + masked_result = result.view(get_masked_subclass(a)) + masked_result._mask = m + masked_result._update_from(a) + return masked_result + + +class _MaskedBinaryOperation(_MaskedUFunc): + """ + Define masked version of binary operations, where invalid + values are pre-masked. + + Parameters + ---------- + mbfunc : function + The function for which to define a masked version. Made available + as ``_MaskedBinaryOperation.f``. + domain : class instance + Default domain for the function. Should be one of the ``_Domain*`` + classes. Default is None. + fillx : scalar, optional + Filling value for the first argument, default is 0. + filly : scalar, optional + Filling value for the second argument, default is 0. + + """ + + def __init__(self, mbfunc, fillx=0, filly=0): + """ + abfunc(fillx, filly) must be defined. + + abfunc(x, filly) = x for all x to enable reduce. + + """ + super().__init__(mbfunc) + self.fillx = fillx + self.filly = filly + ufunc_domain[mbfunc] = None + ufunc_fills[mbfunc] = (fillx, filly) + + def __call__(self, a, b, *args, **kwargs): + """ + Execute the call behavior. + + """ + # Get the data, as ndarray + (da, db) = (getdata(a), getdata(b)) + # Get the result + with np.errstate(): + np.seterr(divide='ignore', invalid='ignore') + result = self.f(da, db, *args, **kwargs) + # Get the mask for the result + (ma, mb) = (getmask(a), getmask(b)) + if ma is nomask: + if mb is nomask: + m = nomask + else: + m = umath.logical_or(getmaskarray(a), mb) + elif mb is nomask: + m = umath.logical_or(ma, getmaskarray(b)) + else: + m = umath.logical_or(ma, mb) + + # Case 1. : scalar + if not result.ndim: + if m: + return masked + return result + + # Case 2. : array + # Revert result to da where masked + if m is not nomask and m.any(): + # any errors, just abort; impossible to guarantee masked values + try: + np.copyto(result, da, casting='unsafe', where=m) + except Exception: + pass + + # Transforms to a (subclass of) MaskedArray + masked_result = result.view(get_masked_subclass(a, b)) + masked_result._mask = m + if isinstance(a, MaskedArray): + masked_result._update_from(a) + elif isinstance(b, MaskedArray): + masked_result._update_from(b) + return masked_result + + def reduce(self, target, axis=0, dtype=None): + """ + Reduce `target` along the given `axis`. + + """ + tclass = get_masked_subclass(target) + m = getmask(target) + t = filled(target, self.filly) + if t.shape == (): + t = t.reshape(1) + if m is not nomask: + m = make_mask(m, copy=True) + m.shape = (1,) + + if m is nomask: + tr = self.f.reduce(t, axis) + mr = nomask + else: + tr = self.f.reduce(t, axis, dtype=dtype) + mr = umath.logical_and.reduce(m, axis) + + if not tr.shape: + if mr: + return masked + else: + return tr + masked_tr = tr.view(tclass) + masked_tr._mask = mr + return masked_tr + + def outer(self, a, b): + """ + Return the function applied to the outer product of a and b. + + """ + (da, db) = (getdata(a), getdata(b)) + d = self.f.outer(da, db) + ma = getmask(a) + mb = getmask(b) + if ma is nomask and mb is nomask: + m = nomask + else: + ma = getmaskarray(a) + mb = getmaskarray(b) + m = umath.logical_or.outer(ma, mb) + if (not m.ndim) and m: + return masked + if m is not nomask: + np.copyto(d, da, where=m) + if not d.shape: + return d + masked_d = d.view(get_masked_subclass(a, b)) + masked_d._mask = m + return masked_d + + def accumulate(self, target, axis=0): + """Accumulate `target` along `axis` after filling with y fill + value. + + """ + tclass = get_masked_subclass(target) + t = filled(target, self.filly) + result = self.f.accumulate(t, axis) + masked_result = result.view(tclass) + return masked_result + + +class _DomainedBinaryOperation(_MaskedUFunc): + """ + Define binary operations that have a domain, like divide. + + They have no reduce, outer or accumulate. + + Parameters + ---------- + mbfunc : function + The function for which to define a masked version. Made available + as ``_DomainedBinaryOperation.f``. + domain : class instance + Default domain for the function. Should be one of the ``_Domain*`` + classes. + fillx : scalar, optional + Filling value for the first argument, default is 0. + filly : scalar, optional + Filling value for the second argument, default is 0. + + """ + + def __init__(self, dbfunc, domain, fillx=0, filly=0): + """abfunc(fillx, filly) must be defined. + abfunc(x, filly) = x for all x to enable reduce. + """ + super().__init__(dbfunc) + self.domain = domain + self.fillx = fillx + self.filly = filly + ufunc_domain[dbfunc] = domain + ufunc_fills[dbfunc] = (fillx, filly) + + def __call__(self, a, b, *args, **kwargs): + "Execute the call behavior." + # Get the data + (da, db) = (getdata(a), getdata(b)) + # Get the result + with np.errstate(divide='ignore', invalid='ignore'): + result = self.f(da, db, *args, **kwargs) + # Get the mask as a combination of the source masks and invalid + m = ~umath.isfinite(result) + m |= getmask(a) + m |= getmask(b) + # Apply the domain + domain = ufunc_domain.get(self.f, None) + if domain is not None: + m |= domain(da, db) + # Take care of the scalar case first + if not m.ndim: + if m: + return masked + else: + return result + # When the mask is True, put back da if possible + # any errors, just abort; impossible to guarantee masked values + try: + np.copyto(result, 0, casting='unsafe', where=m) + # avoid using "*" since this may be overlaid + masked_da = umath.multiply(m, da) + # only add back if it can be cast safely + if np.can_cast(masked_da.dtype, result.dtype, casting='safe'): + result += masked_da + except Exception: + pass + + # Transforms to a (subclass of) MaskedArray + masked_result = result.view(get_masked_subclass(a, b)) + masked_result._mask = m + if isinstance(a, MaskedArray): + masked_result._update_from(a) + elif isinstance(b, MaskedArray): + masked_result._update_from(b) + return masked_result + + +# Unary ufuncs +exp = _MaskedUnaryOperation(umath.exp) +conjugate = _MaskedUnaryOperation(umath.conjugate) +sin = _MaskedUnaryOperation(umath.sin) +cos = _MaskedUnaryOperation(umath.cos) +arctan = _MaskedUnaryOperation(umath.arctan) +arcsinh = _MaskedUnaryOperation(umath.arcsinh) +sinh = _MaskedUnaryOperation(umath.sinh) +cosh = _MaskedUnaryOperation(umath.cosh) +tanh = _MaskedUnaryOperation(umath.tanh) +abs = absolute = _MaskedUnaryOperation(umath.absolute) +angle = _MaskedUnaryOperation(angle) +fabs = _MaskedUnaryOperation(umath.fabs) +negative = _MaskedUnaryOperation(umath.negative) +floor = _MaskedUnaryOperation(umath.floor) +ceil = _MaskedUnaryOperation(umath.ceil) +around = _MaskedUnaryOperation(np.around) +logical_not = _MaskedUnaryOperation(umath.logical_not) + +# Domained unary ufuncs +sqrt = _MaskedUnaryOperation(umath.sqrt, 0.0, + _DomainGreaterEqual(0.0)) +log = _MaskedUnaryOperation(umath.log, 1.0, + _DomainGreater(0.0)) +log2 = _MaskedUnaryOperation(umath.log2, 1.0, + _DomainGreater(0.0)) +log10 = _MaskedUnaryOperation(umath.log10, 1.0, + _DomainGreater(0.0)) +tan = _MaskedUnaryOperation(umath.tan, 0.0, + _DomainTan(1e-35)) +arcsin = _MaskedUnaryOperation(umath.arcsin, 0.0, + _DomainCheckInterval(-1.0, 1.0)) +arccos = _MaskedUnaryOperation(umath.arccos, 0.0, + _DomainCheckInterval(-1.0, 1.0)) +arccosh = _MaskedUnaryOperation(umath.arccosh, 1.0, + _DomainGreaterEqual(1.0)) +arctanh = _MaskedUnaryOperation(umath.arctanh, 0.0, + _DomainCheckInterval(-1.0 + 1e-15, 1.0 - 1e-15)) + +# Binary ufuncs +add = _MaskedBinaryOperation(umath.add) +subtract = _MaskedBinaryOperation(umath.subtract) +multiply = _MaskedBinaryOperation(umath.multiply, 1, 1) +arctan2 = _MaskedBinaryOperation(umath.arctan2, 0.0, 1.0) +equal = _MaskedBinaryOperation(umath.equal) +equal.reduce = None +not_equal = _MaskedBinaryOperation(umath.not_equal) +not_equal.reduce = None +less_equal = _MaskedBinaryOperation(umath.less_equal) +less_equal.reduce = None +greater_equal = _MaskedBinaryOperation(umath.greater_equal) +greater_equal.reduce = None +less = _MaskedBinaryOperation(umath.less) +less.reduce = None +greater = _MaskedBinaryOperation(umath.greater) +greater.reduce = None +logical_and = _MaskedBinaryOperation(umath.logical_and) +alltrue = _MaskedBinaryOperation(umath.logical_and, 1, 1).reduce +logical_or = _MaskedBinaryOperation(umath.logical_or) +sometrue = logical_or.reduce +logical_xor = _MaskedBinaryOperation(umath.logical_xor) +bitwise_and = _MaskedBinaryOperation(umath.bitwise_and) +bitwise_or = _MaskedBinaryOperation(umath.bitwise_or) +bitwise_xor = _MaskedBinaryOperation(umath.bitwise_xor) +hypot = _MaskedBinaryOperation(umath.hypot) + +# Domained binary ufuncs +divide = _DomainedBinaryOperation(umath.divide, _DomainSafeDivide(), 0, 1) +true_divide = divide # Just an alias for divide. +floor_divide = _DomainedBinaryOperation(umath.floor_divide, + _DomainSafeDivide(), 0, 1) +remainder = _DomainedBinaryOperation(umath.remainder, + _DomainSafeDivide(), 0, 1) +fmod = _DomainedBinaryOperation(umath.fmod, _DomainSafeDivide(), 0, 1) +mod = remainder + +############################################################################### +# Mask creation functions # +############################################################################### + + +def _replace_dtype_fields_recursive(dtype, primitive_dtype): + "Private function allowing recursion in _replace_dtype_fields." + _recurse = _replace_dtype_fields_recursive + + # Do we have some name fields ? + if dtype.names is not None: + descr = [] + for name in dtype.names: + field = dtype.fields[name] + if len(field) == 3: + # Prepend the title to the name + name = (field[-1], name) + descr.append((name, _recurse(field[0], primitive_dtype))) + new_dtype = np.dtype(descr) + + # Is this some kind of composite a la (float,2) + elif dtype.subdtype: + descr = list(dtype.subdtype) + descr[0] = _recurse(dtype.subdtype[0], primitive_dtype) + new_dtype = np.dtype(tuple(descr)) + + # this is a primitive type, so do a direct replacement + else: + new_dtype = primitive_dtype + + # preserve identity of dtypes + if new_dtype == dtype: + new_dtype = dtype + + return new_dtype + + +def _replace_dtype_fields(dtype, primitive_dtype): + """ + Construct a dtype description list from a given dtype. + + Returns a new dtype object, with all fields and subtypes in the given type + recursively replaced with `primitive_dtype`. + + Arguments are coerced to dtypes first. + """ + dtype = np.dtype(dtype) + primitive_dtype = np.dtype(primitive_dtype) + return _replace_dtype_fields_recursive(dtype, primitive_dtype) + + +def make_mask_descr(ndtype): + """ + Construct a dtype description list from a given dtype. + + Returns a new dtype object, with the type of all fields in `ndtype` to a + boolean type. Field names are not altered. + + Parameters + ---------- + ndtype : dtype + The dtype to convert. + + Returns + ------- + result : dtype + A dtype that looks like `ndtype`, the type of all fields is boolean. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> dtype = np.dtype({'names':['foo', 'bar'], + ... 'formats':[np.float32, np.int64]}) + >>> dtype + dtype([('foo', '>> ma.make_mask_descr(dtype) + dtype([('foo', '|b1'), ('bar', '|b1')]) + >>> ma.make_mask_descr(np.float32) + dtype('bool') + + """ + return _replace_dtype_fields(ndtype, MaskType) + + +def getmask(a): + """ + Return the mask of a masked array, or nomask. + + Return the mask of `a` as an ndarray if `a` is a `MaskedArray` and the + mask is not `nomask`, else return `nomask`. To guarantee a full array + of booleans of the same shape as a, use `getmaskarray`. + + Parameters + ---------- + a : array_like + Input `MaskedArray` for which the mask is required. + + See Also + -------- + getdata : Return the data of a masked array as an ndarray. + getmaskarray : Return the mask of a masked array, or full array of False. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> a = ma.masked_equal([[1,2],[3,4]], 2) + >>> a + masked_array( + data=[[1, --], + [3, 4]], + mask=[[False, True], + [False, False]], + fill_value=2) + >>> ma.getmask(a) + array([[False, True], + [False, False]]) + + Equivalently use the `MaskedArray` `mask` attribute. + + >>> a.mask + array([[False, True], + [False, False]]) + + Result when mask == `nomask` + + >>> b = ma.masked_array([[1,2],[3,4]]) + >>> b + masked_array( + data=[[1, 2], + [3, 4]], + mask=False, + fill_value=999999) + >>> ma.nomask + False + >>> ma.getmask(b) == ma.nomask + True + >>> b.mask == ma.nomask + True + + """ + return getattr(a, '_mask', nomask) + + +get_mask = getmask + + +def getmaskarray(arr): + """ + Return the mask of a masked array, or full boolean array of False. + + Return the mask of `arr` as an ndarray if `arr` is a `MaskedArray` and + the mask is not `nomask`, else return a full boolean array of False of + the same shape as `arr`. + + Parameters + ---------- + arr : array_like + Input `MaskedArray` for which the mask is required. + + See Also + -------- + getmask : Return the mask of a masked array, or nomask. + getdata : Return the data of a masked array as an ndarray. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> a = ma.masked_equal([[1,2],[3,4]], 2) + >>> a + masked_array( + data=[[1, --], + [3, 4]], + mask=[[False, True], + [False, False]], + fill_value=2) + >>> ma.getmaskarray(a) + array([[False, True], + [False, False]]) + + Result when mask == ``nomask`` + + >>> b = ma.masked_array([[1,2],[3,4]]) + >>> b + masked_array( + data=[[1, 2], + [3, 4]], + mask=False, + fill_value=999999) + >>> ma.getmaskarray(b) + array([[False, False], + [False, False]]) + + """ + mask = getmask(arr) + if mask is nomask: + mask = make_mask_none(np.shape(arr), getattr(arr, 'dtype', None)) + return mask + + +def is_mask(m): + """ + Return True if m is a valid, standard mask. + + This function does not check the contents of the input, only that the + type is MaskType. In particular, this function returns False if the + mask has a flexible dtype. + + Parameters + ---------- + m : array_like + Array to test. + + Returns + ------- + result : bool + True if `m.dtype.type` is MaskType, False otherwise. + + See Also + -------- + ma.isMaskedArray : Test whether input is an instance of MaskedArray. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> m = ma.masked_equal([0, 1, 0, 2, 3], 0) + >>> m + masked_array(data=[--, 1, --, 2, 3], + mask=[ True, False, True, False, False], + fill_value=0) + >>> ma.is_mask(m) + False + >>> ma.is_mask(m.mask) + True + + Input must be an ndarray (or have similar attributes) + for it to be considered a valid mask. + + >>> m = [False, True, False] + >>> ma.is_mask(m) + False + >>> m = np.array([False, True, False]) + >>> m + array([False, True, False]) + >>> ma.is_mask(m) + True + + Arrays with complex dtypes don't return True. + + >>> dtype = np.dtype({'names':['monty', 'pithon'], + ... 'formats':[bool, bool]}) + >>> dtype + dtype([('monty', '|b1'), ('pithon', '|b1')]) + >>> m = np.array([(True, False), (False, True), (True, False)], + ... dtype=dtype) + >>> m + array([( True, False), (False, True), ( True, False)], + dtype=[('monty', '?'), ('pithon', '?')]) + >>> ma.is_mask(m) + False + + """ + try: + return m.dtype.type is MaskType + except AttributeError: + return False + + +def _shrink_mask(m): + """ + Shrink a mask to nomask if possible + """ + if m.dtype.names is None and not m.any(): + return nomask + else: + return m + + +def make_mask(m, copy=False, shrink=True, dtype=MaskType): + """ + Create a boolean mask from an array. + + Return `m` as a boolean mask, creating a copy if necessary or requested. + The function can accept any sequence that is convertible to integers, + or ``nomask``. Does not require that contents must be 0s and 1s, values + of 0 are interpreted as False, everything else as True. + + Parameters + ---------- + m : array_like + Potential mask. + copy : bool, optional + Whether to return a copy of `m` (True) or `m` itself (False). + shrink : bool, optional + Whether to shrink `m` to ``nomask`` if all its values are False. + dtype : dtype, optional + Data-type of the output mask. By default, the output mask has a + dtype of MaskType (bool). If the dtype is flexible, each field has + a boolean dtype. This is ignored when `m` is ``nomask``, in which + case ``nomask`` is always returned. + + Returns + ------- + result : ndarray + A boolean mask derived from `m`. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> m = [True, False, True, True] + >>> ma.make_mask(m) + array([ True, False, True, True]) + >>> m = [1, 0, 1, 1] + >>> ma.make_mask(m) + array([ True, False, True, True]) + >>> m = [1, 0, 2, -3] + >>> ma.make_mask(m) + array([ True, False, True, True]) + + Effect of the `shrink` parameter. + + >>> m = np.zeros(4) + >>> m + array([0., 0., 0., 0.]) + >>> ma.make_mask(m) + False + >>> ma.make_mask(m, shrink=False) + array([False, False, False, False]) + + Using a flexible `dtype`. + + >>> m = [1, 0, 1, 1] + >>> n = [0, 1, 0, 0] + >>> arr = [] + >>> for man, mouse in zip(m, n): + ... arr.append((man, mouse)) + >>> arr + [(1, 0), (0, 1), (1, 0), (1, 0)] + >>> dtype = np.dtype({'names':['man', 'mouse'], + ... 'formats':[np.int64, np.int64]}) + >>> arr = np.array(arr, dtype=dtype) + >>> arr + array([(1, 0), (0, 1), (1, 0), (1, 0)], + dtype=[('man', '>> ma.make_mask(arr, dtype=dtype) + array([(True, False), (False, True), (True, False), (True, False)], + dtype=[('man', '|b1'), ('mouse', '|b1')]) + + """ + if m is nomask: + return nomask + + # Make sure the input dtype is valid. + dtype = make_mask_descr(dtype) + + # legacy boolean special case: "existence of fields implies true" + if isinstance(m, ndarray) and m.dtype.fields and dtype == np.bool: + return np.ones(m.shape, dtype=dtype) + + # Fill the mask in case there are missing data; turn it into an ndarray. + copy = None if not copy else True + result = np.array(filled(m, True), copy=copy, dtype=dtype, subok=True) + # Bas les masques ! + if shrink: + result = _shrink_mask(result) + return result + + +def make_mask_none(newshape, dtype=None): + """ + Return a boolean mask of the given shape, filled with False. + + This function returns a boolean ndarray with all entries False, that can + be used in common mask manipulations. If a complex dtype is specified, the + type of each field is converted to a boolean type. + + Parameters + ---------- + newshape : tuple + A tuple indicating the shape of the mask. + dtype : {None, dtype}, optional + If None, use a MaskType instance. Otherwise, use a new datatype with + the same fields as `dtype`, converted to boolean types. + + Returns + ------- + result : ndarray + An ndarray of appropriate shape and dtype, filled with False. + + See Also + -------- + make_mask : Create a boolean mask from an array. + make_mask_descr : Construct a dtype description list from a given dtype. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> ma.make_mask_none((3,)) + array([False, False, False]) + + Defining a more complex dtype. + + >>> dtype = np.dtype({'names':['foo', 'bar'], + ... 'formats':[np.float32, np.int64]}) + >>> dtype + dtype([('foo', '>> ma.make_mask_none((3,), dtype=dtype) + array([(False, False), (False, False), (False, False)], + dtype=[('foo', '|b1'), ('bar', '|b1')]) + + """ + if dtype is None: + result = np.zeros(newshape, dtype=MaskType) + else: + result = np.zeros(newshape, dtype=make_mask_descr(dtype)) + return result + + +def _recursive_mask_or(m1, m2, newmask): + names = m1.dtype.names + for name in names: + current1 = m1[name] + if current1.dtype.names is not None: + _recursive_mask_or(current1, m2[name], newmask[name]) + else: + umath.logical_or(current1, m2[name], newmask[name]) + + +def mask_or(m1, m2, copy=False, shrink=True): + """ + Combine two masks with the ``logical_or`` operator. + + The result may be a view on `m1` or `m2` if the other is `nomask` + (i.e. False). + + Parameters + ---------- + m1, m2 : array_like + Input masks. + copy : bool, optional + If copy is False and one of the inputs is `nomask`, return a view + of the other input mask. Defaults to False. + shrink : bool, optional + Whether to shrink the output to `nomask` if all its values are + False. Defaults to True. + + Returns + ------- + mask : output mask + The result masks values that are masked in either `m1` or `m2`. + + Raises + ------ + ValueError + If `m1` and `m2` have different flexible dtypes. + + Examples + -------- + >>> import numpy as np + >>> m1 = np.ma.make_mask([0, 1, 1, 0]) + >>> m2 = np.ma.make_mask([1, 0, 0, 0]) + >>> np.ma.mask_or(m1, m2) + array([ True, True, True, False]) + + """ + + if (m1 is nomask) or (m1 is False): + dtype = getattr(m2, 'dtype', MaskType) + return make_mask(m2, copy=copy, shrink=shrink, dtype=dtype) + if (m2 is nomask) or (m2 is False): + dtype = getattr(m1, 'dtype', MaskType) + return make_mask(m1, copy=copy, shrink=shrink, dtype=dtype) + if m1 is m2 and is_mask(m1): + return _shrink_mask(m1) if shrink else m1 + (dtype1, dtype2) = (getattr(m1, 'dtype', None), getattr(m2, 'dtype', None)) + if dtype1 != dtype2: + raise ValueError(f"Incompatible dtypes '{dtype1}'<>'{dtype2}'") + if dtype1.names is not None: + # Allocate an output mask array with the properly broadcast shape. + newmask = np.empty(np.broadcast(m1, m2).shape, dtype1) + _recursive_mask_or(m1, m2, newmask) + return newmask + return make_mask(umath.logical_or(m1, m2), copy=copy, shrink=shrink) + + +def flatten_mask(mask): + """ + Returns a completely flattened version of the mask, where nested fields + are collapsed. + + Parameters + ---------- + mask : array_like + Input array, which will be interpreted as booleans. + + Returns + ------- + flattened_mask : ndarray of bools + The flattened input. + + Examples + -------- + >>> import numpy as np + >>> mask = np.array([0, 0, 1]) + >>> np.ma.flatten_mask(mask) + array([False, False, True]) + + >>> mask = np.array([(0, 0), (0, 1)], dtype=[('a', bool), ('b', bool)]) + >>> np.ma.flatten_mask(mask) + array([False, False, False, True]) + + >>> mdtype = [('a', bool), ('b', [('ba', bool), ('bb', bool)])] + >>> mask = np.array([(0, (0, 0)), (0, (0, 1))], dtype=mdtype) + >>> np.ma.flatten_mask(mask) + array([False, False, False, False, False, True]) + + """ + + def _flatmask(mask): + "Flatten the mask and returns a (maybe nested) sequence of booleans." + mnames = mask.dtype.names + if mnames is not None: + return [flatten_mask(mask[name]) for name in mnames] + else: + return mask + + def _flatsequence(sequence): + "Generates a flattened version of the sequence." + try: + for element in sequence: + if hasattr(element, '__iter__'): + yield from _flatsequence(element) + else: + yield element + except TypeError: + yield sequence + + mask = np.asarray(mask) + flattened = _flatsequence(_flatmask(mask)) + return np.array(list(flattened), dtype=bool) + + +def _check_mask_axis(mask, axis, keepdims=np._NoValue): + "Check whether there are masked values along the given axis" + kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} + if mask is not nomask: + return mask.all(axis=axis, **kwargs) + return nomask + + +############################################################################### +# Masking functions # +############################################################################### + +def masked_where(condition, a, copy=True): + """ + Mask an array where a condition is met. + + Return `a` as an array masked where `condition` is True. + Any masked values of `a` or `condition` are also masked in the output. + + Parameters + ---------- + condition : array_like + Masking condition. When `condition` tests floating point values for + equality, consider using ``masked_values`` instead. + a : array_like + Array to mask. + copy : bool + If True (default) make a copy of `a` in the result. If False modify + `a` in place and return a view. + + Returns + ------- + result : MaskedArray + The result of masking `a` where `condition` is True. + + See Also + -------- + masked_values : Mask using floating point equality. + masked_equal : Mask where equal to a given value. + masked_not_equal : Mask where *not* equal to a given value. + masked_less_equal : Mask where less than or equal to a given value. + masked_greater_equal : Mask where greater than or equal to a given value. + masked_less : Mask where less than a given value. + masked_greater : Mask where greater than a given value. + masked_inside : Mask inside a given interval. + masked_outside : Mask outside a given interval. + masked_invalid : Mask invalid values (NaNs or infs). + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> a = np.arange(4) + >>> a + array([0, 1, 2, 3]) + >>> ma.masked_where(a <= 2, a) + masked_array(data=[--, --, --, 3], + mask=[ True, True, True, False], + fill_value=999999) + + Mask array `b` conditional on `a`. + + >>> b = ['a', 'b', 'c', 'd'] + >>> ma.masked_where(a == 2, b) + masked_array(data=['a', 'b', --, 'd'], + mask=[False, False, True, False], + fill_value='N/A', + dtype='>> c = ma.masked_where(a <= 2, a) + >>> c + masked_array(data=[--, --, --, 3], + mask=[ True, True, True, False], + fill_value=999999) + >>> c[0] = 99 + >>> c + masked_array(data=[99, --, --, 3], + mask=[False, True, True, False], + fill_value=999999) + >>> a + array([0, 1, 2, 3]) + >>> c = ma.masked_where(a <= 2, a, copy=False) + >>> c[0] = 99 + >>> c + masked_array(data=[99, --, --, 3], + mask=[False, True, True, False], + fill_value=999999) + >>> a + array([99, 1, 2, 3]) + + When `condition` or `a` contain masked values. + + >>> a = np.arange(4) + >>> a = ma.masked_where(a == 2, a) + >>> a + masked_array(data=[0, 1, --, 3], + mask=[False, False, True, False], + fill_value=999999) + >>> b = np.arange(4) + >>> b = ma.masked_where(b == 0, b) + >>> b + masked_array(data=[--, 1, 2, 3], + mask=[ True, False, False, False], + fill_value=999999) + >>> ma.masked_where(a == 3, b) + masked_array(data=[--, 1, --, --], + mask=[ True, False, True, True], + fill_value=999999) + + """ + # Make sure that condition is a valid standard-type mask. + cond = make_mask(condition, shrink=False) + a = np.array(a, copy=copy, subok=True) + + (cshape, ashape) = (cond.shape, a.shape) + if cshape and cshape != ashape: + raise IndexError("Inconsistent shape between the condition and the input" + " (got %s and %s)" % (cshape, ashape)) + if hasattr(a, '_mask'): + cond = mask_or(cond, a._mask) + cls = type(a) + else: + cls = MaskedArray + result = a.view(cls) + # Assign to *.mask so that structured masks are handled correctly. + result.mask = _shrink_mask(cond) + # There is no view of a boolean so when 'a' is a MaskedArray with nomask + # the update to the result's mask has no effect. + if not copy and hasattr(a, '_mask') and getmask(a) is nomask: + a._mask = result._mask.view() + return result + + +def masked_greater(x, value, copy=True): + """ + Mask an array where greater than a given value. + + This function is a shortcut to ``masked_where``, with + `condition` = (x > value). + + See Also + -------- + masked_where : Mask where a condition is met. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> a = np.arange(4) + >>> a + array([0, 1, 2, 3]) + >>> ma.masked_greater(a, 2) + masked_array(data=[0, 1, 2, --], + mask=[False, False, False, True], + fill_value=999999) + + """ + return masked_where(greater(x, value), x, copy=copy) + + +def masked_greater_equal(x, value, copy=True): + """ + Mask an array where greater than or equal to a given value. + + This function is a shortcut to ``masked_where``, with + `condition` = (x >= value). + + See Also + -------- + masked_where : Mask where a condition is met. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> a = np.arange(4) + >>> a + array([0, 1, 2, 3]) + >>> ma.masked_greater_equal(a, 2) + masked_array(data=[0, 1, --, --], + mask=[False, False, True, True], + fill_value=999999) + + """ + return masked_where(greater_equal(x, value), x, copy=copy) + + +def masked_less(x, value, copy=True): + """ + Mask an array where less than a given value. + + This function is a shortcut to ``masked_where``, with + `condition` = (x < value). + + See Also + -------- + masked_where : Mask where a condition is met. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> a = np.arange(4) + >>> a + array([0, 1, 2, 3]) + >>> ma.masked_less(a, 2) + masked_array(data=[--, --, 2, 3], + mask=[ True, True, False, False], + fill_value=999999) + + """ + return masked_where(less(x, value), x, copy=copy) + + +def masked_less_equal(x, value, copy=True): + """ + Mask an array where less than or equal to a given value. + + This function is a shortcut to ``masked_where``, with + `condition` = (x <= value). + + See Also + -------- + masked_where : Mask where a condition is met. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> a = np.arange(4) + >>> a + array([0, 1, 2, 3]) + >>> ma.masked_less_equal(a, 2) + masked_array(data=[--, --, --, 3], + mask=[ True, True, True, False], + fill_value=999999) + + """ + return masked_where(less_equal(x, value), x, copy=copy) + + +def masked_not_equal(x, value, copy=True): + """ + Mask an array where *not* equal to a given value. + + This function is a shortcut to ``masked_where``, with + `condition` = (x != value). + + See Also + -------- + masked_where : Mask where a condition is met. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> a = np.arange(4) + >>> a + array([0, 1, 2, 3]) + >>> ma.masked_not_equal(a, 2) + masked_array(data=[--, --, 2, --], + mask=[ True, True, False, True], + fill_value=999999) + + """ + return masked_where(not_equal(x, value), x, copy=copy) + + +def masked_equal(x, value, copy=True): + """ + Mask an array where equal to a given value. + + Return a MaskedArray, masked where the data in array `x` are + equal to `value`. The fill_value of the returned MaskedArray + is set to `value`. + + For floating point arrays, consider using ``masked_values(x, value)``. + + See Also + -------- + masked_where : Mask where a condition is met. + masked_values : Mask using floating point equality. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> a = np.arange(4) + >>> a + array([0, 1, 2, 3]) + >>> ma.masked_equal(a, 2) + masked_array(data=[0, 1, --, 3], + mask=[False, False, True, False], + fill_value=2) + + """ + output = masked_where(equal(x, value), x, copy=copy) + output.fill_value = value + return output + + +def masked_inside(x, v1, v2, copy=True): + """ + Mask an array inside a given interval. + + Shortcut to ``masked_where``, where `condition` is True for `x` inside + the interval [v1,v2] (v1 <= x <= v2). The boundaries `v1` and `v2` + can be given in either order. + + See Also + -------- + masked_where : Mask where a condition is met. + + Notes + ----- + The array `x` is prefilled with its filling value. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1] + >>> ma.masked_inside(x, -0.3, 0.3) + masked_array(data=[0.31, 1.2, --, --, -0.4, -1.1], + mask=[False, False, True, True, False, False], + fill_value=1e+20) + + The order of `v1` and `v2` doesn't matter. + + >>> ma.masked_inside(x, 0.3, -0.3) + masked_array(data=[0.31, 1.2, --, --, -0.4, -1.1], + mask=[False, False, True, True, False, False], + fill_value=1e+20) + + """ + if v2 < v1: + (v1, v2) = (v2, v1) + xf = filled(x) + condition = (xf >= v1) & (xf <= v2) + return masked_where(condition, x, copy=copy) + + +def masked_outside(x, v1, v2, copy=True): + """ + Mask an array outside a given interval. + + Shortcut to ``masked_where``, where `condition` is True for `x` outside + the interval [v1,v2] (x < v1)|(x > v2). + The boundaries `v1` and `v2` can be given in either order. + + See Also + -------- + masked_where : Mask where a condition is met. + + Notes + ----- + The array `x` is prefilled with its filling value. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1] + >>> ma.masked_outside(x, -0.3, 0.3) + masked_array(data=[--, --, 0.01, 0.2, --, --], + mask=[ True, True, False, False, True, True], + fill_value=1e+20) + + The order of `v1` and `v2` doesn't matter. + + >>> ma.masked_outside(x, 0.3, -0.3) + masked_array(data=[--, --, 0.01, 0.2, --, --], + mask=[ True, True, False, False, True, True], + fill_value=1e+20) + + """ + if v2 < v1: + (v1, v2) = (v2, v1) + xf = filled(x) + condition = (xf < v1) | (xf > v2) + return masked_where(condition, x, copy=copy) + + +def masked_object(x, value, copy=True, shrink=True): + """ + Mask the array `x` where the data are exactly equal to value. + + This function is similar to `masked_values`, but only suitable + for object arrays: for floating point, use `masked_values` instead. + + Parameters + ---------- + x : array_like + Array to mask + value : object + Comparison value + copy : {True, False}, optional + Whether to return a copy of `x`. + shrink : {True, False}, optional + Whether to collapse a mask full of False to nomask + + Returns + ------- + result : MaskedArray + The result of masking `x` where equal to `value`. + + See Also + -------- + masked_where : Mask where a condition is met. + masked_equal : Mask where equal to a given value (integers). + masked_values : Mask using floating point equality. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> food = np.array(['green_eggs', 'ham'], dtype=object) + >>> # don't eat spoiled food + >>> eat = ma.masked_object(food, 'green_eggs') + >>> eat + masked_array(data=[--, 'ham'], + mask=[ True, False], + fill_value='green_eggs', + dtype=object) + >>> # plain ol` ham is boring + >>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object) + >>> eat = ma.masked_object(fresh_food, 'green_eggs') + >>> eat + masked_array(data=['cheese', 'ham', 'pineapple'], + mask=False, + fill_value='green_eggs', + dtype=object) + + Note that `mask` is set to ``nomask`` if possible. + + >>> eat + masked_array(data=['cheese', 'ham', 'pineapple'], + mask=False, + fill_value='green_eggs', + dtype=object) + + """ + if isMaskedArray(x): + condition = umath.equal(x._data, value) + mask = x._mask + else: + condition = umath.equal(np.asarray(x), value) + mask = nomask + mask = mask_or(mask, make_mask(condition, shrink=shrink)) + return masked_array(x, mask=mask, copy=copy, fill_value=value) + + +def masked_values(x, value, rtol=1e-5, atol=1e-8, copy=True, shrink=True): + """ + Mask using floating point equality. + + Return a MaskedArray, masked where the data in array `x` are approximately + equal to `value`, determined using `isclose`. The default tolerances for + `masked_values` are the same as those for `isclose`. + + For integer types, exact equality is used, in the same way as + `masked_equal`. + + The fill_value is set to `value` and the mask is set to ``nomask`` if + possible. + + Parameters + ---------- + x : array_like + Array to mask. + value : float + Masking value. + rtol, atol : float, optional + Tolerance parameters passed on to `isclose` + copy : bool, optional + Whether to return a copy of `x`. + shrink : bool, optional + Whether to collapse a mask full of False to ``nomask``. + + Returns + ------- + result : MaskedArray + The result of masking `x` where approximately equal to `value`. + + See Also + -------- + masked_where : Mask where a condition is met. + masked_equal : Mask where equal to a given value (integers). + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> x = np.array([1, 1.1, 2, 1.1, 3]) + >>> ma.masked_values(x, 1.1) + masked_array(data=[1.0, --, 2.0, --, 3.0], + mask=[False, True, False, True, False], + fill_value=1.1) + + Note that `mask` is set to ``nomask`` if possible. + + >>> ma.masked_values(x, 2.1) + masked_array(data=[1. , 1.1, 2. , 1.1, 3. ], + mask=False, + fill_value=2.1) + + Unlike `masked_equal`, `masked_values` can perform approximate equalities. + + >>> ma.masked_values(x, 2.1, atol=1e-1) + masked_array(data=[1.0, 1.1, --, 1.1, 3.0], + mask=[False, False, True, False, False], + fill_value=2.1) + + """ + xnew = filled(x, value) + if np.issubdtype(xnew.dtype, np.floating): + mask = np.isclose(xnew, value, atol=atol, rtol=rtol) + else: + mask = umath.equal(xnew, value) + ret = masked_array(xnew, mask=mask, copy=copy, fill_value=value) + if shrink: + ret.shrink_mask() + return ret + + +def masked_invalid(a, copy=True): + """ + Mask an array where invalid values occur (NaNs or infs). + + This function is a shortcut to ``masked_where``, with + `condition` = ~(np.isfinite(a)). Any pre-existing mask is conserved. + Only applies to arrays with a dtype where NaNs or infs make sense + (i.e. floating point types), but accepts any array_like object. + + See Also + -------- + masked_where : Mask where a condition is met. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> a = np.arange(5, dtype=float) + >>> a[2] = np.nan + >>> a[3] = np.inf + >>> a + array([ 0., 1., nan, inf, 4.]) + >>> ma.masked_invalid(a) + masked_array(data=[0.0, 1.0, --, --, 4.0], + mask=[False, False, True, True, False], + fill_value=1e+20) + + """ + a = np.array(a, copy=None, subok=True) + res = masked_where(~(np.isfinite(a)), a, copy=copy) + # masked_invalid previously never returned nomask as a mask and doing so + # threw off matplotlib (gh-22842). So use shrink=False: + if res._mask is nomask: + res._mask = make_mask_none(res.shape, res.dtype) + return res + +############################################################################### +# Printing options # +############################################################################### + + +class _MaskedPrintOption: + """ + Handle the string used to represent missing data in a masked array. + + """ + + def __init__(self, display): + """ + Create the masked_print_option object. + + """ + self._display = display + self._enabled = True + + def display(self): + """ + Display the string to print for masked values. + + """ + return self._display + + def set_display(self, s): + """ + Set the string to print for masked values. + + """ + self._display = s + + def enabled(self): + """ + Is the use of the display value enabled? + + """ + return self._enabled + + def enable(self, shrink=1): + """ + Set the enabling shrink to `shrink`. + + """ + self._enabled = shrink + + def __str__(self): + return str(self._display) + + __repr__ = __str__ + + +# if you single index into a masked location you get this object. +masked_print_option = _MaskedPrintOption('--') + + +def _recursive_printoption(result, mask, printopt): + """ + Puts printoptions in result where mask is True. + + Private function allowing for recursion + + """ + names = result.dtype.names + if names is not None: + for name in names: + curdata = result[name] + curmask = mask[name] + _recursive_printoption(curdata, curmask, printopt) + else: + np.copyto(result, printopt, where=mask) + + +# For better or worse, these end in a newline +_legacy_print_templates = { + 'long_std': textwrap.dedent("""\ + masked_%(name)s(data = + %(data)s, + %(nlen)s mask = + %(mask)s, + %(nlen)s fill_value = %(fill)s) + """), + 'long_flx': textwrap.dedent("""\ + masked_%(name)s(data = + %(data)s, + %(nlen)s mask = + %(mask)s, + %(nlen)s fill_value = %(fill)s, + %(nlen)s dtype = %(dtype)s) + """), + 'short_std': textwrap.dedent("""\ + masked_%(name)s(data = %(data)s, + %(nlen)s mask = %(mask)s, + %(nlen)s fill_value = %(fill)s) + """), + 'short_flx': textwrap.dedent("""\ + masked_%(name)s(data = %(data)s, + %(nlen)s mask = %(mask)s, + %(nlen)s fill_value = %(fill)s, + %(nlen)s dtype = %(dtype)s) + """) +} + +############################################################################### +# MaskedArray class # +############################################################################### + + +def _recursive_filled(a, mask, fill_value): + """ + Recursively fill `a` with `fill_value`. + + """ + names = a.dtype.names + for name in names: + current = a[name] + if current.dtype.names is not None: + _recursive_filled(current, mask[name], fill_value[name]) + else: + np.copyto(current, fill_value[name], where=mask[name]) + + +def flatten_structured_array(a): + """ + Flatten a structured array. + + The data type of the output is chosen such that it can represent all of the + (nested) fields. + + Parameters + ---------- + a : structured array + + Returns + ------- + output : masked array or ndarray + A flattened masked array if the input is a masked array, otherwise a + standard ndarray. + + Examples + -------- + >>> import numpy as np + >>> ndtype = [('a', int), ('b', float)] + >>> a = np.array([(1, 1), (2, 2)], dtype=ndtype) + >>> np.ma.flatten_structured_array(a) + array([[1., 1.], + [2., 2.]]) + + """ + + def flatten_sequence(iterable): + """ + Flattens a compound of nested iterables. + + """ + for elm in iter(iterable): + if hasattr(elm, '__iter__'): + yield from flatten_sequence(elm) + else: + yield elm + + a = np.asanyarray(a) + inishape = a.shape + a = a.ravel() + if isinstance(a, MaskedArray): + out = np.array([tuple(flatten_sequence(d.item())) for d in a._data]) + out = out.view(MaskedArray) + out._mask = np.array([tuple(flatten_sequence(d.item())) + for d in getmaskarray(a)]) + else: + out = np.array([tuple(flatten_sequence(d.item())) for d in a]) + if len(inishape) > 1: + newshape = list(out.shape) + newshape[0] = inishape + out.shape = tuple(flatten_sequence(newshape)) + return out + + +def _arraymethod(funcname, onmask=True): + """ + Return a class method wrapper around a basic array method. + + Creates a class method which returns a masked array, where the new + ``_data`` array is the output of the corresponding basic method called + on the original ``_data``. + + If `onmask` is True, the new mask is the output of the method called + on the initial mask. Otherwise, the new mask is just a reference + to the initial mask. + + Parameters + ---------- + funcname : str + Name of the function to apply on data. + onmask : bool + Whether the mask must be processed also (True) or left + alone (False). Default is True. Make available as `_onmask` + attribute. + + Returns + ------- + method : instancemethod + Class method wrapper of the specified basic array method. + + """ + def wrapped_method(self, *args, **params): + result = getattr(self._data, funcname)(*args, **params) + result = result.view(type(self)) + result._update_from(self) + mask = self._mask + if not onmask: + result.__setmask__(mask) + elif mask is not nomask: + # __setmask__ makes a copy, which we don't want + result._mask = getattr(mask, funcname)(*args, **params) + return result + methdoc = getattr(ndarray, funcname, None) or getattr(np, funcname, None) + if methdoc is not None: + wrapped_method.__doc__ = methdoc.__doc__ + wrapped_method.__name__ = funcname + return wrapped_method + + +class MaskedIterator: + """ + Flat iterator object to iterate over masked arrays. + + A `MaskedIterator` iterator is returned by ``x.flat`` for any masked array + `x`. It allows iterating over the array as if it were a 1-D array, + either in a for-loop or by calling its `next` method. + + Iteration is done in C-contiguous style, with the last index varying the + fastest. The iterator can also be indexed using basic slicing or + advanced indexing. + + See Also + -------- + MaskedArray.flat : Return a flat iterator over an array. + MaskedArray.flatten : Returns a flattened copy of an array. + + Notes + ----- + `MaskedIterator` is not exported by the `ma` module. Instead of + instantiating a `MaskedIterator` directly, use `MaskedArray.flat`. + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.array(arange(6).reshape(2, 3)) + >>> fl = x.flat + >>> type(fl) + + >>> for item in fl: + ... print(item) + ... + 0 + 1 + 2 + 3 + 4 + 5 + + Extracting more than a single element b indexing the `MaskedIterator` + returns a masked array: + + >>> fl[2:4] + masked_array(data = [2 3], + mask = False, + fill_value = 999999) + + """ + + def __init__(self, ma): + self.ma = ma + self.dataiter = ma._data.flat + + if ma._mask is nomask: + self.maskiter = None + else: + self.maskiter = ma._mask.flat + + def __iter__(self): + return self + + def __getitem__(self, indx): + result = self.dataiter.__getitem__(indx).view(type(self.ma)) + if self.maskiter is not None: + _mask = self.maskiter.__getitem__(indx) + if isinstance(_mask, ndarray): + # set shape to match that of data; this is needed for matrices + _mask.shape = result.shape + result._mask = _mask + elif isinstance(_mask, np.void): + return mvoid(result, mask=_mask, hardmask=self.ma._hardmask) + elif _mask: # Just a scalar, masked + return masked + return result + + # This won't work if ravel makes a copy + def __setitem__(self, index, value): + self.dataiter[index] = getdata(value) + if self.maskiter is not None: + self.maskiter[index] = getmaskarray(value) + + def __next__(self): + """ + Return the next value, or raise StopIteration. + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.array([3, 2], mask=[0, 1]) + >>> fl = x.flat + >>> next(fl) + 3 + >>> next(fl) + masked + >>> next(fl) + Traceback (most recent call last): + ... + StopIteration + + """ + d = next(self.dataiter) + if self.maskiter is not None: + m = next(self.maskiter) + if isinstance(m, np.void): + return mvoid(d, mask=m, hardmask=self.ma._hardmask) + elif m: # Just a scalar, masked + return masked + return d + + +@set_module("numpy.ma") +class MaskedArray(ndarray): + """ + An array class with possibly masked values. + + Masked values of True exclude the corresponding element from any + computation. + + Construction:: + + x = MaskedArray(data, mask=nomask, dtype=None, copy=False, subok=True, + ndmin=0, fill_value=None, keep_mask=True, hard_mask=None, + shrink=True, order=None) + + Parameters + ---------- + data : array_like + Input data. + mask : sequence, optional + Mask. Must be convertible to an array of booleans with the same + shape as `data`. True indicates a masked (i.e. invalid) data. + dtype : dtype, optional + Data type of the output. + If `dtype` is None, the type of the data argument (``data.dtype``) + is used. If `dtype` is not None and different from ``data.dtype``, + a copy is performed. + copy : bool, optional + Whether to copy the input data (True), or to use a reference instead. + Default is False. + subok : bool, optional + Whether to return a subclass of `MaskedArray` if possible (True) or a + plain `MaskedArray`. Default is True. + ndmin : int, optional + Minimum number of dimensions. Default is 0. + fill_value : scalar, optional + Value used to fill in the masked values when necessary. + If None, a default based on the data-type is used. + keep_mask : bool, optional + Whether to combine `mask` with the mask of the input data, if any + (True), or to use only `mask` for the output (False). Default is True. + hard_mask : bool, optional + Whether to use a hard mask or not. With a hard mask, masked values + cannot be unmasked. Default is False. + shrink : bool, optional + Whether to force compression of an empty mask. Default is True. + order : {'C', 'F', 'A'}, optional + Specify the order of the array. If order is 'C', then the array + will be in C-contiguous order (last-index varies the fastest). + If order is 'F', then the returned array will be in + Fortran-contiguous order (first-index varies the fastest). + If order is 'A' (default), then the returned array may be + in any order (either C-, Fortran-contiguous, or even discontiguous), + unless a copy is required, in which case it will be C-contiguous. + + Examples + -------- + >>> import numpy as np + + The ``mask`` can be initialized with an array of boolean values + with the same shape as ``data``. + + >>> data = np.arange(6).reshape((2, 3)) + >>> np.ma.MaskedArray(data, mask=[[False, True, False], + ... [False, False, True]]) + masked_array( + data=[[0, --, 2], + [3, 4, --]], + mask=[[False, True, False], + [False, False, True]], + fill_value=999999) + + Alternatively, the ``mask`` can be initialized to homogeneous boolean + array with the same shape as ``data`` by passing in a scalar + boolean value: + + >>> np.ma.MaskedArray(data, mask=False) + masked_array( + data=[[0, 1, 2], + [3, 4, 5]], + mask=[[False, False, False], + [False, False, False]], + fill_value=999999) + + >>> np.ma.MaskedArray(data, mask=True) + masked_array( + data=[[--, --, --], + [--, --, --]], + mask=[[ True, True, True], + [ True, True, True]], + fill_value=999999, + dtype=int64) + + .. note:: + The recommended practice for initializing ``mask`` with a scalar + boolean value is to use ``True``/``False`` rather than + ``np.True_``/``np.False_``. The reason is :attr:`nomask` + is represented internally as ``np.False_``. + + >>> np.False_ is np.ma.nomask + True + + """ + + __array_priority__ = 15 + _defaultmask = nomask + _defaulthardmask = False + _baseclass = ndarray + + # Maximum number of elements per axis used when printing an array. The + # 1d case is handled separately because we need more values in this case. + _print_width = 100 + _print_width_1d = 1500 + + def __new__(cls, data=None, mask=nomask, dtype=None, copy=False, + subok=True, ndmin=0, fill_value=None, keep_mask=True, + hard_mask=None, shrink=True, order=None): + """ + Create a new masked array from scratch. + + Notes + ----- + A masked array can also be created by taking a .view(MaskedArray). + + """ + # Process data. + copy = None if not copy else True + _data = np.array(data, dtype=dtype, copy=copy, + order=order, subok=True, ndmin=ndmin) + _baseclass = getattr(data, '_baseclass', type(_data)) + # Check that we're not erasing the mask. + if isinstance(data, MaskedArray) and (data.shape != _data.shape): + copy = True + + # Here, we copy the _view_, so that we can attach new properties to it + # we must never do .view(MaskedConstant), as that would create a new + # instance of np.ma.masked, which make identity comparison fail + if isinstance(data, cls) and subok and not isinstance(data, MaskedConstant): + _data = ndarray.view(_data, type(data)) + else: + _data = ndarray.view(_data, cls) + + # Handle the case where data is not a subclass of ndarray, but + # still has the _mask attribute like MaskedArrays + if hasattr(data, '_mask') and not isinstance(data, ndarray): + _data._mask = data._mask + # FIXME: should we set `_data._sharedmask = True`? + # Process mask. + # Type of the mask + mdtype = make_mask_descr(_data.dtype) + if mask is nomask: + # Case 1. : no mask in input. + # Erase the current mask ? + if not keep_mask: + # With a reduced version + if shrink: + _data._mask = nomask + # With full version + else: + _data._mask = np.zeros(_data.shape, dtype=mdtype) + # Check whether we missed something + elif isinstance(data, (tuple, list)): + try: + # If data is a sequence of masked array + mask = np.array( + [getmaskarray(np.asanyarray(m, dtype=_data.dtype)) + for m in data], dtype=mdtype) + except (ValueError, TypeError): + # If data is nested + mask = nomask + # Force shrinking of the mask if needed (and possible) + if (mdtype == MaskType) and mask.any(): + _data._mask = mask + _data._sharedmask = False + else: + _data._sharedmask = not copy + if copy: + _data._mask = _data._mask.copy() + # Reset the shape of the original mask + if getmask(data) is not nomask: + # gh-21022 encounters an issue here + # because data._mask.shape is not writeable, but + # the op was also pointless in that case, because + # the shapes were the same, so we can at least + # avoid that path + if data._mask.shape != data.shape: + data._mask.shape = data.shape + else: + # Case 2. : With a mask in input. + # If mask is boolean, create an array of True or False + + # if users pass `mask=None` be forgiving here and cast it False + # for speed; although the default is `mask=nomask` and can differ. + if mask is None: + mask = False + + if mask is True and mdtype == MaskType: + mask = np.ones(_data.shape, dtype=mdtype) + elif mask is False and mdtype == MaskType: + mask = np.zeros(_data.shape, dtype=mdtype) + else: + # Read the mask with the current mdtype + try: + mask = np.array(mask, copy=copy, dtype=mdtype) + # Or assume it's a sequence of bool/int + except TypeError: + mask = np.array([tuple([m] * len(mdtype)) for m in mask], + dtype=mdtype) + # Make sure the mask and the data have the same shape + if mask.shape != _data.shape: + (nd, nm) = (_data.size, mask.size) + if nm == 1: + mask = np.resize(mask, _data.shape) + elif nm == nd: + mask = np.reshape(mask, _data.shape) + else: + msg = (f"Mask and data not compatible:" + f" data size is {nd}, mask size is {nm}.") + raise MaskError(msg) + copy = True + # Set the mask to the new value + if _data._mask is nomask: + _data._mask = mask + _data._sharedmask = not copy + elif not keep_mask: + _data._mask = mask + _data._sharedmask = not copy + else: + if _data.dtype.names is not None: + def _recursive_or(a, b): + "do a|=b on each field of a, recursively" + for name in a.dtype.names: + (af, bf) = (a[name], b[name]) + if af.dtype.names is not None: + _recursive_or(af, bf) + else: + af |= bf + + _recursive_or(_data._mask, mask) + else: + _data._mask = np.logical_or(mask, _data._mask) + _data._sharedmask = False + + # Update fill_value. + if fill_value is None: + fill_value = getattr(data, '_fill_value', None) + # But don't run the check unless we have something to check. + if fill_value is not None: + _data._fill_value = _check_fill_value(fill_value, _data.dtype) + # Process extra options .. + if hard_mask is None: + _data._hardmask = getattr(data, '_hardmask', False) + else: + _data._hardmask = hard_mask + _data._baseclass = _baseclass + return _data + + def _update_from(self, obj): + """ + Copies some attributes of obj to self. + + """ + if isinstance(obj, ndarray): + _baseclass = type(obj) + else: + _baseclass = ndarray + # We need to copy the _basedict to avoid backward propagation + _optinfo = {} + _optinfo.update(getattr(obj, '_optinfo', {})) + _optinfo.update(getattr(obj, '_basedict', {})) + if not isinstance(obj, MaskedArray): + _optinfo.update(getattr(obj, '__dict__', {})) + _dict = {'_fill_value': getattr(obj, '_fill_value', None), + '_hardmask': getattr(obj, '_hardmask', False), + '_sharedmask': getattr(obj, '_sharedmask', False), + '_isfield': getattr(obj, '_isfield', False), + '_baseclass': getattr(obj, '_baseclass', _baseclass), + '_optinfo': _optinfo, + '_basedict': _optinfo} + self.__dict__.update(_dict) + self.__dict__.update(_optinfo) + + def __array_finalize__(self, obj): + """ + Finalizes the masked array. + + """ + # Get main attributes. + self._update_from(obj) + + # We have to decide how to initialize self.mask, based on + # obj.mask. This is very difficult. There might be some + # correspondence between the elements in the array we are being + # created from (= obj) and us. Or there might not. This method can + # be called in all kinds of places for all kinds of reasons -- could + # be empty_like, could be slicing, could be a ufunc, could be a view. + # The numpy subclassing interface simply doesn't give us any way + # to know, which means that at best this method will be based on + # guesswork and heuristics. To make things worse, there isn't even any + # clear consensus about what the desired behavior is. For instance, + # most users think that np.empty_like(marr) -- which goes via this + # method -- should return a masked array with an empty mask (see + # gh-3404 and linked discussions), but others disagree, and they have + # existing code which depends on empty_like returning an array that + # matches the input mask. + # + # Historically our algorithm was: if the template object mask had the + # same *number of elements* as us, then we used *it's mask object + # itself* as our mask, so that writes to us would also write to the + # original array. This is horribly broken in multiple ways. + # + # Now what we do instead is, if the template object mask has the same + # number of elements as us, and we do not have the same base pointer + # as the template object (b/c views like arr[...] should keep the same + # mask), then we make a copy of the template object mask and use + # that. This is also horribly broken but somewhat less so. Maybe. + if isinstance(obj, ndarray): + # XX: This looks like a bug -- shouldn't it check self.dtype + # instead? + if obj.dtype.names is not None: + _mask = getmaskarray(obj) + else: + _mask = getmask(obj) + + # If self and obj point to exactly the same data, then probably + # self is a simple view of obj (e.g., self = obj[...]), so they + # should share the same mask. (This isn't 100% reliable, e.g. self + # could be the first row of obj, or have strange strides, but as a + # heuristic it's not bad.) In all other cases, we make a copy of + # the mask, so that future modifications to 'self' do not end up + # side-effecting 'obj' as well. + if (_mask is not nomask and obj.__array_interface__["data"][0] + != self.__array_interface__["data"][0]): + # We should make a copy. But we could get here via astype, + # in which case the mask might need a new dtype as well + # (e.g., changing to or from a structured dtype), and the + # order could have changed. So, change the mask type if + # needed and use astype instead of copy. + if self.dtype == obj.dtype: + _mask_dtype = _mask.dtype + else: + _mask_dtype = make_mask_descr(self.dtype) + + if self.flags.c_contiguous: + order = "C" + elif self.flags.f_contiguous: + order = "F" + else: + order = "K" + + _mask = _mask.astype(_mask_dtype, order) + else: + # Take a view so shape changes, etc., do not propagate back. + _mask = _mask.view() + else: + _mask = nomask + + self._mask = _mask + # Finalize the mask + if self._mask is not nomask: + try: + self._mask.shape = self.shape + except ValueError: + self._mask = nomask + except (TypeError, AttributeError): + # When _mask.shape is not writable (because it's a void) + pass + + # Finalize the fill_value + if self._fill_value is not None: + self._fill_value = _check_fill_value(self._fill_value, self.dtype) + elif self.dtype.names is not None: + # Finalize the default fill_value for structured arrays + self._fill_value = _check_fill_value(None, self.dtype) + + def __array_wrap__(self, obj, context=None, return_scalar=False): + """ + Special hook for ufuncs. + + Wraps the numpy array and sets the mask according to context. + + """ + if obj is self: # for in-place operations + result = obj + else: + result = obj.view(type(self)) + result._update_from(self) + + if context is not None: + result._mask = result._mask.copy() + func, args, out_i = context + # args sometimes contains outputs (gh-10459), which we don't want + input_args = args[:func.nin] + m = functools.reduce(mask_or, [getmaskarray(arg) for arg in input_args]) + # Get the domain mask + domain = ufunc_domain.get(func) + if domain is not None: + # Take the domain, and make sure it's a ndarray + with np.errstate(divide='ignore', invalid='ignore'): + # The result may be masked for two (unary) domains. + # That can't really be right as some domains drop + # the mask and some don't behaving differently here. + d = domain(*input_args).astype(bool, copy=False) + d = filled(d, True) + + if d.any(): + # Fill the result where the domain is wrong + try: + # Binary domain: take the last value + fill_value = ufunc_fills[func][-1] + except TypeError: + # Unary domain: just use this one + fill_value = ufunc_fills[func] + except KeyError: + # Domain not recognized, use fill_value instead + fill_value = self.fill_value + + np.copyto(result, fill_value, where=d) + + # Update the mask + if m is nomask: + m = d + else: + # Don't modify inplace, we risk back-propagation + m = (m | d) + + # Make sure the mask has the proper size + if result is not self and result.shape == () and m: + return masked + else: + result._mask = m + result._sharedmask = False + + return result + + def view(self, dtype=None, type=None, fill_value=None): + """ + Return a view of the MaskedArray data. + + Parameters + ---------- + dtype : data-type or ndarray sub-class, optional + Data-type descriptor of the returned view, e.g., float32 or int16. + The default, None, results in the view having the same data-type + as `a`. As with ``ndarray.view``, dtype can also be specified as + an ndarray sub-class, which then specifies the type of the + returned object (this is equivalent to setting the ``type`` + parameter). + type : Python type, optional + Type of the returned view, either ndarray or a subclass. The + default None results in type preservation. + fill_value : scalar, optional + The value to use for invalid entries (None by default). + If None, then this argument is inferred from the passed `dtype`, or + in its absence the original array, as discussed in the notes below. + + See Also + -------- + numpy.ndarray.view : Equivalent method on ndarray object. + + Notes + ----- + + ``a.view()`` is used two different ways: + + ``a.view(some_dtype)`` or ``a.view(dtype=some_dtype)`` constructs a view + of the array's memory with a different data-type. This can cause a + reinterpretation of the bytes of memory. + + ``a.view(ndarray_subclass)`` or ``a.view(type=ndarray_subclass)`` just + returns an instance of `ndarray_subclass` that looks at the same array + (same shape, dtype, etc.) This does not cause a reinterpretation of the + memory. + + If `fill_value` is not specified, but `dtype` is specified (and is not + an ndarray sub-class), the `fill_value` of the MaskedArray will be + reset. If neither `fill_value` nor `dtype` are specified (or if + `dtype` is an ndarray sub-class), then the fill value is preserved. + Finally, if `fill_value` is specified, but `dtype` is not, the fill + value is set to the specified value. + + For ``a.view(some_dtype)``, if ``some_dtype`` has a different number of + bytes per entry than the previous dtype (for example, converting a + regular array to a structured array), then the behavior of the view + cannot be predicted just from the superficial appearance of ``a`` (shown + by ``print(a)``). It also depends on exactly how ``a`` is stored in + memory. Therefore if ``a`` is C-ordered versus fortran-ordered, versus + defined as a slice or transpose, etc., the view may give different + results. + """ + + if dtype is None: + if type is None: + output = ndarray.view(self) + else: + output = ndarray.view(self, type) + elif type is None: + try: + if issubclass(dtype, ndarray): + output = ndarray.view(self, dtype) + dtype = None + else: + output = ndarray.view(self, dtype) + except TypeError: + output = ndarray.view(self, dtype) + else: + output = ndarray.view(self, dtype, type) + + # also make the mask be a view (so attr changes to the view's + # mask do no affect original object's mask) + # (especially important to avoid affecting np.masked singleton) + if getmask(output) is not nomask: + output._mask = output._mask.view() + + # Make sure to reset the _fill_value if needed + if getattr(output, '_fill_value', None) is not None: + if fill_value is None: + if dtype is None: + pass # leave _fill_value as is + else: + output._fill_value = None + else: + output.fill_value = fill_value + return output + + def __getitem__(self, indx): + """ + x.__getitem__(y) <==> x[y] + + Return the item described by i, as a masked array. + + """ + # We could directly use ndarray.__getitem__ on self. + # But then we would have to modify __array_finalize__ to prevent the + # mask of being reshaped if it hasn't been set up properly yet + # So it's easier to stick to the current version + dout = self.data[indx] + _mask = self._mask + + def _is_scalar(m): + return not isinstance(m, np.ndarray) + + def _scalar_heuristic(arr, elem): + """ + Return whether `elem` is a scalar result of indexing `arr`, or None + if undecidable without promoting nomask to a full mask + """ + # obviously a scalar + if not isinstance(elem, np.ndarray): + return True + + # object array scalar indexing can return anything + elif arr.dtype.type is np.object_: + if arr.dtype is not elem.dtype: + # elem is an array, but dtypes do not match, so must be + # an element + return True + + # well-behaved subclass that only returns 0d arrays when + # expected - this is not a scalar + elif type(arr).__getitem__ == ndarray.__getitem__: + return False + + return None + + if _mask is not nomask: + # _mask cannot be a subclass, so it tells us whether we should + # expect a scalar. It also cannot be of dtype object. + mout = _mask[indx] + scalar_expected = _is_scalar(mout) + + else: + # attempt to apply the heuristic to avoid constructing a full mask + mout = nomask + scalar_expected = _scalar_heuristic(self.data, dout) + if scalar_expected is None: + # heuristics have failed + # construct a full array, so we can be certain. This is costly. + # we could also fall back on ndarray.__getitem__(self.data, indx) + scalar_expected = _is_scalar(getmaskarray(self)[indx]) + + # Did we extract a single item? + if scalar_expected: + # A record + if isinstance(dout, np.void): + # We should always re-cast to mvoid, otherwise users can + # change masks on rows that already have masked values, but not + # on rows that have no masked values, which is inconsistent. + return mvoid(dout, mask=mout, hardmask=self._hardmask) + + # special case introduced in gh-5962 + elif (self.dtype.type is np.object_ and + isinstance(dout, np.ndarray) and + dout is not masked): + # If masked, turn into a MaskedArray, with everything masked. + if mout: + return MaskedArray(dout, mask=True) + else: + return dout + + # Just a scalar + elif mout: + return masked + else: + return dout + else: + # Force dout to MA + dout = dout.view(type(self)) + # Inherit attributes from self + dout._update_from(self) + # Check the fill_value + if is_string_or_list_of_strings(indx): + if self._fill_value is not None: + dout._fill_value = self._fill_value[indx] + + # Something like gh-15895 has happened if this check fails. + # _fill_value should always be an ndarray. + if not isinstance(dout._fill_value, np.ndarray): + raise RuntimeError('Internal NumPy error.') + # If we're indexing a multidimensional field in a + # structured array (such as dtype("(2,)i2,(2,)i1")), + # dimensionality goes up (M[field].ndim == M.ndim + + # M.dtype[field].ndim). That's fine for + # M[field] but problematic for M[field].fill_value + # which should have shape () to avoid breaking several + # methods. There is no great way out, so set to + # first element. See issue #6723. + if dout._fill_value.ndim > 0: + if not (dout._fill_value == + dout._fill_value.flat[0]).all(): + warnings.warn( + "Upon accessing multidimensional field " + f"{indx!s}, need to keep dimensionality " + "of fill_value at 0. Discarding " + "heterogeneous fill_value and setting " + f"all to {dout._fill_value[0]!s}.", + stacklevel=2) + # Need to use `.flat[0:1].squeeze(...)` instead of just + # `.flat[0]` to ensure the result is a 0d array and not + # a scalar. + dout._fill_value = dout._fill_value.flat[0:1].squeeze(axis=0) + dout._isfield = True + # Update the mask if needed + if mout is not nomask: + # set shape to match that of data; this is needed for matrices + dout._mask = reshape(mout, dout.shape) + dout._sharedmask = True + # Note: Don't try to check for m.any(), that'll take too long + return dout + + # setitem may put NaNs into integer arrays or occasionally overflow a + # float. But this may happen in masked values, so avoid otherwise + # correct warnings (as is typical also in masked calculations). + @np.errstate(over='ignore', invalid='ignore') + def __setitem__(self, indx, value): + """ + x.__setitem__(i, y) <==> x[i]=y + + Set item described by index. If value is masked, masks those + locations. + + """ + if self is masked: + raise MaskError('Cannot alter the masked element.') + _data = self._data + _mask = self._mask + if isinstance(indx, str): + _data[indx] = value + if _mask is nomask: + self._mask = _mask = make_mask_none(self.shape, self.dtype) + _mask[indx] = getmask(value) + return + + _dtype = _data.dtype + + if value is masked: + # The mask wasn't set: create a full version. + if _mask is nomask: + _mask = self._mask = make_mask_none(self.shape, _dtype) + # Now, set the mask to its value. + if _dtype.names is not None: + _mask[indx] = tuple([True] * len(_dtype.names)) + else: + _mask[indx] = True + return + + # Get the _data part of the new value + dval = getattr(value, '_data', value) + # Get the _mask part of the new value + mval = getmask(value) + if _dtype.names is not None and mval is nomask: + mval = tuple([False] * len(_dtype.names)) + if _mask is nomask: + # Set the data, then the mask + _data[indx] = dval + if mval is not nomask: + _mask = self._mask = make_mask_none(self.shape, _dtype) + _mask[indx] = mval + elif not self._hardmask: + # Set the data, then the mask + if (isinstance(indx, masked_array) and + not isinstance(value, masked_array)): + _data[indx.data] = dval + else: + _data[indx] = dval + _mask[indx] = mval + elif hasattr(indx, 'dtype') and (indx.dtype == MaskType): + indx = indx * umath.logical_not(_mask) + _data[indx] = dval + else: + if _dtype.names is not None: + err_msg = "Flexible 'hard' masks are not yet supported." + raise NotImplementedError(err_msg) + mindx = mask_or(_mask[indx], mval, copy=True) + dindx = self._data[indx] + if dindx.size > 1: + np.copyto(dindx, dval, where=~mindx) + elif mindx is nomask: + dindx = dval + _data[indx] = dindx + _mask[indx] = mindx + return + + # Define so that we can overwrite the setter. + @property + def dtype(self): + return super().dtype + + @dtype.setter + def dtype(self, dtype): + super(MaskedArray, type(self)).dtype.__set__(self, dtype) + if self._mask is not nomask: + self._mask = self._mask.view(make_mask_descr(dtype), ndarray) + # Try to reset the shape of the mask (if we don't have a void). + # This raises a ValueError if the dtype change won't work. + try: + self._mask.shape = self.shape + except (AttributeError, TypeError): + pass + + @property + def shape(self): + return super().shape + + @shape.setter + def shape(self, shape): + super(MaskedArray, type(self)).shape.__set__(self, shape) + # Cannot use self._mask, since it may not (yet) exist when a + # masked matrix sets the shape. + if getmask(self) is not nomask: + self._mask.shape = self.shape + + def __setmask__(self, mask, copy=False): + """ + Set the mask. + + """ + idtype = self.dtype + current_mask = self._mask + if mask is masked: + mask = True + + if current_mask is nomask: + # Make sure the mask is set + # Just don't do anything if there's nothing to do. + if mask is nomask: + return + current_mask = self._mask = make_mask_none(self.shape, idtype) + + if idtype.names is None: + # No named fields. + # Hardmask: don't unmask the data + if self._hardmask: + current_mask |= mask + # Softmask: set everything to False + # If it's obviously a compatible scalar, use a quick update + # method. + elif isinstance(mask, (int, float, np.bool, np.number)): + current_mask[...] = mask + # Otherwise fall back to the slower, general purpose way. + else: + current_mask.flat = mask + else: + # Named fields w/ + mdtype = current_mask.dtype + mask = np.asarray(mask) + # Mask is a singleton + if not mask.ndim: + # It's a boolean : make a record + if mask.dtype.kind == 'b': + mask = np.array(tuple([mask.item()] * len(mdtype)), + dtype=mdtype) + # It's a record: make sure the dtype is correct + else: + mask = mask.astype(mdtype) + # Mask is a sequence + else: + # Make sure the new mask is a ndarray with the proper dtype + try: + copy = None if not copy else True + mask = np.array(mask, copy=copy, dtype=mdtype) + # Or assume it's a sequence of bool/int + except TypeError: + mask = np.array([tuple([m] * len(mdtype)) for m in mask], + dtype=mdtype) + # Hardmask: don't unmask the data + if self._hardmask: + for n in idtype.names: + current_mask[n] |= mask[n] + # Softmask: set everything to False + # If it's obviously a compatible scalar, use a quick update + # method. + elif isinstance(mask, (int, float, np.bool, np.number)): + current_mask[...] = mask + # Otherwise fall back to the slower, general purpose way. + else: + current_mask.flat = mask + # Reshape if needed + if current_mask.shape: + current_mask.shape = self.shape + return + + _set_mask = __setmask__ + + @property + def mask(self): + """ Current mask. """ + + # We could try to force a reshape, but that wouldn't work in some + # cases. + # Return a view so that the dtype and shape cannot be changed in place + # This still preserves nomask by identity + return self._mask.view() + + @mask.setter + def mask(self, value): + self.__setmask__(value) + + @property + def recordmask(self): + """ + Get or set the mask of the array if it has no named fields. For + structured arrays, returns a ndarray of booleans where entries are + ``True`` if **all** the fields are masked, ``False`` otherwise: + + >>> x = np.ma.array([(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)], + ... mask=[(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)], + ... dtype=[('a', int), ('b', int)]) + >>> x.recordmask + array([False, False, True, False, False]) + """ + + _mask = self._mask.view(ndarray) + if _mask.dtype.names is None: + return _mask + return np.all(flatten_structured_array(_mask), axis=-1) + + @recordmask.setter + def recordmask(self, mask): + raise NotImplementedError("Coming soon: setting the mask per records!") + + def harden_mask(self): + """ + Force the mask to hard, preventing unmasking by assignment. + + Whether the mask of a masked array is hard or soft is determined by + its `~ma.MaskedArray.hardmask` property. `harden_mask` sets + `~ma.MaskedArray.hardmask` to ``True`` (and returns the modified + self). + + See Also + -------- + ma.MaskedArray.hardmask + ma.MaskedArray.soften_mask + + """ + self._hardmask = True + return self + + def soften_mask(self): + """ + Force the mask to soft (default), allowing unmasking by assignment. + + Whether the mask of a masked array is hard or soft is determined by + its `~ma.MaskedArray.hardmask` property. `soften_mask` sets + `~ma.MaskedArray.hardmask` to ``False`` (and returns the modified + self). + + See Also + -------- + ma.MaskedArray.hardmask + ma.MaskedArray.harden_mask + + """ + self._hardmask = False + return self + + @property + def hardmask(self): + """ + Specifies whether values can be unmasked through assignments. + + By default, assigning definite values to masked array entries will + unmask them. When `hardmask` is ``True``, the mask will not change + through assignments. + + See Also + -------- + ma.MaskedArray.harden_mask + ma.MaskedArray.soften_mask + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(10) + >>> m = np.ma.masked_array(x, x>5) + >>> assert not m.hardmask + + Since `m` has a soft mask, assigning an element value unmasks that + element: + + >>> m[8] = 42 + >>> m + masked_array(data=[0, 1, 2, 3, 4, 5, --, --, 42, --], + mask=[False, False, False, False, False, False, + True, True, False, True], + fill_value=999999) + + After hardening, the mask is not affected by assignments: + + >>> hardened = np.ma.harden_mask(m) + >>> assert m.hardmask and hardened is m + >>> m[:] = 23 + >>> m + masked_array(data=[23, 23, 23, 23, 23, 23, --, --, 23, --], + mask=[False, False, False, False, False, False, + True, True, False, True], + fill_value=999999) + + """ + return self._hardmask + + def unshare_mask(self): + """ + Copy the mask and set the `sharedmask` flag to ``False``. + + Whether the mask is shared between masked arrays can be seen from + the `sharedmask` property. `unshare_mask` ensures the mask is not + shared. A copy of the mask is only made if it was shared. + + See Also + -------- + sharedmask + + """ + if self._sharedmask: + self._mask = self._mask.copy() + self._sharedmask = False + return self + + @property + def sharedmask(self): + """ Share status of the mask (read-only). """ + return self._sharedmask + + def shrink_mask(self): + """ + Reduce a mask to nomask when possible. + + Parameters + ---------- + None + + Returns + ------- + result : MaskedArray + A :class:`~ma.MaskedArray` object. + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.array([[1,2 ], [3, 4]], mask=[0]*4) + >>> x.mask + array([[False, False], + [False, False]]) + >>> x.shrink_mask() + masked_array( + data=[[1, 2], + [3, 4]], + mask=False, + fill_value=999999) + >>> x.mask + False + + """ + self._mask = _shrink_mask(self._mask) + return self + + @property + def baseclass(self): + """ Class of the underlying data (read-only). """ + return self._baseclass + + def _get_data(self): + """ + Returns the underlying data, as a view of the masked array. + + If the underlying data is a subclass of :class:`numpy.ndarray`, it is + returned as such. + + >>> x = np.ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]]) + >>> x.data + matrix([[1, 2], + [3, 4]]) + + The type of the data can be accessed through the :attr:`baseclass` + attribute. + """ + return ndarray.view(self, self._baseclass) + + _data = property(fget=_get_data) + data = property(fget=_get_data) + + @property + def flat(self): + """ Return a flat iterator, or set a flattened version of self to value. """ + return MaskedIterator(self) + + @flat.setter + def flat(self, value): + y = self.ravel() + y[:] = value + + @property + def fill_value(self): + """ + The filling value of the masked array is a scalar. When setting, None + will set to a default based on the data type. + + Examples + -------- + >>> import numpy as np + >>> for dt in [np.int32, np.int64, np.float64, np.complex128]: + ... np.ma.array([0, 1], dtype=dt).get_fill_value() + ... + np.int64(999999) + np.int64(999999) + np.float64(1e+20) + np.complex128(1e+20+0j) + + >>> x = np.ma.array([0, 1.], fill_value=-np.inf) + >>> x.fill_value + np.float64(-inf) + >>> x.fill_value = np.pi + >>> x.fill_value + np.float64(3.1415926535897931) + + Reset to default: + + >>> x.fill_value = None + >>> x.fill_value + np.float64(1e+20) + + """ + if self._fill_value is None: + self._fill_value = _check_fill_value(None, self.dtype) + + # Temporary workaround to account for the fact that str and bytes + # scalars cannot be indexed with (), whereas all other numpy + # scalars can. See issues #7259 and #7267. + # The if-block can be removed after #7267 has been fixed. + if isinstance(self._fill_value, ndarray): + return self._fill_value[()] + return self._fill_value + + @fill_value.setter + def fill_value(self, value=None): + target = _check_fill_value(value, self.dtype) + if not target.ndim == 0: + # 2019-11-12, 1.18.0 + warnings.warn( + "Non-scalar arrays for the fill value are deprecated. Use " + "arrays with scalar values instead. The filled function " + "still supports any array as `fill_value`.", + DeprecationWarning, stacklevel=2) + + _fill_value = self._fill_value + if _fill_value is None: + # Create the attribute if it was undefined + self._fill_value = target + else: + # Don't overwrite the attribute, just fill it (for propagation) + _fill_value[()] = target + + # kept for compatibility + get_fill_value = fill_value.fget + set_fill_value = fill_value.fset + + def filled(self, fill_value=None): + """ + Return a copy of self, with masked values filled with a given value. + **However**, if there are no masked values to fill, self will be + returned instead as an ndarray. + + Parameters + ---------- + fill_value : array_like, optional + The value to use for invalid entries. Can be scalar or non-scalar. + If non-scalar, the resulting ndarray must be broadcastable over + input array. Default is None, in which case, the `fill_value` + attribute of the array is used instead. + + Returns + ------- + filled_array : ndarray + A copy of ``self`` with invalid entries replaced by *fill_value* + (be it the function argument or the attribute of ``self``), or + ``self`` itself as an ndarray if there are no invalid entries to + be replaced. + + Notes + ----- + The result is **not** a MaskedArray! + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.array([1,2,3,4,5], mask=[0,0,1,0,1], fill_value=-999) + >>> x.filled() + array([ 1, 2, -999, 4, -999]) + >>> x.filled(fill_value=1000) + array([ 1, 2, 1000, 4, 1000]) + >>> type(x.filled()) + + + Subclassing is preserved. This means that if, e.g., the data part of + the masked array is a recarray, `filled` returns a recarray: + + >>> x = np.array([(-1, 2), (-3, 4)], dtype='i8,i8').view(np.recarray) + >>> m = np.ma.array(x, mask=[(True, False), (False, True)]) + >>> m.filled() + rec.array([(999999, 2), ( -3, 999999)], + dtype=[('f0', '>> import numpy as np + >>> x = np.ma.array(np.arange(5), mask=[0]*2 + [1]*3) + >>> x.compressed() + array([0, 1]) + >>> type(x.compressed()) + + + N-D arrays are compressed to 1-D. + + >>> arr = [[1, 2], [3, 4]] + >>> mask = [[1, 0], [0, 1]] + >>> x = np.ma.array(arr, mask=mask) + >>> x.compressed() + array([2, 3]) + + """ + data = ndarray.ravel(self._data) + if self._mask is not nomask: + data = data.compress(np.logical_not(ndarray.ravel(self._mask))) + return data + + def compress(self, condition, axis=None, out=None): + """ + Return `a` where condition is ``True``. + + If condition is a `~ma.MaskedArray`, missing values are considered + as ``False``. + + Parameters + ---------- + condition : var + Boolean 1-d array selecting which entries to return. If len(condition) + is less than the size of a along the axis, then output is truncated + to length of condition array. + axis : {None, int}, optional + Axis along which the operation must be performed. + out : {None, ndarray}, optional + Alternative output array in which to place the result. It must have + the same shape as the expected output but the type will be cast if + necessary. + + Returns + ------- + result : MaskedArray + A :class:`~ma.MaskedArray` object. + + Notes + ----- + Please note the difference with :meth:`compressed` ! + The output of :meth:`compress` has a mask, the output of + :meth:`compressed` does not. + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4) + >>> x + masked_array( + data=[[1, --, 3], + [--, 5, --], + [7, --, 9]], + mask=[[False, True, False], + [ True, False, True], + [False, True, False]], + fill_value=999999) + >>> x.compress([1, 0, 1]) + masked_array(data=[1, 3], + mask=[False, False], + fill_value=999999) + + >>> x.compress([1, 0, 1], axis=1) + masked_array( + data=[[1, 3], + [--, --], + [7, 9]], + mask=[[False, False], + [ True, True], + [False, False]], + fill_value=999999) + + """ + # Get the basic components + (_data, _mask) = (self._data, self._mask) + + # Force the condition to a regular ndarray and forget the missing + # values. + condition = np.asarray(condition) + + _new = _data.compress(condition, axis=axis, out=out).view(type(self)) + _new._update_from(self) + if _mask is not nomask: + _new._mask = _mask.compress(condition, axis=axis) + return _new + + def _insert_masked_print(self): + """ + Replace masked values with masked_print_option, casting all innermost + dtypes to object. + """ + if masked_print_option.enabled(): + mask = self._mask + if mask is nomask: + res = self._data + else: + # convert to object array to make filled work + data = self._data + # For big arrays, to avoid a costly conversion to the + # object dtype, extract the corners before the conversion. + print_width = (self._print_width if self.ndim > 1 + else self._print_width_1d) + for axis in range(self.ndim): + if data.shape[axis] > print_width: + ind = print_width // 2 + arr = np.split(data, (ind, -ind), axis=axis) + data = np.concatenate((arr[0], arr[2]), axis=axis) + arr = np.split(mask, (ind, -ind), axis=axis) + mask = np.concatenate((arr[0], arr[2]), axis=axis) + + rdtype = _replace_dtype_fields(self.dtype, "O") + res = data.astype(rdtype) + _recursive_printoption(res, mask, masked_print_option) + else: + res = self.filled(self.fill_value) + return res + + def __str__(self): + return str(self._insert_masked_print()) + + def __repr__(self): + """ + Literal string representation. + + """ + if self._baseclass is np.ndarray: + name = 'array' + else: + name = self._baseclass.__name__ + + # 2016-11-19: Demoted to legacy format + if np._core.arrayprint._get_legacy_print_mode() <= 113: + is_long = self.ndim > 1 + parameters = { + 'name': name, + 'nlen': " " * len(name), + 'data': str(self), + 'mask': str(self._mask), + 'fill': str(self.fill_value), + 'dtype': str(self.dtype) + } + is_structured = bool(self.dtype.names) + key = '{}_{}'.format( + 'long' if is_long else 'short', + 'flx' if is_structured else 'std' + ) + return _legacy_print_templates[key] % parameters + + prefix = f"masked_{name}(" + + dtype_needed = ( + not np._core.arrayprint.dtype_is_implied(self.dtype) or + np.all(self.mask) or + self.size == 0 + ) + + # determine which keyword args need to be shown + keys = ['data', 'mask', 'fill_value'] + if dtype_needed: + keys.append('dtype') + + # array has only one row (non-column) + is_one_row = builtins.all(dim == 1 for dim in self.shape[:-1]) + + # choose what to indent each keyword with + min_indent = 2 + if is_one_row: + # first key on the same line as the type, remaining keys + # aligned by equals + indents = {} + indents[keys[0]] = prefix + for k in keys[1:]: + n = builtins.max(min_indent, len(prefix + keys[0]) - len(k)) + indents[k] = ' ' * n + prefix = '' # absorbed into the first indent + else: + # each key on its own line, indented by two spaces + indents = dict.fromkeys(keys, ' ' * min_indent) + prefix = prefix + '\n' # first key on the next line + + # format the field values + reprs = {} + reprs['data'] = np.array2string( + self._insert_masked_print(), + separator=", ", + prefix=indents['data'] + 'data=', + suffix=',') + reprs['mask'] = np.array2string( + self._mask, + separator=", ", + prefix=indents['mask'] + 'mask=', + suffix=',') + + if self._fill_value is None: + self.fill_value # initialize fill_value # noqa: B018 + + if (self._fill_value.dtype.kind in ("S", "U") + and self.dtype.kind == self._fill_value.dtype.kind): + # Allow strings: "N/A" has length 3 so would mismatch. + fill_repr = repr(self.fill_value.item()) + elif self._fill_value.dtype == self.dtype and not self.dtype == object: + # Guess that it is OK to use the string as item repr. To really + # fix this, it needs new logic (shared with structured scalars) + fill_repr = str(self.fill_value) + else: + fill_repr = repr(self.fill_value) + + reprs['fill_value'] = fill_repr + if dtype_needed: + reprs['dtype'] = np._core.arrayprint.dtype_short_repr(self.dtype) + + # join keys with values and indentations + result = ',\n'.join( + f'{indents[k]}{k}={reprs[k]}' + for k in keys + ) + return prefix + result + ')' + + def _delegate_binop(self, other): + # This emulates the logic in + # private/binop_override.h:forward_binop_should_defer + if isinstance(other, type(self)): + return False + array_ufunc = getattr(other, "__array_ufunc__", False) + if array_ufunc is False: + other_priority = getattr(other, "__array_priority__", -1000000) + return self.__array_priority__ < other_priority + else: + # If array_ufunc is not None, it will be called inside the ufunc; + # None explicitly tells us to not call the ufunc, i.e., defer. + return array_ufunc is None + + def _comparison(self, other, compare): + """Compare self with other using operator.eq or operator.ne. + + When either of the elements is masked, the result is masked as well, + but the underlying boolean data are still set, with self and other + considered equal if both are masked, and unequal otherwise. + + For structured arrays, all fields are combined, with masked values + ignored. The result is masked if all fields were masked, with self + and other considered equal only if both were fully masked. + """ + omask = getmask(other) + smask = self.mask + mask = mask_or(smask, omask, copy=True) + + odata = getdata(other) + if mask.dtype.names is not None: + # only == and != are reasonably defined for structured dtypes, + # so give up early for all other comparisons: + if compare not in (operator.eq, operator.ne): + return NotImplemented + # For possibly masked structured arrays we need to be careful, + # since the standard structured array comparison will use all + # fields, masked or not. To avoid masked fields influencing the + # outcome, we set all masked fields in self to other, so they'll + # count as equal. To prepare, we ensure we have the right shape. + broadcast_shape = np.broadcast(self, odata).shape + sbroadcast = np.broadcast_to(self, broadcast_shape, subok=True) + sbroadcast._mask = mask + sdata = sbroadcast.filled(odata) + # Now take care of the mask; the merged mask should have an item + # masked if all fields were masked (in one and/or other). + mask = (mask == np.ones((), mask.dtype)) + # Ensure we can compare masks below if other was not masked. + if omask is np.False_: + omask = np.zeros((), smask.dtype) + + else: + # For regular arrays, just use the data as they come. + sdata = self.data + + check = compare(sdata, odata) + + if isinstance(check, (np.bool, bool)): + return masked if mask else check + + if mask is not nomask: + if compare in (operator.eq, operator.ne): + # Adjust elements that were masked, which should be treated + # as equal if masked in both, unequal if masked in one. + # Note that this works automatically for structured arrays too. + # Ignore this for operations other than `==` and `!=` + check = np.where(mask, compare(smask, omask), check) + + if mask.shape != check.shape: + # Guarantee consistency of the shape, making a copy since the + # the mask may need to get written to later. + mask = np.broadcast_to(mask, check.shape).copy() + + check = check.view(type(self)) + check._update_from(self) + check._mask = mask + + # Cast fill value to np.bool if needed. If it cannot be cast, the + # default boolean fill value is used. + if check._fill_value is not None: + try: + fill = _check_fill_value(check._fill_value, np.bool) + except (TypeError, ValueError): + fill = _check_fill_value(None, np.bool) + check._fill_value = fill + + return check + + def __eq__(self, other): + """Check whether other equals self elementwise. + + When either of the elements is masked, the result is masked as well, + but the underlying boolean data are still set, with self and other + considered equal if both are masked, and unequal otherwise. + + For structured arrays, all fields are combined, with masked values + ignored. The result is masked if all fields were masked, with self + and other considered equal only if both were fully masked. + """ + return self._comparison(other, operator.eq) + + def __ne__(self, other): + """Check whether other does not equal self elementwise. + + When either of the elements is masked, the result is masked as well, + but the underlying boolean data are still set, with self and other + considered equal if both are masked, and unequal otherwise. + + For structured arrays, all fields are combined, with masked values + ignored. The result is masked if all fields were masked, with self + and other considered equal only if both were fully masked. + """ + return self._comparison(other, operator.ne) + + # All other comparisons: + def __le__(self, other): + return self._comparison(other, operator.le) + + def __lt__(self, other): + return self._comparison(other, operator.lt) + + def __ge__(self, other): + return self._comparison(other, operator.ge) + + def __gt__(self, other): + return self._comparison(other, operator.gt) + + def __add__(self, other): + """ + Add self to other, and return a new masked array. + + """ + if self._delegate_binop(other): + return NotImplemented + return add(self, other) + + def __radd__(self, other): + """ + Add other to self, and return a new masked array. + + """ + # In analogy with __rsub__ and __rdiv__, use original order: + # we get here from `other + self`. + return add(other, self) + + def __sub__(self, other): + """ + Subtract other from self, and return a new masked array. + + """ + if self._delegate_binop(other): + return NotImplemented + return subtract(self, other) + + def __rsub__(self, other): + """ + Subtract self from other, and return a new masked array. + + """ + return subtract(other, self) + + def __mul__(self, other): + "Multiply self by other, and return a new masked array." + if self._delegate_binop(other): + return NotImplemented + return multiply(self, other) + + def __rmul__(self, other): + """ + Multiply other by self, and return a new masked array. + + """ + # In analogy with __rsub__ and __rdiv__, use original order: + # we get here from `other * self`. + return multiply(other, self) + + def __truediv__(self, other): + """ + Divide other into self, and return a new masked array. + + """ + if self._delegate_binop(other): + return NotImplemented + return true_divide(self, other) + + def __rtruediv__(self, other): + """ + Divide self into other, and return a new masked array. + + """ + return true_divide(other, self) + + def __floordiv__(self, other): + """ + Divide other into self, and return a new masked array. + + """ + if self._delegate_binop(other): + return NotImplemented + return floor_divide(self, other) + + def __rfloordiv__(self, other): + """ + Divide self into other, and return a new masked array. + + """ + return floor_divide(other, self) + + def __pow__(self, other): + """ + Raise self to the power other, masking the potential NaNs/Infs + + """ + if self._delegate_binop(other): + return NotImplemented + return power(self, other) + + def __rpow__(self, other): + """ + Raise other to the power self, masking the potential NaNs/Infs + + """ + return power(other, self) + + def __iadd__(self, other): + """ + Add other to self in-place. + + """ + m = getmask(other) + if self._mask is nomask: + if m is not nomask and m.any(): + self._mask = make_mask_none(self.shape, self.dtype) + self._mask += m + elif m is not nomask: + self._mask += m + other_data = getdata(other) + other_data = np.where(self._mask, other_data.dtype.type(0), other_data) + self._data.__iadd__(other_data) + return self + + def __isub__(self, other): + """ + Subtract other from self in-place. + + """ + m = getmask(other) + if self._mask is nomask: + if m is not nomask and m.any(): + self._mask = make_mask_none(self.shape, self.dtype) + self._mask += m + elif m is not nomask: + self._mask += m + other_data = getdata(other) + other_data = np.where(self._mask, other_data.dtype.type(0), other_data) + self._data.__isub__(other_data) + return self + + def __imul__(self, other): + """ + Multiply self by other in-place. + + """ + m = getmask(other) + if self._mask is nomask: + if m is not nomask and m.any(): + self._mask = make_mask_none(self.shape, self.dtype) + self._mask += m + elif m is not nomask: + self._mask += m + other_data = getdata(other) + other_data = np.where(self._mask, other_data.dtype.type(1), other_data) + self._data.__imul__(other_data) + return self + + def __ifloordiv__(self, other): + """ + Floor divide self by other in-place. + + """ + other_data = getdata(other) + dom_mask = _DomainSafeDivide().__call__(self._data, other_data) + other_mask = getmask(other) + new_mask = mask_or(other_mask, dom_mask) + # The following 3 lines control the domain filling + if dom_mask.any(): + (_, fval) = ufunc_fills[np.floor_divide] + other_data = np.where( + dom_mask, other_data.dtype.type(fval), other_data) + self._mask |= new_mask + other_data = np.where(self._mask, other_data.dtype.type(1), other_data) + self._data.__ifloordiv__(other_data) + return self + + def __itruediv__(self, other): + """ + True divide self by other in-place. + + """ + other_data = getdata(other) + dom_mask = _DomainSafeDivide().__call__(self._data, other_data) + other_mask = getmask(other) + new_mask = mask_or(other_mask, dom_mask) + # The following 3 lines control the domain filling + if dom_mask.any(): + (_, fval) = ufunc_fills[np.true_divide] + other_data = np.where( + dom_mask, other_data.dtype.type(fval), other_data) + self._mask |= new_mask + other_data = np.where(self._mask, other_data.dtype.type(1), other_data) + self._data.__itruediv__(other_data) + return self + + def __ipow__(self, other): + """ + Raise self to the power other, in place. + + """ + other_data = getdata(other) + other_data = np.where(self._mask, other_data.dtype.type(1), other_data) + other_mask = getmask(other) + with np.errstate(divide='ignore', invalid='ignore'): + self._data.__ipow__(other_data) + invalid = np.logical_not(np.isfinite(self._data)) + if invalid.any(): + if self._mask is not nomask: + self._mask |= invalid + else: + self._mask = invalid + np.copyto(self._data, self.fill_value, where=invalid) + new_mask = mask_or(other_mask, invalid) + self._mask = mask_or(self._mask, new_mask) + return self + + def __float__(self): + """ + Convert to float. + + """ + if self.size > 1: + raise TypeError("Only length-1 arrays can be converted " + "to Python scalars") + elif self._mask: + warnings.warn("Warning: converting a masked element to nan.", stacklevel=2) + return np.nan + return float(self.item()) + + def __int__(self): + """ + Convert to int. + + """ + if self.size > 1: + raise TypeError("Only length-1 arrays can be converted " + "to Python scalars") + elif self._mask: + raise MaskError('Cannot convert masked element to a Python int.') + return int(self.item()) + + @property + def imag(self): + """ + The imaginary part of the masked array. + + This property is a view on the imaginary part of this `MaskedArray`. + + See Also + -------- + real + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.array([1+1.j, -2j, 3.45+1.6j], mask=[False, True, False]) + >>> x.imag + masked_array(data=[1.0, --, 1.6], + mask=[False, True, False], + fill_value=1e+20) + + """ + result = self._data.imag.view(type(self)) + result.__setmask__(self._mask) + return result + + # kept for compatibility + get_imag = imag.fget + + @property + def real(self): + """ + The real part of the masked array. + + This property is a view on the real part of this `MaskedArray`. + + See Also + -------- + imag + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.array([1+1.j, -2j, 3.45+1.6j], mask=[False, True, False]) + >>> x.real + masked_array(data=[1.0, --, 3.45], + mask=[False, True, False], + fill_value=1e+20) + + """ + result = self._data.real.view(type(self)) + result.__setmask__(self._mask) + return result + + # kept for compatibility + get_real = real.fget + + def count(self, axis=None, keepdims=np._NoValue): + """ + Count the non-masked elements of the array along the given axis. + + Parameters + ---------- + axis : None or int or tuple of ints, optional + Axis or axes along which the count is performed. + The default, None, performs the count over all + the dimensions of the input array. `axis` may be negative, in + which case it counts from the last to the first axis. + If this is a tuple of ints, the count is performed on multiple + axes, instead of a single axis or all the axes as before. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the array. + + Returns + ------- + result : ndarray or scalar + An array with the same shape as the input array, with the specified + axis removed. If the array is a 0-d array, or if `axis` is None, a + scalar is returned. + + See Also + -------- + ma.count_masked : Count masked elements in array or along a given axis. + + Examples + -------- + >>> import numpy.ma as ma + >>> a = ma.arange(6).reshape((2, 3)) + >>> a[1, :] = ma.masked + >>> a + masked_array( + data=[[0, 1, 2], + [--, --, --]], + mask=[[False, False, False], + [ True, True, True]], + fill_value=999999) + >>> a.count() + 3 + + When the `axis` keyword is specified an array of appropriate size is + returned. + + >>> a.count(axis=0) + array([1, 1, 1]) + >>> a.count(axis=1) + array([3, 0]) + + """ + kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} + + m = self._mask + # special case for matrices (we assume no other subclasses modify + # their dimensions) + if isinstance(self.data, np.matrix): + if m is nomask: + m = np.zeros(self.shape, dtype=np.bool) + m = m.view(type(self.data)) + + if m is nomask: + # compare to _count_reduce_items in _methods.py + + if self.shape == (): + if axis not in (None, 0): + raise np.exceptions.AxisError(axis=axis, ndim=self.ndim) + return 1 + elif axis is None: + if kwargs.get('keepdims'): + return np.array(self.size, dtype=np.intp, ndmin=self.ndim) + return self.size + + axes = normalize_axis_tuple(axis, self.ndim) + items = 1 + for ax in axes: + items *= self.shape[ax] + + if kwargs.get('keepdims'): + out_dims = list(self.shape) + for a in axes: + out_dims[a] = 1 + else: + out_dims = [d for n, d in enumerate(self.shape) + if n not in axes] + # make sure to return a 0-d array if axis is supplied + return np.full(out_dims, items, dtype=np.intp) + + # take care of the masked singleton + if self is masked: + return 0 + + return (~m).sum(axis=axis, dtype=np.intp, **kwargs) + + def ravel(self, order='C'): + """ + Returns a 1D version of self, as a view. + + Parameters + ---------- + order : {'C', 'F', 'A', 'K'}, optional + The elements of `a` are read using this index order. 'C' means to + index the elements in C-like order, with the last axis index + changing fastest, back to the first axis index changing slowest. + 'F' means to index the elements in Fortran-like index order, with + the first index changing fastest, and the last index changing + slowest. Note that the 'C' and 'F' options take no account of the + memory layout of the underlying array, and only refer to the order + of axis indexing. 'A' means to read the elements in Fortran-like + index order if `m` is Fortran *contiguous* in memory, C-like order + otherwise. 'K' means to read the elements in the order they occur + in memory, except for reversing the data when strides are negative. + By default, 'C' index order is used. + (Masked arrays currently use 'A' on the data when 'K' is passed.) + + Returns + ------- + MaskedArray + Output view is of shape ``(self.size,)`` (or + ``(np.ma.product(self.shape),)``). + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4) + >>> x + masked_array( + data=[[1, --, 3], + [--, 5, --], + [7, --, 9]], + mask=[[False, True, False], + [ True, False, True], + [False, True, False]], + fill_value=999999) + >>> x.ravel() + masked_array(data=[1, --, 3, --, 5, --, 7, --, 9], + mask=[False, True, False, True, False, True, False, True, + False], + fill_value=999999) + + """ + # The order of _data and _mask could be different (it shouldn't be + # normally). Passing order `K` or `A` would be incorrect. + # So we ignore the mask memory order. + # TODO: We don't actually support K, so use A instead. We could + # try to guess this correct by sorting strides or deprecate. + if order in "kKaA": + order = "F" if self._data.flags.fnc else "C" + r = ndarray.ravel(self._data, order=order).view(type(self)) + r._update_from(self) + if self._mask is not nomask: + r._mask = ndarray.ravel(self._mask, order=order).reshape(r.shape) + else: + r._mask = nomask + return r + + def reshape(self, *s, **kwargs): + """ + Give a new shape to the array without changing its data. + + Returns a masked array containing the same data, but with a new shape. + The result is a view on the original array; if this is not possible, a + ValueError is raised. + + Parameters + ---------- + shape : int or tuple of ints + The new shape should be compatible with the original shape. If an + integer is supplied, then the result will be a 1-D array of that + length. + order : {'C', 'F'}, optional + Determines whether the array data should be viewed as in C + (row-major) or FORTRAN (column-major) order. + + Returns + ------- + reshaped_array : array + A new view on the array. + + See Also + -------- + reshape : Equivalent function in the masked array module. + numpy.ndarray.reshape : Equivalent method on ndarray object. + numpy.reshape : Equivalent function in the NumPy module. + + Notes + ----- + The reshaping operation cannot guarantee that a copy will not be made, + to modify the shape in place, use ``a.shape = s`` + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.array([[1,2],[3,4]], mask=[1,0,0,1]) + >>> x + masked_array( + data=[[--, 2], + [3, --]], + mask=[[ True, False], + [False, True]], + fill_value=999999) + >>> x = x.reshape((4,1)) + >>> x + masked_array( + data=[[--], + [2], + [3], + [--]], + mask=[[ True], + [False], + [False], + [ True]], + fill_value=999999) + + """ + kwargs.update(order=kwargs.get('order', 'C')) + result = self._data.reshape(*s, **kwargs).view(type(self)) + result._update_from(self) + mask = self._mask + if mask is not nomask: + result._mask = mask.reshape(*s, **kwargs) + return result + + def resize(self, newshape, refcheck=True, order=False): + """ + .. warning:: + + This method does nothing, except raise a ValueError exception. A + masked array does not own its data and therefore cannot safely be + resized in place. Use the `numpy.ma.resize` function instead. + + This method is difficult to implement safely and may be deprecated in + future releases of NumPy. + + """ + # Note : the 'order' keyword looks broken, let's just drop it + errmsg = "A masked array does not own its data "\ + "and therefore cannot be resized.\n" \ + "Use the numpy.ma.resize function instead." + raise ValueError(errmsg) + + def put(self, indices, values, mode='raise'): + """ + Set storage-indexed locations to corresponding values. + + Sets self._data.flat[n] = values[n] for each n in indices. + If `values` is shorter than `indices` then it will repeat. + If `values` has some masked values, the initial mask is updated + in consequence, else the corresponding values are unmasked. + + Parameters + ---------- + indices : 1-D array_like + Target indices, interpreted as integers. + values : array_like + Values to place in self._data copy at target indices. + mode : {'raise', 'wrap', 'clip'}, optional + Specifies how out-of-bounds indices will behave. + 'raise' : raise an error. + 'wrap' : wrap around. + 'clip' : clip to the range. + + Notes + ----- + `values` can be a scalar or length 1 array. + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4) + >>> x + masked_array( + data=[[1, --, 3], + [--, 5, --], + [7, --, 9]], + mask=[[False, True, False], + [ True, False, True], + [False, True, False]], + fill_value=999999) + >>> x.put([0,4,8],[10,20,30]) + >>> x + masked_array( + data=[[10, --, 3], + [--, 20, --], + [7, --, 30]], + mask=[[False, True, False], + [ True, False, True], + [False, True, False]], + fill_value=999999) + + >>> x.put(4,999) + >>> x + masked_array( + data=[[10, --, 3], + [--, 999, --], + [7, --, 30]], + mask=[[False, True, False], + [ True, False, True], + [False, True, False]], + fill_value=999999) + + """ + # Hard mask: Get rid of the values/indices that fall on masked data + if self._hardmask and self._mask is not nomask: + mask = self._mask[indices] + indices = narray(indices, copy=None) + values = narray(values, copy=None, subok=True) + values.resize(indices.shape) + indices = indices[~mask] + values = values[~mask] + + self._data.put(indices, values, mode=mode) + + # short circuit if neither self nor values are masked + if self._mask is nomask and getmask(values) is nomask: + return + + m = getmaskarray(self) + + if getmask(values) is nomask: + m.put(indices, False, mode=mode) + else: + m.put(indices, values._mask, mode=mode) + m = make_mask(m, copy=False, shrink=True) + self._mask = m + return + + def ids(self): + """ + Return the addresses of the data and mask areas. + + Parameters + ---------- + None + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.array([1, 2, 3], mask=[0, 1, 1]) + >>> x.ids() + (166670640, 166659832) # may vary + + If the array has no mask, the address of `nomask` is returned. This address + is typically not close to the data in memory: + + >>> x = np.ma.array([1, 2, 3]) + >>> x.ids() + (166691080, 3083169284) # may vary + + """ + if self._mask is nomask: + return (self.ctypes.data, id(nomask)) + return (self.ctypes.data, self._mask.ctypes.data) + + def iscontiguous(self): + """ + Return a boolean indicating whether the data is contiguous. + + Parameters + ---------- + None + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.array([1, 2, 3]) + >>> x.iscontiguous() + True + + `iscontiguous` returns one of the flags of the masked array: + + >>> x.flags + C_CONTIGUOUS : True + F_CONTIGUOUS : True + OWNDATA : False + WRITEABLE : True + ALIGNED : True + WRITEBACKIFCOPY : False + + """ + return self.flags['CONTIGUOUS'] + + def all(self, axis=None, out=None, keepdims=np._NoValue): + """ + Returns True if all elements evaluate to True. + + The output array is masked where all the values along the given axis + are masked: if the output would have been a scalar and that all the + values are masked, then the output is `masked`. + + Refer to `numpy.all` for full documentation. + + See Also + -------- + numpy.ndarray.all : corresponding function for ndarrays + numpy.all : equivalent function + + Examples + -------- + >>> import numpy as np + >>> np.ma.array([1,2,3]).all() + True + >>> a = np.ma.array([1,2,3], mask=True) + >>> (a.all() is np.ma.masked) + True + + """ + kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} + + mask = _check_mask_axis(self._mask, axis, **kwargs) + if out is None: + d = self.filled(True).all(axis=axis, **kwargs).view(type(self)) + if d.ndim: + d.__setmask__(mask) + elif mask: + return masked + return d + self.filled(True).all(axis=axis, out=out, **kwargs) + if isinstance(out, MaskedArray): + if out.ndim or mask: + out.__setmask__(mask) + return out + + def any(self, axis=None, out=None, keepdims=np._NoValue): + """ + Returns True if any of the elements of `a` evaluate to True. + + Masked values are considered as False during computation. + + Refer to `numpy.any` for full documentation. + + See Also + -------- + numpy.ndarray.any : corresponding function for ndarrays + numpy.any : equivalent function + + """ + kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} + + mask = _check_mask_axis(self._mask, axis, **kwargs) + if out is None: + d = self.filled(False).any(axis=axis, **kwargs).view(type(self)) + if d.ndim: + d.__setmask__(mask) + elif mask: + d = masked + return d + self.filled(False).any(axis=axis, out=out, **kwargs) + if isinstance(out, MaskedArray): + if out.ndim or mask: + out.__setmask__(mask) + return out + + def nonzero(self): + """ + Return the indices of unmasked elements that are not zero. + + Returns a tuple of arrays, one for each dimension, containing the + indices of the non-zero elements in that dimension. The corresponding + non-zero values can be obtained with:: + + a[a.nonzero()] + + To group the indices by element, rather than dimension, use + instead:: + + np.transpose(a.nonzero()) + + The result of this is always a 2d array, with a row for each non-zero + element. + + Parameters + ---------- + None + + Returns + ------- + tuple_of_arrays : tuple + Indices of elements that are non-zero. + + See Also + -------- + numpy.nonzero : + Function operating on ndarrays. + flatnonzero : + Return indices that are non-zero in the flattened version of the input + array. + numpy.ndarray.nonzero : + Equivalent ndarray method. + count_nonzero : + Counts the number of non-zero elements in the input array. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> x = ma.array(np.eye(3)) + >>> x + masked_array( + data=[[1., 0., 0.], + [0., 1., 0.], + [0., 0., 1.]], + mask=False, + fill_value=1e+20) + >>> x.nonzero() + (array([0, 1, 2]), array([0, 1, 2])) + + Masked elements are ignored. + + >>> x[1, 1] = ma.masked + >>> x + masked_array( + data=[[1.0, 0.0, 0.0], + [0.0, --, 0.0], + [0.0, 0.0, 1.0]], + mask=[[False, False, False], + [False, True, False], + [False, False, False]], + fill_value=1e+20) + >>> x.nonzero() + (array([0, 2]), array([0, 2])) + + Indices can also be grouped by element. + + >>> np.transpose(x.nonzero()) + array([[0, 0], + [2, 2]]) + + A common use for ``nonzero`` is to find the indices of an array, where + a condition is True. Given an array `a`, the condition `a` > 3 is a + boolean array and since False is interpreted as 0, ma.nonzero(a > 3) + yields the indices of the `a` where the condition is true. + + >>> a = ma.array([[1,2,3],[4,5,6],[7,8,9]]) + >>> a > 3 + masked_array( + data=[[False, False, False], + [ True, True, True], + [ True, True, True]], + mask=False, + fill_value=True) + >>> ma.nonzero(a > 3) + (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2])) + + The ``nonzero`` method of the condition array can also be called. + + >>> (a > 3).nonzero() + (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2])) + + """ + return np.asarray(self.filled(0)).nonzero() + + def trace(self, offset=0, axis1=0, axis2=1, dtype=None, out=None): + """ + (this docstring should be overwritten) + """ + # !!!: implement out + test! + m = self._mask + if m is nomask: + result = super().trace(offset=offset, axis1=axis1, axis2=axis2, + out=out) + return result.astype(dtype) + else: + D = self.diagonal(offset=offset, axis1=axis1, axis2=axis2) + return D.astype(dtype).filled(0).sum(axis=-1, out=out) + trace.__doc__ = ndarray.trace.__doc__ + + def dot(self, b, out=None, strict=False): + """ + a.dot(b, out=None) + + Masked dot product of two arrays. Note that `out` and `strict` are + located in different positions than in `ma.dot`. In order to + maintain compatibility with the functional version, it is + recommended that the optional arguments be treated as keyword only. + At some point that may be mandatory. + + Parameters + ---------- + b : masked_array_like + Inputs array. + out : masked_array, optional + Output argument. This must have the exact kind that would be + returned if it was not used. In particular, it must have the + right type, must be C-contiguous, and its dtype must be the + dtype that would be returned for `ma.dot(a,b)`. This is a + performance feature. Therefore, if these conditions are not + met, an exception is raised, instead of attempting to be + flexible. + strict : bool, optional + Whether masked data are propagated (True) or set to 0 (False) + for the computation. Default is False. Propagating the mask + means that if a masked value appears in a row or column, the + whole row or column is considered masked. + + See Also + -------- + numpy.ma.dot : equivalent function + + """ + return dot(self, b, out=out, strict=strict) + + def sum(self, axis=None, dtype=None, out=None, keepdims=np._NoValue): + """ + Return the sum of the array elements over the given axis. + + Masked elements are set to 0 internally. + + Refer to `numpy.sum` for full documentation. + + See Also + -------- + numpy.ndarray.sum : corresponding function for ndarrays + numpy.sum : equivalent function + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4) + >>> x + masked_array( + data=[[1, --, 3], + [--, 5, --], + [7, --, 9]], + mask=[[False, True, False], + [ True, False, True], + [False, True, False]], + fill_value=999999) + >>> x.sum() + 25 + >>> x.sum(axis=1) + masked_array(data=[4, 5, 16], + mask=[False, False, False], + fill_value=999999) + >>> x.sum(axis=0) + masked_array(data=[8, 5, 12], + mask=[False, False, False], + fill_value=999999) + >>> print(type(x.sum(axis=0, dtype=np.int64)[0])) + + + """ + kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} + + _mask = self._mask + newmask = _check_mask_axis(_mask, axis, **kwargs) + # No explicit output + if out is None: + result = self.filled(0).sum(axis, dtype=dtype, **kwargs) + rndim = getattr(result, 'ndim', 0) + if rndim: + result = result.view(type(self)) + result.__setmask__(newmask) + elif newmask: + result = masked + return result + # Explicit output + result = self.filled(0).sum(axis, dtype=dtype, out=out, **kwargs) + if isinstance(out, MaskedArray): + outmask = getmask(out) + if outmask is nomask: + outmask = out._mask = make_mask_none(out.shape) + outmask.flat = newmask + return out + + def cumsum(self, axis=None, dtype=None, out=None): + """ + Return the cumulative sum of the array elements over the given axis. + + Masked values are set to 0 internally during the computation. + However, their position is saved, and the result will be masked at + the same locations. + + Refer to `numpy.cumsum` for full documentation. + + Notes + ----- + The mask is lost if `out` is not a valid :class:`ma.MaskedArray` ! + + Arithmetic is modular when using integer types, and no error is + raised on overflow. + + See Also + -------- + numpy.ndarray.cumsum : corresponding function for ndarrays + numpy.cumsum : equivalent function + + Examples + -------- + >>> import numpy as np + >>> marr = np.ma.array(np.arange(10), mask=[0,0,0,1,1,1,0,0,0,0]) + >>> marr.cumsum() + masked_array(data=[0, 1, 3, --, --, --, 9, 16, 24, 33], + mask=[False, False, False, True, True, True, False, False, + False, False], + fill_value=999999) + + """ + result = self.filled(0).cumsum(axis=axis, dtype=dtype, out=out) + if out is not None: + if isinstance(out, MaskedArray): + out.__setmask__(self.mask) + return out + result = result.view(type(self)) + result.__setmask__(self._mask) + return result + + def prod(self, axis=None, dtype=None, out=None, keepdims=np._NoValue): + """ + Return the product of the array elements over the given axis. + + Masked elements are set to 1 internally for computation. + + Refer to `numpy.prod` for full documentation. + + Notes + ----- + Arithmetic is modular when using integer types, and no error is raised + on overflow. + + See Also + -------- + numpy.ndarray.prod : corresponding function for ndarrays + numpy.prod : equivalent function + """ + kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} + + _mask = self._mask + newmask = _check_mask_axis(_mask, axis, **kwargs) + # No explicit output + if out is None: + result = self.filled(1).prod(axis, dtype=dtype, **kwargs) + rndim = getattr(result, 'ndim', 0) + if rndim: + result = result.view(type(self)) + result.__setmask__(newmask) + elif newmask: + result = masked + return result + # Explicit output + result = self.filled(1).prod(axis, dtype=dtype, out=out, **kwargs) + if isinstance(out, MaskedArray): + outmask = getmask(out) + if outmask is nomask: + outmask = out._mask = make_mask_none(out.shape) + outmask.flat = newmask + return out + product = prod + + def cumprod(self, axis=None, dtype=None, out=None): + """ + Return the cumulative product of the array elements over the given axis. + + Masked values are set to 1 internally during the computation. + However, their position is saved, and the result will be masked at + the same locations. + + Refer to `numpy.cumprod` for full documentation. + + Notes + ----- + The mask is lost if `out` is not a valid MaskedArray ! + + Arithmetic is modular when using integer types, and no error is + raised on overflow. + + See Also + -------- + numpy.ndarray.cumprod : corresponding function for ndarrays + numpy.cumprod : equivalent function + """ + result = self.filled(1).cumprod(axis=axis, dtype=dtype, out=out) + if out is not None: + if isinstance(out, MaskedArray): + out.__setmask__(self._mask) + return out + result = result.view(type(self)) + result.__setmask__(self._mask) + return result + + def mean(self, axis=None, dtype=None, out=None, keepdims=np._NoValue): + """ + Returns the average of the array elements along given axis. + + Masked entries are ignored, and result elements which are not + finite will be masked. + + Refer to `numpy.mean` for full documentation. + + See Also + -------- + numpy.ndarray.mean : corresponding function for ndarrays + numpy.mean : Equivalent function + numpy.ma.average : Weighted average. + + Examples + -------- + >>> import numpy as np + >>> a = np.ma.array([1,2,3], mask=[False, False, True]) + >>> a + masked_array(data=[1, 2, --], + mask=[False, False, True], + fill_value=999999) + >>> a.mean() + 1.5 + + """ + kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} + if self._mask is nomask: + result = super().mean(axis=axis, dtype=dtype, **kwargs)[()] + else: + is_float16_result = False + if dtype is None: + if issubclass(self.dtype.type, (ntypes.integer, ntypes.bool)): + dtype = mu.dtype('f8') + elif issubclass(self.dtype.type, ntypes.float16): + dtype = mu.dtype('f4') + is_float16_result = True + dsum = self.sum(axis=axis, dtype=dtype, **kwargs) + cnt = self.count(axis=axis, **kwargs) + if cnt.shape == () and (cnt == 0): + result = masked + elif is_float16_result: + result = self.dtype.type(dsum * 1. / cnt) + else: + result = dsum * 1. / cnt + if out is not None: + out.flat = result + if isinstance(out, MaskedArray): + outmask = getmask(out) + if outmask is nomask: + outmask = out._mask = make_mask_none(out.shape) + outmask.flat = getmask(result) + return out + return result + + def anom(self, axis=None, dtype=None): + """ + Compute the anomalies (deviations from the arithmetic mean) + along the given axis. + + Returns an array of anomalies, with the same shape as the input and + where the arithmetic mean is computed along the given axis. + + Parameters + ---------- + axis : int, optional + Axis over which the anomalies are taken. + The default is to use the mean of the flattened array as reference. + dtype : dtype, optional + Type to use in computing the variance. For arrays of integer type + the default is float32; for arrays of float types it is the same as + the array type. + + See Also + -------- + mean : Compute the mean of the array. + + Examples + -------- + >>> import numpy as np + >>> a = np.ma.array([1,2,3]) + >>> a.anom() + masked_array(data=[-1., 0., 1.], + mask=False, + fill_value=1e+20) + + """ + m = self.mean(axis, dtype) + if not axis: + return self - m + else: + return self - expand_dims(m, axis) + + def var(self, axis=None, dtype=None, out=None, ddof=0, + keepdims=np._NoValue, mean=np._NoValue): + """ + Returns the variance of the array elements along given axis. + + Masked entries are ignored, and result elements which are not + finite will be masked. + + Refer to `numpy.var` for full documentation. + + See Also + -------- + numpy.ndarray.var : corresponding function for ndarrays + numpy.var : Equivalent function + """ + kwargs = {} + + if keepdims is not np._NoValue: + kwargs['keepdims'] = keepdims + + # Easy case: nomask, business as usual + if self._mask is nomask: + + if mean is not np._NoValue: + kwargs['mean'] = mean + + ret = super().var(axis=axis, dtype=dtype, out=out, ddof=ddof, + **kwargs)[()] + if out is not None: + if isinstance(out, MaskedArray): + out.__setmask__(nomask) + return out + return ret + + # Some data are masked, yay! + cnt = self.count(axis=axis, **kwargs) - ddof + + if mean is not np._NoValue: + danom = self - mean + else: + danom = self - self.mean(axis, dtype, keepdims=True) + + if iscomplexobj(self): + danom = umath.absolute(danom) ** 2 + else: + danom *= danom + dvar = divide(danom.sum(axis, **kwargs), cnt).view(type(self)) + # Apply the mask if it's not a scalar + if dvar.ndim: + dvar._mask = mask_or(self._mask.all(axis, **kwargs), (cnt <= 0)) + dvar._update_from(self) + elif getmask(dvar): + # Make sure that masked is returned when the scalar is masked. + dvar = masked + if out is not None: + if isinstance(out, MaskedArray): + out.flat = 0 + out.__setmask__(True) + elif out.dtype.kind in 'biu': + errmsg = "Masked data information would be lost in one or "\ + "more location." + raise MaskError(errmsg) + else: + out.flat = np.nan + return out + # In case with have an explicit output + if out is not None: + # Set the data + out.flat = dvar + # Set the mask if needed + if isinstance(out, MaskedArray): + out.__setmask__(dvar.mask) + return out + return dvar + var.__doc__ = np.var.__doc__ + + def std(self, axis=None, dtype=None, out=None, ddof=0, + keepdims=np._NoValue, mean=np._NoValue): + """ + Returns the standard deviation of the array elements along given axis. + + Masked entries are ignored. + + Refer to `numpy.std` for full documentation. + + See Also + -------- + numpy.ndarray.std : corresponding function for ndarrays + numpy.std : Equivalent function + """ + kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} + + dvar = self.var(axis, dtype, out, ddof, **kwargs) + if dvar is not masked: + if out is not None: + np.power(out, 0.5, out=out, casting='unsafe') + return out + dvar = sqrt(dvar) + return dvar + + def round(self, decimals=0, out=None): + """ + Return each element rounded to the given number of decimals. + + Refer to `numpy.around` for full documentation. + + See Also + -------- + numpy.ndarray.round : corresponding function for ndarrays + numpy.around : equivalent function + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> x = ma.array([1.35, 2.5, 1.5, 1.75, 2.25, 2.75], + ... mask=[0, 0, 0, 1, 0, 0]) + >>> ma.round(x) + masked_array(data=[1.0, 2.0, 2.0, --, 2.0, 3.0], + mask=[False, False, False, True, False, False], + fill_value=1e+20) + + """ + result = self._data.round(decimals=decimals, out=out).view(type(self)) + if result.ndim > 0: + result._mask = self._mask + result._update_from(self) + elif self._mask: + # Return masked when the scalar is masked + result = masked + # No explicit output: we're done + if out is None: + return result + if isinstance(out, MaskedArray): + out.__setmask__(self._mask) + return out + + def argsort(self, axis=np._NoValue, kind=None, order=None, endwith=True, + fill_value=None, *, stable=False): + """ + Return an ndarray of indices that sort the array along the + specified axis. Masked values are filled beforehand to + `fill_value`. + + Parameters + ---------- + axis : int, optional + Axis along which to sort. If None, the default, the flattened array + is used. + kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional + The sorting algorithm used. + order : list, optional + When `a` is an array with fields defined, this argument specifies + which fields to compare first, second, etc. Not all fields need be + specified. + endwith : {True, False}, optional + Whether missing values (if any) should be treated as the largest values + (True) or the smallest values (False) + When the array contains unmasked values at the same extremes of the + datatype, the ordering of these values and the masked values is + undefined. + fill_value : scalar or None, optional + Value used internally for the masked values. + If ``fill_value`` is not None, it supersedes ``endwith``. + stable : bool, optional + Only for compatibility with ``np.argsort``. Ignored. + + Returns + ------- + index_array : ndarray, int + Array of indices that sort `a` along the specified axis. + In other words, ``a[index_array]`` yields a sorted `a`. + + See Also + -------- + ma.MaskedArray.sort : Describes sorting algorithms used. + lexsort : Indirect stable sort with multiple keys. + numpy.ndarray.sort : Inplace sort. + + Notes + ----- + See `sort` for notes on the different sorting algorithms. + + Examples + -------- + >>> import numpy as np + >>> a = np.ma.array([3,2,1], mask=[False, False, True]) + >>> a + masked_array(data=[3, 2, --], + mask=[False, False, True], + fill_value=999999) + >>> a.argsort() + array([1, 0, 2]) + + """ + if stable: + raise ValueError( + "`stable` parameter is not supported for masked arrays." + ) + + # 2017-04-11, Numpy 1.13.0, gh-8701: warn on axis default + if axis is np._NoValue: + axis = _deprecate_argsort_axis(self) + + if fill_value is None: + if endwith: + # nan > inf + if np.issubdtype(self.dtype, np.floating): + fill_value = np.nan + else: + fill_value = minimum_fill_value(self) + else: + fill_value = maximum_fill_value(self) + + filled = self.filled(fill_value) + return filled.argsort(axis=axis, kind=kind, order=order) + + def argmin(self, axis=None, fill_value=None, out=None, *, + keepdims=np._NoValue): + """ + Return array of indices to the minimum values along the given axis. + + Parameters + ---------- + axis : {None, integer} + If None, the index is into the flattened array, otherwise along + the specified axis + fill_value : scalar or None, optional + Value used to fill in the masked values. If None, the output of + minimum_fill_value(self._data) is used instead. + out : {None, array}, optional + Array into which the result can be placed. Its type is preserved + and it must be of the right shape to hold the output. + + Returns + ------- + ndarray or scalar + If multi-dimension input, returns a new ndarray of indices to the + minimum values along the given axis. Otherwise, returns a scalar + of index to the minimum values along the given axis. + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.array(np.arange(4), mask=[1,1,0,0]) + >>> x.shape = (2,2) + >>> x + masked_array( + data=[[--, --], + [2, 3]], + mask=[[ True, True], + [False, False]], + fill_value=999999) + >>> x.argmin(axis=0, fill_value=-1) + array([0, 0]) + >>> x.argmin(axis=0, fill_value=9) + array([1, 1]) + + """ + if fill_value is None: + fill_value = minimum_fill_value(self) + d = self.filled(fill_value).view(ndarray) + keepdims = False if keepdims is np._NoValue else bool(keepdims) + return d.argmin(axis, out=out, keepdims=keepdims) + + def argmax(self, axis=None, fill_value=None, out=None, *, + keepdims=np._NoValue): + """ + Returns array of indices of the maximum values along the given axis. + Masked values are treated as if they had the value fill_value. + + Parameters + ---------- + axis : {None, integer} + If None, the index is into the flattened array, otherwise along + the specified axis + fill_value : scalar or None, optional + Value used to fill in the masked values. If None, the output of + maximum_fill_value(self._data) is used instead. + out : {None, array}, optional + Array into which the result can be placed. Its type is preserved + and it must be of the right shape to hold the output. + + Returns + ------- + index_array : {integer_array} + + Examples + -------- + >>> import numpy as np + >>> a = np.arange(6).reshape(2,3) + >>> a.argmax() + 5 + >>> a.argmax(0) + array([1, 1, 1]) + >>> a.argmax(1) + array([2, 2]) + + """ + if fill_value is None: + fill_value = maximum_fill_value(self._data) + d = self.filled(fill_value).view(ndarray) + keepdims = False if keepdims is np._NoValue else bool(keepdims) + return d.argmax(axis, out=out, keepdims=keepdims) + + def sort(self, axis=-1, kind=None, order=None, endwith=True, + fill_value=None, *, stable=False): + """ + Sort the array, in-place + + Parameters + ---------- + a : array_like + Array to be sorted. + axis : int, optional + Axis along which to sort. If None, the array is flattened before + sorting. The default is -1, which sorts along the last axis. + kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional + The sorting algorithm used. + order : list, optional + When `a` is a structured array, this argument specifies which fields + to compare first, second, and so on. This list does not need to + include all of the fields. + endwith : {True, False}, optional + Whether missing values (if any) should be treated as the largest values + (True) or the smallest values (False) + When the array contains unmasked values sorting at the same extremes of the + datatype, the ordering of these values and the masked values is + undefined. + fill_value : scalar or None, optional + Value used internally for the masked values. + If ``fill_value`` is not None, it supersedes ``endwith``. + stable : bool, optional + Only for compatibility with ``np.sort``. Ignored. + + Returns + ------- + sorted_array : ndarray + Array of the same type and shape as `a`. + + See Also + -------- + numpy.ndarray.sort : Method to sort an array in-place. + argsort : Indirect sort. + lexsort : Indirect stable sort on multiple keys. + searchsorted : Find elements in a sorted array. + + Notes + ----- + See ``sort`` for notes on the different sorting algorithms. + + Examples + -------- + >>> import numpy as np + >>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0]) + >>> # Default + >>> a.sort() + >>> a + masked_array(data=[1, 3, 5, --, --], + mask=[False, False, False, True, True], + fill_value=999999) + + >>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0]) + >>> # Put missing values in the front + >>> a.sort(endwith=False) + >>> a + masked_array(data=[--, --, 1, 3, 5], + mask=[ True, True, False, False, False], + fill_value=999999) + + >>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0]) + >>> # fill_value takes over endwith + >>> a.sort(endwith=False, fill_value=3) + >>> a + masked_array(data=[1, --, --, 3, 5], + mask=[False, True, True, False, False], + fill_value=999999) + + """ + if stable: + raise ValueError( + "`stable` parameter is not supported for masked arrays." + ) + + if self._mask is nomask: + ndarray.sort(self, axis=axis, kind=kind, order=order) + return + + if self is masked: + return + + sidx = self.argsort(axis=axis, kind=kind, order=order, + fill_value=fill_value, endwith=endwith) + + self[...] = np.take_along_axis(self, sidx, axis=axis) + + def min(self, axis=None, out=None, fill_value=None, keepdims=np._NoValue): + """ + Return the minimum along a given axis. + + Parameters + ---------- + axis : None or int or tuple of ints, optional + Axis along which to operate. By default, ``axis`` is None and the + flattened input is used. + If this is a tuple of ints, the minimum is selected over multiple + axes, instead of a single axis or all the axes as before. + out : array_like, optional + Alternative output array in which to place the result. Must be of + the same shape and buffer length as the expected output. + fill_value : scalar or None, optional + Value used to fill in the masked values. + If None, use the output of `minimum_fill_value`. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the array. + + Returns + ------- + amin : array_like + New array holding the result. + If ``out`` was specified, ``out`` is returned. + + See Also + -------- + ma.minimum_fill_value + Returns the minimum filling value for a given datatype. + + Examples + -------- + >>> import numpy.ma as ma + >>> x = [[1., -2., 3.], [0.2, -0.7, 0.1]] + >>> mask = [[1, 1, 0], [0, 0, 1]] + >>> masked_x = ma.masked_array(x, mask) + >>> masked_x + masked_array( + data=[[--, --, 3.0], + [0.2, -0.7, --]], + mask=[[ True, True, False], + [False, False, True]], + fill_value=1e+20) + >>> ma.min(masked_x) + -0.7 + >>> ma.min(masked_x, axis=-1) + masked_array(data=[3.0, -0.7], + mask=[False, False], + fill_value=1e+20) + >>> ma.min(masked_x, axis=0, keepdims=True) + masked_array(data=[[0.2, -0.7, 3.0]], + mask=[[False, False, False]], + fill_value=1e+20) + >>> mask = [[1, 1, 1,], [1, 1, 1]] + >>> masked_x = ma.masked_array(x, mask) + >>> ma.min(masked_x, axis=0) + masked_array(data=[--, --, --], + mask=[ True, True, True], + fill_value=1e+20, + dtype=float64) + """ + kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} + + _mask = self._mask + newmask = _check_mask_axis(_mask, axis, **kwargs) + if fill_value is None: + fill_value = minimum_fill_value(self) + # No explicit output + if out is None: + result = self.filled(fill_value).min( + axis=axis, out=out, **kwargs).view(type(self)) + if result.ndim: + # Set the mask + result.__setmask__(newmask) + # Get rid of Infs + if newmask.ndim: + np.copyto(result, result.fill_value, where=newmask) + elif newmask: + result = masked + return result + # Explicit output + self.filled(fill_value).min(axis=axis, out=out, **kwargs) + if isinstance(out, MaskedArray): + outmask = getmask(out) + if outmask is nomask: + outmask = out._mask = make_mask_none(out.shape) + outmask.flat = newmask + else: + if out.dtype.kind in 'biu': + errmsg = "Masked data information would be lost in one or more"\ + " location." + raise MaskError(errmsg) + np.copyto(out, np.nan, where=newmask) + return out + + def max(self, axis=None, out=None, fill_value=None, keepdims=np._NoValue): + """ + Return the maximum along a given axis. + + Parameters + ---------- + axis : None or int or tuple of ints, optional + Axis along which to operate. By default, ``axis`` is None and the + flattened input is used. + If this is a tuple of ints, the maximum is selected over multiple + axes, instead of a single axis or all the axes as before. + out : array_like, optional + Alternative output array in which to place the result. Must + be of the same shape and buffer length as the expected output. + fill_value : scalar or None, optional + Value used to fill in the masked values. + If None, use the output of maximum_fill_value(). + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the array. + + Returns + ------- + amax : array_like + New array holding the result. + If ``out`` was specified, ``out`` is returned. + + See Also + -------- + ma.maximum_fill_value + Returns the maximum filling value for a given datatype. + + Examples + -------- + >>> import numpy.ma as ma + >>> x = [[-1., 2.5], [4., -2.], [3., 0.]] + >>> mask = [[0, 0], [1, 0], [1, 0]] + >>> masked_x = ma.masked_array(x, mask) + >>> masked_x + masked_array( + data=[[-1.0, 2.5], + [--, -2.0], + [--, 0.0]], + mask=[[False, False], + [ True, False], + [ True, False]], + fill_value=1e+20) + >>> ma.max(masked_x) + 2.5 + >>> ma.max(masked_x, axis=0) + masked_array(data=[-1.0, 2.5], + mask=[False, False], + fill_value=1e+20) + >>> ma.max(masked_x, axis=1, keepdims=True) + masked_array( + data=[[2.5], + [-2.0], + [0.0]], + mask=[[False], + [False], + [False]], + fill_value=1e+20) + >>> mask = [[1, 1], [1, 1], [1, 1]] + >>> masked_x = ma.masked_array(x, mask) + >>> ma.max(masked_x, axis=1) + masked_array(data=[--, --, --], + mask=[ True, True, True], + fill_value=1e+20, + dtype=float64) + """ + kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} + + _mask = self._mask + newmask = _check_mask_axis(_mask, axis, **kwargs) + if fill_value is None: + fill_value = maximum_fill_value(self) + # No explicit output + if out is None: + result = self.filled(fill_value).max( + axis=axis, out=out, **kwargs).view(type(self)) + if result.ndim: + # Set the mask + result.__setmask__(newmask) + # Get rid of Infs + if newmask.ndim: + np.copyto(result, result.fill_value, where=newmask) + elif newmask: + result = masked + return result + # Explicit output + self.filled(fill_value).max(axis=axis, out=out, **kwargs) + if isinstance(out, MaskedArray): + outmask = getmask(out) + if outmask is nomask: + outmask = out._mask = make_mask_none(out.shape) + outmask.flat = newmask + else: + + if out.dtype.kind in 'biu': + errmsg = "Masked data information would be lost in one or more"\ + " location." + raise MaskError(errmsg) + np.copyto(out, np.nan, where=newmask) + return out + + def ptp(self, axis=None, out=None, fill_value=None, keepdims=False): + """ + Return (maximum - minimum) along the given dimension + (i.e. peak-to-peak value). + + .. warning:: + `ptp` preserves the data type of the array. This means the + return value for an input of signed integers with n bits + (e.g. `np.int8`, `np.int16`, etc) is also a signed integer + with n bits. In that case, peak-to-peak values greater than + ``2**(n-1)-1`` will be returned as negative values. An example + with a work-around is shown below. + + Parameters + ---------- + axis : {None, int}, optional + Axis along which to find the peaks. If None (default) the + flattened array is used. + out : {None, array_like}, optional + Alternative output array in which to place the result. It must + have the same shape and buffer length as the expected output + but the type will be cast if necessary. + fill_value : scalar or None, optional + Value used to fill in the masked values. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the array. + + Returns + ------- + ptp : ndarray. + A new array holding the result, unless ``out`` was + specified, in which case a reference to ``out`` is returned. + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.MaskedArray([[4, 9, 2, 10], + ... [6, 9, 7, 12]]) + + >>> x.ptp(axis=1) + masked_array(data=[8, 6], + mask=False, + fill_value=999999) + + >>> x.ptp(axis=0) + masked_array(data=[2, 0, 5, 2], + mask=False, + fill_value=999999) + + >>> x.ptp() + 10 + + This example shows that a negative value can be returned when + the input is an array of signed integers. + + >>> y = np.ma.MaskedArray([[1, 127], + ... [0, 127], + ... [-1, 127], + ... [-2, 127]], dtype=np.int8) + >>> y.ptp(axis=1) + masked_array(data=[ 126, 127, -128, -127], + mask=False, + fill_value=np.int64(999999), + dtype=int8) + + A work-around is to use the `view()` method to view the result as + unsigned integers with the same bit width: + + >>> y.ptp(axis=1).view(np.uint8) + masked_array(data=[126, 127, 128, 129], + mask=False, + fill_value=np.uint64(999999), + dtype=uint8) + """ + if out is None: + result = self.max(axis=axis, fill_value=fill_value, + keepdims=keepdims) + result -= self.min(axis=axis, fill_value=fill_value, + keepdims=keepdims) + return result + out.flat = self.max(axis=axis, out=out, fill_value=fill_value, + keepdims=keepdims) + min_value = self.min(axis=axis, fill_value=fill_value, + keepdims=keepdims) + np.subtract(out, min_value, out=out, casting='unsafe') + return out + + def partition(self, *args, **kwargs): + warnings.warn("Warning: 'partition' will ignore the 'mask' " + f"of the {self.__class__.__name__}.", + stacklevel=2) + return super().partition(*args, **kwargs) + + def argpartition(self, *args, **kwargs): + warnings.warn("Warning: 'argpartition' will ignore the 'mask' " + f"of the {self.__class__.__name__}.", + stacklevel=2) + return super().argpartition(*args, **kwargs) + + def take(self, indices, axis=None, out=None, mode='raise'): + """ + Take elements from a masked array along an axis. + + This function does the same thing as "fancy" indexing (indexing arrays + using arrays) for masked arrays. It can be easier to use if you need + elements along a given axis. + + Parameters + ---------- + a : masked_array + The source masked array. + indices : array_like + The indices of the values to extract. Also allow scalars for indices. + axis : int, optional + The axis over which to select values. By default, the flattened + input array is used. + out : MaskedArray, optional + If provided, the result will be placed in this array. It should + be of the appropriate shape and dtype. Note that `out` is always + buffered if `mode='raise'`; use other modes for better performance. + mode : {'raise', 'wrap', 'clip'}, optional + Specifies how out-of-bounds indices will behave. + + * 'raise' -- raise an error (default) + * 'wrap' -- wrap around + * 'clip' -- clip to the range + + 'clip' mode means that all indices that are too large are replaced + by the index that addresses the last element along that axis. Note + that this disables indexing with negative numbers. + + Returns + ------- + out : MaskedArray + The returned array has the same type as `a`. + + See Also + -------- + numpy.take : Equivalent function for ndarrays. + compress : Take elements using a boolean mask. + take_along_axis : Take elements by matching the array and the index arrays. + + Notes + ----- + This function behaves similarly to `numpy.take`, but it handles masked + values. The mask is retained in the output array, and masked values + in the input array remain masked in the output. + + Examples + -------- + >>> import numpy as np + >>> a = np.ma.array([4, 3, 5, 7, 6, 8], mask=[0, 0, 1, 0, 1, 0]) + >>> indices = [0, 1, 4] + >>> np.ma.take(a, indices) + masked_array(data=[4, 3, --], + mask=[False, False, True], + fill_value=999999) + + When `indices` is not one-dimensional, the output also has these dimensions: + + >>> np.ma.take(a, [[0, 1], [2, 3]]) + masked_array(data=[[4, 3], + [--, 7]], + mask=[[False, False], + [ True, False]], + fill_value=999999) + """ + (_data, _mask) = (self._data, self._mask) + cls = type(self) + # Make sure the indices are not masked + maskindices = getmask(indices) + if maskindices is not nomask: + indices = indices.filled(0) + # Get the data, promoting scalars to 0d arrays with [...] so that + # .view works correctly + if out is None: + out = _data.take(indices, axis=axis, mode=mode)[...].view(cls) + else: + np.take(_data, indices, axis=axis, mode=mode, out=out) + # Get the mask + if isinstance(out, MaskedArray): + if _mask is nomask: + outmask = maskindices + else: + outmask = _mask.take(indices, axis=axis, mode=mode) + outmask |= maskindices + out.__setmask__(outmask) + # demote 0d arrays back to scalars, for consistency with ndarray.take + return out[()] + + # Array methods + copy = _arraymethod('copy') + diagonal = _arraymethod('diagonal') + flatten = _arraymethod('flatten') + repeat = _arraymethod('repeat') + squeeze = _arraymethod('squeeze') + swapaxes = _arraymethod('swapaxes') + T = property(fget=lambda self: self.transpose()) + transpose = _arraymethod('transpose') + + @property + def mT(self): + """ + Return the matrix-transpose of the masked array. + + The matrix transpose is the transpose of the last two dimensions, even + if the array is of higher dimension. + + .. versionadded:: 2.0 + + Returns + ------- + result: MaskedArray + The masked array with the last two dimensions transposed + + Raises + ------ + ValueError + If the array is of dimension less than 2. + + See Also + -------- + ndarray.mT: + Equivalent method for arrays + """ + + if self.ndim < 2: + raise ValueError("matrix transpose with ndim < 2 is undefined") + + if self._mask is nomask: + return masked_array(data=self._data.mT) + else: + return masked_array(data=self.data.mT, mask=self.mask.mT) + + def tolist(self, fill_value=None): + """ + Return the data portion of the masked array as a hierarchical Python list. + + Data items are converted to the nearest compatible Python type. + Masked values are converted to `fill_value`. If `fill_value` is None, + the corresponding entries in the output list will be ``None``. + + Parameters + ---------- + fill_value : scalar, optional + The value to use for invalid entries. Default is None. + + Returns + ------- + result : list + The Python list representation of the masked array. + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.array([[1,2,3], [4,5,6], [7,8,9]], mask=[0] + [1,0]*4) + >>> x.tolist() + [[1, None, 3], [None, 5, None], [7, None, 9]] + >>> x.tolist(-999) + [[1, -999, 3], [-999, 5, -999], [7, -999, 9]] + + """ + _mask = self._mask + # No mask ? Just return .data.tolist ? + if _mask is nomask: + return self._data.tolist() + # Explicit fill_value: fill the array and get the list + if fill_value is not None: + return self.filled(fill_value).tolist() + # Structured array. + names = self.dtype.names + if names: + result = self._data.astype([(_, object) for _ in names]) + for n in names: + result[n][_mask[n]] = None + return result.tolist() + # Standard arrays. + if _mask is nomask: + return [None] + # Set temps to save time when dealing w/ marrays. + inishape = self.shape + result = np.array(self._data.ravel(), dtype=object) + result[_mask.ravel()] = None + result.shape = inishape + return result.tolist() + + def tobytes(self, fill_value=None, order='C'): + """ + Return the array data as a string containing the raw bytes in the array. + + The array is filled with a fill value before the string conversion. + + Parameters + ---------- + fill_value : scalar, optional + Value used to fill in the masked values. Default is None, in which + case `MaskedArray.fill_value` is used. + order : {'C','F','A'}, optional + Order of the data item in the copy. Default is 'C'. + + - 'C' -- C order (row major). + - 'F' -- Fortran order (column major). + - 'A' -- Any, current order of array. + - None -- Same as 'A'. + + See Also + -------- + numpy.ndarray.tobytes + tolist, tofile + + Notes + ----- + As for `ndarray.tobytes`, information about the shape, dtype, etc., + but also about `fill_value`, will be lost. + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.array(np.array([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]]) + >>> x.tobytes() + b'\\x01\\x00\\x00\\x00\\x00\\x00\\x00\\x00?B\\x0f\\x00\\x00\\x00\\x00\\x00?B\\x0f\\x00\\x00\\x00\\x00\\x00\\x04\\x00\\x00\\x00\\x00\\x00\\x00\\x00' + + """ + return self.filled(fill_value).tobytes(order=order) + + def tofile(self, fid, sep="", format="%s"): + """ + Save a masked array to a file in binary format. + + .. warning:: + This function is not implemented yet. + + Raises + ------ + NotImplementedError + When `tofile` is called. + + """ + raise NotImplementedError("MaskedArray.tofile() not implemented yet.") + + def toflex(self): + """ + Transforms a masked array into a flexible-type array. + + The flexible type array that is returned will have two fields: + + * the ``_data`` field stores the ``_data`` part of the array. + * the ``_mask`` field stores the ``_mask`` part of the array. + + Parameters + ---------- + None + + Returns + ------- + record : ndarray + A new flexible-type `ndarray` with two fields: the first element + containing a value, the second element containing the corresponding + mask boolean. The returned record shape matches self.shape. + + Notes + ----- + A side-effect of transforming a masked array into a flexible `ndarray` is + that meta information (``fill_value``, ...) will be lost. + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4) + >>> x + masked_array( + data=[[1, --, 3], + [--, 5, --], + [7, --, 9]], + mask=[[False, True, False], + [ True, False, True], + [False, True, False]], + fill_value=999999) + >>> x.toflex() + array([[(1, False), (2, True), (3, False)], + [(4, True), (5, False), (6, True)], + [(7, False), (8, True), (9, False)]], + dtype=[('_data', 'i2", (2,))]) + # x = A[0]; y = x["A"]; then y.mask["A"].size==2 + # and we can not say masked/unmasked. + # The result is no longer mvoid! + # See also issue #6724. + return masked_array( + data=self._data[indx], mask=m[indx], + fill_value=self._fill_value[indx], + hard_mask=self._hardmask) + if m is not nomask and m[indx]: + return masked + return self._data[indx] + + def __setitem__(self, indx, value): + self._data[indx] = value + if self._hardmask: + self._mask[indx] |= getattr(value, "_mask", False) + else: + self._mask[indx] = getattr(value, "_mask", False) + + def __str__(self): + m = self._mask + if m is nomask: + return str(self._data) + + rdtype = _replace_dtype_fields(self._data.dtype, "O") + data_arr = super()._data + res = data_arr.astype(rdtype) + _recursive_printoption(res, self._mask, masked_print_option) + return str(res) + + __repr__ = __str__ + + def __iter__(self): + "Defines an iterator for mvoid" + (_data, _mask) = (self._data, self._mask) + if _mask is nomask: + yield from _data + else: + for (d, m) in zip(_data, _mask): + if m: + yield masked + else: + yield d + + def __len__(self): + return self._data.__len__() + + def filled(self, fill_value=None): + """ + Return a copy with masked fields filled with a given value. + + Parameters + ---------- + fill_value : array_like, optional + The value to use for invalid entries. Can be scalar or + non-scalar. If latter is the case, the filled array should + be broadcastable over input array. Default is None, in + which case the `fill_value` attribute is used instead. + + Returns + ------- + filled_void + A `np.void` object + + See Also + -------- + MaskedArray.filled + + """ + return asarray(self).filled(fill_value)[()] + + def tolist(self): + """ + Transforms the mvoid object into a tuple. + + Masked fields are replaced by None. + + Returns + ------- + returned_tuple + Tuple of fields + """ + _mask = self._mask + if _mask is nomask: + return self._data.tolist() + result = [] + for (d, m) in zip(self._data, self._mask): + if m: + result.append(None) + else: + # .item() makes sure we return a standard Python object + result.append(d.item()) + return tuple(result) + + +############################################################################## +# Shortcuts # +############################################################################## + + +def isMaskedArray(x): + """ + Test whether input is an instance of MaskedArray. + + This function returns True if `x` is an instance of MaskedArray + and returns False otherwise. Any object is accepted as input. + + Parameters + ---------- + x : object + Object to test. + + Returns + ------- + result : bool + True if `x` is a MaskedArray. + + See Also + -------- + isMA : Alias to isMaskedArray. + isarray : Alias to isMaskedArray. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> a = np.eye(3, 3) + >>> a + array([[ 1., 0., 0.], + [ 0., 1., 0.], + [ 0., 0., 1.]]) + >>> m = ma.masked_values(a, 0) + >>> m + masked_array( + data=[[1.0, --, --], + [--, 1.0, --], + [--, --, 1.0]], + mask=[[False, True, True], + [ True, False, True], + [ True, True, False]], + fill_value=0.0) + >>> ma.isMaskedArray(a) + False + >>> ma.isMaskedArray(m) + True + >>> ma.isMaskedArray([0, 1, 2]) + False + + """ + return isinstance(x, MaskedArray) + + +isarray = isMaskedArray +isMA = isMaskedArray # backward compatibility + + +class MaskedConstant(MaskedArray): + # the lone np.ma.masked instance + __singleton = None + + @classmethod + def __has_singleton(cls): + # second case ensures `cls.__singleton` is not just a view on the + # superclass singleton + return cls.__singleton is not None and type(cls.__singleton) is cls + + def __new__(cls): + if not cls.__has_singleton(): + # We define the masked singleton as a float for higher precedence. + # Note that it can be tricky sometimes w/ type comparison + data = np.array(0.) + mask = np.array(True) + + # prevent any modifications + data.flags.writeable = False + mask.flags.writeable = False + + # don't fall back on MaskedArray.__new__(MaskedConstant), since + # that might confuse it - this way, the construction is entirely + # within our control + cls.__singleton = MaskedArray(data, mask=mask).view(cls) + + return cls.__singleton + + def __array_finalize__(self, obj): + if not self.__has_singleton(): + # this handles the `.view` in __new__, which we want to copy across + # properties normally + return super().__array_finalize__(obj) + elif self is self.__singleton: + # not clear how this can happen, play it safe + pass + else: + # everywhere else, we want to downcast to MaskedArray, to prevent a + # duplicate maskedconstant. + self.__class__ = MaskedArray + MaskedArray.__array_finalize__(self, obj) + + def __array_wrap__(self, obj, context=None, return_scalar=False): + return self.view(MaskedArray).__array_wrap__(obj, context) + + def __str__(self): + return str(masked_print_option._display) + + def __repr__(self): + if self is MaskedConstant.__singleton: + return 'masked' + else: + # it's a subclass, or something is wrong, make it obvious + return object.__repr__(self) + + def __format__(self, format_spec): + # Replace ndarray.__format__ with the default, which supports no + # format characters. + # Supporting format characters is unwise here, because we do not know + # what type the user was expecting - better to not guess. + try: + return object.__format__(self, format_spec) + except TypeError: + # 2020-03-23, NumPy 1.19.0 + warnings.warn( + "Format strings passed to MaskedConstant are ignored," + " but in future may error or produce different behavior", + FutureWarning, stacklevel=2 + ) + return object.__format__(self, "") + + def __reduce__(self): + """Override of MaskedArray's __reduce__. + """ + return (self.__class__, ()) + + # inplace operations have no effect. We have to override them to avoid + # trying to modify the readonly data and mask arrays + def __iop__(self, other): + return self + __iadd__ = \ + __isub__ = \ + __imul__ = \ + __ifloordiv__ = \ + __itruediv__ = \ + __ipow__ = \ + __iop__ + del __iop__ # don't leave this around + + def copy(self, *args, **kwargs): + """ Copy is a no-op on the maskedconstant, as it is a scalar """ + # maskedconstant is a scalar, so copy doesn't need to copy. There's + # precedent for this with `np.bool` scalars. + return self + + def __copy__(self): + return self + + def __deepcopy__(self, memo): + return self + + def __setattr__(self, attr, value): + if not self.__has_singleton(): + # allow the singleton to be initialized + return super().__setattr__(attr, value) + elif self is self.__singleton: + raise AttributeError( + f"attributes of {self!r} are not writeable") + else: + # duplicate instance - we can end up here from __array_finalize__, + # where we set the __class__ attribute + return super().__setattr__(attr, value) + + +masked = masked_singleton = MaskedConstant() +masked_array = MaskedArray + + +def array(data, dtype=None, copy=False, order=None, + mask=nomask, fill_value=None, keep_mask=True, + hard_mask=False, shrink=True, subok=True, ndmin=0): + """ + Shortcut to MaskedArray. + + The options are in a different order for convenience and backwards + compatibility. + + """ + return MaskedArray(data, mask=mask, dtype=dtype, copy=copy, + subok=subok, keep_mask=keep_mask, + hard_mask=hard_mask, fill_value=fill_value, + ndmin=ndmin, shrink=shrink, order=order) + + +array.__doc__ = masked_array.__doc__ + + +def is_masked(x): + """ + Determine whether input has masked values. + + Accepts any object as input, but always returns False unless the + input is a MaskedArray containing masked values. + + Parameters + ---------- + x : array_like + Array to check for masked values. + + Returns + ------- + result : bool + True if `x` is a MaskedArray with masked values, False otherwise. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> x = ma.masked_equal([0, 1, 0, 2, 3], 0) + >>> x + masked_array(data=[--, 1, --, 2, 3], + mask=[ True, False, True, False, False], + fill_value=0) + >>> ma.is_masked(x) + True + >>> x = ma.masked_equal([0, 1, 0, 2, 3], 42) + >>> x + masked_array(data=[0, 1, 0, 2, 3], + mask=False, + fill_value=42) + >>> ma.is_masked(x) + False + + Always returns False if `x` isn't a MaskedArray. + + >>> x = [False, True, False] + >>> ma.is_masked(x) + False + >>> x = 'a string' + >>> ma.is_masked(x) + False + + """ + m = getmask(x) + if m is nomask: + return False + elif m.any(): + return True + return False + + +############################################################################## +# Extrema functions # +############################################################################## + + +class _extrema_operation(_MaskedUFunc): + """ + Generic class for maximum/minimum functions. + + .. note:: + This is the base class for `_maximum_operation` and + `_minimum_operation`. + + """ + def __init__(self, ufunc, compare, fill_value): + super().__init__(ufunc) + self.compare = compare + self.fill_value_func = fill_value + + def __call__(self, a, b): + "Executes the call behavior." + + return where(self.compare(a, b), a, b) + + def reduce(self, target, axis=np._NoValue): + "Reduce target along the given axis." + target = narray(target, copy=None, subok=True) + m = getmask(target) + + if axis is np._NoValue and target.ndim > 1: + name = self.__name__ + # 2017-05-06, Numpy 1.13.0: warn on axis default + warnings.warn( + f"In the future the default for ma.{name}.reduce will be axis=0, " + f"not the current None, to match np.{name}.reduce. " + "Explicitly pass 0 or None to silence this warning.", + MaskedArrayFutureWarning, stacklevel=2) + axis = None + + if axis is not np._NoValue: + kwargs = {'axis': axis} + else: + kwargs = {} + + if m is nomask: + t = self.f.reduce(target, **kwargs) + else: + target = target.filled( + self.fill_value_func(target)).view(type(target)) + t = self.f.reduce(target, **kwargs) + m = umath.logical_and.reduce(m, **kwargs) + if hasattr(t, '_mask'): + t._mask = m + elif m: + t = masked + return t + + def outer(self, a, b): + "Return the function applied to the outer product of a and b." + ma = getmask(a) + mb = getmask(b) + if ma is nomask and mb is nomask: + m = nomask + else: + ma = getmaskarray(a) + mb = getmaskarray(b) + m = logical_or.outer(ma, mb) + result = self.f.outer(filled(a), filled(b)) + if not isinstance(result, MaskedArray): + result = result.view(MaskedArray) + result._mask = m + return result + +def min(obj, axis=None, out=None, fill_value=None, keepdims=np._NoValue): + kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} + + try: + return obj.min(axis=axis, fill_value=fill_value, out=out, **kwargs) + except (AttributeError, TypeError): + # If obj doesn't have a min method, or if the method doesn't accept a + # fill_value argument + return asanyarray(obj).min(axis=axis, fill_value=fill_value, + out=out, **kwargs) + + +min.__doc__ = MaskedArray.min.__doc__ + +def max(obj, axis=None, out=None, fill_value=None, keepdims=np._NoValue): + kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} + + try: + return obj.max(axis=axis, fill_value=fill_value, out=out, **kwargs) + except (AttributeError, TypeError): + # If obj doesn't have a max method, or if the method doesn't accept a + # fill_value argument + return asanyarray(obj).max(axis=axis, fill_value=fill_value, + out=out, **kwargs) + + +max.__doc__ = MaskedArray.max.__doc__ + + +def ptp(obj, axis=None, out=None, fill_value=None, keepdims=np._NoValue): + kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} + try: + return obj.ptp(axis, out=out, fill_value=fill_value, **kwargs) + except (AttributeError, TypeError): + # If obj doesn't have a ptp method or if the method doesn't accept + # a fill_value argument + return asanyarray(obj).ptp(axis=axis, fill_value=fill_value, + out=out, **kwargs) + + +ptp.__doc__ = MaskedArray.ptp.__doc__ + + +############################################################################## +# Definition of functions from the corresponding methods # +############################################################################## + + +class _frommethod: + """ + Define functions from existing MaskedArray methods. + + Parameters + ---------- + methodname : str + Name of the method to transform. + + """ + + def __init__(self, methodname, reversed=False): + self.__name__ = methodname + self.__qualname__ = methodname + self.__doc__ = self.getdoc() + self.reversed = reversed + + def getdoc(self): + "Return the doc of the function (from the doc of the method)." + meth = getattr(MaskedArray, self.__name__, None) or\ + getattr(np, self.__name__, None) + signature = self.__name__ + get_object_signature(meth) + if meth is not None: + doc = f""" {signature} +{getattr(meth, '__doc__', None)}""" + return doc + + def __call__(self, a, *args, **params): + if self.reversed: + args = list(args) + a, args[0] = args[0], a + + marr = asanyarray(a) + method_name = self.__name__ + method = getattr(type(marr), method_name, None) + if method is None: + # use the corresponding np function + method = getattr(np, method_name) + + return method(marr, *args, **params) + + +all = _frommethod('all') +anomalies = anom = _frommethod('anom') +any = _frommethod('any') +compress = _frommethod('compress', reversed=True) +cumprod = _frommethod('cumprod') +cumsum = _frommethod('cumsum') +copy = _frommethod('copy') +diagonal = _frommethod('diagonal') +harden_mask = _frommethod('harden_mask') +ids = _frommethod('ids') +maximum = _extrema_operation(umath.maximum, greater, maximum_fill_value) +mean = _frommethod('mean') +minimum = _extrema_operation(umath.minimum, less, minimum_fill_value) +nonzero = _frommethod('nonzero') +prod = _frommethod('prod') +product = _frommethod('product') +ravel = _frommethod('ravel') +repeat = _frommethod('repeat') +shrink_mask = _frommethod('shrink_mask') +soften_mask = _frommethod('soften_mask') +std = _frommethod('std') +sum = _frommethod('sum') +swapaxes = _frommethod('swapaxes') +#take = _frommethod('take') +trace = _frommethod('trace') +var = _frommethod('var') + +count = _frommethod('count') + +def take(a, indices, axis=None, out=None, mode='raise'): + """ + + """ + a = masked_array(a) + return a.take(indices, axis=axis, out=out, mode=mode) + + +def power(a, b, third=None): + """ + Returns element-wise base array raised to power from second array. + + This is the masked array version of `numpy.power`. For details see + `numpy.power`. + + See Also + -------- + numpy.power + + Notes + ----- + The *out* argument to `numpy.power` is not supported, `third` has to be + None. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> x = [11.2, -3.973, 0.801, -1.41] + >>> mask = [0, 0, 0, 1] + >>> masked_x = ma.masked_array(x, mask) + >>> masked_x + masked_array(data=[11.2, -3.973, 0.801, --], + mask=[False, False, False, True], + fill_value=1e+20) + >>> ma.power(masked_x, 2) + masked_array(data=[125.43999999999998, 15.784728999999999, + 0.6416010000000001, --], + mask=[False, False, False, True], + fill_value=1e+20) + >>> y = [-0.5, 2, 0, 17] + >>> masked_y = ma.masked_array(y, mask) + >>> masked_y + masked_array(data=[-0.5, 2.0, 0.0, --], + mask=[False, False, False, True], + fill_value=1e+20) + >>> ma.power(masked_x, masked_y) + masked_array(data=[0.2988071523335984, 15.784728999999999, 1.0, --], + mask=[False, False, False, True], + fill_value=1e+20) + + """ + if third is not None: + raise MaskError("3-argument power not supported.") + # Get the masks + ma = getmask(a) + mb = getmask(b) + m = mask_or(ma, mb) + # Get the rawdata + fa = getdata(a) + fb = getdata(b) + # Get the type of the result (so that we preserve subclasses) + if isinstance(a, MaskedArray): + basetype = type(a) + else: + basetype = MaskedArray + # Get the result and view it as a (subclass of) MaskedArray + with np.errstate(divide='ignore', invalid='ignore'): + result = np.where(m, fa, umath.power(fa, fb)).view(basetype) + result._update_from(a) + # Find where we're in trouble w/ NaNs and Infs + invalid = np.logical_not(np.isfinite(result.view(ndarray))) + # Add the initial mask + if m is not nomask: + if not result.ndim: + return masked + result._mask = np.logical_or(m, invalid) + # Fix the invalid parts + if invalid.any(): + if not result.ndim: + return masked + elif result._mask is nomask: + result._mask = invalid + result._data[invalid] = result.fill_value + return result + + +argmin = _frommethod('argmin') +argmax = _frommethod('argmax') + +def argsort(a, axis=np._NoValue, kind=None, order=None, endwith=True, + fill_value=None, *, stable=None): + "Function version of the eponymous method." + a = np.asanyarray(a) + + # 2017-04-11, Numpy 1.13.0, gh-8701: warn on axis default + if axis is np._NoValue: + axis = _deprecate_argsort_axis(a) + + if isinstance(a, MaskedArray): + return a.argsort(axis=axis, kind=kind, order=order, endwith=endwith, + fill_value=fill_value, stable=None) + else: + return a.argsort(axis=axis, kind=kind, order=order, stable=None) + + +argsort.__doc__ = MaskedArray.argsort.__doc__ + +def sort(a, axis=-1, kind=None, order=None, endwith=True, fill_value=None, *, + stable=None): + """ + Return a sorted copy of the masked array. + + Equivalent to creating a copy of the array + and applying the MaskedArray ``sort()`` method. + + Refer to ``MaskedArray.sort`` for the full documentation + + See Also + -------- + MaskedArray.sort : equivalent method + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> x = [11.2, -3.973, 0.801, -1.41] + >>> mask = [0, 0, 0, 1] + >>> masked_x = ma.masked_array(x, mask) + >>> masked_x + masked_array(data=[11.2, -3.973, 0.801, --], + mask=[False, False, False, True], + fill_value=1e+20) + >>> ma.sort(masked_x) + masked_array(data=[-3.973, 0.801, 11.2, --], + mask=[False, False, False, True], + fill_value=1e+20) + """ + a = np.array(a, copy=True, subok=True) + if axis is None: + a = a.flatten() + axis = 0 + + if isinstance(a, MaskedArray): + a.sort(axis=axis, kind=kind, order=order, endwith=endwith, + fill_value=fill_value, stable=stable) + else: + a.sort(axis=axis, kind=kind, order=order, stable=stable) + return a + + +def compressed(x): + """ + Return all the non-masked data as a 1-D array. + + This function is equivalent to calling the "compressed" method of a + `ma.MaskedArray`, see `ma.MaskedArray.compressed` for details. + + See Also + -------- + ma.MaskedArray.compressed : Equivalent method. + + Examples + -------- + >>> import numpy as np + + Create an array with negative values masked: + + >>> import numpy as np + >>> x = np.array([[1, -1, 0], [2, -1, 3], [7, 4, -1]]) + >>> masked_x = np.ma.masked_array(x, mask=x < 0) + >>> masked_x + masked_array( + data=[[1, --, 0], + [2, --, 3], + [7, 4, --]], + mask=[[False, True, False], + [False, True, False], + [False, False, True]], + fill_value=999999) + + Compress the masked array into a 1-D array of non-masked values: + + >>> np.ma.compressed(masked_x) + array([1, 0, 2, 3, 7, 4]) + + """ + return asanyarray(x).compressed() + + +def concatenate(arrays, axis=0): + """ + Concatenate a sequence of arrays along the given axis. + + Parameters + ---------- + arrays : sequence of array_like + The arrays must have the same shape, except in the dimension + corresponding to `axis` (the first, by default). + axis : int, optional + The axis along which the arrays will be joined. Default is 0. + + Returns + ------- + result : MaskedArray + The concatenated array with any masked entries preserved. + + See Also + -------- + numpy.concatenate : Equivalent function in the top-level NumPy module. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> a = ma.arange(3) + >>> a[1] = ma.masked + >>> b = ma.arange(2, 5) + >>> a + masked_array(data=[0, --, 2], + mask=[False, True, False], + fill_value=999999) + >>> b + masked_array(data=[2, 3, 4], + mask=False, + fill_value=999999) + >>> ma.concatenate([a, b]) + masked_array(data=[0, --, 2, 2, 3, 4], + mask=[False, True, False, False, False, False], + fill_value=999999) + + """ + d = np.concatenate([getdata(a) for a in arrays], axis) + rcls = get_masked_subclass(*arrays) + data = d.view(rcls) + # Check whether one of the arrays has a non-empty mask. + for x in arrays: + if getmask(x) is not nomask: + break + else: + return data + # OK, so we have to concatenate the masks + dm = np.concatenate([getmaskarray(a) for a in arrays], axis) + dm = dm.reshape(d.shape) + + # If we decide to keep a '_shrinkmask' option, we want to check that + # all of them are True, and then check for dm.any() + data._mask = _shrink_mask(dm) + return data + + +def diag(v, k=0): + """ + Extract a diagonal or construct a diagonal array. + + This function is the equivalent of `numpy.diag` that takes masked + values into account, see `numpy.diag` for details. + + See Also + -------- + numpy.diag : Equivalent function for ndarrays. + + Examples + -------- + >>> import numpy as np + + Create an array with negative values masked: + + >>> import numpy as np + >>> x = np.array([[11.2, -3.973, 18], [0.801, -1.41, 12], [7, 33, -12]]) + >>> masked_x = np.ma.masked_array(x, mask=x < 0) + >>> masked_x + masked_array( + data=[[11.2, --, 18.0], + [0.801, --, 12.0], + [7.0, 33.0, --]], + mask=[[False, True, False], + [False, True, False], + [False, False, True]], + fill_value=1e+20) + + Isolate the main diagonal from the masked array: + + >>> np.ma.diag(masked_x) + masked_array(data=[11.2, --, --], + mask=[False, True, True], + fill_value=1e+20) + + Isolate the first diagonal below the main diagonal: + + >>> np.ma.diag(masked_x, -1) + masked_array(data=[0.801, 33.0], + mask=[False, False], + fill_value=1e+20) + + """ + output = np.diag(v, k).view(MaskedArray) + if getmask(v) is not nomask: + output._mask = np.diag(v._mask, k) + return output + + +def left_shift(a, n): + """ + Shift the bits of an integer to the left. + + This is the masked array version of `numpy.left_shift`, for details + see that function. + + See Also + -------- + numpy.left_shift + + Examples + -------- + Shift with a masked array: + + >>> arr = np.ma.array([10, 20, 30], mask=[False, True, False]) + >>> np.ma.left_shift(arr, 1) + masked_array(data=[20, --, 60], + mask=[False, True, False], + fill_value=999999) + + Large shift: + + >>> np.ma.left_shift(10, 10) + masked_array(data=10240, + mask=False, + fill_value=999999) + + Shift with a scalar and an array: + + >>> scalar = 10 + >>> arr = np.ma.array([1, 2, 3], mask=[False, True, False]) + >>> np.ma.left_shift(scalar, arr) + masked_array(data=[20, --, 80], + mask=[False, True, False], + fill_value=999999) + + + """ + m = getmask(a) + if m is nomask: + d = umath.left_shift(filled(a), n) + return masked_array(d) + else: + d = umath.left_shift(filled(a, 0), n) + return masked_array(d, mask=m) + + +def right_shift(a, n): + """ + Shift the bits of an integer to the right. + + This is the masked array version of `numpy.right_shift`, for details + see that function. + + See Also + -------- + numpy.right_shift + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> x = [11, 3, 8, 1] + >>> mask = [0, 0, 0, 1] + >>> masked_x = ma.masked_array(x, mask) + >>> masked_x + masked_array(data=[11, 3, 8, --], + mask=[False, False, False, True], + fill_value=999999) + >>> ma.right_shift(masked_x,1) + masked_array(data=[5, 1, 4, --], + mask=[False, False, False, True], + fill_value=999999) + + """ + m = getmask(a) + if m is nomask: + d = umath.right_shift(filled(a), n) + return masked_array(d) + else: + d = umath.right_shift(filled(a, 0), n) + return masked_array(d, mask=m) + + +def put(a, indices, values, mode='raise'): + """ + Set storage-indexed locations to corresponding values. + + This function is equivalent to `MaskedArray.put`, see that method + for details. + + See Also + -------- + MaskedArray.put + + Examples + -------- + Putting values in a masked array: + + >>> a = np.ma.array([1, 2, 3, 4], mask=[False, True, False, False]) + >>> np.ma.put(a, [1, 3], [10, 30]) + >>> a + masked_array(data=[ 1, 10, 3, 30], + mask=False, + fill_value=999999) + + Using put with a 2D array: + + >>> b = np.ma.array([[1, 2], [3, 4]], mask=[[False, True], [False, False]]) + >>> np.ma.put(b, [[0, 1], [1, 0]], [[10, 20], [30, 40]]) + >>> b + masked_array( + data=[[40, 30], + [ 3, 4]], + mask=False, + fill_value=999999) + + """ + # We can't use 'frommethod', the order of arguments is different + try: + return a.put(indices, values, mode=mode) + except AttributeError: + return np.asarray(a).put(indices, values, mode=mode) + + +def putmask(a, mask, values): # , mode='raise'): + """ + Changes elements of an array based on conditional and input values. + + This is the masked array version of `numpy.putmask`, for details see + `numpy.putmask`. + + See Also + -------- + numpy.putmask + + Notes + ----- + Using a masked array as `values` will **not** transform a `ndarray` into + a `MaskedArray`. + + Examples + -------- + >>> import numpy as np + >>> arr = [[1, 2], [3, 4]] + >>> mask = [[1, 0], [0, 0]] + >>> x = np.ma.array(arr, mask=mask) + >>> np.ma.putmask(x, x < 4, 10*x) + >>> x + masked_array( + data=[[--, 20], + [30, 4]], + mask=[[ True, False], + [False, False]], + fill_value=999999) + >>> x.data + array([[10, 20], + [30, 4]]) + + """ + # We can't use 'frommethod', the order of arguments is different + if not isinstance(a, MaskedArray): + a = a.view(MaskedArray) + (valdata, valmask) = (getdata(values), getmask(values)) + if getmask(a) is nomask: + if valmask is not nomask: + a._sharedmask = True + a._mask = make_mask_none(a.shape, a.dtype) + np.copyto(a._mask, valmask, where=mask) + elif a._hardmask: + if valmask is not nomask: + m = a._mask.copy() + np.copyto(m, valmask, where=mask) + a.mask |= m + else: + if valmask is nomask: + valmask = getmaskarray(values) + np.copyto(a._mask, valmask, where=mask) + np.copyto(a._data, valdata, where=mask) + + +def transpose(a, axes=None): + """ + Permute the dimensions of an array. + + This function is exactly equivalent to `numpy.transpose`. + + See Also + -------- + numpy.transpose : Equivalent function in top-level NumPy module. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> x = ma.arange(4).reshape((2,2)) + >>> x[1, 1] = ma.masked + >>> x + masked_array( + data=[[0, 1], + [2, --]], + mask=[[False, False], + [False, True]], + fill_value=999999) + + >>> ma.transpose(x) + masked_array( + data=[[0, 2], + [1, --]], + mask=[[False, False], + [False, True]], + fill_value=999999) + """ + # We can't use 'frommethod', as 'transpose' doesn't take keywords + try: + return a.transpose(axes) + except AttributeError: + return np.asarray(a).transpose(axes).view(MaskedArray) + + +def reshape(a, new_shape, order='C'): + """ + Returns an array containing the same data with a new shape. + + Refer to `MaskedArray.reshape` for full documentation. + + See Also + -------- + MaskedArray.reshape : equivalent function + + Examples + -------- + Reshaping a 1-D array: + + >>> a = np.ma.array([1, 2, 3, 4]) + >>> np.ma.reshape(a, (2, 2)) + masked_array( + data=[[1, 2], + [3, 4]], + mask=False, + fill_value=999999) + + Reshaping a 2-D array: + + >>> b = np.ma.array([[1, 2], [3, 4]]) + >>> np.ma.reshape(b, (1, 4)) + masked_array(data=[[1, 2, 3, 4]], + mask=False, + fill_value=999999) + + Reshaping a 1-D array with a mask: + + >>> c = np.ma.array([1, 2, 3, 4], mask=[False, True, False, False]) + >>> np.ma.reshape(c, (2, 2)) + masked_array( + data=[[1, --], + [3, 4]], + mask=[[False, True], + [False, False]], + fill_value=999999) + + """ + # We can't use 'frommethod', it whine about some parameters. Dmmit. + try: + return a.reshape(new_shape, order=order) + except AttributeError: + _tmp = np.asarray(a).reshape(new_shape, order=order) + return _tmp.view(MaskedArray) + + +def resize(x, new_shape): + """ + Return a new masked array with the specified size and shape. + + This is the masked equivalent of the `numpy.resize` function. The new + array is filled with repeated copies of `x` (in the order that the + data are stored in memory). If `x` is masked, the new array will be + masked, and the new mask will be a repetition of the old one. + + See Also + -------- + numpy.resize : Equivalent function in the top level NumPy module. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> a = ma.array([[1, 2] ,[3, 4]]) + >>> a[0, 1] = ma.masked + >>> a + masked_array( + data=[[1, --], + [3, 4]], + mask=[[False, True], + [False, False]], + fill_value=999999) + >>> np.resize(a, (3, 3)) + masked_array( + data=[[1, 2, 3], + [4, 1, 2], + [3, 4, 1]], + mask=False, + fill_value=999999) + >>> ma.resize(a, (3, 3)) + masked_array( + data=[[1, --, 3], + [4, 1, --], + [3, 4, 1]], + mask=[[False, True, False], + [False, False, True], + [False, False, False]], + fill_value=999999) + + A MaskedArray is always returned, regardless of the input type. + + >>> a = np.array([[1, 2] ,[3, 4]]) + >>> ma.resize(a, (3, 3)) + masked_array( + data=[[1, 2, 3], + [4, 1, 2], + [3, 4, 1]], + mask=False, + fill_value=999999) + + """ + # We can't use _frommethods here, as N.resize is notoriously whiny. + m = getmask(x) + if m is not nomask: + m = np.resize(m, new_shape) + result = np.resize(x, new_shape).view(get_masked_subclass(x)) + if result.ndim: + result._mask = m + return result + + +def ndim(obj): + """ + maskedarray version of the numpy function. + + """ + return np.ndim(getdata(obj)) + + +ndim.__doc__ = np.ndim.__doc__ + + +def shape(obj): + "maskedarray version of the numpy function." + return np.shape(getdata(obj)) + + +shape.__doc__ = np.shape.__doc__ + + +def size(obj, axis=None): + "maskedarray version of the numpy function." + return np.size(getdata(obj), axis) + + +size.__doc__ = np.size.__doc__ + + +def diff(a, /, n=1, axis=-1, prepend=np._NoValue, append=np._NoValue): + """ + Calculate the n-th discrete difference along the given axis. + The first difference is given by ``out[i] = a[i+1] - a[i]`` along + the given axis, higher differences are calculated by using `diff` + recursively. + Preserves the input mask. + + Parameters + ---------- + a : array_like + Input array + n : int, optional + The number of times values are differenced. If zero, the input + is returned as-is. + axis : int, optional + The axis along which the difference is taken, default is the + last axis. + prepend, append : array_like, optional + Values to prepend or append to `a` along axis prior to + performing the difference. Scalar values are expanded to + arrays with length 1 in the direction of axis and the shape + of the input array in along all other axes. Otherwise the + dimension and shape must match `a` except along axis. + + Returns + ------- + diff : MaskedArray + The n-th differences. The shape of the output is the same as `a` + except along `axis` where the dimension is smaller by `n`. The + type of the output is the same as the type of the difference + between any two elements of `a`. This is the same as the type of + `a` in most cases. A notable exception is `datetime64`, which + results in a `timedelta64` output array. + + See Also + -------- + numpy.diff : Equivalent function in the top-level NumPy module. + + Notes + ----- + Type is preserved for boolean arrays, so the result will contain + `False` when consecutive elements are the same and `True` when they + differ. + + For unsigned integer arrays, the results will also be unsigned. This + should not be surprising, as the result is consistent with + calculating the difference directly: + + >>> u8_arr = np.array([1, 0], dtype=np.uint8) + >>> np.ma.diff(u8_arr) + masked_array(data=[255], + mask=False, + fill_value=np.uint64(999999), + dtype=uint8) + >>> u8_arr[1,...] - u8_arr[0,...] + np.uint8(255) + + If this is not desirable, then the array should be cast to a larger + integer type first: + + >>> i16_arr = u8_arr.astype(np.int16) + >>> np.ma.diff(i16_arr) + masked_array(data=[-1], + mask=False, + fill_value=np.int64(999999), + dtype=int16) + + Examples + -------- + >>> import numpy as np + >>> a = np.array([1, 2, 3, 4, 7, 0, 2, 3]) + >>> x = np.ma.masked_where(a < 2, a) + >>> np.ma.diff(x) + masked_array(data=[--, 1, 1, 3, --, --, 1], + mask=[ True, False, False, False, True, True, False], + fill_value=999999) + + >>> np.ma.diff(x, n=2) + masked_array(data=[--, 0, 2, --, --, --], + mask=[ True, False, False, True, True, True], + fill_value=999999) + + >>> a = np.array([[1, 3, 1, 5, 10], [0, 1, 5, 6, 8]]) + >>> x = np.ma.masked_equal(a, value=1) + >>> np.ma.diff(x) + masked_array( + data=[[--, --, --, 5], + [--, --, 1, 2]], + mask=[[ True, True, True, False], + [ True, True, False, False]], + fill_value=1) + + >>> np.ma.diff(x, axis=0) + masked_array(data=[[--, --, --, 1, -2]], + mask=[[ True, True, True, False, False]], + fill_value=1) + + """ + if n == 0: + return a + if n < 0: + raise ValueError("order must be non-negative but got " + repr(n)) + + a = np.ma.asanyarray(a) + if a.ndim == 0: + raise ValueError( + "diff requires input that is at least one dimensional" + ) + + combined = [] + if prepend is not np._NoValue: + prepend = np.ma.asanyarray(prepend) + if prepend.ndim == 0: + shape = list(a.shape) + shape[axis] = 1 + prepend = np.broadcast_to(prepend, tuple(shape)) + combined.append(prepend) + + combined.append(a) + + if append is not np._NoValue: + append = np.ma.asanyarray(append) + if append.ndim == 0: + shape = list(a.shape) + shape[axis] = 1 + append = np.broadcast_to(append, tuple(shape)) + combined.append(append) + + if len(combined) > 1: + a = np.ma.concatenate(combined, axis) + + # GH 22465 np.diff without prepend/append preserves the mask + return np.diff(a, n, axis) + + +############################################################################## +# Extra functions # +############################################################################## + + +def where(condition, x=_NoValue, y=_NoValue): + """ + Return a masked array with elements from `x` or `y`, depending on condition. + + .. note:: + When only `condition` is provided, this function is identical to + `nonzero`. The rest of this documentation covers only the case where + all three arguments are provided. + + Parameters + ---------- + condition : array_like, bool + Where True, yield `x`, otherwise yield `y`. + x, y : array_like, optional + Values from which to choose. `x`, `y` and `condition` need to be + broadcastable to some shape. + + Returns + ------- + out : MaskedArray + An masked array with `masked` elements where the condition is masked, + elements from `x` where `condition` is True, and elements from `y` + elsewhere. + + See Also + -------- + numpy.where : Equivalent function in the top-level NumPy module. + nonzero : The function that is called when x and y are omitted + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.array(np.arange(9.).reshape(3, 3), mask=[[0, 1, 0], + ... [1, 0, 1], + ... [0, 1, 0]]) + >>> x + masked_array( + data=[[0.0, --, 2.0], + [--, 4.0, --], + [6.0, --, 8.0]], + mask=[[False, True, False], + [ True, False, True], + [False, True, False]], + fill_value=1e+20) + >>> np.ma.where(x > 5, x, -3.1416) + masked_array( + data=[[-3.1416, --, -3.1416], + [--, -3.1416, --], + [6.0, --, 8.0]], + mask=[[False, True, False], + [ True, False, True], + [False, True, False]], + fill_value=1e+20) + + """ + + # handle the single-argument case + missing = (x is _NoValue, y is _NoValue).count(True) + if missing == 1: + raise ValueError("Must provide both 'x' and 'y' or neither.") + if missing == 2: + return nonzero(condition) + + # we only care if the condition is true - false or masked pick y + cf = filled(condition, False) + xd = getdata(x) + yd = getdata(y) + + # we need the full arrays here for correct final dimensions + cm = getmaskarray(condition) + xm = getmaskarray(x) + ym = getmaskarray(y) + + # deal with the fact that masked.dtype == float64, but we don't actually + # want to treat it as that. + if x is masked and y is not masked: + xd = np.zeros((), dtype=yd.dtype) + xm = np.ones((), dtype=ym.dtype) + elif y is masked and x is not masked: + yd = np.zeros((), dtype=xd.dtype) + ym = np.ones((), dtype=xm.dtype) + + data = np.where(cf, xd, yd) + mask = np.where(cf, xm, ym) + mask = np.where(cm, np.ones((), dtype=mask.dtype), mask) + + # collapse the mask, for backwards compatibility + mask = _shrink_mask(mask) + + return masked_array(data, mask=mask) + + +def choose(indices, choices, out=None, mode='raise'): + """ + Use an index array to construct a new array from a list of choices. + + Given an array of integers and a list of n choice arrays, this method + will create a new array that merges each of the choice arrays. Where a + value in `index` is i, the new array will have the value that choices[i] + contains in the same place. + + Parameters + ---------- + indices : ndarray of ints + This array must contain integers in ``[0, n-1]``, where n is the + number of choices. + choices : sequence of arrays + Choice arrays. The index array and all of the choices should be + broadcastable to the same shape. + out : array, optional + If provided, the result will be inserted into this array. It should + be of the appropriate shape and `dtype`. + mode : {'raise', 'wrap', 'clip'}, optional + Specifies how out-of-bounds indices will behave. + + * 'raise' : raise an error + * 'wrap' : wrap around + * 'clip' : clip to the range + + Returns + ------- + merged_array : array + + See Also + -------- + choose : equivalent function + + Examples + -------- + >>> import numpy as np + >>> choice = np.array([[1,1,1], [2,2,2], [3,3,3]]) + >>> a = np.array([2, 1, 0]) + >>> np.ma.choose(a, choice) + masked_array(data=[3, 2, 1], + mask=False, + fill_value=999999) + + """ + def fmask(x): + "Returns the filled array, or True if masked." + if x is masked: + return True + return filled(x) + + def nmask(x): + "Returns the mask, True if ``masked``, False if ``nomask``." + if x is masked: + return True + return getmask(x) + # Get the indices. + c = filled(indices, 0) + # Get the masks. + masks = [nmask(x) for x in choices] + data = [fmask(x) for x in choices] + # Construct the mask + outputmask = np.choose(c, masks, mode=mode) + outputmask = make_mask(mask_or(outputmask, getmask(indices)), + copy=False, shrink=True) + # Get the choices. + d = np.choose(c, data, mode=mode, out=out).view(MaskedArray) + if out is not None: + if isinstance(out, MaskedArray): + out.__setmask__(outputmask) + return out + d.__setmask__(outputmask) + return d + + +def round_(a, decimals=0, out=None): + """ + Return a copy of a, rounded to 'decimals' places. + + When 'decimals' is negative, it specifies the number of positions + to the left of the decimal point. The real and imaginary parts of + complex numbers are rounded separately. Nothing is done if the + array is not of float type and 'decimals' is greater than or equal + to 0. + + Parameters + ---------- + decimals : int + Number of decimals to round to. May be negative. + out : array_like + Existing array to use for output. + If not given, returns a default copy of a. + + Notes + ----- + If out is given and does not have a mask attribute, the mask of a + is lost! + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> x = [11.2, -3.973, 0.801, -1.41] + >>> mask = [0, 0, 0, 1] + >>> masked_x = ma.masked_array(x, mask) + >>> masked_x + masked_array(data=[11.2, -3.973, 0.801, --], + mask=[False, False, False, True], + fill_value=1e+20) + >>> ma.round_(masked_x) + masked_array(data=[11.0, -4.0, 1.0, --], + mask=[False, False, False, True], + fill_value=1e+20) + >>> ma.round(masked_x, decimals=1) + masked_array(data=[11.2, -4.0, 0.8, --], + mask=[False, False, False, True], + fill_value=1e+20) + >>> ma.round_(masked_x, decimals=-1) + masked_array(data=[10.0, -0.0, 0.0, --], + mask=[False, False, False, True], + fill_value=1e+20) + """ + if out is None: + return np.round(a, decimals, out) + else: + np.round(getdata(a), decimals, out) + if hasattr(out, '_mask'): + out._mask = getmask(a) + return out + + +round = round_ + + +def _mask_propagate(a, axis): + """ + Mask whole 1-d vectors of an array that contain masked values. + """ + a = array(a, subok=False) + m = getmask(a) + if m is nomask or not m.any() or axis is None: + return a + a._mask = a._mask.copy() + axes = normalize_axis_tuple(axis, a.ndim) + for ax in axes: + a._mask |= m.any(axis=ax, keepdims=True) + return a + + +# Include masked dot here to avoid import problems in getting it from +# extras.py. Note that it is not included in __all__, but rather exported +# from extras in order to avoid backward compatibility problems. +def dot(a, b, strict=False, out=None): + """ + Return the dot product of two arrays. + + This function is the equivalent of `numpy.dot` that takes masked values + into account. Note that `strict` and `out` are in different position + than in the method version. In order to maintain compatibility with the + corresponding method, it is recommended that the optional arguments be + treated as keyword only. At some point that may be mandatory. + + Parameters + ---------- + a, b : masked_array_like + Inputs arrays. + strict : bool, optional + Whether masked data are propagated (True) or set to 0 (False) for + the computation. Default is False. Propagating the mask means that + if a masked value appears in a row or column, the whole row or + column is considered masked. + out : masked_array, optional + Output argument. This must have the exact kind that would be returned + if it was not used. In particular, it must have the right type, must be + C-contiguous, and its dtype must be the dtype that would be returned + for `dot(a,b)`. This is a performance feature. Therefore, if these + conditions are not met, an exception is raised, instead of attempting + to be flexible. + + See Also + -------- + numpy.dot : Equivalent function for ndarrays. + + Examples + -------- + >>> import numpy as np + >>> a = np.ma.array([[1, 2, 3], [4, 5, 6]], mask=[[1, 0, 0], [0, 0, 0]]) + >>> b = np.ma.array([[1, 2], [3, 4], [5, 6]], mask=[[1, 0], [0, 0], [0, 0]]) + >>> np.ma.dot(a, b) + masked_array( + data=[[21, 26], + [45, 64]], + mask=[[False, False], + [False, False]], + fill_value=999999) + >>> np.ma.dot(a, b, strict=True) + masked_array( + data=[[--, --], + [--, 64]], + mask=[[ True, True], + [ True, False]], + fill_value=999999) + + """ + if strict is True: + if np.ndim(a) == 0 or np.ndim(b) == 0: + pass + elif b.ndim == 1: + a = _mask_propagate(a, a.ndim - 1) + b = _mask_propagate(b, b.ndim - 1) + else: + a = _mask_propagate(a, a.ndim - 1) + b = _mask_propagate(b, b.ndim - 2) + am = ~getmaskarray(a) + bm = ~getmaskarray(b) + + if out is None: + d = np.dot(filled(a, 0), filled(b, 0)) + m = ~np.dot(am, bm) + if np.ndim(d) == 0: + d = np.asarray(d) + r = d.view(get_masked_subclass(a, b)) + r.__setmask__(m) + return r + else: + d = np.dot(filled(a, 0), filled(b, 0), out._data) + if out.mask.shape != d.shape: + out._mask = np.empty(d.shape, MaskType) + np.dot(am, bm, out._mask) + np.logical_not(out._mask, out._mask) + return out + + +def inner(a, b): + """ + Returns the inner product of a and b for arrays of floating point types. + + Like the generic NumPy equivalent the product sum is over the last dimension + of a and b. The first argument is not conjugated. + + """ + fa = filled(a, 0) + fb = filled(b, 0) + if fa.ndim == 0: + fa.shape = (1,) + if fb.ndim == 0: + fb.shape = (1,) + return np.inner(fa, fb).view(MaskedArray) + + +inner.__doc__ = doc_note(np.inner.__doc__, + "Masked values are replaced by 0.") +innerproduct = inner + + +def outer(a, b): + "maskedarray version of the numpy function." + fa = filled(a, 0).ravel() + fb = filled(b, 0).ravel() + d = np.outer(fa, fb) + ma = getmask(a) + mb = getmask(b) + if ma is nomask and mb is nomask: + return masked_array(d) + ma = getmaskarray(a) + mb = getmaskarray(b) + m = make_mask(1 - np.outer(1 - ma, 1 - mb), copy=False) + return masked_array(d, mask=m) + + +outer.__doc__ = doc_note(np.outer.__doc__, + "Masked values are replaced by 0.") +outerproduct = outer + + +def _convolve_or_correlate(f, a, v, mode, propagate_mask): + """ + Helper function for ma.correlate and ma.convolve + """ + if propagate_mask: + # results which are contributed to by either item in any pair being invalid + mask = ( + f(getmaskarray(a), np.ones(np.shape(v), dtype=bool), mode=mode) + | f(np.ones(np.shape(a), dtype=bool), getmaskarray(v), mode=mode) + ) + data = f(getdata(a), getdata(v), mode=mode) + else: + # results which are not contributed to by any pair of valid elements + mask = ~f(~getmaskarray(a), ~getmaskarray(v), mode=mode) + data = f(filled(a, 0), filled(v, 0), mode=mode) + + return masked_array(data, mask=mask) + + +def correlate(a, v, mode='valid', propagate_mask=True): + """ + Cross-correlation of two 1-dimensional sequences. + + Parameters + ---------- + a, v : array_like + Input sequences. + mode : {'valid', 'same', 'full'}, optional + Refer to the `np.convolve` docstring. Note that the default + is 'valid', unlike `convolve`, which uses 'full'. + propagate_mask : bool + If True, then a result element is masked if any masked element contributes + towards it. If False, then a result element is only masked if no non-masked + element contribute towards it + + Returns + ------- + out : MaskedArray + Discrete cross-correlation of `a` and `v`. + + See Also + -------- + numpy.correlate : Equivalent function in the top-level NumPy module. + + Examples + -------- + Basic correlation: + + >>> a = np.ma.array([1, 2, 3]) + >>> v = np.ma.array([0, 1, 0]) + >>> np.ma.correlate(a, v, mode='valid') + masked_array(data=[2], + mask=[False], + fill_value=999999) + + Correlation with masked elements: + + >>> a = np.ma.array([1, 2, 3], mask=[False, True, False]) + >>> v = np.ma.array([0, 1, 0]) + >>> np.ma.correlate(a, v, mode='valid', propagate_mask=True) + masked_array(data=[--], + mask=[ True], + fill_value=999999, + dtype=int64) + + Correlation with different modes and mixed array types: + + >>> a = np.ma.array([1, 2, 3]) + >>> v = np.ma.array([0, 1, 0]) + >>> np.ma.correlate(a, v, mode='full') + masked_array(data=[0, 1, 2, 3, 0], + mask=[False, False, False, False, False], + fill_value=999999) + + """ + return _convolve_or_correlate(np.correlate, a, v, mode, propagate_mask) + + +def convolve(a, v, mode='full', propagate_mask=True): + """ + Returns the discrete, linear convolution of two one-dimensional sequences. + + Parameters + ---------- + a, v : array_like + Input sequences. + mode : {'valid', 'same', 'full'}, optional + Refer to the `np.convolve` docstring. + propagate_mask : bool + If True, then if any masked element is included in the sum for a result + element, then the result is masked. + If False, then the result element is only masked if no non-masked cells + contribute towards it + + Returns + ------- + out : MaskedArray + Discrete, linear convolution of `a` and `v`. + + See Also + -------- + numpy.convolve : Equivalent function in the top-level NumPy module. + """ + return _convolve_or_correlate(np.convolve, a, v, mode, propagate_mask) + + +def allequal(a, b, fill_value=True): + """ + Return True if all entries of a and b are equal, using + fill_value as a truth value where either or both are masked. + + Parameters + ---------- + a, b : array_like + Input arrays to compare. + fill_value : bool, optional + Whether masked values in a or b are considered equal (True) or not + (False). + + Returns + ------- + y : bool + Returns True if the two arrays are equal within the given + tolerance, False otherwise. If either array contains NaN, + then False is returned. + + See Also + -------- + all, any + numpy.ma.allclose + + Examples + -------- + >>> import numpy as np + >>> a = np.ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1]) + >>> a + masked_array(data=[10000000000.0, 1e-07, --], + mask=[False, False, True], + fill_value=1e+20) + + >>> b = np.array([1e10, 1e-7, -42.0]) + >>> b + array([ 1.00000000e+10, 1.00000000e-07, -4.20000000e+01]) + >>> np.ma.allequal(a, b, fill_value=False) + False + >>> np.ma.allequal(a, b) + True + + """ + m = mask_or(getmask(a), getmask(b)) + if m is nomask: + x = getdata(a) + y = getdata(b) + d = umath.equal(x, y) + return d.all() + elif fill_value: + x = getdata(a) + y = getdata(b) + d = umath.equal(x, y) + dm = array(d, mask=m, copy=False) + return dm.filled(True).all(None) + else: + return False + + +def allclose(a, b, masked_equal=True, rtol=1e-5, atol=1e-8): + """ + Returns True if two arrays are element-wise equal within a tolerance. + + This function is equivalent to `allclose` except that masked values + are treated as equal (default) or unequal, depending on the `masked_equal` + argument. + + Parameters + ---------- + a, b : array_like + Input arrays to compare. + masked_equal : bool, optional + Whether masked values in `a` and `b` are considered equal (True) or not + (False). They are considered equal by default. + rtol : float, optional + Relative tolerance. The relative difference is equal to ``rtol * b``. + Default is 1e-5. + atol : float, optional + Absolute tolerance. The absolute difference is equal to `atol`. + Default is 1e-8. + + Returns + ------- + y : bool + Returns True if the two arrays are equal within the given + tolerance, False otherwise. If either array contains NaN, then + False is returned. + + See Also + -------- + all, any + numpy.allclose : the non-masked `allclose`. + + Notes + ----- + If the following equation is element-wise True, then `allclose` returns + True:: + + absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`)) + + Return True if all elements of `a` and `b` are equal subject to + given tolerances. + + Examples + -------- + >>> import numpy as np + >>> a = np.ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1]) + >>> a + masked_array(data=[10000000000.0, 1e-07, --], + mask=[False, False, True], + fill_value=1e+20) + >>> b = np.ma.array([1e10, 1e-8, -42.0], mask=[0, 0, 1]) + >>> np.ma.allclose(a, b) + False + + >>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1]) + >>> b = np.ma.array([1.00001e10, 1e-9, -42.0], mask=[0, 0, 1]) + >>> np.ma.allclose(a, b) + True + >>> np.ma.allclose(a, b, masked_equal=False) + False + + Masked values are not compared directly. + + >>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1]) + >>> b = np.ma.array([1.00001e10, 1e-9, 42.0], mask=[0, 0, 1]) + >>> np.ma.allclose(a, b) + True + >>> np.ma.allclose(a, b, masked_equal=False) + False + + """ + x = masked_array(a, copy=False) + y = masked_array(b, copy=False) + + # make sure y is an inexact type to avoid abs(MIN_INT); will cause + # casting of x later. + # NOTE: We explicitly allow timedelta, which used to work. This could + # possibly be deprecated. See also gh-18286. + # timedelta works if `atol` is an integer or also a timedelta. + # Although, the default tolerances are unlikely to be useful + if y.dtype.kind != "m": + dtype = np.result_type(y, 1.) + if y.dtype != dtype: + y = masked_array(y, dtype=dtype, copy=False) + + m = mask_or(getmask(x), getmask(y)) + xinf = np.isinf(masked_array(x, copy=False, mask=m)).filled(False) + # If we have some infs, they should fall at the same place. + if not np.all(xinf == filled(np.isinf(y), False)): + return False + # No infs at all + if not np.any(xinf): + d = filled(less_equal(absolute(x - y), atol + rtol * absolute(y)), + masked_equal) + return np.all(d) + + if not np.all(filled(x[xinf] == y[xinf], masked_equal)): + return False + x = x[~xinf] + y = y[~xinf] + + d = filled(less_equal(absolute(x - y), atol + rtol * absolute(y)), + masked_equal) + + return np.all(d) + + +def asarray(a, dtype=None, order=None): + """ + Convert the input to a masked array of the given data-type. + + No copy is performed if the input is already an `ndarray`. If `a` is + a subclass of `MaskedArray`, a base class `MaskedArray` is returned. + + Parameters + ---------- + a : array_like + Input data, in any form that can be converted to a masked array. This + includes lists, lists of tuples, tuples, tuples of tuples, tuples + of lists, ndarrays and masked arrays. + dtype : dtype, optional + By default, the data-type is inferred from the input data. + order : {'C', 'F'}, optional + Whether to use row-major ('C') or column-major ('FORTRAN') memory + representation. Default is 'C'. + + Returns + ------- + out : MaskedArray + Masked array interpretation of `a`. + + See Also + -------- + asanyarray : Similar to `asarray`, but conserves subclasses. + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(10.).reshape(2, 5) + >>> x + array([[0., 1., 2., 3., 4.], + [5., 6., 7., 8., 9.]]) + >>> np.ma.asarray(x) + masked_array( + data=[[0., 1., 2., 3., 4.], + [5., 6., 7., 8., 9.]], + mask=False, + fill_value=1e+20) + >>> type(np.ma.asarray(x)) + + + """ + order = order or 'C' + return masked_array(a, dtype=dtype, copy=False, keep_mask=True, + subok=False, order=order) + + +def asanyarray(a, dtype=None): + """ + Convert the input to a masked array, conserving subclasses. + + If `a` is a subclass of `MaskedArray`, its class is conserved. + No copy is performed if the input is already an `ndarray`. + + Parameters + ---------- + a : array_like + Input data, in any form that can be converted to an array. + dtype : dtype, optional + By default, the data-type is inferred from the input data. + order : {'C', 'F'}, optional + Whether to use row-major ('C') or column-major ('FORTRAN') memory + representation. Default is 'C'. + + Returns + ------- + out : MaskedArray + MaskedArray interpretation of `a`. + + See Also + -------- + asarray : Similar to `asanyarray`, but does not conserve subclass. + + Examples + -------- + >>> import numpy as np + >>> x = np.arange(10.).reshape(2, 5) + >>> x + array([[0., 1., 2., 3., 4.], + [5., 6., 7., 8., 9.]]) + >>> np.ma.asanyarray(x) + masked_array( + data=[[0., 1., 2., 3., 4.], + [5., 6., 7., 8., 9.]], + mask=False, + fill_value=1e+20) + >>> type(np.ma.asanyarray(x)) + + + """ + # workaround for #8666, to preserve identity. Ideally the bottom line + # would handle this for us. + if isinstance(a, MaskedArray) and (dtype is None or dtype == a.dtype): + return a + return masked_array(a, dtype=dtype, copy=False, keep_mask=True, subok=True) + + +############################################################################## +# Pickling # +############################################################################## + + +def fromfile(file, dtype=float, count=-1, sep=''): + raise NotImplementedError( + "fromfile() not yet implemented for a MaskedArray.") + + +def fromflex(fxarray): + """ + Build a masked array from a suitable flexible-type array. + + The input array has to have a data-type with ``_data`` and ``_mask`` + fields. This type of array is output by `MaskedArray.toflex`. + + Parameters + ---------- + fxarray : ndarray + The structured input array, containing ``_data`` and ``_mask`` + fields. If present, other fields are discarded. + + Returns + ------- + result : MaskedArray + The constructed masked array. + + See Also + -------- + MaskedArray.toflex : Build a flexible-type array from a masked array. + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[0] + [1, 0] * 4) + >>> rec = x.toflex() + >>> rec + array([[(0, False), (1, True), (2, False)], + [(3, True), (4, False), (5, True)], + [(6, False), (7, True), (8, False)]], + dtype=[('_data', '>> x2 = np.ma.fromflex(rec) + >>> x2 + masked_array( + data=[[0, --, 2], + [--, 4, --], + [6, --, 8]], + mask=[[False, True, False], + [ True, False, True], + [False, True, False]], + fill_value=999999) + + Extra fields can be present in the structured array but are discarded: + + >>> dt = [('_data', '>> rec2 = np.zeros((2, 2), dtype=dt) + >>> rec2 + array([[(0, False, 0.), (0, False, 0.)], + [(0, False, 0.), (0, False, 0.)]], + dtype=[('_data', '>> y = np.ma.fromflex(rec2) + >>> y + masked_array( + data=[[0, 0], + [0, 0]], + mask=[[False, False], + [False, False]], + fill_value=np.int64(999999), + dtype=int32) + + """ + return masked_array(fxarray['_data'], mask=fxarray['_mask']) + + +class _convert2ma: + + """ + Convert functions from numpy to numpy.ma. + + Parameters + ---------- + _methodname : string + Name of the method to transform. + + """ + __doc__ = None + + def __init__(self, funcname, np_ret, np_ma_ret, params=None): + self._func = getattr(np, funcname) + self.__doc__ = self.getdoc(np_ret, np_ma_ret) + self._extras = params or {} + + def getdoc(self, np_ret, np_ma_ret): + "Return the doc of the function (from the doc of the method)." + doc = getattr(self._func, '__doc__', None) + sig = get_object_signature(self._func) + if doc: + doc = self._replace_return_type(doc, np_ret, np_ma_ret) + # Add the signature of the function at the beginning of the doc + if sig: + sig = f"{self._func.__name__}{sig}\n" + doc = sig + doc + return doc + + def _replace_return_type(self, doc, np_ret, np_ma_ret): + """ + Replace documentation of ``np`` function's return type. + + Replaces it with the proper type for the ``np.ma`` function. + + Parameters + ---------- + doc : str + The documentation of the ``np`` method. + np_ret : str + The return type string of the ``np`` method that we want to + replace. (e.g. "out : ndarray") + np_ma_ret : str + The return type string of the ``np.ma`` method. + (e.g. "out : MaskedArray") + """ + if np_ret not in doc: + raise RuntimeError( + f"Failed to replace `{np_ret}` with `{np_ma_ret}`. " + f"The documentation string for return type, {np_ret}, is not " + f"found in the docstring for `np.{self._func.__name__}`. " + f"Fix the docstring for `np.{self._func.__name__}` or " + "update the expected string for return type." + ) + + return doc.replace(np_ret, np_ma_ret) + + def __call__(self, *args, **params): + # Find the common parameters to the call and the definition + _extras = self._extras + common_params = set(params).intersection(_extras) + # Drop the common parameters from the call + for p in common_params: + _extras[p] = params.pop(p) + # Get the result + result = self._func.__call__(*args, **params).view(MaskedArray) + if "fill_value" in common_params: + result.fill_value = _extras.get("fill_value", None) + if "hardmask" in common_params: + result._hardmask = bool(_extras.get("hard_mask", False)) + return result + + +arange = _convert2ma( + 'arange', + params={'fill_value': None, 'hardmask': False}, + np_ret='arange : ndarray', + np_ma_ret='arange : MaskedArray', +) +clip = _convert2ma( + 'clip', + params={'fill_value': None, 'hardmask': False}, + np_ret='clipped_array : ndarray', + np_ma_ret='clipped_array : MaskedArray', +) +empty = _convert2ma( + 'empty', + params={'fill_value': None, 'hardmask': False}, + np_ret='out : ndarray', + np_ma_ret='out : MaskedArray', +) +empty_like = _convert2ma( + 'empty_like', + np_ret='out : ndarray', + np_ma_ret='out : MaskedArray', +) +frombuffer = _convert2ma( + 'frombuffer', + np_ret='out : ndarray', + np_ma_ret='out: MaskedArray', +) +fromfunction = _convert2ma( + 'fromfunction', + np_ret='fromfunction : any', + np_ma_ret='fromfunction: MaskedArray', +) +identity = _convert2ma( + 'identity', + params={'fill_value': None, 'hardmask': False}, + np_ret='out : ndarray', + np_ma_ret='out : MaskedArray', +) +indices = _convert2ma( + 'indices', + params={'fill_value': None, 'hardmask': False}, + np_ret='grid : one ndarray or tuple of ndarrays', + np_ma_ret='grid : one MaskedArray or tuple of MaskedArrays', +) +ones = _convert2ma( + 'ones', + params={'fill_value': None, 'hardmask': False}, + np_ret='out : ndarray', + np_ma_ret='out : MaskedArray', +) +ones_like = _convert2ma( + 'ones_like', + np_ret='out : ndarray', + np_ma_ret='out : MaskedArray', +) +squeeze = _convert2ma( + 'squeeze', + params={'fill_value': None, 'hardmask': False}, + np_ret='squeezed : ndarray', + np_ma_ret='squeezed : MaskedArray', +) +zeros = _convert2ma( + 'zeros', + params={'fill_value': None, 'hardmask': False}, + np_ret='out : ndarray', + np_ma_ret='out : MaskedArray', +) +zeros_like = _convert2ma( + 'zeros_like', + np_ret='out : ndarray', + np_ma_ret='out : MaskedArray', +) + + +def append(a, b, axis=None): + """Append values to the end of an array. + + Parameters + ---------- + a : array_like + Values are appended to a copy of this array. + b : array_like + These values are appended to a copy of `a`. It must be of the + correct shape (the same shape as `a`, excluding `axis`). If `axis` + is not specified, `b` can be any shape and will be flattened + before use. + axis : int, optional + The axis along which `v` are appended. If `axis` is not given, + both `a` and `b` are flattened before use. + + Returns + ------- + append : MaskedArray + A copy of `a` with `b` appended to `axis`. Note that `append` + does not occur in-place: a new array is allocated and filled. If + `axis` is None, the result is a flattened array. + + See Also + -------- + numpy.append : Equivalent function in the top-level NumPy module. + + Examples + -------- + >>> import numpy as np + >>> import numpy.ma as ma + >>> a = ma.masked_values([1, 2, 3], 2) + >>> b = ma.masked_values([[4, 5, 6], [7, 8, 9]], 7) + >>> ma.append(a, b) + masked_array(data=[1, --, 3, 4, 5, 6, --, 8, 9], + mask=[False, True, False, False, False, False, True, False, + False], + fill_value=999999) + """ + return concatenate([a, b], axis) diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/core.pyi b/.venv/lib/python3.12/site-packages/numpy/ma/core.pyi new file mode 100644 index 0000000..089469d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/ma/core.pyi @@ -0,0 +1,1462 @@ +# pyright: reportIncompatibleMethodOverride=false +# ruff: noqa: ANN001, ANN002, ANN003, ANN201, ANN202 ANN204, ANN401 + +from collections.abc import Sequence +from typing import Any, Literal, Self, SupportsIndex, TypeAlias, overload + +from _typeshed import Incomplete +from typing_extensions import TypeIs, TypeVar + +import numpy as np +from numpy import ( + _HasDTypeWithRealAndImag, + _ModeKind, + _OrderKACF, + _PartitionKind, + _SortKind, + amax, + amin, + bool_, + bytes_, + character, + complexfloating, + datetime64, + dtype, + dtypes, + expand_dims, + float64, + floating, + generic, + int_, + integer, + intp, + ndarray, + object_, + str_, + timedelta64, +) +from numpy._globals import _NoValueType +from numpy._typing import ( + ArrayLike, + NDArray, + _AnyShape, + _ArrayLike, + _ArrayLikeBool_co, + _ArrayLikeBytes_co, + _ArrayLikeComplex_co, + _ArrayLikeFloat_co, + _ArrayLikeInt, + _ArrayLikeInt_co, + _ArrayLikeStr_co, + _ArrayLikeString_co, + _ArrayLikeTD64_co, + _DTypeLikeBool, + _IntLike_co, + _ScalarLike_co, + _Shape, + _ShapeLike, +) + +__all__ = [ + "MAError", + "MaskError", + "MaskType", + "MaskedArray", + "abs", + "absolute", + "add", + "all", + "allclose", + "allequal", + "alltrue", + "amax", + "amin", + "angle", + "anom", + "anomalies", + "any", + "append", + "arange", + "arccos", + "arccosh", + "arcsin", + "arcsinh", + "arctan", + "arctan2", + "arctanh", + "argmax", + "argmin", + "argsort", + "around", + "array", + "asanyarray", + "asarray", + "bitwise_and", + "bitwise_or", + "bitwise_xor", + "bool_", + "ceil", + "choose", + "clip", + "common_fill_value", + "compress", + "compressed", + "concatenate", + "conjugate", + "convolve", + "copy", + "correlate", + "cos", + "cosh", + "count", + "cumprod", + "cumsum", + "default_fill_value", + "diag", + "diagonal", + "diff", + "divide", + "empty", + "empty_like", + "equal", + "exp", + "expand_dims", + "fabs", + "filled", + "fix_invalid", + "flatten_mask", + "flatten_structured_array", + "floor", + "floor_divide", + "fmod", + "frombuffer", + "fromflex", + "fromfunction", + "getdata", + "getmask", + "getmaskarray", + "greater", + "greater_equal", + "harden_mask", + "hypot", + "identity", + "ids", + "indices", + "inner", + "innerproduct", + "isMA", + "isMaskedArray", + "is_mask", + "is_masked", + "isarray", + "left_shift", + "less", + "less_equal", + "log", + "log2", + "log10", + "logical_and", + "logical_not", + "logical_or", + "logical_xor", + "make_mask", + "make_mask_descr", + "make_mask_none", + "mask_or", + "masked", + "masked_array", + "masked_equal", + "masked_greater", + "masked_greater_equal", + "masked_inside", + "masked_invalid", + "masked_less", + "masked_less_equal", + "masked_not_equal", + "masked_object", + "masked_outside", + "masked_print_option", + "masked_singleton", + "masked_values", + "masked_where", + "max", + "maximum", + "maximum_fill_value", + "mean", + "min", + "minimum", + "minimum_fill_value", + "mod", + "multiply", + "mvoid", + "ndim", + "negative", + "nomask", + "nonzero", + "not_equal", + "ones", + "ones_like", + "outer", + "outerproduct", + "power", + "prod", + "product", + "ptp", + "put", + "putmask", + "ravel", + "remainder", + "repeat", + "reshape", + "resize", + "right_shift", + "round", + "round_", + "set_fill_value", + "shape", + "sin", + "sinh", + "size", + "soften_mask", + "sometrue", + "sort", + "sqrt", + "squeeze", + "std", + "subtract", + "sum", + "swapaxes", + "take", + "tan", + "tanh", + "trace", + "transpose", + "true_divide", + "var", + "where", + "zeros", + "zeros_like", +] + +_ShapeT = TypeVar("_ShapeT", bound=_Shape) +_ShapeT_co = TypeVar("_ShapeT_co", bound=_Shape, default=_AnyShape, covariant=True) +_DTypeT = TypeVar("_DTypeT", bound=dtype) +_DTypeT_co = TypeVar("_DTypeT_co", bound=dtype, default=dtype, covariant=True) +_ArrayT = TypeVar("_ArrayT", bound=ndarray[Any, Any]) +_ScalarT = TypeVar("_ScalarT", bound=generic) +_ScalarT_co = TypeVar("_ScalarT_co", bound=generic, covariant=True) +# A subset of `MaskedArray` that can be parametrized w.r.t. `np.generic` +_MaskedArray: TypeAlias = MaskedArray[_AnyShape, dtype[_ScalarT]] +_Array1D: TypeAlias = np.ndarray[tuple[int], np.dtype[_ScalarT]] + +MaskType = bool_ +nomask: bool_[Literal[False]] + +class MaskedArrayFutureWarning(FutureWarning): ... +class MAError(Exception): ... +class MaskError(MAError): ... + +def default_fill_value(obj): ... +def minimum_fill_value(obj): ... +def maximum_fill_value(obj): ... +def set_fill_value(a, fill_value): ... +def common_fill_value(a, b): ... +@overload +def filled(a: ndarray[_ShapeT_co, _DTypeT_co], fill_value: _ScalarLike_co | None = None) -> ndarray[_ShapeT_co, _DTypeT_co]: ... +@overload +def filled(a: _ArrayLike[_ScalarT_co], fill_value: _ScalarLike_co | None = None) -> NDArray[_ScalarT_co]: ... +@overload +def filled(a: ArrayLike, fill_value: _ScalarLike_co | None = None) -> NDArray[Any]: ... +def getdata(a, subok=...): ... +get_data = getdata + +def fix_invalid(a, mask=..., copy=..., fill_value=...): ... + +class _MaskedUFunc: + f: Any + __doc__: Any + __name__: Any + def __init__(self, ufunc): ... + +class _MaskedUnaryOperation(_MaskedUFunc): + fill: Any + domain: Any + def __init__(self, mufunc, fill=..., domain=...): ... + def __call__(self, a, *args, **kwargs): ... + +class _MaskedBinaryOperation(_MaskedUFunc): + fillx: Any + filly: Any + def __init__(self, mbfunc, fillx=..., filly=...): ... + def __call__(self, a, b, *args, **kwargs): ... + def reduce(self, target, axis=..., dtype=...): ... + def outer(self, a, b): ... + def accumulate(self, target, axis=...): ... + +class _DomainedBinaryOperation(_MaskedUFunc): + domain: Any + fillx: Any + filly: Any + def __init__(self, dbfunc, domain, fillx=..., filly=...): ... + def __call__(self, a, b, *args, **kwargs): ... + +exp: _MaskedUnaryOperation +conjugate: _MaskedUnaryOperation +sin: _MaskedUnaryOperation +cos: _MaskedUnaryOperation +arctan: _MaskedUnaryOperation +arcsinh: _MaskedUnaryOperation +sinh: _MaskedUnaryOperation +cosh: _MaskedUnaryOperation +tanh: _MaskedUnaryOperation +abs: _MaskedUnaryOperation +absolute: _MaskedUnaryOperation +angle: _MaskedUnaryOperation +fabs: _MaskedUnaryOperation +negative: _MaskedUnaryOperation +floor: _MaskedUnaryOperation +ceil: _MaskedUnaryOperation +around: _MaskedUnaryOperation +logical_not: _MaskedUnaryOperation +sqrt: _MaskedUnaryOperation +log: _MaskedUnaryOperation +log2: _MaskedUnaryOperation +log10: _MaskedUnaryOperation +tan: _MaskedUnaryOperation +arcsin: _MaskedUnaryOperation +arccos: _MaskedUnaryOperation +arccosh: _MaskedUnaryOperation +arctanh: _MaskedUnaryOperation + +add: _MaskedBinaryOperation +subtract: _MaskedBinaryOperation +multiply: _MaskedBinaryOperation +arctan2: _MaskedBinaryOperation +equal: _MaskedBinaryOperation +not_equal: _MaskedBinaryOperation +less_equal: _MaskedBinaryOperation +greater_equal: _MaskedBinaryOperation +less: _MaskedBinaryOperation +greater: _MaskedBinaryOperation +logical_and: _MaskedBinaryOperation +def alltrue(target: ArrayLike, axis: SupportsIndex | None = 0, dtype: _DTypeLikeBool | None = None) -> Incomplete: ... +logical_or: _MaskedBinaryOperation +def sometrue(target: ArrayLike, axis: SupportsIndex | None = 0, dtype: _DTypeLikeBool | None = None) -> Incomplete: ... +logical_xor: _MaskedBinaryOperation +bitwise_and: _MaskedBinaryOperation +bitwise_or: _MaskedBinaryOperation +bitwise_xor: _MaskedBinaryOperation +hypot: _MaskedBinaryOperation + +divide: _DomainedBinaryOperation +true_divide: _DomainedBinaryOperation +floor_divide: _DomainedBinaryOperation +remainder: _DomainedBinaryOperation +fmod: _DomainedBinaryOperation +mod: _DomainedBinaryOperation + +def make_mask_descr(ndtype): ... + +@overload +def getmask(a: _ScalarLike_co) -> bool_: ... +@overload +def getmask(a: MaskedArray[_ShapeT_co, Any]) -> np.ndarray[_ShapeT_co, dtype[bool_]] | bool_: ... +@overload +def getmask(a: ArrayLike) -> NDArray[bool_] | bool_: ... + +get_mask = getmask + +def getmaskarray(arr): ... + +# It's sufficient for `m` to have dtype with type: `type[np.bool_]`, +# which isn't necessarily a ndarray. Please open an issue if this causes issues. +def is_mask(m: object) -> TypeIs[NDArray[bool_]]: ... + +def make_mask(m, copy=..., shrink=..., dtype=...): ... +def make_mask_none(newshape, dtype=...): ... +def mask_or(m1, m2, copy=..., shrink=...): ... +def flatten_mask(mask): ... +def masked_where(condition, a, copy=...): ... +def masked_greater(x, value, copy=...): ... +def masked_greater_equal(x, value, copy=...): ... +def masked_less(x, value, copy=...): ... +def masked_less_equal(x, value, copy=...): ... +def masked_not_equal(x, value, copy=...): ... +def masked_equal(x, value, copy=...): ... +def masked_inside(x, v1, v2, copy=...): ... +def masked_outside(x, v1, v2, copy=...): ... +def masked_object(x, value, copy=..., shrink=...): ... +def masked_values(x, value, rtol=..., atol=..., copy=..., shrink=...): ... +def masked_invalid(a, copy=...): ... + +class _MaskedPrintOption: + def __init__(self, display): ... + def display(self): ... + def set_display(self, s): ... + def enabled(self): ... + def enable(self, shrink=...): ... + +masked_print_option: _MaskedPrintOption + +def flatten_structured_array(a): ... + +class MaskedIterator: + ma: Any + dataiter: Any + maskiter: Any + def __init__(self, ma): ... + def __iter__(self): ... + def __getitem__(self, indx): ... + def __setitem__(self, index, value): ... + def __next__(self): ... + +class MaskedArray(ndarray[_ShapeT_co, _DTypeT_co]): + __array_priority__: Any + def __new__(cls, data=..., mask=..., dtype=..., copy=..., subok=..., ndmin=..., fill_value=..., keep_mask=..., hard_mask=..., shrink=..., order=...): ... + def __array_finalize__(self, obj): ... + def __array_wrap__(self, obj, context=..., return_scalar=...): ... + def view(self, dtype=..., type=..., fill_value=...): ... + def __getitem__(self, indx): ... + def __setitem__(self, indx, value): ... + @property + def shape(self) -> _ShapeT_co: ... + @shape.setter + def shape(self: MaskedArray[_ShapeT, Any], shape: _ShapeT, /) -> None: ... + def __setmask__(self, mask: _ArrayLikeBool_co, copy: bool = False) -> None: ... + @property + def mask(self) -> NDArray[MaskType] | MaskType: ... + @mask.setter + def mask(self, value: _ArrayLikeBool_co, /) -> None: ... + @property + def recordmask(self): ... + @recordmask.setter + def recordmask(self, mask): ... + def harden_mask(self) -> Self: ... + def soften_mask(self) -> Self: ... + @property + def hardmask(self) -> bool: ... + def unshare_mask(self) -> Self: ... + @property + def sharedmask(self) -> bool: ... + def shrink_mask(self) -> Self: ... + @property + def baseclass(self) -> type[NDArray[Any]]: ... + data: Any + @property + def flat(self): ... + @flat.setter + def flat(self, value): ... + @property + def fill_value(self): ... + @fill_value.setter + def fill_value(self, value=...): ... + get_fill_value: Any + set_fill_value: Any + def filled(self, /, fill_value: _ScalarLike_co | None = None) -> ndarray[_ShapeT_co, _DTypeT_co]: ... + def compressed(self) -> ndarray[tuple[int], _DTypeT_co]: ... + def compress(self, condition, axis=..., out=...): ... + def __eq__(self, other): ... + def __ne__(self, other): ... + def __ge__(self, other: ArrayLike, /) -> _MaskedArray[bool_]: ... # type: ignore[override] + def __gt__(self, other: ArrayLike, /) -> _MaskedArray[bool_]: ... # type: ignore[override] + def __le__(self, other: ArrayLike, /) -> _MaskedArray[bool_]: ... # type: ignore[override] + def __lt__(self, other: ArrayLike, /) -> _MaskedArray[bool_]: ... # type: ignore[override] + def __add__(self, other): ... + def __radd__(self, other): ... + def __sub__(self, other): ... + def __rsub__(self, other): ... + def __mul__(self, other): ... + def __rmul__(self, other): ... + def __truediv__(self, other): ... + def __rtruediv__(self, other): ... + def __floordiv__(self, other): ... + def __rfloordiv__(self, other): ... + def __pow__(self, other, mod: None = None, /): ... + def __rpow__(self, other, mod: None = None, /): ... + + # Keep in sync with `ndarray.__iadd__` + @overload + def __iadd__( + self: _MaskedArray[np.bool], other: _ArrayLikeBool_co, / + ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __iadd__(self: _MaskedArray[integer], other: _ArrayLikeInt_co, /) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __iadd__( + self: _MaskedArray[floating], other: _ArrayLikeFloat_co, / + ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __iadd__( + self: _MaskedArray[complexfloating], other: _ArrayLikeComplex_co, / + ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __iadd__( + self: _MaskedArray[timedelta64 | datetime64], other: _ArrayLikeTD64_co, / + ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __iadd__(self: _MaskedArray[bytes_], other: _ArrayLikeBytes_co, /) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __iadd__( + self: MaskedArray[Any, dtype[str_] | dtypes.StringDType], + other: _ArrayLikeStr_co | _ArrayLikeString_co, + /, + ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __iadd__( + self: _MaskedArray[object_], other: Any, / + ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + + # Keep in sync with `ndarray.__isub__` + @overload + def __isub__(self: _MaskedArray[integer], other: _ArrayLikeInt_co, /) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __isub__( + self: _MaskedArray[floating], other: _ArrayLikeFloat_co, / + ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __isub__( + self: _MaskedArray[complexfloating], other: _ArrayLikeComplex_co, / + ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __isub__( + self: _MaskedArray[timedelta64 | datetime64], other: _ArrayLikeTD64_co, / + ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __isub__( + self: _MaskedArray[object_], other: Any, / + ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + + # Keep in sync with `ndarray.__imul__` + @overload + def __imul__( + self: _MaskedArray[np.bool], other: _ArrayLikeBool_co, / + ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __imul__( + self: MaskedArray[Any, dtype[integer] | dtype[character] | dtypes.StringDType], other: _ArrayLikeInt_co, / + ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __imul__( + self: _MaskedArray[floating | timedelta64], other: _ArrayLikeFloat_co, / + ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __imul__( + self: _MaskedArray[complexfloating], other: _ArrayLikeComplex_co, / + ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __imul__( + self: _MaskedArray[object_], other: Any, / + ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + + # Keep in sync with `ndarray.__ifloordiv__` + @overload + def __ifloordiv__(self: _MaskedArray[integer], other: _ArrayLikeInt_co, /) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __ifloordiv__( + self: _MaskedArray[floating | timedelta64], other: _ArrayLikeFloat_co, / + ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __ifloordiv__( + self: _MaskedArray[object_], other: Any, / + ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + + # Keep in sync with `ndarray.__itruediv__` + @overload + def __itruediv__( + self: _MaskedArray[floating | timedelta64], other: _ArrayLikeFloat_co, / + ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __itruediv__( + self: _MaskedArray[complexfloating], + other: _ArrayLikeComplex_co, + /, + ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __itruediv__( + self: _MaskedArray[object_], other: Any, / + ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + + # Keep in sync with `ndarray.__ipow__` + @overload + def __ipow__(self: _MaskedArray[integer], other: _ArrayLikeInt_co, /) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __ipow__( + self: _MaskedArray[floating], other: _ArrayLikeFloat_co, / + ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __ipow__( + self: _MaskedArray[complexfloating], other: _ArrayLikeComplex_co, / + ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + @overload + def __ipow__( + self: _MaskedArray[object_], other: Any, / + ) -> MaskedArray[_ShapeT_co, _DTypeT_co]: ... + + # + @property # type: ignore[misc] + def imag(self: _HasDTypeWithRealAndImag[object, _ScalarT], /) -> MaskedArray[_ShapeT_co, dtype[_ScalarT]]: ... + get_imag: Any + @property # type: ignore[misc] + def real(self: _HasDTypeWithRealAndImag[_ScalarT, object], /) -> MaskedArray[_ShapeT_co, dtype[_ScalarT]]: ... + get_real: Any + + # keep in sync with `np.ma.count` + @overload + def count(self, axis: None = None, keepdims: Literal[False] | _NoValueType = ...) -> int: ... + @overload + def count(self, axis: _ShapeLike, keepdims: bool | _NoValueType = ...) -> NDArray[int_]: ... + @overload + def count(self, axis: _ShapeLike | None = ..., *, keepdims: Literal[True]) -> NDArray[int_]: ... + @overload + def count(self, axis: _ShapeLike | None, keepdims: Literal[True]) -> NDArray[int_]: ... + + def ravel(self, order: _OrderKACF = "C") -> MaskedArray[tuple[int], _DTypeT_co]: ... + def reshape(self, *s, **kwargs): ... + def resize(self, newshape, refcheck=..., order=...): ... + def put(self, indices: _ArrayLikeInt_co, values: ArrayLike, mode: _ModeKind = "raise") -> None: ... + def ids(self) -> tuple[int, int]: ... + def iscontiguous(self) -> bool: ... + + @overload + def all( + self, + axis: None = None, + out: None = None, + keepdims: Literal[False] | _NoValueType = ..., + ) -> bool_: ... + @overload + def all( + self, + axis: _ShapeLike | None = None, + out: None = None, + *, + keepdims: Literal[True], + ) -> _MaskedArray[bool_]: ... + @overload + def all( + self, + axis: _ShapeLike | None, + out: None, + keepdims: Literal[True], + ) -> _MaskedArray[bool_]: ... + @overload + def all( + self, + axis: _ShapeLike | None = None, + out: None = None, + keepdims: bool | _NoValueType = ..., + ) -> bool_ | _MaskedArray[bool_]: ... + @overload + def all( + self, + axis: _ShapeLike | None = None, + *, + out: _ArrayT, + keepdims: bool | _NoValueType = ..., + ) -> _ArrayT: ... + @overload + def all( + self, + axis: _ShapeLike | None, + out: _ArrayT, + keepdims: bool | _NoValueType = ..., + ) -> _ArrayT: ... + + @overload + def any( + self, + axis: None = None, + out: None = None, + keepdims: Literal[False] | _NoValueType = ..., + ) -> bool_: ... + @overload + def any( + self, + axis: _ShapeLike | None = None, + out: None = None, + *, + keepdims: Literal[True], + ) -> _MaskedArray[bool_]: ... + @overload + def any( + self, + axis: _ShapeLike | None, + out: None, + keepdims: Literal[True], + ) -> _MaskedArray[bool_]: ... + @overload + def any( + self, + axis: _ShapeLike | None = None, + out: None = None, + keepdims: bool | _NoValueType = ..., + ) -> bool_ | _MaskedArray[bool_]: ... + @overload + def any( + self, + axis: _ShapeLike | None = None, + *, + out: _ArrayT, + keepdims: bool | _NoValueType = ..., + ) -> _ArrayT: ... + @overload + def any( + self, + axis: _ShapeLike | None, + out: _ArrayT, + keepdims: bool | _NoValueType = ..., + ) -> _ArrayT: ... + + def nonzero(self) -> tuple[_Array1D[intp], *tuple[_Array1D[intp], ...]]: ... + def trace(self, offset=..., axis1=..., axis2=..., dtype=..., out=...): ... + def dot(self, b, out=..., strict=...): ... + def sum(self, axis=..., dtype=..., out=..., keepdims=...): ... + def cumsum(self, axis=..., dtype=..., out=...): ... + def prod(self, axis=..., dtype=..., out=..., keepdims=...): ... + product: Any + def cumprod(self, axis=..., dtype=..., out=...): ... + def mean(self, axis=..., dtype=..., out=..., keepdims=...): ... + def anom(self, axis=..., dtype=...): ... + def var(self, axis=..., dtype=..., out=..., ddof=..., keepdims=...): ... + def std(self, axis=..., dtype=..., out=..., ddof=..., keepdims=...): ... + def round(self, decimals=..., out=...): ... + def argsort(self, axis=..., kind=..., order=..., endwith=..., fill_value=..., *, stable=...): ... + + # Keep in-sync with np.ma.argmin + @overload # type: ignore[override] + def argmin( + self, + axis: None = None, + fill_value: _ScalarLike_co | None = None, + out: None = None, + *, + keepdims: Literal[False] | _NoValueType = ..., + ) -> intp: ... + @overload + def argmin( + self, + axis: SupportsIndex | None = None, + fill_value: _ScalarLike_co | None = None, + out: None = None, + *, + keepdims: bool | _NoValueType = ..., + ) -> Any: ... + @overload + def argmin( + self, + axis: SupportsIndex | None = None, + fill_value: _ScalarLike_co | None = None, + *, + out: _ArrayT, + keepdims: bool | _NoValueType = ..., + ) -> _ArrayT: ... + @overload + def argmin( + self, + axis: SupportsIndex | None, + fill_value: _ScalarLike_co | None, + out: _ArrayT, + *, + keepdims: bool | _NoValueType = ..., + ) -> _ArrayT: ... + + # Keep in-sync with np.ma.argmax + @overload # type: ignore[override] + def argmax( + self, + axis: None = None, + fill_value: _ScalarLike_co | None = None, + out: None = None, + *, + keepdims: Literal[False] | _NoValueType = ..., + ) -> intp: ... + @overload + def argmax( + self, + axis: SupportsIndex | None = None, + fill_value: _ScalarLike_co | None = None, + out: None = None, + *, + keepdims: bool | _NoValueType = ..., + ) -> Any: ... + @overload + def argmax( + self, + axis: SupportsIndex | None = None, + fill_value: _ScalarLike_co | None = None, + *, + out: _ArrayT, + keepdims: bool | _NoValueType = ..., + ) -> _ArrayT: ... + @overload + def argmax( + self, + axis: SupportsIndex | None, + fill_value: _ScalarLike_co | None, + out: _ArrayT, + *, + keepdims: bool | _NoValueType = ..., + ) -> _ArrayT: ... + + # + def sort( # type: ignore[override] + self, + axis: SupportsIndex = -1, + kind: _SortKind | None = None, + order: str | Sequence[str] | None = None, + endwith: bool | None = True, + fill_value: _ScalarLike_co | None = None, + *, + stable: Literal[False] | None = False, + ) -> None: ... + + # + @overload # type: ignore[override] + def min( + self: _MaskedArray[_ScalarT], + axis: None = None, + out: None = None, + fill_value: _ScalarLike_co | None = None, + keepdims: Literal[False] | _NoValueType = ..., + ) -> _ScalarT: ... + @overload + def min( + self, + axis: _ShapeLike | None = None, + out: None = None, + fill_value: _ScalarLike_co | None = None, + keepdims: bool | _NoValueType = ... + ) -> Any: ... + @overload + def min( + self, + axis: _ShapeLike | None, + out: _ArrayT, + fill_value: _ScalarLike_co | None = None, + keepdims: bool | _NoValueType = ..., + ) -> _ArrayT: ... + @overload + def min( + self, + axis: _ShapeLike | None = None, + *, + out: _ArrayT, + fill_value: _ScalarLike_co | None = None, + keepdims: bool | _NoValueType = ..., + ) -> _ArrayT: ... + + # + @overload # type: ignore[override] + def max( + self: _MaskedArray[_ScalarT], + axis: None = None, + out: None = None, + fill_value: _ScalarLike_co | None = None, + keepdims: Literal[False] | _NoValueType = ..., + ) -> _ScalarT: ... + @overload + def max( + self, + axis: _ShapeLike | None = None, + out: None = None, + fill_value: _ScalarLike_co | None = None, + keepdims: bool | _NoValueType = ... + ) -> Any: ... + @overload + def max( + self, + axis: _ShapeLike | None, + out: _ArrayT, + fill_value: _ScalarLike_co | None = None, + keepdims: bool | _NoValueType = ..., + ) -> _ArrayT: ... + @overload + def max( + self, + axis: _ShapeLike | None = None, + *, + out: _ArrayT, + fill_value: _ScalarLike_co | None = None, + keepdims: bool | _NoValueType = ..., + ) -> _ArrayT: ... + + # + @overload + def ptp( + self: _MaskedArray[_ScalarT], + axis: None = None, + out: None = None, + fill_value: _ScalarLike_co | None = None, + keepdims: Literal[False] = False, + ) -> _ScalarT: ... + @overload + def ptp( + self, + axis: _ShapeLike | None = None, + out: None = None, + fill_value: _ScalarLike_co | None = None, + keepdims: bool = False, + ) -> Any: ... + @overload + def ptp( + self, + axis: _ShapeLike | None, + out: _ArrayT, + fill_value: _ScalarLike_co | None = None, + keepdims: bool = False, + ) -> _ArrayT: ... + @overload + def ptp( + self, + axis: _ShapeLike | None = None, + *, + out: _ArrayT, + fill_value: _ScalarLike_co | None = None, + keepdims: bool = False, + ) -> _ArrayT: ... + + # + @overload + def partition( + self, + /, + kth: _ArrayLikeInt, + axis: SupportsIndex = -1, + kind: _PartitionKind = "introselect", + order: None = None + ) -> None: ... + @overload + def partition( + self: _MaskedArray[np.void], + /, + kth: _ArrayLikeInt, + axis: SupportsIndex = -1, + kind: _PartitionKind = "introselect", + order: str | Sequence[str] | None = None, + ) -> None: ... + + # + @overload + def argpartition( + self, + /, + kth: _ArrayLikeInt, + axis: SupportsIndex | None = -1, + kind: _PartitionKind = "introselect", + order: None = None, + ) -> _MaskedArray[intp]: ... + @overload + def argpartition( + self: _MaskedArray[np.void], + /, + kth: _ArrayLikeInt, + axis: SupportsIndex | None = -1, + kind: _PartitionKind = "introselect", + order: str | Sequence[str] | None = None, + ) -> _MaskedArray[intp]: ... + + # Keep in-sync with np.ma.take + @overload + def take( # type: ignore[overload-overlap] + self: _MaskedArray[_ScalarT], + indices: _IntLike_co, + axis: None = None, + out: None = None, + mode: _ModeKind = 'raise' + ) -> _ScalarT: ... + @overload + def take( + self: _MaskedArray[_ScalarT], + indices: _ArrayLikeInt_co, + axis: SupportsIndex | None = None, + out: None = None, + mode: _ModeKind = 'raise', + ) -> _MaskedArray[_ScalarT]: ... + @overload + def take( + self, + indices: _ArrayLikeInt_co, + axis: SupportsIndex | None, + out: _ArrayT, + mode: _ModeKind = 'raise', + ) -> _ArrayT: ... + @overload + def take( + self, + indices: _ArrayLikeInt_co, + axis: SupportsIndex | None = None, + *, + out: _ArrayT, + mode: _ModeKind = 'raise', + ) -> _ArrayT: ... + + copy: Any + diagonal: Any + flatten: Any + + @overload + def repeat( + self, + repeats: _ArrayLikeInt_co, + axis: None = None, + ) -> MaskedArray[tuple[int], _DTypeT_co]: ... + @overload + def repeat( + self, + repeats: _ArrayLikeInt_co, + axis: SupportsIndex, + ) -> MaskedArray[_AnyShape, _DTypeT_co]: ... + + squeeze: Any + + def swapaxes( + self, + axis1: SupportsIndex, + axis2: SupportsIndex, + / + ) -> MaskedArray[_AnyShape, _DTypeT_co]: ... + + # + def toflex(self) -> Incomplete: ... + def torecords(self) -> Incomplete: ... + def tolist(self, fill_value: Incomplete | None = None) -> Incomplete: ... + def tobytes(self, /, fill_value: Incomplete | None = None, order: _OrderKACF = "C") -> bytes: ... # type: ignore[override] + def tofile(self, /, fid: Incomplete, sep: str = "", format: str = "%s") -> Incomplete: ... + + # + def __reduce__(self): ... + def __deepcopy__(self, memo=...): ... + + # Keep `dtype` at the bottom to avoid name conflicts with `np.dtype` + @property + def dtype(self) -> _DTypeT_co: ... + @dtype.setter + def dtype(self: MaskedArray[_AnyShape, _DTypeT], dtype: _DTypeT, /) -> None: ... + +class mvoid(MaskedArray[_ShapeT_co, _DTypeT_co]): + def __new__( + self, # pyright: ignore[reportSelfClsParameterName] + data, + mask=..., + dtype=..., + fill_value=..., + hardmask=..., + copy=..., + subok=..., + ): ... + def __getitem__(self, indx): ... + def __setitem__(self, indx, value): ... + def __iter__(self): ... + def __len__(self): ... + def filled(self, fill_value=...): ... + def tolist(self): ... + +def isMaskedArray(x): ... +isarray = isMaskedArray +isMA = isMaskedArray + +# 0D float64 array +class MaskedConstant(MaskedArray[_AnyShape, dtype[float64]]): + def __new__(cls): ... + __class__: Any + def __array_finalize__(self, obj): ... + def __array_wrap__(self, obj, context=..., return_scalar=...): ... + def __format__(self, format_spec): ... + def __reduce__(self): ... + def __iop__(self, other): ... + __iadd__: Any + __isub__: Any + __imul__: Any + __ifloordiv__: Any + __itruediv__: Any + __ipow__: Any + def copy(self, *args, **kwargs): ... + def __copy__(self): ... + def __deepcopy__(self, memo): ... + def __setattr__(self, attr, value): ... + +masked: MaskedConstant +masked_singleton: MaskedConstant +masked_array = MaskedArray + +def array( + data, + dtype=..., + copy=..., + order=..., + mask=..., + fill_value=..., + keep_mask=..., + hard_mask=..., + shrink=..., + subok=..., + ndmin=..., +): ... +def is_masked(x: object) -> bool: ... + +class _extrema_operation(_MaskedUFunc): + compare: Any + fill_value_func: Any + def __init__(self, ufunc, compare, fill_value): ... + # NOTE: in practice `b` has a default value, but users should + # explicitly provide a value here as the default is deprecated + def __call__(self, a, b): ... + def reduce(self, target, axis=...): ... + def outer(self, a, b): ... + +@overload +def min( + obj: _ArrayLike[_ScalarT], + axis: None = None, + out: None = None, + fill_value: _ScalarLike_co | None = None, + keepdims: Literal[False] | _NoValueType = ..., +) -> _ScalarT: ... +@overload +def min( + obj: ArrayLike, + axis: _ShapeLike | None = None, + out: None = None, + fill_value: _ScalarLike_co | None = None, + keepdims: bool | _NoValueType = ... +) -> Any: ... +@overload +def min( + obj: ArrayLike, + axis: _ShapeLike | None, + out: _ArrayT, + fill_value: _ScalarLike_co | None = None, + keepdims: bool | _NoValueType = ..., +) -> _ArrayT: ... +@overload +def min( + obj: ArrayLike, + axis: _ShapeLike | None = None, + *, + out: _ArrayT, + fill_value: _ScalarLike_co | None = None, + keepdims: bool | _NoValueType = ..., +) -> _ArrayT: ... + +@overload +def max( + obj: _ArrayLike[_ScalarT], + axis: None = None, + out: None = None, + fill_value: _ScalarLike_co | None = None, + keepdims: Literal[False] | _NoValueType = ..., +) -> _ScalarT: ... +@overload +def max( + obj: ArrayLike, + axis: _ShapeLike | None = None, + out: None = None, + fill_value: _ScalarLike_co | None = None, + keepdims: bool | _NoValueType = ... +) -> Any: ... +@overload +def max( + obj: ArrayLike, + axis: _ShapeLike | None, + out: _ArrayT, + fill_value: _ScalarLike_co | None = None, + keepdims: bool | _NoValueType = ..., +) -> _ArrayT: ... +@overload +def max( + obj: ArrayLike, + axis: _ShapeLike | None = None, + *, + out: _ArrayT, + fill_value: _ScalarLike_co | None = None, + keepdims: bool | _NoValueType = ..., +) -> _ArrayT: ... + +@overload +def ptp( + obj: _ArrayLike[_ScalarT], + axis: None = None, + out: None = None, + fill_value: _ScalarLike_co | None = None, + keepdims: Literal[False] | _NoValueType = ..., +) -> _ScalarT: ... +@overload +def ptp( + obj: ArrayLike, + axis: _ShapeLike | None = None, + out: None = None, + fill_value: _ScalarLike_co | None = None, + keepdims: bool | _NoValueType = ... +) -> Any: ... +@overload +def ptp( + obj: ArrayLike, + axis: _ShapeLike | None, + out: _ArrayT, + fill_value: _ScalarLike_co | None = None, + keepdims: bool | _NoValueType = ..., +) -> _ArrayT: ... +@overload +def ptp( + obj: ArrayLike, + axis: _ShapeLike | None = None, + *, + out: _ArrayT, + fill_value: _ScalarLike_co | None = None, + keepdims: bool | _NoValueType = ..., +) -> _ArrayT: ... + +class _frommethod: + __name__: Any + __doc__: Any + reversed: Any + def __init__(self, methodname, reversed=...): ... + def getdoc(self): ... + def __call__(self, a, *args, **params): ... + +all: _frommethod +anomalies: _frommethod +anom: _frommethod +any: _frommethod +compress: _frommethod +cumprod: _frommethod +cumsum: _frommethod +copy: _frommethod +diagonal: _frommethod +harden_mask: _frommethod +ids: _frommethod +mean: _frommethod +nonzero: _frommethod +prod: _frommethod +product: _frommethod +ravel: _frommethod +repeat: _frommethod +soften_mask: _frommethod +std: _frommethod +sum: _frommethod +swapaxes: _frommethod +trace: _frommethod +var: _frommethod + +@overload +def count(self: ArrayLike, axis: None = None, keepdims: Literal[False] | _NoValueType = ...) -> int: ... +@overload +def count(self: ArrayLike, axis: _ShapeLike, keepdims: bool | _NoValueType = ...) -> NDArray[int_]: ... +@overload +def count(self: ArrayLike, axis: _ShapeLike | None = ..., *, keepdims: Literal[True]) -> NDArray[int_]: ... +@overload +def count(self: ArrayLike, axis: _ShapeLike | None, keepdims: Literal[True]) -> NDArray[int_]: ... + +@overload +def argmin( + self: ArrayLike, + axis: None = None, + fill_value: _ScalarLike_co | None = None, + out: None = None, + *, + keepdims: Literal[False] | _NoValueType = ..., +) -> intp: ... +@overload +def argmin( + self: ArrayLike, + axis: SupportsIndex | None = None, + fill_value: _ScalarLike_co | None = None, + out: None = None, + *, + keepdims: bool | _NoValueType = ..., +) -> Any: ... +@overload +def argmin( + self: ArrayLike, + axis: SupportsIndex | None = None, + fill_value: _ScalarLike_co | None = None, + *, + out: _ArrayT, + keepdims: bool | _NoValueType = ..., +) -> _ArrayT: ... +@overload +def argmin( + self: ArrayLike, + axis: SupportsIndex | None, + fill_value: _ScalarLike_co | None, + out: _ArrayT, + *, + keepdims: bool | _NoValueType = ..., +) -> _ArrayT: ... + +# +@overload +def argmax( + self: ArrayLike, + axis: None = None, + fill_value: _ScalarLike_co | None = None, + out: None = None, + *, + keepdims: Literal[False] | _NoValueType = ..., +) -> intp: ... +@overload +def argmax( + self: ArrayLike, + axis: SupportsIndex | None = None, + fill_value: _ScalarLike_co | None = None, + out: None = None, + *, + keepdims: bool | _NoValueType = ..., +) -> Any: ... +@overload +def argmax( + self: ArrayLike, + axis: SupportsIndex | None = None, + fill_value: _ScalarLike_co | None = None, + *, + out: _ArrayT, + keepdims: bool | _NoValueType = ..., +) -> _ArrayT: ... +@overload +def argmax( + self: ArrayLike, + axis: SupportsIndex | None, + fill_value: _ScalarLike_co | None, + out: _ArrayT, + *, + keepdims: bool | _NoValueType = ..., +) -> _ArrayT: ... + +minimum: _extrema_operation +maximum: _extrema_operation + +@overload +def take( + a: _ArrayLike[_ScalarT], + indices: _IntLike_co, + axis: None = None, + out: None = None, + mode: _ModeKind = 'raise' +) -> _ScalarT: ... +@overload +def take( + a: _ArrayLike[_ScalarT], + indices: _ArrayLikeInt_co, + axis: SupportsIndex | None = None, + out: None = None, + mode: _ModeKind = 'raise', +) -> _MaskedArray[_ScalarT]: ... +@overload +def take( + a: ArrayLike, + indices: _IntLike_co, + axis: SupportsIndex | None = None, + out: None = None, + mode: _ModeKind = 'raise', +) -> Any: ... +@overload +def take( + a: ArrayLike, + indices: _ArrayLikeInt_co, + axis: SupportsIndex | None = None, + out: None = None, + mode: _ModeKind = 'raise', +) -> _MaskedArray[Any]: ... +@overload +def take( + a: ArrayLike, + indices: _ArrayLikeInt_co, + axis: SupportsIndex | None, + out: _ArrayT, + mode: _ModeKind = 'raise', +) -> _ArrayT: ... +@overload +def take( + a: ArrayLike, + indices: _ArrayLikeInt_co, + axis: SupportsIndex | None = None, + *, + out: _ArrayT, + mode: _ModeKind = 'raise', +) -> _ArrayT: ... + +def power(a, b, third=...): ... +def argsort(a, axis=..., kind=..., order=..., endwith=..., fill_value=..., *, stable=...): ... +@overload +def sort( + a: _ArrayT, + axis: SupportsIndex = -1, + kind: _SortKind | None = None, + order: str | Sequence[str] | None = None, + endwith: bool | None = True, + fill_value: _ScalarLike_co | None = None, + *, + stable: Literal[False] | None = False, +) -> _ArrayT: ... +@overload +def sort( + a: ArrayLike, + axis: SupportsIndex = -1, + kind: _SortKind | None = None, + order: str | Sequence[str] | None = None, + endwith: bool | None = True, + fill_value: _ScalarLike_co | None = None, + *, + stable: Literal[False] | None = False, +) -> NDArray[Any]: ... +@overload +def compressed(x: _ArrayLike[_ScalarT_co]) -> _Array1D[_ScalarT_co]: ... +@overload +def compressed(x: ArrayLike) -> _Array1D[Any]: ... +def concatenate(arrays, axis=...): ... +def diag(v, k=...): ... +def left_shift(a, n): ... +def right_shift(a, n): ... +def put(a: NDArray[Any], indices: _ArrayLikeInt_co, values: ArrayLike, mode: _ModeKind = 'raise') -> None: ... +def putmask(a: NDArray[Any], mask: _ArrayLikeBool_co, values: ArrayLike) -> None: ... +def transpose(a, axes=...): ... +def reshape(a, new_shape, order=...): ... +def resize(x, new_shape): ... +def ndim(obj: ArrayLike) -> int: ... +def shape(obj): ... +def size(obj: ArrayLike, axis: SupportsIndex | None = None) -> int: ... +def diff(a, /, n=..., axis=..., prepend=..., append=...): ... +def where(condition, x=..., y=...): ... +def choose(indices, choices, out=..., mode=...): ... +def round_(a, decimals=..., out=...): ... +round = round_ + +def inner(a, b): ... +innerproduct = inner + +def outer(a, b): ... +outerproduct = outer + +def correlate(a, v, mode=..., propagate_mask=...): ... +def convolve(a, v, mode=..., propagate_mask=...): ... + +def allequal(a: ArrayLike, b: ArrayLike, fill_value: bool = True) -> bool: ... + +def allclose(a: ArrayLike, b: ArrayLike, masked_equal: bool = True, rtol: float = 1e-5, atol: float = 1e-8) -> bool: ... + +def asarray(a, dtype=..., order=...): ... +def asanyarray(a, dtype=...): ... +def fromflex(fxarray): ... + +class _convert2ma: + def __init__(self, /, funcname: str, np_ret: str, np_ma_ret: str, params: dict[str, Any] | None = None) -> None: ... + def __call__(self, /, *args: object, **params: object) -> Any: ... + def getdoc(self, /, np_ret: str, np_ma_ret: str) -> str | None: ... + +arange: _convert2ma +clip: _convert2ma +empty: _convert2ma +empty_like: _convert2ma +frombuffer: _convert2ma +fromfunction: _convert2ma +identity: _convert2ma +indices: _convert2ma +ones: _convert2ma +ones_like: _convert2ma +squeeze: _convert2ma +zeros: _convert2ma +zeros_like: _convert2ma + +def append(a, b, axis=...): ... +def dot(a, b, strict=..., out=...): ... +def mask_rowcols(a, axis=...): ... diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/extras.py b/.venv/lib/python3.12/site-packages/numpy/ma/extras.py new file mode 100644 index 0000000..094c1e2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/ma/extras.py @@ -0,0 +1,2344 @@ +""" +Masked arrays add-ons. + +A collection of utilities for `numpy.ma`. + +:author: Pierre Gerard-Marchant +:contact: pierregm_at_uga_dot_edu + +""" +__all__ = [ + 'apply_along_axis', 'apply_over_axes', 'atleast_1d', 'atleast_2d', + 'atleast_3d', 'average', 'clump_masked', 'clump_unmasked', 'column_stack', + 'compress_cols', 'compress_nd', 'compress_rowcols', 'compress_rows', + 'count_masked', 'corrcoef', 'cov', 'diagflat', 'dot', 'dstack', 'ediff1d', + 'flatnotmasked_contiguous', 'flatnotmasked_edges', 'hsplit', 'hstack', + 'isin', 'in1d', 'intersect1d', 'mask_cols', 'mask_rowcols', 'mask_rows', + 'masked_all', 'masked_all_like', 'median', 'mr_', 'ndenumerate', + 'notmasked_contiguous', 'notmasked_edges', 'polyfit', 'row_stack', + 'setdiff1d', 'setxor1d', 'stack', 'unique', 'union1d', 'vander', 'vstack', + ] + +import itertools +import warnings + +import numpy as np +from numpy import array as nxarray +from numpy import ndarray +from numpy.lib._function_base_impl import _ureduce +from numpy.lib._index_tricks_impl import AxisConcatenator +from numpy.lib.array_utils import normalize_axis_index, normalize_axis_tuple + +from . import core as ma +from .core import ( # noqa: F401 + MAError, + MaskedArray, + add, + array, + asarray, + concatenate, + count, + dot, + filled, + get_masked_subclass, + getdata, + getmask, + getmaskarray, + make_mask_descr, + mask_or, + masked, + masked_array, + nomask, + ones, + sort, + zeros, +) + + +def issequence(seq): + """ + Is seq a sequence (ndarray, list or tuple)? + + """ + return isinstance(seq, (ndarray, tuple, list)) + + +def count_masked(arr, axis=None): + """ + Count the number of masked elements along the given axis. + + Parameters + ---------- + arr : array_like + An array with (possibly) masked elements. + axis : int, optional + Axis along which to count. If None (default), a flattened + version of the array is used. + + Returns + ------- + count : int, ndarray + The total number of masked elements (axis=None) or the number + of masked elements along each slice of the given axis. + + See Also + -------- + MaskedArray.count : Count non-masked elements. + + Examples + -------- + >>> import numpy as np + >>> a = np.arange(9).reshape((3,3)) + >>> a = np.ma.array(a) + >>> a[1, 0] = np.ma.masked + >>> a[1, 2] = np.ma.masked + >>> a[2, 1] = np.ma.masked + >>> a + masked_array( + data=[[0, 1, 2], + [--, 4, --], + [6, --, 8]], + mask=[[False, False, False], + [ True, False, True], + [False, True, False]], + fill_value=999999) + >>> np.ma.count_masked(a) + 3 + + When the `axis` keyword is used an array is returned. + + >>> np.ma.count_masked(a, axis=0) + array([1, 1, 1]) + >>> np.ma.count_masked(a, axis=1) + array([0, 2, 1]) + + """ + m = getmaskarray(arr) + return m.sum(axis) + + +def masked_all(shape, dtype=float): + """ + Empty masked array with all elements masked. + + Return an empty masked array of the given shape and dtype, where all the + data are masked. + + Parameters + ---------- + shape : int or tuple of ints + Shape of the required MaskedArray, e.g., ``(2, 3)`` or ``2``. + dtype : dtype, optional + Data type of the output. + + Returns + ------- + a : MaskedArray + A masked array with all data masked. + + See Also + -------- + masked_all_like : Empty masked array modelled on an existing array. + + Notes + ----- + Unlike other masked array creation functions (e.g. `numpy.ma.zeros`, + `numpy.ma.ones`, `numpy.ma.full`), `masked_all` does not initialize the + values of the array, and may therefore be marginally faster. However, + the values stored in the newly allocated array are arbitrary. For + reproducible behavior, be sure to set each element of the array before + reading. + + Examples + -------- + >>> import numpy as np + >>> np.ma.masked_all((3, 3)) + masked_array( + data=[[--, --, --], + [--, --, --], + [--, --, --]], + mask=[[ True, True, True], + [ True, True, True], + [ True, True, True]], + fill_value=1e+20, + dtype=float64) + + The `dtype` parameter defines the underlying data type. + + >>> a = np.ma.masked_all((3, 3)) + >>> a.dtype + dtype('float64') + >>> a = np.ma.masked_all((3, 3), dtype=np.int32) + >>> a.dtype + dtype('int32') + + """ + a = masked_array(np.empty(shape, dtype), + mask=np.ones(shape, make_mask_descr(dtype))) + return a + + +def masked_all_like(arr): + """ + Empty masked array with the properties of an existing array. + + Return an empty masked array of the same shape and dtype as + the array `arr`, where all the data are masked. + + Parameters + ---------- + arr : ndarray + An array describing the shape and dtype of the required MaskedArray. + + Returns + ------- + a : MaskedArray + A masked array with all data masked. + + Raises + ------ + AttributeError + If `arr` doesn't have a shape attribute (i.e. not an ndarray) + + See Also + -------- + masked_all : Empty masked array with all elements masked. + + Notes + ----- + Unlike other masked array creation functions (e.g. `numpy.ma.zeros_like`, + `numpy.ma.ones_like`, `numpy.ma.full_like`), `masked_all_like` does not + initialize the values of the array, and may therefore be marginally + faster. However, the values stored in the newly allocated array are + arbitrary. For reproducible behavior, be sure to set each element of the + array before reading. + + Examples + -------- + >>> import numpy as np + >>> arr = np.zeros((2, 3), dtype=np.float32) + >>> arr + array([[0., 0., 0.], + [0., 0., 0.]], dtype=float32) + >>> np.ma.masked_all_like(arr) + masked_array( + data=[[--, --, --], + [--, --, --]], + mask=[[ True, True, True], + [ True, True, True]], + fill_value=np.float64(1e+20), + dtype=float32) + + The dtype of the masked array matches the dtype of `arr`. + + >>> arr.dtype + dtype('float32') + >>> np.ma.masked_all_like(arr).dtype + dtype('float32') + + """ + a = np.empty_like(arr).view(MaskedArray) + a._mask = np.ones(a.shape, dtype=make_mask_descr(a.dtype)) + return a + + +#####-------------------------------------------------------------------------- +#---- --- Standard functions --- +#####-------------------------------------------------------------------------- +class _fromnxfunction: + """ + Defines a wrapper to adapt NumPy functions to masked arrays. + + + An instance of `_fromnxfunction` can be called with the same parameters + as the wrapped NumPy function. The docstring of `newfunc` is adapted from + the wrapped function as well, see `getdoc`. + + This class should not be used directly. Instead, one of its extensions that + provides support for a specific type of input should be used. + + Parameters + ---------- + funcname : str + The name of the function to be adapted. The function should be + in the NumPy namespace (i.e. ``np.funcname``). + + """ + + def __init__(self, funcname): + self.__name__ = funcname + self.__qualname__ = funcname + self.__doc__ = self.getdoc() + + def getdoc(self): + """ + Retrieve the docstring and signature from the function. + + The ``__doc__`` attribute of the function is used as the docstring for + the new masked array version of the function. A note on application + of the function to the mask is appended. + + Parameters + ---------- + None + + """ + npfunc = getattr(np, self.__name__, None) + doc = getattr(npfunc, '__doc__', None) + if doc: + sig = ma.get_object_signature(npfunc) + doc = ma.doc_note(doc, "The function is applied to both the _data " + "and the _mask, if any.") + if sig: + sig = self.__name__ + sig + "\n\n" + return sig + doc + return + + def __call__(self, *args, **params): + pass + + +class _fromnxfunction_single(_fromnxfunction): + """ + A version of `_fromnxfunction` that is called with a single array + argument followed by auxiliary args that are passed verbatim for + both the data and mask calls. + """ + def __call__(self, x, *args, **params): + func = getattr(np, self.__name__) + if isinstance(x, ndarray): + _d = func(x.__array__(), *args, **params) + _m = func(getmaskarray(x), *args, **params) + return masked_array(_d, mask=_m) + else: + _d = func(np.asarray(x), *args, **params) + _m = func(getmaskarray(x), *args, **params) + return masked_array(_d, mask=_m) + + +class _fromnxfunction_seq(_fromnxfunction): + """ + A version of `_fromnxfunction` that is called with a single sequence + of arrays followed by auxiliary args that are passed verbatim for + both the data and mask calls. + """ + def __call__(self, x, *args, **params): + func = getattr(np, self.__name__) + _d = func(tuple(np.asarray(a) for a in x), *args, **params) + _m = func(tuple(getmaskarray(a) for a in x), *args, **params) + return masked_array(_d, mask=_m) + + +class _fromnxfunction_args(_fromnxfunction): + """ + A version of `_fromnxfunction` that is called with multiple array + arguments. The first non-array-like input marks the beginning of the + arguments that are passed verbatim for both the data and mask calls. + Array arguments are processed independently and the results are + returned in a list. If only one array is found, the return value is + just the processed array instead of a list. + """ + def __call__(self, *args, **params): + func = getattr(np, self.__name__) + arrays = [] + args = list(args) + while len(args) > 0 and issequence(args[0]): + arrays.append(args.pop(0)) + res = [] + for x in arrays: + _d = func(np.asarray(x), *args, **params) + _m = func(getmaskarray(x), *args, **params) + res.append(masked_array(_d, mask=_m)) + if len(arrays) == 1: + return res[0] + return res + + +class _fromnxfunction_allargs(_fromnxfunction): + """ + A version of `_fromnxfunction` that is called with multiple array + arguments. Similar to `_fromnxfunction_args` except that all args + are converted to arrays even if they are not so already. This makes + it possible to process scalars as 1-D arrays. Only keyword arguments + are passed through verbatim for the data and mask calls. Arrays + arguments are processed independently and the results are returned + in a list. If only one arg is present, the return value is just the + processed array instead of a list. + """ + def __call__(self, *args, **params): + func = getattr(np, self.__name__) + res = [] + for x in args: + _d = func(np.asarray(x), **params) + _m = func(getmaskarray(x), **params) + res.append(masked_array(_d, mask=_m)) + if len(args) == 1: + return res[0] + return res + + +atleast_1d = _fromnxfunction_allargs('atleast_1d') +atleast_2d = _fromnxfunction_allargs('atleast_2d') +atleast_3d = _fromnxfunction_allargs('atleast_3d') + +vstack = row_stack = _fromnxfunction_seq('vstack') +hstack = _fromnxfunction_seq('hstack') +column_stack = _fromnxfunction_seq('column_stack') +dstack = _fromnxfunction_seq('dstack') +stack = _fromnxfunction_seq('stack') + +hsplit = _fromnxfunction_single('hsplit') + +diagflat = _fromnxfunction_single('diagflat') + + +#####-------------------------------------------------------------------------- +#---- +#####-------------------------------------------------------------------------- +def flatten_inplace(seq): + """Flatten a sequence in place.""" + k = 0 + while (k != len(seq)): + while hasattr(seq[k], '__iter__'): + seq[k:(k + 1)] = seq[k] + k += 1 + return seq + + +def apply_along_axis(func1d, axis, arr, *args, **kwargs): + """ + (This docstring should be overwritten) + """ + arr = array(arr, copy=False, subok=True) + nd = arr.ndim + axis = normalize_axis_index(axis, nd) + ind = [0] * (nd - 1) + i = np.zeros(nd, 'O') + indlist = list(range(nd)) + indlist.remove(axis) + i[axis] = slice(None, None) + outshape = np.asarray(arr.shape).take(indlist) + i.put(indlist, ind) + res = func1d(arr[tuple(i.tolist())], *args, **kwargs) + # if res is a number, then we have a smaller output array + asscalar = np.isscalar(res) + if not asscalar: + try: + len(res) + except TypeError: + asscalar = True + # Note: we shouldn't set the dtype of the output from the first result + # so we force the type to object, and build a list of dtypes. We'll + # just take the largest, to avoid some downcasting + dtypes = [] + if asscalar: + dtypes.append(np.asarray(res).dtype) + outarr = zeros(outshape, object) + outarr[tuple(ind)] = res + Ntot = np.prod(outshape) + k = 1 + while k < Ntot: + # increment the index + ind[-1] += 1 + n = -1 + while (ind[n] >= outshape[n]) and (n > (1 - nd)): + ind[n - 1] += 1 + ind[n] = 0 + n -= 1 + i.put(indlist, ind) + res = func1d(arr[tuple(i.tolist())], *args, **kwargs) + outarr[tuple(ind)] = res + dtypes.append(asarray(res).dtype) + k += 1 + else: + res = array(res, copy=False, subok=True) + j = i.copy() + j[axis] = ([slice(None, None)] * res.ndim) + j.put(indlist, ind) + Ntot = np.prod(outshape) + holdshape = outshape + outshape = list(arr.shape) + outshape[axis] = res.shape + dtypes.append(asarray(res).dtype) + outshape = flatten_inplace(outshape) + outarr = zeros(outshape, object) + outarr[tuple(flatten_inplace(j.tolist()))] = res + k = 1 + while k < Ntot: + # increment the index + ind[-1] += 1 + n = -1 + while (ind[n] >= holdshape[n]) and (n > (1 - nd)): + ind[n - 1] += 1 + ind[n] = 0 + n -= 1 + i.put(indlist, ind) + j.put(indlist, ind) + res = func1d(arr[tuple(i.tolist())], *args, **kwargs) + outarr[tuple(flatten_inplace(j.tolist()))] = res + dtypes.append(asarray(res).dtype) + k += 1 + max_dtypes = np.dtype(np.asarray(dtypes).max()) + if not hasattr(arr, '_mask'): + result = np.asarray(outarr, dtype=max_dtypes) + else: + result = asarray(outarr, dtype=max_dtypes) + result.fill_value = ma.default_fill_value(result) + return result + + +apply_along_axis.__doc__ = np.apply_along_axis.__doc__ + + +def apply_over_axes(func, a, axes): + """ + (This docstring will be overwritten) + """ + val = asarray(a) + N = a.ndim + if array(axes).ndim == 0: + axes = (axes,) + for axis in axes: + if axis < 0: + axis = N + axis + args = (val, axis) + res = func(*args) + if res.ndim == val.ndim: + val = res + else: + res = ma.expand_dims(res, axis) + if res.ndim == val.ndim: + val = res + else: + raise ValueError("function is not returning " + "an array of the correct shape") + return val + + +if apply_over_axes.__doc__ is not None: + apply_over_axes.__doc__ = np.apply_over_axes.__doc__[ + :np.apply_over_axes.__doc__.find('Notes')].rstrip() + \ + """ + + Examples + -------- + >>> import numpy as np + >>> a = np.ma.arange(24).reshape(2,3,4) + >>> a[:,0,1] = np.ma.masked + >>> a[:,1,:] = np.ma.masked + >>> a + masked_array( + data=[[[0, --, 2, 3], + [--, --, --, --], + [8, 9, 10, 11]], + [[12, --, 14, 15], + [--, --, --, --], + [20, 21, 22, 23]]], + mask=[[[False, True, False, False], + [ True, True, True, True], + [False, False, False, False]], + [[False, True, False, False], + [ True, True, True, True], + [False, False, False, False]]], + fill_value=999999) + >>> np.ma.apply_over_axes(np.ma.sum, a, [0,2]) + masked_array( + data=[[[46], + [--], + [124]]], + mask=[[[False], + [ True], + [False]]], + fill_value=999999) + + Tuple axis arguments to ufuncs are equivalent: + + >>> np.ma.sum(a, axis=(0,2)).reshape((1,-1,1)) + masked_array( + data=[[[46], + [--], + [124]]], + mask=[[[False], + [ True], + [False]]], + fill_value=999999) + """ + + +def average(a, axis=None, weights=None, returned=False, *, + keepdims=np._NoValue): + """ + Return the weighted average of array over the given axis. + + Parameters + ---------- + a : array_like + Data to be averaged. + Masked entries are not taken into account in the computation. + axis : None or int or tuple of ints, optional + Axis or axes along which to average `a`. The default, + `axis=None`, will average over all of the elements of the input array. + If axis is a tuple of ints, averaging is performed on all of the axes + specified in the tuple instead of a single axis or all the axes as + before. + weights : array_like, optional + An array of weights associated with the values in `a`. Each value in + `a` contributes to the average according to its associated weight. + The array of weights must be the same shape as `a` if no axis is + specified, otherwise the weights must have dimensions and shape + consistent with `a` along the specified axis. + If `weights=None`, then all data in `a` are assumed to have a + weight equal to one. + The calculation is:: + + avg = sum(a * weights) / sum(weights) + + where the sum is over all included elements. + The only constraint on the values of `weights` is that `sum(weights)` + must not be 0. + returned : bool, optional + Flag indicating whether a tuple ``(result, sum of weights)`` + should be returned as output (True), or just the result (False). + Default is False. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the original `a`. + *Note:* `keepdims` will not work with instances of `numpy.matrix` + or other classes whose methods do not support `keepdims`. + + .. versionadded:: 1.23.0 + + Returns + ------- + average, [sum_of_weights] : (tuple of) scalar or MaskedArray + The average along the specified axis. When returned is `True`, + return a tuple with the average as the first element and the sum + of the weights as the second element. The return type is `np.float64` + if `a` is of integer type and floats smaller than `float64`, or the + input data-type, otherwise. If returned, `sum_of_weights` is always + `float64`. + + Raises + ------ + ZeroDivisionError + When all weights along axis are zero. See `numpy.ma.average` for a + version robust to this type of error. + TypeError + When `weights` does not have the same shape as `a`, and `axis=None`. + ValueError + When `weights` does not have dimensions and shape consistent with `a` + along specified `axis`. + + Examples + -------- + >>> import numpy as np + >>> a = np.ma.array([1., 2., 3., 4.], mask=[False, False, True, True]) + >>> np.ma.average(a, weights=[3, 1, 0, 0]) + 1.25 + + >>> x = np.ma.arange(6.).reshape(3, 2) + >>> x + masked_array( + data=[[0., 1.], + [2., 3.], + [4., 5.]], + mask=False, + fill_value=1e+20) + >>> data = np.arange(8).reshape((2, 2, 2)) + >>> data + array([[[0, 1], + [2, 3]], + [[4, 5], + [6, 7]]]) + >>> np.ma.average(data, axis=(0, 1), weights=[[1./4, 3./4], [1., 1./2]]) + masked_array(data=[3.4, 4.4], + mask=[False, False], + fill_value=1e+20) + >>> np.ma.average(data, axis=0, weights=[[1./4, 3./4], [1., 1./2]]) + Traceback (most recent call last): + ... + ValueError: Shape of weights must be consistent + with shape of a along specified axis. + + >>> avg, sumweights = np.ma.average(x, axis=0, weights=[1, 2, 3], + ... returned=True) + >>> avg + masked_array(data=[2.6666666666666665, 3.6666666666666665], + mask=[False, False], + fill_value=1e+20) + + With ``keepdims=True``, the following result has shape (3, 1). + + >>> np.ma.average(x, axis=1, keepdims=True) + masked_array( + data=[[0.5], + [2.5], + [4.5]], + mask=False, + fill_value=1e+20) + """ + a = asarray(a) + m = getmask(a) + + if axis is not None: + axis = normalize_axis_tuple(axis, a.ndim, argname="axis") + + if keepdims is np._NoValue: + # Don't pass on the keepdims argument if one wasn't given. + keepdims_kw = {} + else: + keepdims_kw = {'keepdims': keepdims} + + if weights is None: + avg = a.mean(axis, **keepdims_kw) + scl = avg.dtype.type(a.count(axis)) + else: + wgt = asarray(weights) + + if issubclass(a.dtype.type, (np.integer, np.bool)): + result_dtype = np.result_type(a.dtype, wgt.dtype, 'f8') + else: + result_dtype = np.result_type(a.dtype, wgt.dtype) + + # Sanity checks + if a.shape != wgt.shape: + if axis is None: + raise TypeError( + "Axis must be specified when shapes of a and weights " + "differ.") + if wgt.shape != tuple(a.shape[ax] for ax in axis): + raise ValueError( + "Shape of weights must be consistent with " + "shape of a along specified axis.") + + # setup wgt to broadcast along axis + wgt = wgt.transpose(np.argsort(axis)) + wgt = wgt.reshape(tuple((s if ax in axis else 1) + for ax, s in enumerate(a.shape))) + + if m is not nomask: + wgt = wgt * (~a.mask) + wgt.mask |= a.mask + + scl = wgt.sum(axis=axis, dtype=result_dtype, **keepdims_kw) + avg = np.multiply(a, wgt, + dtype=result_dtype).sum(axis, **keepdims_kw) / scl + + if returned: + if scl.shape != avg.shape: + scl = np.broadcast_to(scl, avg.shape).copy() + return avg, scl + else: + return avg + + +def median(a, axis=None, out=None, overwrite_input=False, keepdims=False): + """ + Compute the median along the specified axis. + + Returns the median of the array elements. + + Parameters + ---------- + a : array_like + Input array or object that can be converted to an array. + axis : int, optional + Axis along which the medians are computed. The default (None) is + to compute the median along a flattened version of the array. + out : ndarray, optional + Alternative output array in which to place the result. It must + have the same shape and buffer length as the expected output + but the type will be cast if necessary. + overwrite_input : bool, optional + If True, then allow use of memory of input array (a) for + calculations. The input array will be modified by the call to + median. This will save memory when you do not need to preserve + the contents of the input array. Treat the input as undefined, + but it will probably be fully or partially sorted. Default is + False. Note that, if `overwrite_input` is True, and the input + is not already an `ndarray`, an error will be raised. + keepdims : bool, optional + If this is set to True, the axes which are reduced are left + in the result as dimensions with size one. With this option, + the result will broadcast correctly against the input array. + + Returns + ------- + median : ndarray + A new array holding the result is returned unless out is + specified, in which case a reference to out is returned. + Return data-type is `float64` for integers and floats smaller than + `float64`, or the input data-type, otherwise. + + See Also + -------- + mean + + Notes + ----- + Given a vector ``V`` with ``N`` non masked values, the median of ``V`` + is the middle value of a sorted copy of ``V`` (``Vs``) - i.e. + ``Vs[(N-1)/2]``, when ``N`` is odd, or ``{Vs[N/2 - 1] + Vs[N/2]}/2`` + when ``N`` is even. + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.array(np.arange(8), mask=[0]*4 + [1]*4) + >>> np.ma.median(x) + 1.5 + + >>> x = np.ma.array(np.arange(10).reshape(2, 5), mask=[0]*6 + [1]*4) + >>> np.ma.median(x) + 2.5 + >>> np.ma.median(x, axis=-1, overwrite_input=True) + masked_array(data=[2.0, 5.0], + mask=[False, False], + fill_value=1e+20) + + """ + if not hasattr(a, 'mask'): + m = np.median(getdata(a, subok=True), axis=axis, + out=out, overwrite_input=overwrite_input, + keepdims=keepdims) + if isinstance(m, np.ndarray) and 1 <= m.ndim: + return masked_array(m, copy=False) + else: + return m + + return _ureduce(a, func=_median, keepdims=keepdims, axis=axis, out=out, + overwrite_input=overwrite_input) + + +def _median(a, axis=None, out=None, overwrite_input=False): + # when an unmasked NaN is present return it, so we need to sort the NaN + # values behind the mask + if np.issubdtype(a.dtype, np.inexact): + fill_value = np.inf + else: + fill_value = None + if overwrite_input: + if axis is None: + asorted = a.ravel() + asorted.sort(fill_value=fill_value) + else: + a.sort(axis=axis, fill_value=fill_value) + asorted = a + else: + asorted = sort(a, axis=axis, fill_value=fill_value) + + if axis is None: + axis = 0 + else: + axis = normalize_axis_index(axis, asorted.ndim) + + if asorted.shape[axis] == 0: + # for empty axis integer indices fail so use slicing to get same result + # as median (which is mean of empty slice = nan) + indexer = [slice(None)] * asorted.ndim + indexer[axis] = slice(0, 0) + indexer = tuple(indexer) + return np.ma.mean(asorted[indexer], axis=axis, out=out) + + if asorted.ndim == 1: + idx, odd = divmod(count(asorted), 2) + mid = asorted[idx + odd - 1:idx + 1] + if np.issubdtype(asorted.dtype, np.inexact) and asorted.size > 0: + # avoid inf / x = masked + s = mid.sum(out=out) + if not odd: + s = np.true_divide(s, 2., casting='safe', out=out) + s = np.lib._utils_impl._median_nancheck(asorted, s, axis) + else: + s = mid.mean(out=out) + + # if result is masked either the input contained enough + # minimum_fill_value so that it would be the median or all values + # masked + if np.ma.is_masked(s) and not np.all(asorted.mask): + return np.ma.minimum_fill_value(asorted) + return s + + counts = count(asorted, axis=axis, keepdims=True) + h = counts // 2 + + # duplicate high if odd number of elements so mean does nothing + odd = counts % 2 == 1 + l = np.where(odd, h, h - 1) + + lh = np.concatenate([l, h], axis=axis) + + # get low and high median + low_high = np.take_along_axis(asorted, lh, axis=axis) + + def replace_masked(s): + # Replace masked entries with minimum_full_value unless it all values + # are masked. This is required as the sort order of values equal or + # larger than the fill value is undefined and a valid value placed + # elsewhere, e.g. [4, --, inf]. + if np.ma.is_masked(s): + rep = (~np.all(asorted.mask, axis=axis, keepdims=True)) & s.mask + s.data[rep] = np.ma.minimum_fill_value(asorted) + s.mask[rep] = False + + replace_masked(low_high) + + if np.issubdtype(asorted.dtype, np.inexact): + # avoid inf / x = masked + s = np.ma.sum(low_high, axis=axis, out=out) + np.true_divide(s.data, 2., casting='unsafe', out=s.data) + + s = np.lib._utils_impl._median_nancheck(asorted, s, axis) + else: + s = np.ma.mean(low_high, axis=axis, out=out) + + return s + + +def compress_nd(x, axis=None): + """Suppress slices from multiple dimensions which contain masked values. + + Parameters + ---------- + x : array_like, MaskedArray + The array to operate on. If not a MaskedArray instance (or if no array + elements are masked), `x` is interpreted as a MaskedArray with `mask` + set to `nomask`. + axis : tuple of ints or int, optional + Which dimensions to suppress slices from can be configured with this + parameter. + - If axis is a tuple of ints, those are the axes to suppress slices from. + - If axis is an int, then that is the only axis to suppress slices from. + - If axis is None, all axis are selected. + + Returns + ------- + compress_array : ndarray + The compressed array. + + Examples + -------- + >>> import numpy as np + >>> arr = [[1, 2], [3, 4]] + >>> mask = [[0, 1], [0, 0]] + >>> x = np.ma.array(arr, mask=mask) + >>> np.ma.compress_nd(x, axis=0) + array([[3, 4]]) + >>> np.ma.compress_nd(x, axis=1) + array([[1], + [3]]) + >>> np.ma.compress_nd(x) + array([[3]]) + + """ + x = asarray(x) + m = getmask(x) + # Set axis to tuple of ints + if axis is None: + axis = tuple(range(x.ndim)) + else: + axis = normalize_axis_tuple(axis, x.ndim) + + # Nothing is masked: return x + if m is nomask or not m.any(): + return x._data + # All is masked: return empty + if m.all(): + return nxarray([]) + # Filter elements through boolean indexing + data = x._data + for ax in axis: + axes = tuple(list(range(ax)) + list(range(ax + 1, x.ndim))) + data = data[(slice(None),) * ax + (~m.any(axis=axes),)] + return data + + +def compress_rowcols(x, axis=None): + """ + Suppress the rows and/or columns of a 2-D array that contain + masked values. + + The suppression behavior is selected with the `axis` parameter. + + - If axis is None, both rows and columns are suppressed. + - If axis is 0, only rows are suppressed. + - If axis is 1 or -1, only columns are suppressed. + + Parameters + ---------- + x : array_like, MaskedArray + The array to operate on. If not a MaskedArray instance (or if no array + elements are masked), `x` is interpreted as a MaskedArray with + `mask` set to `nomask`. Must be a 2D array. + axis : int, optional + Axis along which to perform the operation. Default is None. + + Returns + ------- + compressed_array : ndarray + The compressed array. + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0], + ... [1, 0, 0], + ... [0, 0, 0]]) + >>> x + masked_array( + data=[[--, 1, 2], + [--, 4, 5], + [6, 7, 8]], + mask=[[ True, False, False], + [ True, False, False], + [False, False, False]], + fill_value=999999) + + >>> np.ma.compress_rowcols(x) + array([[7, 8]]) + >>> np.ma.compress_rowcols(x, 0) + array([[6, 7, 8]]) + >>> np.ma.compress_rowcols(x, 1) + array([[1, 2], + [4, 5], + [7, 8]]) + + """ + if asarray(x).ndim != 2: + raise NotImplementedError("compress_rowcols works for 2D arrays only.") + return compress_nd(x, axis=axis) + + +def compress_rows(a): + """ + Suppress whole rows of a 2-D array that contain masked values. + + This is equivalent to ``np.ma.compress_rowcols(a, 0)``, see + `compress_rowcols` for details. + + Parameters + ---------- + x : array_like, MaskedArray + The array to operate on. If not a MaskedArray instance (or if no array + elements are masked), `x` is interpreted as a MaskedArray with + `mask` set to `nomask`. Must be a 2D array. + + Returns + ------- + compressed_array : ndarray + The compressed array. + + See Also + -------- + compress_rowcols + + Examples + -------- + >>> import numpy as np + >>> a = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0], + ... [1, 0, 0], + ... [0, 0, 0]]) + >>> np.ma.compress_rows(a) + array([[6, 7, 8]]) + + """ + a = asarray(a) + if a.ndim != 2: + raise NotImplementedError("compress_rows works for 2D arrays only.") + return compress_rowcols(a, 0) + + +def compress_cols(a): + """ + Suppress whole columns of a 2-D array that contain masked values. + + This is equivalent to ``np.ma.compress_rowcols(a, 1)``, see + `compress_rowcols` for details. + + Parameters + ---------- + x : array_like, MaskedArray + The array to operate on. If not a MaskedArray instance (or if no array + elements are masked), `x` is interpreted as a MaskedArray with + `mask` set to `nomask`. Must be a 2D array. + + Returns + ------- + compressed_array : ndarray + The compressed array. + + See Also + -------- + compress_rowcols + + Examples + -------- + >>> import numpy as np + >>> a = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0], + ... [1, 0, 0], + ... [0, 0, 0]]) + >>> np.ma.compress_cols(a) + array([[1, 2], + [4, 5], + [7, 8]]) + + """ + a = asarray(a) + if a.ndim != 2: + raise NotImplementedError("compress_cols works for 2D arrays only.") + return compress_rowcols(a, 1) + + +def mask_rowcols(a, axis=None): + """ + Mask rows and/or columns of a 2D array that contain masked values. + + Mask whole rows and/or columns of a 2D array that contain + masked values. The masking behavior is selected using the + `axis` parameter. + + - If `axis` is None, rows *and* columns are masked. + - If `axis` is 0, only rows are masked. + - If `axis` is 1 or -1, only columns are masked. + + Parameters + ---------- + a : array_like, MaskedArray + The array to mask. If not a MaskedArray instance (or if no array + elements are masked), the result is a MaskedArray with `mask` set + to `nomask` (False). Must be a 2D array. + axis : int, optional + Axis along which to perform the operation. If None, applies to a + flattened version of the array. + + Returns + ------- + a : MaskedArray + A modified version of the input array, masked depending on the value + of the `axis` parameter. + + Raises + ------ + NotImplementedError + If input array `a` is not 2D. + + See Also + -------- + mask_rows : Mask rows of a 2D array that contain masked values. + mask_cols : Mask cols of a 2D array that contain masked values. + masked_where : Mask where a condition is met. + + Notes + ----- + The input array's mask is modified by this function. + + Examples + -------- + >>> import numpy as np + >>> a = np.zeros((3, 3), dtype=int) + >>> a[1, 1] = 1 + >>> a + array([[0, 0, 0], + [0, 1, 0], + [0, 0, 0]]) + >>> a = np.ma.masked_equal(a, 1) + >>> a + masked_array( + data=[[0, 0, 0], + [0, --, 0], + [0, 0, 0]], + mask=[[False, False, False], + [False, True, False], + [False, False, False]], + fill_value=1) + >>> np.ma.mask_rowcols(a) + masked_array( + data=[[0, --, 0], + [--, --, --], + [0, --, 0]], + mask=[[False, True, False], + [ True, True, True], + [False, True, False]], + fill_value=1) + + """ + a = array(a, subok=False) + if a.ndim != 2: + raise NotImplementedError("mask_rowcols works for 2D arrays only.") + m = getmask(a) + # Nothing is masked: return a + if m is nomask or not m.any(): + return a + maskedval = m.nonzero() + a._mask = a._mask.copy() + if not axis: + a[np.unique(maskedval[0])] = masked + if axis in [None, 1, -1]: + a[:, np.unique(maskedval[1])] = masked + return a + + +def mask_rows(a, axis=np._NoValue): + """ + Mask rows of a 2D array that contain masked values. + + This function is a shortcut to ``mask_rowcols`` with `axis` equal to 0. + + See Also + -------- + mask_rowcols : Mask rows and/or columns of a 2D array. + masked_where : Mask where a condition is met. + + Examples + -------- + >>> import numpy as np + >>> a = np.zeros((3, 3), dtype=int) + >>> a[1, 1] = 1 + >>> a + array([[0, 0, 0], + [0, 1, 0], + [0, 0, 0]]) + >>> a = np.ma.masked_equal(a, 1) + >>> a + masked_array( + data=[[0, 0, 0], + [0, --, 0], + [0, 0, 0]], + mask=[[False, False, False], + [False, True, False], + [False, False, False]], + fill_value=1) + + >>> np.ma.mask_rows(a) + masked_array( + data=[[0, 0, 0], + [--, --, --], + [0, 0, 0]], + mask=[[False, False, False], + [ True, True, True], + [False, False, False]], + fill_value=1) + + """ + if axis is not np._NoValue: + # remove the axis argument when this deprecation expires + # NumPy 1.18.0, 2019-11-28 + warnings.warn( + "The axis argument has always been ignored, in future passing it " + "will raise TypeError", DeprecationWarning, stacklevel=2) + return mask_rowcols(a, 0) + + +def mask_cols(a, axis=np._NoValue): + """ + Mask columns of a 2D array that contain masked values. + + This function is a shortcut to ``mask_rowcols`` with `axis` equal to 1. + + See Also + -------- + mask_rowcols : Mask rows and/or columns of a 2D array. + masked_where : Mask where a condition is met. + + Examples + -------- + >>> import numpy as np + >>> a = np.zeros((3, 3), dtype=int) + >>> a[1, 1] = 1 + >>> a + array([[0, 0, 0], + [0, 1, 0], + [0, 0, 0]]) + >>> a = np.ma.masked_equal(a, 1) + >>> a + masked_array( + data=[[0, 0, 0], + [0, --, 0], + [0, 0, 0]], + mask=[[False, False, False], + [False, True, False], + [False, False, False]], + fill_value=1) + >>> np.ma.mask_cols(a) + masked_array( + data=[[0, --, 0], + [0, --, 0], + [0, --, 0]], + mask=[[False, True, False], + [False, True, False], + [False, True, False]], + fill_value=1) + + """ + if axis is not np._NoValue: + # remove the axis argument when this deprecation expires + # NumPy 1.18.0, 2019-11-28 + warnings.warn( + "The axis argument has always been ignored, in future passing it " + "will raise TypeError", DeprecationWarning, stacklevel=2) + return mask_rowcols(a, 1) + + +#####-------------------------------------------------------------------------- +#---- --- arraysetops --- +#####-------------------------------------------------------------------------- + +def ediff1d(arr, to_end=None, to_begin=None): + """ + Compute the differences between consecutive elements of an array. + + This function is the equivalent of `numpy.ediff1d` that takes masked + values into account, see `numpy.ediff1d` for details. + + See Also + -------- + numpy.ediff1d : Equivalent function for ndarrays. + + Examples + -------- + >>> import numpy as np + >>> arr = np.ma.array([1, 2, 4, 7, 0]) + >>> np.ma.ediff1d(arr) + masked_array(data=[ 1, 2, 3, -7], + mask=False, + fill_value=999999) + + """ + arr = ma.asanyarray(arr).flat + ed = arr[1:] - arr[:-1] + arrays = [ed] + # + if to_begin is not None: + arrays.insert(0, to_begin) + if to_end is not None: + arrays.append(to_end) + # + if len(arrays) != 1: + # We'll save ourselves a copy of a potentially large array in the common + # case where neither to_begin or to_end was given. + ed = hstack(arrays) + # + return ed + + +def unique(ar1, return_index=False, return_inverse=False): + """ + Finds the unique elements of an array. + + Masked values are considered the same element (masked). The output array + is always a masked array. See `numpy.unique` for more details. + + See Also + -------- + numpy.unique : Equivalent function for ndarrays. + + Examples + -------- + >>> import numpy as np + >>> a = [1, 2, 1000, 2, 3] + >>> mask = [0, 0, 1, 0, 0] + >>> masked_a = np.ma.masked_array(a, mask) + >>> masked_a + masked_array(data=[1, 2, --, 2, 3], + mask=[False, False, True, False, False], + fill_value=999999) + >>> np.ma.unique(masked_a) + masked_array(data=[1, 2, 3, --], + mask=[False, False, False, True], + fill_value=999999) + >>> np.ma.unique(masked_a, return_index=True) + (masked_array(data=[1, 2, 3, --], + mask=[False, False, False, True], + fill_value=999999), array([0, 1, 4, 2])) + >>> np.ma.unique(masked_a, return_inverse=True) + (masked_array(data=[1, 2, 3, --], + mask=[False, False, False, True], + fill_value=999999), array([0, 1, 3, 1, 2])) + >>> np.ma.unique(masked_a, return_index=True, return_inverse=True) + (masked_array(data=[1, 2, 3, --], + mask=[False, False, False, True], + fill_value=999999), array([0, 1, 4, 2]), array([0, 1, 3, 1, 2])) + """ + output = np.unique(ar1, + return_index=return_index, + return_inverse=return_inverse) + if isinstance(output, tuple): + output = list(output) + output[0] = output[0].view(MaskedArray) + output = tuple(output) + else: + output = output.view(MaskedArray) + return output + + +def intersect1d(ar1, ar2, assume_unique=False): + """ + Returns the unique elements common to both arrays. + + Masked values are considered equal one to the other. + The output is always a masked array. + + See `numpy.intersect1d` for more details. + + See Also + -------- + numpy.intersect1d : Equivalent function for ndarrays. + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.array([1, 3, 3, 3], mask=[0, 0, 0, 1]) + >>> y = np.ma.array([3, 1, 1, 1], mask=[0, 0, 0, 1]) + >>> np.ma.intersect1d(x, y) + masked_array(data=[1, 3, --], + mask=[False, False, True], + fill_value=999999) + + """ + if assume_unique: + aux = ma.concatenate((ar1, ar2)) + else: + # Might be faster than unique( intersect1d( ar1, ar2 ) )? + aux = ma.concatenate((unique(ar1), unique(ar2))) + aux.sort() + return aux[:-1][aux[1:] == aux[:-1]] + + +def setxor1d(ar1, ar2, assume_unique=False): + """ + Set exclusive-or of 1-D arrays with unique elements. + + The output is always a masked array. See `numpy.setxor1d` for more details. + + See Also + -------- + numpy.setxor1d : Equivalent function for ndarrays. + + Examples + -------- + >>> import numpy as np + >>> ar1 = np.ma.array([1, 2, 3, 2, 4]) + >>> ar2 = np.ma.array([2, 3, 5, 7, 5]) + >>> np.ma.setxor1d(ar1, ar2) + masked_array(data=[1, 4, 5, 7], + mask=False, + fill_value=999999) + + """ + if not assume_unique: + ar1 = unique(ar1) + ar2 = unique(ar2) + + aux = ma.concatenate((ar1, ar2), axis=None) + if aux.size == 0: + return aux + aux.sort() + auxf = aux.filled() +# flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0 + flag = ma.concatenate(([True], (auxf[1:] != auxf[:-1]), [True])) +# flag2 = ediff1d( flag ) == 0 + flag2 = (flag[1:] == flag[:-1]) + return aux[flag2] + + +def in1d(ar1, ar2, assume_unique=False, invert=False): + """ + Test whether each element of an array is also present in a second + array. + + The output is always a masked array. See `numpy.in1d` for more details. + + We recommend using :func:`isin` instead of `in1d` for new code. + + See Also + -------- + isin : Version of this function that preserves the shape of ar1. + numpy.in1d : Equivalent function for ndarrays. + + Examples + -------- + >>> import numpy as np + >>> ar1 = np.ma.array([0, 1, 2, 5, 0]) + >>> ar2 = [0, 2] + >>> np.ma.in1d(ar1, ar2) + masked_array(data=[ True, False, True, False, True], + mask=False, + fill_value=True) + + """ + if not assume_unique: + ar1, rev_idx = unique(ar1, return_inverse=True) + ar2 = unique(ar2) + + ar = ma.concatenate((ar1, ar2)) + # We need this to be a stable sort, so always use 'mergesort' + # here. The values from the first array should always come before + # the values from the second array. + order = ar.argsort(kind='mergesort') + sar = ar[order] + if invert: + bool_ar = (sar[1:] != sar[:-1]) + else: + bool_ar = (sar[1:] == sar[:-1]) + flag = ma.concatenate((bool_ar, [invert])) + indx = order.argsort(kind='mergesort')[:len(ar1)] + + if assume_unique: + return flag[indx] + else: + return flag[indx][rev_idx] + + +def isin(element, test_elements, assume_unique=False, invert=False): + """ + Calculates `element in test_elements`, broadcasting over + `element` only. + + The output is always a masked array of the same shape as `element`. + See `numpy.isin` for more details. + + See Also + -------- + in1d : Flattened version of this function. + numpy.isin : Equivalent function for ndarrays. + + Examples + -------- + >>> import numpy as np + >>> element = np.ma.array([1, 2, 3, 4, 5, 6]) + >>> test_elements = [0, 2] + >>> np.ma.isin(element, test_elements) + masked_array(data=[False, True, False, False, False, False], + mask=False, + fill_value=True) + + """ + element = ma.asarray(element) + return in1d(element, test_elements, assume_unique=assume_unique, + invert=invert).reshape(element.shape) + + +def union1d(ar1, ar2): + """ + Union of two arrays. + + The output is always a masked array. See `numpy.union1d` for more details. + + See Also + -------- + numpy.union1d : Equivalent function for ndarrays. + + Examples + -------- + >>> import numpy as np + >>> ar1 = np.ma.array([1, 2, 3, 4]) + >>> ar2 = np.ma.array([3, 4, 5, 6]) + >>> np.ma.union1d(ar1, ar2) + masked_array(data=[1, 2, 3, 4, 5, 6], + mask=False, + fill_value=999999) + + """ + return unique(ma.concatenate((ar1, ar2), axis=None)) + + +def setdiff1d(ar1, ar2, assume_unique=False): + """ + Set difference of 1D arrays with unique elements. + + The output is always a masked array. See `numpy.setdiff1d` for more + details. + + See Also + -------- + numpy.setdiff1d : Equivalent function for ndarrays. + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.array([1, 2, 3, 4], mask=[0, 1, 0, 1]) + >>> np.ma.setdiff1d(x, [1, 2]) + masked_array(data=[3, --], + mask=[False, True], + fill_value=999999) + + """ + if assume_unique: + ar1 = ma.asarray(ar1).ravel() + else: + ar1 = unique(ar1) + ar2 = unique(ar2) + return ar1[in1d(ar1, ar2, assume_unique=True, invert=True)] + + +############################################################################### +# Covariance # +############################################################################### + + +def _covhelper(x, y=None, rowvar=True, allow_masked=True): + """ + Private function for the computation of covariance and correlation + coefficients. + + """ + x = ma.array(x, ndmin=2, copy=True, dtype=float) + xmask = ma.getmaskarray(x) + # Quick exit if we can't process masked data + if not allow_masked and xmask.any(): + raise ValueError("Cannot process masked data.") + # + if x.shape[0] == 1: + rowvar = True + # Make sure that rowvar is either 0 or 1 + rowvar = int(bool(rowvar)) + axis = 1 - rowvar + if rowvar: + tup = (slice(None), None) + else: + tup = (None, slice(None)) + # + if y is None: + # Check if we can guarantee that the integers in the (N - ddof) + # normalisation can be accurately represented with single-precision + # before computing the dot product. + if x.shape[0] > 2 ** 24 or x.shape[1] > 2 ** 24: + xnm_dtype = np.float64 + else: + xnm_dtype = np.float32 + xnotmask = np.logical_not(xmask).astype(xnm_dtype) + else: + y = array(y, copy=False, ndmin=2, dtype=float) + ymask = ma.getmaskarray(y) + if not allow_masked and ymask.any(): + raise ValueError("Cannot process masked data.") + if xmask.any() or ymask.any(): + if y.shape == x.shape: + # Define some common mask + common_mask = np.logical_or(xmask, ymask) + if common_mask is not nomask: + xmask = x._mask = y._mask = ymask = common_mask + x._sharedmask = False + y._sharedmask = False + x = ma.concatenate((x, y), axis) + # Check if we can guarantee that the integers in the (N - ddof) + # normalisation can be accurately represented with single-precision + # before computing the dot product. + if x.shape[0] > 2 ** 24 or x.shape[1] > 2 ** 24: + xnm_dtype = np.float64 + else: + xnm_dtype = np.float32 + xnotmask = np.logical_not(np.concatenate((xmask, ymask), axis)).astype( + xnm_dtype + ) + x -= x.mean(axis=rowvar)[tup] + return (x, xnotmask, rowvar) + + +def cov(x, y=None, rowvar=True, bias=False, allow_masked=True, ddof=None): + """ + Estimate the covariance matrix. + + Except for the handling of missing data this function does the same as + `numpy.cov`. For more details and examples, see `numpy.cov`. + + By default, masked values are recognized as such. If `x` and `y` have the + same shape, a common mask is allocated: if ``x[i,j]`` is masked, then + ``y[i,j]`` will also be masked. + Setting `allow_masked` to False will raise an exception if values are + missing in either of the input arrays. + + Parameters + ---------- + x : array_like + A 1-D or 2-D array containing multiple variables and observations. + Each row of `x` represents a variable, and each column a single + observation of all those variables. Also see `rowvar` below. + y : array_like, optional + An additional set of variables and observations. `y` has the same + shape as `x`. + rowvar : bool, optional + If `rowvar` is True (default), then each row represents a + variable, with observations in the columns. Otherwise, the relationship + is transposed: each column represents a variable, while the rows + contain observations. + bias : bool, optional + Default normalization (False) is by ``(N-1)``, where ``N`` is the + number of observations given (unbiased estimate). If `bias` is True, + then normalization is by ``N``. This keyword can be overridden by + the keyword ``ddof`` in numpy versions >= 1.5. + allow_masked : bool, optional + If True, masked values are propagated pair-wise: if a value is masked + in `x`, the corresponding value is masked in `y`. + If False, raises a `ValueError` exception when some values are missing. + ddof : {None, int}, optional + If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is + the number of observations; this overrides the value implied by + ``bias``. The default value is ``None``. + + Raises + ------ + ValueError + Raised if some values are missing and `allow_masked` is False. + + See Also + -------- + numpy.cov + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.array([[0, 1], [1, 1]], mask=[0, 1, 0, 1]) + >>> y = np.ma.array([[1, 0], [0, 1]], mask=[0, 0, 1, 1]) + >>> np.ma.cov(x, y) + masked_array( + data=[[--, --, --, --], + [--, --, --, --], + [--, --, --, --], + [--, --, --, --]], + mask=[[ True, True, True, True], + [ True, True, True, True], + [ True, True, True, True], + [ True, True, True, True]], + fill_value=1e+20, + dtype=float64) + + """ + # Check inputs + if ddof is not None and ddof != int(ddof): + raise ValueError("ddof must be an integer") + # Set up ddof + if ddof is None: + if bias: + ddof = 0 + else: + ddof = 1 + + (x, xnotmask, rowvar) = _covhelper(x, y, rowvar, allow_masked) + if not rowvar: + fact = np.dot(xnotmask.T, xnotmask) - ddof + mask = np.less_equal(fact, 0, dtype=bool) + with np.errstate(divide="ignore", invalid="ignore"): + data = np.dot(filled(x.T, 0), filled(x.conj(), 0)) / fact + result = ma.array(data, mask=mask).squeeze() + else: + fact = np.dot(xnotmask, xnotmask.T) - ddof + mask = np.less_equal(fact, 0, dtype=bool) + with np.errstate(divide="ignore", invalid="ignore"): + data = np.dot(filled(x, 0), filled(x.T.conj(), 0)) / fact + result = ma.array(data, mask=mask).squeeze() + return result + + +def corrcoef(x, y=None, rowvar=True, bias=np._NoValue, allow_masked=True, + ddof=np._NoValue): + """ + Return Pearson product-moment correlation coefficients. + + Except for the handling of missing data this function does the same as + `numpy.corrcoef`. For more details and examples, see `numpy.corrcoef`. + + Parameters + ---------- + x : array_like + A 1-D or 2-D array containing multiple variables and observations. + Each row of `x` represents a variable, and each column a single + observation of all those variables. Also see `rowvar` below. + y : array_like, optional + An additional set of variables and observations. `y` has the same + shape as `x`. + rowvar : bool, optional + If `rowvar` is True (default), then each row represents a + variable, with observations in the columns. Otherwise, the relationship + is transposed: each column represents a variable, while the rows + contain observations. + bias : _NoValue, optional + Has no effect, do not use. + + .. deprecated:: 1.10.0 + allow_masked : bool, optional + If True, masked values are propagated pair-wise: if a value is masked + in `x`, the corresponding value is masked in `y`. + If False, raises an exception. Because `bias` is deprecated, this + argument needs to be treated as keyword only to avoid a warning. + ddof : _NoValue, optional + Has no effect, do not use. + + .. deprecated:: 1.10.0 + + See Also + -------- + numpy.corrcoef : Equivalent function in top-level NumPy module. + cov : Estimate the covariance matrix. + + Notes + ----- + This function accepts but discards arguments `bias` and `ddof`. This is + for backwards compatibility with previous versions of this function. These + arguments had no effect on the return values of the function and can be + safely ignored in this and previous versions of numpy. + + Examples + -------- + >>> import numpy as np + >>> x = np.ma.array([[0, 1], [1, 1]], mask=[0, 1, 0, 1]) + >>> np.ma.corrcoef(x) + masked_array( + data=[[--, --], + [--, --]], + mask=[[ True, True], + [ True, True]], + fill_value=1e+20, + dtype=float64) + + """ + msg = 'bias and ddof have no effect and are deprecated' + if bias is not np._NoValue or ddof is not np._NoValue: + # 2015-03-15, 1.10 + warnings.warn(msg, DeprecationWarning, stacklevel=2) + # Estimate the covariance matrix. + corr = cov(x, y, rowvar, allow_masked=allow_masked) + # The non-masked version returns a masked value for a scalar. + try: + std = ma.sqrt(ma.diagonal(corr)) + except ValueError: + return ma.MaskedConstant() + corr /= ma.multiply.outer(std, std) + return corr + +#####-------------------------------------------------------------------------- +#---- --- Concatenation helpers --- +#####-------------------------------------------------------------------------- + +class MAxisConcatenator(AxisConcatenator): + """ + Translate slice objects to concatenation along an axis. + + For documentation on usage, see `mr_class`. + + See Also + -------- + mr_class + + """ + __slots__ = () + + concatenate = staticmethod(concatenate) + + @classmethod + def makemat(cls, arr): + # There used to be a view as np.matrix here, but we may eventually + # deprecate that class. In preparation, we use the unmasked version + # to construct the matrix (with copy=False for backwards compatibility + # with the .view) + data = super().makemat(arr.data, copy=False) + return array(data, mask=arr.mask) + + def __getitem__(self, key): + # matrix builder syntax, like 'a, b; c, d' + if isinstance(key, str): + raise MAError("Unavailable for masked array.") + + return super().__getitem__(key) + + +class mr_class(MAxisConcatenator): + """ + Translate slice objects to concatenation along the first axis. + + This is the masked array version of `r_`. + + See Also + -------- + r_ + + Examples + -------- + >>> import numpy as np + >>> np.ma.mr_[np.ma.array([1,2,3]), 0, 0, np.ma.array([4,5,6])] + masked_array(data=[1, 2, 3, ..., 4, 5, 6], + mask=False, + fill_value=999999) + + """ + __slots__ = () + + def __init__(self): + MAxisConcatenator.__init__(self, 0) + + +mr_ = mr_class() + + +#####-------------------------------------------------------------------------- +#---- Find unmasked data --- +#####-------------------------------------------------------------------------- + +def ndenumerate(a, compressed=True): + """ + Multidimensional index iterator. + + Return an iterator yielding pairs of array coordinates and values, + skipping elements that are masked. With `compressed=False`, + `ma.masked` is yielded as the value of masked elements. This + behavior differs from that of `numpy.ndenumerate`, which yields the + value of the underlying data array. + + Notes + ----- + .. versionadded:: 1.23.0 + + Parameters + ---------- + a : array_like + An array with (possibly) masked elements. + compressed : bool, optional + If True (default), masked elements are skipped. + + See Also + -------- + numpy.ndenumerate : Equivalent function ignoring any mask. + + Examples + -------- + >>> import numpy as np + >>> a = np.ma.arange(9).reshape((3, 3)) + >>> a[1, 0] = np.ma.masked + >>> a[1, 2] = np.ma.masked + >>> a[2, 1] = np.ma.masked + >>> a + masked_array( + data=[[0, 1, 2], + [--, 4, --], + [6, --, 8]], + mask=[[False, False, False], + [ True, False, True], + [False, True, False]], + fill_value=999999) + >>> for index, x in np.ma.ndenumerate(a): + ... print(index, x) + (0, 0) 0 + (0, 1) 1 + (0, 2) 2 + (1, 1) 4 + (2, 0) 6 + (2, 2) 8 + + >>> for index, x in np.ma.ndenumerate(a, compressed=False): + ... print(index, x) + (0, 0) 0 + (0, 1) 1 + (0, 2) 2 + (1, 0) -- + (1, 1) 4 + (1, 2) -- + (2, 0) 6 + (2, 1) -- + (2, 2) 8 + """ + for it, mask in zip(np.ndenumerate(a), getmaskarray(a).flat): + if not mask: + yield it + elif not compressed: + yield it[0], masked + + +def flatnotmasked_edges(a): + """ + Find the indices of the first and last unmasked values. + + Expects a 1-D `MaskedArray`, returns None if all values are masked. + + Parameters + ---------- + a : array_like + Input 1-D `MaskedArray` + + Returns + ------- + edges : ndarray or None + The indices of first and last non-masked value in the array. + Returns None if all values are masked. + + See Also + -------- + flatnotmasked_contiguous, notmasked_contiguous, notmasked_edges + clump_masked, clump_unmasked + + Notes + ----- + Only accepts 1-D arrays. + + Examples + -------- + >>> import numpy as np + >>> a = np.ma.arange(10) + >>> np.ma.flatnotmasked_edges(a) + array([0, 9]) + + >>> mask = (a < 3) | (a > 8) | (a == 5) + >>> a[mask] = np.ma.masked + >>> np.array(a[~a.mask]) + array([3, 4, 6, 7, 8]) + + >>> np.ma.flatnotmasked_edges(a) + array([3, 8]) + + >>> a[:] = np.ma.masked + >>> print(np.ma.flatnotmasked_edges(a)) + None + + """ + m = getmask(a) + if m is nomask or not np.any(m): + return np.array([0, a.size - 1]) + unmasked = np.flatnonzero(~m) + if len(unmasked) > 0: + return unmasked[[0, -1]] + else: + return None + + +def notmasked_edges(a, axis=None): + """ + Find the indices of the first and last unmasked values along an axis. + + If all values are masked, return None. Otherwise, return a list + of two tuples, corresponding to the indices of the first and last + unmasked values respectively. + + Parameters + ---------- + a : array_like + The input array. + axis : int, optional + Axis along which to perform the operation. + If None (default), applies to a flattened version of the array. + + Returns + ------- + edges : ndarray or list + An array of start and end indexes if there are any masked data in + the array. If there are no masked data in the array, `edges` is a + list of the first and last index. + + See Also + -------- + flatnotmasked_contiguous, flatnotmasked_edges, notmasked_contiguous + clump_masked, clump_unmasked + + Examples + -------- + >>> import numpy as np + >>> a = np.arange(9).reshape((3, 3)) + >>> m = np.zeros_like(a) + >>> m[1:, 1:] = 1 + + >>> am = np.ma.array(a, mask=m) + >>> np.array(am[~am.mask]) + array([0, 1, 2, 3, 6]) + + >>> np.ma.notmasked_edges(am) + array([0, 6]) + + """ + a = asarray(a) + if axis is None or a.ndim == 1: + return flatnotmasked_edges(a) + m = getmaskarray(a) + idx = array(np.indices(a.shape), mask=np.asarray([m] * a.ndim)) + return [tuple(idx[i].min(axis).compressed() for i in range(a.ndim)), + tuple(idx[i].max(axis).compressed() for i in range(a.ndim)), ] + + +def flatnotmasked_contiguous(a): + """ + Find contiguous unmasked data in a masked array. + + Parameters + ---------- + a : array_like + The input array. + + Returns + ------- + slice_list : list + A sorted sequence of `slice` objects (start index, end index). + + See Also + -------- + flatnotmasked_edges, notmasked_contiguous, notmasked_edges + clump_masked, clump_unmasked + + Notes + ----- + Only accepts 2-D arrays at most. + + Examples + -------- + >>> import numpy as np + >>> a = np.ma.arange(10) + >>> np.ma.flatnotmasked_contiguous(a) + [slice(0, 10, None)] + + >>> mask = (a < 3) | (a > 8) | (a == 5) + >>> a[mask] = np.ma.masked + >>> np.array(a[~a.mask]) + array([3, 4, 6, 7, 8]) + + >>> np.ma.flatnotmasked_contiguous(a) + [slice(3, 5, None), slice(6, 9, None)] + >>> a[:] = np.ma.masked + >>> np.ma.flatnotmasked_contiguous(a) + [] + + """ + m = getmask(a) + if m is nomask: + return [slice(0, a.size)] + i = 0 + result = [] + for (k, g) in itertools.groupby(m.ravel()): + n = len(list(g)) + if not k: + result.append(slice(i, i + n)) + i += n + return result + + +def notmasked_contiguous(a, axis=None): + """ + Find contiguous unmasked data in a masked array along the given axis. + + Parameters + ---------- + a : array_like + The input array. + axis : int, optional + Axis along which to perform the operation. + If None (default), applies to a flattened version of the array, and this + is the same as `flatnotmasked_contiguous`. + + Returns + ------- + endpoints : list + A list of slices (start and end indexes) of unmasked indexes + in the array. + + If the input is 2d and axis is specified, the result is a list of lists. + + See Also + -------- + flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges + clump_masked, clump_unmasked + + Notes + ----- + Only accepts 2-D arrays at most. + + Examples + -------- + >>> import numpy as np + >>> a = np.arange(12).reshape((3, 4)) + >>> mask = np.zeros_like(a) + >>> mask[1:, :-1] = 1; mask[0, 1] = 1; mask[-1, 0] = 0 + >>> ma = np.ma.array(a, mask=mask) + >>> ma + masked_array( + data=[[0, --, 2, 3], + [--, --, --, 7], + [8, --, --, 11]], + mask=[[False, True, False, False], + [ True, True, True, False], + [False, True, True, False]], + fill_value=999999) + >>> np.array(ma[~ma.mask]) + array([ 0, 2, 3, 7, 8, 11]) + + >>> np.ma.notmasked_contiguous(ma) + [slice(0, 1, None), slice(2, 4, None), slice(7, 9, None), slice(11, 12, None)] + + >>> np.ma.notmasked_contiguous(ma, axis=0) + [[slice(0, 1, None), slice(2, 3, None)], [], [slice(0, 1, None)], [slice(0, 3, None)]] + + >>> np.ma.notmasked_contiguous(ma, axis=1) + [[slice(0, 1, None), slice(2, 4, None)], [slice(3, 4, None)], [slice(0, 1, None), slice(3, 4, None)]] + + """ # noqa: E501 + a = asarray(a) + nd = a.ndim + if nd > 2: + raise NotImplementedError("Currently limited to at most 2D array.") + if axis is None or nd == 1: + return flatnotmasked_contiguous(a) + # + result = [] + # + other = (axis + 1) % 2 + idx = [0, 0] + idx[axis] = slice(None, None) + # + for i in range(a.shape[other]): + idx[other] = i + result.append(flatnotmasked_contiguous(a[tuple(idx)])) + return result + + +def _ezclump(mask): + """ + Finds the clumps (groups of data with the same values) for a 1D bool array. + + Returns a series of slices. + """ + if mask.ndim > 1: + mask = mask.ravel() + idx = (mask[1:] ^ mask[:-1]).nonzero() + idx = idx[0] + 1 + + if mask[0]: + if len(idx) == 0: + return [slice(0, mask.size)] + + r = [slice(0, idx[0])] + r.extend((slice(left, right) + for left, right in zip(idx[1:-1:2], idx[2::2]))) + else: + if len(idx) == 0: + return [] + + r = [slice(left, right) for left, right in zip(idx[:-1:2], idx[1::2])] + + if mask[-1]: + r.append(slice(idx[-1], mask.size)) + return r + + +def clump_unmasked(a): + """ + Return list of slices corresponding to the unmasked clumps of a 1-D array. + (A "clump" is defined as a contiguous region of the array). + + Parameters + ---------- + a : ndarray + A one-dimensional masked array. + + Returns + ------- + slices : list of slice + The list of slices, one for each continuous region of unmasked + elements in `a`. + + See Also + -------- + flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges + notmasked_contiguous, clump_masked + + Examples + -------- + >>> import numpy as np + >>> a = np.ma.masked_array(np.arange(10)) + >>> a[[0, 1, 2, 6, 8, 9]] = np.ma.masked + >>> np.ma.clump_unmasked(a) + [slice(3, 6, None), slice(7, 8, None)] + + """ + mask = getattr(a, '_mask', nomask) + if mask is nomask: + return [slice(0, a.size)] + return _ezclump(~mask) + + +def clump_masked(a): + """ + Returns a list of slices corresponding to the masked clumps of a 1-D array. + (A "clump" is defined as a contiguous region of the array). + + Parameters + ---------- + a : ndarray + A one-dimensional masked array. + + Returns + ------- + slices : list of slice + The list of slices, one for each continuous region of masked elements + in `a`. + + See Also + -------- + flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges + notmasked_contiguous, clump_unmasked + + Examples + -------- + >>> import numpy as np + >>> a = np.ma.masked_array(np.arange(10)) + >>> a[[0, 1, 2, 6, 8, 9]] = np.ma.masked + >>> np.ma.clump_masked(a) + [slice(0, 3, None), slice(6, 7, None), slice(8, 10, None)] + + """ + mask = ma.getmask(a) + if mask is nomask: + return [] + return _ezclump(mask) + + +############################################################################### +# Polynomial fit # +############################################################################### + + +def vander(x, n=None): + """ + Masked values in the input array result in rows of zeros. + + """ + _vander = np.vander(x, n) + m = getmask(x) + if m is not nomask: + _vander[m] = 0 + return _vander + + +vander.__doc__ = ma.doc_note(np.vander.__doc__, vander.__doc__) + + +def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False): + """ + Any masked values in x is propagated in y, and vice-versa. + + """ + x = asarray(x) + y = asarray(y) + + m = getmask(x) + if y.ndim == 1: + m = mask_or(m, getmask(y)) + elif y.ndim == 2: + my = getmask(mask_rows(y)) + if my is not nomask: + m = mask_or(m, my[:, 0]) + else: + raise TypeError("Expected a 1D or 2D array for y!") + + if w is not None: + w = asarray(w) + if w.ndim != 1: + raise TypeError("expected a 1-d array for weights") + if w.shape[0] != y.shape[0]: + raise TypeError("expected w and y to have the same length") + m = mask_or(m, getmask(w)) + + if m is not nomask: + not_m = ~m + if w is not None: + w = w[not_m] + return np.polyfit(x[not_m], y[not_m], deg, rcond, full, w, cov) + else: + return np.polyfit(x, y, deg, rcond, full, w, cov) + + +polyfit.__doc__ = ma.doc_note(np.polyfit.__doc__, polyfit.__doc__) diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/extras.pyi b/.venv/lib/python3.12/site-packages/numpy/ma/extras.pyi new file mode 100644 index 0000000..c3f9fcd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/ma/extras.pyi @@ -0,0 +1,134 @@ +from _typeshed import Incomplete + +import numpy as np +from numpy.lib._function_base_impl import average +from numpy.lib._index_tricks_impl import AxisConcatenator + +from .core import MaskedArray, dot + +__all__ = [ + "apply_along_axis", + "apply_over_axes", + "atleast_1d", + "atleast_2d", + "atleast_3d", + "average", + "clump_masked", + "clump_unmasked", + "column_stack", + "compress_cols", + "compress_nd", + "compress_rowcols", + "compress_rows", + "corrcoef", + "count_masked", + "cov", + "diagflat", + "dot", + "dstack", + "ediff1d", + "flatnotmasked_contiguous", + "flatnotmasked_edges", + "hsplit", + "hstack", + "in1d", + "intersect1d", + "isin", + "mask_cols", + "mask_rowcols", + "mask_rows", + "masked_all", + "masked_all_like", + "median", + "mr_", + "ndenumerate", + "notmasked_contiguous", + "notmasked_edges", + "polyfit", + "row_stack", + "setdiff1d", + "setxor1d", + "stack", + "union1d", + "unique", + "vander", + "vstack", +] + +def count_masked(arr, axis=...): ... +def masked_all(shape, dtype=...): ... +def masked_all_like(arr): ... + +class _fromnxfunction: + __name__: Incomplete + __doc__: Incomplete + def __init__(self, funcname) -> None: ... + def getdoc(self): ... + def __call__(self, *args, **params): ... + +class _fromnxfunction_single(_fromnxfunction): + def __call__(self, x, *args, **params): ... + +class _fromnxfunction_seq(_fromnxfunction): + def __call__(self, x, *args, **params): ... + +class _fromnxfunction_allargs(_fromnxfunction): + def __call__(self, *args, **params): ... + +atleast_1d: _fromnxfunction_allargs +atleast_2d: _fromnxfunction_allargs +atleast_3d: _fromnxfunction_allargs + +vstack: _fromnxfunction_seq +row_stack: _fromnxfunction_seq +hstack: _fromnxfunction_seq +column_stack: _fromnxfunction_seq +dstack: _fromnxfunction_seq +stack: _fromnxfunction_seq + +hsplit: _fromnxfunction_single +diagflat: _fromnxfunction_single + +def apply_along_axis(func1d, axis, arr, *args, **kwargs): ... +def apply_over_axes(func, a, axes): ... +def median(a, axis=..., out=..., overwrite_input=..., keepdims=...): ... +def compress_nd(x, axis=...): ... +def compress_rowcols(x, axis=...): ... +def compress_rows(a): ... +def compress_cols(a): ... +def mask_rows(a, axis=...): ... +def mask_cols(a, axis=...): ... +def ediff1d(arr, to_end=..., to_begin=...): ... +def unique(ar1, return_index=..., return_inverse=...): ... +def intersect1d(ar1, ar2, assume_unique=...): ... +def setxor1d(ar1, ar2, assume_unique=...): ... +def in1d(ar1, ar2, assume_unique=..., invert=...): ... +def isin(element, test_elements, assume_unique=..., invert=...): ... +def union1d(ar1, ar2): ... +def setdiff1d(ar1, ar2, assume_unique=...): ... +def cov(x, y=..., rowvar=..., bias=..., allow_masked=..., ddof=...): ... +def corrcoef(x, y=..., rowvar=..., bias=..., allow_masked=..., ddof=...): ... + +class MAxisConcatenator(AxisConcatenator): + @staticmethod + def concatenate(arrays: Incomplete, axis: int = 0) -> Incomplete: ... # type: ignore[override] # pyright: ignore[reportIncompatibleMethodOverride] + @classmethod + def makemat(cls, arr: Incomplete) -> Incomplete: ... # type: ignore[override] # pyright: ignore[reportIncompatibleVariableOverride] + +class mr_class(MAxisConcatenator): + def __init__(self) -> None: ... + +mr_: mr_class + +def ndenumerate(a, compressed=...): ... +def flatnotmasked_edges(a): ... +def notmasked_edges(a, axis=...): ... +def flatnotmasked_contiguous(a): ... +def notmasked_contiguous(a, axis=...): ... +def clump_unmasked(a): ... +def clump_masked(a): ... +def vander(x, n=...): ... +def polyfit(x, y, deg, rcond=..., full=..., w=..., cov=...): ... + +# +def mask_rowcols(a: Incomplete, axis: Incomplete | None = None) -> MaskedArray[Incomplete, np.dtype[Incomplete]]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/mrecords.py b/.venv/lib/python3.12/site-packages/numpy/ma/mrecords.py new file mode 100644 index 0000000..835f3ce --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/ma/mrecords.py @@ -0,0 +1,773 @@ +""":mod:`numpy.ma..mrecords` + +Defines the equivalent of :class:`numpy.recarrays` for masked arrays, +where fields can be accessed as attributes. +Note that :class:`numpy.ma.MaskedArray` already supports structured datatypes +and the masking of individual fields. + +.. moduleauthor:: Pierre Gerard-Marchant + +""" +# We should make sure that no field is called '_mask','mask','_fieldmask', +# or whatever restricted keywords. An idea would be to no bother in the +# first place, and then rename the invalid fields with a trailing +# underscore. Maybe we could just overload the parser function ? + +import warnings + +import numpy as np +import numpy.ma as ma + +_byteorderconv = np._core.records._byteorderconv + + +_check_fill_value = ma.core._check_fill_value + + +__all__ = [ + 'MaskedRecords', 'mrecarray', 'fromarrays', 'fromrecords', + 'fromtextfile', 'addfield', +] + +reserved_fields = ['_data', '_mask', '_fieldmask', 'dtype'] + + +def _checknames(descr, names=None): + """ + Checks that field names ``descr`` are not reserved keywords. + + If this is the case, a default 'f%i' is substituted. If the argument + `names` is not None, updates the field names to valid names. + + """ + ndescr = len(descr) + default_names = [f'f{i}' for i in range(ndescr)] + if names is None: + new_names = default_names + else: + if isinstance(names, (tuple, list)): + new_names = names + elif isinstance(names, str): + new_names = names.split(',') + else: + raise NameError(f'illegal input names {names!r}') + nnames = len(new_names) + if nnames < ndescr: + new_names += default_names[nnames:] + ndescr = [] + for (n, d, t) in zip(new_names, default_names, descr.descr): + if n in reserved_fields: + if t[0] in reserved_fields: + ndescr.append((d, t[1])) + else: + ndescr.append(t) + else: + ndescr.append((n, t[1])) + return np.dtype(ndescr) + + +def _get_fieldmask(self): + mdescr = [(n, '|b1') for n in self.dtype.names] + fdmask = np.empty(self.shape, dtype=mdescr) + fdmask.flat = tuple([False] * len(mdescr)) + return fdmask + + +class MaskedRecords(ma.MaskedArray): + """ + + Attributes + ---------- + _data : recarray + Underlying data, as a record array. + _mask : boolean array + Mask of the records. A record is masked when all its fields are + masked. + _fieldmask : boolean recarray + Record array of booleans, setting the mask of each individual field + of each record. + _fill_value : record + Filling values for each field. + + """ + + def __new__(cls, shape, dtype=None, buf=None, offset=0, strides=None, + formats=None, names=None, titles=None, + byteorder=None, aligned=False, + mask=ma.nomask, hard_mask=False, fill_value=None, keep_mask=True, + copy=False, + **options): + + self = np.recarray.__new__(cls, shape, dtype=dtype, buf=buf, offset=offset, + strides=strides, formats=formats, names=names, + titles=titles, byteorder=byteorder, + aligned=aligned,) + + mdtype = ma.make_mask_descr(self.dtype) + if mask is ma.nomask or not np.size(mask): + if not keep_mask: + self._mask = tuple([False] * len(mdtype)) + else: + mask = np.array(mask, copy=copy) + if mask.shape != self.shape: + (nd, nm) = (self.size, mask.size) + if nm == 1: + mask = np.resize(mask, self.shape) + elif nm == nd: + mask = np.reshape(mask, self.shape) + else: + msg = (f"Mask and data not compatible: data size is {nd}," + " mask size is {nm}.") + raise ma.MAError(msg) + if not keep_mask: + self.__setmask__(mask) + self._sharedmask = True + else: + if mask.dtype == mdtype: + _mask = mask + else: + _mask = np.array([tuple([m] * len(mdtype)) for m in mask], + dtype=mdtype) + self._mask = _mask + return self + + def __array_finalize__(self, obj): + # Make sure we have a _fieldmask by default + _mask = getattr(obj, '_mask', None) + if _mask is None: + objmask = getattr(obj, '_mask', ma.nomask) + _dtype = np.ndarray.__getattribute__(self, 'dtype') + if objmask is ma.nomask: + _mask = ma.make_mask_none(self.shape, dtype=_dtype) + else: + mdescr = ma.make_mask_descr(_dtype) + _mask = np.array([tuple([m] * len(mdescr)) for m in objmask], + dtype=mdescr).view(np.recarray) + # Update some of the attributes + _dict = self.__dict__ + _dict.update(_mask=_mask) + self._update_from(obj) + if _dict['_baseclass'] == np.ndarray: + _dict['_baseclass'] = np.recarray + + @property + def _data(self): + """ + Returns the data as a recarray. + + """ + return np.ndarray.view(self, np.recarray) + + @property + def _fieldmask(self): + """ + Alias to mask. + + """ + return self._mask + + def __len__(self): + """ + Returns the length + + """ + # We have more than one record + if self.ndim: + return len(self._data) + # We have only one record: return the nb of fields + return len(self.dtype) + + def __getattribute__(self, attr): + try: + return object.__getattribute__(self, attr) + except AttributeError: + # attr must be a fieldname + pass + fielddict = np.ndarray.__getattribute__(self, 'dtype').fields + try: + res = fielddict[attr][:2] + except (TypeError, KeyError) as e: + raise AttributeError( + f'record array has no attribute {attr}') from e + # So far, so good + _localdict = np.ndarray.__getattribute__(self, '__dict__') + _data = np.ndarray.view(self, _localdict['_baseclass']) + obj = _data.getfield(*res) + if obj.dtype.names is not None: + raise NotImplementedError("MaskedRecords is currently limited to" + "simple records.") + # Get some special attributes + # Reset the object's mask + hasmasked = False + _mask = _localdict.get('_mask', None) + if _mask is not None: + try: + _mask = _mask[attr] + except IndexError: + # Couldn't find a mask: use the default (nomask) + pass + tp_len = len(_mask.dtype) + hasmasked = _mask.view((bool, ((tp_len,) if tp_len else ()))).any() + if (obj.shape or hasmasked): + obj = obj.view(ma.MaskedArray) + obj._baseclass = np.ndarray + obj._isfield = True + obj._mask = _mask + # Reset the field values + _fill_value = _localdict.get('_fill_value', None) + if _fill_value is not None: + try: + obj._fill_value = _fill_value[attr] + except ValueError: + obj._fill_value = None + else: + obj = obj.item() + return obj + + def __setattr__(self, attr, val): + """ + Sets the attribute attr to the value val. + + """ + # Should we call __setmask__ first ? + if attr in ['mask', 'fieldmask']: + self.__setmask__(val) + return + # Create a shortcut (so that we don't have to call getattr all the time) + _localdict = object.__getattribute__(self, '__dict__') + # Check whether we're creating a new field + newattr = attr not in _localdict + try: + # Is attr a generic attribute ? + ret = object.__setattr__(self, attr, val) + except Exception: + # Not a generic attribute: exit if it's not a valid field + fielddict = np.ndarray.__getattribute__(self, 'dtype').fields or {} + optinfo = np.ndarray.__getattribute__(self, '_optinfo') or {} + if not (attr in fielddict or attr in optinfo): + raise + else: + # Get the list of names + fielddict = np.ndarray.__getattribute__(self, 'dtype').fields or {} + # Check the attribute + if attr not in fielddict: + return ret + if newattr: + # We just added this one or this setattr worked on an + # internal attribute. + try: + object.__delattr__(self, attr) + except Exception: + return ret + # Let's try to set the field + try: + res = fielddict[attr][:2] + except (TypeError, KeyError) as e: + raise AttributeError( + f'record array has no attribute {attr}') from e + + if val is ma.masked: + _fill_value = _localdict['_fill_value'] + if _fill_value is not None: + dval = _localdict['_fill_value'][attr] + else: + dval = val + mval = True + else: + dval = ma.filled(val) + mval = ma.getmaskarray(val) + obj = np.ndarray.__getattribute__(self, '_data').setfield(dval, *res) + _localdict['_mask'].__setitem__(attr, mval) + return obj + + def __getitem__(self, indx): + """ + Returns all the fields sharing the same fieldname base. + + The fieldname base is either `_data` or `_mask`. + + """ + _localdict = self.__dict__ + _mask = np.ndarray.__getattribute__(self, '_mask') + _data = np.ndarray.view(self, _localdict['_baseclass']) + # We want a field + if isinstance(indx, str): + # Make sure _sharedmask is True to propagate back to _fieldmask + # Don't use _set_mask, there are some copies being made that + # break propagation Don't force the mask to nomask, that wreaks + # easy masking + obj = _data[indx].view(ma.MaskedArray) + obj._mask = _mask[indx] + obj._sharedmask = True + fval = _localdict['_fill_value'] + if fval is not None: + obj._fill_value = fval[indx] + # Force to masked if the mask is True + if not obj.ndim and obj._mask: + return ma.masked + return obj + # We want some elements. + # First, the data. + obj = np.asarray(_data[indx]).view(mrecarray) + obj._mask = np.asarray(_mask[indx]).view(np.recarray) + return obj + + def __setitem__(self, indx, value): + """ + Sets the given record to value. + + """ + ma.MaskedArray.__setitem__(self, indx, value) + if isinstance(indx, str): + self._mask[indx] = ma.getmaskarray(value) + + def __str__(self): + """ + Calculates the string representation. + + """ + if self.size > 1: + mstr = [f"({','.join([str(i) for i in s])})" + for s in zip(*[getattr(self, f) for f in self.dtype.names])] + return f"[{', '.join(mstr)}]" + else: + mstr = [f"{','.join([str(i) for i in s])}" + for s in zip([getattr(self, f) for f in self.dtype.names])] + return f"({', '.join(mstr)})" + + def __repr__(self): + """ + Calculates the repr representation. + + """ + _names = self.dtype.names + fmt = f"%{max(len(n) for n in _names) + 4}s : %s" + reprstr = [fmt % (f, getattr(self, f)) for f in self.dtype.names] + reprstr.insert(0, 'masked_records(') + reprstr.extend([fmt % (' fill_value', self.fill_value), + ' )']) + return str("\n".join(reprstr)) + + def view(self, dtype=None, type=None): + """ + Returns a view of the mrecarray. + + """ + # OK, basic copy-paste from MaskedArray.view. + if dtype is None: + if type is None: + output = np.ndarray.view(self) + else: + output = np.ndarray.view(self, type) + # Here again. + elif type is None: + try: + if issubclass(dtype, np.ndarray): + output = np.ndarray.view(self, dtype) + else: + output = np.ndarray.view(self, dtype) + # OK, there's the change + except TypeError: + dtype = np.dtype(dtype) + # we need to revert to MaskedArray, but keeping the possibility + # of subclasses (eg, TimeSeriesRecords), so we'll force a type + # set to the first parent + if dtype.fields is None: + basetype = self.__class__.__bases__[0] + output = self.__array__().view(dtype, basetype) + output._update_from(self) + else: + output = np.ndarray.view(self, dtype) + output._fill_value = None + else: + output = np.ndarray.view(self, dtype, type) + # Update the mask, just like in MaskedArray.view + if (getattr(output, '_mask', ma.nomask) is not ma.nomask): + mdtype = ma.make_mask_descr(output.dtype) + output._mask = self._mask.view(mdtype, np.ndarray) + output._mask.shape = output.shape + return output + + def harden_mask(self): + """ + Forces the mask to hard. + + """ + self._hardmask = True + + def soften_mask(self): + """ + Forces the mask to soft + + """ + self._hardmask = False + + def copy(self): + """ + Returns a copy of the masked record. + + """ + copied = self._data.copy().view(type(self)) + copied._mask = self._mask.copy() + return copied + + def tolist(self, fill_value=None): + """ + Return the data portion of the array as a list. + + Data items are converted to the nearest compatible Python type. + Masked values are converted to fill_value. If fill_value is None, + the corresponding entries in the output list will be ``None``. + + """ + if fill_value is not None: + return self.filled(fill_value).tolist() + result = np.array(self.filled().tolist(), dtype=object) + mask = np.array(self._mask.tolist()) + result[mask] = None + return result.tolist() + + def __getstate__(self): + """Return the internal state of the masked array. + + This is for pickling. + + """ + state = (1, + self.shape, + self.dtype, + self.flags.fnc, + self._data.tobytes(), + self._mask.tobytes(), + self._fill_value, + ) + return state + + def __setstate__(self, state): + """ + Restore the internal state of the masked array. + + This is for pickling. ``state`` is typically the output of the + ``__getstate__`` output, and is a 5-tuple: + + - class name + - a tuple giving the shape of the data + - a typecode for the data + - a binary string for the data + - a binary string for the mask. + + """ + (ver, shp, typ, isf, raw, msk, flv) = state + np.ndarray.__setstate__(self, (shp, typ, isf, raw)) + mdtype = np.dtype([(k, np.bool) for (k, _) in self.dtype.descr]) + self.__dict__['_mask'].__setstate__((shp, mdtype, isf, msk)) + self.fill_value = flv + + def __reduce__(self): + """ + Return a 3-tuple for pickling a MaskedArray. + + """ + return (_mrreconstruct, + (self.__class__, self._baseclass, (0,), 'b',), + self.__getstate__()) + + +def _mrreconstruct(subtype, baseclass, baseshape, basetype,): + """ + Build a new MaskedArray from the information stored in a pickle. + + """ + _data = np.ndarray.__new__(baseclass, baseshape, basetype).view(subtype) + _mask = np.ndarray.__new__(np.ndarray, baseshape, 'b1') + return subtype.__new__(subtype, _data, mask=_mask, dtype=basetype,) + + +mrecarray = MaskedRecords + + +############################################################################### +# Constructors # +############################################################################### + + +def fromarrays(arraylist, dtype=None, shape=None, formats=None, + names=None, titles=None, aligned=False, byteorder=None, + fill_value=None): + """ + Creates a mrecarray from a (flat) list of masked arrays. + + Parameters + ---------- + arraylist : sequence + A list of (masked) arrays. Each element of the sequence is first converted + to a masked array if needed. If a 2D array is passed as argument, it is + processed line by line + dtype : {None, dtype}, optional + Data type descriptor. + shape : {None, integer}, optional + Number of records. If None, shape is defined from the shape of the + first array in the list. + formats : {None, sequence}, optional + Sequence of formats for each individual field. If None, the formats will + be autodetected by inspecting the fields and selecting the highest dtype + possible. + names : {None, sequence}, optional + Sequence of the names of each field. + fill_value : {None, sequence}, optional + Sequence of data to be used as filling values. + + Notes + ----- + Lists of tuples should be preferred over lists of lists for faster processing. + + """ + datalist = [ma.getdata(x) for x in arraylist] + masklist = [np.atleast_1d(ma.getmaskarray(x)) for x in arraylist] + _array = np.rec.fromarrays(datalist, + dtype=dtype, shape=shape, formats=formats, + names=names, titles=titles, aligned=aligned, + byteorder=byteorder).view(mrecarray) + _array._mask.flat = list(zip(*masklist)) + if fill_value is not None: + _array.fill_value = fill_value + return _array + + +def fromrecords(reclist, dtype=None, shape=None, formats=None, names=None, + titles=None, aligned=False, byteorder=None, + fill_value=None, mask=ma.nomask): + """ + Creates a MaskedRecords from a list of records. + + Parameters + ---------- + reclist : sequence + A list of records. Each element of the sequence is first converted + to a masked array if needed. If a 2D array is passed as argument, it is + processed line by line + dtype : {None, dtype}, optional + Data type descriptor. + shape : {None,int}, optional + Number of records. If None, ``shape`` is defined from the shape of the + first array in the list. + formats : {None, sequence}, optional + Sequence of formats for each individual field. If None, the formats will + be autodetected by inspecting the fields and selecting the highest dtype + possible. + names : {None, sequence}, optional + Sequence of the names of each field. + fill_value : {None, sequence}, optional + Sequence of data to be used as filling values. + mask : {nomask, sequence}, optional. + External mask to apply on the data. + + Notes + ----- + Lists of tuples should be preferred over lists of lists for faster processing. + + """ + # Grab the initial _fieldmask, if needed: + _mask = getattr(reclist, '_mask', None) + # Get the list of records. + if isinstance(reclist, np.ndarray): + # Make sure we don't have some hidden mask + if isinstance(reclist, ma.MaskedArray): + reclist = reclist.filled().view(np.ndarray) + # Grab the initial dtype, just in case + if dtype is None: + dtype = reclist.dtype + reclist = reclist.tolist() + mrec = np.rec.fromrecords(reclist, dtype=dtype, shape=shape, formats=formats, + names=names, titles=titles, + aligned=aligned, byteorder=byteorder).view(mrecarray) + # Set the fill_value if needed + if fill_value is not None: + mrec.fill_value = fill_value + # Now, let's deal w/ the mask + if mask is not ma.nomask: + mask = np.asarray(mask) + maskrecordlength = len(mask.dtype) + if maskrecordlength: + mrec._mask.flat = mask + elif mask.ndim == 2: + mrec._mask.flat = [tuple(m) for m in mask] + else: + mrec.__setmask__(mask) + if _mask is not None: + mrec._mask[:] = _mask + return mrec + + +def _guessvartypes(arr): + """ + Tries to guess the dtypes of the str_ ndarray `arr`. + + Guesses by testing element-wise conversion. Returns a list of dtypes. + The array is first converted to ndarray. If the array is 2D, the test + is performed on the first line. An exception is raised if the file is + 3D or more. + + """ + vartypes = [] + arr = np.asarray(arr) + if arr.ndim == 2: + arr = arr[0] + elif arr.ndim > 2: + raise ValueError("The array should be 2D at most!") + # Start the conversion loop. + for f in arr: + try: + int(f) + except (ValueError, TypeError): + try: + float(f) + except (ValueError, TypeError): + try: + complex(f) + except (ValueError, TypeError): + vartypes.append(arr.dtype) + else: + vartypes.append(np.dtype(complex)) + else: + vartypes.append(np.dtype(float)) + else: + vartypes.append(np.dtype(int)) + return vartypes + + +def openfile(fname): + """ + Opens the file handle of file `fname`. + + """ + # A file handle + if hasattr(fname, 'readline'): + return fname + # Try to open the file and guess its type + try: + f = open(fname) + except FileNotFoundError as e: + raise FileNotFoundError(f"No such file: '{fname}'") from e + if f.readline()[:2] != "\\x": + f.seek(0, 0) + return f + f.close() + raise NotImplementedError("Wow, binary file") + + +def fromtextfile(fname, delimiter=None, commentchar='#', missingchar='', + varnames=None, vartypes=None, + *, delimitor=np._NoValue): # backwards compatibility + """ + Creates a mrecarray from data stored in the file `filename`. + + Parameters + ---------- + fname : {file name/handle} + Handle of an opened file. + delimiter : {None, string}, optional + Alphanumeric character used to separate columns in the file. + If None, any (group of) white spacestring(s) will be used. + commentchar : {'#', string}, optional + Alphanumeric character used to mark the start of a comment. + missingchar : {'', string}, optional + String indicating missing data, and used to create the masks. + varnames : {None, sequence}, optional + Sequence of the variable names. If None, a list will be created from + the first non empty line of the file. + vartypes : {None, sequence}, optional + Sequence of the variables dtypes. If None, it will be estimated from + the first non-commented line. + + + Ultra simple: the varnames are in the header, one line""" + if delimitor is not np._NoValue: + if delimiter is not None: + raise TypeError("fromtextfile() got multiple values for argument " + "'delimiter'") + # NumPy 1.22.0, 2021-09-23 + warnings.warn("The 'delimitor' keyword argument of " + "numpy.ma.mrecords.fromtextfile() is deprecated " + "since NumPy 1.22.0, use 'delimiter' instead.", + DeprecationWarning, stacklevel=2) + delimiter = delimitor + + # Try to open the file. + ftext = openfile(fname) + + # Get the first non-empty line as the varnames + while True: + line = ftext.readline() + firstline = line[:line.find(commentchar)].strip() + _varnames = firstline.split(delimiter) + if len(_varnames) > 1: + break + if varnames is None: + varnames = _varnames + + # Get the data. + _variables = ma.masked_array([line.strip().split(delimiter) for line in ftext + if line[0] != commentchar and len(line) > 1]) + (_, nfields) = _variables.shape + ftext.close() + + # Try to guess the dtype. + if vartypes is None: + vartypes = _guessvartypes(_variables[0]) + else: + vartypes = [np.dtype(v) for v in vartypes] + if len(vartypes) != nfields: + msg = f"Attempting to {len(vartypes)} dtypes for {nfields} fields!" + msg += " Reverting to default." + warnings.warn(msg, stacklevel=2) + vartypes = _guessvartypes(_variables[0]) + + # Construct the descriptor. + mdescr = list(zip(varnames, vartypes)) + mfillv = [ma.default_fill_value(f) for f in vartypes] + + # Get the data and the mask. + # We just need a list of masked_arrays. It's easier to create it like that: + _mask = (_variables.T == missingchar) + _datalist = [ma.masked_array(a, mask=m, dtype=t, fill_value=f) + for (a, m, t, f) in zip(_variables.T, _mask, vartypes, mfillv)] + + return fromarrays(_datalist, dtype=mdescr) + + +def addfield(mrecord, newfield, newfieldname=None): + """Adds a new field to the masked record array + + Uses `newfield` as data and `newfieldname` as name. If `newfieldname` + is None, the new field name is set to 'fi', where `i` is the number of + existing fields. + + """ + _data = mrecord._data + _mask = mrecord._mask + if newfieldname is None or newfieldname in reserved_fields: + newfieldname = f'f{len(_data.dtype)}' + newfield = ma.array(newfield) + # Get the new data. + # Create a new empty recarray + newdtype = np.dtype(_data.dtype.descr + [(newfieldname, newfield.dtype)]) + newdata = np.recarray(_data.shape, newdtype) + # Add the existing field + [newdata.setfield(_data.getfield(*f), *f) + for f in _data.dtype.fields.values()] + # Add the new field + newdata.setfield(newfield._data, *newdata.dtype.fields[newfieldname]) + newdata = newdata.view(MaskedRecords) + # Get the new mask + # Create a new empty recarray + newmdtype = np.dtype([(n, np.bool) for n in newdtype.names]) + newmask = np.recarray(_data.shape, newmdtype) + # Add the old masks + [newmask.setfield(_mask.getfield(*f), *f) + for f in _mask.dtype.fields.values()] + # Add the mask of the new field + newmask.setfield(ma.getmaskarray(newfield), + *newmask.dtype.fields[newfieldname]) + newdata._mask = newmask + return newdata diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/mrecords.pyi b/.venv/lib/python3.12/site-packages/numpy/ma/mrecords.pyi new file mode 100644 index 0000000..cae687a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/ma/mrecords.pyi @@ -0,0 +1,96 @@ +from typing import Any, TypeVar + +from numpy import dtype + +from . import MaskedArray + +__all__ = [ + "MaskedRecords", + "mrecarray", + "fromarrays", + "fromrecords", + "fromtextfile", + "addfield", +] + +_ShapeT_co = TypeVar("_ShapeT_co", covariant=True, bound=tuple[int, ...]) +_DTypeT_co = TypeVar("_DTypeT_co", bound=dtype, covariant=True) + +class MaskedRecords(MaskedArray[_ShapeT_co, _DTypeT_co]): + def __new__( + cls, + shape, + dtype=..., + buf=..., + offset=..., + strides=..., + formats=..., + names=..., + titles=..., + byteorder=..., + aligned=..., + mask=..., + hard_mask=..., + fill_value=..., + keep_mask=..., + copy=..., + **options, + ): ... + _mask: Any + _fill_value: Any + @property + def _data(self): ... + @property + def _fieldmask(self): ... + def __array_finalize__(self, obj): ... + def __len__(self): ... + def __getattribute__(self, attr): ... + def __setattr__(self, attr, val): ... + def __getitem__(self, indx): ... + def __setitem__(self, indx, value): ... + def view(self, dtype=..., type=...): ... + def harden_mask(self): ... + def soften_mask(self): ... + def copy(self): ... + def tolist(self, fill_value=...): ... + def __reduce__(self): ... + +mrecarray = MaskedRecords + +def fromarrays( + arraylist, + dtype=..., + shape=..., + formats=..., + names=..., + titles=..., + aligned=..., + byteorder=..., + fill_value=..., +): ... + +def fromrecords( + reclist, + dtype=..., + shape=..., + formats=..., + names=..., + titles=..., + aligned=..., + byteorder=..., + fill_value=..., + mask=..., +): ... + +def fromtextfile( + fname, + delimiter=..., + commentchar=..., + missingchar=..., + varnames=..., + vartypes=..., + # NOTE: deprecated: NumPy 1.22.0, 2021-09-23 + # delimitor=..., +): ... + +def addfield(mrecord, newfield, newfieldname=...): ... diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/__init__.py b/.venv/lib/python3.12/site-packages/numpy/ma/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..c092311 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_arrayobject.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_arrayobject.cpython-312.pyc new file mode 100644 index 0000000..dc78204 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_arrayobject.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_core.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_core.cpython-312.pyc new file mode 100644 index 0000000..0c928d4 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_core.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_deprecations.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_deprecations.cpython-312.pyc new file mode 100644 index 0000000..bab6c69 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_deprecations.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_extras.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_extras.cpython-312.pyc new file mode 100644 index 0000000..3044246 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_extras.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_mrecords.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_mrecords.cpython-312.pyc new file mode 100644 index 0000000..b06c9ae Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_mrecords.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_old_ma.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_old_ma.cpython-312.pyc new file mode 100644 index 0000000..ee9fefd Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_old_ma.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_regression.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_regression.cpython-312.pyc new file mode 100644 index 0000000..0ae4af7 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_regression.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_subclassing.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_subclassing.cpython-312.pyc new file mode 100644 index 0000000..57db03b Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/ma/tests/__pycache__/test_subclassing.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_arrayobject.py b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_arrayobject.py new file mode 100644 index 0000000..2000cea --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_arrayobject.py @@ -0,0 +1,40 @@ +import pytest + +import numpy as np +from numpy.ma import masked_array +from numpy.testing import assert_array_equal + + +def test_matrix_transpose_raises_error_for_1d(): + msg = "matrix transpose with ndim < 2 is undefined" + ma_arr = masked_array(data=[1, 2, 3, 4, 5, 6], + mask=[1, 0, 1, 1, 1, 0]) + with pytest.raises(ValueError, match=msg): + ma_arr.mT + + +def test_matrix_transpose_equals_transpose_2d(): + ma_arr = masked_array(data=[[1, 2, 3], [4, 5, 6]], + mask=[[1, 0, 1], [1, 1, 0]]) + assert_array_equal(ma_arr.T, ma_arr.mT) + + +ARRAY_SHAPES_TO_TEST = ( + (5, 2), + (5, 2, 3), + (5, 2, 3, 4), +) + + +@pytest.mark.parametrize("shape", ARRAY_SHAPES_TO_TEST) +def test_matrix_transpose_equals_swapaxes(shape): + num_of_axes = len(shape) + vec = np.arange(shape[-1]) + arr = np.broadcast_to(vec, shape) + + rng = np.random.default_rng(42) + mask = rng.choice([0, 1], size=shape) + ma_arr = masked_array(data=arr, mask=mask) + + tgt = np.swapaxes(arr, num_of_axes - 2, num_of_axes - 1) + assert_array_equal(tgt, ma_arr.mT) diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_core.py b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_core.py new file mode 100644 index 0000000..091ba6c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_core.py @@ -0,0 +1,5886 @@ +"""Tests suite for MaskedArray & subclassing. + +:author: Pierre Gerard-Marchant +:contact: pierregm_at_uga_dot_edu +""" +__author__ = "Pierre GF Gerard-Marchant" + +import copy +import itertools +import operator +import pickle +import sys +import textwrap +import warnings +from functools import reduce + +import pytest + +import numpy as np +import numpy._core.fromnumeric as fromnumeric +import numpy._core.umath as umath +import numpy.ma.core +from numpy import ndarray +from numpy._utils import asbytes +from numpy.exceptions import AxisError +from numpy.ma.core import ( + MAError, + MaskedArray, + MaskError, + MaskType, + abs, + absolute, + add, + all, + allclose, + allequal, + alltrue, + angle, + anom, + arange, + arccos, + arccosh, + arcsin, + arctan, + arctan2, + argsort, + array, + asarray, + choose, + concatenate, + conjugate, + cos, + cosh, + count, + default_fill_value, + diag, + divide, + empty, + empty_like, + equal, + exp, + filled, + fix_invalid, + flatten_mask, + flatten_structured_array, + fromflex, + getmask, + getmaskarray, + greater, + greater_equal, + identity, + inner, + isMaskedArray, + less, + less_equal, + log, + log10, + make_mask, + make_mask_descr, + mask_or, + masked, + masked_array, + masked_equal, + masked_greater, + masked_greater_equal, + masked_inside, + masked_less, + masked_less_equal, + masked_not_equal, + masked_outside, + masked_print_option, + masked_values, + masked_where, + max, + maximum, + maximum_fill_value, + min, + minimum, + minimum_fill_value, + mod, + multiply, + mvoid, + nomask, + not_equal, + ones, + ones_like, + outer, + power, + product, + put, + putmask, + ravel, + repeat, + reshape, + resize, + shape, + sin, + sinh, + sometrue, + sort, + sqrt, + subtract, + sum, + take, + tan, + tanh, + transpose, + where, + zeros, + zeros_like, +) +from numpy.ma.testutils import ( + assert_, + assert_almost_equal, + assert_array_equal, + assert_equal, + assert_equal_records, + assert_mask_equal, + assert_not_equal, + fail_if_equal, +) +from numpy.testing import ( + IS_WASM, + assert_raises, + assert_warns, + suppress_warnings, + temppath, +) +from numpy.testing._private.utils import requires_memory + +pi = np.pi + + +suppress_copy_mask_on_assignment = suppress_warnings() +suppress_copy_mask_on_assignment.filter( + numpy.ma.core.MaskedArrayFutureWarning, + "setting an item on a masked array which has a shared mask will not copy") + + +# For parametrized numeric testing +num_dts = [np.dtype(dt_) for dt_ in '?bhilqBHILQefdgFD'] +num_ids = [dt_.char for dt_ in num_dts] + + +class TestMaskedArray: + # Base test class for MaskedArrays. + + def setup_method(self): + # Base data definition. + x = np.array([1., 1., 1., -2., pi / 2.0, 4., 5., -10., 10., 1., 2., 3.]) + y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) + a10 = 10. + m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] + m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] + xm = masked_array(x, mask=m1) + ym = masked_array(y, mask=m2) + z = np.array([-.5, 0., .5, .8]) + zm = masked_array(z, mask=[0, 1, 0, 0]) + xf = np.where(m1, 1e+20, x) + xm.set_fill_value(1e+20) + self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf) + + def test_basicattributes(self): + # Tests some basic array attributes. + a = array([1, 3, 2]) + b = array([1, 3, 2], mask=[1, 0, 1]) + assert_equal(a.ndim, 1) + assert_equal(b.ndim, 1) + assert_equal(a.size, 3) + assert_equal(b.size, 3) + assert_equal(a.shape, (3,)) + assert_equal(b.shape, (3,)) + + def test_basic0d(self): + # Checks masking a scalar + x = masked_array(0) + assert_equal(str(x), '0') + x = masked_array(0, mask=True) + assert_equal(str(x), str(masked_print_option)) + x = masked_array(0, mask=False) + assert_equal(str(x), '0') + x = array(0, mask=1) + assert_(x.filled().dtype is x._data.dtype) + + def test_basic1d(self): + # Test of basic array creation and properties in 1 dimension. + (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d + assert_(not isMaskedArray(x)) + assert_(isMaskedArray(xm)) + assert_((xm - ym).filled(0).any()) + fail_if_equal(xm.mask.astype(int), ym.mask.astype(int)) + s = x.shape + assert_equal(np.shape(xm), s) + assert_equal(xm.shape, s) + assert_equal(xm.dtype, x.dtype) + assert_equal(zm.dtype, z.dtype) + assert_equal(xm.size, reduce(lambda x, y: x * y, s)) + assert_equal(count(xm), len(m1) - reduce(lambda x, y: x + y, m1)) + assert_array_equal(xm, xf) + assert_array_equal(filled(xm, 1.e20), xf) + assert_array_equal(x, xm) + + def test_basic2d(self): + # Test of basic array creation and properties in 2 dimensions. + (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d + for s in [(4, 3), (6, 2)]: + x.shape = s + y.shape = s + xm.shape = s + ym.shape = s + xf.shape = s + + assert_(not isMaskedArray(x)) + assert_(isMaskedArray(xm)) + assert_equal(shape(xm), s) + assert_equal(xm.shape, s) + assert_equal(xm.size, reduce(lambda x, y: x * y, s)) + assert_equal(count(xm), len(m1) - reduce(lambda x, y: x + y, m1)) + assert_equal(xm, xf) + assert_equal(filled(xm, 1.e20), xf) + assert_equal(x, xm) + + def test_concatenate_basic(self): + # Tests concatenations. + (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d + # basic concatenation + assert_equal(np.concatenate((x, y)), concatenate((xm, ym))) + assert_equal(np.concatenate((x, y)), concatenate((x, y))) + assert_equal(np.concatenate((x, y)), concatenate((xm, y))) + assert_equal(np.concatenate((x, y, x)), concatenate((x, ym, x))) + + def test_concatenate_alongaxis(self): + # Tests concatenations. + (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d + # Concatenation along an axis + s = (3, 4) + x.shape = y.shape = xm.shape = ym.shape = s + assert_equal(xm.mask, np.reshape(m1, s)) + assert_equal(ym.mask, np.reshape(m2, s)) + xmym = concatenate((xm, ym), 1) + assert_equal(np.concatenate((x, y), 1), xmym) + assert_equal(np.concatenate((xm.mask, ym.mask), 1), xmym._mask) + + x = zeros(2) + y = array(ones(2), mask=[False, True]) + z = concatenate((x, y)) + assert_array_equal(z, [0, 0, 1, 1]) + assert_array_equal(z.mask, [False, False, False, True]) + z = concatenate((y, x)) + assert_array_equal(z, [1, 1, 0, 0]) + assert_array_equal(z.mask, [False, True, False, False]) + + def test_concatenate_flexible(self): + # Tests the concatenation on flexible arrays. + data = masked_array(list(zip(np.random.rand(10), + np.arange(10))), + dtype=[('a', float), ('b', int)]) + + test = concatenate([data[:5], data[5:]]) + assert_equal_records(test, data) + + def test_creation_ndmin(self): + # Check the use of ndmin + x = array([1, 2, 3], mask=[1, 0, 0], ndmin=2) + assert_equal(x.shape, (1, 3)) + assert_equal(x._data, [[1, 2, 3]]) + assert_equal(x._mask, [[1, 0, 0]]) + + def test_creation_ndmin_from_maskedarray(self): + # Make sure we're not losing the original mask w/ ndmin + x = array([1, 2, 3]) + x[-1] = masked + xx = array(x, ndmin=2, dtype=float) + assert_equal(x.shape, x._mask.shape) + assert_equal(xx.shape, xx._mask.shape) + + def test_creation_maskcreation(self): + # Tests how masks are initialized at the creation of Maskedarrays. + data = arange(24, dtype=float) + data[[3, 6, 15]] = masked + dma_1 = MaskedArray(data) + assert_equal(dma_1.mask, data.mask) + dma_2 = MaskedArray(dma_1) + assert_equal(dma_2.mask, dma_1.mask) + dma_3 = MaskedArray(dma_1, mask=[1, 0, 0, 0] * 6) + fail_if_equal(dma_3.mask, dma_1.mask) + + x = array([1, 2, 3], mask=True) + assert_equal(x._mask, [True, True, True]) + x = array([1, 2, 3], mask=False) + assert_equal(x._mask, [False, False, False]) + y = array([1, 2, 3], mask=x._mask, copy=False) + assert_(np.may_share_memory(x.mask, y.mask)) + y = array([1, 2, 3], mask=x._mask, copy=True) + assert_(not np.may_share_memory(x.mask, y.mask)) + x = array([1, 2, 3], mask=None) + assert_equal(x._mask, [False, False, False]) + + def test_masked_singleton_array_creation_warns(self): + # The first works, but should not (ideally), there may be no way + # to solve this, however, as long as `np.ma.masked` is an ndarray. + np.array(np.ma.masked) + with pytest.warns(UserWarning): + # Tries to create a float array, using `float(np.ma.masked)`. + # We may want to define this is invalid behaviour in the future! + # (requiring np.ma.masked to be a known NumPy scalar probably + # with a DType.) + np.array([3., np.ma.masked]) + + def test_creation_with_list_of_maskedarrays(self): + # Tests creating a masked array from a list of masked arrays. + x = array(np.arange(5), mask=[1, 0, 0, 0, 0]) + data = array((x, x[::-1])) + assert_equal(data, [[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]]) + assert_equal(data._mask, [[1, 0, 0, 0, 0], [0, 0, 0, 0, 1]]) + + x.mask = nomask + data = array((x, x[::-1])) + assert_equal(data, [[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]]) + assert_(data.mask is nomask) + + def test_creation_with_list_of_maskedarrays_no_bool_cast(self): + # Tests the regression in gh-18551 + masked_str = np.ma.masked_array(['a', 'b'], mask=[True, False]) + normal_int = np.arange(2) + res = np.ma.asarray([masked_str, normal_int], dtype="U21") + assert_array_equal(res.mask, [[True, False], [False, False]]) + + # The above only failed due a long chain of oddity, try also with + # an object array that cannot be converted to bool always: + class NotBool: + def __bool__(self): + raise ValueError("not a bool!") + masked_obj = np.ma.masked_array([NotBool(), 'b'], mask=[True, False]) + # Check that the NotBool actually fails like we would expect: + with pytest.raises(ValueError, match="not a bool!"): + np.asarray([masked_obj], dtype=bool) + + res = np.ma.asarray([masked_obj, normal_int]) + assert_array_equal(res.mask, [[True, False], [False, False]]) + + def test_creation_from_ndarray_with_padding(self): + x = np.array([('A', 0)], dtype={'names': ['f0', 'f1'], + 'formats': ['S4', 'i8'], + 'offsets': [0, 8]}) + array(x) # used to fail due to 'V' padding field in x.dtype.descr + + def test_unknown_keyword_parameter(self): + with pytest.raises(TypeError, match="unexpected keyword argument"): + MaskedArray([1, 2, 3], maks=[0, 1, 0]) # `mask` is misspelled. + + def test_asarray(self): + (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d + xm.fill_value = -9999 + xm._hardmask = True + xmm = asarray(xm) + assert_equal(xmm._data, xm._data) + assert_equal(xmm._mask, xm._mask) + assert_equal(xmm.fill_value, xm.fill_value) + assert_equal(xmm._hardmask, xm._hardmask) + + def test_asarray_default_order(self): + # See Issue #6646 + m = np.eye(3).T + assert_(not m.flags.c_contiguous) + + new_m = asarray(m) + assert_(new_m.flags.c_contiguous) + + def test_asarray_enforce_order(self): + # See Issue #6646 + m = np.eye(3).T + assert_(not m.flags.c_contiguous) + + new_m = asarray(m, order='C') + assert_(new_m.flags.c_contiguous) + + def test_fix_invalid(self): + # Checks fix_invalid. + with np.errstate(invalid='ignore'): + data = masked_array([np.nan, 0., 1.], mask=[0, 0, 1]) + data_fixed = fix_invalid(data) + assert_equal(data_fixed._data, [data.fill_value, 0., 1.]) + assert_equal(data_fixed._mask, [1., 0., 1.]) + + def test_maskedelement(self): + # Test of masked element + x = arange(6) + x[1] = masked + assert_(str(masked) == '--') + assert_(x[1] is masked) + assert_equal(filled(x[1], 0), 0) + + def test_set_element_as_object(self): + # Tests setting elements with object + a = empty(1, dtype=object) + x = (1, 2, 3, 4, 5) + a[0] = x + assert_equal(a[0], x) + assert_(a[0] is x) + + import datetime + dt = datetime.datetime.now() + a[0] = dt + assert_(a[0] is dt) + + def test_indexing(self): + # Tests conversions and indexing + x1 = np.array([1, 2, 4, 3]) + x2 = array(x1, mask=[1, 0, 0, 0]) + x3 = array(x1, mask=[0, 1, 0, 1]) + x4 = array(x1) + # test conversion to strings + str(x2) # raises? + repr(x2) # raises? + assert_equal(np.sort(x1), sort(x2, endwith=False)) + # tests of indexing + assert_(type(x2[1]) is type(x1[1])) + assert_(x1[1] == x2[1]) + assert_(x2[0] is masked) + assert_equal(x1[2], x2[2]) + assert_equal(x1[2:5], x2[2:5]) + assert_equal(x1[:], x2[:]) + assert_equal(x1[1:], x3[1:]) + x1[2] = 9 + x2[2] = 9 + assert_equal(x1, x2) + x1[1:3] = 99 + x2[1:3] = 99 + assert_equal(x1, x2) + x2[1] = masked + assert_equal(x1, x2) + x2[1:3] = masked + assert_equal(x1, x2) + x2[:] = x1 + x2[1] = masked + assert_(allequal(getmask(x2), array([0, 1, 0, 0]))) + x3[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0]) + assert_(allequal(getmask(x3), array([0, 1, 1, 0]))) + x4[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0]) + assert_(allequal(getmask(x4), array([0, 1, 1, 0]))) + assert_(allequal(x4, array([1, 2, 3, 4]))) + x1 = np.arange(5) * 1.0 + x2 = masked_values(x1, 3.0) + assert_equal(x1, x2) + assert_(allequal(array([0, 0, 0, 1, 0], MaskType), x2.mask)) + assert_equal(3.0, x2.fill_value) + x1 = array([1, 'hello', 2, 3], object) + x2 = np.array([1, 'hello', 2, 3], object) + s1 = x1[1] + s2 = x2[1] + assert_equal(type(s2), str) + assert_equal(type(s1), str) + assert_equal(s1, s2) + assert_(x1[1:1].shape == (0,)) + + def test_setitem_no_warning(self): + # Setitem shouldn't warn, because the assignment might be masked + # and warning for a masked assignment is weird (see gh-23000) + # (When the value is masked, otherwise a warning would be acceptable + # but is not given currently.) + x = np.ma.arange(60).reshape((6, 10)) + index = (slice(1, 5, 2), [7, 5]) + value = np.ma.masked_all((2, 2)) + value._data[...] = np.inf # not a valid integer... + x[index] = value + # The masked scalar is special cased, but test anyway (it's NaN): + x[...] = np.ma.masked + # Finally, a large value that cannot be cast to the float32 `x` + x = np.ma.arange(3., dtype=np.float32) + value = np.ma.array([2e234, 1, 1], mask=[True, False, False]) + x[...] = value + x[[0, 1, 2]] = value + + @suppress_copy_mask_on_assignment + def test_copy(self): + # Tests of some subtle points of copying and sizing. + n = [0, 0, 1, 0, 0] + m = make_mask(n) + m2 = make_mask(m) + assert_(m is m2) + m3 = make_mask(m, copy=True) + assert_(m is not m3) + + x1 = np.arange(5) + y1 = array(x1, mask=m) + assert_equal(y1._data.__array_interface__, x1.__array_interface__) + assert_(allequal(x1, y1.data)) + assert_equal(y1._mask.__array_interface__, m.__array_interface__) + + y1a = array(y1) + # Default for masked array is not to copy; see gh-10318. + assert_(y1a._data.__array_interface__ == + y1._data.__array_interface__) + assert_(y1a._mask.__array_interface__ == + y1._mask.__array_interface__) + + y2 = array(x1, mask=m3) + assert_(y2._data.__array_interface__ == x1.__array_interface__) + assert_(y2._mask.__array_interface__ == m3.__array_interface__) + assert_(y2[2] is masked) + y2[2] = 9 + assert_(y2[2] is not masked) + assert_(y2._mask.__array_interface__ == m3.__array_interface__) + assert_(allequal(y2.mask, 0)) + + y2a = array(x1, mask=m, copy=1) + assert_(y2a._data.__array_interface__ != x1.__array_interface__) + #assert_( y2a._mask is not m) + assert_(y2a._mask.__array_interface__ != m.__array_interface__) + assert_(y2a[2] is masked) + y2a[2] = 9 + assert_(y2a[2] is not masked) + #assert_( y2a._mask is not m) + assert_(y2a._mask.__array_interface__ != m.__array_interface__) + assert_(allequal(y2a.mask, 0)) + + y3 = array(x1 * 1.0, mask=m) + assert_(filled(y3).dtype is (x1 * 1.0).dtype) + + x4 = arange(4) + x4[2] = masked + y4 = resize(x4, (8,)) + assert_equal(concatenate([x4, x4]), y4) + assert_equal(getmask(y4), [0, 0, 1, 0, 0, 0, 1, 0]) + y5 = repeat(x4, (2, 2, 2, 2), axis=0) + assert_equal(y5, [0, 0, 1, 1, 2, 2, 3, 3]) + y6 = repeat(x4, 2, axis=0) + assert_equal(y5, y6) + y7 = x4.repeat((2, 2, 2, 2), axis=0) + assert_equal(y5, y7) + y8 = x4.repeat(2, 0) + assert_equal(y5, y8) + + y9 = x4.copy() + assert_equal(y9._data, x4._data) + assert_equal(y9._mask, x4._mask) + + x = masked_array([1, 2, 3], mask=[0, 1, 0]) + # Copy is False by default + y = masked_array(x) + assert_equal(y._data.ctypes.data, x._data.ctypes.data) + assert_equal(y._mask.ctypes.data, x._mask.ctypes.data) + y = masked_array(x, copy=True) + assert_not_equal(y._data.ctypes.data, x._data.ctypes.data) + assert_not_equal(y._mask.ctypes.data, x._mask.ctypes.data) + + def test_copy_0d(self): + # gh-9430 + x = np.ma.array(43, mask=True) + xc = x.copy() + assert_equal(xc.mask, True) + + def test_copy_on_python_builtins(self): + # Tests copy works on python builtins (issue#8019) + assert_(isMaskedArray(np.ma.copy([1, 2, 3]))) + assert_(isMaskedArray(np.ma.copy((1, 2, 3)))) + + def test_copy_immutable(self): + # Tests that the copy method is immutable, GitHub issue #5247 + a = np.ma.array([1, 2, 3]) + b = np.ma.array([4, 5, 6]) + a_copy_method = a.copy + b.copy + assert_equal(a_copy_method(), [1, 2, 3]) + + def test_deepcopy(self): + from copy import deepcopy + a = array([0, 1, 2], mask=[False, True, False]) + copied = deepcopy(a) + assert_equal(copied.mask, a.mask) + assert_not_equal(id(a._mask), id(copied._mask)) + + copied[1] = 1 + assert_equal(copied.mask, [0, 0, 0]) + assert_equal(a.mask, [0, 1, 0]) + + copied = deepcopy(a) + assert_equal(copied.mask, a.mask) + copied.mask[1] = False + assert_equal(copied.mask, [0, 0, 0]) + assert_equal(a.mask, [0, 1, 0]) + + def test_format(self): + a = array([0, 1, 2], mask=[False, True, False]) + assert_equal(format(a), "[0 -- 2]") + assert_equal(format(masked), "--") + assert_equal(format(masked, ""), "--") + + # Postponed from PR #15410, perhaps address in the future. + # assert_equal(format(masked, " >5"), " --") + # assert_equal(format(masked, " <5"), "-- ") + + # Expect a FutureWarning for using format_spec with MaskedElement + with assert_warns(FutureWarning): + with_format_string = format(masked, " >5") + assert_equal(with_format_string, "--") + + def test_str_repr(self): + a = array([0, 1, 2], mask=[False, True, False]) + assert_equal(str(a), '[0 -- 2]') + assert_equal( + repr(a), + textwrap.dedent('''\ + masked_array(data=[0, --, 2], + mask=[False, True, False], + fill_value=999999)''') + ) + + # arrays with a continuation + a = np.ma.arange(2000) + a[1:50] = np.ma.masked + assert_equal( + repr(a), + textwrap.dedent('''\ + masked_array(data=[0, --, --, ..., 1997, 1998, 1999], + mask=[False, True, True, ..., False, False, False], + fill_value=999999)''') + ) + + # line-wrapped 1d arrays are correctly aligned + a = np.ma.arange(20) + assert_equal( + repr(a), + textwrap.dedent('''\ + masked_array(data=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, + 14, 15, 16, 17, 18, 19], + mask=False, + fill_value=999999)''') + ) + + # 2d arrays cause wrapping + a = array([[1, 2, 3], [4, 5, 6]], dtype=np.int8) + a[1, 1] = np.ma.masked + assert_equal( + repr(a), + textwrap.dedent(f'''\ + masked_array( + data=[[1, 2, 3], + [4, --, 6]], + mask=[[False, False, False], + [False, True, False]], + fill_value={np.array(999999)[()]!r}, + dtype=int8)''') + ) + + # but not it they're a row vector + assert_equal( + repr(a[:1]), + textwrap.dedent(f'''\ + masked_array(data=[[1, 2, 3]], + mask=[[False, False, False]], + fill_value={np.array(999999)[()]!r}, + dtype=int8)''') + ) + + # dtype=int is implied, so not shown + assert_equal( + repr(a.astype(int)), + textwrap.dedent('''\ + masked_array( + data=[[1, 2, 3], + [4, --, 6]], + mask=[[False, False, False], + [False, True, False]], + fill_value=999999)''') + ) + + def test_str_repr_legacy(self): + oldopts = np.get_printoptions() + np.set_printoptions(legacy='1.13') + try: + a = array([0, 1, 2], mask=[False, True, False]) + assert_equal(str(a), '[0 -- 2]') + assert_equal(repr(a), 'masked_array(data = [0 -- 2],\n' + ' mask = [False True False],\n' + ' fill_value = 999999)\n') + + a = np.ma.arange(2000) + a[1:50] = np.ma.masked + assert_equal( + repr(a), + 'masked_array(data = [0 -- -- ..., 1997 1998 1999],\n' + ' mask = [False True True ..., False False False],\n' + ' fill_value = 999999)\n' + ) + finally: + np.set_printoptions(**oldopts) + + def test_0d_unicode(self): + u = 'caf\xe9' + utype = type(u) + + arr_nomask = np.ma.array(u) + arr_masked = np.ma.array(u, mask=True) + + assert_equal(utype(arr_nomask), u) + assert_equal(utype(arr_masked), '--') + + def test_pickling(self): + # Tests pickling + for dtype in (int, float, str, object): + a = arange(10).astype(dtype) + a.fill_value = 999 + + masks = ([0, 0, 0, 1, 0, 1, 0, 1, 0, 1], # partially masked + True, # Fully masked + False) # Fully unmasked + + for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): + for mask in masks: + a.mask = mask + a_pickled = pickle.loads(pickle.dumps(a, protocol=proto)) + assert_equal(a_pickled._mask, a._mask) + assert_equal(a_pickled._data, a._data) + if dtype in (object, int): + assert_equal(a_pickled.fill_value, 999) + else: + assert_equal(a_pickled.fill_value, dtype(999)) + assert_array_equal(a_pickled.mask, mask) + + def test_pickling_subbaseclass(self): + # Test pickling w/ a subclass of ndarray + x = np.array([(1.0, 2), (3.0, 4)], + dtype=[('x', float), ('y', int)]).view(np.recarray) + a = masked_array(x, mask=[(True, False), (False, True)]) + for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): + a_pickled = pickle.loads(pickle.dumps(a, protocol=proto)) + assert_equal(a_pickled._mask, a._mask) + assert_equal(a_pickled, a) + assert_(isinstance(a_pickled._data, np.recarray)) + + def test_pickling_maskedconstant(self): + # Test pickling MaskedConstant + mc = np.ma.masked + for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): + mc_pickled = pickle.loads(pickle.dumps(mc, protocol=proto)) + assert_equal(mc_pickled._baseclass, mc._baseclass) + assert_equal(mc_pickled._mask, mc._mask) + assert_equal(mc_pickled._data, mc._data) + + def test_pickling_wstructured(self): + # Tests pickling w/ structured array + a = array([(1, 1.), (2, 2.)], mask=[(0, 0), (0, 1)], + dtype=[('a', int), ('b', float)]) + for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): + a_pickled = pickle.loads(pickle.dumps(a, protocol=proto)) + assert_equal(a_pickled._mask, a._mask) + assert_equal(a_pickled, a) + + def test_pickling_keepalignment(self): + # Tests pickling w/ F_CONTIGUOUS arrays + a = arange(10) + a.shape = (-1, 2) + b = a.T + for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): + test = pickle.loads(pickle.dumps(b, protocol=proto)) + assert_equal(test, b) + + def test_single_element_subscript(self): + # Tests single element subscripts of Maskedarrays. + a = array([1, 3, 2]) + b = array([1, 3, 2], mask=[1, 0, 1]) + assert_equal(a[0].shape, ()) + assert_equal(b[0].shape, ()) + assert_equal(b[1].shape, ()) + + def test_topython(self): + # Tests some communication issues with Python. + assert_equal(1, int(array(1))) + assert_equal(1.0, float(array(1))) + assert_equal(1, int(array([[[1]]]))) + assert_equal(1.0, float(array([[1]]))) + assert_raises(TypeError, float, array([1, 1])) + + with suppress_warnings() as sup: + sup.filter(UserWarning, 'Warning: converting a masked element') + assert_(np.isnan(float(array([1], mask=[1])))) + + a = array([1, 2, 3], mask=[1, 0, 0]) + assert_raises(TypeError, lambda: float(a)) + assert_equal(float(a[-1]), 3.) + assert_(np.isnan(float(a[0]))) + assert_raises(TypeError, int, a) + assert_equal(int(a[-1]), 3) + assert_raises(MAError, lambda: int(a[0])) + + def test_oddfeatures_1(self): + # Test of other odd features + x = arange(20) + x = x.reshape(4, 5) + x.flat[5] = 12 + assert_(x[1, 0] == 12) + z = x + 10j * x + assert_equal(z.real, x) + assert_equal(z.imag, 10 * x) + assert_equal((z * conjugate(z)).real, 101 * x * x) + z.imag[...] = 0.0 + + x = arange(10) + x[3] = masked + assert_(str(x[3]) == str(masked)) + c = x >= 8 + assert_(count(where(c, masked, masked)) == 0) + assert_(shape(where(c, masked, masked)) == c.shape) + + z = masked_where(c, x) + assert_(z.dtype is x.dtype) + assert_(z[3] is masked) + assert_(z[4] is not masked) + assert_(z[7] is not masked) + assert_(z[8] is masked) + assert_(z[9] is masked) + assert_equal(x, z) + + def test_oddfeatures_2(self): + # Tests some more features. + x = array([1., 2., 3., 4., 5.]) + c = array([1, 1, 1, 0, 0]) + x[2] = masked + z = where(c, x, -x) + assert_equal(z, [1., 2., 0., -4., -5]) + c[0] = masked + z = where(c, x, -x) + assert_equal(z, [1., 2., 0., -4., -5]) + assert_(z[0] is masked) + assert_(z[1] is not masked) + assert_(z[2] is masked) + + @suppress_copy_mask_on_assignment + def test_oddfeatures_3(self): + # Tests some generic features + atest = array([10], mask=True) + btest = array([20]) + idx = atest.mask + atest[idx] = btest[idx] + assert_equal(atest, [20]) + + def test_filled_with_object_dtype(self): + a = np.ma.masked_all(1, dtype='O') + assert_equal(a.filled('x')[0], 'x') + + def test_filled_with_flexible_dtype(self): + # Test filled w/ flexible dtype + flexi = array([(1, 1, 1)], + dtype=[('i', int), ('s', '|S8'), ('f', float)]) + flexi[0] = masked + assert_equal(flexi.filled(), + np.array([(default_fill_value(0), + default_fill_value('0'), + default_fill_value(0.),)], dtype=flexi.dtype)) + flexi[0] = masked + assert_equal(flexi.filled(1), + np.array([(1, '1', 1.)], dtype=flexi.dtype)) + + def test_filled_with_mvoid(self): + # Test filled w/ mvoid + ndtype = [('a', int), ('b', float)] + a = mvoid((1, 2.), mask=[(0, 1)], dtype=ndtype) + # Filled using default + test = a.filled() + assert_equal(tuple(test), (1, default_fill_value(1.))) + # Explicit fill_value + test = a.filled((-1, -1)) + assert_equal(tuple(test), (1, -1)) + # Using predefined filling values + a.fill_value = (-999, -999) + assert_equal(tuple(a.filled()), (1, -999)) + + def test_filled_with_nested_dtype(self): + # Test filled w/ nested dtype + ndtype = [('A', int), ('B', [('BA', int), ('BB', int)])] + a = array([(1, (1, 1)), (2, (2, 2))], + mask=[(0, (1, 0)), (0, (0, 1))], dtype=ndtype) + test = a.filled(0) + control = np.array([(1, (0, 1)), (2, (2, 0))], dtype=ndtype) + assert_equal(test, control) + + test = a['B'].filled(0) + control = np.array([(0, 1), (2, 0)], dtype=a['B'].dtype) + assert_equal(test, control) + + # test if mask gets set correctly (see #6760) + Z = numpy.ma.zeros(2, numpy.dtype([("A", "(2,2)i1,(2,2)i1", (2, 2))])) + assert_equal(Z.data.dtype, numpy.dtype([('A', [('f0', 'i1', (2, 2)), + ('f1', 'i1', (2, 2))], (2, 2))])) + assert_equal(Z.mask.dtype, numpy.dtype([('A', [('f0', '?', (2, 2)), + ('f1', '?', (2, 2))], (2, 2))])) + + def test_filled_with_f_order(self): + # Test filled w/ F-contiguous array + a = array(np.array([(0, 1, 2), (4, 5, 6)], order='F'), + mask=np.array([(0, 0, 1), (1, 0, 0)], order='F'), + order='F') # this is currently ignored + assert_(a.flags['F_CONTIGUOUS']) + assert_(a.filled(0).flags['F_CONTIGUOUS']) + + def test_optinfo_propagation(self): + # Checks that _optinfo dictionary isn't back-propagated + x = array([1, 2, 3, ], dtype=float) + x._optinfo['info'] = '???' + y = x.copy() + assert_equal(y._optinfo['info'], '???') + y._optinfo['info'] = '!!!' + assert_equal(x._optinfo['info'], '???') + + def test_optinfo_forward_propagation(self): + a = array([1, 2, 2, 4]) + a._optinfo["key"] = "value" + assert_equal(a._optinfo["key"], (a == 2)._optinfo["key"]) + assert_equal(a._optinfo["key"], (a != 2)._optinfo["key"]) + assert_equal(a._optinfo["key"], (a > 2)._optinfo["key"]) + assert_equal(a._optinfo["key"], (a >= 2)._optinfo["key"]) + assert_equal(a._optinfo["key"], (a <= 2)._optinfo["key"]) + assert_equal(a._optinfo["key"], (a + 2)._optinfo["key"]) + assert_equal(a._optinfo["key"], (a - 2)._optinfo["key"]) + assert_equal(a._optinfo["key"], (a * 2)._optinfo["key"]) + assert_equal(a._optinfo["key"], (a / 2)._optinfo["key"]) + assert_equal(a._optinfo["key"], a[:2]._optinfo["key"]) + assert_equal(a._optinfo["key"], a[[0, 0, 2]]._optinfo["key"]) + assert_equal(a._optinfo["key"], np.exp(a)._optinfo["key"]) + assert_equal(a._optinfo["key"], np.abs(a)._optinfo["key"]) + assert_equal(a._optinfo["key"], array(a, copy=True)._optinfo["key"]) + assert_equal(a._optinfo["key"], np.zeros_like(a)._optinfo["key"]) + + def test_fancy_printoptions(self): + # Test printing a masked array w/ fancy dtype. + fancydtype = np.dtype([('x', int), ('y', [('t', int), ('s', float)])]) + test = array([(1, (2, 3.0)), (4, (5, 6.0))], + mask=[(1, (0, 1)), (0, (1, 0))], + dtype=fancydtype) + control = "[(--, (2, --)) (4, (--, 6.0))]" + assert_equal(str(test), control) + + # Test 0-d array with multi-dimensional dtype + t_2d0 = masked_array(data=(0, [[0.0, 0.0, 0.0], + [0.0, 0.0, 0.0]], + 0.0), + mask=(False, [[True, False, True], + [False, False, True]], + False), + dtype="int, (2,3)float, float") + control = "(0, [[--, 0.0, --], [0.0, 0.0, --]], 0.0)" + assert_equal(str(t_2d0), control) + + def test_flatten_structured_array(self): + # Test flatten_structured_array on arrays + # On ndarray + ndtype = [('a', int), ('b', float)] + a = np.array([(1, 1), (2, 2)], dtype=ndtype) + test = flatten_structured_array(a) + control = np.array([[1., 1.], [2., 2.]], dtype=float) + assert_equal(test, control) + assert_equal(test.dtype, control.dtype) + # On masked_array + a = array([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype) + test = flatten_structured_array(a) + control = array([[1., 1.], [2., 2.]], + mask=[[0, 1], [1, 0]], dtype=float) + assert_equal(test, control) + assert_equal(test.dtype, control.dtype) + assert_equal(test.mask, control.mask) + # On masked array with nested structure + ndtype = [('a', int), ('b', [('ba', int), ('bb', float)])] + a = array([(1, (1, 1.1)), (2, (2, 2.2))], + mask=[(0, (1, 0)), (1, (0, 1))], dtype=ndtype) + test = flatten_structured_array(a) + control = array([[1., 1., 1.1], [2., 2., 2.2]], + mask=[[0, 1, 0], [1, 0, 1]], dtype=float) + assert_equal(test, control) + assert_equal(test.dtype, control.dtype) + assert_equal(test.mask, control.mask) + # Keeping the initial shape + ndtype = [('a', int), ('b', float)] + a = np.array([[(1, 1), ], [(2, 2), ]], dtype=ndtype) + test = flatten_structured_array(a) + control = np.array([[[1., 1.], ], [[2., 2.], ]], dtype=float) + assert_equal(test, control) + assert_equal(test.dtype, control.dtype) + + def test_void0d(self): + # Test creating a mvoid object + ndtype = [('a', int), ('b', int)] + a = np.array([(1, 2,)], dtype=ndtype)[0] + f = mvoid(a) + assert_(isinstance(f, mvoid)) + + a = masked_array([(1, 2)], mask=[(1, 0)], dtype=ndtype)[0] + assert_(isinstance(a, mvoid)) + + a = masked_array([(1, 2), (1, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype) + f = mvoid(a._data[0], a._mask[0]) + assert_(isinstance(f, mvoid)) + + def test_mvoid_getitem(self): + # Test mvoid.__getitem__ + ndtype = [('a', int), ('b', int)] + a = masked_array([(1, 2,), (3, 4)], mask=[(0, 0), (1, 0)], + dtype=ndtype) + # w/o mask + f = a[0] + assert_(isinstance(f, mvoid)) + assert_equal((f[0], f['a']), (1, 1)) + assert_equal(f['b'], 2) + # w/ mask + f = a[1] + assert_(isinstance(f, mvoid)) + assert_(f[0] is masked) + assert_(f['a'] is masked) + assert_equal(f[1], 4) + + # exotic dtype + A = masked_array(data=[([0, 1],)], + mask=[([True, False],)], + dtype=[("A", ">i2", (2,))]) + assert_equal(A[0]["A"], A["A"][0]) + assert_equal(A[0]["A"], masked_array(data=[0, 1], + mask=[True, False], dtype=">i2")) + + def test_mvoid_iter(self): + # Test iteration on __getitem__ + ndtype = [('a', int), ('b', int)] + a = masked_array([(1, 2,), (3, 4)], mask=[(0, 0), (1, 0)], + dtype=ndtype) + # w/o mask + assert_equal(list(a[0]), [1, 2]) + # w/ mask + assert_equal(list(a[1]), [masked, 4]) + + def test_mvoid_print(self): + # Test printing a mvoid + mx = array([(1, 1), (2, 2)], dtype=[('a', int), ('b', int)]) + assert_equal(str(mx[0]), "(1, 1)") + mx['b'][0] = masked + ini_display = masked_print_option._display + masked_print_option.set_display("-X-") + try: + assert_equal(str(mx[0]), "(1, -X-)") + assert_equal(repr(mx[0]), "(1, -X-)") + finally: + masked_print_option.set_display(ini_display) + + # also check if there are object datatypes (see gh-7493) + mx = array([(1,), (2,)], dtype=[('a', 'O')]) + assert_equal(str(mx[0]), "(1,)") + + def test_mvoid_multidim_print(self): + + # regression test for gh-6019 + t_ma = masked_array(data=[([1, 2, 3],)], + mask=[([False, True, False],)], + fill_value=([999999, 999999, 999999],), + dtype=[('a', ' 1: + assert_equal(np.concatenate((x, y), 1), concatenate((xm, ym), 1)) + assert_equal(np.add.reduce(x, 1), add.reduce(x, 1)) + assert_equal(np.sum(x, 1), sum(x, 1)) + assert_equal(np.prod(x, 1), product(x, 1)) + + def test_binops_d2D(self): + # Test binary operations on 2D data + a = array([[1.], [2.], [3.]], mask=[[False], [True], [True]]) + b = array([[2., 3.], [4., 5.], [6., 7.]]) + + test = a * b + control = array([[2., 3.], [2., 2.], [3., 3.]], + mask=[[0, 0], [1, 1], [1, 1]]) + assert_equal(test, control) + assert_equal(test.data, control.data) + assert_equal(test.mask, control.mask) + + test = b * a + control = array([[2., 3.], [4., 5.], [6., 7.]], + mask=[[0, 0], [1, 1], [1, 1]]) + assert_equal(test, control) + assert_equal(test.data, control.data) + assert_equal(test.mask, control.mask) + + a = array([[1.], [2.], [3.]]) + b = array([[2., 3.], [4., 5.], [6., 7.]], + mask=[[0, 0], [0, 0], [0, 1]]) + test = a * b + control = array([[2, 3], [8, 10], [18, 3]], + mask=[[0, 0], [0, 0], [0, 1]]) + assert_equal(test, control) + assert_equal(test.data, control.data) + assert_equal(test.mask, control.mask) + + test = b * a + control = array([[2, 3], [8, 10], [18, 7]], + mask=[[0, 0], [0, 0], [0, 1]]) + assert_equal(test, control) + assert_equal(test.data, control.data) + assert_equal(test.mask, control.mask) + + def test_domained_binops_d2D(self): + # Test domained binary operations on 2D data + a = array([[1.], [2.], [3.]], mask=[[False], [True], [True]]) + b = array([[2., 3.], [4., 5.], [6., 7.]]) + + test = a / b + control = array([[1. / 2., 1. / 3.], [2., 2.], [3., 3.]], + mask=[[0, 0], [1, 1], [1, 1]]) + assert_equal(test, control) + assert_equal(test.data, control.data) + assert_equal(test.mask, control.mask) + + test = b / a + control = array([[2. / 1., 3. / 1.], [4., 5.], [6., 7.]], + mask=[[0, 0], [1, 1], [1, 1]]) + assert_equal(test, control) + assert_equal(test.data, control.data) + assert_equal(test.mask, control.mask) + + a = array([[1.], [2.], [3.]]) + b = array([[2., 3.], [4., 5.], [6., 7.]], + mask=[[0, 0], [0, 0], [0, 1]]) + test = a / b + control = array([[1. / 2, 1. / 3], [2. / 4, 2. / 5], [3. / 6, 3]], + mask=[[0, 0], [0, 0], [0, 1]]) + assert_equal(test, control) + assert_equal(test.data, control.data) + assert_equal(test.mask, control.mask) + + test = b / a + control = array([[2 / 1., 3 / 1.], [4 / 2., 5 / 2.], [6 / 3., 7]], + mask=[[0, 0], [0, 0], [0, 1]]) + assert_equal(test, control) + assert_equal(test.data, control.data) + assert_equal(test.mask, control.mask) + + def test_noshrinking(self): + # Check that we don't shrink a mask when not wanted + # Binary operations + a = masked_array([1., 2., 3.], mask=[False, False, False], + shrink=False) + b = a + 1 + assert_equal(b.mask, [0, 0, 0]) + # In place binary operation + a += 1 + assert_equal(a.mask, [0, 0, 0]) + # Domained binary operation + b = a / 1. + assert_equal(b.mask, [0, 0, 0]) + # In place binary operation + a /= 1. + assert_equal(a.mask, [0, 0, 0]) + + def test_ufunc_nomask(self): + # check the case ufuncs should set the mask to false + m = np.ma.array([1]) + # check we don't get array([False], dtype=bool) + assert_equal(np.true_divide(m, 5).mask.shape, ()) + + def test_noshink_on_creation(self): + # Check that the mask is not shrunk on array creation when not wanted + a = np.ma.masked_values([1., 2.5, 3.1], 1.5, shrink=False) + assert_equal(a.mask, [0, 0, 0]) + + def test_mod(self): + # Tests mod + (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d + assert_equal(mod(x, y), mod(xm, ym)) + test = mod(ym, xm) + assert_equal(test, np.mod(ym, xm)) + assert_equal(test.mask, mask_or(xm.mask, ym.mask)) + test = mod(xm, ym) + assert_equal(test, np.mod(xm, ym)) + assert_equal(test.mask, mask_or(mask_or(xm.mask, ym.mask), (ym == 0))) + + def test_TakeTransposeInnerOuter(self): + # Test of take, transpose, inner, outer products + x = arange(24) + y = np.arange(24) + x[5:6] = masked + x = x.reshape(2, 3, 4) + y = y.reshape(2, 3, 4) + assert_equal(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1))) + assert_equal(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1)) + assert_equal(np.inner(filled(x, 0), filled(y, 0)), + inner(x, y)) + assert_equal(np.outer(filled(x, 0), filled(y, 0)), + outer(x, y)) + y = array(['abc', 1, 'def', 2, 3], object) + y[2] = masked + t = take(y, [0, 3, 4]) + assert_(t[0] == 'abc') + assert_(t[1] == 2) + assert_(t[2] == 3) + + def test_imag_real(self): + # Check complex + xx = array([1 + 10j, 20 + 2j], mask=[1, 0]) + assert_equal(xx.imag, [10, 2]) + assert_equal(xx.imag.filled(), [1e+20, 2]) + assert_equal(xx.imag.dtype, xx._data.imag.dtype) + assert_equal(xx.real, [1, 20]) + assert_equal(xx.real.filled(), [1e+20, 20]) + assert_equal(xx.real.dtype, xx._data.real.dtype) + + def test_methods_with_output(self): + xm = array(np.random.uniform(0, 10, 12)).reshape(3, 4) + xm[:, 0] = xm[0] = xm[-1, -1] = masked + + funclist = ('sum', 'prod', 'var', 'std', 'max', 'min', 'ptp', 'mean',) + + for funcname in funclist: + npfunc = getattr(np, funcname) + xmmeth = getattr(xm, funcname) + # A ndarray as explicit input + output = np.empty(4, dtype=float) + output.fill(-9999) + result = npfunc(xm, axis=0, out=output) + # ... the result should be the given output + assert_(result is output) + assert_equal(result, xmmeth(axis=0, out=output)) + + output = empty(4, dtype=int) + result = xmmeth(axis=0, out=output) + assert_(result is output) + assert_(output[0] is masked) + + def test_eq_on_structured(self): + # Test the equality of structured arrays + ndtype = [('A', int), ('B', int)] + a = array([(1, 1), (2, 2)], mask=[(0, 1), (0, 0)], dtype=ndtype) + + test = (a == a) + assert_equal(test.data, [True, True]) + assert_equal(test.mask, [False, False]) + assert_(test.fill_value == True) + + test = (a == a[0]) + assert_equal(test.data, [True, False]) + assert_equal(test.mask, [False, False]) + assert_(test.fill_value == True) + + b = array([(1, 1), (2, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype) + test = (a == b) + assert_equal(test.data, [False, True]) + assert_equal(test.mask, [True, False]) + assert_(test.fill_value == True) + + test = (a[0] == b) + assert_equal(test.data, [False, False]) + assert_equal(test.mask, [True, False]) + assert_(test.fill_value == True) + + b = array([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype) + test = (a == b) + assert_equal(test.data, [True, True]) + assert_equal(test.mask, [False, False]) + assert_(test.fill_value == True) + + # complicated dtype, 2-dimensional array. + ndtype = [('A', int), ('B', [('BA', int), ('BB', int)])] + a = array([[(1, (1, 1)), (2, (2, 2))], + [(3, (3, 3)), (4, (4, 4))]], + mask=[[(0, (1, 0)), (0, (0, 1))], + [(1, (0, 0)), (1, (1, 1))]], dtype=ndtype) + test = (a[0, 0] == a) + assert_equal(test.data, [[True, False], [False, False]]) + assert_equal(test.mask, [[False, False], [False, True]]) + assert_(test.fill_value == True) + + def test_ne_on_structured(self): + # Test the equality of structured arrays + ndtype = [('A', int), ('B', int)] + a = array([(1, 1), (2, 2)], mask=[(0, 1), (0, 0)], dtype=ndtype) + + test = (a != a) + assert_equal(test.data, [False, False]) + assert_equal(test.mask, [False, False]) + assert_(test.fill_value == True) + + test = (a != a[0]) + assert_equal(test.data, [False, True]) + assert_equal(test.mask, [False, False]) + assert_(test.fill_value == True) + + b = array([(1, 1), (2, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype) + test = (a != b) + assert_equal(test.data, [True, False]) + assert_equal(test.mask, [True, False]) + assert_(test.fill_value == True) + + test = (a[0] != b) + assert_equal(test.data, [True, True]) + assert_equal(test.mask, [True, False]) + assert_(test.fill_value == True) + + b = array([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype) + test = (a != b) + assert_equal(test.data, [False, False]) + assert_equal(test.mask, [False, False]) + assert_(test.fill_value == True) + + # complicated dtype, 2-dimensional array. + ndtype = [('A', int), ('B', [('BA', int), ('BB', int)])] + a = array([[(1, (1, 1)), (2, (2, 2))], + [(3, (3, 3)), (4, (4, 4))]], + mask=[[(0, (1, 0)), (0, (0, 1))], + [(1, (0, 0)), (1, (1, 1))]], dtype=ndtype) + test = (a[0, 0] != a) + assert_equal(test.data, [[False, True], [True, True]]) + assert_equal(test.mask, [[False, False], [False, True]]) + assert_(test.fill_value == True) + + def test_eq_ne_structured_with_non_masked(self): + a = array([(1, 1), (2, 2), (3, 4)], + mask=[(0, 1), (0, 0), (1, 1)], dtype='i4,i4') + eq = a == a.data + ne = a.data != a + # Test the obvious. + assert_(np.all(eq)) + assert_(not np.any(ne)) + # Expect the mask set only for items with all fields masked. + expected_mask = a.mask == np.ones((), a.mask.dtype) + assert_array_equal(eq.mask, expected_mask) + assert_array_equal(ne.mask, expected_mask) + # The masked element will indicated not equal, because the + # masks did not match. + assert_equal(eq.data, [True, True, False]) + assert_array_equal(eq.data, ~ne.data) + + def test_eq_ne_structured_extra(self): + # ensure simple examples are symmetric and make sense. + # from https://github.com/numpy/numpy/pull/8590#discussion_r101126465 + dt = np.dtype('i4,i4') + for m1 in (mvoid((1, 2), mask=(0, 0), dtype=dt), + mvoid((1, 2), mask=(0, 1), dtype=dt), + mvoid((1, 2), mask=(1, 0), dtype=dt), + mvoid((1, 2), mask=(1, 1), dtype=dt)): + ma1 = m1.view(MaskedArray) + r1 = ma1.view('2i4') + for m2 in (np.array((1, 1), dtype=dt), + mvoid((1, 1), dtype=dt), + mvoid((1, 0), mask=(0, 1), dtype=dt), + mvoid((3, 2), mask=(0, 1), dtype=dt)): + ma2 = m2.view(MaskedArray) + r2 = ma2.view('2i4') + eq_expected = (r1 == r2).all() + assert_equal(m1 == m2, eq_expected) + assert_equal(m2 == m1, eq_expected) + assert_equal(ma1 == m2, eq_expected) + assert_equal(m1 == ma2, eq_expected) + assert_equal(ma1 == ma2, eq_expected) + # Also check it is the same if we do it element by element. + el_by_el = [m1[name] == m2[name] for name in dt.names] + assert_equal(array(el_by_el, dtype=bool).all(), eq_expected) + ne_expected = (r1 != r2).any() + assert_equal(m1 != m2, ne_expected) + assert_equal(m2 != m1, ne_expected) + assert_equal(ma1 != m2, ne_expected) + assert_equal(m1 != ma2, ne_expected) + assert_equal(ma1 != ma2, ne_expected) + el_by_el = [m1[name] != m2[name] for name in dt.names] + assert_equal(array(el_by_el, dtype=bool).any(), ne_expected) + + @pytest.mark.parametrize('dt', ['S', 'U']) + @pytest.mark.parametrize('fill', [None, 'A']) + def test_eq_for_strings(self, dt, fill): + # Test the equality of structured arrays + a = array(['a', 'b'], dtype=dt, mask=[0, 1], fill_value=fill) + + test = (a == a) + assert_equal(test.data, [True, True]) + assert_equal(test.mask, [False, True]) + assert_(test.fill_value == True) + + test = (a == a[0]) + assert_equal(test.data, [True, False]) + assert_equal(test.mask, [False, True]) + assert_(test.fill_value == True) + + b = array(['a', 'b'], dtype=dt, mask=[1, 0], fill_value=fill) + test = (a == b) + assert_equal(test.data, [False, False]) + assert_equal(test.mask, [True, True]) + assert_(test.fill_value == True) + + test = (a[0] == b) + assert_equal(test.data, [False, False]) + assert_equal(test.mask, [True, False]) + assert_(test.fill_value == True) + + test = (b == a[0]) + assert_equal(test.data, [False, False]) + assert_equal(test.mask, [True, False]) + assert_(test.fill_value == True) + + @pytest.mark.parametrize('dt', ['S', 'U']) + @pytest.mark.parametrize('fill', [None, 'A']) + def test_ne_for_strings(self, dt, fill): + # Test the equality of structured arrays + a = array(['a', 'b'], dtype=dt, mask=[0, 1], fill_value=fill) + + test = (a != a) + assert_equal(test.data, [False, False]) + assert_equal(test.mask, [False, True]) + assert_(test.fill_value == True) + + test = (a != a[0]) + assert_equal(test.data, [False, True]) + assert_equal(test.mask, [False, True]) + assert_(test.fill_value == True) + + b = array(['a', 'b'], dtype=dt, mask=[1, 0], fill_value=fill) + test = (a != b) + assert_equal(test.data, [True, True]) + assert_equal(test.mask, [True, True]) + assert_(test.fill_value == True) + + test = (a[0] != b) + assert_equal(test.data, [True, True]) + assert_equal(test.mask, [True, False]) + assert_(test.fill_value == True) + + test = (b != a[0]) + assert_equal(test.data, [True, True]) + assert_equal(test.mask, [True, False]) + assert_(test.fill_value == True) + + @pytest.mark.parametrize('dt1', num_dts, ids=num_ids) + @pytest.mark.parametrize('dt2', num_dts, ids=num_ids) + @pytest.mark.parametrize('fill', [None, 1]) + def test_eq_for_numeric(self, dt1, dt2, fill): + # Test the equality of structured arrays + a = array([0, 1], dtype=dt1, mask=[0, 1], fill_value=fill) + + test = (a == a) + assert_equal(test.data, [True, True]) + assert_equal(test.mask, [False, True]) + assert_(test.fill_value == True) + + test = (a == a[0]) + assert_equal(test.data, [True, False]) + assert_equal(test.mask, [False, True]) + assert_(test.fill_value == True) + + b = array([0, 1], dtype=dt2, mask=[1, 0], fill_value=fill) + test = (a == b) + assert_equal(test.data, [False, False]) + assert_equal(test.mask, [True, True]) + assert_(test.fill_value == True) + + test = (a[0] == b) + assert_equal(test.data, [False, False]) + assert_equal(test.mask, [True, False]) + assert_(test.fill_value == True) + + test = (b == a[0]) + assert_equal(test.data, [False, False]) + assert_equal(test.mask, [True, False]) + assert_(test.fill_value == True) + + @pytest.mark.parametrize("op", [operator.eq, operator.lt]) + def test_eq_broadcast_with_unmasked(self, op): + a = array([0, 1], mask=[0, 1]) + b = np.arange(10).reshape(5, 2) + result = op(a, b) + assert_(result.mask.shape == b.shape) + assert_equal(result.mask, np.zeros(b.shape, bool) | a.mask) + + @pytest.mark.parametrize("op", [operator.eq, operator.gt]) + def test_comp_no_mask_not_broadcast(self, op): + # Regression test for failing doctest in MaskedArray.nonzero + # after gh-24556. + a = array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) + result = op(a, 3) + assert_(not result.mask.shape) + assert_(result.mask is nomask) + + @pytest.mark.parametrize('dt1', num_dts, ids=num_ids) + @pytest.mark.parametrize('dt2', num_dts, ids=num_ids) + @pytest.mark.parametrize('fill', [None, 1]) + def test_ne_for_numeric(self, dt1, dt2, fill): + # Test the equality of structured arrays + a = array([0, 1], dtype=dt1, mask=[0, 1], fill_value=fill) + + test = (a != a) + assert_equal(test.data, [False, False]) + assert_equal(test.mask, [False, True]) + assert_(test.fill_value == True) + + test = (a != a[0]) + assert_equal(test.data, [False, True]) + assert_equal(test.mask, [False, True]) + assert_(test.fill_value == True) + + b = array([0, 1], dtype=dt2, mask=[1, 0], fill_value=fill) + test = (a != b) + assert_equal(test.data, [True, True]) + assert_equal(test.mask, [True, True]) + assert_(test.fill_value == True) + + test = (a[0] != b) + assert_equal(test.data, [True, True]) + assert_equal(test.mask, [True, False]) + assert_(test.fill_value == True) + + test = (b != a[0]) + assert_equal(test.data, [True, True]) + assert_equal(test.mask, [True, False]) + assert_(test.fill_value == True) + + @pytest.mark.parametrize('dt1', num_dts, ids=num_ids) + @pytest.mark.parametrize('dt2', num_dts, ids=num_ids) + @pytest.mark.parametrize('fill', [None, 1]) + @pytest.mark.parametrize('op', + [operator.le, operator.lt, operator.ge, operator.gt]) + def test_comparisons_for_numeric(self, op, dt1, dt2, fill): + # Test the equality of structured arrays + a = array([0, 1], dtype=dt1, mask=[0, 1], fill_value=fill) + + test = op(a, a) + assert_equal(test.data, op(a._data, a._data)) + assert_equal(test.mask, [False, True]) + assert_(test.fill_value == True) + + test = op(a, a[0]) + assert_equal(test.data, op(a._data, a._data[0])) + assert_equal(test.mask, [False, True]) + assert_(test.fill_value == True) + + b = array([0, 1], dtype=dt2, mask=[1, 0], fill_value=fill) + test = op(a, b) + assert_equal(test.data, op(a._data, b._data)) + assert_equal(test.mask, [True, True]) + assert_(test.fill_value == True) + + test = op(a[0], b) + assert_equal(test.data, op(a._data[0], b._data)) + assert_equal(test.mask, [True, False]) + assert_(test.fill_value == True) + + test = op(b, a[0]) + assert_equal(test.data, op(b._data, a._data[0])) + assert_equal(test.mask, [True, False]) + assert_(test.fill_value == True) + + @pytest.mark.parametrize('op', + [operator.le, operator.lt, operator.ge, operator.gt]) + @pytest.mark.parametrize('fill', [None, "N/A"]) + def test_comparisons_strings(self, op, fill): + # See gh-21770, mask propagation is broken for strings (and some other + # cases) so we explicitly test strings here. + # In principle only == and != may need special handling... + ma1 = masked_array(["a", "b", "cde"], mask=[0, 1, 0], fill_value=fill) + ma2 = masked_array(["cde", "b", "a"], mask=[0, 1, 0], fill_value=fill) + assert_equal(op(ma1, ma2)._data, op(ma1._data, ma2._data)) + + def test_eq_with_None(self): + # Really, comparisons with None should not be done, but check them + # anyway. Note that pep8 will flag these tests. + # Deprecation is in place for arrays, and when it happens this + # test will fail (and have to be changed accordingly). + + # With partial mask + with suppress_warnings() as sup: + sup.filter(FutureWarning, "Comparison to `None`") + a = array([None, 1], mask=[0, 1]) + assert_equal(a == None, array([True, False], mask=[0, 1])) # noqa: E711 + assert_equal(a.data == None, [True, False]) # noqa: E711 + assert_equal(a != None, array([False, True], mask=[0, 1])) # noqa: E711 + # With nomask + a = array([None, 1], mask=False) + assert_equal(a == None, [True, False]) # noqa: E711 + assert_equal(a != None, [False, True]) # noqa: E711 + # With complete mask + a = array([None, 2], mask=True) + assert_equal(a == None, array([False, True], mask=True)) # noqa: E711 + assert_equal(a != None, array([True, False], mask=True)) # noqa: E711 + # Fully masked, even comparison to None should return "masked" + a = masked + assert_equal(a == None, masked) # noqa: E711 + + def test_eq_with_scalar(self): + a = array(1) + assert_equal(a == 1, True) + assert_equal(a == 0, False) + assert_equal(a != 1, False) + assert_equal(a != 0, True) + b = array(1, mask=True) + assert_equal(b == 0, masked) + assert_equal(b == 1, masked) + assert_equal(b != 0, masked) + assert_equal(b != 1, masked) + + def test_eq_different_dimensions(self): + m1 = array([1, 1], mask=[0, 1]) + # test comparison with both masked and regular arrays. + for m2 in (array([[0, 1], [1, 2]]), + np.array([[0, 1], [1, 2]])): + test = (m1 == m2) + assert_equal(test.data, [[False, False], + [True, False]]) + assert_equal(test.mask, [[False, True], + [False, True]]) + + def test_numpyarithmetic(self): + # Check that the mask is not back-propagated when using numpy functions + a = masked_array([-1, 0, 1, 2, 3], mask=[0, 0, 0, 0, 1]) + control = masked_array([np.nan, np.nan, 0, np.log(2), -1], + mask=[1, 1, 0, 0, 1]) + + test = log(a) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + assert_equal(a.mask, [0, 0, 0, 0, 1]) + + test = np.log(a) + assert_equal(test, control) + assert_equal(test.mask, control.mask) + assert_equal(a.mask, [0, 0, 0, 0, 1]) + + +class TestMaskedArrayAttributes: + + def test_keepmask(self): + # Tests the keep mask flag + x = masked_array([1, 2, 3], mask=[1, 0, 0]) + mx = masked_array(x) + assert_equal(mx.mask, x.mask) + mx = masked_array(x, mask=[0, 1, 0], keep_mask=False) + assert_equal(mx.mask, [0, 1, 0]) + mx = masked_array(x, mask=[0, 1, 0], keep_mask=True) + assert_equal(mx.mask, [1, 1, 0]) + # We default to true + mx = masked_array(x, mask=[0, 1, 0]) + assert_equal(mx.mask, [1, 1, 0]) + + def test_hardmask(self): + # Test hard_mask + d = arange(5) + n = [0, 0, 0, 1, 1] + m = make_mask(n) + xh = array(d, mask=m, hard_mask=True) + # We need to copy, to avoid updating d in xh ! + xs = array(d, mask=m, hard_mask=False, copy=True) + xh[[1, 4]] = [10, 40] + xs[[1, 4]] = [10, 40] + assert_equal(xh._data, [0, 10, 2, 3, 4]) + assert_equal(xs._data, [0, 10, 2, 3, 40]) + assert_equal(xs.mask, [0, 0, 0, 1, 0]) + assert_(xh._hardmask) + assert_(not xs._hardmask) + xh[1:4] = [10, 20, 30] + xs[1:4] = [10, 20, 30] + assert_equal(xh._data, [0, 10, 20, 3, 4]) + assert_equal(xs._data, [0, 10, 20, 30, 40]) + assert_equal(xs.mask, nomask) + xh[0] = masked + xs[0] = masked + assert_equal(xh.mask, [1, 0, 0, 1, 1]) + assert_equal(xs.mask, [1, 0, 0, 0, 0]) + xh[:] = 1 + xs[:] = 1 + assert_equal(xh._data, [0, 1, 1, 3, 4]) + assert_equal(xs._data, [1, 1, 1, 1, 1]) + assert_equal(xh.mask, [1, 0, 0, 1, 1]) + assert_equal(xs.mask, nomask) + # Switch to soft mask + xh.soften_mask() + xh[:] = arange(5) + assert_equal(xh._data, [0, 1, 2, 3, 4]) + assert_equal(xh.mask, nomask) + # Switch back to hard mask + xh.harden_mask() + xh[xh < 3] = masked + assert_equal(xh._data, [0, 1, 2, 3, 4]) + assert_equal(xh._mask, [1, 1, 1, 0, 0]) + xh[filled(xh > 1, False)] = 5 + assert_equal(xh._data, [0, 1, 2, 5, 5]) + assert_equal(xh._mask, [1, 1, 1, 0, 0]) + + xh = array([[1, 2], [3, 4]], mask=[[1, 0], [0, 0]], hard_mask=True) + xh[0] = 0 + assert_equal(xh._data, [[1, 0], [3, 4]]) + assert_equal(xh._mask, [[1, 0], [0, 0]]) + xh[-1, -1] = 5 + assert_equal(xh._data, [[1, 0], [3, 5]]) + assert_equal(xh._mask, [[1, 0], [0, 0]]) + xh[filled(xh < 5, False)] = 2 + assert_equal(xh._data, [[1, 2], [2, 5]]) + assert_equal(xh._mask, [[1, 0], [0, 0]]) + + def test_hardmask_again(self): + # Another test of hardmask + d = arange(5) + n = [0, 0, 0, 1, 1] + m = make_mask(n) + xh = array(d, mask=m, hard_mask=True) + xh[4:5] = 999 + xh[0:1] = 999 + assert_equal(xh._data, [999, 1, 2, 3, 4]) + + def test_hardmask_oncemore_yay(self): + # OK, yet another test of hardmask + # Make sure that harden_mask/soften_mask//unshare_mask returns self + a = array([1, 2, 3], mask=[1, 0, 0]) + b = a.harden_mask() + assert_equal(a, b) + b[0] = 0 + assert_equal(a, b) + assert_equal(b, array([1, 2, 3], mask=[1, 0, 0])) + a = b.soften_mask() + a[0] = 0 + assert_equal(a, b) + assert_equal(b, array([0, 2, 3], mask=[0, 0, 0])) + + def test_smallmask(self): + # Checks the behaviour of _smallmask + a = arange(10) + a[1] = masked + a[1] = 1 + assert_equal(a._mask, nomask) + a = arange(10) + a._smallmask = False + a[1] = masked + a[1] = 1 + assert_equal(a._mask, zeros(10)) + + def test_shrink_mask(self): + # Tests .shrink_mask() + a = array([1, 2, 3], mask=[0, 0, 0]) + b = a.shrink_mask() + assert_equal(a, b) + assert_equal(a.mask, nomask) + + # Mask cannot be shrunk on structured types, so is a no-op + a = np.ma.array([(1, 2.0)], [('a', int), ('b', float)]) + b = a.copy() + a.shrink_mask() + assert_equal(a.mask, b.mask) + + def test_flat(self): + # Test that flat can return all types of items [#4585, #4615] + # test 2-D record array + # ... on structured array w/ masked records + x = array([[(1, 1.1, 'one'), (2, 2.2, 'two'), (3, 3.3, 'thr')], + [(4, 4.4, 'fou'), (5, 5.5, 'fiv'), (6, 6.6, 'six')]], + dtype=[('a', int), ('b', float), ('c', '|S8')]) + x['a'][0, 1] = masked + x['b'][1, 0] = masked + x['c'][0, 2] = masked + x[-1, -1] = masked + xflat = x.flat + assert_equal(xflat[0], x[0, 0]) + assert_equal(xflat[1], x[0, 1]) + assert_equal(xflat[2], x[0, 2]) + assert_equal(xflat[:3], x[0]) + assert_equal(xflat[3], x[1, 0]) + assert_equal(xflat[4], x[1, 1]) + assert_equal(xflat[5], x[1, 2]) + assert_equal(xflat[3:], x[1]) + assert_equal(xflat[-1], x[-1, -1]) + i = 0 + j = 0 + for xf in xflat: + assert_equal(xf, x[j, i]) + i += 1 + if i >= x.shape[-1]: + i = 0 + j += 1 + + def test_assign_dtype(self): + # check that the mask's dtype is updated when dtype is changed + a = np.zeros(4, dtype='f4,i4') + + m = np.ma.array(a) + m.dtype = np.dtype('f4') + repr(m) # raises? + assert_equal(m.dtype, np.dtype('f4')) + + # check that dtype changes that change shape of mask too much + # are not allowed + def assign(): + m = np.ma.array(a) + m.dtype = np.dtype('f8') + assert_raises(ValueError, assign) + + b = a.view(dtype='f4', type=np.ma.MaskedArray) # raises? + assert_equal(b.dtype, np.dtype('f4')) + + # check that nomask is preserved + a = np.zeros(4, dtype='f4') + m = np.ma.array(a) + m.dtype = np.dtype('f4,i4') + assert_equal(m.dtype, np.dtype('f4,i4')) + assert_equal(m._mask, np.ma.nomask) + + +class TestFillingValues: + + def test_check_on_scalar(self): + # Test _check_fill_value set to valid and invalid values + _check_fill_value = np.ma.core._check_fill_value + + fval = _check_fill_value(0, int) + assert_equal(fval, 0) + fval = _check_fill_value(None, int) + assert_equal(fval, default_fill_value(0)) + + fval = _check_fill_value(0, "|S3") + assert_equal(fval, b"0") + fval = _check_fill_value(None, "|S3") + assert_equal(fval, default_fill_value(b"camelot!")) + assert_raises(TypeError, _check_fill_value, 1e+20, int) + assert_raises(TypeError, _check_fill_value, 'stuff', int) + + def test_check_on_fields(self): + # Tests _check_fill_value with records + _check_fill_value = np.ma.core._check_fill_value + ndtype = [('a', int), ('b', float), ('c', "|S3")] + # A check on a list should return a single record + fval = _check_fill_value([-999, -12345678.9, "???"], ndtype) + assert_(isinstance(fval, ndarray)) + assert_equal(fval.item(), [-999, -12345678.9, b"???"]) + # A check on None should output the defaults + fval = _check_fill_value(None, ndtype) + assert_(isinstance(fval, ndarray)) + assert_equal(fval.item(), [default_fill_value(0), + default_fill_value(0.), + asbytes(default_fill_value("0"))]) + #.....Using a structured type as fill_value should work + fill_val = np.array((-999, -12345678.9, "???"), dtype=ndtype) + fval = _check_fill_value(fill_val, ndtype) + assert_(isinstance(fval, ndarray)) + assert_equal(fval.item(), [-999, -12345678.9, b"???"]) + + #.....Using a flexible type w/ a different type shouldn't matter + # BEHAVIOR in 1.5 and earlier, and 1.13 and later: match structured + # types by position + fill_val = np.array((-999, -12345678.9, "???"), + dtype=[("A", int), ("B", float), ("C", "|S3")]) + fval = _check_fill_value(fill_val, ndtype) + assert_(isinstance(fval, ndarray)) + assert_equal(fval.item(), [-999, -12345678.9, b"???"]) + + #.....Using an object-array shouldn't matter either + fill_val = np.ndarray(shape=(1,), dtype=object) + fill_val[0] = (-999, -12345678.9, b"???") + fval = _check_fill_value(fill_val, object) + assert_(isinstance(fval, ndarray)) + assert_equal(fval.item(), [-999, -12345678.9, b"???"]) + # NOTE: This test was never run properly as "fill_value" rather than + # "fill_val" was assigned. Written properly, it fails. + #fill_val = np.array((-999, -12345678.9, "???")) + #fval = _check_fill_value(fill_val, ndtype) + #assert_(isinstance(fval, ndarray)) + #assert_equal(fval.item(), [-999, -12345678.9, b"???"]) + #.....One-field-only flexible type should work as well + ndtype = [("a", int)] + fval = _check_fill_value(-999999999, ndtype) + assert_(isinstance(fval, ndarray)) + assert_equal(fval.item(), (-999999999,)) + + def test_fillvalue_conversion(self): + # Tests the behavior of fill_value during conversion + # We had a tailored comment to make sure special attributes are + # properly dealt with + a = array([b'3', b'4', b'5']) + a._optinfo.update({'comment': "updated!"}) + + b = array(a, dtype=int) + assert_equal(b._data, [3, 4, 5]) + assert_equal(b.fill_value, default_fill_value(0)) + + b = array(a, dtype=float) + assert_equal(b._data, [3, 4, 5]) + assert_equal(b.fill_value, default_fill_value(0.)) + + b = a.astype(int) + assert_equal(b._data, [3, 4, 5]) + assert_equal(b.fill_value, default_fill_value(0)) + assert_equal(b._optinfo['comment'], "updated!") + + b = a.astype([('a', '|S3')]) + assert_equal(b['a']._data, a._data) + assert_equal(b['a'].fill_value, a.fill_value) + + def test_default_fill_value(self): + # check all calling conventions + f1 = default_fill_value(1.) + f2 = default_fill_value(np.array(1.)) + f3 = default_fill_value(np.array(1.).dtype) + assert_equal(f1, f2) + assert_equal(f1, f3) + + def test_default_fill_value_structured(self): + fields = array([(1, 1, 1)], + dtype=[('i', int), ('s', '|S8'), ('f', float)]) + + f1 = default_fill_value(fields) + f2 = default_fill_value(fields.dtype) + expected = np.array((default_fill_value(0), + default_fill_value('0'), + default_fill_value(0.)), dtype=fields.dtype) + assert_equal(f1, expected) + assert_equal(f2, expected) + + def test_default_fill_value_void(self): + dt = np.dtype([('v', 'V7')]) + f = default_fill_value(dt) + assert_equal(f['v'], np.array(default_fill_value(dt['v']), dt['v'])) + + def test_fillvalue(self): + # Yet more fun with the fill_value + data = masked_array([1, 2, 3], fill_value=-999) + series = data[[0, 2, 1]] + assert_equal(series._fill_value, data._fill_value) + + mtype = [('f', float), ('s', '|S3')] + x = array([(1, 'a'), (2, 'b'), (pi, 'pi')], dtype=mtype) + x.fill_value = 999 + assert_equal(x.fill_value.item(), [999., b'999']) + assert_equal(x['f'].fill_value, 999) + assert_equal(x['s'].fill_value, b'999') + + x.fill_value = (9, '???') + assert_equal(x.fill_value.item(), (9, b'???')) + assert_equal(x['f'].fill_value, 9) + assert_equal(x['s'].fill_value, b'???') + + x = array([1, 2, 3.1]) + x.fill_value = 999 + assert_equal(np.asarray(x.fill_value).dtype, float) + assert_equal(x.fill_value, 999.) + assert_equal(x._fill_value, np.array(999.)) + + def test_subarray_fillvalue(self): + # gh-10483 test multi-field index fill value + fields = array([(1, 1, 1)], + dtype=[('i', int), ('s', '|S8'), ('f', float)]) + with suppress_warnings() as sup: + sup.filter(FutureWarning, "Numpy has detected") + subfields = fields[['i', 'f']] + assert_equal(tuple(subfields.fill_value), (999999, 1.e+20)) + # test comparison does not raise: + subfields[1:] == subfields[:-1] + + def test_fillvalue_exotic_dtype(self): + # Tests yet more exotic flexible dtypes + _check_fill_value = np.ma.core._check_fill_value + ndtype = [('i', int), ('s', '|S8'), ('f', float)] + control = np.array((default_fill_value(0), + default_fill_value('0'), + default_fill_value(0.),), + dtype=ndtype) + assert_equal(_check_fill_value(None, ndtype), control) + # The shape shouldn't matter + ndtype = [('f0', float, (2, 2))] + control = np.array((default_fill_value(0.),), + dtype=[('f0', float)]).astype(ndtype) + assert_equal(_check_fill_value(None, ndtype), control) + control = np.array((0,), dtype=[('f0', float)]).astype(ndtype) + assert_equal(_check_fill_value(0, ndtype), control) + + ndtype = np.dtype("int, (2,3)float, float") + control = np.array((default_fill_value(0), + default_fill_value(0.), + default_fill_value(0.),), + dtype="int, float, float").astype(ndtype) + test = _check_fill_value(None, ndtype) + assert_equal(test, control) + control = np.array((0, 0, 0), dtype="int, float, float").astype(ndtype) + assert_equal(_check_fill_value(0, ndtype), control) + # but when indexing, fill value should become scalar not tuple + # See issue #6723 + M = masked_array(control) + assert_equal(M["f1"].fill_value.ndim, 0) + + def test_fillvalue_datetime_timedelta(self): + # Test default fillvalue for datetime64 and timedelta64 types. + # See issue #4476, this would return '?' which would cause errors + # elsewhere + + for timecode in ("as", "fs", "ps", "ns", "us", "ms", "s", "m", + "h", "D", "W", "M", "Y"): + control = numpy.datetime64("NaT", timecode) + test = default_fill_value(numpy.dtype(" 0 + + # test different unary domains + sqrt(m) + log(m) + tan(m) + arcsin(m) + arccos(m) + arccosh(m) + + # test binary domains + divide(m, 2) + + # also check that allclose uses ma ufuncs, to avoid warning + allclose(m, 0.5) + + def test_masked_array_underflow(self): + x = np.arange(0, 3, 0.1) + X = np.ma.array(x) + with np.errstate(under="raise"): + X2 = X / 2.0 + np.testing.assert_array_equal(X2, x / 2) + +class TestMaskedArrayInPlaceArithmetic: + # Test MaskedArray Arithmetic + + def setup_method(self): + x = arange(10) + y = arange(10) + xm = arange(10) + xm[2] = masked + self.intdata = (x, y, xm) + self.floatdata = (x.astype(float), y.astype(float), xm.astype(float)) + self.othertypes = np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + self.othertypes = [np.dtype(_).type for _ in self.othertypes] + self.uint8data = ( + x.astype(np.uint8), + y.astype(np.uint8), + xm.astype(np.uint8) + ) + + def test_inplace_addition_scalar(self): + # Test of inplace additions + (x, y, xm) = self.intdata + xm[2] = masked + x += 1 + assert_equal(x, y + 1) + xm += 1 + assert_equal(xm, y + 1) + + (x, _, xm) = self.floatdata + id1 = x.data.ctypes.data + x += 1. + assert_(id1 == x.data.ctypes.data) + assert_equal(x, y + 1.) + + def test_inplace_addition_array(self): + # Test of inplace additions + (x, y, xm) = self.intdata + m = xm.mask + a = arange(10, dtype=np.int16) + a[-1] = masked + x += a + xm += a + assert_equal(x, y + a) + assert_equal(xm, y + a) + assert_equal(xm.mask, mask_or(m, a.mask)) + + def test_inplace_subtraction_scalar(self): + # Test of inplace subtractions + (x, y, xm) = self.intdata + x -= 1 + assert_equal(x, y - 1) + xm -= 1 + assert_equal(xm, y - 1) + + def test_inplace_subtraction_array(self): + # Test of inplace subtractions + (x, y, xm) = self.floatdata + m = xm.mask + a = arange(10, dtype=float) + a[-1] = masked + x -= a + xm -= a + assert_equal(x, y - a) + assert_equal(xm, y - a) + assert_equal(xm.mask, mask_or(m, a.mask)) + + def test_inplace_multiplication_scalar(self): + # Test of inplace multiplication + (x, y, xm) = self.floatdata + x *= 2.0 + assert_equal(x, y * 2) + xm *= 2.0 + assert_equal(xm, y * 2) + + def test_inplace_multiplication_array(self): + # Test of inplace multiplication + (x, y, xm) = self.floatdata + m = xm.mask + a = arange(10, dtype=float) + a[-1] = masked + x *= a + xm *= a + assert_equal(x, y * a) + assert_equal(xm, y * a) + assert_equal(xm.mask, mask_or(m, a.mask)) + + def test_inplace_division_scalar_int(self): + # Test of inplace division + (x, y, xm) = self.intdata + x = arange(10) * 2 + xm = arange(10) * 2 + xm[2] = masked + x //= 2 + assert_equal(x, y) + xm //= 2 + assert_equal(xm, y) + + def test_inplace_division_scalar_float(self): + # Test of inplace division + (x, y, xm) = self.floatdata + x /= 2.0 + assert_equal(x, y / 2.0) + xm /= arange(10) + assert_equal(xm, ones((10,))) + + def test_inplace_division_array_float(self): + # Test of inplace division + (x, y, xm) = self.floatdata + m = xm.mask + a = arange(10, dtype=float) + a[-1] = masked + x /= a + xm /= a + assert_equal(x, y / a) + assert_equal(xm, y / a) + assert_equal(xm.mask, mask_or(mask_or(m, a.mask), (a == 0))) + + def test_inplace_division_misc(self): + + x = [1., 1., 1., -2., pi / 2., 4., 5., -10., 10., 1., 2., 3.] + y = [5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.] + m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] + m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] + xm = masked_array(x, mask=m1) + ym = masked_array(y, mask=m2) + + z = xm / ym + assert_equal(z._mask, [1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1]) + assert_equal(z._data, + [1., 1., 1., -1., -pi / 2., 4., 5., 1., 1., 1., 2., 3.]) + + xm = xm.copy() + xm /= ym + assert_equal(xm._mask, [1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1]) + assert_equal(z._data, + [1., 1., 1., -1., -pi / 2., 4., 5., 1., 1., 1., 2., 3.]) + + def test_datafriendly_add(self): + # Test keeping data w/ (inplace) addition + x = array([1, 2, 3], mask=[0, 0, 1]) + # Test add w/ scalar + xx = x + 1 + assert_equal(xx.data, [2, 3, 3]) + assert_equal(xx.mask, [0, 0, 1]) + # Test iadd w/ scalar + x += 1 + assert_equal(x.data, [2, 3, 3]) + assert_equal(x.mask, [0, 0, 1]) + # Test add w/ array + x = array([1, 2, 3], mask=[0, 0, 1]) + xx = x + array([1, 2, 3], mask=[1, 0, 0]) + assert_equal(xx.data, [1, 4, 3]) + assert_equal(xx.mask, [1, 0, 1]) + # Test iadd w/ array + x = array([1, 2, 3], mask=[0, 0, 1]) + x += array([1, 2, 3], mask=[1, 0, 0]) + assert_equal(x.data, [1, 4, 3]) + assert_equal(x.mask, [1, 0, 1]) + + def test_datafriendly_sub(self): + # Test keeping data w/ (inplace) subtraction + # Test sub w/ scalar + x = array([1, 2, 3], mask=[0, 0, 1]) + xx = x - 1 + assert_equal(xx.data, [0, 1, 3]) + assert_equal(xx.mask, [0, 0, 1]) + # Test isub w/ scalar + x = array([1, 2, 3], mask=[0, 0, 1]) + x -= 1 + assert_equal(x.data, [0, 1, 3]) + assert_equal(x.mask, [0, 0, 1]) + # Test sub w/ array + x = array([1, 2, 3], mask=[0, 0, 1]) + xx = x - array([1, 2, 3], mask=[1, 0, 0]) + assert_equal(xx.data, [1, 0, 3]) + assert_equal(xx.mask, [1, 0, 1]) + # Test isub w/ array + x = array([1, 2, 3], mask=[0, 0, 1]) + x -= array([1, 2, 3], mask=[1, 0, 0]) + assert_equal(x.data, [1, 0, 3]) + assert_equal(x.mask, [1, 0, 1]) + + def test_datafriendly_mul(self): + # Test keeping data w/ (inplace) multiplication + # Test mul w/ scalar + x = array([1, 2, 3], mask=[0, 0, 1]) + xx = x * 2 + assert_equal(xx.data, [2, 4, 3]) + assert_equal(xx.mask, [0, 0, 1]) + # Test imul w/ scalar + x = array([1, 2, 3], mask=[0, 0, 1]) + x *= 2 + assert_equal(x.data, [2, 4, 3]) + assert_equal(x.mask, [0, 0, 1]) + # Test mul w/ array + x = array([1, 2, 3], mask=[0, 0, 1]) + xx = x * array([10, 20, 30], mask=[1, 0, 0]) + assert_equal(xx.data, [1, 40, 3]) + assert_equal(xx.mask, [1, 0, 1]) + # Test imul w/ array + x = array([1, 2, 3], mask=[0, 0, 1]) + x *= array([10, 20, 30], mask=[1, 0, 0]) + assert_equal(x.data, [1, 40, 3]) + assert_equal(x.mask, [1, 0, 1]) + + def test_datafriendly_div(self): + # Test keeping data w/ (inplace) division + # Test div on scalar + x = array([1, 2, 3], mask=[0, 0, 1]) + xx = x / 2. + assert_equal(xx.data, [1 / 2., 2 / 2., 3]) + assert_equal(xx.mask, [0, 0, 1]) + # Test idiv on scalar + x = array([1., 2., 3.], mask=[0, 0, 1]) + x /= 2. + assert_equal(x.data, [1 / 2., 2 / 2., 3]) + assert_equal(x.mask, [0, 0, 1]) + # Test div on array + x = array([1., 2., 3.], mask=[0, 0, 1]) + xx = x / array([10., 20., 30.], mask=[1, 0, 0]) + assert_equal(xx.data, [1., 2. / 20., 3.]) + assert_equal(xx.mask, [1, 0, 1]) + # Test idiv on array + x = array([1., 2., 3.], mask=[0, 0, 1]) + x /= array([10., 20., 30.], mask=[1, 0, 0]) + assert_equal(x.data, [1., 2 / 20., 3.]) + assert_equal(x.mask, [1, 0, 1]) + + def test_datafriendly_pow(self): + # Test keeping data w/ (inplace) power + # Test pow on scalar + x = array([1., 2., 3.], mask=[0, 0, 1]) + xx = x ** 2.5 + assert_equal(xx.data, [1., 2. ** 2.5, 3.]) + assert_equal(xx.mask, [0, 0, 1]) + # Test ipow on scalar + x **= 2.5 + assert_equal(x.data, [1., 2. ** 2.5, 3]) + assert_equal(x.mask, [0, 0, 1]) + + def test_datafriendly_add_arrays(self): + a = array([[1, 1], [3, 3]]) + b = array([1, 1], mask=[0, 0]) + a += b + assert_equal(a, [[2, 2], [4, 4]]) + if a.mask is not nomask: + assert_equal(a.mask, [[0, 0], [0, 0]]) + + a = array([[1, 1], [3, 3]]) + b = array([1, 1], mask=[0, 1]) + a += b + assert_equal(a, [[2, 2], [4, 4]]) + assert_equal(a.mask, [[0, 1], [0, 1]]) + + def test_datafriendly_sub_arrays(self): + a = array([[1, 1], [3, 3]]) + b = array([1, 1], mask=[0, 0]) + a -= b + assert_equal(a, [[0, 0], [2, 2]]) + if a.mask is not nomask: + assert_equal(a.mask, [[0, 0], [0, 0]]) + + a = array([[1, 1], [3, 3]]) + b = array([1, 1], mask=[0, 1]) + a -= b + assert_equal(a, [[0, 0], [2, 2]]) + assert_equal(a.mask, [[0, 1], [0, 1]]) + + def test_datafriendly_mul_arrays(self): + a = array([[1, 1], [3, 3]]) + b = array([1, 1], mask=[0, 0]) + a *= b + assert_equal(a, [[1, 1], [3, 3]]) + if a.mask is not nomask: + assert_equal(a.mask, [[0, 0], [0, 0]]) + + a = array([[1, 1], [3, 3]]) + b = array([1, 1], mask=[0, 1]) + a *= b + assert_equal(a, [[1, 1], [3, 3]]) + assert_equal(a.mask, [[0, 1], [0, 1]]) + + def test_inplace_addition_scalar_type(self): + # Test of inplace additions + for t in self.othertypes: + with warnings.catch_warnings(): + warnings.filterwarnings("error") + (x, y, xm) = (_.astype(t) for _ in self.uint8data) + xm[2] = masked + x += t(1) + assert_equal(x, y + t(1)) + xm += t(1) + assert_equal(xm, y + t(1)) + + def test_inplace_addition_array_type(self): + # Test of inplace additions + for t in self.othertypes: + with warnings.catch_warnings(): + warnings.filterwarnings("error") + (x, y, xm) = (_.astype(t) for _ in self.uint8data) + m = xm.mask + a = arange(10, dtype=t) + a[-1] = masked + x += a + xm += a + assert_equal(x, y + a) + assert_equal(xm, y + a) + assert_equal(xm.mask, mask_or(m, a.mask)) + + def test_inplace_subtraction_scalar_type(self): + # Test of inplace subtractions + for t in self.othertypes: + with warnings.catch_warnings(): + warnings.filterwarnings("error") + (x, y, xm) = (_.astype(t) for _ in self.uint8data) + x -= t(1) + assert_equal(x, y - t(1)) + xm -= t(1) + assert_equal(xm, y - t(1)) + + def test_inplace_subtraction_array_type(self): + # Test of inplace subtractions + for t in self.othertypes: + with warnings.catch_warnings(): + warnings.filterwarnings("error") + (x, y, xm) = (_.astype(t) for _ in self.uint8data) + m = xm.mask + a = arange(10, dtype=t) + a[-1] = masked + x -= a + xm -= a + assert_equal(x, y - a) + assert_equal(xm, y - a) + assert_equal(xm.mask, mask_or(m, a.mask)) + + def test_inplace_multiplication_scalar_type(self): + # Test of inplace multiplication + for t in self.othertypes: + with warnings.catch_warnings(): + warnings.filterwarnings("error") + (x, y, xm) = (_.astype(t) for _ in self.uint8data) + x *= t(2) + assert_equal(x, y * t(2)) + xm *= t(2) + assert_equal(xm, y * t(2)) + + def test_inplace_multiplication_array_type(self): + # Test of inplace multiplication + for t in self.othertypes: + with warnings.catch_warnings(): + warnings.filterwarnings("error") + (x, y, xm) = (_.astype(t) for _ in self.uint8data) + m = xm.mask + a = arange(10, dtype=t) + a[-1] = masked + x *= a + xm *= a + assert_equal(x, y * a) + assert_equal(xm, y * a) + assert_equal(xm.mask, mask_or(m, a.mask)) + + def test_inplace_floor_division_scalar_type(self): + # Test of inplace division + # Check for TypeError in case of unsupported types + unsupported = {np.dtype(t).type for t in np.typecodes["Complex"]} + for t in self.othertypes: + with warnings.catch_warnings(): + warnings.filterwarnings("error") + (x, y, xm) = (_.astype(t) for _ in self.uint8data) + x = arange(10, dtype=t) * t(2) + xm = arange(10, dtype=t) * t(2) + xm[2] = masked + try: + x //= t(2) + xm //= t(2) + assert_equal(x, y) + assert_equal(xm, y) + except TypeError: + msg = f"Supported type {t} throwing TypeError" + assert t in unsupported, msg + + def test_inplace_floor_division_array_type(self): + # Test of inplace division + # Check for TypeError in case of unsupported types + unsupported = {np.dtype(t).type for t in np.typecodes["Complex"]} + for t in self.othertypes: + with warnings.catch_warnings(): + warnings.filterwarnings("error") + (x, y, xm) = (_.astype(t) for _ in self.uint8data) + m = xm.mask + a = arange(10, dtype=t) + a[-1] = masked + try: + x //= a + xm //= a + assert_equal(x, y // a) + assert_equal(xm, y // a) + assert_equal( + xm.mask, + mask_or(mask_or(m, a.mask), (a == t(0))) + ) + except TypeError: + msg = f"Supported type {t} throwing TypeError" + assert t in unsupported, msg + + def test_inplace_division_scalar_type(self): + # Test of inplace division + for t in self.othertypes: + with suppress_warnings() as sup: + sup.record(UserWarning) + + (x, y, xm) = (_.astype(t) for _ in self.uint8data) + x = arange(10, dtype=t) * t(2) + xm = arange(10, dtype=t) * t(2) + xm[2] = masked + + # May get a DeprecationWarning or a TypeError. + # + # This is a consequence of the fact that this is true divide + # and will require casting to float for calculation and + # casting back to the original type. This will only be raised + # with integers. Whether it is an error or warning is only + # dependent on how stringent the casting rules are. + # + # Will handle the same way. + try: + x /= t(2) + assert_equal(x, y) + except (DeprecationWarning, TypeError) as e: + warnings.warn(str(e), stacklevel=1) + try: + xm /= t(2) + assert_equal(xm, y) + except (DeprecationWarning, TypeError) as e: + warnings.warn(str(e), stacklevel=1) + + if issubclass(t, np.integer): + assert_equal(len(sup.log), 2, f'Failed on type={t}.') + else: + assert_equal(len(sup.log), 0, f'Failed on type={t}.') + + def test_inplace_division_array_type(self): + # Test of inplace division + for t in self.othertypes: + with suppress_warnings() as sup: + sup.record(UserWarning) + (x, y, xm) = (_.astype(t) for _ in self.uint8data) + m = xm.mask + a = arange(10, dtype=t) + a[-1] = masked + + # May get a DeprecationWarning or a TypeError. + # + # This is a consequence of the fact that this is true divide + # and will require casting to float for calculation and + # casting back to the original type. This will only be raised + # with integers. Whether it is an error or warning is only + # dependent on how stringent the casting rules are. + # + # Will handle the same way. + try: + x /= a + assert_equal(x, y / a) + except (DeprecationWarning, TypeError) as e: + warnings.warn(str(e), stacklevel=1) + try: + xm /= a + assert_equal(xm, y / a) + assert_equal( + xm.mask, + mask_or(mask_or(m, a.mask), (a == t(0))) + ) + except (DeprecationWarning, TypeError) as e: + warnings.warn(str(e), stacklevel=1) + + if issubclass(t, np.integer): + assert_equal(len(sup.log), 2, f'Failed on type={t}.') + else: + assert_equal(len(sup.log), 0, f'Failed on type={t}.') + + def test_inplace_pow_type(self): + # Test keeping data w/ (inplace) power + for t in self.othertypes: + with warnings.catch_warnings(): + warnings.filterwarnings("error") + # Test pow on scalar + x = array([1, 2, 3], mask=[0, 0, 1], dtype=t) + xx = x ** t(2) + xx_r = array([1, 2 ** 2, 3], mask=[0, 0, 1], dtype=t) + assert_equal(xx.data, xx_r.data) + assert_equal(xx.mask, xx_r.mask) + # Test ipow on scalar + x **= t(2) + assert_equal(x.data, xx_r.data) + assert_equal(x.mask, xx_r.mask) + + +class TestMaskedArrayMethods: + # Test class for miscellaneous MaskedArrays methods. + def setup_method(self): + # Base data definition. + x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928, + 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, + 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, + 6.04, 9.63, 7.712, 3.382, 4.489, 6.479, + 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, + 7.357, 9.828, 6.272, 3.758, 6.693, 0.993]) + X = x.reshape(6, 6) + XX = x.reshape(3, 2, 2, 3) + + m = np.array([0, 1, 0, 1, 0, 0, + 1, 0, 1, 1, 0, 1, + 0, 0, 0, 1, 0, 1, + 0, 0, 0, 1, 1, 1, + 1, 0, 0, 1, 0, 0, + 0, 0, 1, 0, 1, 0]) + mx = array(data=x, mask=m) + mX = array(data=X, mask=m.reshape(X.shape)) + mXX = array(data=XX, mask=m.reshape(XX.shape)) + + m2 = np.array([1, 1, 0, 1, 0, 0, + 1, 1, 1, 1, 0, 1, + 0, 0, 1, 1, 0, 1, + 0, 0, 0, 1, 1, 1, + 1, 0, 0, 1, 1, 0, + 0, 0, 1, 0, 1, 1]) + m2x = array(data=x, mask=m2) + m2X = array(data=X, mask=m2.reshape(X.shape)) + m2XX = array(data=XX, mask=m2.reshape(XX.shape)) + self.d = (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) + + def test_generic_methods(self): + # Tests some MaskedArray methods. + a = array([1, 3, 2]) + assert_equal(a.any(), a._data.any()) + assert_equal(a.all(), a._data.all()) + assert_equal(a.argmax(), a._data.argmax()) + assert_equal(a.argmin(), a._data.argmin()) + assert_equal(a.choose(0, 1, 2, 3, 4), a._data.choose(0, 1, 2, 3, 4)) + assert_equal(a.compress([1, 0, 1]), a._data.compress([1, 0, 1])) + assert_equal(a.conj(), a._data.conj()) + assert_equal(a.conjugate(), a._data.conjugate()) + + m = array([[1, 2], [3, 4]]) + assert_equal(m.diagonal(), m._data.diagonal()) + assert_equal(a.sum(), a._data.sum()) + assert_equal(a.take([1, 2]), a._data.take([1, 2])) + assert_equal(m.transpose(), m._data.transpose()) + + def test_allclose(self): + # Tests allclose on arrays + a = np.random.rand(10) + b = a + np.random.rand(10) * 1e-8 + assert_(allclose(a, b)) + # Test allclose w/ infs + a[0] = np.inf + assert_(not allclose(a, b)) + b[0] = np.inf + assert_(allclose(a, b)) + # Test allclose w/ masked + a = masked_array(a) + a[-1] = masked + assert_(allclose(a, b, masked_equal=True)) + assert_(not allclose(a, b, masked_equal=False)) + # Test comparison w/ scalar + a *= 1e-8 + a[0] = 0 + assert_(allclose(a, 0, masked_equal=True)) + + # Test that the function works for MIN_INT integer typed arrays + a = masked_array([np.iinfo(np.int_).min], dtype=np.int_) + assert_(allclose(a, a)) + + def test_allclose_timedelta(self): + # Allclose currently works for timedelta64 as long as `atol` is + # an integer or also a timedelta64 + a = np.array([[1, 2, 3, 4]], dtype="m8[ns]") + assert allclose(a, a, atol=0) + assert allclose(a, a, atol=np.timedelta64(1, "ns")) + + def test_allany(self): + # Checks the any/all methods/functions. + x = np.array([[0.13, 0.26, 0.90], + [0.28, 0.33, 0.63], + [0.31, 0.87, 0.70]]) + m = np.array([[True, False, False], + [False, False, False], + [True, True, False]], dtype=np.bool) + mx = masked_array(x, mask=m) + mxbig = (mx > 0.5) + mxsmall = (mx < 0.5) + + assert_(not mxbig.all()) + assert_(mxbig.any()) + assert_equal(mxbig.all(0), [False, False, True]) + assert_equal(mxbig.all(1), [False, False, True]) + assert_equal(mxbig.any(0), [False, False, True]) + assert_equal(mxbig.any(1), [True, True, True]) + + assert_(not mxsmall.all()) + assert_(mxsmall.any()) + assert_equal(mxsmall.all(0), [True, True, False]) + assert_equal(mxsmall.all(1), [False, False, False]) + assert_equal(mxsmall.any(0), [True, True, False]) + assert_equal(mxsmall.any(1), [True, True, False]) + + def test_allany_oddities(self): + # Some fun with all and any + store = empty((), dtype=bool) + full = array([1, 2, 3], mask=True) + + assert_(full.all() is masked) + full.all(out=store) + assert_(store) + assert_(store._mask, True) + assert_(store is not masked) + + store = empty((), dtype=bool) + assert_(full.any() is masked) + full.any(out=store) + assert_(not store) + assert_(store._mask, True) + assert_(store is not masked) + + def test_argmax_argmin(self): + # Tests argmin & argmax on MaskedArrays. + (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d + + assert_equal(mx.argmin(), 35) + assert_equal(mX.argmin(), 35) + assert_equal(m2x.argmin(), 4) + assert_equal(m2X.argmin(), 4) + assert_equal(mx.argmax(), 28) + assert_equal(mX.argmax(), 28) + assert_equal(m2x.argmax(), 31) + assert_equal(m2X.argmax(), 31) + + assert_equal(mX.argmin(0), [2, 2, 2, 5, 0, 5]) + assert_equal(m2X.argmin(0), [2, 2, 4, 5, 0, 4]) + assert_equal(mX.argmax(0), [0, 5, 0, 5, 4, 0]) + assert_equal(m2X.argmax(0), [5, 5, 0, 5, 1, 0]) + + assert_equal(mX.argmin(1), [4, 1, 0, 0, 5, 5, ]) + assert_equal(m2X.argmin(1), [4, 4, 0, 0, 5, 3]) + assert_equal(mX.argmax(1), [2, 4, 1, 1, 4, 1]) + assert_equal(m2X.argmax(1), [2, 4, 1, 1, 1, 1]) + + def test_clip(self): + # Tests clip on MaskedArrays. + x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928, + 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, + 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, + 6.04, 9.63, 7.712, 3.382, 4.489, 6.479, + 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, + 7.357, 9.828, 6.272, 3.758, 6.693, 0.993]) + m = np.array([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, + 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, + 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0]) + mx = array(x, mask=m) + clipped = mx.clip(2, 8) + assert_equal(clipped.mask, mx.mask) + assert_equal(clipped._data, x.clip(2, 8)) + assert_equal(clipped._data, mx._data.clip(2, 8)) + + def test_clip_out(self): + # gh-14140 + a = np.arange(10) + m = np.ma.MaskedArray(a, mask=[0, 1] * 5) + m.clip(0, 5, out=m) + assert_equal(m.mask, [0, 1] * 5) + + def test_compress(self): + # test compress + a = masked_array([1., 2., 3., 4., 5.], fill_value=9999) + condition = (a > 1.5) & (a < 3.5) + assert_equal(a.compress(condition), [2., 3.]) + + a[[2, 3]] = masked + b = a.compress(condition) + assert_equal(b._data, [2., 3.]) + assert_equal(b._mask, [0, 1]) + assert_equal(b.fill_value, 9999) + assert_equal(b, a[condition]) + + condition = (a < 4.) + b = a.compress(condition) + assert_equal(b._data, [1., 2., 3.]) + assert_equal(b._mask, [0, 0, 1]) + assert_equal(b.fill_value, 9999) + assert_equal(b, a[condition]) + + a = masked_array([[10, 20, 30], [40, 50, 60]], + mask=[[0, 0, 1], [1, 0, 0]]) + b = a.compress(a.ravel() >= 22) + assert_equal(b._data, [30, 40, 50, 60]) + assert_equal(b._mask, [1, 1, 0, 0]) + + x = np.array([3, 1, 2]) + b = a.compress(x >= 2, axis=1) + assert_equal(b._data, [[10, 30], [40, 60]]) + assert_equal(b._mask, [[0, 1], [1, 0]]) + + def test_compressed(self): + # Tests compressed + a = array([1, 2, 3, 4], mask=[0, 0, 0, 0]) + b = a.compressed() + assert_equal(b, a) + a[0] = masked + b = a.compressed() + assert_equal(b, [2, 3, 4]) + + def test_empty(self): + # Tests empty/like + datatype = [('a', int), ('b', float), ('c', '|S8')] + a = masked_array([(1, 1.1, '1.1'), (2, 2.2, '2.2'), (3, 3.3, '3.3')], + dtype=datatype) + assert_equal(len(a.fill_value.item()), len(datatype)) + + b = empty_like(a) + assert_equal(b.shape, a.shape) + assert_equal(b.fill_value, a.fill_value) + + b = empty(len(a), dtype=datatype) + assert_equal(b.shape, a.shape) + assert_equal(b.fill_value, a.fill_value) + + # check empty_like mask handling + a = masked_array([1, 2, 3], mask=[False, True, False]) + b = empty_like(a) + assert_(not np.may_share_memory(a.mask, b.mask)) + b = a.view(masked_array) + assert_(np.may_share_memory(a.mask, b.mask)) + + def test_zeros(self): + # Tests zeros/like + datatype = [('a', int), ('b', float), ('c', '|S8')] + a = masked_array([(1, 1.1, '1.1'), (2, 2.2, '2.2'), (3, 3.3, '3.3')], + dtype=datatype) + assert_equal(len(a.fill_value.item()), len(datatype)) + + b = zeros(len(a), dtype=datatype) + assert_equal(b.shape, a.shape) + assert_equal(b.fill_value, a.fill_value) + + b = zeros_like(a) + assert_equal(b.shape, a.shape) + assert_equal(b.fill_value, a.fill_value) + + # check zeros_like mask handling + a = masked_array([1, 2, 3], mask=[False, True, False]) + b = zeros_like(a) + assert_(not np.may_share_memory(a.mask, b.mask)) + b = a.view() + assert_(np.may_share_memory(a.mask, b.mask)) + + def test_ones(self): + # Tests ones/like + datatype = [('a', int), ('b', float), ('c', '|S8')] + a = masked_array([(1, 1.1, '1.1'), (2, 2.2, '2.2'), (3, 3.3, '3.3')], + dtype=datatype) + assert_equal(len(a.fill_value.item()), len(datatype)) + + b = ones(len(a), dtype=datatype) + assert_equal(b.shape, a.shape) + assert_equal(b.fill_value, a.fill_value) + + b = ones_like(a) + assert_equal(b.shape, a.shape) + assert_equal(b.fill_value, a.fill_value) + + # check ones_like mask handling + a = masked_array([1, 2, 3], mask=[False, True, False]) + b = ones_like(a) + assert_(not np.may_share_memory(a.mask, b.mask)) + b = a.view() + assert_(np.may_share_memory(a.mask, b.mask)) + + @suppress_copy_mask_on_assignment + def test_put(self): + # Tests put. + d = arange(5) + n = [0, 0, 0, 1, 1] + m = make_mask(n) + x = array(d, mask=m) + assert_(x[3] is masked) + assert_(x[4] is masked) + x[[1, 4]] = [10, 40] + assert_(x[3] is masked) + assert_(x[4] is not masked) + assert_equal(x, [0, 10, 2, -1, 40]) + + x = masked_array(arange(10), mask=[1, 0, 0, 0, 0] * 2) + i = [0, 2, 4, 6] + x.put(i, [6, 4, 2, 0]) + assert_equal(x, asarray([6, 1, 4, 3, 2, 5, 0, 7, 8, 9, ])) + assert_equal(x.mask, [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]) + x.put(i, masked_array([0, 2, 4, 6], [1, 0, 1, 0])) + assert_array_equal(x, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ]) + assert_equal(x.mask, [1, 0, 0, 0, 1, 1, 0, 0, 0, 0]) + + x = masked_array(arange(10), mask=[1, 0, 0, 0, 0] * 2) + put(x, i, [6, 4, 2, 0]) + assert_equal(x, asarray([6, 1, 4, 3, 2, 5, 0, 7, 8, 9, ])) + assert_equal(x.mask, [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]) + put(x, i, masked_array([0, 2, 4, 6], [1, 0, 1, 0])) + assert_array_equal(x, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ]) + assert_equal(x.mask, [1, 0, 0, 0, 1, 1, 0, 0, 0, 0]) + + def test_put_nomask(self): + # GitHub issue 6425 + x = zeros(10) + z = array([3., -1.], mask=[False, True]) + + x.put([1, 2], z) + assert_(x[0] is not masked) + assert_equal(x[0], 0) + assert_(x[1] is not masked) + assert_equal(x[1], 3) + assert_(x[2] is masked) + assert_(x[3] is not masked) + assert_equal(x[3], 0) + + def test_put_hardmask(self): + # Tests put on hardmask + d = arange(5) + n = [0, 0, 0, 1, 1] + m = make_mask(n) + xh = array(d + 1, mask=m, hard_mask=True, copy=True) + xh.put([4, 2, 0, 1, 3], [1, 2, 3, 4, 5]) + assert_equal(xh._data, [3, 4, 2, 4, 5]) + + def test_putmask(self): + x = arange(6) + 1 + mx = array(x, mask=[0, 0, 0, 1, 1, 1]) + mask = [0, 0, 1, 0, 0, 1] + # w/o mask, w/o masked values + xx = x.copy() + putmask(xx, mask, 99) + assert_equal(xx, [1, 2, 99, 4, 5, 99]) + # w/ mask, w/o masked values + mxx = mx.copy() + putmask(mxx, mask, 99) + assert_equal(mxx._data, [1, 2, 99, 4, 5, 99]) + assert_equal(mxx._mask, [0, 0, 0, 1, 1, 0]) + # w/o mask, w/ masked values + values = array([10, 20, 30, 40, 50, 60], mask=[1, 1, 1, 0, 0, 0]) + xx = x.copy() + putmask(xx, mask, values) + assert_equal(xx._data, [1, 2, 30, 4, 5, 60]) + assert_equal(xx._mask, [0, 0, 1, 0, 0, 0]) + # w/ mask, w/ masked values + mxx = mx.copy() + putmask(mxx, mask, values) + assert_equal(mxx._data, [1, 2, 30, 4, 5, 60]) + assert_equal(mxx._mask, [0, 0, 1, 1, 1, 0]) + # w/ mask, w/ masked values + hardmask + mxx = mx.copy() + mxx.harden_mask() + putmask(mxx, mask, values) + assert_equal(mxx, [1, 2, 30, 4, 5, 60]) + + def test_ravel(self): + # Tests ravel + a = array([[1, 2, 3, 4, 5]], mask=[[0, 1, 0, 0, 0]]) + aravel = a.ravel() + assert_equal(aravel._mask.shape, aravel.shape) + a = array([0, 0], mask=[1, 1]) + aravel = a.ravel() + assert_equal(aravel._mask.shape, a.shape) + # Checks that small_mask is preserved + a = array([1, 2, 3, 4], mask=[0, 0, 0, 0], shrink=False) + assert_equal(a.ravel()._mask, [0, 0, 0, 0]) + # Test that the fill_value is preserved + a.fill_value = -99 + a.shape = (2, 2) + ar = a.ravel() + assert_equal(ar._mask, [0, 0, 0, 0]) + assert_equal(ar._data, [1, 2, 3, 4]) + assert_equal(ar.fill_value, -99) + # Test index ordering + assert_equal(a.ravel(order='C'), [1, 2, 3, 4]) + assert_equal(a.ravel(order='F'), [1, 3, 2, 4]) + + @pytest.mark.parametrize("order", "AKCF") + @pytest.mark.parametrize("data_order", "CF") + def test_ravel_order(self, order, data_order): + # Ravelling must ravel mask and data in the same order always to avoid + # misaligning the two in the ravel result. + arr = np.ones((5, 10), order=data_order) + arr[0, :] = 0 + mask = np.ones((10, 5), dtype=bool, order=data_order).T + mask[0, :] = False + x = array(arr, mask=mask) + assert x._data.flags.fnc != x._mask.flags.fnc + assert (x.filled(0) == 0).all() + raveled = x.ravel(order) + assert (raveled.filled(0) == 0).all() + + # NOTE: Can be wrong if arr order is neither C nor F and `order="K"` + assert_array_equal(arr.ravel(order), x.ravel(order)._data) + + def test_reshape(self): + # Tests reshape + x = arange(4) + x[0] = masked + y = x.reshape(2, 2) + assert_equal(y.shape, (2, 2,)) + assert_equal(y._mask.shape, (2, 2,)) + assert_equal(x.shape, (4,)) + assert_equal(x._mask.shape, (4,)) + + def test_sort(self): + # Test sort + x = array([1, 4, 2, 3], mask=[0, 1, 0, 0], dtype=np.uint8) + + sortedx = sort(x) + assert_equal(sortedx._data, [1, 2, 3, 4]) + assert_equal(sortedx._mask, [0, 0, 0, 1]) + + sortedx = sort(x, endwith=False) + assert_equal(sortedx._data, [4, 1, 2, 3]) + assert_equal(sortedx._mask, [1, 0, 0, 0]) + + x.sort() + assert_equal(x._data, [1, 2, 3, 4]) + assert_equal(x._mask, [0, 0, 0, 1]) + + x = array([1, 4, 2, 3], mask=[0, 1, 0, 0], dtype=np.uint8) + x.sort(endwith=False) + assert_equal(x._data, [4, 1, 2, 3]) + assert_equal(x._mask, [1, 0, 0, 0]) + + x = [1, 4, 2, 3] + sortedx = sort(x) + assert_(not isinstance(sorted, MaskedArray)) + + x = array([0, 1, -1, -2, 2], mask=nomask, dtype=np.int8) + sortedx = sort(x, endwith=False) + assert_equal(sortedx._data, [-2, -1, 0, 1, 2]) + x = array([0, 1, -1, -2, 2], mask=[0, 1, 0, 0, 1], dtype=np.int8) + sortedx = sort(x, endwith=False) + assert_equal(sortedx._data, [1, 2, -2, -1, 0]) + assert_equal(sortedx._mask, [1, 1, 0, 0, 0]) + + x = array([0, -1], dtype=np.int8) + sortedx = sort(x, kind="stable") + assert_equal(sortedx, array([-1, 0], dtype=np.int8)) + + def test_stable_sort(self): + x = array([1, 2, 3, 1, 2, 3], dtype=np.uint8) + expected = array([0, 3, 1, 4, 2, 5]) + computed = argsort(x, kind='stable') + assert_equal(computed, expected) + + def test_argsort_matches_sort(self): + x = array([1, 4, 2, 3], mask=[0, 1, 0, 0], dtype=np.uint8) + + for kwargs in [{}, + {"endwith": True}, + {"endwith": False}, + {"fill_value": 2}, + {"fill_value": 2, "endwith": True}, + {"fill_value": 2, "endwith": False}]: + sortedx = sort(x, **kwargs) + argsortedx = x[argsort(x, **kwargs)] + assert_equal(sortedx._data, argsortedx._data) + assert_equal(sortedx._mask, argsortedx._mask) + + def test_sort_2d(self): + # Check sort of 2D array. + # 2D array w/o mask + a = masked_array([[8, 4, 1], [2, 0, 9]]) + a.sort(0) + assert_equal(a, [[2, 0, 1], [8, 4, 9]]) + a = masked_array([[8, 4, 1], [2, 0, 9]]) + a.sort(1) + assert_equal(a, [[1, 4, 8], [0, 2, 9]]) + # 2D array w/mask + a = masked_array([[8, 4, 1], [2, 0, 9]], mask=[[1, 0, 0], [0, 0, 1]]) + a.sort(0) + assert_equal(a, [[2, 0, 1], [8, 4, 9]]) + assert_equal(a._mask, [[0, 0, 0], [1, 0, 1]]) + a = masked_array([[8, 4, 1], [2, 0, 9]], mask=[[1, 0, 0], [0, 0, 1]]) + a.sort(1) + assert_equal(a, [[1, 4, 8], [0, 2, 9]]) + assert_equal(a._mask, [[0, 0, 1], [0, 0, 1]]) + # 3D + a = masked_array([[[7, 8, 9], [4, 5, 6], [1, 2, 3]], + [[1, 2, 3], [7, 8, 9], [4, 5, 6]], + [[7, 8, 9], [1, 2, 3], [4, 5, 6]], + [[4, 5, 6], [1, 2, 3], [7, 8, 9]]]) + a[a % 4 == 0] = masked + am = a.copy() + an = a.filled(99) + am.sort(0) + an.sort(0) + assert_equal(am, an) + am = a.copy() + an = a.filled(99) + am.sort(1) + an.sort(1) + assert_equal(am, an) + am = a.copy() + an = a.filled(99) + am.sort(2) + an.sort(2) + assert_equal(am, an) + + def test_sort_flexible(self): + # Test sort on structured dtype. + a = array( + data=[(3, 3), (3, 2), (2, 2), (2, 1), (1, 0), (1, 1), (1, 2)], + mask=[(0, 0), (0, 1), (0, 0), (0, 0), (1, 0), (0, 0), (0, 0)], + dtype=[('A', int), ('B', int)]) + mask_last = array( + data=[(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 2), (1, 0)], + mask=[(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (1, 0)], + dtype=[('A', int), ('B', int)]) + mask_first = array( + data=[(1, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 2), (3, 3)], + mask=[(1, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (0, 0)], + dtype=[('A', int), ('B', int)]) + + test = sort(a) + assert_equal(test, mask_last) + assert_equal(test.mask, mask_last.mask) + + test = sort(a, endwith=False) + assert_equal(test, mask_first) + assert_equal(test.mask, mask_first.mask) + + # Test sort on dtype with subarray (gh-8069) + # Just check that the sort does not error, structured array subarrays + # are treated as byte strings and that leads to differing behavior + # depending on endianness and `endwith`. + dt = np.dtype([('v', int, 2)]) + a = a.view(dt) + test = sort(a) + test = sort(a, endwith=False) + + def test_argsort(self): + # Test argsort + a = array([1, 5, 2, 4, 3], mask=[1, 0, 0, 1, 0]) + assert_equal(np.argsort(a), argsort(a)) + + def test_squeeze(self): + # Check squeeze + data = masked_array([[1, 2, 3]]) + assert_equal(data.squeeze(), [1, 2, 3]) + data = masked_array([[1, 2, 3]], mask=[[1, 1, 1]]) + assert_equal(data.squeeze(), [1, 2, 3]) + assert_equal(data.squeeze()._mask, [1, 1, 1]) + + # normal ndarrays return a view + arr = np.array([[1]]) + arr_sq = arr.squeeze() + assert_equal(arr_sq, 1) + arr_sq[...] = 2 + assert_equal(arr[0, 0], 2) + + # so maskedarrays should too + m_arr = masked_array([[1]], mask=True) + m_arr_sq = m_arr.squeeze() + assert_(m_arr_sq is not np.ma.masked) + assert_equal(m_arr_sq.mask, True) + m_arr_sq[...] = 2 + assert_equal(m_arr[0, 0], 2) + + def test_swapaxes(self): + # Tests swapaxes on MaskedArrays. + x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928, + 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, + 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, + 6.04, 9.63, 7.712, 3.382, 4.489, 6.479, + 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, + 7.357, 9.828, 6.272, 3.758, 6.693, 0.993]) + m = np.array([0, 1, 0, 1, 0, 0, + 1, 0, 1, 1, 0, 1, + 0, 0, 0, 1, 0, 1, + 0, 0, 0, 1, 1, 1, + 1, 0, 0, 1, 0, 0, + 0, 0, 1, 0, 1, 0]) + mX = array(x, mask=m).reshape(6, 6) + mXX = mX.reshape(3, 2, 2, 3) + + mXswapped = mX.swapaxes(0, 1) + assert_equal(mXswapped[-1], mX[:, -1]) + + mXXswapped = mXX.swapaxes(0, 2) + assert_equal(mXXswapped.shape, (2, 2, 3, 3)) + + def test_take(self): + # Tests take + x = masked_array([10, 20, 30, 40], [0, 1, 0, 1]) + assert_equal(x.take([0, 0, 3]), masked_array([10, 10, 40], [0, 0, 1])) + assert_equal(x.take([0, 0, 3]), x[[0, 0, 3]]) + assert_equal(x.take([[0, 1], [0, 1]]), + masked_array([[10, 20], [10, 20]], [[0, 1], [0, 1]])) + + # assert_equal crashes when passed np.ma.mask + assert_(x[1] is np.ma.masked) + assert_(x.take(1) is np.ma.masked) + + x = array([[10, 20, 30], [40, 50, 60]], mask=[[0, 0, 1], [1, 0, 0, ]]) + assert_equal(x.take([0, 2], axis=1), + array([[10, 30], [40, 60]], mask=[[0, 1], [1, 0]])) + assert_equal(take(x, [0, 2], axis=1), + array([[10, 30], [40, 60]], mask=[[0, 1], [1, 0]])) + + def test_take_masked_indices(self): + # Test take w/ masked indices + a = np.array((40, 18, 37, 9, 22)) + indices = np.arange(3)[None, :] + np.arange(5)[:, None] + mindices = array(indices, mask=(indices >= len(a))) + # No mask + test = take(a, mindices, mode='clip') + ctrl = array([[40, 18, 37], + [18, 37, 9], + [37, 9, 22], + [9, 22, 22], + [22, 22, 22]]) + assert_equal(test, ctrl) + # Masked indices + test = take(a, mindices) + ctrl = array([[40, 18, 37], + [18, 37, 9], + [37, 9, 22], + [9, 22, 40], + [22, 40, 40]]) + ctrl[3, 2] = ctrl[4, 1] = ctrl[4, 2] = masked + assert_equal(test, ctrl) + assert_equal(test.mask, ctrl.mask) + # Masked input + masked indices + a = array((40, 18, 37, 9, 22), mask=(0, 1, 0, 0, 0)) + test = take(a, mindices) + ctrl[0, 1] = ctrl[1, 0] = masked + assert_equal(test, ctrl) + assert_equal(test.mask, ctrl.mask) + + def test_tolist(self): + # Tests to list + # ... on 1D + x = array(np.arange(12)) + x[[1, -2]] = masked + xlist = x.tolist() + assert_(xlist[1] is None) + assert_(xlist[-2] is None) + # ... on 2D + x.shape = (3, 4) + xlist = x.tolist() + ctrl = [[0, None, 2, 3], [4, 5, 6, 7], [8, 9, None, 11]] + assert_equal(xlist[0], [0, None, 2, 3]) + assert_equal(xlist[1], [4, 5, 6, 7]) + assert_equal(xlist[2], [8, 9, None, 11]) + assert_equal(xlist, ctrl) + # ... on structured array w/ masked records + x = array(list(zip([1, 2, 3], + [1.1, 2.2, 3.3], + ['one', 'two', 'thr'])), + dtype=[('a', int), ('b', float), ('c', '|S8')]) + x[-1] = masked + assert_equal(x.tolist(), + [(1, 1.1, b'one'), + (2, 2.2, b'two'), + (None, None, None)]) + # ... on structured array w/ masked fields + a = array([(1, 2,), (3, 4)], mask=[(0, 1), (0, 0)], + dtype=[('a', int), ('b', int)]) + test = a.tolist() + assert_equal(test, [[1, None], [3, 4]]) + # ... on mvoid + a = a[0] + test = a.tolist() + assert_equal(test, [1, None]) + + def test_tolist_specialcase(self): + # Test mvoid.tolist: make sure we return a standard Python object + a = array([(0, 1), (2, 3)], dtype=[('a', int), ('b', int)]) + # w/o mask: each entry is a np.void whose elements are standard Python + for entry in a: + for item in entry.tolist(): + assert_(not isinstance(item, np.generic)) + # w/ mask: each entry is a ma.void whose elements should be + # standard Python + a.mask[0] = (0, 1) + for entry in a: + for item in entry.tolist(): + assert_(not isinstance(item, np.generic)) + + def test_toflex(self): + # Test the conversion to records + data = arange(10) + record = data.toflex() + assert_equal(record['_data'], data._data) + assert_equal(record['_mask'], data._mask) + + data[[0, 1, 2, -1]] = masked + record = data.toflex() + assert_equal(record['_data'], data._data) + assert_equal(record['_mask'], data._mask) + + ndtype = [('i', int), ('s', '|S3'), ('f', float)] + data = array(list(zip(np.arange(10), + 'ABCDEFGHIJKLM', + np.random.rand(10))), + dtype=ndtype) + data[[0, 1, 2, -1]] = masked + record = data.toflex() + assert_equal(record['_data'], data._data) + assert_equal(record['_mask'], data._mask) + + ndtype = np.dtype("int, (2,3)float, float") + data = array(list(zip(np.arange(10), + np.random.rand(10), + np.random.rand(10))), + dtype=ndtype) + data[[0, 1, 2, -1]] = masked + record = data.toflex() + assert_equal_records(record['_data'], data._data) + assert_equal_records(record['_mask'], data._mask) + + def test_fromflex(self): + # Test the reconstruction of a masked_array from a record + a = array([1, 2, 3]) + test = fromflex(a.toflex()) + assert_equal(test, a) + assert_equal(test.mask, a.mask) + + a = array([1, 2, 3], mask=[0, 0, 1]) + test = fromflex(a.toflex()) + assert_equal(test, a) + assert_equal(test.mask, a.mask) + + a = array([(1, 1.), (2, 2.), (3, 3.)], mask=[(1, 0), (0, 0), (0, 1)], + dtype=[('A', int), ('B', float)]) + test = fromflex(a.toflex()) + assert_equal(test, a) + assert_equal(test.data, a.data) + + def test_arraymethod(self): + # Test a _arraymethod w/ n argument + marray = masked_array([[1, 2, 3, 4, 5]], mask=[0, 0, 1, 0, 0]) + control = masked_array([[1], [2], [3], [4], [5]], + mask=[0, 0, 1, 0, 0]) + assert_equal(marray.T, control) + assert_equal(marray.transpose(), control) + + assert_equal(MaskedArray.cumsum(marray.T, 0), control.cumsum(0)) + + def test_arraymethod_0d(self): + # gh-9430 + x = np.ma.array(42, mask=True) + assert_equal(x.T.mask, x.mask) + assert_equal(x.T.data, x.data) + + def test_transpose_view(self): + x = np.ma.array([[1, 2, 3], [4, 5, 6]]) + x[0, 1] = np.ma.masked + xt = x.T + + xt[1, 0] = 10 + xt[0, 1] = np.ma.masked + + assert_equal(x.data, xt.T.data) + assert_equal(x.mask, xt.T.mask) + + def test_diagonal_view(self): + x = np.ma.zeros((3, 3)) + x[0, 0] = 10 + x[1, 1] = np.ma.masked + x[2, 2] = 20 + xd = x.diagonal() + x[1, 1] = 15 + assert_equal(xd.mask, x.diagonal().mask) + assert_equal(xd.data, x.diagonal().data) + + +class TestMaskedArrayMathMethods: + + def setup_method(self): + # Base data definition. + x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928, + 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, + 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, + 6.04, 9.63, 7.712, 3.382, 4.489, 6.479, + 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, + 7.357, 9.828, 6.272, 3.758, 6.693, 0.993]) + X = x.reshape(6, 6) + XX = x.reshape(3, 2, 2, 3) + + m = np.array([0, 1, 0, 1, 0, 0, + 1, 0, 1, 1, 0, 1, + 0, 0, 0, 1, 0, 1, + 0, 0, 0, 1, 1, 1, + 1, 0, 0, 1, 0, 0, + 0, 0, 1, 0, 1, 0]) + mx = array(data=x, mask=m) + mX = array(data=X, mask=m.reshape(X.shape)) + mXX = array(data=XX, mask=m.reshape(XX.shape)) + + m2 = np.array([1, 1, 0, 1, 0, 0, + 1, 1, 1, 1, 0, 1, + 0, 0, 1, 1, 0, 1, + 0, 0, 0, 1, 1, 1, + 1, 0, 0, 1, 1, 0, + 0, 0, 1, 0, 1, 1]) + m2x = array(data=x, mask=m2) + m2X = array(data=X, mask=m2.reshape(X.shape)) + m2XX = array(data=XX, mask=m2.reshape(XX.shape)) + self.d = (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) + + def test_cumsumprod(self): + # Tests cumsum & cumprod on MaskedArrays. + (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d + mXcp = mX.cumsum(0) + assert_equal(mXcp._data, mX.filled(0).cumsum(0)) + mXcp = mX.cumsum(1) + assert_equal(mXcp._data, mX.filled(0).cumsum(1)) + + mXcp = mX.cumprod(0) + assert_equal(mXcp._data, mX.filled(1).cumprod(0)) + mXcp = mX.cumprod(1) + assert_equal(mXcp._data, mX.filled(1).cumprod(1)) + + def test_cumsumprod_with_output(self): + # Tests cumsum/cumprod w/ output + xm = array(np.random.uniform(0, 10, 12)).reshape(3, 4) + xm[:, 0] = xm[0] = xm[-1, -1] = masked + + for funcname in ('cumsum', 'cumprod'): + npfunc = getattr(np, funcname) + xmmeth = getattr(xm, funcname) + + # A ndarray as explicit input + output = np.empty((3, 4), dtype=float) + output.fill(-9999) + result = npfunc(xm, axis=0, out=output) + # ... the result should be the given output + assert_(result is output) + assert_equal(result, xmmeth(axis=0, out=output)) + + output = empty((3, 4), dtype=int) + result = xmmeth(axis=0, out=output) + assert_(result is output) + + def test_ptp(self): + # Tests ptp on MaskedArrays. + (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d + (n, m) = X.shape + assert_equal(mx.ptp(), np.ptp(mx.compressed())) + rows = np.zeros(n, float) + cols = np.zeros(m, float) + for k in range(m): + cols[k] = np.ptp(mX[:, k].compressed()) + for k in range(n): + rows[k] = np.ptp(mX[k].compressed()) + assert_equal(mX.ptp(0), cols) + assert_equal(mX.ptp(1), rows) + + def test_add_object(self): + x = masked_array(['a', 'b'], mask=[1, 0], dtype=object) + y = x + 'x' + assert_equal(y[1], 'bx') + assert_(y.mask[0]) + + def test_sum_object(self): + # Test sum on object dtype + a = masked_array([1, 2, 3], mask=[1, 0, 0], dtype=object) + assert_equal(a.sum(), 5) + a = masked_array([[1, 2, 3], [4, 5, 6]], dtype=object) + assert_equal(a.sum(axis=0), [5, 7, 9]) + + def test_prod_object(self): + # Test prod on object dtype + a = masked_array([1, 2, 3], mask=[1, 0, 0], dtype=object) + assert_equal(a.prod(), 2 * 3) + a = masked_array([[1, 2, 3], [4, 5, 6]], dtype=object) + assert_equal(a.prod(axis=0), [4, 10, 18]) + + def test_meananom_object(self): + # Test mean/anom on object dtype + a = masked_array([1, 2, 3], dtype=object) + assert_equal(a.mean(), 2) + assert_equal(a.anom(), [-1, 0, 1]) + + def test_anom_shape(self): + a = masked_array([1, 2, 3]) + assert_equal(a.anom().shape, a.shape) + a.mask = True + assert_equal(a.anom().shape, a.shape) + assert_(np.ma.is_masked(a.anom())) + + def test_anom(self): + a = masked_array(np.arange(1, 7).reshape(2, 3)) + assert_almost_equal(a.anom(), + [[-2.5, -1.5, -0.5], [0.5, 1.5, 2.5]]) + assert_almost_equal(a.anom(axis=0), + [[-1.5, -1.5, -1.5], [1.5, 1.5, 1.5]]) + assert_almost_equal(a.anom(axis=1), + [[-1., 0., 1.], [-1., 0., 1.]]) + a.mask = [[0, 0, 1], [0, 1, 0]] + mval = -99 + assert_almost_equal(a.anom().filled(mval), + [[-2.25, -1.25, mval], [0.75, mval, 2.75]]) + assert_almost_equal(a.anom(axis=0).filled(mval), + [[-1.5, 0.0, mval], [1.5, mval, 0.0]]) + assert_almost_equal(a.anom(axis=1).filled(mval), + [[-0.5, 0.5, mval], [-1.0, mval, 1.0]]) + + def test_trace(self): + # Tests trace on MaskedArrays. + (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d + mXdiag = mX.diagonal() + assert_equal(mX.trace(), mX.diagonal().compressed().sum()) + assert_almost_equal(mX.trace(), + X.trace() - sum(mXdiag.mask * X.diagonal(), + axis=0)) + assert_equal(np.trace(mX), mX.trace()) + + # gh-5560 + arr = np.arange(2 * 4 * 4).reshape(2, 4, 4) + m_arr = np.ma.masked_array(arr, False) + assert_equal(arr.trace(axis1=1, axis2=2), m_arr.trace(axis1=1, axis2=2)) + + def test_dot(self): + # Tests dot on MaskedArrays. + (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d + fx = mx.filled(0) + r = mx.dot(mx) + assert_almost_equal(r.filled(0), fx.dot(fx)) + assert_(r.mask is nomask) + + fX = mX.filled(0) + r = mX.dot(mX) + assert_almost_equal(r.filled(0), fX.dot(fX)) + assert_(r.mask[1, 3]) + r1 = empty_like(r) + mX.dot(mX, out=r1) + assert_almost_equal(r, r1) + + mYY = mXX.swapaxes(-1, -2) + fXX, fYY = mXX.filled(0), mYY.filled(0) + r = mXX.dot(mYY) + assert_almost_equal(r.filled(0), fXX.dot(fYY)) + r1 = empty_like(r) + mXX.dot(mYY, out=r1) + assert_almost_equal(r, r1) + + def test_dot_shape_mismatch(self): + # regression test + x = masked_array([[1, 2], [3, 4]], mask=[[0, 1], [0, 0]]) + y = masked_array([[1, 2], [3, 4]], mask=[[0, 1], [0, 0]]) + z = masked_array([[0, 1], [3, 3]]) + x.dot(y, out=z) + assert_almost_equal(z.filled(0), [[1, 0], [15, 16]]) + assert_almost_equal(z.mask, [[0, 1], [0, 0]]) + + def test_varmean_nomask(self): + # gh-5769 + foo = array([1, 2, 3, 4], dtype='f8') + bar = array([1, 2, 3, 4], dtype='f8') + assert_equal(type(foo.mean()), np.float64) + assert_equal(type(foo.var()), np.float64) + assert (foo.mean() == bar.mean()) is np.bool(True) + + # check array type is preserved and out works + foo = array(np.arange(16).reshape((4, 4)), dtype='f8') + bar = empty(4, dtype='f4') + assert_equal(type(foo.mean(axis=1)), MaskedArray) + assert_equal(type(foo.var(axis=1)), MaskedArray) + assert_(foo.mean(axis=1, out=bar) is bar) + assert_(foo.var(axis=1, out=bar) is bar) + + def test_varstd(self): + # Tests var & std on MaskedArrays. + (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d + assert_almost_equal(mX.var(axis=None), mX.compressed().var()) + assert_almost_equal(mX.std(axis=None), mX.compressed().std()) + assert_almost_equal(mX.std(axis=None, ddof=1), + mX.compressed().std(ddof=1)) + assert_almost_equal(mX.var(axis=None, ddof=1), + mX.compressed().var(ddof=1)) + assert_equal(mXX.var(axis=3).shape, XX.var(axis=3).shape) + assert_equal(mX.var().shape, X.var().shape) + (mXvar0, mXvar1) = (mX.var(axis=0), mX.var(axis=1)) + assert_almost_equal(mX.var(axis=None, ddof=2), + mX.compressed().var(ddof=2)) + assert_almost_equal(mX.std(axis=None, ddof=2), + mX.compressed().std(ddof=2)) + for k in range(6): + assert_almost_equal(mXvar1[k], mX[k].compressed().var()) + assert_almost_equal(mXvar0[k], mX[:, k].compressed().var()) + assert_almost_equal(np.sqrt(mXvar0[k]), + mX[:, k].compressed().std()) + + @suppress_copy_mask_on_assignment + def test_varstd_specialcases(self): + # Test a special case for var + nout = np.array(-1, dtype=float) + mout = array(-1, dtype=float) + + x = array(arange(10), mask=True) + for methodname in ('var', 'std'): + method = getattr(x, methodname) + assert_(method() is masked) + assert_(method(0) is masked) + assert_(method(-1) is masked) + # Using a masked array as explicit output + method(out=mout) + assert_(mout is not masked) + assert_equal(mout.mask, True) + # Using a ndarray as explicit output + method(out=nout) + assert_(np.isnan(nout)) + + x = array(arange(10), mask=True) + x[-1] = 9 + for methodname in ('var', 'std'): + method = getattr(x, methodname) + assert_(method(ddof=1) is masked) + assert_(method(0, ddof=1) is masked) + assert_(method(-1, ddof=1) is masked) + # Using a masked array as explicit output + method(out=mout, ddof=1) + assert_(mout is not masked) + assert_equal(mout.mask, True) + # Using a ndarray as explicit output + method(out=nout, ddof=1) + assert_(np.isnan(nout)) + + def test_varstd_ddof(self): + a = array([[1, 1, 0], [1, 1, 0]], mask=[[0, 0, 1], [0, 0, 1]]) + test = a.std(axis=0, ddof=0) + assert_equal(test.filled(0), [0, 0, 0]) + assert_equal(test.mask, [0, 0, 1]) + test = a.std(axis=0, ddof=1) + assert_equal(test.filled(0), [0, 0, 0]) + assert_equal(test.mask, [0, 0, 1]) + test = a.std(axis=0, ddof=2) + assert_equal(test.filled(0), [0, 0, 0]) + assert_equal(test.mask, [1, 1, 1]) + + def test_diag(self): + # Test diag + x = arange(9).reshape((3, 3)) + x[1, 1] = masked + out = np.diag(x) + assert_equal(out, [0, 4, 8]) + out = diag(x) + assert_equal(out, [0, 4, 8]) + assert_equal(out.mask, [0, 1, 0]) + out = diag(out) + control = array([[0, 0, 0], [0, 4, 0], [0, 0, 8]], + mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]]) + assert_equal(out, control) + + def test_axis_methods_nomask(self): + # Test the combination nomask & methods w/ axis + a = array([[1, 2, 3], [4, 5, 6]]) + + assert_equal(a.sum(0), [5, 7, 9]) + assert_equal(a.sum(-1), [6, 15]) + assert_equal(a.sum(1), [6, 15]) + + assert_equal(a.prod(0), [4, 10, 18]) + assert_equal(a.prod(-1), [6, 120]) + assert_equal(a.prod(1), [6, 120]) + + assert_equal(a.min(0), [1, 2, 3]) + assert_equal(a.min(-1), [1, 4]) + assert_equal(a.min(1), [1, 4]) + + assert_equal(a.max(0), [4, 5, 6]) + assert_equal(a.max(-1), [3, 6]) + assert_equal(a.max(1), [3, 6]) + + @requires_memory(free_bytes=2 * 10000 * 1000 * 2) + def test_mean_overflow(self): + # Test overflow in masked arrays + # gh-20272 + a = masked_array(np.full((10000, 10000), 65535, dtype=np.uint16), + mask=np.zeros((10000, 10000))) + assert_equal(a.mean(), 65535.0) + + def test_diff_with_prepend(self): + # GH 22465 + x = np.array([1, 2, 2, 3, 4, 2, 1, 1]) + + a = np.ma.masked_equal(x[3:], value=2) + a_prep = np.ma.masked_equal(x[:3], value=2) + diff1 = np.ma.diff(a, prepend=a_prep, axis=0) + + b = np.ma.masked_equal(x, value=2) + diff2 = np.ma.diff(b, axis=0) + + assert_(np.ma.allequal(diff1, diff2)) + + def test_diff_with_append(self): + # GH 22465 + x = np.array([1, 2, 2, 3, 4, 2, 1, 1]) + + a = np.ma.masked_equal(x[:3], value=2) + a_app = np.ma.masked_equal(x[3:], value=2) + diff1 = np.ma.diff(a, append=a_app, axis=0) + + b = np.ma.masked_equal(x, value=2) + diff2 = np.ma.diff(b, axis=0) + + assert_(np.ma.allequal(diff1, diff2)) + + def test_diff_with_dim_0(self): + with pytest.raises( + ValueError, + match="diff requires input that is at least one dimensional" + ): + np.ma.diff(np.array(1)) + + def test_diff_with_n_0(self): + a = np.ma.masked_equal([1, 2, 2, 3, 4, 2, 1, 1], value=2) + diff = np.ma.diff(a, n=0, axis=0) + + assert_(np.ma.allequal(a, diff)) + + +class TestMaskedArrayMathMethodsComplex: + # Test class for miscellaneous MaskedArrays methods. + def setup_method(self): + # Base data definition. + x = np.array([8.375j, 7.545j, 8.828j, 8.5j, 1.757j, 5.928, + 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, + 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, + 6.04, 9.63, 7.712, 3.382, 4.489, 6.479j, + 7.189j, 9.645, 5.395, 4.961, 9.894, 2.893, + 7.357, 9.828, 6.272, 3.758, 6.693, 0.993j]) + X = x.reshape(6, 6) + XX = x.reshape(3, 2, 2, 3) + + m = np.array([0, 1, 0, 1, 0, 0, + 1, 0, 1, 1, 0, 1, + 0, 0, 0, 1, 0, 1, + 0, 0, 0, 1, 1, 1, + 1, 0, 0, 1, 0, 0, + 0, 0, 1, 0, 1, 0]) + mx = array(data=x, mask=m) + mX = array(data=X, mask=m.reshape(X.shape)) + mXX = array(data=XX, mask=m.reshape(XX.shape)) + + m2 = np.array([1, 1, 0, 1, 0, 0, + 1, 1, 1, 1, 0, 1, + 0, 0, 1, 1, 0, 1, + 0, 0, 0, 1, 1, 1, + 1, 0, 0, 1, 1, 0, + 0, 0, 1, 0, 1, 1]) + m2x = array(data=x, mask=m2) + m2X = array(data=X, mask=m2.reshape(X.shape)) + m2XX = array(data=XX, mask=m2.reshape(XX.shape)) + self.d = (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) + + def test_varstd(self): + # Tests var & std on MaskedArrays. + (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d + assert_almost_equal(mX.var(axis=None), mX.compressed().var()) + assert_almost_equal(mX.std(axis=None), mX.compressed().std()) + assert_equal(mXX.var(axis=3).shape, XX.var(axis=3).shape) + assert_equal(mX.var().shape, X.var().shape) + (mXvar0, mXvar1) = (mX.var(axis=0), mX.var(axis=1)) + assert_almost_equal(mX.var(axis=None, ddof=2), + mX.compressed().var(ddof=2)) + assert_almost_equal(mX.std(axis=None, ddof=2), + mX.compressed().std(ddof=2)) + for k in range(6): + assert_almost_equal(mXvar1[k], mX[k].compressed().var()) + assert_almost_equal(mXvar0[k], mX[:, k].compressed().var()) + assert_almost_equal(np.sqrt(mXvar0[k]), + mX[:, k].compressed().std()) + + +class TestMaskedArrayFunctions: + # Test class for miscellaneous functions. + + def setup_method(self): + x = np.array([1., 1., 1., -2., pi / 2.0, 4., 5., -10., 10., 1., 2., 3.]) + y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) + m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] + m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] + xm = masked_array(x, mask=m1) + ym = masked_array(y, mask=m2) + xm.set_fill_value(1e+20) + self.info = (xm, ym) + + def test_masked_where_bool(self): + x = [1, 2] + y = masked_where(False, x) + assert_equal(y, [1, 2]) + assert_equal(y[1], 2) + + def test_masked_equal_wlist(self): + x = [1, 2, 3] + mx = masked_equal(x, 3) + assert_equal(mx, x) + assert_equal(mx._mask, [0, 0, 1]) + mx = masked_not_equal(x, 3) + assert_equal(mx, x) + assert_equal(mx._mask, [1, 1, 0]) + + def test_masked_equal_fill_value(self): + x = [1, 2, 3] + mx = masked_equal(x, 3) + assert_equal(mx._mask, [0, 0, 1]) + assert_equal(mx.fill_value, 3) + + def test_masked_where_condition(self): + # Tests masking functions. + x = array([1., 2., 3., 4., 5.]) + x[2] = masked + assert_equal(masked_where(greater(x, 2), x), masked_greater(x, 2)) + assert_equal(masked_where(greater_equal(x, 2), x), + masked_greater_equal(x, 2)) + assert_equal(masked_where(less(x, 2), x), masked_less(x, 2)) + assert_equal(masked_where(less_equal(x, 2), x), + masked_less_equal(x, 2)) + assert_equal(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2)) + assert_equal(masked_where(equal(x, 2), x), masked_equal(x, 2)) + assert_equal(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2)) + assert_equal(masked_where([1, 1, 0, 0, 0], [1, 2, 3, 4, 5]), + [99, 99, 3, 4, 5]) + + def test_masked_where_oddities(self): + # Tests some generic features. + atest = ones((10, 10, 10), dtype=float) + btest = zeros(atest.shape, MaskType) + ctest = masked_where(btest, atest) + assert_equal(atest, ctest) + + def test_masked_where_shape_constraint(self): + a = arange(10) + with assert_raises(IndexError): + masked_equal(1, a) + test = masked_equal(a, 1) + assert_equal(test.mask, [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]) + + def test_masked_where_structured(self): + # test that masked_where on a structured array sets a structured + # mask (see issue #2972) + a = np.zeros(10, dtype=[("A", " 6, x) + + def test_masked_otherfunctions(self): + assert_equal(masked_inside(list(range(5)), 1, 3), + [0, 199, 199, 199, 4]) + assert_equal(masked_outside(list(range(5)), 1, 3), [199, 1, 2, 3, 199]) + assert_equal(masked_inside(array(list(range(5)), + mask=[1, 0, 0, 0, 0]), 1, 3).mask, + [1, 1, 1, 1, 0]) + assert_equal(masked_outside(array(list(range(5)), + mask=[0, 1, 0, 0, 0]), 1, 3).mask, + [1, 1, 0, 0, 1]) + assert_equal(masked_equal(array(list(range(5)), + mask=[1, 0, 0, 0, 0]), 2).mask, + [1, 0, 1, 0, 0]) + assert_equal(masked_not_equal(array([2, 2, 1, 2, 1], + mask=[1, 0, 0, 0, 0]), 2).mask, + [1, 0, 1, 0, 1]) + + def test_round(self): + a = array([1.23456, 2.34567, 3.45678, 4.56789, 5.67890], + mask=[0, 1, 0, 0, 0]) + assert_equal(a.round(), [1., 2., 3., 5., 6.]) + assert_equal(a.round(1), [1.2, 2.3, 3.5, 4.6, 5.7]) + assert_equal(a.round(3), [1.235, 2.346, 3.457, 4.568, 5.679]) + b = empty_like(a) + a.round(out=b) + assert_equal(b, [1., 2., 3., 5., 6.]) + + x = array([1., 2., 3., 4., 5.]) + c = array([1, 1, 1, 0, 0]) + x[2] = masked + z = where(c, x, -x) + assert_equal(z, [1., 2., 0., -4., -5]) + c[0] = masked + z = where(c, x, -x) + assert_equal(z, [1., 2., 0., -4., -5]) + assert_(z[0] is masked) + assert_(z[1] is not masked) + assert_(z[2] is masked) + + def test_round_with_output(self): + # Testing round with an explicit output + + xm = array(np.random.uniform(0, 10, 12)).reshape(3, 4) + xm[:, 0] = xm[0] = xm[-1, -1] = masked + + # A ndarray as explicit input + output = np.empty((3, 4), dtype=float) + output.fill(-9999) + result = np.round(xm, decimals=2, out=output) + # ... the result should be the given output + assert_(result is output) + assert_equal(result, xm.round(decimals=2, out=output)) + + output = empty((3, 4), dtype=float) + result = xm.round(decimals=2, out=output) + assert_(result is output) + + def test_round_with_scalar(self): + # Testing round with scalar/zero dimension input + # GH issue 2244 + a = array(1.1, mask=[False]) + assert_equal(a.round(), 1) + + a = array(1.1, mask=[True]) + assert_(a.round() is masked) + + a = array(1.1, mask=[False]) + output = np.empty(1, dtype=float) + output.fill(-9999) + a.round(out=output) + assert_equal(output, 1) + + a = array(1.1, mask=[False]) + output = array(-9999., mask=[True]) + a.round(out=output) + assert_equal(output[()], 1) + + a = array(1.1, mask=[True]) + output = array(-9999., mask=[False]) + a.round(out=output) + assert_(output[()] is masked) + + def test_identity(self): + a = identity(5) + assert_(isinstance(a, MaskedArray)) + assert_equal(a, np.identity(5)) + + def test_power(self): + x = -1.1 + assert_almost_equal(power(x, 2.), 1.21) + assert_(power(x, masked) is masked) + x = array([-1.1, -1.1, 1.1, 1.1, 0.]) + b = array([0.5, 2., 0.5, 2., -1.], mask=[0, 0, 0, 0, 1]) + y = power(x, b) + assert_almost_equal(y, [0, 1.21, 1.04880884817, 1.21, 0.]) + assert_equal(y._mask, [1, 0, 0, 0, 1]) + b.mask = nomask + y = power(x, b) + assert_equal(y._mask, [1, 0, 0, 0, 1]) + z = x ** b + assert_equal(z._mask, y._mask) + assert_almost_equal(z, y) + assert_almost_equal(z._data, y._data) + x **= b + assert_equal(x._mask, y._mask) + assert_almost_equal(x, y) + assert_almost_equal(x._data, y._data) + + def test_power_with_broadcasting(self): + # Test power w/ broadcasting + a2 = np.array([[1., 2., 3.], [4., 5., 6.]]) + a2m = array(a2, mask=[[1, 0, 0], [0, 0, 1]]) + b1 = np.array([2, 4, 3]) + b2 = np.array([b1, b1]) + b2m = array(b2, mask=[[0, 1, 0], [0, 1, 0]]) + + ctrl = array([[1 ** 2, 2 ** 4, 3 ** 3], [4 ** 2, 5 ** 4, 6 ** 3]], + mask=[[1, 1, 0], [0, 1, 1]]) + # No broadcasting, base & exp w/ mask + test = a2m ** b2m + assert_equal(test, ctrl) + assert_equal(test.mask, ctrl.mask) + # No broadcasting, base w/ mask, exp w/o mask + test = a2m ** b2 + assert_equal(test, ctrl) + assert_equal(test.mask, a2m.mask) + # No broadcasting, base w/o mask, exp w/ mask + test = a2 ** b2m + assert_equal(test, ctrl) + assert_equal(test.mask, b2m.mask) + + ctrl = array([[2 ** 2, 4 ** 4, 3 ** 3], [2 ** 2, 4 ** 4, 3 ** 3]], + mask=[[0, 1, 0], [0, 1, 0]]) + test = b1 ** b2m + assert_equal(test, ctrl) + assert_equal(test.mask, ctrl.mask) + test = b2m ** b1 + assert_equal(test, ctrl) + assert_equal(test.mask, ctrl.mask) + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + def test_where(self): + # Test the where function + x = np.array([1., 1., 1., -2., pi / 2.0, 4., 5., -10., 10., 1., 2., 3.]) + y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) + m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] + m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] + xm = masked_array(x, mask=m1) + ym = masked_array(y, mask=m2) + xm.set_fill_value(1e+20) + + d = where(xm > 2, xm, -9) + assert_equal(d, [-9., -9., -9., -9., -9., 4., + -9., -9., 10., -9., -9., 3.]) + assert_equal(d._mask, xm._mask) + d = where(xm > 2, -9, ym) + assert_equal(d, [5., 0., 3., 2., -1., -9., + -9., -10., -9., 1., 0., -9.]) + assert_equal(d._mask, [1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]) + d = where(xm > 2, xm, masked) + assert_equal(d, [-9., -9., -9., -9., -9., 4., + -9., -9., 10., -9., -9., 3.]) + tmp = xm._mask.copy() + tmp[(xm <= 2).filled(True)] = True + assert_equal(d._mask, tmp) + + with np.errstate(invalid="warn"): + # The fill value is 1e20, it cannot be converted to `int`: + with pytest.warns(RuntimeWarning, match="invalid value"): + ixm = xm.astype(int) + d = where(ixm > 2, ixm, masked) + assert_equal(d, [-9, -9, -9, -9, -9, 4, -9, -9, 10, -9, -9, 3]) + assert_equal(d.dtype, ixm.dtype) + + def test_where_object(self): + a = np.array(None) + b = masked_array(None) + r = b.copy() + assert_equal(np.ma.where(True, a, a), r) + assert_equal(np.ma.where(True, b, b), r) + + def test_where_with_masked_choice(self): + x = arange(10) + x[3] = masked + c = x >= 8 + # Set False to masked + z = where(c, x, masked) + assert_(z.dtype is x.dtype) + assert_(z[3] is masked) + assert_(z[4] is masked) + assert_(z[7] is masked) + assert_(z[8] is not masked) + assert_(z[9] is not masked) + assert_equal(x, z) + # Set True to masked + z = where(c, masked, x) + assert_(z.dtype is x.dtype) + assert_(z[3] is masked) + assert_(z[4] is not masked) + assert_(z[7] is not masked) + assert_(z[8] is masked) + assert_(z[9] is masked) + + def test_where_with_masked_condition(self): + x = array([1., 2., 3., 4., 5.]) + c = array([1, 1, 1, 0, 0]) + x[2] = masked + z = where(c, x, -x) + assert_equal(z, [1., 2., 0., -4., -5]) + c[0] = masked + z = where(c, x, -x) + assert_equal(z, [1., 2., 0., -4., -5]) + assert_(z[0] is masked) + assert_(z[1] is not masked) + assert_(z[2] is masked) + + x = arange(1, 6) + x[-1] = masked + y = arange(1, 6) * 10 + y[2] = masked + c = array([1, 1, 1, 0, 0], mask=[1, 0, 0, 0, 0]) + cm = c.filled(1) + z = where(c, x, y) + zm = where(cm, x, y) + assert_equal(z, zm) + assert_(getmask(zm) is nomask) + assert_equal(zm, [1, 2, 3, 40, 50]) + z = where(c, masked, 1) + assert_equal(z, [99, 99, 99, 1, 1]) + z = where(c, 1, masked) + assert_equal(z, [99, 1, 1, 99, 99]) + + def test_where_type(self): + # Test the type conservation with where + x = np.arange(4, dtype=np.int32) + y = np.arange(4, dtype=np.float32) * 2.2 + test = where(x > 1.5, y, x).dtype + control = np.result_type(np.int32, np.float32) + assert_equal(test, control) + + def test_where_broadcast(self): + # Issue 8599 + x = np.arange(9).reshape(3, 3) + y = np.zeros(3) + core = np.where([1, 0, 1], x, y) + ma = where([1, 0, 1], x, y) + + assert_equal(core, ma) + assert_equal(core.dtype, ma.dtype) + + def test_where_structured(self): + # Issue 8600 + dt = np.dtype([('a', int), ('b', int)]) + x = np.array([(1, 2), (3, 4), (5, 6)], dtype=dt) + y = np.array((10, 20), dtype=dt) + core = np.where([0, 1, 1], x, y) + ma = np.where([0, 1, 1], x, y) + + assert_equal(core, ma) + assert_equal(core.dtype, ma.dtype) + + def test_where_structured_masked(self): + dt = np.dtype([('a', int), ('b', int)]) + x = np.array([(1, 2), (3, 4), (5, 6)], dtype=dt) + + ma = where([0, 1, 1], x, masked) + expected = masked_where([1, 0, 0], x) + + assert_equal(ma.dtype, expected.dtype) + assert_equal(ma, expected) + assert_equal(ma.mask, expected.mask) + + def test_masked_invalid_error(self): + a = np.arange(5, dtype=object) + a[3] = np.inf + a[2] = np.nan + with pytest.raises(TypeError, + match="not supported for the input types"): + np.ma.masked_invalid(a) + + def test_masked_invalid_pandas(self): + # getdata() used to be bad for pandas series due to its _data + # attribute. This test is a regression test mainly and may be + # removed if getdata() is adjusted. + class Series: + _data = "nonsense" + + def __array__(self, dtype=None, copy=None): + return np.array([5, np.nan, np.inf]) + + arr = np.ma.masked_invalid(Series()) + assert_array_equal(arr._data, np.array(Series())) + assert_array_equal(arr._mask, [False, True, True]) + + @pytest.mark.parametrize("copy", [True, False]) + def test_masked_invalid_full_mask(self, copy): + # Matplotlib relied on masked_invalid always returning a full mask + # (Also astropy projects, but were ok with it gh-22720 and gh-22842) + a = np.ma.array([1, 2, 3, 4]) + assert a._mask is nomask + res = np.ma.masked_invalid(a, copy=copy) + assert res.mask is not nomask + # mask of a should not be mutated + assert a.mask is nomask + assert np.may_share_memory(a._data, res._data) != copy + + def test_choose(self): + # Test choose + choices = [[0, 1, 2, 3], [10, 11, 12, 13], + [20, 21, 22, 23], [30, 31, 32, 33]] + chosen = choose([2, 3, 1, 0], choices) + assert_equal(chosen, array([20, 31, 12, 3])) + chosen = choose([2, 4, 1, 0], choices, mode='clip') + assert_equal(chosen, array([20, 31, 12, 3])) + chosen = choose([2, 4, 1, 0], choices, mode='wrap') + assert_equal(chosen, array([20, 1, 12, 3])) + # Check with some masked indices + indices_ = array([2, 4, 1, 0], mask=[1, 0, 0, 1]) + chosen = choose(indices_, choices, mode='wrap') + assert_equal(chosen, array([99, 1, 12, 99])) + assert_equal(chosen.mask, [1, 0, 0, 1]) + # Check with some masked choices + choices = array(choices, mask=[[0, 0, 0, 1], [1, 1, 0, 1], + [1, 0, 0, 0], [0, 0, 0, 0]]) + indices_ = [2, 3, 1, 0] + chosen = choose(indices_, choices, mode='wrap') + assert_equal(chosen, array([20, 31, 12, 3])) + assert_equal(chosen.mask, [1, 0, 0, 1]) + + def test_choose_with_out(self): + # Test choose with an explicit out keyword + choices = [[0, 1, 2, 3], [10, 11, 12, 13], + [20, 21, 22, 23], [30, 31, 32, 33]] + store = empty(4, dtype=int) + chosen = choose([2, 3, 1, 0], choices, out=store) + assert_equal(store, array([20, 31, 12, 3])) + assert_(store is chosen) + # Check with some masked indices + out + store = empty(4, dtype=int) + indices_ = array([2, 3, 1, 0], mask=[1, 0, 0, 1]) + chosen = choose(indices_, choices, mode='wrap', out=store) + assert_equal(store, array([99, 31, 12, 99])) + assert_equal(store.mask, [1, 0, 0, 1]) + # Check with some masked choices + out ina ndarray ! + choices = array(choices, mask=[[0, 0, 0, 1], [1, 1, 0, 1], + [1, 0, 0, 0], [0, 0, 0, 0]]) + indices_ = [2, 3, 1, 0] + store = empty(4, dtype=int).view(ndarray) + chosen = choose(indices_, choices, mode='wrap', out=store) + assert_equal(store, array([999999, 31, 12, 999999])) + + def test_reshape(self): + a = arange(10) + a[0] = masked + # Try the default + b = a.reshape((5, 2)) + assert_equal(b.shape, (5, 2)) + assert_(b.flags['C']) + # Try w/ arguments as list instead of tuple + b = a.reshape(5, 2) + assert_equal(b.shape, (5, 2)) + assert_(b.flags['C']) + # Try w/ order + b = a.reshape((5, 2), order='F') + assert_equal(b.shape, (5, 2)) + assert_(b.flags['F']) + # Try w/ order + b = a.reshape(5, 2, order='F') + assert_equal(b.shape, (5, 2)) + assert_(b.flags['F']) + + c = np.reshape(a, (2, 5)) + assert_(isinstance(c, MaskedArray)) + assert_equal(c.shape, (2, 5)) + assert_(c[0, 0] is masked) + assert_(c.flags['C']) + + def test_make_mask_descr(self): + # Flexible + ntype = [('a', float), ('b', float)] + test = make_mask_descr(ntype) + assert_equal(test, [('a', bool), ('b', bool)]) + assert_(test is make_mask_descr(test)) + + # Standard w/ shape + ntype = (float, 2) + test = make_mask_descr(ntype) + assert_equal(test, (bool, 2)) + assert_(test is make_mask_descr(test)) + + # Standard standard + ntype = float + test = make_mask_descr(ntype) + assert_equal(test, np.dtype(bool)) + assert_(test is make_mask_descr(test)) + + # Nested + ntype = [('a', float), ('b', [('ba', float), ('bb', float)])] + test = make_mask_descr(ntype) + control = np.dtype([('a', 'b1'), ('b', [('ba', 'b1'), ('bb', 'b1')])]) + assert_equal(test, control) + assert_(test is make_mask_descr(test)) + + # Named+ shape + ntype = [('a', (float, 2))] + test = make_mask_descr(ntype) + assert_equal(test, np.dtype([('a', (bool, 2))])) + assert_(test is make_mask_descr(test)) + + # 2 names + ntype = [(('A', 'a'), float)] + test = make_mask_descr(ntype) + assert_equal(test, np.dtype([(('A', 'a'), bool)])) + assert_(test is make_mask_descr(test)) + + # nested boolean types should preserve identity + base_type = np.dtype([('a', int, 3)]) + base_mtype = make_mask_descr(base_type) + sub_type = np.dtype([('a', int), ('b', base_mtype)]) + test = make_mask_descr(sub_type) + assert_equal(test, np.dtype([('a', bool), ('b', [('a', bool, 3)])])) + assert_(test.fields['b'][0] is base_mtype) + + def test_make_mask(self): + # Test make_mask + # w/ a list as an input + mask = [0, 1] + test = make_mask(mask) + assert_equal(test.dtype, MaskType) + assert_equal(test, [0, 1]) + # w/ a ndarray as an input + mask = np.array([0, 1], dtype=bool) + test = make_mask(mask) + assert_equal(test.dtype, MaskType) + assert_equal(test, [0, 1]) + # w/ a flexible-type ndarray as an input - use default + mdtype = [('a', bool), ('b', bool)] + mask = np.array([(0, 0), (0, 1)], dtype=mdtype) + test = make_mask(mask) + assert_equal(test.dtype, MaskType) + assert_equal(test, [1, 1]) + # w/ a flexible-type ndarray as an input - use input dtype + mdtype = [('a', bool), ('b', bool)] + mask = np.array([(0, 0), (0, 1)], dtype=mdtype) + test = make_mask(mask, dtype=mask.dtype) + assert_equal(test.dtype, mdtype) + assert_equal(test, mask) + # w/ a flexible-type ndarray as an input - use input dtype + mdtype = [('a', float), ('b', float)] + bdtype = [('a', bool), ('b', bool)] + mask = np.array([(0, 0), (0, 1)], dtype=mdtype) + test = make_mask(mask, dtype=mask.dtype) + assert_equal(test.dtype, bdtype) + assert_equal(test, np.array([(0, 0), (0, 1)], dtype=bdtype)) + # Ensure this also works for void + mask = np.array((False, True), dtype='?,?')[()] + assert_(isinstance(mask, np.void)) + test = make_mask(mask, dtype=mask.dtype) + assert_equal(test, mask) + assert_(test is not mask) + mask = np.array((0, 1), dtype='i4,i4')[()] + test2 = make_mask(mask, dtype=mask.dtype) + assert_equal(test2, test) + # test that nomask is returned when m is nomask. + bools = [True, False] + dtypes = [MaskType, float] + msgformat = 'copy=%s, shrink=%s, dtype=%s' + for cpy, shr, dt in itertools.product(bools, bools, dtypes): + res = make_mask(nomask, copy=cpy, shrink=shr, dtype=dt) + assert_(res is nomask, msgformat % (cpy, shr, dt)) + + def test_mask_or(self): + # Initialize + mtype = [('a', bool), ('b', bool)] + mask = np.array([(0, 0), (0, 1), (1, 0), (0, 0)], dtype=mtype) + # Test using nomask as input + test = mask_or(mask, nomask) + assert_equal(test, mask) + test = mask_or(nomask, mask) + assert_equal(test, mask) + # Using False as input + test = mask_or(mask, False) + assert_equal(test, mask) + # Using another array w / the same dtype + other = np.array([(0, 1), (0, 1), (0, 1), (0, 1)], dtype=mtype) + test = mask_or(mask, other) + control = np.array([(0, 1), (0, 1), (1, 1), (0, 1)], dtype=mtype) + assert_equal(test, control) + # Using another array w / a different dtype + othertype = [('A', bool), ('B', bool)] + other = np.array([(0, 1), (0, 1), (0, 1), (0, 1)], dtype=othertype) + try: + test = mask_or(mask, other) + except ValueError: + pass + # Using nested arrays + dtype = [('a', bool), ('b', [('ba', bool), ('bb', bool)])] + amask = np.array([(0, (1, 0)), (0, (1, 0))], dtype=dtype) + bmask = np.array([(1, (0, 1)), (0, (0, 0))], dtype=dtype) + cntrl = np.array([(1, (1, 1)), (0, (1, 0))], dtype=dtype) + assert_equal(mask_or(amask, bmask), cntrl) + + a = np.array([False, False]) + assert mask_or(a, a) is nomask # gh-27360 + + def test_allequal(self): + x = array([1, 2, 3], mask=[0, 0, 0]) + y = array([1, 2, 3], mask=[1, 0, 0]) + z = array([[1, 2, 3], [4, 5, 6]], mask=[[0, 0, 0], [1, 1, 1]]) + + assert allequal(x, y) + assert not allequal(x, y, fill_value=False) + assert allequal(x, z) + + # test allequal for the same input, with mask=nomask, this test is for + # the scenario raised in https://github.com/numpy/numpy/issues/27201 + assert allequal(x, x) + assert allequal(x, x, fill_value=False) + + assert allequal(y, y) + assert not allequal(y, y, fill_value=False) + + def test_flatten_mask(self): + # Tests flatten mask + # Standard dtype + mask = np.array([0, 0, 1], dtype=bool) + assert_equal(flatten_mask(mask), mask) + # Flexible dtype + mask = np.array([(0, 0), (0, 1)], dtype=[('a', bool), ('b', bool)]) + test = flatten_mask(mask) + control = np.array([0, 0, 0, 1], dtype=bool) + assert_equal(test, control) + + mdtype = [('a', bool), ('b', [('ba', bool), ('bb', bool)])] + data = [(0, (0, 0)), (0, (0, 1))] + mask = np.array(data, dtype=mdtype) + test = flatten_mask(mask) + control = np.array([0, 0, 0, 0, 0, 1], dtype=bool) + assert_equal(test, control) + + def test_on_ndarray(self): + # Test functions on ndarrays + a = np.array([1, 2, 3, 4]) + m = array(a, mask=False) + test = anom(a) + assert_equal(test, m.anom()) + test = reshape(a, (2, 2)) + assert_equal(test, m.reshape(2, 2)) + + def test_compress(self): + # Test compress function on ndarray and masked array + # Address Github #2495. + arr = np.arange(8) + arr.shape = 4, 2 + cond = np.array([True, False, True, True]) + control = arr[[0, 2, 3]] + test = np.ma.compress(cond, arr, axis=0) + assert_equal(test, control) + marr = np.ma.array(arr) + test = np.ma.compress(cond, marr, axis=0) + assert_equal(test, control) + + def test_compressed(self): + # Test ma.compressed function. + # Address gh-4026 + a = np.ma.array([1, 2]) + test = np.ma.compressed(a) + assert_(type(test) is np.ndarray) + + # Test case when input data is ndarray subclass + class A(np.ndarray): + pass + + a = np.ma.array(A(shape=0)) + test = np.ma.compressed(a) + assert_(type(test) is A) + + # Test that compress flattens + test = np.ma.compressed([[1], [2]]) + assert_equal(test.ndim, 1) + test = np.ma.compressed([[[[[1]]]]]) + assert_equal(test.ndim, 1) + + # Test case when input is MaskedArray subclass + class M(MaskedArray): + pass + + test = np.ma.compressed(M([[[]], [[]]])) + assert_equal(test.ndim, 1) + + # with .compressed() overridden + class M(MaskedArray): + def compressed(self): + return 42 + + test = np.ma.compressed(M([[[]], [[]]])) + assert_equal(test, 42) + + def test_convolve(self): + a = masked_equal(np.arange(5), 2) + b = np.array([1, 1]) + + result = masked_equal([0, 1, -1, -1, 7, 4], -1) + test = np.ma.convolve(a, b, mode='full') + assert_equal(test, result) + + test = np.ma.convolve(a, b, mode='same') + assert_equal(test, result[:-1]) + + test = np.ma.convolve(a, b, mode='valid') + assert_equal(test, result[1:-1]) + + result = masked_equal([0, 1, 1, 3, 7, 4], -1) + test = np.ma.convolve(a, b, mode='full', propagate_mask=False) + assert_equal(test, result) + + test = np.ma.convolve(a, b, mode='same', propagate_mask=False) + assert_equal(test, result[:-1]) + + test = np.ma.convolve(a, b, mode='valid', propagate_mask=False) + assert_equal(test, result[1:-1]) + + test = np.ma.convolve([1, 1], [1, 1, 1]) + assert_equal(test, masked_equal([1, 2, 2, 1], -1)) + + a = [1, 1] + b = masked_equal([1, -1, -1, 1], -1) + test = np.ma.convolve(a, b, propagate_mask=False) + assert_equal(test, masked_equal([1, 1, -1, 1, 1], -1)) + test = np.ma.convolve(a, b, propagate_mask=True) + assert_equal(test, masked_equal([-1, -1, -1, -1, -1], -1)) + + +class TestMaskedFields: + + def setup_method(self): + ilist = [1, 2, 3, 4, 5] + flist = [1.1, 2.2, 3.3, 4.4, 5.5] + slist = ['one', 'two', 'three', 'four', 'five'] + ddtype = [('a', int), ('b', float), ('c', '|S8')] + mdtype = [('a', bool), ('b', bool), ('c', bool)] + mask = [0, 1, 0, 0, 1] + base = array(list(zip(ilist, flist, slist)), mask=mask, dtype=ddtype) + self.data = {"base": base, "mask": mask, "ddtype": ddtype, "mdtype": mdtype} + + def test_set_records_masks(self): + base = self.data['base'] + mdtype = self.data['mdtype'] + # Set w/ nomask or masked + base.mask = nomask + assert_equal_records(base._mask, np.zeros(base.shape, dtype=mdtype)) + base.mask = masked + assert_equal_records(base._mask, np.ones(base.shape, dtype=mdtype)) + # Set w/ simple boolean + base.mask = False + assert_equal_records(base._mask, np.zeros(base.shape, dtype=mdtype)) + base.mask = True + assert_equal_records(base._mask, np.ones(base.shape, dtype=mdtype)) + # Set w/ list + base.mask = [0, 0, 0, 1, 1] + assert_equal_records(base._mask, + np.array([(x, x, x) for x in [0, 0, 0, 1, 1]], + dtype=mdtype)) + + def test_set_record_element(self): + # Check setting an element of a record) + base = self.data['base'] + (base_a, base_b, base_c) = (base['a'], base['b'], base['c']) + base[0] = (pi, pi, 'pi') + + assert_equal(base_a.dtype, int) + assert_equal(base_a._data, [3, 2, 3, 4, 5]) + + assert_equal(base_b.dtype, float) + assert_equal(base_b._data, [pi, 2.2, 3.3, 4.4, 5.5]) + + assert_equal(base_c.dtype, '|S8') + assert_equal(base_c._data, + [b'pi', b'two', b'three', b'four', b'five']) + + def test_set_record_slice(self): + base = self.data['base'] + (base_a, base_b, base_c) = (base['a'], base['b'], base['c']) + base[:3] = (pi, pi, 'pi') + + assert_equal(base_a.dtype, int) + assert_equal(base_a._data, [3, 3, 3, 4, 5]) + + assert_equal(base_b.dtype, float) + assert_equal(base_b._data, [pi, pi, pi, 4.4, 5.5]) + + assert_equal(base_c.dtype, '|S8') + assert_equal(base_c._data, + [b'pi', b'pi', b'pi', b'four', b'five']) + + def test_mask_element(self): + "Check record access" + base = self.data['base'] + base[0] = masked + + for n in ('a', 'b', 'c'): + assert_equal(base[n].mask, [1, 1, 0, 0, 1]) + assert_equal(base[n]._data, base._data[n]) + + def test_getmaskarray(self): + # Test getmaskarray on flexible dtype + ndtype = [('a', int), ('b', float)] + test = empty(3, dtype=ndtype) + assert_equal(getmaskarray(test), + np.array([(0, 0), (0, 0), (0, 0)], + dtype=[('a', '|b1'), ('b', '|b1')])) + test[:] = masked + assert_equal(getmaskarray(test), + np.array([(1, 1), (1, 1), (1, 1)], + dtype=[('a', '|b1'), ('b', '|b1')])) + + def test_view(self): + # Test view w/ flexible dtype + iterator = list(zip(np.arange(10), np.random.rand(10))) + data = np.array(iterator) + a = array(iterator, dtype=[('a', float), ('b', float)]) + a.mask[0] = (1, 0) + controlmask = np.array([1] + 19 * [0], dtype=bool) + # Transform globally to simple dtype + test = a.view(float) + assert_equal(test, data.ravel()) + assert_equal(test.mask, controlmask) + # Transform globally to dty + test = a.view((float, 2)) + assert_equal(test, data) + assert_equal(test.mask, controlmask.reshape(-1, 2)) + + def test_getitem(self): + ndtype = [('a', float), ('b', float)] + a = array(list(zip(np.random.rand(10), np.arange(10))), dtype=ndtype) + a.mask = np.array(list(zip([0, 0, 0, 0, 0, 0, 0, 0, 1, 1], + [1, 0, 0, 0, 0, 0, 0, 0, 1, 0])), + dtype=[('a', bool), ('b', bool)]) + + def _test_index(i): + assert_equal(type(a[i]), mvoid) + assert_equal_records(a[i]._data, a._data[i]) + assert_equal_records(a[i]._mask, a._mask[i]) + + assert_equal(type(a[i, ...]), MaskedArray) + assert_equal_records(a[i, ...]._data, a._data[i, ...]) + assert_equal_records(a[i, ...]._mask, a._mask[i, ...]) + + _test_index(1) # No mask + _test_index(0) # One element masked + _test_index(-2) # All element masked + + def test_setitem(self): + # Issue 4866: check that one can set individual items in [record][col] + # and [col][record] order + ndtype = np.dtype([('a', float), ('b', int)]) + ma = np.ma.MaskedArray([(1.0, 1), (2.0, 2)], dtype=ndtype) + ma['a'][1] = 3.0 + assert_equal(ma['a'], np.array([1.0, 3.0])) + ma[1]['a'] = 4.0 + assert_equal(ma['a'], np.array([1.0, 4.0])) + # Issue 2403 + mdtype = np.dtype([('a', bool), ('b', bool)]) + # soft mask + control = np.array([(False, True), (True, True)], dtype=mdtype) + a = np.ma.masked_all((2,), dtype=ndtype) + a['a'][0] = 2 + assert_equal(a.mask, control) + a = np.ma.masked_all((2,), dtype=ndtype) + a[0]['a'] = 2 + assert_equal(a.mask, control) + # hard mask + control = np.array([(True, True), (True, True)], dtype=mdtype) + a = np.ma.masked_all((2,), dtype=ndtype) + a.harden_mask() + a['a'][0] = 2 + assert_equal(a.mask, control) + a = np.ma.masked_all((2,), dtype=ndtype) + a.harden_mask() + a[0]['a'] = 2 + assert_equal(a.mask, control) + + def test_setitem_scalar(self): + # 8510 + mask_0d = np.ma.masked_array(1, mask=True) + arr = np.ma.arange(3) + arr[0] = mask_0d + assert_array_equal(arr.mask, [True, False, False]) + + def test_element_len(self): + # check that len() works for mvoid (Github issue #576) + for rec in self.data['base']: + assert_equal(len(rec), len(self.data['ddtype'])) + + +class TestMaskedObjectArray: + + def test_getitem(self): + arr = np.ma.array([None, None]) + for dt in [float, object]: + a0 = np.eye(2).astype(dt) + a1 = np.eye(3).astype(dt) + arr[0] = a0 + arr[1] = a1 + + assert_(arr[0] is a0) + assert_(arr[1] is a1) + assert_(isinstance(arr[0, ...], MaskedArray)) + assert_(isinstance(arr[1, ...], MaskedArray)) + assert_(arr[0, ...][()] is a0) + assert_(arr[1, ...][()] is a1) + + arr[0] = np.ma.masked + + assert_(arr[1] is a1) + assert_(isinstance(arr[0, ...], MaskedArray)) + assert_(isinstance(arr[1, ...], MaskedArray)) + assert_equal(arr[0, ...].mask, True) + assert_(arr[1, ...][()] is a1) + + # gh-5962 - object arrays of arrays do something special + assert_equal(arr[0].data, a0) + assert_equal(arr[0].mask, True) + assert_equal(arr[0, ...][()].data, a0) + assert_equal(arr[0, ...][()].mask, True) + + def test_nested_ma(self): + + arr = np.ma.array([None, None]) + # set the first object to be an unmasked masked constant. A little fiddly + arr[0, ...] = np.array([np.ma.masked], object)[0, ...] + + # check the above line did what we were aiming for + assert_(arr.data[0] is np.ma.masked) + + # test that getitem returned the value by identity + assert_(arr[0] is np.ma.masked) + + # now mask the masked value! + arr[0] = np.ma.masked + assert_(arr[0] is np.ma.masked) + + +class TestMaskedView: + + def setup_method(self): + iterator = list(zip(np.arange(10), np.random.rand(10))) + data = np.array(iterator) + a = array(iterator, dtype=[('a', float), ('b', float)]) + a.mask[0] = (1, 0) + controlmask = np.array([1] + 19 * [0], dtype=bool) + self.data = (data, a, controlmask) + + def test_view_to_nothing(self): + (data, a, controlmask) = self.data + test = a.view() + assert_(isinstance(test, MaskedArray)) + assert_equal(test._data, a._data) + assert_equal(test._mask, a._mask) + + def test_view_to_type(self): + (data, a, controlmask) = self.data + test = a.view(np.ndarray) + assert_(not isinstance(test, MaskedArray)) + assert_equal(test, a._data) + assert_equal_records(test, data.view(a.dtype).squeeze()) + + def test_view_to_simple_dtype(self): + (data, a, controlmask) = self.data + # View globally + test = a.view(float) + assert_(isinstance(test, MaskedArray)) + assert_equal(test, data.ravel()) + assert_equal(test.mask, controlmask) + + def test_view_to_flexible_dtype(self): + (data, a, controlmask) = self.data + + test = a.view([('A', float), ('B', float)]) + assert_equal(test.mask.dtype.names, ('A', 'B')) + assert_equal(test['A'], a['a']) + assert_equal(test['B'], a['b']) + + test = a[0].view([('A', float), ('B', float)]) + assert_(isinstance(test, MaskedArray)) + assert_equal(test.mask.dtype.names, ('A', 'B')) + assert_equal(test['A'], a['a'][0]) + assert_equal(test['B'], a['b'][0]) + + test = a[-1].view([('A', float), ('B', float)]) + assert_(isinstance(test, MaskedArray)) + assert_equal(test.dtype.names, ('A', 'B')) + assert_equal(test['A'], a['a'][-1]) + assert_equal(test['B'], a['b'][-1]) + + def test_view_to_subdtype(self): + (data, a, controlmask) = self.data + # View globally + test = a.view((float, 2)) + assert_(isinstance(test, MaskedArray)) + assert_equal(test, data) + assert_equal(test.mask, controlmask.reshape(-1, 2)) + # View on 1 masked element + test = a[0].view((float, 2)) + assert_(isinstance(test, MaskedArray)) + assert_equal(test, data[0]) + assert_equal(test.mask, (1, 0)) + # View on 1 unmasked element + test = a[-1].view((float, 2)) + assert_(isinstance(test, MaskedArray)) + assert_equal(test, data[-1]) + + def test_view_to_dtype_and_type(self): + (data, a, controlmask) = self.data + + test = a.view((float, 2), np.recarray) + assert_equal(test, data) + assert_(isinstance(test, np.recarray)) + assert_(not isinstance(test, MaskedArray)) + + +class TestOptionalArgs: + def test_ndarrayfuncs(self): + # test axis arg behaves the same as ndarray (including multiple axes) + + d = np.arange(24.0).reshape((2, 3, 4)) + m = np.zeros(24, dtype=bool).reshape((2, 3, 4)) + # mask out last element of last dimension + m[:, :, -1] = True + a = np.ma.array(d, mask=m) + + def testaxis(f, a, d): + numpy_f = numpy.__getattribute__(f) + ma_f = np.ma.__getattribute__(f) + + # test axis arg + assert_equal(ma_f(a, axis=1)[..., :-1], numpy_f(d[..., :-1], axis=1)) + assert_equal(ma_f(a, axis=(0, 1))[..., :-1], + numpy_f(d[..., :-1], axis=(0, 1))) + + def testkeepdims(f, a, d): + numpy_f = numpy.__getattribute__(f) + ma_f = np.ma.__getattribute__(f) + + # test keepdims arg + assert_equal(ma_f(a, keepdims=True).shape, + numpy_f(d, keepdims=True).shape) + assert_equal(ma_f(a, keepdims=False).shape, + numpy_f(d, keepdims=False).shape) + + # test both at once + assert_equal(ma_f(a, axis=1, keepdims=True)[..., :-1], + numpy_f(d[..., :-1], axis=1, keepdims=True)) + assert_equal(ma_f(a, axis=(0, 1), keepdims=True)[..., :-1], + numpy_f(d[..., :-1], axis=(0, 1), keepdims=True)) + + for f in ['sum', 'prod', 'mean', 'var', 'std']: + testaxis(f, a, d) + testkeepdims(f, a, d) + + for f in ['min', 'max']: + testaxis(f, a, d) + + d = (np.arange(24).reshape((2, 3, 4)) % 2 == 0) + a = np.ma.array(d, mask=m) + for f in ['all', 'any']: + testaxis(f, a, d) + testkeepdims(f, a, d) + + def test_count(self): + # test np.ma.count specially + + d = np.arange(24.0).reshape((2, 3, 4)) + m = np.zeros(24, dtype=bool).reshape((2, 3, 4)) + m[:, 0, :] = True + a = np.ma.array(d, mask=m) + + assert_equal(count(a), 16) + assert_equal(count(a, axis=1), 2 * ones((2, 4))) + assert_equal(count(a, axis=(0, 1)), 4 * ones((4,))) + assert_equal(count(a, keepdims=True), 16 * ones((1, 1, 1))) + assert_equal(count(a, axis=1, keepdims=True), 2 * ones((2, 1, 4))) + assert_equal(count(a, axis=(0, 1), keepdims=True), 4 * ones((1, 1, 4))) + assert_equal(count(a, axis=-2), 2 * ones((2, 4))) + assert_raises(ValueError, count, a, axis=(1, 1)) + assert_raises(AxisError, count, a, axis=3) + + # check the 'nomask' path + a = np.ma.array(d, mask=nomask) + + assert_equal(count(a), 24) + assert_equal(count(a, axis=1), 3 * ones((2, 4))) + assert_equal(count(a, axis=(0, 1)), 6 * ones((4,))) + assert_equal(count(a, keepdims=True), 24 * ones((1, 1, 1))) + assert_equal(np.ndim(count(a, keepdims=True)), 3) + assert_equal(count(a, axis=1, keepdims=True), 3 * ones((2, 1, 4))) + assert_equal(count(a, axis=(0, 1), keepdims=True), 6 * ones((1, 1, 4))) + assert_equal(count(a, axis=-2), 3 * ones((2, 4))) + assert_raises(ValueError, count, a, axis=(1, 1)) + assert_raises(AxisError, count, a, axis=3) + + # check the 'masked' singleton + assert_equal(count(np.ma.masked), 0) + + # check 0-d arrays do not allow axis > 0 + assert_raises(AxisError, count, np.ma.array(1), axis=1) + + +class TestMaskedConstant: + def _do_add_test(self, add): + # sanity check + assert_(add(np.ma.masked, 1) is np.ma.masked) + + # now try with a vector + vector = np.array([1, 2, 3]) + result = add(np.ma.masked, vector) + + # lots of things could go wrong here + assert_(result is not np.ma.masked) + assert_(not isinstance(result, np.ma.core.MaskedConstant)) + assert_equal(result.shape, vector.shape) + assert_equal(np.ma.getmask(result), np.ones(vector.shape, dtype=bool)) + + def test_ufunc(self): + self._do_add_test(np.add) + + def test_operator(self): + self._do_add_test(lambda a, b: a + b) + + def test_ctor(self): + m = np.ma.array(np.ma.masked) + + # most importantly, we do not want to create a new MaskedConstant + # instance + assert_(not isinstance(m, np.ma.core.MaskedConstant)) + assert_(m is not np.ma.masked) + + def test_repr(self): + # copies should not exist, but if they do, it should be obvious that + # something is wrong + assert_equal(repr(np.ma.masked), 'masked') + + # create a new instance in a weird way + masked2 = np.ma.MaskedArray.__new__(np.ma.core.MaskedConstant) + assert_not_equal(repr(masked2), 'masked') + + def test_pickle(self): + from io import BytesIO + + for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): + with BytesIO() as f: + pickle.dump(np.ma.masked, f, protocol=proto) + f.seek(0) + res = pickle.load(f) + assert_(res is np.ma.masked) + + def test_copy(self): + # gh-9328 + # copy is a no-op, like it is with np.True_ + assert_equal( + np.ma.masked.copy() is np.ma.masked, + np.True_.copy() is np.True_) + + def test__copy(self): + import copy + assert_( + copy.copy(np.ma.masked) is np.ma.masked) + + def test_deepcopy(self): + import copy + assert_( + copy.deepcopy(np.ma.masked) is np.ma.masked) + + def test_immutable(self): + orig = np.ma.masked + assert_raises(np.ma.core.MaskError, operator.setitem, orig, (), 1) + assert_raises(ValueError, operator.setitem, orig.data, (), 1) + assert_raises(ValueError, operator.setitem, orig.mask, (), False) + + view = np.ma.masked.view(np.ma.MaskedArray) + assert_raises(ValueError, operator.setitem, view, (), 1) + assert_raises(ValueError, operator.setitem, view.data, (), 1) + assert_raises(ValueError, operator.setitem, view.mask, (), False) + + def test_coercion_int(self): + a_i = np.zeros((), int) + assert_raises(MaskError, operator.setitem, a_i, (), np.ma.masked) + assert_raises(MaskError, int, np.ma.masked) + + def test_coercion_float(self): + a_f = np.zeros((), float) + assert_warns(UserWarning, operator.setitem, a_f, (), np.ma.masked) + assert_(np.isnan(a_f[()])) + + @pytest.mark.xfail(reason="See gh-9750") + def test_coercion_unicode(self): + a_u = np.zeros((), 'U10') + a_u[()] = np.ma.masked + assert_equal(a_u[()], '--') + + @pytest.mark.xfail(reason="See gh-9750") + def test_coercion_bytes(self): + a_b = np.zeros((), 'S10') + a_b[()] = np.ma.masked + assert_equal(a_b[()], b'--') + + def test_subclass(self): + # https://github.com/astropy/astropy/issues/6645 + class Sub(type(np.ma.masked)): + pass + + a = Sub() + assert_(a is Sub()) + assert_(a is not np.ma.masked) + assert_not_equal(repr(a), 'masked') + + def test_attributes_readonly(self): + assert_raises(AttributeError, setattr, np.ma.masked, 'shape', (1,)) + assert_raises(AttributeError, setattr, np.ma.masked, 'dtype', np.int64) + + +class TestMaskedWhereAliases: + + # TODO: Test masked_object, masked_equal, ... + + def test_masked_values(self): + res = masked_values(np.array([-32768.0]), np.int16(-32768)) + assert_equal(res.mask, [True]) + + res = masked_values(np.inf, np.inf) + assert_equal(res.mask, True) + + res = np.ma.masked_values(np.inf, -np.inf) + assert_equal(res.mask, False) + + res = np.ma.masked_values([1, 2, 3, 4], 5, shrink=True) + assert_(res.mask is np.ma.nomask) + + res = np.ma.masked_values([1, 2, 3, 4], 5, shrink=False) + assert_equal(res.mask, [False] * 4) + + +def test_masked_array(): + a = np.ma.array([0, 1, 2, 3], mask=[0, 0, 1, 0]) + assert_equal(np.argwhere(a), [[1], [3]]) + +def test_masked_array_no_copy(): + # check nomask array is updated in place + a = np.ma.array([1, 2, 3, 4]) + _ = np.ma.masked_where(a == 3, a, copy=False) + assert_array_equal(a.mask, [False, False, True, False]) + # check masked array is updated in place + a = np.ma.array([1, 2, 3, 4], mask=[1, 0, 0, 0]) + _ = np.ma.masked_where(a == 3, a, copy=False) + assert_array_equal(a.mask, [True, False, True, False]) + # check masked array with masked_invalid is updated in place + a = np.ma.array([np.inf, 1, 2, 3, 4]) + _ = np.ma.masked_invalid(a, copy=False) + assert_array_equal(a.mask, [True, False, False, False, False]) + +def test_append_masked_array(): + a = np.ma.masked_equal([1, 2, 3], value=2) + b = np.ma.masked_equal([4, 3, 2], value=2) + + result = np.ma.append(a, b) + expected_data = [1, 2, 3, 4, 3, 2] + expected_mask = [False, True, False, False, False, True] + assert_array_equal(result.data, expected_data) + assert_array_equal(result.mask, expected_mask) + + a = np.ma.masked_all((2, 2)) + b = np.ma.ones((3, 1)) + + result = np.ma.append(a, b) + expected_data = [1] * 3 + expected_mask = [True] * 4 + [False] * 3 + assert_array_equal(result.data[-3], expected_data) + assert_array_equal(result.mask, expected_mask) + + result = np.ma.append(a, b, axis=None) + assert_array_equal(result.data[-3], expected_data) + assert_array_equal(result.mask, expected_mask) + + +def test_append_masked_array_along_axis(): + a = np.ma.masked_equal([1, 2, 3], value=2) + b = np.ma.masked_values([[4, 5, 6], [7, 8, 9]], 7) + + # When `axis` is specified, `values` must have the correct shape. + assert_raises(ValueError, np.ma.append, a, b, axis=0) + + result = np.ma.append(a[np.newaxis, :], b, axis=0) + expected = np.ma.arange(1, 10) + expected[[1, 6]] = np.ma.masked + expected = expected.reshape((3, 3)) + assert_array_equal(result.data, expected.data) + assert_array_equal(result.mask, expected.mask) + +def test_default_fill_value_complex(): + # regression test for Python 3, where 'unicode' was not defined + assert_(default_fill_value(1 + 1j) == 1.e20 + 0.0j) + + +def test_ufunc_with_output(): + # check that giving an output argument always returns that output. + # Regression test for gh-8416. + x = array([1., 2., 3.], mask=[0, 0, 1]) + y = np.add(x, 1., out=x) + assert_(y is x) + + +def test_ufunc_with_out_varied(): + """ Test that masked arrays are immune to gh-10459 """ + # the mask of the output should not affect the result, however it is passed + a = array([ 1, 2, 3], mask=[1, 0, 0]) + b = array([10, 20, 30], mask=[1, 0, 0]) + out = array([ 0, 0, 0], mask=[0, 0, 1]) + expected = array([11, 22, 33], mask=[1, 0, 0]) + + out_pos = out.copy() + res_pos = np.add(a, b, out_pos) + + out_kw = out.copy() + res_kw = np.add(a, b, out=out_kw) + + out_tup = out.copy() + res_tup = np.add(a, b, out=(out_tup,)) + + assert_equal(res_kw.mask, expected.mask) + assert_equal(res_kw.data, expected.data) + assert_equal(res_tup.mask, expected.mask) + assert_equal(res_tup.data, expected.data) + assert_equal(res_pos.mask, expected.mask) + assert_equal(res_pos.data, expected.data) + + +def test_astype_mask_ordering(): + descr = np.dtype([('v', int, 3), ('x', [('y', float)])]) + x = array([ + [([1, 2, 3], (1.0,)), ([1, 2, 3], (2.0,))], + [([1, 2, 3], (3.0,)), ([1, 2, 3], (4.0,))]], dtype=descr) + x[0]['v'][0] = np.ma.masked + + x_a = x.astype(descr) + assert x_a.dtype.names == np.dtype(descr).names + assert x_a.mask.dtype.names == np.dtype(descr).names + assert_equal(x, x_a) + + assert_(x is x.astype(x.dtype, copy=False)) + assert_equal(type(x.astype(x.dtype, subok=False)), np.ndarray) + + x_f = x.astype(x.dtype, order='F') + assert_(x_f.flags.f_contiguous) + assert_(x_f.mask.flags.f_contiguous) + + # Also test the same indirectly, via np.array + x_a2 = np.array(x, dtype=descr, subok=True) + assert x_a2.dtype.names == np.dtype(descr).names + assert x_a2.mask.dtype.names == np.dtype(descr).names + assert_equal(x, x_a2) + + assert_(x is np.array(x, dtype=descr, copy=None, subok=True)) + + x_f2 = np.array(x, dtype=x.dtype, order='F', subok=True) + assert_(x_f2.flags.f_contiguous) + assert_(x_f2.mask.flags.f_contiguous) + + +@pytest.mark.parametrize('dt1', num_dts, ids=num_ids) +@pytest.mark.parametrize('dt2', num_dts, ids=num_ids) +@pytest.mark.filterwarnings('ignore::numpy.exceptions.ComplexWarning') +def test_astype_basic(dt1, dt2): + # See gh-12070 + src = np.ma.array(ones(3, dt1), fill_value=1) + dst = src.astype(dt2) + + assert_(src.fill_value == 1) + assert_(src.dtype == dt1) + assert_(src.fill_value.dtype == dt1) + + assert_(dst.fill_value == 1) + assert_(dst.dtype == dt2) + assert_(dst.fill_value.dtype == dt2) + + assert_equal(src, dst) + + +def test_fieldless_void(): + dt = np.dtype([]) # a void dtype with no fields + x = np.empty(4, dt) + + # these arrays contain no values, so there's little to test - but this + # shouldn't crash + mx = np.ma.array(x) + assert_equal(mx.dtype, x.dtype) + assert_equal(mx.shape, x.shape) + + mx = np.ma.array(x, mask=x) + assert_equal(mx.dtype, x.dtype) + assert_equal(mx.shape, x.shape) + + +def test_mask_shape_assignment_does_not_break_masked(): + a = np.ma.masked + b = np.ma.array(1, mask=a.mask) + b.shape = (1,) + assert_equal(a.mask.shape, ()) + +@pytest.mark.skipif(sys.flags.optimize > 1, + reason="no docstrings present to inspect when PYTHONOPTIMIZE/Py_OptimizeFlag > 1") # noqa: E501 +def test_doc_note(): + def method(self): + """This docstring + + Has multiple lines + + And notes + + Notes + ----- + original note + """ + pass + + expected_doc = """This docstring + +Has multiple lines + +And notes + +Notes +----- +note + +original note""" + + assert_equal(np.ma.core.doc_note(method.__doc__, "note"), expected_doc) + + +def test_gh_22556(): + source = np.ma.array([0, [0, 1, 2]], dtype=object) + deepcopy = copy.deepcopy(source) + deepcopy[1].append('this should not appear in source') + assert len(source[1]) == 3 + + +def test_gh_21022(): + # testing for absence of reported error + source = np.ma.masked_array(data=[-1, -1], mask=True, dtype=np.float64) + axis = np.array(0) + result = np.prod(source, axis=axis, keepdims=False) + result = np.ma.masked_array(result, + mask=np.ones(result.shape, dtype=np.bool)) + array = np.ma.masked_array(data=-1, mask=True, dtype=np.float64) + copy.deepcopy(array) + copy.deepcopy(result) + + +def test_deepcopy_2d_obj(): + source = np.ma.array([[0, "dog"], + [1, 1], + [[1, 2], "cat"]], + mask=[[0, 1], + [0, 0], + [0, 0]], + dtype=object) + deepcopy = copy.deepcopy(source) + deepcopy[2, 0].extend(['this should not appear in source', 3]) + assert len(source[2, 0]) == 2 + assert len(deepcopy[2, 0]) == 4 + assert_equal(deepcopy._mask, source._mask) + deepcopy._mask[0, 0] = 1 + assert source._mask[0, 0] == 0 + + +def test_deepcopy_0d_obj(): + source = np.ma.array(0, mask=[0], dtype=object) + deepcopy = copy.deepcopy(source) + deepcopy[...] = 17 + assert_equal(source, 0) + assert_equal(deepcopy, 17) + + +def test_uint_fill_value_and_filled(): + # See also gh-27269 + a = np.ma.MaskedArray([1, 1], [True, False], dtype="uint16") + # the fill value should likely not be 99999, but for now guarantee it: + assert a.fill_value == 999999 + # However, it's type is uint: + assert a.fill_value.dtype.kind == "u" + # And this ensures things like filled work: + np.testing.assert_array_equal( + a.filled(), np.array([999999, 1]).astype("uint16"), strict=True) diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_deprecations.py b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_deprecations.py new file mode 100644 index 0000000..8cc8b9c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_deprecations.py @@ -0,0 +1,87 @@ +"""Test deprecation and future warnings. + +""" +import io +import textwrap + +import pytest + +import numpy as np +from numpy.ma.core import MaskedArrayFutureWarning +from numpy.ma.testutils import assert_equal +from numpy.testing import assert_warns + + +class TestArgsort: + """ gh-8701 """ + def _test_base(self, argsort, cls): + arr_0d = np.array(1).view(cls) + argsort(arr_0d) + + arr_1d = np.array([1, 2, 3]).view(cls) + argsort(arr_1d) + + # argsort has a bad default for >1d arrays + arr_2d = np.array([[1, 2], [3, 4]]).view(cls) + result = assert_warns( + np.ma.core.MaskedArrayFutureWarning, argsort, arr_2d) + assert_equal(result, argsort(arr_2d, axis=None)) + + # should be no warnings for explicitly specifying it + argsort(arr_2d, axis=None) + argsort(arr_2d, axis=-1) + + def test_function_ndarray(self): + return self._test_base(np.ma.argsort, np.ndarray) + + def test_function_maskedarray(self): + return self._test_base(np.ma.argsort, np.ma.MaskedArray) + + def test_method(self): + return self._test_base(np.ma.MaskedArray.argsort, np.ma.MaskedArray) + + +class TestMinimumMaximum: + + def test_axis_default(self): + # NumPy 1.13, 2017-05-06 + + data1d = np.ma.arange(6) + data2d = data1d.reshape(2, 3) + + ma_min = np.ma.minimum.reduce + ma_max = np.ma.maximum.reduce + + # check that the default axis is still None, but warns on 2d arrays + result = assert_warns(MaskedArrayFutureWarning, ma_max, data2d) + assert_equal(result, ma_max(data2d, axis=None)) + + result = assert_warns(MaskedArrayFutureWarning, ma_min, data2d) + assert_equal(result, ma_min(data2d, axis=None)) + + # no warnings on 1d, as both new and old defaults are equivalent + result = ma_min(data1d) + assert_equal(result, ma_min(data1d, axis=None)) + assert_equal(result, ma_min(data1d, axis=0)) + + result = ma_max(data1d) + assert_equal(result, ma_max(data1d, axis=None)) + assert_equal(result, ma_max(data1d, axis=0)) + + +class TestFromtextfile: + def test_fromtextfile_delimitor(self): + # NumPy 1.22.0, 2021-09-23 + + textfile = io.StringIO(textwrap.dedent( + """ + A,B,C,D + 'string 1';1;1.0;'mixed column' + 'string 2';2;2.0; + 'string 3';3;3.0;123 + 'string 4';4;4.0;3.14 + """ + )) + + with pytest.warns(DeprecationWarning): + result = np.ma.mrecords.fromtextfile(textfile, delimitor=';') diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_extras.py b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_extras.py new file mode 100644 index 0000000..3d10e83 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_extras.py @@ -0,0 +1,1998 @@ +"""Tests suite for MaskedArray. +Adapted from the original test_ma by Pierre Gerard-Marchant + +:author: Pierre Gerard-Marchant +:contact: pierregm_at_uga_dot_edu + +""" +import itertools +import warnings + +import pytest + +import numpy as np +from numpy._core.numeric import normalize_axis_tuple +from numpy.ma.core import ( + MaskedArray, + arange, + array, + count, + getmaskarray, + masked, + masked_array, + nomask, + ones, + shape, + zeros, +) +from numpy.ma.extras import ( + _covhelper, + apply_along_axis, + apply_over_axes, + atleast_1d, + atleast_2d, + atleast_3d, + average, + clump_masked, + clump_unmasked, + compress_nd, + compress_rowcols, + corrcoef, + cov, + diagflat, + dot, + ediff1d, + flatnotmasked_contiguous, + in1d, + intersect1d, + isin, + mask_rowcols, + masked_all, + masked_all_like, + median, + mr_, + ndenumerate, + notmasked_contiguous, + notmasked_edges, + polyfit, + setdiff1d, + setxor1d, + stack, + union1d, + unique, + vstack, +) +from numpy.ma.testutils import ( + assert_, + assert_almost_equal, + assert_array_equal, + assert_equal, +) +from numpy.testing import assert_warns, suppress_warnings + + +class TestGeneric: + # + def test_masked_all(self): + # Tests masked_all + # Standard dtype + test = masked_all((2,), dtype=float) + control = array([1, 1], mask=[1, 1], dtype=float) + assert_equal(test, control) + # Flexible dtype + dt = np.dtype({'names': ['a', 'b'], 'formats': ['f', 'f']}) + test = masked_all((2,), dtype=dt) + control = array([(0, 0), (0, 0)], mask=[(1, 1), (1, 1)], dtype=dt) + assert_equal(test, control) + test = masked_all((2, 2), dtype=dt) + control = array([[(0, 0), (0, 0)], [(0, 0), (0, 0)]], + mask=[[(1, 1), (1, 1)], [(1, 1), (1, 1)]], + dtype=dt) + assert_equal(test, control) + # Nested dtype + dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])]) + test = masked_all((2,), dtype=dt) + control = array([(1, (1, 1)), (1, (1, 1))], + mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt) + assert_equal(test, control) + test = masked_all((2,), dtype=dt) + control = array([(1, (1, 1)), (1, (1, 1))], + mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt) + assert_equal(test, control) + test = masked_all((1, 1), dtype=dt) + control = array([[(1, (1, 1))]], mask=[[(1, (1, 1))]], dtype=dt) + assert_equal(test, control) + + def test_masked_all_with_object_nested(self): + # Test masked_all works with nested array with dtype of an 'object' + # refers to issue #15895 + my_dtype = np.dtype([('b', ([('c', object)], (1,)))]) + masked_arr = np.ma.masked_all((1,), my_dtype) + + assert_equal(type(masked_arr['b']), np.ma.core.MaskedArray) + assert_equal(type(masked_arr['b']['c']), np.ma.core.MaskedArray) + assert_equal(len(masked_arr['b']['c']), 1) + assert_equal(masked_arr['b']['c'].shape, (1, 1)) + assert_equal(masked_arr['b']['c']._fill_value.shape, ()) + + def test_masked_all_with_object(self): + # same as above except that the array is not nested + my_dtype = np.dtype([('b', (object, (1,)))]) + masked_arr = np.ma.masked_all((1,), my_dtype) + + assert_equal(type(masked_arr['b']), np.ma.core.MaskedArray) + assert_equal(len(masked_arr['b']), 1) + assert_equal(masked_arr['b'].shape, (1, 1)) + assert_equal(masked_arr['b']._fill_value.shape, ()) + + def test_masked_all_like(self): + # Tests masked_all + # Standard dtype + base = array([1, 2], dtype=float) + test = masked_all_like(base) + control = array([1, 1], mask=[1, 1], dtype=float) + assert_equal(test, control) + # Flexible dtype + dt = np.dtype({'names': ['a', 'b'], 'formats': ['f', 'f']}) + base = array([(0, 0), (0, 0)], mask=[(1, 1), (1, 1)], dtype=dt) + test = masked_all_like(base) + control = array([(10, 10), (10, 10)], mask=[(1, 1), (1, 1)], dtype=dt) + assert_equal(test, control) + # Nested dtype + dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])]) + control = array([(1, (1, 1)), (1, (1, 1))], + mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt) + test = masked_all_like(control) + assert_equal(test, control) + + def check_clump(self, f): + for i in range(1, 7): + for j in range(2**i): + k = np.arange(i, dtype=int) + ja = np.full(i, j, dtype=int) + a = masked_array(2**k) + a.mask = (ja & (2**k)) != 0 + s = 0 + for sl in f(a): + s += a.data[sl].sum() + if f == clump_unmasked: + assert_equal(a.compressed().sum(), s) + else: + a.mask = ~a.mask + assert_equal(a.compressed().sum(), s) + + def test_clump_masked(self): + # Test clump_masked + a = masked_array(np.arange(10)) + a[[0, 1, 2, 6, 8, 9]] = masked + # + test = clump_masked(a) + control = [slice(0, 3), slice(6, 7), slice(8, 10)] + assert_equal(test, control) + + self.check_clump(clump_masked) + + def test_clump_unmasked(self): + # Test clump_unmasked + a = masked_array(np.arange(10)) + a[[0, 1, 2, 6, 8, 9]] = masked + test = clump_unmasked(a) + control = [slice(3, 6), slice(7, 8), ] + assert_equal(test, control) + + self.check_clump(clump_unmasked) + + def test_flatnotmasked_contiguous(self): + # Test flatnotmasked_contiguous + a = arange(10) + # No mask + test = flatnotmasked_contiguous(a) + assert_equal(test, [slice(0, a.size)]) + # mask of all false + a.mask = np.zeros(10, dtype=bool) + assert_equal(test, [slice(0, a.size)]) + # Some mask + a[(a < 3) | (a > 8) | (a == 5)] = masked + test = flatnotmasked_contiguous(a) + assert_equal(test, [slice(3, 5), slice(6, 9)]) + # + a[:] = masked + test = flatnotmasked_contiguous(a) + assert_equal(test, []) + + +class TestAverage: + # Several tests of average. Why so many ? Good point... + def test_testAverage1(self): + # Test of average. + ott = array([0., 1., 2., 3.], mask=[True, False, False, False]) + assert_equal(2.0, average(ott, axis=0)) + assert_equal(2.0, average(ott, weights=[1., 1., 2., 1.])) + result, wts = average(ott, weights=[1., 1., 2., 1.], returned=True) + assert_equal(2.0, result) + assert_(wts == 4.0) + ott[:] = masked + assert_equal(average(ott, axis=0).mask, [True]) + ott = array([0., 1., 2., 3.], mask=[True, False, False, False]) + ott = ott.reshape(2, 2) + ott[:, 1] = masked + assert_equal(average(ott, axis=0), [2.0, 0.0]) + assert_equal(average(ott, axis=1).mask[0], [True]) + assert_equal([2., 0.], average(ott, axis=0)) + result, wts = average(ott, axis=0, returned=True) + assert_equal(wts, [1., 0.]) + + def test_testAverage2(self): + # More tests of average. + w1 = [0, 1, 1, 1, 1, 0] + w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]] + x = arange(6, dtype=np.float64) + assert_equal(average(x, axis=0), 2.5) + assert_equal(average(x, axis=0, weights=w1), 2.5) + y = array([arange(6, dtype=np.float64), 2.0 * arange(6)]) + assert_equal(average(y, None), np.add.reduce(np.arange(6)) * 3. / 12.) + assert_equal(average(y, axis=0), np.arange(6) * 3. / 2.) + assert_equal(average(y, axis=1), + [average(x, axis=0), average(x, axis=0) * 2.0]) + assert_equal(average(y, None, weights=w2), 20. / 6.) + assert_equal(average(y, axis=0, weights=w2), + [0., 1., 2., 3., 4., 10.]) + assert_equal(average(y, axis=1), + [average(x, axis=0), average(x, axis=0) * 2.0]) + m1 = zeros(6) + m2 = [0, 0, 1, 1, 0, 0] + m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]] + m4 = ones(6) + m5 = [0, 1, 1, 1, 1, 1] + assert_equal(average(masked_array(x, m1), axis=0), 2.5) + assert_equal(average(masked_array(x, m2), axis=0), 2.5) + assert_equal(average(masked_array(x, m4), axis=0).mask, [True]) + assert_equal(average(masked_array(x, m5), axis=0), 0.0) + assert_equal(count(average(masked_array(x, m4), axis=0)), 0) + z = masked_array(y, m3) + assert_equal(average(z, None), 20. / 6.) + assert_equal(average(z, axis=0), [0., 1., 99., 99., 4.0, 7.5]) + assert_equal(average(z, axis=1), [2.5, 5.0]) + assert_equal(average(z, axis=0, weights=w2), + [0., 1., 99., 99., 4.0, 10.0]) + + def test_testAverage3(self): + # Yet more tests of average! + a = arange(6) + b = arange(6) * 3 + r1, w1 = average([[a, b], [b, a]], axis=1, returned=True) + assert_equal(shape(r1), shape(w1)) + assert_equal(r1.shape, w1.shape) + r2, w2 = average(ones((2, 2, 3)), axis=0, weights=[3, 1], returned=True) + assert_equal(shape(w2), shape(r2)) + r2, w2 = average(ones((2, 2, 3)), returned=True) + assert_equal(shape(w2), shape(r2)) + r2, w2 = average(ones((2, 2, 3)), weights=ones((2, 2, 3)), returned=True) + assert_equal(shape(w2), shape(r2)) + a2d = array([[1, 2], [0, 4]], float) + a2dm = masked_array(a2d, [[False, False], [True, False]]) + a2da = average(a2d, axis=0) + assert_equal(a2da, [0.5, 3.0]) + a2dma = average(a2dm, axis=0) + assert_equal(a2dma, [1.0, 3.0]) + a2dma = average(a2dm, axis=None) + assert_equal(a2dma, 7. / 3.) + a2dma = average(a2dm, axis=1) + assert_equal(a2dma, [1.5, 4.0]) + + def test_testAverage4(self): + # Test that `keepdims` works with average + x = np.array([2, 3, 4]).reshape(3, 1) + b = np.ma.array(x, mask=[[False], [False], [True]]) + w = np.array([4, 5, 6]).reshape(3, 1) + actual = average(b, weights=w, axis=1, keepdims=True) + desired = masked_array([[2.], [3.], [4.]], [[False], [False], [True]]) + assert_equal(actual, desired) + + def test_weight_and_input_dims_different(self): + # this test mirrors a test for np.average() + # in lib/test/test_function_base.py + y = np.arange(12).reshape(2, 2, 3) + w = np.array([0., 0., 1., .5, .5, 0., 0., .5, .5, 1., 0., 0.])\ + .reshape(2, 2, 3) + + m = np.full((2, 2, 3), False) + yma = np.ma.array(y, mask=m) + subw0 = w[:, :, 0] + + actual = average(yma, axis=(0, 1), weights=subw0) + desired = masked_array([7., 8., 9.], mask=[False, False, False]) + assert_almost_equal(actual, desired) + + m = np.full((2, 2, 3), False) + m[:, :, 0] = True + m[0, 0, 1] = True + yma = np.ma.array(y, mask=m) + actual = average(yma, axis=(0, 1), weights=subw0) + desired = masked_array( + [np.nan, 8., 9.], + mask=[True, False, False]) + assert_almost_equal(actual, desired) + + m = np.full((2, 2, 3), False) + yma = np.ma.array(y, mask=m) + + subw1 = w[1, :, :] + actual = average(yma, axis=(1, 2), weights=subw1) + desired = masked_array([2.25, 8.25], mask=[False, False]) + assert_almost_equal(actual, desired) + + # here the weights have the wrong shape for the specified axes + with pytest.raises( + ValueError, + match="Shape of weights must be consistent with " + "shape of a along specified axis"): + average(yma, axis=(0, 1, 2), weights=subw0) + + with pytest.raises( + ValueError, + match="Shape of weights must be consistent with " + "shape of a along specified axis"): + average(yma, axis=(0, 1), weights=subw1) + + # swapping the axes should be same as transposing weights + actual = average(yma, axis=(1, 0), weights=subw0) + desired = average(yma, axis=(0, 1), weights=subw0.T) + assert_almost_equal(actual, desired) + + def test_onintegers_with_mask(self): + # Test average on integers with mask + a = average(array([1, 2])) + assert_equal(a, 1.5) + a = average(array([1, 2, 3, 4], mask=[False, False, True, True])) + assert_equal(a, 1.5) + + def test_complex(self): + # Test with complex data. + # (Regression test for https://github.com/numpy/numpy/issues/2684) + mask = np.array([[0, 0, 0, 1, 0], + [0, 1, 0, 0, 0]], dtype=bool) + a = masked_array([[0, 1 + 2j, 3 + 4j, 5 + 6j, 7 + 8j], + [9j, 0 + 1j, 2 + 3j, 4 + 5j, 7 + 7j]], + mask=mask) + + av = average(a) + expected = np.average(a.compressed()) + assert_almost_equal(av.real, expected.real) + assert_almost_equal(av.imag, expected.imag) + + av0 = average(a, axis=0) + expected0 = average(a.real, axis=0) + average(a.imag, axis=0) * 1j + assert_almost_equal(av0.real, expected0.real) + assert_almost_equal(av0.imag, expected0.imag) + + av1 = average(a, axis=1) + expected1 = average(a.real, axis=1) + average(a.imag, axis=1) * 1j + assert_almost_equal(av1.real, expected1.real) + assert_almost_equal(av1.imag, expected1.imag) + + # Test with the 'weights' argument. + wts = np.array([[0.5, 1.0, 2.0, 1.0, 0.5], + [1.0, 1.0, 1.0, 1.0, 1.0]]) + wav = average(a, weights=wts) + expected = np.average(a.compressed(), weights=wts[~mask]) + assert_almost_equal(wav.real, expected.real) + assert_almost_equal(wav.imag, expected.imag) + + wav0 = average(a, weights=wts, axis=0) + expected0 = (average(a.real, weights=wts, axis=0) + + average(a.imag, weights=wts, axis=0) * 1j) + assert_almost_equal(wav0.real, expected0.real) + assert_almost_equal(wav0.imag, expected0.imag) + + wav1 = average(a, weights=wts, axis=1) + expected1 = (average(a.real, weights=wts, axis=1) + + average(a.imag, weights=wts, axis=1) * 1j) + assert_almost_equal(wav1.real, expected1.real) + assert_almost_equal(wav1.imag, expected1.imag) + + @pytest.mark.parametrize( + 'x, axis, expected_avg, weights, expected_wavg, expected_wsum', + [([1, 2, 3], None, [2.0], [3, 4, 1], [1.75], [8.0]), + ([[1, 2, 5], [1, 6, 11]], 0, [[1.0, 4.0, 8.0]], + [1, 3], [[1.0, 5.0, 9.5]], [[4, 4, 4]])], + ) + def test_basic_keepdims(self, x, axis, expected_avg, + weights, expected_wavg, expected_wsum): + avg = np.ma.average(x, axis=axis, keepdims=True) + assert avg.shape == np.shape(expected_avg) + assert_array_equal(avg, expected_avg) + + wavg = np.ma.average(x, axis=axis, weights=weights, keepdims=True) + assert wavg.shape == np.shape(expected_wavg) + assert_array_equal(wavg, expected_wavg) + + wavg, wsum = np.ma.average(x, axis=axis, weights=weights, + returned=True, keepdims=True) + assert wavg.shape == np.shape(expected_wavg) + assert_array_equal(wavg, expected_wavg) + assert wsum.shape == np.shape(expected_wsum) + assert_array_equal(wsum, expected_wsum) + + def test_masked_weights(self): + # Test with masked weights. + # (Regression test for https://github.com/numpy/numpy/issues/10438) + a = np.ma.array(np.arange(9).reshape(3, 3), + mask=[[1, 0, 0], [1, 0, 0], [0, 0, 0]]) + weights_unmasked = masked_array([5, 28, 31], mask=False) + weights_masked = masked_array([5, 28, 31], mask=[1, 0, 0]) + + avg_unmasked = average(a, axis=0, + weights=weights_unmasked, returned=False) + expected_unmasked = np.array([6.0, 5.21875, 6.21875]) + assert_almost_equal(avg_unmasked, expected_unmasked) + + avg_masked = average(a, axis=0, weights=weights_masked, returned=False) + expected_masked = np.array([6.0, 5.576271186440678, 6.576271186440678]) + assert_almost_equal(avg_masked, expected_masked) + + # weights should be masked if needed + # depending on the array mask. This is to avoid summing + # masked nan or other values that are not cancelled by a zero + a = np.ma.array([1.0, 2.0, 3.0, 4.0], + mask=[False, False, True, True]) + avg_unmasked = average(a, weights=[1, 1, 1, np.nan]) + + assert_almost_equal(avg_unmasked, 1.5) + + a = np.ma.array([ + [1.0, 2.0, 3.0, 4.0], + [5.0, 6.0, 7.0, 8.0], + [9.0, 1.0, 2.0, 3.0], + ], mask=[ + [False, True, True, False], + [True, False, True, True], + [True, False, True, False], + ]) + + avg_masked = np.ma.average(a, weights=[1, np.nan, 1], axis=0) + avg_expected = np.ma.array([1.0, np.nan, np.nan, 3.5], + mask=[False, True, True, False]) + + assert_almost_equal(avg_masked, avg_expected) + assert_equal(avg_masked.mask, avg_expected.mask) + + +class TestConcatenator: + # Tests for mr_, the equivalent of r_ for masked arrays. + + def test_1d(self): + # Tests mr_ on 1D arrays. + assert_array_equal(mr_[1, 2, 3, 4, 5, 6], array([1, 2, 3, 4, 5, 6])) + b = ones(5) + m = [1, 0, 0, 0, 0] + d = masked_array(b, mask=m) + c = mr_[d, 0, 0, d] + assert_(isinstance(c, MaskedArray)) + assert_array_equal(c, [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1]) + assert_array_equal(c.mask, mr_[m, 0, 0, m]) + + def test_2d(self): + # Tests mr_ on 2D arrays. + a_1 = np.random.rand(5, 5) + a_2 = np.random.rand(5, 5) + m_1 = np.round(np.random.rand(5, 5), 0) + m_2 = np.round(np.random.rand(5, 5), 0) + b_1 = masked_array(a_1, mask=m_1) + b_2 = masked_array(a_2, mask=m_2) + # append columns + d = mr_['1', b_1, b_2] + assert_(d.shape == (5, 10)) + assert_array_equal(d[:, :5], b_1) + assert_array_equal(d[:, 5:], b_2) + assert_array_equal(d.mask, np.r_['1', m_1, m_2]) + d = mr_[b_1, b_2] + assert_(d.shape == (10, 5)) + assert_array_equal(d[:5, :], b_1) + assert_array_equal(d[5:, :], b_2) + assert_array_equal(d.mask, np.r_[m_1, m_2]) + + def test_masked_constant(self): + actual = mr_[np.ma.masked, 1] + assert_equal(actual.mask, [True, False]) + assert_equal(actual.data[1], 1) + + actual = mr_[[1, 2], np.ma.masked] + assert_equal(actual.mask, [False, False, True]) + assert_equal(actual.data[:2], [1, 2]) + + +class TestNotMasked: + # Tests notmasked_edges and notmasked_contiguous. + + def test_edges(self): + # Tests unmasked_edges + data = masked_array(np.arange(25).reshape(5, 5), + mask=[[0, 0, 1, 0, 0], + [0, 0, 0, 1, 1], + [1, 1, 0, 0, 0], + [0, 0, 0, 0, 0], + [1, 1, 1, 0, 0]],) + test = notmasked_edges(data, None) + assert_equal(test, [0, 24]) + test = notmasked_edges(data, 0) + assert_equal(test[0], [(0, 0, 1, 0, 0), (0, 1, 2, 3, 4)]) + assert_equal(test[1], [(3, 3, 3, 4, 4), (0, 1, 2, 3, 4)]) + test = notmasked_edges(data, 1) + assert_equal(test[0], [(0, 1, 2, 3, 4), (0, 0, 2, 0, 3)]) + assert_equal(test[1], [(0, 1, 2, 3, 4), (4, 2, 4, 4, 4)]) + # + test = notmasked_edges(data.data, None) + assert_equal(test, [0, 24]) + test = notmasked_edges(data.data, 0) + assert_equal(test[0], [(0, 0, 0, 0, 0), (0, 1, 2, 3, 4)]) + assert_equal(test[1], [(4, 4, 4, 4, 4), (0, 1, 2, 3, 4)]) + test = notmasked_edges(data.data, -1) + assert_equal(test[0], [(0, 1, 2, 3, 4), (0, 0, 0, 0, 0)]) + assert_equal(test[1], [(0, 1, 2, 3, 4), (4, 4, 4, 4, 4)]) + # + data[-2] = masked + test = notmasked_edges(data, 0) + assert_equal(test[0], [(0, 0, 1, 0, 0), (0, 1, 2, 3, 4)]) + assert_equal(test[1], [(1, 1, 2, 4, 4), (0, 1, 2, 3, 4)]) + test = notmasked_edges(data, -1) + assert_equal(test[0], [(0, 1, 2, 4), (0, 0, 2, 3)]) + assert_equal(test[1], [(0, 1, 2, 4), (4, 2, 4, 4)]) + + def test_contiguous(self): + # Tests notmasked_contiguous + a = masked_array(np.arange(24).reshape(3, 8), + mask=[[0, 0, 0, 0, 1, 1, 1, 1], + [1, 1, 1, 1, 1, 1, 1, 1], + [0, 0, 0, 0, 0, 0, 1, 0]]) + tmp = notmasked_contiguous(a, None) + assert_equal(tmp, [ + slice(0, 4, None), + slice(16, 22, None), + slice(23, 24, None) + ]) + + tmp = notmasked_contiguous(a, 0) + assert_equal(tmp, [ + [slice(0, 1, None), slice(2, 3, None)], + [slice(0, 1, None), slice(2, 3, None)], + [slice(0, 1, None), slice(2, 3, None)], + [slice(0, 1, None), slice(2, 3, None)], + [slice(2, 3, None)], + [slice(2, 3, None)], + [], + [slice(2, 3, None)] + ]) + # + tmp = notmasked_contiguous(a, 1) + assert_equal(tmp, [ + [slice(0, 4, None)], + [], + [slice(0, 6, None), slice(7, 8, None)] + ]) + + +class TestCompressFunctions: + + def test_compress_nd(self): + # Tests compress_nd + x = np.array(list(range(3 * 4 * 5))).reshape(3, 4, 5) + m = np.zeros((3, 4, 5)).astype(bool) + m[1, 1, 1] = True + x = array(x, mask=m) + + # axis=None + a = compress_nd(x) + assert_equal(a, [[[ 0, 2, 3, 4], + [10, 12, 13, 14], + [15, 17, 18, 19]], + [[40, 42, 43, 44], + [50, 52, 53, 54], + [55, 57, 58, 59]]]) + + # axis=0 + a = compress_nd(x, 0) + assert_equal(a, [[[ 0, 1, 2, 3, 4], + [ 5, 6, 7, 8, 9], + [10, 11, 12, 13, 14], + [15, 16, 17, 18, 19]], + [[40, 41, 42, 43, 44], + [45, 46, 47, 48, 49], + [50, 51, 52, 53, 54], + [55, 56, 57, 58, 59]]]) + + # axis=1 + a = compress_nd(x, 1) + assert_equal(a, [[[ 0, 1, 2, 3, 4], + [10, 11, 12, 13, 14], + [15, 16, 17, 18, 19]], + [[20, 21, 22, 23, 24], + [30, 31, 32, 33, 34], + [35, 36, 37, 38, 39]], + [[40, 41, 42, 43, 44], + [50, 51, 52, 53, 54], + [55, 56, 57, 58, 59]]]) + + a2 = compress_nd(x, (1,)) + a3 = compress_nd(x, -2) + a4 = compress_nd(x, (-2,)) + assert_equal(a, a2) + assert_equal(a, a3) + assert_equal(a, a4) + + # axis=2 + a = compress_nd(x, 2) + assert_equal(a, [[[ 0, 2, 3, 4], + [ 5, 7, 8, 9], + [10, 12, 13, 14], + [15, 17, 18, 19]], + [[20, 22, 23, 24], + [25, 27, 28, 29], + [30, 32, 33, 34], + [35, 37, 38, 39]], + [[40, 42, 43, 44], + [45, 47, 48, 49], + [50, 52, 53, 54], + [55, 57, 58, 59]]]) + + a2 = compress_nd(x, (2,)) + a3 = compress_nd(x, -1) + a4 = compress_nd(x, (-1,)) + assert_equal(a, a2) + assert_equal(a, a3) + assert_equal(a, a4) + + # axis=(0, 1) + a = compress_nd(x, (0, 1)) + assert_equal(a, [[[ 0, 1, 2, 3, 4], + [10, 11, 12, 13, 14], + [15, 16, 17, 18, 19]], + [[40, 41, 42, 43, 44], + [50, 51, 52, 53, 54], + [55, 56, 57, 58, 59]]]) + a2 = compress_nd(x, (0, -2)) + assert_equal(a, a2) + + # axis=(1, 2) + a = compress_nd(x, (1, 2)) + assert_equal(a, [[[ 0, 2, 3, 4], + [10, 12, 13, 14], + [15, 17, 18, 19]], + [[20, 22, 23, 24], + [30, 32, 33, 34], + [35, 37, 38, 39]], + [[40, 42, 43, 44], + [50, 52, 53, 54], + [55, 57, 58, 59]]]) + + a2 = compress_nd(x, (-2, 2)) + a3 = compress_nd(x, (1, -1)) + a4 = compress_nd(x, (-2, -1)) + assert_equal(a, a2) + assert_equal(a, a3) + assert_equal(a, a4) + + # axis=(0, 2) + a = compress_nd(x, (0, 2)) + assert_equal(a, [[[ 0, 2, 3, 4], + [ 5, 7, 8, 9], + [10, 12, 13, 14], + [15, 17, 18, 19]], + [[40, 42, 43, 44], + [45, 47, 48, 49], + [50, 52, 53, 54], + [55, 57, 58, 59]]]) + + a2 = compress_nd(x, (0, -1)) + assert_equal(a, a2) + + def test_compress_rowcols(self): + # Tests compress_rowcols + x = array(np.arange(9).reshape(3, 3), + mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]]) + assert_equal(compress_rowcols(x), [[4, 5], [7, 8]]) + assert_equal(compress_rowcols(x, 0), [[3, 4, 5], [6, 7, 8]]) + assert_equal(compress_rowcols(x, 1), [[1, 2], [4, 5], [7, 8]]) + x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]]) + assert_equal(compress_rowcols(x), [[0, 2], [6, 8]]) + assert_equal(compress_rowcols(x, 0), [[0, 1, 2], [6, 7, 8]]) + assert_equal(compress_rowcols(x, 1), [[0, 2], [3, 5], [6, 8]]) + x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]]) + assert_equal(compress_rowcols(x), [[8]]) + assert_equal(compress_rowcols(x, 0), [[6, 7, 8]]) + assert_equal(compress_rowcols(x, 1,), [[2], [5], [8]]) + x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]]) + assert_equal(compress_rowcols(x).size, 0) + assert_equal(compress_rowcols(x, 0).size, 0) + assert_equal(compress_rowcols(x, 1).size, 0) + + def test_mask_rowcols(self): + # Tests mask_rowcols. + x = array(np.arange(9).reshape(3, 3), + mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]]) + assert_equal(mask_rowcols(x).mask, + [[1, 1, 1], [1, 0, 0], [1, 0, 0]]) + assert_equal(mask_rowcols(x, 0).mask, + [[1, 1, 1], [0, 0, 0], [0, 0, 0]]) + assert_equal(mask_rowcols(x, 1).mask, + [[1, 0, 0], [1, 0, 0], [1, 0, 0]]) + x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]]) + assert_equal(mask_rowcols(x).mask, + [[0, 1, 0], [1, 1, 1], [0, 1, 0]]) + assert_equal(mask_rowcols(x, 0).mask, + [[0, 0, 0], [1, 1, 1], [0, 0, 0]]) + assert_equal(mask_rowcols(x, 1).mask, + [[0, 1, 0], [0, 1, 0], [0, 1, 0]]) + x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]]) + assert_equal(mask_rowcols(x).mask, + [[1, 1, 1], [1, 1, 1], [1, 1, 0]]) + assert_equal(mask_rowcols(x, 0).mask, + [[1, 1, 1], [1, 1, 1], [0, 0, 0]]) + assert_equal(mask_rowcols(x, 1,).mask, + [[1, 1, 0], [1, 1, 0], [1, 1, 0]]) + x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]]) + assert_(mask_rowcols(x).all() is masked) + assert_(mask_rowcols(x, 0).all() is masked) + assert_(mask_rowcols(x, 1).all() is masked) + assert_(mask_rowcols(x).mask.all()) + assert_(mask_rowcols(x, 0).mask.all()) + assert_(mask_rowcols(x, 1).mask.all()) + + @pytest.mark.parametrize("axis", [None, 0, 1]) + @pytest.mark.parametrize(["func", "rowcols_axis"], + [(np.ma.mask_rows, 0), (np.ma.mask_cols, 1)]) + def test_mask_row_cols_axis_deprecation(self, axis, func, rowcols_axis): + # Test deprecation of the axis argument to `mask_rows` and `mask_cols` + x = array(np.arange(9).reshape(3, 3), + mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]]) + + with assert_warns(DeprecationWarning): + res = func(x, axis=axis) + assert_equal(res, mask_rowcols(x, rowcols_axis)) + + def test_dot(self): + # Tests dot product + n = np.arange(1, 7) + # + m = [1, 0, 0, 0, 0, 0] + a = masked_array(n, mask=m).reshape(2, 3) + b = masked_array(n, mask=m).reshape(3, 2) + c = dot(a, b, strict=True) + assert_equal(c.mask, [[1, 1], [1, 0]]) + c = dot(b, a, strict=True) + assert_equal(c.mask, [[1, 1, 1], [1, 0, 0], [1, 0, 0]]) + c = dot(a, b, strict=False) + assert_equal(c, np.dot(a.filled(0), b.filled(0))) + c = dot(b, a, strict=False) + assert_equal(c, np.dot(b.filled(0), a.filled(0))) + # + m = [0, 0, 0, 0, 0, 1] + a = masked_array(n, mask=m).reshape(2, 3) + b = masked_array(n, mask=m).reshape(3, 2) + c = dot(a, b, strict=True) + assert_equal(c.mask, [[0, 1], [1, 1]]) + c = dot(b, a, strict=True) + assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [1, 1, 1]]) + c = dot(a, b, strict=False) + assert_equal(c, np.dot(a.filled(0), b.filled(0))) + assert_equal(c, dot(a, b)) + c = dot(b, a, strict=False) + assert_equal(c, np.dot(b.filled(0), a.filled(0))) + # + m = [0, 0, 0, 0, 0, 0] + a = masked_array(n, mask=m).reshape(2, 3) + b = masked_array(n, mask=m).reshape(3, 2) + c = dot(a, b) + assert_equal(c.mask, nomask) + c = dot(b, a) + assert_equal(c.mask, nomask) + # + a = masked_array(n, mask=[1, 0, 0, 0, 0, 0]).reshape(2, 3) + b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2) + c = dot(a, b, strict=True) + assert_equal(c.mask, [[1, 1], [0, 0]]) + c = dot(a, b, strict=False) + assert_equal(c, np.dot(a.filled(0), b.filled(0))) + c = dot(b, a, strict=True) + assert_equal(c.mask, [[1, 0, 0], [1, 0, 0], [1, 0, 0]]) + c = dot(b, a, strict=False) + assert_equal(c, np.dot(b.filled(0), a.filled(0))) + # + a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3) + b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2) + c = dot(a, b, strict=True) + assert_equal(c.mask, [[0, 0], [1, 1]]) + c = dot(a, b) + assert_equal(c, np.dot(a.filled(0), b.filled(0))) + c = dot(b, a, strict=True) + assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [0, 0, 1]]) + c = dot(b, a, strict=False) + assert_equal(c, np.dot(b.filled(0), a.filled(0))) + # + a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3) + b = masked_array(n, mask=[0, 0, 1, 0, 0, 0]).reshape(3, 2) + c = dot(a, b, strict=True) + assert_equal(c.mask, [[1, 0], [1, 1]]) + c = dot(a, b, strict=False) + assert_equal(c, np.dot(a.filled(0), b.filled(0))) + c = dot(b, a, strict=True) + assert_equal(c.mask, [[0, 0, 1], [1, 1, 1], [0, 0, 1]]) + c = dot(b, a, strict=False) + assert_equal(c, np.dot(b.filled(0), a.filled(0))) + # + a = masked_array(np.arange(8).reshape(2, 2, 2), + mask=[[[1, 0], [0, 0]], [[0, 0], [0, 0]]]) + b = masked_array(np.arange(8).reshape(2, 2, 2), + mask=[[[0, 0], [0, 0]], [[0, 0], [0, 1]]]) + c = dot(a, b, strict=True) + assert_equal(c.mask, + [[[[1, 1], [1, 1]], [[0, 0], [0, 1]]], + [[[0, 0], [0, 1]], [[0, 0], [0, 1]]]]) + c = dot(a, b, strict=False) + assert_equal(c.mask, + [[[[0, 0], [0, 1]], [[0, 0], [0, 0]]], + [[[0, 0], [0, 0]], [[0, 0], [0, 0]]]]) + c = dot(b, a, strict=True) + assert_equal(c.mask, + [[[[1, 0], [0, 0]], [[1, 0], [0, 0]]], + [[[1, 0], [0, 0]], [[1, 1], [1, 1]]]]) + c = dot(b, a, strict=False) + assert_equal(c.mask, + [[[[0, 0], [0, 0]], [[0, 0], [0, 0]]], + [[[0, 0], [0, 0]], [[1, 0], [0, 0]]]]) + # + a = masked_array(np.arange(8).reshape(2, 2, 2), + mask=[[[1, 0], [0, 0]], [[0, 0], [0, 0]]]) + b = 5. + c = dot(a, b, strict=True) + assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]]) + c = dot(a, b, strict=False) + assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]]) + c = dot(b, a, strict=True) + assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]]) + c = dot(b, a, strict=False) + assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]]) + # + a = masked_array(np.arange(8).reshape(2, 2, 2), + mask=[[[1, 0], [0, 0]], [[0, 0], [0, 0]]]) + b = masked_array(np.arange(2), mask=[0, 1]) + c = dot(a, b, strict=True) + assert_equal(c.mask, [[1, 1], [1, 1]]) + c = dot(a, b, strict=False) + assert_equal(c.mask, [[1, 0], [0, 0]]) + + def test_dot_returns_maskedarray(self): + # See gh-6611 + a = np.eye(3) + b = array(a) + assert_(type(dot(a, a)) is MaskedArray) + assert_(type(dot(a, b)) is MaskedArray) + assert_(type(dot(b, a)) is MaskedArray) + assert_(type(dot(b, b)) is MaskedArray) + + def test_dot_out(self): + a = array(np.eye(3)) + out = array(np.zeros((3, 3))) + res = dot(a, a, out=out) + assert_(res is out) + assert_equal(a, res) + + +class TestApplyAlongAxis: + # Tests 2D functions + def test_3d(self): + a = arange(12.).reshape(2, 2, 3) + + def myfunc(b): + return b[1] + + xa = apply_along_axis(myfunc, 2, a) + assert_equal(xa, [[1, 4], [7, 10]]) + + # Tests kwargs functions + def test_3d_kwargs(self): + a = arange(12).reshape(2, 2, 3) + + def myfunc(b, offset=0): + return b[1 + offset] + + xa = apply_along_axis(myfunc, 2, a, offset=1) + assert_equal(xa, [[2, 5], [8, 11]]) + + +class TestApplyOverAxes: + # Tests apply_over_axes + def test_basic(self): + a = arange(24).reshape(2, 3, 4) + test = apply_over_axes(np.sum, a, [0, 2]) + ctrl = np.array([[[60], [92], [124]]]) + assert_equal(test, ctrl) + a[(a % 2).astype(bool)] = masked + test = apply_over_axes(np.sum, a, [0, 2]) + ctrl = np.array([[[28], [44], [60]]]) + assert_equal(test, ctrl) + + +class TestMedian: + def test_pytype(self): + r = np.ma.median([[np.inf, np.inf], [np.inf, np.inf]], axis=-1) + assert_equal(r, np.inf) + + def test_inf(self): + # test that even which computes handles inf / x = masked + r = np.ma.median(np.ma.masked_array([[np.inf, np.inf], + [np.inf, np.inf]]), axis=-1) + assert_equal(r, np.inf) + r = np.ma.median(np.ma.masked_array([[np.inf, np.inf], + [np.inf, np.inf]]), axis=None) + assert_equal(r, np.inf) + # all masked + r = np.ma.median(np.ma.masked_array([[np.inf, np.inf], + [np.inf, np.inf]], mask=True), + axis=-1) + assert_equal(r.mask, True) + r = np.ma.median(np.ma.masked_array([[np.inf, np.inf], + [np.inf, np.inf]], mask=True), + axis=None) + assert_equal(r.mask, True) + + def test_non_masked(self): + x = np.arange(9) + assert_equal(np.ma.median(x), 4.) + assert_(type(np.ma.median(x)) is not MaskedArray) + x = range(8) + assert_equal(np.ma.median(x), 3.5) + assert_(type(np.ma.median(x)) is not MaskedArray) + x = 5 + assert_equal(np.ma.median(x), 5.) + assert_(type(np.ma.median(x)) is not MaskedArray) + # integer + x = np.arange(9 * 8).reshape(9, 8) + assert_equal(np.ma.median(x, axis=0), np.median(x, axis=0)) + assert_equal(np.ma.median(x, axis=1), np.median(x, axis=1)) + assert_(np.ma.median(x, axis=1) is not MaskedArray) + # float + x = np.arange(9 * 8.).reshape(9, 8) + assert_equal(np.ma.median(x, axis=0), np.median(x, axis=0)) + assert_equal(np.ma.median(x, axis=1), np.median(x, axis=1)) + assert_(np.ma.median(x, axis=1) is not MaskedArray) + + def test_docstring_examples(self): + "test the examples given in the docstring of ma.median" + x = array(np.arange(8), mask=[0] * 4 + [1] * 4) + assert_equal(np.ma.median(x), 1.5) + assert_equal(np.ma.median(x).shape, (), "shape mismatch") + assert_(type(np.ma.median(x)) is not MaskedArray) + x = array(np.arange(10).reshape(2, 5), mask=[0] * 6 + [1] * 4) + assert_equal(np.ma.median(x), 2.5) + assert_equal(np.ma.median(x).shape, (), "shape mismatch") + assert_(type(np.ma.median(x)) is not MaskedArray) + ma_x = np.ma.median(x, axis=-1, overwrite_input=True) + assert_equal(ma_x, [2., 5.]) + assert_equal(ma_x.shape, (2,), "shape mismatch") + assert_(type(ma_x) is MaskedArray) + + def test_axis_argument_errors(self): + msg = "mask = %s, ndim = %s, axis = %s, overwrite_input = %s" + for ndmin in range(5): + for mask in [False, True]: + x = array(1, ndmin=ndmin, mask=mask) + + # Valid axis values should not raise exception + args = itertools.product(range(-ndmin, ndmin), [False, True]) + for axis, over in args: + try: + np.ma.median(x, axis=axis, overwrite_input=over) + except Exception: + raise AssertionError(msg % (mask, ndmin, axis, over)) + + # Invalid axis values should raise exception + args = itertools.product([-(ndmin + 1), ndmin], [False, True]) + for axis, over in args: + try: + np.ma.median(x, axis=axis, overwrite_input=over) + except np.exceptions.AxisError: + pass + else: + raise AssertionError(msg % (mask, ndmin, axis, over)) + + def test_masked_0d(self): + # Check values + x = array(1, mask=False) + assert_equal(np.ma.median(x), 1) + x = array(1, mask=True) + assert_equal(np.ma.median(x), np.ma.masked) + + def test_masked_1d(self): + x = array(np.arange(5), mask=True) + assert_equal(np.ma.median(x), np.ma.masked) + assert_equal(np.ma.median(x).shape, (), "shape mismatch") + assert_(type(np.ma.median(x)) is np.ma.core.MaskedConstant) + x = array(np.arange(5), mask=False) + assert_equal(np.ma.median(x), 2.) + assert_equal(np.ma.median(x).shape, (), "shape mismatch") + assert_(type(np.ma.median(x)) is not MaskedArray) + x = array(np.arange(5), mask=[0, 1, 0, 0, 0]) + assert_equal(np.ma.median(x), 2.5) + assert_equal(np.ma.median(x).shape, (), "shape mismatch") + assert_(type(np.ma.median(x)) is not MaskedArray) + x = array(np.arange(5), mask=[0, 1, 1, 1, 1]) + assert_equal(np.ma.median(x), 0.) + assert_equal(np.ma.median(x).shape, (), "shape mismatch") + assert_(type(np.ma.median(x)) is not MaskedArray) + # integer + x = array(np.arange(5), mask=[0, 1, 1, 0, 0]) + assert_equal(np.ma.median(x), 3.) + assert_equal(np.ma.median(x).shape, (), "shape mismatch") + assert_(type(np.ma.median(x)) is not MaskedArray) + # float + x = array(np.arange(5.), mask=[0, 1, 1, 0, 0]) + assert_equal(np.ma.median(x), 3.) + assert_equal(np.ma.median(x).shape, (), "shape mismatch") + assert_(type(np.ma.median(x)) is not MaskedArray) + # integer + x = array(np.arange(6), mask=[0, 1, 1, 1, 1, 0]) + assert_equal(np.ma.median(x), 2.5) + assert_equal(np.ma.median(x).shape, (), "shape mismatch") + assert_(type(np.ma.median(x)) is not MaskedArray) + # float + x = array(np.arange(6.), mask=[0, 1, 1, 1, 1, 0]) + assert_equal(np.ma.median(x), 2.5) + assert_equal(np.ma.median(x).shape, (), "shape mismatch") + assert_(type(np.ma.median(x)) is not MaskedArray) + + def test_1d_shape_consistency(self): + assert_equal(np.ma.median(array([1, 2, 3], mask=[0, 0, 0])).shape, + np.ma.median(array([1, 2, 3], mask=[0, 1, 0])).shape) + + def test_2d(self): + # Tests median w/ 2D + (n, p) = (101, 30) + x = masked_array(np.linspace(-1., 1., n),) + x[:10] = x[-10:] = masked + z = masked_array(np.empty((n, p), dtype=float)) + z[:, 0] = x[:] + idx = np.arange(len(x)) + for i in range(1, p): + np.random.shuffle(idx) + z[:, i] = x[idx] + assert_equal(median(z[:, 0]), 0) + assert_equal(median(z), 0) + assert_equal(median(z, axis=0), np.zeros(p)) + assert_equal(median(z.T, axis=1), np.zeros(p)) + + def test_2d_waxis(self): + # Tests median w/ 2D arrays and different axis. + x = masked_array(np.arange(30).reshape(10, 3)) + x[:3] = x[-3:] = masked + assert_equal(median(x), 14.5) + assert_(type(np.ma.median(x)) is not MaskedArray) + assert_equal(median(x, axis=0), [13.5, 14.5, 15.5]) + assert_(type(np.ma.median(x, axis=0)) is MaskedArray) + assert_equal(median(x, axis=1), [0, 0, 0, 10, 13, 16, 19, 0, 0, 0]) + assert_(type(np.ma.median(x, axis=1)) is MaskedArray) + assert_equal(median(x, axis=1).mask, [1, 1, 1, 0, 0, 0, 0, 1, 1, 1]) + + def test_3d(self): + # Tests median w/ 3D + x = np.ma.arange(24).reshape(3, 4, 2) + x[x % 3 == 0] = masked + assert_equal(median(x, 0), [[12, 9], [6, 15], [12, 9], [18, 15]]) + x.shape = (4, 3, 2) + assert_equal(median(x, 0), [[99, 10], [11, 99], [13, 14]]) + x = np.ma.arange(24).reshape(4, 3, 2) + x[x % 5 == 0] = masked + assert_equal(median(x, 0), [[12, 10], [8, 9], [16, 17]]) + + def test_neg_axis(self): + x = masked_array(np.arange(30).reshape(10, 3)) + x[:3] = x[-3:] = masked + assert_equal(median(x, axis=-1), median(x, axis=1)) + + def test_out_1d(self): + # integer float even odd + for v in (30, 30., 31, 31.): + x = masked_array(np.arange(v)) + x[:3] = x[-3:] = masked + out = masked_array(np.ones(())) + r = median(x, out=out) + if v == 30: + assert_equal(out, 14.5) + else: + assert_equal(out, 15.) + assert_(r is out) + assert_(type(r) is MaskedArray) + + def test_out(self): + # integer float even odd + for v in (40, 40., 30, 30.): + x = masked_array(np.arange(v).reshape(10, -1)) + x[:3] = x[-3:] = masked + out = masked_array(np.ones(10)) + r = median(x, axis=1, out=out) + if v == 30: + e = masked_array([0.] * 3 + [10, 13, 16, 19] + [0.] * 3, + mask=[True] * 3 + [False] * 4 + [True] * 3) + else: + e = masked_array([0.] * 3 + [13.5, 17.5, 21.5, 25.5] + [0.] * 3, + mask=[True] * 3 + [False] * 4 + [True] * 3) + assert_equal(r, e) + assert_(r is out) + assert_(type(r) is MaskedArray) + + @pytest.mark.parametrize( + argnames='axis', + argvalues=[ + None, + 1, + (1, ), + (0, 1), + (-3, -1), + ] + ) + def test_keepdims_out(self, axis): + mask = np.zeros((3, 5, 7, 11), dtype=bool) + # Randomly set some elements to True: + w = np.random.random((4, 200)) * np.array(mask.shape)[:, None] + w = w.astype(np.intp) + mask[tuple(w)] = np.nan + d = masked_array(np.ones(mask.shape), mask=mask) + if axis is None: + shape_out = (1,) * d.ndim + else: + axis_norm = normalize_axis_tuple(axis, d.ndim) + shape_out = tuple( + 1 if i in axis_norm else d.shape[i] for i in range(d.ndim)) + out = masked_array(np.empty(shape_out)) + result = median(d, axis=axis, keepdims=True, out=out) + assert result is out + assert_equal(result.shape, shape_out) + + def test_single_non_masked_value_on_axis(self): + data = [[1., 0.], + [0., 3.], + [0., 0.]] + masked_arr = np.ma.masked_equal(data, 0) + expected = [1., 3.] + assert_array_equal(np.ma.median(masked_arr, axis=0), + expected) + + def test_nan(self): + for mask in (False, np.zeros(6, dtype=bool)): + dm = np.ma.array([[1, np.nan, 3], [1, 2, 3]]) + dm.mask = mask + + # scalar result + r = np.ma.median(dm, axis=None) + assert_(np.isscalar(r)) + assert_array_equal(r, np.nan) + r = np.ma.median(dm.ravel(), axis=0) + assert_(np.isscalar(r)) + assert_array_equal(r, np.nan) + + r = np.ma.median(dm, axis=0) + assert_equal(type(r), MaskedArray) + assert_array_equal(r, [1, np.nan, 3]) + r = np.ma.median(dm, axis=1) + assert_equal(type(r), MaskedArray) + assert_array_equal(r, [np.nan, 2]) + r = np.ma.median(dm, axis=-1) + assert_equal(type(r), MaskedArray) + assert_array_equal(r, [np.nan, 2]) + + dm = np.ma.array([[1, np.nan, 3], [1, 2, 3]]) + dm[:, 2] = np.ma.masked + assert_array_equal(np.ma.median(dm, axis=None), np.nan) + assert_array_equal(np.ma.median(dm, axis=0), [1, np.nan, 3]) + assert_array_equal(np.ma.median(dm, axis=1), [np.nan, 1.5]) + + def test_out_nan(self): + o = np.ma.masked_array(np.zeros((4,))) + d = np.ma.masked_array(np.ones((3, 4))) + d[2, 1] = np.nan + d[2, 2] = np.ma.masked + assert_equal(np.ma.median(d, 0, out=o), o) + o = np.ma.masked_array(np.zeros((3,))) + assert_equal(np.ma.median(d, 1, out=o), o) + o = np.ma.masked_array(np.zeros(())) + assert_equal(np.ma.median(d, out=o), o) + + def test_nan_behavior(self): + a = np.ma.masked_array(np.arange(24, dtype=float)) + a[::3] = np.ma.masked + a[2] = np.nan + assert_array_equal(np.ma.median(a), np.nan) + assert_array_equal(np.ma.median(a, axis=0), np.nan) + + a = np.ma.masked_array(np.arange(24, dtype=float).reshape(2, 3, 4)) + a.mask = np.arange(a.size) % 2 == 1 + aorig = a.copy() + a[1, 2, 3] = np.nan + a[1, 1, 2] = np.nan + + # no axis + assert_array_equal(np.ma.median(a), np.nan) + assert_(np.isscalar(np.ma.median(a))) + + # axis0 + b = np.ma.median(aorig, axis=0) + b[2, 3] = np.nan + b[1, 2] = np.nan + assert_equal(np.ma.median(a, 0), b) + + # axis1 + b = np.ma.median(aorig, axis=1) + b[1, 3] = np.nan + b[1, 2] = np.nan + assert_equal(np.ma.median(a, 1), b) + + # axis02 + b = np.ma.median(aorig, axis=(0, 2)) + b[1] = np.nan + b[2] = np.nan + assert_equal(np.ma.median(a, (0, 2)), b) + + def test_ambigous_fill(self): + # 255 is max value, used as filler for sort + a = np.array([[3, 3, 255], [3, 3, 255]], dtype=np.uint8) + a = np.ma.masked_array(a, mask=a == 3) + assert_array_equal(np.ma.median(a, axis=1), 255) + assert_array_equal(np.ma.median(a, axis=1).mask, False) + assert_array_equal(np.ma.median(a, axis=0), a[0]) + assert_array_equal(np.ma.median(a), 255) + + def test_special(self): + for inf in [np.inf, -np.inf]: + a = np.array([[inf, np.nan], [np.nan, np.nan]]) + a = np.ma.masked_array(a, mask=np.isnan(a)) + assert_equal(np.ma.median(a, axis=0), [inf, np.nan]) + assert_equal(np.ma.median(a, axis=1), [inf, np.nan]) + assert_equal(np.ma.median(a), inf) + + a = np.array([[np.nan, np.nan, inf], [np.nan, np.nan, inf]]) + a = np.ma.masked_array(a, mask=np.isnan(a)) + assert_array_equal(np.ma.median(a, axis=1), inf) + assert_array_equal(np.ma.median(a, axis=1).mask, False) + assert_array_equal(np.ma.median(a, axis=0), a[0]) + assert_array_equal(np.ma.median(a), inf) + + # no mask + a = np.array([[inf, inf], [inf, inf]]) + assert_equal(np.ma.median(a), inf) + assert_equal(np.ma.median(a, axis=0), inf) + assert_equal(np.ma.median(a, axis=1), inf) + + a = np.array([[inf, 7, -inf, -9], + [-10, np.nan, np.nan, 5], + [4, np.nan, np.nan, inf]], + dtype=np.float32) + a = np.ma.masked_array(a, mask=np.isnan(a)) + if inf > 0: + assert_equal(np.ma.median(a, axis=0), [4., 7., -inf, 5.]) + assert_equal(np.ma.median(a), 4.5) + else: + assert_equal(np.ma.median(a, axis=0), [-10., 7., -inf, -9.]) + assert_equal(np.ma.median(a), -2.5) + assert_equal(np.ma.median(a, axis=1), [-1., -2.5, inf]) + + for i in range(10): + for j in range(1, 10): + a = np.array([([np.nan] * i) + ([inf] * j)] * 2) + a = np.ma.masked_array(a, mask=np.isnan(a)) + assert_equal(np.ma.median(a), inf) + assert_equal(np.ma.median(a, axis=1), inf) + assert_equal(np.ma.median(a, axis=0), + ([np.nan] * i) + [inf] * j) + + def test_empty(self): + # empty arrays + a = np.ma.masked_array(np.array([], dtype=float)) + with suppress_warnings() as w: + w.record(RuntimeWarning) + assert_array_equal(np.ma.median(a), np.nan) + assert_(w.log[0].category is RuntimeWarning) + + # multiple dimensions + a = np.ma.masked_array(np.array([], dtype=float, ndmin=3)) + # no axis + with suppress_warnings() as w: + w.record(RuntimeWarning) + warnings.filterwarnings('always', '', RuntimeWarning) + assert_array_equal(np.ma.median(a), np.nan) + assert_(w.log[0].category is RuntimeWarning) + + # axis 0 and 1 + b = np.ma.masked_array(np.array([], dtype=float, ndmin=2)) + assert_equal(np.ma.median(a, axis=0), b) + assert_equal(np.ma.median(a, axis=1), b) + + # axis 2 + b = np.ma.masked_array(np.array(np.nan, dtype=float, ndmin=2)) + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', '', RuntimeWarning) + assert_equal(np.ma.median(a, axis=2), b) + assert_(w[0].category is RuntimeWarning) + + def test_object(self): + o = np.ma.masked_array(np.arange(7.)) + assert_(type(np.ma.median(o.astype(object))), float) + o[2] = np.nan + assert_(type(np.ma.median(o.astype(object))), float) + + +class TestCov: + + def setup_method(self): + self.data = array(np.random.rand(12)) + + def test_covhelper(self): + x = self.data + # Test not mask output type is a float. + assert_(_covhelper(x, rowvar=True)[1].dtype, np.float32) + assert_(_covhelper(x, y=x, rowvar=False)[1].dtype, np.float32) + # Test not mask output is equal after casting to float. + mask = x > 0.5 + assert_array_equal( + _covhelper( + np.ma.masked_array(x, mask), rowvar=True + )[1].astype(bool), + ~mask.reshape(1, -1), + ) + assert_array_equal( + _covhelper( + np.ma.masked_array(x, mask), y=x, rowvar=False + )[1].astype(bool), + np.vstack((~mask, ~mask)), + ) + + def test_1d_without_missing(self): + # Test cov on 1D variable w/o missing values + x = self.data + assert_almost_equal(np.cov(x), cov(x)) + assert_almost_equal(np.cov(x, rowvar=False), cov(x, rowvar=False)) + assert_almost_equal(np.cov(x, rowvar=False, bias=True), + cov(x, rowvar=False, bias=True)) + + def test_2d_without_missing(self): + # Test cov on 1 2D variable w/o missing values + x = self.data.reshape(3, 4) + assert_almost_equal(np.cov(x), cov(x)) + assert_almost_equal(np.cov(x, rowvar=False), cov(x, rowvar=False)) + assert_almost_equal(np.cov(x, rowvar=False, bias=True), + cov(x, rowvar=False, bias=True)) + + def test_1d_with_missing(self): + # Test cov 1 1D variable w/missing values + x = self.data + x[-1] = masked + x -= x.mean() + nx = x.compressed() + assert_almost_equal(np.cov(nx), cov(x)) + assert_almost_equal(np.cov(nx, rowvar=False), cov(x, rowvar=False)) + assert_almost_equal(np.cov(nx, rowvar=False, bias=True), + cov(x, rowvar=False, bias=True)) + # + try: + cov(x, allow_masked=False) + except ValueError: + pass + # + # 2 1D variables w/ missing values + nx = x[1:-1] + assert_almost_equal(np.cov(nx, nx[::-1]), cov(x, x[::-1])) + assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False), + cov(x, x[::-1], rowvar=False)) + assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False, bias=True), + cov(x, x[::-1], rowvar=False, bias=True)) + + def test_2d_with_missing(self): + # Test cov on 2D variable w/ missing value + x = self.data + x[-1] = masked + x = x.reshape(3, 4) + valid = np.logical_not(getmaskarray(x)).astype(int) + frac = np.dot(valid, valid.T) + xf = (x - x.mean(1)[:, None]).filled(0) + assert_almost_equal(cov(x), + np.cov(xf) * (x.shape[1] - 1) / (frac - 1.)) + assert_almost_equal(cov(x, bias=True), + np.cov(xf, bias=True) * x.shape[1] / frac) + frac = np.dot(valid.T, valid) + xf = (x - x.mean(0)).filled(0) + assert_almost_equal(cov(x, rowvar=False), + (np.cov(xf, rowvar=False) * + (x.shape[0] - 1) / (frac - 1.))) + assert_almost_equal(cov(x, rowvar=False, bias=True), + (np.cov(xf, rowvar=False, bias=True) * + x.shape[0] / frac)) + + +class TestCorrcoef: + + def setup_method(self): + self.data = array(np.random.rand(12)) + self.data2 = array(np.random.rand(12)) + + def test_ddof(self): + # ddof raises DeprecationWarning + x, y = self.data, self.data2 + expected = np.corrcoef(x) + expected2 = np.corrcoef(x, y) + with suppress_warnings() as sup: + warnings.simplefilter("always") + assert_warns(DeprecationWarning, corrcoef, x, ddof=-1) + sup.filter(DeprecationWarning, "bias and ddof have no effect") + # ddof has no or negligible effect on the function + assert_almost_equal(np.corrcoef(x, ddof=0), corrcoef(x, ddof=0)) + assert_almost_equal(corrcoef(x, ddof=-1), expected) + assert_almost_equal(corrcoef(x, y, ddof=-1), expected2) + assert_almost_equal(corrcoef(x, ddof=3), expected) + assert_almost_equal(corrcoef(x, y, ddof=3), expected2) + + def test_bias(self): + x, y = self.data, self.data2 + expected = np.corrcoef(x) + # bias raises DeprecationWarning + with suppress_warnings() as sup: + warnings.simplefilter("always") + assert_warns(DeprecationWarning, corrcoef, x, y, True, False) + assert_warns(DeprecationWarning, corrcoef, x, y, True, True) + assert_warns(DeprecationWarning, corrcoef, x, bias=False) + sup.filter(DeprecationWarning, "bias and ddof have no effect") + # bias has no or negligible effect on the function + assert_almost_equal(corrcoef(x, bias=1), expected) + + def test_1d_without_missing(self): + # Test cov on 1D variable w/o missing values + x = self.data + assert_almost_equal(np.corrcoef(x), corrcoef(x)) + assert_almost_equal(np.corrcoef(x, rowvar=False), + corrcoef(x, rowvar=False)) + with suppress_warnings() as sup: + sup.filter(DeprecationWarning, "bias and ddof have no effect") + assert_almost_equal(np.corrcoef(x, rowvar=False, bias=True), + corrcoef(x, rowvar=False, bias=True)) + + def test_2d_without_missing(self): + # Test corrcoef on 1 2D variable w/o missing values + x = self.data.reshape(3, 4) + assert_almost_equal(np.corrcoef(x), corrcoef(x)) + assert_almost_equal(np.corrcoef(x, rowvar=False), + corrcoef(x, rowvar=False)) + with suppress_warnings() as sup: + sup.filter(DeprecationWarning, "bias and ddof have no effect") + assert_almost_equal(np.corrcoef(x, rowvar=False, bias=True), + corrcoef(x, rowvar=False, bias=True)) + + def test_1d_with_missing(self): + # Test corrcoef 1 1D variable w/missing values + x = self.data + x[-1] = masked + x -= x.mean() + nx = x.compressed() + assert_almost_equal(np.corrcoef(nx), corrcoef(x)) + assert_almost_equal(np.corrcoef(nx, rowvar=False), + corrcoef(x, rowvar=False)) + with suppress_warnings() as sup: + sup.filter(DeprecationWarning, "bias and ddof have no effect") + assert_almost_equal(np.corrcoef(nx, rowvar=False, bias=True), + corrcoef(x, rowvar=False, bias=True)) + try: + corrcoef(x, allow_masked=False) + except ValueError: + pass + # 2 1D variables w/ missing values + nx = x[1:-1] + assert_almost_equal(np.corrcoef(nx, nx[::-1]), corrcoef(x, x[::-1])) + assert_almost_equal(np.corrcoef(nx, nx[::-1], rowvar=False), + corrcoef(x, x[::-1], rowvar=False)) + with suppress_warnings() as sup: + sup.filter(DeprecationWarning, "bias and ddof have no effect") + # ddof and bias have no or negligible effect on the function + assert_almost_equal(np.corrcoef(nx, nx[::-1]), + corrcoef(x, x[::-1], bias=1)) + assert_almost_equal(np.corrcoef(nx, nx[::-1]), + corrcoef(x, x[::-1], ddof=2)) + + def test_2d_with_missing(self): + # Test corrcoef on 2D variable w/ missing value + x = self.data + x[-1] = masked + x = x.reshape(3, 4) + + test = corrcoef(x) + control = np.corrcoef(x) + assert_almost_equal(test[:-1, :-1], control[:-1, :-1]) + with suppress_warnings() as sup: + sup.filter(DeprecationWarning, "bias and ddof have no effect") + # ddof and bias have no or negligible effect on the function + assert_almost_equal(corrcoef(x, ddof=-2)[:-1, :-1], + control[:-1, :-1]) + assert_almost_equal(corrcoef(x, ddof=3)[:-1, :-1], + control[:-1, :-1]) + assert_almost_equal(corrcoef(x, bias=1)[:-1, :-1], + control[:-1, :-1]) + + +class TestPolynomial: + # + def test_polyfit(self): + # Tests polyfit + # On ndarrays + x = np.random.rand(10) + y = np.random.rand(20).reshape(-1, 2) + assert_almost_equal(polyfit(x, y, 3), np.polyfit(x, y, 3)) + # ON 1D maskedarrays + x = x.view(MaskedArray) + x[0] = masked + y = y.view(MaskedArray) + y[0, 0] = y[-1, -1] = masked + # + (C, R, K, S, D) = polyfit(x, y[:, 0], 3, full=True) + (c, r, k, s, d) = np.polyfit(x[1:], y[1:, 0].compressed(), 3, + full=True) + for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)): + assert_almost_equal(a, a_) + # + (C, R, K, S, D) = polyfit(x, y[:, -1], 3, full=True) + (c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1, -1], 3, full=True) + for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)): + assert_almost_equal(a, a_) + # + (C, R, K, S, D) = polyfit(x, y, 3, full=True) + (c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1, :], 3, full=True) + for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)): + assert_almost_equal(a, a_) + # + w = np.random.rand(10) + 1 + wo = w.copy() + xs = x[1:-1] + ys = y[1:-1] + ws = w[1:-1] + (C, R, K, S, D) = polyfit(x, y, 3, full=True, w=w) + (c, r, k, s, d) = np.polyfit(xs, ys, 3, full=True, w=ws) + assert_equal(w, wo) + for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)): + assert_almost_equal(a, a_) + + def test_polyfit_with_masked_NaNs(self): + x = np.random.rand(10) + y = np.random.rand(20).reshape(-1, 2) + + x[0] = np.nan + y[-1, -1] = np.nan + x = x.view(MaskedArray) + y = y.view(MaskedArray) + x[0] = masked + y[-1, -1] = masked + + (C, R, K, S, D) = polyfit(x, y, 3, full=True) + (c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1, :], 3, full=True) + for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)): + assert_almost_equal(a, a_) + + +class TestArraySetOps: + + def test_unique_onlist(self): + # Test unique on list + data = [1, 1, 1, 2, 2, 3] + test = unique(data, return_index=True, return_inverse=True) + assert_(isinstance(test[0], MaskedArray)) + assert_equal(test[0], masked_array([1, 2, 3], mask=[0, 0, 0])) + assert_equal(test[1], [0, 3, 5]) + assert_equal(test[2], [0, 0, 0, 1, 1, 2]) + + def test_unique_onmaskedarray(self): + # Test unique on masked data w/use_mask=True + data = masked_array([1, 1, 1, 2, 2, 3], mask=[0, 0, 1, 0, 1, 0]) + test = unique(data, return_index=True, return_inverse=True) + assert_equal(test[0], masked_array([1, 2, 3, -1], mask=[0, 0, 0, 1])) + assert_equal(test[1], [0, 3, 5, 2]) + assert_equal(test[2], [0, 0, 3, 1, 3, 2]) + # + data.fill_value = 3 + data = masked_array(data=[1, 1, 1, 2, 2, 3], + mask=[0, 0, 1, 0, 1, 0], fill_value=3) + test = unique(data, return_index=True, return_inverse=True) + assert_equal(test[0], masked_array([1, 2, 3, -1], mask=[0, 0, 0, 1])) + assert_equal(test[1], [0, 3, 5, 2]) + assert_equal(test[2], [0, 0, 3, 1, 3, 2]) + + def test_unique_allmasked(self): + # Test all masked + data = masked_array([1, 1, 1], mask=True) + test = unique(data, return_index=True, return_inverse=True) + assert_equal(test[0], masked_array([1, ], mask=[True])) + assert_equal(test[1], [0]) + assert_equal(test[2], [0, 0, 0]) + # + # Test masked + data = masked + test = unique(data, return_index=True, return_inverse=True) + assert_equal(test[0], masked_array(masked)) + assert_equal(test[1], [0]) + assert_equal(test[2], [0]) + + def test_ediff1d(self): + # Tests mediff1d + x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1]) + control = array([1, 1, 1, 4], mask=[1, 0, 0, 1]) + test = ediff1d(x) + assert_equal(test, control) + assert_equal(test.filled(0), control.filled(0)) + assert_equal(test.mask, control.mask) + + def test_ediff1d_tobegin(self): + # Test ediff1d w/ to_begin + x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1]) + test = ediff1d(x, to_begin=masked) + control = array([0, 1, 1, 1, 4], mask=[1, 1, 0, 0, 1]) + assert_equal(test, control) + assert_equal(test.filled(0), control.filled(0)) + assert_equal(test.mask, control.mask) + # + test = ediff1d(x, to_begin=[1, 2, 3]) + control = array([1, 2, 3, 1, 1, 1, 4], mask=[0, 0, 0, 1, 0, 0, 1]) + assert_equal(test, control) + assert_equal(test.filled(0), control.filled(0)) + assert_equal(test.mask, control.mask) + + def test_ediff1d_toend(self): + # Test ediff1d w/ to_end + x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1]) + test = ediff1d(x, to_end=masked) + control = array([1, 1, 1, 4, 0], mask=[1, 0, 0, 1, 1]) + assert_equal(test, control) + assert_equal(test.filled(0), control.filled(0)) + assert_equal(test.mask, control.mask) + # + test = ediff1d(x, to_end=[1, 2, 3]) + control = array([1, 1, 1, 4, 1, 2, 3], mask=[1, 0, 0, 1, 0, 0, 0]) + assert_equal(test, control) + assert_equal(test.filled(0), control.filled(0)) + assert_equal(test.mask, control.mask) + + def test_ediff1d_tobegin_toend(self): + # Test ediff1d w/ to_begin and to_end + x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1]) + test = ediff1d(x, to_end=masked, to_begin=masked) + control = array([0, 1, 1, 1, 4, 0], mask=[1, 1, 0, 0, 1, 1]) + assert_equal(test, control) + assert_equal(test.filled(0), control.filled(0)) + assert_equal(test.mask, control.mask) + # + test = ediff1d(x, to_end=[1, 2, 3], to_begin=masked) + control = array([0, 1, 1, 1, 4, 1, 2, 3], + mask=[1, 1, 0, 0, 1, 0, 0, 0]) + assert_equal(test, control) + assert_equal(test.filled(0), control.filled(0)) + assert_equal(test.mask, control.mask) + + def test_ediff1d_ndarray(self): + # Test ediff1d w/ a ndarray + x = np.arange(5) + test = ediff1d(x) + control = array([1, 1, 1, 1], mask=[0, 0, 0, 0]) + assert_equal(test, control) + assert_(isinstance(test, MaskedArray)) + assert_equal(test.filled(0), control.filled(0)) + assert_equal(test.mask, control.mask) + # + test = ediff1d(x, to_end=masked, to_begin=masked) + control = array([0, 1, 1, 1, 1, 0], mask=[1, 0, 0, 0, 0, 1]) + assert_(isinstance(test, MaskedArray)) + assert_equal(test.filled(0), control.filled(0)) + assert_equal(test.mask, control.mask) + + def test_intersect1d(self): + # Test intersect1d + x = array([1, 3, 3, 3], mask=[0, 0, 0, 1]) + y = array([3, 1, 1, 1], mask=[0, 0, 0, 1]) + test = intersect1d(x, y) + control = array([1, 3, -1], mask=[0, 0, 1]) + assert_equal(test, control) + + def test_setxor1d(self): + # Test setxor1d + a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1]) + b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1]) + test = setxor1d(a, b) + assert_equal(test, array([3, 4, 7])) + # + a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1]) + b = [1, 2, 3, 4, 5] + test = setxor1d(a, b) + assert_equal(test, array([3, 4, 7, -1], mask=[0, 0, 0, 1])) + # + a = array([1, 2, 3]) + b = array([6, 5, 4]) + test = setxor1d(a, b) + assert_(isinstance(test, MaskedArray)) + assert_equal(test, [1, 2, 3, 4, 5, 6]) + # + a = array([1, 8, 2, 3], mask=[0, 1, 0, 0]) + b = array([6, 5, 4, 8], mask=[0, 0, 0, 1]) + test = setxor1d(a, b) + assert_(isinstance(test, MaskedArray)) + assert_equal(test, [1, 2, 3, 4, 5, 6]) + # + assert_array_equal([], setxor1d([], [])) + + def test_setxor1d_unique(self): + # Test setxor1d with assume_unique=True + a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1]) + b = [1, 2, 3, 4, 5] + test = setxor1d(a, b, assume_unique=True) + assert_equal(test, array([3, 4, 7, -1], mask=[0, 0, 0, 1])) + # + a = array([1, 8, 2, 3], mask=[0, 1, 0, 0]) + b = array([6, 5, 4, 8], mask=[0, 0, 0, 1]) + test = setxor1d(a, b, assume_unique=True) + assert_(isinstance(test, MaskedArray)) + assert_equal(test, [1, 2, 3, 4, 5, 6]) + # + a = array([[1], [8], [2], [3]]) + b = array([[6, 5], [4, 8]]) + test = setxor1d(a, b, assume_unique=True) + assert_(isinstance(test, MaskedArray)) + assert_equal(test, [1, 2, 3, 4, 5, 6]) + + def test_isin(self): + # the tests for in1d cover most of isin's behavior + # if in1d is removed, would need to change those tests to test + # isin instead. + a = np.arange(24).reshape([2, 3, 4]) + mask = np.zeros([2, 3, 4]) + mask[1, 2, 0] = 1 + a = array(a, mask=mask) + b = array(data=[0, 10, 20, 30, 1, 3, 11, 22, 33], + mask=[0, 1, 0, 1, 0, 1, 0, 1, 0]) + ec = zeros((2, 3, 4), dtype=bool) + ec[0, 0, 0] = True + ec[0, 0, 1] = True + ec[0, 2, 3] = True + c = isin(a, b) + assert_(isinstance(c, MaskedArray)) + assert_array_equal(c, ec) + # compare results of np.isin to ma.isin + d = np.isin(a, b[~b.mask]) & ~a.mask + assert_array_equal(c, d) + + def test_in1d(self): + # Test in1d + a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1]) + b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1]) + test = in1d(a, b) + assert_equal(test, [True, True, True, False, True]) + # + a = array([5, 5, 2, 1, -1], mask=[0, 0, 0, 0, 1]) + b = array([1, 5, -1], mask=[0, 0, 1]) + test = in1d(a, b) + assert_equal(test, [True, True, False, True, True]) + # + assert_array_equal([], in1d([], [])) + + def test_in1d_invert(self): + # Test in1d's invert parameter + a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1]) + b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1]) + assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True)) + + a = array([5, 5, 2, 1, -1], mask=[0, 0, 0, 0, 1]) + b = array([1, 5, -1], mask=[0, 0, 1]) + assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True)) + + assert_array_equal([], in1d([], [], invert=True)) + + def test_union1d(self): + # Test union1d + a = array([1, 2, 5, 7, 5, -1], mask=[0, 0, 0, 0, 0, 1]) + b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1]) + test = union1d(a, b) + control = array([1, 2, 3, 4, 5, 7, -1], mask=[0, 0, 0, 0, 0, 0, 1]) + assert_equal(test, control) + + # Tests gh-10340, arguments to union1d should be + # flattened if they are not already 1D + x = array([[0, 1, 2], [3, 4, 5]], mask=[[0, 0, 0], [0, 0, 1]]) + y = array([0, 1, 2, 3, 4], mask=[0, 0, 0, 0, 1]) + ez = array([0, 1, 2, 3, 4, 5], mask=[0, 0, 0, 0, 0, 1]) + z = union1d(x, y) + assert_equal(z, ez) + # + assert_array_equal([], union1d([], [])) + + def test_setdiff1d(self): + # Test setdiff1d + a = array([6, 5, 4, 7, 7, 1, 2, 1], mask=[0, 0, 0, 0, 0, 0, 0, 1]) + b = array([2, 4, 3, 3, 2, 1, 5]) + test = setdiff1d(a, b) + assert_equal(test, array([6, 7, -1], mask=[0, 0, 1])) + # + a = arange(10) + b = arange(8) + assert_equal(setdiff1d(a, b), array([8, 9])) + a = array([], np.uint32, mask=[]) + assert_equal(setdiff1d(a, []).dtype, np.uint32) + + def test_setdiff1d_char_array(self): + # Test setdiff1d_charray + a = np.array(['a', 'b', 'c']) + b = np.array(['a', 'b', 's']) + assert_array_equal(setdiff1d(a, b), np.array(['c'])) + + +class TestShapeBase: + + def test_atleast_2d(self): + # Test atleast_2d + a = masked_array([0, 1, 2], mask=[0, 1, 0]) + b = atleast_2d(a) + assert_equal(b.shape, (1, 3)) + assert_equal(b.mask.shape, b.data.shape) + assert_equal(a.shape, (3,)) + assert_equal(a.mask.shape, a.data.shape) + assert_equal(b.mask.shape, b.data.shape) + + def test_shape_scalar(self): + # the atleast and diagflat function should work with scalars + # GitHub issue #3367 + # Additionally, the atleast functions should accept multiple scalars + # correctly + b = atleast_1d(1.0) + assert_equal(b.shape, (1,)) + assert_equal(b.mask.shape, b.shape) + assert_equal(b.data.shape, b.shape) + + b = atleast_1d(1.0, 2.0) + for a in b: + assert_equal(a.shape, (1,)) + assert_equal(a.mask.shape, a.shape) + assert_equal(a.data.shape, a.shape) + + b = atleast_2d(1.0) + assert_equal(b.shape, (1, 1)) + assert_equal(b.mask.shape, b.shape) + assert_equal(b.data.shape, b.shape) + + b = atleast_2d(1.0, 2.0) + for a in b: + assert_equal(a.shape, (1, 1)) + assert_equal(a.mask.shape, a.shape) + assert_equal(a.data.shape, a.shape) + + b = atleast_3d(1.0) + assert_equal(b.shape, (1, 1, 1)) + assert_equal(b.mask.shape, b.shape) + assert_equal(b.data.shape, b.shape) + + b = atleast_3d(1.0, 2.0) + for a in b: + assert_equal(a.shape, (1, 1, 1)) + assert_equal(a.mask.shape, a.shape) + assert_equal(a.data.shape, a.shape) + + b = diagflat(1.0) + assert_equal(b.shape, (1, 1)) + assert_equal(b.mask.shape, b.data.shape) + + +class TestNDEnumerate: + + def test_ndenumerate_nomasked(self): + ordinary = np.arange(6.).reshape((1, 3, 2)) + empty_mask = np.zeros_like(ordinary, dtype=bool) + with_mask = masked_array(ordinary, mask=empty_mask) + assert_equal(list(np.ndenumerate(ordinary)), + list(ndenumerate(ordinary))) + assert_equal(list(ndenumerate(ordinary)), + list(ndenumerate(with_mask))) + assert_equal(list(ndenumerate(with_mask)), + list(ndenumerate(with_mask, compressed=False))) + + def test_ndenumerate_allmasked(self): + a = masked_all(()) + b = masked_all((100,)) + c = masked_all((2, 3, 4)) + assert_equal(list(ndenumerate(a)), []) + assert_equal(list(ndenumerate(b)), []) + assert_equal(list(ndenumerate(b, compressed=False)), + list(zip(np.ndindex((100,)), 100 * [masked]))) + assert_equal(list(ndenumerate(c)), []) + assert_equal(list(ndenumerate(c, compressed=False)), + list(zip(np.ndindex((2, 3, 4)), 2 * 3 * 4 * [masked]))) + + def test_ndenumerate_mixedmasked(self): + a = masked_array(np.arange(12).reshape((3, 4)), + mask=[[1, 1, 1, 1], + [1, 1, 0, 1], + [0, 0, 0, 0]]) + items = [((1, 2), 6), + ((2, 0), 8), ((2, 1), 9), ((2, 2), 10), ((2, 3), 11)] + assert_equal(list(ndenumerate(a)), items) + assert_equal(len(list(ndenumerate(a, compressed=False))), a.size) + for coordinate, value in ndenumerate(a, compressed=False): + assert_equal(a[coordinate], value) + + +class TestStack: + + def test_stack_1d(self): + a = masked_array([0, 1, 2], mask=[0, 1, 0]) + b = masked_array([9, 8, 7], mask=[1, 0, 0]) + + c = stack([a, b], axis=0) + assert_equal(c.shape, (2, 3)) + assert_array_equal(a.mask, c[0].mask) + assert_array_equal(b.mask, c[1].mask) + + d = vstack([a, b]) + assert_array_equal(c.data, d.data) + assert_array_equal(c.mask, d.mask) + + c = stack([a, b], axis=1) + assert_equal(c.shape, (3, 2)) + assert_array_equal(a.mask, c[:, 0].mask) + assert_array_equal(b.mask, c[:, 1].mask) + + def test_stack_masks(self): + a = masked_array([0, 1, 2], mask=True) + b = masked_array([9, 8, 7], mask=False) + + c = stack([a, b], axis=0) + assert_equal(c.shape, (2, 3)) + assert_array_equal(a.mask, c[0].mask) + assert_array_equal(b.mask, c[1].mask) + + d = vstack([a, b]) + assert_array_equal(c.data, d.data) + assert_array_equal(c.mask, d.mask) + + c = stack([a, b], axis=1) + assert_equal(c.shape, (3, 2)) + assert_array_equal(a.mask, c[:, 0].mask) + assert_array_equal(b.mask, c[:, 1].mask) + + def test_stack_nd(self): + # 2D + shp = (3, 2) + d1 = np.random.randint(0, 10, shp) + d2 = np.random.randint(0, 10, shp) + m1 = np.random.randint(0, 2, shp).astype(bool) + m2 = np.random.randint(0, 2, shp).astype(bool) + a1 = masked_array(d1, mask=m1) + a2 = masked_array(d2, mask=m2) + + c = stack([a1, a2], axis=0) + c_shp = (2,) + shp + assert_equal(c.shape, c_shp) + assert_array_equal(a1.mask, c[0].mask) + assert_array_equal(a2.mask, c[1].mask) + + c = stack([a1, a2], axis=-1) + c_shp = shp + (2,) + assert_equal(c.shape, c_shp) + assert_array_equal(a1.mask, c[..., 0].mask) + assert_array_equal(a2.mask, c[..., 1].mask) + + # 4D + shp = (3, 2, 4, 5,) + d1 = np.random.randint(0, 10, shp) + d2 = np.random.randint(0, 10, shp) + m1 = np.random.randint(0, 2, shp).astype(bool) + m2 = np.random.randint(0, 2, shp).astype(bool) + a1 = masked_array(d1, mask=m1) + a2 = masked_array(d2, mask=m2) + + c = stack([a1, a2], axis=0) + c_shp = (2,) + shp + assert_equal(c.shape, c_shp) + assert_array_equal(a1.mask, c[0].mask) + assert_array_equal(a2.mask, c[1].mask) + + c = stack([a1, a2], axis=-1) + c_shp = shp + (2,) + assert_equal(c.shape, c_shp) + assert_array_equal(a1.mask, c[..., 0].mask) + assert_array_equal(a2.mask, c[..., 1].mask) diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_mrecords.py b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_mrecords.py new file mode 100644 index 0000000..0da9151 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_mrecords.py @@ -0,0 +1,497 @@ +"""Tests suite for mrecords. + +:author: Pierre Gerard-Marchant +:contact: pierregm_at_uga_dot_edu + +""" +import pickle + +import numpy as np +import numpy.ma as ma +from numpy._core.records import fromarrays as recfromarrays +from numpy._core.records import fromrecords as recfromrecords +from numpy._core.records import recarray +from numpy.ma import masked, nomask +from numpy.ma.mrecords import ( + MaskedRecords, + addfield, + fromarrays, + fromrecords, + fromtextfile, + mrecarray, +) +from numpy.ma.testutils import ( + assert_, + assert_equal, + assert_equal_records, +) +from numpy.testing import temppath + + +class TestMRecords: + + ilist = [1, 2, 3, 4, 5] + flist = [1.1, 2.2, 3.3, 4.4, 5.5] + slist = [b'one', b'two', b'three', b'four', b'five'] + ddtype = [('a', int), ('b', float), ('c', '|S8')] + mask = [0, 1, 0, 0, 1] + base = ma.array(list(zip(ilist, flist, slist)), mask=mask, dtype=ddtype) + + def test_byview(self): + # Test creation by view + base = self.base + mbase = base.view(mrecarray) + assert_equal(mbase.recordmask, base.recordmask) + assert_equal_records(mbase._mask, base._mask) + assert_(isinstance(mbase._data, recarray)) + assert_equal_records(mbase._data, base._data.view(recarray)) + for field in ('a', 'b', 'c'): + assert_equal(base[field], mbase[field]) + assert_equal_records(mbase.view(mrecarray), mbase) + + def test_get(self): + # Tests fields retrieval + base = self.base.copy() + mbase = base.view(mrecarray) + # As fields.......... + for field in ('a', 'b', 'c'): + assert_equal(getattr(mbase, field), mbase[field]) + assert_equal(base[field], mbase[field]) + # as elements ....... + mbase_first = mbase[0] + assert_(isinstance(mbase_first, mrecarray)) + assert_equal(mbase_first.dtype, mbase.dtype) + assert_equal(mbase_first.tolist(), (1, 1.1, b'one')) + # Used to be mask, now it's recordmask + assert_equal(mbase_first.recordmask, nomask) + assert_equal(mbase_first._mask.item(), (False, False, False)) + assert_equal(mbase_first['a'], mbase['a'][0]) + mbase_last = mbase[-1] + assert_(isinstance(mbase_last, mrecarray)) + assert_equal(mbase_last.dtype, mbase.dtype) + assert_equal(mbase_last.tolist(), (None, None, None)) + # Used to be mask, now it's recordmask + assert_equal(mbase_last.recordmask, True) + assert_equal(mbase_last._mask.item(), (True, True, True)) + assert_equal(mbase_last['a'], mbase['a'][-1]) + assert_(mbase_last['a'] is masked) + # as slice .......... + mbase_sl = mbase[:2] + assert_(isinstance(mbase_sl, mrecarray)) + assert_equal(mbase_sl.dtype, mbase.dtype) + # Used to be mask, now it's recordmask + assert_equal(mbase_sl.recordmask, [0, 1]) + assert_equal_records(mbase_sl.mask, + np.array([(False, False, False), + (True, True, True)], + dtype=mbase._mask.dtype)) + assert_equal_records(mbase_sl, base[:2].view(mrecarray)) + for field in ('a', 'b', 'c'): + assert_equal(getattr(mbase_sl, field), base[:2][field]) + + def test_set_fields(self): + # Tests setting fields. + base = self.base.copy() + mbase = base.view(mrecarray) + mbase = mbase.copy() + mbase.fill_value = (999999, 1e20, 'N/A') + # Change the data, the mask should be conserved + mbase.a._data[:] = 5 + assert_equal(mbase['a']._data, [5, 5, 5, 5, 5]) + assert_equal(mbase['a']._mask, [0, 1, 0, 0, 1]) + # Change the elements, and the mask will follow + mbase.a = 1 + assert_equal(mbase['a']._data, [1] * 5) + assert_equal(ma.getmaskarray(mbase['a']), [0] * 5) + # Use to be _mask, now it's recordmask + assert_equal(mbase.recordmask, [False] * 5) + assert_equal(mbase._mask.tolist(), + np.array([(0, 0, 0), + (0, 1, 1), + (0, 0, 0), + (0, 0, 0), + (0, 1, 1)], + dtype=bool)) + # Set a field to mask ........................ + mbase.c = masked + # Use to be mask, and now it's still mask ! + assert_equal(mbase.c.mask, [1] * 5) + assert_equal(mbase.c.recordmask, [1] * 5) + assert_equal(ma.getmaskarray(mbase['c']), [1] * 5) + assert_equal(ma.getdata(mbase['c']), [b'N/A'] * 5) + assert_equal(mbase._mask.tolist(), + np.array([(0, 0, 1), + (0, 1, 1), + (0, 0, 1), + (0, 0, 1), + (0, 1, 1)], + dtype=bool)) + # Set fields by slices ....................... + mbase = base.view(mrecarray).copy() + mbase.a[3:] = 5 + assert_equal(mbase.a, [1, 2, 3, 5, 5]) + assert_equal(mbase.a._mask, [0, 1, 0, 0, 0]) + mbase.b[3:] = masked + assert_equal(mbase.b, base['b']) + assert_equal(mbase.b._mask, [0, 1, 0, 1, 1]) + # Set fields globally.......................... + ndtype = [('alpha', '|S1'), ('num', int)] + data = ma.array([('a', 1), ('b', 2), ('c', 3)], dtype=ndtype) + rdata = data.view(MaskedRecords) + val = ma.array([10, 20, 30], mask=[1, 0, 0]) + + rdata['num'] = val + assert_equal(rdata.num, val) + assert_equal(rdata.num.mask, [1, 0, 0]) + + def test_set_fields_mask(self): + # Tests setting the mask of a field. + base = self.base.copy() + # This one has already a mask.... + mbase = base.view(mrecarray) + mbase['a'][-2] = masked + assert_equal(mbase.a, [1, 2, 3, 4, 5]) + assert_equal(mbase.a._mask, [0, 1, 0, 1, 1]) + # This one has not yet + mbase = fromarrays([np.arange(5), np.random.rand(5)], + dtype=[('a', int), ('b', float)]) + mbase['a'][-2] = masked + assert_equal(mbase.a, [0, 1, 2, 3, 4]) + assert_equal(mbase.a._mask, [0, 0, 0, 1, 0]) + + def test_set_mask(self): + base = self.base.copy() + mbase = base.view(mrecarray) + # Set the mask to True ....................... + mbase.mask = masked + assert_equal(ma.getmaskarray(mbase['b']), [1] * 5) + assert_equal(mbase['a']._mask, mbase['b']._mask) + assert_equal(mbase['a']._mask, mbase['c']._mask) + assert_equal(mbase._mask.tolist(), + np.array([(1, 1, 1)] * 5, dtype=bool)) + # Delete the mask ............................ + mbase.mask = nomask + assert_equal(ma.getmaskarray(mbase['c']), [0] * 5) + assert_equal(mbase._mask.tolist(), + np.array([(0, 0, 0)] * 5, dtype=bool)) + + def test_set_mask_fromarray(self): + base = self.base.copy() + mbase = base.view(mrecarray) + # Sets the mask w/ an array + mbase.mask = [1, 0, 0, 0, 1] + assert_equal(mbase.a.mask, [1, 0, 0, 0, 1]) + assert_equal(mbase.b.mask, [1, 0, 0, 0, 1]) + assert_equal(mbase.c.mask, [1, 0, 0, 0, 1]) + # Yay, once more ! + mbase.mask = [0, 0, 0, 0, 1] + assert_equal(mbase.a.mask, [0, 0, 0, 0, 1]) + assert_equal(mbase.b.mask, [0, 0, 0, 0, 1]) + assert_equal(mbase.c.mask, [0, 0, 0, 0, 1]) + + def test_set_mask_fromfields(self): + mbase = self.base.copy().view(mrecarray) + + nmask = np.array( + [(0, 1, 0), (0, 1, 0), (1, 0, 1), (1, 0, 1), (0, 0, 0)], + dtype=[('a', bool), ('b', bool), ('c', bool)]) + mbase.mask = nmask + assert_equal(mbase.a.mask, [0, 0, 1, 1, 0]) + assert_equal(mbase.b.mask, [1, 1, 0, 0, 0]) + assert_equal(mbase.c.mask, [0, 0, 1, 1, 0]) + # Reinitialize and redo + mbase.mask = False + mbase.fieldmask = nmask + assert_equal(mbase.a.mask, [0, 0, 1, 1, 0]) + assert_equal(mbase.b.mask, [1, 1, 0, 0, 0]) + assert_equal(mbase.c.mask, [0, 0, 1, 1, 0]) + + def test_set_elements(self): + base = self.base.copy() + # Set an element to mask ..................... + mbase = base.view(mrecarray).copy() + mbase[-2] = masked + assert_equal( + mbase._mask.tolist(), + np.array([(0, 0, 0), (1, 1, 1), (0, 0, 0), (1, 1, 1), (1, 1, 1)], + dtype=bool)) + # Used to be mask, now it's recordmask! + assert_equal(mbase.recordmask, [0, 1, 0, 1, 1]) + # Set slices ................................. + mbase = base.view(mrecarray).copy() + mbase[:2] = (5, 5, 5) + assert_equal(mbase.a._data, [5, 5, 3, 4, 5]) + assert_equal(mbase.a._mask, [0, 0, 0, 0, 1]) + assert_equal(mbase.b._data, [5., 5., 3.3, 4.4, 5.5]) + assert_equal(mbase.b._mask, [0, 0, 0, 0, 1]) + assert_equal(mbase.c._data, + [b'5', b'5', b'three', b'four', b'five']) + assert_equal(mbase.b._mask, [0, 0, 0, 0, 1]) + + mbase = base.view(mrecarray).copy() + mbase[:2] = masked + assert_equal(mbase.a._data, [1, 2, 3, 4, 5]) + assert_equal(mbase.a._mask, [1, 1, 0, 0, 1]) + assert_equal(mbase.b._data, [1.1, 2.2, 3.3, 4.4, 5.5]) + assert_equal(mbase.b._mask, [1, 1, 0, 0, 1]) + assert_equal(mbase.c._data, + [b'one', b'two', b'three', b'four', b'five']) + assert_equal(mbase.b._mask, [1, 1, 0, 0, 1]) + + def test_setslices_hardmask(self): + # Tests setting slices w/ hardmask. + base = self.base.copy() + mbase = base.view(mrecarray) + mbase.harden_mask() + try: + mbase[-2:] = (5, 5, 5) + assert_equal(mbase.a._data, [1, 2, 3, 5, 5]) + assert_equal(mbase.b._data, [1.1, 2.2, 3.3, 5, 5.5]) + assert_equal(mbase.c._data, + [b'one', b'two', b'three', b'5', b'five']) + assert_equal(mbase.a._mask, [0, 1, 0, 0, 1]) + assert_equal(mbase.b._mask, mbase.a._mask) + assert_equal(mbase.b._mask, mbase.c._mask) + except NotImplementedError: + # OK, not implemented yet... + pass + except AssertionError: + raise + else: + raise Exception("Flexible hard masks should be supported !") + # Not using a tuple should crash + try: + mbase[-2:] = 3 + except (NotImplementedError, TypeError): + pass + else: + raise TypeError("Should have expected a readable buffer object!") + + def test_hardmask(self): + # Test hardmask + base = self.base.copy() + mbase = base.view(mrecarray) + mbase.harden_mask() + assert_(mbase._hardmask) + mbase.mask = nomask + assert_equal_records(mbase._mask, base._mask) + mbase.soften_mask() + assert_(not mbase._hardmask) + mbase.mask = nomask + # So, the mask of a field is no longer set to nomask... + assert_equal_records(mbase._mask, + ma.make_mask_none(base.shape, base.dtype)) + assert_(ma.make_mask(mbase['b']._mask) is nomask) + assert_equal(mbase['a']._mask, mbase['b']._mask) + + def test_pickling(self): + # Test pickling + base = self.base.copy() + mrec = base.view(mrecarray) + for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): + _ = pickle.dumps(mrec, protocol=proto) + mrec_ = pickle.loads(_) + assert_equal(mrec_.dtype, mrec.dtype) + assert_equal_records(mrec_._data, mrec._data) + assert_equal(mrec_._mask, mrec._mask) + assert_equal_records(mrec_._mask, mrec._mask) + + def test_filled(self): + # Test filling the array + _a = ma.array([1, 2, 3], mask=[0, 0, 1], dtype=int) + _b = ma.array([1.1, 2.2, 3.3], mask=[0, 0, 1], dtype=float) + _c = ma.array(['one', 'two', 'three'], mask=[0, 0, 1], dtype='|S8') + ddtype = [('a', int), ('b', float), ('c', '|S8')] + mrec = fromarrays([_a, _b, _c], dtype=ddtype, + fill_value=(99999, 99999., 'N/A')) + mrecfilled = mrec.filled() + assert_equal(mrecfilled['a'], np.array((1, 2, 99999), dtype=int)) + assert_equal(mrecfilled['b'], np.array((1.1, 2.2, 99999.), + dtype=float)) + assert_equal(mrecfilled['c'], np.array(('one', 'two', 'N/A'), + dtype='|S8')) + + def test_tolist(self): + # Test tolist. + _a = ma.array([1, 2, 3], mask=[0, 0, 1], dtype=int) + _b = ma.array([1.1, 2.2, 3.3], mask=[0, 0, 1], dtype=float) + _c = ma.array(['one', 'two', 'three'], mask=[1, 0, 0], dtype='|S8') + ddtype = [('a', int), ('b', float), ('c', '|S8')] + mrec = fromarrays([_a, _b, _c], dtype=ddtype, + fill_value=(99999, 99999., 'N/A')) + + assert_equal(mrec.tolist(), + [(1, 1.1, None), (2, 2.2, b'two'), + (None, None, b'three')]) + + def test_withnames(self): + # Test the creation w/ format and names + x = mrecarray(1, formats=float, names='base') + x[0]['base'] = 10 + assert_equal(x['base'][0], 10) + + def test_exotic_formats(self): + # Test that 'exotic' formats are processed properly + easy = mrecarray(1, dtype=[('i', int), ('s', '|S8'), ('f', float)]) + easy[0] = masked + assert_equal(easy.filled(1).item(), (1, b'1', 1.)) + + solo = mrecarray(1, dtype=[('f0', ' 1: + assert_(eq(np.concatenate((x, y), 1), + concatenate((xm, ym), 1))) + assert_(eq(np.add.reduce(x, 1), add.reduce(x, 1))) + assert_(eq(np.sum(x, 1), sum(x, 1))) + assert_(eq(np.prod(x, 1), product(x, 1))) + + def test_testCI(self): + # Test of conversions and indexing + x1 = np.array([1, 2, 4, 3]) + x2 = array(x1, mask=[1, 0, 0, 0]) + x3 = array(x1, mask=[0, 1, 0, 1]) + x4 = array(x1) + # test conversion to strings + str(x2) # raises? + repr(x2) # raises? + assert_(eq(np.sort(x1), sort(x2, fill_value=0))) + # tests of indexing + assert_(type(x2[1]) is type(x1[1])) + assert_(x1[1] == x2[1]) + assert_(x2[0] is masked) + assert_(eq(x1[2], x2[2])) + assert_(eq(x1[2:5], x2[2:5])) + assert_(eq(x1[:], x2[:])) + assert_(eq(x1[1:], x3[1:])) + x1[2] = 9 + x2[2] = 9 + assert_(eq(x1, x2)) + x1[1:3] = 99 + x2[1:3] = 99 + assert_(eq(x1, x2)) + x2[1] = masked + assert_(eq(x1, x2)) + x2[1:3] = masked + assert_(eq(x1, x2)) + x2[:] = x1 + x2[1] = masked + assert_(allequal(getmask(x2), array([0, 1, 0, 0]))) + x3[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0]) + assert_(allequal(getmask(x3), array([0, 1, 1, 0]))) + x4[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0]) + assert_(allequal(getmask(x4), array([0, 1, 1, 0]))) + assert_(allequal(x4, array([1, 2, 3, 4]))) + x1 = np.arange(5) * 1.0 + x2 = masked_values(x1, 3.0) + assert_(eq(x1, x2)) + assert_(allequal(array([0, 0, 0, 1, 0], MaskType), x2.mask)) + assert_(eq(3.0, x2.fill_value)) + x1 = array([1, 'hello', 2, 3], object) + x2 = np.array([1, 'hello', 2, 3], object) + s1 = x1[1] + s2 = x2[1] + assert_equal(type(s2), str) + assert_equal(type(s1), str) + assert_equal(s1, s2) + assert_(x1[1:1].shape == (0,)) + + def test_testCopySize(self): + # Tests of some subtle points of copying and sizing. + n = [0, 0, 1, 0, 0] + m = make_mask(n) + m2 = make_mask(m) + assert_(m is m2) + m3 = make_mask(m, copy=True) + assert_(m is not m3) + + x1 = np.arange(5) + y1 = array(x1, mask=m) + assert_(y1._data is not x1) + assert_(allequal(x1, y1._data)) + assert_(y1._mask is m) + + y1a = array(y1, copy=0) + # For copy=False, one might expect that the array would just + # passed on, i.e., that it would be "is" instead of "==". + # See gh-4043 for discussion. + assert_(y1a._mask.__array_interface__ == + y1._mask.__array_interface__) + + y2 = array(x1, mask=m3, copy=0) + assert_(y2._mask is m3) + assert_(y2[2] is masked) + y2[2] = 9 + assert_(y2[2] is not masked) + assert_(y2._mask is m3) + assert_(allequal(y2.mask, 0)) + + y2a = array(x1, mask=m, copy=1) + assert_(y2a._mask is not m) + assert_(y2a[2] is masked) + y2a[2] = 9 + assert_(y2a[2] is not masked) + assert_(y2a._mask is not m) + assert_(allequal(y2a.mask, 0)) + + y3 = array(x1 * 1.0, mask=m) + assert_(filled(y3).dtype is (x1 * 1.0).dtype) + + x4 = arange(4) + x4[2] = masked + y4 = resize(x4, (8,)) + assert_(eq(concatenate([x4, x4]), y4)) + assert_(eq(getmask(y4), [0, 0, 1, 0, 0, 0, 1, 0])) + y5 = repeat(x4, (2, 2, 2, 2), axis=0) + assert_(eq(y5, [0, 0, 1, 1, 2, 2, 3, 3])) + y6 = repeat(x4, 2, axis=0) + assert_(eq(y5, y6)) + + def test_testPut(self): + # Test of put + d = arange(5) + n = [0, 0, 0, 1, 1] + m = make_mask(n) + m2 = m.copy() + x = array(d, mask=m) + assert_(x[3] is masked) + assert_(x[4] is masked) + x[[1, 4]] = [10, 40] + assert_(x._mask is m) + assert_(x[3] is masked) + assert_(x[4] is not masked) + assert_(eq(x, [0, 10, 2, -1, 40])) + + x = array(d, mask=m2, copy=True) + x.put([0, 1, 2], [-1, 100, 200]) + assert_(x._mask is not m2) + assert_(x[3] is masked) + assert_(x[4] is masked) + assert_(eq(x, [-1, 100, 200, 0, 0])) + + def test_testPut2(self): + # Test of put + d = arange(5) + x = array(d, mask=[0, 0, 0, 0, 0]) + z = array([10, 40], mask=[1, 0]) + assert_(x[2] is not masked) + assert_(x[3] is not masked) + x[2:4] = z + assert_(x[2] is masked) + assert_(x[3] is not masked) + assert_(eq(x, [0, 1, 10, 40, 4])) + + d = arange(5) + x = array(d, mask=[0, 0, 0, 0, 0]) + y = x[2:4] + z = array([10, 40], mask=[1, 0]) + assert_(x[2] is not masked) + assert_(x[3] is not masked) + y[:] = z + assert_(y[0] is masked) + assert_(y[1] is not masked) + assert_(eq(y, [10, 40])) + assert_(x[2] is masked) + assert_(x[3] is not masked) + assert_(eq(x, [0, 1, 10, 40, 4])) + + def test_testMaPut(self): + (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d + m = [1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1] + i = np.nonzero(m)[0] + put(ym, i, zm) + assert_(all(take(ym, i, axis=0) == zm)) + + def test_testOddFeatures(self): + # Test of other odd features + x = arange(20) + x = x.reshape(4, 5) + x.flat[5] = 12 + assert_(x[1, 0] == 12) + z = x + 10j * x + assert_(eq(z.real, x)) + assert_(eq(z.imag, 10 * x)) + assert_(eq((z * conjugate(z)).real, 101 * x * x)) + z.imag[...] = 0.0 + + x = arange(10) + x[3] = masked + assert_(str(x[3]) == str(masked)) + c = x >= 8 + assert_(count(where(c, masked, masked)) == 0) + assert_(shape(where(c, masked, masked)) == c.shape) + z = where(c, x, masked) + assert_(z.dtype is x.dtype) + assert_(z[3] is masked) + assert_(z[4] is masked) + assert_(z[7] is masked) + assert_(z[8] is not masked) + assert_(z[9] is not masked) + assert_(eq(x, z)) + z = where(c, masked, x) + assert_(z.dtype is x.dtype) + assert_(z[3] is masked) + assert_(z[4] is not masked) + assert_(z[7] is not masked) + assert_(z[8] is masked) + assert_(z[9] is masked) + z = masked_where(c, x) + assert_(z.dtype is x.dtype) + assert_(z[3] is masked) + assert_(z[4] is not masked) + assert_(z[7] is not masked) + assert_(z[8] is masked) + assert_(z[9] is masked) + assert_(eq(x, z)) + x = array([1., 2., 3., 4., 5.]) + c = array([1, 1, 1, 0, 0]) + x[2] = masked + z = where(c, x, -x) + assert_(eq(z, [1., 2., 0., -4., -5])) + c[0] = masked + z = where(c, x, -x) + assert_(eq(z, [1., 2., 0., -4., -5])) + assert_(z[0] is masked) + assert_(z[1] is not masked) + assert_(z[2] is masked) + assert_(eq(masked_where(greater(x, 2), x), masked_greater(x, 2))) + assert_(eq(masked_where(greater_equal(x, 2), x), + masked_greater_equal(x, 2))) + assert_(eq(masked_where(less(x, 2), x), masked_less(x, 2))) + assert_(eq(masked_where(less_equal(x, 2), x), masked_less_equal(x, 2))) + assert_(eq(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2))) + assert_(eq(masked_where(equal(x, 2), x), masked_equal(x, 2))) + assert_(eq(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2))) + assert_(eq(masked_inside(list(range(5)), 1, 3), [0, 199, 199, 199, 4])) + assert_(eq(masked_outside(list(range(5)), 1, 3), [199, 1, 2, 3, 199])) + assert_(eq(masked_inside(array(list(range(5)), + mask=[1, 0, 0, 0, 0]), 1, 3).mask, + [1, 1, 1, 1, 0])) + assert_(eq(masked_outside(array(list(range(5)), + mask=[0, 1, 0, 0, 0]), 1, 3).mask, + [1, 1, 0, 0, 1])) + assert_(eq(masked_equal(array(list(range(5)), + mask=[1, 0, 0, 0, 0]), 2).mask, + [1, 0, 1, 0, 0])) + assert_(eq(masked_not_equal(array([2, 2, 1, 2, 1], + mask=[1, 0, 0, 0, 0]), 2).mask, + [1, 0, 1, 0, 1])) + assert_(eq(masked_where([1, 1, 0, 0, 0], [1, 2, 3, 4, 5]), + [99, 99, 3, 4, 5])) + atest = ones((10, 10, 10), dtype=np.float32) + btest = zeros(atest.shape, MaskType) + ctest = masked_where(btest, atest) + assert_(eq(atest, ctest)) + z = choose(c, (-x, x)) + assert_(eq(z, [1., 2., 0., -4., -5])) + assert_(z[0] is masked) + assert_(z[1] is not masked) + assert_(z[2] is masked) + x = arange(6) + x[5] = masked + y = arange(6) * 10 + y[2] = masked + c = array([1, 1, 1, 0, 0, 0], mask=[1, 0, 0, 0, 0, 0]) + cm = c.filled(1) + z = where(c, x, y) + zm = where(cm, x, y) + assert_(eq(z, zm)) + assert_(getmask(zm) is nomask) + assert_(eq(zm, [0, 1, 2, 30, 40, 50])) + z = where(c, masked, 1) + assert_(eq(z, [99, 99, 99, 1, 1, 1])) + z = where(c, 1, masked) + assert_(eq(z, [99, 1, 1, 99, 99, 99])) + + def test_testMinMax2(self): + # Test of minimum, maximum. + assert_(eq(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3])) + assert_(eq(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9])) + x = arange(5) + y = arange(5) - 2 + x[3] = masked + y[0] = masked + assert_(eq(minimum(x, y), where(less(x, y), x, y))) + assert_(eq(maximum(x, y), where(greater(x, y), x, y))) + assert_(minimum.reduce(x) == 0) + assert_(maximum.reduce(x) == 4) + + def test_testTakeTransposeInnerOuter(self): + # Test of take, transpose, inner, outer products + x = arange(24) + y = np.arange(24) + x[5:6] = masked + x = x.reshape(2, 3, 4) + y = y.reshape(2, 3, 4) + assert_(eq(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1)))) + assert_(eq(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1))) + assert_(eq(np.inner(filled(x, 0), filled(y, 0)), + inner(x, y))) + assert_(eq(np.outer(filled(x, 0), filled(y, 0)), + outer(x, y))) + y = array(['abc', 1, 'def', 2, 3], object) + y[2] = masked + t = take(y, [0, 3, 4]) + assert_(t[0] == 'abc') + assert_(t[1] == 2) + assert_(t[2] == 3) + + def test_testInplace(self): + # Test of inplace operations and rich comparisons + y = arange(10) + + x = arange(10) + xm = arange(10) + xm[2] = masked + x += 1 + assert_(eq(x, y + 1)) + xm += 1 + assert_(eq(x, y + 1)) + + x = arange(10) + xm = arange(10) + xm[2] = masked + x -= 1 + assert_(eq(x, y - 1)) + xm -= 1 + assert_(eq(xm, y - 1)) + + x = arange(10) * 1.0 + xm = arange(10) * 1.0 + xm[2] = masked + x *= 2.0 + assert_(eq(x, y * 2)) + xm *= 2.0 + assert_(eq(xm, y * 2)) + + x = arange(10) * 2 + xm = arange(10) + xm[2] = masked + x //= 2 + assert_(eq(x, y)) + xm //= 2 + assert_(eq(x, y)) + + x = arange(10) * 1.0 + xm = arange(10) * 1.0 + xm[2] = masked + x /= 2.0 + assert_(eq(x, y / 2.0)) + xm /= arange(10) + assert_(eq(xm, ones((10,)))) + + x = arange(10).astype(np.float32) + xm = arange(10) + xm[2] = masked + x += 1. + assert_(eq(x, y + 1.)) + + def test_testPickle(self): + # Test of pickling + x = arange(12) + x[4:10:2] = masked + x = x.reshape(4, 3) + for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): + s = pickle.dumps(x, protocol=proto) + y = pickle.loads(s) + assert_(eq(x, y)) + + def test_testMasked(self): + # Test of masked element + xx = arange(6) + xx[1] = masked + assert_(str(masked) == '--') + assert_(xx[1] is masked) + assert_equal(filled(xx[1], 0), 0) + + def test_testAverage1(self): + # Test of average. + ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0]) + assert_(eq(2.0, average(ott, axis=0))) + assert_(eq(2.0, average(ott, weights=[1., 1., 2., 1.]))) + result, wts = average(ott, weights=[1., 1., 2., 1.], returned=True) + assert_(eq(2.0, result)) + assert_(wts == 4.0) + ott[:] = masked + assert_(average(ott, axis=0) is masked) + ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0]) + ott = ott.reshape(2, 2) + ott[:, 1] = masked + assert_(eq(average(ott, axis=0), [2.0, 0.0])) + assert_(average(ott, axis=1)[0] is masked) + assert_(eq([2., 0.], average(ott, axis=0))) + result, wts = average(ott, axis=0, returned=True) + assert_(eq(wts, [1., 0.])) + + def test_testAverage2(self): + # More tests of average. + w1 = [0, 1, 1, 1, 1, 0] + w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]] + x = arange(6) + assert_(allclose(average(x, axis=0), 2.5)) + assert_(allclose(average(x, axis=0, weights=w1), 2.5)) + y = array([arange(6), 2.0 * arange(6)]) + assert_(allclose(average(y, None), + np.add.reduce(np.arange(6)) * 3. / 12.)) + assert_(allclose(average(y, axis=0), np.arange(6) * 3. / 2.)) + assert_(allclose(average(y, axis=1), + [average(x, axis=0), average(x, axis=0) * 2.0])) + assert_(allclose(average(y, None, weights=w2), 20. / 6.)) + assert_(allclose(average(y, axis=0, weights=w2), + [0., 1., 2., 3., 4., 10.])) + assert_(allclose(average(y, axis=1), + [average(x, axis=0), average(x, axis=0) * 2.0])) + m1 = zeros(6) + m2 = [0, 0, 1, 1, 0, 0] + m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]] + m4 = ones(6) + m5 = [0, 1, 1, 1, 1, 1] + assert_(allclose(average(masked_array(x, m1), axis=0), 2.5)) + assert_(allclose(average(masked_array(x, m2), axis=0), 2.5)) + assert_(average(masked_array(x, m4), axis=0) is masked) + assert_equal(average(masked_array(x, m5), axis=0), 0.0) + assert_equal(count(average(masked_array(x, m4), axis=0)), 0) + z = masked_array(y, m3) + assert_(allclose(average(z, None), 20. / 6.)) + assert_(allclose(average(z, axis=0), + [0., 1., 99., 99., 4.0, 7.5])) + assert_(allclose(average(z, axis=1), [2.5, 5.0])) + assert_(allclose(average(z, axis=0, weights=w2), + [0., 1., 99., 99., 4.0, 10.0])) + + a = arange(6) + b = arange(6) * 3 + r1, w1 = average([[a, b], [b, a]], axis=1, returned=True) + assert_equal(shape(r1), shape(w1)) + assert_equal(r1.shape, w1.shape) + r2, w2 = average(ones((2, 2, 3)), axis=0, weights=[3, 1], returned=True) + assert_equal(shape(w2), shape(r2)) + r2, w2 = average(ones((2, 2, 3)), returned=True) + assert_equal(shape(w2), shape(r2)) + r2, w2 = average(ones((2, 2, 3)), weights=ones((2, 2, 3)), returned=True) + assert_(shape(w2) == shape(r2)) + a2d = array([[1, 2], [0, 4]], float) + a2dm = masked_array(a2d, [[0, 0], [1, 0]]) + a2da = average(a2d, axis=0) + assert_(eq(a2da, [0.5, 3.0])) + a2dma = average(a2dm, axis=0) + assert_(eq(a2dma, [1.0, 3.0])) + a2dma = average(a2dm, axis=None) + assert_(eq(a2dma, 7. / 3.)) + a2dma = average(a2dm, axis=1) + assert_(eq(a2dma, [1.5, 4.0])) + + def test_testToPython(self): + assert_equal(1, int(array(1))) + assert_equal(1.0, float(array(1))) + assert_equal(1, int(array([[[1]]]))) + assert_equal(1.0, float(array([[1]]))) + assert_raises(TypeError, float, array([1, 1])) + assert_raises(ValueError, bool, array([0, 1])) + assert_raises(ValueError, bool, array([0, 0], mask=[0, 1])) + + def test_testScalarArithmetic(self): + xm = array(0, mask=1) + # TODO FIXME: Find out what the following raises a warning in r8247 + with np.errstate(divide='ignore'): + assert_((1 / array(0)).mask) + assert_((1 + xm).mask) + assert_((-xm).mask) + assert_((-xm).mask) + assert_(maximum(xm, xm).mask) + assert_(minimum(xm, xm).mask) + assert_(xm.filled().dtype is xm._data.dtype) + x = array(0, mask=0) + assert_(x.filled() == x._data) + assert_equal(str(xm), str(masked_print_option)) + + def test_testArrayMethods(self): + a = array([1, 3, 2]) + assert_(eq(a.any(), a._data.any())) + assert_(eq(a.all(), a._data.all())) + assert_(eq(a.argmax(), a._data.argmax())) + assert_(eq(a.argmin(), a._data.argmin())) + assert_(eq(a.choose(0, 1, 2, 3, 4), + a._data.choose(0, 1, 2, 3, 4))) + assert_(eq(a.compress([1, 0, 1]), a._data.compress([1, 0, 1]))) + assert_(eq(a.conj(), a._data.conj())) + assert_(eq(a.conjugate(), a._data.conjugate())) + m = array([[1, 2], [3, 4]]) + assert_(eq(m.diagonal(), m._data.diagonal())) + assert_(eq(a.sum(), a._data.sum())) + assert_(eq(a.take([1, 2]), a._data.take([1, 2]))) + assert_(eq(m.transpose(), m._data.transpose())) + + def test_testArrayAttributes(self): + a = array([1, 3, 2]) + assert_equal(a.ndim, 1) + + def test_testAPI(self): + assert_(not [m for m in dir(np.ndarray) + if m not in dir(MaskedArray) and + not m.startswith('_')]) + + def test_testSingleElementSubscript(self): + a = array([1, 3, 2]) + b = array([1, 3, 2], mask=[1, 0, 1]) + assert_equal(a[0].shape, ()) + assert_equal(b[0].shape, ()) + assert_equal(b[1].shape, ()) + + def test_assignment_by_condition(self): + # Test for gh-18951 + a = array([1, 2, 3, 4], mask=[1, 0, 1, 0]) + c = a >= 3 + a[c] = 5 + assert_(a[2] is masked) + + def test_assignment_by_condition_2(self): + # gh-19721 + a = masked_array([0, 1], mask=[False, False]) + b = masked_array([0, 1], mask=[True, True]) + mask = a < 1 + b[mask] = a[mask] + expected_mask = [False, True] + assert_equal(b.mask, expected_mask) + + +class TestUfuncs: + def setup_method(self): + self.d = (array([1.0, 0, -1, pi / 2] * 2, mask=[0, 1] + [0] * 6), + array([1.0, 0, -1, pi / 2] * 2, mask=[1, 0] + [0] * 6),) + + def test_testUfuncRegression(self): + f_invalid_ignore = [ + 'sqrt', 'arctanh', 'arcsin', 'arccos', + 'arccosh', 'arctanh', 'log', 'log10', 'divide', + 'true_divide', 'floor_divide', 'remainder', 'fmod'] + for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate', + 'sin', 'cos', 'tan', + 'arcsin', 'arccos', 'arctan', + 'sinh', 'cosh', 'tanh', + 'arcsinh', + 'arccosh', + 'arctanh', + 'absolute', 'fabs', 'negative', + 'floor', 'ceil', + 'logical_not', + 'add', 'subtract', 'multiply', + 'divide', 'true_divide', 'floor_divide', + 'remainder', 'fmod', 'hypot', 'arctan2', + 'equal', 'not_equal', 'less_equal', 'greater_equal', + 'less', 'greater', + 'logical_and', 'logical_or', 'logical_xor']: + try: + uf = getattr(umath, f) + except AttributeError: + uf = getattr(fromnumeric, f) + mf = getattr(np.ma, f) + args = self.d[:uf.nin] + with np.errstate(): + if f in f_invalid_ignore: + np.seterr(invalid='ignore') + if f in ['arctanh', 'log', 'log10']: + np.seterr(divide='ignore') + ur = uf(*args) + mr = mf(*args) + assert_(eq(ur.filled(0), mr.filled(0), f)) + assert_(eqmask(ur.mask, mr.mask)) + + def test_reduce(self): + a = self.d[0] + assert_(not alltrue(a, axis=0)) + assert_(sometrue(a, axis=0)) + assert_equal(sum(a[:3], axis=0), 0) + assert_equal(product(a, axis=0), 0) + + def test_minmax(self): + a = arange(1, 13).reshape(3, 4) + amask = masked_where(a < 5, a) + assert_equal(amask.max(), a.max()) + assert_equal(amask.min(), 5) + assert_((amask.max(0) == a.max(0)).all()) + assert_((amask.min(0) == [5, 6, 7, 8]).all()) + assert_(amask.max(1)[0].mask) + assert_(amask.min(1)[0].mask) + + def test_nonzero(self): + for t in "?bhilqpBHILQPfdgFDGO": + x = array([1, 0, 2, 0], mask=[0, 0, 1, 1]) + assert_(eq(nonzero(x), [0])) + + +class TestArrayMethods: + + def setup_method(self): + x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928, + 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, + 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, + 6.04, 9.63, 7.712, 3.382, 4.489, 6.479, + 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, + 7.357, 9.828, 6.272, 3.758, 6.693, 0.993]) + X = x.reshape(6, 6) + XX = x.reshape(3, 2, 2, 3) + + m = np.array([0, 1, 0, 1, 0, 0, + 1, 0, 1, 1, 0, 1, + 0, 0, 0, 1, 0, 1, + 0, 0, 0, 1, 1, 1, + 1, 0, 0, 1, 0, 0, + 0, 0, 1, 0, 1, 0]) + mx = array(data=x, mask=m) + mX = array(data=X, mask=m.reshape(X.shape)) + mXX = array(data=XX, mask=m.reshape(XX.shape)) + + self.d = (x, X, XX, m, mx, mX, mXX) + + def test_trace(self): + (x, X, XX, m, mx, mX, mXX,) = self.d + mXdiag = mX.diagonal() + assert_equal(mX.trace(), mX.diagonal().compressed().sum()) + assert_(eq(mX.trace(), + X.trace() - sum(mXdiag.mask * X.diagonal(), + axis=0))) + + def test_clip(self): + (x, X, XX, m, mx, mX, mXX,) = self.d + clipped = mx.clip(2, 8) + assert_(eq(clipped.mask, mx.mask)) + assert_(eq(clipped._data, x.clip(2, 8))) + assert_(eq(clipped._data, mx._data.clip(2, 8))) + + def test_ptp(self): + (x, X, XX, m, mx, mX, mXX,) = self.d + (n, m) = X.shape + # print(type(mx), mx.compressed()) + # raise Exception() + assert_equal(mx.ptp(), np.ptp(mx.compressed())) + rows = np.zeros(n, np.float64) + cols = np.zeros(m, np.float64) + for k in range(m): + cols[k] = np.ptp(mX[:, k].compressed()) + for k in range(n): + rows[k] = np.ptp(mX[k].compressed()) + assert_(eq(mX.ptp(0), cols)) + assert_(eq(mX.ptp(1), rows)) + + def test_swapaxes(self): + (x, X, XX, m, mx, mX, mXX,) = self.d + mXswapped = mX.swapaxes(0, 1) + assert_(eq(mXswapped[-1], mX[:, -1])) + mXXswapped = mXX.swapaxes(0, 2) + assert_equal(mXXswapped.shape, (2, 2, 3, 3)) + + def test_cumprod(self): + (x, X, XX, m, mx, mX, mXX,) = self.d + mXcp = mX.cumprod(0) + assert_(eq(mXcp._data, mX.filled(1).cumprod(0))) + mXcp = mX.cumprod(1) + assert_(eq(mXcp._data, mX.filled(1).cumprod(1))) + + def test_cumsum(self): + (x, X, XX, m, mx, mX, mXX,) = self.d + mXcp = mX.cumsum(0) + assert_(eq(mXcp._data, mX.filled(0).cumsum(0))) + mXcp = mX.cumsum(1) + assert_(eq(mXcp._data, mX.filled(0).cumsum(1))) + + def test_varstd(self): + (x, X, XX, m, mx, mX, mXX,) = self.d + assert_(eq(mX.var(axis=None), mX.compressed().var())) + assert_(eq(mX.std(axis=None), mX.compressed().std())) + assert_(eq(mXX.var(axis=3).shape, XX.var(axis=3).shape)) + assert_(eq(mX.var().shape, X.var().shape)) + (mXvar0, mXvar1) = (mX.var(axis=0), mX.var(axis=1)) + for k in range(6): + assert_(eq(mXvar1[k], mX[k].compressed().var())) + assert_(eq(mXvar0[k], mX[:, k].compressed().var())) + assert_(eq(np.sqrt(mXvar0[k]), + mX[:, k].compressed().std())) + + +def eqmask(m1, m2): + if m1 is nomask: + return m2 is nomask + if m2 is nomask: + return m1 is nomask + return (m1 == m2).all() diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_regression.py b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_regression.py new file mode 100644 index 0000000..025387b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_regression.py @@ -0,0 +1,100 @@ +import numpy as np +from numpy.testing import ( + assert_, + assert_allclose, + assert_array_equal, + suppress_warnings, +) + + +class TestRegression: + def test_masked_array_create(self): + # Ticket #17 + x = np.ma.masked_array([0, 1, 2, 3, 0, 4, 5, 6], + mask=[0, 0, 0, 1, 1, 1, 0, 0]) + assert_array_equal(np.ma.nonzero(x), [[1, 2, 6, 7]]) + + def test_masked_array(self): + # Ticket #61 + np.ma.array(1, mask=[1]) + + def test_mem_masked_where(self): + # Ticket #62 + from numpy.ma import MaskType, masked_where + a = np.zeros((1, 1)) + b = np.zeros(a.shape, MaskType) + c = masked_where(b, a) + a - c + + def test_masked_array_multiply(self): + # Ticket #254 + a = np.ma.zeros((4, 1)) + a[2, 0] = np.ma.masked + b = np.zeros((4, 2)) + a * b + b * a + + def test_masked_array_repeat(self): + # Ticket #271 + np.ma.array([1], mask=False).repeat(10) + + def test_masked_array_repr_unicode(self): + # Ticket #1256 + repr(np.ma.array("Unicode")) + + def test_atleast_2d(self): + # Ticket #1559 + a = np.ma.masked_array([0.0, 1.2, 3.5], mask=[False, True, False]) + b = np.atleast_2d(a) + assert_(a.mask.ndim == 1) + assert_(b.mask.ndim == 2) + + def test_set_fill_value_unicode_py3(self): + # Ticket #2733 + a = np.ma.masked_array(['a', 'b', 'c'], mask=[1, 0, 0]) + a.fill_value = 'X' + assert_(a.fill_value == 'X') + + def test_var_sets_maskedarray_scalar(self): + # Issue gh-2757 + a = np.ma.array(np.arange(5), mask=True) + mout = np.ma.array(-1, dtype=float) + a.var(out=mout) + assert_(mout._data == 0) + + def test_ddof_corrcoef(self): + # See gh-3336 + x = np.ma.masked_equal([1, 2, 3, 4, 5], 4) + y = np.array([2, 2.5, 3.1, 3, 5]) + # this test can be removed after deprecation. + with suppress_warnings() as sup: + sup.filter(DeprecationWarning, "bias and ddof have no effect") + r0 = np.ma.corrcoef(x, y, ddof=0) + r1 = np.ma.corrcoef(x, y, ddof=1) + # ddof should not have an effect (it gets cancelled out) + assert_allclose(r0.data, r1.data) + + def test_mask_not_backmangled(self): + # See gh-10314. Test case taken from gh-3140. + a = np.ma.MaskedArray([1., 2.], mask=[False, False]) + assert_(a.mask.shape == (2,)) + b = np.tile(a, (2, 1)) + # Check that the above no longer changes a.shape to (1, 2) + assert_(a.mask.shape == (2,)) + assert_(b.shape == (2, 2)) + assert_(b.mask.shape == (2, 2)) + + def test_empty_list_on_structured(self): + # See gh-12464. Indexing with empty list should give empty result. + ma = np.ma.MaskedArray([(1, 1.), (2, 2.), (3, 3.)], dtype='i4,f4') + assert_array_equal(ma[[]], ma[:0]) + + def test_masked_array_tobytes_fortran(self): + ma = np.ma.arange(4).reshape((2, 2)) + assert_array_equal(ma.tobytes(order='F'), ma.T.tobytes()) + + def test_structured_array(self): + # see gh-22041 + np.ma.array((1, (b"", b"")), + dtype=[("x", np.int_), + ("y", [("i", np.void), ("j", np.void)])]) diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_subclassing.py b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_subclassing.py new file mode 100644 index 0000000..3364e56 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/ma/tests/test_subclassing.py @@ -0,0 +1,469 @@ +"""Tests suite for MaskedArray & subclassing. + +:author: Pierre Gerard-Marchant +:contact: pierregm_at_uga_dot_edu + +""" +import numpy as np +from numpy.lib.mixins import NDArrayOperatorsMixin +from numpy.ma.core import ( + MaskedArray, + add, + arange, + array, + asanyarray, + asarray, + divide, + hypot, + log, + masked, + masked_array, + nomask, +) +from numpy.ma.testutils import assert_equal +from numpy.testing import assert_, assert_raises + +# from numpy.ma.core import ( + +def assert_startswith(a, b): + # produces a better error message than assert_(a.startswith(b)) + assert_equal(a[:len(b)], b) + +class SubArray(np.ndarray): + # Defines a generic np.ndarray subclass, that stores some metadata + # in the dictionary `info`. + def __new__(cls, arr, info={}): + x = np.asanyarray(arr).view(cls) + x.info = info.copy() + return x + + def __array_finalize__(self, obj): + super().__array_finalize__(obj) + self.info = getattr(obj, 'info', {}).copy() + + def __add__(self, other): + result = super().__add__(other) + result.info['added'] = result.info.get('added', 0) + 1 + return result + + def __iadd__(self, other): + result = super().__iadd__(other) + result.info['iadded'] = result.info.get('iadded', 0) + 1 + return result + + +subarray = SubArray + + +class SubMaskedArray(MaskedArray): + """Pure subclass of MaskedArray, keeping some info on subclass.""" + def __new__(cls, info=None, **kwargs): + obj = super().__new__(cls, **kwargs) + obj._optinfo['info'] = info + return obj + + +class MSubArray(SubArray, MaskedArray): + + def __new__(cls, data, info={}, mask=nomask): + subarr = SubArray(data, info) + _data = MaskedArray.__new__(cls, data=subarr, mask=mask) + _data.info = subarr.info + return _data + + @property + def _series(self): + _view = self.view(MaskedArray) + _view._sharedmask = False + return _view + + +msubarray = MSubArray + + +# Also a subclass that overrides __str__, __repr__ and __setitem__, disallowing +# setting to non-class values (and thus np.ma.core.masked_print_option) +# and overrides __array_wrap__, updating the info dict, to check that this +# doesn't get destroyed by MaskedArray._update_from. But this one also needs +# its own iterator... +class CSAIterator: + """ + Flat iterator object that uses its own setter/getter + (works around ndarray.flat not propagating subclass setters/getters + see https://github.com/numpy/numpy/issues/4564) + roughly following MaskedIterator + """ + def __init__(self, a): + self._original = a + self._dataiter = a.view(np.ndarray).flat + + def __iter__(self): + return self + + def __getitem__(self, indx): + out = self._dataiter.__getitem__(indx) + if not isinstance(out, np.ndarray): + out = out.__array__() + out = out.view(type(self._original)) + return out + + def __setitem__(self, index, value): + self._dataiter[index] = self._original._validate_input(value) + + def __next__(self): + return next(self._dataiter).__array__().view(type(self._original)) + + +class ComplicatedSubArray(SubArray): + + def __str__(self): + return f'myprefix {self.view(SubArray)} mypostfix' + + def __repr__(self): + # Return a repr that does not start with 'name(' + return f'<{self.__class__.__name__} {self}>' + + def _validate_input(self, value): + if not isinstance(value, ComplicatedSubArray): + raise ValueError("Can only set to MySubArray values") + return value + + def __setitem__(self, item, value): + # validation ensures direct assignment with ndarray or + # masked_print_option will fail + super().__setitem__(item, self._validate_input(value)) + + def __getitem__(self, item): + # ensure getter returns our own class also for scalars + value = super().__getitem__(item) + if not isinstance(value, np.ndarray): # scalar + value = value.__array__().view(ComplicatedSubArray) + return value + + @property + def flat(self): + return CSAIterator(self) + + @flat.setter + def flat(self, value): + y = self.ravel() + y[:] = value + + def __array_wrap__(self, obj, context=None, return_scalar=False): + obj = super().__array_wrap__(obj, context, return_scalar) + if context is not None and context[0] is np.multiply: + obj.info['multiplied'] = obj.info.get('multiplied', 0) + 1 + + return obj + + +class WrappedArray(NDArrayOperatorsMixin): + """ + Wrapping a MaskedArray rather than subclassing to test that + ufunc deferrals are commutative. + See: https://github.com/numpy/numpy/issues/15200) + """ + __slots__ = ('_array', 'attrs') + __array_priority__ = 20 + + def __init__(self, array, **attrs): + self._array = array + self.attrs = attrs + + def __repr__(self): + return f"{self.__class__.__name__}(\n{self._array}\n{self.attrs}\n)" + + def __array__(self, dtype=None, copy=None): + return np.asarray(self._array) + + def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): + if method == '__call__': + inputs = [arg._array if isinstance(arg, self.__class__) else arg + for arg in inputs] + return self.__class__(ufunc(*inputs, **kwargs), **self.attrs) + else: + return NotImplemented + + +class TestSubclassing: + # Test suite for masked subclasses of ndarray. + + def setup_method(self): + x = np.arange(5, dtype='float') + mx = msubarray(x, mask=[0, 1, 0, 0, 0]) + self.data = (x, mx) + + def test_data_subclassing(self): + # Tests whether the subclass is kept. + x = np.arange(5) + m = [0, 0, 1, 0, 0] + xsub = SubArray(x) + xmsub = masked_array(xsub, mask=m) + assert_(isinstance(xmsub, MaskedArray)) + assert_equal(xmsub._data, xsub) + assert_(isinstance(xmsub._data, SubArray)) + + def test_maskedarray_subclassing(self): + # Tests subclassing MaskedArray + (x, mx) = self.data + assert_(isinstance(mx._data, subarray)) + + def test_masked_unary_operations(self): + # Tests masked_unary_operation + (x, mx) = self.data + with np.errstate(divide='ignore'): + assert_(isinstance(log(mx), msubarray)) + assert_equal(log(x), np.log(x)) + + def test_masked_binary_operations(self): + # Tests masked_binary_operation + (x, mx) = self.data + # Result should be a msubarray + assert_(isinstance(add(mx, mx), msubarray)) + assert_(isinstance(add(mx, x), msubarray)) + # Result should work + assert_equal(add(mx, x), mx + x) + assert_(isinstance(add(mx, mx)._data, subarray)) + assert_(isinstance(add.outer(mx, mx), msubarray)) + assert_(isinstance(hypot(mx, mx), msubarray)) + assert_(isinstance(hypot(mx, x), msubarray)) + + def test_masked_binary_operations2(self): + # Tests domained_masked_binary_operation + (x, mx) = self.data + xmx = masked_array(mx.data.__array__(), mask=mx.mask) + assert_(isinstance(divide(mx, mx), msubarray)) + assert_(isinstance(divide(mx, x), msubarray)) + assert_equal(divide(mx, mx), divide(xmx, xmx)) + + def test_attributepropagation(self): + x = array(arange(5), mask=[0] + [1] * 4) + my = masked_array(subarray(x)) + ym = msubarray(x) + # + z = (my + 1) + assert_(isinstance(z, MaskedArray)) + assert_(not isinstance(z, MSubArray)) + assert_(isinstance(z._data, SubArray)) + assert_equal(z._data.info, {}) + # + z = (ym + 1) + assert_(isinstance(z, MaskedArray)) + assert_(isinstance(z, MSubArray)) + assert_(isinstance(z._data, SubArray)) + assert_(z._data.info['added'] > 0) + # Test that inplace methods from data get used (gh-4617) + ym += 1 + assert_(isinstance(ym, MaskedArray)) + assert_(isinstance(ym, MSubArray)) + assert_(isinstance(ym._data, SubArray)) + assert_(ym._data.info['iadded'] > 0) + # + ym._set_mask([1, 0, 0, 0, 1]) + assert_equal(ym._mask, [1, 0, 0, 0, 1]) + ym._series._set_mask([0, 0, 0, 0, 1]) + assert_equal(ym._mask, [0, 0, 0, 0, 1]) + # + xsub = subarray(x, info={'name': 'x'}) + mxsub = masked_array(xsub) + assert_(hasattr(mxsub, 'info')) + assert_equal(mxsub.info, xsub.info) + + def test_subclasspreservation(self): + # Checks that masked_array(...,subok=True) preserves the class. + x = np.arange(5) + m = [0, 0, 1, 0, 0] + xinfo = list(zip(x, m)) + xsub = MSubArray(x, mask=m, info={'xsub': xinfo}) + # + mxsub = masked_array(xsub, subok=False) + assert_(not isinstance(mxsub, MSubArray)) + assert_(isinstance(mxsub, MaskedArray)) + assert_equal(mxsub._mask, m) + # + mxsub = asarray(xsub) + assert_(not isinstance(mxsub, MSubArray)) + assert_(isinstance(mxsub, MaskedArray)) + assert_equal(mxsub._mask, m) + # + mxsub = masked_array(xsub, subok=True) + assert_(isinstance(mxsub, MSubArray)) + assert_equal(mxsub.info, xsub.info) + assert_equal(mxsub._mask, xsub._mask) + # + mxsub = asanyarray(xsub) + assert_(isinstance(mxsub, MSubArray)) + assert_equal(mxsub.info, xsub.info) + assert_equal(mxsub._mask, m) + + def test_subclass_items(self): + """test that getter and setter go via baseclass""" + x = np.arange(5) + xcsub = ComplicatedSubArray(x) + mxcsub = masked_array(xcsub, mask=[True, False, True, False, False]) + # getter should return a ComplicatedSubArray, even for single item + # first check we wrote ComplicatedSubArray correctly + assert_(isinstance(xcsub[1], ComplicatedSubArray)) + assert_(isinstance(xcsub[1, ...], ComplicatedSubArray)) + assert_(isinstance(xcsub[1:4], ComplicatedSubArray)) + + # now that it propagates inside the MaskedArray + assert_(isinstance(mxcsub[1], ComplicatedSubArray)) + assert_(isinstance(mxcsub[1, ...].data, ComplicatedSubArray)) + assert_(mxcsub[0] is masked) + assert_(isinstance(mxcsub[0, ...].data, ComplicatedSubArray)) + assert_(isinstance(mxcsub[1:4].data, ComplicatedSubArray)) + + # also for flattened version (which goes via MaskedIterator) + assert_(isinstance(mxcsub.flat[1].data, ComplicatedSubArray)) + assert_(mxcsub.flat[0] is masked) + assert_(isinstance(mxcsub.flat[1:4].base, ComplicatedSubArray)) + + # setter should only work with ComplicatedSubArray input + # first check we wrote ComplicatedSubArray correctly + assert_raises(ValueError, xcsub.__setitem__, 1, x[4]) + # now that it propagates inside the MaskedArray + assert_raises(ValueError, mxcsub.__setitem__, 1, x[4]) + assert_raises(ValueError, mxcsub.__setitem__, slice(1, 4), x[1:4]) + mxcsub[1] = xcsub[4] + mxcsub[1:4] = xcsub[1:4] + # also for flattened version (which goes via MaskedIterator) + assert_raises(ValueError, mxcsub.flat.__setitem__, 1, x[4]) + assert_raises(ValueError, mxcsub.flat.__setitem__, slice(1, 4), x[1:4]) + mxcsub.flat[1] = xcsub[4] + mxcsub.flat[1:4] = xcsub[1:4] + + def test_subclass_nomask_items(self): + x = np.arange(5) + xcsub = ComplicatedSubArray(x) + mxcsub_nomask = masked_array(xcsub) + + assert_(isinstance(mxcsub_nomask[1, ...].data, ComplicatedSubArray)) + assert_(isinstance(mxcsub_nomask[0, ...].data, ComplicatedSubArray)) + + assert_(isinstance(mxcsub_nomask[1], ComplicatedSubArray)) + assert_(isinstance(mxcsub_nomask[0], ComplicatedSubArray)) + + def test_subclass_repr(self): + """test that repr uses the name of the subclass + and 'array' for np.ndarray""" + x = np.arange(5) + mx = masked_array(x, mask=[True, False, True, False, False]) + assert_startswith(repr(mx), 'masked_array') + xsub = SubArray(x) + mxsub = masked_array(xsub, mask=[True, False, True, False, False]) + assert_startswith(repr(mxsub), + f'masked_{SubArray.__name__}(data=[--, 1, --, 3, 4]') + + def test_subclass_str(self): + """test str with subclass that has overridden str, setitem""" + # first without override + x = np.arange(5) + xsub = SubArray(x) + mxsub = masked_array(xsub, mask=[True, False, True, False, False]) + assert_equal(str(mxsub), '[-- 1 -- 3 4]') + + xcsub = ComplicatedSubArray(x) + assert_raises(ValueError, xcsub.__setitem__, 0, + np.ma.core.masked_print_option) + mxcsub = masked_array(xcsub, mask=[True, False, True, False, False]) + assert_equal(str(mxcsub), 'myprefix [-- 1 -- 3 4] mypostfix') + + def test_pure_subclass_info_preservation(self): + # Test that ufuncs and methods conserve extra information consistently; + # see gh-7122. + arr1 = SubMaskedArray('test', data=[1, 2, 3, 4, 5, 6]) + arr2 = SubMaskedArray(data=[0, 1, 2, 3, 4, 5]) + diff1 = np.subtract(arr1, arr2) + assert_('info' in diff1._optinfo) + assert_(diff1._optinfo['info'] == 'test') + diff2 = arr1 - arr2 + assert_('info' in diff2._optinfo) + assert_(diff2._optinfo['info'] == 'test') + + +class ArrayNoInheritance: + """Quantity-like class that does not inherit from ndarray""" + def __init__(self, data, units): + self.magnitude = data + self.units = units + + def __getattr__(self, attr): + return getattr(self.magnitude, attr) + + +def test_array_no_inheritance(): + data_masked = np.ma.array([1, 2, 3], mask=[True, False, True]) + data_masked_units = ArrayNoInheritance(data_masked, 'meters') + + # Get the masked representation of the Quantity-like class + new_array = np.ma.array(data_masked_units) + assert_equal(data_masked.data, new_array.data) + assert_equal(data_masked.mask, new_array.mask) + # Test sharing the mask + data_masked.mask = [True, False, False] + assert_equal(data_masked.mask, new_array.mask) + assert_(new_array.sharedmask) + + # Get the masked representation of the Quantity-like class + new_array = np.ma.array(data_masked_units, copy=True) + assert_equal(data_masked.data, new_array.data) + assert_equal(data_masked.mask, new_array.mask) + # Test that the mask is not shared when copy=True + data_masked.mask = [True, False, True] + assert_equal([True, False, False], new_array.mask) + assert_(not new_array.sharedmask) + + # Get the masked representation of the Quantity-like class + new_array = np.ma.array(data_masked_units, keep_mask=False) + assert_equal(data_masked.data, new_array.data) + # The change did not affect the original mask + assert_equal(data_masked.mask, [True, False, True]) + # Test that the mask is False and not shared when keep_mask=False + assert_(not new_array.mask) + assert_(not new_array.sharedmask) + + +class TestClassWrapping: + # Test suite for classes that wrap MaskedArrays + + def setup_method(self): + m = np.ma.masked_array([1, 3, 5], mask=[False, True, False]) + wm = WrappedArray(m) + self.data = (m, wm) + + def test_masked_unary_operations(self): + # Tests masked_unary_operation + (m, wm) = self.data + with np.errstate(divide='ignore'): + assert_(isinstance(np.log(wm), WrappedArray)) + + def test_masked_binary_operations(self): + # Tests masked_binary_operation + (m, wm) = self.data + # Result should be a WrappedArray + assert_(isinstance(np.add(wm, wm), WrappedArray)) + assert_(isinstance(np.add(m, wm), WrappedArray)) + assert_(isinstance(np.add(wm, m), WrappedArray)) + # add and '+' should call the same ufunc + assert_equal(np.add(m, wm), m + wm) + assert_(isinstance(np.hypot(m, wm), WrappedArray)) + assert_(isinstance(np.hypot(wm, m), WrappedArray)) + # Test domained binary operations + assert_(isinstance(np.divide(wm, m), WrappedArray)) + assert_(isinstance(np.divide(m, wm), WrappedArray)) + assert_equal(np.divide(wm, m) * m, np.divide(m, m) * wm) + # Test broadcasting + m2 = np.stack([m, m]) + assert_(isinstance(np.divide(wm, m2), WrappedArray)) + assert_(isinstance(np.divide(m2, wm), WrappedArray)) + assert_equal(np.divide(m2, wm), np.divide(wm, m2)) + + def test_mixins_have_slots(self): + mixin = NDArrayOperatorsMixin() + # Should raise an error + assert_raises(AttributeError, mixin.__setattr__, "not_a_real_attr", 1) + + m = np.ma.masked_array([1, 3, 5], mask=[False, True, False]) + wm = WrappedArray(m) + assert_raises(AttributeError, wm.__setattr__, "not_an_attr", 2) diff --git a/.venv/lib/python3.12/site-packages/numpy/ma/testutils.py b/.venv/lib/python3.12/site-packages/numpy/ma/testutils.py new file mode 100644 index 0000000..bffcc34 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/ma/testutils.py @@ -0,0 +1,294 @@ +"""Miscellaneous functions for testing masked arrays and subclasses + +:author: Pierre Gerard-Marchant +:contact: pierregm_at_uga_dot_edu + +""" +import operator + +import numpy as np +import numpy._core.umath as umath +import numpy.testing +from numpy import ndarray +from numpy.testing import ( # noqa: F401 + assert_, + assert_allclose, + assert_array_almost_equal_nulp, + assert_raises, + build_err_msg, +) + +from .core import filled, getmask, mask_or, masked, masked_array, nomask + +__all__masked = [ + 'almost', 'approx', 'assert_almost_equal', 'assert_array_almost_equal', + 'assert_array_approx_equal', 'assert_array_compare', + 'assert_array_equal', 'assert_array_less', 'assert_close', + 'assert_equal', 'assert_equal_records', 'assert_mask_equal', + 'assert_not_equal', 'fail_if_array_equal', + ] + +# Include some normal test functions to avoid breaking other projects who +# have mistakenly included them from this file. SciPy is one. That is +# unfortunate, as some of these functions are not intended to work with +# masked arrays. But there was no way to tell before. +from unittest import TestCase # noqa: F401 + +__some__from_testing = [ + 'TestCase', 'assert_', 'assert_allclose', 'assert_array_almost_equal_nulp', + 'assert_raises' + ] + +__all__ = __all__masked + __some__from_testing # noqa: PLE0605 + + +def approx(a, b, fill_value=True, rtol=1e-5, atol=1e-8): + """ + Returns true if all components of a and b are equal to given tolerances. + + If fill_value is True, masked values considered equal. Otherwise, + masked values are considered unequal. The relative error rtol should + be positive and << 1.0 The absolute error atol comes into play for + those elements of b that are very small or zero; it says how small a + must be also. + + """ + m = mask_or(getmask(a), getmask(b)) + d1 = filled(a) + d2 = filled(b) + if d1.dtype.char == "O" or d2.dtype.char == "O": + return np.equal(d1, d2).ravel() + x = filled( + masked_array(d1, copy=False, mask=m), fill_value + ).astype(np.float64) + y = filled(masked_array(d2, copy=False, mask=m), 1).astype(np.float64) + d = np.less_equal(umath.absolute(x - y), atol + rtol * umath.absolute(y)) + return d.ravel() + + +def almost(a, b, decimal=6, fill_value=True): + """ + Returns True if a and b are equal up to decimal places. + + If fill_value is True, masked values considered equal. Otherwise, + masked values are considered unequal. + + """ + m = mask_or(getmask(a), getmask(b)) + d1 = filled(a) + d2 = filled(b) + if d1.dtype.char == "O" or d2.dtype.char == "O": + return np.equal(d1, d2).ravel() + x = filled( + masked_array(d1, copy=False, mask=m), fill_value + ).astype(np.float64) + y = filled(masked_array(d2, copy=False, mask=m), 1).astype(np.float64) + d = np.around(np.abs(x - y), decimal) <= 10.0 ** (-decimal) + return d.ravel() + + +def _assert_equal_on_sequences(actual, desired, err_msg=''): + """ + Asserts the equality of two non-array sequences. + + """ + assert_equal(len(actual), len(desired), err_msg) + for k in range(len(desired)): + assert_equal(actual[k], desired[k], f'item={k!r}\n{err_msg}') + + +def assert_equal_records(a, b): + """ + Asserts that two records are equal. + + Pretty crude for now. + + """ + assert_equal(a.dtype, b.dtype) + for f in a.dtype.names: + (af, bf) = (operator.getitem(a, f), operator.getitem(b, f)) + if not (af is masked) and not (bf is masked): + assert_equal(operator.getitem(a, f), operator.getitem(b, f)) + + +def assert_equal(actual, desired, err_msg=''): + """ + Asserts that two items are equal. + + """ + # Case #1: dictionary ..... + if isinstance(desired, dict): + if not isinstance(actual, dict): + raise AssertionError(repr(type(actual))) + assert_equal(len(actual), len(desired), err_msg) + for k, i in desired.items(): + if k not in actual: + raise AssertionError(f"{k} not in {actual}") + assert_equal(actual[k], desired[k], f'key={k!r}\n{err_msg}') + return + # Case #2: lists ..... + if isinstance(desired, (list, tuple)) and isinstance(actual, (list, tuple)): + return _assert_equal_on_sequences(actual, desired, err_msg='') + if not (isinstance(actual, ndarray) or isinstance(desired, ndarray)): + msg = build_err_msg([actual, desired], err_msg,) + if not desired == actual: + raise AssertionError(msg) + return + # Case #4. arrays or equivalent + if ((actual is masked) and not (desired is masked)) or \ + ((desired is masked) and not (actual is masked)): + msg = build_err_msg([actual, desired], + err_msg, header='', names=('x', 'y')) + raise ValueError(msg) + actual = np.asanyarray(actual) + desired = np.asanyarray(desired) + (actual_dtype, desired_dtype) = (actual.dtype, desired.dtype) + if actual_dtype.char == "S" and desired_dtype.char == "S": + return _assert_equal_on_sequences(actual.tolist(), + desired.tolist(), + err_msg='') + return assert_array_equal(actual, desired, err_msg) + + +def fail_if_equal(actual, desired, err_msg='',): + """ + Raises an assertion error if two items are equal. + + """ + if isinstance(desired, dict): + if not isinstance(actual, dict): + raise AssertionError(repr(type(actual))) + fail_if_equal(len(actual), len(desired), err_msg) + for k, i in desired.items(): + if k not in actual: + raise AssertionError(repr(k)) + fail_if_equal(actual[k], desired[k], f'key={k!r}\n{err_msg}') + return + if isinstance(desired, (list, tuple)) and isinstance(actual, (list, tuple)): + fail_if_equal(len(actual), len(desired), err_msg) + for k in range(len(desired)): + fail_if_equal(actual[k], desired[k], f'item={k!r}\n{err_msg}') + return + if isinstance(actual, np.ndarray) or isinstance(desired, np.ndarray): + return fail_if_array_equal(actual, desired, err_msg) + msg = build_err_msg([actual, desired], err_msg) + if not desired != actual: + raise AssertionError(msg) + + +assert_not_equal = fail_if_equal + + +def assert_almost_equal(actual, desired, decimal=7, err_msg='', verbose=True): + """ + Asserts that two items are almost equal. + + The test is equivalent to abs(desired-actual) < 0.5 * 10**(-decimal). + + """ + if isinstance(actual, np.ndarray) or isinstance(desired, np.ndarray): + return assert_array_almost_equal(actual, desired, decimal=decimal, + err_msg=err_msg, verbose=verbose) + msg = build_err_msg([actual, desired], + err_msg=err_msg, verbose=verbose) + if not round(abs(desired - actual), decimal) == 0: + raise AssertionError(msg) + + +assert_close = assert_almost_equal + + +def assert_array_compare(comparison, x, y, err_msg='', verbose=True, header='', + fill_value=True): + """ + Asserts that comparison between two masked arrays is satisfied. + + The comparison is elementwise. + + """ + # Allocate a common mask and refill + m = mask_or(getmask(x), getmask(y)) + x = masked_array(x, copy=False, mask=m, keep_mask=False, subok=False) + y = masked_array(y, copy=False, mask=m, keep_mask=False, subok=False) + if ((x is masked) and not (y is masked)) or \ + ((y is masked) and not (x is masked)): + msg = build_err_msg([x, y], err_msg=err_msg, verbose=verbose, + header=header, names=('x', 'y')) + raise ValueError(msg) + # OK, now run the basic tests on filled versions + return np.testing.assert_array_compare(comparison, + x.filled(fill_value), + y.filled(fill_value), + err_msg=err_msg, + verbose=verbose, header=header) + + +def assert_array_equal(x, y, err_msg='', verbose=True): + """ + Checks the elementwise equality of two masked arrays. + + """ + assert_array_compare(operator.__eq__, x, y, + err_msg=err_msg, verbose=verbose, + header='Arrays are not equal') + + +def fail_if_array_equal(x, y, err_msg='', verbose=True): + """ + Raises an assertion error if two masked arrays are not equal elementwise. + + """ + def compare(x, y): + return (not np.all(approx(x, y))) + assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose, + header='Arrays are not equal') + + +def assert_array_approx_equal(x, y, decimal=6, err_msg='', verbose=True): + """ + Checks the equality of two masked arrays, up to given number odecimals. + + The equality is checked elementwise. + + """ + def compare(x, y): + "Returns the result of the loose comparison between x and y)." + return approx(x, y, rtol=10. ** -decimal) + assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose, + header='Arrays are not almost equal') + + +def assert_array_almost_equal(x, y, decimal=6, err_msg='', verbose=True): + """ + Checks the equality of two masked arrays, up to given number odecimals. + + The equality is checked elementwise. + + """ + def compare(x, y): + "Returns the result of the loose comparison between x and y)." + return almost(x, y, decimal) + assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose, + header='Arrays are not almost equal') + + +def assert_array_less(x, y, err_msg='', verbose=True): + """ + Checks that x is smaller than y elementwise. + + """ + assert_array_compare(operator.__lt__, x, y, + err_msg=err_msg, verbose=verbose, + header='Arrays are not less-ordered') + + +def assert_mask_equal(m1, m2, err_msg=''): + """ + Asserts the equality of two masks. + + """ + if m1 is nomask: + assert_(m2 is nomask) + if m2 is nomask: + assert_(m1 is nomask) + assert_array_equal(m1, m2, err_msg=err_msg) diff --git a/.venv/lib/python3.12/site-packages/numpy/matlib.py b/.venv/lib/python3.12/site-packages/numpy/matlib.py new file mode 100644 index 0000000..f27d503 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/matlib.py @@ -0,0 +1,380 @@ +import warnings + +# 2018-05-29, PendingDeprecationWarning added to matrix.__new__ +# 2020-01-23, numpy 1.19.0 PendingDeprecatonWarning +warnings.warn("Importing from numpy.matlib is deprecated since 1.19.0. " + "The matrix subclass is not the recommended way to represent " + "matrices or deal with linear algebra (see " + "https://docs.scipy.org/doc/numpy/user/numpy-for-matlab-users.html). " + "Please adjust your code to use regular ndarray. ", + PendingDeprecationWarning, stacklevel=2) + +import numpy as np + +# Matlib.py contains all functions in the numpy namespace with a few +# replacements. See doc/source/reference/routines.matlib.rst for details. +# Need * as we're copying the numpy namespace. +from numpy import * # noqa: F403 +from numpy.matrixlib.defmatrix import asmatrix, matrix + +__version__ = np.__version__ + +__all__ = ['rand', 'randn', 'repmat'] +__all__ += np.__all__ + +def empty(shape, dtype=None, order='C'): + """Return a new matrix of given shape and type, without initializing entries. + + Parameters + ---------- + shape : int or tuple of int + Shape of the empty matrix. + dtype : data-type, optional + Desired output data-type. + order : {'C', 'F'}, optional + Whether to store multi-dimensional data in row-major + (C-style) or column-major (Fortran-style) order in + memory. + + See Also + -------- + numpy.empty : Equivalent array function. + matlib.zeros : Return a matrix of zeros. + matlib.ones : Return a matrix of ones. + + Notes + ----- + Unlike other matrix creation functions (e.g. `matlib.zeros`, + `matlib.ones`), `matlib.empty` does not initialize the values of the + matrix, and may therefore be marginally faster. However, the values + stored in the newly allocated matrix are arbitrary. For reproducible + behavior, be sure to set each element of the matrix before reading. + + Examples + -------- + >>> import numpy.matlib + >>> np.matlib.empty((2, 2)) # filled with random data + matrix([[ 6.76425276e-320, 9.79033856e-307], # random + [ 7.39337286e-309, 3.22135945e-309]]) + >>> np.matlib.empty((2, 2), dtype=int) + matrix([[ 6600475, 0], # random + [ 6586976, 22740995]]) + + """ + return ndarray.__new__(matrix, shape, dtype, order=order) + +def ones(shape, dtype=None, order='C'): + """ + Matrix of ones. + + Return a matrix of given shape and type, filled with ones. + + Parameters + ---------- + shape : {sequence of ints, int} + Shape of the matrix + dtype : data-type, optional + The desired data-type for the matrix, default is np.float64. + order : {'C', 'F'}, optional + Whether to store matrix in C- or Fortran-contiguous order, + default is 'C'. + + Returns + ------- + out : matrix + Matrix of ones of given shape, dtype, and order. + + See Also + -------- + ones : Array of ones. + matlib.zeros : Zero matrix. + + Notes + ----- + If `shape` has length one i.e. ``(N,)``, or is a scalar ``N``, + `out` becomes a single row matrix of shape ``(1,N)``. + + Examples + -------- + >>> np.matlib.ones((2,3)) + matrix([[1., 1., 1.], + [1., 1., 1.]]) + + >>> np.matlib.ones(2) + matrix([[1., 1.]]) + + """ + a = ndarray.__new__(matrix, shape, dtype, order=order) + a.fill(1) + return a + +def zeros(shape, dtype=None, order='C'): + """ + Return a matrix of given shape and type, filled with zeros. + + Parameters + ---------- + shape : int or sequence of ints + Shape of the matrix + dtype : data-type, optional + The desired data-type for the matrix, default is float. + order : {'C', 'F'}, optional + Whether to store the result in C- or Fortran-contiguous order, + default is 'C'. + + Returns + ------- + out : matrix + Zero matrix of given shape, dtype, and order. + + See Also + -------- + numpy.zeros : Equivalent array function. + matlib.ones : Return a matrix of ones. + + Notes + ----- + If `shape` has length one i.e. ``(N,)``, or is a scalar ``N``, + `out` becomes a single row matrix of shape ``(1,N)``. + + Examples + -------- + >>> import numpy.matlib + >>> np.matlib.zeros((2, 3)) + matrix([[0., 0., 0.], + [0., 0., 0.]]) + + >>> np.matlib.zeros(2) + matrix([[0., 0.]]) + + """ + a = ndarray.__new__(matrix, shape, dtype, order=order) + a.fill(0) + return a + +def identity(n, dtype=None): + """ + Returns the square identity matrix of given size. + + Parameters + ---------- + n : int + Size of the returned identity matrix. + dtype : data-type, optional + Data-type of the output. Defaults to ``float``. + + Returns + ------- + out : matrix + `n` x `n` matrix with its main diagonal set to one, + and all other elements zero. + + See Also + -------- + numpy.identity : Equivalent array function. + matlib.eye : More general matrix identity function. + + Examples + -------- + >>> import numpy.matlib + >>> np.matlib.identity(3, dtype=int) + matrix([[1, 0, 0], + [0, 1, 0], + [0, 0, 1]]) + + """ + a = array([1] + n * [0], dtype=dtype) + b = empty((n, n), dtype=dtype) + b.flat = a + return b + +def eye(n, M=None, k=0, dtype=float, order='C'): + """ + Return a matrix with ones on the diagonal and zeros elsewhere. + + Parameters + ---------- + n : int + Number of rows in the output. + M : int, optional + Number of columns in the output, defaults to `n`. + k : int, optional + Index of the diagonal: 0 refers to the main diagonal, + a positive value refers to an upper diagonal, + and a negative value to a lower diagonal. + dtype : dtype, optional + Data-type of the returned matrix. + order : {'C', 'F'}, optional + Whether the output should be stored in row-major (C-style) or + column-major (Fortran-style) order in memory. + + Returns + ------- + I : matrix + A `n` x `M` matrix where all elements are equal to zero, + except for the `k`-th diagonal, whose values are equal to one. + + See Also + -------- + numpy.eye : Equivalent array function. + identity : Square identity matrix. + + Examples + -------- + >>> import numpy.matlib + >>> np.matlib.eye(3, k=1, dtype=float) + matrix([[0., 1., 0.], + [0., 0., 1.], + [0., 0., 0.]]) + + """ + return asmatrix(np.eye(n, M=M, k=k, dtype=dtype, order=order)) + +def rand(*args): + """ + Return a matrix of random values with given shape. + + Create a matrix of the given shape and propagate it with + random samples from a uniform distribution over ``[0, 1)``. + + Parameters + ---------- + \\*args : Arguments + Shape of the output. + If given as N integers, each integer specifies the size of one + dimension. + If given as a tuple, this tuple gives the complete shape. + + Returns + ------- + out : ndarray + The matrix of random values with shape given by `\\*args`. + + See Also + -------- + randn, numpy.random.RandomState.rand + + Examples + -------- + >>> np.random.seed(123) + >>> import numpy.matlib + >>> np.matlib.rand(2, 3) + matrix([[0.69646919, 0.28613933, 0.22685145], + [0.55131477, 0.71946897, 0.42310646]]) + >>> np.matlib.rand((2, 3)) + matrix([[0.9807642 , 0.68482974, 0.4809319 ], + [0.39211752, 0.34317802, 0.72904971]]) + + If the first argument is a tuple, other arguments are ignored: + + >>> np.matlib.rand((2, 3), 4) + matrix([[0.43857224, 0.0596779 , 0.39804426], + [0.73799541, 0.18249173, 0.17545176]]) + + """ + if isinstance(args[0], tuple): + args = args[0] + return asmatrix(np.random.rand(*args)) + +def randn(*args): + """ + Return a random matrix with data from the "standard normal" distribution. + + `randn` generates a matrix filled with random floats sampled from a + univariate "normal" (Gaussian) distribution of mean 0 and variance 1. + + Parameters + ---------- + \\*args : Arguments + Shape of the output. + If given as N integers, each integer specifies the size of one + dimension. If given as a tuple, this tuple gives the complete shape. + + Returns + ------- + Z : matrix of floats + A matrix of floating-point samples drawn from the standard normal + distribution. + + See Also + -------- + rand, numpy.random.RandomState.randn + + Notes + ----- + For random samples from the normal distribution with mean ``mu`` and + standard deviation ``sigma``, use:: + + sigma * np.matlib.randn(...) + mu + + Examples + -------- + >>> np.random.seed(123) + >>> import numpy.matlib + >>> np.matlib.randn(1) + matrix([[-1.0856306]]) + >>> np.matlib.randn(1, 2, 3) + matrix([[ 0.99734545, 0.2829785 , -1.50629471], + [-0.57860025, 1.65143654, -2.42667924]]) + + Two-by-four matrix of samples from the normal distribution with + mean 3 and standard deviation 2.5: + + >>> 2.5 * np.matlib.randn((2, 4)) + 3 + matrix([[1.92771843, 6.16484065, 0.83314899, 1.30278462], + [2.76322758, 6.72847407, 1.40274501, 1.8900451 ]]) + + """ + if isinstance(args[0], tuple): + args = args[0] + return asmatrix(np.random.randn(*args)) + +def repmat(a, m, n): + """ + Repeat a 0-D to 2-D array or matrix MxN times. + + Parameters + ---------- + a : array_like + The array or matrix to be repeated. + m, n : int + The number of times `a` is repeated along the first and second axes. + + Returns + ------- + out : ndarray + The result of repeating `a`. + + Examples + -------- + >>> import numpy.matlib + >>> a0 = np.array(1) + >>> np.matlib.repmat(a0, 2, 3) + array([[1, 1, 1], + [1, 1, 1]]) + + >>> a1 = np.arange(4) + >>> np.matlib.repmat(a1, 2, 2) + array([[0, 1, 2, 3, 0, 1, 2, 3], + [0, 1, 2, 3, 0, 1, 2, 3]]) + + >>> a2 = np.asmatrix(np.arange(6).reshape(2, 3)) + >>> np.matlib.repmat(a2, 2, 3) + matrix([[0, 1, 2, 0, 1, 2, 0, 1, 2], + [3, 4, 5, 3, 4, 5, 3, 4, 5], + [0, 1, 2, 0, 1, 2, 0, 1, 2], + [3, 4, 5, 3, 4, 5, 3, 4, 5]]) + + """ + a = asanyarray(a) + ndim = a.ndim + if ndim == 0: + origrows, origcols = (1, 1) + elif ndim == 1: + origrows, origcols = (1, a.shape[0]) + else: + origrows, origcols = a.shape + rows = origrows * m + cols = origcols * n + c = a.reshape(1, a.size).repeat(m, 0).reshape(rows, origcols).repeat(n, 0) + return c.reshape(rows, cols) diff --git a/.venv/lib/python3.12/site-packages/numpy/matlib.pyi b/.venv/lib/python3.12/site-packages/numpy/matlib.pyi new file mode 100644 index 0000000..baeadc0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/matlib.pyi @@ -0,0 +1,582 @@ +from typing import Any, Literal, TypeAlias, TypeVar, overload + +import numpy as np +import numpy.typing as npt +from numpy import ( # noqa: F401 + False_, + ScalarType, + True_, + __array_namespace_info__, + __version__, + abs, + absolute, + acos, + acosh, + add, + all, + allclose, + amax, + amin, + angle, + any, + append, + apply_along_axis, + apply_over_axes, + arange, + arccos, + arccosh, + arcsin, + arcsinh, + arctan, + arctan2, + arctanh, + argmax, + argmin, + argpartition, + argsort, + argwhere, + around, + array, + array2string, + array_equal, + array_equiv, + array_repr, + array_split, + array_str, + asanyarray, + asarray, + asarray_chkfinite, + ascontiguousarray, + asfortranarray, + asin, + asinh, + asmatrix, + astype, + atan, + atan2, + atanh, + atleast_1d, + atleast_2d, + atleast_3d, + average, + bartlett, + base_repr, + binary_repr, + bincount, + bitwise_and, + bitwise_count, + bitwise_invert, + bitwise_left_shift, + bitwise_not, + bitwise_or, + bitwise_right_shift, + bitwise_xor, + blackman, + block, + bmat, + bool, + bool_, + broadcast, + broadcast_arrays, + broadcast_shapes, + broadcast_to, + busday_count, + busday_offset, + busdaycalendar, + byte, + bytes_, + c_, + can_cast, + cbrt, + cdouble, + ceil, + char, + character, + choose, + clip, + clongdouble, + column_stack, + common_type, + complex64, + complex128, + complex256, + complexfloating, + compress, + concat, + concatenate, + conj, + conjugate, + convolve, + copy, + copysign, + copyto, + core, + corrcoef, + correlate, + cos, + cosh, + count_nonzero, + cov, + cross, + csingle, + ctypeslib, + cumprod, + cumsum, + cumulative_prod, + cumulative_sum, + datetime64, + datetime_as_string, + datetime_data, + deg2rad, + degrees, + delete, + diag, + diag_indices, + diag_indices_from, + diagflat, + diagonal, + diff, + digitize, + divide, + divmod, + dot, + double, + dsplit, + dstack, + dtype, + dtypes, + e, + ediff1d, + einsum, + einsum_path, + emath, + empty_like, + equal, + errstate, + euler_gamma, + exceptions, + exp, + exp2, + expand_dims, + expm1, + extract, + f2py, + fabs, + fft, + fill_diagonal, + finfo, + fix, + flatiter, + flatnonzero, + flexible, + flip, + fliplr, + flipud, + float16, + float32, + float64, + float128, + float_power, + floating, + floor, + floor_divide, + fmax, + fmin, + fmod, + format_float_positional, + format_float_scientific, + frexp, + from_dlpack, + frombuffer, + fromfile, + fromfunction, + fromiter, + frompyfunc, + fromregex, + fromstring, + full, + full_like, + gcd, + generic, + genfromtxt, + geomspace, + get_include, + get_printoptions, + getbufsize, + geterr, + geterrcall, + gradient, + greater, + greater_equal, + half, + hamming, + hanning, + heaviside, + histogram, + histogram2d, + histogram_bin_edges, + histogramdd, + hsplit, + hstack, + hypot, + i0, + iinfo, + imag, + in1d, + index_exp, + indices, + inexact, + inf, + info, + inner, + insert, + int8, + int16, + int32, + int64, + int_, + intc, + integer, + interp, + intersect1d, + intp, + invert, + is_busday, + isclose, + iscomplex, + iscomplexobj, + isdtype, + isfinite, + isfortran, + isin, + isinf, + isnan, + isnat, + isneginf, + isposinf, + isreal, + isrealobj, + isscalar, + issubdtype, + iterable, + ix_, + kaiser, + kron, + lcm, + ldexp, + left_shift, + less, + less_equal, + lexsort, + lib, + linalg, + linspace, + little_endian, + load, + loadtxt, + log, + log1p, + log2, + log10, + logaddexp, + logaddexp2, + logical_and, + logical_not, + logical_or, + logical_xor, + logspace, + long, + longdouble, + longlong, + ma, + mask_indices, + matmul, + matrix, + matrix_transpose, + matvec, + max, + maximum, + may_share_memory, + mean, + median, + memmap, + meshgrid, + mgrid, + min, + min_scalar_type, + minimum, + mintypecode, + mod, + modf, + moveaxis, + multiply, + nan, + nan_to_num, + nanargmax, + nanargmin, + nancumprod, + nancumsum, + nanmax, + nanmean, + nanmedian, + nanmin, + nanpercentile, + nanprod, + nanquantile, + nanstd, + nansum, + nanvar, + ndarray, + ndenumerate, + ndim, + ndindex, + nditer, + negative, + nested_iters, + newaxis, + nextafter, + nonzero, + not_equal, + number, + object_, + ogrid, + ones_like, + outer, + packbits, + pad, + partition, + percentile, + permute_dims, + pi, + piecewise, + place, + poly, + poly1d, + polyadd, + polyder, + polydiv, + polyfit, + polyint, + polymul, + polynomial, + polysub, + polyval, + positive, + pow, + power, + printoptions, + prod, + promote_types, + ptp, + put, + put_along_axis, + putmask, + quantile, + r_, + rad2deg, + radians, + random, + ravel, + ravel_multi_index, + real, + real_if_close, + rec, + recarray, + reciprocal, + record, + remainder, + repeat, + require, + reshape, + resize, + result_type, + right_shift, + rint, + roll, + rollaxis, + roots, + rot90, + round, + row_stack, + s_, + save, + savetxt, + savez, + savez_compressed, + sctypeDict, + searchsorted, + select, + set_printoptions, + setbufsize, + setdiff1d, + seterr, + seterrcall, + setxor1d, + shape, + shares_memory, + short, + show_config, + show_runtime, + sign, + signbit, + signedinteger, + sin, + sinc, + single, + sinh, + size, + sort, + sort_complex, + spacing, + split, + sqrt, + square, + squeeze, + stack, + std, + str_, + strings, + subtract, + sum, + swapaxes, + take, + take_along_axis, + tan, + tanh, + tensordot, + test, + testing, + tile, + timedelta64, + trace, + transpose, + trapezoid, + trapz, + tri, + tril, + tril_indices, + tril_indices_from, + trim_zeros, + triu, + triu_indices, + triu_indices_from, + true_divide, + trunc, + typecodes, + typename, + typing, + ubyte, + ufunc, + uint, + uint8, + uint16, + uint32, + uint64, + uintc, + uintp, + ulong, + ulonglong, + union1d, + unique, + unique_all, + unique_counts, + unique_inverse, + unique_values, + unpackbits, + unravel_index, + unsignedinteger, + unstack, + unwrap, + ushort, + vander, + var, + vdot, + vecdot, + vecmat, + vectorize, + void, + vsplit, + vstack, + where, + zeros_like, +) +from numpy._typing import _ArrayLike, _DTypeLike + +__all__ = ["rand", "randn", "repmat"] +__all__ += np.__all__ + +### + +_T = TypeVar("_T", bound=np.generic) +_Matrix: TypeAlias = np.matrix[tuple[int, int], np.dtype[_T]] +_Order: TypeAlias = Literal["C", "F"] + +### + +# +@overload +def empty(shape: int | tuple[int, int], dtype: None = None, order: _Order = "C") -> _Matrix[np.float64]: ... +@overload +def empty(shape: int | tuple[int, int], dtype: _DTypeLike[_T], order: _Order = "C") -> _Matrix[_T]: ... +@overload +def empty(shape: int | tuple[int, int], dtype: npt.DTypeLike, order: _Order = "C") -> _Matrix[Any]: ... + +# +@overload +def ones(shape: int | tuple[int, int], dtype: None = None, order: _Order = "C") -> _Matrix[np.float64]: ... +@overload +def ones(shape: int | tuple[int, int], dtype: _DTypeLike[_T], order: _Order = "C") -> _Matrix[_T]: ... +@overload +def ones(shape: int | tuple[int, int], dtype: npt.DTypeLike, order: _Order = "C") -> _Matrix[Any]: ... + +# +@overload +def zeros(shape: int | tuple[int, int], dtype: None = None, order: _Order = "C") -> _Matrix[np.float64]: ... +@overload +def zeros(shape: int | tuple[int, int], dtype: _DTypeLike[_T], order: _Order = "C") -> _Matrix[_T]: ... +@overload +def zeros(shape: int | tuple[int, int], dtype: npt.DTypeLike, order: _Order = "C") -> _Matrix[Any]: ... + +# +@overload +def identity(n: int, dtype: None = None) -> _Matrix[np.float64]: ... +@overload +def identity(n: int, dtype: _DTypeLike[_T]) -> _Matrix[_T]: ... +@overload +def identity(n: int, dtype: npt.DTypeLike | None = None) -> _Matrix[Any]: ... + +# +@overload +def eye( + n: int, + M: int | None = None, + k: int = 0, + dtype: type[np.float64] | None = ..., + order: _Order = "C", +) -> _Matrix[np.float64]: ... +@overload +def eye(n: int, M: int | None, k: int, dtype: _DTypeLike[_T], order: _Order = "C") -> _Matrix[_T]: ... +@overload +def eye(n: int, M: int | None = None, k: int = 0, *, dtype: _DTypeLike[_T], order: _Order = "C") -> _Matrix[_T]: ... +@overload +def eye(n: int, M: int | None = None, k: int = 0, dtype: npt.DTypeLike = ..., order: _Order = "C") -> _Matrix[Any]: ... + +# +@overload +def rand(arg: int | tuple[()] | tuple[int] | tuple[int, int], /) -> _Matrix[np.float64]: ... +@overload +def rand(arg: int, /, *args: int) -> _Matrix[np.float64]: ... + +# +@overload +def randn(arg: int | tuple[()] | tuple[int] | tuple[int, int], /) -> _Matrix[np.float64]: ... +@overload +def randn(arg: int, /, *args: int) -> _Matrix[np.float64]: ... + +# +@overload +def repmat(a: _Matrix[_T], m: int, n: int) -> _Matrix[_T]: ... +@overload +def repmat(a: _ArrayLike[_T], m: int, n: int) -> npt.NDArray[_T]: ... +@overload +def repmat(a: npt.ArrayLike, m: int, n: int) -> npt.NDArray[Any]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/__init__.py b/.venv/lib/python3.12/site-packages/numpy/matrixlib/__init__.py new file mode 100644 index 0000000..1ff5cb5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/matrixlib/__init__.py @@ -0,0 +1,12 @@ +"""Sub-package containing the matrix class and related functions. + +""" +from . import defmatrix +from .defmatrix import * + +__all__ = defmatrix.__all__ + +from numpy._pytesttester import PytestTester + +test = PytestTester(__name__) +del PytestTester diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/__init__.pyi b/.venv/lib/python3.12/site-packages/numpy/matrixlib/__init__.pyi new file mode 100644 index 0000000..56ae8bf --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/matrixlib/__init__.pyi @@ -0,0 +1,5 @@ +from numpy import matrix + +from .defmatrix import asmatrix, bmat + +__all__ = ["matrix", "bmat", "asmatrix"] diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/matrixlib/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..7efcd96 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/matrixlib/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/__pycache__/defmatrix.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/matrixlib/__pycache__/defmatrix.cpython-312.pyc new file mode 100644 index 0000000..79b8dd0 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/matrixlib/__pycache__/defmatrix.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/defmatrix.py b/.venv/lib/python3.12/site-packages/numpy/matrixlib/defmatrix.py new file mode 100644 index 0000000..39b9a93 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/matrixlib/defmatrix.py @@ -0,0 +1,1119 @@ +__all__ = ['matrix', 'bmat', 'asmatrix'] + +import ast +import sys +import warnings + +import numpy._core.numeric as N +from numpy._core.numeric import concatenate, isscalar +from numpy._utils import set_module + +# While not in __all__, matrix_power used to be defined here, so we import +# it for backward compatibility. +from numpy.linalg import matrix_power + + +def _convert_from_string(data): + for char in '[]': + data = data.replace(char, '') + + rows = data.split(';') + newdata = [] + for count, row in enumerate(rows): + trow = row.split(',') + newrow = [] + for col in trow: + temp = col.split() + newrow.extend(map(ast.literal_eval, temp)) + if count == 0: + Ncols = len(newrow) + elif len(newrow) != Ncols: + raise ValueError("Rows not the same size.") + newdata.append(newrow) + return newdata + + +@set_module('numpy') +def asmatrix(data, dtype=None): + """ + Interpret the input as a matrix. + + Unlike `matrix`, `asmatrix` does not make a copy if the input is already + a matrix or an ndarray. Equivalent to ``matrix(data, copy=False)``. + + Parameters + ---------- + data : array_like + Input data. + dtype : data-type + Data-type of the output matrix. + + Returns + ------- + mat : matrix + `data` interpreted as a matrix. + + Examples + -------- + >>> import numpy as np + >>> x = np.array([[1, 2], [3, 4]]) + + >>> m = np.asmatrix(x) + + >>> x[0,0] = 5 + + >>> m + matrix([[5, 2], + [3, 4]]) + + """ + return matrix(data, dtype=dtype, copy=False) + + +@set_module('numpy') +class matrix(N.ndarray): + """ + matrix(data, dtype=None, copy=True) + + Returns a matrix from an array-like object, or from a string of data. + + A matrix is a specialized 2-D array that retains its 2-D nature + through operations. It has certain special operators, such as ``*`` + (matrix multiplication) and ``**`` (matrix power). + + .. note:: It is no longer recommended to use this class, even for linear + algebra. Instead use regular arrays. The class may be removed + in the future. + + Parameters + ---------- + data : array_like or string + If `data` is a string, it is interpreted as a matrix with commas + or spaces separating columns, and semicolons separating rows. + dtype : data-type + Data-type of the output matrix. + copy : bool + If `data` is already an `ndarray`, then this flag determines + whether the data is copied (the default), or whether a view is + constructed. + + See Also + -------- + array + + Examples + -------- + >>> import numpy as np + >>> a = np.matrix('1 2; 3 4') + >>> a + matrix([[1, 2], + [3, 4]]) + + >>> np.matrix([[1, 2], [3, 4]]) + matrix([[1, 2], + [3, 4]]) + + """ + __array_priority__ = 10.0 + + def __new__(subtype, data, dtype=None, copy=True): + warnings.warn('the matrix subclass is not the recommended way to ' + 'represent matrices or deal with linear algebra (see ' + 'https://docs.scipy.org/doc/numpy/user/' + 'numpy-for-matlab-users.html). ' + 'Please adjust your code to use regular ndarray.', + PendingDeprecationWarning, stacklevel=2) + if isinstance(data, matrix): + dtype2 = data.dtype + if (dtype is None): + dtype = dtype2 + if (dtype2 == dtype) and (not copy): + return data + return data.astype(dtype) + + if isinstance(data, N.ndarray): + if dtype is None: + intype = data.dtype + else: + intype = N.dtype(dtype) + new = data.view(subtype) + if intype != data.dtype: + return new.astype(intype) + if copy: + return new.copy() + else: + return new + + if isinstance(data, str): + data = _convert_from_string(data) + + # now convert data to an array + copy = None if not copy else True + arr = N.array(data, dtype=dtype, copy=copy) + ndim = arr.ndim + shape = arr.shape + if (ndim > 2): + raise ValueError("matrix must be 2-dimensional") + elif ndim == 0: + shape = (1, 1) + elif ndim == 1: + shape = (1, shape[0]) + + order = 'C' + if (ndim == 2) and arr.flags.fortran: + order = 'F' + + if not (order or arr.flags.contiguous): + arr = arr.copy() + + ret = N.ndarray.__new__(subtype, shape, arr.dtype, + buffer=arr, + order=order) + return ret + + def __array_finalize__(self, obj): + self._getitem = False + if (isinstance(obj, matrix) and obj._getitem): + return + ndim = self.ndim + if (ndim == 2): + return + if (ndim > 2): + newshape = tuple(x for x in self.shape if x > 1) + ndim = len(newshape) + if ndim == 2: + self.shape = newshape + return + elif (ndim > 2): + raise ValueError("shape too large to be a matrix.") + else: + newshape = self.shape + if ndim == 0: + self.shape = (1, 1) + elif ndim == 1: + self.shape = (1, newshape[0]) + return + + def __getitem__(self, index): + self._getitem = True + + try: + out = N.ndarray.__getitem__(self, index) + finally: + self._getitem = False + + if not isinstance(out, N.ndarray): + return out + + if out.ndim == 0: + return out[()] + if out.ndim == 1: + sh = out.shape[0] + # Determine when we should have a column array + try: + n = len(index) + except Exception: + n = 0 + if n > 1 and isscalar(index[1]): + out.shape = (sh, 1) + else: + out.shape = (1, sh) + return out + + def __mul__(self, other): + if isinstance(other, (N.ndarray, list, tuple)): + # This promotes 1-D vectors to row vectors + return N.dot(self, asmatrix(other)) + if isscalar(other) or not hasattr(other, '__rmul__'): + return N.dot(self, other) + return NotImplemented + + def __rmul__(self, other): + return N.dot(other, self) + + def __imul__(self, other): + self[:] = self * other + return self + + def __pow__(self, other): + return matrix_power(self, other) + + def __ipow__(self, other): + self[:] = self ** other + return self + + def __rpow__(self, other): + return NotImplemented + + def _align(self, axis): + """A convenience function for operations that need to preserve axis + orientation. + """ + if axis is None: + return self[0, 0] + elif axis == 0: + return self + elif axis == 1: + return self.transpose() + else: + raise ValueError("unsupported axis") + + def _collapse(self, axis): + """A convenience function for operations that want to collapse + to a scalar like _align, but are using keepdims=True + """ + if axis is None: + return self[0, 0] + else: + return self + + # Necessary because base-class tolist expects dimension + # reduction by x[0] + def tolist(self): + """ + Return the matrix as a (possibly nested) list. + + See `ndarray.tolist` for full documentation. + + See Also + -------- + ndarray.tolist + + Examples + -------- + >>> x = np.matrix(np.arange(12).reshape((3,4))); x + matrix([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]) + >>> x.tolist() + [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]] + + """ + return self.__array__().tolist() + + # To preserve orientation of result... + def sum(self, axis=None, dtype=None, out=None): + """ + Returns the sum of the matrix elements, along the given axis. + + Refer to `numpy.sum` for full documentation. + + See Also + -------- + numpy.sum + + Notes + ----- + This is the same as `ndarray.sum`, except that where an `ndarray` would + be returned, a `matrix` object is returned instead. + + Examples + -------- + >>> x = np.matrix([[1, 2], [4, 3]]) + >>> x.sum() + 10 + >>> x.sum(axis=1) + matrix([[3], + [7]]) + >>> x.sum(axis=1, dtype='float') + matrix([[3.], + [7.]]) + >>> out = np.zeros((2, 1), dtype='float') + >>> x.sum(axis=1, dtype='float', out=np.asmatrix(out)) + matrix([[3.], + [7.]]) + + """ + return N.ndarray.sum(self, axis, dtype, out, keepdims=True)._collapse(axis) + + # To update docstring from array to matrix... + def squeeze(self, axis=None): + """ + Return a possibly reshaped matrix. + + Refer to `numpy.squeeze` for more documentation. + + Parameters + ---------- + axis : None or int or tuple of ints, optional + Selects a subset of the axes of length one in the shape. + If an axis is selected with shape entry greater than one, + an error is raised. + + Returns + ------- + squeezed : matrix + The matrix, but as a (1, N) matrix if it had shape (N, 1). + + See Also + -------- + numpy.squeeze : related function + + Notes + ----- + If `m` has a single column then that column is returned + as the single row of a matrix. Otherwise `m` is returned. + The returned matrix is always either `m` itself or a view into `m`. + Supplying an axis keyword argument will not affect the returned matrix + but it may cause an error to be raised. + + Examples + -------- + >>> c = np.matrix([[1], [2]]) + >>> c + matrix([[1], + [2]]) + >>> c.squeeze() + matrix([[1, 2]]) + >>> r = c.T + >>> r + matrix([[1, 2]]) + >>> r.squeeze() + matrix([[1, 2]]) + >>> m = np.matrix([[1, 2], [3, 4]]) + >>> m.squeeze() + matrix([[1, 2], + [3, 4]]) + + """ + return N.ndarray.squeeze(self, axis=axis) + + # To update docstring from array to matrix... + def flatten(self, order='C'): + """ + Return a flattened copy of the matrix. + + All `N` elements of the matrix are placed into a single row. + + Parameters + ---------- + order : {'C', 'F', 'A', 'K'}, optional + 'C' means to flatten in row-major (C-style) order. 'F' means to + flatten in column-major (Fortran-style) order. 'A' means to + flatten in column-major order if `m` is Fortran *contiguous* in + memory, row-major order otherwise. 'K' means to flatten `m` in + the order the elements occur in memory. The default is 'C'. + + Returns + ------- + y : matrix + A copy of the matrix, flattened to a `(1, N)` matrix where `N` + is the number of elements in the original matrix. + + See Also + -------- + ravel : Return a flattened array. + flat : A 1-D flat iterator over the matrix. + + Examples + -------- + >>> m = np.matrix([[1,2], [3,4]]) + >>> m.flatten() + matrix([[1, 2, 3, 4]]) + >>> m.flatten('F') + matrix([[1, 3, 2, 4]]) + + """ + return N.ndarray.flatten(self, order=order) + + def mean(self, axis=None, dtype=None, out=None): + """ + Returns the average of the matrix elements along the given axis. + + Refer to `numpy.mean` for full documentation. + + See Also + -------- + numpy.mean + + Notes + ----- + Same as `ndarray.mean` except that, where that returns an `ndarray`, + this returns a `matrix` object. + + Examples + -------- + >>> x = np.matrix(np.arange(12).reshape((3, 4))) + >>> x + matrix([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]) + >>> x.mean() + 5.5 + >>> x.mean(0) + matrix([[4., 5., 6., 7.]]) + >>> x.mean(1) + matrix([[ 1.5], + [ 5.5], + [ 9.5]]) + + """ + return N.ndarray.mean(self, axis, dtype, out, keepdims=True)._collapse(axis) + + def std(self, axis=None, dtype=None, out=None, ddof=0): + """ + Return the standard deviation of the array elements along the given axis. + + Refer to `numpy.std` for full documentation. + + See Also + -------- + numpy.std + + Notes + ----- + This is the same as `ndarray.std`, except that where an `ndarray` would + be returned, a `matrix` object is returned instead. + + Examples + -------- + >>> x = np.matrix(np.arange(12).reshape((3, 4))) + >>> x + matrix([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]) + >>> x.std() + 3.4520525295346629 # may vary + >>> x.std(0) + matrix([[ 3.26598632, 3.26598632, 3.26598632, 3.26598632]]) # may vary + >>> x.std(1) + matrix([[ 1.11803399], + [ 1.11803399], + [ 1.11803399]]) + + """ + return N.ndarray.std(self, axis, dtype, out, ddof, + keepdims=True)._collapse(axis) + + def var(self, axis=None, dtype=None, out=None, ddof=0): + """ + Returns the variance of the matrix elements, along the given axis. + + Refer to `numpy.var` for full documentation. + + See Also + -------- + numpy.var + + Notes + ----- + This is the same as `ndarray.var`, except that where an `ndarray` would + be returned, a `matrix` object is returned instead. + + Examples + -------- + >>> x = np.matrix(np.arange(12).reshape((3, 4))) + >>> x + matrix([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]) + >>> x.var() + 11.916666666666666 + >>> x.var(0) + matrix([[ 10.66666667, 10.66666667, 10.66666667, 10.66666667]]) # may vary + >>> x.var(1) + matrix([[1.25], + [1.25], + [1.25]]) + + """ + return N.ndarray.var(self, axis, dtype, out, ddof, + keepdims=True)._collapse(axis) + + def prod(self, axis=None, dtype=None, out=None): + """ + Return the product of the array elements over the given axis. + + Refer to `prod` for full documentation. + + See Also + -------- + prod, ndarray.prod + + Notes + ----- + Same as `ndarray.prod`, except, where that returns an `ndarray`, this + returns a `matrix` object instead. + + Examples + -------- + >>> x = np.matrix(np.arange(12).reshape((3,4))); x + matrix([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]) + >>> x.prod() + 0 + >>> x.prod(0) + matrix([[ 0, 45, 120, 231]]) + >>> x.prod(1) + matrix([[ 0], + [ 840], + [7920]]) + + """ + return N.ndarray.prod(self, axis, dtype, out, keepdims=True)._collapse(axis) + + def any(self, axis=None, out=None): + """ + Test whether any array element along a given axis evaluates to True. + + Refer to `numpy.any` for full documentation. + + Parameters + ---------- + axis : int, optional + Axis along which logical OR is performed + out : ndarray, optional + Output to existing array instead of creating new one, must have + same shape as expected output + + Returns + ------- + any : bool, ndarray + Returns a single bool if `axis` is ``None``; otherwise, + returns `ndarray` + + """ + return N.ndarray.any(self, axis, out, keepdims=True)._collapse(axis) + + def all(self, axis=None, out=None): + """ + Test whether all matrix elements along a given axis evaluate to True. + + Parameters + ---------- + See `numpy.all` for complete descriptions + + See Also + -------- + numpy.all + + Notes + ----- + This is the same as `ndarray.all`, but it returns a `matrix` object. + + Examples + -------- + >>> x = np.matrix(np.arange(12).reshape((3,4))); x + matrix([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]) + >>> y = x[0]; y + matrix([[0, 1, 2, 3]]) + >>> (x == y) + matrix([[ True, True, True, True], + [False, False, False, False], + [False, False, False, False]]) + >>> (x == y).all() + False + >>> (x == y).all(0) + matrix([[False, False, False, False]]) + >>> (x == y).all(1) + matrix([[ True], + [False], + [False]]) + + """ + return N.ndarray.all(self, axis, out, keepdims=True)._collapse(axis) + + def max(self, axis=None, out=None): + """ + Return the maximum value along an axis. + + Parameters + ---------- + See `amax` for complete descriptions + + See Also + -------- + amax, ndarray.max + + Notes + ----- + This is the same as `ndarray.max`, but returns a `matrix` object + where `ndarray.max` would return an ndarray. + + Examples + -------- + >>> x = np.matrix(np.arange(12).reshape((3,4))); x + matrix([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]) + >>> x.max() + 11 + >>> x.max(0) + matrix([[ 8, 9, 10, 11]]) + >>> x.max(1) + matrix([[ 3], + [ 7], + [11]]) + + """ + return N.ndarray.max(self, axis, out, keepdims=True)._collapse(axis) + + def argmax(self, axis=None, out=None): + """ + Indexes of the maximum values along an axis. + + Return the indexes of the first occurrences of the maximum values + along the specified axis. If axis is None, the index is for the + flattened matrix. + + Parameters + ---------- + See `numpy.argmax` for complete descriptions + + See Also + -------- + numpy.argmax + + Notes + ----- + This is the same as `ndarray.argmax`, but returns a `matrix` object + where `ndarray.argmax` would return an `ndarray`. + + Examples + -------- + >>> x = np.matrix(np.arange(12).reshape((3,4))); x + matrix([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]) + >>> x.argmax() + 11 + >>> x.argmax(0) + matrix([[2, 2, 2, 2]]) + >>> x.argmax(1) + matrix([[3], + [3], + [3]]) + + """ + return N.ndarray.argmax(self, axis, out)._align(axis) + + def min(self, axis=None, out=None): + """ + Return the minimum value along an axis. + + Parameters + ---------- + See `amin` for complete descriptions. + + See Also + -------- + amin, ndarray.min + + Notes + ----- + This is the same as `ndarray.min`, but returns a `matrix` object + where `ndarray.min` would return an ndarray. + + Examples + -------- + >>> x = -np.matrix(np.arange(12).reshape((3,4))); x + matrix([[ 0, -1, -2, -3], + [ -4, -5, -6, -7], + [ -8, -9, -10, -11]]) + >>> x.min() + -11 + >>> x.min(0) + matrix([[ -8, -9, -10, -11]]) + >>> x.min(1) + matrix([[ -3], + [ -7], + [-11]]) + + """ + return N.ndarray.min(self, axis, out, keepdims=True)._collapse(axis) + + def argmin(self, axis=None, out=None): + """ + Indexes of the minimum values along an axis. + + Return the indexes of the first occurrences of the minimum values + along the specified axis. If axis is None, the index is for the + flattened matrix. + + Parameters + ---------- + See `numpy.argmin` for complete descriptions. + + See Also + -------- + numpy.argmin + + Notes + ----- + This is the same as `ndarray.argmin`, but returns a `matrix` object + where `ndarray.argmin` would return an `ndarray`. + + Examples + -------- + >>> x = -np.matrix(np.arange(12).reshape((3,4))); x + matrix([[ 0, -1, -2, -3], + [ -4, -5, -6, -7], + [ -8, -9, -10, -11]]) + >>> x.argmin() + 11 + >>> x.argmin(0) + matrix([[2, 2, 2, 2]]) + >>> x.argmin(1) + matrix([[3], + [3], + [3]]) + + """ + return N.ndarray.argmin(self, axis, out)._align(axis) + + def ptp(self, axis=None, out=None): + """ + Peak-to-peak (maximum - minimum) value along the given axis. + + Refer to `numpy.ptp` for full documentation. + + See Also + -------- + numpy.ptp + + Notes + ----- + Same as `ndarray.ptp`, except, where that would return an `ndarray` object, + this returns a `matrix` object. + + Examples + -------- + >>> x = np.matrix(np.arange(12).reshape((3,4))); x + matrix([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]) + >>> x.ptp() + 11 + >>> x.ptp(0) + matrix([[8, 8, 8, 8]]) + >>> x.ptp(1) + matrix([[3], + [3], + [3]]) + + """ + return N.ptp(self, axis, out)._align(axis) + + @property + def I(self): # noqa: E743 + """ + Returns the (multiplicative) inverse of invertible `self`. + + Parameters + ---------- + None + + Returns + ------- + ret : matrix object + If `self` is non-singular, `ret` is such that ``ret * self`` == + ``self * ret`` == ``np.matrix(np.eye(self[0,:].size))`` all return + ``True``. + + Raises + ------ + numpy.linalg.LinAlgError: Singular matrix + If `self` is singular. + + See Also + -------- + linalg.inv + + Examples + -------- + >>> m = np.matrix('[1, 2; 3, 4]'); m + matrix([[1, 2], + [3, 4]]) + >>> m.getI() + matrix([[-2. , 1. ], + [ 1.5, -0.5]]) + >>> m.getI() * m + matrix([[ 1., 0.], # may vary + [ 0., 1.]]) + + """ + M, N = self.shape + if M == N: + from numpy.linalg import inv as func + else: + from numpy.linalg import pinv as func + return asmatrix(func(self)) + + @property + def A(self): + """ + Return `self` as an `ndarray` object. + + Equivalent to ``np.asarray(self)``. + + Parameters + ---------- + None + + Returns + ------- + ret : ndarray + `self` as an `ndarray` + + Examples + -------- + >>> x = np.matrix(np.arange(12).reshape((3,4))); x + matrix([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]) + >>> x.getA() + array([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]) + + """ + return self.__array__() + + @property + def A1(self): + """ + Return `self` as a flattened `ndarray`. + + Equivalent to ``np.asarray(x).ravel()`` + + Parameters + ---------- + None + + Returns + ------- + ret : ndarray + `self`, 1-D, as an `ndarray` + + Examples + -------- + >>> x = np.matrix(np.arange(12).reshape((3,4))); x + matrix([[ 0, 1, 2, 3], + [ 4, 5, 6, 7], + [ 8, 9, 10, 11]]) + >>> x.getA1() + array([ 0, 1, 2, ..., 9, 10, 11]) + + + """ + return self.__array__().ravel() + + def ravel(self, order='C'): + """ + Return a flattened matrix. + + Refer to `numpy.ravel` for more documentation. + + Parameters + ---------- + order : {'C', 'F', 'A', 'K'}, optional + The elements of `m` are read using this index order. 'C' means to + index the elements in C-like order, with the last axis index + changing fastest, back to the first axis index changing slowest. + 'F' means to index the elements in Fortran-like index order, with + the first index changing fastest, and the last index changing + slowest. Note that the 'C' and 'F' options take no account of the + memory layout of the underlying array, and only refer to the order + of axis indexing. 'A' means to read the elements in Fortran-like + index order if `m` is Fortran *contiguous* in memory, C-like order + otherwise. 'K' means to read the elements in the order they occur + in memory, except for reversing the data when strides are negative. + By default, 'C' index order is used. + + Returns + ------- + ret : matrix + Return the matrix flattened to shape `(1, N)` where `N` + is the number of elements in the original matrix. + A copy is made only if necessary. + + See Also + -------- + matrix.flatten : returns a similar output matrix but always a copy + matrix.flat : a flat iterator on the array. + numpy.ravel : related function which returns an ndarray + + """ + return N.ndarray.ravel(self, order=order) + + @property + def T(self): + """ + Returns the transpose of the matrix. + + Does *not* conjugate! For the complex conjugate transpose, use ``.H``. + + Parameters + ---------- + None + + Returns + ------- + ret : matrix object + The (non-conjugated) transpose of the matrix. + + See Also + -------- + transpose, getH + + Examples + -------- + >>> m = np.matrix('[1, 2; 3, 4]') + >>> m + matrix([[1, 2], + [3, 4]]) + >>> m.getT() + matrix([[1, 3], + [2, 4]]) + + """ + return self.transpose() + + @property + def H(self): + """ + Returns the (complex) conjugate transpose of `self`. + + Equivalent to ``np.transpose(self)`` if `self` is real-valued. + + Parameters + ---------- + None + + Returns + ------- + ret : matrix object + complex conjugate transpose of `self` + + Examples + -------- + >>> x = np.matrix(np.arange(12).reshape((3,4))) + >>> z = x - 1j*x; z + matrix([[ 0. +0.j, 1. -1.j, 2. -2.j, 3. -3.j], + [ 4. -4.j, 5. -5.j, 6. -6.j, 7. -7.j], + [ 8. -8.j, 9. -9.j, 10.-10.j, 11.-11.j]]) + >>> z.getH() + matrix([[ 0. -0.j, 4. +4.j, 8. +8.j], + [ 1. +1.j, 5. +5.j, 9. +9.j], + [ 2. +2.j, 6. +6.j, 10.+10.j], + [ 3. +3.j, 7. +7.j, 11.+11.j]]) + + """ + if issubclass(self.dtype.type, N.complexfloating): + return self.transpose().conjugate() + else: + return self.transpose() + + # kept for compatibility + getT = T.fget + getA = A.fget + getA1 = A1.fget + getH = H.fget + getI = I.fget + +def _from_string(str, gdict, ldict): + rows = str.split(';') + rowtup = [] + for row in rows: + trow = row.split(',') + newrow = [] + for x in trow: + newrow.extend(x.split()) + trow = newrow + coltup = [] + for col in trow: + col = col.strip() + try: + thismat = ldict[col] + except KeyError: + try: + thismat = gdict[col] + except KeyError as e: + raise NameError(f"name {col!r} is not defined") from None + + coltup.append(thismat) + rowtup.append(concatenate(coltup, axis=-1)) + return concatenate(rowtup, axis=0) + + +@set_module('numpy') +def bmat(obj, ldict=None, gdict=None): + """ + Build a matrix object from a string, nested sequence, or array. + + Parameters + ---------- + obj : str or array_like + Input data. If a string, variables in the current scope may be + referenced by name. + ldict : dict, optional + A dictionary that replaces local operands in current frame. + Ignored if `obj` is not a string or `gdict` is None. + gdict : dict, optional + A dictionary that replaces global operands in current frame. + Ignored if `obj` is not a string. + + Returns + ------- + out : matrix + Returns a matrix object, which is a specialized 2-D array. + + See Also + -------- + block : + A generalization of this function for N-d arrays, that returns normal + ndarrays. + + Examples + -------- + >>> import numpy as np + >>> A = np.asmatrix('1 1; 1 1') + >>> B = np.asmatrix('2 2; 2 2') + >>> C = np.asmatrix('3 4; 5 6') + >>> D = np.asmatrix('7 8; 9 0') + + All the following expressions construct the same block matrix: + + >>> np.bmat([[A, B], [C, D]]) + matrix([[1, 1, 2, 2], + [1, 1, 2, 2], + [3, 4, 7, 8], + [5, 6, 9, 0]]) + >>> np.bmat(np.r_[np.c_[A, B], np.c_[C, D]]) + matrix([[1, 1, 2, 2], + [1, 1, 2, 2], + [3, 4, 7, 8], + [5, 6, 9, 0]]) + >>> np.bmat('A,B; C,D') + matrix([[1, 1, 2, 2], + [1, 1, 2, 2], + [3, 4, 7, 8], + [5, 6, 9, 0]]) + + """ + if isinstance(obj, str): + if gdict is None: + # get previous frame + frame = sys._getframe().f_back + glob_dict = frame.f_globals + loc_dict = frame.f_locals + else: + glob_dict = gdict + loc_dict = ldict + + return matrix(_from_string(obj, glob_dict, loc_dict)) + + if isinstance(obj, (tuple, list)): + # [[A,B],[C,D]] + arr_rows = [] + for row in obj: + if isinstance(row, N.ndarray): # not 2-d + return matrix(concatenate(obj, axis=-1)) + else: + arr_rows.append(concatenate(row, axis=-1)) + return matrix(concatenate(arr_rows, axis=0)) + if isinstance(obj, N.ndarray): + return matrix(obj) diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/defmatrix.pyi b/.venv/lib/python3.12/site-packages/numpy/matrixlib/defmatrix.pyi new file mode 100644 index 0000000..ee8f837 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/matrixlib/defmatrix.pyi @@ -0,0 +1,17 @@ +from collections.abc import Mapping, Sequence +from typing import Any + +from numpy import matrix +from numpy._typing import ArrayLike, DTypeLike, NDArray + +__all__ = ["asmatrix", "bmat", "matrix"] + +def bmat( + obj: str | Sequence[ArrayLike] | NDArray[Any], + ldict: Mapping[str, Any] | None = ..., + gdict: Mapping[str, Any] | None = ..., +) -> matrix[tuple[int, int], Any]: ... + +def asmatrix( + data: ArrayLike, dtype: DTypeLike = ... +) -> matrix[tuple[int, int], Any]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__init__.py b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..bb87ce7 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_defmatrix.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_defmatrix.cpython-312.pyc new file mode 100644 index 0000000..ab51fab Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_defmatrix.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_interaction.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_interaction.cpython-312.pyc new file mode 100644 index 0000000..9526b45 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_interaction.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_masked_matrix.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_masked_matrix.cpython-312.pyc new file mode 100644 index 0000000..045e8b1 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_masked_matrix.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_matrix_linalg.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_matrix_linalg.cpython-312.pyc new file mode 100644 index 0000000..0730084 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_matrix_linalg.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_multiarray.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_multiarray.cpython-312.pyc new file mode 100644 index 0000000..623b355 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_multiarray.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_numeric.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_numeric.cpython-312.pyc new file mode 100644 index 0000000..9259519 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_numeric.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_regression.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_regression.cpython-312.pyc new file mode 100644 index 0000000..f766ba8 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/__pycache__/test_regression.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_defmatrix.py b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_defmatrix.py new file mode 100644 index 0000000..ce23933 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_defmatrix.py @@ -0,0 +1,455 @@ +import collections.abc + +import numpy as np +from numpy import asmatrix, bmat, matrix +from numpy.linalg import matrix_power +from numpy.testing import ( + assert_, + assert_almost_equal, + assert_array_almost_equal, + assert_array_equal, + assert_equal, + assert_raises, +) + + +class TestCtor: + def test_basic(self): + A = np.array([[1, 2], [3, 4]]) + mA = matrix(A) + assert_(np.all(mA.A == A)) + + B = bmat("A,A;A,A") + C = bmat([[A, A], [A, A]]) + D = np.array([[1, 2, 1, 2], + [3, 4, 3, 4], + [1, 2, 1, 2], + [3, 4, 3, 4]]) + assert_(np.all(B.A == D)) + assert_(np.all(C.A == D)) + + E = np.array([[5, 6], [7, 8]]) + AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]]) + assert_(np.all(bmat([A, E]) == AEresult)) + + vec = np.arange(5) + mvec = matrix(vec) + assert_(mvec.shape == (1, 5)) + + def test_exceptions(self): + # Check for ValueError when called with invalid string data. + assert_raises(ValueError, matrix, "invalid") + + def test_bmat_nondefault_str(self): + A = np.array([[1, 2], [3, 4]]) + B = np.array([[5, 6], [7, 8]]) + Aresult = np.array([[1, 2, 1, 2], + [3, 4, 3, 4], + [1, 2, 1, 2], + [3, 4, 3, 4]]) + mixresult = np.array([[1, 2, 5, 6], + [3, 4, 7, 8], + [5, 6, 1, 2], + [7, 8, 3, 4]]) + assert_(np.all(bmat("A,A;A,A") == Aresult)) + assert_(np.all(bmat("A,A;A,A", ldict={'A': B}) == Aresult)) + assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A': B}) + assert_( + np.all(bmat("A,A;A,A", ldict={'A': A}, gdict={'A': B}) == Aresult)) + b2 = bmat("A,B;C,D", ldict={'A': A, 'B': B}, gdict={'C': B, 'D': A}) + assert_(np.all(b2 == mixresult)) + + +class TestProperties: + def test_sum(self): + """Test whether matrix.sum(axis=1) preserves orientation. + Fails in NumPy <= 0.9.6.2127. + """ + M = matrix([[1, 2, 0, 0], + [3, 4, 0, 0], + [1, 2, 1, 2], + [3, 4, 3, 4]]) + sum0 = matrix([8, 12, 4, 6]) + sum1 = matrix([3, 7, 6, 14]).T + sumall = 30 + assert_array_equal(sum0, M.sum(axis=0)) + assert_array_equal(sum1, M.sum(axis=1)) + assert_equal(sumall, M.sum()) + + assert_array_equal(sum0, np.sum(M, axis=0)) + assert_array_equal(sum1, np.sum(M, axis=1)) + assert_equal(sumall, np.sum(M)) + + def test_prod(self): + x = matrix([[1, 2, 3], [4, 5, 6]]) + assert_equal(x.prod(), 720) + assert_equal(x.prod(0), matrix([[4, 10, 18]])) + assert_equal(x.prod(1), matrix([[6], [120]])) + + assert_equal(np.prod(x), 720) + assert_equal(np.prod(x, axis=0), matrix([[4, 10, 18]])) + assert_equal(np.prod(x, axis=1), matrix([[6], [120]])) + + y = matrix([0, 1, 3]) + assert_(y.prod() == 0) + + def test_max(self): + x = matrix([[1, 2, 3], [4, 5, 6]]) + assert_equal(x.max(), 6) + assert_equal(x.max(0), matrix([[4, 5, 6]])) + assert_equal(x.max(1), matrix([[3], [6]])) + + assert_equal(np.max(x), 6) + assert_equal(np.max(x, axis=0), matrix([[4, 5, 6]])) + assert_equal(np.max(x, axis=1), matrix([[3], [6]])) + + def test_min(self): + x = matrix([[1, 2, 3], [4, 5, 6]]) + assert_equal(x.min(), 1) + assert_equal(x.min(0), matrix([[1, 2, 3]])) + assert_equal(x.min(1), matrix([[1], [4]])) + + assert_equal(np.min(x), 1) + assert_equal(np.min(x, axis=0), matrix([[1, 2, 3]])) + assert_equal(np.min(x, axis=1), matrix([[1], [4]])) + + def test_ptp(self): + x = np.arange(4).reshape((2, 2)) + mx = x.view(np.matrix) + assert_(mx.ptp() == 3) + assert_(np.all(mx.ptp(0) == np.array([2, 2]))) + assert_(np.all(mx.ptp(1) == np.array([1, 1]))) + + def test_var(self): + x = np.arange(9).reshape((3, 3)) + mx = x.view(np.matrix) + assert_equal(x.var(ddof=0), mx.var(ddof=0)) + assert_equal(x.var(ddof=1), mx.var(ddof=1)) + + def test_basic(self): + import numpy.linalg as linalg + + A = np.array([[1., 2.], + [3., 4.]]) + mA = matrix(A) + assert_(np.allclose(linalg.inv(A), mA.I)) + assert_(np.all(np.array(np.transpose(A) == mA.T))) + assert_(np.all(np.array(np.transpose(A) == mA.H))) + assert_(np.all(A == mA.A)) + + B = A + 2j * A + mB = matrix(B) + assert_(np.allclose(linalg.inv(B), mB.I)) + assert_(np.all(np.array(np.transpose(B) == mB.T))) + assert_(np.all(np.array(np.transpose(B).conj() == mB.H))) + + def test_pinv(self): + x = matrix(np.arange(6).reshape(2, 3)) + xpinv = matrix([[-0.77777778, 0.27777778], + [-0.11111111, 0.11111111], + [ 0.55555556, -0.05555556]]) + assert_almost_equal(x.I, xpinv) + + def test_comparisons(self): + A = np.arange(100).reshape(10, 10) + mA = matrix(A) + mB = matrix(A) + 0.1 + assert_(np.all(mB == A + 0.1)) + assert_(np.all(mB == matrix(A + 0.1))) + assert_(not np.any(mB == matrix(A - 0.1))) + assert_(np.all(mA < mB)) + assert_(np.all(mA <= mB)) + assert_(np.all(mA <= mA)) + assert_(not np.any(mA < mA)) + + assert_(not np.any(mB < mA)) + assert_(np.all(mB >= mA)) + assert_(np.all(mB >= mB)) + assert_(not np.any(mB > mB)) + + assert_(np.all(mA == mA)) + assert_(not np.any(mA == mB)) + assert_(np.all(mB != mA)) + + assert_(not np.all(abs(mA) > 0)) + assert_(np.all(abs(mB > 0))) + + def test_asmatrix(self): + A = np.arange(100).reshape(10, 10) + mA = asmatrix(A) + A[0, 0] = -10 + assert_(A[0, 0] == mA[0, 0]) + + def test_noaxis(self): + A = matrix([[1, 0], [0, 1]]) + assert_(A.sum() == matrix(2)) + assert_(A.mean() == matrix(0.5)) + + def test_repr(self): + A = matrix([[1, 0], [0, 1]]) + assert_(repr(A) == "matrix([[1, 0],\n [0, 1]])") + + def test_make_bool_matrix_from_str(self): + A = matrix('True; True; False') + B = matrix([[True], [True], [False]]) + assert_array_equal(A, B) + +class TestCasting: + def test_basic(self): + A = np.arange(100).reshape(10, 10) + mA = matrix(A) + + mB = mA.copy() + O = np.ones((10, 10), np.float64) * 0.1 + mB = mB + O + assert_(mB.dtype.type == np.float64) + assert_(np.all(mA != mB)) + assert_(np.all(mB == mA + 0.1)) + + mC = mA.copy() + O = np.ones((10, 10), np.complex128) + mC = mC * O + assert_(mC.dtype.type == np.complex128) + assert_(np.all(mA != mB)) + + +class TestAlgebra: + def test_basic(self): + import numpy.linalg as linalg + + A = np.array([[1., 2.], [3., 4.]]) + mA = matrix(A) + + B = np.identity(2) + for i in range(6): + assert_(np.allclose((mA ** i).A, B)) + B = np.dot(B, A) + + Ainv = linalg.inv(A) + B = np.identity(2) + for i in range(6): + assert_(np.allclose((mA ** -i).A, B)) + B = np.dot(B, Ainv) + + assert_(np.allclose((mA * mA).A, np.dot(A, A))) + assert_(np.allclose((mA + mA).A, (A + A))) + assert_(np.allclose((3 * mA).A, (3 * A))) + + mA2 = matrix(A) + mA2 *= 3 + assert_(np.allclose(mA2.A, 3 * A)) + + def test_pow(self): + """Test raising a matrix to an integer power works as expected.""" + m = matrix("1. 2.; 3. 4.") + m2 = m.copy() + m2 **= 2 + mi = m.copy() + mi **= -1 + m4 = m2.copy() + m4 **= 2 + assert_array_almost_equal(m2, m**2) + assert_array_almost_equal(m4, np.dot(m2, m2)) + assert_array_almost_equal(np.dot(mi, m), np.eye(2)) + + def test_scalar_type_pow(self): + m = matrix([[1, 2], [3, 4]]) + for scalar_t in [np.int8, np.uint8]: + two = scalar_t(2) + assert_array_almost_equal(m ** 2, m ** two) + + def test_notimplemented(self): + '''Check that 'not implemented' operations produce a failure.''' + A = matrix([[1., 2.], + [3., 4.]]) + + # __rpow__ + with assert_raises(TypeError): + 1.0**A + + # __mul__ with something not a list, ndarray, tuple, or scalar + with assert_raises(TypeError): + A * object() + + +class TestMatrixReturn: + def test_instance_methods(self): + a = matrix([1.0], dtype='f8') + methodargs = { + 'astype': ('intc',), + 'clip': (0.0, 1.0), + 'compress': ([1],), + 'repeat': (1,), + 'reshape': (1,), + 'swapaxes': (0, 0), + 'dot': np.array([1.0]), + } + excluded_methods = [ + 'argmin', 'choose', 'dump', 'dumps', 'fill', 'getfield', + 'getA', 'getA1', 'item', 'nonzero', 'put', 'putmask', 'resize', + 'searchsorted', 'setflags', 'setfield', 'sort', + 'partition', 'argpartition', 'newbyteorder', 'to_device', + 'take', 'tofile', 'tolist', 'tobytes', 'all', 'any', + 'sum', 'argmax', 'argmin', 'min', 'max', 'mean', 'var', 'ptp', + 'prod', 'std', 'ctypes', 'itemset', 'bitwise_count', + ] + for attrib in dir(a): + if attrib.startswith('_') or attrib in excluded_methods: + continue + f = getattr(a, attrib) + if isinstance(f, collections.abc.Callable): + # reset contents of a + a.astype('f8') + a.fill(1.0) + args = methodargs.get(attrib, ()) + b = f(*args) + assert_(type(b) is matrix, f"{attrib}") + assert_(type(a.real) is matrix) + assert_(type(a.imag) is matrix) + c, d = matrix([0.0]).nonzero() + assert_(type(c) is np.ndarray) + assert_(type(d) is np.ndarray) + + +class TestIndexing: + def test_basic(self): + x = asmatrix(np.zeros((3, 2), float)) + y = np.zeros((3, 1), float) + y[:, 0] = [0.8, 0.2, 0.3] + x[:, 1] = y > 0.5 + assert_equal(x, [[0, 1], [0, 0], [0, 0]]) + + +class TestNewScalarIndexing: + a = matrix([[1, 2], [3, 4]]) + + def test_dimesions(self): + a = self.a + x = a[0] + assert_equal(x.ndim, 2) + + def test_array_from_matrix_list(self): + a = self.a + x = np.array([a, a]) + assert_equal(x.shape, [2, 2, 2]) + + def test_array_to_list(self): + a = self.a + assert_equal(a.tolist(), [[1, 2], [3, 4]]) + + def test_fancy_indexing(self): + a = self.a + x = a[1, [0, 1, 0]] + assert_(isinstance(x, matrix)) + assert_equal(x, matrix([[3, 4, 3]])) + x = a[[1, 0]] + assert_(isinstance(x, matrix)) + assert_equal(x, matrix([[3, 4], [1, 2]])) + x = a[[[1], [0]], [[1, 0], [0, 1]]] + assert_(isinstance(x, matrix)) + assert_equal(x, matrix([[4, 3], [1, 2]])) + + def test_matrix_element(self): + x = matrix([[1, 2, 3], [4, 5, 6]]) + assert_equal(x[0][0], matrix([[1, 2, 3]])) + assert_equal(x[0][0].shape, (1, 3)) + assert_equal(x[0].shape, (1, 3)) + assert_equal(x[:, 0].shape, (2, 1)) + + x = matrix(0) + assert_equal(x[0, 0], 0) + assert_equal(x[0], 0) + assert_equal(x[:, 0].shape, x.shape) + + def test_scalar_indexing(self): + x = asmatrix(np.zeros((3, 2), float)) + assert_equal(x[0, 0], x[0][0]) + + def test_row_column_indexing(self): + x = asmatrix(np.eye(2)) + assert_array_equal(x[0, :], [[1, 0]]) + assert_array_equal(x[1, :], [[0, 1]]) + assert_array_equal(x[:, 0], [[1], [0]]) + assert_array_equal(x[:, 1], [[0], [1]]) + + def test_boolean_indexing(self): + A = np.arange(6) + A.shape = (3, 2) + x = asmatrix(A) + assert_array_equal(x[:, np.array([True, False])], x[:, 0]) + assert_array_equal(x[np.array([True, False, False]), :], x[0, :]) + + def test_list_indexing(self): + A = np.arange(6) + A.shape = (3, 2) + x = asmatrix(A) + assert_array_equal(x[:, [1, 0]], x[:, ::-1]) + assert_array_equal(x[[2, 1, 0], :], x[::-1, :]) + + +class TestPower: + def test_returntype(self): + a = np.array([[0, 1], [0, 0]]) + assert_(type(matrix_power(a, 2)) is np.ndarray) + a = asmatrix(a) + assert_(type(matrix_power(a, 2)) is matrix) + + def test_list(self): + assert_array_equal(matrix_power([[0, 1], [0, 0]], 2), [[0, 0], [0, 0]]) + + +class TestShape: + + a = np.array([[1], [2]]) + m = matrix([[1], [2]]) + + def test_shape(self): + assert_equal(self.a.shape, (2, 1)) + assert_equal(self.m.shape, (2, 1)) + + def test_numpy_ravel(self): + assert_equal(np.ravel(self.a).shape, (2,)) + assert_equal(np.ravel(self.m).shape, (2,)) + + def test_member_ravel(self): + assert_equal(self.a.ravel().shape, (2,)) + assert_equal(self.m.ravel().shape, (1, 2)) + + def test_member_flatten(self): + assert_equal(self.a.flatten().shape, (2,)) + assert_equal(self.m.flatten().shape, (1, 2)) + + def test_numpy_ravel_order(self): + x = np.array([[1, 2, 3], [4, 5, 6]]) + assert_equal(np.ravel(x), [1, 2, 3, 4, 5, 6]) + assert_equal(np.ravel(x, order='F'), [1, 4, 2, 5, 3, 6]) + assert_equal(np.ravel(x.T), [1, 4, 2, 5, 3, 6]) + assert_equal(np.ravel(x.T, order='A'), [1, 2, 3, 4, 5, 6]) + x = matrix([[1, 2, 3], [4, 5, 6]]) + assert_equal(np.ravel(x), [1, 2, 3, 4, 5, 6]) + assert_equal(np.ravel(x, order='F'), [1, 4, 2, 5, 3, 6]) + assert_equal(np.ravel(x.T), [1, 4, 2, 5, 3, 6]) + assert_equal(np.ravel(x.T, order='A'), [1, 2, 3, 4, 5, 6]) + + def test_matrix_ravel_order(self): + x = matrix([[1, 2, 3], [4, 5, 6]]) + assert_equal(x.ravel(), [[1, 2, 3, 4, 5, 6]]) + assert_equal(x.ravel(order='F'), [[1, 4, 2, 5, 3, 6]]) + assert_equal(x.T.ravel(), [[1, 4, 2, 5, 3, 6]]) + assert_equal(x.T.ravel(order='A'), [[1, 2, 3, 4, 5, 6]]) + + def test_array_memory_sharing(self): + assert_(np.may_share_memory(self.a, self.a.ravel())) + assert_(not np.may_share_memory(self.a, self.a.flatten())) + + def test_matrix_memory_sharing(self): + assert_(np.may_share_memory(self.m, self.m.ravel())) + assert_(not np.may_share_memory(self.m, self.m.flatten())) + + def test_expand_dims_matrix(self): + # matrices are always 2d - so expand_dims only makes sense when the + # type is changed away from matrix. + a = np.arange(10).reshape((2, 5)).view(np.matrix) + expanded = np.expand_dims(a, axis=1) + assert_equal(expanded.ndim, 3) + assert_(not isinstance(expanded, np.matrix)) diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_interaction.py b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_interaction.py new file mode 100644 index 0000000..87d133a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_interaction.py @@ -0,0 +1,360 @@ +"""Tests of interaction of matrix with other parts of numpy. + +Note that tests with MaskedArray and linalg are done in separate files. +""" +import textwrap +import warnings + +import pytest + +import numpy as np +from numpy.testing import ( + assert_, + assert_almost_equal, + assert_array_almost_equal, + assert_array_equal, + assert_equal, + assert_raises, + assert_raises_regex, +) + + +def test_fancy_indexing(): + # The matrix class messes with the shape. While this is always + # weird (getitem is not used, it does not have setitem nor knows + # about fancy indexing), this tests gh-3110 + # 2018-04-29: moved here from core.tests.test_index. + m = np.matrix([[1, 2], [3, 4]]) + + assert_(isinstance(m[[0, 1, 0], :], np.matrix)) + + # gh-3110. Note the transpose currently because matrices do *not* + # support dimension fixing for fancy indexing correctly. + x = np.asmatrix(np.arange(50).reshape(5, 10)) + assert_equal(x[:2, np.array(-1)], x[:2, -1].T) + + +def test_polynomial_mapdomain(): + # test that polynomial preserved matrix subtype. + # 2018-04-29: moved here from polynomial.tests.polyutils. + dom1 = [0, 4] + dom2 = [1, 3] + x = np.matrix([dom1, dom1]) + res = np.polynomial.polyutils.mapdomain(x, dom1, dom2) + assert_(isinstance(res, np.matrix)) + + +def test_sort_matrix_none(): + # 2018-04-29: moved here from core.tests.test_multiarray + a = np.matrix([[2, 1, 0]]) + actual = np.sort(a, axis=None) + expected = np.matrix([[0, 1, 2]]) + assert_equal(actual, expected) + assert_(type(expected) is np.matrix) + + +def test_partition_matrix_none(): + # gh-4301 + # 2018-04-29: moved here from core.tests.test_multiarray + a = np.matrix([[2, 1, 0]]) + actual = np.partition(a, 1, axis=None) + expected = np.matrix([[0, 1, 2]]) + assert_equal(actual, expected) + assert_(type(expected) is np.matrix) + + +def test_dot_scalar_and_matrix_of_objects(): + # Ticket #2469 + # 2018-04-29: moved here from core.tests.test_multiarray + arr = np.matrix([1, 2], dtype=object) + desired = np.matrix([[3, 6]], dtype=object) + assert_equal(np.dot(arr, 3), desired) + assert_equal(np.dot(3, arr), desired) + + +def test_inner_scalar_and_matrix(): + # 2018-04-29: moved here from core.tests.test_multiarray + for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?': + sca = np.array(3, dtype=dt)[()] + arr = np.matrix([[1, 2], [3, 4]], dtype=dt) + desired = np.matrix([[3, 6], [9, 12]], dtype=dt) + assert_equal(np.inner(arr, sca), desired) + assert_equal(np.inner(sca, arr), desired) + + +def test_inner_scalar_and_matrix_of_objects(): + # Ticket #4482 + # 2018-04-29: moved here from core.tests.test_multiarray + arr = np.matrix([1, 2], dtype=object) + desired = np.matrix([[3, 6]], dtype=object) + assert_equal(np.inner(arr, 3), desired) + assert_equal(np.inner(3, arr), desired) + + +def test_iter_allocate_output_subtype(): + # Make sure that the subtype with priority wins + # 2018-04-29: moved here from core.tests.test_nditer, given the + # matrix specific shape test. + + # matrix vs ndarray + a = np.matrix([[1, 2], [3, 4]]) + b = np.arange(4).reshape(2, 2).T + i = np.nditer([a, b, None], [], + [['readonly'], ['readonly'], ['writeonly', 'allocate']]) + assert_(type(i.operands[2]) is np.matrix) + assert_(type(i.operands[2]) is not np.ndarray) + assert_equal(i.operands[2].shape, (2, 2)) + + # matrix always wants things to be 2D + b = np.arange(4).reshape(1, 2, 2) + assert_raises(RuntimeError, np.nditer, [a, b, None], [], + [['readonly'], ['readonly'], ['writeonly', 'allocate']]) + # but if subtypes are disabled, the result can still work + i = np.nditer([a, b, None], [], + [['readonly'], ['readonly'], + ['writeonly', 'allocate', 'no_subtype']]) + assert_(type(i.operands[2]) is np.ndarray) + assert_(type(i.operands[2]) is not np.matrix) + assert_equal(i.operands[2].shape, (1, 2, 2)) + + +def like_function(): + # 2018-04-29: moved here from core.tests.test_numeric + a = np.matrix([[1, 2], [3, 4]]) + for like_function in np.zeros_like, np.ones_like, np.empty_like: + b = like_function(a) + assert_(type(b) is np.matrix) + + c = like_function(a, subok=False) + assert_(type(c) is not np.matrix) + + +def test_array_astype(): + # 2018-04-29: copied here from core.tests.test_api + # subok=True passes through a matrix + a = np.matrix([[0, 1, 2], [3, 4, 5]], dtype='f4') + b = a.astype('f4', subok=True, copy=False) + assert_(a is b) + + # subok=True is default, and creates a subtype on a cast + b = a.astype('i4', copy=False) + assert_equal(a, b) + assert_equal(type(b), np.matrix) + + # subok=False never returns a matrix + b = a.astype('f4', subok=False, copy=False) + assert_equal(a, b) + assert_(not (a is b)) + assert_(type(b) is not np.matrix) + + +def test_stack(): + # 2018-04-29: copied here from core.tests.test_shape_base + # check np.matrix cannot be stacked + m = np.matrix([[1, 2], [3, 4]]) + assert_raises_regex(ValueError, 'shape too large to be a matrix', + np.stack, [m, m]) + + +def test_object_scalar_multiply(): + # Tickets #2469 and #4482 + # 2018-04-29: moved here from core.tests.test_ufunc + arr = np.matrix([1, 2], dtype=object) + desired = np.matrix([[3, 6]], dtype=object) + assert_equal(np.multiply(arr, 3), desired) + assert_equal(np.multiply(3, arr), desired) + + +def test_nanfunctions_matrices(): + # Check that it works and that type and + # shape are preserved + # 2018-04-29: moved here from core.tests.test_nanfunctions + mat = np.matrix(np.eye(3)) + for f in [np.nanmin, np.nanmax]: + res = f(mat, axis=0) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (1, 3)) + res = f(mat, axis=1) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (3, 1)) + res = f(mat) + assert_(np.isscalar(res)) + # check that rows of nan are dealt with for subclasses (#4628) + mat[1] = np.nan + for f in [np.nanmin, np.nanmax]: + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + res = f(mat, axis=0) + assert_(isinstance(res, np.matrix)) + assert_(not np.any(np.isnan(res))) + assert_(len(w) == 0) + + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + res = f(mat, axis=1) + assert_(isinstance(res, np.matrix)) + assert_(np.isnan(res[1, 0]) and not np.isnan(res[0, 0]) + and not np.isnan(res[2, 0])) + assert_(len(w) == 1, 'no warning raised') + assert_(issubclass(w[0].category, RuntimeWarning)) + + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter('always') + res = f(mat) + assert_(np.isscalar(res)) + assert_(res != np.nan) + assert_(len(w) == 0) + + +def test_nanfunctions_matrices_general(): + # Check that it works and that type and + # shape are preserved + # 2018-04-29: moved here from core.tests.test_nanfunctions + mat = np.matrix(np.eye(3)) + for f in (np.nanargmin, np.nanargmax, np.nansum, np.nanprod, + np.nanmean, np.nanvar, np.nanstd): + res = f(mat, axis=0) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (1, 3)) + res = f(mat, axis=1) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (3, 1)) + res = f(mat) + assert_(np.isscalar(res)) + + for f in np.nancumsum, np.nancumprod: + res = f(mat, axis=0) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (3, 3)) + res = f(mat, axis=1) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (3, 3)) + res = f(mat) + assert_(isinstance(res, np.matrix)) + assert_(res.shape == (1, 3 * 3)) + + +def test_average_matrix(): + # 2018-04-29: moved here from core.tests.test_function_base. + y = np.matrix(np.random.rand(5, 5)) + assert_array_equal(y.mean(0), np.average(y, 0)) + + a = np.matrix([[1, 2], [3, 4]]) + w = np.matrix([[1, 2], [3, 4]]) + + r = np.average(a, axis=0, weights=w) + assert_equal(type(r), np.matrix) + assert_equal(r, [[2.5, 10.0 / 3]]) + + +def test_dot_matrix(): + # Test to make sure matrices give the same answer as ndarrays + # 2018-04-29: moved here from core.tests.test_function_base. + x = np.linspace(0, 5) + y = np.linspace(-5, 0) + mx = np.matrix(x) + my = np.matrix(y) + r = np.dot(x, y) + mr = np.dot(mx, my.T) + assert_almost_equal(mr, r) + + +def test_ediff1d_matrix(): + # 2018-04-29: moved here from core.tests.test_arraysetops. + assert isinstance(np.ediff1d(np.matrix(1)), np.matrix) + assert isinstance(np.ediff1d(np.matrix(1), to_begin=1), np.matrix) + + +def test_apply_along_axis_matrix(): + # this test is particularly malicious because matrix + # refuses to become 1d + # 2018-04-29: moved here from core.tests.test_shape_base. + def double(row): + return row * 2 + + m = np.matrix([[0, 1], [2, 3]]) + expected = np.matrix([[0, 2], [4, 6]]) + + result = np.apply_along_axis(double, 0, m) + assert_(isinstance(result, np.matrix)) + assert_array_equal(result, expected) + + result = np.apply_along_axis(double, 1, m) + assert_(isinstance(result, np.matrix)) + assert_array_equal(result, expected) + + +def test_kron_matrix(): + # 2018-04-29: moved here from core.tests.test_shape_base. + a = np.ones([2, 2]) + m = np.asmatrix(a) + assert_equal(type(np.kron(a, a)), np.ndarray) + assert_equal(type(np.kron(m, m)), np.matrix) + assert_equal(type(np.kron(a, m)), np.matrix) + assert_equal(type(np.kron(m, a)), np.matrix) + + +class TestConcatenatorMatrix: + # 2018-04-29: moved here from core.tests.test_index_tricks. + def test_matrix(self): + a = [1, 2] + b = [3, 4] + + ab_r = np.r_['r', a, b] + ab_c = np.r_['c', a, b] + + assert_equal(type(ab_r), np.matrix) + assert_equal(type(ab_c), np.matrix) + + assert_equal(np.array(ab_r), [[1, 2, 3, 4]]) + assert_equal(np.array(ab_c), [[1], [2], [3], [4]]) + + assert_raises(ValueError, lambda: np.r_['rc', a, b]) + + def test_matrix_scalar(self): + r = np.r_['r', [1, 2], 3] + assert_equal(type(r), np.matrix) + assert_equal(np.array(r), [[1, 2, 3]]) + + def test_matrix_builder(self): + a = np.array([1]) + b = np.array([2]) + c = np.array([3]) + d = np.array([4]) + actual = np.r_['a, b; c, d'] + expected = np.bmat([[a, b], [c, d]]) + + assert_equal(actual, expected) + assert_equal(type(actual), type(expected)) + + +def test_array_equal_error_message_matrix(): + # 2018-04-29: moved here from testing.tests.test_utils. + with pytest.raises(AssertionError) as exc_info: + assert_equal(np.array([1, 2]), np.matrix([1, 2])) + msg = str(exc_info.value) + msg_reference = textwrap.dedent("""\ + + Arrays are not equal + + (shapes (2,), (1, 2) mismatch) + ACTUAL: array([1, 2]) + DESIRED: matrix([[1, 2]])""") + assert_equal(msg, msg_reference) + + +def test_array_almost_equal_matrix(): + # Matrix slicing keeps things 2-D, while array does not necessarily. + # See gh-8452. + # 2018-04-29: moved here from testing.tests.test_utils. + m1 = np.matrix([[1., 2.]]) + m2 = np.matrix([[1., np.nan]]) + m3 = np.matrix([[1., -np.inf]]) + m4 = np.matrix([[np.nan, np.inf]]) + m5 = np.matrix([[1., 2.], [np.nan, np.inf]]) + for assert_func in assert_array_almost_equal, assert_almost_equal: + for m in m1, m2, m3, m4, m5: + assert_func(m, m) + a = np.array(m) + assert_func(a, m) + assert_func(m, a) diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_masked_matrix.py b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_masked_matrix.py new file mode 100644 index 0000000..e6df047 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_masked_matrix.py @@ -0,0 +1,240 @@ +import pickle + +import numpy as np +from numpy.ma.core import ( + MaskedArray, + MaskType, + add, + allequal, + divide, + getmask, + hypot, + log, + masked, + masked_array, + masked_values, + nomask, +) +from numpy.ma.extras import mr_ +from numpy.ma.testutils import assert_, assert_array_equal, assert_equal, assert_raises + + +class MMatrix(MaskedArray, np.matrix,): + + def __new__(cls, data, mask=nomask): + mat = np.matrix(data) + _data = MaskedArray.__new__(cls, data=mat, mask=mask) + return _data + + def __array_finalize__(self, obj): + np.matrix.__array_finalize__(self, obj) + MaskedArray.__array_finalize__(self, obj) + + @property + def _series(self): + _view = self.view(MaskedArray) + _view._sharedmask = False + return _view + + +class TestMaskedMatrix: + def test_matrix_indexing(self): + # Tests conversions and indexing + x1 = np.matrix([[1, 2, 3], [4, 3, 2]]) + x2 = masked_array(x1, mask=[[1, 0, 0], [0, 1, 0]]) + x3 = masked_array(x1, mask=[[0, 1, 0], [1, 0, 0]]) + x4 = masked_array(x1) + # test conversion to strings + str(x2) # raises? + repr(x2) # raises? + # tests of indexing + assert_(type(x2[1, 0]) is type(x1[1, 0])) + assert_(x1[1, 0] == x2[1, 0]) + assert_(x2[1, 1] is masked) + assert_equal(x1[0, 2], x2[0, 2]) + assert_equal(x1[0, 1:], x2[0, 1:]) + assert_equal(x1[:, 2], x2[:, 2]) + assert_equal(x1[:], x2[:]) + assert_equal(x1[1:], x3[1:]) + x1[0, 2] = 9 + x2[0, 2] = 9 + assert_equal(x1, x2) + x1[0, 1:] = 99 + x2[0, 1:] = 99 + assert_equal(x1, x2) + x2[0, 1] = masked + assert_equal(x1, x2) + x2[0, 1:] = masked + assert_equal(x1, x2) + x2[0, :] = x1[0, :] + x2[0, 1] = masked + assert_(allequal(getmask(x2), np.array([[0, 1, 0], [0, 1, 0]]))) + x3[1, :] = masked_array([1, 2, 3], [1, 1, 0]) + assert_(allequal(getmask(x3)[1], masked_array([1, 1, 0]))) + assert_(allequal(getmask(x3[1]), masked_array([1, 1, 0]))) + x4[1, :] = masked_array([1, 2, 3], [1, 1, 0]) + assert_(allequal(getmask(x4[1]), masked_array([1, 1, 0]))) + assert_(allequal(x4[1], masked_array([1, 2, 3]))) + x1 = np.matrix(np.arange(5) * 1.0) + x2 = masked_values(x1, 3.0) + assert_equal(x1, x2) + assert_(allequal(masked_array([0, 0, 0, 1, 0], dtype=MaskType), + x2.mask)) + assert_equal(3.0, x2.fill_value) + + def test_pickling_subbaseclass(self): + # Test pickling w/ a subclass of ndarray + a = masked_array(np.matrix(list(range(10))), mask=[1, 0, 1, 0, 0] * 2) + for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): + a_pickled = pickle.loads(pickle.dumps(a, protocol=proto)) + assert_equal(a_pickled._mask, a._mask) + assert_equal(a_pickled, a) + assert_(isinstance(a_pickled._data, np.matrix)) + + def test_count_mean_with_matrix(self): + m = masked_array(np.matrix([[1, 2], [3, 4]]), mask=np.zeros((2, 2))) + + assert_equal(m.count(axis=0).shape, (1, 2)) + assert_equal(m.count(axis=1).shape, (2, 1)) + + # Make sure broadcasting inside mean and var work + assert_equal(m.mean(axis=0), [[2., 3.]]) + assert_equal(m.mean(axis=1), [[1.5], [3.5]]) + + def test_flat(self): + # Test that flat can return items even for matrices [#4585, #4615] + # test simple access + test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1]) + assert_equal(test.flat[1], 2) + assert_equal(test.flat[2], masked) + assert_(np.all(test.flat[0:2] == test[0, 0:2])) + # Test flat on masked_matrices + test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1]) + test.flat = masked_array([3, 2, 1], mask=[1, 0, 0]) + control = masked_array(np.matrix([[3, 2, 1]]), mask=[1, 0, 0]) + assert_equal(test, control) + # Test setting + test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1]) + testflat = test.flat + testflat[:] = testflat[[2, 1, 0]] + assert_equal(test, control) + testflat[0] = 9 + # test that matrices keep the correct shape (#4615) + a = masked_array(np.matrix(np.eye(2)), mask=0) + b = a.flat + b01 = b[:2] + assert_equal(b01.data, np.array([[1., 0.]])) + assert_equal(b01.mask, np.array([[False, False]])) + + def test_allany_onmatrices(self): + x = np.array([[0.13, 0.26, 0.90], + [0.28, 0.33, 0.63], + [0.31, 0.87, 0.70]]) + X = np.matrix(x) + m = np.array([[True, False, False], + [False, False, False], + [True, True, False]], dtype=np.bool) + mX = masked_array(X, mask=m) + mXbig = (mX > 0.5) + mXsmall = (mX < 0.5) + + assert_(not mXbig.all()) + assert_(mXbig.any()) + assert_equal(mXbig.all(0), np.matrix([False, False, True])) + assert_equal(mXbig.all(1), np.matrix([False, False, True]).T) + assert_equal(mXbig.any(0), np.matrix([False, False, True])) + assert_equal(mXbig.any(1), np.matrix([True, True, True]).T) + + assert_(not mXsmall.all()) + assert_(mXsmall.any()) + assert_equal(mXsmall.all(0), np.matrix([True, True, False])) + assert_equal(mXsmall.all(1), np.matrix([False, False, False]).T) + assert_equal(mXsmall.any(0), np.matrix([True, True, False])) + assert_equal(mXsmall.any(1), np.matrix([True, True, False]).T) + + def test_compressed(self): + a = masked_array(np.matrix([1, 2, 3, 4]), mask=[0, 0, 0, 0]) + b = a.compressed() + assert_equal(b, a) + assert_(isinstance(b, np.matrix)) + a[0, 0] = masked + b = a.compressed() + assert_equal(b, [[2, 3, 4]]) + + def test_ravel(self): + a = masked_array(np.matrix([1, 2, 3, 4, 5]), mask=[[0, 1, 0, 0, 0]]) + aravel = a.ravel() + assert_equal(aravel.shape, (1, 5)) + assert_equal(aravel._mask.shape, a.shape) + + def test_view(self): + # Test view w/ flexible dtype + iterator = list(zip(np.arange(10), np.random.rand(10))) + data = np.array(iterator) + a = masked_array(iterator, dtype=[('a', float), ('b', float)]) + a.mask[0] = (1, 0) + test = a.view((float, 2), np.matrix) + assert_equal(test, data) + assert_(isinstance(test, np.matrix)) + assert_(not isinstance(test, MaskedArray)) + + +class TestSubclassing: + # Test suite for masked subclasses of ndarray. + + def setup_method(self): + x = np.arange(5, dtype='float') + mx = MMatrix(x, mask=[0, 1, 0, 0, 0]) + self.data = (x, mx) + + def test_maskedarray_subclassing(self): + # Tests subclassing MaskedArray + (x, mx) = self.data + assert_(isinstance(mx._data, np.matrix)) + + def test_masked_unary_operations(self): + # Tests masked_unary_operation + (x, mx) = self.data + with np.errstate(divide='ignore'): + assert_(isinstance(log(mx), MMatrix)) + assert_equal(log(x), np.log(x)) + + def test_masked_binary_operations(self): + # Tests masked_binary_operation + (x, mx) = self.data + # Result should be a MMatrix + assert_(isinstance(add(mx, mx), MMatrix)) + assert_(isinstance(add(mx, x), MMatrix)) + # Result should work + assert_equal(add(mx, x), mx + x) + assert_(isinstance(add(mx, mx)._data, np.matrix)) + with assert_raises(TypeError): + add.outer(mx, mx) + assert_(isinstance(hypot(mx, mx), MMatrix)) + assert_(isinstance(hypot(mx, x), MMatrix)) + + def test_masked_binary_operations2(self): + # Tests domained_masked_binary_operation + (x, mx) = self.data + xmx = masked_array(mx.data.__array__(), mask=mx.mask) + assert_(isinstance(divide(mx, mx), MMatrix)) + assert_(isinstance(divide(mx, x), MMatrix)) + assert_equal(divide(mx, mx), divide(xmx, xmx)) + +class TestConcatenator: + # Tests for mr_, the equivalent of r_ for masked arrays. + + def test_matrix_builder(self): + assert_raises(np.ma.MAError, lambda: mr_['1, 2; 3, 4']) + + def test_matrix(self): + # Test consistency with unmasked version. If we ever deprecate + # matrix, this test should either still pass, or both actual and + # expected should fail to be build. + actual = mr_['r', 1, 2, 3] + expected = np.ma.array(np.r_['r', 1, 2, 3]) + assert_array_equal(actual, expected) + + # outer type is masked array, inner type is matrix + assert_equal(type(actual), type(expected)) + assert_equal(type(actual.data), type(expected.data)) diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_matrix_linalg.py b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_matrix_linalg.py new file mode 100644 index 0000000..4e63965 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_matrix_linalg.py @@ -0,0 +1,105 @@ +""" Test functions for linalg module using the matrix class.""" +import numpy as np +from numpy.linalg.tests.test_linalg import ( + CondCases, + DetCases, + EigCases, + EigvalsCases, + InvCases, + LinalgCase, + LinalgTestCase, + LstsqCases, + PinvCases, + SolveCases, + SVDCases, + _TestNorm2D, + _TestNormDoubleBase, + _TestNormInt64Base, + _TestNormSingleBase, + apply_tag, +) +from numpy.linalg.tests.test_linalg import TestQR as _TestQR + +CASES = [] + +# square test cases +CASES += apply_tag('square', [ + LinalgCase("0x0_matrix", + np.empty((0, 0), dtype=np.double).view(np.matrix), + np.empty((0, 1), dtype=np.double).view(np.matrix), + tags={'size-0'}), + LinalgCase("matrix_b_only", + np.array([[1., 2.], [3., 4.]]), + np.matrix([2., 1.]).T), + LinalgCase("matrix_a_and_b", + np.matrix([[1., 2.], [3., 4.]]), + np.matrix([2., 1.]).T), +]) + +# hermitian test-cases +CASES += apply_tag('hermitian', [ + LinalgCase("hmatrix_a_and_b", + np.matrix([[1., 2.], [2., 1.]]), + None), +]) +# No need to make generalized or strided cases for matrices. + + +class MatrixTestCase(LinalgTestCase): + TEST_CASES = CASES + + +class TestSolveMatrix(SolveCases, MatrixTestCase): + pass + + +class TestInvMatrix(InvCases, MatrixTestCase): + pass + + +class TestEigvalsMatrix(EigvalsCases, MatrixTestCase): + pass + + +class TestEigMatrix(EigCases, MatrixTestCase): + pass + + +class TestSVDMatrix(SVDCases, MatrixTestCase): + pass + + +class TestCondMatrix(CondCases, MatrixTestCase): + pass + + +class TestPinvMatrix(PinvCases, MatrixTestCase): + pass + + +class TestDetMatrix(DetCases, MatrixTestCase): + pass + + +class TestLstsqMatrix(LstsqCases, MatrixTestCase): + pass + + +class _TestNorm2DMatrix(_TestNorm2D): + array = np.matrix + + +class TestNormDoubleMatrix(_TestNorm2DMatrix, _TestNormDoubleBase): + pass + + +class TestNormSingleMatrix(_TestNorm2DMatrix, _TestNormSingleBase): + pass + + +class TestNormInt64Matrix(_TestNorm2DMatrix, _TestNormInt64Base): + pass + + +class TestQRMatrix(_TestQR): + array = np.matrix diff --git a/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_multiarray.py b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_multiarray.py new file mode 100644 index 0000000..2d9d1f8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/matrixlib/tests/test_multiarray.py @@ -0,0 +1,17 @@ +import numpy as np +from numpy.testing import assert_, assert_array_equal, assert_equal + + +class TestView: + def test_type(self): + x = np.array([1, 2, 3]) + assert_(isinstance(x.view(np.matrix), np.matrix)) + + def test_keywords(self): + x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)]) + # We must be specific about the endianness here: + y = x.view(dtype='>> from numpy.polynomial import Chebyshev + >>> xdata = [1, 2, 3, 4] + >>> ydata = [1, 4, 9, 16] + >>> c = Chebyshev.fit(xdata, ydata, deg=1) + +is preferred over the `chebyshev.chebfit` function from the +``np.polynomial.chebyshev`` module:: + + >>> from numpy.polynomial.chebyshev import chebfit + >>> c = chebfit(xdata, ydata, deg=1) + +See :doc:`routines.polynomials.classes` for more details. + +Convenience Classes +=================== + +The following lists the various constants and methods common to all of +the classes representing the various kinds of polynomials. In the following, +the term ``Poly`` represents any one of the convenience classes (e.g. +`~polynomial.Polynomial`, `~chebyshev.Chebyshev`, `~hermite.Hermite`, etc.) +while the lowercase ``p`` represents an **instance** of a polynomial class. + +Constants +--------- + +- ``Poly.domain`` -- Default domain +- ``Poly.window`` -- Default window +- ``Poly.basis_name`` -- String used to represent the basis +- ``Poly.maxpower`` -- Maximum value ``n`` such that ``p**n`` is allowed + +Creation +-------- + +Methods for creating polynomial instances. + +- ``Poly.basis(degree)`` -- Basis polynomial of given degree +- ``Poly.identity()`` -- ``p`` where ``p(x) = x`` for all ``x`` +- ``Poly.fit(x, y, deg)`` -- ``p`` of degree ``deg`` with coefficients + determined by the least-squares fit to the data ``x``, ``y`` +- ``Poly.fromroots(roots)`` -- ``p`` with specified roots +- ``p.copy()`` -- Create a copy of ``p`` + +Conversion +---------- + +Methods for converting a polynomial instance of one kind to another. + +- ``p.cast(Poly)`` -- Convert ``p`` to instance of kind ``Poly`` +- ``p.convert(Poly)`` -- Convert ``p`` to instance of kind ``Poly`` or map + between ``domain`` and ``window`` + +Calculus +-------- +- ``p.deriv()`` -- Take the derivative of ``p`` +- ``p.integ()`` -- Integrate ``p`` + +Validation +---------- +- ``Poly.has_samecoef(p1, p2)`` -- Check if coefficients match +- ``Poly.has_samedomain(p1, p2)`` -- Check if domains match +- ``Poly.has_sametype(p1, p2)`` -- Check if types match +- ``Poly.has_samewindow(p1, p2)`` -- Check if windows match + +Misc +---- +- ``p.linspace()`` -- Return ``x, p(x)`` at equally-spaced points in ``domain`` +- ``p.mapparms()`` -- Return the parameters for the linear mapping between + ``domain`` and ``window``. +- ``p.roots()`` -- Return the roots of ``p``. +- ``p.trim()`` -- Remove trailing coefficients. +- ``p.cutdeg(degree)`` -- Truncate ``p`` to given degree +- ``p.truncate(size)`` -- Truncate ``p`` to given size + +""" +from .chebyshev import Chebyshev +from .hermite import Hermite +from .hermite_e import HermiteE +from .laguerre import Laguerre +from .legendre import Legendre +from .polynomial import Polynomial + +__all__ = [ # noqa: F822 + "set_default_printstyle", + "polynomial", "Polynomial", + "chebyshev", "Chebyshev", + "legendre", "Legendre", + "hermite", "Hermite", + "hermite_e", "HermiteE", + "laguerre", "Laguerre", +] + + +def set_default_printstyle(style): + """ + Set the default format for the string representation of polynomials. + + Values for ``style`` must be valid inputs to ``__format__``, i.e. 'ascii' + or 'unicode'. + + Parameters + ---------- + style : str + Format string for default printing style. Must be either 'ascii' or + 'unicode'. + + Notes + ----- + The default format depends on the platform: 'unicode' is used on + Unix-based systems and 'ascii' on Windows. This determination is based on + default font support for the unicode superscript and subscript ranges. + + Examples + -------- + >>> p = np.polynomial.Polynomial([1, 2, 3]) + >>> c = np.polynomial.Chebyshev([1, 2, 3]) + >>> np.polynomial.set_default_printstyle('unicode') + >>> print(p) + 1.0 + 2.0·x + 3.0·x² + >>> print(c) + 1.0 + 2.0·T₁(x) + 3.0·T₂(x) + >>> np.polynomial.set_default_printstyle('ascii') + >>> print(p) + 1.0 + 2.0 x + 3.0 x**2 + >>> print(c) + 1.0 + 2.0 T_1(x) + 3.0 T_2(x) + >>> # Formatting supersedes all class/package-level defaults + >>> print(f"{p:unicode}") + 1.0 + 2.0·x + 3.0·x² + """ + if style not in ('unicode', 'ascii'): + raise ValueError( + f"Unsupported format string '{style}'. Valid options are 'ascii' " + f"and 'unicode'" + ) + _use_unicode = True + if style == 'ascii': + _use_unicode = False + from ._polybase import ABCPolyBase + ABCPolyBase._use_unicode = _use_unicode + + +from numpy._pytesttester import PytestTester + +test = PytestTester(__name__) +del PytestTester diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/__init__.pyi b/.venv/lib/python3.12/site-packages/numpy/polynomial/__init__.pyi new file mode 100644 index 0000000..6fb0fb5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/__init__.pyi @@ -0,0 +1,25 @@ +from typing import Final, Literal + +from . import chebyshev, hermite, hermite_e, laguerre, legendre, polynomial +from .chebyshev import Chebyshev +from .hermite import Hermite +from .hermite_e import HermiteE +from .laguerre import Laguerre +from .legendre import Legendre +from .polynomial import Polynomial + +__all__ = [ + "set_default_printstyle", + "polynomial", "Polynomial", + "chebyshev", "Chebyshev", + "legendre", "Legendre", + "hermite", "Hermite", + "hermite_e", "HermiteE", + "laguerre", "Laguerre", +] + +def set_default_printstyle(style: Literal["ascii", "unicode"]) -> None: ... + +from numpy._pytesttester import PytestTester as _PytestTester + +test: Final[_PytestTester] diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..46c5c57 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/_polybase.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/_polybase.cpython-312.pyc new file mode 100644 index 0000000..efd4aca Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/_polybase.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/chebyshev.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/chebyshev.cpython-312.pyc new file mode 100644 index 0000000..09ba742 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/chebyshev.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/hermite.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/hermite.cpython-312.pyc new file mode 100644 index 0000000..9b94bf5 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/hermite.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/hermite_e.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/hermite_e.cpython-312.pyc new file mode 100644 index 0000000..dbd433b Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/hermite_e.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/laguerre.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/laguerre.cpython-312.pyc new file mode 100644 index 0000000..e078664 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/laguerre.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/legendre.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/legendre.cpython-312.pyc new file mode 100644 index 0000000..d0efc66 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/legendre.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/polynomial.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/polynomial.cpython-312.pyc new file mode 100644 index 0000000..e359c4c Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/polynomial.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/polyutils.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/polyutils.cpython-312.pyc new file mode 100644 index 0000000..4261d30 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/polynomial/__pycache__/polyutils.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/_polybase.py b/.venv/lib/python3.12/site-packages/numpy/polynomial/_polybase.py new file mode 100644 index 0000000..f893433 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/_polybase.py @@ -0,0 +1,1191 @@ +""" +Abstract base class for the various polynomial Classes. + +The ABCPolyBase class provides the methods needed to implement the common API +for the various polynomial classes. It operates as a mixin, but uses the +abc module from the stdlib, hence it is only available for Python >= 2.6. + +""" +import abc +import numbers +import os +from collections.abc import Callable + +import numpy as np + +from . import polyutils as pu + +__all__ = ['ABCPolyBase'] + +class ABCPolyBase(abc.ABC): + """An abstract base class for immutable series classes. + + ABCPolyBase provides the standard Python numerical methods + '+', '-', '*', '//', '%', 'divmod', '**', and '()' along with the + methods listed below. + + Parameters + ---------- + coef : array_like + Series coefficients in order of increasing degree, i.e., + ``(1, 2, 3)`` gives ``1*P_0(x) + 2*P_1(x) + 3*P_2(x)``, where + ``P_i`` is the basis polynomials of degree ``i``. + domain : (2,) array_like, optional + Domain to use. The interval ``[domain[0], domain[1]]`` is mapped + to the interval ``[window[0], window[1]]`` by shifting and scaling. + The default value is the derived class domain. + window : (2,) array_like, optional + Window, see domain for its use. The default value is the + derived class window. + symbol : str, optional + Symbol used to represent the independent variable in string + representations of the polynomial expression, e.g. for printing. + The symbol must be a valid Python identifier. Default value is 'x'. + + .. versionadded:: 1.24 + + Attributes + ---------- + coef : (N,) ndarray + Series coefficients in order of increasing degree. + domain : (2,) ndarray + Domain that is mapped to window. + window : (2,) ndarray + Window that domain is mapped to. + symbol : str + Symbol representing the independent variable. + + Class Attributes + ---------------- + maxpower : int + Maximum power allowed, i.e., the largest number ``n`` such that + ``p(x)**n`` is allowed. This is to limit runaway polynomial size. + domain : (2,) ndarray + Default domain of the class. + window : (2,) ndarray + Default window of the class. + + """ + + # Not hashable + __hash__ = None + + # Opt out of numpy ufuncs and Python ops with ndarray subclasses. + __array_ufunc__ = None + + # Limit runaway size. T_n^m has degree n*m + maxpower = 100 + + # Unicode character mappings for improved __str__ + _superscript_mapping = str.maketrans({ + "0": "⁰", + "1": "¹", + "2": "²", + "3": "³", + "4": "⁴", + "5": "⁵", + "6": "⁶", + "7": "⁷", + "8": "⁸", + "9": "⁹" + }) + _subscript_mapping = str.maketrans({ + "0": "₀", + "1": "₁", + "2": "₂", + "3": "₃", + "4": "₄", + "5": "₅", + "6": "₆", + "7": "₇", + "8": "₈", + "9": "₉" + }) + # Some fonts don't support full unicode character ranges necessary for + # the full set of superscripts and subscripts, including common/default + # fonts in Windows shells/terminals. Therefore, default to ascii-only + # printing on windows. + _use_unicode = not os.name == 'nt' + + @property + def symbol(self): + return self._symbol + + @property + @abc.abstractmethod + def domain(self): + pass + + @property + @abc.abstractmethod + def window(self): + pass + + @property + @abc.abstractmethod + def basis_name(self): + pass + + @staticmethod + @abc.abstractmethod + def _add(c1, c2): + pass + + @staticmethod + @abc.abstractmethod + def _sub(c1, c2): + pass + + @staticmethod + @abc.abstractmethod + def _mul(c1, c2): + pass + + @staticmethod + @abc.abstractmethod + def _div(c1, c2): + pass + + @staticmethod + @abc.abstractmethod + def _pow(c, pow, maxpower=None): + pass + + @staticmethod + @abc.abstractmethod + def _val(x, c): + pass + + @staticmethod + @abc.abstractmethod + def _int(c, m, k, lbnd, scl): + pass + + @staticmethod + @abc.abstractmethod + def _der(c, m, scl): + pass + + @staticmethod + @abc.abstractmethod + def _fit(x, y, deg, rcond, full): + pass + + @staticmethod + @abc.abstractmethod + def _line(off, scl): + pass + + @staticmethod + @abc.abstractmethod + def _roots(c): + pass + + @staticmethod + @abc.abstractmethod + def _fromroots(r): + pass + + def has_samecoef(self, other): + """Check if coefficients match. + + Parameters + ---------- + other : class instance + The other class must have the ``coef`` attribute. + + Returns + ------- + bool : boolean + True if the coefficients are the same, False otherwise. + + """ + return ( + len(self.coef) == len(other.coef) + and np.all(self.coef == other.coef) + ) + + def has_samedomain(self, other): + """Check if domains match. + + Parameters + ---------- + other : class instance + The other class must have the ``domain`` attribute. + + Returns + ------- + bool : boolean + True if the domains are the same, False otherwise. + + """ + return np.all(self.domain == other.domain) + + def has_samewindow(self, other): + """Check if windows match. + + Parameters + ---------- + other : class instance + The other class must have the ``window`` attribute. + + Returns + ------- + bool : boolean + True if the windows are the same, False otherwise. + + """ + return np.all(self.window == other.window) + + def has_sametype(self, other): + """Check if types match. + + Parameters + ---------- + other : object + Class instance. + + Returns + ------- + bool : boolean + True if other is same class as self + + """ + return isinstance(other, self.__class__) + + def _get_coefficients(self, other): + """Interpret other as polynomial coefficients. + + The `other` argument is checked to see if it is of the same + class as self with identical domain and window. If so, + return its coefficients, otherwise return `other`. + + Parameters + ---------- + other : anything + Object to be checked. + + Returns + ------- + coef + The coefficients of`other` if it is a compatible instance, + of ABCPolyBase, otherwise `other`. + + Raises + ------ + TypeError + When `other` is an incompatible instance of ABCPolyBase. + + """ + if isinstance(other, ABCPolyBase): + if not isinstance(other, self.__class__): + raise TypeError("Polynomial types differ") + elif not np.all(self.domain == other.domain): + raise TypeError("Domains differ") + elif not np.all(self.window == other.window): + raise TypeError("Windows differ") + elif self.symbol != other.symbol: + raise ValueError("Polynomial symbols differ") + return other.coef + return other + + def __init__(self, coef, domain=None, window=None, symbol='x'): + [coef] = pu.as_series([coef], trim=False) + self.coef = coef + + if domain is not None: + [domain] = pu.as_series([domain], trim=False) + if len(domain) != 2: + raise ValueError("Domain has wrong number of elements.") + self.domain = domain + + if window is not None: + [window] = pu.as_series([window], trim=False) + if len(window) != 2: + raise ValueError("Window has wrong number of elements.") + self.window = window + + # Validation for symbol + try: + if not symbol.isidentifier(): + raise ValueError( + "Symbol string must be a valid Python identifier" + ) + # If a user passes in something other than a string, the above + # results in an AttributeError. Catch this and raise a more + # informative exception + except AttributeError: + raise TypeError("Symbol must be a non-empty string") + + self._symbol = symbol + + def __repr__(self): + coef = repr(self.coef)[6:-1] + domain = repr(self.domain)[6:-1] + window = repr(self.window)[6:-1] + name = self.__class__.__name__ + return (f"{name}({coef}, domain={domain}, window={window}, " + f"symbol='{self.symbol}')") + + def __format__(self, fmt_str): + if fmt_str == '': + return self.__str__() + if fmt_str not in ('ascii', 'unicode'): + raise ValueError( + f"Unsupported format string '{fmt_str}' passed to " + f"{self.__class__}.__format__. Valid options are " + f"'ascii' and 'unicode'" + ) + if fmt_str == 'ascii': + return self._generate_string(self._str_term_ascii) + return self._generate_string(self._str_term_unicode) + + def __str__(self): + if self._use_unicode: + return self._generate_string(self._str_term_unicode) + return self._generate_string(self._str_term_ascii) + + def _generate_string(self, term_method): + """ + Generate the full string representation of the polynomial, using + ``term_method`` to generate each polynomial term. + """ + # Get configuration for line breaks + linewidth = np.get_printoptions().get('linewidth', 75) + if linewidth < 1: + linewidth = 1 + out = pu.format_float(self.coef[0]) + + off, scale = self.mapparms() + + scaled_symbol, needs_parens = self._format_term(pu.format_float, + off, scale) + if needs_parens: + scaled_symbol = '(' + scaled_symbol + ')' + + for i, coef in enumerate(self.coef[1:]): + out += " " + power = str(i + 1) + # Polynomial coefficient + # The coefficient array can be an object array with elements that + # will raise a TypeError with >= 0 (e.g. strings or Python + # complex). In this case, represent the coefficient as-is. + try: + if coef >= 0: + next_term = "+ " + pu.format_float(coef, parens=True) + else: + next_term = "- " + pu.format_float(-coef, parens=True) + except TypeError: + next_term = f"+ {coef}" + # Polynomial term + next_term += term_method(power, scaled_symbol) + # Length of the current line with next term added + line_len = len(out.split('\n')[-1]) + len(next_term) + # If not the last term in the polynomial, it will be two + # characters longer due to the +/- with the next term + if i < len(self.coef[1:]) - 1: + line_len += 2 + # Handle linebreaking + if line_len >= linewidth: + next_term = next_term.replace(" ", "\n", 1) + out += next_term + return out + + @classmethod + def _str_term_unicode(cls, i, arg_str): + """ + String representation of single polynomial term using unicode + characters for superscripts and subscripts. + """ + if cls.basis_name is None: + raise NotImplementedError( + "Subclasses must define either a basis_name, or override " + "_str_term_unicode(cls, i, arg_str)" + ) + return (f"·{cls.basis_name}{i.translate(cls._subscript_mapping)}" + f"({arg_str})") + + @classmethod + def _str_term_ascii(cls, i, arg_str): + """ + String representation of a single polynomial term using ** and _ to + represent superscripts and subscripts, respectively. + """ + if cls.basis_name is None: + raise NotImplementedError( + "Subclasses must define either a basis_name, or override " + "_str_term_ascii(cls, i, arg_str)" + ) + return f" {cls.basis_name}_{i}({arg_str})" + + @classmethod + def _repr_latex_term(cls, i, arg_str, needs_parens): + if cls.basis_name is None: + raise NotImplementedError( + "Subclasses must define either a basis name, or override " + "_repr_latex_term(i, arg_str, needs_parens)") + # since we always add parens, we don't care if the expression needs them + return f"{{{cls.basis_name}}}_{{{i}}}({arg_str})" + + @staticmethod + def _repr_latex_scalar(x, parens=False): + # TODO: we're stuck with disabling math formatting until we handle + # exponents in this function + return fr'\text{{{pu.format_float(x, parens=parens)}}}' + + def _format_term(self, scalar_format: Callable, off: float, scale: float): + """ Format a single term in the expansion """ + if off == 0 and scale == 1: + term = self.symbol + needs_parens = False + elif scale == 1: + term = f"{scalar_format(off)} + {self.symbol}" + needs_parens = True + elif off == 0: + term = f"{scalar_format(scale)}{self.symbol}" + needs_parens = True + else: + term = ( + f"{scalar_format(off)} + " + f"{scalar_format(scale)}{self.symbol}" + ) + needs_parens = True + return term, needs_parens + + def _repr_latex_(self): + # get the scaled argument string to the basis functions + off, scale = self.mapparms() + term, needs_parens = self._format_term(self._repr_latex_scalar, + off, scale) + + mute = r"\color{{LightGray}}{{{}}}".format + + parts = [] + for i, c in enumerate(self.coef): + # prevent duplication of + and - signs + if i == 0: + coef_str = f"{self._repr_latex_scalar(c)}" + elif not isinstance(c, numbers.Real): + coef_str = f" + ({self._repr_latex_scalar(c)})" + elif c >= 0: + coef_str = f" + {self._repr_latex_scalar(c, parens=True)}" + else: + coef_str = f" - {self._repr_latex_scalar(-c, parens=True)}" + + # produce the string for the term + term_str = self._repr_latex_term(i, term, needs_parens) + if term_str == '1': + part = coef_str + else: + part = rf"{coef_str}\,{term_str}" + + if c == 0: + part = mute(part) + + parts.append(part) + + if parts: + body = ''.join(parts) + else: + # in case somehow there are no coefficients at all + body = '0' + + return rf"${self.symbol} \mapsto {body}$" + + # Pickle and copy + + def __getstate__(self): + ret = self.__dict__.copy() + ret['coef'] = self.coef.copy() + ret['domain'] = self.domain.copy() + ret['window'] = self.window.copy() + ret['symbol'] = self.symbol + return ret + + def __setstate__(self, dict): + self.__dict__ = dict + + # Call + + def __call__(self, arg): + arg = pu.mapdomain(arg, self.domain, self.window) + return self._val(arg, self.coef) + + def __iter__(self): + return iter(self.coef) + + def __len__(self): + return len(self.coef) + + # Numeric properties. + + def __neg__(self): + return self.__class__( + -self.coef, self.domain, self.window, self.symbol + ) + + def __pos__(self): + return self + + def __add__(self, other): + othercoef = self._get_coefficients(other) + try: + coef = self._add(self.coef, othercoef) + except Exception: + return NotImplemented + return self.__class__(coef, self.domain, self.window, self.symbol) + + def __sub__(self, other): + othercoef = self._get_coefficients(other) + try: + coef = self._sub(self.coef, othercoef) + except Exception: + return NotImplemented + return self.__class__(coef, self.domain, self.window, self.symbol) + + def __mul__(self, other): + othercoef = self._get_coefficients(other) + try: + coef = self._mul(self.coef, othercoef) + except Exception: + return NotImplemented + return self.__class__(coef, self.domain, self.window, self.symbol) + + def __truediv__(self, other): + # there is no true divide if the rhs is not a Number, although it + # could return the first n elements of an infinite series. + # It is hard to see where n would come from, though. + if not isinstance(other, numbers.Number) or isinstance(other, bool): + raise TypeError( + f"unsupported types for true division: " + f"'{type(self)}', '{type(other)}'" + ) + return self.__floordiv__(other) + + def __floordiv__(self, other): + res = self.__divmod__(other) + if res is NotImplemented: + return res + return res[0] + + def __mod__(self, other): + res = self.__divmod__(other) + if res is NotImplemented: + return res + return res[1] + + def __divmod__(self, other): + othercoef = self._get_coefficients(other) + try: + quo, rem = self._div(self.coef, othercoef) + except ZeroDivisionError: + raise + except Exception: + return NotImplemented + quo = self.__class__(quo, self.domain, self.window, self.symbol) + rem = self.__class__(rem, self.domain, self.window, self.symbol) + return quo, rem + + def __pow__(self, other): + coef = self._pow(self.coef, other, maxpower=self.maxpower) + res = self.__class__(coef, self.domain, self.window, self.symbol) + return res + + def __radd__(self, other): + try: + coef = self._add(other, self.coef) + except Exception: + return NotImplemented + return self.__class__(coef, self.domain, self.window, self.symbol) + + def __rsub__(self, other): + try: + coef = self._sub(other, self.coef) + except Exception: + return NotImplemented + return self.__class__(coef, self.domain, self.window, self.symbol) + + def __rmul__(self, other): + try: + coef = self._mul(other, self.coef) + except Exception: + return NotImplemented + return self.__class__(coef, self.domain, self.window, self.symbol) + + def __rtruediv__(self, other): + # An instance of ABCPolyBase is not considered a + # Number. + return NotImplemented + + def __rfloordiv__(self, other): + res = self.__rdivmod__(other) + if res is NotImplemented: + return res + return res[0] + + def __rmod__(self, other): + res = self.__rdivmod__(other) + if res is NotImplemented: + return res + return res[1] + + def __rdivmod__(self, other): + try: + quo, rem = self._div(other, self.coef) + except ZeroDivisionError: + raise + except Exception: + return NotImplemented + quo = self.__class__(quo, self.domain, self.window, self.symbol) + rem = self.__class__(rem, self.domain, self.window, self.symbol) + return quo, rem + + def __eq__(self, other): + res = (isinstance(other, self.__class__) and + np.all(self.domain == other.domain) and + np.all(self.window == other.window) and + (self.coef.shape == other.coef.shape) and + np.all(self.coef == other.coef) and + (self.symbol == other.symbol)) + return res + + def __ne__(self, other): + return not self.__eq__(other) + + # + # Extra methods. + # + + def copy(self): + """Return a copy. + + Returns + ------- + new_series : series + Copy of self. + + """ + return self.__class__(self.coef, self.domain, self.window, self.symbol) + + def degree(self): + """The degree of the series. + + Returns + ------- + degree : int + Degree of the series, one less than the number of coefficients. + + Examples + -------- + + Create a polynomial object for ``1 + 7*x + 4*x**2``: + + >>> np.polynomial.set_default_printstyle("unicode") + >>> poly = np.polynomial.Polynomial([1, 7, 4]) + >>> print(poly) + 1.0 + 7.0·x + 4.0·x² + >>> poly.degree() + 2 + + Note that this method does not check for non-zero coefficients. + You must trim the polynomial to remove any trailing zeroes: + + >>> poly = np.polynomial.Polynomial([1, 7, 0]) + >>> print(poly) + 1.0 + 7.0·x + 0.0·x² + >>> poly.degree() + 2 + >>> poly.trim().degree() + 1 + + """ + return len(self) - 1 + + def cutdeg(self, deg): + """Truncate series to the given degree. + + Reduce the degree of the series to `deg` by discarding the + high order terms. If `deg` is greater than the current degree a + copy of the current series is returned. This can be useful in least + squares where the coefficients of the high degree terms may be very + small. + + Parameters + ---------- + deg : non-negative int + The series is reduced to degree `deg` by discarding the high + order terms. The value of `deg` must be a non-negative integer. + + Returns + ------- + new_series : series + New instance of series with reduced degree. + + """ + return self.truncate(deg + 1) + + def trim(self, tol=0): + """Remove trailing coefficients + + Remove trailing coefficients until a coefficient is reached whose + absolute value greater than `tol` or the beginning of the series is + reached. If all the coefficients would be removed the series is set + to ``[0]``. A new series instance is returned with the new + coefficients. The current instance remains unchanged. + + Parameters + ---------- + tol : non-negative number. + All trailing coefficients less than `tol` will be removed. + + Returns + ------- + new_series : series + New instance of series with trimmed coefficients. + + """ + coef = pu.trimcoef(self.coef, tol) + return self.__class__(coef, self.domain, self.window, self.symbol) + + def truncate(self, size): + """Truncate series to length `size`. + + Reduce the series to length `size` by discarding the high + degree terms. The value of `size` must be a positive integer. This + can be useful in least squares where the coefficients of the + high degree terms may be very small. + + Parameters + ---------- + size : positive int + The series is reduced to length `size` by discarding the high + degree terms. The value of `size` must be a positive integer. + + Returns + ------- + new_series : series + New instance of series with truncated coefficients. + + """ + isize = int(size) + if isize != size or isize < 1: + raise ValueError("size must be a positive integer") + if isize >= len(self.coef): + coef = self.coef + else: + coef = self.coef[:isize] + return self.__class__(coef, self.domain, self.window, self.symbol) + + def convert(self, domain=None, kind=None, window=None): + """Convert series to a different kind and/or domain and/or window. + + Parameters + ---------- + domain : array_like, optional + The domain of the converted series. If the value is None, + the default domain of `kind` is used. + kind : class, optional + The polynomial series type class to which the current instance + should be converted. If kind is None, then the class of the + current instance is used. + window : array_like, optional + The window of the converted series. If the value is None, + the default window of `kind` is used. + + Returns + ------- + new_series : series + The returned class can be of different type than the current + instance and/or have a different domain and/or different + window. + + Notes + ----- + Conversion between domains and class types can result in + numerically ill defined series. + + """ + if kind is None: + kind = self.__class__ + if domain is None: + domain = kind.domain + if window is None: + window = kind.window + return self(kind.identity(domain, window=window, symbol=self.symbol)) + + def mapparms(self): + """Return the mapping parameters. + + The returned values define a linear map ``off + scl*x`` that is + applied to the input arguments before the series is evaluated. The + map depends on the ``domain`` and ``window``; if the current + ``domain`` is equal to the ``window`` the resulting map is the + identity. If the coefficients of the series instance are to be + used by themselves outside this class, then the linear function + must be substituted for the ``x`` in the standard representation of + the base polynomials. + + Returns + ------- + off, scl : float or complex + The mapping function is defined by ``off + scl*x``. + + Notes + ----- + If the current domain is the interval ``[l1, r1]`` and the window + is ``[l2, r2]``, then the linear mapping function ``L`` is + defined by the equations:: + + L(l1) = l2 + L(r1) = r2 + + """ + return pu.mapparms(self.domain, self.window) + + def integ(self, m=1, k=[], lbnd=None): + """Integrate. + + Return a series instance that is the definite integral of the + current series. + + Parameters + ---------- + m : non-negative int + The number of integrations to perform. + k : array_like + Integration constants. The first constant is applied to the + first integration, the second to the second, and so on. The + list of values must less than or equal to `m` in length and any + missing values are set to zero. + lbnd : Scalar + The lower bound of the definite integral. + + Returns + ------- + new_series : series + A new series representing the integral. The domain is the same + as the domain of the integrated series. + + """ + off, scl = self.mapparms() + if lbnd is None: + lbnd = 0 + else: + lbnd = off + scl * lbnd + coef = self._int(self.coef, m, k, lbnd, 1. / scl) + return self.__class__(coef, self.domain, self.window, self.symbol) + + def deriv(self, m=1): + """Differentiate. + + Return a series instance of that is the derivative of the current + series. + + Parameters + ---------- + m : non-negative int + Find the derivative of order `m`. + + Returns + ------- + new_series : series + A new series representing the derivative. The domain is the same + as the domain of the differentiated series. + + """ + off, scl = self.mapparms() + coef = self._der(self.coef, m, scl) + return self.__class__(coef, self.domain, self.window, self.symbol) + + def roots(self): + """Return the roots of the series polynomial. + + Compute the roots for the series. Note that the accuracy of the + roots decreases the further outside the `domain` they lie. + + Returns + ------- + roots : ndarray + Array containing the roots of the series. + + """ + roots = self._roots(self.coef) + return pu.mapdomain(roots, self.window, self.domain) + + def linspace(self, n=100, domain=None): + """Return x, y values at equally spaced points in domain. + + Returns the x, y values at `n` linearly spaced points across the + domain. Here y is the value of the polynomial at the points x. By + default the domain is the same as that of the series instance. + This method is intended mostly as a plotting aid. + + Parameters + ---------- + n : int, optional + Number of point pairs to return. The default value is 100. + domain : {None, array_like}, optional + If not None, the specified domain is used instead of that of + the calling instance. It should be of the form ``[beg,end]``. + The default is None which case the class domain is used. + + Returns + ------- + x, y : ndarray + x is equal to linspace(self.domain[0], self.domain[1], n) and + y is the series evaluated at element of x. + + """ + if domain is None: + domain = self.domain + x = np.linspace(domain[0], domain[1], n) + y = self(x) + return x, y + + @classmethod + def fit(cls, x, y, deg, domain=None, rcond=None, full=False, w=None, + window=None, symbol='x'): + """Least squares fit to data. + + Return a series instance that is the least squares fit to the data + `y` sampled at `x`. The domain of the returned instance can be + specified and this will often result in a superior fit with less + chance of ill conditioning. + + Parameters + ---------- + x : array_like, shape (M,) + x-coordinates of the M sample points ``(x[i], y[i])``. + y : array_like, shape (M,) + y-coordinates of the M sample points ``(x[i], y[i])``. + deg : int or 1-D array_like + Degree(s) of the fitting polynomials. If `deg` is a single integer + all terms up to and including the `deg`'th term are included in the + fit. For NumPy versions >= 1.11.0 a list of integers specifying the + degrees of the terms to include may be used instead. + domain : {None, [beg, end], []}, optional + Domain to use for the returned series. If ``None``, + then a minimal domain that covers the points `x` is chosen. If + ``[]`` the class domain is used. The default value was the + class domain in NumPy 1.4 and ``None`` in later versions. + The ``[]`` option was added in numpy 1.5.0. + rcond : float, optional + Relative condition number of the fit. Singular values smaller + than this relative to the largest singular value will be + ignored. The default value is ``len(x)*eps``, where eps is the + relative precision of the float type, about 2e-16 in most + cases. + full : bool, optional + Switch determining nature of return value. When it is False + (the default) just the coefficients are returned, when True + diagnostic information from the singular value decomposition is + also returned. + w : array_like, shape (M,), optional + Weights. If not None, the weight ``w[i]`` applies to the unsquared + residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are + chosen so that the errors of the products ``w[i]*y[i]`` all have + the same variance. When using inverse-variance weighting, use + ``w[i] = 1/sigma(y[i])``. The default value is None. + window : {[beg, end]}, optional + Window to use for the returned series. The default + value is the default class domain + symbol : str, optional + Symbol representing the independent variable. Default is 'x'. + + Returns + ------- + new_series : series + A series that represents the least squares fit to the data and + has the domain and window specified in the call. If the + coefficients for the unscaled and unshifted basis polynomials are + of interest, do ``new_series.convert().coef``. + + [resid, rank, sv, rcond] : list + These values are only returned if ``full == True`` + + - resid -- sum of squared residuals of the least squares fit + - rank -- the numerical rank of the scaled Vandermonde matrix + - sv -- singular values of the scaled Vandermonde matrix + - rcond -- value of `rcond`. + + For more details, see `linalg.lstsq`. + + """ + if domain is None: + domain = pu.getdomain(x) + if domain[0] == domain[1]: + domain[0] -= 1 + domain[1] += 1 + elif isinstance(domain, list) and len(domain) == 0: + domain = cls.domain + + if window is None: + window = cls.window + + xnew = pu.mapdomain(x, domain, window) + res = cls._fit(xnew, y, deg, w=w, rcond=rcond, full=full) + if full: + [coef, status] = res + return ( + cls(coef, domain=domain, window=window, symbol=symbol), status + ) + else: + coef = res + return cls(coef, domain=domain, window=window, symbol=symbol) + + @classmethod + def fromroots(cls, roots, domain=[], window=None, symbol='x'): + """Return series instance that has the specified roots. + + Returns a series representing the product + ``(x - r[0])*(x - r[1])*...*(x - r[n-1])``, where ``r`` is a + list of roots. + + Parameters + ---------- + roots : array_like + List of roots. + domain : {[], None, array_like}, optional + Domain for the resulting series. If None the domain is the + interval from the smallest root to the largest. If [] the + domain is the class domain. The default is []. + window : {None, array_like}, optional + Window for the returned series. If None the class window is + used. The default is None. + symbol : str, optional + Symbol representing the independent variable. Default is 'x'. + + Returns + ------- + new_series : series + Series with the specified roots. + + """ + [roots] = pu.as_series([roots], trim=False) + if domain is None: + domain = pu.getdomain(roots) + elif isinstance(domain, list) and len(domain) == 0: + domain = cls.domain + + if window is None: + window = cls.window + + deg = len(roots) + off, scl = pu.mapparms(domain, window) + rnew = off + scl * roots + coef = cls._fromroots(rnew) / scl**deg + return cls(coef, domain=domain, window=window, symbol=symbol) + + @classmethod + def identity(cls, domain=None, window=None, symbol='x'): + """Identity function. + + If ``p`` is the returned series, then ``p(x) == x`` for all + values of x. + + Parameters + ---------- + domain : {None, array_like}, optional + If given, the array must be of the form ``[beg, end]``, where + ``beg`` and ``end`` are the endpoints of the domain. If None is + given then the class domain is used. The default is None. + window : {None, array_like}, optional + If given, the resulting array must be if the form + ``[beg, end]``, where ``beg`` and ``end`` are the endpoints of + the window. If None is given then the class window is used. The + default is None. + symbol : str, optional + Symbol representing the independent variable. Default is 'x'. + + Returns + ------- + new_series : series + Series of representing the identity. + + """ + if domain is None: + domain = cls.domain + if window is None: + window = cls.window + off, scl = pu.mapparms(window, domain) + coef = cls._line(off, scl) + return cls(coef, domain, window, symbol) + + @classmethod + def basis(cls, deg, domain=None, window=None, symbol='x'): + """Series basis polynomial of degree `deg`. + + Returns the series representing the basis polynomial of degree `deg`. + + Parameters + ---------- + deg : int + Degree of the basis polynomial for the series. Must be >= 0. + domain : {None, array_like}, optional + If given, the array must be of the form ``[beg, end]``, where + ``beg`` and ``end`` are the endpoints of the domain. If None is + given then the class domain is used. The default is None. + window : {None, array_like}, optional + If given, the resulting array must be if the form + ``[beg, end]``, where ``beg`` and ``end`` are the endpoints of + the window. If None is given then the class window is used. The + default is None. + symbol : str, optional + Symbol representing the independent variable. Default is 'x'. + + Returns + ------- + new_series : series + A series with the coefficient of the `deg` term set to one and + all others zero. + + """ + if domain is None: + domain = cls.domain + if window is None: + window = cls.window + ideg = int(deg) + + if ideg != deg or ideg < 0: + raise ValueError("deg must be non-negative integer") + return cls([0] * ideg + [1], domain, window, symbol) + + @classmethod + def cast(cls, series, domain=None, window=None): + """Convert series to series of this class. + + The `series` is expected to be an instance of some polynomial + series of one of the types supported by by the numpy.polynomial + module, but could be some other class that supports the convert + method. + + Parameters + ---------- + series : series + The series instance to be converted. + domain : {None, array_like}, optional + If given, the array must be of the form ``[beg, end]``, where + ``beg`` and ``end`` are the endpoints of the domain. If None is + given then the class domain is used. The default is None. + window : {None, array_like}, optional + If given, the resulting array must be if the form + ``[beg, end]``, where ``beg`` and ``end`` are the endpoints of + the window. If None is given then the class window is used. The + default is None. + + Returns + ------- + new_series : series + A series of the same kind as the calling class and equal to + `series` when evaluated. + + See Also + -------- + convert : similar instance method + + """ + if domain is None: + domain = cls.domain + if window is None: + window = cls.window + return series.convert(domain, cls, window) diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/_polybase.pyi b/.venv/lib/python3.12/site-packages/numpy/polynomial/_polybase.pyi new file mode 100644 index 0000000..6d71a8c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/_polybase.pyi @@ -0,0 +1,285 @@ +import abc +import decimal +import numbers +from collections.abc import Iterator, Mapping, Sequence +from typing import ( + Any, + ClassVar, + Generic, + Literal, + LiteralString, + Self, + SupportsIndex, + TypeAlias, + overload, +) + +from typing_extensions import TypeIs, TypeVar + +import numpy as np +import numpy.typing as npt +from numpy._typing import ( + _ArrayLikeComplex_co, + _ArrayLikeFloat_co, + _FloatLike_co, + _NumberLike_co, +) + +from ._polytypes import ( + _AnyInt, + _Array2, + _ArrayLikeCoef_co, + _ArrayLikeCoefObject_co, + _CoefLike_co, + _CoefSeries, + _Series, + _SeriesLikeCoef_co, + _SeriesLikeInt_co, + _Tuple2, +) + +__all__ = ["ABCPolyBase"] + +_NameCo = TypeVar( + "_NameCo", + bound=LiteralString | None, + covariant=True, + default=LiteralString | None +) +_Other = TypeVar("_Other", bound=ABCPolyBase) + +_AnyOther: TypeAlias = ABCPolyBase | _CoefLike_co | _SeriesLikeCoef_co +_Hundred: TypeAlias = Literal[100] + +class ABCPolyBase(Generic[_NameCo], abc.ABC): + __hash__: ClassVar[None] # type: ignore[assignment] # pyright: ignore[reportIncompatibleMethodOverride] + __array_ufunc__: ClassVar[None] + + maxpower: ClassVar[_Hundred] + _superscript_mapping: ClassVar[Mapping[int, str]] + _subscript_mapping: ClassVar[Mapping[int, str]] + _use_unicode: ClassVar[bool] + + basis_name: _NameCo + coef: _CoefSeries + domain: _Array2[np.inexact | np.object_] + window: _Array2[np.inexact | np.object_] + + _symbol: LiteralString + @property + def symbol(self, /) -> LiteralString: ... + + def __init__( + self, + /, + coef: _SeriesLikeCoef_co, + domain: _SeriesLikeCoef_co | None = ..., + window: _SeriesLikeCoef_co | None = ..., + symbol: str = ..., + ) -> None: ... + + @overload + def __call__(self, /, arg: _Other) -> _Other: ... + # TODO: Once `_ShapeT@ndarray` is covariant and bounded (see #26081), + # additionally include 0-d arrays as input types with scalar return type. + @overload + def __call__( + self, + /, + arg: _FloatLike_co | decimal.Decimal | numbers.Real | np.object_, + ) -> np.float64 | np.complex128: ... + @overload + def __call__( + self, + /, + arg: _NumberLike_co | numbers.Complex, + ) -> np.complex128: ... + @overload + def __call__(self, /, arg: _ArrayLikeFloat_co) -> ( + npt.NDArray[np.float64] + | npt.NDArray[np.complex128] + | npt.NDArray[np.object_] + ): ... + @overload + def __call__( + self, + /, + arg: _ArrayLikeComplex_co, + ) -> npt.NDArray[np.complex128] | npt.NDArray[np.object_]: ... + @overload + def __call__( + self, + /, + arg: _ArrayLikeCoefObject_co, + ) -> npt.NDArray[np.object_]: ... + + def __format__(self, fmt_str: str, /) -> str: ... + def __eq__(self, x: object, /) -> bool: ... + def __ne__(self, x: object, /) -> bool: ... + def __neg__(self, /) -> Self: ... + def __pos__(self, /) -> Self: ... + def __add__(self, x: _AnyOther, /) -> Self: ... + def __sub__(self, x: _AnyOther, /) -> Self: ... + def __mul__(self, x: _AnyOther, /) -> Self: ... + def __truediv__(self, x: _AnyOther, /) -> Self: ... + def __floordiv__(self, x: _AnyOther, /) -> Self: ... + def __mod__(self, x: _AnyOther, /) -> Self: ... + def __divmod__(self, x: _AnyOther, /) -> _Tuple2[Self]: ... + def __pow__(self, x: _AnyOther, /) -> Self: ... + def __radd__(self, x: _AnyOther, /) -> Self: ... + def __rsub__(self, x: _AnyOther, /) -> Self: ... + def __rmul__(self, x: _AnyOther, /) -> Self: ... + def __rtruediv__(self, x: _AnyOther, /) -> Self: ... + def __rfloordiv__(self, x: _AnyOther, /) -> Self: ... + def __rmod__(self, x: _AnyOther, /) -> Self: ... + def __rdivmod__(self, x: _AnyOther, /) -> _Tuple2[Self]: ... + def __len__(self, /) -> int: ... + def __iter__(self, /) -> Iterator[np.inexact | object]: ... + def __getstate__(self, /) -> dict[str, Any]: ... + def __setstate__(self, dict: dict[str, Any], /) -> None: ... + + def has_samecoef(self, /, other: ABCPolyBase) -> bool: ... + def has_samedomain(self, /, other: ABCPolyBase) -> bool: ... + def has_samewindow(self, /, other: ABCPolyBase) -> bool: ... + @overload + def has_sametype(self, /, other: ABCPolyBase) -> TypeIs[Self]: ... + @overload + def has_sametype(self, /, other: object) -> Literal[False]: ... + + def copy(self, /) -> Self: ... + def degree(self, /) -> int: ... + def cutdeg(self, /) -> Self: ... + def trim(self, /, tol: _FloatLike_co = ...) -> Self: ... + def truncate(self, /, size: _AnyInt) -> Self: ... + + @overload + def convert( + self, + /, + domain: _SeriesLikeCoef_co | None, + kind: type[_Other], + window: _SeriesLikeCoef_co | None = ..., + ) -> _Other: ... + @overload + def convert( + self, + /, + domain: _SeriesLikeCoef_co | None = ..., + *, + kind: type[_Other], + window: _SeriesLikeCoef_co | None = ..., + ) -> _Other: ... + @overload + def convert( + self, + /, + domain: _SeriesLikeCoef_co | None = ..., + kind: None = None, + window: _SeriesLikeCoef_co | None = ..., + ) -> Self: ... + + def mapparms(self, /) -> _Tuple2[Any]: ... + + def integ( + self, + /, + m: SupportsIndex = ..., + k: _CoefLike_co | _SeriesLikeCoef_co = ..., + lbnd: _CoefLike_co | None = ..., + ) -> Self: ... + + def deriv(self, /, m: SupportsIndex = ...) -> Self: ... + + def roots(self, /) -> _CoefSeries: ... + + def linspace( + self, + /, + n: SupportsIndex = ..., + domain: _SeriesLikeCoef_co | None = ..., + ) -> _Tuple2[_Series[np.float64 | np.complex128]]: ... + + @overload + @classmethod + def fit( + cls, + x: _SeriesLikeCoef_co, + y: _SeriesLikeCoef_co, + deg: int | _SeriesLikeInt_co, + domain: _SeriesLikeCoef_co | None = ..., + rcond: _FloatLike_co = ..., + full: Literal[False] = ..., + w: _SeriesLikeCoef_co | None = ..., + window: _SeriesLikeCoef_co | None = ..., + symbol: str = ..., + ) -> Self: ... + @overload + @classmethod + def fit( + cls, + x: _SeriesLikeCoef_co, + y: _SeriesLikeCoef_co, + deg: int | _SeriesLikeInt_co, + domain: _SeriesLikeCoef_co | None = ..., + rcond: _FloatLike_co = ..., + *, + full: Literal[True], + w: _SeriesLikeCoef_co | None = ..., + window: _SeriesLikeCoef_co | None = ..., + symbol: str = ..., + ) -> tuple[Self, Sequence[np.inexact | np.int32]]: ... + @overload + @classmethod + def fit( + cls, + x: _SeriesLikeCoef_co, + y: _SeriesLikeCoef_co, + deg: int | _SeriesLikeInt_co, + domain: _SeriesLikeCoef_co | None, + rcond: _FloatLike_co, + full: Literal[True], /, + w: _SeriesLikeCoef_co | None = ..., + window: _SeriesLikeCoef_co | None = ..., + symbol: str = ..., + ) -> tuple[Self, Sequence[np.inexact | np.int32]]: ... + + @classmethod + def fromroots( + cls, + roots: _ArrayLikeCoef_co, + domain: _SeriesLikeCoef_co | None = ..., + window: _SeriesLikeCoef_co | None = ..., + symbol: str = ..., + ) -> Self: ... + + @classmethod + def identity( + cls, + domain: _SeriesLikeCoef_co | None = ..., + window: _SeriesLikeCoef_co | None = ..., + symbol: str = ..., + ) -> Self: ... + + @classmethod + def basis( + cls, + deg: _AnyInt, + domain: _SeriesLikeCoef_co | None = ..., + window: _SeriesLikeCoef_co | None = ..., + symbol: str = ..., + ) -> Self: ... + + @classmethod + def cast( + cls, + series: ABCPolyBase, + domain: _SeriesLikeCoef_co | None = ..., + window: _SeriesLikeCoef_co | None = ..., + ) -> Self: ... + + @classmethod + def _str_term_unicode(cls, /, i: str, arg_str: str) -> str: ... + @staticmethod + def _str_term_ascii(i: str, arg_str: str) -> str: ... + @staticmethod + def _repr_latex_term(i: str, arg_str: str, needs_parens: bool) -> str: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/_polytypes.pyi b/.venv/lib/python3.12/site-packages/numpy/polynomial/_polytypes.pyi new file mode 100644 index 0000000..241a65b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/_polytypes.pyi @@ -0,0 +1,892 @@ +# ruff: noqa: PYI046, PYI047 + +from collections.abc import Callable, Sequence +from typing import ( + Any, + Literal, + LiteralString, + NoReturn, + Protocol, + Self, + SupportsIndex, + SupportsInt, + TypeAlias, + TypeVar, + overload, + type_check_only, +) + +import numpy as np +import numpy.typing as npt +from numpy._typing import ( + _ArrayLikeComplex_co, + # array-likes + _ArrayLikeFloat_co, + _ArrayLikeNumber_co, + _ArrayLikeObject_co, + _ComplexLike_co, + _FloatLike_co, + # scalar-likes + _IntLike_co, + _NestedSequence, + _NumberLike_co, + _SupportsArray, +) + +_T = TypeVar("_T") +_T_contra = TypeVar("_T_contra", contravariant=True) +_ScalarT = TypeVar("_ScalarT", bound=np.number | np.bool | np.object_) + +# compatible with e.g. int, float, complex, Decimal, Fraction, and ABCPolyBase +@type_check_only +class _SupportsCoefOps(Protocol[_T_contra]): + def __eq__(self, x: object, /) -> bool: ... + def __ne__(self, x: object, /) -> bool: ... + + def __neg__(self, /) -> Self: ... + def __pos__(self, /) -> Self: ... + + def __add__(self, x: _T_contra, /) -> Self: ... + def __sub__(self, x: _T_contra, /) -> Self: ... + def __mul__(self, x: _T_contra, /) -> Self: ... + def __pow__(self, x: _T_contra, /) -> Self | float: ... + + def __radd__(self, x: _T_contra, /) -> Self: ... + def __rsub__(self, x: _T_contra, /) -> Self: ... + def __rmul__(self, x: _T_contra, /) -> Self: ... + +_Series: TypeAlias = np.ndarray[tuple[int], np.dtype[_ScalarT]] + +_FloatSeries: TypeAlias = _Series[np.floating] +_ComplexSeries: TypeAlias = _Series[np.complexfloating] +_ObjectSeries: TypeAlias = _Series[np.object_] +_CoefSeries: TypeAlias = _Series[np.inexact | np.object_] + +_FloatArray: TypeAlias = npt.NDArray[np.floating] +_ComplexArray: TypeAlias = npt.NDArray[np.complexfloating] +_ObjectArray: TypeAlias = npt.NDArray[np.object_] +_CoefArray: TypeAlias = npt.NDArray[np.inexact | np.object_] + +_Tuple2: TypeAlias = tuple[_T, _T] +_Array1: TypeAlias = np.ndarray[tuple[Literal[1]], np.dtype[_ScalarT]] +_Array2: TypeAlias = np.ndarray[tuple[Literal[2]], np.dtype[_ScalarT]] + +_AnyInt: TypeAlias = SupportsInt | SupportsIndex + +_CoefObjectLike_co: TypeAlias = np.object_ | _SupportsCoefOps[Any] +_CoefLike_co: TypeAlias = _NumberLike_co | _CoefObjectLike_co + +# The term "series" is used here to refer to 1-d arrays of numeric scalars. +_SeriesLikeBool_co: TypeAlias = ( + _SupportsArray[np.dtype[np.bool]] + | Sequence[bool | np.bool] +) +_SeriesLikeInt_co: TypeAlias = ( + _SupportsArray[np.dtype[np.integer | np.bool]] + | Sequence[_IntLike_co] +) +_SeriesLikeFloat_co: TypeAlias = ( + _SupportsArray[np.dtype[np.floating | np.integer | np.bool]] + | Sequence[_FloatLike_co] +) +_SeriesLikeComplex_co: TypeAlias = ( + _SupportsArray[np.dtype[np.inexact | np.integer | np.bool]] + | Sequence[_ComplexLike_co] +) +_SeriesLikeObject_co: TypeAlias = ( + _SupportsArray[np.dtype[np.object_]] + | Sequence[_CoefObjectLike_co] +) +_SeriesLikeCoef_co: TypeAlias = ( + _SupportsArray[np.dtype[np.number | np.bool | np.object_]] + | Sequence[_CoefLike_co] +) + +_ArrayLikeCoefObject_co: TypeAlias = ( + _CoefObjectLike_co + | _SeriesLikeObject_co + | _NestedSequence[_SeriesLikeObject_co] +) +_ArrayLikeCoef_co: TypeAlias = ( + npt.NDArray[np.number | np.bool | np.object_] + | _ArrayLikeNumber_co + | _ArrayLikeCoefObject_co +) + +_Name_co = TypeVar( + "_Name_co", + bound=LiteralString, + covariant=True, + default=LiteralString +) + +@type_check_only +class _Named(Protocol[_Name_co]): + @property + def __name__(self, /) -> _Name_co: ... + +_Line: TypeAlias = np.ndarray[tuple[Literal[1, 2]], np.dtype[_ScalarT]] + +@type_check_only +class _FuncLine(_Named[_Name_co], Protocol[_Name_co]): + @overload + def __call__(self, /, off: _ScalarT, scl: _ScalarT) -> _Line[_ScalarT]: ... + @overload + def __call__(self, /, off: int, scl: int) -> _Line[np.int_]: ... + @overload + def __call__(self, /, off: float, scl: float) -> _Line[np.float64]: ... + @overload + def __call__( + self, + /, + off: complex, + scl: complex, + ) -> _Line[np.complex128]: ... + @overload + def __call__( + self, + /, + off: _SupportsCoefOps[Any], + scl: _SupportsCoefOps[Any], + ) -> _Line[np.object_]: ... + +@type_check_only +class _FuncFromRoots(_Named[_Name_co], Protocol[_Name_co]): + @overload + def __call__(self, /, roots: _SeriesLikeFloat_co) -> _FloatSeries: ... + @overload + def __call__(self, /, roots: _SeriesLikeComplex_co) -> _ComplexSeries: ... + @overload + def __call__(self, /, roots: _SeriesLikeCoef_co) -> _ObjectSeries: ... + +@type_check_only +class _FuncBinOp(_Named[_Name_co], Protocol[_Name_co]): + @overload + def __call__( + self, + /, + c1: _SeriesLikeBool_co, + c2: _SeriesLikeBool_co, + ) -> NoReturn: ... + @overload + def __call__( + self, + /, + c1: _SeriesLikeFloat_co, + c2: _SeriesLikeFloat_co, + ) -> _FloatSeries: ... + @overload + def __call__( + self, + /, + c1: _SeriesLikeComplex_co, + c2: _SeriesLikeComplex_co, + ) -> _ComplexSeries: ... + @overload + def __call__( + self, + /, + c1: _SeriesLikeCoef_co, + c2: _SeriesLikeCoef_co, + ) -> _ObjectSeries: ... + +@type_check_only +class _FuncUnOp(_Named[_Name_co], Protocol[_Name_co]): + @overload + def __call__(self, /, c: _SeriesLikeFloat_co) -> _FloatSeries: ... + @overload + def __call__(self, /, c: _SeriesLikeComplex_co) -> _ComplexSeries: ... + @overload + def __call__(self, /, c: _SeriesLikeCoef_co) -> _ObjectSeries: ... + +@type_check_only +class _FuncPoly2Ortho(_Named[_Name_co], Protocol[_Name_co]): + @overload + def __call__(self, /, pol: _SeriesLikeFloat_co) -> _FloatSeries: ... + @overload + def __call__(self, /, pol: _SeriesLikeComplex_co) -> _ComplexSeries: ... + @overload + def __call__(self, /, pol: _SeriesLikeCoef_co) -> _ObjectSeries: ... + +@type_check_only +class _FuncPow(_Named[_Name_co], Protocol[_Name_co]): + @overload + def __call__( + self, + /, + c: _SeriesLikeFloat_co, + pow: _IntLike_co, + maxpower: _IntLike_co | None = ..., + ) -> _FloatSeries: ... + @overload + def __call__( + self, + /, + c: _SeriesLikeComplex_co, + pow: _IntLike_co, + maxpower: _IntLike_co | None = ..., + ) -> _ComplexSeries: ... + @overload + def __call__( + self, + /, + c: _SeriesLikeCoef_co, + pow: _IntLike_co, + maxpower: _IntLike_co | None = ..., + ) -> _ObjectSeries: ... + +@type_check_only +class _FuncDer(_Named[_Name_co], Protocol[_Name_co]): + @overload + def __call__( + self, + /, + c: _ArrayLikeFloat_co, + m: SupportsIndex = ..., + scl: _FloatLike_co = ..., + axis: SupportsIndex = ..., + ) -> _FloatArray: ... + @overload + def __call__( + self, + /, + c: _ArrayLikeComplex_co, + m: SupportsIndex = ..., + scl: _ComplexLike_co = ..., + axis: SupportsIndex = ..., + ) -> _ComplexArray: ... + @overload + def __call__( + self, + /, + c: _ArrayLikeCoef_co, + m: SupportsIndex = ..., + scl: _CoefLike_co = ..., + axis: SupportsIndex = ..., + ) -> _ObjectArray: ... + +@type_check_only +class _FuncInteg(_Named[_Name_co], Protocol[_Name_co]): + @overload + def __call__( + self, + /, + c: _ArrayLikeFloat_co, + m: SupportsIndex = ..., + k: _FloatLike_co | _SeriesLikeFloat_co = ..., + lbnd: _FloatLike_co = ..., + scl: _FloatLike_co = ..., + axis: SupportsIndex = ..., + ) -> _FloatArray: ... + @overload + def __call__( + self, + /, + c: _ArrayLikeComplex_co, + m: SupportsIndex = ..., + k: _ComplexLike_co | _SeriesLikeComplex_co = ..., + lbnd: _ComplexLike_co = ..., + scl: _ComplexLike_co = ..., + axis: SupportsIndex = ..., + ) -> _ComplexArray: ... + @overload + def __call__( + self, + /, + c: _ArrayLikeCoef_co, + m: SupportsIndex = ..., + k: _CoefLike_co | _SeriesLikeCoef_co = ..., + lbnd: _CoefLike_co = ..., + scl: _CoefLike_co = ..., + axis: SupportsIndex = ..., + ) -> _ObjectArray: ... + +@type_check_only +class _FuncValFromRoots(_Named[_Name_co], Protocol[_Name_co]): + @overload + def __call__( + self, + /, + x: _FloatLike_co, + r: _FloatLike_co, + tensor: bool = ..., + ) -> np.floating: ... + @overload + def __call__( + self, + /, + x: _NumberLike_co, + r: _NumberLike_co, + tensor: bool = ..., + ) -> np.complexfloating: ... + @overload + def __call__( + self, + /, + x: _FloatLike_co | _ArrayLikeFloat_co, + r: _ArrayLikeFloat_co, + tensor: bool = ..., + ) -> _FloatArray: ... + @overload + def __call__( + self, + /, + x: _NumberLike_co | _ArrayLikeComplex_co, + r: _ArrayLikeComplex_co, + tensor: bool = ..., + ) -> _ComplexArray: ... + @overload + def __call__( + self, + /, + x: _CoefLike_co | _ArrayLikeCoef_co, + r: _ArrayLikeCoef_co, + tensor: bool = ..., + ) -> _ObjectArray: ... + @overload + def __call__( + self, + /, + x: _CoefLike_co, + r: _CoefLike_co, + tensor: bool = ..., + ) -> _SupportsCoefOps[Any]: ... + +@type_check_only +class _FuncVal(_Named[_Name_co], Protocol[_Name_co]): + @overload + def __call__( + self, + /, + x: _FloatLike_co, + c: _SeriesLikeFloat_co, + tensor: bool = ..., + ) -> np.floating: ... + @overload + def __call__( + self, + /, + x: _NumberLike_co, + c: _SeriesLikeComplex_co, + tensor: bool = ..., + ) -> np.complexfloating: ... + @overload + def __call__( + self, + /, + x: _ArrayLikeFloat_co, + c: _ArrayLikeFloat_co, + tensor: bool = ..., + ) -> _FloatArray: ... + @overload + def __call__( + self, + /, + x: _ArrayLikeComplex_co, + c: _ArrayLikeComplex_co, + tensor: bool = ..., + ) -> _ComplexArray: ... + @overload + def __call__( + self, + /, + x: _ArrayLikeCoef_co, + c: _ArrayLikeCoef_co, + tensor: bool = ..., + ) -> _ObjectArray: ... + @overload + def __call__( + self, + /, + x: _CoefLike_co, + c: _SeriesLikeObject_co, + tensor: bool = ..., + ) -> _SupportsCoefOps[Any]: ... + +@type_check_only +class _FuncVal2D(_Named[_Name_co], Protocol[_Name_co]): + @overload + def __call__( + self, + /, + x: _FloatLike_co, + y: _FloatLike_co, + c: _SeriesLikeFloat_co, + ) -> np.floating: ... + @overload + def __call__( + self, + /, + x: _NumberLike_co, + y: _NumberLike_co, + c: _SeriesLikeComplex_co, + ) -> np.complexfloating: ... + @overload + def __call__( + self, + /, + x: _ArrayLikeFloat_co, + y: _ArrayLikeFloat_co, + c: _ArrayLikeFloat_co, + ) -> _FloatArray: ... + @overload + def __call__( + self, + /, + x: _ArrayLikeComplex_co, + y: _ArrayLikeComplex_co, + c: _ArrayLikeComplex_co, + ) -> _ComplexArray: ... + @overload + def __call__( + self, + /, + x: _ArrayLikeCoef_co, + y: _ArrayLikeCoef_co, + c: _ArrayLikeCoef_co, + ) -> _ObjectArray: ... + @overload + def __call__( + self, + /, + x: _CoefLike_co, + y: _CoefLike_co, + c: _SeriesLikeCoef_co, + ) -> _SupportsCoefOps[Any]: ... + +@type_check_only +class _FuncVal3D(_Named[_Name_co], Protocol[_Name_co]): + @overload + def __call__( + self, + /, + x: _FloatLike_co, + y: _FloatLike_co, + z: _FloatLike_co, + c: _SeriesLikeFloat_co + ) -> np.floating: ... + @overload + def __call__( + self, + /, + x: _NumberLike_co, + y: _NumberLike_co, + z: _NumberLike_co, + c: _SeriesLikeComplex_co, + ) -> np.complexfloating: ... + @overload + def __call__( + self, + /, + x: _ArrayLikeFloat_co, + y: _ArrayLikeFloat_co, + z: _ArrayLikeFloat_co, + c: _ArrayLikeFloat_co, + ) -> _FloatArray: ... + @overload + def __call__( + self, + /, + x: _ArrayLikeComplex_co, + y: _ArrayLikeComplex_co, + z: _ArrayLikeComplex_co, + c: _ArrayLikeComplex_co, + ) -> _ComplexArray: ... + @overload + def __call__( + self, + /, + x: _ArrayLikeCoef_co, + y: _ArrayLikeCoef_co, + z: _ArrayLikeCoef_co, + c: _ArrayLikeCoef_co, + ) -> _ObjectArray: ... + @overload + def __call__( + self, + /, + x: _CoefLike_co, + y: _CoefLike_co, + z: _CoefLike_co, + c: _SeriesLikeCoef_co, + ) -> _SupportsCoefOps[Any]: ... + +_AnyValF: TypeAlias = Callable[ + [npt.ArrayLike, npt.ArrayLike, bool], + _CoefArray, +] + +@type_check_only +class _FuncValND(_Named[_Name_co], Protocol[_Name_co]): + @overload + def __call__( + self, + val_f: _AnyValF, + c: _SeriesLikeFloat_co, + /, + *args: _FloatLike_co, + ) -> np.floating: ... + @overload + def __call__( + self, + val_f: _AnyValF, + c: _SeriesLikeComplex_co, + /, + *args: _NumberLike_co, + ) -> np.complexfloating: ... + @overload + def __call__( + self, + val_f: _AnyValF, + c: _ArrayLikeFloat_co, + /, + *args: _ArrayLikeFloat_co, + ) -> _FloatArray: ... + @overload + def __call__( + self, + val_f: _AnyValF, + c: _ArrayLikeComplex_co, + /, + *args: _ArrayLikeComplex_co, + ) -> _ComplexArray: ... + @overload + def __call__( + self, + val_f: _AnyValF, + c: _SeriesLikeObject_co, + /, + *args: _CoefObjectLike_co, + ) -> _SupportsCoefOps[Any]: ... + @overload + def __call__( + self, + val_f: _AnyValF, + c: _ArrayLikeCoef_co, + /, + *args: _ArrayLikeCoef_co, + ) -> _ObjectArray: ... + +@type_check_only +class _FuncVander(_Named[_Name_co], Protocol[_Name_co]): + @overload + def __call__( + self, + /, + x: _ArrayLikeFloat_co, + deg: SupportsIndex, + ) -> _FloatArray: ... + @overload + def __call__( + self, + /, + x: _ArrayLikeComplex_co, + deg: SupportsIndex, + ) -> _ComplexArray: ... + @overload + def __call__( + self, + /, + x: _ArrayLikeCoef_co, + deg: SupportsIndex, + ) -> _ObjectArray: ... + @overload + def __call__( + self, + /, + x: npt.ArrayLike, + deg: SupportsIndex, + ) -> _CoefArray: ... + +_AnyDegrees: TypeAlias = Sequence[SupportsIndex] + +@type_check_only +class _FuncVander2D(_Named[_Name_co], Protocol[_Name_co]): + @overload + def __call__( + self, + /, + x: _ArrayLikeFloat_co, + y: _ArrayLikeFloat_co, + deg: _AnyDegrees, + ) -> _FloatArray: ... + @overload + def __call__( + self, + /, + x: _ArrayLikeComplex_co, + y: _ArrayLikeComplex_co, + deg: _AnyDegrees, + ) -> _ComplexArray: ... + @overload + def __call__( + self, + /, + x: _ArrayLikeCoef_co, + y: _ArrayLikeCoef_co, + deg: _AnyDegrees, + ) -> _ObjectArray: ... + @overload + def __call__( + self, + /, + x: npt.ArrayLike, + y: npt.ArrayLike, + deg: _AnyDegrees, + ) -> _CoefArray: ... + +@type_check_only +class _FuncVander3D(_Named[_Name_co], Protocol[_Name_co]): + @overload + def __call__( + self, + /, + x: _ArrayLikeFloat_co, + y: _ArrayLikeFloat_co, + z: _ArrayLikeFloat_co, + deg: _AnyDegrees, + ) -> _FloatArray: ... + @overload + def __call__( + self, + /, + x: _ArrayLikeComplex_co, + y: _ArrayLikeComplex_co, + z: _ArrayLikeComplex_co, + deg: _AnyDegrees, + ) -> _ComplexArray: ... + @overload + def __call__( + self, + /, + x: _ArrayLikeCoef_co, + y: _ArrayLikeCoef_co, + z: _ArrayLikeCoef_co, + deg: _AnyDegrees, + ) -> _ObjectArray: ... + @overload + def __call__( + self, + /, + x: npt.ArrayLike, + y: npt.ArrayLike, + z: npt.ArrayLike, + deg: _AnyDegrees, + ) -> _CoefArray: ... + +# keep in sync with the broadest overload of `._FuncVander` +_AnyFuncVander: TypeAlias = Callable[ + [npt.ArrayLike, SupportsIndex], + _CoefArray, +] + +@type_check_only +class _FuncVanderND(_Named[_Name_co], Protocol[_Name_co]): + @overload + def __call__( + self, + /, + vander_fs: Sequence[_AnyFuncVander], + points: Sequence[_ArrayLikeFloat_co], + degrees: Sequence[SupportsIndex], + ) -> _FloatArray: ... + @overload + def __call__( + self, + /, + vander_fs: Sequence[_AnyFuncVander], + points: Sequence[_ArrayLikeComplex_co], + degrees: Sequence[SupportsIndex], + ) -> _ComplexArray: ... + @overload + def __call__( + self, + /, + vander_fs: Sequence[_AnyFuncVander], + points: Sequence[ + _ArrayLikeObject_co | _ArrayLikeComplex_co, + ], + degrees: Sequence[SupportsIndex], + ) -> _ObjectArray: ... + @overload + def __call__( + self, + /, + vander_fs: Sequence[_AnyFuncVander], + points: Sequence[npt.ArrayLike], + degrees: Sequence[SupportsIndex], + ) -> _CoefArray: ... + +_FullFitResult: TypeAlias = Sequence[np.inexact | np.int32] + +@type_check_only +class _FuncFit(_Named[_Name_co], Protocol[_Name_co]): + @overload + def __call__( + self, + /, + x: _SeriesLikeFloat_co, + y: _ArrayLikeFloat_co, + deg: int | _SeriesLikeInt_co, + rcond: float | None = ..., + full: Literal[False] = ..., + w: _SeriesLikeFloat_co | None = ..., + ) -> _FloatArray: ... + @overload + def __call__( + self, + x: _SeriesLikeFloat_co, + y: _ArrayLikeFloat_co, + deg: int | _SeriesLikeInt_co, + rcond: float | None, + full: Literal[True], + /, + w: _SeriesLikeFloat_co | None = ..., + ) -> tuple[_FloatArray, _FullFitResult]: ... + @overload + def __call__( + self, + /, + x: _SeriesLikeFloat_co, + y: _ArrayLikeFloat_co, + deg: int | _SeriesLikeInt_co, + rcond: float | None = ..., + *, + full: Literal[True], + w: _SeriesLikeFloat_co | None = ..., + ) -> tuple[_FloatArray, _FullFitResult]: ... + + @overload + def __call__( + self, + /, + x: _SeriesLikeComplex_co, + y: _ArrayLikeComplex_co, + deg: int | _SeriesLikeInt_co, + rcond: float | None = ..., + full: Literal[False] = ..., + w: _SeriesLikeFloat_co | None = ..., + ) -> _ComplexArray: ... + @overload + def __call__( + self, + x: _SeriesLikeComplex_co, + y: _ArrayLikeComplex_co, + deg: int | _SeriesLikeInt_co, + rcond: float | None, + full: Literal[True], + /, + w: _SeriesLikeFloat_co | None = ..., + ) -> tuple[_ComplexArray, _FullFitResult]: ... + @overload + def __call__( + self, + /, + x: _SeriesLikeComplex_co, + y: _ArrayLikeComplex_co, + deg: int | _SeriesLikeInt_co, + rcond: float | None = ..., + *, + full: Literal[True], + w: _SeriesLikeFloat_co | None = ..., + ) -> tuple[_ComplexArray, _FullFitResult]: ... + + @overload + def __call__( + self, + /, + x: _SeriesLikeComplex_co, + y: _ArrayLikeCoef_co, + deg: int | _SeriesLikeInt_co, + rcond: float | None = ..., + full: Literal[False] = ..., + w: _SeriesLikeFloat_co | None = ..., + ) -> _ObjectArray: ... + @overload + def __call__( + self, + x: _SeriesLikeComplex_co, + y: _ArrayLikeCoef_co, + deg: int | _SeriesLikeInt_co, + rcond: float | None, + full: Literal[True], + /, + w: _SeriesLikeFloat_co | None = ..., + ) -> tuple[_ObjectArray, _FullFitResult]: ... + @overload + def __call__( + self, + /, + x: _SeriesLikeComplex_co, + y: _ArrayLikeCoef_co, + deg: int | _SeriesLikeInt_co, + rcond: float | None = ..., + *, + full: Literal[True], + w: _SeriesLikeFloat_co | None = ..., + ) -> tuple[_ObjectArray, _FullFitResult]: ... + +@type_check_only +class _FuncRoots(_Named[_Name_co], Protocol[_Name_co]): + @overload + def __call__( + self, + /, + c: _SeriesLikeFloat_co, + ) -> _Series[np.float64]: ... + @overload + def __call__( + self, + /, + c: _SeriesLikeComplex_co, + ) -> _Series[np.complex128]: ... + @overload + def __call__(self, /, c: _SeriesLikeCoef_co) -> _ObjectSeries: ... + +_Companion: TypeAlias = np.ndarray[tuple[int, int], np.dtype[_ScalarT]] + +@type_check_only +class _FuncCompanion(_Named[_Name_co], Protocol[_Name_co]): + @overload + def __call__( + self, + /, + c: _SeriesLikeFloat_co, + ) -> _Companion[np.float64]: ... + @overload + def __call__( + self, + /, + c: _SeriesLikeComplex_co, + ) -> _Companion[np.complex128]: ... + @overload + def __call__(self, /, c: _SeriesLikeCoef_co) -> _Companion[np.object_]: ... + +@type_check_only +class _FuncGauss(_Named[_Name_co], Protocol[_Name_co]): + def __call__( + self, + /, + deg: SupportsIndex, + ) -> _Tuple2[_Series[np.float64]]: ... + +@type_check_only +class _FuncWeight(_Named[_Name_co], Protocol[_Name_co]): + @overload + def __call__( + self, + /, + c: _ArrayLikeFloat_co, + ) -> npt.NDArray[np.float64]: ... + @overload + def __call__( + self, + /, + c: _ArrayLikeComplex_co, + ) -> npt.NDArray[np.complex128]: ... + @overload + def __call__(self, /, c: _ArrayLikeCoef_co) -> _ObjectArray: ... + +@type_check_only +class _FuncPts(_Named[_Name_co], Protocol[_Name_co]): + def __call__(self, /, npts: _AnyInt) -> _Series[np.float64]: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/chebyshev.py b/.venv/lib/python3.12/site-packages/numpy/polynomial/chebyshev.py new file mode 100644 index 0000000..58fce60 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/chebyshev.py @@ -0,0 +1,2003 @@ +""" +==================================================== +Chebyshev Series (:mod:`numpy.polynomial.chebyshev`) +==================================================== + +This module provides a number of objects (mostly functions) useful for +dealing with Chebyshev series, including a `Chebyshev` class that +encapsulates the usual arithmetic operations. (General information +on how this module represents and works with such polynomials is in the +docstring for its "parent" sub-package, `numpy.polynomial`). + +Classes +------- + +.. autosummary:: + :toctree: generated/ + + Chebyshev + + +Constants +--------- + +.. autosummary:: + :toctree: generated/ + + chebdomain + chebzero + chebone + chebx + +Arithmetic +---------- + +.. autosummary:: + :toctree: generated/ + + chebadd + chebsub + chebmulx + chebmul + chebdiv + chebpow + chebval + chebval2d + chebval3d + chebgrid2d + chebgrid3d + +Calculus +-------- + +.. autosummary:: + :toctree: generated/ + + chebder + chebint + +Misc Functions +-------------- + +.. autosummary:: + :toctree: generated/ + + chebfromroots + chebroots + chebvander + chebvander2d + chebvander3d + chebgauss + chebweight + chebcompanion + chebfit + chebpts1 + chebpts2 + chebtrim + chebline + cheb2poly + poly2cheb + chebinterpolate + +See also +-------- +`numpy.polynomial` + +Notes +----- +The implementations of multiplication, division, integration, and +differentiation use the algebraic identities [1]_: + +.. math:: + T_n(x) = \\frac{z^n + z^{-n}}{2} \\\\ + z\\frac{dx}{dz} = \\frac{z - z^{-1}}{2}. + +where + +.. math:: x = \\frac{z + z^{-1}}{2}. + +These identities allow a Chebyshev series to be expressed as a finite, +symmetric Laurent series. In this module, this sort of Laurent series +is referred to as a "z-series." + +References +---------- +.. [1] A. T. Benjamin, et al., "Combinatorial Trigonometry with Chebyshev + Polynomials," *Journal of Statistical Planning and Inference 14*, 2008 + (https://web.archive.org/web/20080221202153/https://www.math.hmc.edu/~benjamin/papers/CombTrig.pdf, pg. 4) + +""" # noqa: E501 +import numpy as np +import numpy.linalg as la +from numpy.lib.array_utils import normalize_axis_index + +from . import polyutils as pu +from ._polybase import ABCPolyBase + +__all__ = [ + 'chebzero', 'chebone', 'chebx', 'chebdomain', 'chebline', 'chebadd', + 'chebsub', 'chebmulx', 'chebmul', 'chebdiv', 'chebpow', 'chebval', + 'chebder', 'chebint', 'cheb2poly', 'poly2cheb', 'chebfromroots', + 'chebvander', 'chebfit', 'chebtrim', 'chebroots', 'chebpts1', + 'chebpts2', 'Chebyshev', 'chebval2d', 'chebval3d', 'chebgrid2d', + 'chebgrid3d', 'chebvander2d', 'chebvander3d', 'chebcompanion', + 'chebgauss', 'chebweight', 'chebinterpolate'] + +chebtrim = pu.trimcoef + +# +# A collection of functions for manipulating z-series. These are private +# functions and do minimal error checking. +# + +def _cseries_to_zseries(c): + """Convert Chebyshev series to z-series. + + Convert a Chebyshev series to the equivalent z-series. The result is + never an empty array. The dtype of the return is the same as that of + the input. No checks are run on the arguments as this routine is for + internal use. + + Parameters + ---------- + c : 1-D ndarray + Chebyshev coefficients, ordered from low to high + + Returns + ------- + zs : 1-D ndarray + Odd length symmetric z-series, ordered from low to high. + + """ + n = c.size + zs = np.zeros(2 * n - 1, dtype=c.dtype) + zs[n - 1:] = c / 2 + return zs + zs[::-1] + + +def _zseries_to_cseries(zs): + """Convert z-series to a Chebyshev series. + + Convert a z series to the equivalent Chebyshev series. The result is + never an empty array. The dtype of the return is the same as that of + the input. No checks are run on the arguments as this routine is for + internal use. + + Parameters + ---------- + zs : 1-D ndarray + Odd length symmetric z-series, ordered from low to high. + + Returns + ------- + c : 1-D ndarray + Chebyshev coefficients, ordered from low to high. + + """ + n = (zs.size + 1) // 2 + c = zs[n - 1:].copy() + c[1:n] *= 2 + return c + + +def _zseries_mul(z1, z2): + """Multiply two z-series. + + Multiply two z-series to produce a z-series. + + Parameters + ---------- + z1, z2 : 1-D ndarray + The arrays must be 1-D but this is not checked. + + Returns + ------- + product : 1-D ndarray + The product z-series. + + Notes + ----- + This is simply convolution. If symmetric/anti-symmetric z-series are + denoted by S/A then the following rules apply: + + S*S, A*A -> S + S*A, A*S -> A + + """ + return np.convolve(z1, z2) + + +def _zseries_div(z1, z2): + """Divide the first z-series by the second. + + Divide `z1` by `z2` and return the quotient and remainder as z-series. + Warning: this implementation only applies when both z1 and z2 have the + same symmetry, which is sufficient for present purposes. + + Parameters + ---------- + z1, z2 : 1-D ndarray + The arrays must be 1-D and have the same symmetry, but this is not + checked. + + Returns + ------- + + (quotient, remainder) : 1-D ndarrays + Quotient and remainder as z-series. + + Notes + ----- + This is not the same as polynomial division on account of the desired form + of the remainder. If symmetric/anti-symmetric z-series are denoted by S/A + then the following rules apply: + + S/S -> S,S + A/A -> S,A + + The restriction to types of the same symmetry could be fixed but seems like + unneeded generality. There is no natural form for the remainder in the case + where there is no symmetry. + + """ + z1 = z1.copy() + z2 = z2.copy() + lc1 = len(z1) + lc2 = len(z2) + if lc2 == 1: + z1 /= z2 + return z1, z1[:1] * 0 + elif lc1 < lc2: + return z1[:1] * 0, z1 + else: + dlen = lc1 - lc2 + scl = z2[0] + z2 /= scl + quo = np.empty(dlen + 1, dtype=z1.dtype) + i = 0 + j = dlen + while i < j: + r = z1[i] + quo[i] = z1[i] + quo[dlen - i] = r + tmp = r * z2 + z1[i:i + lc2] -= tmp + z1[j:j + lc2] -= tmp + i += 1 + j -= 1 + r = z1[i] + quo[i] = r + tmp = r * z2 + z1[i:i + lc2] -= tmp + quo /= scl + rem = z1[i + 1:i - 1 + lc2].copy() + return quo, rem + + +def _zseries_der(zs): + """Differentiate a z-series. + + The derivative is with respect to x, not z. This is achieved using the + chain rule and the value of dx/dz given in the module notes. + + Parameters + ---------- + zs : z-series + The z-series to differentiate. + + Returns + ------- + derivative : z-series + The derivative + + Notes + ----- + The zseries for x (ns) has been multiplied by two in order to avoid + using floats that are incompatible with Decimal and likely other + specialized scalar types. This scaling has been compensated by + multiplying the value of zs by two also so that the two cancels in the + division. + + """ + n = len(zs) // 2 + ns = np.array([-1, 0, 1], dtype=zs.dtype) + zs *= np.arange(-n, n + 1) * 2 + d, r = _zseries_div(zs, ns) + return d + + +def _zseries_int(zs): + """Integrate a z-series. + + The integral is with respect to x, not z. This is achieved by a change + of variable using dx/dz given in the module notes. + + Parameters + ---------- + zs : z-series + The z-series to integrate + + Returns + ------- + integral : z-series + The indefinite integral + + Notes + ----- + The zseries for x (ns) has been multiplied by two in order to avoid + using floats that are incompatible with Decimal and likely other + specialized scalar types. This scaling has been compensated by + dividing the resulting zs by two. + + """ + n = 1 + len(zs) // 2 + ns = np.array([-1, 0, 1], dtype=zs.dtype) + zs = _zseries_mul(zs, ns) + div = np.arange(-n, n + 1) * 2 + zs[:n] /= div[:n] + zs[n + 1:] /= div[n + 1:] + zs[n] = 0 + return zs + +# +# Chebyshev series functions +# + + +def poly2cheb(pol): + """ + Convert a polynomial to a Chebyshev series. + + Convert an array representing the coefficients of a polynomial (relative + to the "standard" basis) ordered from lowest degree to highest, to an + array of the coefficients of the equivalent Chebyshev series, ordered + from lowest to highest degree. + + Parameters + ---------- + pol : array_like + 1-D array containing the polynomial coefficients + + Returns + ------- + c : ndarray + 1-D array containing the coefficients of the equivalent Chebyshev + series. + + See Also + -------- + cheb2poly + + Notes + ----- + The easy way to do conversions between polynomial basis sets + is to use the convert method of a class instance. + + Examples + -------- + >>> from numpy import polynomial as P + >>> p = P.Polynomial(range(4)) + >>> p + Polynomial([0., 1., 2., 3.], domain=[-1., 1.], window=[-1., 1.], symbol='x') + >>> c = p.convert(kind=P.Chebyshev) + >>> c + Chebyshev([1. , 3.25, 1. , 0.75], domain=[-1., 1.], window=[-1., ... + >>> P.chebyshev.poly2cheb(range(4)) + array([1. , 3.25, 1. , 0.75]) + + """ + [pol] = pu.as_series([pol]) + deg = len(pol) - 1 + res = 0 + for i in range(deg, -1, -1): + res = chebadd(chebmulx(res), pol[i]) + return res + + +def cheb2poly(c): + """ + Convert a Chebyshev series to a polynomial. + + Convert an array representing the coefficients of a Chebyshev series, + ordered from lowest degree to highest, to an array of the coefficients + of the equivalent polynomial (relative to the "standard" basis) ordered + from lowest to highest degree. + + Parameters + ---------- + c : array_like + 1-D array containing the Chebyshev series coefficients, ordered + from lowest order term to highest. + + Returns + ------- + pol : ndarray + 1-D array containing the coefficients of the equivalent polynomial + (relative to the "standard" basis) ordered from lowest order term + to highest. + + See Also + -------- + poly2cheb + + Notes + ----- + The easy way to do conversions between polynomial basis sets + is to use the convert method of a class instance. + + Examples + -------- + >>> from numpy import polynomial as P + >>> c = P.Chebyshev(range(4)) + >>> c + Chebyshev([0., 1., 2., 3.], domain=[-1., 1.], window=[-1., 1.], symbol='x') + >>> p = c.convert(kind=P.Polynomial) + >>> p + Polynomial([-2., -8., 4., 12.], domain=[-1., 1.], window=[-1., 1.], ... + >>> P.chebyshev.cheb2poly(range(4)) + array([-2., -8., 4., 12.]) + + """ + from .polynomial import polyadd, polymulx, polysub + + [c] = pu.as_series([c]) + n = len(c) + if n < 3: + return c + else: + c0 = c[-2] + c1 = c[-1] + # i is the current degree of c1 + for i in range(n - 1, 1, -1): + tmp = c0 + c0 = polysub(c[i - 2], c1) + c1 = polyadd(tmp, polymulx(c1) * 2) + return polyadd(c0, polymulx(c1)) + + +# +# These are constant arrays are of integer type so as to be compatible +# with the widest range of other types, such as Decimal. +# + +# Chebyshev default domain. +chebdomain = np.array([-1., 1.]) + +# Chebyshev coefficients representing zero. +chebzero = np.array([0]) + +# Chebyshev coefficients representing one. +chebone = np.array([1]) + +# Chebyshev coefficients representing the identity x. +chebx = np.array([0, 1]) + + +def chebline(off, scl): + """ + Chebyshev series whose graph is a straight line. + + Parameters + ---------- + off, scl : scalars + The specified line is given by ``off + scl*x``. + + Returns + ------- + y : ndarray + This module's representation of the Chebyshev series for + ``off + scl*x``. + + See Also + -------- + numpy.polynomial.polynomial.polyline + numpy.polynomial.legendre.legline + numpy.polynomial.laguerre.lagline + numpy.polynomial.hermite.hermline + numpy.polynomial.hermite_e.hermeline + + Examples + -------- + >>> import numpy.polynomial.chebyshev as C + >>> C.chebline(3,2) + array([3, 2]) + >>> C.chebval(-3, C.chebline(3,2)) # should be -3 + -3.0 + + """ + if scl != 0: + return np.array([off, scl]) + else: + return np.array([off]) + + +def chebfromroots(roots): + """ + Generate a Chebyshev series with given roots. + + The function returns the coefficients of the polynomial + + .. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n), + + in Chebyshev form, where the :math:`r_n` are the roots specified in + `roots`. If a zero has multiplicity n, then it must appear in `roots` + n times. For instance, if 2 is a root of multiplicity three and 3 is a + root of multiplicity 2, then `roots` looks something like [2, 2, 2, 3, 3]. + The roots can appear in any order. + + If the returned coefficients are `c`, then + + .. math:: p(x) = c_0 + c_1 * T_1(x) + ... + c_n * T_n(x) + + The coefficient of the last term is not generally 1 for monic + polynomials in Chebyshev form. + + Parameters + ---------- + roots : array_like + Sequence containing the roots. + + Returns + ------- + out : ndarray + 1-D array of coefficients. If all roots are real then `out` is a + real array, if some of the roots are complex, then `out` is complex + even if all the coefficients in the result are real (see Examples + below). + + See Also + -------- + numpy.polynomial.polynomial.polyfromroots + numpy.polynomial.legendre.legfromroots + numpy.polynomial.laguerre.lagfromroots + numpy.polynomial.hermite.hermfromroots + numpy.polynomial.hermite_e.hermefromroots + + Examples + -------- + >>> import numpy.polynomial.chebyshev as C + >>> C.chebfromroots((-1,0,1)) # x^3 - x relative to the standard basis + array([ 0. , -0.25, 0. , 0.25]) + >>> j = complex(0,1) + >>> C.chebfromroots((-j,j)) # x^2 + 1 relative to the standard basis + array([1.5+0.j, 0. +0.j, 0.5+0.j]) + + """ + return pu._fromroots(chebline, chebmul, roots) + + +def chebadd(c1, c2): + """ + Add one Chebyshev series to another. + + Returns the sum of two Chebyshev series `c1` + `c2`. The arguments + are sequences of coefficients ordered from lowest order term to + highest, i.e., [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``. + + Parameters + ---------- + c1, c2 : array_like + 1-D arrays of Chebyshev series coefficients ordered from low to + high. + + Returns + ------- + out : ndarray + Array representing the Chebyshev series of their sum. + + See Also + -------- + chebsub, chebmulx, chebmul, chebdiv, chebpow + + Notes + ----- + Unlike multiplication, division, etc., the sum of two Chebyshev series + is a Chebyshev series (without having to "reproject" the result onto + the basis set) so addition, just like that of "standard" polynomials, + is simply "component-wise." + + Examples + -------- + >>> from numpy.polynomial import chebyshev as C + >>> c1 = (1,2,3) + >>> c2 = (3,2,1) + >>> C.chebadd(c1,c2) + array([4., 4., 4.]) + + """ + return pu._add(c1, c2) + + +def chebsub(c1, c2): + """ + Subtract one Chebyshev series from another. + + Returns the difference of two Chebyshev series `c1` - `c2`. The + sequences of coefficients are from lowest order term to highest, i.e., + [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``. + + Parameters + ---------- + c1, c2 : array_like + 1-D arrays of Chebyshev series coefficients ordered from low to + high. + + Returns + ------- + out : ndarray + Of Chebyshev series coefficients representing their difference. + + See Also + -------- + chebadd, chebmulx, chebmul, chebdiv, chebpow + + Notes + ----- + Unlike multiplication, division, etc., the difference of two Chebyshev + series is a Chebyshev series (without having to "reproject" the result + onto the basis set) so subtraction, just like that of "standard" + polynomials, is simply "component-wise." + + Examples + -------- + >>> from numpy.polynomial import chebyshev as C + >>> c1 = (1,2,3) + >>> c2 = (3,2,1) + >>> C.chebsub(c1,c2) + array([-2., 0., 2.]) + >>> C.chebsub(c2,c1) # -C.chebsub(c1,c2) + array([ 2., 0., -2.]) + + """ + return pu._sub(c1, c2) + + +def chebmulx(c): + """Multiply a Chebyshev series by x. + + Multiply the polynomial `c` by x, where x is the independent + variable. + + + Parameters + ---------- + c : array_like + 1-D array of Chebyshev series coefficients ordered from low to + high. + + Returns + ------- + out : ndarray + Array representing the result of the multiplication. + + See Also + -------- + chebadd, chebsub, chebmul, chebdiv, chebpow + + Examples + -------- + >>> from numpy.polynomial import chebyshev as C + >>> C.chebmulx([1,2,3]) + array([1. , 2.5, 1. , 1.5]) + + """ + # c is a trimmed copy + [c] = pu.as_series([c]) + # The zero series needs special treatment + if len(c) == 1 and c[0] == 0: + return c + + prd = np.empty(len(c) + 1, dtype=c.dtype) + prd[0] = c[0] * 0 + prd[1] = c[0] + if len(c) > 1: + tmp = c[1:] / 2 + prd[2:] = tmp + prd[0:-2] += tmp + return prd + + +def chebmul(c1, c2): + """ + Multiply one Chebyshev series by another. + + Returns the product of two Chebyshev series `c1` * `c2`. The arguments + are sequences of coefficients, from lowest order "term" to highest, + e.g., [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``. + + Parameters + ---------- + c1, c2 : array_like + 1-D arrays of Chebyshev series coefficients ordered from low to + high. + + Returns + ------- + out : ndarray + Of Chebyshev series coefficients representing their product. + + See Also + -------- + chebadd, chebsub, chebmulx, chebdiv, chebpow + + Notes + ----- + In general, the (polynomial) product of two C-series results in terms + that are not in the Chebyshev polynomial basis set. Thus, to express + the product as a C-series, it is typically necessary to "reproject" + the product onto said basis set, which typically produces + "unintuitive live" (but correct) results; see Examples section below. + + Examples + -------- + >>> from numpy.polynomial import chebyshev as C + >>> c1 = (1,2,3) + >>> c2 = (3,2,1) + >>> C.chebmul(c1,c2) # multiplication requires "reprojection" + array([ 6.5, 12. , 12. , 4. , 1.5]) + + """ + # c1, c2 are trimmed copies + [c1, c2] = pu.as_series([c1, c2]) + z1 = _cseries_to_zseries(c1) + z2 = _cseries_to_zseries(c2) + prd = _zseries_mul(z1, z2) + ret = _zseries_to_cseries(prd) + return pu.trimseq(ret) + + +def chebdiv(c1, c2): + """ + Divide one Chebyshev series by another. + + Returns the quotient-with-remainder of two Chebyshev series + `c1` / `c2`. The arguments are sequences of coefficients from lowest + order "term" to highest, e.g., [1,2,3] represents the series + ``T_0 + 2*T_1 + 3*T_2``. + + Parameters + ---------- + c1, c2 : array_like + 1-D arrays of Chebyshev series coefficients ordered from low to + high. + + Returns + ------- + [quo, rem] : ndarrays + Of Chebyshev series coefficients representing the quotient and + remainder. + + See Also + -------- + chebadd, chebsub, chebmulx, chebmul, chebpow + + Notes + ----- + In general, the (polynomial) division of one C-series by another + results in quotient and remainder terms that are not in the Chebyshev + polynomial basis set. Thus, to express these results as C-series, it + is typically necessary to "reproject" the results onto said basis + set, which typically produces "unintuitive" (but correct) results; + see Examples section below. + + Examples + -------- + >>> from numpy.polynomial import chebyshev as C + >>> c1 = (1,2,3) + >>> c2 = (3,2,1) + >>> C.chebdiv(c1,c2) # quotient "intuitive," remainder not + (array([3.]), array([-8., -4.])) + >>> c2 = (0,1,2,3) + >>> C.chebdiv(c2,c1) # neither "intuitive" + (array([0., 2.]), array([-2., -4.])) + + """ + # c1, c2 are trimmed copies + [c1, c2] = pu.as_series([c1, c2]) + if c2[-1] == 0: + raise ZeroDivisionError # FIXME: add message with details to exception + + # note: this is more efficient than `pu._div(chebmul, c1, c2)` + lc1 = len(c1) + lc2 = len(c2) + if lc1 < lc2: + return c1[:1] * 0, c1 + elif lc2 == 1: + return c1 / c2[-1], c1[:1] * 0 + else: + z1 = _cseries_to_zseries(c1) + z2 = _cseries_to_zseries(c2) + quo, rem = _zseries_div(z1, z2) + quo = pu.trimseq(_zseries_to_cseries(quo)) + rem = pu.trimseq(_zseries_to_cseries(rem)) + return quo, rem + + +def chebpow(c, pow, maxpower=16): + """Raise a Chebyshev series to a power. + + Returns the Chebyshev series `c` raised to the power `pow`. The + argument `c` is a sequence of coefficients ordered from low to high. + i.e., [1,2,3] is the series ``T_0 + 2*T_1 + 3*T_2.`` + + Parameters + ---------- + c : array_like + 1-D array of Chebyshev series coefficients ordered from low to + high. + pow : integer + Power to which the series will be raised + maxpower : integer, optional + Maximum power allowed. This is mainly to limit growth of the series + to unmanageable size. Default is 16 + + Returns + ------- + coef : ndarray + Chebyshev series of power. + + See Also + -------- + chebadd, chebsub, chebmulx, chebmul, chebdiv + + Examples + -------- + >>> from numpy.polynomial import chebyshev as C + >>> C.chebpow([1, 2, 3, 4], 2) + array([15.5, 22. , 16. , ..., 12.5, 12. , 8. ]) + + """ + # note: this is more efficient than `pu._pow(chebmul, c1, c2)`, as it + # avoids converting between z and c series repeatedly + + # c is a trimmed copy + [c] = pu.as_series([c]) + power = int(pow) + if power != pow or power < 0: + raise ValueError("Power must be a non-negative integer.") + elif maxpower is not None and power > maxpower: + raise ValueError("Power is too large") + elif power == 0: + return np.array([1], dtype=c.dtype) + elif power == 1: + return c + else: + # This can be made more efficient by using powers of two + # in the usual way. + zs = _cseries_to_zseries(c) + prd = zs + for i in range(2, power + 1): + prd = np.convolve(prd, zs) + return _zseries_to_cseries(prd) + + +def chebder(c, m=1, scl=1, axis=0): + """ + Differentiate a Chebyshev series. + + Returns the Chebyshev series coefficients `c` differentiated `m` times + along `axis`. At each iteration the result is multiplied by `scl` (the + scaling factor is for use in a linear change of variable). The argument + `c` is an array of coefficients from low to high degree along each + axis, e.g., [1,2,3] represents the series ``1*T_0 + 2*T_1 + 3*T_2`` + while [[1,2],[1,2]] represents ``1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) + + 2*T_0(x)*T_1(y) + 2*T_1(x)*T_1(y)`` if axis=0 is ``x`` and axis=1 is + ``y``. + + Parameters + ---------- + c : array_like + Array of Chebyshev series coefficients. If c is multidimensional + the different axis correspond to different variables with the + degree in each axis given by the corresponding index. + m : int, optional + Number of derivatives taken, must be non-negative. (Default: 1) + scl : scalar, optional + Each differentiation is multiplied by `scl`. The end result is + multiplication by ``scl**m``. This is for use in a linear change of + variable. (Default: 1) + axis : int, optional + Axis over which the derivative is taken. (Default: 0). + + Returns + ------- + der : ndarray + Chebyshev series of the derivative. + + See Also + -------- + chebint + + Notes + ----- + In general, the result of differentiating a C-series needs to be + "reprojected" onto the C-series basis set. Thus, typically, the + result of this function is "unintuitive," albeit correct; see Examples + section below. + + Examples + -------- + >>> from numpy.polynomial import chebyshev as C + >>> c = (1,2,3,4) + >>> C.chebder(c) + array([14., 12., 24.]) + >>> C.chebder(c,3) + array([96.]) + >>> C.chebder(c,scl=-1) + array([-14., -12., -24.]) + >>> C.chebder(c,2,-1) + array([12., 96.]) + + """ + c = np.array(c, ndmin=1, copy=True) + if c.dtype.char in '?bBhHiIlLqQpP': + c = c.astype(np.double) + cnt = pu._as_int(m, "the order of derivation") + iaxis = pu._as_int(axis, "the axis") + if cnt < 0: + raise ValueError("The order of derivation must be non-negative") + iaxis = normalize_axis_index(iaxis, c.ndim) + + if cnt == 0: + return c + + c = np.moveaxis(c, iaxis, 0) + n = len(c) + if cnt >= n: + c = c[:1] * 0 + else: + for i in range(cnt): + n = n - 1 + c *= scl + der = np.empty((n,) + c.shape[1:], dtype=c.dtype) + for j in range(n, 2, -1): + der[j - 1] = (2 * j) * c[j] + c[j - 2] += (j * c[j]) / (j - 2) + if n > 1: + der[1] = 4 * c[2] + der[0] = c[1] + c = der + c = np.moveaxis(c, 0, iaxis) + return c + + +def chebint(c, m=1, k=[], lbnd=0, scl=1, axis=0): + """ + Integrate a Chebyshev series. + + Returns the Chebyshev series coefficients `c` integrated `m` times from + `lbnd` along `axis`. At each iteration the resulting series is + **multiplied** by `scl` and an integration constant, `k`, is added. + The scaling factor is for use in a linear change of variable. ("Buyer + beware": note that, depending on what one is doing, one may want `scl` + to be the reciprocal of what one might expect; for more information, + see the Notes section below.) The argument `c` is an array of + coefficients from low to high degree along each axis, e.g., [1,2,3] + represents the series ``T_0 + 2*T_1 + 3*T_2`` while [[1,2],[1,2]] + represents ``1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) + 2*T_0(x)*T_1(y) + + 2*T_1(x)*T_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``. + + Parameters + ---------- + c : array_like + Array of Chebyshev series coefficients. If c is multidimensional + the different axis correspond to different variables with the + degree in each axis given by the corresponding index. + m : int, optional + Order of integration, must be positive. (Default: 1) + k : {[], list, scalar}, optional + Integration constant(s). The value of the first integral at zero + is the first value in the list, the value of the second integral + at zero is the second value, etc. If ``k == []`` (the default), + all constants are set to zero. If ``m == 1``, a single scalar can + be given instead of a list. + lbnd : scalar, optional + The lower bound of the integral. (Default: 0) + scl : scalar, optional + Following each integration the result is *multiplied* by `scl` + before the integration constant is added. (Default: 1) + axis : int, optional + Axis over which the integral is taken. (Default: 0). + + Returns + ------- + S : ndarray + C-series coefficients of the integral. + + Raises + ------ + ValueError + If ``m < 1``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or + ``np.ndim(scl) != 0``. + + See Also + -------- + chebder + + Notes + ----- + Note that the result of each integration is *multiplied* by `scl`. + Why is this important to note? Say one is making a linear change of + variable :math:`u = ax + b` in an integral relative to `x`. Then + :math:`dx = du/a`, so one will need to set `scl` equal to + :math:`1/a`- perhaps not what one would have first thought. + + Also note that, in general, the result of integrating a C-series needs + to be "reprojected" onto the C-series basis set. Thus, typically, + the result of this function is "unintuitive," albeit correct; see + Examples section below. + + Examples + -------- + >>> from numpy.polynomial import chebyshev as C + >>> c = (1,2,3) + >>> C.chebint(c) + array([ 0.5, -0.5, 0.5, 0.5]) + >>> C.chebint(c,3) + array([ 0.03125 , -0.1875 , 0.04166667, -0.05208333, 0.01041667, # may vary + 0.00625 ]) + >>> C.chebint(c, k=3) + array([ 3.5, -0.5, 0.5, 0.5]) + >>> C.chebint(c,lbnd=-2) + array([ 8.5, -0.5, 0.5, 0.5]) + >>> C.chebint(c,scl=-2) + array([-1., 1., -1., -1.]) + + """ + c = np.array(c, ndmin=1, copy=True) + if c.dtype.char in '?bBhHiIlLqQpP': + c = c.astype(np.double) + if not np.iterable(k): + k = [k] + cnt = pu._as_int(m, "the order of integration") + iaxis = pu._as_int(axis, "the axis") + if cnt < 0: + raise ValueError("The order of integration must be non-negative") + if len(k) > cnt: + raise ValueError("Too many integration constants") + if np.ndim(lbnd) != 0: + raise ValueError("lbnd must be a scalar.") + if np.ndim(scl) != 0: + raise ValueError("scl must be a scalar.") + iaxis = normalize_axis_index(iaxis, c.ndim) + + if cnt == 0: + return c + + c = np.moveaxis(c, iaxis, 0) + k = list(k) + [0] * (cnt - len(k)) + for i in range(cnt): + n = len(c) + c *= scl + if n == 1 and np.all(c[0] == 0): + c[0] += k[i] + else: + tmp = np.empty((n + 1,) + c.shape[1:], dtype=c.dtype) + tmp[0] = c[0] * 0 + tmp[1] = c[0] + if n > 1: + tmp[2] = c[1] / 4 + for j in range(2, n): + tmp[j + 1] = c[j] / (2 * (j + 1)) + tmp[j - 1] -= c[j] / (2 * (j - 1)) + tmp[0] += k[i] - chebval(lbnd, tmp) + c = tmp + c = np.moveaxis(c, 0, iaxis) + return c + + +def chebval(x, c, tensor=True): + """ + Evaluate a Chebyshev series at points x. + + If `c` is of length `n + 1`, this function returns the value: + + .. math:: p(x) = c_0 * T_0(x) + c_1 * T_1(x) + ... + c_n * T_n(x) + + The parameter `x` is converted to an array only if it is a tuple or a + list, otherwise it is treated as a scalar. In either case, either `x` + or its elements must support multiplication and addition both with + themselves and with the elements of `c`. + + If `c` is a 1-D array, then ``p(x)`` will have the same shape as `x`. If + `c` is multidimensional, then the shape of the result depends on the + value of `tensor`. If `tensor` is true the shape will be c.shape[1:] + + x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that + scalars have shape (,). + + Trailing zeros in the coefficients will be used in the evaluation, so + they should be avoided if efficiency is a concern. + + Parameters + ---------- + x : array_like, compatible object + If `x` is a list or tuple, it is converted to an ndarray, otherwise + it is left unchanged and treated as a scalar. In either case, `x` + or its elements must support addition and multiplication with + themselves and with the elements of `c`. + c : array_like + Array of coefficients ordered so that the coefficients for terms of + degree n are contained in c[n]. If `c` is multidimensional the + remaining indices enumerate multiple polynomials. In the two + dimensional case the coefficients may be thought of as stored in + the columns of `c`. + tensor : boolean, optional + If True, the shape of the coefficient array is extended with ones + on the right, one for each dimension of `x`. Scalars have dimension 0 + for this action. The result is that every column of coefficients in + `c` is evaluated for every element of `x`. If False, `x` is broadcast + over the columns of `c` for the evaluation. This keyword is useful + when `c` is multidimensional. The default value is True. + + Returns + ------- + values : ndarray, algebra_like + The shape of the return value is described above. + + See Also + -------- + chebval2d, chebgrid2d, chebval3d, chebgrid3d + + Notes + ----- + The evaluation uses Clenshaw recursion, aka synthetic division. + + """ + c = np.array(c, ndmin=1, copy=True) + if c.dtype.char in '?bBhHiIlLqQpP': + c = c.astype(np.double) + if isinstance(x, (tuple, list)): + x = np.asarray(x) + if isinstance(x, np.ndarray) and tensor: + c = c.reshape(c.shape + (1,) * x.ndim) + + if len(c) == 1: + c0 = c[0] + c1 = 0 + elif len(c) == 2: + c0 = c[0] + c1 = c[1] + else: + x2 = 2 * x + c0 = c[-2] + c1 = c[-1] + for i in range(3, len(c) + 1): + tmp = c0 + c0 = c[-i] - c1 + c1 = tmp + c1 * x2 + return c0 + c1 * x + + +def chebval2d(x, y, c): + """ + Evaluate a 2-D Chebyshev series at points (x, y). + + This function returns the values: + + .. math:: p(x,y) = \\sum_{i,j} c_{i,j} * T_i(x) * T_j(y) + + The parameters `x` and `y` are converted to arrays only if they are + tuples or a lists, otherwise they are treated as a scalars and they + must have the same shape after conversion. In either case, either `x` + and `y` or their elements must support multiplication and addition both + with themselves and with the elements of `c`. + + If `c` is a 1-D array a one is implicitly appended to its shape to make + it 2-D. The shape of the result will be c.shape[2:] + x.shape. + + Parameters + ---------- + x, y : array_like, compatible objects + The two dimensional series is evaluated at the points ``(x, y)``, + where `x` and `y` must have the same shape. If `x` or `y` is a list + or tuple, it is first converted to an ndarray, otherwise it is left + unchanged and if it isn't an ndarray it is treated as a scalar. + c : array_like + Array of coefficients ordered so that the coefficient of the term + of multi-degree i,j is contained in ``c[i,j]``. If `c` has + dimension greater than 2 the remaining indices enumerate multiple + sets of coefficients. + + Returns + ------- + values : ndarray, compatible object + The values of the two dimensional Chebyshev series at points formed + from pairs of corresponding values from `x` and `y`. + + See Also + -------- + chebval, chebgrid2d, chebval3d, chebgrid3d + """ + return pu._valnd(chebval, c, x, y) + + +def chebgrid2d(x, y, c): + """ + Evaluate a 2-D Chebyshev series on the Cartesian product of x and y. + + This function returns the values: + + .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * T_i(a) * T_j(b), + + where the points `(a, b)` consist of all pairs formed by taking + `a` from `x` and `b` from `y`. The resulting points form a grid with + `x` in the first dimension and `y` in the second. + + The parameters `x` and `y` are converted to arrays only if they are + tuples or a lists, otherwise they are treated as a scalars. In either + case, either `x` and `y` or their elements must support multiplication + and addition both with themselves and with the elements of `c`. + + If `c` has fewer than two dimensions, ones are implicitly appended to + its shape to make it 2-D. The shape of the result will be c.shape[2:] + + x.shape + y.shape. + + Parameters + ---------- + x, y : array_like, compatible objects + The two dimensional series is evaluated at the points in the + Cartesian product of `x` and `y`. If `x` or `y` is a list or + tuple, it is first converted to an ndarray, otherwise it is left + unchanged and, if it isn't an ndarray, it is treated as a scalar. + c : array_like + Array of coefficients ordered so that the coefficient of the term of + multi-degree i,j is contained in ``c[i,j]``. If `c` has dimension + greater than two the remaining indices enumerate multiple sets of + coefficients. + + Returns + ------- + values : ndarray, compatible object + The values of the two dimensional Chebyshev series at points in the + Cartesian product of `x` and `y`. + + See Also + -------- + chebval, chebval2d, chebval3d, chebgrid3d + """ + return pu._gridnd(chebval, c, x, y) + + +def chebval3d(x, y, z, c): + """ + Evaluate a 3-D Chebyshev series at points (x, y, z). + + This function returns the values: + + .. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * T_i(x) * T_j(y) * T_k(z) + + The parameters `x`, `y`, and `z` are converted to arrays only if + they are tuples or a lists, otherwise they are treated as a scalars and + they must have the same shape after conversion. In either case, either + `x`, `y`, and `z` or their elements must support multiplication and + addition both with themselves and with the elements of `c`. + + If `c` has fewer than 3 dimensions, ones are implicitly appended to its + shape to make it 3-D. The shape of the result will be c.shape[3:] + + x.shape. + + Parameters + ---------- + x, y, z : array_like, compatible object + The three dimensional series is evaluated at the points + ``(x, y, z)``, where `x`, `y`, and `z` must have the same shape. If + any of `x`, `y`, or `z` is a list or tuple, it is first converted + to an ndarray, otherwise it is left unchanged and if it isn't an + ndarray it is treated as a scalar. + c : array_like + Array of coefficients ordered so that the coefficient of the term of + multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension + greater than 3 the remaining indices enumerate multiple sets of + coefficients. + + Returns + ------- + values : ndarray, compatible object + The values of the multidimensional polynomial on points formed with + triples of corresponding values from `x`, `y`, and `z`. + + See Also + -------- + chebval, chebval2d, chebgrid2d, chebgrid3d + """ + return pu._valnd(chebval, c, x, y, z) + + +def chebgrid3d(x, y, z, c): + """ + Evaluate a 3-D Chebyshev series on the Cartesian product of x, y, and z. + + This function returns the values: + + .. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * T_i(a) * T_j(b) * T_k(c) + + where the points ``(a, b, c)`` consist of all triples formed by taking + `a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form + a grid with `x` in the first dimension, `y` in the second, and `z` in + the third. + + The parameters `x`, `y`, and `z` are converted to arrays only if they + are tuples or a lists, otherwise they are treated as a scalars. In + either case, either `x`, `y`, and `z` or their elements must support + multiplication and addition both with themselves and with the elements + of `c`. + + If `c` has fewer than three dimensions, ones are implicitly appended to + its shape to make it 3-D. The shape of the result will be c.shape[3:] + + x.shape + y.shape + z.shape. + + Parameters + ---------- + x, y, z : array_like, compatible objects + The three dimensional series is evaluated at the points in the + Cartesian product of `x`, `y`, and `z`. If `x`, `y`, or `z` is a + list or tuple, it is first converted to an ndarray, otherwise it is + left unchanged and, if it isn't an ndarray, it is treated as a + scalar. + c : array_like + Array of coefficients ordered so that the coefficients for terms of + degree i,j are contained in ``c[i,j]``. If `c` has dimension + greater than two the remaining indices enumerate multiple sets of + coefficients. + + Returns + ------- + values : ndarray, compatible object + The values of the two dimensional polynomial at points in the Cartesian + product of `x` and `y`. + + See Also + -------- + chebval, chebval2d, chebgrid2d, chebval3d + """ + return pu._gridnd(chebval, c, x, y, z) + + +def chebvander(x, deg): + """Pseudo-Vandermonde matrix of given degree. + + Returns the pseudo-Vandermonde matrix of degree `deg` and sample points + `x`. The pseudo-Vandermonde matrix is defined by + + .. math:: V[..., i] = T_i(x), + + where ``0 <= i <= deg``. The leading indices of `V` index the elements of + `x` and the last index is the degree of the Chebyshev polynomial. + + If `c` is a 1-D array of coefficients of length ``n + 1`` and `V` is the + matrix ``V = chebvander(x, n)``, then ``np.dot(V, c)`` and + ``chebval(x, c)`` are the same up to roundoff. This equivalence is + useful both for least squares fitting and for the evaluation of a large + number of Chebyshev series of the same degree and sample points. + + Parameters + ---------- + x : array_like + Array of points. The dtype is converted to float64 or complex128 + depending on whether any of the elements are complex. If `x` is + scalar it is converted to a 1-D array. + deg : int + Degree of the resulting matrix. + + Returns + ------- + vander : ndarray + The pseudo Vandermonde matrix. The shape of the returned matrix is + ``x.shape + (deg + 1,)``, where The last index is the degree of the + corresponding Chebyshev polynomial. The dtype will be the same as + the converted `x`. + + """ + ideg = pu._as_int(deg, "deg") + if ideg < 0: + raise ValueError("deg must be non-negative") + + x = np.array(x, copy=None, ndmin=1) + 0.0 + dims = (ideg + 1,) + x.shape + dtyp = x.dtype + v = np.empty(dims, dtype=dtyp) + # Use forward recursion to generate the entries. + v[0] = x * 0 + 1 + if ideg > 0: + x2 = 2 * x + v[1] = x + for i in range(2, ideg + 1): + v[i] = v[i - 1] * x2 - v[i - 2] + return np.moveaxis(v, 0, -1) + + +def chebvander2d(x, y, deg): + """Pseudo-Vandermonde matrix of given degrees. + + Returns the pseudo-Vandermonde matrix of degrees `deg` and sample + points ``(x, y)``. The pseudo-Vandermonde matrix is defined by + + .. math:: V[..., (deg[1] + 1)*i + j] = T_i(x) * T_j(y), + + where ``0 <= i <= deg[0]`` and ``0 <= j <= deg[1]``. The leading indices of + `V` index the points ``(x, y)`` and the last index encodes the degrees of + the Chebyshev polynomials. + + If ``V = chebvander2d(x, y, [xdeg, ydeg])``, then the columns of `V` + correspond to the elements of a 2-D coefficient array `c` of shape + (xdeg + 1, ydeg + 1) in the order + + .. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ... + + and ``np.dot(V, c.flat)`` and ``chebval2d(x, y, c)`` will be the same + up to roundoff. This equivalence is useful both for least squares + fitting and for the evaluation of a large number of 2-D Chebyshev + series of the same degrees and sample points. + + Parameters + ---------- + x, y : array_like + Arrays of point coordinates, all of the same shape. The dtypes + will be converted to either float64 or complex128 depending on + whether any of the elements are complex. Scalars are converted to + 1-D arrays. + deg : list of ints + List of maximum degrees of the form [x_deg, y_deg]. + + Returns + ------- + vander2d : ndarray + The shape of the returned matrix is ``x.shape + (order,)``, where + :math:`order = (deg[0]+1)*(deg[1]+1)`. The dtype will be the same + as the converted `x` and `y`. + + See Also + -------- + chebvander, chebvander3d, chebval2d, chebval3d + """ + return pu._vander_nd_flat((chebvander, chebvander), (x, y), deg) + + +def chebvander3d(x, y, z, deg): + """Pseudo-Vandermonde matrix of given degrees. + + Returns the pseudo-Vandermonde matrix of degrees `deg` and sample + points ``(x, y, z)``. If `l`, `m`, `n` are the given degrees in `x`, `y`, `z`, + then The pseudo-Vandermonde matrix is defined by + + .. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = T_i(x)*T_j(y)*T_k(z), + + where ``0 <= i <= l``, ``0 <= j <= m``, and ``0 <= j <= n``. The leading + indices of `V` index the points ``(x, y, z)`` and the last index encodes + the degrees of the Chebyshev polynomials. + + If ``V = chebvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns + of `V` correspond to the elements of a 3-D coefficient array `c` of + shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order + + .. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},... + + and ``np.dot(V, c.flat)`` and ``chebval3d(x, y, z, c)`` will be the + same up to roundoff. This equivalence is useful both for least squares + fitting and for the evaluation of a large number of 3-D Chebyshev + series of the same degrees and sample points. + + Parameters + ---------- + x, y, z : array_like + Arrays of point coordinates, all of the same shape. The dtypes will + be converted to either float64 or complex128 depending on whether + any of the elements are complex. Scalars are converted to 1-D + arrays. + deg : list of ints + List of maximum degrees of the form [x_deg, y_deg, z_deg]. + + Returns + ------- + vander3d : ndarray + The shape of the returned matrix is ``x.shape + (order,)``, where + :math:`order = (deg[0]+1)*(deg[1]+1)*(deg[2]+1)`. The dtype will + be the same as the converted `x`, `y`, and `z`. + + See Also + -------- + chebvander, chebvander3d, chebval2d, chebval3d + """ + return pu._vander_nd_flat((chebvander, chebvander, chebvander), (x, y, z), deg) + + +def chebfit(x, y, deg, rcond=None, full=False, w=None): + """ + Least squares fit of Chebyshev series to data. + + Return the coefficients of a Chebyshev series of degree `deg` that is the + least squares fit to the data values `y` given at points `x`. If `y` is + 1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple + fits are done, one for each column of `y`, and the resulting + coefficients are stored in the corresponding columns of a 2-D return. + The fitted polynomial(s) are in the form + + .. math:: p(x) = c_0 + c_1 * T_1(x) + ... + c_n * T_n(x), + + where `n` is `deg`. + + Parameters + ---------- + x : array_like, shape (M,) + x-coordinates of the M sample points ``(x[i], y[i])``. + y : array_like, shape (M,) or (M, K) + y-coordinates of the sample points. Several data sets of sample + points sharing the same x-coordinates can be fitted at once by + passing in a 2D-array that contains one dataset per column. + deg : int or 1-D array_like + Degree(s) of the fitting polynomials. If `deg` is a single integer, + all terms up to and including the `deg`'th term are included in the + fit. For NumPy versions >= 1.11.0 a list of integers specifying the + degrees of the terms to include may be used instead. + rcond : float, optional + Relative condition number of the fit. Singular values smaller than + this relative to the largest singular value will be ignored. The + default value is ``len(x)*eps``, where eps is the relative precision of + the float type, about 2e-16 in most cases. + full : bool, optional + Switch determining nature of return value. When it is False (the + default) just the coefficients are returned, when True diagnostic + information from the singular value decomposition is also returned. + w : array_like, shape (`M`,), optional + Weights. If not None, the weight ``w[i]`` applies to the unsquared + residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are + chosen so that the errors of the products ``w[i]*y[i]`` all have the + same variance. When using inverse-variance weighting, use + ``w[i] = 1/sigma(y[i])``. The default value is None. + + Returns + ------- + coef : ndarray, shape (M,) or (M, K) + Chebyshev coefficients ordered from low to high. If `y` was 2-D, + the coefficients for the data in column k of `y` are in column + `k`. + + [residuals, rank, singular_values, rcond] : list + These values are only returned if ``full == True`` + + - residuals -- sum of squared residuals of the least squares fit + - rank -- the numerical rank of the scaled Vandermonde matrix + - singular_values -- singular values of the scaled Vandermonde matrix + - rcond -- value of `rcond`. + + For more details, see `numpy.linalg.lstsq`. + + Warns + ----- + RankWarning + The rank of the coefficient matrix in the least-squares fit is + deficient. The warning is only raised if ``full == False``. The + warnings can be turned off by + + >>> import warnings + >>> warnings.simplefilter('ignore', np.exceptions.RankWarning) + + See Also + -------- + numpy.polynomial.polynomial.polyfit + numpy.polynomial.legendre.legfit + numpy.polynomial.laguerre.lagfit + numpy.polynomial.hermite.hermfit + numpy.polynomial.hermite_e.hermefit + chebval : Evaluates a Chebyshev series. + chebvander : Vandermonde matrix of Chebyshev series. + chebweight : Chebyshev weight function. + numpy.linalg.lstsq : Computes a least-squares fit from the matrix. + scipy.interpolate.UnivariateSpline : Computes spline fits. + + Notes + ----- + The solution is the coefficients of the Chebyshev series `p` that + minimizes the sum of the weighted squared errors + + .. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2, + + where :math:`w_j` are the weights. This problem is solved by setting up + as the (typically) overdetermined matrix equation + + .. math:: V(x) * c = w * y, + + where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the + coefficients to be solved for, `w` are the weights, and `y` are the + observed values. This equation is then solved using the singular value + decomposition of `V`. + + If some of the singular values of `V` are so small that they are + neglected, then a `~exceptions.RankWarning` will be issued. This means that + the coefficient values may be poorly determined. Using a lower order fit + will usually get rid of the warning. The `rcond` parameter can also be + set to a value smaller than its default, but the resulting fit may be + spurious and have large contributions from roundoff error. + + Fits using Chebyshev series are usually better conditioned than fits + using power series, but much can depend on the distribution of the + sample points and the smoothness of the data. If the quality of the fit + is inadequate splines may be a good alternative. + + References + ---------- + .. [1] Wikipedia, "Curve fitting", + https://en.wikipedia.org/wiki/Curve_fitting + + Examples + -------- + + """ + return pu._fit(chebvander, x, y, deg, rcond, full, w) + + +def chebcompanion(c): + """Return the scaled companion matrix of c. + + The basis polynomials are scaled so that the companion matrix is + symmetric when `c` is a Chebyshev basis polynomial. This provides + better eigenvalue estimates than the unscaled case and for basis + polynomials the eigenvalues are guaranteed to be real if + `numpy.linalg.eigvalsh` is used to obtain them. + + Parameters + ---------- + c : array_like + 1-D array of Chebyshev series coefficients ordered from low to high + degree. + + Returns + ------- + mat : ndarray + Scaled companion matrix of dimensions (deg, deg). + """ + # c is a trimmed copy + [c] = pu.as_series([c]) + if len(c) < 2: + raise ValueError('Series must have maximum degree of at least 1.') + if len(c) == 2: + return np.array([[-c[0] / c[1]]]) + + n = len(c) - 1 + mat = np.zeros((n, n), dtype=c.dtype) + scl = np.array([1.] + [np.sqrt(.5)] * (n - 1)) + top = mat.reshape(-1)[1::n + 1] + bot = mat.reshape(-1)[n::n + 1] + top[0] = np.sqrt(.5) + top[1:] = 1 / 2 + bot[...] = top + mat[:, -1] -= (c[:-1] / c[-1]) * (scl / scl[-1]) * .5 + return mat + + +def chebroots(c): + """ + Compute the roots of a Chebyshev series. + + Return the roots (a.k.a. "zeros") of the polynomial + + .. math:: p(x) = \\sum_i c[i] * T_i(x). + + Parameters + ---------- + c : 1-D array_like + 1-D array of coefficients. + + Returns + ------- + out : ndarray + Array of the roots of the series. If all the roots are real, + then `out` is also real, otherwise it is complex. + + See Also + -------- + numpy.polynomial.polynomial.polyroots + numpy.polynomial.legendre.legroots + numpy.polynomial.laguerre.lagroots + numpy.polynomial.hermite.hermroots + numpy.polynomial.hermite_e.hermeroots + + Notes + ----- + The root estimates are obtained as the eigenvalues of the companion + matrix, Roots far from the origin of the complex plane may have large + errors due to the numerical instability of the series for such + values. Roots with multiplicity greater than 1 will also show larger + errors as the value of the series near such points is relatively + insensitive to errors in the roots. Isolated roots near the origin can + be improved by a few iterations of Newton's method. + + The Chebyshev series basis polynomials aren't powers of `x` so the + results of this function may seem unintuitive. + + Examples + -------- + >>> import numpy.polynomial.chebyshev as cheb + >>> cheb.chebroots((-1, 1,-1, 1)) # T3 - T2 + T1 - T0 has real roots + array([ -5.00000000e-01, 2.60860684e-17, 1.00000000e+00]) # may vary + + """ + # c is a trimmed copy + [c] = pu.as_series([c]) + if len(c) < 2: + return np.array([], dtype=c.dtype) + if len(c) == 2: + return np.array([-c[0] / c[1]]) + + # rotated companion matrix reduces error + m = chebcompanion(c)[::-1, ::-1] + r = la.eigvals(m) + r.sort() + return r + + +def chebinterpolate(func, deg, args=()): + """Interpolate a function at the Chebyshev points of the first kind. + + Returns the Chebyshev series that interpolates `func` at the Chebyshev + points of the first kind in the interval [-1, 1]. The interpolating + series tends to a minmax approximation to `func` with increasing `deg` + if the function is continuous in the interval. + + Parameters + ---------- + func : function + The function to be approximated. It must be a function of a single + variable of the form ``f(x, a, b, c...)``, where ``a, b, c...`` are + extra arguments passed in the `args` parameter. + deg : int + Degree of the interpolating polynomial + args : tuple, optional + Extra arguments to be used in the function call. Default is no extra + arguments. + + Returns + ------- + coef : ndarray, shape (deg + 1,) + Chebyshev coefficients of the interpolating series ordered from low to + high. + + Examples + -------- + >>> import numpy.polynomial.chebyshev as C + >>> C.chebinterpolate(lambda x: np.tanh(x) + 0.5, 8) + array([ 5.00000000e-01, 8.11675684e-01, -9.86864911e-17, + -5.42457905e-02, -2.71387850e-16, 4.51658839e-03, + 2.46716228e-17, -3.79694221e-04, -3.26899002e-16]) + + Notes + ----- + The Chebyshev polynomials used in the interpolation are orthogonal when + sampled at the Chebyshev points of the first kind. If it is desired to + constrain some of the coefficients they can simply be set to the desired + value after the interpolation, no new interpolation or fit is needed. This + is especially useful if it is known apriori that some of coefficients are + zero. For instance, if the function is even then the coefficients of the + terms of odd degree in the result can be set to zero. + + """ + deg = np.asarray(deg) + + # check arguments. + if deg.ndim > 0 or deg.dtype.kind not in 'iu' or deg.size == 0: + raise TypeError("deg must be an int") + if deg < 0: + raise ValueError("expected deg >= 0") + + order = deg + 1 + xcheb = chebpts1(order) + yfunc = func(xcheb, *args) + m = chebvander(xcheb, deg) + c = np.dot(m.T, yfunc) + c[0] /= order + c[1:] /= 0.5 * order + + return c + + +def chebgauss(deg): + """ + Gauss-Chebyshev quadrature. + + Computes the sample points and weights for Gauss-Chebyshev quadrature. + These sample points and weights will correctly integrate polynomials of + degree :math:`2*deg - 1` or less over the interval :math:`[-1, 1]` with + the weight function :math:`f(x) = 1/\\sqrt{1 - x^2}`. + + Parameters + ---------- + deg : int + Number of sample points and weights. It must be >= 1. + + Returns + ------- + x : ndarray + 1-D ndarray containing the sample points. + y : ndarray + 1-D ndarray containing the weights. + + Notes + ----- + The results have only been tested up to degree 100, higher degrees may + be problematic. For Gauss-Chebyshev there are closed form solutions for + the sample points and weights. If n = `deg`, then + + .. math:: x_i = \\cos(\\pi (2 i - 1) / (2 n)) + + .. math:: w_i = \\pi / n + + """ + ideg = pu._as_int(deg, "deg") + if ideg <= 0: + raise ValueError("deg must be a positive integer") + + x = np.cos(np.pi * np.arange(1, 2 * ideg, 2) / (2.0 * ideg)) + w = np.ones(ideg) * (np.pi / ideg) + + return x, w + + +def chebweight(x): + """ + The weight function of the Chebyshev polynomials. + + The weight function is :math:`1/\\sqrt{1 - x^2}` and the interval of + integration is :math:`[-1, 1]`. The Chebyshev polynomials are + orthogonal, but not normalized, with respect to this weight function. + + Parameters + ---------- + x : array_like + Values at which the weight function will be computed. + + Returns + ------- + w : ndarray + The weight function at `x`. + """ + w = 1. / (np.sqrt(1. + x) * np.sqrt(1. - x)) + return w + + +def chebpts1(npts): + """ + Chebyshev points of the first kind. + + The Chebyshev points of the first kind are the points ``cos(x)``, + where ``x = [pi*(k + .5)/npts for k in range(npts)]``. + + Parameters + ---------- + npts : int + Number of sample points desired. + + Returns + ------- + pts : ndarray + The Chebyshev points of the first kind. + + See Also + -------- + chebpts2 + """ + _npts = int(npts) + if _npts != npts: + raise ValueError("npts must be integer") + if _npts < 1: + raise ValueError("npts must be >= 1") + + x = 0.5 * np.pi / _npts * np.arange(-_npts + 1, _npts + 1, 2) + return np.sin(x) + + +def chebpts2(npts): + """ + Chebyshev points of the second kind. + + The Chebyshev points of the second kind are the points ``cos(x)``, + where ``x = [pi*k/(npts - 1) for k in range(npts)]`` sorted in ascending + order. + + Parameters + ---------- + npts : int + Number of sample points desired. + + Returns + ------- + pts : ndarray + The Chebyshev points of the second kind. + """ + _npts = int(npts) + if _npts != npts: + raise ValueError("npts must be integer") + if _npts < 2: + raise ValueError("npts must be >= 2") + + x = np.linspace(-np.pi, 0, _npts) + return np.cos(x) + + +# +# Chebyshev series class +# + +class Chebyshev(ABCPolyBase): + """A Chebyshev series class. + + The Chebyshev class provides the standard Python numerical methods + '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the + attributes and methods listed below. + + Parameters + ---------- + coef : array_like + Chebyshev coefficients in order of increasing degree, i.e., + ``(1, 2, 3)`` gives ``1*T_0(x) + 2*T_1(x) + 3*T_2(x)``. + domain : (2,) array_like, optional + Domain to use. The interval ``[domain[0], domain[1]]`` is mapped + to the interval ``[window[0], window[1]]`` by shifting and scaling. + The default value is [-1., 1.]. + window : (2,) array_like, optional + Window, see `domain` for its use. The default value is [-1., 1.]. + symbol : str, optional + Symbol used to represent the independent variable in string + representations of the polynomial expression, e.g. for printing. + The symbol must be a valid Python identifier. Default value is 'x'. + + .. versionadded:: 1.24 + + """ + # Virtual Functions + _add = staticmethod(chebadd) + _sub = staticmethod(chebsub) + _mul = staticmethod(chebmul) + _div = staticmethod(chebdiv) + _pow = staticmethod(chebpow) + _val = staticmethod(chebval) + _int = staticmethod(chebint) + _der = staticmethod(chebder) + _fit = staticmethod(chebfit) + _line = staticmethod(chebline) + _roots = staticmethod(chebroots) + _fromroots = staticmethod(chebfromroots) + + @classmethod + def interpolate(cls, func, deg, domain=None, args=()): + """Interpolate a function at the Chebyshev points of the first kind. + + Returns the series that interpolates `func` at the Chebyshev points of + the first kind scaled and shifted to the `domain`. The resulting series + tends to a minmax approximation of `func` when the function is + continuous in the domain. + + Parameters + ---------- + func : function + The function to be interpolated. It must be a function of a single + variable of the form ``f(x, a, b, c...)``, where ``a, b, c...`` are + extra arguments passed in the `args` parameter. + deg : int + Degree of the interpolating polynomial. + domain : {None, [beg, end]}, optional + Domain over which `func` is interpolated. The default is None, in + which case the domain is [-1, 1]. + args : tuple, optional + Extra arguments to be used in the function call. Default is no + extra arguments. + + Returns + ------- + polynomial : Chebyshev instance + Interpolating Chebyshev instance. + + Notes + ----- + See `numpy.polynomial.chebinterpolate` for more details. + + """ + if domain is None: + domain = cls.domain + xfunc = lambda x: func(pu.mapdomain(x, cls.window, domain), *args) + coef = chebinterpolate(xfunc, deg) + return cls(coef, domain=domain) + + # Virtual properties + domain = np.array(chebdomain) + window = np.array(chebdomain) + basis_name = 'T' diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/chebyshev.pyi b/.venv/lib/python3.12/site-packages/numpy/polynomial/chebyshev.pyi new file mode 100644 index 0000000..ec342df --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/chebyshev.pyi @@ -0,0 +1,181 @@ +from collections.abc import Callable, Iterable +from typing import Any, Concatenate, Final, Self, TypeVar, overload +from typing import Literal as L + +import numpy as np +import numpy.typing as npt +from numpy._typing import _IntLike_co + +from ._polybase import ABCPolyBase +from ._polytypes import ( + _Array1, + _Array2, + _CoefSeries, + _FuncBinOp, + _FuncCompanion, + _FuncDer, + _FuncFit, + _FuncFromRoots, + _FuncGauss, + _FuncInteg, + _FuncLine, + _FuncPoly2Ortho, + _FuncPow, + _FuncPts, + _FuncRoots, + _FuncUnOp, + _FuncVal, + _FuncVal2D, + _FuncVal3D, + _FuncValFromRoots, + _FuncVander, + _FuncVander2D, + _FuncVander3D, + _FuncWeight, + _Series, + _SeriesLikeCoef_co, +) +from .polyutils import trimcoef as chebtrim + +__all__ = [ + "chebzero", + "chebone", + "chebx", + "chebdomain", + "chebline", + "chebadd", + "chebsub", + "chebmulx", + "chebmul", + "chebdiv", + "chebpow", + "chebval", + "chebder", + "chebint", + "cheb2poly", + "poly2cheb", + "chebfromroots", + "chebvander", + "chebfit", + "chebtrim", + "chebroots", + "chebpts1", + "chebpts2", + "Chebyshev", + "chebval2d", + "chebval3d", + "chebgrid2d", + "chebgrid3d", + "chebvander2d", + "chebvander3d", + "chebcompanion", + "chebgauss", + "chebweight", + "chebinterpolate", +] + +_NumberOrObjectT = TypeVar("_NumberOrObjectT", bound=np.number | np.object_) +def _cseries_to_zseries(c: npt.NDArray[_NumberOrObjectT]) -> _Series[_NumberOrObjectT]: ... +def _zseries_to_cseries(zs: npt.NDArray[_NumberOrObjectT]) -> _Series[_NumberOrObjectT]: ... +def _zseries_mul( + z1: npt.NDArray[_NumberOrObjectT], + z2: npt.NDArray[_NumberOrObjectT], +) -> _Series[_NumberOrObjectT]: ... +def _zseries_div( + z1: npt.NDArray[_NumberOrObjectT], + z2: npt.NDArray[_NumberOrObjectT], +) -> _Series[_NumberOrObjectT]: ... +def _zseries_der(zs: npt.NDArray[_NumberOrObjectT]) -> _Series[_NumberOrObjectT]: ... +def _zseries_int(zs: npt.NDArray[_NumberOrObjectT]) -> _Series[_NumberOrObjectT]: ... + +poly2cheb: _FuncPoly2Ortho[L["poly2cheb"]] +cheb2poly: _FuncUnOp[L["cheb2poly"]] + +chebdomain: Final[_Array2[np.float64]] +chebzero: Final[_Array1[np.int_]] +chebone: Final[_Array1[np.int_]] +chebx: Final[_Array2[np.int_]] + +chebline: _FuncLine[L["chebline"]] +chebfromroots: _FuncFromRoots[L["chebfromroots"]] +chebadd: _FuncBinOp[L["chebadd"]] +chebsub: _FuncBinOp[L["chebsub"]] +chebmulx: _FuncUnOp[L["chebmulx"]] +chebmul: _FuncBinOp[L["chebmul"]] +chebdiv: _FuncBinOp[L["chebdiv"]] +chebpow: _FuncPow[L["chebpow"]] +chebder: _FuncDer[L["chebder"]] +chebint: _FuncInteg[L["chebint"]] +chebval: _FuncVal[L["chebval"]] +chebval2d: _FuncVal2D[L["chebval2d"]] +chebval3d: _FuncVal3D[L["chebval3d"]] +chebvalfromroots: _FuncValFromRoots[L["chebvalfromroots"]] +chebgrid2d: _FuncVal2D[L["chebgrid2d"]] +chebgrid3d: _FuncVal3D[L["chebgrid3d"]] +chebvander: _FuncVander[L["chebvander"]] +chebvander2d: _FuncVander2D[L["chebvander2d"]] +chebvander3d: _FuncVander3D[L["chebvander3d"]] +chebfit: _FuncFit[L["chebfit"]] +chebcompanion: _FuncCompanion[L["chebcompanion"]] +chebroots: _FuncRoots[L["chebroots"]] +chebgauss: _FuncGauss[L["chebgauss"]] +chebweight: _FuncWeight[L["chebweight"]] +chebpts1: _FuncPts[L["chebpts1"]] +chebpts2: _FuncPts[L["chebpts2"]] + +# keep in sync with `Chebyshev.interpolate` +_RT = TypeVar("_RT", bound=np.number | np.bool | np.object_) +@overload +def chebinterpolate( + func: np.ufunc, + deg: _IntLike_co, + args: tuple[()] = ..., +) -> npt.NDArray[np.float64 | np.complex128 | np.object_]: ... +@overload +def chebinterpolate( + func: Callable[[npt.NDArray[np.float64]], _RT], + deg: _IntLike_co, + args: tuple[()] = ..., +) -> npt.NDArray[_RT]: ... +@overload +def chebinterpolate( + func: Callable[Concatenate[npt.NDArray[np.float64], ...], _RT], + deg: _IntLike_co, + args: Iterable[Any], +) -> npt.NDArray[_RT]: ... + +class Chebyshev(ABCPolyBase[L["T"]]): + @overload + @classmethod + def interpolate( + cls, + func: Callable[[npt.NDArray[np.float64]], _CoefSeries], + deg: _IntLike_co, + domain: _SeriesLikeCoef_co | None = ..., + args: tuple[()] = ..., + ) -> Self: ... + @overload + @classmethod + def interpolate( + cls, + func: Callable[ + Concatenate[npt.NDArray[np.float64], ...], + _CoefSeries, + ], + deg: _IntLike_co, + domain: _SeriesLikeCoef_co | None = ..., + *, + args: Iterable[Any], + ) -> Self: ... + @overload + @classmethod + def interpolate( + cls, + func: Callable[ + Concatenate[npt.NDArray[np.float64], ...], + _CoefSeries, + ], + deg: _IntLike_co, + domain: _SeriesLikeCoef_co | None, + args: Iterable[Any], + ) -> Self: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/hermite.py b/.venv/lib/python3.12/site-packages/numpy/polynomial/hermite.py new file mode 100644 index 0000000..47e1dfc --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/hermite.py @@ -0,0 +1,1740 @@ +""" +============================================================== +Hermite Series, "Physicists" (:mod:`numpy.polynomial.hermite`) +============================================================== + +This module provides a number of objects (mostly functions) useful for +dealing with Hermite series, including a `Hermite` class that +encapsulates the usual arithmetic operations. (General information +on how this module represents and works with such polynomials is in the +docstring for its "parent" sub-package, `numpy.polynomial`). + +Classes +------- +.. autosummary:: + :toctree: generated/ + + Hermite + +Constants +--------- +.. autosummary:: + :toctree: generated/ + + hermdomain + hermzero + hermone + hermx + +Arithmetic +---------- +.. autosummary:: + :toctree: generated/ + + hermadd + hermsub + hermmulx + hermmul + hermdiv + hermpow + hermval + hermval2d + hermval3d + hermgrid2d + hermgrid3d + +Calculus +-------- +.. autosummary:: + :toctree: generated/ + + hermder + hermint + +Misc Functions +-------------- +.. autosummary:: + :toctree: generated/ + + hermfromroots + hermroots + hermvander + hermvander2d + hermvander3d + hermgauss + hermweight + hermcompanion + hermfit + hermtrim + hermline + herm2poly + poly2herm + +See also +-------- +`numpy.polynomial` + +""" +import numpy as np +import numpy.linalg as la +from numpy.lib.array_utils import normalize_axis_index + +from . import polyutils as pu +from ._polybase import ABCPolyBase + +__all__ = [ + 'hermzero', 'hermone', 'hermx', 'hermdomain', 'hermline', 'hermadd', + 'hermsub', 'hermmulx', 'hermmul', 'hermdiv', 'hermpow', 'hermval', + 'hermder', 'hermint', 'herm2poly', 'poly2herm', 'hermfromroots', + 'hermvander', 'hermfit', 'hermtrim', 'hermroots', 'Hermite', + 'hermval2d', 'hermval3d', 'hermgrid2d', 'hermgrid3d', 'hermvander2d', + 'hermvander3d', 'hermcompanion', 'hermgauss', 'hermweight'] + +hermtrim = pu.trimcoef + + +def poly2herm(pol): + """ + poly2herm(pol) + + Convert a polynomial to a Hermite series. + + Convert an array representing the coefficients of a polynomial (relative + to the "standard" basis) ordered from lowest degree to highest, to an + array of the coefficients of the equivalent Hermite series, ordered + from lowest to highest degree. + + Parameters + ---------- + pol : array_like + 1-D array containing the polynomial coefficients + + Returns + ------- + c : ndarray + 1-D array containing the coefficients of the equivalent Hermite + series. + + See Also + -------- + herm2poly + + Notes + ----- + The easy way to do conversions between polynomial basis sets + is to use the convert method of a class instance. + + Examples + -------- + >>> from numpy.polynomial.hermite import poly2herm + >>> poly2herm(np.arange(4)) + array([1. , 2.75 , 0.5 , 0.375]) + + """ + [pol] = pu.as_series([pol]) + deg = len(pol) - 1 + res = 0 + for i in range(deg, -1, -1): + res = hermadd(hermmulx(res), pol[i]) + return res + + +def herm2poly(c): + """ + Convert a Hermite series to a polynomial. + + Convert an array representing the coefficients of a Hermite series, + ordered from lowest degree to highest, to an array of the coefficients + of the equivalent polynomial (relative to the "standard" basis) ordered + from lowest to highest degree. + + Parameters + ---------- + c : array_like + 1-D array containing the Hermite series coefficients, ordered + from lowest order term to highest. + + Returns + ------- + pol : ndarray + 1-D array containing the coefficients of the equivalent polynomial + (relative to the "standard" basis) ordered from lowest order term + to highest. + + See Also + -------- + poly2herm + + Notes + ----- + The easy way to do conversions between polynomial basis sets + is to use the convert method of a class instance. + + Examples + -------- + >>> from numpy.polynomial.hermite import herm2poly + >>> herm2poly([ 1. , 2.75 , 0.5 , 0.375]) + array([0., 1., 2., 3.]) + + """ + from .polynomial import polyadd, polymulx, polysub + + [c] = pu.as_series([c]) + n = len(c) + if n == 1: + return c + if n == 2: + c[1] *= 2 + return c + else: + c0 = c[-2] + c1 = c[-1] + # i is the current degree of c1 + for i in range(n - 1, 1, -1): + tmp = c0 + c0 = polysub(c[i - 2], c1 * (2 * (i - 1))) + c1 = polyadd(tmp, polymulx(c1) * 2) + return polyadd(c0, polymulx(c1) * 2) + + +# +# These are constant arrays are of integer type so as to be compatible +# with the widest range of other types, such as Decimal. +# + +# Hermite +hermdomain = np.array([-1., 1.]) + +# Hermite coefficients representing zero. +hermzero = np.array([0]) + +# Hermite coefficients representing one. +hermone = np.array([1]) + +# Hermite coefficients representing the identity x. +hermx = np.array([0, 1 / 2]) + + +def hermline(off, scl): + """ + Hermite series whose graph is a straight line. + + + + Parameters + ---------- + off, scl : scalars + The specified line is given by ``off + scl*x``. + + Returns + ------- + y : ndarray + This module's representation of the Hermite series for + ``off + scl*x``. + + See Also + -------- + numpy.polynomial.polynomial.polyline + numpy.polynomial.chebyshev.chebline + numpy.polynomial.legendre.legline + numpy.polynomial.laguerre.lagline + numpy.polynomial.hermite_e.hermeline + + Examples + -------- + >>> from numpy.polynomial.hermite import hermline, hermval + >>> hermval(0,hermline(3, 2)) + 3.0 + >>> hermval(1,hermline(3, 2)) + 5.0 + + """ + if scl != 0: + return np.array([off, scl / 2]) + else: + return np.array([off]) + + +def hermfromroots(roots): + """ + Generate a Hermite series with given roots. + + The function returns the coefficients of the polynomial + + .. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n), + + in Hermite form, where the :math:`r_n` are the roots specified in `roots`. + If a zero has multiplicity n, then it must appear in `roots` n times. + For instance, if 2 is a root of multiplicity three and 3 is a root of + multiplicity 2, then `roots` looks something like [2, 2, 2, 3, 3]. The + roots can appear in any order. + + If the returned coefficients are `c`, then + + .. math:: p(x) = c_0 + c_1 * H_1(x) + ... + c_n * H_n(x) + + The coefficient of the last term is not generally 1 for monic + polynomials in Hermite form. + + Parameters + ---------- + roots : array_like + Sequence containing the roots. + + Returns + ------- + out : ndarray + 1-D array of coefficients. If all roots are real then `out` is a + real array, if some of the roots are complex, then `out` is complex + even if all the coefficients in the result are real (see Examples + below). + + See Also + -------- + numpy.polynomial.polynomial.polyfromroots + numpy.polynomial.legendre.legfromroots + numpy.polynomial.laguerre.lagfromroots + numpy.polynomial.chebyshev.chebfromroots + numpy.polynomial.hermite_e.hermefromroots + + Examples + -------- + >>> from numpy.polynomial.hermite import hermfromroots, hermval + >>> coef = hermfromroots((-1, 0, 1)) + >>> hermval((-1, 0, 1), coef) + array([0., 0., 0.]) + >>> coef = hermfromroots((-1j, 1j)) + >>> hermval((-1j, 1j), coef) + array([0.+0.j, 0.+0.j]) + + """ + return pu._fromroots(hermline, hermmul, roots) + + +def hermadd(c1, c2): + """ + Add one Hermite series to another. + + Returns the sum of two Hermite series `c1` + `c2`. The arguments + are sequences of coefficients ordered from lowest order term to + highest, i.e., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``. + + Parameters + ---------- + c1, c2 : array_like + 1-D arrays of Hermite series coefficients ordered from low to + high. + + Returns + ------- + out : ndarray + Array representing the Hermite series of their sum. + + See Also + -------- + hermsub, hermmulx, hermmul, hermdiv, hermpow + + Notes + ----- + Unlike multiplication, division, etc., the sum of two Hermite series + is a Hermite series (without having to "reproject" the result onto + the basis set) so addition, just like that of "standard" polynomials, + is simply "component-wise." + + Examples + -------- + >>> from numpy.polynomial.hermite import hermadd + >>> hermadd([1, 2, 3], [1, 2, 3, 4]) + array([2., 4., 6., 4.]) + + """ + return pu._add(c1, c2) + + +def hermsub(c1, c2): + """ + Subtract one Hermite series from another. + + Returns the difference of two Hermite series `c1` - `c2`. The + sequences of coefficients are from lowest order term to highest, i.e., + [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``. + + Parameters + ---------- + c1, c2 : array_like + 1-D arrays of Hermite series coefficients ordered from low to + high. + + Returns + ------- + out : ndarray + Of Hermite series coefficients representing their difference. + + See Also + -------- + hermadd, hermmulx, hermmul, hermdiv, hermpow + + Notes + ----- + Unlike multiplication, division, etc., the difference of two Hermite + series is a Hermite series (without having to "reproject" the result + onto the basis set) so subtraction, just like that of "standard" + polynomials, is simply "component-wise." + + Examples + -------- + >>> from numpy.polynomial.hermite import hermsub + >>> hermsub([1, 2, 3, 4], [1, 2, 3]) + array([0., 0., 0., 4.]) + + """ + return pu._sub(c1, c2) + + +def hermmulx(c): + """Multiply a Hermite series by x. + + Multiply the Hermite series `c` by x, where x is the independent + variable. + + + Parameters + ---------- + c : array_like + 1-D array of Hermite series coefficients ordered from low to + high. + + Returns + ------- + out : ndarray + Array representing the result of the multiplication. + + See Also + -------- + hermadd, hermsub, hermmul, hermdiv, hermpow + + Notes + ----- + The multiplication uses the recursion relationship for Hermite + polynomials in the form + + .. math:: + + xP_i(x) = (P_{i + 1}(x)/2 + i*P_{i - 1}(x)) + + Examples + -------- + >>> from numpy.polynomial.hermite import hermmulx + >>> hermmulx([1, 2, 3]) + array([2. , 6.5, 1. , 1.5]) + + """ + # c is a trimmed copy + [c] = pu.as_series([c]) + # The zero series needs special treatment + if len(c) == 1 and c[0] == 0: + return c + + prd = np.empty(len(c) + 1, dtype=c.dtype) + prd[0] = c[0] * 0 + prd[1] = c[0] / 2 + for i in range(1, len(c)): + prd[i + 1] = c[i] / 2 + prd[i - 1] += c[i] * i + return prd + + +def hermmul(c1, c2): + """ + Multiply one Hermite series by another. + + Returns the product of two Hermite series `c1` * `c2`. The arguments + are sequences of coefficients, from lowest order "term" to highest, + e.g., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``. + + Parameters + ---------- + c1, c2 : array_like + 1-D arrays of Hermite series coefficients ordered from low to + high. + + Returns + ------- + out : ndarray + Of Hermite series coefficients representing their product. + + See Also + -------- + hermadd, hermsub, hermmulx, hermdiv, hermpow + + Notes + ----- + In general, the (polynomial) product of two C-series results in terms + that are not in the Hermite polynomial basis set. Thus, to express + the product as a Hermite series, it is necessary to "reproject" the + product onto said basis set, which may produce "unintuitive" (but + correct) results; see Examples section below. + + Examples + -------- + >>> from numpy.polynomial.hermite import hermmul + >>> hermmul([1, 2, 3], [0, 1, 2]) + array([52., 29., 52., 7., 6.]) + + """ + # s1, s2 are trimmed copies + [c1, c2] = pu.as_series([c1, c2]) + + if len(c1) > len(c2): + c = c2 + xs = c1 + else: + c = c1 + xs = c2 + + if len(c) == 1: + c0 = c[0] * xs + c1 = 0 + elif len(c) == 2: + c0 = c[0] * xs + c1 = c[1] * xs + else: + nd = len(c) + c0 = c[-2] * xs + c1 = c[-1] * xs + for i in range(3, len(c) + 1): + tmp = c0 + nd = nd - 1 + c0 = hermsub(c[-i] * xs, c1 * (2 * (nd - 1))) + c1 = hermadd(tmp, hermmulx(c1) * 2) + return hermadd(c0, hermmulx(c1) * 2) + + +def hermdiv(c1, c2): + """ + Divide one Hermite series by another. + + Returns the quotient-with-remainder of two Hermite series + `c1` / `c2`. The arguments are sequences of coefficients from lowest + order "term" to highest, e.g., [1,2,3] represents the series + ``P_0 + 2*P_1 + 3*P_2``. + + Parameters + ---------- + c1, c2 : array_like + 1-D arrays of Hermite series coefficients ordered from low to + high. + + Returns + ------- + [quo, rem] : ndarrays + Of Hermite series coefficients representing the quotient and + remainder. + + See Also + -------- + hermadd, hermsub, hermmulx, hermmul, hermpow + + Notes + ----- + In general, the (polynomial) division of one Hermite series by another + results in quotient and remainder terms that are not in the Hermite + polynomial basis set. Thus, to express these results as a Hermite + series, it is necessary to "reproject" the results onto the Hermite + basis set, which may produce "unintuitive" (but correct) results; see + Examples section below. + + Examples + -------- + >>> from numpy.polynomial.hermite import hermdiv + >>> hermdiv([ 52., 29., 52., 7., 6.], [0, 1, 2]) + (array([1., 2., 3.]), array([0.])) + >>> hermdiv([ 54., 31., 52., 7., 6.], [0, 1, 2]) + (array([1., 2., 3.]), array([2., 2.])) + >>> hermdiv([ 53., 30., 52., 7., 6.], [0, 1, 2]) + (array([1., 2., 3.]), array([1., 1.])) + + """ + return pu._div(hermmul, c1, c2) + + +def hermpow(c, pow, maxpower=16): + """Raise a Hermite series to a power. + + Returns the Hermite series `c` raised to the power `pow`. The + argument `c` is a sequence of coefficients ordered from low to high. + i.e., [1,2,3] is the series ``P_0 + 2*P_1 + 3*P_2.`` + + Parameters + ---------- + c : array_like + 1-D array of Hermite series coefficients ordered from low to + high. + pow : integer + Power to which the series will be raised + maxpower : integer, optional + Maximum power allowed. This is mainly to limit growth of the series + to unmanageable size. Default is 16 + + Returns + ------- + coef : ndarray + Hermite series of power. + + See Also + -------- + hermadd, hermsub, hermmulx, hermmul, hermdiv + + Examples + -------- + >>> from numpy.polynomial.hermite import hermpow + >>> hermpow([1, 2, 3], 2) + array([81., 52., 82., 12., 9.]) + + """ + return pu._pow(hermmul, c, pow, maxpower) + + +def hermder(c, m=1, scl=1, axis=0): + """ + Differentiate a Hermite series. + + Returns the Hermite series coefficients `c` differentiated `m` times + along `axis`. At each iteration the result is multiplied by `scl` (the + scaling factor is for use in a linear change of variable). The argument + `c` is an array of coefficients from low to high degree along each + axis, e.g., [1,2,3] represents the series ``1*H_0 + 2*H_1 + 3*H_2`` + while [[1,2],[1,2]] represents ``1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) + + 2*H_0(x)*H_1(y) + 2*H_1(x)*H_1(y)`` if axis=0 is ``x`` and axis=1 is + ``y``. + + Parameters + ---------- + c : array_like + Array of Hermite series coefficients. If `c` is multidimensional the + different axis correspond to different variables with the degree in + each axis given by the corresponding index. + m : int, optional + Number of derivatives taken, must be non-negative. (Default: 1) + scl : scalar, optional + Each differentiation is multiplied by `scl`. The end result is + multiplication by ``scl**m``. This is for use in a linear change of + variable. (Default: 1) + axis : int, optional + Axis over which the derivative is taken. (Default: 0). + + Returns + ------- + der : ndarray + Hermite series of the derivative. + + See Also + -------- + hermint + + Notes + ----- + In general, the result of differentiating a Hermite series does not + resemble the same operation on a power series. Thus the result of this + function may be "unintuitive," albeit correct; see Examples section + below. + + Examples + -------- + >>> from numpy.polynomial.hermite import hermder + >>> hermder([ 1. , 0.5, 0.5, 0.5]) + array([1., 2., 3.]) + >>> hermder([-0.5, 1./2., 1./8., 1./12., 1./16.], m=2) + array([1., 2., 3.]) + + """ + c = np.array(c, ndmin=1, copy=True) + if c.dtype.char in '?bBhHiIlLqQpP': + c = c.astype(np.double) + cnt = pu._as_int(m, "the order of derivation") + iaxis = pu._as_int(axis, "the axis") + if cnt < 0: + raise ValueError("The order of derivation must be non-negative") + iaxis = normalize_axis_index(iaxis, c.ndim) + + if cnt == 0: + return c + + c = np.moveaxis(c, iaxis, 0) + n = len(c) + if cnt >= n: + c = c[:1] * 0 + else: + for i in range(cnt): + n = n - 1 + c *= scl + der = np.empty((n,) + c.shape[1:], dtype=c.dtype) + for j in range(n, 0, -1): + der[j - 1] = (2 * j) * c[j] + c = der + c = np.moveaxis(c, 0, iaxis) + return c + + +def hermint(c, m=1, k=[], lbnd=0, scl=1, axis=0): + """ + Integrate a Hermite series. + + Returns the Hermite series coefficients `c` integrated `m` times from + `lbnd` along `axis`. At each iteration the resulting series is + **multiplied** by `scl` and an integration constant, `k`, is added. + The scaling factor is for use in a linear change of variable. ("Buyer + beware": note that, depending on what one is doing, one may want `scl` + to be the reciprocal of what one might expect; for more information, + see the Notes section below.) The argument `c` is an array of + coefficients from low to high degree along each axis, e.g., [1,2,3] + represents the series ``H_0 + 2*H_1 + 3*H_2`` while [[1,2],[1,2]] + represents ``1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) + 2*H_0(x)*H_1(y) + + 2*H_1(x)*H_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``. + + Parameters + ---------- + c : array_like + Array of Hermite series coefficients. If c is multidimensional the + different axis correspond to different variables with the degree in + each axis given by the corresponding index. + m : int, optional + Order of integration, must be positive. (Default: 1) + k : {[], list, scalar}, optional + Integration constant(s). The value of the first integral at + ``lbnd`` is the first value in the list, the value of the second + integral at ``lbnd`` is the second value, etc. If ``k == []`` (the + default), all constants are set to zero. If ``m == 1``, a single + scalar can be given instead of a list. + lbnd : scalar, optional + The lower bound of the integral. (Default: 0) + scl : scalar, optional + Following each integration the result is *multiplied* by `scl` + before the integration constant is added. (Default: 1) + axis : int, optional + Axis over which the integral is taken. (Default: 0). + + Returns + ------- + S : ndarray + Hermite series coefficients of the integral. + + Raises + ------ + ValueError + If ``m < 0``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or + ``np.ndim(scl) != 0``. + + See Also + -------- + hermder + + Notes + ----- + Note that the result of each integration is *multiplied* by `scl`. + Why is this important to note? Say one is making a linear change of + variable :math:`u = ax + b` in an integral relative to `x`. Then + :math:`dx = du/a`, so one will need to set `scl` equal to + :math:`1/a` - perhaps not what one would have first thought. + + Also note that, in general, the result of integrating a C-series needs + to be "reprojected" onto the C-series basis set. Thus, typically, + the result of this function is "unintuitive," albeit correct; see + Examples section below. + + Examples + -------- + >>> from numpy.polynomial.hermite import hermint + >>> hermint([1,2,3]) # integrate once, value 0 at 0. + array([1. , 0.5, 0.5, 0.5]) + >>> hermint([1,2,3], m=2) # integrate twice, value & deriv 0 at 0 + array([-0.5 , 0.5 , 0.125 , 0.08333333, 0.0625 ]) # may vary + >>> hermint([1,2,3], k=1) # integrate once, value 1 at 0. + array([2. , 0.5, 0.5, 0.5]) + >>> hermint([1,2,3], lbnd=-1) # integrate once, value 0 at -1 + array([-2. , 0.5, 0.5, 0.5]) + >>> hermint([1,2,3], m=2, k=[1,2], lbnd=-1) + array([ 1.66666667, -0.5 , 0.125 , 0.08333333, 0.0625 ]) # may vary + + """ + c = np.array(c, ndmin=1, copy=True) + if c.dtype.char in '?bBhHiIlLqQpP': + c = c.astype(np.double) + if not np.iterable(k): + k = [k] + cnt = pu._as_int(m, "the order of integration") + iaxis = pu._as_int(axis, "the axis") + if cnt < 0: + raise ValueError("The order of integration must be non-negative") + if len(k) > cnt: + raise ValueError("Too many integration constants") + if np.ndim(lbnd) != 0: + raise ValueError("lbnd must be a scalar.") + if np.ndim(scl) != 0: + raise ValueError("scl must be a scalar.") + iaxis = normalize_axis_index(iaxis, c.ndim) + + if cnt == 0: + return c + + c = np.moveaxis(c, iaxis, 0) + k = list(k) + [0] * (cnt - len(k)) + for i in range(cnt): + n = len(c) + c *= scl + if n == 1 and np.all(c[0] == 0): + c[0] += k[i] + else: + tmp = np.empty((n + 1,) + c.shape[1:], dtype=c.dtype) + tmp[0] = c[0] * 0 + tmp[1] = c[0] / 2 + for j in range(1, n): + tmp[j + 1] = c[j] / (2 * (j + 1)) + tmp[0] += k[i] - hermval(lbnd, tmp) + c = tmp + c = np.moveaxis(c, 0, iaxis) + return c + + +def hermval(x, c, tensor=True): + """ + Evaluate an Hermite series at points x. + + If `c` is of length ``n + 1``, this function returns the value: + + .. math:: p(x) = c_0 * H_0(x) + c_1 * H_1(x) + ... + c_n * H_n(x) + + The parameter `x` is converted to an array only if it is a tuple or a + list, otherwise it is treated as a scalar. In either case, either `x` + or its elements must support multiplication and addition both with + themselves and with the elements of `c`. + + If `c` is a 1-D array, then ``p(x)`` will have the same shape as `x`. If + `c` is multidimensional, then the shape of the result depends on the + value of `tensor`. If `tensor` is true the shape will be c.shape[1:] + + x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that + scalars have shape (,). + + Trailing zeros in the coefficients will be used in the evaluation, so + they should be avoided if efficiency is a concern. + + Parameters + ---------- + x : array_like, compatible object + If `x` is a list or tuple, it is converted to an ndarray, otherwise + it is left unchanged and treated as a scalar. In either case, `x` + or its elements must support addition and multiplication with + themselves and with the elements of `c`. + c : array_like + Array of coefficients ordered so that the coefficients for terms of + degree n are contained in c[n]. If `c` is multidimensional the + remaining indices enumerate multiple polynomials. In the two + dimensional case the coefficients may be thought of as stored in + the columns of `c`. + tensor : boolean, optional + If True, the shape of the coefficient array is extended with ones + on the right, one for each dimension of `x`. Scalars have dimension 0 + for this action. The result is that every column of coefficients in + `c` is evaluated for every element of `x`. If False, `x` is broadcast + over the columns of `c` for the evaluation. This keyword is useful + when `c` is multidimensional. The default value is True. + + Returns + ------- + values : ndarray, algebra_like + The shape of the return value is described above. + + See Also + -------- + hermval2d, hermgrid2d, hermval3d, hermgrid3d + + Notes + ----- + The evaluation uses Clenshaw recursion, aka synthetic division. + + Examples + -------- + >>> from numpy.polynomial.hermite import hermval + >>> coef = [1,2,3] + >>> hermval(1, coef) + 11.0 + >>> hermval([[1,2],[3,4]], coef) + array([[ 11., 51.], + [115., 203.]]) + + """ + c = np.array(c, ndmin=1, copy=None) + if c.dtype.char in '?bBhHiIlLqQpP': + c = c.astype(np.double) + if isinstance(x, (tuple, list)): + x = np.asarray(x) + if isinstance(x, np.ndarray) and tensor: + c = c.reshape(c.shape + (1,) * x.ndim) + + x2 = x * 2 + if len(c) == 1: + c0 = c[0] + c1 = 0 + elif len(c) == 2: + c0 = c[0] + c1 = c[1] + else: + nd = len(c) + c0 = c[-2] + c1 = c[-1] + for i in range(3, len(c) + 1): + tmp = c0 + nd = nd - 1 + c0 = c[-i] - c1 * (2 * (nd - 1)) + c1 = tmp + c1 * x2 + return c0 + c1 * x2 + + +def hermval2d(x, y, c): + """ + Evaluate a 2-D Hermite series at points (x, y). + + This function returns the values: + + .. math:: p(x,y) = \\sum_{i,j} c_{i,j} * H_i(x) * H_j(y) + + The parameters `x` and `y` are converted to arrays only if they are + tuples or a lists, otherwise they are treated as a scalars and they + must have the same shape after conversion. In either case, either `x` + and `y` or their elements must support multiplication and addition both + with themselves and with the elements of `c`. + + If `c` is a 1-D array a one is implicitly appended to its shape to make + it 2-D. The shape of the result will be c.shape[2:] + x.shape. + + Parameters + ---------- + x, y : array_like, compatible objects + The two dimensional series is evaluated at the points ``(x, y)``, + where `x` and `y` must have the same shape. If `x` or `y` is a list + or tuple, it is first converted to an ndarray, otherwise it is left + unchanged and if it isn't an ndarray it is treated as a scalar. + c : array_like + Array of coefficients ordered so that the coefficient of the term + of multi-degree i,j is contained in ``c[i,j]``. If `c` has + dimension greater than two the remaining indices enumerate multiple + sets of coefficients. + + Returns + ------- + values : ndarray, compatible object + The values of the two dimensional polynomial at points formed with + pairs of corresponding values from `x` and `y`. + + See Also + -------- + hermval, hermgrid2d, hermval3d, hermgrid3d + + Examples + -------- + >>> from numpy.polynomial.hermite import hermval2d + >>> x = [1, 2] + >>> y = [4, 5] + >>> c = [[1, 2, 3], [4, 5, 6]] + >>> hermval2d(x, y, c) + array([1035., 2883.]) + + """ + return pu._valnd(hermval, c, x, y) + + +def hermgrid2d(x, y, c): + """ + Evaluate a 2-D Hermite series on the Cartesian product of x and y. + + This function returns the values: + + .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * H_i(a) * H_j(b) + + where the points ``(a, b)`` consist of all pairs formed by taking + `a` from `x` and `b` from `y`. The resulting points form a grid with + `x` in the first dimension and `y` in the second. + + The parameters `x` and `y` are converted to arrays only if they are + tuples or a lists, otherwise they are treated as a scalars. In either + case, either `x` and `y` or their elements must support multiplication + and addition both with themselves and with the elements of `c`. + + If `c` has fewer than two dimensions, ones are implicitly appended to + its shape to make it 2-D. The shape of the result will be c.shape[2:] + + x.shape. + + Parameters + ---------- + x, y : array_like, compatible objects + The two dimensional series is evaluated at the points in the + Cartesian product of `x` and `y`. If `x` or `y` is a list or + tuple, it is first converted to an ndarray, otherwise it is left + unchanged and, if it isn't an ndarray, it is treated as a scalar. + c : array_like + Array of coefficients ordered so that the coefficients for terms of + degree i,j are contained in ``c[i,j]``. If `c` has dimension + greater than two the remaining indices enumerate multiple sets of + coefficients. + + Returns + ------- + values : ndarray, compatible object + The values of the two dimensional polynomial at points in the Cartesian + product of `x` and `y`. + + See Also + -------- + hermval, hermval2d, hermval3d, hermgrid3d + + Examples + -------- + >>> from numpy.polynomial.hermite import hermgrid2d + >>> x = [1, 2, 3] + >>> y = [4, 5] + >>> c = [[1, 2, 3], [4, 5, 6]] + >>> hermgrid2d(x, y, c) + array([[1035., 1599.], + [1867., 2883.], + [2699., 4167.]]) + + """ + return pu._gridnd(hermval, c, x, y) + + +def hermval3d(x, y, z, c): + """ + Evaluate a 3-D Hermite series at points (x, y, z). + + This function returns the values: + + .. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * H_i(x) * H_j(y) * H_k(z) + + The parameters `x`, `y`, and `z` are converted to arrays only if + they are tuples or a lists, otherwise they are treated as a scalars and + they must have the same shape after conversion. In either case, either + `x`, `y`, and `z` or their elements must support multiplication and + addition both with themselves and with the elements of `c`. + + If `c` has fewer than 3 dimensions, ones are implicitly appended to its + shape to make it 3-D. The shape of the result will be c.shape[3:] + + x.shape. + + Parameters + ---------- + x, y, z : array_like, compatible object + The three dimensional series is evaluated at the points + ``(x, y, z)``, where `x`, `y`, and `z` must have the same shape. If + any of `x`, `y`, or `z` is a list or tuple, it is first converted + to an ndarray, otherwise it is left unchanged and if it isn't an + ndarray it is treated as a scalar. + c : array_like + Array of coefficients ordered so that the coefficient of the term of + multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension + greater than 3 the remaining indices enumerate multiple sets of + coefficients. + + Returns + ------- + values : ndarray, compatible object + The values of the multidimensional polynomial on points formed with + triples of corresponding values from `x`, `y`, and `z`. + + See Also + -------- + hermval, hermval2d, hermgrid2d, hermgrid3d + + Examples + -------- + >>> from numpy.polynomial.hermite import hermval3d + >>> x = [1, 2] + >>> y = [4, 5] + >>> z = [6, 7] + >>> c = [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]] + >>> hermval3d(x, y, z, c) + array([ 40077., 120131.]) + + """ + return pu._valnd(hermval, c, x, y, z) + + +def hermgrid3d(x, y, z, c): + """ + Evaluate a 3-D Hermite series on the Cartesian product of x, y, and z. + + This function returns the values: + + .. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * H_i(a) * H_j(b) * H_k(c) + + where the points ``(a, b, c)`` consist of all triples formed by taking + `a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form + a grid with `x` in the first dimension, `y` in the second, and `z` in + the third. + + The parameters `x`, `y`, and `z` are converted to arrays only if they + are tuples or a lists, otherwise they are treated as a scalars. In + either case, either `x`, `y`, and `z` or their elements must support + multiplication and addition both with themselves and with the elements + of `c`. + + If `c` has fewer than three dimensions, ones are implicitly appended to + its shape to make it 3-D. The shape of the result will be c.shape[3:] + + x.shape + y.shape + z.shape. + + Parameters + ---------- + x, y, z : array_like, compatible objects + The three dimensional series is evaluated at the points in the + Cartesian product of `x`, `y`, and `z`. If `x`, `y`, or `z` is a + list or tuple, it is first converted to an ndarray, otherwise it is + left unchanged and, if it isn't an ndarray, it is treated as a + scalar. + c : array_like + Array of coefficients ordered so that the coefficients for terms of + degree i,j are contained in ``c[i,j]``. If `c` has dimension + greater than two the remaining indices enumerate multiple sets of + coefficients. + + Returns + ------- + values : ndarray, compatible object + The values of the two dimensional polynomial at points in the Cartesian + product of `x` and `y`. + + See Also + -------- + hermval, hermval2d, hermgrid2d, hermval3d + + Examples + -------- + >>> from numpy.polynomial.hermite import hermgrid3d + >>> x = [1, 2] + >>> y = [4, 5] + >>> z = [6, 7] + >>> c = [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]] + >>> hermgrid3d(x, y, z, c) + array([[[ 40077., 54117.], + [ 49293., 66561.]], + [[ 72375., 97719.], + [ 88975., 120131.]]]) + + """ + return pu._gridnd(hermval, c, x, y, z) + + +def hermvander(x, deg): + """Pseudo-Vandermonde matrix of given degree. + + Returns the pseudo-Vandermonde matrix of degree `deg` and sample points + `x`. The pseudo-Vandermonde matrix is defined by + + .. math:: V[..., i] = H_i(x), + + where ``0 <= i <= deg``. The leading indices of `V` index the elements of + `x` and the last index is the degree of the Hermite polynomial. + + If `c` is a 1-D array of coefficients of length ``n + 1`` and `V` is the + array ``V = hermvander(x, n)``, then ``np.dot(V, c)`` and + ``hermval(x, c)`` are the same up to roundoff. This equivalence is + useful both for least squares fitting and for the evaluation of a large + number of Hermite series of the same degree and sample points. + + Parameters + ---------- + x : array_like + Array of points. The dtype is converted to float64 or complex128 + depending on whether any of the elements are complex. If `x` is + scalar it is converted to a 1-D array. + deg : int + Degree of the resulting matrix. + + Returns + ------- + vander : ndarray + The pseudo-Vandermonde matrix. The shape of the returned matrix is + ``x.shape + (deg + 1,)``, where The last index is the degree of the + corresponding Hermite polynomial. The dtype will be the same as + the converted `x`. + + Examples + -------- + >>> import numpy as np + >>> from numpy.polynomial.hermite import hermvander + >>> x = np.array([-1, 0, 1]) + >>> hermvander(x, 3) + array([[ 1., -2., 2., 4.], + [ 1., 0., -2., -0.], + [ 1., 2., 2., -4.]]) + + """ + ideg = pu._as_int(deg, "deg") + if ideg < 0: + raise ValueError("deg must be non-negative") + + x = np.array(x, copy=None, ndmin=1) + 0.0 + dims = (ideg + 1,) + x.shape + dtyp = x.dtype + v = np.empty(dims, dtype=dtyp) + v[0] = x * 0 + 1 + if ideg > 0: + x2 = x * 2 + v[1] = x2 + for i in range(2, ideg + 1): + v[i] = (v[i - 1] * x2 - v[i - 2] * (2 * (i - 1))) + return np.moveaxis(v, 0, -1) + + +def hermvander2d(x, y, deg): + """Pseudo-Vandermonde matrix of given degrees. + + Returns the pseudo-Vandermonde matrix of degrees `deg` and sample + points ``(x, y)``. The pseudo-Vandermonde matrix is defined by + + .. math:: V[..., (deg[1] + 1)*i + j] = H_i(x) * H_j(y), + + where ``0 <= i <= deg[0]`` and ``0 <= j <= deg[1]``. The leading indices of + `V` index the points ``(x, y)`` and the last index encodes the degrees of + the Hermite polynomials. + + If ``V = hermvander2d(x, y, [xdeg, ydeg])``, then the columns of `V` + correspond to the elements of a 2-D coefficient array `c` of shape + (xdeg + 1, ydeg + 1) in the order + + .. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ... + + and ``np.dot(V, c.flat)`` and ``hermval2d(x, y, c)`` will be the same + up to roundoff. This equivalence is useful both for least squares + fitting and for the evaluation of a large number of 2-D Hermite + series of the same degrees and sample points. + + Parameters + ---------- + x, y : array_like + Arrays of point coordinates, all of the same shape. The dtypes + will be converted to either float64 or complex128 depending on + whether any of the elements are complex. Scalars are converted to 1-D + arrays. + deg : list of ints + List of maximum degrees of the form [x_deg, y_deg]. + + Returns + ------- + vander2d : ndarray + The shape of the returned matrix is ``x.shape + (order,)``, where + :math:`order = (deg[0]+1)*(deg[1]+1)`. The dtype will be the same + as the converted `x` and `y`. + + See Also + -------- + hermvander, hermvander3d, hermval2d, hermval3d + + Examples + -------- + >>> import numpy as np + >>> from numpy.polynomial.hermite import hermvander2d + >>> x = np.array([-1, 0, 1]) + >>> y = np.array([-1, 0, 1]) + >>> hermvander2d(x, y, [2, 2]) + array([[ 1., -2., 2., -2., 4., -4., 2., -4., 4.], + [ 1., 0., -2., 0., 0., -0., -2., -0., 4.], + [ 1., 2., 2., 2., 4., 4., 2., 4., 4.]]) + + """ + return pu._vander_nd_flat((hermvander, hermvander), (x, y), deg) + + +def hermvander3d(x, y, z, deg): + """Pseudo-Vandermonde matrix of given degrees. + + Returns the pseudo-Vandermonde matrix of degrees `deg` and sample + points ``(x, y, z)``. If `l`, `m`, `n` are the given degrees in `x`, `y`, `z`, + then The pseudo-Vandermonde matrix is defined by + + .. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = H_i(x)*H_j(y)*H_k(z), + + where ``0 <= i <= l``, ``0 <= j <= m``, and ``0 <= j <= n``. The leading + indices of `V` index the points ``(x, y, z)`` and the last index encodes + the degrees of the Hermite polynomials. + + If ``V = hermvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns + of `V` correspond to the elements of a 3-D coefficient array `c` of + shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order + + .. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},... + + and ``np.dot(V, c.flat)`` and ``hermval3d(x, y, z, c)`` will be the + same up to roundoff. This equivalence is useful both for least squares + fitting and for the evaluation of a large number of 3-D Hermite + series of the same degrees and sample points. + + Parameters + ---------- + x, y, z : array_like + Arrays of point coordinates, all of the same shape. The dtypes will + be converted to either float64 or complex128 depending on whether + any of the elements are complex. Scalars are converted to 1-D + arrays. + deg : list of ints + List of maximum degrees of the form [x_deg, y_deg, z_deg]. + + Returns + ------- + vander3d : ndarray + The shape of the returned matrix is ``x.shape + (order,)``, where + :math:`order = (deg[0]+1)*(deg[1]+1)*(deg[2]+1)`. The dtype will + be the same as the converted `x`, `y`, and `z`. + + See Also + -------- + hermvander, hermvander3d, hermval2d, hermval3d + + Examples + -------- + >>> from numpy.polynomial.hermite import hermvander3d + >>> x = np.array([-1, 0, 1]) + >>> y = np.array([-1, 0, 1]) + >>> z = np.array([-1, 0, 1]) + >>> hermvander3d(x, y, z, [0, 1, 2]) + array([[ 1., -2., 2., -2., 4., -4.], + [ 1., 0., -2., 0., 0., -0.], + [ 1., 2., 2., 2., 4., 4.]]) + + """ + return pu._vander_nd_flat((hermvander, hermvander, hermvander), (x, y, z), deg) + + +def hermfit(x, y, deg, rcond=None, full=False, w=None): + """ + Least squares fit of Hermite series to data. + + Return the coefficients of a Hermite series of degree `deg` that is the + least squares fit to the data values `y` given at points `x`. If `y` is + 1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple + fits are done, one for each column of `y`, and the resulting + coefficients are stored in the corresponding columns of a 2-D return. + The fitted polynomial(s) are in the form + + .. math:: p(x) = c_0 + c_1 * H_1(x) + ... + c_n * H_n(x), + + where `n` is `deg`. + + Parameters + ---------- + x : array_like, shape (M,) + x-coordinates of the M sample points ``(x[i], y[i])``. + y : array_like, shape (M,) or (M, K) + y-coordinates of the sample points. Several data sets of sample + points sharing the same x-coordinates can be fitted at once by + passing in a 2D-array that contains one dataset per column. + deg : int or 1-D array_like + Degree(s) of the fitting polynomials. If `deg` is a single integer + all terms up to and including the `deg`'th term are included in the + fit. For NumPy versions >= 1.11.0 a list of integers specifying the + degrees of the terms to include may be used instead. + rcond : float, optional + Relative condition number of the fit. Singular values smaller than + this relative to the largest singular value will be ignored. The + default value is len(x)*eps, where eps is the relative precision of + the float type, about 2e-16 in most cases. + full : bool, optional + Switch determining nature of return value. When it is False (the + default) just the coefficients are returned, when True diagnostic + information from the singular value decomposition is also returned. + w : array_like, shape (`M`,), optional + Weights. If not None, the weight ``w[i]`` applies to the unsquared + residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are + chosen so that the errors of the products ``w[i]*y[i]`` all have the + same variance. When using inverse-variance weighting, use + ``w[i] = 1/sigma(y[i])``. The default value is None. + + Returns + ------- + coef : ndarray, shape (M,) or (M, K) + Hermite coefficients ordered from low to high. If `y` was 2-D, + the coefficients for the data in column k of `y` are in column + `k`. + + [residuals, rank, singular_values, rcond] : list + These values are only returned if ``full == True`` + + - residuals -- sum of squared residuals of the least squares fit + - rank -- the numerical rank of the scaled Vandermonde matrix + - singular_values -- singular values of the scaled Vandermonde matrix + - rcond -- value of `rcond`. + + For more details, see `numpy.linalg.lstsq`. + + Warns + ----- + RankWarning + The rank of the coefficient matrix in the least-squares fit is + deficient. The warning is only raised if ``full == False``. The + warnings can be turned off by + + >>> import warnings + >>> warnings.simplefilter('ignore', np.exceptions.RankWarning) + + See Also + -------- + numpy.polynomial.chebyshev.chebfit + numpy.polynomial.legendre.legfit + numpy.polynomial.laguerre.lagfit + numpy.polynomial.polynomial.polyfit + numpy.polynomial.hermite_e.hermefit + hermval : Evaluates a Hermite series. + hermvander : Vandermonde matrix of Hermite series. + hermweight : Hermite weight function + numpy.linalg.lstsq : Computes a least-squares fit from the matrix. + scipy.interpolate.UnivariateSpline : Computes spline fits. + + Notes + ----- + The solution is the coefficients of the Hermite series `p` that + minimizes the sum of the weighted squared errors + + .. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2, + + where the :math:`w_j` are the weights. This problem is solved by + setting up the (typically) overdetermined matrix equation + + .. math:: V(x) * c = w * y, + + where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the + coefficients to be solved for, `w` are the weights, `y` are the + observed values. This equation is then solved using the singular value + decomposition of `V`. + + If some of the singular values of `V` are so small that they are + neglected, then a `~exceptions.RankWarning` will be issued. This means that + the coefficient values may be poorly determined. Using a lower order fit + will usually get rid of the warning. The `rcond` parameter can also be + set to a value smaller than its default, but the resulting fit may be + spurious and have large contributions from roundoff error. + + Fits using Hermite series are probably most useful when the data can be + approximated by ``sqrt(w(x)) * p(x)``, where ``w(x)`` is the Hermite + weight. In that case the weight ``sqrt(w(x[i]))`` should be used + together with data values ``y[i]/sqrt(w(x[i]))``. The weight function is + available as `hermweight`. + + References + ---------- + .. [1] Wikipedia, "Curve fitting", + https://en.wikipedia.org/wiki/Curve_fitting + + Examples + -------- + >>> import numpy as np + >>> from numpy.polynomial.hermite import hermfit, hermval + >>> x = np.linspace(-10, 10) + >>> rng = np.random.default_rng() + >>> err = rng.normal(scale=1./10, size=len(x)) + >>> y = hermval(x, [1, 2, 3]) + err + >>> hermfit(x, y, 2) + array([1.02294967, 2.00016403, 2.99994614]) # may vary + + """ + return pu._fit(hermvander, x, y, deg, rcond, full, w) + + +def hermcompanion(c): + """Return the scaled companion matrix of c. + + The basis polynomials are scaled so that the companion matrix is + symmetric when `c` is an Hermite basis polynomial. This provides + better eigenvalue estimates than the unscaled case and for basis + polynomials the eigenvalues are guaranteed to be real if + `numpy.linalg.eigvalsh` is used to obtain them. + + Parameters + ---------- + c : array_like + 1-D array of Hermite series coefficients ordered from low to high + degree. + + Returns + ------- + mat : ndarray + Scaled companion matrix of dimensions (deg, deg). + + Examples + -------- + >>> from numpy.polynomial.hermite import hermcompanion + >>> hermcompanion([1, 0, 1]) + array([[0. , 0.35355339], + [0.70710678, 0. ]]) + + """ + # c is a trimmed copy + [c] = pu.as_series([c]) + if len(c) < 2: + raise ValueError('Series must have maximum degree of at least 1.') + if len(c) == 2: + return np.array([[-.5 * c[0] / c[1]]]) + + n = len(c) - 1 + mat = np.zeros((n, n), dtype=c.dtype) + scl = np.hstack((1., 1. / np.sqrt(2. * np.arange(n - 1, 0, -1)))) + scl = np.multiply.accumulate(scl)[::-1] + top = mat.reshape(-1)[1::n + 1] + bot = mat.reshape(-1)[n::n + 1] + top[...] = np.sqrt(.5 * np.arange(1, n)) + bot[...] = top + mat[:, -1] -= scl * c[:-1] / (2.0 * c[-1]) + return mat + + +def hermroots(c): + """ + Compute the roots of a Hermite series. + + Return the roots (a.k.a. "zeros") of the polynomial + + .. math:: p(x) = \\sum_i c[i] * H_i(x). + + Parameters + ---------- + c : 1-D array_like + 1-D array of coefficients. + + Returns + ------- + out : ndarray + Array of the roots of the series. If all the roots are real, + then `out` is also real, otherwise it is complex. + + See Also + -------- + numpy.polynomial.polynomial.polyroots + numpy.polynomial.legendre.legroots + numpy.polynomial.laguerre.lagroots + numpy.polynomial.chebyshev.chebroots + numpy.polynomial.hermite_e.hermeroots + + Notes + ----- + The root estimates are obtained as the eigenvalues of the companion + matrix, Roots far from the origin of the complex plane may have large + errors due to the numerical instability of the series for such + values. Roots with multiplicity greater than 1 will also show larger + errors as the value of the series near such points is relatively + insensitive to errors in the roots. Isolated roots near the origin can + be improved by a few iterations of Newton's method. + + The Hermite series basis polynomials aren't powers of `x` so the + results of this function may seem unintuitive. + + Examples + -------- + >>> from numpy.polynomial.hermite import hermroots, hermfromroots + >>> coef = hermfromroots([-1, 0, 1]) + >>> coef + array([0. , 0.25 , 0. , 0.125]) + >>> hermroots(coef) + array([-1.00000000e+00, -1.38777878e-17, 1.00000000e+00]) + + """ + # c is a trimmed copy + [c] = pu.as_series([c]) + if len(c) <= 1: + return np.array([], dtype=c.dtype) + if len(c) == 2: + return np.array([-.5 * c[0] / c[1]]) + + # rotated companion matrix reduces error + m = hermcompanion(c)[::-1, ::-1] + r = la.eigvals(m) + r.sort() + return r + + +def _normed_hermite_n(x, n): + """ + Evaluate a normalized Hermite polynomial. + + Compute the value of the normalized Hermite polynomial of degree ``n`` + at the points ``x``. + + + Parameters + ---------- + x : ndarray of double. + Points at which to evaluate the function + n : int + Degree of the normalized Hermite function to be evaluated. + + Returns + ------- + values : ndarray + The shape of the return value is described above. + + Notes + ----- + This function is needed for finding the Gauss points and integration + weights for high degrees. The values of the standard Hermite functions + overflow when n >= 207. + + """ + if n == 0: + return np.full(x.shape, 1 / np.sqrt(np.sqrt(np.pi))) + + c0 = 0. + c1 = 1. / np.sqrt(np.sqrt(np.pi)) + nd = float(n) + for i in range(n - 1): + tmp = c0 + c0 = -c1 * np.sqrt((nd - 1.) / nd) + c1 = tmp + c1 * x * np.sqrt(2. / nd) + nd = nd - 1.0 + return c0 + c1 * x * np.sqrt(2) + + +def hermgauss(deg): + """ + Gauss-Hermite quadrature. + + Computes the sample points and weights for Gauss-Hermite quadrature. + These sample points and weights will correctly integrate polynomials of + degree :math:`2*deg - 1` or less over the interval :math:`[-\\inf, \\inf]` + with the weight function :math:`f(x) = \\exp(-x^2)`. + + Parameters + ---------- + deg : int + Number of sample points and weights. It must be >= 1. + + Returns + ------- + x : ndarray + 1-D ndarray containing the sample points. + y : ndarray + 1-D ndarray containing the weights. + + Notes + ----- + The results have only been tested up to degree 100, higher degrees may + be problematic. The weights are determined by using the fact that + + .. math:: w_k = c / (H'_n(x_k) * H_{n-1}(x_k)) + + where :math:`c` is a constant independent of :math:`k` and :math:`x_k` + is the k'th root of :math:`H_n`, and then scaling the results to get + the right value when integrating 1. + + Examples + -------- + >>> from numpy.polynomial.hermite import hermgauss + >>> hermgauss(2) + (array([-0.70710678, 0.70710678]), array([0.88622693, 0.88622693])) + + """ + ideg = pu._as_int(deg, "deg") + if ideg <= 0: + raise ValueError("deg must be a positive integer") + + # first approximation of roots. We use the fact that the companion + # matrix is symmetric in this case in order to obtain better zeros. + c = np.array([0] * deg + [1], dtype=np.float64) + m = hermcompanion(c) + x = la.eigvalsh(m) + + # improve roots by one application of Newton + dy = _normed_hermite_n(x, ideg) + df = _normed_hermite_n(x, ideg - 1) * np.sqrt(2 * ideg) + x -= dy / df + + # compute the weights. We scale the factor to avoid possible numerical + # overflow. + fm = _normed_hermite_n(x, ideg - 1) + fm /= np.abs(fm).max() + w = 1 / (fm * fm) + + # for Hermite we can also symmetrize + w = (w + w[::-1]) / 2 + x = (x - x[::-1]) / 2 + + # scale w to get the right value + w *= np.sqrt(np.pi) / w.sum() + + return x, w + + +def hermweight(x): + """ + Weight function of the Hermite polynomials. + + The weight function is :math:`\\exp(-x^2)` and the interval of + integration is :math:`[-\\inf, \\inf]`. the Hermite polynomials are + orthogonal, but not normalized, with respect to this weight function. + + Parameters + ---------- + x : array_like + Values at which the weight function will be computed. + + Returns + ------- + w : ndarray + The weight function at `x`. + + Examples + -------- + >>> import numpy as np + >>> from numpy.polynomial.hermite import hermweight + >>> x = np.arange(-2, 2) + >>> hermweight(x) + array([0.01831564, 0.36787944, 1. , 0.36787944]) + + """ + w = np.exp(-x**2) + return w + + +# +# Hermite series class +# + +class Hermite(ABCPolyBase): + """An Hermite series class. + + The Hermite class provides the standard Python numerical methods + '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the + attributes and methods listed below. + + Parameters + ---------- + coef : array_like + Hermite coefficients in order of increasing degree, i.e, + ``(1, 2, 3)`` gives ``1*H_0(x) + 2*H_1(x) + 3*H_2(x)``. + domain : (2,) array_like, optional + Domain to use. The interval ``[domain[0], domain[1]]`` is mapped + to the interval ``[window[0], window[1]]`` by shifting and scaling. + The default value is [-1., 1.]. + window : (2,) array_like, optional + Window, see `domain` for its use. The default value is [-1., 1.]. + symbol : str, optional + Symbol used to represent the independent variable in string + representations of the polynomial expression, e.g. for printing. + The symbol must be a valid Python identifier. Default value is 'x'. + + .. versionadded:: 1.24 + + """ + # Virtual Functions + _add = staticmethod(hermadd) + _sub = staticmethod(hermsub) + _mul = staticmethod(hermmul) + _div = staticmethod(hermdiv) + _pow = staticmethod(hermpow) + _val = staticmethod(hermval) + _int = staticmethod(hermint) + _der = staticmethod(hermder) + _fit = staticmethod(hermfit) + _line = staticmethod(hermline) + _roots = staticmethod(hermroots) + _fromroots = staticmethod(hermfromroots) + + # Virtual properties + domain = np.array(hermdomain) + window = np.array(hermdomain) + basis_name = 'H' diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/hermite.pyi b/.venv/lib/python3.12/site-packages/numpy/polynomial/hermite.pyi new file mode 100644 index 0000000..f7d907c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/hermite.pyi @@ -0,0 +1,107 @@ +from typing import Any, Final, TypeVar +from typing import Literal as L + +import numpy as np + +from ._polybase import ABCPolyBase +from ._polytypes import ( + _Array1, + _Array2, + _FuncBinOp, + _FuncCompanion, + _FuncDer, + _FuncFit, + _FuncFromRoots, + _FuncGauss, + _FuncInteg, + _FuncLine, + _FuncPoly2Ortho, + _FuncPow, + _FuncRoots, + _FuncUnOp, + _FuncVal, + _FuncVal2D, + _FuncVal3D, + _FuncValFromRoots, + _FuncVander, + _FuncVander2D, + _FuncVander3D, + _FuncWeight, +) +from .polyutils import trimcoef as hermtrim + +__all__ = [ + "hermzero", + "hermone", + "hermx", + "hermdomain", + "hermline", + "hermadd", + "hermsub", + "hermmulx", + "hermmul", + "hermdiv", + "hermpow", + "hermval", + "hermder", + "hermint", + "herm2poly", + "poly2herm", + "hermfromroots", + "hermvander", + "hermfit", + "hermtrim", + "hermroots", + "Hermite", + "hermval2d", + "hermval3d", + "hermgrid2d", + "hermgrid3d", + "hermvander2d", + "hermvander3d", + "hermcompanion", + "hermgauss", + "hermweight", +] + +poly2herm: _FuncPoly2Ortho[L["poly2herm"]] +herm2poly: _FuncUnOp[L["herm2poly"]] + +hermdomain: Final[_Array2[np.float64]] +hermzero: Final[_Array1[np.int_]] +hermone: Final[_Array1[np.int_]] +hermx: Final[_Array2[np.int_]] + +hermline: _FuncLine[L["hermline"]] +hermfromroots: _FuncFromRoots[L["hermfromroots"]] +hermadd: _FuncBinOp[L["hermadd"]] +hermsub: _FuncBinOp[L["hermsub"]] +hermmulx: _FuncUnOp[L["hermmulx"]] +hermmul: _FuncBinOp[L["hermmul"]] +hermdiv: _FuncBinOp[L["hermdiv"]] +hermpow: _FuncPow[L["hermpow"]] +hermder: _FuncDer[L["hermder"]] +hermint: _FuncInteg[L["hermint"]] +hermval: _FuncVal[L["hermval"]] +hermval2d: _FuncVal2D[L["hermval2d"]] +hermval3d: _FuncVal3D[L["hermval3d"]] +hermvalfromroots: _FuncValFromRoots[L["hermvalfromroots"]] +hermgrid2d: _FuncVal2D[L["hermgrid2d"]] +hermgrid3d: _FuncVal3D[L["hermgrid3d"]] +hermvander: _FuncVander[L["hermvander"]] +hermvander2d: _FuncVander2D[L["hermvander2d"]] +hermvander3d: _FuncVander3D[L["hermvander3d"]] +hermfit: _FuncFit[L["hermfit"]] +hermcompanion: _FuncCompanion[L["hermcompanion"]] +hermroots: _FuncRoots[L["hermroots"]] + +_ND = TypeVar("_ND", bound=Any) +def _normed_hermite_n( + x: np.ndarray[_ND, np.dtype[np.float64]], + n: int | np.intp, +) -> np.ndarray[_ND, np.dtype[np.float64]]: ... + +hermgauss: _FuncGauss[L["hermgauss"]] +hermweight: _FuncWeight[L["hermweight"]] + +class Hermite(ABCPolyBase[L["H"]]): ... diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/hermite_e.py b/.venv/lib/python3.12/site-packages/numpy/polynomial/hermite_e.py new file mode 100644 index 0000000..d30fc1b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/hermite_e.py @@ -0,0 +1,1642 @@ +""" +=================================================================== +HermiteE Series, "Probabilists" (:mod:`numpy.polynomial.hermite_e`) +=================================================================== + +This module provides a number of objects (mostly functions) useful for +dealing with Hermite_e series, including a `HermiteE` class that +encapsulates the usual arithmetic operations. (General information +on how this module represents and works with such polynomials is in the +docstring for its "parent" sub-package, `numpy.polynomial`). + +Classes +------- +.. autosummary:: + :toctree: generated/ + + HermiteE + +Constants +--------- +.. autosummary:: + :toctree: generated/ + + hermedomain + hermezero + hermeone + hermex + +Arithmetic +---------- +.. autosummary:: + :toctree: generated/ + + hermeadd + hermesub + hermemulx + hermemul + hermediv + hermepow + hermeval + hermeval2d + hermeval3d + hermegrid2d + hermegrid3d + +Calculus +-------- +.. autosummary:: + :toctree: generated/ + + hermeder + hermeint + +Misc Functions +-------------- +.. autosummary:: + :toctree: generated/ + + hermefromroots + hermeroots + hermevander + hermevander2d + hermevander3d + hermegauss + hermeweight + hermecompanion + hermefit + hermetrim + hermeline + herme2poly + poly2herme + +See also +-------- +`numpy.polynomial` + +""" +import numpy as np +import numpy.linalg as la +from numpy.lib.array_utils import normalize_axis_index + +from . import polyutils as pu +from ._polybase import ABCPolyBase + +__all__ = [ + 'hermezero', 'hermeone', 'hermex', 'hermedomain', 'hermeline', + 'hermeadd', 'hermesub', 'hermemulx', 'hermemul', 'hermediv', + 'hermepow', 'hermeval', 'hermeder', 'hermeint', 'herme2poly', + 'poly2herme', 'hermefromroots', 'hermevander', 'hermefit', 'hermetrim', + 'hermeroots', 'HermiteE', 'hermeval2d', 'hermeval3d', 'hermegrid2d', + 'hermegrid3d', 'hermevander2d', 'hermevander3d', 'hermecompanion', + 'hermegauss', 'hermeweight'] + +hermetrim = pu.trimcoef + + +def poly2herme(pol): + """ + poly2herme(pol) + + Convert a polynomial to a Hermite series. + + Convert an array representing the coefficients of a polynomial (relative + to the "standard" basis) ordered from lowest degree to highest, to an + array of the coefficients of the equivalent Hermite series, ordered + from lowest to highest degree. + + Parameters + ---------- + pol : array_like + 1-D array containing the polynomial coefficients + + Returns + ------- + c : ndarray + 1-D array containing the coefficients of the equivalent Hermite + series. + + See Also + -------- + herme2poly + + Notes + ----- + The easy way to do conversions between polynomial basis sets + is to use the convert method of a class instance. + + Examples + -------- + >>> import numpy as np + >>> from numpy.polynomial.hermite_e import poly2herme + >>> poly2herme(np.arange(4)) + array([ 2., 10., 2., 3.]) + + """ + [pol] = pu.as_series([pol]) + deg = len(pol) - 1 + res = 0 + for i in range(deg, -1, -1): + res = hermeadd(hermemulx(res), pol[i]) + return res + + +def herme2poly(c): + """ + Convert a Hermite series to a polynomial. + + Convert an array representing the coefficients of a Hermite series, + ordered from lowest degree to highest, to an array of the coefficients + of the equivalent polynomial (relative to the "standard" basis) ordered + from lowest to highest degree. + + Parameters + ---------- + c : array_like + 1-D array containing the Hermite series coefficients, ordered + from lowest order term to highest. + + Returns + ------- + pol : ndarray + 1-D array containing the coefficients of the equivalent polynomial + (relative to the "standard" basis) ordered from lowest order term + to highest. + + See Also + -------- + poly2herme + + Notes + ----- + The easy way to do conversions between polynomial basis sets + is to use the convert method of a class instance. + + Examples + -------- + >>> from numpy.polynomial.hermite_e import herme2poly + >>> herme2poly([ 2., 10., 2., 3.]) + array([0., 1., 2., 3.]) + + """ + from .polynomial import polyadd, polymulx, polysub + + [c] = pu.as_series([c]) + n = len(c) + if n == 1: + return c + if n == 2: + return c + else: + c0 = c[-2] + c1 = c[-1] + # i is the current degree of c1 + for i in range(n - 1, 1, -1): + tmp = c0 + c0 = polysub(c[i - 2], c1 * (i - 1)) + c1 = polyadd(tmp, polymulx(c1)) + return polyadd(c0, polymulx(c1)) + + +# +# These are constant arrays are of integer type so as to be compatible +# with the widest range of other types, such as Decimal. +# + +# Hermite +hermedomain = np.array([-1., 1.]) + +# Hermite coefficients representing zero. +hermezero = np.array([0]) + +# Hermite coefficients representing one. +hermeone = np.array([1]) + +# Hermite coefficients representing the identity x. +hermex = np.array([0, 1]) + + +def hermeline(off, scl): + """ + Hermite series whose graph is a straight line. + + Parameters + ---------- + off, scl : scalars + The specified line is given by ``off + scl*x``. + + Returns + ------- + y : ndarray + This module's representation of the Hermite series for + ``off + scl*x``. + + See Also + -------- + numpy.polynomial.polynomial.polyline + numpy.polynomial.chebyshev.chebline + numpy.polynomial.legendre.legline + numpy.polynomial.laguerre.lagline + numpy.polynomial.hermite.hermline + + Examples + -------- + >>> from numpy.polynomial.hermite_e import hermeline + >>> from numpy.polynomial.hermite_e import hermeline, hermeval + >>> hermeval(0,hermeline(3, 2)) + 3.0 + >>> hermeval(1,hermeline(3, 2)) + 5.0 + + """ + if scl != 0: + return np.array([off, scl]) + else: + return np.array([off]) + + +def hermefromroots(roots): + """ + Generate a HermiteE series with given roots. + + The function returns the coefficients of the polynomial + + .. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n), + + in HermiteE form, where the :math:`r_n` are the roots specified in `roots`. + If a zero has multiplicity n, then it must appear in `roots` n times. + For instance, if 2 is a root of multiplicity three and 3 is a root of + multiplicity 2, then `roots` looks something like [2, 2, 2, 3, 3]. The + roots can appear in any order. + + If the returned coefficients are `c`, then + + .. math:: p(x) = c_0 + c_1 * He_1(x) + ... + c_n * He_n(x) + + The coefficient of the last term is not generally 1 for monic + polynomials in HermiteE form. + + Parameters + ---------- + roots : array_like + Sequence containing the roots. + + Returns + ------- + out : ndarray + 1-D array of coefficients. If all roots are real then `out` is a + real array, if some of the roots are complex, then `out` is complex + even if all the coefficients in the result are real (see Examples + below). + + See Also + -------- + numpy.polynomial.polynomial.polyfromroots + numpy.polynomial.legendre.legfromroots + numpy.polynomial.laguerre.lagfromroots + numpy.polynomial.hermite.hermfromroots + numpy.polynomial.chebyshev.chebfromroots + + Examples + -------- + >>> from numpy.polynomial.hermite_e import hermefromroots, hermeval + >>> coef = hermefromroots((-1, 0, 1)) + >>> hermeval((-1, 0, 1), coef) + array([0., 0., 0.]) + >>> coef = hermefromroots((-1j, 1j)) + >>> hermeval((-1j, 1j), coef) + array([0.+0.j, 0.+0.j]) + + """ + return pu._fromroots(hermeline, hermemul, roots) + + +def hermeadd(c1, c2): + """ + Add one Hermite series to another. + + Returns the sum of two Hermite series `c1` + `c2`. The arguments + are sequences of coefficients ordered from lowest order term to + highest, i.e., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``. + + Parameters + ---------- + c1, c2 : array_like + 1-D arrays of Hermite series coefficients ordered from low to + high. + + Returns + ------- + out : ndarray + Array representing the Hermite series of their sum. + + See Also + -------- + hermesub, hermemulx, hermemul, hermediv, hermepow + + Notes + ----- + Unlike multiplication, division, etc., the sum of two Hermite series + is a Hermite series (without having to "reproject" the result onto + the basis set) so addition, just like that of "standard" polynomials, + is simply "component-wise." + + Examples + -------- + >>> from numpy.polynomial.hermite_e import hermeadd + >>> hermeadd([1, 2, 3], [1, 2, 3, 4]) + array([2., 4., 6., 4.]) + + """ + return pu._add(c1, c2) + + +def hermesub(c1, c2): + """ + Subtract one Hermite series from another. + + Returns the difference of two Hermite series `c1` - `c2`. The + sequences of coefficients are from lowest order term to highest, i.e., + [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``. + + Parameters + ---------- + c1, c2 : array_like + 1-D arrays of Hermite series coefficients ordered from low to + high. + + Returns + ------- + out : ndarray + Of Hermite series coefficients representing their difference. + + See Also + -------- + hermeadd, hermemulx, hermemul, hermediv, hermepow + + Notes + ----- + Unlike multiplication, division, etc., the difference of two Hermite + series is a Hermite series (without having to "reproject" the result + onto the basis set) so subtraction, just like that of "standard" + polynomials, is simply "component-wise." + + Examples + -------- + >>> from numpy.polynomial.hermite_e import hermesub + >>> hermesub([1, 2, 3, 4], [1, 2, 3]) + array([0., 0., 0., 4.]) + + """ + return pu._sub(c1, c2) + + +def hermemulx(c): + """Multiply a Hermite series by x. + + Multiply the Hermite series `c` by x, where x is the independent + variable. + + + Parameters + ---------- + c : array_like + 1-D array of Hermite series coefficients ordered from low to + high. + + Returns + ------- + out : ndarray + Array representing the result of the multiplication. + + See Also + -------- + hermeadd, hermesub, hermemul, hermediv, hermepow + + Notes + ----- + The multiplication uses the recursion relationship for Hermite + polynomials in the form + + .. math:: + + xP_i(x) = (P_{i + 1}(x) + iP_{i - 1}(x))) + + Examples + -------- + >>> from numpy.polynomial.hermite_e import hermemulx + >>> hermemulx([1, 2, 3]) + array([2., 7., 2., 3.]) + + """ + # c is a trimmed copy + [c] = pu.as_series([c]) + # The zero series needs special treatment + if len(c) == 1 and c[0] == 0: + return c + + prd = np.empty(len(c) + 1, dtype=c.dtype) + prd[0] = c[0] * 0 + prd[1] = c[0] + for i in range(1, len(c)): + prd[i + 1] = c[i] + prd[i - 1] += c[i] * i + return prd + + +def hermemul(c1, c2): + """ + Multiply one Hermite series by another. + + Returns the product of two Hermite series `c1` * `c2`. The arguments + are sequences of coefficients, from lowest order "term" to highest, + e.g., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``. + + Parameters + ---------- + c1, c2 : array_like + 1-D arrays of Hermite series coefficients ordered from low to + high. + + Returns + ------- + out : ndarray + Of Hermite series coefficients representing their product. + + See Also + -------- + hermeadd, hermesub, hermemulx, hermediv, hermepow + + Notes + ----- + In general, the (polynomial) product of two C-series results in terms + that are not in the Hermite polynomial basis set. Thus, to express + the product as a Hermite series, it is necessary to "reproject" the + product onto said basis set, which may produce "unintuitive" (but + correct) results; see Examples section below. + + Examples + -------- + >>> from numpy.polynomial.hermite_e import hermemul + >>> hermemul([1, 2, 3], [0, 1, 2]) + array([14., 15., 28., 7., 6.]) + + """ + # s1, s2 are trimmed copies + [c1, c2] = pu.as_series([c1, c2]) + + if len(c1) > len(c2): + c = c2 + xs = c1 + else: + c = c1 + xs = c2 + + if len(c) == 1: + c0 = c[0] * xs + c1 = 0 + elif len(c) == 2: + c0 = c[0] * xs + c1 = c[1] * xs + else: + nd = len(c) + c0 = c[-2] * xs + c1 = c[-1] * xs + for i in range(3, len(c) + 1): + tmp = c0 + nd = nd - 1 + c0 = hermesub(c[-i] * xs, c1 * (nd - 1)) + c1 = hermeadd(tmp, hermemulx(c1)) + return hermeadd(c0, hermemulx(c1)) + + +def hermediv(c1, c2): + """ + Divide one Hermite series by another. + + Returns the quotient-with-remainder of two Hermite series + `c1` / `c2`. The arguments are sequences of coefficients from lowest + order "term" to highest, e.g., [1,2,3] represents the series + ``P_0 + 2*P_1 + 3*P_2``. + + Parameters + ---------- + c1, c2 : array_like + 1-D arrays of Hermite series coefficients ordered from low to + high. + + Returns + ------- + [quo, rem] : ndarrays + Of Hermite series coefficients representing the quotient and + remainder. + + See Also + -------- + hermeadd, hermesub, hermemulx, hermemul, hermepow + + Notes + ----- + In general, the (polynomial) division of one Hermite series by another + results in quotient and remainder terms that are not in the Hermite + polynomial basis set. Thus, to express these results as a Hermite + series, it is necessary to "reproject" the results onto the Hermite + basis set, which may produce "unintuitive" (but correct) results; see + Examples section below. + + Examples + -------- + >>> from numpy.polynomial.hermite_e import hermediv + >>> hermediv([ 14., 15., 28., 7., 6.], [0, 1, 2]) + (array([1., 2., 3.]), array([0.])) + >>> hermediv([ 15., 17., 28., 7., 6.], [0, 1, 2]) + (array([1., 2., 3.]), array([1., 2.])) + + """ + return pu._div(hermemul, c1, c2) + + +def hermepow(c, pow, maxpower=16): + """Raise a Hermite series to a power. + + Returns the Hermite series `c` raised to the power `pow`. The + argument `c` is a sequence of coefficients ordered from low to high. + i.e., [1,2,3] is the series ``P_0 + 2*P_1 + 3*P_2.`` + + Parameters + ---------- + c : array_like + 1-D array of Hermite series coefficients ordered from low to + high. + pow : integer + Power to which the series will be raised + maxpower : integer, optional + Maximum power allowed. This is mainly to limit growth of the series + to unmanageable size. Default is 16 + + Returns + ------- + coef : ndarray + Hermite series of power. + + See Also + -------- + hermeadd, hermesub, hermemulx, hermemul, hermediv + + Examples + -------- + >>> from numpy.polynomial.hermite_e import hermepow + >>> hermepow([1, 2, 3], 2) + array([23., 28., 46., 12., 9.]) + + """ + return pu._pow(hermemul, c, pow, maxpower) + + +def hermeder(c, m=1, scl=1, axis=0): + """ + Differentiate a Hermite_e series. + + Returns the series coefficients `c` differentiated `m` times along + `axis`. At each iteration the result is multiplied by `scl` (the + scaling factor is for use in a linear change of variable). The argument + `c` is an array of coefficients from low to high degree along each + axis, e.g., [1,2,3] represents the series ``1*He_0 + 2*He_1 + 3*He_2`` + while [[1,2],[1,2]] represents ``1*He_0(x)*He_0(y) + 1*He_1(x)*He_0(y) + + 2*He_0(x)*He_1(y) + 2*He_1(x)*He_1(y)`` if axis=0 is ``x`` and axis=1 + is ``y``. + + Parameters + ---------- + c : array_like + Array of Hermite_e series coefficients. If `c` is multidimensional + the different axis correspond to different variables with the + degree in each axis given by the corresponding index. + m : int, optional + Number of derivatives taken, must be non-negative. (Default: 1) + scl : scalar, optional + Each differentiation is multiplied by `scl`. The end result is + multiplication by ``scl**m``. This is for use in a linear change of + variable. (Default: 1) + axis : int, optional + Axis over which the derivative is taken. (Default: 0). + + Returns + ------- + der : ndarray + Hermite series of the derivative. + + See Also + -------- + hermeint + + Notes + ----- + In general, the result of differentiating a Hermite series does not + resemble the same operation on a power series. Thus the result of this + function may be "unintuitive," albeit correct; see Examples section + below. + + Examples + -------- + >>> from numpy.polynomial.hermite_e import hermeder + >>> hermeder([ 1., 1., 1., 1.]) + array([1., 2., 3.]) + >>> hermeder([-0.25, 1., 1./2., 1./3., 1./4 ], m=2) + array([1., 2., 3.]) + + """ + c = np.array(c, ndmin=1, copy=True) + if c.dtype.char in '?bBhHiIlLqQpP': + c = c.astype(np.double) + cnt = pu._as_int(m, "the order of derivation") + iaxis = pu._as_int(axis, "the axis") + if cnt < 0: + raise ValueError("The order of derivation must be non-negative") + iaxis = normalize_axis_index(iaxis, c.ndim) + + if cnt == 0: + return c + + c = np.moveaxis(c, iaxis, 0) + n = len(c) + if cnt >= n: + return c[:1] * 0 + else: + for i in range(cnt): + n = n - 1 + c *= scl + der = np.empty((n,) + c.shape[1:], dtype=c.dtype) + for j in range(n, 0, -1): + der[j - 1] = j * c[j] + c = der + c = np.moveaxis(c, 0, iaxis) + return c + + +def hermeint(c, m=1, k=[], lbnd=0, scl=1, axis=0): + """ + Integrate a Hermite_e series. + + Returns the Hermite_e series coefficients `c` integrated `m` times from + `lbnd` along `axis`. At each iteration the resulting series is + **multiplied** by `scl` and an integration constant, `k`, is added. + The scaling factor is for use in a linear change of variable. ("Buyer + beware": note that, depending on what one is doing, one may want `scl` + to be the reciprocal of what one might expect; for more information, + see the Notes section below.) The argument `c` is an array of + coefficients from low to high degree along each axis, e.g., [1,2,3] + represents the series ``H_0 + 2*H_1 + 3*H_2`` while [[1,2],[1,2]] + represents ``1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) + 2*H_0(x)*H_1(y) + + 2*H_1(x)*H_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``. + + Parameters + ---------- + c : array_like + Array of Hermite_e series coefficients. If c is multidimensional + the different axis correspond to different variables with the + degree in each axis given by the corresponding index. + m : int, optional + Order of integration, must be positive. (Default: 1) + k : {[], list, scalar}, optional + Integration constant(s). The value of the first integral at + ``lbnd`` is the first value in the list, the value of the second + integral at ``lbnd`` is the second value, etc. If ``k == []`` (the + default), all constants are set to zero. If ``m == 1``, a single + scalar can be given instead of a list. + lbnd : scalar, optional + The lower bound of the integral. (Default: 0) + scl : scalar, optional + Following each integration the result is *multiplied* by `scl` + before the integration constant is added. (Default: 1) + axis : int, optional + Axis over which the integral is taken. (Default: 0). + + Returns + ------- + S : ndarray + Hermite_e series coefficients of the integral. + + Raises + ------ + ValueError + If ``m < 0``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or + ``np.ndim(scl) != 0``. + + See Also + -------- + hermeder + + Notes + ----- + Note that the result of each integration is *multiplied* by `scl`. + Why is this important to note? Say one is making a linear change of + variable :math:`u = ax + b` in an integral relative to `x`. Then + :math:`dx = du/a`, so one will need to set `scl` equal to + :math:`1/a` - perhaps not what one would have first thought. + + Also note that, in general, the result of integrating a C-series needs + to be "reprojected" onto the C-series basis set. Thus, typically, + the result of this function is "unintuitive," albeit correct; see + Examples section below. + + Examples + -------- + >>> from numpy.polynomial.hermite_e import hermeint + >>> hermeint([1, 2, 3]) # integrate once, value 0 at 0. + array([1., 1., 1., 1.]) + >>> hermeint([1, 2, 3], m=2) # integrate twice, value & deriv 0 at 0 + array([-0.25 , 1. , 0.5 , 0.33333333, 0.25 ]) # may vary + >>> hermeint([1, 2, 3], k=1) # integrate once, value 1 at 0. + array([2., 1., 1., 1.]) + >>> hermeint([1, 2, 3], lbnd=-1) # integrate once, value 0 at -1 + array([-1., 1., 1., 1.]) + >>> hermeint([1, 2, 3], m=2, k=[1, 2], lbnd=-1) + array([ 1.83333333, 0. , 0.5 , 0.33333333, 0.25 ]) # may vary + + """ + c = np.array(c, ndmin=1, copy=True) + if c.dtype.char in '?bBhHiIlLqQpP': + c = c.astype(np.double) + if not np.iterable(k): + k = [k] + cnt = pu._as_int(m, "the order of integration") + iaxis = pu._as_int(axis, "the axis") + if cnt < 0: + raise ValueError("The order of integration must be non-negative") + if len(k) > cnt: + raise ValueError("Too many integration constants") + if np.ndim(lbnd) != 0: + raise ValueError("lbnd must be a scalar.") + if np.ndim(scl) != 0: + raise ValueError("scl must be a scalar.") + iaxis = normalize_axis_index(iaxis, c.ndim) + + if cnt == 0: + return c + + c = np.moveaxis(c, iaxis, 0) + k = list(k) + [0] * (cnt - len(k)) + for i in range(cnt): + n = len(c) + c *= scl + if n == 1 and np.all(c[0] == 0): + c[0] += k[i] + else: + tmp = np.empty((n + 1,) + c.shape[1:], dtype=c.dtype) + tmp[0] = c[0] * 0 + tmp[1] = c[0] + for j in range(1, n): + tmp[j + 1] = c[j] / (j + 1) + tmp[0] += k[i] - hermeval(lbnd, tmp) + c = tmp + c = np.moveaxis(c, 0, iaxis) + return c + + +def hermeval(x, c, tensor=True): + """ + Evaluate an HermiteE series at points x. + + If `c` is of length ``n + 1``, this function returns the value: + + .. math:: p(x) = c_0 * He_0(x) + c_1 * He_1(x) + ... + c_n * He_n(x) + + The parameter `x` is converted to an array only if it is a tuple or a + list, otherwise it is treated as a scalar. In either case, either `x` + or its elements must support multiplication and addition both with + themselves and with the elements of `c`. + + If `c` is a 1-D array, then ``p(x)`` will have the same shape as `x`. If + `c` is multidimensional, then the shape of the result depends on the + value of `tensor`. If `tensor` is true the shape will be c.shape[1:] + + x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that + scalars have shape (,). + + Trailing zeros in the coefficients will be used in the evaluation, so + they should be avoided if efficiency is a concern. + + Parameters + ---------- + x : array_like, compatible object + If `x` is a list or tuple, it is converted to an ndarray, otherwise + it is left unchanged and treated as a scalar. In either case, `x` + or its elements must support addition and multiplication with + with themselves and with the elements of `c`. + c : array_like + Array of coefficients ordered so that the coefficients for terms of + degree n are contained in c[n]. If `c` is multidimensional the + remaining indices enumerate multiple polynomials. In the two + dimensional case the coefficients may be thought of as stored in + the columns of `c`. + tensor : boolean, optional + If True, the shape of the coefficient array is extended with ones + on the right, one for each dimension of `x`. Scalars have dimension 0 + for this action. The result is that every column of coefficients in + `c` is evaluated for every element of `x`. If False, `x` is broadcast + over the columns of `c` for the evaluation. This keyword is useful + when `c` is multidimensional. The default value is True. + + Returns + ------- + values : ndarray, algebra_like + The shape of the return value is described above. + + See Also + -------- + hermeval2d, hermegrid2d, hermeval3d, hermegrid3d + + Notes + ----- + The evaluation uses Clenshaw recursion, aka synthetic division. + + Examples + -------- + >>> from numpy.polynomial.hermite_e import hermeval + >>> coef = [1,2,3] + >>> hermeval(1, coef) + 3.0 + >>> hermeval([[1,2],[3,4]], coef) + array([[ 3., 14.], + [31., 54.]]) + + """ + c = np.array(c, ndmin=1, copy=None) + if c.dtype.char in '?bBhHiIlLqQpP': + c = c.astype(np.double) + if isinstance(x, (tuple, list)): + x = np.asarray(x) + if isinstance(x, np.ndarray) and tensor: + c = c.reshape(c.shape + (1,) * x.ndim) + + if len(c) == 1: + c0 = c[0] + c1 = 0 + elif len(c) == 2: + c0 = c[0] + c1 = c[1] + else: + nd = len(c) + c0 = c[-2] + c1 = c[-1] + for i in range(3, len(c) + 1): + tmp = c0 + nd = nd - 1 + c0 = c[-i] - c1 * (nd - 1) + c1 = tmp + c1 * x + return c0 + c1 * x + + +def hermeval2d(x, y, c): + """ + Evaluate a 2-D HermiteE series at points (x, y). + + This function returns the values: + + .. math:: p(x,y) = \\sum_{i,j} c_{i,j} * He_i(x) * He_j(y) + + The parameters `x` and `y` are converted to arrays only if they are + tuples or a lists, otherwise they are treated as a scalars and they + must have the same shape after conversion. In either case, either `x` + and `y` or their elements must support multiplication and addition both + with themselves and with the elements of `c`. + + If `c` is a 1-D array a one is implicitly appended to its shape to make + it 2-D. The shape of the result will be c.shape[2:] + x.shape. + + Parameters + ---------- + x, y : array_like, compatible objects + The two dimensional series is evaluated at the points ``(x, y)``, + where `x` and `y` must have the same shape. If `x` or `y` is a list + or tuple, it is first converted to an ndarray, otherwise it is left + unchanged and if it isn't an ndarray it is treated as a scalar. + c : array_like + Array of coefficients ordered so that the coefficient of the term + of multi-degree i,j is contained in ``c[i,j]``. If `c` has + dimension greater than two the remaining indices enumerate multiple + sets of coefficients. + + Returns + ------- + values : ndarray, compatible object + The values of the two dimensional polynomial at points formed with + pairs of corresponding values from `x` and `y`. + + See Also + -------- + hermeval, hermegrid2d, hermeval3d, hermegrid3d + """ + return pu._valnd(hermeval, c, x, y) + + +def hermegrid2d(x, y, c): + """ + Evaluate a 2-D HermiteE series on the Cartesian product of x and y. + + This function returns the values: + + .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * H_i(a) * H_j(b) + + where the points ``(a, b)`` consist of all pairs formed by taking + `a` from `x` and `b` from `y`. The resulting points form a grid with + `x` in the first dimension and `y` in the second. + + The parameters `x` and `y` are converted to arrays only if they are + tuples or a lists, otherwise they are treated as a scalars. In either + case, either `x` and `y` or their elements must support multiplication + and addition both with themselves and with the elements of `c`. + + If `c` has fewer than two dimensions, ones are implicitly appended to + its shape to make it 2-D. The shape of the result will be c.shape[2:] + + x.shape. + + Parameters + ---------- + x, y : array_like, compatible objects + The two dimensional series is evaluated at the points in the + Cartesian product of `x` and `y`. If `x` or `y` is a list or + tuple, it is first converted to an ndarray, otherwise it is left + unchanged and, if it isn't an ndarray, it is treated as a scalar. + c : array_like + Array of coefficients ordered so that the coefficients for terms of + degree i,j are contained in ``c[i,j]``. If `c` has dimension + greater than two the remaining indices enumerate multiple sets of + coefficients. + + Returns + ------- + values : ndarray, compatible object + The values of the two dimensional polynomial at points in the Cartesian + product of `x` and `y`. + + See Also + -------- + hermeval, hermeval2d, hermeval3d, hermegrid3d + """ + return pu._gridnd(hermeval, c, x, y) + + +def hermeval3d(x, y, z, c): + """ + Evaluate a 3-D Hermite_e series at points (x, y, z). + + This function returns the values: + + .. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * He_i(x) * He_j(y) * He_k(z) + + The parameters `x`, `y`, and `z` are converted to arrays only if + they are tuples or a lists, otherwise they are treated as a scalars and + they must have the same shape after conversion. In either case, either + `x`, `y`, and `z` or their elements must support multiplication and + addition both with themselves and with the elements of `c`. + + If `c` has fewer than 3 dimensions, ones are implicitly appended to its + shape to make it 3-D. The shape of the result will be c.shape[3:] + + x.shape. + + Parameters + ---------- + x, y, z : array_like, compatible object + The three dimensional series is evaluated at the points + `(x, y, z)`, where `x`, `y`, and `z` must have the same shape. If + any of `x`, `y`, or `z` is a list or tuple, it is first converted + to an ndarray, otherwise it is left unchanged and if it isn't an + ndarray it is treated as a scalar. + c : array_like + Array of coefficients ordered so that the coefficient of the term of + multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension + greater than 3 the remaining indices enumerate multiple sets of + coefficients. + + Returns + ------- + values : ndarray, compatible object + The values of the multidimensional polynomial on points formed with + triples of corresponding values from `x`, `y`, and `z`. + + See Also + -------- + hermeval, hermeval2d, hermegrid2d, hermegrid3d + """ + return pu._valnd(hermeval, c, x, y, z) + + +def hermegrid3d(x, y, z, c): + """ + Evaluate a 3-D HermiteE series on the Cartesian product of x, y, and z. + + This function returns the values: + + .. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * He_i(a) * He_j(b) * He_k(c) + + where the points ``(a, b, c)`` consist of all triples formed by taking + `a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form + a grid with `x` in the first dimension, `y` in the second, and `z` in + the third. + + The parameters `x`, `y`, and `z` are converted to arrays only if they + are tuples or a lists, otherwise they are treated as a scalars. In + either case, either `x`, `y`, and `z` or their elements must support + multiplication and addition both with themselves and with the elements + of `c`. + + If `c` has fewer than three dimensions, ones are implicitly appended to + its shape to make it 3-D. The shape of the result will be c.shape[3:] + + x.shape + y.shape + z.shape. + + Parameters + ---------- + x, y, z : array_like, compatible objects + The three dimensional series is evaluated at the points in the + Cartesian product of `x`, `y`, and `z`. If `x`, `y`, or `z` is a + list or tuple, it is first converted to an ndarray, otherwise it is + left unchanged and, if it isn't an ndarray, it is treated as a + scalar. + c : array_like + Array of coefficients ordered so that the coefficients for terms of + degree i,j are contained in ``c[i,j]``. If `c` has dimension + greater than two the remaining indices enumerate multiple sets of + coefficients. + + Returns + ------- + values : ndarray, compatible object + The values of the two dimensional polynomial at points in the Cartesian + product of `x` and `y`. + + See Also + -------- + hermeval, hermeval2d, hermegrid2d, hermeval3d + """ + return pu._gridnd(hermeval, c, x, y, z) + + +def hermevander(x, deg): + """Pseudo-Vandermonde matrix of given degree. + + Returns the pseudo-Vandermonde matrix of degree `deg` and sample points + `x`. The pseudo-Vandermonde matrix is defined by + + .. math:: V[..., i] = He_i(x), + + where ``0 <= i <= deg``. The leading indices of `V` index the elements of + `x` and the last index is the degree of the HermiteE polynomial. + + If `c` is a 1-D array of coefficients of length ``n + 1`` and `V` is the + array ``V = hermevander(x, n)``, then ``np.dot(V, c)`` and + ``hermeval(x, c)`` are the same up to roundoff. This equivalence is + useful both for least squares fitting and for the evaluation of a large + number of HermiteE series of the same degree and sample points. + + Parameters + ---------- + x : array_like + Array of points. The dtype is converted to float64 or complex128 + depending on whether any of the elements are complex. If `x` is + scalar it is converted to a 1-D array. + deg : int + Degree of the resulting matrix. + + Returns + ------- + vander : ndarray + The pseudo-Vandermonde matrix. The shape of the returned matrix is + ``x.shape + (deg + 1,)``, where The last index is the degree of the + corresponding HermiteE polynomial. The dtype will be the same as + the converted `x`. + + Examples + -------- + >>> import numpy as np + >>> from numpy.polynomial.hermite_e import hermevander + >>> x = np.array([-1, 0, 1]) + >>> hermevander(x, 3) + array([[ 1., -1., 0., 2.], + [ 1., 0., -1., -0.], + [ 1., 1., 0., -2.]]) + + """ + ideg = pu._as_int(deg, "deg") + if ideg < 0: + raise ValueError("deg must be non-negative") + + x = np.array(x, copy=None, ndmin=1) + 0.0 + dims = (ideg + 1,) + x.shape + dtyp = x.dtype + v = np.empty(dims, dtype=dtyp) + v[0] = x * 0 + 1 + if ideg > 0: + v[1] = x + for i in range(2, ideg + 1): + v[i] = (v[i - 1] * x - v[i - 2] * (i - 1)) + return np.moveaxis(v, 0, -1) + + +def hermevander2d(x, y, deg): + """Pseudo-Vandermonde matrix of given degrees. + + Returns the pseudo-Vandermonde matrix of degrees `deg` and sample + points ``(x, y)``. The pseudo-Vandermonde matrix is defined by + + .. math:: V[..., (deg[1] + 1)*i + j] = He_i(x) * He_j(y), + + where ``0 <= i <= deg[0]`` and ``0 <= j <= deg[1]``. The leading indices of + `V` index the points ``(x, y)`` and the last index encodes the degrees of + the HermiteE polynomials. + + If ``V = hermevander2d(x, y, [xdeg, ydeg])``, then the columns of `V` + correspond to the elements of a 2-D coefficient array `c` of shape + (xdeg + 1, ydeg + 1) in the order + + .. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ... + + and ``np.dot(V, c.flat)`` and ``hermeval2d(x, y, c)`` will be the same + up to roundoff. This equivalence is useful both for least squares + fitting and for the evaluation of a large number of 2-D HermiteE + series of the same degrees and sample points. + + Parameters + ---------- + x, y : array_like + Arrays of point coordinates, all of the same shape. The dtypes + will be converted to either float64 or complex128 depending on + whether any of the elements are complex. Scalars are converted to + 1-D arrays. + deg : list of ints + List of maximum degrees of the form [x_deg, y_deg]. + + Returns + ------- + vander2d : ndarray + The shape of the returned matrix is ``x.shape + (order,)``, where + :math:`order = (deg[0]+1)*(deg[1]+1)`. The dtype will be the same + as the converted `x` and `y`. + + See Also + -------- + hermevander, hermevander3d, hermeval2d, hermeval3d + """ + return pu._vander_nd_flat((hermevander, hermevander), (x, y), deg) + + +def hermevander3d(x, y, z, deg): + """Pseudo-Vandermonde matrix of given degrees. + + Returns the pseudo-Vandermonde matrix of degrees `deg` and sample + points ``(x, y, z)``. If `l`, `m`, `n` are the given degrees in `x`, `y`, `z`, + then Hehe pseudo-Vandermonde matrix is defined by + + .. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = He_i(x)*He_j(y)*He_k(z), + + where ``0 <= i <= l``, ``0 <= j <= m``, and ``0 <= j <= n``. The leading + indices of `V` index the points ``(x, y, z)`` and the last index encodes + the degrees of the HermiteE polynomials. + + If ``V = hermevander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns + of `V` correspond to the elements of a 3-D coefficient array `c` of + shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order + + .. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},... + + and ``np.dot(V, c.flat)`` and ``hermeval3d(x, y, z, c)`` will be the + same up to roundoff. This equivalence is useful both for least squares + fitting and for the evaluation of a large number of 3-D HermiteE + series of the same degrees and sample points. + + Parameters + ---------- + x, y, z : array_like + Arrays of point coordinates, all of the same shape. The dtypes will + be converted to either float64 or complex128 depending on whether + any of the elements are complex. Scalars are converted to 1-D + arrays. + deg : list of ints + List of maximum degrees of the form [x_deg, y_deg, z_deg]. + + Returns + ------- + vander3d : ndarray + The shape of the returned matrix is ``x.shape + (order,)``, where + :math:`order = (deg[0]+1)*(deg[1]+1)*(deg[2]+1)`. The dtype will + be the same as the converted `x`, `y`, and `z`. + + See Also + -------- + hermevander, hermevander3d, hermeval2d, hermeval3d + """ + return pu._vander_nd_flat((hermevander, hermevander, hermevander), (x, y, z), deg) + + +def hermefit(x, y, deg, rcond=None, full=False, w=None): + """ + Least squares fit of Hermite series to data. + + Return the coefficients of a HermiteE series of degree `deg` that is + the least squares fit to the data values `y` given at points `x`. If + `y` is 1-D the returned coefficients will also be 1-D. If `y` is 2-D + multiple fits are done, one for each column of `y`, and the resulting + coefficients are stored in the corresponding columns of a 2-D return. + The fitted polynomial(s) are in the form + + .. math:: p(x) = c_0 + c_1 * He_1(x) + ... + c_n * He_n(x), + + where `n` is `deg`. + + Parameters + ---------- + x : array_like, shape (M,) + x-coordinates of the M sample points ``(x[i], y[i])``. + y : array_like, shape (M,) or (M, K) + y-coordinates of the sample points. Several data sets of sample + points sharing the same x-coordinates can be fitted at once by + passing in a 2D-array that contains one dataset per column. + deg : int or 1-D array_like + Degree(s) of the fitting polynomials. If `deg` is a single integer + all terms up to and including the `deg`'th term are included in the + fit. For NumPy versions >= 1.11.0 a list of integers specifying the + degrees of the terms to include may be used instead. + rcond : float, optional + Relative condition number of the fit. Singular values smaller than + this relative to the largest singular value will be ignored. The + default value is len(x)*eps, where eps is the relative precision of + the float type, about 2e-16 in most cases. + full : bool, optional + Switch determining nature of return value. When it is False (the + default) just the coefficients are returned, when True diagnostic + information from the singular value decomposition is also returned. + w : array_like, shape (`M`,), optional + Weights. If not None, the weight ``w[i]`` applies to the unsquared + residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are + chosen so that the errors of the products ``w[i]*y[i]`` all have the + same variance. When using inverse-variance weighting, use + ``w[i] = 1/sigma(y[i])``. The default value is None. + + Returns + ------- + coef : ndarray, shape (M,) or (M, K) + Hermite coefficients ordered from low to high. If `y` was 2-D, + the coefficients for the data in column k of `y` are in column + `k`. + + [residuals, rank, singular_values, rcond] : list + These values are only returned if ``full == True`` + + - residuals -- sum of squared residuals of the least squares fit + - rank -- the numerical rank of the scaled Vandermonde matrix + - singular_values -- singular values of the scaled Vandermonde matrix + - rcond -- value of `rcond`. + + For more details, see `numpy.linalg.lstsq`. + + Warns + ----- + RankWarning + The rank of the coefficient matrix in the least-squares fit is + deficient. The warning is only raised if ``full = False``. The + warnings can be turned off by + + >>> import warnings + >>> warnings.simplefilter('ignore', np.exceptions.RankWarning) + + See Also + -------- + numpy.polynomial.chebyshev.chebfit + numpy.polynomial.legendre.legfit + numpy.polynomial.polynomial.polyfit + numpy.polynomial.hermite.hermfit + numpy.polynomial.laguerre.lagfit + hermeval : Evaluates a Hermite series. + hermevander : pseudo Vandermonde matrix of Hermite series. + hermeweight : HermiteE weight function. + numpy.linalg.lstsq : Computes a least-squares fit from the matrix. + scipy.interpolate.UnivariateSpline : Computes spline fits. + + Notes + ----- + The solution is the coefficients of the HermiteE series `p` that + minimizes the sum of the weighted squared errors + + .. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2, + + where the :math:`w_j` are the weights. This problem is solved by + setting up the (typically) overdetermined matrix equation + + .. math:: V(x) * c = w * y, + + where `V` is the pseudo Vandermonde matrix of `x`, the elements of `c` + are the coefficients to be solved for, and the elements of `y` are the + observed values. This equation is then solved using the singular value + decomposition of `V`. + + If some of the singular values of `V` are so small that they are + neglected, then a `~exceptions.RankWarning` will be issued. This means that + the coefficient values may be poorly determined. Using a lower order fit + will usually get rid of the warning. The `rcond` parameter can also be + set to a value smaller than its default, but the resulting fit may be + spurious and have large contributions from roundoff error. + + Fits using HermiteE series are probably most useful when the data can + be approximated by ``sqrt(w(x)) * p(x)``, where ``w(x)`` is the HermiteE + weight. In that case the weight ``sqrt(w(x[i]))`` should be used + together with data values ``y[i]/sqrt(w(x[i]))``. The weight function is + available as `hermeweight`. + + References + ---------- + .. [1] Wikipedia, "Curve fitting", + https://en.wikipedia.org/wiki/Curve_fitting + + Examples + -------- + >>> import numpy as np + >>> from numpy.polynomial.hermite_e import hermefit, hermeval + >>> x = np.linspace(-10, 10) + >>> rng = np.random.default_rng() + >>> err = rng.normal(scale=1./10, size=len(x)) + >>> y = hermeval(x, [1, 2, 3]) + err + >>> hermefit(x, y, 2) + array([1.02284196, 2.00032805, 2.99978457]) # may vary + + """ + return pu._fit(hermevander, x, y, deg, rcond, full, w) + + +def hermecompanion(c): + """ + Return the scaled companion matrix of c. + + The basis polynomials are scaled so that the companion matrix is + symmetric when `c` is an HermiteE basis polynomial. This provides + better eigenvalue estimates than the unscaled case and for basis + polynomials the eigenvalues are guaranteed to be real if + `numpy.linalg.eigvalsh` is used to obtain them. + + Parameters + ---------- + c : array_like + 1-D array of HermiteE series coefficients ordered from low to high + degree. + + Returns + ------- + mat : ndarray + Scaled companion matrix of dimensions (deg, deg). + """ + # c is a trimmed copy + [c] = pu.as_series([c]) + if len(c) < 2: + raise ValueError('Series must have maximum degree of at least 1.') + if len(c) == 2: + return np.array([[-c[0] / c[1]]]) + + n = len(c) - 1 + mat = np.zeros((n, n), dtype=c.dtype) + scl = np.hstack((1., 1. / np.sqrt(np.arange(n - 1, 0, -1)))) + scl = np.multiply.accumulate(scl)[::-1] + top = mat.reshape(-1)[1::n + 1] + bot = mat.reshape(-1)[n::n + 1] + top[...] = np.sqrt(np.arange(1, n)) + bot[...] = top + mat[:, -1] -= scl * c[:-1] / c[-1] + return mat + + +def hermeroots(c): + """ + Compute the roots of a HermiteE series. + + Return the roots (a.k.a. "zeros") of the polynomial + + .. math:: p(x) = \\sum_i c[i] * He_i(x). + + Parameters + ---------- + c : 1-D array_like + 1-D array of coefficients. + + Returns + ------- + out : ndarray + Array of the roots of the series. If all the roots are real, + then `out` is also real, otherwise it is complex. + + See Also + -------- + numpy.polynomial.polynomial.polyroots + numpy.polynomial.legendre.legroots + numpy.polynomial.laguerre.lagroots + numpy.polynomial.hermite.hermroots + numpy.polynomial.chebyshev.chebroots + + Notes + ----- + The root estimates are obtained as the eigenvalues of the companion + matrix, Roots far from the origin of the complex plane may have large + errors due to the numerical instability of the series for such + values. Roots with multiplicity greater than 1 will also show larger + errors as the value of the series near such points is relatively + insensitive to errors in the roots. Isolated roots near the origin can + be improved by a few iterations of Newton's method. + + The HermiteE series basis polynomials aren't powers of `x` so the + results of this function may seem unintuitive. + + Examples + -------- + >>> from numpy.polynomial.hermite_e import hermeroots, hermefromroots + >>> coef = hermefromroots([-1, 0, 1]) + >>> coef + array([0., 2., 0., 1.]) + >>> hermeroots(coef) + array([-1., 0., 1.]) # may vary + + """ + # c is a trimmed copy + [c] = pu.as_series([c]) + if len(c) <= 1: + return np.array([], dtype=c.dtype) + if len(c) == 2: + return np.array([-c[0] / c[1]]) + + # rotated companion matrix reduces error + m = hermecompanion(c)[::-1, ::-1] + r = la.eigvals(m) + r.sort() + return r + + +def _normed_hermite_e_n(x, n): + """ + Evaluate a normalized HermiteE polynomial. + + Compute the value of the normalized HermiteE polynomial of degree ``n`` + at the points ``x``. + + + Parameters + ---------- + x : ndarray of double. + Points at which to evaluate the function + n : int + Degree of the normalized HermiteE function to be evaluated. + + Returns + ------- + values : ndarray + The shape of the return value is described above. + + Notes + ----- + This function is needed for finding the Gauss points and integration + weights for high degrees. The values of the standard HermiteE functions + overflow when n >= 207. + + """ + if n == 0: + return np.full(x.shape, 1 / np.sqrt(np.sqrt(2 * np.pi))) + + c0 = 0. + c1 = 1. / np.sqrt(np.sqrt(2 * np.pi)) + nd = float(n) + for i in range(n - 1): + tmp = c0 + c0 = -c1 * np.sqrt((nd - 1.) / nd) + c1 = tmp + c1 * x * np.sqrt(1. / nd) + nd = nd - 1.0 + return c0 + c1 * x + + +def hermegauss(deg): + """ + Gauss-HermiteE quadrature. + + Computes the sample points and weights for Gauss-HermiteE quadrature. + These sample points and weights will correctly integrate polynomials of + degree :math:`2*deg - 1` or less over the interval :math:`[-\\inf, \\inf]` + with the weight function :math:`f(x) = \\exp(-x^2/2)`. + + Parameters + ---------- + deg : int + Number of sample points and weights. It must be >= 1. + + Returns + ------- + x : ndarray + 1-D ndarray containing the sample points. + y : ndarray + 1-D ndarray containing the weights. + + Notes + ----- + The results have only been tested up to degree 100, higher degrees may + be problematic. The weights are determined by using the fact that + + .. math:: w_k = c / (He'_n(x_k) * He_{n-1}(x_k)) + + where :math:`c` is a constant independent of :math:`k` and :math:`x_k` + is the k'th root of :math:`He_n`, and then scaling the results to get + the right value when integrating 1. + + """ + ideg = pu._as_int(deg, "deg") + if ideg <= 0: + raise ValueError("deg must be a positive integer") + + # first approximation of roots. We use the fact that the companion + # matrix is symmetric in this case in order to obtain better zeros. + c = np.array([0] * deg + [1]) + m = hermecompanion(c) + x = la.eigvalsh(m) + + # improve roots by one application of Newton + dy = _normed_hermite_e_n(x, ideg) + df = _normed_hermite_e_n(x, ideg - 1) * np.sqrt(ideg) + x -= dy / df + + # compute the weights. We scale the factor to avoid possible numerical + # overflow. + fm = _normed_hermite_e_n(x, ideg - 1) + fm /= np.abs(fm).max() + w = 1 / (fm * fm) + + # for Hermite_e we can also symmetrize + w = (w + w[::-1]) / 2 + x = (x - x[::-1]) / 2 + + # scale w to get the right value + w *= np.sqrt(2 * np.pi) / w.sum() + + return x, w + + +def hermeweight(x): + """Weight function of the Hermite_e polynomials. + + The weight function is :math:`\\exp(-x^2/2)` and the interval of + integration is :math:`[-\\inf, \\inf]`. the HermiteE polynomials are + orthogonal, but not normalized, with respect to this weight function. + + Parameters + ---------- + x : array_like + Values at which the weight function will be computed. + + Returns + ------- + w : ndarray + The weight function at `x`. + """ + w = np.exp(-.5 * x**2) + return w + + +# +# HermiteE series class +# + +class HermiteE(ABCPolyBase): + """An HermiteE series class. + + The HermiteE class provides the standard Python numerical methods + '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the + attributes and methods listed below. + + Parameters + ---------- + coef : array_like + HermiteE coefficients in order of increasing degree, i.e, + ``(1, 2, 3)`` gives ``1*He_0(x) + 2*He_1(X) + 3*He_2(x)``. + domain : (2,) array_like, optional + Domain to use. The interval ``[domain[0], domain[1]]`` is mapped + to the interval ``[window[0], window[1]]`` by shifting and scaling. + The default value is [-1., 1.]. + window : (2,) array_like, optional + Window, see `domain` for its use. The default value is [-1., 1.]. + symbol : str, optional + Symbol used to represent the independent variable in string + representations of the polynomial expression, e.g. for printing. + The symbol must be a valid Python identifier. Default value is 'x'. + + .. versionadded:: 1.24 + + """ + # Virtual Functions + _add = staticmethod(hermeadd) + _sub = staticmethod(hermesub) + _mul = staticmethod(hermemul) + _div = staticmethod(hermediv) + _pow = staticmethod(hermepow) + _val = staticmethod(hermeval) + _int = staticmethod(hermeint) + _der = staticmethod(hermeder) + _fit = staticmethod(hermefit) + _line = staticmethod(hermeline) + _roots = staticmethod(hermeroots) + _fromroots = staticmethod(hermefromroots) + + # Virtual properties + domain = np.array(hermedomain) + window = np.array(hermedomain) + basis_name = 'He' diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/hermite_e.pyi b/.venv/lib/python3.12/site-packages/numpy/polynomial/hermite_e.pyi new file mode 100644 index 0000000..e8013e6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/hermite_e.pyi @@ -0,0 +1,107 @@ +from typing import Any, Final, TypeVar +from typing import Literal as L + +import numpy as np + +from ._polybase import ABCPolyBase +from ._polytypes import ( + _Array1, + _Array2, + _FuncBinOp, + _FuncCompanion, + _FuncDer, + _FuncFit, + _FuncFromRoots, + _FuncGauss, + _FuncInteg, + _FuncLine, + _FuncPoly2Ortho, + _FuncPow, + _FuncRoots, + _FuncUnOp, + _FuncVal, + _FuncVal2D, + _FuncVal3D, + _FuncValFromRoots, + _FuncVander, + _FuncVander2D, + _FuncVander3D, + _FuncWeight, +) +from .polyutils import trimcoef as hermetrim + +__all__ = [ + "hermezero", + "hermeone", + "hermex", + "hermedomain", + "hermeline", + "hermeadd", + "hermesub", + "hermemulx", + "hermemul", + "hermediv", + "hermepow", + "hermeval", + "hermeder", + "hermeint", + "herme2poly", + "poly2herme", + "hermefromroots", + "hermevander", + "hermefit", + "hermetrim", + "hermeroots", + "HermiteE", + "hermeval2d", + "hermeval3d", + "hermegrid2d", + "hermegrid3d", + "hermevander2d", + "hermevander3d", + "hermecompanion", + "hermegauss", + "hermeweight", +] + +poly2herme: _FuncPoly2Ortho[L["poly2herme"]] +herme2poly: _FuncUnOp[L["herme2poly"]] + +hermedomain: Final[_Array2[np.float64]] +hermezero: Final[_Array1[np.int_]] +hermeone: Final[_Array1[np.int_]] +hermex: Final[_Array2[np.int_]] + +hermeline: _FuncLine[L["hermeline"]] +hermefromroots: _FuncFromRoots[L["hermefromroots"]] +hermeadd: _FuncBinOp[L["hermeadd"]] +hermesub: _FuncBinOp[L["hermesub"]] +hermemulx: _FuncUnOp[L["hermemulx"]] +hermemul: _FuncBinOp[L["hermemul"]] +hermediv: _FuncBinOp[L["hermediv"]] +hermepow: _FuncPow[L["hermepow"]] +hermeder: _FuncDer[L["hermeder"]] +hermeint: _FuncInteg[L["hermeint"]] +hermeval: _FuncVal[L["hermeval"]] +hermeval2d: _FuncVal2D[L["hermeval2d"]] +hermeval3d: _FuncVal3D[L["hermeval3d"]] +hermevalfromroots: _FuncValFromRoots[L["hermevalfromroots"]] +hermegrid2d: _FuncVal2D[L["hermegrid2d"]] +hermegrid3d: _FuncVal3D[L["hermegrid3d"]] +hermevander: _FuncVander[L["hermevander"]] +hermevander2d: _FuncVander2D[L["hermevander2d"]] +hermevander3d: _FuncVander3D[L["hermevander3d"]] +hermefit: _FuncFit[L["hermefit"]] +hermecompanion: _FuncCompanion[L["hermecompanion"]] +hermeroots: _FuncRoots[L["hermeroots"]] + +_ND = TypeVar("_ND", bound=Any) +def _normed_hermite_e_n( + x: np.ndarray[_ND, np.dtype[np.float64]], + n: int | np.intp, +) -> np.ndarray[_ND, np.dtype[np.float64]]: ... + +hermegauss: _FuncGauss[L["hermegauss"]] +hermeweight: _FuncWeight[L["hermeweight"]] + +class HermiteE(ABCPolyBase[L["He"]]): ... diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/laguerre.py b/.venv/lib/python3.12/site-packages/numpy/polynomial/laguerre.py new file mode 100644 index 0000000..38eb5a8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/laguerre.py @@ -0,0 +1,1675 @@ +""" +================================================== +Laguerre Series (:mod:`numpy.polynomial.laguerre`) +================================================== + +This module provides a number of objects (mostly functions) useful for +dealing with Laguerre series, including a `Laguerre` class that +encapsulates the usual arithmetic operations. (General information +on how this module represents and works with such polynomials is in the +docstring for its "parent" sub-package, `numpy.polynomial`). + +Classes +------- +.. autosummary:: + :toctree: generated/ + + Laguerre + +Constants +--------- +.. autosummary:: + :toctree: generated/ + + lagdomain + lagzero + lagone + lagx + +Arithmetic +---------- +.. autosummary:: + :toctree: generated/ + + lagadd + lagsub + lagmulx + lagmul + lagdiv + lagpow + lagval + lagval2d + lagval3d + laggrid2d + laggrid3d + +Calculus +-------- +.. autosummary:: + :toctree: generated/ + + lagder + lagint + +Misc Functions +-------------- +.. autosummary:: + :toctree: generated/ + + lagfromroots + lagroots + lagvander + lagvander2d + lagvander3d + laggauss + lagweight + lagcompanion + lagfit + lagtrim + lagline + lag2poly + poly2lag + +See also +-------- +`numpy.polynomial` + +""" +import numpy as np +import numpy.linalg as la +from numpy.lib.array_utils import normalize_axis_index + +from . import polyutils as pu +from ._polybase import ABCPolyBase + +__all__ = [ + 'lagzero', 'lagone', 'lagx', 'lagdomain', 'lagline', 'lagadd', + 'lagsub', 'lagmulx', 'lagmul', 'lagdiv', 'lagpow', 'lagval', 'lagder', + 'lagint', 'lag2poly', 'poly2lag', 'lagfromroots', 'lagvander', + 'lagfit', 'lagtrim', 'lagroots', 'Laguerre', 'lagval2d', 'lagval3d', + 'laggrid2d', 'laggrid3d', 'lagvander2d', 'lagvander3d', 'lagcompanion', + 'laggauss', 'lagweight'] + +lagtrim = pu.trimcoef + + +def poly2lag(pol): + """ + poly2lag(pol) + + Convert a polynomial to a Laguerre series. + + Convert an array representing the coefficients of a polynomial (relative + to the "standard" basis) ordered from lowest degree to highest, to an + array of the coefficients of the equivalent Laguerre series, ordered + from lowest to highest degree. + + Parameters + ---------- + pol : array_like + 1-D array containing the polynomial coefficients + + Returns + ------- + c : ndarray + 1-D array containing the coefficients of the equivalent Laguerre + series. + + See Also + -------- + lag2poly + + Notes + ----- + The easy way to do conversions between polynomial basis sets + is to use the convert method of a class instance. + + Examples + -------- + >>> import numpy as np + >>> from numpy.polynomial.laguerre import poly2lag + >>> poly2lag(np.arange(4)) + array([ 23., -63., 58., -18.]) + + """ + [pol] = pu.as_series([pol]) + res = 0 + for p in pol[::-1]: + res = lagadd(lagmulx(res), p) + return res + + +def lag2poly(c): + """ + Convert a Laguerre series to a polynomial. + + Convert an array representing the coefficients of a Laguerre series, + ordered from lowest degree to highest, to an array of the coefficients + of the equivalent polynomial (relative to the "standard" basis) ordered + from lowest to highest degree. + + Parameters + ---------- + c : array_like + 1-D array containing the Laguerre series coefficients, ordered + from lowest order term to highest. + + Returns + ------- + pol : ndarray + 1-D array containing the coefficients of the equivalent polynomial + (relative to the "standard" basis) ordered from lowest order term + to highest. + + See Also + -------- + poly2lag + + Notes + ----- + The easy way to do conversions between polynomial basis sets + is to use the convert method of a class instance. + + Examples + -------- + >>> from numpy.polynomial.laguerre import lag2poly + >>> lag2poly([ 23., -63., 58., -18.]) + array([0., 1., 2., 3.]) + + """ + from .polynomial import polyadd, polymulx, polysub + + [c] = pu.as_series([c]) + n = len(c) + if n == 1: + return c + else: + c0 = c[-2] + c1 = c[-1] + # i is the current degree of c1 + for i in range(n - 1, 1, -1): + tmp = c0 + c0 = polysub(c[i - 2], (c1 * (i - 1)) / i) + c1 = polyadd(tmp, polysub((2 * i - 1) * c1, polymulx(c1)) / i) + return polyadd(c0, polysub(c1, polymulx(c1))) + + +# +# These are constant arrays are of integer type so as to be compatible +# with the widest range of other types, such as Decimal. +# + +# Laguerre +lagdomain = np.array([0., 1.]) + +# Laguerre coefficients representing zero. +lagzero = np.array([0]) + +# Laguerre coefficients representing one. +lagone = np.array([1]) + +# Laguerre coefficients representing the identity x. +lagx = np.array([1, -1]) + + +def lagline(off, scl): + """ + Laguerre series whose graph is a straight line. + + Parameters + ---------- + off, scl : scalars + The specified line is given by ``off + scl*x``. + + Returns + ------- + y : ndarray + This module's representation of the Laguerre series for + ``off + scl*x``. + + See Also + -------- + numpy.polynomial.polynomial.polyline + numpy.polynomial.chebyshev.chebline + numpy.polynomial.legendre.legline + numpy.polynomial.hermite.hermline + numpy.polynomial.hermite_e.hermeline + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagline, lagval + >>> lagval(0,lagline(3, 2)) + 3.0 + >>> lagval(1,lagline(3, 2)) + 5.0 + + """ + if scl != 0: + return np.array([off + scl, -scl]) + else: + return np.array([off]) + + +def lagfromroots(roots): + """ + Generate a Laguerre series with given roots. + + The function returns the coefficients of the polynomial + + .. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n), + + in Laguerre form, where the :math:`r_n` are the roots specified in `roots`. + If a zero has multiplicity n, then it must appear in `roots` n times. + For instance, if 2 is a root of multiplicity three and 3 is a root of + multiplicity 2, then `roots` looks something like [2, 2, 2, 3, 3]. The + roots can appear in any order. + + If the returned coefficients are `c`, then + + .. math:: p(x) = c_0 + c_1 * L_1(x) + ... + c_n * L_n(x) + + The coefficient of the last term is not generally 1 for monic + polynomials in Laguerre form. + + Parameters + ---------- + roots : array_like + Sequence containing the roots. + + Returns + ------- + out : ndarray + 1-D array of coefficients. If all roots are real then `out` is a + real array, if some of the roots are complex, then `out` is complex + even if all the coefficients in the result are real (see Examples + below). + + See Also + -------- + numpy.polynomial.polynomial.polyfromroots + numpy.polynomial.legendre.legfromroots + numpy.polynomial.chebyshev.chebfromroots + numpy.polynomial.hermite.hermfromroots + numpy.polynomial.hermite_e.hermefromroots + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagfromroots, lagval + >>> coef = lagfromroots((-1, 0, 1)) + >>> lagval((-1, 0, 1), coef) + array([0., 0., 0.]) + >>> coef = lagfromroots((-1j, 1j)) + >>> lagval((-1j, 1j), coef) + array([0.+0.j, 0.+0.j]) + + """ + return pu._fromroots(lagline, lagmul, roots) + + +def lagadd(c1, c2): + """ + Add one Laguerre series to another. + + Returns the sum of two Laguerre series `c1` + `c2`. The arguments + are sequences of coefficients ordered from lowest order term to + highest, i.e., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``. + + Parameters + ---------- + c1, c2 : array_like + 1-D arrays of Laguerre series coefficients ordered from low to + high. + + Returns + ------- + out : ndarray + Array representing the Laguerre series of their sum. + + See Also + -------- + lagsub, lagmulx, lagmul, lagdiv, lagpow + + Notes + ----- + Unlike multiplication, division, etc., the sum of two Laguerre series + is a Laguerre series (without having to "reproject" the result onto + the basis set) so addition, just like that of "standard" polynomials, + is simply "component-wise." + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagadd + >>> lagadd([1, 2, 3], [1, 2, 3, 4]) + array([2., 4., 6., 4.]) + + """ + return pu._add(c1, c2) + + +def lagsub(c1, c2): + """ + Subtract one Laguerre series from another. + + Returns the difference of two Laguerre series `c1` - `c2`. The + sequences of coefficients are from lowest order term to highest, i.e., + [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``. + + Parameters + ---------- + c1, c2 : array_like + 1-D arrays of Laguerre series coefficients ordered from low to + high. + + Returns + ------- + out : ndarray + Of Laguerre series coefficients representing their difference. + + See Also + -------- + lagadd, lagmulx, lagmul, lagdiv, lagpow + + Notes + ----- + Unlike multiplication, division, etc., the difference of two Laguerre + series is a Laguerre series (without having to "reproject" the result + onto the basis set) so subtraction, just like that of "standard" + polynomials, is simply "component-wise." + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagsub + >>> lagsub([1, 2, 3, 4], [1, 2, 3]) + array([0., 0., 0., 4.]) + + """ + return pu._sub(c1, c2) + + +def lagmulx(c): + """Multiply a Laguerre series by x. + + Multiply the Laguerre series `c` by x, where x is the independent + variable. + + + Parameters + ---------- + c : array_like + 1-D array of Laguerre series coefficients ordered from low to + high. + + Returns + ------- + out : ndarray + Array representing the result of the multiplication. + + See Also + -------- + lagadd, lagsub, lagmul, lagdiv, lagpow + + Notes + ----- + The multiplication uses the recursion relationship for Laguerre + polynomials in the form + + .. math:: + + xP_i(x) = (-(i + 1)*P_{i + 1}(x) + (2i + 1)P_{i}(x) - iP_{i - 1}(x)) + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagmulx + >>> lagmulx([1, 2, 3]) + array([-1., -1., 11., -9.]) + + """ + # c is a trimmed copy + [c] = pu.as_series([c]) + # The zero series needs special treatment + if len(c) == 1 and c[0] == 0: + return c + + prd = np.empty(len(c) + 1, dtype=c.dtype) + prd[0] = c[0] + prd[1] = -c[0] + for i in range(1, len(c)): + prd[i + 1] = -c[i] * (i + 1) + prd[i] += c[i] * (2 * i + 1) + prd[i - 1] -= c[i] * i + return prd + + +def lagmul(c1, c2): + """ + Multiply one Laguerre series by another. + + Returns the product of two Laguerre series `c1` * `c2`. The arguments + are sequences of coefficients, from lowest order "term" to highest, + e.g., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``. + + Parameters + ---------- + c1, c2 : array_like + 1-D arrays of Laguerre series coefficients ordered from low to + high. + + Returns + ------- + out : ndarray + Of Laguerre series coefficients representing their product. + + See Also + -------- + lagadd, lagsub, lagmulx, lagdiv, lagpow + + Notes + ----- + In general, the (polynomial) product of two C-series results in terms + that are not in the Laguerre polynomial basis set. Thus, to express + the product as a Laguerre series, it is necessary to "reproject" the + product onto said basis set, which may produce "unintuitive" (but + correct) results; see Examples section below. + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagmul + >>> lagmul([1, 2, 3], [0, 1, 2]) + array([ 8., -13., 38., -51., 36.]) + + """ + # s1, s2 are trimmed copies + [c1, c2] = pu.as_series([c1, c2]) + + if len(c1) > len(c2): + c = c2 + xs = c1 + else: + c = c1 + xs = c2 + + if len(c) == 1: + c0 = c[0] * xs + c1 = 0 + elif len(c) == 2: + c0 = c[0] * xs + c1 = c[1] * xs + else: + nd = len(c) + c0 = c[-2] * xs + c1 = c[-1] * xs + for i in range(3, len(c) + 1): + tmp = c0 + nd = nd - 1 + c0 = lagsub(c[-i] * xs, (c1 * (nd - 1)) / nd) + c1 = lagadd(tmp, lagsub((2 * nd - 1) * c1, lagmulx(c1)) / nd) + return lagadd(c0, lagsub(c1, lagmulx(c1))) + + +def lagdiv(c1, c2): + """ + Divide one Laguerre series by another. + + Returns the quotient-with-remainder of two Laguerre series + `c1` / `c2`. The arguments are sequences of coefficients from lowest + order "term" to highest, e.g., [1,2,3] represents the series + ``P_0 + 2*P_1 + 3*P_2``. + + Parameters + ---------- + c1, c2 : array_like + 1-D arrays of Laguerre series coefficients ordered from low to + high. + + Returns + ------- + [quo, rem] : ndarrays + Of Laguerre series coefficients representing the quotient and + remainder. + + See Also + -------- + lagadd, lagsub, lagmulx, lagmul, lagpow + + Notes + ----- + In general, the (polynomial) division of one Laguerre series by another + results in quotient and remainder terms that are not in the Laguerre + polynomial basis set. Thus, to express these results as a Laguerre + series, it is necessary to "reproject" the results onto the Laguerre + basis set, which may produce "unintuitive" (but correct) results; see + Examples section below. + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagdiv + >>> lagdiv([ 8., -13., 38., -51., 36.], [0, 1, 2]) + (array([1., 2., 3.]), array([0.])) + >>> lagdiv([ 9., -12., 38., -51., 36.], [0, 1, 2]) + (array([1., 2., 3.]), array([1., 1.])) + + """ + return pu._div(lagmul, c1, c2) + + +def lagpow(c, pow, maxpower=16): + """Raise a Laguerre series to a power. + + Returns the Laguerre series `c` raised to the power `pow`. The + argument `c` is a sequence of coefficients ordered from low to high. + i.e., [1,2,3] is the series ``P_0 + 2*P_1 + 3*P_2.`` + + Parameters + ---------- + c : array_like + 1-D array of Laguerre series coefficients ordered from low to + high. + pow : integer + Power to which the series will be raised + maxpower : integer, optional + Maximum power allowed. This is mainly to limit growth of the series + to unmanageable size. Default is 16 + + Returns + ------- + coef : ndarray + Laguerre series of power. + + See Also + -------- + lagadd, lagsub, lagmulx, lagmul, lagdiv + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagpow + >>> lagpow([1, 2, 3], 2) + array([ 14., -16., 56., -72., 54.]) + + """ + return pu._pow(lagmul, c, pow, maxpower) + + +def lagder(c, m=1, scl=1, axis=0): + """ + Differentiate a Laguerre series. + + Returns the Laguerre series coefficients `c` differentiated `m` times + along `axis`. At each iteration the result is multiplied by `scl` (the + scaling factor is for use in a linear change of variable). The argument + `c` is an array of coefficients from low to high degree along each + axis, e.g., [1,2,3] represents the series ``1*L_0 + 2*L_1 + 3*L_2`` + while [[1,2],[1,2]] represents ``1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + + 2*L_0(x)*L_1(y) + 2*L_1(x)*L_1(y)`` if axis=0 is ``x`` and axis=1 is + ``y``. + + Parameters + ---------- + c : array_like + Array of Laguerre series coefficients. If `c` is multidimensional + the different axis correspond to different variables with the + degree in each axis given by the corresponding index. + m : int, optional + Number of derivatives taken, must be non-negative. (Default: 1) + scl : scalar, optional + Each differentiation is multiplied by `scl`. The end result is + multiplication by ``scl**m``. This is for use in a linear change of + variable. (Default: 1) + axis : int, optional + Axis over which the derivative is taken. (Default: 0). + + Returns + ------- + der : ndarray + Laguerre series of the derivative. + + See Also + -------- + lagint + + Notes + ----- + In general, the result of differentiating a Laguerre series does not + resemble the same operation on a power series. Thus the result of this + function may be "unintuitive," albeit correct; see Examples section + below. + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagder + >>> lagder([ 1., 1., 1., -3.]) + array([1., 2., 3.]) + >>> lagder([ 1., 0., 0., -4., 3.], m=2) + array([1., 2., 3.]) + + """ + c = np.array(c, ndmin=1, copy=True) + if c.dtype.char in '?bBhHiIlLqQpP': + c = c.astype(np.double) + + cnt = pu._as_int(m, "the order of derivation") + iaxis = pu._as_int(axis, "the axis") + if cnt < 0: + raise ValueError("The order of derivation must be non-negative") + iaxis = normalize_axis_index(iaxis, c.ndim) + + if cnt == 0: + return c + + c = np.moveaxis(c, iaxis, 0) + n = len(c) + if cnt >= n: + c = c[:1] * 0 + else: + for i in range(cnt): + n = n - 1 + c *= scl + der = np.empty((n,) + c.shape[1:], dtype=c.dtype) + for j in range(n, 1, -1): + der[j - 1] = -c[j] + c[j - 1] += c[j] + der[0] = -c[1] + c = der + c = np.moveaxis(c, 0, iaxis) + return c + + +def lagint(c, m=1, k=[], lbnd=0, scl=1, axis=0): + """ + Integrate a Laguerre series. + + Returns the Laguerre series coefficients `c` integrated `m` times from + `lbnd` along `axis`. At each iteration the resulting series is + **multiplied** by `scl` and an integration constant, `k`, is added. + The scaling factor is for use in a linear change of variable. ("Buyer + beware": note that, depending on what one is doing, one may want `scl` + to be the reciprocal of what one might expect; for more information, + see the Notes section below.) The argument `c` is an array of + coefficients from low to high degree along each axis, e.g., [1,2,3] + represents the series ``L_0 + 2*L_1 + 3*L_2`` while [[1,2],[1,2]] + represents ``1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + 2*L_0(x)*L_1(y) + + 2*L_1(x)*L_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``. + + + Parameters + ---------- + c : array_like + Array of Laguerre series coefficients. If `c` is multidimensional + the different axis correspond to different variables with the + degree in each axis given by the corresponding index. + m : int, optional + Order of integration, must be positive. (Default: 1) + k : {[], list, scalar}, optional + Integration constant(s). The value of the first integral at + ``lbnd`` is the first value in the list, the value of the second + integral at ``lbnd`` is the second value, etc. If ``k == []`` (the + default), all constants are set to zero. If ``m == 1``, a single + scalar can be given instead of a list. + lbnd : scalar, optional + The lower bound of the integral. (Default: 0) + scl : scalar, optional + Following each integration the result is *multiplied* by `scl` + before the integration constant is added. (Default: 1) + axis : int, optional + Axis over which the integral is taken. (Default: 0). + + Returns + ------- + S : ndarray + Laguerre series coefficients of the integral. + + Raises + ------ + ValueError + If ``m < 0``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or + ``np.ndim(scl) != 0``. + + See Also + -------- + lagder + + Notes + ----- + Note that the result of each integration is *multiplied* by `scl`. + Why is this important to note? Say one is making a linear change of + variable :math:`u = ax + b` in an integral relative to `x`. Then + :math:`dx = du/a`, so one will need to set `scl` equal to + :math:`1/a` - perhaps not what one would have first thought. + + Also note that, in general, the result of integrating a C-series needs + to be "reprojected" onto the C-series basis set. Thus, typically, + the result of this function is "unintuitive," albeit correct; see + Examples section below. + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagint + >>> lagint([1,2,3]) + array([ 1., 1., 1., -3.]) + >>> lagint([1,2,3], m=2) + array([ 1., 0., 0., -4., 3.]) + >>> lagint([1,2,3], k=1) + array([ 2., 1., 1., -3.]) + >>> lagint([1,2,3], lbnd=-1) + array([11.5, 1. , 1. , -3. ]) + >>> lagint([1,2], m=2, k=[1,2], lbnd=-1) + array([ 11.16666667, -5. , -3. , 2. ]) # may vary + + """ + c = np.array(c, ndmin=1, copy=True) + if c.dtype.char in '?bBhHiIlLqQpP': + c = c.astype(np.double) + if not np.iterable(k): + k = [k] + cnt = pu._as_int(m, "the order of integration") + iaxis = pu._as_int(axis, "the axis") + if cnt < 0: + raise ValueError("The order of integration must be non-negative") + if len(k) > cnt: + raise ValueError("Too many integration constants") + if np.ndim(lbnd) != 0: + raise ValueError("lbnd must be a scalar.") + if np.ndim(scl) != 0: + raise ValueError("scl must be a scalar.") + iaxis = normalize_axis_index(iaxis, c.ndim) + + if cnt == 0: + return c + + c = np.moveaxis(c, iaxis, 0) + k = list(k) + [0] * (cnt - len(k)) + for i in range(cnt): + n = len(c) + c *= scl + if n == 1 and np.all(c[0] == 0): + c[0] += k[i] + else: + tmp = np.empty((n + 1,) + c.shape[1:], dtype=c.dtype) + tmp[0] = c[0] + tmp[1] = -c[0] + for j in range(1, n): + tmp[j] += c[j] + tmp[j + 1] = -c[j] + tmp[0] += k[i] - lagval(lbnd, tmp) + c = tmp + c = np.moveaxis(c, 0, iaxis) + return c + + +def lagval(x, c, tensor=True): + """ + Evaluate a Laguerre series at points x. + + If `c` is of length ``n + 1``, this function returns the value: + + .. math:: p(x) = c_0 * L_0(x) + c_1 * L_1(x) + ... + c_n * L_n(x) + + The parameter `x` is converted to an array only if it is a tuple or a + list, otherwise it is treated as a scalar. In either case, either `x` + or its elements must support multiplication and addition both with + themselves and with the elements of `c`. + + If `c` is a 1-D array, then ``p(x)`` will have the same shape as `x`. If + `c` is multidimensional, then the shape of the result depends on the + value of `tensor`. If `tensor` is true the shape will be c.shape[1:] + + x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that + scalars have shape (,). + + Trailing zeros in the coefficients will be used in the evaluation, so + they should be avoided if efficiency is a concern. + + Parameters + ---------- + x : array_like, compatible object + If `x` is a list or tuple, it is converted to an ndarray, otherwise + it is left unchanged and treated as a scalar. In either case, `x` + or its elements must support addition and multiplication with + themselves and with the elements of `c`. + c : array_like + Array of coefficients ordered so that the coefficients for terms of + degree n are contained in c[n]. If `c` is multidimensional the + remaining indices enumerate multiple polynomials. In the two + dimensional case the coefficients may be thought of as stored in + the columns of `c`. + tensor : boolean, optional + If True, the shape of the coefficient array is extended with ones + on the right, one for each dimension of `x`. Scalars have dimension 0 + for this action. The result is that every column of coefficients in + `c` is evaluated for every element of `x`. If False, `x` is broadcast + over the columns of `c` for the evaluation. This keyword is useful + when `c` is multidimensional. The default value is True. + + Returns + ------- + values : ndarray, algebra_like + The shape of the return value is described above. + + See Also + -------- + lagval2d, laggrid2d, lagval3d, laggrid3d + + Notes + ----- + The evaluation uses Clenshaw recursion, aka synthetic division. + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagval + >>> coef = [1, 2, 3] + >>> lagval(1, coef) + -0.5 + >>> lagval([[1, 2],[3, 4]], coef) + array([[-0.5, -4. ], + [-4.5, -2. ]]) + + """ + c = np.array(c, ndmin=1, copy=None) + if c.dtype.char in '?bBhHiIlLqQpP': + c = c.astype(np.double) + if isinstance(x, (tuple, list)): + x = np.asarray(x) + if isinstance(x, np.ndarray) and tensor: + c = c.reshape(c.shape + (1,) * x.ndim) + + if len(c) == 1: + c0 = c[0] + c1 = 0 + elif len(c) == 2: + c0 = c[0] + c1 = c[1] + else: + nd = len(c) + c0 = c[-2] + c1 = c[-1] + for i in range(3, len(c) + 1): + tmp = c0 + nd = nd - 1 + c0 = c[-i] - (c1 * (nd - 1)) / nd + c1 = tmp + (c1 * ((2 * nd - 1) - x)) / nd + return c0 + c1 * (1 - x) + + +def lagval2d(x, y, c): + """ + Evaluate a 2-D Laguerre series at points (x, y). + + This function returns the values: + + .. math:: p(x,y) = \\sum_{i,j} c_{i,j} * L_i(x) * L_j(y) + + The parameters `x` and `y` are converted to arrays only if they are + tuples or a lists, otherwise they are treated as a scalars and they + must have the same shape after conversion. In either case, either `x` + and `y` or their elements must support multiplication and addition both + with themselves and with the elements of `c`. + + If `c` is a 1-D array a one is implicitly appended to its shape to make + it 2-D. The shape of the result will be c.shape[2:] + x.shape. + + Parameters + ---------- + x, y : array_like, compatible objects + The two dimensional series is evaluated at the points ``(x, y)``, + where `x` and `y` must have the same shape. If `x` or `y` is a list + or tuple, it is first converted to an ndarray, otherwise it is left + unchanged and if it isn't an ndarray it is treated as a scalar. + c : array_like + Array of coefficients ordered so that the coefficient of the term + of multi-degree i,j is contained in ``c[i,j]``. If `c` has + dimension greater than two the remaining indices enumerate multiple + sets of coefficients. + + Returns + ------- + values : ndarray, compatible object + The values of the two dimensional polynomial at points formed with + pairs of corresponding values from `x` and `y`. + + See Also + -------- + lagval, laggrid2d, lagval3d, laggrid3d + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagval2d + >>> c = [[1, 2],[3, 4]] + >>> lagval2d(1, 1, c) + 1.0 + """ + return pu._valnd(lagval, c, x, y) + + +def laggrid2d(x, y, c): + """ + Evaluate a 2-D Laguerre series on the Cartesian product of x and y. + + This function returns the values: + + .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * L_i(a) * L_j(b) + + where the points ``(a, b)`` consist of all pairs formed by taking + `a` from `x` and `b` from `y`. The resulting points form a grid with + `x` in the first dimension and `y` in the second. + + The parameters `x` and `y` are converted to arrays only if they are + tuples or a lists, otherwise they are treated as a scalars. In either + case, either `x` and `y` or their elements must support multiplication + and addition both with themselves and with the elements of `c`. + + If `c` has fewer than two dimensions, ones are implicitly appended to + its shape to make it 2-D. The shape of the result will be c.shape[2:] + + x.shape + y.shape. + + Parameters + ---------- + x, y : array_like, compatible objects + The two dimensional series is evaluated at the points in the + Cartesian product of `x` and `y`. If `x` or `y` is a list or + tuple, it is first converted to an ndarray, otherwise it is left + unchanged and, if it isn't an ndarray, it is treated as a scalar. + c : array_like + Array of coefficients ordered so that the coefficient of the term of + multi-degree i,j is contained in ``c[i,j]``. If `c` has dimension + greater than two the remaining indices enumerate multiple sets of + coefficients. + + Returns + ------- + values : ndarray, compatible object + The values of the two dimensional Chebyshev series at points in the + Cartesian product of `x` and `y`. + + See Also + -------- + lagval, lagval2d, lagval3d, laggrid3d + + Examples + -------- + >>> from numpy.polynomial.laguerre import laggrid2d + >>> c = [[1, 2], [3, 4]] + >>> laggrid2d([0, 1], [0, 1], c) + array([[10., 4.], + [ 3., 1.]]) + + """ + return pu._gridnd(lagval, c, x, y) + + +def lagval3d(x, y, z, c): + """ + Evaluate a 3-D Laguerre series at points (x, y, z). + + This function returns the values: + + .. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * L_i(x) * L_j(y) * L_k(z) + + The parameters `x`, `y`, and `z` are converted to arrays only if + they are tuples or a lists, otherwise they are treated as a scalars and + they must have the same shape after conversion. In either case, either + `x`, `y`, and `z` or their elements must support multiplication and + addition both with themselves and with the elements of `c`. + + If `c` has fewer than 3 dimensions, ones are implicitly appended to its + shape to make it 3-D. The shape of the result will be c.shape[3:] + + x.shape. + + Parameters + ---------- + x, y, z : array_like, compatible object + The three dimensional series is evaluated at the points + ``(x, y, z)``, where `x`, `y`, and `z` must have the same shape. If + any of `x`, `y`, or `z` is a list or tuple, it is first converted + to an ndarray, otherwise it is left unchanged and if it isn't an + ndarray it is treated as a scalar. + c : array_like + Array of coefficients ordered so that the coefficient of the term of + multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension + greater than 3 the remaining indices enumerate multiple sets of + coefficients. + + Returns + ------- + values : ndarray, compatible object + The values of the multidimensional polynomial on points formed with + triples of corresponding values from `x`, `y`, and `z`. + + See Also + -------- + lagval, lagval2d, laggrid2d, laggrid3d + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagval3d + >>> c = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] + >>> lagval3d(1, 1, 2, c) + -1.0 + + """ + return pu._valnd(lagval, c, x, y, z) + + +def laggrid3d(x, y, z, c): + """ + Evaluate a 3-D Laguerre series on the Cartesian product of x, y, and z. + + This function returns the values: + + .. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * L_i(a) * L_j(b) * L_k(c) + + where the points ``(a, b, c)`` consist of all triples formed by taking + `a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form + a grid with `x` in the first dimension, `y` in the second, and `z` in + the third. + + The parameters `x`, `y`, and `z` are converted to arrays only if they + are tuples or a lists, otherwise they are treated as a scalars. In + either case, either `x`, `y`, and `z` or their elements must support + multiplication and addition both with themselves and with the elements + of `c`. + + If `c` has fewer than three dimensions, ones are implicitly appended to + its shape to make it 3-D. The shape of the result will be c.shape[3:] + + x.shape + y.shape + z.shape. + + Parameters + ---------- + x, y, z : array_like, compatible objects + The three dimensional series is evaluated at the points in the + Cartesian product of `x`, `y`, and `z`. If `x`, `y`, or `z` is a + list or tuple, it is first converted to an ndarray, otherwise it is + left unchanged and, if it isn't an ndarray, it is treated as a + scalar. + c : array_like + Array of coefficients ordered so that the coefficients for terms of + degree i,j are contained in ``c[i,j]``. If `c` has dimension + greater than two the remaining indices enumerate multiple sets of + coefficients. + + Returns + ------- + values : ndarray, compatible object + The values of the two dimensional polynomial at points in the Cartesian + product of `x` and `y`. + + See Also + -------- + lagval, lagval2d, laggrid2d, lagval3d + + Examples + -------- + >>> from numpy.polynomial.laguerre import laggrid3d + >>> c = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] + >>> laggrid3d([0, 1], [0, 1], [2, 4], c) + array([[[ -4., -44.], + [ -2., -18.]], + [[ -2., -14.], + [ -1., -5.]]]) + + """ + return pu._gridnd(lagval, c, x, y, z) + + +def lagvander(x, deg): + """Pseudo-Vandermonde matrix of given degree. + + Returns the pseudo-Vandermonde matrix of degree `deg` and sample points + `x`. The pseudo-Vandermonde matrix is defined by + + .. math:: V[..., i] = L_i(x) + + where ``0 <= i <= deg``. The leading indices of `V` index the elements of + `x` and the last index is the degree of the Laguerre polynomial. + + If `c` is a 1-D array of coefficients of length ``n + 1`` and `V` is the + array ``V = lagvander(x, n)``, then ``np.dot(V, c)`` and + ``lagval(x, c)`` are the same up to roundoff. This equivalence is + useful both for least squares fitting and for the evaluation of a large + number of Laguerre series of the same degree and sample points. + + Parameters + ---------- + x : array_like + Array of points. The dtype is converted to float64 or complex128 + depending on whether any of the elements are complex. If `x` is + scalar it is converted to a 1-D array. + deg : int + Degree of the resulting matrix. + + Returns + ------- + vander : ndarray + The pseudo-Vandermonde matrix. The shape of the returned matrix is + ``x.shape + (deg + 1,)``, where The last index is the degree of the + corresponding Laguerre polynomial. The dtype will be the same as + the converted `x`. + + Examples + -------- + >>> import numpy as np + >>> from numpy.polynomial.laguerre import lagvander + >>> x = np.array([0, 1, 2]) + >>> lagvander(x, 3) + array([[ 1. , 1. , 1. , 1. ], + [ 1. , 0. , -0.5 , -0.66666667], + [ 1. , -1. , -1. , -0.33333333]]) + + """ + ideg = pu._as_int(deg, "deg") + if ideg < 0: + raise ValueError("deg must be non-negative") + + x = np.array(x, copy=None, ndmin=1) + 0.0 + dims = (ideg + 1,) + x.shape + dtyp = x.dtype + v = np.empty(dims, dtype=dtyp) + v[0] = x * 0 + 1 + if ideg > 0: + v[1] = 1 - x + for i in range(2, ideg + 1): + v[i] = (v[i - 1] * (2 * i - 1 - x) - v[i - 2] * (i - 1)) / i + return np.moveaxis(v, 0, -1) + + +def lagvander2d(x, y, deg): + """Pseudo-Vandermonde matrix of given degrees. + + Returns the pseudo-Vandermonde matrix of degrees `deg` and sample + points ``(x, y)``. The pseudo-Vandermonde matrix is defined by + + .. math:: V[..., (deg[1] + 1)*i + j] = L_i(x) * L_j(y), + + where ``0 <= i <= deg[0]`` and ``0 <= j <= deg[1]``. The leading indices of + `V` index the points ``(x, y)`` and the last index encodes the degrees of + the Laguerre polynomials. + + If ``V = lagvander2d(x, y, [xdeg, ydeg])``, then the columns of `V` + correspond to the elements of a 2-D coefficient array `c` of shape + (xdeg + 1, ydeg + 1) in the order + + .. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ... + + and ``np.dot(V, c.flat)`` and ``lagval2d(x, y, c)`` will be the same + up to roundoff. This equivalence is useful both for least squares + fitting and for the evaluation of a large number of 2-D Laguerre + series of the same degrees and sample points. + + Parameters + ---------- + x, y : array_like + Arrays of point coordinates, all of the same shape. The dtypes + will be converted to either float64 or complex128 depending on + whether any of the elements are complex. Scalars are converted to + 1-D arrays. + deg : list of ints + List of maximum degrees of the form [x_deg, y_deg]. + + Returns + ------- + vander2d : ndarray + The shape of the returned matrix is ``x.shape + (order,)``, where + :math:`order = (deg[0]+1)*(deg[1]+1)`. The dtype will be the same + as the converted `x` and `y`. + + See Also + -------- + lagvander, lagvander3d, lagval2d, lagval3d + + Examples + -------- + >>> import numpy as np + >>> from numpy.polynomial.laguerre import lagvander2d + >>> x = np.array([0]) + >>> y = np.array([2]) + >>> lagvander2d(x, y, [2, 1]) + array([[ 1., -1., 1., -1., 1., -1.]]) + + """ + return pu._vander_nd_flat((lagvander, lagvander), (x, y), deg) + + +def lagvander3d(x, y, z, deg): + """Pseudo-Vandermonde matrix of given degrees. + + Returns the pseudo-Vandermonde matrix of degrees `deg` and sample + points ``(x, y, z)``. If `l`, `m`, `n` are the given degrees in `x`, `y`, `z`, + then The pseudo-Vandermonde matrix is defined by + + .. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = L_i(x)*L_j(y)*L_k(z), + + where ``0 <= i <= l``, ``0 <= j <= m``, and ``0 <= j <= n``. The leading + indices of `V` index the points ``(x, y, z)`` and the last index encodes + the degrees of the Laguerre polynomials. + + If ``V = lagvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns + of `V` correspond to the elements of a 3-D coefficient array `c` of + shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order + + .. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},... + + and ``np.dot(V, c.flat)`` and ``lagval3d(x, y, z, c)`` will be the + same up to roundoff. This equivalence is useful both for least squares + fitting and for the evaluation of a large number of 3-D Laguerre + series of the same degrees and sample points. + + Parameters + ---------- + x, y, z : array_like + Arrays of point coordinates, all of the same shape. The dtypes will + be converted to either float64 or complex128 depending on whether + any of the elements are complex. Scalars are converted to 1-D + arrays. + deg : list of ints + List of maximum degrees of the form [x_deg, y_deg, z_deg]. + + Returns + ------- + vander3d : ndarray + The shape of the returned matrix is ``x.shape + (order,)``, where + :math:`order = (deg[0]+1)*(deg[1]+1)*(deg[2]+1)`. The dtype will + be the same as the converted `x`, `y`, and `z`. + + See Also + -------- + lagvander, lagvander3d, lagval2d, lagval3d + + Examples + -------- + >>> import numpy as np + >>> from numpy.polynomial.laguerre import lagvander3d + >>> x = np.array([0]) + >>> y = np.array([2]) + >>> z = np.array([0]) + >>> lagvander3d(x, y, z, [2, 1, 3]) + array([[ 1., 1., 1., 1., -1., -1., -1., -1., 1., 1., 1., 1., -1., + -1., -1., -1., 1., 1., 1., 1., -1., -1., -1., -1.]]) + + """ + return pu._vander_nd_flat((lagvander, lagvander, lagvander), (x, y, z), deg) + + +def lagfit(x, y, deg, rcond=None, full=False, w=None): + """ + Least squares fit of Laguerre series to data. + + Return the coefficients of a Laguerre series of degree `deg` that is the + least squares fit to the data values `y` given at points `x`. If `y` is + 1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple + fits are done, one for each column of `y`, and the resulting + coefficients are stored in the corresponding columns of a 2-D return. + The fitted polynomial(s) are in the form + + .. math:: p(x) = c_0 + c_1 * L_1(x) + ... + c_n * L_n(x), + + where ``n`` is `deg`. + + Parameters + ---------- + x : array_like, shape (M,) + x-coordinates of the M sample points ``(x[i], y[i])``. + y : array_like, shape (M,) or (M, K) + y-coordinates of the sample points. Several data sets of sample + points sharing the same x-coordinates can be fitted at once by + passing in a 2D-array that contains one dataset per column. + deg : int or 1-D array_like + Degree(s) of the fitting polynomials. If `deg` is a single integer + all terms up to and including the `deg`'th term are included in the + fit. For NumPy versions >= 1.11.0 a list of integers specifying the + degrees of the terms to include may be used instead. + rcond : float, optional + Relative condition number of the fit. Singular values smaller than + this relative to the largest singular value will be ignored. The + default value is len(x)*eps, where eps is the relative precision of + the float type, about 2e-16 in most cases. + full : bool, optional + Switch determining nature of return value. When it is False (the + default) just the coefficients are returned, when True diagnostic + information from the singular value decomposition is also returned. + w : array_like, shape (`M`,), optional + Weights. If not None, the weight ``w[i]`` applies to the unsquared + residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are + chosen so that the errors of the products ``w[i]*y[i]`` all have the + same variance. When using inverse-variance weighting, use + ``w[i] = 1/sigma(y[i])``. The default value is None. + + Returns + ------- + coef : ndarray, shape (M,) or (M, K) + Laguerre coefficients ordered from low to high. If `y` was 2-D, + the coefficients for the data in column *k* of `y` are in column + *k*. + + [residuals, rank, singular_values, rcond] : list + These values are only returned if ``full == True`` + + - residuals -- sum of squared residuals of the least squares fit + - rank -- the numerical rank of the scaled Vandermonde matrix + - singular_values -- singular values of the scaled Vandermonde matrix + - rcond -- value of `rcond`. + + For more details, see `numpy.linalg.lstsq`. + + Warns + ----- + RankWarning + The rank of the coefficient matrix in the least-squares fit is + deficient. The warning is only raised if ``full == False``. The + warnings can be turned off by + + >>> import warnings + >>> warnings.simplefilter('ignore', np.exceptions.RankWarning) + + See Also + -------- + numpy.polynomial.polynomial.polyfit + numpy.polynomial.legendre.legfit + numpy.polynomial.chebyshev.chebfit + numpy.polynomial.hermite.hermfit + numpy.polynomial.hermite_e.hermefit + lagval : Evaluates a Laguerre series. + lagvander : pseudo Vandermonde matrix of Laguerre series. + lagweight : Laguerre weight function. + numpy.linalg.lstsq : Computes a least-squares fit from the matrix. + scipy.interpolate.UnivariateSpline : Computes spline fits. + + Notes + ----- + The solution is the coefficients of the Laguerre series ``p`` that + minimizes the sum of the weighted squared errors + + .. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2, + + where the :math:`w_j` are the weights. This problem is solved by + setting up as the (typically) overdetermined matrix equation + + .. math:: V(x) * c = w * y, + + where ``V`` is the weighted pseudo Vandermonde matrix of `x`, ``c`` are the + coefficients to be solved for, `w` are the weights, and `y` are the + observed values. This equation is then solved using the singular value + decomposition of ``V``. + + If some of the singular values of `V` are so small that they are + neglected, then a `~exceptions.RankWarning` will be issued. This means that + the coefficient values may be poorly determined. Using a lower order fit + will usually get rid of the warning. The `rcond` parameter can also be + set to a value smaller than its default, but the resulting fit may be + spurious and have large contributions from roundoff error. + + Fits using Laguerre series are probably most useful when the data can + be approximated by ``sqrt(w(x)) * p(x)``, where ``w(x)`` is the Laguerre + weight. In that case the weight ``sqrt(w(x[i]))`` should be used + together with data values ``y[i]/sqrt(w(x[i]))``. The weight function is + available as `lagweight`. + + References + ---------- + .. [1] Wikipedia, "Curve fitting", + https://en.wikipedia.org/wiki/Curve_fitting + + Examples + -------- + >>> import numpy as np + >>> from numpy.polynomial.laguerre import lagfit, lagval + >>> x = np.linspace(0, 10) + >>> rng = np.random.default_rng() + >>> err = rng.normal(scale=1./10, size=len(x)) + >>> y = lagval(x, [1, 2, 3]) + err + >>> lagfit(x, y, 2) + array([1.00578369, 1.99417356, 2.99827656]) # may vary + + """ + return pu._fit(lagvander, x, y, deg, rcond, full, w) + + +def lagcompanion(c): + """ + Return the companion matrix of c. + + The usual companion matrix of the Laguerre polynomials is already + symmetric when `c` is a basis Laguerre polynomial, so no scaling is + applied. + + Parameters + ---------- + c : array_like + 1-D array of Laguerre series coefficients ordered from low to high + degree. + + Returns + ------- + mat : ndarray + Companion matrix of dimensions (deg, deg). + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagcompanion + >>> lagcompanion([1, 2, 3]) + array([[ 1. , -0.33333333], + [-1. , 4.33333333]]) + + """ + # c is a trimmed copy + [c] = pu.as_series([c]) + if len(c) < 2: + raise ValueError('Series must have maximum degree of at least 1.') + if len(c) == 2: + return np.array([[1 + c[0] / c[1]]]) + + n = len(c) - 1 + mat = np.zeros((n, n), dtype=c.dtype) + top = mat.reshape(-1)[1::n + 1] + mid = mat.reshape(-1)[0::n + 1] + bot = mat.reshape(-1)[n::n + 1] + top[...] = -np.arange(1, n) + mid[...] = 2. * np.arange(n) + 1. + bot[...] = top + mat[:, -1] += (c[:-1] / c[-1]) * n + return mat + + +def lagroots(c): + """ + Compute the roots of a Laguerre series. + + Return the roots (a.k.a. "zeros") of the polynomial + + .. math:: p(x) = \\sum_i c[i] * L_i(x). + + Parameters + ---------- + c : 1-D array_like + 1-D array of coefficients. + + Returns + ------- + out : ndarray + Array of the roots of the series. If all the roots are real, + then `out` is also real, otherwise it is complex. + + See Also + -------- + numpy.polynomial.polynomial.polyroots + numpy.polynomial.legendre.legroots + numpy.polynomial.chebyshev.chebroots + numpy.polynomial.hermite.hermroots + numpy.polynomial.hermite_e.hermeroots + + Notes + ----- + The root estimates are obtained as the eigenvalues of the companion + matrix, Roots far from the origin of the complex plane may have large + errors due to the numerical instability of the series for such + values. Roots with multiplicity greater than 1 will also show larger + errors as the value of the series near such points is relatively + insensitive to errors in the roots. Isolated roots near the origin can + be improved by a few iterations of Newton's method. + + The Laguerre series basis polynomials aren't powers of `x` so the + results of this function may seem unintuitive. + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagroots, lagfromroots + >>> coef = lagfromroots([0, 1, 2]) + >>> coef + array([ 2., -8., 12., -6.]) + >>> lagroots(coef) + array([-4.4408921e-16, 1.0000000e+00, 2.0000000e+00]) + + """ + # c is a trimmed copy + [c] = pu.as_series([c]) + if len(c) <= 1: + return np.array([], dtype=c.dtype) + if len(c) == 2: + return np.array([1 + c[0] / c[1]]) + + # rotated companion matrix reduces error + m = lagcompanion(c)[::-1, ::-1] + r = la.eigvals(m) + r.sort() + return r + + +def laggauss(deg): + """ + Gauss-Laguerre quadrature. + + Computes the sample points and weights for Gauss-Laguerre quadrature. + These sample points and weights will correctly integrate polynomials of + degree :math:`2*deg - 1` or less over the interval :math:`[0, \\inf]` + with the weight function :math:`f(x) = \\exp(-x)`. + + Parameters + ---------- + deg : int + Number of sample points and weights. It must be >= 1. + + Returns + ------- + x : ndarray + 1-D ndarray containing the sample points. + y : ndarray + 1-D ndarray containing the weights. + + Notes + ----- + The results have only been tested up to degree 100 higher degrees may + be problematic. The weights are determined by using the fact that + + .. math:: w_k = c / (L'_n(x_k) * L_{n-1}(x_k)) + + where :math:`c` is a constant independent of :math:`k` and :math:`x_k` + is the k'th root of :math:`L_n`, and then scaling the results to get + the right value when integrating 1. + + Examples + -------- + >>> from numpy.polynomial.laguerre import laggauss + >>> laggauss(2) + (array([0.58578644, 3.41421356]), array([0.85355339, 0.14644661])) + + """ + ideg = pu._as_int(deg, "deg") + if ideg <= 0: + raise ValueError("deg must be a positive integer") + + # first approximation of roots. We use the fact that the companion + # matrix is symmetric in this case in order to obtain better zeros. + c = np.array([0] * deg + [1]) + m = lagcompanion(c) + x = la.eigvalsh(m) + + # improve roots by one application of Newton + dy = lagval(x, c) + df = lagval(x, lagder(c)) + x -= dy / df + + # compute the weights. We scale the factor to avoid possible numerical + # overflow. + fm = lagval(x, c[1:]) + fm /= np.abs(fm).max() + df /= np.abs(df).max() + w = 1 / (fm * df) + + # scale w to get the right value, 1 in this case + w /= w.sum() + + return x, w + + +def lagweight(x): + """Weight function of the Laguerre polynomials. + + The weight function is :math:`exp(-x)` and the interval of integration + is :math:`[0, \\inf]`. The Laguerre polynomials are orthogonal, but not + normalized, with respect to this weight function. + + Parameters + ---------- + x : array_like + Values at which the weight function will be computed. + + Returns + ------- + w : ndarray + The weight function at `x`. + + Examples + -------- + >>> from numpy.polynomial.laguerre import lagweight + >>> x = np.array([0, 1, 2]) + >>> lagweight(x) + array([1. , 0.36787944, 0.13533528]) + + """ + w = np.exp(-x) + return w + +# +# Laguerre series class +# + +class Laguerre(ABCPolyBase): + """A Laguerre series class. + + The Laguerre class provides the standard Python numerical methods + '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the + attributes and methods listed below. + + Parameters + ---------- + coef : array_like + Laguerre coefficients in order of increasing degree, i.e, + ``(1, 2, 3)`` gives ``1*L_0(x) + 2*L_1(X) + 3*L_2(x)``. + domain : (2,) array_like, optional + Domain to use. The interval ``[domain[0], domain[1]]`` is mapped + to the interval ``[window[0], window[1]]`` by shifting and scaling. + The default value is [0., 1.]. + window : (2,) array_like, optional + Window, see `domain` for its use. The default value is [0., 1.]. + symbol : str, optional + Symbol used to represent the independent variable in string + representations of the polynomial expression, e.g. for printing. + The symbol must be a valid Python identifier. Default value is 'x'. + + .. versionadded:: 1.24 + + """ + # Virtual Functions + _add = staticmethod(lagadd) + _sub = staticmethod(lagsub) + _mul = staticmethod(lagmul) + _div = staticmethod(lagdiv) + _pow = staticmethod(lagpow) + _val = staticmethod(lagval) + _int = staticmethod(lagint) + _der = staticmethod(lagder) + _fit = staticmethod(lagfit) + _line = staticmethod(lagline) + _roots = staticmethod(lagroots) + _fromroots = staticmethod(lagfromroots) + + # Virtual properties + domain = np.array(lagdomain) + window = np.array(lagdomain) + basis_name = 'L' diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/laguerre.pyi b/.venv/lib/python3.12/site-packages/numpy/polynomial/laguerre.pyi new file mode 100644 index 0000000..6f67257 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/laguerre.pyi @@ -0,0 +1,100 @@ +from typing import Final +from typing import Literal as L + +import numpy as np + +from ._polybase import ABCPolyBase +from ._polytypes import ( + _Array1, + _Array2, + _FuncBinOp, + _FuncCompanion, + _FuncDer, + _FuncFit, + _FuncFromRoots, + _FuncGauss, + _FuncInteg, + _FuncLine, + _FuncPoly2Ortho, + _FuncPow, + _FuncRoots, + _FuncUnOp, + _FuncVal, + _FuncVal2D, + _FuncVal3D, + _FuncValFromRoots, + _FuncVander, + _FuncVander2D, + _FuncVander3D, + _FuncWeight, +) +from .polyutils import trimcoef as lagtrim + +__all__ = [ + "lagzero", + "lagone", + "lagx", + "lagdomain", + "lagline", + "lagadd", + "lagsub", + "lagmulx", + "lagmul", + "lagdiv", + "lagpow", + "lagval", + "lagder", + "lagint", + "lag2poly", + "poly2lag", + "lagfromroots", + "lagvander", + "lagfit", + "lagtrim", + "lagroots", + "Laguerre", + "lagval2d", + "lagval3d", + "laggrid2d", + "laggrid3d", + "lagvander2d", + "lagvander3d", + "lagcompanion", + "laggauss", + "lagweight", +] + +poly2lag: _FuncPoly2Ortho[L["poly2lag"]] +lag2poly: _FuncUnOp[L["lag2poly"]] + +lagdomain: Final[_Array2[np.float64]] +lagzero: Final[_Array1[np.int_]] +lagone: Final[_Array1[np.int_]] +lagx: Final[_Array2[np.int_]] + +lagline: _FuncLine[L["lagline"]] +lagfromroots: _FuncFromRoots[L["lagfromroots"]] +lagadd: _FuncBinOp[L["lagadd"]] +lagsub: _FuncBinOp[L["lagsub"]] +lagmulx: _FuncUnOp[L["lagmulx"]] +lagmul: _FuncBinOp[L["lagmul"]] +lagdiv: _FuncBinOp[L["lagdiv"]] +lagpow: _FuncPow[L["lagpow"]] +lagder: _FuncDer[L["lagder"]] +lagint: _FuncInteg[L["lagint"]] +lagval: _FuncVal[L["lagval"]] +lagval2d: _FuncVal2D[L["lagval2d"]] +lagval3d: _FuncVal3D[L["lagval3d"]] +lagvalfromroots: _FuncValFromRoots[L["lagvalfromroots"]] +laggrid2d: _FuncVal2D[L["laggrid2d"]] +laggrid3d: _FuncVal3D[L["laggrid3d"]] +lagvander: _FuncVander[L["lagvander"]] +lagvander2d: _FuncVander2D[L["lagvander2d"]] +lagvander3d: _FuncVander3D[L["lagvander3d"]] +lagfit: _FuncFit[L["lagfit"]] +lagcompanion: _FuncCompanion[L["lagcompanion"]] +lagroots: _FuncRoots[L["lagroots"]] +laggauss: _FuncGauss[L["laggauss"]] +lagweight: _FuncWeight[L["lagweight"]] + +class Laguerre(ABCPolyBase[L["L"]]): ... diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/legendre.py b/.venv/lib/python3.12/site-packages/numpy/polynomial/legendre.py new file mode 100644 index 0000000..b43bdfa --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/legendre.py @@ -0,0 +1,1605 @@ +""" +================================================== +Legendre Series (:mod:`numpy.polynomial.legendre`) +================================================== + +This module provides a number of objects (mostly functions) useful for +dealing with Legendre series, including a `Legendre` class that +encapsulates the usual arithmetic operations. (General information +on how this module represents and works with such polynomials is in the +docstring for its "parent" sub-package, `numpy.polynomial`). + +Classes +------- +.. autosummary:: + :toctree: generated/ + + Legendre + +Constants +--------- + +.. autosummary:: + :toctree: generated/ + + legdomain + legzero + legone + legx + +Arithmetic +---------- + +.. autosummary:: + :toctree: generated/ + + legadd + legsub + legmulx + legmul + legdiv + legpow + legval + legval2d + legval3d + leggrid2d + leggrid3d + +Calculus +-------- + +.. autosummary:: + :toctree: generated/ + + legder + legint + +Misc Functions +-------------- + +.. autosummary:: + :toctree: generated/ + + legfromroots + legroots + legvander + legvander2d + legvander3d + leggauss + legweight + legcompanion + legfit + legtrim + legline + leg2poly + poly2leg + +See also +-------- +numpy.polynomial + +""" +import numpy as np +import numpy.linalg as la +from numpy.lib.array_utils import normalize_axis_index + +from . import polyutils as pu +from ._polybase import ABCPolyBase + +__all__ = [ + 'legzero', 'legone', 'legx', 'legdomain', 'legline', 'legadd', + 'legsub', 'legmulx', 'legmul', 'legdiv', 'legpow', 'legval', 'legder', + 'legint', 'leg2poly', 'poly2leg', 'legfromroots', 'legvander', + 'legfit', 'legtrim', 'legroots', 'Legendre', 'legval2d', 'legval3d', + 'leggrid2d', 'leggrid3d', 'legvander2d', 'legvander3d', 'legcompanion', + 'leggauss', 'legweight'] + +legtrim = pu.trimcoef + + +def poly2leg(pol): + """ + Convert a polynomial to a Legendre series. + + Convert an array representing the coefficients of a polynomial (relative + to the "standard" basis) ordered from lowest degree to highest, to an + array of the coefficients of the equivalent Legendre series, ordered + from lowest to highest degree. + + Parameters + ---------- + pol : array_like + 1-D array containing the polynomial coefficients + + Returns + ------- + c : ndarray + 1-D array containing the coefficients of the equivalent Legendre + series. + + See Also + -------- + leg2poly + + Notes + ----- + The easy way to do conversions between polynomial basis sets + is to use the convert method of a class instance. + + Examples + -------- + >>> import numpy as np + >>> from numpy import polynomial as P + >>> p = P.Polynomial(np.arange(4)) + >>> p + Polynomial([0., 1., 2., 3.], domain=[-1., 1.], window=[-1., 1.], ... + >>> c = P.Legendre(P.legendre.poly2leg(p.coef)) + >>> c + Legendre([ 1. , 3.25, 1. , 0.75], domain=[-1, 1], window=[-1, 1]) # may vary + + """ + [pol] = pu.as_series([pol]) + deg = len(pol) - 1 + res = 0 + for i in range(deg, -1, -1): + res = legadd(legmulx(res), pol[i]) + return res + + +def leg2poly(c): + """ + Convert a Legendre series to a polynomial. + + Convert an array representing the coefficients of a Legendre series, + ordered from lowest degree to highest, to an array of the coefficients + of the equivalent polynomial (relative to the "standard" basis) ordered + from lowest to highest degree. + + Parameters + ---------- + c : array_like + 1-D array containing the Legendre series coefficients, ordered + from lowest order term to highest. + + Returns + ------- + pol : ndarray + 1-D array containing the coefficients of the equivalent polynomial + (relative to the "standard" basis) ordered from lowest order term + to highest. + + See Also + -------- + poly2leg + + Notes + ----- + The easy way to do conversions between polynomial basis sets + is to use the convert method of a class instance. + + Examples + -------- + >>> from numpy import polynomial as P + >>> c = P.Legendre(range(4)) + >>> c + Legendre([0., 1., 2., 3.], domain=[-1., 1.], window=[-1., 1.], symbol='x') + >>> p = c.convert(kind=P.Polynomial) + >>> p + Polynomial([-1. , -3.5, 3. , 7.5], domain=[-1., 1.], window=[-1., ... + >>> P.legendre.leg2poly(range(4)) + array([-1. , -3.5, 3. , 7.5]) + + + """ + from .polynomial import polyadd, polymulx, polysub + + [c] = pu.as_series([c]) + n = len(c) + if n < 3: + return c + else: + c0 = c[-2] + c1 = c[-1] + # i is the current degree of c1 + for i in range(n - 1, 1, -1): + tmp = c0 + c0 = polysub(c[i - 2], (c1 * (i - 1)) / i) + c1 = polyadd(tmp, (polymulx(c1) * (2 * i - 1)) / i) + return polyadd(c0, polymulx(c1)) + + +# +# These are constant arrays are of integer type so as to be compatible +# with the widest range of other types, such as Decimal. +# + +# Legendre +legdomain = np.array([-1., 1.]) + +# Legendre coefficients representing zero. +legzero = np.array([0]) + +# Legendre coefficients representing one. +legone = np.array([1]) + +# Legendre coefficients representing the identity x. +legx = np.array([0, 1]) + + +def legline(off, scl): + """ + Legendre series whose graph is a straight line. + + + + Parameters + ---------- + off, scl : scalars + The specified line is given by ``off + scl*x``. + + Returns + ------- + y : ndarray + This module's representation of the Legendre series for + ``off + scl*x``. + + See Also + -------- + numpy.polynomial.polynomial.polyline + numpy.polynomial.chebyshev.chebline + numpy.polynomial.laguerre.lagline + numpy.polynomial.hermite.hermline + numpy.polynomial.hermite_e.hermeline + + Examples + -------- + >>> import numpy.polynomial.legendre as L + >>> L.legline(3,2) + array([3, 2]) + >>> L.legval(-3, L.legline(3,2)) # should be -3 + -3.0 + + """ + if scl != 0: + return np.array([off, scl]) + else: + return np.array([off]) + + +def legfromroots(roots): + """ + Generate a Legendre series with given roots. + + The function returns the coefficients of the polynomial + + .. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n), + + in Legendre form, where the :math:`r_n` are the roots specified in `roots`. + If a zero has multiplicity n, then it must appear in `roots` n times. + For instance, if 2 is a root of multiplicity three and 3 is a root of + multiplicity 2, then `roots` looks something like [2, 2, 2, 3, 3]. The + roots can appear in any order. + + If the returned coefficients are `c`, then + + .. math:: p(x) = c_0 + c_1 * L_1(x) + ... + c_n * L_n(x) + + The coefficient of the last term is not generally 1 for monic + polynomials in Legendre form. + + Parameters + ---------- + roots : array_like + Sequence containing the roots. + + Returns + ------- + out : ndarray + 1-D array of coefficients. If all roots are real then `out` is a + real array, if some of the roots are complex, then `out` is complex + even if all the coefficients in the result are real (see Examples + below). + + See Also + -------- + numpy.polynomial.polynomial.polyfromroots + numpy.polynomial.chebyshev.chebfromroots + numpy.polynomial.laguerre.lagfromroots + numpy.polynomial.hermite.hermfromroots + numpy.polynomial.hermite_e.hermefromroots + + Examples + -------- + >>> import numpy.polynomial.legendre as L + >>> L.legfromroots((-1,0,1)) # x^3 - x relative to the standard basis + array([ 0. , -0.4, 0. , 0.4]) + >>> j = complex(0,1) + >>> L.legfromroots((-j,j)) # x^2 + 1 relative to the standard basis + array([ 1.33333333+0.j, 0.00000000+0.j, 0.66666667+0.j]) # may vary + + """ + return pu._fromroots(legline, legmul, roots) + + +def legadd(c1, c2): + """ + Add one Legendre series to another. + + Returns the sum of two Legendre series `c1` + `c2`. The arguments + are sequences of coefficients ordered from lowest order term to + highest, i.e., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``. + + Parameters + ---------- + c1, c2 : array_like + 1-D arrays of Legendre series coefficients ordered from low to + high. + + Returns + ------- + out : ndarray + Array representing the Legendre series of their sum. + + See Also + -------- + legsub, legmulx, legmul, legdiv, legpow + + Notes + ----- + Unlike multiplication, division, etc., the sum of two Legendre series + is a Legendre series (without having to "reproject" the result onto + the basis set) so addition, just like that of "standard" polynomials, + is simply "component-wise." + + Examples + -------- + >>> from numpy.polynomial import legendre as L + >>> c1 = (1,2,3) + >>> c2 = (3,2,1) + >>> L.legadd(c1,c2) + array([4., 4., 4.]) + + """ + return pu._add(c1, c2) + + +def legsub(c1, c2): + """ + Subtract one Legendre series from another. + + Returns the difference of two Legendre series `c1` - `c2`. The + sequences of coefficients are from lowest order term to highest, i.e., + [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``. + + Parameters + ---------- + c1, c2 : array_like + 1-D arrays of Legendre series coefficients ordered from low to + high. + + Returns + ------- + out : ndarray + Of Legendre series coefficients representing their difference. + + See Also + -------- + legadd, legmulx, legmul, legdiv, legpow + + Notes + ----- + Unlike multiplication, division, etc., the difference of two Legendre + series is a Legendre series (without having to "reproject" the result + onto the basis set) so subtraction, just like that of "standard" + polynomials, is simply "component-wise." + + Examples + -------- + >>> from numpy.polynomial import legendre as L + >>> c1 = (1,2,3) + >>> c2 = (3,2,1) + >>> L.legsub(c1,c2) + array([-2., 0., 2.]) + >>> L.legsub(c2,c1) # -C.legsub(c1,c2) + array([ 2., 0., -2.]) + + """ + return pu._sub(c1, c2) + + +def legmulx(c): + """Multiply a Legendre series by x. + + Multiply the Legendre series `c` by x, where x is the independent + variable. + + + Parameters + ---------- + c : array_like + 1-D array of Legendre series coefficients ordered from low to + high. + + Returns + ------- + out : ndarray + Array representing the result of the multiplication. + + See Also + -------- + legadd, legsub, legmul, legdiv, legpow + + Notes + ----- + The multiplication uses the recursion relationship for Legendre + polynomials in the form + + .. math:: + + xP_i(x) = ((i + 1)*P_{i + 1}(x) + i*P_{i - 1}(x))/(2i + 1) + + Examples + -------- + >>> from numpy.polynomial import legendre as L + >>> L.legmulx([1,2,3]) + array([ 0.66666667, 2.2, 1.33333333, 1.8]) # may vary + + """ + # c is a trimmed copy + [c] = pu.as_series([c]) + # The zero series needs special treatment + if len(c) == 1 and c[0] == 0: + return c + + prd = np.empty(len(c) + 1, dtype=c.dtype) + prd[0] = c[0] * 0 + prd[1] = c[0] + for i in range(1, len(c)): + j = i + 1 + k = i - 1 + s = i + j + prd[j] = (c[i] * j) / s + prd[k] += (c[i] * i) / s + return prd + + +def legmul(c1, c2): + """ + Multiply one Legendre series by another. + + Returns the product of two Legendre series `c1` * `c2`. The arguments + are sequences of coefficients, from lowest order "term" to highest, + e.g., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``. + + Parameters + ---------- + c1, c2 : array_like + 1-D arrays of Legendre series coefficients ordered from low to + high. + + Returns + ------- + out : ndarray + Of Legendre series coefficients representing their product. + + See Also + -------- + legadd, legsub, legmulx, legdiv, legpow + + Notes + ----- + In general, the (polynomial) product of two C-series results in terms + that are not in the Legendre polynomial basis set. Thus, to express + the product as a Legendre series, it is necessary to "reproject" the + product onto said basis set, which may produce "unintuitive" (but + correct) results; see Examples section below. + + Examples + -------- + >>> from numpy.polynomial import legendre as L + >>> c1 = (1,2,3) + >>> c2 = (3,2) + >>> L.legmul(c1,c2) # multiplication requires "reprojection" + array([ 4.33333333, 10.4 , 11.66666667, 3.6 ]) # may vary + + """ + # s1, s2 are trimmed copies + [c1, c2] = pu.as_series([c1, c2]) + + if len(c1) > len(c2): + c = c2 + xs = c1 + else: + c = c1 + xs = c2 + + if len(c) == 1: + c0 = c[0] * xs + c1 = 0 + elif len(c) == 2: + c0 = c[0] * xs + c1 = c[1] * xs + else: + nd = len(c) + c0 = c[-2] * xs + c1 = c[-1] * xs + for i in range(3, len(c) + 1): + tmp = c0 + nd = nd - 1 + c0 = legsub(c[-i] * xs, (c1 * (nd - 1)) / nd) + c1 = legadd(tmp, (legmulx(c1) * (2 * nd - 1)) / nd) + return legadd(c0, legmulx(c1)) + + +def legdiv(c1, c2): + """ + Divide one Legendre series by another. + + Returns the quotient-with-remainder of two Legendre series + `c1` / `c2`. The arguments are sequences of coefficients from lowest + order "term" to highest, e.g., [1,2,3] represents the series + ``P_0 + 2*P_1 + 3*P_2``. + + Parameters + ---------- + c1, c2 : array_like + 1-D arrays of Legendre series coefficients ordered from low to + high. + + Returns + ------- + quo, rem : ndarrays + Of Legendre series coefficients representing the quotient and + remainder. + + See Also + -------- + legadd, legsub, legmulx, legmul, legpow + + Notes + ----- + In general, the (polynomial) division of one Legendre series by another + results in quotient and remainder terms that are not in the Legendre + polynomial basis set. Thus, to express these results as a Legendre + series, it is necessary to "reproject" the results onto the Legendre + basis set, which may produce "unintuitive" (but correct) results; see + Examples section below. + + Examples + -------- + >>> from numpy.polynomial import legendre as L + >>> c1 = (1,2,3) + >>> c2 = (3,2,1) + >>> L.legdiv(c1,c2) # quotient "intuitive," remainder not + (array([3.]), array([-8., -4.])) + >>> c2 = (0,1,2,3) + >>> L.legdiv(c2,c1) # neither "intuitive" + (array([-0.07407407, 1.66666667]), array([-1.03703704, -2.51851852])) # may vary + + """ + return pu._div(legmul, c1, c2) + + +def legpow(c, pow, maxpower=16): + """Raise a Legendre series to a power. + + Returns the Legendre series `c` raised to the power `pow`. The + argument `c` is a sequence of coefficients ordered from low to high. + i.e., [1,2,3] is the series ``P_0 + 2*P_1 + 3*P_2.`` + + Parameters + ---------- + c : array_like + 1-D array of Legendre series coefficients ordered from low to + high. + pow : integer + Power to which the series will be raised + maxpower : integer, optional + Maximum power allowed. This is mainly to limit growth of the series + to unmanageable size. Default is 16 + + Returns + ------- + coef : ndarray + Legendre series of power. + + See Also + -------- + legadd, legsub, legmulx, legmul, legdiv + + """ + return pu._pow(legmul, c, pow, maxpower) + + +def legder(c, m=1, scl=1, axis=0): + """ + Differentiate a Legendre series. + + Returns the Legendre series coefficients `c` differentiated `m` times + along `axis`. At each iteration the result is multiplied by `scl` (the + scaling factor is for use in a linear change of variable). The argument + `c` is an array of coefficients from low to high degree along each + axis, e.g., [1,2,3] represents the series ``1*L_0 + 2*L_1 + 3*L_2`` + while [[1,2],[1,2]] represents ``1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + + 2*L_0(x)*L_1(y) + 2*L_1(x)*L_1(y)`` if axis=0 is ``x`` and axis=1 is + ``y``. + + Parameters + ---------- + c : array_like + Array of Legendre series coefficients. If c is multidimensional the + different axis correspond to different variables with the degree in + each axis given by the corresponding index. + m : int, optional + Number of derivatives taken, must be non-negative. (Default: 1) + scl : scalar, optional + Each differentiation is multiplied by `scl`. The end result is + multiplication by ``scl**m``. This is for use in a linear change of + variable. (Default: 1) + axis : int, optional + Axis over which the derivative is taken. (Default: 0). + + Returns + ------- + der : ndarray + Legendre series of the derivative. + + See Also + -------- + legint + + Notes + ----- + In general, the result of differentiating a Legendre series does not + resemble the same operation on a power series. Thus the result of this + function may be "unintuitive," albeit correct; see Examples section + below. + + Examples + -------- + >>> from numpy.polynomial import legendre as L + >>> c = (1,2,3,4) + >>> L.legder(c) + array([ 6., 9., 20.]) + >>> L.legder(c, 3) + array([60.]) + >>> L.legder(c, scl=-1) + array([ -6., -9., -20.]) + >>> L.legder(c, 2,-1) + array([ 9., 60.]) + + """ + c = np.array(c, ndmin=1, copy=True) + if c.dtype.char in '?bBhHiIlLqQpP': + c = c.astype(np.double) + cnt = pu._as_int(m, "the order of derivation") + iaxis = pu._as_int(axis, "the axis") + if cnt < 0: + raise ValueError("The order of derivation must be non-negative") + iaxis = normalize_axis_index(iaxis, c.ndim) + + if cnt == 0: + return c + + c = np.moveaxis(c, iaxis, 0) + n = len(c) + if cnt >= n: + c = c[:1] * 0 + else: + for i in range(cnt): + n = n - 1 + c *= scl + der = np.empty((n,) + c.shape[1:], dtype=c.dtype) + for j in range(n, 2, -1): + der[j - 1] = (2 * j - 1) * c[j] + c[j - 2] += c[j] + if n > 1: + der[1] = 3 * c[2] + der[0] = c[1] + c = der + c = np.moveaxis(c, 0, iaxis) + return c + + +def legint(c, m=1, k=[], lbnd=0, scl=1, axis=0): + """ + Integrate a Legendre series. + + Returns the Legendre series coefficients `c` integrated `m` times from + `lbnd` along `axis`. At each iteration the resulting series is + **multiplied** by `scl` and an integration constant, `k`, is added. + The scaling factor is for use in a linear change of variable. ("Buyer + beware": note that, depending on what one is doing, one may want `scl` + to be the reciprocal of what one might expect; for more information, + see the Notes section below.) The argument `c` is an array of + coefficients from low to high degree along each axis, e.g., [1,2,3] + represents the series ``L_0 + 2*L_1 + 3*L_2`` while [[1,2],[1,2]] + represents ``1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + 2*L_0(x)*L_1(y) + + 2*L_1(x)*L_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``. + + Parameters + ---------- + c : array_like + Array of Legendre series coefficients. If c is multidimensional the + different axis correspond to different variables with the degree in + each axis given by the corresponding index. + m : int, optional + Order of integration, must be positive. (Default: 1) + k : {[], list, scalar}, optional + Integration constant(s). The value of the first integral at + ``lbnd`` is the first value in the list, the value of the second + integral at ``lbnd`` is the second value, etc. If ``k == []`` (the + default), all constants are set to zero. If ``m == 1``, a single + scalar can be given instead of a list. + lbnd : scalar, optional + The lower bound of the integral. (Default: 0) + scl : scalar, optional + Following each integration the result is *multiplied* by `scl` + before the integration constant is added. (Default: 1) + axis : int, optional + Axis over which the integral is taken. (Default: 0). + + Returns + ------- + S : ndarray + Legendre series coefficient array of the integral. + + Raises + ------ + ValueError + If ``m < 0``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or + ``np.ndim(scl) != 0``. + + See Also + -------- + legder + + Notes + ----- + Note that the result of each integration is *multiplied* by `scl`. + Why is this important to note? Say one is making a linear change of + variable :math:`u = ax + b` in an integral relative to `x`. Then + :math:`dx = du/a`, so one will need to set `scl` equal to + :math:`1/a` - perhaps not what one would have first thought. + + Also note that, in general, the result of integrating a C-series needs + to be "reprojected" onto the C-series basis set. Thus, typically, + the result of this function is "unintuitive," albeit correct; see + Examples section below. + + Examples + -------- + >>> from numpy.polynomial import legendre as L + >>> c = (1,2,3) + >>> L.legint(c) + array([ 0.33333333, 0.4 , 0.66666667, 0.6 ]) # may vary + >>> L.legint(c, 3) + array([ 1.66666667e-02, -1.78571429e-02, 4.76190476e-02, # may vary + -1.73472348e-18, 1.90476190e-02, 9.52380952e-03]) + >>> L.legint(c, k=3) + array([ 3.33333333, 0.4 , 0.66666667, 0.6 ]) # may vary + >>> L.legint(c, lbnd=-2) + array([ 7.33333333, 0.4 , 0.66666667, 0.6 ]) # may vary + >>> L.legint(c, scl=2) + array([ 0.66666667, 0.8 , 1.33333333, 1.2 ]) # may vary + + """ + c = np.array(c, ndmin=1, copy=True) + if c.dtype.char in '?bBhHiIlLqQpP': + c = c.astype(np.double) + if not np.iterable(k): + k = [k] + cnt = pu._as_int(m, "the order of integration") + iaxis = pu._as_int(axis, "the axis") + if cnt < 0: + raise ValueError("The order of integration must be non-negative") + if len(k) > cnt: + raise ValueError("Too many integration constants") + if np.ndim(lbnd) != 0: + raise ValueError("lbnd must be a scalar.") + if np.ndim(scl) != 0: + raise ValueError("scl must be a scalar.") + iaxis = normalize_axis_index(iaxis, c.ndim) + + if cnt == 0: + return c + + c = np.moveaxis(c, iaxis, 0) + k = list(k) + [0] * (cnt - len(k)) + for i in range(cnt): + n = len(c) + c *= scl + if n == 1 and np.all(c[0] == 0): + c[0] += k[i] + else: + tmp = np.empty((n + 1,) + c.shape[1:], dtype=c.dtype) + tmp[0] = c[0] * 0 + tmp[1] = c[0] + if n > 1: + tmp[2] = c[1] / 3 + for j in range(2, n): + t = c[j] / (2 * j + 1) + tmp[j + 1] = t + tmp[j - 1] -= t + tmp[0] += k[i] - legval(lbnd, tmp) + c = tmp + c = np.moveaxis(c, 0, iaxis) + return c + + +def legval(x, c, tensor=True): + """ + Evaluate a Legendre series at points x. + + If `c` is of length ``n + 1``, this function returns the value: + + .. math:: p(x) = c_0 * L_0(x) + c_1 * L_1(x) + ... + c_n * L_n(x) + + The parameter `x` is converted to an array only if it is a tuple or a + list, otherwise it is treated as a scalar. In either case, either `x` + or its elements must support multiplication and addition both with + themselves and with the elements of `c`. + + If `c` is a 1-D array, then ``p(x)`` will have the same shape as `x`. If + `c` is multidimensional, then the shape of the result depends on the + value of `tensor`. If `tensor` is true the shape will be c.shape[1:] + + x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that + scalars have shape (,). + + Trailing zeros in the coefficients will be used in the evaluation, so + they should be avoided if efficiency is a concern. + + Parameters + ---------- + x : array_like, compatible object + If `x` is a list or tuple, it is converted to an ndarray, otherwise + it is left unchanged and treated as a scalar. In either case, `x` + or its elements must support addition and multiplication with + themselves and with the elements of `c`. + c : array_like + Array of coefficients ordered so that the coefficients for terms of + degree n are contained in c[n]. If `c` is multidimensional the + remaining indices enumerate multiple polynomials. In the two + dimensional case the coefficients may be thought of as stored in + the columns of `c`. + tensor : boolean, optional + If True, the shape of the coefficient array is extended with ones + on the right, one for each dimension of `x`. Scalars have dimension 0 + for this action. The result is that every column of coefficients in + `c` is evaluated for every element of `x`. If False, `x` is broadcast + over the columns of `c` for the evaluation. This keyword is useful + when `c` is multidimensional. The default value is True. + + Returns + ------- + values : ndarray, algebra_like + The shape of the return value is described above. + + See Also + -------- + legval2d, leggrid2d, legval3d, leggrid3d + + Notes + ----- + The evaluation uses Clenshaw recursion, aka synthetic division. + + """ + c = np.array(c, ndmin=1, copy=None) + if c.dtype.char in '?bBhHiIlLqQpP': + c = c.astype(np.double) + if isinstance(x, (tuple, list)): + x = np.asarray(x) + if isinstance(x, np.ndarray) and tensor: + c = c.reshape(c.shape + (1,) * x.ndim) + + if len(c) == 1: + c0 = c[0] + c1 = 0 + elif len(c) == 2: + c0 = c[0] + c1 = c[1] + else: + nd = len(c) + c0 = c[-2] + c1 = c[-1] + for i in range(3, len(c) + 1): + tmp = c0 + nd = nd - 1 + c0 = c[-i] - c1 * ((nd - 1) / nd) + c1 = tmp + c1 * x * ((2 * nd - 1) / nd) + return c0 + c1 * x + + +def legval2d(x, y, c): + """ + Evaluate a 2-D Legendre series at points (x, y). + + This function returns the values: + + .. math:: p(x,y) = \\sum_{i,j} c_{i,j} * L_i(x) * L_j(y) + + The parameters `x` and `y` are converted to arrays only if they are + tuples or a lists, otherwise they are treated as a scalars and they + must have the same shape after conversion. In either case, either `x` + and `y` or their elements must support multiplication and addition both + with themselves and with the elements of `c`. + + If `c` is a 1-D array a one is implicitly appended to its shape to make + it 2-D. The shape of the result will be c.shape[2:] + x.shape. + + Parameters + ---------- + x, y : array_like, compatible objects + The two dimensional series is evaluated at the points ``(x, y)``, + where `x` and `y` must have the same shape. If `x` or `y` is a list + or tuple, it is first converted to an ndarray, otherwise it is left + unchanged and if it isn't an ndarray it is treated as a scalar. + c : array_like + Array of coefficients ordered so that the coefficient of the term + of multi-degree i,j is contained in ``c[i,j]``. If `c` has + dimension greater than two the remaining indices enumerate multiple + sets of coefficients. + + Returns + ------- + values : ndarray, compatible object + The values of the two dimensional Legendre series at points formed + from pairs of corresponding values from `x` and `y`. + + See Also + -------- + legval, leggrid2d, legval3d, leggrid3d + """ + return pu._valnd(legval, c, x, y) + + +def leggrid2d(x, y, c): + """ + Evaluate a 2-D Legendre series on the Cartesian product of x and y. + + This function returns the values: + + .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * L_i(a) * L_j(b) + + where the points ``(a, b)`` consist of all pairs formed by taking + `a` from `x` and `b` from `y`. The resulting points form a grid with + `x` in the first dimension and `y` in the second. + + The parameters `x` and `y` are converted to arrays only if they are + tuples or a lists, otherwise they are treated as a scalars. In either + case, either `x` and `y` or their elements must support multiplication + and addition both with themselves and with the elements of `c`. + + If `c` has fewer than two dimensions, ones are implicitly appended to + its shape to make it 2-D. The shape of the result will be c.shape[2:] + + x.shape + y.shape. + + Parameters + ---------- + x, y : array_like, compatible objects + The two dimensional series is evaluated at the points in the + Cartesian product of `x` and `y`. If `x` or `y` is a list or + tuple, it is first converted to an ndarray, otherwise it is left + unchanged and, if it isn't an ndarray, it is treated as a scalar. + c : array_like + Array of coefficients ordered so that the coefficient of the term of + multi-degree i,j is contained in ``c[i,j]``. If `c` has dimension + greater than two the remaining indices enumerate multiple sets of + coefficients. + + Returns + ------- + values : ndarray, compatible object + The values of the two dimensional Chebyshev series at points in the + Cartesian product of `x` and `y`. + + See Also + -------- + legval, legval2d, legval3d, leggrid3d + """ + return pu._gridnd(legval, c, x, y) + + +def legval3d(x, y, z, c): + """ + Evaluate a 3-D Legendre series at points (x, y, z). + + This function returns the values: + + .. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * L_i(x) * L_j(y) * L_k(z) + + The parameters `x`, `y`, and `z` are converted to arrays only if + they are tuples or a lists, otherwise they are treated as a scalars and + they must have the same shape after conversion. In either case, either + `x`, `y`, and `z` or their elements must support multiplication and + addition both with themselves and with the elements of `c`. + + If `c` has fewer than 3 dimensions, ones are implicitly appended to its + shape to make it 3-D. The shape of the result will be c.shape[3:] + + x.shape. + + Parameters + ---------- + x, y, z : array_like, compatible object + The three dimensional series is evaluated at the points + ``(x, y, z)``, where `x`, `y`, and `z` must have the same shape. If + any of `x`, `y`, or `z` is a list or tuple, it is first converted + to an ndarray, otherwise it is left unchanged and if it isn't an + ndarray it is treated as a scalar. + c : array_like + Array of coefficients ordered so that the coefficient of the term of + multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension + greater than 3 the remaining indices enumerate multiple sets of + coefficients. + + Returns + ------- + values : ndarray, compatible object + The values of the multidimensional polynomial on points formed with + triples of corresponding values from `x`, `y`, and `z`. + + See Also + -------- + legval, legval2d, leggrid2d, leggrid3d + """ + return pu._valnd(legval, c, x, y, z) + + +def leggrid3d(x, y, z, c): + """ + Evaluate a 3-D Legendre series on the Cartesian product of x, y, and z. + + This function returns the values: + + .. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * L_i(a) * L_j(b) * L_k(c) + + where the points ``(a, b, c)`` consist of all triples formed by taking + `a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form + a grid with `x` in the first dimension, `y` in the second, and `z` in + the third. + + The parameters `x`, `y`, and `z` are converted to arrays only if they + are tuples or a lists, otherwise they are treated as a scalars. In + either case, either `x`, `y`, and `z` or their elements must support + multiplication and addition both with themselves and with the elements + of `c`. + + If `c` has fewer than three dimensions, ones are implicitly appended to + its shape to make it 3-D. The shape of the result will be c.shape[3:] + + x.shape + y.shape + z.shape. + + Parameters + ---------- + x, y, z : array_like, compatible objects + The three dimensional series is evaluated at the points in the + Cartesian product of `x`, `y`, and `z`. If `x`, `y`, or `z` is a + list or tuple, it is first converted to an ndarray, otherwise it is + left unchanged and, if it isn't an ndarray, it is treated as a + scalar. + c : array_like + Array of coefficients ordered so that the coefficients for terms of + degree i,j are contained in ``c[i,j]``. If `c` has dimension + greater than two the remaining indices enumerate multiple sets of + coefficients. + + Returns + ------- + values : ndarray, compatible object + The values of the two dimensional polynomial at points in the Cartesian + product of `x` and `y`. + + See Also + -------- + legval, legval2d, leggrid2d, legval3d + """ + return pu._gridnd(legval, c, x, y, z) + + +def legvander(x, deg): + """Pseudo-Vandermonde matrix of given degree. + + Returns the pseudo-Vandermonde matrix of degree `deg` and sample points + `x`. The pseudo-Vandermonde matrix is defined by + + .. math:: V[..., i] = L_i(x) + + where ``0 <= i <= deg``. The leading indices of `V` index the elements of + `x` and the last index is the degree of the Legendre polynomial. + + If `c` is a 1-D array of coefficients of length ``n + 1`` and `V` is the + array ``V = legvander(x, n)``, then ``np.dot(V, c)`` and + ``legval(x, c)`` are the same up to roundoff. This equivalence is + useful both for least squares fitting and for the evaluation of a large + number of Legendre series of the same degree and sample points. + + Parameters + ---------- + x : array_like + Array of points. The dtype is converted to float64 or complex128 + depending on whether any of the elements are complex. If `x` is + scalar it is converted to a 1-D array. + deg : int + Degree of the resulting matrix. + + Returns + ------- + vander : ndarray + The pseudo-Vandermonde matrix. The shape of the returned matrix is + ``x.shape + (deg + 1,)``, where The last index is the degree of the + corresponding Legendre polynomial. The dtype will be the same as + the converted `x`. + + """ + ideg = pu._as_int(deg, "deg") + if ideg < 0: + raise ValueError("deg must be non-negative") + + x = np.array(x, copy=None, ndmin=1) + 0.0 + dims = (ideg + 1,) + x.shape + dtyp = x.dtype + v = np.empty(dims, dtype=dtyp) + # Use forward recursion to generate the entries. This is not as accurate + # as reverse recursion in this application but it is more efficient. + v[0] = x * 0 + 1 + if ideg > 0: + v[1] = x + for i in range(2, ideg + 1): + v[i] = (v[i - 1] * x * (2 * i - 1) - v[i - 2] * (i - 1)) / i + return np.moveaxis(v, 0, -1) + + +def legvander2d(x, y, deg): + """Pseudo-Vandermonde matrix of given degrees. + + Returns the pseudo-Vandermonde matrix of degrees `deg` and sample + points ``(x, y)``. The pseudo-Vandermonde matrix is defined by + + .. math:: V[..., (deg[1] + 1)*i + j] = L_i(x) * L_j(y), + + where ``0 <= i <= deg[0]`` and ``0 <= j <= deg[1]``. The leading indices of + `V` index the points ``(x, y)`` and the last index encodes the degrees of + the Legendre polynomials. + + If ``V = legvander2d(x, y, [xdeg, ydeg])``, then the columns of `V` + correspond to the elements of a 2-D coefficient array `c` of shape + (xdeg + 1, ydeg + 1) in the order + + .. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ... + + and ``np.dot(V, c.flat)`` and ``legval2d(x, y, c)`` will be the same + up to roundoff. This equivalence is useful both for least squares + fitting and for the evaluation of a large number of 2-D Legendre + series of the same degrees and sample points. + + Parameters + ---------- + x, y : array_like + Arrays of point coordinates, all of the same shape. The dtypes + will be converted to either float64 or complex128 depending on + whether any of the elements are complex. Scalars are converted to + 1-D arrays. + deg : list of ints + List of maximum degrees of the form [x_deg, y_deg]. + + Returns + ------- + vander2d : ndarray + The shape of the returned matrix is ``x.shape + (order,)``, where + :math:`order = (deg[0]+1)*(deg[1]+1)`. The dtype will be the same + as the converted `x` and `y`. + + See Also + -------- + legvander, legvander3d, legval2d, legval3d + """ + return pu._vander_nd_flat((legvander, legvander), (x, y), deg) + + +def legvander3d(x, y, z, deg): + """Pseudo-Vandermonde matrix of given degrees. + + Returns the pseudo-Vandermonde matrix of degrees `deg` and sample + points ``(x, y, z)``. If `l`, `m`, `n` are the given degrees in `x`, `y`, `z`, + then The pseudo-Vandermonde matrix is defined by + + .. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = L_i(x)*L_j(y)*L_k(z), + + where ``0 <= i <= l``, ``0 <= j <= m``, and ``0 <= j <= n``. The leading + indices of `V` index the points ``(x, y, z)`` and the last index encodes + the degrees of the Legendre polynomials. + + If ``V = legvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns + of `V` correspond to the elements of a 3-D coefficient array `c` of + shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order + + .. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},... + + and ``np.dot(V, c.flat)`` and ``legval3d(x, y, z, c)`` will be the + same up to roundoff. This equivalence is useful both for least squares + fitting and for the evaluation of a large number of 3-D Legendre + series of the same degrees and sample points. + + Parameters + ---------- + x, y, z : array_like + Arrays of point coordinates, all of the same shape. The dtypes will + be converted to either float64 or complex128 depending on whether + any of the elements are complex. Scalars are converted to 1-D + arrays. + deg : list of ints + List of maximum degrees of the form [x_deg, y_deg, z_deg]. + + Returns + ------- + vander3d : ndarray + The shape of the returned matrix is ``x.shape + (order,)``, where + :math:`order = (deg[0]+1)*(deg[1]+1)*(deg[2]+1)`. The dtype will + be the same as the converted `x`, `y`, and `z`. + + See Also + -------- + legvander, legvander3d, legval2d, legval3d + """ + return pu._vander_nd_flat((legvander, legvander, legvander), (x, y, z), deg) + + +def legfit(x, y, deg, rcond=None, full=False, w=None): + """ + Least squares fit of Legendre series to data. + + Return the coefficients of a Legendre series of degree `deg` that is the + least squares fit to the data values `y` given at points `x`. If `y` is + 1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple + fits are done, one for each column of `y`, and the resulting + coefficients are stored in the corresponding columns of a 2-D return. + The fitted polynomial(s) are in the form + + .. math:: p(x) = c_0 + c_1 * L_1(x) + ... + c_n * L_n(x), + + where `n` is `deg`. + + Parameters + ---------- + x : array_like, shape (M,) + x-coordinates of the M sample points ``(x[i], y[i])``. + y : array_like, shape (M,) or (M, K) + y-coordinates of the sample points. Several data sets of sample + points sharing the same x-coordinates can be fitted at once by + passing in a 2D-array that contains one dataset per column. + deg : int or 1-D array_like + Degree(s) of the fitting polynomials. If `deg` is a single integer + all terms up to and including the `deg`'th term are included in the + fit. For NumPy versions >= 1.11.0 a list of integers specifying the + degrees of the terms to include may be used instead. + rcond : float, optional + Relative condition number of the fit. Singular values smaller than + this relative to the largest singular value will be ignored. The + default value is len(x)*eps, where eps is the relative precision of + the float type, about 2e-16 in most cases. + full : bool, optional + Switch determining nature of return value. When it is False (the + default) just the coefficients are returned, when True diagnostic + information from the singular value decomposition is also returned. + w : array_like, shape (`M`,), optional + Weights. If not None, the weight ``w[i]`` applies to the unsquared + residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are + chosen so that the errors of the products ``w[i]*y[i]`` all have the + same variance. When using inverse-variance weighting, use + ``w[i] = 1/sigma(y[i])``. The default value is None. + + Returns + ------- + coef : ndarray, shape (M,) or (M, K) + Legendre coefficients ordered from low to high. If `y` was + 2-D, the coefficients for the data in column k of `y` are in + column `k`. If `deg` is specified as a list, coefficients for + terms not included in the fit are set equal to zero in the + returned `coef`. + + [residuals, rank, singular_values, rcond] : list + These values are only returned if ``full == True`` + + - residuals -- sum of squared residuals of the least squares fit + - rank -- the numerical rank of the scaled Vandermonde matrix + - singular_values -- singular values of the scaled Vandermonde matrix + - rcond -- value of `rcond`. + + For more details, see `numpy.linalg.lstsq`. + + Warns + ----- + RankWarning + The rank of the coefficient matrix in the least-squares fit is + deficient. The warning is only raised if ``full == False``. The + warnings can be turned off by + + >>> import warnings + >>> warnings.simplefilter('ignore', np.exceptions.RankWarning) + + See Also + -------- + numpy.polynomial.polynomial.polyfit + numpy.polynomial.chebyshev.chebfit + numpy.polynomial.laguerre.lagfit + numpy.polynomial.hermite.hermfit + numpy.polynomial.hermite_e.hermefit + legval : Evaluates a Legendre series. + legvander : Vandermonde matrix of Legendre series. + legweight : Legendre weight function (= 1). + numpy.linalg.lstsq : Computes a least-squares fit from the matrix. + scipy.interpolate.UnivariateSpline : Computes spline fits. + + Notes + ----- + The solution is the coefficients of the Legendre series `p` that + minimizes the sum of the weighted squared errors + + .. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2, + + where :math:`w_j` are the weights. This problem is solved by setting up + as the (typically) overdetermined matrix equation + + .. math:: V(x) * c = w * y, + + where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the + coefficients to be solved for, `w` are the weights, and `y` are the + observed values. This equation is then solved using the singular value + decomposition of `V`. + + If some of the singular values of `V` are so small that they are + neglected, then a `~exceptions.RankWarning` will be issued. This means that + the coefficient values may be poorly determined. Using a lower order fit + will usually get rid of the warning. The `rcond` parameter can also be + set to a value smaller than its default, but the resulting fit may be + spurious and have large contributions from roundoff error. + + Fits using Legendre series are usually better conditioned than fits + using power series, but much can depend on the distribution of the + sample points and the smoothness of the data. If the quality of the fit + is inadequate splines may be a good alternative. + + References + ---------- + .. [1] Wikipedia, "Curve fitting", + https://en.wikipedia.org/wiki/Curve_fitting + + Examples + -------- + + """ + return pu._fit(legvander, x, y, deg, rcond, full, w) + + +def legcompanion(c): + """Return the scaled companion matrix of c. + + The basis polynomials are scaled so that the companion matrix is + symmetric when `c` is an Legendre basis polynomial. This provides + better eigenvalue estimates than the unscaled case and for basis + polynomials the eigenvalues are guaranteed to be real if + `numpy.linalg.eigvalsh` is used to obtain them. + + Parameters + ---------- + c : array_like + 1-D array of Legendre series coefficients ordered from low to high + degree. + + Returns + ------- + mat : ndarray + Scaled companion matrix of dimensions (deg, deg). + """ + # c is a trimmed copy + [c] = pu.as_series([c]) + if len(c) < 2: + raise ValueError('Series must have maximum degree of at least 1.') + if len(c) == 2: + return np.array([[-c[0] / c[1]]]) + + n = len(c) - 1 + mat = np.zeros((n, n), dtype=c.dtype) + scl = 1. / np.sqrt(2 * np.arange(n) + 1) + top = mat.reshape(-1)[1::n + 1] + bot = mat.reshape(-1)[n::n + 1] + top[...] = np.arange(1, n) * scl[:n - 1] * scl[1:n] + bot[...] = top + mat[:, -1] -= (c[:-1] / c[-1]) * (scl / scl[-1]) * (n / (2 * n - 1)) + return mat + + +def legroots(c): + """ + Compute the roots of a Legendre series. + + Return the roots (a.k.a. "zeros") of the polynomial + + .. math:: p(x) = \\sum_i c[i] * L_i(x). + + Parameters + ---------- + c : 1-D array_like + 1-D array of coefficients. + + Returns + ------- + out : ndarray + Array of the roots of the series. If all the roots are real, + then `out` is also real, otherwise it is complex. + + See Also + -------- + numpy.polynomial.polynomial.polyroots + numpy.polynomial.chebyshev.chebroots + numpy.polynomial.laguerre.lagroots + numpy.polynomial.hermite.hermroots + numpy.polynomial.hermite_e.hermeroots + + Notes + ----- + The root estimates are obtained as the eigenvalues of the companion + matrix, Roots far from the origin of the complex plane may have large + errors due to the numerical instability of the series for such values. + Roots with multiplicity greater than 1 will also show larger errors as + the value of the series near such points is relatively insensitive to + errors in the roots. Isolated roots near the origin can be improved by + a few iterations of Newton's method. + + The Legendre series basis polynomials aren't powers of ``x`` so the + results of this function may seem unintuitive. + + Examples + -------- + >>> import numpy.polynomial.legendre as leg + >>> leg.legroots((1, 2, 3, 4)) # 4L_3 + 3L_2 + 2L_1 + 1L_0, all real roots + array([-0.85099543, -0.11407192, 0.51506735]) # may vary + + """ + # c is a trimmed copy + [c] = pu.as_series([c]) + if len(c) < 2: + return np.array([], dtype=c.dtype) + if len(c) == 2: + return np.array([-c[0] / c[1]]) + + # rotated companion matrix reduces error + m = legcompanion(c)[::-1, ::-1] + r = la.eigvals(m) + r.sort() + return r + + +def leggauss(deg): + """ + Gauss-Legendre quadrature. + + Computes the sample points and weights for Gauss-Legendre quadrature. + These sample points and weights will correctly integrate polynomials of + degree :math:`2*deg - 1` or less over the interval :math:`[-1, 1]` with + the weight function :math:`f(x) = 1`. + + Parameters + ---------- + deg : int + Number of sample points and weights. It must be >= 1. + + Returns + ------- + x : ndarray + 1-D ndarray containing the sample points. + y : ndarray + 1-D ndarray containing the weights. + + Notes + ----- + The results have only been tested up to degree 100, higher degrees may + be problematic. The weights are determined by using the fact that + + .. math:: w_k = c / (L'_n(x_k) * L_{n-1}(x_k)) + + where :math:`c` is a constant independent of :math:`k` and :math:`x_k` + is the k'th root of :math:`L_n`, and then scaling the results to get + the right value when integrating 1. + + """ + ideg = pu._as_int(deg, "deg") + if ideg <= 0: + raise ValueError("deg must be a positive integer") + + # first approximation of roots. We use the fact that the companion + # matrix is symmetric in this case in order to obtain better zeros. + c = np.array([0] * deg + [1]) + m = legcompanion(c) + x = la.eigvalsh(m) + + # improve roots by one application of Newton + dy = legval(x, c) + df = legval(x, legder(c)) + x -= dy / df + + # compute the weights. We scale the factor to avoid possible numerical + # overflow. + fm = legval(x, c[1:]) + fm /= np.abs(fm).max() + df /= np.abs(df).max() + w = 1 / (fm * df) + + # for Legendre we can also symmetrize + w = (w + w[::-1]) / 2 + x = (x - x[::-1]) / 2 + + # scale w to get the right value + w *= 2. / w.sum() + + return x, w + + +def legweight(x): + """ + Weight function of the Legendre polynomials. + + The weight function is :math:`1` and the interval of integration is + :math:`[-1, 1]`. The Legendre polynomials are orthogonal, but not + normalized, with respect to this weight function. + + Parameters + ---------- + x : array_like + Values at which the weight function will be computed. + + Returns + ------- + w : ndarray + The weight function at `x`. + """ + w = x * 0.0 + 1.0 + return w + +# +# Legendre series class +# + +class Legendre(ABCPolyBase): + """A Legendre series class. + + The Legendre class provides the standard Python numerical methods + '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the + attributes and methods listed below. + + Parameters + ---------- + coef : array_like + Legendre coefficients in order of increasing degree, i.e., + ``(1, 2, 3)`` gives ``1*P_0(x) + 2*P_1(x) + 3*P_2(x)``. + domain : (2,) array_like, optional + Domain to use. The interval ``[domain[0], domain[1]]`` is mapped + to the interval ``[window[0], window[1]]`` by shifting and scaling. + The default value is [-1., 1.]. + window : (2,) array_like, optional + Window, see `domain` for its use. The default value is [-1., 1.]. + symbol : str, optional + Symbol used to represent the independent variable in string + representations of the polynomial expression, e.g. for printing. + The symbol must be a valid Python identifier. Default value is 'x'. + + .. versionadded:: 1.24 + + """ + # Virtual Functions + _add = staticmethod(legadd) + _sub = staticmethod(legsub) + _mul = staticmethod(legmul) + _div = staticmethod(legdiv) + _pow = staticmethod(legpow) + _val = staticmethod(legval) + _int = staticmethod(legint) + _der = staticmethod(legder) + _fit = staticmethod(legfit) + _line = staticmethod(legline) + _roots = staticmethod(legroots) + _fromroots = staticmethod(legfromroots) + + # Virtual properties + domain = np.array(legdomain) + window = np.array(legdomain) + basis_name = 'P' diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/legendre.pyi b/.venv/lib/python3.12/site-packages/numpy/polynomial/legendre.pyi new file mode 100644 index 0000000..35ea2ff --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/legendre.pyi @@ -0,0 +1,100 @@ +from typing import Final +from typing import Literal as L + +import numpy as np + +from ._polybase import ABCPolyBase +from ._polytypes import ( + _Array1, + _Array2, + _FuncBinOp, + _FuncCompanion, + _FuncDer, + _FuncFit, + _FuncFromRoots, + _FuncGauss, + _FuncInteg, + _FuncLine, + _FuncPoly2Ortho, + _FuncPow, + _FuncRoots, + _FuncUnOp, + _FuncVal, + _FuncVal2D, + _FuncVal3D, + _FuncValFromRoots, + _FuncVander, + _FuncVander2D, + _FuncVander3D, + _FuncWeight, +) +from .polyutils import trimcoef as legtrim + +__all__ = [ + "legzero", + "legone", + "legx", + "legdomain", + "legline", + "legadd", + "legsub", + "legmulx", + "legmul", + "legdiv", + "legpow", + "legval", + "legder", + "legint", + "leg2poly", + "poly2leg", + "legfromroots", + "legvander", + "legfit", + "legtrim", + "legroots", + "Legendre", + "legval2d", + "legval3d", + "leggrid2d", + "leggrid3d", + "legvander2d", + "legvander3d", + "legcompanion", + "leggauss", + "legweight", +] + +poly2leg: _FuncPoly2Ortho[L["poly2leg"]] +leg2poly: _FuncUnOp[L["leg2poly"]] + +legdomain: Final[_Array2[np.float64]] +legzero: Final[_Array1[np.int_]] +legone: Final[_Array1[np.int_]] +legx: Final[_Array2[np.int_]] + +legline: _FuncLine[L["legline"]] +legfromroots: _FuncFromRoots[L["legfromroots"]] +legadd: _FuncBinOp[L["legadd"]] +legsub: _FuncBinOp[L["legsub"]] +legmulx: _FuncUnOp[L["legmulx"]] +legmul: _FuncBinOp[L["legmul"]] +legdiv: _FuncBinOp[L["legdiv"]] +legpow: _FuncPow[L["legpow"]] +legder: _FuncDer[L["legder"]] +legint: _FuncInteg[L["legint"]] +legval: _FuncVal[L["legval"]] +legval2d: _FuncVal2D[L["legval2d"]] +legval3d: _FuncVal3D[L["legval3d"]] +legvalfromroots: _FuncValFromRoots[L["legvalfromroots"]] +leggrid2d: _FuncVal2D[L["leggrid2d"]] +leggrid3d: _FuncVal3D[L["leggrid3d"]] +legvander: _FuncVander[L["legvander"]] +legvander2d: _FuncVander2D[L["legvander2d"]] +legvander3d: _FuncVander3D[L["legvander3d"]] +legfit: _FuncFit[L["legfit"]] +legcompanion: _FuncCompanion[L["legcompanion"]] +legroots: _FuncRoots[L["legroots"]] +leggauss: _FuncGauss[L["leggauss"]] +legweight: _FuncWeight[L["legweight"]] + +class Legendre(ABCPolyBase[L["P"]]): ... diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/polynomial.py b/.venv/lib/python3.12/site-packages/numpy/polynomial/polynomial.py new file mode 100644 index 0000000..32b53b7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/polynomial.py @@ -0,0 +1,1616 @@ +""" +================================================= +Power Series (:mod:`numpy.polynomial.polynomial`) +================================================= + +This module provides a number of objects (mostly functions) useful for +dealing with polynomials, including a `Polynomial` class that +encapsulates the usual arithmetic operations. (General information +on how this module represents and works with polynomial objects is in +the docstring for its "parent" sub-package, `numpy.polynomial`). + +Classes +------- +.. autosummary:: + :toctree: generated/ + + Polynomial + +Constants +--------- +.. autosummary:: + :toctree: generated/ + + polydomain + polyzero + polyone + polyx + +Arithmetic +---------- +.. autosummary:: + :toctree: generated/ + + polyadd + polysub + polymulx + polymul + polydiv + polypow + polyval + polyval2d + polyval3d + polygrid2d + polygrid3d + +Calculus +-------- +.. autosummary:: + :toctree: generated/ + + polyder + polyint + +Misc Functions +-------------- +.. autosummary:: + :toctree: generated/ + + polyfromroots + polyroots + polyvalfromroots + polyvander + polyvander2d + polyvander3d + polycompanion + polyfit + polytrim + polyline + +See Also +-------- +`numpy.polynomial` + +""" +__all__ = [ + 'polyzero', 'polyone', 'polyx', 'polydomain', 'polyline', 'polyadd', + 'polysub', 'polymulx', 'polymul', 'polydiv', 'polypow', 'polyval', + 'polyvalfromroots', 'polyder', 'polyint', 'polyfromroots', 'polyvander', + 'polyfit', 'polytrim', 'polyroots', 'Polynomial', 'polyval2d', 'polyval3d', + 'polygrid2d', 'polygrid3d', 'polyvander2d', 'polyvander3d', + 'polycompanion'] + +import numpy as np +import numpy.linalg as la +from numpy.lib.array_utils import normalize_axis_index + +from . import polyutils as pu +from ._polybase import ABCPolyBase + +polytrim = pu.trimcoef + +# +# These are constant arrays are of integer type so as to be compatible +# with the widest range of other types, such as Decimal. +# + +# Polynomial default domain. +polydomain = np.array([-1., 1.]) + +# Polynomial coefficients representing zero. +polyzero = np.array([0]) + +# Polynomial coefficients representing one. +polyone = np.array([1]) + +# Polynomial coefficients representing the identity x. +polyx = np.array([0, 1]) + +# +# Polynomial series functions +# + + +def polyline(off, scl): + """ + Returns an array representing a linear polynomial. + + Parameters + ---------- + off, scl : scalars + The "y-intercept" and "slope" of the line, respectively. + + Returns + ------- + y : ndarray + This module's representation of the linear polynomial ``off + + scl*x``. + + See Also + -------- + numpy.polynomial.chebyshev.chebline + numpy.polynomial.legendre.legline + numpy.polynomial.laguerre.lagline + numpy.polynomial.hermite.hermline + numpy.polynomial.hermite_e.hermeline + + Examples + -------- + >>> from numpy.polynomial import polynomial as P + >>> P.polyline(1, -1) + array([ 1, -1]) + >>> P.polyval(1, P.polyline(1, -1)) # should be 0 + 0.0 + + """ + if scl != 0: + return np.array([off, scl]) + else: + return np.array([off]) + + +def polyfromroots(roots): + """ + Generate a monic polynomial with given roots. + + Return the coefficients of the polynomial + + .. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n), + + where the :math:`r_n` are the roots specified in `roots`. If a zero has + multiplicity n, then it must appear in `roots` n times. For instance, + if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, + then `roots` looks something like [2, 2, 2, 3, 3]. The roots can appear + in any order. + + If the returned coefficients are `c`, then + + .. math:: p(x) = c_0 + c_1 * x + ... + x^n + + The coefficient of the last term is 1 for monic polynomials in this + form. + + Parameters + ---------- + roots : array_like + Sequence containing the roots. + + Returns + ------- + out : ndarray + 1-D array of the polynomial's coefficients If all the roots are + real, then `out` is also real, otherwise it is complex. (see + Examples below). + + See Also + -------- + numpy.polynomial.chebyshev.chebfromroots + numpy.polynomial.legendre.legfromroots + numpy.polynomial.laguerre.lagfromroots + numpy.polynomial.hermite.hermfromroots + numpy.polynomial.hermite_e.hermefromroots + + Notes + ----- + The coefficients are determined by multiplying together linear factors + of the form ``(x - r_i)``, i.e. + + .. math:: p(x) = (x - r_0) (x - r_1) ... (x - r_n) + + where ``n == len(roots) - 1``; note that this implies that ``1`` is always + returned for :math:`a_n`. + + Examples + -------- + >>> from numpy.polynomial import polynomial as P + >>> P.polyfromroots((-1,0,1)) # x(x - 1)(x + 1) = x^3 - x + array([ 0., -1., 0., 1.]) + >>> j = complex(0,1) + >>> P.polyfromroots((-j,j)) # complex returned, though values are real + array([1.+0.j, 0.+0.j, 1.+0.j]) + + """ + return pu._fromroots(polyline, polymul, roots) + + +def polyadd(c1, c2): + """ + Add one polynomial to another. + + Returns the sum of two polynomials `c1` + `c2`. The arguments are + sequences of coefficients from lowest order term to highest, i.e., + [1,2,3] represents the polynomial ``1 + 2*x + 3*x**2``. + + Parameters + ---------- + c1, c2 : array_like + 1-D arrays of polynomial coefficients ordered from low to high. + + Returns + ------- + out : ndarray + The coefficient array representing their sum. + + See Also + -------- + polysub, polymulx, polymul, polydiv, polypow + + Examples + -------- + >>> from numpy.polynomial import polynomial as P + >>> c1 = (1, 2, 3) + >>> c2 = (3, 2, 1) + >>> sum = P.polyadd(c1,c2); sum + array([4., 4., 4.]) + >>> P.polyval(2, sum) # 4 + 4(2) + 4(2**2) + 28.0 + + """ + return pu._add(c1, c2) + + +def polysub(c1, c2): + """ + Subtract one polynomial from another. + + Returns the difference of two polynomials `c1` - `c2`. The arguments + are sequences of coefficients from lowest order term to highest, i.e., + [1,2,3] represents the polynomial ``1 + 2*x + 3*x**2``. + + Parameters + ---------- + c1, c2 : array_like + 1-D arrays of polynomial coefficients ordered from low to + high. + + Returns + ------- + out : ndarray + Of coefficients representing their difference. + + See Also + -------- + polyadd, polymulx, polymul, polydiv, polypow + + Examples + -------- + >>> from numpy.polynomial import polynomial as P + >>> c1 = (1, 2, 3) + >>> c2 = (3, 2, 1) + >>> P.polysub(c1,c2) + array([-2., 0., 2.]) + >>> P.polysub(c2, c1) # -P.polysub(c1,c2) + array([ 2., 0., -2.]) + + """ + return pu._sub(c1, c2) + + +def polymulx(c): + """Multiply a polynomial by x. + + Multiply the polynomial `c` by x, where x is the independent + variable. + + + Parameters + ---------- + c : array_like + 1-D array of polynomial coefficients ordered from low to + high. + + Returns + ------- + out : ndarray + Array representing the result of the multiplication. + + See Also + -------- + polyadd, polysub, polymul, polydiv, polypow + + Examples + -------- + >>> from numpy.polynomial import polynomial as P + >>> c = (1, 2, 3) + >>> P.polymulx(c) + array([0., 1., 2., 3.]) + + """ + # c is a trimmed copy + [c] = pu.as_series([c]) + # The zero series needs special treatment + if len(c) == 1 and c[0] == 0: + return c + + prd = np.empty(len(c) + 1, dtype=c.dtype) + prd[0] = c[0] * 0 + prd[1:] = c + return prd + + +def polymul(c1, c2): + """ + Multiply one polynomial by another. + + Returns the product of two polynomials `c1` * `c2`. The arguments are + sequences of coefficients, from lowest order term to highest, e.g., + [1,2,3] represents the polynomial ``1 + 2*x + 3*x**2.`` + + Parameters + ---------- + c1, c2 : array_like + 1-D arrays of coefficients representing a polynomial, relative to the + "standard" basis, and ordered from lowest order term to highest. + + Returns + ------- + out : ndarray + Of the coefficients of their product. + + See Also + -------- + polyadd, polysub, polymulx, polydiv, polypow + + Examples + -------- + >>> from numpy.polynomial import polynomial as P + >>> c1 = (1, 2, 3) + >>> c2 = (3, 2, 1) + >>> P.polymul(c1, c2) + array([ 3., 8., 14., 8., 3.]) + + """ + # c1, c2 are trimmed copies + [c1, c2] = pu.as_series([c1, c2]) + ret = np.convolve(c1, c2) + return pu.trimseq(ret) + + +def polydiv(c1, c2): + """ + Divide one polynomial by another. + + Returns the quotient-with-remainder of two polynomials `c1` / `c2`. + The arguments are sequences of coefficients, from lowest order term + to highest, e.g., [1,2,3] represents ``1 + 2*x + 3*x**2``. + + Parameters + ---------- + c1, c2 : array_like + 1-D arrays of polynomial coefficients ordered from low to high. + + Returns + ------- + [quo, rem] : ndarrays + Of coefficient series representing the quotient and remainder. + + See Also + -------- + polyadd, polysub, polymulx, polymul, polypow + + Examples + -------- + >>> from numpy.polynomial import polynomial as P + >>> c1 = (1, 2, 3) + >>> c2 = (3, 2, 1) + >>> P.polydiv(c1, c2) + (array([3.]), array([-8., -4.])) + >>> P.polydiv(c2, c1) + (array([ 0.33333333]), array([ 2.66666667, 1.33333333])) # may vary + + """ + # c1, c2 are trimmed copies + [c1, c2] = pu.as_series([c1, c2]) + if c2[-1] == 0: + raise ZeroDivisionError # FIXME: add message with details to exception + + # note: this is more efficient than `pu._div(polymul, c1, c2)` + lc1 = len(c1) + lc2 = len(c2) + if lc1 < lc2: + return c1[:1] * 0, c1 + elif lc2 == 1: + return c1 / c2[-1], c1[:1] * 0 + else: + dlen = lc1 - lc2 + scl = c2[-1] + c2 = c2[:-1] / scl + i = dlen + j = lc1 - 1 + while i >= 0: + c1[i:j] -= c2 * c1[j] + i -= 1 + j -= 1 + return c1[j + 1:] / scl, pu.trimseq(c1[:j + 1]) + + +def polypow(c, pow, maxpower=None): + """Raise a polynomial to a power. + + Returns the polynomial `c` raised to the power `pow`. The argument + `c` is a sequence of coefficients ordered from low to high. i.e., + [1,2,3] is the series ``1 + 2*x + 3*x**2.`` + + Parameters + ---------- + c : array_like + 1-D array of array of series coefficients ordered from low to + high degree. + pow : integer + Power to which the series will be raised + maxpower : integer, optional + Maximum power allowed. This is mainly to limit growth of the series + to unmanageable size. Default is 16 + + Returns + ------- + coef : ndarray + Power series of power. + + See Also + -------- + polyadd, polysub, polymulx, polymul, polydiv + + Examples + -------- + >>> from numpy.polynomial import polynomial as P + >>> P.polypow([1, 2, 3], 2) + array([ 1., 4., 10., 12., 9.]) + + """ + # note: this is more efficient than `pu._pow(polymul, c1, c2)`, as it + # avoids calling `as_series` repeatedly + return pu._pow(np.convolve, c, pow, maxpower) + + +def polyder(c, m=1, scl=1, axis=0): + """ + Differentiate a polynomial. + + Returns the polynomial coefficients `c` differentiated `m` times along + `axis`. At each iteration the result is multiplied by `scl` (the + scaling factor is for use in a linear change of variable). The + argument `c` is an array of coefficients from low to high degree along + each axis, e.g., [1,2,3] represents the polynomial ``1 + 2*x + 3*x**2`` + while [[1,2],[1,2]] represents ``1 + 1*x + 2*y + 2*x*y`` if axis=0 is + ``x`` and axis=1 is ``y``. + + Parameters + ---------- + c : array_like + Array of polynomial coefficients. If c is multidimensional the + different axis correspond to different variables with the degree + in each axis given by the corresponding index. + m : int, optional + Number of derivatives taken, must be non-negative. (Default: 1) + scl : scalar, optional + Each differentiation is multiplied by `scl`. The end result is + multiplication by ``scl**m``. This is for use in a linear change + of variable. (Default: 1) + axis : int, optional + Axis over which the derivative is taken. (Default: 0). + + Returns + ------- + der : ndarray + Polynomial coefficients of the derivative. + + See Also + -------- + polyint + + Examples + -------- + >>> from numpy.polynomial import polynomial as P + >>> c = (1, 2, 3, 4) + >>> P.polyder(c) # (d/dx)(c) + array([ 2., 6., 12.]) + >>> P.polyder(c, 3) # (d**3/dx**3)(c) + array([24.]) + >>> P.polyder(c, scl=-1) # (d/d(-x))(c) + array([ -2., -6., -12.]) + >>> P.polyder(c, 2, -1) # (d**2/d(-x)**2)(c) + array([ 6., 24.]) + + """ + c = np.array(c, ndmin=1, copy=True) + if c.dtype.char in '?bBhHiIlLqQpP': + # astype fails with NA + c = c + 0.0 + cdt = c.dtype + cnt = pu._as_int(m, "the order of derivation") + iaxis = pu._as_int(axis, "the axis") + if cnt < 0: + raise ValueError("The order of derivation must be non-negative") + iaxis = normalize_axis_index(iaxis, c.ndim) + + if cnt == 0: + return c + + c = np.moveaxis(c, iaxis, 0) + n = len(c) + if cnt >= n: + c = c[:1] * 0 + else: + for i in range(cnt): + n = n - 1 + c *= scl + der = np.empty((n,) + c.shape[1:], dtype=cdt) + for j in range(n, 0, -1): + der[j - 1] = j * c[j] + c = der + c = np.moveaxis(c, 0, iaxis) + return c + + +def polyint(c, m=1, k=[], lbnd=0, scl=1, axis=0): + """ + Integrate a polynomial. + + Returns the polynomial coefficients `c` integrated `m` times from + `lbnd` along `axis`. At each iteration the resulting series is + **multiplied** by `scl` and an integration constant, `k`, is added. + The scaling factor is for use in a linear change of variable. ("Buyer + beware": note that, depending on what one is doing, one may want `scl` + to be the reciprocal of what one might expect; for more information, + see the Notes section below.) The argument `c` is an array of + coefficients, from low to high degree along each axis, e.g., [1,2,3] + represents the polynomial ``1 + 2*x + 3*x**2`` while [[1,2],[1,2]] + represents ``1 + 1*x + 2*y + 2*x*y`` if axis=0 is ``x`` and axis=1 is + ``y``. + + Parameters + ---------- + c : array_like + 1-D array of polynomial coefficients, ordered from low to high. + m : int, optional + Order of integration, must be positive. (Default: 1) + k : {[], list, scalar}, optional + Integration constant(s). The value of the first integral at zero + is the first value in the list, the value of the second integral + at zero is the second value, etc. If ``k == []`` (the default), + all constants are set to zero. If ``m == 1``, a single scalar can + be given instead of a list. + lbnd : scalar, optional + The lower bound of the integral. (Default: 0) + scl : scalar, optional + Following each integration the result is *multiplied* by `scl` + before the integration constant is added. (Default: 1) + axis : int, optional + Axis over which the integral is taken. (Default: 0). + + Returns + ------- + S : ndarray + Coefficient array of the integral. + + Raises + ------ + ValueError + If ``m < 1``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or + ``np.ndim(scl) != 0``. + + See Also + -------- + polyder + + Notes + ----- + Note that the result of each integration is *multiplied* by `scl`. Why + is this important to note? Say one is making a linear change of + variable :math:`u = ax + b` in an integral relative to `x`. Then + :math:`dx = du/a`, so one will need to set `scl` equal to + :math:`1/a` - perhaps not what one would have first thought. + + Examples + -------- + >>> from numpy.polynomial import polynomial as P + >>> c = (1, 2, 3) + >>> P.polyint(c) # should return array([0, 1, 1, 1]) + array([0., 1., 1., 1.]) + >>> P.polyint(c, 3) # should return array([0, 0, 0, 1/6, 1/12, 1/20]) + array([ 0. , 0. , 0. , 0.16666667, 0.08333333, # may vary + 0.05 ]) + >>> P.polyint(c, k=3) # should return array([3, 1, 1, 1]) + array([3., 1., 1., 1.]) + >>> P.polyint(c,lbnd=-2) # should return array([6, 1, 1, 1]) + array([6., 1., 1., 1.]) + >>> P.polyint(c,scl=-2) # should return array([0, -2, -2, -2]) + array([ 0., -2., -2., -2.]) + + """ + c = np.array(c, ndmin=1, copy=True) + if c.dtype.char in '?bBhHiIlLqQpP': + # astype doesn't preserve mask attribute. + c = c + 0.0 + cdt = c.dtype + if not np.iterable(k): + k = [k] + cnt = pu._as_int(m, "the order of integration") + iaxis = pu._as_int(axis, "the axis") + if cnt < 0: + raise ValueError("The order of integration must be non-negative") + if len(k) > cnt: + raise ValueError("Too many integration constants") + if np.ndim(lbnd) != 0: + raise ValueError("lbnd must be a scalar.") + if np.ndim(scl) != 0: + raise ValueError("scl must be a scalar.") + iaxis = normalize_axis_index(iaxis, c.ndim) + + if cnt == 0: + return c + + k = list(k) + [0] * (cnt - len(k)) + c = np.moveaxis(c, iaxis, 0) + for i in range(cnt): + n = len(c) + c *= scl + if n == 1 and np.all(c[0] == 0): + c[0] += k[i] + else: + tmp = np.empty((n + 1,) + c.shape[1:], dtype=cdt) + tmp[0] = c[0] * 0 + tmp[1] = c[0] + for j in range(1, n): + tmp[j + 1] = c[j] / (j + 1) + tmp[0] += k[i] - polyval(lbnd, tmp) + c = tmp + c = np.moveaxis(c, 0, iaxis) + return c + + +def polyval(x, c, tensor=True): + """ + Evaluate a polynomial at points x. + + If `c` is of length ``n + 1``, this function returns the value + + .. math:: p(x) = c_0 + c_1 * x + ... + c_n * x^n + + The parameter `x` is converted to an array only if it is a tuple or a + list, otherwise it is treated as a scalar. In either case, either `x` + or its elements must support multiplication and addition both with + themselves and with the elements of `c`. + + If `c` is a 1-D array, then ``p(x)`` will have the same shape as `x`. If + `c` is multidimensional, then the shape of the result depends on the + value of `tensor`. If `tensor` is true the shape will be c.shape[1:] + + x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that + scalars have shape (,). + + Trailing zeros in the coefficients will be used in the evaluation, so + they should be avoided if efficiency is a concern. + + Parameters + ---------- + x : array_like, compatible object + If `x` is a list or tuple, it is converted to an ndarray, otherwise + it is left unchanged and treated as a scalar. In either case, `x` + or its elements must support addition and multiplication with + with themselves and with the elements of `c`. + c : array_like + Array of coefficients ordered so that the coefficients for terms of + degree n are contained in c[n]. If `c` is multidimensional the + remaining indices enumerate multiple polynomials. In the two + dimensional case the coefficients may be thought of as stored in + the columns of `c`. + tensor : boolean, optional + If True, the shape of the coefficient array is extended with ones + on the right, one for each dimension of `x`. Scalars have dimension 0 + for this action. The result is that every column of coefficients in + `c` is evaluated for every element of `x`. If False, `x` is broadcast + over the columns of `c` for the evaluation. This keyword is useful + when `c` is multidimensional. The default value is True. + + Returns + ------- + values : ndarray, compatible object + The shape of the returned array is described above. + + See Also + -------- + polyval2d, polygrid2d, polyval3d, polygrid3d + + Notes + ----- + The evaluation uses Horner's method. + + Examples + -------- + >>> import numpy as np + >>> from numpy.polynomial.polynomial import polyval + >>> polyval(1, [1,2,3]) + 6.0 + >>> a = np.arange(4).reshape(2,2) + >>> a + array([[0, 1], + [2, 3]]) + >>> polyval(a, [1, 2, 3]) + array([[ 1., 6.], + [17., 34.]]) + >>> coef = np.arange(4).reshape(2, 2) # multidimensional coefficients + >>> coef + array([[0, 1], + [2, 3]]) + >>> polyval([1, 2], coef, tensor=True) + array([[2., 4.], + [4., 7.]]) + >>> polyval([1, 2], coef, tensor=False) + array([2., 7.]) + + """ + c = np.array(c, ndmin=1, copy=None) + if c.dtype.char in '?bBhHiIlLqQpP': + # astype fails with NA + c = c + 0.0 + if isinstance(x, (tuple, list)): + x = np.asarray(x) + if isinstance(x, np.ndarray) and tensor: + c = c.reshape(c.shape + (1,) * x.ndim) + + c0 = c[-1] + x * 0 + for i in range(2, len(c) + 1): + c0 = c[-i] + c0 * x + return c0 + + +def polyvalfromroots(x, r, tensor=True): + """ + Evaluate a polynomial specified by its roots at points x. + + If `r` is of length ``N``, this function returns the value + + .. math:: p(x) = \\prod_{n=1}^{N} (x - r_n) + + The parameter `x` is converted to an array only if it is a tuple or a + list, otherwise it is treated as a scalar. In either case, either `x` + or its elements must support multiplication and addition both with + themselves and with the elements of `r`. + + If `r` is a 1-D array, then ``p(x)`` will have the same shape as `x`. If `r` + is multidimensional, then the shape of the result depends on the value of + `tensor`. If `tensor` is ``True`` the shape will be r.shape[1:] + x.shape; + that is, each polynomial is evaluated at every value of `x`. If `tensor` is + ``False``, the shape will be r.shape[1:]; that is, each polynomial is + evaluated only for the corresponding broadcast value of `x`. Note that + scalars have shape (,). + + Parameters + ---------- + x : array_like, compatible object + If `x` is a list or tuple, it is converted to an ndarray, otherwise + it is left unchanged and treated as a scalar. In either case, `x` + or its elements must support addition and multiplication with + with themselves and with the elements of `r`. + r : array_like + Array of roots. If `r` is multidimensional the first index is the + root index, while the remaining indices enumerate multiple + polynomials. For instance, in the two dimensional case the roots + of each polynomial may be thought of as stored in the columns of `r`. + tensor : boolean, optional + If True, the shape of the roots array is extended with ones on the + right, one for each dimension of `x`. Scalars have dimension 0 for this + action. The result is that every column of coefficients in `r` is + evaluated for every element of `x`. If False, `x` is broadcast over the + columns of `r` for the evaluation. This keyword is useful when `r` is + multidimensional. The default value is True. + + Returns + ------- + values : ndarray, compatible object + The shape of the returned array is described above. + + See Also + -------- + polyroots, polyfromroots, polyval + + Examples + -------- + >>> from numpy.polynomial.polynomial import polyvalfromroots + >>> polyvalfromroots(1, [1, 2, 3]) + 0.0 + >>> a = np.arange(4).reshape(2, 2) + >>> a + array([[0, 1], + [2, 3]]) + >>> polyvalfromroots(a, [-1, 0, 1]) + array([[-0., 0.], + [ 6., 24.]]) + >>> r = np.arange(-2, 2).reshape(2,2) # multidimensional coefficients + >>> r # each column of r defines one polynomial + array([[-2, -1], + [ 0, 1]]) + >>> b = [-2, 1] + >>> polyvalfromroots(b, r, tensor=True) + array([[-0., 3.], + [ 3., 0.]]) + >>> polyvalfromroots(b, r, tensor=False) + array([-0., 0.]) + + """ + r = np.array(r, ndmin=1, copy=None) + if r.dtype.char in '?bBhHiIlLqQpP': + r = r.astype(np.double) + if isinstance(x, (tuple, list)): + x = np.asarray(x) + if isinstance(x, np.ndarray): + if tensor: + r = r.reshape(r.shape + (1,) * x.ndim) + elif x.ndim >= r.ndim: + raise ValueError("x.ndim must be < r.ndim when tensor == False") + return np.prod(x - r, axis=0) + + +def polyval2d(x, y, c): + """ + Evaluate a 2-D polynomial at points (x, y). + + This function returns the value + + .. math:: p(x,y) = \\sum_{i,j} c_{i,j} * x^i * y^j + + The parameters `x` and `y` are converted to arrays only if they are + tuples or a lists, otherwise they are treated as a scalars and they + must have the same shape after conversion. In either case, either `x` + and `y` or their elements must support multiplication and addition both + with themselves and with the elements of `c`. + + If `c` has fewer than two dimensions, ones are implicitly appended to + its shape to make it 2-D. The shape of the result will be c.shape[2:] + + x.shape. + + Parameters + ---------- + x, y : array_like, compatible objects + The two dimensional series is evaluated at the points ``(x, y)``, + where `x` and `y` must have the same shape. If `x` or `y` is a list + or tuple, it is first converted to an ndarray, otherwise it is left + unchanged and, if it isn't an ndarray, it is treated as a scalar. + c : array_like + Array of coefficients ordered so that the coefficient of the term + of multi-degree i,j is contained in ``c[i,j]``. If `c` has + dimension greater than two the remaining indices enumerate multiple + sets of coefficients. + + Returns + ------- + values : ndarray, compatible object + The values of the two dimensional polynomial at points formed with + pairs of corresponding values from `x` and `y`. + + See Also + -------- + polyval, polygrid2d, polyval3d, polygrid3d + + Examples + -------- + >>> from numpy.polynomial import polynomial as P + >>> c = ((1, 2, 3), (4, 5, 6)) + >>> P.polyval2d(1, 1, c) + 21.0 + + """ + return pu._valnd(polyval, c, x, y) + + +def polygrid2d(x, y, c): + """ + Evaluate a 2-D polynomial on the Cartesian product of x and y. + + This function returns the values: + + .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * a^i * b^j + + where the points ``(a, b)`` consist of all pairs formed by taking + `a` from `x` and `b` from `y`. The resulting points form a grid with + `x` in the first dimension and `y` in the second. + + The parameters `x` and `y` are converted to arrays only if they are + tuples or a lists, otherwise they are treated as a scalars. In either + case, either `x` and `y` or their elements must support multiplication + and addition both with themselves and with the elements of `c`. + + If `c` has fewer than two dimensions, ones are implicitly appended to + its shape to make it 2-D. The shape of the result will be c.shape[2:] + + x.shape + y.shape. + + Parameters + ---------- + x, y : array_like, compatible objects + The two dimensional series is evaluated at the points in the + Cartesian product of `x` and `y`. If `x` or `y` is a list or + tuple, it is first converted to an ndarray, otherwise it is left + unchanged and, if it isn't an ndarray, it is treated as a scalar. + c : array_like + Array of coefficients ordered so that the coefficients for terms of + degree i,j are contained in ``c[i,j]``. If `c` has dimension + greater than two the remaining indices enumerate multiple sets of + coefficients. + + Returns + ------- + values : ndarray, compatible object + The values of the two dimensional polynomial at points in the Cartesian + product of `x` and `y`. + + See Also + -------- + polyval, polyval2d, polyval3d, polygrid3d + + Examples + -------- + >>> from numpy.polynomial import polynomial as P + >>> c = ((1, 2, 3), (4, 5, 6)) + >>> P.polygrid2d([0, 1], [0, 1], c) + array([[ 1., 6.], + [ 5., 21.]]) + + """ + return pu._gridnd(polyval, c, x, y) + + +def polyval3d(x, y, z, c): + """ + Evaluate a 3-D polynomial at points (x, y, z). + + This function returns the values: + + .. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * x^i * y^j * z^k + + The parameters `x`, `y`, and `z` are converted to arrays only if + they are tuples or a lists, otherwise they are treated as a scalars and + they must have the same shape after conversion. In either case, either + `x`, `y`, and `z` or their elements must support multiplication and + addition both with themselves and with the elements of `c`. + + If `c` has fewer than 3 dimensions, ones are implicitly appended to its + shape to make it 3-D. The shape of the result will be c.shape[3:] + + x.shape. + + Parameters + ---------- + x, y, z : array_like, compatible object + The three dimensional series is evaluated at the points + ``(x, y, z)``, where `x`, `y`, and `z` must have the same shape. If + any of `x`, `y`, or `z` is a list or tuple, it is first converted + to an ndarray, otherwise it is left unchanged and if it isn't an + ndarray it is treated as a scalar. + c : array_like + Array of coefficients ordered so that the coefficient of the term of + multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension + greater than 3 the remaining indices enumerate multiple sets of + coefficients. + + Returns + ------- + values : ndarray, compatible object + The values of the multidimensional polynomial on points formed with + triples of corresponding values from `x`, `y`, and `z`. + + See Also + -------- + polyval, polyval2d, polygrid2d, polygrid3d + + Examples + -------- + >>> from numpy.polynomial import polynomial as P + >>> c = ((1, 2, 3), (4, 5, 6), (7, 8, 9)) + >>> P.polyval3d(1, 1, 1, c) + 45.0 + + """ + return pu._valnd(polyval, c, x, y, z) + + +def polygrid3d(x, y, z, c): + """ + Evaluate a 3-D polynomial on the Cartesian product of x, y and z. + + This function returns the values: + + .. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * a^i * b^j * c^k + + where the points ``(a, b, c)`` consist of all triples formed by taking + `a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form + a grid with `x` in the first dimension, `y` in the second, and `z` in + the third. + + The parameters `x`, `y`, and `z` are converted to arrays only if they + are tuples or a lists, otherwise they are treated as a scalars. In + either case, either `x`, `y`, and `z` or their elements must support + multiplication and addition both with themselves and with the elements + of `c`. + + If `c` has fewer than three dimensions, ones are implicitly appended to + its shape to make it 3-D. The shape of the result will be c.shape[3:] + + x.shape + y.shape + z.shape. + + Parameters + ---------- + x, y, z : array_like, compatible objects + The three dimensional series is evaluated at the points in the + Cartesian product of `x`, `y`, and `z`. If `x`, `y`, or `z` is a + list or tuple, it is first converted to an ndarray, otherwise it is + left unchanged and, if it isn't an ndarray, it is treated as a + scalar. + c : array_like + Array of coefficients ordered so that the coefficients for terms of + degree i,j are contained in ``c[i,j]``. If `c` has dimension + greater than two the remaining indices enumerate multiple sets of + coefficients. + + Returns + ------- + values : ndarray, compatible object + The values of the two dimensional polynomial at points in the Cartesian + product of `x` and `y`. + + See Also + -------- + polyval, polyval2d, polygrid2d, polyval3d + + Examples + -------- + >>> from numpy.polynomial import polynomial as P + >>> c = ((1, 2, 3), (4, 5, 6), (7, 8, 9)) + >>> P.polygrid3d([0, 1], [0, 1], [0, 1], c) + array([[ 1., 13.], + [ 6., 51.]]) + + """ + return pu._gridnd(polyval, c, x, y, z) + + +def polyvander(x, deg): + """Vandermonde matrix of given degree. + + Returns the Vandermonde matrix of degree `deg` and sample points + `x`. The Vandermonde matrix is defined by + + .. math:: V[..., i] = x^i, + + where ``0 <= i <= deg``. The leading indices of `V` index the elements of + `x` and the last index is the power of `x`. + + If `c` is a 1-D array of coefficients of length ``n + 1`` and `V` is the + matrix ``V = polyvander(x, n)``, then ``np.dot(V, c)`` and + ``polyval(x, c)`` are the same up to roundoff. This equivalence is + useful both for least squares fitting and for the evaluation of a large + number of polynomials of the same degree and sample points. + + Parameters + ---------- + x : array_like + Array of points. The dtype is converted to float64 or complex128 + depending on whether any of the elements are complex. If `x` is + scalar it is converted to a 1-D array. + deg : int + Degree of the resulting matrix. + + Returns + ------- + vander : ndarray. + The Vandermonde matrix. The shape of the returned matrix is + ``x.shape + (deg + 1,)``, where the last index is the power of `x`. + The dtype will be the same as the converted `x`. + + See Also + -------- + polyvander2d, polyvander3d + + Examples + -------- + The Vandermonde matrix of degree ``deg = 5`` and sample points + ``x = [-1, 2, 3]`` contains the element-wise powers of `x` + from 0 to 5 as its columns. + + >>> from numpy.polynomial import polynomial as P + >>> x, deg = [-1, 2, 3], 5 + >>> P.polyvander(x=x, deg=deg) + array([[ 1., -1., 1., -1., 1., -1.], + [ 1., 2., 4., 8., 16., 32.], + [ 1., 3., 9., 27., 81., 243.]]) + + """ + ideg = pu._as_int(deg, "deg") + if ideg < 0: + raise ValueError("deg must be non-negative") + + x = np.array(x, copy=None, ndmin=1) + 0.0 + dims = (ideg + 1,) + x.shape + dtyp = x.dtype + v = np.empty(dims, dtype=dtyp) + v[0] = x * 0 + 1 + if ideg > 0: + v[1] = x + for i in range(2, ideg + 1): + v[i] = v[i - 1] * x + return np.moveaxis(v, 0, -1) + + +def polyvander2d(x, y, deg): + """Pseudo-Vandermonde matrix of given degrees. + + Returns the pseudo-Vandermonde matrix of degrees `deg` and sample + points ``(x, y)``. The pseudo-Vandermonde matrix is defined by + + .. math:: V[..., (deg[1] + 1)*i + j] = x^i * y^j, + + where ``0 <= i <= deg[0]`` and ``0 <= j <= deg[1]``. The leading indices of + `V` index the points ``(x, y)`` and the last index encodes the powers of + `x` and `y`. + + If ``V = polyvander2d(x, y, [xdeg, ydeg])``, then the columns of `V` + correspond to the elements of a 2-D coefficient array `c` of shape + (xdeg + 1, ydeg + 1) in the order + + .. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ... + + and ``np.dot(V, c.flat)`` and ``polyval2d(x, y, c)`` will be the same + up to roundoff. This equivalence is useful both for least squares + fitting and for the evaluation of a large number of 2-D polynomials + of the same degrees and sample points. + + Parameters + ---------- + x, y : array_like + Arrays of point coordinates, all of the same shape. The dtypes + will be converted to either float64 or complex128 depending on + whether any of the elements are complex. Scalars are converted to + 1-D arrays. + deg : list of ints + List of maximum degrees of the form [x_deg, y_deg]. + + Returns + ------- + vander2d : ndarray + The shape of the returned matrix is ``x.shape + (order,)``, where + :math:`order = (deg[0]+1)*(deg([1]+1)`. The dtype will be the same + as the converted `x` and `y`. + + See Also + -------- + polyvander, polyvander3d, polyval2d, polyval3d + + Examples + -------- + >>> import numpy as np + + The 2-D pseudo-Vandermonde matrix of degree ``[1, 2]`` and sample + points ``x = [-1, 2]`` and ``y = [1, 3]`` is as follows: + + >>> from numpy.polynomial import polynomial as P + >>> x = np.array([-1, 2]) + >>> y = np.array([1, 3]) + >>> m, n = 1, 2 + >>> deg = np.array([m, n]) + >>> V = P.polyvander2d(x=x, y=y, deg=deg) + >>> V + array([[ 1., 1., 1., -1., -1., -1.], + [ 1., 3., 9., 2., 6., 18.]]) + + We can verify the columns for any ``0 <= i <= m`` and ``0 <= j <= n``: + + >>> i, j = 0, 1 + >>> V[:, (deg[1]+1)*i + j] == x**i * y**j + array([ True, True]) + + The (1D) Vandermonde matrix of sample points ``x`` and degree ``m`` is a + special case of the (2D) pseudo-Vandermonde matrix with ``y`` points all + zero and degree ``[m, 0]``. + + >>> P.polyvander2d(x=x, y=0*x, deg=(m, 0)) == P.polyvander(x=x, deg=m) + array([[ True, True], + [ True, True]]) + + """ + return pu._vander_nd_flat((polyvander, polyvander), (x, y), deg) + + +def polyvander3d(x, y, z, deg): + """Pseudo-Vandermonde matrix of given degrees. + + Returns the pseudo-Vandermonde matrix of degrees `deg` and sample + points ``(x, y, z)``. If `l`, `m`, `n` are the given degrees in `x`, `y`, `z`, + then The pseudo-Vandermonde matrix is defined by + + .. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = x^i * y^j * z^k, + + where ``0 <= i <= l``, ``0 <= j <= m``, and ``0 <= j <= n``. The leading + indices of `V` index the points ``(x, y, z)`` and the last index encodes + the powers of `x`, `y`, and `z`. + + If ``V = polyvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns + of `V` correspond to the elements of a 3-D coefficient array `c` of + shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order + + .. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},... + + and ``np.dot(V, c.flat)`` and ``polyval3d(x, y, z, c)`` will be the + same up to roundoff. This equivalence is useful both for least squares + fitting and for the evaluation of a large number of 3-D polynomials + of the same degrees and sample points. + + Parameters + ---------- + x, y, z : array_like + Arrays of point coordinates, all of the same shape. The dtypes will + be converted to either float64 or complex128 depending on whether + any of the elements are complex. Scalars are converted to 1-D + arrays. + deg : list of ints + List of maximum degrees of the form [x_deg, y_deg, z_deg]. + + Returns + ------- + vander3d : ndarray + The shape of the returned matrix is ``x.shape + (order,)``, where + :math:`order = (deg[0]+1)*(deg([1]+1)*(deg[2]+1)`. The dtype will + be the same as the converted `x`, `y`, and `z`. + + See Also + -------- + polyvander, polyvander3d, polyval2d, polyval3d + + Examples + -------- + >>> import numpy as np + >>> from numpy.polynomial import polynomial as P + >>> x = np.asarray([-1, 2, 1]) + >>> y = np.asarray([1, -2, -3]) + >>> z = np.asarray([2, 2, 5]) + >>> l, m, n = [2, 2, 1] + >>> deg = [l, m, n] + >>> V = P.polyvander3d(x=x, y=y, z=z, deg=deg) + >>> V + array([[ 1., 2., 1., 2., 1., 2., -1., -2., -1., + -2., -1., -2., 1., 2., 1., 2., 1., 2.], + [ 1., 2., -2., -4., 4., 8., 2., 4., -4., + -8., 8., 16., 4., 8., -8., -16., 16., 32.], + [ 1., 5., -3., -15., 9., 45., 1., 5., -3., + -15., 9., 45., 1., 5., -3., -15., 9., 45.]]) + + We can verify the columns for any ``0 <= i <= l``, ``0 <= j <= m``, + and ``0 <= k <= n`` + + >>> i, j, k = 2, 1, 0 + >>> V[:, (m+1)*(n+1)*i + (n+1)*j + k] == x**i * y**j * z**k + array([ True, True, True]) + + """ + return pu._vander_nd_flat((polyvander, polyvander, polyvander), (x, y, z), deg) + + +def polyfit(x, y, deg, rcond=None, full=False, w=None): + """ + Least-squares fit of a polynomial to data. + + Return the coefficients of a polynomial of degree `deg` that is the + least squares fit to the data values `y` given at points `x`. If `y` is + 1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple + fits are done, one for each column of `y`, and the resulting + coefficients are stored in the corresponding columns of a 2-D return. + The fitted polynomial(s) are in the form + + .. math:: p(x) = c_0 + c_1 * x + ... + c_n * x^n, + + where `n` is `deg`. + + Parameters + ---------- + x : array_like, shape (`M`,) + x-coordinates of the `M` sample (data) points ``(x[i], y[i])``. + y : array_like, shape (`M`,) or (`M`, `K`) + y-coordinates of the sample points. Several sets of sample points + sharing the same x-coordinates can be (independently) fit with one + call to `polyfit` by passing in for `y` a 2-D array that contains + one data set per column. + deg : int or 1-D array_like + Degree(s) of the fitting polynomials. If `deg` is a single integer + all terms up to and including the `deg`'th term are included in the + fit. For NumPy versions >= 1.11.0 a list of integers specifying the + degrees of the terms to include may be used instead. + rcond : float, optional + Relative condition number of the fit. Singular values smaller + than `rcond`, relative to the largest singular value, will be + ignored. The default value is ``len(x)*eps``, where `eps` is the + relative precision of the platform's float type, about 2e-16 in + most cases. + full : bool, optional + Switch determining the nature of the return value. When ``False`` + (the default) just the coefficients are returned; when ``True``, + diagnostic information from the singular value decomposition (used + to solve the fit's matrix equation) is also returned. + w : array_like, shape (`M`,), optional + Weights. If not None, the weight ``w[i]`` applies to the unsquared + residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are + chosen so that the errors of the products ``w[i]*y[i]`` all have the + same variance. When using inverse-variance weighting, use + ``w[i] = 1/sigma(y[i])``. The default value is None. + + Returns + ------- + coef : ndarray, shape (`deg` + 1,) or (`deg` + 1, `K`) + Polynomial coefficients ordered from low to high. If `y` was 2-D, + the coefficients in column `k` of `coef` represent the polynomial + fit to the data in `y`'s `k`-th column. + + [residuals, rank, singular_values, rcond] : list + These values are only returned if ``full == True`` + + - residuals -- sum of squared residuals of the least squares fit + - rank -- the numerical rank of the scaled Vandermonde matrix + - singular_values -- singular values of the scaled Vandermonde matrix + - rcond -- value of `rcond`. + + For more details, see `numpy.linalg.lstsq`. + + Raises + ------ + RankWarning + Raised if the matrix in the least-squares fit is rank deficient. + The warning is only raised if ``full == False``. The warnings can + be turned off by: + + >>> import warnings + >>> warnings.simplefilter('ignore', np.exceptions.RankWarning) + + See Also + -------- + numpy.polynomial.chebyshev.chebfit + numpy.polynomial.legendre.legfit + numpy.polynomial.laguerre.lagfit + numpy.polynomial.hermite.hermfit + numpy.polynomial.hermite_e.hermefit + polyval : Evaluates a polynomial. + polyvander : Vandermonde matrix for powers. + numpy.linalg.lstsq : Computes a least-squares fit from the matrix. + scipy.interpolate.UnivariateSpline : Computes spline fits. + + Notes + ----- + The solution is the coefficients of the polynomial `p` that minimizes + the sum of the weighted squared errors + + .. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2, + + where the :math:`w_j` are the weights. This problem is solved by + setting up the (typically) over-determined matrix equation: + + .. math:: V(x) * c = w * y, + + where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the + coefficients to be solved for, `w` are the weights, and `y` are the + observed values. This equation is then solved using the singular value + decomposition of `V`. + + If some of the singular values of `V` are so small that they are + neglected (and `full` == ``False``), a `~exceptions.RankWarning` will be + raised. This means that the coefficient values may be poorly determined. + Fitting to a lower order polynomial will usually get rid of the warning + (but may not be what you want, of course; if you have independent + reason(s) for choosing the degree which isn't working, you may have to: + a) reconsider those reasons, and/or b) reconsider the quality of your + data). The `rcond` parameter can also be set to a value smaller than + its default, but the resulting fit may be spurious and have large + contributions from roundoff error. + + Polynomial fits using double precision tend to "fail" at about + (polynomial) degree 20. Fits using Chebyshev or Legendre series are + generally better conditioned, but much can still depend on the + distribution of the sample points and the smoothness of the data. If + the quality of the fit is inadequate, splines may be a good + alternative. + + Examples + -------- + >>> import numpy as np + >>> from numpy.polynomial import polynomial as P + >>> x = np.linspace(-1,1,51) # x "data": [-1, -0.96, ..., 0.96, 1] + >>> rng = np.random.default_rng() + >>> err = rng.normal(size=len(x)) + >>> y = x**3 - x + err # x^3 - x + Gaussian noise + >>> c, stats = P.polyfit(x,y,3,full=True) + >>> c # c[0], c[1] approx. -1, c[2] should be approx. 0, c[3] approx. 1 + array([ 0.23111996, -1.02785049, -0.2241444 , 1.08405657]) # may vary + >>> stats # note the large SSR, explaining the rather poor results + [array([48.312088]), # may vary + 4, + array([1.38446749, 1.32119158, 0.50443316, 0.28853036]), + 1.1324274851176597e-14] + + Same thing without the added noise + + >>> y = x**3 - x + >>> c, stats = P.polyfit(x,y,3,full=True) + >>> c # c[0], c[1] ~= -1, c[2] should be "very close to 0", c[3] ~= 1 + array([-6.73496154e-17, -1.00000000e+00, 0.00000000e+00, 1.00000000e+00]) + >>> stats # note the minuscule SSR + [array([8.79579319e-31]), + np.int32(4), + array([1.38446749, 1.32119158, 0.50443316, 0.28853036]), + 1.1324274851176597e-14] + + """ + return pu._fit(polyvander, x, y, deg, rcond, full, w) + + +def polycompanion(c): + """ + Return the companion matrix of c. + + The companion matrix for power series cannot be made symmetric by + scaling the basis, so this function differs from those for the + orthogonal polynomials. + + Parameters + ---------- + c : array_like + 1-D array of polynomial coefficients ordered from low to high + degree. + + Returns + ------- + mat : ndarray + Companion matrix of dimensions (deg, deg). + + Examples + -------- + >>> from numpy.polynomial import polynomial as P + >>> c = (1, 2, 3) + >>> P.polycompanion(c) + array([[ 0. , -0.33333333], + [ 1. , -0.66666667]]) + + """ + # c is a trimmed copy + [c] = pu.as_series([c]) + if len(c) < 2: + raise ValueError('Series must have maximum degree of at least 1.') + if len(c) == 2: + return np.array([[-c[0] / c[1]]]) + + n = len(c) - 1 + mat = np.zeros((n, n), dtype=c.dtype) + bot = mat.reshape(-1)[n::n + 1] + bot[...] = 1 + mat[:, -1] -= c[:-1] / c[-1] + return mat + + +def polyroots(c): + """ + Compute the roots of a polynomial. + + Return the roots (a.k.a. "zeros") of the polynomial + + .. math:: p(x) = \\sum_i c[i] * x^i. + + Parameters + ---------- + c : 1-D array_like + 1-D array of polynomial coefficients. + + Returns + ------- + out : ndarray + Array of the roots of the polynomial. If all the roots are real, + then `out` is also real, otherwise it is complex. + + See Also + -------- + numpy.polynomial.chebyshev.chebroots + numpy.polynomial.legendre.legroots + numpy.polynomial.laguerre.lagroots + numpy.polynomial.hermite.hermroots + numpy.polynomial.hermite_e.hermeroots + + Notes + ----- + The root estimates are obtained as the eigenvalues of the companion + matrix, Roots far from the origin of the complex plane may have large + errors due to the numerical instability of the power series for such + values. Roots with multiplicity greater than 1 will also show larger + errors as the value of the series near such points is relatively + insensitive to errors in the roots. Isolated roots near the origin can + be improved by a few iterations of Newton's method. + + Examples + -------- + >>> import numpy.polynomial.polynomial as poly + >>> poly.polyroots(poly.polyfromroots((-1,0,1))) + array([-1., 0., 1.]) + >>> poly.polyroots(poly.polyfromroots((-1,0,1))).dtype + dtype('float64') + >>> j = complex(0,1) + >>> poly.polyroots(poly.polyfromroots((-j,0,j))) + array([ 0.00000000e+00+0.j, 0.00000000e+00+1.j, 2.77555756e-17-1.j]) # may vary + + """ # noqa: E501 + # c is a trimmed copy + [c] = pu.as_series([c]) + if len(c) < 2: + return np.array([], dtype=c.dtype) + if len(c) == 2: + return np.array([-c[0] / c[1]]) + + m = polycompanion(c) + r = la.eigvals(m) + r.sort() + return r + + +# +# polynomial class +# + +class Polynomial(ABCPolyBase): + """A power series class. + + The Polynomial class provides the standard Python numerical methods + '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the + attributes and methods listed below. + + Parameters + ---------- + coef : array_like + Polynomial coefficients in order of increasing degree, i.e., + ``(1, 2, 3)`` give ``1 + 2*x + 3*x**2``. + domain : (2,) array_like, optional + Domain to use. The interval ``[domain[0], domain[1]]`` is mapped + to the interval ``[window[0], window[1]]`` by shifting and scaling. + The default value is [-1., 1.]. + window : (2,) array_like, optional + Window, see `domain` for its use. The default value is [-1., 1.]. + symbol : str, optional + Symbol used to represent the independent variable in string + representations of the polynomial expression, e.g. for printing. + The symbol must be a valid Python identifier. Default value is 'x'. + + .. versionadded:: 1.24 + + """ + # Virtual Functions + _add = staticmethod(polyadd) + _sub = staticmethod(polysub) + _mul = staticmethod(polymul) + _div = staticmethod(polydiv) + _pow = staticmethod(polypow) + _val = staticmethod(polyval) + _int = staticmethod(polyint) + _der = staticmethod(polyder) + _fit = staticmethod(polyfit) + _line = staticmethod(polyline) + _roots = staticmethod(polyroots) + _fromroots = staticmethod(polyfromroots) + + # Virtual properties + domain = np.array(polydomain) + window = np.array(polydomain) + basis_name = None + + @classmethod + def _str_term_unicode(cls, i, arg_str): + if i == '1': + return f"·{arg_str}" + else: + return f"·{arg_str}{i.translate(cls._superscript_mapping)}" + + @staticmethod + def _str_term_ascii(i, arg_str): + if i == '1': + return f" {arg_str}" + else: + return f" {arg_str}**{i}" + + @staticmethod + def _repr_latex_term(i, arg_str, needs_parens): + if needs_parens: + arg_str = rf"\left({arg_str}\right)" + if i == 0: + return '1' + elif i == 1: + return arg_str + else: + return f"{arg_str}^{{{i}}}" diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/polynomial.pyi b/.venv/lib/python3.12/site-packages/numpy/polynomial/polynomial.pyi new file mode 100644 index 0000000..b4c7844 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/polynomial.pyi @@ -0,0 +1,89 @@ +from typing import Final +from typing import Literal as L + +import numpy as np + +from ._polybase import ABCPolyBase +from ._polytypes import ( + _Array1, + _Array2, + _FuncBinOp, + _FuncCompanion, + _FuncDer, + _FuncFit, + _FuncFromRoots, + _FuncInteg, + _FuncLine, + _FuncPow, + _FuncRoots, + _FuncUnOp, + _FuncVal, + _FuncVal2D, + _FuncVal3D, + _FuncValFromRoots, + _FuncVander, + _FuncVander2D, + _FuncVander3D, +) +from .polyutils import trimcoef as polytrim + +__all__ = [ + "polyzero", + "polyone", + "polyx", + "polydomain", + "polyline", + "polyadd", + "polysub", + "polymulx", + "polymul", + "polydiv", + "polypow", + "polyval", + "polyvalfromroots", + "polyder", + "polyint", + "polyfromroots", + "polyvander", + "polyfit", + "polytrim", + "polyroots", + "Polynomial", + "polyval2d", + "polyval3d", + "polygrid2d", + "polygrid3d", + "polyvander2d", + "polyvander3d", + "polycompanion", +] + +polydomain: Final[_Array2[np.float64]] +polyzero: Final[_Array1[np.int_]] +polyone: Final[_Array1[np.int_]] +polyx: Final[_Array2[np.int_]] + +polyline: _FuncLine[L["Polyline"]] +polyfromroots: _FuncFromRoots[L["polyfromroots"]] +polyadd: _FuncBinOp[L["polyadd"]] +polysub: _FuncBinOp[L["polysub"]] +polymulx: _FuncUnOp[L["polymulx"]] +polymul: _FuncBinOp[L["polymul"]] +polydiv: _FuncBinOp[L["polydiv"]] +polypow: _FuncPow[L["polypow"]] +polyder: _FuncDer[L["polyder"]] +polyint: _FuncInteg[L["polyint"]] +polyval: _FuncVal[L["polyval"]] +polyval2d: _FuncVal2D[L["polyval2d"]] +polyval3d: _FuncVal3D[L["polyval3d"]] +polyvalfromroots: _FuncValFromRoots[L["polyvalfromroots"]] +polygrid2d: _FuncVal2D[L["polygrid2d"]] +polygrid3d: _FuncVal3D[L["polygrid3d"]] +polyvander: _FuncVander[L["polyvander"]] +polyvander2d: _FuncVander2D[L["polyvander2d"]] +polyvander3d: _FuncVander3D[L["polyvander3d"]] +polyfit: _FuncFit[L["polyfit"]] +polycompanion: _FuncCompanion[L["polycompanion"]] +polyroots: _FuncRoots[L["polyroots"]] + +class Polynomial(ABCPolyBase[None]): ... diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/polyutils.py b/.venv/lib/python3.12/site-packages/numpy/polynomial/polyutils.py new file mode 100644 index 0000000..18dc0a8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/polyutils.py @@ -0,0 +1,759 @@ +""" +Utility classes and functions for the polynomial modules. + +This module provides: error and warning objects; a polynomial base class; +and some routines used in both the `polynomial` and `chebyshev` modules. + +Functions +--------- + +.. autosummary:: + :toctree: generated/ + + as_series convert list of array_likes into 1-D arrays of common type. + trimseq remove trailing zeros. + trimcoef remove small trailing coefficients. + getdomain return the domain appropriate for a given set of abscissae. + mapdomain maps points between domains. + mapparms parameters of the linear map between domains. + +""" +import functools +import operator +import warnings + +import numpy as np +from numpy._core.multiarray import dragon4_positional, dragon4_scientific +from numpy.exceptions import RankWarning + +__all__ = [ + 'as_series', 'trimseq', 'trimcoef', 'getdomain', 'mapdomain', 'mapparms', + 'format_float'] + +# +# Helper functions to convert inputs to 1-D arrays +# +def trimseq(seq): + """Remove small Poly series coefficients. + + Parameters + ---------- + seq : sequence + Sequence of Poly series coefficients. + + Returns + ------- + series : sequence + Subsequence with trailing zeros removed. If the resulting sequence + would be empty, return the first element. The returned sequence may + or may not be a view. + + Notes + ----- + Do not lose the type info if the sequence contains unknown objects. + + """ + if len(seq) == 0 or seq[-1] != 0: + return seq + else: + for i in range(len(seq) - 1, -1, -1): + if seq[i] != 0: + break + return seq[:i + 1] + + +def as_series(alist, trim=True): + """ + Return argument as a list of 1-d arrays. + + The returned list contains array(s) of dtype double, complex double, or + object. A 1-d argument of shape ``(N,)`` is parsed into ``N`` arrays of + size one; a 2-d argument of shape ``(M,N)`` is parsed into ``M`` arrays + of size ``N`` (i.e., is "parsed by row"); and a higher dimensional array + raises a Value Error if it is not first reshaped into either a 1-d or 2-d + array. + + Parameters + ---------- + alist : array_like + A 1- or 2-d array_like + trim : boolean, optional + When True, trailing zeros are removed from the inputs. + When False, the inputs are passed through intact. + + Returns + ------- + [a1, a2,...] : list of 1-D arrays + A copy of the input data as a list of 1-d arrays. + + Raises + ------ + ValueError + Raised when `as_series` cannot convert its input to 1-d arrays, or at + least one of the resulting arrays is empty. + + Examples + -------- + >>> import numpy as np + >>> from numpy.polynomial import polyutils as pu + >>> a = np.arange(4) + >>> pu.as_series(a) + [array([0.]), array([1.]), array([2.]), array([3.])] + >>> b = np.arange(6).reshape((2,3)) + >>> pu.as_series(b) + [array([0., 1., 2.]), array([3., 4., 5.])] + + >>> pu.as_series((1, np.arange(3), np.arange(2, dtype=np.float16))) + [array([1.]), array([0., 1., 2.]), array([0., 1.])] + + >>> pu.as_series([2, [1.1, 0.]]) + [array([2.]), array([1.1])] + + >>> pu.as_series([2, [1.1, 0.]], trim=False) + [array([2.]), array([1.1, 0. ])] + + """ + arrays = [np.array(a, ndmin=1, copy=None) for a in alist] + for a in arrays: + if a.size == 0: + raise ValueError("Coefficient array is empty") + if a.ndim != 1: + raise ValueError("Coefficient array is not 1-d") + if trim: + arrays = [trimseq(a) for a in arrays] + + try: + dtype = np.common_type(*arrays) + except Exception as e: + object_dtype = np.dtypes.ObjectDType() + has_one_object_type = False + ret = [] + for a in arrays: + if a.dtype != object_dtype: + tmp = np.empty(len(a), dtype=object_dtype) + tmp[:] = a[:] + ret.append(tmp) + else: + has_one_object_type = True + ret.append(a.copy()) + if not has_one_object_type: + raise ValueError("Coefficient arrays have no common type") from e + else: + ret = [np.array(a, copy=True, dtype=dtype) for a in arrays] + return ret + + +def trimcoef(c, tol=0): + """ + Remove "small" "trailing" coefficients from a polynomial. + + "Small" means "small in absolute value" and is controlled by the + parameter `tol`; "trailing" means highest order coefficient(s), e.g., in + ``[0, 1, 1, 0, 0]`` (which represents ``0 + x + x**2 + 0*x**3 + 0*x**4``) + both the 3-rd and 4-th order coefficients would be "trimmed." + + Parameters + ---------- + c : array_like + 1-d array of coefficients, ordered from lowest order to highest. + tol : number, optional + Trailing (i.e., highest order) elements with absolute value less + than or equal to `tol` (default value is zero) are removed. + + Returns + ------- + trimmed : ndarray + 1-d array with trailing zeros removed. If the resulting series + would be empty, a series containing a single zero is returned. + + Raises + ------ + ValueError + If `tol` < 0 + + Examples + -------- + >>> from numpy.polynomial import polyutils as pu + >>> pu.trimcoef((0,0,3,0,5,0,0)) + array([0., 0., 3., 0., 5.]) + >>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed + array([0.]) + >>> i = complex(0,1) # works for complex + >>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3) + array([0.0003+0.j , 0.001 -0.001j]) + + """ + if tol < 0: + raise ValueError("tol must be non-negative") + + [c] = as_series([c]) + [ind] = np.nonzero(np.abs(c) > tol) + if len(ind) == 0: + return c[:1] * 0 + else: + return c[:ind[-1] + 1].copy() + +def getdomain(x): + """ + Return a domain suitable for given abscissae. + + Find a domain suitable for a polynomial or Chebyshev series + defined at the values supplied. + + Parameters + ---------- + x : array_like + 1-d array of abscissae whose domain will be determined. + + Returns + ------- + domain : ndarray + 1-d array containing two values. If the inputs are complex, then + the two returned points are the lower left and upper right corners + of the smallest rectangle (aligned with the axes) in the complex + plane containing the points `x`. If the inputs are real, then the + two points are the ends of the smallest interval containing the + points `x`. + + See Also + -------- + mapparms, mapdomain + + Examples + -------- + >>> import numpy as np + >>> from numpy.polynomial import polyutils as pu + >>> points = np.arange(4)**2 - 5; points + array([-5, -4, -1, 4]) + >>> pu.getdomain(points) + array([-5., 4.]) + >>> c = np.exp(complex(0,1)*np.pi*np.arange(12)/6) # unit circle + >>> pu.getdomain(c) + array([-1.-1.j, 1.+1.j]) + + """ + [x] = as_series([x], trim=False) + if x.dtype.char in np.typecodes['Complex']: + rmin, rmax = x.real.min(), x.real.max() + imin, imax = x.imag.min(), x.imag.max() + return np.array((complex(rmin, imin), complex(rmax, imax))) + else: + return np.array((x.min(), x.max())) + +def mapparms(old, new): + """ + Linear map parameters between domains. + + Return the parameters of the linear map ``offset + scale*x`` that maps + `old` to `new` such that ``old[i] -> new[i]``, ``i = 0, 1``. + + Parameters + ---------- + old, new : array_like + Domains. Each domain must (successfully) convert to a 1-d array + containing precisely two values. + + Returns + ------- + offset, scale : scalars + The map ``L(x) = offset + scale*x`` maps the first domain to the + second. + + See Also + -------- + getdomain, mapdomain + + Notes + ----- + Also works for complex numbers, and thus can be used to calculate the + parameters required to map any line in the complex plane to any other + line therein. + + Examples + -------- + >>> from numpy.polynomial import polyutils as pu + >>> pu.mapparms((-1,1),(-1,1)) + (0.0, 1.0) + >>> pu.mapparms((1,-1),(-1,1)) + (-0.0, -1.0) + >>> i = complex(0,1) + >>> pu.mapparms((-i,-1),(1,i)) + ((1+1j), (1-0j)) + + """ + oldlen = old[1] - old[0] + newlen = new[1] - new[0] + off = (old[1] * new[0] - old[0] * new[1]) / oldlen + scl = newlen / oldlen + return off, scl + +def mapdomain(x, old, new): + """ + Apply linear map to input points. + + The linear map ``offset + scale*x`` that maps the domain `old` to + the domain `new` is applied to the points `x`. + + Parameters + ---------- + x : array_like + Points to be mapped. If `x` is a subtype of ndarray the subtype + will be preserved. + old, new : array_like + The two domains that determine the map. Each must (successfully) + convert to 1-d arrays containing precisely two values. + + Returns + ------- + x_out : ndarray + Array of points of the same shape as `x`, after application of the + linear map between the two domains. + + See Also + -------- + getdomain, mapparms + + Notes + ----- + Effectively, this implements: + + .. math:: + x\\_out = new[0] + m(x - old[0]) + + where + + .. math:: + m = \\frac{new[1]-new[0]}{old[1]-old[0]} + + Examples + -------- + >>> import numpy as np + >>> from numpy.polynomial import polyutils as pu + >>> old_domain = (-1,1) + >>> new_domain = (0,2*np.pi) + >>> x = np.linspace(-1,1,6); x + array([-1. , -0.6, -0.2, 0.2, 0.6, 1. ]) + >>> x_out = pu.mapdomain(x, old_domain, new_domain); x_out + array([ 0. , 1.25663706, 2.51327412, 3.76991118, 5.02654825, # may vary + 6.28318531]) + >>> x - pu.mapdomain(x_out, new_domain, old_domain) + array([0., 0., 0., 0., 0., 0.]) + + Also works for complex numbers (and thus can be used to map any line in + the complex plane to any other line therein). + + >>> i = complex(0,1) + >>> old = (-1 - i, 1 + i) + >>> new = (-1 + i, 1 - i) + >>> z = np.linspace(old[0], old[1], 6); z + array([-1. -1.j , -0.6-0.6j, -0.2-0.2j, 0.2+0.2j, 0.6+0.6j, 1. +1.j ]) + >>> new_z = pu.mapdomain(z, old, new); new_z + array([-1.0+1.j , -0.6+0.6j, -0.2+0.2j, 0.2-0.2j, 0.6-0.6j, 1.0-1.j ]) # may vary + + """ + if type(x) not in (int, float, complex) and not isinstance(x, np.generic): + x = np.asanyarray(x) + off, scl = mapparms(old, new) + return off + scl * x + + +def _nth_slice(i, ndim): + sl = [np.newaxis] * ndim + sl[i] = slice(None) + return tuple(sl) + + +def _vander_nd(vander_fs, points, degrees): + r""" + A generalization of the Vandermonde matrix for N dimensions + + The result is built by combining the results of 1d Vandermonde matrices, + + .. math:: + W[i_0, \ldots, i_M, j_0, \ldots, j_N] = \prod_{k=0}^N{V_k(x_k)[i_0, \ldots, i_M, j_k]} + + where + + .. math:: + N &= \texttt{len(points)} = \texttt{len(degrees)} = \texttt{len(vander\_fs)} \\ + M &= \texttt{points[k].ndim} \\ + V_k &= \texttt{vander\_fs[k]} \\ + x_k &= \texttt{points[k]} \\ + 0 \le j_k &\le \texttt{degrees[k]} + + Expanding the one-dimensional :math:`V_k` functions gives: + + .. math:: + W[i_0, \ldots, i_M, j_0, \ldots, j_N] = \prod_{k=0}^N{B_{k, j_k}(x_k[i_0, \ldots, i_M])} + + where :math:`B_{k,m}` is the m'th basis of the polynomial construction used along + dimension :math:`k`. For a regular polynomial, :math:`B_{k, m}(x) = P_m(x) = x^m`. + + Parameters + ---------- + vander_fs : Sequence[function(array_like, int) -> ndarray] + The 1d vander function to use for each axis, such as ``polyvander`` + points : Sequence[array_like] + Arrays of point coordinates, all of the same shape. The dtypes + will be converted to either float64 or complex128 depending on + whether any of the elements are complex. Scalars are converted to + 1-D arrays. + This must be the same length as `vander_fs`. + degrees : Sequence[int] + The maximum degree (inclusive) to use for each axis. + This must be the same length as `vander_fs`. + + Returns + ------- + vander_nd : ndarray + An array of shape ``points[0].shape + tuple(d + 1 for d in degrees)``. + """ # noqa: E501 + n_dims = len(vander_fs) + if n_dims != len(points): + raise ValueError( + f"Expected {n_dims} dimensions of sample points, got {len(points)}") + if n_dims != len(degrees): + raise ValueError( + f"Expected {n_dims} dimensions of degrees, got {len(degrees)}") + if n_dims == 0: + raise ValueError("Unable to guess a dtype or shape when no points are given") + + # convert to the same shape and type + points = tuple(np.asarray(tuple(points)) + 0.0) + + # produce the vandermonde matrix for each dimension, placing the last + # axis of each in an independent trailing axis of the output + vander_arrays = ( + vander_fs[i](points[i], degrees[i])[(...,) + _nth_slice(i, n_dims)] + for i in range(n_dims) + ) + + # we checked this wasn't empty already, so no `initial` needed + return functools.reduce(operator.mul, vander_arrays) + + +def _vander_nd_flat(vander_fs, points, degrees): + """ + Like `_vander_nd`, but flattens the last ``len(degrees)`` axes into a single axis + + Used to implement the public ``vanderd`` functions. + """ + v = _vander_nd(vander_fs, points, degrees) + return v.reshape(v.shape[:-len(degrees)] + (-1,)) + + +def _fromroots(line_f, mul_f, roots): + """ + Helper function used to implement the ``fromroots`` functions. + + Parameters + ---------- + line_f : function(float, float) -> ndarray + The ``line`` function, such as ``polyline`` + mul_f : function(array_like, array_like) -> ndarray + The ``mul`` function, such as ``polymul`` + roots + See the ``fromroots`` functions for more detail + """ + if len(roots) == 0: + return np.ones(1) + else: + [roots] = as_series([roots], trim=False) + roots.sort() + p = [line_f(-r, 1) for r in roots] + n = len(p) + while n > 1: + m, r = divmod(n, 2) + tmp = [mul_f(p[i], p[i + m]) for i in range(m)] + if r: + tmp[0] = mul_f(tmp[0], p[-1]) + p = tmp + n = m + return p[0] + + +def _valnd(val_f, c, *args): + """ + Helper function used to implement the ``vald`` functions. + + Parameters + ---------- + val_f : function(array_like, array_like, tensor: bool) -> array_like + The ``val`` function, such as ``polyval`` + c, args + See the ``vald`` functions for more detail + """ + args = [np.asanyarray(a) for a in args] + shape0 = args[0].shape + if not all(a.shape == shape0 for a in args[1:]): + if len(args) == 3: + raise ValueError('x, y, z are incompatible') + elif len(args) == 2: + raise ValueError('x, y are incompatible') + else: + raise ValueError('ordinates are incompatible') + it = iter(args) + x0 = next(it) + + # use tensor on only the first + c = val_f(x0, c) + for xi in it: + c = val_f(xi, c, tensor=False) + return c + + +def _gridnd(val_f, c, *args): + """ + Helper function used to implement the ``gridd`` functions. + + Parameters + ---------- + val_f : function(array_like, array_like, tensor: bool) -> array_like + The ``val`` function, such as ``polyval`` + c, args + See the ``gridd`` functions for more detail + """ + for xi in args: + c = val_f(xi, c) + return c + + +def _div(mul_f, c1, c2): + """ + Helper function used to implement the ``div`` functions. + + Implementation uses repeated subtraction of c2 multiplied by the nth basis. + For some polynomial types, a more efficient approach may be possible. + + Parameters + ---------- + mul_f : function(array_like, array_like) -> array_like + The ``mul`` function, such as ``polymul`` + c1, c2 + See the ``div`` functions for more detail + """ + # c1, c2 are trimmed copies + [c1, c2] = as_series([c1, c2]) + if c2[-1] == 0: + raise ZeroDivisionError # FIXME: add message with details to exception + + lc1 = len(c1) + lc2 = len(c2) + if lc1 < lc2: + return c1[:1] * 0, c1 + elif lc2 == 1: + return c1 / c2[-1], c1[:1] * 0 + else: + quo = np.empty(lc1 - lc2 + 1, dtype=c1.dtype) + rem = c1 + for i in range(lc1 - lc2, - 1, -1): + p = mul_f([0] * i + [1], c2) + q = rem[-1] / p[-1] + rem = rem[:-1] - q * p[:-1] + quo[i] = q + return quo, trimseq(rem) + + +def _add(c1, c2): + """ Helper function used to implement the ``add`` functions. """ + # c1, c2 are trimmed copies + [c1, c2] = as_series([c1, c2]) + if len(c1) > len(c2): + c1[:c2.size] += c2 + ret = c1 + else: + c2[:c1.size] += c1 + ret = c2 + return trimseq(ret) + + +def _sub(c1, c2): + """ Helper function used to implement the ``sub`` functions. """ + # c1, c2 are trimmed copies + [c1, c2] = as_series([c1, c2]) + if len(c1) > len(c2): + c1[:c2.size] -= c2 + ret = c1 + else: + c2 = -c2 + c2[:c1.size] += c1 + ret = c2 + return trimseq(ret) + + +def _fit(vander_f, x, y, deg, rcond=None, full=False, w=None): + """ + Helper function used to implement the ``fit`` functions. + + Parameters + ---------- + vander_f : function(array_like, int) -> ndarray + The 1d vander function, such as ``polyvander`` + c1, c2 + See the ``fit`` functions for more detail + """ + x = np.asarray(x) + 0.0 + y = np.asarray(y) + 0.0 + deg = np.asarray(deg) + + # check arguments. + if deg.ndim > 1 or deg.dtype.kind not in 'iu' or deg.size == 0: + raise TypeError("deg must be an int or non-empty 1-D array of int") + if deg.min() < 0: + raise ValueError("expected deg >= 0") + if x.ndim != 1: + raise TypeError("expected 1D vector for x") + if x.size == 0: + raise TypeError("expected non-empty vector for x") + if y.ndim < 1 or y.ndim > 2: + raise TypeError("expected 1D or 2D array for y") + if len(x) != len(y): + raise TypeError("expected x and y to have same length") + + if deg.ndim == 0: + lmax = deg + order = lmax + 1 + van = vander_f(x, lmax) + else: + deg = np.sort(deg) + lmax = deg[-1] + order = len(deg) + van = vander_f(x, lmax)[:, deg] + + # set up the least squares matrices in transposed form + lhs = van.T + rhs = y.T + if w is not None: + w = np.asarray(w) + 0.0 + if w.ndim != 1: + raise TypeError("expected 1D vector for w") + if len(x) != len(w): + raise TypeError("expected x and w to have same length") + # apply weights. Don't use inplace operations as they + # can cause problems with NA. + lhs = lhs * w + rhs = rhs * w + + # set rcond + if rcond is None: + rcond = len(x) * np.finfo(x.dtype).eps + + # Determine the norms of the design matrix columns. + if issubclass(lhs.dtype.type, np.complexfloating): + scl = np.sqrt((np.square(lhs.real) + np.square(lhs.imag)).sum(1)) + else: + scl = np.sqrt(np.square(lhs).sum(1)) + scl[scl == 0] = 1 + + # Solve the least squares problem. + c, resids, rank, s = np.linalg.lstsq(lhs.T / scl, rhs.T, rcond) + c = (c.T / scl).T + + # Expand c to include non-fitted coefficients which are set to zero + if deg.ndim > 0: + if c.ndim == 2: + cc = np.zeros((lmax + 1, c.shape[1]), dtype=c.dtype) + else: + cc = np.zeros(lmax + 1, dtype=c.dtype) + cc[deg] = c + c = cc + + # warn on rank reduction + if rank != order and not full: + msg = "The fit may be poorly conditioned" + warnings.warn(msg, RankWarning, stacklevel=2) + + if full: + return c, [resids, rank, s, rcond] + else: + return c + + +def _pow(mul_f, c, pow, maxpower): + """ + Helper function used to implement the ``pow`` functions. + + Parameters + ---------- + mul_f : function(array_like, array_like) -> ndarray + The ``mul`` function, such as ``polymul`` + c : array_like + 1-D array of array of series coefficients + pow, maxpower + See the ``pow`` functions for more detail + """ + # c is a trimmed copy + [c] = as_series([c]) + power = int(pow) + if power != pow or power < 0: + raise ValueError("Power must be a non-negative integer.") + elif maxpower is not None and power > maxpower: + raise ValueError("Power is too large") + elif power == 0: + return np.array([1], dtype=c.dtype) + elif power == 1: + return c + else: + # This can be made more efficient by using powers of two + # in the usual way. + prd = c + for i in range(2, power + 1): + prd = mul_f(prd, c) + return prd + + +def _as_int(x, desc): + """ + Like `operator.index`, but emits a custom exception when passed an + incorrect type + + Parameters + ---------- + x : int-like + Value to interpret as an integer + desc : str + description to include in any error message + + Raises + ------ + TypeError : if x is a float or non-numeric + """ + try: + return operator.index(x) + except TypeError as e: + raise TypeError(f"{desc} must be an integer, received {x}") from e + + +def format_float(x, parens=False): + if not np.issubdtype(type(x), np.floating): + return str(x) + + opts = np.get_printoptions() + + if np.isnan(x): + return opts['nanstr'] + elif np.isinf(x): + return opts['infstr'] + + exp_format = False + if x != 0: + a = np.abs(x) + if a >= 1.e8 or a < 10**min(0, -(opts['precision'] - 1) // 2): + exp_format = True + + trim, unique = '0', True + if opts['floatmode'] == 'fixed': + trim, unique = 'k', False + + if exp_format: + s = dragon4_scientific(x, precision=opts['precision'], + unique=unique, trim=trim, + sign=opts['sign'] == '+') + if parens: + s = '(' + s + ')' + else: + s = dragon4_positional(x, precision=opts['precision'], + fractional=True, + unique=unique, trim=trim, + sign=opts['sign'] == '+') + return s diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/polyutils.pyi b/.venv/lib/python3.12/site-packages/numpy/polynomial/polyutils.pyi new file mode 100644 index 0000000..c627e16 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/polyutils.pyi @@ -0,0 +1,423 @@ +from collections.abc import Callable, Iterable, Sequence +from typing import ( + Final, + Literal, + SupportsIndex, + TypeAlias, + TypeVar, + overload, +) + +import numpy as np +import numpy.typing as npt +from numpy._typing import ( + _ArrayLikeComplex_co, + _ArrayLikeFloat_co, + _FloatLike_co, + _NumberLike_co, +) + +from ._polytypes import ( + _AnyInt, + _Array2, + _ArrayLikeCoef_co, + _CoefArray, + _CoefLike_co, + _CoefSeries, + _ComplexArray, + _ComplexSeries, + _FloatArray, + _FloatSeries, + _FuncBinOp, + _FuncValND, + _FuncVanderND, + _ObjectArray, + _ObjectSeries, + _SeriesLikeCoef_co, + _SeriesLikeComplex_co, + _SeriesLikeFloat_co, + _SeriesLikeInt_co, + _Tuple2, +) + +__all__: Final[Sequence[str]] = [ + "as_series", + "format_float", + "getdomain", + "mapdomain", + "mapparms", + "trimcoef", + "trimseq", +] + +_AnyLineF: TypeAlias = Callable[ + [_CoefLike_co, _CoefLike_co], + _CoefArray, +] +_AnyMulF: TypeAlias = Callable[ + [npt.ArrayLike, npt.ArrayLike], + _CoefArray, +] +_AnyVanderF: TypeAlias = Callable[ + [npt.ArrayLike, SupportsIndex], + _CoefArray, +] + +@overload +def as_series( + alist: npt.NDArray[np.integer] | _FloatArray, + trim: bool = ..., +) -> list[_FloatSeries]: ... +@overload +def as_series( + alist: _ComplexArray, + trim: bool = ..., +) -> list[_ComplexSeries]: ... +@overload +def as_series( + alist: _ObjectArray, + trim: bool = ..., +) -> list[_ObjectSeries]: ... +@overload +def as_series( # type: ignore[overload-overlap] + alist: Iterable[_FloatArray | npt.NDArray[np.integer]], + trim: bool = ..., +) -> list[_FloatSeries]: ... +@overload +def as_series( + alist: Iterable[_ComplexArray], + trim: bool = ..., +) -> list[_ComplexSeries]: ... +@overload +def as_series( + alist: Iterable[_ObjectArray], + trim: bool = ..., +) -> list[_ObjectSeries]: ... +@overload +def as_series( # type: ignore[overload-overlap] + alist: Iterable[_SeriesLikeFloat_co | float], + trim: bool = ..., +) -> list[_FloatSeries]: ... +@overload +def as_series( + alist: Iterable[_SeriesLikeComplex_co | complex], + trim: bool = ..., +) -> list[_ComplexSeries]: ... +@overload +def as_series( + alist: Iterable[_SeriesLikeCoef_co | object], + trim: bool = ..., +) -> list[_ObjectSeries]: ... + +_T_seq = TypeVar("_T_seq", bound=_CoefArray | Sequence[_CoefLike_co]) +def trimseq(seq: _T_seq) -> _T_seq: ... + +@overload +def trimcoef( # type: ignore[overload-overlap] + c: npt.NDArray[np.integer] | _FloatArray, + tol: _FloatLike_co = ..., +) -> _FloatSeries: ... +@overload +def trimcoef( + c: _ComplexArray, + tol: _FloatLike_co = ..., +) -> _ComplexSeries: ... +@overload +def trimcoef( + c: _ObjectArray, + tol: _FloatLike_co = ..., +) -> _ObjectSeries: ... +@overload +def trimcoef( # type: ignore[overload-overlap] + c: _SeriesLikeFloat_co | float, + tol: _FloatLike_co = ..., +) -> _FloatSeries: ... +@overload +def trimcoef( + c: _SeriesLikeComplex_co | complex, + tol: _FloatLike_co = ..., +) -> _ComplexSeries: ... +@overload +def trimcoef( + c: _SeriesLikeCoef_co | object, + tol: _FloatLike_co = ..., +) -> _ObjectSeries: ... + +@overload +def getdomain( # type: ignore[overload-overlap] + x: _FloatArray | npt.NDArray[np.integer], +) -> _Array2[np.float64]: ... +@overload +def getdomain( + x: _ComplexArray, +) -> _Array2[np.complex128]: ... +@overload +def getdomain( + x: _ObjectArray, +) -> _Array2[np.object_]: ... +@overload +def getdomain( # type: ignore[overload-overlap] + x: _SeriesLikeFloat_co | float, +) -> _Array2[np.float64]: ... +@overload +def getdomain( + x: _SeriesLikeComplex_co | complex, +) -> _Array2[np.complex128]: ... +@overload +def getdomain( + x: _SeriesLikeCoef_co | object, +) -> _Array2[np.object_]: ... + +@overload +def mapparms( # type: ignore[overload-overlap] + old: npt.NDArray[np.floating | np.integer], + new: npt.NDArray[np.floating | np.integer], +) -> _Tuple2[np.floating]: ... +@overload +def mapparms( + old: npt.NDArray[np.number], + new: npt.NDArray[np.number], +) -> _Tuple2[np.complexfloating]: ... +@overload +def mapparms( + old: npt.NDArray[np.object_ | np.number], + new: npt.NDArray[np.object_ | np.number], +) -> _Tuple2[object]: ... +@overload +def mapparms( # type: ignore[overload-overlap] + old: Sequence[float], + new: Sequence[float], +) -> _Tuple2[float]: ... +@overload +def mapparms( + old: Sequence[complex], + new: Sequence[complex], +) -> _Tuple2[complex]: ... +@overload +def mapparms( + old: _SeriesLikeFloat_co, + new: _SeriesLikeFloat_co, +) -> _Tuple2[np.floating]: ... +@overload +def mapparms( + old: _SeriesLikeComplex_co, + new: _SeriesLikeComplex_co, +) -> _Tuple2[np.complexfloating]: ... +@overload +def mapparms( + old: _SeriesLikeCoef_co, + new: _SeriesLikeCoef_co, +) -> _Tuple2[object]: ... + +@overload +def mapdomain( # type: ignore[overload-overlap] + x: _FloatLike_co, + old: _SeriesLikeFloat_co, + new: _SeriesLikeFloat_co, +) -> np.floating: ... +@overload +def mapdomain( + x: _NumberLike_co, + old: _SeriesLikeComplex_co, + new: _SeriesLikeComplex_co, +) -> np.complexfloating: ... +@overload +def mapdomain( # type: ignore[overload-overlap] + x: npt.NDArray[np.floating | np.integer], + old: npt.NDArray[np.floating | np.integer], + new: npt.NDArray[np.floating | np.integer], +) -> _FloatSeries: ... +@overload +def mapdomain( + x: npt.NDArray[np.number], + old: npt.NDArray[np.number], + new: npt.NDArray[np.number], +) -> _ComplexSeries: ... +@overload +def mapdomain( + x: npt.NDArray[np.object_ | np.number], + old: npt.NDArray[np.object_ | np.number], + new: npt.NDArray[np.object_ | np.number], +) -> _ObjectSeries: ... +@overload +def mapdomain( # type: ignore[overload-overlap] + x: _SeriesLikeFloat_co, + old: _SeriesLikeFloat_co, + new: _SeriesLikeFloat_co, +) -> _FloatSeries: ... +@overload +def mapdomain( + x: _SeriesLikeComplex_co, + old: _SeriesLikeComplex_co, + new: _SeriesLikeComplex_co, +) -> _ComplexSeries: ... +@overload +def mapdomain( + x: _SeriesLikeCoef_co, + old: _SeriesLikeCoef_co, + new: _SeriesLikeCoef_co, +) -> _ObjectSeries: ... +@overload +def mapdomain( + x: _CoefLike_co, + old: _SeriesLikeCoef_co, + new: _SeriesLikeCoef_co, +) -> object: ... + +def _nth_slice( + i: SupportsIndex, + ndim: SupportsIndex, +) -> tuple[slice | None, ...]: ... + +_vander_nd: _FuncVanderND[Literal["_vander_nd"]] +_vander_nd_flat: _FuncVanderND[Literal["_vander_nd_flat"]] + +# keep in sync with `._polytypes._FuncFromRoots` +@overload +def _fromroots( # type: ignore[overload-overlap] + line_f: _AnyLineF, + mul_f: _AnyMulF, + roots: _SeriesLikeFloat_co, +) -> _FloatSeries: ... +@overload +def _fromroots( + line_f: _AnyLineF, + mul_f: _AnyMulF, + roots: _SeriesLikeComplex_co, +) -> _ComplexSeries: ... +@overload +def _fromroots( + line_f: _AnyLineF, + mul_f: _AnyMulF, + roots: _SeriesLikeCoef_co, +) -> _ObjectSeries: ... +@overload +def _fromroots( + line_f: _AnyLineF, + mul_f: _AnyMulF, + roots: _SeriesLikeCoef_co, +) -> _CoefSeries: ... + +_valnd: _FuncValND[Literal["_valnd"]] +_gridnd: _FuncValND[Literal["_gridnd"]] + +# keep in sync with `_polytypes._FuncBinOp` +@overload +def _div( # type: ignore[overload-overlap] + mul_f: _AnyMulF, + c1: _SeriesLikeFloat_co, + c2: _SeriesLikeFloat_co, +) -> _Tuple2[_FloatSeries]: ... +@overload +def _div( + mul_f: _AnyMulF, + c1: _SeriesLikeComplex_co, + c2: _SeriesLikeComplex_co, +) -> _Tuple2[_ComplexSeries]: ... +@overload +def _div( + mul_f: _AnyMulF, + c1: _SeriesLikeCoef_co, + c2: _SeriesLikeCoef_co, +) -> _Tuple2[_ObjectSeries]: ... +@overload +def _div( + mul_f: _AnyMulF, + c1: _SeriesLikeCoef_co, + c2: _SeriesLikeCoef_co, +) -> _Tuple2[_CoefSeries]: ... + +_add: Final[_FuncBinOp] +_sub: Final[_FuncBinOp] + +# keep in sync with `_polytypes._FuncPow` +@overload +def _pow( # type: ignore[overload-overlap] + mul_f: _AnyMulF, + c: _SeriesLikeFloat_co, + pow: _AnyInt, + maxpower: _AnyInt | None = ..., +) -> _FloatSeries: ... +@overload +def _pow( + mul_f: _AnyMulF, + c: _SeriesLikeComplex_co, + pow: _AnyInt, + maxpower: _AnyInt | None = ..., +) -> _ComplexSeries: ... +@overload +def _pow( + mul_f: _AnyMulF, + c: _SeriesLikeCoef_co, + pow: _AnyInt, + maxpower: _AnyInt | None = ..., +) -> _ObjectSeries: ... +@overload +def _pow( + mul_f: _AnyMulF, + c: _SeriesLikeCoef_co, + pow: _AnyInt, + maxpower: _AnyInt | None = ..., +) -> _CoefSeries: ... + +# keep in sync with `_polytypes._FuncFit` +@overload +def _fit( # type: ignore[overload-overlap] + vander_f: _AnyVanderF, + x: _SeriesLikeFloat_co, + y: _ArrayLikeFloat_co, + deg: _SeriesLikeInt_co, + domain: _SeriesLikeFloat_co | None = ..., + rcond: _FloatLike_co | None = ..., + full: Literal[False] = ..., + w: _SeriesLikeFloat_co | None = ..., +) -> _FloatArray: ... +@overload +def _fit( + vander_f: _AnyVanderF, + x: _SeriesLikeComplex_co, + y: _ArrayLikeComplex_co, + deg: _SeriesLikeInt_co, + domain: _SeriesLikeComplex_co | None = ..., + rcond: _FloatLike_co | None = ..., + full: Literal[False] = ..., + w: _SeriesLikeComplex_co | None = ..., +) -> _ComplexArray: ... +@overload +def _fit( + vander_f: _AnyVanderF, + x: _SeriesLikeCoef_co, + y: _ArrayLikeCoef_co, + deg: _SeriesLikeInt_co, + domain: _SeriesLikeCoef_co | None = ..., + rcond: _FloatLike_co | None = ..., + full: Literal[False] = ..., + w: _SeriesLikeCoef_co | None = ..., +) -> _CoefArray: ... +@overload +def _fit( + vander_f: _AnyVanderF, + x: _SeriesLikeCoef_co, + y: _SeriesLikeCoef_co, + deg: _SeriesLikeInt_co, + domain: _SeriesLikeCoef_co | None, + rcond: _FloatLike_co | None, + full: Literal[True], + /, + w: _SeriesLikeCoef_co | None = ..., +) -> tuple[_CoefSeries, Sequence[np.inexact | np.int32]]: ... +@overload +def _fit( + vander_f: _AnyVanderF, + x: _SeriesLikeCoef_co, + y: _SeriesLikeCoef_co, + deg: _SeriesLikeInt_co, + domain: _SeriesLikeCoef_co | None = ..., + rcond: _FloatLike_co | None = ..., + *, + full: Literal[True], + w: _SeriesLikeCoef_co | None = ..., +) -> tuple[_CoefSeries, Sequence[np.inexact | np.int32]]: ... + +def _as_int(x: SupportsIndex, desc: str) -> int: ... +def format_float(x: _FloatLike_co, parens: bool = ...) -> str: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__init__.py b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..f0cc006 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_chebyshev.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_chebyshev.cpython-312.pyc new file mode 100644 index 0000000..cf8f747 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_chebyshev.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_classes.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_classes.cpython-312.pyc new file mode 100644 index 0000000..32aec82 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_classes.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_hermite.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_hermite.cpython-312.pyc new file mode 100644 index 0000000..44fd6b0 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_hermite.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_hermite_e.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_hermite_e.cpython-312.pyc new file mode 100644 index 0000000..1725154 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_hermite_e.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_laguerre.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_laguerre.cpython-312.pyc new file mode 100644 index 0000000..defff35 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_laguerre.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_legendre.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_legendre.cpython-312.pyc new file mode 100644 index 0000000..a61cdda Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_legendre.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_polynomial.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_polynomial.cpython-312.pyc new file mode 100644 index 0000000..81bdbbb Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_polynomial.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_polyutils.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_polyutils.cpython-312.pyc new file mode 100644 index 0000000..5792df5 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_polyutils.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_printing.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_printing.cpython-312.pyc new file mode 100644 index 0000000..6f369fd Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_printing.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_symbol.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_symbol.cpython-312.pyc new file mode 100644 index 0000000..b9e8eb7 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/__pycache__/test_symbol.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_chebyshev.py b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_chebyshev.py new file mode 100644 index 0000000..2cead45 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_chebyshev.py @@ -0,0 +1,623 @@ +"""Tests for chebyshev module. + +""" +from functools import reduce + +import numpy as np +import numpy.polynomial.chebyshev as cheb +from numpy.polynomial.polynomial import polyval +from numpy.testing import ( + assert_, + assert_almost_equal, + assert_equal, + assert_raises, +) + + +def trim(x): + return cheb.chebtrim(x, tol=1e-6) + + +T0 = [1] +T1 = [0, 1] +T2 = [-1, 0, 2] +T3 = [0, -3, 0, 4] +T4 = [1, 0, -8, 0, 8] +T5 = [0, 5, 0, -20, 0, 16] +T6 = [-1, 0, 18, 0, -48, 0, 32] +T7 = [0, -7, 0, 56, 0, -112, 0, 64] +T8 = [1, 0, -32, 0, 160, 0, -256, 0, 128] +T9 = [0, 9, 0, -120, 0, 432, 0, -576, 0, 256] + +Tlist = [T0, T1, T2, T3, T4, T5, T6, T7, T8, T9] + + +class TestPrivate: + + def test__cseries_to_zseries(self): + for i in range(5): + inp = np.array([2] + [1] * i, np.double) + tgt = np.array([.5] * i + [2] + [.5] * i, np.double) + res = cheb._cseries_to_zseries(inp) + assert_equal(res, tgt) + + def test__zseries_to_cseries(self): + for i in range(5): + inp = np.array([.5] * i + [2] + [.5] * i, np.double) + tgt = np.array([2] + [1] * i, np.double) + res = cheb._zseries_to_cseries(inp) + assert_equal(res, tgt) + + +class TestConstants: + + def test_chebdomain(self): + assert_equal(cheb.chebdomain, [-1, 1]) + + def test_chebzero(self): + assert_equal(cheb.chebzero, [0]) + + def test_chebone(self): + assert_equal(cheb.chebone, [1]) + + def test_chebx(self): + assert_equal(cheb.chebx, [0, 1]) + + +class TestArithmetic: + + def test_chebadd(self): + for i in range(5): + for j in range(5): + msg = f"At i={i}, j={j}" + tgt = np.zeros(max(i, j) + 1) + tgt[i] += 1 + tgt[j] += 1 + res = cheb.chebadd([0] * i + [1], [0] * j + [1]) + assert_equal(trim(res), trim(tgt), err_msg=msg) + + def test_chebsub(self): + for i in range(5): + for j in range(5): + msg = f"At i={i}, j={j}" + tgt = np.zeros(max(i, j) + 1) + tgt[i] += 1 + tgt[j] -= 1 + res = cheb.chebsub([0] * i + [1], [0] * j + [1]) + assert_equal(trim(res), trim(tgt), err_msg=msg) + + def test_chebmulx(self): + assert_equal(cheb.chebmulx([0]), [0]) + assert_equal(cheb.chebmulx([1]), [0, 1]) + for i in range(1, 5): + ser = [0] * i + [1] + tgt = [0] * (i - 1) + [.5, 0, .5] + assert_equal(cheb.chebmulx(ser), tgt) + + def test_chebmul(self): + for i in range(5): + for j in range(5): + msg = f"At i={i}, j={j}" + tgt = np.zeros(i + j + 1) + tgt[i + j] += .5 + tgt[abs(i - j)] += .5 + res = cheb.chebmul([0] * i + [1], [0] * j + [1]) + assert_equal(trim(res), trim(tgt), err_msg=msg) + + def test_chebdiv(self): + for i in range(5): + for j in range(5): + msg = f"At i={i}, j={j}" + ci = [0] * i + [1] + cj = [0] * j + [1] + tgt = cheb.chebadd(ci, cj) + quo, rem = cheb.chebdiv(tgt, ci) + res = cheb.chebadd(cheb.chebmul(quo, ci), rem) + assert_equal(trim(res), trim(tgt), err_msg=msg) + + def test_chebpow(self): + for i in range(5): + for j in range(5): + msg = f"At i={i}, j={j}" + c = np.arange(i + 1) + tgt = reduce(cheb.chebmul, [c] * j, np.array([1])) + res = cheb.chebpow(c, j) + assert_equal(trim(res), trim(tgt), err_msg=msg) + + +class TestEvaluation: + # coefficients of 1 + 2*x + 3*x**2 + c1d = np.array([2.5, 2., 1.5]) + c2d = np.einsum('i,j->ij', c1d, c1d) + c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d) + + # some random values in [-1, 1) + x = np.random.random((3, 5)) * 2 - 1 + y = polyval(x, [1., 2., 3.]) + + def test_chebval(self): + # check empty input + assert_equal(cheb.chebval([], [1]).size, 0) + + # check normal input) + x = np.linspace(-1, 1) + y = [polyval(x, c) for c in Tlist] + for i in range(10): + msg = f"At i={i}" + tgt = y[i] + res = cheb.chebval(x, [0] * i + [1]) + assert_almost_equal(res, tgt, err_msg=msg) + + # check that shape is preserved + for i in range(3): + dims = [2] * i + x = np.zeros(dims) + assert_equal(cheb.chebval(x, [1]).shape, dims) + assert_equal(cheb.chebval(x, [1, 0]).shape, dims) + assert_equal(cheb.chebval(x, [1, 0, 0]).shape, dims) + + def test_chebval2d(self): + x1, x2, x3 = self.x + y1, y2, y3 = self.y + + # test exceptions + assert_raises(ValueError, cheb.chebval2d, x1, x2[:2], self.c2d) + + # test values + tgt = y1 * y2 + res = cheb.chebval2d(x1, x2, self.c2d) + assert_almost_equal(res, tgt) + + # test shape + z = np.ones((2, 3)) + res = cheb.chebval2d(z, z, self.c2d) + assert_(res.shape == (2, 3)) + + def test_chebval3d(self): + x1, x2, x3 = self.x + y1, y2, y3 = self.y + + # test exceptions + assert_raises(ValueError, cheb.chebval3d, x1, x2, x3[:2], self.c3d) + + # test values + tgt = y1 * y2 * y3 + res = cheb.chebval3d(x1, x2, x3, self.c3d) + assert_almost_equal(res, tgt) + + # test shape + z = np.ones((2, 3)) + res = cheb.chebval3d(z, z, z, self.c3d) + assert_(res.shape == (2, 3)) + + def test_chebgrid2d(self): + x1, x2, x3 = self.x + y1, y2, y3 = self.y + + # test values + tgt = np.einsum('i,j->ij', y1, y2) + res = cheb.chebgrid2d(x1, x2, self.c2d) + assert_almost_equal(res, tgt) + + # test shape + z = np.ones((2, 3)) + res = cheb.chebgrid2d(z, z, self.c2d) + assert_(res.shape == (2, 3) * 2) + + def test_chebgrid3d(self): + x1, x2, x3 = self.x + y1, y2, y3 = self.y + + # test values + tgt = np.einsum('i,j,k->ijk', y1, y2, y3) + res = cheb.chebgrid3d(x1, x2, x3, self.c3d) + assert_almost_equal(res, tgt) + + # test shape + z = np.ones((2, 3)) + res = cheb.chebgrid3d(z, z, z, self.c3d) + assert_(res.shape == (2, 3) * 3) + + +class TestIntegral: + + def test_chebint(self): + # check exceptions + assert_raises(TypeError, cheb.chebint, [0], .5) + assert_raises(ValueError, cheb.chebint, [0], -1) + assert_raises(ValueError, cheb.chebint, [0], 1, [0, 0]) + assert_raises(ValueError, cheb.chebint, [0], lbnd=[0]) + assert_raises(ValueError, cheb.chebint, [0], scl=[0]) + assert_raises(TypeError, cheb.chebint, [0], axis=.5) + + # test integration of zero polynomial + for i in range(2, 5): + k = [0] * (i - 2) + [1] + res = cheb.chebint([0], m=i, k=k) + assert_almost_equal(res, [0, 1]) + + # check single integration with integration constant + for i in range(5): + scl = i + 1 + pol = [0] * i + [1] + tgt = [i] + [0] * i + [1 / scl] + chebpol = cheb.poly2cheb(pol) + chebint = cheb.chebint(chebpol, m=1, k=[i]) + res = cheb.cheb2poly(chebint) + assert_almost_equal(trim(res), trim(tgt)) + + # check single integration with integration constant and lbnd + for i in range(5): + scl = i + 1 + pol = [0] * i + [1] + chebpol = cheb.poly2cheb(pol) + chebint = cheb.chebint(chebpol, m=1, k=[i], lbnd=-1) + assert_almost_equal(cheb.chebval(-1, chebint), i) + + # check single integration with integration constant and scaling + for i in range(5): + scl = i + 1 + pol = [0] * i + [1] + tgt = [i] + [0] * i + [2 / scl] + chebpol = cheb.poly2cheb(pol) + chebint = cheb.chebint(chebpol, m=1, k=[i], scl=2) + res = cheb.cheb2poly(chebint) + assert_almost_equal(trim(res), trim(tgt)) + + # check multiple integrations with default k + for i in range(5): + for j in range(2, 5): + pol = [0] * i + [1] + tgt = pol[:] + for k in range(j): + tgt = cheb.chebint(tgt, m=1) + res = cheb.chebint(pol, m=j) + assert_almost_equal(trim(res), trim(tgt)) + + # check multiple integrations with defined k + for i in range(5): + for j in range(2, 5): + pol = [0] * i + [1] + tgt = pol[:] + for k in range(j): + tgt = cheb.chebint(tgt, m=1, k=[k]) + res = cheb.chebint(pol, m=j, k=list(range(j))) + assert_almost_equal(trim(res), trim(tgt)) + + # check multiple integrations with lbnd + for i in range(5): + for j in range(2, 5): + pol = [0] * i + [1] + tgt = pol[:] + for k in range(j): + tgt = cheb.chebint(tgt, m=1, k=[k], lbnd=-1) + res = cheb.chebint(pol, m=j, k=list(range(j)), lbnd=-1) + assert_almost_equal(trim(res), trim(tgt)) + + # check multiple integrations with scaling + for i in range(5): + for j in range(2, 5): + pol = [0] * i + [1] + tgt = pol[:] + for k in range(j): + tgt = cheb.chebint(tgt, m=1, k=[k], scl=2) + res = cheb.chebint(pol, m=j, k=list(range(j)), scl=2) + assert_almost_equal(trim(res), trim(tgt)) + + def test_chebint_axis(self): + # check that axis keyword works + c2d = np.random.random((3, 4)) + + tgt = np.vstack([cheb.chebint(c) for c in c2d.T]).T + res = cheb.chebint(c2d, axis=0) + assert_almost_equal(res, tgt) + + tgt = np.vstack([cheb.chebint(c) for c in c2d]) + res = cheb.chebint(c2d, axis=1) + assert_almost_equal(res, tgt) + + tgt = np.vstack([cheb.chebint(c, k=3) for c in c2d]) + res = cheb.chebint(c2d, k=3, axis=1) + assert_almost_equal(res, tgt) + + +class TestDerivative: + + def test_chebder(self): + # check exceptions + assert_raises(TypeError, cheb.chebder, [0], .5) + assert_raises(ValueError, cheb.chebder, [0], -1) + + # check that zeroth derivative does nothing + for i in range(5): + tgt = [0] * i + [1] + res = cheb.chebder(tgt, m=0) + assert_equal(trim(res), trim(tgt)) + + # check that derivation is the inverse of integration + for i in range(5): + for j in range(2, 5): + tgt = [0] * i + [1] + res = cheb.chebder(cheb.chebint(tgt, m=j), m=j) + assert_almost_equal(trim(res), trim(tgt)) + + # check derivation with scaling + for i in range(5): + for j in range(2, 5): + tgt = [0] * i + [1] + res = cheb.chebder(cheb.chebint(tgt, m=j, scl=2), m=j, scl=.5) + assert_almost_equal(trim(res), trim(tgt)) + + def test_chebder_axis(self): + # check that axis keyword works + c2d = np.random.random((3, 4)) + + tgt = np.vstack([cheb.chebder(c) for c in c2d.T]).T + res = cheb.chebder(c2d, axis=0) + assert_almost_equal(res, tgt) + + tgt = np.vstack([cheb.chebder(c) for c in c2d]) + res = cheb.chebder(c2d, axis=1) + assert_almost_equal(res, tgt) + + +class TestVander: + # some random values in [-1, 1) + x = np.random.random((3, 5)) * 2 - 1 + + def test_chebvander(self): + # check for 1d x + x = np.arange(3) + v = cheb.chebvander(x, 3) + assert_(v.shape == (3, 4)) + for i in range(4): + coef = [0] * i + [1] + assert_almost_equal(v[..., i], cheb.chebval(x, coef)) + + # check for 2d x + x = np.array([[1, 2], [3, 4], [5, 6]]) + v = cheb.chebvander(x, 3) + assert_(v.shape == (3, 2, 4)) + for i in range(4): + coef = [0] * i + [1] + assert_almost_equal(v[..., i], cheb.chebval(x, coef)) + + def test_chebvander2d(self): + # also tests chebval2d for non-square coefficient array + x1, x2, x3 = self.x + c = np.random.random((2, 3)) + van = cheb.chebvander2d(x1, x2, [1, 2]) + tgt = cheb.chebval2d(x1, x2, c) + res = np.dot(van, c.flat) + assert_almost_equal(res, tgt) + + # check shape + van = cheb.chebvander2d([x1], [x2], [1, 2]) + assert_(van.shape == (1, 5, 6)) + + def test_chebvander3d(self): + # also tests chebval3d for non-square coefficient array + x1, x2, x3 = self.x + c = np.random.random((2, 3, 4)) + van = cheb.chebvander3d(x1, x2, x3, [1, 2, 3]) + tgt = cheb.chebval3d(x1, x2, x3, c) + res = np.dot(van, c.flat) + assert_almost_equal(res, tgt) + + # check shape + van = cheb.chebvander3d([x1], [x2], [x3], [1, 2, 3]) + assert_(van.shape == (1, 5, 24)) + + +class TestFitting: + + def test_chebfit(self): + def f(x): + return x * (x - 1) * (x - 2) + + def f2(x): + return x**4 + x**2 + 1 + + # Test exceptions + assert_raises(ValueError, cheb.chebfit, [1], [1], -1) + assert_raises(TypeError, cheb.chebfit, [[1]], [1], 0) + assert_raises(TypeError, cheb.chebfit, [], [1], 0) + assert_raises(TypeError, cheb.chebfit, [1], [[[1]]], 0) + assert_raises(TypeError, cheb.chebfit, [1, 2], [1], 0) + assert_raises(TypeError, cheb.chebfit, [1], [1, 2], 0) + assert_raises(TypeError, cheb.chebfit, [1], [1], 0, w=[[1]]) + assert_raises(TypeError, cheb.chebfit, [1], [1], 0, w=[1, 1]) + assert_raises(ValueError, cheb.chebfit, [1], [1], [-1,]) + assert_raises(ValueError, cheb.chebfit, [1], [1], [2, -1, 6]) + assert_raises(TypeError, cheb.chebfit, [1], [1], []) + + # Test fit + x = np.linspace(0, 2) + y = f(x) + # + coef3 = cheb.chebfit(x, y, 3) + assert_equal(len(coef3), 4) + assert_almost_equal(cheb.chebval(x, coef3), y) + coef3 = cheb.chebfit(x, y, [0, 1, 2, 3]) + assert_equal(len(coef3), 4) + assert_almost_equal(cheb.chebval(x, coef3), y) + # + coef4 = cheb.chebfit(x, y, 4) + assert_equal(len(coef4), 5) + assert_almost_equal(cheb.chebval(x, coef4), y) + coef4 = cheb.chebfit(x, y, [0, 1, 2, 3, 4]) + assert_equal(len(coef4), 5) + assert_almost_equal(cheb.chebval(x, coef4), y) + # check things still work if deg is not in strict increasing + coef4 = cheb.chebfit(x, y, [2, 3, 4, 1, 0]) + assert_equal(len(coef4), 5) + assert_almost_equal(cheb.chebval(x, coef4), y) + # + coef2d = cheb.chebfit(x, np.array([y, y]).T, 3) + assert_almost_equal(coef2d, np.array([coef3, coef3]).T) + coef2d = cheb.chebfit(x, np.array([y, y]).T, [0, 1, 2, 3]) + assert_almost_equal(coef2d, np.array([coef3, coef3]).T) + # test weighting + w = np.zeros_like(x) + yw = y.copy() + w[1::2] = 1 + y[0::2] = 0 + wcoef3 = cheb.chebfit(x, yw, 3, w=w) + assert_almost_equal(wcoef3, coef3) + wcoef3 = cheb.chebfit(x, yw, [0, 1, 2, 3], w=w) + assert_almost_equal(wcoef3, coef3) + # + wcoef2d = cheb.chebfit(x, np.array([yw, yw]).T, 3, w=w) + assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T) + wcoef2d = cheb.chebfit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w) + assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T) + # test scaling with complex values x points whose square + # is zero when summed. + x = [1, 1j, -1, -1j] + assert_almost_equal(cheb.chebfit(x, x, 1), [0, 1]) + assert_almost_equal(cheb.chebfit(x, x, [0, 1]), [0, 1]) + # test fitting only even polynomials + x = np.linspace(-1, 1) + y = f2(x) + coef1 = cheb.chebfit(x, y, 4) + assert_almost_equal(cheb.chebval(x, coef1), y) + coef2 = cheb.chebfit(x, y, [0, 2, 4]) + assert_almost_equal(cheb.chebval(x, coef2), y) + assert_almost_equal(coef1, coef2) + + +class TestInterpolate: + + def f(self, x): + return x * (x - 1) * (x - 2) + + def test_raises(self): + assert_raises(ValueError, cheb.chebinterpolate, self.f, -1) + assert_raises(TypeError, cheb.chebinterpolate, self.f, 10.) + + def test_dimensions(self): + for deg in range(1, 5): + assert_(cheb.chebinterpolate(self.f, deg).shape == (deg + 1,)) + + def test_approximation(self): + + def powx(x, p): + return x**p + + x = np.linspace(-1, 1, 10) + for deg in range(10): + for p in range(deg + 1): + c = cheb.chebinterpolate(powx, deg, (p,)) + assert_almost_equal(cheb.chebval(x, c), powx(x, p), decimal=12) + + +class TestCompanion: + + def test_raises(self): + assert_raises(ValueError, cheb.chebcompanion, []) + assert_raises(ValueError, cheb.chebcompanion, [1]) + + def test_dimensions(self): + for i in range(1, 5): + coef = [0] * i + [1] + assert_(cheb.chebcompanion(coef).shape == (i, i)) + + def test_linear_root(self): + assert_(cheb.chebcompanion([1, 2])[0, 0] == -.5) + + +class TestGauss: + + def test_100(self): + x, w = cheb.chebgauss(100) + + # test orthogonality. Note that the results need to be normalized, + # otherwise the huge values that can arise from fast growing + # functions like Laguerre can be very confusing. + v = cheb.chebvander(x, 99) + vv = np.dot(v.T * w, v) + vd = 1 / np.sqrt(vv.diagonal()) + vv = vd[:, None] * vv * vd + assert_almost_equal(vv, np.eye(100)) + + # check that the integral of 1 is correct + tgt = np.pi + assert_almost_equal(w.sum(), tgt) + + +class TestMisc: + + def test_chebfromroots(self): + res = cheb.chebfromroots([]) + assert_almost_equal(trim(res), [1]) + for i in range(1, 5): + roots = np.cos(np.linspace(-np.pi, 0, 2 * i + 1)[1::2]) + tgt = [0] * i + [1] + res = cheb.chebfromroots(roots) * 2**(i - 1) + assert_almost_equal(trim(res), trim(tgt)) + + def test_chebroots(self): + assert_almost_equal(cheb.chebroots([1]), []) + assert_almost_equal(cheb.chebroots([1, 2]), [-.5]) + for i in range(2, 5): + tgt = np.linspace(-1, 1, i) + res = cheb.chebroots(cheb.chebfromroots(tgt)) + assert_almost_equal(trim(res), trim(tgt)) + + def test_chebtrim(self): + coef = [2, -1, 1, 0] + + # Test exceptions + assert_raises(ValueError, cheb.chebtrim, coef, -1) + + # Test results + assert_equal(cheb.chebtrim(coef), coef[:-1]) + assert_equal(cheb.chebtrim(coef, 1), coef[:-3]) + assert_equal(cheb.chebtrim(coef, 2), [0]) + + def test_chebline(self): + assert_equal(cheb.chebline(3, 4), [3, 4]) + + def test_cheb2poly(self): + for i in range(10): + assert_almost_equal(cheb.cheb2poly([0] * i + [1]), Tlist[i]) + + def test_poly2cheb(self): + for i in range(10): + assert_almost_equal(cheb.poly2cheb(Tlist[i]), [0] * i + [1]) + + def test_weight(self): + x = np.linspace(-1, 1, 11)[1:-1] + tgt = 1. / (np.sqrt(1 + x) * np.sqrt(1 - x)) + res = cheb.chebweight(x) + assert_almost_equal(res, tgt) + + def test_chebpts1(self): + # test exceptions + assert_raises(ValueError, cheb.chebpts1, 1.5) + assert_raises(ValueError, cheb.chebpts1, 0) + + # test points + tgt = [0] + assert_almost_equal(cheb.chebpts1(1), tgt) + tgt = [-0.70710678118654746, 0.70710678118654746] + assert_almost_equal(cheb.chebpts1(2), tgt) + tgt = [-0.86602540378443871, 0, 0.86602540378443871] + assert_almost_equal(cheb.chebpts1(3), tgt) + tgt = [-0.9238795325, -0.3826834323, 0.3826834323, 0.9238795325] + assert_almost_equal(cheb.chebpts1(4), tgt) + + def test_chebpts2(self): + # test exceptions + assert_raises(ValueError, cheb.chebpts2, 1.5) + assert_raises(ValueError, cheb.chebpts2, 1) + + # test points + tgt = [-1, 1] + assert_almost_equal(cheb.chebpts2(2), tgt) + tgt = [-1, 0, 1] + assert_almost_equal(cheb.chebpts2(3), tgt) + tgt = [-1, -0.5, .5, 1] + assert_almost_equal(cheb.chebpts2(4), tgt) + tgt = [-1.0, -0.707106781187, 0, 0.707106781187, 1.0] + assert_almost_equal(cheb.chebpts2(5), tgt) diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_classes.py b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_classes.py new file mode 100644 index 0000000..d10aafb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_classes.py @@ -0,0 +1,618 @@ +"""Test inter-conversion of different polynomial classes. + +This tests the convert and cast methods of all the polynomial classes. + +""" +import operator as op +from numbers import Number + +import pytest + +import numpy as np +from numpy.exceptions import RankWarning +from numpy.polynomial import ( + Chebyshev, + Hermite, + HermiteE, + Laguerre, + Legendre, + Polynomial, +) +from numpy.testing import ( + assert_, + assert_almost_equal, + assert_equal, + assert_raises, +) + +# +# fixtures +# + +classes = ( + Polynomial, Legendre, Chebyshev, Laguerre, + Hermite, HermiteE + ) +classids = tuple(cls.__name__ for cls in classes) + +@pytest.fixture(params=classes, ids=classids) +def Poly(request): + return request.param + + +# +# helper functions +# +random = np.random.random + + +def assert_poly_almost_equal(p1, p2, msg=""): + try: + assert_(np.all(p1.domain == p2.domain)) + assert_(np.all(p1.window == p2.window)) + assert_almost_equal(p1.coef, p2.coef) + except AssertionError: + msg = f"Result: {p1}\nTarget: {p2}" + raise AssertionError(msg) + + +# +# Test conversion methods that depend on combinations of two classes. +# + +Poly1 = Poly +Poly2 = Poly + + +def test_conversion(Poly1, Poly2): + x = np.linspace(0, 1, 10) + coef = random((3,)) + + d1 = Poly1.domain + random((2,)) * .25 + w1 = Poly1.window + random((2,)) * .25 + p1 = Poly1(coef, domain=d1, window=w1) + + d2 = Poly2.domain + random((2,)) * .25 + w2 = Poly2.window + random((2,)) * .25 + p2 = p1.convert(kind=Poly2, domain=d2, window=w2) + + assert_almost_equal(p2.domain, d2) + assert_almost_equal(p2.window, w2) + assert_almost_equal(p2(x), p1(x)) + + +def test_cast(Poly1, Poly2): + x = np.linspace(0, 1, 10) + coef = random((3,)) + + d1 = Poly1.domain + random((2,)) * .25 + w1 = Poly1.window + random((2,)) * .25 + p1 = Poly1(coef, domain=d1, window=w1) + + d2 = Poly2.domain + random((2,)) * .25 + w2 = Poly2.window + random((2,)) * .25 + p2 = Poly2.cast(p1, domain=d2, window=w2) + + assert_almost_equal(p2.domain, d2) + assert_almost_equal(p2.window, w2) + assert_almost_equal(p2(x), p1(x)) + + +# +# test methods that depend on one class +# + + +def test_identity(Poly): + d = Poly.domain + random((2,)) * .25 + w = Poly.window + random((2,)) * .25 + x = np.linspace(d[0], d[1], 11) + p = Poly.identity(domain=d, window=w) + assert_equal(p.domain, d) + assert_equal(p.window, w) + assert_almost_equal(p(x), x) + + +def test_basis(Poly): + d = Poly.domain + random((2,)) * .25 + w = Poly.window + random((2,)) * .25 + p = Poly.basis(5, domain=d, window=w) + assert_equal(p.domain, d) + assert_equal(p.window, w) + assert_equal(p.coef, [0] * 5 + [1]) + + +def test_fromroots(Poly): + # check that requested roots are zeros of a polynomial + # of correct degree, domain, and window. + d = Poly.domain + random((2,)) * .25 + w = Poly.window + random((2,)) * .25 + r = random((5,)) + p1 = Poly.fromroots(r, domain=d, window=w) + assert_equal(p1.degree(), len(r)) + assert_equal(p1.domain, d) + assert_equal(p1.window, w) + assert_almost_equal(p1(r), 0) + + # check that polynomial is monic + pdom = Polynomial.domain + pwin = Polynomial.window + p2 = Polynomial.cast(p1, domain=pdom, window=pwin) + assert_almost_equal(p2.coef[-1], 1) + + +def test_bad_conditioned_fit(Poly): + + x = [0., 0., 1.] + y = [1., 2., 3.] + + # check RankWarning is raised + with pytest.warns(RankWarning) as record: + Poly.fit(x, y, 2) + assert record[0].message.args[0] == "The fit may be poorly conditioned" + + +def test_fit(Poly): + + def f(x): + return x * (x - 1) * (x - 2) + x = np.linspace(0, 3) + y = f(x) + + # check default value of domain and window + p = Poly.fit(x, y, 3) + assert_almost_equal(p.domain, [0, 3]) + assert_almost_equal(p(x), y) + assert_equal(p.degree(), 3) + + # check with given domains and window + d = Poly.domain + random((2,)) * .25 + w = Poly.window + random((2,)) * .25 + p = Poly.fit(x, y, 3, domain=d, window=w) + assert_almost_equal(p(x), y) + assert_almost_equal(p.domain, d) + assert_almost_equal(p.window, w) + p = Poly.fit(x, y, [0, 1, 2, 3], domain=d, window=w) + assert_almost_equal(p(x), y) + assert_almost_equal(p.domain, d) + assert_almost_equal(p.window, w) + + # check with class domain default + p = Poly.fit(x, y, 3, []) + assert_equal(p.domain, Poly.domain) + assert_equal(p.window, Poly.window) + p = Poly.fit(x, y, [0, 1, 2, 3], []) + assert_equal(p.domain, Poly.domain) + assert_equal(p.window, Poly.window) + + # check that fit accepts weights. + w = np.zeros_like(x) + z = y + random(y.shape) * .25 + w[::2] = 1 + p1 = Poly.fit(x[::2], z[::2], 3) + p2 = Poly.fit(x, z, 3, w=w) + p3 = Poly.fit(x, z, [0, 1, 2, 3], w=w) + assert_almost_equal(p1(x), p2(x)) + assert_almost_equal(p2(x), p3(x)) + + +def test_equal(Poly): + p1 = Poly([1, 2, 3], domain=[0, 1], window=[2, 3]) + p2 = Poly([1, 1, 1], domain=[0, 1], window=[2, 3]) + p3 = Poly([1, 2, 3], domain=[1, 2], window=[2, 3]) + p4 = Poly([1, 2, 3], domain=[0, 1], window=[1, 2]) + assert_(p1 == p1) + assert_(not p1 == p2) + assert_(not p1 == p3) + assert_(not p1 == p4) + + +def test_not_equal(Poly): + p1 = Poly([1, 2, 3], domain=[0, 1], window=[2, 3]) + p2 = Poly([1, 1, 1], domain=[0, 1], window=[2, 3]) + p3 = Poly([1, 2, 3], domain=[1, 2], window=[2, 3]) + p4 = Poly([1, 2, 3], domain=[0, 1], window=[1, 2]) + assert_(not p1 != p1) + assert_(p1 != p2) + assert_(p1 != p3) + assert_(p1 != p4) + + +def test_add(Poly): + # This checks commutation, not numerical correctness + c1 = list(random((4,)) + .5) + c2 = list(random((3,)) + .5) + p1 = Poly(c1) + p2 = Poly(c2) + p3 = p1 + p2 + assert_poly_almost_equal(p2 + p1, p3) + assert_poly_almost_equal(p1 + c2, p3) + assert_poly_almost_equal(c2 + p1, p3) + assert_poly_almost_equal(p1 + tuple(c2), p3) + assert_poly_almost_equal(tuple(c2) + p1, p3) + assert_poly_almost_equal(p1 + np.array(c2), p3) + assert_poly_almost_equal(np.array(c2) + p1, p3) + assert_raises(TypeError, op.add, p1, Poly([0], domain=Poly.domain + 1)) + assert_raises(TypeError, op.add, p1, Poly([0], window=Poly.window + 1)) + if Poly is Polynomial: + assert_raises(TypeError, op.add, p1, Chebyshev([0])) + else: + assert_raises(TypeError, op.add, p1, Polynomial([0])) + + +def test_sub(Poly): + # This checks commutation, not numerical correctness + c1 = list(random((4,)) + .5) + c2 = list(random((3,)) + .5) + p1 = Poly(c1) + p2 = Poly(c2) + p3 = p1 - p2 + assert_poly_almost_equal(p2 - p1, -p3) + assert_poly_almost_equal(p1 - c2, p3) + assert_poly_almost_equal(c2 - p1, -p3) + assert_poly_almost_equal(p1 - tuple(c2), p3) + assert_poly_almost_equal(tuple(c2) - p1, -p3) + assert_poly_almost_equal(p1 - np.array(c2), p3) + assert_poly_almost_equal(np.array(c2) - p1, -p3) + assert_raises(TypeError, op.sub, p1, Poly([0], domain=Poly.domain + 1)) + assert_raises(TypeError, op.sub, p1, Poly([0], window=Poly.window + 1)) + if Poly is Polynomial: + assert_raises(TypeError, op.sub, p1, Chebyshev([0])) + else: + assert_raises(TypeError, op.sub, p1, Polynomial([0])) + + +def test_mul(Poly): + c1 = list(random((4,)) + .5) + c2 = list(random((3,)) + .5) + p1 = Poly(c1) + p2 = Poly(c2) + p3 = p1 * p2 + assert_poly_almost_equal(p2 * p1, p3) + assert_poly_almost_equal(p1 * c2, p3) + assert_poly_almost_equal(c2 * p1, p3) + assert_poly_almost_equal(p1 * tuple(c2), p3) + assert_poly_almost_equal(tuple(c2) * p1, p3) + assert_poly_almost_equal(p1 * np.array(c2), p3) + assert_poly_almost_equal(np.array(c2) * p1, p3) + assert_poly_almost_equal(p1 * 2, p1 * Poly([2])) + assert_poly_almost_equal(2 * p1, p1 * Poly([2])) + assert_raises(TypeError, op.mul, p1, Poly([0], domain=Poly.domain + 1)) + assert_raises(TypeError, op.mul, p1, Poly([0], window=Poly.window + 1)) + if Poly is Polynomial: + assert_raises(TypeError, op.mul, p1, Chebyshev([0])) + else: + assert_raises(TypeError, op.mul, p1, Polynomial([0])) + + +def test_floordiv(Poly): + c1 = list(random((4,)) + .5) + c2 = list(random((3,)) + .5) + c3 = list(random((2,)) + .5) + p1 = Poly(c1) + p2 = Poly(c2) + p3 = Poly(c3) + p4 = p1 * p2 + p3 + c4 = list(p4.coef) + assert_poly_almost_equal(p4 // p2, p1) + assert_poly_almost_equal(p4 // c2, p1) + assert_poly_almost_equal(c4 // p2, p1) + assert_poly_almost_equal(p4 // tuple(c2), p1) + assert_poly_almost_equal(tuple(c4) // p2, p1) + assert_poly_almost_equal(p4 // np.array(c2), p1) + assert_poly_almost_equal(np.array(c4) // p2, p1) + assert_poly_almost_equal(2 // p2, Poly([0])) + assert_poly_almost_equal(p2 // 2, 0.5 * p2) + assert_raises( + TypeError, op.floordiv, p1, Poly([0], domain=Poly.domain + 1)) + assert_raises( + TypeError, op.floordiv, p1, Poly([0], window=Poly.window + 1)) + if Poly is Polynomial: + assert_raises(TypeError, op.floordiv, p1, Chebyshev([0])) + else: + assert_raises(TypeError, op.floordiv, p1, Polynomial([0])) + + +def test_truediv(Poly): + # true division is valid only if the denominator is a Number and + # not a python bool. + p1 = Poly([1, 2, 3]) + p2 = p1 * 5 + + for stype in np.ScalarType: + if not issubclass(stype, Number) or issubclass(stype, bool): + continue + s = stype(5) + assert_poly_almost_equal(op.truediv(p2, s), p1) + assert_raises(TypeError, op.truediv, s, p2) + for stype in (int, float): + s = stype(5) + assert_poly_almost_equal(op.truediv(p2, s), p1) + assert_raises(TypeError, op.truediv, s, p2) + for stype in [complex]: + s = stype(5, 0) + assert_poly_almost_equal(op.truediv(p2, s), p1) + assert_raises(TypeError, op.truediv, s, p2) + for s in [(), [], {}, False, np.array([1])]: + assert_raises(TypeError, op.truediv, p2, s) + assert_raises(TypeError, op.truediv, s, p2) + for ptype in classes: + assert_raises(TypeError, op.truediv, p2, ptype(1)) + + +def test_mod(Poly): + # This checks commutation, not numerical correctness + c1 = list(random((4,)) + .5) + c2 = list(random((3,)) + .5) + c3 = list(random((2,)) + .5) + p1 = Poly(c1) + p2 = Poly(c2) + p3 = Poly(c3) + p4 = p1 * p2 + p3 + c4 = list(p4.coef) + assert_poly_almost_equal(p4 % p2, p3) + assert_poly_almost_equal(p4 % c2, p3) + assert_poly_almost_equal(c4 % p2, p3) + assert_poly_almost_equal(p4 % tuple(c2), p3) + assert_poly_almost_equal(tuple(c4) % p2, p3) + assert_poly_almost_equal(p4 % np.array(c2), p3) + assert_poly_almost_equal(np.array(c4) % p2, p3) + assert_poly_almost_equal(2 % p2, Poly([2])) + assert_poly_almost_equal(p2 % 2, Poly([0])) + assert_raises(TypeError, op.mod, p1, Poly([0], domain=Poly.domain + 1)) + assert_raises(TypeError, op.mod, p1, Poly([0], window=Poly.window + 1)) + if Poly is Polynomial: + assert_raises(TypeError, op.mod, p1, Chebyshev([0])) + else: + assert_raises(TypeError, op.mod, p1, Polynomial([0])) + + +def test_divmod(Poly): + # This checks commutation, not numerical correctness + c1 = list(random((4,)) + .5) + c2 = list(random((3,)) + .5) + c3 = list(random((2,)) + .5) + p1 = Poly(c1) + p2 = Poly(c2) + p3 = Poly(c3) + p4 = p1 * p2 + p3 + c4 = list(p4.coef) + quo, rem = divmod(p4, p2) + assert_poly_almost_equal(quo, p1) + assert_poly_almost_equal(rem, p3) + quo, rem = divmod(p4, c2) + assert_poly_almost_equal(quo, p1) + assert_poly_almost_equal(rem, p3) + quo, rem = divmod(c4, p2) + assert_poly_almost_equal(quo, p1) + assert_poly_almost_equal(rem, p3) + quo, rem = divmod(p4, tuple(c2)) + assert_poly_almost_equal(quo, p1) + assert_poly_almost_equal(rem, p3) + quo, rem = divmod(tuple(c4), p2) + assert_poly_almost_equal(quo, p1) + assert_poly_almost_equal(rem, p3) + quo, rem = divmod(p4, np.array(c2)) + assert_poly_almost_equal(quo, p1) + assert_poly_almost_equal(rem, p3) + quo, rem = divmod(np.array(c4), p2) + assert_poly_almost_equal(quo, p1) + assert_poly_almost_equal(rem, p3) + quo, rem = divmod(p2, 2) + assert_poly_almost_equal(quo, 0.5 * p2) + assert_poly_almost_equal(rem, Poly([0])) + quo, rem = divmod(2, p2) + assert_poly_almost_equal(quo, Poly([0])) + assert_poly_almost_equal(rem, Poly([2])) + assert_raises(TypeError, divmod, p1, Poly([0], domain=Poly.domain + 1)) + assert_raises(TypeError, divmod, p1, Poly([0], window=Poly.window + 1)) + if Poly is Polynomial: + assert_raises(TypeError, divmod, p1, Chebyshev([0])) + else: + assert_raises(TypeError, divmod, p1, Polynomial([0])) + + +def test_roots(Poly): + d = Poly.domain * 1.25 + .25 + w = Poly.window + tgt = np.linspace(d[0], d[1], 5) + res = np.sort(Poly.fromroots(tgt, domain=d, window=w).roots()) + assert_almost_equal(res, tgt) + # default domain and window + res = np.sort(Poly.fromroots(tgt).roots()) + assert_almost_equal(res, tgt) + + +def test_degree(Poly): + p = Poly.basis(5) + assert_equal(p.degree(), 5) + + +def test_copy(Poly): + p1 = Poly.basis(5) + p2 = p1.copy() + assert_(p1 == p2) + assert_(p1 is not p2) + assert_(p1.coef is not p2.coef) + assert_(p1.domain is not p2.domain) + assert_(p1.window is not p2.window) + + +def test_integ(Poly): + P = Polynomial + # Check defaults + p0 = Poly.cast(P([1 * 2, 2 * 3, 3 * 4])) + p1 = P.cast(p0.integ()) + p2 = P.cast(p0.integ(2)) + assert_poly_almost_equal(p1, P([0, 2, 3, 4])) + assert_poly_almost_equal(p2, P([0, 0, 1, 1, 1])) + # Check with k + p0 = Poly.cast(P([1 * 2, 2 * 3, 3 * 4])) + p1 = P.cast(p0.integ(k=1)) + p2 = P.cast(p0.integ(2, k=[1, 1])) + assert_poly_almost_equal(p1, P([1, 2, 3, 4])) + assert_poly_almost_equal(p2, P([1, 1, 1, 1, 1])) + # Check with lbnd + p0 = Poly.cast(P([1 * 2, 2 * 3, 3 * 4])) + p1 = P.cast(p0.integ(lbnd=1)) + p2 = P.cast(p0.integ(2, lbnd=1)) + assert_poly_almost_equal(p1, P([-9, 2, 3, 4])) + assert_poly_almost_equal(p2, P([6, -9, 1, 1, 1])) + # Check scaling + d = 2 * Poly.domain + p0 = Poly.cast(P([1 * 2, 2 * 3, 3 * 4]), domain=d) + p1 = P.cast(p0.integ()) + p2 = P.cast(p0.integ(2)) + assert_poly_almost_equal(p1, P([0, 2, 3, 4])) + assert_poly_almost_equal(p2, P([0, 0, 1, 1, 1])) + + +def test_deriv(Poly): + # Check that the derivative is the inverse of integration. It is + # assumes that the integration has been checked elsewhere. + d = Poly.domain + random((2,)) * .25 + w = Poly.window + random((2,)) * .25 + p1 = Poly([1, 2, 3], domain=d, window=w) + p2 = p1.integ(2, k=[1, 2]) + p3 = p1.integ(1, k=[1]) + assert_almost_equal(p2.deriv(1).coef, p3.coef) + assert_almost_equal(p2.deriv(2).coef, p1.coef) + # default domain and window + p1 = Poly([1, 2, 3]) + p2 = p1.integ(2, k=[1, 2]) + p3 = p1.integ(1, k=[1]) + assert_almost_equal(p2.deriv(1).coef, p3.coef) + assert_almost_equal(p2.deriv(2).coef, p1.coef) + + +def test_linspace(Poly): + d = Poly.domain + random((2,)) * .25 + w = Poly.window + random((2,)) * .25 + p = Poly([1, 2, 3], domain=d, window=w) + # check default domain + xtgt = np.linspace(d[0], d[1], 20) + ytgt = p(xtgt) + xres, yres = p.linspace(20) + assert_almost_equal(xres, xtgt) + assert_almost_equal(yres, ytgt) + # check specified domain + xtgt = np.linspace(0, 2, 20) + ytgt = p(xtgt) + xres, yres = p.linspace(20, domain=[0, 2]) + assert_almost_equal(xres, xtgt) + assert_almost_equal(yres, ytgt) + + +def test_pow(Poly): + d = Poly.domain + random((2,)) * .25 + w = Poly.window + random((2,)) * .25 + tgt = Poly([1], domain=d, window=w) + tst = Poly([1, 2, 3], domain=d, window=w) + for i in range(5): + assert_poly_almost_equal(tst**i, tgt) + tgt = tgt * tst + # default domain and window + tgt = Poly([1]) + tst = Poly([1, 2, 3]) + for i in range(5): + assert_poly_almost_equal(tst**i, tgt) + tgt = tgt * tst + # check error for invalid powers + assert_raises(ValueError, op.pow, tgt, 1.5) + assert_raises(ValueError, op.pow, tgt, -1) + + +def test_call(Poly): + P = Polynomial + d = Poly.domain + x = np.linspace(d[0], d[1], 11) + + # Check defaults + p = Poly.cast(P([1, 2, 3])) + tgt = 1 + x * (2 + 3 * x) + res = p(x) + assert_almost_equal(res, tgt) + + +def test_call_with_list(Poly): + p = Poly([1, 2, 3]) + x = [-1, 0, 2] + res = p(x) + assert_equal(res, p(np.array(x))) + + +def test_cutdeg(Poly): + p = Poly([1, 2, 3]) + assert_raises(ValueError, p.cutdeg, .5) + assert_raises(ValueError, p.cutdeg, -1) + assert_equal(len(p.cutdeg(3)), 3) + assert_equal(len(p.cutdeg(2)), 3) + assert_equal(len(p.cutdeg(1)), 2) + assert_equal(len(p.cutdeg(0)), 1) + + +def test_truncate(Poly): + p = Poly([1, 2, 3]) + assert_raises(ValueError, p.truncate, .5) + assert_raises(ValueError, p.truncate, 0) + assert_equal(len(p.truncate(4)), 3) + assert_equal(len(p.truncate(3)), 3) + assert_equal(len(p.truncate(2)), 2) + assert_equal(len(p.truncate(1)), 1) + + +def test_trim(Poly): + c = [1, 1e-6, 1e-12, 0] + p = Poly(c) + assert_equal(p.trim().coef, c[:3]) + assert_equal(p.trim(1e-10).coef, c[:2]) + assert_equal(p.trim(1e-5).coef, c[:1]) + + +def test_mapparms(Poly): + # check with defaults. Should be identity. + d = Poly.domain + w = Poly.window + p = Poly([1], domain=d, window=w) + assert_almost_equal([0, 1], p.mapparms()) + # + w = 2 * d + 1 + p = Poly([1], domain=d, window=w) + assert_almost_equal([1, 2], p.mapparms()) + + +def test_ufunc_override(Poly): + p = Poly([1, 2, 3]) + x = np.ones(3) + assert_raises(TypeError, np.add, p, x) + assert_raises(TypeError, np.add, x, p) + + +# +# Test class method that only exists for some classes +# + + +class TestInterpolate: + + def f(self, x): + return x * (x - 1) * (x - 2) + + def test_raises(self): + assert_raises(ValueError, Chebyshev.interpolate, self.f, -1) + assert_raises(TypeError, Chebyshev.interpolate, self.f, 10.) + + def test_dimensions(self): + for deg in range(1, 5): + assert_(Chebyshev.interpolate(self.f, deg).degree() == deg) + + def test_approximation(self): + + def powx(x, p): + return x**p + + x = np.linspace(0, 2, 10) + for deg in range(10): + for t in range(deg + 1): + p = Chebyshev.interpolate(powx, deg, domain=[0, 2], args=(t,)) + assert_almost_equal(p(x), powx(x, t), decimal=11) diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_hermite.py b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_hermite.py new file mode 100644 index 0000000..8bd3951 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_hermite.py @@ -0,0 +1,558 @@ +"""Tests for hermite module. + +""" +from functools import reduce + +import numpy as np +import numpy.polynomial.hermite as herm +from numpy.polynomial.polynomial import polyval +from numpy.testing import ( + assert_, + assert_almost_equal, + assert_equal, + assert_raises, +) + +H0 = np.array([1]) +H1 = np.array([0, 2]) +H2 = np.array([-2, 0, 4]) +H3 = np.array([0, -12, 0, 8]) +H4 = np.array([12, 0, -48, 0, 16]) +H5 = np.array([0, 120, 0, -160, 0, 32]) +H6 = np.array([-120, 0, 720, 0, -480, 0, 64]) +H7 = np.array([0, -1680, 0, 3360, 0, -1344, 0, 128]) +H8 = np.array([1680, 0, -13440, 0, 13440, 0, -3584, 0, 256]) +H9 = np.array([0, 30240, 0, -80640, 0, 48384, 0, -9216, 0, 512]) + +Hlist = [H0, H1, H2, H3, H4, H5, H6, H7, H8, H9] + + +def trim(x): + return herm.hermtrim(x, tol=1e-6) + + +class TestConstants: + + def test_hermdomain(self): + assert_equal(herm.hermdomain, [-1, 1]) + + def test_hermzero(self): + assert_equal(herm.hermzero, [0]) + + def test_hermone(self): + assert_equal(herm.hermone, [1]) + + def test_hermx(self): + assert_equal(herm.hermx, [0, .5]) + + +class TestArithmetic: + x = np.linspace(-3, 3, 100) + + def test_hermadd(self): + for i in range(5): + for j in range(5): + msg = f"At i={i}, j={j}" + tgt = np.zeros(max(i, j) + 1) + tgt[i] += 1 + tgt[j] += 1 + res = herm.hermadd([0] * i + [1], [0] * j + [1]) + assert_equal(trim(res), trim(tgt), err_msg=msg) + + def test_hermsub(self): + for i in range(5): + for j in range(5): + msg = f"At i={i}, j={j}" + tgt = np.zeros(max(i, j) + 1) + tgt[i] += 1 + tgt[j] -= 1 + res = herm.hermsub([0] * i + [1], [0] * j + [1]) + assert_equal(trim(res), trim(tgt), err_msg=msg) + + def test_hermmulx(self): + assert_equal(herm.hermmulx([0]), [0]) + assert_equal(herm.hermmulx([1]), [0, .5]) + for i in range(1, 5): + ser = [0] * i + [1] + tgt = [0] * (i - 1) + [i, 0, .5] + assert_equal(herm.hermmulx(ser), tgt) + + def test_hermmul(self): + # check values of result + for i in range(5): + pol1 = [0] * i + [1] + val1 = herm.hermval(self.x, pol1) + for j in range(5): + msg = f"At i={i}, j={j}" + pol2 = [0] * j + [1] + val2 = herm.hermval(self.x, pol2) + pol3 = herm.hermmul(pol1, pol2) + val3 = herm.hermval(self.x, pol3) + assert_(len(pol3) == i + j + 1, msg) + assert_almost_equal(val3, val1 * val2, err_msg=msg) + + def test_hermdiv(self): + for i in range(5): + for j in range(5): + msg = f"At i={i}, j={j}" + ci = [0] * i + [1] + cj = [0] * j + [1] + tgt = herm.hermadd(ci, cj) + quo, rem = herm.hermdiv(tgt, ci) + res = herm.hermadd(herm.hermmul(quo, ci), rem) + assert_equal(trim(res), trim(tgt), err_msg=msg) + + def test_hermpow(self): + for i in range(5): + for j in range(5): + msg = f"At i={i}, j={j}" + c = np.arange(i + 1) + tgt = reduce(herm.hermmul, [c] * j, np.array([1])) + res = herm.hermpow(c, j) + assert_equal(trim(res), trim(tgt), err_msg=msg) + + +class TestEvaluation: + # coefficients of 1 + 2*x + 3*x**2 + c1d = np.array([2.5, 1., .75]) + c2d = np.einsum('i,j->ij', c1d, c1d) + c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d) + + # some random values in [-1, 1) + x = np.random.random((3, 5)) * 2 - 1 + y = polyval(x, [1., 2., 3.]) + + def test_hermval(self): + # check empty input + assert_equal(herm.hermval([], [1]).size, 0) + + # check normal input) + x = np.linspace(-1, 1) + y = [polyval(x, c) for c in Hlist] + for i in range(10): + msg = f"At i={i}" + tgt = y[i] + res = herm.hermval(x, [0] * i + [1]) + assert_almost_equal(res, tgt, err_msg=msg) + + # check that shape is preserved + for i in range(3): + dims = [2] * i + x = np.zeros(dims) + assert_equal(herm.hermval(x, [1]).shape, dims) + assert_equal(herm.hermval(x, [1, 0]).shape, dims) + assert_equal(herm.hermval(x, [1, 0, 0]).shape, dims) + + def test_hermval2d(self): + x1, x2, x3 = self.x + y1, y2, y3 = self.y + + # test exceptions + assert_raises(ValueError, herm.hermval2d, x1, x2[:2], self.c2d) + + # test values + tgt = y1 * y2 + res = herm.hermval2d(x1, x2, self.c2d) + assert_almost_equal(res, tgt) + + # test shape + z = np.ones((2, 3)) + res = herm.hermval2d(z, z, self.c2d) + assert_(res.shape == (2, 3)) + + def test_hermval3d(self): + x1, x2, x3 = self.x + y1, y2, y3 = self.y + + # test exceptions + assert_raises(ValueError, herm.hermval3d, x1, x2, x3[:2], self.c3d) + + # test values + tgt = y1 * y2 * y3 + res = herm.hermval3d(x1, x2, x3, self.c3d) + assert_almost_equal(res, tgt) + + # test shape + z = np.ones((2, 3)) + res = herm.hermval3d(z, z, z, self.c3d) + assert_(res.shape == (2, 3)) + + def test_hermgrid2d(self): + x1, x2, x3 = self.x + y1, y2, y3 = self.y + + # test values + tgt = np.einsum('i,j->ij', y1, y2) + res = herm.hermgrid2d(x1, x2, self.c2d) + assert_almost_equal(res, tgt) + + # test shape + z = np.ones((2, 3)) + res = herm.hermgrid2d(z, z, self.c2d) + assert_(res.shape == (2, 3) * 2) + + def test_hermgrid3d(self): + x1, x2, x3 = self.x + y1, y2, y3 = self.y + + # test values + tgt = np.einsum('i,j,k->ijk', y1, y2, y3) + res = herm.hermgrid3d(x1, x2, x3, self.c3d) + assert_almost_equal(res, tgt) + + # test shape + z = np.ones((2, 3)) + res = herm.hermgrid3d(z, z, z, self.c3d) + assert_(res.shape == (2, 3) * 3) + + +class TestIntegral: + + def test_hermint(self): + # check exceptions + assert_raises(TypeError, herm.hermint, [0], .5) + assert_raises(ValueError, herm.hermint, [0], -1) + assert_raises(ValueError, herm.hermint, [0], 1, [0, 0]) + assert_raises(ValueError, herm.hermint, [0], lbnd=[0]) + assert_raises(ValueError, herm.hermint, [0], scl=[0]) + assert_raises(TypeError, herm.hermint, [0], axis=.5) + + # test integration of zero polynomial + for i in range(2, 5): + k = [0] * (i - 2) + [1] + res = herm.hermint([0], m=i, k=k) + assert_almost_equal(res, [0, .5]) + + # check single integration with integration constant + for i in range(5): + scl = i + 1 + pol = [0] * i + [1] + tgt = [i] + [0] * i + [1 / scl] + hermpol = herm.poly2herm(pol) + hermint = herm.hermint(hermpol, m=1, k=[i]) + res = herm.herm2poly(hermint) + assert_almost_equal(trim(res), trim(tgt)) + + # check single integration with integration constant and lbnd + for i in range(5): + scl = i + 1 + pol = [0] * i + [1] + hermpol = herm.poly2herm(pol) + hermint = herm.hermint(hermpol, m=1, k=[i], lbnd=-1) + assert_almost_equal(herm.hermval(-1, hermint), i) + + # check single integration with integration constant and scaling + for i in range(5): + scl = i + 1 + pol = [0] * i + [1] + tgt = [i] + [0] * i + [2 / scl] + hermpol = herm.poly2herm(pol) + hermint = herm.hermint(hermpol, m=1, k=[i], scl=2) + res = herm.herm2poly(hermint) + assert_almost_equal(trim(res), trim(tgt)) + + # check multiple integrations with default k + for i in range(5): + for j in range(2, 5): + pol = [0] * i + [1] + tgt = pol[:] + for k in range(j): + tgt = herm.hermint(tgt, m=1) + res = herm.hermint(pol, m=j) + assert_almost_equal(trim(res), trim(tgt)) + + # check multiple integrations with defined k + for i in range(5): + for j in range(2, 5): + pol = [0] * i + [1] + tgt = pol[:] + for k in range(j): + tgt = herm.hermint(tgt, m=1, k=[k]) + res = herm.hermint(pol, m=j, k=list(range(j))) + assert_almost_equal(trim(res), trim(tgt)) + + # check multiple integrations with lbnd + for i in range(5): + for j in range(2, 5): + pol = [0] * i + [1] + tgt = pol[:] + for k in range(j): + tgt = herm.hermint(tgt, m=1, k=[k], lbnd=-1) + res = herm.hermint(pol, m=j, k=list(range(j)), lbnd=-1) + assert_almost_equal(trim(res), trim(tgt)) + + # check multiple integrations with scaling + for i in range(5): + for j in range(2, 5): + pol = [0] * i + [1] + tgt = pol[:] + for k in range(j): + tgt = herm.hermint(tgt, m=1, k=[k], scl=2) + res = herm.hermint(pol, m=j, k=list(range(j)), scl=2) + assert_almost_equal(trim(res), trim(tgt)) + + def test_hermint_axis(self): + # check that axis keyword works + c2d = np.random.random((3, 4)) + + tgt = np.vstack([herm.hermint(c) for c in c2d.T]).T + res = herm.hermint(c2d, axis=0) + assert_almost_equal(res, tgt) + + tgt = np.vstack([herm.hermint(c) for c in c2d]) + res = herm.hermint(c2d, axis=1) + assert_almost_equal(res, tgt) + + tgt = np.vstack([herm.hermint(c, k=3) for c in c2d]) + res = herm.hermint(c2d, k=3, axis=1) + assert_almost_equal(res, tgt) + + +class TestDerivative: + + def test_hermder(self): + # check exceptions + assert_raises(TypeError, herm.hermder, [0], .5) + assert_raises(ValueError, herm.hermder, [0], -1) + + # check that zeroth derivative does nothing + for i in range(5): + tgt = [0] * i + [1] + res = herm.hermder(tgt, m=0) + assert_equal(trim(res), trim(tgt)) + + # check that derivation is the inverse of integration + for i in range(5): + for j in range(2, 5): + tgt = [0] * i + [1] + res = herm.hermder(herm.hermint(tgt, m=j), m=j) + assert_almost_equal(trim(res), trim(tgt)) + + # check derivation with scaling + for i in range(5): + for j in range(2, 5): + tgt = [0] * i + [1] + res = herm.hermder(herm.hermint(tgt, m=j, scl=2), m=j, scl=.5) + assert_almost_equal(trim(res), trim(tgt)) + + def test_hermder_axis(self): + # check that axis keyword works + c2d = np.random.random((3, 4)) + + tgt = np.vstack([herm.hermder(c) for c in c2d.T]).T + res = herm.hermder(c2d, axis=0) + assert_almost_equal(res, tgt) + + tgt = np.vstack([herm.hermder(c) for c in c2d]) + res = herm.hermder(c2d, axis=1) + assert_almost_equal(res, tgt) + + +class TestVander: + # some random values in [-1, 1) + x = np.random.random((3, 5)) * 2 - 1 + + def test_hermvander(self): + # check for 1d x + x = np.arange(3) + v = herm.hermvander(x, 3) + assert_(v.shape == (3, 4)) + for i in range(4): + coef = [0] * i + [1] + assert_almost_equal(v[..., i], herm.hermval(x, coef)) + + # check for 2d x + x = np.array([[1, 2], [3, 4], [5, 6]]) + v = herm.hermvander(x, 3) + assert_(v.shape == (3, 2, 4)) + for i in range(4): + coef = [0] * i + [1] + assert_almost_equal(v[..., i], herm.hermval(x, coef)) + + def test_hermvander2d(self): + # also tests hermval2d for non-square coefficient array + x1, x2, x3 = self.x + c = np.random.random((2, 3)) + van = herm.hermvander2d(x1, x2, [1, 2]) + tgt = herm.hermval2d(x1, x2, c) + res = np.dot(van, c.flat) + assert_almost_equal(res, tgt) + + # check shape + van = herm.hermvander2d([x1], [x2], [1, 2]) + assert_(van.shape == (1, 5, 6)) + + def test_hermvander3d(self): + # also tests hermval3d for non-square coefficient array + x1, x2, x3 = self.x + c = np.random.random((2, 3, 4)) + van = herm.hermvander3d(x1, x2, x3, [1, 2, 3]) + tgt = herm.hermval3d(x1, x2, x3, c) + res = np.dot(van, c.flat) + assert_almost_equal(res, tgt) + + # check shape + van = herm.hermvander3d([x1], [x2], [x3], [1, 2, 3]) + assert_(van.shape == (1, 5, 24)) + + +class TestFitting: + + def test_hermfit(self): + def f(x): + return x * (x - 1) * (x - 2) + + def f2(x): + return x**4 + x**2 + 1 + + # Test exceptions + assert_raises(ValueError, herm.hermfit, [1], [1], -1) + assert_raises(TypeError, herm.hermfit, [[1]], [1], 0) + assert_raises(TypeError, herm.hermfit, [], [1], 0) + assert_raises(TypeError, herm.hermfit, [1], [[[1]]], 0) + assert_raises(TypeError, herm.hermfit, [1, 2], [1], 0) + assert_raises(TypeError, herm.hermfit, [1], [1, 2], 0) + assert_raises(TypeError, herm.hermfit, [1], [1], 0, w=[[1]]) + assert_raises(TypeError, herm.hermfit, [1], [1], 0, w=[1, 1]) + assert_raises(ValueError, herm.hermfit, [1], [1], [-1,]) + assert_raises(ValueError, herm.hermfit, [1], [1], [2, -1, 6]) + assert_raises(TypeError, herm.hermfit, [1], [1], []) + + # Test fit + x = np.linspace(0, 2) + y = f(x) + # + coef3 = herm.hermfit(x, y, 3) + assert_equal(len(coef3), 4) + assert_almost_equal(herm.hermval(x, coef3), y) + coef3 = herm.hermfit(x, y, [0, 1, 2, 3]) + assert_equal(len(coef3), 4) + assert_almost_equal(herm.hermval(x, coef3), y) + # + coef4 = herm.hermfit(x, y, 4) + assert_equal(len(coef4), 5) + assert_almost_equal(herm.hermval(x, coef4), y) + coef4 = herm.hermfit(x, y, [0, 1, 2, 3, 4]) + assert_equal(len(coef4), 5) + assert_almost_equal(herm.hermval(x, coef4), y) + # check things still work if deg is not in strict increasing + coef4 = herm.hermfit(x, y, [2, 3, 4, 1, 0]) + assert_equal(len(coef4), 5) + assert_almost_equal(herm.hermval(x, coef4), y) + # + coef2d = herm.hermfit(x, np.array([y, y]).T, 3) + assert_almost_equal(coef2d, np.array([coef3, coef3]).T) + coef2d = herm.hermfit(x, np.array([y, y]).T, [0, 1, 2, 3]) + assert_almost_equal(coef2d, np.array([coef3, coef3]).T) + # test weighting + w = np.zeros_like(x) + yw = y.copy() + w[1::2] = 1 + y[0::2] = 0 + wcoef3 = herm.hermfit(x, yw, 3, w=w) + assert_almost_equal(wcoef3, coef3) + wcoef3 = herm.hermfit(x, yw, [0, 1, 2, 3], w=w) + assert_almost_equal(wcoef3, coef3) + # + wcoef2d = herm.hermfit(x, np.array([yw, yw]).T, 3, w=w) + assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T) + wcoef2d = herm.hermfit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w) + assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T) + # test scaling with complex values x points whose square + # is zero when summed. + x = [1, 1j, -1, -1j] + assert_almost_equal(herm.hermfit(x, x, 1), [0, .5]) + assert_almost_equal(herm.hermfit(x, x, [0, 1]), [0, .5]) + # test fitting only even Legendre polynomials + x = np.linspace(-1, 1) + y = f2(x) + coef1 = herm.hermfit(x, y, 4) + assert_almost_equal(herm.hermval(x, coef1), y) + coef2 = herm.hermfit(x, y, [0, 2, 4]) + assert_almost_equal(herm.hermval(x, coef2), y) + assert_almost_equal(coef1, coef2) + + +class TestCompanion: + + def test_raises(self): + assert_raises(ValueError, herm.hermcompanion, []) + assert_raises(ValueError, herm.hermcompanion, [1]) + + def test_dimensions(self): + for i in range(1, 5): + coef = [0] * i + [1] + assert_(herm.hermcompanion(coef).shape == (i, i)) + + def test_linear_root(self): + assert_(herm.hermcompanion([1, 2])[0, 0] == -.25) + + +class TestGauss: + + def test_100(self): + x, w = herm.hermgauss(100) + + # test orthogonality. Note that the results need to be normalized, + # otherwise the huge values that can arise from fast growing + # functions like Laguerre can be very confusing. + v = herm.hermvander(x, 99) + vv = np.dot(v.T * w, v) + vd = 1 / np.sqrt(vv.diagonal()) + vv = vd[:, None] * vv * vd + assert_almost_equal(vv, np.eye(100)) + + # check that the integral of 1 is correct + tgt = np.sqrt(np.pi) + assert_almost_equal(w.sum(), tgt) + + +class TestMisc: + + def test_hermfromroots(self): + res = herm.hermfromroots([]) + assert_almost_equal(trim(res), [1]) + for i in range(1, 5): + roots = np.cos(np.linspace(-np.pi, 0, 2 * i + 1)[1::2]) + pol = herm.hermfromroots(roots) + res = herm.hermval(roots, pol) + tgt = 0 + assert_(len(pol) == i + 1) + assert_almost_equal(herm.herm2poly(pol)[-1], 1) + assert_almost_equal(res, tgt) + + def test_hermroots(self): + assert_almost_equal(herm.hermroots([1]), []) + assert_almost_equal(herm.hermroots([1, 1]), [-.5]) + for i in range(2, 5): + tgt = np.linspace(-1, 1, i) + res = herm.hermroots(herm.hermfromroots(tgt)) + assert_almost_equal(trim(res), trim(tgt)) + + def test_hermtrim(self): + coef = [2, -1, 1, 0] + + # Test exceptions + assert_raises(ValueError, herm.hermtrim, coef, -1) + + # Test results + assert_equal(herm.hermtrim(coef), coef[:-1]) + assert_equal(herm.hermtrim(coef, 1), coef[:-3]) + assert_equal(herm.hermtrim(coef, 2), [0]) + + def test_hermline(self): + assert_equal(herm.hermline(3, 4), [3, 2]) + + def test_herm2poly(self): + for i in range(10): + assert_almost_equal(herm.herm2poly([0] * i + [1]), Hlist[i]) + + def test_poly2herm(self): + for i in range(10): + assert_almost_equal(herm.poly2herm(Hlist[i]), [0] * i + [1]) + + def test_weight(self): + x = np.linspace(-5, 5, 11) + tgt = np.exp(-x**2) + res = herm.hermweight(x) + assert_almost_equal(res, tgt) diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_hermite_e.py b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_hermite_e.py new file mode 100644 index 0000000..29f34f6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_hermite_e.py @@ -0,0 +1,559 @@ +"""Tests for hermite_e module. + +""" +from functools import reduce + +import numpy as np +import numpy.polynomial.hermite_e as herme +from numpy.polynomial.polynomial import polyval +from numpy.testing import ( + assert_, + assert_almost_equal, + assert_equal, + assert_raises, +) + +He0 = np.array([1]) +He1 = np.array([0, 1]) +He2 = np.array([-1, 0, 1]) +He3 = np.array([0, -3, 0, 1]) +He4 = np.array([3, 0, -6, 0, 1]) +He5 = np.array([0, 15, 0, -10, 0, 1]) +He6 = np.array([-15, 0, 45, 0, -15, 0, 1]) +He7 = np.array([0, -105, 0, 105, 0, -21, 0, 1]) +He8 = np.array([105, 0, -420, 0, 210, 0, -28, 0, 1]) +He9 = np.array([0, 945, 0, -1260, 0, 378, 0, -36, 0, 1]) + +Helist = [He0, He1, He2, He3, He4, He5, He6, He7, He8, He9] + + +def trim(x): + return herme.hermetrim(x, tol=1e-6) + + +class TestConstants: + + def test_hermedomain(self): + assert_equal(herme.hermedomain, [-1, 1]) + + def test_hermezero(self): + assert_equal(herme.hermezero, [0]) + + def test_hermeone(self): + assert_equal(herme.hermeone, [1]) + + def test_hermex(self): + assert_equal(herme.hermex, [0, 1]) + + +class TestArithmetic: + x = np.linspace(-3, 3, 100) + + def test_hermeadd(self): + for i in range(5): + for j in range(5): + msg = f"At i={i}, j={j}" + tgt = np.zeros(max(i, j) + 1) + tgt[i] += 1 + tgt[j] += 1 + res = herme.hermeadd([0] * i + [1], [0] * j + [1]) + assert_equal(trim(res), trim(tgt), err_msg=msg) + + def test_hermesub(self): + for i in range(5): + for j in range(5): + msg = f"At i={i}, j={j}" + tgt = np.zeros(max(i, j) + 1) + tgt[i] += 1 + tgt[j] -= 1 + res = herme.hermesub([0] * i + [1], [0] * j + [1]) + assert_equal(trim(res), trim(tgt), err_msg=msg) + + def test_hermemulx(self): + assert_equal(herme.hermemulx([0]), [0]) + assert_equal(herme.hermemulx([1]), [0, 1]) + for i in range(1, 5): + ser = [0] * i + [1] + tgt = [0] * (i - 1) + [i, 0, 1] + assert_equal(herme.hermemulx(ser), tgt) + + def test_hermemul(self): + # check values of result + for i in range(5): + pol1 = [0] * i + [1] + val1 = herme.hermeval(self.x, pol1) + for j in range(5): + msg = f"At i={i}, j={j}" + pol2 = [0] * j + [1] + val2 = herme.hermeval(self.x, pol2) + pol3 = herme.hermemul(pol1, pol2) + val3 = herme.hermeval(self.x, pol3) + assert_(len(pol3) == i + j + 1, msg) + assert_almost_equal(val3, val1 * val2, err_msg=msg) + + def test_hermediv(self): + for i in range(5): + for j in range(5): + msg = f"At i={i}, j={j}" + ci = [0] * i + [1] + cj = [0] * j + [1] + tgt = herme.hermeadd(ci, cj) + quo, rem = herme.hermediv(tgt, ci) + res = herme.hermeadd(herme.hermemul(quo, ci), rem) + assert_equal(trim(res), trim(tgt), err_msg=msg) + + def test_hermepow(self): + for i in range(5): + for j in range(5): + msg = f"At i={i}, j={j}" + c = np.arange(i + 1) + tgt = reduce(herme.hermemul, [c] * j, np.array([1])) + res = herme.hermepow(c, j) + assert_equal(trim(res), trim(tgt), err_msg=msg) + + +class TestEvaluation: + # coefficients of 1 + 2*x + 3*x**2 + c1d = np.array([4., 2., 3.]) + c2d = np.einsum('i,j->ij', c1d, c1d) + c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d) + + # some random values in [-1, 1) + x = np.random.random((3, 5)) * 2 - 1 + y = polyval(x, [1., 2., 3.]) + + def test_hermeval(self): + # check empty input + assert_equal(herme.hermeval([], [1]).size, 0) + + # check normal input) + x = np.linspace(-1, 1) + y = [polyval(x, c) for c in Helist] + for i in range(10): + msg = f"At i={i}" + tgt = y[i] + res = herme.hermeval(x, [0] * i + [1]) + assert_almost_equal(res, tgt, err_msg=msg) + + # check that shape is preserved + for i in range(3): + dims = [2] * i + x = np.zeros(dims) + assert_equal(herme.hermeval(x, [1]).shape, dims) + assert_equal(herme.hermeval(x, [1, 0]).shape, dims) + assert_equal(herme.hermeval(x, [1, 0, 0]).shape, dims) + + def test_hermeval2d(self): + x1, x2, x3 = self.x + y1, y2, y3 = self.y + + # test exceptions + assert_raises(ValueError, herme.hermeval2d, x1, x2[:2], self.c2d) + + # test values + tgt = y1 * y2 + res = herme.hermeval2d(x1, x2, self.c2d) + assert_almost_equal(res, tgt) + + # test shape + z = np.ones((2, 3)) + res = herme.hermeval2d(z, z, self.c2d) + assert_(res.shape == (2, 3)) + + def test_hermeval3d(self): + x1, x2, x3 = self.x + y1, y2, y3 = self.y + + # test exceptions + assert_raises(ValueError, herme.hermeval3d, x1, x2, x3[:2], self.c3d) + + # test values + tgt = y1 * y2 * y3 + res = herme.hermeval3d(x1, x2, x3, self.c3d) + assert_almost_equal(res, tgt) + + # test shape + z = np.ones((2, 3)) + res = herme.hermeval3d(z, z, z, self.c3d) + assert_(res.shape == (2, 3)) + + def test_hermegrid2d(self): + x1, x2, x3 = self.x + y1, y2, y3 = self.y + + # test values + tgt = np.einsum('i,j->ij', y1, y2) + res = herme.hermegrid2d(x1, x2, self.c2d) + assert_almost_equal(res, tgt) + + # test shape + z = np.ones((2, 3)) + res = herme.hermegrid2d(z, z, self.c2d) + assert_(res.shape == (2, 3) * 2) + + def test_hermegrid3d(self): + x1, x2, x3 = self.x + y1, y2, y3 = self.y + + # test values + tgt = np.einsum('i,j,k->ijk', y1, y2, y3) + res = herme.hermegrid3d(x1, x2, x3, self.c3d) + assert_almost_equal(res, tgt) + + # test shape + z = np.ones((2, 3)) + res = herme.hermegrid3d(z, z, z, self.c3d) + assert_(res.shape == (2, 3) * 3) + + +class TestIntegral: + + def test_hermeint(self): + # check exceptions + assert_raises(TypeError, herme.hermeint, [0], .5) + assert_raises(ValueError, herme.hermeint, [0], -1) + assert_raises(ValueError, herme.hermeint, [0], 1, [0, 0]) + assert_raises(ValueError, herme.hermeint, [0], lbnd=[0]) + assert_raises(ValueError, herme.hermeint, [0], scl=[0]) + assert_raises(TypeError, herme.hermeint, [0], axis=.5) + + # test integration of zero polynomial + for i in range(2, 5): + k = [0] * (i - 2) + [1] + res = herme.hermeint([0], m=i, k=k) + assert_almost_equal(res, [0, 1]) + + # check single integration with integration constant + for i in range(5): + scl = i + 1 + pol = [0] * i + [1] + tgt = [i] + [0] * i + [1 / scl] + hermepol = herme.poly2herme(pol) + hermeint = herme.hermeint(hermepol, m=1, k=[i]) + res = herme.herme2poly(hermeint) + assert_almost_equal(trim(res), trim(tgt)) + + # check single integration with integration constant and lbnd + for i in range(5): + scl = i + 1 + pol = [0] * i + [1] + hermepol = herme.poly2herme(pol) + hermeint = herme.hermeint(hermepol, m=1, k=[i], lbnd=-1) + assert_almost_equal(herme.hermeval(-1, hermeint), i) + + # check single integration with integration constant and scaling + for i in range(5): + scl = i + 1 + pol = [0] * i + [1] + tgt = [i] + [0] * i + [2 / scl] + hermepol = herme.poly2herme(pol) + hermeint = herme.hermeint(hermepol, m=1, k=[i], scl=2) + res = herme.herme2poly(hermeint) + assert_almost_equal(trim(res), trim(tgt)) + + # check multiple integrations with default k + for i in range(5): + for j in range(2, 5): + pol = [0] * i + [1] + tgt = pol[:] + for k in range(j): + tgt = herme.hermeint(tgt, m=1) + res = herme.hermeint(pol, m=j) + assert_almost_equal(trim(res), trim(tgt)) + + # check multiple integrations with defined k + for i in range(5): + for j in range(2, 5): + pol = [0] * i + [1] + tgt = pol[:] + for k in range(j): + tgt = herme.hermeint(tgt, m=1, k=[k]) + res = herme.hermeint(pol, m=j, k=list(range(j))) + assert_almost_equal(trim(res), trim(tgt)) + + # check multiple integrations with lbnd + for i in range(5): + for j in range(2, 5): + pol = [0] * i + [1] + tgt = pol[:] + for k in range(j): + tgt = herme.hermeint(tgt, m=1, k=[k], lbnd=-1) + res = herme.hermeint(pol, m=j, k=list(range(j)), lbnd=-1) + assert_almost_equal(trim(res), trim(tgt)) + + # check multiple integrations with scaling + for i in range(5): + for j in range(2, 5): + pol = [0] * i + [1] + tgt = pol[:] + for k in range(j): + tgt = herme.hermeint(tgt, m=1, k=[k], scl=2) + res = herme.hermeint(pol, m=j, k=list(range(j)), scl=2) + assert_almost_equal(trim(res), trim(tgt)) + + def test_hermeint_axis(self): + # check that axis keyword works + c2d = np.random.random((3, 4)) + + tgt = np.vstack([herme.hermeint(c) for c in c2d.T]).T + res = herme.hermeint(c2d, axis=0) + assert_almost_equal(res, tgt) + + tgt = np.vstack([herme.hermeint(c) for c in c2d]) + res = herme.hermeint(c2d, axis=1) + assert_almost_equal(res, tgt) + + tgt = np.vstack([herme.hermeint(c, k=3) for c in c2d]) + res = herme.hermeint(c2d, k=3, axis=1) + assert_almost_equal(res, tgt) + + +class TestDerivative: + + def test_hermeder(self): + # check exceptions + assert_raises(TypeError, herme.hermeder, [0], .5) + assert_raises(ValueError, herme.hermeder, [0], -1) + + # check that zeroth derivative does nothing + for i in range(5): + tgt = [0] * i + [1] + res = herme.hermeder(tgt, m=0) + assert_equal(trim(res), trim(tgt)) + + # check that derivation is the inverse of integration + for i in range(5): + for j in range(2, 5): + tgt = [0] * i + [1] + res = herme.hermeder(herme.hermeint(tgt, m=j), m=j) + assert_almost_equal(trim(res), trim(tgt)) + + # check derivation with scaling + for i in range(5): + for j in range(2, 5): + tgt = [0] * i + [1] + res = herme.hermeder( + herme.hermeint(tgt, m=j, scl=2), m=j, scl=.5) + assert_almost_equal(trim(res), trim(tgt)) + + def test_hermeder_axis(self): + # check that axis keyword works + c2d = np.random.random((3, 4)) + + tgt = np.vstack([herme.hermeder(c) for c in c2d.T]).T + res = herme.hermeder(c2d, axis=0) + assert_almost_equal(res, tgt) + + tgt = np.vstack([herme.hermeder(c) for c in c2d]) + res = herme.hermeder(c2d, axis=1) + assert_almost_equal(res, tgt) + + +class TestVander: + # some random values in [-1, 1) + x = np.random.random((3, 5)) * 2 - 1 + + def test_hermevander(self): + # check for 1d x + x = np.arange(3) + v = herme.hermevander(x, 3) + assert_(v.shape == (3, 4)) + for i in range(4): + coef = [0] * i + [1] + assert_almost_equal(v[..., i], herme.hermeval(x, coef)) + + # check for 2d x + x = np.array([[1, 2], [3, 4], [5, 6]]) + v = herme.hermevander(x, 3) + assert_(v.shape == (3, 2, 4)) + for i in range(4): + coef = [0] * i + [1] + assert_almost_equal(v[..., i], herme.hermeval(x, coef)) + + def test_hermevander2d(self): + # also tests hermeval2d for non-square coefficient array + x1, x2, x3 = self.x + c = np.random.random((2, 3)) + van = herme.hermevander2d(x1, x2, [1, 2]) + tgt = herme.hermeval2d(x1, x2, c) + res = np.dot(van, c.flat) + assert_almost_equal(res, tgt) + + # check shape + van = herme.hermevander2d([x1], [x2], [1, 2]) + assert_(van.shape == (1, 5, 6)) + + def test_hermevander3d(self): + # also tests hermeval3d for non-square coefficient array + x1, x2, x3 = self.x + c = np.random.random((2, 3, 4)) + van = herme.hermevander3d(x1, x2, x3, [1, 2, 3]) + tgt = herme.hermeval3d(x1, x2, x3, c) + res = np.dot(van, c.flat) + assert_almost_equal(res, tgt) + + # check shape + van = herme.hermevander3d([x1], [x2], [x3], [1, 2, 3]) + assert_(van.shape == (1, 5, 24)) + + +class TestFitting: + + def test_hermefit(self): + def f(x): + return x * (x - 1) * (x - 2) + + def f2(x): + return x**4 + x**2 + 1 + + # Test exceptions + assert_raises(ValueError, herme.hermefit, [1], [1], -1) + assert_raises(TypeError, herme.hermefit, [[1]], [1], 0) + assert_raises(TypeError, herme.hermefit, [], [1], 0) + assert_raises(TypeError, herme.hermefit, [1], [[[1]]], 0) + assert_raises(TypeError, herme.hermefit, [1, 2], [1], 0) + assert_raises(TypeError, herme.hermefit, [1], [1, 2], 0) + assert_raises(TypeError, herme.hermefit, [1], [1], 0, w=[[1]]) + assert_raises(TypeError, herme.hermefit, [1], [1], 0, w=[1, 1]) + assert_raises(ValueError, herme.hermefit, [1], [1], [-1,]) + assert_raises(ValueError, herme.hermefit, [1], [1], [2, -1, 6]) + assert_raises(TypeError, herme.hermefit, [1], [1], []) + + # Test fit + x = np.linspace(0, 2) + y = f(x) + # + coef3 = herme.hermefit(x, y, 3) + assert_equal(len(coef3), 4) + assert_almost_equal(herme.hermeval(x, coef3), y) + coef3 = herme.hermefit(x, y, [0, 1, 2, 3]) + assert_equal(len(coef3), 4) + assert_almost_equal(herme.hermeval(x, coef3), y) + # + coef4 = herme.hermefit(x, y, 4) + assert_equal(len(coef4), 5) + assert_almost_equal(herme.hermeval(x, coef4), y) + coef4 = herme.hermefit(x, y, [0, 1, 2, 3, 4]) + assert_equal(len(coef4), 5) + assert_almost_equal(herme.hermeval(x, coef4), y) + # check things still work if deg is not in strict increasing + coef4 = herme.hermefit(x, y, [2, 3, 4, 1, 0]) + assert_equal(len(coef4), 5) + assert_almost_equal(herme.hermeval(x, coef4), y) + # + coef2d = herme.hermefit(x, np.array([y, y]).T, 3) + assert_almost_equal(coef2d, np.array([coef3, coef3]).T) + coef2d = herme.hermefit(x, np.array([y, y]).T, [0, 1, 2, 3]) + assert_almost_equal(coef2d, np.array([coef3, coef3]).T) + # test weighting + w = np.zeros_like(x) + yw = y.copy() + w[1::2] = 1 + y[0::2] = 0 + wcoef3 = herme.hermefit(x, yw, 3, w=w) + assert_almost_equal(wcoef3, coef3) + wcoef3 = herme.hermefit(x, yw, [0, 1, 2, 3], w=w) + assert_almost_equal(wcoef3, coef3) + # + wcoef2d = herme.hermefit(x, np.array([yw, yw]).T, 3, w=w) + assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T) + wcoef2d = herme.hermefit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w) + assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T) + # test scaling with complex values x points whose square + # is zero when summed. + x = [1, 1j, -1, -1j] + assert_almost_equal(herme.hermefit(x, x, 1), [0, 1]) + assert_almost_equal(herme.hermefit(x, x, [0, 1]), [0, 1]) + # test fitting only even Legendre polynomials + x = np.linspace(-1, 1) + y = f2(x) + coef1 = herme.hermefit(x, y, 4) + assert_almost_equal(herme.hermeval(x, coef1), y) + coef2 = herme.hermefit(x, y, [0, 2, 4]) + assert_almost_equal(herme.hermeval(x, coef2), y) + assert_almost_equal(coef1, coef2) + + +class TestCompanion: + + def test_raises(self): + assert_raises(ValueError, herme.hermecompanion, []) + assert_raises(ValueError, herme.hermecompanion, [1]) + + def test_dimensions(self): + for i in range(1, 5): + coef = [0] * i + [1] + assert_(herme.hermecompanion(coef).shape == (i, i)) + + def test_linear_root(self): + assert_(herme.hermecompanion([1, 2])[0, 0] == -.5) + + +class TestGauss: + + def test_100(self): + x, w = herme.hermegauss(100) + + # test orthogonality. Note that the results need to be normalized, + # otherwise the huge values that can arise from fast growing + # functions like Laguerre can be very confusing. + v = herme.hermevander(x, 99) + vv = np.dot(v.T * w, v) + vd = 1 / np.sqrt(vv.diagonal()) + vv = vd[:, None] * vv * vd + assert_almost_equal(vv, np.eye(100)) + + # check that the integral of 1 is correct + tgt = np.sqrt(2 * np.pi) + assert_almost_equal(w.sum(), tgt) + + +class TestMisc: + + def test_hermefromroots(self): + res = herme.hermefromroots([]) + assert_almost_equal(trim(res), [1]) + for i in range(1, 5): + roots = np.cos(np.linspace(-np.pi, 0, 2 * i + 1)[1::2]) + pol = herme.hermefromroots(roots) + res = herme.hermeval(roots, pol) + tgt = 0 + assert_(len(pol) == i + 1) + assert_almost_equal(herme.herme2poly(pol)[-1], 1) + assert_almost_equal(res, tgt) + + def test_hermeroots(self): + assert_almost_equal(herme.hermeroots([1]), []) + assert_almost_equal(herme.hermeroots([1, 1]), [-1]) + for i in range(2, 5): + tgt = np.linspace(-1, 1, i) + res = herme.hermeroots(herme.hermefromroots(tgt)) + assert_almost_equal(trim(res), trim(tgt)) + + def test_hermetrim(self): + coef = [2, -1, 1, 0] + + # Test exceptions + assert_raises(ValueError, herme.hermetrim, coef, -1) + + # Test results + assert_equal(herme.hermetrim(coef), coef[:-1]) + assert_equal(herme.hermetrim(coef, 1), coef[:-3]) + assert_equal(herme.hermetrim(coef, 2), [0]) + + def test_hermeline(self): + assert_equal(herme.hermeline(3, 4), [3, 4]) + + def test_herme2poly(self): + for i in range(10): + assert_almost_equal(herme.herme2poly([0] * i + [1]), Helist[i]) + + def test_poly2herme(self): + for i in range(10): + assert_almost_equal(herme.poly2herme(Helist[i]), [0] * i + [1]) + + def test_weight(self): + x = np.linspace(-5, 5, 11) + tgt = np.exp(-.5 * x**2) + res = herme.hermeweight(x) + assert_almost_equal(res, tgt) diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_laguerre.py b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_laguerre.py new file mode 100644 index 0000000..6793b78 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_laguerre.py @@ -0,0 +1,540 @@ +"""Tests for laguerre module. + +""" +from functools import reduce + +import numpy as np +import numpy.polynomial.laguerre as lag +from numpy.polynomial.polynomial import polyval +from numpy.testing import ( + assert_, + assert_almost_equal, + assert_equal, + assert_raises, +) + +L0 = np.array([1]) / 1 +L1 = np.array([1, -1]) / 1 +L2 = np.array([2, -4, 1]) / 2 +L3 = np.array([6, -18, 9, -1]) / 6 +L4 = np.array([24, -96, 72, -16, 1]) / 24 +L5 = np.array([120, -600, 600, -200, 25, -1]) / 120 +L6 = np.array([720, -4320, 5400, -2400, 450, -36, 1]) / 720 + +Llist = [L0, L1, L2, L3, L4, L5, L6] + + +def trim(x): + return lag.lagtrim(x, tol=1e-6) + + +class TestConstants: + + def test_lagdomain(self): + assert_equal(lag.lagdomain, [0, 1]) + + def test_lagzero(self): + assert_equal(lag.lagzero, [0]) + + def test_lagone(self): + assert_equal(lag.lagone, [1]) + + def test_lagx(self): + assert_equal(lag.lagx, [1, -1]) + + +class TestArithmetic: + x = np.linspace(-3, 3, 100) + + def test_lagadd(self): + for i in range(5): + for j in range(5): + msg = f"At i={i}, j={j}" + tgt = np.zeros(max(i, j) + 1) + tgt[i] += 1 + tgt[j] += 1 + res = lag.lagadd([0] * i + [1], [0] * j + [1]) + assert_equal(trim(res), trim(tgt), err_msg=msg) + + def test_lagsub(self): + for i in range(5): + for j in range(5): + msg = f"At i={i}, j={j}" + tgt = np.zeros(max(i, j) + 1) + tgt[i] += 1 + tgt[j] -= 1 + res = lag.lagsub([0] * i + [1], [0] * j + [1]) + assert_equal(trim(res), trim(tgt), err_msg=msg) + + def test_lagmulx(self): + assert_equal(lag.lagmulx([0]), [0]) + assert_equal(lag.lagmulx([1]), [1, -1]) + for i in range(1, 5): + ser = [0] * i + [1] + tgt = [0] * (i - 1) + [-i, 2 * i + 1, -(i + 1)] + assert_almost_equal(lag.lagmulx(ser), tgt) + + def test_lagmul(self): + # check values of result + for i in range(5): + pol1 = [0] * i + [1] + val1 = lag.lagval(self.x, pol1) + for j in range(5): + msg = f"At i={i}, j={j}" + pol2 = [0] * j + [1] + val2 = lag.lagval(self.x, pol2) + pol3 = lag.lagmul(pol1, pol2) + val3 = lag.lagval(self.x, pol3) + assert_(len(pol3) == i + j + 1, msg) + assert_almost_equal(val3, val1 * val2, err_msg=msg) + + def test_lagdiv(self): + for i in range(5): + for j in range(5): + msg = f"At i={i}, j={j}" + ci = [0] * i + [1] + cj = [0] * j + [1] + tgt = lag.lagadd(ci, cj) + quo, rem = lag.lagdiv(tgt, ci) + res = lag.lagadd(lag.lagmul(quo, ci), rem) + assert_almost_equal(trim(res), trim(tgt), err_msg=msg) + + def test_lagpow(self): + for i in range(5): + for j in range(5): + msg = f"At i={i}, j={j}" + c = np.arange(i + 1) + tgt = reduce(lag.lagmul, [c] * j, np.array([1])) + res = lag.lagpow(c, j) + assert_equal(trim(res), trim(tgt), err_msg=msg) + + +class TestEvaluation: + # coefficients of 1 + 2*x + 3*x**2 + c1d = np.array([9., -14., 6.]) + c2d = np.einsum('i,j->ij', c1d, c1d) + c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d) + + # some random values in [-1, 1) + x = np.random.random((3, 5)) * 2 - 1 + y = polyval(x, [1., 2., 3.]) + + def test_lagval(self): + # check empty input + assert_equal(lag.lagval([], [1]).size, 0) + + # check normal input) + x = np.linspace(-1, 1) + y = [polyval(x, c) for c in Llist] + for i in range(7): + msg = f"At i={i}" + tgt = y[i] + res = lag.lagval(x, [0] * i + [1]) + assert_almost_equal(res, tgt, err_msg=msg) + + # check that shape is preserved + for i in range(3): + dims = [2] * i + x = np.zeros(dims) + assert_equal(lag.lagval(x, [1]).shape, dims) + assert_equal(lag.lagval(x, [1, 0]).shape, dims) + assert_equal(lag.lagval(x, [1, 0, 0]).shape, dims) + + def test_lagval2d(self): + x1, x2, x3 = self.x + y1, y2, y3 = self.y + + # test exceptions + assert_raises(ValueError, lag.lagval2d, x1, x2[:2], self.c2d) + + # test values + tgt = y1 * y2 + res = lag.lagval2d(x1, x2, self.c2d) + assert_almost_equal(res, tgt) + + # test shape + z = np.ones((2, 3)) + res = lag.lagval2d(z, z, self.c2d) + assert_(res.shape == (2, 3)) + + def test_lagval3d(self): + x1, x2, x3 = self.x + y1, y2, y3 = self.y + + # test exceptions + assert_raises(ValueError, lag.lagval3d, x1, x2, x3[:2], self.c3d) + + # test values + tgt = y1 * y2 * y3 + res = lag.lagval3d(x1, x2, x3, self.c3d) + assert_almost_equal(res, tgt) + + # test shape + z = np.ones((2, 3)) + res = lag.lagval3d(z, z, z, self.c3d) + assert_(res.shape == (2, 3)) + + def test_laggrid2d(self): + x1, x2, x3 = self.x + y1, y2, y3 = self.y + + # test values + tgt = np.einsum('i,j->ij', y1, y2) + res = lag.laggrid2d(x1, x2, self.c2d) + assert_almost_equal(res, tgt) + + # test shape + z = np.ones((2, 3)) + res = lag.laggrid2d(z, z, self.c2d) + assert_(res.shape == (2, 3) * 2) + + def test_laggrid3d(self): + x1, x2, x3 = self.x + y1, y2, y3 = self.y + + # test values + tgt = np.einsum('i,j,k->ijk', y1, y2, y3) + res = lag.laggrid3d(x1, x2, x3, self.c3d) + assert_almost_equal(res, tgt) + + # test shape + z = np.ones((2, 3)) + res = lag.laggrid3d(z, z, z, self.c3d) + assert_(res.shape == (2, 3) * 3) + + +class TestIntegral: + + def test_lagint(self): + # check exceptions + assert_raises(TypeError, lag.lagint, [0], .5) + assert_raises(ValueError, lag.lagint, [0], -1) + assert_raises(ValueError, lag.lagint, [0], 1, [0, 0]) + assert_raises(ValueError, lag.lagint, [0], lbnd=[0]) + assert_raises(ValueError, lag.lagint, [0], scl=[0]) + assert_raises(TypeError, lag.lagint, [0], axis=.5) + + # test integration of zero polynomial + for i in range(2, 5): + k = [0] * (i - 2) + [1] + res = lag.lagint([0], m=i, k=k) + assert_almost_equal(res, [1, -1]) + + # check single integration with integration constant + for i in range(5): + scl = i + 1 + pol = [0] * i + [1] + tgt = [i] + [0] * i + [1 / scl] + lagpol = lag.poly2lag(pol) + lagint = lag.lagint(lagpol, m=1, k=[i]) + res = lag.lag2poly(lagint) + assert_almost_equal(trim(res), trim(tgt)) + + # check single integration with integration constant and lbnd + for i in range(5): + scl = i + 1 + pol = [0] * i + [1] + lagpol = lag.poly2lag(pol) + lagint = lag.lagint(lagpol, m=1, k=[i], lbnd=-1) + assert_almost_equal(lag.lagval(-1, lagint), i) + + # check single integration with integration constant and scaling + for i in range(5): + scl = i + 1 + pol = [0] * i + [1] + tgt = [i] + [0] * i + [2 / scl] + lagpol = lag.poly2lag(pol) + lagint = lag.lagint(lagpol, m=1, k=[i], scl=2) + res = lag.lag2poly(lagint) + assert_almost_equal(trim(res), trim(tgt)) + + # check multiple integrations with default k + for i in range(5): + for j in range(2, 5): + pol = [0] * i + [1] + tgt = pol[:] + for k in range(j): + tgt = lag.lagint(tgt, m=1) + res = lag.lagint(pol, m=j) + assert_almost_equal(trim(res), trim(tgt)) + + # check multiple integrations with defined k + for i in range(5): + for j in range(2, 5): + pol = [0] * i + [1] + tgt = pol[:] + for k in range(j): + tgt = lag.lagint(tgt, m=1, k=[k]) + res = lag.lagint(pol, m=j, k=list(range(j))) + assert_almost_equal(trim(res), trim(tgt)) + + # check multiple integrations with lbnd + for i in range(5): + for j in range(2, 5): + pol = [0] * i + [1] + tgt = pol[:] + for k in range(j): + tgt = lag.lagint(tgt, m=1, k=[k], lbnd=-1) + res = lag.lagint(pol, m=j, k=list(range(j)), lbnd=-1) + assert_almost_equal(trim(res), trim(tgt)) + + # check multiple integrations with scaling + for i in range(5): + for j in range(2, 5): + pol = [0] * i + [1] + tgt = pol[:] + for k in range(j): + tgt = lag.lagint(tgt, m=1, k=[k], scl=2) + res = lag.lagint(pol, m=j, k=list(range(j)), scl=2) + assert_almost_equal(trim(res), trim(tgt)) + + def test_lagint_axis(self): + # check that axis keyword works + c2d = np.random.random((3, 4)) + + tgt = np.vstack([lag.lagint(c) for c in c2d.T]).T + res = lag.lagint(c2d, axis=0) + assert_almost_equal(res, tgt) + + tgt = np.vstack([lag.lagint(c) for c in c2d]) + res = lag.lagint(c2d, axis=1) + assert_almost_equal(res, tgt) + + tgt = np.vstack([lag.lagint(c, k=3) for c in c2d]) + res = lag.lagint(c2d, k=3, axis=1) + assert_almost_equal(res, tgt) + + +class TestDerivative: + + def test_lagder(self): + # check exceptions + assert_raises(TypeError, lag.lagder, [0], .5) + assert_raises(ValueError, lag.lagder, [0], -1) + + # check that zeroth derivative does nothing + for i in range(5): + tgt = [0] * i + [1] + res = lag.lagder(tgt, m=0) + assert_equal(trim(res), trim(tgt)) + + # check that derivation is the inverse of integration + for i in range(5): + for j in range(2, 5): + tgt = [0] * i + [1] + res = lag.lagder(lag.lagint(tgt, m=j), m=j) + assert_almost_equal(trim(res), trim(tgt)) + + # check derivation with scaling + for i in range(5): + for j in range(2, 5): + tgt = [0] * i + [1] + res = lag.lagder(lag.lagint(tgt, m=j, scl=2), m=j, scl=.5) + assert_almost_equal(trim(res), trim(tgt)) + + def test_lagder_axis(self): + # check that axis keyword works + c2d = np.random.random((3, 4)) + + tgt = np.vstack([lag.lagder(c) for c in c2d.T]).T + res = lag.lagder(c2d, axis=0) + assert_almost_equal(res, tgt) + + tgt = np.vstack([lag.lagder(c) for c in c2d]) + res = lag.lagder(c2d, axis=1) + assert_almost_equal(res, tgt) + + +class TestVander: + # some random values in [-1, 1) + x = np.random.random((3, 5)) * 2 - 1 + + def test_lagvander(self): + # check for 1d x + x = np.arange(3) + v = lag.lagvander(x, 3) + assert_(v.shape == (3, 4)) + for i in range(4): + coef = [0] * i + [1] + assert_almost_equal(v[..., i], lag.lagval(x, coef)) + + # check for 2d x + x = np.array([[1, 2], [3, 4], [5, 6]]) + v = lag.lagvander(x, 3) + assert_(v.shape == (3, 2, 4)) + for i in range(4): + coef = [0] * i + [1] + assert_almost_equal(v[..., i], lag.lagval(x, coef)) + + def test_lagvander2d(self): + # also tests lagval2d for non-square coefficient array + x1, x2, x3 = self.x + c = np.random.random((2, 3)) + van = lag.lagvander2d(x1, x2, [1, 2]) + tgt = lag.lagval2d(x1, x2, c) + res = np.dot(van, c.flat) + assert_almost_equal(res, tgt) + + # check shape + van = lag.lagvander2d([x1], [x2], [1, 2]) + assert_(van.shape == (1, 5, 6)) + + def test_lagvander3d(self): + # also tests lagval3d for non-square coefficient array + x1, x2, x3 = self.x + c = np.random.random((2, 3, 4)) + van = lag.lagvander3d(x1, x2, x3, [1, 2, 3]) + tgt = lag.lagval3d(x1, x2, x3, c) + res = np.dot(van, c.flat) + assert_almost_equal(res, tgt) + + # check shape + van = lag.lagvander3d([x1], [x2], [x3], [1, 2, 3]) + assert_(van.shape == (1, 5, 24)) + + +class TestFitting: + + def test_lagfit(self): + def f(x): + return x * (x - 1) * (x - 2) + + # Test exceptions + assert_raises(ValueError, lag.lagfit, [1], [1], -1) + assert_raises(TypeError, lag.lagfit, [[1]], [1], 0) + assert_raises(TypeError, lag.lagfit, [], [1], 0) + assert_raises(TypeError, lag.lagfit, [1], [[[1]]], 0) + assert_raises(TypeError, lag.lagfit, [1, 2], [1], 0) + assert_raises(TypeError, lag.lagfit, [1], [1, 2], 0) + assert_raises(TypeError, lag.lagfit, [1], [1], 0, w=[[1]]) + assert_raises(TypeError, lag.lagfit, [1], [1], 0, w=[1, 1]) + assert_raises(ValueError, lag.lagfit, [1], [1], [-1,]) + assert_raises(ValueError, lag.lagfit, [1], [1], [2, -1, 6]) + assert_raises(TypeError, lag.lagfit, [1], [1], []) + + # Test fit + x = np.linspace(0, 2) + y = f(x) + # + coef3 = lag.lagfit(x, y, 3) + assert_equal(len(coef3), 4) + assert_almost_equal(lag.lagval(x, coef3), y) + coef3 = lag.lagfit(x, y, [0, 1, 2, 3]) + assert_equal(len(coef3), 4) + assert_almost_equal(lag.lagval(x, coef3), y) + # + coef4 = lag.lagfit(x, y, 4) + assert_equal(len(coef4), 5) + assert_almost_equal(lag.lagval(x, coef4), y) + coef4 = lag.lagfit(x, y, [0, 1, 2, 3, 4]) + assert_equal(len(coef4), 5) + assert_almost_equal(lag.lagval(x, coef4), y) + # + coef2d = lag.lagfit(x, np.array([y, y]).T, 3) + assert_almost_equal(coef2d, np.array([coef3, coef3]).T) + coef2d = lag.lagfit(x, np.array([y, y]).T, [0, 1, 2, 3]) + assert_almost_equal(coef2d, np.array([coef3, coef3]).T) + # test weighting + w = np.zeros_like(x) + yw = y.copy() + w[1::2] = 1 + y[0::2] = 0 + wcoef3 = lag.lagfit(x, yw, 3, w=w) + assert_almost_equal(wcoef3, coef3) + wcoef3 = lag.lagfit(x, yw, [0, 1, 2, 3], w=w) + assert_almost_equal(wcoef3, coef3) + # + wcoef2d = lag.lagfit(x, np.array([yw, yw]).T, 3, w=w) + assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T) + wcoef2d = lag.lagfit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w) + assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T) + # test scaling with complex values x points whose square + # is zero when summed. + x = [1, 1j, -1, -1j] + assert_almost_equal(lag.lagfit(x, x, 1), [1, -1]) + assert_almost_equal(lag.lagfit(x, x, [0, 1]), [1, -1]) + + +class TestCompanion: + + def test_raises(self): + assert_raises(ValueError, lag.lagcompanion, []) + assert_raises(ValueError, lag.lagcompanion, [1]) + + def test_dimensions(self): + for i in range(1, 5): + coef = [0] * i + [1] + assert_(lag.lagcompanion(coef).shape == (i, i)) + + def test_linear_root(self): + assert_(lag.lagcompanion([1, 2])[0, 0] == 1.5) + + +class TestGauss: + + def test_100(self): + x, w = lag.laggauss(100) + + # test orthogonality. Note that the results need to be normalized, + # otherwise the huge values that can arise from fast growing + # functions like Laguerre can be very confusing. + v = lag.lagvander(x, 99) + vv = np.dot(v.T * w, v) + vd = 1 / np.sqrt(vv.diagonal()) + vv = vd[:, None] * vv * vd + assert_almost_equal(vv, np.eye(100)) + + # check that the integral of 1 is correct + tgt = 1.0 + assert_almost_equal(w.sum(), tgt) + + +class TestMisc: + + def test_lagfromroots(self): + res = lag.lagfromroots([]) + assert_almost_equal(trim(res), [1]) + for i in range(1, 5): + roots = np.cos(np.linspace(-np.pi, 0, 2 * i + 1)[1::2]) + pol = lag.lagfromroots(roots) + res = lag.lagval(roots, pol) + tgt = 0 + assert_(len(pol) == i + 1) + assert_almost_equal(lag.lag2poly(pol)[-1], 1) + assert_almost_equal(res, tgt) + + def test_lagroots(self): + assert_almost_equal(lag.lagroots([1]), []) + assert_almost_equal(lag.lagroots([0, 1]), [1]) + for i in range(2, 5): + tgt = np.linspace(0, 3, i) + res = lag.lagroots(lag.lagfromroots(tgt)) + assert_almost_equal(trim(res), trim(tgt)) + + def test_lagtrim(self): + coef = [2, -1, 1, 0] + + # Test exceptions + assert_raises(ValueError, lag.lagtrim, coef, -1) + + # Test results + assert_equal(lag.lagtrim(coef), coef[:-1]) + assert_equal(lag.lagtrim(coef, 1), coef[:-3]) + assert_equal(lag.lagtrim(coef, 2), [0]) + + def test_lagline(self): + assert_equal(lag.lagline(3, 4), [7, -4]) + + def test_lag2poly(self): + for i in range(7): + assert_almost_equal(lag.lag2poly([0] * i + [1]), Llist[i]) + + def test_poly2lag(self): + for i in range(7): + assert_almost_equal(lag.poly2lag(Llist[i]), [0] * i + [1]) + + def test_weight(self): + x = np.linspace(0, 10, 11) + tgt = np.exp(-x) + res = lag.lagweight(x) + assert_almost_equal(res, tgt) diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_legendre.py b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_legendre.py new file mode 100644 index 0000000..d0ed706 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_legendre.py @@ -0,0 +1,571 @@ +"""Tests for legendre module. + +""" +from functools import reduce + +import numpy as np +import numpy.polynomial.legendre as leg +from numpy.polynomial.polynomial import polyval +from numpy.testing import ( + assert_, + assert_almost_equal, + assert_equal, + assert_raises, +) + +L0 = np.array([1]) +L1 = np.array([0, 1]) +L2 = np.array([-1, 0, 3]) / 2 +L3 = np.array([0, -3, 0, 5]) / 2 +L4 = np.array([3, 0, -30, 0, 35]) / 8 +L5 = np.array([0, 15, 0, -70, 0, 63]) / 8 +L6 = np.array([-5, 0, 105, 0, -315, 0, 231]) / 16 +L7 = np.array([0, -35, 0, 315, 0, -693, 0, 429]) / 16 +L8 = np.array([35, 0, -1260, 0, 6930, 0, -12012, 0, 6435]) / 128 +L9 = np.array([0, 315, 0, -4620, 0, 18018, 0, -25740, 0, 12155]) / 128 + +Llist = [L0, L1, L2, L3, L4, L5, L6, L7, L8, L9] + + +def trim(x): + return leg.legtrim(x, tol=1e-6) + + +class TestConstants: + + def test_legdomain(self): + assert_equal(leg.legdomain, [-1, 1]) + + def test_legzero(self): + assert_equal(leg.legzero, [0]) + + def test_legone(self): + assert_equal(leg.legone, [1]) + + def test_legx(self): + assert_equal(leg.legx, [0, 1]) + + +class TestArithmetic: + x = np.linspace(-1, 1, 100) + + def test_legadd(self): + for i in range(5): + for j in range(5): + msg = f"At i={i}, j={j}" + tgt = np.zeros(max(i, j) + 1) + tgt[i] += 1 + tgt[j] += 1 + res = leg.legadd([0] * i + [1], [0] * j + [1]) + assert_equal(trim(res), trim(tgt), err_msg=msg) + + def test_legsub(self): + for i in range(5): + for j in range(5): + msg = f"At i={i}, j={j}" + tgt = np.zeros(max(i, j) + 1) + tgt[i] += 1 + tgt[j] -= 1 + res = leg.legsub([0] * i + [1], [0] * j + [1]) + assert_equal(trim(res), trim(tgt), err_msg=msg) + + def test_legmulx(self): + assert_equal(leg.legmulx([0]), [0]) + assert_equal(leg.legmulx([1]), [0, 1]) + for i in range(1, 5): + tmp = 2 * i + 1 + ser = [0] * i + [1] + tgt = [0] * (i - 1) + [i / tmp, 0, (i + 1) / tmp] + assert_equal(leg.legmulx(ser), tgt) + + def test_legmul(self): + # check values of result + for i in range(5): + pol1 = [0] * i + [1] + val1 = leg.legval(self.x, pol1) + for j in range(5): + msg = f"At i={i}, j={j}" + pol2 = [0] * j + [1] + val2 = leg.legval(self.x, pol2) + pol3 = leg.legmul(pol1, pol2) + val3 = leg.legval(self.x, pol3) + assert_(len(pol3) == i + j + 1, msg) + assert_almost_equal(val3, val1 * val2, err_msg=msg) + + def test_legdiv(self): + for i in range(5): + for j in range(5): + msg = f"At i={i}, j={j}" + ci = [0] * i + [1] + cj = [0] * j + [1] + tgt = leg.legadd(ci, cj) + quo, rem = leg.legdiv(tgt, ci) + res = leg.legadd(leg.legmul(quo, ci), rem) + assert_equal(trim(res), trim(tgt), err_msg=msg) + + def test_legpow(self): + for i in range(5): + for j in range(5): + msg = f"At i={i}, j={j}" + c = np.arange(i + 1) + tgt = reduce(leg.legmul, [c] * j, np.array([1])) + res = leg.legpow(c, j) + assert_equal(trim(res), trim(tgt), err_msg=msg) + + +class TestEvaluation: + # coefficients of 1 + 2*x + 3*x**2 + c1d = np.array([2., 2., 2.]) + c2d = np.einsum('i,j->ij', c1d, c1d) + c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d) + + # some random values in [-1, 1) + x = np.random.random((3, 5)) * 2 - 1 + y = polyval(x, [1., 2., 3.]) + + def test_legval(self): + # check empty input + assert_equal(leg.legval([], [1]).size, 0) + + # check normal input) + x = np.linspace(-1, 1) + y = [polyval(x, c) for c in Llist] + for i in range(10): + msg = f"At i={i}" + tgt = y[i] + res = leg.legval(x, [0] * i + [1]) + assert_almost_equal(res, tgt, err_msg=msg) + + # check that shape is preserved + for i in range(3): + dims = [2] * i + x = np.zeros(dims) + assert_equal(leg.legval(x, [1]).shape, dims) + assert_equal(leg.legval(x, [1, 0]).shape, dims) + assert_equal(leg.legval(x, [1, 0, 0]).shape, dims) + + def test_legval2d(self): + x1, x2, x3 = self.x + y1, y2, y3 = self.y + + # test exceptions + assert_raises(ValueError, leg.legval2d, x1, x2[:2], self.c2d) + + # test values + tgt = y1 * y2 + res = leg.legval2d(x1, x2, self.c2d) + assert_almost_equal(res, tgt) + + # test shape + z = np.ones((2, 3)) + res = leg.legval2d(z, z, self.c2d) + assert_(res.shape == (2, 3)) + + def test_legval3d(self): + x1, x2, x3 = self.x + y1, y2, y3 = self.y + + # test exceptions + assert_raises(ValueError, leg.legval3d, x1, x2, x3[:2], self.c3d) + + # test values + tgt = y1 * y2 * y3 + res = leg.legval3d(x1, x2, x3, self.c3d) + assert_almost_equal(res, tgt) + + # test shape + z = np.ones((2, 3)) + res = leg.legval3d(z, z, z, self.c3d) + assert_(res.shape == (2, 3)) + + def test_leggrid2d(self): + x1, x2, x3 = self.x + y1, y2, y3 = self.y + + # test values + tgt = np.einsum('i,j->ij', y1, y2) + res = leg.leggrid2d(x1, x2, self.c2d) + assert_almost_equal(res, tgt) + + # test shape + z = np.ones((2, 3)) + res = leg.leggrid2d(z, z, self.c2d) + assert_(res.shape == (2, 3) * 2) + + def test_leggrid3d(self): + x1, x2, x3 = self.x + y1, y2, y3 = self.y + + # test values + tgt = np.einsum('i,j,k->ijk', y1, y2, y3) + res = leg.leggrid3d(x1, x2, x3, self.c3d) + assert_almost_equal(res, tgt) + + # test shape + z = np.ones((2, 3)) + res = leg.leggrid3d(z, z, z, self.c3d) + assert_(res.shape == (2, 3) * 3) + + +class TestIntegral: + + def test_legint(self): + # check exceptions + assert_raises(TypeError, leg.legint, [0], .5) + assert_raises(ValueError, leg.legint, [0], -1) + assert_raises(ValueError, leg.legint, [0], 1, [0, 0]) + assert_raises(ValueError, leg.legint, [0], lbnd=[0]) + assert_raises(ValueError, leg.legint, [0], scl=[0]) + assert_raises(TypeError, leg.legint, [0], axis=.5) + + # test integration of zero polynomial + for i in range(2, 5): + k = [0] * (i - 2) + [1] + res = leg.legint([0], m=i, k=k) + assert_almost_equal(res, [0, 1]) + + # check single integration with integration constant + for i in range(5): + scl = i + 1 + pol = [0] * i + [1] + tgt = [i] + [0] * i + [1 / scl] + legpol = leg.poly2leg(pol) + legint = leg.legint(legpol, m=1, k=[i]) + res = leg.leg2poly(legint) + assert_almost_equal(trim(res), trim(tgt)) + + # check single integration with integration constant and lbnd + for i in range(5): + scl = i + 1 + pol = [0] * i + [1] + legpol = leg.poly2leg(pol) + legint = leg.legint(legpol, m=1, k=[i], lbnd=-1) + assert_almost_equal(leg.legval(-1, legint), i) + + # check single integration with integration constant and scaling + for i in range(5): + scl = i + 1 + pol = [0] * i + [1] + tgt = [i] + [0] * i + [2 / scl] + legpol = leg.poly2leg(pol) + legint = leg.legint(legpol, m=1, k=[i], scl=2) + res = leg.leg2poly(legint) + assert_almost_equal(trim(res), trim(tgt)) + + # check multiple integrations with default k + for i in range(5): + for j in range(2, 5): + pol = [0] * i + [1] + tgt = pol[:] + for k in range(j): + tgt = leg.legint(tgt, m=1) + res = leg.legint(pol, m=j) + assert_almost_equal(trim(res), trim(tgt)) + + # check multiple integrations with defined k + for i in range(5): + for j in range(2, 5): + pol = [0] * i + [1] + tgt = pol[:] + for k in range(j): + tgt = leg.legint(tgt, m=1, k=[k]) + res = leg.legint(pol, m=j, k=list(range(j))) + assert_almost_equal(trim(res), trim(tgt)) + + # check multiple integrations with lbnd + for i in range(5): + for j in range(2, 5): + pol = [0] * i + [1] + tgt = pol[:] + for k in range(j): + tgt = leg.legint(tgt, m=1, k=[k], lbnd=-1) + res = leg.legint(pol, m=j, k=list(range(j)), lbnd=-1) + assert_almost_equal(trim(res), trim(tgt)) + + # check multiple integrations with scaling + for i in range(5): + for j in range(2, 5): + pol = [0] * i + [1] + tgt = pol[:] + for k in range(j): + tgt = leg.legint(tgt, m=1, k=[k], scl=2) + res = leg.legint(pol, m=j, k=list(range(j)), scl=2) + assert_almost_equal(trim(res), trim(tgt)) + + def test_legint_axis(self): + # check that axis keyword works + c2d = np.random.random((3, 4)) + + tgt = np.vstack([leg.legint(c) for c in c2d.T]).T + res = leg.legint(c2d, axis=0) + assert_almost_equal(res, tgt) + + tgt = np.vstack([leg.legint(c) for c in c2d]) + res = leg.legint(c2d, axis=1) + assert_almost_equal(res, tgt) + + tgt = np.vstack([leg.legint(c, k=3) for c in c2d]) + res = leg.legint(c2d, k=3, axis=1) + assert_almost_equal(res, tgt) + + def test_legint_zerointord(self): + assert_equal(leg.legint((1, 2, 3), 0), (1, 2, 3)) + + +class TestDerivative: + + def test_legder(self): + # check exceptions + assert_raises(TypeError, leg.legder, [0], .5) + assert_raises(ValueError, leg.legder, [0], -1) + + # check that zeroth derivative does nothing + for i in range(5): + tgt = [0] * i + [1] + res = leg.legder(tgt, m=0) + assert_equal(trim(res), trim(tgt)) + + # check that derivation is the inverse of integration + for i in range(5): + for j in range(2, 5): + tgt = [0] * i + [1] + res = leg.legder(leg.legint(tgt, m=j), m=j) + assert_almost_equal(trim(res), trim(tgt)) + + # check derivation with scaling + for i in range(5): + for j in range(2, 5): + tgt = [0] * i + [1] + res = leg.legder(leg.legint(tgt, m=j, scl=2), m=j, scl=.5) + assert_almost_equal(trim(res), trim(tgt)) + + def test_legder_axis(self): + # check that axis keyword works + c2d = np.random.random((3, 4)) + + tgt = np.vstack([leg.legder(c) for c in c2d.T]).T + res = leg.legder(c2d, axis=0) + assert_almost_equal(res, tgt) + + tgt = np.vstack([leg.legder(c) for c in c2d]) + res = leg.legder(c2d, axis=1) + assert_almost_equal(res, tgt) + + def test_legder_orderhigherthancoeff(self): + c = (1, 2, 3, 4) + assert_equal(leg.legder(c, 4), [0]) + +class TestVander: + # some random values in [-1, 1) + x = np.random.random((3, 5)) * 2 - 1 + + def test_legvander(self): + # check for 1d x + x = np.arange(3) + v = leg.legvander(x, 3) + assert_(v.shape == (3, 4)) + for i in range(4): + coef = [0] * i + [1] + assert_almost_equal(v[..., i], leg.legval(x, coef)) + + # check for 2d x + x = np.array([[1, 2], [3, 4], [5, 6]]) + v = leg.legvander(x, 3) + assert_(v.shape == (3, 2, 4)) + for i in range(4): + coef = [0] * i + [1] + assert_almost_equal(v[..., i], leg.legval(x, coef)) + + def test_legvander2d(self): + # also tests polyval2d for non-square coefficient array + x1, x2, x3 = self.x + c = np.random.random((2, 3)) + van = leg.legvander2d(x1, x2, [1, 2]) + tgt = leg.legval2d(x1, x2, c) + res = np.dot(van, c.flat) + assert_almost_equal(res, tgt) + + # check shape + van = leg.legvander2d([x1], [x2], [1, 2]) + assert_(van.shape == (1, 5, 6)) + + def test_legvander3d(self): + # also tests polyval3d for non-square coefficient array + x1, x2, x3 = self.x + c = np.random.random((2, 3, 4)) + van = leg.legvander3d(x1, x2, x3, [1, 2, 3]) + tgt = leg.legval3d(x1, x2, x3, c) + res = np.dot(van, c.flat) + assert_almost_equal(res, tgt) + + # check shape + van = leg.legvander3d([x1], [x2], [x3], [1, 2, 3]) + assert_(van.shape == (1, 5, 24)) + + def test_legvander_negdeg(self): + assert_raises(ValueError, leg.legvander, (1, 2, 3), -1) + + +class TestFitting: + + def test_legfit(self): + def f(x): + return x * (x - 1) * (x - 2) + + def f2(x): + return x**4 + x**2 + 1 + + # Test exceptions + assert_raises(ValueError, leg.legfit, [1], [1], -1) + assert_raises(TypeError, leg.legfit, [[1]], [1], 0) + assert_raises(TypeError, leg.legfit, [], [1], 0) + assert_raises(TypeError, leg.legfit, [1], [[[1]]], 0) + assert_raises(TypeError, leg.legfit, [1, 2], [1], 0) + assert_raises(TypeError, leg.legfit, [1], [1, 2], 0) + assert_raises(TypeError, leg.legfit, [1], [1], 0, w=[[1]]) + assert_raises(TypeError, leg.legfit, [1], [1], 0, w=[1, 1]) + assert_raises(ValueError, leg.legfit, [1], [1], [-1,]) + assert_raises(ValueError, leg.legfit, [1], [1], [2, -1, 6]) + assert_raises(TypeError, leg.legfit, [1], [1], []) + + # Test fit + x = np.linspace(0, 2) + y = f(x) + # + coef3 = leg.legfit(x, y, 3) + assert_equal(len(coef3), 4) + assert_almost_equal(leg.legval(x, coef3), y) + coef3 = leg.legfit(x, y, [0, 1, 2, 3]) + assert_equal(len(coef3), 4) + assert_almost_equal(leg.legval(x, coef3), y) + # + coef4 = leg.legfit(x, y, 4) + assert_equal(len(coef4), 5) + assert_almost_equal(leg.legval(x, coef4), y) + coef4 = leg.legfit(x, y, [0, 1, 2, 3, 4]) + assert_equal(len(coef4), 5) + assert_almost_equal(leg.legval(x, coef4), y) + # check things still work if deg is not in strict increasing + coef4 = leg.legfit(x, y, [2, 3, 4, 1, 0]) + assert_equal(len(coef4), 5) + assert_almost_equal(leg.legval(x, coef4), y) + # + coef2d = leg.legfit(x, np.array([y, y]).T, 3) + assert_almost_equal(coef2d, np.array([coef3, coef3]).T) + coef2d = leg.legfit(x, np.array([y, y]).T, [0, 1, 2, 3]) + assert_almost_equal(coef2d, np.array([coef3, coef3]).T) + # test weighting + w = np.zeros_like(x) + yw = y.copy() + w[1::2] = 1 + y[0::2] = 0 + wcoef3 = leg.legfit(x, yw, 3, w=w) + assert_almost_equal(wcoef3, coef3) + wcoef3 = leg.legfit(x, yw, [0, 1, 2, 3], w=w) + assert_almost_equal(wcoef3, coef3) + # + wcoef2d = leg.legfit(x, np.array([yw, yw]).T, 3, w=w) + assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T) + wcoef2d = leg.legfit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w) + assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T) + # test scaling with complex values x points whose square + # is zero when summed. + x = [1, 1j, -1, -1j] + assert_almost_equal(leg.legfit(x, x, 1), [0, 1]) + assert_almost_equal(leg.legfit(x, x, [0, 1]), [0, 1]) + # test fitting only even Legendre polynomials + x = np.linspace(-1, 1) + y = f2(x) + coef1 = leg.legfit(x, y, 4) + assert_almost_equal(leg.legval(x, coef1), y) + coef2 = leg.legfit(x, y, [0, 2, 4]) + assert_almost_equal(leg.legval(x, coef2), y) + assert_almost_equal(coef1, coef2) + + +class TestCompanion: + + def test_raises(self): + assert_raises(ValueError, leg.legcompanion, []) + assert_raises(ValueError, leg.legcompanion, [1]) + + def test_dimensions(self): + for i in range(1, 5): + coef = [0] * i + [1] + assert_(leg.legcompanion(coef).shape == (i, i)) + + def test_linear_root(self): + assert_(leg.legcompanion([1, 2])[0, 0] == -.5) + + +class TestGauss: + + def test_100(self): + x, w = leg.leggauss(100) + + # test orthogonality. Note that the results need to be normalized, + # otherwise the huge values that can arise from fast growing + # functions like Laguerre can be very confusing. + v = leg.legvander(x, 99) + vv = np.dot(v.T * w, v) + vd = 1 / np.sqrt(vv.diagonal()) + vv = vd[:, None] * vv * vd + assert_almost_equal(vv, np.eye(100)) + + # check that the integral of 1 is correct + tgt = 2.0 + assert_almost_equal(w.sum(), tgt) + + +class TestMisc: + + def test_legfromroots(self): + res = leg.legfromroots([]) + assert_almost_equal(trim(res), [1]) + for i in range(1, 5): + roots = np.cos(np.linspace(-np.pi, 0, 2 * i + 1)[1::2]) + pol = leg.legfromroots(roots) + res = leg.legval(roots, pol) + tgt = 0 + assert_(len(pol) == i + 1) + assert_almost_equal(leg.leg2poly(pol)[-1], 1) + assert_almost_equal(res, tgt) + + def test_legroots(self): + assert_almost_equal(leg.legroots([1]), []) + assert_almost_equal(leg.legroots([1, 2]), [-.5]) + for i in range(2, 5): + tgt = np.linspace(-1, 1, i) + res = leg.legroots(leg.legfromroots(tgt)) + assert_almost_equal(trim(res), trim(tgt)) + + def test_legtrim(self): + coef = [2, -1, 1, 0] + + # Test exceptions + assert_raises(ValueError, leg.legtrim, coef, -1) + + # Test results + assert_equal(leg.legtrim(coef), coef[:-1]) + assert_equal(leg.legtrim(coef, 1), coef[:-3]) + assert_equal(leg.legtrim(coef, 2), [0]) + + def test_legline(self): + assert_equal(leg.legline(3, 4), [3, 4]) + + def test_legline_zeroscl(self): + assert_equal(leg.legline(3, 0), [3]) + + def test_leg2poly(self): + for i in range(10): + assert_almost_equal(leg.leg2poly([0] * i + [1]), Llist[i]) + + def test_poly2leg(self): + for i in range(10): + assert_almost_equal(leg.poly2leg(Llist[i]), [0] * i + [1]) + + def test_weight(self): + x = np.linspace(-1, 1, 11) + tgt = 1. + res = leg.legweight(x) + assert_almost_equal(res, tgt) diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_polynomial.py b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_polynomial.py new file mode 100644 index 0000000..27513fd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_polynomial.py @@ -0,0 +1,669 @@ +"""Tests for polynomial module. + +""" +import pickle +from copy import deepcopy +from fractions import Fraction +from functools import reduce + +import numpy as np +import numpy.polynomial.polynomial as poly +import numpy.polynomial.polyutils as pu +from numpy.testing import ( + assert_, + assert_almost_equal, + assert_array_equal, + assert_equal, + assert_raises, + assert_raises_regex, + assert_warns, +) + + +def trim(x): + return poly.polytrim(x, tol=1e-6) + + +T0 = [1] +T1 = [0, 1] +T2 = [-1, 0, 2] +T3 = [0, -3, 0, 4] +T4 = [1, 0, -8, 0, 8] +T5 = [0, 5, 0, -20, 0, 16] +T6 = [-1, 0, 18, 0, -48, 0, 32] +T7 = [0, -7, 0, 56, 0, -112, 0, 64] +T8 = [1, 0, -32, 0, 160, 0, -256, 0, 128] +T9 = [0, 9, 0, -120, 0, 432, 0, -576, 0, 256] + +Tlist = [T0, T1, T2, T3, T4, T5, T6, T7, T8, T9] + + +class TestConstants: + + def test_polydomain(self): + assert_equal(poly.polydomain, [-1, 1]) + + def test_polyzero(self): + assert_equal(poly.polyzero, [0]) + + def test_polyone(self): + assert_equal(poly.polyone, [1]) + + def test_polyx(self): + assert_equal(poly.polyx, [0, 1]) + + def test_copy(self): + x = poly.Polynomial([1, 2, 3]) + y = deepcopy(x) + assert_equal(x, y) + + def test_pickle(self): + x = poly.Polynomial([1, 2, 3]) + y = pickle.loads(pickle.dumps(x)) + assert_equal(x, y) + +class TestArithmetic: + + def test_polyadd(self): + for i in range(5): + for j in range(5): + msg = f"At i={i}, j={j}" + tgt = np.zeros(max(i, j) + 1) + tgt[i] += 1 + tgt[j] += 1 + res = poly.polyadd([0] * i + [1], [0] * j + [1]) + assert_equal(trim(res), trim(tgt), err_msg=msg) + + def test_polysub(self): + for i in range(5): + for j in range(5): + msg = f"At i={i}, j={j}" + tgt = np.zeros(max(i, j) + 1) + tgt[i] += 1 + tgt[j] -= 1 + res = poly.polysub([0] * i + [1], [0] * j + [1]) + assert_equal(trim(res), trim(tgt), err_msg=msg) + + def test_polymulx(self): + assert_equal(poly.polymulx([0]), [0]) + assert_equal(poly.polymulx([1]), [0, 1]) + for i in range(1, 5): + ser = [0] * i + [1] + tgt = [0] * (i + 1) + [1] + assert_equal(poly.polymulx(ser), tgt) + + def test_polymul(self): + for i in range(5): + for j in range(5): + msg = f"At i={i}, j={j}" + tgt = np.zeros(i + j + 1) + tgt[i + j] += 1 + res = poly.polymul([0] * i + [1], [0] * j + [1]) + assert_equal(trim(res), trim(tgt), err_msg=msg) + + def test_polydiv(self): + # check zero division + assert_raises(ZeroDivisionError, poly.polydiv, [1], [0]) + + # check scalar division + quo, rem = poly.polydiv([2], [2]) + assert_equal((quo, rem), (1, 0)) + quo, rem = poly.polydiv([2, 2], [2]) + assert_equal((quo, rem), ((1, 1), 0)) + + # check rest. + for i in range(5): + for j in range(5): + msg = f"At i={i}, j={j}" + ci = [0] * i + [1, 2] + cj = [0] * j + [1, 2] + tgt = poly.polyadd(ci, cj) + quo, rem = poly.polydiv(tgt, ci) + res = poly.polyadd(poly.polymul(quo, ci), rem) + assert_equal(res, tgt, err_msg=msg) + + def test_polypow(self): + for i in range(5): + for j in range(5): + msg = f"At i={i}, j={j}" + c = np.arange(i + 1) + tgt = reduce(poly.polymul, [c] * j, np.array([1])) + res = poly.polypow(c, j) + assert_equal(trim(res), trim(tgt), err_msg=msg) + +class TestFraction: + + def test_Fraction(self): + # assert we can use Polynomials with coefficients of object dtype + f = Fraction(2, 3) + one = Fraction(1, 1) + zero = Fraction(0, 1) + p = poly.Polynomial([f, f], domain=[zero, one], window=[zero, one]) + + x = 2 * p + p ** 2 + assert_equal(x.coef, np.array([Fraction(16, 9), Fraction(20, 9), + Fraction(4, 9)], dtype=object)) + assert_equal(p.domain, [zero, one]) + assert_equal(p.coef.dtype, np.dtypes.ObjectDType()) + assert_(isinstance(p(f), Fraction)) + assert_equal(p(f), Fraction(10, 9)) + p_deriv = poly.Polynomial([Fraction(2, 3)], domain=[zero, one], + window=[zero, one]) + assert_equal(p.deriv(), p_deriv) + +class TestEvaluation: + # coefficients of 1 + 2*x + 3*x**2 + c1d = np.array([1., 2., 3.]) + c2d = np.einsum('i,j->ij', c1d, c1d) + c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d) + + # some random values in [-1, 1) + x = np.random.random((3, 5)) * 2 - 1 + y = poly.polyval(x, [1., 2., 3.]) + + def test_polyval(self): + # check empty input + assert_equal(poly.polyval([], [1]).size, 0) + + # check normal input) + x = np.linspace(-1, 1) + y = [x**i for i in range(5)] + for i in range(5): + tgt = y[i] + res = poly.polyval(x, [0] * i + [1]) + assert_almost_equal(res, tgt) + tgt = x * (x**2 - 1) + res = poly.polyval(x, [0, -1, 0, 1]) + assert_almost_equal(res, tgt) + + # check that shape is preserved + for i in range(3): + dims = [2] * i + x = np.zeros(dims) + assert_equal(poly.polyval(x, [1]).shape, dims) + assert_equal(poly.polyval(x, [1, 0]).shape, dims) + assert_equal(poly.polyval(x, [1, 0, 0]).shape, dims) + + # check masked arrays are processed correctly + mask = [False, True, False] + mx = np.ma.array([1, 2, 3], mask=mask) + res = np.polyval([7, 5, 3], mx) + assert_array_equal(res.mask, mask) + + # check subtypes of ndarray are preserved + class C(np.ndarray): + pass + + cx = np.array([1, 2, 3]).view(C) + assert_equal(type(np.polyval([2, 3, 4], cx)), C) + + def test_polyvalfromroots(self): + # check exception for broadcasting x values over root array with + # too few dimensions + assert_raises(ValueError, poly.polyvalfromroots, + [1], [1], tensor=False) + + # check empty input + assert_equal(poly.polyvalfromroots([], [1]).size, 0) + assert_(poly.polyvalfromroots([], [1]).shape == (0,)) + + # check empty input + multidimensional roots + assert_equal(poly.polyvalfromroots([], [[1] * 5]).size, 0) + assert_(poly.polyvalfromroots([], [[1] * 5]).shape == (5, 0)) + + # check scalar input + assert_equal(poly.polyvalfromroots(1, 1), 0) + assert_(poly.polyvalfromroots(1, np.ones((3, 3))).shape == (3,)) + + # check normal input) + x = np.linspace(-1, 1) + y = [x**i for i in range(5)] + for i in range(1, 5): + tgt = y[i] + res = poly.polyvalfromroots(x, [0] * i) + assert_almost_equal(res, tgt) + tgt = x * (x - 1) * (x + 1) + res = poly.polyvalfromroots(x, [-1, 0, 1]) + assert_almost_equal(res, tgt) + + # check that shape is preserved + for i in range(3): + dims = [2] * i + x = np.zeros(dims) + assert_equal(poly.polyvalfromroots(x, [1]).shape, dims) + assert_equal(poly.polyvalfromroots(x, [1, 0]).shape, dims) + assert_equal(poly.polyvalfromroots(x, [1, 0, 0]).shape, dims) + + # check compatibility with factorization + ptest = [15, 2, -16, -2, 1] + r = poly.polyroots(ptest) + x = np.linspace(-1, 1) + assert_almost_equal(poly.polyval(x, ptest), + poly.polyvalfromroots(x, r)) + + # check multidimensional arrays of roots and values + # check tensor=False + rshape = (3, 5) + x = np.arange(-3, 2) + r = np.random.randint(-5, 5, size=rshape) + res = poly.polyvalfromroots(x, r, tensor=False) + tgt = np.empty(r.shape[1:]) + for ii in range(tgt.size): + tgt[ii] = poly.polyvalfromroots(x[ii], r[:, ii]) + assert_equal(res, tgt) + + # check tensor=True + x = np.vstack([x, 2 * x]) + res = poly.polyvalfromroots(x, r, tensor=True) + tgt = np.empty(r.shape[1:] + x.shape) + for ii in range(r.shape[1]): + for jj in range(x.shape[0]): + tgt[ii, jj, :] = poly.polyvalfromroots(x[jj], r[:, ii]) + assert_equal(res, tgt) + + def test_polyval2d(self): + x1, x2, x3 = self.x + y1, y2, y3 = self.y + + # test exceptions + assert_raises_regex(ValueError, 'incompatible', + poly.polyval2d, x1, x2[:2], self.c2d) + + # test values + tgt = y1 * y2 + res = poly.polyval2d(x1, x2, self.c2d) + assert_almost_equal(res, tgt) + + # test shape + z = np.ones((2, 3)) + res = poly.polyval2d(z, z, self.c2d) + assert_(res.shape == (2, 3)) + + def test_polyval3d(self): + x1, x2, x3 = self.x + y1, y2, y3 = self.y + + # test exceptions + assert_raises_regex(ValueError, 'incompatible', + poly.polyval3d, x1, x2, x3[:2], self.c3d) + + # test values + tgt = y1 * y2 * y3 + res = poly.polyval3d(x1, x2, x3, self.c3d) + assert_almost_equal(res, tgt) + + # test shape + z = np.ones((2, 3)) + res = poly.polyval3d(z, z, z, self.c3d) + assert_(res.shape == (2, 3)) + + def test_polygrid2d(self): + x1, x2, x3 = self.x + y1, y2, y3 = self.y + + # test values + tgt = np.einsum('i,j->ij', y1, y2) + res = poly.polygrid2d(x1, x2, self.c2d) + assert_almost_equal(res, tgt) + + # test shape + z = np.ones((2, 3)) + res = poly.polygrid2d(z, z, self.c2d) + assert_(res.shape == (2, 3) * 2) + + def test_polygrid3d(self): + x1, x2, x3 = self.x + y1, y2, y3 = self.y + + # test values + tgt = np.einsum('i,j,k->ijk', y1, y2, y3) + res = poly.polygrid3d(x1, x2, x3, self.c3d) + assert_almost_equal(res, tgt) + + # test shape + z = np.ones((2, 3)) + res = poly.polygrid3d(z, z, z, self.c3d) + assert_(res.shape == (2, 3) * 3) + + +class TestIntegral: + + def test_polyint(self): + # check exceptions + assert_raises(TypeError, poly.polyint, [0], .5) + assert_raises(ValueError, poly.polyint, [0], -1) + assert_raises(ValueError, poly.polyint, [0], 1, [0, 0]) + assert_raises(ValueError, poly.polyint, [0], lbnd=[0]) + assert_raises(ValueError, poly.polyint, [0], scl=[0]) + assert_raises(TypeError, poly.polyint, [0], axis=.5) + assert_raises(TypeError, poly.polyint, [1, 1], 1.) + + # test integration of zero polynomial + for i in range(2, 5): + k = [0] * (i - 2) + [1] + res = poly.polyint([0], m=i, k=k) + assert_almost_equal(res, [0, 1]) + + # check single integration with integration constant + for i in range(5): + scl = i + 1 + pol = [0] * i + [1] + tgt = [i] + [0] * i + [1 / scl] + res = poly.polyint(pol, m=1, k=[i]) + assert_almost_equal(trim(res), trim(tgt)) + + # check single integration with integration constant and lbnd + for i in range(5): + scl = i + 1 + pol = [0] * i + [1] + res = poly.polyint(pol, m=1, k=[i], lbnd=-1) + assert_almost_equal(poly.polyval(-1, res), i) + + # check single integration with integration constant and scaling + for i in range(5): + scl = i + 1 + pol = [0] * i + [1] + tgt = [i] + [0] * i + [2 / scl] + res = poly.polyint(pol, m=1, k=[i], scl=2) + assert_almost_equal(trim(res), trim(tgt)) + + # check multiple integrations with default k + for i in range(5): + for j in range(2, 5): + pol = [0] * i + [1] + tgt = pol[:] + for k in range(j): + tgt = poly.polyint(tgt, m=1) + res = poly.polyint(pol, m=j) + assert_almost_equal(trim(res), trim(tgt)) + + # check multiple integrations with defined k + for i in range(5): + for j in range(2, 5): + pol = [0] * i + [1] + tgt = pol[:] + for k in range(j): + tgt = poly.polyint(tgt, m=1, k=[k]) + res = poly.polyint(pol, m=j, k=list(range(j))) + assert_almost_equal(trim(res), trim(tgt)) + + # check multiple integrations with lbnd + for i in range(5): + for j in range(2, 5): + pol = [0] * i + [1] + tgt = pol[:] + for k in range(j): + tgt = poly.polyint(tgt, m=1, k=[k], lbnd=-1) + res = poly.polyint(pol, m=j, k=list(range(j)), lbnd=-1) + assert_almost_equal(trim(res), trim(tgt)) + + # check multiple integrations with scaling + for i in range(5): + for j in range(2, 5): + pol = [0] * i + [1] + tgt = pol[:] + for k in range(j): + tgt = poly.polyint(tgt, m=1, k=[k], scl=2) + res = poly.polyint(pol, m=j, k=list(range(j)), scl=2) + assert_almost_equal(trim(res), trim(tgt)) + + def test_polyint_axis(self): + # check that axis keyword works + c2d = np.random.random((3, 4)) + + tgt = np.vstack([poly.polyint(c) for c in c2d.T]).T + res = poly.polyint(c2d, axis=0) + assert_almost_equal(res, tgt) + + tgt = np.vstack([poly.polyint(c) for c in c2d]) + res = poly.polyint(c2d, axis=1) + assert_almost_equal(res, tgt) + + tgt = np.vstack([poly.polyint(c, k=3) for c in c2d]) + res = poly.polyint(c2d, k=3, axis=1) + assert_almost_equal(res, tgt) + + +class TestDerivative: + + def test_polyder(self): + # check exceptions + assert_raises(TypeError, poly.polyder, [0], .5) + assert_raises(ValueError, poly.polyder, [0], -1) + + # check that zeroth derivative does nothing + for i in range(5): + tgt = [0] * i + [1] + res = poly.polyder(tgt, m=0) + assert_equal(trim(res), trim(tgt)) + + # check that derivation is the inverse of integration + for i in range(5): + for j in range(2, 5): + tgt = [0] * i + [1] + res = poly.polyder(poly.polyint(tgt, m=j), m=j) + assert_almost_equal(trim(res), trim(tgt)) + + # check derivation with scaling + for i in range(5): + for j in range(2, 5): + tgt = [0] * i + [1] + res = poly.polyder(poly.polyint(tgt, m=j, scl=2), m=j, scl=.5) + assert_almost_equal(trim(res), trim(tgt)) + + def test_polyder_axis(self): + # check that axis keyword works + c2d = np.random.random((3, 4)) + + tgt = np.vstack([poly.polyder(c) for c in c2d.T]).T + res = poly.polyder(c2d, axis=0) + assert_almost_equal(res, tgt) + + tgt = np.vstack([poly.polyder(c) for c in c2d]) + res = poly.polyder(c2d, axis=1) + assert_almost_equal(res, tgt) + + +class TestVander: + # some random values in [-1, 1) + x = np.random.random((3, 5)) * 2 - 1 + + def test_polyvander(self): + # check for 1d x + x = np.arange(3) + v = poly.polyvander(x, 3) + assert_(v.shape == (3, 4)) + for i in range(4): + coef = [0] * i + [1] + assert_almost_equal(v[..., i], poly.polyval(x, coef)) + + # check for 2d x + x = np.array([[1, 2], [3, 4], [5, 6]]) + v = poly.polyvander(x, 3) + assert_(v.shape == (3, 2, 4)) + for i in range(4): + coef = [0] * i + [1] + assert_almost_equal(v[..., i], poly.polyval(x, coef)) + + def test_polyvander2d(self): + # also tests polyval2d for non-square coefficient array + x1, x2, x3 = self.x + c = np.random.random((2, 3)) + van = poly.polyvander2d(x1, x2, [1, 2]) + tgt = poly.polyval2d(x1, x2, c) + res = np.dot(van, c.flat) + assert_almost_equal(res, tgt) + + # check shape + van = poly.polyvander2d([x1], [x2], [1, 2]) + assert_(van.shape == (1, 5, 6)) + + def test_polyvander3d(self): + # also tests polyval3d for non-square coefficient array + x1, x2, x3 = self.x + c = np.random.random((2, 3, 4)) + van = poly.polyvander3d(x1, x2, x3, [1, 2, 3]) + tgt = poly.polyval3d(x1, x2, x3, c) + res = np.dot(van, c.flat) + assert_almost_equal(res, tgt) + + # check shape + van = poly.polyvander3d([x1], [x2], [x3], [1, 2, 3]) + assert_(van.shape == (1, 5, 24)) + + def test_polyvandernegdeg(self): + x = np.arange(3) + assert_raises(ValueError, poly.polyvander, x, -1) + + +class TestCompanion: + + def test_raises(self): + assert_raises(ValueError, poly.polycompanion, []) + assert_raises(ValueError, poly.polycompanion, [1]) + + def test_dimensions(self): + for i in range(1, 5): + coef = [0] * i + [1] + assert_(poly.polycompanion(coef).shape == (i, i)) + + def test_linear_root(self): + assert_(poly.polycompanion([1, 2])[0, 0] == -.5) + + +class TestMisc: + + def test_polyfromroots(self): + res = poly.polyfromroots([]) + assert_almost_equal(trim(res), [1]) + for i in range(1, 5): + roots = np.cos(np.linspace(-np.pi, 0, 2 * i + 1)[1::2]) + tgt = Tlist[i] + res = poly.polyfromroots(roots) * 2**(i - 1) + assert_almost_equal(trim(res), trim(tgt)) + + def test_polyroots(self): + assert_almost_equal(poly.polyroots([1]), []) + assert_almost_equal(poly.polyroots([1, 2]), [-.5]) + for i in range(2, 5): + tgt = np.linspace(-1, 1, i) + res = poly.polyroots(poly.polyfromroots(tgt)) + assert_almost_equal(trim(res), trim(tgt)) + + # Testing for larger root values + for i in np.logspace(10, 25, num=1000, base=10): + tgt = np.array([-1, 1, i]) + res = poly.polyroots(poly.polyfromroots(tgt)) + # Adapting the expected precision according to the root value, + # to take into account numerical calculation error. + assert_almost_equal(res, tgt, 15 - int(np.log10(i))) + for i in np.logspace(10, 25, num=1000, base=10): + tgt = np.array([-1, 1.01, i]) + res = poly.polyroots(poly.polyfromroots(tgt)) + # Adapting the expected precision according to the root value, + # to take into account numerical calculation error. + assert_almost_equal(res, tgt, 14 - int(np.log10(i))) + + def test_polyfit(self): + def f(x): + return x * (x - 1) * (x - 2) + + def f2(x): + return x**4 + x**2 + 1 + + # Test exceptions + assert_raises(ValueError, poly.polyfit, [1], [1], -1) + assert_raises(TypeError, poly.polyfit, [[1]], [1], 0) + assert_raises(TypeError, poly.polyfit, [], [1], 0) + assert_raises(TypeError, poly.polyfit, [1], [[[1]]], 0) + assert_raises(TypeError, poly.polyfit, [1, 2], [1], 0) + assert_raises(TypeError, poly.polyfit, [1], [1, 2], 0) + assert_raises(TypeError, poly.polyfit, [1], [1], 0, w=[[1]]) + assert_raises(TypeError, poly.polyfit, [1], [1], 0, w=[1, 1]) + assert_raises(ValueError, poly.polyfit, [1], [1], [-1,]) + assert_raises(ValueError, poly.polyfit, [1], [1], [2, -1, 6]) + assert_raises(TypeError, poly.polyfit, [1], [1], []) + + # Test fit + x = np.linspace(0, 2) + y = f(x) + # + coef3 = poly.polyfit(x, y, 3) + assert_equal(len(coef3), 4) + assert_almost_equal(poly.polyval(x, coef3), y) + coef3 = poly.polyfit(x, y, [0, 1, 2, 3]) + assert_equal(len(coef3), 4) + assert_almost_equal(poly.polyval(x, coef3), y) + # + coef4 = poly.polyfit(x, y, 4) + assert_equal(len(coef4), 5) + assert_almost_equal(poly.polyval(x, coef4), y) + coef4 = poly.polyfit(x, y, [0, 1, 2, 3, 4]) + assert_equal(len(coef4), 5) + assert_almost_equal(poly.polyval(x, coef4), y) + # + coef2d = poly.polyfit(x, np.array([y, y]).T, 3) + assert_almost_equal(coef2d, np.array([coef3, coef3]).T) + coef2d = poly.polyfit(x, np.array([y, y]).T, [0, 1, 2, 3]) + assert_almost_equal(coef2d, np.array([coef3, coef3]).T) + # test weighting + w = np.zeros_like(x) + yw = y.copy() + w[1::2] = 1 + yw[0::2] = 0 + wcoef3 = poly.polyfit(x, yw, 3, w=w) + assert_almost_equal(wcoef3, coef3) + wcoef3 = poly.polyfit(x, yw, [0, 1, 2, 3], w=w) + assert_almost_equal(wcoef3, coef3) + # + wcoef2d = poly.polyfit(x, np.array([yw, yw]).T, 3, w=w) + assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T) + wcoef2d = poly.polyfit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w) + assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T) + # test scaling with complex values x points whose square + # is zero when summed. + x = [1, 1j, -1, -1j] + assert_almost_equal(poly.polyfit(x, x, 1), [0, 1]) + assert_almost_equal(poly.polyfit(x, x, [0, 1]), [0, 1]) + # test fitting only even Polyendre polynomials + x = np.linspace(-1, 1) + y = f2(x) + coef1 = poly.polyfit(x, y, 4) + assert_almost_equal(poly.polyval(x, coef1), y) + coef2 = poly.polyfit(x, y, [0, 2, 4]) + assert_almost_equal(poly.polyval(x, coef2), y) + assert_almost_equal(coef1, coef2) + + def test_polytrim(self): + coef = [2, -1, 1, 0] + + # Test exceptions + assert_raises(ValueError, poly.polytrim, coef, -1) + + # Test results + assert_equal(poly.polytrim(coef), coef[:-1]) + assert_equal(poly.polytrim(coef, 1), coef[:-3]) + assert_equal(poly.polytrim(coef, 2), [0]) + + def test_polyline(self): + assert_equal(poly.polyline(3, 4), [3, 4]) + + def test_polyline_zero(self): + assert_equal(poly.polyline(3, 0), [3]) + + def test_fit_degenerate_domain(self): + p = poly.Polynomial.fit([1], [2], deg=0) + assert_equal(p.coef, [2.]) + p = poly.Polynomial.fit([1, 1], [2, 2.1], deg=0) + assert_almost_equal(p.coef, [2.05]) + with assert_warns(pu.RankWarning): + p = poly.Polynomial.fit([1, 1], [2, 2.1], deg=1) + + def test_result_type(self): + w = np.array([-1, 1], dtype=np.float32) + p = np.polynomial.Polynomial(w, domain=w, window=w) + v = p(2) + assert_equal(v.dtype, np.float32) + + arr = np.polydiv(1, np.float32(1)) + assert_equal(arr[0].dtype, np.float64) diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_polyutils.py b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_polyutils.py new file mode 100644 index 0000000..96e88b9 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_polyutils.py @@ -0,0 +1,128 @@ +"""Tests for polyutils module. + +""" +import numpy as np +import numpy.polynomial.polyutils as pu +from numpy.testing import ( + assert_, + assert_almost_equal, + assert_equal, + assert_raises, +) + + +class TestMisc: + + def test_trimseq(self): + tgt = [1] + for num_trailing_zeros in range(5): + res = pu.trimseq([1] + [0] * num_trailing_zeros) + assert_equal(res, tgt) + + def test_trimseq_empty_input(self): + for empty_seq in [[], np.array([], dtype=np.int32)]: + assert_equal(pu.trimseq(empty_seq), empty_seq) + + def test_as_series(self): + # check exceptions + assert_raises(ValueError, pu.as_series, [[]]) + assert_raises(ValueError, pu.as_series, [[[1, 2]]]) + assert_raises(ValueError, pu.as_series, [[1], ['a']]) + # check common types + types = ['i', 'd', 'O'] + for i in range(len(types)): + for j in range(i): + ci = np.ones(1, types[i]) + cj = np.ones(1, types[j]) + [resi, resj] = pu.as_series([ci, cj]) + assert_(resi.dtype.char == resj.dtype.char) + assert_(resj.dtype.char == types[i]) + + def test_trimcoef(self): + coef = [2, -1, 1, 0] + # Test exceptions + assert_raises(ValueError, pu.trimcoef, coef, -1) + # Test results + assert_equal(pu.trimcoef(coef), coef[:-1]) + assert_equal(pu.trimcoef(coef, 1), coef[:-3]) + assert_equal(pu.trimcoef(coef, 2), [0]) + + def test_vander_nd_exception(self): + # n_dims != len(points) + assert_raises(ValueError, pu._vander_nd, (), (1, 2, 3), [90]) + # n_dims != len(degrees) + assert_raises(ValueError, pu._vander_nd, (), (), [90.65]) + # n_dims == 0 + assert_raises(ValueError, pu._vander_nd, (), (), []) + + def test_div_zerodiv(self): + # c2[-1] == 0 + assert_raises(ZeroDivisionError, pu._div, pu._div, (1, 2, 3), [0]) + + def test_pow_too_large(self): + # power > maxpower + assert_raises(ValueError, pu._pow, (), [1, 2, 3], 5, 4) + +class TestDomain: + + def test_getdomain(self): + # test for real values + x = [1, 10, 3, -1] + tgt = [-1, 10] + res = pu.getdomain(x) + assert_almost_equal(res, tgt) + + # test for complex values + x = [1 + 1j, 1 - 1j, 0, 2] + tgt = [-1j, 2 + 1j] + res = pu.getdomain(x) + assert_almost_equal(res, tgt) + + def test_mapdomain(self): + # test for real values + dom1 = [0, 4] + dom2 = [1, 3] + tgt = dom2 + res = pu.mapdomain(dom1, dom1, dom2) + assert_almost_equal(res, tgt) + + # test for complex values + dom1 = [0 - 1j, 2 + 1j] + dom2 = [-2, 2] + tgt = dom2 + x = dom1 + res = pu.mapdomain(x, dom1, dom2) + assert_almost_equal(res, tgt) + + # test for multidimensional arrays + dom1 = [0, 4] + dom2 = [1, 3] + tgt = np.array([dom2, dom2]) + x = np.array([dom1, dom1]) + res = pu.mapdomain(x, dom1, dom2) + assert_almost_equal(res, tgt) + + # test that subtypes are preserved. + class MyNDArray(np.ndarray): + pass + + dom1 = [0, 4] + dom2 = [1, 3] + x = np.array([dom1, dom1]).view(MyNDArray) + res = pu.mapdomain(x, dom1, dom2) + assert_(isinstance(res, MyNDArray)) + + def test_mapparms(self): + # test for real values + dom1 = [0, 4] + dom2 = [1, 3] + tgt = [1, .5] + res = pu. mapparms(dom1, dom2) + assert_almost_equal(res, tgt) + + # test for complex values + dom1 = [0 - 1j, 2 + 1j] + dom2 = [-2, 2] + tgt = [-1 + 1j, 1 - 1j] + res = pu.mapparms(dom1, dom2) + assert_almost_equal(res, tgt) diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_printing.py b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_printing.py new file mode 100644 index 0000000..d3735e3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_printing.py @@ -0,0 +1,555 @@ +from decimal import Decimal + +# For testing polynomial printing with object arrays +from fractions import Fraction +from math import inf, nan + +import pytest + +import numpy.polynomial as poly +from numpy._core import arange, array, printoptions +from numpy.testing import assert_, assert_equal + + +class TestStrUnicodeSuperSubscripts: + + @pytest.fixture(scope='class', autouse=True) + def use_unicode(self): + poly.set_default_printstyle('unicode') + + @pytest.mark.parametrize(('inp', 'tgt'), ( + ([1, 2, 3], "1.0 + 2.0·x + 3.0·x²"), + ([-1, 0, 3, -1], "-1.0 + 0.0·x + 3.0·x² - 1.0·x³"), + (arange(12), ("0.0 + 1.0·x + 2.0·x² + 3.0·x³ + 4.0·x⁴ + 5.0·x⁵ + " + "6.0·x⁶ + 7.0·x⁷ +\n8.0·x⁸ + 9.0·x⁹ + 10.0·x¹⁰ + " + "11.0·x¹¹")), + )) + def test_polynomial_str(self, inp, tgt): + p = poly.Polynomial(inp) + res = str(p) + assert_equal(res, tgt) + + @pytest.mark.parametrize(('inp', 'tgt'), ( + ([1, 2, 3], "1.0 + 2.0·T₁(x) + 3.0·T₂(x)"), + ([-1, 0, 3, -1], "-1.0 + 0.0·T₁(x) + 3.0·T₂(x) - 1.0·T₃(x)"), + (arange(12), ("0.0 + 1.0·T₁(x) + 2.0·T₂(x) + 3.0·T₃(x) + 4.0·T₄(x) + " + "5.0·T₅(x) +\n6.0·T₆(x) + 7.0·T₇(x) + 8.0·T₈(x) + " + "9.0·T₉(x) + 10.0·T₁₀(x) + 11.0·T₁₁(x)")), + )) + def test_chebyshev_str(self, inp, tgt): + res = str(poly.Chebyshev(inp)) + assert_equal(res, tgt) + + @pytest.mark.parametrize(('inp', 'tgt'), ( + ([1, 2, 3], "1.0 + 2.0·P₁(x) + 3.0·P₂(x)"), + ([-1, 0, 3, -1], "-1.0 + 0.0·P₁(x) + 3.0·P₂(x) - 1.0·P₃(x)"), + (arange(12), ("0.0 + 1.0·P₁(x) + 2.0·P₂(x) + 3.0·P₃(x) + 4.0·P₄(x) + " + "5.0·P₅(x) +\n6.0·P₆(x) + 7.0·P₇(x) + 8.0·P₈(x) + " + "9.0·P₉(x) + 10.0·P₁₀(x) + 11.0·P₁₁(x)")), + )) + def test_legendre_str(self, inp, tgt): + res = str(poly.Legendre(inp)) + assert_equal(res, tgt) + + @pytest.mark.parametrize(('inp', 'tgt'), ( + ([1, 2, 3], "1.0 + 2.0·H₁(x) + 3.0·H₂(x)"), + ([-1, 0, 3, -1], "-1.0 + 0.0·H₁(x) + 3.0·H₂(x) - 1.0·H₃(x)"), + (arange(12), ("0.0 + 1.0·H₁(x) + 2.0·H₂(x) + 3.0·H₃(x) + 4.0·H₄(x) + " + "5.0·H₅(x) +\n6.0·H₆(x) + 7.0·H₇(x) + 8.0·H₈(x) + " + "9.0·H₉(x) + 10.0·H₁₀(x) + 11.0·H₁₁(x)")), + )) + def test_hermite_str(self, inp, tgt): + res = str(poly.Hermite(inp)) + assert_equal(res, tgt) + + @pytest.mark.parametrize(('inp', 'tgt'), ( + ([1, 2, 3], "1.0 + 2.0·He₁(x) + 3.0·He₂(x)"), + ([-1, 0, 3, -1], "-1.0 + 0.0·He₁(x) + 3.0·He₂(x) - 1.0·He₃(x)"), + (arange(12), ("0.0 + 1.0·He₁(x) + 2.0·He₂(x) + 3.0·He₃(x) + " + "4.0·He₄(x) + 5.0·He₅(x) +\n6.0·He₆(x) + 7.0·He₇(x) + " + "8.0·He₈(x) + 9.0·He₉(x) + 10.0·He₁₀(x) +\n" + "11.0·He₁₁(x)")), + )) + def test_hermiteE_str(self, inp, tgt): + res = str(poly.HermiteE(inp)) + assert_equal(res, tgt) + + @pytest.mark.parametrize(('inp', 'tgt'), ( + ([1, 2, 3], "1.0 + 2.0·L₁(x) + 3.0·L₂(x)"), + ([-1, 0, 3, -1], "-1.0 + 0.0·L₁(x) + 3.0·L₂(x) - 1.0·L₃(x)"), + (arange(12), ("0.0 + 1.0·L₁(x) + 2.0·L₂(x) + 3.0·L₃(x) + 4.0·L₄(x) + " + "5.0·L₅(x) +\n6.0·L₆(x) + 7.0·L₇(x) + 8.0·L₈(x) + " + "9.0·L₉(x) + 10.0·L₁₀(x) + 11.0·L₁₁(x)")), + )) + def test_laguerre_str(self, inp, tgt): + res = str(poly.Laguerre(inp)) + assert_equal(res, tgt) + + def test_polynomial_str_domains(self): + res = str(poly.Polynomial([0, 1])) + tgt = '0.0 + 1.0·x' + assert_equal(res, tgt) + + res = str(poly.Polynomial([0, 1], domain=[1, 2])) + tgt = '0.0 + 1.0·(-3.0 + 2.0x)' + assert_equal(res, tgt) + +class TestStrAscii: + + @pytest.fixture(scope='class', autouse=True) + def use_ascii(self): + poly.set_default_printstyle('ascii') + + @pytest.mark.parametrize(('inp', 'tgt'), ( + ([1, 2, 3], "1.0 + 2.0 x + 3.0 x**2"), + ([-1, 0, 3, -1], "-1.0 + 0.0 x + 3.0 x**2 - 1.0 x**3"), + (arange(12), ("0.0 + 1.0 x + 2.0 x**2 + 3.0 x**3 + 4.0 x**4 + " + "5.0 x**5 + 6.0 x**6 +\n7.0 x**7 + 8.0 x**8 + " + "9.0 x**9 + 10.0 x**10 + 11.0 x**11")), + )) + def test_polynomial_str(self, inp, tgt): + res = str(poly.Polynomial(inp)) + assert_equal(res, tgt) + + @pytest.mark.parametrize(('inp', 'tgt'), ( + ([1, 2, 3], "1.0 + 2.0 T_1(x) + 3.0 T_2(x)"), + ([-1, 0, 3, -1], "-1.0 + 0.0 T_1(x) + 3.0 T_2(x) - 1.0 T_3(x)"), + (arange(12), ("0.0 + 1.0 T_1(x) + 2.0 T_2(x) + 3.0 T_3(x) + " + "4.0 T_4(x) + 5.0 T_5(x) +\n6.0 T_6(x) + 7.0 T_7(x) + " + "8.0 T_8(x) + 9.0 T_9(x) + 10.0 T_10(x) +\n" + "11.0 T_11(x)")), + )) + def test_chebyshev_str(self, inp, tgt): + res = str(poly.Chebyshev(inp)) + assert_equal(res, tgt) + + @pytest.mark.parametrize(('inp', 'tgt'), ( + ([1, 2, 3], "1.0 + 2.0 P_1(x) + 3.0 P_2(x)"), + ([-1, 0, 3, -1], "-1.0 + 0.0 P_1(x) + 3.0 P_2(x) - 1.0 P_3(x)"), + (arange(12), ("0.0 + 1.0 P_1(x) + 2.0 P_2(x) + 3.0 P_3(x) + " + "4.0 P_4(x) + 5.0 P_5(x) +\n6.0 P_6(x) + 7.0 P_7(x) + " + "8.0 P_8(x) + 9.0 P_9(x) + 10.0 P_10(x) +\n" + "11.0 P_11(x)")), + )) + def test_legendre_str(self, inp, tgt): + res = str(poly.Legendre(inp)) + assert_equal(res, tgt) + + @pytest.mark.parametrize(('inp', 'tgt'), ( + ([1, 2, 3], "1.0 + 2.0 H_1(x) + 3.0 H_2(x)"), + ([-1, 0, 3, -1], "-1.0 + 0.0 H_1(x) + 3.0 H_2(x) - 1.0 H_3(x)"), + (arange(12), ("0.0 + 1.0 H_1(x) + 2.0 H_2(x) + 3.0 H_3(x) + " + "4.0 H_4(x) + 5.0 H_5(x) +\n6.0 H_6(x) + 7.0 H_7(x) + " + "8.0 H_8(x) + 9.0 H_9(x) + 10.0 H_10(x) +\n" + "11.0 H_11(x)")), + )) + def test_hermite_str(self, inp, tgt): + res = str(poly.Hermite(inp)) + assert_equal(res, tgt) + + @pytest.mark.parametrize(('inp', 'tgt'), ( + ([1, 2, 3], "1.0 + 2.0 He_1(x) + 3.0 He_2(x)"), + ([-1, 0, 3, -1], "-1.0 + 0.0 He_1(x) + 3.0 He_2(x) - 1.0 He_3(x)"), + (arange(12), ("0.0 + 1.0 He_1(x) + 2.0 He_2(x) + 3.0 He_3(x) + " + "4.0 He_4(x) +\n5.0 He_5(x) + 6.0 He_6(x) + " + "7.0 He_7(x) + 8.0 He_8(x) + 9.0 He_9(x) +\n" + "10.0 He_10(x) + 11.0 He_11(x)")), + )) + def test_hermiteE_str(self, inp, tgt): + res = str(poly.HermiteE(inp)) + assert_equal(res, tgt) + + @pytest.mark.parametrize(('inp', 'tgt'), ( + ([1, 2, 3], "1.0 + 2.0 L_1(x) + 3.0 L_2(x)"), + ([-1, 0, 3, -1], "-1.0 + 0.0 L_1(x) + 3.0 L_2(x) - 1.0 L_3(x)"), + (arange(12), ("0.0 + 1.0 L_1(x) + 2.0 L_2(x) + 3.0 L_3(x) + " + "4.0 L_4(x) + 5.0 L_5(x) +\n6.0 L_6(x) + 7.0 L_7(x) + " + "8.0 L_8(x) + 9.0 L_9(x) + 10.0 L_10(x) +\n" + "11.0 L_11(x)")), + )) + def test_laguerre_str(self, inp, tgt): + res = str(poly.Laguerre(inp)) + assert_equal(res, tgt) + + def test_polynomial_str_domains(self): + res = str(poly.Polynomial([0, 1])) + tgt = '0.0 + 1.0 x' + assert_equal(res, tgt) + + res = str(poly.Polynomial([0, 1], domain=[1, 2])) + tgt = '0.0 + 1.0 (-3.0 + 2.0x)' + assert_equal(res, tgt) + +class TestLinebreaking: + + @pytest.fixture(scope='class', autouse=True) + def use_ascii(self): + poly.set_default_printstyle('ascii') + + def test_single_line_one_less(self): + # With 'ascii' style, len(str(p)) is default linewidth - 1 (i.e. 74) + p = poly.Polynomial([12345678, 12345678, 12345678, 12345678, 123]) + assert_equal(len(str(p)), 74) + assert_equal(str(p), ( + '12345678.0 + 12345678.0 x + 12345678.0 x**2 + ' + '12345678.0 x**3 + 123.0 x**4' + )) + + def test_num_chars_is_linewidth(self): + # len(str(p)) == default linewidth == 75 + p = poly.Polynomial([12345678, 12345678, 12345678, 12345678, 1234]) + assert_equal(len(str(p)), 75) + assert_equal(str(p), ( + '12345678.0 + 12345678.0 x + 12345678.0 x**2 + ' + '12345678.0 x**3 +\n1234.0 x**4' + )) + + def test_first_linebreak_multiline_one_less_than_linewidth(self): + # Multiline str where len(first_line) + len(next_term) == lw - 1 == 74 + p = poly.Polynomial( + [12345678, 12345678, 12345678, 12345678, 1, 12345678] + ) + assert_equal(len(str(p).split('\n')[0]), 74) + assert_equal(str(p), ( + '12345678.0 + 12345678.0 x + 12345678.0 x**2 + ' + '12345678.0 x**3 + 1.0 x**4 +\n12345678.0 x**5' + )) + + def test_first_linebreak_multiline_on_linewidth(self): + # First line is one character longer than previous test + p = poly.Polynomial( + [12345678, 12345678, 12345678, 12345678.12, 1, 12345678] + ) + assert_equal(str(p), ( + '12345678.0 + 12345678.0 x + 12345678.0 x**2 + ' + '12345678.12 x**3 +\n1.0 x**4 + 12345678.0 x**5' + )) + + @pytest.mark.parametrize(('lw', 'tgt'), ( + (75, ('0.0 + 10.0 x + 200.0 x**2 + 3000.0 x**3 + 40000.0 x**4 + ' + '500000.0 x**5 +\n600000.0 x**6 + 70000.0 x**7 + 8000.0 x**8 + ' + '900.0 x**9')), + (45, ('0.0 + 10.0 x + 200.0 x**2 + 3000.0 x**3 +\n40000.0 x**4 + ' + '500000.0 x**5 +\n600000.0 x**6 + 70000.0 x**7 + 8000.0 x**8 +\n' + '900.0 x**9')), + (132, ('0.0 + 10.0 x + 200.0 x**2 + 3000.0 x**3 + 40000.0 x**4 + ' + '500000.0 x**5 + 600000.0 x**6 + 70000.0 x**7 + 8000.0 x**8 + ' + '900.0 x**9')), + )) + def test_linewidth_printoption(self, lw, tgt): + p = poly.Polynomial( + [0, 10, 200, 3000, 40000, 500000, 600000, 70000, 8000, 900] + ) + with printoptions(linewidth=lw): + assert_equal(str(p), tgt) + for line in str(p).split('\n'): + assert_(len(line) < lw) + + +def test_set_default_printoptions(): + p = poly.Polynomial([1, 2, 3]) + c = poly.Chebyshev([1, 2, 3]) + poly.set_default_printstyle('ascii') + assert_equal(str(p), "1.0 + 2.0 x + 3.0 x**2") + assert_equal(str(c), "1.0 + 2.0 T_1(x) + 3.0 T_2(x)") + poly.set_default_printstyle('unicode') + assert_equal(str(p), "1.0 + 2.0·x + 3.0·x²") + assert_equal(str(c), "1.0 + 2.0·T₁(x) + 3.0·T₂(x)") + with pytest.raises(ValueError): + poly.set_default_printstyle('invalid_input') + + +def test_complex_coefficients(): + """Test both numpy and built-in complex.""" + coefs = [0 + 1j, 1 + 1j, -2 + 2j, 3 + 0j] + # numpy complex + p1 = poly.Polynomial(coefs) + # Python complex + p2 = poly.Polynomial(array(coefs, dtype=object)) + poly.set_default_printstyle('unicode') + assert_equal(str(p1), "1j + (1+1j)·x - (2-2j)·x² + (3+0j)·x³") + assert_equal(str(p2), "1j + (1+1j)·x + (-2+2j)·x² + (3+0j)·x³") + poly.set_default_printstyle('ascii') + assert_equal(str(p1), "1j + (1+1j) x - (2-2j) x**2 + (3+0j) x**3") + assert_equal(str(p2), "1j + (1+1j) x + (-2+2j) x**2 + (3+0j) x**3") + + +@pytest.mark.parametrize(('coefs', 'tgt'), ( + (array([Fraction(1, 2), Fraction(3, 4)], dtype=object), ( + "1/2 + 3/4·x" + )), + (array([1, 2, Fraction(5, 7)], dtype=object), ( + "1 + 2·x + 5/7·x²" + )), + (array([Decimal('1.00'), Decimal('2.2'), 3], dtype=object), ( + "1.00 + 2.2·x + 3·x²" + )), +)) +def test_numeric_object_coefficients(coefs, tgt): + p = poly.Polynomial(coefs) + poly.set_default_printstyle('unicode') + assert_equal(str(p), tgt) + + +@pytest.mark.parametrize(('coefs', 'tgt'), ( + (array([1, 2, 'f'], dtype=object), '1 + 2·x + f·x²'), + (array([1, 2, [3, 4]], dtype=object), '1 + 2·x + [3, 4]·x²'), +)) +def test_nonnumeric_object_coefficients(coefs, tgt): + """ + Test coef fallback for object arrays of non-numeric coefficients. + """ + p = poly.Polynomial(coefs) + poly.set_default_printstyle('unicode') + assert_equal(str(p), tgt) + + +class TestFormat: + def test_format_unicode(self): + poly.set_default_printstyle('ascii') + p = poly.Polynomial([1, 2, 0, -1]) + assert_equal(format(p, 'unicode'), "1.0 + 2.0·x + 0.0·x² - 1.0·x³") + + def test_format_ascii(self): + poly.set_default_printstyle('unicode') + p = poly.Polynomial([1, 2, 0, -1]) + assert_equal( + format(p, 'ascii'), "1.0 + 2.0 x + 0.0 x**2 - 1.0 x**3" + ) + + def test_empty_formatstr(self): + poly.set_default_printstyle('ascii') + p = poly.Polynomial([1, 2, 3]) + assert_equal(format(p), "1.0 + 2.0 x + 3.0 x**2") + assert_equal(f"{p}", "1.0 + 2.0 x + 3.0 x**2") + + def test_bad_formatstr(self): + p = poly.Polynomial([1, 2, 0, -1]) + with pytest.raises(ValueError): + format(p, '.2f') + + +@pytest.mark.parametrize(('poly', 'tgt'), ( + (poly.Polynomial, '1.0 + 2.0·z + 3.0·z²'), + (poly.Chebyshev, '1.0 + 2.0·T₁(z) + 3.0·T₂(z)'), + (poly.Hermite, '1.0 + 2.0·H₁(z) + 3.0·H₂(z)'), + (poly.HermiteE, '1.0 + 2.0·He₁(z) + 3.0·He₂(z)'), + (poly.Laguerre, '1.0 + 2.0·L₁(z) + 3.0·L₂(z)'), + (poly.Legendre, '1.0 + 2.0·P₁(z) + 3.0·P₂(z)'), +)) +def test_symbol(poly, tgt): + p = poly([1, 2, 3], symbol='z') + assert_equal(f"{p:unicode}", tgt) + + +class TestRepr: + def test_polynomial_repr(self): + res = repr(poly.Polynomial([0, 1])) + tgt = ( + "Polynomial([0., 1.], domain=[-1., 1.], window=[-1., 1.], " + "symbol='x')" + ) + assert_equal(res, tgt) + + def test_chebyshev_repr(self): + res = repr(poly.Chebyshev([0, 1])) + tgt = ( + "Chebyshev([0., 1.], domain=[-1., 1.], window=[-1., 1.], " + "symbol='x')" + ) + assert_equal(res, tgt) + + def test_legendre_repr(self): + res = repr(poly.Legendre([0, 1])) + tgt = ( + "Legendre([0., 1.], domain=[-1., 1.], window=[-1., 1.], " + "symbol='x')" + ) + assert_equal(res, tgt) + + def test_hermite_repr(self): + res = repr(poly.Hermite([0, 1])) + tgt = ( + "Hermite([0., 1.], domain=[-1., 1.], window=[-1., 1.], " + "symbol='x')" + ) + assert_equal(res, tgt) + + def test_hermiteE_repr(self): + res = repr(poly.HermiteE([0, 1])) + tgt = ( + "HermiteE([0., 1.], domain=[-1., 1.], window=[-1., 1.], " + "symbol='x')" + ) + assert_equal(res, tgt) + + def test_laguerre_repr(self): + res = repr(poly.Laguerre([0, 1])) + tgt = ( + "Laguerre([0., 1.], domain=[0., 1.], window=[0., 1.], " + "symbol='x')" + ) + assert_equal(res, tgt) + + +class TestLatexRepr: + """Test the latex repr used by Jupyter""" + + @staticmethod + def as_latex(obj): + # right now we ignore the formatting of scalars in our tests, since + # it makes them too verbose. Ideally, the formatting of scalars will + # be fixed such that tests below continue to pass + obj._repr_latex_scalar = lambda x, parens=False: str(x) + try: + return obj._repr_latex_() + finally: + del obj._repr_latex_scalar + + def test_simple_polynomial(self): + # default input + p = poly.Polynomial([1, 2, 3]) + assert_equal(self.as_latex(p), + r'$x \mapsto 1.0 + 2.0\,x + 3.0\,x^{2}$') + + # translated input + p = poly.Polynomial([1, 2, 3], domain=[-2, 0]) + assert_equal(self.as_latex(p), + r'$x \mapsto 1.0 + 2.0\,\left(1.0 + x\right) + 3.0\,\left(1.0 + x\right)^{2}$') # noqa: E501 + + # scaled input + p = poly.Polynomial([1, 2, 3], domain=[-0.5, 0.5]) + assert_equal(self.as_latex(p), + r'$x \mapsto 1.0 + 2.0\,\left(2.0x\right) + 3.0\,\left(2.0x\right)^{2}$') + + # affine input + p = poly.Polynomial([1, 2, 3], domain=[-1, 0]) + assert_equal(self.as_latex(p), + r'$x \mapsto 1.0 + 2.0\,\left(1.0 + 2.0x\right) + 3.0\,\left(1.0 + 2.0x\right)^{2}$') # noqa: E501 + + def test_basis_func(self): + p = poly.Chebyshev([1, 2, 3]) + assert_equal(self.as_latex(p), + r'$x \mapsto 1.0\,{T}_{0}(x) + 2.0\,{T}_{1}(x) + 3.0\,{T}_{2}(x)$') + # affine input - check no surplus parens are added + p = poly.Chebyshev([1, 2, 3], domain=[-1, 0]) + assert_equal(self.as_latex(p), + r'$x \mapsto 1.0\,{T}_{0}(1.0 + 2.0x) + 2.0\,{T}_{1}(1.0 + 2.0x) + 3.0\,{T}_{2}(1.0 + 2.0x)$') # noqa: E501 + + def test_multichar_basis_func(self): + p = poly.HermiteE([1, 2, 3]) + assert_equal(self.as_latex(p), + r'$x \mapsto 1.0\,{He}_{0}(x) + 2.0\,{He}_{1}(x) + 3.0\,{He}_{2}(x)$') + + def test_symbol_basic(self): + # default input + p = poly.Polynomial([1, 2, 3], symbol='z') + assert_equal(self.as_latex(p), + r'$z \mapsto 1.0 + 2.0\,z + 3.0\,z^{2}$') + + # translated input + p = poly.Polynomial([1, 2, 3], domain=[-2, 0], symbol='z') + assert_equal( + self.as_latex(p), + ( + r'$z \mapsto 1.0 + 2.0\,\left(1.0 + z\right) + 3.0\,' + r'\left(1.0 + z\right)^{2}$' + ), + ) + + # scaled input + p = poly.Polynomial([1, 2, 3], domain=[-0.5, 0.5], symbol='z') + assert_equal( + self.as_latex(p), + ( + r'$z \mapsto 1.0 + 2.0\,\left(2.0z\right) + 3.0\,' + r'\left(2.0z\right)^{2}$' + ), + ) + + # affine input + p = poly.Polynomial([1, 2, 3], domain=[-1, 0], symbol='z') + assert_equal( + self.as_latex(p), + ( + r'$z \mapsto 1.0 + 2.0\,\left(1.0 + 2.0z\right) + 3.0\,' + r'\left(1.0 + 2.0z\right)^{2}$' + ), + ) + + def test_numeric_object_coefficients(self): + coefs = array([Fraction(1, 2), Fraction(1)]) + p = poly.Polynomial(coefs) + assert_equal(self.as_latex(p), '$x \\mapsto 1/2 + 1\\,x$') + + +SWITCH_TO_EXP = ( + '1.0 + (1.0e-01) x + (1.0e-02) x**2', + '1.2 + (1.2e-01) x + (1.2e-02) x**2', + '1.23 + 0.12 x + (1.23e-02) x**2 + (1.23e-03) x**3', + '1.235 + 0.123 x + (1.235e-02) x**2 + (1.235e-03) x**3', + '1.2346 + 0.1235 x + 0.0123 x**2 + (1.2346e-03) x**3 + (1.2346e-04) x**4', + '1.23457 + 0.12346 x + 0.01235 x**2 + (1.23457e-03) x**3 + ' + '(1.23457e-04) x**4', + '1.234568 + 0.123457 x + 0.012346 x**2 + 0.001235 x**3 + ' + '(1.234568e-04) x**4 + (1.234568e-05) x**5', + '1.2345679 + 0.1234568 x + 0.0123457 x**2 + 0.0012346 x**3 + ' + '(1.2345679e-04) x**4 + (1.2345679e-05) x**5') + +class TestPrintOptions: + """ + Test the output is properly configured via printoptions. + The exponential notation is enabled automatically when the values + are too small or too large. + """ + + @pytest.fixture(scope='class', autouse=True) + def use_ascii(self): + poly.set_default_printstyle('ascii') + + def test_str(self): + p = poly.Polynomial([1 / 2, 1 / 7, 1 / 7 * 10**8, 1 / 7 * 10**9]) + assert_equal(str(p), '0.5 + 0.14285714 x + 14285714.28571429 x**2 ' + '+ (1.42857143e+08) x**3') + + with printoptions(precision=3): + assert_equal(str(p), '0.5 + 0.143 x + 14285714.286 x**2 ' + '+ (1.429e+08) x**3') + + def test_latex(self): + p = poly.Polynomial([1 / 2, 1 / 7, 1 / 7 * 10**8, 1 / 7 * 10**9]) + assert_equal(p._repr_latex_(), + r'$x \mapsto \text{0.5} + \text{0.14285714}\,x + ' + r'\text{14285714.28571429}\,x^{2} + ' + r'\text{(1.42857143e+08)}\,x^{3}$') + + with printoptions(precision=3): + assert_equal(p._repr_latex_(), + r'$x \mapsto \text{0.5} + \text{0.143}\,x + ' + r'\text{14285714.286}\,x^{2} + \text{(1.429e+08)}\,x^{3}$') + + def test_fixed(self): + p = poly.Polynomial([1 / 2]) + assert_equal(str(p), '0.5') + + with printoptions(floatmode='fixed'): + assert_equal(str(p), '0.50000000') + + with printoptions(floatmode='fixed', precision=4): + assert_equal(str(p), '0.5000') + + def test_switch_to_exp(self): + for i, s in enumerate(SWITCH_TO_EXP): + with printoptions(precision=i): + p = poly.Polynomial([1.23456789 * 10**-i + for i in range(i // 2 + 3)]) + assert str(p).replace('\n', ' ') == s + + def test_non_finite(self): + p = poly.Polynomial([nan, inf]) + assert str(p) == 'nan + inf x' + assert p._repr_latex_() == r'$x \mapsto \text{nan} + \text{inf}\,x$' # noqa: RUF027 + with printoptions(nanstr='NAN', infstr='INF'): + assert str(p) == 'NAN + INF x' + assert p._repr_latex_() == \ + r'$x \mapsto \text{NAN} + \text{INF}\,x$' diff --git a/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_symbol.py b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_symbol.py new file mode 100644 index 0000000..3de9e38 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/polynomial/tests/test_symbol.py @@ -0,0 +1,217 @@ +""" +Tests related to the ``symbol`` attribute of the ABCPolyBase class. +""" + +import pytest + +import numpy.polynomial as poly +from numpy._core import array +from numpy.testing import assert_, assert_equal, assert_raises + + +class TestInit: + """ + Test polynomial creation with symbol kwarg. + """ + c = [1, 2, 3] + + def test_default_symbol(self): + p = poly.Polynomial(self.c) + assert_equal(p.symbol, 'x') + + @pytest.mark.parametrize(('bad_input', 'exception'), ( + ('', ValueError), + ('3', ValueError), + (None, TypeError), + (1, TypeError), + )) + def test_symbol_bad_input(self, bad_input, exception): + with pytest.raises(exception): + p = poly.Polynomial(self.c, symbol=bad_input) + + @pytest.mark.parametrize('symbol', ( + 'x', + 'x_1', + 'A', + 'xyz', + 'β', + )) + def test_valid_symbols(self, symbol): + """ + Values for symbol that should pass input validation. + """ + p = poly.Polynomial(self.c, symbol=symbol) + assert_equal(p.symbol, symbol) + + def test_property(self): + """ + 'symbol' attribute is read only. + """ + p = poly.Polynomial(self.c, symbol='x') + with pytest.raises(AttributeError): + p.symbol = 'z' + + def test_change_symbol(self): + p = poly.Polynomial(self.c, symbol='y') + # Create new polynomial from p with different symbol + pt = poly.Polynomial(p.coef, symbol='t') + assert_equal(pt.symbol, 't') + + +class TestUnaryOperators: + p = poly.Polynomial([1, 2, 3], symbol='z') + + def test_neg(self): + n = -self.p + assert_equal(n.symbol, 'z') + + def test_scalarmul(self): + out = self.p * 10 + assert_equal(out.symbol, 'z') + + def test_rscalarmul(self): + out = 10 * self.p + assert_equal(out.symbol, 'z') + + def test_pow(self): + out = self.p ** 3 + assert_equal(out.symbol, 'z') + + +@pytest.mark.parametrize( + 'rhs', + ( + poly.Polynomial([4, 5, 6], symbol='z'), + array([4, 5, 6]), + ), +) +class TestBinaryOperatorsSameSymbol: + """ + Ensure symbol is preserved for numeric operations on polynomials with + the same symbol + """ + p = poly.Polynomial([1, 2, 3], symbol='z') + + def test_add(self, rhs): + out = self.p + rhs + assert_equal(out.symbol, 'z') + + def test_sub(self, rhs): + out = self.p - rhs + assert_equal(out.symbol, 'z') + + def test_polymul(self, rhs): + out = self.p * rhs + assert_equal(out.symbol, 'z') + + def test_divmod(self, rhs): + for out in divmod(self.p, rhs): + assert_equal(out.symbol, 'z') + + def test_radd(self, rhs): + out = rhs + self.p + assert_equal(out.symbol, 'z') + + def test_rsub(self, rhs): + out = rhs - self.p + assert_equal(out.symbol, 'z') + + def test_rmul(self, rhs): + out = rhs * self.p + assert_equal(out.symbol, 'z') + + def test_rdivmod(self, rhs): + for out in divmod(rhs, self.p): + assert_equal(out.symbol, 'z') + + +class TestBinaryOperatorsDifferentSymbol: + p = poly.Polynomial([1, 2, 3], symbol='x') + other = poly.Polynomial([4, 5, 6], symbol='y') + ops = (p.__add__, p.__sub__, p.__mul__, p.__floordiv__, p.__mod__) + + @pytest.mark.parametrize('f', ops) + def test_binops_fails(self, f): + assert_raises(ValueError, f, self.other) + + +class TestEquality: + p = poly.Polynomial([1, 2, 3], symbol='x') + + def test_eq(self): + other = poly.Polynomial([1, 2, 3], symbol='x') + assert_(self.p == other) + + def test_neq(self): + other = poly.Polynomial([1, 2, 3], symbol='y') + assert_(not self.p == other) + + +class TestExtraMethods: + """ + Test other methods for manipulating/creating polynomial objects. + """ + p = poly.Polynomial([1, 2, 3, 0], symbol='z') + + def test_copy(self): + other = self.p.copy() + assert_equal(other.symbol, 'z') + + def test_trim(self): + other = self.p.trim() + assert_equal(other.symbol, 'z') + + def test_truncate(self): + other = self.p.truncate(2) + assert_equal(other.symbol, 'z') + + @pytest.mark.parametrize('kwarg', ( + {'domain': [-10, 10]}, + {'window': [-10, 10]}, + {'kind': poly.Chebyshev}, + )) + def test_convert(self, kwarg): + other = self.p.convert(**kwarg) + assert_equal(other.symbol, 'z') + + def test_integ(self): + other = self.p.integ() + assert_equal(other.symbol, 'z') + + def test_deriv(self): + other = self.p.deriv() + assert_equal(other.symbol, 'z') + + +def test_composition(): + p = poly.Polynomial([3, 2, 1], symbol="t") + q = poly.Polynomial([5, 1, 0, -1], symbol="λ_1") + r = p(q) + assert r.symbol == "λ_1" + + +# +# Class methods that result in new polynomial class instances +# + + +def test_fit(): + x, y = (range(10),) * 2 + p = poly.Polynomial.fit(x, y, deg=1, symbol='z') + assert_equal(p.symbol, 'z') + + +def test_froomroots(): + roots = [-2, 2] + p = poly.Polynomial.fromroots(roots, symbol='z') + assert_equal(p.symbol, 'z') + + +def test_identity(): + p = poly.Polynomial.identity(domain=[-1, 1], window=[5, 20], symbol='z') + assert_equal(p.symbol, 'z') + + +def test_basis(): + p = poly.Polynomial.basis(3, symbol='z') + assert_equal(p.symbol, 'z') diff --git a/.venv/lib/python3.12/site-packages/numpy/py.typed b/.venv/lib/python3.12/site-packages/numpy/py.typed new file mode 100644 index 0000000..e69de29 diff --git a/.venv/lib/python3.12/site-packages/numpy/random/LICENSE.md b/.venv/lib/python3.12/site-packages/numpy/random/LICENSE.md new file mode 100644 index 0000000..a6cf1b1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/LICENSE.md @@ -0,0 +1,71 @@ +**This software is dual-licensed under the The University of Illinois/NCSA +Open Source License (NCSA) and The 3-Clause BSD License** + +# NCSA Open Source License +**Copyright (c) 2019 Kevin Sheppard. All rights reserved.** + +Developed by: Kevin Sheppard (, +) +[http://www.kevinsheppard.com](http://www.kevinsheppard.com) + +Permission is hereby granted, free of charge, to any person obtaining a copy of +this software and associated documentation files (the "Software"), to deal with +the Software without restriction, including without limitation the rights to +use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies +of the Software, and to permit persons to whom the Software is furnished to do +so, subject to the following conditions: + +Redistributions of source code must retain the above copyright notice, this +list of conditions and the following disclaimers. + +Redistributions in binary form must reproduce the above copyright notice, this +list of conditions and the following disclaimers in the documentation and/or +other materials provided with the distribution. + +Neither the names of Kevin Sheppard, nor the names of any contributors may be +used to endorse or promote products derived from this Software without specific +prior written permission. + +**THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH +THE SOFTWARE.** + + +# 3-Clause BSD License +**Copyright (c) 2019 Kevin Sheppard. All rights reserved.** + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +3. Neither the name of the copyright holder nor the names of its contributors + may be used to endorse or promote products derived from this software + without specific prior written permission. + +**THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF +THE POSSIBILITY OF SUCH DAMAGE.** + +# Components + +Many parts of this module have been derived from original sources, +often the algorithm's designer. Component licenses are located with +the component code. diff --git a/.venv/lib/python3.12/site-packages/numpy/random/__init__.pxd b/.venv/lib/python3.12/site-packages/numpy/random/__init__.pxd new file mode 100644 index 0000000..1f90572 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/__init__.pxd @@ -0,0 +1,14 @@ +cimport numpy as np +from libc.stdint cimport uint32_t, uint64_t + +cdef extern from "numpy/random/bitgen.h": + struct bitgen: + void *state + uint64_t (*next_uint64)(void *st) nogil + uint32_t (*next_uint32)(void *st) nogil + double (*next_double)(void *st) nogil + uint64_t (*next_raw)(void *st) nogil + + ctypedef bitgen bitgen_t + +from numpy.random.bit_generator cimport BitGenerator, SeedSequence diff --git a/.venv/lib/python3.12/site-packages/numpy/random/__init__.py b/.venv/lib/python3.12/site-packages/numpy/random/__init__.py new file mode 100644 index 0000000..3e21d59 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/__init__.py @@ -0,0 +1,213 @@ +""" +======================== +Random Number Generation +======================== + +Use ``default_rng()`` to create a `Generator` and call its methods. + +=============== ========================================================= +Generator +--------------- --------------------------------------------------------- +Generator Class implementing all of the random number distributions +default_rng Default constructor for ``Generator`` +=============== ========================================================= + +============================================= === +BitGenerator Streams that work with Generator +--------------------------------------------- --- +MT19937 +PCG64 +PCG64DXSM +Philox +SFC64 +============================================= === + +============================================= === +Getting entropy to initialize a BitGenerator +--------------------------------------------- --- +SeedSequence +============================================= === + + +Legacy +------ + +For backwards compatibility with previous versions of numpy before 1.17, the +various aliases to the global `RandomState` methods are left alone and do not +use the new `Generator` API. + +==================== ========================================================= +Utility functions +-------------------- --------------------------------------------------------- +random Uniformly distributed floats over ``[0, 1)`` +bytes Uniformly distributed random bytes. +permutation Randomly permute a sequence / generate a random sequence. +shuffle Randomly permute a sequence in place. +choice Random sample from 1-D array. +==================== ========================================================= + +==================== ========================================================= +Compatibility +functions - removed +in the new API +-------------------- --------------------------------------------------------- +rand Uniformly distributed values. +randn Normally distributed values. +ranf Uniformly distributed floating point numbers. +random_integers Uniformly distributed integers in a given range. + (deprecated, use ``integers(..., closed=True)`` instead) +random_sample Alias for `random_sample` +randint Uniformly distributed integers in a given range +seed Seed the legacy random number generator. +==================== ========================================================= + +==================== ========================================================= +Univariate +distributions +-------------------- --------------------------------------------------------- +beta Beta distribution over ``[0, 1]``. +binomial Binomial distribution. +chisquare :math:`\\chi^2` distribution. +exponential Exponential distribution. +f F (Fisher-Snedecor) distribution. +gamma Gamma distribution. +geometric Geometric distribution. +gumbel Gumbel distribution. +hypergeometric Hypergeometric distribution. +laplace Laplace distribution. +logistic Logistic distribution. +lognormal Log-normal distribution. +logseries Logarithmic series distribution. +negative_binomial Negative binomial distribution. +noncentral_chisquare Non-central chi-square distribution. +noncentral_f Non-central F distribution. +normal Normal / Gaussian distribution. +pareto Pareto distribution. +poisson Poisson distribution. +power Power distribution. +rayleigh Rayleigh distribution. +triangular Triangular distribution. +uniform Uniform distribution. +vonmises Von Mises circular distribution. +wald Wald (inverse Gaussian) distribution. +weibull Weibull distribution. +zipf Zipf's distribution over ranked data. +==================== ========================================================= + +==================== ========================================================== +Multivariate +distributions +-------------------- ---------------------------------------------------------- +dirichlet Multivariate generalization of Beta distribution. +multinomial Multivariate generalization of the binomial distribution. +multivariate_normal Multivariate generalization of the normal distribution. +==================== ========================================================== + +==================== ========================================================= +Standard +distributions +-------------------- --------------------------------------------------------- +standard_cauchy Standard Cauchy-Lorentz distribution. +standard_exponential Standard exponential distribution. +standard_gamma Standard Gamma distribution. +standard_normal Standard normal distribution. +standard_t Standard Student's t-distribution. +==================== ========================================================= + +==================== ========================================================= +Internal functions +-------------------- --------------------------------------------------------- +get_state Get tuple representing internal state of generator. +set_state Set state of generator. +==================== ========================================================= + + +""" +__all__ = [ + 'beta', + 'binomial', + 'bytes', + 'chisquare', + 'choice', + 'dirichlet', + 'exponential', + 'f', + 'gamma', + 'geometric', + 'get_state', + 'gumbel', + 'hypergeometric', + 'laplace', + 'logistic', + 'lognormal', + 'logseries', + 'multinomial', + 'multivariate_normal', + 'negative_binomial', + 'noncentral_chisquare', + 'noncentral_f', + 'normal', + 'pareto', + 'permutation', + 'poisson', + 'power', + 'rand', + 'randint', + 'randn', + 'random', + 'random_integers', + 'random_sample', + 'ranf', + 'rayleigh', + 'sample', + 'seed', + 'set_state', + 'shuffle', + 'standard_cauchy', + 'standard_exponential', + 'standard_gamma', + 'standard_normal', + 'standard_t', + 'triangular', + 'uniform', + 'vonmises', + 'wald', + 'weibull', + 'zipf', +] + +# add these for module-freeze analysis (like PyInstaller) +from . import _bounded_integers, _common, _pickle +from ._generator import Generator, default_rng +from ._mt19937 import MT19937 +from ._pcg64 import PCG64, PCG64DXSM +from ._philox import Philox +from ._sfc64 import SFC64 +from .bit_generator import BitGenerator, SeedSequence +from .mtrand import * + +__all__ += ['Generator', 'RandomState', 'SeedSequence', 'MT19937', + 'Philox', 'PCG64', 'PCG64DXSM', 'SFC64', 'default_rng', + 'BitGenerator'] + + +def __RandomState_ctor(): + """Return a RandomState instance. + + This function exists solely to assist (un)pickling. + + Note that the state of the RandomState returned here is irrelevant, as this + function's entire purpose is to return a newly allocated RandomState whose + state pickle can set. Consequently the RandomState returned by this function + is a freshly allocated copy with a seed=0. + + See https://github.com/numpy/numpy/issues/4763 for a detailed discussion + + """ + return RandomState(seed=0) + + +from numpy._pytesttester import PytestTester + +test = PytestTester(__name__) +del PytestTester diff --git a/.venv/lib/python3.12/site-packages/numpy/random/__init__.pyi b/.venv/lib/python3.12/site-packages/numpy/random/__init__.pyi new file mode 100644 index 0000000..e9b9fb5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/__init__.pyi @@ -0,0 +1,124 @@ +from ._generator import Generator, default_rng +from ._mt19937 import MT19937 +from ._pcg64 import PCG64, PCG64DXSM +from ._philox import Philox +from ._sfc64 import SFC64 +from .bit_generator import BitGenerator, SeedSequence +from .mtrand import ( + RandomState, + beta, + binomial, + bytes, + chisquare, + choice, + dirichlet, + exponential, + f, + gamma, + geometric, + get_bit_generator, # noqa: F401 + get_state, + gumbel, + hypergeometric, + laplace, + logistic, + lognormal, + logseries, + multinomial, + multivariate_normal, + negative_binomial, + noncentral_chisquare, + noncentral_f, + normal, + pareto, + permutation, + poisson, + power, + rand, + randint, + randn, + random, + random_integers, + random_sample, + ranf, + rayleigh, + sample, + seed, + set_bit_generator, # noqa: F401 + set_state, + shuffle, + standard_cauchy, + standard_exponential, + standard_gamma, + standard_normal, + standard_t, + triangular, + uniform, + vonmises, + wald, + weibull, + zipf, +) + +__all__ = [ + "beta", + "binomial", + "bytes", + "chisquare", + "choice", + "dirichlet", + "exponential", + "f", + "gamma", + "geometric", + "get_state", + "gumbel", + "hypergeometric", + "laplace", + "logistic", + "lognormal", + "logseries", + "multinomial", + "multivariate_normal", + "negative_binomial", + "noncentral_chisquare", + "noncentral_f", + "normal", + "pareto", + "permutation", + "poisson", + "power", + "rand", + "randint", + "randn", + "random", + "random_integers", + "random_sample", + "ranf", + "rayleigh", + "sample", + "seed", + "set_state", + "shuffle", + "standard_cauchy", + "standard_exponential", + "standard_gamma", + "standard_normal", + "standard_t", + "triangular", + "uniform", + "vonmises", + "wald", + "weibull", + "zipf", + "Generator", + "RandomState", + "SeedSequence", + "MT19937", + "Philox", + "PCG64", + "PCG64DXSM", + "SFC64", + "default_rng", + "BitGenerator", +] diff --git a/.venv/lib/python3.12/site-packages/numpy/random/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/random/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..a2ee112 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/__pycache__/_pickle.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/random/__pycache__/_pickle.cpython-312.pyc new file mode 100644 index 0000000..7053a59 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/__pycache__/_pickle.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_bounded_integers.cpython-312-x86_64-linux-gnu.so b/.venv/lib/python3.12/site-packages/numpy/random/_bounded_integers.cpython-312-x86_64-linux-gnu.so new file mode 100755 index 0000000..3fb18fc Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/_bounded_integers.cpython-312-x86_64-linux-gnu.so differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_bounded_integers.pxd b/.venv/lib/python3.12/site-packages/numpy/random/_bounded_integers.pxd new file mode 100644 index 0000000..607014c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/_bounded_integers.pxd @@ -0,0 +1,29 @@ +from libc.stdint cimport (uint8_t, uint16_t, uint32_t, uint64_t, + int8_t, int16_t, int32_t, int64_t, intptr_t) +import numpy as np +cimport numpy as np +ctypedef np.npy_bool bool_t + +from numpy.random cimport bitgen_t + +cdef inline uint64_t _gen_mask(uint64_t max_val) noexcept nogil: + """Mask generator for use in bounded random numbers""" + # Smallest bit mask >= max + cdef uint64_t mask = max_val + mask |= mask >> 1 + mask |= mask >> 2 + mask |= mask >> 4 + mask |= mask >> 8 + mask |= mask >> 16 + mask |= mask >> 32 + return mask + +cdef object _rand_uint64(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock) +cdef object _rand_uint32(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock) +cdef object _rand_uint16(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock) +cdef object _rand_uint8(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock) +cdef object _rand_bool(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock) +cdef object _rand_int64(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock) +cdef object _rand_int32(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock) +cdef object _rand_int16(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock) +cdef object _rand_int8(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock) diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_bounded_integers.pyi b/.venv/lib/python3.12/site-packages/numpy/random/_bounded_integers.pyi new file mode 100644 index 0000000..c9c2ef6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/_bounded_integers.pyi @@ -0,0 +1 @@ +__all__: list[str] = [] diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_common.cpython-312-x86_64-linux-gnu.so b/.venv/lib/python3.12/site-packages/numpy/random/_common.cpython-312-x86_64-linux-gnu.so new file mode 100755 index 0000000..9efc51a Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/_common.cpython-312-x86_64-linux-gnu.so differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_common.pxd b/.venv/lib/python3.12/site-packages/numpy/random/_common.pxd new file mode 100644 index 0000000..0de4456 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/_common.pxd @@ -0,0 +1,107 @@ +#cython: language_level=3 + +from libc.stdint cimport uint32_t, uint64_t, int32_t, int64_t + +import numpy as np +cimport numpy as np + +from numpy.random cimport bitgen_t + +cdef double POISSON_LAM_MAX +cdef double LEGACY_POISSON_LAM_MAX +cdef uint64_t MAXSIZE + +cdef enum ConstraintType: + CONS_NONE + CONS_NON_NEGATIVE + CONS_POSITIVE + CONS_POSITIVE_NOT_NAN + CONS_BOUNDED_0_1 + CONS_BOUNDED_GT_0_1 + CONS_BOUNDED_LT_0_1 + CONS_GT_1 + CONS_GTE_1 + CONS_POISSON + LEGACY_CONS_POISSON + LEGACY_CONS_NON_NEGATIVE_INBOUNDS_LONG + +ctypedef ConstraintType constraint_type + +cdef object benchmark(bitgen_t *bitgen, object lock, Py_ssize_t cnt, object method) +cdef object random_raw(bitgen_t *bitgen, object lock, object size, object output) +cdef object prepare_cffi(bitgen_t *bitgen) +cdef object prepare_ctypes(bitgen_t *bitgen) +cdef int check_constraint(double val, object name, constraint_type cons) except -1 +cdef int check_array_constraint(np.ndarray val, object name, constraint_type cons) except -1 + +cdef extern from "include/aligned_malloc.h": + cdef void *PyArray_realloc_aligned(void *p, size_t n) + cdef void *PyArray_malloc_aligned(size_t n) + cdef void *PyArray_calloc_aligned(size_t n, size_t s) + cdef void PyArray_free_aligned(void *p) + +ctypedef void (*random_double_fill)(bitgen_t *state, np.npy_intp count, double* out) noexcept nogil +ctypedef double (*random_double_0)(void *state) noexcept nogil +ctypedef double (*random_double_1)(void *state, double a) noexcept nogil +ctypedef double (*random_double_2)(void *state, double a, double b) noexcept nogil +ctypedef double (*random_double_3)(void *state, double a, double b, double c) noexcept nogil + +ctypedef void (*random_float_fill)(bitgen_t *state, np.npy_intp count, float* out) noexcept nogil +ctypedef float (*random_float_0)(bitgen_t *state) noexcept nogil +ctypedef float (*random_float_1)(bitgen_t *state, float a) noexcept nogil + +ctypedef int64_t (*random_uint_0)(void *state) noexcept nogil +ctypedef int64_t (*random_uint_d)(void *state, double a) noexcept nogil +ctypedef int64_t (*random_uint_dd)(void *state, double a, double b) noexcept nogil +ctypedef int64_t (*random_uint_di)(void *state, double a, uint64_t b) noexcept nogil +ctypedef int64_t (*random_uint_i)(void *state, int64_t a) noexcept nogil +ctypedef int64_t (*random_uint_iii)(void *state, int64_t a, int64_t b, int64_t c) noexcept nogil + +ctypedef uint32_t (*random_uint_0_32)(bitgen_t *state) noexcept nogil +ctypedef uint32_t (*random_uint_1_i_32)(bitgen_t *state, uint32_t a) noexcept nogil + +ctypedef int32_t (*random_int_2_i_32)(bitgen_t *state, int32_t a, int32_t b) noexcept nogil +ctypedef int64_t (*random_int_2_i)(bitgen_t *state, int64_t a, int64_t b) noexcept nogil + +cdef double kahan_sum(double *darr, np.npy_intp n) noexcept + +cdef inline double uint64_to_double(uint64_t rnd) noexcept nogil: + return (rnd >> 11) * (1.0 / 9007199254740992.0) + +cdef object double_fill(void *func, bitgen_t *state, object size, object lock, object out) + +cdef object float_fill(void *func, bitgen_t *state, object size, object lock, object out) + +cdef object float_fill_from_double(void *func, bitgen_t *state, object size, object lock, object out) + +cdef object wrap_int(object val, object bits) + +cdef np.ndarray int_to_array(object value, object name, object bits, object uint_size) + +cdef validate_output_shape(iter_shape, np.ndarray output) + +cdef object cont(void *func, void *state, object size, object lock, int narg, + object a, object a_name, constraint_type a_constraint, + object b, object b_name, constraint_type b_constraint, + object c, object c_name, constraint_type c_constraint, + object out) + +cdef object disc(void *func, void *state, object size, object lock, + int narg_double, int narg_int64, + object a, object a_name, constraint_type a_constraint, + object b, object b_name, constraint_type b_constraint, + object c, object c_name, constraint_type c_constraint) + +cdef object cont_f(void *func, bitgen_t *state, object size, object lock, + object a, object a_name, constraint_type a_constraint, + object out) + +cdef object cont_broadcast_3(void *func, void *state, object size, object lock, + np.ndarray a_arr, object a_name, constraint_type a_constraint, + np.ndarray b_arr, object b_name, constraint_type b_constraint, + np.ndarray c_arr, object c_name, constraint_type c_constraint) + +cdef object discrete_broadcast_iii(void *func, void *state, object size, object lock, + np.ndarray a_arr, object a_name, constraint_type a_constraint, + np.ndarray b_arr, object b_name, constraint_type b_constraint, + np.ndarray c_arr, object c_name, constraint_type c_constraint) diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_common.pyi b/.venv/lib/python3.12/site-packages/numpy/random/_common.pyi new file mode 100644 index 0000000..b667fd1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/_common.pyi @@ -0,0 +1,16 @@ +from collections.abc import Callable +from typing import Any, NamedTuple, TypeAlias + +import numpy as np + +__all__: list[str] = ["interface"] + +_CDataVoidPointer: TypeAlias = Any + +class interface(NamedTuple): + state_address: int + state: _CDataVoidPointer + next_uint64: Callable[..., np.uint64] + next_uint32: Callable[..., np.uint32] + next_double: Callable[..., np.float64] + bit_generator: _CDataVoidPointer diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_examples/cffi/__pycache__/extending.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/random/_examples/cffi/__pycache__/extending.cpython-312.pyc new file mode 100644 index 0000000..98c5019 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/_examples/cffi/__pycache__/extending.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_examples/cffi/__pycache__/parse.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/random/_examples/cffi/__pycache__/parse.cpython-312.pyc new file mode 100644 index 0000000..49d6df2 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/_examples/cffi/__pycache__/parse.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_examples/cffi/extending.py b/.venv/lib/python3.12/site-packages/numpy/random/_examples/cffi/extending.py new file mode 100644 index 0000000..ad4c9ac --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/_examples/cffi/extending.py @@ -0,0 +1,44 @@ +""" +Use cffi to access any of the underlying C functions from distributions.h +""" +import os + +import cffi + +import numpy as np + +from .parse import parse_distributions_h + +ffi = cffi.FFI() + +inc_dir = os.path.join(np.get_include(), 'numpy') + +# Basic numpy types +ffi.cdef(''' + typedef intptr_t npy_intp; + typedef unsigned char npy_bool; + +''') + +parse_distributions_h(ffi, inc_dir) + +lib = ffi.dlopen(np.random._generator.__file__) + +# Compare the distributions.h random_standard_normal_fill to +# Generator.standard_random +bit_gen = np.random.PCG64() +rng = np.random.Generator(bit_gen) +state = bit_gen.state + +interface = rng.bit_generator.cffi +n = 100 +vals_cffi = ffi.new('double[%d]' % n) +lib.random_standard_normal_fill(interface.bit_generator, n, vals_cffi) + +# reset the state +bit_gen.state = state + +vals = rng.standard_normal(n) + +for i in range(n): + assert vals[i] == vals_cffi[i] diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_examples/cffi/parse.py b/.venv/lib/python3.12/site-packages/numpy/random/_examples/cffi/parse.py new file mode 100644 index 0000000..0f80adb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/_examples/cffi/parse.py @@ -0,0 +1,53 @@ +import os + + +def parse_distributions_h(ffi, inc_dir): + """ + Parse distributions.h located in inc_dir for CFFI, filling in the ffi.cdef + + Read the function declarations without the "#define ..." macros that will + be filled in when loading the library. + """ + + with open(os.path.join(inc_dir, 'random', 'bitgen.h')) as fid: + s = [] + for line in fid: + # massage the include file + if line.strip().startswith('#'): + continue + s.append(line) + ffi.cdef('\n'.join(s)) + + with open(os.path.join(inc_dir, 'random', 'distributions.h')) as fid: + s = [] + in_skip = 0 + ignoring = False + for line in fid: + # check for and remove extern "C" guards + if ignoring: + if line.strip().startswith('#endif'): + ignoring = False + continue + if line.strip().startswith('#ifdef __cplusplus'): + ignoring = True + + # massage the include file + if line.strip().startswith('#'): + continue + + # skip any inlined function definition + # which starts with 'static inline xxx(...) {' + # and ends with a closing '}' + if line.strip().startswith('static inline'): + in_skip += line.count('{') + continue + elif in_skip > 0: + in_skip += line.count('{') + in_skip -= line.count('}') + continue + + # replace defines with their value or remove them + line = line.replace('DECLDIR', '') + line = line.replace('RAND_INT_TYPE', 'int64_t') + s.append(line) + ffi.cdef('\n'.join(s)) diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_examples/cython/extending.pyx b/.venv/lib/python3.12/site-packages/numpy/random/_examples/cython/extending.pyx new file mode 100644 index 0000000..6a0f45e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/_examples/cython/extending.pyx @@ -0,0 +1,77 @@ +#cython: language_level=3 + +from libc.stdint cimport uint32_t +from cpython.pycapsule cimport PyCapsule_IsValid, PyCapsule_GetPointer + +import numpy as np +cimport numpy as np +cimport cython + +from numpy.random cimport bitgen_t +from numpy.random import PCG64 + +np.import_array() + + +@cython.boundscheck(False) +@cython.wraparound(False) +def uniform_mean(Py_ssize_t n): + cdef Py_ssize_t i + cdef bitgen_t *rng + cdef const char *capsule_name = "BitGenerator" + cdef double[::1] random_values + cdef np.ndarray randoms + + x = PCG64() + capsule = x.capsule + if not PyCapsule_IsValid(capsule, capsule_name): + raise ValueError("Invalid pointer to anon_func_state") + rng = PyCapsule_GetPointer(capsule, capsule_name) + random_values = np.empty(n) + # Best practice is to acquire the lock whenever generating random values. + # This prevents other threads from modifying the state. Acquiring the lock + # is only necessary if the GIL is also released, as in this example. + with x.lock, nogil: + for i in range(n): + random_values[i] = rng.next_double(rng.state) + randoms = np.asarray(random_values) + return randoms.mean() + + +# This function is declared nogil so it can be used without the GIL below +cdef uint32_t bounded_uint(uint32_t lb, uint32_t ub, bitgen_t *rng) nogil: + cdef uint32_t mask, delta, val + mask = delta = ub - lb + mask |= mask >> 1 + mask |= mask >> 2 + mask |= mask >> 4 + mask |= mask >> 8 + mask |= mask >> 16 + + val = rng.next_uint32(rng.state) & mask + while val > delta: + val = rng.next_uint32(rng.state) & mask + + return lb + val + + +@cython.boundscheck(False) +@cython.wraparound(False) +def bounded_uints(uint32_t lb, uint32_t ub, Py_ssize_t n): + cdef Py_ssize_t i + cdef bitgen_t *rng + cdef uint32_t[::1] out + cdef const char *capsule_name = "BitGenerator" + + x = PCG64() + out = np.empty(n, dtype=np.uint32) + capsule = x.capsule + + if not PyCapsule_IsValid(capsule, capsule_name): + raise ValueError("Invalid pointer to anon_func_state") + rng = PyCapsule_GetPointer(capsule, capsule_name) + + with x.lock, nogil: + for i in range(n): + out[i] = bounded_uint(lb, ub, rng) + return np.asarray(out) diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_examples/cython/extending_distributions.pyx b/.venv/lib/python3.12/site-packages/numpy/random/_examples/cython/extending_distributions.pyx new file mode 100644 index 0000000..e1d1ea6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/_examples/cython/extending_distributions.pyx @@ -0,0 +1,118 @@ +#cython: language_level=3 +""" +This file shows how the to use a BitGenerator to create a distribution. +""" +import numpy as np +cimport numpy as np +cimport cython +from cpython.pycapsule cimport PyCapsule_IsValid, PyCapsule_GetPointer +from libc.stdint cimport uint16_t, uint64_t +from numpy.random cimport bitgen_t +from numpy.random import PCG64 +from numpy.random.c_distributions cimport ( + random_standard_uniform_fill, random_standard_uniform_fill_f) + +np.import_array() + + +@cython.boundscheck(False) +@cython.wraparound(False) +def uniforms(Py_ssize_t n): + """ + Create an array of `n` uniformly distributed doubles. + A 'real' distribution would want to process the values into + some non-uniform distribution + """ + cdef Py_ssize_t i + cdef bitgen_t *rng + cdef const char *capsule_name = "BitGenerator" + cdef double[::1] random_values + + x = PCG64() + capsule = x.capsule + # Optional check that the capsule if from a BitGenerator + if not PyCapsule_IsValid(capsule, capsule_name): + raise ValueError("Invalid pointer to anon_func_state") + # Cast the pointer + rng = PyCapsule_GetPointer(capsule, capsule_name) + random_values = np.empty(n, dtype='float64') + with x.lock, nogil: + for i in range(n): + # Call the function + random_values[i] = rng.next_double(rng.state) + randoms = np.asarray(random_values) + + return randoms + +# cython example 2 +@cython.boundscheck(False) +@cython.wraparound(False) +def uint10_uniforms(Py_ssize_t n): + """Uniform 10 bit integers stored as 16-bit unsigned integers""" + cdef Py_ssize_t i + cdef bitgen_t *rng + cdef const char *capsule_name = "BitGenerator" + cdef uint16_t[::1] random_values + cdef int bits_remaining + cdef int width = 10 + cdef uint64_t buff, mask = 0x3FF + + x = PCG64() + capsule = x.capsule + if not PyCapsule_IsValid(capsule, capsule_name): + raise ValueError("Invalid pointer to anon_func_state") + rng = PyCapsule_GetPointer(capsule, capsule_name) + random_values = np.empty(n, dtype='uint16') + # Best practice is to release GIL and acquire the lock + bits_remaining = 0 + with x.lock, nogil: + for i in range(n): + if bits_remaining < width: + buff = rng.next_uint64(rng.state) + random_values[i] = buff & mask + buff >>= width + + randoms = np.asarray(random_values) + return randoms + +# cython example 3 +def uniforms_ex(bit_generator, Py_ssize_t n, dtype=np.float64): + """ + Create an array of `n` uniformly distributed doubles via a "fill" function. + + A 'real' distribution would want to process the values into + some non-uniform distribution + + Parameters + ---------- + bit_generator: BitGenerator instance + n: int + Output vector length + dtype: {str, dtype}, optional + Desired dtype, either 'd' (or 'float64') or 'f' (or 'float32'). The + default dtype value is 'd' + """ + cdef Py_ssize_t i + cdef bitgen_t *rng + cdef const char *capsule_name = "BitGenerator" + cdef np.ndarray randoms + + capsule = bit_generator.capsule + # Optional check that the capsule if from a BitGenerator + if not PyCapsule_IsValid(capsule, capsule_name): + raise ValueError("Invalid pointer to anon_func_state") + # Cast the pointer + rng = PyCapsule_GetPointer(capsule, capsule_name) + + _dtype = np.dtype(dtype) + randoms = np.empty(n, dtype=_dtype) + if _dtype == np.float32: + with bit_generator.lock: + random_standard_uniform_fill_f(rng, n, np.PyArray_DATA(randoms)) + elif _dtype == np.float64: + with bit_generator.lock: + random_standard_uniform_fill(rng, n, np.PyArray_DATA(randoms)) + else: + raise TypeError('Unsupported dtype %r for random' % _dtype) + return randoms + diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_examples/cython/meson.build b/.venv/lib/python3.12/site-packages/numpy/random/_examples/cython/meson.build new file mode 100644 index 0000000..7aa367d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/_examples/cython/meson.build @@ -0,0 +1,53 @@ +project('random-build-examples', 'c', 'cpp', 'cython') + +py_mod = import('python') +py3 = py_mod.find_installation(pure: false) + +cc = meson.get_compiler('c') +cy = meson.get_compiler('cython') + +# Keep synced with pyproject.toml +if not cy.version().version_compare('>=3.0.6') + error('tests requires Cython >= 3.0.6') +endif + +base_cython_args = [] +if cy.version().version_compare('>=3.1.0') + base_cython_args += ['-Xfreethreading_compatible=True'] +endif + +_numpy_abs = run_command(py3, ['-c', + 'import os; os.chdir(".."); import numpy; print(os.path.abspath(numpy.get_include() + "../../.."))'], + check: true).stdout().strip() + +npymath_path = _numpy_abs / '_core' / 'lib' +npy_include_path = _numpy_abs / '_core' / 'include' +npyrandom_path = _numpy_abs / 'random' / 'lib' +npymath_lib = cc.find_library('npymath', dirs: npymath_path) +npyrandom_lib = cc.find_library('npyrandom', dirs: npyrandom_path) + +py3.extension_module( + 'extending_distributions', + 'extending_distributions.pyx', + install: false, + include_directories: [npy_include_path], + dependencies: [npyrandom_lib, npymath_lib], + cython_args: base_cython_args, +) +py3.extension_module( + 'extending', + 'extending.pyx', + install: false, + include_directories: [npy_include_path], + dependencies: [npyrandom_lib, npymath_lib], + cython_args: base_cython_args, +) +py3.extension_module( + 'extending_cpp', + 'extending_distributions.pyx', + install: false, + override_options : ['cython_language=cpp'], + cython_args: base_cython_args + ['--module-name', 'extending_cpp'], + include_directories: [npy_include_path], + dependencies: [npyrandom_lib, npymath_lib], +) diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_examples/numba/__pycache__/extending.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/random/_examples/numba/__pycache__/extending.cpython-312.pyc new file mode 100644 index 0000000..5880d0a Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/_examples/numba/__pycache__/extending.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_examples/numba/__pycache__/extending_distributions.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/random/_examples/numba/__pycache__/extending_distributions.cpython-312.pyc new file mode 100644 index 0000000..dc9e447 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/_examples/numba/__pycache__/extending_distributions.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_examples/numba/extending.py b/.venv/lib/python3.12/site-packages/numpy/random/_examples/numba/extending.py new file mode 100644 index 0000000..c1d0f4f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/_examples/numba/extending.py @@ -0,0 +1,86 @@ +from timeit import timeit + +import numba as nb + +import numpy as np +from numpy.random import PCG64 + +bit_gen = PCG64() +next_d = bit_gen.cffi.next_double +state_addr = bit_gen.cffi.state_address + +def normals(n, state): + out = np.empty(n) + for i in range((n + 1) // 2): + x1 = 2.0 * next_d(state) - 1.0 + x2 = 2.0 * next_d(state) - 1.0 + r2 = x1 * x1 + x2 * x2 + while r2 >= 1.0 or r2 == 0.0: + x1 = 2.0 * next_d(state) - 1.0 + x2 = 2.0 * next_d(state) - 1.0 + r2 = x1 * x1 + x2 * x2 + f = np.sqrt(-2.0 * np.log(r2) / r2) + out[2 * i] = f * x1 + if 2 * i + 1 < n: + out[2 * i + 1] = f * x2 + return out + + +# Compile using Numba +normalsj = nb.jit(normals, nopython=True) +# Must use state address not state with numba +n = 10000 + +def numbacall(): + return normalsj(n, state_addr) + + +rg = np.random.Generator(PCG64()) + +def numpycall(): + return rg.normal(size=n) + + +# Check that the functions work +r1 = numbacall() +r2 = numpycall() +assert r1.shape == (n,) +assert r1.shape == r2.shape + +t1 = timeit(numbacall, number=1000) +print(f'{t1:.2f} secs for {n} PCG64 (Numba/PCG64) gaussian randoms') +t2 = timeit(numpycall, number=1000) +print(f'{t2:.2f} secs for {n} PCG64 (NumPy/PCG64) gaussian randoms') + +# example 2 + +next_u32 = bit_gen.ctypes.next_uint32 +ctypes_state = bit_gen.ctypes.state + +@nb.jit(nopython=True) +def bounded_uint(lb, ub, state): + mask = delta = ub - lb + mask |= mask >> 1 + mask |= mask >> 2 + mask |= mask >> 4 + mask |= mask >> 8 + mask |= mask >> 16 + + val = next_u32(state) & mask + while val > delta: + val = next_u32(state) & mask + + return lb + val + + +print(bounded_uint(323, 2394691, ctypes_state.value)) + + +@nb.jit(nopython=True) +def bounded_uints(lb, ub, n, state): + out = np.empty(n, dtype=np.uint32) + for i in range(n): + out[i] = bounded_uint(lb, ub, state) + + +bounded_uints(323, 2394691, 10000000, ctypes_state.value) diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_examples/numba/extending_distributions.py b/.venv/lib/python3.12/site-packages/numpy/random/_examples/numba/extending_distributions.py new file mode 100644 index 0000000..d0462e7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/_examples/numba/extending_distributions.py @@ -0,0 +1,67 @@ +r""" +Building the required library in this example requires a source distribution +of NumPy or clone of the NumPy git repository since distributions.c is not +included in binary distributions. + +On *nix, execute in numpy/random/src/distributions + +export ${PYTHON_VERSION}=3.8 # Python version +export PYTHON_INCLUDE=#path to Python's include folder, usually \ + ${PYTHON_HOME}/include/python${PYTHON_VERSION}m +export NUMPY_INCLUDE=#path to numpy's include folder, usually \ + ${PYTHON_HOME}/lib/python${PYTHON_VERSION}/site-packages/numpy/_core/include +gcc -shared -o libdistributions.so -fPIC distributions.c \ + -I${NUMPY_INCLUDE} -I${PYTHON_INCLUDE} +mv libdistributions.so ../../_examples/numba/ + +On Windows + +rem PYTHON_HOME and PYTHON_VERSION are setup dependent, this is an example +set PYTHON_HOME=c:\Anaconda +set PYTHON_VERSION=38 +cl.exe /LD .\distributions.c -DDLL_EXPORT \ + -I%PYTHON_HOME%\lib\site-packages\numpy\_core\include \ + -I%PYTHON_HOME%\include %PYTHON_HOME%\libs\python%PYTHON_VERSION%.lib +move distributions.dll ../../_examples/numba/ +""" +import os + +import numba as nb +from cffi import FFI + +import numpy as np +from numpy.random import PCG64 + +ffi = FFI() +if os.path.exists('./distributions.dll'): + lib = ffi.dlopen('./distributions.dll') +elif os.path.exists('./libdistributions.so'): + lib = ffi.dlopen('./libdistributions.so') +else: + raise RuntimeError('Required DLL/so file was not found.') + +ffi.cdef(""" +double random_standard_normal(void *bitgen_state); +""") +x = PCG64() +xffi = x.cffi +bit_generator = xffi.bit_generator + +random_standard_normal = lib.random_standard_normal + + +def normals(n, bit_generator): + out = np.empty(n) + for i in range(n): + out[i] = random_standard_normal(bit_generator) + return out + + +normalsj = nb.jit(normals, nopython=True) + +# Numba requires a memory address for void * +# Can also get address from x.ctypes.bit_generator.value +bit_generator_address = int(ffi.cast('uintptr_t', bit_generator)) + +norm = normalsj(1000, bit_generator_address) +print(norm[:12]) diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_generator.cpython-312-x86_64-linux-gnu.so b/.venv/lib/python3.12/site-packages/numpy/random/_generator.cpython-312-x86_64-linux-gnu.so new file mode 100755 index 0000000..a7650b5 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/_generator.cpython-312-x86_64-linux-gnu.so differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_generator.pyi b/.venv/lib/python3.12/site-packages/numpy/random/_generator.pyi new file mode 100644 index 0000000..dc78a76 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/_generator.pyi @@ -0,0 +1,856 @@ +from collections.abc import Callable +from typing import Any, Literal, TypeAlias, TypeVar, overload + +import numpy as np +from numpy import dtype, float32, float64, int64 +from numpy._typing import ( + ArrayLike, + DTypeLike, + NDArray, + _ArrayLikeFloat_co, + _ArrayLikeInt_co, + _BoolCodes, + _DoubleCodes, + _DTypeLike, + _DTypeLikeBool, + _Float32Codes, + _Float64Codes, + _FloatLike_co, + _Int8Codes, + _Int16Codes, + _Int32Codes, + _Int64Codes, + _IntPCodes, + _ShapeLike, + _SingleCodes, + _SupportsDType, + _UInt8Codes, + _UInt16Codes, + _UInt32Codes, + _UInt64Codes, + _UIntPCodes, +) +from numpy.random import BitGenerator, RandomState, SeedSequence + +_IntegerT = TypeVar("_IntegerT", bound=np.integer) + +_DTypeLikeFloat32: TypeAlias = ( + dtype[float32] + | _SupportsDType[dtype[float32]] + | type[float32] + | _Float32Codes + | _SingleCodes +) + +_DTypeLikeFloat64: TypeAlias = ( + dtype[float64] + | _SupportsDType[dtype[float64]] + | type[float] + | type[float64] + | _Float64Codes + | _DoubleCodes +) + +class Generator: + def __init__(self, bit_generator: BitGenerator) -> None: ... + def __repr__(self) -> str: ... + def __str__(self) -> str: ... + def __getstate__(self) -> None: ... + def __setstate__(self, state: dict[str, Any] | None) -> None: ... + def __reduce__(self) -> tuple[ + Callable[[BitGenerator], Generator], + tuple[BitGenerator], + None]: ... + @property + def bit_generator(self) -> BitGenerator: ... + def spawn(self, n_children: int) -> list[Generator]: ... + def bytes(self, length: int) -> bytes: ... + @overload + def standard_normal( # type: ignore[misc] + self, + size: None = ..., + dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ..., + out: None = ..., + ) -> float: ... + @overload + def standard_normal( # type: ignore[misc] + self, + size: _ShapeLike = ..., + ) -> NDArray[float64]: ... + @overload + def standard_normal( # type: ignore[misc] + self, + *, + out: NDArray[float64] = ..., + ) -> NDArray[float64]: ... + @overload + def standard_normal( # type: ignore[misc] + self, + size: _ShapeLike = ..., + dtype: _DTypeLikeFloat32 = ..., + out: NDArray[float32] | None = ..., + ) -> NDArray[float32]: ... + @overload + def standard_normal( # type: ignore[misc] + self, + size: _ShapeLike = ..., + dtype: _DTypeLikeFloat64 = ..., + out: NDArray[float64] | None = ..., + ) -> NDArray[float64]: ... + @overload + def permutation(self, x: int, axis: int = ...) -> NDArray[int64]: ... + @overload + def permutation(self, x: ArrayLike, axis: int = ...) -> NDArray[Any]: ... + @overload + def standard_exponential( # type: ignore[misc] + self, + size: None = ..., + dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ..., + method: Literal["zig", "inv"] = ..., + out: None = ..., + ) -> float: ... + @overload + def standard_exponential( + self, + size: _ShapeLike = ..., + ) -> NDArray[float64]: ... + @overload + def standard_exponential( + self, + *, + out: NDArray[float64] = ..., + ) -> NDArray[float64]: ... + @overload + def standard_exponential( + self, + size: _ShapeLike = ..., + *, + method: Literal["zig", "inv"] = ..., + out: NDArray[float64] | None = ..., + ) -> NDArray[float64]: ... + @overload + def standard_exponential( + self, + size: _ShapeLike = ..., + dtype: _DTypeLikeFloat32 = ..., + method: Literal["zig", "inv"] = ..., + out: NDArray[float32] | None = ..., + ) -> NDArray[float32]: ... + @overload + def standard_exponential( + self, + size: _ShapeLike = ..., + dtype: _DTypeLikeFloat64 = ..., + method: Literal["zig", "inv"] = ..., + out: NDArray[float64] | None = ..., + ) -> NDArray[float64]: ... + @overload + def random( # type: ignore[misc] + self, + size: None = ..., + dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ..., + out: None = ..., + ) -> float: ... + @overload + def random( + self, + *, + out: NDArray[float64] = ..., + ) -> NDArray[float64]: ... + @overload + def random( + self, + size: _ShapeLike = ..., + *, + out: NDArray[float64] | None = ..., + ) -> NDArray[float64]: ... + @overload + def random( + self, + size: _ShapeLike = ..., + dtype: _DTypeLikeFloat32 = ..., + out: NDArray[float32] | None = ..., + ) -> NDArray[float32]: ... + @overload + def random( + self, + size: _ShapeLike = ..., + dtype: _DTypeLikeFloat64 = ..., + out: NDArray[float64] | None = ..., + ) -> NDArray[float64]: ... + @overload + def beta( + self, + a: _FloatLike_co, + b: _FloatLike_co, + size: None = ..., + ) -> float: ... # type: ignore[misc] + @overload + def beta( + self, + a: _ArrayLikeFloat_co, + b: _ArrayLikeFloat_co, + size: _ShapeLike | None = ... + ) -> NDArray[float64]: ... + @overload + def exponential(self, scale: _FloatLike_co = ..., size: None = ...) -> float: ... # type: ignore[misc] + @overload + def exponential(self, scale: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ...) -> NDArray[float64]: ... + + # + @overload + def integers( + self, + low: int, + high: int | None = None, + size: None = None, + dtype: _DTypeLike[np.int64] | _Int64Codes = ..., + endpoint: bool = False, + ) -> np.int64: ... + @overload + def integers( + self, + low: int, + high: int | None = None, + size: None = None, + *, + dtype: type[bool], + endpoint: bool = False, + ) -> bool: ... + @overload + def integers( + self, + low: int, + high: int | None = None, + size: None = None, + *, + dtype: type[int], + endpoint: bool = False, + ) -> int: ... + @overload + def integers( + self, + low: int, + high: int | None = None, + size: None = None, + *, + dtype: _DTypeLike[np.bool] | _BoolCodes, + endpoint: bool = False, + ) -> np.bool: ... + @overload + def integers( + self, + low: int, + high: int | None = None, + size: None = None, + *, + dtype: _DTypeLike[_IntegerT], + endpoint: bool = False, + ) -> _IntegerT: ... + @overload + def integers( + self, + low: _ArrayLikeInt_co, + high: _ArrayLikeInt_co | None = None, + size: _ShapeLike | None = None, + dtype: _DTypeLike[np.int64] | _Int64Codes = ..., + endpoint: bool = False, + ) -> NDArray[np.int64]: ... + @overload + def integers( + self, + low: _ArrayLikeInt_co, + high: _ArrayLikeInt_co | None = None, + size: _ShapeLike | None = None, + *, + dtype: _DTypeLikeBool, + endpoint: bool = False, + ) -> NDArray[np.bool]: ... + @overload + def integers( + self, + low: _ArrayLikeInt_co, + high: _ArrayLikeInt_co | None = None, + size: _ShapeLike | None = None, + *, + dtype: _DTypeLike[_IntegerT], + endpoint: bool = False, + ) -> NDArray[_IntegerT]: ... + @overload + def integers( + self, + low: int, + high: int | None = None, + size: None = None, + *, + dtype: _Int8Codes, + endpoint: bool = False, + ) -> np.int8: ... + @overload + def integers( + self, + low: _ArrayLikeInt_co, + high: _ArrayLikeInt_co | None = None, + size: _ShapeLike | None = None, + *, + dtype: _Int8Codes, + endpoint: bool = False, + ) -> NDArray[np.int8]: ... + @overload + def integers( + self, + low: int, + high: int | None = None, + size: None = None, + *, + dtype: _UInt8Codes, + endpoint: bool = False, + ) -> np.uint8: ... + @overload + def integers( + self, + low: _ArrayLikeInt_co, + high: _ArrayLikeInt_co | None = None, + size: _ShapeLike | None = None, + *, + dtype: _UInt8Codes, + endpoint: bool = False, + ) -> NDArray[np.uint8]: ... + @overload + def integers( + self, + low: int, + high: int | None = None, + size: None = None, + *, + dtype: _Int16Codes, + endpoint: bool = False, + ) -> np.int16: ... + @overload + def integers( + self, + low: _ArrayLikeInt_co, + high: _ArrayLikeInt_co | None = None, + size: _ShapeLike | None = None, + *, + dtype: _Int16Codes, + endpoint: bool = False, + ) -> NDArray[np.int16]: ... + @overload + def integers( + self, + low: int, + high: int | None = None, + size: None = None, + *, + dtype: _UInt16Codes, + endpoint: bool = False, + ) -> np.uint16: ... + @overload + def integers( + self, + low: _ArrayLikeInt_co, + high: _ArrayLikeInt_co | None = None, + size: _ShapeLike | None = None, + *, + dtype: _UInt16Codes, + endpoint: bool = False, + ) -> NDArray[np.uint16]: ... + @overload + def integers( + self, + low: int, + high: int | None = None, + size: None = None, + *, + dtype: _Int32Codes, + endpoint: bool = False, + ) -> np.int32: ... + @overload + def integers( + self, + low: _ArrayLikeInt_co, + high: _ArrayLikeInt_co | None = None, + size: _ShapeLike | None = None, + *, + dtype: _Int32Codes, + endpoint: bool = False, + ) -> NDArray[np.int32]: ... + @overload + def integers( + self, + low: int, + high: int | None = None, + size: None = None, + *, + dtype: _UInt32Codes, + endpoint: bool = False, + ) -> np.uint32: ... + @overload + def integers( + self, + low: _ArrayLikeInt_co, + high: _ArrayLikeInt_co | None = None, + size: _ShapeLike | None = None, + *, + dtype: _UInt32Codes, + endpoint: bool = False, + ) -> NDArray[np.uint32]: ... + @overload + def integers( + self, + low: int, + high: int | None = None, + size: None = None, + *, + dtype: _UInt64Codes, + endpoint: bool = False, + ) -> np.uint64: ... + @overload + def integers( + self, + low: _ArrayLikeInt_co, + high: _ArrayLikeInt_co | None = None, + size: _ShapeLike | None = None, + *, + dtype: _UInt64Codes, + endpoint: bool = False, + ) -> NDArray[np.uint64]: ... + @overload + def integers( + self, + low: int, + high: int | None = None, + size: None = None, + *, + dtype: _IntPCodes, + endpoint: bool = False, + ) -> np.intp: ... + @overload + def integers( + self, + low: _ArrayLikeInt_co, + high: _ArrayLikeInt_co | None = None, + size: _ShapeLike | None = None, + *, + dtype: _IntPCodes, + endpoint: bool = False, + ) -> NDArray[np.intp]: ... + @overload + def integers( + self, + low: int, + high: int | None = None, + size: None = None, + *, + dtype: _UIntPCodes, + endpoint: bool = False, + ) -> np.uintp: ... + @overload + def integers( + self, + low: _ArrayLikeInt_co, + high: _ArrayLikeInt_co | None = None, + size: _ShapeLike | None = None, + *, + dtype: _UIntPCodes, + endpoint: bool = False, + ) -> NDArray[np.uintp]: ... + @overload + def integers( + self, + low: int, + high: int | None = None, + size: None = None, + dtype: DTypeLike = ..., + endpoint: bool = False, + ) -> Any: ... + @overload + def integers( + self, + low: _ArrayLikeInt_co, + high: _ArrayLikeInt_co | None = None, + size: _ShapeLike | None = None, + dtype: DTypeLike = ..., + endpoint: bool = False, + ) -> NDArray[Any]: ... + + # TODO: Use a TypeVar _T here to get away from Any output? + # Should be int->NDArray[int64], ArrayLike[_T] -> _T | NDArray[Any] + @overload + def choice( + self, + a: int, + size: None = ..., + replace: bool = ..., + p: _ArrayLikeFloat_co | None = ..., + axis: int = ..., + shuffle: bool = ..., + ) -> int: ... + @overload + def choice( + self, + a: int, + size: _ShapeLike = ..., + replace: bool = ..., + p: _ArrayLikeFloat_co | None = ..., + axis: int = ..., + shuffle: bool = ..., + ) -> NDArray[int64]: ... + @overload + def choice( + self, + a: ArrayLike, + size: None = ..., + replace: bool = ..., + p: _ArrayLikeFloat_co | None = ..., + axis: int = ..., + shuffle: bool = ..., + ) -> Any: ... + @overload + def choice( + self, + a: ArrayLike, + size: _ShapeLike = ..., + replace: bool = ..., + p: _ArrayLikeFloat_co | None = ..., + axis: int = ..., + shuffle: bool = ..., + ) -> NDArray[Any]: ... + @overload + def uniform( + self, + low: _FloatLike_co = ..., + high: _FloatLike_co = ..., + size: None = ..., + ) -> float: ... # type: ignore[misc] + @overload + def uniform( + self, + low: _ArrayLikeFloat_co = ..., + high: _ArrayLikeFloat_co = ..., + size: _ShapeLike | None = ..., + ) -> NDArray[float64]: ... + @overload + def normal( + self, + loc: _FloatLike_co = ..., + scale: _FloatLike_co = ..., + size: None = ..., + ) -> float: ... # type: ignore[misc] + @overload + def normal( + self, + loc: _ArrayLikeFloat_co = ..., + scale: _ArrayLikeFloat_co = ..., + size: _ShapeLike | None = ..., + ) -> NDArray[float64]: ... + @overload + def standard_gamma( # type: ignore[misc] + self, + shape: _FloatLike_co, + size: None = ..., + dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ..., + out: None = ..., + ) -> float: ... + @overload + def standard_gamma( + self, + shape: _ArrayLikeFloat_co, + size: _ShapeLike | None = ..., + ) -> NDArray[float64]: ... + @overload + def standard_gamma( + self, + shape: _ArrayLikeFloat_co, + *, + out: NDArray[float64] = ..., + ) -> NDArray[float64]: ... + @overload + def standard_gamma( + self, + shape: _ArrayLikeFloat_co, + size: _ShapeLike | None = ..., + dtype: _DTypeLikeFloat32 = ..., + out: NDArray[float32] | None = ..., + ) -> NDArray[float32]: ... + @overload + def standard_gamma( + self, + shape: _ArrayLikeFloat_co, + size: _ShapeLike | None = ..., + dtype: _DTypeLikeFloat64 = ..., + out: NDArray[float64] | None = ..., + ) -> NDArray[float64]: ... + @overload + def gamma( + self, shape: _FloatLike_co, scale: _FloatLike_co = ..., size: None = ... + ) -> float: ... # type: ignore[misc] + @overload + def gamma( + self, + shape: _ArrayLikeFloat_co, + scale: _ArrayLikeFloat_co = ..., + size: _ShapeLike | None = ..., + ) -> NDArray[float64]: ... + @overload + def f( + self, dfnum: _FloatLike_co, dfden: _FloatLike_co, size: None = ... + ) -> float: ... # type: ignore[misc] + @overload + def f( + self, + dfnum: _ArrayLikeFloat_co, + dfden: _ArrayLikeFloat_co, + size: _ShapeLike | None = ... + ) -> NDArray[float64]: ... + @overload + def noncentral_f( + self, + dfnum: _FloatLike_co, + dfden: _FloatLike_co, + nonc: _FloatLike_co, size: None = ... + ) -> float: ... # type: ignore[misc] + @overload + def noncentral_f( + self, + dfnum: _ArrayLikeFloat_co, + dfden: _ArrayLikeFloat_co, + nonc: _ArrayLikeFloat_co, + size: _ShapeLike | None = ..., + ) -> NDArray[float64]: ... + @overload + def chisquare(self, df: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def chisquare( + self, df: _ArrayLikeFloat_co, size: _ShapeLike | None = ... + ) -> NDArray[float64]: ... + @overload + def noncentral_chisquare( + self, df: _FloatLike_co, nonc: _FloatLike_co, size: None = ... + ) -> float: ... # type: ignore[misc] + @overload + def noncentral_chisquare( + self, + df: _ArrayLikeFloat_co, + nonc: _ArrayLikeFloat_co, + size: _ShapeLike | None = ... + ) -> NDArray[float64]: ... + @overload + def standard_t(self, df: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def standard_t( + self, df: _ArrayLikeFloat_co, size: None = ... + ) -> NDArray[float64]: ... + @overload + def standard_t( + self, df: _ArrayLikeFloat_co, size: _ShapeLike = ... + ) -> NDArray[float64]: ... + @overload + def vonmises( + self, mu: _FloatLike_co, kappa: _FloatLike_co, size: None = ... + ) -> float: ... # type: ignore[misc] + @overload + def vonmises( + self, + mu: _ArrayLikeFloat_co, + kappa: _ArrayLikeFloat_co, + size: _ShapeLike | None = ... + ) -> NDArray[float64]: ... + @overload + def pareto(self, a: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def pareto( + self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ... + ) -> NDArray[float64]: ... + @overload + def weibull(self, a: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def weibull( + self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ... + ) -> NDArray[float64]: ... + @overload + def power(self, a: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def power( + self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ... + ) -> NDArray[float64]: ... + @overload + def standard_cauchy(self, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def standard_cauchy(self, size: _ShapeLike = ...) -> NDArray[float64]: ... + @overload + def laplace( + self, + loc: _FloatLike_co = ..., + scale: _FloatLike_co = ..., + size: None = ..., + ) -> float: ... # type: ignore[misc] + @overload + def laplace( + self, + loc: _ArrayLikeFloat_co = ..., + scale: _ArrayLikeFloat_co = ..., + size: _ShapeLike | None = ..., + ) -> NDArray[float64]: ... + @overload + def gumbel( + self, + loc: _FloatLike_co = ..., + scale: _FloatLike_co = ..., + size: None = ..., + ) -> float: ... # type: ignore[misc] + @overload + def gumbel( + self, + loc: _ArrayLikeFloat_co = ..., + scale: _ArrayLikeFloat_co = ..., + size: _ShapeLike | None = ..., + ) -> NDArray[float64]: ... + @overload + def logistic( + self, + loc: _FloatLike_co = ..., + scale: _FloatLike_co = ..., + size: None = ..., + ) -> float: ... # type: ignore[misc] + @overload + def logistic( + self, + loc: _ArrayLikeFloat_co = ..., + scale: _ArrayLikeFloat_co = ..., + size: _ShapeLike | None = ..., + ) -> NDArray[float64]: ... + @overload + def lognormal( + self, + mean: _FloatLike_co = ..., + sigma: _FloatLike_co = ..., + size: None = ..., + ) -> float: ... # type: ignore[misc] + @overload + def lognormal( + self, + mean: _ArrayLikeFloat_co = ..., + sigma: _ArrayLikeFloat_co = ..., + size: _ShapeLike | None = ..., + ) -> NDArray[float64]: ... + @overload + def rayleigh(self, scale: _FloatLike_co = ..., size: None = ...) -> float: ... # type: ignore[misc] + @overload + def rayleigh( + self, scale: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ... + ) -> NDArray[float64]: ... + @overload + def wald( + self, mean: _FloatLike_co, scale: _FloatLike_co, size: None = ... + ) -> float: ... # type: ignore[misc] + @overload + def wald( + self, + mean: _ArrayLikeFloat_co, + scale: _ArrayLikeFloat_co, + size: _ShapeLike | None = ... + ) -> NDArray[float64]: ... + @overload + def triangular( + self, + left: _FloatLike_co, + mode: _FloatLike_co, + right: _FloatLike_co, + size: None = ..., + ) -> float: ... # type: ignore[misc] + @overload + def triangular( + self, + left: _ArrayLikeFloat_co, + mode: _ArrayLikeFloat_co, + right: _ArrayLikeFloat_co, + size: _ShapeLike | None = ..., + ) -> NDArray[float64]: ... + @overload + def binomial(self, n: int, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc] + @overload + def binomial( + self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: _ShapeLike | None = ... + ) -> NDArray[int64]: ... + @overload + def negative_binomial( + self, n: _FloatLike_co, p: _FloatLike_co, size: None = ... + ) -> int: ... # type: ignore[misc] + @overload + def negative_binomial( + self, + n: _ArrayLikeFloat_co, + p: _ArrayLikeFloat_co, + size: _ShapeLike | None = ... + ) -> NDArray[int64]: ... + @overload + def poisson(self, lam: _FloatLike_co = ..., size: None = ...) -> int: ... # type: ignore[misc] + @overload + def poisson( + self, lam: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ... + ) -> NDArray[int64]: ... + @overload + def zipf(self, a: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc] + @overload + def zipf( + self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ... + ) -> NDArray[int64]: ... + @overload + def geometric(self, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc] + @overload + def geometric( + self, p: _ArrayLikeFloat_co, size: _ShapeLike | None = ... + ) -> NDArray[int64]: ... + @overload + def hypergeometric( + self, ngood: int, nbad: int, nsample: int, size: None = ... + ) -> int: ... # type: ignore[misc] + @overload + def hypergeometric( + self, + ngood: _ArrayLikeInt_co, + nbad: _ArrayLikeInt_co, + nsample: _ArrayLikeInt_co, + size: _ShapeLike | None = ..., + ) -> NDArray[int64]: ... + @overload + def logseries(self, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc] + @overload + def logseries( + self, p: _ArrayLikeFloat_co, size: _ShapeLike | None = ... + ) -> NDArray[int64]: ... + def multivariate_normal( + self, + mean: _ArrayLikeFloat_co, + cov: _ArrayLikeFloat_co, + size: _ShapeLike | None = ..., + check_valid: Literal["warn", "raise", "ignore"] = ..., + tol: float = ..., + *, + method: Literal["svd", "eigh", "cholesky"] = ..., + ) -> NDArray[float64]: ... + def multinomial( + self, n: _ArrayLikeInt_co, + pvals: _ArrayLikeFloat_co, + size: _ShapeLike | None = ... + ) -> NDArray[int64]: ... + def multivariate_hypergeometric( + self, + colors: _ArrayLikeInt_co, + nsample: int, + size: _ShapeLike | None = ..., + method: Literal["marginals", "count"] = ..., + ) -> NDArray[int64]: ... + def dirichlet( + self, alpha: _ArrayLikeFloat_co, size: _ShapeLike | None = ... + ) -> NDArray[float64]: ... + def permuted( + self, x: ArrayLike, *, axis: int | None = ..., out: NDArray[Any] | None = ... + ) -> NDArray[Any]: ... + def shuffle(self, x: ArrayLike, axis: int = ...) -> None: ... + +def default_rng( + seed: _ArrayLikeInt_co | SeedSequence | BitGenerator | Generator | RandomState | None = ... +) -> Generator: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_mt19937.cpython-312-x86_64-linux-gnu.so b/.venv/lib/python3.12/site-packages/numpy/random/_mt19937.cpython-312-x86_64-linux-gnu.so new file mode 100755 index 0000000..7435865 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/_mt19937.cpython-312-x86_64-linux-gnu.so differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_mt19937.pyi b/.venv/lib/python3.12/site-packages/numpy/random/_mt19937.pyi new file mode 100644 index 0000000..70b2506 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/_mt19937.pyi @@ -0,0 +1,25 @@ +from typing import TypedDict, type_check_only + +from numpy import uint32 +from numpy._typing import _ArrayLikeInt_co +from numpy.random.bit_generator import BitGenerator, SeedSequence +from numpy.typing import NDArray + +@type_check_only +class _MT19937Internal(TypedDict): + key: NDArray[uint32] + pos: int + +@type_check_only +class _MT19937State(TypedDict): + bit_generator: str + state: _MT19937Internal + +class MT19937(BitGenerator): + def __init__(self, seed: _ArrayLikeInt_co | SeedSequence | None = ...) -> None: ... + def _legacy_seeding(self, seed: _ArrayLikeInt_co) -> None: ... + def jumped(self, jumps: int = ...) -> MT19937: ... + @property + def state(self) -> _MT19937State: ... + @state.setter + def state(self, value: _MT19937State) -> None: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_pcg64.cpython-312-x86_64-linux-gnu.so b/.venv/lib/python3.12/site-packages/numpy/random/_pcg64.cpython-312-x86_64-linux-gnu.so new file mode 100755 index 0000000..26ec05b Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/_pcg64.cpython-312-x86_64-linux-gnu.so differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_pcg64.pyi b/.venv/lib/python3.12/site-packages/numpy/random/_pcg64.pyi new file mode 100644 index 0000000..5dc7bb6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/_pcg64.pyi @@ -0,0 +1,44 @@ +from typing import TypedDict, type_check_only + +from numpy._typing import _ArrayLikeInt_co +from numpy.random.bit_generator import BitGenerator, SeedSequence + +@type_check_only +class _PCG64Internal(TypedDict): + state: int + inc: int + +@type_check_only +class _PCG64State(TypedDict): + bit_generator: str + state: _PCG64Internal + has_uint32: int + uinteger: int + +class PCG64(BitGenerator): + def __init__(self, seed: _ArrayLikeInt_co | SeedSequence | None = ...) -> None: ... + def jumped(self, jumps: int = ...) -> PCG64: ... + @property + def state( + self, + ) -> _PCG64State: ... + @state.setter + def state( + self, + value: _PCG64State, + ) -> None: ... + def advance(self, delta: int) -> PCG64: ... + +class PCG64DXSM(BitGenerator): + def __init__(self, seed: _ArrayLikeInt_co | SeedSequence | None = ...) -> None: ... + def jumped(self, jumps: int = ...) -> PCG64DXSM: ... + @property + def state( + self, + ) -> _PCG64State: ... + @state.setter + def state( + self, + value: _PCG64State, + ) -> None: ... + def advance(self, delta: int) -> PCG64DXSM: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_philox.cpython-312-x86_64-linux-gnu.so b/.venv/lib/python3.12/site-packages/numpy/random/_philox.cpython-312-x86_64-linux-gnu.so new file mode 100755 index 0000000..2cb63d5 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/_philox.cpython-312-x86_64-linux-gnu.so differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_philox.pyi b/.venv/lib/python3.12/site-packages/numpy/random/_philox.pyi new file mode 100644 index 0000000..d8895bb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/_philox.pyi @@ -0,0 +1,39 @@ +from typing import TypedDict, type_check_only + +from numpy import uint64 +from numpy._typing import _ArrayLikeInt_co +from numpy.random.bit_generator import BitGenerator, SeedSequence +from numpy.typing import NDArray + +@type_check_only +class _PhiloxInternal(TypedDict): + counter: NDArray[uint64] + key: NDArray[uint64] + +@type_check_only +class _PhiloxState(TypedDict): + bit_generator: str + state: _PhiloxInternal + buffer: NDArray[uint64] + buffer_pos: int + has_uint32: int + uinteger: int + +class Philox(BitGenerator): + def __init__( + self, + seed: _ArrayLikeInt_co | SeedSequence | None = ..., + counter: _ArrayLikeInt_co | None = ..., + key: _ArrayLikeInt_co | None = ..., + ) -> None: ... + @property + def state( + self, + ) -> _PhiloxState: ... + @state.setter + def state( + self, + value: _PhiloxState, + ) -> None: ... + def jumped(self, jumps: int = ...) -> Philox: ... + def advance(self, delta: int) -> Philox: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_pickle.py b/.venv/lib/python3.12/site-packages/numpy/random/_pickle.py new file mode 100644 index 0000000..05f7232 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/_pickle.py @@ -0,0 +1,88 @@ +from ._generator import Generator +from ._mt19937 import MT19937 +from ._pcg64 import PCG64, PCG64DXSM +from ._philox import Philox +from ._sfc64 import SFC64 +from .bit_generator import BitGenerator +from .mtrand import RandomState + +BitGenerators = {'MT19937': MT19937, + 'PCG64': PCG64, + 'PCG64DXSM': PCG64DXSM, + 'Philox': Philox, + 'SFC64': SFC64, + } + + +def __bit_generator_ctor(bit_generator: str | type[BitGenerator] = 'MT19937'): + """ + Pickling helper function that returns a bit generator object + + Parameters + ---------- + bit_generator : type[BitGenerator] or str + BitGenerator class or string containing the name of the BitGenerator + + Returns + ------- + BitGenerator + BitGenerator instance + """ + if isinstance(bit_generator, type): + bit_gen_class = bit_generator + elif bit_generator in BitGenerators: + bit_gen_class = BitGenerators[bit_generator] + else: + raise ValueError( + str(bit_generator) + ' is not a known BitGenerator module.' + ) + + return bit_gen_class() + + +def __generator_ctor(bit_generator_name="MT19937", + bit_generator_ctor=__bit_generator_ctor): + """ + Pickling helper function that returns a Generator object + + Parameters + ---------- + bit_generator_name : str or BitGenerator + String containing the core BitGenerator's name or a + BitGenerator instance + bit_generator_ctor : callable, optional + Callable function that takes bit_generator_name as its only argument + and returns an instantized bit generator. + + Returns + ------- + rg : Generator + Generator using the named core BitGenerator + """ + if isinstance(bit_generator_name, BitGenerator): + return Generator(bit_generator_name) + # Legacy path that uses a bit generator name and ctor + return Generator(bit_generator_ctor(bit_generator_name)) + + +def __randomstate_ctor(bit_generator_name="MT19937", + bit_generator_ctor=__bit_generator_ctor): + """ + Pickling helper function that returns a legacy RandomState-like object + + Parameters + ---------- + bit_generator_name : str + String containing the core BitGenerator's name + bit_generator_ctor : callable, optional + Callable function that takes bit_generator_name as its only argument + and returns an instantized bit generator. + + Returns + ------- + rs : RandomState + Legacy RandomState using the named core BitGenerator + """ + if isinstance(bit_generator_name, BitGenerator): + return RandomState(bit_generator_name) + return RandomState(bit_generator_ctor(bit_generator_name)) diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_pickle.pyi b/.venv/lib/python3.12/site-packages/numpy/random/_pickle.pyi new file mode 100644 index 0000000..b8b1b7b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/_pickle.pyi @@ -0,0 +1,43 @@ +from collections.abc import Callable +from typing import Final, Literal, TypedDict, TypeVar, overload, type_check_only + +from numpy.random._generator import Generator +from numpy.random._mt19937 import MT19937 +from numpy.random._pcg64 import PCG64, PCG64DXSM +from numpy.random._philox import Philox +from numpy.random._sfc64 import SFC64 +from numpy.random.bit_generator import BitGenerator +from numpy.random.mtrand import RandomState + +_T = TypeVar("_T", bound=BitGenerator) + +@type_check_only +class _BitGenerators(TypedDict): + MT19937: type[MT19937] + PCG64: type[PCG64] + PCG64DXSM: type[PCG64DXSM] + Philox: type[Philox] + SFC64: type[SFC64] + +BitGenerators: Final[_BitGenerators] = ... + +@overload +def __bit_generator_ctor(bit_generator: Literal["MT19937"] = "MT19937") -> MT19937: ... +@overload +def __bit_generator_ctor(bit_generator: Literal["PCG64"]) -> PCG64: ... +@overload +def __bit_generator_ctor(bit_generator: Literal["PCG64DXSM"]) -> PCG64DXSM: ... +@overload +def __bit_generator_ctor(bit_generator: Literal["Philox"]) -> Philox: ... +@overload +def __bit_generator_ctor(bit_generator: Literal["SFC64"]) -> SFC64: ... +@overload +def __bit_generator_ctor(bit_generator: type[_T]) -> _T: ... +def __generator_ctor( + bit_generator_name: str | type[BitGenerator] | BitGenerator = "MT19937", + bit_generator_ctor: Callable[[str | type[BitGenerator]], BitGenerator] = ..., +) -> Generator: ... +def __randomstate_ctor( + bit_generator_name: str | type[BitGenerator] | BitGenerator = "MT19937", + bit_generator_ctor: Callable[[str | type[BitGenerator]], BitGenerator] = ..., +) -> RandomState: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_sfc64.cpython-312-x86_64-linux-gnu.so b/.venv/lib/python3.12/site-packages/numpy/random/_sfc64.cpython-312-x86_64-linux-gnu.so new file mode 100755 index 0000000..f52e574 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/_sfc64.cpython-312-x86_64-linux-gnu.so differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/_sfc64.pyi b/.venv/lib/python3.12/site-packages/numpy/random/_sfc64.pyi new file mode 100644 index 0000000..a6f0d84 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/_sfc64.pyi @@ -0,0 +1,28 @@ +from typing import TypedDict, type_check_only + +from numpy import uint64 +from numpy._typing import NDArray, _ArrayLikeInt_co +from numpy.random.bit_generator import BitGenerator, SeedSequence + +@type_check_only +class _SFC64Internal(TypedDict): + state: NDArray[uint64] + +@type_check_only +class _SFC64State(TypedDict): + bit_generator: str + state: _SFC64Internal + has_uint32: int + uinteger: int + +class SFC64(BitGenerator): + def __init__(self, seed: _ArrayLikeInt_co | SeedSequence | None = ...) -> None: ... + @property + def state( + self, + ) -> _SFC64State: ... + @state.setter + def state( + self, + value: _SFC64State, + ) -> None: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/random/bit_generator.cpython-312-x86_64-linux-gnu.so b/.venv/lib/python3.12/site-packages/numpy/random/bit_generator.cpython-312-x86_64-linux-gnu.so new file mode 100755 index 0000000..4be63b1 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/bit_generator.cpython-312-x86_64-linux-gnu.so differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/bit_generator.pxd b/.venv/lib/python3.12/site-packages/numpy/random/bit_generator.pxd new file mode 100644 index 0000000..dfa7d0a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/bit_generator.pxd @@ -0,0 +1,35 @@ +cimport numpy as np +from libc.stdint cimport uint32_t, uint64_t + +cdef extern from "numpy/random/bitgen.h": + struct bitgen: + void *state + uint64_t (*next_uint64)(void *st) nogil + uint32_t (*next_uint32)(void *st) nogil + double (*next_double)(void *st) nogil + uint64_t (*next_raw)(void *st) nogil + + ctypedef bitgen bitgen_t + +cdef class BitGenerator(): + cdef readonly object _seed_seq + cdef readonly object lock + cdef bitgen_t _bitgen + cdef readonly object _ctypes + cdef readonly object _cffi + cdef readonly object capsule + + +cdef class SeedSequence(): + cdef readonly object entropy + cdef readonly tuple spawn_key + cdef readonly Py_ssize_t pool_size + cdef readonly object pool + cdef readonly uint32_t n_children_spawned + + cdef mix_entropy(self, np.ndarray[np.npy_uint32, ndim=1] mixer, + np.ndarray[np.npy_uint32, ndim=1] entropy_array) + cdef get_assembled_entropy(self) + +cdef class SeedlessSequence(): + pass diff --git a/.venv/lib/python3.12/site-packages/numpy/random/bit_generator.pyi b/.venv/lib/python3.12/site-packages/numpy/random/bit_generator.pyi new file mode 100644 index 0000000..6ce4f4b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/bit_generator.pyi @@ -0,0 +1,124 @@ +import abc +from collections.abc import Callable, Mapping, Sequence +from threading import Lock +from typing import ( + Any, + ClassVar, + Literal, + NamedTuple, + Self, + TypeAlias, + TypedDict, + overload, + type_check_only, +) + +from _typeshed import Incomplete +from typing_extensions import CapsuleType + +import numpy as np +from numpy._typing import ( + NDArray, + _ArrayLikeInt_co, + _DTypeLike, + _ShapeLike, + _UInt32Codes, + _UInt64Codes, +) + +__all__ = ["BitGenerator", "SeedSequence"] + +### + +_DTypeLikeUint_: TypeAlias = _DTypeLike[np.uint32 | np.uint64] | _UInt32Codes | _UInt64Codes + +@type_check_only +class _SeedSeqState(TypedDict): + entropy: int | Sequence[int] | None + spawn_key: tuple[int, ...] + pool_size: int + n_children_spawned: int + +@type_check_only +class _Interface(NamedTuple): + state_address: Incomplete + state: Incomplete + next_uint64: Incomplete + next_uint32: Incomplete + next_double: Incomplete + bit_generator: Incomplete + +@type_check_only +class _CythonMixin: + def __setstate_cython__(self, pyx_state: object, /) -> None: ... + def __reduce_cython__(self) -> Any: ... # noqa: ANN401 + +@type_check_only +class _GenerateStateMixin(_CythonMixin): + def generate_state(self, /, n_words: int, dtype: _DTypeLikeUint_ = ...) -> NDArray[np.uint32 | np.uint64]: ... + +### + +class ISeedSequence(abc.ABC): + @abc.abstractmethod + def generate_state(self, /, n_words: int, dtype: _DTypeLikeUint_ = ...) -> NDArray[np.uint32 | np.uint64]: ... + +class ISpawnableSeedSequence(ISeedSequence, abc.ABC): + @abc.abstractmethod + def spawn(self, /, n_children: int) -> list[Self]: ... + +class SeedlessSeedSequence(_GenerateStateMixin, ISpawnableSeedSequence): + def spawn(self, /, n_children: int) -> list[Self]: ... + +class SeedSequence(_GenerateStateMixin, ISpawnableSeedSequence): + __pyx_vtable__: ClassVar[CapsuleType] = ... + + entropy: int | Sequence[int] | None + spawn_key: tuple[int, ...] + pool_size: int + n_children_spawned: int + pool: NDArray[np.uint32] + + def __init__( + self, + /, + entropy: _ArrayLikeInt_co | None = None, + *, + spawn_key: Sequence[int] = (), + pool_size: int = 4, + n_children_spawned: int = ..., + ) -> None: ... + def spawn(self, /, n_children: int) -> list[Self]: ... + @property + def state(self) -> _SeedSeqState: ... + +class BitGenerator(_CythonMixin, abc.ABC): + lock: Lock + @property + def state(self) -> Mapping[str, Any]: ... + @state.setter + def state(self, value: Mapping[str, Any], /) -> None: ... + @property + def seed_seq(self) -> ISeedSequence: ... + @property + def ctypes(self) -> _Interface: ... + @property + def cffi(self) -> _Interface: ... + @property + def capsule(self) -> CapsuleType: ... + + # + def __init__(self, /, seed: _ArrayLikeInt_co | SeedSequence | None = None) -> None: ... + def __reduce__(self) -> tuple[Callable[[str], Self], tuple[str], tuple[Mapping[str, Any], ISeedSequence]]: ... + def spawn(self, /, n_children: int) -> list[Self]: ... + def _benchmark(self, /, cnt: int, method: str = "uint64") -> None: ... + + # + @overload + def random_raw(self, /, size: None = None, output: Literal[True] = True) -> int: ... + @overload + def random_raw(self, /, size: _ShapeLike, output: Literal[True] = True) -> NDArray[np.uint64]: ... + @overload + def random_raw(self, /, size: _ShapeLike | None, output: Literal[False]) -> None: ... + @overload + def random_raw(self, /, size: _ShapeLike | None = None, *, output: Literal[False]) -> None: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/random/c_distributions.pxd b/.venv/lib/python3.12/site-packages/numpy/random/c_distributions.pxd new file mode 100644 index 0000000..da790ca --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/c_distributions.pxd @@ -0,0 +1,119 @@ +#cython: wraparound=False, nonecheck=False, boundscheck=False, cdivision=True, language_level=3 +from numpy cimport npy_intp + +from libc.stdint cimport (uint64_t, int32_t, int64_t) +from numpy.random cimport bitgen_t + +cdef extern from "numpy/random/distributions.h": + + struct s_binomial_t: + int has_binomial + double psave + int64_t nsave + double r + double q + double fm + int64_t m + double p1 + double xm + double xl + double xr + double c + double laml + double lamr + double p2 + double p3 + double p4 + + ctypedef s_binomial_t binomial_t + + float random_standard_uniform_f(bitgen_t *bitgen_state) nogil + double random_standard_uniform(bitgen_t *bitgen_state) nogil + void random_standard_uniform_fill(bitgen_t* bitgen_state, npy_intp cnt, double *out) nogil + void random_standard_uniform_fill_f(bitgen_t *bitgen_state, npy_intp cnt, float *out) nogil + + double random_standard_exponential(bitgen_t *bitgen_state) nogil + float random_standard_exponential_f(bitgen_t *bitgen_state) nogil + void random_standard_exponential_fill(bitgen_t *bitgen_state, npy_intp cnt, double *out) nogil + void random_standard_exponential_fill_f(bitgen_t *bitgen_state, npy_intp cnt, float *out) nogil + void random_standard_exponential_inv_fill(bitgen_t *bitgen_state, npy_intp cnt, double *out) nogil + void random_standard_exponential_inv_fill_f(bitgen_t *bitgen_state, npy_intp cnt, float *out) nogil + + double random_standard_normal(bitgen_t* bitgen_state) nogil + float random_standard_normal_f(bitgen_t *bitgen_state) nogil + void random_standard_normal_fill(bitgen_t *bitgen_state, npy_intp count, double *out) nogil + void random_standard_normal_fill_f(bitgen_t *bitgen_state, npy_intp count, float *out) nogil + double random_standard_gamma(bitgen_t *bitgen_state, double shape) nogil + float random_standard_gamma_f(bitgen_t *bitgen_state, float shape) nogil + + float random_standard_uniform_f(bitgen_t *bitgen_state) nogil + void random_standard_uniform_fill_f(bitgen_t* bitgen_state, npy_intp cnt, float *out) nogil + float random_standard_normal_f(bitgen_t* bitgen_state) nogil + float random_standard_gamma_f(bitgen_t *bitgen_state, float shape) nogil + + int64_t random_positive_int64(bitgen_t *bitgen_state) nogil + int32_t random_positive_int32(bitgen_t *bitgen_state) nogil + int64_t random_positive_int(bitgen_t *bitgen_state) nogil + uint64_t random_uint(bitgen_t *bitgen_state) nogil + + double random_normal(bitgen_t *bitgen_state, double loc, double scale) nogil + + double random_gamma(bitgen_t *bitgen_state, double shape, double scale) nogil + float random_gamma_f(bitgen_t *bitgen_state, float shape, float scale) nogil + + double random_exponential(bitgen_t *bitgen_state, double scale) nogil + double random_uniform(bitgen_t *bitgen_state, double lower, double range) nogil + double random_beta(bitgen_t *bitgen_state, double a, double b) nogil + double random_chisquare(bitgen_t *bitgen_state, double df) nogil + double random_f(bitgen_t *bitgen_state, double dfnum, double dfden) nogil + double random_standard_cauchy(bitgen_t *bitgen_state) nogil + double random_pareto(bitgen_t *bitgen_state, double a) nogil + double random_weibull(bitgen_t *bitgen_state, double a) nogil + double random_power(bitgen_t *bitgen_state, double a) nogil + double random_laplace(bitgen_t *bitgen_state, double loc, double scale) nogil + double random_gumbel(bitgen_t *bitgen_state, double loc, double scale) nogil + double random_logistic(bitgen_t *bitgen_state, double loc, double scale) nogil + double random_lognormal(bitgen_t *bitgen_state, double mean, double sigma) nogil + double random_rayleigh(bitgen_t *bitgen_state, double mode) nogil + double random_standard_t(bitgen_t *bitgen_state, double df) nogil + double random_noncentral_chisquare(bitgen_t *bitgen_state, double df, + double nonc) nogil + double random_noncentral_f(bitgen_t *bitgen_state, double dfnum, + double dfden, double nonc) nogil + double random_wald(bitgen_t *bitgen_state, double mean, double scale) nogil + double random_vonmises(bitgen_t *bitgen_state, double mu, double kappa) nogil + double random_triangular(bitgen_t *bitgen_state, double left, double mode, + double right) nogil + + int64_t random_poisson(bitgen_t *bitgen_state, double lam) nogil + int64_t random_negative_binomial(bitgen_t *bitgen_state, double n, double p) nogil + int64_t random_binomial(bitgen_t *bitgen_state, double p, int64_t n, binomial_t *binomial) nogil + int64_t random_logseries(bitgen_t *bitgen_state, double p) nogil + int64_t random_geometric_search(bitgen_t *bitgen_state, double p) nogil + int64_t random_geometric_inversion(bitgen_t *bitgen_state, double p) nogil + int64_t random_geometric(bitgen_t *bitgen_state, double p) nogil + int64_t random_zipf(bitgen_t *bitgen_state, double a) nogil + int64_t random_hypergeometric(bitgen_t *bitgen_state, int64_t good, int64_t bad, + int64_t sample) nogil + + uint64_t random_interval(bitgen_t *bitgen_state, uint64_t max) nogil + + # Generate random uint64 numbers in closed interval [off, off + rng]. + uint64_t random_bounded_uint64(bitgen_t *bitgen_state, + uint64_t off, uint64_t rng, + uint64_t mask, bint use_masked) nogil + + void random_multinomial(bitgen_t *bitgen_state, int64_t n, int64_t *mnix, + double *pix, npy_intp d, binomial_t *binomial) nogil + + int random_multivariate_hypergeometric_count(bitgen_t *bitgen_state, + int64_t total, + size_t num_colors, int64_t *colors, + int64_t nsample, + size_t num_variates, int64_t *variates) nogil + void random_multivariate_hypergeometric_marginals(bitgen_t *bitgen_state, + int64_t total, + size_t num_colors, int64_t *colors, + int64_t nsample, + size_t num_variates, int64_t *variates) nogil + diff --git a/.venv/lib/python3.12/site-packages/numpy/random/lib/libnpyrandom.a b/.venv/lib/python3.12/site-packages/numpy/random/lib/libnpyrandom.a new file mode 100644 index 0000000..6c180dd Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/lib/libnpyrandom.a differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/mtrand.cpython-312-x86_64-linux-gnu.so b/.venv/lib/python3.12/site-packages/numpy/random/mtrand.cpython-312-x86_64-linux-gnu.so new file mode 100755 index 0000000..c51105e Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/mtrand.cpython-312-x86_64-linux-gnu.so differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/mtrand.pyi b/.venv/lib/python3.12/site-packages/numpy/random/mtrand.pyi new file mode 100644 index 0000000..54bb146 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/mtrand.pyi @@ -0,0 +1,703 @@ +import builtins +from collections.abc import Callable +from typing import Any, Literal, overload + +import numpy as np +from numpy import ( + dtype, + float64, + int8, + int16, + int32, + int64, + int_, + long, + uint, + uint8, + uint16, + uint32, + uint64, + ulong, +) +from numpy._typing import ( + ArrayLike, + NDArray, + _ArrayLikeFloat_co, + _ArrayLikeInt_co, + _DTypeLikeBool, + _Int8Codes, + _Int16Codes, + _Int32Codes, + _Int64Codes, + _IntCodes, + _LongCodes, + _ShapeLike, + _SupportsDType, + _UInt8Codes, + _UInt16Codes, + _UInt32Codes, + _UInt64Codes, + _UIntCodes, + _ULongCodes, +) +from numpy.random.bit_generator import BitGenerator + +class RandomState: + _bit_generator: BitGenerator + def __init__(self, seed: _ArrayLikeInt_co | BitGenerator | None = ...) -> None: ... + def __repr__(self) -> str: ... + def __str__(self) -> str: ... + def __getstate__(self) -> dict[str, Any]: ... + def __setstate__(self, state: dict[str, Any]) -> None: ... + def __reduce__(self) -> tuple[Callable[[BitGenerator], RandomState], tuple[BitGenerator], dict[str, Any]]: ... # noqa: E501 + def seed(self, seed: _ArrayLikeFloat_co | None = ...) -> None: ... + @overload + def get_state(self, legacy: Literal[False] = ...) -> dict[str, Any]: ... + @overload + def get_state( + self, legacy: Literal[True] = ... + ) -> dict[str, Any] | tuple[str, NDArray[uint32], int, int, float]: ... + def set_state( + self, state: dict[str, Any] | tuple[str, NDArray[uint32], int, int, float] + ) -> None: ... + @overload + def random_sample(self, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def random_sample(self, size: _ShapeLike) -> NDArray[float64]: ... + @overload + def random(self, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def random(self, size: _ShapeLike) -> NDArray[float64]: ... + @overload + def beta(self, a: float, b: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def beta( + self, + a: _ArrayLikeFloat_co, + b: _ArrayLikeFloat_co, + size: _ShapeLike | None = ... + ) -> NDArray[float64]: ... + @overload + def exponential(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] + @overload + def exponential( + self, scale: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ... + ) -> NDArray[float64]: ... + @overload + def standard_exponential(self, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def standard_exponential(self, size: _ShapeLike) -> NDArray[float64]: ... + @overload + def tomaxint(self, size: None = ...) -> int: ... # type: ignore[misc] + @overload + # Generates long values, but stores it in a 64bit int: + def tomaxint(self, size: _ShapeLike) -> NDArray[int64]: ... + @overload + def randint( # type: ignore[misc] + self, + low: int, + high: int | None = ..., + size: None = ..., + ) -> int: ... + @overload + def randint( # type: ignore[misc] + self, + low: int, + high: int | None = ..., + size: None = ..., + dtype: type[bool] = ..., + ) -> bool: ... + @overload + def randint( # type: ignore[misc] + self, + low: int, + high: int | None = ..., + size: None = ..., + dtype: type[np.bool] = ..., + ) -> np.bool: ... + @overload + def randint( # type: ignore[misc] + self, + low: int, + high: int | None = ..., + size: None = ..., + dtype: type[int] = ..., + ) -> int: ... + @overload + def randint( # type: ignore[misc] + self, + low: int, + high: int | None = ..., + size: None = ..., + dtype: dtype[uint8] | type[uint8] | _UInt8Codes | _SupportsDType[dtype[uint8]] = ..., # noqa: E501 + ) -> uint8: ... + @overload + def randint( # type: ignore[misc] + self, + low: int, + high: int | None = ..., + size: None = ..., + dtype: dtype[uint16] | type[uint16] | _UInt16Codes | _SupportsDType[dtype[uint16]] = ..., # noqa: E501 + ) -> uint16: ... + @overload + def randint( # type: ignore[misc] + self, + low: int, + high: int | None = ..., + size: None = ..., + dtype: dtype[uint32] | type[uint32] | _UInt32Codes | _SupportsDType[dtype[uint32]] = ..., # noqa: E501 + ) -> uint32: ... + @overload + def randint( # type: ignore[misc] + self, + low: int, + high: int | None = ..., + size: None = ..., + dtype: dtype[uint] | type[uint] | _UIntCodes | _SupportsDType[dtype[uint]] = ..., # noqa: E501 + ) -> uint: ... + @overload + def randint( # type: ignore[misc] + self, + low: int, + high: int | None = ..., + size: None = ..., + dtype: dtype[ulong] | type[ulong] | _ULongCodes | _SupportsDType[dtype[ulong]] = ..., # noqa: E501 + ) -> ulong: ... + @overload + def randint( # type: ignore[misc] + self, + low: int, + high: int | None = ..., + size: None = ..., + dtype: dtype[uint64] | type[uint64] | _UInt64Codes | _SupportsDType[dtype[uint64]] = ..., # noqa: E501 + ) -> uint64: ... + @overload + def randint( # type: ignore[misc] + self, + low: int, + high: int | None = ..., + size: None = ..., + dtype: dtype[int8] | type[int8] | _Int8Codes | _SupportsDType[dtype[int8]] = ..., # noqa: E501 + ) -> int8: ... + @overload + def randint( # type: ignore[misc] + self, + low: int, + high: int | None = ..., + size: None = ..., + dtype: dtype[int16] | type[int16] | _Int16Codes | _SupportsDType[dtype[int16]] = ..., # noqa: E501 + ) -> int16: ... + @overload + def randint( # type: ignore[misc] + self, + low: int, + high: int | None = ..., + size: None = ..., + dtype: dtype[int32] | type[int32] | _Int32Codes | _SupportsDType[dtype[int32]] = ..., # noqa: E501 + ) -> int32: ... + @overload + def randint( # type: ignore[misc] + self, + low: int, + high: int | None = ..., + size: None = ..., + dtype: dtype[int_] | type[int_] | _IntCodes | _SupportsDType[dtype[int_]] = ..., # noqa: E501 + ) -> int_: ... + @overload + def randint( # type: ignore[misc] + self, + low: int, + high: int | None = ..., + size: None = ..., + dtype: dtype[long] | type[long] | _LongCodes | _SupportsDType[dtype[long]] = ..., # noqa: E501 + ) -> long: ... + @overload + def randint( # type: ignore[misc] + self, + low: int, + high: int | None = ..., + size: None = ..., + dtype: dtype[int64] | type[int64] | _Int64Codes | _SupportsDType[dtype[int64]] = ..., # noqa: E501 + ) -> int64: ... + @overload + def randint( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: _ArrayLikeInt_co | None = ..., + size: _ShapeLike | None = ..., + ) -> NDArray[long]: ... + @overload + def randint( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: _ArrayLikeInt_co | None = ..., + size: _ShapeLike | None = ..., + dtype: _DTypeLikeBool = ..., + ) -> NDArray[np.bool]: ... + @overload + def randint( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: _ArrayLikeInt_co | None = ..., + size: _ShapeLike | None = ..., + dtype: dtype[int8] | type[int8] | _Int8Codes | _SupportsDType[dtype[int8]] = ..., # noqa: E501 + ) -> NDArray[int8]: ... + @overload + def randint( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: _ArrayLikeInt_co | None = ..., + size: _ShapeLike | None = ..., + dtype: dtype[int16] | type[int16] | _Int16Codes | _SupportsDType[dtype[int16]] = ..., # noqa: E501 + ) -> NDArray[int16]: ... + @overload + def randint( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: _ArrayLikeInt_co | None = ..., + size: _ShapeLike | None = ..., + dtype: dtype[int32] | type[int32] | _Int32Codes | _SupportsDType[dtype[int32]] = ..., # noqa: E501 + ) -> NDArray[int32]: ... + @overload + def randint( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: _ArrayLikeInt_co | None = ..., + size: _ShapeLike | None = ..., + dtype: dtype[int64] | type[int64] | _Int64Codes | _SupportsDType[dtype[int64]] | None = ..., # noqa: E501 + ) -> NDArray[int64]: ... + @overload + def randint( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: _ArrayLikeInt_co | None = ..., + size: _ShapeLike | None = ..., + dtype: dtype[uint8] | type[uint8] | _UInt8Codes | _SupportsDType[dtype[uint8]] = ..., # noqa: E501 + ) -> NDArray[uint8]: ... + @overload + def randint( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: _ArrayLikeInt_co | None = ..., + size: _ShapeLike | None = ..., + dtype: dtype[uint16] | type[uint16] | _UInt16Codes | _SupportsDType[dtype[uint16]] = ..., # noqa: E501 + ) -> NDArray[uint16]: ... + @overload + def randint( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: _ArrayLikeInt_co | None = ..., + size: _ShapeLike | None = ..., + dtype: dtype[uint32] | type[uint32] | _UInt32Codes | _SupportsDType[dtype[uint32]] = ..., # noqa: E501 + ) -> NDArray[uint32]: ... + @overload + def randint( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: _ArrayLikeInt_co | None = ..., + size: _ShapeLike | None = ..., + dtype: dtype[uint64] | type[uint64] | _UInt64Codes | _SupportsDType[dtype[uint64]] = ..., # noqa: E501 + ) -> NDArray[uint64]: ... + @overload + def randint( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: _ArrayLikeInt_co | None = ..., + size: _ShapeLike | None = ..., + dtype: dtype[long] | type[int] | type[long] | _LongCodes | _SupportsDType[dtype[long]] = ..., # noqa: E501 + ) -> NDArray[long]: ... + @overload + def randint( # type: ignore[misc] + self, + low: _ArrayLikeInt_co, + high: _ArrayLikeInt_co | None = ..., + size: _ShapeLike | None = ..., + dtype: dtype[ulong] | type[ulong] | _ULongCodes | _SupportsDType[dtype[ulong]] = ..., # noqa: E501 + ) -> NDArray[ulong]: ... + def bytes(self, length: int) -> builtins.bytes: ... + @overload + def choice( + self, + a: int, + size: None = ..., + replace: bool = ..., + p: _ArrayLikeFloat_co | None = ..., + ) -> int: ... + @overload + def choice( + self, + a: int, + size: _ShapeLike = ..., + replace: bool = ..., + p: _ArrayLikeFloat_co | None = ..., + ) -> NDArray[long]: ... + @overload + def choice( + self, + a: ArrayLike, + size: None = ..., + replace: bool = ..., + p: _ArrayLikeFloat_co | None = ..., + ) -> Any: ... + @overload + def choice( + self, + a: ArrayLike, + size: _ShapeLike = ..., + replace: bool = ..., + p: _ArrayLikeFloat_co | None = ..., + ) -> NDArray[Any]: ... + @overload + def uniform( + self, low: float = ..., high: float = ..., size: None = ... + ) -> float: ... # type: ignore[misc] + @overload + def uniform( + self, + low: _ArrayLikeFloat_co = ..., + high: _ArrayLikeFloat_co = ..., + size: _ShapeLike | None = ..., + ) -> NDArray[float64]: ... + @overload + def rand(self) -> float: ... + @overload + def rand(self, *args: int) -> NDArray[float64]: ... + @overload + def randn(self) -> float: ... + @overload + def randn(self, *args: int) -> NDArray[float64]: ... + @overload + def random_integers( + self, low: int, high: int | None = ..., size: None = ... + ) -> int: ... # type: ignore[misc] + @overload + def random_integers( + self, + low: _ArrayLikeInt_co, + high: _ArrayLikeInt_co | None = ..., + size: _ShapeLike | None = ..., + ) -> NDArray[long]: ... + @overload + def standard_normal(self, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def standard_normal( # type: ignore[misc] + self, size: _ShapeLike = ... + ) -> NDArray[float64]: ... + @overload + def normal( + self, loc: float = ..., scale: float = ..., size: None = ... + ) -> float: ... # type: ignore[misc] + @overload + def normal( + self, + loc: _ArrayLikeFloat_co = ..., + scale: _ArrayLikeFloat_co = ..., + size: _ShapeLike | None = ..., + ) -> NDArray[float64]: ... + @overload + def standard_gamma( # type: ignore[misc] + self, + shape: float, + size: None = ..., + ) -> float: ... + @overload + def standard_gamma( + self, + shape: _ArrayLikeFloat_co, + size: _ShapeLike | None = ..., + ) -> NDArray[float64]: ... + @overload + def gamma(self, shape: float, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] + @overload + def gamma( + self, + shape: _ArrayLikeFloat_co, + scale: _ArrayLikeFloat_co = ..., + size: _ShapeLike | None = ..., + ) -> NDArray[float64]: ... + @overload + def f(self, dfnum: float, dfden: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def f( + self, + dfnum: _ArrayLikeFloat_co, + dfden: _ArrayLikeFloat_co, + size: _ShapeLike | None = ... + ) -> NDArray[float64]: ... + @overload + def noncentral_f( + self, dfnum: float, dfden: float, nonc: float, size: None = ... + ) -> float: ... # type: ignore[misc] + @overload + def noncentral_f( + self, + dfnum: _ArrayLikeFloat_co, + dfden: _ArrayLikeFloat_co, + nonc: _ArrayLikeFloat_co, + size: _ShapeLike | None = ..., + ) -> NDArray[float64]: ... + @overload + def chisquare(self, df: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def chisquare( + self, df: _ArrayLikeFloat_co, size: _ShapeLike | None = ... + ) -> NDArray[float64]: ... + @overload + def noncentral_chisquare( + self, df: float, nonc: float, size: None = ... + ) -> float: ... # type: ignore[misc] + @overload + def noncentral_chisquare( + self, + df: _ArrayLikeFloat_co, + nonc: _ArrayLikeFloat_co, + size: _ShapeLike | None = ... + ) -> NDArray[float64]: ... + @overload + def standard_t(self, df: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def standard_t( + self, df: _ArrayLikeFloat_co, size: None = ... + ) -> NDArray[float64]: ... + @overload + def standard_t( + self, df: _ArrayLikeFloat_co, size: _ShapeLike = ... + ) -> NDArray[float64]: ... + @overload + def vonmises(self, mu: float, kappa: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def vonmises( + self, + mu: _ArrayLikeFloat_co, + kappa: _ArrayLikeFloat_co, + size: _ShapeLike | None = ... + ) -> NDArray[float64]: ... + @overload + def pareto(self, a: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def pareto( + self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ... + ) -> NDArray[float64]: ... + @overload + def weibull(self, a: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def weibull( + self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ... + ) -> NDArray[float64]: ... + @overload + def power(self, a: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def power( + self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ... + ) -> NDArray[float64]: ... + @overload + def standard_cauchy(self, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def standard_cauchy(self, size: _ShapeLike = ...) -> NDArray[float64]: ... + @overload + def laplace( + self, loc: float = ..., scale: float = ..., size: None = ... + ) -> float: ... # type: ignore[misc] + @overload + def laplace( + self, + loc: _ArrayLikeFloat_co = ..., + scale: _ArrayLikeFloat_co = ..., + size: _ShapeLike | None = ..., + ) -> NDArray[float64]: ... + @overload + def gumbel( + self, loc: float = ..., scale: float = ..., size: None = ... + ) -> float: ... # type: ignore[misc] + @overload + def gumbel( + self, + loc: _ArrayLikeFloat_co = ..., + scale: _ArrayLikeFloat_co = ..., + size: _ShapeLike | None = ..., + ) -> NDArray[float64]: ... + @overload + def logistic( + self, loc: float = ..., scale: float = ..., size: None = ... + ) -> float: ... # type: ignore[misc] + @overload + def logistic( + self, + loc: _ArrayLikeFloat_co = ..., + scale: _ArrayLikeFloat_co = ..., + size: _ShapeLike | None = ..., + ) -> NDArray[float64]: ... + @overload + def lognormal( + self, mean: float = ..., sigma: float = ..., size: None = ... + ) -> float: ... # type: ignore[misc] + @overload + def lognormal( + self, + mean: _ArrayLikeFloat_co = ..., + sigma: _ArrayLikeFloat_co = ..., + size: _ShapeLike | None = ..., + ) -> NDArray[float64]: ... + @overload + def rayleigh(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc] + @overload + def rayleigh( + self, scale: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ... + ) -> NDArray[float64]: ... + @overload + def wald(self, mean: float, scale: float, size: None = ...) -> float: ... # type: ignore[misc] + @overload + def wald( + self, + mean: _ArrayLikeFloat_co, + scale: _ArrayLikeFloat_co, + size: _ShapeLike | None = ... + ) -> NDArray[float64]: ... + @overload + def triangular( + self, left: float, mode: float, right: float, size: None = ... + ) -> float: ... # type: ignore[misc] + @overload + def triangular( + self, + left: _ArrayLikeFloat_co, + mode: _ArrayLikeFloat_co, + right: _ArrayLikeFloat_co, + size: _ShapeLike | None = ..., + ) -> NDArray[float64]: ... + @overload + def binomial( + self, n: int, p: float, size: None = ... + ) -> int: ... # type: ignore[misc] + @overload + def binomial( + self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: _ShapeLike | None = ... + ) -> NDArray[long]: ... + @overload + def negative_binomial( + self, n: float, p: float, size: None = ... + ) -> int: ... # type: ignore[misc] + @overload + def negative_binomial( + self, + n: _ArrayLikeFloat_co, + p: _ArrayLikeFloat_co, + size: _ShapeLike | None = ... + ) -> NDArray[long]: ... + @overload + def poisson( + self, lam: float = ..., size: None = ... + ) -> int: ... # type: ignore[misc] + @overload + def poisson( + self, lam: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ... + ) -> NDArray[long]: ... + @overload + def zipf(self, a: float, size: None = ...) -> int: ... # type: ignore[misc] + @overload + def zipf( + self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ... + ) -> NDArray[long]: ... + @overload + def geometric(self, p: float, size: None = ...) -> int: ... # type: ignore[misc] + @overload + def geometric( + self, p: _ArrayLikeFloat_co, size: _ShapeLike | None = ... + ) -> NDArray[long]: ... + @overload + def hypergeometric( + self, ngood: int, nbad: int, nsample: int, size: None = ... + ) -> int: ... # type: ignore[misc] + @overload + def hypergeometric( + self, + ngood: _ArrayLikeInt_co, + nbad: _ArrayLikeInt_co, + nsample: _ArrayLikeInt_co, + size: _ShapeLike | None = ..., + ) -> NDArray[long]: ... + @overload + def logseries(self, p: float, size: None = ...) -> int: ... # type: ignore[misc] + @overload + def logseries( + self, p: _ArrayLikeFloat_co, size: _ShapeLike | None = ... + ) -> NDArray[long]: ... + def multivariate_normal( + self, + mean: _ArrayLikeFloat_co, + cov: _ArrayLikeFloat_co, + size: _ShapeLike | None = ..., + check_valid: Literal["warn", "raise", "ignore"] = ..., + tol: float = ..., + ) -> NDArray[float64]: ... + def multinomial( + self, n: _ArrayLikeInt_co, + pvals: _ArrayLikeFloat_co, + size: _ShapeLike | None = ... + ) -> NDArray[long]: ... + def dirichlet( + self, alpha: _ArrayLikeFloat_co, size: _ShapeLike | None = ... + ) -> NDArray[float64]: ... + def shuffle(self, x: ArrayLike) -> None: ... + @overload + def permutation(self, x: int) -> NDArray[long]: ... + @overload + def permutation(self, x: ArrayLike) -> NDArray[Any]: ... + +_rand: RandomState + +beta = _rand.beta +binomial = _rand.binomial +bytes = _rand.bytes +chisquare = _rand.chisquare +choice = _rand.choice +dirichlet = _rand.dirichlet +exponential = _rand.exponential +f = _rand.f +gamma = _rand.gamma +get_state = _rand.get_state +geometric = _rand.geometric +gumbel = _rand.gumbel +hypergeometric = _rand.hypergeometric +laplace = _rand.laplace +logistic = _rand.logistic +lognormal = _rand.lognormal +logseries = _rand.logseries +multinomial = _rand.multinomial +multivariate_normal = _rand.multivariate_normal +negative_binomial = _rand.negative_binomial +noncentral_chisquare = _rand.noncentral_chisquare +noncentral_f = _rand.noncentral_f +normal = _rand.normal +pareto = _rand.pareto +permutation = _rand.permutation +poisson = _rand.poisson +power = _rand.power +rand = _rand.rand +randint = _rand.randint +randn = _rand.randn +random = _rand.random +random_integers = _rand.random_integers +random_sample = _rand.random_sample +rayleigh = _rand.rayleigh +seed = _rand.seed +set_state = _rand.set_state +shuffle = _rand.shuffle +standard_cauchy = _rand.standard_cauchy +standard_exponential = _rand.standard_exponential +standard_gamma = _rand.standard_gamma +standard_normal = _rand.standard_normal +standard_t = _rand.standard_t +triangular = _rand.triangular +uniform = _rand.uniform +vonmises = _rand.vonmises +wald = _rand.wald +weibull = _rand.weibull +zipf = _rand.zipf +# Two legacy that are trivial wrappers around random_sample +sample = _rand.random_sample +ranf = _rand.random_sample + +def set_bit_generator(bitgen: BitGenerator) -> None: ... + +def get_bit_generator() -> BitGenerator: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/__init__.py b/.venv/lib/python3.12/site-packages/numpy/random/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..ff19c68 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_direct.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_direct.cpython-312.pyc new file mode 100644 index 0000000..a6c17ee Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_direct.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_extending.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_extending.cpython-312.pyc new file mode 100644 index 0000000..d9dc433 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_extending.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_generator_mt19937.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_generator_mt19937.cpython-312.pyc new file mode 100644 index 0000000..5fe19c4 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_generator_mt19937.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_generator_mt19937_regressions.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_generator_mt19937_regressions.cpython-312.pyc new file mode 100644 index 0000000..6c2cbe4 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_generator_mt19937_regressions.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_random.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_random.cpython-312.pyc new file mode 100644 index 0000000..3220f3e Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_random.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_randomstate.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_randomstate.cpython-312.pyc new file mode 100644 index 0000000..569cef5 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_randomstate.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_randomstate_regression.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_randomstate_regression.cpython-312.pyc new file mode 100644 index 0000000..fea121a Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_randomstate_regression.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_regression.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_regression.cpython-312.pyc new file mode 100644 index 0000000..f6674e9 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_regression.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_seed_sequence.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_seed_sequence.cpython-312.pyc new file mode 100644 index 0000000..b5989a2 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_seed_sequence.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_smoke.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_smoke.cpython-312.pyc new file mode 100644 index 0000000..97fc783 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/tests/__pycache__/test_smoke.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/data/__init__.py b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/data/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..0637ee9 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/data/generator_pcg64_np121.pkl.gz b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/generator_pcg64_np121.pkl.gz new file mode 100644 index 0000000..b7ad03d Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/generator_pcg64_np121.pkl.gz differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/data/generator_pcg64_np126.pkl.gz b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/generator_pcg64_np126.pkl.gz new file mode 100644 index 0000000..6c5130b Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/generator_pcg64_np126.pkl.gz differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/data/mt19937-testset-1.csv b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/mt19937-testset-1.csv new file mode 100644 index 0000000..b97bfa6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/mt19937-testset-1.csv @@ -0,0 +1,1001 @@ +seed, 0xdeadbeaf +0, 0xc816921f +1, 0xb3623c6d +2, 0x5fa391bb +3, 0x40178d9 +4, 0x7dcc9811 +5, 0x548eb8e6 +6, 0x92ba3125 +7, 0x65fde68d +8, 0x2f81ec95 +9, 0xbd94f7a2 +10, 0xdc4d9bcc +11, 0xa672bf13 +12, 0xb41113e +13, 0xec7e0066 +14, 0x50239372 +15, 0xd9d66b1d +16, 0xab72a161 +17, 0xddc2e29f +18, 0x7ea29ab4 +19, 0x80d141ba +20, 0xb1c7edf1 +21, 0x44d29203 +22, 0xe224d98 +23, 0x5b3e9d26 +24, 0x14fd567c +25, 0x27d98c96 +26, 0x838779fc +27, 0x92a138a +28, 0x5d08965b +29, 0x531e0ad6 +30, 0x984ee8f4 +31, 0x1ed78539 +32, 0x32bd6d8d +33, 0xc37c8516 +34, 0x9aef5c6b +35, 0x3aacd139 +36, 0xd96ed154 +37, 0x489cd1ed +38, 0x2cba4b3b +39, 0x76c6ae72 +40, 0x2dae02b9 +41, 0x52ac5fd6 +42, 0xc2b5e265 +43, 0x630e6a28 +44, 0x3f560d5d +45, 0x9315bdf3 +46, 0xf1055aba +47, 0x840e42c6 +48, 0xf2099c6b +49, 0x15ff7696 +50, 0x7948d146 +51, 0x97342961 +52, 0x7a7a21c +53, 0xc66f4fb1 +54, 0x23c4103e +55, 0xd7321f98 +56, 0xeb7efb75 +57, 0xe02490b5 +58, 0x2aa02de +59, 0x8bee0bf7 +60, 0xfc2da059 +61, 0xae835034 +62, 0x678f2075 +63, 0x6d03094b +64, 0x56455e05 +65, 0x18b32373 +66, 0x8ff0356b +67, 0x1fe442fb +68, 0x3f1ab6c3 +69, 0xb6fd21b +70, 0xfc310eb2 +71, 0xb19e9a4d +72, 0x17ddee72 +73, 0xfd534251 +74, 0x9e500564 +75, 0x9013a036 +76, 0xcf08f118 +77, 0x6b6d5969 +78, 0x3ccf1977 +79, 0x7cc11497 +80, 0x651c6ac9 +81, 0x4d6b104b +82, 0x9a28314e +83, 0x14c237be +84, 0x9cfc8d52 +85, 0x2947fad5 +86, 0xd71eff49 +87, 0x5188730e +88, 0x4b894614 +89, 0xf4fa2a34 +90, 0x42f7cc69 +91, 0x4089c9e8 +92, 0xbf0bbfe4 +93, 0x3cea65c +94, 0xc6221207 +95, 0x1bb71a8f +96, 0x54843fe7 +97, 0xbc59de4c +98, 0x79c6ee64 +99, 0x14e57a26 +100, 0x68d88fe +101, 0x2b86ef64 +102, 0x8ffff3c1 +103, 0x5bdd573f +104, 0x85671813 +105, 0xefe32ca2 +106, 0x105ded1e +107, 0x90ca2769 +108, 0xb33963ac +109, 0x363fbbc3 +110, 0x3b3763ae +111, 0x1d50ab88 +112, 0xc9ec01eb +113, 0xc8bbeada +114, 0x5d704692 +115, 0x5fd9e40 +116, 0xe61c125 +117, 0x2fe05792 +118, 0xda8afb72 +119, 0x4cbaa653 +120, 0xdd2243df +121, 0x896fd3f5 +122, 0x5bc23db +123, 0xa1c4e807 +124, 0x57d1a24d +125, 0x66503ddc +126, 0xcf7c0838 +127, 0x19e034fc +128, 0x66807450 +129, 0xfc219b3b +130, 0xe8a843e7 +131, 0x9ce61f08 +132, 0x92b950d6 +133, 0xce955ec4 +134, 0xda0d1f0d +135, 0x960c6250 +136, 0x39552432 +137, 0xde845e84 +138, 0xff3b4b11 +139, 0x5d918e6f +140, 0xbb930df2 +141, 0x7cfb0993 +142, 0x5400e1e9 +143, 0x3bfa0954 +144, 0x7e2605fb +145, 0x11941591 +146, 0x887e6994 +147, 0xdc8bed45 +148, 0x45b3fb50 +149, 0xfbdf8358 +150, 0x41507468 +151, 0x34c87166 +152, 0x17f64d77 +153, 0x3bbaf4f8 +154, 0x4f26f37e +155, 0x4a56ebf2 +156, 0x81100f1 +157, 0x96d94eae +158, 0xca88fda5 +159, 0x2eef3a60 +160, 0x952afbd3 +161, 0x2bec88c7 +162, 0x52335c4b +163, 0x8296db8e +164, 0x4da7d00a +165, 0xc00ac899 +166, 0xadff8c72 +167, 0xbecf26cf +168, 0x8835c83c +169, 0x1d13c804 +170, 0xaa940ddc +171, 0x68222cfe +172, 0x4569c0e1 +173, 0x29077976 +174, 0x32d4a5af +175, 0xd31fcdef +176, 0xdc60682b +177, 0x7c95c368 +178, 0x75a70213 +179, 0x43021751 +180, 0x5e52e0a6 +181, 0xf7e190b5 +182, 0xee3e4bb +183, 0x2fe3b150 +184, 0xcf419c07 +185, 0x478a4570 +186, 0xe5c3ea50 +187, 0x417f30a8 +188, 0xf0cfdaa0 +189, 0xd1f7f738 +190, 0x2c70fc23 +191, 0x54fc89f9 +192, 0x444dcf01 +193, 0xec2a002d +194, 0xef0c3a88 +195, 0xde21be9 +196, 0x88ab3296 +197, 0x3028897c +198, 0x264b200b +199, 0xd8ae0706 +200, 0x9eef901a +201, 0xbd1b96e0 +202, 0xea71366c +203, 0x1465b694 +204, 0x5a794650 +205, 0x83df52d4 +206, 0x8262413d +207, 0x5bc148c0 +208, 0xe0ecd80c +209, 0x40649571 +210, 0xb4d2ee5f +211, 0xedfd7d09 +212, 0xa082e25f +213, 0xc62992d1 +214, 0xbc7e65ee +215, 0x5499cf8a +216, 0xac28f775 +217, 0x649840fb +218, 0xd4c54805 +219, 0x1d166ba6 +220, 0xbeb1171f +221, 0x45b66703 +222, 0x78c03349 +223, 0x38d2a6ff +224, 0x935cae8b +225, 0x1d07dc3f +226, 0x6c1ed365 +227, 0x579fc585 +228, 0x1320c0ec +229, 0x632757eb +230, 0xd265a397 +231, 0x70e9b6c2 +232, 0xc81e322c +233, 0xa27153cf +234, 0x2118ba19 +235, 0x514ec400 +236, 0x2bd0ecd6 +237, 0xc3e7dae3 +238, 0xfa39355e +239, 0x48f23cc1 +240, 0xbcf75948 +241, 0x53ccc70c +242, 0x75346423 +243, 0x951181e0 +244, 0x348e90df +245, 0x14365d7f +246, 0xfbc95d7a +247, 0xdc98a9e6 +248, 0xed202df7 +249, 0xa59ec913 +250, 0x6b6e9ae2 +251, 0x1697f265 +252, 0x15d322d0 +253, 0xa2e7ee0a +254, 0x88860b7e +255, 0x455d8b9d +256, 0x2f5c59cb +257, 0xac49c9f1 +258, 0xa6a6a039 +259, 0xc057f56b +260, 0xf1ff1208 +261, 0x5eb8dc9d +262, 0xe6702509 +263, 0xe238b0ed +264, 0x5ae32e3d +265, 0xa88ebbdf +266, 0xef885ae7 +267, 0xafa6d49b +268, 0xc94499e0 +269, 0x1a196325 +270, 0x88938da3 +271, 0x14f4345 +272, 0xd8e33637 +273, 0xa3551bd5 +274, 0x73fe35c7 +275, 0x9561e94b +276, 0xd673bf68 +277, 0x16134872 +278, 0x68c42f9f +279, 0xdf7574c8 +280, 0x8809bab9 +281, 0x1432cf69 +282, 0xafb66bf1 +283, 0xc184aa7b +284, 0xedbf2007 +285, 0xbd420ce1 +286, 0x761033a0 +287, 0xff7e351f +288, 0xd6c3780e +289, 0x5844416f +290, 0xc6c0ee1c +291, 0xd2e147db +292, 0x92ac601a +293, 0x393e846b +294, 0x18196cca +295, 0x54a22be +296, 0x32bab1c4 +297, 0x60365183 +298, 0x64fa342 +299, 0xca24a493 +300, 0xd8cc8b83 +301, 0x3faf102b +302, 0x6e09bb58 +303, 0x812f0ea +304, 0x592c95d8 +305, 0xe45ea4c5 +306, 0x23aebf83 +307, 0xbd9691d4 +308, 0xf47b4baa +309, 0x4ac7b487 +310, 0xcce18803 +311, 0x3377556e +312, 0x3ff8e6b6 +313, 0x99d22063 +314, 0x23250bec +315, 0x4e1f9861 +316, 0x8554249b +317, 0x8635c2fc +318, 0xe8426e8a +319, 0x966c29d8 +320, 0x270b6082 +321, 0x3180a8a1 +322, 0xe7e1668b +323, 0x7f868dc +324, 0xcf4c17cf +325, 0xe31de4d1 +326, 0xc8c8aff4 +327, 0xae8db704 +328, 0x3c928cc2 +329, 0xe12cd48 +330, 0xb33ecd04 +331, 0xb93d7cbe +332, 0x49c69d6a +333, 0x7d3bce64 +334, 0x86bc219 +335, 0x8408233b +336, 0x44dc7479 +337, 0xdf80d538 +338, 0xf3db02c3 +339, 0xbbbd31d7 +340, 0x121281f +341, 0x7521e9a3 +342, 0x8859675a +343, 0x75aa6502 +344, 0x430ed15b +345, 0xecf0a28d +346, 0x659774fd +347, 0xd58a2311 +348, 0x512389a9 +349, 0xff65e1ff +350, 0xb6ddf222 +351, 0xe3458895 +352, 0x8b13cd6e +353, 0xd4a22870 +354, 0xe604c50c +355, 0x27f54f26 +356, 0x8f7f422f +357, 0x9735b4cf +358, 0x414072b0 +359, 0x76a1c6d5 +360, 0xa2208c06 +361, 0x83cd0f61 +362, 0x6c4f7ead +363, 0x6553cf76 +364, 0xeffcf44 +365, 0x7f434a3f +366, 0x9dc364bd +367, 0x3cdf52ed +368, 0xad597594 +369, 0x9c3e211b +370, 0x6c04a33f +371, 0x885dafa6 +372, 0xbbdaca71 +373, 0x7ae5dd5c +374, 0x37675644 +375, 0x251853c6 +376, 0x130b086b +377, 0x143fa54b +378, 0x54cdc282 +379, 0x9faff5b3 +380, 0x502a5c8b +381, 0xd9524550 +382, 0xae221aa6 +383, 0x55cf759b +384, 0x24782da4 +385, 0xd715d815 +386, 0x250ea09a +387, 0x4e0744ac +388, 0x11e15814 +389, 0xabe5f9df +390, 0xc8146350 +391, 0xfba67d9b +392, 0x2b82e42f +393, 0xd4ea96fc +394, 0x5ffc179e +395, 0x1598bafe +396, 0x7fb6d662 +397, 0x1a12a0db +398, 0x450cee4a +399, 0x85f8e12 +400, 0xce71b594 +401, 0xd4bb1d19 +402, 0x968f379d +403, 0x54cc1d52 +404, 0x467e6066 +405, 0x7da5f9a9 +406, 0x70977034 +407, 0x49e65c4b +408, 0xd08570d1 +409, 0x7acdf60b +410, 0xdffa038b +411, 0x9ce14e4c +412, 0x107cbbf8 +413, 0xdd746ca0 +414, 0xc6370a46 +415, 0xe7f83312 +416, 0x373fa9ce +417, 0xd822a2c6 +418, 0x1d4efea6 +419, 0xc53dcadb +420, 0x9b4e898f +421, 0x71daa6bf +422, 0x7a0bc78b +423, 0xd7b86f50 +424, 0x1b8b3286 +425, 0xcf9425dd +426, 0xd5263220 +427, 0x4ea0b647 +428, 0xc767fe64 +429, 0xcfc5e67 +430, 0xcc6a2942 +431, 0xa51eff00 +432, 0x76092e1b +433, 0xf606e80f +434, 0x824b5e20 +435, 0xebb55e14 +436, 0x783d96a6 +437, 0x10696512 +438, 0x17ee510a +439, 0x3ab70a1f +440, 0xcce6b210 +441, 0x8f72f0fb +442, 0xf0610b41 +443, 0x83d01fb5 +444, 0x6b3de36 +445, 0xe4c2e84f +446, 0x9c43bb15 +447, 0xddf2905 +448, 0x7dd63556 +449, 0x3662ca09 +450, 0xfb81f35b +451, 0xc2c8a72a +452, 0x8e93c37 +453, 0xa93da2d4 +454, 0xa03af8f1 +455, 0x8d75159a +456, 0x15f010b0 +457, 0xa296ab06 +458, 0xe55962ba +459, 0xeae700a9 +460, 0xe388964a +461, 0x917f2bec +462, 0x1c203fea +463, 0x792a01ba +464, 0xa93a80ac +465, 0x9eb8a197 +466, 0x56c0bc73 +467, 0xb8f05799 +468, 0xf429a8c8 +469, 0xb92cee42 +470, 0xf8864ec +471, 0x62f2518a +472, 0x3a7bfa3e +473, 0x12e56e6d +474, 0xd7a18313 +475, 0x41fa3899 +476, 0xa09c4956 +477, 0xebcfd94a +478, 0xc485f90b +479, 0x4391ce40 +480, 0x742a3333 +481, 0xc932f9e5 +482, 0x75c6c263 +483, 0x80937f0 +484, 0xcf21833c +485, 0x16027520 +486, 0xd42e669f +487, 0xb0f01fb7 +488, 0xb35896f1 +489, 0x763737a9 +490, 0x1bb20209 +491, 0x3551f189 +492, 0x56bc2602 +493, 0xb6eacf4 +494, 0x42ec4d11 +495, 0x245cc68 +496, 0xc27ac43b +497, 0x9d903466 +498, 0xce3f0c05 +499, 0xb708c31c +500, 0xc0fd37eb +501, 0x95938b2c +502, 0xf20175a7 +503, 0x4a86ee9b +504, 0xbe039a58 +505, 0xd41cabe7 +506, 0x83bc99ba +507, 0x761d60e1 +508, 0x7737cc2e +509, 0x2b82fc4b +510, 0x375aa401 +511, 0xfe9597a0 +512, 0x5543806a +513, 0x44f31238 +514, 0x7df31538 +515, 0x74cfa770 +516, 0x8755d881 +517, 0x1fde665a +518, 0xda8bf315 +519, 0x973d8e95 +520, 0x72205228 +521, 0x8fe59717 +522, 0x7bb90b34 +523, 0xef6ed945 +524, 0x16fd4a38 +525, 0x5db44de1 +526, 0xf09f93b3 +527, 0xe84824cc +528, 0x945bb50e +529, 0xd0be4aa5 +530, 0x47c277c2 +531, 0xd3800c28 +532, 0xac1c33ec +533, 0xd3dacce +534, 0x811c8387 +535, 0x6761b36 +536, 0x70d3882f +537, 0xd6e62e3a +538, 0xea25daa2 +539, 0xb07f39d1 +540, 0x391d89d7 +541, 0x84b6fb5e +542, 0x3dda3fca +543, 0x229e80a4 +544, 0x3d94a4b7 +545, 0x5d3d576a +546, 0xad7818a0 +547, 0xce23b03a +548, 0x7aa2079c +549, 0x9a6be555 +550, 0x83f3b34a +551, 0x1848f9d9 +552, 0xd8fefc1c +553, 0x48e6ce48 +554, 0x52e55750 +555, 0xf41a71cf +556, 0xba08e259 +557, 0xfaf06a15 +558, 0xeaaac0fb +559, 0x34f90098 +560, 0xb1dfffbb +561, 0x718daec2 +562, 0xab4dda21 +563, 0xd27cc1ee +564, 0x4aafbc4c +565, 0x356dfb4f +566, 0x83fcdfd6 +567, 0x8f0bcde0 +568, 0x4363f844 +569, 0xadc0f4d5 +570, 0x3bde994e +571, 0x3884d452 +572, 0x21876b4a +573, 0x9c985398 +574, 0xca55a226 +575, 0x3a88c583 +576, 0x916dc33c +577, 0x8f67d1d7 +578, 0x3b26a667 +579, 0xe4ddeb4b +580, 0x1a9d8c33 +581, 0x81c9b74f +582, 0x9ed1e9df +583, 0x6e61aecf +584, 0x95e95a5d +585, 0x68864ff5 +586, 0xb8fa5b9 +587, 0x72b1b3de +588, 0x5e18a86b +589, 0xd7f2337d +590, 0xd70e0925 +591, 0xb573a4c1 +592, 0xc77b3f8a +593, 0x389b20de +594, 0x16cf6afb +595, 0xa39bd275 +596, 0xf491cf01 +597, 0x6f88a802 +598, 0x8510af05 +599, 0xe7cd549a +600, 0x8603179a +601, 0xef43f191 +602, 0xf9b64c60 +603, 0xb00254a7 +604, 0xd7c06a2d +605, 0x17e9380b +606, 0x529e727b +607, 0xaaa8fe0a +608, 0xfb64ff4c +609, 0xcd75af26 +610, 0xfb717c87 +611, 0xa0789899 +612, 0x10391ec9 +613, 0x7e9b40b3 +614, 0x18536554 +615, 0x728c05f7 +616, 0x787dca98 +617, 0xad948d1 +618, 0x44c18def +619, 0x3303f2ec +620, 0xa15acb5 +621, 0xb58d38f4 +622, 0xfe041ef8 +623, 0xd151a956 +624, 0x7b9168e8 +625, 0x5ebeca06 +626, 0x90fe95df +627, 0xf76875aa +628, 0xb2e0d664 +629, 0x2e3253b7 +630, 0x68e34469 +631, 0x1f0c2d89 +632, 0x13a34ac2 +633, 0x5ffeb841 +634, 0xe381e91c +635, 0xb8549a92 +636, 0x3f35cf1 +637, 0xda0f9dcb +638, 0xdd9828a6 +639, 0xe1428f29 +640, 0xf4db80b5 +641, 0xdac30af5 +642, 0x1af1dd17 +643, 0x9a540254 +644, 0xcab68a38 +645, 0x33560361 +646, 0x2fbf3886 +647, 0xbc785923 +648, 0xe081cd10 +649, 0x8e473356 +650, 0xd102c357 +651, 0xeea4fe48 +652, 0x248d3453 +653, 0x1da79ac +654, 0x815a65ff +655, 0x27693e76 +656, 0xb7d5af40 +657, 0x6d245d30 +658, 0x9e06fa8f +659, 0xb0570dcb +660, 0x469f0005 +661, 0x3e0ca132 +662, 0xd89bbf3 +663, 0xd61ccd47 +664, 0x6383878 +665, 0x62b5956 +666, 0x4dc83675 +667, 0x93fd8492 +668, 0x5a0091f5 +669, 0xc9f9bc3 +670, 0xa26e7778 +671, 0xeabf2d01 +672, 0xe612dc06 +673, 0x85d89ff9 +674, 0xd1763179 +675, 0xcb88947b +676, 0x9e8757a5 +677, 0xe100e85c +678, 0x904166eb +679, 0x4996243d +680, 0x4038e1cb +681, 0x2be2c63d +682, 0x77017e81 +683, 0x3b1f556b +684, 0x1c785c77 +685, 0x6869b8bd +686, 0xe1217ed4 +687, 0x4012ab2f +688, 0xc06c0d8e +689, 0x2122eb68 +690, 0xad1783fd +691, 0x5f0c80e3 +692, 0x828f7efa +693, 0x29328399 +694, 0xeadf1087 +695, 0x85dc0037 +696, 0x9691ef26 +697, 0xc0947a53 +698, 0x2a178d2a +699, 0x2a2c7e8f +700, 0x90378380 +701, 0xaad8d326 +702, 0x9cf1c3c8 +703, 0x84eccd44 +704, 0x79e61808 +705, 0x8b3f454e +706, 0x209e6e1 +707, 0x51f88378 +708, 0xc210226f +709, 0xd982adb5 +710, 0x55d44a31 +711, 0x9817d443 +712, 0xa328c626 +713, 0x13455966 +714, 0xb8f681d3 +715, 0x2a3c713b +716, 0xc186959b +717, 0x814a74b0 +718, 0xed7bc90 +719, 0xa88d3d6d +720, 0x88a9f561 +721, 0x73aa1c0a +722, 0xdfeff404 +723, 0xec037e4b +724, 0xa5c209f0 +725, 0xb3a223b4 +726, 0x24ce3709 +727, 0x3184c790 +728, 0xa1398c62 +729, 0x2f92034e +730, 0xbb37a79a +731, 0x605287b4 +732, 0x8faa772c +733, 0x6ce56c1d +734, 0xc035fb4c +735, 0x7cf5b316 +736, 0x6502645 +737, 0xa283d810 +738, 0x778bc2f1 +739, 0xfdf99313 +740, 0x1f513265 +741, 0xbd3837e2 +742, 0x9b84a9a +743, 0x2139ce91 +744, 0x61a8e890 +745, 0xf9ff12db +746, 0xb43d2ea7 +747, 0x88532e61 +748, 0x175a6655 +749, 0x7a6c4f72 +750, 0x6dafc1b7 +751, 0x449b1459 +752, 0x514f654f +753, 0x9a6731e2 +754, 0x8632da43 +755, 0xc81b0422 +756, 0x81fe9005 +757, 0x15b79618 +758, 0xb5fa629f +759, 0x987a474f +760, 0x1c74f54e +761, 0xf9743232 +762, 0xec4b55f +763, 0x87d761e5 +764, 0xd1ad78b7 +765, 0x453d9350 +766, 0xc7a7d85 +767, 0xb2576ff5 +768, 0xcdde49b7 +769, 0x8e1f763e +770, 0x1338583e +771, 0xfd65b9dc +772, 0x4f19c4f4 +773, 0x3a52d73d +774, 0xd3509c4c +775, 0xda24fe31 +776, 0xe2de56ba +777, 0x2db5e540 +778, 0x23172734 +779, 0x4db572f +780, 0xeb941718 +781, 0x84c2649a +782, 0x3b1e5b6a +783, 0x4c9c61b9 +784, 0x3bccd11 +785, 0xb4d7b78e +786, 0x48580ae5 +787, 0xd273ab68 +788, 0x25c11615 +789, 0x470b53f6 +790, 0x329c2068 +791, 0x1693721b +792, 0xf8c9aacf +793, 0x4c3d5693 +794, 0xd778284e +795, 0xae1cb24f +796, 0x3c11d1b3 +797, 0xddd2b0c0 +798, 0x90269fa7 +799, 0x5666e0a2 +800, 0xf9f195a4 +801, 0x61d78eb2 +802, 0xada5a7c0 +803, 0xaa272fbe +804, 0xba3bae2f +805, 0xd0b70fc2 +806, 0x529f32b +807, 0xda7a3e21 +808, 0x9a776a20 +809, 0xb21f9635 +810, 0xb3acc14e +811, 0xac55f56 +812, 0x29dccf41 +813, 0x32dabdb3 +814, 0xaa032f58 +815, 0xfa406af4 +816, 0xce3c415d +817, 0xb44fb4d9 +818, 0x32248d1c +819, 0x680c6440 +820, 0xae2337b +821, 0x294cb597 +822, 0x5bca48fe +823, 0xaef19f40 +824, 0xad60406 +825, 0x4781f090 +826, 0xfd691ffc +827, 0xb6568268 +828, 0xa56c72cb +829, 0xf8a9e0fc +830, 0x9af4fd02 +831, 0x2cd30932 +832, 0x776cefd7 +833, 0xe31f476e +834, 0x6d94a437 +835, 0xb3cab598 +836, 0xf582d13f +837, 0x3bf8759d +838, 0xc3777dc +839, 0x5e425ea8 +840, 0x1c7ff4ed +841, 0x1c2e97d1 +842, 0xc062d2b4 +843, 0x46dc80e0 +844, 0xbcdb47e6 +845, 0x32282fe0 +846, 0xaba89063 +847, 0x5e94e9bb +848, 0x3e667f78 +849, 0xea6eb21a +850, 0xe56e54e8 +851, 0xa0383510 +852, 0x6768fe2b +853, 0xb53ac3e0 +854, 0x779569a0 +855, 0xeca83c6a +856, 0x24db4d2d +857, 0x4585f696 +858, 0xf84748b2 +859, 0xf6a4dd5b +860, 0x31fb524d +861, 0x67ab39fe +862, 0x5882a899 +863, 0x9a05fcf6 +864, 0x712b5674 +865, 0xe8c6958f +866, 0x4b448bb3 +867, 0x530b9abf +868, 0xb491f491 +869, 0x98352c62 +870, 0x2d0a50e3 +871, 0xeb4384da +872, 0x36246f07 +873, 0xcbc5c1a +874, 0xae24031d +875, 0x44d11ed6 +876, 0xf07f1608 +877, 0xf296aadd +878, 0x3bcfe3be +879, 0x8fa1e7df +880, 0xfd317a6e +881, 0xe4975c44 +882, 0x15205892 +883, 0xa762d4df +884, 0xf1167365 +885, 0x6811cc00 +886, 0x8315f23 +887, 0xe045b4b1 +888, 0xa8496414 +889, 0xbed313ae +890, 0xcdae3ddb +891, 0xa9c22c9 +892, 0x275fab1a +893, 0xedd65fa +894, 0x4c188229 +895, 0x63a83e58 +896, 0x18aa9207 +897, 0xa41f2e78 +898, 0xd9f63653 +899, 0xbe2be73b +900, 0xa3364d39 +901, 0x896d5428 +902, 0xc737539e +903, 0x745a78c6 +904, 0xf0b2b042 +905, 0x510773b4 +906, 0x92ad8e37 +907, 0x27f2f8c4 +908, 0x23704cc8 +909, 0x3d95a77f +910, 0xf08587a4 +911, 0xbd696a25 +912, 0x948924f3 +913, 0x8cddb634 +914, 0xcd2a4910 +915, 0x8e0e300e +916, 0x83815a9b +917, 0x67383510 +918, 0x3c18f0d0 +919, 0xc7a7bccc +920, 0x7cc2d3a2 +921, 0x52eb2eeb +922, 0xe4a257e5 +923, 0xec76160e +924, 0x63f9ad68 +925, 0x36d0bbbf +926, 0x957bc4e4 +927, 0xc9ed90ff +928, 0x4cb6059d +929, 0x2f86eca1 +930, 0x3e3665a3 +931, 0x9b7eb6f4 +932, 0x492e7e18 +933, 0xa098aa51 +934, 0x7eb568b2 +935, 0x3fd639ba +936, 0x7bebcf1 +937, 0x99c844ad +938, 0x43cb5ec7 +939, 0x8dfbbef5 +940, 0x5be413ff +941, 0xd93b976d +942, 0xc1c7a86d +943, 0x1f0e93d0 +944, 0x498204a2 +945, 0xe8fe832a +946, 0x2236bd7 +947, 0x89953769 +948, 0x2acc3491 +949, 0x2c4f22c6 +950, 0xd7996277 +951, 0x3bcdc349 +952, 0xfc286630 +953, 0x5f8909fd +954, 0x242677c0 +955, 0x4cb34104 +956, 0xa6ff8100 +957, 0x39ea47ec +958, 0x9bd54140 +959, 0x7502ffe8 +960, 0x7ebef8ae +961, 0x1ed8abe4 +962, 0xfaba8450 +963, 0xc197b65f +964, 0x19431455 +965, 0xe229c176 +966, 0xeb2967da +967, 0xe0c5dc05 +968, 0xa84e3227 +969, 0x10dd9e0f +970, 0xbdb70b02 +971, 0xce24808a +972, 0x423edab8 +973, 0x194caf71 +974, 0x144f150d +975, 0xf811c2d2 +976, 0xc224ee85 +977, 0x2b217a5b +978, 0xf78a5a79 +979, 0x6554a4b1 +980, 0x769582df +981, 0xf4b2cf93 +982, 0x89648483 +983, 0xb3283a3e +984, 0x82b895db +985, 0x79388ef0 +986, 0x54bc42a6 +987, 0xc4dd39d9 +988, 0x45b33b7d +989, 0x8703b2c1 +990, 0x1cc94806 +991, 0xe0f43e49 +992, 0xcaa7b6bc +993, 0x4f88e9af +994, 0x1477cce5 +995, 0x347dd115 +996, 0x36e335fa +997, 0xb93c9a31 +998, 0xaac3a175 +999, 0x68a19647 diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/data/mt19937-testset-2.csv b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/mt19937-testset-2.csv new file mode 100644 index 0000000..cdb8e47 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/mt19937-testset-2.csv @@ -0,0 +1,1001 @@ +seed, 0x0 +0, 0x7ab4ea94 +1, 0x9b561119 +2, 0x4957d02e +3, 0x7dd3fdc2 +4, 0x5affe54 +5, 0x5a01741c +6, 0x8b9e8c1f +7, 0xda5bf11a +8, 0x509226 +9, 0x64e2ea17 +10, 0x82c6dab5 +11, 0xe4302515 +12, 0x8198b873 +13, 0xc3ec9a82 +14, 0x829dff28 +15, 0x5278e44f +16, 0x994a7d2c +17, 0xf1c89398 +18, 0xaf2fddec +19, 0x22abc6ee +20, 0x963dbd43 +21, 0xc29edffb +22, 0x41c1ce07 +23, 0x9c90034d +24, 0x1f17a796 +25, 0x3833caa8 +26, 0xb8795528 +27, 0xebc595a2 +28, 0xf8f5b5dd +29, 0xc2881f72 +30, 0x18e5d3f0 +31, 0x9b19ac7a +32, 0xb9992436 +33, 0xc00052b3 +34, 0xb63f4475 +35, 0x962642d9 +36, 0x63506c10 +37, 0x2be6b127 +38, 0x569bdbc6 +39, 0x7f185e01 +40, 0xebb55f53 +41, 0x1c30198c +42, 0x7c8d75c6 +43, 0xd3f2186b +44, 0xaca5b9b1 +45, 0xbc49ff45 +46, 0xc4a802af +47, 0x2cecd86f +48, 0x8e0da529 +49, 0x1f22b00e +50, 0x4559ea80 +51, 0x60f587d8 +52, 0x7c7460e9 +53, 0x67be0a4a +54, 0x987a0183 +55, 0x7bd30f1 +56, 0xab18c4ac +57, 0xffdbfb64 +58, 0x9ea917f9 +59, 0x1239dab7 +60, 0x38efabeb +61, 0x5da91888 +62, 0x8f49ed62 +63, 0x83f60b1e +64, 0x5950a3fc +65, 0xd8911104 +66, 0x19e8859e +67, 0x1a4d89ec +68, 0x968ca180 +69, 0x9e1b6da3 +70, 0x3d99c2c +71, 0x55f76289 +72, 0x8fa28b9e +73, 0x9fe01d33 +74, 0xdade4e38 +75, 0x1ea04290 +76, 0xa7263313 +77, 0xaafc762e +78, 0x460476d6 +79, 0x31226e12 +80, 0x451d3f05 +81, 0xd0d2764b +82, 0xd06e1ab3 +83, 0x1394e3f4 +84, 0x2fc04ea3 +85, 0x5b8401c +86, 0xebd6c929 +87, 0xe881687c +88, 0x94bdd66a +89, 0xabf85983 +90, 0x223ad12d +91, 0x2aaeeaa3 +92, 0x1f704934 +93, 0x2db2efb6 +94, 0xf49b8dfb +95, 0x5bdbbb9d +96, 0xba0cd0db +97, 0x4ec4674e +98, 0xad0129e +99, 0x7a66129b +100, 0x50d12c5e +101, 0x85b1d335 +102, 0x3efda58a +103, 0xecd886fb +104, 0x8ecadd3d +105, 0x60ebac0f +106, 0x5e10fe79 +107, 0xa84f7e5d +108, 0x43931288 +109, 0xfacf448 +110, 0x4ee01997 +111, 0xcdc0a651 +112, 0x33c87037 +113, 0x8b50fc03 +114, 0xf52aad34 +115, 0xda6cd856 +116, 0x7585bea0 +117, 0xe947c762 +118, 0x4ddff5d8 +119, 0xe0e79b3b +120, 0xb804cf09 +121, 0x84765c44 +122, 0x3ff666b4 +123, 0xe31621ad +124, 0x816f2236 +125, 0x228176bc +126, 0xfdc14904 +127, 0x635f5077 +128, 0x6981a817 +129, 0xfd9a0300 +130, 0xd3fa8a24 +131, 0xd67c1a77 +132, 0x903fe97a +133, 0xf7c4a4d5 +134, 0x109f2058 +135, 0x48ab87fe +136, 0xfd6f1928 +137, 0x707e9452 +138, 0xf327db9e +139, 0x7b80d76d +140, 0xfb6ba193 +141, 0x454a1ad0 +142, 0xe20b51e +143, 0xb774d085 +144, 0x6b1ed574 +145, 0xb1e77de4 +146, 0xe2a83b37 +147, 0x33d3176f +148, 0x2f0ca0fc +149, 0x17f51e2 +150, 0x7c1fbf55 +151, 0xf09e9cd0 +152, 0xe3d9bacd +153, 0x4244db0a +154, 0x876c09fc +155, 0x9db4fc2f +156, 0xd3771d60 +157, 0x25fc6a75 +158, 0xb309915c +159, 0xc50ee027 +160, 0xaa5b7b38 +161, 0x4c650ded +162, 0x1acb2879 +163, 0x50db5887 +164, 0x90054847 +165, 0xfef23e5b +166, 0x2dd7b7d5 +167, 0x990b8c2e +168, 0x6001a601 +169, 0xb5d314c4 +170, 0xfbfb7bf9 +171, 0x1aba997d +172, 0x814e7304 +173, 0x989d956a +174, 0x86d5a29c +175, 0x70a9fa08 +176, 0xc4ccba87 +177, 0x7e9cb366 +178, 0xee18eb0a +179, 0x44f5be58 +180, 0x91d4af2d +181, 0x5ab6e593 +182, 0x9fd6bb4d +183, 0x85894ce +184, 0x728a2401 +185, 0xf006f6d4 +186, 0xd782741e +187, 0x842cd5bd +188, 0xfb5883aa +189, 0x7e5a471 +190, 0x83ff6965 +191, 0xc9675c6b +192, 0xb6ced3c7 +193, 0x3de6425b +194, 0x25e14db4 +195, 0x69ca3dec +196, 0x81342d13 +197, 0xd7cd8417 +198, 0x88d15e69 +199, 0xefba17c9 +200, 0x43d595e6 +201, 0x89d4cf25 +202, 0x7cae9b9b +203, 0x2242c621 +204, 0x27fc3598 +205, 0x467b1d84 +206, 0xe84d4622 +207, 0xa26bf980 +208, 0x80411010 +209, 0xe2c2bfea +210, 0xbc6ca25a +211, 0x3ddb592a +212, 0xdd46eb9e +213, 0xdfe8f657 +214, 0x2cedc974 +215, 0xf0dc546b +216, 0xd46be68f +217, 0x26d8a5aa +218, 0x76e96ba3 +219, 0x7d5b5353 +220, 0xf532237c +221, 0x6478b79 +222, 0x9b81a5e5 +223, 0x5fc68e5c +224, 0x68436e70 +225, 0x2a0043f9 +226, 0x108d523c +227, 0x7a4c32a3 +228, 0x9c84c742 +229, 0x6f813dae +230, 0xfcc5bbcc +231, 0x215b6f3a +232, 0x84cb321d +233, 0x7913a248 +234, 0xb1e6b585 +235, 0x49376b31 +236, 0x1dc896b0 +237, 0x347051ad +238, 0x5524c042 +239, 0xda0eef9d +240, 0xf2e73342 +241, 0xbeee2f9d +242, 0x7c702874 +243, 0x9eb3bd34 +244, 0x97b09700 +245, 0xcdbab1d4 +246, 0x4a2f6ed1 +247, 0x2047bda5 +248, 0x3ecc7005 +249, 0x8d0d5e67 +250, 0x40876fb5 +251, 0xb5fd2187 +252, 0xe915d8af +253, 0x9a2351c7 +254, 0xccc658ae +255, 0xebb1eddc +256, 0xc4a83671 +257, 0xffb2548f +258, 0xe4fe387a +259, 0x477aaab4 +260, 0x8475a4e4 +261, 0xf8823e46 +262, 0xe4130f71 +263, 0xbdb54482 +264, 0x98fe0462 +265, 0xf36b27b8 +266, 0xed7733da +267, 0x5f428afc +268, 0x43a3a21a +269, 0xf8370b55 +270, 0xfade1de1 +271, 0xd9a038ea +272, 0x3c69af23 +273, 0x24df7dd0 +274, 0xf66d9353 +275, 0x71d811be +276, 0xcc4d024b +277, 0xb8c30bf0 +278, 0x4198509d +279, 0x8b37ba36 +280, 0xa41ae29a +281, 0x8cf7799e +282, 0x5cd0136a +283, 0xa11324ef +284, 0x2f8b6d4b +285, 0x3657cf17 +286, 0x35b6873f +287, 0xee6e5bd7 +288, 0xbeeaa98 +289, 0x9ad3c581 +290, 0xe2376c3f +291, 0x738027cc +292, 0x536ac839 +293, 0xf066227 +294, 0x6c9cb0f9 +295, 0x84082ae6 +296, 0xab38ae9d +297, 0x493eade9 +298, 0xcb630b3a +299, 0x64d44250 +300, 0xe5efb557 +301, 0xea2424d9 +302, 0x11a690ba +303, 0x30a48ae4 +304, 0x58987e53 +305, 0x94ec6076 +306, 0x5d3308fa +307, 0xf1635ebb +308, 0x56a5ab90 +309, 0x2b2f2ee4 +310, 0x6f9e6483 +311, 0x8b93e327 +312, 0xa7ce140b +313, 0x4c8aa42 +314, 0x7657bb3f +315, 0xf250fd75 +316, 0x1edfcb0f +317, 0xdb42ace3 +318, 0xf8147e16 +319, 0xd1992bd +320, 0x64bb14d1 +321, 0x423e724d +322, 0x7b172f7c +323, 0x17171696 +324, 0x4acaf83b +325, 0x7a83527e +326, 0xfc980c60 +327, 0xc8b56bb +328, 0x2453f77f +329, 0x85ad1bf9 +330, 0x62a85dfe +331, 0x48238c4d +332, 0xbb3ec1eb +333, 0x4c1c039c +334, 0x1f37f571 +335, 0x98aecb63 +336, 0xc3b3ddd6 +337, 0xd22dad4 +338, 0xe49671a3 +339, 0xe3baf945 +340, 0xb9e21680 +341, 0xda562856 +342, 0xe8b88ce4 +343, 0x86f88de2 +344, 0x986faf76 +345, 0x6f0025c3 +346, 0x3fe21234 +347, 0xd8d3f729 +348, 0xc2d11c6f +349, 0xd4f9e8f +350, 0xf61a0aa +351, 0xc48bb313 +352, 0xe944e940 +353, 0xf1801b2e +354, 0x253590be +355, 0x981f069d +356, 0x891454d8 +357, 0xa4f824ad +358, 0x6dd2cc48 +359, 0x3018827e +360, 0x3fb329e6 +361, 0x65276517 +362, 0x8d2c0dd2 +363, 0xc965b48e +364, 0x85d14d90 +365, 0x5a51623c +366, 0xa9573d6a +367, 0x82d00edf +368, 0x5ed7ce07 +369, 0x1d946abc +370, 0x24fa567b +371, 0x83ef5ecc +372, 0x9001724a +373, 0xc4fe48f3 +374, 0x1e07c25c +375, 0xf4d5e65e +376, 0xb734f6e9 +377, 0x327a2df8 +378, 0x766d59b7 +379, 0x625e6b61 +380, 0xe82f32d7 +381, 0x1566c638 +382, 0x2e815871 +383, 0x606514aa +384, 0x36b7386e +385, 0xcaa8ce08 +386, 0xb453fe9c +387, 0x48574e23 +388, 0x71f0da06 +389, 0xa8a79463 +390, 0x6b590210 +391, 0x86e989db +392, 0x42899f4f +393, 0x7a654ef9 +394, 0x4c4fe932 +395, 0x77b2fd10 +396, 0xb6b4565c +397, 0xa2e537a3 +398, 0xef5a3dca +399, 0x41235ea8 +400, 0x95c90541 +401, 0x50ad32c4 +402, 0xc1b8e0a4 +403, 0x498e9aab +404, 0xffc965f1 +405, 0x72633485 +406, 0x3a731aef +407, 0x7cfddd0b +408, 0xb04d4129 +409, 0x184fc28e +410, 0x424369b0 +411, 0xf9ae13a1 +412, 0xaf357c8d +413, 0x7a19228e +414, 0xb46de2a8 +415, 0xeff2ac76 +416, 0xa6c9357b +417, 0x614f19c1 +418, 0x8ee1a53f +419, 0xbe1257b1 +420, 0xf72651fe +421, 0xd347c298 +422, 0x96dd2f23 +423, 0x5bb1d63e +424, 0x32e10887 +425, 0x36a144da +426, 0x9d70e791 +427, 0x5e535a25 +428, 0x214253da +429, 0x2e43dd40 +430, 0xfc0413f4 +431, 0x1f5ea409 +432, 0x1754c126 +433, 0xcdbeebbe +434, 0x1fb44a14 +435, 0xaec7926 +436, 0xb9d9a1e +437, 0x9e4a6577 +438, 0x8b1f04c5 +439, 0x19854e8a +440, 0x531080cd +441, 0xc0cbd73 +442, 0x20399d77 +443, 0x7d8e9ed5 +444, 0x66177598 +445, 0x4d18a5c2 +446, 0xe08ebf58 +447, 0xb1f9c87b +448, 0x66bedb10 +449, 0x26670d21 +450, 0x7a7892da +451, 0x69b69d86 +452, 0xd04f1d1c +453, 0xaf469625 +454, 0x7946b813 +455, 0x1ee596bd +456, 0x7f365d85 +457, 0x795b662b +458, 0x194ad02d +459, 0x5a9649b5 +460, 0x6085e278 +461, 0x2cf54550 +462, 0x9c77ea0b +463, 0x3c6ff8b +464, 0x2141cd34 +465, 0xb90bc671 +466, 0x35037c4b +467, 0xd04c0d76 +468, 0xc75bff8 +469, 0x8f52003b +470, 0xfad3d031 +471, 0x667024bc +472, 0xcb04ea36 +473, 0x3e03d587 +474, 0x2644d3a0 +475, 0xa8fe99ba +476, 0x2b9a55fc +477, 0x45c4d44a +478, 0xd059881 +479, 0xe07fcd20 +480, 0x4e22046c +481, 0x7c2cbf81 +482, 0xbf7f23de +483, 0x69d924c3 +484, 0xe53cd01 +485, 0x3879017c +486, 0xa590e558 +487, 0x263bc076 +488, 0x245465b1 +489, 0x449212c6 +490, 0x249dcb29 +491, 0x703d42d7 +492, 0x140eb9ec +493, 0xc86c5741 +494, 0x7992aa5b +495, 0xb8b76a91 +496, 0x771dac3d +497, 0x4ecd81e3 +498, 0xe5ac30b3 +499, 0xf4d7a5a6 +500, 0xac24b97 +501, 0x63494d78 +502, 0x627ffa89 +503, 0xfa4f330 +504, 0x8098a1aa +505, 0xcc0c61dc +506, 0x34749fa0 +507, 0x7f217822 +508, 0x418d6f15 +509, 0xa4b6e51e +510, 0x1036de68 +511, 0x1436986e +512, 0x44df961d +513, 0x368e4651 +514, 0x6a9e5d8c +515, 0x27d1597e +516, 0xa1926c62 +517, 0x8d1f2b55 +518, 0x5797eb42 +519, 0xa90f9e81 +520, 0x57547b10 +521, 0xdbbcca8e +522, 0x9edd2d86 +523, 0xbb0a7527 +524, 0x7662380c +525, 0xe7c98590 +526, 0x950fbf3f +527, 0xdc2b76b3 +528, 0x8a945102 +529, 0x3f0a1a85 +530, 0xeb215834 +531, 0xc59f2802 +532, 0xe2a4610 +533, 0x8b5a8665 +534, 0x8b2d9933 +535, 0x40a4f0bc +536, 0xaab5bc67 +537, 0x1442a69e +538, 0xdf531193 +539, 0x698d3db4 +540, 0x2d40324e +541, 0x1a25feb2 +542, 0xe8cc898f +543, 0xf12e98f5 +544, 0xc03ad34c +545, 0xf62fceff +546, 0xdd827e1e +547, 0x7d8ccb3b +548, 0xab2d6bc1 +549, 0xc323a124 +550, 0x8184a19a +551, 0xc3c4e934 +552, 0x5487424d +553, 0xd6a81a44 +554, 0x90a8689d +555, 0xe69c4c67 +556, 0xbdae02dd +557, 0x72a18a79 +558, 0x2a88e907 +559, 0x31cf4b5d +560, 0xb157772f +561, 0x206ba601 +562, 0x18529232 +563, 0x7dac90d8 +564, 0x3a5f8a09 +565, 0x9f4b64a3 +566, 0xae373af9 +567, 0x1d79447c +568, 0x2a23684b +569, 0x41fb7ba4 +570, 0x55e4bb9e +571, 0xd7619d3e +572, 0xc04e4dd8 +573, 0x8418d516 +574, 0x2b2ca585 +575, 0xfa8eedf +576, 0x5bafd977 +577, 0x31974fb0 +578, 0x9eb6697b +579, 0xc8be22f5 +580, 0x173b126a +581, 0x8809becf +582, 0x3e41efe1 +583, 0x3d6cbbb8 +584, 0x278c81d8 +585, 0xa6f08434 +586, 0xa0e6601d +587, 0x2fccd88d +588, 0x3cbc8beb +589, 0x5f65d864 +590, 0xa1ff8ddf +591, 0x609dcb7c +592, 0x4a4e1663 +593, 0xeae5531 +594, 0x962a7c85 +595, 0x1e110607 +596, 0x8c5db5d0 +597, 0xc7f2337e +598, 0xc94fcc9c +599, 0xe7f62629 +600, 0x6c9aa9f8 +601, 0x2e27fe0e +602, 0x4d0dae12 +603, 0x9eecf588 +604, 0x977ba3f2 +605, 0xed0a51af +606, 0x3f3ec633 +607, 0xc174b2ec +608, 0x590be8a9 +609, 0x4f630d18 +610, 0xf579e989 +611, 0xe2a55584 +612, 0xee11edcd +613, 0x150a4833 +614, 0xc0a0535c +615, 0xb5e00993 +616, 0xb6435700 +617, 0xa98dbff +618, 0x315716af +619, 0x94395776 +620, 0x6cbd48d9 +621, 0xab17f8fc +622, 0xa794ffb7 +623, 0x6b55e231 +624, 0x89ff5783 +625, 0x431dcb26 +626, 0x270f9bf8 +627, 0x2af1b8d0 +628, 0x881745ed +629, 0x17e1be4e +630, 0x132a0ec4 +631, 0x5712df17 +632, 0x2dfb3334 +633, 0xf5a35519 +634, 0xcafbdac6 +635, 0x73b6189d +636, 0x10107cac +637, 0x18c1045e +638, 0xbc19bbad +639, 0x8b4f05ac +640, 0x5830d038 +641, 0x468cd98a +642, 0x5b83a201 +643, 0xf0ccdd9c +644, 0xcb20c4bd +645, 0x1ff186c9 +646, 0xcdddb47f +647, 0x5c65ce6 +648, 0xb748c580 +649, 0x23b6f262 +650, 0xe2ba8e5c +651, 0x9a164a03 +652, 0x62d3322e +653, 0x918d8b43 +654, 0x45c8b49d +655, 0xce172c6e +656, 0x23febc6 +657, 0x84fdc5b7 +658, 0xe7d1fd82 +659, 0xf0ddf3a6 +660, 0x87050436 +661, 0x13d46375 +662, 0x5b191c78 +663, 0x2cbd99c0 +664, 0x7686c7f +665, 0xcff56c84 +666, 0x7f9b4486 +667, 0xefc997fe +668, 0x984d4588 +669, 0xfa44f36a +670, 0x7a5276c1 +671, 0xcfde6176 +672, 0xcacf7b1d +673, 0xcffae9a7 +674, 0xe98848d5 +675, 0xd4346001 +676, 0xa2196cac +677, 0x217f07dc +678, 0x42d5bef +679, 0x6f2e8838 +680, 0x4677a24 +681, 0x4ad9cd54 +682, 0x43df42af +683, 0x2dde417 +684, 0xaef5acb1 +685, 0xf377f4b3 +686, 0x7d870d40 +687, 0xe53df1c2 +688, 0xaeb5be50 +689, 0x7c92eac0 +690, 0x4f00838c +691, 0x91e05e84 +692, 0x23856c80 +693, 0xc4266fa6 +694, 0x912fddb +695, 0x34d42d22 +696, 0x6c02ffa +697, 0xe47d093 +698, 0x183c55b3 +699, 0xc161d142 +700, 0x3d43ff5f +701, 0xc944a36 +702, 0x27bb9fc6 +703, 0x75c91080 +704, 0x2460d0dc +705, 0xd2174558 +706, 0x68062dbf +707, 0x778e5c6e +708, 0xa4dc9a +709, 0x7a191e69 +710, 0xc084b2ba +711, 0xbb391d2 +712, 0x88849be +713, 0x69c02714 +714, 0x69d4a389 +715, 0x8f51854d +716, 0xaf10bb82 +717, 0x4d5d1c77 +718, 0x53b53109 +719, 0xa0a92aa0 +720, 0x83ecb757 +721, 0x5325752a +722, 0x114e466e +723, 0x4b3f2780 +724, 0xa7a6a39c +725, 0x5e723357 +726, 0xa6b8be9b +727, 0x157c32ff +728, 0x8b898012 +729, 0xd7ff2b1e +730, 0x69cd8444 +731, 0x6ad8030c +732, 0xa08a49ec +733, 0xfbc055d3 +734, 0xedf17e46 +735, 0xc9526200 +736, 0x3849b88a +737, 0x2746860b +738, 0xae13d0c1 +739, 0x4f15154f +740, 0xd65c3975 +741, 0x6a377278 +742, 0x54d501f7 +743, 0x81a054ea +744, 0x143592ba +745, 0x97714ad6 +746, 0x4f9926d9 +747, 0x4f7ac56d +748, 0xe87ca939 +749, 0x58b76f6f +750, 0x60901ad8 +751, 0x3e401bb6 +752, 0xa058468e +753, 0xc0bb14f6 +754, 0x2cb8f02a +755, 0x7c2cf756 +756, 0x34c31de5 +757, 0x9b243e83 +758, 0xa5c85ab4 +759, 0x2741e3b3 +760, 0x1249000e +761, 0x3fc4e72b +762, 0xa3e038a2 +763, 0x952dd92c +764, 0x2b821966 +765, 0xfa81b365 +766, 0x530919b9 +767, 0x4486d66f +768, 0xccf4f3c1 +769, 0xa8bddd1d +770, 0xcc295eb9 +771, 0xfccbe42f +772, 0x38bacd8d +773, 0x2261854f +774, 0x56068c62 +775, 0x9bdaeb8 +776, 0x555fa5b6 +777, 0x20fe615e +778, 0x49fb23d3 +779, 0xd093bad6 +780, 0x54919e86 +781, 0x7373eb24 +782, 0xfbaa7a98 +783, 0x5f62fb39 +784, 0xe03bc9ec +785, 0xa5074d41 +786, 0xa1cefb1 +787, 0x13912d74 +788, 0xf6421b8 +789, 0xfcb48812 +790, 0x8f1db50b +791, 0xc1654b87 +792, 0x948b43c2 +793, 0xf503ef77 +794, 0x117d891d +795, 0x5493ffa +796, 0x171313b1 +797, 0xa4b62e1e +798, 0x77454ea6 +799, 0xbea0aff0 +800, 0x13c36389 +801, 0xe3b60bac +802, 0xa176bed3 +803, 0x2863d428 +804, 0xe2314f46 +805, 0xa85cd3d4 +806, 0x7866e57 +807, 0x8f03f5bc +808, 0x239ae +809, 0x46f279fb +810, 0xcca00559 +811, 0xaa07a104 +812, 0x89123d08 +813, 0x2e6856ba +814, 0x43a9780d +815, 0x676cff25 +816, 0x6744b87d +817, 0xee260d4f +818, 0xb98d8b77 +819, 0x9b0ca455 +820, 0x659f6fe +821, 0x28d20d1c +822, 0x601f2657 +823, 0xdec3073e +824, 0x61263863 +825, 0x1a13435a +826, 0x27497d1e +827, 0x17a8458e +828, 0xdddc407d +829, 0x4bb2e8ac +830, 0x16b2aedb +831, 0x77ccd696 +832, 0x9d108fcd +833, 0x25ad233e +834, 0xaa9bc370 +835, 0xa873ab50 +836, 0xaf19c9d9 +837, 0x696e1e6b +838, 0x1fdc4bf4 +839, 0x4c2ebc81 +840, 0xde4929ed +841, 0xf4d0c10c +842, 0xb6595b76 +843, 0x75cbb1b3 +844, 0xbcb6de49 +845, 0xe23157fd +846, 0x5e596078 +847, 0xa69b0d29 +848, 0x2118a41 +849, 0x7088c16 +850, 0xc75e1e1 +851, 0x6a4af2d6 +852, 0xf19c6521 +853, 0xaff7b3b1 +854, 0x615295c7 +855, 0xbda3a8d7 +856, 0x5b5ca72e +857, 0xdad9d80f +858, 0xfa81c084 +859, 0xf4703fa +860, 0x3ca54540 +861, 0xa8961d51 +862, 0x53d1ecc2 +863, 0x808d83b6 +864, 0x68e8c48e +865, 0x89be2039 +866, 0x9088ea11 +867, 0xb8665d12 +868, 0x91272f9 +869, 0x53dddff2 +870, 0xb7a54ab +871, 0xd2b645ca +872, 0x99fb8590 +873, 0x5315c8e +874, 0x2a913806 +875, 0x7f15eb2b +876, 0xa7f1cc5d +877, 0xbb2ee836 +878, 0xd9fafd60 +879, 0x17448d6f +880, 0x999ec436 +881, 0x482ec606 +882, 0x9b403c0e +883, 0x569eb51b +884, 0xb275d1a6 +885, 0xadd29c31 +886, 0xb7ebdb15 +887, 0xdfef3662 +888, 0x51aba6db +889, 0x6d41946d +890, 0x77bf8896 +891, 0xcafa6fab +892, 0x976ab40f +893, 0x49a6d86b +894, 0x56639e55 +895, 0x9945b996 +896, 0x81459b50 +897, 0xbce97542 +898, 0xe397c9c9 +899, 0x247a5955 +900, 0xb72b1573 +901, 0x86306f86 +902, 0x34f65dc5 +903, 0x909360c0 +904, 0xf3f696ef +905, 0xcb9faae5 +906, 0x93daecd9 +907, 0xde1af7af +908, 0x43a1f2d +909, 0x6d75cde5 +910, 0x9e412b6 +911, 0x5673fed +912, 0x16bb511a +913, 0x35ef4cca +914, 0x4e615aca +915, 0x5cdaf47a +916, 0x26676047 +917, 0x8c199325 +918, 0x2adf0cb9 +919, 0x84f2e6fd +920, 0x5e627f64 +921, 0xb7cee354 +922, 0x542ab4a6 +923, 0xe59cd83b +924, 0x89cc3f10 +925, 0x92b0f5f +926, 0xc1328370 +927, 0x8208d9f7 +928, 0x68eb00cf +929, 0xfadd4ac4 +930, 0x2517784f +931, 0x4042b99 +932, 0x75ce0230 +933, 0x97c5a1b4 +934, 0x1a97f709 +935, 0x4c62781e +936, 0xf530a83 +937, 0x75776413 +938, 0x321c7240 +939, 0x6afe4e36 +940, 0xad00a2b4 +941, 0xbc05477d +942, 0xb0911e80 +943, 0x9935b87d +944, 0xd535eec5 +945, 0x149af45e +946, 0x786934b0 +947, 0xbc13cdac +948, 0x208bfa2e +949, 0xcf4b39cc +950, 0x6ac6c172 +951, 0xbfa9a37 +952, 0x42d28db6 +953, 0x2bf1ea63 +954, 0xbed6e677 +955, 0x50325d27 +956, 0xa79d3b8b +957, 0x52448bb1 +958, 0xefaad1bd +959, 0x833a2e54 +960, 0xd9de549a +961, 0x9f59672f +962, 0x9d5f5f16 +963, 0x1c914489 +964, 0xc08fa058 +965, 0xb188698b +966, 0xdc4672b5 +967, 0x594f720e +968, 0x56ed428f +969, 0x9b0898af +970, 0x8a64d3d5 +971, 0x773308d6 +972, 0x84d62098 +973, 0x46da7cf9 +974, 0x1114eae7 +975, 0xf9f2a092 +976, 0x5363a28 +977, 0xf2db7b3a +978, 0x102c71a9 +979, 0xe8e76aaf +980, 0x77a97b3b +981, 0x77b090d +982, 0x1099620e +983, 0xa6daaae6 +984, 0x86ff4713 +985, 0xc0ef85b8 +986, 0xf621d409 +987, 0xfd1561e2 +988, 0x4bcc687d +989, 0x596f760 +990, 0x7c8819f9 +991, 0x8cb865b8 +992, 0xadea115a +993, 0x56609348 +994, 0xb321ac14 +995, 0x1bac7db2 +996, 0x5fe6ee2 +997, 0xe9bfe072 +998, 0x15549e74 +999, 0xad8c191b diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/data/pcg64-testset-1.csv b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/pcg64-testset-1.csv new file mode 100644 index 0000000..0c8271f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/pcg64-testset-1.csv @@ -0,0 +1,1001 @@ +seed, 0xdeadbeaf +0, 0x60d24054e17a0698 +1, 0xd5e79d89856e4f12 +2, 0xd254972fe64bd782 +3, 0xf1e3072a53c72571 +4, 0xd7c1d7393d4115c9 +5, 0x77b75928b763e1e2 +6, 0xee6dee05190f7909 +7, 0x15f7b1c51d7fa319 +8, 0x27e44105f26ac2d7 +9, 0xcc0d88b29e5b415 +10, 0xe07b1a90c685e361 +11, 0xd2e430240de95e38 +12, 0x3260bca9a24ca9da +13, 0x9b3cf2e92385adb7 +14, 0x30b5514548271976 +15, 0xa3a1fa16c124faf9 +16, 0xf53e17e918e45bb6 +17, 0x26f19faaeb833bfc +18, 0x95e1d605730cce1b +19, 0xa7b520c5c093c1aa +20, 0x4b68c010c9b106a3 +21, 0x25e19fe91df703f0 +22, 0x898364bb0bf593cb +23, 0x5bd6ab7dbaa125db +24, 0xd1fe47f25152045c +25, 0x3bb11919addf2409 +26, 0x26a8cb7b3f54af8 +27, 0xe6a27ee11200aa24 +28, 0x7cb585ab01e22000 +29, 0x78e60028676d2ef3 +30, 0x5c32535e5a899528 +31, 0x83e8b6f8c4a46fb3 +32, 0xe56ef7668a161246 +33, 0x36dcbc15aeb73055 +34, 0x5ea247f0bd188acb +35, 0x438b547b84601a80 +36, 0x8acda2a1273e9e3d +37, 0x2b05e30a4b40c24c +38, 0xfd87236bd13af032 +39, 0x471df211d8d985ef +40, 0x18e8a5609a793292 +41, 0x46f0951fab6dc4e3 +42, 0x6c199c4e700f6795 +43, 0xf04aa16bfb7d22cb +44, 0xd763d269fbaffc89 +45, 0x9991930cefbe5c2b +46, 0xb2a11b953f824c96 +47, 0x63fd9f52172c44b0 +48, 0x183bdad907b1d848 +49, 0xe17953cddb931c52 +50, 0x515cf16726ec205a +51, 0x88c327605150711a +52, 0xc7090dd79cbc8dc3 +53, 0xcb487cedeb00a350 +54, 0xc8abf254d87b657 +55, 0xd43cc4cbfb493d1a +56, 0x8705452e5d9ed1e +57, 0xcecd11446769cf43 +58, 0xde72156c8d65bc69 +59, 0x796a8f0f47d52ee8 +60, 0xb4c0da443917d6c3 +61, 0xe07ad7568a8e3dc3 +62, 0xc24a8da39ce6dc21 +63, 0x92b21ea80a8556eb +64, 0x572f21e531edf3af +65, 0x9b917ed56bbed198 +66, 0xe65fd8ddc5ab3d7d +67, 0xf55a80a8ec84fa18 +68, 0x18fc22e1a5227b61 +69, 0x72305dc7eeaa79d3 +70, 0x47ce58a36e7592cf +71, 0x14c6374340c0f7cc +72, 0x6f98273d4eb5a2c +73, 0x59a8702c46fe8f8a +74, 0xb67cbd8113cfe57f +75, 0xaa03c5db5f5b7690 +76, 0x3fb0f77ea4568013 +77, 0x756530990398b26e +78, 0x4c1952b2a3a6a343 +79, 0x1da15c5383074582 +80, 0xb405b21c81c274f7 +81, 0xbe664677a16788b +82, 0x9d2e37550bcee656 +83, 0x8b4589f0d9defe02 +84, 0x2935f018ee06a59 +85, 0x3834bf88be97ed11 +86, 0xa610d049cea79b6d +87, 0xd49ffc0d09a59ea9 +88, 0x4073365b76567adf +89, 0x499eefb9bb7513e2 +90, 0x74a743ee6b0138a9 +91, 0x3bf0880f2d947594 +92, 0x555d1c0498600a99 +93, 0x923b32a88ef2ffa4 +94, 0x7325411065fbedea +95, 0x9f4129ff8b79d300 +96, 0xab2b0a9b8a3785dc +97, 0x11734bdfba3a1713 +98, 0xc8333398841ba585 +99, 0xee2409cc234e6742 +100, 0xf6638e700872ecd2 +101, 0x10875300c13cd284 +102, 0x27a9bbed7c15b2d3 +103, 0x3c87f8fef31ce9bd +104, 0x92be263cd0914a95 +105, 0xa7b0f11bc742307e +106, 0x4a56f788cc1c1a3c +107, 0x4a130fa32257a48b +108, 0x5d4d9eda16e90286 +109, 0x7cc2af564844bedc +110, 0x2532867bfe7cda1a +111, 0xb1c504676611fd17 +112, 0xce8e86cfb4189aee +113, 0x99685898980d1970 +114, 0x8c3b67db23bcf1e +115, 0x73e14c93905b135f +116, 0xf0271b64ac2bd4d3 +117, 0xf4beba82f3ec1b2d +118, 0x1cdbf3ee9f210af +119, 0x2e938557c09c3ea6 +120, 0x2d314ccfa6ffd81d +121, 0x31ad47079950ade4 +122, 0x342b27547b900872 +123, 0x171b0e20b9ef1a76 +124, 0xdf10ce6318b03654 +125, 0x1d625df4aa718897 +126, 0x8712715a9f6e02ec +127, 0xb4a072da725bca3b +128, 0x19d346cb7734bd42 +129, 0xfd4281d311cb2958 +130, 0x58274c9519fc8789 +131, 0x4cacf29d885fd544 +132, 0x784b14d1c2523b80 +133, 0x2d25242131bb2373 +134, 0xcd2a5e43a7d9abf9 +135, 0x15eda3806e650ecb +136, 0xdaac5e277d764d96 +137, 0xdc5a5dd59aaa94e0 +138, 0x40d00237a46d5999 +139, 0x6205dd35a692743f +140, 0xbbd8236740361f09 +141, 0x1625c9f4e7288bf9 +142, 0xb74f12df1479e3ce +143, 0xb2d72a51b43d7131 +144, 0xf006a324b3707c83 +145, 0x28e8ab4abe7655b8 +146, 0xfb480093ad7ab55 +147, 0x3f8abd0d6ff8d272 +148, 0xc81a94177ac26bb7 +149, 0x3cdc178307751b14 +150, 0x9de84cc2b10ba025 +151, 0x3f8ab5aefcd046e2 +152, 0x43bdb894e1ee83b2 +153, 0xe288a40f3f06ac9d +154, 0xdab62a7d04b4f30f +155, 0x49f4e20295e1a805 +156, 0x3643764805e0edef +157, 0x9449954618b6b +158, 0x6c87e0d4508e0ce0 +159, 0x3a334be688a9dd7b +160, 0xb35c39228776e499 +161, 0xc4118bfff938490e +162, 0x88cbde3dcbb034b2 +163, 0xf91b287793c417c3 +164, 0x42b15f731a59f5b3 +165, 0xffa27104bbe4814d +166, 0x1b6789d138beccde +167, 0x542c2c1440d0ceb9 +168, 0x367294504d18fa0d +169, 0xf918b60e804a1b58 +170, 0xd390964e33a9d0e3 +171, 0x23bb1be7c4030fe8 +172, 0x9731054d039a8afb +173, 0x1a6205026b9d139b +174, 0x2fa13b318254a07e +175, 0x69571de7d8520626 +176, 0x641a13d7c03332b7 +177, 0x76a6237818f7a441 +178, 0x4e77860d0c660d81 +179, 0x4441448a1c1cbdb2 +180, 0xccd7783a042046e5 +181, 0xf620d8e0805e3200 +182, 0x7de02971367fdd0c +183, 0x539c263c5914cab1 +184, 0x9c3b9ba1a87bbf08 +185, 0x6d95baa34cda215f +186, 0x2db3f83ace0bac5f +187, 0x7f5af1da2dc670a4 +188, 0xfcc098d16c891bfb +189, 0x81a33df1d7a5ab12 +190, 0x767b0f863c8e9882 +191, 0x7a92983830de483d +192, 0xfa7598c37a79ac25 +193, 0xb89b3ca42ce03053 +194, 0x457a542b8efed4f7 +195, 0x571b7737fd0eeda7 +196, 0xa0f59e524485c0a +197, 0x82dca766b7901efd +198, 0xa68243caf6a3bd5d +199, 0x1bac981c6c740e5e +200, 0xbcd51bedf9103e44 +201, 0x4e197efd3ae5a7bf +202, 0x523568efd782268b +203, 0x5ec4ef1191fef09 +204, 0xed751ed5e31c9ab +205, 0x44eac24de03e1b29 +206, 0x9237d57c011d3fb3 +207, 0xa8c6da0f7692f235 +208, 0x9f9eb6bc15d6cac7 +209, 0x34bb8e0c93427aad +210, 0x115febd738eaac4a +211, 0xa439991ed139d27a +212, 0x45c7c2633d8710a2 +213, 0x48b7475f3405a3ce +214, 0x80158497c77bd00b +215, 0x935c316a5b1657cb +216, 0x59c5d54440e9695e +217, 0x337c78c5b3d0ede2 +218, 0x8c46bb956b93790d +219, 0xbf1dd03e471d71c5 +220, 0x2d375e90a4bef583 +221, 0xd0365428331b3790 +222, 0xfcd3969ac827ecd4 +223, 0x392fb6c580498410 +224, 0x6d6db4ceab5ea6c0 +225, 0x9bf84f1972e24786 +226, 0x798dfd820959dcc5 +227, 0x2e425095e65e8bfb +228, 0x8c1aa11536b1c9c3 +229, 0xd28e2ef9b12f6f74 +230, 0x86583bc98c8f78d2 +231, 0x489877530e3f93e7 +232, 0xb1d9430631104a15 +233, 0x1814f6098e6263bd +234, 0x8e2658a4e0d4cd53 +235, 0x5afe20e2531cdb2a +236, 0x30d02f7c4755c9bf +237, 0xe1e217cda16ed2d2 +238, 0xccb4913a42e3b791 +239, 0xfff21363ac183226 +240, 0xe788690bbda147a7 +241, 0x76905cf5917bfc6a +242, 0x2a8fa58f7916f52c +243, 0xf903c0cc0357815a +244, 0x15d20f243a4998d2 +245, 0x5b7decee5a86ea44 +246, 0x114f7fc421211185 +247, 0x328eb21715764c50 +248, 0xaffaa3f45c0678fd +249, 0x2579e6ef50378393 +250, 0x7610ab7743c19795 +251, 0xf9923d2bd101b197 +252, 0x57e42e7a62ba7e53 +253, 0x9f1dc217b4f02901 +254, 0x88a9ebd86509b234 +255, 0x867fc926aecc8591 +256, 0xaf22c1bfef04c718 +257, 0x39f701f0313f4288 +258, 0x6171ad397e6faab2 +259, 0x239bb5b9abdec4fc +260, 0xd9a591e25dd01c6e +261, 0x826dc4a75b628e49 +262, 0xf112b152c408f47 +263, 0x6843a06110f86c0 +264, 0x965e56a7185c1332 +265, 0x8d84492edbc71710 +266, 0xeee8ec111cfd1319 +267, 0xf2858e94ad98e458 +268, 0xbc9589fdf5f3a97e +269, 0xaf0ceef3bc375130 +270, 0x48f4aaf13fa75c1e +271, 0x111e9db47bee758f +272, 0xea3171df130164ba +273, 0x2a7bbe30bf827ab6 +274, 0xc516c3fdbf758c35 +275, 0xec55097754b04be5 +276, 0x374a997d52b6d3e6 +277, 0x487df5456085ffbc +278, 0x528883b84df8eafe +279, 0x805f77ab5ba26f86 +280, 0x8eb81477dc04f213 +281, 0x471ea08ec6794d72 +282, 0x69d3667ecc4d2176 +283, 0x98b7b6e295548a66 +284, 0x3877713c173f8f2 +285, 0xa00542570d0e8de3 +286, 0xf534b1bfa4033e50 +287, 0x7e1fedeac8bf6b26 +288, 0x8043f37c89628af4 +289, 0x1dd7039ec295e86d +290, 0xce9c05b763a40cc4 +291, 0x246926481e61028f +292, 0xb7cb0f1babf5893b +293, 0xefe6b777f37fc63e +294, 0xebbcabb4cb35cdcb +295, 0x39fa63cd711eeea9 +296, 0xad5d3ba7aaf30c8d +297, 0x8e9e78fe46021990 +298, 0xc7eaef6e7d5a3c62 +299, 0xefccdd5495d3f386 +300, 0x2179557ee8cfc76a +301, 0x88a77f621f0885ce +302, 0xafda62674543d90c +303, 0xb8e6fbe2e13e56c0 +304, 0x8bfbbe26a14f9b1a +305, 0x1404f59f5851f8c3 +306, 0x1140c53a0489566d +307, 0x3edf2d138b5c3f1d +308, 0x75d6bb275d817dc +309, 0x8e660ae27107664e +310, 0x7a8021038ee303e1 +311, 0x2042ef5eefa9079f +312, 0xe3e7b90bbf6d457a +313, 0xf3f819d2bb9405b +314, 0x522e42155cae0c10 +315, 0xf5bfbb975b40e233 +316, 0x2cf82b614dd95cfa +317, 0x183ef4a96bc40e55 +318, 0x9f6e351c5ba4e752 +319, 0x37c1110683c90846 +320, 0x1d89b7a996d8a977 +321, 0x18a444f77c7cb4d9 +322, 0xd0a8a971b78dc893 +323, 0x860232fb9e6543f1 +324, 0x60b6097f51002555 +325, 0xca1e5214123e3894 +326, 0xe03fe695c95f99bb +327, 0x2c7c6779d5f03622 +328, 0xafeeee42f63055d1 +329, 0x670dde905515936a +330, 0x9a922f42b59fb094 +331, 0xddb5ff49af5a651a +332, 0xe61b04c9e58ebbf8 +333, 0x4e459dcf272e7fc4 +334, 0xd549e92c16adceeb +335, 0x7a17dba1299d4a9c +336, 0x825d756109f2b585 +337, 0xba142e61a9cb203e +338, 0xc2a19f00e9c04a30 +339, 0x2d0f8140d23d0652 +340, 0x8b866d4d4d6caaf4 +341, 0x4f11d90dd91f8217 +342, 0xf6efc37373b9e0d +343, 0x248493d6cd6a4736 +344, 0xd12b6ae74a951a3e +345, 0x56e34722070b70a7 +346, 0x22d3f201cc9fa0eb +347, 0xbfdcc320008291b7 +348, 0x1a7a6922e9204fbd +349, 0x831421e0c4945ae4 +350, 0x66316feddddf0e11 +351, 0xa8c86a1517456554 +352, 0x14a9049ad989e335 +353, 0x837022259f141ecd +354, 0xcb71793a06c261f7 +355, 0x4aeefc07ebe09a79 +356, 0x8982f15aa3b6594b +357, 0x67bccfa7ed9b0d5b +358, 0xb377463b523e9dec +359, 0x53d3d594870fecb7 +360, 0xa5274b1caec5a60a +361, 0xd6316d0cb643db39 +362, 0xabc1a9b536de88ce +363, 0xed2fdb1383d2a077 +364, 0x12319c6feb97221b +365, 0x7e0f6cd40ef47403 +366, 0x86135c84fe26dbf8 +367, 0xc96622d3fbbee19b +368, 0xe3989d8d8511573f +369, 0x42cc365554d1fdc7 +370, 0x4c1a1eb8bbce8b4f +371, 0xfc4e30e7ef2034c1 +372, 0xc490444317a91e76 +373, 0x7ccdf469ff5dc81c +374, 0xf5a0da4110cc09d7 +375, 0x505227baf34c0fb5 +376, 0xbe58737e8a35cc88 +377, 0xd449bee91b3e8c41 +378, 0x3e590e23299d0e6 +379, 0x291a7d9e0a64caf7 +380, 0xdc6fafbdfebd2293 +381, 0x8223f1e259fe8a65 +382, 0x6186fbc9efd9e3df +383, 0xfda39b07e4007ffb +384, 0xfc19aea98574dc02 +385, 0xd0e10d354fcacd8c +386, 0xc9619916544a55a5 +387, 0xd454d50a8c8558cd +388, 0xcd94a246712d91e +389, 0x76a771f5d1231cce +390, 0xdd20cb2b7b370ee5 +391, 0xa6f4f50feca57c49 +392, 0x78c8fb431f17ab9c +393, 0x1b692b79a59b43cc +394, 0x4c45045d287da7e6 +395, 0x522132e18bf43928 +396, 0x25c458983138b41c +397, 0x2a1fb426ef229796 +398, 0x74dc324c74e5dd3d +399, 0x6df75e3eb6eb5374 +400, 0xb63f2f4f9ca25b61 +401, 0xac72286112ee54d6 +402, 0x5a966f3d0a6863c4 +403, 0x8d7046bc64a46fc2 +404, 0xa7b740fd6e3087eb +405, 0xcdbcbe0340cfcdf5 +406, 0xcb632613bf312b65 +407, 0xa91b3f2c2aac238b +408, 0xa06deb3f5ae555a3 +409, 0x29d72e1f8db69 +410, 0x2d004bae09728ea6 +411, 0xc6eee5dce0736cc1 +412, 0xa7493145500ff60f +413, 0xc4d68c4aa18ab93c +414, 0x8210c29e79d48d7f +415, 0xd0999d7889ecbef6 +416, 0x6e3bd61e66e93566 +417, 0xe6cc13d47d7d7b1f +418, 0x3d6f181f42e03979 +419, 0xbed4e14fd867604a +420, 0xbe511c84067bd86d +421, 0x49a876d89e697d38 +422, 0xc04c3dde8f889c98 +423, 0xaf293eeab0f53e3f +424, 0x9f6291dd65732cd6 +425, 0xd7811ac01de78c01 +426, 0xe385cf0261d50ec2 +427, 0x5a64134b3542bbf +428, 0xf9d1302bc6f13a68 +429, 0x5d2aabbea37d8c31 +430, 0xd9842e99a5192970 +431, 0x713eadc4cd30e837 +432, 0xb7b002fc72abb413 +433, 0x276cfeea526af1cf +434, 0x8519fe79b633a0ce +435, 0x2f0e87363705a3e2 +436, 0x9adbac0be3c371e7 +437, 0xf3f44ba899a6173c +438, 0x782d6c29618fde2b +439, 0x7f61062acec408f +440, 0x6e79cd836359258f +441, 0x5c8e9b138df5785a +442, 0xa54359c9f39a9a84 +443, 0xeec3f033135084b0 +444, 0x883ee717787a535c +445, 0x9a2422b513a73b00 +446, 0x2dd4beddcdd64a58 +447, 0x90c8a13202239c7b +448, 0x85b352ab759646d9 +449, 0x139f5cb2e46c53aa +450, 0xe1d3ba6c721c66d1 +451, 0xaa66e0edc4b60a98 +452, 0x3521275c75be29b6 +453, 0x490a5190b3edfa5d +454, 0xd2abcdd2ccb2f14e +455, 0x9d9be8bef4a5857d +456, 0xde19676f13ef7755 +457, 0xdac2fee2e42615f3 +458, 0xf4239801cb02f2ab +459, 0xaa8bf923ed91875c +460, 0x61d18a1940e4c7c0 +461, 0x1eb6aa3d5f077a6d +462, 0xee7374c063bf29d8 +463, 0x2f0a59e34d76268d +464, 0xc92e80e17d1eb3e9 +465, 0xafd05b3ec3d2ca72 +466, 0x28a61ad8d6c497b8 +467, 0xa7094d6834ad7d47 +468, 0x57d80ea9eccbb4f +469, 0xb047e0fee6cdaf16 +470, 0x44f41b5eb48c00bb +471, 0xd6dc8e1eb9c8c9ba +472, 0x47adfd2c638c7849 +473, 0x365d63db7d526c68 +474, 0xc21cda439016135d +475, 0x14d10c3f0f98863c +476, 0xa93e56f74e037602 +477, 0x3b4e9c8915bdc9 +478, 0xb46f5ae155e54aa2 +479, 0x8e470d21ce1943e1 +480, 0x60b96301b5ba2e8d +481, 0x1b473a41d381f9ff +482, 0xabcf5a8e3269e73f +483, 0xd410f6e94fb21fa1 +484, 0x65d1a47eebf87e5e +485, 0x48eaa201c61cb843 +486, 0x212c1abc2499bfc5 +487, 0x4255ad8377d2d8d +488, 0x44caeef472010612 +489, 0xffae764524f572f2 +490, 0x78d374d20c9ee550 +491, 0x6e003206c0511cee +492, 0x7998a159145bfb82 +493, 0x921239650bda1d4d +494, 0xae05025509bcfdc5 +495, 0xc6430c980be407b4 +496, 0x78524f1744b153f1 +497, 0x84089e6f468181fe +498, 0x8d0d21d7dfb6c254 +499, 0x90bad90502a33603 +500, 0x3072a403cbd16315 +501, 0xdfadddf3f1c040c2 +502, 0x22f0b0639d9ff975 +503, 0xb49e48a4cad0765b +504, 0x95a0a04f8239709d +505, 0x56e147a24a4c481f +506, 0xacf16ef61dea4c7e +507, 0x424040afd2700de6 +508, 0xc67e8096a3c717a9 +509, 0x39f164181dd0a399 +510, 0x2449cedc1d62198c +511, 0x7a53df11a1f1a61c +512, 0x5596f1d4a3badae3 +513, 0x38ed4c822072b3d0 +514, 0xf07ef346b3fd730a +515, 0xfd349c35c3ed51fd +516, 0x2f15c9c7890f8f32 +517, 0x3b470df52b173c29 +518, 0xd31bfc8981281af7 +519, 0xbbcc9bdf561215bb +520, 0x5782fffea326574f +521, 0xb0ebdcfcc5e03290 +522, 0x7fd89d93d2b3fbef +523, 0x280ea1865d9ba2 +524, 0xe726959845b2c100 +525, 0xd0361f032cd7dbb1 +526, 0x3c65ec2028b81a22 +527, 0x5221e9b2188920bf +528, 0xeb5ab27c4125ec20 +529, 0x80a32dd48b54f0a4 +530, 0x369b5ced1012bebb +531, 0x582d35d76530bc6f +532, 0x7b50dc9b48e1e37d +533, 0x37fdfe8bbacf8dad +534, 0x7a0cb7e6e93840ea +535, 0xa1132c870be0b2ce +536, 0x9d8ac2c68267cd1a +537, 0x470969b647fa7df4 +538, 0xabcb7d8adf7e2d24 +539, 0xacdebec9bdf9eb1c +540, 0xe30f4cbf7eb6a59 +541, 0x746673836c4df41d +542, 0x75120a6b647bb326 +543, 0x2f4eab556c3f6878 +544, 0xd84651ab05405b7a +545, 0x9e695808b9622284 +546, 0xc93b71e56aa6e1a5 +547, 0x2be7f3be4a7b7050 +548, 0x6497e910b6733241 +549, 0xcf7050dfd08076fc +550, 0x4e3cc156eca183f7 +551, 0xf801a33d9326c265 +552, 0x6aa293c8a47d40e6 +553, 0x28c429755faa6230 +554, 0x82b818651f54e7bb +555, 0xa84d726d7acdbead +556, 0x5cfa535d5774965d +557, 0x4a34b7b1cb48d53 +558, 0x86a7b5bce426de84 +559, 0xfcd2307cecdb7318 +560, 0x16dbaaa71181a038 +561, 0x88e7e8cd261c2547 +562, 0x3c09ba6d1d5ea913 +563, 0x5dd3d643734ee5b6 +564, 0x326d725fe8cbb33 +565, 0x7bcca9ca2da8e784 +566, 0x482dcf6b11d7f9a4 +567, 0x1291b605b4cd3e04 +568, 0x6988181b50e2f4a8 +569, 0x649e3c37131fc292 +570, 0x4eeb67b9e21eba54 +571, 0xc051d39073dec45f +572, 0xc99c52e110270d67 +573, 0xcb813d5d77868add +574, 0x423a5f13573e7ac0 +575, 0x231ac4cc4fe73616 +576, 0x4c22b888a6e600ea +577, 0x8059a6dc7c9e25c6 +578, 0x49f498a5b8ad22de +579, 0xf1e812cc6d1826c8 +580, 0xbbaf60abe8b11e00 +581, 0x1d31d7f4d8be9a6a +582, 0xfeadce70a9a10c14 +583, 0xb47c635bc136996a +584, 0xd88e694c8da030cb +585, 0xc41bbe132aff1364 +586, 0x34249ab18a4b0800 +587, 0xf14b5c825aa736cc +588, 0x2710be6b08df78e +589, 0x2ab56bcc9bf9e740 +590, 0x9b7f6e591b5f648 +591, 0xfb665c3772f34135 +592, 0x628a0a5d2db5d8d5 +593, 0xb3e3f251e61b5259 +594, 0x82310ae33faf1b23 +595, 0x24af8723a65cbd0b +596, 0x671c93282fc4ad97 +597, 0x6cabeaac77270cad +598, 0xef4643fe38b02b7f +599, 0x7b011549d1ac6653 +600, 0xe2af87b9fccfe89 +601, 0x36b71ad67197ac8a +602, 0xdbba55d06f2fd93b +603, 0xf571dbd764b7f7e5 +604, 0x38ea402501cdbd45 +605, 0xb8ab5b5b1bab2913 +606, 0xfab973c4d45f32bd +607, 0x9364f1717c2636b9 +608, 0xfad00f4d983e00fe +609, 0xc90c532a11aef75a +610, 0x64a6eda96e44783c +611, 0x35891f2eb84520be +612, 0x28d216080caed43 +613, 0x129629cc5bd206f6 +614, 0x22c3d39822cbb4b3 +615, 0xf1efbf4cce1eaa2b +616, 0x7070cba12524ed08 +617, 0xa7ed0be9deabf20d +618, 0x8ddb4cd6b454f76b +619, 0xb82814b1db37b63 +620, 0x418e83b36de01876 +621, 0x9a538c7f39c6413 +622, 0xee0cd7abf8a2ecb9 +623, 0xa9222b07e95590f3 +624, 0x6296a415d68341e6 +625, 0x981e0a5a8f811929 +626, 0x4bb372d3b0de283d +627, 0xa9805b5971866e16 +628, 0xaf3b5f5183497657 +629, 0x2152b0fd23c3d9f +630, 0xb730c325b7173180 +631, 0x1e3439d231608c19 +632, 0x1c5ba6031379823c +633, 0x87f5d12d6d365cbc +634, 0xd3bc7f29614bc594 +635, 0x63102214bb391268 +636, 0x482bbd5bba648a44 +637, 0x6a23604690759dc4 +638, 0x4091d41408d3a39e +639, 0x7cd017f922101b15 +640, 0x7ce9004ac5f9231 +641, 0x978bc3d8ec7f7fdf +642, 0x5bd0c4d780580c11 +643, 0x4313c068bb040153 +644, 0x3ab7dab7bc38bf80 +645, 0x3aaf9c187728deea +646, 0x6633a4ce8efb88d9 +647, 0x7263b089878f00fc +648, 0xd0d767e96fe00eb8 +649, 0x184a7c0c01908028 +650, 0x1ebdf41e6f76e186 +651, 0xeb740ee1d0402083 +652, 0xfccf4974edb1c339 +653, 0x16e2707aa28306d +654, 0x1684f0bdb018c3a5 +655, 0x887b6b67b88aa862 +656, 0x923d7810a2bea33a +657, 0x56b3560babef5d6b +658, 0xb39a14614c54b8c6 +659, 0x33e4dc545a509fc8 +660, 0x26e21f84142da9b +661, 0xdd07598125756855 +662, 0x572d49a071d7ae0a +663, 0xba3c7e3baea28760 +664, 0x7ecdb2d714db4b61 +665, 0x1c62b4920e1b2fe2 +666, 0x71bfafb70092834a +667, 0xd710a4228f60d56a +668, 0xeb16277d4ce4e95b +669, 0x968168c90b16d3a1 +670, 0xac3439dfe8ad0062 +671, 0x5a8226f9dd5876ad +672, 0xb843affe917291b0 +673, 0xd76d1e67051f8259 +674, 0xb73a6638cce8ccde +675, 0xa0e6afd3c7295f9 +676, 0xff8857b4bbb5f4c6 +677, 0x99becf78938f0426 +678, 0xfcd17edc1e70f004 +679, 0x6223b8b23f2f50 +680, 0xca875f3e84587b4c +681, 0x7d1e81e589f87fb9 +682, 0x9eb621586aa826fc +683, 0xf46fb9ef5b9c2086 +684, 0x2882c9b7092725f3 +685, 0x5493f099bbedcd02 +686, 0x90c1ec979ffa811d +687, 0x963f765025bcc53 +688, 0x56194e3ec3d9d4e9 +689, 0x7ec4720954cac1f0 +690, 0xfab3145171af7f90 +691, 0x52a0b4e41a13b593 +692, 0x740e2d4d5909d126 +693, 0x98f5339c09c94a28 +694, 0x1700e462fe8dec76 +695, 0x3dbffc2aa4695ac3 +696, 0x5763edacabdfe2a1 +697, 0x7b5b623ce49ef21d +698, 0x30addc66f49860df +699, 0xcc7511a6c31bceda +700, 0x1b25b61ca75db43b +701, 0x416bc4c298e59046 +702, 0x4cd11fe2d74e4649 +703, 0xb54458a9229fc978 +704, 0x8c21a27882b6ca35 +705, 0x57887c8b5e01639b +706, 0xf4e893da996680bb +707, 0x8d601297702c9c0d +708, 0x2a27904a30aa53af +709, 0x497800f6917ea8d0 +710, 0xe96db3340ada9c00 +711, 0xcc23166f14c010ee +712, 0x782690d78fa65ec9 +713, 0xf3e00d74a0878eda +714, 0xa7cbb683decca0a3 +715, 0xdd2e038e683a94aa +716, 0xe2096ff8da896ca5 +717, 0xf7c83400afdabe11 +718, 0x395b8c6f6a4086a4 +719, 0x4a164ec05bee71d4 +720, 0xe87aa5d1ca0462fe +721, 0x8dbc5aed6dff9ceb +722, 0x12120d1e9552707b +723, 0x877dca6889b3e6cd +724, 0xbd65605c01e900fb +725, 0xbd6b82c4157c3115 +726, 0x8b60282732caf78a +727, 0x279fcf5e5de9e57f +728, 0x34b34ebfb6a37eae +729, 0xd258cc1a14e03b7b +730, 0x9a528ba3db4a13fb +731, 0xffa0aea59d057746 +732, 0x27fa7f456cd37c4e +733, 0xe1117a57a6fdce63 +734, 0xdc8fc903970a1551 +735, 0x492dd104f30faf29 +736, 0x110def0959e5652b +737, 0x7f8d1997636fdd15 +738, 0xfb77b05e538a9b59 +739, 0x2e41fa35b4b01fc6 +740, 0xbc35ae69a3374085 +741, 0x192c2a681c2d9b4b +742, 0x12566b8866c189d6 +743, 0x9d88ea785c5185c8 +744, 0x30a621ad5f983c4 +745, 0x8b875efe1206f587 +746, 0x224d25c3af6e3423 +747, 0x7503e976a1ac7bcc +748, 0x3c98aa869e823859 +749, 0x3d8835304b646892 +750, 0xf6353330ff970bc2 +751, 0x8a673f5e2edb8acb +752, 0xf2fdcc53493838b9 +753, 0x85ddcd526236af16 +754, 0x60afb99814c676c5 +755, 0x32a1c2749e281ca8 +756, 0x2367a92ae3bee9ca +757, 0x219fe082703743cc +758, 0x34d8b74dc85182a9 +759, 0xdd04164c72db23f +760, 0xe293ac28fe2671a9 +761, 0x9ca7d169cbda6f45 +762, 0x705c47972b4240ed +763, 0xc10eda9eeb536209 +764, 0xc36ddacd0c94e85d +765, 0x8eb592c27e8cd0d2 +766, 0x3e815991c76e7cc4 +767, 0xac9cfce31acf7580 +768, 0xbf7a4cb31c7aee94 +769, 0x663077444aceecf6 +770, 0xe7f614ff386eb568 +771, 0x79d7a229c66912c0 +772, 0x161ed4311f63e1f3 +773, 0x308a5faeb9982ede +774, 0x7b38ddb9b7efd10 +775, 0x1e103a2589b27ecf +776, 0x67b02baf4259f27e +777, 0x868921c115ea2eee +778, 0x959791912200f71e +779, 0x4dd55f36dec10557 +780, 0xe3464d90080cb99d +781, 0xfb2d4f6accce652f +782, 0x109900a9257d77ba +783, 0x3c4bda8e2c83684c +784, 0xc9ae040fb7f868c6 +785, 0x78098ffe994f4905 +786, 0x7a94c33eca77f0b4 +787, 0xbe6a2a95e9b5c0e8 +788, 0x797d39cf963f4837 +789, 0x8d2e249e4425d06d +790, 0x6ae2c30cd5da06f4 +791, 0x904489de762b179f +792, 0x84713e2dfb591e3b +793, 0x6405a40da3f6f51b +794, 0x976b560d663a2df1 +795, 0xed1c544784ba1e22 +796, 0xca658e995ed9344c +797, 0x2b1c6b8e4db49025 +798, 0x52b1513da528bad +799, 0x3c63406d256d9968 +800, 0x63a31ca3d423f85e +801, 0xb05a81f55789a720 +802, 0xd04412992c476c8e +803, 0x828ec2f77a150a3d +804, 0xee50926671bb60c6 +805, 0x5aa70f93e2df61b4 +806, 0x94d60fa2e8655858 +807, 0x3f5e5b770703cc7d +808, 0xc62dfb2688ca7784 +809, 0xaaf02e1e8ba89fe4 +810, 0x4ab74e0d8c047405 +811, 0x31ee04fbac6fcead +812, 0x1203b78b8228f5af +813, 0x412a70836f9aa71a +814, 0xab51cf98c03f1819 +815, 0x783a3ce9ce137f65 +816, 0x8897085b0a072cf2 +817, 0x685dd9bde8798cb +818, 0x9a1fac7b1705e2c1 +819, 0xf3e9ff98de48e9cb +820, 0x5c2d3eb1a1fbe917 +821, 0x3bda718b6b54d82e +822, 0x29f2dd18f22f0821 +823, 0xb992da1572ac3597 +824, 0xacb69e7aa14b34f7 +825, 0xcd36e3ad14f088d1 +826, 0x6aaacc96a1ec55e8 +827, 0xf8ac593f154fe68f +828, 0x18fc9cbff012339f +829, 0x2f3368ccbbb99899 +830, 0x7cec7d17f37031f7 +831, 0x96e86bfaadcb8fc2 +832, 0x74f9e7ee3d42a752 +833, 0xbd52f6c7d9b0733 +834, 0xa48e6d96bb6ce1c9 +835, 0xaefa058254b82133 +836, 0xb7a19edfd0929107 +837, 0x6160ce9125b26e26 +838, 0x6537dbbde1d2aed +839, 0xc567f9a6bec52dde +840, 0xca29fd3f22443342 +841, 0x7732aa6db6a1c476 +842, 0x8f5a4d7df6b11b3 +843, 0x76649262aa7e31e1 +844, 0x60a13eb125fbc829 +845, 0xc81e4d123dd21ac1 +846, 0x643cbb09bb72f86b +847, 0xf971a98fb25555a6 +848, 0xffa2774c66692d56 +849, 0xcb33c16c50b13ea9 +850, 0xfabf388dffda0e9b +851, 0x55d41ec12ca24b9f +852, 0x91cf693a3467e807 +853, 0x6be2c00b2c31d6dd +854, 0xc5cf513b5251ae28 +855, 0xffc4384212403dec +856, 0x45d4e1865255a69d +857, 0xfb1dcf956972086a +858, 0xcae946a55c4c55b8 +859, 0x7351ac7720e385c1 +860, 0x19aa8ffd86240254 +861, 0x8f515ae78f4040da +862, 0x1e1ed2058de50fce +863, 0x22d006dcdb374243 +864, 0x6e0f0ede7c95b441 +865, 0x70e8aa81b53b4d25 +866, 0x998f309ea41e3814 +867, 0x89ed6598fb66f390 +868, 0xb5997dc3278060df +869, 0xb2a021eac4f7e046 +870, 0x3705b60aa2fd0768 +871, 0xfc415079ab9200e +872, 0xf2871ac4cf45ecc9 +873, 0x24bf758d2246175f +874, 0xac503dd6f8141b3 +875, 0x4e879d12d9f03b3 +876, 0x82034af8cf93b644 +877, 0x59899dd7e478a6c7 +878, 0xae90addb6eb11507 +879, 0x1524ddf76730cdef +880, 0x6fd4afd5456b1c9d +881, 0xcddb9221ea001cbc +882, 0x64ff400bbf2e8604 +883, 0x6dda10549b06ed9b +884, 0xed2c85104c261527 +885, 0xc7e09217d29929a8 +886, 0x56284df611a428b1 +887, 0x1a7608289c0a61 +888, 0x7cb63db15166ff66 +889, 0xc6013c76fcdcdc72 +890, 0x8e5dd566c7a5a676 +891, 0x5a8e8565f40d133b +892, 0xe465973455848c44 +893, 0xf92eecbfe0f3c2c0 +894, 0x7d64155d4dcc5cac +895, 0xf17595706f988dad +896, 0xd590a001a6a19c5c +897, 0x82a164475758db3d +898, 0x6b144993ea1bbe32 +899, 0x22a81a7a6e453779 +900, 0x8e8c298df1a68a73 +901, 0x78056afd6d936b4c +902, 0xaaceef0325faaf62 +903, 0xe78bb7699f82266f +904, 0x523a2d283c5a5166 +905, 0x7076d87088f6c6db +906, 0x6087dd54cff5aeb2 +907, 0x7ef82e62cb851680 +908, 0x4e8bcc8ed84d03d8 +909, 0xd12fa0361df3cfd3 +910, 0xefb89c79f8127297 +911, 0xa9af4e2fbce0b1f8 +912, 0x462136685b70331e +913, 0xe9e74c93da699b77 +914, 0x9ec69215fb11d0c3 +915, 0xc10f229939e3e111 +916, 0x3f67fa79e41d2374 +917, 0xd5e7c1a9a7185162 +918, 0xa1dcce9ec91492fe +919, 0xd4e61f0727b5d21b +920, 0xdf6cdce46551800a +921, 0xa3f256ce906982d3 +922, 0x209742a6b9ffc27 +923, 0x4006c96958526a57 +924, 0x9606aebc75a1967e +925, 0x91b9f42fb64189df +926, 0xb27119defcb938bc +927, 0x128cc7a84ba05597 +928, 0x6c3df613c62d0d30 +929, 0x3adf69d48b629ec7 +930, 0xda42ee493837b128 +931, 0xb8e770480e760bb5 +932, 0x9feb55d57c99c626 +933, 0x29812d80afdae3ed +934, 0xae4222a64276a8c7 +935, 0xe3897212a5b4ed53 +936, 0x98bedfd13886e669 +937, 0xca858675d7fc0d0e +938, 0x28a359f665354234 +939, 0xfac2ccabe4128b35 +940, 0x61373cc5d11ca180 +941, 0x7007605a4512a87a +942, 0xe71f8eade7b30b3d +943, 0x3a9e77f9b99bd04d +944, 0x70d3e42488098866 +945, 0xd30fc159c7cd4d99 +946, 0xe4d3f6600d2e2d6f +947, 0x1088324dfa955c25 +948, 0x516437acd4764623 +949, 0x38a31abe50d0aa03 +950, 0x72e1054e9dc02ba +951, 0xe6971dd664d1a2e2 +952, 0xf6698cb095d3b702 +953, 0xad995a5a8c19bd92 +954, 0x34e53c6936f656e6 +955, 0x10de240bc07c757a +956, 0x3e3b9a6861c2bd1c +957, 0x9c0b0b97d3712ec9 +958, 0xabf1505a75043aed +959, 0xbdf93d3de3274179 +960, 0x28fa5904d3f62c28 +961, 0xc3b97b39ef6c5133 +962, 0xf2b2219225b8679d +963, 0x8be4ec0f930c0aaa +964, 0x47de5a56aa590643 +965, 0xb6f871b304129856 +966, 0x80a61c06233ab0f9 +967, 0x3ce6c3af8101b055 +968, 0x85b911708274e7d1 +969, 0x4cab65d093a488b7 +970, 0xaabc4b10661fe28e +971, 0x35b16dea64474a68 +972, 0x1d6eb5b093361223 +973, 0xc39107b92f0fe1fb +974, 0x1d09e048073c4841 +975, 0xc6a02f43aca8cb2f +976, 0xaf6613dbc7da909c +977, 0x5ac2a40c230aa756 +978, 0x33afb5e7c01c39a5 +979, 0xc7b0b20ea8b7d0ef +980, 0xdf7306c8ccb1bbea +981, 0x9710efc0c188b2a0 +982, 0xd6303eadb72c873e +983, 0xa38ca609b118f35a +984, 0x8390613065c6e535 +985, 0xdf9a0106757e431f +986, 0x8bcf77039788e143 +987, 0x6026806a986b378e +988, 0x482ff3b1394cb1dc +989, 0x2a27d0ccac9ede9c +990, 0x53c77f26e271b3ab +991, 0x1ba004cf276cf3f +992, 0xc135b0517dc81f7c +993, 0x5d137838db75e442 +994, 0x3fe505f93d1dbdd7 +995, 0x351654ae7d598294 +996, 0x173f8d182af9d84d +997, 0xf97dfcd164fe11c5 +998, 0xcda423e5ad43b290 +999, 0xa5cb380b8de10d10 diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/data/pcg64-testset-2.csv b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/pcg64-testset-2.csv new file mode 100644 index 0000000..7c13e31 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/pcg64-testset-2.csv @@ -0,0 +1,1001 @@ +seed, 0x0 +0, 0xa30febcfd9c2825f +1, 0x4510bdf882d9d721 +2, 0xa7d3da94ecde8b8 +3, 0x43b27b61342f01d +4, 0xd0327a782cde513b +5, 0xe9aa5979a6401c4e +6, 0x9b4c7b7180edb27f +7, 0xbac0495ff8829a45 +8, 0x8b2b01e7a1dc7fbf +9, 0xef60e8078f56bfed +10, 0xd0dbc74d4700374c +11, 0xb37868abbe90b0 +12, 0xdb7ed8bf64e6f5f0 +13, 0x89910738de7951f +14, 0xbacab307c3cfd379 +15, 0x2cf7c449d8b927a6 +16, 0xdcf94b3a16db7f0e +17, 0x8a9d33d905a8792e +18, 0x4cb9eb2014951238 +19, 0x6c353acf7b26d6f1 +20, 0x73ff53d673aa30c +21, 0x1fd10760015eca68 +22, 0xabae0aa9021eeba8 +23, 0xa5ae363a868ee2bb +24, 0x9d89e0f041de6631 +25, 0x6238b133c3991a65 +26, 0xff49267d75fef51a +27, 0xfb180656ce13c53f +28, 0xaf7fadf36128712d +29, 0xa6847fc6f339c63e +30, 0xb03e0b80d71ea5bc +31, 0x63905abcb43969af +32, 0x2295af3ee00a3bba +33, 0xb8b375b994330415 +34, 0x867d9ef1d8716a3b +35, 0x4f6c02f5601b4e18 +36, 0x7c5fb4c16c470d18 +37, 0xe3b57986b804b343 +38, 0xef1d79d212aca692 +39, 0x5b98774c8806209c +40, 0x924fc76bac38a5d1 +41, 0x5266084c412ddeed +42, 0x98240bf9b831d6a3 +43, 0x5681599e81219442 +44, 0x6441248fc2ba92bc +45, 0xe3e9051a540349ea +46, 0x3a2700034390baa3 +47, 0x9f893155b6d402bc +48, 0x158207910c6d8aef +49, 0xd5282ab7608c2cbc +50, 0xc97f4651669dee4f +51, 0x3d4750d95103ed60 +52, 0xe0614542caac1f04 +53, 0xefe5092144cfc6c +54, 0x560bc486abd7e9ae +55, 0x2678b71392daa4b8 +56, 0x734970d3dc2ba416 +57, 0xcbdbe849e51e4aaf +58, 0x3b0b5e28b491556c +59, 0xd51449ac45abd88 +60, 0x6790b59991f1b7ab +61, 0x32d1c039ff2415bc +62, 0x173b9772f24f72e0 +63, 0x9490a9ca9f883b1b +64, 0x4c775989e6214222 +65, 0xac07db37e6ee6114 +66, 0x331371b2e3f10aee +67, 0xf12e5326c21c28e4 +68, 0x5d77dc280c70d614 +69, 0x1b01bd17a2f281ec +70, 0xa10d3b5882938487 +71, 0xed5a0033c394ae8f +72, 0x70bc8ea568ea44b4 +73, 0xf4600ae77965e730 +74, 0x7ff92c0b321ce233 +75, 0x6cdbc87d0cc1d670 +76, 0x9ec64f0cf2000eb1 +77, 0xfebea50259800f68 +78, 0xf2edf9019a8fd343 +79, 0x75c584ac042e5468 +80, 0xc1fa8481d5bf9a1d +81, 0x7f57180168514ac2 +82, 0x878100716b94f81e +83, 0xc929406e3af17fd2 +84, 0x6a26e2c013e4bf4d +85, 0xbc071d8848280955 +86, 0xb60d75abbfd1bdac +87, 0xee9b76afeca9fa69 +88, 0x1d6c399d2f452810 +89, 0xbaa0bc1621e25c83 +90, 0xed6ba792f8671ba5 +91, 0xf7ca02c2ab11d8d7 +92, 0x3c3cadadf0b21e3 +93, 0xdd1784571e864e9c +94, 0xfb2f992015157509 +95, 0xf50bb9f0d3ced743 +96, 0x261565f75c3e185f +97, 0xf8fe33b284513e60 +98, 0xe3d2d10b5e024664 +99, 0xd28717566242cf35 +100, 0x7ae07d133ac5b789 +101, 0x3b7ccaaa53ac338e +102, 0xcd480bace4871650 +103, 0xec6c78f923c080e9 +104, 0x44211d0ff8919d59 +105, 0x89f79af76d2a45fe +106, 0x71583fd8a837548b +107, 0xee57269c261511f5 +108, 0xa5ee8f3b128c5d1 +109, 0xbb64c20ed0765a17 +110, 0x9d4790ab2eeaf7e4 +111, 0x742f3db806d9e98 +112, 0xb81ec97aed6a0d1b +113, 0x41808b34f6a8a23 +114, 0xc20913af175dfd4d +115, 0x834427db263b22bb +116, 0xedd9c632e611828a +117, 0x10eac8524496f571 +118, 0xd76091b97eb00ab7 +119, 0x111298ae9fe95666 +120, 0x5824b2e2a6719c43 +121, 0x6e280ec539e934ed +122, 0xf74fd832df90083e +123, 0x8fee6d0f241c2e97 +124, 0x4244f331c2f19c3c +125, 0x3dde75a845cce97f +126, 0xe35bb8e635a9915b +127, 0x39d2943037f7932e +128, 0x1fe2d134201d0970 +129, 0x49d00b63c749b804 +130, 0x960c2942cd4e4e04 +131, 0x8dd8e009dbc0435f +132, 0xcf493495c3a055cd +133, 0x8f7b5a1c0f9fe9cd +134, 0x49d5f90374641a25 +135, 0x69b3932073d3524c +136, 0xd170603e7de84ee2 +137, 0xa062ba3ed3539948 +138, 0xf5861cc5b5d56c82 +139, 0x5e914998a30c7e76 +140, 0x8d77f2ad1503c0f1 +141, 0x980b6a9e3b4181fb +142, 0xd9299cd50694c084 +143, 0x253dc0f8f1cec4c5 +144, 0x68110fb9d1b3e695 +145, 0xe8f3120d0aabc461 +146, 0xb066e7df0dfb042 +147, 0xd29ce0f797e6b60b +148, 0x6a569bb7ca33bd42 +149, 0xd46e08b2dc2385f8 +150, 0x28c61d11d055767 +151, 0x5d73aa3d1a2bb725 +152, 0x1421191e1c14829a +153, 0xa711bfb6423df35e +154, 0x461af97a86308006 +155, 0xb3e1018ff3519367 +156, 0xf19cf866a268ef2b +157, 0x207715eac9199d1d +158, 0xdd621c410975b78c +159, 0xf390aea68683610 +160, 0x617a2d107a0047d9 +161, 0x6e05ac416e5bebf0 +162, 0x7d253e70506c1bed +163, 0xf9f96f4a7dd53810 +164, 0xc693b29cb1573f73 +165, 0x4f1146b0020ea544 +166, 0x45140608fbd40579 +167, 0xdcf57219828ce6be +168, 0xe19d58cca37b5b32 +169, 0x82bda95b2a161235 +170, 0x5823c3d8a2b6c9ba +171, 0xfeb2e74092fdf89a +172, 0x50e1ad1abc8f869d +173, 0x2ec63d0c105eb8da +174, 0xe14e1c4845a3264a +175, 0xcff53670455eb6aa +176, 0xaafaccd24619fa3e +177, 0xf55a988486e2422a +178, 0xecfba16a90ff4d04 +179, 0xbf8d36c2f644757a +180, 0xdc56ed75a0dd6249 +181, 0x3f45023eff17c3bb +182, 0x2428bbfe90023fab +183, 0xab892c611adcb70c +184, 0xb6f13d8c0c2b9d74 +185, 0x2ac3fb11d224f2a8 +186, 0x65433dcfae2d9351 +187, 0xe906859ae4b45f82 +188, 0x8fb7f5f093d76a3b +189, 0x940dd290b5e88d1a +190, 0x31b27d21bef116e7 +191, 0x86a964e2c83b5296 +192, 0x85ffd17bc079a9e8 +193, 0x16c47c724e7ab7f1 +194, 0xfb6098a9867e7d7f +195, 0x9246fb69092c6cb2 +196, 0x1a4033572760f32 +197, 0xc5cc568a8b273b84 +198, 0xfa6f9f2fbdd44abc +199, 0x9701b8e087718ba3 +200, 0x51d6a7dcf73f8f3a +201, 0x30008172cc6a972d +202, 0xac2ab49a5ca6ac81 +203, 0x31f28ef79461e54c +204, 0x93e35a8da8cc6132 +205, 0x9a2c58beeba3d5b9 +206, 0xf6615c1de266ac39 +207, 0x127ff9f8166b766b +208, 0x7ffe380e80a69556 +209, 0xbe7d2c228e1542f7 +210, 0x2d5ebb4e50ba1746 +211, 0x63585761ae1bf684 +212, 0x1019eb5cee022fea +213, 0xb9d3540ab58da30d +214, 0x1677f4cb45620eb9 +215, 0x6524baee51783822 +216, 0xdf9f2ddcfabb0adc +217, 0x78e8acc43b287935 +218, 0xe9a1974e999222b5 +219, 0xc41324ec2291e780 +220, 0xea52abc9ecdcbc9f +221, 0x209d7bcd46ec6b04 +222, 0x12d504c09803db2e +223, 0x1200e6bf21475d81 +224, 0xde6d3c2b35fd2cfc +225, 0xa2526900ac33bd3c +226, 0x7f1f5290fc432bc5 +227, 0x29ddfb380a3d69c8 +228, 0xac79cb6942a2909d +229, 0x516996685b67a92a +230, 0xb5fc39041cb828bb +231, 0x75d9d8ca0644a276 +232, 0x81e98b76be92a3e9 +233, 0xca27888fafe12179 +234, 0x17be2ae039925765 +235, 0x9429846c0e6d0342 +236, 0x327dfd50439815e9 +237, 0xcee20cd7bc254aeb +238, 0x7d250389f453f29e +239, 0xfd1b232a85c95569 +240, 0x2ed55fac80f3e9e9 +241, 0xf6886c20417a1be7 +242, 0xcd08e61f0b0fdfde +243, 0x7b33e34da5c27bff +244, 0xd043c4b7d5603dd5 +245, 0x9a544e4c70a3b686 +246, 0xa7b60398c381f771 +247, 0xe9e7a3487c4bd4f2 +248, 0x10b58fdfe1ff112c +249, 0xd5c1c9748c0f4ceb +250, 0x61be9d09159d54ff +251, 0x5356f51e8239f510 +252, 0xfe7889d9b202ecef +253, 0xc7fc19ca5d263d5d +254, 0x7c4c07e61dfd9f69 +255, 0x6c315fe5015f300a +256, 0xe0a5bc00039747b4 +257, 0x16397fdcf829ee80 +258, 0xb55aee80d16a5169 +259, 0xca0609944d007eea +260, 0xcc982249f65a02ce +261, 0x528161feb149c148 +262, 0xcbf08ba49b41c006 +263, 0x39af1ff0b6f14138 +264, 0x5cc036be69799aec +265, 0x6adde125b1db21c5 +266, 0x8a99d83d6b613b67 +267, 0x1cd43fca9451f74c +268, 0x682dbb26ecc96365 +269, 0x13b4be2ceb43e3 +270, 0xbe8fbc3b6f4f581e +271, 0xda148a2f4bda5719 +272, 0x239106ca3319f393 +273, 0xb42b4dde641f0dd5 +274, 0xd233cfdf4cb0af74 +275, 0xfb5919d905589afc +276, 0xd802a8860c10b66a +277, 0x6c923e1d00e7b5bc +278, 0xfacce1134f383b89 +279, 0xf9570abda7a6d553 +280, 0x80f0f9796a208f18 +281, 0xc0e1df5280951c57 +282, 0xe9f143f08257bbe0 +283, 0x79e4c6463123d588 +284, 0xdd2118583f2b1684 +285, 0xb399ff5f2329fa18 +286, 0x4b3e9ebae96f813c +287, 0xc484dbf247787384 +288, 0x921865eb97603f2c +289, 0x18063c68e257d300 +290, 0x643181f345e7fc26 +291, 0x12e0b0e8eadf9fa7 +292, 0x79e613fe73dfa354 +293, 0x6db4c59203b7217a +294, 0x6c7a0e9ba6139eaf +295, 0x9617c7ac4e3f6d97 +296, 0x1f68a7b4fb1b4b75 +297, 0xef0b7ab24944f466 +298, 0xaf1dee1f4be1bc89 +299, 0xd2e355c959f5fd8d +300, 0xe594c3fb95d96efc +301, 0x9554766ca3342906 +302, 0xa4bbdc77d12842c +303, 0xb62400211ee489a8 +304, 0x91abadaaa3bbe67c +305, 0xd371eeb91deb42bb +306, 0x883bab35cbd2b6e5 +307, 0xd030c3d9411a9041 +308, 0xff3c110a858ff000 +309, 0x59bdf5ca47d0bde7 +310, 0x2bc80fa3cdba1853 +311, 0x6444ccb652662cb8 +312, 0xc0c7e256b9e90339 +313, 0x70714ea9c9d72302 +314, 0x96a0142f9d897d27 +315, 0x209a9097c5a91ef7 +316, 0xb9e33afc5171e009 +317, 0x47b37af433a58d40 +318, 0x30cc4ffbfa831d26 +319, 0xdcea4a85ff815466 +320, 0x907d5bd027f2e5cc +321, 0x7c081f6852e04a4b +322, 0xe61950749c1d502b +323, 0x1604e937ee69834a +324, 0xb2372d952dd25309 +325, 0x53f6a5b834c72577 +326, 0x2ce7a74395e0b694 +327, 0xacbf9ab4fe91f225 +328, 0x5ce1e63d3a2bb90f +329, 0x54740da3a5ed139b +330, 0xf194ddb39f29880b +331, 0x3305374f5d8ec08b +332, 0x831dd0164927ff4a +333, 0x625baa78e4458cf +334, 0x29d27dc0a4a71152 +335, 0xe227bae9a1401034 +336, 0xca0c209831846b2b +337, 0x8e8cc54b08b5a411 +338, 0x38f2b4acaac27db6 +339, 0x8ec88baac814e86b +340, 0x31c08e46b007bde +341, 0xb686c02722794c09 +342, 0xb77cf8fc682e3907 +343, 0xa56334e7f606f4b2 +344, 0x9c80b127bddd5f4f +345, 0x12df14834cd858bf +346, 0x3f14762a9cf5fb9f +347, 0x930a70941ef5779e +348, 0x64e96c849c30c080 +349, 0xfdf53bfba1300484 +350, 0xec7a9363c21bc616 +351, 0x26e9fd6a115ecb47 +352, 0x9707a84b5bc77fbb +353, 0xb23b2737b20d5903 +354, 0x22f4825ae80f6501 +355, 0x500644b12be6a01b +356, 0xb746645b2af082db +357, 0xe6af051f697892f8 +358, 0x577c724248a1cfc6 +359, 0x3d2b6a434c84eed3 +360, 0xd260f5efd7328314 +361, 0x95c16cc84bb3f55c +362, 0x7a01b2e4e0e80ca7 +363, 0x41930c3ce70a0935 +364, 0x1299bccf39d4e110 +365, 0x494883ba1a8a87f +366, 0x9478ecfe2d918e60 +367, 0x30ec9a5670cda8af +368, 0xf9bc877e833e2b99 +369, 0x1b83a0acfbb4a8db +370, 0x73bc1740c0d18880 +371, 0x65086ca9773cb3e1 +372, 0x3b78c3ccd63cff2e +373, 0xbfae748795acfb31 +374, 0xa4c9d5d56a15ba20 +375, 0xb9cb41721e52b71e +376, 0x1532f15d4dc47748 +377, 0x5a4d647a4b9ee632 +378, 0x8513c7c5a50898d9 +379, 0x6d3d98ccd5461b2e +380, 0xa65e99be2fe98d6 +381, 0x31abc8855334a0e5 +382, 0xf1ed22a661dca5b8 +383, 0x299e2b63229e03be +384, 0xda201a06687bce48 +385, 0xd27794b302142c55 +386, 0x642bd3e1c7898a9d +387, 0x777f1ff00afa1a87 +388, 0xd2f1c84fb3877baa +389, 0xae417583289191fd +390, 0xd641f1d88e0e2d55 +391, 0xc1f1d98fb5d18ebf +392, 0xb0f72aecdadce97b +393, 0xe9b8abc764f6018a +394, 0xd2a37cff8e890594 +395, 0x2dd70d631a528771 +396, 0xbf8ba0478c18e336 +397, 0x1630bf47f372ce0a +398, 0x6d04ea20dc3f46b8 +399, 0x6591881bf34337f2 +400, 0x33c149c7eb5b4103 +401, 0xf01a8c9857c86748 +402, 0x184348cdfc16d215 +403, 0x141168b253d2ed7 +404, 0x52aaf012ef50a6f1 +405, 0xfda1722387e16f4c +406, 0x43c30f57d6c038fa +407, 0xd4a8611f5f96d214 +408, 0x2c512ce17e987f2c +409, 0x961ce450f0fa2822 +410, 0xf55a506ec6cea9cd +411, 0xb76d694d9c7f5ef6 +412, 0xfb029216dbd8e988 +413, 0x93162501896a0081 +414, 0xfbbbd2c5ab300f5c +415, 0xd648b6da7387d491 +416, 0xc73b4697471d9d98 +417, 0xe37412bf1c93ee76 +418, 0xa1a96d96570e6637 +419, 0x5b3ab4f82428f65c +420, 0x873d849b188aa36f +421, 0x39fbee0ffc9fa9ff +422, 0xc70d21b744d677fe +423, 0x2b8a43c23043d209 +424, 0x93c33eaa37370d16 +425, 0x8930ac1880f2b0ef +426, 0xac01d27707036af0 +427, 0xc2af3fee504343a0 +428, 0x1c1dae2ad5535d97 +429, 0x9ffc21804b76a480 +430, 0x69f903412cc13563 +431, 0x9d3c4e2759a0c47d +432, 0xb1a8f894be6302b9 +433, 0x95e1fd7951479506 +434, 0xbb9e6c03cd4ae8e3 +435, 0x85206010c9b737cf +436, 0x767e813694d6238c +437, 0x4969af329ccbb30a +438, 0x3aa9af1075aaea5c +439, 0xb1ff519e8118a993 +440, 0xb21a23a3c91180fe +441, 0x320b24582ca3fd88 +442, 0xf8ca56415fb4e453 +443, 0xabd0899c07205e77 +444, 0x87fdc7a44b4ad50f +445, 0xd75744911641a278 +446, 0x7c8c9a65df6fcb95 +447, 0x79d785e3c7a5b695 +448, 0x421e4565ba1f592f +449, 0x27f87eb2517835cf +450, 0xb62cc4297441c83e +451, 0xd817a80ac815ca6d +452, 0xad84388130df2aa8 +453, 0x5e6b1640452d6ac8 +454, 0x936285e15edce2a3 +455, 0x903bccc4969768e8 +456, 0xefc2cb7b109d3140 +457, 0x633e9dfdda2d903a +458, 0x2a2f3225925678a1 +459, 0xe07eac91a27f8547 +460, 0xe50ced40eda78cb3 +461, 0xc5b22500e1c7441 +462, 0x32becf61bca3aa72 +463, 0xa2e37c4b30671344 +464, 0xc9f1c1910f45d544 +465, 0x9b50333b2dcdf730 +466, 0x310bfd53a1684b94 +467, 0x1e1dc21e66ac6455 +468, 0x81876c2bfb1ed5a1 +469, 0xd0c54a3e25eadc7b +470, 0x3791b6fbbd5c7ba0 +471, 0x133be57356c599fc +472, 0x8d1148eb8e83fdea +473, 0x311aedba0d8b42cc +474, 0x1142ae52745f94bb +475, 0xc5f4ab2fbde8c4a3 +476, 0xd23be827b5b24f6d +477, 0x65f95194cd122715 +478, 0x4b48969d73125922 +479, 0x46f165052b8ff988 +480, 0x5c689f94b9275ff4 +481, 0x93b03823ff2d536b +482, 0x871f3775aa4e3523 +483, 0x5af829f7cc0f66a5 +484, 0xa32e05739cbeac8c +485, 0xacff1856ddace0fe +486, 0x8eeb5e7f991a5322 +487, 0x6325c2720e0dbdea +488, 0x9fb817bc4fdf5200 +489, 0x9786f0d850e43d78 +490, 0x571f76dd7f9fb77a +491, 0x4d9e94e181cbc63f +492, 0x8bb632d3376c547a +493, 0x9cc26d9efd1c88b9 +494, 0x9c5d49579df52b0b +495, 0x6201abf7e1cda07b +496, 0x90d68f0c6c884963 +497, 0xfc5b66188ef7f561 +498, 0x6d9303cf2e0e0f95 +499, 0xd7cfcff535f5ed07 +500, 0x14d1a1228daa4ac6 +501, 0xe00ef5762f66ae50 +502, 0xf113a79471582978 +503, 0x430985281785dc7a +504, 0x31914108c206ed5 +505, 0x7ba6707b6419971c +506, 0x2ec63b033ce112e5 +507, 0xf8bcd36ced3b41e3 +508, 0xe5cf908c8010414b +509, 0xf5ee224b7c703e30 +510, 0x9a9733af0b12338b +511, 0x83e18cc00ace34f8 +512, 0xd52cff39e23008b8 +513, 0xa700578136b9c0c5 +514, 0x3fa179d32ac51f99 +515, 0xef2d5eab6d4ad380 +516, 0x709024a5abd032df +517, 0xc607c7ee349ede87 +518, 0x803d784e9731eb5f +519, 0x2ef06f4ba769282d +520, 0x4bc1dca1e9f07eb9 +521, 0x930c958a7a72f94d +522, 0x249bc8db2cc7a3bf +523, 0x3845305798f9a5d +524, 0x6f137eca9ab6f948 +525, 0xc31f5a963d31bd67 +526, 0x9d39693d5383626f +527, 0x52fb41c335a8b98e +528, 0xb79d1a29a06006ec +529, 0x7c0926a7a3eda2cc +530, 0xffdf5214406fd53e +531, 0xc6aa02a7e94282b9 +532, 0xd4a4431b4aa301ee +533, 0x4271cc0f9420d3ab +534, 0x26fccd7cc7fc2485 +535, 0x330594bb945b8d5a +536, 0x6ea8eaad12e5cb8c +537, 0x831c3467726bede3 +538, 0x31d1eb10017eaa61 +539, 0xc7aa75e41508f5cb +540, 0xde51810f0cadd0b5 +541, 0x50e5b3e73692f80b +542, 0x82107ec55636e188 +543, 0x9828ef175d843ab4 +544, 0xb8edc6a860dd421e +545, 0x25c0c138fd537ac3 +546, 0x47e72a771e8eb563 +547, 0xbb0f8c5333f4a2cc +548, 0x91750d2fb9b2d479 +549, 0xe662d8f6fe38df36 +550, 0x72a6d879fb5619f0 +551, 0x6817c7878dcbf077 +552, 0x4e7741cb484661e8 +553, 0x3b3b3ba0be5711bf +554, 0xa6989f5d25868765 +555, 0x43c276398997e4e0 +556, 0xdcbe16a94da28870 +557, 0x454936980a699c99 +558, 0xac614bfa8f0266c6 +559, 0x9174841392e213d5 +560, 0xa0e2acffc5fc9d1f +561, 0xe53a08a7a0e6521a +562, 0x2b845cf7c24172e0 +563, 0x265a4fc5f7adec0d +564, 0x1f34fbe5f1e49420 +565, 0x139181f6fb647f20 +566, 0x88c35d46e2fcd05e +567, 0x2a6d5b55903c0459 +568, 0xcea28eb621ad7bf1 +569, 0x5c9cdc13e7aaa30 +570, 0x5fe63e14746e7103 +571, 0x7923e53d73835db9 +572, 0x376e661210bf1b06 +573, 0x5b1cab85450efdd5 +574, 0x3908dc096c70b452 +575, 0x4825e303cd1f396f +576, 0xed476bfd702957c3 +577, 0x6acc013aff5db743 +578, 0x62c80b776343d488 +579, 0x9c75edcd5b012697 +580, 0xaa053362a3b9770a +581, 0xa907e236c7c07e94 +582, 0x15b2c380451692c0 +583, 0x94f79142697bd61f +584, 0xbc657d31ea98d44f +585, 0xcbaa5e52517a1f5e +586, 0x96aa2e44a7c4a03f +587, 0x216d3c66db2b515d +588, 0x157001807e3ca88a +589, 0x52b3a596bdd3859a +590, 0xed747e7fc5e3adac +591, 0x78fd765ddb2c448d +592, 0xe53dc7299ed8614e +593, 0x75ad41fb1d7a790a +594, 0xc14f6b944b0e6cb1 +595, 0x7c314b69fce3df1c +596, 0xb56d82eb740d7abc +597, 0x5132a93c41251fdb +598, 0xe3ce35bd2a82f958 +599, 0x440571a981c722f2 +600, 0x194cdfd9f186bc9 +601, 0xb89e522a5db00939 +602, 0xad35f339f68df3c8 +603, 0xa82ab18420322293 +604, 0xaffa6df9b72b27c4 +605, 0x9615694d23beaa2c +606, 0x1d82ebe563abad91 +607, 0xab50ef65fbd94385 +608, 0x1b070dbd70a9a14 +609, 0x2ececa796abbadf0 +610, 0x6bbeafe9e81ab2a2 +611, 0x60dcd0d2a9b76914 +612, 0x1e748039ef05c33f +613, 0x6d4d17f2213ccdff +614, 0x9fa56132957bc987 +615, 0x60a17185de2428eb +616, 0xb56038ddf306479c +617, 0x3b1db5df92d06d8b +618, 0x24d1bba8bdedf580 +619, 0xbfb7e6740ebaa4d9 +620, 0xab31c4473e46f61d +621, 0x6deb3cdd8fd5869f +622, 0x23032e47746d72d6 +623, 0xa9e72d734e10f2e8 +624, 0xbffd199b6157bc23 +625, 0x29f8254df273fb62 +626, 0xb076142130ee55ec +627, 0x5b0b08374126c309 +628, 0xea4536aae979521f +629, 0xc064e7abec91a174 +630, 0x46133ef80c59d935 +631, 0xf0227e2da1b14160 +632, 0x675a76641e1af5a +633, 0x2f50a069b33d198c +634, 0x3ded5a65e1d657eb +635, 0xbb6999b020694f6b +636, 0x86b2f2b33487aed7 +637, 0x76e14e85f8bfb4cf +638, 0x38f7f1e44bd4e0db +639, 0xc1a7d41b7e80d4ae +640, 0x1dfaaf80bbceb42e +641, 0x3f51c11497720c2b +642, 0xce6da1415ddb8b80 +643, 0x7377d8bcd359b5f3 +644, 0xe077208f3f810aca +645, 0x9a06a8a2dacbffce +646, 0xca1f99156b09b735 +647, 0x2ff9a93064d91451 +648, 0x50f3ea93f351a7ef +649, 0x606fceccb07054de +650, 0x7e83d6d2f8f6685d +651, 0x78f3995291c5d407 +652, 0xd28d2460e22d0228 +653, 0x2c5636f68a0054dd +654, 0xd9fafb1c56c8f6cb +655, 0xe39889b5f9d74464 +656, 0x1355372bf5db2cc1 +657, 0x26768426b9ac323 +658, 0x4af1dbdc1111fd89 +659, 0x66973587943b927f +660, 0xf86f5f50684dfb1d +661, 0x1247d574ff79b534 +662, 0xc8039f3259210fe2 +663, 0x79b573235c92a9f5 +664, 0x213f642d8450e2f0 +665, 0x5db7706973376566 +666, 0x6182c12e69b373d7 +667, 0x3e5ac47300aec07f +668, 0x4b5b6c57b1574376 +669, 0x6b7fcceefd56b17c +670, 0xf656c3455cb9d4b8 +671, 0x7577e2e13329721f +672, 0xf33c0c53ce956e8d +673, 0x7d0f328ee356174 +674, 0x10ec9a168088686e +675, 0x71ef1776d062dfa +676, 0xaa7b590a488a6bc4 +677, 0x38612b6dd8049a1c +678, 0x939045e36874f731 +679, 0xcb9d1d74c56d5ac9 +680, 0x54f1c1c8fef1d8ff +681, 0x3ee4b85c8c7e939e +682, 0xb9b4608e019f352c +683, 0x79d4701275d12e6a +684, 0x2632a2d9835c7f19 +685, 0x1662cd9fba293692 +686, 0xbcb70265115ee944 +687, 0xdc43fb9761468604 +688, 0xe3eec4e7d3871352 +689, 0x829531753226989d +690, 0x2748cc67f540e074 +691, 0x39c4af25d607837d +692, 0x741a243f4cb5df99 +693, 0xda1353287e18b49a +694, 0xa6735689d751ea74 +695, 0x46326d587340ce0b +696, 0xc18531df4550012b +697, 0x6f7901e05dd4b818 +698, 0xfb966afc4c001d63 +699, 0x6dc10fca67a9cfdb +700, 0xd6527ffadf0feaae +701, 0x3b900172045e25d +702, 0xb7dd594cdded6a46 +703, 0x6602aee7ec1599fc +704, 0x7fbf12f23747546a +705, 0x32e63f662bd2de0d +706, 0xedf47770b67ed641 +707, 0x331bef83481c5c2a +708, 0x8fc4256fdf05158c +709, 0x98eba48dabccf5e0 +710, 0xdbc2f2cdb7b1c154 +711, 0x7777755616517ad3 +712, 0xd473c147d2628ac1 +713, 0x861e15d1d760b5a7 +714, 0xf4d25926405ecb07 +715, 0xb7739c69effff86e +716, 0xe97fbafa6f96830c +717, 0xf13e8a334e8bede1 +718, 0xcd60010cba4ee4f9 +719, 0x1f537ac2b82e6008 +720, 0x1fda8d781a89140a +721, 0x9dc204f3f4a463f0 +722, 0x456dcd18eb56a1ab +723, 0x629957bc87bd16a1 +724, 0x2c8000ddb8c75253 +725, 0xc31dae9ec8449284 +726, 0xdac05c8baa2b691a +727, 0x21ff7be9ffa3e7ac +728, 0x844f4b5ed4ee08d0 +729, 0x651f913fd636c994 +730, 0xca3e71a2110b2d49 +731, 0x7709bc42253ed09d +732, 0xbb164d45b6569d43 +733, 0x90ec2f040c20a112 +734, 0xfa6e77e9166f5be4 +735, 0x6b6d12c1842d587d +736, 0xfcd7ff8466e25e2a +737, 0x6a5a2ed8bd971297 +738, 0x2ec35f6bba5adcbc +739, 0xc83676e16651249a +740, 0x458f6064cefe10ba +741, 0x90d54d527e6cd028 +742, 0xa5613e88db27c388 +743, 0x331e0c7d85aa1abc +744, 0x8cee4977e210358 +745, 0xfcae379aa6cbff8e +746, 0xd1407afc97a57e86 +747, 0x1fab25c864f094ae +748, 0xd914864a63004552 +749, 0x4214d226a20f1384 +750, 0x3f4e0d80c488b715 +751, 0xc5ca2f654024b7c8 +752, 0xc1e27a124e7c821c +753, 0xd890a915ffc7918c +754, 0x22fba040ce51a9f8 +755, 0xbf61cebd8891617a +756, 0x7846609ee228e319 +757, 0x536d1854375509b8 +758, 0xbbfb45fc6e666f50 +759, 0xd85b4c0527f9d7d6 +760, 0x528cc9c7fa2a84c8 +761, 0x27a1baece647f2cb +762, 0xfddf0cb92fe09dc3 +763, 0xeb5008fe965d8d96 +764, 0x4a3307937eb2e5c8 +765, 0xd07d74c240c6c363 +766, 0x16f62290179d1bbf +767, 0xe99c9bcc9cb1ece7 +768, 0xc64f9be03c8a93be +769, 0x32659effaf666c1f +770, 0x4bb228cfb30b6672 +771, 0x98764870842068a5 +772, 0x5b12ef2d2cd8bdcc +773, 0xbc79d1c1b41f28b8 +774, 0x97a517cf3279fc9a +775, 0x34ffd46c1d4d6025 +776, 0x9c302307ee25c8f0 +777, 0x399604eed1f18a8 +778, 0x1c9b813c2043142a +779, 0x2944ea5e55267fe9 +780, 0x5a8a9f5e728ea667 +781, 0x30c8440adb804a0 +782, 0xee0e6b627099a937 +783, 0x3d50757ada3c52da +784, 0x4548916b32c813ab +785, 0x602a186fe5bf109b +786, 0xf0d440a2227ba304 +787, 0x5a10d4e0ca9ea32b +788, 0x6e5eb90da13ba64c +789, 0x4c6af8fd04241ab2 +790, 0xf9eb31d26e093006 +791, 0x5d674878839fe3ea +792, 0x1562b55b2484e47c +793, 0xa87188c099c1cb61 +794, 0xb7736b8aa02a3392 +795, 0x5f4b301125abb20f +796, 0x361d566984637f44 +797, 0x68c4b3feac8bd0c3 +798, 0x7066c634dd2503c1 +799, 0xfecbf7c9441eb6ea +800, 0xdbc26ae0fc81436b +801, 0x9ef3e2b48252e7a4 +802, 0x31a49b4c339b37c7 +803, 0xb01b2a83cf346cf4 +804, 0xc24dc2347f82fbe3 +805, 0x134cad272dcd410f +806, 0x61260742823ba59c +807, 0x53ac4c193a97c730 +808, 0x9207c9833af34b52 +809, 0xa72e7ee77078d1f5 +810, 0x2e6f6e1b05936885 +811, 0x783b99ce5dbf9464 +812, 0xfdfeb6f0d027bb44 +813, 0x40eeb27096f92b0 +814, 0x5ef96ff5d4a4521f +815, 0x5595806ae873718a +816, 0x67d449eecf4ca1c3 +817, 0xde837ab611364f3f +818, 0x7034c24d2b139be9 +819, 0xe21166603e0a9c86 +820, 0x935694435c1f0d51 +821, 0x6cb3bec90c126088 +822, 0x4096ef662b7a9f89 +823, 0xd2d85b8d238d8c15 +824, 0xa4ea533ce3ec59b2 +825, 0x3654729d80a2db29 +826, 0x214c4cc3906d29d4 +827, 0x201c447e7588e373 +828, 0xe8b8f0ae25f683eb +829, 0x6744aaf5754e38af +830, 0xd1ffb10d6f27a061 +831, 0xe536733a7b3a6c30 +832, 0x39f0f66e47cbf2c9 +833, 0x856a9593526fde2 +834, 0x2e2a817a0098ea4b +835, 0xc5e1eeb551a0e3d3 +836, 0x3f21e2f5e2d50b2 +837, 0x906af56c66dd9f8c +838, 0x30f6dbd70329fac8 +839, 0xc443dfddf3c01a60 +840, 0x7ab85d9aa9675470 +841, 0x8c9080bd39717bfc +842, 0x4b1ccdb3c3597f6f +843, 0x74e2542d70ab5d67 +844, 0xbb3d236aad00f74 +845, 0xcf3cadf9a2804774 +846, 0xe851d9750e42bd07 +847, 0xc0ad82029b1c371f +848, 0x7ee119eb552d6c07 +849, 0xd8024049bd1d784a +850, 0xfa67a899760363 +851, 0xaa7c2f438b178197 +852, 0xc473674a47ffe064 +853, 0x539fbe3fc674c270 +854, 0xdb48484748a76f3b +855, 0xc73b2b092060d +856, 0xa1d2a15345016f5d +857, 0x4d0fe8599f9bba47 +858, 0xa0edc275e6f8f1d1 +859, 0x40590a8655bc8d72 +860, 0x35b4223161f05f75 +861, 0xa04c0c0f616752dc +862, 0x7f371ed2ca45432d +863, 0x2ff1a08f75ac6438 +864, 0xe2dc5c3682282f48 +865, 0xe1e4179fa98d9013 +866, 0x8cb083d6843a73d5 +867, 0xb4c2b5921b706854 +868, 0x738e14c0e7352445 +869, 0xcd2b646f91afd8c7 +870, 0xd5779a5b57a264fd +871, 0xc39ff855586c7d07 +872, 0x3e3f0098c631a859 +873, 0x644e02fae032110 +874, 0xa8834613c0a45278 +875, 0x69482f2c08e10657 +876, 0xe4ee475bdb87e69a +877, 0xdc1ef7b25c0d0019 +878, 0x88a3fa2be18d8744 +879, 0x60a02e0b21c5bec7 +880, 0xb6867b88aa19bc1a +881, 0xb599409affcf10eb +882, 0xaeaa1778a5e59daa +883, 0xd7a91a52c16663e3 +884, 0x93cb269affe07b1c +885, 0x841b6ced3a4ba815 +886, 0x84541768e1540a5c +887, 0xe3943c84f83b3020 +888, 0x5de366fbd7b45258 +889, 0xd787cc3bde91a661 +890, 0x814071446edecb57 +891, 0x15d8c602a1141514 +892, 0x72f07bc8002d1d0d +893, 0x4a8bd8dc9a1f0f3e +894, 0x8723796ae0f20d35 +895, 0xda7283c2051f73b2 +896, 0x2df0cc247f90bd3b +897, 0x79a8522b968f990a +898, 0x951ede190c8b9d02 +899, 0xc512f1a5b14b018a +900, 0xf0e3ddc03b9a4259 +901, 0x8cf4a35ad312e15f +902, 0xebef28926b11094b +903, 0x5628ba687325921c +904, 0xc3aa75e57edc49c3 +905, 0xc38382fa98e762ba +906, 0x8d209e896285848e +907, 0x2c7d6adf592b4a3e +908, 0x62de48e36f8338f3 +909, 0x4a752741e00de30e +910, 0xf7855b70f1f6ec2b +911, 0xa505fa4428199e43 +912, 0xe8b6b423b826bbac +913, 0x4bd1206cf8786d05 +914, 0x6dcf040391fe3bf4 +915, 0x913f500f87e1bba3 +916, 0x5acf775aa180a5d5 +917, 0x74dd28d9432ce739 +918, 0x996c2ff2f0dc2495 +919, 0x73dbfe6c56effe4 +920, 0x56fddd25196f5e40 +921, 0xe87810158f5b7 +922, 0x7b8795e996383f1f +923, 0x9ba5ee7c777c4c82 +924, 0x17ce3908d270fe1c +925, 0x3df9e613c1aedfae +926, 0xcdd26871b32fc8e1 +927, 0xd71cb13afc633979 +928, 0x63427c8ea9b1c79e +929, 0xd070f7664d3b405d +930, 0x46f2a9e32d9fb769 +931, 0xb4c3822a45e9fe9b +932, 0x8ba30b97fe6f5ec7 +933, 0x70aa554ee2fc11f9 +934, 0xa80c99dbe0cfcfaf +935, 0x36d9250cb2d68ed +936, 0x2995e4b9e1cd1db4 +937, 0x4b3803ba57fc570f +938, 0xae3959e7d740eaa5 +939, 0xb4cbd6662adbae08 +940, 0xae46576446e8dbc4 +941, 0xc4828e008a9a8a54 +942, 0x145d7db8e6554b2f +943, 0x1b1b8916a730c371 +944, 0xdaf84b2bebe31963 +945, 0x5b59b80ef23a2403 +946, 0x9180c7e89cab6fd3 +947, 0x80e58f5411babf34 +948, 0xa06cf55185b9b005 +949, 0x13b2c798424173ad +950, 0xc510f8e706311d49 +951, 0x1f974b83b6046d3a +952, 0xae6e8e85e822d1c3 +953, 0x66f2c8dc3274a31a +954, 0x7e04dbcbf65bd377 +955, 0xabf41ede01ec20a4 +956, 0x5efa0948f6bbb2ea +957, 0xbc91c99d8592255 +958, 0xf6d6917911d86d75 +959, 0x85ce273d54e9097a +960, 0xbdfd30f2420fff92 +961, 0x8802f02f610b537c +962, 0xd1d70037ed543229 +963, 0x908aaf97f9693a46 +964, 0x1f6cfeaa0834d53a +965, 0xa453fd1648ce04d2 +966, 0x2c38bb85ebc64af9 +967, 0xd2daff551c90c4f8 +968, 0xae5a0d949797d784 +969, 0xf0974c8552ac9593 +970, 0xa10b70499f65c693 +971, 0x39a449ebd594ddff +972, 0x8ea090f2b17b9b49 +973, 0xc592de318090fd83 +974, 0xb63e4fbc467b6912 +975, 0x57a0c1c5ce0e4dcc +976, 0xa7c517cf3d436b35 +977, 0xef6dcb0f3fad038b +978, 0xaf4fb60315b91287 +979, 0x5e0776f67304f331 +980, 0xe927753b8e6f7932 +981, 0xd3df2dd92559e304 +982, 0xdaed52aa6af44413 +983, 0x1b59f4dac1e181f8 +984, 0x4a73c2293877ef39 +985, 0xca45d0d015fe44de +986, 0x4659c8b7853735a8 +987, 0x12de6466bdf8adeb +988, 0xaeea857a09bfec15 +989, 0xcc9cf4b3c0b88a23 +990, 0xa44ae52396a5e1bf +991, 0x5847a724305d137f +992, 0x8f4d4de223956182 +993, 0x58254dfada867a8 +994, 0x900a98222c2f339e +995, 0xdb575260935d51d5 +996, 0x13fb4bfbbc0d7b53 +997, 0x62213850186bb92b +998, 0x2a34823312c00388 +999, 0x6148329042f743b0 diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/data/pcg64dxsm-testset-1.csv b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/pcg64dxsm-testset-1.csv new file mode 100644 index 0000000..39cef05 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/pcg64dxsm-testset-1.csv @@ -0,0 +1,1001 @@ +seed, 0xdeadbeaf +0, 0xdf1ddcf1e22521fe +1, 0xc71b2f9c706cf151 +2, 0x6922a8cc24ad96b2 +3, 0x82738c549beccc30 +4, 0x5e8415cdb1f17580 +5, 0x64c54ad0c09cb43 +6, 0x361a17a607dce278 +7, 0x4346f6afb7acad68 +8, 0x6e9f14d4f6398d6b +9, 0xf818d4343f8ed822 +10, 0x6327647daf508ed6 +11, 0xe1d1dbe5496a262a +12, 0xfc081e619076b2e0 +13, 0x37126563a956ab1 +14, 0x8bb46e155db16b9 +15, 0x56449f006c9f3fb4 +16, 0x34a9273550941803 +17, 0x5b4df62660f99462 +18, 0xb8665cad532e3018 +19, 0x72fc3e5f7f84216a +20, 0x71d3c47f6fd59939 +21, 0xfd4218afa1de463b +22, 0xc84054c78e0a9a71 +23, 0xae59034726be61a8 +24, 0xa6a5f21de983654d +25, 0x3b633acf572009da +26, 0x6a0884f347ab54c8 +27, 0x7a907ebe9adcab50 +28, 0xbe779be53d7b8d4a +29, 0xf5976e8c69b9dcd1 +30, 0x1d8302f114699e11 +31, 0x7d37e43042c038a0 +32, 0x2cc1d4edc2a40f35 +33, 0x83e3347bb2d581f1 +34, 0x253f8698651a844d +35, 0x4312dea0dd4e32f6 +36, 0x10f106439964ea3a +37, 0x810eb374844868cc +38, 0x366342a54b1978cc +39, 0x9fb39b13aaddfb5e +40, 0xdb91fd0d9482bed7 +41, 0x89f6ea4ca9c68204 +42, 0x146b31ccca461792 +43, 0x203fd9724deb2486 +44, 0x58a84f23748e25cb +45, 0x2f20eb6aeb94e88 +46, 0x14d3581460e473c +47, 0xad5bd0d25f37d047 +48, 0x1cf88fa16de258b2 +49, 0x3bcab6485b7a341 +50, 0xb2433b37f227d90c +51, 0x2cffd7e0a8360cc8 +52, 0x5d2eeff7c9ebc847 +53, 0x6fd7c7ae23f9f64b +54, 0x381650b2d00f175d +55, 0x9d93edcedc873cae +56, 0x56e369a033d4cb49 +57, 0x7547997116a3bac +58, 0x11debaa897fd4665 +59, 0xdf799d2b73bd6fb8 +60, 0x3747d299c66624d +61, 0xac9346701afd0cfa +62, 0xac90e150fa13c7bf +63, 0x85c56ad2248c2871 +64, 0xdea66bf35c45f195 +65, 0x59cf910ea079fb74 +66, 0x2f841bb782274586 +67, 0x9814df4384d92bd9 +68, 0x15bc70824be09925 +69, 0x16d4d0524c0503a3 +70, 0xf04ea249135c0cc7 +71, 0xa707ab509b7e3032 +72, 0x465459efa869e372 +73, 0x64cbf70a783fab67 +74, 0x36b3541a14ca8ed7 +75, 0x9a4dfae8f4c596bf +76, 0x11d9a04224281be3 +77, 0xe09bbe6d5e98ec32 +78, 0xa6c60d908973aa0d +79, 0x7c524c57dd5915c8 +80, 0xa810c170b27f1fdc +81, 0xce5d409819621583 +82, 0xfe2ee3d5332a3525 +83, 0x162fb7c8b32045eb +84, 0x4a3327156b0b2d83 +85, 0x808d0282f971064 +86, 0x2e6f04cf5ed27e60 +87, 0xaf6800699cca67a9 +88, 0xc7590aae7244c3bf +89, 0x7824345f4713f5f9 +90, 0x8f713505f8fd059b +91, 0x3d5b5b9bb6b1e80e +92, 0x8674f45e5dc40d79 +93, 0xcb1e36846aa14773 +94, 0xe0ae45b2b9b778c1 +95, 0xd7254ce931eefcfb +96, 0xef34e15e4f55ac0a +97, 0xf17cc0ba15a99bc4 +98, 0x77bb0f7ffe7b31f1 +99, 0x6ee86438d2e71d38 +100, 0x584890f86829a455 +101, 0x7baf0d8d30ba70fe +102, 0xb1ac8f326b8403ae +103, 0xcc1963435c874ba7 +104, 0x9c483b953d1334ce +105, 0xc0924bcbf3e10941 +106, 0x21bcc581558717b1 +107, 0x2c5ad1623f8d292b +108, 0xa8ea110f6124557e +109, 0x15f24a6c5c4c591 +110, 0x40fe0d9cd7629126 +111, 0xcfe8f2b3b081484d +112, 0x891383f4b4cac284 +113, 0x76f2fcdef7fa845 +114, 0x4edd12133aed0584 +115, 0xd53c06d12308873d +116, 0xf7f22882c17f86bf +117, 0xfbaa4aad72f35e10 +118, 0x627610da2e3c0cc3 +119, 0x582b16a143634d9a +120, 0x9b4a7f69ed38f4a0 +121, 0x2df694974d1e1cbe +122, 0xe5be6eaafed5d4b +123, 0xc48e2a288ad6605e +124, 0xbcb088149ce27c2b +125, 0x3cb6a7fb06ceecbe +126, 0x516735fff3b9e3ac +127, 0x5cbafc551ee5008d +128, 0xee27d1ab855c5fd5 +129, 0xc99fb341f6baf846 +130, 0x7ad8891b92058e6d +131, 0xf50310d03c1ac6c7 +132, 0x947e281d998cbd3e +133, 0x1d4d94a93824fe80 +134, 0x5568b77289e7ee73 +135, 0x7d82d1b2b41e3c8b +136, 0x1af462c7abc787b +137, 0xcfd8dfe80bfae1ef +138, 0xd314caeb723a63ea +139, 0x1c63ddcfc1145429 +140, 0x3801b7cc6cbf2437 +141, 0xc327d5b9fdafddd3 +142, 0xe140278430ca3c78 +143, 0x4d0345a685cb6ef8 +144, 0x47640dc86e261ff9 +145, 0xab817f158523ebf4 +146, 0x37c51e35fbe65a6b +147, 0xab090f475d30a178 +148, 0x4d3ec225bf599fc1 +149, 0xefd517b0041679b1 +150, 0x20ad50bca4da32c5 +151, 0x75e1f7cd07fad86d +152, 0x348cf781ee655f4b +153, 0x9375f0e5ffc2d2ec +154, 0x7689082fd5f7279c +155, 0x633e56f763561e77 +156, 0x9d1752d70861f9fd +157, 0xa3c994b4e70b0b0f +158, 0xabf7276a58701b88 +159, 0xbfa18d1a0540d000 +160, 0xc6a28a2475646d26 +161, 0x7cdf108583f65085 +162, 0x82dcefb9f32104be +163, 0xc6baadd0adc6b446 +164, 0x7a63cff01075b1b4 +165, 0x67ac62e575c89919 +166, 0x96fa4320a0942035 +167, 0xc4658859385b325f +168, 0xde22c17ff47808f6 +169, 0xbb952c4d89e2f2ec +170, 0x638251fbc55bdc37 +171, 0x38918b307a03b3ea +172, 0xccb60f2cedbb570b +173, 0x3c06f4086a28f012 +174, 0x4e8d238388986e33 +175, 0x1760b7793514a143 +176, 0xa3f924efe49ee7d6 +177, 0xaf6be2dbaebc0bdf +178, 0x6782682090dffe09 +179, 0xb63a4d90d848e8ef +180, 0x5f649c7eaf4c54c5 +181, 0xbe57582426a085ba +182, 0xb5dd825aa52fb76d +183, 0x74cb4e6ca4039617 +184, 0x382e578bf0a49588 +185, 0xc043e8ea6e1dcdae +186, 0xf902addd5c04fa7c +187, 0xf3337994612528db +188, 0x4e8fd48d6d15b4e6 +189, 0x7190a509927c07ab +190, 0x864c2dee5b7108ae +191, 0xbb9972ddc196f467 +192, 0x1ea02ab3ca10a448 +193, 0xe50a8ffde35ddef9 +194, 0x7bd2f59a67183541 +195, 0x5a940b30d8fcd27a +196, 0x82b4cea62623d4d3 +197, 0x6fbda76d4afef445 +198, 0x8b1f6880f418328e +199, 0x8b69a025c72c54b7 +200, 0xb71e0f3986a3835f +201, 0xa4a7ddb8b9816825 +202, 0x945dcda28228b1d8 +203, 0xb471abf2f8044d72 +204, 0xf07d4af64742b1ba +205, 0xfca5190bc4dd6a2a +206, 0xd681497262e11bc5 +207, 0xbe95d5f00c577028 +208, 0x56313439fd8bde19 +209, 0x3f3d9ac9b5ee6522 +210, 0x7b8d457dd2b49bbe +211, 0xe76b5747885d214b +212, 0xa8a695b3deb493ea +213, 0x5292446548c95d71 +214, 0xbf5cdf0d436412df +215, 0x7936abaed779d28d +216, 0x659c6e8073b3a06d +217, 0x86c9ff28f5543b71 +218, 0x6faa748445a99146 +219, 0xdcc1e6ab57904fd7 +220, 0x770bd61233addc5f +221, 0x16963e041e46d94f +222, 0x158e6cb2934157ac +223, 0xb65088a8fd246441 +224, 0x2b12ced6ce8a68c3 +225, 0x59a18d02cd6082b3 +226, 0x4ddbc318cb5488ee +227, 0x3d4cf520b3ed20a1 +228, 0x7028b3a92e2b292d +229, 0xf141da264a250e4d +230, 0x9788d53e86041c37 +231, 0x1bb91238a7c97dbf +232, 0x81953d0ddb634309 +233, 0xfa39ccfe14d2d46 +234, 0xf7c7861c9b7e8399 +235, 0x18d27ca50d9dc249 +236, 0x258dfdf38510d0d9 +237, 0x9e72d8af910ea76f +238, 0x4f8ef24b96de50ad +239, 0xb9d9c12297e03dc9 +240, 0x91994e41b4a1929c +241, 0x8defa79b2ccc83b9 +242, 0x948566748706dac5 +243, 0x7b0454946e70e4cf +244, 0x340b7cb298c70ed7 +245, 0x6602005330cebd95 +246, 0xf71cb803aa61f722 +247, 0x4683fb07fc70ae8a +248, 0xc6db9f0c4de3ed88 +249, 0x3e8dfae2a593cef9 +250, 0x615f7c38e3862b33 +251, 0x676c7996550d857 +252, 0xc6d520d54a5c266a +253, 0x202b1e8eef14aa2e +254, 0xa3a84891a27a582 +255, 0x84dbee451658d47f +256, 0x254c7cd97e777e3a +257, 0xf50b6e977f0eba50 +258, 0x2898b1d3062a4798 +259, 0x4096f7cbbb019773 +260, 0x9fb8e75548062c50 +261, 0x4647071e5ca318ec +262, 0x2b4750bdb3b3b01 +263, 0x88ac41cc69a39786 +264, 0x705e25476ef46fa3 +265, 0xc0c1db19884a48a6 +266, 0x1364c0afdbb465e5 +267, 0x58e98534701272a6 +268, 0x746a5ea9701517c0 +269, 0x523a70bc6b300b67 +270, 0x9b1c098eda8564ad +271, 0xfbaeb28d3637067f +272, 0xddd9a13551fdba65 +273, 0x56461a670559e832 +274, 0xab4fd79be85570ad +275, 0xd4b691ecaff8ca55 +276, 0x11a4495939e7f004 +277, 0x40d069d19477eb47 +278, 0xe790783d285cd81e +279, 0xde8218b16d935bc7 +280, 0x2635e8c65cd4182d +281, 0xeae402623e3454 +282, 0x9f99c833184e0279 +283, 0x3d0f79a0d52d84e7 +284, 0xc1f8edb10c625b90 +285, 0x9b4546363d1f0489 +286, 0x98d86d0b1212a282 +287, 0x386b53863161200d +288, 0xbe1165c7fe48a135 +289, 0xb9658b04dbbfdc8c +290, 0xcea14eddfe84d71a +291, 0x55d03298be74abe7 +292, 0x5be3b50d961ffd7e +293, 0xc76b1045dc4b78e1 +294, 0x7830e3ff3f6c3d4c +295, 0xb617adb36ca3729 +296, 0x4a51bdb194f14aa9 +297, 0x246024e54e6b682a +298, 0x33d42fc9c6d33083 +299, 0xadccba149f31e1d +300, 0x5183e66b9002f8b +301, 0x70eb2416404d51b7 +302, 0x26c25eb225535351 +303, 0xbc2d5b0d23076561 +304, 0x5823019ddead1da +305, 0x85cfa109fca69f62 +306, 0x26017933e7e1efd9 +307, 0x3ec7be9a32212753 +308, 0x697e8a0697cd6f60 +309, 0x44735f6cca03920f +310, 0x8cc655eb94ee212e +311, 0x8b8b74eba84929a0 +312, 0x7708ccedd0c98c80 +313, 0x1b6f21f19777cbe1 +314, 0x363e564bd5fadedb +315, 0x5921543a641591fe +316, 0xc390786d68ea8a1b +317, 0x9b293138dc033fca +318, 0x45447ca8dc843345 +319, 0xee6ef6755bc49c5e +320, 0x70a3a1f5163c3be5 +321, 0xf05e25448b6343b0 +322, 0x4739f4f8717b7e69 +323, 0xb006141975bf957 +324, 0x31874a91b707f452 +325, 0x3a07f2c90bae2869 +326, 0xb73dae5499a55c5e +327, 0x489070893bb51575 +328, 0x7129acf423940575 +329, 0x38c41f4b90130972 +330, 0xc5260ca65f5a84a1 +331, 0x6e76194f39563932 +332, 0x62ca1f9ca3de3ca6 +333, 0xb4a97874e640853f +334, 0x38ed0f71e311cc02 +335, 0xde183b81099e8f47 +336, 0x9bb8bf8e6694346 +337, 0xd15497b6bf81e0f2 +338, 0xaaae52536c00111 +339, 0x4e4e60d1435aaafd +340, 0x5a15512e5d6ea721 +341, 0xff0f1ffabfc6664f +342, 0xba3ffcedc5f97fec +343, 0xef87f391c0c6bfb6 +344, 0x4a888c5d31eb0f98 +345, 0x559a3fbfd7946e95 +346, 0xe45b44a0db5a9bad +347, 0x9457898964190af1 +348, 0xd9357dfaab76cd9e +349, 0xa60e907178d965a1 +350, 0x76b2dc3032dc2f4a +351, 0x13549b9c2802120 +352, 0x8656b965a66a1800 +353, 0x16802e6e22456a23 +354, 0x23b62edc60efaa9 +355, 0x6832a366e1e4ea3b +356, 0x46b1b41093ff2b1e +357, 0x55c857128143f219 +358, 0x7fc35ddf5e138200 +359, 0x790abe78be67467e +360, 0xa4446fc08babd466 +361, 0xc23d70327999b855 +362, 0x2e019d1597148196 +363, 0xfefd98e560403ab8 +364, 0xbe5f0a33da330d58 +365, 0x3078a4e9d43ca395 +366, 0x511bfedd6f12f2b3 +367, 0x8bc138e335be987c +368, 0x24640f803465716d +369, 0xf6530b04d0bd618f +370, 0x9b7833e5aa782716 +371, 0x778cd35aea5841b1 +372, 0xecea3c458cefbc60 +373, 0x5107ae83fc527f46 +374, 0x278ad83d44bd2d1a +375, 0x7014a382295aeb16 +376, 0xf326dd762048743f +377, 0x858633d56279e553 +378, 0x76408154085f01bc +379, 0x3e77d3364d02e746 +380, 0x2f26cea26cadd50b +381, 0x6d6846a4ecb84273 +382, 0x4847e96f2df5f76 +383, 0x5a8610f46e13ff61 +384, 0x4e7a7cac403e10dd +385, 0x754bdf2e20c7bc90 +386, 0x8bdd80e6c51bd0be +387, 0x61c655fae2b4bc52 +388, 0x60873ef48e3d2f03 +389, 0x9d7d8d3698a0b4a4 +390, 0xdf48e9c355cd5d4b +391, 0x69ecf03e20be99ac +392, 0xc1a0c5a339bd1815 +393, 0x2e3263a6a3adccb +394, 0x23557459719adbdc +395, 0xd1b709a3b330e5a +396, 0xade5ab00a5d88b9d +397, 0x69a6bd644120cfad +398, 0x40187ecceee92342 +399, 0x1c41964ba1ac78da +400, 0x9ac5c51cbecabe67 +401, 0xbdc075781cf36d55 +402, 0xeaf5a32246ded56 +403, 0xcda0b67e39c0fb71 +404, 0x4839ee456ef7cc95 +405, 0xf17092fdd41d5658 +406, 0x2b5d422e60ae3253 +407, 0x3effe71102008551 +408, 0x20a47108e83934b7 +409, 0xd02da65fe768a88f +410, 0xeb046bd56afa4026 +411, 0x70c0509c08e0fbe0 +412, 0x1d35c38d4f8bac6c +413, 0x9aa8eb6466f392e0 +414, 0x587bd4a430740f30 +415, 0x82978fe4bad4195 +416, 0xdc4ebc4c0feb50ab +417, 0xd3b7164d0240c06f +418, 0x6e2ad6e5a5003a63 +419, 0xa24b430e2ee6b59c +420, 0x2905f49fd5073094 +421, 0x5f209e4de03aa941 +422, 0x57b7da3e0bedb1dc +423, 0x5e054018875b01f5 +424, 0xb2f2da6145658db3 +425, 0xbd9c94a69a8eb651 +426, 0x9c5f9a07cd6ac749 +427, 0x2296c4af4d529c38 +428, 0x522ed800fafdefab +429, 0xe2a447ced0c66791 +430, 0x937f10d45e455fef +431, 0xc882987d9e29a24 +432, 0x4610bfd6a247ee1a +433, 0x562ba3e50870059 +434, 0x59d8d58793602189 +435, 0xfe9a606e3e34abe +436, 0x6825f7932a5e9282 +437, 0xe77f7061bab476ad +438, 0xbf42001da340ace3 +439, 0x9c3e9230f5e47960 +440, 0x2c0f700d96d5ad58 +441, 0x330048b7cd18f1f9 +442, 0xffc08785eca5cca9 +443, 0xb5879046915f07a5 +444, 0xef51fe26f83c988e +445, 0xfa4c2968e7881a9a +446, 0xc0a9744455a4aad +447, 0xbd2ad686d6313928 +448, 0x6b9f0984c127682a +449, 0xc9aaa00a5da59ed8 +450, 0x762a0c4b98980dbf +451, 0x52d1a2393d3ca2d1 +452, 0x1e9308f2861db15c +453, 0xe7b3c74fe4b4a844 +454, 0x485e15704a7fc594 +455, 0x9e7f67ea44c221f6 +456, 0xbab9ad47fde916e0 +457, 0x50e383912b7fc1f4 +458, 0xaad63db8abcef62d +459, 0xc2f0c5699f47f013 +460, 0xee15b36ada826812 +461, 0x2a1b1cf1e1777142 +462, 0x8adb03ede79e937d +463, 0xf14105ef65643bf3 +464, 0x752bbaefc374a3c7 +465, 0xa4980a08a5a21d23 +466, 0x418a1c05194b2db7 +467, 0xdd6ff32efe1c3cd6 +468, 0x272473ed1f0d3aa2 +469, 0x1e7fdebadabe6c06 +470, 0xd1baa90c17b3842f +471, 0xd3d3a778e9c8404a +472, 0x781ae7fda49fa1a0 +473, 0x61c44fdbdacc672d +474, 0x6d447d0a1404f257 +475, 0x9303e8bdfbfb894d +476, 0x3b3482cdec016244 +477, 0xb149bf245d062e7b +478, 0x96f8d54b14cf992d +479, 0x4741549a01f8c3d0 +480, 0x48270811b2992af +481, 0x7b58f175cd25d147 +482, 0x8f19a840b56f4be9 +483, 0x84a77f43c0951a93 +484, 0x34e1a69381f0c374 +485, 0xb158383c9b4040f +486, 0x372f1abc7cf3a9fa +487, 0x5439819a84571763 +488, 0xabf8515e9084e2fa +489, 0xb02312b9387ff99 +490, 0x238a85bb47a68b12 +491, 0x2068cb83857c49bb +492, 0xc6170e743083664c +493, 0x745cf8470bcb8467 +494, 0xe3a759a301670300 +495, 0x292c7686ad3e67da +496, 0x359efedaff192a45 +497, 0x511f2c31a2d8c475 +498, 0x97fd041bf21c20b3 +499, 0x25ef1fe841b7b3f6 +500, 0xbb71739e656f262d +501, 0x2729b0e989b6b7b8 +502, 0xd2142702ec7dbabf +503, 0x7008decd2488ee3f +504, 0x69daa95e303298d7 +505, 0xc35eca4efb8baa5a +506, 0xf3f16d261cec3b6c +507, 0x22371c1d75396bd3 +508, 0x7aefa08eccae857e +509, 0x255b493c5e3c2a2f +510, 0x779474a077d34241 +511, 0x5199c42686bea241 +512, 0x16c83931e293b8d3 +513, 0xa57fe8db8c0302c7 +514, 0xd7ace619e5312eb1 +515, 0x8740f013306d217c +516, 0xb6a1ad5e29f4d453 +517, 0x31abf7c964688597 +518, 0xbc3d791daed71e7 +519, 0x31ee4ca67b7056ed +520, 0x1ab5416bfe290ea3 +521, 0x93db416f6d3b843a +522, 0xed83bbe5b1dd2fed +523, 0xece38271470d9b6d +524, 0x3a620f42663cd8ae +525, 0x50c87e02acafee5d +526, 0xcabeb8bedbc6dab5 +527, 0x2880a6d09970c729 +528, 0x4aba5dd3bfc81bc +529, 0xaba54edf41080cec +530, 0xb86bb916fc85a169 +531, 0x4c41de87bc79d8ca +532, 0xcce2a202622945fe +533, 0x513f086fad94c107 +534, 0x18b3960c11f8cc96 +535, 0x2f0d1cfd1896e236 +536, 0x1702ae3880d79b15 +537, 0x88923749029ae81 +538, 0x84810d4bdec668eb +539, 0xf85b0a123f4fc68d +540, 0x93efd68974b6e4d1 +541, 0x5d16d6d993a071c9 +542, 0x94436858f94ca43b +543, 0xb3dbb9ed0cb180b6 +544, 0x6447030a010b8c99 +545, 0xd7224897c62925d8 +546, 0xb0c13c1d50605d3a +547, 0xdff02c7cb9d45f30 +548, 0xe8103179f983570d +549, 0xbc552037d6d0a24e +550, 0x775e500b01486b0d +551, 0x2050ac632c694dd6 +552, 0x218910387c4d7ae7 +553, 0xf83e8b68ff885d5d +554, 0xe3374ec25fca51a3 +555, 0xfa750ffa3a60f3af +556, 0x29ee40ba6df5592e +557, 0x70e21a68f48260d2 +558, 0x3805ca72cd40886e +559, 0x2f23e73f8eabf062 +560, 0x2296f80cdf6531ae +561, 0x903099ed968db43a +562, 0xf044445cf9f2929f +563, 0xcd47fdc2de1b7a1 +564, 0xaab1cbd4f849da99 +565, 0x5fc990688da01acb +566, 0xa9cee52ea7dab392 +567, 0xecefc3a4349283a8 +568, 0xdd6b572972e3fafc +569, 0xc1f0b1a2ffb155da +570, 0xc30d53fc17bd25c8 +571, 0x8afa89c77834db28 +572, 0x5569a596fb32896c +573, 0x36f207fc8df3e3d4 +574, 0x57c2bd58517d81db +575, 0xb524693e73d0061c +576, 0xb69f6eb233f5c48b +577, 0x4f0fb23cab8dc695 +578, 0x492c1ad0a48df8df +579, 0xf6dcc348ec8dec1f +580, 0xa4d8708d6eb2e262 +581, 0x4c2072c2c9766ff1 +582, 0xa9bf27c4304875f0 +583, 0xfc8fb8066d4f9ae2 +584, 0x188095f6235fec3c +585, 0x1d8227a2938c2864 +586, 0x89ea50c599010378 +587, 0xcac86df0a7c6d56d +588, 0x47a8c5df84c7d78 +589, 0xe607ae24ea228bfa +590, 0x36624a7996efe104 +591, 0x5d72881c1227d810 +592, 0x78694a6750374c8 +593, 0x7b9a217d4ab5ff45 +594, 0xd53e5d6f7504becc +595, 0x197a72d3f4889a0e +596, 0xfdc70c4755a8df36 +597, 0xd0fda83748c77f74 +598, 0x7ddc919ac9d6dcc9 +599, 0x785c810a6a2dc08b +600, 0xba4be83e7e36896c +601, 0x379d6fe80cf2bffe +602, 0x74cae2dabc429206 +603, 0x1efac32d5d34c917 +604, 0x3cb64e2f98d36e70 +605, 0xc0a7c3cdc3c60aa7 +606, 0x699dfadd38790ebe +607, 0x4861e61b3ecfbeac +608, 0x531744826c345baa +609, 0x5ec26427ad450cba +610, 0xf2c1741479abdcae +611, 0xe9328a78b2595458 +612, 0x30cd1bdf087acd7f +613, 0x7491ced4e009adbe +614, 0xdcd942df1e2e7023 +615, 0xfe63f01689fee35 +616, 0x80282dfe5eaedc42 +617, 0x6ecdea86495f8427 +618, 0xe0adfdd5e9ed31c3 +619, 0xf32bd2a7418127e +620, 0x8aabba078db6ee2 +621, 0xa8a8e60499145aca +622, 0xf76b086ac4e8a0f2 +623, 0x6e55b3c452ff27f8 +624, 0xe18fa7cd025a71bf +625, 0xeed7b685fde0fa25 +626, 0xba9b6c95867fa721 +627, 0x4c2603bc69de2df2 +628, 0xaac87eee1b58cd66 +629, 0x3c9af6656e01282c +630, 0x2dfa05ce8ff476b6 +631, 0xeae9143fcf92f23d +632, 0x3f0699f631be3bc8 +633, 0xa0f5f79f2492bd67 +634, 0x59c47722388131ed +635, 0x5f6e9d2941cef1de +636, 0xe9ad915c09788b7b +637, 0x92c6d37e4f9482f5 +638, 0x57d301b7fdadd911 +639, 0x7e952d23d2a8443 +640, 0xbb2fa5e0704b3871 +641, 0xe5642199be36e2d5 +642, 0x5020b60d54358291 +643, 0xa0b6317ec3f60343 +644, 0xb57b08b99540bc5c +645, 0x21f1890adc997a88 +646, 0xfcf824200dd9da2d +647, 0x8146293d83d425d1 +648, 0xdadfbf5fbb99d420 +649, 0x1eb9bbc5e6482b7d +650, 0xd40ff44f1bbd0f1c +651, 0xa9f948ba2d08afa5 +652, 0x638cc07c5301e601 +653, 0x1f984baa606e14e8 +654, 0x44e153671081f398 +655, 0xb17882eeb1d77a5d +656, 0x5fd8dbee995f14c +657, 0xff3533e87f81b7fe +658, 0x2f44124293c49795 +659, 0x3bf6b51e9360248 +660, 0x72d615edf1436371 +661, 0x8fc5cf4a38adab9d +662, 0xfa517e9022078374 +663, 0xf356733f3e26f4d8 +664, 0x20ea099cdc6aad40 +665, 0xe15b977deb37637d +666, 0xcc85601b89dae88d +667, 0x5768c62f8dd4905c +668, 0xa43cc632b4e56ea +669, 0xc4240cf980e82458 +670, 0xb194e8ffb4b3eeb6 +671, 0xee753cf2219c5fa1 +672, 0xfe2500192181d44d +673, 0x2d03d7d6493dd821 +674, 0xff0e787bb98e7f9b +675, 0xa05cf8d3bd810ce7 +676, 0x718d5d6dcbbdcd65 +677, 0x8d0b5343a06931c +678, 0xae3a00a932e7eaf9 +679, 0x7ed3d8f18f983e18 +680, 0x3bb778ee466dc143 +681, 0x711c685c4e9062c0 +682, 0x104c3af5d7ac9834 +683, 0x17bdbb671fb5d5cf +684, 0xabf26caead4d2292 +685, 0xa45f02866467c005 +686, 0xf3769a32dc945d2d +687, 0xe78d0007f6aabb66 +688, 0x34b60be4acbd8d4b +689, 0x58c0b04b69359084 +690, 0x3a8bb354c212b1 +691, 0x6b82a8f3d70058d5 +692, 0x405bdef80a276a4a +693, 0xe20ca40ee9195cad +694, 0xf5dd96ba2446fefd +695, 0xc1e180c55fe55e3c +696, 0xa329caf6daa952b3 +697, 0xb4809dd0c84a6b0a +698, 0xd27f82661070cee7 +699, 0xa7121f15ee2b0d8a +700, 0x4bdaea70d6b34583 +701, 0xe821dc2f310f7a49 +702, 0x4c00a5a68e76f647 +703, 0x331065b064a2d5ea +704, 0xac0c2ce3dc04fa37 +705, 0x56b32b37b8229008 +706, 0xe757cdb51534fcfa +707, 0xd3ff183576b2fad7 +708, 0x179e1f4190f197a7 +709, 0xf874c626a7c9aae5 +710, 0xd58514ffc37c80e4 +711, 0xc65de31d33fa7fd3 +712, 0x6f6637052025769b +713, 0xca1c6bdadb519cc0 +714, 0xd1f3534cde37828a +715, 0xc858c339eee4830a +716, 0x2371eacc215e02f4 +717, 0x84e5022db85bbbe9 +718, 0x5f71c50bba48610e +719, 0xe420192dad9c323f +720, 0x2889342721fca003 +721, 0x83e64f63334f501d +722, 0xac2617172953f2c +723, 0xfa1f78d8433938ff +724, 0x5578382760051462 +725, 0x375d7a2e3b90af16 +726, 0xb93ff44e6c07552d +727, 0xded1d5ad811e818c +728, 0x7cf256b3b29e3a8c +729, 0x78d581b8e7bf95e8 +730, 0x5b69192f2caa6ad3 +731, 0xa9e25855a52de3ce +732, 0x69d8e8fc45cc188d +733, 0x5dd012c139ad347d +734, 0xfcb01c07b77db606 +735, 0x56253e36ab3d1cce +736, 0x1181edbb3ea2192 +737, 0x325bef47ff19a08d +738, 0xd3e231ceb27e5f7 +739, 0x8e819dd2de7956d2 +740, 0x34a9689fe6f84a51 +741, 0x3e4eeb719a9c2927 +742, 0x5c3b3440581d0aaf +743, 0x57caf51897d7c920 +744, 0xec6a458130464b40 +745, 0xe98f044e0da40e9b +746, 0xbe38662020eeb8e7 +747, 0x7b8c407c632724ae +748, 0x16c7cfa97b33a544 +749, 0xd23359e2e978ae5a +750, 0x4fdba458250933dd +751, 0x3c9e0713cfe616ba +752, 0x6f0df87b13163b42 +753, 0xc460902cb852cc97 +754, 0x289df8fefd6b0bce +755, 0x4ac2a2a1c3fb8029 +756, 0x2fc3e24d8b68eef7 +757, 0x34564386a59aab9a +758, 0x31047391ebd67ce4 +759, 0x6c23d070a0564d41 +760, 0xba6387b2b72545f7 +761, 0xcdcf1008058387af +762, 0xc9308fa98db05192 +763, 0xdbdbb5abd01a9d84 +764, 0x937088275c7804ab +765, 0x6f6accfefe34ee81 +766, 0x5c33c74c49cfdb2c +767, 0x5e1a771edfb92bd3 +768, 0x6e89b009069ecae7 +769, 0x34d64e17ec0e8968 +770, 0x841203d0cde0c330 +771, 0x7642cc9d7eb9e9cb +772, 0xca01d2e8c128b97e +773, 0x5b8390617b3304ab +774, 0x52ec4ed10de1eb2d +775, 0xb90f288b9616f237 +776, 0x5bd43cd49617b2e2 +777, 0x1a53e21d25230596 +778, 0x36ccd15207a21cd6 +779, 0xc8263d780618fd3c +780, 0x6eb520598c6ce1cb +781, 0x493c99a3b341564f +782, 0xab999e9c5aa8764f +783, 0xab2fa4ceaba84b +784, 0xbbd2f17e5cb2331b +785, 0xc8b4d377c0cc4e81 +786, 0x31f71a6e165c4b1e +787, 0xd1011e55fb3addaa +788, 0x5f7ec34728dfa59 +789, 0x2aef59e60a84eb0f +790, 0x5dde6f09aec9ad5f +791, 0x968c6cdbc0ef0438 +792, 0x1957133afa15b13a +793, 0xbaf28f27573a64c2 +794, 0xc6f6ddd543ebf862 +795, 0xdd7534315ec9ae1e +796, 0xd2b80cd2758dd3b +797, 0xa38c3da00cc81538 +798, 0x15c95b82d3f9b0f9 +799, 0x6704930287ce2571 +800, 0x9c40cc2f6f4ecb0c +801, 0xc8de91f50b22e94e +802, 0x39272e8fddbfdf0a +803, 0x879e0aa810a117d +804, 0xa312fff4e9e5f3bd +805, 0x10dd747f2835dfec +806, 0xeb8466db7171cdae +807, 0xaa808d87b9ad040a +808, 0xab4d2229a329243a +809, 0x7c622f70d46f789c +810, 0x5d41cef5965b2a8e +811, 0xce97ec4702410d99 +812, 0x5beba2812c91211b +813, 0xf134b46c93a3fec7 +814, 0x76401d5630127226 +815, 0xc55fc9d9eacd4ec1 +816, 0xaec8cefaa12f813f +817, 0x2f845dcfd7b00722 +818, 0x3380ab4c20885921 +819, 0xdb68ad2597691b74 +820, 0x8a7e4951455f563f +821, 0x2372d007ed761c53 +822, 0xcab691907714c4f1 +823, 0x16bc31d6f3abec1a +824, 0x7dff639fbcf1824 +825, 0x6666985fbcff543d +826, 0xb618948e3d8e6d0c +827, 0x77b87837c794e068 +828, 0xcd48288d54fcb5a8 +829, 0x47a773ed6ae30dc3 +830, 0xba85ae44e203c942 +831, 0xa7a7b21791a25b2d +832, 0x4029dd92e63f19e0 +833, 0xc2ad66ab85e7d5aa +834, 0xa0f237c96fdab0db +835, 0xffefb0ab1ca18ed +836, 0x90cb4500785fd7d5 +837, 0xa7dd3120f4876435 +838, 0x53f7872624694300 +839, 0xea111326ff0040d9 +840, 0x5f83cb4cce40c83b +841, 0x918e04936c3b504d +842, 0x87a8db4c0e15e87c +843, 0x7cff39da6a0dedd0 +844, 0x36f7de2037f85381 +845, 0xd1d8d94022a1e9a7 +846, 0x2c9930127dc33ec9 +847, 0x6cb4719dcd0101c6 +848, 0xc01868cde76935f7 +849, 0x6b86f2ec1ab50143 +850, 0x68af607d8d94ae61 +851, 0xe216c5b95feedf34 +852, 0x4b866bd91efe2e4b +853, 0x4bff79df08f92c99 +854, 0x6ff664ea806acfd1 +855, 0x7fce0b3f9ece39bc +856, 0x29bc90b59cb3db97 +857, 0x833c4b419198607d +858, 0xf3573e36ca4d4768 +859, 0x50d71c0a3c2a3fa8 +860, 0xd754591aea2017e7 +861, 0x3f9126f1ee1ebf3 +862, 0xe775d7f4b1e43de8 +863, 0xe93d51628c263060 +864, 0x83e77f6fb32d6d82 +865, 0x43dd7eef823408e4 +866, 0x1c843c2c90180662 +867, 0xe924dafb9a16066b +868, 0x6af3ee96e7b7fbd9 +869, 0x94d5c4f37befcd1f +870, 0x40ffb04bedef4236 +871, 0x71c17bbc20e553e +872, 0x101f7a0a6208729f +873, 0x5ca34570cf923548 +874, 0x8e3139db2e96e814 +875, 0x3ab96d96263d048d +876, 0x97f3c0bbc6755c3c +877, 0x31fc72daedaef3dc +878, 0x71f8d7855d10789b +879, 0xce6dc97b4662333b +880, 0xfddc2aabd342bc61 +881, 0xefbd4007ff8c7d2e +882, 0xf72cd6c689ef8758 +883, 0x932c8b0c0e755137 +884, 0x94cc4dedd58ff69 +885, 0xde4dfd6890535979 +886, 0xdb00dcd2dcb4a50a +887, 0xb0466240b4548107 +888, 0x9cb9264c7b90d1a3 +889, 0x357e378e9be5766b +890, 0x6e0316ef03367bbf +891, 0x201ea18839544ca +892, 0x803ff3406be5f338 +893, 0xf9d5e82fd4144bb2 +894, 0x1b6b88ca701e9f47 +895, 0xd1fe5ab8e1f89cc0 +896, 0x14171fe176c4bece +897, 0x887948bdef78beaa +898, 0x80449ddc3eb9b977 +899, 0x5f4e1f900fb4bcf3 +900, 0xbe30f8701909f8e2 +901, 0xd1f2a2fb5503306d +902, 0x6b1c77238dc23803 +903, 0x102156a6c9860f66 +904, 0x4cd446e099edf4c1 +905, 0xc79ac6cbc911f33b +906, 0x3ee096ffe3384f1c +907, 0xb58f83b18a306dc7 +908, 0x9f76582141de56b2 +909, 0x9ddfa85e02c13866 +910, 0x4d9a19d4ce90a543 +911, 0xbf81ab39fd17d376 +912, 0x5327e5054c6a74f1 +913, 0xd5062dd31db1a9b7 +914, 0x645853735527edc +915, 0x485393967f91af08 +916, 0xeff9667dcf77ca68 +917, 0xd012313f5fbec464 +918, 0xbeae35bdfae55144 +919, 0x302c41ebac8444a0 +920, 0x9ccdb6c2fe58fba8 +921, 0x567753af68ed23f8 +922, 0xff90f790e43efec3 +923, 0x970cc756fb799696 +924, 0xe59239d1c44915 +925, 0x4d2d189fb3941f05 +926, 0x96f23085db165a9c +927, 0xa1202dec7a37b1a5 +928, 0xc0c1ee74bcd7dc1a +929, 0x9edcf2048b30333a +930, 0xd848588ba7e865fb +931, 0x8d9f0897317cab40 +932, 0x67b96f15e25924fb +933, 0xefc8d8536619ee42 +934, 0xf3f621d22bdde0c2 +935, 0x68610a0de862ae32 +936, 0xa22ca5142de24cbd +937, 0x8815452f4e6b4801 +938, 0x4e9c1b607b2750e5 +939, 0x19b3c09ba6fc9b25 +940, 0x9b2543c8836780ac +941, 0xe702b8f950e56431 +942, 0xb357cc329cac3917 +943, 0x387bf86a17a31e08 +944, 0x9940b983d331b163 +945, 0xf5d89d7fe9095e18 +946, 0x4362682329e5c4d1 +947, 0xd2132573f6ae7b42 +948, 0xc0a5849e23a61606 +949, 0xdadbddf47265bc02 +950, 0x1b96f00339a705f7 +951, 0x94e6642329288913 +952, 0x825ab3f10e6d330b +953, 0x1a1c31ac9d883ea0 +954, 0xb49076b7155c6f47 +955, 0x920cf3085dfe3ccb +956, 0x9743407c9f28e825 +957, 0x6ce8a28622402719 +958, 0xce2fe67e06baf8a6 +959, 0x3a16b34784ecf5e6 +960, 0x140467cc1d162a0c +961, 0x32d4772692ab625 +962, 0xa4f4b28562f43336 +963, 0x885b4335457bd84a +964, 0x499d3ed26c87ad8a +965, 0xc7328bcedb9a545e +966, 0xc6dd76a6cbf5d2b2 +967, 0xba9c22be404ee1aa +968, 0x70e6aee45f23521d +969, 0x61e03a798593c177 +970, 0x171671f809c68213 +971, 0x28d54872fc1d914c +972, 0x43c2fcd9bd098b53 +973, 0x172ad4c4a98b9d37 +974, 0x330860c9460f2516 +975, 0x49547f472df984f4 +976, 0x873b2436d3f0e114 +977, 0x6f99accf4ea050b6 +978, 0x5968ac874ed51613 +979, 0x4939d70d29a3c611 +980, 0x11f381ed28738d3d +981, 0xa97430d36ab3a869 +982, 0xe6fa880801129e22 +983, 0xf84decbd8f48c913 +984, 0x4425c0ed1e9a82a5 +985, 0x7a1f9485e9929d5a +986, 0xc7c51f155dfce1c6 +987, 0x9619a39501d74f2b +988, 0x7c7035955dbf4c1b +989, 0xc61ee569cf57c2c9 +990, 0x3eaf7c5b0df734e1 +991, 0xe71cb4064d1ede05 +992, 0x356e3cec80e418b2 +993, 0xca04306243a15be6 +994, 0x941cf3881fa18896 +995, 0x30dbb0e819d644e0 +996, 0xaae22c0bef02859a +997, 0x7bd30917bbaa8a94 +998, 0x2672547bc8d7d329 +999, 0x4955c92aaa231578 diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/data/pcg64dxsm-testset-2.csv b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/pcg64dxsm-testset-2.csv new file mode 100644 index 0000000..878c5ea --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/pcg64dxsm-testset-2.csv @@ -0,0 +1,1001 @@ +seed, 0x0 +0, 0xd97e4a147f788a70 +1, 0x8dfa7bce56e3a253 +2, 0x13556ed9f53d3c10 +3, 0x55dbf1c241341e98 +4, 0xa2cd98f722eb0e0a +5, 0x83dfc407203ade8 +6, 0xeaa083df518f030d +7, 0x44968c87e432852b +8, 0x573107b9cb8d9ecc +9, 0x9eedd1da50b9daca +10, 0xb33a6735ca451e3c +11, 0x72830d2b39677262 +12, 0x9da8c512fd0207e8 +13, 0x1fc5c91954a2672b +14, 0xd33479437116e08 +15, 0x9ccdd9390cee46f3 +16, 0x1fd39bb01acd9e76 +17, 0xedc1869a42ff7fe5 +18, 0xbd68ca0b42a6e7e9 +19, 0x620b67df09621b1f +20, 0xfa11d51bd6950221 +21, 0xc8c45b36e7d28d08 +22, 0xe9c91272fbaad777 +23, 0x2dc87a143f220e90 +24, 0x6376a7c82361f49d +25, 0x552c5e434232fe75 +26, 0x468f7f872ac195bc +27, 0x32bed6858125cf89 +28, 0xe4f06111494d09d3 +29, 0xa5c166ffea248b80 +30, 0x4e26605b97064a3f +31, 0xceafd9f6fc5569d +32, 0xb772f2f9eed9e106 +33, 0x672c65e6a93534e2 +34, 0xcdc5e1a28d1bd6a0 +35, 0x1ed9c96daeebd3e3 +36, 0x4d189dcfc0c93c3f +37, 0x50df5a95c62f4b43 +38, 0xcccf4949fa65bbb8 +39, 0x19b8073d53cdc984 +40, 0x6fb40bba35483703 +41, 0xb02de4aef86b515a +42, 0x4d90c63655350310 +43, 0xea44e4089825b16c +44, 0x8d676958b1f9da2b +45, 0x6d313940917ae195 +46, 0x1b1d35a4c1dd19f4 +47, 0x117720f8397337ef +48, 0xcc073cf3ac11eeaa +49, 0x8331ec58a9ff8acb +50, 0xf3dc2a308b6b866f +51, 0x7eba1202663382b6 +52, 0x8269839debeb4e5a +53, 0x87fd3dc0f9181a8e +54, 0xabe62ddd3c925f03 +55, 0x7f56f146944fe8d4 +56, 0xc535972150852068 +57, 0x60b252d453bd3a68 +58, 0x4251f0134634490a +59, 0x338950da210dfeb2 +60, 0xcadfe932971c9471 +61, 0xfb7049457fab470e +62, 0x9bfb8145a4459dff +63, 0x4a89dda3898f9d8a +64, 0x88cc560151483929 +65, 0x277dc820f4b6796e +66, 0x3524bd07ea0afb88 +67, 0x92eb6ffb2bf14311 +68, 0xf6559be0783f3fe9 +69, 0xf0844f9af54af00d +70, 0xdd5e0b59adcef8a +71, 0x4ff7e4f2ab18554c +72, 0x3fa22c8a02634587 +73, 0x1db8e1a9442fe300 +74, 0x40cf15953ad3d3e7 +75, 0x92af15fe1a9f6f0a +76, 0xab4a0e466fb0cfd +77, 0x944f1555a06cca82 +78, 0x10cf48412f1f6066 +79, 0x7f51f9a455f9e8e1 +80, 0x47ee93530f024c7e +81, 0x36cf2f0413e0f6f2 +82, 0xa315e23731969407 +83, 0xd8e2796327cf5f87 +84, 0xa86072696a555c34 +85, 0xee3f0b8804feaab7 +86, 0x41e80dc858f8360b +87, 0x31ec2e9b78f5b29 +88, 0xd397fb9b8561344c +89, 0x28081e724e649b74 +90, 0x5c135fc3fc672348 +91, 0x9a276ca70ce9caa0 +92, 0x9216da059229050a +93, 0xcf7d375ed68007b0 +94, 0xa68ad1963724a770 +95, 0xd4350de8d3b6787c +96, 0xee7d2c2cc275b6d2 +97, 0x71645ec738749735 +98, 0x45abdf8c68d33dbb +99, 0xe71cadb692c705ea +100, 0x60af6f061fd90622 +101, 0x1eabe2072632c99d +102, 0x947dda995a402cb6 +103, 0xbb19f49a3454f3b +104, 0xe6e43e907407758c +105, 0xfe2b67016bd6873a +106, 0x7fdb4dd8ab30a722 +107, 0x39d3265b0ff1a45b +108, 0xed24c0e4fce8d0c2 +109, 0xf6e074f86faf669d +110, 0x9142040df8dc2a79 +111, 0x9682ab16bc939a9c +112, 0x6a4e80c378d971c8 +113, 0x31309c2c7fc2d3d6 +114, 0xb7237ec682993339 +115, 0x6a30c06bb83dccd9 +116, 0x21c8e9b6d8e7c382 +117, 0x258a24ae6f086a19 +118, 0xb76edb5be7df5c35 +119, 0x3c11d7d5c16e7175 +120, 0xbdfc34c31eff66e1 +121, 0x8af66e44be8bf3a2 +122, 0x3053292e193dec28 +123, 0xd0cc44545b454995 +124, 0x408ac01a9289d56 +125, 0x4e02d34318ec2e85 +126, 0x9413ff3777c6eb6b +127, 0xa3a301f8e37eb3df +128, 0x14e6306bd8d8f9f9 +129, 0xd3ea06ce16c4a653 +130, 0x170abe5429122982 +131, 0x7f9e6fddc6cacb85 +132, 0xa41b93e10a10a4c8 +133, 0x239216f9d5b6d0b5 +134, 0x985fcb6cb4190d98 +135, 0xb45e3e7c68f480c6 +136, 0xc1b2fc2e0446211c +137, 0x4596adb28858c498 +138, 0x2dd706f3458ddc75 +139, 0x29c988c86f75464 +140, 0xac33a65aa679a60 +141, 0xa28fef762d39d938 +142, 0x541e6fa48647f53 +143, 0x27838d56b2649735 +144, 0x8e143d318a796212 +145, 0xaea6097745f586b8 +146, 0x636143330f8ee2e6 +147, 0xc2d05fd8b945b172 +148, 0x6e355f9eb4353055 +149, 0xeb64ca42e8bf282e +150, 0xe8202dfd9da0fe5 +151, 0x7305689c9d790cba +152, 0xf122f8b1bef32970 +153, 0x9562887e38c32ba5 +154, 0xf9cd9be121b738d +155, 0x6238e0c398307913 +156, 0x5f2e79bb07c30f47 +157, 0x8ce8e45c465006e +158, 0x39281fe1e99e2441 +159, 0xafb10c2ca2874fea +160, 0x6e52f91633f83cf +161, 0x8ff12c1ac73c4494 +162, 0xe48608a09365af59 +163, 0xefd9bbc7e76e6a33 +164, 0xbe16a39d5c38ec92 +165, 0x6a6ffbcaf5a2330f +166, 0xdd5d6ac7d998d43d +167, 0x207bf978226d4f11 +168, 0xf8eec56bd2a0f62e +169, 0xa5bccf05dce0d975 +170, 0x93cf3ec1afe457a6 +171, 0x38651466d201f736 +172, 0x3ad21473985c9184 +173, 0xc6407a3bd38c92a6 +174, 0xb1ec42c7afa90a25 +175, 0xbdeca984df8b7dd3 +176, 0xb6926b1d00aa6c55 +177, 0x86141d0022352d49 +178, 0x169316256135ee09 +179, 0xffb1c7767af02a5c +180, 0x502af38ad19f5c91 +181, 0xfbf6cbc080086658 +182, 0x33cf9b219edae501 +183, 0x46e69bebd77b8862 +184, 0xf11e0cc91125d041 +185, 0xb4cd1649f85e078f +186, 0xb49be408db4e952 +187, 0xb0b8db46140cce3c +188, 0xba647f2174012be7 +189, 0x4f0a09e406970ac9 +190, 0xf868c7aec9890a5c +191, 0xde4c8fa7498ea090 +192, 0x872ceb197978c1d4 +193, 0x1eb5cd9c3269b258 +194, 0x3ea189f91724f014 +195, 0x41379656f7746f2c +196, 0x7bd18493aca60e51 +197, 0x5380c23b0cbbf15e +198, 0x920b72835f88246b +199, 0x24d7f734a4548b8e +200, 0x9944edb57e5aa145 +201, 0x4628e136ebb8afe1 +202, 0xb4ee6a776356e2a7 +203, 0x481cbe9744ccf7d7 +204, 0x7e8d67e8b0b995d9 +205, 0xeeacde100af7b47e +206, 0x103da08f2487dab7 +207, 0x6b9890a91d831459 +208, 0xd0c5beae37b572c7 +209, 0xfdccc371ee73fcc +210, 0x65438f0a367a2003 +211, 0x5d23b2c818a7e943 +212, 0x9a8ed45ac04b58b3 +213, 0xdaf3c3f1695dce10 +214, 0x5960eec706fa2bc0 +215, 0x98ca652facb80d40 +216, 0x72970ae5e2194143 +217, 0x18c6374d878c5c94 +218, 0x20fa51f997381900 +219, 0x3af253dba26d6e1d +220, 0x1b23d65db15c7f78 +221, 0x9f53ae976259b0e3 +222, 0x9a6addb28dc92d49 +223, 0x1e085c4accd0a7d7 +224, 0xe9d3f4cc9bad6ce5 +225, 0xe018fad78b5b1059 +226, 0x5ef7682232b4b95 +227, 0xb2242aa649f5de80 +228, 0x8f3e6d8dd99b9e4e +229, 0xb9be6cc22949d62a +230, 0xecbdc7beaa5ff1fe +231, 0xd388db43a855bdf0 +232, 0xd71ee3238852568d +233, 0x85ab3056304c04b5 +234, 0x2ed7ae7ad3cfc3cb +235, 0x781d1b03d40b6c48 +236, 0x7d3c740886657e6d +237, 0x982cfa6828daa6b0 +238, 0x278579599c529464 +239, 0x773adecfae9f0e08 +240, 0x63a243ea4b85c5d7 +241, 0x59940074fc3709e1 +242, 0xc914a2eed58a6363 +243, 0x2602b04274dd724c +244, 0xdf636eb7636c2c42 +245, 0x891a334d0d26c547 +246, 0xde8cd586d499e22d +247, 0x3ea1aa4d9b7035b6 +248, 0xd085cff6f9501523 +249, 0xe82a872f374959e +250, 0x55cb495bbd42cc53 +251, 0x5f42b3226e56ca97 +252, 0xea463f6f203493a3 +253, 0xeef3718e57731737 +254, 0x1bd4f9d62b7f9f3c +255, 0x19284f5e74817511 +256, 0xaf6e842c7450ca87 +257, 0x1d27d2b08a6b3600 +258, 0xfb4b912b396a52e3 +259, 0x30804d4c5c710121 +260, 0x4907e82564e36338 +261, 0x6441cf3b2900ddb7 +262, 0xd76de6f51988dc66 +263, 0x4f298ef96fd5e6d2 +264, 0x65432960c009f83d +265, 0x65ebed07e1d2e3df +266, 0xf83ee8078febca20 +267, 0x7bb18e9d74fc5b29 +268, 0x597b5fbc2261d91 +269, 0xea4f8ed0732b15b2 +270, 0xba2267f74f458268 +271, 0x3f304acabd746bbb +272, 0x7bd187af85659a82 +273, 0x88e20dbdb7a08ea3 +274, 0x2a2dc948c772fcb4 +275, 0x87784fec2993c867 +276, 0x89163933cd362d4e +277, 0xfd7b24f04302f957 +278, 0x9bdd544405dfb153 +279, 0xddee0fac58ffc611 +280, 0xa8e8993417e71ec1 +281, 0x55e0ab46ff7757af +282, 0x53e7645f08d3d7df +283, 0xbf78e563bc656ba2 +284, 0x1d162253b45ee2de +285, 0x15e2bfefedf29eb4 +286, 0x4e2a4584aa394702 +287, 0xa89fb12b01525897 +288, 0x825bd98f0544e4df +289, 0xfc6c50da6750700 +290, 0xc24aaabde7d28423 +291, 0x79d6f4660fcb19e5 +292, 0xee7d4fb40c8d659f +293, 0x70bc281b462e811d +294, 0x23ed4dc9636519a7 +295, 0xcb7c3f5a5711b935 +296, 0xe73090e0508c5d9d +297, 0xb25a331f375952a6 +298, 0xa64c86e0c04740f6 +299, 0xb8f3ffc8d56ac124 +300, 0x2479266fc5ee6b15 +301, 0x8d5792d27f5ffbcb +302, 0xb064298be946cd52 +303, 0xf0934a98912ffe26 +304, 0xbe805682c6634d98 +305, 0xe0e6e2c010012b4f +306, 0x58c47d475f75976 +307, 0x358c9a6e646b2b4a +308, 0x7e7c4ffca5b17ba7 +309, 0x43585c8c9a24a04c +310, 0x5154ddbcd68d5c2c +311, 0x4a2b062d3742a5e +312, 0xca5691191da2b946 +313, 0x696a542109457466 +314, 0x9eb5d658a5022ba5 +315, 0x8158cf6b599ab8dc +316, 0x1b95391eaa4af4a6 +317, 0x9953e79bd0fc3107 +318, 0x8639690086748123 +319, 0x2d35781c287c6842 +320, 0x393ef0001cd7bc8f +321, 0xe3a61be8c5f2c22a +322, 0x5e4ff21b847cc29b +323, 0x4c9c9389a370eb84 +324, 0xd43a25a8fc3635fa +325, 0xf6790e4a85385508 +326, 0x37edf0c81cb95e1d +327, 0x52db00d6e6e79af8 +328, 0x3b202bceeb7f096 +329, 0x2a164a1c776136bb +330, 0x73e03ee3fd80fd1b +331, 0xd2c58c0746b8d858 +332, 0x2ed2cb0038153d22 +333, 0x98996d0fc8ceeacc +334, 0xa4ed0589936b37f +335, 0x5f61cf41a6d2c172 +336, 0xa6d4afb538c110d7 +337, 0xe85834541baadf1a +338, 0x4c8967107fd49212 +339, 0x49bafb762ab1a8c1 +340, 0x45d540e2a834bf17 +341, 0x1c0ec8b4ed671dac +342, 0x3d503ce2c83fe883 +343, 0x437bfffd95f42022 +344, 0xc82d1e3d5c2bc8d2 +345, 0x7a0a9cbfcb0d3f24 +346, 0xc0a4f00251b7a3be +347, 0xb5be24e74bb6a1c6 +348, 0xa3104b94b57545b1 +349, 0x86de7d0c4b97b361 +350, 0x879c1483f26538a6 +351, 0xd74c87557f6accfb +352, 0x2f9be40dbf0fe8a1 +353, 0x445a93398f608d89 +354, 0x7b3cb8a7211d7fdc +355, 0xe86cc51290d031e7 +356, 0x33ef3594052ad79f +357, 0xc61911d241dbb590 +358, 0x37cccb0c0e3de461 +359, 0xb75259124080b48b +360, 0xd81e8961beb4abe5 +361, 0xf4542deb84a754e +362, 0x6ea036d00385f02e +363, 0xa7b60b0ac3b88681 +364, 0x108a6c36ca30baf5 +365, 0x4a2adc5bbfe2bf07 +366, 0x4079501f892a5342 +367, 0x55e113963c5448f0 +368, 0x8019ff4903b37242 +369, 0x109c6dcdb7ec6618 +370, 0x1239ac50944da450 +371, 0xe1399c7f94c651c1 +372, 0x5a6bbbae388d365a +373, 0x4d72be57b8810929 +374, 0x3f067df24384e1fb +375, 0x4f8b9e0f7f6c7be +376, 0x202492c342a3b08 +377, 0x250753192af93a3 +378, 0xfba1159d9de2cb8e +379, 0xba964497ab05505c +380, 0x1329ec5d8a709dca +381, 0x32927cacb6cd22bb +382, 0x6b4d7db904187d56 +383, 0xe76adccf8e841e02 +384, 0x8c4bf4b6a788202 +385, 0x3013a3b409831651 +386, 0x7427d125c475412f +387, 0x84dcc4bb2bf43202 +388, 0x117526f1101372a5 +389, 0xfe95d64b8984bd72 +390, 0x524e129934cc55c1 +391, 0xc3db4b0418c36d30 +392, 0xe1cb2047e9c19f7a +393, 0xea43d6c8d8982795 +394, 0xe80ac8a37df89ed +395, 0xfecc2104329ed306 +396, 0xa5c38aac9c1d51ea +397, 0x3abe5d1c01e4fe17 +398, 0x717a805d97fcc7ac +399, 0x94441f8207a1fb78 +400, 0x22d7869c5f002607 +401, 0x349e899f28c3a1b9 +402, 0x5639950cdea92b75 +403, 0x7e08450497c375b +404, 0x94bf898b475d211d +405, 0x75c761a402375104 +406, 0x1930920ec9d2a1e7 +407, 0xb774ba1bc6f6e4e2 +408, 0xf715602412e5d900 +409, 0x87bb995f4a13f0ba +410, 0xa3c787868dfa9c8d +411, 0xa17fd42a5a4f0987 +412, 0x4a9f7d435242b86 +413, 0x240364aff88f8aef +414, 0xe7cd4cf4bf39f144 +415, 0xd030f313ca4c2692 +416, 0xc46696f4e03ec1e9 +417, 0x22c60f1ec21060b3 +418, 0x16c88058fd68986f +419, 0x69ca448e8e6bde3f +420, 0x3466c2cdec218abd +421, 0x837ac4d05e6b117d +422, 0x911210e154690191 +423, 0x9ece851d6fa358b7 +424, 0x42f79cb0c45e7897 +425, 0xbf7583babd7c499b +426, 0x2059fe8031c6e0b9 +427, 0xabbec8fc00f7e51d +428, 0x88809d86a3a256e1 +429, 0xd36056df829fdcb5 +430, 0x515632b6cb914c64 +431, 0xba76d06c2558874 +432, 0x632c54ca4214d253 +433, 0xadec487adf2cb215 +434, 0x521e663e1940513d +435, 0xb1b638b548806694 +436, 0xbe2d5bfbe57d2c72 +437, 0x8b89e7719db02f7 +438, 0x90ba5281c1d56e63 +439, 0x899e1b92fceea102 +440, 0xf90d918e15182fa6 +441, 0x94a489ce96c948c4 +442, 0xad34db453517fcd4 +443, 0xc5264eb2de15930f +444, 0x101b4e6603a21cee +445, 0xef9b6258d6e85fff +446, 0x6075c7d6c048bd7a +447, 0x6f03232c64e438aa +448, 0x18c983d7105ee469 +449, 0x3ffc23f5c1375879 +450, 0xbc1b4a00afb1f9f +451, 0x5afa6b2bb8c6b46e +452, 0xe7fce4af2f2c152a +453, 0x5b00ab5c4b3982c7 +454, 0x2d4b0c9c0eb4bd0c +455, 0x61d926270642f1f2 +456, 0x7219c485c23a2377 +457, 0x7e471c752fecd895 +458, 0x23c4d30a4d17ba1f +459, 0x65cb277fe565ca22 +460, 0xcbb56ed9c701363b +461, 0xfd04ab3a6eba8282 +462, 0x19c9e5c8bab38500 +463, 0xea4c15227676b65b +464, 0x20f3412606c8da6f +465, 0xb06782d3bf61a239 +466, 0xf96e02d5276a9a31 +467, 0x835d256b42aa52a6 +468, 0x25b09151747f39c1 +469, 0x64507386e1103eda +470, 0x51cbc05716ef88e4 +471, 0x998cd9b7989e81cc +472, 0x9d7115416bec28d1 +473, 0xc992ca39de97906b +474, 0xd571e6f7ca598214 +475, 0xafc7fb6ccd9abbf8 +476, 0x88ef456febff7bf4 +477, 0xdbe87ccc55b157d2 +478, 0xaab95e405f8a4f6d +479, 0xad586a385e74af4f +480, 0x23cd15225c8485aa +481, 0x370940bf47900ac7 +482, 0xefd6afda1a4b0ead +483, 0x9cb1a4c90993dd7a +484, 0xff7893e8b2f70b11 +485, 0xb09e1807c0638e8e +486, 0xb10915dcb4978f74 +487, 0x88212ab0051a85eb +488, 0x7af41b76e1ec793f +489, 0x2e5c486406d3fefd +490, 0xebe54eff67f513cc +491, 0xab6c90d0876a79b8 +492, 0x224df82f93fe9089 +493, 0xc51c1ce053dc9cd2 +494, 0x5ef35a4d8a633ee7 +495, 0x4aca033459c2585f +496, 0xd066932c6eefb23d +497, 0x5309768aab9a7591 +498, 0xa2a3e33823df37f9 +499, 0xcec77ff6a359ee9 +500, 0x784dc62d999d3483 +501, 0x84e789fb8acc985d +502, 0xd590237e86aa60f +503, 0x737e2ffe1c8ad600 +504, 0xc019c3a39a99eab8 +505, 0x6a39e9836964c516 +506, 0xe0fe43129535d9da +507, 0xdfc5f603d639d4de +508, 0x7b9a7d048a9c03b6 +509, 0xbb5aa520faa27fdd +510, 0x2a09b4200f398fa2 +511, 0x38cc88107904064e +512, 0xa9a90d0b2d92bb25 +513, 0x9419762f87e987e3 +514, 0x1a52c525153dedcd +515, 0xc26d9973dd65ae99 +516, 0x8e89bd9d0dc6e6a1 +517, 0x2f30868dc01bfb53 +518, 0x20f09d99b46501c4 +519, 0x78b468a563b8f1e9 +520, 0xcccf34b0b6c380c7 +521, 0xf554e7dc815297e6 +522, 0x332a585cfb4a50ef +523, 0xa9fb64a2b6da41d7 +524, 0xdcd2a5a337391ce0 +525, 0x8a9bd3e324c6463d +526, 0x9f4487d725503bdd +527, 0xf72282d82f1d0ff +528, 0x308f4160abb72d42 +529, 0x648de1db3a601b08 +530, 0x36cab5192e7ebd39 +531, 0x7975fbe4ab6a1c66 +532, 0xd515b4d72243864e +533, 0x43a568f8b915e895 +534, 0x15fa9f2057bdb91d +535, 0x7a43858ef7a222dc +536, 0x17b4a9175ac074fe +537, 0xa932c833b8d0f8f8 +538, 0x1d2db93a9a587678 +539, 0x98abd1d146124d27 +540, 0xf0ab0431671740aa +541, 0xa9d182467540ad33 +542, 0x41c8a6cfc331b7fc +543, 0xa52c6bd0fcd1d228 +544, 0x2773c29a34dc6fa3 +545, 0x3098230746fc1f37 +546, 0xd63311bb4f23fabe +547, 0x6712bf530cd2faec +548, 0x342e8f342e42c4dd +549, 0xfbd83331851cdcad +550, 0xe903be1361bbc34d +551, 0xd94372e5077e3ef9 +552, 0x95aaa234f194bd8 +553, 0x20c0c8fb11e27538 +554, 0xfaf47dc90462b30b +555, 0x8ddc6d144147682a +556, 0xf626833fd926af55 +557, 0x5df93c34290d1793 +558, 0xb06a903e6e9fca5e +559, 0x10c792dc851d77ca +560, 0xd9b1b817b18e56cb +561, 0x3a81730c408eb408 +562, 0x65052c04a8d4b63c +563, 0x3328546598e33742 +564, 0xeca44a13f62d156d +565, 0x69f83d1d86b20170 +566, 0x937764200412027d +567, 0xc57eb1b58df0f191 +568, 0xa1c7d67dce81bc41 +569, 0x8e709c59a6a579ce +570, 0x776a2f5155d46c70 +571, 0xd92906fbbc373aa5 +572, 0xe97ad478a2a98bf6 +573, 0xc296c8819ac815f +574, 0x613ede67ba70e93e +575, 0xe145222498f99cde +576, 0xafcdfa7a3c1cf9bf +577, 0x1c89252176db670d +578, 0xad245eda5c0865ff +579, 0x249463d3053eb917 +580, 0xc9be16d337517c0b +581, 0xefcc82bf67b8f731 +582, 0x1e01577d029e0d00 +583, 0xad9c24b2a4f3d418 +584, 0xed2cceb510db4d0f +585, 0xbddadcdb92400c70 +586, 0x67d6b0476ef82186 +587, 0xbc7662ff7bf19f73 +588, 0x9d94452a729e6e92 +589, 0x6b278d8594f55428 +590, 0x6c4b31cceb1b2109 +591, 0xccc6c3a726701e9 +592, 0x6bc28ece07df8925 +593, 0xc0422b7bf150ccc4 +594, 0xab7158f044e73479 +595, 0xdf3347546d9ed83f +596, 0x3b3235a02c70dff4 +597, 0x2551c49c14ea8d77 +598, 0xee2f7f5bb3cc228e +599, 0x39b87bfe8c882d39 +600, 0x7dd420fad380b51c +601, 0xffe64976af093f96 +602, 0x4a4f48dc6e7eaa5f +603, 0x85f2514d32fdc8cc +604, 0x1ab1215fd7f94801 +605, 0x4cd1200fc795b774 +606, 0xcf8af463a38942ee +607, 0x319caa7ce3022721 +608, 0x8cd9798a76d1aea4 +609, 0x2bd3933ac7afd34e +610, 0x85d4c323403cf811 +611, 0xd7b956d3064efa30 +612, 0x67a078dbf1f13068 +613, 0x665fa6c83e87c290 +614, 0x9333ac2416d2469b +615, 0xdfb1fd21a0094977 +616, 0xa1962a6e2c25f8ff +617, 0x1f3b10a7ed5287cf +618, 0x70641efb3d362713 +619, 0xe527a2cf85d00918 +620, 0x9741e45d3f9890a3 +621, 0x6cb74b5d4d36db4b +622, 0xf24734d622bd2209 +623, 0xadd6d94f78e9d378 +624, 0xc3bbdb59225cca7f +625, 0x5ad36614275b30cd +626, 0x495568dd74eea434 +627, 0xf35de47e0ffe1f2d +628, 0xefa209dca719ab18 +629, 0x844ddcaeb5b99ae8 +630, 0x37449670a1dc7b19 +631, 0x5a4612c166f845c1 +632, 0xe70f7782f2087947 +633, 0x98d484deac365721 +634, 0x705302198cf52457 +635, 0x7135ae0f5b77df41 +636, 0x342ac6e44a9b6fc3 +637, 0x2713fd2a59af5826 +638, 0x6e1a3f90f84efa75 +639, 0x9fb3b4dd446ca040 +640, 0x530044ae91e6bd49 +641, 0xe984c4183974dc3e +642, 0x40c1fa961997d066 +643, 0xb7868250d8c21559 +644, 0x8bc929fa085fd1de +645, 0x7bdb63288dc8733e +646, 0xac4faad24326a468 +647, 0x1c6e799833aea0b1 +648, 0xcc8a749e94f20f36 +649, 0x4e7abfd0443547c5 +650, 0xb661c73bb8caa358 +651, 0x4a800f5728ff2351 +652, 0x8c15e15189b9f7ed +653, 0xab367846b811362c +654, 0x4ba7508f0851ca2a +655, 0xe9af891acbafc356 +656, 0xbdebe183989601f8 +657, 0x4c665ea496afc061 +658, 0x3ca1d14a5f2ed7c +659, 0xfbdff10a1027dd21 +660, 0xdfd28f77c8cff968 +661, 0xc4fbaadf8a3e9c77 +662, 0xdac7e448b218c589 +663, 0xb26390b5befd19e2 +664, 0xd2ef14916c66dba9 +665, 0xfab600284b0ff86b +666, 0xf04a1c229b58dabb +667, 0xc21c45637e452476 +668, 0xd1435966f75e0791 +669, 0xc1f28522eda4a2d0 +670, 0x52332ae8f1222185 +671, 0x81c6c0790c0bf47e +672, 0xfebd215e7d8ffb86 +673, 0x68c5dce55dbe962b +674, 0x231d09cb0d2531d1 +675, 0x3218fba199dbbc6b +676, 0x8f23c535f8ea0bf6 +677, 0x6c228963e1df8bd9 +678, 0x9843c7722ed153e3 +679, 0xd032d99e419bddec +680, 0xe2dca88aa7814cab +681, 0x4d53fb8c6a59cdc2 +682, 0x8fb3abc46157b68b +683, 0xa3e733087e09b8e +684, 0x6bdc1aee029d6b96 +685, 0x4089667a8906d65b +686, 0x8f3026a52d39dd03 +687, 0x6d2e0ccb567bae84 +688, 0x74bad450199e464 +689, 0xf114fb68a8f300d5 +690, 0xc7a5cc7b374c7d10 +691, 0xf0e93da639b279d1 +692, 0xb9943841ad493166 +693, 0x77a69290455a3664 +694, 0x41530da2ebea054b +695, 0xe8f9fab03ea24abf +696, 0xaa931f0c9f55a57a +697, 0xb4d68a75d56f97ae +698, 0x3d58ff898b6ba297 +699, 0x49d81e08faf5a3f5 +700, 0xfc5207b9f3697f3b +701, 0xa25911abb3cf19b7 +702, 0x6b8908eb67c3a41 +703, 0xd63ef402e2e3fa33 +704, 0x728e75d3f33b14c5 +705, 0x248cb1b8bc6f379a +706, 0x3aa3d6d2b8c72996 +707, 0x49cc50bd2d3d2860 +708, 0xb4e1387647c72075 +709, 0x435a1630a4a81ed3 +710, 0xa5ea13005d2460cf +711, 0xc7a613df37d159ec +712, 0x95721ccc218b857e +713, 0xd4b70d8c86b124d3 +714, 0x2b82bcc4b612d494 +715, 0xaf13062885276050 +716, 0xcbd8fcf571a33d9c +717, 0x3f7f67ca1125fc15 +718, 0xddf4bb45aac81b4c +719, 0x23606da62de9c040 +720, 0xa3a172375666b636 +721, 0x292f87387a6c6c3c +722, 0xd1d10d00c5496fe1 +723, 0x86b0411ce8a25550 +724, 0x38e0487872e33976 +725, 0x363e49f88ddfd42c +726, 0x45bdf1e9f6b66b0a +727, 0x8a6fff3de394f9b5 +728, 0x8502158bb03f6209 +729, 0x22e24d16dba42907 +730, 0x3fe3ba427cc2b779 +731, 0x77144793f66b3d7e +732, 0xcf8912ccb29b8af9 +733, 0xdc856caff2abd670 +734, 0xe6d3ae0b0d9d4c8b +735, 0xb8f5d40e454c539f +736, 0x79ca953114fbc6b7 +737, 0x478d6f4bbfa38837 +738, 0x9babae1a3ffdc340 +739, 0x40edd56802bae613 +740, 0x97a56c2dcccf0641 +741, 0xafc250257f027f8e +742, 0x8da41ef1edf69125 +743, 0x6574b0280ff9d309 +744, 0x197c776151b8f820 +745, 0x6b03e077c9dac3b6 +746, 0x24a40ebbc5c341c5 +747, 0x50e585169a6a1c4b +748, 0x37783a5a6a3e4e02 +749, 0xb3de81ee6fbad647 +750, 0xf4f292f57ca4591e +751, 0x6214e9e7d44d30a +752, 0x5920190c56d21c12 +753, 0x9ac163419b5e0c9b +754, 0xfc2328761ae8ed93 +755, 0xc68f945b545508c6 +756, 0x687c49a17ce0a5e2 +757, 0x276d8f53d30d4ab4 +758, 0x8201804970343ce1 +759, 0x1b5d323cc2e7fb7e +760, 0x6f351ef04fd904b +761, 0x6c793a7d455d5198 +762, 0x46f5d108430ae91f +763, 0xac16a15b2a0cf77f +764, 0xa0d479d9e4122b9d +765, 0x3afd94604307f19 +766, 0x2573ed6d39d38dbf +767, 0xa58e14ba60b4294b +768, 0xe69c1aed5840d156 +769, 0x4cf6fda7f04855c2 +770, 0x2fb65a56ef5f22da +771, 0xf95819434d5dc220 +772, 0x29c65133623dafba +773, 0x8e997bd018467523 +774, 0xfd08ba9d498461a7 +775, 0xdd52243bc78a5592 +776, 0x39c30108f6db88b3 +777, 0x38af8e1894f259b9 +778, 0x97eedf3b4ae5f6de +779, 0x757825add80c5ece +780, 0xf0fdd90ac14edb14 +781, 0xbbb19d4cc8cac6d4 +782, 0x9a82234edfae05e3 +783, 0x704401c61d1edf1c +784, 0x8b0eb481fb3a1fb2 +785, 0xef6f36e7cc06c002 +786, 0x7a208b17e04b8cd7 +787, 0xf20e33d498838fe9 +788, 0xc2bdb22117058326 +789, 0x6ec31939eb4ca543 +790, 0x6f1654838f507a21 +791, 0xc65ab81a955d2b93 +792, 0x40b1420fdd9531b8 +793, 0xe31f221cab9f4f40 +794, 0x798cdd414c1deb7a +795, 0x9c84e9c7d41cd983 +796, 0x63d6b1ae3b60b7fa +797, 0xb42bfdd1a2f78ffa +798, 0x37e431eaccaaa8e9 +799, 0x7508142a0f73eac9 +800, 0x91662a023df5893a +801, 0x59782070e2fe3031 +802, 0xb2acd589a8ce7961 +803, 0xa224743fa877b292 +804, 0xaa5362aa27e6ed9e +805, 0xa394a4e520c0c1c7 +806, 0xe49b16d2018ffb6f +807, 0xb8074b9f2f1e762b +808, 0xcf5f86143d5c23a7 +809, 0xfd838785db987087 +810, 0x31b1889df389aff8 +811, 0x30aaca876a4383b +812, 0x1731bb71c4c38d4f +813, 0x9a83a65395e05458 +814, 0x99cd0c8d67c8f4fc +815, 0xfbd9fdc849b761a5 +816, 0x82c04834fc466889 +817, 0xdeef9d6e715e8c97 +818, 0x549c281c16da6078 +819, 0x2d70661254ad599d +820, 0x57995793a72acac +821, 0xf1727005116183ba +822, 0xa22bb38945285de3 +823, 0x4f2d687fe45131ff +824, 0x5666c87ddbbc981f +825, 0xbcb4b2d4e7a517d0 +826, 0x5e794dd2e20b785d +827, 0x449ad020149e093c +828, 0x7704ee0412d106f5 +829, 0x83cbdf257b072ac1 +830, 0xae5c4fc9f638b0da +831, 0x7b9e5a64e372ed47 +832, 0x7eddbbb22c2cdf57 +833, 0x3f19ebfa155b08e +834, 0x91d991154dfd7177 +835, 0x611ae74b952d387f +836, 0x3fdf7a335bda36ee +837, 0xdf182433fc7a7c05 +838, 0x62c78598d1f8db0a +839, 0xc3750c69d2c5c1f0 +840, 0xf1318024709efdee +841, 0xaa3fd360d224dc29 +842, 0x62af53b2f307c19 +843, 0xdf527683c58120c2 +844, 0x3281deecc496f93d +845, 0x4f704ad31527ef08 +846, 0x127a14a5e07cfdfc +847, 0x90d0b1f549255c92 +848, 0xbc3406b212c5e1fc +849, 0x4e89f39379dba91d +850, 0x1290ef43c4998e6e +851, 0xecfeb1a1cb1c6e1b +852, 0x2067e90403003bf1 +853, 0x38ae04be30bdbeba +854, 0x8a3537f298baedda +855, 0xd07f3b825cdb2936 +856, 0xea020b5aebae8b45 +857, 0xfcd614ab031132b0 +858, 0x5fb682a4ff2268f5 +859, 0xd1c4662ce65596f4 +860, 0x7026b8270dd0b8dc +861, 0x8101ec4b4beae45a +862, 0xa0e9dc87940610a6 +863, 0x83ec33679d83165b +864, 0x981847ca82e86d41 +865, 0xda84c188a304a0b7 +866, 0x3c37529c5a5bbbb8 +867, 0x34a8491ce3e19a5a +868, 0xd36ad716a2fa6cb8 +869, 0xfd1d1d6a5189a15c +870, 0x9716eb47851e8d8d +871, 0x7dfb13ea3b15c5aa +872, 0xbdf6e707f45113a5 +873, 0xb8118261b04bd097 +874, 0x6191f9895881bec6 +875, 0x7aac257ae11acf9b +876, 0x35a491e1537ff120 +877, 0xe078943432efa71c +878, 0xb3338485dd3dc2b9 +879, 0x456060975d2bb3b5 +880, 0xaddc4c451bdfc44c +881, 0x18bfa7beacf96430 +882, 0x8802ebcaf0f67498 +883, 0xad922a5a825bd780 +884, 0x9fb4587d748f4efa +885, 0xdb2a445136cd5e7 +886, 0xb98b3676ea8e96ac +887, 0xb02d8d244d784878 +888, 0xa1a8442b18860abb +889, 0x6a3029ba1361e5d1 +890, 0xf426d5fac161eb1 +891, 0xfa5ac2b87acecb23 +892, 0xaa659896e50535df +893, 0xf40dd7a3d3c5c8ed +894, 0x3f8367abecb705bc +895, 0x2d60e7525873358f +896, 0xc4a9d3948a0c3937 +897, 0x5ecc04fef6003909 +898, 0x7a865004918cba2 +899, 0x47ae110a678ec10b +900, 0xa0f02f629d91aa67 +901, 0x4848b99e7fac9347 +902, 0xaa858346d63b80ac +903, 0xeb5bf42ee161eeef +904, 0x4d35d723d3c6ba37 +905, 0xdf22ca6ca93b64a7 +906, 0x9d198520f97b25b1 +907, 0x3068415350778efe +908, 0xf3709f2e8793c2fe +909, 0xd1517bac8dd9f16f +910, 0xfb99bccaa15861dc +911, 0xa9ad607d796a2521 +912, 0x55d3793d36bd22e4 +913, 0xf99270d891ff7401 +914, 0x401750a5c4aa8238 +915, 0xd84b3003e6f28309 +916, 0x8a23798b5fa7c98b +917, 0xadd58bbc8f43e399 +918, 0xbd8c741ada62c6a8 +919, 0xbdc6937bc55b49fa +920, 0x4aefa82201b8502 +921, 0x17adf29a717b303 +922, 0xa6ed2197be168f6c +923, 0x1ba47543f4359a95 +924, 0xe34299949ac01ae9 +925, 0x711c76cffc9b62f3 +926, 0xbac259895508a4b7 +927, 0x3c8b3b3626b0d900 +928, 0x1a8d23fbe2ae71bf +929, 0xca984fa3b5a5c3a1 +930, 0xb1986ab7521a9c93 +931, 0xd6b5b2c8d47a75b5 +932, 0xc7f1c4a88afb4957 +933, 0xdeb58033a3acd6cc +934, 0xabe49ddfe1167e67 +935, 0x8d559c10205c06e3 +936, 0xea07a1a7de67a651 +937, 0xcbef60db15b6fef8 +938, 0xbfca142cff280e7 +939, 0x362693eba0732221 +940, 0x7463237e134db103 +941, 0x45574ddb5035e17a +942, 0xfc65e0cb9b94a1aa +943, 0x3154c55f1d86b36d +944, 0x2d93a96dd6ab2d8b +945, 0xbe3bc1d1f2542a25 +946, 0xdd4b541f7385bdaa +947, 0x3b56b919d914e3f8 +948, 0x82fd51468a21895f +949, 0x8988cf120731b916 +950, 0xa06a61db5fb93e32 +951, 0x6ed66c1b36f68623 +952, 0x875ae844d2f01c59 +953, 0x17ccd7ac912e5925 +954, 0x12fe2a66b8e40cb1 +955, 0xf843e5e3923ad791 +956, 0xa17560f2fd4ef48 +957, 0x27a2968191a8ee07 +958, 0xa9aab4d22ff44a3c +959, 0x63cd0dcc3bb083ae +960, 0x7a30b48c6160bf85 +961, 0x956160fb572503b3 +962, 0xc47f6b7546640257 +963, 0xaf4b625f7f49153 +964, 0x2f5c86a790e0c7e8 +965, 0xb52e0610ae07f0b8 +966, 0x38a589292c3d849e +967, 0xc3e9ef655d30b4ef +968, 0xb5695f765cda998a +969, 0xde5d5e692a028e91 +970, 0x839476721555f72e +971, 0x48b20679b17d9ebf +972, 0xe3d4c6b2c26fb0df +973, 0xce5a9834f0b4e71f +974, 0x533abb253d5d420e +975, 0x9eac5ad9aed34627 +976, 0xc0f2a01ab3c90dbb +977, 0x6528eda93f6a066c +978, 0xc16a1b625e467ade +979, 0x1a4a320fb5e8b098 +980, 0x8819cccd8b4ab32f +981, 0x42daa88531fd0bfd +982, 0xcf732226409be17c +983, 0xfddcdb25ccbf378c +984, 0x9b15b603bf589fc1 +985, 0x2436066b95d366fe +986, 0x8d42eff2e9cbda90 +987, 0x694b2fc8a4e8303c +988, 0x8e207f98aaea3ccd +989, 0x4730d7a620f822d9 +990, 0x468dc9ca30fe2fd4 +991, 0x74b36d8a1c0f031b +992, 0x3c1aac1c488c1a94 +993, 0x19d0101042444585 +994, 0x8ec50c56d0c8adf4 +995, 0x721ec629e4d66394 +996, 0x3ca5ad93abeac4a4 +997, 0xaaebc76e71592623 +998, 0x969cc319e3ed6058 +999, 0xc0a277e3b2bfc3de diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/data/philox-testset-1.csv b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/philox-testset-1.csv new file mode 100644 index 0000000..e448cbf --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/philox-testset-1.csv @@ -0,0 +1,1001 @@ +seed, 0xdeadbeaf +0, 0xedc95200e2bd66a5 +1, 0x581d4e43b7682352 +2, 0x4be7278f5e373eab +3, 0xee47f17991a9e7ea +4, 0x38a7d2ae422f2e2c +5, 0xe2a6730a3b4a8a15 +6, 0x1588b7a841486442 +7, 0x13ad777246700504 +8, 0x14d157e0f5e18204 +9, 0xd87c22a7ee8c13f1 +10, 0x30cc389ce3542ba1 +11, 0xb8a53348955bb2e9 +12, 0xc08802e3c454f74f +13, 0xb444f627671a5780 +14, 0x4b6dd42b29cbf567 +15, 0x6109c7dc0bc5f7d5 +16, 0x85c954715d6b5b1e +17, 0x646178d3d9a3a5d5 +18, 0xebbde42b1cd83465 +19, 0x3d015102f6bc9c1a +20, 0x720fe2ec3798d5fd +21, 0x93120961289ceb2e +22, 0xc9207e960a56fae2 +23, 0xa7f042f31d991b98 +24, 0x5fac117415fae74b +25, 0xd0a970ba8dddc287 +26, 0x84b4e7e51b43106 +27, 0x6ad02bf525ea265f +28, 0xcdc7e5992b36ef8f +29, 0x44d4985209261d60 +30, 0x628c02d50f4b902e +31, 0xc7b1914922d1e76d +32, 0xfde99ff895cba51d +33, 0x175a0be050fa985f +34, 0x47297d3699e03228 +35, 0xccf1e9aeaa3339cd +36, 0x9fdd18ebeeaf15b1 +37, 0x7c94c9ab68747011 +38, 0x612d8ef22c1fa80f +39, 0x13f52b860de89ab5 +40, 0x81f264b8c139c43b +41, 0x8d017ba4ef1e85ba +42, 0x6d0556f46219951e +43, 0x8ee7b85663cf67b6 +44, 0x2432fc707645fe67 +45, 0xaf814046051e5941 +46, 0x4d432a83739ac76f +47, 0x59e5060d0983ccdd +48, 0xdd20e828b83d9b53 +49, 0x1b891800d7385f4c +50, 0x10e86a026c52ff5e +51, 0xb932f11723f7b90c +52, 0xb2413d0a1f3582d0 +53, 0xe7cd4edda65fc6b5 +54, 0x6d3808848d56593b +55, 0x192a727c3c7f47d9 +56, 0x9659d8aea5db8c16 +57, 0x4242c79fe2c77c16 +58, 0x605f90c913827cea +59, 0x53e153c8bfc2138a +60, 0xed2158fbdef5910e +61, 0xae9e6e29d4cb5060 +62, 0x7dd51afaad3b11ce +63, 0x2b9ba533d01a5453 +64, 0x7e0e9cf2b6c72c8 +65, 0x1cc8b3c7747ed147 +66, 0x9b102651e2e11b48 +67, 0x30b0b53cbaac33ea +68, 0x70c28aec39b99b85 +69, 0x5f1417ff536fdb75 +70, 0x3a1d91abd53acf58 +71, 0xba116a1772168259 +72, 0xf5369bc9bd284151 +73, 0x67bf11373bf183ca +74, 0xef0b2d44dbd33dc7 +75, 0xbfd567ee1a2953ed +76, 0x7d373f2579b5e5c6 +77, 0x756eeae7bcdd99be +78, 0x75f16eb9faa56f3b +79, 0x96d55ded2b54b9a5 +80, 0x94495191db692c24 +81, 0x32358bdd56bab38c +82, 0x3f6b64078576579 +83, 0x7177e7948bc064c9 +84, 0x2cbf23f09ba9bc91 +85, 0x9b97cc31c26645f5 +86, 0x5af2d239ff9028b1 +87, 0x316fa920e0332abe +88, 0x46535b7d1cae10a0 +89, 0x21f0a6869298022c +90, 0xf395c623b12deb14 +91, 0x8573995180675aa7 +92, 0xc3076509f4dc42d5 +93, 0x15e11e49760c6066 +94, 0xe8a6d311e67a021d +95, 0x7482f389c883339b +96, 0xda6f881573cba403 +97, 0xb110ffb847e42f07 +98, 0x2c3393140605ccf9 +99, 0xba1c8ba37d8bdc33 +100, 0x59adf43db7a86fe0 +101, 0xb4fcbf6aa585ca85 +102, 0xd794a93c18033fa6 +103, 0x6e839c01985f9d4 +104, 0x64065bf28222b2c7 +105, 0x6a6359b293fa0640 +106, 0x5ff610969e383e44 +107, 0xa8172c263f05c7f7 +108, 0x62a0172e8bd75d07 +109, 0x7be66e3c453b65ac +110, 0x6a3b8d5a14014292 +111, 0xa2583e6087450020 +112, 0xd5d3ecc480c627d2 +113, 0xa24e83f1eec8a27c +114, 0xa23febd2a99ee75a +115, 0x9a5fbf91c7310366 +116, 0x5b63156932e039b +117, 0x942af3c569908505 +118, 0x89a850f71ab6a912 +119, 0xfeadc803ac132fe9 +120, 0x67bf60e758250f3 +121, 0x533c25103466a697 +122, 0xb7deede3482f9769 +123, 0x325e043b53bba915 +124, 0x9e8d9e7fde132006 +125, 0x6bacc6860bbc436e +126, 0xb3ea0534c42b1c53 +127, 0xb2389334db583172 +128, 0xa74b1bfbf5242ee4 +129, 0x53a487e2dc51d15c +130, 0xe5a3b538d2c7a82e +131, 0x7b6c70bb0c4cadaf +132, 0xae20791b2081df1 +133, 0xc685c12e3c61d32c +134, 0x60110e6b0286e882 +135, 0x49682119c774045c +136, 0x53dc11a3bbd072e +137, 0xbdc87c6e732d9c2d +138, 0xcc4620861ebac8fd +139, 0x7e9c3558759350cc +140, 0x157408dee34891ba +141, 0x9bcad1855b80651b +142, 0xd81b29141d636908 +143, 0x1ed041a9f319c69d +144, 0x805b2f541208b490 +145, 0x484ef3bba2eb7c66 +146, 0xb6b5e37d50a99691 +147, 0xabc26a7d9e97e85f +148, 0xcba2a3cce0417c2f +149, 0xa030dfffd701993c +150, 0x2bf2dc50582ebf33 +151, 0xd9df13dd3eb9993e +152, 0x31ca28b757232ae5 +153, 0x614562a0ccf37263 +154, 0x44d635b01725afbb +155, 0x5ae230bc9ca9cd +156, 0xb23a124eb98705c6 +157, 0x6395675444981b11 +158, 0xd97314c34119f9ca +159, 0x9de61048327dd980 +160, 0x16bac6bded819707 +161, 0xcea3700e3e84b8c7 +162, 0xaa96955e2ee9c408 +163, 0x95361dcc93b5bc99 +164, 0x306921aed3713287 +165, 0x4df87f3130cd302a +166, 0x37c451daeb6a4af5 +167, 0x8dbbe35f911d5cc1 +168, 0x518157ce61cb10f9 +169, 0x669f577aebc7b35b +170, 0x4b0a5824a8786040 +171, 0x519bc3528de379f5 +172, 0x6128012516b54e02 +173, 0x98e4f165e5e6a6dd +174, 0x6404d03618a9b882 +175, 0x15b6aeb3d9cd8dc5 +176, 0x87ed2c1bae83c35b +177, 0x8377fc0252d41278 +178, 0x843f89d257a9ba02 +179, 0xcdda696ea95d0180 +180, 0xcfc4b23a50a89def +181, 0xf37fd270d5e29902 +182, 0xafe14418f76b7efa +183, 0xf984b81577076842 +184, 0xe8c60649ccb5458d +185, 0x3b7be8e50f8ff27b +186, 0xaa7506f25cef1464 +187, 0x5e513da59f106688 +188, 0x3c585e1f21a90d91 +189, 0x1df0e2075af292a +190, 0x29fdd36d4f72795f +191, 0xb162fe6c24cb4741 +192, 0x45073a8c02bd12c4 +193, 0xcbaaa395c2106f34 +194, 0x5db3c4c6011bc21c +195, 0x1b02aac4f752e377 +196, 0xa2dfb583eb7bec5 +197, 0xfe1d728805d34bb1 +198, 0xf647fb78bb4601ec +199, 0xd17be06f0d1f51ef +200, 0x39ec97c26e3d18a0 +201, 0xb7117c6037e142c8 +202, 0xe3a6ce6e6c71a028 +203, 0xe70a265e5db90bb2 +204, 0x24da4480530def1e +205, 0xfd82b28ce11d9a90 +206, 0x5bf61ead55074a1d +207, 0xbe9899c61dec480d +208, 0xae7d66d21e51ec9e +209, 0x384ee62c26a08419 +210, 0x6648dccb7c2f4abf +211, 0xc72aa0c2c708bdc9 +212, 0x205c5946b2b5ba71 +213, 0xd4d8d0b01890a812 +214, 0x56f185493625378d +215, 0x92f8072c81d39bd0 +216, 0xa60b3ceecb3e4979 +217, 0xfcf41d88b63b5896 +218, 0xf5a49aa845c14003 +219, 0xffcc7e99eee1e705 +220, 0xdd98312a7a43b32d +221, 0xa6339bd7730b004 +222, 0xdac7874ba7e30386 +223, 0xadf6f0b0d321c8 +224, 0x126a173ae4ffa39f +225, 0x5c854b137385c1e7 +226, 0x8173d471b1e69c00 +227, 0x23fa34de43581e27 +228, 0x343b373aef4507b1 +229, 0xa482d262b4ea919c +230, 0xf7fbef1b6f7fbba +231, 0xd8ce559487976613 +232, 0xbf3c8dd1e6ebc654 +233, 0xda41ed375451e988 +234, 0xf54906371fd4b9b3 +235, 0x5b6bb41231a04230 +236, 0x866d816482b29c17 +237, 0x11315b96941f27dc +238, 0xff95c79205c47d50 +239, 0x19c4fff96fbdac98 +240, 0xbfb1ae6e4131d0f4 +241, 0x9d20923f3cdb82c9 +242, 0x282175507c865dff +243, 0xdfd5e58a40fe29be +244, 0xedbd906ff40c8e4f +245, 0x11b04fc82614ccb3 +246, 0xeceb8afda76ae49f +247, 0xa4856913847c2cdf +248, 0x6f1425f15a627f2a +249, 0xdf144ffedf60349e +250, 0x392d7ecfd77cc65f +251, 0x72b8e2531049b2c6 +252, 0x5a7eb2bdb0ec9529 +253, 0xdcfd4306443e78c1 +254, 0x89ad67ed86cd7583 +255, 0x276b06c0779a6c8f +256, 0xb2dbb723196a0ac3 +257, 0x66c86a3b65906016 +258, 0x938348768a730b47 +259, 0x5f5282de938d1a96 +260, 0xa4d4588c4b473b1f +261, 0x8daed5962be4796f +262, 0x9dde8d796985a56e +263, 0x46be06dbd9ed9543 +264, 0xdf98286ceb9c5955 +265, 0xa1da1f52d7a7ca2b +266, 0x5a7f1449f24bbd62 +267, 0x3aedc4e324e525fd +268, 0xced62464cd0154e1 +269, 0x148fc035e7d88ce3 +270, 0x82f8878948f40d4c +271, 0x4c04d9cdd6135c17 +272, 0xdf046948d86b3b93 +273, 0x2f0dec84f403fe40 +274, 0xa61954fb71e63c0d +275, 0x616d8496f00382e8 +276, 0x162c622472746e27 +277, 0x43bcfe48731d2ceb +278, 0xff22432f9ff16d85 +279, 0xc033ed32bb0ad5a4 +280, 0x5d3717cc91c0ce09 +281, 0x7a39a4852d251075 +282, 0x61cd73d71d6e6a6 +283, 0xe37e2ea4783ab1a5 +284, 0x60e1882162579ea8 +285, 0x9258ec33f1a88e00 +286, 0x24b32acf029f0407 +287, 0x1410fc9aea6d3fac +288, 0x6054cf2a3c71d8f7 +289, 0x82f7605157a66183 +290, 0x3b34c1c0dff9eac5 +291, 0xfebe01b6d5c61819 +292, 0x7372187c68b777f2 +293, 0xc6923812cda479f0 +294, 0x386613be41b45156 +295, 0x92cfebe8cc4014b +296, 0x8e13c4595849828b +297, 0x90e47390d412291f +298, 0x6b21a1d93d285138 +299, 0xbf5b1f5922f04b12 +300, 0x21e65d1643b3cb69 +301, 0xf7683b131948ac3c +302, 0xe5d99fc926196ed2 +303, 0x7b138debbec90116 +304, 0x8a2650a75c2c2a5c +305, 0x20689a768f9b347b +306, 0xdfa2900cfb72dc6e +307, 0x98959c3855611cc2 +308, 0x5fdb71b89596cc7c +309, 0x1c14ac5c49568c7b +310, 0x958c4293016091fe +311, 0x7484522eb0087243 +312, 0xc4018dfb34fc190f +313, 0xca638567e9888860 +314, 0x102cd4805f0c0e89 +315, 0xcc3bc438e04548f8 +316, 0xb808944bb56ea5be +317, 0xffd4778dbf945c57 +318, 0xfe42617784c0233b +319, 0x3eccbfeae9b42d3c +320, 0xd9f1b585fd0bfa60 +321, 0x5c063d1b2705d5dd +322, 0x8e8bec3519941b64 +323, 0x9e94c36cbec2a42 +324, 0x1cd19f5b64ffd3ad +325, 0x9632e3aebfc68e66 +326, 0x98960c2d9da4ae45 +327, 0xb76994b1f2bbfc1f +328, 0xca184a737d3971cc +329, 0x964d31b07183adfb +330, 0xe9e0ff351cd276d4 +331, 0xb5747c860b05bbe4 +332, 0x5549ddc3bd3862e2 +333, 0x495496677b27873b +334, 0x53910baa26e3ea18 +335, 0xaa07a07ad0a688d3 +336, 0xbb43bd1f09ecdb1e +337, 0xe2ebc105699dd84 +338, 0x6e815a2729584035 +339, 0x2caab1713b17948a +340, 0x43d39d209fa41c90 +341, 0xfe3e71089d5d1c3a +342, 0xa778646c32f81177 +343, 0x8d42bfb86e6e92d5 +344, 0x175571f70b4fcfbe +345, 0x2a66a6fe10dc3b5b +346, 0xd9545e85235ca709 +347, 0x5642781c77ced48a +348, 0x24facc40b72ccd09 +349, 0xa800fbacce33f6f8 +350, 0x675f58a0ff19fba +351, 0x35aedf57bb5cde1b +352, 0xe5535a6b63f6d068 +353, 0x84dffd0102aaa85d +354, 0x621faad65467aaa7 +355, 0x596ad85b556b112f +356, 0x837545fff8894c7a +357, 0x3d9a4ae1356bc6a6 +358, 0xcd8b7153205d4ad0 +359, 0x98afdd40f1ed09a6 +360, 0xa38b2dc55a5cf87f +361, 0x484aecce2b6838bc +362, 0x6af05c26bdab18d9 +363, 0xf418b7399dcf2e4b +364, 0x1cfa38789b0d2445 +365, 0xfbed23c34166ee67 +366, 0x38e6820039e4912a +367, 0x1fe94911e963591e +368, 0x1291c79aee29ad70 +369, 0x65eccfc89506f963 +370, 0x7d14de3b2f55b1f6 +371, 0x82eb79c36cd2a739 +372, 0x41ffe3b75ea0def5 +373, 0x9eba9156470a51d9 +374, 0xd17c00b981db37d1 +375, 0xf688769a75601aa7 +376, 0xbcf738e9e03d571e +377, 0x14712e56df8f919b +378, 0xab14e227d156e310 +379, 0xf53d193e993e351e +380, 0x857fae46bd312141 +381, 0xc2dd71e41b639966 +382, 0x74f8b987a3d00ad1 +383, 0x5bce8526dc527981 +384, 0x94910926c172a379 +385, 0x503c45557688a9d5 +386, 0x244d03834e05807f +387, 0x6e014cbab9c7a31f +388, 0xae544c638530facf +389, 0x9b853aaaf9cbc22d +390, 0xfb42ab7024d060ed +391, 0x74cc3fba0dfd7ff2 +392, 0x24ec9e8f62144ad5 +393, 0x72f082954307bbe7 +394, 0x36feda21bbf67577 +395, 0x3222191611b832f1 +396, 0xd0584e81bcac8b0b +397, 0xdce8d793ef75e771 +398, 0x978824c6c2578fc +399, 0x6e8f77503b3c2ee4 +400, 0xc85d2d86fecf5d03 +401, 0x3d35b4a5d4d723c4 +402, 0xd3987dfd4727fff3 +403, 0xd3cde63fb6a31add +404, 0xf6699e86165bdaeb +405, 0x9d60ba158ec364c4 +406, 0x920c3c18b346bfc9 +407, 0x770fd1fdfbc236ca +408, 0x45998cfc5fc12ddd +409, 0xd74a3454e888834b +410, 0xbf2aa68081a4a28f +411, 0xea41b26a6f1da1b3 +412, 0x5560a2d24b9d5903 +413, 0xe3791f652a228d8b +414, 0x365116d3b5a8520c +415, 0xb1b2bd46528f8969 +416, 0xfcfe14943ef16ae7 +417, 0xf4d43425e8a535dc +418, 0xe6cf10a78782a7e0 +419, 0x9c7ac0de46556e3e +420, 0xc667ae0856eed9ef +421, 0x47dbb532e16f9c7e +422, 0xdf4785a5d89ee82e +423, 0xbd014925ce79dbcf +424, 0xea0d663fb58fa5be +425, 0x51af07d5cc3821fb +426, 0x27a1bdcdc4159a9d +427, 0x520c986c59b1e140 +428, 0x50b73fd9bacd5b39 +429, 0xae5240641f51e4f3 +430, 0x71faecc164ed9681 +431, 0xda95aa35529a7ee +432, 0xe25ba29b853c1c6d +433, 0x9871a925cda53735 +434, 0xde481ad8540e114d +435, 0xa2997f540e8abca0 +436, 0xc9683c5035e28185 +437, 0x1082471b57182bac +438, 0xbd3ecf0f0b788988 +439, 0xf479760776fbb342 +440, 0x3730929200d91f44 +441, 0xc1762d79ae72809c +442, 0xfaa0a4c7b1686cb3 +443, 0xd581e6d55afdafcd +444, 0x6cf57bdfba2dcf6d +445, 0xdef79d9fe6a5bcef +446, 0x13ed376e18132bd3 +447, 0xbe67efd72defa2a +448, 0x5acc176c468966ea +449, 0x8b35b626af139187 +450, 0x446de3fac0d973ac +451, 0xe1d49e06dc890317 +452, 0x817bc3fd21fc09b7 +453, 0xb71c3958a13d5579 +454, 0x8746e010f73d7148 +455, 0x1b61c06009922e83 +456, 0xba17e62e6b092316 +457, 0x1375fa23c4db8290 +458, 0x3f071230f51245a6 +459, 0x51c99a086a61cd13 +460, 0x5f0f2ae78589e1fd +461, 0x604834e114bbbc27 +462, 0x5eb2a7a34814e9a9 +463, 0x77a6907f386bf11e +464, 0x99525de2bd407eeb +465, 0xb818348c57b3b98f +466, 0x25f5f9e702fbe78d +467, 0x8f66669e6f884473 +468, 0x1e47d46e2af4f919 +469, 0xf6a19df846476833 +470, 0xff00c67bcd06621f +471, 0xe3dfe069795d72d8 +472, 0x8affc88b2fea4d73 +473, 0x66df747e5f827168 +474, 0xf368ec338d898a0e +475, 0x9e1f1a739c5984a2 +476, 0x46a1c90e1ca32cbc +477, 0xc261bc305ed8d762 +478, 0x754d7949f7da9e72 +479, 0x4c8fbbb14ef47b17 +480, 0xccbdc67a3848d80d +481, 0x3c25e6f58bae751d +482, 0x7078b163b936d9b6 +483, 0x440e27463c134ecf +484, 0x6c83ee39f324db0f +485, 0x27cf901b22aea535 +486, 0x57262dec79a3f366 +487, 0x91db09f1dbb524fb +488, 0xd7436eefba865df2 +489, 0x16c86b0a275a3f43 +490, 0x689493e6681deaa9 +491, 0x7e1dc536c1a9ac42 +492, 0x1145beac3ac7f5cc +493, 0x3d05e211a104b2b0 +494, 0x4f9e77ced3c52f44 +495, 0x53de1369354add72 +496, 0x1fb60f835f47cdeb +497, 0x6ab36f089e40c106 +498, 0xaabffcb0d3d04c7 +499, 0xaa399686d921bd25 +500, 0x2bf8dd8b6d6fa7f0 +501, 0x1ddbf4e124329613 +502, 0x466a740241466a72 +503, 0x98d7381eb68a761 +504, 0x817691510bc4857a +505, 0x8837622c0171fe33 +506, 0xcba078873179ee16 +507, 0x13adad1ab7b75af4 +508, 0x3bac3f502428840c +509, 0xbeb3cce138de9a91 +510, 0x30ef556e40b5f0b4 +511, 0x19c22abdf3bbb108 +512, 0x977e66ea4ddc7cf +513, 0x9f4a505f223d3bf3 +514, 0x6bc3f42ac79ec87b +515, 0x31e77712158d6c23 +516, 0x6d8de4295a28af0d +517, 0xee1807dbda72adb7 +518, 0xda54140179cd038f +519, 0x715aa5cdac38e062 +520, 0x5a7e55e99a22fa16 +521, 0xf190c36aa8edbe4f +522, 0xccadd93a82c1d044 +523, 0x7070e6d5012c3f15 +524, 0x50a83341a26c1ba5 +525, 0x11bca7cc634142e5 +526, 0x623a0d27867d8b04 +527, 0x75c18acff54fbf6e +528, 0x455ae7d933497a6f +529, 0xf624cf27d030c3d3 +530, 0x7a852716f8758bac +531, 0xe7a497ac1fa2b5b4 +532, 0xf84f097498f57562 +533, 0xc4bb392f87f65943 +534, 0x618e79a5d499fbfb +535, 0xb3c0b61d82b48b8 +536, 0x4750a10815c78ea7 +537, 0x9cf09cca3ddece69 +538, 0x2a69f1c94cc901a2 +539, 0x347a0e446e1ce86d +540, 0xb06f3a5a5ab37bb1 +541, 0x8035bd0713d591db +542, 0x539c9637042c3a1f +543, 0xd7ba4dc6b273cbd7 +544, 0x12f3f99933444f85 +545, 0x4a9517b9783fb9a4 +546, 0x6422b2ea95093bc5 +547, 0x3a5ecff0f996c2a6 +548, 0x31de504efc76a723 +549, 0x7ccb7c5233c21a9f +550, 0xc687d9e6ce4186e8 +551, 0x6e40769d6940376a +552, 0xf51207314f1f7528 +553, 0x67ee3acb190865e3 +554, 0xe08d586270588761 +555, 0xe387fa489af1a75c +556, 0x73414a52d29d8375 +557, 0x671a38191cf2a357 +558, 0xe00fb25b1aa54008 +559, 0x11a0610e22cf549b +560, 0xc90cc865d57c75be +561, 0x90d0863cc15f2b79 +562, 0x8b3e60d32ebcb856 +563, 0xb28cc55af621e04a +564, 0xcf60bd3cb2a5ab1d +565, 0x212cb5d421948f86 +566, 0xee297b96e0a3363f +567, 0x4e9392ff998760d1 +568, 0x61940c8d0105ba3e +569, 0x14ebcbae72a59a16 +570, 0xdf0f39a3d10c02af +571, 0xfc047b2b3c1c549d +572, 0x91718b5b98e3b286 +573, 0x9ea9539b1547d326 +574, 0x7a5a624a89a165e6 +575, 0x145b37dcaa8c4166 +576, 0x63814bbb90e5616c +577, 0xc4bc3ca6c38bb739 +578, 0x853c3a61ddc6626c +579, 0xa7ce8481c433829a +580, 0x8aff426941cc07b +581, 0x2dc3347ca68d8b95 +582, 0xce69f44f349e9917 +583, 0x2fa5cb8aca009b11 +584, 0xf26bb012115d9aca +585, 0xafa01c2f2d27235a +586, 0xabcba21f1b40305e +587, 0xfec20c896c0c1128 +588, 0xc5f7a71ebacadfa0 +589, 0xc8479ad14bab4eef +590, 0xad86ec9a3e7d3dc +591, 0xbbecd65292b915c5 +592, 0xb1f9e28149e67446 +593, 0x708d081c03dad352 +594, 0xaa8a84dbd1de916c +595, 0x9aa3efb29ba9480b +596, 0xd3c63969ff11443e +597, 0x1e9e9ac861315919 +598, 0x4fe227f91e66b41d +599, 0xefc0212d43d253ab +600, 0x98341437727c42d1 +601, 0x5ea85c0fe9008adc +602, 0x7891b15faa808613 +603, 0x32db2d63989aacfd +604, 0xc92f7f28e88fd7bc +605, 0x3513545eb6549475 +606, 0x49abe0082906fbf8 +607, 0xcee1e1a6551e729c +608, 0x38556672b592a28e +609, 0xc3e61409c4ec2d45 +610, 0x96c67ce2995a0fd4 +611, 0x9b9b0cada870293 +612, 0x82d6dd5dada48037 +613, 0xeea4f415299f1706 +614, 0x371107895f152ab3 +615, 0x2f6686159f4396bb +616, 0x61005a2ff3680089 +617, 0x9d2f2cafb595e6b6 +618, 0x4a812a920f011672 +619, 0x317554d3a77385d7 +620, 0x24c01086727eb74b +621, 0xa15ff76d618a3a9e +622, 0x2121bfd983859940 +623, 0x384d11577eea8114 +624, 0xab0f4299f3c44d88 +625, 0x136fd4b07cfa14d9 +626, 0x665fe45cbfaa972a +627, 0x76c5a23398a314e9 +628, 0x5507036357ccda98 +629, 0xd9b8c5ac9dce632b +630, 0x366bc71781da6e27 +631, 0xdd2b2ba1d6be6d15 +632, 0xf33ed0d50ea6f1a6 +633, 0xf05a9b1900174c18 +634, 0x3947e1419e2787cf +635, 0x6c742b1e029637d0 +636, 0x32aba12196a0d2e8 +637, 0x1b94aab2e82e7df +638, 0x68b617db19229d6 +639, 0x6c88a95ac0a33f98 +640, 0xdc9b95fd60c2d23e +641, 0x999e6971d3afc8b3 +642, 0x7071fc6ad8b60129 +643, 0x41a8184ef62485f6 +644, 0xb68e0605c7d5e713 +645, 0x272b961a1d1bbee +646, 0x23f04e76446187b0 +647, 0x999a7a8f6d33f260 +648, 0xdbd6318df4f168d +649, 0x8f5e74c84c40711e +650, 0x8ccc6b04393a19d6 +651, 0xadcd24b782dd8d3d +652, 0x1a966b4f80ef9499 +653, 0xcb6d4f9ff5a280f0 +654, 0x8095ff2b8484018a +655, 0xbfd3389611b8e771 +656, 0x278eb670b7d12d51 +657, 0x31df54ca8d65c20f +658, 0x121c7fb38af6985e +659, 0x84fb94f38fe1d0a +660, 0x15ae8af1a6d48f02 +661, 0x8d51e4a62cba1a28 +662, 0x58e6b6b3ae0f9e42 +663, 0x9365a0a85669cc99 +664, 0xe56e92f65a2106df +665, 0x68fa299c66b428fc +666, 0x55e51bb0b0a832c6 +667, 0x48b565293f9bc494 +668, 0x73d8132b1cbabb57 +669, 0x9178ac3926c36cbc +670, 0xe2f22c7b28ea5e0f +671, 0x6af45322a99afb12 +672, 0x59072fcb486a46f4 +673, 0x166b717b08d3d8e +674, 0xd4e627a2dfacc4ab +675, 0x33dad6f2921dedaa +676, 0x4b13b806834a6704 +677, 0xe5f7971b398ed54d +678, 0x20bfae65e3e6899b +679, 0x881dab45d2b4fc98 +680, 0x6f248126b5b885be +681, 0x7aeb39e986f9deee +682, 0xf819f9574b8c3a03 +683, 0xff3d93ed6bd9781a +684, 0x3a31e2e24a2f6385 +685, 0x7888a88f8944a5e +686, 0x4faee12f5de95537 +687, 0x7f3e4efccdb2ed67 +688, 0x91e0f2fc12593af5 +689, 0xb5be8a4b886a40d3 +690, 0x998e8288ac3a9b1b +691, 0x85c48fc8b1349e7b +692, 0xf03af25222d8fae5 +693, 0x45467e805b242c2e +694, 0xa2350db793dbebdc +695, 0xfebe5b61d2174553 +696, 0xa9a331f02c54ad0b +697, 0xe94e49a0f905aef3 +698, 0xe54b4c812b55e3da +699, 0xdc454114c6bc0278 +700, 0x99c7765ab476baa2 +701, 0xccd9590e47fdff7c +702, 0xfa2bcae7afd6cb71 +703, 0x2c1bf1a433a6f0f7 +704, 0x53882c62ff0aab28 +705, 0x80ac900f844dacc +706, 0x27ba8eb5c4a44d54 +707, 0x78f3dfb072a46004 +708, 0x34e00e6ec629edce +709, 0x5b88d19b552d1fbd +710, 0xe4df375dc79df432 +711, 0x37446312ff79c3b4 +712, 0xb72256900a95fa6d +713, 0x89f3171fbdff0bfc +714, 0xd37885b048687eba +715, 0xbb033213b283b60e +716, 0xcf10b523ee769030 +717, 0xbf8070b6cfd7bafb +718, 0xb7194da81fd1763b +719, 0xbfc303de88e68d24 +720, 0xb949c7a5aea8a072 +721, 0x844216e7bae90455 +722, 0xf1e7f20840049a33 +723, 0x96e3263ad0cae794 +724, 0x10772d51f6e9ba49 +725, 0xcea24fccae9d23b3 +726, 0xefd378add9dde040 +727, 0xba0c7c5275805976 +728, 0x2e2a04608f64fa8c +729, 0xafb42ec43aa0fa7 +730, 0x30444b84241ac465 +731, 0x19ef384bac4493ab +732, 0xfd1ac615d3ba5ab9 +733, 0x6cc781ba38643aff +734, 0x30ff27ebed875cfd +735, 0xee1a261aca97ae62 +736, 0xc5a92715202bc940 +737, 0x9e6ec76f93c657ff +738, 0x9b9fd55f55191ca5 +739, 0x654b13af008d8f03 +740, 0x1b7f030d9bd0719f +741, 0x6d622e277550cb7f +742, 0x3f8ee6b8830d0538 +743, 0x475462bcd0de190f +744, 0x21380e8a513bdbcd +745, 0x629bf3771b1bd7a4 +746, 0x3b5fd0b62c353709 +747, 0xf95634006ec3867e +748, 0x1be8bb584a6653c2 +749, 0x2e2d3cfa85320ce8 +750, 0x5b904b692252d11d +751, 0x4bfd76631d527990 +752, 0xc019571ca2bec4a0 +753, 0xf2eb730cea4cd751 +754, 0xd4571d709530191a +755, 0x3b5bd947061f5a7d +756, 0x56e2322cd2d1d1c0 +757, 0xa8830a5f62019f83 +758, 0x901d130c1b873cf3 +759, 0xb5dd29b363c61299 +760, 0xbb710bec3a17b26d +761, 0xc0c464daca0f2328 +762, 0x4dc8055df02650f5 +763, 0x3d3cd9bbe8b957af +764, 0xdb79612c2635b828 +765, 0xe25b3a8ad8fa3040 +766, 0xd5875c563cbf236b +767, 0x46861c1c3849c9bc +768, 0xf84bf1a2814dff43 +769, 0x6d8103902e0ad5e6 +770, 0x99f51c9be8af79e5 +771, 0xb0bfa8540ff94a96 +772, 0xaf45109a4e06f7d0 +773, 0x281df3e55aea9bfc +774, 0x6a1155ca8aa40e60 +775, 0x754d32c5de1f5da +776, 0xce1eafb1c6ca916f +777, 0xc4f2185fa8577bd1 +778, 0x4a188e9bdb5501d9 +779, 0xbb14107e99bd5550 +780, 0xf0381d8425ec2962 +781, 0x213dbfffc16ec4f6 +782, 0x7a999c5a28ea65bc +783, 0x23758c2aba7709ff +784, 0xea7e4bb205e93b44 +785, 0x9c5a31e53911c658 +786, 0x7f04d0bbdc689ddc +787, 0xe3ed89ab8d78dcb3 +788, 0x73c38bfb43986210 +789, 0x740c7d787eb8e158 +790, 0x5284fafdfb3fb9ec +791, 0x2e91a58ac1fb1409 +792, 0xb94a600bf0a09af3 +793, 0x533ea4dbe07d81dd +794, 0x48c3f1a736b3c5fd +795, 0x56ae3499fa8720ce +796, 0x526f2def663ca818 +797, 0x2f085759c65665c4 +798, 0xf715f042c69e0db4 +799, 0x110889c399231e60 +800, 0x64584a244866f3a0 +801, 0xf02ec101a39405d3 +802, 0xe73cd5e9a7f17283 +803, 0xfea64869e7028234 +804, 0x97559974ad877891 +805, 0xc8695aba1dc9f2e5 +806, 0x7b62b76ffc2264ec +807, 0xf5e1df172ec5ccd +808, 0xafaeb68765e443bd +809, 0xd3870eb2e8337623 +810, 0x4f944d684138fb39 +811, 0x6977c575038916ad +812, 0x8ada1a225df95a56 +813, 0xe4044c6c58d15e54 +814, 0x4e5121366681cf2 +815, 0xcf8640b079357b0d +816, 0xcd5b157d44106fa3 +817, 0x9d7a5481279e25a1 +818, 0xe10e9db41fb4b34f +819, 0x1052607be1eadff9 +820, 0x3403d67232fe2265 +821, 0xac9358f498c34afc +822, 0x820172da0dc39c9 +823, 0xe186e91a3b826b6a +824, 0x1a838e2a40284445 +825, 0x1870b617ebd7bce6 +826, 0xcb7cba4424be1ed7 +827, 0x6a2e56e40fdf9041 +828, 0xace93bbe108f97ee +829, 0xfeb9bc74ac41ca08 +830, 0x8cb2d05b0f6a1f51 +831, 0x73792309f3fac0a9 +832, 0x2507343d431308ca +833, 0xd0ea1197be615412 +834, 0xb1870812f1d2fa94 +835, 0x6d067b6935dcd23e +836, 0xaf161014e5492c31 +837, 0xd4be0dce97064be4 +838, 0xf8edfe3fc75c20f1 +839, 0x894751dc442d2d9c +840, 0xb4a95f6a6663456c +841, 0x74e93162e2d805db +842, 0x784bc5f3a7a2f645 +843, 0xd234d7c5b0582ea9 +844, 0x491f28d0ab6cb97c +845, 0xa79419e5cf4336c3 +846, 0x66b00141978c849 +847, 0xa7ddbd64698d563f +848, 0xefc33a4a5d97d4b2 +849, 0x95075514a65aebdc +850, 0x40eca5b3e28cd25e +851, 0x90ec7d00e9c9e35d +852, 0x63e84104d5af417a +853, 0xdaca0ea32df5744 +854, 0x7ed54f2587795881 +855, 0x5a73931760af4ee0 +856, 0x857d1a185a3081ec +857, 0x6eac2aabe67fb463 +858, 0xd1f86155d8bfc55f +859, 0x6d56398f3e7877ef +860, 0x7642f61dfc62bc17 +861, 0x1d76b12843246ffa +862, 0xde7817809b8a31d0 +863, 0xbcca9cd091198f9d +864, 0xf71ca566dddcdfd4 +865, 0xea4386ee8b61d082 +866, 0xe351729d6010bac4 +867, 0xfd685d8a49910dd6 +868, 0xa7a20ea6c686bd3 +869, 0x1cdaf82f4dbd5536 +870, 0xa3da1d1e77dda3e0 +871, 0x4f723b3818ff8b2a +872, 0x1290669eca152469 +873, 0xb54158b52d30651b +874, 0xc06b74f2c7f0fee +875, 0x7d5840bcbf702379 +876, 0x19fa4c1254a82ed +877, 0xcf5ce090ad0b38ea +878, 0xd4edd6ac9437e16d +879, 0xc6ebf25eb623b426 +880, 0xd2b6dbdf00d8fea2 +881, 0x949cf98391cc59e1 +882, 0x380a0c7d0356f7b3 +883, 0x8ffefe32465473bf +884, 0x637b6542d27c861e +885, 0x347d12ffc664ecd9 +886, 0xea66e3a0c75a6b37 +887, 0xc3aff6f34fb537a1 +888, 0x67bdf3579959bf49 +889, 0xa17a348e3a74b723 +890, 0x93c9ef26ddadd569 +891, 0x483909059a5ac0b2 +892, 0x26ec9074b56d5a0d +893, 0x6216000d9a48403a +894, 0x79b43909eab1ec05 +895, 0xe4a8e8d03649e0de +896, 0x1435d666f3ccdc08 +897, 0xb9e22ba902650a0e +898, 0x44dffcccc68b41f8 +899, 0x23e60dcc7a559a17 +900, 0x6fd1735eacd81266 +901, 0xf6bda0745ea20c8e +902, 0x85efcaefe271e07c +903, 0x9be996ee931cef42 +904, 0xe78b41c158611d64 +905, 0xd6201df605839830 +906, 0x702e8e47d2769fd3 +907, 0xb8dcf70e18cf14c +908, 0xac2690bab1bf5c17 +909, 0x92b166b71205d696 +910, 0xb0e73c795fc6df28 +911, 0x4bf2322c8b6b6f0d +912, 0xa842fbe67918cea0 +913, 0xb01a8675d9294e54 +914, 0xfbe3c94f03ca5af2 +915, 0x51a5c089600c441f +916, 0x60f0fd7512d85ded +917, 0xef3113d3bc2cadb0 +918, 0xe1ea128ade300d60 +919, 0xde413b7f8d92d746 +920, 0xfc32c6d43f47c5d8 +921, 0x69d551d8c2b54c68 +922, 0xb9bc68c175777943 +923, 0xb9c79c687f0dae90 +924, 0xd799421ef883c06e +925, 0xbff553ca95a29a3e +926, 0xfc9ffac46bd0aca1 +927, 0x4f6c3a30c80c3e5a +928, 0x8b7245bc6dc4a0a +929, 0xaf4e191a4575ff60 +930, 0x41218c4a76b90f0b +931, 0x986052aa51b8e89b +932, 0x284b464ed5622f9 +933, 0xba6bded912626b40 +934, 0x43cad3ed7443cb5c +935, 0x21641fa95725f328 +936, 0x6d99d6d09d755822 +937, 0x8246dfa2d4838492 +938, 0xd2ee70b9056f4726 +939, 0x87db515a786fbb8b +940, 0x7c63e4c1d7786e7d +941, 0xd1a9d548f10b3e88 +942, 0xa00856475f3b74c9 +943, 0x7f1964ce67148bf4 +944, 0x446650ec71e6018c +945, 0xb1805ca07d1b6345 +946, 0x869c0a1625b7271b +947, 0x79d6da06ce2ecfe2 +948, 0xec7b3cafc5e3c85f +949, 0x1745ce21e39f2c3d +950, 0xd9a0a7af6ee97825 +951, 0x680e0e52a6e11d5c +952, 0xd86b3f344ff7f4cd +953, 0xab56af117c840b9c +954, 0x5c5404c7e333a10e +955, 0x4f1eb462f35d990d +956, 0xf857605a5644458e +957, 0x3bb87cdf09262f86 +958, 0xd57295baf6da64b +959, 0xb5993f48472f2894 +960, 0x7d1a501608c060b2 +961, 0x45fabe2d0e54adf0 +962, 0xbb41c3806afb4efe +963, 0xbfbc506049424c8 +964, 0xb7dd6b67f2203344 +965, 0x389ce52eff883b81 +966, 0xe259c55c0cf6d000 +967, 0x70fb3e3824f7d213 +968, 0x9f36d5599ed55f4b +969, 0xd14cf6f12f83c4f7 +970, 0x570a09d56aaa0b66 +971, 0x8accafd527f4598 +972, 0xa42d64c62175adfd +973, 0xddb9c6a87b6e1558 +974, 0xd80b6c69fa1cde2a +975, 0x44ebaac10082207b +976, 0xf99be8889552fa1a +977, 0x38253cd4b38b5dc5 +978, 0x85356c8b02675791 +979, 0xbf91677b2ecdcf55 +980, 0x2316cb85e93f366e +981, 0x9abf35954db6b053 +982, 0xf49f7425e086b45a +983, 0x8f5b625e074afde2 +984, 0xe0d614559791b080 +985, 0xbf7b866afab2a525 +986, 0xde89d7e1641a6412 +987, 0x1d10687d8ae5b86f +988, 0x1f034caa0e904cbd +989, 0x2086357aec8a7a2c +990, 0x22dc476b80c56e1e +991, 0xbef5a73cc0e3a493 +992, 0xddfa3829b26ed797 +993, 0x8917a87ec3d4dc78 +994, 0xfeabe390628c365e +995, 0x581b0c4f6fb2d642 +996, 0x1ef8c590adbf5b9a +997, 0x4d8e13aac0cce879 +998, 0xfe38f71e5977fad0 +999, 0x1f83a32d4adfd2ed diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/data/philox-testset-2.csv b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/philox-testset-2.csv new file mode 100644 index 0000000..69d24c3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/philox-testset-2.csv @@ -0,0 +1,1001 @@ +seed, 0x0 +0, 0x399e5b222b82fa9 +1, 0x41fd08c1f00f3bc5 +2, 0x78b8824162ee4d04 +3, 0x176747919e02739d +4, 0xfaa88f002a8d3596 +5, 0x418eb6f592e6c227 +6, 0xef83020b8344dd45 +7, 0x30a74a1a6eaa064b +8, 0x93d43bf97a490c3 +9, 0xe4ba28b442194cc +10, 0xc829083a168a8656 +11, 0x73f45d50f8e22849 +12, 0xf912db57352824cc +13, 0xf524216927b12ada +14, 0x22b7697473b1dfda +15, 0x311e2a936414b39f +16, 0xb905abfdcc425be6 +17, 0x4b14630d031eac9c +18, 0x1cf0c4ae01222bc8 +19, 0xa6c33efc6e82ef3 +20, 0x43b3576937ba0948 +21, 0x1e483d17cdde108a +22, 0x6722784cac11ac88 +23, 0xee87569a48fc45d7 +24, 0xb821dcbe74d18661 +25, 0xa5d1876ef3da1a81 +26, 0xe4121c2af72a483 +27, 0x2d747e355a52cf43 +28, 0x609059957bd03725 +29, 0xc3327244b49e16c5 +30, 0xb5ae6cb000dde769 +31, 0x774315003209017 +32, 0xa2013397ba8db605 +33, 0x73b228945dbcd957 +34, 0x801af7190375d3c0 +35, 0xae6dca29f24c9c67 +36, 0xd1cc0bcb1ca26249 +37, 0x1defa62a5bd853be +38, 0x67c2f5557fa89462 +39, 0xf1729b58122fab02 +40, 0xb67eb71949ec6c42 +41, 0x5456366ec1f8f7d7 +42, 0x44492b32eb7966f5 +43, 0xa801804159f175f1 +44, 0x5a416f23cac70d84 +45, 0x186f55293302303d +46, 0x7339d5d7b6a43639 +47, 0xfc6df38d6a566121 +48, 0xed2fe018f150b39e +49, 0x508e0b04a781fa1b +50, 0x8bee9d50f32eaf50 +51, 0x9870015d37e63cc +52, 0x93c6b12309c14f2d +53, 0xb571cf798abe93ff +54, 0x85c35a297a88ae6e +55, 0x9b1b79afe497a2ae +56, 0x1ca02e5b95d96b8d +57, 0x5bb695a666c0a94a +58, 0x4e3caf9bbab0b208 +59, 0x44a44be1a89f2dc1 +60, 0x4ff37c33445758d1 +61, 0xd0e02875322f35da +62, 0xfd449a91fb92646b +63, 0xbe0b49096b95db4d +64, 0xffa3647cad13ef5d +65, 0x75c127a61acd10c8 +66, 0xd65f697756f5f98e +67, 0x3ced84be93d94434 +68, 0x4da3095c2fc46d68 +69, 0x67564e2a771ee9ac +70, 0x36944775180644a9 +71, 0xf458db1c177cdb60 +72, 0x5b58406dcd034c8 +73, 0x793301a3fdab2a73 +74, 0x1c2a1a16d6db6128 +75, 0xc2dacd4ddddbe56c +76, 0x2e7d15be2301a111 +77, 0xd4f4a6341b3bcd18 +78, 0x3622996bbe6a9e3b +79, 0xaf29aa9a7d6d47da +80, 0x6d7dbb74a4cd68ae +81, 0xc260a17e0f39f841 +82, 0xdee0170f2af66f0d +83, 0xf84ae780d7b5a06e +84, 0x8326247b73f43c3a +85, 0xd44eef44b4f98b84 +86, 0x3d10aee62ec895e3 +87, 0x4f23fef01bf703b3 +88, 0xf8e50aa57d888df6 +89, 0x7da67411e3bef261 +90, 0x1d00f2769b2f96d7 +91, 0x7ef9a15b7444b84e +92, 0xcfa16436cc2b7e21 +93, 0x29ab8cfac00460ff +94, 0x23613de8608b0e70 +95, 0xb1aa0980625798a8 +96, 0xb9256fd29db7df99 +97, 0xdacf311bf3e7fa18 +98, 0xa013c8f9fada20d8 +99, 0xaf5fd4fe8230fe3e +100, 0xd3d59ca55102bc5c +101, 0x9d08e2aa5242767f +102, 0x40278fe131e83b53 +103, 0x56397d03c7c14c98 +104, 0xe874b77b119359b3 +105, 0x926a1ba4304ab19f +106, 0x1e115d5aa695a91d +107, 0xc6a459df441f2fe3 +108, 0x2ca842bc1b0b3c6a +109, 0x24c804cf8e5eed16 +110, 0x7ca00fc4a4c3ebd3 +111, 0x546af7cecc4a4ba6 +112, 0x8faae1fa18fd6e3 +113, 0x40420b0089641a6a +114, 0x88175a35d9abcb83 +115, 0xf7d746d1b8b1357c +116, 0x7dae771a651be970 +117, 0x2f6485247ee4df84 +118, 0x6883702fab2d8ec5 +119, 0xeb7eea829a67f9a6 +120, 0x60d5880b485562ed +121, 0x7d4ca3d7e41a4e7e +122, 0xbb7fef961ab8de18 +123, 0x3b92452fb810c164 +124, 0x5f4b4755348b338 +125, 0xca45a715a7539806 +126, 0xc33efd9da5399dd +127, 0x593d665a51d4aedd +128, 0x75d6b8636563036b +129, 0x7b57caa55e262082 +130, 0x4ede7427969e0dd5 +131, 0xc3f19b6f78ea00b +132, 0xeea7bab9be2181ea +133, 0x652c45fe9c420c04 +134, 0x14ba9e3d175670ee +135, 0xd2ad156ba6490474 +136, 0x4d65ae41065f614 +137, 0x6ff911c8afa28eb1 +138, 0xedc2b33588f3cb68 +139, 0x437c8bc324666a2f +140, 0x828cee25457a3f0 +141, 0x530c986091f31b9b +142, 0x2f34671e8326ade7 +143, 0x4f686a8f4d77f6da +144, 0xa4c1987083498895 +145, 0xbce5a88b672b0fb1 +146, 0x8476115a9e6a00cc +147, 0x16de18a55dd2c238 +148, 0xdf38cf4c416232bc +149, 0x2cb837924e7559f3 +150, 0xfad4727484e982ed +151, 0x32a55d4b7801e4f +152, 0x8b9ef96804bd10a5 +153, 0xa1fd422c9b5cf2a9 +154, 0xf46ddb122eb7e442 +155, 0x6e3842547afa3b33 +156, 0x863dee1c34afe5c4 +157, 0x6a43a1935b6db171 +158, 0x1060a5c2f8145821 +159, 0xf783ec9ed34c4607 +160, 0x1da4a86bf5f8c0b0 +161, 0x4c7714041ba12af8 +162, 0x580da7010be2f192 +163, 0xad682fe795a7ea7a +164, 0x6687b6cb88a9ed2c +165, 0x3c8d4b175517cd18 +166, 0xe9247c3a524a6b6b +167, 0x337ca9cfaa02658 +168, 0xed95399481c6feec +169, 0x58726a088e606062 +170, 0xfe7588a5b4ee342a +171, 0xee434c7ed146fdee +172, 0xe2ade8b60fdc4ba5 +173, 0xd57e4c155de4eaab +174, 0xdefeae12de1137cb +175, 0xb7a276a241316ac1 +176, 0xeb838b1b1df4ca15 +177, 0x6f78965edea32f6f +178, 0x18bebd264d7a5d53 +179, 0x3641c691d77005ec +180, 0xbe70ed7efea8c24c +181, 0x33047fa8d03ca560 +182, 0x3bed0d2221ff0f87 +183, 0x23083a6ffbcf38a2 +184, 0xc23eb827073d3fa5 +185, 0xc873bb3415e9fb9b +186, 0xa4645179e54147fe +187, 0x2c72fb443f66e207 +188, 0x98084915dd89d8f4 +189, 0x88baa2de12c99037 +190, 0x85c74ab238cb795f +191, 0xe122186469ea3a26 +192, 0x4c3bba99b3249292 +193, 0x85d6845d9a015234 +194, 0x147ddd69c13e6a31 +195, 0x255f4d678c9a570b +196, 0x2d7c0c410bf962b4 +197, 0x58eb7649e0aa16ca +198, 0x9d240bf662fe0783 +199, 0x5f74f6fa32d293cc +200, 0x4928e52f0f79d9b9 +201, 0xe61c2b87146b706d +202, 0xcfcd90d100cf5431 +203, 0xf15ea8138e6aa178 +204, 0x6ab8287024f9a819 +205, 0xed8942593db74e01 +206, 0xefc00e4ec2ae36dd +207, 0xc21429fb9387f334 +208, 0xf9a3389e285a9bce +209, 0xacdee8c43aae49b3 +210, 0xefc382f02ad55c25 +211, 0x1153b50e8d406b72 +212, 0xb00d39ebcc2f89d8 +213, 0xde62f0b9831c8850 +214, 0xc076994662eef6c7 +215, 0x66f08f4752f1e3ef +216, 0x283b90619796249a +217, 0x4e4869bc4227499e +218, 0xb45ad78a49efd7ed +219, 0xffe19aa77abf5f4b +220, 0xfce11a0daf913aef +221, 0x7e4e64450d5cdceb +222, 0xe9621997cfd62762 +223, 0x4d2c9e156868081 +224, 0x4e2d96eb7cc9a08 +225, 0xda74849bba6e3bd3 +226, 0x6f4621da935e7fde +227, 0xb94b914aa0497259 +228, 0xd50d03e8b8db1563 +229, 0x1a45c1ce5dca422e +230, 0xc8d30d33276f843f +231, 0xb57245774e4176b4 +232, 0x8d36342c05abbbb1 +233, 0x3591ad893ecf9e78 +234, 0x62f4717239ee0ac8 +235, 0x9b71148a1a1d4200 +236, 0x65f8e0f56dd94463 +237, 0x453b1fcfd4fac8c2 +238, 0x4c25e48e54a55865 +239, 0xa866baa05112ace2 +240, 0x7741d3c69c6e79c5 +241, 0x7deb375e8f4f7a8a +242, 0xc242087ede42abd8 +243, 0x2fa9d1d488750c4b +244, 0xe8940137a935d3d3 +245, 0x1dab4918ca24b2f2 +246, 0xe2368c782168fe3e +247, 0x6e8b2d1d73695909 +248, 0x70455ebea268b33e +249, 0x656a919202e28da1 +250, 0x5a5a8935647da999 +251, 0x428c6f77e118c13c +252, 0xa87aee2b675bb083 +253, 0x3873a6412b239969 +254, 0x5f72c1e91cb8a2ee +255, 0xa25af80a1beb5679 +256, 0x1af65d27c7b4abc3 +257, 0x133437060670e067 +258, 0xb1990fa39a97d32e +259, 0x724adc89ae10ed17 +260, 0x3f682a3f2363a240 +261, 0x29198f8dbd343499 +262, 0xdfaeeaa42bc51105 +263, 0x5baff3901b9480c2 +264, 0x3f760a67043e77f5 +265, 0x610fa7aa355a43ba +266, 0x394856ac09c4f7a7 +267, 0x1d9229d058aee82e +268, 0x19c674804c41aeec +269, 0x74cf12372012f4aa +270, 0xa5d89b353fa2f6ca +271, 0x697e4f672ac363dd +272, 0xde6f55ba73df5af9 +273, 0x679cf537510bd68f +274, 0x3dc916114ae9ef7e +275, 0xd7e31a66ec2ee7ba +276, 0xc21bebb968728495 +277, 0xc5e0781414e2adfd +278, 0x71147b5412ddd4bd +279, 0x3b864b410625cca9 +280, 0x433d67c0036cdc6 +281, 0x48083afa0ae20b1b +282, 0x2d80beecd64ac4e8 +283, 0x2a753c27c3a3ee3e +284, 0xb2c5e6afd1fe051a +285, 0xea677930cd66c46b +286, 0x4c3960932f92810a +287, 0xf1b367a9e527eaba +288, 0xb7d92a8a9a69a98e +289, 0x9f9ad3210bd6b453 +290, 0x817f2889db2dcbd8 +291, 0x4270a665ac15813c +292, 0x90b85353bd2be4dd +293, 0x10c0460f7b2d68d +294, 0x11cef32b94f947f5 +295, 0x3cf29ed8e7d477e8 +296, 0x793aaa9bd50599ef +297, 0xbac15d1190014aad +298, 0x987944ae80b5cb13 +299, 0x460aa51f8d57c484 +300, 0xc77df0385f97c2d3 +301, 0x92e743b7293a3822 +302, 0xbc3458bcfbcbb8c0 +303, 0xe277bcf3d04b4ed7 +304, 0xa537ae5cf1c9a31c +305, 0x95eb00d30bd8cfb2 +306, 0x6376361c24e4f2dd +307, 0x374477fe87b9ea8e +308, 0x8210f1a9a039902e +309, 0xe7628f7031321f68 +310, 0x8b8e9c0888fc1d3d +311, 0x306be461fdc9e0ed +312, 0x510009372f9b56f5 +313, 0xa6e6fa486b7a027a +314, 0x9d3f002025203b5a +315, 0x7a46e0e81ecbef86 +316, 0x41e280c611d04df0 +317, 0xedcec10418a99e8a +318, 0x5c27b6327e0b9dbd +319, 0xa81ed2035b509f07 +320, 0x3581e855983a4cc4 +321, 0x4744594b25e9809d +322, 0xc737ac7c27fbd0ed +323, 0x1b523a307045433a +324, 0x8b4ce9171076f1d9 +325, 0x2db02d817cd5eec0 +326, 0x24a1f1229af50288 +327, 0x5550c0dcf583ff16 +328, 0x3587baaa122ec422 +329, 0xf9d3dc894229e510 +330, 0xf3100430d5cf8e87 +331, 0xc31af79862f8e2fb +332, 0xd20582063b9f3537 +333, 0xac5e90ac95fcc7ad +334, 0x107c4c704d5109d4 +335, 0xebc8628906dbfd70 +336, 0x215242776da8c531 +337, 0xa98002f1dcf08b51 +338, 0xbc3bdc07f3b09718 +339, 0x238677062495b512 +340, 0x53b4796f2a3c49e8 +341, 0x6424286467e22f0e +342, 0x14d0952a11a71bac +343, 0x2f97098149b82514 +344, 0x3777f2fdc425ad2 +345, 0xa32f2382938876d4 +346, 0xda8a39a021f20ae3 +347, 0x364361ef0a6ac32c +348, 0x4413eede008ff05a +349, 0x8dda8ace851aa327 +350, 0x4303cabbdcecd1ee +351, 0x2e69f06d74aa549f +352, 0x4797079cd4d9275c +353, 0xc7b1890917e98307 +354, 0x34031b0e822a4b4c +355, 0xfc79f76b566303ea +356, 0x77014adbe255a930 +357, 0xab6c43dd162f3be5 +358, 0xa430041f3463f6b9 +359, 0x5c191a32ada3f84a +360, 0xe8674a0781645a31 +361, 0x3a11cb667b8d0916 +362, 0xaedc73e80c39fd8a +363, 0xfde12c1b42328765 +364, 0x97abb7dcccdc1a0b +365, 0x52475c14d2167bc8 +366, 0x540e8811196d5aff +367, 0xa867e4ccdb2b4b77 +368, 0x2be04af61e5bcfb9 +369, 0x81b645102bfc5dfd +370, 0x96a52c9a66c6450f +371, 0x632ec2d136889234 +372, 0x4ed530c0b36a6c25 +373, 0x6f4851225546b75 +374, 0x2c065d6ba46a1144 +375, 0xf8a3613ff416551d +376, 0xb5f0fd60e9c971a9 +377, 0x339011a03bb4be65 +378, 0x9439f72b6995ded6 +379, 0xc1b03f3ef3b2292d +380, 0xad12fd221daab3ae +381, 0xf615b770f2cf996f +382, 0x269d0fdcb764172 +383, 0x67837025e8039256 +384, 0x6402831fc823fafa +385, 0x22854146a4abb964 +386, 0x7b5ad9b5a1bad7a8 +387, 0x67170e7beb6ac935 +388, 0xfc2d1e8e24adfaaa +389, 0x7ded4395345ff40d +390, 0x418981760a80dd07 +391, 0xc03bef38022c1d2 +392, 0x3a11850b26eade29 +393, 0xaa56d02c7175c5f4 +394, 0xd83b7917b9bfbff5 +395, 0x3c1df2f8fa6fced3 +396, 0xf3d6e2999c0bb760 +397, 0xc66d683a59a950e3 +398, 0x8e3972a9d73ffabf +399, 0x97720a0443edffd9 +400, 0xa85f5d2fe198444a +401, 0xfc5f0458e1b0de5e +402, 0xe3973f03df632b87 +403, 0xe151073c84c594b3 +404, 0x68eb4e22e7ff8ecf +405, 0x274f36eaed7cae27 +406, 0x3b87b1eb60896b13 +407, 0xbe0b2f831442d70a +408, 0x2782ed7a48a1b328 +409, 0xb3619d890310f704 +410, 0xb03926b11b55921a +411, 0xdb46fc44aa6a0ce4 +412, 0x4b063e2ef2e9453a +413, 0xe1584f1aeec60fb5 +414, 0x7092bd6a879c5a49 +415, 0xb84e1e7c7d52b0e6 +416, 0x29d09ca48db64dfb +417, 0x8f6c4a402066e905 +418, 0x77390795eabc36b +419, 0xcc2dc2e4141cc69f +420, 0x2727f83beb9e3c7c +421, 0x1b29868619331de0 +422, 0xd38c571e192c246f +423, 0x535327479fe37b6f +424, 0xaff9ce5758617eb3 +425, 0x5658539e9288a4e4 +426, 0x8df91d87126c4c6d +427, 0xe931cf8fdba6e255 +428, 0x815dfdf25fbee9e8 +429, 0x5c61f4c7cba91697 +430, 0xdd5f5512fe2313a1 +431, 0x499dd918a92a53cd +432, 0xa7e969d007c97dfd +433, 0xb8d39c6fc81ac0bb +434, 0x1d646983def5746c +435, 0x44d4b3b17432a60c +436, 0x65664232a14db1e3 +437, 0xda8fae6433e7500b +438, 0xbe51b94ff2a3fe94 +439, 0xe9b1bd9a9098ef9f +440, 0xfe47d54176297ef5 +441, 0xb8ab99bc03bb7135 +442, 0xcfad97f608565b38 +443, 0xf05da71f6760d9c1 +444, 0xef8da40a7c70e7b +445, 0xe0465d58dbd5d138 +446, 0xb54a2d70eb1a938 +447, 0xfdd50c905958f2d8 +448, 0x3c41933c90a57d43 +449, 0x678f6d894c6ad0bb +450, 0x403e8f4582274e8 +451, 0x5cbbe975668df6b0 +452, 0x297e6520a7902f03 +453, 0x8f6dded33cd1efd7 +454, 0x8e903c97be8d783b +455, 0x10bd015577e30f77 +456, 0x3fcd69d1c36eab0c +457, 0xb45989f3ca198d3 +458, 0x507655ce02b491a9 +459, 0xa92cf99bb78602ce +460, 0xebfb82055fbc2f0f +461, 0x3334256279289b7a +462, 0xc19d2a0f740ee0ac +463, 0x8bb070dea3934905 +464, 0xa4ab57d3a8d1b3eb +465, 0xfee1b09bcacf7ff4 +466, 0xccc7fb41ceec41fa +467, 0xd4da49094eb5a74d +468, 0xed5c693770af02ed +469, 0x369dabc9bbfaa8e4 +470, 0x7eab9f360d054199 +471, 0xe36dbebf5ee94076 +472, 0xd30840e499b23d7 +473, 0x8678e6cb545015ff +474, 0x3a47932ca0b336e +475, 0xeb7c742b6e93d6fe +476, 0x1404ea51fe5a62a9 +477, 0xa72cd49db978e288 +478, 0xfd7bada020173dcf +479, 0xc9e74fc7abe50054 +480, 0x93197847bb66808d +481, 0x25fd5f053dce5698 +482, 0xe198a9b18cc21f4 +483, 0x5cc27b1689452d5d +484, 0x8b3657af955a98dc +485, 0xc17f7584f54aa1c0 +486, 0xe821b088246b1427 +487, 0x32b5a9f6b45b6fa0 +488, 0x2aef7c315c2bae0c +489, 0xe1af8129846b705a +490, 0x4123b4c091b34614 +491, 0x6999d61ec341c073 +492, 0x14b9a8fcf86831ea +493, 0xfd4cff6548f46c9f +494, 0x350c3b7e6cc8d7d6 +495, 0x202a5047fecafcd5 +496, 0xa82509fe496bb57d +497, 0x835e4b2608b575fe +498, 0xf3abe3da919f54ec +499, 0x8705a21e2c9b8796 +500, 0xfd02d1427005c314 +501, 0xa38458faa637f49b +502, 0x61622f2360e7622a +503, 0xe89335a773c2963b +504, 0x481264b659b0e0d0 +505, 0x1e82ae94ebf62f15 +506, 0x8ea7812de49209d4 +507, 0xff963d764680584 +508, 0x418a68bef717f4af +509, 0x581f0e7621a8ab91 +510, 0x840337e9a0ec4150 +511, 0x951ef61b344be505 +512, 0xc8b1b899feb61ec2 +513, 0x8b78ca13c56f6ed9 +514, 0x3d2fd793715a946f +515, 0xf1c04fabcd0f4084 +516, 0x92b602614a9a9fcc +517, 0x7991bd7a94a65be7 +518, 0x5dead10b06cad2d7 +519, 0xda7719b33f722f06 +520, 0x9d87a722b7bff71e +521, 0xb038e479071409e9 +522, 0xf4e8bbec48054775 +523, 0x4fec2cd7a28a88ea +524, 0x839e28526aad3e56 +525, 0xd37ec57852a98bf0 +526, 0xdef2cbbe00f3a02d +527, 0x1aecfe01a9e4d801 +528, 0x59018d3c8beaf067 +529, 0x892753e6ac8bf3cd +530, 0xefdd3437023d2d1c +531, 0x447bfbd148c8cb88 +532, 0x282380221bd442b8 +533, 0xfce8658d1347384a +534, 0x60b211a7ec6bfa8 +535, 0xd21729cfcc692974 +536, 0x162087ecd5038a47 +537, 0x2b17000c4bce39d2 +538, 0x3a1f75ff6adcdce0 +539, 0x721a411d312f1a2c +540, 0x9c13b6133f66934d +541, 0xaa975d14978980e5 +542, 0x9403dbd4754203fa +543, 0x588c15762fdd643 +544, 0xdd1290f8d0ada73a +545, 0xd9b77380936103f4 +546, 0xb2e2047a356eb829 +547, 0x7019e5e7f76f7a47 +548, 0x3c29a461f62b001d +549, 0xa07dc6cfab59c116 +550, 0x9b97e278433f8eb +551, 0x6affc714e7236588 +552, 0x36170aeb32911a73 +553, 0x4a665104d364a789 +554, 0x4be01464ec276c9c +555, 0x71bb10271a8b4ecf +556, 0xbf62e1d068bc018 +557, 0xc9ada5db2cbbb413 +558, 0x2bded75e726650e5 +559, 0x33d5a7af2f34385d +560, 0x8179c46661d85657 +561, 0x324ebcfd29267359 +562, 0xac4c9311dc9f9110 +563, 0xc14bb6a52f9f9c0 +564, 0xc430abe15e7fb9db +565, 0xf1cce5c14df91c38 +566, 0x651e3efa2c0750d3 +567, 0x38a33604a8be5c75 +568, 0x7aaf77fe7ff56a49 +569, 0xc0d1cc56bbf27706 +570, 0x887aa47324e156c6 +571, 0x12547c004b085e8d +572, 0xd86a8d6fbbbfd011 +573, 0x57c860188c92d7b4 +574, 0xcd5d3843d361b8ca +575, 0x8f586ef05a9cb3ef +576, 0x174456e1ba6267d5 +577, 0xf5dc302c62fe583c +578, 0xa349442fabcdb71 +579, 0xe5123c1a8b6fd08e +580, 0x80681552aa318593 +581, 0xb295396deaef1e31 +582, 0xabb626e0b900e32b +583, 0xf024db8d3f19c15e +584, 0x1d04bb9548e2fb6c +585, 0xd8ed2b2214936c2b +586, 0x618ca1e430a52bc9 +587, 0xccbca44a6088136b +588, 0xd0481855c8b9ccbe +589, 0x3c92a2fade28bdf7 +590, 0x855e9fefc38c0816 +591, 0x1269bbfe55a7b27c +592, 0x1d6c853d83726d43 +593, 0xc8655511cc7fcafc +594, 0x301503eb125a9b0e +595, 0xb3108e4532016b11 +596, 0xbb7ab6245da9cb3d +597, 0x18004c49116d85eb +598, 0x3480849c20f61129 +599, 0xe28f45157463937b +600, 0x8e85e61060f2ce1 +601, 0x1673da4ec589ba5e +602, 0x74b9a6bd1b194712 +603, 0xed39e147fa8b7601 +604, 0x28ce54019102ca77 +605, 0x42e0347f6d7a2f30 +606, 0xb6a908d1c4814731 +607, 0x16c3435e4e9a126d +608, 0x8880190514c1ad54 +609, 0xfffd86229a6f773c +610, 0x4f2420cdb0aa1a93 +611, 0xf8e1acb4120fc1fa +612, 0x63a8c553ab36a2f2 +613, 0x86b88cf3c0a6a190 +614, 0x44d8b2801622c792 +615, 0xf6eae14e93082ff1 +616, 0xd9ed4f5d1b8fac61 +617, 0x1808ce17f4e1f70 +618, 0x446e83ea336f262f +619, 0xc7c802b04c0917b7 +620, 0x626f45fd64968b73 +621, 0x9ffa540edc9b2c5c +622, 0xa96a1e219e486af8 +623, 0x2bb8963884e887a1 +624, 0xba7f68a5d029e3c4 +625, 0xefc45f44392d9ca0 +626, 0x98d77762503c5eab +627, 0xd89bcf62f2da627c +628, 0xa3cab8347f833151 +629, 0xa095b7595907d5c7 +630, 0x3b3041274286181 +631, 0xb518db8919eb71fa +632, 0x187036c14fdc9a36 +633, 0xd06e28301e696f5d +634, 0xdbc71184e0c56492 +635, 0xfe51e9cae6125bfd +636, 0x3b12d17cd014df24 +637, 0x3b95e4e2c986ac1a +638, 0x29c1cce59fb2dea2 +639, 0x58c05793182a49d6 +640, 0xc016477e330d8c00 +641, 0x79ef335133ada5d +642, 0x168e2cad941203f3 +643, 0xf99d0f219d702ef0 +644, 0x655628068f8f135b +645, 0xdcdea51910ae3f92 +646, 0x8e4505039c567892 +647, 0x91a9ec7e947c89ae +648, 0x8717172530f93949 +649, 0x1c80aba9a440171a +650, 0x9c8f83f6ebe7441e +651, 0x6c05e1efea4aa7f9 +652, 0x10af696b777c01b +653, 0x5892e9d9a92fc309 +654, 0xd2ba7da71e709432 +655, 0x46378c7c3269a466 +656, 0x942c63dfe18e772c +657, 0x6245cf02ef2476f +658, 0x6f265b2759ea2aea +659, 0x5aa757f17d17f4a6 +660, 0x1ad6a3c44fa09be6 +661, 0xe861af14e7015fb8 +662, 0x86be2e7db388c77 +663, 0x5c7bba32b519e9a0 +664, 0x3feb314850c4437b +665, 0x97955add60cfb45b +666, 0xfdb536230a540bdc +667, 0xdac9d7bf6e58512e +668, 0x4894c00e474e8120 +669, 0xa1918a37739da366 +670, 0xa8097f2096532807 +671, 0x592afe50e6c5e643 +672, 0xd69050ee6dcb33dc +673, 0xa6956b262dd3c561 +674, 0x1a55c815555e63f7 +675, 0x2ec7fd37516de2bb +676, 0x8ec251d9c70e76ba +677, 0x9b76e4abafd2689 +678, 0x9ce3f5c751a57df1 +679, 0x915c4818bf287bc7 +680, 0x2293a0d1fe07c735 +681, 0x7627dcd5d5a66d3d +682, 0xb5e4f92cc49c7138 +683, 0x6fc51298731d268c +684, 0xd19800aa95441f87 +685, 0x14f70f31162fa115 +686, 0x41a3da3752936f59 +687, 0xbec0652be95652ee +688, 0x7aa4bdb1020a290f +689, 0x4382d0d9bee899ef +690, 0xe6d988ae4277d6ff +691, 0xe618088ccb2a32d1 +692, 0x411669dfaa899e90 +693, 0x234e2bf4ba76d9f +694, 0xe109fe4cb7828687 +695, 0x1fb96b5022b0b360 +696, 0x6b24ad76c061a716 +697, 0x7e1781d4d7ecee15 +698, 0xf20c2dbe82ba38ba +699, 0xeda8e8ae1d943655 +700, 0xa58d196e2a77eaec +701, 0x44564765a5995a0b +702, 0x11902fe871ecae21 +703, 0x2ea60279900e675d +704, 0x38427227c18a9a96 +705, 0xe0af01490a1b1b48 +706, 0x826f91997e057824 +707, 0x1e57308e6e50451 +708, 0xb42d469bbbfdc350 +709, 0xb9734cff1109c49b +710, 0x98967559bb9d364f +711, 0xd6be360041907c12 +712, 0xa86a1279122a1e21 +713, 0x26f99a8527bfc698 +714, 0xfa8b85758f28f5d6 +715, 0xe3057429940806ae +716, 0x4bee2d7e84f93b2b +717, 0x948350a76ea506f4 +718, 0xa139154488045e74 +719, 0x8893579ba5e78085 +720, 0x5f21c215c6a9e397 +721, 0x456134f3a59641dc +722, 0x92c0273f8e97a9c6 +723, 0xd2936c9c3f0c6936 +724, 0xcfa4221e752c4735 +725, 0x28cd5a7457355dca +726, 0xecdfdde23d90999f +727, 0x60631b2d494d032b +728, 0xf67289df269a827f +729, 0xcbe8011ef0f5b7ef +730, 0x20eea973c70a84f5 +731, 0xbe1fd200398557ce +732, 0xd2279ee030191bba +733, 0xf2bd4291dedaf819 +734, 0xfc6d167dbe8c402 +735, 0x39ac298da5d0044b +736, 0xceac026f5f561ce +737, 0x10a5b0bdd8ad60e6 +738, 0xdeb3c626df6d4bcb +739, 0x3c128962e77ff6ca +740, 0xc786262e9c67a0e5 +741, 0x4332855b3febcdc0 +742, 0x7bda9724d1c0e020 +743, 0x6a8c93399bc4df22 +744, 0xa9b20100ac707396 +745, 0xa11a3458502c4eb5 +746, 0xb185461c60478941 +747, 0x13131d56195b7ff6 +748, 0x8d55875ddbd4aa1c +749, 0xc09b67425f469aa5 +750, 0x39e33786cc7594c4 +751, 0x75e96db8e4b08b93 +752, 0xda01cd12a3275d1e +753, 0x2c49e7822344fab5 +754, 0x9bd5f10612514ca7 +755, 0x1c801a5c828e7332 +756, 0x29797d3f4f6c7b4c +757, 0xac992715e21e4e53 +758, 0xe40e89ee887ddb37 +759, 0x15189a2b265a783b +760, 0xa854159a52af5c5 +761, 0xb9d8a5a81c12bead +762, 0x3240cdc9d59e2a58 +763, 0x1d0b872234cf8e23 +764, 0xc01224cf6ce12cff +765, 0x2601e9f3905c8663 +766, 0xd4ecf9890168d6b4 +767, 0xa45db796d89bfdd5 +768, 0x9f389406dad64ab4 +769, 0xa5a851adce43ffe3 +770, 0xd0962c41c26e5aa9 +771, 0x8a671679e48510a4 +772, 0xc196dc0924a6bfeb +773, 0x3ead661043b549cb +774, 0x51af4ca737d405ac +775, 0xf4425b5c62275fb6 +776, 0x71e69d1f818c10f5 +777, 0xacaf4af2d3c70162 +778, 0x2e1f1d4fd7524244 +779, 0xe54fdd8f388890e8 +780, 0xfda0d33e84eb2b83 +781, 0x53965c5e392b81da +782, 0x5c92288267263097 +783, 0xcac1b431c878c66c +784, 0x36c0e1cf417241c6 +785, 0x5cc4d9cd1a36bf2c +786, 0x32e4257bb5d3e470 +787, 0x4aecff904adb44fb +788, 0x4d91a8e0d1d60cac +789, 0xa3b478388385b038 +790, 0x48d955f24eba70be +791, 0x310e4deb07f24f68 +792, 0x8853e73b1f30a5a +793, 0x278aee45c2a65c5 +794, 0xf6932eedbd62fb0b +795, 0xafb95958c82fafad +796, 0x78e807c18616c16c +797, 0xd7abadda7488ed9f +798, 0x2dd72e2572aa2ae6 +799, 0x6ec3791982c2be09 +800, 0x6865bb314fac478f +801, 0xa14dc0ce09000d1a +802, 0xb8081ad134da10f2 +803, 0xc4ac1534aa825ef5 +804, 0xd83aeb48ae2d538f +805, 0x38052027e3074be4 +806, 0xa9833e06ef136582 +807, 0x4f02d790ec9fd78 +808, 0xec2f60bc711c5bdc +809, 0x9253b0d12268e561 +810, 0xa8ac607fdd62c206 +811, 0x895e28ebc920289f +812, 0xe2fd42b154243ac7 +813, 0xc69cac2f776eee19 +814, 0xf4d4ac11db56d0dc +815, 0xa8d37049b9f39833 +816, 0x75abbf8a196c337c +817, 0xb115bb76750d27b8 +818, 0x39426d187839154 +819, 0xd488423e7f38bf83 +820, 0xbb92e0c76ecb6a62 +821, 0x3055a018ce39f4e3 +822, 0xc93fe0e907729bfb +823, 0x65985d17c5863340 +824, 0x2088ae081b2028e1 +825, 0x6e628de873314057 +826, 0x864377cccf573f0e +827, 0xae03f4c9aa63d132 +828, 0xb1db766d6404c66d +829, 0xdce5a22414a374b +830, 0x622155b777819997 +831, 0x69fe96e620371f3c +832, 0xa9c67dbc326d94fc +833, 0x932a84ae5dd43bab +834, 0xe2301a20f6c48c3f +835, 0x795d2e79c6477300 +836, 0xd8e3e631289521e7 +837, 0xae2684979002dfd6 +838, 0xc9c2392377550f89 +839, 0xa1b0c99d508ef7ec +840, 0x593aef3c5a5272ec +841, 0xe32e511a4b7162cd +842, 0xab3b81655f5a2857 +843, 0x1b535e1a0aaf053e +844, 0x5b33f56c1b6a07e2 +845, 0x782dc8cfcac4ef36 +846, 0xb3d4f256eecfd202 +847, 0xf73a6598f58c4f7e +848, 0xd5722189524870ae +849, 0x707878de6b995fc0 +850, 0xc3eb6ba73e3d7e8a +851, 0xca75c017655b75a7 +852, 0x1b29369ea3541e5f +853, 0x352e98858bdb58a3 +854, 0x1e4412d184b6b27d +855, 0x2d375ba0304b2d17 +856, 0x56c30fce69a5d08e +857, 0x6b8c2b0c06584bda +858, 0xde4dfff228c8c91f +859, 0xb7c9edd574e6287f +860, 0xf6078281c9fca2b2 +861, 0xb9b9a51de02a2f1e +862, 0xa411bef31c0103b0 +863, 0xc5facd8fc5e1d7a3 +864, 0x54e631c05ddf7359 +865, 0x815b42b3fd06c474 +866, 0xc9ac07566fda18ec +867, 0xd84ea62957bd8e15 +868, 0x5575f74b5cfd8803 +869, 0x5779a8d460c2e304 +870, 0xfd6e87e264a85587 +871, 0xa1d674daa320b26d +872, 0x2c3c3ec64b35afc4 +873, 0x393a274ff03e6935 +874, 0x1f40ecbac52c50ea +875, 0xc3de64fa324ffc0c +876, 0x56ae828b7f9deb04 +877, 0xe7c1a77b5c1f2cb3 +878, 0xa4c4aab19ea921cc +879, 0xec164c238825822c +880, 0xa6a3304770c03b03 +881, 0x3a63641d5b1e8123 +882, 0x42677be3a54617ef +883, 0xa2680423e3a200c0 +884, 0x8b17cf75f3f37277 +885, 0xe7ce65a49242be3d +886, 0x7f85934271323e4b +887, 0xcfb0f431f79a4fab +888, 0x392e4041a8505b65 +889, 0xd3e5daf0d8b25ea6 +890, 0x9447eff675d80f53 +891, 0xea27a9d53cfaeea8 +892, 0xe3f2335945a83ba +893, 0x8875a43ce216413b +894, 0xe49941f9eabce33e +895, 0x9357c1296683a5b1 +896, 0xf0f16439e81ee701 +897, 0x3181515295ffd79a +898, 0x9d7150fffd169ed8 +899, 0x2d6a1d281e255a72 +900, 0x81bf1286fb3a92b6 +901, 0x566d3079b499e279 +902, 0xc7939ca8f047341 +903, 0xb1f8050e7c2d59f6 +904, 0x605701045e7be192 +905, 0x51b73360e8e31a1c +906, 0x9f4ad54483ba9fe0 +907, 0xd3085b8fcf69d1c8 +908, 0xc3e7475026dc5f0b +909, 0x5800f8554b157354 +910, 0x37dfdf858cfcd963 +911, 0x3a1fce05ce385072 +912, 0xf495c062645c20c3 +913, 0xdcbeec2c3492c773 +914, 0xc38f427589d1d0b4 +915, 0x681ead60216a8184 +916, 0x4bd569c40cc88c41 +917, 0x49b0d442e130b7a2 +918, 0xee349156b7d1fa3f +919, 0x2bde2d2db055135b +920, 0xc6a460d2fbcb2378 +921, 0xd0f170494ff3dbb +922, 0xb294422492528a23 +923, 0xfc95873c854e7b86 +924, 0x6c9c3ad1797bb19c +925, 0xe0c06f2aab65062d +926, 0x58e32ce0f11e3a81 +927, 0xa745fcd729ff5036 +928, 0x599b249b2fc2cdb2 +929, 0x78f23b5b0dd5b082 +930, 0x6de3e957f549ecfc +931, 0x9d0712fa6d878756 +932, 0x9076e8554e4a413a +933, 0xf3185818c0294de8 +934, 0x5de7cdf4b455b9b6 +935, 0xb15f6908ed703f7d +936, 0x98c654dfedc6818 +937, 0x120502ab0e93ae42 +938, 0x67966a98a58dc120 +939, 0x1caa0fc628989482 +940, 0xd8b2c3cd480a8625 +941, 0x85c70071b3aed671 +942, 0xff385f8473714662 +943, 0xe2868e4bf3773b63 +944, 0x96cf8019b279298e +945, 0x8511cc930bd74800 +946, 0x5312e48fdd55f5ab +947, 0xfcdae564b52df78d +948, 0x9eee48373e652176 +949, 0x953788f6bcbc56b0 +950, 0xd1a3855dbd2f6b37 +951, 0x3ad32acf77f4d1e9 +952, 0x917c7be81b003e30 +953, 0x9ce817da1e2e9dfb +954, 0x2968983db162d44d +955, 0x1e005decef5828ad +956, 0xc38fe59d1aa4f3d5 +957, 0xf357f1710dc02f1d +958, 0x2613912a4c83ec67 +959, 0x832a11470b9a17cb +960, 0x5e85508a611f0dad +961, 0x2781131677f59d56 +962, 0xa82358d7d4b0237f +963, 0xfbf8b3cc030c3af6 +964, 0x68b2f68ac8a55adb +965, 0x3b6fcf353add0ada +966, 0xd1956049bcd15bd5 +967, 0x95b76f31c7f98b6d +968, 0x814b6690df971a84 +969, 0xdcf7959cddd819e4 +970, 0xcf8c72c5d804fc88 +971, 0x56883769c8945a22 +972, 0x1f034652f658cf46 +973, 0x41df1324cda235a1 +974, 0xeccd32524504a054 +975, 0x974e0910a04ec02c +976, 0x72104507b821f6db +977, 0x791f8d089f273044 +978, 0xe0f79a4f567f73c3 +979, 0x52fe5bea3997f024 +980, 0x5f8b9b446494f78 +981, 0xfd9f511947059190 +982, 0x3aea9dac6063bce3 +983, 0xbfdae4dfc24aee60 +984, 0xa82cdbbf0a280318 +985, 0xf460aae18d70aa9d +986, 0x997367cb204a57c4 +987, 0x616e21ab95ba05ef +988, 0x9bfc93bec116769f +989, 0x2b2ee27c37a3fa5b +990, 0xb25c6ed54006ee38 +991, 0xab04d4a5c69e69a5 +992, 0x6d2f6b45f2d8438f +993, 0x4ad2f32afc82f092 +994, 0x513d718908f709c0 +995, 0x5272aadc4fffca51 +996, 0xeb3f87e66156ef5d +997, 0xf8a3d5a46a86ba85 +998, 0xdb4548a86f27abfd +999, 0x57c05f47ff62380d diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/data/sfc64-testset-1.csv b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/sfc64-testset-1.csv new file mode 100644 index 0000000..4fffe69 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/sfc64-testset-1.csv @@ -0,0 +1,1001 @@ +seed, 0xdeadbeaf +0, 0xa475f55fbb6bc638 +1, 0xb2d594b6c29d971c +2, 0x275bc4ece4484fb1 +3, 0x569be72d9b3492fb +4, 0x89a5bb9b206a670c +5, 0xd951bfa06afdc3f9 +6, 0x7ee2e1029d52a265 +7, 0x12ef1d4de0cb4d4c +8, 0x41658ba8f0ef0280 +9, 0x5b650c82e4fe09c5 +10, 0x638a9f3e30ec4e94 +11, 0x147487fb2ba9233e +12, 0x89ef035603d2d1fb +13, 0xe66ca57a190e6cbe +14, 0x330f673740dd61fc +15, 0xc71d3dce2f8bb34e +16, 0x3c07c39ff150b185 +17, 0x5df952b6cae8f099 +18, 0x9f09f2b1f0ceac80 +19, 0x19598eee2d0c4c67 +20, 0x64e06483702e0ebd +21, 0xda04d1fdb545f7fa +22, 0xf2cf53b61a0c4f9b +23, 0xf0bb724ce196f66e +24, 0x71cefde55d9cf0f +25, 0x6323f62824a20048 +26, 0x1e93604680f14b4e +27, 0xd9d8fad1d4654025 +28, 0xf4ee25af2e76ca08 +29, 0x6af3325896befa98 +30, 0xad9e43abf5e04053 +31, 0xbf930e318ce09de3 +32, 0x61f9583b4f9ffe76 +33, 0x9b69d0b3d5ec8958 +34, 0xa608f250f9b2ca41 +35, 0x6fdba7073dc2bb5d +36, 0xa9d57601efea6d26 +37, 0xc24a88a994954105 +38, 0xc728b1f78d88fe5b +39, 0x88da88c2b083b3b2 +40, 0xa9e27f7303c76cfd +41, 0xc4c24608c29176eb +42, 0x5420b58466b972fd +43, 0xd2018a661b6756c8 +44, 0x7caed83d9573fc7 +45, 0x562a3d81b849a06a +46, 0x16588af120c21f2c +47, 0x658109a7e0eb4837 +48, 0x877aabb14d3822e1 +49, 0x95704c342c3745fe +50, 0xeeb8a0dc81603616 +51, 0x431bf94889290419 +52, 0xe4a9410ab92a5863 +53, 0xbc6be64ea60f12ba +54, 0x328a2da920015063 +55, 0x40f6b3bf8271ae07 +56, 0x4068ff00a0e854f8 +57, 0x1b287572ca13fa78 +58, 0xa11624a600490b99 +59, 0x4a04ef29eb7150fa +60, 0xcc9469ab5ffb739 +61, 0x99a6a9f8d95e782 +62, 0x8e90356573e7a070 +63, 0xa740b8fb415c81c4 +64, 0x47eccef67447f3da +65, 0x2c720afe3a62a49b +66, 0xe2a747f0a43eacf4 +67, 0xba063a87ab165576 +68, 0xbc1c78ed27feb5a3 +69, 0x285a19fa3974f9d +70, 0x489c61e704f5f0e3 +71, 0xf5ab04f6b03f238b +72, 0x7e25f88138a110dd +73, 0xc3d1cef3d7c1f1d1 +74, 0xc3de6ec64d0d8e00 +75, 0x73682a15b6cc5088 +76, 0x6fecbeb319163dc5 +77, 0x7e100d5defe570a1 +78, 0xad2af9af076dce57 +79, 0x3c65100e23cd3a9a +80, 0x4b442cc6cfe521bb +81, 0xe89dc50f8ab1ef75 +82, 0x8b3c6fdc2496566 +83, 0xdfc50042bc2c308c +84, 0xe39c5f158b33d2b2 +85, 0x92f6adefdfeb0ac +86, 0xdf5808a949c85b3e +87, 0x437384021c9dace9 +88, 0xa7b5ed0d3d67d8f +89, 0xe1408f8b21da3c34 +90, 0xa1bba125c1e80522 +91, 0x7611dc4710385264 +92, 0xb00a46ea84082917 +93, 0x51bf8002ffa87cef +94, 0x9bb81013e9810adc +95, 0xd28f6600013541cd +96, 0xc2ca3b1fa7791c1f +97, 0x47f9ad58f099c82c +98, 0x4d1bb9458469caf9 +99, 0xca0b165b2844257 +100, 0xc3b2e667d075dc66 +101, 0xde22f71136a3dbb1 +102, 0x23b4e3b6f219e4c3 +103, 0x327e0db4c9782f66 +104, 0x9365506a6c7a1807 +105, 0x3e868382dedd3be7 +106, 0xff04fa6534bcaa99 +107, 0x96621a8862995305 +108, 0x81bf39cb5f8e1df7 +109, 0x79b684bb8c37af7a +110, 0xae3bc073c3cde33c +111, 0x7805674112c899ac +112, 0xd95a27995abb20f2 +113, 0x71a503c57b105c40 +114, 0x5ff00d6a73ec8acc +115, 0x12f96391d91e47c2 +116, 0xd55ca097b3bd4947 +117, 0x794d79d20468b04 +118, 0x35d814efb0d7a07d +119, 0xfa9ac9bd0aae76d3 +120, 0xa77b8a3711e175cd +121, 0xe6694fbf421f9489 +122, 0xd8f1756525a1a0aa +123, 0xe38dfa8426277433 +124, 0x16b640c269bbcd44 +125, 0x2a7a5a67ca24cfeb +126, 0x669039c28d5344b4 +127, 0x2a445ee81fd596bb +128, 0x600df94cf25607e0 +129, 0x9358561a7579abff +130, 0xee1d52ea179fc274 +131, 0x21a8b325e89d31be +132, 0x36fc0917486eec0a +133, 0x3d99f40717a6be9f +134, 0x39ac140051ca55ff +135, 0xcef7447c26711575 +136, 0xf22666870eff441d +137, 0x4a53c6134e1c7268 +138, 0xd26de518ad6bdb1b +139, 0x1a736bf75b8b0e55 +140, 0xef1523f4e6bd0219 +141, 0xb287b32fd615ad92 +142, 0x2583d6af5e841dd5 +143, 0x4b9294aae7ca670c +144, 0xf5aa4a84174f3ca9 +145, 0x886300f9e0dc6376 +146, 0x3611401e475ef130 +147, 0x69b56432b367e1ac +148, 0x30c330e9ab36b7c4 +149, 0x1e0e73079a85b8d5 +150, 0x40fdfc7a5bfaecf +151, 0xd7760f3e8e75a085 +152, 0x1cc1891f7f625313 +153, 0xeece1fe6165b4272 +154, 0xe61111b0c166a3c1 +155, 0x2f1201563312f185 +156, 0xfd10e8ecdd2a57cb +157, 0x51cdc8c9dd3a89bf +158, 0xed13cc93938b5496 +159, 0x843816129750526b +160, 0xd09995cd6819ada +161, 0x4601e778d40607df +162, 0xef9df06bd66c2ea0 +163, 0xae0bdecd3db65d69 +164, 0xbb921a3c65a4ae9a +165, 0xd66698ce8e9361be +166, 0xacdc91647b6068f4 +167, 0xe505ef68f2a5c1c0 +168, 0xd6e62fd27c6ab137 +169, 0x6a2ba2c6a4641d86 +170, 0x9c89143715c3b81 +171, 0xe408c4e00362601a +172, 0x986155cbf5d4bd9d +173, 0xb9e6831728c893a7 +174, 0xb985497c3bf88d8c +175, 0xd0d729214b727bec +176, 0x4e557f75fece38a +177, 0x6572067fdfd623ca +178, 0x178d49bb4d5cd794 +179, 0xe6baf59f60445d82 +180, 0x5607d53518e3a8d2 +181, 0xba7931adb6ebbd61 +182, 0xe853576172611329 +183, 0xe945daff96000c44 +184, 0x565b9ba3d952a176 +185, 0xcdb54d4f88c584c8 +186, 0x482a7499bee9b5e5 +187, 0x76560dd0affe825b +188, 0x2a56221faa5ca22c +189, 0x7729be5b361f5a25 +190, 0xd6f2195795764876 +191, 0x59ef7f8f423f18c5 +192, 0x7ebefed6d02adde1 +193, 0xcfec7265329c73e5 +194, 0x4fd8606a5e59881c +195, 0x95860982ae370b73 +196, 0xdecfa33b1f902acc +197, 0xf9b8a57400b7c0a6 +198, 0xd20b822672ec857b +199, 0x4eb81084096c7364 +200, 0xe535c29a44d9b6ad +201, 0xdef8b48ebacb2e29 +202, 0x1063bc2b8ba0e915 +203, 0xe4e837fb53d76d02 +204, 0x4df935db53579fb8 +205, 0xa30a0c8053869a89 +206, 0xe891ee58a388a7b5 +207, 0x17931a0c64b8a985 +208, 0xaf2d350b494ce1b3 +209, 0x2ab9345ffbcfed82 +210, 0x7de3fe628a2592f0 +211, 0x85cf54fab8b7e79d +212, 0x42d221520edab71b +213, 0x17b695b3af36c233 +214, 0xa4ffe50fe53eb485 +215, 0x1102d242db800e4d +216, 0xc8dc01f0233b3b6 +217, 0x984a030321053d36 +218, 0x27fa8dc7b7112c0e +219, 0xba634dd8294e177f +220, 0xe67ce34b36332eb +221, 0x8f1351e1894fb41a +222, 0xb522a3048761fd30 +223, 0xc350ad9bc6729edc +224, 0xe0ed105bd3c805e1 +225, 0xa14043d2b0825aa7 +226, 0xee7779ce7fc11fdf +227, 0xc0fa8ba23a60ab25 +228, 0xb596d1ce259afbad +229, 0xaa9b8445537fdf62 +230, 0x770ab2c700762e13 +231, 0xe812f1183e40cc1 +232, 0x44bc898e57aefbbd +233, 0xdd8a871df785c996 +234, 0x88836a5e371eb36b +235, 0xb6081c9152623f27 +236, 0x895acbcd6528ca96 +237, 0xfb67e33ddfbed435 +238, 0xaf7af47d323ce26 +239, 0xe354a510c3c39b2d +240, 0x5cacdedda0672ba3 +241, 0xa440d9a2c6c22b09 +242, 0x6395099f48d64304 +243, 0xc11cf04c75f655b5 +244, 0x1c4e054d144ddb30 +245, 0x3e0c2db89d336636 +246, 0x127ecf18a5b0b9a7 +247, 0x3b50551a88ea7a73 +248, 0xbd27003e47f1f684 +249, 0xf32d657782baac9b +250, 0x727f5cabf020bc9 +251, 0x39c1c1c226197dc7 +252, 0x5552c87b35deeb69 +253, 0x64d54067b5ce493f +254, 0x3494b091fe28dda0 +255, 0xdf0278bc85ee2965 +256, 0xdef16fec25efbd66 +257, 0xe2be09f578c4ce28 +258, 0xd27a9271979d3019 +259, 0x427f6fcd71845e3 +260, 0x26b52c5f81ec142b +261, 0x98267efc3986ad46 +262, 0x7bf4165ddb7e4374 +263, 0xd05f7996d7941010 +264, 0x3b3991de97b45f14 +265, 0x9068217fb4f27a30 +266, 0xd8fe295160afc7f3 +267, 0x8a159fab4c3bc06f +268, 0x57855506d19080b6 +269, 0x7636df6b3f2367a4 +270, 0x2844ee3abd1d5ec9 +271, 0xe5788de061f51c16 +272, 0x69e78cc9132a164 +273, 0xacd53cde6d8cd421 +274, 0xb23f3100068e91da +275, 0x4140070a47f53891 +276, 0xe4a422225a96e53a +277, 0xb82a8925a272a2ac +278, 0x7c2f9573590fe3b7 +279, 0xbaf80764db170575 +280, 0x955abffa54358368 +281, 0x355ce7460614a869 +282, 0x3700ede779a4afbf +283, 0x10a6ec01d92d68cd +284, 0x3308f5a0a4c0afef +285, 0x97b892d7601136c9 +286, 0x4955c3b941b8552e +287, 0xca85aa67e941961d +288, 0xb1859ae5db28e9d2 +289, 0x305d072ac1521fbd +290, 0xed52a868996085bb +291, 0x723bfa6a76358852 +292, 0x78d946ecd97c5fb3 +293, 0x39205b30a8e23e79 +294, 0xb927e3d086baadbe +295, 0xa18d6946136e1ff5 +296, 0xdab6f0b51c1eb5ff +297, 0xf0a640bf7a1af60c +298, 0xf0e81db09004d0d4 +299, 0xfe76cebdbe5a4dde +300, 0x2dafe9cc3decc376 +301, 0x4c871fdf1af34205 +302, 0xe79617d0c8fa893b +303, 0xee658aaad3a141f7 +304, 0xfd91aa74863e19f1 +305, 0x841b8f55c103cc22 +306, 0x22766ed65444ad5d +307, 0x56d03d1beca6c17a +308, 0x5fd4c112c92036ae +309, 0x75466ae58a5616dc +310, 0xfbf98b1081e802a9 +311, 0xdc325e957bf6d8f5 +312, 0xb08da7015ebd19b7 +313, 0xf25a9c0944f0c073 +314, 0xf4625bafa0ced718 +315, 0x4349c9e093a9e692 +316, 0x75a9ccd4dd8935cb +317, 0x7e6cf9e539361e91 +318, 0x20fdd22fb6edd475 +319, 0x5973021b57c2311f +320, 0x75392403667edc15 +321, 0xed9b2156ea70d9f1 +322, 0xf40c114db50b64a0 +323, 0xe26bb2c9eef20c62 +324, 0x409c1e3037869f03 +325, 0xcdfd71fdda3b7f91 +326, 0xa0dfae46816777d6 +327, 0xde060a8f61a8deb8 +328, 0x890e082a8b0ca4fc +329, 0xb9f2958eddf2d0db +330, 0xd17c148020d20e30 +331, 0xffdc9cc176fe7201 +332, 0xffb83d925b764c1 +333, 0x817ea639e313da8d +334, 0xa4dd335dd891ca91 +335, 0x1342d25a5e81f488 +336, 0xfa7eb9c3cf466b03 +337, 0xfe0a423d44b185d0 +338, 0x101cfd430ab96049 +339, 0x7b5d3eda9c4504b +340, 0xe20ccc006e0193f1 +341, 0xf54ccddedebc5df0 +342, 0xc0edd142bd58f1db +343, 0x3831f40d378d2430 +344, 0x80132353f0a88289 +345, 0x688f23c419d03ef8 +346, 0x4c6837e697884066 +347, 0x699387bb2e9a3a8f +348, 0x8996f860342448d8 +349, 0xb0f80dff99bfa5cc +350, 0x3e927a7f9ea12c8e +351, 0xd7e498d1e5f9dff3 +352, 0x78ecb97bb3f864cc +353, 0x3c4ffd069a014d38 +354, 0xf8d5073a1e09b4d4 +355, 0x8717e854f9faef23 +356, 0xfbcc5478d8d0ad7 +357, 0xd3cd8b233ca274ff +358, 0x8bd8f11f79beb265 +359, 0xf64498a832d8fd0e +360, 0xb01bba75112131ec +361, 0x55572445a7869781 +362, 0x7b56622f18cb3d7a +363, 0x7f192c9e075bdb83 +364, 0xd9a112f836b83ff3 +365, 0x68673b37269653dc +366, 0xe46a9433fb6a0879 +367, 0x127d756ca4779001 +368, 0xc1378e8b1e8eab94 +369, 0x1006edb0f51d078c +370, 0xc6dd53961232d926 +371, 0x9a4aeef44038256d +372, 0xd357f4fa652d4f5f +373, 0x59f3d2cc3378598 +374, 0xe76e6207a824a7fc +375, 0x5fc5e33712ceffef +376, 0x77d24aeb0ccb1adc +377, 0x5be4b2826805659e +378, 0x257c69d787e64634 +379, 0x58dd52ca6bc727b1 +380, 0x3ab997767235ea33 +381, 0x986a2a7a966fad14 +382, 0xc900f8b27761dcc4 +383, 0x44991bdb13795700 +384, 0xe5c145a4fe733b2 +385, 0x56f041b56bffe0d3 +386, 0x5779c4fef8067996 +387, 0xa0fe8748e829532d +388, 0x840c1277d78d9dd4 +389, 0x37ebcb315432acbc +390, 0xf4bc8738433ba3be +391, 0x8b122993f2e10062 +392, 0xe1fe8481f2681ed5 +393, 0x8e23f1630d9f494a +394, 0xda24661a01b7d0b3 +395, 0x7a02942a179cee36 +396, 0xf1e08a3c09b71ac +397, 0x3dec2cc7ee0bd8fd +398, 0x1f3e480113d805d4 +399, 0xc061b973ad4e3f2c +400, 0x6bea750f17a66836 +401, 0xbc2add72eac84c25 +402, 0xcff058d3f97934ca +403, 0x54ccc30987778ec2 +404, 0x93449ec1e1469558 +405, 0xe2ff369eb0c6836 +406, 0x41c2df2d63bf8e55 +407, 0xf9302629b6c71be2 +408, 0xdd30376b8e5ab29a +409, 0x12db9e04f911d754 +410, 0x8d03d6cd359f1b97 +411, 0xe15956511abf1cee +412, 0x9b68e10e2c2fd940 +413, 0x2e28de6491c1ce53 +414, 0x52b329b72d0c109d +415, 0xc2c0b115f9da2a60 +416, 0x6ca084105271bbff +417, 0x49b92b8676058c1e +418, 0x767fc92a70f7e5a3 +419, 0x87ba4ed4b65a6aa0 +420, 0xf70b052e0a3975e9 +421, 0x3e925c3306db9eec +422, 0x43253f1d96ac9513 +423, 0xe3e04f1a1ea454c4 +424, 0x763e3f4cc81ba0c8 +425, 0x2a2721ac69265705 +426, 0xdf3b0ac6416ea214 +427, 0xa6a6b57450f3e000 +428, 0xc3d3b1ac7dbfe6ac +429, 0xb66e5e6f7d2e4ec0 +430, 0x43c65296f98f0f04 +431, 0xdb0f6e3ff974d842 +432, 0x3d6b48e02ebb203b +433, 0xd74674ebf09d8f27 +434, 0xbe65243c58fc1200 +435, 0x55eb210a68d42625 +436, 0x87badab097dbe883 +437, 0xada3fda85a53824f +438, 0xef2791e8f48cd37a +439, 0x3fe7fceb927a641a +440, 0xd3bffd3ff031ac78 +441, 0xb94efe03da4d18fb +442, 0x162a0ad8da65ea68 +443, 0x300f234ef5b7e4a6 +444, 0xa2a8b4c77024e4fb +445, 0x5950f095ddd7b109 +446, 0xded66dd2b1bb02ba +447, 0x8ec24b7fa509bcb6 +448, 0x9bede53d924bdad6 +449, 0xa9c3f46423be1930 +450, 0x6dfc90597f8de8b4 +451, 0xb7419ebc65b434f0 +452, 0xa6596949238f58b9 +453, 0x966cbade640829b8 +454, 0x58c74877bdcbf65e +455, 0xaa103b8f89b0c453 +456, 0x219f0a86e41179a4 +457, 0x90f534fc06ddc57f +458, 0x8db7cdd644f1affa +459, 0x38f91de0167127ac +460, 0xdcd2a65e4df43daa +461, 0x3e04f34a7e01f834 +462, 0x5b237eea68007768 +463, 0x7ff4d2b015921768 +464, 0xf786b286549d3d51 +465, 0xaefa053fc2c3884c +466, 0x8e6a8ff381515d36 +467, 0x35b94f3d0a1fce3c +468, 0x165266d19e9abb64 +469, 0x1deb5caa5f9d8076 +470, 0x13ab91290c7cfe9d +471, 0x3651ca9856be3e05 +472, 0xe7b705f6e9cccc19 +473, 0xd6e7f79668c127ed +474, 0xa9faf37154896f92 +475, 0x89fbf190603e0ab1 +476, 0xb34d155a86f942d0 +477, 0xb2d4400a78bfdd76 +478, 0x7c0946aca8cfb3f0 +479, 0x7492771591c9d0e8 +480, 0xd084d95c5ca2eb28 +481, 0xb18d12bd3a6023e +482, 0xea217ed7b864d80b +483, 0xe52f69a755dd5c6f +484, 0x127133993d81c4aa +485, 0xe07188fcf1670bfb +486, 0x178fbfe668e4661d +487, 0x1c9ee14bb0cda154 +488, 0x8d043b96b6668f98 +489, 0xbc858986ec96ca2b +490, 0x7660f779d528b6b7 +491, 0xd448c6a1f74ae1d3 +492, 0x178e122cfc2a6862 +493, 0x236f000abaf2d23b +494, 0x171b27f3f0921915 +495, 0x4c3ff07652f50a70 +496, 0x18663e5e7d3a66ca +497, 0xb38c97946c750cc9 +498, 0xc5031aae6f78f909 +499, 0x4d1514e2925e95c1 +500, 0x4c2184a741dabfbb +501, 0xfd410364edf77182 +502, 0xc228157f863ee873 +503, 0x9856fdc735cc09fc +504, 0x660496cd1e41d60e +505, 0x2edf1d7e01954c32 +506, 0xd32e94639bdd98cf +507, 0x8e153f48709a77d +508, 0x89357f332d2d6561 +509, 0x1840d512c97085e6 +510, 0x2f18d035c9e26a85 +511, 0x77b88b1448b26d5b +512, 0xc1ca6ef4cdae0799 +513, 0xcc203f9e4508165f +514, 0xeaf762fbc9e0cbbe +515, 0xc070c687f3c4a290 +516, 0xd49ed321068d5c15 +517, 0x84a55eec17ee64ee +518, 0x4d8ee685298a8871 +519, 0x9ff5f17d7e029793 +520, 0x791d7d0d62e46302 +521, 0xab218b9114e22bc6 +522, 0x4902b7ab3f7119a7 +523, 0x694930f2e29b049e +524, 0x1a3c90650848999f +525, 0x79f1b9d8499c932b +526, 0xfacb6d3d55e3c92f +527, 0x8fd8b4f25a5da9f5 +528, 0xd037dcc3a7e62ae7 +529, 0xfecf57300d8f84f4 +530, 0x32079b1e1dc12d48 +531, 0xe5f8f1e62b288f54 +532, 0x97feba3a9c108894 +533, 0xd279a51e1899a9a0 +534, 0xd68eea8e8e363fa8 +535, 0x7394cf2deeca9386 +536, 0x5f70b0c80f1dbf10 +537, 0x8d646916ed40462 +538, 0xd253bb1c8a12bbb6 +539, 0x38f399a821fbd73e +540, 0x947523a26333ac90 +541, 0xb52e90affbc52a37 +542, 0xcf899cd964654da4 +543, 0xdf66ae9cca8d99e7 +544, 0x6051478e57c21b6a +545, 0xffa7dc975af3c1da +546, 0x195c7bff2d1a8f5 +547, 0x64f12b6575cf984d +548, 0x536034cb842cf9e1 +549, 0x180f247ce5bbfad +550, 0x8ced45081b134867 +551, 0x532bbfdf426710f3 +552, 0x4747933e74c4f54d +553, 0x197a890dc4793401 +554, 0x76c7cc2bd42fae2 +555, 0xdabfd67f69675dd0 +556, 0x85c690a68cdb3197 +557, 0xe482cec89ce8f92 +558, 0x20bc9fb7797011b1 +559, 0x76dc85a2185782ad +560, 0x3df37c164422117a +561, 0x99211f5d231e0ab0 +562, 0xef7fd794a0a91f4 +563, 0x419577151915f5fe +564, 0x3ce14a0a7135dae3 +565, 0x389b57598a075d6a +566, 0x8cc2a9d51b5af9aa +567, 0xe80a9beffbd13f13 +568, 0x65e96b22ea8a54d8 +569, 0x79f38c4164138ede +570, 0xd1955846cba03d81 +571, 0x60359fe58e4f26d6 +572, 0x4ea724f585f8d13e +573, 0x316dfdbadc801a3c +574, 0x20aa29b7c6dd66fe +575, 0x65eaf83a6a008caa +576, 0x407000aff1b9e8cb +577, 0xb4d49bfb2b268c40 +578, 0xd4e6fe8a7a0f14a9 +579, 0xe34afef924e8f58e +580, 0xe377b0c891844824 +581, 0x29c2e20c112d30c8 +582, 0x906aad1fe0c18a95 +583, 0x308385f0efbb6474 +584, 0xf23900481bf70445 +585, 0xfdfe3ade7f937a55 +586, 0xf37aae71c33c4f97 +587, 0x1c81e3775a8bed85 +588, 0x7eb5013882ce35ea +589, 0x37a1c1692495818d +590, 0x3f90ae118622a0ba +591, 0x58e4fe6fea29b037 +592, 0xd10ff1d269808825 +593, 0xbce30edb60c21bba +594, 0x123732329afd6fee +595, 0x429b4059f797d840 +596, 0x421166568a8c4be1 +597, 0x88f895c424c1bd7f +598, 0x2adaf7a7b9f781cb +599, 0xa425644b26cb698 +600, 0x8cc44d2486cc5743 +601, 0xdb9f357a33abf6ba +602, 0x1a57c4ea77a4d70c +603, 0x1dea29be75239e44 +604, 0x463141a137121a06 +605, 0x8fecfbbe0b8a9517 +606, 0x92c83984b3566123 +607, 0x3b1c69180ed28665 +608, 0x14a6073425ea8717 +609, 0x71f4c2b3283238d7 +610, 0xb3d491e3152f19f +611, 0x3a0ba3a11ebac5d2 +612, 0xddb4d1dd4c0f54ac +613, 0xdb8f36fe02414035 +614, 0x1cf5df5031b1902c +615, 0x23a20ed12ef95870 +616, 0xf113e573b2dedcbb +617, 0x308e2395cde0a9fa +618, 0xd377a22581c3a7da +619, 0xe0ced97a947a66fb +620, 0xe44f4de9cd754b00 +621, 0x2344943337d9d1bf +622, 0x4b5ae5e2ea6e749c +623, 0x9b8d2e3ef41d1c01 +624, 0x59a5a53ebbd24c6b +625, 0x4f7611bf9e8a06fb +626, 0xea38c7b61361cd06 +627, 0xf125a2bfdd2c0c7 +628, 0x2df8dcb5926b9ebb +629, 0x233e18720cc56988 +630, 0x974c61379b4aa95e +631, 0xc7fe24c1c868910b +632, 0x818fd1affc82a842 +633, 0xcee92a952a26d38e +634, 0x8962f575ebcbf43 +635, 0x7770687e3678c460 +636, 0xdfb1db4ed1298117 +637, 0xb9db54cb03d434d3 +638, 0x34aebbf2244257ad +639, 0xd836db0cb210c490 +640, 0x935daed7138957cd +641, 0x3cd914b14e7948fd +642, 0xd0472e9ed0a0f7f0 +643, 0xa9df33dca697f75e +644, 0x15e9ea259398721a +645, 0x23eeba0f970abd60 +646, 0x2217fdf8bbe99a12 +647, 0x5ea490a95717b198 +648, 0xf4e2bfc28280b639 +649, 0x9d19916072d6f05c +650, 0x5e0387cab1734c6a +651, 0x93c2c8ac26e5f01e +652, 0xb0d934354d957eb1 +653, 0xee5099a1eef3188c +654, 0x8be0abca8edc1115 +655, 0x989a60845dbf5aa3 +656, 0x181c7ed964eee892 +657, 0x49838ea07481288d +658, 0x17dbc75d66116b2e +659, 0xa4cafb7a87c0117e +660, 0xab2d0ae44cdc2e6e +661, 0xdf802f2457e7da6 +662, 0x4b966c4b9187e124 +663, 0x62de9db6f4811e1a +664, 0x1e20485968bc62 +665, 0xe9ac288265caca94 +666, 0xc5c694d349aa8c1a +667, 0x3d67f2083d9bdf10 +668, 0x9a2468e503085486 +669, 0x9d6acd3dc152d1a3 +670, 0xca951e2aeee8df77 +671, 0x2707371af9cdd7b0 +672, 0x2347ae6a4eb5ecbd +673, 0x16abe5582cb426f +674, 0x523af4ff980bbccb +675, 0xb07a0f043e3694aa +676, 0x14d7c3da81b2de7 +677, 0xf471f1b8ac22305b +678, 0xdb087ffff9e18520 +679, 0x1a352db3574359e8 +680, 0x48d5431502cc7476 +681, 0x7c9b7e7003dfd1bf +682, 0x4f43a48aae987169 +683, 0x9a5d3eb66dedb3e9 +684, 0xa7b331af76a9f817 +685, 0xba440154b118ab2d +686, 0x64d22344ce24c9c6 +687, 0xa22377bd52bd043 +688, 0x9dfa1bb18ca6c5f7 +689, 0xdccf44a92f644c8b +690, 0xf623d0a49fd18145 +691, 0x556d5c37978e28b3 +692, 0xad96e32ce9d2bb8b +693, 0x2e479c120be52798 +694, 0x7501cf871af7b2f7 +695, 0xd02536a5d026a5b8 +696, 0x4b37ff53e76ab5a4 +697, 0xdb3a4039caaeab13 +698, 0x6cbd65e3b700c7be +699, 0x7367abd98761a147 +700, 0xf4f9ba216a35aa77 +701, 0xf88ca25ce921eb86 +702, 0xb211de082ec2cbf2 +703, 0xdd94aa46ec57e12e +704, 0xa967d74ad8210240 +705, 0xdaa1fada8cfa887 +706, 0x85901d081c4488ee +707, 0xcf67f79a699ef06 +708, 0x7f2f1f0de921ee14 +709, 0x28bc61e9d3f2328b +710, 0x3332f2963faf18e5 +711, 0x4167ac71fcf43a6 +712, 0x843c1746b0160b74 +713, 0xd9be80070c578a5e +714, 0xbd7250c9af1473e7 +715, 0x43f78afaa3647899 +716, 0x91c6b5dd715a75a5 +717, 0x29cc66c8a07bfef3 +718, 0x3f5c667311dc22be +719, 0x4f49cd47958260cd +720, 0xbef8be43d920b64e +721, 0x7a892a5f13061d8b +722, 0x9532f40125c819b1 +723, 0x924fca3045f8a564 +724, 0x9b2c6442453b0c20 +725, 0x7e21009085b8e793 +726, 0x9b98c17e17af59d2 +727, 0xba61acb73e3ae89a +728, 0xb9d61a710555c138 +729, 0xc2a425d80978974b +730, 0xa275e13592da7d67 +731, 0xe962103202d9ad0f +732, 0xbdf8367a4d6f33fd +733, 0xe59beb2f8648bdc8 +734, 0xb4c387d8fbc4ac1c +735, 0x5e3f276b63054b75 +736, 0xf27e616aa54d8464 +737, 0x3f271661d1cd7426 +738, 0x43a69dbee7502c78 +739, 0x8066fcea6df059a1 +740, 0x3c10f19409bdc993 +741, 0x6ba6f43fb21f23e0 +742, 0x9e182d70a5bccf09 +743, 0x1520783d2a63a199 +744, 0xba1dcc0c70b9cace +745, 0x1009e1e9b1032d8 +746, 0xf632f6a95fb0315 +747, 0x48e711c7114cbfff +748, 0xef281dcec67debf7 +749, 0x33789894d6abf59b +750, 0x6c8e541fffbe7f9c +751, 0x85417f13b08e0a88 +752, 0x9a581e36d589608f +753, 0x461dca50b1befd35 +754, 0x5a3231680dde6462 +755, 0xcc57acf729780b97 +756, 0x50301efef62e1054 +757, 0x675d042cd4f6bbc9 +758, 0x1652fdd3794384c9 +759, 0x1c93bbeeb763cd4d +760, 0x44b7240c4b105242 +761, 0x4c6af2a1b606ccfb +762, 0x18fc43ece2ec1a40 +763, 0x859a5511aeae8acb +764, 0x2f56826f1996ad2f +765, 0xa8e95ce8bb363bdf +766, 0xf4da396054e50e4b +767, 0x5493865e9895883c +768, 0x768e4c8b332ac0e3 +769, 0x32195d2aa583fca5 +770, 0xf2f353f21266bc15 +771, 0x43cddf1d021307d +772, 0x6031e3aa30300e4a +773, 0x4f1298469ac6088f +774, 0x4b4d450bafac574e +775, 0x23e1cf9c0582a22b +776, 0x2e9036980db49cd0 +777, 0xe4e228b113c411b2 +778, 0x8bddcdb82b51706 +779, 0xd2a7ea8288593629 +780, 0x67fe90e98fdda61 +781, 0x7b63494dba95717b +782, 0x105625904510d782 +783, 0xdf4aa2242454e50a +784, 0x32541d6cd7d6c7e3 +785, 0x5661fb432591cf3b +786, 0xce920a5ed047bce7 +787, 0xed4178a3c96eea8f +788, 0xe378cd996e39863b +789, 0x169e1fdc8e2b05e1 +790, 0xaee1812ef7149a96 +791, 0x648571c7453d12c5 +792, 0xb7b6bc9328573c43 +793, 0xe7fb969078e270d7 +794, 0xdfc2b1b8985f6e6f +795, 0x862b6527ee39a1aa +796, 0x1ee329aea91d7882 +797, 0x20d25324f2fe704 +798, 0xbfcc47401fc3bbfd +799, 0x1515cdc8d48b2904 +800, 0xbd6eefe86284261c +801, 0x9b1f28e3b35f22ee +802, 0x842a29d35e5aecda +803, 0xf2346109ad370765 +804, 0x24d68add5a71afd9 +805, 0x4a691421613d91e2 +806, 0x60e3058b3c244051 +807, 0x79194905cdaa5de8 +808, 0xe0e2df35c01e8987 +809, 0xe29b78beffbb5e4a +810, 0xcdcdbc020218c19e +811, 0x5ae0af8c16feae43 +812, 0x8109292feeaf14fa +813, 0x34113f7508dfa521 +814, 0xc062ac163f56730a +815, 0xf1660e66ec6d4c4c +816, 0x5966c55f60151c80 +817, 0x3865ae8ec934b17 +818, 0x472a7314afb055ec +819, 0x7a24277309a44a44 +820, 0x556e02dd35d38baa +821, 0x9849611a1bc96ec1 +822, 0xd176f5d5a8eb0843 +823, 0x44db12ec60510030 +824, 0x272e3a06a0030078 +825, 0x7c4764dbefc075ea +826, 0x910712f3735c1183 +827, 0xd49a2da74ae7aff6 +828, 0xcf9b3e6e8f776d71 +829, 0x27789fe3ec481a02 +830, 0x86659f82c6b5912b +831, 0xe044b3dbf339158c +832, 0x99d81f6bb62a37b0 +833, 0x5f5830c246fada9a +834, 0xe68abab1eeb432cb +835, 0x49c5c5ace04e104 +836, 0x1ac3871b3fc6771b +837, 0x773b39f32d070652 +838, 0x9c4138c2ae58b1f3 +839, 0xac41c63d7452ac60 +840, 0x9248826b245359e1 +841, 0x99bba1c7a64f1670 +842, 0xe0dc99ff4ebb92f2 +843, 0x113638652740f87c +844, 0xebf51e94da88cfc +845, 0x5441c344b81b2585 +846, 0xe1e69e0bc2de652a +847, 0xe9ab6d64ae42ed1e +848, 0x879af8730e305f31 +849, 0x36b9ad912c7e00d6 +850, 0x83ef5e9fca853886 +851, 0xda54d48bb20ea974 +852, 0x32c6d93aefa92aa2 +853, 0x4e887b2c3391847d +854, 0x50966e815f42b1b8 +855, 0x53411ac087832837 +856, 0x46f64fef79df4f29 +857, 0xb34aae3924cd272c +858, 0xf5ad455869a0adbe +859, 0x8351ded7144edac8 +860, 0xeb558af089677494 +861, 0x36ed71d69293a8d6 +862, 0x659f90bf5431b254 +863, 0x53349102b7519949 +864, 0x3db83e20b1713610 +865, 0x6d63f96090556254 +866, 0x4cc0467e8f45c645 +867, 0xb8840c4bd5cd4091 +868, 0xbd381463cc93d584 +869, 0x203410d878c2066d +870, 0x2ebea06213cf71c8 +871, 0x598e8fb75e3fceb4 +872, 0xdcca41ceba0fce02 +873, 0x61bf69212b56aae5 +874, 0x97eed7f70c9114fa +875, 0xf46f37a8b7a063f9 +876, 0x66c8f4ffe5bd6efa +877, 0xe43fd6efda2d4e32 +878, 0x12d6c799e5ad01de +879, 0x9ac83e7f8b709360 +880, 0xbbb7bb3c1957513d +881, 0x7f87c08d4b3796b0 +882, 0x9a7d1d74b6aa4a5c +883, 0xa4314530ff741b6f +884, 0x99a80c6b6f15fca8 +885, 0xd2fec81d6d5fc3ce +886, 0x15a98be1cc40cea +887, 0x98693eb7719366f3 +888, 0x36ccdc2a9e9d4de8 +889, 0x3c8208f63d77df25 +890, 0xca2e376e2343df6 +891, 0xcc9b17cbb54420c6 +892, 0x8724c44a64d7dcb8 +893, 0x9d00c6949ff33869 +894, 0xf4f8e584d2699372 +895, 0x88f4748cdd5a2d53 +896, 0xe215072a1205bc6d +897, 0x190934fe6d740442 +898, 0x7fac5c0ab2af106d +899, 0x1b86633a0bd84fa1 +900, 0x1293e54318492dfb +901, 0x433324fd390f34b9 +902, 0x4c5eb2c67a44643b +903, 0x59a6e281c388b0dd +904, 0xe78e03f9c44623b7 +905, 0x91307a93c768fc3d +906, 0xde8867b004d8e3ff +907, 0xdf52c3f57b7c5862 +908, 0x993f3e1d10358a92 +909, 0x9ccb10bc3e18662d +910, 0x45093ce48a114c73 +911, 0xd59d05979d26330a +912, 0x417c0e03300119a9 +913, 0x1c336500f90cde81 +914, 0x1c8ccd29ead9b85b +915, 0xb76baf3e55d4d950 +916, 0x133ad6196c75fd7e +917, 0x34200b0cde7ed560 +918, 0x9c7c3dacb213c8d9 +919, 0xd97563c4fd9bf1b6 +920, 0x5d910e871835b6cb +921, 0x7d46c4733a16bdf9 +922, 0xe41d73194ddc87b2 +923, 0x7d3d8a0855a465a9 +924, 0x70c2a8b5d3f90c0f +925, 0x9e7565ca5dccfe12 +926, 0x2c0acb4577aa51b1 +927, 0x3d2cd211145b79c7 +928, 0x15a7b17aa6da7732 +929, 0xab44a3730c27d780 +930, 0xf008bd6c802bde3a +931, 0x82ed86ddf3619f77 +932, 0xaabe982ab15c49f9 +933, 0x9bcad8fa6d8e58a4 +934, 0x8f39ed8243718aa1 +935, 0xe9489340e03e3cb6 +936, 0xc722314f5eefb8d0 +937, 0x870e8869a436df59 +938, 0x4dae75b8087a8204 +939, 0xe1d790f6ec6e425b +940, 0xafd39ea1b1d0ed09 +941, 0xdf2c99e464ddf08f +942, 0x74936d859ab9644d +943, 0x3871302164250e73 +944, 0x764b68921e911886 +945, 0x2a1d024b26bb9d66 +946, 0x797fba43918e75b4 +947, 0x62ec6d24ccca335b +948, 0xf4bd8b951762b520 +949, 0x9d450dede9119397 +950, 0x5393a26d10f8c124 +951, 0x6b74769392896b57 +952, 0x7f61dbcc0e328581 +953, 0x64e1df3884d0d94 +954, 0xba77dcdf23738c37 +955, 0xf8e288bc0a177475 +956, 0x4a8abfd1702ecb7d +957, 0x53f22886694736a7 +958, 0x8fc982597ced3e3 +959, 0x1bc46090f820fff7 +960, 0x8bd31f965d02229f +961, 0x65cd0cb29996ee53 +962, 0x702e0f4fcf8c2e9f +963, 0x293b77bff307a9a0 +964, 0x125a986b8b305788 +965, 0x416b0eea428ebf3c +966, 0xeac85421ab0e8469 +967, 0x7f5496095019aa68 +968, 0x1a96d7afbc708e0 +969, 0xb91262e6766e01e1 +970, 0xd0a549cc4ccc6954 +971, 0x75a9a073f50c8a0d +972, 0xae275d2c1c6cd23c +973, 0xcf159b5ec5d28fd4 +974, 0x75d0838ce9b92b +975, 0xd4eddcee6dc4677f +976, 0x6a0a8ad5df6b75b8 +977, 0x6f3fd0ef0f13ecc4 +978, 0xb75a5826c1a8f8a8 +979, 0xd47098bbc7943766 +980, 0x3d4ddd62d5f23dd1 +981, 0x760a904e4583841c +982, 0x2afeb5022b4cf1f +983, 0x66d5f653729f0a13 +984, 0x9a6a5ab62980d30f +985, 0xc332f5643bbf8d5b +986, 0x848fb702e4056a90 +987, 0xa057beaf3f9e8c5f +988, 0x6cc603e4560a6c6a +989, 0xec761811a7b23211 +990, 0xb14aa4090a82aaa5 +991, 0xe29d9d028a5b2dbb +992, 0x5564e53738d68f97 +993, 0xfabca36542eaaf3b +994, 0xb9912fcb782020a2 +995, 0xe865e01b349284fd +996, 0x540b5ff11c5f9274 +997, 0x3463f64e1e7451dc +998, 0xe15d3e2f33b735f8 +999, 0xf5433336eadef6e diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/data/sfc64-testset-2.csv b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/sfc64-testset-2.csv new file mode 100644 index 0000000..70aebd5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/sfc64-testset-2.csv @@ -0,0 +1,1001 @@ +seed, 0x0 +0, 0x91959e5fb96a6332 +1, 0x3c1dd8a25a7e9f21 +2, 0x657bdffc99798d9e +3, 0x1a04de320b19e022 +4, 0x65b92af0e5f3c61c +5, 0x9c84070ce8f743c0 +6, 0xbb10e573693cdb25 +7, 0xd65ea9e76b37fb6b +8, 0x503efd0e76c8ae66 +9, 0xd711dcd04c26d0f +10, 0x12f53f435814ac8c +11, 0xb392cd402cfc82bd +12, 0x461764550e06c889 +13, 0x716a48b3514e6979 +14, 0xdd0a322213c18ad7 +15, 0x6673a8ca0a05c4d7 +16, 0x2992ef333437f844 +17, 0xc4aaf7e8240b2aad +18, 0x6ab0a1af1f41474f +19, 0xb0bae400c226941d +20, 0xe5f80c2eeeab48c6 +21, 0x3832c6a93a4024bf +22, 0x280bd824fabe8368 +23, 0x66b626228321e5ff +24, 0xe0bdfba5325a307e +25, 0x3a5f65c6ef254e05 +26, 0x99ea12503cb02f94 +27, 0x5d01fd2db77d420b +28, 0x6959bf5f36b2368d +29, 0xd856e30c62b5f5be +30, 0xe33233e1d8140e66 +31, 0xb78be619d415fa8d +32, 0x4f943bb2cc63d3b +33, 0x9b1460b290952d81 +34, 0x19205d794826740e +35, 0x64617bd9d7a6a1ff +36, 0x30442124b55ea76a +37, 0xebbbc3b29d0333fc +38, 0x39235a0fe359751c +39, 0xf9629768891121aa +40, 0x32052f53f366e05a +41, 0x60cc5b412c925bc8 +42, 0xf8b7ecda1c0e5a9 +43, 0x195f036e170a2568 +44, 0xfe06d0381a9ca782 +45, 0x919d89e8b88eebbf +46, 0xa47fb30148cf0d43 +47, 0x5c983e99d5f9fd56 +48, 0xe7492cdb6a1d42cd +49, 0xf9cfe5c865b0cfd8 +50, 0x35b653367bbc3b99 +51, 0xb1d92f6f4d4e440b +52, 0x737e1d5bd87ed9c0 +53, 0x7a880ca1498f8e17 +54, 0x687dae8494f9a3f7 +55, 0x6bae1989f441d5d7 +56, 0x71ad3fa5a9195c2e +57, 0x16b3969779f5d03 +58, 0xd1bce2ac973f15b3 +59, 0xa114b1ee2ce0dcdd +60, 0x270d75c11eb1b8d5 +61, 0xc48ffa087c0a7bc +62, 0xaaf9dc48cda9848d +63, 0x8111cf10ef6e584d +64, 0x6736df6af40ee6f4 +65, 0x1a1a111682fbf98d +66, 0xeb217658e1cb3b5d +67, 0xcaf58a8b79de9dec +68, 0x25d0ffd63c88d7a1 +69, 0x4c498cd871b7f176 +70, 0x4069a6156eb0cf3c +71, 0xdf012f12edcdd867 +72, 0x7734c0ac8edb1689 +73, 0xed6960ac53dbc245 +74, 0x305e20da8868c661 +75, 0x5f0c7a3719956f95 +76, 0x66842bbe3b28895 +77, 0xb608bc9a31eac410 +78, 0xfcb17d5529503abd +79, 0x829ae5cbc29b92ee +80, 0x17f2f0027bc24f3a +81, 0x435926c33d8f44cc +82, 0x3ab899327098dbec +83, 0xaf78573b27f8ead8 +84, 0xa8b334fabcf8dc60 +85, 0xcdf3b366a6a303db +86, 0x8da9379dd62b34c8 +87, 0xb0ba511955f264a7 +88, 0x9d72e21a644f961d +89, 0xfac28382e2e7e710 +90, 0xd457065f048410aa +91, 0x1cae57d952563969 +92, 0x5a160a6223253e03 +93, 0x2c45df736d73c8bd +94, 0x7f651ebc6ad9cec5 +95, 0x77a6be96c7d2e7e7 +96, 0x1721fb1dbfd6546a +97, 0xf73f433ecff3c997 +98, 0xed1e80f680965bfe +99, 0x6705ad67a3003b30 +100, 0xac21134efcadb9f7 +101, 0x4d2ba0a91d456ac +102, 0x59da7b59434eb52b +103, 0x26c1d070fd414b5f +104, 0xed7079ddfce83d9a +105, 0x9277d21f88e0fb7a +106, 0xfae16b9a8d53d282 +107, 0xb08a0e2e405fdf7d +108, 0x2ea20df44229d6ec +109, 0x80e4634cd3612825 +110, 0xbe62e8aeba8f8a1a +111, 0x4981209769c190fb +112, 0xcec96ef14c7e1f65 +113, 0x73fe4457b47e7b53 +114, 0x1d66300677315c31 +115, 0xe26821290498c4cc +116, 0xf6110248fd8fb1c5 +117, 0x30fd7fe32dbd8be3 +118, 0x534ec9b910a2bd72 +119, 0x8f9bfe878bbf7382 +120, 0x4f4eb5295c0c2193 +121, 0xdeb22f03a913be9e +122, 0x40f716f8e2a8886c +123, 0xc65007d0e386cdb1 +124, 0x9bdd26d92b143a14 +125, 0xf644b0b77ea44625 +126, 0x75f5a53f6b01993a +127, 0xfe803e347bf41010 +128, 0x594bff5fa17bc360 +129, 0x3551edfb450373c7 +130, 0x898f9dad433615db +131, 0x923d2406daa26d49 +132, 0x99e07faccbc33426 +133, 0x7389f9ff4470f807 +134, 0xdc2a25957c6df90b +135, 0x33c6d8965ef3053f +136, 0x51a8f07e838f1ab +137, 0x91c5db369380274f +138, 0xc37de65ac56b207e +139, 0xfcc6d2375dde7f14 +140, 0xa4e6418bff505958 +141, 0x4b8b9f78e46953c4 +142, 0x255ab2e0f93cf278 +143, 0xdf650717af3d96ef +144, 0x2caa21cba3aae2b2 +145, 0xce7e46c6f393daa4 +146, 0x1d5b3573f9997ac7 +147, 0x5280c556e850847d +148, 0x32edc31bef920ad7 +149, 0xefaa6b0b08cf2c6 +150, 0x5151c99d97b111c5 +151, 0x35ccf4bf53d17590 +152, 0xa210d7bd8697b385 +153, 0xa9419f95738fbe61 +154, 0xdeccf93a1a4fdc90 +155, 0xd0ea3365b18e7a05 +156, 0x84122df6dcd31b9a +157, 0x33040a2125cea5f5 +158, 0xfe18306a862f6d86 +159, 0xdb97c8392e5c4457 +160, 0xc3e0fa735e80e422 +161, 0x7d106ff36467a0c1 +162, 0xb9825eecc720a76d +163, 0x7fefc6f771647081 +164, 0xf5df3f5b3977bf13 +165, 0x18fb22736d36f1e0 +166, 0xadc4637b4953abfc +167, 0x174e66d3e17974bd +168, 0xf1614c51df4db5db +169, 0x6664ecde5717b293 +170, 0xd5bc5b6839265c26 +171, 0xf6ca9ce1af3f1832 +172, 0xca696789a9d506ea +173, 0x7399c246c8f9d53 +174, 0xadf49049626417e2 +175, 0xbcd84af37d09ab91 +176, 0xbb41c177f3a3fa45 +177, 0x592becc814d55302 +178, 0xa88b4e65f6cfe5f7 +179, 0xa0a55e34ff879426 +180, 0x3c2ea6aa725b42b7 +181, 0x65ac4a407b1f9521 +182, 0xde63d53f7e88b556 +183, 0x18bc76696d015f40 +184, 0xd1363f2cd4c116a8 +185, 0x2fe859be19a48e4a +186, 0x83d6099b1415e656 +187, 0x43f2cbc1a4ee6410 +188, 0xb2eca3d3421c533d +189, 0xc52b98ea3f031f5d +190, 0xfe57eb01da07e9d1 +191, 0xf9377883537a6031 +192, 0x364030c05dac7add +193, 0x6815cb06b35d4404 +194, 0xceae2d4ce31894be +195, 0xc602bcdf6062bf6a +196, 0xc8e4bd8dcc6062e3 +197, 0x9c29e87b92a1a791 +198, 0x41e626b871ca9651 +199, 0x325c3d1fb8efbcd8 +200, 0x7dbbacf8e3419fb3 +201, 0x3602e72516bb7319 +202, 0x537a008ebd94d24b +203, 0xda7714fc9d4d161d +204, 0x1c8c73700e1b621b +205, 0x2749b80937d6c939 +206, 0x76ee6abac5b14d33 +207, 0xf18d1e92cb6a8b5c +208, 0x6ce9579d9291c721 +209, 0x60523c745a40e58 +210, 0x637f837fcc901757 +211, 0x2ff71b19661dc5b3 +212, 0x393ab586326ad16f +213, 0xa0970ea30fe742b7 +214, 0x570222d7f27fe5ae +215, 0x3b5806d43fd38629 +216, 0x129a0ad7420180c5 +217, 0x1c4726355778d52c +218, 0x7c1459cf77656499 +219, 0xfe038a0932132069 +220, 0x4c4cc317a937483a +221, 0xa333d24067e926ba +222, 0x401d9b6ab37f6ef2 +223, 0x87ad0e491ebe4a2a +224, 0xfc02f312e72d121d +225, 0xfde715b3b99767b2 +226, 0xd111c342ba521c92 +227, 0x83b221b10879c617 +228, 0x6a1bf5c01fdf4277 +229, 0x166bfc0c3f5892ee +230, 0x4608d556d7c57856 +231, 0x8d786857c95ece49 +232, 0x2d357445a1aca4ac +233, 0x79620dae28ecd796 +234, 0x90e715dc0f2201c4 +235, 0x173b68b4c9f4b665 +236, 0x4e14d040ebac4eef +237, 0xbd25960b4b892e +238, 0x911a199db6f1989d +239, 0xfe822d7c601fd2e0 +240, 0x9b4c1d58d8223a69 +241, 0x907c1891283843b0 +242, 0xf4868bf54061c4b2 +243, 0x17f8cd1fc24efd85 +244, 0xd44253f9af14c3aa +245, 0x16d0da0cb911d43c +246, 0x3c6a46615828e79a +247, 0x498591c1138e11a5 +248, 0xcc0f26336d0d6141 +249, 0x4d3ebc873212309a +250, 0x16bad7792d5c2c6a +251, 0x474215a80b2bbd11 +252, 0x7159848abd8492fc +253, 0x359341c50973685f +254, 0x27512ee7bf784a4a +255, 0x45228ea080f70447 +256, 0x880cab616500d50e +257, 0x12fae93f9830d56e +258, 0x6744ee64348d9acd +259, 0x484dada28cd2a828 +260, 0x98491d0729e41863 +261, 0x2f15aac43c2863b0 +262, 0x5727a34d77a1da0f +263, 0xa435cebef6a62eed +264, 0xd211697d57b053b0 +265, 0x65aa757b68bd557 +266, 0xe3a1b7a2d8a3e06a +267, 0x2adf64e67252a7a9 +268, 0xadadcb75cadee276 +269, 0x7934bc57ac8d97bf +270, 0xccff0d0f412e0606 +271, 0x101a82aa3e8f3db9 +272, 0xb0f2498094b4575c +273, 0xba2561d9ef26ed8a +274, 0xfbcd1268fc3febe1 +275, 0x9aa10bb19eb152e0 +276, 0xf496217a601a6d72 +277, 0xe4be1e4f2fa91363 +278, 0x473a602bf3dd68eb +279, 0xfe8ed2a48c26f4b5 +280, 0x20e94b1a00159476 +281, 0x93e1cb1c6af86ec7 +282, 0x4fcba3898f7442ba +283, 0x5150c3a3d94891df +284, 0x91cfce6c85b033ea +285, 0x625e8a832a806491 +286, 0x28c97ba72e3ec0b2 +287, 0x8e172de217c71ea1 +288, 0x926b80216c732639 +289, 0x28b19431a649ae3d +290, 0x57c039a6e95a3795 +291, 0xfbc354182fe52718 +292, 0x819dfd7c7d534cef +293, 0xabb4093a619ed44f +294, 0xe785b7ac6f656745 +295, 0xb647b4588b2f942f +296, 0x64cf870a14c72d27 +297, 0x6d4a4a2a0ba9b37e +298, 0x78bfb0427d7ce6b0 +299, 0x8dcc72b8bfc79ac6 +300, 0x1c14d915d5e76c99 +301, 0xaf48ddea6f096d79 +302, 0x51b39b67aa130d8 +303, 0x1aeeb39d4def06de +304, 0xd678092ffedfdd27 +305, 0x8f54787f325111d3 +306, 0xf2ca2e827beaa6bc +307, 0x339d134099e98545 +308, 0x1f6a8a7b33942e43 +309, 0x952c8065dbef669a +310, 0xe066aeb6690147f7 +311, 0xed25aa92cf58ebb6 +312, 0x7601edce215ef521 +313, 0xed1c5b396abd9434 +314, 0x4fd1e407535de9d5 +315, 0xccc8315a0d4d1441 +316, 0x85753e250bb86976 +317, 0xf232e469378761c3 +318, 0x81d691b8e9aef3c6 +319, 0x224a2f9cab0ad0e +320, 0x978f3d3e50007f4e +321, 0xd3713e6a6c0cbe60 +322, 0xcce8f1eadd41f80d +323, 0x34bda028a97d469 +324, 0x90e242fdf0f59183 +325, 0x4d749754fbc5f092 +326, 0x4399f5b7851cc87b +327, 0xcb921a5f25f6c5d7 +328, 0x120bf5d0162101 +329, 0x1304cc2aa352735a +330, 0xf7236c5d0d5d417b +331, 0xc31b320fc1654306 +332, 0xb468c6b23f3fb4e7 +333, 0xb5985b5bfaca4166 +334, 0x898285a1cd2f8375 +335, 0xa13493da372aa7c9 +336, 0x15c80c09c12634e7 +337, 0x9b765c5cc9d438bd +338, 0xee7da816a9201dcb +339, 0x92e269f73b5a248e +340, 0xa8086c5de81400ce +341, 0xe0053901853d42be +342, 0x821df32c012f433e +343, 0x17a6d69ca37387c7 +344, 0x2b10044bfba3501f +345, 0x8dfd262afc2e8515 +346, 0xd68c2c7b60226371 +347, 0xe81ac114e4416774 +348, 0x5896d60061ebc471 +349, 0xa996e3147811dbd1 +350, 0xa819c7b80ecb3661 +351, 0x982ad71b38afbc01 +352, 0xab152b65aa17b7fe +353, 0x4582bc282ef187ef +354, 0xab5a17fe8d9bc669 +355, 0x83664fa9cb0284b7 +356, 0x234c4b0091968f52 +357, 0x8ab5f51805688d37 +358, 0xe9e11186e0c53eda +359, 0x10df37ef1de2eccf +360, 0x780f1b0d52db968f +361, 0x50bd4ff292872cd5 +362, 0x51e681c265f5ad0 +363, 0x842c49660a527566 +364, 0x6e56ee026e9eda87 +365, 0x4cf39e40d8c80393 +366, 0x13e466df371f7e1f +367, 0xf2ce1799f38e028e +368, 0x833c8db7adc6ff0e +369, 0xc6e189abc2ec98f +370, 0xafebb3721283fec5 +371, 0xb49bc1eb5cc17bdc +372, 0xf1d02e818f5e4488 +373, 0xe5e9d5b41a1dd815 +374, 0xce8aca6573b1bfe5 +375, 0x9b0a5d70e268b1d5 +376, 0xf3c0503a8358f4de +377, 0x2681605dd755669d +378, 0xea265ca7601efc70 +379, 0xa93747f0a159439f +380, 0x62a86ede78a23e50 +381, 0xac8a18935c3d063c +382, 0x729c0a298f5059f5 +383, 0xbbf195e5b54399f4 +384, 0x38aa9d551f968900 +385, 0x3b3e700c58778caa +386, 0x68e6e33c4443957a +387, 0x7c56fc13eb269815 +388, 0xaf7daca39711804a +389, 0x50fde6d10f9544b3 +390, 0xf3d37159f6f6c03d +391, 0x82d298f5c1a71685 +392, 0x478661ac54c5002c +393, 0x6053768e1a324ae0 +394, 0xde8fb4a7e56707ea +395, 0xaa2809301faa8cf4 +396, 0x690a8d49fedd0722 +397, 0xe17c481b9c217de9 +398, 0x60d1d8a2b57288e3 +399, 0x149adfaadc6b0886 +400, 0xa3c18b6eb79cd5fa +401, 0x5774e3a091af5f58 +402, 0x2acca57ff30e5712 +403, 0x94454d67367c4b0c +404, 0x581b2985ac2df5ca +405, 0x71618e50744f3e70 +406, 0x270a7f3bd9a94ae6 +407, 0x3ef81af9bb36cd7b +408, 0x8a4a2592875254aa +409, 0x704ac6086fbb414a +410, 0xda774d5d3f57414d +411, 0xe20d3358b918ae9e +412, 0x934a6b9f7b91e247 +413, 0xf91649cde87ec42c +414, 0x248cec5f9b6ced30 +415, 0x56791809fd8d64ba +416, 0xf502b2765c1395f +417, 0x6b04ec973d75aa7f +418, 0xb0339f2794bb26f +419, 0x4c524636efbaea49 +420, 0x6bbf3876e9738748 +421, 0xf686524e754e9e24 +422, 0x8dafa05a42d19cd3 +423, 0xc5f069ab2434008e +424, 0x4fd64cc713cba76 +425, 0xdbf93450c881ed5f +426, 0x492e278ebabb59a2 +427, 0x993fddfde4542642 +428, 0xecde68a72c8d4e52 +429, 0xe0760b3074c311fd +430, 0x68dc0e7e06528707 +431, 0x52b50edf49c0fdc7 +432, 0xb2bd4185c138f412 +433, 0x431496d7e1d86f3 +434, 0xa4e605b037e26c44 +435, 0x58236ae1f0aca2b5 +436, 0x26c72c420fc314d8 +437, 0x20134e982ab99a2b +438, 0x544b59b8b211374b +439, 0x1301c42f3a14d993 +440, 0x52a6ea740f763b0f +441, 0xf209d70c2bebf119 +442, 0xac66a4ebc2aa1be +443, 0x683713ed35878788 +444, 0x2b5578acec06b80c +445, 0x86428efa11c45b36 +446, 0xb49010adb17d291e +447, 0x73b686bd8664b6be +448, 0x6d28ebf57b6884cc +449, 0x9712091230ff58d9 +450, 0xc9c91f74c38b286 +451, 0x776310ac41dc008e +452, 0x2f3739df0bf6a88e +453, 0x5792dc62b94db675 +454, 0x5715910d024b06af +455, 0xeb1dd745458da08 +456, 0xfce7b07ccfa851a7 +457, 0xc305f1e983ac368 +458, 0x485aa9519ac00bb0 +459, 0xa5354f6589fb0ea0 +460, 0x32fee02dfdbf4454 +461, 0x4d1ddc304bbefaaa +462, 0x789a270a1737e57e +463, 0x9f3072f4b1ed8156 +464, 0x4de3c00e89058120 +465, 0xb00a02529e0a86fa +466, 0x539f6f0edd845d9a +467, 0x85e578fe15a8c001 +468, 0xa12c8e1a72cce7d8 +469, 0xc6908abbc2b1828 +470, 0xcf70090774cbb38c +471, 0x3b636a6977b45d4a +472, 0xf0a731b220680b57 +473, 0x18973929f51443a8 +474, 0xe93e1fbe7eadabe +475, 0x8233730f0a6dfa02 +476, 0x66e50b6919b0ab74 +477, 0xb1aba87c97fd08a2 +478, 0xd4dffc1fbc117ad6 +479, 0x6f7fa65724b96e6a +480, 0x4bd5800dee92e0fa +481, 0xe18a959db6256da +482, 0xe53a291bc66df487 +483, 0xb7ec306a08651806 +484, 0x1847a6b80d2821e1 +485, 0xda50391283b14d39 +486, 0xacc4d3cd7cceb97a +487, 0x57f70185165b7bc6 +488, 0x302b6d597c3aaba7 +489, 0xa47f32d037eab51e +490, 0xe1509b4408abc559 +491, 0x4f30a1d7c2934157 +492, 0x2ad03e6c60b650b2 +493, 0x334d9c337b0a9064 +494, 0xc7f442821e7aac12 +495, 0xbcdeb09298694cdd +496, 0xe42402389f8f0fb4 +497, 0xe5de56af539df727 +498, 0x7017f9b2101ee240 +499, 0x1ee5e68d5b10001d +500, 0x436229051836387a +501, 0xcd532d6d6ec38fb7 +502, 0x30a66606fdf38272 +503, 0xfdaa2ab9cf798496 +504, 0x4277b4adec70e7df +505, 0x72cfc30256e0eaef +506, 0x3c3359fd9bd34917 +507, 0xb7aa89598856efb0 +508, 0xf72226f8bf299ef5 +509, 0x258c499275a4356f +510, 0x999a56bfc7f20d76 +511, 0x2b3e7432e20c18b +512, 0x2d1251332f760cb5 +513, 0x7420e0eea62157c5 +514, 0xe85c895aa27cec3d +515, 0x27a0545c7020d57c +516, 0xc68638a65b4fff0d +517, 0xfda473983a4ea747 +518, 0xd19fe65fb4c06062 +519, 0x6b1374e050ee15e4 +520, 0x80065ecd49bc4bef +521, 0x4ee655954bc838de +522, 0xe8fb777504a72299 +523, 0x86b652ea70f4bdde +524, 0xcdc9e0fbde7e4f33 +525, 0x352c0a50cd3ac56 +526, 0x4b8605d368be75dc +527, 0x1ac9ea8129efbc37 +528, 0x470325faa99f39c5 +529, 0x25dd7ef9adccf7a1 +530, 0x5ae2c7a03e965816 +531, 0xf733d2df59dacc7d +532, 0xa05bbf0a8a1a7a70 +533, 0xe8aa3f102846ef5f +534, 0xc9b85ec49ae71789 +535, 0xb904c14ed1cb1936 +536, 0x5ae618230b5f0444 +537, 0x97987fe47b5d7467 +538, 0xabb3aca8865ca761 +539, 0x38bfdf29d4508228 +540, 0x353654f408353330 +541, 0xeb7e92930ae4ef0d +542, 0xec50f1a7ca526b96 +543, 0xd5e2dc08b5697544 +544, 0x24c7fd69d5ec32df +545, 0x6f7e1095568b8620 +546, 0x6ed9c16ca13b3c8 +547, 0xe676ef460002130f +548, 0xa3a01a3992c4b430 +549, 0xe2130406c3b1f202 +550, 0xa8f7263e2aedcd20 +551, 0xc45d71ef2e35f507 +552, 0x37155594021da7ba +553, 0x22dc94f19de73159 +554, 0x7969fc6bffc5443f +555, 0x97def7e44faa6bfe +556, 0x8b940f5e8931d71f +557, 0xd95b1dd3f1a3fdd5 +558, 0x1c83bfdca615701a +559, 0xb7fcb56279ceca6b +560, 0xd84f8950f20dcd0 +561, 0xb03343698de3cbe0 +562, 0xf64565d448d71f71 +563, 0xda52b4676e0ae662 +564, 0xda39c2c05b4ffb91 +565, 0xb35e2560421f6a85 +566, 0x1a7b108d48ac3646 +567, 0xc4e264dc390d79ed +568, 0xa10727dfd9813256 +569, 0x40d23154e720e4f7 +570, 0xd9fa7cd7e313e119 +571, 0xcbf29107859e6013 +572, 0xc357338553d940b7 +573, 0x2641b7ab0bdfcbaa +574, 0xd12f2b6060533ae7 +575, 0xd0435aa626411c56 +576, 0x44af4a488a9cec72 +577, 0xb934232ea8fa5696 +578, 0x760a8b12072b572d +579, 0xfab18f9942cfa9b3 +580, 0x5676834c1fe84d16 +581, 0x9c54e4fddb353236 +582, 0xab49edfc9551f293 +583, 0x567f1fb45a871d +584, 0x32a967c873998834 +585, 0x99240aad380ef8d1 +586, 0x7f66cbd432859a64 +587, 0x4cdc8a4658166822 +588, 0x984e3984a5766492 +589, 0xa3b2d0a3d64d3d94 +590, 0x177f667172f2affc +591, 0xb1a90607a73a303f +592, 0xe600b6c36427f878 +593, 0xf758f9834cb7f466 +594, 0x8ee9fce4a3f36449 +595, 0xcb8f11533e7da347 +596, 0xe7cf647794dabd7c +597, 0xc9d92cfe6110806 +598, 0xea1335fa9145a1ec +599, 0xbc6c29821d094552 +600, 0x37b9d6a858cc8bc3 +601, 0xf24e4c694929893e +602, 0x55d025ce2d7d0004 +603, 0xccdc69acccf4267b +604, 0xc491c04340c222eb +605, 0xba50f75ecec9befb +606, 0x1ec7bd85b8fe3bb9 +607, 0xe4de66498c59ae8a +608, 0x38aa9e912712c889 +609, 0xcee0e43c5cc31566 +610, 0x72b69aa708fc7ed +611, 0xdff70b7f6fa96679 +612, 0xd6d71d82112aadc3 +613, 0x365177892cb78531 +614, 0xa54852b39de4f72c +615, 0x11dd5832bf16dd59 +616, 0x248a0f3369c97097 +617, 0xa14cec0260e26792 +618, 0x3517616ff142bed1 +619, 0x9b693ad39dab7636 +620, 0x739dff825e994434 +621, 0x67711e7356098c9 +622, 0xa81f8515d2fdf458 +623, 0xdac2908113fe568e +624, 0xe99944ebc6e2806a +625, 0x671728ca5b030975 +626, 0xfdad20edb2b4a789 +627, 0xedc6e466bd0369d2 +628, 0x88b5d469821f7e1b +629, 0x2eabf94049a522a5 +630, 0x247794b7a2f5a8e3 +631, 0x278942bdbe02c649 +632, 0xbe5a9a9196ab99c1 +633, 0x75955060866da1b5 +634, 0xdedcfa149273c0b5 +635, 0xdbeb7a57758f3867 +636, 0x7b9053347a2c8d5a +637, 0xa059b3f2eed338a5 +638, 0x59401a46ded3b79f +639, 0x38044ba56a6d19fb +640, 0x72c7221b4e77e779 +641, 0x526df3491a3a34da +642, 0xc3b31184ba16c0c2 +643, 0xd94c7144488624af +644, 0xcf966ee4dc373f91 +645, 0x62049e65dd416266 +646, 0x7c2adccb925bf8f +647, 0xd5fa5c22ed4ef8e1 +648, 0xd00134ebd11f2cd1 +649, 0xfbdf81767bed3634 +650, 0x62e8cc8ff66b6e26 +651, 0x3a72d6bcd4f2dcf7 +652, 0xf1cd45b1b46a86ed +653, 0x1271f98e0938bb9a +654, 0x82e6927e83dc31fa +655, 0x7b9b0e0acb67b92d +656, 0x6df503e397b2e701 +657, 0x93888f6fb561e0c3 +658, 0x393fb6069a40291 +659, 0x967a7d894cc0754d +660, 0x6e298996ad866333 +661, 0x5ff3cf5559d6ab46 +662, 0xd0d70508c40349f5 +663, 0xc64c66c0dd426b33 +664, 0x8fea340ee35c64dd +665, 0xf9cd381eb3060005 +666, 0xfcc37c2799fc0b11 +667, 0x6a37c91d65b489fa +668, 0x57231000fa0a0c9d +669, 0x55f6e292c6703f9a +670, 0xd0508ffbfa55a7a6 +671, 0x885db543276bdac8 +672, 0xc26dbe6a26b0e704 +673, 0x21f884874ebd709e +674, 0x711f0b6c8f732220 +675, 0x354d0a361eaee195 +676, 0x721344d8d30b006a +677, 0xa0e090a0d3a56f07 +678, 0x16b3d5d823a4952b +679, 0x59d7874bc9eae7b6 +680, 0x9bbb32710076455f +681, 0xd4fb22242ffabafd +682, 0xe1d4ac6770be1d89 +683, 0xb259cedebc73dc8a +684, 0x35faaa3b4246ab69 +685, 0x5d26addefdaee89 +686, 0x8e7ec350da0f3545 +687, 0xd0f316eed9f8fc79 +688, 0x98b2a52c9bf291b2 +689, 0xe4d294a8aca6a314 +690, 0x25bd554e6aa7673c +691, 0xcfde5dcba5be2a6c +692, 0xb5e01fb48d2d2107 +693, 0xe1caf28948028536 +694, 0xd434aa0a26f3ee9b +695, 0xd17723381641b8f6 +696, 0xfe73bd1f3f3768a2 +697, 0x1cc6b1abd08d67e9 +698, 0x247e328371a28de0 +699, 0x502e7942e5a9104a +700, 0x6a030fd242eb4502 +701, 0xa2ffe02744014ce8 +702, 0x59290763b18fe04e +703, 0xcf14241564271436 +704, 0xb0fb73c3c1503aff +705, 0x94e27c622f82137a +706, 0x747a5b406ac3e1f0 +707, 0x9a914e96a732031d +708, 0x59f68c6c8f078835 +709, 0x809d012c73eb4724 +710, 0x5b3c3b73e1b37d74 +711, 0xdde60ef3ba49cdf7 +712, 0x87a14e1f9c761986 +713, 0x4109b960604522af +714, 0x122d0e1ed0eb6bb9 +715, 0xadc0d29e80bfe33 +716, 0xa25b1b44f5fc8e4e +717, 0xbab85d8a9b793f20 +718, 0x825f4cbced0e7d1e +719, 0x2d6ae8807acb37ea +720, 0x8234420adce2e39 +721, 0x4a8ad4da6b804807 +722, 0x1e19f9bc215e5245 +723, 0x1d6f4848a916dd5e +724, 0x9ac40dfcdc2d39cc +725, 0x9f3524e3086155ec +726, 0x861fffc43124b2ef +727, 0xe640e3b756396372 +728, 0x41cb0f0c5e149669 +729, 0xe0bd37e1192e4205 +730, 0x62917d3858f4ce47 +731, 0xa36e7eb4d855820a +732, 0x204b90255a3bf724 +733, 0x66ee83a0175535bc +734, 0x2c14ce7c6b0c1423 +735, 0x85d9495fa514f70d +736, 0x5a4fe45ead874dbc +737, 0xe72248dcb8cfc863 +738, 0xfc21ff2932ed98cd +739, 0xcbba1edd735b5cad +740, 0x91ddc32809679bf5 +741, 0x192cdf2c7631ea1f +742, 0xbbc451ddf2ea286f +743, 0xad9e80cae2397a64 +744, 0x6918f0119b95d0e5 +745, 0xa40379017a27d70a +746, 0x1aaeddb600e61e1 +747, 0x15afd93cbd7adda9 +748, 0x156719bc2b757ff4 +749, 0x13d9a59e2b2df49d +750, 0x9a490986eaddf0a +751, 0xef9a350f0b3eb6b4 +752, 0x5de7f6295ba4fa4d +753, 0x7f37fd087c3fdb49 +754, 0xa9fe3749d6f3f209 +755, 0x50912ac036d9bfb +756, 0x982cb4d726a441f8 +757, 0x8ca8d8af59b872d0 +758, 0x7f8adfb0ceeade8a +759, 0xdad390ec742be44 +760, 0xa637944d0045be5b +761, 0x3569a3b3af807061 +762, 0x9599da8eae14511d +763, 0xc333e8d19589b01a +764, 0xfb9b524a20b571e1 +765, 0xbd9dc8b37ce5c3e1 +766, 0x142333005fa389ac +767, 0x1368bc37cd5bcce1 +768, 0x16094907ad6ecf73 +769, 0xb32c90dbba4c1130 +770, 0x82761d97c1747dd0 +771, 0x599f9f267ae3444d +772, 0x79ad3382994852e1 +773, 0x2511f06d9ef06e54 +774, 0xb35e6ab7d5bbddae +775, 0xfca9fa83a2988732 +776, 0x7d4350f0394ac3ba +777, 0xa52a9527bb176ea3 +778, 0xb49fa0ceb2aa8353 +779, 0x1f62e504d1468cc0 +780, 0xe1a77bfccce6efc3 +781, 0x776cdff4dc0d6797 +782, 0x56612e39b652c1f2 +783, 0x5f096a29294eda04 +784, 0x7978abc3aabd8b23 +785, 0x79dd875e0485b979 +786, 0x8a98aa4d5735d778 +787, 0xcca43940f69d2388 +788, 0xb2d4b156f144f93a +789, 0xbd528a676e9a862 +790, 0x2a394939c8e7ec5e +791, 0xb1da900c6efe4abc +792, 0x9869af479de4c034 +793, 0x78dbdfb88ac7c1db +794, 0x18cb169143088041 +795, 0xe69e5461c51a3e13 +796, 0x5389fa16ea98183c +797, 0xed7c80d1be1ea520 +798, 0x87246fc359758ced +799, 0xab323eba95fae4ed +800, 0xbc4c0dde7f8a1828 +801, 0xdb739f7955610b1a +802, 0xecd8c68c3434cc +803, 0x138c2eb88c477f44 +804, 0x28a65f96727aae41 +805, 0xdee879f2cf5629d +806, 0x684f0c90ef20070f +807, 0xa24a819ef5621800 +808, 0x8d0054f870e4fdcb +809, 0x99e8c6e695b600b +810, 0x50b705245891f7c3 +811, 0xc02eed3a6e58e51a +812, 0x443d64e95443606c +813, 0xca24959cfbd2d120 +814, 0xe072609ea48815bc +815, 0xbcc715026590315b +816, 0x3e76df24d7aa5938 +817, 0xd8ff04940d9b79ae +818, 0x54474ce790059bcd +819, 0x278390dd6aa70e81 +820, 0xf4df619fe35414e4 +821, 0x757d71270264e615 +822, 0x1e8a373699c11b23 +823, 0xef68c82046e67dd6 +824, 0xe280006599972620 +825, 0x234e095183b0f4d6 +826, 0xe3b7560ed9839749 +827, 0xcd5ec4086572332e +828, 0xc41c0d4aaa279108 +829, 0x4b9cd6126bc16a6d +830, 0x4a7252734f3e3dd0 +831, 0xb3132df156cc103a +832, 0xf9e4abbf7b64464a +833, 0xf936df27fb3c47b7 +834, 0x9142960873f6d71a +835, 0x4ba6aa3235cdb10d +836, 0x3237a2e765ba7766 +837, 0xd62f0b94c8e99e54 +838, 0x26b682f90a3ae41b +839, 0x40ad5e82072b6f81 +840, 0xd0198101f5484000 +841, 0xe4fac60ba11c332 +842, 0x472d0b0a95ef9d38 +843, 0x8512557aec5a3d8f +844, 0xef83169d3efd4de9 +845, 0x53fe89283e7a7676 +846, 0x2f50933053d69fc4 +847, 0x76f5e4362e2e53a2 +848, 0x8676fdccce28874a +849, 0x2737764c1fb1f821 +850, 0x4a6f70afc066ab55 +851, 0x27f8e151e310fca4 +852, 0xd606960ccbe85161 +853, 0xcce51d7ddd270a32 +854, 0xb4235999794875c2 +855, 0x580084e358e884 +856, 0x2159d5e6dc8586d7 +857, 0x87bd54d8599b3ba4 +858, 0x3e9ade6a2181664 +859, 0x5e6e140406d97623 +860, 0x511545d5aa0080a2 +861, 0xf49d78ed219aac57 +862, 0xbece1f9c90b8ea87 +863, 0x1c741cac36a2c514 +864, 0x7453c141047db967 +865, 0xd751832a5037eba2 +866, 0x71370a3f30ada1f7 +867, 0x7c01cf2dcb408631 +868, 0x1052a4fbdccc0fa1 +869, 0x13d525c9df3fb6c +870, 0xa3aa8dbfee760c55 +871, 0xc0288d200f5155cf +872, 0x79f4bcd12af567c3 +873, 0x8160d163bb548755 +874, 0x5cf2995fb69fd2df +875, 0xcc98ed01396639df +876, 0xad95f1d9cfc8256e +877, 0xa3df27d9fbdbfb9d +878, 0x83e5f5dda4d52929 +879, 0x9adc05043009f55b +880, 0xdfe8329dfde1c001 +881, 0x9980ccdd5298e6a2 +882, 0x636a7bd134f6ef56 +883, 0xef5ff780c4be6ba4 +884, 0x290d71dc77a56d16 +885, 0x6d65db9ff58de1e6 +886, 0x944b063b3805a696 +887, 0xce468ca2cce33008 +888, 0x5ba1ccb840f80f48 +889, 0x28ddce36fc9ad268 +890, 0x4f77ef254d507a21 +891, 0xce9b4057fadf3ab +892, 0xb518bc68298730e6 +893, 0xd2eb5b8e2ec665b0 +894, 0xe1583303a4f87344 +895, 0x9d5a0df4fbe1bed5 +896, 0x2ba9bc03ec8cfd07 +897, 0x479ed880a96ca669 +898, 0xcedf96338324771a +899, 0x312f4fc2da41ffaa +900, 0xa0eb9cf23b5e1ed8 +901, 0xf8f88f975dc3f539 +902, 0x4a37e185d0e96e0f +903, 0xf829654a5c0b46f9 +904, 0x3909cca7a7f8c7fb +905, 0x4c2e1d66ceb45105 +906, 0xaffaa19e1db8af87 +907, 0x9ec498246bd18c76 +908, 0x21d51558edc089da +909, 0xe8984112cd1b1561 +910, 0x7de1d2cf54b0c0e1 +911, 0xa06729aed50bfb9d +912, 0xcf19f733e5db19e1 +913, 0x70edf2624ab777cd +914, 0x46685becad10e078 +915, 0x825e0f6add46785 +916, 0x66d4af3b15f70de4 +917, 0xc676614b0666b21 +918, 0x282a916c864f5cb7 +919, 0x2707283a3f512167 +920, 0x37ff3afda7461623 +921, 0xc767eb1205e4ca86 +922, 0x46b359aecc4ea25b +923, 0x67fbbb797a16dbb1 +924, 0x64fd4ba57122290e +925, 0x8acc2a8ae59d8fac +926, 0x64a49298599acc67 +927, 0xedf00de67177ce30 +928, 0x1ea9d8d7e76d2d2c +929, 0x363fcac323f70eb2 +930, 0x19e6e3ec8a9712eb +931, 0xca541e96b0961f09 +932, 0x4d8fd34c2822ec46 +933, 0x2fdd56a50b32f705 +934, 0xaac2fcf251e3fd3 +935, 0xb0c600299e57045c +936, 0xd951ec589e909e38 +937, 0x4dc8414390cae508 +938, 0x537ef9d5e2321344 +939, 0xa57bc21fd31aa2dc +940, 0xa3a60df564183750 +941, 0xbe69a5ce2e369fb6 +942, 0x7744601f4c053ec8 +943, 0x3838452af42f2612 +944, 0xd4f0dad7115a54e9 +945, 0x629cf68d8009a624 +946, 0x2211c8fa34cb98cb +947, 0x8040b19e2213db83 +948, 0xb2a86d3ba2384fd +949, 0x4b85cec4f93f0dab +950, 0xc8d212d21ea6845d +951, 0x5b271a03a4fe2be0 +952, 0xff4f671319ad8434 +953, 0x8e615a919d5afa96 +954, 0xea7f47c53161160a +955, 0x33273930b13c6efc +956, 0x98eedda27fb59c3c +957, 0x188dc5e92e939677 +958, 0x9dbd0fa0911430f1 +959, 0x5b3dcf3fa75dfd2b +960, 0x3f03846febdb275d +961, 0x20cc24faea9e9cf6 +962, 0x854f3ac66199ff5d +963, 0x31169ac99d341e6f +964, 0xa85daed3c0bc1bbe +965, 0x64633711e71ba5dd +966, 0x530e79978dc73334 +967, 0x636f2ee6e20aef13 +968, 0xf6220f8b6d9a58fb +969, 0x425db8fa32141a7b +970, 0xac7c210f4b02be95 +971, 0x5fe8cfbe197a7754 +972, 0xfff7d40c79420ea +973, 0x5f8bab9ef4697b77 +974, 0xaf6fe54e45b23fe8 +975, 0xce79456ccc70bbce +976, 0x645ef680f48f1c00 +977, 0xa4dfac46e2028595 +978, 0x6bece4c41effc5df +979, 0xd316df886442641f +980, 0xa4f6ff994edd2a6 +981, 0x30281ae3cc49abe4 +982, 0x39acb7b663dea974 +983, 0x5e8829b01a7c06fb +984, 0x87bdb08cf027f13e +985, 0xdfa5ede784e802f6 +986, 0x46d03d55711c38cc +987, 0xa55a961fc9788306 +988, 0xbf09ded495a2e57a +989, 0xcd601b29a639cc16 +990, 0x2193ce026bfd1085 +991, 0x25ba27f3f225be13 +992, 0x6f685be82f64f2fe +993, 0xec8454108229c450 +994, 0x6e79d8d205447a44 +995, 0x9ed7b6a96b9ccd68 +996, 0xae7134b3b7f8ee37 +997, 0x66963de0e5ebcc02 +998, 0x29c8dcd0d17c423f +999, 0xfb8482c827eb90bc diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/data/sfc64_np126.pkl.gz b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/sfc64_np126.pkl.gz new file mode 100644 index 0000000..94fbceb Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/random/tests/data/sfc64_np126.pkl.gz differ diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/test_direct.py b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_direct.py new file mode 100644 index 0000000..6f069e4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_direct.py @@ -0,0 +1,592 @@ +import os +import sys +from os.path import join + +import pytest + +import numpy as np +from numpy.random import ( + MT19937, + PCG64, + PCG64DXSM, + SFC64, + Generator, + Philox, + RandomState, + SeedSequence, + default_rng, +) +from numpy.random._common import interface +from numpy.testing import ( + assert_allclose, + assert_array_equal, + assert_equal, + assert_raises, +) + +try: + import cffi # noqa: F401 + + MISSING_CFFI = False +except ImportError: + MISSING_CFFI = True + +try: + import ctypes # noqa: F401 + + MISSING_CTYPES = False +except ImportError: + MISSING_CTYPES = False + +if sys.flags.optimize > 1: + # no docstrings present to inspect when PYTHONOPTIMIZE/Py_OptimizeFlag > 1 + # cffi cannot succeed + MISSING_CFFI = True + + +pwd = os.path.dirname(os.path.abspath(__file__)) + + +def assert_state_equal(actual, target): + for key in actual: + if isinstance(actual[key], dict): + assert_state_equal(actual[key], target[key]) + elif isinstance(actual[key], np.ndarray): + assert_array_equal(actual[key], target[key]) + else: + assert actual[key] == target[key] + + +def uint32_to_float32(u): + return ((u >> np.uint32(8)) * (1.0 / 2**24)).astype(np.float32) + + +def uniform32_from_uint64(x): + x = np.uint64(x) + upper = np.array(x >> np.uint64(32), dtype=np.uint32) + lower = np.uint64(0xffffffff) + lower = np.array(x & lower, dtype=np.uint32) + joined = np.column_stack([lower, upper]).ravel() + return uint32_to_float32(joined) + + +def uniform32_from_uint53(x): + x = np.uint64(x) >> np.uint64(16) + x = np.uint32(x & np.uint64(0xffffffff)) + return uint32_to_float32(x) + + +def uniform32_from_uint32(x): + return uint32_to_float32(x) + + +def uniform32_from_uint(x, bits): + if bits == 64: + return uniform32_from_uint64(x) + elif bits == 53: + return uniform32_from_uint53(x) + elif bits == 32: + return uniform32_from_uint32(x) + else: + raise NotImplementedError + + +def uniform_from_uint(x, bits): + if bits in (64, 63, 53): + return uniform_from_uint64(x) + elif bits == 32: + return uniform_from_uint32(x) + + +def uniform_from_uint64(x): + return (x >> np.uint64(11)) * (1.0 / 9007199254740992.0) + + +def uniform_from_uint32(x): + out = np.empty(len(x) // 2) + for i in range(0, len(x), 2): + a = x[i] >> 5 + b = x[i + 1] >> 6 + out[i // 2] = (a * 67108864.0 + b) / 9007199254740992.0 + return out + + +def uniform_from_dsfmt(x): + return x.view(np.double) - 1.0 + + +def gauss_from_uint(x, n, bits): + if bits in (64, 63): + doubles = uniform_from_uint64(x) + elif bits == 32: + doubles = uniform_from_uint32(x) + else: # bits == 'dsfmt' + doubles = uniform_from_dsfmt(x) + gauss = [] + loc = 0 + x1 = x2 = 0.0 + while len(gauss) < n: + r2 = 2 + while r2 >= 1.0 or r2 == 0.0: + x1 = 2.0 * doubles[loc] - 1.0 + x2 = 2.0 * doubles[loc + 1] - 1.0 + r2 = x1 * x1 + x2 * x2 + loc += 2 + + f = np.sqrt(-2.0 * np.log(r2) / r2) + gauss.append(f * x2) + gauss.append(f * x1) + + return gauss[:n] + + +def test_seedsequence(): + from numpy.random.bit_generator import ( + ISeedSequence, + ISpawnableSeedSequence, + SeedlessSeedSequence, + ) + + s1 = SeedSequence(range(10), spawn_key=(1, 2), pool_size=6) + s1.spawn(10) + s2 = SeedSequence(**s1.state) + assert_equal(s1.state, s2.state) + assert_equal(s1.n_children_spawned, s2.n_children_spawned) + + # The interfaces cannot be instantiated themselves. + assert_raises(TypeError, ISeedSequence) + assert_raises(TypeError, ISpawnableSeedSequence) + dummy = SeedlessSeedSequence() + assert_raises(NotImplementedError, dummy.generate_state, 10) + assert len(dummy.spawn(10)) == 10 + + +def test_generator_spawning(): + """ Test spawning new generators and bit_generators directly. + """ + rng = np.random.default_rng() + seq = rng.bit_generator.seed_seq + new_ss = seq.spawn(5) + expected_keys = [seq.spawn_key + (i,) for i in range(5)] + assert [c.spawn_key for c in new_ss] == expected_keys + + new_bgs = rng.bit_generator.spawn(5) + expected_keys = [seq.spawn_key + (i,) for i in range(5, 10)] + assert [bg.seed_seq.spawn_key for bg in new_bgs] == expected_keys + + new_rngs = rng.spawn(5) + expected_keys = [seq.spawn_key + (i,) for i in range(10, 15)] + found_keys = [rng.bit_generator.seed_seq.spawn_key for rng in new_rngs] + assert found_keys == expected_keys + + # Sanity check that streams are actually different: + assert new_rngs[0].uniform() != new_rngs[1].uniform() + + +def test_non_spawnable(): + from numpy.random.bit_generator import ISeedSequence + + class FakeSeedSequence: + def generate_state(self, n_words, dtype=np.uint32): + return np.zeros(n_words, dtype=dtype) + + ISeedSequence.register(FakeSeedSequence) + + rng = np.random.default_rng(FakeSeedSequence()) + + with pytest.raises(TypeError, match="The underlying SeedSequence"): + rng.spawn(5) + + with pytest.raises(TypeError, match="The underlying SeedSequence"): + rng.bit_generator.spawn(5) + + +class Base: + dtype = np.uint64 + data2 = data1 = {} + + @classmethod + def setup_class(cls): + cls.bit_generator = PCG64 + cls.bits = 64 + cls.dtype = np.uint64 + cls.seed_error_type = TypeError + cls.invalid_init_types = [] + cls.invalid_init_values = [] + + @classmethod + def _read_csv(cls, filename): + with open(filename) as csv: + seed = csv.readline() + seed = seed.split(',') + seed = [int(s.strip(), 0) for s in seed[1:]] + data = [] + for line in csv: + data.append(int(line.split(',')[-1].strip(), 0)) + return {'seed': seed, 'data': np.array(data, dtype=cls.dtype)} + + def test_raw(self): + bit_generator = self.bit_generator(*self.data1['seed']) + uints = bit_generator.random_raw(1000) + assert_equal(uints, self.data1['data']) + + bit_generator = self.bit_generator(*self.data1['seed']) + uints = bit_generator.random_raw() + assert_equal(uints, self.data1['data'][0]) + + bit_generator = self.bit_generator(*self.data2['seed']) + uints = bit_generator.random_raw(1000) + assert_equal(uints, self.data2['data']) + + def test_random_raw(self): + bit_generator = self.bit_generator(*self.data1['seed']) + uints = bit_generator.random_raw(output=False) + assert uints is None + uints = bit_generator.random_raw(1000, output=False) + assert uints is None + + def test_gauss_inv(self): + n = 25 + rs = RandomState(self.bit_generator(*self.data1['seed'])) + gauss = rs.standard_normal(n) + assert_allclose(gauss, + gauss_from_uint(self.data1['data'], n, self.bits)) + + rs = RandomState(self.bit_generator(*self.data2['seed'])) + gauss = rs.standard_normal(25) + assert_allclose(gauss, + gauss_from_uint(self.data2['data'], n, self.bits)) + + def test_uniform_double(self): + rs = Generator(self.bit_generator(*self.data1['seed'])) + vals = uniform_from_uint(self.data1['data'], self.bits) + uniforms = rs.random(len(vals)) + assert_allclose(uniforms, vals) + assert_equal(uniforms.dtype, np.float64) + + rs = Generator(self.bit_generator(*self.data2['seed'])) + vals = uniform_from_uint(self.data2['data'], self.bits) + uniforms = rs.random(len(vals)) + assert_allclose(uniforms, vals) + assert_equal(uniforms.dtype, np.float64) + + def test_uniform_float(self): + rs = Generator(self.bit_generator(*self.data1['seed'])) + vals = uniform32_from_uint(self.data1['data'], self.bits) + uniforms = rs.random(len(vals), dtype=np.float32) + assert_allclose(uniforms, vals) + assert_equal(uniforms.dtype, np.float32) + + rs = Generator(self.bit_generator(*self.data2['seed'])) + vals = uniform32_from_uint(self.data2['data'], self.bits) + uniforms = rs.random(len(vals), dtype=np.float32) + assert_allclose(uniforms, vals) + assert_equal(uniforms.dtype, np.float32) + + def test_repr(self): + rs = Generator(self.bit_generator(*self.data1['seed'])) + assert 'Generator' in repr(rs) + assert f'{id(rs):#x}'.upper().replace('X', 'x') in repr(rs) + + def test_str(self): + rs = Generator(self.bit_generator(*self.data1['seed'])) + assert 'Generator' in str(rs) + assert str(self.bit_generator.__name__) in str(rs) + assert f'{id(rs):#x}'.upper().replace('X', 'x') not in str(rs) + + def test_pickle(self): + import pickle + + bit_generator = self.bit_generator(*self.data1['seed']) + state = bit_generator.state + bitgen_pkl = pickle.dumps(bit_generator) + reloaded = pickle.loads(bitgen_pkl) + reloaded_state = reloaded.state + assert_array_equal(Generator(bit_generator).standard_normal(1000), + Generator(reloaded).standard_normal(1000)) + assert bit_generator is not reloaded + assert_state_equal(reloaded_state, state) + + ss = SeedSequence(100) + aa = pickle.loads(pickle.dumps(ss)) + assert_equal(ss.state, aa.state) + + def test_pickle_preserves_seed_sequence(self): + # GH 26234 + # Add explicit test that bit generators preserve seed sequences + import pickle + + bit_generator = self.bit_generator(*self.data1['seed']) + ss = bit_generator.seed_seq + bg_plk = pickle.loads(pickle.dumps(bit_generator)) + ss_plk = bg_plk.seed_seq + assert_equal(ss.state, ss_plk.state) + assert_equal(ss.pool, ss_plk.pool) + + bit_generator.seed_seq.spawn(10) + bg_plk = pickle.loads(pickle.dumps(bit_generator)) + ss_plk = bg_plk.seed_seq + assert_equal(ss.state, ss_plk.state) + assert_equal(ss.n_children_spawned, ss_plk.n_children_spawned) + + def test_invalid_state_type(self): + bit_generator = self.bit_generator(*self.data1['seed']) + with pytest.raises(TypeError): + bit_generator.state = {'1'} + + def test_invalid_state_value(self): + bit_generator = self.bit_generator(*self.data1['seed']) + state = bit_generator.state + state['bit_generator'] = 'otherBitGenerator' + with pytest.raises(ValueError): + bit_generator.state = state + + def test_invalid_init_type(self): + bit_generator = self.bit_generator + for st in self.invalid_init_types: + with pytest.raises(TypeError): + bit_generator(*st) + + def test_invalid_init_values(self): + bit_generator = self.bit_generator + for st in self.invalid_init_values: + with pytest.raises((ValueError, OverflowError)): + bit_generator(*st) + + def test_benchmark(self): + bit_generator = self.bit_generator(*self.data1['seed']) + bit_generator._benchmark(1) + bit_generator._benchmark(1, 'double') + with pytest.raises(ValueError): + bit_generator._benchmark(1, 'int32') + + @pytest.mark.skipif(MISSING_CFFI, reason='cffi not available') + def test_cffi(self): + bit_generator = self.bit_generator(*self.data1['seed']) + cffi_interface = bit_generator.cffi + assert isinstance(cffi_interface, interface) + other_cffi_interface = bit_generator.cffi + assert other_cffi_interface is cffi_interface + + @pytest.mark.skipif(MISSING_CTYPES, reason='ctypes not available') + def test_ctypes(self): + bit_generator = self.bit_generator(*self.data1['seed']) + ctypes_interface = bit_generator.ctypes + assert isinstance(ctypes_interface, interface) + other_ctypes_interface = bit_generator.ctypes + assert other_ctypes_interface is ctypes_interface + + def test_getstate(self): + bit_generator = self.bit_generator(*self.data1['seed']) + state = bit_generator.state + alt_state = bit_generator.__getstate__() + assert isinstance(alt_state, tuple) + assert_state_equal(state, alt_state[0]) + assert isinstance(alt_state[1], SeedSequence) + +class TestPhilox(Base): + @classmethod + def setup_class(cls): + cls.bit_generator = Philox + cls.bits = 64 + cls.dtype = np.uint64 + cls.data1 = cls._read_csv( + join(pwd, './data/philox-testset-1.csv')) + cls.data2 = cls._read_csv( + join(pwd, './data/philox-testset-2.csv')) + cls.seed_error_type = TypeError + cls.invalid_init_types = [] + cls.invalid_init_values = [(1, None, 1), (-1,), (None, None, 2 ** 257 + 1)] + + def test_set_key(self): + bit_generator = self.bit_generator(*self.data1['seed']) + state = bit_generator.state + keyed = self.bit_generator(counter=state['state']['counter'], + key=state['state']['key']) + assert_state_equal(bit_generator.state, keyed.state) + + +class TestPCG64(Base): + @classmethod + def setup_class(cls): + cls.bit_generator = PCG64 + cls.bits = 64 + cls.dtype = np.uint64 + cls.data1 = cls._read_csv(join(pwd, './data/pcg64-testset-1.csv')) + cls.data2 = cls._read_csv(join(pwd, './data/pcg64-testset-2.csv')) + cls.seed_error_type = (ValueError, TypeError) + cls.invalid_init_types = [(3.2,), ([None],), (1, None)] + cls.invalid_init_values = [(-1,)] + + def test_advance_symmetry(self): + rs = Generator(self.bit_generator(*self.data1['seed'])) + state = rs.bit_generator.state + step = -0x9e3779b97f4a7c150000000000000000 + rs.bit_generator.advance(step) + val_neg = rs.integers(10) + rs.bit_generator.state = state + rs.bit_generator.advance(2**128 + step) + val_pos = rs.integers(10) + rs.bit_generator.state = state + rs.bit_generator.advance(10 * 2**128 + step) + val_big = rs.integers(10) + assert val_neg == val_pos + assert val_big == val_pos + + def test_advange_large(self): + rs = Generator(self.bit_generator(38219308213743)) + pcg = rs.bit_generator + state = pcg.state["state"] + initial_state = 287608843259529770491897792873167516365 + assert state["state"] == initial_state + pcg.advance(sum(2**i for i in (96, 64, 32, 16, 8, 4, 2, 1))) + state = pcg.state["state"] + advanced_state = 135275564607035429730177404003164635391 + assert state["state"] == advanced_state + + +class TestPCG64DXSM(Base): + @classmethod + def setup_class(cls): + cls.bit_generator = PCG64DXSM + cls.bits = 64 + cls.dtype = np.uint64 + cls.data1 = cls._read_csv(join(pwd, './data/pcg64dxsm-testset-1.csv')) + cls.data2 = cls._read_csv(join(pwd, './data/pcg64dxsm-testset-2.csv')) + cls.seed_error_type = (ValueError, TypeError) + cls.invalid_init_types = [(3.2,), ([None],), (1, None)] + cls.invalid_init_values = [(-1,)] + + def test_advance_symmetry(self): + rs = Generator(self.bit_generator(*self.data1['seed'])) + state = rs.bit_generator.state + step = -0x9e3779b97f4a7c150000000000000000 + rs.bit_generator.advance(step) + val_neg = rs.integers(10) + rs.bit_generator.state = state + rs.bit_generator.advance(2**128 + step) + val_pos = rs.integers(10) + rs.bit_generator.state = state + rs.bit_generator.advance(10 * 2**128 + step) + val_big = rs.integers(10) + assert val_neg == val_pos + assert val_big == val_pos + + def test_advange_large(self): + rs = Generator(self.bit_generator(38219308213743)) + pcg = rs.bit_generator + state = pcg.state + initial_state = 287608843259529770491897792873167516365 + assert state["state"]["state"] == initial_state + pcg.advance(sum(2**i for i in (96, 64, 32, 16, 8, 4, 2, 1))) + state = pcg.state["state"] + advanced_state = 277778083536782149546677086420637664879 + assert state["state"] == advanced_state + + +class TestMT19937(Base): + @classmethod + def setup_class(cls): + cls.bit_generator = MT19937 + cls.bits = 32 + cls.dtype = np.uint32 + cls.data1 = cls._read_csv(join(pwd, './data/mt19937-testset-1.csv')) + cls.data2 = cls._read_csv(join(pwd, './data/mt19937-testset-2.csv')) + cls.seed_error_type = ValueError + cls.invalid_init_types = [] + cls.invalid_init_values = [(-1,)] + + def test_seed_float_array(self): + assert_raises(TypeError, self.bit_generator, np.array([np.pi])) + assert_raises(TypeError, self.bit_generator, np.array([-np.pi])) + assert_raises(TypeError, self.bit_generator, np.array([np.pi, -np.pi])) + assert_raises(TypeError, self.bit_generator, np.array([0, np.pi])) + assert_raises(TypeError, self.bit_generator, [np.pi]) + assert_raises(TypeError, self.bit_generator, [0, np.pi]) + + def test_state_tuple(self): + rs = Generator(self.bit_generator(*self.data1['seed'])) + bit_generator = rs.bit_generator + state = bit_generator.state + desired = rs.integers(2 ** 16) + tup = (state['bit_generator'], state['state']['key'], + state['state']['pos']) + bit_generator.state = tup + actual = rs.integers(2 ** 16) + assert_equal(actual, desired) + tup = tup + (0, 0.0) + bit_generator.state = tup + actual = rs.integers(2 ** 16) + assert_equal(actual, desired) + + +class TestSFC64(Base): + @classmethod + def setup_class(cls): + cls.bit_generator = SFC64 + cls.bits = 64 + cls.dtype = np.uint64 + cls.data1 = cls._read_csv( + join(pwd, './data/sfc64-testset-1.csv')) + cls.data2 = cls._read_csv( + join(pwd, './data/sfc64-testset-2.csv')) + cls.seed_error_type = (ValueError, TypeError) + cls.invalid_init_types = [(3.2,), ([None],), (1, None)] + cls.invalid_init_values = [(-1,)] + + def test_legacy_pickle(self): + # Pickling format was changed in 2.0.x + import gzip + import pickle + + expected_state = np.array( + [ + 9957867060933711493, + 532597980065565856, + 14769588338631205282, + 13 + ], + dtype=np.uint64 + ) + + base_path = os.path.split(os.path.abspath(__file__))[0] + pkl_file = os.path.join(base_path, "data", "sfc64_np126.pkl.gz") + with gzip.open(pkl_file) as gz: + sfc = pickle.load(gz) + + assert isinstance(sfc, SFC64) + assert_equal(sfc.state["state"]["state"], expected_state) + + +class TestDefaultRNG: + def test_seed(self): + for args in [(), (None,), (1234,), ([1234, 5678],)]: + rg = default_rng(*args) + assert isinstance(rg.bit_generator, PCG64) + + def test_passthrough(self): + bg = Philox() + rg = default_rng(bg) + assert rg.bit_generator is bg + rg2 = default_rng(rg) + assert rg2 is rg + assert rg2.bit_generator is bg + + def test_coercion_RandomState_Generator(self): + # use default_rng to coerce RandomState to Generator + rs = RandomState(1234) + rg = default_rng(rs) + assert isinstance(rg.bit_generator, MT19937) + assert rg.bit_generator is rs._bit_generator + + # RandomState with a non MT19937 bit generator + _original = np.random.get_bit_generator() + bg = PCG64(12342298) + np.random.set_bit_generator(bg) + rs = np.random.mtrand._rand + rg = default_rng(rs) + assert rg.bit_generator is bg + + # vital to get global state back to original, otherwise + # other tests start to fail. + np.random.set_bit_generator(_original) diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/test_extending.py b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_extending.py new file mode 100644 index 0000000..7a079d6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_extending.py @@ -0,0 +1,127 @@ +import os +import shutil +import subprocess +import sys +import sysconfig +import warnings +from importlib.util import module_from_spec, spec_from_file_location + +import pytest + +import numpy as np +from numpy.testing import IS_EDITABLE, IS_WASM + +try: + import cffi +except ImportError: + cffi = None + +if sys.flags.optimize > 1: + # no docstrings present to inspect when PYTHONOPTIMIZE/Py_OptimizeFlag > 1 + # cffi cannot succeed + cffi = None + +try: + with warnings.catch_warnings(record=True) as w: + # numba issue gh-4733 + warnings.filterwarnings('always', '', DeprecationWarning) + import numba +except (ImportError, SystemError): + # Certain numpy/numba versions trigger a SystemError due to a numba bug + numba = None + +try: + import cython + from Cython.Compiler.Version import version as cython_version +except ImportError: + cython = None +else: + from numpy._utils import _pep440 + # Note: keep in sync with the one in pyproject.toml + required_version = '3.0.6' + if _pep440.parse(cython_version) < _pep440.Version(required_version): + # too old or wrong cython, skip the test + cython = None + + +@pytest.mark.skipif( + IS_EDITABLE, + reason='Editable install cannot find .pxd headers' +) +@pytest.mark.skipif( + sys.platform == "win32" and sys.maxsize < 2**32, + reason="Failing in 32-bit Windows wheel build job, skip for now" +) +@pytest.mark.skipif(IS_WASM, reason="Can't start subprocess") +@pytest.mark.skipif(cython is None, reason="requires cython") +@pytest.mark.skipif(sysconfig.get_platform() == 'win-arm64', + reason='Meson unable to find MSVC linker on win-arm64') +@pytest.mark.slow +def test_cython(tmp_path): + import glob + # build the examples in a temporary directory + srcdir = os.path.join(os.path.dirname(__file__), '..') + shutil.copytree(srcdir, tmp_path / 'random') + build_dir = tmp_path / 'random' / '_examples' / 'cython' + target_dir = build_dir / "build" + os.makedirs(target_dir, exist_ok=True) + # Ensure we use the correct Python interpreter even when `meson` is + # installed in a different Python environment (see gh-24956) + native_file = str(build_dir / 'interpreter-native-file.ini') + with open(native_file, 'w') as f: + f.write("[binaries]\n") + f.write(f"python = '{sys.executable}'\n") + f.write(f"python3 = '{sys.executable}'") + if sys.platform == "win32": + subprocess.check_call(["meson", "setup", + "--buildtype=release", + "--vsenv", "--native-file", native_file, + str(build_dir)], + cwd=target_dir, + ) + else: + subprocess.check_call(["meson", "setup", + "--native-file", native_file, str(build_dir)], + cwd=target_dir + ) + subprocess.check_call(["meson", "compile", "-vv"], cwd=target_dir) + + # gh-16162: make sure numpy's __init__.pxd was used for cython + # not really part of this test, but it is a convenient place to check + + g = glob.glob(str(target_dir / "*" / "extending.pyx.c")) + with open(g[0]) as fid: + txt_to_find = 'NumPy API declarations from "numpy/__init__' + for line in fid: + if txt_to_find in line: + break + else: + assert False, f"Could not find '{txt_to_find}' in C file, wrong pxd used" + # import without adding the directory to sys.path + suffix = sysconfig.get_config_var('EXT_SUFFIX') + + def load(modname): + so = (target_dir / modname).with_suffix(suffix) + spec = spec_from_file_location(modname, so) + mod = module_from_spec(spec) + spec.loader.exec_module(mod) + return mod + + # test that the module can be imported + load("extending") + load("extending_cpp") + # actually test the cython c-extension + extending_distributions = load("extending_distributions") + from numpy.random import PCG64 + values = extending_distributions.uniforms_ex(PCG64(0), 10, 'd') + assert values.shape == (10,) + assert values.dtype == np.float64 + +@pytest.mark.skipif(numba is None or cffi is None, + reason="requires numba and cffi") +def test_numba(): + from numpy.random._examples.numba import extending # noqa: F401 + +@pytest.mark.skipif(cffi is None, reason="requires cffi") +def test_cffi(): + from numpy.random._examples.cffi import extending # noqa: F401 diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/test_generator_mt19937.py b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_generator_mt19937.py new file mode 100644 index 0000000..d09cbba --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_generator_mt19937.py @@ -0,0 +1,2804 @@ +import hashlib +import os.path +import sys + +import pytest + +import numpy as np +from numpy.exceptions import AxisError +from numpy.linalg import LinAlgError +from numpy.random import MT19937, Generator, RandomState, SeedSequence +from numpy.testing import ( + IS_WASM, + assert_, + assert_allclose, + assert_array_almost_equal, + assert_array_equal, + assert_equal, + assert_no_warnings, + assert_raises, + assert_warns, + suppress_warnings, +) + +random = Generator(MT19937()) + +JUMP_TEST_DATA = [ + { + "seed": 0, + "steps": 10, + "initial": {"key_sha256": "bb1636883c2707b51c5b7fc26c6927af4430f2e0785a8c7bc886337f919f9edf", "pos": 9}, # noqa: E501 + "jumped": {"key_sha256": "ff682ac12bb140f2d72fba8d3506cf4e46817a0db27aae1683867629031d8d55", "pos": 598}, # noqa: E501 + }, + { + "seed": 384908324, + "steps": 312, + "initial": {"key_sha256": "16b791a1e04886ccbbb4d448d6ff791267dc458ae599475d08d5cced29d11614", "pos": 311}, # noqa: E501 + "jumped": {"key_sha256": "a0110a2cf23b56be0feaed8f787a7fc84bef0cb5623003d75b26bdfa1c18002c", "pos": 276}, # noqa: E501 + }, + { + "seed": [839438204, 980239840, 859048019, 821], + "steps": 511, + "initial": {"key_sha256": "d306cf01314d51bd37892d874308200951a35265ede54d200f1e065004c3e9ea", "pos": 510}, # noqa: E501 + "jumped": {"key_sha256": "0e00ab449f01a5195a83b4aee0dfbc2ce8d46466a640b92e33977d2e42f777f8", "pos": 475}, # noqa: E501 + }, +] + + +@pytest.fixture(scope='module', params=[True, False]) +def endpoint(request): + return request.param + + +class TestSeed: + def test_scalar(self): + s = Generator(MT19937(0)) + assert_equal(s.integers(1000), 479) + s = Generator(MT19937(4294967295)) + assert_equal(s.integers(1000), 324) + + def test_array(self): + s = Generator(MT19937(range(10))) + assert_equal(s.integers(1000), 465) + s = Generator(MT19937(np.arange(10))) + assert_equal(s.integers(1000), 465) + s = Generator(MT19937([0])) + assert_equal(s.integers(1000), 479) + s = Generator(MT19937([4294967295])) + assert_equal(s.integers(1000), 324) + + def test_seedsequence(self): + s = MT19937(SeedSequence(0)) + assert_equal(s.random_raw(1), 2058676884) + + def test_invalid_scalar(self): + # seed must be an unsigned 32 bit integer + assert_raises(TypeError, MT19937, -0.5) + assert_raises(ValueError, MT19937, -1) + + def test_invalid_array(self): + # seed must be an unsigned integer + assert_raises(TypeError, MT19937, [-0.5]) + assert_raises(ValueError, MT19937, [-1]) + assert_raises(ValueError, MT19937, [1, -2, 4294967296]) + + def test_noninstantized_bitgen(self): + assert_raises(ValueError, Generator, MT19937) + + +class TestBinomial: + def test_n_zero(self): + # Tests the corner case of n == 0 for the binomial distribution. + # binomial(0, p) should be zero for any p in [0, 1]. + # This test addresses issue #3480. + zeros = np.zeros(2, dtype='int') + for p in [0, .5, 1]: + assert_(random.binomial(0, p) == 0) + assert_array_equal(random.binomial(zeros, p), zeros) + + def test_p_is_nan(self): + # Issue #4571. + assert_raises(ValueError, random.binomial, 1, np.nan) + + +class TestMultinomial: + def test_basic(self): + random.multinomial(100, [0.2, 0.8]) + + def test_zero_probability(self): + random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0]) + + def test_int_negative_interval(self): + assert_(-5 <= random.integers(-5, -1) < -1) + x = random.integers(-5, -1, 5) + assert_(np.all(-5 <= x)) + assert_(np.all(x < -1)) + + def test_size(self): + # gh-3173 + p = [0.5, 0.5] + assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) + assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) + assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) + assert_equal(random.multinomial(1, p, [2, 2]).shape, (2, 2, 2)) + assert_equal(random.multinomial(1, p, (2, 2)).shape, (2, 2, 2)) + assert_equal(random.multinomial(1, p, np.array((2, 2))).shape, + (2, 2, 2)) + + assert_raises(TypeError, random.multinomial, 1, p, + float(1)) + + def test_invalid_prob(self): + assert_raises(ValueError, random.multinomial, 100, [1.1, 0.2]) + assert_raises(ValueError, random.multinomial, 100, [-.1, 0.9]) + + def test_invalid_n(self): + assert_raises(ValueError, random.multinomial, -1, [0.8, 0.2]) + assert_raises(ValueError, random.multinomial, [-1] * 10, [0.8, 0.2]) + + def test_p_non_contiguous(self): + p = np.arange(15.) + p /= np.sum(p[1::3]) + pvals = p[1::3] + random = Generator(MT19937(1432985819)) + non_contig = random.multinomial(100, pvals=pvals) + random = Generator(MT19937(1432985819)) + contig = random.multinomial(100, pvals=np.ascontiguousarray(pvals)) + assert_array_equal(non_contig, contig) + + def test_multinomial_pvals_float32(self): + x = np.array([9.9e-01, 9.9e-01, 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09, + 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09], dtype=np.float32) + pvals = x / x.sum() + random = Generator(MT19937(1432985819)) + match = r"[\w\s]*pvals array is cast to 64-bit floating" + with pytest.raises(ValueError, match=match): + random.multinomial(1, pvals) + + +class TestMultivariateHypergeometric: + + def setup_method(self): + self.seed = 8675309 + + def test_argument_validation(self): + # Error cases... + + # `colors` must be a 1-d sequence + assert_raises(ValueError, random.multivariate_hypergeometric, + 10, 4) + + # Negative nsample + assert_raises(ValueError, random.multivariate_hypergeometric, + [2, 3, 4], -1) + + # Negative color + assert_raises(ValueError, random.multivariate_hypergeometric, + [-1, 2, 3], 2) + + # nsample exceeds sum(colors) + assert_raises(ValueError, random.multivariate_hypergeometric, + [2, 3, 4], 10) + + # nsample exceeds sum(colors) (edge case of empty colors) + assert_raises(ValueError, random.multivariate_hypergeometric, + [], 1) + + # Validation errors associated with very large values in colors. + assert_raises(ValueError, random.multivariate_hypergeometric, + [999999999, 101], 5, 1, 'marginals') + + int64_info = np.iinfo(np.int64) + max_int64 = int64_info.max + max_int64_index = max_int64 // int64_info.dtype.itemsize + assert_raises(ValueError, random.multivariate_hypergeometric, + [max_int64_index - 100, 101], 5, 1, 'count') + + @pytest.mark.parametrize('method', ['count', 'marginals']) + def test_edge_cases(self, method): + # Set the seed, but in fact, all the results in this test are + # deterministic, so we don't really need this. + random = Generator(MT19937(self.seed)) + + x = random.multivariate_hypergeometric([0, 0, 0], 0, method=method) + assert_array_equal(x, [0, 0, 0]) + + x = random.multivariate_hypergeometric([], 0, method=method) + assert_array_equal(x, []) + + x = random.multivariate_hypergeometric([], 0, size=1, method=method) + assert_array_equal(x, np.empty((1, 0), dtype=np.int64)) + + x = random.multivariate_hypergeometric([1, 2, 3], 0, method=method) + assert_array_equal(x, [0, 0, 0]) + + x = random.multivariate_hypergeometric([9, 0, 0], 3, method=method) + assert_array_equal(x, [3, 0, 0]) + + colors = [1, 1, 0, 1, 1] + x = random.multivariate_hypergeometric(colors, sum(colors), + method=method) + assert_array_equal(x, colors) + + x = random.multivariate_hypergeometric([3, 4, 5], 12, size=3, + method=method) + assert_array_equal(x, [[3, 4, 5]] * 3) + + # Cases for nsample: + # nsample < 10 + # 10 <= nsample < colors.sum()/2 + # colors.sum()/2 < nsample < colors.sum() - 10 + # colors.sum() - 10 < nsample < colors.sum() + @pytest.mark.parametrize('nsample', [8, 25, 45, 55]) + @pytest.mark.parametrize('method', ['count', 'marginals']) + @pytest.mark.parametrize('size', [5, (2, 3), 150000]) + def test_typical_cases(self, nsample, method, size): + random = Generator(MT19937(self.seed)) + + colors = np.array([10, 5, 20, 25]) + sample = random.multivariate_hypergeometric(colors, nsample, size, + method=method) + if isinstance(size, int): + expected_shape = (size,) + colors.shape + else: + expected_shape = size + colors.shape + assert_equal(sample.shape, expected_shape) + assert_((sample >= 0).all()) + assert_((sample <= colors).all()) + assert_array_equal(sample.sum(axis=-1), + np.full(size, fill_value=nsample, dtype=int)) + if isinstance(size, int) and size >= 100000: + # This sample is large enough to compare its mean to + # the expected values. + assert_allclose(sample.mean(axis=0), + nsample * colors / colors.sum(), + rtol=1e-3, atol=0.005) + + def test_repeatability1(self): + random = Generator(MT19937(self.seed)) + sample = random.multivariate_hypergeometric([3, 4, 5], 5, size=5, + method='count') + expected = np.array([[2, 1, 2], + [2, 1, 2], + [1, 1, 3], + [2, 0, 3], + [2, 1, 2]]) + assert_array_equal(sample, expected) + + def test_repeatability2(self): + random = Generator(MT19937(self.seed)) + sample = random.multivariate_hypergeometric([20, 30, 50], 50, + size=5, + method='marginals') + expected = np.array([[ 9, 17, 24], + [ 7, 13, 30], + [ 9, 15, 26], + [ 9, 17, 24], + [12, 14, 24]]) + assert_array_equal(sample, expected) + + def test_repeatability3(self): + random = Generator(MT19937(self.seed)) + sample = random.multivariate_hypergeometric([20, 30, 50], 12, + size=5, + method='marginals') + expected = np.array([[2, 3, 7], + [5, 3, 4], + [2, 5, 5], + [5, 3, 4], + [1, 5, 6]]) + assert_array_equal(sample, expected) + + +class TestSetState: + def setup_method(self): + self.seed = 1234567890 + self.rg = Generator(MT19937(self.seed)) + self.bit_generator = self.rg.bit_generator + self.state = self.bit_generator.state + self.legacy_state = (self.state['bit_generator'], + self.state['state']['key'], + self.state['state']['pos']) + + def test_gaussian_reset(self): + # Make sure the cached every-other-Gaussian is reset. + old = self.rg.standard_normal(size=3) + self.bit_generator.state = self.state + new = self.rg.standard_normal(size=3) + assert_(np.all(old == new)) + + def test_gaussian_reset_in_media_res(self): + # When the state is saved with a cached Gaussian, make sure the + # cached Gaussian is restored. + + self.rg.standard_normal() + state = self.bit_generator.state + old = self.rg.standard_normal(size=3) + self.bit_generator.state = state + new = self.rg.standard_normal(size=3) + assert_(np.all(old == new)) + + def test_negative_binomial(self): + # Ensure that the negative binomial results take floating point + # arguments without truncation. + self.rg.negative_binomial(0.5, 0.5) + + +class TestIntegers: + rfunc = random.integers + + # valid integer/boolean types + itype = [bool, np.int8, np.uint8, np.int16, np.uint16, + np.int32, np.uint32, np.int64, np.uint64] + + def test_unsupported_type(self, endpoint): + assert_raises(TypeError, self.rfunc, 1, endpoint=endpoint, dtype=float) + + def test_bounds_checking(self, endpoint): + for dt in self.itype: + lbnd = 0 if dt is bool else np.iinfo(dt).min + ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 + ubnd = ubnd - 1 if endpoint else ubnd + assert_raises(ValueError, self.rfunc, lbnd - 1, ubnd, + endpoint=endpoint, dtype=dt) + assert_raises(ValueError, self.rfunc, lbnd, ubnd + 1, + endpoint=endpoint, dtype=dt) + assert_raises(ValueError, self.rfunc, ubnd, lbnd, + endpoint=endpoint, dtype=dt) + assert_raises(ValueError, self.rfunc, 1, 0, endpoint=endpoint, + dtype=dt) + + assert_raises(ValueError, self.rfunc, [lbnd - 1], ubnd, + endpoint=endpoint, dtype=dt) + assert_raises(ValueError, self.rfunc, [lbnd], [ubnd + 1], + endpoint=endpoint, dtype=dt) + assert_raises(ValueError, self.rfunc, [ubnd], [lbnd], + endpoint=endpoint, dtype=dt) + assert_raises(ValueError, self.rfunc, 1, [0], + endpoint=endpoint, dtype=dt) + assert_raises(ValueError, self.rfunc, [ubnd + 1], [ubnd], + endpoint=endpoint, dtype=dt) + + def test_bounds_checking_array(self, endpoint): + for dt in self.itype: + lbnd = 0 if dt is bool else np.iinfo(dt).min + ubnd = 2 if dt is bool else np.iinfo(dt).max + (not endpoint) + + assert_raises(ValueError, self.rfunc, [lbnd - 1] * 2, [ubnd] * 2, + endpoint=endpoint, dtype=dt) + assert_raises(ValueError, self.rfunc, [lbnd] * 2, + [ubnd + 1] * 2, endpoint=endpoint, dtype=dt) + assert_raises(ValueError, self.rfunc, ubnd, [lbnd] * 2, + endpoint=endpoint, dtype=dt) + assert_raises(ValueError, self.rfunc, [1] * 2, 0, + endpoint=endpoint, dtype=dt) + + def test_rng_zero_and_extremes(self, endpoint): + for dt in self.itype: + lbnd = 0 if dt is bool else np.iinfo(dt).min + ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 + ubnd = ubnd - 1 if endpoint else ubnd + is_open = not endpoint + + tgt = ubnd - 1 + assert_equal(self.rfunc(tgt, tgt + is_open, size=1000, + endpoint=endpoint, dtype=dt), tgt) + assert_equal(self.rfunc([tgt], tgt + is_open, size=1000, + endpoint=endpoint, dtype=dt), tgt) + + tgt = lbnd + assert_equal(self.rfunc(tgt, tgt + is_open, size=1000, + endpoint=endpoint, dtype=dt), tgt) + assert_equal(self.rfunc(tgt, [tgt + is_open], size=1000, + endpoint=endpoint, dtype=dt), tgt) + + tgt = (lbnd + ubnd) // 2 + assert_equal(self.rfunc(tgt, tgt + is_open, size=1000, + endpoint=endpoint, dtype=dt), tgt) + assert_equal(self.rfunc([tgt], [tgt + is_open], + size=1000, endpoint=endpoint, dtype=dt), + tgt) + + def test_rng_zero_and_extremes_array(self, endpoint): + size = 1000 + for dt in self.itype: + lbnd = 0 if dt is bool else np.iinfo(dt).min + ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 + ubnd = ubnd - 1 if endpoint else ubnd + + tgt = ubnd - 1 + assert_equal(self.rfunc([tgt], [tgt + 1], + size=size, dtype=dt), tgt) + assert_equal(self.rfunc( + [tgt] * size, [tgt + 1] * size, dtype=dt), tgt) + assert_equal(self.rfunc( + [tgt] * size, [tgt + 1] * size, size=size, dtype=dt), tgt) + + tgt = lbnd + assert_equal(self.rfunc([tgt], [tgt + 1], + size=size, dtype=dt), tgt) + assert_equal(self.rfunc( + [tgt] * size, [tgt + 1] * size, dtype=dt), tgt) + assert_equal(self.rfunc( + [tgt] * size, [tgt + 1] * size, size=size, dtype=dt), tgt) + + tgt = (lbnd + ubnd) // 2 + assert_equal(self.rfunc([tgt], [tgt + 1], + size=size, dtype=dt), tgt) + assert_equal(self.rfunc( + [tgt] * size, [tgt + 1] * size, dtype=dt), tgt) + assert_equal(self.rfunc( + [tgt] * size, [tgt + 1] * size, size=size, dtype=dt), tgt) + + def test_full_range(self, endpoint): + # Test for ticket #1690 + + for dt in self.itype: + lbnd = 0 if dt is bool else np.iinfo(dt).min + ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 + ubnd = ubnd - 1 if endpoint else ubnd + + try: + self.rfunc(lbnd, ubnd, endpoint=endpoint, dtype=dt) + except Exception as e: + raise AssertionError("No error should have been raised, " + "but one was with the following " + "message:\n\n%s" % str(e)) + + def test_full_range_array(self, endpoint): + # Test for ticket #1690 + + for dt in self.itype: + lbnd = 0 if dt is bool else np.iinfo(dt).min + ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 + ubnd = ubnd - 1 if endpoint else ubnd + + try: + self.rfunc([lbnd] * 2, [ubnd], endpoint=endpoint, dtype=dt) + except Exception as e: + raise AssertionError("No error should have been raised, " + "but one was with the following " + "message:\n\n%s" % str(e)) + + def test_in_bounds_fuzz(self, endpoint): + # Don't use fixed seed + random = Generator(MT19937()) + + for dt in self.itype[1:]: + for ubnd in [4, 8, 16]: + vals = self.rfunc(2, ubnd - endpoint, size=2 ** 16, + endpoint=endpoint, dtype=dt) + assert_(vals.max() < ubnd) + assert_(vals.min() >= 2) + + vals = self.rfunc(0, 2 - endpoint, size=2 ** 16, endpoint=endpoint, + dtype=bool) + assert_(vals.max() < 2) + assert_(vals.min() >= 0) + + def test_scalar_array_equiv(self, endpoint): + for dt in self.itype: + lbnd = 0 if dt is bool else np.iinfo(dt).min + ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 + ubnd = ubnd - 1 if endpoint else ubnd + + size = 1000 + random = Generator(MT19937(1234)) + scalar = random.integers(lbnd, ubnd, size=size, endpoint=endpoint, + dtype=dt) + + random = Generator(MT19937(1234)) + scalar_array = random.integers([lbnd], [ubnd], size=size, + endpoint=endpoint, dtype=dt) + + random = Generator(MT19937(1234)) + array = random.integers([lbnd] * size, [ubnd] * + size, size=size, endpoint=endpoint, dtype=dt) + assert_array_equal(scalar, scalar_array) + assert_array_equal(scalar, array) + + def test_repeatability(self, endpoint): + # We use a sha256 hash of generated sequences of 1000 samples + # in the range [0, 6) for all but bool, where the range + # is [0, 2). Hashes are for little endian numbers. + tgt = {'bool': '053594a9b82d656f967c54869bc6970aa0358cf94ad469c81478459c6a90eee3', # noqa: E501 + 'int16': '54de9072b6ee9ff7f20b58329556a46a447a8a29d67db51201bf88baa6e4e5d4', # noqa: E501 + 'int32': 'd3a0d5efb04542b25ac712e50d21f39ac30f312a5052e9bbb1ad3baa791ac84b', # noqa: E501 + 'int64': '14e224389ac4580bfbdccb5697d6190b496f91227cf67df60989de3d546389b1', # noqa: E501 + 'int8': '0e203226ff3fbbd1580f15da4621e5f7164d0d8d6b51696dd42d004ece2cbec1', # noqa: E501 + 'uint16': '54de9072b6ee9ff7f20b58329556a46a447a8a29d67db51201bf88baa6e4e5d4', # noqa: E501 + 'uint32': 'd3a0d5efb04542b25ac712e50d21f39ac30f312a5052e9bbb1ad3baa791ac84b', # noqa: E501 + 'uint64': '14e224389ac4580bfbdccb5697d6190b496f91227cf67df60989de3d546389b1', # noqa: E501 + 'uint8': '0e203226ff3fbbd1580f15da4621e5f7164d0d8d6b51696dd42d004ece2cbec1'} # noqa: E501 + + for dt in self.itype[1:]: + random = Generator(MT19937(1234)) + + # view as little endian for hash + if sys.byteorder == 'little': + val = random.integers(0, 6 - endpoint, size=1000, endpoint=endpoint, + dtype=dt) + else: + val = random.integers(0, 6 - endpoint, size=1000, endpoint=endpoint, + dtype=dt).byteswap() + + res = hashlib.sha256(val).hexdigest() + assert_(tgt[np.dtype(dt).name] == res) + + # bools do not depend on endianness + random = Generator(MT19937(1234)) + val = random.integers(0, 2 - endpoint, size=1000, endpoint=endpoint, + dtype=bool).view(np.int8) + res = hashlib.sha256(val).hexdigest() + assert_(tgt[np.dtype(bool).name] == res) + + def test_repeatability_broadcasting(self, endpoint): + for dt in self.itype: + lbnd = 0 if dt in (bool, np.bool) else np.iinfo(dt).min + ubnd = 2 if dt in (bool, np.bool) else np.iinfo(dt).max + 1 + ubnd = ubnd - 1 if endpoint else ubnd + + # view as little endian for hash + random = Generator(MT19937(1234)) + val = random.integers(lbnd, ubnd, size=1000, endpoint=endpoint, + dtype=dt) + + random = Generator(MT19937(1234)) + val_bc = random.integers([lbnd] * 1000, ubnd, endpoint=endpoint, + dtype=dt) + + assert_array_equal(val, val_bc) + + random = Generator(MT19937(1234)) + val_bc = random.integers([lbnd] * 1000, [ubnd] * 1000, + endpoint=endpoint, dtype=dt) + + assert_array_equal(val, val_bc) + + @pytest.mark.parametrize( + 'bound, expected', + [(2**32 - 1, np.array([517043486, 1364798665, 1733884389, 1353720612, + 3769704066, 1170797179, 4108474671])), + (2**32, np.array([517043487, 1364798666, 1733884390, 1353720613, + 3769704067, 1170797180, 4108474672])), + (2**32 + 1, np.array([517043487, 1733884390, 3769704068, 4108474673, + 1831631863, 1215661561, 3869512430]))] + ) + def test_repeatability_32bit_boundary(self, bound, expected): + for size in [None, len(expected)]: + random = Generator(MT19937(1234)) + x = random.integers(bound, size=size) + assert_equal(x, expected if size is not None else expected[0]) + + def test_repeatability_32bit_boundary_broadcasting(self): + desired = np.array([[[1622936284, 3620788691, 1659384060], + [1417365545, 760222891, 1909653332], + [3788118662, 660249498, 4092002593]], + [[3625610153, 2979601262, 3844162757], + [ 685800658, 120261497, 2694012896], + [1207779440, 1586594375, 3854335050]], + [[3004074748, 2310761796, 3012642217], + [2067714190, 2786677879, 1363865881], + [ 791663441, 1867303284, 2169727960]], + [[1939603804, 1250951100, 298950036], + [1040128489, 3791912209, 3317053765], + [3155528714, 61360675, 2305155588]], + [[ 817688762, 1335621943, 3288952434], + [1770890872, 1102951817, 1957607470], + [3099996017, 798043451, 48334215]]]) + for size in [None, (5, 3, 3)]: + random = Generator(MT19937(12345)) + x = random.integers([[-1], [0], [1]], + [2**32 - 1, 2**32, 2**32 + 1], + size=size) + assert_array_equal(x, desired if size is not None else desired[0]) + + def test_int64_uint64_broadcast_exceptions(self, endpoint): + configs = {np.uint64: ((0, 2**65), (-1, 2**62), (10, 9), (0, 0)), + np.int64: ((0, 2**64), (-(2**64), 2**62), (10, 9), (0, 0), + (-2**63 - 1, -2**63 - 1))} + for dtype in configs: + for config in configs[dtype]: + low, high = config + high = high - endpoint + low_a = np.array([[low] * 10]) + high_a = np.array([high] * 10) + assert_raises(ValueError, random.integers, low, high, + endpoint=endpoint, dtype=dtype) + assert_raises(ValueError, random.integers, low_a, high, + endpoint=endpoint, dtype=dtype) + assert_raises(ValueError, random.integers, low, high_a, + endpoint=endpoint, dtype=dtype) + assert_raises(ValueError, random.integers, low_a, high_a, + endpoint=endpoint, dtype=dtype) + + low_o = np.array([[low] * 10], dtype=object) + high_o = np.array([high] * 10, dtype=object) + assert_raises(ValueError, random.integers, low_o, high, + endpoint=endpoint, dtype=dtype) + assert_raises(ValueError, random.integers, low, high_o, + endpoint=endpoint, dtype=dtype) + assert_raises(ValueError, random.integers, low_o, high_o, + endpoint=endpoint, dtype=dtype) + + def test_int64_uint64_corner_case(self, endpoint): + # When stored in Numpy arrays, `lbnd` is casted + # as np.int64, and `ubnd` is casted as np.uint64. + # Checking whether `lbnd` >= `ubnd` used to be + # done solely via direct comparison, which is incorrect + # because when Numpy tries to compare both numbers, + # it casts both to np.float64 because there is + # no integer superset of np.int64 and np.uint64. However, + # `ubnd` is too large to be represented in np.float64, + # causing it be round down to np.iinfo(np.int64).max, + # leading to a ValueError because `lbnd` now equals + # the new `ubnd`. + + dt = np.int64 + tgt = np.iinfo(np.int64).max + lbnd = np.int64(np.iinfo(np.int64).max) + ubnd = np.uint64(np.iinfo(np.int64).max + 1 - endpoint) + + # None of these function calls should + # generate a ValueError now. + actual = random.integers(lbnd, ubnd, endpoint=endpoint, dtype=dt) + assert_equal(actual, tgt) + + def test_respect_dtype_singleton(self, endpoint): + # See gh-7203 + for dt in self.itype: + lbnd = 0 if dt is bool else np.iinfo(dt).min + ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 + ubnd = ubnd - 1 if endpoint else ubnd + dt = np.bool if dt is bool else dt + + sample = self.rfunc(lbnd, ubnd, endpoint=endpoint, dtype=dt) + assert_equal(sample.dtype, dt) + + for dt in (bool, int): + lbnd = 0 if dt is bool else np.iinfo(dt).min + ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 + ubnd = ubnd - 1 if endpoint else ubnd + + # gh-7284: Ensure that we get Python data types + sample = self.rfunc(lbnd, ubnd, endpoint=endpoint, dtype=dt) + assert not hasattr(sample, 'dtype') + assert_equal(type(sample), dt) + + def test_respect_dtype_array(self, endpoint): + # See gh-7203 + for dt in self.itype: + lbnd = 0 if dt is bool else np.iinfo(dt).min + ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 + ubnd = ubnd - 1 if endpoint else ubnd + dt = np.bool if dt is bool else dt + + sample = self.rfunc([lbnd], [ubnd], endpoint=endpoint, dtype=dt) + assert_equal(sample.dtype, dt) + sample = self.rfunc([lbnd] * 2, [ubnd] * 2, endpoint=endpoint, + dtype=dt) + assert_equal(sample.dtype, dt) + + def test_zero_size(self, endpoint): + # See gh-7203 + for dt in self.itype: + sample = self.rfunc(0, 0, (3, 0, 4), endpoint=endpoint, dtype=dt) + assert sample.shape == (3, 0, 4) + assert sample.dtype == dt + assert self.rfunc(0, -10, 0, endpoint=endpoint, + dtype=dt).shape == (0,) + assert_equal(random.integers(0, 0, size=(3, 0, 4)).shape, + (3, 0, 4)) + assert_equal(random.integers(0, -10, size=0).shape, (0,)) + assert_equal(random.integers(10, 10, size=0).shape, (0,)) + + def test_error_byteorder(self): + other_byteord_dt = 'i4' + with pytest.raises(ValueError): + random.integers(0, 200, size=10, dtype=other_byteord_dt) + + # chi2max is the maximum acceptable chi-squared value. + @pytest.mark.slow + @pytest.mark.parametrize('sample_size,high,dtype,chi2max', + [(5000000, 5, np.int8, 125.0), # p-value ~4.6e-25 + (5000000, 7, np.uint8, 150.0), # p-value ~7.7e-30 + (10000000, 2500, np.int16, 3300.0), # p-value ~3.0e-25 + (50000000, 5000, np.uint16, 6500.0), # p-value ~3.5e-25 + ]) + def test_integers_small_dtype_chisquared(self, sample_size, high, + dtype, chi2max): + # Regression test for gh-14774. + samples = random.integers(high, size=sample_size, dtype=dtype) + + values, counts = np.unique(samples, return_counts=True) + expected = sample_size / high + chi2 = ((counts - expected)**2 / expected).sum() + assert chi2 < chi2max + + +class TestRandomDist: + # Make sure the random distribution returns the correct value for a + # given seed + + def setup_method(self): + self.seed = 1234567890 + + def test_integers(self): + random = Generator(MT19937(self.seed)) + actual = random.integers(-99, 99, size=(3, 2)) + desired = np.array([[-80, -56], [41, 37], [-83, -16]]) + assert_array_equal(actual, desired) + + def test_integers_masked(self): + # Test masked rejection sampling algorithm to generate array of + # uint32 in an interval. + random = Generator(MT19937(self.seed)) + actual = random.integers(0, 99, size=(3, 2), dtype=np.uint32) + desired = np.array([[9, 21], [70, 68], [8, 41]], dtype=np.uint32) + assert_array_equal(actual, desired) + + def test_integers_closed(self): + random = Generator(MT19937(self.seed)) + actual = random.integers(-99, 99, size=(3, 2), endpoint=True) + desired = np.array([[-80, -56], [41, 38], [-83, -15]]) + assert_array_equal(actual, desired) + + def test_integers_max_int(self): + # Tests whether integers with closed=True can generate the + # maximum allowed Python int that can be converted + # into a C long. Previous implementations of this + # method have thrown an OverflowError when attempting + # to generate this integer. + actual = random.integers(np.iinfo('l').max, np.iinfo('l').max, + endpoint=True) + + desired = np.iinfo('l').max + assert_equal(actual, desired) + + def test_random(self): + random = Generator(MT19937(self.seed)) + actual = random.random((3, 2)) + desired = np.array([[0.096999199829214, 0.707517457682192], + [0.084364834598269, 0.767731206553125], + [0.665069021359413, 0.715487190596693]]) + assert_array_almost_equal(actual, desired, decimal=15) + + random = Generator(MT19937(self.seed)) + actual = random.random() + assert_array_almost_equal(actual, desired[0, 0], decimal=15) + + def test_random_float(self): + random = Generator(MT19937(self.seed)) + actual = random.random((3, 2)) + desired = np.array([[0.0969992 , 0.70751746], # noqa: E203 + [0.08436483, 0.76773121], + [0.66506902, 0.71548719]]) + assert_array_almost_equal(actual, desired, decimal=7) + + def test_random_float_scalar(self): + random = Generator(MT19937(self.seed)) + actual = random.random(dtype=np.float32) + desired = 0.0969992 + assert_array_almost_equal(actual, desired, decimal=7) + + @pytest.mark.parametrize('dtype, uint_view_type', + [(np.float32, np.uint32), + (np.float64, np.uint64)]) + def test_random_distribution_of_lsb(self, dtype, uint_view_type): + random = Generator(MT19937(self.seed)) + sample = random.random(100000, dtype=dtype) + num_ones_in_lsb = np.count_nonzero(sample.view(uint_view_type) & 1) + # The probability of a 1 in the least significant bit is 0.25. + # With a sample size of 100000, the probability that num_ones_in_lsb + # is outside the following range is less than 5e-11. + assert 24100 < num_ones_in_lsb < 25900 + + def test_random_unsupported_type(self): + assert_raises(TypeError, random.random, dtype='int32') + + def test_choice_uniform_replace(self): + random = Generator(MT19937(self.seed)) + actual = random.choice(4, 4) + desired = np.array([0, 0, 2, 2], dtype=np.int64) + assert_array_equal(actual, desired) + + def test_choice_nonuniform_replace(self): + random = Generator(MT19937(self.seed)) + actual = random.choice(4, 4, p=[0.4, 0.4, 0.1, 0.1]) + desired = np.array([0, 1, 0, 1], dtype=np.int64) + assert_array_equal(actual, desired) + + def test_choice_uniform_noreplace(self): + random = Generator(MT19937(self.seed)) + actual = random.choice(4, 3, replace=False) + desired = np.array([2, 0, 3], dtype=np.int64) + assert_array_equal(actual, desired) + actual = random.choice(4, 4, replace=False, shuffle=False) + desired = np.arange(4, dtype=np.int64) + assert_array_equal(actual, desired) + + def test_choice_nonuniform_noreplace(self): + random = Generator(MT19937(self.seed)) + actual = random.choice(4, 3, replace=False, p=[0.1, 0.3, 0.5, 0.1]) + desired = np.array([0, 2, 3], dtype=np.int64) + assert_array_equal(actual, desired) + + def test_choice_noninteger(self): + random = Generator(MT19937(self.seed)) + actual = random.choice(['a', 'b', 'c', 'd'], 4) + desired = np.array(['a', 'a', 'c', 'c']) + assert_array_equal(actual, desired) + + def test_choice_multidimensional_default_axis(self): + random = Generator(MT19937(self.seed)) + actual = random.choice([[0, 1], [2, 3], [4, 5], [6, 7]], 3) + desired = np.array([[0, 1], [0, 1], [4, 5]]) + assert_array_equal(actual, desired) + + def test_choice_multidimensional_custom_axis(self): + random = Generator(MT19937(self.seed)) + actual = random.choice([[0, 1], [2, 3], [4, 5], [6, 7]], 1, axis=1) + desired = np.array([[0], [2], [4], [6]]) + assert_array_equal(actual, desired) + + def test_choice_exceptions(self): + sample = random.choice + assert_raises(ValueError, sample, -1, 3) + assert_raises(ValueError, sample, 3., 3) + assert_raises(ValueError, sample, [], 3) + assert_raises(ValueError, sample, [1, 2, 3, 4], 3, + p=[[0.25, 0.25], [0.25, 0.25]]) + assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4, 0.2]) + assert_raises(ValueError, sample, [1, 2], 3, p=[1.1, -0.1]) + assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4]) + assert_raises(ValueError, sample, [1, 2, 3], 4, replace=False) + # gh-13087 + assert_raises(ValueError, sample, [1, 2, 3], -2, replace=False) + assert_raises(ValueError, sample, [1, 2, 3], (-1,), replace=False) + assert_raises(ValueError, sample, [1, 2, 3], (-1, 1), replace=False) + assert_raises(ValueError, sample, [1, 2, 3], 2, + replace=False, p=[1, 0, 0]) + + def test_choice_return_shape(self): + p = [0.1, 0.9] + # Check scalar + assert_(np.isscalar(random.choice(2, replace=True))) + assert_(np.isscalar(random.choice(2, replace=False))) + assert_(np.isscalar(random.choice(2, replace=True, p=p))) + assert_(np.isscalar(random.choice(2, replace=False, p=p))) + assert_(np.isscalar(random.choice([1, 2], replace=True))) + assert_(random.choice([None], replace=True) is None) + a = np.array([1, 2]) + arr = np.empty(1, dtype=object) + arr[0] = a + assert_(random.choice(arr, replace=True) is a) + + # Check 0-d array + s = () + assert_(not np.isscalar(random.choice(2, s, replace=True))) + assert_(not np.isscalar(random.choice(2, s, replace=False))) + assert_(not np.isscalar(random.choice(2, s, replace=True, p=p))) + assert_(not np.isscalar(random.choice(2, s, replace=False, p=p))) + assert_(not np.isscalar(random.choice([1, 2], s, replace=True))) + assert_(random.choice([None], s, replace=True).ndim == 0) + a = np.array([1, 2]) + arr = np.empty(1, dtype=object) + arr[0] = a + assert_(random.choice(arr, s, replace=True).item() is a) + + # Check multi dimensional array + s = (2, 3) + p = [0.1, 0.1, 0.1, 0.1, 0.4, 0.2] + assert_equal(random.choice(6, s, replace=True).shape, s) + assert_equal(random.choice(6, s, replace=False).shape, s) + assert_equal(random.choice(6, s, replace=True, p=p).shape, s) + assert_equal(random.choice(6, s, replace=False, p=p).shape, s) + assert_equal(random.choice(np.arange(6), s, replace=True).shape, s) + + # Check zero-size + assert_equal(random.integers(0, 0, size=(3, 0, 4)).shape, (3, 0, 4)) + assert_equal(random.integers(0, -10, size=0).shape, (0,)) + assert_equal(random.integers(10, 10, size=0).shape, (0,)) + assert_equal(random.choice(0, size=0).shape, (0,)) + assert_equal(random.choice([], size=(0,)).shape, (0,)) + assert_equal(random.choice(['a', 'b'], size=(3, 0, 4)).shape, + (3, 0, 4)) + assert_raises(ValueError, random.choice, [], 10) + + def test_choice_nan_probabilities(self): + a = np.array([42, 1, 2]) + p = [None, None, None] + assert_raises(ValueError, random.choice, a, p=p) + + def test_choice_p_non_contiguous(self): + p = np.ones(10) / 5 + p[1::2] = 3.0 + random = Generator(MT19937(self.seed)) + non_contig = random.choice(5, 3, p=p[::2]) + random = Generator(MT19937(self.seed)) + contig = random.choice(5, 3, p=np.ascontiguousarray(p[::2])) + assert_array_equal(non_contig, contig) + + def test_choice_return_type(self): + # gh 9867 + p = np.ones(4) / 4. + actual = random.choice(4, 2) + assert actual.dtype == np.int64 + actual = random.choice(4, 2, replace=False) + assert actual.dtype == np.int64 + actual = random.choice(4, 2, p=p) + assert actual.dtype == np.int64 + actual = random.choice(4, 2, p=p, replace=False) + assert actual.dtype == np.int64 + + def test_choice_large_sample(self): + choice_hash = '4266599d12bfcfb815213303432341c06b4349f5455890446578877bb322e222' + random = Generator(MT19937(self.seed)) + actual = random.choice(10000, 5000, replace=False) + if sys.byteorder != 'little': + actual = actual.byteswap() + res = hashlib.sha256(actual.view(np.int8)).hexdigest() + assert_(choice_hash == res) + + def test_choice_array_size_empty_tuple(self): + random = Generator(MT19937(self.seed)) + assert_array_equal(random.choice([1, 2, 3], size=()), np.array(1), + strict=True) + assert_array_equal(random.choice([[1, 2, 3]], size=()), [1, 2, 3]) + assert_array_equal(random.choice([[1]], size=()), [1], strict=True) + assert_array_equal(random.choice([[1]], size=(), axis=1), [1], + strict=True) + + def test_bytes(self): + random = Generator(MT19937(self.seed)) + actual = random.bytes(10) + desired = b'\x86\xf0\xd4\x18\xe1\x81\t8%\xdd' + assert_equal(actual, desired) + + def test_shuffle(self): + # Test lists, arrays (of various dtypes), and multidimensional versions + # of both, c-contiguous or not: + for conv in [lambda x: np.array([]), + lambda x: x, + lambda x: np.asarray(x).astype(np.int8), + lambda x: np.asarray(x).astype(np.float32), + lambda x: np.asarray(x).astype(np.complex64), + lambda x: np.asarray(x).astype(object), + lambda x: [(i, i) for i in x], + lambda x: np.asarray([[i, i] for i in x]), + lambda x: np.vstack([x, x]).T, + # gh-11442 + lambda x: (np.asarray([(i, i) for i in x], + [("a", int), ("b", int)]) + .view(np.recarray)), + # gh-4270 + lambda x: np.asarray([(i, i) for i in x], + [("a", object, (1,)), + ("b", np.int32, (1,))])]: + random = Generator(MT19937(self.seed)) + alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]) + random.shuffle(alist) + actual = alist + desired = conv([4, 1, 9, 8, 0, 5, 3, 6, 2, 7]) + assert_array_equal(actual, desired) + + def test_shuffle_custom_axis(self): + random = Generator(MT19937(self.seed)) + actual = np.arange(16).reshape((4, 4)) + random.shuffle(actual, axis=1) + desired = np.array([[ 0, 3, 1, 2], + [ 4, 7, 5, 6], + [ 8, 11, 9, 10], + [12, 15, 13, 14]]) + assert_array_equal(actual, desired) + random = Generator(MT19937(self.seed)) + actual = np.arange(16).reshape((4, 4)) + random.shuffle(actual, axis=-1) + assert_array_equal(actual, desired) + + def test_shuffle_custom_axis_empty(self): + random = Generator(MT19937(self.seed)) + desired = np.array([]).reshape((0, 6)) + for axis in (0, 1): + actual = np.array([]).reshape((0, 6)) + random.shuffle(actual, axis=axis) + assert_array_equal(actual, desired) + + def test_shuffle_axis_nonsquare(self): + y1 = np.arange(20).reshape(2, 10) + y2 = y1.copy() + random = Generator(MT19937(self.seed)) + random.shuffle(y1, axis=1) + random = Generator(MT19937(self.seed)) + random.shuffle(y2.T) + assert_array_equal(y1, y2) + + def test_shuffle_masked(self): + # gh-3263 + a = np.ma.masked_values(np.reshape(range(20), (5, 4)) % 3 - 1, -1) + b = np.ma.masked_values(np.arange(20) % 3 - 1, -1) + a_orig = a.copy() + b_orig = b.copy() + for i in range(50): + random.shuffle(a) + assert_equal( + sorted(a.data[~a.mask]), sorted(a_orig.data[~a_orig.mask])) + random.shuffle(b) + assert_equal( + sorted(b.data[~b.mask]), sorted(b_orig.data[~b_orig.mask])) + + def test_shuffle_exceptions(self): + random = Generator(MT19937(self.seed)) + arr = np.arange(10) + assert_raises(AxisError, random.shuffle, arr, 1) + arr = np.arange(9).reshape((3, 3)) + assert_raises(AxisError, random.shuffle, arr, 3) + assert_raises(TypeError, random.shuffle, arr, slice(1, 2, None)) + arr = [[1, 2, 3], [4, 5, 6]] + assert_raises(NotImplementedError, random.shuffle, arr, 1) + + arr = np.array(3) + assert_raises(TypeError, random.shuffle, arr) + arr = np.ones((3, 2)) + assert_raises(AxisError, random.shuffle, arr, 2) + + def test_shuffle_not_writeable(self): + random = Generator(MT19937(self.seed)) + a = np.zeros(5) + a.flags.writeable = False + with pytest.raises(ValueError, match='read-only'): + random.shuffle(a) + + def test_permutation(self): + random = Generator(MT19937(self.seed)) + alist = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0] + actual = random.permutation(alist) + desired = [4, 1, 9, 8, 0, 5, 3, 6, 2, 7] + assert_array_equal(actual, desired) + + random = Generator(MT19937(self.seed)) + arr_2d = np.atleast_2d([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]).T + actual = random.permutation(arr_2d) + assert_array_equal(actual, np.atleast_2d(desired).T) + + bad_x_str = "abcd" + assert_raises(AxisError, random.permutation, bad_x_str) + + bad_x_float = 1.2 + assert_raises(AxisError, random.permutation, bad_x_float) + + random = Generator(MT19937(self.seed)) + integer_val = 10 + desired = [3, 0, 8, 7, 9, 4, 2, 5, 1, 6] + + actual = random.permutation(integer_val) + assert_array_equal(actual, desired) + + def test_permutation_custom_axis(self): + a = np.arange(16).reshape((4, 4)) + desired = np.array([[ 0, 3, 1, 2], + [ 4, 7, 5, 6], + [ 8, 11, 9, 10], + [12, 15, 13, 14]]) + random = Generator(MT19937(self.seed)) + actual = random.permutation(a, axis=1) + assert_array_equal(actual, desired) + random = Generator(MT19937(self.seed)) + actual = random.permutation(a, axis=-1) + assert_array_equal(actual, desired) + + def test_permutation_exceptions(self): + random = Generator(MT19937(self.seed)) + arr = np.arange(10) + assert_raises(AxisError, random.permutation, arr, 1) + arr = np.arange(9).reshape((3, 3)) + assert_raises(AxisError, random.permutation, arr, 3) + assert_raises(TypeError, random.permutation, arr, slice(1, 2, None)) + + @pytest.mark.parametrize("dtype", [int, object]) + @pytest.mark.parametrize("axis, expected", + [(None, np.array([[3, 7, 0, 9, 10, 11], + [8, 4, 2, 5, 1, 6]])), + (0, np.array([[6, 1, 2, 9, 10, 11], + [0, 7, 8, 3, 4, 5]])), + (1, np.array([[ 5, 3, 4, 0, 2, 1], + [11, 9, 10, 6, 8, 7]]))]) + def test_permuted(self, dtype, axis, expected): + random = Generator(MT19937(self.seed)) + x = np.arange(12).reshape(2, 6).astype(dtype) + random.permuted(x, axis=axis, out=x) + assert_array_equal(x, expected) + + random = Generator(MT19937(self.seed)) + x = np.arange(12).reshape(2, 6).astype(dtype) + y = random.permuted(x, axis=axis) + assert y.dtype == dtype + assert_array_equal(y, expected) + + def test_permuted_with_strides(self): + random = Generator(MT19937(self.seed)) + x0 = np.arange(22).reshape(2, 11) + x1 = x0.copy() + x = x0[:, ::3] + y = random.permuted(x, axis=1, out=x) + expected = np.array([[0, 9, 3, 6], + [14, 20, 11, 17]]) + assert_array_equal(y, expected) + x1[:, ::3] = expected + # Verify that the original x0 was modified in-place as expected. + assert_array_equal(x1, x0) + + def test_permuted_empty(self): + y = random.permuted([]) + assert_array_equal(y, []) + + @pytest.mark.parametrize('outshape', [(2, 3), 5]) + def test_permuted_out_with_wrong_shape(self, outshape): + a = np.array([1, 2, 3]) + out = np.zeros(outshape, dtype=a.dtype) + with pytest.raises(ValueError, match='same shape'): + random.permuted(a, out=out) + + def test_permuted_out_with_wrong_type(self): + out = np.zeros((3, 5), dtype=np.int32) + x = np.ones((3, 5)) + with pytest.raises(TypeError, match='Cannot cast'): + random.permuted(x, axis=1, out=out) + + def test_permuted_not_writeable(self): + x = np.zeros((2, 5)) + x.flags.writeable = False + with pytest.raises(ValueError, match='read-only'): + random.permuted(x, axis=1, out=x) + + def test_beta(self): + random = Generator(MT19937(self.seed)) + actual = random.beta(.1, .9, size=(3, 2)) + desired = np.array( + [[1.083029353267698e-10, 2.449965303168024e-11], + [2.397085162969853e-02, 3.590779671820755e-08], + [2.830254190078299e-04, 1.744709918330393e-01]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_binomial(self): + random = Generator(MT19937(self.seed)) + actual = random.binomial(100.123, .456, size=(3, 2)) + desired = np.array([[42, 41], + [42, 48], + [44, 50]]) + assert_array_equal(actual, desired) + + random = Generator(MT19937(self.seed)) + actual = random.binomial(100.123, .456) + desired = 42 + assert_array_equal(actual, desired) + + def test_chisquare(self): + random = Generator(MT19937(self.seed)) + actual = random.chisquare(50, size=(3, 2)) + desired = np.array([[32.9850547060149, 39.0219480493301], + [56.2006134779419, 57.3474165711485], + [55.4243733880198, 55.4209797925213]]) + assert_array_almost_equal(actual, desired, decimal=13) + + def test_dirichlet(self): + random = Generator(MT19937(self.seed)) + alpha = np.array([51.72840233779265162, 39.74494232180943953]) + actual = random.dirichlet(alpha, size=(3, 2)) + desired = np.array([[[0.5439892869558927, 0.45601071304410745], + [0.5588917345860708, 0.4411082654139292 ]], # noqa: E202 + [[0.5632074165063435, 0.43679258349365657], + [0.54862581112627, 0.45137418887373015]], + [[0.49961831357047226, 0.5003816864295278 ], # noqa: E202 + [0.52374806183482, 0.47625193816517997]]]) + assert_array_almost_equal(actual, desired, decimal=15) + bad_alpha = np.array([5.4e-01, -1.0e-16]) + assert_raises(ValueError, random.dirichlet, bad_alpha) + + random = Generator(MT19937(self.seed)) + alpha = np.array([51.72840233779265162, 39.74494232180943953]) + actual = random.dirichlet(alpha) + assert_array_almost_equal(actual, desired[0, 0], decimal=15) + + def test_dirichlet_size(self): + # gh-3173 + p = np.array([51.72840233779265162, 39.74494232180943953]) + assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2)) + assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2)) + assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2)) + assert_equal(random.dirichlet(p, [2, 2]).shape, (2, 2, 2)) + assert_equal(random.dirichlet(p, (2, 2)).shape, (2, 2, 2)) + assert_equal(random.dirichlet(p, np.array((2, 2))).shape, (2, 2, 2)) + + assert_raises(TypeError, random.dirichlet, p, float(1)) + + def test_dirichlet_bad_alpha(self): + # gh-2089 + alpha = np.array([5.4e-01, -1.0e-16]) + assert_raises(ValueError, random.dirichlet, alpha) + + # gh-15876 + assert_raises(ValueError, random.dirichlet, [[5, 1]]) + assert_raises(ValueError, random.dirichlet, [[5], [1]]) + assert_raises(ValueError, random.dirichlet, [[[5], [1]], [[1], [5]]]) + assert_raises(ValueError, random.dirichlet, np.array([[5, 1], [1, 5]])) + + def test_dirichlet_alpha_non_contiguous(self): + a = np.array([51.72840233779265162, -1.0, 39.74494232180943953]) + alpha = a[::2] + random = Generator(MT19937(self.seed)) + non_contig = random.dirichlet(alpha, size=(3, 2)) + random = Generator(MT19937(self.seed)) + contig = random.dirichlet(np.ascontiguousarray(alpha), + size=(3, 2)) + assert_array_almost_equal(non_contig, contig) + + def test_dirichlet_small_alpha(self): + eps = 1.0e-9 # 1.0e-10 -> runtime x 10; 1e-11 -> runtime x 200, etc. + alpha = eps * np.array([1., 1.0e-3]) + random = Generator(MT19937(self.seed)) + actual = random.dirichlet(alpha, size=(3, 2)) + expected = np.array([ + [[1., 0.], + [1., 0.]], + [[1., 0.], + [1., 0.]], + [[1., 0.], + [1., 0.]] + ]) + assert_array_almost_equal(actual, expected, decimal=15) + + @pytest.mark.slow + def test_dirichlet_moderately_small_alpha(self): + # Use alpha.max() < 0.1 to trigger stick breaking code path + alpha = np.array([0.02, 0.04, 0.03]) + exact_mean = alpha / alpha.sum() + random = Generator(MT19937(self.seed)) + sample = random.dirichlet(alpha, size=20000000) + sample_mean = sample.mean(axis=0) + assert_allclose(sample_mean, exact_mean, rtol=1e-3) + + # This set of parameters includes inputs with alpha.max() >= 0.1 and + # alpha.max() < 0.1 to exercise both generation methods within the + # dirichlet code. + @pytest.mark.parametrize( + 'alpha', + [[5, 9, 0, 8], + [0.5, 0, 0, 0], + [1, 5, 0, 0, 1.5, 0, 0, 0], + [0.01, 0.03, 0, 0.005], + [1e-5, 0, 0, 0], + [0.002, 0.015, 0, 0, 0.04, 0, 0, 0], + [0.0], + [0, 0, 0]], + ) + def test_dirichlet_multiple_zeros_in_alpha(self, alpha): + alpha = np.array(alpha) + y = random.dirichlet(alpha) + assert_equal(y[alpha == 0], 0.0) + + def test_exponential(self): + random = Generator(MT19937(self.seed)) + actual = random.exponential(1.1234, size=(3, 2)) + desired = np.array([[0.098845481066258, 1.560752510746964], + [0.075730916041636, 1.769098974710777], + [1.488602544592235, 2.49684815275751 ]]) # noqa: E202 + assert_array_almost_equal(actual, desired, decimal=15) + + def test_exponential_0(self): + assert_equal(random.exponential(scale=0), 0) + assert_raises(ValueError, random.exponential, scale=-0.) + + def test_f(self): + random = Generator(MT19937(self.seed)) + actual = random.f(12, 77, size=(3, 2)) + desired = np.array([[0.461720027077085, 1.100441958872451], + [1.100337455217484, 0.91421736740018 ], # noqa: E202 + [0.500811891303113, 0.826802454552058]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_gamma(self): + random = Generator(MT19937(self.seed)) + actual = random.gamma(5, 3, size=(3, 2)) + desired = np.array([[ 5.03850858902096, 7.9228656732049 ], # noqa: E202 + [18.73983605132985, 19.57961681699238], + [18.17897755150825, 18.17653912505234]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_gamma_0(self): + assert_equal(random.gamma(shape=0, scale=0), 0) + assert_raises(ValueError, random.gamma, shape=-0., scale=-0.) + + def test_geometric(self): + random = Generator(MT19937(self.seed)) + actual = random.geometric(.123456789, size=(3, 2)) + desired = np.array([[1, 11], + [1, 12], + [11, 17]]) + assert_array_equal(actual, desired) + + def test_geometric_exceptions(self): + assert_raises(ValueError, random.geometric, 1.1) + assert_raises(ValueError, random.geometric, [1.1] * 10) + assert_raises(ValueError, random.geometric, -0.1) + assert_raises(ValueError, random.geometric, [-0.1] * 10) + with np.errstate(invalid='ignore'): + assert_raises(ValueError, random.geometric, np.nan) + assert_raises(ValueError, random.geometric, [np.nan] * 10) + + def test_gumbel(self): + random = Generator(MT19937(self.seed)) + actual = random.gumbel(loc=.123456789, scale=2.0, size=(3, 2)) + desired = np.array([[ 4.688397515056245, -0.289514845417841], + [ 4.981176042584683, -0.633224272589149], + [-0.055915275687488, -0.333962478257953]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_gumbel_0(self): + assert_equal(random.gumbel(scale=0), 0) + assert_raises(ValueError, random.gumbel, scale=-0.) + + def test_hypergeometric(self): + random = Generator(MT19937(self.seed)) + actual = random.hypergeometric(10.1, 5.5, 14, size=(3, 2)) + desired = np.array([[ 9, 9], + [ 9, 9], + [10, 9]]) + assert_array_equal(actual, desired) + + # Test nbad = 0 + actual = random.hypergeometric(5, 0, 3, size=4) + desired = np.array([3, 3, 3, 3]) + assert_array_equal(actual, desired) + + actual = random.hypergeometric(15, 0, 12, size=4) + desired = np.array([12, 12, 12, 12]) + assert_array_equal(actual, desired) + + # Test ngood = 0 + actual = random.hypergeometric(0, 5, 3, size=4) + desired = np.array([0, 0, 0, 0]) + assert_array_equal(actual, desired) + + actual = random.hypergeometric(0, 15, 12, size=4) + desired = np.array([0, 0, 0, 0]) + assert_array_equal(actual, desired) + + def test_laplace(self): + random = Generator(MT19937(self.seed)) + actual = random.laplace(loc=.123456789, scale=2.0, size=(3, 2)) + desired = np.array([[-3.156353949272393, 1.195863024830054], + [-3.435458081645966, 1.656882398925444], + [ 0.924824032467446, 1.251116432209336]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_laplace_0(self): + assert_equal(random.laplace(scale=0), 0) + assert_raises(ValueError, random.laplace, scale=-0.) + + def test_logistic(self): + random = Generator(MT19937(self.seed)) + actual = random.logistic(loc=.123456789, scale=2.0, size=(3, 2)) + desired = np.array([[-4.338584631510999, 1.890171436749954], + [-4.64547787337966 , 2.514545562919217], # noqa: E203 + [ 1.495389489198666, 1.967827627577474]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_lognormal(self): + random = Generator(MT19937(self.seed)) + actual = random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2)) + desired = np.array([[ 0.0268252166335, 13.9534486483053], + [ 0.1204014788936, 2.2422077497792], + [ 4.2484199496128, 12.0093343977523]]) + assert_array_almost_equal(actual, desired, decimal=13) + + def test_lognormal_0(self): + assert_equal(random.lognormal(sigma=0), 1) + assert_raises(ValueError, random.lognormal, sigma=-0.) + + def test_logseries(self): + random = Generator(MT19937(self.seed)) + actual = random.logseries(p=.923456789, size=(3, 2)) + desired = np.array([[14, 17], + [3, 18], + [5, 1]]) + assert_array_equal(actual, desired) + + def test_logseries_zero(self): + random = Generator(MT19937(self.seed)) + assert random.logseries(0) == 1 + + @pytest.mark.parametrize("value", [np.nextafter(0., -1), 1., np.nan, 5.]) + def test_logseries_exceptions(self, value): + random = Generator(MT19937(self.seed)) + with np.errstate(invalid="ignore"): + with pytest.raises(ValueError): + random.logseries(value) + with pytest.raises(ValueError): + # contiguous path: + random.logseries(np.array([value] * 10)) + with pytest.raises(ValueError): + # non-contiguous path: + random.logseries(np.array([value] * 10)[::2]) + + def test_multinomial(self): + random = Generator(MT19937(self.seed)) + actual = random.multinomial(20, [1 / 6.] * 6, size=(3, 2)) + desired = np.array([[[1, 5, 1, 6, 4, 3], + [4, 2, 6, 2, 4, 2]], + [[5, 3, 2, 6, 3, 1], + [4, 4, 0, 2, 3, 7]], + [[6, 3, 1, 5, 3, 2], + [5, 5, 3, 1, 2, 4]]]) + assert_array_equal(actual, desired) + + @pytest.mark.skipif(IS_WASM, reason="fp errors don't work in wasm") + @pytest.mark.parametrize("method", ["svd", "eigh", "cholesky"]) + def test_multivariate_normal(self, method): + random = Generator(MT19937(self.seed)) + mean = (.123456789, 10) + cov = [[1, 0], [0, 1]] + size = (3, 2) + actual = random.multivariate_normal(mean, cov, size, method=method) + desired = np.array([[[-1.747478062846581, 11.25613495182354 ], # noqa: E202 + [-0.9967333370066214, 10.342002097029821]], + [[ 0.7850019631242964, 11.181113712443013], + [ 0.8901349653255224, 8.873825399642492]], + [[ 0.7130260107430003, 9.551628690083056], + [ 0.7127098726541128, 11.991709234143173]]]) + + assert_array_almost_equal(actual, desired, decimal=15) + + # Check for default size, was raising deprecation warning + actual = random.multivariate_normal(mean, cov, method=method) + desired = np.array([0.233278563284287, 9.424140804347195]) + assert_array_almost_equal(actual, desired, decimal=15) + # Check that non symmetric covariance input raises exception when + # check_valid='raises' if using default svd method. + mean = [0, 0] + cov = [[1, 2], [1, 2]] + assert_raises(ValueError, random.multivariate_normal, mean, cov, + check_valid='raise') + + # Check that non positive-semidefinite covariance warns with + # RuntimeWarning + cov = [[1, 2], [2, 1]] + assert_warns(RuntimeWarning, random.multivariate_normal, mean, cov) + assert_warns(RuntimeWarning, random.multivariate_normal, mean, cov, + method='eigh') + assert_raises(LinAlgError, random.multivariate_normal, mean, cov, + method='cholesky') + + # and that it doesn't warn with RuntimeWarning check_valid='ignore' + assert_no_warnings(random.multivariate_normal, mean, cov, + check_valid='ignore') + + # and that it raises with RuntimeWarning check_valid='raises' + assert_raises(ValueError, random.multivariate_normal, mean, cov, + check_valid='raise') + assert_raises(ValueError, random.multivariate_normal, mean, cov, + check_valid='raise', method='eigh') + + # check degenerate samples from singular covariance matrix + cov = [[1, 1], [1, 1]] + if method in ('svd', 'eigh'): + samples = random.multivariate_normal(mean, cov, size=(3, 2), + method=method) + assert_array_almost_equal(samples[..., 0], samples[..., 1], + decimal=6) + else: + assert_raises(LinAlgError, random.multivariate_normal, mean, cov, + method='cholesky') + + cov = np.array([[1, 0.1], [0.1, 1]], dtype=np.float32) + with suppress_warnings() as sup: + random.multivariate_normal(mean, cov, method=method) + w = sup.record(RuntimeWarning) + assert len(w) == 0 + + mu = np.zeros(2) + cov = np.eye(2) + assert_raises(ValueError, random.multivariate_normal, mean, cov, + check_valid='other') + assert_raises(ValueError, random.multivariate_normal, + np.zeros((2, 1, 1)), cov) + assert_raises(ValueError, random.multivariate_normal, + mu, np.empty((3, 2))) + assert_raises(ValueError, random.multivariate_normal, + mu, np.eye(3)) + + @pytest.mark.parametrize('mean, cov', [([0], [[1 + 1j]]), ([0j], [[1]])]) + def test_multivariate_normal_disallow_complex(self, mean, cov): + random = Generator(MT19937(self.seed)) + with pytest.raises(TypeError, match="must not be complex"): + random.multivariate_normal(mean, cov) + + @pytest.mark.parametrize("method", ["svd", "eigh", "cholesky"]) + def test_multivariate_normal_basic_stats(self, method): + random = Generator(MT19937(self.seed)) + n_s = 1000 + mean = np.array([1, 2]) + cov = np.array([[2, 1], [1, 2]]) + s = random.multivariate_normal(mean, cov, size=(n_s,), method=method) + s_center = s - mean + cov_emp = (s_center.T @ s_center) / (n_s - 1) + # these are pretty loose and are only designed to detect major errors + assert np.all(np.abs(s_center.mean(-2)) < 0.1) + assert np.all(np.abs(cov_emp - cov) < 0.2) + + def test_negative_binomial(self): + random = Generator(MT19937(self.seed)) + actual = random.negative_binomial(n=100, p=.12345, size=(3, 2)) + desired = np.array([[543, 727], + [775, 760], + [600, 674]]) + assert_array_equal(actual, desired) + + def test_negative_binomial_exceptions(self): + with np.errstate(invalid='ignore'): + assert_raises(ValueError, random.negative_binomial, 100, np.nan) + assert_raises(ValueError, random.negative_binomial, 100, + [np.nan] * 10) + + def test_negative_binomial_p0_exception(self): + # Verify that p=0 raises an exception. + with assert_raises(ValueError): + x = random.negative_binomial(1, 0) + + def test_negative_binomial_invalid_p_n_combination(self): + # Verify that values of p and n that would result in an overflow + # or infinite loop raise an exception. + with np.errstate(invalid='ignore'): + assert_raises(ValueError, random.negative_binomial, 2**62, 0.1) + assert_raises(ValueError, random.negative_binomial, [2**62], [0.1]) + + def test_noncentral_chisquare(self): + random = Generator(MT19937(self.seed)) + actual = random.noncentral_chisquare(df=5, nonc=5, size=(3, 2)) + desired = np.array([[ 1.70561552362133, 15.97378184942111], + [13.71483425173724, 20.17859633310629], + [11.3615477156643 , 3.67891108738029]]) # noqa: E203 + assert_array_almost_equal(actual, desired, decimal=14) + + actual = random.noncentral_chisquare(df=.5, nonc=.2, size=(3, 2)) + desired = np.array([[9.41427665607629e-04, 1.70473157518850e-04], + [1.14554372041263e+00, 1.38187755933435e-03], + [1.90659181905387e+00, 1.21772577941822e+00]]) + assert_array_almost_equal(actual, desired, decimal=14) + + random = Generator(MT19937(self.seed)) + actual = random.noncentral_chisquare(df=5, nonc=0, size=(3, 2)) + desired = np.array([[0.82947954590419, 1.80139670767078], + [6.58720057417794, 7.00491463609814], + [6.31101879073157, 6.30982307753005]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_noncentral_f(self): + random = Generator(MT19937(self.seed)) + actual = random.noncentral_f(dfnum=5, dfden=2, nonc=1, + size=(3, 2)) + desired = np.array([[0.060310671139 , 0.23866058175939], # noqa: E203 + [0.86860246709073, 0.2668510459738 ], # noqa: E202 + [0.23375780078364, 1.88922102885943]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_noncentral_f_nan(self): + random = Generator(MT19937(self.seed)) + actual = random.noncentral_f(dfnum=5, dfden=2, nonc=np.nan) + assert np.isnan(actual) + + def test_normal(self): + random = Generator(MT19937(self.seed)) + actual = random.normal(loc=.123456789, scale=2.0, size=(3, 2)) + desired = np.array([[-3.618412914693162, 2.635726692647081], + [-2.116923463013243, 0.807460983059643], + [ 1.446547137248593, 2.485684213886024]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_normal_0(self): + assert_equal(random.normal(scale=0), 0) + assert_raises(ValueError, random.normal, scale=-0.) + + def test_pareto(self): + random = Generator(MT19937(self.seed)) + actual = random.pareto(a=.123456789, size=(3, 2)) + desired = np.array([[1.0394926776069018e+00, 7.7142534343505773e+04], + [7.2640150889064703e-01, 3.4650454783825594e+05], + [4.5852344481994740e+04, 6.5851383009539105e+07]]) + # For some reason on 32-bit x86 Ubuntu 12.10 the [1, 0] entry in this + # matrix differs by 24 nulps. Discussion: + # https://mail.python.org/pipermail/numpy-discussion/2012-September/063801.html + # Consensus is that this is probably some gcc quirk that affects + # rounding but not in any important way, so we just use a looser + # tolerance on this test: + np.testing.assert_array_almost_equal_nulp(actual, desired, nulp=30) + + def test_poisson(self): + random = Generator(MT19937(self.seed)) + actual = random.poisson(lam=.123456789, size=(3, 2)) + desired = np.array([[0, 0], + [0, 0], + [0, 0]]) + assert_array_equal(actual, desired) + + def test_poisson_exceptions(self): + lambig = np.iinfo('int64').max + lamneg = -1 + assert_raises(ValueError, random.poisson, lamneg) + assert_raises(ValueError, random.poisson, [lamneg] * 10) + assert_raises(ValueError, random.poisson, lambig) + assert_raises(ValueError, random.poisson, [lambig] * 10) + with np.errstate(invalid='ignore'): + assert_raises(ValueError, random.poisson, np.nan) + assert_raises(ValueError, random.poisson, [np.nan] * 10) + + def test_power(self): + random = Generator(MT19937(self.seed)) + actual = random.power(a=.123456789, size=(3, 2)) + desired = np.array([[1.977857368842754e-09, 9.806792196620341e-02], + [2.482442984543471e-10, 1.527108843266079e-01], + [8.188283434244285e-02, 3.950547209346948e-01]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_rayleigh(self): + random = Generator(MT19937(self.seed)) + actual = random.rayleigh(scale=10, size=(3, 2)) + desired = np.array([[4.19494429102666, 16.66920198906598], + [3.67184544902662, 17.74695521962917], + [16.27935397855501, 21.08355560691792]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_rayleigh_0(self): + assert_equal(random.rayleigh(scale=0), 0) + assert_raises(ValueError, random.rayleigh, scale=-0.) + + def test_standard_cauchy(self): + random = Generator(MT19937(self.seed)) + actual = random.standard_cauchy(size=(3, 2)) + desired = np.array([[-1.489437778266206, -3.275389641569784], + [ 0.560102864910406, -0.680780916282552], + [-1.314912905226277, 0.295852965660225]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_standard_exponential(self): + random = Generator(MT19937(self.seed)) + actual = random.standard_exponential(size=(3, 2), method='inv') + desired = np.array([[0.102031839440643, 1.229350298474972], + [0.088137284693098, 1.459859985522667], + [1.093830802293668, 1.256977002164613]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_standard_expoential_type_error(self): + assert_raises(TypeError, random.standard_exponential, dtype=np.int32) + + def test_standard_gamma(self): + random = Generator(MT19937(self.seed)) + actual = random.standard_gamma(shape=3, size=(3, 2)) + desired = np.array([[0.62970724056362, 1.22379851271008], + [3.899412530884 , 4.12479964250139], # noqa: E203 + [3.74994102464584, 3.74929307690815]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_standard_gammma_scalar_float(self): + random = Generator(MT19937(self.seed)) + actual = random.standard_gamma(3, dtype=np.float32) + desired = 2.9242148399353027 + assert_array_almost_equal(actual, desired, decimal=6) + + def test_standard_gamma_float(self): + random = Generator(MT19937(self.seed)) + actual = random.standard_gamma(shape=3, size=(3, 2)) + desired = np.array([[0.62971, 1.2238], + [3.89941, 4.1248], + [3.74994, 3.74929]]) + assert_array_almost_equal(actual, desired, decimal=5) + + def test_standard_gammma_float_out(self): + actual = np.zeros((3, 2), dtype=np.float32) + random = Generator(MT19937(self.seed)) + random.standard_gamma(10.0, out=actual, dtype=np.float32) + desired = np.array([[10.14987, 7.87012], + [ 9.46284, 12.56832], + [13.82495, 7.81533]], dtype=np.float32) + assert_array_almost_equal(actual, desired, decimal=5) + + random = Generator(MT19937(self.seed)) + random.standard_gamma(10.0, out=actual, size=(3, 2), dtype=np.float32) + assert_array_almost_equal(actual, desired, decimal=5) + + def test_standard_gamma_unknown_type(self): + assert_raises(TypeError, random.standard_gamma, 1., + dtype='int32') + + def test_out_size_mismatch(self): + out = np.zeros(10) + assert_raises(ValueError, random.standard_gamma, 10.0, size=20, + out=out) + assert_raises(ValueError, random.standard_gamma, 10.0, size=(10, 1), + out=out) + + def test_standard_gamma_0(self): + assert_equal(random.standard_gamma(shape=0), 0) + assert_raises(ValueError, random.standard_gamma, shape=-0.) + + def test_standard_normal(self): + random = Generator(MT19937(self.seed)) + actual = random.standard_normal(size=(3, 2)) + desired = np.array([[-1.870934851846581, 1.25613495182354 ], # noqa: E202 + [-1.120190126006621, 0.342002097029821], + [ 0.661545174124296, 1.181113712443012]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_standard_normal_unsupported_type(self): + assert_raises(TypeError, random.standard_normal, dtype=np.int32) + + def test_standard_t(self): + random = Generator(MT19937(self.seed)) + actual = random.standard_t(df=10, size=(3, 2)) + desired = np.array([[-1.484666193042647, 0.30597891831161], + [ 1.056684299648085, -0.407312602088507], + [ 0.130704414281157, -2.038053410490321]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_triangular(self): + random = Generator(MT19937(self.seed)) + actual = random.triangular(left=5.12, mode=10.23, right=20.34, + size=(3, 2)) + desired = np.array([[ 7.86664070590917, 13.6313848513185 ], # noqa: E202 + [ 7.68152445215983, 14.36169131136546], + [13.16105603911429, 13.72341621856971]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_uniform(self): + random = Generator(MT19937(self.seed)) + actual = random.uniform(low=1.23, high=10.54, size=(3, 2)) + desired = np.array([[2.13306255040998 , 7.816987531021207], # noqa: E203 + [2.015436610109887, 8.377577533009589], + [7.421792588856135, 7.891185744455209]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_uniform_range_bounds(self): + fmin = np.finfo('float').min + fmax = np.finfo('float').max + + func = random.uniform + assert_raises(OverflowError, func, -np.inf, 0) + assert_raises(OverflowError, func, 0, np.inf) + assert_raises(OverflowError, func, fmin, fmax) + assert_raises(OverflowError, func, [-np.inf], [0]) + assert_raises(OverflowError, func, [0], [np.inf]) + + # (fmax / 1e17) - fmin is within range, so this should not throw + # account for i386 extended precision DBL_MAX / 1e17 + DBL_MAX > + # DBL_MAX by increasing fmin a bit + random.uniform(low=np.nextafter(fmin, 1), high=fmax / 1e17) + + def test_uniform_zero_range(self): + func = random.uniform + result = func(1.5, 1.5) + assert_allclose(result, 1.5) + result = func([0.0, np.pi], [0.0, np.pi]) + assert_allclose(result, [0.0, np.pi]) + result = func([[2145.12], [2145.12]], [2145.12, 2145.12]) + assert_allclose(result, 2145.12 + np.zeros((2, 2))) + + def test_uniform_neg_range(self): + func = random.uniform + assert_raises(ValueError, func, 2, 1) + assert_raises(ValueError, func, [1, 2], [1, 1]) + assert_raises(ValueError, func, [[0, 1], [2, 3]], 2) + + def test_scalar_exception_propagation(self): + # Tests that exceptions are correctly propagated in distributions + # when called with objects that throw exceptions when converted to + # scalars. + # + # Regression test for gh: 8865 + + class ThrowingFloat(np.ndarray): + def __float__(self): + raise TypeError + + throwing_float = np.array(1.0).view(ThrowingFloat) + assert_raises(TypeError, random.uniform, throwing_float, + throwing_float) + + class ThrowingInteger(np.ndarray): + def __int__(self): + raise TypeError + + throwing_int = np.array(1).view(ThrowingInteger) + assert_raises(TypeError, random.hypergeometric, throwing_int, 1, 1) + + def test_vonmises(self): + random = Generator(MT19937(self.seed)) + actual = random.vonmises(mu=1.23, kappa=1.54, size=(3, 2)) + desired = np.array([[ 1.107972248690106, 2.841536476232361], + [ 1.832602376042457, 1.945511926976032], + [-0.260147475776542, 2.058047492231698]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_vonmises_small(self): + # check infinite loop, gh-4720 + random = Generator(MT19937(self.seed)) + r = random.vonmises(mu=0., kappa=1.1e-8, size=10**6) + assert_(np.isfinite(r).all()) + + def test_vonmises_nan(self): + random = Generator(MT19937(self.seed)) + r = random.vonmises(mu=0., kappa=np.nan) + assert_(np.isnan(r)) + + @pytest.mark.parametrize("kappa", [1e4, 1e15]) + def test_vonmises_large_kappa(self, kappa): + random = Generator(MT19937(self.seed)) + rs = RandomState(random.bit_generator) + state = random.bit_generator.state + + random_state_vals = rs.vonmises(0, kappa, size=10) + random.bit_generator.state = state + gen_vals = random.vonmises(0, kappa, size=10) + if kappa < 1e6: + assert_allclose(random_state_vals, gen_vals) + else: + assert np.all(random_state_vals != gen_vals) + + @pytest.mark.parametrize("mu", [-7., -np.pi, -3.1, np.pi, 3.2]) + @pytest.mark.parametrize("kappa", [1e-9, 1e-6, 1, 1e3, 1e15]) + def test_vonmises_large_kappa_range(self, mu, kappa): + random = Generator(MT19937(self.seed)) + r = random.vonmises(mu, kappa, 50) + assert_(np.all(r > -np.pi) and np.all(r <= np.pi)) + + def test_wald(self): + random = Generator(MT19937(self.seed)) + actual = random.wald(mean=1.23, scale=1.54, size=(3, 2)) + desired = np.array([[0.26871721804551, 3.2233942732115 ], # noqa: E202 + [2.20328374987066, 2.40958405189353], + [2.07093587449261, 0.73073890064369]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_weibull(self): + random = Generator(MT19937(self.seed)) + actual = random.weibull(a=1.23, size=(3, 2)) + desired = np.array([[0.138613914769468, 1.306463419753191], + [0.111623365934763, 1.446570494646721], + [1.257145775276011, 1.914247725027957]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_weibull_0(self): + random = Generator(MT19937(self.seed)) + assert_equal(random.weibull(a=0, size=12), np.zeros(12)) + assert_raises(ValueError, random.weibull, a=-0.) + + def test_zipf(self): + random = Generator(MT19937(self.seed)) + actual = random.zipf(a=1.23, size=(3, 2)) + desired = np.array([[ 1, 1], + [ 10, 867], + [354, 2]]) + assert_array_equal(actual, desired) + + +class TestBroadcast: + # tests that functions that broadcast behave + # correctly when presented with non-scalar arguments + def setup_method(self): + self.seed = 123456789 + + def test_uniform(self): + random = Generator(MT19937(self.seed)) + low = [0] + high = [1] + uniform = random.uniform + desired = np.array([0.16693771389729, 0.19635129550675, 0.75563050964095]) + + random = Generator(MT19937(self.seed)) + actual = random.uniform(low * 3, high) + assert_array_almost_equal(actual, desired, decimal=14) + + random = Generator(MT19937(self.seed)) + actual = random.uniform(low, high * 3) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_normal(self): + loc = [0] + scale = [1] + bad_scale = [-1] + random = Generator(MT19937(self.seed)) + desired = np.array([-0.38736406738527, 0.79594375042255, 0.0197076236097]) + + random = Generator(MT19937(self.seed)) + actual = random.normal(loc * 3, scale) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.normal, loc * 3, bad_scale) + + random = Generator(MT19937(self.seed)) + normal = random.normal + actual = normal(loc, scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, normal, loc, bad_scale * 3) + + def test_beta(self): + a = [1] + b = [2] + bad_a = [-1] + bad_b = [-2] + desired = np.array([0.18719338682602, 0.73234824491364, 0.17928615186455]) + + random = Generator(MT19937(self.seed)) + beta = random.beta + actual = beta(a * 3, b) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, beta, bad_a * 3, b) + assert_raises(ValueError, beta, a * 3, bad_b) + + random = Generator(MT19937(self.seed)) + actual = random.beta(a, b * 3) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_exponential(self): + scale = [1] + bad_scale = [-1] + desired = np.array([0.67245993212806, 0.21380495318094, 0.7177848928629]) + + random = Generator(MT19937(self.seed)) + actual = random.exponential(scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.exponential, bad_scale * 3) + + def test_standard_gamma(self): + shape = [1] + bad_shape = [-1] + desired = np.array([0.67245993212806, 0.21380495318094, 0.7177848928629]) + + random = Generator(MT19937(self.seed)) + std_gamma = random.standard_gamma + actual = std_gamma(shape * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, std_gamma, bad_shape * 3) + + def test_gamma(self): + shape = [1] + scale = [2] + bad_shape = [-1] + bad_scale = [-2] + desired = np.array([1.34491986425611, 0.42760990636187, 1.4355697857258]) + + random = Generator(MT19937(self.seed)) + gamma = random.gamma + actual = gamma(shape * 3, scale) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, gamma, bad_shape * 3, scale) + assert_raises(ValueError, gamma, shape * 3, bad_scale) + + random = Generator(MT19937(self.seed)) + gamma = random.gamma + actual = gamma(shape, scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, gamma, bad_shape, scale * 3) + assert_raises(ValueError, gamma, shape, bad_scale * 3) + + def test_f(self): + dfnum = [1] + dfden = [2] + bad_dfnum = [-1] + bad_dfden = [-2] + desired = np.array([0.07765056244107, 7.72951397913186, 0.05786093891763]) + + random = Generator(MT19937(self.seed)) + f = random.f + actual = f(dfnum * 3, dfden) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, f, bad_dfnum * 3, dfden) + assert_raises(ValueError, f, dfnum * 3, bad_dfden) + + random = Generator(MT19937(self.seed)) + f = random.f + actual = f(dfnum, dfden * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, f, bad_dfnum, dfden * 3) + assert_raises(ValueError, f, dfnum, bad_dfden * 3) + + def test_noncentral_f(self): + dfnum = [2] + dfden = [3] + nonc = [4] + bad_dfnum = [0] + bad_dfden = [-1] + bad_nonc = [-2] + desired = np.array([2.02434240411421, 12.91838601070124, 1.24395160354629]) + + random = Generator(MT19937(self.seed)) + nonc_f = random.noncentral_f + actual = nonc_f(dfnum * 3, dfden, nonc) + assert_array_almost_equal(actual, desired, decimal=14) + assert np.all(np.isnan(nonc_f(dfnum, dfden, [np.nan] * 3))) + + assert_raises(ValueError, nonc_f, bad_dfnum * 3, dfden, nonc) + assert_raises(ValueError, nonc_f, dfnum * 3, bad_dfden, nonc) + assert_raises(ValueError, nonc_f, dfnum * 3, dfden, bad_nonc) + + random = Generator(MT19937(self.seed)) + nonc_f = random.noncentral_f + actual = nonc_f(dfnum, dfden * 3, nonc) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, nonc_f, bad_dfnum, dfden * 3, nonc) + assert_raises(ValueError, nonc_f, dfnum, bad_dfden * 3, nonc) + assert_raises(ValueError, nonc_f, dfnum, dfden * 3, bad_nonc) + + random = Generator(MT19937(self.seed)) + nonc_f = random.noncentral_f + actual = nonc_f(dfnum, dfden, nonc * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, nonc_f, bad_dfnum, dfden, nonc * 3) + assert_raises(ValueError, nonc_f, dfnum, bad_dfden, nonc * 3) + assert_raises(ValueError, nonc_f, dfnum, dfden, bad_nonc * 3) + + def test_noncentral_f_small_df(self): + random = Generator(MT19937(self.seed)) + desired = np.array([0.04714867120827, 0.1239390327694]) + actual = random.noncentral_f(0.9, 0.9, 2, size=2) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_chisquare(self): + df = [1] + bad_df = [-1] + desired = np.array([0.05573640064251, 1.47220224353539, 2.9469379318589]) + + random = Generator(MT19937(self.seed)) + actual = random.chisquare(df * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.chisquare, bad_df * 3) + + def test_noncentral_chisquare(self): + df = [1] + nonc = [2] + bad_df = [-1] + bad_nonc = [-2] + desired = np.array([0.07710766249436, 5.27829115110304, 0.630732147399]) + + random = Generator(MT19937(self.seed)) + nonc_chi = random.noncentral_chisquare + actual = nonc_chi(df * 3, nonc) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, nonc_chi, bad_df * 3, nonc) + assert_raises(ValueError, nonc_chi, df * 3, bad_nonc) + + random = Generator(MT19937(self.seed)) + nonc_chi = random.noncentral_chisquare + actual = nonc_chi(df, nonc * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, nonc_chi, bad_df, nonc * 3) + assert_raises(ValueError, nonc_chi, df, bad_nonc * 3) + + def test_standard_t(self): + df = [1] + bad_df = [-1] + desired = np.array([-1.39498829447098, -1.23058658835223, 0.17207021065983]) + + random = Generator(MT19937(self.seed)) + actual = random.standard_t(df * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.standard_t, bad_df * 3) + + def test_vonmises(self): + mu = [2] + kappa = [1] + bad_kappa = [-1] + desired = np.array([2.25935584988528, 2.23326261461399, -2.84152146503326]) + + random = Generator(MT19937(self.seed)) + actual = random.vonmises(mu * 3, kappa) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.vonmises, mu * 3, bad_kappa) + + random = Generator(MT19937(self.seed)) + actual = random.vonmises(mu, kappa * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.vonmises, mu, bad_kappa * 3) + + def test_pareto(self): + a = [1] + bad_a = [-1] + desired = np.array([0.95905052946317, 0.2383810889437, 1.04988745750013]) + + random = Generator(MT19937(self.seed)) + actual = random.pareto(a * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.pareto, bad_a * 3) + + def test_weibull(self): + a = [1] + bad_a = [-1] + desired = np.array([0.67245993212806, 0.21380495318094, 0.7177848928629]) + + random = Generator(MT19937(self.seed)) + actual = random.weibull(a * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.weibull, bad_a * 3) + + def test_power(self): + a = [1] + bad_a = [-1] + desired = np.array([0.48954864361052, 0.19249412888486, 0.51216834058807]) + + random = Generator(MT19937(self.seed)) + actual = random.power(a * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.power, bad_a * 3) + + def test_laplace(self): + loc = [0] + scale = [1] + bad_scale = [-1] + desired = np.array([-1.09698732625119, -0.93470271947368, 0.71592671378202]) + + random = Generator(MT19937(self.seed)) + laplace = random.laplace + actual = laplace(loc * 3, scale) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, laplace, loc * 3, bad_scale) + + random = Generator(MT19937(self.seed)) + laplace = random.laplace + actual = laplace(loc, scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, laplace, loc, bad_scale * 3) + + def test_gumbel(self): + loc = [0] + scale = [1] + bad_scale = [-1] + desired = np.array([1.70020068231762, 1.52054354273631, -0.34293267607081]) + + random = Generator(MT19937(self.seed)) + gumbel = random.gumbel + actual = gumbel(loc * 3, scale) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, gumbel, loc * 3, bad_scale) + + random = Generator(MT19937(self.seed)) + gumbel = random.gumbel + actual = gumbel(loc, scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, gumbel, loc, bad_scale * 3) + + def test_logistic(self): + loc = [0] + scale = [1] + bad_scale = [-1] + desired = np.array([-1.607487640433, -1.40925686003678, 1.12887112820397]) + + random = Generator(MT19937(self.seed)) + actual = random.logistic(loc * 3, scale) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.logistic, loc * 3, bad_scale) + + random = Generator(MT19937(self.seed)) + actual = random.logistic(loc, scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.logistic, loc, bad_scale * 3) + assert_equal(random.logistic(1.0, 0.0), 1.0) + + def test_lognormal(self): + mean = [0] + sigma = [1] + bad_sigma = [-1] + desired = np.array([0.67884390500697, 2.21653186290321, 1.01990310084276]) + + random = Generator(MT19937(self.seed)) + lognormal = random.lognormal + actual = lognormal(mean * 3, sigma) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, lognormal, mean * 3, bad_sigma) + + random = Generator(MT19937(self.seed)) + actual = random.lognormal(mean, sigma * 3) + assert_raises(ValueError, random.lognormal, mean, bad_sigma * 3) + + def test_rayleigh(self): + scale = [1] + bad_scale = [-1] + desired = np.array( + [1.1597068009872629, + 0.6539188836253857, + 1.1981526554349398] + ) + + random = Generator(MT19937(self.seed)) + actual = random.rayleigh(scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.rayleigh, bad_scale * 3) + + def test_wald(self): + mean = [0.5] + scale = [1] + bad_mean = [0] + bad_scale = [-2] + desired = np.array([0.38052407392905, 0.50701641508592, 0.484935249864]) + + random = Generator(MT19937(self.seed)) + actual = random.wald(mean * 3, scale) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.wald, bad_mean * 3, scale) + assert_raises(ValueError, random.wald, mean * 3, bad_scale) + + random = Generator(MT19937(self.seed)) + actual = random.wald(mean, scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, random.wald, bad_mean, scale * 3) + assert_raises(ValueError, random.wald, mean, bad_scale * 3) + + def test_triangular(self): + left = [1] + right = [3] + mode = [2] + bad_left_one = [3] + bad_mode_one = [4] + bad_left_two, bad_mode_two = right * 2 + desired = np.array([1.57781954604754, 1.62665986867957, 2.30090130831326]) + + random = Generator(MT19937(self.seed)) + triangular = random.triangular + actual = triangular(left * 3, mode, right) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, triangular, bad_left_one * 3, mode, right) + assert_raises(ValueError, triangular, left * 3, bad_mode_one, right) + assert_raises(ValueError, triangular, bad_left_two * 3, bad_mode_two, + right) + + random = Generator(MT19937(self.seed)) + triangular = random.triangular + actual = triangular(left, mode * 3, right) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, triangular, bad_left_one, mode * 3, right) + assert_raises(ValueError, triangular, left, bad_mode_one * 3, right) + assert_raises(ValueError, triangular, bad_left_two, bad_mode_two * 3, + right) + + random = Generator(MT19937(self.seed)) + triangular = random.triangular + actual = triangular(left, mode, right * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, triangular, bad_left_one, mode, right * 3) + assert_raises(ValueError, triangular, left, bad_mode_one, right * 3) + assert_raises(ValueError, triangular, bad_left_two, bad_mode_two, + right * 3) + + assert_raises(ValueError, triangular, 10., 0., 20.) + assert_raises(ValueError, triangular, 10., 25., 20.) + assert_raises(ValueError, triangular, 10., 10., 10.) + + def test_binomial(self): + n = [1] + p = [0.5] + bad_n = [-1] + bad_p_one = [-1] + bad_p_two = [1.5] + desired = np.array([0, 0, 1]) + + random = Generator(MT19937(self.seed)) + binom = random.binomial + actual = binom(n * 3, p) + assert_array_equal(actual, desired) + assert_raises(ValueError, binom, bad_n * 3, p) + assert_raises(ValueError, binom, n * 3, bad_p_one) + assert_raises(ValueError, binom, n * 3, bad_p_two) + + random = Generator(MT19937(self.seed)) + actual = random.binomial(n, p * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, binom, bad_n, p * 3) + assert_raises(ValueError, binom, n, bad_p_one * 3) + assert_raises(ValueError, binom, n, bad_p_two * 3) + + def test_negative_binomial(self): + n = [1] + p = [0.5] + bad_n = [-1] + bad_p_one = [-1] + bad_p_two = [1.5] + desired = np.array([0, 2, 1], dtype=np.int64) + + random = Generator(MT19937(self.seed)) + neg_binom = random.negative_binomial + actual = neg_binom(n * 3, p) + assert_array_equal(actual, desired) + assert_raises(ValueError, neg_binom, bad_n * 3, p) + assert_raises(ValueError, neg_binom, n * 3, bad_p_one) + assert_raises(ValueError, neg_binom, n * 3, bad_p_two) + + random = Generator(MT19937(self.seed)) + neg_binom = random.negative_binomial + actual = neg_binom(n, p * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, neg_binom, bad_n, p * 3) + assert_raises(ValueError, neg_binom, n, bad_p_one * 3) + assert_raises(ValueError, neg_binom, n, bad_p_two * 3) + + def test_poisson(self): + + lam = [1] + bad_lam_one = [-1] + desired = np.array([0, 0, 3]) + + random = Generator(MT19937(self.seed)) + max_lam = random._poisson_lam_max + bad_lam_two = [max_lam * 2] + poisson = random.poisson + actual = poisson(lam * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, poisson, bad_lam_one * 3) + assert_raises(ValueError, poisson, bad_lam_two * 3) + + def test_zipf(self): + a = [2] + bad_a = [0] + desired = np.array([1, 8, 1]) + + random = Generator(MT19937(self.seed)) + zipf = random.zipf + actual = zipf(a * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, zipf, bad_a * 3) + with np.errstate(invalid='ignore'): + assert_raises(ValueError, zipf, np.nan) + assert_raises(ValueError, zipf, [0, 0, np.nan]) + + def test_geometric(self): + p = [0.5] + bad_p_one = [-1] + bad_p_two = [1.5] + desired = np.array([1, 1, 3]) + + random = Generator(MT19937(self.seed)) + geometric = random.geometric + actual = geometric(p * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, geometric, bad_p_one * 3) + assert_raises(ValueError, geometric, bad_p_two * 3) + + def test_hypergeometric(self): + ngood = [1] + nbad = [2] + nsample = [2] + bad_ngood = [-1] + bad_nbad = [-2] + bad_nsample_one = [-1] + bad_nsample_two = [4] + desired = np.array([0, 0, 1]) + + random = Generator(MT19937(self.seed)) + actual = random.hypergeometric(ngood * 3, nbad, nsample) + assert_array_equal(actual, desired) + assert_raises(ValueError, random.hypergeometric, bad_ngood * 3, nbad, nsample) + assert_raises(ValueError, random.hypergeometric, ngood * 3, bad_nbad, nsample) + assert_raises(ValueError, random.hypergeometric, ngood * 3, nbad, bad_nsample_one) # noqa: E501 + assert_raises(ValueError, random.hypergeometric, ngood * 3, nbad, bad_nsample_two) # noqa: E501 + + random = Generator(MT19937(self.seed)) + actual = random.hypergeometric(ngood, nbad * 3, nsample) + assert_array_equal(actual, desired) + assert_raises(ValueError, random.hypergeometric, bad_ngood, nbad * 3, nsample) + assert_raises(ValueError, random.hypergeometric, ngood, bad_nbad * 3, nsample) + assert_raises(ValueError, random.hypergeometric, ngood, nbad * 3, bad_nsample_one) # noqa: E501 + assert_raises(ValueError, random.hypergeometric, ngood, nbad * 3, bad_nsample_two) # noqa: E501 + + random = Generator(MT19937(self.seed)) + hypergeom = random.hypergeometric + actual = hypergeom(ngood, nbad, nsample * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, hypergeom, bad_ngood, nbad, nsample * 3) + assert_raises(ValueError, hypergeom, ngood, bad_nbad, nsample * 3) + assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_one * 3) + assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_two * 3) + + assert_raises(ValueError, hypergeom, -1, 10, 20) + assert_raises(ValueError, hypergeom, 10, -1, 20) + assert_raises(ValueError, hypergeom, 10, 10, -1) + assert_raises(ValueError, hypergeom, 10, 10, 25) + + # ValueError for arguments that are too big. + assert_raises(ValueError, hypergeom, 2**30, 10, 20) + assert_raises(ValueError, hypergeom, 999, 2**31, 50) + assert_raises(ValueError, hypergeom, 999, [2**29, 2**30], 1000) + + def test_logseries(self): + p = [0.5] + bad_p_one = [2] + bad_p_two = [-1] + desired = np.array([1, 1, 1]) + + random = Generator(MT19937(self.seed)) + logseries = random.logseries + actual = logseries(p * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, logseries, bad_p_one * 3) + assert_raises(ValueError, logseries, bad_p_two * 3) + + def test_multinomial(self): + random = Generator(MT19937(self.seed)) + actual = random.multinomial([5, 20], [1 / 6.] * 6, size=(3, 2)) + desired = np.array([[[0, 0, 2, 1, 2, 0], + [2, 3, 6, 4, 2, 3]], + [[1, 0, 1, 0, 2, 1], + [7, 2, 2, 1, 4, 4]], + [[0, 2, 0, 1, 2, 0], + [3, 2, 3, 3, 4, 5]]], dtype=np.int64) + assert_array_equal(actual, desired) + + random = Generator(MT19937(self.seed)) + actual = random.multinomial([5, 20], [1 / 6.] * 6) + desired = np.array([[0, 0, 2, 1, 2, 0], + [2, 3, 6, 4, 2, 3]], dtype=np.int64) + assert_array_equal(actual, desired) + + random = Generator(MT19937(self.seed)) + actual = random.multinomial([5, 20], [[1 / 6.] * 6] * 2) + desired = np.array([[0, 0, 2, 1, 2, 0], + [2, 3, 6, 4, 2, 3]], dtype=np.int64) + assert_array_equal(actual, desired) + + random = Generator(MT19937(self.seed)) + actual = random.multinomial([[5], [20]], [[1 / 6.] * 6] * 2) + desired = np.array([[[0, 0, 2, 1, 2, 0], + [0, 0, 2, 1, 1, 1]], + [[4, 2, 3, 3, 5, 3], + [7, 2, 2, 1, 4, 4]]], dtype=np.int64) + assert_array_equal(actual, desired) + + @pytest.mark.parametrize("n", [10, + np.array([10, 10]), + np.array([[[10]], [[10]]]) + ] + ) + def test_multinomial_pval_broadcast(self, n): + random = Generator(MT19937(self.seed)) + pvals = np.array([1 / 4] * 4) + actual = random.multinomial(n, pvals) + n_shape = () if isinstance(n, int) else n.shape + expected_shape = n_shape + (4,) + assert actual.shape == expected_shape + pvals = np.vstack([pvals, pvals]) + actual = random.multinomial(n, pvals) + expected_shape = np.broadcast_shapes(n_shape, pvals.shape[:-1]) + (4,) + assert actual.shape == expected_shape + + pvals = np.vstack([[pvals], [pvals]]) + actual = random.multinomial(n, pvals) + expected_shape = np.broadcast_shapes(n_shape, pvals.shape[:-1]) + assert actual.shape == expected_shape + (4,) + actual = random.multinomial(n, pvals, size=(3, 2) + expected_shape) + assert actual.shape == (3, 2) + expected_shape + (4,) + + with pytest.raises(ValueError): + # Ensure that size is not broadcast + actual = random.multinomial(n, pvals, size=(1,) * 6) + + def test_invalid_pvals_broadcast(self): + random = Generator(MT19937(self.seed)) + pvals = [[1 / 6] * 6, [1 / 4] * 6] + assert_raises(ValueError, random.multinomial, 1, pvals) + assert_raises(ValueError, random.multinomial, 6, 0.5) + + def test_empty_outputs(self): + random = Generator(MT19937(self.seed)) + actual = random.multinomial(np.empty((10, 0, 6), "i8"), [1 / 6] * 6) + assert actual.shape == (10, 0, 6, 6) + actual = random.multinomial(12, np.empty((10, 0, 10))) + assert actual.shape == (10, 0, 10) + actual = random.multinomial(np.empty((3, 0, 7), "i8"), + np.empty((3, 0, 7, 4))) + assert actual.shape == (3, 0, 7, 4) + + +@pytest.mark.skipif(IS_WASM, reason="can't start thread") +class TestThread: + # make sure each state produces the same sequence even in threads + def setup_method(self): + self.seeds = range(4) + + def check_function(self, function, sz): + from threading import Thread + + out1 = np.empty((len(self.seeds),) + sz) + out2 = np.empty((len(self.seeds),) + sz) + + # threaded generation + t = [Thread(target=function, args=(Generator(MT19937(s)), o)) + for s, o in zip(self.seeds, out1)] + [x.start() for x in t] + [x.join() for x in t] + + # the same serial + for s, o in zip(self.seeds, out2): + function(Generator(MT19937(s)), o) + + # these platforms change x87 fpu precision mode in threads + if np.intp().dtype.itemsize == 4 and sys.platform == "win32": + assert_array_almost_equal(out1, out2) + else: + assert_array_equal(out1, out2) + + def test_normal(self): + def gen_random(state, out): + out[...] = state.normal(size=10000) + + self.check_function(gen_random, sz=(10000,)) + + def test_exp(self): + def gen_random(state, out): + out[...] = state.exponential(scale=np.ones((100, 1000))) + + self.check_function(gen_random, sz=(100, 1000)) + + def test_multinomial(self): + def gen_random(state, out): + out[...] = state.multinomial(10, [1 / 6.] * 6, size=10000) + + self.check_function(gen_random, sz=(10000, 6)) + + +# See Issue #4263 +class TestSingleEltArrayInput: + def setup_method(self): + self.argOne = np.array([2]) + self.argTwo = np.array([3]) + self.argThree = np.array([4]) + self.tgtShape = (1,) + + def test_one_arg_funcs(self): + funcs = (random.exponential, random.standard_gamma, + random.chisquare, random.standard_t, + random.pareto, random.weibull, + random.power, random.rayleigh, + random.poisson, random.zipf, + random.geometric, random.logseries) + + probfuncs = (random.geometric, random.logseries) + + for func in funcs: + if func in probfuncs: # p < 1.0 + out = func(np.array([0.5])) + + else: + out = func(self.argOne) + + assert_equal(out.shape, self.tgtShape) + + def test_two_arg_funcs(self): + funcs = (random.uniform, random.normal, + random.beta, random.gamma, + random.f, random.noncentral_chisquare, + random.vonmises, random.laplace, + random.gumbel, random.logistic, + random.lognormal, random.wald, + random.binomial, random.negative_binomial) + + probfuncs = (random.binomial, random.negative_binomial) + + for func in funcs: + if func in probfuncs: # p <= 1 + argTwo = np.array([0.5]) + + else: + argTwo = self.argTwo + + out = func(self.argOne, argTwo) + assert_equal(out.shape, self.tgtShape) + + out = func(self.argOne[0], argTwo) + assert_equal(out.shape, self.tgtShape) + + out = func(self.argOne, argTwo[0]) + assert_equal(out.shape, self.tgtShape) + + def test_integers(self, endpoint): + itype = [np.bool, np.int8, np.uint8, np.int16, np.uint16, + np.int32, np.uint32, np.int64, np.uint64] + func = random.integers + high = np.array([1]) + low = np.array([0]) + + for dt in itype: + out = func(low, high, endpoint=endpoint, dtype=dt) + assert_equal(out.shape, self.tgtShape) + + out = func(low[0], high, endpoint=endpoint, dtype=dt) + assert_equal(out.shape, self.tgtShape) + + out = func(low, high[0], endpoint=endpoint, dtype=dt) + assert_equal(out.shape, self.tgtShape) + + def test_three_arg_funcs(self): + funcs = [random.noncentral_f, random.triangular, + random.hypergeometric] + + for func in funcs: + out = func(self.argOne, self.argTwo, self.argThree) + assert_equal(out.shape, self.tgtShape) + + out = func(self.argOne[0], self.argTwo, self.argThree) + assert_equal(out.shape, self.tgtShape) + + out = func(self.argOne, self.argTwo[0], self.argThree) + assert_equal(out.shape, self.tgtShape) + + +@pytest.mark.parametrize("config", JUMP_TEST_DATA) +def test_jumped(config): + # Each config contains the initial seed, a number of raw steps + # the sha256 hashes of the initial and the final states' keys and + # the position of the initial and the final state. + # These were produced using the original C implementation. + seed = config["seed"] + steps = config["steps"] + + mt19937 = MT19937(seed) + # Burn step + mt19937.random_raw(steps) + key = mt19937.state["state"]["key"] + if sys.byteorder == 'big': + key = key.byteswap() + sha256 = hashlib.sha256(key) + assert mt19937.state["state"]["pos"] == config["initial"]["pos"] + assert sha256.hexdigest() == config["initial"]["key_sha256"] + + jumped = mt19937.jumped() + key = jumped.state["state"]["key"] + if sys.byteorder == 'big': + key = key.byteswap() + sha256 = hashlib.sha256(key) + assert jumped.state["state"]["pos"] == config["jumped"]["pos"] + assert sha256.hexdigest() == config["jumped"]["key_sha256"] + + +def test_broadcast_size_error(): + mu = np.ones(3) + sigma = np.ones((4, 3)) + size = (10, 4, 2) + assert random.normal(mu, sigma, size=(5, 4, 3)).shape == (5, 4, 3) + with pytest.raises(ValueError): + random.normal(mu, sigma, size=size) + with pytest.raises(ValueError): + random.normal(mu, sigma, size=(1, 3)) + with pytest.raises(ValueError): + random.normal(mu, sigma, size=(4, 1, 1)) + # 1 arg + shape = np.ones((4, 3)) + with pytest.raises(ValueError): + random.standard_gamma(shape, size=size) + with pytest.raises(ValueError): + random.standard_gamma(shape, size=(3,)) + with pytest.raises(ValueError): + random.standard_gamma(shape, size=3) + # Check out + out = np.empty(size) + with pytest.raises(ValueError): + random.standard_gamma(shape, out=out) + + # 2 arg + with pytest.raises(ValueError): + random.binomial(1, [0.3, 0.7], size=(2, 1)) + with pytest.raises(ValueError): + random.binomial([1, 2], 0.3, size=(2, 1)) + with pytest.raises(ValueError): + random.binomial([1, 2], [0.3, 0.7], size=(2, 1)) + with pytest.raises(ValueError): + random.multinomial([2, 2], [.3, .7], size=(2, 1)) + + # 3 arg + a = random.chisquare(5, size=3) + b = random.chisquare(5, size=(4, 3)) + c = random.chisquare(5, size=(5, 4, 3)) + assert random.noncentral_f(a, b, c).shape == (5, 4, 3) + with pytest.raises(ValueError, match=r"Output size \(6, 5, 1, 1\) is"): + random.noncentral_f(a, b, c, size=(6, 5, 1, 1)) + + +def test_broadcast_size_scalar(): + mu = np.ones(3) + sigma = np.ones(3) + random.normal(mu, sigma, size=3) + with pytest.raises(ValueError): + random.normal(mu, sigma, size=2) + + +def test_ragged_shuffle(): + # GH 18142 + seq = [[], [], 1] + gen = Generator(MT19937(0)) + assert_no_warnings(gen.shuffle, seq) + assert seq == [1, [], []] + + +@pytest.mark.parametrize("high", [-2, [-2]]) +@pytest.mark.parametrize("endpoint", [True, False]) +def test_single_arg_integer_exception(high, endpoint): + # GH 14333 + gen = Generator(MT19937(0)) + msg = 'high < 0' if endpoint else 'high <= 0' + with pytest.raises(ValueError, match=msg): + gen.integers(high, endpoint=endpoint) + msg = 'low > high' if endpoint else 'low >= high' + with pytest.raises(ValueError, match=msg): + gen.integers(-1, high, endpoint=endpoint) + with pytest.raises(ValueError, match=msg): + gen.integers([-1], high, endpoint=endpoint) + + +@pytest.mark.parametrize("dtype", ["f4", "f8"]) +def test_c_contig_req_out(dtype): + # GH 18704 + out = np.empty((2, 3), order="F", dtype=dtype) + shape = [1, 2, 3] + with pytest.raises(ValueError, match="Supplied output array"): + random.standard_gamma(shape, out=out, dtype=dtype) + with pytest.raises(ValueError, match="Supplied output array"): + random.standard_gamma(shape, out=out, size=out.shape, dtype=dtype) + + +@pytest.mark.parametrize("dtype", ["f4", "f8"]) +@pytest.mark.parametrize("order", ["F", "C"]) +@pytest.mark.parametrize("dist", [random.standard_normal, random.random]) +def test_contig_req_out(dist, order, dtype): + # GH 18704 + out = np.empty((2, 3), dtype=dtype, order=order) + variates = dist(out=out, dtype=dtype) + assert variates is out + variates = dist(out=out, dtype=dtype, size=out.shape) + assert variates is out + + +def test_generator_ctor_old_style_pickle(): + rg = np.random.Generator(np.random.PCG64DXSM(0)) + rg.standard_normal(1) + # Directly call reduce which is used in pickling + ctor, (bit_gen, ), _ = rg.__reduce__() + # Simulate unpickling an old pickle that only has the name + assert bit_gen.__class__.__name__ == "PCG64DXSM" + print(ctor) + b = ctor(*("PCG64DXSM",)) + print(b) + b.bit_generator.state = bit_gen.state + state_b = b.bit_generator.state + assert bit_gen.state == state_b + + +def test_pickle_preserves_seed_sequence(): + # GH 26234 + # Add explicit test that bit generators preserve seed sequences + import pickle + + rg = np.random.Generator(np.random.PCG64DXSM(20240411)) + ss = rg.bit_generator.seed_seq + rg_plk = pickle.loads(pickle.dumps(rg)) + ss_plk = rg_plk.bit_generator.seed_seq + assert_equal(ss.state, ss_plk.state) + assert_equal(ss.pool, ss_plk.pool) + + rg.bit_generator.seed_seq.spawn(10) + rg_plk = pickle.loads(pickle.dumps(rg)) + ss_plk = rg_plk.bit_generator.seed_seq + assert_equal(ss.state, ss_plk.state) + + +@pytest.mark.parametrize("version", [121, 126]) +def test_legacy_pickle(version): + # Pickling format was changes in 1.22.x and in 2.0.x + import gzip + import pickle + + base_path = os.path.split(os.path.abspath(__file__))[0] + pkl_file = os.path.join( + base_path, "data", f"generator_pcg64_np{version}.pkl.gz" + ) + with gzip.open(pkl_file) as gz: + rg = pickle.load(gz) + state = rg.bit_generator.state['state'] + + assert isinstance(rg, Generator) + assert isinstance(rg.bit_generator, np.random.PCG64) + assert state['state'] == 35399562948360463058890781895381311971 + assert state['inc'] == 87136372517582989555478159403783844777 diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/test_generator_mt19937_regressions.py b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_generator_mt19937_regressions.py new file mode 100644 index 0000000..abfacb8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_generator_mt19937_regressions.py @@ -0,0 +1,207 @@ +import pytest + +import numpy as np +from numpy.random import MT19937, Generator +from numpy.testing import assert_, assert_array_equal + + +class TestRegression: + + def setup_method(self): + self.mt19937 = Generator(MT19937(121263137472525314065)) + + def test_vonmises_range(self): + # Make sure generated random variables are in [-pi, pi]. + # Regression test for ticket #986. + for mu in np.linspace(-7., 7., 5): + r = self.mt19937.vonmises(mu, 1, 50) + assert_(np.all(r > -np.pi) and np.all(r <= np.pi)) + + def test_hypergeometric_range(self): + # Test for ticket #921 + assert_(np.all(self.mt19937.hypergeometric(3, 18, 11, size=10) < 4)) + assert_(np.all(self.mt19937.hypergeometric(18, 3, 11, size=10) > 0)) + + # Test for ticket #5623 + args = (2**20 - 2, 2**20 - 2, 2**20 - 2) # Check for 32-bit systems + assert_(self.mt19937.hypergeometric(*args) > 0) + + def test_logseries_convergence(self): + # Test for ticket #923 + N = 1000 + rvsn = self.mt19937.logseries(0.8, size=N) + # these two frequency counts should be close to theoretical + # numbers with this large sample + # theoretical large N result is 0.49706795 + freq = np.sum(rvsn == 1) / N + msg = f'Frequency was {freq:f}, should be > 0.45' + assert_(freq > 0.45, msg) + # theoretical large N result is 0.19882718 + freq = np.sum(rvsn == 2) / N + msg = f'Frequency was {freq:f}, should be < 0.23' + assert_(freq < 0.23, msg) + + def test_shuffle_mixed_dimension(self): + # Test for trac ticket #2074 + for t in [[1, 2, 3, None], + [(1, 1), (2, 2), (3, 3), None], + [1, (2, 2), (3, 3), None], + [(1, 1), 2, 3, None]]: + mt19937 = Generator(MT19937(12345)) + shuffled = np.array(t, dtype=object) + mt19937.shuffle(shuffled) + expected = np.array([t[2], t[0], t[3], t[1]], dtype=object) + assert_array_equal(np.array(shuffled, dtype=object), expected) + + def test_call_within_randomstate(self): + # Check that custom BitGenerator does not call into global state + res = np.array([1, 8, 0, 1, 5, 3, 3, 8, 1, 4]) + for i in range(3): + mt19937 = Generator(MT19937(i)) + m = Generator(MT19937(4321)) + # If m.state is not honored, the result will change + assert_array_equal(m.choice(10, size=10, p=np.ones(10) / 10.), res) + + def test_multivariate_normal_size_types(self): + # Test for multivariate_normal issue with 'size' argument. + # Check that the multivariate_normal size argument can be a + # numpy integer. + self.mt19937.multivariate_normal([0], [[0]], size=1) + self.mt19937.multivariate_normal([0], [[0]], size=np.int_(1)) + self.mt19937.multivariate_normal([0], [[0]], size=np.int64(1)) + + def test_beta_small_parameters(self): + # Test that beta with small a and b parameters does not produce + # NaNs due to roundoff errors causing 0 / 0, gh-5851 + x = self.mt19937.beta(0.0001, 0.0001, size=100) + assert_(not np.any(np.isnan(x)), 'Nans in mt19937.beta') + + def test_beta_very_small_parameters(self): + # gh-24203: beta would hang with very small parameters. + self.mt19937.beta(1e-49, 1e-40) + + def test_beta_ridiculously_small_parameters(self): + # gh-24266: beta would generate nan when the parameters + # were subnormal or a small multiple of the smallest normal. + tiny = np.finfo(1.0).tiny + x = self.mt19937.beta(tiny / 32, tiny / 40, size=50) + assert not np.any(np.isnan(x)) + + def test_beta_expected_zero_frequency(self): + # gh-24475: For small a and b (e.g. a=0.0025, b=0.0025), beta + # would generate too many zeros. + a = 0.0025 + b = 0.0025 + n = 1000000 + x = self.mt19937.beta(a, b, size=n) + nzeros = np.count_nonzero(x == 0) + # beta CDF at x = np.finfo(np.double).smallest_subnormal/2 + # is p = 0.0776169083131899, e.g, + # + # import numpy as np + # from mpmath import mp + # mp.dps = 160 + # x = mp.mpf(np.finfo(np.float64).smallest_subnormal)/2 + # # CDF of the beta distribution at x: + # p = mp.betainc(a, b, x1=0, x2=x, regularized=True) + # n = 1000000 + # exprected_freq = float(n*p) + # + expected_freq = 77616.90831318991 + assert 0.95 * expected_freq < nzeros < 1.05 * expected_freq + + def test_choice_sum_of_probs_tolerance(self): + # The sum of probs should be 1.0 with some tolerance. + # For low precision dtypes the tolerance was too tight. + # See numpy github issue 6123. + a = [1, 2, 3] + counts = [4, 4, 2] + for dt in np.float16, np.float32, np.float64: + probs = np.array(counts, dtype=dt) / sum(counts) + c = self.mt19937.choice(a, p=probs) + assert_(c in a) + with pytest.raises(ValueError): + self.mt19937.choice(a, p=probs * 0.9) + + def test_shuffle_of_array_of_different_length_strings(self): + # Test that permuting an array of different length strings + # will not cause a segfault on garbage collection + # Tests gh-7710 + + a = np.array(['a', 'a' * 1000]) + + for _ in range(100): + self.mt19937.shuffle(a) + + # Force Garbage Collection - should not segfault. + import gc + gc.collect() + + def test_shuffle_of_array_of_objects(self): + # Test that permuting an array of objects will not cause + # a segfault on garbage collection. + # See gh-7719 + a = np.array([np.arange(1), np.arange(4)], dtype=object) + + for _ in range(1000): + self.mt19937.shuffle(a) + + # Force Garbage Collection - should not segfault. + import gc + gc.collect() + + def test_permutation_subclass(self): + + class N(np.ndarray): + pass + + mt19937 = Generator(MT19937(1)) + orig = np.arange(3).view(N) + perm = mt19937.permutation(orig) + assert_array_equal(perm, np.array([2, 0, 1])) + assert_array_equal(orig, np.arange(3).view(N)) + + class M: + a = np.arange(5) + + def __array__(self, dtype=None, copy=None): + return self.a + + mt19937 = Generator(MT19937(1)) + m = M() + perm = mt19937.permutation(m) + assert_array_equal(perm, np.array([4, 1, 3, 0, 2])) + assert_array_equal(m.__array__(), np.arange(5)) + + def test_gamma_0(self): + assert self.mt19937.standard_gamma(0.0) == 0.0 + assert_array_equal(self.mt19937.standard_gamma([0.0]), 0.0) + + actual = self.mt19937.standard_gamma([0.0], dtype='float') + expected = np.array([0.], dtype=np.float32) + assert_array_equal(actual, expected) + + def test_geometric_tiny_prob(self): + # Regression test for gh-17007. + # When p = 1e-30, the probability that a sample will exceed 2**63-1 + # is 0.9999999999907766, so we expect the result to be all 2**63-1. + assert_array_equal(self.mt19937.geometric(p=1e-30, size=3), + np.iinfo(np.int64).max) + + def test_zipf_large_parameter(self): + # Regression test for part of gh-9829: a call such as rng.zipf(10000) + # would hang. + n = 8 + sample = self.mt19937.zipf(10000, size=n) + assert_array_equal(sample, np.ones(n, dtype=np.int64)) + + def test_zipf_a_near_1(self): + # Regression test for gh-9829: a call such as rng.zipf(1.0000000000001) + # would hang. + n = 100000 + sample = self.mt19937.zipf(1.0000000000001, size=n) + # Not much of a test, but let's do something more than verify that + # it doesn't hang. Certainly for a monotonically decreasing + # discrete distribution truncated to signed 64 bit integers, more + # than half should be less than 2**62. + assert np.count_nonzero(sample < 2**62) > n / 2 diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/test_random.py b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_random.py new file mode 100644 index 0000000..d598190 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_random.py @@ -0,0 +1,1757 @@ +import sys +import warnings + +import pytest + +import numpy as np +from numpy import random +from numpy.testing import ( + IS_WASM, + assert_, + assert_array_almost_equal, + assert_array_equal, + assert_equal, + assert_no_warnings, + assert_raises, + assert_warns, + suppress_warnings, +) + + +class TestSeed: + def test_scalar(self): + s = np.random.RandomState(0) + assert_equal(s.randint(1000), 684) + s = np.random.RandomState(4294967295) + assert_equal(s.randint(1000), 419) + + def test_array(self): + s = np.random.RandomState(range(10)) + assert_equal(s.randint(1000), 468) + s = np.random.RandomState(np.arange(10)) + assert_equal(s.randint(1000), 468) + s = np.random.RandomState([0]) + assert_equal(s.randint(1000), 973) + s = np.random.RandomState([4294967295]) + assert_equal(s.randint(1000), 265) + + def test_invalid_scalar(self): + # seed must be an unsigned 32 bit integer + assert_raises(TypeError, np.random.RandomState, -0.5) + assert_raises(ValueError, np.random.RandomState, -1) + + def test_invalid_array(self): + # seed must be an unsigned 32 bit integer + assert_raises(TypeError, np.random.RandomState, [-0.5]) + assert_raises(ValueError, np.random.RandomState, [-1]) + assert_raises(ValueError, np.random.RandomState, [4294967296]) + assert_raises(ValueError, np.random.RandomState, [1, 2, 4294967296]) + assert_raises(ValueError, np.random.RandomState, [1, -2, 4294967296]) + + def test_invalid_array_shape(self): + # gh-9832 + assert_raises(ValueError, np.random.RandomState, + np.array([], dtype=np.int64)) + assert_raises(ValueError, np.random.RandomState, [[1, 2, 3]]) + assert_raises(ValueError, np.random.RandomState, [[1, 2, 3], + [4, 5, 6]]) + + +class TestBinomial: + def test_n_zero(self): + # Tests the corner case of n == 0 for the binomial distribution. + # binomial(0, p) should be zero for any p in [0, 1]. + # This test addresses issue #3480. + zeros = np.zeros(2, dtype='int') + for p in [0, .5, 1]: + assert_(random.binomial(0, p) == 0) + assert_array_equal(random.binomial(zeros, p), zeros) + + def test_p_is_nan(self): + # Issue #4571. + assert_raises(ValueError, random.binomial, 1, np.nan) + + +class TestMultinomial: + def test_basic(self): + random.multinomial(100, [0.2, 0.8]) + + def test_zero_probability(self): + random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0]) + + def test_int_negative_interval(self): + assert_(-5 <= random.randint(-5, -1) < -1) + x = random.randint(-5, -1, 5) + assert_(np.all(-5 <= x)) + assert_(np.all(x < -1)) + + def test_size(self): + # gh-3173 + p = [0.5, 0.5] + assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) + assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) + assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) + assert_equal(np.random.multinomial(1, p, [2, 2]).shape, (2, 2, 2)) + assert_equal(np.random.multinomial(1, p, (2, 2)).shape, (2, 2, 2)) + assert_equal(np.random.multinomial(1, p, np.array((2, 2))).shape, + (2, 2, 2)) + + assert_raises(TypeError, np.random.multinomial, 1, p, + float(1)) + + def test_multidimensional_pvals(self): + assert_raises(ValueError, np.random.multinomial, 10, [[0, 1]]) + assert_raises(ValueError, np.random.multinomial, 10, [[0], [1]]) + assert_raises(ValueError, np.random.multinomial, 10, [[[0], [1]], [[1], [0]]]) + assert_raises(ValueError, np.random.multinomial, 10, np.array([[0, 1], [1, 0]])) + + +class TestSetState: + def setup_method(self): + self.seed = 1234567890 + self.prng = random.RandomState(self.seed) + self.state = self.prng.get_state() + + def test_basic(self): + old = self.prng.tomaxint(16) + self.prng.set_state(self.state) + new = self.prng.tomaxint(16) + assert_(np.all(old == new)) + + def test_gaussian_reset(self): + # Make sure the cached every-other-Gaussian is reset. + old = self.prng.standard_normal(size=3) + self.prng.set_state(self.state) + new = self.prng.standard_normal(size=3) + assert_(np.all(old == new)) + + def test_gaussian_reset_in_media_res(self): + # When the state is saved with a cached Gaussian, make sure the + # cached Gaussian is restored. + + self.prng.standard_normal() + state = self.prng.get_state() + old = self.prng.standard_normal(size=3) + self.prng.set_state(state) + new = self.prng.standard_normal(size=3) + assert_(np.all(old == new)) + + def test_backwards_compatibility(self): + # Make sure we can accept old state tuples that do not have the + # cached Gaussian value. + old_state = self.state[:-2] + x1 = self.prng.standard_normal(size=16) + self.prng.set_state(old_state) + x2 = self.prng.standard_normal(size=16) + self.prng.set_state(self.state) + x3 = self.prng.standard_normal(size=16) + assert_(np.all(x1 == x2)) + assert_(np.all(x1 == x3)) + + def test_negative_binomial(self): + # Ensure that the negative binomial results take floating point + # arguments without truncation. + self.prng.negative_binomial(0.5, 0.5) + + def test_set_invalid_state(self): + # gh-25402 + with pytest.raises(IndexError): + self.prng.set_state(()) + + +class TestRandint: + + rfunc = np.random.randint + + # valid integer/boolean types + itype = [np.bool, np.int8, np.uint8, np.int16, np.uint16, + np.int32, np.uint32, np.int64, np.uint64] + + def test_unsupported_type(self): + assert_raises(TypeError, self.rfunc, 1, dtype=float) + + def test_bounds_checking(self): + for dt in self.itype: + lbnd = 0 if dt is np.bool else np.iinfo(dt).min + ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1 + assert_raises(ValueError, self.rfunc, lbnd - 1, ubnd, dtype=dt) + assert_raises(ValueError, self.rfunc, lbnd, ubnd + 1, dtype=dt) + assert_raises(ValueError, self.rfunc, ubnd, lbnd, dtype=dt) + assert_raises(ValueError, self.rfunc, 1, 0, dtype=dt) + + def test_rng_zero_and_extremes(self): + for dt in self.itype: + lbnd = 0 if dt is np.bool else np.iinfo(dt).min + ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1 + + tgt = ubnd - 1 + assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt) + + tgt = lbnd + assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt) + + tgt = (lbnd + ubnd) // 2 + assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt) + + def test_full_range(self): + # Test for ticket #1690 + + for dt in self.itype: + lbnd = 0 if dt is np.bool else np.iinfo(dt).min + ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1 + + try: + self.rfunc(lbnd, ubnd, dtype=dt) + except Exception as e: + raise AssertionError("No error should have been raised, " + "but one was with the following " + "message:\n\n%s" % str(e)) + + def test_in_bounds_fuzz(self): + # Don't use fixed seed + np.random.seed() + + for dt in self.itype[1:]: + for ubnd in [4, 8, 16]: + vals = self.rfunc(2, ubnd, size=2**16, dtype=dt) + assert_(vals.max() < ubnd) + assert_(vals.min() >= 2) + + vals = self.rfunc(0, 2, size=2**16, dtype=np.bool) + + assert_(vals.max() < 2) + assert_(vals.min() >= 0) + + def test_repeatability(self): + import hashlib + # We use a sha256 hash of generated sequences of 1000 samples + # in the range [0, 6) for all but bool, where the range + # is [0, 2). Hashes are for little endian numbers. + tgt = {'bool': '509aea74d792fb931784c4b0135392c65aec64beee12b0cc167548a2c3d31e71', # noqa: E501 + 'int16': '7b07f1a920e46f6d0fe02314155a2330bcfd7635e708da50e536c5ebb631a7d4', # noqa: E501 + 'int32': 'e577bfed6c935de944424667e3da285012e741892dcb7051a8f1ce68ab05c92f', # noqa: E501 + 'int64': '0fbead0b06759df2cfb55e43148822d4a1ff953c7eb19a5b08445a63bb64fa9e', # noqa: E501 + 'int8': '001aac3a5acb935a9b186cbe14a1ca064b8bb2dd0b045d48abeacf74d0203404', # noqa: E501 + 'uint16': '7b07f1a920e46f6d0fe02314155a2330bcfd7635e708da50e536c5ebb631a7d4', # noqa: E501 + 'uint32': 'e577bfed6c935de944424667e3da285012e741892dcb7051a8f1ce68ab05c92f', # noqa: E501 + 'uint64': '0fbead0b06759df2cfb55e43148822d4a1ff953c7eb19a5b08445a63bb64fa9e', # noqa: E501 + 'uint8': '001aac3a5acb935a9b186cbe14a1ca064b8bb2dd0b045d48abeacf74d0203404'} # noqa: E501 + + for dt in self.itype[1:]: + np.random.seed(1234) + + # view as little endian for hash + if sys.byteorder == 'little': + val = self.rfunc(0, 6, size=1000, dtype=dt) + else: + val = self.rfunc(0, 6, size=1000, dtype=dt).byteswap() + + res = hashlib.sha256(val.view(np.int8)).hexdigest() + assert_(tgt[np.dtype(dt).name] == res) + + # bools do not depend on endianness + np.random.seed(1234) + val = self.rfunc(0, 2, size=1000, dtype=bool).view(np.int8) + res = hashlib.sha256(val).hexdigest() + assert_(tgt[np.dtype(bool).name] == res) + + def test_int64_uint64_corner_case(self): + # When stored in Numpy arrays, `lbnd` is casted + # as np.int64, and `ubnd` is casted as np.uint64. + # Checking whether `lbnd` >= `ubnd` used to be + # done solely via direct comparison, which is incorrect + # because when Numpy tries to compare both numbers, + # it casts both to np.float64 because there is + # no integer superset of np.int64 and np.uint64. However, + # `ubnd` is too large to be represented in np.float64, + # causing it be round down to np.iinfo(np.int64).max, + # leading to a ValueError because `lbnd` now equals + # the new `ubnd`. + + dt = np.int64 + tgt = np.iinfo(np.int64).max + lbnd = np.int64(np.iinfo(np.int64).max) + ubnd = np.uint64(np.iinfo(np.int64).max + 1) + + # None of these function calls should + # generate a ValueError now. + actual = np.random.randint(lbnd, ubnd, dtype=dt) + assert_equal(actual, tgt) + + def test_respect_dtype_singleton(self): + # See gh-7203 + for dt in self.itype: + lbnd = 0 if dt is np.bool else np.iinfo(dt).min + ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1 + + sample = self.rfunc(lbnd, ubnd, dtype=dt) + assert_equal(sample.dtype, np.dtype(dt)) + + for dt in (bool, int): + # The legacy rng uses "long" as the default integer: + lbnd = 0 if dt is bool else np.iinfo("long").min + ubnd = 2 if dt is bool else np.iinfo("long").max + 1 + + # gh-7284: Ensure that we get Python data types + sample = self.rfunc(lbnd, ubnd, dtype=dt) + assert_(not hasattr(sample, 'dtype')) + assert_equal(type(sample), dt) + + +class TestRandomDist: + # Make sure the random distribution returns the correct value for a + # given seed + + def setup_method(self): + self.seed = 1234567890 + + def test_rand(self): + np.random.seed(self.seed) + actual = np.random.rand(3, 2) + desired = np.array([[0.61879477158567997, 0.59162362775974664], + [0.88868358904449662, 0.89165480011560816], + [0.4575674820298663, 0.7781880808593471]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_randn(self): + np.random.seed(self.seed) + actual = np.random.randn(3, 2) + desired = np.array([[1.34016345771863121, 1.73759122771936081], + [1.498988344300628, -0.2286433324536169], + [2.031033998682787, 2.17032494605655257]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_randint(self): + np.random.seed(self.seed) + actual = np.random.randint(-99, 99, size=(3, 2)) + desired = np.array([[31, 3], + [-52, 41], + [-48, -66]]) + assert_array_equal(actual, desired) + + def test_random_integers(self): + np.random.seed(self.seed) + with suppress_warnings() as sup: + w = sup.record(DeprecationWarning) + actual = np.random.random_integers(-99, 99, size=(3, 2)) + assert_(len(w) == 1) + desired = np.array([[31, 3], + [-52, 41], + [-48, -66]]) + assert_array_equal(actual, desired) + + def test_random_integers_max_int(self): + # Tests whether random_integers can generate the + # maximum allowed Python int that can be converted + # into a C long. Previous implementations of this + # method have thrown an OverflowError when attempting + # to generate this integer. + with suppress_warnings() as sup: + w = sup.record(DeprecationWarning) + actual = np.random.random_integers(np.iinfo('l').max, + np.iinfo('l').max) + assert_(len(w) == 1) + + desired = np.iinfo('l').max + assert_equal(actual, desired) + + def test_random_integers_deprecated(self): + with warnings.catch_warnings(): + warnings.simplefilter("error", DeprecationWarning) + + # DeprecationWarning raised with high == None + assert_raises(DeprecationWarning, + np.random.random_integers, + np.iinfo('l').max) + + # DeprecationWarning raised with high != None + assert_raises(DeprecationWarning, + np.random.random_integers, + np.iinfo('l').max, np.iinfo('l').max) + + def test_random(self): + np.random.seed(self.seed) + actual = np.random.random((3, 2)) + desired = np.array([[0.61879477158567997, 0.59162362775974664], + [0.88868358904449662, 0.89165480011560816], + [0.4575674820298663, 0.7781880808593471]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_choice_uniform_replace(self): + np.random.seed(self.seed) + actual = np.random.choice(4, 4) + desired = np.array([2, 3, 2, 3]) + assert_array_equal(actual, desired) + + def test_choice_nonuniform_replace(self): + np.random.seed(self.seed) + actual = np.random.choice(4, 4, p=[0.4, 0.4, 0.1, 0.1]) + desired = np.array([1, 1, 2, 2]) + assert_array_equal(actual, desired) + + def test_choice_uniform_noreplace(self): + np.random.seed(self.seed) + actual = np.random.choice(4, 3, replace=False) + desired = np.array([0, 1, 3]) + assert_array_equal(actual, desired) + + def test_choice_nonuniform_noreplace(self): + np.random.seed(self.seed) + actual = np.random.choice(4, 3, replace=False, + p=[0.1, 0.3, 0.5, 0.1]) + desired = np.array([2, 3, 1]) + assert_array_equal(actual, desired) + + def test_choice_noninteger(self): + np.random.seed(self.seed) + actual = np.random.choice(['a', 'b', 'c', 'd'], 4) + desired = np.array(['c', 'd', 'c', 'd']) + assert_array_equal(actual, desired) + + def test_choice_exceptions(self): + sample = np.random.choice + assert_raises(ValueError, sample, -1, 3) + assert_raises(ValueError, sample, 3., 3) + assert_raises(ValueError, sample, [[1, 2], [3, 4]], 3) + assert_raises(ValueError, sample, [], 3) + assert_raises(ValueError, sample, [1, 2, 3, 4], 3, + p=[[0.25, 0.25], [0.25, 0.25]]) + assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4, 0.2]) + assert_raises(ValueError, sample, [1, 2], 3, p=[1.1, -0.1]) + assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4]) + assert_raises(ValueError, sample, [1, 2, 3], 4, replace=False) + # gh-13087 + assert_raises(ValueError, sample, [1, 2, 3], -2, replace=False) + assert_raises(ValueError, sample, [1, 2, 3], (-1,), replace=False) + assert_raises(ValueError, sample, [1, 2, 3], (-1, 1), replace=False) + assert_raises(ValueError, sample, [1, 2, 3], 2, + replace=False, p=[1, 0, 0]) + + def test_choice_return_shape(self): + p = [0.1, 0.9] + # Check scalar + assert_(np.isscalar(np.random.choice(2, replace=True))) + assert_(np.isscalar(np.random.choice(2, replace=False))) + assert_(np.isscalar(np.random.choice(2, replace=True, p=p))) + assert_(np.isscalar(np.random.choice(2, replace=False, p=p))) + assert_(np.isscalar(np.random.choice([1, 2], replace=True))) + assert_(np.random.choice([None], replace=True) is None) + a = np.array([1, 2]) + arr = np.empty(1, dtype=object) + arr[0] = a + assert_(np.random.choice(arr, replace=True) is a) + + # Check 0-d array + s = () + assert_(not np.isscalar(np.random.choice(2, s, replace=True))) + assert_(not np.isscalar(np.random.choice(2, s, replace=False))) + assert_(not np.isscalar(np.random.choice(2, s, replace=True, p=p))) + assert_(not np.isscalar(np.random.choice(2, s, replace=False, p=p))) + assert_(not np.isscalar(np.random.choice([1, 2], s, replace=True))) + assert_(np.random.choice([None], s, replace=True).ndim == 0) + a = np.array([1, 2]) + arr = np.empty(1, dtype=object) + arr[0] = a + assert_(np.random.choice(arr, s, replace=True).item() is a) + + # Check multi dimensional array + s = (2, 3) + p = [0.1, 0.1, 0.1, 0.1, 0.4, 0.2] + assert_equal(np.random.choice(6, s, replace=True).shape, s) + assert_equal(np.random.choice(6, s, replace=False).shape, s) + assert_equal(np.random.choice(6, s, replace=True, p=p).shape, s) + assert_equal(np.random.choice(6, s, replace=False, p=p).shape, s) + assert_equal(np.random.choice(np.arange(6), s, replace=True).shape, s) + + # Check zero-size + assert_equal(np.random.randint(0, 0, size=(3, 0, 4)).shape, (3, 0, 4)) + assert_equal(np.random.randint(0, -10, size=0).shape, (0,)) + assert_equal(np.random.randint(10, 10, size=0).shape, (0,)) + assert_equal(np.random.choice(0, size=0).shape, (0,)) + assert_equal(np.random.choice([], size=(0,)).shape, (0,)) + assert_equal(np.random.choice(['a', 'b'], size=(3, 0, 4)).shape, + (3, 0, 4)) + assert_raises(ValueError, np.random.choice, [], 10) + + def test_choice_nan_probabilities(self): + a = np.array([42, 1, 2]) + p = [None, None, None] + assert_raises(ValueError, np.random.choice, a, p=p) + + def test_bytes(self): + np.random.seed(self.seed) + actual = np.random.bytes(10) + desired = b'\x82Ui\x9e\xff\x97+Wf\xa5' + assert_equal(actual, desired) + + def test_shuffle(self): + # Test lists, arrays (of various dtypes), and multidimensional versions + # of both, c-contiguous or not: + for conv in [lambda x: np.array([]), + lambda x: x, + lambda x: np.asarray(x).astype(np.int8), + lambda x: np.asarray(x).astype(np.float32), + lambda x: np.asarray(x).astype(np.complex64), + lambda x: np.asarray(x).astype(object), + lambda x: [(i, i) for i in x], + lambda x: np.asarray([[i, i] for i in x]), + lambda x: np.vstack([x, x]).T, + # gh-11442 + lambda x: (np.asarray([(i, i) for i in x], + [("a", int), ("b", int)]) + .view(np.recarray)), + # gh-4270 + lambda x: np.asarray([(i, i) for i in x], + [("a", object), ("b", np.int32)])]: + np.random.seed(self.seed) + alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]) + np.random.shuffle(alist) + actual = alist + desired = conv([0, 1, 9, 6, 2, 4, 5, 8, 7, 3]) + assert_array_equal(actual, desired) + + def test_shuffle_masked(self): + # gh-3263 + a = np.ma.masked_values(np.reshape(range(20), (5, 4)) % 3 - 1, -1) + b = np.ma.masked_values(np.arange(20) % 3 - 1, -1) + a_orig = a.copy() + b_orig = b.copy() + for i in range(50): + np.random.shuffle(a) + assert_equal( + sorted(a.data[~a.mask]), sorted(a_orig.data[~a_orig.mask])) + np.random.shuffle(b) + assert_equal( + sorted(b.data[~b.mask]), sorted(b_orig.data[~b_orig.mask])) + + @pytest.mark.parametrize("random", + [np.random, np.random.RandomState(), np.random.default_rng()]) + def test_shuffle_untyped_warning(self, random): + # Create a dict works like a sequence but isn't one + values = {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6} + with pytest.warns(UserWarning, + match="you are shuffling a 'dict' object") as rec: + random.shuffle(values) + assert "test_random" in rec[0].filename + + @pytest.mark.parametrize("random", + [np.random, np.random.RandomState(), np.random.default_rng()]) + @pytest.mark.parametrize("use_array_like", [True, False]) + def test_shuffle_no_object_unpacking(self, random, use_array_like): + class MyArr(np.ndarray): + pass + + items = [ + None, np.array([3]), np.float64(3), np.array(10), np.float64(7) + ] + arr = np.array(items, dtype=object) + item_ids = {id(i) for i in items} + if use_array_like: + arr = arr.view(MyArr) + + # The array was created fine, and did not modify any objects: + assert all(id(i) in item_ids for i in arr) + + if use_array_like and not isinstance(random, np.random.Generator): + # The old API gives incorrect results, but warns about it. + with pytest.warns(UserWarning, + match="Shuffling a one dimensional array.*"): + random.shuffle(arr) + else: + random.shuffle(arr) + assert all(id(i) in item_ids for i in arr) + + def test_shuffle_memoryview(self): + # gh-18273 + # allow graceful handling of memoryviews + # (treat the same as arrays) + np.random.seed(self.seed) + a = np.arange(5).data + np.random.shuffle(a) + assert_equal(np.asarray(a), [0, 1, 4, 3, 2]) + rng = np.random.RandomState(self.seed) + rng.shuffle(a) + assert_equal(np.asarray(a), [0, 1, 2, 3, 4]) + rng = np.random.default_rng(self.seed) + rng.shuffle(a) + assert_equal(np.asarray(a), [4, 1, 0, 3, 2]) + + def test_shuffle_not_writeable(self): + a = np.zeros(3) + a.flags.writeable = False + with pytest.raises(ValueError, match='read-only'): + np.random.shuffle(a) + + def test_beta(self): + np.random.seed(self.seed) + actual = np.random.beta(.1, .9, size=(3, 2)) + desired = np.array( + [[1.45341850513746058e-02, 5.31297615662868145e-04], + [1.85366619058432324e-06, 4.19214516800110563e-03], + [1.58405155108498093e-04, 1.26252891949397652e-04]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_binomial(self): + np.random.seed(self.seed) + actual = np.random.binomial(100, .456, size=(3, 2)) + desired = np.array([[37, 43], + [42, 48], + [46, 45]]) + assert_array_equal(actual, desired) + + def test_chisquare(self): + np.random.seed(self.seed) + actual = np.random.chisquare(50, size=(3, 2)) + desired = np.array([[63.87858175501090585, 68.68407748911370447], + [65.77116116901505904, 47.09686762438974483], + [72.3828403199695174, 74.18408615260374006]]) + assert_array_almost_equal(actual, desired, decimal=13) + + def test_dirichlet(self): + np.random.seed(self.seed) + alpha = np.array([51.72840233779265162, 39.74494232180943953]) + actual = np.random.mtrand.dirichlet(alpha, size=(3, 2)) + desired = np.array([[[0.54539444573611562, 0.45460555426388438], + [0.62345816822039413, 0.37654183177960598]], + [[0.55206000085785778, 0.44793999914214233], + [0.58964023305154301, 0.41035976694845688]], + [[0.59266909280647828, 0.40733090719352177], + [0.56974431743975207, 0.43025568256024799]]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_dirichlet_size(self): + # gh-3173 + p = np.array([51.72840233779265162, 39.74494232180943953]) + assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2)) + assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2)) + assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2)) + assert_equal(np.random.dirichlet(p, [2, 2]).shape, (2, 2, 2)) + assert_equal(np.random.dirichlet(p, (2, 2)).shape, (2, 2, 2)) + assert_equal(np.random.dirichlet(p, np.array((2, 2))).shape, (2, 2, 2)) + + assert_raises(TypeError, np.random.dirichlet, p, float(1)) + + def test_dirichlet_bad_alpha(self): + # gh-2089 + alpha = np.array([5.4e-01, -1.0e-16]) + assert_raises(ValueError, np.random.mtrand.dirichlet, alpha) + + # gh-15876 + assert_raises(ValueError, random.dirichlet, [[5, 1]]) + assert_raises(ValueError, random.dirichlet, [[5], [1]]) + assert_raises(ValueError, random.dirichlet, [[[5], [1]], [[1], [5]]]) + assert_raises(ValueError, random.dirichlet, np.array([[5, 1], [1, 5]])) + + def test_exponential(self): + np.random.seed(self.seed) + actual = np.random.exponential(1.1234, size=(3, 2)) + desired = np.array([[1.08342649775011624, 1.00607889924557314], + [2.46628830085216721, 2.49668106809923884], + [0.68717433461363442, 1.69175666993575979]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_exponential_0(self): + assert_equal(np.random.exponential(scale=0), 0) + assert_raises(ValueError, np.random.exponential, scale=-0.) + + def test_f(self): + np.random.seed(self.seed) + actual = np.random.f(12, 77, size=(3, 2)) + desired = np.array([[1.21975394418575878, 1.75135759791559775], + [1.44803115017146489, 1.22108959480396262], + [1.02176975757740629, 1.34431827623300415]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_gamma(self): + np.random.seed(self.seed) + actual = np.random.gamma(5, 3, size=(3, 2)) + desired = np.array([[24.60509188649287182, 28.54993563207210627], + [26.13476110204064184, 12.56988482927716078], + [31.71863275789960568, 33.30143302795922011]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_gamma_0(self): + assert_equal(np.random.gamma(shape=0, scale=0), 0) + assert_raises(ValueError, np.random.gamma, shape=-0., scale=-0.) + + def test_geometric(self): + np.random.seed(self.seed) + actual = np.random.geometric(.123456789, size=(3, 2)) + desired = np.array([[8, 7], + [17, 17], + [5, 12]]) + assert_array_equal(actual, desired) + + def test_gumbel(self): + np.random.seed(self.seed) + actual = np.random.gumbel(loc=.123456789, scale=2.0, size=(3, 2)) + desired = np.array([[0.19591898743416816, 0.34405539668096674], + [-1.4492522252274278, -1.47374816298446865], + [1.10651090478803416, -0.69535848626236174]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_gumbel_0(self): + assert_equal(np.random.gumbel(scale=0), 0) + assert_raises(ValueError, np.random.gumbel, scale=-0.) + + def test_hypergeometric(self): + np.random.seed(self.seed) + actual = np.random.hypergeometric(10, 5, 14, size=(3, 2)) + desired = np.array([[10, 10], + [10, 10], + [9, 9]]) + assert_array_equal(actual, desired) + + # Test nbad = 0 + actual = np.random.hypergeometric(5, 0, 3, size=4) + desired = np.array([3, 3, 3, 3]) + assert_array_equal(actual, desired) + + actual = np.random.hypergeometric(15, 0, 12, size=4) + desired = np.array([12, 12, 12, 12]) + assert_array_equal(actual, desired) + + # Test ngood = 0 + actual = np.random.hypergeometric(0, 5, 3, size=4) + desired = np.array([0, 0, 0, 0]) + assert_array_equal(actual, desired) + + actual = np.random.hypergeometric(0, 15, 12, size=4) + desired = np.array([0, 0, 0, 0]) + assert_array_equal(actual, desired) + + def test_laplace(self): + np.random.seed(self.seed) + actual = np.random.laplace(loc=.123456789, scale=2.0, size=(3, 2)) + desired = np.array([[0.66599721112760157, 0.52829452552221945], + [3.12791959514407125, 3.18202813572992005], + [-0.05391065675859356, 1.74901336242837324]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_laplace_0(self): + assert_equal(np.random.laplace(scale=0), 0) + assert_raises(ValueError, np.random.laplace, scale=-0.) + + def test_logistic(self): + np.random.seed(self.seed) + actual = np.random.logistic(loc=.123456789, scale=2.0, size=(3, 2)) + desired = np.array([[1.09232835305011444, 0.8648196662399954], + [4.27818590694950185, 4.33897006346929714], + [-0.21682183359214885, 2.63373365386060332]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_lognormal(self): + np.random.seed(self.seed) + actual = np.random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2)) + desired = np.array([[16.50698631688883822, 36.54846706092654784], + [22.67886599981281748, 0.71617561058995771], + [65.72798501792723869, 86.84341601437161273]]) + assert_array_almost_equal(actual, desired, decimal=13) + + def test_lognormal_0(self): + assert_equal(np.random.lognormal(sigma=0), 1) + assert_raises(ValueError, np.random.lognormal, sigma=-0.) + + def test_logseries(self): + np.random.seed(self.seed) + actual = np.random.logseries(p=.923456789, size=(3, 2)) + desired = np.array([[2, 2], + [6, 17], + [3, 6]]) + assert_array_equal(actual, desired) + + def test_multinomial(self): + np.random.seed(self.seed) + actual = np.random.multinomial(20, [1 / 6.] * 6, size=(3, 2)) + desired = np.array([[[4, 3, 5, 4, 2, 2], + [5, 2, 8, 2, 2, 1]], + [[3, 4, 3, 6, 0, 4], + [2, 1, 4, 3, 6, 4]], + [[4, 4, 2, 5, 2, 3], + [4, 3, 4, 2, 3, 4]]]) + assert_array_equal(actual, desired) + + def test_multivariate_normal(self): + np.random.seed(self.seed) + mean = (.123456789, 10) + cov = [[1, 0], [0, 1]] + size = (3, 2) + actual = np.random.multivariate_normal(mean, cov, size) + desired = np.array([[[1.463620246718631, 11.73759122771936], + [1.622445133300628, 9.771356667546383]], + [[2.154490787682787, 12.170324946056553], + [1.719909438201865, 9.230548443648306]], + [[0.689515026297799, 9.880729819607714], + [-0.023054015651998, 9.201096623542879]]]) + + assert_array_almost_equal(actual, desired, decimal=15) + + # Check for default size, was raising deprecation warning + actual = np.random.multivariate_normal(mean, cov) + desired = np.array([0.895289569463708, 9.17180864067987]) + assert_array_almost_equal(actual, desired, decimal=15) + + # Check that non positive-semidefinite covariance warns with + # RuntimeWarning + mean = [0, 0] + cov = [[1, 2], [2, 1]] + assert_warns(RuntimeWarning, np.random.multivariate_normal, mean, cov) + + # and that it doesn't warn with RuntimeWarning check_valid='ignore' + assert_no_warnings(np.random.multivariate_normal, mean, cov, + check_valid='ignore') + + # and that it raises with RuntimeWarning check_valid='raises' + assert_raises(ValueError, np.random.multivariate_normal, mean, cov, + check_valid='raise') + + cov = np.array([[1, 0.1], [0.1, 1]], dtype=np.float32) + with suppress_warnings() as sup: + np.random.multivariate_normal(mean, cov) + w = sup.record(RuntimeWarning) + assert len(w) == 0 + + def test_negative_binomial(self): + np.random.seed(self.seed) + actual = np.random.negative_binomial(n=100, p=.12345, size=(3, 2)) + desired = np.array([[848, 841], + [892, 611], + [779, 647]]) + assert_array_equal(actual, desired) + + def test_noncentral_chisquare(self): + np.random.seed(self.seed) + actual = np.random.noncentral_chisquare(df=5, nonc=5, size=(3, 2)) + desired = np.array([[23.91905354498517511, 13.35324692733826346], + [31.22452661329736401, 16.60047399466177254], + [5.03461598262724586, 17.94973089023519464]]) + assert_array_almost_equal(actual, desired, decimal=14) + + actual = np.random.noncentral_chisquare(df=.5, nonc=.2, size=(3, 2)) + desired = np.array([[1.47145377828516666, 0.15052899268012659], + [0.00943803056963588, 1.02647251615666169], + [0.332334982684171, 0.15451287602753125]]) + assert_array_almost_equal(actual, desired, decimal=14) + + np.random.seed(self.seed) + actual = np.random.noncentral_chisquare(df=5, nonc=0, size=(3, 2)) + desired = np.array([[9.597154162763948, 11.725484450296079], + [10.413711048138335, 3.694475922923986], + [13.484222138963087, 14.377255424602957]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_noncentral_f(self): + np.random.seed(self.seed) + actual = np.random.noncentral_f(dfnum=5, dfden=2, nonc=1, + size=(3, 2)) + desired = np.array([[1.40598099674926669, 0.34207973179285761], + [3.57715069265772545, 7.92632662577829805], + [0.43741599463544162, 1.1774208752428319]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_normal(self): + np.random.seed(self.seed) + actual = np.random.normal(loc=.123456789, scale=2.0, size=(3, 2)) + desired = np.array([[2.80378370443726244, 3.59863924443872163], + [3.121433477601256, -0.33382987590723379], + [4.18552478636557357, 4.46410668111310471]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_normal_0(self): + assert_equal(np.random.normal(scale=0), 0) + assert_raises(ValueError, np.random.normal, scale=-0.) + + def test_pareto(self): + np.random.seed(self.seed) + actual = np.random.pareto(a=.123456789, size=(3, 2)) + desired = np.array( + [[2.46852460439034849e+03, 1.41286880810518346e+03], + [5.28287797029485181e+07, 6.57720981047328785e+07], + [1.40840323350391515e+02, 1.98390255135251704e+05]]) + # For some reason on 32-bit x86 Ubuntu 12.10 the [1, 0] entry in this + # matrix differs by 24 nulps. Discussion: + # https://mail.python.org/pipermail/numpy-discussion/2012-September/063801.html + # Consensus is that this is probably some gcc quirk that affects + # rounding but not in any important way, so we just use a looser + # tolerance on this test: + np.testing.assert_array_almost_equal_nulp(actual, desired, nulp=30) + + def test_poisson(self): + np.random.seed(self.seed) + actual = np.random.poisson(lam=.123456789, size=(3, 2)) + desired = np.array([[0, 0], + [1, 0], + [0, 0]]) + assert_array_equal(actual, desired) + + def test_poisson_exceptions(self): + lambig = np.iinfo('l').max + lamneg = -1 + assert_raises(ValueError, np.random.poisson, lamneg) + assert_raises(ValueError, np.random.poisson, [lamneg] * 10) + assert_raises(ValueError, np.random.poisson, lambig) + assert_raises(ValueError, np.random.poisson, [lambig] * 10) + + def test_power(self): + np.random.seed(self.seed) + actual = np.random.power(a=.123456789, size=(3, 2)) + desired = np.array([[0.02048932883240791, 0.01424192241128213], + [0.38446073748535298, 0.39499689943484395], + [0.00177699707563439, 0.13115505880863756]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_rayleigh(self): + np.random.seed(self.seed) + actual = np.random.rayleigh(scale=10, size=(3, 2)) + desired = np.array([[13.8882496494248393, 13.383318339044731], + [20.95413364294492098, 21.08285015800712614], + [11.06066537006854311, 17.35468505778271009]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_rayleigh_0(self): + assert_equal(np.random.rayleigh(scale=0), 0) + assert_raises(ValueError, np.random.rayleigh, scale=-0.) + + def test_standard_cauchy(self): + np.random.seed(self.seed) + actual = np.random.standard_cauchy(size=(3, 2)) + desired = np.array([[0.77127660196445336, -6.55601161955910605], + [0.93582023391158309, -2.07479293013759447], + [-4.74601644297011926, 0.18338989290760804]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_standard_exponential(self): + np.random.seed(self.seed) + actual = np.random.standard_exponential(size=(3, 2)) + desired = np.array([[0.96441739162374596, 0.89556604882105506], + [2.1953785836319808, 2.22243285392490542], + [0.6116915921431676, 1.50592546727413201]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_standard_gamma(self): + np.random.seed(self.seed) + actual = np.random.standard_gamma(shape=3, size=(3, 2)) + desired = np.array([[5.50841531318455058, 6.62953470301903103], + [5.93988484943779227, 2.31044849402133989], + [7.54838614231317084, 8.012756093271868]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_standard_gamma_0(self): + assert_equal(np.random.standard_gamma(shape=0), 0) + assert_raises(ValueError, np.random.standard_gamma, shape=-0.) + + def test_standard_normal(self): + np.random.seed(self.seed) + actual = np.random.standard_normal(size=(3, 2)) + desired = np.array([[1.34016345771863121, 1.73759122771936081], + [1.498988344300628, -0.2286433324536169], + [2.031033998682787, 2.17032494605655257]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_standard_t(self): + np.random.seed(self.seed) + actual = np.random.standard_t(df=10, size=(3, 2)) + desired = np.array([[0.97140611862659965, -0.08830486548450577], + [1.36311143689505321, -0.55317463909867071], + [-0.18473749069684214, 0.61181537341755321]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_triangular(self): + np.random.seed(self.seed) + actual = np.random.triangular(left=5.12, mode=10.23, right=20.34, + size=(3, 2)) + desired = np.array([[12.68117178949215784, 12.4129206149193152], + [16.20131377335158263, 16.25692138747600524], + [11.20400690911820263, 14.4978144835829923]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_uniform(self): + np.random.seed(self.seed) + actual = np.random.uniform(low=1.23, high=10.54, size=(3, 2)) + desired = np.array([[6.99097932346268003, 6.73801597444323974], + [9.50364421400426274, 9.53130618907631089], + [5.48995325769805476, 8.47493103280052118]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_uniform_range_bounds(self): + fmin = np.finfo('float').min + fmax = np.finfo('float').max + + func = np.random.uniform + assert_raises(OverflowError, func, -np.inf, 0) + assert_raises(OverflowError, func, 0, np.inf) + assert_raises(OverflowError, func, fmin, fmax) + assert_raises(OverflowError, func, [-np.inf], [0]) + assert_raises(OverflowError, func, [0], [np.inf]) + + # (fmax / 1e17) - fmin is within range, so this should not throw + # account for i386 extended precision DBL_MAX / 1e17 + DBL_MAX > + # DBL_MAX by increasing fmin a bit + np.random.uniform(low=np.nextafter(fmin, 1), high=fmax / 1e17) + + def test_scalar_exception_propagation(self): + # Tests that exceptions are correctly propagated in distributions + # when called with objects that throw exceptions when converted to + # scalars. + # + # Regression test for gh: 8865 + + class ThrowingFloat(np.ndarray): + def __float__(self): + raise TypeError + + throwing_float = np.array(1.0).view(ThrowingFloat) + assert_raises(TypeError, np.random.uniform, throwing_float, + throwing_float) + + class ThrowingInteger(np.ndarray): + def __int__(self): + raise TypeError + + __index__ = __int__ + + throwing_int = np.array(1).view(ThrowingInteger) + assert_raises(TypeError, np.random.hypergeometric, throwing_int, 1, 1) + + def test_vonmises(self): + np.random.seed(self.seed) + actual = np.random.vonmises(mu=1.23, kappa=1.54, size=(3, 2)) + desired = np.array([[2.28567572673902042, 2.89163838442285037], + [0.38198375564286025, 2.57638023113890746], + [1.19153771588353052, 1.83509849681825354]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_vonmises_small(self): + # check infinite loop, gh-4720 + np.random.seed(self.seed) + r = np.random.vonmises(mu=0., kappa=1.1e-8, size=10**6) + np.testing.assert_(np.isfinite(r).all()) + + def test_wald(self): + np.random.seed(self.seed) + actual = np.random.wald(mean=1.23, scale=1.54, size=(3, 2)) + desired = np.array([[3.82935265715889983, 5.13125249184285526], + [0.35045403618358717, 1.50832396872003538], + [0.24124319895843183, 0.22031101461955038]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_weibull(self): + np.random.seed(self.seed) + actual = np.random.weibull(a=1.23, size=(3, 2)) + desired = np.array([[0.97097342648766727, 0.91422896443565516], + [1.89517770034962929, 1.91414357960479564], + [0.67057783752390987, 1.39494046635066793]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_weibull_0(self): + np.random.seed(self.seed) + assert_equal(np.random.weibull(a=0, size=12), np.zeros(12)) + assert_raises(ValueError, np.random.weibull, a=-0.) + + def test_zipf(self): + np.random.seed(self.seed) + actual = np.random.zipf(a=1.23, size=(3, 2)) + desired = np.array([[66, 29], + [1, 1], + [3, 13]]) + assert_array_equal(actual, desired) + + +class TestBroadcast: + # tests that functions that broadcast behave + # correctly when presented with non-scalar arguments + def setup_method(self): + self.seed = 123456789 + + def setSeed(self): + np.random.seed(self.seed) + + # TODO: Include test for randint once it can broadcast + # Can steal the test written in PR #6938 + + def test_uniform(self): + low = [0] + high = [1] + uniform = np.random.uniform + desired = np.array([0.53283302478975902, + 0.53413660089041659, + 0.50955303552646702]) + + self.setSeed() + actual = uniform(low * 3, high) + assert_array_almost_equal(actual, desired, decimal=14) + + self.setSeed() + actual = uniform(low, high * 3) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_normal(self): + loc = [0] + scale = [1] + bad_scale = [-1] + normal = np.random.normal + desired = np.array([2.2129019979039612, + 2.1283977976520019, + 1.8417114045748335]) + + self.setSeed() + actual = normal(loc * 3, scale) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, normal, loc * 3, bad_scale) + + self.setSeed() + actual = normal(loc, scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, normal, loc, bad_scale * 3) + + def test_beta(self): + a = [1] + b = [2] + bad_a = [-1] + bad_b = [-2] + beta = np.random.beta + desired = np.array([0.19843558305989056, + 0.075230336409423643, + 0.24976865978980844]) + + self.setSeed() + actual = beta(a * 3, b) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, beta, bad_a * 3, b) + assert_raises(ValueError, beta, a * 3, bad_b) + + self.setSeed() + actual = beta(a, b * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, beta, bad_a, b * 3) + assert_raises(ValueError, beta, a, bad_b * 3) + + def test_exponential(self): + scale = [1] + bad_scale = [-1] + exponential = np.random.exponential + desired = np.array([0.76106853658845242, + 0.76386282278691653, + 0.71243813125891797]) + + self.setSeed() + actual = exponential(scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, exponential, bad_scale * 3) + + def test_standard_gamma(self): + shape = [1] + bad_shape = [-1] + std_gamma = np.random.standard_gamma + desired = np.array([0.76106853658845242, + 0.76386282278691653, + 0.71243813125891797]) + + self.setSeed() + actual = std_gamma(shape * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, std_gamma, bad_shape * 3) + + def test_gamma(self): + shape = [1] + scale = [2] + bad_shape = [-1] + bad_scale = [-2] + gamma = np.random.gamma + desired = np.array([1.5221370731769048, + 1.5277256455738331, + 1.4248762625178359]) + + self.setSeed() + actual = gamma(shape * 3, scale) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, gamma, bad_shape * 3, scale) + assert_raises(ValueError, gamma, shape * 3, bad_scale) + + self.setSeed() + actual = gamma(shape, scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, gamma, bad_shape, scale * 3) + assert_raises(ValueError, gamma, shape, bad_scale * 3) + + def test_f(self): + dfnum = [1] + dfden = [2] + bad_dfnum = [-1] + bad_dfden = [-2] + f = np.random.f + desired = np.array([0.80038951638264799, + 0.86768719635363512, + 2.7251095168386801]) + + self.setSeed() + actual = f(dfnum * 3, dfden) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, f, bad_dfnum * 3, dfden) + assert_raises(ValueError, f, dfnum * 3, bad_dfden) + + self.setSeed() + actual = f(dfnum, dfden * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, f, bad_dfnum, dfden * 3) + assert_raises(ValueError, f, dfnum, bad_dfden * 3) + + def test_noncentral_f(self): + dfnum = [2] + dfden = [3] + nonc = [4] + bad_dfnum = [0] + bad_dfden = [-1] + bad_nonc = [-2] + nonc_f = np.random.noncentral_f + desired = np.array([9.1393943263705211, + 13.025456344595602, + 8.8018098359100545]) + + self.setSeed() + actual = nonc_f(dfnum * 3, dfden, nonc) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, nonc_f, bad_dfnum * 3, dfden, nonc) + assert_raises(ValueError, nonc_f, dfnum * 3, bad_dfden, nonc) + assert_raises(ValueError, nonc_f, dfnum * 3, dfden, bad_nonc) + + self.setSeed() + actual = nonc_f(dfnum, dfden * 3, nonc) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, nonc_f, bad_dfnum, dfden * 3, nonc) + assert_raises(ValueError, nonc_f, dfnum, bad_dfden * 3, nonc) + assert_raises(ValueError, nonc_f, dfnum, dfden * 3, bad_nonc) + + self.setSeed() + actual = nonc_f(dfnum, dfden, nonc * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, nonc_f, bad_dfnum, dfden, nonc * 3) + assert_raises(ValueError, nonc_f, dfnum, bad_dfden, nonc * 3) + assert_raises(ValueError, nonc_f, dfnum, dfden, bad_nonc * 3) + + def test_noncentral_f_small_df(self): + self.setSeed() + desired = np.array([6.869638627492048, 0.785880199263955]) + actual = np.random.noncentral_f(0.9, 0.9, 2, size=2) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_chisquare(self): + df = [1] + bad_df = [-1] + chisquare = np.random.chisquare + desired = np.array([0.57022801133088286, + 0.51947702108840776, + 0.1320969254923558]) + + self.setSeed() + actual = chisquare(df * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, chisquare, bad_df * 3) + + def test_noncentral_chisquare(self): + df = [1] + nonc = [2] + bad_df = [-1] + bad_nonc = [-2] + nonc_chi = np.random.noncentral_chisquare + desired = np.array([9.0015599467913763, + 4.5804135049718742, + 6.0872302432834564]) + + self.setSeed() + actual = nonc_chi(df * 3, nonc) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, nonc_chi, bad_df * 3, nonc) + assert_raises(ValueError, nonc_chi, df * 3, bad_nonc) + + self.setSeed() + actual = nonc_chi(df, nonc * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, nonc_chi, bad_df, nonc * 3) + assert_raises(ValueError, nonc_chi, df, bad_nonc * 3) + + def test_standard_t(self): + df = [1] + bad_df = [-1] + t = np.random.standard_t + desired = np.array([3.0702872575217643, + 5.8560725167361607, + 1.0274791436474273]) + + self.setSeed() + actual = t(df * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, t, bad_df * 3) + + def test_vonmises(self): + mu = [2] + kappa = [1] + bad_kappa = [-1] + vonmises = np.random.vonmises + desired = np.array([2.9883443664201312, + -2.7064099483995943, + -1.8672476700665914]) + + self.setSeed() + actual = vonmises(mu * 3, kappa) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, vonmises, mu * 3, bad_kappa) + + self.setSeed() + actual = vonmises(mu, kappa * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, vonmises, mu, bad_kappa * 3) + + def test_pareto(self): + a = [1] + bad_a = [-1] + pareto = np.random.pareto + desired = np.array([1.1405622680198362, + 1.1465519762044529, + 1.0389564467453547]) + + self.setSeed() + actual = pareto(a * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, pareto, bad_a * 3) + + def test_weibull(self): + a = [1] + bad_a = [-1] + weibull = np.random.weibull + desired = np.array([0.76106853658845242, + 0.76386282278691653, + 0.71243813125891797]) + + self.setSeed() + actual = weibull(a * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, weibull, bad_a * 3) + + def test_power(self): + a = [1] + bad_a = [-1] + power = np.random.power + desired = np.array([0.53283302478975902, + 0.53413660089041659, + 0.50955303552646702]) + + self.setSeed() + actual = power(a * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, power, bad_a * 3) + + def test_laplace(self): + loc = [0] + scale = [1] + bad_scale = [-1] + laplace = np.random.laplace + desired = np.array([0.067921356028507157, + 0.070715642226971326, + 0.019290950698972624]) + + self.setSeed() + actual = laplace(loc * 3, scale) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, laplace, loc * 3, bad_scale) + + self.setSeed() + actual = laplace(loc, scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, laplace, loc, bad_scale * 3) + + def test_gumbel(self): + loc = [0] + scale = [1] + bad_scale = [-1] + gumbel = np.random.gumbel + desired = np.array([0.2730318639556768, + 0.26936705726291116, + 0.33906220393037939]) + + self.setSeed() + actual = gumbel(loc * 3, scale) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, gumbel, loc * 3, bad_scale) + + self.setSeed() + actual = gumbel(loc, scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, gumbel, loc, bad_scale * 3) + + def test_logistic(self): + loc = [0] + scale = [1] + bad_scale = [-1] + logistic = np.random.logistic + desired = np.array([0.13152135837586171, + 0.13675915696285773, + 0.038216792802833396]) + + self.setSeed() + actual = logistic(loc * 3, scale) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, logistic, loc * 3, bad_scale) + + self.setSeed() + actual = logistic(loc, scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, logistic, loc, bad_scale * 3) + + def test_lognormal(self): + mean = [0] + sigma = [1] + bad_sigma = [-1] + lognormal = np.random.lognormal + desired = np.array([9.1422086044848427, + 8.4013952870126261, + 6.3073234116578671]) + + self.setSeed() + actual = lognormal(mean * 3, sigma) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, lognormal, mean * 3, bad_sigma) + + self.setSeed() + actual = lognormal(mean, sigma * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, lognormal, mean, bad_sigma * 3) + + def test_rayleigh(self): + scale = [1] + bad_scale = [-1] + rayleigh = np.random.rayleigh + desired = np.array([1.2337491937897689, + 1.2360119924878694, + 1.1936818095781789]) + + self.setSeed() + actual = rayleigh(scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, rayleigh, bad_scale * 3) + + def test_wald(self): + mean = [0.5] + scale = [1] + bad_mean = [0] + bad_scale = [-2] + wald = np.random.wald + desired = np.array([0.11873681120271318, + 0.12450084820795027, + 0.9096122728408238]) + + self.setSeed() + actual = wald(mean * 3, scale) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, wald, bad_mean * 3, scale) + assert_raises(ValueError, wald, mean * 3, bad_scale) + + self.setSeed() + actual = wald(mean, scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, wald, bad_mean, scale * 3) + assert_raises(ValueError, wald, mean, bad_scale * 3) + assert_raises(ValueError, wald, 0.0, 1) + assert_raises(ValueError, wald, 0.5, 0.0) + + def test_triangular(self): + left = [1] + right = [3] + mode = [2] + bad_left_one = [3] + bad_mode_one = [4] + bad_left_two, bad_mode_two = right * 2 + triangular = np.random.triangular + desired = np.array([2.03339048710429, + 2.0347400359389356, + 2.0095991069536208]) + + self.setSeed() + actual = triangular(left * 3, mode, right) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, triangular, bad_left_one * 3, mode, right) + assert_raises(ValueError, triangular, left * 3, bad_mode_one, right) + assert_raises(ValueError, triangular, bad_left_two * 3, bad_mode_two, + right) + + self.setSeed() + actual = triangular(left, mode * 3, right) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, triangular, bad_left_one, mode * 3, right) + assert_raises(ValueError, triangular, left, bad_mode_one * 3, right) + assert_raises(ValueError, triangular, bad_left_two, bad_mode_two * 3, + right) + + self.setSeed() + actual = triangular(left, mode, right * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, triangular, bad_left_one, mode, right * 3) + assert_raises(ValueError, triangular, left, bad_mode_one, right * 3) + assert_raises(ValueError, triangular, bad_left_two, bad_mode_two, + right * 3) + + def test_binomial(self): + n = [1] + p = [0.5] + bad_n = [-1] + bad_p_one = [-1] + bad_p_two = [1.5] + binom = np.random.binomial + desired = np.array([1, 1, 1]) + + self.setSeed() + actual = binom(n * 3, p) + assert_array_equal(actual, desired) + assert_raises(ValueError, binom, bad_n * 3, p) + assert_raises(ValueError, binom, n * 3, bad_p_one) + assert_raises(ValueError, binom, n * 3, bad_p_two) + + self.setSeed() + actual = binom(n, p * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, binom, bad_n, p * 3) + assert_raises(ValueError, binom, n, bad_p_one * 3) + assert_raises(ValueError, binom, n, bad_p_two * 3) + + def test_negative_binomial(self): + n = [1] + p = [0.5] + bad_n = [-1] + bad_p_one = [-1] + bad_p_two = [1.5] + neg_binom = np.random.negative_binomial + desired = np.array([1, 0, 1]) + + self.setSeed() + actual = neg_binom(n * 3, p) + assert_array_equal(actual, desired) + assert_raises(ValueError, neg_binom, bad_n * 3, p) + assert_raises(ValueError, neg_binom, n * 3, bad_p_one) + assert_raises(ValueError, neg_binom, n * 3, bad_p_two) + + self.setSeed() + actual = neg_binom(n, p * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, neg_binom, bad_n, p * 3) + assert_raises(ValueError, neg_binom, n, bad_p_one * 3) + assert_raises(ValueError, neg_binom, n, bad_p_two * 3) + + def test_poisson(self): + max_lam = np.random.RandomState()._poisson_lam_max + + lam = [1] + bad_lam_one = [-1] + bad_lam_two = [max_lam * 2] + poisson = np.random.poisson + desired = np.array([1, 1, 0]) + + self.setSeed() + actual = poisson(lam * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, poisson, bad_lam_one * 3) + assert_raises(ValueError, poisson, bad_lam_two * 3) + + def test_zipf(self): + a = [2] + bad_a = [0] + zipf = np.random.zipf + desired = np.array([2, 2, 1]) + + self.setSeed() + actual = zipf(a * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, zipf, bad_a * 3) + with np.errstate(invalid='ignore'): + assert_raises(ValueError, zipf, np.nan) + assert_raises(ValueError, zipf, [0, 0, np.nan]) + + def test_geometric(self): + p = [0.5] + bad_p_one = [-1] + bad_p_two = [1.5] + geom = np.random.geometric + desired = np.array([2, 2, 2]) + + self.setSeed() + actual = geom(p * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, geom, bad_p_one * 3) + assert_raises(ValueError, geom, bad_p_two * 3) + + def test_hypergeometric(self): + ngood = [1] + nbad = [2] + nsample = [2] + bad_ngood = [-1] + bad_nbad = [-2] + bad_nsample_one = [0] + bad_nsample_two = [4] + hypergeom = np.random.hypergeometric + desired = np.array([1, 1, 1]) + + self.setSeed() + actual = hypergeom(ngood * 3, nbad, nsample) + assert_array_equal(actual, desired) + assert_raises(ValueError, hypergeom, bad_ngood * 3, nbad, nsample) + assert_raises(ValueError, hypergeom, ngood * 3, bad_nbad, nsample) + assert_raises(ValueError, hypergeom, ngood * 3, nbad, bad_nsample_one) + assert_raises(ValueError, hypergeom, ngood * 3, nbad, bad_nsample_two) + + self.setSeed() + actual = hypergeom(ngood, nbad * 3, nsample) + assert_array_equal(actual, desired) + assert_raises(ValueError, hypergeom, bad_ngood, nbad * 3, nsample) + assert_raises(ValueError, hypergeom, ngood, bad_nbad * 3, nsample) + assert_raises(ValueError, hypergeom, ngood, nbad * 3, bad_nsample_one) + assert_raises(ValueError, hypergeom, ngood, nbad * 3, bad_nsample_two) + + self.setSeed() + actual = hypergeom(ngood, nbad, nsample * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, hypergeom, bad_ngood, nbad, nsample * 3) + assert_raises(ValueError, hypergeom, ngood, bad_nbad, nsample * 3) + assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_one * 3) + assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_two * 3) + + def test_logseries(self): + p = [0.5] + bad_p_one = [2] + bad_p_two = [-1] + logseries = np.random.logseries + desired = np.array([1, 1, 1]) + + self.setSeed() + actual = logseries(p * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, logseries, bad_p_one * 3) + assert_raises(ValueError, logseries, bad_p_two * 3) + + +@pytest.mark.skipif(IS_WASM, reason="can't start thread") +class TestThread: + # make sure each state produces the same sequence even in threads + def setup_method(self): + self.seeds = range(4) + + def check_function(self, function, sz): + from threading import Thread + + out1 = np.empty((len(self.seeds),) + sz) + out2 = np.empty((len(self.seeds),) + sz) + + # threaded generation + t = [Thread(target=function, args=(np.random.RandomState(s), o)) + for s, o in zip(self.seeds, out1)] + [x.start() for x in t] + [x.join() for x in t] + + # the same serial + for s, o in zip(self.seeds, out2): + function(np.random.RandomState(s), o) + + # these platforms change x87 fpu precision mode in threads + if np.intp().dtype.itemsize == 4 and sys.platform == "win32": + assert_array_almost_equal(out1, out2) + else: + assert_array_equal(out1, out2) + + def test_normal(self): + def gen_random(state, out): + out[...] = state.normal(size=10000) + self.check_function(gen_random, sz=(10000,)) + + def test_exp(self): + def gen_random(state, out): + out[...] = state.exponential(scale=np.ones((100, 1000))) + self.check_function(gen_random, sz=(100, 1000)) + + def test_multinomial(self): + def gen_random(state, out): + out[...] = state.multinomial(10, [1 / 6.] * 6, size=10000) + self.check_function(gen_random, sz=(10000, 6)) + + +# See Issue #4263 +class TestSingleEltArrayInput: + def setup_method(self): + self.argOne = np.array([2]) + self.argTwo = np.array([3]) + self.argThree = np.array([4]) + self.tgtShape = (1,) + + def test_one_arg_funcs(self): + funcs = (np.random.exponential, np.random.standard_gamma, + np.random.chisquare, np.random.standard_t, + np.random.pareto, np.random.weibull, + np.random.power, np.random.rayleigh, + np.random.poisson, np.random.zipf, + np.random.geometric, np.random.logseries) + + probfuncs = (np.random.geometric, np.random.logseries) + + for func in funcs: + if func in probfuncs: # p < 1.0 + out = func(np.array([0.5])) + + else: + out = func(self.argOne) + + assert_equal(out.shape, self.tgtShape) + + def test_two_arg_funcs(self): + funcs = (np.random.uniform, np.random.normal, + np.random.beta, np.random.gamma, + np.random.f, np.random.noncentral_chisquare, + np.random.vonmises, np.random.laplace, + np.random.gumbel, np.random.logistic, + np.random.lognormal, np.random.wald, + np.random.binomial, np.random.negative_binomial) + + probfuncs = (np.random.binomial, np.random.negative_binomial) + + for func in funcs: + if func in probfuncs: # p <= 1 + argTwo = np.array([0.5]) + + else: + argTwo = self.argTwo + + out = func(self.argOne, argTwo) + assert_equal(out.shape, self.tgtShape) + + out = func(self.argOne[0], argTwo) + assert_equal(out.shape, self.tgtShape) + + out = func(self.argOne, argTwo[0]) + assert_equal(out.shape, self.tgtShape) + + def test_randint(self): + itype = [bool, np.int8, np.uint8, np.int16, np.uint16, + np.int32, np.uint32, np.int64, np.uint64] + func = np.random.randint + high = np.array([1]) + low = np.array([0]) + + for dt in itype: + out = func(low, high, dtype=dt) + assert_equal(out.shape, self.tgtShape) + + out = func(low[0], high, dtype=dt) + assert_equal(out.shape, self.tgtShape) + + out = func(low, high[0], dtype=dt) + assert_equal(out.shape, self.tgtShape) + + def test_three_arg_funcs(self): + funcs = [np.random.noncentral_f, np.random.triangular, + np.random.hypergeometric] + + for func in funcs: + out = func(self.argOne, self.argTwo, self.argThree) + assert_equal(out.shape, self.tgtShape) + + out = func(self.argOne[0], self.argTwo, self.argThree) + assert_equal(out.shape, self.tgtShape) + + out = func(self.argOne, self.argTwo[0], self.argThree) + assert_equal(out.shape, self.tgtShape) diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/test_randomstate.py b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_randomstate.py new file mode 100644 index 0000000..cf44885 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_randomstate.py @@ -0,0 +1,2130 @@ +import hashlib +import pickle +import sys +import warnings + +import pytest + +import numpy as np +from numpy import random +from numpy.random import MT19937, PCG64 +from numpy.testing import ( + IS_WASM, + assert_, + assert_array_almost_equal, + assert_array_equal, + assert_equal, + assert_no_warnings, + assert_raises, + assert_warns, + suppress_warnings, +) + +INT_FUNCS = {'binomial': (100.0, 0.6), + 'geometric': (.5,), + 'hypergeometric': (20, 20, 10), + 'logseries': (.5,), + 'multinomial': (20, np.ones(6) / 6.0), + 'negative_binomial': (100, .5), + 'poisson': (10.0,), + 'zipf': (2,), + } + +if np.iinfo(np.long).max < 2**32: + # Windows and some 32-bit platforms, e.g., ARM + INT_FUNC_HASHES = {'binomial': '2fbead005fc63942decb5326d36a1f32fe2c9d32c904ee61e46866b88447c263', # noqa: E501 + 'logseries': '23ead5dcde35d4cfd4ef2c105e4c3d43304b45dc1b1444b7823b9ee4fa144ebb', # noqa: E501 + 'geometric': '0d764db64f5c3bad48c8c33551c13b4d07a1e7b470f77629bef6c985cac76fcf', # noqa: E501 + 'hypergeometric': '7b59bf2f1691626c5815cdcd9a49e1dd68697251d4521575219e4d2a1b8b2c67', # noqa: E501 + 'multinomial': 'd754fa5b92943a38ec07630de92362dd2e02c43577fc147417dc5b9db94ccdd3', # noqa: E501 + 'negative_binomial': '8eb216f7cb2a63cf55605422845caaff002fddc64a7dc8b2d45acd477a49e824', # noqa: E501 + 'poisson': '70c891d76104013ebd6f6bcf30d403a9074b886ff62e4e6b8eb605bf1a4673b7', # noqa: E501 + 'zipf': '01f074f97517cd5d21747148ac6ca4074dde7fcb7acbaec0a936606fecacd93f', # noqa: E501 + } +else: + INT_FUNC_HASHES = {'binomial': '8626dd9d052cb608e93d8868de0a7b347258b199493871a1dc56e2a26cacb112', # noqa: E501 + 'geometric': '8edd53d272e49c4fc8fbbe6c7d08d563d62e482921f3131d0a0e068af30f0db9', # noqa: E501 + 'hypergeometric': '83496cc4281c77b786c9b7ad88b74d42e01603a55c60577ebab81c3ba8d45657', # noqa: E501 + 'logseries': '65878a38747c176bc00e930ebafebb69d4e1e16cd3a704e264ea8f5e24f548db', # noqa: E501 + 'multinomial': '7a984ae6dca26fd25374479e118b22f55db0aedccd5a0f2584ceada33db98605', # noqa: E501 + 'negative_binomial': 'd636d968e6a24ae92ab52fe11c46ac45b0897e98714426764e820a7d77602a61', # noqa: E501 + 'poisson': '956552176f77e7c9cb20d0118fc9cf690be488d790ed4b4c4747b965e61b0bb4', # noqa: E501 + 'zipf': 'f84ba7feffda41e606e20b28dfc0f1ea9964a74574513d4a4cbc98433a8bfa45', # noqa: E501 + } + + +@pytest.fixture(scope='module', params=INT_FUNCS) +def int_func(request): + return (request.param, INT_FUNCS[request.param], + INT_FUNC_HASHES[request.param]) + + +@pytest.fixture +def restore_singleton_bitgen(): + """Ensures that the singleton bitgen is restored after a test""" + orig_bitgen = np.random.get_bit_generator() + yield + np.random.set_bit_generator(orig_bitgen) + + +def assert_mt19937_state_equal(a, b): + assert_equal(a['bit_generator'], b['bit_generator']) + assert_array_equal(a['state']['key'], b['state']['key']) + assert_array_equal(a['state']['pos'], b['state']['pos']) + assert_equal(a['has_gauss'], b['has_gauss']) + assert_equal(a['gauss'], b['gauss']) + + +class TestSeed: + def test_scalar(self): + s = random.RandomState(0) + assert_equal(s.randint(1000), 684) + s = random.RandomState(4294967295) + assert_equal(s.randint(1000), 419) + + def test_array(self): + s = random.RandomState(range(10)) + assert_equal(s.randint(1000), 468) + s = random.RandomState(np.arange(10)) + assert_equal(s.randint(1000), 468) + s = random.RandomState([0]) + assert_equal(s.randint(1000), 973) + s = random.RandomState([4294967295]) + assert_equal(s.randint(1000), 265) + + def test_invalid_scalar(self): + # seed must be an unsigned 32 bit integer + assert_raises(TypeError, random.RandomState, -0.5) + assert_raises(ValueError, random.RandomState, -1) + + def test_invalid_array(self): + # seed must be an unsigned 32 bit integer + assert_raises(TypeError, random.RandomState, [-0.5]) + assert_raises(ValueError, random.RandomState, [-1]) + assert_raises(ValueError, random.RandomState, [4294967296]) + assert_raises(ValueError, random.RandomState, [1, 2, 4294967296]) + assert_raises(ValueError, random.RandomState, [1, -2, 4294967296]) + + def test_invalid_array_shape(self): + # gh-9832 + assert_raises(ValueError, random.RandomState, np.array([], + dtype=np.int64)) + assert_raises(ValueError, random.RandomState, [[1, 2, 3]]) + assert_raises(ValueError, random.RandomState, [[1, 2, 3], + [4, 5, 6]]) + + def test_cannot_seed(self): + rs = random.RandomState(PCG64(0)) + with assert_raises(TypeError): + rs.seed(1234) + + def test_invalid_initialization(self): + assert_raises(ValueError, random.RandomState, MT19937) + + +class TestBinomial: + def test_n_zero(self): + # Tests the corner case of n == 0 for the binomial distribution. + # binomial(0, p) should be zero for any p in [0, 1]. + # This test addresses issue #3480. + zeros = np.zeros(2, dtype='int') + for p in [0, .5, 1]: + assert_(random.binomial(0, p) == 0) + assert_array_equal(random.binomial(zeros, p), zeros) + + def test_p_is_nan(self): + # Issue #4571. + assert_raises(ValueError, random.binomial, 1, np.nan) + + +class TestMultinomial: + def test_basic(self): + random.multinomial(100, [0.2, 0.8]) + + def test_zero_probability(self): + random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0]) + + def test_int_negative_interval(self): + assert_(-5 <= random.randint(-5, -1) < -1) + x = random.randint(-5, -1, 5) + assert_(np.all(-5 <= x)) + assert_(np.all(x < -1)) + + def test_size(self): + # gh-3173 + p = [0.5, 0.5] + assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) + assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) + assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) + assert_equal(random.multinomial(1, p, [2, 2]).shape, (2, 2, 2)) + assert_equal(random.multinomial(1, p, (2, 2)).shape, (2, 2, 2)) + assert_equal(random.multinomial(1, p, np.array((2, 2))).shape, + (2, 2, 2)) + + assert_raises(TypeError, random.multinomial, 1, p, + float(1)) + + def test_invalid_prob(self): + assert_raises(ValueError, random.multinomial, 100, [1.1, 0.2]) + assert_raises(ValueError, random.multinomial, 100, [-.1, 0.9]) + + def test_invalid_n(self): + assert_raises(ValueError, random.multinomial, -1, [0.8, 0.2]) + + def test_p_non_contiguous(self): + p = np.arange(15.) + p /= np.sum(p[1::3]) + pvals = p[1::3] + random.seed(1432985819) + non_contig = random.multinomial(100, pvals=pvals) + random.seed(1432985819) + contig = random.multinomial(100, pvals=np.ascontiguousarray(pvals)) + assert_array_equal(non_contig, contig) + + def test_multinomial_pvals_float32(self): + x = np.array([9.9e-01, 9.9e-01, 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09, + 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09], dtype=np.float32) + pvals = x / x.sum() + match = r"[\w\s]*pvals array is cast to 64-bit floating" + with pytest.raises(ValueError, match=match): + random.multinomial(1, pvals) + + def test_multinomial_n_float(self): + # Non-index integer types should gracefully truncate floats + random.multinomial(100.5, [0.2, 0.8]) + +class TestSetState: + def setup_method(self): + self.seed = 1234567890 + self.random_state = random.RandomState(self.seed) + self.state = self.random_state.get_state() + + def test_basic(self): + old = self.random_state.tomaxint(16) + self.random_state.set_state(self.state) + new = self.random_state.tomaxint(16) + assert_(np.all(old == new)) + + def test_gaussian_reset(self): + # Make sure the cached every-other-Gaussian is reset. + old = self.random_state.standard_normal(size=3) + self.random_state.set_state(self.state) + new = self.random_state.standard_normal(size=3) + assert_(np.all(old == new)) + + def test_gaussian_reset_in_media_res(self): + # When the state is saved with a cached Gaussian, make sure the + # cached Gaussian is restored. + + self.random_state.standard_normal() + state = self.random_state.get_state() + old = self.random_state.standard_normal(size=3) + self.random_state.set_state(state) + new = self.random_state.standard_normal(size=3) + assert_(np.all(old == new)) + + def test_backwards_compatibility(self): + # Make sure we can accept old state tuples that do not have the + # cached Gaussian value. + old_state = self.state[:-2] + x1 = self.random_state.standard_normal(size=16) + self.random_state.set_state(old_state) + x2 = self.random_state.standard_normal(size=16) + self.random_state.set_state(self.state) + x3 = self.random_state.standard_normal(size=16) + assert_(np.all(x1 == x2)) + assert_(np.all(x1 == x3)) + + def test_negative_binomial(self): + # Ensure that the negative binomial results take floating point + # arguments without truncation. + self.random_state.negative_binomial(0.5, 0.5) + + def test_get_state_warning(self): + rs = random.RandomState(PCG64()) + with suppress_warnings() as sup: + w = sup.record(RuntimeWarning) + state = rs.get_state() + assert_(len(w) == 1) + assert isinstance(state, dict) + assert state['bit_generator'] == 'PCG64' + + def test_invalid_legacy_state_setting(self): + state = self.random_state.get_state() + new_state = ('Unknown', ) + state[1:] + assert_raises(ValueError, self.random_state.set_state, new_state) + assert_raises(TypeError, self.random_state.set_state, + np.array(new_state, dtype=object)) + state = self.random_state.get_state(legacy=False) + del state['bit_generator'] + assert_raises(ValueError, self.random_state.set_state, state) + + def test_pickle(self): + self.random_state.seed(0) + self.random_state.random_sample(100) + self.random_state.standard_normal() + pickled = self.random_state.get_state(legacy=False) + assert_equal(pickled['has_gauss'], 1) + rs_unpick = pickle.loads(pickle.dumps(self.random_state)) + unpickled = rs_unpick.get_state(legacy=False) + assert_mt19937_state_equal(pickled, unpickled) + + def test_state_setting(self): + attr_state = self.random_state.__getstate__() + self.random_state.standard_normal() + self.random_state.__setstate__(attr_state) + state = self.random_state.get_state(legacy=False) + assert_mt19937_state_equal(attr_state, state) + + def test_repr(self): + assert repr(self.random_state).startswith('RandomState(MT19937)') + + +class TestRandint: + + rfunc = random.randint + + # valid integer/boolean types + itype = [np.bool, np.int8, np.uint8, np.int16, np.uint16, + np.int32, np.uint32, np.int64, np.uint64] + + def test_unsupported_type(self): + assert_raises(TypeError, self.rfunc, 1, dtype=float) + + def test_bounds_checking(self): + for dt in self.itype: + lbnd = 0 if dt is np.bool else np.iinfo(dt).min + ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1 + assert_raises(ValueError, self.rfunc, lbnd - 1, ubnd, dtype=dt) + assert_raises(ValueError, self.rfunc, lbnd, ubnd + 1, dtype=dt) + assert_raises(ValueError, self.rfunc, ubnd, lbnd, dtype=dt) + assert_raises(ValueError, self.rfunc, 1, 0, dtype=dt) + + def test_rng_zero_and_extremes(self): + for dt in self.itype: + lbnd = 0 if dt is np.bool else np.iinfo(dt).min + ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1 + + tgt = ubnd - 1 + assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt) + + tgt = lbnd + assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt) + + tgt = (lbnd + ubnd) // 2 + assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt) + + def test_full_range(self): + # Test for ticket #1690 + + for dt in self.itype: + lbnd = 0 if dt is np.bool else np.iinfo(dt).min + ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1 + + try: + self.rfunc(lbnd, ubnd, dtype=dt) + except Exception as e: + raise AssertionError("No error should have been raised, " + "but one was with the following " + "message:\n\n%s" % str(e)) + + def test_in_bounds_fuzz(self): + # Don't use fixed seed + random.seed() + + for dt in self.itype[1:]: + for ubnd in [4, 8, 16]: + vals = self.rfunc(2, ubnd, size=2**16, dtype=dt) + assert_(vals.max() < ubnd) + assert_(vals.min() >= 2) + + vals = self.rfunc(0, 2, size=2**16, dtype=np.bool) + + assert_(vals.max() < 2) + assert_(vals.min() >= 0) + + def test_repeatability(self): + # We use a sha256 hash of generated sequences of 1000 samples + # in the range [0, 6) for all but bool, where the range + # is [0, 2). Hashes are for little endian numbers. + tgt = {'bool': '509aea74d792fb931784c4b0135392c65aec64beee12b0cc167548a2c3d31e71', # noqa: E501 + 'int16': '7b07f1a920e46f6d0fe02314155a2330bcfd7635e708da50e536c5ebb631a7d4', # noqa: E501 + 'int32': 'e577bfed6c935de944424667e3da285012e741892dcb7051a8f1ce68ab05c92f', # noqa: E501 + 'int64': '0fbead0b06759df2cfb55e43148822d4a1ff953c7eb19a5b08445a63bb64fa9e', # noqa: E501 + 'int8': '001aac3a5acb935a9b186cbe14a1ca064b8bb2dd0b045d48abeacf74d0203404', # noqa: E501 + 'uint16': '7b07f1a920e46f6d0fe02314155a2330bcfd7635e708da50e536c5ebb631a7d4', # noqa: E501 + 'uint32': 'e577bfed6c935de944424667e3da285012e741892dcb7051a8f1ce68ab05c92f', # noqa: E501 + 'uint64': '0fbead0b06759df2cfb55e43148822d4a1ff953c7eb19a5b08445a63bb64fa9e', # noqa: E501 + 'uint8': '001aac3a5acb935a9b186cbe14a1ca064b8bb2dd0b045d48abeacf74d0203404'} # noqa: E501 + + for dt in self.itype[1:]: + random.seed(1234) + + # view as little endian for hash + if sys.byteorder == 'little': + val = self.rfunc(0, 6, size=1000, dtype=dt) + else: + val = self.rfunc(0, 6, size=1000, dtype=dt).byteswap() + + res = hashlib.sha256(val.view(np.int8)).hexdigest() + assert_(tgt[np.dtype(dt).name] == res) + + # bools do not depend on endianness + random.seed(1234) + val = self.rfunc(0, 2, size=1000, dtype=bool).view(np.int8) + res = hashlib.sha256(val).hexdigest() + assert_(tgt[np.dtype(bool).name] == res) + + @pytest.mark.skipif(np.iinfo('l').max < 2**32, + reason='Cannot test with 32-bit C long') + def test_repeatability_32bit_boundary_broadcasting(self): + desired = np.array([[[3992670689, 2438360420, 2557845020], + [4107320065, 4142558326, 3216529513], + [1605979228, 2807061240, 665605495]], + [[3211410639, 4128781000, 457175120], + [1712592594, 1282922662, 3081439808], + [3997822960, 2008322436, 1563495165]], + [[1398375547, 4269260146, 115316740], + [3414372578, 3437564012, 2112038651], + [3572980305, 2260248732, 3908238631]], + [[2561372503, 223155946, 3127879445], + [ 441282060, 3514786552, 2148440361], + [1629275283, 3479737011, 3003195987]], + [[ 412181688, 940383289, 3047321305], + [2978368172, 764731833, 2282559898], + [ 105711276, 720447391, 3596512484]]]) + for size in [None, (5, 3, 3)]: + random.seed(12345) + x = self.rfunc([[-1], [0], [1]], [2**32 - 1, 2**32, 2**32 + 1], + size=size) + assert_array_equal(x, desired if size is not None else desired[0]) + + def test_int64_uint64_corner_case(self): + # When stored in Numpy arrays, `lbnd` is casted + # as np.int64, and `ubnd` is casted as np.uint64. + # Checking whether `lbnd` >= `ubnd` used to be + # done solely via direct comparison, which is incorrect + # because when Numpy tries to compare both numbers, + # it casts both to np.float64 because there is + # no integer superset of np.int64 and np.uint64. However, + # `ubnd` is too large to be represented in np.float64, + # causing it be round down to np.iinfo(np.int64).max, + # leading to a ValueError because `lbnd` now equals + # the new `ubnd`. + + dt = np.int64 + tgt = np.iinfo(np.int64).max + lbnd = np.int64(np.iinfo(np.int64).max) + ubnd = np.uint64(np.iinfo(np.int64).max + 1) + + # None of these function calls should + # generate a ValueError now. + actual = random.randint(lbnd, ubnd, dtype=dt) + assert_equal(actual, tgt) + + def test_respect_dtype_singleton(self): + # See gh-7203 + for dt in self.itype: + lbnd = 0 if dt is np.bool else np.iinfo(dt).min + ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1 + + sample = self.rfunc(lbnd, ubnd, dtype=dt) + assert_equal(sample.dtype, np.dtype(dt)) + + for dt in (bool, int): + # The legacy random generation forces the use of "long" on this + # branch even when the input is `int` and the default dtype + # for int changed (dtype=int is also the functions default) + op_dtype = "long" if dt is int else "bool" + lbnd = 0 if dt is bool else np.iinfo(op_dtype).min + ubnd = 2 if dt is bool else np.iinfo(op_dtype).max + 1 + + sample = self.rfunc(lbnd, ubnd, dtype=dt) + assert_(not hasattr(sample, 'dtype')) + assert_equal(type(sample), dt) + + +class TestRandomDist: + # Make sure the random distribution returns the correct value for a + # given seed + + def setup_method(self): + self.seed = 1234567890 + + def test_rand(self): + random.seed(self.seed) + actual = random.rand(3, 2) + desired = np.array([[0.61879477158567997, 0.59162362775974664], + [0.88868358904449662, 0.89165480011560816], + [0.4575674820298663, 0.7781880808593471]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_rand_singleton(self): + random.seed(self.seed) + actual = random.rand() + desired = 0.61879477158567997 + assert_array_almost_equal(actual, desired, decimal=15) + + def test_randn(self): + random.seed(self.seed) + actual = random.randn(3, 2) + desired = np.array([[1.34016345771863121, 1.73759122771936081], + [1.498988344300628, -0.2286433324536169], + [2.031033998682787, 2.17032494605655257]]) + assert_array_almost_equal(actual, desired, decimal=15) + + random.seed(self.seed) + actual = random.randn() + assert_array_almost_equal(actual, desired[0, 0], decimal=15) + + def test_randint(self): + random.seed(self.seed) + actual = random.randint(-99, 99, size=(3, 2)) + desired = np.array([[31, 3], + [-52, 41], + [-48, -66]]) + assert_array_equal(actual, desired) + + def test_random_integers(self): + random.seed(self.seed) + with suppress_warnings() as sup: + w = sup.record(DeprecationWarning) + actual = random.random_integers(-99, 99, size=(3, 2)) + assert_(len(w) == 1) + desired = np.array([[31, 3], + [-52, 41], + [-48, -66]]) + assert_array_equal(actual, desired) + + random.seed(self.seed) + with suppress_warnings() as sup: + w = sup.record(DeprecationWarning) + actual = random.random_integers(198, size=(3, 2)) + assert_(len(w) == 1) + assert_array_equal(actual, desired + 100) + + def test_tomaxint(self): + random.seed(self.seed) + rs = random.RandomState(self.seed) + actual = rs.tomaxint(size=(3, 2)) + if np.iinfo(np.long).max == 2147483647: + desired = np.array([[1328851649, 731237375], + [1270502067, 320041495], + [1908433478, 499156889]], dtype=np.int64) + else: + desired = np.array([[5707374374421908479, 5456764827585442327], + [8196659375100692377, 8224063923314595285], + [4220315081820346526, 7177518203184491332]], + dtype=np.int64) + + assert_equal(actual, desired) + + rs.seed(self.seed) + actual = rs.tomaxint() + assert_equal(actual, desired[0, 0]) + + def test_random_integers_max_int(self): + # Tests whether random_integers can generate the + # maximum allowed Python int that can be converted + # into a C long. Previous implementations of this + # method have thrown an OverflowError when attempting + # to generate this integer. + with suppress_warnings() as sup: + w = sup.record(DeprecationWarning) + actual = random.random_integers(np.iinfo('l').max, + np.iinfo('l').max) + assert_(len(w) == 1) + + desired = np.iinfo('l').max + assert_equal(actual, desired) + with suppress_warnings() as sup: + w = sup.record(DeprecationWarning) + typer = np.dtype('l').type + actual = random.random_integers(typer(np.iinfo('l').max), + typer(np.iinfo('l').max)) + assert_(len(w) == 1) + assert_equal(actual, desired) + + def test_random_integers_deprecated(self): + with warnings.catch_warnings(): + warnings.simplefilter("error", DeprecationWarning) + + # DeprecationWarning raised with high == None + assert_raises(DeprecationWarning, + random.random_integers, + np.iinfo('l').max) + + # DeprecationWarning raised with high != None + assert_raises(DeprecationWarning, + random.random_integers, + np.iinfo('l').max, np.iinfo('l').max) + + def test_random_sample(self): + random.seed(self.seed) + actual = random.random_sample((3, 2)) + desired = np.array([[0.61879477158567997, 0.59162362775974664], + [0.88868358904449662, 0.89165480011560816], + [0.4575674820298663, 0.7781880808593471]]) + assert_array_almost_equal(actual, desired, decimal=15) + + random.seed(self.seed) + actual = random.random_sample() + assert_array_almost_equal(actual, desired[0, 0], decimal=15) + + def test_choice_uniform_replace(self): + random.seed(self.seed) + actual = random.choice(4, 4) + desired = np.array([2, 3, 2, 3]) + assert_array_equal(actual, desired) + + def test_choice_nonuniform_replace(self): + random.seed(self.seed) + actual = random.choice(4, 4, p=[0.4, 0.4, 0.1, 0.1]) + desired = np.array([1, 1, 2, 2]) + assert_array_equal(actual, desired) + + def test_choice_uniform_noreplace(self): + random.seed(self.seed) + actual = random.choice(4, 3, replace=False) + desired = np.array([0, 1, 3]) + assert_array_equal(actual, desired) + + def test_choice_nonuniform_noreplace(self): + random.seed(self.seed) + actual = random.choice(4, 3, replace=False, p=[0.1, 0.3, 0.5, 0.1]) + desired = np.array([2, 3, 1]) + assert_array_equal(actual, desired) + + def test_choice_noninteger(self): + random.seed(self.seed) + actual = random.choice(['a', 'b', 'c', 'd'], 4) + desired = np.array(['c', 'd', 'c', 'd']) + assert_array_equal(actual, desired) + + def test_choice_exceptions(self): + sample = random.choice + assert_raises(ValueError, sample, -1, 3) + assert_raises(ValueError, sample, 3., 3) + assert_raises(ValueError, sample, [[1, 2], [3, 4]], 3) + assert_raises(ValueError, sample, [], 3) + assert_raises(ValueError, sample, [1, 2, 3, 4], 3, + p=[[0.25, 0.25], [0.25, 0.25]]) + assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4, 0.2]) + assert_raises(ValueError, sample, [1, 2], 3, p=[1.1, -0.1]) + assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4]) + assert_raises(ValueError, sample, [1, 2, 3], 4, replace=False) + # gh-13087 + assert_raises(ValueError, sample, [1, 2, 3], -2, replace=False) + assert_raises(ValueError, sample, [1, 2, 3], (-1,), replace=False) + assert_raises(ValueError, sample, [1, 2, 3], (-1, 1), replace=False) + assert_raises(ValueError, sample, [1, 2, 3], 2, + replace=False, p=[1, 0, 0]) + + def test_choice_return_shape(self): + p = [0.1, 0.9] + # Check scalar + assert_(np.isscalar(random.choice(2, replace=True))) + assert_(np.isscalar(random.choice(2, replace=False))) + assert_(np.isscalar(random.choice(2, replace=True, p=p))) + assert_(np.isscalar(random.choice(2, replace=False, p=p))) + assert_(np.isscalar(random.choice([1, 2], replace=True))) + assert_(random.choice([None], replace=True) is None) + a = np.array([1, 2]) + arr = np.empty(1, dtype=object) + arr[0] = a + assert_(random.choice(arr, replace=True) is a) + + # Check 0-d array + s = () + assert_(not np.isscalar(random.choice(2, s, replace=True))) + assert_(not np.isscalar(random.choice(2, s, replace=False))) + assert_(not np.isscalar(random.choice(2, s, replace=True, p=p))) + assert_(not np.isscalar(random.choice(2, s, replace=False, p=p))) + assert_(not np.isscalar(random.choice([1, 2], s, replace=True))) + assert_(random.choice([None], s, replace=True).ndim == 0) + a = np.array([1, 2]) + arr = np.empty(1, dtype=object) + arr[0] = a + assert_(random.choice(arr, s, replace=True).item() is a) + + # Check multi dimensional array + s = (2, 3) + p = [0.1, 0.1, 0.1, 0.1, 0.4, 0.2] + assert_equal(random.choice(6, s, replace=True).shape, s) + assert_equal(random.choice(6, s, replace=False).shape, s) + assert_equal(random.choice(6, s, replace=True, p=p).shape, s) + assert_equal(random.choice(6, s, replace=False, p=p).shape, s) + assert_equal(random.choice(np.arange(6), s, replace=True).shape, s) + + # Check zero-size + assert_equal(random.randint(0, 0, size=(3, 0, 4)).shape, (3, 0, 4)) + assert_equal(random.randint(0, -10, size=0).shape, (0,)) + assert_equal(random.randint(10, 10, size=0).shape, (0,)) + assert_equal(random.choice(0, size=0).shape, (0,)) + assert_equal(random.choice([], size=(0,)).shape, (0,)) + assert_equal(random.choice(['a', 'b'], size=(3, 0, 4)).shape, + (3, 0, 4)) + assert_raises(ValueError, random.choice, [], 10) + + def test_choice_nan_probabilities(self): + a = np.array([42, 1, 2]) + p = [None, None, None] + assert_raises(ValueError, random.choice, a, p=p) + + def test_choice_p_non_contiguous(self): + p = np.ones(10) / 5 + p[1::2] = 3.0 + random.seed(self.seed) + non_contig = random.choice(5, 3, p=p[::2]) + random.seed(self.seed) + contig = random.choice(5, 3, p=np.ascontiguousarray(p[::2])) + assert_array_equal(non_contig, contig) + + def test_bytes(self): + random.seed(self.seed) + actual = random.bytes(10) + desired = b'\x82Ui\x9e\xff\x97+Wf\xa5' + assert_equal(actual, desired) + + def test_shuffle(self): + # Test lists, arrays (of various dtypes), and multidimensional versions + # of both, c-contiguous or not: + for conv in [lambda x: np.array([]), + lambda x: x, + lambda x: np.asarray(x).astype(np.int8), + lambda x: np.asarray(x).astype(np.float32), + lambda x: np.asarray(x).astype(np.complex64), + lambda x: np.asarray(x).astype(object), + lambda x: [(i, i) for i in x], + lambda x: np.asarray([[i, i] for i in x]), + lambda x: np.vstack([x, x]).T, + # gh-11442 + lambda x: (np.asarray([(i, i) for i in x], + [("a", int), ("b", int)]) + .view(np.recarray)), + # gh-4270 + lambda x: np.asarray([(i, i) for i in x], + [("a", object, (1,)), + ("b", np.int32, (1,))])]: + random.seed(self.seed) + alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]) + random.shuffle(alist) + actual = alist + desired = conv([0, 1, 9, 6, 2, 4, 5, 8, 7, 3]) + assert_array_equal(actual, desired) + + def test_shuffle_masked(self): + # gh-3263 + a = np.ma.masked_values(np.reshape(range(20), (5, 4)) % 3 - 1, -1) + b = np.ma.masked_values(np.arange(20) % 3 - 1, -1) + a_orig = a.copy() + b_orig = b.copy() + for i in range(50): + random.shuffle(a) + assert_equal( + sorted(a.data[~a.mask]), sorted(a_orig.data[~a_orig.mask])) + random.shuffle(b) + assert_equal( + sorted(b.data[~b.mask]), sorted(b_orig.data[~b_orig.mask])) + + def test_shuffle_invalid_objects(self): + x = np.array(3) + assert_raises(TypeError, random.shuffle, x) + + def test_permutation(self): + random.seed(self.seed) + alist = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0] + actual = random.permutation(alist) + desired = [0, 1, 9, 6, 2, 4, 5, 8, 7, 3] + assert_array_equal(actual, desired) + + random.seed(self.seed) + arr_2d = np.atleast_2d([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]).T + actual = random.permutation(arr_2d) + assert_array_equal(actual, np.atleast_2d(desired).T) + + random.seed(self.seed) + bad_x_str = "abcd" + assert_raises(IndexError, random.permutation, bad_x_str) + + random.seed(self.seed) + bad_x_float = 1.2 + assert_raises(IndexError, random.permutation, bad_x_float) + + integer_val = 10 + desired = [9, 0, 8, 5, 1, 3, 4, 7, 6, 2] + + random.seed(self.seed) + actual = random.permutation(integer_val) + assert_array_equal(actual, desired) + + def test_beta(self): + random.seed(self.seed) + actual = random.beta(.1, .9, size=(3, 2)) + desired = np.array( + [[1.45341850513746058e-02, 5.31297615662868145e-04], + [1.85366619058432324e-06, 4.19214516800110563e-03], + [1.58405155108498093e-04, 1.26252891949397652e-04]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_binomial(self): + random.seed(self.seed) + actual = random.binomial(100.123, .456, size=(3, 2)) + desired = np.array([[37, 43], + [42, 48], + [46, 45]]) + assert_array_equal(actual, desired) + + random.seed(self.seed) + actual = random.binomial(100.123, .456) + desired = 37 + assert_array_equal(actual, desired) + + def test_chisquare(self): + random.seed(self.seed) + actual = random.chisquare(50, size=(3, 2)) + desired = np.array([[63.87858175501090585, 68.68407748911370447], + [65.77116116901505904, 47.09686762438974483], + [72.3828403199695174, 74.18408615260374006]]) + assert_array_almost_equal(actual, desired, decimal=13) + + def test_dirichlet(self): + random.seed(self.seed) + alpha = np.array([51.72840233779265162, 39.74494232180943953]) + actual = random.dirichlet(alpha, size=(3, 2)) + desired = np.array([[[0.54539444573611562, 0.45460555426388438], + [0.62345816822039413, 0.37654183177960598]], + [[0.55206000085785778, 0.44793999914214233], + [0.58964023305154301, 0.41035976694845688]], + [[0.59266909280647828, 0.40733090719352177], + [0.56974431743975207, 0.43025568256024799]]]) + assert_array_almost_equal(actual, desired, decimal=15) + bad_alpha = np.array([5.4e-01, -1.0e-16]) + assert_raises(ValueError, random.dirichlet, bad_alpha) + + random.seed(self.seed) + alpha = np.array([51.72840233779265162, 39.74494232180943953]) + actual = random.dirichlet(alpha) + assert_array_almost_equal(actual, desired[0, 0], decimal=15) + + def test_dirichlet_size(self): + # gh-3173 + p = np.array([51.72840233779265162, 39.74494232180943953]) + assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2)) + assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2)) + assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2)) + assert_equal(random.dirichlet(p, [2, 2]).shape, (2, 2, 2)) + assert_equal(random.dirichlet(p, (2, 2)).shape, (2, 2, 2)) + assert_equal(random.dirichlet(p, np.array((2, 2))).shape, (2, 2, 2)) + + assert_raises(TypeError, random.dirichlet, p, float(1)) + + def test_dirichlet_bad_alpha(self): + # gh-2089 + alpha = np.array([5.4e-01, -1.0e-16]) + assert_raises(ValueError, random.dirichlet, alpha) + + def test_dirichlet_alpha_non_contiguous(self): + a = np.array([51.72840233779265162, -1.0, 39.74494232180943953]) + alpha = a[::2] + random.seed(self.seed) + non_contig = random.dirichlet(alpha, size=(3, 2)) + random.seed(self.seed) + contig = random.dirichlet(np.ascontiguousarray(alpha), + size=(3, 2)) + assert_array_almost_equal(non_contig, contig) + + def test_exponential(self): + random.seed(self.seed) + actual = random.exponential(1.1234, size=(3, 2)) + desired = np.array([[1.08342649775011624, 1.00607889924557314], + [2.46628830085216721, 2.49668106809923884], + [0.68717433461363442, 1.69175666993575979]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_exponential_0(self): + assert_equal(random.exponential(scale=0), 0) + assert_raises(ValueError, random.exponential, scale=-0.) + + def test_f(self): + random.seed(self.seed) + actual = random.f(12, 77, size=(3, 2)) + desired = np.array([[1.21975394418575878, 1.75135759791559775], + [1.44803115017146489, 1.22108959480396262], + [1.02176975757740629, 1.34431827623300415]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_gamma(self): + random.seed(self.seed) + actual = random.gamma(5, 3, size=(3, 2)) + desired = np.array([[24.60509188649287182, 28.54993563207210627], + [26.13476110204064184, 12.56988482927716078], + [31.71863275789960568, 33.30143302795922011]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_gamma_0(self): + assert_equal(random.gamma(shape=0, scale=0), 0) + assert_raises(ValueError, random.gamma, shape=-0., scale=-0.) + + def test_geometric(self): + random.seed(self.seed) + actual = random.geometric(.123456789, size=(3, 2)) + desired = np.array([[8, 7], + [17, 17], + [5, 12]]) + assert_array_equal(actual, desired) + + def test_geometric_exceptions(self): + assert_raises(ValueError, random.geometric, 1.1) + assert_raises(ValueError, random.geometric, [1.1] * 10) + assert_raises(ValueError, random.geometric, -0.1) + assert_raises(ValueError, random.geometric, [-0.1] * 10) + with suppress_warnings() as sup: + sup.record(RuntimeWarning) + assert_raises(ValueError, random.geometric, np.nan) + assert_raises(ValueError, random.geometric, [np.nan] * 10) + + def test_gumbel(self): + random.seed(self.seed) + actual = random.gumbel(loc=.123456789, scale=2.0, size=(3, 2)) + desired = np.array([[0.19591898743416816, 0.34405539668096674], + [-1.4492522252274278, -1.47374816298446865], + [1.10651090478803416, -0.69535848626236174]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_gumbel_0(self): + assert_equal(random.gumbel(scale=0), 0) + assert_raises(ValueError, random.gumbel, scale=-0.) + + def test_hypergeometric(self): + random.seed(self.seed) + actual = random.hypergeometric(10.1, 5.5, 14, size=(3, 2)) + desired = np.array([[10, 10], + [10, 10], + [9, 9]]) + assert_array_equal(actual, desired) + + # Test nbad = 0 + actual = random.hypergeometric(5, 0, 3, size=4) + desired = np.array([3, 3, 3, 3]) + assert_array_equal(actual, desired) + + actual = random.hypergeometric(15, 0, 12, size=4) + desired = np.array([12, 12, 12, 12]) + assert_array_equal(actual, desired) + + # Test ngood = 0 + actual = random.hypergeometric(0, 5, 3, size=4) + desired = np.array([0, 0, 0, 0]) + assert_array_equal(actual, desired) + + actual = random.hypergeometric(0, 15, 12, size=4) + desired = np.array([0, 0, 0, 0]) + assert_array_equal(actual, desired) + + def test_laplace(self): + random.seed(self.seed) + actual = random.laplace(loc=.123456789, scale=2.0, size=(3, 2)) + desired = np.array([[0.66599721112760157, 0.52829452552221945], + [3.12791959514407125, 3.18202813572992005], + [-0.05391065675859356, 1.74901336242837324]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_laplace_0(self): + assert_equal(random.laplace(scale=0), 0) + assert_raises(ValueError, random.laplace, scale=-0.) + + def test_logistic(self): + random.seed(self.seed) + actual = random.logistic(loc=.123456789, scale=2.0, size=(3, 2)) + desired = np.array([[1.09232835305011444, 0.8648196662399954], + [4.27818590694950185, 4.33897006346929714], + [-0.21682183359214885, 2.63373365386060332]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_lognormal(self): + random.seed(self.seed) + actual = random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2)) + desired = np.array([[16.50698631688883822, 36.54846706092654784], + [22.67886599981281748, 0.71617561058995771], + [65.72798501792723869, 86.84341601437161273]]) + assert_array_almost_equal(actual, desired, decimal=13) + + def test_lognormal_0(self): + assert_equal(random.lognormal(sigma=0), 1) + assert_raises(ValueError, random.lognormal, sigma=-0.) + + def test_logseries(self): + random.seed(self.seed) + actual = random.logseries(p=.923456789, size=(3, 2)) + desired = np.array([[2, 2], + [6, 17], + [3, 6]]) + assert_array_equal(actual, desired) + + def test_logseries_zero(self): + assert random.logseries(0) == 1 + + @pytest.mark.parametrize("value", [np.nextafter(0., -1), 1., np.nan, 5.]) + def test_logseries_exceptions(self, value): + with np.errstate(invalid="ignore"): + with pytest.raises(ValueError): + random.logseries(value) + with pytest.raises(ValueError): + # contiguous path: + random.logseries(np.array([value] * 10)) + with pytest.raises(ValueError): + # non-contiguous path: + random.logseries(np.array([value] * 10)[::2]) + + def test_multinomial(self): + random.seed(self.seed) + actual = random.multinomial(20, [1 / 6.] * 6, size=(3, 2)) + desired = np.array([[[4, 3, 5, 4, 2, 2], + [5, 2, 8, 2, 2, 1]], + [[3, 4, 3, 6, 0, 4], + [2, 1, 4, 3, 6, 4]], + [[4, 4, 2, 5, 2, 3], + [4, 3, 4, 2, 3, 4]]]) + assert_array_equal(actual, desired) + + def test_multivariate_normal(self): + random.seed(self.seed) + mean = (.123456789, 10) + cov = [[1, 0], [0, 1]] + size = (3, 2) + actual = random.multivariate_normal(mean, cov, size) + desired = np.array([[[1.463620246718631, 11.73759122771936], + [1.622445133300628, 9.771356667546383]], + [[2.154490787682787, 12.170324946056553], + [1.719909438201865, 9.230548443648306]], + [[0.689515026297799, 9.880729819607714], + [-0.023054015651998, 9.201096623542879]]]) + + assert_array_almost_equal(actual, desired, decimal=15) + + # Check for default size, was raising deprecation warning + actual = random.multivariate_normal(mean, cov) + desired = np.array([0.895289569463708, 9.17180864067987]) + assert_array_almost_equal(actual, desired, decimal=15) + + # Check that non positive-semidefinite covariance warns with + # RuntimeWarning + mean = [0, 0] + cov = [[1, 2], [2, 1]] + assert_warns(RuntimeWarning, random.multivariate_normal, mean, cov) + + # and that it doesn't warn with RuntimeWarning check_valid='ignore' + assert_no_warnings(random.multivariate_normal, mean, cov, + check_valid='ignore') + + # and that it raises with RuntimeWarning check_valid='raises' + assert_raises(ValueError, random.multivariate_normal, mean, cov, + check_valid='raise') + + cov = np.array([[1, 0.1], [0.1, 1]], dtype=np.float32) + with suppress_warnings() as sup: + random.multivariate_normal(mean, cov) + w = sup.record(RuntimeWarning) + assert len(w) == 0 + + mu = np.zeros(2) + cov = np.eye(2) + assert_raises(ValueError, random.multivariate_normal, mean, cov, + check_valid='other') + assert_raises(ValueError, random.multivariate_normal, + np.zeros((2, 1, 1)), cov) + assert_raises(ValueError, random.multivariate_normal, + mu, np.empty((3, 2))) + assert_raises(ValueError, random.multivariate_normal, + mu, np.eye(3)) + + def test_negative_binomial(self): + random.seed(self.seed) + actual = random.negative_binomial(n=100, p=.12345, size=(3, 2)) + desired = np.array([[848, 841], + [892, 611], + [779, 647]]) + assert_array_equal(actual, desired) + + def test_negative_binomial_exceptions(self): + with suppress_warnings() as sup: + sup.record(RuntimeWarning) + assert_raises(ValueError, random.negative_binomial, 100, np.nan) + assert_raises(ValueError, random.negative_binomial, 100, + [np.nan] * 10) + + def test_noncentral_chisquare(self): + random.seed(self.seed) + actual = random.noncentral_chisquare(df=5, nonc=5, size=(3, 2)) + desired = np.array([[23.91905354498517511, 13.35324692733826346], + [31.22452661329736401, 16.60047399466177254], + [5.03461598262724586, 17.94973089023519464]]) + assert_array_almost_equal(actual, desired, decimal=14) + + actual = random.noncentral_chisquare(df=.5, nonc=.2, size=(3, 2)) + desired = np.array([[1.47145377828516666, 0.15052899268012659], + [0.00943803056963588, 1.02647251615666169], + [0.332334982684171, 0.15451287602753125]]) + assert_array_almost_equal(actual, desired, decimal=14) + + random.seed(self.seed) + actual = random.noncentral_chisquare(df=5, nonc=0, size=(3, 2)) + desired = np.array([[9.597154162763948, 11.725484450296079], + [10.413711048138335, 3.694475922923986], + [13.484222138963087, 14.377255424602957]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_noncentral_f(self): + random.seed(self.seed) + actual = random.noncentral_f(dfnum=5, dfden=2, nonc=1, + size=(3, 2)) + desired = np.array([[1.40598099674926669, 0.34207973179285761], + [3.57715069265772545, 7.92632662577829805], + [0.43741599463544162, 1.1774208752428319]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_noncentral_f_nan(self): + random.seed(self.seed) + actual = random.noncentral_f(dfnum=5, dfden=2, nonc=np.nan) + assert np.isnan(actual) + + def test_normal(self): + random.seed(self.seed) + actual = random.normal(loc=.123456789, scale=2.0, size=(3, 2)) + desired = np.array([[2.80378370443726244, 3.59863924443872163], + [3.121433477601256, -0.33382987590723379], + [4.18552478636557357, 4.46410668111310471]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_normal_0(self): + assert_equal(random.normal(scale=0), 0) + assert_raises(ValueError, random.normal, scale=-0.) + + def test_pareto(self): + random.seed(self.seed) + actual = random.pareto(a=.123456789, size=(3, 2)) + desired = np.array( + [[2.46852460439034849e+03, 1.41286880810518346e+03], + [5.28287797029485181e+07, 6.57720981047328785e+07], + [1.40840323350391515e+02, 1.98390255135251704e+05]]) + # For some reason on 32-bit x86 Ubuntu 12.10 the [1, 0] entry in this + # matrix differs by 24 nulps. Discussion: + # https://mail.python.org/pipermail/numpy-discussion/2012-September/063801.html + # Consensus is that this is probably some gcc quirk that affects + # rounding but not in any important way, so we just use a looser + # tolerance on this test: + np.testing.assert_array_almost_equal_nulp(actual, desired, nulp=30) + + def test_poisson(self): + random.seed(self.seed) + actual = random.poisson(lam=.123456789, size=(3, 2)) + desired = np.array([[0, 0], + [1, 0], + [0, 0]]) + assert_array_equal(actual, desired) + + def test_poisson_exceptions(self): + lambig = np.iinfo('l').max + lamneg = -1 + assert_raises(ValueError, random.poisson, lamneg) + assert_raises(ValueError, random.poisson, [lamneg] * 10) + assert_raises(ValueError, random.poisson, lambig) + assert_raises(ValueError, random.poisson, [lambig] * 10) + with suppress_warnings() as sup: + sup.record(RuntimeWarning) + assert_raises(ValueError, random.poisson, np.nan) + assert_raises(ValueError, random.poisson, [np.nan] * 10) + + def test_power(self): + random.seed(self.seed) + actual = random.power(a=.123456789, size=(3, 2)) + desired = np.array([[0.02048932883240791, 0.01424192241128213], + [0.38446073748535298, 0.39499689943484395], + [0.00177699707563439, 0.13115505880863756]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_rayleigh(self): + random.seed(self.seed) + actual = random.rayleigh(scale=10, size=(3, 2)) + desired = np.array([[13.8882496494248393, 13.383318339044731], + [20.95413364294492098, 21.08285015800712614], + [11.06066537006854311, 17.35468505778271009]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_rayleigh_0(self): + assert_equal(random.rayleigh(scale=0), 0) + assert_raises(ValueError, random.rayleigh, scale=-0.) + + def test_standard_cauchy(self): + random.seed(self.seed) + actual = random.standard_cauchy(size=(3, 2)) + desired = np.array([[0.77127660196445336, -6.55601161955910605], + [0.93582023391158309, -2.07479293013759447], + [-4.74601644297011926, 0.18338989290760804]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_standard_exponential(self): + random.seed(self.seed) + actual = random.standard_exponential(size=(3, 2)) + desired = np.array([[0.96441739162374596, 0.89556604882105506], + [2.1953785836319808, 2.22243285392490542], + [0.6116915921431676, 1.50592546727413201]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_standard_gamma(self): + random.seed(self.seed) + actual = random.standard_gamma(shape=3, size=(3, 2)) + desired = np.array([[5.50841531318455058, 6.62953470301903103], + [5.93988484943779227, 2.31044849402133989], + [7.54838614231317084, 8.012756093271868]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_standard_gamma_0(self): + assert_equal(random.standard_gamma(shape=0), 0) + assert_raises(ValueError, random.standard_gamma, shape=-0.) + + def test_standard_normal(self): + random.seed(self.seed) + actual = random.standard_normal(size=(3, 2)) + desired = np.array([[1.34016345771863121, 1.73759122771936081], + [1.498988344300628, -0.2286433324536169], + [2.031033998682787, 2.17032494605655257]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_randn_singleton(self): + random.seed(self.seed) + actual = random.randn() + desired = np.array(1.34016345771863121) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_standard_t(self): + random.seed(self.seed) + actual = random.standard_t(df=10, size=(3, 2)) + desired = np.array([[0.97140611862659965, -0.08830486548450577], + [1.36311143689505321, -0.55317463909867071], + [-0.18473749069684214, 0.61181537341755321]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_triangular(self): + random.seed(self.seed) + actual = random.triangular(left=5.12, mode=10.23, right=20.34, + size=(3, 2)) + desired = np.array([[12.68117178949215784, 12.4129206149193152], + [16.20131377335158263, 16.25692138747600524], + [11.20400690911820263, 14.4978144835829923]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_uniform(self): + random.seed(self.seed) + actual = random.uniform(low=1.23, high=10.54, size=(3, 2)) + desired = np.array([[6.99097932346268003, 6.73801597444323974], + [9.50364421400426274, 9.53130618907631089], + [5.48995325769805476, 8.47493103280052118]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_uniform_range_bounds(self): + fmin = np.finfo('float').min + fmax = np.finfo('float').max + + func = random.uniform + assert_raises(OverflowError, func, -np.inf, 0) + assert_raises(OverflowError, func, 0, np.inf) + assert_raises(OverflowError, func, fmin, fmax) + assert_raises(OverflowError, func, [-np.inf], [0]) + assert_raises(OverflowError, func, [0], [np.inf]) + + # (fmax / 1e17) - fmin is within range, so this should not throw + # account for i386 extended precision DBL_MAX / 1e17 + DBL_MAX > + # DBL_MAX by increasing fmin a bit + random.uniform(low=np.nextafter(fmin, 1), high=fmax / 1e17) + + def test_scalar_exception_propagation(self): + # Tests that exceptions are correctly propagated in distributions + # when called with objects that throw exceptions when converted to + # scalars. + # + # Regression test for gh: 8865 + + class ThrowingFloat(np.ndarray): + def __float__(self): + raise TypeError + + throwing_float = np.array(1.0).view(ThrowingFloat) + assert_raises(TypeError, random.uniform, throwing_float, + throwing_float) + + class ThrowingInteger(np.ndarray): + def __int__(self): + raise TypeError + + throwing_int = np.array(1).view(ThrowingInteger) + assert_raises(TypeError, random.hypergeometric, throwing_int, 1, 1) + + def test_vonmises(self): + random.seed(self.seed) + actual = random.vonmises(mu=1.23, kappa=1.54, size=(3, 2)) + desired = np.array([[2.28567572673902042, 2.89163838442285037], + [0.38198375564286025, 2.57638023113890746], + [1.19153771588353052, 1.83509849681825354]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_vonmises_small(self): + # check infinite loop, gh-4720 + random.seed(self.seed) + r = random.vonmises(mu=0., kappa=1.1e-8, size=10**6) + assert_(np.isfinite(r).all()) + + def test_vonmises_large(self): + # guard against changes in RandomState when Generator is fixed + random.seed(self.seed) + actual = random.vonmises(mu=0., kappa=1e7, size=3) + desired = np.array([4.634253748521111e-04, + 3.558873596114509e-04, + -2.337119622577433e-04]) + assert_array_almost_equal(actual, desired, decimal=8) + + def test_vonmises_nan(self): + random.seed(self.seed) + r = random.vonmises(mu=0., kappa=np.nan) + assert_(np.isnan(r)) + + def test_wald(self): + random.seed(self.seed) + actual = random.wald(mean=1.23, scale=1.54, size=(3, 2)) + desired = np.array([[3.82935265715889983, 5.13125249184285526], + [0.35045403618358717, 1.50832396872003538], + [0.24124319895843183, 0.22031101461955038]]) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_weibull(self): + random.seed(self.seed) + actual = random.weibull(a=1.23, size=(3, 2)) + desired = np.array([[0.97097342648766727, 0.91422896443565516], + [1.89517770034962929, 1.91414357960479564], + [0.67057783752390987, 1.39494046635066793]]) + assert_array_almost_equal(actual, desired, decimal=15) + + def test_weibull_0(self): + random.seed(self.seed) + assert_equal(random.weibull(a=0, size=12), np.zeros(12)) + assert_raises(ValueError, random.weibull, a=-0.) + + def test_zipf(self): + random.seed(self.seed) + actual = random.zipf(a=1.23, size=(3, 2)) + desired = np.array([[66, 29], + [1, 1], + [3, 13]]) + assert_array_equal(actual, desired) + + +class TestBroadcast: + # tests that functions that broadcast behave + # correctly when presented with non-scalar arguments + def setup_method(self): + self.seed = 123456789 + + def set_seed(self): + random.seed(self.seed) + + def test_uniform(self): + low = [0] + high = [1] + uniform = random.uniform + desired = np.array([0.53283302478975902, + 0.53413660089041659, + 0.50955303552646702]) + + self.set_seed() + actual = uniform(low * 3, high) + assert_array_almost_equal(actual, desired, decimal=14) + + self.set_seed() + actual = uniform(low, high * 3) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_normal(self): + loc = [0] + scale = [1] + bad_scale = [-1] + normal = random.normal + desired = np.array([2.2129019979039612, + 2.1283977976520019, + 1.8417114045748335]) + + self.set_seed() + actual = normal(loc * 3, scale) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, normal, loc * 3, bad_scale) + + self.set_seed() + actual = normal(loc, scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, normal, loc, bad_scale * 3) + + def test_beta(self): + a = [1] + b = [2] + bad_a = [-1] + bad_b = [-2] + beta = random.beta + desired = np.array([0.19843558305989056, + 0.075230336409423643, + 0.24976865978980844]) + + self.set_seed() + actual = beta(a * 3, b) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, beta, bad_a * 3, b) + assert_raises(ValueError, beta, a * 3, bad_b) + + self.set_seed() + actual = beta(a, b * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, beta, bad_a, b * 3) + assert_raises(ValueError, beta, a, bad_b * 3) + + def test_exponential(self): + scale = [1] + bad_scale = [-1] + exponential = random.exponential + desired = np.array([0.76106853658845242, + 0.76386282278691653, + 0.71243813125891797]) + + self.set_seed() + actual = exponential(scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, exponential, bad_scale * 3) + + def test_standard_gamma(self): + shape = [1] + bad_shape = [-1] + std_gamma = random.standard_gamma + desired = np.array([0.76106853658845242, + 0.76386282278691653, + 0.71243813125891797]) + + self.set_seed() + actual = std_gamma(shape * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, std_gamma, bad_shape * 3) + + def test_gamma(self): + shape = [1] + scale = [2] + bad_shape = [-1] + bad_scale = [-2] + gamma = random.gamma + desired = np.array([1.5221370731769048, + 1.5277256455738331, + 1.4248762625178359]) + + self.set_seed() + actual = gamma(shape * 3, scale) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, gamma, bad_shape * 3, scale) + assert_raises(ValueError, gamma, shape * 3, bad_scale) + + self.set_seed() + actual = gamma(shape, scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, gamma, bad_shape, scale * 3) + assert_raises(ValueError, gamma, shape, bad_scale * 3) + + def test_f(self): + dfnum = [1] + dfden = [2] + bad_dfnum = [-1] + bad_dfden = [-2] + f = random.f + desired = np.array([0.80038951638264799, + 0.86768719635363512, + 2.7251095168386801]) + + self.set_seed() + actual = f(dfnum * 3, dfden) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, f, bad_dfnum * 3, dfden) + assert_raises(ValueError, f, dfnum * 3, bad_dfden) + + self.set_seed() + actual = f(dfnum, dfden * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, f, bad_dfnum, dfden * 3) + assert_raises(ValueError, f, dfnum, bad_dfden * 3) + + def test_noncentral_f(self): + dfnum = [2] + dfden = [3] + nonc = [4] + bad_dfnum = [0] + bad_dfden = [-1] + bad_nonc = [-2] + nonc_f = random.noncentral_f + desired = np.array([9.1393943263705211, + 13.025456344595602, + 8.8018098359100545]) + + self.set_seed() + actual = nonc_f(dfnum * 3, dfden, nonc) + assert_array_almost_equal(actual, desired, decimal=14) + assert np.all(np.isnan(nonc_f(dfnum, dfden, [np.nan] * 3))) + + assert_raises(ValueError, nonc_f, bad_dfnum * 3, dfden, nonc) + assert_raises(ValueError, nonc_f, dfnum * 3, bad_dfden, nonc) + assert_raises(ValueError, nonc_f, dfnum * 3, dfden, bad_nonc) + + self.set_seed() + actual = nonc_f(dfnum, dfden * 3, nonc) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, nonc_f, bad_dfnum, dfden * 3, nonc) + assert_raises(ValueError, nonc_f, dfnum, bad_dfden * 3, nonc) + assert_raises(ValueError, nonc_f, dfnum, dfden * 3, bad_nonc) + + self.set_seed() + actual = nonc_f(dfnum, dfden, nonc * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, nonc_f, bad_dfnum, dfden, nonc * 3) + assert_raises(ValueError, nonc_f, dfnum, bad_dfden, nonc * 3) + assert_raises(ValueError, nonc_f, dfnum, dfden, bad_nonc * 3) + + def test_noncentral_f_small_df(self): + self.set_seed() + desired = np.array([6.869638627492048, 0.785880199263955]) + actual = random.noncentral_f(0.9, 0.9, 2, size=2) + assert_array_almost_equal(actual, desired, decimal=14) + + def test_chisquare(self): + df = [1] + bad_df = [-1] + chisquare = random.chisquare + desired = np.array([0.57022801133088286, + 0.51947702108840776, + 0.1320969254923558]) + + self.set_seed() + actual = chisquare(df * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, chisquare, bad_df * 3) + + def test_noncentral_chisquare(self): + df = [1] + nonc = [2] + bad_df = [-1] + bad_nonc = [-2] + nonc_chi = random.noncentral_chisquare + desired = np.array([9.0015599467913763, + 4.5804135049718742, + 6.0872302432834564]) + + self.set_seed() + actual = nonc_chi(df * 3, nonc) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, nonc_chi, bad_df * 3, nonc) + assert_raises(ValueError, nonc_chi, df * 3, bad_nonc) + + self.set_seed() + actual = nonc_chi(df, nonc * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, nonc_chi, bad_df, nonc * 3) + assert_raises(ValueError, nonc_chi, df, bad_nonc * 3) + + def test_standard_t(self): + df = [1] + bad_df = [-1] + t = random.standard_t + desired = np.array([3.0702872575217643, + 5.8560725167361607, + 1.0274791436474273]) + + self.set_seed() + actual = t(df * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, t, bad_df * 3) + assert_raises(ValueError, random.standard_t, bad_df * 3) + + def test_vonmises(self): + mu = [2] + kappa = [1] + bad_kappa = [-1] + vonmises = random.vonmises + desired = np.array([2.9883443664201312, + -2.7064099483995943, + -1.8672476700665914]) + + self.set_seed() + actual = vonmises(mu * 3, kappa) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, vonmises, mu * 3, bad_kappa) + + self.set_seed() + actual = vonmises(mu, kappa * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, vonmises, mu, bad_kappa * 3) + + def test_pareto(self): + a = [1] + bad_a = [-1] + pareto = random.pareto + desired = np.array([1.1405622680198362, + 1.1465519762044529, + 1.0389564467453547]) + + self.set_seed() + actual = pareto(a * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, pareto, bad_a * 3) + assert_raises(ValueError, random.pareto, bad_a * 3) + + def test_weibull(self): + a = [1] + bad_a = [-1] + weibull = random.weibull + desired = np.array([0.76106853658845242, + 0.76386282278691653, + 0.71243813125891797]) + + self.set_seed() + actual = weibull(a * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, weibull, bad_a * 3) + assert_raises(ValueError, random.weibull, bad_a * 3) + + def test_power(self): + a = [1] + bad_a = [-1] + power = random.power + desired = np.array([0.53283302478975902, + 0.53413660089041659, + 0.50955303552646702]) + + self.set_seed() + actual = power(a * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, power, bad_a * 3) + assert_raises(ValueError, random.power, bad_a * 3) + + def test_laplace(self): + loc = [0] + scale = [1] + bad_scale = [-1] + laplace = random.laplace + desired = np.array([0.067921356028507157, + 0.070715642226971326, + 0.019290950698972624]) + + self.set_seed() + actual = laplace(loc * 3, scale) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, laplace, loc * 3, bad_scale) + + self.set_seed() + actual = laplace(loc, scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, laplace, loc, bad_scale * 3) + + def test_gumbel(self): + loc = [0] + scale = [1] + bad_scale = [-1] + gumbel = random.gumbel + desired = np.array([0.2730318639556768, + 0.26936705726291116, + 0.33906220393037939]) + + self.set_seed() + actual = gumbel(loc * 3, scale) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, gumbel, loc * 3, bad_scale) + + self.set_seed() + actual = gumbel(loc, scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, gumbel, loc, bad_scale * 3) + + def test_logistic(self): + loc = [0] + scale = [1] + bad_scale = [-1] + logistic = random.logistic + desired = np.array([0.13152135837586171, + 0.13675915696285773, + 0.038216792802833396]) + + self.set_seed() + actual = logistic(loc * 3, scale) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, logistic, loc * 3, bad_scale) + + self.set_seed() + actual = logistic(loc, scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, logistic, loc, bad_scale * 3) + assert_equal(random.logistic(1.0, 0.0), 1.0) + + def test_lognormal(self): + mean = [0] + sigma = [1] + bad_sigma = [-1] + lognormal = random.lognormal + desired = np.array([9.1422086044848427, + 8.4013952870126261, + 6.3073234116578671]) + + self.set_seed() + actual = lognormal(mean * 3, sigma) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, lognormal, mean * 3, bad_sigma) + assert_raises(ValueError, random.lognormal, mean * 3, bad_sigma) + + self.set_seed() + actual = lognormal(mean, sigma * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, lognormal, mean, bad_sigma * 3) + assert_raises(ValueError, random.lognormal, mean, bad_sigma * 3) + + def test_rayleigh(self): + scale = [1] + bad_scale = [-1] + rayleigh = random.rayleigh + desired = np.array([1.2337491937897689, + 1.2360119924878694, + 1.1936818095781789]) + + self.set_seed() + actual = rayleigh(scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, rayleigh, bad_scale * 3) + + def test_wald(self): + mean = [0.5] + scale = [1] + bad_mean = [0] + bad_scale = [-2] + wald = random.wald + desired = np.array([0.11873681120271318, + 0.12450084820795027, + 0.9096122728408238]) + + self.set_seed() + actual = wald(mean * 3, scale) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, wald, bad_mean * 3, scale) + assert_raises(ValueError, wald, mean * 3, bad_scale) + assert_raises(ValueError, random.wald, bad_mean * 3, scale) + assert_raises(ValueError, random.wald, mean * 3, bad_scale) + + self.set_seed() + actual = wald(mean, scale * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, wald, bad_mean, scale * 3) + assert_raises(ValueError, wald, mean, bad_scale * 3) + assert_raises(ValueError, wald, 0.0, 1) + assert_raises(ValueError, wald, 0.5, 0.0) + + def test_triangular(self): + left = [1] + right = [3] + mode = [2] + bad_left_one = [3] + bad_mode_one = [4] + bad_left_two, bad_mode_two = right * 2 + triangular = random.triangular + desired = np.array([2.03339048710429, + 2.0347400359389356, + 2.0095991069536208]) + + self.set_seed() + actual = triangular(left * 3, mode, right) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, triangular, bad_left_one * 3, mode, right) + assert_raises(ValueError, triangular, left * 3, bad_mode_one, right) + assert_raises(ValueError, triangular, bad_left_two * 3, bad_mode_two, + right) + + self.set_seed() + actual = triangular(left, mode * 3, right) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, triangular, bad_left_one, mode * 3, right) + assert_raises(ValueError, triangular, left, bad_mode_one * 3, right) + assert_raises(ValueError, triangular, bad_left_two, bad_mode_two * 3, + right) + + self.set_seed() + actual = triangular(left, mode, right * 3) + assert_array_almost_equal(actual, desired, decimal=14) + assert_raises(ValueError, triangular, bad_left_one, mode, right * 3) + assert_raises(ValueError, triangular, left, bad_mode_one, right * 3) + assert_raises(ValueError, triangular, bad_left_two, bad_mode_two, + right * 3) + + assert_raises(ValueError, triangular, 10., 0., 20.) + assert_raises(ValueError, triangular, 10., 25., 20.) + assert_raises(ValueError, triangular, 10., 10., 10.) + + def test_binomial(self): + n = [1] + p = [0.5] + bad_n = [-1] + bad_p_one = [-1] + bad_p_two = [1.5] + binom = random.binomial + desired = np.array([1, 1, 1]) + + self.set_seed() + actual = binom(n * 3, p) + assert_array_equal(actual, desired) + assert_raises(ValueError, binom, bad_n * 3, p) + assert_raises(ValueError, binom, n * 3, bad_p_one) + assert_raises(ValueError, binom, n * 3, bad_p_two) + + self.set_seed() + actual = binom(n, p * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, binom, bad_n, p * 3) + assert_raises(ValueError, binom, n, bad_p_one * 3) + assert_raises(ValueError, binom, n, bad_p_two * 3) + + def test_negative_binomial(self): + n = [1] + p = [0.5] + bad_n = [-1] + bad_p_one = [-1] + bad_p_two = [1.5] + neg_binom = random.negative_binomial + desired = np.array([1, 0, 1]) + + self.set_seed() + actual = neg_binom(n * 3, p) + assert_array_equal(actual, desired) + assert_raises(ValueError, neg_binom, bad_n * 3, p) + assert_raises(ValueError, neg_binom, n * 3, bad_p_one) + assert_raises(ValueError, neg_binom, n * 3, bad_p_two) + + self.set_seed() + actual = neg_binom(n, p * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, neg_binom, bad_n, p * 3) + assert_raises(ValueError, neg_binom, n, bad_p_one * 3) + assert_raises(ValueError, neg_binom, n, bad_p_two * 3) + + def test_poisson(self): + max_lam = random.RandomState()._poisson_lam_max + + lam = [1] + bad_lam_one = [-1] + bad_lam_two = [max_lam * 2] + poisson = random.poisson + desired = np.array([1, 1, 0]) + + self.set_seed() + actual = poisson(lam * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, poisson, bad_lam_one * 3) + assert_raises(ValueError, poisson, bad_lam_two * 3) + + def test_zipf(self): + a = [2] + bad_a = [0] + zipf = random.zipf + desired = np.array([2, 2, 1]) + + self.set_seed() + actual = zipf(a * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, zipf, bad_a * 3) + with np.errstate(invalid='ignore'): + assert_raises(ValueError, zipf, np.nan) + assert_raises(ValueError, zipf, [0, 0, np.nan]) + + def test_geometric(self): + p = [0.5] + bad_p_one = [-1] + bad_p_two = [1.5] + geom = random.geometric + desired = np.array([2, 2, 2]) + + self.set_seed() + actual = geom(p * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, geom, bad_p_one * 3) + assert_raises(ValueError, geom, bad_p_two * 3) + + def test_hypergeometric(self): + ngood = [1] + nbad = [2] + nsample = [2] + bad_ngood = [-1] + bad_nbad = [-2] + bad_nsample_one = [0] + bad_nsample_two = [4] + hypergeom = random.hypergeometric + desired = np.array([1, 1, 1]) + + self.set_seed() + actual = hypergeom(ngood * 3, nbad, nsample) + assert_array_equal(actual, desired) + assert_raises(ValueError, hypergeom, bad_ngood * 3, nbad, nsample) + assert_raises(ValueError, hypergeom, ngood * 3, bad_nbad, nsample) + assert_raises(ValueError, hypergeom, ngood * 3, nbad, bad_nsample_one) + assert_raises(ValueError, hypergeom, ngood * 3, nbad, bad_nsample_two) + + self.set_seed() + actual = hypergeom(ngood, nbad * 3, nsample) + assert_array_equal(actual, desired) + assert_raises(ValueError, hypergeom, bad_ngood, nbad * 3, nsample) + assert_raises(ValueError, hypergeom, ngood, bad_nbad * 3, nsample) + assert_raises(ValueError, hypergeom, ngood, nbad * 3, bad_nsample_one) + assert_raises(ValueError, hypergeom, ngood, nbad * 3, bad_nsample_two) + + self.set_seed() + actual = hypergeom(ngood, nbad, nsample * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, hypergeom, bad_ngood, nbad, nsample * 3) + assert_raises(ValueError, hypergeom, ngood, bad_nbad, nsample * 3) + assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_one * 3) + assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_two * 3) + + assert_raises(ValueError, hypergeom, -1, 10, 20) + assert_raises(ValueError, hypergeom, 10, -1, 20) + assert_raises(ValueError, hypergeom, 10, 10, 0) + assert_raises(ValueError, hypergeom, 10, 10, 25) + + def test_logseries(self): + p = [0.5] + bad_p_one = [2] + bad_p_two = [-1] + logseries = random.logseries + desired = np.array([1, 1, 1]) + + self.set_seed() + actual = logseries(p * 3) + assert_array_equal(actual, desired) + assert_raises(ValueError, logseries, bad_p_one * 3) + assert_raises(ValueError, logseries, bad_p_two * 3) + + +@pytest.mark.skipif(IS_WASM, reason="can't start thread") +class TestThread: + # make sure each state produces the same sequence even in threads + def setup_method(self): + self.seeds = range(4) + + def check_function(self, function, sz): + from threading import Thread + + out1 = np.empty((len(self.seeds),) + sz) + out2 = np.empty((len(self.seeds),) + sz) + + # threaded generation + t = [Thread(target=function, args=(random.RandomState(s), o)) + for s, o in zip(self.seeds, out1)] + [x.start() for x in t] + [x.join() for x in t] + + # the same serial + for s, o in zip(self.seeds, out2): + function(random.RandomState(s), o) + + # these platforms change x87 fpu precision mode in threads + if np.intp().dtype.itemsize == 4 and sys.platform == "win32": + assert_array_almost_equal(out1, out2) + else: + assert_array_equal(out1, out2) + + def test_normal(self): + def gen_random(state, out): + out[...] = state.normal(size=10000) + + self.check_function(gen_random, sz=(10000,)) + + def test_exp(self): + def gen_random(state, out): + out[...] = state.exponential(scale=np.ones((100, 1000))) + + self.check_function(gen_random, sz=(100, 1000)) + + def test_multinomial(self): + def gen_random(state, out): + out[...] = state.multinomial(10, [1 / 6.] * 6, size=10000) + + self.check_function(gen_random, sz=(10000, 6)) + + +# See Issue #4263 +class TestSingleEltArrayInput: + def setup_method(self): + self.argOne = np.array([2]) + self.argTwo = np.array([3]) + self.argThree = np.array([4]) + self.tgtShape = (1,) + + def test_one_arg_funcs(self): + funcs = (random.exponential, random.standard_gamma, + random.chisquare, random.standard_t, + random.pareto, random.weibull, + random.power, random.rayleigh, + random.poisson, random.zipf, + random.geometric, random.logseries) + + probfuncs = (random.geometric, random.logseries) + + for func in funcs: + if func in probfuncs: # p < 1.0 + out = func(np.array([0.5])) + + else: + out = func(self.argOne) + + assert_equal(out.shape, self.tgtShape) + + def test_two_arg_funcs(self): + funcs = (random.uniform, random.normal, + random.beta, random.gamma, + random.f, random.noncentral_chisquare, + random.vonmises, random.laplace, + random.gumbel, random.logistic, + random.lognormal, random.wald, + random.binomial, random.negative_binomial) + + probfuncs = (random.binomial, random.negative_binomial) + + for func in funcs: + if func in probfuncs: # p <= 1 + argTwo = np.array([0.5]) + + else: + argTwo = self.argTwo + + out = func(self.argOne, argTwo) + assert_equal(out.shape, self.tgtShape) + + out = func(self.argOne[0], argTwo) + assert_equal(out.shape, self.tgtShape) + + out = func(self.argOne, argTwo[0]) + assert_equal(out.shape, self.tgtShape) + + def test_three_arg_funcs(self): + funcs = [random.noncentral_f, random.triangular, + random.hypergeometric] + + for func in funcs: + out = func(self.argOne, self.argTwo, self.argThree) + assert_equal(out.shape, self.tgtShape) + + out = func(self.argOne[0], self.argTwo, self.argThree) + assert_equal(out.shape, self.tgtShape) + + out = func(self.argOne, self.argTwo[0], self.argThree) + assert_equal(out.shape, self.tgtShape) + + +# Ensure returned array dtype is correct for platform +def test_integer_dtype(int_func): + random.seed(123456789) + fname, args, sha256 = int_func + f = getattr(random, fname) + actual = f(*args, size=2) + assert_(actual.dtype == np.dtype('l')) + + +def test_integer_repeat(int_func): + random.seed(123456789) + fname, args, sha256 = int_func + f = getattr(random, fname) + val = f(*args, size=1000000) + if sys.byteorder != 'little': + val = val.byteswap() + res = hashlib.sha256(val.view(np.int8)).hexdigest() + assert_(res == sha256) + + +def test_broadcast_size_error(): + # GH-16833 + with pytest.raises(ValueError): + random.binomial(1, [0.3, 0.7], size=(2, 1)) + with pytest.raises(ValueError): + random.binomial([1, 2], 0.3, size=(2, 1)) + with pytest.raises(ValueError): + random.binomial([1, 2], [0.3, 0.7], size=(2, 1)) + + +def test_randomstate_ctor_old_style_pickle(): + rs = np.random.RandomState(MT19937(0)) + rs.standard_normal(1) + # Directly call reduce which is used in pickling + ctor, args, state_a = rs.__reduce__() + # Simulate unpickling an old pickle that only has the name + assert args[0].__class__.__name__ == "MT19937" + b = ctor(*("MT19937",)) + b.set_state(state_a) + state_b = b.get_state(legacy=False) + + assert_equal(state_a['bit_generator'], state_b['bit_generator']) + assert_array_equal(state_a['state']['key'], state_b['state']['key']) + assert_array_equal(state_a['state']['pos'], state_b['state']['pos']) + assert_equal(state_a['has_gauss'], state_b['has_gauss']) + assert_equal(state_a['gauss'], state_b['gauss']) + + +def test_hot_swap(restore_singleton_bitgen): + # GH 21808 + def_bg = np.random.default_rng(0) + bg = def_bg.bit_generator + np.random.set_bit_generator(bg) + assert isinstance(np.random.mtrand._rand._bit_generator, type(bg)) + + second_bg = np.random.get_bit_generator() + assert bg is second_bg + + +def test_seed_alt_bit_gen(restore_singleton_bitgen): + # GH 21808 + bg = PCG64(0) + np.random.set_bit_generator(bg) + state = np.random.get_state(legacy=False) + np.random.seed(1) + new_state = np.random.get_state(legacy=False) + print(state) + print(new_state) + assert state["bit_generator"] == "PCG64" + assert state["state"]["state"] != new_state["state"]["state"] + assert state["state"]["inc"] != new_state["state"]["inc"] + + +def test_state_error_alt_bit_gen(restore_singleton_bitgen): + # GH 21808 + state = np.random.get_state() + bg = PCG64(0) + np.random.set_bit_generator(bg) + with pytest.raises(ValueError, match="state must be for a PCG64"): + np.random.set_state(state) + + +def test_swap_worked(restore_singleton_bitgen): + # GH 21808 + np.random.seed(98765) + vals = np.random.randint(0, 2 ** 30, 10) + bg = PCG64(0) + state = bg.state + np.random.set_bit_generator(bg) + state_direct = np.random.get_state(legacy=False) + for field in state: + assert state[field] == state_direct[field] + np.random.seed(98765) + pcg_vals = np.random.randint(0, 2 ** 30, 10) + assert not np.all(vals == pcg_vals) + new_state = bg.state + assert new_state["state"]["state"] != state["state"]["state"] + assert new_state["state"]["inc"] == new_state["state"]["inc"] + + +def test_swapped_singleton_against_direct(restore_singleton_bitgen): + np.random.set_bit_generator(PCG64(98765)) + singleton_vals = np.random.randint(0, 2 ** 30, 10) + rg = np.random.RandomState(PCG64(98765)) + non_singleton_vals = rg.randint(0, 2 ** 30, 10) + assert_equal(non_singleton_vals, singleton_vals) diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/test_randomstate_regression.py b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_randomstate_regression.py new file mode 100644 index 0000000..6ccc618 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_randomstate_regression.py @@ -0,0 +1,217 @@ +import sys + +import pytest + +import numpy as np +from numpy import random +from numpy.testing import ( + assert_, + assert_array_equal, + assert_raises, +) + + +class TestRegression: + + def test_VonMises_range(self): + # Make sure generated random variables are in [-pi, pi]. + # Regression test for ticket #986. + for mu in np.linspace(-7., 7., 5): + r = random.vonmises(mu, 1, 50) + assert_(np.all(r > -np.pi) and np.all(r <= np.pi)) + + def test_hypergeometric_range(self): + # Test for ticket #921 + assert_(np.all(random.hypergeometric(3, 18, 11, size=10) < 4)) + assert_(np.all(random.hypergeometric(18, 3, 11, size=10) > 0)) + + # Test for ticket #5623 + args = [ + (2**20 - 2, 2**20 - 2, 2**20 - 2), # Check for 32-bit systems + ] + is_64bits = sys.maxsize > 2**32 + if is_64bits and sys.platform != 'win32': + # Check for 64-bit systems + args.append((2**40 - 2, 2**40 - 2, 2**40 - 2)) + for arg in args: + assert_(random.hypergeometric(*arg) > 0) + + def test_logseries_convergence(self): + # Test for ticket #923 + N = 1000 + random.seed(0) + rvsn = random.logseries(0.8, size=N) + # these two frequency counts should be close to theoretical + # numbers with this large sample + # theoretical large N result is 0.49706795 + freq = np.sum(rvsn == 1) / N + msg = f'Frequency was {freq:f}, should be > 0.45' + assert_(freq > 0.45, msg) + # theoretical large N result is 0.19882718 + freq = np.sum(rvsn == 2) / N + msg = f'Frequency was {freq:f}, should be < 0.23' + assert_(freq < 0.23, msg) + + def test_shuffle_mixed_dimension(self): + # Test for trac ticket #2074 + for t in [[1, 2, 3, None], + [(1, 1), (2, 2), (3, 3), None], + [1, (2, 2), (3, 3), None], + [(1, 1), 2, 3, None]]: + random.seed(12345) + shuffled = list(t) + random.shuffle(shuffled) + expected = np.array([t[0], t[3], t[1], t[2]], dtype=object) + assert_array_equal(np.array(shuffled, dtype=object), expected) + + def test_call_within_randomstate(self): + # Check that custom RandomState does not call into global state + m = random.RandomState() + res = np.array([0, 8, 7, 2, 1, 9, 4, 7, 0, 3]) + for i in range(3): + random.seed(i) + m.seed(4321) + # If m.state is not honored, the result will change + assert_array_equal(m.choice(10, size=10, p=np.ones(10) / 10.), res) + + def test_multivariate_normal_size_types(self): + # Test for multivariate_normal issue with 'size' argument. + # Check that the multivariate_normal size argument can be a + # numpy integer. + random.multivariate_normal([0], [[0]], size=1) + random.multivariate_normal([0], [[0]], size=np.int_(1)) + random.multivariate_normal([0], [[0]], size=np.int64(1)) + + def test_beta_small_parameters(self): + # Test that beta with small a and b parameters does not produce + # NaNs due to roundoff errors causing 0 / 0, gh-5851 + random.seed(1234567890) + x = random.beta(0.0001, 0.0001, size=100) + assert_(not np.any(np.isnan(x)), 'Nans in random.beta') + + def test_choice_sum_of_probs_tolerance(self): + # The sum of probs should be 1.0 with some tolerance. + # For low precision dtypes the tolerance was too tight. + # See numpy github issue 6123. + random.seed(1234) + a = [1, 2, 3] + counts = [4, 4, 2] + for dt in np.float16, np.float32, np.float64: + probs = np.array(counts, dtype=dt) / sum(counts) + c = random.choice(a, p=probs) + assert_(c in a) + assert_raises(ValueError, random.choice, a, p=probs * 0.9) + + def test_shuffle_of_array_of_different_length_strings(self): + # Test that permuting an array of different length strings + # will not cause a segfault on garbage collection + # Tests gh-7710 + random.seed(1234) + + a = np.array(['a', 'a' * 1000]) + + for _ in range(100): + random.shuffle(a) + + # Force Garbage Collection - should not segfault. + import gc + gc.collect() + + def test_shuffle_of_array_of_objects(self): + # Test that permuting an array of objects will not cause + # a segfault on garbage collection. + # See gh-7719 + random.seed(1234) + a = np.array([np.arange(1), np.arange(4)], dtype=object) + + for _ in range(1000): + random.shuffle(a) + + # Force Garbage Collection - should not segfault. + import gc + gc.collect() + + def test_permutation_subclass(self): + class N(np.ndarray): + pass + + random.seed(1) + orig = np.arange(3).view(N) + perm = random.permutation(orig) + assert_array_equal(perm, np.array([0, 2, 1])) + assert_array_equal(orig, np.arange(3).view(N)) + + class M: + a = np.arange(5) + + def __array__(self, dtype=None, copy=None): + return self.a + + random.seed(1) + m = M() + perm = random.permutation(m) + assert_array_equal(perm, np.array([2, 1, 4, 0, 3])) + assert_array_equal(m.__array__(), np.arange(5)) + + def test_warns_byteorder(self): + # GH 13159 + other_byteord_dt = 'i4' + with pytest.deprecated_call(match='non-native byteorder is not'): + random.randint(0, 200, size=10, dtype=other_byteord_dt) + + def test_named_argument_initialization(self): + # GH 13669 + rs1 = np.random.RandomState(123456789) + rs2 = np.random.RandomState(seed=123456789) + assert rs1.randint(0, 100) == rs2.randint(0, 100) + + def test_choice_retun_dtype(self): + # GH 9867, now long since the NumPy default changed. + c = np.random.choice(10, p=[.1] * 10, size=2) + assert c.dtype == np.dtype(np.long) + c = np.random.choice(10, p=[.1] * 10, replace=False, size=2) + assert c.dtype == np.dtype(np.long) + c = np.random.choice(10, size=2) + assert c.dtype == np.dtype(np.long) + c = np.random.choice(10, replace=False, size=2) + assert c.dtype == np.dtype(np.long) + + @pytest.mark.skipif(np.iinfo('l').max < 2**32, + reason='Cannot test with 32-bit C long') + def test_randint_117(self): + # GH 14189 + random.seed(0) + expected = np.array([2357136044, 2546248239, 3071714933, 3626093760, + 2588848963, 3684848379, 2340255427, 3638918503, + 1819583497, 2678185683], dtype='int64') + actual = random.randint(2**32, size=10) + assert_array_equal(actual, expected) + + def test_p_zero_stream(self): + # Regression test for gh-14522. Ensure that future versions + # generate the same variates as version 1.16. + np.random.seed(12345) + assert_array_equal(random.binomial(1, [0, 0.25, 0.5, 0.75, 1]), + [0, 0, 0, 1, 1]) + + def test_n_zero_stream(self): + # Regression test for gh-14522. Ensure that future versions + # generate the same variates as version 1.16. + np.random.seed(8675309) + expected = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + [3, 4, 2, 3, 3, 1, 5, 3, 1, 3]]) + assert_array_equal(random.binomial([[0], [10]], 0.25, size=(2, 10)), + expected) + + +def test_multinomial_empty(): + # gh-20483 + # Ensure that empty p-vals are correctly handled + assert random.multinomial(10, []).shape == (0,) + assert random.multinomial(3, [], size=(7, 5, 3)).shape == (7, 5, 3, 0) + + +def test_multinomial_1d_pval(): + # gh-20483 + with pytest.raises(TypeError, match="pvals must be a 1-d"): + random.multinomial(10, 0.3) diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/test_regression.py b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_regression.py new file mode 100644 index 0000000..39b7d8c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_regression.py @@ -0,0 +1,152 @@ +import sys + +import numpy as np +from numpy import random +from numpy.testing import ( + assert_, + assert_array_equal, + assert_raises, +) + + +class TestRegression: + + def test_VonMises_range(self): + # Make sure generated random variables are in [-pi, pi]. + # Regression test for ticket #986. + for mu in np.linspace(-7., 7., 5): + r = random.mtrand.vonmises(mu, 1, 50) + assert_(np.all(r > -np.pi) and np.all(r <= np.pi)) + + def test_hypergeometric_range(self): + # Test for ticket #921 + assert_(np.all(np.random.hypergeometric(3, 18, 11, size=10) < 4)) + assert_(np.all(np.random.hypergeometric(18, 3, 11, size=10) > 0)) + + # Test for ticket #5623 + args = [ + (2**20 - 2, 2**20 - 2, 2**20 - 2), # Check for 32-bit systems + ] + is_64bits = sys.maxsize > 2**32 + if is_64bits and sys.platform != 'win32': + # Check for 64-bit systems + args.append((2**40 - 2, 2**40 - 2, 2**40 - 2)) + for arg in args: + assert_(np.random.hypergeometric(*arg) > 0) + + def test_logseries_convergence(self): + # Test for ticket #923 + N = 1000 + np.random.seed(0) + rvsn = np.random.logseries(0.8, size=N) + # these two frequency counts should be close to theoretical + # numbers with this large sample + # theoretical large N result is 0.49706795 + freq = np.sum(rvsn == 1) / N + msg = f'Frequency was {freq:f}, should be > 0.45' + assert_(freq > 0.45, msg) + # theoretical large N result is 0.19882718 + freq = np.sum(rvsn == 2) / N + msg = f'Frequency was {freq:f}, should be < 0.23' + assert_(freq < 0.23, msg) + + def test_shuffle_mixed_dimension(self): + # Test for trac ticket #2074 + for t in [[1, 2, 3, None], + [(1, 1), (2, 2), (3, 3), None], + [1, (2, 2), (3, 3), None], + [(1, 1), 2, 3, None]]: + np.random.seed(12345) + shuffled = list(t) + random.shuffle(shuffled) + expected = np.array([t[0], t[3], t[1], t[2]], dtype=object) + assert_array_equal(np.array(shuffled, dtype=object), expected) + + def test_call_within_randomstate(self): + # Check that custom RandomState does not call into global state + m = np.random.RandomState() + res = np.array([0, 8, 7, 2, 1, 9, 4, 7, 0, 3]) + for i in range(3): + np.random.seed(i) + m.seed(4321) + # If m.state is not honored, the result will change + assert_array_equal(m.choice(10, size=10, p=np.ones(10) / 10.), res) + + def test_multivariate_normal_size_types(self): + # Test for multivariate_normal issue with 'size' argument. + # Check that the multivariate_normal size argument can be a + # numpy integer. + np.random.multivariate_normal([0], [[0]], size=1) + np.random.multivariate_normal([0], [[0]], size=np.int_(1)) + np.random.multivariate_normal([0], [[0]], size=np.int64(1)) + + def test_beta_small_parameters(self): + # Test that beta with small a and b parameters does not produce + # NaNs due to roundoff errors causing 0 / 0, gh-5851 + np.random.seed(1234567890) + x = np.random.beta(0.0001, 0.0001, size=100) + assert_(not np.any(np.isnan(x)), 'Nans in np.random.beta') + + def test_choice_sum_of_probs_tolerance(self): + # The sum of probs should be 1.0 with some tolerance. + # For low precision dtypes the tolerance was too tight. + # See numpy github issue 6123. + np.random.seed(1234) + a = [1, 2, 3] + counts = [4, 4, 2] + for dt in np.float16, np.float32, np.float64: + probs = np.array(counts, dtype=dt) / sum(counts) + c = np.random.choice(a, p=probs) + assert_(c in a) + assert_raises(ValueError, np.random.choice, a, p=probs * 0.9) + + def test_shuffle_of_array_of_different_length_strings(self): + # Test that permuting an array of different length strings + # will not cause a segfault on garbage collection + # Tests gh-7710 + np.random.seed(1234) + + a = np.array(['a', 'a' * 1000]) + + for _ in range(100): + np.random.shuffle(a) + + # Force Garbage Collection - should not segfault. + import gc + gc.collect() + + def test_shuffle_of_array_of_objects(self): + # Test that permuting an array of objects will not cause + # a segfault on garbage collection. + # See gh-7719 + np.random.seed(1234) + a = np.array([np.arange(1), np.arange(4)], dtype=object) + + for _ in range(1000): + np.random.shuffle(a) + + # Force Garbage Collection - should not segfault. + import gc + gc.collect() + + def test_permutation_subclass(self): + class N(np.ndarray): + pass + + np.random.seed(1) + orig = np.arange(3).view(N) + perm = np.random.permutation(orig) + assert_array_equal(perm, np.array([0, 2, 1])) + assert_array_equal(orig, np.arange(3).view(N)) + + class M: + a = np.arange(5) + + def __array__(self, dtype=None, copy=None): + return self.a + + np.random.seed(1) + m = M() + perm = np.random.permutation(m) + assert_array_equal(perm, np.array([2, 1, 4, 0, 3])) + assert_array_equal(m.__array__(), np.arange(5)) diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/test_seed_sequence.py b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_seed_sequence.py new file mode 100644 index 0000000..87ae4ff --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_seed_sequence.py @@ -0,0 +1,79 @@ +import numpy as np +from numpy.random import SeedSequence +from numpy.testing import assert_array_compare, assert_array_equal + + +def test_reference_data(): + """ Check that SeedSequence generates data the same as the C++ reference. + + https://gist.github.com/imneme/540829265469e673d045 + """ + inputs = [ + [3735928559, 195939070, 229505742, 305419896], + [3668361503, 4165561550, 1661411377, 3634257570], + [164546577, 4166754639, 1765190214, 1303880213], + [446610472, 3941463886, 522937693, 1882353782], + [1864922766, 1719732118, 3882010307, 1776744564], + [4141682960, 3310988675, 553637289, 902896340], + [1134851934, 2352871630, 3699409824, 2648159817], + [1240956131, 3107113773, 1283198141, 1924506131], + [2669565031, 579818610, 3042504477, 2774880435], + [2766103236, 2883057919, 4029656435, 862374500], + ] + outputs = [ + [3914649087, 576849849, 3593928901, 2229911004], + [2240804226, 3691353228, 1365957195, 2654016646], + [3562296087, 3191708229, 1147942216, 3726991905], + [1403443605, 3591372999, 1291086759, 441919183], + [1086200464, 2191331643, 560336446, 3658716651], + [3249937430, 2346751812, 847844327, 2996632307], + [2584285912, 4034195531, 3523502488, 169742686], + [959045797, 3875435559, 1886309314, 359682705], + [3978441347, 432478529, 3223635119, 138903045], + [296367413, 4262059219, 13109864, 3283683422], + ] + outputs64 = [ + [2477551240072187391, 9577394838764454085], + [15854241394484835714, 11398914698975566411], + [13708282465491374871, 16007308345579681096], + [15424829579845884309, 1898028439751125927], + [9411697742461147792, 15714068361935982142], + [10079222287618677782, 12870437757549876199], + [17326737873898640088, 729039288628699544], + [16644868984619524261, 1544825456798124994], + [1857481142255628931, 596584038813451439], + [18305404959516669237, 14103312907920476776], + ] + for seed, expected, expected64 in zip(inputs, outputs, outputs64): + expected = np.array(expected, dtype=np.uint32) + ss = SeedSequence(seed) + state = ss.generate_state(len(expected)) + assert_array_equal(state, expected) + state64 = ss.generate_state(len(expected64), dtype=np.uint64) + assert_array_equal(state64, expected64) + + +def test_zero_padding(): + """ Ensure that the implicit zero-padding does not cause problems. + """ + # Ensure that large integers are inserted in little-endian fashion to avoid + # trailing 0s. + ss0 = SeedSequence(42) + ss1 = SeedSequence(42 << 32) + assert_array_compare( + np.not_equal, + ss0.generate_state(4), + ss1.generate_state(4)) + + # Ensure backwards compatibility with the original 0.17 release for small + # integers and no spawn key. + expected42 = np.array([3444837047, 2669555309, 2046530742, 3581440988], + dtype=np.uint32) + assert_array_equal(SeedSequence(42).generate_state(4), expected42) + + # Regression test for gh-16539 to ensure that the implicit 0s don't + # conflict with spawn keys. + assert_array_compare( + np.not_equal, + SeedSequence(42, spawn_key=(0,)).generate_state(4), + expected42) diff --git a/.venv/lib/python3.12/site-packages/numpy/random/tests/test_smoke.py b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_smoke.py new file mode 100644 index 0000000..6f07443 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/random/tests/test_smoke.py @@ -0,0 +1,819 @@ +import pickle +from functools import partial + +import pytest + +import numpy as np +from numpy.random import MT19937, PCG64, PCG64DXSM, SFC64, Generator, Philox +from numpy.testing import assert_, assert_array_equal, assert_equal + + +@pytest.fixture(scope='module', + params=(np.bool, np.int8, np.int16, np.int32, np.int64, + np.uint8, np.uint16, np.uint32, np.uint64)) +def dtype(request): + return request.param + + +def params_0(f): + val = f() + assert_(np.isscalar(val)) + val = f(10) + assert_(val.shape == (10,)) + val = f((10, 10)) + assert_(val.shape == (10, 10)) + val = f((10, 10, 10)) + assert_(val.shape == (10, 10, 10)) + val = f(size=(5, 5)) + assert_(val.shape == (5, 5)) + + +def params_1(f, bounded=False): + a = 5.0 + b = np.arange(2.0, 12.0) + c = np.arange(2.0, 102.0).reshape((10, 10)) + d = np.arange(2.0, 1002.0).reshape((10, 10, 10)) + e = np.array([2.0, 3.0]) + g = np.arange(2.0, 12.0).reshape((1, 10, 1)) + if bounded: + a = 0.5 + b = b / (1.5 * b.max()) + c = c / (1.5 * c.max()) + d = d / (1.5 * d.max()) + e = e / (1.5 * e.max()) + g = g / (1.5 * g.max()) + + # Scalar + f(a) + # Scalar - size + f(a, size=(10, 10)) + # 1d + f(b) + # 2d + f(c) + # 3d + f(d) + # 1d size + f(b, size=10) + # 2d - size - broadcast + f(e, size=(10, 2)) + # 3d - size + f(g, size=(10, 10, 10)) + + +def comp_state(state1, state2): + identical = True + if isinstance(state1, dict): + for key in state1: + identical &= comp_state(state1[key], state2[key]) + elif type(state1) != type(state2): + identical &= type(state1) == type(state2) + elif (isinstance(state1, (list, tuple, np.ndarray)) and isinstance( + state2, (list, tuple, np.ndarray))): + for s1, s2 in zip(state1, state2): + identical &= comp_state(s1, s2) + else: + identical &= state1 == state2 + return identical + + +def warmup(rg, n=None): + if n is None: + n = 11 + np.random.randint(0, 20) + rg.standard_normal(n) + rg.standard_normal(n) + rg.standard_normal(n, dtype=np.float32) + rg.standard_normal(n, dtype=np.float32) + rg.integers(0, 2 ** 24, n, dtype=np.uint64) + rg.integers(0, 2 ** 48, n, dtype=np.uint64) + rg.standard_gamma(11.0, n) + rg.standard_gamma(11.0, n, dtype=np.float32) + rg.random(n, dtype=np.float64) + rg.random(n, dtype=np.float32) + + +class RNG: + @classmethod + def setup_class(cls): + # Overridden in test classes. Place holder to silence IDE noise + cls.bit_generator = PCG64 + cls.advance = None + cls.seed = [12345] + cls.rg = Generator(cls.bit_generator(*cls.seed)) + cls.initial_state = cls.rg.bit_generator.state + cls.seed_vector_bits = 64 + cls._extra_setup() + + @classmethod + def _extra_setup(cls): + cls.vec_1d = np.arange(2.0, 102.0) + cls.vec_2d = np.arange(2.0, 102.0)[None, :] + cls.mat = np.arange(2.0, 102.0, 0.01).reshape((100, 100)) + cls.seed_error = TypeError + + def _reset_state(self): + self.rg.bit_generator.state = self.initial_state + + def test_init(self): + rg = Generator(self.bit_generator()) + state = rg.bit_generator.state + rg.standard_normal(1) + rg.standard_normal(1) + rg.bit_generator.state = state + new_state = rg.bit_generator.state + assert_(comp_state(state, new_state)) + + def test_advance(self): + state = self.rg.bit_generator.state + if hasattr(self.rg.bit_generator, 'advance'): + self.rg.bit_generator.advance(self.advance) + assert_(not comp_state(state, self.rg.bit_generator.state)) + else: + bitgen_name = self.rg.bit_generator.__class__.__name__ + pytest.skip(f'Advance is not supported by {bitgen_name}') + + def test_jump(self): + state = self.rg.bit_generator.state + if hasattr(self.rg.bit_generator, 'jumped'): + bit_gen2 = self.rg.bit_generator.jumped() + jumped_state = bit_gen2.state + assert_(not comp_state(state, jumped_state)) + self.rg.random(2 * 3 * 5 * 7 * 11 * 13 * 17) + self.rg.bit_generator.state = state + bit_gen3 = self.rg.bit_generator.jumped() + rejumped_state = bit_gen3.state + assert_(comp_state(jumped_state, rejumped_state)) + else: + bitgen_name = self.rg.bit_generator.__class__.__name__ + if bitgen_name not in ('SFC64',): + raise AttributeError(f'no "jumped" in {bitgen_name}') + pytest.skip(f'Jump is not supported by {bitgen_name}') + + def test_uniform(self): + r = self.rg.uniform(-1.0, 0.0, size=10) + assert_(len(r) == 10) + assert_((r > -1).all()) + assert_((r <= 0).all()) + + def test_uniform_array(self): + r = self.rg.uniform(np.array([-1.0] * 10), 0.0, size=10) + assert_(len(r) == 10) + assert_((r > -1).all()) + assert_((r <= 0).all()) + r = self.rg.uniform(np.array([-1.0] * 10), + np.array([0.0] * 10), size=10) + assert_(len(r) == 10) + assert_((r > -1).all()) + assert_((r <= 0).all()) + r = self.rg.uniform(-1.0, np.array([0.0] * 10), size=10) + assert_(len(r) == 10) + assert_((r > -1).all()) + assert_((r <= 0).all()) + + def test_random(self): + assert_(len(self.rg.random(10)) == 10) + params_0(self.rg.random) + + def test_standard_normal_zig(self): + assert_(len(self.rg.standard_normal(10)) == 10) + + def test_standard_normal(self): + assert_(len(self.rg.standard_normal(10)) == 10) + params_0(self.rg.standard_normal) + + def test_standard_gamma(self): + assert_(len(self.rg.standard_gamma(10, 10)) == 10) + assert_(len(self.rg.standard_gamma(np.array([10] * 10), 10)) == 10) + params_1(self.rg.standard_gamma) + + def test_standard_exponential(self): + assert_(len(self.rg.standard_exponential(10)) == 10) + params_0(self.rg.standard_exponential) + + def test_standard_exponential_float(self): + randoms = self.rg.standard_exponential(10, dtype='float32') + assert_(len(randoms) == 10) + assert randoms.dtype == np.float32 + params_0(partial(self.rg.standard_exponential, dtype='float32')) + + def test_standard_exponential_float_log(self): + randoms = self.rg.standard_exponential(10, dtype='float32', + method='inv') + assert_(len(randoms) == 10) + assert randoms.dtype == np.float32 + params_0(partial(self.rg.standard_exponential, dtype='float32', + method='inv')) + + def test_standard_cauchy(self): + assert_(len(self.rg.standard_cauchy(10)) == 10) + params_0(self.rg.standard_cauchy) + + def test_standard_t(self): + assert_(len(self.rg.standard_t(10, 10)) == 10) + params_1(self.rg.standard_t) + + def test_binomial(self): + assert_(self.rg.binomial(10, .5) >= 0) + assert_(self.rg.binomial(1000, .5) >= 0) + + def test_reset_state(self): + state = self.rg.bit_generator.state + int_1 = self.rg.integers(2**31) + self.rg.bit_generator.state = state + int_2 = self.rg.integers(2**31) + assert_(int_1 == int_2) + + def test_entropy_init(self): + rg = Generator(self.bit_generator()) + rg2 = Generator(self.bit_generator()) + assert_(not comp_state(rg.bit_generator.state, + rg2.bit_generator.state)) + + def test_seed(self): + rg = Generator(self.bit_generator(*self.seed)) + rg2 = Generator(self.bit_generator(*self.seed)) + rg.random() + rg2.random() + assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state)) + + def test_reset_state_gauss(self): + rg = Generator(self.bit_generator(*self.seed)) + rg.standard_normal() + state = rg.bit_generator.state + n1 = rg.standard_normal(size=10) + rg2 = Generator(self.bit_generator()) + rg2.bit_generator.state = state + n2 = rg2.standard_normal(size=10) + assert_array_equal(n1, n2) + + def test_reset_state_uint32(self): + rg = Generator(self.bit_generator(*self.seed)) + rg.integers(0, 2 ** 24, 120, dtype=np.uint32) + state = rg.bit_generator.state + n1 = rg.integers(0, 2 ** 24, 10, dtype=np.uint32) + rg2 = Generator(self.bit_generator()) + rg2.bit_generator.state = state + n2 = rg2.integers(0, 2 ** 24, 10, dtype=np.uint32) + assert_array_equal(n1, n2) + + def test_reset_state_float(self): + rg = Generator(self.bit_generator(*self.seed)) + rg.random(dtype='float32') + state = rg.bit_generator.state + n1 = rg.random(size=10, dtype='float32') + rg2 = Generator(self.bit_generator()) + rg2.bit_generator.state = state + n2 = rg2.random(size=10, dtype='float32') + assert_((n1 == n2).all()) + + def test_shuffle(self): + original = np.arange(200, 0, -1) + permuted = self.rg.permutation(original) + assert_((original != permuted).any()) + + def test_permutation(self): + original = np.arange(200, 0, -1) + permuted = self.rg.permutation(original) + assert_((original != permuted).any()) + + def test_beta(self): + vals = self.rg.beta(2.0, 2.0, 10) + assert_(len(vals) == 10) + vals = self.rg.beta(np.array([2.0] * 10), 2.0) + assert_(len(vals) == 10) + vals = self.rg.beta(2.0, np.array([2.0] * 10)) + assert_(len(vals) == 10) + vals = self.rg.beta(np.array([2.0] * 10), np.array([2.0] * 10)) + assert_(len(vals) == 10) + vals = self.rg.beta(np.array([2.0] * 10), np.array([[2.0]] * 10)) + assert_(vals.shape == (10, 10)) + + def test_bytes(self): + vals = self.rg.bytes(10) + assert_(len(vals) == 10) + + def test_chisquare(self): + vals = self.rg.chisquare(2.0, 10) + assert_(len(vals) == 10) + params_1(self.rg.chisquare) + + def test_exponential(self): + vals = self.rg.exponential(2.0, 10) + assert_(len(vals) == 10) + params_1(self.rg.exponential) + + def test_f(self): + vals = self.rg.f(3, 1000, 10) + assert_(len(vals) == 10) + + def test_gamma(self): + vals = self.rg.gamma(3, 2, 10) + assert_(len(vals) == 10) + + def test_geometric(self): + vals = self.rg.geometric(0.5, 10) + assert_(len(vals) == 10) + params_1(self.rg.exponential, bounded=True) + + def test_gumbel(self): + vals = self.rg.gumbel(2.0, 2.0, 10) + assert_(len(vals) == 10) + + def test_laplace(self): + vals = self.rg.laplace(2.0, 2.0, 10) + assert_(len(vals) == 10) + + def test_logitic(self): + vals = self.rg.logistic(2.0, 2.0, 10) + assert_(len(vals) == 10) + + def test_logseries(self): + vals = self.rg.logseries(0.5, 10) + assert_(len(vals) == 10) + + def test_negative_binomial(self): + vals = self.rg.negative_binomial(10, 0.2, 10) + assert_(len(vals) == 10) + + def test_noncentral_chisquare(self): + vals = self.rg.noncentral_chisquare(10, 2, 10) + assert_(len(vals) == 10) + + def test_noncentral_f(self): + vals = self.rg.noncentral_f(3, 1000, 2, 10) + assert_(len(vals) == 10) + vals = self.rg.noncentral_f(np.array([3] * 10), 1000, 2) + assert_(len(vals) == 10) + vals = self.rg.noncentral_f(3, np.array([1000] * 10), 2) + assert_(len(vals) == 10) + vals = self.rg.noncentral_f(3, 1000, np.array([2] * 10)) + assert_(len(vals) == 10) + + def test_normal(self): + vals = self.rg.normal(10, 0.2, 10) + assert_(len(vals) == 10) + + def test_pareto(self): + vals = self.rg.pareto(3.0, 10) + assert_(len(vals) == 10) + + def test_poisson(self): + vals = self.rg.poisson(10, 10) + assert_(len(vals) == 10) + vals = self.rg.poisson(np.array([10] * 10)) + assert_(len(vals) == 10) + params_1(self.rg.poisson) + + def test_power(self): + vals = self.rg.power(0.2, 10) + assert_(len(vals) == 10) + + def test_integers(self): + vals = self.rg.integers(10, 20, 10) + assert_(len(vals) == 10) + + def test_rayleigh(self): + vals = self.rg.rayleigh(0.2, 10) + assert_(len(vals) == 10) + params_1(self.rg.rayleigh, bounded=True) + + def test_vonmises(self): + vals = self.rg.vonmises(10, 0.2, 10) + assert_(len(vals) == 10) + + def test_wald(self): + vals = self.rg.wald(1.0, 1.0, 10) + assert_(len(vals) == 10) + + def test_weibull(self): + vals = self.rg.weibull(1.0, 10) + assert_(len(vals) == 10) + + def test_zipf(self): + vals = self.rg.zipf(10, 10) + assert_(len(vals) == 10) + vals = self.rg.zipf(self.vec_1d) + assert_(len(vals) == 100) + vals = self.rg.zipf(self.vec_2d) + assert_(vals.shape == (1, 100)) + vals = self.rg.zipf(self.mat) + assert_(vals.shape == (100, 100)) + + def test_hypergeometric(self): + vals = self.rg.hypergeometric(25, 25, 20) + assert_(np.isscalar(vals)) + vals = self.rg.hypergeometric(np.array([25] * 10), 25, 20) + assert_(vals.shape == (10,)) + + def test_triangular(self): + vals = self.rg.triangular(-5, 0, 5) + assert_(np.isscalar(vals)) + vals = self.rg.triangular(-5, np.array([0] * 10), 5) + assert_(vals.shape == (10,)) + + def test_multivariate_normal(self): + mean = [0, 0] + cov = [[1, 0], [0, 100]] # diagonal covariance + x = self.rg.multivariate_normal(mean, cov, 5000) + assert_(x.shape == (5000, 2)) + x_zig = self.rg.multivariate_normal(mean, cov, 5000) + assert_(x.shape == (5000, 2)) + x_inv = self.rg.multivariate_normal(mean, cov, 5000) + assert_(x.shape == (5000, 2)) + assert_((x_zig != x_inv).any()) + + def test_multinomial(self): + vals = self.rg.multinomial(100, [1.0 / 3, 2.0 / 3]) + assert_(vals.shape == (2,)) + vals = self.rg.multinomial(100, [1.0 / 3, 2.0 / 3], size=10) + assert_(vals.shape == (10, 2)) + + def test_dirichlet(self): + s = self.rg.dirichlet((10, 5, 3), 20) + assert_(s.shape == (20, 3)) + + def test_pickle(self): + pick = pickle.dumps(self.rg) + unpick = pickle.loads(pick) + assert_(type(self.rg) == type(unpick)) + assert_(comp_state(self.rg.bit_generator.state, + unpick.bit_generator.state)) + + pick = pickle.dumps(self.rg) + unpick = pickle.loads(pick) + assert_(type(self.rg) == type(unpick)) + assert_(comp_state(self.rg.bit_generator.state, + unpick.bit_generator.state)) + + def test_seed_array(self): + if self.seed_vector_bits is None: + bitgen_name = self.bit_generator.__name__ + pytest.skip(f'Vector seeding is not supported by {bitgen_name}') + + if self.seed_vector_bits == 32: + dtype = np.uint32 + else: + dtype = np.uint64 + seed = np.array([1], dtype=dtype) + bg = self.bit_generator(seed) + state1 = bg.state + bg = self.bit_generator(1) + state2 = bg.state + assert_(comp_state(state1, state2)) + + seed = np.arange(4, dtype=dtype) + bg = self.bit_generator(seed) + state1 = bg.state + bg = self.bit_generator(seed[0]) + state2 = bg.state + assert_(not comp_state(state1, state2)) + + seed = np.arange(1500, dtype=dtype) + bg = self.bit_generator(seed) + state1 = bg.state + bg = self.bit_generator(seed[0]) + state2 = bg.state + assert_(not comp_state(state1, state2)) + + seed = 2 ** np.mod(np.arange(1500, dtype=dtype), + self.seed_vector_bits - 1) + 1 + bg = self.bit_generator(seed) + state1 = bg.state + bg = self.bit_generator(seed[0]) + state2 = bg.state + assert_(not comp_state(state1, state2)) + + def test_uniform_float(self): + rg = Generator(self.bit_generator(12345)) + warmup(rg) + state = rg.bit_generator.state + r1 = rg.random(11, dtype=np.float32) + rg2 = Generator(self.bit_generator()) + warmup(rg2) + rg2.bit_generator.state = state + r2 = rg2.random(11, dtype=np.float32) + assert_array_equal(r1, r2) + assert_equal(r1.dtype, np.float32) + assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state)) + + def test_gamma_floats(self): + rg = Generator(self.bit_generator()) + warmup(rg) + state = rg.bit_generator.state + r1 = rg.standard_gamma(4.0, 11, dtype=np.float32) + rg2 = Generator(self.bit_generator()) + warmup(rg2) + rg2.bit_generator.state = state + r2 = rg2.standard_gamma(4.0, 11, dtype=np.float32) + assert_array_equal(r1, r2) + assert_equal(r1.dtype, np.float32) + assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state)) + + def test_normal_floats(self): + rg = Generator(self.bit_generator()) + warmup(rg) + state = rg.bit_generator.state + r1 = rg.standard_normal(11, dtype=np.float32) + rg2 = Generator(self.bit_generator()) + warmup(rg2) + rg2.bit_generator.state = state + r2 = rg2.standard_normal(11, dtype=np.float32) + assert_array_equal(r1, r2) + assert_equal(r1.dtype, np.float32) + assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state)) + + def test_normal_zig_floats(self): + rg = Generator(self.bit_generator()) + warmup(rg) + state = rg.bit_generator.state + r1 = rg.standard_normal(11, dtype=np.float32) + rg2 = Generator(self.bit_generator()) + warmup(rg2) + rg2.bit_generator.state = state + r2 = rg2.standard_normal(11, dtype=np.float32) + assert_array_equal(r1, r2) + assert_equal(r1.dtype, np.float32) + assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state)) + + def test_output_fill(self): + rg = self.rg + state = rg.bit_generator.state + size = (31, 7, 97) + existing = np.empty(size) + rg.bit_generator.state = state + rg.standard_normal(out=existing) + rg.bit_generator.state = state + direct = rg.standard_normal(size=size) + assert_equal(direct, existing) + + sized = np.empty(size) + rg.bit_generator.state = state + rg.standard_normal(out=sized, size=sized.shape) + + existing = np.empty(size, dtype=np.float32) + rg.bit_generator.state = state + rg.standard_normal(out=existing, dtype=np.float32) + rg.bit_generator.state = state + direct = rg.standard_normal(size=size, dtype=np.float32) + assert_equal(direct, existing) + + def test_output_filling_uniform(self): + rg = self.rg + state = rg.bit_generator.state + size = (31, 7, 97) + existing = np.empty(size) + rg.bit_generator.state = state + rg.random(out=existing) + rg.bit_generator.state = state + direct = rg.random(size=size) + assert_equal(direct, existing) + + existing = np.empty(size, dtype=np.float32) + rg.bit_generator.state = state + rg.random(out=existing, dtype=np.float32) + rg.bit_generator.state = state + direct = rg.random(size=size, dtype=np.float32) + assert_equal(direct, existing) + + def test_output_filling_exponential(self): + rg = self.rg + state = rg.bit_generator.state + size = (31, 7, 97) + existing = np.empty(size) + rg.bit_generator.state = state + rg.standard_exponential(out=existing) + rg.bit_generator.state = state + direct = rg.standard_exponential(size=size) + assert_equal(direct, existing) + + existing = np.empty(size, dtype=np.float32) + rg.bit_generator.state = state + rg.standard_exponential(out=existing, dtype=np.float32) + rg.bit_generator.state = state + direct = rg.standard_exponential(size=size, dtype=np.float32) + assert_equal(direct, existing) + + def test_output_filling_gamma(self): + rg = self.rg + state = rg.bit_generator.state + size = (31, 7, 97) + existing = np.zeros(size) + rg.bit_generator.state = state + rg.standard_gamma(1.0, out=existing) + rg.bit_generator.state = state + direct = rg.standard_gamma(1.0, size=size) + assert_equal(direct, existing) + + existing = np.zeros(size, dtype=np.float32) + rg.bit_generator.state = state + rg.standard_gamma(1.0, out=existing, dtype=np.float32) + rg.bit_generator.state = state + direct = rg.standard_gamma(1.0, size=size, dtype=np.float32) + assert_equal(direct, existing) + + def test_output_filling_gamma_broadcast(self): + rg = self.rg + state = rg.bit_generator.state + size = (31, 7, 97) + mu = np.arange(97.0) + 1.0 + existing = np.zeros(size) + rg.bit_generator.state = state + rg.standard_gamma(mu, out=existing) + rg.bit_generator.state = state + direct = rg.standard_gamma(mu, size=size) + assert_equal(direct, existing) + + existing = np.zeros(size, dtype=np.float32) + rg.bit_generator.state = state + rg.standard_gamma(mu, out=existing, dtype=np.float32) + rg.bit_generator.state = state + direct = rg.standard_gamma(mu, size=size, dtype=np.float32) + assert_equal(direct, existing) + + def test_output_fill_error(self): + rg = self.rg + size = (31, 7, 97) + existing = np.empty(size) + with pytest.raises(TypeError): + rg.standard_normal(out=existing, dtype=np.float32) + with pytest.raises(ValueError): + rg.standard_normal(out=existing[::3]) + existing = np.empty(size, dtype=np.float32) + with pytest.raises(TypeError): + rg.standard_normal(out=existing, dtype=np.float64) + + existing = np.zeros(size, dtype=np.float32) + with pytest.raises(TypeError): + rg.standard_gamma(1.0, out=existing, dtype=np.float64) + with pytest.raises(ValueError): + rg.standard_gamma(1.0, out=existing[::3], dtype=np.float32) + existing = np.zeros(size, dtype=np.float64) + with pytest.raises(TypeError): + rg.standard_gamma(1.0, out=existing, dtype=np.float32) + with pytest.raises(ValueError): + rg.standard_gamma(1.0, out=existing[::3]) + + def test_integers_broadcast(self, dtype): + if dtype == np.bool: + upper = 2 + lower = 0 + else: + info = np.iinfo(dtype) + upper = int(info.max) + 1 + lower = info.min + self._reset_state() + a = self.rg.integers(lower, [upper] * 10, dtype=dtype) + self._reset_state() + b = self.rg.integers([lower] * 10, upper, dtype=dtype) + assert_equal(a, b) + self._reset_state() + c = self.rg.integers(lower, upper, size=10, dtype=dtype) + assert_equal(a, c) + self._reset_state() + d = self.rg.integers(np.array( + [lower] * 10), np.array([upper], dtype=object), size=10, + dtype=dtype) + assert_equal(a, d) + self._reset_state() + e = self.rg.integers( + np.array([lower] * 10), np.array([upper] * 10), size=10, + dtype=dtype) + assert_equal(a, e) + + self._reset_state() + a = self.rg.integers(0, upper, size=10, dtype=dtype) + self._reset_state() + b = self.rg.integers([upper] * 10, dtype=dtype) + assert_equal(a, b) + + def test_integers_numpy(self, dtype): + high = np.array([1]) + low = np.array([0]) + + out = self.rg.integers(low, high, dtype=dtype) + assert out.shape == (1,) + + out = self.rg.integers(low[0], high, dtype=dtype) + assert out.shape == (1,) + + out = self.rg.integers(low, high[0], dtype=dtype) + assert out.shape == (1,) + + def test_integers_broadcast_errors(self, dtype): + if dtype == np.bool: + upper = 2 + lower = 0 + else: + info = np.iinfo(dtype) + upper = int(info.max) + 1 + lower = info.min + with pytest.raises(ValueError): + self.rg.integers(lower, [upper + 1] * 10, dtype=dtype) + with pytest.raises(ValueError): + self.rg.integers(lower - 1, [upper] * 10, dtype=dtype) + with pytest.raises(ValueError): + self.rg.integers([lower - 1], [upper] * 10, dtype=dtype) + with pytest.raises(ValueError): + self.rg.integers([0], [0], dtype=dtype) + + +class TestMT19937(RNG): + @classmethod + def setup_class(cls): + cls.bit_generator = MT19937 + cls.advance = None + cls.seed = [2 ** 21 + 2 ** 16 + 2 ** 5 + 1] + cls.rg = Generator(cls.bit_generator(*cls.seed)) + cls.initial_state = cls.rg.bit_generator.state + cls.seed_vector_bits = 32 + cls._extra_setup() + cls.seed_error = ValueError + + def test_numpy_state(self): + nprg = np.random.RandomState() + nprg.standard_normal(99) + state = nprg.get_state() + self.rg.bit_generator.state = state + state2 = self.rg.bit_generator.state + assert_((state[1] == state2['state']['key']).all()) + assert_(state[2] == state2['state']['pos']) + + +class TestPhilox(RNG): + @classmethod + def setup_class(cls): + cls.bit_generator = Philox + cls.advance = 2**63 + 2**31 + 2**15 + 1 + cls.seed = [12345] + cls.rg = Generator(cls.bit_generator(*cls.seed)) + cls.initial_state = cls.rg.bit_generator.state + cls.seed_vector_bits = 64 + cls._extra_setup() + + +class TestSFC64(RNG): + @classmethod + def setup_class(cls): + cls.bit_generator = SFC64 + cls.advance = None + cls.seed = [12345] + cls.rg = Generator(cls.bit_generator(*cls.seed)) + cls.initial_state = cls.rg.bit_generator.state + cls.seed_vector_bits = 192 + cls._extra_setup() + + +class TestPCG64(RNG): + @classmethod + def setup_class(cls): + cls.bit_generator = PCG64 + cls.advance = 2**63 + 2**31 + 2**15 + 1 + cls.seed = [12345] + cls.rg = Generator(cls.bit_generator(*cls.seed)) + cls.initial_state = cls.rg.bit_generator.state + cls.seed_vector_bits = 64 + cls._extra_setup() + + +class TestPCG64DXSM(RNG): + @classmethod + def setup_class(cls): + cls.bit_generator = PCG64DXSM + cls.advance = 2**63 + 2**31 + 2**15 + 1 + cls.seed = [12345] + cls.rg = Generator(cls.bit_generator(*cls.seed)) + cls.initial_state = cls.rg.bit_generator.state + cls.seed_vector_bits = 64 + cls._extra_setup() + + +class TestDefaultRNG(RNG): + @classmethod + def setup_class(cls): + # This will duplicate some tests that directly instantiate a fresh + # Generator(), but that's okay. + cls.bit_generator = PCG64 + cls.advance = 2**63 + 2**31 + 2**15 + 1 + cls.seed = [12345] + cls.rg = np.random.default_rng(*cls.seed) + cls.initial_state = cls.rg.bit_generator.state + cls.seed_vector_bits = 64 + cls._extra_setup() + + def test_default_is_pcg64(self): + # In order to change the default BitGenerator, we'll go through + # a deprecation cycle to move to a different function. + assert_(isinstance(self.rg.bit_generator, PCG64)) + + def test_seed(self): + np.random.default_rng() + np.random.default_rng(None) + np.random.default_rng(12345) + np.random.default_rng(0) + np.random.default_rng(43660444402423911716352051725018508569) + np.random.default_rng([43660444402423911716352051725018508569, + 279705150948142787361475340226491943209]) + with pytest.raises(ValueError): + np.random.default_rng(-1) + with pytest.raises(ValueError): + np.random.default_rng([12345, -1]) diff --git a/.venv/lib/python3.12/site-packages/numpy/rec/__init__.py b/.venv/lib/python3.12/site-packages/numpy/rec/__init__.py new file mode 100644 index 0000000..420240c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/rec/__init__.py @@ -0,0 +1,2 @@ +from numpy._core.records import * +from numpy._core.records import __all__, __doc__ diff --git a/.venv/lib/python3.12/site-packages/numpy/rec/__init__.pyi b/.venv/lib/python3.12/site-packages/numpy/rec/__init__.pyi new file mode 100644 index 0000000..6a78c66 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/rec/__init__.pyi @@ -0,0 +1,23 @@ +from numpy._core.records import ( + array, + find_duplicate, + format_parser, + fromarrays, + fromfile, + fromrecords, + fromstring, + recarray, + record, +) + +__all__ = [ + "record", + "recarray", + "format_parser", + "fromarrays", + "fromrecords", + "fromstring", + "fromfile", + "array", + "find_duplicate", +] diff --git a/.venv/lib/python3.12/site-packages/numpy/rec/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/rec/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..8aab5df Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/rec/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/strings/__init__.py b/.venv/lib/python3.12/site-packages/numpy/strings/__init__.py new file mode 100644 index 0000000..561dadc --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/strings/__init__.py @@ -0,0 +1,2 @@ +from numpy._core.strings import * +from numpy._core.strings import __all__, __doc__ diff --git a/.venv/lib/python3.12/site-packages/numpy/strings/__init__.pyi b/.venv/lib/python3.12/site-packages/numpy/strings/__init__.pyi new file mode 100644 index 0000000..b2fb363 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/strings/__init__.pyi @@ -0,0 +1,97 @@ +from numpy._core.strings import ( + add, + capitalize, + center, + count, + decode, + encode, + endswith, + equal, + expandtabs, + find, + greater, + greater_equal, + index, + isalnum, + isalpha, + isdecimal, + isdigit, + islower, + isnumeric, + isspace, + istitle, + isupper, + less, + less_equal, + ljust, + lower, + lstrip, + mod, + multiply, + not_equal, + partition, + replace, + rfind, + rindex, + rjust, + rpartition, + rstrip, + slice, + startswith, + str_len, + strip, + swapcase, + title, + translate, + upper, + zfill, +) + +__all__ = [ + "equal", + "not_equal", + "less", + "less_equal", + "greater", + "greater_equal", + "add", + "multiply", + "isalpha", + "isdigit", + "isspace", + "isalnum", + "islower", + "isupper", + "istitle", + "isdecimal", + "isnumeric", + "str_len", + "find", + "rfind", + "index", + "rindex", + "count", + "startswith", + "endswith", + "lstrip", + "rstrip", + "strip", + "replace", + "expandtabs", + "center", + "ljust", + "rjust", + "zfill", + "partition", + "rpartition", + "upper", + "lower", + "swapcase", + "capitalize", + "title", + "mod", + "decode", + "encode", + "translate", + "slice", +] diff --git a/.venv/lib/python3.12/site-packages/numpy/strings/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/strings/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..13abdf8 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/strings/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/__init__.py b/.venv/lib/python3.12/site-packages/numpy/testing/__init__.py new file mode 100644 index 0000000..fe0c4f2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/testing/__init__.py @@ -0,0 +1,22 @@ +"""Common test support for all numpy test scripts. + +This single module should provide all the common functionality for numpy tests +in a single location, so that test scripts can just import it and work right +away. + +""" +from unittest import TestCase + +from . import _private, overrides +from ._private import extbuild +from ._private.utils import * +from ._private.utils import _assert_valid_refcount, _gen_alignment_data + +__all__ = ( + _private.utils.__all__ + ['TestCase', 'overrides'] +) + +from numpy._pytesttester import PytestTester + +test = PytestTester(__name__) +del PytestTester diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/__init__.pyi b/.venv/lib/python3.12/site-packages/numpy/testing/__init__.pyi new file mode 100644 index 0000000..ba3c9a2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/testing/__init__.pyi @@ -0,0 +1,102 @@ +from unittest import TestCase + +from . import overrides +from ._private.utils import ( + HAS_LAPACK64, + HAS_REFCOUNT, + IS_EDITABLE, + IS_INSTALLED, + IS_MUSL, + IS_PYPY, + IS_PYSTON, + IS_WASM, + NOGIL_BUILD, + NUMPY_ROOT, + IgnoreException, + KnownFailureException, + SkipTest, + assert_, + assert_allclose, + assert_almost_equal, + assert_approx_equal, + assert_array_almost_equal, + assert_array_almost_equal_nulp, + assert_array_compare, + assert_array_equal, + assert_array_less, + assert_array_max_ulp, + assert_equal, + assert_no_gc_cycles, + assert_no_warnings, + assert_raises, + assert_raises_regex, + assert_string_equal, + assert_warns, + break_cycles, + build_err_msg, + check_support_sve, + clear_and_catch_warnings, + decorate_methods, + jiffies, + measure, + memusage, + print_assert_equal, + run_threaded, + rundocs, + runstring, + suppress_warnings, + tempdir, + temppath, + verbose, +) + +__all__ = [ + "HAS_LAPACK64", + "HAS_REFCOUNT", + "IS_EDITABLE", + "IS_INSTALLED", + "IS_MUSL", + "IS_PYPY", + "IS_PYSTON", + "IS_WASM", + "NOGIL_BUILD", + "NUMPY_ROOT", + "IgnoreException", + "KnownFailureException", + "SkipTest", + "TestCase", + "assert_", + "assert_allclose", + "assert_almost_equal", + "assert_approx_equal", + "assert_array_almost_equal", + "assert_array_almost_equal_nulp", + "assert_array_compare", + "assert_array_equal", + "assert_array_less", + "assert_array_max_ulp", + "assert_equal", + "assert_no_gc_cycles", + "assert_no_warnings", + "assert_raises", + "assert_raises_regex", + "assert_string_equal", + "assert_warns", + "break_cycles", + "build_err_msg", + "check_support_sve", + "clear_and_catch_warnings", + "decorate_methods", + "jiffies", + "measure", + "memusage", + "overrides", + "print_assert_equal", + "run_threaded", + "rundocs", + "runstring", + "suppress_warnings", + "tempdir", + "temppath", + "verbose", +] diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/testing/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..c5eec57 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/testing/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/__pycache__/overrides.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/testing/__pycache__/overrides.cpython-312.pyc new file mode 100644 index 0000000..1edf3e9 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/testing/__pycache__/overrides.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/__pycache__/print_coercion_tables.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/testing/__pycache__/print_coercion_tables.cpython-312.pyc new file mode 100644 index 0000000..c60e33b Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/testing/__pycache__/print_coercion_tables.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/_private/__init__.py b/.venv/lib/python3.12/site-packages/numpy/testing/_private/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/_private/__init__.pyi b/.venv/lib/python3.12/site-packages/numpy/testing/_private/__init__.pyi new file mode 100644 index 0000000..e69de29 diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/_private/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/testing/_private/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..fb663ce Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/testing/_private/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/_private/__pycache__/extbuild.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/testing/_private/__pycache__/extbuild.cpython-312.pyc new file mode 100644 index 0000000..8d5d383 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/testing/_private/__pycache__/extbuild.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/_private/__pycache__/utils.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/testing/_private/__pycache__/utils.cpython-312.pyc new file mode 100644 index 0000000..2959b53 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/testing/_private/__pycache__/utils.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/_private/extbuild.py b/.venv/lib/python3.12/site-packages/numpy/testing/_private/extbuild.py new file mode 100644 index 0000000..2a724b7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/testing/_private/extbuild.py @@ -0,0 +1,250 @@ +""" +Build a c-extension module on-the-fly in tests. +See build_and_import_extensions for usage hints + +""" + +import os +import pathlib +import subprocess +import sys +import sysconfig +import textwrap + +__all__ = ['build_and_import_extension', 'compile_extension_module'] + + +def build_and_import_extension( + modname, functions, *, prologue="", build_dir=None, + include_dirs=None, more_init=""): + """ + Build and imports a c-extension module `modname` from a list of function + fragments `functions`. + + + Parameters + ---------- + functions : list of fragments + Each fragment is a sequence of func_name, calling convention, snippet. + prologue : string + Code to precede the rest, usually extra ``#include`` or ``#define`` + macros. + build_dir : pathlib.Path + Where to build the module, usually a temporary directory + include_dirs : list + Extra directories to find include files when compiling + more_init : string + Code to appear in the module PyMODINIT_FUNC + + Returns + ------- + out: module + The module will have been loaded and is ready for use + + Examples + -------- + >>> functions = [("test_bytes", "METH_O", \"\"\" + if ( !PyBytesCheck(args)) { + Py_RETURN_FALSE; + } + Py_RETURN_TRUE; + \"\"\")] + >>> mod = build_and_import_extension("testme", functions) + >>> assert not mod.test_bytes('abc') + >>> assert mod.test_bytes(b'abc') + """ + if include_dirs is None: + include_dirs = [] + body = prologue + _make_methods(functions, modname) + init = """ + PyObject *mod = PyModule_Create(&moduledef); + #ifdef Py_GIL_DISABLED + PyUnstable_Module_SetGIL(mod, Py_MOD_GIL_NOT_USED); + #endif + """ + if not build_dir: + build_dir = pathlib.Path('.') + if more_init: + init += """#define INITERROR return NULL + """ + init += more_init + init += "\nreturn mod;" + source_string = _make_source(modname, init, body) + mod_so = compile_extension_module( + modname, build_dir, include_dirs, source_string) + import importlib.util + spec = importlib.util.spec_from_file_location(modname, mod_so) + foo = importlib.util.module_from_spec(spec) + spec.loader.exec_module(foo) + return foo + + +def compile_extension_module( + name, builddir, include_dirs, + source_string, libraries=None, library_dirs=None): + """ + Build an extension module and return the filename of the resulting + native code file. + + Parameters + ---------- + name : string + name of the module, possibly including dots if it is a module inside a + package. + builddir : pathlib.Path + Where to build the module, usually a temporary directory + include_dirs : list + Extra directories to find include files when compiling + libraries : list + Libraries to link into the extension module + library_dirs: list + Where to find the libraries, ``-L`` passed to the linker + """ + modname = name.split('.')[-1] + dirname = builddir / name + dirname.mkdir(exist_ok=True) + cfile = _convert_str_to_file(source_string, dirname) + include_dirs = include_dirs or [] + libraries = libraries or [] + library_dirs = library_dirs or [] + + return _c_compile( + cfile, outputfilename=dirname / modname, + include_dirs=include_dirs, libraries=libraries, + library_dirs=library_dirs, + ) + + +def _convert_str_to_file(source, dirname): + """Helper function to create a file ``source.c`` in `dirname` that contains + the string in `source`. Returns the file name + """ + filename = dirname / 'source.c' + with filename.open('w') as f: + f.write(str(source)) + return filename + + +def _make_methods(functions, modname): + """ Turns the name, signature, code in functions into complete functions + and lists them in a methods_table. Then turns the methods_table into a + ``PyMethodDef`` structure and returns the resulting code fragment ready + for compilation + """ + methods_table = [] + codes = [] + for funcname, flags, code in functions: + cfuncname = f"{modname}_{funcname}" + if 'METH_KEYWORDS' in flags: + signature = '(PyObject *self, PyObject *args, PyObject *kwargs)' + else: + signature = '(PyObject *self, PyObject *args)' + methods_table.append( + "{\"%s\", (PyCFunction)%s, %s}," % (funcname, cfuncname, flags)) + func_code = f""" + static PyObject* {cfuncname}{signature} + {{ + {code} + }} + """ + codes.append(func_code) + + body = "\n".join(codes) + """ + static PyMethodDef methods[] = { + %(methods)s + { NULL } + }; + static struct PyModuleDef moduledef = { + PyModuleDef_HEAD_INIT, + "%(modname)s", /* m_name */ + NULL, /* m_doc */ + -1, /* m_size */ + methods, /* m_methods */ + }; + """ % {'methods': '\n'.join(methods_table), 'modname': modname} + return body + + +def _make_source(name, init, body): + """ Combines the code fragments into source code ready to be compiled + """ + code = """ + #include + + %(body)s + + PyMODINIT_FUNC + PyInit_%(name)s(void) { + %(init)s + } + """ % { + 'name': name, 'init': init, 'body': body, + } + return code + + +def _c_compile(cfile, outputfilename, include_dirs, libraries, + library_dirs): + link_extra = [] + if sys.platform == 'win32': + compile_extra = ["/we4013"] + link_extra.append('/DEBUG') # generate .pdb file + elif sys.platform.startswith('linux'): + compile_extra = [ + "-O0", "-g", "-Werror=implicit-function-declaration", "-fPIC"] + else: + compile_extra = [] + + return build( + cfile, outputfilename, + compile_extra, link_extra, + include_dirs, libraries, library_dirs) + + +def build(cfile, outputfilename, compile_extra, link_extra, + include_dirs, libraries, library_dirs): + "use meson to build" + + build_dir = cfile.parent / "build" + os.makedirs(build_dir, exist_ok=True) + with open(cfile.parent / "meson.build", "wt") as fid: + link_dirs = ['-L' + d for d in library_dirs] + fid.write(textwrap.dedent(f"""\ + project('foo', 'c') + py = import('python').find_installation(pure: false) + py.extension_module( + '{outputfilename.parts[-1]}', + '{cfile.parts[-1]}', + c_args: {compile_extra}, + link_args: {link_dirs}, + include_directories: {include_dirs}, + ) + """)) + native_file_name = cfile.parent / ".mesonpy-native-file.ini" + with open(native_file_name, "wt") as fid: + fid.write(textwrap.dedent(f"""\ + [binaries] + python = '{sys.executable}' + """)) + if sys.platform == "win32": + subprocess.check_call(["meson", "setup", + "--buildtype=release", + "--vsenv", ".."], + cwd=build_dir, + ) + else: + subprocess.check_call(["meson", "setup", "--vsenv", + "..", f'--native-file={os.fspath(native_file_name)}'], + cwd=build_dir + ) + + so_name = outputfilename.parts[-1] + get_so_suffix() + subprocess.check_call(["meson", "compile"], cwd=build_dir) + os.rename(str(build_dir / so_name), cfile.parent / so_name) + return cfile.parent / so_name + + +def get_so_suffix(): + ret = sysconfig.get_config_var('EXT_SUFFIX') + assert ret + return ret diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/_private/extbuild.pyi b/.venv/lib/python3.12/site-packages/numpy/testing/_private/extbuild.pyi new file mode 100644 index 0000000..609a45e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/testing/_private/extbuild.pyi @@ -0,0 +1,25 @@ +import pathlib +import types +from collections.abc import Sequence + +__all__ = ["build_and_import_extension", "compile_extension_module"] + +def build_and_import_extension( + modname: str, + functions: Sequence[tuple[str, str, str]], + *, + prologue: str = "", + build_dir: pathlib.Path | None = None, + include_dirs: Sequence[str] = [], + more_init: str = "", +) -> types.ModuleType: ... + +# +def compile_extension_module( + name: str, + builddir: pathlib.Path, + include_dirs: Sequence[str], + source_string: str, + libraries: Sequence[str] = [], + library_dirs: Sequence[str] = [], +) -> pathlib.Path: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/_private/utils.py b/.venv/lib/python3.12/site-packages/numpy/testing/_private/utils.py new file mode 100644 index 0000000..65f4059 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/testing/_private/utils.py @@ -0,0 +1,2759 @@ +""" +Utility function to facilitate testing. + +""" +import concurrent.futures +import contextlib +import gc +import importlib.metadata +import operator +import os +import pathlib +import platform +import pprint +import re +import shutil +import sys +import sysconfig +import threading +import warnings +from functools import partial, wraps +from io import StringIO +from tempfile import mkdtemp, mkstemp +from unittest.case import SkipTest +from warnings import WarningMessage + +import numpy as np +import numpy.linalg._umath_linalg +from numpy import isfinite, isinf, isnan +from numpy._core import arange, array, array_repr, empty, float32, intp, isnat, ndarray + +__all__ = [ + 'assert_equal', 'assert_almost_equal', 'assert_approx_equal', + 'assert_array_equal', 'assert_array_less', 'assert_string_equal', + 'assert_array_almost_equal', 'assert_raises', 'build_err_msg', + 'decorate_methods', 'jiffies', 'memusage', 'print_assert_equal', + 'rundocs', 'runstring', 'verbose', 'measure', + 'assert_', 'assert_array_almost_equal_nulp', 'assert_raises_regex', + 'assert_array_max_ulp', 'assert_warns', 'assert_no_warnings', + 'assert_allclose', 'IgnoreException', 'clear_and_catch_warnings', + 'SkipTest', 'KnownFailureException', 'temppath', 'tempdir', 'IS_PYPY', + 'HAS_REFCOUNT', "IS_WASM", 'suppress_warnings', 'assert_array_compare', + 'assert_no_gc_cycles', 'break_cycles', 'HAS_LAPACK64', 'IS_PYSTON', + 'IS_MUSL', 'check_support_sve', 'NOGIL_BUILD', + 'IS_EDITABLE', 'IS_INSTALLED', 'NUMPY_ROOT', 'run_threaded', 'IS_64BIT', + 'BLAS_SUPPORTS_FPE', + ] + + +class KnownFailureException(Exception): + '''Raise this exception to mark a test as a known failing test.''' + pass + + +KnownFailureTest = KnownFailureException # backwards compat +verbose = 0 + +NUMPY_ROOT = pathlib.Path(np.__file__).parent + +try: + np_dist = importlib.metadata.distribution('numpy') +except importlib.metadata.PackageNotFoundError: + IS_INSTALLED = IS_EDITABLE = False +else: + IS_INSTALLED = True + try: + if sys.version_info >= (3, 13): + IS_EDITABLE = np_dist.origin.dir_info.editable + else: + # Backport importlib.metadata.Distribution.origin + import json # noqa: E401 + import types + origin = json.loads( + np_dist.read_text('direct_url.json') or '{}', + object_hook=lambda data: types.SimpleNamespace(**data), + ) + IS_EDITABLE = origin.dir_info.editable + except AttributeError: + IS_EDITABLE = False + + # spin installs numpy directly via meson, instead of using meson-python, and + # runs the module by setting PYTHONPATH. This is problematic because the + # resulting installation lacks the Python metadata (.dist-info), and numpy + # might already be installed on the environment, causing us to find its + # metadata, even though we are not actually loading that package. + # Work around this issue by checking if the numpy root matches. + if not IS_EDITABLE and np_dist.locate_file('numpy') != NUMPY_ROOT: + IS_INSTALLED = False + +IS_WASM = platform.machine() in ["wasm32", "wasm64"] +IS_PYPY = sys.implementation.name == 'pypy' +IS_PYSTON = hasattr(sys, "pyston_version_info") +HAS_REFCOUNT = getattr(sys, 'getrefcount', None) is not None and not IS_PYSTON +BLAS_SUPPORTS_FPE = True +if platform.system() == 'Darwin' or platform.machine() == 'arm64': + try: + blas = np.__config__.CONFIG['Build Dependencies']['blas'] + if blas['name'] == 'accelerate': + BLAS_SUPPORTS_FPE = False + except KeyError: + pass + +HAS_LAPACK64 = numpy.linalg._umath_linalg._ilp64 + +IS_MUSL = False +# alternate way is +# from packaging.tags import sys_tags +# _tags = list(sys_tags()) +# if 'musllinux' in _tags[0].platform: +_v = sysconfig.get_config_var('HOST_GNU_TYPE') or '' +if 'musl' in _v: + IS_MUSL = True + +NOGIL_BUILD = bool(sysconfig.get_config_var("Py_GIL_DISABLED")) +IS_64BIT = np.dtype(np.intp).itemsize == 8 + +def assert_(val, msg=''): + """ + Assert that works in release mode. + Accepts callable msg to allow deferring evaluation until failure. + + The Python built-in ``assert`` does not work when executing code in + optimized mode (the ``-O`` flag) - no byte-code is generated for it. + + For documentation on usage, refer to the Python documentation. + + """ + __tracebackhide__ = True # Hide traceback for py.test + if not val: + try: + smsg = msg() + except TypeError: + smsg = msg + raise AssertionError(smsg) + + +if os.name == 'nt': + # Code "stolen" from enthought/debug/memusage.py + def GetPerformanceAttributes(object, counter, instance=None, + inum=-1, format=None, machine=None): + # NOTE: Many counters require 2 samples to give accurate results, + # including "% Processor Time" (as by definition, at any instant, a + # thread's CPU usage is either 0 or 100). To read counters like this, + # you should copy this function, but keep the counter open, and call + # CollectQueryData() each time you need to know. + # See http://msdn.microsoft.com/library/en-us/dnperfmo/html/perfmonpt2.asp + # (dead link) + # My older explanation for this was that the "AddCounter" process + # forced the CPU to 100%, but the above makes more sense :) + import win32pdh + if format is None: + format = win32pdh.PDH_FMT_LONG + path = win32pdh.MakeCounterPath((machine, object, instance, None, + inum, counter)) + hq = win32pdh.OpenQuery() + try: + hc = win32pdh.AddCounter(hq, path) + try: + win32pdh.CollectQueryData(hq) + type, val = win32pdh.GetFormattedCounterValue(hc, format) + return val + finally: + win32pdh.RemoveCounter(hc) + finally: + win32pdh.CloseQuery(hq) + + def memusage(processName="python", instance=0): + # from win32pdhutil, part of the win32all package + import win32pdh + return GetPerformanceAttributes("Process", "Virtual Bytes", + processName, instance, + win32pdh.PDH_FMT_LONG, None) +elif sys.platform[:5] == 'linux': + + def memusage(_proc_pid_stat=None): + """ + Return virtual memory size in bytes of the running python. + + """ + _proc_pid_stat = _proc_pid_stat or f'/proc/{os.getpid()}/stat' + try: + with open(_proc_pid_stat) as f: + l = f.readline().split(' ') + return int(l[22]) + except Exception: + return +else: + def memusage(): + """ + Return memory usage of running python. [Not implemented] + + """ + raise NotImplementedError + + +if sys.platform[:5] == 'linux': + def jiffies(_proc_pid_stat=None, _load_time=None): + """ + Return number of jiffies elapsed. + + Return number of jiffies (1/100ths of a second) that this + process has been scheduled in user mode. See man 5 proc. + + """ + _proc_pid_stat = _proc_pid_stat or f'/proc/{os.getpid()}/stat' + _load_time = _load_time or [] + import time + if not _load_time: + _load_time.append(time.time()) + try: + with open(_proc_pid_stat) as f: + l = f.readline().split(' ') + return int(l[13]) + except Exception: + return int(100 * (time.time() - _load_time[0])) +else: + # os.getpid is not in all platforms available. + # Using time is safe but inaccurate, especially when process + # was suspended or sleeping. + def jiffies(_load_time=[]): + """ + Return number of jiffies elapsed. + + Return number of jiffies (1/100ths of a second) that this + process has been scheduled in user mode. See man 5 proc. + + """ + import time + if not _load_time: + _load_time.append(time.time()) + return int(100 * (time.time() - _load_time[0])) + + +def build_err_msg(arrays, err_msg, header='Items are not equal:', + verbose=True, names=('ACTUAL', 'DESIRED'), precision=8): + msg = ['\n' + header] + err_msg = str(err_msg) + if err_msg: + if err_msg.find('\n') == -1 and len(err_msg) < 79 - len(header): + msg = [msg[0] + ' ' + err_msg] + else: + msg.append(err_msg) + if verbose: + for i, a in enumerate(arrays): + + if isinstance(a, ndarray): + # precision argument is only needed if the objects are ndarrays + r_func = partial(array_repr, precision=precision) + else: + r_func = repr + + try: + r = r_func(a) + except Exception as exc: + r = f'[repr failed for <{type(a).__name__}>: {exc}]' + if r.count('\n') > 3: + r = '\n'.join(r.splitlines()[:3]) + r += '...' + msg.append(f' {names[i]}: {r}') + return '\n'.join(msg) + + +def assert_equal(actual, desired, err_msg='', verbose=True, *, strict=False): + """ + Raises an AssertionError if two objects are not equal. + + Given two objects (scalars, lists, tuples, dictionaries or numpy arrays), + check that all elements of these objects are equal. An exception is raised + at the first conflicting values. + + This function handles NaN comparisons as if NaN was a "normal" number. + That is, AssertionError is not raised if both objects have NaNs in the same + positions. This is in contrast to the IEEE standard on NaNs, which says + that NaN compared to anything must return False. + + Parameters + ---------- + actual : array_like + The object to check. + desired : array_like + The expected object. + err_msg : str, optional + The error message to be printed in case of failure. + verbose : bool, optional + If True, the conflicting values are appended to the error message. + strict : bool, optional + If True and either of the `actual` and `desired` arguments is an array, + raise an ``AssertionError`` when either the shape or the data type of + the arguments does not match. If neither argument is an array, this + parameter has no effect. + + .. versionadded:: 2.0.0 + + Raises + ------ + AssertionError + If actual and desired are not equal. + + See Also + -------- + assert_allclose + assert_array_almost_equal_nulp, + assert_array_max_ulp, + + Notes + ----- + By default, when one of `actual` and `desired` is a scalar and the other is + an array, the function checks that each element of the array is equal to + the scalar. This behaviour can be disabled by setting ``strict==True``. + + Examples + -------- + >>> np.testing.assert_equal([4, 5], [4, 6]) + Traceback (most recent call last): + ... + AssertionError: + Items are not equal: + item=1 + ACTUAL: 5 + DESIRED: 6 + + The following comparison does not raise an exception. There are NaNs + in the inputs, but they are in the same positions. + + >>> np.testing.assert_equal(np.array([1.0, 2.0, np.nan]), [1, 2, np.nan]) + + As mentioned in the Notes section, `assert_equal` has special + handling for scalars when one of the arguments is an array. + Here, the test checks that each value in `x` is 3: + + >>> x = np.full((2, 5), fill_value=3) + >>> np.testing.assert_equal(x, 3) + + Use `strict` to raise an AssertionError when comparing a scalar with an + array of a different shape: + + >>> np.testing.assert_equal(x, 3, strict=True) + Traceback (most recent call last): + ... + AssertionError: + Arrays are not equal + + (shapes (2, 5), () mismatch) + ACTUAL: array([[3, 3, 3, 3, 3], + [3, 3, 3, 3, 3]]) + DESIRED: array(3) + + The `strict` parameter also ensures that the array data types match: + + >>> x = np.array([2, 2, 2]) + >>> y = np.array([2., 2., 2.], dtype=np.float32) + >>> np.testing.assert_equal(x, y, strict=True) + Traceback (most recent call last): + ... + AssertionError: + Arrays are not equal + + (dtypes int64, float32 mismatch) + ACTUAL: array([2, 2, 2]) + DESIRED: array([2., 2., 2.], dtype=float32) + """ + __tracebackhide__ = True # Hide traceback for py.test + if isinstance(desired, dict): + if not isinstance(actual, dict): + raise AssertionError(repr(type(actual))) + assert_equal(len(actual), len(desired), err_msg, verbose) + for k, i in desired.items(): + if k not in actual: + raise AssertionError(repr(k)) + assert_equal(actual[k], desired[k], f'key={k!r}\n{err_msg}', + verbose) + return + if isinstance(desired, (list, tuple)) and isinstance(actual, (list, tuple)): + assert_equal(len(actual), len(desired), err_msg, verbose) + for k in range(len(desired)): + assert_equal(actual[k], desired[k], f'item={k!r}\n{err_msg}', + verbose) + return + from numpy import imag, iscomplexobj, real + from numpy._core import isscalar, ndarray, signbit + if isinstance(actual, ndarray) or isinstance(desired, ndarray): + return assert_array_equal(actual, desired, err_msg, verbose, + strict=strict) + msg = build_err_msg([actual, desired], err_msg, verbose=verbose) + + # Handle complex numbers: separate into real/imag to handle + # nan/inf/negative zero correctly + # XXX: catch ValueError for subclasses of ndarray where iscomplex fail + try: + usecomplex = iscomplexobj(actual) or iscomplexobj(desired) + except (ValueError, TypeError): + usecomplex = False + + if usecomplex: + if iscomplexobj(actual): + actualr = real(actual) + actuali = imag(actual) + else: + actualr = actual + actuali = 0 + if iscomplexobj(desired): + desiredr = real(desired) + desiredi = imag(desired) + else: + desiredr = desired + desiredi = 0 + try: + assert_equal(actualr, desiredr) + assert_equal(actuali, desiredi) + except AssertionError: + raise AssertionError(msg) + + # isscalar test to check cases such as [np.nan] != np.nan + if isscalar(desired) != isscalar(actual): + raise AssertionError(msg) + + try: + isdesnat = isnat(desired) + isactnat = isnat(actual) + dtypes_match = (np.asarray(desired).dtype.type == + np.asarray(actual).dtype.type) + if isdesnat and isactnat: + # If both are NaT (and have the same dtype -- datetime or + # timedelta) they are considered equal. + if dtypes_match: + return + else: + raise AssertionError(msg) + + except (TypeError, ValueError, NotImplementedError): + pass + + # Inf/nan/negative zero handling + try: + isdesnan = isnan(desired) + isactnan = isnan(actual) + if isdesnan and isactnan: + return # both nan, so equal + + # handle signed zero specially for floats + array_actual = np.asarray(actual) + array_desired = np.asarray(desired) + if (array_actual.dtype.char in 'Mm' or + array_desired.dtype.char in 'Mm'): + # version 1.18 + # until this version, isnan failed for datetime64 and timedelta64. + # Now it succeeds but comparison to scalar with a different type + # emits a DeprecationWarning. + # Avoid that by skipping the next check + raise NotImplementedError('cannot compare to a scalar ' + 'with a different type') + + if desired == 0 and actual == 0: + if not signbit(desired) == signbit(actual): + raise AssertionError(msg) + + except (TypeError, ValueError, NotImplementedError): + pass + + try: + # Explicitly use __eq__ for comparison, gh-2552 + if not (desired == actual): + raise AssertionError(msg) + + except (DeprecationWarning, FutureWarning) as e: + # this handles the case when the two types are not even comparable + if 'elementwise == comparison' in e.args[0]: + raise AssertionError(msg) + else: + raise + + +def print_assert_equal(test_string, actual, desired): + """ + Test if two objects are equal, and print an error message if test fails. + + The test is performed with ``actual == desired``. + + Parameters + ---------- + test_string : str + The message supplied to AssertionError. + actual : object + The object to test for equality against `desired`. + desired : object + The expected result. + + Examples + -------- + >>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 1]) + >>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 2]) + Traceback (most recent call last): + ... + AssertionError: Test XYZ of func xyz failed + ACTUAL: + [0, 1] + DESIRED: + [0, 2] + + """ + __tracebackhide__ = True # Hide traceback for py.test + import pprint + + if not (actual == desired): + msg = StringIO() + msg.write(test_string) + msg.write(' failed\nACTUAL: \n') + pprint.pprint(actual, msg) + msg.write('DESIRED: \n') + pprint.pprint(desired, msg) + raise AssertionError(msg.getvalue()) + + +def assert_almost_equal(actual, desired, decimal=7, err_msg='', verbose=True): + """ + Raises an AssertionError if two items are not equal up to desired + precision. + + .. note:: It is recommended to use one of `assert_allclose`, + `assert_array_almost_equal_nulp` or `assert_array_max_ulp` + instead of this function for more consistent floating point + comparisons. + + The test verifies that the elements of `actual` and `desired` satisfy:: + + abs(desired-actual) < float64(1.5 * 10**(-decimal)) + + That is a looser test than originally documented, but agrees with what the + actual implementation in `assert_array_almost_equal` did up to rounding + vagaries. An exception is raised at conflicting values. For ndarrays this + delegates to assert_array_almost_equal + + Parameters + ---------- + actual : array_like + The object to check. + desired : array_like + The expected object. + decimal : int, optional + Desired precision, default is 7. + err_msg : str, optional + The error message to be printed in case of failure. + verbose : bool, optional + If True, the conflicting values are appended to the error message. + + Raises + ------ + AssertionError + If actual and desired are not equal up to specified precision. + + See Also + -------- + assert_allclose: Compare two array_like objects for equality with desired + relative and/or absolute precision. + assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal + + Examples + -------- + >>> from numpy.testing import assert_almost_equal + >>> assert_almost_equal(2.3333333333333, 2.33333334) + >>> assert_almost_equal(2.3333333333333, 2.33333334, decimal=10) + Traceback (most recent call last): + ... + AssertionError: + Arrays are not almost equal to 10 decimals + ACTUAL: 2.3333333333333 + DESIRED: 2.33333334 + + >>> assert_almost_equal(np.array([1.0,2.3333333333333]), + ... np.array([1.0,2.33333334]), decimal=9) + Traceback (most recent call last): + ... + AssertionError: + Arrays are not almost equal to 9 decimals + + Mismatched elements: 1 / 2 (50%) + Max absolute difference among violations: 6.66669964e-09 + Max relative difference among violations: 2.85715698e-09 + ACTUAL: array([1. , 2.333333333]) + DESIRED: array([1. , 2.33333334]) + + """ + __tracebackhide__ = True # Hide traceback for py.test + from numpy import imag, iscomplexobj, real + from numpy._core import ndarray + + # Handle complex numbers: separate into real/imag to handle + # nan/inf/negative zero correctly + # XXX: catch ValueError for subclasses of ndarray where iscomplex fail + try: + usecomplex = iscomplexobj(actual) or iscomplexobj(desired) + except ValueError: + usecomplex = False + + def _build_err_msg(): + header = ('Arrays are not almost equal to %d decimals' % decimal) + return build_err_msg([actual, desired], err_msg, verbose=verbose, + header=header) + + if usecomplex: + if iscomplexobj(actual): + actualr = real(actual) + actuali = imag(actual) + else: + actualr = actual + actuali = 0 + if iscomplexobj(desired): + desiredr = real(desired) + desiredi = imag(desired) + else: + desiredr = desired + desiredi = 0 + try: + assert_almost_equal(actualr, desiredr, decimal=decimal) + assert_almost_equal(actuali, desiredi, decimal=decimal) + except AssertionError: + raise AssertionError(_build_err_msg()) + + if isinstance(actual, (ndarray, tuple, list)) \ + or isinstance(desired, (ndarray, tuple, list)): + return assert_array_almost_equal(actual, desired, decimal, err_msg) + try: + # If one of desired/actual is not finite, handle it specially here: + # check that both are nan if any is a nan, and test for equality + # otherwise + if not (isfinite(desired) and isfinite(actual)): + if isnan(desired) or isnan(actual): + if not (isnan(desired) and isnan(actual)): + raise AssertionError(_build_err_msg()) + elif not desired == actual: + raise AssertionError(_build_err_msg()) + return + except (NotImplementedError, TypeError): + pass + if abs(desired - actual) >= np.float64(1.5 * 10.0**(-decimal)): + raise AssertionError(_build_err_msg()) + + +def assert_approx_equal(actual, desired, significant=7, err_msg='', + verbose=True): + """ + Raises an AssertionError if two items are not equal up to significant + digits. + + .. note:: It is recommended to use one of `assert_allclose`, + `assert_array_almost_equal_nulp` or `assert_array_max_ulp` + instead of this function for more consistent floating point + comparisons. + + Given two numbers, check that they are approximately equal. + Approximately equal is defined as the number of significant digits + that agree. + + Parameters + ---------- + actual : scalar + The object to check. + desired : scalar + The expected object. + significant : int, optional + Desired precision, default is 7. + err_msg : str, optional + The error message to be printed in case of failure. + verbose : bool, optional + If True, the conflicting values are appended to the error message. + + Raises + ------ + AssertionError + If actual and desired are not equal up to specified precision. + + See Also + -------- + assert_allclose: Compare two array_like objects for equality with desired + relative and/or absolute precision. + assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal + + Examples + -------- + >>> np.testing.assert_approx_equal(0.12345677777777e-20, 0.1234567e-20) + >>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345671e-20, + ... significant=8) + >>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345672e-20, + ... significant=8) + Traceback (most recent call last): + ... + AssertionError: + Items are not equal to 8 significant digits: + ACTUAL: 1.234567e-21 + DESIRED: 1.2345672e-21 + + the evaluated condition that raises the exception is + + >>> abs(0.12345670e-20/1e-21 - 0.12345672e-20/1e-21) >= 10**-(8-1) + True + + """ + __tracebackhide__ = True # Hide traceback for py.test + import numpy as np + + (actual, desired) = map(float, (actual, desired)) + if desired == actual: + return + # Normalized the numbers to be in range (-10.0,10.0) + # scale = float(pow(10,math.floor(math.log10(0.5*(abs(desired)+abs(actual)))))) + with np.errstate(invalid='ignore'): + scale = 0.5 * (np.abs(desired) + np.abs(actual)) + scale = np.power(10, np.floor(np.log10(scale))) + try: + sc_desired = desired / scale + except ZeroDivisionError: + sc_desired = 0.0 + try: + sc_actual = actual / scale + except ZeroDivisionError: + sc_actual = 0.0 + msg = build_err_msg( + [actual, desired], err_msg, + header='Items are not equal to %d significant digits:' % significant, + verbose=verbose) + try: + # If one of desired/actual is not finite, handle it specially here: + # check that both are nan if any is a nan, and test for equality + # otherwise + if not (isfinite(desired) and isfinite(actual)): + if isnan(desired) or isnan(actual): + if not (isnan(desired) and isnan(actual)): + raise AssertionError(msg) + elif not desired == actual: + raise AssertionError(msg) + return + except (TypeError, NotImplementedError): + pass + if np.abs(sc_desired - sc_actual) >= np.power(10., -(significant - 1)): + raise AssertionError(msg) + + +def assert_array_compare(comparison, x, y, err_msg='', verbose=True, header='', + precision=6, equal_nan=True, equal_inf=True, + *, strict=False, names=('ACTUAL', 'DESIRED')): + __tracebackhide__ = True # Hide traceback for py.test + from numpy._core import all, array2string, errstate, inf, isnan, max, object_ + + x = np.asanyarray(x) + y = np.asanyarray(y) + + # original array for output formatting + ox, oy = x, y + + def isnumber(x): + return x.dtype.char in '?bhilqpBHILQPefdgFDG' + + def istime(x): + return x.dtype.char in "Mm" + + def isvstring(x): + return x.dtype.char == "T" + + def func_assert_same_pos(x, y, func=isnan, hasval='nan'): + """Handling nan/inf. + + Combine results of running func on x and y, checking that they are True + at the same locations. + + """ + __tracebackhide__ = True # Hide traceback for py.test + + x_id = func(x) + y_id = func(y) + # We include work-arounds here to handle three types of slightly + # pathological ndarray subclasses: + # (1) all() on `masked` array scalars can return masked arrays, so we + # use != True + # (2) __eq__ on some ndarray subclasses returns Python booleans + # instead of element-wise comparisons, so we cast to np.bool() and + # use isinstance(..., bool) checks + # (3) subclasses with bare-bones __array_function__ implementations may + # not implement np.all(), so favor using the .all() method + # We are not committed to supporting such subclasses, but it's nice to + # support them if possible. + if np.bool(x_id == y_id).all() != True: + msg = build_err_msg( + [x, y], + err_msg + '\n%s location mismatch:' + % (hasval), verbose=verbose, header=header, + names=names, + precision=precision) + raise AssertionError(msg) + # If there is a scalar, then here we know the array has the same + # flag as it everywhere, so we should return the scalar flag. + if isinstance(x_id, bool) or x_id.ndim == 0: + return np.bool(x_id) + elif isinstance(y_id, bool) or y_id.ndim == 0: + return np.bool(y_id) + else: + return y_id + + try: + if strict: + cond = x.shape == y.shape and x.dtype == y.dtype + else: + cond = (x.shape == () or y.shape == ()) or x.shape == y.shape + if not cond: + if x.shape != y.shape: + reason = f'\n(shapes {x.shape}, {y.shape} mismatch)' + else: + reason = f'\n(dtypes {x.dtype}, {y.dtype} mismatch)' + msg = build_err_msg([x, y], + err_msg + + reason, + verbose=verbose, header=header, + names=names, + precision=precision) + raise AssertionError(msg) + + flagged = np.bool(False) + if isnumber(x) and isnumber(y): + if equal_nan: + flagged = func_assert_same_pos(x, y, func=isnan, hasval='nan') + + if equal_inf: + flagged |= func_assert_same_pos(x, y, + func=lambda xy: xy == +inf, + hasval='+inf') + flagged |= func_assert_same_pos(x, y, + func=lambda xy: xy == -inf, + hasval='-inf') + + elif istime(x) and istime(y): + # If one is datetime64 and the other timedelta64 there is no point + if equal_nan and x.dtype.type == y.dtype.type: + flagged = func_assert_same_pos(x, y, func=isnat, hasval="NaT") + + elif isvstring(x) and isvstring(y): + dt = x.dtype + if equal_nan and dt == y.dtype and hasattr(dt, 'na_object'): + is_nan = (isinstance(dt.na_object, float) and + np.isnan(dt.na_object)) + bool_errors = 0 + try: + bool(dt.na_object) + except TypeError: + bool_errors = 1 + if is_nan or bool_errors: + # nan-like NA object + flagged = func_assert_same_pos( + x, y, func=isnan, hasval=x.dtype.na_object) + + if flagged.ndim > 0: + x, y = x[~flagged], y[~flagged] + # Only do the comparison if actual values are left + if x.size == 0: + return + elif flagged: + # no sense doing comparison if everything is flagged. + return + + val = comparison(x, y) + invalids = np.logical_not(val) + + if isinstance(val, bool): + cond = val + reduced = array([val]) + else: + reduced = val.ravel() + cond = reduced.all() + + # The below comparison is a hack to ensure that fully masked + # results, for which val.ravel().all() returns np.ma.masked, + # do not trigger a failure (np.ma.masked != True evaluates as + # np.ma.masked, which is falsy). + if cond != True: + n_mismatch = reduced.size - reduced.sum(dtype=intp) + n_elements = flagged.size if flagged.ndim != 0 else reduced.size + percent_mismatch = 100 * n_mismatch / n_elements + remarks = [f'Mismatched elements: {n_mismatch} / {n_elements} ' + f'({percent_mismatch:.3g}%)'] + + with errstate(all='ignore'): + # ignore errors for non-numeric types + with contextlib.suppress(TypeError): + error = abs(x - y) + if np.issubdtype(x.dtype, np.unsignedinteger): + error2 = abs(y - x) + np.minimum(error, error2, out=error) + + reduced_error = error[invalids] + max_abs_error = max(reduced_error) + if getattr(error, 'dtype', object_) == object_: + remarks.append( + 'Max absolute difference among violations: ' + + str(max_abs_error)) + else: + remarks.append( + 'Max absolute difference among violations: ' + + array2string(max_abs_error)) + + # note: this definition of relative error matches that one + # used by assert_allclose (found in np.isclose) + # Filter values where the divisor would be zero + nonzero = np.bool(y != 0) + nonzero_and_invalid = np.logical_and(invalids, nonzero) + + if all(~nonzero_and_invalid): + max_rel_error = array(inf) + else: + nonzero_invalid_error = error[nonzero_and_invalid] + broadcasted_y = np.broadcast_to(y, error.shape) + nonzero_invalid_y = broadcasted_y[nonzero_and_invalid] + max_rel_error = max(nonzero_invalid_error + / abs(nonzero_invalid_y)) + + if getattr(error, 'dtype', object_) == object_: + remarks.append( + 'Max relative difference among violations: ' + + str(max_rel_error)) + else: + remarks.append( + 'Max relative difference among violations: ' + + array2string(max_rel_error)) + err_msg = str(err_msg) + err_msg += '\n' + '\n'.join(remarks) + msg = build_err_msg([ox, oy], err_msg, + verbose=verbose, header=header, + names=names, + precision=precision) + raise AssertionError(msg) + except ValueError: + import traceback + efmt = traceback.format_exc() + header = f'error during assertion:\n\n{efmt}\n\n{header}' + + msg = build_err_msg([x, y], err_msg, verbose=verbose, header=header, + names=names, precision=precision) + raise ValueError(msg) + + +def assert_array_equal(actual, desired, err_msg='', verbose=True, *, + strict=False): + """ + Raises an AssertionError if two array_like objects are not equal. + + Given two array_like objects, check that the shape is equal and all + elements of these objects are equal (but see the Notes for the special + handling of a scalar). An exception is raised at shape mismatch or + conflicting values. In contrast to the standard usage in numpy, NaNs + are compared like numbers, no assertion is raised if both objects have + NaNs in the same positions. + + The usual caution for verifying equality with floating point numbers is + advised. + + .. note:: When either `actual` or `desired` is already an instance of + `numpy.ndarray` and `desired` is not a ``dict``, the behavior of + ``assert_equal(actual, desired)`` is identical to the behavior of this + function. Otherwise, this function performs `np.asanyarray` on the + inputs before comparison, whereas `assert_equal` defines special + comparison rules for common Python types. For example, only + `assert_equal` can be used to compare nested Python lists. In new code, + consider using only `assert_equal`, explicitly converting either + `actual` or `desired` to arrays if the behavior of `assert_array_equal` + is desired. + + Parameters + ---------- + actual : array_like + The actual object to check. + desired : array_like + The desired, expected object. + err_msg : str, optional + The error message to be printed in case of failure. + verbose : bool, optional + If True, the conflicting values are appended to the error message. + strict : bool, optional + If True, raise an AssertionError when either the shape or the data + type of the array_like objects does not match. The special + handling for scalars mentioned in the Notes section is disabled. + + .. versionadded:: 1.24.0 + + Raises + ------ + AssertionError + If actual and desired objects are not equal. + + See Also + -------- + assert_allclose: Compare two array_like objects for equality with desired + relative and/or absolute precision. + assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal + + Notes + ----- + When one of `actual` and `desired` is a scalar and the other is array_like, + the function checks that each element of the array_like object is equal to + the scalar. This behaviour can be disabled with the `strict` parameter. + + Examples + -------- + The first assert does not raise an exception: + + >>> np.testing.assert_array_equal([1.0,2.33333,np.nan], + ... [np.exp(0),2.33333, np.nan]) + + Assert fails with numerical imprecision with floats: + + >>> np.testing.assert_array_equal([1.0,np.pi,np.nan], + ... [1, np.sqrt(np.pi)**2, np.nan]) + Traceback (most recent call last): + ... + AssertionError: + Arrays are not equal + + Mismatched elements: 1 / 3 (33.3%) + Max absolute difference among violations: 4.4408921e-16 + Max relative difference among violations: 1.41357986e-16 + ACTUAL: array([1. , 3.141593, nan]) + DESIRED: array([1. , 3.141593, nan]) + + Use `assert_allclose` or one of the nulp (number of floating point values) + functions for these cases instead: + + >>> np.testing.assert_allclose([1.0,np.pi,np.nan], + ... [1, np.sqrt(np.pi)**2, np.nan], + ... rtol=1e-10, atol=0) + + As mentioned in the Notes section, `assert_array_equal` has special + handling for scalars. Here the test checks that each value in `x` is 3: + + >>> x = np.full((2, 5), fill_value=3) + >>> np.testing.assert_array_equal(x, 3) + + Use `strict` to raise an AssertionError when comparing a scalar with an + array: + + >>> np.testing.assert_array_equal(x, 3, strict=True) + Traceback (most recent call last): + ... + AssertionError: + Arrays are not equal + + (shapes (2, 5), () mismatch) + ACTUAL: array([[3, 3, 3, 3, 3], + [3, 3, 3, 3, 3]]) + DESIRED: array(3) + + The `strict` parameter also ensures that the array data types match: + + >>> x = np.array([2, 2, 2]) + >>> y = np.array([2., 2., 2.], dtype=np.float32) + >>> np.testing.assert_array_equal(x, y, strict=True) + Traceback (most recent call last): + ... + AssertionError: + Arrays are not equal + + (dtypes int64, float32 mismatch) + ACTUAL: array([2, 2, 2]) + DESIRED: array([2., 2., 2.], dtype=float32) + """ + __tracebackhide__ = True # Hide traceback for py.test + assert_array_compare(operator.__eq__, actual, desired, err_msg=err_msg, + verbose=verbose, header='Arrays are not equal', + strict=strict) + + +def assert_array_almost_equal(actual, desired, decimal=6, err_msg='', + verbose=True): + """ + Raises an AssertionError if two objects are not equal up to desired + precision. + + .. note:: It is recommended to use one of `assert_allclose`, + `assert_array_almost_equal_nulp` or `assert_array_max_ulp` + instead of this function for more consistent floating point + comparisons. + + The test verifies identical shapes and that the elements of ``actual`` and + ``desired`` satisfy:: + + abs(desired-actual) < 1.5 * 10**(-decimal) + + That is a looser test than originally documented, but agrees with what the + actual implementation did up to rounding vagaries. An exception is raised + at shape mismatch or conflicting values. In contrast to the standard usage + in numpy, NaNs are compared like numbers, no assertion is raised if both + objects have NaNs in the same positions. + + Parameters + ---------- + actual : array_like + The actual object to check. + desired : array_like + The desired, expected object. + decimal : int, optional + Desired precision, default is 6. + err_msg : str, optional + The error message to be printed in case of failure. + verbose : bool, optional + If True, the conflicting values are appended to the error message. + + Raises + ------ + AssertionError + If actual and desired are not equal up to specified precision. + + See Also + -------- + assert_allclose: Compare two array_like objects for equality with desired + relative and/or absolute precision. + assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal + + Examples + -------- + the first assert does not raise an exception + + >>> np.testing.assert_array_almost_equal([1.0,2.333,np.nan], + ... [1.0,2.333,np.nan]) + + >>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan], + ... [1.0,2.33339,np.nan], decimal=5) + Traceback (most recent call last): + ... + AssertionError: + Arrays are not almost equal to 5 decimals + + Mismatched elements: 1 / 3 (33.3%) + Max absolute difference among violations: 6.e-05 + Max relative difference among violations: 2.57136612e-05 + ACTUAL: array([1. , 2.33333, nan]) + DESIRED: array([1. , 2.33339, nan]) + + >>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan], + ... [1.0,2.33333, 5], decimal=5) + Traceback (most recent call last): + ... + AssertionError: + Arrays are not almost equal to 5 decimals + + nan location mismatch: + ACTUAL: array([1. , 2.33333, nan]) + DESIRED: array([1. , 2.33333, 5. ]) + + """ + __tracebackhide__ = True # Hide traceback for py.test + from numpy._core import number, result_type + from numpy._core.fromnumeric import any as npany + from numpy._core.numerictypes import issubdtype + + def compare(x, y): + try: + if npany(isinf(x)) or npany(isinf(y)): + xinfid = isinf(x) + yinfid = isinf(y) + if not (xinfid == yinfid).all(): + return False + # if one item, x and y is +- inf + if x.size == y.size == 1: + return x == y + x = x[~xinfid] + y = y[~yinfid] + except (TypeError, NotImplementedError): + pass + + # make sure y is an inexact type to avoid abs(MIN_INT); will cause + # casting of x later. + dtype = result_type(y, 1.) + y = np.asanyarray(y, dtype) + z = abs(x - y) + + if not issubdtype(z.dtype, number): + z = z.astype(np.float64) # handle object arrays + + return z < 1.5 * 10.0**(-decimal) + + assert_array_compare(compare, actual, desired, err_msg=err_msg, + verbose=verbose, + header=('Arrays are not almost equal to %d decimals' % decimal), + precision=decimal) + + +def assert_array_less(x, y, err_msg='', verbose=True, *, strict=False): + """ + Raises an AssertionError if two array_like objects are not ordered by less + than. + + Given two array_like objects `x` and `y`, check that the shape is equal and + all elements of `x` are strictly less than the corresponding elements of + `y` (but see the Notes for the special handling of a scalar). An exception + is raised at shape mismatch or values that are not correctly ordered. In + contrast to the standard usage in NumPy, no assertion is raised if both + objects have NaNs in the same positions. + + Parameters + ---------- + x : array_like + The smaller object to check. + y : array_like + The larger object to compare. + err_msg : string + The error message to be printed in case of failure. + verbose : bool + If True, the conflicting values are appended to the error message. + strict : bool, optional + If True, raise an AssertionError when either the shape or the data + type of the array_like objects does not match. The special + handling for scalars mentioned in the Notes section is disabled. + + .. versionadded:: 2.0.0 + + Raises + ------ + AssertionError + If x is not strictly smaller than y, element-wise. + + See Also + -------- + assert_array_equal: tests objects for equality + assert_array_almost_equal: test objects for equality up to precision + + Notes + ----- + When one of `x` and `y` is a scalar and the other is array_like, the + function performs the comparison as though the scalar were broadcasted + to the shape of the array. This behaviour can be disabled with the `strict` + parameter. + + Examples + -------- + The following assertion passes because each finite element of `x` is + strictly less than the corresponding element of `y`, and the NaNs are in + corresponding locations. + + >>> x = [1.0, 1.0, np.nan] + >>> y = [1.1, 2.0, np.nan] + >>> np.testing.assert_array_less(x, y) + + The following assertion fails because the zeroth element of `x` is no + longer strictly less than the zeroth element of `y`. + + >>> y[0] = 1 + >>> np.testing.assert_array_less(x, y) + Traceback (most recent call last): + ... + AssertionError: + Arrays are not strictly ordered `x < y` + + Mismatched elements: 1 / 3 (33.3%) + Max absolute difference among violations: 0. + Max relative difference among violations: 0. + x: array([ 1., 1., nan]) + y: array([ 1., 2., nan]) + + Here, `y` is a scalar, so each element of `x` is compared to `y`, and + the assertion passes. + + >>> x = [1.0, 4.0] + >>> y = 5.0 + >>> np.testing.assert_array_less(x, y) + + However, with ``strict=True``, the assertion will fail because the shapes + do not match. + + >>> np.testing.assert_array_less(x, y, strict=True) + Traceback (most recent call last): + ... + AssertionError: + Arrays are not strictly ordered `x < y` + + (shapes (2,), () mismatch) + x: array([1., 4.]) + y: array(5.) + + With ``strict=True``, the assertion also fails if the dtypes of the two + arrays do not match. + + >>> y = [5, 5] + >>> np.testing.assert_array_less(x, y, strict=True) + Traceback (most recent call last): + ... + AssertionError: + Arrays are not strictly ordered `x < y` + + (dtypes float64, int64 mismatch) + x: array([1., 4.]) + y: array([5, 5]) + """ + __tracebackhide__ = True # Hide traceback for py.test + assert_array_compare(operator.__lt__, x, y, err_msg=err_msg, + verbose=verbose, + header='Arrays are not strictly ordered `x < y`', + equal_inf=False, + strict=strict, + names=('x', 'y')) + + +def runstring(astr, dict): + exec(astr, dict) + + +def assert_string_equal(actual, desired): + """ + Test if two strings are equal. + + If the given strings are equal, `assert_string_equal` does nothing. + If they are not equal, an AssertionError is raised, and the diff + between the strings is shown. + + Parameters + ---------- + actual : str + The string to test for equality against the expected string. + desired : str + The expected string. + + Examples + -------- + >>> np.testing.assert_string_equal('abc', 'abc') + >>> np.testing.assert_string_equal('abc', 'abcd') + Traceback (most recent call last): + File "", line 1, in + ... + AssertionError: Differences in strings: + - abc+ abcd? + + + """ + # delay import of difflib to reduce startup time + __tracebackhide__ = True # Hide traceback for py.test + import difflib + + if not isinstance(actual, str): + raise AssertionError(repr(type(actual))) + if not isinstance(desired, str): + raise AssertionError(repr(type(desired))) + if desired == actual: + return + + diff = list(difflib.Differ().compare(actual.splitlines(True), + desired.splitlines(True))) + diff_list = [] + while diff: + d1 = diff.pop(0) + if d1.startswith(' '): + continue + if d1.startswith('- '): + l = [d1] + d2 = diff.pop(0) + if d2.startswith('? '): + l.append(d2) + d2 = diff.pop(0) + if not d2.startswith('+ '): + raise AssertionError(repr(d2)) + l.append(d2) + if diff: + d3 = diff.pop(0) + if d3.startswith('? '): + l.append(d3) + else: + diff.insert(0, d3) + if d2[2:] == d1[2:]: + continue + diff_list.extend(l) + continue + raise AssertionError(repr(d1)) + if not diff_list: + return + msg = f"Differences in strings:\n{''.join(diff_list).rstrip()}" + if actual != desired: + raise AssertionError(msg) + + +def rundocs(filename=None, raise_on_error=True): + """ + Run doctests found in the given file. + + By default `rundocs` raises an AssertionError on failure. + + Parameters + ---------- + filename : str + The path to the file for which the doctests are run. + raise_on_error : bool + Whether to raise an AssertionError when a doctest fails. Default is + True. + + Notes + ----- + The doctests can be run by the user/developer by adding the ``doctests`` + argument to the ``test()`` call. For example, to run all tests (including + doctests) for ``numpy.lib``: + + >>> np.lib.test(doctests=True) # doctest: +SKIP + """ + import doctest + + from numpy.distutils.misc_util import exec_mod_from_location + if filename is None: + f = sys._getframe(1) + filename = f.f_globals['__file__'] + name = os.path.splitext(os.path.basename(filename))[0] + m = exec_mod_from_location(name, filename) + + tests = doctest.DocTestFinder().find(m) + runner = doctest.DocTestRunner(verbose=False) + + msg = [] + if raise_on_error: + out = msg.append + else: + out = None + + for test in tests: + runner.run(test, out=out) + + if runner.failures > 0 and raise_on_error: + raise AssertionError("Some doctests failed:\n%s" % "\n".join(msg)) + + +def check_support_sve(__cache=[]): + """ + gh-22982 + """ + + if __cache: + return __cache[0] + + import subprocess + cmd = 'lscpu' + try: + output = subprocess.run(cmd, capture_output=True, text=True) + result = 'sve' in output.stdout + except (OSError, subprocess.SubprocessError): + result = False + __cache.append(result) + return __cache[0] + + +# +# assert_raises and assert_raises_regex are taken from unittest. +# +import unittest + + +class _Dummy(unittest.TestCase): + def nop(self): + pass + + +_d = _Dummy('nop') + + +def assert_raises(*args, **kwargs): + """ + assert_raises(exception_class, callable, *args, **kwargs) + assert_raises(exception_class) + + Fail unless an exception of class exception_class is thrown + by callable when invoked with arguments args and keyword + arguments kwargs. If a different type of exception is + thrown, it will not be caught, and the test case will be + deemed to have suffered an error, exactly as for an + unexpected exception. + + Alternatively, `assert_raises` can be used as a context manager: + + >>> from numpy.testing import assert_raises + >>> with assert_raises(ZeroDivisionError): + ... 1 / 0 + + is equivalent to + + >>> def div(x, y): + ... return x / y + >>> assert_raises(ZeroDivisionError, div, 1, 0) + + """ + __tracebackhide__ = True # Hide traceback for py.test + return _d.assertRaises(*args, **kwargs) + + +def assert_raises_regex(exception_class, expected_regexp, *args, **kwargs): + """ + assert_raises_regex(exception_class, expected_regexp, callable, *args, + **kwargs) + assert_raises_regex(exception_class, expected_regexp) + + Fail unless an exception of class exception_class and with message that + matches expected_regexp is thrown by callable when invoked with arguments + args and keyword arguments kwargs. + + Alternatively, can be used as a context manager like `assert_raises`. + """ + __tracebackhide__ = True # Hide traceback for py.test + return _d.assertRaisesRegex(exception_class, expected_regexp, *args, **kwargs) + + +def decorate_methods(cls, decorator, testmatch=None): + """ + Apply a decorator to all methods in a class matching a regular expression. + + The given decorator is applied to all public methods of `cls` that are + matched by the regular expression `testmatch` + (``testmatch.search(methodname)``). Methods that are private, i.e. start + with an underscore, are ignored. + + Parameters + ---------- + cls : class + Class whose methods to decorate. + decorator : function + Decorator to apply to methods + testmatch : compiled regexp or str, optional + The regular expression. Default value is None, in which case the + nose default (``re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep)``) + is used. + If `testmatch` is a string, it is compiled to a regular expression + first. + + """ + if testmatch is None: + testmatch = re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep) + else: + testmatch = re.compile(testmatch) + cls_attr = cls.__dict__ + + # delayed import to reduce startup time + from inspect import isfunction + + methods = [_m for _m in cls_attr.values() if isfunction(_m)] + for function in methods: + try: + if hasattr(function, 'compat_func_name'): + funcname = function.compat_func_name + else: + funcname = function.__name__ + except AttributeError: + # not a function + continue + if testmatch.search(funcname) and not funcname.startswith('_'): + setattr(cls, funcname, decorator(function)) + + +def measure(code_str, times=1, label=None): + """ + Return elapsed time for executing code in the namespace of the caller. + + The supplied code string is compiled with the Python builtin ``compile``. + The precision of the timing is 10 milli-seconds. If the code will execute + fast on this timescale, it can be executed many times to get reasonable + timing accuracy. + + Parameters + ---------- + code_str : str + The code to be timed. + times : int, optional + The number of times the code is executed. Default is 1. The code is + only compiled once. + label : str, optional + A label to identify `code_str` with. This is passed into ``compile`` + as the second argument (for run-time error messages). + + Returns + ------- + elapsed : float + Total elapsed time in seconds for executing `code_str` `times` times. + + Examples + -------- + >>> times = 10 + >>> etime = np.testing.measure('for i in range(1000): np.sqrt(i**2)', times=times) + >>> print("Time for a single execution : ", etime / times, "s") # doctest: +SKIP + Time for a single execution : 0.005 s + + """ + frame = sys._getframe(1) + locs, globs = frame.f_locals, frame.f_globals + + code = compile(code_str, f'Test name: {label} ', 'exec') + i = 0 + elapsed = jiffies() + while i < times: + i += 1 + exec(code, globs, locs) + elapsed = jiffies() - elapsed + return 0.01 * elapsed + + +def _assert_valid_refcount(op): + """ + Check that ufuncs don't mishandle refcount of object `1`. + Used in a few regression tests. + """ + if not HAS_REFCOUNT: + return True + + import gc + + import numpy as np + + b = np.arange(100 * 100).reshape(100, 100) + c = b + i = 1 + + gc.disable() + try: + rc = sys.getrefcount(i) + for j in range(15): + d = op(b, c) + assert_(sys.getrefcount(i) >= rc) + finally: + gc.enable() + + +def assert_allclose(actual, desired, rtol=1e-7, atol=0, equal_nan=True, + err_msg='', verbose=True, *, strict=False): + """ + Raises an AssertionError if two objects are not equal up to desired + tolerance. + + Given two array_like objects, check that their shapes and all elements + are equal (but see the Notes for the special handling of a scalar). An + exception is raised if the shapes mismatch or any values conflict. In + contrast to the standard usage in numpy, NaNs are compared like numbers, + no assertion is raised if both objects have NaNs in the same positions. + + The test is equivalent to ``allclose(actual, desired, rtol, atol)`` (note + that ``allclose`` has different default values). It compares the difference + between `actual` and `desired` to ``atol + rtol * abs(desired)``. + + Parameters + ---------- + actual : array_like + Array obtained. + desired : array_like + Array desired. + rtol : float, optional + Relative tolerance. + atol : float, optional + Absolute tolerance. + equal_nan : bool, optional. + If True, NaNs will compare equal. + err_msg : str, optional + The error message to be printed in case of failure. + verbose : bool, optional + If True, the conflicting values are appended to the error message. + strict : bool, optional + If True, raise an ``AssertionError`` when either the shape or the data + type of the arguments does not match. The special handling of scalars + mentioned in the Notes section is disabled. + + .. versionadded:: 2.0.0 + + Raises + ------ + AssertionError + If actual and desired are not equal up to specified precision. + + See Also + -------- + assert_array_almost_equal_nulp, assert_array_max_ulp + + Notes + ----- + When one of `actual` and `desired` is a scalar and the other is + array_like, the function performs the comparison as if the scalar were + broadcasted to the shape of the array. + This behaviour can be disabled with the `strict` parameter. + + Examples + -------- + >>> x = [1e-5, 1e-3, 1e-1] + >>> y = np.arccos(np.cos(x)) + >>> np.testing.assert_allclose(x, y, rtol=1e-5, atol=0) + + As mentioned in the Notes section, `assert_allclose` has special + handling for scalars. Here, the test checks that the value of `numpy.sin` + is nearly zero at integer multiples of π. + + >>> x = np.arange(3) * np.pi + >>> np.testing.assert_allclose(np.sin(x), 0, atol=1e-15) + + Use `strict` to raise an ``AssertionError`` when comparing an array + with one or more dimensions against a scalar. + + >>> np.testing.assert_allclose(np.sin(x), 0, atol=1e-15, strict=True) + Traceback (most recent call last): + ... + AssertionError: + Not equal to tolerance rtol=1e-07, atol=1e-15 + + (shapes (3,), () mismatch) + ACTUAL: array([ 0.000000e+00, 1.224647e-16, -2.449294e-16]) + DESIRED: array(0) + + The `strict` parameter also ensures that the array data types match: + + >>> y = np.zeros(3, dtype=np.float32) + >>> np.testing.assert_allclose(np.sin(x), y, atol=1e-15, strict=True) + Traceback (most recent call last): + ... + AssertionError: + Not equal to tolerance rtol=1e-07, atol=1e-15 + + (dtypes float64, float32 mismatch) + ACTUAL: array([ 0.000000e+00, 1.224647e-16, -2.449294e-16]) + DESIRED: array([0., 0., 0.], dtype=float32) + + """ + __tracebackhide__ = True # Hide traceback for py.test + import numpy as np + + def compare(x, y): + return np._core.numeric.isclose(x, y, rtol=rtol, atol=atol, + equal_nan=equal_nan) + + actual, desired = np.asanyarray(actual), np.asanyarray(desired) + header = f'Not equal to tolerance rtol={rtol:g}, atol={atol:g}' + assert_array_compare(compare, actual, desired, err_msg=str(err_msg), + verbose=verbose, header=header, equal_nan=equal_nan, + strict=strict) + + +def assert_array_almost_equal_nulp(x, y, nulp=1): + """ + Compare two arrays relatively to their spacing. + + This is a relatively robust method to compare two arrays whose amplitude + is variable. + + Parameters + ---------- + x, y : array_like + Input arrays. + nulp : int, optional + The maximum number of unit in the last place for tolerance (see Notes). + Default is 1. + + Returns + ------- + None + + Raises + ------ + AssertionError + If the spacing between `x` and `y` for one or more elements is larger + than `nulp`. + + See Also + -------- + assert_array_max_ulp : Check that all items of arrays differ in at most + N Units in the Last Place. + spacing : Return the distance between x and the nearest adjacent number. + + Notes + ----- + An assertion is raised if the following condition is not met:: + + abs(x - y) <= nulp * spacing(maximum(abs(x), abs(y))) + + Examples + -------- + >>> x = np.array([1., 1e-10, 1e-20]) + >>> eps = np.finfo(x.dtype).eps + >>> np.testing.assert_array_almost_equal_nulp(x, x*eps/2 + x) + + >>> np.testing.assert_array_almost_equal_nulp(x, x*eps + x) + Traceback (most recent call last): + ... + AssertionError: Arrays are not equal to 1 ULP (max is 2) + + """ + __tracebackhide__ = True # Hide traceback for py.test + import numpy as np + ax = np.abs(x) + ay = np.abs(y) + ref = nulp * np.spacing(np.where(ax > ay, ax, ay)) + if not np.all(np.abs(x - y) <= ref): + if np.iscomplexobj(x) or np.iscomplexobj(y): + msg = f"Arrays are not equal to {nulp} ULP" + else: + max_nulp = np.max(nulp_diff(x, y)) + msg = f"Arrays are not equal to {nulp} ULP (max is {max_nulp:g})" + raise AssertionError(msg) + + +def assert_array_max_ulp(a, b, maxulp=1, dtype=None): + """ + Check that all items of arrays differ in at most N Units in the Last Place. + + Parameters + ---------- + a, b : array_like + Input arrays to be compared. + maxulp : int, optional + The maximum number of units in the last place that elements of `a` and + `b` can differ. Default is 1. + dtype : dtype, optional + Data-type to convert `a` and `b` to if given. Default is None. + + Returns + ------- + ret : ndarray + Array containing number of representable floating point numbers between + items in `a` and `b`. + + Raises + ------ + AssertionError + If one or more elements differ by more than `maxulp`. + + Notes + ----- + For computing the ULP difference, this API does not differentiate between + various representations of NAN (ULP difference between 0x7fc00000 and 0xffc00000 + is zero). + + See Also + -------- + assert_array_almost_equal_nulp : Compare two arrays relatively to their + spacing. + + Examples + -------- + >>> a = np.linspace(0., 1., 100) + >>> res = np.testing.assert_array_max_ulp(a, np.arcsin(np.sin(a))) + + """ + __tracebackhide__ = True # Hide traceback for py.test + import numpy as np + ret = nulp_diff(a, b, dtype) + if not np.all(ret <= maxulp): + raise AssertionError("Arrays are not almost equal up to %g " + "ULP (max difference is %g ULP)" % + (maxulp, np.max(ret))) + return ret + + +def nulp_diff(x, y, dtype=None): + """For each item in x and y, return the number of representable floating + points between them. + + Parameters + ---------- + x : array_like + first input array + y : array_like + second input array + dtype : dtype, optional + Data-type to convert `x` and `y` to if given. Default is None. + + Returns + ------- + nulp : array_like + number of representable floating point numbers between each item in x + and y. + + Notes + ----- + For computing the ULP difference, this API does not differentiate between + various representations of NAN (ULP difference between 0x7fc00000 and 0xffc00000 + is zero). + + Examples + -------- + # By definition, epsilon is the smallest number such as 1 + eps != 1, so + # there should be exactly one ULP between 1 and 1 + eps + >>> nulp_diff(1, 1 + np.finfo(x.dtype).eps) + 1.0 + """ + import numpy as np + if dtype: + x = np.asarray(x, dtype=dtype) + y = np.asarray(y, dtype=dtype) + else: + x = np.asarray(x) + y = np.asarray(y) + + t = np.common_type(x, y) + if np.iscomplexobj(x) or np.iscomplexobj(y): + raise NotImplementedError("_nulp not implemented for complex array") + + x = np.array([x], dtype=t) + y = np.array([y], dtype=t) + + x[np.isnan(x)] = np.nan + y[np.isnan(y)] = np.nan + + if not x.shape == y.shape: + raise ValueError(f"Arrays do not have the same shape: {x.shape} - {y.shape}") + + def _diff(rx, ry, vdt): + diff = np.asarray(rx - ry, dtype=vdt) + return np.abs(diff) + + rx = integer_repr(x) + ry = integer_repr(y) + return _diff(rx, ry, t) + + +def _integer_repr(x, vdt, comp): + # Reinterpret binary representation of the float as sign-magnitude: + # take into account two-complement representation + # See also + # https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ + rx = x.view(vdt) + if not (rx.size == 1): + rx[rx < 0] = comp - rx[rx < 0] + elif rx < 0: + rx = comp - rx + + return rx + + +def integer_repr(x): + """Return the signed-magnitude interpretation of the binary representation + of x.""" + import numpy as np + if x.dtype == np.float16: + return _integer_repr(x, np.int16, np.int16(-2**15)) + elif x.dtype == np.float32: + return _integer_repr(x, np.int32, np.int32(-2**31)) + elif x.dtype == np.float64: + return _integer_repr(x, np.int64, np.int64(-2**63)) + else: + raise ValueError(f'Unsupported dtype {x.dtype}') + + +@contextlib.contextmanager +def _assert_warns_context(warning_class, name=None): + __tracebackhide__ = True # Hide traceback for py.test + with suppress_warnings() as sup: + l = sup.record(warning_class) + yield + if not len(l) > 0: + name_str = f' when calling {name}' if name is not None else '' + raise AssertionError("No warning raised" + name_str) + + +def assert_warns(warning_class, *args, **kwargs): + """ + Fail unless the given callable throws the specified warning. + + A warning of class warning_class should be thrown by the callable when + invoked with arguments args and keyword arguments kwargs. + If a different type of warning is thrown, it will not be caught. + + If called with all arguments other than the warning class omitted, may be + used as a context manager:: + + with assert_warns(SomeWarning): + do_something() + + The ability to be used as a context manager is new in NumPy v1.11.0. + + Parameters + ---------- + warning_class : class + The class defining the warning that `func` is expected to throw. + func : callable, optional + Callable to test + *args : Arguments + Arguments for `func`. + **kwargs : Kwargs + Keyword arguments for `func`. + + Returns + ------- + The value returned by `func`. + + Examples + -------- + >>> import warnings + >>> def deprecated_func(num): + ... warnings.warn("Please upgrade", DeprecationWarning) + ... return num*num + >>> with np.testing.assert_warns(DeprecationWarning): + ... assert deprecated_func(4) == 16 + >>> # or passing a func + >>> ret = np.testing.assert_warns(DeprecationWarning, deprecated_func, 4) + >>> assert ret == 16 + """ + if not args and not kwargs: + return _assert_warns_context(warning_class) + elif len(args) < 1: + if "match" in kwargs: + raise RuntimeError( + "assert_warns does not use 'match' kwarg, " + "use pytest.warns instead" + ) + raise RuntimeError("assert_warns(...) needs at least one arg") + + func = args[0] + args = args[1:] + with _assert_warns_context(warning_class, name=func.__name__): + return func(*args, **kwargs) + + +@contextlib.contextmanager +def _assert_no_warnings_context(name=None): + __tracebackhide__ = True # Hide traceback for py.test + with warnings.catch_warnings(record=True) as l: + warnings.simplefilter('always') + yield + if len(l) > 0: + name_str = f' when calling {name}' if name is not None else '' + raise AssertionError(f'Got warnings{name_str}: {l}') + + +def assert_no_warnings(*args, **kwargs): + """ + Fail if the given callable produces any warnings. + + If called with all arguments omitted, may be used as a context manager:: + + with assert_no_warnings(): + do_something() + + The ability to be used as a context manager is new in NumPy v1.11.0. + + Parameters + ---------- + func : callable + The callable to test. + \\*args : Arguments + Arguments passed to `func`. + \\*\\*kwargs : Kwargs + Keyword arguments passed to `func`. + + Returns + ------- + The value returned by `func`. + + """ + if not args: + return _assert_no_warnings_context() + + func = args[0] + args = args[1:] + with _assert_no_warnings_context(name=func.__name__): + return func(*args, **kwargs) + + +def _gen_alignment_data(dtype=float32, type='binary', max_size=24): + """ + generator producing data with different alignment and offsets + to test simd vectorization + + Parameters + ---------- + dtype : dtype + data type to produce + type : string + 'unary': create data for unary operations, creates one input + and output array + 'binary': create data for unary operations, creates two input + and output array + max_size : integer + maximum size of data to produce + + Returns + ------- + if type is 'unary' yields one output, one input array and a message + containing information on the data + if type is 'binary' yields one output array, two input array and a message + containing information on the data + + """ + ufmt = 'unary offset=(%d, %d), size=%d, dtype=%r, %s' + bfmt = 'binary offset=(%d, %d, %d), size=%d, dtype=%r, %s' + for o in range(3): + for s in range(o + 2, max(o + 3, max_size)): + if type == 'unary': + inp = lambda: arange(s, dtype=dtype)[o:] + out = empty((s,), dtype=dtype)[o:] + yield out, inp(), ufmt % (o, o, s, dtype, 'out of place') + d = inp() + yield d, d, ufmt % (o, o, s, dtype, 'in place') + yield out[1:], inp()[:-1], ufmt % \ + (o + 1, o, s - 1, dtype, 'out of place') + yield out[:-1], inp()[1:], ufmt % \ + (o, o + 1, s - 1, dtype, 'out of place') + yield inp()[:-1], inp()[1:], ufmt % \ + (o, o + 1, s - 1, dtype, 'aliased') + yield inp()[1:], inp()[:-1], ufmt % \ + (o + 1, o, s - 1, dtype, 'aliased') + if type == 'binary': + inp1 = lambda: arange(s, dtype=dtype)[o:] + inp2 = lambda: arange(s, dtype=dtype)[o:] + out = empty((s,), dtype=dtype)[o:] + yield out, inp1(), inp2(), bfmt % \ + (o, o, o, s, dtype, 'out of place') + d = inp1() + yield d, d, inp2(), bfmt % \ + (o, o, o, s, dtype, 'in place1') + d = inp2() + yield d, inp1(), d, bfmt % \ + (o, o, o, s, dtype, 'in place2') + yield out[1:], inp1()[:-1], inp2()[:-1], bfmt % \ + (o + 1, o, o, s - 1, dtype, 'out of place') + yield out[:-1], inp1()[1:], inp2()[:-1], bfmt % \ + (o, o + 1, o, s - 1, dtype, 'out of place') + yield out[:-1], inp1()[:-1], inp2()[1:], bfmt % \ + (o, o, o + 1, s - 1, dtype, 'out of place') + yield inp1()[1:], inp1()[:-1], inp2()[:-1], bfmt % \ + (o + 1, o, o, s - 1, dtype, 'aliased') + yield inp1()[:-1], inp1()[1:], inp2()[:-1], bfmt % \ + (o, o + 1, o, s - 1, dtype, 'aliased') + yield inp1()[:-1], inp1()[:-1], inp2()[1:], bfmt % \ + (o, o, o + 1, s - 1, dtype, 'aliased') + + +class IgnoreException(Exception): + "Ignoring this exception due to disabled feature" + pass + + +@contextlib.contextmanager +def tempdir(*args, **kwargs): + """Context manager to provide a temporary test folder. + + All arguments are passed as this to the underlying tempfile.mkdtemp + function. + + """ + tmpdir = mkdtemp(*args, **kwargs) + try: + yield tmpdir + finally: + shutil.rmtree(tmpdir) + + +@contextlib.contextmanager +def temppath(*args, **kwargs): + """Context manager for temporary files. + + Context manager that returns the path to a closed temporary file. Its + parameters are the same as for tempfile.mkstemp and are passed directly + to that function. The underlying file is removed when the context is + exited, so it should be closed at that time. + + Windows does not allow a temporary file to be opened if it is already + open, so the underlying file must be closed after opening before it + can be opened again. + + """ + fd, path = mkstemp(*args, **kwargs) + os.close(fd) + try: + yield path + finally: + os.remove(path) + + +class clear_and_catch_warnings(warnings.catch_warnings): + """ Context manager that resets warning registry for catching warnings + + Warnings can be slippery, because, whenever a warning is triggered, Python + adds a ``__warningregistry__`` member to the *calling* module. This makes + it impossible to retrigger the warning in this module, whatever you put in + the warnings filters. This context manager accepts a sequence of `modules` + as a keyword argument to its constructor and: + + * stores and removes any ``__warningregistry__`` entries in given `modules` + on entry; + * resets ``__warningregistry__`` to its previous state on exit. + + This makes it possible to trigger any warning afresh inside the context + manager without disturbing the state of warnings outside. + + For compatibility with Python, please consider all arguments to be + keyword-only. + + Parameters + ---------- + record : bool, optional + Specifies whether warnings should be captured by a custom + implementation of ``warnings.showwarning()`` and be appended to a list + returned by the context manager. Otherwise None is returned by the + context manager. The objects appended to the list are arguments whose + attributes mirror the arguments to ``showwarning()``. + modules : sequence, optional + Sequence of modules for which to reset warnings registry on entry and + restore on exit. To work correctly, all 'ignore' filters should + filter by one of these modules. + + Examples + -------- + >>> import warnings + >>> with np.testing.clear_and_catch_warnings( + ... modules=[np._core.fromnumeric]): + ... warnings.simplefilter('always') + ... warnings.filterwarnings('ignore', module='np._core.fromnumeric') + ... # do something that raises a warning but ignore those in + ... # np._core.fromnumeric + """ + class_modules = () + + def __init__(self, record=False, modules=()): + self.modules = set(modules).union(self.class_modules) + self._warnreg_copies = {} + super().__init__(record=record) + + def __enter__(self): + for mod in self.modules: + if hasattr(mod, '__warningregistry__'): + mod_reg = mod.__warningregistry__ + self._warnreg_copies[mod] = mod_reg.copy() + mod_reg.clear() + return super().__enter__() + + def __exit__(self, *exc_info): + super().__exit__(*exc_info) + for mod in self.modules: + if hasattr(mod, '__warningregistry__'): + mod.__warningregistry__.clear() + if mod in self._warnreg_copies: + mod.__warningregistry__.update(self._warnreg_copies[mod]) + + +class suppress_warnings: + """ + Context manager and decorator doing much the same as + ``warnings.catch_warnings``. + + However, it also provides a filter mechanism to work around + https://bugs.python.org/issue4180. + + This bug causes Python before 3.4 to not reliably show warnings again + after they have been ignored once (even within catch_warnings). It + means that no "ignore" filter can be used easily, since following + tests might need to see the warning. Additionally it allows easier + specificity for testing warnings and can be nested. + + Parameters + ---------- + forwarding_rule : str, optional + One of "always", "once", "module", or "location". Analogous to + the usual warnings module filter mode, it is useful to reduce + noise mostly on the outmost level. Unsuppressed and unrecorded + warnings will be forwarded based on this rule. Defaults to "always". + "location" is equivalent to the warnings "default", match by exact + location the warning warning originated from. + + Notes + ----- + Filters added inside the context manager will be discarded again + when leaving it. Upon entering all filters defined outside a + context will be applied automatically. + + When a recording filter is added, matching warnings are stored in the + ``log`` attribute as well as in the list returned by ``record``. + + If filters are added and the ``module`` keyword is given, the + warning registry of this module will additionally be cleared when + applying it, entering the context, or exiting it. This could cause + warnings to appear a second time after leaving the context if they + were configured to be printed once (default) and were already + printed before the context was entered. + + Nesting this context manager will work as expected when the + forwarding rule is "always" (default). Unfiltered and unrecorded + warnings will be passed out and be matched by the outer level. + On the outmost level they will be printed (or caught by another + warnings context). The forwarding rule argument can modify this + behaviour. + + Like ``catch_warnings`` this context manager is not threadsafe. + + Examples + -------- + + With a context manager:: + + with np.testing.suppress_warnings() as sup: + sup.filter(DeprecationWarning, "Some text") + sup.filter(module=np.ma.core) + log = sup.record(FutureWarning, "Does this occur?") + command_giving_warnings() + # The FutureWarning was given once, the filtered warnings were + # ignored. All other warnings abide outside settings (may be + # printed/error) + assert_(len(log) == 1) + assert_(len(sup.log) == 1) # also stored in log attribute + + Or as a decorator:: + + sup = np.testing.suppress_warnings() + sup.filter(module=np.ma.core) # module must match exactly + @sup + def some_function(): + # do something which causes a warning in np.ma.core + pass + """ + def __init__(self, forwarding_rule="always"): + self._entered = False + + # Suppressions are either instance or defined inside one with block: + self._suppressions = [] + + if forwarding_rule not in {"always", "module", "once", "location"}: + raise ValueError("unsupported forwarding rule.") + self._forwarding_rule = forwarding_rule + + def _clear_registries(self): + if hasattr(warnings, "_filters_mutated"): + # clearing the registry should not be necessary on new pythons, + # instead the filters should be mutated. + warnings._filters_mutated() + return + # Simply clear the registry, this should normally be harmless, + # note that on new pythons it would be invalidated anyway. + for module in self._tmp_modules: + if hasattr(module, "__warningregistry__"): + module.__warningregistry__.clear() + + def _filter(self, category=Warning, message="", module=None, record=False): + if record: + record = [] # The log where to store warnings + else: + record = None + if self._entered: + if module is None: + warnings.filterwarnings( + "always", category=category, message=message) + else: + module_regex = module.__name__.replace('.', r'\.') + '$' + warnings.filterwarnings( + "always", category=category, message=message, + module=module_regex) + self._tmp_modules.add(module) + self._clear_registries() + + self._tmp_suppressions.append( + (category, message, re.compile(message, re.I), module, record)) + else: + self._suppressions.append( + (category, message, re.compile(message, re.I), module, record)) + + return record + + def filter(self, category=Warning, message="", module=None): + """ + Add a new suppressing filter or apply it if the state is entered. + + Parameters + ---------- + category : class, optional + Warning class to filter + message : string, optional + Regular expression matching the warning message. + module : module, optional + Module to filter for. Note that the module (and its file) + must match exactly and cannot be a submodule. This may make + it unreliable for external modules. + + Notes + ----- + When added within a context, filters are only added inside + the context and will be forgotten when the context is exited. + """ + self._filter(category=category, message=message, module=module, + record=False) + + def record(self, category=Warning, message="", module=None): + """ + Append a new recording filter or apply it if the state is entered. + + All warnings matching will be appended to the ``log`` attribute. + + Parameters + ---------- + category : class, optional + Warning class to filter + message : string, optional + Regular expression matching the warning message. + module : module, optional + Module to filter for. Note that the module (and its file) + must match exactly and cannot be a submodule. This may make + it unreliable for external modules. + + Returns + ------- + log : list + A list which will be filled with all matched warnings. + + Notes + ----- + When added within a context, filters are only added inside + the context and will be forgotten when the context is exited. + """ + return self._filter(category=category, message=message, module=module, + record=True) + + def __enter__(self): + if self._entered: + raise RuntimeError("cannot enter suppress_warnings twice.") + + self._orig_show = warnings.showwarning + self._filters = warnings.filters + warnings.filters = self._filters[:] + + self._entered = True + self._tmp_suppressions = [] + self._tmp_modules = set() + self._forwarded = set() + + self.log = [] # reset global log (no need to keep same list) + + for cat, mess, _, mod, log in self._suppressions: + if log is not None: + del log[:] # clear the log + if mod is None: + warnings.filterwarnings( + "always", category=cat, message=mess) + else: + module_regex = mod.__name__.replace('.', r'\.') + '$' + warnings.filterwarnings( + "always", category=cat, message=mess, + module=module_regex) + self._tmp_modules.add(mod) + warnings.showwarning = self._showwarning + self._clear_registries() + + return self + + def __exit__(self, *exc_info): + warnings.showwarning = self._orig_show + warnings.filters = self._filters + self._clear_registries() + self._entered = False + del self._orig_show + del self._filters + + def _showwarning(self, message, category, filename, lineno, + *args, use_warnmsg=None, **kwargs): + for cat, _, pattern, mod, rec in ( + self._suppressions + self._tmp_suppressions)[::-1]: + if (issubclass(category, cat) and + pattern.match(message.args[0]) is not None): + if mod is None: + # Message and category match, either recorded or ignored + if rec is not None: + msg = WarningMessage(message, category, filename, + lineno, **kwargs) + self.log.append(msg) + rec.append(msg) + return + # Use startswith, because warnings strips the c or o from + # .pyc/.pyo files. + elif mod.__file__.startswith(filename): + # The message and module (filename) match + if rec is not None: + msg = WarningMessage(message, category, filename, + lineno, **kwargs) + self.log.append(msg) + rec.append(msg) + return + + # There is no filter in place, so pass to the outside handler + # unless we should only pass it once + if self._forwarding_rule == "always": + if use_warnmsg is None: + self._orig_show(message, category, filename, lineno, + *args, **kwargs) + else: + self._orig_showmsg(use_warnmsg) + return + + if self._forwarding_rule == "once": + signature = (message.args, category) + elif self._forwarding_rule == "module": + signature = (message.args, category, filename) + elif self._forwarding_rule == "location": + signature = (message.args, category, filename, lineno) + + if signature in self._forwarded: + return + self._forwarded.add(signature) + if use_warnmsg is None: + self._orig_show(message, category, filename, lineno, *args, + **kwargs) + else: + self._orig_showmsg(use_warnmsg) + + def __call__(self, func): + """ + Function decorator to apply certain suppressions to a whole + function. + """ + @wraps(func) + def new_func(*args, **kwargs): + with self: + return func(*args, **kwargs) + + return new_func + + +@contextlib.contextmanager +def _assert_no_gc_cycles_context(name=None): + __tracebackhide__ = True # Hide traceback for py.test + + # not meaningful to test if there is no refcounting + if not HAS_REFCOUNT: + yield + return + + assert_(gc.isenabled()) + gc.disable() + gc_debug = gc.get_debug() + try: + for i in range(100): + if gc.collect() == 0: + break + else: + raise RuntimeError( + "Unable to fully collect garbage - perhaps a __del__ method " + "is creating more reference cycles?") + + gc.set_debug(gc.DEBUG_SAVEALL) + yield + # gc.collect returns the number of unreachable objects in cycles that + # were found -- we are checking that no cycles were created in the context + n_objects_in_cycles = gc.collect() + objects_in_cycles = gc.garbage[:] + finally: + del gc.garbage[:] + gc.set_debug(gc_debug) + gc.enable() + + if n_objects_in_cycles: + name_str = f' when calling {name}' if name is not None else '' + raise AssertionError( + "Reference cycles were found{}: {} objects were collected, " + "of which {} are shown below:{}" + .format( + name_str, + n_objects_in_cycles, + len(objects_in_cycles), + ''.join( + "\n {} object with id={}:\n {}".format( + type(o).__name__, + id(o), + pprint.pformat(o).replace('\n', '\n ') + ) for o in objects_in_cycles + ) + ) + ) + + +def assert_no_gc_cycles(*args, **kwargs): + """ + Fail if the given callable produces any reference cycles. + + If called with all arguments omitted, may be used as a context manager:: + + with assert_no_gc_cycles(): + do_something() + + Parameters + ---------- + func : callable + The callable to test. + \\*args : Arguments + Arguments passed to `func`. + \\*\\*kwargs : Kwargs + Keyword arguments passed to `func`. + + Returns + ------- + Nothing. The result is deliberately discarded to ensure that all cycles + are found. + + """ + if not args: + return _assert_no_gc_cycles_context() + + func = args[0] + args = args[1:] + with _assert_no_gc_cycles_context(name=func.__name__): + func(*args, **kwargs) + + +def break_cycles(): + """ + Break reference cycles by calling gc.collect + Objects can call other objects' methods (for instance, another object's + __del__) inside their own __del__. On PyPy, the interpreter only runs + between calls to gc.collect, so multiple calls are needed to completely + release all cycles. + """ + + gc.collect() + if IS_PYPY: + # a few more, just to make sure all the finalizers are called + gc.collect() + gc.collect() + gc.collect() + gc.collect() + + +def requires_memory(free_bytes): + """Decorator to skip a test if not enough memory is available""" + import pytest + + def decorator(func): + @wraps(func) + def wrapper(*a, **kw): + msg = check_free_memory(free_bytes) + if msg is not None: + pytest.skip(msg) + + try: + return func(*a, **kw) + except MemoryError: + # Probably ran out of memory regardless: don't regard as failure + pytest.xfail("MemoryError raised") + + return wrapper + + return decorator + + +def check_free_memory(free_bytes): + """ + Check whether `free_bytes` amount of memory is currently free. + Returns: None if enough memory available, otherwise error message + """ + env_var = 'NPY_AVAILABLE_MEM' + env_value = os.environ.get(env_var) + if env_value is not None: + try: + mem_free = _parse_size(env_value) + except ValueError as exc: + raise ValueError(f'Invalid environment variable {env_var}: {exc}') + + msg = (f'{free_bytes / 1e9} GB memory required, but environment variable ' + f'NPY_AVAILABLE_MEM={env_value} set') + else: + mem_free = _get_mem_available() + + if mem_free is None: + msg = ("Could not determine available memory; set NPY_AVAILABLE_MEM " + "environment variable (e.g. NPY_AVAILABLE_MEM=16GB) to run " + "the test.") + mem_free = -1 + else: + free_bytes_gb = free_bytes / 1e9 + mem_free_gb = mem_free / 1e9 + msg = f'{free_bytes_gb} GB memory required, but {mem_free_gb} GB available' + + return msg if mem_free < free_bytes else None + + +def _parse_size(size_str): + """Convert memory size strings ('12 GB' etc.) to float""" + suffixes = {'': 1, 'b': 1, + 'k': 1000, 'm': 1000**2, 'g': 1000**3, 't': 1000**4, + 'kb': 1000, 'mb': 1000**2, 'gb': 1000**3, 'tb': 1000**4, + 'kib': 1024, 'mib': 1024**2, 'gib': 1024**3, 'tib': 1024**4} + + pipe_suffixes = "|".join(suffixes.keys()) + + size_re = re.compile(fr'^\s*(\d+|\d+\.\d+)\s*({pipe_suffixes})\s*$', re.I) + + m = size_re.match(size_str.lower()) + if not m or m.group(2) not in suffixes: + raise ValueError(f'value {size_str!r} not a valid size') + return int(float(m.group(1)) * suffixes[m.group(2)]) + + +def _get_mem_available(): + """Return available memory in bytes, or None if unknown.""" + try: + import psutil + return psutil.virtual_memory().available + except (ImportError, AttributeError): + pass + + if sys.platform.startswith('linux'): + info = {} + with open('/proc/meminfo') as f: + for line in f: + p = line.split() + info[p[0].strip(':').lower()] = int(p[1]) * 1024 + + if 'memavailable' in info: + # Linux >= 3.14 + return info['memavailable'] + else: + return info['memfree'] + info['cached'] + + return None + + +def _no_tracing(func): + """ + Decorator to temporarily turn off tracing for the duration of a test. + Needed in tests that check refcounting, otherwise the tracing itself + influences the refcounts + """ + if not hasattr(sys, 'gettrace'): + return func + else: + @wraps(func) + def wrapper(*args, **kwargs): + original_trace = sys.gettrace() + try: + sys.settrace(None) + return func(*args, **kwargs) + finally: + sys.settrace(original_trace) + return wrapper + + +def _get_glibc_version(): + try: + ver = os.confstr('CS_GNU_LIBC_VERSION').rsplit(' ')[1] + except Exception: + ver = '0.0' + + return ver + + +_glibcver = _get_glibc_version() +_glibc_older_than = lambda x: (_glibcver != '0.0' and _glibcver < x) + + +def run_threaded(func, max_workers=8, pass_count=False, + pass_barrier=False, outer_iterations=1, + prepare_args=None): + """Runs a function many times in parallel""" + for _ in range(outer_iterations): + with (concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) + as tpe): + if prepare_args is None: + args = [] + else: + args = prepare_args() + if pass_barrier: + barrier = threading.Barrier(max_workers) + args.append(barrier) + if pass_count: + all_args = [(func, i, *args) for i in range(max_workers)] + else: + all_args = [(func, *args) for i in range(max_workers)] + try: + futures = [] + for arg in all_args: + futures.append(tpe.submit(*arg)) + except RuntimeError as e: + import pytest + pytest.skip(f"Spawning {max_workers} threads failed with " + f"error {e!r} (likely due to resource limits on the " + "system running the tests)") + finally: + if len(futures) < max_workers and pass_barrier: + barrier.abort() + for f in futures: + f.result() diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/_private/utils.pyi b/.venv/lib/python3.12/site-packages/numpy/testing/_private/utils.pyi new file mode 100644 index 0000000..4e3b60a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/testing/_private/utils.pyi @@ -0,0 +1,499 @@ +import ast +import sys +import types +import unittest +import warnings +from collections.abc import Callable, Iterable, Sequence +from contextlib import _GeneratorContextManager +from pathlib import Path +from re import Pattern +from typing import ( + Any, + AnyStr, + ClassVar, + Final, + Generic, + NoReturn, + ParamSpec, + Self, + SupportsIndex, + TypeAlias, + TypeVarTuple, + overload, + type_check_only, +) +from typing import Literal as L +from unittest.case import SkipTest + +from _typeshed import ConvertibleToFloat, GenericPath, StrOrBytesPath, StrPath +from typing_extensions import TypeVar + +import numpy as np +from numpy._typing import ( + ArrayLike, + DTypeLike, + NDArray, + _ArrayLikeDT64_co, + _ArrayLikeNumber_co, + _ArrayLikeObject_co, + _ArrayLikeTD64_co, +) + +__all__ = [ # noqa: RUF022 + "IS_EDITABLE", + "IS_MUSL", + "IS_PYPY", + "IS_PYSTON", + "IS_WASM", + "HAS_LAPACK64", + "HAS_REFCOUNT", + "NOGIL_BUILD", + "assert_", + "assert_array_almost_equal_nulp", + "assert_raises_regex", + "assert_array_max_ulp", + "assert_warns", + "assert_no_warnings", + "assert_allclose", + "assert_equal", + "assert_almost_equal", + "assert_approx_equal", + "assert_array_equal", + "assert_array_less", + "assert_string_equal", + "assert_array_almost_equal", + "assert_raises", + "build_err_msg", + "decorate_methods", + "jiffies", + "memusage", + "print_assert_equal", + "rundocs", + "runstring", + "verbose", + "measure", + "IgnoreException", + "clear_and_catch_warnings", + "SkipTest", + "KnownFailureException", + "temppath", + "tempdir", + "suppress_warnings", + "assert_array_compare", + "assert_no_gc_cycles", + "break_cycles", + "check_support_sve", + "run_threaded", +] + +### + +_T = TypeVar("_T") +_Ts = TypeVarTuple("_Ts") +_Tss = ParamSpec("_Tss") +_ET = TypeVar("_ET", bound=BaseException, default=BaseException) +_FT = TypeVar("_FT", bound=Callable[..., Any]) +_W_co = TypeVar("_W_co", bound=_WarnLog | None, default=_WarnLog | None, covariant=True) +_T_or_bool = TypeVar("_T_or_bool", default=bool) + +_StrLike: TypeAlias = str | bytes +_RegexLike: TypeAlias = _StrLike | Pattern[Any] +_NumericArrayLike: TypeAlias = _ArrayLikeNumber_co | _ArrayLikeObject_co + +_ExceptionSpec: TypeAlias = type[_ET] | tuple[type[_ET], ...] +_WarningSpec: TypeAlias = type[Warning] +_WarnLog: TypeAlias = list[warnings.WarningMessage] +_ToModules: TypeAlias = Iterable[types.ModuleType] + +# Must return a bool or an ndarray/generic type that is supported by `np.logical_and.reduce` +_ComparisonFunc: TypeAlias = Callable[ + [NDArray[Any], NDArray[Any]], + bool | np.bool | np.number | NDArray[np.bool | np.number | np.object_], +] + +# Type-check only `clear_and_catch_warnings` subclasses for both values of the +# `record` parameter. Copied from the stdlib `warnings` stubs. +@type_check_only +class _clear_and_catch_warnings_with_records(clear_and_catch_warnings): + def __enter__(self) -> list[warnings.WarningMessage]: ... + +@type_check_only +class _clear_and_catch_warnings_without_records(clear_and_catch_warnings): + def __enter__(self) -> None: ... + +### + +verbose: int = 0 +NUMPY_ROOT: Final[Path] = ... +IS_INSTALLED: Final[bool] = ... +IS_EDITABLE: Final[bool] = ... +IS_MUSL: Final[bool] = ... +IS_PYPY: Final[bool] = ... +IS_PYSTON: Final[bool] = ... +IS_WASM: Final[bool] = ... +HAS_REFCOUNT: Final[bool] = ... +HAS_LAPACK64: Final[bool] = ... +NOGIL_BUILD: Final[bool] = ... + +class KnownFailureException(Exception): ... +class IgnoreException(Exception): ... + +# NOTE: `warnings.catch_warnings` is incorrectly defined as invariant in typeshed +class clear_and_catch_warnings(warnings.catch_warnings[_W_co], Generic[_W_co]): # type: ignore[type-var] # pyright: ignore[reportInvalidTypeArguments] + class_modules: ClassVar[tuple[types.ModuleType, ...]] = () + modules: Final[set[types.ModuleType]] + @overload # record: True + def __init__(self: clear_and_catch_warnings[_WarnLog], /, record: L[True], modules: _ToModules = ()) -> None: ... + @overload # record: False (default) + def __init__(self: clear_and_catch_warnings[None], /, record: L[False] = False, modules: _ToModules = ()) -> None: ... + @overload # record; bool + def __init__(self, /, record: bool, modules: _ToModules = ()) -> None: ... + +class suppress_warnings: + log: Final[_WarnLog] + def __init__(self, /, forwarding_rule: L["always", "module", "once", "location"] = "always") -> None: ... + def __enter__(self) -> Self: ... + def __exit__(self, cls: type[BaseException] | None, exc: BaseException | None, tb: types.TracebackType | None, /) -> None: ... + def __call__(self, /, func: _FT) -> _FT: ... + + # + def filter(self, /, category: type[Warning] = ..., message: str = "", module: types.ModuleType | None = None) -> None: ... + def record(self, /, category: type[Warning] = ..., message: str = "", module: types.ModuleType | None = None) -> _WarnLog: ... + +# Contrary to runtime we can't do `os.name` checks while type checking, +# only `sys.platform` checks +if sys.platform == "win32" or sys.platform == "cygwin": + def memusage(processName: str = ..., instance: int = ...) -> int: ... +elif sys.platform == "linux": + def memusage(_proc_pid_stat: StrOrBytesPath = ...) -> int | None: ... +else: + def memusage() -> NoReturn: ... + +if sys.platform == "linux": + def jiffies(_proc_pid_stat: StrOrBytesPath = ..., _load_time: list[float] = []) -> int: ... +else: + def jiffies(_load_time: list[float] = []) -> int: ... + +# +def build_err_msg( + arrays: Iterable[object], + err_msg: object, + header: str = ..., + verbose: bool = ..., + names: Sequence[str] = ..., + precision: SupportsIndex | None = ..., +) -> str: ... + +# +def print_assert_equal(test_string: str, actual: object, desired: object) -> None: ... + +# +def assert_(val: object, msg: str | Callable[[], str] = "") -> None: ... + +# +def assert_equal( + actual: object, + desired: object, + err_msg: object = "", + verbose: bool = True, + *, + strict: bool = False, +) -> None: ... + +def assert_almost_equal( + actual: _NumericArrayLike, + desired: _NumericArrayLike, + decimal: int = 7, + err_msg: object = "", + verbose: bool = True, +) -> None: ... + +# +def assert_approx_equal( + actual: ConvertibleToFloat, + desired: ConvertibleToFloat, + significant: int = 7, + err_msg: object = "", + verbose: bool = True, +) -> None: ... + +# +def assert_array_compare( + comparison: _ComparisonFunc, + x: ArrayLike, + y: ArrayLike, + err_msg: object = "", + verbose: bool = True, + header: str = "", + precision: SupportsIndex = 6, + equal_nan: bool = True, + equal_inf: bool = True, + *, + strict: bool = False, + names: tuple[str, str] = ("ACTUAL", "DESIRED"), +) -> None: ... + +# +def assert_array_equal( + actual: object, + desired: object, + err_msg: object = "", + verbose: bool = True, + *, + strict: bool = False, +) -> None: ... + +# +def assert_array_almost_equal( + actual: _NumericArrayLike, + desired: _NumericArrayLike, + decimal: float = 6, + err_msg: object = "", + verbose: bool = True, +) -> None: ... + +@overload +def assert_array_less( + x: _ArrayLikeDT64_co, + y: _ArrayLikeDT64_co, + err_msg: object = "", + verbose: bool = True, + *, + strict: bool = False, +) -> None: ... +@overload +def assert_array_less( + x: _ArrayLikeTD64_co, + y: _ArrayLikeTD64_co, + err_msg: object = "", + verbose: bool = True, + *, + strict: bool = False, +) -> None: ... +@overload +def assert_array_less( + x: _NumericArrayLike, + y: _NumericArrayLike, + err_msg: object = "", + verbose: bool = True, + *, + strict: bool = False, +) -> None: ... + +# +def assert_string_equal(actual: str, desired: str) -> None: ... + +# +@overload +def assert_raises( + exception_class: _ExceptionSpec[_ET], + /, + *, + msg: str | None = None, +) -> unittest.case._AssertRaisesContext[_ET]: ... +@overload +def assert_raises( + exception_class: _ExceptionSpec, + callable: Callable[_Tss, Any], + /, + *args: _Tss.args, + **kwargs: _Tss.kwargs, +) -> None: ... + +# +@overload +def assert_raises_regex( + exception_class: _ExceptionSpec[_ET], + expected_regexp: _RegexLike, + *, + msg: str | None = None, +) -> unittest.case._AssertRaisesContext[_ET]: ... +@overload +def assert_raises_regex( + exception_class: _ExceptionSpec, + expected_regexp: _RegexLike, + callable: Callable[_Tss, Any], + *args: _Tss.args, + **kwargs: _Tss.kwargs, +) -> None: ... + +# +@overload +def assert_allclose( + actual: _ArrayLikeTD64_co, + desired: _ArrayLikeTD64_co, + rtol: float = 1e-7, + atol: float = 0, + equal_nan: bool = True, + err_msg: object = "", + verbose: bool = True, + *, + strict: bool = False, +) -> None: ... +@overload +def assert_allclose( + actual: _NumericArrayLike, + desired: _NumericArrayLike, + rtol: float = 1e-7, + atol: float = 0, + equal_nan: bool = True, + err_msg: object = "", + verbose: bool = True, + *, + strict: bool = False, +) -> None: ... + +# +def assert_array_almost_equal_nulp( + x: _ArrayLikeNumber_co, + y: _ArrayLikeNumber_co, + nulp: float = 1, +) -> None: ... + +# +def assert_array_max_ulp( + a: _ArrayLikeNumber_co, + b: _ArrayLikeNumber_co, + maxulp: float = 1, + dtype: DTypeLike | None = None, +) -> NDArray[Any]: ... + +# +@overload +def assert_warns(warning_class: _WarningSpec) -> _GeneratorContextManager[None]: ... +@overload +def assert_warns(warning_class: _WarningSpec, func: Callable[_Tss, _T], *args: _Tss.args, **kwargs: _Tss.kwargs) -> _T: ... + +# +@overload +def assert_no_warnings() -> _GeneratorContextManager[None]: ... +@overload +def assert_no_warnings(func: Callable[_Tss, _T], /, *args: _Tss.args, **kwargs: _Tss.kwargs) -> _T: ... + +# +@overload +def assert_no_gc_cycles() -> _GeneratorContextManager[None]: ... +@overload +def assert_no_gc_cycles(func: Callable[_Tss, Any], /, *args: _Tss.args, **kwargs: _Tss.kwargs) -> None: ... + +### + +# +@overload +def tempdir( + suffix: None = None, + prefix: None = None, + dir: None = None, +) -> _GeneratorContextManager[str]: ... +@overload +def tempdir( + suffix: AnyStr | None = None, + prefix: AnyStr | None = None, + *, + dir: GenericPath[AnyStr], +) -> _GeneratorContextManager[AnyStr]: ... +@overload +def tempdir( + suffix: AnyStr | None = None, + *, + prefix: AnyStr, + dir: GenericPath[AnyStr] | None = None, +) -> _GeneratorContextManager[AnyStr]: ... +@overload +def tempdir( + suffix: AnyStr, + prefix: AnyStr | None = None, + dir: GenericPath[AnyStr] | None = None, +) -> _GeneratorContextManager[AnyStr]: ... + +# +@overload +def temppath( + suffix: None = None, + prefix: None = None, + dir: None = None, + text: bool = False, +) -> _GeneratorContextManager[str]: ... +@overload +def temppath( + suffix: AnyStr | None, + prefix: AnyStr | None, + dir: GenericPath[AnyStr], + text: bool = False, +) -> _GeneratorContextManager[AnyStr]: ... +@overload +def temppath( + suffix: AnyStr | None = None, + prefix: AnyStr | None = None, + *, + dir: GenericPath[AnyStr], + text: bool = False, +) -> _GeneratorContextManager[AnyStr]: ... +@overload +def temppath( + suffix: AnyStr | None, + prefix: AnyStr, + dir: GenericPath[AnyStr] | None = None, + text: bool = False, +) -> _GeneratorContextManager[AnyStr]: ... +@overload +def temppath( + suffix: AnyStr | None = None, + *, + prefix: AnyStr, + dir: GenericPath[AnyStr] | None = None, + text: bool = False, +) -> _GeneratorContextManager[AnyStr]: ... +@overload +def temppath( + suffix: AnyStr, + prefix: AnyStr | None = None, + dir: GenericPath[AnyStr] | None = None, + text: bool = False, +) -> _GeneratorContextManager[AnyStr]: ... + +# +def check_support_sve(__cache: list[_T_or_bool] = []) -> _T_or_bool: ... # noqa: PYI063 + +# +def decorate_methods( + cls: type, + decorator: Callable[[Callable[..., Any]], Any], + testmatch: _RegexLike | None = None, +) -> None: ... + +# +@overload +def run_threaded( + func: Callable[[], None], + max_workers: int = 8, + pass_count: bool = False, + pass_barrier: bool = False, + outer_iterations: int = 1, + prepare_args: None = None, +) -> None: ... +@overload +def run_threaded( + func: Callable[[*_Ts], None], + max_workers: int, + pass_count: bool, + pass_barrier: bool, + outer_iterations: int, + prepare_args: tuple[*_Ts], +) -> None: ... +@overload +def run_threaded( + func: Callable[[*_Ts], None], + max_workers: int = 8, + pass_count: bool = False, + pass_barrier: bool = False, + outer_iterations: int = 1, + *, + prepare_args: tuple[*_Ts], +) -> None: ... + +# +def runstring(astr: _StrLike | types.CodeType, dict: dict[str, Any] | None) -> Any: ... # noqa: ANN401 +def rundocs(filename: StrPath | None = None, raise_on_error: bool = True) -> None: ... +def measure(code_str: _StrLike | ast.AST, times: int = 1, label: str | None = None) -> float: ... +def break_cycles() -> None: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/overrides.py b/.venv/lib/python3.12/site-packages/numpy/testing/overrides.py new file mode 100644 index 0000000..61771c4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/testing/overrides.py @@ -0,0 +1,84 @@ +"""Tools for testing implementations of __array_function__ and ufunc overrides + + +""" + +import numpy._core.umath as _umath +from numpy import ufunc as _ufunc +from numpy._core.overrides import ARRAY_FUNCTIONS as _array_functions + + +def get_overridable_numpy_ufuncs(): + """List all numpy ufuncs overridable via `__array_ufunc__` + + Parameters + ---------- + None + + Returns + ------- + set + A set containing all overridable ufuncs in the public numpy API. + """ + ufuncs = {obj for obj in _umath.__dict__.values() + if isinstance(obj, _ufunc)} + return ufuncs + + +def allows_array_ufunc_override(func): + """Determine if a function can be overridden via `__array_ufunc__` + + Parameters + ---------- + func : callable + Function that may be overridable via `__array_ufunc__` + + Returns + ------- + bool + `True` if `func` is overridable via `__array_ufunc__` and + `False` otherwise. + + Notes + ----- + This function is equivalent to ``isinstance(func, np.ufunc)`` and + will work correctly for ufuncs defined outside of Numpy. + + """ + return isinstance(func, _ufunc) + + +def get_overridable_numpy_array_functions(): + """List all numpy functions overridable via `__array_function__` + + Parameters + ---------- + None + + Returns + ------- + set + A set containing all functions in the public numpy API that are + overridable via `__array_function__`. + + """ + # 'import numpy' doesn't import recfunctions, so make sure it's imported + # so ufuncs defined there show up in the ufunc listing + from numpy.lib import recfunctions # noqa: F401 + return _array_functions.copy() + +def allows_array_function_override(func): + """Determine if a Numpy function can be overridden via `__array_function__` + + Parameters + ---------- + func : callable + Function that may be overridable via `__array_function__` + + Returns + ------- + bool + `True` if `func` is a function in the Numpy API that is + overridable via `__array_function__` and `False` otherwise. + """ + return func in _array_functions diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/overrides.pyi b/.venv/lib/python3.12/site-packages/numpy/testing/overrides.pyi new file mode 100644 index 0000000..3fefc3f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/testing/overrides.pyi @@ -0,0 +1,11 @@ +from collections.abc import Callable, Hashable +from typing import Any + +from typing_extensions import TypeIs + +import numpy as np + +def get_overridable_numpy_ufuncs() -> set[np.ufunc]: ... +def get_overridable_numpy_array_functions() -> set[Callable[..., Any]]: ... +def allows_array_ufunc_override(func: object) -> TypeIs[np.ufunc]: ... +def allows_array_function_override(func: Hashable) -> bool: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/print_coercion_tables.py b/.venv/lib/python3.12/site-packages/numpy/testing/print_coercion_tables.py new file mode 100755 index 0000000..89f0de3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/testing/print_coercion_tables.py @@ -0,0 +1,207 @@ +#!/usr/bin/env python3 +"""Prints type-coercion tables for the built-in NumPy types + +""" +from collections import namedtuple + +import numpy as np +from numpy._core.numerictypes import obj2sctype + + +# Generic object that can be added, but doesn't do anything else +class GenericObject: + def __init__(self, v): + self.v = v + + def __add__(self, other): + return self + + def __radd__(self, other): + return self + + dtype = np.dtype('O') + +def print_cancast_table(ntypes): + print('X', end=' ') + for char in ntypes: + print(char, end=' ') + print() + for row in ntypes: + print(row, end=' ') + for col in ntypes: + if np.can_cast(row, col, "equiv"): + cast = "#" + elif np.can_cast(row, col, "safe"): + cast = "=" + elif np.can_cast(row, col, "same_kind"): + cast = "~" + elif np.can_cast(row, col, "unsafe"): + cast = "." + else: + cast = " " + print(cast, end=' ') + print() + +def print_coercion_table(ntypes, inputfirstvalue, inputsecondvalue, firstarray, + use_promote_types=False): + print('+', end=' ') + for char in ntypes: + print(char, end=' ') + print() + for row in ntypes: + if row == 'O': + rowtype = GenericObject + else: + rowtype = obj2sctype(row) + + print(row, end=' ') + for col in ntypes: + if col == 'O': + coltype = GenericObject + else: + coltype = obj2sctype(col) + try: + if firstarray: + rowvalue = np.array([rowtype(inputfirstvalue)], dtype=rowtype) + else: + rowvalue = rowtype(inputfirstvalue) + colvalue = coltype(inputsecondvalue) + if use_promote_types: + char = np.promote_types(rowvalue.dtype, colvalue.dtype).char + else: + value = np.add(rowvalue, colvalue) + if isinstance(value, np.ndarray): + char = value.dtype.char + else: + char = np.dtype(type(value)).char + except ValueError: + char = '!' + except OverflowError: + char = '@' + except TypeError: + char = '#' + print(char, end=' ') + print() + + +def print_new_cast_table(*, can_cast=True, legacy=False, flags=False): + """Prints new casts, the values given are default "can-cast" values, not + actual ones. + """ + from numpy._core._multiarray_tests import get_all_cast_information + + cast_table = { + -1: " ", + 0: "#", # No cast (classify as equivalent here) + 1: "#", # equivalent casting + 2: "=", # safe casting + 3: "~", # same-kind casting + 4: ".", # unsafe casting + } + flags_table = { + 0: "▗", 7: "█", + 1: "▚", 2: "▐", 4: "▄", + 3: "▜", 5: "▙", + 6: "▟", + } + + cast_info = namedtuple("cast_info", ["can_cast", "legacy", "flags"]) + no_cast_info = cast_info(" ", " ", " ") + + casts = get_all_cast_information() + table = {} + dtypes = set() + for cast in casts: + dtypes.add(cast["from"]) + dtypes.add(cast["to"]) + + if cast["from"] not in table: + table[cast["from"]] = {} + to_dict = table[cast["from"]] + + can_cast = cast_table[cast["casting"]] + legacy = "L" if cast["legacy"] else "." + flags = 0 + if cast["requires_pyapi"]: + flags |= 1 + if cast["supports_unaligned"]: + flags |= 2 + if cast["no_floatingpoint_errors"]: + flags |= 4 + + flags = flags_table[flags] + to_dict[cast["to"]] = cast_info(can_cast=can_cast, legacy=legacy, flags=flags) + + # The np.dtype(x.type) is a bit strange, because dtype classes do + # not expose much yet. + types = np.typecodes["All"] + + def sorter(x): + # This is a bit weird hack, to get a table as close as possible to + # the one printing all typecodes (but expecting user-dtypes). + dtype = np.dtype(x.type) + try: + indx = types.index(dtype.char) + except ValueError: + indx = np.inf + return (indx, dtype.char) + + dtypes = sorted(dtypes, key=sorter) + + def print_table(field="can_cast"): + print('X', end=' ') + for dt in dtypes: + print(np.dtype(dt.type).char, end=' ') + print() + for from_dt in dtypes: + print(np.dtype(from_dt.type).char, end=' ') + row = table.get(from_dt, {}) + for to_dt in dtypes: + print(getattr(row.get(to_dt, no_cast_info), field), end=' ') + print() + + if can_cast: + # Print the actual table: + print() + print("Casting: # is equivalent, = is safe, ~ is same-kind, and . is unsafe") + print() + print_table("can_cast") + + if legacy: + print() + print("L denotes a legacy cast . a non-legacy one.") + print() + print_table("legacy") + + if flags: + print() + print(f"{flags_table[0]}: no flags, " + f"{flags_table[1]}: PyAPI, " + f"{flags_table[2]}: supports unaligned, " + f"{flags_table[4]}: no-float-errors") + print() + print_table("flags") + + +if __name__ == '__main__': + print("can cast") + print_cancast_table(np.typecodes['All']) + print() + print("In these tables, ValueError is '!', OverflowError is '@', TypeError is '#'") + print() + print("scalar + scalar") + print_coercion_table(np.typecodes['All'], 0, 0, False) + print() + print("scalar + neg scalar") + print_coercion_table(np.typecodes['All'], 0, -1, False) + print() + print("array + scalar") + print_coercion_table(np.typecodes['All'], 0, 0, True) + print() + print("array + neg scalar") + print_coercion_table(np.typecodes['All'], 0, -1, True) + print() + print("promote_types") + print_coercion_table(np.typecodes['All'], 0, 0, False, True) + print("New casting type promotion:") + print_new_cast_table(can_cast=True, legacy=True, flags=True) diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/print_coercion_tables.pyi b/.venv/lib/python3.12/site-packages/numpy/testing/print_coercion_tables.pyi new file mode 100644 index 0000000..c859305 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/testing/print_coercion_tables.pyi @@ -0,0 +1,27 @@ +from collections.abc import Iterable +from typing import ClassVar, Generic, Self + +from typing_extensions import TypeVar + +import numpy as np + +_VT_co = TypeVar("_VT_co", default=object, covariant=True) + +# undocumented +class GenericObject(Generic[_VT_co]): + dtype: ClassVar[np.dtype[np.object_]] = ... + v: _VT_co + + def __init__(self, /, v: _VT_co) -> None: ... + def __add__(self, other: object, /) -> Self: ... + def __radd__(self, other: object, /) -> Self: ... + +def print_cancast_table(ntypes: Iterable[str]) -> None: ... +def print_coercion_table( + ntypes: Iterable[str], + inputfirstvalue: int, + inputsecondvalue: int, + firstarray: bool, + use_promote_types: bool = False, +) -> None: ... +def print_new_cast_table(*, can_cast: bool = True, legacy: bool = False, flags: bool = False) -> None: ... diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/tests/__init__.py b/.venv/lib/python3.12/site-packages/numpy/testing/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/tests/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/testing/tests/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..bd01e5a Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/testing/tests/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/tests/__pycache__/test_utils.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/testing/tests/__pycache__/test_utils.cpython-312.pyc new file mode 100644 index 0000000..99b8502 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/testing/tests/__pycache__/test_utils.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/testing/tests/test_utils.py b/.venv/lib/python3.12/site-packages/numpy/testing/tests/test_utils.py new file mode 100644 index 0000000..fcf2009 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/testing/tests/test_utils.py @@ -0,0 +1,1917 @@ +import itertools +import os +import re +import sys +import warnings +import weakref + +import pytest + +import numpy as np +import numpy._core._multiarray_umath as ncu +from numpy.testing import ( + HAS_REFCOUNT, + assert_, + assert_allclose, + assert_almost_equal, + assert_approx_equal, + assert_array_almost_equal, + assert_array_almost_equal_nulp, + assert_array_equal, + assert_array_less, + assert_array_max_ulp, + assert_equal, + assert_no_gc_cycles, + assert_no_warnings, + assert_raises, + assert_string_equal, + assert_warns, + build_err_msg, + clear_and_catch_warnings, + suppress_warnings, + tempdir, + temppath, +) + + +class _GenericTest: + + def _test_equal(self, a, b): + self._assert_func(a, b) + + def _test_not_equal(self, a, b): + with assert_raises(AssertionError): + self._assert_func(a, b) + + def test_array_rank1_eq(self): + """Test two equal array of rank 1 are found equal.""" + a = np.array([1, 2]) + b = np.array([1, 2]) + + self._test_equal(a, b) + + def test_array_rank1_noteq(self): + """Test two different array of rank 1 are found not equal.""" + a = np.array([1, 2]) + b = np.array([2, 2]) + + self._test_not_equal(a, b) + + def test_array_rank2_eq(self): + """Test two equal array of rank 2 are found equal.""" + a = np.array([[1, 2], [3, 4]]) + b = np.array([[1, 2], [3, 4]]) + + self._test_equal(a, b) + + def test_array_diffshape(self): + """Test two arrays with different shapes are found not equal.""" + a = np.array([1, 2]) + b = np.array([[1, 2], [1, 2]]) + + self._test_not_equal(a, b) + + def test_objarray(self): + """Test object arrays.""" + a = np.array([1, 1], dtype=object) + self._test_equal(a, 1) + + def test_array_likes(self): + self._test_equal([1, 2, 3], (1, 2, 3)) + + +class TestArrayEqual(_GenericTest): + + def setup_method(self): + self._assert_func = assert_array_equal + + def test_generic_rank1(self): + """Test rank 1 array for all dtypes.""" + def foo(t): + a = np.empty(2, t) + a.fill(1) + b = a.copy() + c = a.copy() + c.fill(0) + self._test_equal(a, b) + self._test_not_equal(c, b) + + # Test numeric types and object + for t in '?bhilqpBHILQPfdgFDG': + foo(t) + + # Test strings + for t in ['S1', 'U1']: + foo(t) + + def test_0_ndim_array(self): + x = np.array(473963742225900817127911193656584771) + y = np.array(18535119325151578301457182298393896) + + with pytest.raises(AssertionError) as exc_info: + self._assert_func(x, y) + msg = str(exc_info.value) + assert_('Mismatched elements: 1 / 1 (100%)\n' + in msg) + + y = x + self._assert_func(x, y) + + x = np.array(4395065348745.5643764887869876) + y = np.array(0) + expected_msg = ('Mismatched elements: 1 / 1 (100%)\n' + 'Max absolute difference among violations: ' + '4.39506535e+12\n' + 'Max relative difference among violations: inf\n') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(x, y) + + x = y + self._assert_func(x, y) + + def test_generic_rank3(self): + """Test rank 3 array for all dtypes.""" + def foo(t): + a = np.empty((4, 2, 3), t) + a.fill(1) + b = a.copy() + c = a.copy() + c.fill(0) + self._test_equal(a, b) + self._test_not_equal(c, b) + + # Test numeric types and object + for t in '?bhilqpBHILQPfdgFDG': + foo(t) + + # Test strings + for t in ['S1', 'U1']: + foo(t) + + def test_nan_array(self): + """Test arrays with nan values in them.""" + a = np.array([1, 2, np.nan]) + b = np.array([1, 2, np.nan]) + + self._test_equal(a, b) + + c = np.array([1, 2, 3]) + self._test_not_equal(c, b) + + def test_string_arrays(self): + """Test two arrays with different shapes are found not equal.""" + a = np.array(['floupi', 'floupa']) + b = np.array(['floupi', 'floupa']) + + self._test_equal(a, b) + + c = np.array(['floupipi', 'floupa']) + + self._test_not_equal(c, b) + + def test_recarrays(self): + """Test record arrays.""" + a = np.empty(2, [('floupi', float), ('floupa', float)]) + a['floupi'] = [1, 2] + a['floupa'] = [1, 2] + b = a.copy() + + self._test_equal(a, b) + + c = np.empty(2, [('floupipi', float), + ('floupi', float), ('floupa', float)]) + c['floupipi'] = a['floupi'].copy() + c['floupa'] = a['floupa'].copy() + + with pytest.raises(TypeError): + self._test_not_equal(c, b) + + def test_masked_nan_inf(self): + # Regression test for gh-11121 + a = np.ma.MaskedArray([3., 4., 6.5], mask=[False, True, False]) + b = np.array([3., np.nan, 6.5]) + self._test_equal(a, b) + self._test_equal(b, a) + a = np.ma.MaskedArray([3., 4., 6.5], mask=[True, False, False]) + b = np.array([np.inf, 4., 6.5]) + self._test_equal(a, b) + self._test_equal(b, a) + + def test_subclass_that_overrides_eq(self): + # While we cannot guarantee testing functions will always work for + # subclasses, the tests should ideally rely only on subclasses having + # comparison operators, not on them being able to store booleans + # (which, e.g., astropy Quantity cannot usefully do). See gh-8452. + class MyArray(np.ndarray): + def __eq__(self, other): + return bool(np.equal(self, other).all()) + + def __ne__(self, other): + return not self == other + + a = np.array([1., 2.]).view(MyArray) + b = np.array([2., 3.]).view(MyArray) + assert_(type(a == a), bool) + assert_(a == a) + assert_(a != b) + self._test_equal(a, a) + self._test_not_equal(a, b) + self._test_not_equal(b, a) + + expected_msg = ('Mismatched elements: 1 / 2 (50%)\n' + 'Max absolute difference among violations: 1.\n' + 'Max relative difference among violations: 0.5') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._test_equal(a, b) + + c = np.array([0., 2.9]).view(MyArray) + expected_msg = ('Mismatched elements: 1 / 2 (50%)\n' + 'Max absolute difference among violations: 2.\n' + 'Max relative difference among violations: inf') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._test_equal(b, c) + + def test_subclass_that_does_not_implement_npall(self): + class MyArray(np.ndarray): + def __array_function__(self, *args, **kwargs): + return NotImplemented + + a = np.array([1., 2.]).view(MyArray) + b = np.array([2., 3.]).view(MyArray) + with assert_raises(TypeError): + np.all(a) + self._test_equal(a, a) + self._test_not_equal(a, b) + self._test_not_equal(b, a) + + def test_suppress_overflow_warnings(self): + # Based on issue #18992 + with pytest.raises(AssertionError): + with np.errstate(all="raise"): + np.testing.assert_array_equal( + np.array([1, 2, 3], np.float32), + np.array([1, 1e-40, 3], np.float32)) + + def test_array_vs_scalar_is_equal(self): + """Test comparing an array with a scalar when all values are equal.""" + a = np.array([1., 1., 1.]) + b = 1. + + self._test_equal(a, b) + + def test_array_vs_array_not_equal(self): + """Test comparing an array with a scalar when not all values equal.""" + a = np.array([34986, 545676, 439655, 563766]) + b = np.array([34986, 545676, 439655, 0]) + + expected_msg = ('Mismatched elements: 1 / 4 (25%)\n' + 'Max absolute difference among violations: 563766\n' + 'Max relative difference among violations: inf') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(a, b) + + a = np.array([34986, 545676, 439655.2, 563766]) + expected_msg = ('Mismatched elements: 2 / 4 (50%)\n' + 'Max absolute difference among violations: ' + '563766.\n' + 'Max relative difference among violations: ' + '4.54902139e-07') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(a, b) + + def test_array_vs_scalar_strict(self): + """Test comparing an array with a scalar with strict option.""" + a = np.array([1., 1., 1.]) + b = 1. + + with pytest.raises(AssertionError): + self._assert_func(a, b, strict=True) + + def test_array_vs_array_strict(self): + """Test comparing two arrays with strict option.""" + a = np.array([1., 1., 1.]) + b = np.array([1., 1., 1.]) + + self._assert_func(a, b, strict=True) + + def test_array_vs_float_array_strict(self): + """Test comparing two arrays with strict option.""" + a = np.array([1, 1, 1]) + b = np.array([1., 1., 1.]) + + with pytest.raises(AssertionError): + self._assert_func(a, b, strict=True) + + +class TestBuildErrorMessage: + + def test_build_err_msg_defaults(self): + x = np.array([1.00001, 2.00002, 3.00003]) + y = np.array([1.00002, 2.00003, 3.00004]) + err_msg = 'There is a mismatch' + + a = build_err_msg([x, y], err_msg) + b = ('\nItems are not equal: There is a mismatch\n ACTUAL: array([' + '1.00001, 2.00002, 3.00003])\n DESIRED: array([1.00002, ' + '2.00003, 3.00004])') + assert_equal(a, b) + + def test_build_err_msg_no_verbose(self): + x = np.array([1.00001, 2.00002, 3.00003]) + y = np.array([1.00002, 2.00003, 3.00004]) + err_msg = 'There is a mismatch' + + a = build_err_msg([x, y], err_msg, verbose=False) + b = '\nItems are not equal: There is a mismatch' + assert_equal(a, b) + + def test_build_err_msg_custom_names(self): + x = np.array([1.00001, 2.00002, 3.00003]) + y = np.array([1.00002, 2.00003, 3.00004]) + err_msg = 'There is a mismatch' + + a = build_err_msg([x, y], err_msg, names=('FOO', 'BAR')) + b = ('\nItems are not equal: There is a mismatch\n FOO: array([' + '1.00001, 2.00002, 3.00003])\n BAR: array([1.00002, 2.00003, ' + '3.00004])') + assert_equal(a, b) + + def test_build_err_msg_custom_precision(self): + x = np.array([1.000000001, 2.00002, 3.00003]) + y = np.array([1.000000002, 2.00003, 3.00004]) + err_msg = 'There is a mismatch' + + a = build_err_msg([x, y], err_msg, precision=10) + b = ('\nItems are not equal: There is a mismatch\n ACTUAL: array([' + '1.000000001, 2.00002 , 3.00003 ])\n DESIRED: array([' + '1.000000002, 2.00003 , 3.00004 ])') + assert_equal(a, b) + + +class TestEqual(TestArrayEqual): + + def setup_method(self): + self._assert_func = assert_equal + + def test_nan_items(self): + self._assert_func(np.nan, np.nan) + self._assert_func([np.nan], [np.nan]) + self._test_not_equal(np.nan, [np.nan]) + self._test_not_equal(np.nan, 1) + + def test_inf_items(self): + self._assert_func(np.inf, np.inf) + self._assert_func([np.inf], [np.inf]) + self._test_not_equal(np.inf, [np.inf]) + + def test_datetime(self): + self._test_equal( + np.datetime64("2017-01-01", "s"), + np.datetime64("2017-01-01", "s") + ) + self._test_equal( + np.datetime64("2017-01-01", "s"), + np.datetime64("2017-01-01", "m") + ) + + # gh-10081 + self._test_not_equal( + np.datetime64("2017-01-01", "s"), + np.datetime64("2017-01-02", "s") + ) + self._test_not_equal( + np.datetime64("2017-01-01", "s"), + np.datetime64("2017-01-02", "m") + ) + + def test_nat_items(self): + # not a datetime + nadt_no_unit = np.datetime64("NaT") + nadt_s = np.datetime64("NaT", "s") + nadt_d = np.datetime64("NaT", "ns") + # not a timedelta + natd_no_unit = np.timedelta64("NaT") + natd_s = np.timedelta64("NaT", "s") + natd_d = np.timedelta64("NaT", "ns") + + dts = [nadt_no_unit, nadt_s, nadt_d] + tds = [natd_no_unit, natd_s, natd_d] + for a, b in itertools.product(dts, dts): + self._assert_func(a, b) + self._assert_func([a], [b]) + self._test_not_equal([a], b) + + for a, b in itertools.product(tds, tds): + self._assert_func(a, b) + self._assert_func([a], [b]) + self._test_not_equal([a], b) + + for a, b in itertools.product(tds, dts): + self._test_not_equal(a, b) + self._test_not_equal(a, [b]) + self._test_not_equal([a], [b]) + self._test_not_equal([a], np.datetime64("2017-01-01", "s")) + self._test_not_equal([b], np.datetime64("2017-01-01", "s")) + self._test_not_equal([a], np.timedelta64(123, "s")) + self._test_not_equal([b], np.timedelta64(123, "s")) + + def test_non_numeric(self): + self._assert_func('ab', 'ab') + self._test_not_equal('ab', 'abb') + + def test_complex_item(self): + self._assert_func(complex(1, 2), complex(1, 2)) + self._assert_func(complex(1, np.nan), complex(1, np.nan)) + self._test_not_equal(complex(1, np.nan), complex(1, 2)) + self._test_not_equal(complex(np.nan, 1), complex(1, np.nan)) + self._test_not_equal(complex(np.nan, np.inf), complex(np.nan, 2)) + + def test_negative_zero(self): + self._test_not_equal(ncu.PZERO, ncu.NZERO) + + def test_complex(self): + x = np.array([complex(1, 2), complex(1, np.nan)]) + y = np.array([complex(1, 2), complex(1, 2)]) + self._assert_func(x, x) + self._test_not_equal(x, y) + + def test_object(self): + # gh-12942 + import datetime + a = np.array([datetime.datetime(2000, 1, 1), + datetime.datetime(2000, 1, 2)]) + self._test_not_equal(a, a[::-1]) + + +class TestArrayAlmostEqual(_GenericTest): + + def setup_method(self): + self._assert_func = assert_array_almost_equal + + def test_closeness(self): + # Note that in the course of time we ended up with + # `abs(x - y) < 1.5 * 10**(-decimal)` + # instead of the previously documented + # `abs(x - y) < 0.5 * 10**(-decimal)` + # so this check serves to preserve the wrongness. + + # test scalars + expected_msg = ('Mismatched elements: 1 / 1 (100%)\n' + 'Max absolute difference among violations: 1.5\n' + 'Max relative difference among violations: inf') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(1.5, 0.0, decimal=0) + + # test arrays + self._assert_func([1.499999], [0.0], decimal=0) + + expected_msg = ('Mismatched elements: 1 / 1 (100%)\n' + 'Max absolute difference among violations: 1.5\n' + 'Max relative difference among violations: inf') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func([1.5], [0.0], decimal=0) + + a = [1.4999999, 0.00003] + b = [1.49999991, 0] + expected_msg = ('Mismatched elements: 1 / 2 (50%)\n' + 'Max absolute difference among violations: 3.e-05\n' + 'Max relative difference among violations: inf') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(a, b, decimal=7) + + expected_msg = ('Mismatched elements: 1 / 2 (50%)\n' + 'Max absolute difference among violations: 3.e-05\n' + 'Max relative difference among violations: 1.') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(b, a, decimal=7) + + def test_simple(self): + x = np.array([1234.2222]) + y = np.array([1234.2223]) + + self._assert_func(x, y, decimal=3) + self._assert_func(x, y, decimal=4) + + expected_msg = ('Mismatched elements: 1 / 1 (100%)\n' + 'Max absolute difference among violations: ' + '1.e-04\n' + 'Max relative difference among violations: ' + '8.10226812e-08') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(x, y, decimal=5) + + def test_array_vs_scalar(self): + a = [5498.42354, 849.54345, 0.00] + b = 5498.42354 + expected_msg = ('Mismatched elements: 2 / 3 (66.7%)\n' + 'Max absolute difference among violations: ' + '5498.42354\n' + 'Max relative difference among violations: 1.') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(a, b, decimal=9) + + expected_msg = ('Mismatched elements: 2 / 3 (66.7%)\n' + 'Max absolute difference among violations: ' + '5498.42354\n' + 'Max relative difference among violations: 5.4722099') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(b, a, decimal=9) + + a = [5498.42354, 0.00] + expected_msg = ('Mismatched elements: 1 / 2 (50%)\n' + 'Max absolute difference among violations: ' + '5498.42354\n' + 'Max relative difference among violations: inf') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(b, a, decimal=7) + + b = 0 + expected_msg = ('Mismatched elements: 1 / 2 (50%)\n' + 'Max absolute difference among violations: ' + '5498.42354\n' + 'Max relative difference among violations: inf') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(a, b, decimal=7) + + def test_nan(self): + anan = np.array([np.nan]) + aone = np.array([1]) + ainf = np.array([np.inf]) + self._assert_func(anan, anan) + assert_raises(AssertionError, + lambda: self._assert_func(anan, aone)) + assert_raises(AssertionError, + lambda: self._assert_func(anan, ainf)) + assert_raises(AssertionError, + lambda: self._assert_func(ainf, anan)) + + def test_inf(self): + a = np.array([[1., 2.], [3., 4.]]) + b = a.copy() + a[0, 0] = np.inf + assert_raises(AssertionError, + lambda: self._assert_func(a, b)) + b[0, 0] = -np.inf + assert_raises(AssertionError, + lambda: self._assert_func(a, b)) + + def test_subclass(self): + a = np.array([[1., 2.], [3., 4.]]) + b = np.ma.masked_array([[1., 2.], [0., 4.]], + [[False, False], [True, False]]) + self._assert_func(a, b) + self._assert_func(b, a) + self._assert_func(b, b) + + # Test fully masked as well (see gh-11123). + a = np.ma.MaskedArray(3.5, mask=True) + b = np.array([3., 4., 6.5]) + self._test_equal(a, b) + self._test_equal(b, a) + a = np.ma.masked + b = np.array([3., 4., 6.5]) + self._test_equal(a, b) + self._test_equal(b, a) + a = np.ma.MaskedArray([3., 4., 6.5], mask=[True, True, True]) + b = np.array([1., 2., 3.]) + self._test_equal(a, b) + self._test_equal(b, a) + a = np.ma.MaskedArray([3., 4., 6.5], mask=[True, True, True]) + b = np.array(1.) + self._test_equal(a, b) + self._test_equal(b, a) + + def test_subclass_2(self): + # While we cannot guarantee testing functions will always work for + # subclasses, the tests should ideally rely only on subclasses having + # comparison operators, not on them being able to store booleans + # (which, e.g., astropy Quantity cannot usefully do). See gh-8452. + class MyArray(np.ndarray): + def __eq__(self, other): + return super().__eq__(other).view(np.ndarray) + + def __lt__(self, other): + return super().__lt__(other).view(np.ndarray) + + def all(self, *args, **kwargs): + return all(self) + + a = np.array([1., 2.]).view(MyArray) + self._assert_func(a, a) + + z = np.array([True, True]).view(MyArray) + all(z) + b = np.array([1., 202]).view(MyArray) + expected_msg = ('Mismatched elements: 1 / 2 (50%)\n' + 'Max absolute difference among violations: 200.\n' + 'Max relative difference among violations: 0.99009') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(a, b) + + def test_subclass_that_cannot_be_bool(self): + # While we cannot guarantee testing functions will always work for + # subclasses, the tests should ideally rely only on subclasses having + # comparison operators, not on them being able to store booleans + # (which, e.g., astropy Quantity cannot usefully do). See gh-8452. + class MyArray(np.ndarray): + def __eq__(self, other): + return super().__eq__(other).view(np.ndarray) + + def __lt__(self, other): + return super().__lt__(other).view(np.ndarray) + + def all(self, *args, **kwargs): + raise NotImplementedError + + a = np.array([1., 2.]).view(MyArray) + self._assert_func(a, a) + + +class TestAlmostEqual(_GenericTest): + + def setup_method(self): + self._assert_func = assert_almost_equal + + def test_closeness(self): + # Note that in the course of time we ended up with + # `abs(x - y) < 1.5 * 10**(-decimal)` + # instead of the previously documented + # `abs(x - y) < 0.5 * 10**(-decimal)` + # so this check serves to preserve the wrongness. + + # test scalars + self._assert_func(1.499999, 0.0, decimal=0) + assert_raises(AssertionError, + lambda: self._assert_func(1.5, 0.0, decimal=0)) + + # test arrays + self._assert_func([1.499999], [0.0], decimal=0) + assert_raises(AssertionError, + lambda: self._assert_func([1.5], [0.0], decimal=0)) + + def test_nan_item(self): + self._assert_func(np.nan, np.nan) + assert_raises(AssertionError, + lambda: self._assert_func(np.nan, 1)) + assert_raises(AssertionError, + lambda: self._assert_func(np.nan, np.inf)) + assert_raises(AssertionError, + lambda: self._assert_func(np.inf, np.nan)) + + def test_inf_item(self): + self._assert_func(np.inf, np.inf) + self._assert_func(-np.inf, -np.inf) + assert_raises(AssertionError, + lambda: self._assert_func(np.inf, 1)) + assert_raises(AssertionError, + lambda: self._assert_func(-np.inf, np.inf)) + + def test_simple_item(self): + self._test_not_equal(1, 2) + + def test_complex_item(self): + self._assert_func(complex(1, 2), complex(1, 2)) + self._assert_func(complex(1, np.nan), complex(1, np.nan)) + self._assert_func(complex(np.inf, np.nan), complex(np.inf, np.nan)) + self._test_not_equal(complex(1, np.nan), complex(1, 2)) + self._test_not_equal(complex(np.nan, 1), complex(1, np.nan)) + self._test_not_equal(complex(np.nan, np.inf), complex(np.nan, 2)) + + def test_complex(self): + x = np.array([complex(1, 2), complex(1, np.nan)]) + z = np.array([complex(1, 2), complex(np.nan, 1)]) + y = np.array([complex(1, 2), complex(1, 2)]) + self._assert_func(x, x) + self._test_not_equal(x, y) + self._test_not_equal(x, z) + + def test_error_message(self): + """Check the message is formatted correctly for the decimal value. + Also check the message when input includes inf or nan (gh12200)""" + x = np.array([1.00000000001, 2.00000000002, 3.00003]) + y = np.array([1.00000000002, 2.00000000003, 3.00004]) + + # Test with a different amount of decimal digits + expected_msg = ('Mismatched elements: 3 / 3 (100%)\n' + 'Max absolute difference among violations: 1.e-05\n' + 'Max relative difference among violations: ' + '3.33328889e-06\n' + ' ACTUAL: array([1.00000000001, ' + '2.00000000002, ' + '3.00003 ])\n' + ' DESIRED: array([1.00000000002, 2.00000000003, ' + '3.00004 ])') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(x, y, decimal=12) + + # With the default value of decimal digits, only the 3rd element + # differs. Note that we only check for the formatting of the arrays + # themselves. + expected_msg = ('Mismatched elements: 1 / 3 (33.3%)\n' + 'Max absolute difference among violations: 1.e-05\n' + 'Max relative difference among violations: ' + '3.33328889e-06\n' + ' ACTUAL: array([1. , 2. , 3.00003])\n' + ' DESIRED: array([1. , 2. , 3.00004])') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(x, y) + + # Check the error message when input includes inf + x = np.array([np.inf, 0]) + y = np.array([np.inf, 1]) + expected_msg = ('Mismatched elements: 1 / 2 (50%)\n' + 'Max absolute difference among violations: 1.\n' + 'Max relative difference among violations: 1.\n' + ' ACTUAL: array([inf, 0.])\n' + ' DESIRED: array([inf, 1.])') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(x, y) + + # Check the error message when dividing by zero + x = np.array([1, 2]) + y = np.array([0, 0]) + expected_msg = ('Mismatched elements: 2 / 2 (100%)\n' + 'Max absolute difference among violations: 2\n' + 'Max relative difference among violations: inf') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(x, y) + + def test_error_message_2(self): + """Check the message is formatted correctly """ + """when either x or y is a scalar.""" + x = 2 + y = np.ones(20) + expected_msg = ('Mismatched elements: 20 / 20 (100%)\n' + 'Max absolute difference among violations: 1.\n' + 'Max relative difference among violations: 1.') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(x, y) + + y = 2 + x = np.ones(20) + expected_msg = ('Mismatched elements: 20 / 20 (100%)\n' + 'Max absolute difference among violations: 1.\n' + 'Max relative difference among violations: 0.5') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(x, y) + + def test_subclass_that_cannot_be_bool(self): + # While we cannot guarantee testing functions will always work for + # subclasses, the tests should ideally rely only on subclasses having + # comparison operators, not on them being able to store booleans + # (which, e.g., astropy Quantity cannot usefully do). See gh-8452. + class MyArray(np.ndarray): + def __eq__(self, other): + return super().__eq__(other).view(np.ndarray) + + def __lt__(self, other): + return super().__lt__(other).view(np.ndarray) + + def all(self, *args, **kwargs): + raise NotImplementedError + + a = np.array([1., 2.]).view(MyArray) + self._assert_func(a, a) + + +class TestApproxEqual: + + def setup_method(self): + self._assert_func = assert_approx_equal + + def test_simple_0d_arrays(self): + x = np.array(1234.22) + y = np.array(1234.23) + + self._assert_func(x, y, significant=5) + self._assert_func(x, y, significant=6) + assert_raises(AssertionError, + lambda: self._assert_func(x, y, significant=7)) + + def test_simple_items(self): + x = 1234.22 + y = 1234.23 + + self._assert_func(x, y, significant=4) + self._assert_func(x, y, significant=5) + self._assert_func(x, y, significant=6) + assert_raises(AssertionError, + lambda: self._assert_func(x, y, significant=7)) + + def test_nan_array(self): + anan = np.array(np.nan) + aone = np.array(1) + ainf = np.array(np.inf) + self._assert_func(anan, anan) + assert_raises(AssertionError, lambda: self._assert_func(anan, aone)) + assert_raises(AssertionError, lambda: self._assert_func(anan, ainf)) + assert_raises(AssertionError, lambda: self._assert_func(ainf, anan)) + + def test_nan_items(self): + anan = np.array(np.nan) + aone = np.array(1) + ainf = np.array(np.inf) + self._assert_func(anan, anan) + assert_raises(AssertionError, lambda: self._assert_func(anan, aone)) + assert_raises(AssertionError, lambda: self._assert_func(anan, ainf)) + assert_raises(AssertionError, lambda: self._assert_func(ainf, anan)) + + +class TestArrayAssertLess: + + def setup_method(self): + self._assert_func = assert_array_less + + def test_simple_arrays(self): + x = np.array([1.1, 2.2]) + y = np.array([1.2, 2.3]) + + self._assert_func(x, y) + assert_raises(AssertionError, lambda: self._assert_func(y, x)) + + y = np.array([1.0, 2.3]) + + assert_raises(AssertionError, lambda: self._assert_func(x, y)) + assert_raises(AssertionError, lambda: self._assert_func(y, x)) + + a = np.array([1, 3, 6, 20]) + b = np.array([2, 4, 6, 8]) + + expected_msg = ('Mismatched elements: 2 / 4 (50%)\n' + 'Max absolute difference among violations: 12\n' + 'Max relative difference among violations: 1.5') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(a, b) + + def test_rank2(self): + x = np.array([[1.1, 2.2], [3.3, 4.4]]) + y = np.array([[1.2, 2.3], [3.4, 4.5]]) + + self._assert_func(x, y) + expected_msg = ('Mismatched elements: 4 / 4 (100%)\n' + 'Max absolute difference among violations: 0.1\n' + 'Max relative difference among violations: 0.09090909') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(y, x) + + y = np.array([[1.0, 2.3], [3.4, 4.5]]) + assert_raises(AssertionError, lambda: self._assert_func(x, y)) + assert_raises(AssertionError, lambda: self._assert_func(y, x)) + + def test_rank3(self): + x = np.ones(shape=(2, 2, 2)) + y = np.ones(shape=(2, 2, 2)) + 1 + + self._assert_func(x, y) + assert_raises(AssertionError, lambda: self._assert_func(y, x)) + + y[0, 0, 0] = 0 + expected_msg = ('Mismatched elements: 1 / 8 (12.5%)\n' + 'Max absolute difference among violations: 1.\n' + 'Max relative difference among violations: inf') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(x, y) + + assert_raises(AssertionError, lambda: self._assert_func(y, x)) + + def test_simple_items(self): + x = 1.1 + y = 2.2 + + self._assert_func(x, y) + expected_msg = ('Mismatched elements: 1 / 1 (100%)\n' + 'Max absolute difference among violations: 1.1\n' + 'Max relative difference among violations: 1.') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(y, x) + + y = np.array([2.2, 3.3]) + + self._assert_func(x, y) + assert_raises(AssertionError, lambda: self._assert_func(y, x)) + + y = np.array([1.0, 3.3]) + + assert_raises(AssertionError, lambda: self._assert_func(x, y)) + + def test_simple_items_and_array(self): + x = np.array([[621.345454, 390.5436, 43.54657, 626.4535], + [54.54, 627.3399, 13., 405.5435], + [543.545, 8.34, 91.543, 333.3]]) + y = 627.34 + self._assert_func(x, y) + + y = 8.339999 + self._assert_func(y, x) + + x = np.array([[3.4536, 2390.5436, 435.54657, 324525.4535], + [5449.54, 999090.54, 130303.54, 405.5435], + [543.545, 8.34, 91.543, 999090.53999]]) + y = 999090.54 + + expected_msg = ('Mismatched elements: 1 / 12 (8.33%)\n' + 'Max absolute difference among violations: 0.\n' + 'Max relative difference among violations: 0.') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(x, y) + + expected_msg = ('Mismatched elements: 12 / 12 (100%)\n' + 'Max absolute difference among violations: ' + '999087.0864\n' + 'Max relative difference among violations: ' + '289288.5934676') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(y, x) + + def test_zeroes(self): + x = np.array([546456., 0, 15.455]) + y = np.array(87654.) + + expected_msg = ('Mismatched elements: 1 / 3 (33.3%)\n' + 'Max absolute difference among violations: 458802.\n' + 'Max relative difference among violations: 5.23423917') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(x, y) + + expected_msg = ('Mismatched elements: 2 / 3 (66.7%)\n' + 'Max absolute difference among violations: 87654.\n' + 'Max relative difference among violations: ' + '5670.5626011') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(y, x) + + y = 0 + + expected_msg = ('Mismatched elements: 3 / 3 (100%)\n' + 'Max absolute difference among violations: 546456.\n' + 'Max relative difference among violations: inf') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(x, y) + + expected_msg = ('Mismatched elements: 1 / 3 (33.3%)\n' + 'Max absolute difference among violations: 0.\n' + 'Max relative difference among violations: inf') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + self._assert_func(y, x) + + def test_nan_noncompare(self): + anan = np.array(np.nan) + aone = np.array(1) + ainf = np.array(np.inf) + self._assert_func(anan, anan) + assert_raises(AssertionError, lambda: self._assert_func(aone, anan)) + assert_raises(AssertionError, lambda: self._assert_func(anan, aone)) + assert_raises(AssertionError, lambda: self._assert_func(anan, ainf)) + assert_raises(AssertionError, lambda: self._assert_func(ainf, anan)) + + def test_nan_noncompare_array(self): + x = np.array([1.1, 2.2, 3.3]) + anan = np.array(np.nan) + + assert_raises(AssertionError, lambda: self._assert_func(x, anan)) + assert_raises(AssertionError, lambda: self._assert_func(anan, x)) + + x = np.array([1.1, 2.2, np.nan]) + + assert_raises(AssertionError, lambda: self._assert_func(x, anan)) + assert_raises(AssertionError, lambda: self._assert_func(anan, x)) + + y = np.array([1.0, 2.0, np.nan]) + + self._assert_func(y, x) + assert_raises(AssertionError, lambda: self._assert_func(x, y)) + + def test_inf_compare(self): + aone = np.array(1) + ainf = np.array(np.inf) + + self._assert_func(aone, ainf) + self._assert_func(-ainf, aone) + self._assert_func(-ainf, ainf) + assert_raises(AssertionError, lambda: self._assert_func(ainf, aone)) + assert_raises(AssertionError, lambda: self._assert_func(aone, -ainf)) + assert_raises(AssertionError, lambda: self._assert_func(ainf, ainf)) + assert_raises(AssertionError, lambda: self._assert_func(ainf, -ainf)) + assert_raises(AssertionError, lambda: self._assert_func(-ainf, -ainf)) + + def test_inf_compare_array(self): + x = np.array([1.1, 2.2, np.inf]) + ainf = np.array(np.inf) + + assert_raises(AssertionError, lambda: self._assert_func(x, ainf)) + assert_raises(AssertionError, lambda: self._assert_func(ainf, x)) + assert_raises(AssertionError, lambda: self._assert_func(x, -ainf)) + assert_raises(AssertionError, lambda: self._assert_func(-x, -ainf)) + assert_raises(AssertionError, lambda: self._assert_func(-ainf, -x)) + self._assert_func(-ainf, x) + + def test_strict(self): + """Test the behavior of the `strict` option.""" + x = np.zeros(3) + y = np.ones(()) + self._assert_func(x, y) + with pytest.raises(AssertionError): + self._assert_func(x, y, strict=True) + y = np.broadcast_to(y, x.shape) + self._assert_func(x, y) + with pytest.raises(AssertionError): + self._assert_func(x, y.astype(np.float32), strict=True) + + +class TestWarns: + + def test_warn(self): + def f(): + warnings.warn("yo") + return 3 + + before_filters = sys.modules['warnings'].filters[:] + assert_equal(assert_warns(UserWarning, f), 3) + after_filters = sys.modules['warnings'].filters + + assert_raises(AssertionError, assert_no_warnings, f) + assert_equal(assert_no_warnings(lambda x: x, 1), 1) + + # Check that the warnings state is unchanged + assert_equal(before_filters, after_filters, + "assert_warns does not preserver warnings state") + + def test_context_manager(self): + + before_filters = sys.modules['warnings'].filters[:] + with assert_warns(UserWarning): + warnings.warn("yo") + after_filters = sys.modules['warnings'].filters + + def no_warnings(): + with assert_no_warnings(): + warnings.warn("yo") + + assert_raises(AssertionError, no_warnings) + assert_equal(before_filters, after_filters, + "assert_warns does not preserver warnings state") + + def test_args(self): + def f(a=0, b=1): + warnings.warn("yo") + return a + b + + assert assert_warns(UserWarning, f, b=20) == 20 + + with pytest.raises(RuntimeError) as exc: + # assert_warns cannot do regexp matching, use pytest.warns + with assert_warns(UserWarning, match="A"): + warnings.warn("B", UserWarning) + assert "assert_warns" in str(exc) + assert "pytest.warns" in str(exc) + + with pytest.raises(RuntimeError) as exc: + # assert_warns cannot do regexp matching, use pytest.warns + with assert_warns(UserWarning, wrong="A"): + warnings.warn("B", UserWarning) + assert "assert_warns" in str(exc) + assert "pytest.warns" not in str(exc) + + def test_warn_wrong_warning(self): + def f(): + warnings.warn("yo", DeprecationWarning) + + failed = False + with warnings.catch_warnings(): + warnings.simplefilter("error", DeprecationWarning) + try: + # Should raise a DeprecationWarning + assert_warns(UserWarning, f) + failed = True + except DeprecationWarning: + pass + + if failed: + raise AssertionError("wrong warning caught by assert_warn") + + +class TestAssertAllclose: + + def test_simple(self): + x = 1e-3 + y = 1e-9 + + assert_allclose(x, y, atol=1) + assert_raises(AssertionError, assert_allclose, x, y) + + expected_msg = ('Mismatched elements: 1 / 1 (100%)\n' + 'Max absolute difference among violations: 0.001\n' + 'Max relative difference among violations: 999999.') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + assert_allclose(x, y) + + z = 0 + expected_msg = ('Mismatched elements: 1 / 1 (100%)\n' + 'Max absolute difference among violations: 1.e-09\n' + 'Max relative difference among violations: inf') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + assert_allclose(y, z) + + expected_msg = ('Mismatched elements: 1 / 1 (100%)\n' + 'Max absolute difference among violations: 1.e-09\n' + 'Max relative difference among violations: 1.') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + assert_allclose(z, y) + + a = np.array([x, y, x, y]) + b = np.array([x, y, x, x]) + + assert_allclose(a, b, atol=1) + assert_raises(AssertionError, assert_allclose, a, b) + + b[-1] = y * (1 + 1e-8) + assert_allclose(a, b) + assert_raises(AssertionError, assert_allclose, a, b, rtol=1e-9) + + assert_allclose(6, 10, rtol=0.5) + assert_raises(AssertionError, assert_allclose, 10, 6, rtol=0.5) + + b = np.array([x, y, x, x]) + c = np.array([x, y, x, z]) + expected_msg = ('Mismatched elements: 1 / 4 (25%)\n' + 'Max absolute difference among violations: 0.001\n' + 'Max relative difference among violations: inf') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + assert_allclose(b, c) + + expected_msg = ('Mismatched elements: 1 / 4 (25%)\n' + 'Max absolute difference among violations: 0.001\n' + 'Max relative difference among violations: 1.') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + assert_allclose(c, b) + + def test_min_int(self): + a = np.array([np.iinfo(np.int_).min], dtype=np.int_) + # Should not raise: + assert_allclose(a, a) + + def test_report_fail_percentage(self): + a = np.array([1, 1, 1, 1]) + b = np.array([1, 1, 1, 2]) + + expected_msg = ('Mismatched elements: 1 / 4 (25%)\n' + 'Max absolute difference among violations: 1\n' + 'Max relative difference among violations: 0.5') + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + assert_allclose(a, b) + + def test_equal_nan(self): + a = np.array([np.nan]) + b = np.array([np.nan]) + # Should not raise: + assert_allclose(a, b, equal_nan=True) + + def test_not_equal_nan(self): + a = np.array([np.nan]) + b = np.array([np.nan]) + assert_raises(AssertionError, assert_allclose, a, b, equal_nan=False) + + def test_equal_nan_default(self): + # Make sure equal_nan default behavior remains unchanged. (All + # of these functions use assert_array_compare under the hood.) + # None of these should raise. + a = np.array([np.nan]) + b = np.array([np.nan]) + assert_array_equal(a, b) + assert_array_almost_equal(a, b) + assert_array_less(a, b) + assert_allclose(a, b) + + def test_report_max_relative_error(self): + a = np.array([0, 1]) + b = np.array([0, 2]) + + expected_msg = 'Max relative difference among violations: 0.5' + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + assert_allclose(a, b) + + def test_timedelta(self): + # see gh-18286 + a = np.array([[1, 2, 3, "NaT"]], dtype="m8[ns]") + assert_allclose(a, a) + + def test_error_message_unsigned(self): + """Check the message is formatted correctly when overflow can occur + (gh21768)""" + # Ensure to test for potential overflow in the case of: + # x - y + # and + # y - x + x = np.asarray([0, 1, 8], dtype='uint8') + y = np.asarray([4, 4, 4], dtype='uint8') + expected_msg = 'Max absolute difference among violations: 4' + with pytest.raises(AssertionError, match=re.escape(expected_msg)): + assert_allclose(x, y, atol=3) + + def test_strict(self): + """Test the behavior of the `strict` option.""" + x = np.ones(3) + y = np.ones(()) + assert_allclose(x, y) + with pytest.raises(AssertionError): + assert_allclose(x, y, strict=True) + assert_allclose(x, x) + with pytest.raises(AssertionError): + assert_allclose(x, x.astype(np.float32), strict=True) + + +class TestArrayAlmostEqualNulp: + + def test_float64_pass(self): + # The number of units of least precision + # In this case, use a few places above the lowest level (ie nulp=1) + nulp = 5 + x = np.linspace(-20, 20, 50, dtype=np.float64) + x = 10**x + x = np.r_[-x, x] + + # Addition + eps = np.finfo(x.dtype).eps + y = x + x * eps * nulp / 2. + assert_array_almost_equal_nulp(x, y, nulp) + + # Subtraction + epsneg = np.finfo(x.dtype).epsneg + y = x - x * epsneg * nulp / 2. + assert_array_almost_equal_nulp(x, y, nulp) + + def test_float64_fail(self): + nulp = 5 + x = np.linspace(-20, 20, 50, dtype=np.float64) + x = 10**x + x = np.r_[-x, x] + + eps = np.finfo(x.dtype).eps + y = x + x * eps * nulp * 2. + assert_raises(AssertionError, assert_array_almost_equal_nulp, + x, y, nulp) + + epsneg = np.finfo(x.dtype).epsneg + y = x - x * epsneg * nulp * 2. + assert_raises(AssertionError, assert_array_almost_equal_nulp, + x, y, nulp) + + def test_float64_ignore_nan(self): + # Ignore ULP differences between various NAN's + # Note that MIPS may reverse quiet and signaling nans + # so we use the builtin version as a base. + offset = np.uint64(0xffffffff) + nan1_i64 = np.array(np.nan, dtype=np.float64).view(np.uint64) + nan2_i64 = nan1_i64 ^ offset # nan payload on MIPS is all ones. + nan1_f64 = nan1_i64.view(np.float64) + nan2_f64 = nan2_i64.view(np.float64) + assert_array_max_ulp(nan1_f64, nan2_f64, 0) + + def test_float32_pass(self): + nulp = 5 + x = np.linspace(-20, 20, 50, dtype=np.float32) + x = 10**x + x = np.r_[-x, x] + + eps = np.finfo(x.dtype).eps + y = x + x * eps * nulp / 2. + assert_array_almost_equal_nulp(x, y, nulp) + + epsneg = np.finfo(x.dtype).epsneg + y = x - x * epsneg * nulp / 2. + assert_array_almost_equal_nulp(x, y, nulp) + + def test_float32_fail(self): + nulp = 5 + x = np.linspace(-20, 20, 50, dtype=np.float32) + x = 10**x + x = np.r_[-x, x] + + eps = np.finfo(x.dtype).eps + y = x + x * eps * nulp * 2. + assert_raises(AssertionError, assert_array_almost_equal_nulp, + x, y, nulp) + + epsneg = np.finfo(x.dtype).epsneg + y = x - x * epsneg * nulp * 2. + assert_raises(AssertionError, assert_array_almost_equal_nulp, + x, y, nulp) + + def test_float32_ignore_nan(self): + # Ignore ULP differences between various NAN's + # Note that MIPS may reverse quiet and signaling nans + # so we use the builtin version as a base. + offset = np.uint32(0xffff) + nan1_i32 = np.array(np.nan, dtype=np.float32).view(np.uint32) + nan2_i32 = nan1_i32 ^ offset # nan payload on MIPS is all ones. + nan1_f32 = nan1_i32.view(np.float32) + nan2_f32 = nan2_i32.view(np.float32) + assert_array_max_ulp(nan1_f32, nan2_f32, 0) + + def test_float16_pass(self): + nulp = 5 + x = np.linspace(-4, 4, 10, dtype=np.float16) + x = 10**x + x = np.r_[-x, x] + + eps = np.finfo(x.dtype).eps + y = x + x * eps * nulp / 2. + assert_array_almost_equal_nulp(x, y, nulp) + + epsneg = np.finfo(x.dtype).epsneg + y = x - x * epsneg * nulp / 2. + assert_array_almost_equal_nulp(x, y, nulp) + + def test_float16_fail(self): + nulp = 5 + x = np.linspace(-4, 4, 10, dtype=np.float16) + x = 10**x + x = np.r_[-x, x] + + eps = np.finfo(x.dtype).eps + y = x + x * eps * nulp * 2. + assert_raises(AssertionError, assert_array_almost_equal_nulp, + x, y, nulp) + + epsneg = np.finfo(x.dtype).epsneg + y = x - x * epsneg * nulp * 2. + assert_raises(AssertionError, assert_array_almost_equal_nulp, + x, y, nulp) + + def test_float16_ignore_nan(self): + # Ignore ULP differences between various NAN's + # Note that MIPS may reverse quiet and signaling nans + # so we use the builtin version as a base. + offset = np.uint16(0xff) + nan1_i16 = np.array(np.nan, dtype=np.float16).view(np.uint16) + nan2_i16 = nan1_i16 ^ offset # nan payload on MIPS is all ones. + nan1_f16 = nan1_i16.view(np.float16) + nan2_f16 = nan2_i16.view(np.float16) + assert_array_max_ulp(nan1_f16, nan2_f16, 0) + + def test_complex128_pass(self): + nulp = 5 + x = np.linspace(-20, 20, 50, dtype=np.float64) + x = 10**x + x = np.r_[-x, x] + xi = x + x * 1j + + eps = np.finfo(x.dtype).eps + y = x + x * eps * nulp / 2. + assert_array_almost_equal_nulp(xi, x + y * 1j, nulp) + assert_array_almost_equal_nulp(xi, y + x * 1j, nulp) + # The test condition needs to be at least a factor of sqrt(2) smaller + # because the real and imaginary parts both change + y = x + x * eps * nulp / 4. + assert_array_almost_equal_nulp(xi, y + y * 1j, nulp) + + epsneg = np.finfo(x.dtype).epsneg + y = x - x * epsneg * nulp / 2. + assert_array_almost_equal_nulp(xi, x + y * 1j, nulp) + assert_array_almost_equal_nulp(xi, y + x * 1j, nulp) + y = x - x * epsneg * nulp / 4. + assert_array_almost_equal_nulp(xi, y + y * 1j, nulp) + + def test_complex128_fail(self): + nulp = 5 + x = np.linspace(-20, 20, 50, dtype=np.float64) + x = 10**x + x = np.r_[-x, x] + xi = x + x * 1j + + eps = np.finfo(x.dtype).eps + y = x + x * eps * nulp * 2. + assert_raises(AssertionError, assert_array_almost_equal_nulp, + xi, x + y * 1j, nulp) + assert_raises(AssertionError, assert_array_almost_equal_nulp, + xi, y + x * 1j, nulp) + # The test condition needs to be at least a factor of sqrt(2) smaller + # because the real and imaginary parts both change + y = x + x * eps * nulp + assert_raises(AssertionError, assert_array_almost_equal_nulp, + xi, y + y * 1j, nulp) + + epsneg = np.finfo(x.dtype).epsneg + y = x - x * epsneg * nulp * 2. + assert_raises(AssertionError, assert_array_almost_equal_nulp, + xi, x + y * 1j, nulp) + assert_raises(AssertionError, assert_array_almost_equal_nulp, + xi, y + x * 1j, nulp) + y = x - x * epsneg * nulp + assert_raises(AssertionError, assert_array_almost_equal_nulp, + xi, y + y * 1j, nulp) + + def test_complex64_pass(self): + nulp = 5 + x = np.linspace(-20, 20, 50, dtype=np.float32) + x = 10**x + x = np.r_[-x, x] + xi = x + x * 1j + + eps = np.finfo(x.dtype).eps + y = x + x * eps * nulp / 2. + assert_array_almost_equal_nulp(xi, x + y * 1j, nulp) + assert_array_almost_equal_nulp(xi, y + x * 1j, nulp) + y = x + x * eps * nulp / 4. + assert_array_almost_equal_nulp(xi, y + y * 1j, nulp) + + epsneg = np.finfo(x.dtype).epsneg + y = x - x * epsneg * nulp / 2. + assert_array_almost_equal_nulp(xi, x + y * 1j, nulp) + assert_array_almost_equal_nulp(xi, y + x * 1j, nulp) + y = x - x * epsneg * nulp / 4. + assert_array_almost_equal_nulp(xi, y + y * 1j, nulp) + + def test_complex64_fail(self): + nulp = 5 + x = np.linspace(-20, 20, 50, dtype=np.float32) + x = 10**x + x = np.r_[-x, x] + xi = x + x * 1j + + eps = np.finfo(x.dtype).eps + y = x + x * eps * nulp * 2. + assert_raises(AssertionError, assert_array_almost_equal_nulp, + xi, x + y * 1j, nulp) + assert_raises(AssertionError, assert_array_almost_equal_nulp, + xi, y + x * 1j, nulp) + y = x + x * eps * nulp + assert_raises(AssertionError, assert_array_almost_equal_nulp, + xi, y + y * 1j, nulp) + + epsneg = np.finfo(x.dtype).epsneg + y = x - x * epsneg * nulp * 2. + assert_raises(AssertionError, assert_array_almost_equal_nulp, + xi, x + y * 1j, nulp) + assert_raises(AssertionError, assert_array_almost_equal_nulp, + xi, y + x * 1j, nulp) + y = x - x * epsneg * nulp + assert_raises(AssertionError, assert_array_almost_equal_nulp, + xi, y + y * 1j, nulp) + + +class TestULP: + + def test_equal(self): + x = np.random.randn(10) + assert_array_max_ulp(x, x, maxulp=0) + + def test_single(self): + # Generate 1 + small deviation, check that adding eps gives a few UNL + x = np.ones(10).astype(np.float32) + x += 0.01 * np.random.randn(10).astype(np.float32) + eps = np.finfo(np.float32).eps + assert_array_max_ulp(x, x + eps, maxulp=20) + + def test_double(self): + # Generate 1 + small deviation, check that adding eps gives a few UNL + x = np.ones(10).astype(np.float64) + x += 0.01 * np.random.randn(10).astype(np.float64) + eps = np.finfo(np.float64).eps + assert_array_max_ulp(x, x + eps, maxulp=200) + + def test_inf(self): + for dt in [np.float32, np.float64]: + inf = np.array([np.inf]).astype(dt) + big = np.array([np.finfo(dt).max]) + assert_array_max_ulp(inf, big, maxulp=200) + + def test_nan(self): + # Test that nan is 'far' from small, tiny, inf, max and min + for dt in [np.float32, np.float64]: + if dt == np.float32: + maxulp = 1e6 + else: + maxulp = 1e12 + inf = np.array([np.inf]).astype(dt) + nan = np.array([np.nan]).astype(dt) + big = np.array([np.finfo(dt).max]) + tiny = np.array([np.finfo(dt).tiny]) + zero = np.array([0.0]).astype(dt) + nzero = np.array([-0.0]).astype(dt) + assert_raises(AssertionError, + lambda: assert_array_max_ulp(nan, inf, + maxulp=maxulp)) + assert_raises(AssertionError, + lambda: assert_array_max_ulp(nan, big, + maxulp=maxulp)) + assert_raises(AssertionError, + lambda: assert_array_max_ulp(nan, tiny, + maxulp=maxulp)) + assert_raises(AssertionError, + lambda: assert_array_max_ulp(nan, zero, + maxulp=maxulp)) + assert_raises(AssertionError, + lambda: assert_array_max_ulp(nan, nzero, + maxulp=maxulp)) + + +class TestStringEqual: + def test_simple(self): + assert_string_equal("hello", "hello") + assert_string_equal("hello\nmultiline", "hello\nmultiline") + + with pytest.raises(AssertionError) as exc_info: + assert_string_equal("foo\nbar", "hello\nbar") + msg = str(exc_info.value) + assert_equal(msg, "Differences in strings:\n- foo\n+ hello") + + assert_raises(AssertionError, + lambda: assert_string_equal("foo", "hello")) + + def test_regex(self): + assert_string_equal("a+*b", "a+*b") + + assert_raises(AssertionError, + lambda: assert_string_equal("aaa", "a+b")) + + +def assert_warn_len_equal(mod, n_in_context): + try: + mod_warns = mod.__warningregistry__ + except AttributeError: + # the lack of a __warningregistry__ + # attribute means that no warning has + # occurred; this can be triggered in + # a parallel test scenario, while in + # a serial test scenario an initial + # warning (and therefore the attribute) + # are always created first + mod_warns = {} + + num_warns = len(mod_warns) + + if 'version' in mod_warns: + # Python adds a 'version' entry to the registry, + # do not count it. + num_warns -= 1 + + assert_equal(num_warns, n_in_context) + + +def test_warn_len_equal_call_scenarios(): + # assert_warn_len_equal is called under + # varying circumstances depending on serial + # vs. parallel test scenarios; this test + # simply aims to probe both code paths and + # check that no assertion is uncaught + + # parallel scenario -- no warning issued yet + class mod: + pass + + mod_inst = mod() + + assert_warn_len_equal(mod=mod_inst, + n_in_context=0) + + # serial test scenario -- the __warningregistry__ + # attribute should be present + class mod: + def __init__(self): + self.__warningregistry__ = {'warning1': 1, + 'warning2': 2} + + mod_inst = mod() + assert_warn_len_equal(mod=mod_inst, + n_in_context=2) + + +def _get_fresh_mod(): + # Get this module, with warning registry empty + my_mod = sys.modules[__name__] + try: + my_mod.__warningregistry__.clear() + except AttributeError: + # will not have a __warningregistry__ unless warning has been + # raised in the module at some point + pass + return my_mod + + +def test_clear_and_catch_warnings(): + # Initial state of module, no warnings + my_mod = _get_fresh_mod() + assert_equal(getattr(my_mod, '__warningregistry__', {}), {}) + with clear_and_catch_warnings(modules=[my_mod]): + warnings.simplefilter('ignore') + warnings.warn('Some warning') + assert_equal(my_mod.__warningregistry__, {}) + # Without specified modules, don't clear warnings during context. + # catch_warnings doesn't make an entry for 'ignore'. + with clear_and_catch_warnings(): + warnings.simplefilter('ignore') + warnings.warn('Some warning') + assert_warn_len_equal(my_mod, 0) + + # Manually adding two warnings to the registry: + my_mod.__warningregistry__ = {'warning1': 1, + 'warning2': 2} + + # Confirm that specifying module keeps old warning, does not add new + with clear_and_catch_warnings(modules=[my_mod]): + warnings.simplefilter('ignore') + warnings.warn('Another warning') + assert_warn_len_equal(my_mod, 2) + + # Another warning, no module spec it clears up registry + with clear_and_catch_warnings(): + warnings.simplefilter('ignore') + warnings.warn('Another warning') + assert_warn_len_equal(my_mod, 0) + + +def test_suppress_warnings_module(): + # Initial state of module, no warnings + my_mod = _get_fresh_mod() + assert_equal(getattr(my_mod, '__warningregistry__', {}), {}) + + def warn_other_module(): + # Apply along axis is implemented in python; stacklevel=2 means + # we end up inside its module, not ours. + def warn(arr): + warnings.warn("Some warning 2", stacklevel=2) + return arr + np.apply_along_axis(warn, 0, [0]) + + # Test module based warning suppression: + assert_warn_len_equal(my_mod, 0) + with suppress_warnings() as sup: + sup.record(UserWarning) + # suppress warning from other module (may have .pyc ending), + # if apply_along_axis is moved, had to be changed. + sup.filter(module=np.lib._shape_base_impl) + warnings.warn("Some warning") + warn_other_module() + # Check that the suppression did test the file correctly (this module + # got filtered) + assert_equal(len(sup.log), 1) + assert_equal(sup.log[0].message.args[0], "Some warning") + assert_warn_len_equal(my_mod, 0) + sup = suppress_warnings() + # Will have to be changed if apply_along_axis is moved: + sup.filter(module=my_mod) + with sup: + warnings.warn('Some warning') + assert_warn_len_equal(my_mod, 0) + # And test repeat works: + sup.filter(module=my_mod) + with sup: + warnings.warn('Some warning') + assert_warn_len_equal(my_mod, 0) + + # Without specified modules + with suppress_warnings(): + warnings.simplefilter('ignore') + warnings.warn('Some warning') + assert_warn_len_equal(my_mod, 0) + + +def test_suppress_warnings_type(): + # Initial state of module, no warnings + my_mod = _get_fresh_mod() + assert_equal(getattr(my_mod, '__warningregistry__', {}), {}) + + # Test module based warning suppression: + with suppress_warnings() as sup: + sup.filter(UserWarning) + warnings.warn('Some warning') + assert_warn_len_equal(my_mod, 0) + sup = suppress_warnings() + sup.filter(UserWarning) + with sup: + warnings.warn('Some warning') + assert_warn_len_equal(my_mod, 0) + # And test repeat works: + sup.filter(module=my_mod) + with sup: + warnings.warn('Some warning') + assert_warn_len_equal(my_mod, 0) + + # Without specified modules + with suppress_warnings(): + warnings.simplefilter('ignore') + warnings.warn('Some warning') + assert_warn_len_equal(my_mod, 0) + + +def test_suppress_warnings_decorate_no_record(): + sup = suppress_warnings() + sup.filter(UserWarning) + + @sup + def warn(category): + warnings.warn('Some warning', category) + + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter("always") + warn(UserWarning) # should be suppressed + warn(RuntimeWarning) + assert_equal(len(w), 1) + + +def test_suppress_warnings_record(): + sup = suppress_warnings() + log1 = sup.record() + + with sup: + log2 = sup.record(message='Some other warning 2') + sup.filter(message='Some warning') + warnings.warn('Some warning') + warnings.warn('Some other warning') + warnings.warn('Some other warning 2') + + assert_equal(len(sup.log), 2) + assert_equal(len(log1), 1) + assert_equal(len(log2), 1) + assert_equal(log2[0].message.args[0], 'Some other warning 2') + + # Do it again, with the same context to see if some warnings survived: + with sup: + log2 = sup.record(message='Some other warning 2') + sup.filter(message='Some warning') + warnings.warn('Some warning') + warnings.warn('Some other warning') + warnings.warn('Some other warning 2') + + assert_equal(len(sup.log), 2) + assert_equal(len(log1), 1) + assert_equal(len(log2), 1) + assert_equal(log2[0].message.args[0], 'Some other warning 2') + + # Test nested: + with suppress_warnings() as sup: + sup.record() + with suppress_warnings() as sup2: + sup2.record(message='Some warning') + warnings.warn('Some warning') + warnings.warn('Some other warning') + assert_equal(len(sup2.log), 1) + assert_equal(len(sup.log), 1) + + +def test_suppress_warnings_forwarding(): + def warn_other_module(): + # Apply along axis is implemented in python; stacklevel=2 means + # we end up inside its module, not ours. + def warn(arr): + warnings.warn("Some warning", stacklevel=2) + return arr + np.apply_along_axis(warn, 0, [0]) + + with suppress_warnings() as sup: + sup.record() + with suppress_warnings("always"): + for i in range(2): + warnings.warn("Some warning") + + assert_equal(len(sup.log), 2) + + with suppress_warnings() as sup: + sup.record() + with suppress_warnings("location"): + for i in range(2): + warnings.warn("Some warning") + warnings.warn("Some warning") + + assert_equal(len(sup.log), 2) + + with suppress_warnings() as sup: + sup.record() + with suppress_warnings("module"): + for i in range(2): + warnings.warn("Some warning") + warnings.warn("Some warning") + warn_other_module() + + assert_equal(len(sup.log), 2) + + with suppress_warnings() as sup: + sup.record() + with suppress_warnings("once"): + for i in range(2): + warnings.warn("Some warning") + warnings.warn("Some other warning") + warn_other_module() + + assert_equal(len(sup.log), 2) + + +def test_tempdir(): + with tempdir() as tdir: + fpath = os.path.join(tdir, 'tmp') + with open(fpath, 'w'): + pass + assert_(not os.path.isdir(tdir)) + + raised = False + try: + with tempdir() as tdir: + raise ValueError + except ValueError: + raised = True + assert_(raised) + assert_(not os.path.isdir(tdir)) + + +def test_temppath(): + with temppath() as fpath: + with open(fpath, 'w'): + pass + assert_(not os.path.isfile(fpath)) + + raised = False + try: + with temppath() as fpath: + raise ValueError + except ValueError: + raised = True + assert_(raised) + assert_(not os.path.isfile(fpath)) + + +class my_cacw(clear_and_catch_warnings): + + class_modules = (sys.modules[__name__],) + + +def test_clear_and_catch_warnings_inherit(): + # Test can subclass and add default modules + my_mod = _get_fresh_mod() + with my_cacw(): + warnings.simplefilter('ignore') + warnings.warn('Some warning') + assert_equal(my_mod.__warningregistry__, {}) + + +@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") +class TestAssertNoGcCycles: + """ Test assert_no_gc_cycles """ + + def test_passes(self): + def no_cycle(): + b = [] + b.append([]) + return b + + with assert_no_gc_cycles(): + no_cycle() + + assert_no_gc_cycles(no_cycle) + + def test_asserts(self): + def make_cycle(): + a = [] + a.append(a) + a.append(a) + return a + + with assert_raises(AssertionError): + with assert_no_gc_cycles(): + make_cycle() + + with assert_raises(AssertionError): + assert_no_gc_cycles(make_cycle) + + @pytest.mark.slow + def test_fails(self): + """ + Test that in cases where the garbage cannot be collected, we raise an + error, instead of hanging forever trying to clear it. + """ + + class ReferenceCycleInDel: + """ + An object that not only contains a reference cycle, but creates new + cycles whenever it's garbage-collected and its __del__ runs + """ + make_cycle = True + + def __init__(self): + self.cycle = self + + def __del__(self): + # break the current cycle so that `self` can be freed + self.cycle = None + + if ReferenceCycleInDel.make_cycle: + # but create a new one so that the garbage collector (GC) has more + # work to do. + ReferenceCycleInDel() + + try: + w = weakref.ref(ReferenceCycleInDel()) + try: + with assert_raises(RuntimeError): + # this will be unable to get a baseline empty garbage + assert_no_gc_cycles(lambda: None) + except AssertionError: + # the above test is only necessary if the GC actually tried to free + # our object anyway. + if w() is not None: + pytest.skip("GC does not call __del__ on cyclic objects") + raise + + finally: + # make sure that we stop creating reference cycles + ReferenceCycleInDel.make_cycle = False diff --git a/.venv/lib/python3.12/site-packages/numpy/tests/__init__.py b/.venv/lib/python3.12/site-packages/numpy/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..06f9d4b Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test__all__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test__all__.cpython-312.pyc new file mode 100644 index 0000000..ee12204 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test__all__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_configtool.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_configtool.cpython-312.pyc new file mode 100644 index 0000000..fd1272e Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_configtool.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_ctypeslib.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_ctypeslib.cpython-312.pyc new file mode 100644 index 0000000..61d8ccd Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_ctypeslib.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_lazyloading.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_lazyloading.cpython-312.pyc new file mode 100644 index 0000000..cea7387 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_lazyloading.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_matlib.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_matlib.cpython-312.pyc new file mode 100644 index 0000000..be7bde1 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_matlib.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_numpy_config.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_numpy_config.cpython-312.pyc new file mode 100644 index 0000000..0064655 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_numpy_config.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_numpy_version.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_numpy_version.cpython-312.pyc new file mode 100644 index 0000000..532ac43 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_numpy_version.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_public_api.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_public_api.cpython-312.pyc new file mode 100644 index 0000000..b11a6ee Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_public_api.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_reloading.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_reloading.cpython-312.pyc new file mode 100644 index 0000000..26f499c Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_reloading.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_scripts.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_scripts.cpython-312.pyc new file mode 100644 index 0000000..697fcb8 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_scripts.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_warnings.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_warnings.cpython-312.pyc new file mode 100644 index 0000000..81495c6 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/tests/__pycache__/test_warnings.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/tests/test__all__.py b/.venv/lib/python3.12/site-packages/numpy/tests/test__all__.py new file mode 100644 index 0000000..2dc8166 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/tests/test__all__.py @@ -0,0 +1,10 @@ + +import collections + +import numpy as np + + +def test_no_duplicates_in_np__all__(): + # Regression test for gh-10198. + dups = {k: v for k, v in collections.Counter(np.__all__).items() if v > 1} + assert len(dups) == 0 diff --git a/.venv/lib/python3.12/site-packages/numpy/tests/test_configtool.py b/.venv/lib/python3.12/site-packages/numpy/tests/test_configtool.py new file mode 100644 index 0000000..e0b9bb1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/tests/test_configtool.py @@ -0,0 +1,48 @@ +import importlib +import importlib.metadata +import os +import pathlib +import subprocess + +import pytest + +import numpy as np +import numpy._core.include +import numpy._core.lib.pkgconfig +from numpy.testing import IS_EDITABLE, IS_INSTALLED, IS_WASM, NUMPY_ROOT + +INCLUDE_DIR = NUMPY_ROOT / '_core' / 'include' +PKG_CONFIG_DIR = NUMPY_ROOT / '_core' / 'lib' / 'pkgconfig' + + +@pytest.mark.skipif(not IS_INSTALLED, reason="`numpy-config` not expected to be installed") +@pytest.mark.skipif(IS_WASM, reason="wasm interpreter cannot start subprocess") +class TestNumpyConfig: + def check_numpyconfig(self, arg): + p = subprocess.run(['numpy-config', arg], capture_output=True, text=True) + p.check_returncode() + return p.stdout.strip() + + def test_configtool_version(self): + stdout = self.check_numpyconfig('--version') + assert stdout == np.__version__ + + def test_configtool_cflags(self): + stdout = self.check_numpyconfig('--cflags') + assert f'-I{os.fspath(INCLUDE_DIR)}' in stdout + + def test_configtool_pkgconfigdir(self): + stdout = self.check_numpyconfig('--pkgconfigdir') + assert pathlib.Path(stdout) == PKG_CONFIG_DIR + + +@pytest.mark.skipif(not IS_INSTALLED, reason="numpy must be installed to check its entrypoints") +def test_pkg_config_entrypoint(): + (entrypoint,) = importlib.metadata.entry_points(group='pkg_config', name='numpy') + assert entrypoint.value == numpy._core.lib.pkgconfig.__name__ + + +@pytest.mark.skipif(not IS_INSTALLED, reason="numpy.pc is only available when numpy is installed") +@pytest.mark.skipif(IS_EDITABLE, reason="editable installs don't have a numpy.pc") +def test_pkg_config_config_exists(): + assert PKG_CONFIG_DIR.joinpath('numpy.pc').is_file() diff --git a/.venv/lib/python3.12/site-packages/numpy/tests/test_ctypeslib.py b/.venv/lib/python3.12/site-packages/numpy/tests/test_ctypeslib.py new file mode 100644 index 0000000..68d3141 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/tests/test_ctypeslib.py @@ -0,0 +1,377 @@ +import sys +import sysconfig +import weakref +from pathlib import Path + +import pytest + +import numpy as np +from numpy.ctypeslib import as_array, load_library, ndpointer +from numpy.testing import assert_, assert_array_equal, assert_equal, assert_raises + +try: + import ctypes +except ImportError: + ctypes = None +else: + cdll = None + test_cdll = None + if hasattr(sys, 'gettotalrefcount'): + try: + cdll = load_library( + '_multiarray_umath_d', np._core._multiarray_umath.__file__ + ) + except OSError: + pass + try: + test_cdll = load_library( + '_multiarray_tests', np._core._multiarray_tests.__file__ + ) + except OSError: + pass + if cdll is None: + cdll = load_library( + '_multiarray_umath', np._core._multiarray_umath.__file__) + if test_cdll is None: + test_cdll = load_library( + '_multiarray_tests', np._core._multiarray_tests.__file__ + ) + + c_forward_pointer = test_cdll.forward_pointer + + +@pytest.mark.skipif(ctypes is None, + reason="ctypes not available in this python") +@pytest.mark.skipif(sys.platform == 'cygwin', + reason="Known to fail on cygwin") +class TestLoadLibrary: + def test_basic(self): + loader_path = np._core._multiarray_umath.__file__ + + out1 = load_library('_multiarray_umath', loader_path) + out2 = load_library(Path('_multiarray_umath'), loader_path) + out3 = load_library('_multiarray_umath', Path(loader_path)) + out4 = load_library(b'_multiarray_umath', loader_path) + + assert isinstance(out1, ctypes.CDLL) + assert out1 is out2 is out3 is out4 + + def test_basic2(self): + # Regression for #801: load_library with a full library name + # (including extension) does not work. + try: + so_ext = sysconfig.get_config_var('EXT_SUFFIX') + load_library(f'_multiarray_umath{so_ext}', + np._core._multiarray_umath.__file__) + except ImportError as e: + msg = ("ctypes is not available on this python: skipping the test" + " (import error was: %s)" % str(e)) + print(msg) + + +class TestNdpointer: + def test_dtype(self): + dt = np.intc + p = ndpointer(dtype=dt) + assert_(p.from_param(np.array([1], dt))) + dt = 'i4') + p = ndpointer(dtype=dt) + p.from_param(np.array([1], dt)) + assert_raises(TypeError, p.from_param, + np.array([1], dt.newbyteorder('swap'))) + dtnames = ['x', 'y'] + dtformats = [np.intc, np.float64] + dtdescr = {'names': dtnames, 'formats': dtformats} + dt = np.dtype(dtdescr) + p = ndpointer(dtype=dt) + assert_(p.from_param(np.zeros((10,), dt))) + samedt = np.dtype(dtdescr) + p = ndpointer(dtype=samedt) + assert_(p.from_param(np.zeros((10,), dt))) + dt2 = np.dtype(dtdescr, align=True) + if dt.itemsize != dt2.itemsize: + assert_raises(TypeError, p.from_param, np.zeros((10,), dt2)) + else: + assert_(p.from_param(np.zeros((10,), dt2))) + + def test_ndim(self): + p = ndpointer(ndim=0) + assert_(p.from_param(np.array(1))) + assert_raises(TypeError, p.from_param, np.array([1])) + p = ndpointer(ndim=1) + assert_raises(TypeError, p.from_param, np.array(1)) + assert_(p.from_param(np.array([1]))) + p = ndpointer(ndim=2) + assert_(p.from_param(np.array([[1]]))) + + def test_shape(self): + p = ndpointer(shape=(1, 2)) + assert_(p.from_param(np.array([[1, 2]]))) + assert_raises(TypeError, p.from_param, np.array([[1], [2]])) + p = ndpointer(shape=()) + assert_(p.from_param(np.array(1))) + + def test_flags(self): + x = np.array([[1, 2], [3, 4]], order='F') + p = ndpointer(flags='FORTRAN') + assert_(p.from_param(x)) + p = ndpointer(flags='CONTIGUOUS') + assert_raises(TypeError, p.from_param, x) + p = ndpointer(flags=x.flags.num) + assert_(p.from_param(x)) + assert_raises(TypeError, p.from_param, np.array([[1, 2], [3, 4]])) + + def test_cache(self): + assert_(ndpointer(dtype=np.float64) is ndpointer(dtype=np.float64)) + + # shapes are normalized + assert_(ndpointer(shape=2) is ndpointer(shape=(2,))) + + # 1.12 <= v < 1.16 had a bug that made these fail + assert_(ndpointer(shape=2) is not ndpointer(ndim=2)) + assert_(ndpointer(ndim=2) is not ndpointer(shape=2)) + +@pytest.mark.skipif(ctypes is None, + reason="ctypes not available on this python installation") +class TestNdpointerCFunc: + def test_arguments(self): + """ Test that arguments are coerced from arrays """ + c_forward_pointer.restype = ctypes.c_void_p + c_forward_pointer.argtypes = (ndpointer(ndim=2),) + + c_forward_pointer(np.zeros((2, 3))) + # too many dimensions + assert_raises( + ctypes.ArgumentError, c_forward_pointer, np.zeros((2, 3, 4))) + + @pytest.mark.parametrize( + 'dt', [ + float, + np.dtype({ + 'formats': ['u2') + ct = np.ctypeslib.as_ctypes_type(dt) + assert_equal(ct, ctypes.c_uint16.__ctype_be__) + + dt = np.dtype('u2') + ct = np.ctypeslib.as_ctypes_type(dt) + assert_equal(ct, ctypes.c_uint16) + + def test_subarray(self): + dt = np.dtype((np.int32, (2, 3))) + ct = np.ctypeslib.as_ctypes_type(dt) + assert_equal(ct, 2 * (3 * ctypes.c_int32)) + + def test_structure(self): + dt = np.dtype([ + ('a', np.uint16), + ('b', np.uint32), + ]) + + ct = np.ctypeslib.as_ctypes_type(dt) + assert_(issubclass(ct, ctypes.Structure)) + assert_equal(ctypes.sizeof(ct), dt.itemsize) + assert_equal(ct._fields_, [ + ('a', ctypes.c_uint16), + ('b', ctypes.c_uint32), + ]) + + def test_structure_aligned(self): + dt = np.dtype([ + ('a', np.uint16), + ('b', np.uint32), + ], align=True) + + ct = np.ctypeslib.as_ctypes_type(dt) + assert_(issubclass(ct, ctypes.Structure)) + assert_equal(ctypes.sizeof(ct), dt.itemsize) + assert_equal(ct._fields_, [ + ('a', ctypes.c_uint16), + ('', ctypes.c_char * 2), # padding + ('b', ctypes.c_uint32), + ]) + + def test_union(self): + dt = np.dtype({ + 'names': ['a', 'b'], + 'offsets': [0, 0], + 'formats': [np.uint16, np.uint32] + }) + + ct = np.ctypeslib.as_ctypes_type(dt) + assert_(issubclass(ct, ctypes.Union)) + assert_equal(ctypes.sizeof(ct), dt.itemsize) + assert_equal(ct._fields_, [ + ('a', ctypes.c_uint16), + ('b', ctypes.c_uint32), + ]) + + def test_padded_union(self): + dt = np.dtype({ + 'names': ['a', 'b'], + 'offsets': [0, 0], + 'formats': [np.uint16, np.uint32], + 'itemsize': 5, + }) + + ct = np.ctypeslib.as_ctypes_type(dt) + assert_(issubclass(ct, ctypes.Union)) + assert_equal(ctypes.sizeof(ct), dt.itemsize) + assert_equal(ct._fields_, [ + ('a', ctypes.c_uint16), + ('b', ctypes.c_uint32), + ('', ctypes.c_char * 5), # padding + ]) + + def test_overlapping(self): + dt = np.dtype({ + 'names': ['a', 'b'], + 'offsets': [0, 2], + 'formats': [np.uint32, np.uint32] + }) + assert_raises(NotImplementedError, np.ctypeslib.as_ctypes_type, dt) diff --git a/.venv/lib/python3.12/site-packages/numpy/tests/test_lazyloading.py b/.venv/lib/python3.12/site-packages/numpy/tests/test_lazyloading.py new file mode 100644 index 0000000..5f6233f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/tests/test_lazyloading.py @@ -0,0 +1,38 @@ +import sys +from importlib.util import LazyLoader, find_spec, module_from_spec + +import pytest + + +# Warning raised by _reload_guard() in numpy/__init__.py +@pytest.mark.filterwarnings("ignore:The NumPy module was reloaded") +def test_lazy_load(): + # gh-22045. lazyload doesn't import submodule names into the namespace + # muck with sys.modules to test the importing system + old_numpy = sys.modules.pop("numpy") + + numpy_modules = {} + for mod_name, mod in list(sys.modules.items()): + if mod_name[:6] == "numpy.": + numpy_modules[mod_name] = mod + sys.modules.pop(mod_name) + + try: + # create lazy load of numpy as np + spec = find_spec("numpy") + module = module_from_spec(spec) + sys.modules["numpy"] = module + loader = LazyLoader(spec.loader) + loader.exec_module(module) + np = module + + # test a subpackage import + from numpy.lib import recfunctions # noqa: F401 + + # test triggering the import of the package + np.ndarray + + finally: + if old_numpy: + sys.modules["numpy"] = old_numpy + sys.modules.update(numpy_modules) diff --git a/.venv/lib/python3.12/site-packages/numpy/tests/test_matlib.py b/.venv/lib/python3.12/site-packages/numpy/tests/test_matlib.py new file mode 100644 index 0000000..2aac1f2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/tests/test_matlib.py @@ -0,0 +1,59 @@ +import numpy as np +import numpy.matlib +from numpy.testing import assert_, assert_array_equal + + +def test_empty(): + x = numpy.matlib.empty((2,)) + assert_(isinstance(x, np.matrix)) + assert_(x.shape, (1, 2)) + +def test_ones(): + assert_array_equal(numpy.matlib.ones((2, 3)), + np.matrix([[ 1., 1., 1.], + [ 1., 1., 1.]])) + + assert_array_equal(numpy.matlib.ones(2), np.matrix([[ 1., 1.]])) + +def test_zeros(): + assert_array_equal(numpy.matlib.zeros((2, 3)), + np.matrix([[ 0., 0., 0.], + [ 0., 0., 0.]])) + + assert_array_equal(numpy.matlib.zeros(2), np.matrix([[0., 0.]])) + +def test_identity(): + x = numpy.matlib.identity(2, dtype=int) + assert_array_equal(x, np.matrix([[1, 0], [0, 1]])) + +def test_eye(): + xc = numpy.matlib.eye(3, k=1, dtype=int) + assert_array_equal(xc, np.matrix([[ 0, 1, 0], + [ 0, 0, 1], + [ 0, 0, 0]])) + assert xc.flags.c_contiguous + assert not xc.flags.f_contiguous + + xf = numpy.matlib.eye(3, 4, dtype=int, order='F') + assert_array_equal(xf, np.matrix([[ 1, 0, 0, 0], + [ 0, 1, 0, 0], + [ 0, 0, 1, 0]])) + assert not xf.flags.c_contiguous + assert xf.flags.f_contiguous + +def test_rand(): + x = numpy.matlib.rand(3) + # check matrix type, array would have shape (3,) + assert_(x.ndim == 2) + +def test_randn(): + x = np.matlib.randn(3) + # check matrix type, array would have shape (3,) + assert_(x.ndim == 2) + +def test_repmat(): + a1 = np.arange(4) + x = numpy.matlib.repmat(a1, 2, 2) + y = np.array([[0, 1, 2, 3, 0, 1, 2, 3], + [0, 1, 2, 3, 0, 1, 2, 3]]) + assert_array_equal(x, y) diff --git a/.venv/lib/python3.12/site-packages/numpy/tests/test_numpy_config.py b/.venv/lib/python3.12/site-packages/numpy/tests/test_numpy_config.py new file mode 100644 index 0000000..f01a279 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/tests/test_numpy_config.py @@ -0,0 +1,46 @@ +""" +Check the numpy config is valid. +""" +from unittest.mock import patch + +import pytest + +import numpy as np + +pytestmark = pytest.mark.skipif( + not hasattr(np.__config__, "_built_with_meson"), + reason="Requires Meson builds", +) + + +class TestNumPyConfigs: + REQUIRED_CONFIG_KEYS = [ + "Compilers", + "Machine Information", + "Python Information", + ] + + @patch("numpy.__config__._check_pyyaml") + def test_pyyaml_not_found(self, mock_yaml_importer): + mock_yaml_importer.side_effect = ModuleNotFoundError() + with pytest.warns(UserWarning): + np.show_config() + + def test_dict_mode(self): + config = np.show_config(mode="dicts") + + assert isinstance(config, dict) + assert all(key in config for key in self.REQUIRED_CONFIG_KEYS), ( + "Required key missing," + " see index of `False` with `REQUIRED_CONFIG_KEYS`" + ) + + def test_invalid_mode(self): + with pytest.raises(AttributeError): + np.show_config(mode="foo") + + def test_warn_to_add_tests(self): + assert len(np.__config__.DisplayModes) == 2, ( + "New mode detected," + " please add UT if applicable and increment this count" + ) diff --git a/.venv/lib/python3.12/site-packages/numpy/tests/test_numpy_version.py b/.venv/lib/python3.12/site-packages/numpy/tests/test_numpy_version.py new file mode 100644 index 0000000..ea16422 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/tests/test_numpy_version.py @@ -0,0 +1,54 @@ +""" +Check the numpy version is valid. + +Note that a development version is marked by the presence of 'dev0' or '+' +in the version string, all else is treated as a release. The version string +itself is set from the output of ``git describe`` which relies on tags. + +Examples +-------- + +Valid Development: 1.22.0.dev0 1.22.0.dev0+5-g7999db4df2 1.22.0+5-g7999db4df2 +Valid Release: 1.21.0.rc1, 1.21.0.b1, 1.21.0 +Invalid: 1.22.0.dev, 1.22.0.dev0-5-g7999db4dfB, 1.21.0.d1, 1.21.a + +Note that a release is determined by the version string, which in turn +is controlled by the result of the ``git describe`` command. +""" +import re + +import numpy as np +from numpy.testing import assert_ + + +def test_valid_numpy_version(): + # Verify that the numpy version is a valid one (no .post suffix or other + # nonsense). See gh-6431 for an issue caused by an invalid version. + version_pattern = r"^[0-9]+\.[0-9]+\.[0-9]+(a[0-9]|b[0-9]|rc[0-9])?" + dev_suffix = r"(\.dev[0-9]+(\+git[0-9]+\.[0-9a-f]+)?)?" + res = re.match(version_pattern + dev_suffix + '$', np.__version__) + + assert_(res is not None, np.__version__) + + +def test_short_version(): + # Check numpy.short_version actually exists + if np.version.release: + assert_(np.__version__ == np.version.short_version, + "short_version mismatch in release version") + else: + assert_(np.__version__.split("+")[0] == np.version.short_version, + "short_version mismatch in development version") + + +def test_version_module(): + contents = {s for s in dir(np.version) if not s.startswith('_')} + expected = { + 'full_version', + 'git_revision', + 'release', + 'short_version', + 'version', + } + + assert contents == expected diff --git a/.venv/lib/python3.12/site-packages/numpy/tests/test_public_api.py b/.venv/lib/python3.12/site-packages/numpy/tests/test_public_api.py new file mode 100644 index 0000000..a56cd13 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/tests/test_public_api.py @@ -0,0 +1,806 @@ +import functools +import importlib +import inspect +import pkgutil +import subprocess +import sys +import sysconfig +import types +import warnings + +import pytest + +import numpy +import numpy as np +from numpy.testing import IS_WASM + +try: + import ctypes +except ImportError: + ctypes = None + + +def check_dir(module, module_name=None): + """Returns a mapping of all objects with the wrong __module__ attribute.""" + if module_name is None: + module_name = module.__name__ + results = {} + for name in dir(module): + if name == "core": + continue + item = getattr(module, name) + if (hasattr(item, '__module__') and hasattr(item, '__name__') + and item.__module__ != module_name): + results[name] = item.__module__ + '.' + item.__name__ + return results + + +def test_numpy_namespace(): + # We override dir to not show these members + allowlist = { + 'recarray': 'numpy.rec.recarray', + } + bad_results = check_dir(np) + # pytest gives better error messages with the builtin assert than with + # assert_equal + assert bad_results == allowlist + + +@pytest.mark.skipif(IS_WASM, reason="can't start subprocess") +@pytest.mark.parametrize('name', ['testing']) +def test_import_lazy_import(name): + """Make sure we can actually use the modules we lazy load. + + While not exported as part of the public API, it was accessible. With the + use of __getattr__ and __dir__, this isn't always true It can happen that + an infinite recursion may happen. + + This is the only way I found that would force the failure to appear on the + badly implemented code. + + We also test for the presence of the lazily imported modules in dir + + """ + exe = (sys.executable, '-c', "import numpy; numpy." + name) + result = subprocess.check_output(exe) + assert not result + + # Make sure they are still in the __dir__ + assert name in dir(np) + + +def test_dir_testing(): + """Assert that output of dir has only one "testing/tester" + attribute without duplicate""" + assert len(dir(np)) == len(set(dir(np))) + + +def test_numpy_linalg(): + bad_results = check_dir(np.linalg) + assert bad_results == {} + + +def test_numpy_fft(): + bad_results = check_dir(np.fft) + assert bad_results == {} + + +@pytest.mark.skipif(ctypes is None, + reason="ctypes not available in this python") +def test_NPY_NO_EXPORT(): + cdll = ctypes.CDLL(np._core._multiarray_tests.__file__) + # Make sure an arbitrary NPY_NO_EXPORT function is actually hidden + f = getattr(cdll, 'test_not_exported', None) + assert f is None, ("'test_not_exported' is mistakenly exported, " + "NPY_NO_EXPORT does not work") + + +# Historically NumPy has not used leading underscores for private submodules +# much. This has resulted in lots of things that look like public modules +# (i.e. things that can be imported as `import numpy.somesubmodule.somefile`), +# but were never intended to be public. The PUBLIC_MODULES list contains +# modules that are either public because they were meant to be, or because they +# contain public functions/objects that aren't present in any other namespace +# for whatever reason and therefore should be treated as public. +# +# The PRIVATE_BUT_PRESENT_MODULES list contains modules that look public (lack +# of underscores) but should not be used. For many of those modules the +# current status is fine. For others it may make sense to work on making them +# private, to clean up our public API and avoid confusion. +PUBLIC_MODULES = ['numpy.' + s for s in [ + "ctypeslib", + "dtypes", + "exceptions", + "f2py", + "fft", + "lib", + "lib.array_utils", + "lib.format", + "lib.introspect", + "lib.mixins", + "lib.npyio", + "lib.recfunctions", # note: still needs cleaning, was forgotten for 2.0 + "lib.scimath", + "lib.stride_tricks", + "linalg", + "ma", + "ma.extras", + "ma.mrecords", + "polynomial", + "polynomial.chebyshev", + "polynomial.hermite", + "polynomial.hermite_e", + "polynomial.laguerre", + "polynomial.legendre", + "polynomial.polynomial", + "random", + "strings", + "testing", + "testing.overrides", + "typing", + "typing.mypy_plugin", + "version", +]] +if sys.version_info < (3, 12): + PUBLIC_MODULES += [ + 'numpy.' + s for s in [ + "distutils", + "distutils.cpuinfo", + "distutils.exec_command", + "distutils.misc_util", + "distutils.log", + "distutils.system_info", + ] + ] + + +PUBLIC_ALIASED_MODULES = [ + "numpy.char", + "numpy.emath", + "numpy.rec", +] + + +PRIVATE_BUT_PRESENT_MODULES = ['numpy.' + s for s in [ + "conftest", + "core", + "core.multiarray", + "core.numeric", + "core.umath", + "core.arrayprint", + "core.defchararray", + "core.einsumfunc", + "core.fromnumeric", + "core.function_base", + "core.getlimits", + "core.numerictypes", + "core.overrides", + "core.records", + "core.shape_base", + "f2py.auxfuncs", + "f2py.capi_maps", + "f2py.cb_rules", + "f2py.cfuncs", + "f2py.common_rules", + "f2py.crackfortran", + "f2py.diagnose", + "f2py.f2py2e", + "f2py.f90mod_rules", + "f2py.func2subr", + "f2py.rules", + "f2py.symbolic", + "f2py.use_rules", + "fft.helper", + "lib.user_array", # note: not in np.lib, but probably should just be deleted + "linalg.lapack_lite", + "linalg.linalg", + "ma.core", + "ma.testutils", + "matlib", + "matrixlib", + "matrixlib.defmatrix", + "polynomial.polyutils", + "random.mtrand", + "random.bit_generator", + "testing.print_coercion_tables", +]] +if sys.version_info < (3, 12): + PRIVATE_BUT_PRESENT_MODULES += [ + 'numpy.' + s for s in [ + "distutils.armccompiler", + "distutils.fujitsuccompiler", + "distutils.ccompiler", + 'distutils.ccompiler_opt', + "distutils.command", + "distutils.command.autodist", + "distutils.command.bdist_rpm", + "distutils.command.build", + "distutils.command.build_clib", + "distutils.command.build_ext", + "distutils.command.build_py", + "distutils.command.build_scripts", + "distutils.command.build_src", + "distutils.command.config", + "distutils.command.config_compiler", + "distutils.command.develop", + "distutils.command.egg_info", + "distutils.command.install", + "distutils.command.install_clib", + "distutils.command.install_data", + "distutils.command.install_headers", + "distutils.command.sdist", + "distutils.conv_template", + "distutils.core", + "distutils.extension", + "distutils.fcompiler", + "distutils.fcompiler.absoft", + "distutils.fcompiler.arm", + "distutils.fcompiler.compaq", + "distutils.fcompiler.environment", + "distutils.fcompiler.g95", + "distutils.fcompiler.gnu", + "distutils.fcompiler.hpux", + "distutils.fcompiler.ibm", + "distutils.fcompiler.intel", + "distutils.fcompiler.lahey", + "distutils.fcompiler.mips", + "distutils.fcompiler.nag", + "distutils.fcompiler.none", + "distutils.fcompiler.pathf95", + "distutils.fcompiler.pg", + "distutils.fcompiler.nv", + "distutils.fcompiler.sun", + "distutils.fcompiler.vast", + "distutils.fcompiler.fujitsu", + "distutils.from_template", + "distutils.intelccompiler", + "distutils.lib2def", + "distutils.line_endings", + "distutils.mingw32ccompiler", + "distutils.msvccompiler", + "distutils.npy_pkg_config", + "distutils.numpy_distribution", + "distutils.pathccompiler", + "distutils.unixccompiler", + ] + ] + + +def is_unexpected(name): + """Check if this needs to be considered.""" + return ( + '._' not in name and '.tests' not in name and '.setup' not in name + and name not in PUBLIC_MODULES + and name not in PUBLIC_ALIASED_MODULES + and name not in PRIVATE_BUT_PRESENT_MODULES + ) + + +if sys.version_info >= (3, 12): + SKIP_LIST = [] +else: + SKIP_LIST = ["numpy.distutils.msvc9compiler"] + + +def test_all_modules_are_expected(): + """ + Test that we don't add anything that looks like a new public module by + accident. Check is based on filenames. + """ + + modnames = [] + for _, modname, ispkg in pkgutil.walk_packages(path=np.__path__, + prefix=np.__name__ + '.', + onerror=None): + if is_unexpected(modname) and modname not in SKIP_LIST: + # We have a name that is new. If that's on purpose, add it to + # PUBLIC_MODULES. We don't expect to have to add anything to + # PRIVATE_BUT_PRESENT_MODULES. Use an underscore in the name! + modnames.append(modname) + + if modnames: + raise AssertionError(f'Found unexpected modules: {modnames}') + + +# Stuff that clearly shouldn't be in the API and is detected by the next test +# below +SKIP_LIST_2 = [ + 'numpy.lib.math', + 'numpy.matlib.char', + 'numpy.matlib.rec', + 'numpy.matlib.emath', + 'numpy.matlib.exceptions', + 'numpy.matlib.math', + 'numpy.matlib.linalg', + 'numpy.matlib.fft', + 'numpy.matlib.random', + 'numpy.matlib.ctypeslib', + 'numpy.matlib.ma', +] +if sys.version_info < (3, 12): + SKIP_LIST_2 += [ + 'numpy.distutils.log.sys', + 'numpy.distutils.log.logging', + 'numpy.distutils.log.warnings', + ] + + +def test_all_modules_are_expected_2(): + """ + Method checking all objects. The pkgutil-based method in + `test_all_modules_are_expected` does not catch imports into a namespace, + only filenames. So this test is more thorough, and checks this like: + + import .lib.scimath as emath + + To check if something in a module is (effectively) public, one can check if + there's anything in that namespace that's a public function/object but is + not exposed in a higher-level namespace. For example for a `numpy.lib` + submodule:: + + mod = np.lib.mixins + for obj in mod.__all__: + if obj in np.__all__: + continue + elif obj in np.lib.__all__: + continue + + else: + print(obj) + + """ + + def find_unexpected_members(mod_name): + members = [] + module = importlib.import_module(mod_name) + if hasattr(module, '__all__'): + objnames = module.__all__ + else: + objnames = dir(module) + + for objname in objnames: + if not objname.startswith('_'): + fullobjname = mod_name + '.' + objname + if isinstance(getattr(module, objname), types.ModuleType): + if is_unexpected(fullobjname): + if fullobjname not in SKIP_LIST_2: + members.append(fullobjname) + + return members + + unexpected_members = find_unexpected_members("numpy") + for modname in PUBLIC_MODULES: + unexpected_members.extend(find_unexpected_members(modname)) + + if unexpected_members: + raise AssertionError("Found unexpected object(s) that look like " + f"modules: {unexpected_members}") + + +def test_api_importable(): + """ + Check that all submodules listed higher up in this file can be imported + + Note that if a PRIVATE_BUT_PRESENT_MODULES entry goes missing, it may + simply need to be removed from the list (deprecation may or may not be + needed - apply common sense). + """ + def check_importable(module_name): + try: + importlib.import_module(module_name) + except (ImportError, AttributeError): + return False + + return True + + module_names = [] + for module_name in PUBLIC_MODULES: + if not check_importable(module_name): + module_names.append(module_name) + + if module_names: + raise AssertionError("Modules in the public API that cannot be " + f"imported: {module_names}") + + for module_name in PUBLIC_ALIASED_MODULES: + try: + eval(module_name) + except AttributeError: + module_names.append(module_name) + + if module_names: + raise AssertionError("Modules in the public API that were not " + f"found: {module_names}") + + with warnings.catch_warnings(record=True) as w: + warnings.filterwarnings('always', category=DeprecationWarning) + warnings.filterwarnings('always', category=ImportWarning) + for module_name in PRIVATE_BUT_PRESENT_MODULES: + if not check_importable(module_name): + module_names.append(module_name) + + if module_names: + raise AssertionError("Modules that are not really public but looked " + "public and can not be imported: " + f"{module_names}") + + +@pytest.mark.xfail( + sysconfig.get_config_var("Py_DEBUG") not in (None, 0, "0"), + reason=( + "NumPy possibly built with `USE_DEBUG=True ./tools/travis-test.sh`, " + "which does not expose the `array_api` entry point. " + "See https://github.com/numpy/numpy/pull/19800" + ), +) +def test_array_api_entry_point(): + """ + Entry point for Array API implementation can be found with importlib and + returns the main numpy namespace. + """ + # For a development install that did not go through meson-python, + # the entrypoint will not have been installed. So ensure this test fails + # only if numpy is inside site-packages. + numpy_in_sitepackages = sysconfig.get_path('platlib') in np.__file__ + + eps = importlib.metadata.entry_points() + xp_eps = eps.select(group="array_api") + if len(xp_eps) == 0: + if numpy_in_sitepackages: + msg = "No entry points for 'array_api' found" + raise AssertionError(msg) from None + return + + try: + ep = next(ep for ep in xp_eps if ep.name == "numpy") + except StopIteration: + if numpy_in_sitepackages: + msg = "'numpy' not in array_api entry points" + raise AssertionError(msg) from None + return + + if ep.value == 'numpy.array_api': + # Looks like the entrypoint for the current numpy build isn't + # installed, but an older numpy is also installed and hence the + # entrypoint is pointing to the old (no longer existing) location. + # This isn't a problem except for when running tests with `spin` or an + # in-place build. + return + + xp = ep.load() + msg = ( + f"numpy entry point value '{ep.value}' " + "does not point to our Array API implementation" + ) + assert xp is numpy, msg + + +def test_main_namespace_all_dir_coherence(): + """ + Checks if `dir(np)` and `np.__all__` are consistent and return + the same content, excluding exceptions and private members. + """ + def _remove_private_members(member_set): + return {m for m in member_set if not m.startswith('_')} + + def _remove_exceptions(member_set): + return member_set.difference({ + "bool" # included only in __dir__ + }) + + all_members = _remove_private_members(np.__all__) + all_members = _remove_exceptions(all_members) + + dir_members = _remove_private_members(np.__dir__()) + dir_members = _remove_exceptions(dir_members) + + assert all_members == dir_members, ( + "Members that break symmetry: " + f"{all_members.symmetric_difference(dir_members)}" + ) + + +@pytest.mark.filterwarnings( + r"ignore:numpy.core(\.\w+)? is deprecated:DeprecationWarning" +) +def test_core_shims_coherence(): + """ + Check that all "semi-public" members of `numpy._core` are also accessible + from `numpy.core` shims. + """ + import numpy.core as core + + for member_name in dir(np._core): + # Skip private and test members. Also if a module is aliased, + # no need to add it to np.core + if ( + member_name.startswith("_") + or member_name in ["tests", "strings"] + or f"numpy.{member_name}" in PUBLIC_ALIASED_MODULES + ): + continue + + member = getattr(np._core, member_name) + + # np.core is a shim and all submodules of np.core are shims + # but we should be able to import everything in those shims + # that are available in the "real" modules in np._core, with + # the exception of the namespace packages (__spec__.origin is None), + # like numpy._core.include, or numpy._core.lib.pkgconfig. + if ( + inspect.ismodule(member) + and member.__spec__ and member.__spec__.origin is not None + ): + submodule = member + submodule_name = member_name + for submodule_member_name in dir(submodule): + # ignore dunder names + if submodule_member_name.startswith("__"): + continue + submodule_member = getattr(submodule, submodule_member_name) + + core_submodule = __import__( + f"numpy.core.{submodule_name}", + fromlist=[submodule_member_name] + ) + + assert submodule_member is getattr( + core_submodule, submodule_member_name + ) + + else: + assert member is getattr(core, member_name) + + +def test_functions_single_location(): + """ + Check that each public function is available from one location only. + + Test performs BFS search traversing NumPy's public API. It flags + any function-like object that is accessible from more that one place. + """ + from collections.abc import Callable + from typing import Any + + from numpy._core._multiarray_umath import ( + _ArrayFunctionDispatcher as dispatched_function, + ) + + visited_modules: set[types.ModuleType] = {np} + visited_functions: set[Callable[..., Any]] = set() + # Functions often have `__name__` overridden, therefore we need + # to keep track of locations where functions have been found. + functions_original_paths: dict[Callable[..., Any], str] = {} + + # Here we aggregate functions with more than one location. + # It must be empty for the test to pass. + duplicated_functions: list[tuple] = [] + + modules_queue = [np] + + while len(modules_queue) > 0: + + module = modules_queue.pop() + + for member_name in dir(module): + member = getattr(module, member_name) + + # first check if we got a module + if ( + inspect.ismodule(member) and # it's a module + "numpy" in member.__name__ and # inside NumPy + not member_name.startswith("_") and # not private + "numpy._core" not in member.__name__ and # outside _core + # not a legacy or testing module + member_name not in ["f2py", "ma", "testing", "tests"] and + member not in visited_modules # not visited yet + ): + modules_queue.append(member) + visited_modules.add(member) + + # else check if we got a function-like object + elif ( + inspect.isfunction(member) or + isinstance(member, (dispatched_function, np.ufunc)) + ): + if member in visited_functions: + + # skip main namespace functions with aliases + if ( + member.__name__ in [ + "absolute", # np.abs + "arccos", # np.acos + "arccosh", # np.acosh + "arcsin", # np.asin + "arcsinh", # np.asinh + "arctan", # np.atan + "arctan2", # np.atan2 + "arctanh", # np.atanh + "left_shift", # np.bitwise_left_shift + "right_shift", # np.bitwise_right_shift + "conjugate", # np.conj + "invert", # np.bitwise_not & np.bitwise_invert + "remainder", # np.mod + "divide", # np.true_divide + "concatenate", # np.concat + "power", # np.pow + "transpose", # np.permute_dims + ] and + module.__name__ == "numpy" + ): + continue + # skip trimcoef from numpy.polynomial as it is + # duplicated by design. + if ( + member.__name__ == "trimcoef" and + module.__name__.startswith("numpy.polynomial") + ): + continue + + # skip ufuncs that are exported in np.strings as well + if member.__name__ in ( + "add", + "equal", + "not_equal", + "greater", + "greater_equal", + "less", + "less_equal", + ) and module.__name__ == "numpy.strings": + continue + + # numpy.char reexports all numpy.strings functions for + # backwards-compatibility + if module.__name__ == "numpy.char": + continue + + # function is present in more than one location! + duplicated_functions.append( + (member.__name__, + module.__name__, + functions_original_paths[member]) + ) + else: + visited_functions.add(member) + functions_original_paths[member] = module.__name__ + + del visited_functions, visited_modules, functions_original_paths + + assert len(duplicated_functions) == 0, duplicated_functions + + +def test___module___attribute(): + modules_queue = [np] + visited_modules = {np} + visited_functions = set() + incorrect_entries = [] + + while len(modules_queue) > 0: + module = modules_queue.pop() + for member_name in dir(module): + member = getattr(module, member_name) + # first check if we got a module + if ( + inspect.ismodule(member) and # it's a module + "numpy" in member.__name__ and # inside NumPy + not member_name.startswith("_") and # not private + "numpy._core" not in member.__name__ and # outside _core + # not in a skip module list + member_name not in [ + "char", "core", "f2py", "ma", "lapack_lite", "mrecords", + "testing", "tests", "polynomial", "typing", "mtrand", + "bit_generator", + ] and + member not in visited_modules # not visited yet + ): + modules_queue.append(member) + visited_modules.add(member) + elif ( + not inspect.ismodule(member) and + hasattr(member, "__name__") and + not member.__name__.startswith("_") and + member.__module__ != module.__name__ and + member not in visited_functions + ): + # skip ufuncs that are exported in np.strings as well + if member.__name__ in ( + "add", "equal", "not_equal", "greater", "greater_equal", + "less", "less_equal", + ) and module.__name__ == "numpy.strings": + continue + + # recarray and record are exported in np and np.rec + if ( + (member.__name__ == "recarray" and module.__name__ == "numpy") or + (member.__name__ == "record" and module.__name__ == "numpy.rec") + ): + continue + + # ctypeslib exports ctypes c_long/c_longlong + if ( + member.__name__ in ("c_long", "c_longlong") and + module.__name__ == "numpy.ctypeslib" + ): + continue + + # skip cdef classes + if member.__name__ in ( + "BitGenerator", "Generator", "MT19937", "PCG64", "PCG64DXSM", + "Philox", "RandomState", "SFC64", "SeedSequence", + ): + continue + + incorrect_entries.append( + { + "Func": member.__name__, + "actual": member.__module__, + "expected": module.__name__, + } + ) + visited_functions.add(member) + + if incorrect_entries: + assert len(incorrect_entries) == 0, incorrect_entries + + +def _check_correct_qualname_and_module(obj) -> bool: + qualname = obj.__qualname__ + name = obj.__name__ + module_name = obj.__module__ + assert name == qualname.split(".")[-1] + + module = sys.modules[module_name] + actual_obj = functools.reduce(getattr, qualname.split("."), module) + return ( + actual_obj is obj or + # `obj` may be a bound method/property of `actual_obj`: + ( + hasattr(actual_obj, "__get__") and hasattr(obj, "__self__") and + actual_obj.__module__ == obj.__module__ and + actual_obj.__qualname__ == qualname + ) + ) + + +def test___qualname___and___module___attribute(): + # NumPy messes with module and name/qualname attributes, but any object + # should be discoverable based on its module and qualname, so test that. + # We do this for anything with a name (ensuring qualname is also set). + modules_queue = [np] + visited_modules = {np} + visited_functions = set() + incorrect_entries = [] + + while len(modules_queue) > 0: + module = modules_queue.pop() + for member_name in dir(module): + member = getattr(module, member_name) + # first check if we got a module + if ( + inspect.ismodule(member) and # it's a module + "numpy" in member.__name__ and # inside NumPy + not member_name.startswith("_") and # not private + member_name not in {"tests", "typing"} and # 2024-12: type names don't match + "numpy._core" not in member.__name__ and # outside _core + member not in visited_modules # not visited yet + ): + modules_queue.append(member) + visited_modules.add(member) + elif ( + not inspect.ismodule(member) and + hasattr(member, "__name__") and + not member.__name__.startswith("_") and + not member_name.startswith("_") and + not _check_correct_qualname_and_module(member) and + member not in visited_functions + ): + incorrect_entries.append( + { + "found_at": f"{module.__name__}:{member_name}", + "advertises": f"{member.__module__}:{member.__qualname__}", + } + ) + visited_functions.add(member) + + if incorrect_entries: + assert len(incorrect_entries) == 0, incorrect_entries diff --git a/.venv/lib/python3.12/site-packages/numpy/tests/test_reloading.py b/.venv/lib/python3.12/site-packages/numpy/tests/test_reloading.py new file mode 100644 index 0000000..c21dc00 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/tests/test_reloading.py @@ -0,0 +1,74 @@ +import pickle +import subprocess +import sys +import textwrap +from importlib import reload + +import pytest + +import numpy.exceptions as ex +from numpy.testing import ( + IS_WASM, + assert_, + assert_equal, + assert_raises, + assert_warns, +) + + +def test_numpy_reloading(): + # gh-7844. Also check that relevant globals retain their identity. + import numpy as np + import numpy._globals + + _NoValue = np._NoValue + VisibleDeprecationWarning = ex.VisibleDeprecationWarning + ModuleDeprecationWarning = ex.ModuleDeprecationWarning + + with assert_warns(UserWarning): + reload(np) + assert_(_NoValue is np._NoValue) + assert_(ModuleDeprecationWarning is ex.ModuleDeprecationWarning) + assert_(VisibleDeprecationWarning is ex.VisibleDeprecationWarning) + + assert_raises(RuntimeError, reload, numpy._globals) + with assert_warns(UserWarning): + reload(np) + assert_(_NoValue is np._NoValue) + assert_(ModuleDeprecationWarning is ex.ModuleDeprecationWarning) + assert_(VisibleDeprecationWarning is ex.VisibleDeprecationWarning) + +def test_novalue(): + import numpy as np + for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): + assert_equal(repr(np._NoValue), '') + assert_(pickle.loads(pickle.dumps(np._NoValue, + protocol=proto)) is np._NoValue) + + +@pytest.mark.skipif(IS_WASM, reason="can't start subprocess") +def test_full_reimport(): + """At the time of writing this, it is *not* truly supported, but + apparently enough users rely on it, for it to be an annoying change + when it started failing previously. + """ + # Test within a new process, to ensure that we do not mess with the + # global state during the test run (could lead to cryptic test failures). + # This is generally unsafe, especially, since we also reload the C-modules. + code = textwrap.dedent(r""" + import sys + from pytest import warns + import numpy as np + + for k in list(sys.modules.keys()): + if "numpy" in k: + del sys.modules[k] + + with warns(UserWarning): + import numpy as np + """) + p = subprocess.run([sys.executable, '-c', code], capture_output=True) + if p.returncode: + raise AssertionError( + f"Non-zero return code: {p.returncode!r}\n\n{p.stderr.decode()}" + ) diff --git a/.venv/lib/python3.12/site-packages/numpy/tests/test_scripts.py b/.venv/lib/python3.12/site-packages/numpy/tests/test_scripts.py new file mode 100644 index 0000000..d8ce958 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/tests/test_scripts.py @@ -0,0 +1,49 @@ +""" Test scripts + +Test that we can run executable scripts that have been installed with numpy. +""" +import os +import subprocess +import sys +from os.path import dirname, isfile +from os.path import join as pathjoin + +import pytest + +import numpy as np +from numpy.testing import IS_WASM, assert_equal + +is_inplace = isfile(pathjoin(dirname(np.__file__), '..', 'setup.py')) + + +def find_f2py_commands(): + if sys.platform == 'win32': + exe_dir = dirname(sys.executable) + if exe_dir.endswith('Scripts'): # virtualenv + return [os.path.join(exe_dir, 'f2py')] + else: + return [os.path.join(exe_dir, "Scripts", 'f2py')] + else: + # Three scripts are installed in Unix-like systems: + # 'f2py', 'f2py{major}', and 'f2py{major.minor}'. For example, + # if installed with python3.9 the scripts would be named + # 'f2py', 'f2py3', and 'f2py3.9'. + version = sys.version_info + major = str(version.major) + minor = str(version.minor) + return ['f2py', 'f2py' + major, 'f2py' + major + '.' + minor] + + +@pytest.mark.skipif(is_inplace, reason="Cannot test f2py command inplace") +@pytest.mark.xfail(reason="Test is unreliable") +@pytest.mark.parametrize('f2py_cmd', find_f2py_commands()) +def test_f2py(f2py_cmd): + # test that we can run f2py script + stdout = subprocess.check_output([f2py_cmd, '-v']) + assert_equal(stdout.strip(), np.__version__.encode('ascii')) + + +@pytest.mark.skipif(IS_WASM, reason="Cannot start subprocess") +def test_pep338(): + stdout = subprocess.check_output([sys.executable, '-mnumpy.f2py', '-v']) + assert_equal(stdout.strip(), np.__version__.encode('ascii')) diff --git a/.venv/lib/python3.12/site-packages/numpy/tests/test_warnings.py b/.venv/lib/python3.12/site-packages/numpy/tests/test_warnings.py new file mode 100644 index 0000000..560ee61 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/tests/test_warnings.py @@ -0,0 +1,78 @@ +""" +Tests which scan for certain occurrences in the code, they may not find +all of these occurrences but should catch almost all. +""" +import ast +import tokenize +from pathlib import Path + +import pytest + +import numpy + + +class ParseCall(ast.NodeVisitor): + def __init__(self): + self.ls = [] + + def visit_Attribute(self, node): + ast.NodeVisitor.generic_visit(self, node) + self.ls.append(node.attr) + + def visit_Name(self, node): + self.ls.append(node.id) + + +class FindFuncs(ast.NodeVisitor): + def __init__(self, filename): + super().__init__() + self.__filename = filename + + def visit_Call(self, node): + p = ParseCall() + p.visit(node.func) + ast.NodeVisitor.generic_visit(self, node) + + if p.ls[-1] == 'simplefilter' or p.ls[-1] == 'filterwarnings': + if node.args[0].value == "ignore": + raise AssertionError( + "warnings should have an appropriate stacklevel; " + f"found in {self.__filename} on line {node.lineno}") + + if p.ls[-1] == 'warn' and ( + len(p.ls) == 1 or p.ls[-2] == 'warnings'): + + if "testing/tests/test_warnings.py" == self.__filename: + # This file + return + + # See if stacklevel exists: + if len(node.args) == 3: + return + args = {kw.arg for kw in node.keywords} + if "stacklevel" in args: + return + raise AssertionError( + "warnings should have an appropriate stacklevel; " + f"found in {self.__filename} on line {node.lineno}") + + +@pytest.mark.slow +def test_warning_calls(): + # combined "ignore" and stacklevel error + base = Path(numpy.__file__).parent + + for path in base.rglob("*.py"): + if base / "testing" in path.parents: + continue + if path == base / "__init__.py": + continue + if path == base / "random" / "__init__.py": + continue + if path == base / "conftest.py": + continue + # use tokenize to auto-detect encoding on systems where no + # default encoding is defined (e.g. LANG='C') + with tokenize.open(str(path)) as file: + tree = ast.parse(file.read()) + FindFuncs(path).visit(tree) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/__init__.py b/.venv/lib/python3.12/site-packages/numpy/typing/__init__.py new file mode 100644 index 0000000..173c094 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/__init__.py @@ -0,0 +1,201 @@ +""" +============================ +Typing (:mod:`numpy.typing`) +============================ + +.. versionadded:: 1.20 + +Large parts of the NumPy API have :pep:`484`-style type annotations. In +addition a number of type aliases are available to users, most prominently +the two below: + +- `ArrayLike`: objects that can be converted to arrays +- `DTypeLike`: objects that can be converted to dtypes + +.. _typing-extensions: https://pypi.org/project/typing-extensions/ + +Mypy plugin +----------- + +.. versionadded:: 1.21 + +.. automodule:: numpy.typing.mypy_plugin + +.. currentmodule:: numpy.typing + +Differences from the runtime NumPy API +-------------------------------------- + +NumPy is very flexible. Trying to describe the full range of +possibilities statically would result in types that are not very +helpful. For that reason, the typed NumPy API is often stricter than +the runtime NumPy API. This section describes some notable +differences. + +ArrayLike +~~~~~~~~~ + +The `ArrayLike` type tries to avoid creating object arrays. For +example, + +.. code-block:: python + + >>> np.array(x**2 for x in range(10)) + array( at ...>, dtype=object) + +is valid NumPy code which will create a 0-dimensional object +array. Type checkers will complain about the above example when using +the NumPy types however. If you really intended to do the above, then +you can either use a ``# type: ignore`` comment: + +.. code-block:: python + + >>> np.array(x**2 for x in range(10)) # type: ignore + +or explicitly type the array like object as `~typing.Any`: + +.. code-block:: python + + >>> from typing import Any + >>> array_like: Any = (x**2 for x in range(10)) + >>> np.array(array_like) + array( at ...>, dtype=object) + +ndarray +~~~~~~~ + +It's possible to mutate the dtype of an array at runtime. For example, +the following code is valid: + +.. code-block:: python + + >>> x = np.array([1, 2]) + >>> x.dtype = np.bool + +This sort of mutation is not allowed by the types. Users who want to +write statically typed code should instead use the `numpy.ndarray.view` +method to create a view of the array with a different dtype. + +DTypeLike +~~~~~~~~~ + +The `DTypeLike` type tries to avoid creation of dtype objects using +dictionary of fields like below: + +.. code-block:: python + + >>> x = np.dtype({"field1": (float, 1), "field2": (int, 3)}) + +Although this is valid NumPy code, the type checker will complain about it, +since its usage is discouraged. +Please see : :ref:`Data type objects ` + +Number precision +~~~~~~~~~~~~~~~~ + +The precision of `numpy.number` subclasses is treated as a invariant generic +parameter (see :class:`~NBitBase`), simplifying the annotating of processes +involving precision-based casting. + +.. code-block:: python + + >>> from typing import TypeVar + >>> import numpy as np + >>> import numpy.typing as npt + + >>> T = TypeVar("T", bound=npt.NBitBase) + >>> def func(a: "np.floating[T]", b: "np.floating[T]") -> "np.floating[T]": + ... ... + +Consequently, the likes of `~numpy.float16`, `~numpy.float32` and +`~numpy.float64` are still sub-types of `~numpy.floating`, but, contrary to +runtime, they're not necessarily considered as sub-classes. + +Timedelta64 +~~~~~~~~~~~ + +The `~numpy.timedelta64` class is not considered a subclass of +`~numpy.signedinteger`, the former only inheriting from `~numpy.generic` +while static type checking. + +0D arrays +~~~~~~~~~ + +During runtime numpy aggressively casts any passed 0D arrays into their +corresponding `~numpy.generic` instance. Until the introduction of shape +typing (see :pep:`646`) it is unfortunately not possible to make the +necessary distinction between 0D and >0D arrays. While thus not strictly +correct, all operations that can potentially perform a 0D-array -> scalar +cast are currently annotated as exclusively returning an `~numpy.ndarray`. + +If it is known in advance that an operation *will* perform a +0D-array -> scalar cast, then one can consider manually remedying the +situation with either `typing.cast` or a ``# type: ignore`` comment. + +Record array dtypes +~~~~~~~~~~~~~~~~~~~ + +The dtype of `numpy.recarray`, and the :ref:`routines.array-creation.rec` +functions in general, can be specified in one of two ways: + +* Directly via the ``dtype`` argument. +* With up to five helper arguments that operate via `numpy.rec.format_parser`: + ``formats``, ``names``, ``titles``, ``aligned`` and ``byteorder``. + +These two approaches are currently typed as being mutually exclusive, +*i.e.* if ``dtype`` is specified than one may not specify ``formats``. +While this mutual exclusivity is not (strictly) enforced during runtime, +combining both dtype specifiers can lead to unexpected or even downright +buggy behavior. + +API +--- + +""" +# NOTE: The API section will be appended with additional entries +# further down in this file + +# pyright: reportDeprecated=false + +from numpy._typing import ArrayLike, DTypeLike, NBitBase, NDArray + +__all__ = ["ArrayLike", "DTypeLike", "NBitBase", "NDArray"] + + +__DIR = __all__ + [k for k in globals() if k.startswith("__") and k.endswith("__")] +__DIR_SET = frozenset(__DIR) + + +def __dir__() -> list[str]: + return __DIR + +def __getattr__(name: str): + if name == "NBitBase": + import warnings + + # Deprecated in NumPy 2.3, 2025-05-01 + warnings.warn( + "`NBitBase` is deprecated and will be removed from numpy.typing in the " + "future. Use `@typing.overload` or a `TypeVar` with a scalar-type as upper " + "bound, instead. (deprecated in NumPy 2.3)", + DeprecationWarning, + stacklevel=2, + ) + return NBitBase + + if name in __DIR_SET: + return globals()[name] + + raise AttributeError(f"module {__name__!r} has no attribute {name!r}") + + +if __doc__ is not None: + from numpy._typing._add_docstring import _docstrings + __doc__ += _docstrings + __doc__ += '\n.. autoclass:: numpy.typing.NBitBase\n' + del _docstrings + +from numpy._pytesttester import PytestTester + +test = PytestTester(__name__) +del PytestTester diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..b646085 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/__pycache__/mypy_plugin.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/__pycache__/mypy_plugin.cpython-312.pyc new file mode 100644 index 0000000..6fc5417 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/__pycache__/mypy_plugin.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/mypy_plugin.py b/.venv/lib/python3.12/site-packages/numpy/typing/mypy_plugin.py new file mode 100644 index 0000000..dc1e256 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/mypy_plugin.py @@ -0,0 +1,195 @@ +"""A mypy_ plugin for managing a number of platform-specific annotations. +Its functionality can be split into three distinct parts: + +* Assigning the (platform-dependent) precisions of certain `~numpy.number` + subclasses, including the likes of `~numpy.int_`, `~numpy.intp` and + `~numpy.longlong`. See the documentation on + :ref:`scalar types ` for a comprehensive overview + of the affected classes. Without the plugin the precision of all relevant + classes will be inferred as `~typing.Any`. +* Removing all extended-precision `~numpy.number` subclasses that are + unavailable for the platform in question. Most notably this includes the + likes of `~numpy.float128` and `~numpy.complex256`. Without the plugin *all* + extended-precision types will, as far as mypy is concerned, be available + to all platforms. +* Assigning the (platform-dependent) precision of `~numpy.ctypeslib.c_intp`. + Without the plugin the type will default to `ctypes.c_int64`. + + .. versionadded:: 1.22 + +.. deprecated:: 2.3 + +Examples +-------- +To enable the plugin, one must add it to their mypy `configuration file`_: + +.. code-block:: ini + + [mypy] + plugins = numpy.typing.mypy_plugin + +.. _mypy: https://mypy-lang.org/ +.. _configuration file: https://mypy.readthedocs.io/en/stable/config_file.html + +""" + +from collections.abc import Callable, Iterable +from typing import TYPE_CHECKING, Final, TypeAlias, cast + +import numpy as np + +__all__: list[str] = [] + + +def _get_precision_dict() -> dict[str, str]: + names = [ + ("_NBitByte", np.byte), + ("_NBitShort", np.short), + ("_NBitIntC", np.intc), + ("_NBitIntP", np.intp), + ("_NBitInt", np.int_), + ("_NBitLong", np.long), + ("_NBitLongLong", np.longlong), + + ("_NBitHalf", np.half), + ("_NBitSingle", np.single), + ("_NBitDouble", np.double), + ("_NBitLongDouble", np.longdouble), + ] + ret: dict[str, str] = {} + for name, typ in names: + n = 8 * np.dtype(typ).itemsize + ret[f"{_MODULE}._nbit.{name}"] = f"{_MODULE}._nbit_base._{n}Bit" + return ret + + +def _get_extended_precision_list() -> list[str]: + extended_names = [ + "float96", + "float128", + "complex192", + "complex256", + ] + return [i for i in extended_names if hasattr(np, i)] + +def _get_c_intp_name() -> str: + # Adapted from `np.core._internal._getintp_ctype` + return { + "i": "c_int", + "l": "c_long", + "q": "c_longlong", + }.get(np.dtype("n").char, "c_long") + + +_MODULE: Final = "numpy._typing" + +#: A dictionary mapping type-aliases in `numpy._typing._nbit` to +#: concrete `numpy.typing.NBitBase` subclasses. +_PRECISION_DICT: Final = _get_precision_dict() + +#: A list with the names of all extended precision `np.number` subclasses. +_EXTENDED_PRECISION_LIST: Final = _get_extended_precision_list() + +#: The name of the ctypes equivalent of `np.intp` +_C_INTP: Final = _get_c_intp_name() + + +try: + if TYPE_CHECKING: + from mypy.typeanal import TypeAnalyser + + import mypy.types + from mypy.build import PRI_MED + from mypy.nodes import ImportFrom, MypyFile, Statement + from mypy.plugin import AnalyzeTypeContext, Plugin + +except ModuleNotFoundError as e: + + def plugin(version: str) -> type: + raise e + +else: + + _HookFunc: TypeAlias = Callable[[AnalyzeTypeContext], mypy.types.Type] + + def _hook(ctx: AnalyzeTypeContext) -> mypy.types.Type: + """Replace a type-alias with a concrete ``NBitBase`` subclass.""" + typ, _, api = ctx + name = typ.name.split(".")[-1] + name_new = _PRECISION_DICT[f"{_MODULE}._nbit.{name}"] + return cast("TypeAnalyser", api).named_type(name_new) + + def _index(iterable: Iterable[Statement], id: str) -> int: + """Identify the first ``ImportFrom`` instance the specified `id`.""" + for i, value in enumerate(iterable): + if getattr(value, "id", None) == id: + return i + raise ValueError("Failed to identify a `ImportFrom` instance " + f"with the following id: {id!r}") + + def _override_imports( + file: MypyFile, + module: str, + imports: list[tuple[str, str | None]], + ) -> None: + """Override the first `module`-based import with new `imports`.""" + # Construct a new `from module import y` statement + import_obj = ImportFrom(module, 0, names=imports) + import_obj.is_top_level = True + + # Replace the first `module`-based import statement with `import_obj` + for lst in [file.defs, cast("list[Statement]", file.imports)]: + i = _index(lst, module) + lst[i] = import_obj + + class _NumpyPlugin(Plugin): + """A mypy plugin for handling versus numpy-specific typing tasks.""" + + def get_type_analyze_hook(self, fullname: str) -> _HookFunc | None: + """Set the precision of platform-specific `numpy.number` + subclasses. + + For example: `numpy.int_`, `numpy.longlong` and `numpy.longdouble`. + """ + if fullname in _PRECISION_DICT: + return _hook + return None + + def get_additional_deps( + self, file: MypyFile + ) -> list[tuple[int, str, int]]: + """Handle all import-based overrides. + + * Import platform-specific extended-precision `numpy.number` + subclasses (*e.g.* `numpy.float96` and `numpy.float128`). + * Import the appropriate `ctypes` equivalent to `numpy.intp`. + + """ + fullname = file.fullname + if fullname == "numpy": + _override_imports( + file, + f"{_MODULE}._extended_precision", + imports=[(v, v) for v in _EXTENDED_PRECISION_LIST], + ) + elif fullname == "numpy.ctypeslib": + _override_imports( + file, + "ctypes", + imports=[(_C_INTP, "_c_intp")], + ) + return [(PRI_MED, fullname, -1)] + + def plugin(version: str) -> type: + import warnings + + plugin = "numpy.typing.mypy_plugin" + # Deprecated 2025-01-10, NumPy 2.3 + warn_msg = ( + f"`{plugin}` is deprecated, and will be removed in a future " + f"release. Please remove `plugins = {plugin}` in your mypy config." + f"(deprecated in NumPy 2.3)" + ) + warnings.warn(warn_msg, DeprecationWarning, stacklevel=3) + + return _NumpyPlugin diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/__init__.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/__pycache__/__init__.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/__pycache__/__init__.cpython-312.pyc new file mode 100644 index 0000000..1ccfe4c Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/__pycache__/__init__.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/__pycache__/test_isfile.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/__pycache__/test_isfile.cpython-312.pyc new file mode 100644 index 0000000..d0fe78e Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/__pycache__/test_isfile.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/__pycache__/test_runtime.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/__pycache__/test_runtime.cpython-312.pyc new file mode 100644 index 0000000..b25ee90 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/__pycache__/test_runtime.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/__pycache__/test_typing.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/__pycache__/test_typing.cpython-312.pyc new file mode 100644 index 0000000..2e87de8 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/__pycache__/test_typing.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/arithmetic.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/arithmetic.pyi new file mode 100644 index 0000000..e696083 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/arithmetic.pyi @@ -0,0 +1,126 @@ +from typing import Any + +import numpy as np +import numpy.typing as npt + +b_ = np.bool() +dt = np.datetime64(0, "D") +td = np.timedelta64(0, "D") + +AR_b: npt.NDArray[np.bool] +AR_u: npt.NDArray[np.uint32] +AR_i: npt.NDArray[np.int64] +AR_f: npt.NDArray[np.longdouble] +AR_c: npt.NDArray[np.complex128] +AR_m: npt.NDArray[np.timedelta64] +AR_M: npt.NDArray[np.datetime64] + +ANY: Any + +AR_LIKE_b: list[bool] +AR_LIKE_u: list[np.uint32] +AR_LIKE_i: list[int] +AR_LIKE_f: list[float] +AR_LIKE_c: list[complex] +AR_LIKE_m: list[np.timedelta64] +AR_LIKE_M: list[np.datetime64] + +# Array subtraction + +# NOTE: mypys `NoReturn` errors are, unfortunately, not that great +_1 = AR_b - AR_LIKE_b # type: ignore[var-annotated] +_2 = AR_LIKE_b - AR_b # type: ignore[var-annotated] +AR_i - bytes() # type: ignore[operator] + +AR_f - AR_LIKE_m # type: ignore[operator] +AR_f - AR_LIKE_M # type: ignore[operator] +AR_c - AR_LIKE_m # type: ignore[operator] +AR_c - AR_LIKE_M # type: ignore[operator] + +AR_m - AR_LIKE_f # type: ignore[operator] +AR_M - AR_LIKE_f # type: ignore[operator] +AR_m - AR_LIKE_c # type: ignore[operator] +AR_M - AR_LIKE_c # type: ignore[operator] + +AR_m - AR_LIKE_M # type: ignore[operator] +AR_LIKE_m - AR_M # type: ignore[operator] + +# array floor division + +AR_M // AR_LIKE_b # type: ignore[operator] +AR_M // AR_LIKE_u # type: ignore[operator] +AR_M // AR_LIKE_i # type: ignore[operator] +AR_M // AR_LIKE_f # type: ignore[operator] +AR_M // AR_LIKE_c # type: ignore[operator] +AR_M // AR_LIKE_m # type: ignore[operator] +AR_M // AR_LIKE_M # type: ignore[operator] + +AR_b // AR_LIKE_M # type: ignore[operator] +AR_u // AR_LIKE_M # type: ignore[operator] +AR_i // AR_LIKE_M # type: ignore[operator] +AR_f // AR_LIKE_M # type: ignore[operator] +AR_c // AR_LIKE_M # type: ignore[operator] +AR_m // AR_LIKE_M # type: ignore[operator] +AR_M // AR_LIKE_M # type: ignore[operator] + +_3 = AR_m // AR_LIKE_b # type: ignore[var-annotated] +AR_m // AR_LIKE_c # type: ignore[operator] + +AR_b // AR_LIKE_m # type: ignore[operator] +AR_u // AR_LIKE_m # type: ignore[operator] +AR_i // AR_LIKE_m # type: ignore[operator] +AR_f // AR_LIKE_m # type: ignore[operator] +AR_c // AR_LIKE_m # type: ignore[operator] + +# regression tests for https://github.com/numpy/numpy/issues/28957 +AR_c // 2 # type: ignore[operator] +AR_c // AR_i # type: ignore[operator] +AR_c // AR_c # type: ignore[operator] + +# Array multiplication + +AR_b *= AR_LIKE_u # type: ignore[arg-type] +AR_b *= AR_LIKE_i # type: ignore[arg-type] +AR_b *= AR_LIKE_f # type: ignore[arg-type] +AR_b *= AR_LIKE_c # type: ignore[arg-type] +AR_b *= AR_LIKE_m # type: ignore[arg-type] + +AR_u *= AR_LIKE_f # type: ignore[arg-type] +AR_u *= AR_LIKE_c # type: ignore[arg-type] +AR_u *= AR_LIKE_m # type: ignore[arg-type] + +AR_i *= AR_LIKE_f # type: ignore[arg-type] +AR_i *= AR_LIKE_c # type: ignore[arg-type] +AR_i *= AR_LIKE_m # type: ignore[arg-type] + +AR_f *= AR_LIKE_c # type: ignore[arg-type] +AR_f *= AR_LIKE_m # type: ignore[arg-type] + +# Array power + +AR_b **= AR_LIKE_b # type: ignore[misc] +AR_b **= AR_LIKE_u # type: ignore[misc] +AR_b **= AR_LIKE_i # type: ignore[misc] +AR_b **= AR_LIKE_f # type: ignore[misc] +AR_b **= AR_LIKE_c # type: ignore[misc] + +AR_u **= AR_LIKE_f # type: ignore[arg-type] +AR_u **= AR_LIKE_c # type: ignore[arg-type] + +AR_i **= AR_LIKE_f # type: ignore[arg-type] +AR_i **= AR_LIKE_c # type: ignore[arg-type] + +AR_f **= AR_LIKE_c # type: ignore[arg-type] + +# Scalars + +b_ - b_ # type: ignore[call-overload] + +dt + dt # type: ignore[operator] +td - dt # type: ignore[operator] +td % 1 # type: ignore[operator] +td / dt # type: ignore[operator] +td % dt # type: ignore[operator] + +-b_ # type: ignore[operator] ++b_ # type: ignore[operator] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/array_constructors.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/array_constructors.pyi new file mode 100644 index 0000000..cadc2ae --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/array_constructors.pyi @@ -0,0 +1,34 @@ +import numpy as np +import numpy.typing as npt + +a: npt.NDArray[np.float64] +generator = (i for i in range(10)) + +np.require(a, requirements=1) # type: ignore[call-overload] +np.require(a, requirements="TEST") # type: ignore[arg-type] + +np.zeros("test") # type: ignore[arg-type] +np.zeros() # type: ignore[call-overload] + +np.ones("test") # type: ignore[arg-type] +np.ones() # type: ignore[call-overload] + +np.array(0, float, True) # type: ignore[call-overload] + +np.linspace(None, 'bob') # type: ignore[call-overload] +np.linspace(0, 2, num=10.0) # type: ignore[call-overload] +np.linspace(0, 2, endpoint='True') # type: ignore[call-overload] +np.linspace(0, 2, retstep=b'False') # type: ignore[call-overload] +np.linspace(0, 2, dtype=0) # type: ignore[call-overload] +np.linspace(0, 2, axis=None) # type: ignore[call-overload] + +np.logspace(None, 'bob') # type: ignore[call-overload] +np.logspace(0, 2, base=None) # type: ignore[call-overload] + +np.geomspace(None, 'bob') # type: ignore[call-overload] + +np.stack(generator) # type: ignore[call-overload] +np.hstack({1, 2}) # type: ignore[call-overload] +np.vstack(1) # type: ignore[call-overload] + +np.array([1], like=1) # type: ignore[call-overload] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/array_like.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/array_like.pyi new file mode 100644 index 0000000..4e37354 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/array_like.pyi @@ -0,0 +1,15 @@ +import numpy as np +from numpy._typing import ArrayLike + +class A: ... + +x1: ArrayLike = (i for i in range(10)) # type: ignore[assignment] +x2: ArrayLike = A() # type: ignore[assignment] +x3: ArrayLike = {1: "foo", 2: "bar"} # type: ignore[assignment] + +scalar = np.int64(1) +scalar.__array__(dtype=np.float64) # type: ignore[call-overload] +array = np.array([1]) +array.__array__(dtype=np.float64) # type: ignore[call-overload] + +array.setfield(np.eye(1), np.int32, (0, 1)) # type: ignore[arg-type] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/array_pad.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/array_pad.pyi new file mode 100644 index 0000000..42e61c8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/array_pad.pyi @@ -0,0 +1,6 @@ +import numpy as np +import numpy.typing as npt + +AR_i8: npt.NDArray[np.int64] + +np.pad(AR_i8, 2, mode="bob") # type: ignore[call-overload] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/arrayprint.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/arrayprint.pyi new file mode 100644 index 0000000..224a410 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/arrayprint.pyi @@ -0,0 +1,16 @@ +from collections.abc import Callable +from typing import Any + +import numpy as np +import numpy.typing as npt + +AR: npt.NDArray[np.float64] +func1: Callable[[Any], str] +func2: Callable[[np.integer], str] + +np.array2string(AR, style=None) # type: ignore[call-overload] +np.array2string(AR, legacy="1.14") # type: ignore[call-overload] +np.array2string(AR, sign="*") # type: ignore[call-overload] +np.array2string(AR, floatmode="default") # type: ignore[call-overload] +np.array2string(AR, formatter={"A": func1}) # type: ignore[call-overload] +np.array2string(AR, formatter={"float": func2}) # type: ignore[call-overload] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/arrayterator.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/arrayterator.pyi new file mode 100644 index 0000000..8d2295a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/arrayterator.pyi @@ -0,0 +1,14 @@ +import numpy as np +import numpy.typing as npt + +AR_i8: npt.NDArray[np.int64] +ar_iter = np.lib.Arrayterator(AR_i8) + +np.lib.Arrayterator(np.int64()) # type: ignore[arg-type] +ar_iter.shape = (10, 5) # type: ignore[misc] +ar_iter[None] # type: ignore[index] +ar_iter[None, 1] # type: ignore[index] +ar_iter[np.intp()] # type: ignore[index] +ar_iter[np.intp(), ...] # type: ignore[index] +ar_iter[AR_i8] # type: ignore[index] +ar_iter[AR_i8, :] # type: ignore[index] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/bitwise_ops.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/bitwise_ops.pyi new file mode 100644 index 0000000..3538ec7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/bitwise_ops.pyi @@ -0,0 +1,17 @@ +import numpy as np + +i8 = np.int64() +i4 = np.int32() +u8 = np.uint64() +b_ = np.bool() +i = int() + +f8 = np.float64() + +b_ >> f8 # type: ignore[call-overload] +i8 << f8 # type: ignore[call-overload] +i | f8 # type: ignore[operator] +i8 ^ f8 # type: ignore[call-overload] +u8 & f8 # type: ignore[call-overload] +~f8 # type: ignore[operator] +# TODO: Certain mixes like i4 << u8 go to float and thus should fail diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/char.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/char.pyi new file mode 100644 index 0000000..62c4475 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/char.pyi @@ -0,0 +1,65 @@ +import numpy as np +import numpy.typing as npt + +AR_U: npt.NDArray[np.str_] +AR_S: npt.NDArray[np.bytes_] + +np.char.equal(AR_U, AR_S) # type: ignore[arg-type] +np.char.not_equal(AR_U, AR_S) # type: ignore[arg-type] + +np.char.greater_equal(AR_U, AR_S) # type: ignore[arg-type] +np.char.less_equal(AR_U, AR_S) # type: ignore[arg-type] +np.char.greater(AR_U, AR_S) # type: ignore[arg-type] +np.char.less(AR_U, AR_S) # type: ignore[arg-type] + +np.char.encode(AR_S) # type: ignore[arg-type] +np.char.decode(AR_U) # type: ignore[arg-type] + +np.char.join(AR_U, b"_") # type: ignore[arg-type] +np.char.join(AR_S, "_") # type: ignore[arg-type] + +np.char.ljust(AR_U, 5, fillchar=b"a") # type: ignore[arg-type] +np.char.ljust(AR_S, 5, fillchar="a") # type: ignore[arg-type] +np.char.rjust(AR_U, 5, fillchar=b"a") # type: ignore[arg-type] +np.char.rjust(AR_S, 5, fillchar="a") # type: ignore[arg-type] + +np.char.lstrip(AR_U, chars=b"a") # type: ignore[arg-type] +np.char.lstrip(AR_S, chars="a") # type: ignore[arg-type] +np.char.strip(AR_U, chars=b"a") # type: ignore[arg-type] +np.char.strip(AR_S, chars="a") # type: ignore[arg-type] +np.char.rstrip(AR_U, chars=b"a") # type: ignore[arg-type] +np.char.rstrip(AR_S, chars="a") # type: ignore[arg-type] + +np.char.partition(AR_U, b"a") # type: ignore[arg-type] +np.char.partition(AR_S, "a") # type: ignore[arg-type] +np.char.rpartition(AR_U, b"a") # type: ignore[arg-type] +np.char.rpartition(AR_S, "a") # type: ignore[arg-type] + +np.char.replace(AR_U, b"_", b"-") # type: ignore[arg-type] +np.char.replace(AR_S, "_", "-") # type: ignore[arg-type] + +np.char.split(AR_U, b"_") # type: ignore[arg-type] +np.char.split(AR_S, "_") # type: ignore[arg-type] +np.char.rsplit(AR_U, b"_") # type: ignore[arg-type] +np.char.rsplit(AR_S, "_") # type: ignore[arg-type] + +np.char.count(AR_U, b"a", start=[1, 2, 3]) # type: ignore[arg-type] +np.char.count(AR_S, "a", end=9) # type: ignore[arg-type] + +np.char.endswith(AR_U, b"a", start=[1, 2, 3]) # type: ignore[arg-type] +np.char.endswith(AR_S, "a", end=9) # type: ignore[arg-type] +np.char.startswith(AR_U, b"a", start=[1, 2, 3]) # type: ignore[arg-type] +np.char.startswith(AR_S, "a", end=9) # type: ignore[arg-type] + +np.char.find(AR_U, b"a", start=[1, 2, 3]) # type: ignore[arg-type] +np.char.find(AR_S, "a", end=9) # type: ignore[arg-type] +np.char.rfind(AR_U, b"a", start=[1, 2, 3]) # type: ignore[arg-type] +np.char.rfind(AR_S, "a", end=9) # type: ignore[arg-type] + +np.char.index(AR_U, b"a", start=[1, 2, 3]) # type: ignore[arg-type] +np.char.index(AR_S, "a", end=9) # type: ignore[arg-type] +np.char.rindex(AR_U, b"a", start=[1, 2, 3]) # type: ignore[arg-type] +np.char.rindex(AR_S, "a", end=9) # type: ignore[arg-type] + +np.char.isdecimal(AR_S) # type: ignore[arg-type] +np.char.isnumeric(AR_S) # type: ignore[arg-type] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/chararray.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/chararray.pyi new file mode 100644 index 0000000..fb52f73 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/chararray.pyi @@ -0,0 +1,62 @@ +from typing import Any +import numpy as np + +AR_U: np.char.chararray[tuple[Any, ...], np.dtype[np.str_]] +AR_S: np.char.chararray[tuple[Any, ...], np.dtype[np.bytes_]] + +AR_S.encode() # type: ignore[misc] +AR_U.decode() # type: ignore[misc] + +AR_U.join(b"_") # type: ignore[arg-type] +AR_S.join("_") # type: ignore[arg-type] + +AR_U.ljust(5, fillchar=b"a") # type: ignore[arg-type] +AR_S.ljust(5, fillchar="a") # type: ignore[arg-type] +AR_U.rjust(5, fillchar=b"a") # type: ignore[arg-type] +AR_S.rjust(5, fillchar="a") # type: ignore[arg-type] + +AR_U.lstrip(chars=b"a") # type: ignore[arg-type] +AR_S.lstrip(chars="a") # type: ignore[arg-type] +AR_U.strip(chars=b"a") # type: ignore[arg-type] +AR_S.strip(chars="a") # type: ignore[arg-type] +AR_U.rstrip(chars=b"a") # type: ignore[arg-type] +AR_S.rstrip(chars="a") # type: ignore[arg-type] + +AR_U.partition(b"a") # type: ignore[arg-type] +AR_S.partition("a") # type: ignore[arg-type] +AR_U.rpartition(b"a") # type: ignore[arg-type] +AR_S.rpartition("a") # type: ignore[arg-type] + +AR_U.replace(b"_", b"-") # type: ignore[arg-type] +AR_S.replace("_", "-") # type: ignore[arg-type] + +AR_U.split(b"_") # type: ignore[arg-type] +AR_S.split("_") # type: ignore[arg-type] +AR_S.split(1) # type: ignore[arg-type] +AR_U.rsplit(b"_") # type: ignore[arg-type] +AR_S.rsplit("_") # type: ignore[arg-type] + +AR_U.count(b"a", start=[1, 2, 3]) # type: ignore[arg-type] +AR_S.count("a", end=9) # type: ignore[arg-type] + +AR_U.endswith(b"a", start=[1, 2, 3]) # type: ignore[arg-type] +AR_S.endswith("a", end=9) # type: ignore[arg-type] +AR_U.startswith(b"a", start=[1, 2, 3]) # type: ignore[arg-type] +AR_S.startswith("a", end=9) # type: ignore[arg-type] + +AR_U.find(b"a", start=[1, 2, 3]) # type: ignore[arg-type] +AR_S.find("a", end=9) # type: ignore[arg-type] +AR_U.rfind(b"a", start=[1, 2, 3]) # type: ignore[arg-type] +AR_S.rfind("a", end=9) # type: ignore[arg-type] + +AR_U.index(b"a", start=[1, 2, 3]) # type: ignore[arg-type] +AR_S.index("a", end=9) # type: ignore[arg-type] +AR_U.rindex(b"a", start=[1, 2, 3]) # type: ignore[arg-type] +AR_S.rindex("a", end=9) # type: ignore[arg-type] + +AR_U == AR_S # type: ignore[operator] +AR_U != AR_S # type: ignore[operator] +AR_U >= AR_S # type: ignore[operator] +AR_U <= AR_S # type: ignore[operator] +AR_U > AR_S # type: ignore[operator] +AR_U < AR_S # type: ignore[operator] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/comparisons.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/comparisons.pyi new file mode 100644 index 0000000..3c8a94b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/comparisons.pyi @@ -0,0 +1,27 @@ +import numpy as np +import numpy.typing as npt + +AR_i: npt.NDArray[np.int64] +AR_f: npt.NDArray[np.float64] +AR_c: npt.NDArray[np.complex128] +AR_m: npt.NDArray[np.timedelta64] +AR_M: npt.NDArray[np.datetime64] + +AR_f > AR_m # type: ignore[operator] +AR_c > AR_m # type: ignore[operator] + +AR_m > AR_f # type: ignore[operator] +AR_m > AR_c # type: ignore[operator] + +AR_i > AR_M # type: ignore[operator] +AR_f > AR_M # type: ignore[operator] +AR_m > AR_M # type: ignore[operator] + +AR_M > AR_i # type: ignore[operator] +AR_M > AR_f # type: ignore[operator] +AR_M > AR_m # type: ignore[operator] + +AR_i > str() # type: ignore[operator] +AR_i > bytes() # type: ignore[operator] +str() > AR_M # type: ignore[operator] +bytes() > AR_M # type: ignore[operator] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/constants.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/constants.pyi new file mode 100644 index 0000000..10717f6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/constants.pyi @@ -0,0 +1,3 @@ +import numpy as np + +np.little_endian = np.little_endian # type: ignore[misc] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/datasource.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/datasource.pyi new file mode 100644 index 0000000..267b672 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/datasource.pyi @@ -0,0 +1,15 @@ +from pathlib import Path +import numpy as np + +path: Path +d1: np.lib.npyio.DataSource + +d1.abspath(path) # type: ignore[arg-type] +d1.abspath(b"...") # type: ignore[arg-type] + +d1.exists(path) # type: ignore[arg-type] +d1.exists(b"...") # type: ignore[arg-type] + +d1.open(path, "r") # type: ignore[arg-type] +d1.open(b"...", encoding="utf8") # type: ignore[arg-type] +d1.open(None, newline="/n") # type: ignore[arg-type] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/dtype.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/dtype.pyi new file mode 100644 index 0000000..64a7c3f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/dtype.pyi @@ -0,0 +1,17 @@ +import numpy as np + +class Test1: + not_dtype = np.dtype(float) + +class Test2: + dtype = float + +np.dtype(Test1()) # type: ignore[call-overload] +np.dtype(Test2()) # type: ignore[arg-type] + +np.dtype( # type: ignore[call-overload] + { + "field1": (float, 1), + "field2": (int, 3), + } +) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/einsumfunc.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/einsumfunc.pyi new file mode 100644 index 0000000..982ad98 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/einsumfunc.pyi @@ -0,0 +1,12 @@ +import numpy as np +import numpy.typing as npt + +AR_i: npt.NDArray[np.int64] +AR_f: npt.NDArray[np.float64] +AR_m: npt.NDArray[np.timedelta64] +AR_U: npt.NDArray[np.str_] + +np.einsum("i,i->i", AR_i, AR_m) # type: ignore[arg-type] +np.einsum("i,i->i", AR_f, AR_f, dtype=np.int32) # type: ignore[arg-type] +np.einsum("i,i->i", AR_i, AR_i, out=AR_U) # type: ignore[type-var] +np.einsum("i,i->i", AR_i, AR_i, out=AR_U, casting="unsafe") # type: ignore[call-overload] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/flatiter.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/flatiter.pyi new file mode 100644 index 0000000..06e23fe --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/flatiter.pyi @@ -0,0 +1,20 @@ +import numpy as np +import numpy._typing as npt + +class Index: + def __index__(self) -> int: ... + +a: np.flatiter[npt.NDArray[np.float64]] +supports_array: npt._SupportsArray[np.dtype[np.float64]] + +a.base = object() # type: ignore[assignment, misc] +a.coords = object() # type: ignore[assignment, misc] +a.index = object() # type: ignore[assignment, misc] +a.copy(order='C') # type: ignore[call-arg] + +# NOTE: Contrary to `ndarray.__getitem__` its counterpart in `flatiter` +# does not accept objects with the `__array__` or `__index__` protocols; +# boolean indexing is just plain broken (gh-17175) +a[np.bool()] # type: ignore[index] +a[Index()] # type: ignore[call-overload] +a[supports_array] # type: ignore[index] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/fromnumeric.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/fromnumeric.pyi new file mode 100644 index 0000000..51ef268 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/fromnumeric.pyi @@ -0,0 +1,148 @@ +"""Tests for :mod:`numpy._core.fromnumeric`.""" + +import numpy as np +import numpy.typing as npt + +A = np.array(True, ndmin=2, dtype=bool) +A.setflags(write=False) +AR_U: npt.NDArray[np.str_] +AR_M: npt.NDArray[np.datetime64] +AR_f4: npt.NDArray[np.float32] + +a = np.bool(True) + +np.take(a, None) # type: ignore[call-overload] +np.take(a, axis=1.0) # type: ignore[call-overload] +np.take(A, out=1) # type: ignore[call-overload] +np.take(A, mode="bob") # type: ignore[call-overload] + +np.reshape(a, None) # type: ignore[call-overload] +np.reshape(A, 1, order="bob") # type: ignore[call-overload] + +np.choose(a, None) # type: ignore[call-overload] +np.choose(a, out=1.0) # type: ignore[call-overload] +np.choose(A, mode="bob") # type: ignore[call-overload] + +np.repeat(a, None) # type: ignore[call-overload] +np.repeat(A, 1, axis=1.0) # type: ignore[call-overload] + +np.swapaxes(A, None, 1) # type: ignore[call-overload] +np.swapaxes(A, 1, [0]) # type: ignore[call-overload] + +np.transpose(A, axes=1.0) # type: ignore[call-overload] + +np.partition(a, None) # type: ignore[call-overload] +np.partition(a, 0, axis="bob") # type: ignore[call-overload] +np.partition(A, 0, kind="bob") # type: ignore[call-overload] +np.partition(A, 0, order=range(5)) # type: ignore[arg-type] + +np.argpartition(a, None) # type: ignore[arg-type] +np.argpartition(a, 0, axis="bob") # type: ignore[arg-type] +np.argpartition(A, 0, kind="bob") # type: ignore[arg-type] +np.argpartition(A, 0, order=range(5)) # type: ignore[arg-type] + +np.sort(A, axis="bob") # type: ignore[call-overload] +np.sort(A, kind="bob") # type: ignore[call-overload] +np.sort(A, order=range(5)) # type: ignore[arg-type] + +np.argsort(A, axis="bob") # type: ignore[arg-type] +np.argsort(A, kind="bob") # type: ignore[arg-type] +np.argsort(A, order=range(5)) # type: ignore[arg-type] + +np.argmax(A, axis="bob") # type: ignore[call-overload] +np.argmax(A, kind="bob") # type: ignore[call-overload] +np.argmax(A, out=AR_f4) # type: ignore[type-var] + +np.argmin(A, axis="bob") # type: ignore[call-overload] +np.argmin(A, kind="bob") # type: ignore[call-overload] +np.argmin(A, out=AR_f4) # type: ignore[type-var] + +np.searchsorted(A[0], 0, side="bob") # type: ignore[call-overload] +np.searchsorted(A[0], 0, sorter=1.0) # type: ignore[call-overload] + +np.resize(A, 1.0) # type: ignore[call-overload] + +np.squeeze(A, 1.0) # type: ignore[call-overload] + +np.diagonal(A, offset=None) # type: ignore[call-overload] +np.diagonal(A, axis1="bob") # type: ignore[call-overload] +np.diagonal(A, axis2=[]) # type: ignore[call-overload] + +np.trace(A, offset=None) # type: ignore[call-overload] +np.trace(A, axis1="bob") # type: ignore[call-overload] +np.trace(A, axis2=[]) # type: ignore[call-overload] + +np.ravel(a, order="bob") # type: ignore[call-overload] + +np.nonzero(0) # type: ignore[arg-type] + +np.compress([True], A, axis=1.0) # type: ignore[call-overload] + +np.clip(a, 1, 2, out=1) # type: ignore[call-overload] + +np.sum(a, axis=1.0) # type: ignore[call-overload] +np.sum(a, keepdims=1.0) # type: ignore[call-overload] +np.sum(a, initial=[1]) # type: ignore[call-overload] + +np.all(a, axis=1.0) # type: ignore[call-overload] +np.all(a, keepdims=1.0) # type: ignore[call-overload] +np.all(a, out=1.0) # type: ignore[call-overload] + +np.any(a, axis=1.0) # type: ignore[call-overload] +np.any(a, keepdims=1.0) # type: ignore[call-overload] +np.any(a, out=1.0) # type: ignore[call-overload] + +np.cumsum(a, axis=1.0) # type: ignore[call-overload] +np.cumsum(a, dtype=1.0) # type: ignore[call-overload] +np.cumsum(a, out=1.0) # type: ignore[call-overload] + +np.ptp(a, axis=1.0) # type: ignore[call-overload] +np.ptp(a, keepdims=1.0) # type: ignore[call-overload] +np.ptp(a, out=1.0) # type: ignore[call-overload] + +np.amax(a, axis=1.0) # type: ignore[call-overload] +np.amax(a, keepdims=1.0) # type: ignore[call-overload] +np.amax(a, out=1.0) # type: ignore[call-overload] +np.amax(a, initial=[1.0]) # type: ignore[call-overload] +np.amax(a, where=[1.0]) # type: ignore[arg-type] + +np.amin(a, axis=1.0) # type: ignore[call-overload] +np.amin(a, keepdims=1.0) # type: ignore[call-overload] +np.amin(a, out=1.0) # type: ignore[call-overload] +np.amin(a, initial=[1.0]) # type: ignore[call-overload] +np.amin(a, where=[1.0]) # type: ignore[arg-type] + +np.prod(a, axis=1.0) # type: ignore[call-overload] +np.prod(a, out=False) # type: ignore[call-overload] +np.prod(a, keepdims=1.0) # type: ignore[call-overload] +np.prod(a, initial=int) # type: ignore[call-overload] +np.prod(a, where=1.0) # type: ignore[call-overload] +np.prod(AR_U) # type: ignore[arg-type] + +np.cumprod(a, axis=1.0) # type: ignore[call-overload] +np.cumprod(a, out=False) # type: ignore[call-overload] +np.cumprod(AR_U) # type: ignore[arg-type] + +np.size(a, axis=1.0) # type: ignore[arg-type] + +np.around(a, decimals=1.0) # type: ignore[call-overload] +np.around(a, out=type) # type: ignore[call-overload] +np.around(AR_U) # type: ignore[arg-type] + +np.mean(a, axis=1.0) # type: ignore[call-overload] +np.mean(a, out=False) # type: ignore[call-overload] +np.mean(a, keepdims=1.0) # type: ignore[call-overload] +np.mean(AR_U) # type: ignore[arg-type] +np.mean(AR_M) # type: ignore[arg-type] + +np.std(a, axis=1.0) # type: ignore[call-overload] +np.std(a, out=False) # type: ignore[call-overload] +np.std(a, ddof='test') # type: ignore[call-overload] +np.std(a, keepdims=1.0) # type: ignore[call-overload] +np.std(AR_U) # type: ignore[arg-type] + +np.var(a, axis=1.0) # type: ignore[call-overload] +np.var(a, out=False) # type: ignore[call-overload] +np.var(a, ddof='test') # type: ignore[call-overload] +np.var(a, keepdims=1.0) # type: ignore[call-overload] +np.var(AR_U) # type: ignore[arg-type] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/histograms.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/histograms.pyi new file mode 100644 index 0000000..5f78927 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/histograms.pyi @@ -0,0 +1,12 @@ +import numpy as np +import numpy.typing as npt + +AR_i8: npt.NDArray[np.int64] +AR_f8: npt.NDArray[np.float64] + +np.histogram_bin_edges(AR_i8, range=(0, 1, 2)) # type: ignore[arg-type] + +np.histogram(AR_i8, range=(0, 1, 2)) # type: ignore[arg-type] + +np.histogramdd(AR_i8, range=(0, 1)) # type: ignore[arg-type] +np.histogramdd(AR_i8, range=[(0, 1, 2)]) # type: ignore[list-item] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/index_tricks.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/index_tricks.pyi new file mode 100644 index 0000000..8b7b1ae --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/index_tricks.pyi @@ -0,0 +1,14 @@ +import numpy as np + +AR_LIKE_i: list[int] +AR_LIKE_f: list[float] + +np.ndindex([1, 2, 3]) # type: ignore[call-overload] +np.unravel_index(AR_LIKE_f, (1, 2, 3)) # type: ignore[arg-type] +np.ravel_multi_index(AR_LIKE_i, (1, 2, 3), mode="bob") # type: ignore[call-overload] +np.mgrid[1] # type: ignore[index] +np.mgrid[...] # type: ignore[index] +np.ogrid[1] # type: ignore[index] +np.ogrid[...] # type: ignore[index] +np.fill_diagonal(AR_LIKE_f, 2) # type: ignore[arg-type] +np.diag_indices(1.0) # type: ignore[arg-type] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/lib_function_base.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/lib_function_base.pyi new file mode 100644 index 0000000..f0bf634 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/lib_function_base.pyi @@ -0,0 +1,62 @@ +from typing import Any + +import numpy as np +import numpy.typing as npt + +AR_f8: npt.NDArray[np.float64] +AR_c16: npt.NDArray[np.complex128] +AR_m: npt.NDArray[np.timedelta64] +AR_M: npt.NDArray[np.datetime64] +AR_O: npt.NDArray[np.object_] +AR_b_list: list[npt.NDArray[np.bool]] + +def fn_none_i(a: None, /) -> npt.NDArray[Any]: ... +def fn_ar_i(a: npt.NDArray[np.float64], posarg: int, /) -> npt.NDArray[Any]: ... + +np.average(AR_m) # type: ignore[arg-type] +np.select(1, [AR_f8]) # type: ignore[arg-type] +np.angle(AR_m) # type: ignore[arg-type] +np.unwrap(AR_m) # type: ignore[arg-type] +np.unwrap(AR_c16) # type: ignore[arg-type] +np.trim_zeros(1) # type: ignore[arg-type] +np.place(1, [True], 1.5) # type: ignore[arg-type] +np.vectorize(1) # type: ignore[arg-type] +np.place(AR_f8, slice(None), 5) # type: ignore[arg-type] + +np.piecewise(AR_f8, True, [fn_ar_i], 42) # type: ignore[call-overload] +# TODO: enable these once mypy actually supports ParamSpec (released in 2021) +# NOTE: pyright correctly reports errors for these (`reportCallIssue`) +# np.piecewise(AR_f8, AR_b_list, [fn_none_i]) # type: ignore[call-overload]s +# np.piecewise(AR_f8, AR_b_list, [fn_ar_i]) # type: ignore[call-overload] +# np.piecewise(AR_f8, AR_b_list, [fn_ar_i], 3.14) # type: ignore[call-overload] +# np.piecewise(AR_f8, AR_b_list, [fn_ar_i], 42, None) # type: ignore[call-overload] +# np.piecewise(AR_f8, AR_b_list, [fn_ar_i], 42, _=None) # type: ignore[call-overload] + +np.interp(AR_f8, AR_c16, AR_f8) # type: ignore[arg-type] +np.interp(AR_c16, AR_f8, AR_f8) # type: ignore[arg-type] +np.interp(AR_f8, AR_f8, AR_f8, period=AR_c16) # type: ignore[call-overload] +np.interp(AR_f8, AR_f8, AR_O) # type: ignore[arg-type] + +np.cov(AR_m) # type: ignore[arg-type] +np.cov(AR_O) # type: ignore[arg-type] +np.corrcoef(AR_m) # type: ignore[arg-type] +np.corrcoef(AR_O) # type: ignore[arg-type] +np.corrcoef(AR_f8, bias=True) # type: ignore[call-overload] +np.corrcoef(AR_f8, ddof=2) # type: ignore[call-overload] +np.blackman(1j) # type: ignore[arg-type] +np.bartlett(1j) # type: ignore[arg-type] +np.hanning(1j) # type: ignore[arg-type] +np.hamming(1j) # type: ignore[arg-type] +np.hamming(AR_c16) # type: ignore[arg-type] +np.kaiser(1j, 1) # type: ignore[arg-type] +np.sinc(AR_O) # type: ignore[arg-type] +np.median(AR_M) # type: ignore[arg-type] + +np.percentile(AR_f8, 50j) # type: ignore[call-overload] +np.percentile(AR_f8, 50, interpolation="bob") # type: ignore[call-overload] +np.quantile(AR_f8, 0.5j) # type: ignore[call-overload] +np.quantile(AR_f8, 0.5, interpolation="bob") # type: ignore[call-overload] +np.meshgrid(AR_f8, AR_f8, indexing="bob") # type: ignore[call-overload] +np.delete(AR_f8, AR_f8) # type: ignore[arg-type] +np.insert(AR_f8, AR_f8, 1.5) # type: ignore[arg-type] +np.digitize(AR_f8, 1j) # type: ignore[call-overload] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/lib_polynomial.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/lib_polynomial.pyi new file mode 100644 index 0000000..727eb7f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/lib_polynomial.pyi @@ -0,0 +1,29 @@ +import numpy as np +import numpy.typing as npt + +AR_f8: npt.NDArray[np.float64] +AR_c16: npt.NDArray[np.complex128] +AR_O: npt.NDArray[np.object_] +AR_U: npt.NDArray[np.str_] + +poly_obj: np.poly1d + +np.polymul(AR_f8, AR_U) # type: ignore[arg-type] +np.polydiv(AR_f8, AR_U) # type: ignore[arg-type] + +5**poly_obj # type: ignore[operator] + +np.polyint(AR_U) # type: ignore[arg-type] +np.polyint(AR_f8, m=1j) # type: ignore[call-overload] + +np.polyder(AR_U) # type: ignore[arg-type] +np.polyder(AR_f8, m=1j) # type: ignore[call-overload] + +np.polyfit(AR_O, AR_f8, 1) # type: ignore[arg-type] +np.polyfit(AR_f8, AR_f8, 1, rcond=1j) # type: ignore[call-overload] +np.polyfit(AR_f8, AR_f8, 1, w=AR_c16) # type: ignore[arg-type] +np.polyfit(AR_f8, AR_f8, 1, cov="bob") # type: ignore[call-overload] + +np.polyval(AR_f8, AR_U) # type: ignore[arg-type] +np.polyadd(AR_f8, AR_U) # type: ignore[arg-type] +np.polysub(AR_f8, AR_U) # type: ignore[arg-type] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/lib_utils.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/lib_utils.pyi new file mode 100644 index 0000000..25af32b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/lib_utils.pyi @@ -0,0 +1,3 @@ +import numpy.lib.array_utils as array_utils + +array_utils.byte_bounds(1) # type: ignore[arg-type] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/lib_version.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/lib_version.pyi new file mode 100644 index 0000000..62011a8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/lib_version.pyi @@ -0,0 +1,6 @@ +from numpy.lib import NumpyVersion + +version: NumpyVersion + +NumpyVersion(b"1.8.0") # type: ignore[arg-type] +version >= b"1.8.0" # type: ignore[operator] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/linalg.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/linalg.pyi new file mode 100644 index 0000000..c4695ee --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/linalg.pyi @@ -0,0 +1,48 @@ +import numpy as np +import numpy.typing as npt + +AR_f8: npt.NDArray[np.float64] +AR_O: npt.NDArray[np.object_] +AR_M: npt.NDArray[np.datetime64] + +np.linalg.tensorsolve(AR_O, AR_O) # type: ignore[arg-type] + +np.linalg.solve(AR_O, AR_O) # type: ignore[arg-type] + +np.linalg.tensorinv(AR_O) # type: ignore[arg-type] + +np.linalg.inv(AR_O) # type: ignore[arg-type] + +np.linalg.matrix_power(AR_M, 5) # type: ignore[arg-type] + +np.linalg.cholesky(AR_O) # type: ignore[arg-type] + +np.linalg.qr(AR_O) # type: ignore[arg-type] +np.linalg.qr(AR_f8, mode="bob") # type: ignore[call-overload] + +np.linalg.eigvals(AR_O) # type: ignore[arg-type] + +np.linalg.eigvalsh(AR_O) # type: ignore[arg-type] +np.linalg.eigvalsh(AR_O, UPLO="bob") # type: ignore[call-overload] + +np.linalg.eig(AR_O) # type: ignore[arg-type] + +np.linalg.eigh(AR_O) # type: ignore[arg-type] +np.linalg.eigh(AR_O, UPLO="bob") # type: ignore[call-overload] + +np.linalg.svd(AR_O) # type: ignore[arg-type] + +np.linalg.cond(AR_O) # type: ignore[arg-type] +np.linalg.cond(AR_f8, p="bob") # type: ignore[arg-type] + +np.linalg.matrix_rank(AR_O) # type: ignore[arg-type] + +np.linalg.pinv(AR_O) # type: ignore[arg-type] + +np.linalg.slogdet(AR_O) # type: ignore[arg-type] + +np.linalg.det(AR_O) # type: ignore[arg-type] + +np.linalg.norm(AR_f8, ord="bob") # type: ignore[call-overload] + +np.linalg.multi_dot([AR_M]) # type: ignore[list-item] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/ma.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/ma.pyi new file mode 100644 index 0000000..41306b2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/ma.pyi @@ -0,0 +1,143 @@ +from typing import TypeAlias, TypeVar + +import numpy as np +import numpy.typing as npt +from numpy._typing import _Shape + +_ScalarT = TypeVar("_ScalarT", bound=np.generic) +MaskedArray: TypeAlias = np.ma.MaskedArray[_Shape, np.dtype[_ScalarT]] + +MAR_1d_f8: np.ma.MaskedArray[tuple[int], np.dtype[np.float64]] +MAR_b: MaskedArray[np.bool] +MAR_c: MaskedArray[np.complex128] +MAR_td64: MaskedArray[np.timedelta64] + +AR_b: npt.NDArray[np.bool] + +MAR_1d_f8.shape = (3, 1) # type: ignore[assignment] +MAR_1d_f8.dtype = np.bool # type: ignore[assignment] + +np.ma.min(MAR_1d_f8, axis=1.0) # type: ignore[call-overload] +np.ma.min(MAR_1d_f8, keepdims=1.0) # type: ignore[call-overload] +np.ma.min(MAR_1d_f8, out=1.0) # type: ignore[call-overload] +np.ma.min(MAR_1d_f8, fill_value=lambda x: 27) # type: ignore[call-overload] + +MAR_1d_f8.min(axis=1.0) # type: ignore[call-overload] +MAR_1d_f8.min(keepdims=1.0) # type: ignore[call-overload] +MAR_1d_f8.min(out=1.0) # type: ignore[call-overload] +MAR_1d_f8.min(fill_value=lambda x: 27) # type: ignore[call-overload] + +np.ma.max(MAR_1d_f8, axis=1.0) # type: ignore[call-overload] +np.ma.max(MAR_1d_f8, keepdims=1.0) # type: ignore[call-overload] +np.ma.max(MAR_1d_f8, out=1.0) # type: ignore[call-overload] +np.ma.max(MAR_1d_f8, fill_value=lambda x: 27) # type: ignore[call-overload] + +MAR_1d_f8.max(axis=1.0) # type: ignore[call-overload] +MAR_1d_f8.max(keepdims=1.0) # type: ignore[call-overload] +MAR_1d_f8.max(out=1.0) # type: ignore[call-overload] +MAR_1d_f8.max(fill_value=lambda x: 27) # type: ignore[call-overload] + +np.ma.ptp(MAR_1d_f8, axis=1.0) # type: ignore[call-overload] +np.ma.ptp(MAR_1d_f8, keepdims=1.0) # type: ignore[call-overload] +np.ma.ptp(MAR_1d_f8, out=1.0) # type: ignore[call-overload] +np.ma.ptp(MAR_1d_f8, fill_value=lambda x: 27) # type: ignore[call-overload] + +MAR_1d_f8.ptp(axis=1.0) # type: ignore[call-overload] +MAR_1d_f8.ptp(keepdims=1.0) # type: ignore[call-overload] +MAR_1d_f8.ptp(out=1.0) # type: ignore[call-overload] +MAR_1d_f8.ptp(fill_value=lambda x: 27) # type: ignore[call-overload] + +MAR_1d_f8.argmin(axis=1.0) # type: ignore[call-overload] +MAR_1d_f8.argmin(keepdims=1.0) # type: ignore[call-overload] +MAR_1d_f8.argmin(out=1.0) # type: ignore[call-overload] +MAR_1d_f8.argmin(fill_value=lambda x: 27) # type: ignore[call-overload] + +np.ma.argmin(MAR_1d_f8, axis=1.0) # type: ignore[call-overload] +np.ma.argmin(MAR_1d_f8, axis=(1,)) # type: ignore[call-overload] +np.ma.argmin(MAR_1d_f8, keepdims=1.0) # type: ignore[call-overload] +np.ma.argmin(MAR_1d_f8, out=1.0) # type: ignore[call-overload] +np.ma.argmin(MAR_1d_f8, fill_value=lambda x: 27) # type: ignore[call-overload] + +MAR_1d_f8.argmax(axis=1.0) # type: ignore[call-overload] +MAR_1d_f8.argmax(keepdims=1.0) # type: ignore[call-overload] +MAR_1d_f8.argmax(out=1.0) # type: ignore[call-overload] +MAR_1d_f8.argmax(fill_value=lambda x: 27) # type: ignore[call-overload] + +np.ma.argmax(MAR_1d_f8, axis=1.0) # type: ignore[call-overload] +np.ma.argmax(MAR_1d_f8, axis=(0,)) # type: ignore[call-overload] +np.ma.argmax(MAR_1d_f8, keepdims=1.0) # type: ignore[call-overload] +np.ma.argmax(MAR_1d_f8, out=1.0) # type: ignore[call-overload] +np.ma.argmax(MAR_1d_f8, fill_value=lambda x: 27) # type: ignore[call-overload] + +MAR_1d_f8.all(axis=1.0) # type: ignore[call-overload] +MAR_1d_f8.all(keepdims=1.0) # type: ignore[call-overload] +MAR_1d_f8.all(out=1.0) # type: ignore[call-overload] + +MAR_1d_f8.any(axis=1.0) # type: ignore[call-overload] +MAR_1d_f8.any(keepdims=1.0) # type: ignore[call-overload] +MAR_1d_f8.any(out=1.0) # type: ignore[call-overload] + +MAR_1d_f8.sort(axis=(0,1)) # type: ignore[arg-type] +MAR_1d_f8.sort(axis=None) # type: ignore[arg-type] +MAR_1d_f8.sort(kind='cabbage') # type: ignore[arg-type] +MAR_1d_f8.sort(order=lambda: 'cabbage') # type: ignore[arg-type] +MAR_1d_f8.sort(endwith='cabbage') # type: ignore[arg-type] +MAR_1d_f8.sort(fill_value=lambda: 'cabbage') # type: ignore[arg-type] +MAR_1d_f8.sort(stable='cabbage') # type: ignore[arg-type] +MAR_1d_f8.sort(stable=True) # type: ignore[arg-type] + +MAR_1d_f8.take(axis=1.0) # type: ignore[call-overload] +MAR_1d_f8.take(out=1) # type: ignore[call-overload] +MAR_1d_f8.take(mode="bob") # type: ignore[call-overload] + +np.ma.take(None) # type: ignore[call-overload] +np.ma.take(axis=1.0) # type: ignore[call-overload] +np.ma.take(out=1) # type: ignore[call-overload] +np.ma.take(mode="bob") # type: ignore[call-overload] + +MAR_1d_f8.partition(['cabbage']) # type: ignore[arg-type] +MAR_1d_f8.partition(axis=(0,1)) # type: ignore[arg-type, call-arg] +MAR_1d_f8.partition(kind='cabbage') # type: ignore[arg-type, call-arg] +MAR_1d_f8.partition(order=lambda: 'cabbage') # type: ignore[arg-type, call-arg] +MAR_1d_f8.partition(AR_b) # type: ignore[arg-type] + +MAR_1d_f8.argpartition(['cabbage']) # type: ignore[arg-type] +MAR_1d_f8.argpartition(axis=(0,1)) # type: ignore[arg-type, call-arg] +MAR_1d_f8.argpartition(kind='cabbage') # type: ignore[arg-type, call-arg] +MAR_1d_f8.argpartition(order=lambda: 'cabbage') # type: ignore[arg-type, call-arg] +MAR_1d_f8.argpartition(AR_b) # type: ignore[arg-type] + +np.ma.ndim(lambda: 'lambda') # type: ignore[arg-type] + +np.ma.size(AR_b, axis='0') # type: ignore[arg-type] + +MAR_1d_f8 >= (lambda x: 'mango') # type: ignore[operator] +MAR_1d_f8 > (lambda x: 'mango') # type: ignore[operator] +MAR_1d_f8 <= (lambda x: 'mango') # type: ignore[operator] +MAR_1d_f8 < (lambda x: 'mango') # type: ignore[operator] + +MAR_1d_f8.count(axis=0.) # type: ignore[call-overload] + +np.ma.count(MAR_1d_f8, axis=0.) # type: ignore[call-overload] + +MAR_1d_f8.put(4, 999, mode='flip') # type: ignore[arg-type] + +np.ma.put(MAR_1d_f8, 4, 999, mode='flip') # type: ignore[arg-type] + +np.ma.put([1,1,3], 0, 999) # type: ignore[arg-type] + +np.ma.compressed(lambda: 'compress me') # type: ignore[call-overload] + +np.ma.allequal(MAR_1d_f8, [1,2,3], fill_value=1.5) # type: ignore[arg-type] + +np.ma.allclose(MAR_1d_f8, [1,2,3], masked_equal=4.5) # type: ignore[arg-type] +np.ma.allclose(MAR_1d_f8, [1,2,3], rtol='.4') # type: ignore[arg-type] +np.ma.allclose(MAR_1d_f8, [1,2,3], atol='.5') # type: ignore[arg-type] + +MAR_1d_f8.__setmask__('mask') # type: ignore[arg-type] + +MAR_b *= 2 # type: ignore[arg-type] +MAR_c //= 2 # type: ignore[misc] +MAR_td64 **= 2 # type: ignore[misc] + +MAR_1d_f8.swapaxes(axis1=1, axis2=0) # type: ignore[call-arg] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/memmap.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/memmap.pyi new file mode 100644 index 0000000..3a4fc7d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/memmap.pyi @@ -0,0 +1,5 @@ +import numpy as np + +with open("file.txt", "r") as f: + np.memmap(f) # type: ignore[call-overload] +np.memmap("test.txt", shape=[10, 5]) # type: ignore[call-overload] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/modules.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/modules.pyi new file mode 100644 index 0000000..c12a182 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/modules.pyi @@ -0,0 +1,17 @@ +import numpy as np + +np.testing.bob # type: ignore[attr-defined] +np.bob # type: ignore[attr-defined] + +# Stdlib modules in the namespace by accident +np.warnings # type: ignore[attr-defined] +np.sys # type: ignore[attr-defined] +np.os # type: ignore[attr-defined] +np.math # type: ignore[attr-defined] + +# Public sub-modules that are not imported to their parent module by default; +# e.g. one must first execute `import numpy.lib.recfunctions` +np.lib.recfunctions # type: ignore[attr-defined] + +np.__deprecated_attrs__ # type: ignore[attr-defined] +np.__expired_functions__ # type: ignore[attr-defined] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/multiarray.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/multiarray.pyi new file mode 100644 index 0000000..1f9ef68 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/multiarray.pyi @@ -0,0 +1,52 @@ +import numpy as np +import numpy.typing as npt + +i8: np.int64 + +AR_b: npt.NDArray[np.bool] +AR_u1: npt.NDArray[np.uint8] +AR_i8: npt.NDArray[np.int64] +AR_f8: npt.NDArray[np.float64] +AR_M: npt.NDArray[np.datetime64] + +M: np.datetime64 + +AR_LIKE_f: list[float] + +def func(a: int) -> None: ... + +np.where(AR_b, 1) # type: ignore[call-overload] + +np.can_cast(AR_f8, 1) # type: ignore[arg-type] + +np.vdot(AR_M, AR_M) # type: ignore[arg-type] + +np.copyto(AR_LIKE_f, AR_f8) # type: ignore[arg-type] + +np.putmask(AR_LIKE_f, [True, True, False], 1.5) # type: ignore[arg-type] + +np.packbits(AR_f8) # type: ignore[arg-type] +np.packbits(AR_u1, bitorder=">") # type: ignore[arg-type] + +np.unpackbits(AR_i8) # type: ignore[arg-type] +np.unpackbits(AR_u1, bitorder=">") # type: ignore[arg-type] + +np.shares_memory(1, 1, max_work=i8) # type: ignore[arg-type] +np.may_share_memory(1, 1, max_work=i8) # type: ignore[arg-type] + +np.arange(stop=10) # type: ignore[call-overload] + +np.datetime_data(int) # type: ignore[arg-type] + +np.busday_offset("2012", 10) # type: ignore[call-overload] + +np.datetime_as_string("2012") # type: ignore[call-overload] + +np.char.compare_chararrays("a", b"a", "==", False) # type: ignore[call-overload] + +np.nested_iters([AR_i8, AR_i8]) # type: ignore[call-arg] +np.nested_iters([AR_i8, AR_i8], 0) # type: ignore[arg-type] +np.nested_iters([AR_i8, AR_i8], [0]) # type: ignore[list-item] +np.nested_iters([AR_i8, AR_i8], [[0], [1]], flags=["test"]) # type: ignore[list-item] +np.nested_iters([AR_i8, AR_i8], [[0], [1]], op_flags=[["test"]]) # type: ignore[list-item] +np.nested_iters([AR_i8, AR_i8], [[0], [1]], buffersize=1.0) # type: ignore[arg-type] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/ndarray.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/ndarray.pyi new file mode 100644 index 0000000..2aeec08 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/ndarray.pyi @@ -0,0 +1,11 @@ +import numpy as np + +# Ban setting dtype since mutating the type of the array in place +# makes having ndarray be generic over dtype impossible. Generally +# users should use `ndarray.view` in this situation anyway. See +# +# https://github.com/numpy/numpy-stubs/issues/7 +# +# for more context. +float_array = np.array([1.0]) +float_array.dtype = np.bool # type: ignore[assignment, misc] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/ndarray_misc.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/ndarray_misc.pyi new file mode 100644 index 0000000..93e1bce --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/ndarray_misc.pyi @@ -0,0 +1,36 @@ +""" +Tests for miscellaneous (non-magic) ``np.ndarray``/``np.generic`` methods. + +More extensive tests are performed for the methods' +function-based counterpart in `../from_numeric.py`. + +""" + +import numpy as np +import numpy.typing as npt + +f8: np.float64 +AR_f8: npt.NDArray[np.float64] +AR_M: npt.NDArray[np.datetime64] +AR_b: npt.NDArray[np.bool] + +ctypes_obj = AR_f8.ctypes + +f8.argpartition(0) # type: ignore[attr-defined] +f8.diagonal() # type: ignore[attr-defined] +f8.dot(1) # type: ignore[attr-defined] +f8.nonzero() # type: ignore[attr-defined] +f8.partition(0) # type: ignore[attr-defined] +f8.put(0, 2) # type: ignore[attr-defined] +f8.setfield(2, np.float64) # type: ignore[attr-defined] +f8.sort() # type: ignore[attr-defined] +f8.trace() # type: ignore[attr-defined] + +AR_M.__complex__() # type: ignore[misc] +AR_b.__index__() # type: ignore[misc] + +AR_f8[1.5] # type: ignore[call-overload] +AR_f8["field_a"] # type: ignore[call-overload] +AR_f8[["field_a", "field_b"]] # type: ignore[index] + +AR_f8.__array_finalize__(object()) # type: ignore[arg-type] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/nditer.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/nditer.pyi new file mode 100644 index 0000000..cb64061 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/nditer.pyi @@ -0,0 +1,8 @@ +import numpy as np + +class Test(np.nditer): ... # type: ignore[misc] + +np.nditer([0, 1], flags=["test"]) # type: ignore[list-item] +np.nditer([0, 1], op_flags=[["test"]]) # type: ignore[list-item] +np.nditer([0, 1], itershape=(1.0,)) # type: ignore[arg-type] +np.nditer([0, 1], buffersize=1.0) # type: ignore[arg-type] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/nested_sequence.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/nested_sequence.pyi new file mode 100644 index 0000000..a28d3df --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/nested_sequence.pyi @@ -0,0 +1,16 @@ +from collections.abc import Sequence +from numpy._typing import _NestedSequence + +a: Sequence[float] +b: list[complex] +c: tuple[str, ...] +d: int +e: str + +def func(a: _NestedSequence[int]) -> None: ... + +reveal_type(func(a)) # type: ignore[arg-type, misc] +reveal_type(func(b)) # type: ignore[arg-type, misc] +reveal_type(func(c)) # type: ignore[arg-type, misc] +reveal_type(func(d)) # type: ignore[arg-type, misc] +reveal_type(func(e)) # type: ignore[arg-type, misc] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/npyio.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/npyio.pyi new file mode 100644 index 0000000..e204566 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/npyio.pyi @@ -0,0 +1,24 @@ +import pathlib +from typing import IO + +import numpy.typing as npt +import numpy as np + +str_path: str +bytes_path: bytes +pathlib_path: pathlib.Path +str_file: IO[str] +AR_i8: npt.NDArray[np.int64] + +np.load(str_file) # type: ignore[arg-type] + +np.save(bytes_path, AR_i8) # type: ignore[call-overload] +np.save(str_path, AR_i8, fix_imports=True) # type: ignore[deprecated] # pyright: ignore[reportDeprecated] + +np.savez(bytes_path, AR_i8) # type: ignore[arg-type] + +np.savez_compressed(bytes_path, AR_i8) # type: ignore[arg-type] + +np.loadtxt(bytes_path) # type: ignore[arg-type] + +np.fromregex(bytes_path, ".", np.int64) # type: ignore[call-overload] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/numerictypes.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/numerictypes.pyi new file mode 100644 index 0000000..a1fd47a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/numerictypes.pyi @@ -0,0 +1,5 @@ +import numpy as np + +np.isdtype(1, np.int64) # type: ignore[arg-type] + +np.issubdtype(1, np.int64) # type: ignore[arg-type] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/random.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/random.pyi new file mode 100644 index 0000000..1abf4b7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/random.pyi @@ -0,0 +1,62 @@ +import numpy as np +import numpy.typing as npt + +SEED_FLOAT: float = 457.3 +SEED_ARR_FLOAT: npt.NDArray[np.float64] = np.array([1.0, 2, 3, 4]) +SEED_ARRLIKE_FLOAT: list[float] = [1.0, 2.0, 3.0, 4.0] +SEED_SEED_SEQ: np.random.SeedSequence = np.random.SeedSequence(0) +SEED_STR: str = "String seeding not allowed" + +# default rng +np.random.default_rng(SEED_FLOAT) # type: ignore[arg-type] +np.random.default_rng(SEED_ARR_FLOAT) # type: ignore[arg-type] +np.random.default_rng(SEED_ARRLIKE_FLOAT) # type: ignore[arg-type] +np.random.default_rng(SEED_STR) # type: ignore[arg-type] + +# Seed Sequence +np.random.SeedSequence(SEED_FLOAT) # type: ignore[arg-type] +np.random.SeedSequence(SEED_ARR_FLOAT) # type: ignore[arg-type] +np.random.SeedSequence(SEED_ARRLIKE_FLOAT) # type: ignore[arg-type] +np.random.SeedSequence(SEED_SEED_SEQ) # type: ignore[arg-type] +np.random.SeedSequence(SEED_STR) # type: ignore[arg-type] + +seed_seq: np.random.bit_generator.SeedSequence = np.random.SeedSequence() +seed_seq.spawn(11.5) # type: ignore[arg-type] +seed_seq.generate_state(3.14) # type: ignore[arg-type] +seed_seq.generate_state(3, np.uint8) # type: ignore[arg-type] +seed_seq.generate_state(3, "uint8") # type: ignore[arg-type] +seed_seq.generate_state(3, "u1") # type: ignore[arg-type] +seed_seq.generate_state(3, np.uint16) # type: ignore[arg-type] +seed_seq.generate_state(3, "uint16") # type: ignore[arg-type] +seed_seq.generate_state(3, "u2") # type: ignore[arg-type] +seed_seq.generate_state(3, np.int32) # type: ignore[arg-type] +seed_seq.generate_state(3, "int32") # type: ignore[arg-type] +seed_seq.generate_state(3, "i4") # type: ignore[arg-type] + +# Bit Generators +np.random.MT19937(SEED_FLOAT) # type: ignore[arg-type] +np.random.MT19937(SEED_ARR_FLOAT) # type: ignore[arg-type] +np.random.MT19937(SEED_ARRLIKE_FLOAT) # type: ignore[arg-type] +np.random.MT19937(SEED_STR) # type: ignore[arg-type] + +np.random.PCG64(SEED_FLOAT) # type: ignore[arg-type] +np.random.PCG64(SEED_ARR_FLOAT) # type: ignore[arg-type] +np.random.PCG64(SEED_ARRLIKE_FLOAT) # type: ignore[arg-type] +np.random.PCG64(SEED_STR) # type: ignore[arg-type] + +np.random.Philox(SEED_FLOAT) # type: ignore[arg-type] +np.random.Philox(SEED_ARR_FLOAT) # type: ignore[arg-type] +np.random.Philox(SEED_ARRLIKE_FLOAT) # type: ignore[arg-type] +np.random.Philox(SEED_STR) # type: ignore[arg-type] + +np.random.SFC64(SEED_FLOAT) # type: ignore[arg-type] +np.random.SFC64(SEED_ARR_FLOAT) # type: ignore[arg-type] +np.random.SFC64(SEED_ARRLIKE_FLOAT) # type: ignore[arg-type] +np.random.SFC64(SEED_STR) # type: ignore[arg-type] + +# Generator +np.random.Generator(None) # type: ignore[arg-type] +np.random.Generator(12333283902830213) # type: ignore[arg-type] +np.random.Generator("OxFEEDF00D") # type: ignore[arg-type] +np.random.Generator([123, 234]) # type: ignore[arg-type] +np.random.Generator(np.array([123, 234], dtype="u4")) # type: ignore[arg-type] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/rec.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/rec.pyi new file mode 100644 index 0000000..c9d43dd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/rec.pyi @@ -0,0 +1,17 @@ +import numpy as np +import numpy.typing as npt + +AR_i8: npt.NDArray[np.int64] + +np.rec.fromarrays(1) # type: ignore[call-overload] +np.rec.fromarrays([1, 2, 3], dtype=[("f8", "f8")], formats=["f8", "f8"]) # type: ignore[call-overload] + +np.rec.fromrecords(AR_i8) # type: ignore[arg-type] +np.rec.fromrecords([(1.5,)], dtype=[("f8", "f8")], formats=["f8", "f8"]) # type: ignore[call-overload] + +np.rec.fromstring("string", dtype=[("f8", "f8")]) # type: ignore[call-overload] +np.rec.fromstring(b"bytes") # type: ignore[call-overload] +np.rec.fromstring(b"(1.5,)", dtype=[("f8", "f8")], formats=["f8", "f8"]) # type: ignore[call-overload] + +with open("test", "r") as f: + np.rec.fromfile(f, dtype=[("f8", "f8")]) # type: ignore[call-overload] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/scalars.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/scalars.pyi new file mode 100644 index 0000000..bfbe912 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/scalars.pyi @@ -0,0 +1,87 @@ +import sys +import numpy as np + +f2: np.float16 +f8: np.float64 +c8: np.complex64 + +# Construction + +np.float32(3j) # type: ignore[arg-type] + +# Technically the following examples are valid NumPy code. But they +# are not considered a best practice, and people who wish to use the +# stubs should instead do +# +# np.array([1.0, 0.0, 0.0], dtype=np.float32) +# np.array([], dtype=np.complex64) +# +# See e.g. the discussion on the mailing list +# +# https://mail.python.org/pipermail/numpy-discussion/2020-April/080566.html +# +# and the issue +# +# https://github.com/numpy/numpy-stubs/issues/41 +# +# for more context. +np.float32([1.0, 0.0, 0.0]) # type: ignore[arg-type] +np.complex64([]) # type: ignore[call-overload] + +# TODO: protocols (can't check for non-existent protocols w/ __getattr__) + +np.datetime64(0) # type: ignore[call-overload] + +class A: + def __float__(self) -> float: ... + +np.int8(A()) # type: ignore[arg-type] +np.int16(A()) # type: ignore[arg-type] +np.int32(A()) # type: ignore[arg-type] +np.int64(A()) # type: ignore[arg-type] +np.uint8(A()) # type: ignore[arg-type] +np.uint16(A()) # type: ignore[arg-type] +np.uint32(A()) # type: ignore[arg-type] +np.uint64(A()) # type: ignore[arg-type] + +np.void("test") # type: ignore[call-overload] +np.void("test", dtype=None) # type: ignore[call-overload] + +np.generic(1) # type: ignore[abstract] +np.number(1) # type: ignore[abstract] +np.integer(1) # type: ignore[abstract] +np.inexact(1) # type: ignore[abstract] +np.character("test") # type: ignore[abstract] +np.flexible(b"test") # type: ignore[abstract] + +np.float64(value=0.0) # type: ignore[call-arg] +np.int64(value=0) # type: ignore[call-arg] +np.uint64(value=0) # type: ignore[call-arg] +np.complex128(value=0.0j) # type: ignore[call-overload] +np.str_(value='bob') # type: ignore[call-overload] +np.bytes_(value=b'test') # type: ignore[call-overload] +np.void(value=b'test') # type: ignore[call-overload] +np.bool(value=True) # type: ignore[call-overload] +np.datetime64(value="2019") # type: ignore[call-overload] +np.timedelta64(value=0) # type: ignore[call-overload] + +np.bytes_(b"hello", encoding='utf-8') # type: ignore[call-overload] +np.str_("hello", encoding='utf-8') # type: ignore[call-overload] + +f8.item(1) # type: ignore[call-overload] +f8.item((0, 1)) # type: ignore[arg-type] +f8.squeeze(axis=1) # type: ignore[arg-type] +f8.squeeze(axis=(0, 1)) # type: ignore[arg-type] +f8.transpose(1) # type: ignore[arg-type] + +def func(a: np.float32) -> None: ... + +func(f2) # type: ignore[arg-type] +func(f8) # type: ignore[arg-type] + +c8.__getnewargs__() # type: ignore[attr-defined] +f2.__getnewargs__() # type: ignore[attr-defined] +f2.hex() # type: ignore[attr-defined] +np.float16.fromhex("0x0.0p+0") # type: ignore[attr-defined] +f2.__trunc__() # type: ignore[attr-defined] +f2.__getformat__("float") # type: ignore[attr-defined] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/shape.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/shape.pyi new file mode 100644 index 0000000..fea0555 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/shape.pyi @@ -0,0 +1,6 @@ +from typing import Any +import numpy as np + +# test bounds of _ShapeT_co + +np.ndarray[tuple[str, str], Any] # type: ignore[type-var] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/shape_base.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/shape_base.pyi new file mode 100644 index 0000000..652b24b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/shape_base.pyi @@ -0,0 +1,8 @@ +import numpy as np + +class DTypeLike: + dtype: np.dtype[np.int_] + +dtype_like: DTypeLike + +np.expand_dims(dtype_like, (5, 10)) # type: ignore[call-overload] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/stride_tricks.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/stride_tricks.pyi new file mode 100644 index 0000000..7f9a26b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/stride_tricks.pyi @@ -0,0 +1,9 @@ +import numpy as np +import numpy.typing as npt + +AR_f8: npt.NDArray[np.float64] + +np.lib.stride_tricks.as_strided(AR_f8, shape=8) # type: ignore[call-overload] +np.lib.stride_tricks.as_strided(AR_f8, strides=8) # type: ignore[call-overload] + +np.lib.stride_tricks.sliding_window_view(AR_f8, axis=(1,)) # type: ignore[call-overload] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/strings.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/strings.pyi new file mode 100644 index 0000000..328a521 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/strings.pyi @@ -0,0 +1,52 @@ +import numpy as np +import numpy.typing as npt + +AR_U: npt.NDArray[np.str_] +AR_S: npt.NDArray[np.bytes_] + +np.strings.equal(AR_U, AR_S) # type: ignore[arg-type] +np.strings.not_equal(AR_U, AR_S) # type: ignore[arg-type] + +np.strings.greater_equal(AR_U, AR_S) # type: ignore[arg-type] +np.strings.less_equal(AR_U, AR_S) # type: ignore[arg-type] +np.strings.greater(AR_U, AR_S) # type: ignore[arg-type] +np.strings.less(AR_U, AR_S) # type: ignore[arg-type] + +np.strings.encode(AR_S) # type: ignore[arg-type] +np.strings.decode(AR_U) # type: ignore[arg-type] + +np.strings.lstrip(AR_U, b"a") # type: ignore[arg-type] +np.strings.lstrip(AR_S, "a") # type: ignore[arg-type] +np.strings.strip(AR_U, b"a") # type: ignore[arg-type] +np.strings.strip(AR_S, "a") # type: ignore[arg-type] +np.strings.rstrip(AR_U, b"a") # type: ignore[arg-type] +np.strings.rstrip(AR_S, "a") # type: ignore[arg-type] + +np.strings.partition(AR_U, b"a") # type: ignore[arg-type] +np.strings.partition(AR_S, "a") # type: ignore[arg-type] +np.strings.rpartition(AR_U, b"a") # type: ignore[arg-type] +np.strings.rpartition(AR_S, "a") # type: ignore[arg-type] + +np.strings.count(AR_U, b"a", [1, 2, 3], [1, 2, 3]) # type: ignore[arg-type] +np.strings.count(AR_S, "a", 0, 9) # type: ignore[arg-type] + +np.strings.endswith(AR_U, b"a", [1, 2, 3], [1, 2, 3]) # type: ignore[arg-type] +np.strings.endswith(AR_S, "a", 0, 9) # type: ignore[arg-type] +np.strings.startswith(AR_U, b"a", [1, 2, 3], [1, 2, 3]) # type: ignore[arg-type] +np.strings.startswith(AR_S, "a", 0, 9) # type: ignore[arg-type] + +np.strings.find(AR_U, b"a", [1, 2, 3], [1, 2, 3]) # type: ignore[arg-type] +np.strings.find(AR_S, "a", 0, 9) # type: ignore[arg-type] +np.strings.rfind(AR_U, b"a", [1, 2, 3], [1, 2, 3]) # type: ignore[arg-type] +np.strings.rfind(AR_S, "a", 0, 9) # type: ignore[arg-type] + +np.strings.index(AR_U, b"a", start=[1, 2, 3]) # type: ignore[arg-type] +np.strings.index(AR_S, "a", end=9) # type: ignore[arg-type] +np.strings.rindex(AR_U, b"a", start=[1, 2, 3]) # type: ignore[arg-type] +np.strings.rindex(AR_S, "a", end=9) # type: ignore[arg-type] + +np.strings.isdecimal(AR_S) # type: ignore[arg-type] +np.strings.isnumeric(AR_S) # type: ignore[arg-type] + +np.strings.replace(AR_U, b"_", b"-", 10) # type: ignore[arg-type] +np.strings.replace(AR_S, "_", "-", 1) # type: ignore[arg-type] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/testing.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/testing.pyi new file mode 100644 index 0000000..517062c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/testing.pyi @@ -0,0 +1,28 @@ +import numpy as np +import numpy.typing as npt + +AR_U: npt.NDArray[np.str_] + +def func(x: object) -> bool: ... + +np.testing.assert_(True, msg=1) # type: ignore[arg-type] +np.testing.build_err_msg(1, "test") # type: ignore[arg-type] +np.testing.assert_almost_equal(AR_U, AR_U) # type: ignore[arg-type] +np.testing.assert_approx_equal([1, 2, 3], [1, 2, 3]) # type: ignore[arg-type] +np.testing.assert_array_almost_equal(AR_U, AR_U) # type: ignore[arg-type] +np.testing.assert_array_less(AR_U, AR_U) # type: ignore[arg-type] +np.testing.assert_string_equal(b"a", b"a") # type: ignore[arg-type] + +np.testing.assert_raises(expected_exception=TypeError, callable=func) # type: ignore[call-overload] +np.testing.assert_raises_regex(expected_exception=TypeError, expected_regex="T", callable=func) # type: ignore[call-overload] + +np.testing.assert_allclose(AR_U, AR_U) # type: ignore[arg-type] +np.testing.assert_array_almost_equal_nulp(AR_U, AR_U) # type: ignore[arg-type] +np.testing.assert_array_max_ulp(AR_U, AR_U) # type: ignore[arg-type] + +np.testing.assert_warns(RuntimeWarning, func) # type: ignore[call-overload] +np.testing.assert_no_warnings(func=func) # type: ignore[call-overload] +np.testing.assert_no_warnings(func) # type: ignore[call-overload] +np.testing.assert_no_warnings(func, y=None) # type: ignore[call-overload] + +np.testing.assert_no_gc_cycles(func=func) # type: ignore[call-overload] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/twodim_base.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/twodim_base.pyi new file mode 100644 index 0000000..d0f2b7a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/twodim_base.pyi @@ -0,0 +1,32 @@ +from typing import Any, TypeVar + +import numpy as np +import numpy.typing as npt + +def func1(ar: npt.NDArray[Any], a: int) -> npt.NDArray[np.str_]: ... + +def func2(ar: npt.NDArray[Any], a: float) -> float: ... + +AR_b: npt.NDArray[np.bool] +AR_m: npt.NDArray[np.timedelta64] + +AR_LIKE_b: list[bool] + +np.eye(10, M=20.0) # type: ignore[call-overload] +np.eye(10, k=2.5, dtype=int) # type: ignore[call-overload] + +np.diag(AR_b, k=0.5) # type: ignore[call-overload] +np.diagflat(AR_b, k=0.5) # type: ignore[call-overload] + +np.tri(10, M=20.0) # type: ignore[call-overload] +np.tri(10, k=2.5, dtype=int) # type: ignore[call-overload] + +np.tril(AR_b, k=0.5) # type: ignore[call-overload] +np.triu(AR_b, k=0.5) # type: ignore[call-overload] + +np.vander(AR_m) # type: ignore[arg-type] + +np.histogram2d(AR_m) # type: ignore[call-overload] + +np.mask_indices(10, func1) # type: ignore[arg-type] +np.mask_indices(10, func2, 10.5) # type: ignore[arg-type] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/type_check.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/type_check.pyi new file mode 100644 index 0000000..94b6ee4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/type_check.pyi @@ -0,0 +1,13 @@ +import numpy as np +import numpy.typing as npt + +DTYPE_i8: np.dtype[np.int64] + +np.mintypecode(DTYPE_i8) # type: ignore[arg-type] +np.iscomplexobj(DTYPE_i8) # type: ignore[arg-type] +np.isrealobj(DTYPE_i8) # type: ignore[arg-type] + +np.typename(DTYPE_i8) # type: ignore[call-overload] +np.typename("invalid") # type: ignore[call-overload] + +np.common_type(np.timedelta64()) # type: ignore[arg-type] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/ufunc_config.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/ufunc_config.pyi new file mode 100644 index 0000000..c67b6a3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/ufunc_config.pyi @@ -0,0 +1,21 @@ +"""Typing tests for `numpy._core._ufunc_config`.""" + +import numpy as np + +def func1(a: str, b: int, c: float) -> None: ... +def func2(a: str, *, b: int) -> None: ... + +class Write1: + def write1(self, a: str) -> None: ... + +class Write2: + def write(self, a: str, b: str) -> None: ... + +class Write3: + def write(self, *, a: str) -> None: ... + +np.seterrcall(func1) # type: ignore[arg-type] +np.seterrcall(func2) # type: ignore[arg-type] +np.seterrcall(Write1()) # type: ignore[arg-type] +np.seterrcall(Write2()) # type: ignore[arg-type] +np.seterrcall(Write3()) # type: ignore[arg-type] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/ufunclike.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/ufunclike.pyi new file mode 100644 index 0000000..e556e40 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/ufunclike.pyi @@ -0,0 +1,21 @@ +import numpy as np +import numpy.typing as npt + +AR_c: npt.NDArray[np.complex128] +AR_m: npt.NDArray[np.timedelta64] +AR_M: npt.NDArray[np.datetime64] +AR_O: npt.NDArray[np.object_] + +np.fix(AR_c) # type: ignore[arg-type] +np.fix(AR_m) # type: ignore[arg-type] +np.fix(AR_M) # type: ignore[arg-type] + +np.isposinf(AR_c) # type: ignore[arg-type] +np.isposinf(AR_m) # type: ignore[arg-type] +np.isposinf(AR_M) # type: ignore[arg-type] +np.isposinf(AR_O) # type: ignore[arg-type] + +np.isneginf(AR_c) # type: ignore[arg-type] +np.isneginf(AR_m) # type: ignore[arg-type] +np.isneginf(AR_M) # type: ignore[arg-type] +np.isneginf(AR_O) # type: ignore[arg-type] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/ufuncs.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/ufuncs.pyi new file mode 100644 index 0000000..1b1628d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/ufuncs.pyi @@ -0,0 +1,17 @@ +import numpy as np +import numpy.typing as npt + +AR_f8: npt.NDArray[np.float64] + +np.sin.nin + "foo" # type: ignore[operator] +np.sin(1, foo="bar") # type: ignore[call-overload] + +np.abs(None) # type: ignore[call-overload] + +np.add(1, 1, 1) # type: ignore[call-overload] +np.add(1, 1, axis=0) # type: ignore[call-overload] + +np.matmul(AR_f8, AR_f8, where=True) # type: ignore[call-overload] + +np.frexp(AR_f8, out=None) # type: ignore[call-overload] +np.frexp(AR_f8, out=AR_f8) # type: ignore[call-overload] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/warnings_and_errors.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/warnings_and_errors.pyi new file mode 100644 index 0000000..8ba34f6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/fail/warnings_and_errors.pyi @@ -0,0 +1,5 @@ +import numpy.exceptions as ex + +ex.AxisError(1.0) # type: ignore[call-overload] +ex.AxisError(1, ndim=2.0) # type: ignore[call-overload] +ex.AxisError(2, msg_prefix=404) # type: ignore[call-overload] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/misc/extended_precision.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/misc/extended_precision.pyi new file mode 100644 index 0000000..84b5f51 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/misc/extended_precision.pyi @@ -0,0 +1,9 @@ +import numpy as np +from numpy._typing import _96Bit, _128Bit + +from typing import assert_type + +assert_type(np.float96(), np.floating[_96Bit]) +assert_type(np.float128(), np.floating[_128Bit]) +assert_type(np.complex192(), np.complexfloating[_96Bit, _96Bit]) +assert_type(np.complex256(), np.complexfloating[_128Bit, _128Bit]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/mypy.ini b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/mypy.ini new file mode 100644 index 0000000..bca2032 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/mypy.ini @@ -0,0 +1,9 @@ +[mypy] +enable_error_code = deprecated, ignore-without-code, truthy-bool +strict_bytes = True +warn_unused_ignores = True +implicit_reexport = False +disallow_any_unimported = True +disallow_any_generics = True +show_absolute_path = True +pretty = True diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/arithmetic.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/arithmetic.cpython-312.pyc new file mode 100644 index 0000000..168bf9b Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/arithmetic.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/array_constructors.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/array_constructors.cpython-312.pyc new file mode 100644 index 0000000..032a3db Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/array_constructors.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/array_like.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/array_like.cpython-312.pyc new file mode 100644 index 0000000..631a7e0 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/array_like.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/arrayprint.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/arrayprint.cpython-312.pyc new file mode 100644 index 0000000..b7fed61 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/arrayprint.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/arrayterator.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/arrayterator.cpython-312.pyc new file mode 100644 index 0000000..9499aab Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/arrayterator.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/bitwise_ops.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/bitwise_ops.cpython-312.pyc new file mode 100644 index 0000000..12367b3 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/bitwise_ops.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/comparisons.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/comparisons.cpython-312.pyc new file mode 100644 index 0000000..4edce0a Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/comparisons.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/dtype.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/dtype.cpython-312.pyc new file mode 100644 index 0000000..e190854 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/dtype.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/einsumfunc.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/einsumfunc.cpython-312.pyc new file mode 100644 index 0000000..6642667 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/einsumfunc.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/flatiter.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/flatiter.cpython-312.pyc new file mode 100644 index 0000000..ba4ae7f Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/flatiter.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/fromnumeric.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/fromnumeric.cpython-312.pyc new file mode 100644 index 0000000..f7edbef Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/fromnumeric.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/index_tricks.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/index_tricks.cpython-312.pyc new file mode 100644 index 0000000..fdec271 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/index_tricks.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/lib_user_array.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/lib_user_array.cpython-312.pyc new file mode 100644 index 0000000..fac9585 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/lib_user_array.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/lib_utils.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/lib_utils.cpython-312.pyc new file mode 100644 index 0000000..7069fe1 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/lib_utils.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/lib_version.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/lib_version.cpython-312.pyc new file mode 100644 index 0000000..afb06f3 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/lib_version.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/literal.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/literal.cpython-312.pyc new file mode 100644 index 0000000..2fdbd51 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/literal.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ma.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ma.cpython-312.pyc new file mode 100644 index 0000000..9578aaf Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ma.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/mod.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/mod.cpython-312.pyc new file mode 100644 index 0000000..ad6cfea Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/mod.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/modules.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/modules.cpython-312.pyc new file mode 100644 index 0000000..b1036ef Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/modules.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/multiarray.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/multiarray.cpython-312.pyc new file mode 100644 index 0000000..71e3cd6 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/multiarray.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ndarray_conversion.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ndarray_conversion.cpython-312.pyc new file mode 100644 index 0000000..4d8b635 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ndarray_conversion.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ndarray_misc.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ndarray_misc.cpython-312.pyc new file mode 100644 index 0000000..1eea401 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ndarray_misc.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ndarray_shape_manipulation.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ndarray_shape_manipulation.cpython-312.pyc new file mode 100644 index 0000000..6b6f1ab Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ndarray_shape_manipulation.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/nditer.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/nditer.cpython-312.pyc new file mode 100644 index 0000000..42e3cc5 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/nditer.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/numeric.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/numeric.cpython-312.pyc new file mode 100644 index 0000000..c6e185f Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/numeric.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/numerictypes.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/numerictypes.cpython-312.pyc new file mode 100644 index 0000000..419dc2f Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/numerictypes.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/random.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/random.cpython-312.pyc new file mode 100644 index 0000000..df27ed5 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/random.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/recfunctions.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/recfunctions.cpython-312.pyc new file mode 100644 index 0000000..78ef490 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/recfunctions.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/scalars.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/scalars.cpython-312.pyc new file mode 100644 index 0000000..f80244a Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/scalars.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/shape.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/shape.cpython-312.pyc new file mode 100644 index 0000000..fac4a9e Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/shape.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/simple.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/simple.cpython-312.pyc new file mode 100644 index 0000000..4fc8f13 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/simple.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/simple_py3.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/simple_py3.cpython-312.pyc new file mode 100644 index 0000000..ff3b500 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/simple_py3.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ufunc_config.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ufunc_config.cpython-312.pyc new file mode 100644 index 0000000..14c61c2 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ufunc_config.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ufunclike.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ufunclike.cpython-312.pyc new file mode 100644 index 0000000..07c7c97 Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ufunclike.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ufuncs.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ufuncs.cpython-312.pyc new file mode 100644 index 0000000..40f630c Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/ufuncs.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/warnings_and_errors.cpython-312.pyc b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/warnings_and_errors.cpython-312.pyc new file mode 100644 index 0000000..6bf947e Binary files /dev/null and b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/__pycache__/warnings_and_errors.cpython-312.pyc differ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/arithmetic.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/arithmetic.py new file mode 100644 index 0000000..3b2901c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/arithmetic.py @@ -0,0 +1,612 @@ +from __future__ import annotations + +from typing import Any, cast +import numpy as np +import numpy.typing as npt +import pytest + +c16 = np.complex128(1) +f8 = np.float64(1) +i8 = np.int64(1) +u8 = np.uint64(1) + +c8 = np.complex64(1) +f4 = np.float32(1) +i4 = np.int32(1) +u4 = np.uint32(1) + +dt = np.datetime64(1, "D") +td = np.timedelta64(1, "D") + +b_ = np.bool(1) + +b = bool(1) +c = complex(1) +f = float(1) +i = int(1) + + +class Object: + def __array__(self, dtype: np.typing.DTypeLike = None, + copy: bool | None = None) -> np.ndarray[Any, np.dtype[np.object_]]: + ret = np.empty((), dtype=object) + ret[()] = self + return ret + + def __sub__(self, value: Any) -> Object: + return self + + def __rsub__(self, value: Any) -> Object: + return self + + def __floordiv__(self, value: Any) -> Object: + return self + + def __rfloordiv__(self, value: Any) -> Object: + return self + + def __mul__(self, value: Any) -> Object: + return self + + def __rmul__(self, value: Any) -> Object: + return self + + def __pow__(self, value: Any) -> Object: + return self + + def __rpow__(self, value: Any) -> Object: + return self + + +AR_b: npt.NDArray[np.bool] = np.array([True]) +AR_u: npt.NDArray[np.uint32] = np.array([1], dtype=np.uint32) +AR_i: npt.NDArray[np.int64] = np.array([1]) +AR_integer: npt.NDArray[np.integer] = cast(npt.NDArray[np.integer], AR_i) +AR_f: npt.NDArray[np.float64] = np.array([1.0]) +AR_c: npt.NDArray[np.complex128] = np.array([1j]) +AR_m: npt.NDArray[np.timedelta64] = np.array([np.timedelta64(1, "D")]) +AR_M: npt.NDArray[np.datetime64] = np.array([np.datetime64(1, "D")]) +AR_O: npt.NDArray[np.object_] = np.array([Object()]) + +AR_LIKE_b = [True] +AR_LIKE_u = [np.uint32(1)] +AR_LIKE_i = [1] +AR_LIKE_f = [1.0] +AR_LIKE_c = [1j] +AR_LIKE_m = [np.timedelta64(1, "D")] +AR_LIKE_M = [np.datetime64(1, "D")] +AR_LIKE_O = [Object()] + +# Array subtractions + +AR_b - AR_LIKE_u +AR_b - AR_LIKE_i +AR_b - AR_LIKE_f +AR_b - AR_LIKE_c +AR_b - AR_LIKE_m +AR_b - AR_LIKE_O + +AR_LIKE_u - AR_b +AR_LIKE_i - AR_b +AR_LIKE_f - AR_b +AR_LIKE_c - AR_b +AR_LIKE_m - AR_b +AR_LIKE_M - AR_b +AR_LIKE_O - AR_b + +AR_u - AR_LIKE_b +AR_u - AR_LIKE_u +AR_u - AR_LIKE_i +AR_u - AR_LIKE_f +AR_u - AR_LIKE_c +AR_u - AR_LIKE_m +AR_u - AR_LIKE_O + +AR_LIKE_b - AR_u +AR_LIKE_u - AR_u +AR_LIKE_i - AR_u +AR_LIKE_f - AR_u +AR_LIKE_c - AR_u +AR_LIKE_m - AR_u +AR_LIKE_M - AR_u +AR_LIKE_O - AR_u + +AR_i - AR_LIKE_b +AR_i - AR_LIKE_u +AR_i - AR_LIKE_i +AR_i - AR_LIKE_f +AR_i - AR_LIKE_c +AR_i - AR_LIKE_m +AR_i - AR_LIKE_O + +AR_LIKE_b - AR_i +AR_LIKE_u - AR_i +AR_LIKE_i - AR_i +AR_LIKE_f - AR_i +AR_LIKE_c - AR_i +AR_LIKE_m - AR_i +AR_LIKE_M - AR_i +AR_LIKE_O - AR_i + +AR_f - AR_LIKE_b +AR_f - AR_LIKE_u +AR_f - AR_LIKE_i +AR_f - AR_LIKE_f +AR_f - AR_LIKE_c +AR_f - AR_LIKE_O + +AR_LIKE_b - AR_f +AR_LIKE_u - AR_f +AR_LIKE_i - AR_f +AR_LIKE_f - AR_f +AR_LIKE_c - AR_f +AR_LIKE_O - AR_f + +AR_c - AR_LIKE_b +AR_c - AR_LIKE_u +AR_c - AR_LIKE_i +AR_c - AR_LIKE_f +AR_c - AR_LIKE_c +AR_c - AR_LIKE_O + +AR_LIKE_b - AR_c +AR_LIKE_u - AR_c +AR_LIKE_i - AR_c +AR_LIKE_f - AR_c +AR_LIKE_c - AR_c +AR_LIKE_O - AR_c + +AR_m - AR_LIKE_b +AR_m - AR_LIKE_u +AR_m - AR_LIKE_i +AR_m - AR_LIKE_m + +AR_LIKE_b - AR_m +AR_LIKE_u - AR_m +AR_LIKE_i - AR_m +AR_LIKE_m - AR_m +AR_LIKE_M - AR_m + +AR_M - AR_LIKE_b +AR_M - AR_LIKE_u +AR_M - AR_LIKE_i +AR_M - AR_LIKE_m +AR_M - AR_LIKE_M + +AR_LIKE_M - AR_M + +AR_O - AR_LIKE_b +AR_O - AR_LIKE_u +AR_O - AR_LIKE_i +AR_O - AR_LIKE_f +AR_O - AR_LIKE_c +AR_O - AR_LIKE_O + +AR_LIKE_b - AR_O +AR_LIKE_u - AR_O +AR_LIKE_i - AR_O +AR_LIKE_f - AR_O +AR_LIKE_c - AR_O +AR_LIKE_O - AR_O + +AR_u += AR_b +AR_u += AR_u +AR_u += 1 # Allowed during runtime as long as the object is 0D and >=0 + +# Array floor division + +AR_b // AR_LIKE_b +AR_b // AR_LIKE_u +AR_b // AR_LIKE_i +AR_b // AR_LIKE_f +AR_b // AR_LIKE_O + +AR_LIKE_b // AR_b +AR_LIKE_u // AR_b +AR_LIKE_i // AR_b +AR_LIKE_f // AR_b +AR_LIKE_O // AR_b + +AR_u // AR_LIKE_b +AR_u // AR_LIKE_u +AR_u // AR_LIKE_i +AR_u // AR_LIKE_f +AR_u // AR_LIKE_O + +AR_LIKE_b // AR_u +AR_LIKE_u // AR_u +AR_LIKE_i // AR_u +AR_LIKE_f // AR_u +AR_LIKE_m // AR_u +AR_LIKE_O // AR_u + +AR_i // AR_LIKE_b +AR_i // AR_LIKE_u +AR_i // AR_LIKE_i +AR_i // AR_LIKE_f +AR_i // AR_LIKE_O + +AR_LIKE_b // AR_i +AR_LIKE_u // AR_i +AR_LIKE_i // AR_i +AR_LIKE_f // AR_i +AR_LIKE_m // AR_i +AR_LIKE_O // AR_i + +AR_f // AR_LIKE_b +AR_f // AR_LIKE_u +AR_f // AR_LIKE_i +AR_f // AR_LIKE_f +AR_f // AR_LIKE_O + +AR_LIKE_b // AR_f +AR_LIKE_u // AR_f +AR_LIKE_i // AR_f +AR_LIKE_f // AR_f +AR_LIKE_m // AR_f +AR_LIKE_O // AR_f + +AR_m // AR_LIKE_u +AR_m // AR_LIKE_i +AR_m // AR_LIKE_f +AR_m // AR_LIKE_m + +AR_LIKE_m // AR_m + +AR_m /= f +AR_m //= f +AR_m /= AR_f +AR_m /= AR_LIKE_f +AR_m //= AR_f +AR_m //= AR_LIKE_f + +AR_O // AR_LIKE_b +AR_O // AR_LIKE_u +AR_O // AR_LIKE_i +AR_O // AR_LIKE_f +AR_O // AR_LIKE_O + +AR_LIKE_b // AR_O +AR_LIKE_u // AR_O +AR_LIKE_i // AR_O +AR_LIKE_f // AR_O +AR_LIKE_O // AR_O + +# Inplace multiplication + +AR_b *= AR_LIKE_b + +AR_u *= AR_LIKE_b +AR_u *= AR_LIKE_u + +AR_i *= AR_LIKE_b +AR_i *= AR_LIKE_u +AR_i *= AR_LIKE_i + +AR_integer *= AR_LIKE_b +AR_integer *= AR_LIKE_u +AR_integer *= AR_LIKE_i + +AR_f *= AR_LIKE_b +AR_f *= AR_LIKE_u +AR_f *= AR_LIKE_i +AR_f *= AR_LIKE_f + +AR_c *= AR_LIKE_b +AR_c *= AR_LIKE_u +AR_c *= AR_LIKE_i +AR_c *= AR_LIKE_f +AR_c *= AR_LIKE_c + +AR_m *= AR_LIKE_b +AR_m *= AR_LIKE_u +AR_m *= AR_LIKE_i +AR_m *= AR_LIKE_f + +AR_O *= AR_LIKE_b +AR_O *= AR_LIKE_u +AR_O *= AR_LIKE_i +AR_O *= AR_LIKE_f +AR_O *= AR_LIKE_c +AR_O *= AR_LIKE_O + +# Inplace power + +AR_u **= AR_LIKE_b +AR_u **= AR_LIKE_u + +AR_i **= AR_LIKE_b +AR_i **= AR_LIKE_u +AR_i **= AR_LIKE_i + +AR_integer **= AR_LIKE_b +AR_integer **= AR_LIKE_u +AR_integer **= AR_LIKE_i + +AR_f **= AR_LIKE_b +AR_f **= AR_LIKE_u +AR_f **= AR_LIKE_i +AR_f **= AR_LIKE_f + +AR_c **= AR_LIKE_b +AR_c **= AR_LIKE_u +AR_c **= AR_LIKE_i +AR_c **= AR_LIKE_f +AR_c **= AR_LIKE_c + +AR_O **= AR_LIKE_b +AR_O **= AR_LIKE_u +AR_O **= AR_LIKE_i +AR_O **= AR_LIKE_f +AR_O **= AR_LIKE_c +AR_O **= AR_LIKE_O + +# unary ops + +-c16 +-c8 +-f8 +-f4 +-i8 +-i4 +with pytest.warns(RuntimeWarning): + -u8 + -u4 +-td +-AR_f + ++c16 ++c8 ++f8 ++f4 ++i8 ++i4 ++u8 ++u4 ++td ++AR_f + +abs(c16) +abs(c8) +abs(f8) +abs(f4) +abs(i8) +abs(i4) +abs(u8) +abs(u4) +abs(td) +abs(b_) +abs(AR_f) + +# Time structures + +dt + td +dt + i +dt + i4 +dt + i8 +dt - dt +dt - i +dt - i4 +dt - i8 + +td + td +td + i +td + i4 +td + i8 +td - td +td - i +td - i4 +td - i8 +td / f +td / f4 +td / f8 +td / td +td // td +td % td + + +# boolean + +b_ / b +b_ / b_ +b_ / i +b_ / i8 +b_ / i4 +b_ / u8 +b_ / u4 +b_ / f +b_ / f8 +b_ / f4 +b_ / c +b_ / c16 +b_ / c8 + +b / b_ +b_ / b_ +i / b_ +i8 / b_ +i4 / b_ +u8 / b_ +u4 / b_ +f / b_ +f8 / b_ +f4 / b_ +c / b_ +c16 / b_ +c8 / b_ + +# Complex + +c16 + c16 +c16 + f8 +c16 + i8 +c16 + c8 +c16 + f4 +c16 + i4 +c16 + b_ +c16 + b +c16 + c +c16 + f +c16 + i +c16 + AR_f + +c16 + c16 +f8 + c16 +i8 + c16 +c8 + c16 +f4 + c16 +i4 + c16 +b_ + c16 +b + c16 +c + c16 +f + c16 +i + c16 +AR_f + c16 + +c8 + c16 +c8 + f8 +c8 + i8 +c8 + c8 +c8 + f4 +c8 + i4 +c8 + b_ +c8 + b +c8 + c +c8 + f +c8 + i +c8 + AR_f + +c16 + c8 +f8 + c8 +i8 + c8 +c8 + c8 +f4 + c8 +i4 + c8 +b_ + c8 +b + c8 +c + c8 +f + c8 +i + c8 +AR_f + c8 + +# Float + +f8 + f8 +f8 + i8 +f8 + f4 +f8 + i4 +f8 + b_ +f8 + b +f8 + c +f8 + f +f8 + i +f8 + AR_f + +f8 + f8 +i8 + f8 +f4 + f8 +i4 + f8 +b_ + f8 +b + f8 +c + f8 +f + f8 +i + f8 +AR_f + f8 + +f4 + f8 +f4 + i8 +f4 + f4 +f4 + i4 +f4 + b_ +f4 + b +f4 + c +f4 + f +f4 + i +f4 + AR_f + +f8 + f4 +i8 + f4 +f4 + f4 +i4 + f4 +b_ + f4 +b + f4 +c + f4 +f + f4 +i + f4 +AR_f + f4 + +# Int + +i8 + i8 +i8 + u8 +i8 + i4 +i8 + u4 +i8 + b_ +i8 + b +i8 + c +i8 + f +i8 + i +i8 + AR_f + +u8 + u8 +u8 + i4 +u8 + u4 +u8 + b_ +u8 + b +u8 + c +u8 + f +u8 + i +u8 + AR_f + +i8 + i8 +u8 + i8 +i4 + i8 +u4 + i8 +b_ + i8 +b + i8 +c + i8 +f + i8 +i + i8 +AR_f + i8 + +u8 + u8 +i4 + u8 +u4 + u8 +b_ + u8 +b + u8 +c + u8 +f + u8 +i + u8 +AR_f + u8 + +i4 + i8 +i4 + i4 +i4 + i +i4 + b_ +i4 + b +i4 + AR_f + +u4 + i8 +u4 + i4 +u4 + u8 +u4 + u4 +u4 + i +u4 + b_ +u4 + b +u4 + AR_f + +i8 + i4 +i4 + i4 +i + i4 +b_ + i4 +b + i4 +AR_f + i4 + +i8 + u4 +i4 + u4 +u8 + u4 +u4 + u4 +b_ + u4 +b + u4 +i + u4 +AR_f + u4 diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/array_constructors.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/array_constructors.py new file mode 100644 index 0000000..17b6fab --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/array_constructors.py @@ -0,0 +1,137 @@ +from typing import Any + +import numpy as np +import numpy.typing as npt + +class Index: + def __index__(self) -> int: + return 0 + + +class SubClass(npt.NDArray[np.float64]): + pass + + +def func(i: int, j: int, **kwargs: Any) -> SubClass: + return B + + +i8 = np.int64(1) + +A = np.array([1]) +B = A.view(SubClass).copy() +B_stack = np.array([[1], [1]]).view(SubClass) +C = [1] + +np.ndarray(Index()) +np.ndarray([Index()]) + +np.array(1, dtype=float) +np.array(1, copy=None) +np.array(1, order='F') +np.array(1, order=None) +np.array(1, subok=True) +np.array(1, ndmin=3) +np.array(1, str, copy=True, order='C', subok=False, ndmin=2) + +np.asarray(A) +np.asarray(B) +np.asarray(C) + +np.asanyarray(A) +np.asanyarray(B) +np.asanyarray(B, dtype=int) +np.asanyarray(C) + +np.ascontiguousarray(A) +np.ascontiguousarray(B) +np.ascontiguousarray(C) + +np.asfortranarray(A) +np.asfortranarray(B) +np.asfortranarray(C) + +np.require(A) +np.require(B) +np.require(B, dtype=int) +np.require(B, requirements=None) +np.require(B, requirements="E") +np.require(B, requirements=["ENSUREARRAY"]) +np.require(B, requirements={"F", "E"}) +np.require(B, requirements=["C", "OWNDATA"]) +np.require(B, requirements="W") +np.require(B, requirements="A") +np.require(C) + +np.linspace(0, 2) +np.linspace(0.5, [0, 1, 2]) +np.linspace([0, 1, 2], 3) +np.linspace(0j, 2) +np.linspace(0, 2, num=10) +np.linspace(0, 2, endpoint=True) +np.linspace(0, 2, retstep=True) +np.linspace(0j, 2j, retstep=True) +np.linspace(0, 2, dtype=bool) +np.linspace([0, 1], [2, 3], axis=Index()) + +np.logspace(0, 2, base=2) +np.logspace(0, 2, base=2) +np.logspace(0, 2, base=[1j, 2j], num=2) + +np.geomspace(1, 2) + +np.zeros_like(A) +np.zeros_like(C) +np.zeros_like(B) +np.zeros_like(B, dtype=np.int64) + +np.ones_like(A) +np.ones_like(C) +np.ones_like(B) +np.ones_like(B, dtype=np.int64) + +np.empty_like(A) +np.empty_like(C) +np.empty_like(B) +np.empty_like(B, dtype=np.int64) + +np.full_like(A, i8) +np.full_like(C, i8) +np.full_like(B, i8) +np.full_like(B, i8, dtype=np.int64) + +np.ones(1) +np.ones([1, 1, 1]) + +np.full(1, i8) +np.full([1, 1, 1], i8) + +np.indices([1, 2, 3]) +np.indices([1, 2, 3], sparse=True) + +np.fromfunction(func, (3, 5)) + +np.identity(10) + +np.atleast_1d(C) +np.atleast_1d(A) +np.atleast_1d(C, C) +np.atleast_1d(C, A) +np.atleast_1d(A, A) + +np.atleast_2d(C) + +np.atleast_3d(C) + +np.vstack([C, C]) +np.vstack([C, A]) +np.vstack([A, A]) + +np.hstack([C, C]) + +np.stack([C, C]) +np.stack([C, C], axis=0) +np.stack([C, C], out=B_stack) + +np.block([[C, C], [C, C]]) +np.block(A) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/array_like.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/array_like.py new file mode 100644 index 0000000..264ec55 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/array_like.py @@ -0,0 +1,43 @@ +from __future__ import annotations + +from typing import TYPE_CHECKING + +import numpy as np + +if TYPE_CHECKING: + from numpy._typing import NDArray, ArrayLike, _SupportsArray + +x1: ArrayLike = True +x2: ArrayLike = 5 +x3: ArrayLike = 1.0 +x4: ArrayLike = 1 + 1j +x5: ArrayLike = np.int8(1) +x6: ArrayLike = np.float64(1) +x7: ArrayLike = np.complex128(1) +x8: ArrayLike = np.array([1, 2, 3]) +x9: ArrayLike = [1, 2, 3] +x10: ArrayLike = (1, 2, 3) +x11: ArrayLike = "foo" +x12: ArrayLike = memoryview(b'foo') + + +class A: + def __array__(self, dtype: np.dtype | None = None) -> NDArray[np.float64]: + return np.array([1.0, 2.0, 3.0]) + + +x13: ArrayLike = A() + +scalar: _SupportsArray[np.dtype[np.int64]] = np.int64(1) +scalar.__array__() +array: _SupportsArray[np.dtype[np.int_]] = np.array(1) +array.__array__() + +a: _SupportsArray[np.dtype[np.float64]] = A() +a.__array__() +a.__array__() + +# Escape hatch for when you mean to make something like an object +# array. +object_array_scalar: object = (i for i in range(10)) +np.array(object_array_scalar) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/arrayprint.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/arrayprint.py new file mode 100644 index 0000000..6c704c7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/arrayprint.py @@ -0,0 +1,37 @@ +import numpy as np + +AR = np.arange(10) +AR.setflags(write=False) + +with np.printoptions(): + np.set_printoptions( + precision=1, + threshold=2, + edgeitems=3, + linewidth=4, + suppress=False, + nanstr="Bob", + infstr="Bill", + formatter={}, + sign="+", + floatmode="unique", + ) + np.get_printoptions() + str(AR) + + np.array2string( + AR, + max_line_width=5, + precision=2, + suppress_small=True, + separator=";", + prefix="test", + threshold=5, + floatmode="fixed", + suffix="?", + legacy="1.13", + ) + np.format_float_scientific(1, precision=5) + np.format_float_positional(1, trim="k") + np.array_repr(AR) + np.array_str(AR) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/arrayterator.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/arrayterator.py new file mode 100644 index 0000000..572be5e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/arrayterator.py @@ -0,0 +1,27 @@ + +from __future__ import annotations + +from typing import Any +import numpy as np + +AR_i8: np.ndarray[Any, np.dtype[np.int_]] = np.arange(10) +ar_iter = np.lib.Arrayterator(AR_i8) + +ar_iter.var +ar_iter.buf_size +ar_iter.start +ar_iter.stop +ar_iter.step +ar_iter.shape +ar_iter.flat + +ar_iter.__array__() + +for i in ar_iter: + pass + +ar_iter[0] +ar_iter[...] +ar_iter[:] +ar_iter[0, 0, 0] +ar_iter[..., 0, :] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/bitwise_ops.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/bitwise_ops.py new file mode 100644 index 0000000..22a245d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/bitwise_ops.py @@ -0,0 +1,131 @@ +import numpy as np + +i8 = np.int64(1) +u8 = np.uint64(1) + +i4 = np.int32(1) +u4 = np.uint32(1) + +b_ = np.bool(1) + +b = bool(1) +i = int(1) + +AR = np.array([0, 1, 2], dtype=np.int32) +AR.setflags(write=False) + + +i8 << i8 +i8 >> i8 +i8 | i8 +i8 ^ i8 +i8 & i8 + +i << AR +i >> AR +i | AR +i ^ AR +i & AR + +i8 << AR +i8 >> AR +i8 | AR +i8 ^ AR +i8 & AR + +i4 << i4 +i4 >> i4 +i4 | i4 +i4 ^ i4 +i4 & i4 + +i8 << i4 +i8 >> i4 +i8 | i4 +i8 ^ i4 +i8 & i4 + +i8 << i +i8 >> i +i8 | i +i8 ^ i +i8 & i + +i8 << b_ +i8 >> b_ +i8 | b_ +i8 ^ b_ +i8 & b_ + +i8 << b +i8 >> b +i8 | b +i8 ^ b +i8 & b + +u8 << u8 +u8 >> u8 +u8 | u8 +u8 ^ u8 +u8 & u8 + +u4 << u4 +u4 >> u4 +u4 | u4 +u4 ^ u4 +u4 & u4 + +u4 << i4 +u4 >> i4 +u4 | i4 +u4 ^ i4 +u4 & i4 + +u4 << i +u4 >> i +u4 | i +u4 ^ i +u4 & i + +u8 << b_ +u8 >> b_ +u8 | b_ +u8 ^ b_ +u8 & b_ + +u8 << b +u8 >> b +u8 | b +u8 ^ b +u8 & b + +b_ << b_ +b_ >> b_ +b_ | b_ +b_ ^ b_ +b_ & b_ + +b_ << AR +b_ >> AR +b_ | AR +b_ ^ AR +b_ & AR + +b_ << b +b_ >> b +b_ | b +b_ ^ b +b_ & b + +b_ << i +b_ >> i +b_ | i +b_ ^ i +b_ & i + +~i8 +~i4 +~u8 +~u4 +~b_ +~AR diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/comparisons.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/comparisons.py new file mode 100644 index 0000000..a461d8b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/comparisons.py @@ -0,0 +1,315 @@ +from __future__ import annotations + +from typing import cast, Any +import numpy as np + +c16 = np.complex128() +f8 = np.float64() +i8 = np.int64() +u8 = np.uint64() + +c8 = np.complex64() +f4 = np.float32() +i4 = np.int32() +u4 = np.uint32() + +dt = np.datetime64(0, "D") +td = np.timedelta64(0, "D") + +b_ = np.bool() + +b = bool() +c = complex() +f = float() +i = int() + +SEQ = (0, 1, 2, 3, 4) + +AR_b: np.ndarray[Any, np.dtype[np.bool]] = np.array([True]) +AR_u: np.ndarray[Any, np.dtype[np.uint32]] = np.array([1], dtype=np.uint32) +AR_i: np.ndarray[Any, np.dtype[np.int_]] = np.array([1]) +AR_f: np.ndarray[Any, np.dtype[np.float64]] = np.array([1.0]) +AR_c: np.ndarray[Any, np.dtype[np.complex128]] = np.array([1.0j]) +AR_S: np.ndarray[Any, np.dtype[np.bytes_]] = np.array([b"a"], "S") +AR_T = cast(np.ndarray[Any, np.dtypes.StringDType], np.array(["a"], "T")) +AR_U: np.ndarray[Any, np.dtype[np.str_]] = np.array(["a"], "U") +AR_m: np.ndarray[Any, np.dtype[np.timedelta64]] = np.array([np.timedelta64("1")]) +AR_M: np.ndarray[Any, np.dtype[np.datetime64]] = np.array([np.datetime64("1")]) +AR_O: np.ndarray[Any, np.dtype[np.object_]] = np.array([1], dtype=object) + +# Arrays + +AR_b > AR_b +AR_b > AR_u +AR_b > AR_i +AR_b > AR_f +AR_b > AR_c + +AR_u > AR_b +AR_u > AR_u +AR_u > AR_i +AR_u > AR_f +AR_u > AR_c + +AR_i > AR_b +AR_i > AR_u +AR_i > AR_i +AR_i > AR_f +AR_i > AR_c + +AR_f > AR_b +AR_f > AR_u +AR_f > AR_i +AR_f > AR_f +AR_f > AR_c + +AR_c > AR_b +AR_c > AR_u +AR_c > AR_i +AR_c > AR_f +AR_c > AR_c + +AR_S > AR_S +AR_S > b"" + +AR_T > AR_T +AR_T > AR_U +AR_T > "" + +AR_U > AR_U +AR_U > AR_T +AR_U > "" + +AR_m > AR_b +AR_m > AR_u +AR_m > AR_i +AR_b > AR_m +AR_u > AR_m +AR_i > AR_m + +AR_M > AR_M + +AR_O > AR_O +1 > AR_O +AR_O > 1 + +# Time structures + +dt > dt + +td > td +td > i +td > i4 +td > i8 +td > AR_i +td > SEQ + +# boolean + +b_ > b +b_ > b_ +b_ > i +b_ > i8 +b_ > i4 +b_ > u8 +b_ > u4 +b_ > f +b_ > f8 +b_ > f4 +b_ > c +b_ > c16 +b_ > c8 +b_ > AR_i +b_ > SEQ + +# Complex + +c16 > c16 +c16 > f8 +c16 > i8 +c16 > c8 +c16 > f4 +c16 > i4 +c16 > b_ +c16 > b +c16 > c +c16 > f +c16 > i +c16 > AR_i +c16 > SEQ + +c16 > c16 +f8 > c16 +i8 > c16 +c8 > c16 +f4 > c16 +i4 > c16 +b_ > c16 +b > c16 +c > c16 +f > c16 +i > c16 +AR_i > c16 +SEQ > c16 + +c8 > c16 +c8 > f8 +c8 > i8 +c8 > c8 +c8 > f4 +c8 > i4 +c8 > b_ +c8 > b +c8 > c +c8 > f +c8 > i +c8 > AR_i +c8 > SEQ + +c16 > c8 +f8 > c8 +i8 > c8 +c8 > c8 +f4 > c8 +i4 > c8 +b_ > c8 +b > c8 +c > c8 +f > c8 +i > c8 +AR_i > c8 +SEQ > c8 + +# Float + +f8 > f8 +f8 > i8 +f8 > f4 +f8 > i4 +f8 > b_ +f8 > b +f8 > c +f8 > f +f8 > i +f8 > AR_i +f8 > SEQ + +f8 > f8 +i8 > f8 +f4 > f8 +i4 > f8 +b_ > f8 +b > f8 +c > f8 +f > f8 +i > f8 +AR_i > f8 +SEQ > f8 + +f4 > f8 +f4 > i8 +f4 > f4 +f4 > i4 +f4 > b_ +f4 > b +f4 > c +f4 > f +f4 > i +f4 > AR_i +f4 > SEQ + +f8 > f4 +i8 > f4 +f4 > f4 +i4 > f4 +b_ > f4 +b > f4 +c > f4 +f > f4 +i > f4 +AR_i > f4 +SEQ > f4 + +# Int + +i8 > i8 +i8 > u8 +i8 > i4 +i8 > u4 +i8 > b_ +i8 > b +i8 > c +i8 > f +i8 > i +i8 > AR_i +i8 > SEQ + +u8 > u8 +u8 > i4 +u8 > u4 +u8 > b_ +u8 > b +u8 > c +u8 > f +u8 > i +u8 > AR_i +u8 > SEQ + +i8 > i8 +u8 > i8 +i4 > i8 +u4 > i8 +b_ > i8 +b > i8 +c > i8 +f > i8 +i > i8 +AR_i > i8 +SEQ > i8 + +u8 > u8 +i4 > u8 +u4 > u8 +b_ > u8 +b > u8 +c > u8 +f > u8 +i > u8 +AR_i > u8 +SEQ > u8 + +i4 > i8 +i4 > i4 +i4 > i +i4 > b_ +i4 > b +i4 > AR_i +i4 > SEQ + +u4 > i8 +u4 > i4 +u4 > u8 +u4 > u4 +u4 > i +u4 > b_ +u4 > b +u4 > AR_i +u4 > SEQ + +i8 > i4 +i4 > i4 +i > i4 +b_ > i4 +b > i4 +AR_i > i4 +SEQ > i4 + +i8 > u4 +i4 > u4 +u8 > u4 +u4 > u4 +b_ > u4 +b > u4 +i > u4 +AR_i > u4 +SEQ > u4 diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/dtype.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/dtype.py new file mode 100644 index 0000000..9f11518 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/dtype.py @@ -0,0 +1,57 @@ +import numpy as np + +dtype_obj = np.dtype(np.str_) +void_dtype_obj = np.dtype([("f0", np.float64), ("f1", np.float32)]) + +np.dtype(dtype=np.int64) +np.dtype(int) +np.dtype("int") +np.dtype(None) + +np.dtype((int, 2)) +np.dtype((int, (1,))) + +np.dtype({"names": ["a", "b"], "formats": [int, float]}) +np.dtype({"names": ["a"], "formats": [int], "titles": [object]}) +np.dtype({"names": ["a"], "formats": [int], "titles": [object()]}) + +np.dtype([("name", np.str_, 16), ("grades", np.float64, (2,)), ("age", "int32")]) + +np.dtype( + { + "names": ["a", "b"], + "formats": [int, float], + "itemsize": 9, + "aligned": False, + "titles": ["x", "y"], + "offsets": [0, 1], + } +) + +np.dtype((np.float64, float)) + + +class Test: + dtype = np.dtype(float) + + +np.dtype(Test()) + +# Methods and attributes +dtype_obj.base +dtype_obj.subdtype +dtype_obj.newbyteorder() +dtype_obj.type +dtype_obj.name +dtype_obj.names + +dtype_obj * 0 +dtype_obj * 2 + +0 * dtype_obj +2 * dtype_obj + +void_dtype_obj["f0"] +void_dtype_obj[0] +void_dtype_obj[["f0", "f1"]] +void_dtype_obj[["f0"]] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/einsumfunc.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/einsumfunc.py new file mode 100644 index 0000000..429764e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/einsumfunc.py @@ -0,0 +1,36 @@ +from __future__ import annotations + +from typing import Any + +import numpy as np + +AR_LIKE_b = [True, True, True] +AR_LIKE_u = [np.uint32(1), np.uint32(2), np.uint32(3)] +AR_LIKE_i = [1, 2, 3] +AR_LIKE_f = [1.0, 2.0, 3.0] +AR_LIKE_c = [1j, 2j, 3j] +AR_LIKE_U = ["1", "2", "3"] + +OUT_f: np.ndarray[Any, np.dtype[np.float64]] = np.empty(3, dtype=np.float64) +OUT_c: np.ndarray[Any, np.dtype[np.complex128]] = np.empty(3, dtype=np.complex128) + +np.einsum("i,i->i", AR_LIKE_b, AR_LIKE_b) +np.einsum("i,i->i", AR_LIKE_u, AR_LIKE_u) +np.einsum("i,i->i", AR_LIKE_i, AR_LIKE_i) +np.einsum("i,i->i", AR_LIKE_f, AR_LIKE_f) +np.einsum("i,i->i", AR_LIKE_c, AR_LIKE_c) +np.einsum("i,i->i", AR_LIKE_b, AR_LIKE_i) +np.einsum("i,i,i,i->i", AR_LIKE_b, AR_LIKE_u, AR_LIKE_i, AR_LIKE_c) + +np.einsum("i,i->i", AR_LIKE_f, AR_LIKE_f, dtype="c16") +np.einsum("i,i->i", AR_LIKE_U, AR_LIKE_U, dtype=bool, casting="unsafe") +np.einsum("i,i->i", AR_LIKE_f, AR_LIKE_f, out=OUT_c) +np.einsum("i,i->i", AR_LIKE_U, AR_LIKE_U, dtype=int, casting="unsafe", out=OUT_f) + +np.einsum_path("i,i->i", AR_LIKE_b, AR_LIKE_b) +np.einsum_path("i,i->i", AR_LIKE_u, AR_LIKE_u) +np.einsum_path("i,i->i", AR_LIKE_i, AR_LIKE_i) +np.einsum_path("i,i->i", AR_LIKE_f, AR_LIKE_f) +np.einsum_path("i,i->i", AR_LIKE_c, AR_LIKE_c) +np.einsum_path("i,i->i", AR_LIKE_b, AR_LIKE_i) +np.einsum_path("i,i,i,i->i", AR_LIKE_b, AR_LIKE_u, AR_LIKE_i, AR_LIKE_c) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/flatiter.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/flatiter.py new file mode 100644 index 0000000..e64e426 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/flatiter.py @@ -0,0 +1,19 @@ +import numpy as np + +a = np.empty((2, 2)).flat + +a.base +a.copy() +a.coords +a.index +iter(a) +next(a) +a[0] +a[[0, 1, 2]] +a[...] +a[:] +a.__array__() +a.__array__(np.dtype(np.float64)) + +b = np.array([1]).flat +a[b] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/fromnumeric.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/fromnumeric.py new file mode 100644 index 0000000..7cc2bcf --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/fromnumeric.py @@ -0,0 +1,272 @@ +"""Tests for :mod:`numpy._core.fromnumeric`.""" + +import numpy as np + +A = np.array(True, ndmin=2, dtype=bool) +B = np.array(1.0, ndmin=2, dtype=np.float32) +A.setflags(write=False) +B.setflags(write=False) + +a = np.bool(True) +b = np.float32(1.0) +c = 1.0 +d = np.array(1.0, dtype=np.float32) # writeable + +np.take(a, 0) +np.take(b, 0) +np.take(c, 0) +np.take(A, 0) +np.take(B, 0) +np.take(A, [0]) +np.take(B, [0]) + +np.reshape(a, 1) +np.reshape(b, 1) +np.reshape(c, 1) +np.reshape(A, 1) +np.reshape(B, 1) + +np.choose(a, [True, True]) +np.choose(A, [1.0, 1.0]) + +np.repeat(a, 1) +np.repeat(b, 1) +np.repeat(c, 1) +np.repeat(A, 1) +np.repeat(B, 1) + +np.swapaxes(A, 0, 0) +np.swapaxes(B, 0, 0) + +np.transpose(a) +np.transpose(b) +np.transpose(c) +np.transpose(A) +np.transpose(B) + +np.partition(a, 0, axis=None) +np.partition(b, 0, axis=None) +np.partition(c, 0, axis=None) +np.partition(A, 0) +np.partition(B, 0) + +np.argpartition(a, 0) +np.argpartition(b, 0) +np.argpartition(c, 0) +np.argpartition(A, 0) +np.argpartition(B, 0) + +np.sort(A, 0) +np.sort(B, 0) + +np.argsort(A, 0) +np.argsort(B, 0) + +np.argmax(A) +np.argmax(B) +np.argmax(A, axis=0) +np.argmax(B, axis=0) + +np.argmin(A) +np.argmin(B) +np.argmin(A, axis=0) +np.argmin(B, axis=0) + +np.searchsorted(A[0], 0) +np.searchsorted(B[0], 0) +np.searchsorted(A[0], [0]) +np.searchsorted(B[0], [0]) + +np.resize(a, (5, 5)) +np.resize(b, (5, 5)) +np.resize(c, (5, 5)) +np.resize(A, (5, 5)) +np.resize(B, (5, 5)) + +np.squeeze(a) +np.squeeze(b) +np.squeeze(c) +np.squeeze(A) +np.squeeze(B) + +np.diagonal(A) +np.diagonal(B) + +np.trace(A) +np.trace(B) + +np.ravel(a) +np.ravel(b) +np.ravel(c) +np.ravel(A) +np.ravel(B) + +np.nonzero(A) +np.nonzero(B) + +np.shape(a) +np.shape(b) +np.shape(c) +np.shape(A) +np.shape(B) + +np.compress([True], a) +np.compress([True], b) +np.compress([True], c) +np.compress([True], A) +np.compress([True], B) + +np.clip(a, 0, 1.0) +np.clip(b, -1, 1) +np.clip(a, 0, None) +np.clip(b, None, 1) +np.clip(c, 0, 1) +np.clip(A, 0, 1) +np.clip(B, 0, 1) +np.clip(B, [0, 1], [1, 2]) + +np.sum(a) +np.sum(b) +np.sum(c) +np.sum(A) +np.sum(B) +np.sum(A, axis=0) +np.sum(B, axis=0) + +np.all(a) +np.all(b) +np.all(c) +np.all(A) +np.all(B) +np.all(A, axis=0) +np.all(B, axis=0) +np.all(A, keepdims=True) +np.all(B, keepdims=True) + +np.any(a) +np.any(b) +np.any(c) +np.any(A) +np.any(B) +np.any(A, axis=0) +np.any(B, axis=0) +np.any(A, keepdims=True) +np.any(B, keepdims=True) + +np.cumsum(a) +np.cumsum(b) +np.cumsum(c) +np.cumsum(A) +np.cumsum(B) + +np.cumulative_sum(a) +np.cumulative_sum(b) +np.cumulative_sum(c) +np.cumulative_sum(A, axis=0) +np.cumulative_sum(B, axis=0) + +np.ptp(b) +np.ptp(c) +np.ptp(B) +np.ptp(B, axis=0) +np.ptp(B, keepdims=True) + +np.amax(a) +np.amax(b) +np.amax(c) +np.amax(A) +np.amax(B) +np.amax(A, axis=0) +np.amax(B, axis=0) +np.amax(A, keepdims=True) +np.amax(B, keepdims=True) + +np.amin(a) +np.amin(b) +np.amin(c) +np.amin(A) +np.amin(B) +np.amin(A, axis=0) +np.amin(B, axis=0) +np.amin(A, keepdims=True) +np.amin(B, keepdims=True) + +np.prod(a) +np.prod(b) +np.prod(c) +np.prod(A) +np.prod(B) +np.prod(a, dtype=None) +np.prod(A, dtype=None) +np.prod(A, axis=0) +np.prod(B, axis=0) +np.prod(A, keepdims=True) +np.prod(B, keepdims=True) +np.prod(b, out=d) +np.prod(B, out=d) + +np.cumprod(a) +np.cumprod(b) +np.cumprod(c) +np.cumprod(A) +np.cumprod(B) + +np.cumulative_prod(a) +np.cumulative_prod(b) +np.cumulative_prod(c) +np.cumulative_prod(A, axis=0) +np.cumulative_prod(B, axis=0) + +np.ndim(a) +np.ndim(b) +np.ndim(c) +np.ndim(A) +np.ndim(B) + +np.size(a) +np.size(b) +np.size(c) +np.size(A) +np.size(B) + +np.around(a) +np.around(b) +np.around(c) +np.around(A) +np.around(B) + +np.mean(a) +np.mean(b) +np.mean(c) +np.mean(A) +np.mean(B) +np.mean(A, axis=0) +np.mean(B, axis=0) +np.mean(A, keepdims=True) +np.mean(B, keepdims=True) +np.mean(b, out=d) +np.mean(B, out=d) + +np.std(a) +np.std(b) +np.std(c) +np.std(A) +np.std(B) +np.std(A, axis=0) +np.std(B, axis=0) +np.std(A, keepdims=True) +np.std(B, keepdims=True) +np.std(b, out=d) +np.std(B, out=d) + +np.var(a) +np.var(b) +np.var(c) +np.var(A) +np.var(B) +np.var(A, axis=0) +np.var(B, axis=0) +np.var(A, keepdims=True) +np.var(B, keepdims=True) +np.var(b, out=d) +np.var(B, out=d) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/index_tricks.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/index_tricks.py new file mode 100644 index 0000000..dfc4ff2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/index_tricks.py @@ -0,0 +1,60 @@ +from __future__ import annotations +from typing import Any +import numpy as np + +AR_LIKE_b = [[True, True], [True, True]] +AR_LIKE_i = [[1, 2], [3, 4]] +AR_LIKE_f = [[1.0, 2.0], [3.0, 4.0]] +AR_LIKE_U = [["1", "2"], ["3", "4"]] + +AR_i8: np.ndarray[Any, np.dtype[np.int64]] = np.array(AR_LIKE_i, dtype=np.int64) + +np.ndenumerate(AR_i8) +np.ndenumerate(AR_LIKE_f) +np.ndenumerate(AR_LIKE_U) + +next(np.ndenumerate(AR_i8)) +next(np.ndenumerate(AR_LIKE_f)) +next(np.ndenumerate(AR_LIKE_U)) + +iter(np.ndenumerate(AR_i8)) +iter(np.ndenumerate(AR_LIKE_f)) +iter(np.ndenumerate(AR_LIKE_U)) + +iter(np.ndindex(1, 2, 3)) +next(np.ndindex(1, 2, 3)) + +np.unravel_index([22, 41, 37], (7, 6)) +np.unravel_index([31, 41, 13], (7, 6), order='F') +np.unravel_index(1621, (6, 7, 8, 9)) + +np.ravel_multi_index(AR_LIKE_i, (7, 6)) +np.ravel_multi_index(AR_LIKE_i, (7, 6), order='F') +np.ravel_multi_index(AR_LIKE_i, (4, 6), mode='clip') +np.ravel_multi_index(AR_LIKE_i, (4, 4), mode=('clip', 'wrap')) +np.ravel_multi_index((3, 1, 4, 1), (6, 7, 8, 9)) + +np.mgrid[1:1:2] +np.mgrid[1:1:2, None:10] + +np.ogrid[1:1:2] +np.ogrid[1:1:2, None:10] + +np.index_exp[0:1] +np.index_exp[0:1, None:3] +np.index_exp[0, 0:1, ..., [0, 1, 3]] + +np.s_[0:1] +np.s_[0:1, None:3] +np.s_[0, 0:1, ..., [0, 1, 3]] + +np.ix_(AR_LIKE_b[0]) +np.ix_(AR_LIKE_i[0], AR_LIKE_f[0]) +np.ix_(AR_i8[0]) + +np.fill_diagonal(AR_i8, 5) + +np.diag_indices(4) +np.diag_indices(2, 3) + +np.diag_indices_from(AR_i8) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/lib_user_array.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/lib_user_array.py new file mode 100644 index 0000000..62b7e85 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/lib_user_array.py @@ -0,0 +1,22 @@ +"""Based on the `if __name__ == "__main__"` test code in `lib/_user_array_impl.py`.""" + +from __future__ import annotations + +import numpy as np +from numpy.lib.user_array import container + +N = 10_000 +W = H = int(N**0.5) + +a: np.ndarray[tuple[int, int], np.dtype[np.int32]] +ua: container[tuple[int, int], np.dtype[np.int32]] + +a = np.arange(N, dtype=np.int32).reshape(W, H) +ua = container(a) + +ua_small: container[tuple[int, int], np.dtype[np.int32]] = ua[:3, :5] +ua_small[0, 0] = 10 + +ua_bool: container[tuple[int, int], np.dtype[np.bool]] = ua_small > 1 + +# shape: tuple[int, int] = np.shape(ua) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/lib_utils.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/lib_utils.py new file mode 100644 index 0000000..f9b3381 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/lib_utils.py @@ -0,0 +1,19 @@ +from __future__ import annotations + +from io import StringIO + +import numpy as np +import numpy.lib.array_utils as array_utils + +FILE = StringIO() +AR = np.arange(10, dtype=np.float64) + + +def func(a: int) -> bool: + return True + + +array_utils.byte_bounds(AR) +array_utils.byte_bounds(np.float64()) + +np.info(1, output=FILE) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/lib_version.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/lib_version.py new file mode 100644 index 0000000..f3825ec --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/lib_version.py @@ -0,0 +1,18 @@ +from numpy.lib import NumpyVersion + +version = NumpyVersion("1.8.0") + +version.vstring +version.version +version.major +version.minor +version.bugfix +version.pre_release +version.is_devversion + +version == version +version != version +version < "1.8.0" +version <= version +version > version +version >= "1.8.0" diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/literal.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/literal.py new file mode 100644 index 0000000..c8fa476 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/literal.py @@ -0,0 +1,51 @@ +from __future__ import annotations + +from typing import Any, TYPE_CHECKING +from functools import partial + +import pytest +import numpy as np + +if TYPE_CHECKING: + from collections.abc import Callable + +AR = np.array(0) +AR.setflags(write=False) + +KACF = frozenset({None, "K", "A", "C", "F"}) +ACF = frozenset({None, "A", "C", "F"}) +CF = frozenset({None, "C", "F"}) + +order_list: list[tuple[frozenset[str | None], Callable[..., Any]]] = [ + (KACF, AR.tobytes), + (KACF, partial(AR.astype, int)), + (KACF, AR.copy), + (ACF, partial(AR.reshape, 1)), + (KACF, AR.flatten), + (KACF, AR.ravel), + (KACF, partial(np.array, 1)), + # NOTE: __call__ is needed due to mypy bugs (#17620, #17631) + (KACF, partial(np.ndarray.__call__, 1)), + (CF, partial(np.zeros.__call__, 1)), + (CF, partial(np.ones.__call__, 1)), + (CF, partial(np.empty.__call__, 1)), + (CF, partial(np.full, 1, 1)), + (KACF, partial(np.zeros_like, AR)), + (KACF, partial(np.ones_like, AR)), + (KACF, partial(np.empty_like, AR)), + (KACF, partial(np.full_like, AR, 1)), + (KACF, partial(np.add.__call__, 1, 1)), # i.e. np.ufunc.__call__ + (ACF, partial(np.reshape, AR, 1)), + (KACF, partial(np.ravel, AR)), + (KACF, partial(np.asarray, 1)), + (KACF, partial(np.asanyarray, 1)), +] + +for order_set, func in order_list: + for order in order_set: + func(order=order) + + invalid_orders = KACF - order_set + for order in invalid_orders: + with pytest.raises(ValueError): + func(order=order) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ma.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ma.py new file mode 100644 index 0000000..e7915a5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ma.py @@ -0,0 +1,174 @@ +from typing import Any, TypeAlias, TypeVar, cast + +import numpy as np +import numpy.typing as npt +from numpy._typing import _Shape + +_ScalarT = TypeVar("_ScalarT", bound=np.generic) +MaskedArray: TypeAlias = np.ma.MaskedArray[_Shape, np.dtype[_ScalarT]] + +MAR_b: MaskedArray[np.bool] = np.ma.MaskedArray([True]) +MAR_u: MaskedArray[np.uint32] = np.ma.MaskedArray([1], dtype=np.uint32) +MAR_i: MaskedArray[np.int64] = np.ma.MaskedArray([1]) +MAR_f: MaskedArray[np.float64] = np.ma.MaskedArray([1.0]) +MAR_c: MaskedArray[np.complex128] = np.ma.MaskedArray([1j]) +MAR_td64: MaskedArray[np.timedelta64] = np.ma.MaskedArray([np.timedelta64(1, "D")]) +MAR_M_dt64: MaskedArray[np.datetime64] = np.ma.MaskedArray([np.datetime64(1, "D")]) +MAR_S: MaskedArray[np.bytes_] = np.ma.MaskedArray([b'foo'], dtype=np.bytes_) +MAR_U: MaskedArray[np.str_] = np.ma.MaskedArray(['foo'], dtype=np.str_) +MAR_T = cast(np.ma.MaskedArray[Any, np.dtypes.StringDType], + np.ma.MaskedArray(["a"], dtype="T")) + +AR_b: npt.NDArray[np.bool] = np.array([True, False, True]) + +AR_LIKE_b = [True] +AR_LIKE_u = [np.uint32(1)] +AR_LIKE_i = [1] +AR_LIKE_f = [1.0] +AR_LIKE_c = [1j] +AR_LIKE_m = [np.timedelta64(1, "D")] +AR_LIKE_M = [np.datetime64(1, "D")] + +MAR_f.mask = AR_b +MAR_f.mask = np.False_ + +# Inplace addition + +MAR_b += AR_LIKE_b + +MAR_u += AR_LIKE_b +MAR_u += AR_LIKE_u + +MAR_i += AR_LIKE_b +MAR_i += 2 +MAR_i += AR_LIKE_i + +MAR_f += AR_LIKE_b +MAR_f += 2 +MAR_f += AR_LIKE_u +MAR_f += AR_LIKE_i +MAR_f += AR_LIKE_f + +MAR_c += AR_LIKE_b +MAR_c += AR_LIKE_u +MAR_c += AR_LIKE_i +MAR_c += AR_LIKE_f +MAR_c += AR_LIKE_c + +MAR_td64 += AR_LIKE_b +MAR_td64 += AR_LIKE_u +MAR_td64 += AR_LIKE_i +MAR_td64 += AR_LIKE_m +MAR_M_dt64 += AR_LIKE_b +MAR_M_dt64 += AR_LIKE_u +MAR_M_dt64 += AR_LIKE_i +MAR_M_dt64 += AR_LIKE_m + +MAR_S += b'snakes' +MAR_U += 'snakes' +MAR_T += 'snakes' + +# Inplace subtraction + +MAR_u -= AR_LIKE_b +MAR_u -= AR_LIKE_u + +MAR_i -= AR_LIKE_b +MAR_i -= AR_LIKE_i + +MAR_f -= AR_LIKE_b +MAR_f -= AR_LIKE_u +MAR_f -= AR_LIKE_i +MAR_f -= AR_LIKE_f + +MAR_c -= AR_LIKE_b +MAR_c -= AR_LIKE_u +MAR_c -= AR_LIKE_i +MAR_c -= AR_LIKE_f +MAR_c -= AR_LIKE_c + +MAR_td64 -= AR_LIKE_b +MAR_td64 -= AR_LIKE_u +MAR_td64 -= AR_LIKE_i +MAR_td64 -= AR_LIKE_m +MAR_M_dt64 -= AR_LIKE_b +MAR_M_dt64 -= AR_LIKE_u +MAR_M_dt64 -= AR_LIKE_i +MAR_M_dt64 -= AR_LIKE_m + +# Inplace floor division + +MAR_f //= AR_LIKE_b +MAR_f //= 2 +MAR_f //= AR_LIKE_u +MAR_f //= AR_LIKE_i +MAR_f //= AR_LIKE_f + +MAR_td64 //= AR_LIKE_i + +# Inplace true division + +MAR_f /= AR_LIKE_b +MAR_f /= 2 +MAR_f /= AR_LIKE_u +MAR_f /= AR_LIKE_i +MAR_f /= AR_LIKE_f + +MAR_c /= AR_LIKE_b +MAR_c /= AR_LIKE_u +MAR_c /= AR_LIKE_i +MAR_c /= AR_LIKE_f +MAR_c /= AR_LIKE_c + +MAR_td64 /= AR_LIKE_i + +# Inplace multiplication + +MAR_b *= AR_LIKE_b + +MAR_u *= AR_LIKE_b +MAR_u *= AR_LIKE_u + +MAR_i *= AR_LIKE_b +MAR_i *= 2 +MAR_i *= AR_LIKE_i + +MAR_f *= AR_LIKE_b +MAR_f *= 2 +MAR_f *= AR_LIKE_u +MAR_f *= AR_LIKE_i +MAR_f *= AR_LIKE_f + +MAR_c *= AR_LIKE_b +MAR_c *= AR_LIKE_u +MAR_c *= AR_LIKE_i +MAR_c *= AR_LIKE_f +MAR_c *= AR_LIKE_c + +MAR_td64 *= AR_LIKE_b +MAR_td64 *= AR_LIKE_u +MAR_td64 *= AR_LIKE_i +MAR_td64 *= AR_LIKE_f + +MAR_S *= 2 +MAR_U *= 2 +MAR_T *= 2 + +# Inplace power + +MAR_u **= AR_LIKE_b +MAR_u **= AR_LIKE_u + +MAR_i **= AR_LIKE_b +MAR_i **= AR_LIKE_i + +MAR_f **= AR_LIKE_b +MAR_f **= AR_LIKE_u +MAR_f **= AR_LIKE_i +MAR_f **= AR_LIKE_f + +MAR_c **= AR_LIKE_b +MAR_c **= AR_LIKE_u +MAR_c **= AR_LIKE_i +MAR_c **= AR_LIKE_f +MAR_c **= AR_LIKE_c diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/mod.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/mod.py new file mode 100644 index 0000000..2b7e6cd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/mod.py @@ -0,0 +1,149 @@ +import numpy as np + +f8 = np.float64(1) +i8 = np.int64(1) +u8 = np.uint64(1) + +f4 = np.float32(1) +i4 = np.int32(1) +u4 = np.uint32(1) + +td = np.timedelta64(1, "D") +b_ = np.bool(1) + +b = bool(1) +f = float(1) +i = int(1) + +AR = np.array([1], dtype=np.bool) +AR.setflags(write=False) + +AR2 = np.array([1], dtype=np.timedelta64) +AR2.setflags(write=False) + +# Time structures + +td % td +td % AR2 +AR2 % td + +divmod(td, td) +divmod(td, AR2) +divmod(AR2, td) + +# Bool + +b_ % b +b_ % i +b_ % f +b_ % b_ +b_ % i8 +b_ % u8 +b_ % f8 +b_ % AR + +divmod(b_, b) +divmod(b_, i) +divmod(b_, f) +divmod(b_, b_) +divmod(b_, i8) +divmod(b_, u8) +divmod(b_, f8) +divmod(b_, AR) + +b % b_ +i % b_ +f % b_ +b_ % b_ +i8 % b_ +u8 % b_ +f8 % b_ +AR % b_ + +divmod(b, b_) +divmod(i, b_) +divmod(f, b_) +divmod(b_, b_) +divmod(i8, b_) +divmod(u8, b_) +divmod(f8, b_) +divmod(AR, b_) + +# int + +i8 % b +i8 % i +i8 % f +i8 % i8 +i8 % f8 +i4 % i8 +i4 % f8 +i4 % i4 +i4 % f4 +i8 % AR + +divmod(i8, b) +divmod(i8, i) +divmod(i8, f) +divmod(i8, i8) +divmod(i8, f8) +divmod(i8, i4) +divmod(i8, f4) +divmod(i4, i4) +divmod(i4, f4) +divmod(i8, AR) + +b % i8 +i % i8 +f % i8 +i8 % i8 +f8 % i8 +i8 % i4 +f8 % i4 +i4 % i4 +f4 % i4 +AR % i8 + +divmod(b, i8) +divmod(i, i8) +divmod(f, i8) +divmod(i8, i8) +divmod(f8, i8) +divmod(i4, i8) +divmod(f4, i8) +divmod(i4, i4) +divmod(f4, i4) +divmod(AR, i8) + +# float + +f8 % b +f8 % i +f8 % f +i8 % f4 +f4 % f4 +f8 % AR + +divmod(f8, b) +divmod(f8, i) +divmod(f8, f) +divmod(f8, f8) +divmod(f8, f4) +divmod(f4, f4) +divmod(f8, AR) + +b % f8 +i % f8 +f % f8 +f8 % f8 +f8 % f8 +f4 % f4 +AR % f8 + +divmod(b, f8) +divmod(i, f8) +divmod(f, f8) +divmod(f8, f8) +divmod(f4, f8) +divmod(f4, f4) +divmod(AR, f8) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/modules.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/modules.py new file mode 100644 index 0000000..0c2fd4b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/modules.py @@ -0,0 +1,45 @@ +import numpy as np +from numpy import f2py + +np.char +np.ctypeslib +np.emath +np.fft +np.lib +np.linalg +np.ma +np.matrixlib +np.polynomial +np.random +np.rec +np.strings +np.testing +np.version + +np.lib.format +np.lib.mixins +np.lib.scimath +np.lib.stride_tricks +np.lib.array_utils +np.ma.extras +np.polynomial.chebyshev +np.polynomial.hermite +np.polynomial.hermite_e +np.polynomial.laguerre +np.polynomial.legendre +np.polynomial.polynomial + +np.__path__ +np.__version__ + +np.__all__ +np.char.__all__ +np.ctypeslib.__all__ +np.emath.__all__ +np.lib.__all__ +np.ma.__all__ +np.random.__all__ +np.rec.__all__ +np.strings.__all__ +np.testing.__all__ +f2py.__all__ diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/multiarray.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/multiarray.py new file mode 100644 index 0000000..26cedfd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/multiarray.py @@ -0,0 +1,76 @@ +import numpy as np +import numpy.typing as npt + +AR_f8: npt.NDArray[np.float64] = np.array([1.0]) +AR_i4 = np.array([1], dtype=np.int32) +AR_u1 = np.array([1], dtype=np.uint8) + +AR_LIKE_f = [1.5] +AR_LIKE_i = [1] + +b_f8 = np.broadcast(AR_f8) +b_i4_f8_f8 = np.broadcast(AR_i4, AR_f8, AR_f8) + +next(b_f8) +b_f8.reset() +b_f8.index +b_f8.iters +b_f8.nd +b_f8.ndim +b_f8.numiter +b_f8.shape +b_f8.size + +next(b_i4_f8_f8) +b_i4_f8_f8.reset() +b_i4_f8_f8.ndim +b_i4_f8_f8.index +b_i4_f8_f8.iters +b_i4_f8_f8.nd +b_i4_f8_f8.numiter +b_i4_f8_f8.shape +b_i4_f8_f8.size + +np.inner(AR_f8, AR_i4) + +np.where([True, True, False]) +np.where([True, True, False], 1, 0) + +np.lexsort([0, 1, 2]) + +np.can_cast(np.dtype("i8"), int) +np.can_cast(AR_f8, "f8") +np.can_cast(AR_f8, np.complex128, casting="unsafe") + +np.min_scalar_type([1]) +np.min_scalar_type(AR_f8) + +np.result_type(int, AR_i4) +np.result_type(AR_f8, AR_u1) +np.result_type(AR_f8, np.complex128) + +np.dot(AR_LIKE_f, AR_i4) +np.dot(AR_u1, 1) +np.dot(1.5j, 1) +np.dot(AR_u1, 1, out=AR_f8) + +np.vdot(AR_LIKE_f, AR_i4) +np.vdot(AR_u1, 1) +np.vdot(1.5j, 1) + +np.bincount(AR_i4) + +np.copyto(AR_f8, [1.6]) + +np.putmask(AR_f8, [True], 1.5) + +np.packbits(AR_i4) +np.packbits(AR_u1) + +np.unpackbits(AR_u1) + +np.shares_memory(1, 2) +np.shares_memory(AR_f8, AR_f8, max_work=1) + +np.may_share_memory(1, 2) +np.may_share_memory(AR_f8, AR_f8, max_work=1) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ndarray_conversion.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ndarray_conversion.py new file mode 100644 index 0000000..76da1da --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ndarray_conversion.py @@ -0,0 +1,87 @@ +import os +import tempfile + +import numpy as np + +nd = np.array([[1, 2], [3, 4]]) +scalar_array = np.array(1) + +# item +scalar_array.item() +nd.item(1) +nd.item(0, 1) +nd.item((0, 1)) + +# tobytes +nd.tobytes() +nd.tobytes("C") +nd.tobytes(None) + +# tofile +if os.name != "nt": + with tempfile.NamedTemporaryFile(suffix=".txt") as tmp: + nd.tofile(tmp.name) + nd.tofile(tmp.name, "") + nd.tofile(tmp.name, sep="") + + nd.tofile(tmp.name, "", "%s") + nd.tofile(tmp.name, format="%s") + + nd.tofile(tmp) + +# dump is pretty simple +# dumps is pretty simple + +# astype +nd.astype("float") +nd.astype(float) + +nd.astype(float, "K") +nd.astype(float, order="K") + +nd.astype(float, "K", "unsafe") +nd.astype(float, casting="unsafe") + +nd.astype(float, "K", "unsafe", True) +nd.astype(float, subok=True) + +nd.astype(float, "K", "unsafe", True, True) +nd.astype(float, copy=True) + +# byteswap +nd.byteswap() +nd.byteswap(True) + +# copy +nd.copy() +nd.copy("C") + +# view +nd.view() +nd.view(np.int64) +nd.view(dtype=np.int64) +nd.view(np.int64, np.matrix) +nd.view(type=np.matrix) + +# getfield +complex_array = np.array([[1 + 1j, 0], [0, 1 - 1j]], dtype=np.complex128) + +complex_array.getfield("float") +complex_array.getfield(float) + +complex_array.getfield("float", 8) +complex_array.getfield(float, offset=8) + +# setflags +nd.setflags() + +nd.setflags(True) +nd.setflags(write=True) + +nd.setflags(True, True) +nd.setflags(write=True, align=True) + +nd.setflags(True, True, False) +nd.setflags(write=True, align=True, uic=False) + +# fill is pretty simple diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ndarray_misc.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ndarray_misc.py new file mode 100644 index 0000000..bb290cd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ndarray_misc.py @@ -0,0 +1,198 @@ +""" +Tests for miscellaneous (non-magic) ``np.ndarray``/``np.generic`` methods. + +More extensive tests are performed for the methods' +function-based counterpart in `../from_numeric.py`. + +""" + +from __future__ import annotations + +import operator +from typing import cast, Any + +import numpy as np +import numpy.typing as npt + +class SubClass(npt.NDArray[np.float64]): ... +class IntSubClass(npt.NDArray[np.intp]): ... + +i4 = np.int32(1) +A: np.ndarray[Any, np.dtype[np.int32]] = np.array([[1]], dtype=np.int32) +B0 = np.empty((), dtype=np.int32).view(SubClass) +B1 = np.empty((1,), dtype=np.int32).view(SubClass) +B2 = np.empty((1, 1), dtype=np.int32).view(SubClass) +B_int0: IntSubClass = np.empty((), dtype=np.intp).view(IntSubClass) +C: np.ndarray[Any, np.dtype[np.int32]] = np.array([0, 1, 2], dtype=np.int32) +D = np.ones(3).view(SubClass) + +ctypes_obj = A.ctypes + +i4.all() +A.all() +A.all(axis=0) +A.all(keepdims=True) +A.all(out=B0) + +i4.any() +A.any() +A.any(axis=0) +A.any(keepdims=True) +A.any(out=B0) + +i4.argmax() +A.argmax() +A.argmax(axis=0) +A.argmax(out=B_int0) + +i4.argmin() +A.argmin() +A.argmin(axis=0) +A.argmin(out=B_int0) + +i4.argsort() +A.argsort() + +i4.choose([()]) +_choices = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype=np.int32) +C.choose(_choices) +C.choose(_choices, out=D) + +i4.clip(1) +A.clip(1) +A.clip(None, 1) +A.clip(1, out=B2) +A.clip(None, 1, out=B2) + +i4.compress([1]) +A.compress([1]) +A.compress([1], out=B1) + +i4.conj() +A.conj() +B0.conj() + +i4.conjugate() +A.conjugate() +B0.conjugate() + +i4.cumprod() +A.cumprod() +A.cumprod(out=B1) + +i4.cumsum() +A.cumsum() +A.cumsum(out=B1) + +i4.max() +A.max() +A.max(axis=0) +A.max(keepdims=True) +A.max(out=B0) + +i4.mean() +A.mean() +A.mean(axis=0) +A.mean(keepdims=True) +A.mean(out=B0) + +i4.min() +A.min() +A.min(axis=0) +A.min(keepdims=True) +A.min(out=B0) + +i4.prod() +A.prod() +A.prod(axis=0) +A.prod(keepdims=True) +A.prod(out=B0) + +i4.round() +A.round() +A.round(out=B2) + +i4.repeat(1) +A.repeat(1) +B0.repeat(1) + +i4.std() +A.std() +A.std(axis=0) +A.std(keepdims=True) +A.std(out=B0.astype(np.float64)) + +i4.sum() +A.sum() +A.sum(axis=0) +A.sum(keepdims=True) +A.sum(out=B0) + +i4.take(0) +A.take(0) +A.take([0]) +A.take(0, out=B0) +A.take([0], out=B1) + +i4.var() +A.var() +A.var(axis=0) +A.var(keepdims=True) +A.var(out=B0) + +A.argpartition([0]) + +A.diagonal() + +A.dot(1) +A.dot(1, out=B2) + +A.nonzero() + +C.searchsorted(1) + +A.trace() +A.trace(out=B0) + +void = cast(np.void, np.array(1, dtype=[("f", np.float64)]).take(0)) +void.setfield(10, np.float64) + +A.item(0) +C.item(0) + +A.ravel() +C.ravel() + +A.flatten() +C.flatten() + +A.reshape(1) +C.reshape(3) + +int(np.array(1.0, dtype=np.float64)) +int(np.array("1", dtype=np.str_)) + +float(np.array(1.0, dtype=np.float64)) +float(np.array("1", dtype=np.str_)) + +complex(np.array(1.0, dtype=np.float64)) + +operator.index(np.array(1, dtype=np.int64)) + +# this fails on numpy 2.2.1 +# https://github.com/scipy/scipy/blob/a755ee77ec47a64849abe42c349936475a6c2f24/scipy/io/arff/tests/test_arffread.py#L41-L44 +A_float = np.array([[1, 5], [2, 4], [np.nan, np.nan]]) +A_void: npt.NDArray[np.void] = np.empty(3, [("yop", float), ("yap", float)]) +A_void["yop"] = A_float[:, 0] +A_void["yap"] = A_float[:, 1] + +# deprecated + +with np.testing.assert_warns(DeprecationWarning): + ctypes_obj.get_data() # type: ignore[deprecated] # pyright: ignore[reportDeprecated] +with np.testing.assert_warns(DeprecationWarning): + ctypes_obj.get_shape() # type: ignore[deprecated] # pyright: ignore[reportDeprecated] +with np.testing.assert_warns(DeprecationWarning): + ctypes_obj.get_strides() # type: ignore[deprecated] # pyright: ignore[reportDeprecated] +with np.testing.assert_warns(DeprecationWarning): + ctypes_obj.get_as_parameter() # type: ignore[deprecated] # pyright: ignore[reportDeprecated] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ndarray_shape_manipulation.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ndarray_shape_manipulation.py new file mode 100644 index 0000000..0ca3dff --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ndarray_shape_manipulation.py @@ -0,0 +1,47 @@ +import numpy as np + +nd1 = np.array([[1, 2], [3, 4]]) + +# reshape +nd1.reshape(4) +nd1.reshape(2, 2) +nd1.reshape((2, 2)) + +nd1.reshape((2, 2), order="C") +nd1.reshape(4, order="C") + +# resize +nd1.resize() +nd1.resize(4) +nd1.resize(2, 2) +nd1.resize((2, 2)) + +nd1.resize((2, 2), refcheck=True) +nd1.resize(4, refcheck=True) + +nd2 = np.array([[1, 2], [3, 4]]) + +# transpose +nd2.transpose() +nd2.transpose(1, 0) +nd2.transpose((1, 0)) + +# swapaxes +nd2.swapaxes(0, 1) + +# flatten +nd2.flatten() +nd2.flatten("C") + +# ravel +nd2.ravel() +nd2.ravel("C") + +# squeeze +nd2.squeeze() + +nd3 = np.array([[1, 2]]) +nd3.squeeze(0) + +nd4 = np.array([[[1, 2]]]) +nd4.squeeze((0, 1)) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/nditer.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/nditer.py new file mode 100644 index 0000000..25a5b44 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/nditer.py @@ -0,0 +1,4 @@ +import numpy as np + +arr = np.array([1]) +np.nditer([arr, None]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/numeric.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/numeric.py new file mode 100644 index 0000000..1eb14cf --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/numeric.py @@ -0,0 +1,95 @@ +""" +Tests for :mod:`numpy._core.numeric`. + +Does not include tests which fall under ``array_constructors``. + +""" + +from __future__ import annotations +from typing import cast + +import numpy as np +import numpy.typing as npt + +class SubClass(npt.NDArray[np.float64]): ... + + +i8 = np.int64(1) + +A = cast( + np.ndarray[tuple[int, int, int], np.dtype[np.intp]], + np.arange(27).reshape(3, 3, 3), +) +B: list[list[list[int]]] = A.tolist() +C = np.empty((27, 27)).view(SubClass) + +np.count_nonzero(i8) +np.count_nonzero(A) +np.count_nonzero(B) +np.count_nonzero(A, keepdims=True) +np.count_nonzero(A, axis=0) + +np.isfortran(i8) +np.isfortran(A) + +np.argwhere(i8) +np.argwhere(A) + +np.flatnonzero(i8) +np.flatnonzero(A) + +np.correlate(B[0][0], A.ravel(), mode="valid") +np.correlate(A.ravel(), A.ravel(), mode="same") + +np.convolve(B[0][0], A.ravel(), mode="valid") +np.convolve(A.ravel(), A.ravel(), mode="same") + +np.outer(i8, A) +np.outer(B, A) +np.outer(A, A) +np.outer(A, A, out=C) + +np.tensordot(B, A) +np.tensordot(A, A) +np.tensordot(A, A, axes=0) +np.tensordot(A, A, axes=(0, 1)) + +np.isscalar(i8) +np.isscalar(A) +np.isscalar(B) + +np.roll(A, 1) +np.roll(A, (1, 2)) +np.roll(B, 1) + +np.rollaxis(A, 0, 1) + +np.moveaxis(A, 0, 1) +np.moveaxis(A, (0, 1), (1, 2)) + +np.cross(B, A) +np.cross(A, A) + +np.indices([0, 1, 2]) +np.indices([0, 1, 2], sparse=False) +np.indices([0, 1, 2], sparse=True) + +np.binary_repr(1) + +np.base_repr(1) + +np.allclose(i8, A) +np.allclose(B, A) +np.allclose(A, A) + +np.isclose(i8, A) +np.isclose(B, A) +np.isclose(A, A) + +np.array_equal(i8, A) +np.array_equal(B, A) +np.array_equal(A, A) + +np.array_equiv(i8, A) +np.array_equiv(B, A) +np.array_equiv(A, A) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/numerictypes.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/numerictypes.py new file mode 100644 index 0000000..24e1a99 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/numerictypes.py @@ -0,0 +1,17 @@ +import numpy as np + +np.isdtype(np.float64, (np.int64, np.float64)) +np.isdtype(np.int64, "signed integer") + +np.issubdtype("S1", np.bytes_) +np.issubdtype(np.float64, np.float32) + +np.ScalarType +np.ScalarType[0] +np.ScalarType[3] +np.ScalarType[8] +np.ScalarType[10] + +np.typecodes["Character"] +np.typecodes["Complex"] +np.typecodes["All"] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/random.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/random.py new file mode 100644 index 0000000..bce204a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/random.py @@ -0,0 +1,1497 @@ +from __future__ import annotations + +from typing import Any +import numpy as np + +SEED_NONE = None +SEED_INT = 4579435749574957634658964293569 +SEED_ARR: np.ndarray[Any, np.dtype[np.int64]] = np.array([1, 2, 3, 4], dtype=np.int64) +SEED_ARRLIKE: list[int] = [1, 2, 3, 4] +SEED_SEED_SEQ: np.random.SeedSequence = np.random.SeedSequence(0) +SEED_MT19937: np.random.MT19937 = np.random.MT19937(0) +SEED_PCG64: np.random.PCG64 = np.random.PCG64(0) +SEED_PHILOX: np.random.Philox = np.random.Philox(0) +SEED_SFC64: np.random.SFC64 = np.random.SFC64(0) + +# default rng +np.random.default_rng() +np.random.default_rng(SEED_NONE) +np.random.default_rng(SEED_INT) +np.random.default_rng(SEED_ARR) +np.random.default_rng(SEED_ARRLIKE) +np.random.default_rng(SEED_SEED_SEQ) +np.random.default_rng(SEED_MT19937) +np.random.default_rng(SEED_PCG64) +np.random.default_rng(SEED_PHILOX) +np.random.default_rng(SEED_SFC64) + +# Seed Sequence +np.random.SeedSequence(SEED_NONE) +np.random.SeedSequence(SEED_INT) +np.random.SeedSequence(SEED_ARR) +np.random.SeedSequence(SEED_ARRLIKE) + +# Bit Generators +np.random.MT19937(SEED_NONE) +np.random.MT19937(SEED_INT) +np.random.MT19937(SEED_ARR) +np.random.MT19937(SEED_ARRLIKE) +np.random.MT19937(SEED_SEED_SEQ) + +np.random.PCG64(SEED_NONE) +np.random.PCG64(SEED_INT) +np.random.PCG64(SEED_ARR) +np.random.PCG64(SEED_ARRLIKE) +np.random.PCG64(SEED_SEED_SEQ) + +np.random.Philox(SEED_NONE) +np.random.Philox(SEED_INT) +np.random.Philox(SEED_ARR) +np.random.Philox(SEED_ARRLIKE) +np.random.Philox(SEED_SEED_SEQ) + +np.random.SFC64(SEED_NONE) +np.random.SFC64(SEED_INT) +np.random.SFC64(SEED_ARR) +np.random.SFC64(SEED_ARRLIKE) +np.random.SFC64(SEED_SEED_SEQ) + +seed_seq: np.random.bit_generator.SeedSequence = np.random.SeedSequence(SEED_NONE) +seed_seq.spawn(10) +seed_seq.generate_state(3) +seed_seq.generate_state(3, "u4") +seed_seq.generate_state(3, "uint32") +seed_seq.generate_state(3, "u8") +seed_seq.generate_state(3, "uint64") +seed_seq.generate_state(3, np.uint32) +seed_seq.generate_state(3, np.uint64) + + +def_gen: np.random.Generator = np.random.default_rng() + +D_arr_0p1: np.ndarray[Any, np.dtype[np.float64]] = np.array([0.1]) +D_arr_0p5: np.ndarray[Any, np.dtype[np.float64]] = np.array([0.5]) +D_arr_0p9: np.ndarray[Any, np.dtype[np.float64]] = np.array([0.9]) +D_arr_1p5: np.ndarray[Any, np.dtype[np.float64]] = np.array([1.5]) +I_arr_10: np.ndarray[Any, np.dtype[np.int_]] = np.array([10], dtype=np.int_) +I_arr_20: np.ndarray[Any, np.dtype[np.int_]] = np.array([20], dtype=np.int_) +D_arr_like_0p1: list[float] = [0.1] +D_arr_like_0p5: list[float] = [0.5] +D_arr_like_0p9: list[float] = [0.9] +D_arr_like_1p5: list[float] = [1.5] +I_arr_like_10: list[int] = [10] +I_arr_like_20: list[int] = [20] +D_2D_like: list[list[float]] = [[1, 2], [2, 3], [3, 4], [4, 5.1]] +D_2D: np.ndarray[Any, np.dtype[np.float64]] = np.array(D_2D_like) + +S_out: np.ndarray[Any, np.dtype[np.float32]] = np.empty(1, dtype=np.float32) +D_out: np.ndarray[Any, np.dtype[np.float64]] = np.empty(1) + +def_gen.standard_normal() +def_gen.standard_normal(dtype=np.float32) +def_gen.standard_normal(dtype="float32") +def_gen.standard_normal(dtype="double") +def_gen.standard_normal(dtype=np.float64) +def_gen.standard_normal(size=None) +def_gen.standard_normal(size=1) +def_gen.standard_normal(size=1, dtype=np.float32) +def_gen.standard_normal(size=1, dtype="f4") +def_gen.standard_normal(size=1, dtype="float32", out=S_out) +def_gen.standard_normal(dtype=np.float32, out=S_out) +def_gen.standard_normal(size=1, dtype=np.float64) +def_gen.standard_normal(size=1, dtype="float64") +def_gen.standard_normal(size=1, dtype="f8") +def_gen.standard_normal(out=D_out) +def_gen.standard_normal(size=1, dtype="float64") +def_gen.standard_normal(size=1, dtype="float64", out=D_out) + +def_gen.random() +def_gen.random(dtype=np.float32) +def_gen.random(dtype="float32") +def_gen.random(dtype="double") +def_gen.random(dtype=np.float64) +def_gen.random(size=None) +def_gen.random(size=1) +def_gen.random(size=1, dtype=np.float32) +def_gen.random(size=1, dtype="f4") +def_gen.random(size=1, dtype="float32", out=S_out) +def_gen.random(dtype=np.float32, out=S_out) +def_gen.random(size=1, dtype=np.float64) +def_gen.random(size=1, dtype="float64") +def_gen.random(size=1, dtype="f8") +def_gen.random(out=D_out) +def_gen.random(size=1, dtype="float64") +def_gen.random(size=1, dtype="float64", out=D_out) + +def_gen.standard_cauchy() +def_gen.standard_cauchy(size=None) +def_gen.standard_cauchy(size=1) + +def_gen.standard_exponential() +def_gen.standard_exponential(method="inv") +def_gen.standard_exponential(dtype=np.float32) +def_gen.standard_exponential(dtype="float32") +def_gen.standard_exponential(dtype="double") +def_gen.standard_exponential(dtype=np.float64) +def_gen.standard_exponential(size=None) +def_gen.standard_exponential(size=None, method="inv") +def_gen.standard_exponential(size=1, method="inv") +def_gen.standard_exponential(size=1, dtype=np.float32) +def_gen.standard_exponential(size=1, dtype="f4", method="inv") +def_gen.standard_exponential(size=1, dtype="float32", out=S_out) +def_gen.standard_exponential(dtype=np.float32, out=S_out) +def_gen.standard_exponential(size=1, dtype=np.float64, method="inv") +def_gen.standard_exponential(size=1, dtype="float64") +def_gen.standard_exponential(size=1, dtype="f8") +def_gen.standard_exponential(out=D_out) +def_gen.standard_exponential(size=1, dtype="float64") +def_gen.standard_exponential(size=1, dtype="float64", out=D_out) + +def_gen.zipf(1.5) +def_gen.zipf(1.5, size=None) +def_gen.zipf(1.5, size=1) +def_gen.zipf(D_arr_1p5) +def_gen.zipf(D_arr_1p5, size=1) +def_gen.zipf(D_arr_like_1p5) +def_gen.zipf(D_arr_like_1p5, size=1) + +def_gen.weibull(0.5) +def_gen.weibull(0.5, size=None) +def_gen.weibull(0.5, size=1) +def_gen.weibull(D_arr_0p5) +def_gen.weibull(D_arr_0p5, size=1) +def_gen.weibull(D_arr_like_0p5) +def_gen.weibull(D_arr_like_0p5, size=1) + +def_gen.standard_t(0.5) +def_gen.standard_t(0.5, size=None) +def_gen.standard_t(0.5, size=1) +def_gen.standard_t(D_arr_0p5) +def_gen.standard_t(D_arr_0p5, size=1) +def_gen.standard_t(D_arr_like_0p5) +def_gen.standard_t(D_arr_like_0p5, size=1) + +def_gen.poisson(0.5) +def_gen.poisson(0.5, size=None) +def_gen.poisson(0.5, size=1) +def_gen.poisson(D_arr_0p5) +def_gen.poisson(D_arr_0p5, size=1) +def_gen.poisson(D_arr_like_0p5) +def_gen.poisson(D_arr_like_0p5, size=1) + +def_gen.power(0.5) +def_gen.power(0.5, size=None) +def_gen.power(0.5, size=1) +def_gen.power(D_arr_0p5) +def_gen.power(D_arr_0p5, size=1) +def_gen.power(D_arr_like_0p5) +def_gen.power(D_arr_like_0p5, size=1) + +def_gen.pareto(0.5) +def_gen.pareto(0.5, size=None) +def_gen.pareto(0.5, size=1) +def_gen.pareto(D_arr_0p5) +def_gen.pareto(D_arr_0p5, size=1) +def_gen.pareto(D_arr_like_0p5) +def_gen.pareto(D_arr_like_0p5, size=1) + +def_gen.chisquare(0.5) +def_gen.chisquare(0.5, size=None) +def_gen.chisquare(0.5, size=1) +def_gen.chisquare(D_arr_0p5) +def_gen.chisquare(D_arr_0p5, size=1) +def_gen.chisquare(D_arr_like_0p5) +def_gen.chisquare(D_arr_like_0p5, size=1) + +def_gen.exponential(0.5) +def_gen.exponential(0.5, size=None) +def_gen.exponential(0.5, size=1) +def_gen.exponential(D_arr_0p5) +def_gen.exponential(D_arr_0p5, size=1) +def_gen.exponential(D_arr_like_0p5) +def_gen.exponential(D_arr_like_0p5, size=1) + +def_gen.geometric(0.5) +def_gen.geometric(0.5, size=None) +def_gen.geometric(0.5, size=1) +def_gen.geometric(D_arr_0p5) +def_gen.geometric(D_arr_0p5, size=1) +def_gen.geometric(D_arr_like_0p5) +def_gen.geometric(D_arr_like_0p5, size=1) + +def_gen.logseries(0.5) +def_gen.logseries(0.5, size=None) +def_gen.logseries(0.5, size=1) +def_gen.logseries(D_arr_0p5) +def_gen.logseries(D_arr_0p5, size=1) +def_gen.logseries(D_arr_like_0p5) +def_gen.logseries(D_arr_like_0p5, size=1) + +def_gen.rayleigh(0.5) +def_gen.rayleigh(0.5, size=None) +def_gen.rayleigh(0.5, size=1) +def_gen.rayleigh(D_arr_0p5) +def_gen.rayleigh(D_arr_0p5, size=1) +def_gen.rayleigh(D_arr_like_0p5) +def_gen.rayleigh(D_arr_like_0p5, size=1) + +def_gen.standard_gamma(0.5) +def_gen.standard_gamma(0.5, size=None) +def_gen.standard_gamma(0.5, dtype="float32") +def_gen.standard_gamma(0.5, size=None, dtype="float32") +def_gen.standard_gamma(0.5, size=1) +def_gen.standard_gamma(D_arr_0p5) +def_gen.standard_gamma(D_arr_0p5, dtype="f4") +def_gen.standard_gamma(0.5, size=1, dtype="float32", out=S_out) +def_gen.standard_gamma(D_arr_0p5, dtype=np.float32, out=S_out) +def_gen.standard_gamma(D_arr_0p5, size=1) +def_gen.standard_gamma(D_arr_like_0p5) +def_gen.standard_gamma(D_arr_like_0p5, size=1) +def_gen.standard_gamma(0.5, out=D_out) +def_gen.standard_gamma(D_arr_like_0p5, out=D_out) +def_gen.standard_gamma(D_arr_like_0p5, size=1) +def_gen.standard_gamma(D_arr_like_0p5, size=1, out=D_out, dtype=np.float64) + +def_gen.vonmises(0.5, 0.5) +def_gen.vonmises(0.5, 0.5, size=None) +def_gen.vonmises(0.5, 0.5, size=1) +def_gen.vonmises(D_arr_0p5, 0.5) +def_gen.vonmises(0.5, D_arr_0p5) +def_gen.vonmises(D_arr_0p5, 0.5, size=1) +def_gen.vonmises(0.5, D_arr_0p5, size=1) +def_gen.vonmises(D_arr_like_0p5, 0.5) +def_gen.vonmises(0.5, D_arr_like_0p5) +def_gen.vonmises(D_arr_0p5, D_arr_0p5) +def_gen.vonmises(D_arr_like_0p5, D_arr_like_0p5) +def_gen.vonmises(D_arr_0p5, D_arr_0p5, size=1) +def_gen.vonmises(D_arr_like_0p5, D_arr_like_0p5, size=1) + +def_gen.wald(0.5, 0.5) +def_gen.wald(0.5, 0.5, size=None) +def_gen.wald(0.5, 0.5, size=1) +def_gen.wald(D_arr_0p5, 0.5) +def_gen.wald(0.5, D_arr_0p5) +def_gen.wald(D_arr_0p5, 0.5, size=1) +def_gen.wald(0.5, D_arr_0p5, size=1) +def_gen.wald(D_arr_like_0p5, 0.5) +def_gen.wald(0.5, D_arr_like_0p5) +def_gen.wald(D_arr_0p5, D_arr_0p5) +def_gen.wald(D_arr_like_0p5, D_arr_like_0p5) +def_gen.wald(D_arr_0p5, D_arr_0p5, size=1) +def_gen.wald(D_arr_like_0p5, D_arr_like_0p5, size=1) + +def_gen.uniform(0.5, 0.5) +def_gen.uniform(0.5, 0.5, size=None) +def_gen.uniform(0.5, 0.5, size=1) +def_gen.uniform(D_arr_0p5, 0.5) +def_gen.uniform(0.5, D_arr_0p5) +def_gen.uniform(D_arr_0p5, 0.5, size=1) +def_gen.uniform(0.5, D_arr_0p5, size=1) +def_gen.uniform(D_arr_like_0p5, 0.5) +def_gen.uniform(0.5, D_arr_like_0p5) +def_gen.uniform(D_arr_0p5, D_arr_0p5) +def_gen.uniform(D_arr_like_0p5, D_arr_like_0p5) +def_gen.uniform(D_arr_0p5, D_arr_0p5, size=1) +def_gen.uniform(D_arr_like_0p5, D_arr_like_0p5, size=1) + +def_gen.beta(0.5, 0.5) +def_gen.beta(0.5, 0.5, size=None) +def_gen.beta(0.5, 0.5, size=1) +def_gen.beta(D_arr_0p5, 0.5) +def_gen.beta(0.5, D_arr_0p5) +def_gen.beta(D_arr_0p5, 0.5, size=1) +def_gen.beta(0.5, D_arr_0p5, size=1) +def_gen.beta(D_arr_like_0p5, 0.5) +def_gen.beta(0.5, D_arr_like_0p5) +def_gen.beta(D_arr_0p5, D_arr_0p5) +def_gen.beta(D_arr_like_0p5, D_arr_like_0p5) +def_gen.beta(D_arr_0p5, D_arr_0p5, size=1) +def_gen.beta(D_arr_like_0p5, D_arr_like_0p5, size=1) + +def_gen.f(0.5, 0.5) +def_gen.f(0.5, 0.5, size=None) +def_gen.f(0.5, 0.5, size=1) +def_gen.f(D_arr_0p5, 0.5) +def_gen.f(0.5, D_arr_0p5) +def_gen.f(D_arr_0p5, 0.5, size=1) +def_gen.f(0.5, D_arr_0p5, size=1) +def_gen.f(D_arr_like_0p5, 0.5) +def_gen.f(0.5, D_arr_like_0p5) +def_gen.f(D_arr_0p5, D_arr_0p5) +def_gen.f(D_arr_like_0p5, D_arr_like_0p5) +def_gen.f(D_arr_0p5, D_arr_0p5, size=1) +def_gen.f(D_arr_like_0p5, D_arr_like_0p5, size=1) + +def_gen.gamma(0.5, 0.5) +def_gen.gamma(0.5, 0.5, size=None) +def_gen.gamma(0.5, 0.5, size=1) +def_gen.gamma(D_arr_0p5, 0.5) +def_gen.gamma(0.5, D_arr_0p5) +def_gen.gamma(D_arr_0p5, 0.5, size=1) +def_gen.gamma(0.5, D_arr_0p5, size=1) +def_gen.gamma(D_arr_like_0p5, 0.5) +def_gen.gamma(0.5, D_arr_like_0p5) +def_gen.gamma(D_arr_0p5, D_arr_0p5) +def_gen.gamma(D_arr_like_0p5, D_arr_like_0p5) +def_gen.gamma(D_arr_0p5, D_arr_0p5, size=1) +def_gen.gamma(D_arr_like_0p5, D_arr_like_0p5, size=1) + +def_gen.gumbel(0.5, 0.5) +def_gen.gumbel(0.5, 0.5, size=None) +def_gen.gumbel(0.5, 0.5, size=1) +def_gen.gumbel(D_arr_0p5, 0.5) +def_gen.gumbel(0.5, D_arr_0p5) +def_gen.gumbel(D_arr_0p5, 0.5, size=1) +def_gen.gumbel(0.5, D_arr_0p5, size=1) +def_gen.gumbel(D_arr_like_0p5, 0.5) +def_gen.gumbel(0.5, D_arr_like_0p5) +def_gen.gumbel(D_arr_0p5, D_arr_0p5) +def_gen.gumbel(D_arr_like_0p5, D_arr_like_0p5) +def_gen.gumbel(D_arr_0p5, D_arr_0p5, size=1) +def_gen.gumbel(D_arr_like_0p5, D_arr_like_0p5, size=1) + +def_gen.laplace(0.5, 0.5) +def_gen.laplace(0.5, 0.5, size=None) +def_gen.laplace(0.5, 0.5, size=1) +def_gen.laplace(D_arr_0p5, 0.5) +def_gen.laplace(0.5, D_arr_0p5) +def_gen.laplace(D_arr_0p5, 0.5, size=1) +def_gen.laplace(0.5, D_arr_0p5, size=1) +def_gen.laplace(D_arr_like_0p5, 0.5) +def_gen.laplace(0.5, D_arr_like_0p5) +def_gen.laplace(D_arr_0p5, D_arr_0p5) +def_gen.laplace(D_arr_like_0p5, D_arr_like_0p5) +def_gen.laplace(D_arr_0p5, D_arr_0p5, size=1) +def_gen.laplace(D_arr_like_0p5, D_arr_like_0p5, size=1) + +def_gen.logistic(0.5, 0.5) +def_gen.logistic(0.5, 0.5, size=None) +def_gen.logistic(0.5, 0.5, size=1) +def_gen.logistic(D_arr_0p5, 0.5) +def_gen.logistic(0.5, D_arr_0p5) +def_gen.logistic(D_arr_0p5, 0.5, size=1) +def_gen.logistic(0.5, D_arr_0p5, size=1) +def_gen.logistic(D_arr_like_0p5, 0.5) +def_gen.logistic(0.5, D_arr_like_0p5) +def_gen.logistic(D_arr_0p5, D_arr_0p5) +def_gen.logistic(D_arr_like_0p5, D_arr_like_0p5) +def_gen.logistic(D_arr_0p5, D_arr_0p5, size=1) +def_gen.logistic(D_arr_like_0p5, D_arr_like_0p5, size=1) + +def_gen.lognormal(0.5, 0.5) +def_gen.lognormal(0.5, 0.5, size=None) +def_gen.lognormal(0.5, 0.5, size=1) +def_gen.lognormal(D_arr_0p5, 0.5) +def_gen.lognormal(0.5, D_arr_0p5) +def_gen.lognormal(D_arr_0p5, 0.5, size=1) +def_gen.lognormal(0.5, D_arr_0p5, size=1) +def_gen.lognormal(D_arr_like_0p5, 0.5) +def_gen.lognormal(0.5, D_arr_like_0p5) +def_gen.lognormal(D_arr_0p5, D_arr_0p5) +def_gen.lognormal(D_arr_like_0p5, D_arr_like_0p5) +def_gen.lognormal(D_arr_0p5, D_arr_0p5, size=1) +def_gen.lognormal(D_arr_like_0p5, D_arr_like_0p5, size=1) + +def_gen.noncentral_chisquare(0.5, 0.5) +def_gen.noncentral_chisquare(0.5, 0.5, size=None) +def_gen.noncentral_chisquare(0.5, 0.5, size=1) +def_gen.noncentral_chisquare(D_arr_0p5, 0.5) +def_gen.noncentral_chisquare(0.5, D_arr_0p5) +def_gen.noncentral_chisquare(D_arr_0p5, 0.5, size=1) +def_gen.noncentral_chisquare(0.5, D_arr_0p5, size=1) +def_gen.noncentral_chisquare(D_arr_like_0p5, 0.5) +def_gen.noncentral_chisquare(0.5, D_arr_like_0p5) +def_gen.noncentral_chisquare(D_arr_0p5, D_arr_0p5) +def_gen.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5) +def_gen.noncentral_chisquare(D_arr_0p5, D_arr_0p5, size=1) +def_gen.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5, size=1) + +def_gen.normal(0.5, 0.5) +def_gen.normal(0.5, 0.5, size=None) +def_gen.normal(0.5, 0.5, size=1) +def_gen.normal(D_arr_0p5, 0.5) +def_gen.normal(0.5, D_arr_0p5) +def_gen.normal(D_arr_0p5, 0.5, size=1) +def_gen.normal(0.5, D_arr_0p5, size=1) +def_gen.normal(D_arr_like_0p5, 0.5) +def_gen.normal(0.5, D_arr_like_0p5) +def_gen.normal(D_arr_0p5, D_arr_0p5) +def_gen.normal(D_arr_like_0p5, D_arr_like_0p5) +def_gen.normal(D_arr_0p5, D_arr_0p5, size=1) +def_gen.normal(D_arr_like_0p5, D_arr_like_0p5, size=1) + +def_gen.triangular(0.1, 0.5, 0.9) +def_gen.triangular(0.1, 0.5, 0.9, size=None) +def_gen.triangular(0.1, 0.5, 0.9, size=1) +def_gen.triangular(D_arr_0p1, 0.5, 0.9) +def_gen.triangular(0.1, D_arr_0p5, 0.9) +def_gen.triangular(D_arr_0p1, 0.5, D_arr_like_0p9, size=1) +def_gen.triangular(0.1, D_arr_0p5, 0.9, size=1) +def_gen.triangular(D_arr_like_0p1, 0.5, D_arr_0p9) +def_gen.triangular(0.5, D_arr_like_0p5, 0.9) +def_gen.triangular(D_arr_0p1, D_arr_0p5, 0.9) +def_gen.triangular(D_arr_like_0p1, D_arr_like_0p5, 0.9) +def_gen.triangular(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1) +def_gen.triangular(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1) + +def_gen.noncentral_f(0.1, 0.5, 0.9) +def_gen.noncentral_f(0.1, 0.5, 0.9, size=None) +def_gen.noncentral_f(0.1, 0.5, 0.9, size=1) +def_gen.noncentral_f(D_arr_0p1, 0.5, 0.9) +def_gen.noncentral_f(0.1, D_arr_0p5, 0.9) +def_gen.noncentral_f(D_arr_0p1, 0.5, D_arr_like_0p9, size=1) +def_gen.noncentral_f(0.1, D_arr_0p5, 0.9, size=1) +def_gen.noncentral_f(D_arr_like_0p1, 0.5, D_arr_0p9) +def_gen.noncentral_f(0.5, D_arr_like_0p5, 0.9) +def_gen.noncentral_f(D_arr_0p1, D_arr_0p5, 0.9) +def_gen.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, 0.9) +def_gen.noncentral_f(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1) +def_gen.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1) + +def_gen.binomial(10, 0.5) +def_gen.binomial(10, 0.5, size=None) +def_gen.binomial(10, 0.5, size=1) +def_gen.binomial(I_arr_10, 0.5) +def_gen.binomial(10, D_arr_0p5) +def_gen.binomial(I_arr_10, 0.5, size=1) +def_gen.binomial(10, D_arr_0p5, size=1) +def_gen.binomial(I_arr_like_10, 0.5) +def_gen.binomial(10, D_arr_like_0p5) +def_gen.binomial(I_arr_10, D_arr_0p5) +def_gen.binomial(I_arr_like_10, D_arr_like_0p5) +def_gen.binomial(I_arr_10, D_arr_0p5, size=1) +def_gen.binomial(I_arr_like_10, D_arr_like_0p5, size=1) + +def_gen.negative_binomial(10, 0.5) +def_gen.negative_binomial(10, 0.5, size=None) +def_gen.negative_binomial(10, 0.5, size=1) +def_gen.negative_binomial(I_arr_10, 0.5) +def_gen.negative_binomial(10, D_arr_0p5) +def_gen.negative_binomial(I_arr_10, 0.5, size=1) +def_gen.negative_binomial(10, D_arr_0p5, size=1) +def_gen.negative_binomial(I_arr_like_10, 0.5) +def_gen.negative_binomial(10, D_arr_like_0p5) +def_gen.negative_binomial(I_arr_10, D_arr_0p5) +def_gen.negative_binomial(I_arr_like_10, D_arr_like_0p5) +def_gen.negative_binomial(I_arr_10, D_arr_0p5, size=1) +def_gen.negative_binomial(I_arr_like_10, D_arr_like_0p5, size=1) + +def_gen.hypergeometric(20, 20, 10) +def_gen.hypergeometric(20, 20, 10, size=None) +def_gen.hypergeometric(20, 20, 10, size=1) +def_gen.hypergeometric(I_arr_20, 20, 10) +def_gen.hypergeometric(20, I_arr_20, 10) +def_gen.hypergeometric(I_arr_20, 20, I_arr_like_10, size=1) +def_gen.hypergeometric(20, I_arr_20, 10, size=1) +def_gen.hypergeometric(I_arr_like_20, 20, I_arr_10) +def_gen.hypergeometric(20, I_arr_like_20, 10) +def_gen.hypergeometric(I_arr_20, I_arr_20, 10) +def_gen.hypergeometric(I_arr_like_20, I_arr_like_20, 10) +def_gen.hypergeometric(I_arr_20, I_arr_20, I_arr_10, size=1) +def_gen.hypergeometric(I_arr_like_20, I_arr_like_20, I_arr_like_10, size=1) + +I_int64_100: np.ndarray[Any, np.dtype[np.int64]] = np.array([100], dtype=np.int64) + +def_gen.integers(0, 100) +def_gen.integers(100) +def_gen.integers([100]) +def_gen.integers(0, [100]) + +I_bool_low: np.ndarray[Any, np.dtype[np.bool]] = np.array([0], dtype=np.bool) +I_bool_low_like: list[int] = [0] +I_bool_high_open: np.ndarray[Any, np.dtype[np.bool]] = np.array([1], dtype=np.bool) +I_bool_high_closed: np.ndarray[Any, np.dtype[np.bool]] = np.array([1], dtype=np.bool) + +def_gen.integers(2, dtype=bool) +def_gen.integers(0, 2, dtype=bool) +def_gen.integers(1, dtype=bool, endpoint=True) +def_gen.integers(0, 1, dtype=bool, endpoint=True) +def_gen.integers(I_bool_low_like, 1, dtype=bool, endpoint=True) +def_gen.integers(I_bool_high_open, dtype=bool) +def_gen.integers(I_bool_low, I_bool_high_open, dtype=bool) +def_gen.integers(0, I_bool_high_open, dtype=bool) +def_gen.integers(I_bool_high_closed, dtype=bool, endpoint=True) +def_gen.integers(I_bool_low, I_bool_high_closed, dtype=bool, endpoint=True) +def_gen.integers(0, I_bool_high_closed, dtype=bool, endpoint=True) + +def_gen.integers(2, dtype=np.bool) +def_gen.integers(0, 2, dtype=np.bool) +def_gen.integers(1, dtype=np.bool, endpoint=True) +def_gen.integers(0, 1, dtype=np.bool, endpoint=True) +def_gen.integers(I_bool_low_like, 1, dtype=np.bool, endpoint=True) +def_gen.integers(I_bool_high_open, dtype=np.bool) +def_gen.integers(I_bool_low, I_bool_high_open, dtype=np.bool) +def_gen.integers(0, I_bool_high_open, dtype=np.bool) +def_gen.integers(I_bool_high_closed, dtype=np.bool, endpoint=True) +def_gen.integers(I_bool_low, I_bool_high_closed, dtype=np.bool, endpoint=True) +def_gen.integers(0, I_bool_high_closed, dtype=np.bool, endpoint=True) + +I_u1_low: np.ndarray[Any, np.dtype[np.uint8]] = np.array([0], dtype=np.uint8) +I_u1_low_like: list[int] = [0] +I_u1_high_open: np.ndarray[Any, np.dtype[np.uint8]] = np.array([255], dtype=np.uint8) +I_u1_high_closed: np.ndarray[Any, np.dtype[np.uint8]] = np.array([255], dtype=np.uint8) + +def_gen.integers(256, dtype="u1") +def_gen.integers(0, 256, dtype="u1") +def_gen.integers(255, dtype="u1", endpoint=True) +def_gen.integers(0, 255, dtype="u1", endpoint=True) +def_gen.integers(I_u1_low_like, 255, dtype="u1", endpoint=True) +def_gen.integers(I_u1_high_open, dtype="u1") +def_gen.integers(I_u1_low, I_u1_high_open, dtype="u1") +def_gen.integers(0, I_u1_high_open, dtype="u1") +def_gen.integers(I_u1_high_closed, dtype="u1", endpoint=True) +def_gen.integers(I_u1_low, I_u1_high_closed, dtype="u1", endpoint=True) +def_gen.integers(0, I_u1_high_closed, dtype="u1", endpoint=True) + +def_gen.integers(256, dtype="uint8") +def_gen.integers(0, 256, dtype="uint8") +def_gen.integers(255, dtype="uint8", endpoint=True) +def_gen.integers(0, 255, dtype="uint8", endpoint=True) +def_gen.integers(I_u1_low_like, 255, dtype="uint8", endpoint=True) +def_gen.integers(I_u1_high_open, dtype="uint8") +def_gen.integers(I_u1_low, I_u1_high_open, dtype="uint8") +def_gen.integers(0, I_u1_high_open, dtype="uint8") +def_gen.integers(I_u1_high_closed, dtype="uint8", endpoint=True) +def_gen.integers(I_u1_low, I_u1_high_closed, dtype="uint8", endpoint=True) +def_gen.integers(0, I_u1_high_closed, dtype="uint8", endpoint=True) + +def_gen.integers(256, dtype=np.uint8) +def_gen.integers(0, 256, dtype=np.uint8) +def_gen.integers(255, dtype=np.uint8, endpoint=True) +def_gen.integers(0, 255, dtype=np.uint8, endpoint=True) +def_gen.integers(I_u1_low_like, 255, dtype=np.uint8, endpoint=True) +def_gen.integers(I_u1_high_open, dtype=np.uint8) +def_gen.integers(I_u1_low, I_u1_high_open, dtype=np.uint8) +def_gen.integers(0, I_u1_high_open, dtype=np.uint8) +def_gen.integers(I_u1_high_closed, dtype=np.uint8, endpoint=True) +def_gen.integers(I_u1_low, I_u1_high_closed, dtype=np.uint8, endpoint=True) +def_gen.integers(0, I_u1_high_closed, dtype=np.uint8, endpoint=True) + +I_u2_low: np.ndarray[Any, np.dtype[np.uint16]] = np.array([0], dtype=np.uint16) +I_u2_low_like: list[int] = [0] +I_u2_high_open: np.ndarray[Any, np.dtype[np.uint16]] = np.array([65535], dtype=np.uint16) +I_u2_high_closed: np.ndarray[Any, np.dtype[np.uint16]] = np.array([65535], dtype=np.uint16) + +def_gen.integers(65536, dtype="u2") +def_gen.integers(0, 65536, dtype="u2") +def_gen.integers(65535, dtype="u2", endpoint=True) +def_gen.integers(0, 65535, dtype="u2", endpoint=True) +def_gen.integers(I_u2_low_like, 65535, dtype="u2", endpoint=True) +def_gen.integers(I_u2_high_open, dtype="u2") +def_gen.integers(I_u2_low, I_u2_high_open, dtype="u2") +def_gen.integers(0, I_u2_high_open, dtype="u2") +def_gen.integers(I_u2_high_closed, dtype="u2", endpoint=True) +def_gen.integers(I_u2_low, I_u2_high_closed, dtype="u2", endpoint=True) +def_gen.integers(0, I_u2_high_closed, dtype="u2", endpoint=True) + +def_gen.integers(65536, dtype="uint16") +def_gen.integers(0, 65536, dtype="uint16") +def_gen.integers(65535, dtype="uint16", endpoint=True) +def_gen.integers(0, 65535, dtype="uint16", endpoint=True) +def_gen.integers(I_u2_low_like, 65535, dtype="uint16", endpoint=True) +def_gen.integers(I_u2_high_open, dtype="uint16") +def_gen.integers(I_u2_low, I_u2_high_open, dtype="uint16") +def_gen.integers(0, I_u2_high_open, dtype="uint16") +def_gen.integers(I_u2_high_closed, dtype="uint16", endpoint=True) +def_gen.integers(I_u2_low, I_u2_high_closed, dtype="uint16", endpoint=True) +def_gen.integers(0, I_u2_high_closed, dtype="uint16", endpoint=True) + +def_gen.integers(65536, dtype=np.uint16) +def_gen.integers(0, 65536, dtype=np.uint16) +def_gen.integers(65535, dtype=np.uint16, endpoint=True) +def_gen.integers(0, 65535, dtype=np.uint16, endpoint=True) +def_gen.integers(I_u2_low_like, 65535, dtype=np.uint16, endpoint=True) +def_gen.integers(I_u2_high_open, dtype=np.uint16) +def_gen.integers(I_u2_low, I_u2_high_open, dtype=np.uint16) +def_gen.integers(0, I_u2_high_open, dtype=np.uint16) +def_gen.integers(I_u2_high_closed, dtype=np.uint16, endpoint=True) +def_gen.integers(I_u2_low, I_u2_high_closed, dtype=np.uint16, endpoint=True) +def_gen.integers(0, I_u2_high_closed, dtype=np.uint16, endpoint=True) + +I_u4_low: np.ndarray[Any, np.dtype[np.uint32]] = np.array([0], dtype=np.uint32) +I_u4_low_like: list[int] = [0] +I_u4_high_open: np.ndarray[Any, np.dtype[np.uint32]] = np.array([4294967295], dtype=np.uint32) +I_u4_high_closed: np.ndarray[Any, np.dtype[np.uint32]] = np.array([4294967295], dtype=np.uint32) + +def_gen.integers(4294967296, dtype="u4") +def_gen.integers(0, 4294967296, dtype="u4") +def_gen.integers(4294967295, dtype="u4", endpoint=True) +def_gen.integers(0, 4294967295, dtype="u4", endpoint=True) +def_gen.integers(I_u4_low_like, 4294967295, dtype="u4", endpoint=True) +def_gen.integers(I_u4_high_open, dtype="u4") +def_gen.integers(I_u4_low, I_u4_high_open, dtype="u4") +def_gen.integers(0, I_u4_high_open, dtype="u4") +def_gen.integers(I_u4_high_closed, dtype="u4", endpoint=True) +def_gen.integers(I_u4_low, I_u4_high_closed, dtype="u4", endpoint=True) +def_gen.integers(0, I_u4_high_closed, dtype="u4", endpoint=True) + +def_gen.integers(4294967296, dtype="uint32") +def_gen.integers(0, 4294967296, dtype="uint32") +def_gen.integers(4294967295, dtype="uint32", endpoint=True) +def_gen.integers(0, 4294967295, dtype="uint32", endpoint=True) +def_gen.integers(I_u4_low_like, 4294967295, dtype="uint32", endpoint=True) +def_gen.integers(I_u4_high_open, dtype="uint32") +def_gen.integers(I_u4_low, I_u4_high_open, dtype="uint32") +def_gen.integers(0, I_u4_high_open, dtype="uint32") +def_gen.integers(I_u4_high_closed, dtype="uint32", endpoint=True) +def_gen.integers(I_u4_low, I_u4_high_closed, dtype="uint32", endpoint=True) +def_gen.integers(0, I_u4_high_closed, dtype="uint32", endpoint=True) + +def_gen.integers(4294967296, dtype=np.uint32) +def_gen.integers(0, 4294967296, dtype=np.uint32) +def_gen.integers(4294967295, dtype=np.uint32, endpoint=True) +def_gen.integers(0, 4294967295, dtype=np.uint32, endpoint=True) +def_gen.integers(I_u4_low_like, 4294967295, dtype=np.uint32, endpoint=True) +def_gen.integers(I_u4_high_open, dtype=np.uint32) +def_gen.integers(I_u4_low, I_u4_high_open, dtype=np.uint32) +def_gen.integers(0, I_u4_high_open, dtype=np.uint32) +def_gen.integers(I_u4_high_closed, dtype=np.uint32, endpoint=True) +def_gen.integers(I_u4_low, I_u4_high_closed, dtype=np.uint32, endpoint=True) +def_gen.integers(0, I_u4_high_closed, dtype=np.uint32, endpoint=True) + +I_u8_low: np.ndarray[Any, np.dtype[np.uint64]] = np.array([0], dtype=np.uint64) +I_u8_low_like: list[int] = [0] +I_u8_high_open: np.ndarray[Any, np.dtype[np.uint64]] = np.array([18446744073709551615], dtype=np.uint64) +I_u8_high_closed: np.ndarray[Any, np.dtype[np.uint64]] = np.array([18446744073709551615], dtype=np.uint64) + +def_gen.integers(18446744073709551616, dtype="u8") +def_gen.integers(0, 18446744073709551616, dtype="u8") +def_gen.integers(18446744073709551615, dtype="u8", endpoint=True) +def_gen.integers(0, 18446744073709551615, dtype="u8", endpoint=True) +def_gen.integers(I_u8_low_like, 18446744073709551615, dtype="u8", endpoint=True) +def_gen.integers(I_u8_high_open, dtype="u8") +def_gen.integers(I_u8_low, I_u8_high_open, dtype="u8") +def_gen.integers(0, I_u8_high_open, dtype="u8") +def_gen.integers(I_u8_high_closed, dtype="u8", endpoint=True) +def_gen.integers(I_u8_low, I_u8_high_closed, dtype="u8", endpoint=True) +def_gen.integers(0, I_u8_high_closed, dtype="u8", endpoint=True) + +def_gen.integers(18446744073709551616, dtype="uint64") +def_gen.integers(0, 18446744073709551616, dtype="uint64") +def_gen.integers(18446744073709551615, dtype="uint64", endpoint=True) +def_gen.integers(0, 18446744073709551615, dtype="uint64", endpoint=True) +def_gen.integers(I_u8_low_like, 18446744073709551615, dtype="uint64", endpoint=True) +def_gen.integers(I_u8_high_open, dtype="uint64") +def_gen.integers(I_u8_low, I_u8_high_open, dtype="uint64") +def_gen.integers(0, I_u8_high_open, dtype="uint64") +def_gen.integers(I_u8_high_closed, dtype="uint64", endpoint=True) +def_gen.integers(I_u8_low, I_u8_high_closed, dtype="uint64", endpoint=True) +def_gen.integers(0, I_u8_high_closed, dtype="uint64", endpoint=True) + +def_gen.integers(18446744073709551616, dtype=np.uint64) +def_gen.integers(0, 18446744073709551616, dtype=np.uint64) +def_gen.integers(18446744073709551615, dtype=np.uint64, endpoint=True) +def_gen.integers(0, 18446744073709551615, dtype=np.uint64, endpoint=True) +def_gen.integers(I_u8_low_like, 18446744073709551615, dtype=np.uint64, endpoint=True) +def_gen.integers(I_u8_high_open, dtype=np.uint64) +def_gen.integers(I_u8_low, I_u8_high_open, dtype=np.uint64) +def_gen.integers(0, I_u8_high_open, dtype=np.uint64) +def_gen.integers(I_u8_high_closed, dtype=np.uint64, endpoint=True) +def_gen.integers(I_u8_low, I_u8_high_closed, dtype=np.uint64, endpoint=True) +def_gen.integers(0, I_u8_high_closed, dtype=np.uint64, endpoint=True) + +I_i1_low: np.ndarray[Any, np.dtype[np.int8]] = np.array([-128], dtype=np.int8) +I_i1_low_like: list[int] = [-128] +I_i1_high_open: np.ndarray[Any, np.dtype[np.int8]] = np.array([127], dtype=np.int8) +I_i1_high_closed: np.ndarray[Any, np.dtype[np.int8]] = np.array([127], dtype=np.int8) + +def_gen.integers(128, dtype="i1") +def_gen.integers(-128, 128, dtype="i1") +def_gen.integers(127, dtype="i1", endpoint=True) +def_gen.integers(-128, 127, dtype="i1", endpoint=True) +def_gen.integers(I_i1_low_like, 127, dtype="i1", endpoint=True) +def_gen.integers(I_i1_high_open, dtype="i1") +def_gen.integers(I_i1_low, I_i1_high_open, dtype="i1") +def_gen.integers(-128, I_i1_high_open, dtype="i1") +def_gen.integers(I_i1_high_closed, dtype="i1", endpoint=True) +def_gen.integers(I_i1_low, I_i1_high_closed, dtype="i1", endpoint=True) +def_gen.integers(-128, I_i1_high_closed, dtype="i1", endpoint=True) + +def_gen.integers(128, dtype="int8") +def_gen.integers(-128, 128, dtype="int8") +def_gen.integers(127, dtype="int8", endpoint=True) +def_gen.integers(-128, 127, dtype="int8", endpoint=True) +def_gen.integers(I_i1_low_like, 127, dtype="int8", endpoint=True) +def_gen.integers(I_i1_high_open, dtype="int8") +def_gen.integers(I_i1_low, I_i1_high_open, dtype="int8") +def_gen.integers(-128, I_i1_high_open, dtype="int8") +def_gen.integers(I_i1_high_closed, dtype="int8", endpoint=True) +def_gen.integers(I_i1_low, I_i1_high_closed, dtype="int8", endpoint=True) +def_gen.integers(-128, I_i1_high_closed, dtype="int8", endpoint=True) + +def_gen.integers(128, dtype=np.int8) +def_gen.integers(-128, 128, dtype=np.int8) +def_gen.integers(127, dtype=np.int8, endpoint=True) +def_gen.integers(-128, 127, dtype=np.int8, endpoint=True) +def_gen.integers(I_i1_low_like, 127, dtype=np.int8, endpoint=True) +def_gen.integers(I_i1_high_open, dtype=np.int8) +def_gen.integers(I_i1_low, I_i1_high_open, dtype=np.int8) +def_gen.integers(-128, I_i1_high_open, dtype=np.int8) +def_gen.integers(I_i1_high_closed, dtype=np.int8, endpoint=True) +def_gen.integers(I_i1_low, I_i1_high_closed, dtype=np.int8, endpoint=True) +def_gen.integers(-128, I_i1_high_closed, dtype=np.int8, endpoint=True) + +I_i2_low: np.ndarray[Any, np.dtype[np.int16]] = np.array([-32768], dtype=np.int16) +I_i2_low_like: list[int] = [-32768] +I_i2_high_open: np.ndarray[Any, np.dtype[np.int16]] = np.array([32767], dtype=np.int16) +I_i2_high_closed: np.ndarray[Any, np.dtype[np.int16]] = np.array([32767], dtype=np.int16) + +def_gen.integers(32768, dtype="i2") +def_gen.integers(-32768, 32768, dtype="i2") +def_gen.integers(32767, dtype="i2", endpoint=True) +def_gen.integers(-32768, 32767, dtype="i2", endpoint=True) +def_gen.integers(I_i2_low_like, 32767, dtype="i2", endpoint=True) +def_gen.integers(I_i2_high_open, dtype="i2") +def_gen.integers(I_i2_low, I_i2_high_open, dtype="i2") +def_gen.integers(-32768, I_i2_high_open, dtype="i2") +def_gen.integers(I_i2_high_closed, dtype="i2", endpoint=True) +def_gen.integers(I_i2_low, I_i2_high_closed, dtype="i2", endpoint=True) +def_gen.integers(-32768, I_i2_high_closed, dtype="i2", endpoint=True) + +def_gen.integers(32768, dtype="int16") +def_gen.integers(-32768, 32768, dtype="int16") +def_gen.integers(32767, dtype="int16", endpoint=True) +def_gen.integers(-32768, 32767, dtype="int16", endpoint=True) +def_gen.integers(I_i2_low_like, 32767, dtype="int16", endpoint=True) +def_gen.integers(I_i2_high_open, dtype="int16") +def_gen.integers(I_i2_low, I_i2_high_open, dtype="int16") +def_gen.integers(-32768, I_i2_high_open, dtype="int16") +def_gen.integers(I_i2_high_closed, dtype="int16", endpoint=True) +def_gen.integers(I_i2_low, I_i2_high_closed, dtype="int16", endpoint=True) +def_gen.integers(-32768, I_i2_high_closed, dtype="int16", endpoint=True) + +def_gen.integers(32768, dtype=np.int16) +def_gen.integers(-32768, 32768, dtype=np.int16) +def_gen.integers(32767, dtype=np.int16, endpoint=True) +def_gen.integers(-32768, 32767, dtype=np.int16, endpoint=True) +def_gen.integers(I_i2_low_like, 32767, dtype=np.int16, endpoint=True) +def_gen.integers(I_i2_high_open, dtype=np.int16) +def_gen.integers(I_i2_low, I_i2_high_open, dtype=np.int16) +def_gen.integers(-32768, I_i2_high_open, dtype=np.int16) +def_gen.integers(I_i2_high_closed, dtype=np.int16, endpoint=True) +def_gen.integers(I_i2_low, I_i2_high_closed, dtype=np.int16, endpoint=True) +def_gen.integers(-32768, I_i2_high_closed, dtype=np.int16, endpoint=True) + +I_i4_low: np.ndarray[Any, np.dtype[np.int32]] = np.array([-2147483648], dtype=np.int32) +I_i4_low_like: list[int] = [-2147483648] +I_i4_high_open: np.ndarray[Any, np.dtype[np.int32]] = np.array([2147483647], dtype=np.int32) +I_i4_high_closed: np.ndarray[Any, np.dtype[np.int32]] = np.array([2147483647], dtype=np.int32) + +def_gen.integers(2147483648, dtype="i4") +def_gen.integers(-2147483648, 2147483648, dtype="i4") +def_gen.integers(2147483647, dtype="i4", endpoint=True) +def_gen.integers(-2147483648, 2147483647, dtype="i4", endpoint=True) +def_gen.integers(I_i4_low_like, 2147483647, dtype="i4", endpoint=True) +def_gen.integers(I_i4_high_open, dtype="i4") +def_gen.integers(I_i4_low, I_i4_high_open, dtype="i4") +def_gen.integers(-2147483648, I_i4_high_open, dtype="i4") +def_gen.integers(I_i4_high_closed, dtype="i4", endpoint=True) +def_gen.integers(I_i4_low, I_i4_high_closed, dtype="i4", endpoint=True) +def_gen.integers(-2147483648, I_i4_high_closed, dtype="i4", endpoint=True) + +def_gen.integers(2147483648, dtype="int32") +def_gen.integers(-2147483648, 2147483648, dtype="int32") +def_gen.integers(2147483647, dtype="int32", endpoint=True) +def_gen.integers(-2147483648, 2147483647, dtype="int32", endpoint=True) +def_gen.integers(I_i4_low_like, 2147483647, dtype="int32", endpoint=True) +def_gen.integers(I_i4_high_open, dtype="int32") +def_gen.integers(I_i4_low, I_i4_high_open, dtype="int32") +def_gen.integers(-2147483648, I_i4_high_open, dtype="int32") +def_gen.integers(I_i4_high_closed, dtype="int32", endpoint=True) +def_gen.integers(I_i4_low, I_i4_high_closed, dtype="int32", endpoint=True) +def_gen.integers(-2147483648, I_i4_high_closed, dtype="int32", endpoint=True) + +def_gen.integers(2147483648, dtype=np.int32) +def_gen.integers(-2147483648, 2147483648, dtype=np.int32) +def_gen.integers(2147483647, dtype=np.int32, endpoint=True) +def_gen.integers(-2147483648, 2147483647, dtype=np.int32, endpoint=True) +def_gen.integers(I_i4_low_like, 2147483647, dtype=np.int32, endpoint=True) +def_gen.integers(I_i4_high_open, dtype=np.int32) +def_gen.integers(I_i4_low, I_i4_high_open, dtype=np.int32) +def_gen.integers(-2147483648, I_i4_high_open, dtype=np.int32) +def_gen.integers(I_i4_high_closed, dtype=np.int32, endpoint=True) +def_gen.integers(I_i4_low, I_i4_high_closed, dtype=np.int32, endpoint=True) +def_gen.integers(-2147483648, I_i4_high_closed, dtype=np.int32, endpoint=True) + +I_i8_low: np.ndarray[Any, np.dtype[np.int64]] = np.array([-9223372036854775808], dtype=np.int64) +I_i8_low_like: list[int] = [-9223372036854775808] +I_i8_high_open: np.ndarray[Any, np.dtype[np.int64]] = np.array([9223372036854775807], dtype=np.int64) +I_i8_high_closed: np.ndarray[Any, np.dtype[np.int64]] = np.array([9223372036854775807], dtype=np.int64) + +def_gen.integers(9223372036854775808, dtype="i8") +def_gen.integers(-9223372036854775808, 9223372036854775808, dtype="i8") +def_gen.integers(9223372036854775807, dtype="i8", endpoint=True) +def_gen.integers(-9223372036854775808, 9223372036854775807, dtype="i8", endpoint=True) +def_gen.integers(I_i8_low_like, 9223372036854775807, dtype="i8", endpoint=True) +def_gen.integers(I_i8_high_open, dtype="i8") +def_gen.integers(I_i8_low, I_i8_high_open, dtype="i8") +def_gen.integers(-9223372036854775808, I_i8_high_open, dtype="i8") +def_gen.integers(I_i8_high_closed, dtype="i8", endpoint=True) +def_gen.integers(I_i8_low, I_i8_high_closed, dtype="i8", endpoint=True) +def_gen.integers(-9223372036854775808, I_i8_high_closed, dtype="i8", endpoint=True) + +def_gen.integers(9223372036854775808, dtype="int64") +def_gen.integers(-9223372036854775808, 9223372036854775808, dtype="int64") +def_gen.integers(9223372036854775807, dtype="int64", endpoint=True) +def_gen.integers(-9223372036854775808, 9223372036854775807, dtype="int64", endpoint=True) +def_gen.integers(I_i8_low_like, 9223372036854775807, dtype="int64", endpoint=True) +def_gen.integers(I_i8_high_open, dtype="int64") +def_gen.integers(I_i8_low, I_i8_high_open, dtype="int64") +def_gen.integers(-9223372036854775808, I_i8_high_open, dtype="int64") +def_gen.integers(I_i8_high_closed, dtype="int64", endpoint=True) +def_gen.integers(I_i8_low, I_i8_high_closed, dtype="int64", endpoint=True) +def_gen.integers(-9223372036854775808, I_i8_high_closed, dtype="int64", endpoint=True) + +def_gen.integers(9223372036854775808, dtype=np.int64) +def_gen.integers(-9223372036854775808, 9223372036854775808, dtype=np.int64) +def_gen.integers(9223372036854775807, dtype=np.int64, endpoint=True) +def_gen.integers(-9223372036854775808, 9223372036854775807, dtype=np.int64, endpoint=True) +def_gen.integers(I_i8_low_like, 9223372036854775807, dtype=np.int64, endpoint=True) +def_gen.integers(I_i8_high_open, dtype=np.int64) +def_gen.integers(I_i8_low, I_i8_high_open, dtype=np.int64) +def_gen.integers(-9223372036854775808, I_i8_high_open, dtype=np.int64) +def_gen.integers(I_i8_high_closed, dtype=np.int64, endpoint=True) +def_gen.integers(I_i8_low, I_i8_high_closed, dtype=np.int64, endpoint=True) +def_gen.integers(-9223372036854775808, I_i8_high_closed, dtype=np.int64, endpoint=True) + + +def_gen.bit_generator + +def_gen.bytes(2) + +def_gen.choice(5) +def_gen.choice(5, 3) +def_gen.choice(5, 3, replace=True) +def_gen.choice(5, 3, p=[1 / 5] * 5) +def_gen.choice(5, 3, p=[1 / 5] * 5, replace=False) + +def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"]) +def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3) +def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, p=[1 / 4] * 4) +def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=True) +def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=False, p=np.array([1 / 8, 1 / 8, 1 / 2, 1 / 4])) + +def_gen.dirichlet([0.5, 0.5]) +def_gen.dirichlet(np.array([0.5, 0.5])) +def_gen.dirichlet(np.array([0.5, 0.5]), size=3) + +def_gen.multinomial(20, [1 / 6.0] * 6) +def_gen.multinomial(20, np.array([0.5, 0.5])) +def_gen.multinomial(20, [1 / 6.0] * 6, size=2) +def_gen.multinomial([[10], [20]], [1 / 6.0] * 6, size=(2, 2)) +def_gen.multinomial(np.array([[10], [20]]), np.array([0.5, 0.5]), size=(2, 2)) + +def_gen.multivariate_hypergeometric([3, 5, 7], 2) +def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2) +def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2, size=4) +def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2, size=(4, 7)) +def_gen.multivariate_hypergeometric([3, 5, 7], 2, method="count") +def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2, method="marginals") + +def_gen.multivariate_normal([0.0], [[1.0]]) +def_gen.multivariate_normal([0.0], np.array([[1.0]])) +def_gen.multivariate_normal(np.array([0.0]), [[1.0]]) +def_gen.multivariate_normal([0.0], np.array([[1.0]])) + +def_gen.permutation(10) +def_gen.permutation([1, 2, 3, 4]) +def_gen.permutation(np.array([1, 2, 3, 4])) +def_gen.permutation(D_2D, axis=1) +def_gen.permuted(D_2D) +def_gen.permuted(D_2D_like) +def_gen.permuted(D_2D, axis=1) +def_gen.permuted(D_2D, out=D_2D) +def_gen.permuted(D_2D_like, out=D_2D) +def_gen.permuted(D_2D_like, out=D_2D) +def_gen.permuted(D_2D, axis=1, out=D_2D) + +def_gen.shuffle(np.arange(10)) +def_gen.shuffle([1, 2, 3, 4, 5]) +def_gen.shuffle(D_2D, axis=1) + +def_gen.__str__() +def_gen.__repr__() +def_gen.__setstate__(dict(def_gen.bit_generator.state)) + +# RandomState +random_st: np.random.RandomState = np.random.RandomState() + +random_st.standard_normal() +random_st.standard_normal(size=None) +random_st.standard_normal(size=1) + +random_st.random() +random_st.random(size=None) +random_st.random(size=1) + +random_st.standard_cauchy() +random_st.standard_cauchy(size=None) +random_st.standard_cauchy(size=1) + +random_st.standard_exponential() +random_st.standard_exponential(size=None) +random_st.standard_exponential(size=1) + +random_st.zipf(1.5) +random_st.zipf(1.5, size=None) +random_st.zipf(1.5, size=1) +random_st.zipf(D_arr_1p5) +random_st.zipf(D_arr_1p5, size=1) +random_st.zipf(D_arr_like_1p5) +random_st.zipf(D_arr_like_1p5, size=1) + +random_st.weibull(0.5) +random_st.weibull(0.5, size=None) +random_st.weibull(0.5, size=1) +random_st.weibull(D_arr_0p5) +random_st.weibull(D_arr_0p5, size=1) +random_st.weibull(D_arr_like_0p5) +random_st.weibull(D_arr_like_0p5, size=1) + +random_st.standard_t(0.5) +random_st.standard_t(0.5, size=None) +random_st.standard_t(0.5, size=1) +random_st.standard_t(D_arr_0p5) +random_st.standard_t(D_arr_0p5, size=1) +random_st.standard_t(D_arr_like_0p5) +random_st.standard_t(D_arr_like_0p5, size=1) + +random_st.poisson(0.5) +random_st.poisson(0.5, size=None) +random_st.poisson(0.5, size=1) +random_st.poisson(D_arr_0p5) +random_st.poisson(D_arr_0p5, size=1) +random_st.poisson(D_arr_like_0p5) +random_st.poisson(D_arr_like_0p5, size=1) + +random_st.power(0.5) +random_st.power(0.5, size=None) +random_st.power(0.5, size=1) +random_st.power(D_arr_0p5) +random_st.power(D_arr_0p5, size=1) +random_st.power(D_arr_like_0p5) +random_st.power(D_arr_like_0p5, size=1) + +random_st.pareto(0.5) +random_st.pareto(0.5, size=None) +random_st.pareto(0.5, size=1) +random_st.pareto(D_arr_0p5) +random_st.pareto(D_arr_0p5, size=1) +random_st.pareto(D_arr_like_0p5) +random_st.pareto(D_arr_like_0p5, size=1) + +random_st.chisquare(0.5) +random_st.chisquare(0.5, size=None) +random_st.chisquare(0.5, size=1) +random_st.chisquare(D_arr_0p5) +random_st.chisquare(D_arr_0p5, size=1) +random_st.chisquare(D_arr_like_0p5) +random_st.chisquare(D_arr_like_0p5, size=1) + +random_st.exponential(0.5) +random_st.exponential(0.5, size=None) +random_st.exponential(0.5, size=1) +random_st.exponential(D_arr_0p5) +random_st.exponential(D_arr_0p5, size=1) +random_st.exponential(D_arr_like_0p5) +random_st.exponential(D_arr_like_0p5, size=1) + +random_st.geometric(0.5) +random_st.geometric(0.5, size=None) +random_st.geometric(0.5, size=1) +random_st.geometric(D_arr_0p5) +random_st.geometric(D_arr_0p5, size=1) +random_st.geometric(D_arr_like_0p5) +random_st.geometric(D_arr_like_0p5, size=1) + +random_st.logseries(0.5) +random_st.logseries(0.5, size=None) +random_st.logseries(0.5, size=1) +random_st.logseries(D_arr_0p5) +random_st.logseries(D_arr_0p5, size=1) +random_st.logseries(D_arr_like_0p5) +random_st.logseries(D_arr_like_0p5, size=1) + +random_st.rayleigh(0.5) +random_st.rayleigh(0.5, size=None) +random_st.rayleigh(0.5, size=1) +random_st.rayleigh(D_arr_0p5) +random_st.rayleigh(D_arr_0p5, size=1) +random_st.rayleigh(D_arr_like_0p5) +random_st.rayleigh(D_arr_like_0p5, size=1) + +random_st.standard_gamma(0.5) +random_st.standard_gamma(0.5, size=None) +random_st.standard_gamma(0.5, size=1) +random_st.standard_gamma(D_arr_0p5) +random_st.standard_gamma(D_arr_0p5, size=1) +random_st.standard_gamma(D_arr_like_0p5) +random_st.standard_gamma(D_arr_like_0p5, size=1) +random_st.standard_gamma(D_arr_like_0p5, size=1) + +random_st.vonmises(0.5, 0.5) +random_st.vonmises(0.5, 0.5, size=None) +random_st.vonmises(0.5, 0.5, size=1) +random_st.vonmises(D_arr_0p5, 0.5) +random_st.vonmises(0.5, D_arr_0p5) +random_st.vonmises(D_arr_0p5, 0.5, size=1) +random_st.vonmises(0.5, D_arr_0p5, size=1) +random_st.vonmises(D_arr_like_0p5, 0.5) +random_st.vonmises(0.5, D_arr_like_0p5) +random_st.vonmises(D_arr_0p5, D_arr_0p5) +random_st.vonmises(D_arr_like_0p5, D_arr_like_0p5) +random_st.vonmises(D_arr_0p5, D_arr_0p5, size=1) +random_st.vonmises(D_arr_like_0p5, D_arr_like_0p5, size=1) + +random_st.wald(0.5, 0.5) +random_st.wald(0.5, 0.5, size=None) +random_st.wald(0.5, 0.5, size=1) +random_st.wald(D_arr_0p5, 0.5) +random_st.wald(0.5, D_arr_0p5) +random_st.wald(D_arr_0p5, 0.5, size=1) +random_st.wald(0.5, D_arr_0p5, size=1) +random_st.wald(D_arr_like_0p5, 0.5) +random_st.wald(0.5, D_arr_like_0p5) +random_st.wald(D_arr_0p5, D_arr_0p5) +random_st.wald(D_arr_like_0p5, D_arr_like_0p5) +random_st.wald(D_arr_0p5, D_arr_0p5, size=1) +random_st.wald(D_arr_like_0p5, D_arr_like_0p5, size=1) + +random_st.uniform(0.5, 0.5) +random_st.uniform(0.5, 0.5, size=None) +random_st.uniform(0.5, 0.5, size=1) +random_st.uniform(D_arr_0p5, 0.5) +random_st.uniform(0.5, D_arr_0p5) +random_st.uniform(D_arr_0p5, 0.5, size=1) +random_st.uniform(0.5, D_arr_0p5, size=1) +random_st.uniform(D_arr_like_0p5, 0.5) +random_st.uniform(0.5, D_arr_like_0p5) +random_st.uniform(D_arr_0p5, D_arr_0p5) +random_st.uniform(D_arr_like_0p5, D_arr_like_0p5) +random_st.uniform(D_arr_0p5, D_arr_0p5, size=1) +random_st.uniform(D_arr_like_0p5, D_arr_like_0p5, size=1) + +random_st.beta(0.5, 0.5) +random_st.beta(0.5, 0.5, size=None) +random_st.beta(0.5, 0.5, size=1) +random_st.beta(D_arr_0p5, 0.5) +random_st.beta(0.5, D_arr_0p5) +random_st.beta(D_arr_0p5, 0.5, size=1) +random_st.beta(0.5, D_arr_0p5, size=1) +random_st.beta(D_arr_like_0p5, 0.5) +random_st.beta(0.5, D_arr_like_0p5) +random_st.beta(D_arr_0p5, D_arr_0p5) +random_st.beta(D_arr_like_0p5, D_arr_like_0p5) +random_st.beta(D_arr_0p5, D_arr_0p5, size=1) +random_st.beta(D_arr_like_0p5, D_arr_like_0p5, size=1) + +random_st.f(0.5, 0.5) +random_st.f(0.5, 0.5, size=None) +random_st.f(0.5, 0.5, size=1) +random_st.f(D_arr_0p5, 0.5) +random_st.f(0.5, D_arr_0p5) +random_st.f(D_arr_0p5, 0.5, size=1) +random_st.f(0.5, D_arr_0p5, size=1) +random_st.f(D_arr_like_0p5, 0.5) +random_st.f(0.5, D_arr_like_0p5) +random_st.f(D_arr_0p5, D_arr_0p5) +random_st.f(D_arr_like_0p5, D_arr_like_0p5) +random_st.f(D_arr_0p5, D_arr_0p5, size=1) +random_st.f(D_arr_like_0p5, D_arr_like_0p5, size=1) + +random_st.gamma(0.5, 0.5) +random_st.gamma(0.5, 0.5, size=None) +random_st.gamma(0.5, 0.5, size=1) +random_st.gamma(D_arr_0p5, 0.5) +random_st.gamma(0.5, D_arr_0p5) +random_st.gamma(D_arr_0p5, 0.5, size=1) +random_st.gamma(0.5, D_arr_0p5, size=1) +random_st.gamma(D_arr_like_0p5, 0.5) +random_st.gamma(0.5, D_arr_like_0p5) +random_st.gamma(D_arr_0p5, D_arr_0p5) +random_st.gamma(D_arr_like_0p5, D_arr_like_0p5) +random_st.gamma(D_arr_0p5, D_arr_0p5, size=1) +random_st.gamma(D_arr_like_0p5, D_arr_like_0p5, size=1) + +random_st.gumbel(0.5, 0.5) +random_st.gumbel(0.5, 0.5, size=None) +random_st.gumbel(0.5, 0.5, size=1) +random_st.gumbel(D_arr_0p5, 0.5) +random_st.gumbel(0.5, D_arr_0p5) +random_st.gumbel(D_arr_0p5, 0.5, size=1) +random_st.gumbel(0.5, D_arr_0p5, size=1) +random_st.gumbel(D_arr_like_0p5, 0.5) +random_st.gumbel(0.5, D_arr_like_0p5) +random_st.gumbel(D_arr_0p5, D_arr_0p5) +random_st.gumbel(D_arr_like_0p5, D_arr_like_0p5) +random_st.gumbel(D_arr_0p5, D_arr_0p5, size=1) +random_st.gumbel(D_arr_like_0p5, D_arr_like_0p5, size=1) + +random_st.laplace(0.5, 0.5) +random_st.laplace(0.5, 0.5, size=None) +random_st.laplace(0.5, 0.5, size=1) +random_st.laplace(D_arr_0p5, 0.5) +random_st.laplace(0.5, D_arr_0p5) +random_st.laplace(D_arr_0p5, 0.5, size=1) +random_st.laplace(0.5, D_arr_0p5, size=1) +random_st.laplace(D_arr_like_0p5, 0.5) +random_st.laplace(0.5, D_arr_like_0p5) +random_st.laplace(D_arr_0p5, D_arr_0p5) +random_st.laplace(D_arr_like_0p5, D_arr_like_0p5) +random_st.laplace(D_arr_0p5, D_arr_0p5, size=1) +random_st.laplace(D_arr_like_0p5, D_arr_like_0p5, size=1) + +random_st.logistic(0.5, 0.5) +random_st.logistic(0.5, 0.5, size=None) +random_st.logistic(0.5, 0.5, size=1) +random_st.logistic(D_arr_0p5, 0.5) +random_st.logistic(0.5, D_arr_0p5) +random_st.logistic(D_arr_0p5, 0.5, size=1) +random_st.logistic(0.5, D_arr_0p5, size=1) +random_st.logistic(D_arr_like_0p5, 0.5) +random_st.logistic(0.5, D_arr_like_0p5) +random_st.logistic(D_arr_0p5, D_arr_0p5) +random_st.logistic(D_arr_like_0p5, D_arr_like_0p5) +random_st.logistic(D_arr_0p5, D_arr_0p5, size=1) +random_st.logistic(D_arr_like_0p5, D_arr_like_0p5, size=1) + +random_st.lognormal(0.5, 0.5) +random_st.lognormal(0.5, 0.5, size=None) +random_st.lognormal(0.5, 0.5, size=1) +random_st.lognormal(D_arr_0p5, 0.5) +random_st.lognormal(0.5, D_arr_0p5) +random_st.lognormal(D_arr_0p5, 0.5, size=1) +random_st.lognormal(0.5, D_arr_0p5, size=1) +random_st.lognormal(D_arr_like_0p5, 0.5) +random_st.lognormal(0.5, D_arr_like_0p5) +random_st.lognormal(D_arr_0p5, D_arr_0p5) +random_st.lognormal(D_arr_like_0p5, D_arr_like_0p5) +random_st.lognormal(D_arr_0p5, D_arr_0p5, size=1) +random_st.lognormal(D_arr_like_0p5, D_arr_like_0p5, size=1) + +random_st.noncentral_chisquare(0.5, 0.5) +random_st.noncentral_chisquare(0.5, 0.5, size=None) +random_st.noncentral_chisquare(0.5, 0.5, size=1) +random_st.noncentral_chisquare(D_arr_0p5, 0.5) +random_st.noncentral_chisquare(0.5, D_arr_0p5) +random_st.noncentral_chisquare(D_arr_0p5, 0.5, size=1) +random_st.noncentral_chisquare(0.5, D_arr_0p5, size=1) +random_st.noncentral_chisquare(D_arr_like_0p5, 0.5) +random_st.noncentral_chisquare(0.5, D_arr_like_0p5) +random_st.noncentral_chisquare(D_arr_0p5, D_arr_0p5) +random_st.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5) +random_st.noncentral_chisquare(D_arr_0p5, D_arr_0p5, size=1) +random_st.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5, size=1) + +random_st.normal(0.5, 0.5) +random_st.normal(0.5, 0.5, size=None) +random_st.normal(0.5, 0.5, size=1) +random_st.normal(D_arr_0p5, 0.5) +random_st.normal(0.5, D_arr_0p5) +random_st.normal(D_arr_0p5, 0.5, size=1) +random_st.normal(0.5, D_arr_0p5, size=1) +random_st.normal(D_arr_like_0p5, 0.5) +random_st.normal(0.5, D_arr_like_0p5) +random_st.normal(D_arr_0p5, D_arr_0p5) +random_st.normal(D_arr_like_0p5, D_arr_like_0p5) +random_st.normal(D_arr_0p5, D_arr_0p5, size=1) +random_st.normal(D_arr_like_0p5, D_arr_like_0p5, size=1) + +random_st.triangular(0.1, 0.5, 0.9) +random_st.triangular(0.1, 0.5, 0.9, size=None) +random_st.triangular(0.1, 0.5, 0.9, size=1) +random_st.triangular(D_arr_0p1, 0.5, 0.9) +random_st.triangular(0.1, D_arr_0p5, 0.9) +random_st.triangular(D_arr_0p1, 0.5, D_arr_like_0p9, size=1) +random_st.triangular(0.1, D_arr_0p5, 0.9, size=1) +random_st.triangular(D_arr_like_0p1, 0.5, D_arr_0p9) +random_st.triangular(0.5, D_arr_like_0p5, 0.9) +random_st.triangular(D_arr_0p1, D_arr_0p5, 0.9) +random_st.triangular(D_arr_like_0p1, D_arr_like_0p5, 0.9) +random_st.triangular(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1) +random_st.triangular(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1) + +random_st.noncentral_f(0.1, 0.5, 0.9) +random_st.noncentral_f(0.1, 0.5, 0.9, size=None) +random_st.noncentral_f(0.1, 0.5, 0.9, size=1) +random_st.noncentral_f(D_arr_0p1, 0.5, 0.9) +random_st.noncentral_f(0.1, D_arr_0p5, 0.9) +random_st.noncentral_f(D_arr_0p1, 0.5, D_arr_like_0p9, size=1) +random_st.noncentral_f(0.1, D_arr_0p5, 0.9, size=1) +random_st.noncentral_f(D_arr_like_0p1, 0.5, D_arr_0p9) +random_st.noncentral_f(0.5, D_arr_like_0p5, 0.9) +random_st.noncentral_f(D_arr_0p1, D_arr_0p5, 0.9) +random_st.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, 0.9) +random_st.noncentral_f(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1) +random_st.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1) + +random_st.binomial(10, 0.5) +random_st.binomial(10, 0.5, size=None) +random_st.binomial(10, 0.5, size=1) +random_st.binomial(I_arr_10, 0.5) +random_st.binomial(10, D_arr_0p5) +random_st.binomial(I_arr_10, 0.5, size=1) +random_st.binomial(10, D_arr_0p5, size=1) +random_st.binomial(I_arr_like_10, 0.5) +random_st.binomial(10, D_arr_like_0p5) +random_st.binomial(I_arr_10, D_arr_0p5) +random_st.binomial(I_arr_like_10, D_arr_like_0p5) +random_st.binomial(I_arr_10, D_arr_0p5, size=1) +random_st.binomial(I_arr_like_10, D_arr_like_0p5, size=1) + +random_st.negative_binomial(10, 0.5) +random_st.negative_binomial(10, 0.5, size=None) +random_st.negative_binomial(10, 0.5, size=1) +random_st.negative_binomial(I_arr_10, 0.5) +random_st.negative_binomial(10, D_arr_0p5) +random_st.negative_binomial(I_arr_10, 0.5, size=1) +random_st.negative_binomial(10, D_arr_0p5, size=1) +random_st.negative_binomial(I_arr_like_10, 0.5) +random_st.negative_binomial(10, D_arr_like_0p5) +random_st.negative_binomial(I_arr_10, D_arr_0p5) +random_st.negative_binomial(I_arr_like_10, D_arr_like_0p5) +random_st.negative_binomial(I_arr_10, D_arr_0p5, size=1) +random_st.negative_binomial(I_arr_like_10, D_arr_like_0p5, size=1) + +random_st.hypergeometric(20, 20, 10) +random_st.hypergeometric(20, 20, 10, size=None) +random_st.hypergeometric(20, 20, 10, size=1) +random_st.hypergeometric(I_arr_20, 20, 10) +random_st.hypergeometric(20, I_arr_20, 10) +random_st.hypergeometric(I_arr_20, 20, I_arr_like_10, size=1) +random_st.hypergeometric(20, I_arr_20, 10, size=1) +random_st.hypergeometric(I_arr_like_20, 20, I_arr_10) +random_st.hypergeometric(20, I_arr_like_20, 10) +random_st.hypergeometric(I_arr_20, I_arr_20, 10) +random_st.hypergeometric(I_arr_like_20, I_arr_like_20, 10) +random_st.hypergeometric(I_arr_20, I_arr_20, I_arr_10, size=1) +random_st.hypergeometric(I_arr_like_20, I_arr_like_20, I_arr_like_10, size=1) + +random_st.randint(0, 100) +random_st.randint(100) +random_st.randint([100]) +random_st.randint(0, [100]) + +random_st.randint(2, dtype=bool) +random_st.randint(0, 2, dtype=bool) +random_st.randint(I_bool_high_open, dtype=bool) +random_st.randint(I_bool_low, I_bool_high_open, dtype=bool) +random_st.randint(0, I_bool_high_open, dtype=bool) + +random_st.randint(2, dtype=np.bool) +random_st.randint(0, 2, dtype=np.bool) +random_st.randint(I_bool_high_open, dtype=np.bool) +random_st.randint(I_bool_low, I_bool_high_open, dtype=np.bool) +random_st.randint(0, I_bool_high_open, dtype=np.bool) + +random_st.randint(256, dtype="u1") +random_st.randint(0, 256, dtype="u1") +random_st.randint(I_u1_high_open, dtype="u1") +random_st.randint(I_u1_low, I_u1_high_open, dtype="u1") +random_st.randint(0, I_u1_high_open, dtype="u1") + +random_st.randint(256, dtype="uint8") +random_st.randint(0, 256, dtype="uint8") +random_st.randint(I_u1_high_open, dtype="uint8") +random_st.randint(I_u1_low, I_u1_high_open, dtype="uint8") +random_st.randint(0, I_u1_high_open, dtype="uint8") + +random_st.randint(256, dtype=np.uint8) +random_st.randint(0, 256, dtype=np.uint8) +random_st.randint(I_u1_high_open, dtype=np.uint8) +random_st.randint(I_u1_low, I_u1_high_open, dtype=np.uint8) +random_st.randint(0, I_u1_high_open, dtype=np.uint8) + +random_st.randint(65536, dtype="u2") +random_st.randint(0, 65536, dtype="u2") +random_st.randint(I_u2_high_open, dtype="u2") +random_st.randint(I_u2_low, I_u2_high_open, dtype="u2") +random_st.randint(0, I_u2_high_open, dtype="u2") + +random_st.randint(65536, dtype="uint16") +random_st.randint(0, 65536, dtype="uint16") +random_st.randint(I_u2_high_open, dtype="uint16") +random_st.randint(I_u2_low, I_u2_high_open, dtype="uint16") +random_st.randint(0, I_u2_high_open, dtype="uint16") + +random_st.randint(65536, dtype=np.uint16) +random_st.randint(0, 65536, dtype=np.uint16) +random_st.randint(I_u2_high_open, dtype=np.uint16) +random_st.randint(I_u2_low, I_u2_high_open, dtype=np.uint16) +random_st.randint(0, I_u2_high_open, dtype=np.uint16) + +random_st.randint(4294967296, dtype="u4") +random_st.randint(0, 4294967296, dtype="u4") +random_st.randint(I_u4_high_open, dtype="u4") +random_st.randint(I_u4_low, I_u4_high_open, dtype="u4") +random_st.randint(0, I_u4_high_open, dtype="u4") + +random_st.randint(4294967296, dtype="uint32") +random_st.randint(0, 4294967296, dtype="uint32") +random_st.randint(I_u4_high_open, dtype="uint32") +random_st.randint(I_u4_low, I_u4_high_open, dtype="uint32") +random_st.randint(0, I_u4_high_open, dtype="uint32") + +random_st.randint(4294967296, dtype=np.uint32) +random_st.randint(0, 4294967296, dtype=np.uint32) +random_st.randint(I_u4_high_open, dtype=np.uint32) +random_st.randint(I_u4_low, I_u4_high_open, dtype=np.uint32) +random_st.randint(0, I_u4_high_open, dtype=np.uint32) + + +random_st.randint(18446744073709551616, dtype="u8") +random_st.randint(0, 18446744073709551616, dtype="u8") +random_st.randint(I_u8_high_open, dtype="u8") +random_st.randint(I_u8_low, I_u8_high_open, dtype="u8") +random_st.randint(0, I_u8_high_open, dtype="u8") + +random_st.randint(18446744073709551616, dtype="uint64") +random_st.randint(0, 18446744073709551616, dtype="uint64") +random_st.randint(I_u8_high_open, dtype="uint64") +random_st.randint(I_u8_low, I_u8_high_open, dtype="uint64") +random_st.randint(0, I_u8_high_open, dtype="uint64") + +random_st.randint(18446744073709551616, dtype=np.uint64) +random_st.randint(0, 18446744073709551616, dtype=np.uint64) +random_st.randint(I_u8_high_open, dtype=np.uint64) +random_st.randint(I_u8_low, I_u8_high_open, dtype=np.uint64) +random_st.randint(0, I_u8_high_open, dtype=np.uint64) + +random_st.randint(128, dtype="i1") +random_st.randint(-128, 128, dtype="i1") +random_st.randint(I_i1_high_open, dtype="i1") +random_st.randint(I_i1_low, I_i1_high_open, dtype="i1") +random_st.randint(-128, I_i1_high_open, dtype="i1") + +random_st.randint(128, dtype="int8") +random_st.randint(-128, 128, dtype="int8") +random_st.randint(I_i1_high_open, dtype="int8") +random_st.randint(I_i1_low, I_i1_high_open, dtype="int8") +random_st.randint(-128, I_i1_high_open, dtype="int8") + +random_st.randint(128, dtype=np.int8) +random_st.randint(-128, 128, dtype=np.int8) +random_st.randint(I_i1_high_open, dtype=np.int8) +random_st.randint(I_i1_low, I_i1_high_open, dtype=np.int8) +random_st.randint(-128, I_i1_high_open, dtype=np.int8) + +random_st.randint(32768, dtype="i2") +random_st.randint(-32768, 32768, dtype="i2") +random_st.randint(I_i2_high_open, dtype="i2") +random_st.randint(I_i2_low, I_i2_high_open, dtype="i2") +random_st.randint(-32768, I_i2_high_open, dtype="i2") +random_st.randint(32768, dtype="int16") +random_st.randint(-32768, 32768, dtype="int16") +random_st.randint(I_i2_high_open, dtype="int16") +random_st.randint(I_i2_low, I_i2_high_open, dtype="int16") +random_st.randint(-32768, I_i2_high_open, dtype="int16") +random_st.randint(32768, dtype=np.int16) +random_st.randint(-32768, 32768, dtype=np.int16) +random_st.randint(I_i2_high_open, dtype=np.int16) +random_st.randint(I_i2_low, I_i2_high_open, dtype=np.int16) +random_st.randint(-32768, I_i2_high_open, dtype=np.int16) + +random_st.randint(2147483648, dtype="i4") +random_st.randint(-2147483648, 2147483648, dtype="i4") +random_st.randint(I_i4_high_open, dtype="i4") +random_st.randint(I_i4_low, I_i4_high_open, dtype="i4") +random_st.randint(-2147483648, I_i4_high_open, dtype="i4") + +random_st.randint(2147483648, dtype="int32") +random_st.randint(-2147483648, 2147483648, dtype="int32") +random_st.randint(I_i4_high_open, dtype="int32") +random_st.randint(I_i4_low, I_i4_high_open, dtype="int32") +random_st.randint(-2147483648, I_i4_high_open, dtype="int32") + +random_st.randint(2147483648, dtype=np.int32) +random_st.randint(-2147483648, 2147483648, dtype=np.int32) +random_st.randint(I_i4_high_open, dtype=np.int32) +random_st.randint(I_i4_low, I_i4_high_open, dtype=np.int32) +random_st.randint(-2147483648, I_i4_high_open, dtype=np.int32) + +random_st.randint(9223372036854775808, dtype="i8") +random_st.randint(-9223372036854775808, 9223372036854775808, dtype="i8") +random_st.randint(I_i8_high_open, dtype="i8") +random_st.randint(I_i8_low, I_i8_high_open, dtype="i8") +random_st.randint(-9223372036854775808, I_i8_high_open, dtype="i8") + +random_st.randint(9223372036854775808, dtype="int64") +random_st.randint(-9223372036854775808, 9223372036854775808, dtype="int64") +random_st.randint(I_i8_high_open, dtype="int64") +random_st.randint(I_i8_low, I_i8_high_open, dtype="int64") +random_st.randint(-9223372036854775808, I_i8_high_open, dtype="int64") + +random_st.randint(9223372036854775808, dtype=np.int64) +random_st.randint(-9223372036854775808, 9223372036854775808, dtype=np.int64) +random_st.randint(I_i8_high_open, dtype=np.int64) +random_st.randint(I_i8_low, I_i8_high_open, dtype=np.int64) +random_st.randint(-9223372036854775808, I_i8_high_open, dtype=np.int64) + +bg: np.random.BitGenerator = random_st._bit_generator + +random_st.bytes(2) + +random_st.choice(5) +random_st.choice(5, 3) +random_st.choice(5, 3, replace=True) +random_st.choice(5, 3, p=[1 / 5] * 5) +random_st.choice(5, 3, p=[1 / 5] * 5, replace=False) + +random_st.choice(["pooh", "rabbit", "piglet", "Christopher"]) +random_st.choice(["pooh", "rabbit", "piglet", "Christopher"], 3) +random_st.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, p=[1 / 4] * 4) +random_st.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=True) +random_st.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=False, p=np.array([1 / 8, 1 / 8, 1 / 2, 1 / 4])) + +random_st.dirichlet([0.5, 0.5]) +random_st.dirichlet(np.array([0.5, 0.5])) +random_st.dirichlet(np.array([0.5, 0.5]), size=3) + +random_st.multinomial(20, [1 / 6.0] * 6) +random_st.multinomial(20, np.array([0.5, 0.5])) +random_st.multinomial(20, [1 / 6.0] * 6, size=2) + +random_st.multivariate_normal([0.0], [[1.0]]) +random_st.multivariate_normal([0.0], np.array([[1.0]])) +random_st.multivariate_normal(np.array([0.0]), [[1.0]]) +random_st.multivariate_normal([0.0], np.array([[1.0]])) + +random_st.permutation(10) +random_st.permutation([1, 2, 3, 4]) +random_st.permutation(np.array([1, 2, 3, 4])) +random_st.permutation(D_2D) + +random_st.shuffle(np.arange(10)) +random_st.shuffle([1, 2, 3, 4, 5]) +random_st.shuffle(D_2D) + +np.random.RandomState(SEED_PCG64) +np.random.RandomState(0) +np.random.RandomState([0, 1, 2]) +random_st.__str__() +random_st.__repr__() +random_st_state = random_st.__getstate__() +random_st.__setstate__(random_st_state) +random_st.seed() +random_st.seed(1) +random_st.seed([0, 1]) +random_st_get_state = random_st.get_state() +random_st_get_state_legacy = random_st.get_state(legacy=True) +random_st.set_state(random_st_get_state) + +random_st.rand() +random_st.rand(1) +random_st.rand(1, 2) +random_st.randn() +random_st.randn(1) +random_st.randn(1, 2) +random_st.random_sample() +random_st.random_sample(1) +random_st.random_sample(size=(1, 2)) + +random_st.tomaxint() +random_st.tomaxint(1) +random_st.tomaxint((1,)) + +np.random.mtrand.set_bit_generator(SEED_PCG64) +np.random.mtrand.get_bit_generator() diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/recfunctions.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/recfunctions.py new file mode 100644 index 0000000..52a3d78 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/recfunctions.py @@ -0,0 +1,161 @@ +"""These tests are based on the doctests from `numpy/lib/recfunctions.py`.""" + +from typing import Any, assert_type + +import numpy as np +import numpy.typing as npt +from numpy.lib import recfunctions as rfn + + +def test_recursive_fill_fields() -> None: + a: npt.NDArray[np.void] = np.array( + [(1, 10.0), (2, 20.0)], + dtype=[("A", np.int64), ("B", np.float64)], + ) + b = np.zeros((int(3),), dtype=a.dtype) + out = rfn.recursive_fill_fields(a, b) + assert_type(out, np.ndarray[tuple[int], np.dtype[np.void]]) + + +def test_get_names() -> None: + names: tuple[str | Any, ...] + names = rfn.get_names(np.empty((1,), dtype=[("A", int)]).dtype) + names = rfn.get_names(np.empty((1,), dtype=[("A", int), ("B", float)]).dtype) + + adtype = np.dtype([("a", int), ("b", [("b_a", int), ("b_b", int)])]) + names = rfn.get_names(adtype) + + +def test_get_names_flat() -> None: + names: tuple[str, ...] + names = rfn.get_names_flat(np.empty((1,), dtype=[("A", int)]).dtype) + names = rfn.get_names_flat(np.empty((1,), dtype=[("A", int), ("B", float)]).dtype) + + adtype = np.dtype([("a", int), ("b", [("b_a", int), ("b_b", int)])]) + names = rfn.get_names_flat(adtype) + + +def test_flatten_descr() -> None: + ndtype = np.dtype([("a", " None: + ndtype = np.dtype([ + ("A", int), + ("B", [("B_A", int), ("B_B", [("B_B_A", int), ("B_B_B", int)])]), + ]) + assert_type(rfn.get_fieldstructure(ndtype), dict[str, list[str]]) + + +def test_merge_arrays() -> None: + assert_type( + rfn.merge_arrays(( + np.ones((int(2),), np.int_), + np.ones((int(3),), np.float64), + )), + np.recarray[tuple[int], np.dtype[np.void]], + ) + + +def test_drop_fields() -> None: + ndtype = [("a", np.int64), ("b", [("b_a", np.double), ("b_b", np.int64)])] + a = np.ones((int(3),), dtype=ndtype) + + assert_type( + rfn.drop_fields(a, "a"), + np.ndarray[tuple[int], np.dtype[np.void]], + ) + assert_type( + rfn.drop_fields(a, "a", asrecarray=True), + np.rec.recarray[tuple[int], np.dtype[np.void]], + ) + assert_type( + rfn.rec_drop_fields(a, "a"), + np.rec.recarray[tuple[int], np.dtype[np.void]], + ) + + +def test_rename_fields() -> None: + ndtype = [("a", np.int64), ("b", [("b_a", np.double), ("b_b", np.int64)])] + a = np.ones((int(3),), dtype=ndtype) + + assert_type( + rfn.rename_fields(a, {"a": "A", "b_b": "B_B"}), + np.ndarray[tuple[int], np.dtype[np.void]], + ) + + +def test_repack_fields() -> None: + dt: np.dtype[np.void] = np.dtype("u1, None: + a = np.zeros(4, dtype=[("a", "i4"), ("b", "f4,u2"), ("c", "f4", 2)]) + assert_type(rfn.structured_to_unstructured(a), npt.NDArray[Any]) + + +def unstructured_to_structured() -> None: + dt: np.dtype[np.void] = np.dtype([("a", "i4"), ("b", "f4,u2"), ("c", "f4", 2)]) + a = np.arange(20, dtype=np.int32).reshape((4, 5)) + assert_type(rfn.unstructured_to_structured(a, dt), npt.NDArray[np.void]) + + +def test_apply_along_fields() -> None: + b = np.ones(4, dtype=[("x", "i4"), ("y", "f4"), ("z", "f8")]) + assert_type( + rfn.apply_along_fields(np.mean, b), + np.ndarray[tuple[int], np.dtype[np.void]], + ) + + +def test_assign_fields_by_name() -> None: + b = np.ones(4, dtype=[("x", "i4"), ("y", "f4"), ("z", "f8")]) + assert_type( + rfn.apply_along_fields(np.mean, b), + np.ndarray[tuple[int], np.dtype[np.void]], + ) + + +def test_require_fields() -> None: + a = np.ones(4, dtype=[("a", "i4"), ("b", "f8"), ("c", "u1")]) + assert_type( + rfn.require_fields(a, [("b", "f4"), ("c", "u1")]), + np.ndarray[tuple[int], np.dtype[np.void]], + ) + + +def test_stack_arrays() -> None: + x = np.zeros((int(2),), np.int32) + assert_type( + rfn.stack_arrays(x), + np.ndarray[tuple[int], np.dtype[np.int32]], + ) + + z = np.ones((int(2),), [("A", "|S3"), ("B", float)]) + zz = np.ones((int(2),), [("A", "|S3"), ("B", np.float64), ("C", np.float64)]) + assert_type( + rfn.stack_arrays((z, zz)), + np.ma.MaskedArray[tuple[Any, ...], np.dtype[np.void]], + ) + + +def test_find_duplicates() -> None: + ndtype = np.dtype([("a", int)]) + + a = np.ma.ones(7, mask=[0, 0, 1, 0, 0, 0, 1]).view(ndtype) + assert_type(rfn.find_duplicates(a), np.ma.MaskedArray[Any, np.dtype[np.void]]) + assert_type( + rfn.find_duplicates(a, ignoremask=True, return_index=True), + tuple[ + np.ma.MaskedArray[Any, np.dtype[np.void]], + np.ndarray[Any, np.dtype[np.int_]], + ], + ) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/scalars.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/scalars.py new file mode 100644 index 0000000..655903a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/scalars.py @@ -0,0 +1,248 @@ +import datetime as dt + +import pytest +import numpy as np + +b = np.bool() +b_ = np.bool_() +u8 = np.uint64() +i8 = np.int64() +f8 = np.float64() +c16 = np.complex128() +U = np.str_() +S = np.bytes_() + + +# Construction +class D: + def __index__(self) -> int: + return 0 + + +class C: + def __complex__(self) -> complex: + return 3j + + +class B: + def __int__(self) -> int: + return 4 + + +class A: + def __float__(self) -> float: + return 4.0 + + +np.complex64(3j) +np.complex64(A()) +np.complex64(C()) +np.complex128(3j) +np.complex128(C()) +np.complex128(None) +np.complex64("1.2") +np.complex128(b"2j") + +np.int8(4) +np.int16(3.4) +np.int32(4) +np.int64(-1) +np.uint8(B()) +np.uint32() +np.int32("1") +np.int64(b"2") + +np.float16(A()) +np.float32(16) +np.float64(3.0) +np.float64(None) +np.float32("1") +np.float16(b"2.5") + +np.uint64(D()) +np.float32(D()) +np.complex64(D()) + +np.bytes_(b"hello") +np.bytes_("hello", 'utf-8') +np.bytes_("hello", encoding='utf-8') +np.str_("hello") +np.str_(b"hello", 'utf-8') +np.str_(b"hello", encoding='utf-8') + +# Array-ish semantics +np.int8().real +np.int16().imag +np.int32().data +np.int64().flags + +np.uint8().itemsize * 2 +np.uint16().ndim + 1 +np.uint32().strides +np.uint64().shape + +# Time structures +np.datetime64() +np.datetime64(0, "D") +np.datetime64(0, b"D") +np.datetime64(0, ('ms', 3)) +np.datetime64("2019") +np.datetime64(b"2019") +np.datetime64("2019", "D") +np.datetime64("2019", "us") +np.datetime64("2019", "as") +np.datetime64(np.datetime64()) +np.datetime64(np.datetime64()) +np.datetime64(dt.datetime(2000, 5, 3)) +np.datetime64(dt.datetime(2000, 5, 3), "D") +np.datetime64(dt.datetime(2000, 5, 3), "us") +np.datetime64(dt.datetime(2000, 5, 3), "as") +np.datetime64(dt.date(2000, 5, 3)) +np.datetime64(dt.date(2000, 5, 3), "D") +np.datetime64(dt.date(2000, 5, 3), "us") +np.datetime64(dt.date(2000, 5, 3), "as") +np.datetime64(None) +np.datetime64(None, "D") + +np.timedelta64() +np.timedelta64(0) +np.timedelta64(0, "D") +np.timedelta64(0, ('ms', 3)) +np.timedelta64(0, b"D") +np.timedelta64("3") +np.timedelta64(b"5") +np.timedelta64(np.timedelta64(2)) +np.timedelta64(dt.timedelta(2)) +np.timedelta64(None) +np.timedelta64(None, "D") + +np.void(1) +np.void(np.int64(1)) +np.void(True) +np.void(np.bool(True)) +np.void(b"test") +np.void(np.bytes_("test")) +np.void(object(), [("a", "O"), ("b", "O")]) +np.void(object(), dtype=[("a", "O"), ("b", "O")]) + +# Protocols +i8 = np.int64() +u8 = np.uint64() +f8 = np.float64() +c16 = np.complex128() +b = np.bool() +td = np.timedelta64() +U = np.str_("1") +S = np.bytes_("1") +AR = np.array(1, dtype=np.float64) + +int(i8) +int(u8) +int(f8) +int(b) +int(td) +int(U) +int(S) +int(AR) +with pytest.warns(np.exceptions.ComplexWarning): + int(c16) + +float(i8) +float(u8) +float(f8) +float(b_) +float(td) +float(U) +float(S) +float(AR) +with pytest.warns(np.exceptions.ComplexWarning): + float(c16) + +complex(i8) +complex(u8) +complex(f8) +complex(c16) +complex(b_) +complex(td) +complex(U) +complex(AR) + + +# Misc +c16.dtype +c16.real +c16.imag +c16.real.real +c16.real.imag +c16.ndim +c16.size +c16.itemsize +c16.shape +c16.strides +c16.squeeze() +c16.byteswap() +c16.transpose() + +# Aliases +np.byte() +np.short() +np.intc() +np.intp() +np.int_() +np.longlong() + +np.ubyte() +np.ushort() +np.uintc() +np.uintp() +np.uint() +np.ulonglong() + +np.half() +np.single() +np.double() +np.longdouble() + +np.csingle() +np.cdouble() +np.clongdouble() + +b.item() +i8.item() +u8.item() +f8.item() +c16.item() +U.item() +S.item() + +b.tolist() +i8.tolist() +u8.tolist() +f8.tolist() +c16.tolist() +U.tolist() +S.tolist() + +b.ravel() +i8.ravel() +u8.ravel() +f8.ravel() +c16.ravel() +U.ravel() +S.ravel() + +b.flatten() +i8.flatten() +u8.flatten() +f8.flatten() +c16.flatten() +U.flatten() +S.flatten() + +b.reshape(1) +i8.reshape(1) +u8.reshape(1) +f8.reshape(1) +c16.reshape(1) +U.reshape(1) +S.reshape(1) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/shape.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/shape.py new file mode 100644 index 0000000..286c8a8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/shape.py @@ -0,0 +1,19 @@ +from typing import Any, NamedTuple, cast + +import numpy as np + + +# Subtype of tuple[int, int] +class XYGrid(NamedTuple): + x_axis: int + y_axis: int + +# Test variance of _ShapeT_co +def accepts_2d(a: np.ndarray[tuple[int, int], Any]) -> None: + return None + + +accepts_2d(np.empty(XYGrid(2, 2))) +accepts_2d(np.zeros(XYGrid(2, 2), dtype=int)) +accepts_2d(np.ones(XYGrid(2, 2), dtype=int)) +accepts_2d(np.full(XYGrid(2, 2), fill_value=5, dtype=int)) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/simple.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/simple.py new file mode 100644 index 0000000..8f44e6e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/simple.py @@ -0,0 +1,168 @@ +"""Simple expression that should pass with mypy.""" +import operator + +import numpy as np +import numpy.typing as npt +from collections.abc import Iterable + +# Basic checks +array = np.array([1, 2]) + + +def ndarray_func(x: npt.NDArray[np.float64]) -> npt.NDArray[np.float64]: + return x + + +ndarray_func(np.array([1, 2], dtype=np.float64)) +array == 1 +array.dtype == float + +# Dtype construction +np.dtype(float) +np.dtype(np.float64) +np.dtype(None) +np.dtype("float64") +np.dtype(np.dtype(float)) +np.dtype(("U", 10)) +np.dtype((np.int32, (2, 2))) +# Define the arguments on the previous line to prevent bidirectional +# type inference in mypy from broadening the types. +two_tuples_dtype = [("R", "u1"), ("G", "u1"), ("B", "u1")] +np.dtype(two_tuples_dtype) + +three_tuples_dtype = [("R", "u1", 2)] +np.dtype(three_tuples_dtype) + +mixed_tuples_dtype = [("R", "u1"), ("G", np.str_, 1)] +np.dtype(mixed_tuples_dtype) + +shape_tuple_dtype = [("R", "u1", (2, 2))] +np.dtype(shape_tuple_dtype) + +shape_like_dtype = [("R", "u1", (2, 2)), ("G", np.str_, 1)] +np.dtype(shape_like_dtype) + +object_dtype = [("field1", object)] +np.dtype(object_dtype) + +np.dtype((np.int32, (np.int8, 4))) + +# Dtype comparison +np.dtype(float) == float +np.dtype(float) != np.float64 +np.dtype(float) < None +np.dtype(float) <= "float64" +np.dtype(float) > np.dtype(float) +np.dtype(float) >= np.dtype(("U", 10)) + +# Iteration and indexing +def iterable_func(x: Iterable[object]) -> Iterable[object]: + return x + + +iterable_func(array) +list(array) +iter(array) +zip(array, array) +array[1] +array[:] +array[...] +array[:] = 0 + +array_2d = np.ones((3, 3)) +array_2d[:2, :2] +array_2d[:2, :2] = 0 +array_2d[..., 0] +array_2d[..., 0] = 2 +array_2d[-1, -1] = None + +array_obj = np.zeros(1, dtype=np.object_) +array_obj[0] = slice(None) + +# Other special methods +len(array) +str(array) +array_scalar = np.array(1) +int(array_scalar) +float(array_scalar) +complex(array_scalar) +bytes(array_scalar) +operator.index(array_scalar) +bool(array_scalar) + +# comparisons +array < 1 +array <= 1 +array == 1 +array != 1 +array > 1 +array >= 1 +1 < array +1 <= array +1 == array +1 != array +1 > array +1 >= array + +# binary arithmetic +array + 1 +1 + array +array += 1 + +array - 1 +1 - array +array -= 1 + +array * 1 +1 * array +array *= 1 + +nonzero_array = np.array([1, 2]) +array / 1 +1 / nonzero_array +float_array = np.array([1.0, 2.0]) +float_array /= 1 + +array // 1 +1 // nonzero_array +array //= 1 + +array % 1 +1 % nonzero_array +array %= 1 + +divmod(array, 1) +divmod(1, nonzero_array) + +array ** 1 +1 ** array +array **= 1 + +array << 1 +1 << array +array <<= 1 + +array >> 1 +1 >> array +array >>= 1 + +array & 1 +1 & array +array &= 1 + +array ^ 1 +1 ^ array +array ^= 1 + +array | 1 +1 | array +array |= 1 + +# unary arithmetic +-array ++array +abs(array) +~array + +# Other methods +np.array([1, 2]).transpose() diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/simple_py3.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/simple_py3.py new file mode 100644 index 0000000..c05a1ce --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/simple_py3.py @@ -0,0 +1,6 @@ +import numpy as np + +array = np.array([1, 2]) + +# The @ operator is not in python 2 +array @ array diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ufunc_config.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ufunc_config.py new file mode 100644 index 0000000..778e1b5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ufunc_config.py @@ -0,0 +1,64 @@ +"""Typing tests for `numpy._core._ufunc_config`.""" + +import numpy as np + + +def func1(a: str, b: int) -> None: + return None + + +def func2(a: str, b: int, c: float = 1.0) -> None: + return None + + +def func3(a: str, b: int) -> int: + return 0 + + +class Write1: + def write(self, a: str) -> None: + return None + + +class Write2: + def write(self, a: str, b: int = 1) -> None: + return None + + +class Write3: + def write(self, a: str) -> int: + return 0 + + +_err_default = np.geterr() +_bufsize_default = np.getbufsize() +_errcall_default = np.geterrcall() + +try: + np.seterr(all=None) + np.seterr(divide="ignore") + np.seterr(over="warn") + np.seterr(under="call") + np.seterr(invalid="raise") + np.geterr() + + np.setbufsize(4096) + np.getbufsize() + + np.seterrcall(func1) + np.seterrcall(func2) + np.seterrcall(func3) + np.seterrcall(Write1()) + np.seterrcall(Write2()) + np.seterrcall(Write3()) + np.geterrcall() + + with np.errstate(call=func1, all="call"): + pass + with np.errstate(call=Write1(), divide="log", over="log"): + pass + +finally: + np.seterr(**_err_default) + np.setbufsize(_bufsize_default) + np.seterrcall(_errcall_default) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ufunclike.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ufunclike.py new file mode 100644 index 0000000..f993939 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ufunclike.py @@ -0,0 +1,47 @@ +from __future__ import annotations +from typing import Any +import numpy as np + + +class Object: + def __ceil__(self) -> Object: + return self + + def __floor__(self) -> Object: + return self + + def __ge__(self, value: object) -> bool: + return True + + def __array__(self, dtype: np.typing.DTypeLike | None = None, + copy: bool | None = None) -> np.ndarray[Any, np.dtype[np.object_]]: + ret = np.empty((), dtype=object) + ret[()] = self + return ret + + +AR_LIKE_b = [True, True, False] +AR_LIKE_u = [np.uint32(1), np.uint32(2), np.uint32(3)] +AR_LIKE_i = [1, 2, 3] +AR_LIKE_f = [1.0, 2.0, 3.0] +AR_LIKE_O = [Object(), Object(), Object()] +AR_U: np.ndarray[Any, np.dtype[np.str_]] = np.zeros(3, dtype="U5") + +np.fix(AR_LIKE_b) +np.fix(AR_LIKE_u) +np.fix(AR_LIKE_i) +np.fix(AR_LIKE_f) +np.fix(AR_LIKE_O) +np.fix(AR_LIKE_f, out=AR_U) + +np.isposinf(AR_LIKE_b) +np.isposinf(AR_LIKE_u) +np.isposinf(AR_LIKE_i) +np.isposinf(AR_LIKE_f) +np.isposinf(AR_LIKE_f, out=AR_U) + +np.isneginf(AR_LIKE_b) +np.isneginf(AR_LIKE_u) +np.isneginf(AR_LIKE_i) +np.isneginf(AR_LIKE_f) +np.isneginf(AR_LIKE_f, out=AR_U) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ufuncs.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ufuncs.py new file mode 100644 index 0000000..dbc61bb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/ufuncs.py @@ -0,0 +1,16 @@ +import numpy as np + +np.sin(1) +np.sin([1, 2, 3]) +np.sin(1, out=np.empty(1)) +np.matmul(np.ones((2, 2, 2)), np.ones((2, 2, 2)), axes=[(0, 1), (0, 1), (0, 1)]) +np.sin(1, signature="D->D") +# NOTE: `np.generic` subclasses are not guaranteed to support addition; +# re-enable this we can infer the exact return type of `np.sin(...)`. +# +# np.sin(1) + np.sin(1) +np.sin.types[0] +np.sin.__name__ +np.sin.__doc__ + +np.abs(np.array([1])) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/warnings_and_errors.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/warnings_and_errors.py new file mode 100644 index 0000000..c351afb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/pass/warnings_and_errors.py @@ -0,0 +1,6 @@ +import numpy.exceptions as ex + +ex.AxisError("test") +ex.AxisError(1, ndim=2) +ex.AxisError(1, ndim=2, msg_prefix="error") +ex.AxisError(1, ndim=2, msg_prefix=None) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/arithmetic.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/arithmetic.pyi new file mode 100644 index 0000000..5dd78a1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/arithmetic.pyi @@ -0,0 +1,720 @@ +import datetime as dt +from typing import Any, assert_type + +import numpy as np +import numpy.typing as npt +from numpy._typing import _32Bit, _64Bit, _128Bit + +b: bool +c: complex +f: float +i: int + +c16: np.complex128 +c8: np.complex64 + +# Can't directly import `np.float128` as it is not available on all platforms +f16: np.floating[_128Bit] +f8: np.float64 +f4: np.float32 + +i8: np.int64 +i4: np.int32 + +u8: np.uint64 +u4: np.uint32 + +b_: np.bool + +M8: np.datetime64 +M8_none: np.datetime64[None] +M8_date: np.datetime64[dt.date] +M8_time: np.datetime64[dt.datetime] +M8_int: np.datetime64[int] +date: dt.date +time: dt.datetime + +m8: np.timedelta64 +m8_none: np.timedelta64[None] +m8_int: np.timedelta64[int] +m8_delta: np.timedelta64[dt.timedelta] +delta: dt.timedelta + +AR_b: npt.NDArray[np.bool] +AR_u: npt.NDArray[np.uint32] +AR_i: npt.NDArray[np.int64] +AR_f: npt.NDArray[np.float64] +AR_c: npt.NDArray[np.complex128] +AR_m: npt.NDArray[np.timedelta64] +AR_M: npt.NDArray[np.datetime64] +AR_O: npt.NDArray[np.object_] +AR_S: npt.NDArray[np.bytes_] +AR_U: npt.NDArray[np.str_] +AR_T: np.ndarray[tuple[Any, ...], np.dtypes.StringDType] +AR_floating: npt.NDArray[np.floating] +AR_number: npt.NDArray[np.number] +AR_Any: npt.NDArray[Any] + +AR_LIKE_b: list[bool] +AR_LIKE_u: list[np.uint32] +AR_LIKE_i: list[int] +AR_LIKE_f: list[float] +AR_LIKE_c: list[complex] +AR_LIKE_m: list[np.timedelta64] +AR_LIKE_M: list[np.datetime64] +AR_LIKE_O: list[np.object_] + + +# Array subtraction + +assert_type(AR_number - AR_number, npt.NDArray[np.number]) + +assert_type(AR_b - AR_LIKE_u, npt.NDArray[np.uint32]) +assert_type(AR_b - AR_LIKE_i, npt.NDArray[np.signedinteger]) +assert_type(AR_b - AR_LIKE_f, npt.NDArray[np.floating]) +assert_type(AR_b - AR_LIKE_c, npt.NDArray[np.complexfloating]) +assert_type(AR_b - AR_LIKE_m, npt.NDArray[np.timedelta64]) +assert_type(AR_b - AR_LIKE_O, Any) + +assert_type(AR_LIKE_u - AR_b, npt.NDArray[np.uint32]) +assert_type(AR_LIKE_i - AR_b, npt.NDArray[np.signedinteger]) +assert_type(AR_LIKE_f - AR_b, npt.NDArray[np.floating]) +assert_type(AR_LIKE_c - AR_b, npt.NDArray[np.complexfloating]) +assert_type(AR_LIKE_m - AR_b, npt.NDArray[np.timedelta64]) +assert_type(AR_LIKE_M - AR_b, npt.NDArray[np.datetime64]) +assert_type(AR_LIKE_O - AR_b, Any) + +assert_type(AR_u - AR_LIKE_b, npt.NDArray[np.uint32]) +assert_type(AR_u - AR_LIKE_u, npt.NDArray[np.unsignedinteger]) +assert_type(AR_u - AR_LIKE_i, npt.NDArray[np.signedinteger]) +assert_type(AR_u - AR_LIKE_f, npt.NDArray[np.floating]) +assert_type(AR_u - AR_LIKE_c, npt.NDArray[np.complexfloating]) +assert_type(AR_u - AR_LIKE_m, npt.NDArray[np.timedelta64]) +assert_type(AR_u - AR_LIKE_O, Any) + +assert_type(AR_LIKE_b - AR_u, npt.NDArray[np.uint32]) +assert_type(AR_LIKE_u - AR_u, npt.NDArray[np.unsignedinteger]) +assert_type(AR_LIKE_i - AR_u, npt.NDArray[np.signedinteger]) +assert_type(AR_LIKE_f - AR_u, npt.NDArray[np.floating]) +assert_type(AR_LIKE_c - AR_u, npt.NDArray[np.complexfloating]) +assert_type(AR_LIKE_m - AR_u, npt.NDArray[np.timedelta64]) +assert_type(AR_LIKE_M - AR_u, npt.NDArray[np.datetime64]) +assert_type(AR_LIKE_O - AR_u, Any) + +assert_type(AR_i - AR_LIKE_b, npt.NDArray[np.int64]) +assert_type(AR_i - AR_LIKE_u, npt.NDArray[np.signedinteger]) +assert_type(AR_i - AR_LIKE_i, npt.NDArray[np.signedinteger]) +assert_type(AR_i - AR_LIKE_f, npt.NDArray[np.floating]) +assert_type(AR_i - AR_LIKE_c, npt.NDArray[np.complexfloating]) +assert_type(AR_i - AR_LIKE_m, npt.NDArray[np.timedelta64]) +assert_type(AR_i - AR_LIKE_O, Any) + +assert_type(AR_LIKE_b - AR_i, npt.NDArray[np.int64]) +assert_type(AR_LIKE_u - AR_i, npt.NDArray[np.signedinteger]) +assert_type(AR_LIKE_i - AR_i, npt.NDArray[np.signedinteger]) +assert_type(AR_LIKE_f - AR_i, npt.NDArray[np.floating]) +assert_type(AR_LIKE_c - AR_i, npt.NDArray[np.complexfloating]) +assert_type(AR_LIKE_m - AR_i, npt.NDArray[np.timedelta64]) +assert_type(AR_LIKE_M - AR_i, npt.NDArray[np.datetime64]) +assert_type(AR_LIKE_O - AR_i, Any) + +assert_type(AR_f - AR_LIKE_b, npt.NDArray[np.float64]) +assert_type(AR_f - AR_LIKE_u, npt.NDArray[np.float64]) +assert_type(AR_f - AR_LIKE_i, npt.NDArray[np.float64]) +assert_type(AR_f - AR_LIKE_f, npt.NDArray[np.float64]) +assert_type(AR_f - AR_LIKE_c, npt.NDArray[np.complexfloating]) +assert_type(AR_f - AR_LIKE_O, Any) + +assert_type(AR_LIKE_b - AR_f, npt.NDArray[np.float64]) +assert_type(AR_LIKE_u - AR_f, npt.NDArray[np.float64]) +assert_type(AR_LIKE_i - AR_f, npt.NDArray[np.float64]) +assert_type(AR_LIKE_f - AR_f, npt.NDArray[np.float64]) +assert_type(AR_LIKE_c - AR_f, npt.NDArray[np.complexfloating]) +assert_type(AR_LIKE_O - AR_f, Any) + +assert_type(AR_c - AR_LIKE_b, npt.NDArray[np.complex128]) +assert_type(AR_c - AR_LIKE_u, npt.NDArray[np.complex128]) +assert_type(AR_c - AR_LIKE_i, npt.NDArray[np.complex128]) +assert_type(AR_c - AR_LIKE_f, npt.NDArray[np.complex128]) +assert_type(AR_c - AR_LIKE_c, npt.NDArray[np.complex128]) +assert_type(AR_c - AR_LIKE_O, Any) + +assert_type(AR_LIKE_b - AR_c, npt.NDArray[np.complex128]) +assert_type(AR_LIKE_u - AR_c, npt.NDArray[np.complex128]) +assert_type(AR_LIKE_i - AR_c, npt.NDArray[np.complex128]) +assert_type(AR_LIKE_f - AR_c, npt.NDArray[np.complex128]) +assert_type(AR_LIKE_c - AR_c, npt.NDArray[np.complex128]) +assert_type(AR_LIKE_O - AR_c, Any) + +assert_type(AR_m - AR_LIKE_b, npt.NDArray[np.timedelta64]) +assert_type(AR_m - AR_LIKE_u, npt.NDArray[np.timedelta64]) +assert_type(AR_m - AR_LIKE_i, npt.NDArray[np.timedelta64]) +assert_type(AR_m - AR_LIKE_m, npt.NDArray[np.timedelta64]) +assert_type(AR_m - AR_LIKE_O, Any) + +assert_type(AR_LIKE_b - AR_m, npt.NDArray[np.timedelta64]) +assert_type(AR_LIKE_u - AR_m, npt.NDArray[np.timedelta64]) +assert_type(AR_LIKE_i - AR_m, npt.NDArray[np.timedelta64]) +assert_type(AR_LIKE_m - AR_m, npt.NDArray[np.timedelta64]) +assert_type(AR_LIKE_M - AR_m, npt.NDArray[np.datetime64]) +assert_type(AR_LIKE_O - AR_m, Any) + +assert_type(AR_M - AR_LIKE_b, npt.NDArray[np.datetime64]) +assert_type(AR_M - AR_LIKE_u, npt.NDArray[np.datetime64]) +assert_type(AR_M - AR_LIKE_i, npt.NDArray[np.datetime64]) +assert_type(AR_M - AR_LIKE_m, npt.NDArray[np.datetime64]) +assert_type(AR_M - AR_LIKE_M, npt.NDArray[np.timedelta64]) +assert_type(AR_M - AR_LIKE_O, Any) + +assert_type(AR_LIKE_M - AR_M, npt.NDArray[np.timedelta64]) +assert_type(AR_LIKE_O - AR_M, Any) + +assert_type(AR_O - AR_LIKE_b, Any) +assert_type(AR_O - AR_LIKE_u, Any) +assert_type(AR_O - AR_LIKE_i, Any) +assert_type(AR_O - AR_LIKE_f, Any) +assert_type(AR_O - AR_LIKE_c, Any) +assert_type(AR_O - AR_LIKE_m, Any) +assert_type(AR_O - AR_LIKE_M, Any) +assert_type(AR_O - AR_LIKE_O, Any) + +assert_type(AR_LIKE_b - AR_O, Any) +assert_type(AR_LIKE_u - AR_O, Any) +assert_type(AR_LIKE_i - AR_O, Any) +assert_type(AR_LIKE_f - AR_O, Any) +assert_type(AR_LIKE_c - AR_O, Any) +assert_type(AR_LIKE_m - AR_O, Any) +assert_type(AR_LIKE_M - AR_O, Any) +assert_type(AR_LIKE_O - AR_O, Any) + +# Array "true" division + +assert_type(AR_f / b, npt.NDArray[np.float64]) +assert_type(AR_f / i, npt.NDArray[np.float64]) +assert_type(AR_f / f, npt.NDArray[np.float64]) + +assert_type(b / AR_f, npt.NDArray[np.float64]) +assert_type(i / AR_f, npt.NDArray[np.float64]) +assert_type(f / AR_f, npt.NDArray[np.float64]) + +assert_type(AR_b / AR_LIKE_b, npt.NDArray[np.float64]) +assert_type(AR_b / AR_LIKE_u, npt.NDArray[np.float64]) +assert_type(AR_b / AR_LIKE_i, npt.NDArray[np.float64]) +assert_type(AR_b / AR_LIKE_f, npt.NDArray[np.float64]) +assert_type(AR_b / AR_LIKE_O, Any) + +assert_type(AR_LIKE_b / AR_b, npt.NDArray[np.float64]) +assert_type(AR_LIKE_u / AR_b, npt.NDArray[np.float64]) +assert_type(AR_LIKE_i / AR_b, npt.NDArray[np.float64]) +assert_type(AR_LIKE_f / AR_b, npt.NDArray[np.float64]) +assert_type(AR_LIKE_O / AR_b, Any) + +assert_type(AR_u / AR_LIKE_b, npt.NDArray[np.float64]) +assert_type(AR_u / AR_LIKE_u, npt.NDArray[np.float64]) +assert_type(AR_u / AR_LIKE_i, npt.NDArray[np.float64]) +assert_type(AR_u / AR_LIKE_f, npt.NDArray[np.float64]) +assert_type(AR_u / AR_LIKE_O, Any) + +assert_type(AR_LIKE_b / AR_u, npt.NDArray[np.float64]) +assert_type(AR_LIKE_u / AR_u, npt.NDArray[np.float64]) +assert_type(AR_LIKE_i / AR_u, npt.NDArray[np.float64]) +assert_type(AR_LIKE_f / AR_u, npt.NDArray[np.float64]) +assert_type(AR_LIKE_m / AR_u, npt.NDArray[np.timedelta64]) +assert_type(AR_LIKE_O / AR_u, Any) + +assert_type(AR_i / AR_LIKE_b, npt.NDArray[np.float64]) +assert_type(AR_i / AR_LIKE_u, npt.NDArray[np.float64]) +assert_type(AR_i / AR_LIKE_i, npt.NDArray[np.float64]) +assert_type(AR_i / AR_LIKE_f, npt.NDArray[np.float64]) +assert_type(AR_i / AR_LIKE_O, Any) + +assert_type(AR_LIKE_b / AR_i, npt.NDArray[np.float64]) +assert_type(AR_LIKE_u / AR_i, npt.NDArray[np.float64]) +assert_type(AR_LIKE_i / AR_i, npt.NDArray[np.float64]) +assert_type(AR_LIKE_f / AR_i, npt.NDArray[np.float64]) +assert_type(AR_LIKE_m / AR_i, npt.NDArray[np.timedelta64]) +assert_type(AR_LIKE_O / AR_i, Any) + +assert_type(AR_f / AR_LIKE_b, npt.NDArray[np.float64]) +assert_type(AR_f / AR_LIKE_u, npt.NDArray[np.float64]) +assert_type(AR_f / AR_LIKE_i, npt.NDArray[np.float64]) +assert_type(AR_f / AR_LIKE_f, npt.NDArray[np.float64]) +assert_type(AR_f / AR_LIKE_O, Any) + +assert_type(AR_LIKE_b / AR_f, npt.NDArray[np.float64]) +assert_type(AR_LIKE_u / AR_f, npt.NDArray[np.float64]) +assert_type(AR_LIKE_i / AR_f, npt.NDArray[np.float64]) +assert_type(AR_LIKE_f / AR_f, npt.NDArray[np.float64]) +assert_type(AR_LIKE_m / AR_f, npt.NDArray[np.timedelta64]) +assert_type(AR_LIKE_O / AR_f, Any) + +assert_type(AR_m / AR_LIKE_u, npt.NDArray[np.timedelta64]) +assert_type(AR_m / AR_LIKE_i, npt.NDArray[np.timedelta64]) +assert_type(AR_m / AR_LIKE_f, npt.NDArray[np.timedelta64]) +assert_type(AR_m / AR_LIKE_m, npt.NDArray[np.float64]) +assert_type(AR_m / AR_LIKE_O, Any) + +assert_type(AR_LIKE_m / AR_m, npt.NDArray[np.float64]) +assert_type(AR_LIKE_O / AR_m, Any) + +assert_type(AR_O / AR_LIKE_b, Any) +assert_type(AR_O / AR_LIKE_u, Any) +assert_type(AR_O / AR_LIKE_i, Any) +assert_type(AR_O / AR_LIKE_f, Any) +assert_type(AR_O / AR_LIKE_m, Any) +assert_type(AR_O / AR_LIKE_M, Any) +assert_type(AR_O / AR_LIKE_O, Any) + +assert_type(AR_LIKE_b / AR_O, Any) +assert_type(AR_LIKE_u / AR_O, Any) +assert_type(AR_LIKE_i / AR_O, Any) +assert_type(AR_LIKE_f / AR_O, Any) +assert_type(AR_LIKE_m / AR_O, Any) +assert_type(AR_LIKE_M / AR_O, Any) +assert_type(AR_LIKE_O / AR_O, Any) + +# Array floor division + +assert_type(AR_b // AR_LIKE_b, npt.NDArray[np.int8]) +assert_type(AR_b // AR_LIKE_u, npt.NDArray[np.uint32]) +assert_type(AR_b // AR_LIKE_i, npt.NDArray[np.signedinteger]) +assert_type(AR_b // AR_LIKE_f, npt.NDArray[np.floating]) +assert_type(AR_b // AR_LIKE_O, Any) + +assert_type(AR_LIKE_b // AR_b, npt.NDArray[np.int8]) +assert_type(AR_LIKE_u // AR_b, npt.NDArray[np.uint32]) +assert_type(AR_LIKE_i // AR_b, npt.NDArray[np.signedinteger]) +assert_type(AR_LIKE_f // AR_b, npt.NDArray[np.floating]) +assert_type(AR_LIKE_O // AR_b, Any) + +assert_type(AR_u // AR_LIKE_b, npt.NDArray[np.uint32]) +assert_type(AR_u // AR_LIKE_u, npt.NDArray[np.unsignedinteger]) +assert_type(AR_u // AR_LIKE_i, npt.NDArray[np.signedinteger]) +assert_type(AR_u // AR_LIKE_f, npt.NDArray[np.floating]) +assert_type(AR_u // AR_LIKE_O, Any) + +assert_type(AR_LIKE_b // AR_u, npt.NDArray[np.uint32]) +assert_type(AR_LIKE_u // AR_u, npt.NDArray[np.unsignedinteger]) +assert_type(AR_LIKE_i // AR_u, npt.NDArray[np.signedinteger]) +assert_type(AR_LIKE_f // AR_u, npt.NDArray[np.floating]) +assert_type(AR_LIKE_m // AR_u, npt.NDArray[np.timedelta64]) +assert_type(AR_LIKE_O // AR_u, Any) + +assert_type(AR_i // AR_LIKE_b, npt.NDArray[np.int64]) +assert_type(AR_i // AR_LIKE_u, npt.NDArray[np.signedinteger]) +assert_type(AR_i // AR_LIKE_i, npt.NDArray[np.signedinteger]) +assert_type(AR_i // AR_LIKE_f, npt.NDArray[np.floating]) +assert_type(AR_i // AR_LIKE_O, Any) + +assert_type(AR_LIKE_b // AR_i, npt.NDArray[np.int64]) +assert_type(AR_LIKE_u // AR_i, npt.NDArray[np.signedinteger]) +assert_type(AR_LIKE_i // AR_i, npt.NDArray[np.signedinteger]) +assert_type(AR_LIKE_f // AR_i, npt.NDArray[np.floating]) +assert_type(AR_LIKE_m // AR_i, npt.NDArray[np.timedelta64]) +assert_type(AR_LIKE_O // AR_i, Any) + +assert_type(AR_f // AR_LIKE_b, npt.NDArray[np.float64]) +assert_type(AR_f // AR_LIKE_u, npt.NDArray[np.float64]) +assert_type(AR_f // AR_LIKE_i, npt.NDArray[np.float64]) +assert_type(AR_f // AR_LIKE_f, npt.NDArray[np.float64]) +assert_type(AR_f // AR_LIKE_O, Any) + +assert_type(AR_LIKE_b // AR_f, npt.NDArray[np.float64]) +assert_type(AR_LIKE_u // AR_f, npt.NDArray[np.float64]) +assert_type(AR_LIKE_i // AR_f, npt.NDArray[np.float64]) +assert_type(AR_LIKE_f // AR_f, npt.NDArray[np.float64]) +assert_type(AR_LIKE_m // AR_f, npt.NDArray[np.timedelta64]) +assert_type(AR_LIKE_O // AR_f, Any) + +assert_type(AR_m // AR_LIKE_u, npt.NDArray[np.timedelta64]) +assert_type(AR_m // AR_LIKE_i, npt.NDArray[np.timedelta64]) +assert_type(AR_m // AR_LIKE_f, npt.NDArray[np.timedelta64]) +assert_type(AR_m // AR_LIKE_m, npt.NDArray[np.int64]) +assert_type(AR_m // AR_LIKE_O, Any) + +assert_type(AR_LIKE_m // AR_m, npt.NDArray[np.int64]) +assert_type(AR_LIKE_O // AR_m, Any) + +assert_type(AR_O // AR_LIKE_b, Any) +assert_type(AR_O // AR_LIKE_u, Any) +assert_type(AR_O // AR_LIKE_i, Any) +assert_type(AR_O // AR_LIKE_f, Any) +assert_type(AR_O // AR_LIKE_m, Any) +assert_type(AR_O // AR_LIKE_M, Any) +assert_type(AR_O // AR_LIKE_O, Any) + +assert_type(AR_LIKE_b // AR_O, Any) +assert_type(AR_LIKE_u // AR_O, Any) +assert_type(AR_LIKE_i // AR_O, Any) +assert_type(AR_LIKE_f // AR_O, Any) +assert_type(AR_LIKE_m // AR_O, Any) +assert_type(AR_LIKE_M // AR_O, Any) +assert_type(AR_LIKE_O // AR_O, Any) + +# unary ops + +assert_type(-f16, np.floating[_128Bit]) +assert_type(-c16, np.complex128) +assert_type(-c8, np.complex64) +assert_type(-f8, np.float64) +assert_type(-f4, np.float32) +assert_type(-i8, np.int64) +assert_type(-i4, np.int32) +assert_type(-u8, np.uint64) +assert_type(-u4, np.uint32) +assert_type(-m8, np.timedelta64) +assert_type(-m8_none, np.timedelta64[None]) +assert_type(-m8_int, np.timedelta64[int]) +assert_type(-m8_delta, np.timedelta64[dt.timedelta]) +assert_type(-AR_f, npt.NDArray[np.float64]) + +assert_type(+f16, np.floating[_128Bit]) +assert_type(+c16, np.complex128) +assert_type(+c8, np.complex64) +assert_type(+f8, np.float64) +assert_type(+f4, np.float32) +assert_type(+i8, np.int64) +assert_type(+i4, np.int32) +assert_type(+u8, np.uint64) +assert_type(+u4, np.uint32) +assert_type(+m8_none, np.timedelta64[None]) +assert_type(+m8_int, np.timedelta64[int]) +assert_type(+m8_delta, np.timedelta64[dt.timedelta]) +assert_type(+AR_f, npt.NDArray[np.float64]) + +assert_type(abs(f16), np.floating[_128Bit]) +assert_type(abs(c16), np.float64) +assert_type(abs(c8), np.float32) +assert_type(abs(f8), np.float64) +assert_type(abs(f4), np.float32) +assert_type(abs(i8), np.int64) +assert_type(abs(i4), np.int32) +assert_type(abs(u8), np.uint64) +assert_type(abs(u4), np.uint32) +assert_type(abs(m8), np.timedelta64) +assert_type(abs(m8_none), np.timedelta64[None]) +assert_type(abs(m8_int), np.timedelta64[int]) +assert_type(abs(m8_delta), np.timedelta64[dt.timedelta]) +assert_type(abs(b_), np.bool) +assert_type(abs(AR_O), npt.NDArray[np.object_]) + +# Time structures + +assert_type(M8 + m8, np.datetime64) +assert_type(M8 + i, np.datetime64) +assert_type(M8 + i8, np.datetime64) +assert_type(M8 - M8, np.timedelta64) +assert_type(M8 - i, np.datetime64) +assert_type(M8 - i8, np.datetime64) + +assert_type(M8_none + m8, np.datetime64[None]) +assert_type(M8_none + i, np.datetime64[None]) +assert_type(M8_none + i8, np.datetime64[None]) +assert_type(M8_none - M8, np.timedelta64[None]) +assert_type(M8_none - m8, np.datetime64[None]) +assert_type(M8_none - i, np.datetime64[None]) +assert_type(M8_none - i8, np.datetime64[None]) + +assert_type(m8 + m8, np.timedelta64) +assert_type(m8 + i, np.timedelta64) +assert_type(m8 + i8, np.timedelta64) +assert_type(m8 - m8, np.timedelta64) +assert_type(m8 - i, np.timedelta64) +assert_type(m8 - i8, np.timedelta64) +assert_type(m8 * f, np.timedelta64) +assert_type(m8 * f4, np.timedelta64) +assert_type(m8 * np.True_, np.timedelta64) +assert_type(m8 / f, np.timedelta64) +assert_type(m8 / f4, np.timedelta64) +assert_type(m8 / m8, np.float64) +assert_type(m8 // m8, np.int64) +assert_type(m8 % m8, np.timedelta64) +assert_type(divmod(m8, m8), tuple[np.int64, np.timedelta64]) + +assert_type(m8_none + m8, np.timedelta64[None]) +assert_type(m8_none + i, np.timedelta64[None]) +assert_type(m8_none + i8, np.timedelta64[None]) +assert_type(m8_none - i, np.timedelta64[None]) +assert_type(m8_none - i8, np.timedelta64[None]) + +assert_type(m8_int + i, np.timedelta64[int]) +assert_type(m8_int + m8_delta, np.timedelta64[int]) +assert_type(m8_int + m8, np.timedelta64[int | None]) +assert_type(m8_int - i, np.timedelta64[int]) +assert_type(m8_int - m8_delta, np.timedelta64[int]) +assert_type(m8_int - m8, np.timedelta64[int | None]) + +assert_type(m8_delta + date, dt.date) +assert_type(m8_delta + time, dt.datetime) +assert_type(m8_delta + delta, dt.timedelta) +assert_type(m8_delta - delta, dt.timedelta) +assert_type(m8_delta / delta, float) +assert_type(m8_delta // delta, int) +assert_type(m8_delta % delta, dt.timedelta) +assert_type(divmod(m8_delta, delta), tuple[int, dt.timedelta]) + +# boolean + +assert_type(b_ / b, np.float64) +assert_type(b_ / b_, np.float64) +assert_type(b_ / i, np.float64) +assert_type(b_ / i8, np.float64) +assert_type(b_ / i4, np.float64) +assert_type(b_ / u8, np.float64) +assert_type(b_ / u4, np.float64) +assert_type(b_ / f, np.float64) +assert_type(b_ / f16, np.floating[_128Bit]) +assert_type(b_ / f8, np.float64) +assert_type(b_ / f4, np.float32) +assert_type(b_ / c, np.complex128) +assert_type(b_ / c16, np.complex128) +assert_type(b_ / c8, np.complex64) + +assert_type(b / b_, np.float64) +assert_type(b_ / b_, np.float64) +assert_type(i / b_, np.float64) +assert_type(i8 / b_, np.float64) +assert_type(i4 / b_, np.float64) +assert_type(u8 / b_, np.float64) +assert_type(u4 / b_, np.float64) +assert_type(f / b_, np.float64) +assert_type(f16 / b_, np.floating[_128Bit]) +assert_type(f8 / b_, np.float64) +assert_type(f4 / b_, np.float32) +assert_type(c / b_, np.complex128) +assert_type(c16 / b_, np.complex128) +assert_type(c8 / b_, np.complex64) + +# Complex + +assert_type(c16 + f16, np.complex128 | np.complexfloating[_128Bit, _128Bit]) +assert_type(c16 + c16, np.complex128) +assert_type(c16 + f8, np.complex128) +assert_type(c16 + i8, np.complex128) +assert_type(c16 + c8, np.complex128) +assert_type(c16 + f4, np.complex128) +assert_type(c16 + i4, np.complex128) +assert_type(c16 + b_, np.complex128) +assert_type(c16 + b, np.complex128) +assert_type(c16 + c, np.complex128) +assert_type(c16 + f, np.complex128) +assert_type(c16 + AR_f, npt.NDArray[np.complex128]) + +assert_type(f16 + c16, np.complex128 | np.complexfloating[_128Bit, _128Bit]) +assert_type(c16 + c16, np.complex128) +assert_type(f8 + c16, np.complex128) +assert_type(i8 + c16, np.complex128) +assert_type(c8 + c16, np.complex128 | np.complex64) +assert_type(f4 + c16, np.complex128 | np.complex64) +assert_type(i4 + c16, np.complex128) +assert_type(b_ + c16, np.complex128) +assert_type(b + c16, np.complex128) +assert_type(c + c16, np.complex128) +assert_type(f + c16, np.complex128) +assert_type(AR_f + c16, npt.NDArray[np.complex128]) + +assert_type(c8 + f16, np.complexfloating[_32Bit, _32Bit] | np.complexfloating[_128Bit, _128Bit]) +assert_type(c8 + c16, np.complex64 | np.complex128) +assert_type(c8 + f8, np.complex64 | np.complex128) +assert_type(c8 + i8, np.complexfloating[_32Bit, _32Bit] | np.complexfloating[_64Bit, _64Bit]) +assert_type(c8 + c8, np.complex64) +assert_type(c8 + f4, np.complex64) +assert_type(c8 + i4, np.complex64) +assert_type(c8 + b_, np.complex64) +assert_type(c8 + b, np.complex64) +assert_type(c8 + c, np.complex64 | np.complex128) +assert_type(c8 + f, np.complex64 | np.complex128) +assert_type(c8 + AR_f, npt.NDArray[np.complexfloating]) + +assert_type(f16 + c8, np.complexfloating[_128Bit, _128Bit] | np.complex64) +assert_type(c16 + c8, np.complex128) +assert_type(f8 + c8, np.complexfloating[_64Bit, _64Bit]) +assert_type(i8 + c8, np.complexfloating[_64Bit, _64Bit] | np.complex64) +assert_type(c8 + c8, np.complex64) +assert_type(f4 + c8, np.complex64) +assert_type(i4 + c8, np.complex64) +assert_type(b_ + c8, np.complex64) +assert_type(b + c8, np.complex64) +assert_type(c + c8, np.complex64 | np.complex128) +assert_type(f + c8, np.complex64 | np.complex128) +assert_type(AR_f + c8, npt.NDArray[np.complexfloating]) + +# Float + +assert_type(f8 + f16, np.float64 | np.floating[_128Bit]) +assert_type(f8 + f8, np.float64) +assert_type(f8 + i8, np.float64) +assert_type(f8 + f4, np.float64) +assert_type(f8 + i4, np.float64) +assert_type(f8 + b_, np.float64) +assert_type(f8 + b, np.float64) +assert_type(f8 + c, np.float64 | np.complex128) +assert_type(f8 + f, np.float64) +assert_type(f8 + AR_f, npt.NDArray[np.float64]) + +assert_type(f16 + f8, np.floating[_128Bit] | np.float64) +assert_type(f8 + f8, np.float64) +assert_type(i8 + f8, np.float64) +assert_type(f4 + f8, np.float32 | np.float64) +assert_type(i4 + f8,np.float64) +assert_type(b_ + f8, np.float64) +assert_type(b + f8, np.float64) +assert_type(c + f8, np.complex128 | np.float64) +assert_type(f + f8, np.float64) +assert_type(AR_f + f8, npt.NDArray[np.float64]) + +assert_type(f4 + f16, np.float32 | np.floating[_128Bit]) +assert_type(f4 + f8, np.float32 | np.float64) +assert_type(f4 + i8, np.float32 | np.floating[_64Bit]) +assert_type(f4 + f4, np.float32) +assert_type(f4 + i4, np.float32) +assert_type(f4 + b_, np.float32) +assert_type(f4 + b, np.float32) +assert_type(f4 + c, np.complex64 | np.complex128) +assert_type(f4 + f, np.float32 | np.float64) +assert_type(f4 + AR_f, npt.NDArray[np.float64]) + +assert_type(f16 + f4, np.floating[_128Bit] | np.float32) +assert_type(f8 + f4, np.float64) +assert_type(i8 + f4, np.floating[_32Bit] | np.floating[_64Bit]) +assert_type(f4 + f4, np.float32) +assert_type(i4 + f4, np.float32) +assert_type(b_ + f4, np.float32) +assert_type(b + f4, np.float32) +assert_type(c + f4, np.complex64 | np.complex128) +assert_type(f + f4, np.float64 | np.float32) +assert_type(AR_f + f4, npt.NDArray[np.float64]) + +# Int + +assert_type(i8 + i8, np.int64) +assert_type(i8 + u8, Any) +assert_type(i8 + i4, np.signedinteger[_32Bit] | np.signedinteger[_64Bit]) +assert_type(i8 + u4, Any) +assert_type(i8 + b_, np.int64) +assert_type(i8 + b, np.int64) +assert_type(i8 + c, np.complex128) +assert_type(i8 + f, np.float64) +assert_type(i8 + AR_f, npt.NDArray[np.float64]) + +assert_type(u8 + u8, np.uint64) +assert_type(u8 + i4, Any) +assert_type(u8 + u4, np.unsignedinteger[_32Bit] | np.unsignedinteger[_64Bit]) +assert_type(u8 + b_, np.uint64) +assert_type(u8 + b, np.uint64) +assert_type(u8 + c, np.complex128) +assert_type(u8 + f, np.float64) +assert_type(u8 + AR_f, npt.NDArray[np.float64]) + +assert_type(i8 + i8, np.int64) +assert_type(u8 + i8, Any) +assert_type(i4 + i8, np.signedinteger[_32Bit] | np.signedinteger[_64Bit]) +assert_type(u4 + i8, Any) +assert_type(b_ + i8, np.int64) +assert_type(b + i8, np.int64) +assert_type(c + i8, np.complex128) +assert_type(f + i8, np.float64) +assert_type(AR_f + i8, npt.NDArray[np.float64]) + +assert_type(u8 + u8, np.uint64) +assert_type(i4 + u8, Any) +assert_type(u4 + u8, np.unsignedinteger[_32Bit] | np.unsignedinteger[_64Bit]) +assert_type(b_ + u8, np.uint64) +assert_type(b + u8, np.uint64) +assert_type(c + u8, np.complex128) +assert_type(f + u8, np.float64) +assert_type(AR_f + u8, npt.NDArray[np.float64]) + +assert_type(i4 + i8, np.signedinteger[_32Bit] | np.signedinteger[_64Bit]) +assert_type(i4 + i4, np.int32) +assert_type(i4 + b_, np.int32) +assert_type(i4 + b, np.int32) +assert_type(i4 + AR_f, npt.NDArray[np.float64]) + +assert_type(u4 + i8, Any) +assert_type(u4 + i4, Any) +assert_type(u4 + u8, np.unsignedinteger[_32Bit] | np.unsignedinteger[_64Bit]) +assert_type(u4 + u4, np.uint32) +assert_type(u4 + b_, np.uint32) +assert_type(u4 + b, np.uint32) +assert_type(u4 + AR_f, npt.NDArray[np.float64]) + +assert_type(i8 + i4, np.signedinteger[_32Bit] | np.signedinteger[_64Bit]) +assert_type(i4 + i4, np.int32) +assert_type(b_ + i4, np.int32) +assert_type(b + i4, np.int32) +assert_type(AR_f + i4, npt.NDArray[np.float64]) + +assert_type(i8 + u4, Any) +assert_type(i4 + u4, Any) +assert_type(u8 + u4, np.unsignedinteger[_32Bit] | np.unsignedinteger[_64Bit]) +assert_type(u4 + u4, np.uint32) +assert_type(b_ + u4, np.uint32) +assert_type(b + u4, np.uint32) +assert_type(AR_f + u4, npt.NDArray[np.float64]) + +# Any + +assert_type(AR_Any + 2, npt.NDArray[Any]) + +# regression tests for https://github.com/numpy/numpy/issues/28805 + +assert_type(AR_floating + f, npt.NDArray[np.floating]) +assert_type(AR_floating - f, npt.NDArray[np.floating]) +assert_type(AR_floating * f, npt.NDArray[np.floating]) +assert_type(AR_floating ** f, npt.NDArray[np.floating]) +assert_type(AR_floating / f, npt.NDArray[np.floating]) +assert_type(AR_floating // f, npt.NDArray[np.floating]) +assert_type(AR_floating % f, npt.NDArray[np.floating]) +assert_type(divmod(AR_floating, f), tuple[npt.NDArray[np.floating], npt.NDArray[np.floating]]) + +assert_type(f + AR_floating, npt.NDArray[np.floating]) +assert_type(f - AR_floating, npt.NDArray[np.floating]) +assert_type(f * AR_floating, npt.NDArray[np.floating]) +assert_type(f ** AR_floating, npt.NDArray[np.floating]) +assert_type(f / AR_floating, npt.NDArray[np.floating]) +assert_type(f // AR_floating, npt.NDArray[np.floating]) +assert_type(f % AR_floating, npt.NDArray[np.floating]) +assert_type(divmod(f, AR_floating), tuple[npt.NDArray[np.floating], npt.NDArray[np.floating]]) + +# character-like + +assert_type(AR_S + b"", npt.NDArray[np.bytes_]) +assert_type(AR_S + [b""], npt.NDArray[np.bytes_]) +assert_type([b""] + AR_S, npt.NDArray[np.bytes_]) +assert_type(AR_S + AR_S, npt.NDArray[np.bytes_]) + +assert_type(AR_U + "", npt.NDArray[np.str_]) +assert_type(AR_U + [""], npt.NDArray[np.str_]) +assert_type("" + AR_U, npt.NDArray[np.str_]) +assert_type([""] + AR_U, npt.NDArray[np.str_]) +assert_type(AR_U + AR_U, npt.NDArray[np.str_]) + +assert_type(AR_T + "", np.ndarray[tuple[Any, ...], np.dtypes.StringDType]) +assert_type(AR_T + [""], np.ndarray[tuple[Any, ...], np.dtypes.StringDType]) +assert_type("" + AR_T, np.ndarray[tuple[Any, ...], np.dtypes.StringDType]) +assert_type([""] + AR_T, np.ndarray[tuple[Any, ...], np.dtypes.StringDType]) +assert_type(AR_T + AR_T, np.ndarray[tuple[Any, ...], np.dtypes.StringDType]) +assert_type(AR_T + AR_U, np.ndarray[tuple[Any, ...], np.dtypes.StringDType]) +assert_type(AR_U + AR_T, np.ndarray[tuple[Any, ...], np.dtypes.StringDType]) + +assert_type(AR_S * i, np.ndarray[tuple[Any, ...], np.dtype[np.bytes_]]) +assert_type(AR_S * AR_LIKE_i, np.ndarray[tuple[Any, ...], np.dtype[np.bytes_]]) +assert_type(AR_S * AR_i, np.ndarray[tuple[Any, ...], np.dtype[np.bytes_]]) +assert_type(i * AR_S, np.ndarray[tuple[Any, ...], np.dtype[np.bytes_]]) +# mypy incorrectly infers `AR_LIKE_i * AR_S` as `list[int]` +assert_type(AR_i * AR_S, np.ndarray[tuple[Any, ...], np.dtype[np.bytes_]]) + +assert_type(AR_U * i, np.ndarray[tuple[Any, ...], np.dtype[np.str_]]) +assert_type(AR_U * AR_LIKE_i, np.ndarray[tuple[Any, ...], np.dtype[np.str_]]) +assert_type(AR_U * AR_i, np.ndarray[tuple[Any, ...], np.dtype[np.str_]]) +assert_type(i * AR_U, np.ndarray[tuple[Any, ...], np.dtype[np.str_]]) +# mypy incorrectly infers `AR_LIKE_i * AR_U` as `list[int]` +assert_type(AR_i * AR_U, np.ndarray[tuple[Any, ...], np.dtype[np.str_]]) + +assert_type(AR_T * i, np.ndarray[tuple[Any, ...], np.dtypes.StringDType]) +assert_type(AR_T * AR_LIKE_i, np.ndarray[tuple[Any, ...], np.dtypes.StringDType]) +assert_type(AR_T * AR_i, np.ndarray[tuple[Any, ...], np.dtypes.StringDType]) +assert_type(i * AR_T, np.ndarray[tuple[Any, ...], np.dtypes.StringDType]) +# mypy incorrectly infers `AR_LIKE_i * AR_T` as `list[int]` +assert_type(AR_i * AR_T, np.ndarray[tuple[Any, ...], np.dtypes.StringDType]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/array_api_info.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/array_api_info.pyi new file mode 100644 index 0000000..765f9ef --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/array_api_info.pyi @@ -0,0 +1,70 @@ +from typing import Literal, Never, assert_type + +import numpy as np + +info = np.__array_namespace_info__() + +assert_type(info.__module__, Literal["numpy"]) + +assert_type(info.default_device(), Literal["cpu"]) +assert_type(info.devices()[0], Literal["cpu"]) +assert_type(info.devices()[-1], Literal["cpu"]) + +assert_type(info.capabilities()["boolean indexing"], Literal[True]) +assert_type(info.capabilities()["data-dependent shapes"], Literal[True]) + +assert_type(info.default_dtypes()["real floating"], np.dtype[np.float64]) +assert_type(info.default_dtypes()["complex floating"], np.dtype[np.complex128]) +assert_type(info.default_dtypes()["integral"], np.dtype[np.int_]) +assert_type(info.default_dtypes()["indexing"], np.dtype[np.intp]) + +assert_type(info.dtypes()["bool"], np.dtype[np.bool]) +assert_type(info.dtypes()["int8"], np.dtype[np.int8]) +assert_type(info.dtypes()["uint8"], np.dtype[np.uint8]) +assert_type(info.dtypes()["float32"], np.dtype[np.float32]) +assert_type(info.dtypes()["complex64"], np.dtype[np.complex64]) + +assert_type(info.dtypes(kind="bool")["bool"], np.dtype[np.bool]) +assert_type(info.dtypes(kind="signed integer")["int64"], np.dtype[np.int64]) +assert_type(info.dtypes(kind="unsigned integer")["uint64"], np.dtype[np.uint64]) +assert_type(info.dtypes(kind="integral")["int32"], np.dtype[np.int32]) +assert_type(info.dtypes(kind="integral")["uint32"], np.dtype[np.uint32]) +assert_type(info.dtypes(kind="real floating")["float64"], np.dtype[np.float64]) +assert_type(info.dtypes(kind="complex floating")["complex128"], np.dtype[np.complex128]) +assert_type(info.dtypes(kind="numeric")["int16"], np.dtype[np.int16]) +assert_type(info.dtypes(kind="numeric")["uint16"], np.dtype[np.uint16]) +assert_type(info.dtypes(kind="numeric")["float64"], np.dtype[np.float64]) +assert_type(info.dtypes(kind="numeric")["complex128"], np.dtype[np.complex128]) + +assert_type(info.dtypes(kind=()), dict[Never, Never]) + +assert_type(info.dtypes(kind=("bool",))["bool"], np.dtype[np.bool]) +assert_type(info.dtypes(kind=("signed integer",))["int64"], np.dtype[np.int64]) +assert_type(info.dtypes(kind=("integral",))["uint32"], np.dtype[np.uint32]) +assert_type(info.dtypes(kind=("complex floating",))["complex128"], np.dtype[np.complex128]) +assert_type(info.dtypes(kind=("numeric",))["float64"], np.dtype[np.float64]) + +assert_type( + info.dtypes(kind=("signed integer", "unsigned integer"))["int8"], + np.dtype[np.int8], +) +assert_type( + info.dtypes(kind=("signed integer", "unsigned integer"))["uint8"], + np.dtype[np.uint8], +) +assert_type( + info.dtypes(kind=("integral", "real floating", "complex floating"))["int16"], + np.dtype[np.int16], +) +assert_type( + info.dtypes(kind=("integral", "real floating", "complex floating"))["uint16"], + np.dtype[np.uint16], +) +assert_type( + info.dtypes(kind=("integral", "real floating", "complex floating"))["float32"], + np.dtype[np.float32], +) +assert_type( + info.dtypes(kind=("integral", "real floating", "complex floating"))["complex64"], + np.dtype[np.complex64], +) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/array_constructors.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/array_constructors.pyi new file mode 100644 index 0000000..45cc986 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/array_constructors.pyi @@ -0,0 +1,249 @@ +import sys +from collections import deque +from pathlib import Path +from typing import Any, TypeVar, assert_type + +import numpy as np +import numpy.typing as npt + +_ScalarT_co = TypeVar("_ScalarT_co", bound=np.generic, covariant=True) + +class SubClass(npt.NDArray[_ScalarT_co]): ... + +i8: np.int64 + +A: npt.NDArray[np.float64] +B: SubClass[np.float64] +C: list[int] +D: SubClass[np.float64 | np.int64] + +mixed_shape: tuple[int, np.int64] + +def func(i: int, j: int, **kwargs: Any) -> SubClass[np.float64]: ... + +assert_type(np.empty_like(A), npt.NDArray[np.float64]) +assert_type(np.empty_like(B), SubClass[np.float64]) +assert_type(np.empty_like([1, 1.0]), npt.NDArray[Any]) +assert_type(np.empty_like(A, dtype=np.int64), npt.NDArray[np.int64]) +assert_type(np.empty_like(A, dtype='c16'), npt.NDArray[Any]) + +assert_type(np.array(A), npt.NDArray[np.float64]) +assert_type(np.array(B), npt.NDArray[np.float64]) +assert_type(np.array([1, 1.0]), npt.NDArray[Any]) +assert_type(np.array(deque([1, 2, 3])), npt.NDArray[Any]) +assert_type(np.array(A, dtype=np.int64), npt.NDArray[np.int64]) +assert_type(np.array(A, dtype='c16'), npt.NDArray[Any]) +assert_type(np.array(A, like=A), npt.NDArray[np.float64]) +assert_type(np.array(A, subok=True), npt.NDArray[np.float64]) +assert_type(np.array(B, subok=True), SubClass[np.float64]) +assert_type(np.array(B, subok=True, ndmin=0), SubClass[np.float64]) +assert_type(np.array(B, subok=True, ndmin=1), SubClass[np.float64]) +assert_type(np.array(D), npt.NDArray[np.float64 | np.int64]) +# https://github.com/numpy/numpy/issues/29245 +assert_type(np.array([], dtype=np.bool), npt.NDArray[np.bool]) + +assert_type(np.zeros([1, 5, 6]), npt.NDArray[np.float64]) +assert_type(np.zeros([1, 5, 6], dtype=np.int64), npt.NDArray[np.int64]) +assert_type(np.zeros([1, 5, 6], dtype='c16'), npt.NDArray[Any]) +assert_type(np.zeros(mixed_shape), npt.NDArray[np.float64]) + +assert_type(np.empty([1, 5, 6]), npt.NDArray[np.float64]) +assert_type(np.empty([1, 5, 6], dtype=np.int64), npt.NDArray[np.int64]) +assert_type(np.empty([1, 5, 6], dtype='c16'), npt.NDArray[Any]) +assert_type(np.empty(mixed_shape), npt.NDArray[np.float64]) + +assert_type(np.concatenate(A), npt.NDArray[np.float64]) +assert_type(np.concatenate([A, A]), Any) # pyright correctly infers this as NDArray[float64] +assert_type(np.concatenate([[1], A]), npt.NDArray[Any]) +assert_type(np.concatenate([[1], [1]]), npt.NDArray[Any]) +assert_type(np.concatenate((A, A)), npt.NDArray[np.float64]) +assert_type(np.concatenate(([1], [1])), npt.NDArray[Any]) +assert_type(np.concatenate([1, 1.0]), npt.NDArray[Any]) +assert_type(np.concatenate(A, dtype=np.int64), npt.NDArray[np.int64]) +assert_type(np.concatenate(A, dtype='c16'), npt.NDArray[Any]) +assert_type(np.concatenate([1, 1.0], out=A), npt.NDArray[np.float64]) + +assert_type(np.asarray(A), npt.NDArray[np.float64]) +assert_type(np.asarray(B), npt.NDArray[np.float64]) +assert_type(np.asarray([1, 1.0]), npt.NDArray[Any]) +assert_type(np.asarray(A, dtype=np.int64), npt.NDArray[np.int64]) +assert_type(np.asarray(A, dtype='c16'), npt.NDArray[Any]) + +assert_type(np.asanyarray(A), npt.NDArray[np.float64]) +assert_type(np.asanyarray(B), SubClass[np.float64]) +assert_type(np.asanyarray([1, 1.0]), npt.NDArray[Any]) +assert_type(np.asanyarray(A, dtype=np.int64), npt.NDArray[np.int64]) +assert_type(np.asanyarray(A, dtype='c16'), npt.NDArray[Any]) + +assert_type(np.ascontiguousarray(A), npt.NDArray[np.float64]) +assert_type(np.ascontiguousarray(B), npt.NDArray[np.float64]) +assert_type(np.ascontiguousarray([1, 1.0]), npt.NDArray[Any]) +assert_type(np.ascontiguousarray(A, dtype=np.int64), npt.NDArray[np.int64]) +assert_type(np.ascontiguousarray(A, dtype='c16'), npt.NDArray[Any]) + +assert_type(np.asfortranarray(A), npt.NDArray[np.float64]) +assert_type(np.asfortranarray(B), npt.NDArray[np.float64]) +assert_type(np.asfortranarray([1, 1.0]), npt.NDArray[Any]) +assert_type(np.asfortranarray(A, dtype=np.int64), npt.NDArray[np.int64]) +assert_type(np.asfortranarray(A, dtype='c16'), npt.NDArray[Any]) + +assert_type(np.fromstring("1 1 1", sep=" "), npt.NDArray[np.float64]) +assert_type(np.fromstring(b"1 1 1", sep=" "), npt.NDArray[np.float64]) +assert_type(np.fromstring("1 1 1", dtype=np.int64, sep=" "), npt.NDArray[np.int64]) +assert_type(np.fromstring(b"1 1 1", dtype=np.int64, sep=" "), npt.NDArray[np.int64]) +assert_type(np.fromstring("1 1 1", dtype="c16", sep=" "), npt.NDArray[Any]) +assert_type(np.fromstring(b"1 1 1", dtype="c16", sep=" "), npt.NDArray[Any]) + +assert_type(np.fromfile("test.txt", sep=" "), npt.NDArray[np.float64]) +assert_type(np.fromfile("test.txt", dtype=np.int64, sep=" "), npt.NDArray[np.int64]) +assert_type(np.fromfile("test.txt", dtype="c16", sep=" "), npt.NDArray[Any]) +with open("test.txt") as f: + assert_type(np.fromfile(f, sep=" "), npt.NDArray[np.float64]) + assert_type(np.fromfile(b"test.txt", sep=" "), npt.NDArray[np.float64]) + assert_type(np.fromfile(Path("test.txt"), sep=" "), npt.NDArray[np.float64]) + +assert_type(np.fromiter("12345", np.float64), npt.NDArray[np.float64]) +assert_type(np.fromiter("12345", float), npt.NDArray[Any]) + +assert_type(np.frombuffer(A), npt.NDArray[np.float64]) +assert_type(np.frombuffer(A, dtype=np.int64), npt.NDArray[np.int64]) +assert_type(np.frombuffer(A, dtype="c16"), npt.NDArray[Any]) + +assert_type(np.arange(False, True), np.ndarray[tuple[int], np.dtype[np.signedinteger]]) +assert_type(np.arange(10), np.ndarray[tuple[int], np.dtype[np.signedinteger]]) +assert_type(np.arange(0, 10, step=2), np.ndarray[tuple[int], np.dtype[np.signedinteger]]) +assert_type(np.arange(10.0), np.ndarray[tuple[int], np.dtype[np.floating]]) +assert_type(np.arange(start=0, stop=10.0), np.ndarray[tuple[int], np.dtype[np.floating]]) +assert_type(np.arange(np.timedelta64(0)), np.ndarray[tuple[int], np.dtype[np.timedelta64]]) +assert_type(np.arange(0, np.timedelta64(10)), np.ndarray[tuple[int], np.dtype[np.timedelta64]]) +assert_type(np.arange(np.datetime64("0"), np.datetime64("10")), np.ndarray[tuple[int], np.dtype[np.datetime64]]) +assert_type(np.arange(10, dtype=np.float64), np.ndarray[tuple[int], np.dtype[np.float64]]) +assert_type(np.arange(0, 10, step=2, dtype=np.int16), np.ndarray[tuple[int], np.dtype[np.int16]]) +assert_type(np.arange(10, dtype=int), np.ndarray[tuple[int], np.dtype]) +assert_type(np.arange(0, 10, dtype="f8"), np.ndarray[tuple[int], np.dtype]) + +assert_type(np.require(A), npt.NDArray[np.float64]) +assert_type(np.require(B), SubClass[np.float64]) +assert_type(np.require(B, requirements=None), SubClass[np.float64]) +assert_type(np.require(B, dtype=int), npt.NDArray[Any]) +assert_type(np.require(B, requirements="E"), npt.NDArray[Any]) +assert_type(np.require(B, requirements=["ENSUREARRAY"]), npt.NDArray[Any]) +assert_type(np.require(B, requirements={"F", "E"}), npt.NDArray[Any]) +assert_type(np.require(B, requirements=["C", "OWNDATA"]), SubClass[np.float64]) +assert_type(np.require(B, requirements="W"), SubClass[np.float64]) +assert_type(np.require(B, requirements="A"), SubClass[np.float64]) +assert_type(np.require(C), npt.NDArray[Any]) + +assert_type(np.linspace(0, 10), npt.NDArray[np.float64]) +assert_type(np.linspace(0, 10j), npt.NDArray[np.complexfloating]) +assert_type(np.linspace(0, 10, dtype=np.int64), npt.NDArray[np.int64]) +assert_type(np.linspace(0, 10, dtype=int), npt.NDArray[Any]) +assert_type(np.linspace(0, 10, retstep=True), tuple[npt.NDArray[np.float64], np.float64]) +assert_type(np.linspace(0j, 10, retstep=True), tuple[npt.NDArray[np.complexfloating], np.complexfloating]) +assert_type(np.linspace(0, 10, retstep=True, dtype=np.int64), tuple[npt.NDArray[np.int64], np.int64]) +assert_type(np.linspace(0j, 10, retstep=True, dtype=int), tuple[npt.NDArray[Any], Any]) + +assert_type(np.logspace(0, 10), npt.NDArray[np.float64]) +assert_type(np.logspace(0, 10j), npt.NDArray[np.complexfloating]) +assert_type(np.logspace(0, 10, dtype=np.int64), npt.NDArray[np.int64]) +assert_type(np.logspace(0, 10, dtype=int), npt.NDArray[Any]) + +assert_type(np.geomspace(0, 10), npt.NDArray[np.float64]) +assert_type(np.geomspace(0, 10j), npt.NDArray[np.complexfloating]) +assert_type(np.geomspace(0, 10, dtype=np.int64), npt.NDArray[np.int64]) +assert_type(np.geomspace(0, 10, dtype=int), npt.NDArray[Any]) + +assert_type(np.zeros_like(A), npt.NDArray[np.float64]) +assert_type(np.zeros_like(C), npt.NDArray[Any]) +assert_type(np.zeros_like(A, dtype=float), npt.NDArray[Any]) +assert_type(np.zeros_like(B), SubClass[np.float64]) +assert_type(np.zeros_like(B, dtype=np.int64), npt.NDArray[np.int64]) + +assert_type(np.ones_like(A), npt.NDArray[np.float64]) +assert_type(np.ones_like(C), npt.NDArray[Any]) +assert_type(np.ones_like(A, dtype=float), npt.NDArray[Any]) +assert_type(np.ones_like(B), SubClass[np.float64]) +assert_type(np.ones_like(B, dtype=np.int64), npt.NDArray[np.int64]) + +assert_type(np.full_like(A, i8), npt.NDArray[np.float64]) +assert_type(np.full_like(C, i8), npt.NDArray[Any]) +assert_type(np.full_like(A, i8, dtype=int), npt.NDArray[Any]) +assert_type(np.full_like(B, i8), SubClass[np.float64]) +assert_type(np.full_like(B, i8, dtype=np.int64), npt.NDArray[np.int64]) + +_size: int +_shape_0d: tuple[()] +_shape_1d: tuple[int] +_shape_2d: tuple[int, int] +_shape_nd: tuple[int, ...] +_shape_like: list[int] + +assert_type(np.ones(_shape_0d), np.ndarray[tuple[()], np.dtype[np.float64]]) +assert_type(np.ones(_size), np.ndarray[tuple[int], np.dtype[np.float64]]) +assert_type(np.ones(_shape_2d), np.ndarray[tuple[int, int], np.dtype[np.float64]]) +assert_type(np.ones(_shape_nd), np.ndarray[tuple[int, ...], np.dtype[np.float64]]) +assert_type(np.ones(_shape_1d, dtype=np.int64), np.ndarray[tuple[int], np.dtype[np.int64]]) +assert_type(np.ones(_shape_like), npt.NDArray[np.float64]) +assert_type(np.ones(_shape_like, dtype=np.dtypes.Int64DType()), np.ndarray[Any, np.dtypes.Int64DType]) +assert_type(np.ones(_shape_like, dtype=int), npt.NDArray[Any]) +assert_type(np.ones(mixed_shape), npt.NDArray[np.float64]) + +assert_type(np.full(_size, i8), np.ndarray[tuple[int], np.dtype[np.int64]]) +assert_type(np.full(_shape_2d, i8), np.ndarray[tuple[int, int], np.dtype[np.int64]]) +assert_type(np.full(_shape_like, i8), npt.NDArray[np.int64]) +assert_type(np.full(_shape_like, 42), npt.NDArray[Any]) +assert_type(np.full(_size, i8, dtype=np.float64), np.ndarray[tuple[int], np.dtype[np.float64]]) +assert_type(np.full(_size, i8, dtype=float), np.ndarray[tuple[int], np.dtype]) +assert_type(np.full(_shape_like, 42, dtype=float), npt.NDArray[Any]) +assert_type(np.full(_shape_0d, i8, dtype=object), np.ndarray[tuple[()], np.dtype]) + +assert_type(np.indices([1, 2, 3]), npt.NDArray[np.int_]) +assert_type(np.indices([1, 2, 3], sparse=True), tuple[npt.NDArray[np.int_], ...]) + +assert_type(np.fromfunction(func, (3, 5)), SubClass[np.float64]) + +assert_type(np.identity(10), npt.NDArray[np.float64]) +assert_type(np.identity(10, dtype=np.int64), npt.NDArray[np.int64]) +assert_type(np.identity(10, dtype=int), npt.NDArray[Any]) + +assert_type(np.atleast_1d(A), npt.NDArray[np.float64]) +assert_type(np.atleast_1d(C), npt.NDArray[Any]) +assert_type(np.atleast_1d(A, A), tuple[npt.NDArray[np.float64], npt.NDArray[np.float64]]) +assert_type(np.atleast_1d(A, C), tuple[npt.NDArray[Any], npt.NDArray[Any]]) +assert_type(np.atleast_1d(C, C), tuple[npt.NDArray[Any], npt.NDArray[Any]]) +assert_type(np.atleast_1d(A, A, A), tuple[npt.NDArray[np.float64], ...]) +assert_type(np.atleast_1d(C, C, C), tuple[npt.NDArray[Any], ...]) + +assert_type(np.atleast_2d(A), npt.NDArray[np.float64]) +assert_type(np.atleast_2d(A, A), tuple[npt.NDArray[np.float64], npt.NDArray[np.float64]]) +assert_type(np.atleast_2d(A, A, A), tuple[npt.NDArray[np.float64], ...]) + +assert_type(np.atleast_3d(A), npt.NDArray[np.float64]) +assert_type(np.atleast_3d(A, A), tuple[npt.NDArray[np.float64], npt.NDArray[np.float64]]) +assert_type(np.atleast_3d(A, A, A), tuple[npt.NDArray[np.float64], ...]) + +assert_type(np.vstack([A, A]), np.ndarray[Any, Any]) # pyright correctly infers this as NDArray[float64] +assert_type(np.vstack([A, A], dtype=np.float32), npt.NDArray[np.float32]) +assert_type(np.vstack([A, C]), npt.NDArray[Any]) +assert_type(np.vstack([C, C]), npt.NDArray[Any]) + +assert_type(np.hstack([A, A]), np.ndarray[Any, Any]) # pyright correctly infers this as NDArray[float64] +assert_type(np.hstack([A, A], dtype=np.float32), npt.NDArray[np.float32]) + +assert_type(np.stack([A, A]), np.ndarray[Any, Any]) # pyright correctly infers this as NDArray[float64] +assert_type(np.stack([A, A], dtype=np.float32), npt.NDArray[np.float32]) +assert_type(np.stack([A, C]), npt.NDArray[Any]) +assert_type(np.stack([C, C]), npt.NDArray[Any]) +assert_type(np.stack([A, A], axis=0), np.ndarray[Any, Any]) # pyright correctly infers this as NDArray[float64] +assert_type(np.stack([A, A], out=B), SubClass[np.float64]) + +assert_type(np.block([[A, A], [A, A]]), npt.NDArray[Any]) # pyright correctly infers this as NDArray[float64] +assert_type(np.block(C), npt.NDArray[Any]) + +if sys.version_info >= (3, 12): + from collections.abc import Buffer + + def create_array(obj: npt.ArrayLike) -> npt.NDArray[Any]: ... + + buffer: Buffer + assert_type(create_array(buffer), npt.NDArray[Any]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/arraypad.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/arraypad.pyi new file mode 100644 index 0000000..c5a443d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/arraypad.pyi @@ -0,0 +1,22 @@ +from collections.abc import Mapping +from typing import Any, SupportsIndex, assert_type + +import numpy as np +import numpy.typing as npt + +def mode_func( + ar: npt.NDArray[np.number], + width: tuple[int, int], + iaxis: SupportsIndex, + kwargs: Mapping[str, Any], +) -> None: ... + +AR_i8: npt.NDArray[np.int64] +AR_f8: npt.NDArray[np.float64] +AR_LIKE: list[int] + +assert_type(np.pad(AR_i8, (2, 3), "constant"), npt.NDArray[np.int64]) +assert_type(np.pad(AR_LIKE, (2, 3), "constant"), npt.NDArray[Any]) + +assert_type(np.pad(AR_f8, (2, 3), mode_func), npt.NDArray[np.float64]) +assert_type(np.pad(AR_f8, (2, 3), mode_func, a=1, b=2), npt.NDArray[np.float64]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/arrayprint.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/arrayprint.pyi new file mode 100644 index 0000000..3b339ed --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/arrayprint.pyi @@ -0,0 +1,25 @@ +import contextlib +from collections.abc import Callable +from typing import Any, assert_type + +import numpy as np +import numpy.typing as npt +from numpy._core.arrayprint import _FormatOptions + +AR: npt.NDArray[np.int64] +func_float: Callable[[np.floating], str] +func_int: Callable[[np.integer], str] + +assert_type(np.get_printoptions(), _FormatOptions) +assert_type( + np.array2string(AR, formatter={'float_kind': func_float, 'int_kind': func_int}), + str, +) +assert_type(np.format_float_scientific(1.0), str) +assert_type(np.format_float_positional(1), str) +assert_type(np.array_repr(AR), str) +assert_type(np.array_str(AR), str) + +assert_type(np.printoptions(), contextlib._GeneratorContextManager[_FormatOptions]) +with np.printoptions() as dct: + assert_type(dct, _FormatOptions) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/arraysetops.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/arraysetops.pyi new file mode 100644 index 0000000..7e5ca5c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/arraysetops.pyi @@ -0,0 +1,74 @@ +from typing import Any, assert_type + +import numpy as np +import numpy.typing as npt +from numpy.lib._arraysetops_impl import ( + UniqueAllResult, + UniqueCountsResult, + UniqueInverseResult, +) + +AR_b: npt.NDArray[np.bool] +AR_i8: npt.NDArray[np.int64] +AR_f8: npt.NDArray[np.float64] +AR_M: npt.NDArray[np.datetime64] +AR_O: npt.NDArray[np.object_] + +AR_LIKE_f8: list[float] + +assert_type(np.ediff1d(AR_b), npt.NDArray[np.int8]) +assert_type(np.ediff1d(AR_i8, to_end=[1, 2, 3]), npt.NDArray[np.int64]) +assert_type(np.ediff1d(AR_M), npt.NDArray[np.timedelta64]) +assert_type(np.ediff1d(AR_O), npt.NDArray[np.object_]) +assert_type(np.ediff1d(AR_LIKE_f8, to_begin=[1, 1.5]), npt.NDArray[Any]) + +assert_type(np.intersect1d(AR_i8, AR_i8), npt.NDArray[np.int64]) +assert_type(np.intersect1d(AR_M, AR_M, assume_unique=True), npt.NDArray[np.datetime64]) +assert_type(np.intersect1d(AR_f8, AR_i8), npt.NDArray[Any]) +assert_type( + np.intersect1d(AR_f8, AR_f8, return_indices=True), + tuple[npt.NDArray[np.float64], npt.NDArray[np.intp], npt.NDArray[np.intp]], +) + +assert_type(np.setxor1d(AR_i8, AR_i8), npt.NDArray[np.int64]) +assert_type(np.setxor1d(AR_M, AR_M, assume_unique=True), npt.NDArray[np.datetime64]) +assert_type(np.setxor1d(AR_f8, AR_i8), npt.NDArray[Any]) + +assert_type(np.isin(AR_i8, AR_i8), npt.NDArray[np.bool]) +assert_type(np.isin(AR_M, AR_M, assume_unique=True), npt.NDArray[np.bool]) +assert_type(np.isin(AR_f8, AR_i8), npt.NDArray[np.bool]) +assert_type(np.isin(AR_f8, AR_LIKE_f8, invert=True), npt.NDArray[np.bool]) + +assert_type(np.union1d(AR_i8, AR_i8), npt.NDArray[np.int64]) +assert_type(np.union1d(AR_M, AR_M), npt.NDArray[np.datetime64]) +assert_type(np.union1d(AR_f8, AR_i8), npt.NDArray[Any]) + +assert_type(np.setdiff1d(AR_i8, AR_i8), npt.NDArray[np.int64]) +assert_type(np.setdiff1d(AR_M, AR_M, assume_unique=True), npt.NDArray[np.datetime64]) +assert_type(np.setdiff1d(AR_f8, AR_i8), npt.NDArray[Any]) + +assert_type(np.unique(AR_f8), npt.NDArray[np.float64]) +assert_type(np.unique(AR_LIKE_f8, axis=0), npt.NDArray[Any]) +assert_type(np.unique(AR_f8, return_index=True), tuple[npt.NDArray[np.float64], npt.NDArray[np.intp]]) +assert_type(np.unique(AR_LIKE_f8, return_index=True), tuple[npt.NDArray[Any], npt.NDArray[np.intp]]) +assert_type(np.unique(AR_f8, return_inverse=True), tuple[npt.NDArray[np.float64], npt.NDArray[np.intp]]) +assert_type(np.unique(AR_LIKE_f8, return_inverse=True), tuple[npt.NDArray[Any], npt.NDArray[np.intp]]) +assert_type(np.unique(AR_f8, return_counts=True), tuple[npt.NDArray[np.float64], npt.NDArray[np.intp]]) +assert_type(np.unique(AR_LIKE_f8, return_counts=True), tuple[npt.NDArray[Any], npt.NDArray[np.intp]]) +assert_type(np.unique(AR_f8, return_index=True, return_inverse=True), tuple[npt.NDArray[np.float64], npt.NDArray[np.intp], npt.NDArray[np.intp]]) +assert_type(np.unique(AR_LIKE_f8, return_index=True, return_inverse=True), tuple[npt.NDArray[Any], npt.NDArray[np.intp], npt.NDArray[np.intp]]) +assert_type(np.unique(AR_f8, return_index=True, return_counts=True), tuple[npt.NDArray[np.float64], npt.NDArray[np.intp], npt.NDArray[np.intp]]) +assert_type(np.unique(AR_LIKE_f8, return_index=True, return_counts=True), tuple[npt.NDArray[Any], npt.NDArray[np.intp], npt.NDArray[np.intp]]) +assert_type(np.unique(AR_f8, return_inverse=True, return_counts=True), tuple[npt.NDArray[np.float64], npt.NDArray[np.intp], npt.NDArray[np.intp]]) +assert_type(np.unique(AR_LIKE_f8, return_inverse=True, return_counts=True), tuple[npt.NDArray[Any], npt.NDArray[np.intp], npt.NDArray[np.intp]]) +assert_type(np.unique(AR_f8, return_index=True, return_inverse=True, return_counts=True), tuple[npt.NDArray[np.float64], npt.NDArray[np.intp], npt.NDArray[np.intp], npt.NDArray[np.intp]]) +assert_type(np.unique(AR_LIKE_f8, return_index=True, return_inverse=True, return_counts=True), tuple[npt.NDArray[Any], npt.NDArray[np.intp], npt.NDArray[np.intp], npt.NDArray[np.intp]]) + +assert_type(np.unique_all(AR_f8), UniqueAllResult[np.float64]) +assert_type(np.unique_all(AR_LIKE_f8), UniqueAllResult[Any]) +assert_type(np.unique_counts(AR_f8), UniqueCountsResult[np.float64]) +assert_type(np.unique_counts(AR_LIKE_f8), UniqueCountsResult[Any]) +assert_type(np.unique_inverse(AR_f8), UniqueInverseResult[np.float64]) +assert_type(np.unique_inverse(AR_LIKE_f8), UniqueInverseResult[Any]) +assert_type(np.unique_values(AR_f8), npt.NDArray[np.float64]) +assert_type(np.unique_values(AR_LIKE_f8), npt.NDArray[Any]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/arrayterator.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/arrayterator.pyi new file mode 100644 index 0000000..470160c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/arrayterator.pyi @@ -0,0 +1,27 @@ +from collections.abc import Generator +from typing import Any, assert_type + +import numpy as np +import numpy.typing as npt + +AR_i8: npt.NDArray[np.int64] +ar_iter = np.lib.Arrayterator(AR_i8) + +assert_type(ar_iter.var, npt.NDArray[np.int64]) +assert_type(ar_iter.buf_size, int | None) +assert_type(ar_iter.start, list[int]) +assert_type(ar_iter.stop, list[int]) +assert_type(ar_iter.step, list[int]) +assert_type(ar_iter.shape, tuple[Any, ...]) +assert_type(ar_iter.flat, Generator[np.int64, None, None]) + +assert_type(ar_iter.__array__(), npt.NDArray[np.int64]) + +for i in ar_iter: + assert_type(i, npt.NDArray[np.int64]) + +assert_type(ar_iter[0], np.lib.Arrayterator[tuple[Any, ...], np.dtype[np.int64]]) +assert_type(ar_iter[...], np.lib.Arrayterator[tuple[Any, ...], np.dtype[np.int64]]) +assert_type(ar_iter[:], np.lib.Arrayterator[tuple[Any, ...], np.dtype[np.int64]]) +assert_type(ar_iter[0, 0, 0], np.lib.Arrayterator[tuple[Any, ...], np.dtype[np.int64]]) +assert_type(ar_iter[..., 0, :], np.lib.Arrayterator[tuple[Any, ...], np.dtype[np.int64]]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/bitwise_ops.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/bitwise_ops.pyi new file mode 100644 index 0000000..6c6b561 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/bitwise_ops.pyi @@ -0,0 +1,168 @@ +from typing import Any, TypeAlias, assert_type +from typing import Literal as L + +import numpy as np +import numpy.typing as npt +from numpy._typing import _32Bit, _64Bit + +FalseType: TypeAlias = L[False] +TrueType: TypeAlias = L[True] + +i4: np.int32 +i8: np.int64 + +u4: np.uint32 +u8: np.uint64 + +b_: np.bool[bool] +b0_: np.bool[FalseType] +b1_: np.bool[TrueType] + +b: bool +b0: FalseType +b1: TrueType + +i: int + +AR: npt.NDArray[np.int32] + +assert_type(i8 << i8, np.int64) +assert_type(i8 >> i8, np.int64) +assert_type(i8 | i8, np.int64) +assert_type(i8 ^ i8, np.int64) +assert_type(i8 & i8, np.int64) + +assert_type(i8 << AR, npt.NDArray[np.signedinteger]) +assert_type(i8 >> AR, npt.NDArray[np.signedinteger]) +assert_type(i8 | AR, npt.NDArray[np.signedinteger]) +assert_type(i8 ^ AR, npt.NDArray[np.signedinteger]) +assert_type(i8 & AR, npt.NDArray[np.signedinteger]) + +assert_type(i4 << i4, np.int32) +assert_type(i4 >> i4, np.int32) +assert_type(i4 | i4, np.int32) +assert_type(i4 ^ i4, np.int32) +assert_type(i4 & i4, np.int32) + +assert_type(i8 << i4, np.signedinteger[_32Bit] | np.signedinteger[_64Bit]) +assert_type(i8 >> i4, np.signedinteger[_32Bit] | np.signedinteger[_64Bit]) +assert_type(i8 | i4, np.signedinteger[_32Bit] | np.signedinteger[_64Bit]) +assert_type(i8 ^ i4, np.signedinteger[_32Bit] | np.signedinteger[_64Bit]) +assert_type(i8 & i4, np.signedinteger[_32Bit] | np.signedinteger[_64Bit]) + +assert_type(i8 << b_, np.int64) +assert_type(i8 >> b_, np.int64) +assert_type(i8 | b_, np.int64) +assert_type(i8 ^ b_, np.int64) +assert_type(i8 & b_, np.int64) + +assert_type(i8 << b, np.int64) +assert_type(i8 >> b, np.int64) +assert_type(i8 | b, np.int64) +assert_type(i8 ^ b, np.int64) +assert_type(i8 & b, np.int64) + +assert_type(u8 << u8, np.uint64) +assert_type(u8 >> u8, np.uint64) +assert_type(u8 | u8, np.uint64) +assert_type(u8 ^ u8, np.uint64) +assert_type(u8 & u8, np.uint64) + +assert_type(u8 << AR, npt.NDArray[np.signedinteger]) +assert_type(u8 >> AR, npt.NDArray[np.signedinteger]) +assert_type(u8 | AR, npt.NDArray[np.signedinteger]) +assert_type(u8 ^ AR, npt.NDArray[np.signedinteger]) +assert_type(u8 & AR, npt.NDArray[np.signedinteger]) + +assert_type(u4 << u4, np.uint32) +assert_type(u4 >> u4, np.uint32) +assert_type(u4 | u4, np.uint32) +assert_type(u4 ^ u4, np.uint32) +assert_type(u4 & u4, np.uint32) + +assert_type(u4 << i4, np.signedinteger) +assert_type(u4 >> i4, np.signedinteger) +assert_type(u4 | i4, np.signedinteger) +assert_type(u4 ^ i4, np.signedinteger) +assert_type(u4 & i4, np.signedinteger) + +assert_type(u4 << i, np.signedinteger) +assert_type(u4 >> i, np.signedinteger) +assert_type(u4 | i, np.signedinteger) +assert_type(u4 ^ i, np.signedinteger) +assert_type(u4 & i, np.signedinteger) + +assert_type(u8 << b_, np.uint64) +assert_type(u8 >> b_, np.uint64) +assert_type(u8 | b_, np.uint64) +assert_type(u8 ^ b_, np.uint64) +assert_type(u8 & b_, np.uint64) + +assert_type(u8 << b, np.uint64) +assert_type(u8 >> b, np.uint64) +assert_type(u8 | b, np.uint64) +assert_type(u8 ^ b, np.uint64) +assert_type(u8 & b, np.uint64) + +assert_type(b_ << b_, np.int8) +assert_type(b_ >> b_, np.int8) +assert_type(b_ | b_, np.bool) +assert_type(b_ ^ b_, np.bool) +assert_type(b_ & b_, np.bool) + +assert_type(b_ << AR, npt.NDArray[np.signedinteger]) +assert_type(b_ >> AR, npt.NDArray[np.signedinteger]) +assert_type(b_ | AR, npt.NDArray[np.signedinteger]) +assert_type(b_ ^ AR, npt.NDArray[np.signedinteger]) +assert_type(b_ & AR, npt.NDArray[np.signedinteger]) + +assert_type(b_ << b, np.int8) +assert_type(b_ >> b, np.int8) +assert_type(b_ | b, np.bool) +assert_type(b_ ^ b, np.bool) +assert_type(b_ & b, np.bool) + +assert_type(b_ << i, np.int_) +assert_type(b_ >> i, np.int_) +assert_type(b_ | i, np.bool | np.int_) +assert_type(b_ ^ i, np.bool | np.int_) +assert_type(b_ & i, np.bool | np.int_) + +assert_type(~i8, np.int64) +assert_type(~i4, np.int32) +assert_type(~u8, np.uint64) +assert_type(~u4, np.uint32) +assert_type(~b_, np.bool) +assert_type(~b0_, np.bool[TrueType]) +assert_type(~b1_, np.bool[FalseType]) +assert_type(~AR, npt.NDArray[np.int32]) + +assert_type(b_ | b0_, np.bool) +assert_type(b0_ | b_, np.bool) +assert_type(b_ | b1_, np.bool[TrueType]) +assert_type(b1_ | b_, np.bool[TrueType]) + +assert_type(b_ ^ b0_, np.bool) +assert_type(b0_ ^ b_, np.bool) +assert_type(b_ ^ b1_, np.bool) +assert_type(b1_ ^ b_, np.bool) + +assert_type(b_ & b0_, np.bool[FalseType]) +assert_type(b0_ & b_, np.bool[FalseType]) +assert_type(b_ & b1_, np.bool) +assert_type(b1_ & b_, np.bool) + +assert_type(b0_ | b0_, np.bool[FalseType]) +assert_type(b0_ | b1_, np.bool[TrueType]) +assert_type(b1_ | b0_, np.bool[TrueType]) +assert_type(b1_ | b1_, np.bool[TrueType]) + +assert_type(b0_ ^ b0_, np.bool[FalseType]) +assert_type(b0_ ^ b1_, np.bool[TrueType]) +assert_type(b1_ ^ b0_, np.bool[TrueType]) +assert_type(b1_ ^ b1_, np.bool[FalseType]) + +assert_type(b0_ & b0_, np.bool[FalseType]) +assert_type(b0_ & b1_, np.bool[FalseType]) +assert_type(b1_ & b0_, np.bool[FalseType]) +assert_type(b1_ & b1_, np.bool[TrueType]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/char.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/char.pyi new file mode 100644 index 0000000..5c6af73 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/char.pyi @@ -0,0 +1,224 @@ +from typing import TypeAlias, assert_type + +import numpy as np +import numpy._typing as np_t +import numpy.typing as npt + +AR_T_alias: TypeAlias = np.ndarray[np_t._AnyShape, np.dtypes.StringDType] +AR_TU_alias: TypeAlias = AR_T_alias | npt.NDArray[np.str_] + +AR_U: npt.NDArray[np.str_] +AR_S: npt.NDArray[np.bytes_] +AR_T: AR_T_alias + +assert_type(np.char.equal(AR_U, AR_U), npt.NDArray[np.bool]) +assert_type(np.char.equal(AR_S, AR_S), npt.NDArray[np.bool]) +assert_type(np.char.equal(AR_T, AR_T), npt.NDArray[np.bool]) + +assert_type(np.char.not_equal(AR_U, AR_U), npt.NDArray[np.bool]) +assert_type(np.char.not_equal(AR_S, AR_S), npt.NDArray[np.bool]) +assert_type(np.char.not_equal(AR_T, AR_T), npt.NDArray[np.bool]) + +assert_type(np.char.greater_equal(AR_U, AR_U), npt.NDArray[np.bool]) +assert_type(np.char.greater_equal(AR_S, AR_S), npt.NDArray[np.bool]) +assert_type(np.char.greater_equal(AR_T, AR_T), npt.NDArray[np.bool]) + +assert_type(np.char.less_equal(AR_U, AR_U), npt.NDArray[np.bool]) +assert_type(np.char.less_equal(AR_S, AR_S), npt.NDArray[np.bool]) +assert_type(np.char.less_equal(AR_T, AR_T), npt.NDArray[np.bool]) + +assert_type(np.char.greater(AR_U, AR_U), npt.NDArray[np.bool]) +assert_type(np.char.greater(AR_S, AR_S), npt.NDArray[np.bool]) +assert_type(np.char.greater(AR_T, AR_T), npt.NDArray[np.bool]) + +assert_type(np.char.less(AR_U, AR_U), npt.NDArray[np.bool]) +assert_type(np.char.less(AR_S, AR_S), npt.NDArray[np.bool]) +assert_type(np.char.less(AR_T, AR_T), npt.NDArray[np.bool]) + +assert_type(np.char.multiply(AR_U, 5), npt.NDArray[np.str_]) +assert_type(np.char.multiply(AR_S, [5, 4, 3]), npt.NDArray[np.bytes_]) +assert_type(np.char.multiply(AR_T, 5), AR_T_alias) + +assert_type(np.char.mod(AR_U, "test"), npt.NDArray[np.str_]) +assert_type(np.char.mod(AR_S, "test"), npt.NDArray[np.bytes_]) +assert_type(np.char.mod(AR_T, "test"), AR_T_alias) + +assert_type(np.char.capitalize(AR_U), npt.NDArray[np.str_]) +assert_type(np.char.capitalize(AR_S), npt.NDArray[np.bytes_]) +assert_type(np.char.capitalize(AR_T), AR_T_alias) + +assert_type(np.char.center(AR_U, 5), npt.NDArray[np.str_]) +assert_type(np.char.center(AR_S, [2, 3, 4], b"a"), npt.NDArray[np.bytes_]) +assert_type(np.char.center(AR_T, 5), AR_T_alias) + +assert_type(np.char.encode(AR_U), npt.NDArray[np.bytes_]) +assert_type(np.char.encode(AR_T), npt.NDArray[np.bytes_]) +assert_type(np.char.decode(AR_S), npt.NDArray[np.str_]) + +assert_type(np.char.expandtabs(AR_U), npt.NDArray[np.str_]) +assert_type(np.char.expandtabs(AR_S, tabsize=4), npt.NDArray[np.bytes_]) +assert_type(np.char.expandtabs(AR_T), AR_T_alias) + +assert_type(np.char.join(AR_U, "_"), npt.NDArray[np.str_]) +assert_type(np.char.join(AR_S, [b"_", b""]), npt.NDArray[np.bytes_]) +assert_type(np.char.join(AR_T, "_"), AR_TU_alias) + +assert_type(np.char.ljust(AR_U, 5), npt.NDArray[np.str_]) +assert_type(np.char.ljust(AR_S, [4, 3, 1], fillchar=[b"a", b"b", b"c"]), npt.NDArray[np.bytes_]) +assert_type(np.char.ljust(AR_T, 5), AR_T_alias) +assert_type(np.char.ljust(AR_T, [4, 2, 1], fillchar=["a", "b", "c"]), AR_TU_alias) + +assert_type(np.char.rjust(AR_U, 5), npt.NDArray[np.str_]) +assert_type(np.char.rjust(AR_S, [4, 3, 1], fillchar=[b"a", b"b", b"c"]), npt.NDArray[np.bytes_]) +assert_type(np.char.rjust(AR_T, 5), AR_T_alias) +assert_type(np.char.rjust(AR_T, [4, 2, 1], fillchar=["a", "b", "c"]), AR_TU_alias) + +assert_type(np.char.lstrip(AR_U), npt.NDArray[np.str_]) +assert_type(np.char.lstrip(AR_S, b"_"), npt.NDArray[np.bytes_]) +assert_type(np.char.lstrip(AR_T), AR_T_alias) +assert_type(np.char.lstrip(AR_T, "_"), AR_TU_alias) + +assert_type(np.char.rstrip(AR_U), npt.NDArray[np.str_]) +assert_type(np.char.rstrip(AR_S, b"_"), npt.NDArray[np.bytes_]) +assert_type(np.char.rstrip(AR_T), AR_T_alias) +assert_type(np.char.rstrip(AR_T, "_"), AR_TU_alias) + +assert_type(np.char.strip(AR_U), npt.NDArray[np.str_]) +assert_type(np.char.strip(AR_S, b"_"), npt.NDArray[np.bytes_]) +assert_type(np.char.strip(AR_T), AR_T_alias) +assert_type(np.char.strip(AR_T, "_"), AR_TU_alias) + +assert_type(np.char.count(AR_U, "a", start=[1, 2, 3]), npt.NDArray[np.int_]) +assert_type(np.char.count(AR_S, [b"a", b"b", b"c"], end=9), npt.NDArray[np.int_]) +assert_type(np.char.count(AR_T, AR_T, start=[1, 2, 3]), npt.NDArray[np.int_]) +assert_type(np.char.count(AR_T, ["a", "b", "c"], end=9), npt.NDArray[np.int_]) + +assert_type(np.char.partition(AR_U, "\n"), npt.NDArray[np.str_]) +assert_type(np.char.partition(AR_S, [b"a", b"b", b"c"]), npt.NDArray[np.bytes_]) +assert_type(np.char.partition(AR_T, "\n"), AR_TU_alias) + +assert_type(np.char.rpartition(AR_U, "\n"), npt.NDArray[np.str_]) +assert_type(np.char.rpartition(AR_S, [b"a", b"b", b"c"]), npt.NDArray[np.bytes_]) +assert_type(np.char.rpartition(AR_T, "\n"), AR_TU_alias) + +assert_type(np.char.replace(AR_U, "_", "-"), npt.NDArray[np.str_]) +assert_type(np.char.replace(AR_S, [b"_", b""], [b"a", b"b"]), npt.NDArray[np.bytes_]) +assert_type(np.char.replace(AR_T, "_", "_"), AR_TU_alias) + +assert_type(np.char.split(AR_U, "_"), npt.NDArray[np.object_]) +assert_type(np.char.split(AR_S, maxsplit=[1, 2, 3]), npt.NDArray[np.object_]) +assert_type(np.char.split(AR_T, "_"), npt.NDArray[np.object_]) + +assert_type(np.char.rsplit(AR_U, "_"), npt.NDArray[np.object_]) +assert_type(np.char.rsplit(AR_S, maxsplit=[1, 2, 3]), npt.NDArray[np.object_]) +assert_type(np.char.rsplit(AR_T, "_"), npt.NDArray[np.object_]) + +assert_type(np.char.splitlines(AR_U), npt.NDArray[np.object_]) +assert_type(np.char.splitlines(AR_S, keepends=[True, True, False]), npt.NDArray[np.object_]) +assert_type(np.char.splitlines(AR_T), npt.NDArray[np.object_]) + +assert_type(np.char.lower(AR_U), npt.NDArray[np.str_]) +assert_type(np.char.lower(AR_S), npt.NDArray[np.bytes_]) +assert_type(np.char.lower(AR_T), AR_T_alias) + +assert_type(np.char.upper(AR_U), npt.NDArray[np.str_]) +assert_type(np.char.upper(AR_S), npt.NDArray[np.bytes_]) +assert_type(np.char.upper(AR_T), AR_T_alias) + +assert_type(np.char.swapcase(AR_U), npt.NDArray[np.str_]) +assert_type(np.char.swapcase(AR_S), npt.NDArray[np.bytes_]) +assert_type(np.char.swapcase(AR_T), AR_T_alias) + +assert_type(np.char.title(AR_U), npt.NDArray[np.str_]) +assert_type(np.char.title(AR_S), npt.NDArray[np.bytes_]) +assert_type(np.char.title(AR_T), AR_T_alias) + +assert_type(np.char.zfill(AR_U, 5), npt.NDArray[np.str_]) +assert_type(np.char.zfill(AR_S, [2, 3, 4]), npt.NDArray[np.bytes_]) +assert_type(np.char.zfill(AR_T, 5), AR_T_alias) + +assert_type(np.char.endswith(AR_U, "a", start=[1, 2, 3]), npt.NDArray[np.bool]) +assert_type(np.char.endswith(AR_S, [b"a", b"b", b"c"], end=9), npt.NDArray[np.bool]) +assert_type(np.char.endswith(AR_T, "a", start=[1, 2, 3]), npt.NDArray[np.bool]) + +assert_type(np.char.startswith(AR_U, "a", start=[1, 2, 3]), npt.NDArray[np.bool]) +assert_type(np.char.startswith(AR_S, [b"a", b"b", b"c"], end=9), npt.NDArray[np.bool]) +assert_type(np.char.startswith(AR_T, "a", start=[1, 2, 3]), npt.NDArray[np.bool]) + +assert_type(np.char.find(AR_U, "a", start=[1, 2, 3]), npt.NDArray[np.int_]) +assert_type(np.char.find(AR_S, [b"a", b"b", b"c"], end=9), npt.NDArray[np.int_]) +assert_type(np.char.find(AR_T, "a", start=[1, 2, 3]), npt.NDArray[np.int_]) + +assert_type(np.char.rfind(AR_U, "a", start=[1, 2, 3]), npt.NDArray[np.int_]) +assert_type(np.char.rfind(AR_S, [b"a", b"b", b"c"], end=9), npt.NDArray[np.int_]) +assert_type(np.char.rfind(AR_T, "a", start=[1, 2, 3]), npt.NDArray[np.int_]) + +assert_type(np.char.index(AR_U, "a", start=[1, 2, 3]), npt.NDArray[np.int_]) +assert_type(np.char.index(AR_S, [b"a", b"b", b"c"], end=9), npt.NDArray[np.int_]) +assert_type(np.char.index(AR_T, "a", start=[1, 2, 3]), npt.NDArray[np.int_]) + +assert_type(np.char.rindex(AR_U, "a", start=[1, 2, 3]), npt.NDArray[np.int_]) +assert_type(np.char.rindex(AR_S, [b"a", b"b", b"c"], end=9), npt.NDArray[np.int_]) +assert_type(np.char.rindex(AR_T, "a", start=[1, 2, 3]), npt.NDArray[np.int_]) + +assert_type(np.char.isalpha(AR_U), npt.NDArray[np.bool]) +assert_type(np.char.isalpha(AR_S), npt.NDArray[np.bool]) +assert_type(np.char.isalpha(AR_T), npt.NDArray[np.bool]) + +assert_type(np.char.isalnum(AR_U), npt.NDArray[np.bool]) +assert_type(np.char.isalnum(AR_S), npt.NDArray[np.bool]) +assert_type(np.char.isalnum(AR_T), npt.NDArray[np.bool]) + +assert_type(np.char.isdecimal(AR_U), npt.NDArray[np.bool]) +assert_type(np.char.isdecimal(AR_T), npt.NDArray[np.bool]) + +assert_type(np.char.isdigit(AR_U), npt.NDArray[np.bool]) +assert_type(np.char.isdigit(AR_S), npt.NDArray[np.bool]) +assert_type(np.char.isdigit(AR_T), npt.NDArray[np.bool]) + +assert_type(np.char.islower(AR_U), npt.NDArray[np.bool]) +assert_type(np.char.islower(AR_S), npt.NDArray[np.bool]) +assert_type(np.char.islower(AR_T), npt.NDArray[np.bool]) + +assert_type(np.char.isnumeric(AR_U), npt.NDArray[np.bool]) +assert_type(np.char.isnumeric(AR_T), npt.NDArray[np.bool]) + +assert_type(np.char.isspace(AR_U), npt.NDArray[np.bool]) +assert_type(np.char.isspace(AR_S), npt.NDArray[np.bool]) +assert_type(np.char.isspace(AR_T), npt.NDArray[np.bool]) + +assert_type(np.char.istitle(AR_U), npt.NDArray[np.bool]) +assert_type(np.char.istitle(AR_S), npt.NDArray[np.bool]) +assert_type(np.char.istitle(AR_T), npt.NDArray[np.bool]) + +assert_type(np.char.isupper(AR_U), npt.NDArray[np.bool]) +assert_type(np.char.isupper(AR_S), npt.NDArray[np.bool]) +assert_type(np.char.isupper(AR_T), npt.NDArray[np.bool]) + +assert_type(np.char.str_len(AR_U), npt.NDArray[np.int_]) +assert_type(np.char.str_len(AR_S), npt.NDArray[np.int_]) +assert_type(np.char.str_len(AR_T), npt.NDArray[np.int_]) + +assert_type(np.char.translate(AR_U, ""), npt.NDArray[np.str_]) +assert_type(np.char.translate(AR_S, ""), npt.NDArray[np.bytes_]) +assert_type(np.char.translate(AR_T, ""), AR_T_alias) + +assert_type(np.char.array(AR_U), np.char.chararray[np_t._AnyShape, np.dtype[np.str_]]) +assert_type(np.char.array(AR_S, order="K"), np.char.chararray[np_t._AnyShape, np.dtype[np.bytes_]]) +assert_type(np.char.array("bob", copy=True), np.char.chararray[np_t._AnyShape, np.dtype[np.str_]]) +assert_type(np.char.array(b"bob", itemsize=5), np.char.chararray[np_t._AnyShape, np.dtype[np.bytes_]]) +assert_type(np.char.array(1, unicode=False), np.char.chararray[np_t._AnyShape, np.dtype[np.bytes_]]) +assert_type(np.char.array(1, unicode=True), np.char.chararray[np_t._AnyShape, np.dtype[np.str_]]) +assert_type(np.char.array(1), np.char.chararray[np_t._AnyShape, np.dtype[np.str_]] | np.char.chararray[np_t._AnyShape, np.dtype[np.bytes_]]) +assert_type(np.char.array(AR_U, unicode=False), np.char.chararray[np_t._AnyShape, np.dtype[np.bytes_]]) +assert_type(np.char.array(AR_S, unicode=True), np.char.chararray[np_t._AnyShape, np.dtype[np.str_]]) + +assert_type(np.char.asarray(AR_U), np.char.chararray[np_t._AnyShape, np.dtype[np.str_]]) +assert_type(np.char.asarray(AR_S, order="K"), np.char.chararray[np_t._AnyShape, np.dtype[np.bytes_]]) +assert_type(np.char.asarray("bob"), np.char.chararray[np_t._AnyShape, np.dtype[np.str_]]) +assert_type(np.char.asarray(b"bob", itemsize=5), np.char.chararray[np_t._AnyShape, np.dtype[np.bytes_]]) +assert_type(np.char.asarray(1, unicode=False), np.char.chararray[np_t._AnyShape, np.dtype[np.bytes_]]) +assert_type(np.char.asarray(1, unicode=True), np.char.chararray[np_t._AnyShape, np.dtype[np.str_]]) +assert_type(np.char.asarray(1), np.char.chararray[np_t._AnyShape, np.dtype[np.str_]] | np.char.chararray[np_t._AnyShape, np.dtype[np.bytes_]]) +assert_type(np.char.asarray(AR_U, unicode=False), np.char.chararray[np_t._AnyShape, np.dtype[np.bytes_]]) +assert_type(np.char.asarray(AR_S, unicode=True), np.char.chararray[np_t._AnyShape, np.dtype[np.str_]]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/chararray.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/chararray.pyi new file mode 100644 index 0000000..b5f4392 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/chararray.pyi @@ -0,0 +1,137 @@ +from typing import Any, TypeAlias, assert_type + +import numpy as np +import numpy.typing as npt + +_BytesCharArray: TypeAlias = np.char.chararray[tuple[Any, ...], np.dtype[np.bytes_]] +_StrCharArray: TypeAlias = np.char.chararray[tuple[Any, ...], np.dtype[np.str_]] + +AR_U: _StrCharArray +AR_S: _BytesCharArray + +assert_type(AR_U == AR_U, npt.NDArray[np.bool]) +assert_type(AR_S == AR_S, npt.NDArray[np.bool]) + +assert_type(AR_U != AR_U, npt.NDArray[np.bool]) +assert_type(AR_S != AR_S, npt.NDArray[np.bool]) + +assert_type(AR_U >= AR_U, npt.NDArray[np.bool]) +assert_type(AR_S >= AR_S, npt.NDArray[np.bool]) + +assert_type(AR_U <= AR_U, npt.NDArray[np.bool]) +assert_type(AR_S <= AR_S, npt.NDArray[np.bool]) + +assert_type(AR_U > AR_U, npt.NDArray[np.bool]) +assert_type(AR_S > AR_S, npt.NDArray[np.bool]) + +assert_type(AR_U < AR_U, npt.NDArray[np.bool]) +assert_type(AR_S < AR_S, npt.NDArray[np.bool]) + +assert_type(AR_U * 5, _StrCharArray) +assert_type(AR_S * [5], _BytesCharArray) + +assert_type(AR_U % "test", _StrCharArray) +assert_type(AR_S % b"test", _BytesCharArray) + +assert_type(AR_U.capitalize(), _StrCharArray) +assert_type(AR_S.capitalize(), _BytesCharArray) + +assert_type(AR_U.center(5), _StrCharArray) +assert_type(AR_S.center([2, 3, 4], b"a"), _BytesCharArray) + +assert_type(AR_U.encode(), _BytesCharArray) +assert_type(AR_S.decode(), _StrCharArray) + +assert_type(AR_U.expandtabs(), _StrCharArray) +assert_type(AR_S.expandtabs(tabsize=4), _BytesCharArray) + +assert_type(AR_U.join("_"), _StrCharArray) +assert_type(AR_S.join([b"_", b""]), _BytesCharArray) + +assert_type(AR_U.ljust(5), _StrCharArray) +assert_type(AR_S.ljust([4, 3, 1], fillchar=[b"a", b"b", b"c"]), _BytesCharArray) +assert_type(AR_U.rjust(5), _StrCharArray) +assert_type(AR_S.rjust([4, 3, 1], fillchar=[b"a", b"b", b"c"]), _BytesCharArray) + +assert_type(AR_U.lstrip(), _StrCharArray) +assert_type(AR_S.lstrip(chars=b"_"), _BytesCharArray) +assert_type(AR_U.rstrip(), _StrCharArray) +assert_type(AR_S.rstrip(chars=b"_"), _BytesCharArray) +assert_type(AR_U.strip(), _StrCharArray) +assert_type(AR_S.strip(chars=b"_"), _BytesCharArray) + +assert_type(AR_U.partition("\n"), _StrCharArray) +assert_type(AR_S.partition([b"a", b"b", b"c"]), _BytesCharArray) +assert_type(AR_U.rpartition("\n"), _StrCharArray) +assert_type(AR_S.rpartition([b"a", b"b", b"c"]), _BytesCharArray) + +assert_type(AR_U.replace("_", "-"), _StrCharArray) +assert_type(AR_S.replace([b"_", b""], [b"a", b"b"]), _BytesCharArray) + +assert_type(AR_U.split("_"), npt.NDArray[np.object_]) +assert_type(AR_S.split(maxsplit=[1, 2, 3]), npt.NDArray[np.object_]) +assert_type(AR_U.rsplit("_"), npt.NDArray[np.object_]) +assert_type(AR_S.rsplit(maxsplit=[1, 2, 3]), npt.NDArray[np.object_]) + +assert_type(AR_U.splitlines(), npt.NDArray[np.object_]) +assert_type(AR_S.splitlines(keepends=[True, True, False]), npt.NDArray[np.object_]) + +assert_type(AR_U.swapcase(), _StrCharArray) +assert_type(AR_S.swapcase(), _BytesCharArray) + +assert_type(AR_U.title(), _StrCharArray) +assert_type(AR_S.title(), _BytesCharArray) + +assert_type(AR_U.upper(), _StrCharArray) +assert_type(AR_S.upper(), _BytesCharArray) + +assert_type(AR_U.zfill(5), _StrCharArray) +assert_type(AR_S.zfill([2, 3, 4]), _BytesCharArray) + +assert_type(AR_U.count("a", start=[1, 2, 3]), npt.NDArray[np.int_]) +assert_type(AR_S.count([b"a", b"b", b"c"], end=9), npt.NDArray[np.int_]) + +assert_type(AR_U.endswith("a", start=[1, 2, 3]), npt.NDArray[np.bool]) +assert_type(AR_S.endswith([b"a", b"b", b"c"], end=9), npt.NDArray[np.bool]) +assert_type(AR_U.startswith("a", start=[1, 2, 3]), npt.NDArray[np.bool]) +assert_type(AR_S.startswith([b"a", b"b", b"c"], end=9), npt.NDArray[np.bool]) + +assert_type(AR_U.find("a", start=[1, 2, 3]), npt.NDArray[np.int_]) +assert_type(AR_S.find([b"a", b"b", b"c"], end=9), npt.NDArray[np.int_]) +assert_type(AR_U.rfind("a", start=[1, 2, 3]), npt.NDArray[np.int_]) +assert_type(AR_S.rfind([b"a", b"b", b"c"], end=9), npt.NDArray[np.int_]) + +assert_type(AR_U.index("a", start=[1, 2, 3]), npt.NDArray[np.int_]) +assert_type(AR_S.index([b"a", b"b", b"c"], end=9), npt.NDArray[np.int_]) +assert_type(AR_U.rindex("a", start=[1, 2, 3]), npt.NDArray[np.int_]) +assert_type(AR_S.rindex([b"a", b"b", b"c"], end=9), npt.NDArray[np.int_]) + +assert_type(AR_U.isalpha(), npt.NDArray[np.bool]) +assert_type(AR_S.isalpha(), npt.NDArray[np.bool]) + +assert_type(AR_U.isalnum(), npt.NDArray[np.bool]) +assert_type(AR_S.isalnum(), npt.NDArray[np.bool]) + +assert_type(AR_U.isdecimal(), npt.NDArray[np.bool]) +assert_type(AR_S.isdecimal(), npt.NDArray[np.bool]) + +assert_type(AR_U.isdigit(), npt.NDArray[np.bool]) +assert_type(AR_S.isdigit(), npt.NDArray[np.bool]) + +assert_type(AR_U.islower(), npt.NDArray[np.bool]) +assert_type(AR_S.islower(), npt.NDArray[np.bool]) + +assert_type(AR_U.isnumeric(), npt.NDArray[np.bool]) +assert_type(AR_S.isnumeric(), npt.NDArray[np.bool]) + +assert_type(AR_U.isspace(), npt.NDArray[np.bool]) +assert_type(AR_S.isspace(), npt.NDArray[np.bool]) + +assert_type(AR_U.istitle(), npt.NDArray[np.bool]) +assert_type(AR_S.istitle(), npt.NDArray[np.bool]) + +assert_type(AR_U.isupper(), npt.NDArray[np.bool]) +assert_type(AR_S.isupper(), npt.NDArray[np.bool]) + +assert_type(AR_U.__array_finalize__(object()), None) +assert_type(AR_S.__array_finalize__(object()), None) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/comparisons.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/comparisons.pyi new file mode 100644 index 0000000..2165d17 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/comparisons.pyi @@ -0,0 +1,264 @@ +import decimal +import fractions +from typing import Any, assert_type + +import numpy as np +import numpy.typing as npt + +c16 = np.complex128() +f8 = np.float64() +i8 = np.int64() +u8 = np.uint64() + +c8 = np.complex64() +f4 = np.float32() +i4 = np.int32() +u4 = np.uint32() + +dt = np.datetime64(0, "D") +td = np.timedelta64(0, "D") + +b_ = np.bool() + +b = bool() +c = complex() +f = float() +i = int() + +AR = np.array([0], dtype=np.int64) +AR.setflags(write=False) + +SEQ = (0, 1, 2, 3, 4) + +# object-like comparisons + +assert_type(i8 > fractions.Fraction(1, 5), np.bool) +assert_type(i8 > [fractions.Fraction(1, 5)], npt.NDArray[np.bool]) +assert_type(i8 > decimal.Decimal("1.5"), np.bool) +assert_type(i8 > [decimal.Decimal("1.5")], npt.NDArray[np.bool]) + +# Time structures + +assert_type(dt > dt, np.bool) + +assert_type(td > td, np.bool) +assert_type(td > i, np.bool) +assert_type(td > i4, np.bool) +assert_type(td > i8, np.bool) + +assert_type(td > AR, npt.NDArray[np.bool]) +assert_type(td > SEQ, npt.NDArray[np.bool]) +assert_type(AR > SEQ, npt.NDArray[np.bool]) +assert_type(AR > td, npt.NDArray[np.bool]) +assert_type(SEQ > td, npt.NDArray[np.bool]) +assert_type(SEQ > AR, npt.NDArray[np.bool]) + +# boolean + +assert_type(b_ > b, np.bool) +assert_type(b_ > b_, np.bool) +assert_type(b_ > i, np.bool) +assert_type(b_ > i8, np.bool) +assert_type(b_ > i4, np.bool) +assert_type(b_ > u8, np.bool) +assert_type(b_ > u4, np.bool) +assert_type(b_ > f, np.bool) +assert_type(b_ > f8, np.bool) +assert_type(b_ > f4, np.bool) +assert_type(b_ > c, np.bool) +assert_type(b_ > c16, np.bool) +assert_type(b_ > c8, np.bool) +assert_type(b_ > AR, npt.NDArray[np.bool]) +assert_type(b_ > SEQ, npt.NDArray[np.bool]) + +# Complex + +assert_type(c16 > c16, np.bool) +assert_type(c16 > f8, np.bool) +assert_type(c16 > i8, np.bool) +assert_type(c16 > c8, np.bool) +assert_type(c16 > f4, np.bool) +assert_type(c16 > i4, np.bool) +assert_type(c16 > b_, np.bool) +assert_type(c16 > b, np.bool) +assert_type(c16 > c, np.bool) +assert_type(c16 > f, np.bool) +assert_type(c16 > i, np.bool) +assert_type(c16 > AR, npt.NDArray[np.bool]) +assert_type(c16 > SEQ, npt.NDArray[np.bool]) + +assert_type(c16 > c16, np.bool) +assert_type(f8 > c16, np.bool) +assert_type(i8 > c16, np.bool) +assert_type(c8 > c16, np.bool) +assert_type(f4 > c16, np.bool) +assert_type(i4 > c16, np.bool) +assert_type(b_ > c16, np.bool) +assert_type(b > c16, np.bool) +assert_type(c > c16, np.bool) +assert_type(f > c16, np.bool) +assert_type(i > c16, np.bool) +assert_type(AR > c16, npt.NDArray[np.bool]) +assert_type(SEQ > c16, npt.NDArray[np.bool]) + +assert_type(c8 > c16, np.bool) +assert_type(c8 > f8, np.bool) +assert_type(c8 > i8, np.bool) +assert_type(c8 > c8, np.bool) +assert_type(c8 > f4, np.bool) +assert_type(c8 > i4, np.bool) +assert_type(c8 > b_, np.bool) +assert_type(c8 > b, np.bool) +assert_type(c8 > c, np.bool) +assert_type(c8 > f, np.bool) +assert_type(c8 > i, np.bool) +assert_type(c8 > AR, npt.NDArray[np.bool]) +assert_type(c8 > SEQ, npt.NDArray[np.bool]) + +assert_type(c16 > c8, np.bool) +assert_type(f8 > c8, np.bool) +assert_type(i8 > c8, np.bool) +assert_type(c8 > c8, np.bool) +assert_type(f4 > c8, np.bool) +assert_type(i4 > c8, np.bool) +assert_type(b_ > c8, np.bool) +assert_type(b > c8, np.bool) +assert_type(c > c8, np.bool) +assert_type(f > c8, np.bool) +assert_type(i > c8, np.bool) +assert_type(AR > c8, npt.NDArray[np.bool]) +assert_type(SEQ > c8, npt.NDArray[np.bool]) + +# Float + +assert_type(f8 > f8, np.bool) +assert_type(f8 > i8, np.bool) +assert_type(f8 > f4, np.bool) +assert_type(f8 > i4, np.bool) +assert_type(f8 > b_, np.bool) +assert_type(f8 > b, np.bool) +assert_type(f8 > c, np.bool) +assert_type(f8 > f, np.bool) +assert_type(f8 > i, np.bool) +assert_type(f8 > AR, npt.NDArray[np.bool]) +assert_type(f8 > SEQ, npt.NDArray[np.bool]) + +assert_type(f8 > f8, np.bool) +assert_type(i8 > f8, np.bool) +assert_type(f4 > f8, np.bool) +assert_type(i4 > f8, np.bool) +assert_type(b_ > f8, np.bool) +assert_type(b > f8, np.bool) +assert_type(c > f8, np.bool) +assert_type(f > f8, np.bool) +assert_type(i > f8, np.bool) +assert_type(AR > f8, npt.NDArray[np.bool]) +assert_type(SEQ > f8, npt.NDArray[np.bool]) + +assert_type(f4 > f8, np.bool) +assert_type(f4 > i8, np.bool) +assert_type(f4 > f4, np.bool) +assert_type(f4 > i4, np.bool) +assert_type(f4 > b_, np.bool) +assert_type(f4 > b, np.bool) +assert_type(f4 > c, np.bool) +assert_type(f4 > f, np.bool) +assert_type(f4 > i, np.bool) +assert_type(f4 > AR, npt.NDArray[np.bool]) +assert_type(f4 > SEQ, npt.NDArray[np.bool]) + +assert_type(f8 > f4, np.bool) +assert_type(i8 > f4, np.bool) +assert_type(f4 > f4, np.bool) +assert_type(i4 > f4, np.bool) +assert_type(b_ > f4, np.bool) +assert_type(b > f4, np.bool) +assert_type(c > f4, np.bool) +assert_type(f > f4, np.bool) +assert_type(i > f4, np.bool) +assert_type(AR > f4, npt.NDArray[np.bool]) +assert_type(SEQ > f4, npt.NDArray[np.bool]) + +# Int + +assert_type(i8 > i8, np.bool) +assert_type(i8 > u8, np.bool) +assert_type(i8 > i4, np.bool) +assert_type(i8 > u4, np.bool) +assert_type(i8 > b_, np.bool) +assert_type(i8 > b, np.bool) +assert_type(i8 > c, np.bool) +assert_type(i8 > f, np.bool) +assert_type(i8 > i, np.bool) +assert_type(i8 > AR, npt.NDArray[np.bool]) +assert_type(i8 > SEQ, npt.NDArray[np.bool]) + +assert_type(u8 > u8, np.bool) +assert_type(u8 > i4, np.bool) +assert_type(u8 > u4, np.bool) +assert_type(u8 > b_, np.bool) +assert_type(u8 > b, np.bool) +assert_type(u8 > c, np.bool) +assert_type(u8 > f, np.bool) +assert_type(u8 > i, np.bool) +assert_type(u8 > AR, npt.NDArray[np.bool]) +assert_type(u8 > SEQ, npt.NDArray[np.bool]) + +assert_type(i8 > i8, np.bool) +assert_type(u8 > i8, np.bool) +assert_type(i4 > i8, np.bool) +assert_type(u4 > i8, np.bool) +assert_type(b_ > i8, np.bool) +assert_type(b > i8, np.bool) +assert_type(c > i8, np.bool) +assert_type(f > i8, np.bool) +assert_type(i > i8, np.bool) +assert_type(AR > i8, npt.NDArray[np.bool]) +assert_type(SEQ > i8, npt.NDArray[np.bool]) + +assert_type(u8 > u8, np.bool) +assert_type(i4 > u8, np.bool) +assert_type(u4 > u8, np.bool) +assert_type(b_ > u8, np.bool) +assert_type(b > u8, np.bool) +assert_type(c > u8, np.bool) +assert_type(f > u8, np.bool) +assert_type(i > u8, np.bool) +assert_type(AR > u8, npt.NDArray[np.bool]) +assert_type(SEQ > u8, npt.NDArray[np.bool]) + +assert_type(i4 > i8, np.bool) +assert_type(i4 > i4, np.bool) +assert_type(i4 > i, np.bool) +assert_type(i4 > b_, np.bool) +assert_type(i4 > b, np.bool) +assert_type(i4 > AR, npt.NDArray[np.bool]) +assert_type(i4 > SEQ, npt.NDArray[np.bool]) + +assert_type(u4 > i8, np.bool) +assert_type(u4 > i4, np.bool) +assert_type(u4 > u8, np.bool) +assert_type(u4 > u4, np.bool) +assert_type(u4 > i, np.bool) +assert_type(u4 > b_, np.bool) +assert_type(u4 > b, np.bool) +assert_type(u4 > AR, npt.NDArray[np.bool]) +assert_type(u4 > SEQ, npt.NDArray[np.bool]) + +assert_type(i8 > i4, np.bool) +assert_type(i4 > i4, np.bool) +assert_type(i > i4, np.bool) +assert_type(b_ > i4, np.bool) +assert_type(b > i4, np.bool) +assert_type(AR > i4, npt.NDArray[np.bool]) +assert_type(SEQ > i4, npt.NDArray[np.bool]) + +assert_type(i8 > u4, np.bool) +assert_type(i4 > u4, np.bool) +assert_type(u8 > u4, np.bool) +assert_type(u4 > u4, np.bool) +assert_type(b_ > u4, np.bool) +assert_type(b > u4, np.bool) +assert_type(i > u4, np.bool) +assert_type(AR > u4, npt.NDArray[np.bool]) +assert_type(SEQ > u4, npt.NDArray[np.bool]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/constants.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/constants.pyi new file mode 100644 index 0000000..d4474f4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/constants.pyi @@ -0,0 +1,14 @@ +from typing import Literal, assert_type + +import numpy as np + +assert_type(np.e, float) +assert_type(np.euler_gamma, float) +assert_type(np.inf, float) +assert_type(np.nan, float) +assert_type(np.pi, float) + +assert_type(np.little_endian, bool) + +assert_type(np.True_, np.bool[Literal[True]]) +assert_type(np.False_, np.bool[Literal[False]]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ctypeslib.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ctypeslib.pyi new file mode 100644 index 0000000..0564d72 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ctypeslib.pyi @@ -0,0 +1,81 @@ +import ctypes as ct +from typing import Any, assert_type + +import numpy as np +import numpy.typing as npt +from numpy import ctypeslib + +AR_bool: npt.NDArray[np.bool] +AR_ubyte: npt.NDArray[np.ubyte] +AR_ushort: npt.NDArray[np.ushort] +AR_uintc: npt.NDArray[np.uintc] +AR_ulong: npt.NDArray[np.ulong] +AR_ulonglong: npt.NDArray[np.ulonglong] +AR_byte: npt.NDArray[np.byte] +AR_short: npt.NDArray[np.short] +AR_intc: npt.NDArray[np.intc] +AR_long: npt.NDArray[np.long] +AR_longlong: npt.NDArray[np.longlong] +AR_single: npt.NDArray[np.single] +AR_double: npt.NDArray[np.double] +AR_longdouble: npt.NDArray[np.longdouble] +AR_void: npt.NDArray[np.void] + +pointer: ct._Pointer[Any] + +assert_type(np.ctypeslib.c_intp(), ctypeslib.c_intp) + +assert_type(np.ctypeslib.ndpointer(), type[ctypeslib._ndptr[None]]) +assert_type(np.ctypeslib.ndpointer(dtype=np.float64), type[ctypeslib._ndptr[np.dtype[np.float64]]]) +assert_type(np.ctypeslib.ndpointer(dtype=float), type[ctypeslib._ndptr[np.dtype]]) +assert_type(np.ctypeslib.ndpointer(shape=(10, 3)), type[ctypeslib._ndptr[None]]) +assert_type(np.ctypeslib.ndpointer(np.int64, shape=(10, 3)), type[ctypeslib._concrete_ndptr[np.dtype[np.int64]]]) +assert_type(np.ctypeslib.ndpointer(int, shape=(1,)), type[np.ctypeslib._concrete_ndptr[np.dtype]]) + +assert_type(np.ctypeslib.as_ctypes_type(np.bool), type[ct.c_bool]) +assert_type(np.ctypeslib.as_ctypes_type(np.ubyte), type[ct.c_ubyte]) +assert_type(np.ctypeslib.as_ctypes_type(np.ushort), type[ct.c_ushort]) +assert_type(np.ctypeslib.as_ctypes_type(np.uintc), type[ct.c_uint]) +assert_type(np.ctypeslib.as_ctypes_type(np.byte), type[ct.c_byte]) +assert_type(np.ctypeslib.as_ctypes_type(np.short), type[ct.c_short]) +assert_type(np.ctypeslib.as_ctypes_type(np.intc), type[ct.c_int]) +assert_type(np.ctypeslib.as_ctypes_type(np.single), type[ct.c_float]) +assert_type(np.ctypeslib.as_ctypes_type(np.double), type[ct.c_double]) +assert_type(np.ctypeslib.as_ctypes_type(ct.c_double), type[ct.c_double]) +assert_type(np.ctypeslib.as_ctypes_type("q"), type[ct.c_longlong]) +assert_type(np.ctypeslib.as_ctypes_type([("i8", np.int64), ("f8", np.float64)]), type[Any]) +assert_type(np.ctypeslib.as_ctypes_type("i8"), type[Any]) +assert_type(np.ctypeslib.as_ctypes_type("f8"), type[Any]) + +assert_type(np.ctypeslib.as_ctypes(AR_bool.take(0)), ct.c_bool) +assert_type(np.ctypeslib.as_ctypes(AR_ubyte.take(0)), ct.c_ubyte) +assert_type(np.ctypeslib.as_ctypes(AR_ushort.take(0)), ct.c_ushort) +assert_type(np.ctypeslib.as_ctypes(AR_uintc.take(0)), ct.c_uint) + +assert_type(np.ctypeslib.as_ctypes(AR_byte.take(0)), ct.c_byte) +assert_type(np.ctypeslib.as_ctypes(AR_short.take(0)), ct.c_short) +assert_type(np.ctypeslib.as_ctypes(AR_intc.take(0)), ct.c_int) +assert_type(np.ctypeslib.as_ctypes(AR_single.take(0)), ct.c_float) +assert_type(np.ctypeslib.as_ctypes(AR_double.take(0)), ct.c_double) +assert_type(np.ctypeslib.as_ctypes(AR_void.take(0)), Any) +assert_type(np.ctypeslib.as_ctypes(AR_bool), ct.Array[ct.c_bool]) +assert_type(np.ctypeslib.as_ctypes(AR_ubyte), ct.Array[ct.c_ubyte]) +assert_type(np.ctypeslib.as_ctypes(AR_ushort), ct.Array[ct.c_ushort]) +assert_type(np.ctypeslib.as_ctypes(AR_uintc), ct.Array[ct.c_uint]) +assert_type(np.ctypeslib.as_ctypes(AR_byte), ct.Array[ct.c_byte]) +assert_type(np.ctypeslib.as_ctypes(AR_short), ct.Array[ct.c_short]) +assert_type(np.ctypeslib.as_ctypes(AR_intc), ct.Array[ct.c_int]) +assert_type(np.ctypeslib.as_ctypes(AR_single), ct.Array[ct.c_float]) +assert_type(np.ctypeslib.as_ctypes(AR_double), ct.Array[ct.c_double]) +assert_type(np.ctypeslib.as_ctypes(AR_void), ct.Array[Any]) + +assert_type(np.ctypeslib.as_array(AR_ubyte), npt.NDArray[np.ubyte]) +assert_type(np.ctypeslib.as_array(1), npt.NDArray[Any]) +assert_type(np.ctypeslib.as_array(pointer), npt.NDArray[Any]) + +assert_type(np.ctypeslib.as_ctypes_type(np.long), type[ct.c_long]) +assert_type(np.ctypeslib.as_ctypes_type(np.ulong), type[ct.c_ulong]) +assert_type(np.ctypeslib.as_ctypes(AR_ulong), ct.Array[ct.c_ulong]) +assert_type(np.ctypeslib.as_ctypes(AR_long), ct.Array[ct.c_long]) +assert_type(np.ctypeslib.as_ctypes(AR_long.take(0)), ct.c_long) +assert_type(np.ctypeslib.as_ctypes(AR_ulong.take(0)), ct.c_ulong) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/datasource.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/datasource.pyi new file mode 100644 index 0000000..9f01791 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/datasource.pyi @@ -0,0 +1,23 @@ +from pathlib import Path +from typing import IO, Any, assert_type + +import numpy as np + +path1: Path +path2: str + +d1 = np.lib.npyio.DataSource(path1) +d2 = np.lib.npyio.DataSource(path2) +d3 = np.lib.npyio.DataSource(None) + +assert_type(d1.abspath("..."), str) +assert_type(d2.abspath("..."), str) +assert_type(d3.abspath("..."), str) + +assert_type(d1.exists("..."), bool) +assert_type(d2.exists("..."), bool) +assert_type(d3.exists("..."), bool) + +assert_type(d1.open("...", "r"), IO[Any]) +assert_type(d2.open("...", encoding="utf8"), IO[Any]) +assert_type(d3.open("...", newline="/n"), IO[Any]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/dtype.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/dtype.pyi new file mode 100644 index 0000000..721d270 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/dtype.pyi @@ -0,0 +1,136 @@ +import ctypes as ct +import datetime as dt +from decimal import Decimal +from fractions import Fraction +from typing import Any, Literal, LiteralString, TypeAlias, assert_type + +import numpy as np +from numpy.dtypes import StringDType + +# a combination of likely `object` dtype-like candidates (no `_co`) +_PyObjectLike: TypeAlias = Decimal | Fraction | dt.datetime | dt.timedelta + +dtype_U: np.dtype[np.str_] +dtype_V: np.dtype[np.void] +dtype_i8: np.dtype[np.int64] + +py_int_co: type[int] +py_float_co: type[float] +py_complex_co: type[complex] +py_object: type[_PyObjectLike] +py_character: type[str | bytes] +py_flexible: type[str | bytes | memoryview] + +ct_floating: type[ct.c_float | ct.c_double | ct.c_longdouble] +ct_number: type[ct.c_uint8 | ct.c_float] +ct_generic: type[ct.c_bool | ct.c_char] + +cs_integer: Literal["u1", "V", "S"] +cs_generic: Literal["H", "U", "h", "|M8[Y]", "?"] + +dt_inexact: np.dtype[np.inexact] +dt_string: StringDType + +assert_type(np.dtype(np.float64), np.dtype[np.float64]) +assert_type(np.dtype(np.float64, metadata={"test": "test"}), np.dtype[np.float64]) +assert_type(np.dtype(np.int64), np.dtype[np.int64]) + +# String aliases +assert_type(np.dtype("float64"), np.dtype[np.float64]) +assert_type(np.dtype("float32"), np.dtype[np.float32]) +assert_type(np.dtype("int64"), np.dtype[np.int64]) +assert_type(np.dtype("int32"), np.dtype[np.int32]) +assert_type(np.dtype("bool"), np.dtype[np.bool]) +assert_type(np.dtype("bytes"), np.dtype[np.bytes_]) +assert_type(np.dtype("str"), np.dtype[np.str_]) + +# Python types +assert_type(np.dtype(bool), np.dtype[np.bool]) +assert_type(np.dtype(py_int_co), np.dtype[np.int_ | np.bool]) +assert_type(np.dtype(int), np.dtype[np.int_ | np.bool]) +assert_type(np.dtype(py_float_co), np.dtype[np.float64 | np.int_ | np.bool]) +assert_type(np.dtype(float), np.dtype[np.float64 | np.int_ | np.bool]) +assert_type(np.dtype(py_complex_co), np.dtype[np.complex128 | np.float64 | np.int_ | np.bool]) +assert_type(np.dtype(complex), np.dtype[np.complex128 | np.float64 | np.int_ | np.bool]) +assert_type(np.dtype(py_object), np.dtype[np.object_]) +assert_type(np.dtype(str), np.dtype[np.str_]) +assert_type(np.dtype(bytes), np.dtype[np.bytes_]) +assert_type(np.dtype(py_character), np.dtype[np.character]) +assert_type(np.dtype(memoryview), np.dtype[np.void]) +assert_type(np.dtype(py_flexible), np.dtype[np.flexible]) + +assert_type(np.dtype(list), np.dtype[np.object_]) +assert_type(np.dtype(dt.datetime), np.dtype[np.object_]) +assert_type(np.dtype(dt.timedelta), np.dtype[np.object_]) +assert_type(np.dtype(Decimal), np.dtype[np.object_]) +assert_type(np.dtype(Fraction), np.dtype[np.object_]) + +# char-codes +assert_type(np.dtype("?"), np.dtype[np.bool]) +assert_type(np.dtype("|b1"), np.dtype[np.bool]) +assert_type(np.dtype("u1"), np.dtype[np.uint8]) +assert_type(np.dtype("l"), np.dtype[np.long]) +assert_type(np.dtype("longlong"), np.dtype[np.longlong]) +assert_type(np.dtype(">g"), np.dtype[np.longdouble]) +assert_type(np.dtype(cs_integer), np.dtype[np.integer]) +assert_type(np.dtype(cs_number), np.dtype[np.number]) +assert_type(np.dtype(cs_flex), np.dtype[np.flexible]) +assert_type(np.dtype(cs_generic), np.dtype[np.generic]) + +# ctypes +assert_type(np.dtype(ct.c_double), np.dtype[np.double]) +assert_type(np.dtype(ct.c_longlong), np.dtype[np.longlong]) +assert_type(np.dtype(ct.c_uint32), np.dtype[np.uint32]) +assert_type(np.dtype(ct.c_bool), np.dtype[np.bool]) +assert_type(np.dtype(ct.c_char), np.dtype[np.bytes_]) +assert_type(np.dtype(ct.py_object), np.dtype[np.object_]) + +# Special case for None +assert_type(np.dtype(None), np.dtype[np.float64]) + +# Dypes of dtypes +assert_type(np.dtype(np.dtype(np.float64)), np.dtype[np.float64]) +assert_type(np.dtype(dt_inexact), np.dtype[np.inexact]) + +# Parameterized dtypes +assert_type(np.dtype("S8"), np.dtype) + +# Void +assert_type(np.dtype(("U", 10)), np.dtype[np.void]) + +# StringDType +assert_type(np.dtype(dt_string), StringDType) +assert_type(np.dtype("T"), StringDType) +assert_type(np.dtype("=T"), StringDType) +assert_type(np.dtype("|T"), StringDType) + +# Methods and attributes +assert_type(dtype_U.base, np.dtype) +assert_type(dtype_U.subdtype, tuple[np.dtype, tuple[Any, ...]] | None) +assert_type(dtype_U.newbyteorder(), np.dtype[np.str_]) +assert_type(dtype_U.type, type[np.str_]) +assert_type(dtype_U.name, LiteralString) +assert_type(dtype_U.names, tuple[str, ...] | None) + +assert_type(dtype_U * 0, np.dtype[np.str_]) +assert_type(dtype_U * 1, np.dtype[np.str_]) +assert_type(dtype_U * 2, np.dtype[np.str_]) + +assert_type(dtype_i8 * 0, np.dtype[np.void]) +assert_type(dtype_i8 * 1, np.dtype[np.int64]) +assert_type(dtype_i8 * 2, np.dtype[np.void]) + +assert_type(0 * dtype_U, np.dtype[np.str_]) +assert_type(1 * dtype_U, np.dtype[np.str_]) +assert_type(2 * dtype_U, np.dtype[np.str_]) + +assert_type(0 * dtype_i8, np.dtype) +assert_type(1 * dtype_i8, np.dtype) +assert_type(2 * dtype_i8, np.dtype) + +assert_type(dtype_V["f0"], np.dtype) +assert_type(dtype_V[0], np.dtype) +assert_type(dtype_V[["f0", "f1"]], np.dtype[np.void]) +assert_type(dtype_V[["f0"]], np.dtype[np.void]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/einsumfunc.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/einsumfunc.pyi new file mode 100644 index 0000000..cc58f00 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/einsumfunc.pyi @@ -0,0 +1,39 @@ +from typing import Any, assert_type + +import numpy as np +import numpy.typing as npt + +AR_LIKE_b: list[bool] +AR_LIKE_u: list[np.uint32] +AR_LIKE_i: list[int] +AR_LIKE_f: list[float] +AR_LIKE_c: list[complex] +AR_LIKE_U: list[str] +AR_o: npt.NDArray[np.object_] + +OUT_f: npt.NDArray[np.float64] + +assert_type(np.einsum("i,i->i", AR_LIKE_b, AR_LIKE_b), Any) +assert_type(np.einsum("i,i->i", AR_o, AR_o), Any) +assert_type(np.einsum("i,i->i", AR_LIKE_u, AR_LIKE_u), Any) +assert_type(np.einsum("i,i->i", AR_LIKE_i, AR_LIKE_i), Any) +assert_type(np.einsum("i,i->i", AR_LIKE_f, AR_LIKE_f), Any) +assert_type(np.einsum("i,i->i", AR_LIKE_c, AR_LIKE_c), Any) +assert_type(np.einsum("i,i->i", AR_LIKE_b, AR_LIKE_i), Any) +assert_type(np.einsum("i,i,i,i->i", AR_LIKE_b, AR_LIKE_u, AR_LIKE_i, AR_LIKE_c), Any) + +assert_type(np.einsum("i,i->i", AR_LIKE_c, AR_LIKE_c, out=OUT_f), npt.NDArray[np.float64]) +assert_type(np.einsum("i,i->i", AR_LIKE_U, AR_LIKE_U, dtype=bool, casting="unsafe", out=OUT_f), npt.NDArray[np.float64]) +assert_type(np.einsum("i,i->i", AR_LIKE_f, AR_LIKE_f, dtype="c16"), Any) +assert_type(np.einsum("i,i->i", AR_LIKE_U, AR_LIKE_U, dtype=bool, casting="unsafe"), Any) + +assert_type(np.einsum_path("i,i->i", AR_LIKE_b, AR_LIKE_b), tuple[list[Any], str]) +assert_type(np.einsum_path("i,i->i", AR_LIKE_u, AR_LIKE_u), tuple[list[Any], str]) +assert_type(np.einsum_path("i,i->i", AR_LIKE_i, AR_LIKE_i), tuple[list[Any], str]) +assert_type(np.einsum_path("i,i->i", AR_LIKE_f, AR_LIKE_f), tuple[list[Any], str]) +assert_type(np.einsum_path("i,i->i", AR_LIKE_c, AR_LIKE_c), tuple[list[Any], str]) +assert_type(np.einsum_path("i,i->i", AR_LIKE_b, AR_LIKE_i), tuple[list[Any], str]) +assert_type(np.einsum_path("i,i,i,i->i", AR_LIKE_b, AR_LIKE_u, AR_LIKE_i, AR_LIKE_c), tuple[list[Any], str]) + +assert_type(np.einsum([[1, 1], [1, 1]], AR_LIKE_i, AR_LIKE_i), Any) +assert_type(np.einsum_path([[1, 1], [1, 1]], AR_LIKE_i, AR_LIKE_i), tuple[list[Any], str]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/emath.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/emath.pyi new file mode 100644 index 0000000..1d7bff8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/emath.pyi @@ -0,0 +1,54 @@ +from typing import Any, assert_type + +import numpy as np +import numpy.typing as npt + +AR_f8: npt.NDArray[np.float64] +AR_c16: npt.NDArray[np.complex128] +f8: np.float64 +c16: np.complex128 + +assert_type(np.emath.sqrt(f8), Any) +assert_type(np.emath.sqrt(AR_f8), npt.NDArray[Any]) +assert_type(np.emath.sqrt(c16), np.complexfloating) +assert_type(np.emath.sqrt(AR_c16), npt.NDArray[np.complexfloating]) + +assert_type(np.emath.log(f8), Any) +assert_type(np.emath.log(AR_f8), npt.NDArray[Any]) +assert_type(np.emath.log(c16), np.complexfloating) +assert_type(np.emath.log(AR_c16), npt.NDArray[np.complexfloating]) + +assert_type(np.emath.log10(f8), Any) +assert_type(np.emath.log10(AR_f8), npt.NDArray[Any]) +assert_type(np.emath.log10(c16), np.complexfloating) +assert_type(np.emath.log10(AR_c16), npt.NDArray[np.complexfloating]) + +assert_type(np.emath.log2(f8), Any) +assert_type(np.emath.log2(AR_f8), npt.NDArray[Any]) +assert_type(np.emath.log2(c16), np.complexfloating) +assert_type(np.emath.log2(AR_c16), npt.NDArray[np.complexfloating]) + +assert_type(np.emath.logn(f8, 2), Any) +assert_type(np.emath.logn(AR_f8, 4), npt.NDArray[Any]) +assert_type(np.emath.logn(f8, 1j), np.complexfloating) +assert_type(np.emath.logn(AR_c16, 1.5), npt.NDArray[np.complexfloating]) + +assert_type(np.emath.power(f8, 2), Any) +assert_type(np.emath.power(AR_f8, 4), npt.NDArray[Any]) +assert_type(np.emath.power(f8, 2j), np.complexfloating) +assert_type(np.emath.power(AR_c16, 1.5), npt.NDArray[np.complexfloating]) + +assert_type(np.emath.arccos(f8), Any) +assert_type(np.emath.arccos(AR_f8), npt.NDArray[Any]) +assert_type(np.emath.arccos(c16), np.complexfloating) +assert_type(np.emath.arccos(AR_c16), npt.NDArray[np.complexfloating]) + +assert_type(np.emath.arcsin(f8), Any) +assert_type(np.emath.arcsin(AR_f8), npt.NDArray[Any]) +assert_type(np.emath.arcsin(c16), np.complexfloating) +assert_type(np.emath.arcsin(AR_c16), npt.NDArray[np.complexfloating]) + +assert_type(np.emath.arctanh(f8), Any) +assert_type(np.emath.arctanh(AR_f8), npt.NDArray[Any]) +assert_type(np.emath.arctanh(c16), np.complexfloating) +assert_type(np.emath.arctanh(AR_c16), npt.NDArray[np.complexfloating]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/fft.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/fft.pyi new file mode 100644 index 0000000..dacd2b8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/fft.pyi @@ -0,0 +1,37 @@ +from typing import Any, assert_type + +import numpy as np +import numpy.typing as npt + +AR_f8: npt.NDArray[np.float64] +AR_c16: npt.NDArray[np.complex128] +AR_LIKE_f8: list[float] + +assert_type(np.fft.fftshift(AR_f8), npt.NDArray[np.float64]) +assert_type(np.fft.fftshift(AR_LIKE_f8, axes=0), npt.NDArray[Any]) + +assert_type(np.fft.ifftshift(AR_f8), npt.NDArray[np.float64]) +assert_type(np.fft.ifftshift(AR_LIKE_f8, axes=0), npt.NDArray[Any]) + +assert_type(np.fft.fftfreq(5, AR_f8), npt.NDArray[np.floating]) +assert_type(np.fft.fftfreq(np.int64(), AR_c16), npt.NDArray[np.complexfloating]) + +assert_type(np.fft.fftfreq(5, AR_f8), npt.NDArray[np.floating]) +assert_type(np.fft.fftfreq(np.int64(), AR_c16), npt.NDArray[np.complexfloating]) + +assert_type(np.fft.fft(AR_f8), npt.NDArray[np.complex128]) +assert_type(np.fft.ifft(AR_f8, axis=1), npt.NDArray[np.complex128]) +assert_type(np.fft.rfft(AR_f8, n=None), npt.NDArray[np.complex128]) +assert_type(np.fft.irfft(AR_f8, norm="ortho"), npt.NDArray[np.float64]) +assert_type(np.fft.hfft(AR_f8, n=2), npt.NDArray[np.float64]) +assert_type(np.fft.ihfft(AR_f8), npt.NDArray[np.complex128]) + +assert_type(np.fft.fftn(AR_f8), npt.NDArray[np.complex128]) +assert_type(np.fft.ifftn(AR_f8), npt.NDArray[np.complex128]) +assert_type(np.fft.rfftn(AR_f8), npt.NDArray[np.complex128]) +assert_type(np.fft.irfftn(AR_f8), npt.NDArray[np.float64]) + +assert_type(np.fft.rfft2(AR_f8), npt.NDArray[np.complex128]) +assert_type(np.fft.ifft2(AR_f8), npt.NDArray[np.complex128]) +assert_type(np.fft.fft2(AR_f8), npt.NDArray[np.complex128]) +assert_type(np.fft.irfft2(AR_f8), npt.NDArray[np.float64]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/flatiter.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/flatiter.pyi new file mode 100644 index 0000000..e188d30 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/flatiter.pyi @@ -0,0 +1,47 @@ +from typing import Literal, TypeAlias, assert_type + +import numpy as np +import numpy.typing as npt + +a: np.flatiter[npt.NDArray[np.str_]] +a_1d: np.flatiter[np.ndarray[tuple[int], np.dtype[np.bytes_]]] + +Size: TypeAlias = Literal[42] +a_1d_fixed: np.flatiter[np.ndarray[tuple[Size], np.dtype[np.object_]]] + +assert_type(a.base, npt.NDArray[np.str_]) +assert_type(a.copy(), npt.NDArray[np.str_]) +assert_type(a.coords, tuple[int, ...]) +assert_type(a.index, int) +assert_type(iter(a), np.flatiter[npt.NDArray[np.str_]]) +assert_type(next(a), np.str_) +assert_type(a[0], np.str_) +assert_type(a[[0, 1, 2]], npt.NDArray[np.str_]) +assert_type(a[...], npt.NDArray[np.str_]) +assert_type(a[:], npt.NDArray[np.str_]) +assert_type(a[(...,)], npt.NDArray[np.str_]) +assert_type(a[(0,)], np.str_) + +assert_type(a.__array__(), npt.NDArray[np.str_]) +assert_type(a.__array__(np.dtype(np.float64)), npt.NDArray[np.float64]) +assert_type( + a_1d.__array__(), + np.ndarray[tuple[int], np.dtype[np.bytes_]], +) +assert_type( + a_1d.__array__(np.dtype(np.float64)), + np.ndarray[tuple[int], np.dtype[np.float64]], +) +assert_type( + a_1d_fixed.__array__(), + np.ndarray[tuple[Size], np.dtype[np.object_]], +) +assert_type( + a_1d_fixed.__array__(np.dtype(np.float64)), + np.ndarray[tuple[Size], np.dtype[np.float64]], +) + +a[0] = "a" +a[:5] = "a" +a[...] = "a" +a[(...,)] = "a" diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/fromnumeric.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/fromnumeric.pyi new file mode 100644 index 0000000..5438e00 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/fromnumeric.pyi @@ -0,0 +1,347 @@ +"""Tests for :mod:`_core.fromnumeric`.""" + +from typing import Any, assert_type +from typing import Literal as L + +import numpy as np +import numpy.typing as npt + +class NDArraySubclass(npt.NDArray[np.complex128]): ... + +AR_b: npt.NDArray[np.bool] +AR_f4: npt.NDArray[np.float32] +AR_c16: npt.NDArray[np.complex128] +AR_u8: npt.NDArray[np.uint64] +AR_i8: npt.NDArray[np.int64] +AR_O: npt.NDArray[np.object_] +AR_subclass: NDArraySubclass +AR_m: npt.NDArray[np.timedelta64] +AR_0d: np.ndarray[tuple[()]] +AR_1d: np.ndarray[tuple[int]] +AR_nd: np.ndarray + +b: np.bool +f4: np.float32 +i8: np.int64 +f: float + +# integer‑dtype subclass for argmin/argmax +class NDArrayIntSubclass(npt.NDArray[np.intp]): ... +AR_sub_i: NDArrayIntSubclass + +assert_type(np.take(b, 0), np.bool) +assert_type(np.take(f4, 0), np.float32) +assert_type(np.take(f, 0), Any) +assert_type(np.take(AR_b, 0), np.bool) +assert_type(np.take(AR_f4, 0), np.float32) +assert_type(np.take(AR_b, [0]), npt.NDArray[np.bool]) +assert_type(np.take(AR_f4, [0]), npt.NDArray[np.float32]) +assert_type(np.take([1], [0]), npt.NDArray[Any]) +assert_type(np.take(AR_f4, [0], out=AR_subclass), NDArraySubclass) + +assert_type(np.reshape(b, 1), np.ndarray[tuple[int], np.dtype[np.bool]]) +assert_type(np.reshape(f4, 1), np.ndarray[tuple[int], np.dtype[np.float32]]) +assert_type(np.reshape(f, 1), np.ndarray[tuple[int], np.dtype]) +assert_type(np.reshape(AR_b, 1), np.ndarray[tuple[int], np.dtype[np.bool]]) +assert_type(np.reshape(AR_f4, 1), np.ndarray[tuple[int], np.dtype[np.float32]]) + +assert_type(np.choose(1, [True, True]), Any) +assert_type(np.choose([1], [True, True]), npt.NDArray[Any]) +assert_type(np.choose([1], AR_b), npt.NDArray[np.bool]) +assert_type(np.choose([1], AR_b, out=AR_f4), npt.NDArray[np.float32]) + +assert_type(np.repeat(b, 1), np.ndarray[tuple[int], np.dtype[np.bool]]) +assert_type(np.repeat(b, 1, axis=0), npt.NDArray[np.bool]) +assert_type(np.repeat(f4, 1), np.ndarray[tuple[int], np.dtype[np.float32]]) +assert_type(np.repeat(f, 1), np.ndarray[tuple[int], np.dtype[Any]]) +assert_type(np.repeat(AR_b, 1), np.ndarray[tuple[int], np.dtype[np.bool]]) +assert_type(np.repeat(AR_f4, 1), np.ndarray[tuple[int], np.dtype[np.float32]]) +assert_type(np.repeat(AR_f4, 1, axis=0), npt.NDArray[np.float32]) + +# TODO: array_bdd tests for np.put() + +assert_type(np.swapaxes([[0, 1]], 0, 0), npt.NDArray[Any]) +assert_type(np.swapaxes(AR_b, 0, 0), npt.NDArray[np.bool]) +assert_type(np.swapaxes(AR_f4, 0, 0), npt.NDArray[np.float32]) + +assert_type(np.transpose(b), npt.NDArray[np.bool]) +assert_type(np.transpose(f4), npt.NDArray[np.float32]) +assert_type(np.transpose(f), npt.NDArray[Any]) +assert_type(np.transpose(AR_b), npt.NDArray[np.bool]) +assert_type(np.transpose(AR_f4), npt.NDArray[np.float32]) + +assert_type(np.partition(b, 0, axis=None), npt.NDArray[np.bool]) +assert_type(np.partition(f4, 0, axis=None), npt.NDArray[np.float32]) +assert_type(np.partition(f, 0, axis=None), npt.NDArray[Any]) +assert_type(np.partition(AR_b, 0), npt.NDArray[np.bool]) +assert_type(np.partition(AR_f4, 0), npt.NDArray[np.float32]) + +assert_type(np.argpartition(b, 0), npt.NDArray[np.intp]) +assert_type(np.argpartition(f4, 0), npt.NDArray[np.intp]) +assert_type(np.argpartition(f, 0), npt.NDArray[np.intp]) +assert_type(np.argpartition(AR_b, 0), npt.NDArray[np.intp]) +assert_type(np.argpartition(AR_f4, 0), npt.NDArray[np.intp]) + +assert_type(np.sort([2, 1], 0), npt.NDArray[Any]) +assert_type(np.sort(AR_b, 0), npt.NDArray[np.bool]) +assert_type(np.sort(AR_f4, 0), npt.NDArray[np.float32]) + +assert_type(np.argsort(AR_b, 0), npt.NDArray[np.intp]) +assert_type(np.argsort(AR_f4, 0), npt.NDArray[np.intp]) + +assert_type(np.argmax(AR_b), np.intp) +assert_type(np.argmax(AR_f4), np.intp) +assert_type(np.argmax(AR_b, axis=0), Any) +assert_type(np.argmax(AR_f4, axis=0), Any) +assert_type(np.argmax(AR_f4, out=AR_sub_i), NDArrayIntSubclass) + +assert_type(np.argmin(AR_b), np.intp) +assert_type(np.argmin(AR_f4), np.intp) +assert_type(np.argmin(AR_b, axis=0), Any) +assert_type(np.argmin(AR_f4, axis=0), Any) +assert_type(np.argmin(AR_f4, out=AR_sub_i), NDArrayIntSubclass) + +assert_type(np.searchsorted(AR_b[0], 0), np.intp) +assert_type(np.searchsorted(AR_f4[0], 0), np.intp) +assert_type(np.searchsorted(AR_b[0], [0]), npt.NDArray[np.intp]) +assert_type(np.searchsorted(AR_f4[0], [0]), npt.NDArray[np.intp]) + +assert_type(np.resize(b, (5, 5)), np.ndarray[tuple[int, int], np.dtype[np.bool]]) +assert_type(np.resize(f4, (5, 5)), np.ndarray[tuple[int, int], np.dtype[np.float32]]) +assert_type(np.resize(f, (5, 5)), np.ndarray[tuple[int, int], np.dtype]) +assert_type(np.resize(AR_b, (5, 5)), np.ndarray[tuple[int, int], np.dtype[np.bool]]) +assert_type(np.resize(AR_f4, (5, 5)), np.ndarray[tuple[int, int], np.dtype[np.float32]]) + +assert_type(np.squeeze(b), np.bool) +assert_type(np.squeeze(f4), np.float32) +assert_type(np.squeeze(f), npt.NDArray[Any]) +assert_type(np.squeeze(AR_b), npt.NDArray[np.bool]) +assert_type(np.squeeze(AR_f4), npt.NDArray[np.float32]) + +assert_type(np.diagonal(AR_b), npt.NDArray[np.bool]) +assert_type(np.diagonal(AR_f4), npt.NDArray[np.float32]) + +assert_type(np.trace(AR_b), Any) +assert_type(np.trace(AR_f4), Any) +assert_type(np.trace(AR_f4, out=AR_subclass), NDArraySubclass) + +assert_type(np.ravel(b), np.ndarray[tuple[int], np.dtype[np.bool]]) +assert_type(np.ravel(f4), np.ndarray[tuple[int], np.dtype[np.float32]]) +assert_type(np.ravel(f), np.ndarray[tuple[int], np.dtype[np.float64 | np.int_ | np.bool]]) +assert_type(np.ravel(AR_b), np.ndarray[tuple[int], np.dtype[np.bool]]) +assert_type(np.ravel(AR_f4), np.ndarray[tuple[int], np.dtype[np.float32]]) + +assert_type(np.nonzero(AR_b), tuple[npt.NDArray[np.intp], ...]) +assert_type(np.nonzero(AR_f4), tuple[npt.NDArray[np.intp], ...]) +assert_type(np.nonzero(AR_1d), tuple[npt.NDArray[np.intp], ...]) +assert_type(np.nonzero(AR_nd), tuple[npt.NDArray[np.intp], ...]) + +assert_type(np.shape(b), tuple[()]) +assert_type(np.shape(f), tuple[()]) +assert_type(np.shape([1]), tuple[int]) +assert_type(np.shape([[2]]), tuple[int, int]) +assert_type(np.shape([[[3]]]), tuple[Any, ...]) +assert_type(np.shape(AR_b), tuple[Any, ...]) +assert_type(np.shape(AR_nd), tuple[Any, ...]) +# these fail on mypy, but it works as expected with pyright/pylance +# assert_type(np.shape(AR_0d), tuple[()]) +# assert_type(np.shape(AR_1d), tuple[int]) +# assert_type(np.shape(AR_2d), tuple[int, int]) + +assert_type(np.compress([True], b), npt.NDArray[np.bool]) +assert_type(np.compress([True], f4), npt.NDArray[np.float32]) +assert_type(np.compress([True], f), npt.NDArray[Any]) +assert_type(np.compress([True], AR_b), npt.NDArray[np.bool]) +assert_type(np.compress([True], AR_f4), npt.NDArray[np.float32]) + +assert_type(np.clip(b, 0, 1.0), np.bool) +assert_type(np.clip(f4, -1, 1), np.float32) +assert_type(np.clip(f, 0, 1), Any) +assert_type(np.clip(AR_b, 0, 1), npt.NDArray[np.bool]) +assert_type(np.clip(AR_f4, 0, 1), npt.NDArray[np.float32]) +assert_type(np.clip([0], 0, 1), npt.NDArray[Any]) +assert_type(np.clip(AR_b, 0, 1, out=AR_subclass), NDArraySubclass) + +assert_type(np.sum(b), np.bool) +assert_type(np.sum(f4), np.float32) +assert_type(np.sum(f), Any) +assert_type(np.sum(AR_b), np.bool) +assert_type(np.sum(AR_f4), np.float32) +assert_type(np.sum(AR_b, axis=0), Any) +assert_type(np.sum(AR_f4, axis=0), Any) +assert_type(np.sum(AR_f4, out=AR_subclass), NDArraySubclass) +assert_type(np.sum(AR_f4, dtype=np.float64), np.float64) +assert_type(np.sum(AR_f4, None, np.float64), np.float64) +assert_type(np.sum(AR_f4, dtype=np.float64, keepdims=False), np.float64) +assert_type(np.sum(AR_f4, None, np.float64, keepdims=False), np.float64) +assert_type(np.sum(AR_f4, dtype=np.float64, keepdims=True), np.float64 | npt.NDArray[np.float64]) +assert_type(np.sum(AR_f4, None, np.float64, keepdims=True), np.float64 | npt.NDArray[np.float64]) + +assert_type(np.all(b), np.bool) +assert_type(np.all(f4), np.bool) +assert_type(np.all(f), np.bool) +assert_type(np.all(AR_b), np.bool) +assert_type(np.all(AR_f4), np.bool) +assert_type(np.all(AR_b, axis=0), Any) +assert_type(np.all(AR_f4, axis=0), Any) +assert_type(np.all(AR_b, keepdims=True), Any) +assert_type(np.all(AR_f4, keepdims=True), Any) +assert_type(np.all(AR_f4, out=AR_subclass), NDArraySubclass) + +assert_type(np.any(b), np.bool) +assert_type(np.any(f4), np.bool) +assert_type(np.any(f), np.bool) +assert_type(np.any(AR_b), np.bool) +assert_type(np.any(AR_f4), np.bool) +assert_type(np.any(AR_b, axis=0), Any) +assert_type(np.any(AR_f4, axis=0), Any) +assert_type(np.any(AR_b, keepdims=True), Any) +assert_type(np.any(AR_f4, keepdims=True), Any) +assert_type(np.any(AR_f4, out=AR_subclass), NDArraySubclass) + +assert_type(np.cumsum(b), npt.NDArray[np.bool]) +assert_type(np.cumsum(f4), npt.NDArray[np.float32]) +assert_type(np.cumsum(f), npt.NDArray[Any]) +assert_type(np.cumsum(AR_b), npt.NDArray[np.bool]) +assert_type(np.cumsum(AR_f4), npt.NDArray[np.float32]) +assert_type(np.cumsum(f, dtype=float), npt.NDArray[Any]) +assert_type(np.cumsum(f, dtype=np.float64), npt.NDArray[np.float64]) +assert_type(np.cumsum(AR_f4, out=AR_subclass), NDArraySubclass) + +assert_type(np.cumulative_sum(b), npt.NDArray[np.bool]) +assert_type(np.cumulative_sum(f4), npt.NDArray[np.float32]) +assert_type(np.cumulative_sum(f), npt.NDArray[Any]) +assert_type(np.cumulative_sum(AR_b), npt.NDArray[np.bool]) +assert_type(np.cumulative_sum(AR_f4), npt.NDArray[np.float32]) +assert_type(np.cumulative_sum(f, dtype=float), npt.NDArray[Any]) +assert_type(np.cumulative_sum(f, dtype=np.float64), npt.NDArray[np.float64]) +assert_type(np.cumulative_sum(AR_f4, out=AR_subclass), NDArraySubclass) + +assert_type(np.ptp(b), np.bool) +assert_type(np.ptp(f4), np.float32) +assert_type(np.ptp(f), Any) +assert_type(np.ptp(AR_b), np.bool) +assert_type(np.ptp(AR_f4), np.float32) +assert_type(np.ptp(AR_b, axis=0), Any) +assert_type(np.ptp(AR_f4, axis=0), Any) +assert_type(np.ptp(AR_b, keepdims=True), Any) +assert_type(np.ptp(AR_f4, keepdims=True), Any) +assert_type(np.ptp(AR_f4, out=AR_subclass), NDArraySubclass) + +assert_type(np.amax(b), np.bool) +assert_type(np.amax(f4), np.float32) +assert_type(np.amax(f), Any) +assert_type(np.amax(AR_b), np.bool) +assert_type(np.amax(AR_f4), np.float32) +assert_type(np.amax(AR_b, axis=0), Any) +assert_type(np.amax(AR_f4, axis=0), Any) +assert_type(np.amax(AR_b, keepdims=True), Any) +assert_type(np.amax(AR_f4, keepdims=True), Any) +assert_type(np.amax(AR_f4, out=AR_subclass), NDArraySubclass) + +assert_type(np.amin(b), np.bool) +assert_type(np.amin(f4), np.float32) +assert_type(np.amin(f), Any) +assert_type(np.amin(AR_b), np.bool) +assert_type(np.amin(AR_f4), np.float32) +assert_type(np.amin(AR_b, axis=0), Any) +assert_type(np.amin(AR_f4, axis=0), Any) +assert_type(np.amin(AR_b, keepdims=True), Any) +assert_type(np.amin(AR_f4, keepdims=True), Any) +assert_type(np.amin(AR_f4, out=AR_subclass), NDArraySubclass) + +assert_type(np.prod(AR_b), np.int_) +assert_type(np.prod(AR_u8), np.uint64) +assert_type(np.prod(AR_i8), np.int64) +assert_type(np.prod(AR_f4), np.floating) +assert_type(np.prod(AR_c16), np.complexfloating) +assert_type(np.prod(AR_O), Any) +assert_type(np.prod(AR_f4, axis=0), Any) +assert_type(np.prod(AR_f4, keepdims=True), Any) +assert_type(np.prod(AR_f4, dtype=np.float64), np.float64) +assert_type(np.prod(AR_f4, dtype=float), Any) +assert_type(np.prod(AR_f4, out=AR_subclass), NDArraySubclass) + +assert_type(np.cumprod(AR_b), npt.NDArray[np.int_]) +assert_type(np.cumprod(AR_u8), npt.NDArray[np.uint64]) +assert_type(np.cumprod(AR_i8), npt.NDArray[np.int64]) +assert_type(np.cumprod(AR_f4), npt.NDArray[np.floating]) +assert_type(np.cumprod(AR_c16), npt.NDArray[np.complexfloating]) +assert_type(np.cumprod(AR_O), npt.NDArray[np.object_]) +assert_type(np.cumprod(AR_f4, axis=0), npt.NDArray[np.floating]) +assert_type(np.cumprod(AR_f4, dtype=np.float64), npt.NDArray[np.float64]) +assert_type(np.cumprod(AR_f4, dtype=float), npt.NDArray[Any]) +assert_type(np.cumprod(AR_f4, out=AR_subclass), NDArraySubclass) + +assert_type(np.cumulative_prod(AR_b), npt.NDArray[np.int_]) +assert_type(np.cumulative_prod(AR_u8), npt.NDArray[np.uint64]) +assert_type(np.cumulative_prod(AR_i8), npt.NDArray[np.int64]) +assert_type(np.cumulative_prod(AR_f4), npt.NDArray[np.floating]) +assert_type(np.cumulative_prod(AR_c16), npt.NDArray[np.complexfloating]) +assert_type(np.cumulative_prod(AR_O), npt.NDArray[np.object_]) +assert_type(np.cumulative_prod(AR_f4, axis=0), npt.NDArray[np.floating]) +assert_type(np.cumulative_prod(AR_f4, dtype=np.float64), npt.NDArray[np.float64]) +assert_type(np.cumulative_prod(AR_f4, dtype=float), npt.NDArray[Any]) +assert_type(np.cumulative_prod(AR_f4, out=AR_subclass), NDArraySubclass) + +assert_type(np.ndim(b), int) +assert_type(np.ndim(f4), int) +assert_type(np.ndim(f), int) +assert_type(np.ndim(AR_b), int) +assert_type(np.ndim(AR_f4), int) + +assert_type(np.size(b), int) +assert_type(np.size(f4), int) +assert_type(np.size(f), int) +assert_type(np.size(AR_b), int) +assert_type(np.size(AR_f4), int) + +assert_type(np.around(b), np.float16) +assert_type(np.around(f), Any) +assert_type(np.around(i8), np.int64) +assert_type(np.around(f4), np.float32) +assert_type(np.around(AR_b), npt.NDArray[np.float16]) +assert_type(np.around(AR_i8), npt.NDArray[np.int64]) +assert_type(np.around(AR_f4), npt.NDArray[np.float32]) +assert_type(np.around([1.5]), npt.NDArray[Any]) +assert_type(np.around(AR_f4, out=AR_subclass), NDArraySubclass) + +assert_type(np.mean(AR_b), np.floating) +assert_type(np.mean(AR_i8), np.floating) +assert_type(np.mean(AR_f4), np.floating) +assert_type(np.mean(AR_m), np.timedelta64) +assert_type(np.mean(AR_c16), np.complexfloating) +assert_type(np.mean(AR_O), Any) +assert_type(np.mean(AR_f4, axis=0), Any) +assert_type(np.mean(AR_f4, keepdims=True), Any) +assert_type(np.mean(AR_f4, dtype=float), Any) +assert_type(np.mean(AR_f4, dtype=np.float64), np.float64) +assert_type(np.mean(AR_f4, out=AR_subclass), NDArraySubclass) +assert_type(np.mean(AR_f4, dtype=np.float64), np.float64) +assert_type(np.mean(AR_f4, None, np.float64), np.float64) +assert_type(np.mean(AR_f4, dtype=np.float64, keepdims=False), np.float64) +assert_type(np.mean(AR_f4, None, np.float64, keepdims=False), np.float64) +assert_type(np.mean(AR_f4, dtype=np.float64, keepdims=True), np.float64 | npt.NDArray[np.float64]) +assert_type(np.mean(AR_f4, None, np.float64, keepdims=True), np.float64 | npt.NDArray[np.float64]) + +assert_type(np.std(AR_b), np.floating) +assert_type(np.std(AR_i8), np.floating) +assert_type(np.std(AR_f4), np.floating) +assert_type(np.std(AR_c16), np.floating) +assert_type(np.std(AR_O), Any) +assert_type(np.std(AR_f4, axis=0), Any) +assert_type(np.std(AR_f4, keepdims=True), Any) +assert_type(np.std(AR_f4, dtype=float), Any) +assert_type(np.std(AR_f4, dtype=np.float64), np.float64) +assert_type(np.std(AR_f4, out=AR_subclass), NDArraySubclass) + +assert_type(np.var(AR_b), np.floating) +assert_type(np.var(AR_i8), np.floating) +assert_type(np.var(AR_f4), np.floating) +assert_type(np.var(AR_c16), np.floating) +assert_type(np.var(AR_O), Any) +assert_type(np.var(AR_f4, axis=0), Any) +assert_type(np.var(AR_f4, keepdims=True), Any) +assert_type(np.var(AR_f4, dtype=float), Any) +assert_type(np.var(AR_f4, dtype=np.float64), np.float64) +assert_type(np.var(AR_f4, out=AR_subclass), NDArraySubclass) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/getlimits.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/getlimits.pyi new file mode 100644 index 0000000..825daba --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/getlimits.pyi @@ -0,0 +1,51 @@ +from typing import Any, LiteralString, assert_type + +import numpy as np +from numpy._typing import _64Bit + +f: float +f8: np.float64 +c8: np.complex64 + +i: int +i8: np.int64 +u4: np.uint32 + +finfo_f8: np.finfo[np.float64] +iinfo_i8: np.iinfo[np.int64] + +assert_type(np.finfo(f), np.finfo[np.float64]) +assert_type(np.finfo(f8), np.finfo[np.floating[_64Bit]]) +assert_type(np.finfo(c8), np.finfo[np.float32]) +assert_type(np.finfo('f2'), np.finfo[np.floating]) + +assert_type(finfo_f8.dtype, np.dtype[np.float64]) +assert_type(finfo_f8.bits, int) +assert_type(finfo_f8.eps, np.float64) +assert_type(finfo_f8.epsneg, np.float64) +assert_type(finfo_f8.iexp, int) +assert_type(finfo_f8.machep, int) +assert_type(finfo_f8.max, np.float64) +assert_type(finfo_f8.maxexp, int) +assert_type(finfo_f8.min, np.float64) +assert_type(finfo_f8.minexp, int) +assert_type(finfo_f8.negep, int) +assert_type(finfo_f8.nexp, int) +assert_type(finfo_f8.nmant, int) +assert_type(finfo_f8.precision, int) +assert_type(finfo_f8.resolution, np.float64) +assert_type(finfo_f8.tiny, np.float64) +assert_type(finfo_f8.smallest_normal, np.float64) +assert_type(finfo_f8.smallest_subnormal, np.float64) + +assert_type(np.iinfo(i), np.iinfo[np.int_]) +assert_type(np.iinfo(i8), np.iinfo[np.int64]) +assert_type(np.iinfo(u4), np.iinfo[np.uint32]) +assert_type(np.iinfo('i2'), np.iinfo[Any]) + +assert_type(iinfo_i8.dtype, np.dtype[np.int64]) +assert_type(iinfo_i8.kind, LiteralString) +assert_type(iinfo_i8.bits, int) +assert_type(iinfo_i8.key, LiteralString) +assert_type(iinfo_i8.min, int) +assert_type(iinfo_i8.max, int) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/histograms.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/histograms.pyi new file mode 100644 index 0000000..c1c63d5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/histograms.pyi @@ -0,0 +1,25 @@ +from typing import Any, assert_type + +import numpy as np +import numpy.typing as npt + +AR_i8: npt.NDArray[np.int64] +AR_f8: npt.NDArray[np.float64] + +assert_type(np.histogram_bin_edges(AR_i8, bins="auto"), npt.NDArray[Any]) +assert_type(np.histogram_bin_edges(AR_i8, bins="rice", range=(0, 3)), npt.NDArray[Any]) +assert_type(np.histogram_bin_edges(AR_i8, bins="scott", weights=AR_f8), npt.NDArray[Any]) + +assert_type(np.histogram(AR_i8, bins="auto"), tuple[npt.NDArray[Any], npt.NDArray[Any]]) +assert_type(np.histogram(AR_i8, bins="rice", range=(0, 3)), tuple[npt.NDArray[Any], npt.NDArray[Any]]) +assert_type(np.histogram(AR_i8, bins="scott", weights=AR_f8), tuple[npt.NDArray[Any], npt.NDArray[Any]]) +assert_type(np.histogram(AR_f8, bins=1, density=True), tuple[npt.NDArray[Any], npt.NDArray[Any]]) + +assert_type(np.histogramdd(AR_i8, bins=[1]), + tuple[npt.NDArray[Any], tuple[npt.NDArray[Any], ...]]) +assert_type(np.histogramdd(AR_i8, range=[(0, 3)]), + tuple[npt.NDArray[Any], tuple[npt.NDArray[Any], ...]]) +assert_type(np.histogramdd(AR_i8, weights=AR_f8), + tuple[npt.NDArray[Any], tuple[npt.NDArray[Any], ...]]) +assert_type(np.histogramdd(AR_f8, density=True), + tuple[npt.NDArray[Any], tuple[npt.NDArray[Any], ...]]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/index_tricks.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/index_tricks.pyi new file mode 100644 index 0000000..f6067c3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/index_tricks.pyi @@ -0,0 +1,70 @@ +from types import EllipsisType +from typing import Any, Literal, assert_type + +import numpy as np +import numpy.typing as npt + +AR_LIKE_b: list[bool] +AR_LIKE_i: list[int] +AR_LIKE_f: list[float] +AR_LIKE_U: list[str] +AR_LIKE_O: list[object] + +AR_i8: npt.NDArray[np.int64] +AR_O: npt.NDArray[np.object_] + +assert_type(np.ndenumerate(AR_i8), np.ndenumerate[np.int64]) +assert_type(np.ndenumerate(AR_LIKE_f), np.ndenumerate[np.float64]) +assert_type(np.ndenumerate(AR_LIKE_U), np.ndenumerate[np.str_]) +assert_type(np.ndenumerate(AR_LIKE_O), np.ndenumerate[Any]) + +assert_type(next(np.ndenumerate(AR_i8)), tuple[tuple[Any, ...], np.int64]) +assert_type(next(np.ndenumerate(AR_LIKE_f)), tuple[tuple[Any, ...], np.float64]) +assert_type(next(np.ndenumerate(AR_LIKE_U)), tuple[tuple[Any, ...], np.str_]) +assert_type(next(np.ndenumerate(AR_LIKE_O)), tuple[tuple[Any, ...], Any]) + +assert_type(iter(np.ndenumerate(AR_i8)), np.ndenumerate[np.int64]) +assert_type(iter(np.ndenumerate(AR_LIKE_f)), np.ndenumerate[np.float64]) +assert_type(iter(np.ndenumerate(AR_LIKE_U)), np.ndenumerate[np.str_]) +assert_type(iter(np.ndenumerate(AR_LIKE_O)), np.ndenumerate[Any]) + +assert_type(np.ndindex(1, 2, 3), np.ndindex) +assert_type(np.ndindex((1, 2, 3)), np.ndindex) +assert_type(iter(np.ndindex(1, 2, 3)), np.ndindex) +assert_type(next(np.ndindex(1, 2, 3)), tuple[Any, ...]) + +assert_type(np.unravel_index([22, 41, 37], (7, 6)), tuple[npt.NDArray[np.intp], ...]) +assert_type(np.unravel_index([31, 41, 13], (7, 6), order="F"), tuple[npt.NDArray[np.intp], ...]) +assert_type(np.unravel_index(1621, (6, 7, 8, 9)), tuple[np.intp, ...]) + +assert_type(np.ravel_multi_index([[1]], (7, 6)), npt.NDArray[np.intp]) +assert_type(np.ravel_multi_index(AR_LIKE_i, (7, 6)), np.intp) +assert_type(np.ravel_multi_index(AR_LIKE_i, (7, 6), order="F"), np.intp) +assert_type(np.ravel_multi_index(AR_LIKE_i, (4, 6), mode="clip"), np.intp) +assert_type(np.ravel_multi_index(AR_LIKE_i, (4, 4), mode=("clip", "wrap")), np.intp) +assert_type(np.ravel_multi_index((3, 1, 4, 1), (6, 7, 8, 9)), np.intp) + +assert_type(np.mgrid[1:1:2], npt.NDArray[Any]) +assert_type(np.mgrid[1:1:2, None:10], npt.NDArray[Any]) + +assert_type(np.ogrid[1:1:2], tuple[npt.NDArray[Any], ...]) +assert_type(np.ogrid[1:1:2, None:10], tuple[npt.NDArray[Any], ...]) + +assert_type(np.index_exp[0:1], tuple[slice[int, int, None]]) +assert_type(np.index_exp[0:1, None:3], tuple[slice[int, int, None], slice[None, int, None]]) +assert_type(np.index_exp[0, 0:1, ..., [0, 1, 3]], tuple[Literal[0], slice[int, int, None], EllipsisType, list[int]]) + +assert_type(np.s_[0:1], slice[int, int, None]) +assert_type(np.s_[0:1, None:3], tuple[slice[int, int, None], slice[None, int, None]]) +assert_type(np.s_[0, 0:1, ..., [0, 1, 3]], tuple[Literal[0], slice[int, int, None], EllipsisType, list[int]]) + +assert_type(np.ix_(AR_LIKE_b), tuple[npt.NDArray[np.bool], ...]) +assert_type(np.ix_(AR_LIKE_i, AR_LIKE_f), tuple[npt.NDArray[np.float64], ...]) +assert_type(np.ix_(AR_i8), tuple[npt.NDArray[np.int64], ...]) + +assert_type(np.fill_diagonal(AR_i8, 5), None) + +assert_type(np.diag_indices(4), tuple[npt.NDArray[np.int_], ...]) +assert_type(np.diag_indices(2, 3), tuple[npt.NDArray[np.int_], ...]) + +assert_type(np.diag_indices_from(AR_i8), tuple[npt.NDArray[np.int_], ...]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/lib_function_base.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/lib_function_base.pyi new file mode 100644 index 0000000..3ce8d37 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/lib_function_base.pyi @@ -0,0 +1,213 @@ +from collections.abc import Callable +from fractions import Fraction +from typing import Any, assert_type + +import numpy as np +import numpy.typing as npt + +vectorized_func: np.vectorize + +f8: np.float64 +AR_LIKE_f8: list[float] +AR_LIKE_c16: list[complex] +AR_LIKE_O: list[Fraction] + +AR_i8: npt.NDArray[np.int64] +AR_f8: npt.NDArray[np.float64] +AR_c16: npt.NDArray[np.complex128] +AR_m: npt.NDArray[np.timedelta64] +AR_M: npt.NDArray[np.datetime64] +AR_O: npt.NDArray[np.object_] +AR_b: npt.NDArray[np.bool] +AR_U: npt.NDArray[np.str_] +CHAR_AR_U: np.char.chararray[tuple[Any, ...], np.dtype[np.str_]] + +AR_b_list: list[npt.NDArray[np.bool]] + +def func( + a: npt.NDArray[Any], + posarg: bool = ..., + /, + arg: int = ..., + *, + kwarg: str = ..., +) -> npt.NDArray[Any]: ... + +assert_type(vectorized_func.pyfunc, Callable[..., Any]) +assert_type(vectorized_func.cache, bool) +assert_type(vectorized_func.signature, str | None) +assert_type(vectorized_func.otypes, str | None) +assert_type(vectorized_func.excluded, set[int | str]) +assert_type(vectorized_func.__doc__, str | None) +assert_type(vectorized_func([1]), Any) +assert_type(np.vectorize(int), np.vectorize) +assert_type( + np.vectorize(int, otypes="i", doc="doc", excluded=(), cache=True, signature=None), + np.vectorize, +) + +assert_type(np.rot90(AR_f8, k=2), npt.NDArray[np.float64]) +assert_type(np.rot90(AR_LIKE_f8, axes=(0, 1)), npt.NDArray[Any]) + +assert_type(np.flip(f8), np.float64) +assert_type(np.flip(1.0), Any) +assert_type(np.flip(AR_f8, axis=(0, 1)), npt.NDArray[np.float64]) +assert_type(np.flip(AR_LIKE_f8, axis=0), npt.NDArray[Any]) + +assert_type(np.iterable(1), bool) +assert_type(np.iterable([1]), bool) + +assert_type(np.average(AR_f8), np.floating) +assert_type(np.average(AR_f8, weights=AR_c16), np.complexfloating) +assert_type(np.average(AR_O), Any) +assert_type(np.average(AR_f8, returned=True), tuple[np.floating, np.floating]) +assert_type(np.average(AR_f8, weights=AR_c16, returned=True), tuple[np.complexfloating, np.complexfloating]) +assert_type(np.average(AR_O, returned=True), tuple[Any, Any]) +assert_type(np.average(AR_f8, axis=0), Any) +assert_type(np.average(AR_f8, axis=0, returned=True), tuple[Any, Any]) + +assert_type(np.asarray_chkfinite(AR_f8), npt.NDArray[np.float64]) +assert_type(np.asarray_chkfinite(AR_LIKE_f8), npt.NDArray[Any]) +assert_type(np.asarray_chkfinite(AR_f8, dtype=np.float64), npt.NDArray[np.float64]) +assert_type(np.asarray_chkfinite(AR_f8, dtype=float), npt.NDArray[Any]) + +assert_type(np.piecewise(AR_f8, AR_b, [func]), npt.NDArray[np.float64]) +assert_type(np.piecewise(AR_f8, AR_b_list, [func]), npt.NDArray[np.float64]) +assert_type(np.piecewise(AR_f8, AR_b_list, [func], True, -1, kwarg=''), npt.NDArray[np.float64]) +assert_type(np.piecewise(AR_f8, AR_b_list, [func], True, arg=-1, kwarg=''), npt.NDArray[np.float64]) +assert_type(np.piecewise(AR_LIKE_f8, AR_b_list, [func]), npt.NDArray[Any]) + +assert_type(np.select([AR_f8], [AR_f8]), npt.NDArray[Any]) + +assert_type(np.copy(AR_LIKE_f8), npt.NDArray[Any]) +assert_type(np.copy(AR_U), npt.NDArray[np.str_]) +assert_type(np.copy(CHAR_AR_U), np.ndarray[Any, Any]) # pyright correctly infers `NDArray[str_]` +assert_type(np.copy(CHAR_AR_U, "K", subok=True), np.char.chararray[tuple[Any, ...], np.dtype[np.str_]]) +assert_type(np.copy(CHAR_AR_U, subok=True), np.char.chararray[tuple[Any, ...], np.dtype[np.str_]]) + +assert_type(np.gradient(AR_f8, axis=None), Any) +assert_type(np.gradient(AR_LIKE_f8, edge_order=2), Any) + +assert_type(np.diff("bob", n=0), str) +assert_type(np.diff(AR_f8, axis=0), npt.NDArray[Any]) +assert_type(np.diff(AR_LIKE_f8, prepend=1.5), npt.NDArray[Any]) + +assert_type(np.interp(1, [1], AR_f8), np.float64) +assert_type(np.interp(1, [1], [1]), np.float64) +assert_type(np.interp(1, [1], AR_c16), np.complex128) +assert_type(np.interp(1, [1], [1j]), np.complex128) # pyright correctly infers `complex128 | float64` +assert_type(np.interp([1], [1], AR_f8), npt.NDArray[np.float64]) +assert_type(np.interp([1], [1], [1]), npt.NDArray[np.float64]) +assert_type(np.interp([1], [1], AR_c16), npt.NDArray[np.complex128]) +assert_type(np.interp([1], [1], [1j]), npt.NDArray[np.complex128]) # pyright correctly infers `NDArray[complex128 | float64]` + +assert_type(np.angle(f8), np.floating) +assert_type(np.angle(AR_f8), npt.NDArray[np.floating]) +assert_type(np.angle(AR_c16, deg=True), npt.NDArray[np.floating]) +assert_type(np.angle(AR_O), npt.NDArray[np.object_]) + +assert_type(np.unwrap(AR_f8), npt.NDArray[np.floating]) +assert_type(np.unwrap(AR_O), npt.NDArray[np.object_]) + +assert_type(np.sort_complex(AR_f8), npt.NDArray[np.complexfloating]) + +assert_type(np.trim_zeros(AR_f8), npt.NDArray[np.float64]) +assert_type(np.trim_zeros(AR_LIKE_f8), list[float]) + +assert_type(np.extract(AR_i8, AR_f8), npt.NDArray[np.float64]) +assert_type(np.extract(AR_i8, AR_LIKE_f8), npt.NDArray[Any]) + +assert_type(np.place(AR_f8, mask=AR_i8, vals=5.0), None) + +assert_type(np.cov(AR_f8, bias=True), npt.NDArray[np.floating]) +assert_type(np.cov(AR_f8, AR_c16, ddof=1), npt.NDArray[np.complexfloating]) +assert_type(np.cov(AR_f8, aweights=AR_f8, dtype=np.float32), npt.NDArray[np.float32]) +assert_type(np.cov(AR_f8, fweights=AR_f8, dtype=float), npt.NDArray[Any]) + +assert_type(np.corrcoef(AR_f8, rowvar=True), npt.NDArray[np.floating]) +assert_type(np.corrcoef(AR_f8, AR_c16), npt.NDArray[np.complexfloating]) +assert_type(np.corrcoef(AR_f8, dtype=np.float32), npt.NDArray[np.float32]) +assert_type(np.corrcoef(AR_f8, dtype=float), npt.NDArray[Any]) + +assert_type(np.blackman(5), npt.NDArray[np.floating]) +assert_type(np.bartlett(6), npt.NDArray[np.floating]) +assert_type(np.hanning(4.5), npt.NDArray[np.floating]) +assert_type(np.hamming(0), npt.NDArray[np.floating]) +assert_type(np.i0(AR_i8), npt.NDArray[np.floating]) +assert_type(np.kaiser(4, 5.9), npt.NDArray[np.floating]) + +assert_type(np.sinc(1.0), np.floating) +assert_type(np.sinc(1j), np.complexfloating) +assert_type(np.sinc(AR_f8), npt.NDArray[np.floating]) +assert_type(np.sinc(AR_c16), npt.NDArray[np.complexfloating]) + +assert_type(np.median(AR_f8, keepdims=False), np.floating) +assert_type(np.median(AR_c16, overwrite_input=True), np.complexfloating) +assert_type(np.median(AR_m), np.timedelta64) +assert_type(np.median(AR_O), Any) +assert_type(np.median(AR_f8, keepdims=True), Any) +assert_type(np.median(AR_c16, axis=0), Any) +assert_type(np.median(AR_LIKE_f8, out=AR_c16), npt.NDArray[np.complex128]) + +assert_type(np.percentile(AR_f8, 50), np.floating) +assert_type(np.percentile(AR_c16, 50), np.complexfloating) +assert_type(np.percentile(AR_m, 50), np.timedelta64) +assert_type(np.percentile(AR_M, 50, overwrite_input=True), np.datetime64) +assert_type(np.percentile(AR_O, 50), Any) +assert_type(np.percentile(AR_f8, [50]), npt.NDArray[np.floating]) +assert_type(np.percentile(AR_c16, [50]), npt.NDArray[np.complexfloating]) +assert_type(np.percentile(AR_m, [50]), npt.NDArray[np.timedelta64]) +assert_type(np.percentile(AR_M, [50], method="nearest"), npt.NDArray[np.datetime64]) +assert_type(np.percentile(AR_O, [50]), npt.NDArray[np.object_]) +assert_type(np.percentile(AR_f8, [50], keepdims=True), Any) +assert_type(np.percentile(AR_f8, [50], axis=[1]), Any) +assert_type(np.percentile(AR_f8, [50], out=AR_c16), npt.NDArray[np.complex128]) + +assert_type(np.quantile(AR_f8, 0.5), np.floating) +assert_type(np.quantile(AR_c16, 0.5), np.complexfloating) +assert_type(np.quantile(AR_m, 0.5), np.timedelta64) +assert_type(np.quantile(AR_M, 0.5, overwrite_input=True), np.datetime64) +assert_type(np.quantile(AR_O, 0.5), Any) +assert_type(np.quantile(AR_f8, [0.5]), npt.NDArray[np.floating]) +assert_type(np.quantile(AR_c16, [0.5]), npt.NDArray[np.complexfloating]) +assert_type(np.quantile(AR_m, [0.5]), npt.NDArray[np.timedelta64]) +assert_type(np.quantile(AR_M, [0.5], method="nearest"), npt.NDArray[np.datetime64]) +assert_type(np.quantile(AR_O, [0.5]), npt.NDArray[np.object_]) +assert_type(np.quantile(AR_f8, [0.5], keepdims=True), Any) +assert_type(np.quantile(AR_f8, [0.5], axis=[1]), Any) +assert_type(np.quantile(AR_f8, [0.5], out=AR_c16), npt.NDArray[np.complex128]) + +assert_type(np.trapezoid(AR_LIKE_f8), np.float64) +assert_type(np.trapezoid(AR_LIKE_f8, AR_LIKE_f8), np.float64) +assert_type(np.trapezoid(AR_LIKE_c16), np.complex128) +assert_type(np.trapezoid(AR_LIKE_c16, AR_LIKE_f8), np.complex128) +assert_type(np.trapezoid(AR_LIKE_f8, AR_LIKE_c16), np.complex128) +assert_type(np.trapezoid(AR_LIKE_O), float) +assert_type(np.trapezoid(AR_LIKE_O, AR_LIKE_f8), float) +assert_type(np.trapezoid(AR_f8), np.float64 | npt.NDArray[np.float64]) +assert_type(np.trapezoid(AR_f8, AR_f8), np.float64 | npt.NDArray[np.float64]) +assert_type(np.trapezoid(AR_c16), np.complex128 | npt.NDArray[np.complex128]) +assert_type(np.trapezoid(AR_c16, AR_c16), np.complex128 | npt.NDArray[np.complex128]) +assert_type(np.trapezoid(AR_m), np.timedelta64 | npt.NDArray[np.timedelta64]) +assert_type(np.trapezoid(AR_O), float | npt.NDArray[np.object_]) +assert_type(np.trapezoid(AR_O, AR_LIKE_f8), float | npt.NDArray[np.object_]) + +assert_type(np.meshgrid(), tuple[()]) +assert_type(np.meshgrid(AR_c16, indexing="ij"), tuple[npt.NDArray[np.complex128]]) +assert_type(np.meshgrid(AR_i8, AR_f8, copy=False), tuple[npt.NDArray[np.int64], npt.NDArray[np.float64]]) +assert_type(np.meshgrid(AR_LIKE_f8, AR_f8), tuple[npt.NDArray[Any], npt.NDArray[np.float64]]) +assert_type(np.meshgrid(AR_LIKE_f8, AR_i8, AR_c16), tuple[npt.NDArray[Any], npt.NDArray[Any], npt.NDArray[Any]]) +assert_type(np.meshgrid(AR_f8, AR_f8, AR_f8, AR_f8), tuple[npt.NDArray[Any], npt.NDArray[Any], npt.NDArray[Any], npt.NDArray[Any]]) +assert_type(np.meshgrid(*AR_LIKE_f8), tuple[npt.NDArray[Any], ...]) + +assert_type(np.delete(AR_f8, np.s_[:5]), npt.NDArray[np.float64]) +assert_type(np.delete(AR_LIKE_f8, [0, 4, 9], axis=0), npt.NDArray[Any]) + +assert_type(np.insert(AR_f8, np.s_[:5], 5), npt.NDArray[np.float64]) +assert_type(np.insert(AR_LIKE_f8, [0, 4, 9], [0.5, 9.2, 7], axis=0), npt.NDArray[Any]) + +assert_type(np.append(AR_f8, 5), npt.NDArray[Any]) +assert_type(np.append(AR_LIKE_f8, 1j, axis=0), npt.NDArray[Any]) + +assert_type(np.digitize(4.5, [1]), np.intp) +assert_type(np.digitize(AR_f8, [1, 2, 3]), npt.NDArray[np.intp]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/lib_polynomial.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/lib_polynomial.pyi new file mode 100644 index 0000000..8b0a9f3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/lib_polynomial.pyi @@ -0,0 +1,144 @@ +from collections.abc import Iterator +from typing import Any, NoReturn, assert_type + +import numpy as np +import numpy.typing as npt + +AR_b: npt.NDArray[np.bool] +AR_u4: npt.NDArray[np.uint32] +AR_i8: npt.NDArray[np.int64] +AR_f8: npt.NDArray[np.float64] +AR_c16: npt.NDArray[np.complex128] +AR_O: npt.NDArray[np.object_] + +poly_obj: np.poly1d + +assert_type(poly_obj.variable, str) +assert_type(poly_obj.order, int) +assert_type(poly_obj.o, int) +assert_type(poly_obj.roots, npt.NDArray[Any]) +assert_type(poly_obj.r, npt.NDArray[Any]) +assert_type(poly_obj.coeffs, npt.NDArray[Any]) +assert_type(poly_obj.c, npt.NDArray[Any]) +assert_type(poly_obj.coef, npt.NDArray[Any]) +assert_type(poly_obj.coefficients, npt.NDArray[Any]) +assert_type(poly_obj.__hash__, None) + +assert_type(poly_obj(1), Any) +assert_type(poly_obj([1]), npt.NDArray[Any]) +assert_type(poly_obj(poly_obj), np.poly1d) + +assert_type(len(poly_obj), int) +assert_type(-poly_obj, np.poly1d) +assert_type(+poly_obj, np.poly1d) + +assert_type(poly_obj * 5, np.poly1d) +assert_type(5 * poly_obj, np.poly1d) +assert_type(poly_obj + 5, np.poly1d) +assert_type(5 + poly_obj, np.poly1d) +assert_type(poly_obj - 5, np.poly1d) +assert_type(5 - poly_obj, np.poly1d) +assert_type(poly_obj**1, np.poly1d) +assert_type(poly_obj**1.0, np.poly1d) +assert_type(poly_obj / 5, np.poly1d) +assert_type(5 / poly_obj, np.poly1d) + +assert_type(poly_obj[0], Any) +poly_obj[0] = 5 +assert_type(iter(poly_obj), Iterator[Any]) +assert_type(poly_obj.deriv(), np.poly1d) +assert_type(poly_obj.integ(), np.poly1d) + +assert_type(np.poly(poly_obj), npt.NDArray[np.floating]) +assert_type(np.poly(AR_f8), npt.NDArray[np.floating]) +assert_type(np.poly(AR_c16), npt.NDArray[np.floating]) + +assert_type(np.polyint(poly_obj), np.poly1d) +assert_type(np.polyint(AR_f8), npt.NDArray[np.floating]) +assert_type(np.polyint(AR_f8, k=AR_c16), npt.NDArray[np.complexfloating]) +assert_type(np.polyint(AR_O, m=2), npt.NDArray[np.object_]) + +assert_type(np.polyder(poly_obj), np.poly1d) +assert_type(np.polyder(AR_f8), npt.NDArray[np.floating]) +assert_type(np.polyder(AR_c16), npt.NDArray[np.complexfloating]) +assert_type(np.polyder(AR_O, m=2), npt.NDArray[np.object_]) + +assert_type(np.polyfit(AR_f8, AR_f8, 2), npt.NDArray[np.float64]) +assert_type( + np.polyfit(AR_f8, AR_i8, 1, full=True), + tuple[ + npt.NDArray[np.float64], + npt.NDArray[np.float64], + npt.NDArray[np.int32], + npt.NDArray[np.float64], + npt.NDArray[np.float64], + ], +) +assert_type( + np.polyfit(AR_u4, AR_f8, 1.0, cov="unscaled"), + tuple[ + npt.NDArray[np.float64], + npt.NDArray[np.float64], + ], +) +assert_type(np.polyfit(AR_c16, AR_f8, 2), npt.NDArray[np.complex128]) +assert_type( + np.polyfit(AR_f8, AR_c16, 1, full=True), + tuple[ + npt.NDArray[np.complex128], + npt.NDArray[np.float64], + npt.NDArray[np.int32], + npt.NDArray[np.float64], + npt.NDArray[np.float64], + ], +) +assert_type( + np.polyfit(AR_u4, AR_c16, 1.0, cov=True), + tuple[ + npt.NDArray[np.complex128], + npt.NDArray[np.complex128], + ], +) + +assert_type(np.polyval(AR_b, AR_b), npt.NDArray[np.int64]) +assert_type(np.polyval(AR_u4, AR_b), npt.NDArray[np.unsignedinteger]) +assert_type(np.polyval(AR_i8, AR_i8), npt.NDArray[np.signedinteger]) +assert_type(np.polyval(AR_f8, AR_i8), npt.NDArray[np.floating]) +assert_type(np.polyval(AR_i8, AR_c16), npt.NDArray[np.complexfloating]) +assert_type(np.polyval(AR_O, AR_O), npt.NDArray[np.object_]) + +assert_type(np.polyadd(poly_obj, AR_i8), np.poly1d) +assert_type(np.polyadd(AR_f8, poly_obj), np.poly1d) +assert_type(np.polyadd(AR_b, AR_b), npt.NDArray[np.bool]) +assert_type(np.polyadd(AR_u4, AR_b), npt.NDArray[np.unsignedinteger]) +assert_type(np.polyadd(AR_i8, AR_i8), npt.NDArray[np.signedinteger]) +assert_type(np.polyadd(AR_f8, AR_i8), npt.NDArray[np.floating]) +assert_type(np.polyadd(AR_i8, AR_c16), npt.NDArray[np.complexfloating]) +assert_type(np.polyadd(AR_O, AR_O), npt.NDArray[np.object_]) + +assert_type(np.polysub(poly_obj, AR_i8), np.poly1d) +assert_type(np.polysub(AR_f8, poly_obj), np.poly1d) +assert_type(np.polysub(AR_b, AR_b), NoReturn) +assert_type(np.polysub(AR_u4, AR_b), npt.NDArray[np.unsignedinteger]) +assert_type(np.polysub(AR_i8, AR_i8), npt.NDArray[np.signedinteger]) +assert_type(np.polysub(AR_f8, AR_i8), npt.NDArray[np.floating]) +assert_type(np.polysub(AR_i8, AR_c16), npt.NDArray[np.complexfloating]) +assert_type(np.polysub(AR_O, AR_O), npt.NDArray[np.object_]) + +assert_type(np.polymul(poly_obj, AR_i8), np.poly1d) +assert_type(np.polymul(AR_f8, poly_obj), np.poly1d) +assert_type(np.polymul(AR_b, AR_b), npt.NDArray[np.bool]) +assert_type(np.polymul(AR_u4, AR_b), npt.NDArray[np.unsignedinteger]) +assert_type(np.polymul(AR_i8, AR_i8), npt.NDArray[np.signedinteger]) +assert_type(np.polymul(AR_f8, AR_i8), npt.NDArray[np.floating]) +assert_type(np.polymul(AR_i8, AR_c16), npt.NDArray[np.complexfloating]) +assert_type(np.polymul(AR_O, AR_O), npt.NDArray[np.object_]) + +assert_type(np.polydiv(poly_obj, AR_i8), tuple[np.poly1d, np.poly1d]) +assert_type(np.polydiv(AR_f8, poly_obj), tuple[np.poly1d, np.poly1d]) +assert_type(np.polydiv(AR_b, AR_b), tuple[npt.NDArray[np.floating], npt.NDArray[np.floating]]) +assert_type(np.polydiv(AR_u4, AR_b), tuple[npt.NDArray[np.floating], npt.NDArray[np.floating]]) +assert_type(np.polydiv(AR_i8, AR_i8), tuple[npt.NDArray[np.floating], npt.NDArray[np.floating]]) +assert_type(np.polydiv(AR_f8, AR_i8), tuple[npt.NDArray[np.floating], npt.NDArray[np.floating]]) +assert_type(np.polydiv(AR_i8, AR_c16), tuple[npt.NDArray[np.complexfloating], npt.NDArray[np.complexfloating]]) +assert_type(np.polydiv(AR_O, AR_O), tuple[npt.NDArray[Any], npt.NDArray[Any]]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/lib_utils.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/lib_utils.pyi new file mode 100644 index 0000000..c9470e0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/lib_utils.pyi @@ -0,0 +1,17 @@ +from io import StringIO +from typing import assert_type + +import numpy as np +import numpy.lib.array_utils as array_utils +import numpy.typing as npt + +AR: npt.NDArray[np.float64] +AR_DICT: dict[str, npt.NDArray[np.float64]] +FILE: StringIO + +def func(a: int) -> bool: ... + +assert_type(array_utils.byte_bounds(AR), tuple[int, int]) +assert_type(array_utils.byte_bounds(np.float64()), tuple[int, int]) + +assert_type(np.info(1, output=FILE), None) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/lib_version.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/lib_version.pyi new file mode 100644 index 0000000..0373537 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/lib_version.pyi @@ -0,0 +1,20 @@ +from typing import assert_type + +from numpy.lib import NumpyVersion + +version = NumpyVersion("1.8.0") + +assert_type(version.vstring, str) +assert_type(version.version, str) +assert_type(version.major, int) +assert_type(version.minor, int) +assert_type(version.bugfix, int) +assert_type(version.pre_release, str) +assert_type(version.is_devversion, bool) + +assert_type(version == version, bool) +assert_type(version != version, bool) +assert_type(version < "1.8.0", bool) +assert_type(version <= version, bool) +assert_type(version > version, bool) +assert_type(version >= "1.8.0", bool) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/linalg.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/linalg.pyi new file mode 100644 index 0000000..417fb0d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/linalg.pyi @@ -0,0 +1,132 @@ +from typing import Any, assert_type + +import numpy as np +import numpy.typing as npt +from numpy.linalg._linalg import ( + EighResult, + EigResult, + QRResult, + SlogdetResult, + SVDResult, +) + +AR_i8: npt.NDArray[np.int64] +AR_f8: npt.NDArray[np.float64] +AR_c16: npt.NDArray[np.complex128] +AR_O: npt.NDArray[np.object_] +AR_m: npt.NDArray[np.timedelta64] +AR_S: npt.NDArray[np.str_] +AR_b: npt.NDArray[np.bool] + +assert_type(np.linalg.tensorsolve(AR_i8, AR_i8), npt.NDArray[np.float64]) +assert_type(np.linalg.tensorsolve(AR_i8, AR_f8), npt.NDArray[np.floating]) +assert_type(np.linalg.tensorsolve(AR_c16, AR_f8), npt.NDArray[np.complexfloating]) + +assert_type(np.linalg.solve(AR_i8, AR_i8), npt.NDArray[np.float64]) +assert_type(np.linalg.solve(AR_i8, AR_f8), npt.NDArray[np.floating]) +assert_type(np.linalg.solve(AR_c16, AR_f8), npt.NDArray[np.complexfloating]) + +assert_type(np.linalg.tensorinv(AR_i8), npt.NDArray[np.float64]) +assert_type(np.linalg.tensorinv(AR_f8), npt.NDArray[np.floating]) +assert_type(np.linalg.tensorinv(AR_c16), npt.NDArray[np.complexfloating]) + +assert_type(np.linalg.inv(AR_i8), npt.NDArray[np.float64]) +assert_type(np.linalg.inv(AR_f8), npt.NDArray[np.floating]) +assert_type(np.linalg.inv(AR_c16), npt.NDArray[np.complexfloating]) + +assert_type(np.linalg.matrix_power(AR_i8, -1), npt.NDArray[Any]) +assert_type(np.linalg.matrix_power(AR_f8, 0), npt.NDArray[Any]) +assert_type(np.linalg.matrix_power(AR_c16, 1), npt.NDArray[Any]) +assert_type(np.linalg.matrix_power(AR_O, 2), npt.NDArray[Any]) + +assert_type(np.linalg.cholesky(AR_i8), npt.NDArray[np.float64]) +assert_type(np.linalg.cholesky(AR_f8), npt.NDArray[np.floating]) +assert_type(np.linalg.cholesky(AR_c16), npt.NDArray[np.complexfloating]) + +assert_type(np.linalg.outer(AR_i8, AR_i8), npt.NDArray[np.signedinteger]) +assert_type(np.linalg.outer(AR_f8, AR_f8), npt.NDArray[np.floating]) +assert_type(np.linalg.outer(AR_c16, AR_c16), npt.NDArray[np.complexfloating]) +assert_type(np.linalg.outer(AR_b, AR_b), npt.NDArray[np.bool]) +assert_type(np.linalg.outer(AR_O, AR_O), npt.NDArray[np.object_]) +assert_type(np.linalg.outer(AR_i8, AR_m), npt.NDArray[np.timedelta64]) + +assert_type(np.linalg.qr(AR_i8), QRResult) +assert_type(np.linalg.qr(AR_f8), QRResult) +assert_type(np.linalg.qr(AR_c16), QRResult) + +assert_type(np.linalg.eigvals(AR_i8), npt.NDArray[np.float64] | npt.NDArray[np.complex128]) +assert_type(np.linalg.eigvals(AR_f8), npt.NDArray[np.floating] | npt.NDArray[np.complexfloating]) +assert_type(np.linalg.eigvals(AR_c16), npt.NDArray[np.complexfloating]) + +assert_type(np.linalg.eigvalsh(AR_i8), npt.NDArray[np.float64]) +assert_type(np.linalg.eigvalsh(AR_f8), npt.NDArray[np.floating]) +assert_type(np.linalg.eigvalsh(AR_c16), npt.NDArray[np.floating]) + +assert_type(np.linalg.eig(AR_i8), EigResult) +assert_type(np.linalg.eig(AR_f8), EigResult) +assert_type(np.linalg.eig(AR_c16), EigResult) + +assert_type(np.linalg.eigh(AR_i8), EighResult) +assert_type(np.linalg.eigh(AR_f8), EighResult) +assert_type(np.linalg.eigh(AR_c16), EighResult) + +assert_type(np.linalg.svd(AR_i8), SVDResult) +assert_type(np.linalg.svd(AR_f8), SVDResult) +assert_type(np.linalg.svd(AR_c16), SVDResult) +assert_type(np.linalg.svd(AR_i8, compute_uv=False), npt.NDArray[np.float64]) +assert_type(np.linalg.svd(AR_f8, compute_uv=False), npt.NDArray[np.floating]) +assert_type(np.linalg.svd(AR_c16, compute_uv=False), npt.NDArray[np.floating]) + +assert_type(np.linalg.cond(AR_i8), Any) +assert_type(np.linalg.cond(AR_f8), Any) +assert_type(np.linalg.cond(AR_c16), Any) + +assert_type(np.linalg.matrix_rank(AR_i8), Any) +assert_type(np.linalg.matrix_rank(AR_f8), Any) +assert_type(np.linalg.matrix_rank(AR_c16), Any) + +assert_type(np.linalg.pinv(AR_i8), npt.NDArray[np.float64]) +assert_type(np.linalg.pinv(AR_f8), npt.NDArray[np.floating]) +assert_type(np.linalg.pinv(AR_c16), npt.NDArray[np.complexfloating]) + +assert_type(np.linalg.slogdet(AR_i8), SlogdetResult) +assert_type(np.linalg.slogdet(AR_f8), SlogdetResult) +assert_type(np.linalg.slogdet(AR_c16), SlogdetResult) + +assert_type(np.linalg.det(AR_i8), Any) +assert_type(np.linalg.det(AR_f8), Any) +assert_type(np.linalg.det(AR_c16), Any) + +assert_type(np.linalg.lstsq(AR_i8, AR_i8), tuple[npt.NDArray[np.float64], npt.NDArray[np.float64], np.int32, npt.NDArray[np.float64]]) +assert_type(np.linalg.lstsq(AR_i8, AR_f8), tuple[npt.NDArray[np.floating], npt.NDArray[np.floating], np.int32, npt.NDArray[np.floating]]) +assert_type(np.linalg.lstsq(AR_f8, AR_c16), tuple[npt.NDArray[np.complexfloating], npt.NDArray[np.floating], np.int32, npt.NDArray[np.floating]]) + +assert_type(np.linalg.norm(AR_i8), np.floating) +assert_type(np.linalg.norm(AR_f8), np.floating) +assert_type(np.linalg.norm(AR_c16), np.floating) +assert_type(np.linalg.norm(AR_S), np.floating) +assert_type(np.linalg.norm(AR_f8, axis=0), Any) + +assert_type(np.linalg.matrix_norm(AR_i8), np.floating) +assert_type(np.linalg.matrix_norm(AR_f8), np.floating) +assert_type(np.linalg.matrix_norm(AR_c16), np.floating) +assert_type(np.linalg.matrix_norm(AR_S), np.floating) + +assert_type(np.linalg.vector_norm(AR_i8), np.floating) +assert_type(np.linalg.vector_norm(AR_f8), np.floating) +assert_type(np.linalg.vector_norm(AR_c16), np.floating) +assert_type(np.linalg.vector_norm(AR_S), np.floating) + +assert_type(np.linalg.multi_dot([AR_i8, AR_i8]), Any) +assert_type(np.linalg.multi_dot([AR_i8, AR_f8]), Any) +assert_type(np.linalg.multi_dot([AR_f8, AR_c16]), Any) +assert_type(np.linalg.multi_dot([AR_O, AR_O]), Any) +assert_type(np.linalg.multi_dot([AR_m, AR_m]), Any) + +assert_type(np.linalg.cross(AR_i8, AR_i8), npt.NDArray[np.signedinteger]) +assert_type(np.linalg.cross(AR_f8, AR_f8), npt.NDArray[np.floating]) +assert_type(np.linalg.cross(AR_c16, AR_c16), npt.NDArray[np.complexfloating]) + +assert_type(np.linalg.matmul(AR_i8, AR_i8), npt.NDArray[np.signedinteger]) +assert_type(np.linalg.matmul(AR_f8, AR_f8), npt.NDArray[np.floating]) +assert_type(np.linalg.matmul(AR_c16, AR_c16), npt.NDArray[np.complexfloating]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ma.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ma.pyi new file mode 100644 index 0000000..2c65534 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ma.pyi @@ -0,0 +1,369 @@ +from typing import Any, Literal, TypeAlias, TypeVar, assert_type + +import numpy as np +from numpy import dtype, generic +from numpy._typing import NDArray, _AnyShape + +_ScalarT = TypeVar("_ScalarT", bound=generic) +MaskedArray: TypeAlias = np.ma.MaskedArray[_AnyShape, dtype[_ScalarT]] +_Array1D: TypeAlias = np.ndarray[tuple[int], np.dtype[_ScalarT]] + +class MaskedArraySubclass(MaskedArray[np.complex128]): ... + +AR_b: NDArray[np.bool] +AR_f4: NDArray[np.float32] +AR_dt64: NDArray[np.datetime64] +AR_td64: NDArray[np.timedelta64] +AR_o: NDArray[np.timedelta64] + +MAR_c16: MaskedArray[np.complex128] +MAR_b: MaskedArray[np.bool] +MAR_f4: MaskedArray[np.float32] +MAR_f8: MaskedArray[np.float64] +MAR_i8: MaskedArray[np.int64] +MAR_dt64: MaskedArray[np.datetime64] +MAR_td64: MaskedArray[np.timedelta64] +MAR_o: MaskedArray[np.object_] +MAR_s: MaskedArray[np.str_] +MAR_byte: MaskedArray[np.bytes_] +MAR_V: MaskedArray[np.void] + +MAR_subclass: MaskedArraySubclass + +MAR_1d: np.ma.MaskedArray[tuple[int], np.dtype] +MAR_2d_f4: np.ma.MaskedArray[tuple[int, int], np.dtype[np.float32]] + +b: np.bool +f4: np.float32 +f: float + +assert_type(MAR_1d.shape, tuple[int]) + +assert_type(MAR_f4.dtype, np.dtype[np.float32]) + +assert_type(int(MAR_i8), int) +assert_type(float(MAR_f4), float) + +assert_type(np.ma.min(MAR_b), np.bool) +assert_type(np.ma.min(MAR_f4), np.float32) +assert_type(np.ma.min(MAR_b, axis=0), Any) +assert_type(np.ma.min(MAR_f4, axis=0), Any) +assert_type(np.ma.min(MAR_b, keepdims=True), Any) +assert_type(np.ma.min(MAR_f4, keepdims=True), Any) +assert_type(np.ma.min(MAR_f4, out=MAR_subclass), MaskedArraySubclass) +assert_type(np.ma.min(MAR_f4, 0, MAR_subclass), MaskedArraySubclass) +assert_type(np.ma.min(MAR_f4, None, MAR_subclass), MaskedArraySubclass) + +assert_type(MAR_b.min(), np.bool) +assert_type(MAR_f4.min(), np.float32) +assert_type(MAR_b.min(axis=0), Any) +assert_type(MAR_f4.min(axis=0), Any) +assert_type(MAR_b.min(keepdims=True), Any) +assert_type(MAR_f4.min(keepdims=True), Any) +assert_type(MAR_f4.min(out=MAR_subclass), MaskedArraySubclass) +assert_type(MAR_f4.min(0, MAR_subclass), MaskedArraySubclass) +assert_type(MAR_f4.min(None, MAR_subclass), MaskedArraySubclass) + +assert_type(np.ma.max(MAR_b), np.bool) +assert_type(np.ma.max(MAR_f4), np.float32) +assert_type(np.ma.max(MAR_b, axis=0), Any) +assert_type(np.ma.max(MAR_f4, axis=0), Any) +assert_type(np.ma.max(MAR_b, keepdims=True), Any) +assert_type(np.ma.max(MAR_f4, keepdims=True), Any) +assert_type(np.ma.max(MAR_f4, out=MAR_subclass), MaskedArraySubclass) +assert_type(np.ma.max(MAR_f4, 0, MAR_subclass), MaskedArraySubclass) +assert_type(np.ma.max(MAR_f4, None, MAR_subclass), MaskedArraySubclass) + +assert_type(MAR_b.max(), np.bool) +assert_type(MAR_f4.max(), np.float32) +assert_type(MAR_b.max(axis=0), Any) +assert_type(MAR_f4.max(axis=0), Any) +assert_type(MAR_b.max(keepdims=True), Any) +assert_type(MAR_f4.max(keepdims=True), Any) +assert_type(MAR_f4.max(out=MAR_subclass), MaskedArraySubclass) +assert_type(MAR_f4.max(0, MAR_subclass), MaskedArraySubclass) +assert_type(MAR_f4.max(None, MAR_subclass), MaskedArraySubclass) + +assert_type(np.ma.ptp(MAR_b), np.bool) +assert_type(np.ma.ptp(MAR_f4), np.float32) +assert_type(np.ma.ptp(MAR_b, axis=0), Any) +assert_type(np.ma.ptp(MAR_f4, axis=0), Any) +assert_type(np.ma.ptp(MAR_b, keepdims=True), Any) +assert_type(np.ma.ptp(MAR_f4, keepdims=True), Any) +assert_type(np.ma.ptp(MAR_f4, out=MAR_subclass), MaskedArraySubclass) +assert_type(np.ma.ptp(MAR_f4, 0, MAR_subclass), MaskedArraySubclass) +assert_type(np.ma.ptp(MAR_f4, None, MAR_subclass), MaskedArraySubclass) + +assert_type(MAR_b.ptp(), np.bool) +assert_type(MAR_f4.ptp(), np.float32) +assert_type(MAR_b.ptp(axis=0), Any) +assert_type(MAR_f4.ptp(axis=0), Any) +assert_type(MAR_b.ptp(keepdims=True), Any) +assert_type(MAR_f4.ptp(keepdims=True), Any) +assert_type(MAR_f4.ptp(out=MAR_subclass), MaskedArraySubclass) +assert_type(MAR_f4.ptp(0, MAR_subclass), MaskedArraySubclass) +assert_type(MAR_f4.ptp(None, MAR_subclass), MaskedArraySubclass) + +assert_type(MAR_b.argmin(), np.intp) +assert_type(MAR_f4.argmin(), np.intp) +assert_type(MAR_f4.argmax(fill_value=6.28318, keepdims=False), np.intp) +assert_type(MAR_b.argmin(axis=0), Any) +assert_type(MAR_f4.argmin(axis=0), Any) +assert_type(MAR_b.argmin(keepdims=True), Any) +assert_type(MAR_f4.argmin(out=MAR_subclass), MaskedArraySubclass) +assert_type(MAR_f4.argmin(None, None, out=MAR_subclass), MaskedArraySubclass) + +assert_type(np.ma.argmin(MAR_b), np.intp) +assert_type(np.ma.argmin(MAR_f4), np.intp) +assert_type(np.ma.argmin(MAR_f4, fill_value=6.28318, keepdims=False), np.intp) +assert_type(np.ma.argmin(MAR_b, axis=0), Any) +assert_type(np.ma.argmin(MAR_f4, axis=0), Any) +assert_type(np.ma.argmin(MAR_b, keepdims=True), Any) +assert_type(np.ma.argmin(MAR_f4, out=MAR_subclass), MaskedArraySubclass) +assert_type(np.ma.argmin(MAR_f4, None, None, out=MAR_subclass), MaskedArraySubclass) + +assert_type(MAR_b.argmax(), np.intp) +assert_type(MAR_f4.argmax(), np.intp) +assert_type(MAR_f4.argmax(fill_value=6.28318, keepdims=False), np.intp) +assert_type(MAR_b.argmax(axis=0), Any) +assert_type(MAR_f4.argmax(axis=0), Any) +assert_type(MAR_b.argmax(keepdims=True), Any) +assert_type(MAR_f4.argmax(out=MAR_subclass), MaskedArraySubclass) +assert_type(MAR_f4.argmax(None, None, out=MAR_subclass), MaskedArraySubclass) + +assert_type(np.ma.argmax(MAR_b), np.intp) +assert_type(np.ma.argmax(MAR_f4), np.intp) +assert_type(np.ma.argmax(MAR_f4, fill_value=6.28318, keepdims=False), np.intp) +assert_type(np.ma.argmax(MAR_b, axis=0), Any) +assert_type(np.ma.argmax(MAR_f4, axis=0), Any) +assert_type(np.ma.argmax(MAR_b, keepdims=True), Any) +assert_type(np.ma.argmax(MAR_f4, out=MAR_subclass), MaskedArraySubclass) +assert_type(np.ma.argmax(MAR_f4, None, None, out=MAR_subclass), MaskedArraySubclass) + +assert_type(MAR_b.all(), np.bool) +assert_type(MAR_f4.all(), np.bool) +assert_type(MAR_f4.all(keepdims=False), np.bool) +assert_type(MAR_b.all(axis=0), np.bool | MaskedArray[np.bool]) +assert_type(MAR_b.all(axis=0, keepdims=True), MaskedArray[np.bool]) +assert_type(MAR_b.all(0, None, True), MaskedArray[np.bool]) +assert_type(MAR_f4.all(axis=0), np.bool | MaskedArray[np.bool]) +assert_type(MAR_b.all(keepdims=True), MaskedArray[np.bool]) +assert_type(MAR_f4.all(out=MAR_subclass), MaskedArraySubclass) +assert_type(MAR_f4.all(None, out=MAR_subclass), MaskedArraySubclass) + +assert_type(MAR_b.any(), np.bool) +assert_type(MAR_f4.any(), np.bool) +assert_type(MAR_f4.any(keepdims=False), np.bool) +assert_type(MAR_b.any(axis=0), np.bool | MaskedArray[np.bool]) +assert_type(MAR_b.any(axis=0, keepdims=True), MaskedArray[np.bool]) +assert_type(MAR_b.any(0, None, True), MaskedArray[np.bool]) +assert_type(MAR_f4.any(axis=0), np.bool | MaskedArray[np.bool]) +assert_type(MAR_b.any(keepdims=True), MaskedArray[np.bool]) +assert_type(MAR_f4.any(out=MAR_subclass), MaskedArraySubclass) +assert_type(MAR_f4.any(None, out=MAR_subclass), MaskedArraySubclass) + +assert_type(MAR_f4.sort(), None) +assert_type(MAR_f4.sort(axis=0, kind='quicksort', order='K', endwith=False, fill_value=42., stable=False), None) + +assert_type(np.ma.sort(MAR_f4), MaskedArray[np.float32]) +assert_type(np.ma.sort(MAR_subclass), MaskedArraySubclass) +assert_type(np.ma.sort([[0, 1], [2, 3]]), NDArray[Any]) +assert_type(np.ma.sort(AR_f4), NDArray[np.float32]) + +assert_type(MAR_f8.take(0), np.float64) +assert_type(MAR_1d.take(0), Any) +assert_type(MAR_f8.take([0]), MaskedArray[np.float64]) +assert_type(MAR_f8.take(0, out=MAR_subclass), MaskedArraySubclass) +assert_type(MAR_f8.take([0], out=MAR_subclass), MaskedArraySubclass) + +assert_type(np.ma.take(f, 0), Any) +assert_type(np.ma.take(f4, 0), np.float32) +assert_type(np.ma.take(MAR_f8, 0), np.float64) +assert_type(np.ma.take(AR_f4, 0), np.float32) +assert_type(np.ma.take(MAR_1d, 0), Any) +assert_type(np.ma.take(MAR_f8, [0]), MaskedArray[np.float64]) +assert_type(np.ma.take(AR_f4, [0]), MaskedArray[np.float32]) +assert_type(np.ma.take(MAR_f8, 0, out=MAR_subclass), MaskedArraySubclass) +assert_type(np.ma.take(MAR_f8, [0], out=MAR_subclass), MaskedArraySubclass) +assert_type(np.ma.take([1], [0]), MaskedArray[Any]) +assert_type(np.ma.take(np.eye(2), 1, axis=0), MaskedArray[np.float64]) + +assert_type(MAR_f4.partition(1), None) +assert_type(MAR_V.partition(1, axis=0, kind='introselect', order='K'), None) + +assert_type(MAR_f4.argpartition(1), MaskedArray[np.intp]) +assert_type(MAR_1d.argpartition(1, axis=0, kind='introselect', order='K'), MaskedArray[np.intp]) + +assert_type(np.ma.ndim(f4), int) +assert_type(np.ma.ndim(MAR_b), int) +assert_type(np.ma.ndim(AR_f4), int) + +assert_type(np.ma.size(b), int) +assert_type(np.ma.size(MAR_f4, axis=0), int) +assert_type(np.ma.size(AR_f4), int) + +assert_type(np.ma.is_masked(MAR_f4), bool) + +assert_type(MAR_f4.ids(), tuple[int, int]) + +assert_type(MAR_f4.iscontiguous(), bool) + +assert_type(MAR_f4 >= 3, MaskedArray[np.bool]) +assert_type(MAR_i8 >= AR_td64, MaskedArray[np.bool]) +assert_type(MAR_b >= AR_td64, MaskedArray[np.bool]) +assert_type(MAR_td64 >= AR_td64, MaskedArray[np.bool]) +assert_type(MAR_dt64 >= AR_dt64, MaskedArray[np.bool]) +assert_type(MAR_o >= AR_o, MaskedArray[np.bool]) +assert_type(MAR_1d >= 0, MaskedArray[np.bool]) +assert_type(MAR_s >= MAR_s, MaskedArray[np.bool]) +assert_type(MAR_byte >= MAR_byte, MaskedArray[np.bool]) + +assert_type(MAR_f4 > 3, MaskedArray[np.bool]) +assert_type(MAR_i8 > AR_td64, MaskedArray[np.bool]) +assert_type(MAR_b > AR_td64, MaskedArray[np.bool]) +assert_type(MAR_td64 > AR_td64, MaskedArray[np.bool]) +assert_type(MAR_dt64 > AR_dt64, MaskedArray[np.bool]) +assert_type(MAR_o > AR_o, MaskedArray[np.bool]) +assert_type(MAR_1d > 0, MaskedArray[np.bool]) +assert_type(MAR_s > MAR_s, MaskedArray[np.bool]) +assert_type(MAR_byte > MAR_byte, MaskedArray[np.bool]) + +assert_type(MAR_f4 <= 3, MaskedArray[np.bool]) +assert_type(MAR_i8 <= AR_td64, MaskedArray[np.bool]) +assert_type(MAR_b <= AR_td64, MaskedArray[np.bool]) +assert_type(MAR_td64 <= AR_td64, MaskedArray[np.bool]) +assert_type(MAR_dt64 <= AR_dt64, MaskedArray[np.bool]) +assert_type(MAR_o <= AR_o, MaskedArray[np.bool]) +assert_type(MAR_1d <= 0, MaskedArray[np.bool]) +assert_type(MAR_s <= MAR_s, MaskedArray[np.bool]) +assert_type(MAR_byte <= MAR_byte, MaskedArray[np.bool]) + +assert_type(MAR_f4 < 3, MaskedArray[np.bool]) +assert_type(MAR_i8 < AR_td64, MaskedArray[np.bool]) +assert_type(MAR_b < AR_td64, MaskedArray[np.bool]) +assert_type(MAR_td64 < AR_td64, MaskedArray[np.bool]) +assert_type(MAR_dt64 < AR_dt64, MaskedArray[np.bool]) +assert_type(MAR_o < AR_o, MaskedArray[np.bool]) +assert_type(MAR_1d < 0, MaskedArray[np.bool]) +assert_type(MAR_s < MAR_s, MaskedArray[np.bool]) +assert_type(MAR_byte < MAR_byte, MaskedArray[np.bool]) + +assert_type(MAR_f4 <= 3, MaskedArray[np.bool]) +assert_type(MAR_i8 <= AR_td64, MaskedArray[np.bool]) +assert_type(MAR_b <= AR_td64, MaskedArray[np.bool]) +assert_type(MAR_td64 <= AR_td64, MaskedArray[np.bool]) +assert_type(MAR_dt64 <= AR_dt64, MaskedArray[np.bool]) +assert_type(MAR_o <= AR_o, MaskedArray[np.bool]) +assert_type(MAR_1d <= 0, MaskedArray[np.bool]) +assert_type(MAR_s <= MAR_s, MaskedArray[np.bool]) +assert_type(MAR_byte <= MAR_byte, MaskedArray[np.bool]) + +assert_type(MAR_byte.count(), int) +assert_type(MAR_f4.count(axis=None), int) +assert_type(MAR_f4.count(axis=0), NDArray[np.int_]) +assert_type(MAR_b.count(axis=(0,1)), NDArray[np.int_]) +assert_type(MAR_o.count(keepdims=True), NDArray[np.int_]) +assert_type(MAR_o.count(axis=None, keepdims=True), NDArray[np.int_]) +assert_type(MAR_o.count(None, True), NDArray[np.int_]) + +assert_type(np.ma.count(MAR_byte), int) +assert_type(np.ma.count(MAR_byte, axis=None), int) +assert_type(np.ma.count(MAR_f4, axis=0), NDArray[np.int_]) +assert_type(np.ma.count(MAR_b, axis=(0,1)), NDArray[np.int_]) +assert_type(np.ma.count(MAR_o, keepdims=True), NDArray[np.int_]) +assert_type(np.ma.count(MAR_o, axis=None, keepdims=True), NDArray[np.int_]) +assert_type(np.ma.count(MAR_o, None, True), NDArray[np.int_]) + +assert_type(MAR_f4.compressed(), np.ndarray[tuple[int], np.dtype[np.float32]]) + +assert_type(np.ma.compressed(MAR_i8), np.ndarray[tuple[int], np.dtype[np.int64]]) +assert_type(np.ma.compressed([[1,2,3]]), np.ndarray[tuple[int], np.dtype]) + +assert_type(MAR_f4.put([0,4,8], [10,20,30]), None) +assert_type(MAR_f4.put(4, 999), None) +assert_type(MAR_f4.put(4, 999, mode='clip'), None) + +assert_type(np.ma.put(MAR_f4, [0,4,8], [10,20,30]), None) +assert_type(np.ma.put(MAR_f4, 4, 999), None) +assert_type(np.ma.put(MAR_f4, 4, 999, mode='clip'), None) + +assert_type(np.ma.putmask(MAR_f4, [True, False], [0, 1]), None) +assert_type(np.ma.putmask(MAR_f4, np.False_, [0, 1]), None) + +assert_type(MAR_f4.filled(float('nan')), NDArray[np.float32]) +assert_type(MAR_i8.filled(), NDArray[np.int64]) +assert_type(MAR_1d.filled(), np.ndarray[tuple[int], np.dtype]) + +assert_type(np.ma.filled(MAR_f4, float('nan')), NDArray[np.float32]) +assert_type(np.ma.filled([[1,2,3]]), NDArray[Any]) +# PyRight detects this one correctly, but mypy doesn't. +# https://github.com/numpy/numpy/pull/28742#discussion_r2048968375 +assert_type(np.ma.filled(MAR_1d), np.ndarray[tuple[int], np.dtype]) # type: ignore[assert-type] + +assert_type(MAR_b.repeat(3), np.ma.MaskedArray[tuple[int], np.dtype[np.bool]]) +assert_type(MAR_2d_f4.repeat(MAR_i8), np.ma.MaskedArray[tuple[int], np.dtype[np.float32]]) +assert_type(MAR_2d_f4.repeat(MAR_i8, axis=None), np.ma.MaskedArray[tuple[int], np.dtype[np.float32]]) +assert_type(MAR_2d_f4.repeat(MAR_i8, axis=0), MaskedArray[np.float32]) + +assert_type(np.ma.allequal(AR_f4, MAR_f4), bool) +assert_type(np.ma.allequal(AR_f4, MAR_f4, fill_value=False), bool) + +assert_type(np.ma.allclose(AR_f4, MAR_f4), bool) +assert_type(np.ma.allclose(AR_f4, MAR_f4, masked_equal=False), bool) +assert_type(np.ma.allclose(AR_f4, MAR_f4, rtol=.4, atol=.3), bool) + +assert_type(MAR_2d_f4.ravel(), np.ma.MaskedArray[tuple[int], np.dtype[np.float32]]) +assert_type(MAR_1d.ravel(order='A'), np.ma.MaskedArray[tuple[int], np.dtype[Any]]) + +assert_type(np.ma.getmask(MAR_f4), NDArray[np.bool] | np.bool) +# PyRight detects this one correctly, but mypy doesn't: +# `Revealed type is "Union[numpy.ndarray[Any, Any], numpy.bool[Any]]"` +assert_type(np.ma.getmask(MAR_1d), np.ndarray[tuple[int], np.dtype[np.bool]] | np.bool) # type: ignore[assert-type] +assert_type(np.ma.getmask(MAR_2d_f4), np.ndarray[tuple[int, int], np.dtype[np.bool]] | np.bool) +assert_type(np.ma.getmask([1,2]), NDArray[np.bool] | np.bool) +assert_type(np.ma.getmask(np.int64(1)), np.bool) + +assert_type(np.ma.is_mask(MAR_1d), bool) +assert_type(np.ma.is_mask(AR_b), bool) + +def func(x: object) -> None: + if np.ma.is_mask(x): + assert_type(x, NDArray[np.bool]) + else: + assert_type(x, object) + +assert_type(MAR_2d_f4.mT, np.ma.MaskedArray[tuple[int, int], np.dtype[np.float32]]) + +assert_type(MAR_c16.real, MaskedArray[np.float64]) +assert_type(MAR_c16.imag, MaskedArray[np.float64]) + +assert_type(MAR_2d_f4.baseclass, type[NDArray[Any]]) + +assert_type(MAR_b.swapaxes(0, 1), MaskedArray[np.bool]) +assert_type(MAR_2d_f4.swapaxes(1, 0), MaskedArray[np.float32]) + +assert_type(np.ma.nomask, np.bool[Literal[False]]) +assert_type(np.ma.MaskType, type[np.bool]) + +assert_type(MAR_1d.__setmask__([True, False]), None) +assert_type(MAR_1d.__setmask__(np.False_), None) + +assert_type(MAR_2d_f4.harden_mask(), np.ma.MaskedArray[tuple[int, int], np.dtype[np.float32]]) +assert_type(MAR_i8.harden_mask(), MaskedArray[np.int64]) +assert_type(MAR_2d_f4.soften_mask(), np.ma.MaskedArray[tuple[int, int], np.dtype[np.float32]]) +assert_type(MAR_i8.soften_mask(), MaskedArray[np.int64]) +assert_type(MAR_f4.unshare_mask(), MaskedArray[np.float32]) +assert_type(MAR_b.shrink_mask(), MaskedArray[np.bool_]) + +assert_type(MAR_i8.hardmask, bool) +assert_type(MAR_i8.sharedmask, bool) + +assert_type(MAR_b.transpose(), MaskedArray[np.bool]) +assert_type(MAR_2d_f4.transpose(), np.ma.MaskedArray[tuple[int, int], np.dtype[np.float32]]) +assert_type(MAR_2d_f4.transpose(1, 0), np.ma.MaskedArray[tuple[int, int], np.dtype[np.float32]]) +assert_type(MAR_2d_f4.transpose((1, 0)), np.ma.MaskedArray[tuple[int, int], np.dtype[np.float32]]) +assert_type(MAR_b.T, MaskedArray[np.bool]) +assert_type(MAR_2d_f4.T, np.ma.MaskedArray[tuple[int, int], np.dtype[np.float32]]) + +assert_type(MAR_2d_f4.nonzero(), tuple[_Array1D[np.intp], *tuple[_Array1D[np.intp], ...]]) +assert_type(MAR_2d_f4.nonzero()[0], _Array1D[np.intp]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/matrix.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/matrix.pyi new file mode 100644 index 0000000..1a7285d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/matrix.pyi @@ -0,0 +1,73 @@ +from typing import Any, TypeAlias, assert_type + +import numpy as np +import numpy.typing as npt + +_Shape2D: TypeAlias = tuple[int, int] + +mat: np.matrix[_Shape2D, np.dtype[np.int64]] +ar_f8: npt.NDArray[np.float64] +ar_ip: npt.NDArray[np.intp] + +assert_type(mat * 5, np.matrix[_Shape2D, Any]) +assert_type(5 * mat, np.matrix[_Shape2D, Any]) +mat *= 5 + +assert_type(mat**5, np.matrix[_Shape2D, Any]) +mat **= 5 + +assert_type(mat.sum(), Any) +assert_type(mat.mean(), Any) +assert_type(mat.std(), Any) +assert_type(mat.var(), Any) +assert_type(mat.prod(), Any) +assert_type(mat.any(), np.bool) +assert_type(mat.all(), np.bool) +assert_type(mat.max(), np.int64) +assert_type(mat.min(), np.int64) +assert_type(mat.argmax(), np.intp) +assert_type(mat.argmin(), np.intp) +assert_type(mat.ptp(), np.int64) + +assert_type(mat.sum(axis=0), np.matrix[_Shape2D, Any]) +assert_type(mat.mean(axis=0), np.matrix[_Shape2D, Any]) +assert_type(mat.std(axis=0), np.matrix[_Shape2D, Any]) +assert_type(mat.var(axis=0), np.matrix[_Shape2D, Any]) +assert_type(mat.prod(axis=0), np.matrix[_Shape2D, Any]) +assert_type(mat.any(axis=0), np.matrix[_Shape2D, np.dtype[np.bool]]) +assert_type(mat.all(axis=0), np.matrix[_Shape2D, np.dtype[np.bool]]) +assert_type(mat.max(axis=0), np.matrix[_Shape2D, np.dtype[np.int64]]) +assert_type(mat.min(axis=0), np.matrix[_Shape2D, np.dtype[np.int64]]) +assert_type(mat.argmax(axis=0), np.matrix[_Shape2D, np.dtype[np.intp]]) +assert_type(mat.argmin(axis=0), np.matrix[_Shape2D, np.dtype[np.intp]]) +assert_type(mat.ptp(axis=0), np.matrix[_Shape2D, np.dtype[np.int64]]) + +assert_type(mat.sum(out=ar_f8), npt.NDArray[np.float64]) +assert_type(mat.mean(out=ar_f8), npt.NDArray[np.float64]) +assert_type(mat.std(out=ar_f8), npt.NDArray[np.float64]) +assert_type(mat.var(out=ar_f8), npt.NDArray[np.float64]) +assert_type(mat.prod(out=ar_f8), npt.NDArray[np.float64]) +assert_type(mat.any(out=ar_f8), npt.NDArray[np.float64]) +assert_type(mat.all(out=ar_f8), npt.NDArray[np.float64]) +assert_type(mat.max(out=ar_f8), npt.NDArray[np.float64]) +assert_type(mat.min(out=ar_f8), npt.NDArray[np.float64]) +assert_type(mat.argmax(out=ar_ip), npt.NDArray[np.intp]) +assert_type(mat.argmin(out=ar_ip), npt.NDArray[np.intp]) +assert_type(mat.ptp(out=ar_f8), npt.NDArray[np.float64]) + +assert_type(mat.T, np.matrix[_Shape2D, np.dtype[np.int64]]) +assert_type(mat.I, np.matrix[_Shape2D, Any]) +assert_type(mat.A, np.ndarray[_Shape2D, np.dtype[np.int64]]) +assert_type(mat.A1, npt.NDArray[np.int64]) +assert_type(mat.H, np.matrix[_Shape2D, np.dtype[np.int64]]) +assert_type(mat.getT(), np.matrix[_Shape2D, np.dtype[np.int64]]) +assert_type(mat.getI(), np.matrix[_Shape2D, Any]) +assert_type(mat.getA(), np.ndarray[_Shape2D, np.dtype[np.int64]]) +assert_type(mat.getA1(), npt.NDArray[np.int64]) +assert_type(mat.getH(), np.matrix[_Shape2D, np.dtype[np.int64]]) + +assert_type(np.bmat(ar_f8), np.matrix[_Shape2D, Any]) +assert_type(np.bmat([[0, 1, 2]]), np.matrix[_Shape2D, Any]) +assert_type(np.bmat("mat"), np.matrix[_Shape2D, Any]) + +assert_type(np.asmatrix(ar_f8, dtype=np.int64), np.matrix[_Shape2D, Any]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/memmap.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/memmap.pyi new file mode 100644 index 0000000..f3e20ed --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/memmap.pyi @@ -0,0 +1,19 @@ +from typing import Any, assert_type + +import numpy as np + +memmap_obj: np.memmap[Any, np.dtype[np.str_]] + +assert_type(np.memmap.__array_priority__, float) +assert_type(memmap_obj.__array_priority__, float) +assert_type(memmap_obj.filename, str | None) +assert_type(memmap_obj.offset, int) +assert_type(memmap_obj.mode, str) +assert_type(memmap_obj.flush(), None) + +assert_type(np.memmap("file.txt", offset=5), np.memmap[Any, np.dtype[np.uint8]]) +assert_type(np.memmap(b"file.txt", dtype=np.float64, shape=(10, 3)), np.memmap[Any, np.dtype[np.float64]]) +with open("file.txt", "rb") as f: + assert_type(np.memmap(f, dtype=float, order="K"), np.memmap[Any, np.dtype]) + +assert_type(memmap_obj.__array_finalize__(object()), None) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/mod.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/mod.pyi new file mode 100644 index 0000000..59a6a10 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/mod.pyi @@ -0,0 +1,180 @@ +import datetime as dt +from typing import Literal as L +from typing import assert_type + +import numpy as np +import numpy.typing as npt +from numpy._typing import _64Bit + +f8: np.float64 +i8: np.int64 +u8: np.uint64 + +f4: np.float32 +i4: np.int32 +u4: np.uint32 + +m: np.timedelta64 +m_nat: np.timedelta64[None] +m_int0: np.timedelta64[L[0]] +m_int: np.timedelta64[int] +m_td: np.timedelta64[dt.timedelta] + +b_: np.bool + +b: bool +i: int +f: float + +AR_b: npt.NDArray[np.bool] +AR_m: npt.NDArray[np.timedelta64] + +# Time structures + +assert_type(m % m, np.timedelta64) +assert_type(m % m_nat, np.timedelta64[None]) +assert_type(m % m_int0, np.timedelta64[None]) +assert_type(m % m_int, np.timedelta64[int | None]) +assert_type(m_nat % m, np.timedelta64[None]) +assert_type(m_int % m_nat, np.timedelta64[None]) +assert_type(m_int % m_int0, np.timedelta64[None]) +assert_type(m_int % m_int, np.timedelta64[int | None]) +assert_type(m_int % m_td, np.timedelta64[int | None]) +assert_type(m_td % m_nat, np.timedelta64[None]) +assert_type(m_td % m_int0, np.timedelta64[None]) +assert_type(m_td % m_int, np.timedelta64[int | None]) +assert_type(m_td % m_td, np.timedelta64[dt.timedelta | None]) + +assert_type(AR_m % m, npt.NDArray[np.timedelta64]) +assert_type(m % AR_m, npt.NDArray[np.timedelta64]) + +assert_type(divmod(m, m), tuple[np.int64, np.timedelta64]) +assert_type(divmod(m, m_nat), tuple[np.int64, np.timedelta64[None]]) +assert_type(divmod(m, m_int0), tuple[np.int64, np.timedelta64[None]]) +# workarounds for https://github.com/microsoft/pyright/issues/9663 +assert_type(m.__divmod__(m_int), tuple[np.int64, np.timedelta64[int | None]]) +assert_type(divmod(m_nat, m), tuple[np.int64, np.timedelta64[None]]) +assert_type(divmod(m_int, m_nat), tuple[np.int64, np.timedelta64[None]]) +assert_type(divmod(m_int, m_int0), tuple[np.int64, np.timedelta64[None]]) +assert_type(divmod(m_int, m_int), tuple[np.int64, np.timedelta64[int | None]]) +assert_type(divmod(m_int, m_td), tuple[np.int64, np.timedelta64[int | None]]) +assert_type(divmod(m_td, m_nat), tuple[np.int64, np.timedelta64[None]]) +assert_type(divmod(m_td, m_int0), tuple[np.int64, np.timedelta64[None]]) +assert_type(divmod(m_td, m_int), tuple[np.int64, np.timedelta64[int | None]]) +assert_type(divmod(m_td, m_td), tuple[np.int64, np.timedelta64[dt.timedelta | None]]) + +assert_type(divmod(AR_m, m), tuple[npt.NDArray[np.int64], npt.NDArray[np.timedelta64]]) +assert_type(divmod(m, AR_m), tuple[npt.NDArray[np.int64], npt.NDArray[np.timedelta64]]) + +# Bool + +assert_type(b_ % b, np.int8) +assert_type(b_ % i, np.int_) +assert_type(b_ % f, np.float64) +assert_type(b_ % b_, np.int8) +assert_type(b_ % i8, np.int64) +assert_type(b_ % u8, np.uint64) +assert_type(b_ % f8, np.float64) +assert_type(b_ % AR_b, npt.NDArray[np.int8]) + +assert_type(divmod(b_, b), tuple[np.int8, np.int8]) +assert_type(divmod(b_, b_), tuple[np.int8, np.int8]) +# workarounds for https://github.com/microsoft/pyright/issues/9663 +assert_type(b_.__divmod__(i), tuple[np.int_, np.int_]) +assert_type(b_.__divmod__(f), tuple[np.float64, np.float64]) +assert_type(b_.__divmod__(i8), tuple[np.int64, np.int64]) +assert_type(b_.__divmod__(u8), tuple[np.uint64, np.uint64]) +assert_type(divmod(b_, f8), tuple[np.float64, np.float64]) +assert_type(divmod(b_, AR_b), tuple[npt.NDArray[np.int8], npt.NDArray[np.int8]]) + +assert_type(b % b_, np.int8) +assert_type(i % b_, np.int_) +assert_type(f % b_, np.float64) +assert_type(b_ % b_, np.int8) +assert_type(i8 % b_, np.int64) +assert_type(u8 % b_, np.uint64) +assert_type(f8 % b_, np.float64) +assert_type(AR_b % b_, npt.NDArray[np.int8]) + +assert_type(divmod(b, b_), tuple[np.int8, np.int8]) +assert_type(divmod(i, b_), tuple[np.int_, np.int_]) +assert_type(divmod(f, b_), tuple[np.float64, np.float64]) +assert_type(divmod(b_, b_), tuple[np.int8, np.int8]) +assert_type(divmod(i8, b_), tuple[np.int64, np.int64]) +assert_type(divmod(u8, b_), tuple[np.uint64, np.uint64]) +assert_type(divmod(f8, b_), tuple[np.float64, np.float64]) +assert_type(divmod(AR_b, b_), tuple[npt.NDArray[np.int8], npt.NDArray[np.int8]]) + +# int + +assert_type(i8 % b, np.int64) +assert_type(i8 % i8, np.int64) +assert_type(i8 % f, np.float64 | np.floating[_64Bit]) +assert_type(i8 % f8, np.float64 | np.floating[_64Bit]) +assert_type(i4 % i8, np.int64 | np.int32) +assert_type(i4 % f8, np.float64 | np.float32) +assert_type(i4 % i4, np.int32) +assert_type(i4 % f4, np.float32) +assert_type(i8 % AR_b, npt.NDArray[np.int64]) + +assert_type(divmod(i8, b), tuple[np.int64, np.int64]) +assert_type(divmod(i8, i4), tuple[np.int64, np.int64] | tuple[np.int32, np.int32]) +assert_type(divmod(i8, i8), tuple[np.int64, np.int64]) +# workarounds for https://github.com/microsoft/pyright/issues/9663 +assert_type(i8.__divmod__(f), tuple[np.floating[_64Bit], np.floating[_64Bit]] | tuple[np.float64, np.float64]) +assert_type(i8.__divmod__(f8), tuple[np.floating[_64Bit], np.floating[_64Bit]] | tuple[np.float64, np.float64]) +assert_type(divmod(i8, f4), tuple[np.floating[_64Bit], np.floating[_64Bit]] | tuple[np.float32, np.float32]) +assert_type(divmod(i4, i4), tuple[np.int32, np.int32]) +assert_type(divmod(i4, f4), tuple[np.float32, np.float32]) +assert_type(divmod(i8, AR_b), tuple[npt.NDArray[np.int64], npt.NDArray[np.int64]]) + +assert_type(b % i8, np.int64) +assert_type(f % i8, np.float64 | np.floating[_64Bit]) +assert_type(i8 % i8, np.int64) +assert_type(f8 % i8, np.float64) +assert_type(i8 % i4, np.int64 | np.int32) +assert_type(f8 % i4, np.float64) +assert_type(i4 % i4, np.int32) +assert_type(f4 % i4, np.float32) +assert_type(AR_b % i8, npt.NDArray[np.int64]) + +assert_type(divmod(b, i8), tuple[np.int64, np.int64]) +assert_type(divmod(f, i8), tuple[np.floating[_64Bit], np.floating[_64Bit]] | tuple[np.float64, np.float64]) +assert_type(divmod(i8, i8), tuple[np.int64, np.int64]) +assert_type(divmod(f8, i8), tuple[np.float64, np.float64]) +assert_type(divmod(i4, i8), tuple[np.int64, np.int64] | tuple[np.int32, np.int32]) +assert_type(divmod(i4, i4), tuple[np.int32, np.int32]) +# workarounds for https://github.com/microsoft/pyright/issues/9663 +assert_type(f4.__divmod__(i8), tuple[np.floating[_64Bit], np.floating[_64Bit]] | tuple[np.float32, np.float32]) +assert_type(f4.__divmod__(i4), tuple[np.float32, np.float32]) +assert_type(AR_b.__divmod__(i8), tuple[npt.NDArray[np.int64], npt.NDArray[np.int64]]) + +# float + +assert_type(f8 % b, np.float64) +assert_type(f8 % f, np.float64) +assert_type(i8 % f4, np.floating[_64Bit] | np.float32) +assert_type(f4 % f4, np.float32) +assert_type(f8 % AR_b, npt.NDArray[np.float64]) + +assert_type(divmod(f8, b), tuple[np.float64, np.float64]) +assert_type(divmod(f8, f), tuple[np.float64, np.float64]) +assert_type(divmod(f8, f8), tuple[np.float64, np.float64]) +assert_type(divmod(f8, f4), tuple[np.float64, np.float64]) +assert_type(divmod(f4, f4), tuple[np.float32, np.float32]) +assert_type(divmod(f8, AR_b), tuple[npt.NDArray[np.float64], npt.NDArray[np.float64]]) + +assert_type(b % f8, np.float64) +assert_type(f % f8, np.float64) # pyright: ignore[reportAssertTypeFailure] # pyright incorrectly infers `builtins.float` +assert_type(f8 % f8, np.float64) +assert_type(f8 % f8, np.float64) +assert_type(f4 % f4, np.float32) +assert_type(AR_b % f8, npt.NDArray[np.float64]) + +assert_type(divmod(b, f8), tuple[np.float64, np.float64]) +assert_type(divmod(f8, f8), tuple[np.float64, np.float64]) +assert_type(divmod(f4, f4), tuple[np.float32, np.float32]) +# workarounds for https://github.com/microsoft/pyright/issues/9663 +assert_type(f8.__rdivmod__(f), tuple[np.float64, np.float64]) +assert_type(f8.__rdivmod__(f4), tuple[np.float64, np.float64]) +assert_type(AR_b.__divmod__(f8), tuple[npt.NDArray[np.float64], npt.NDArray[np.float64]]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/modules.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/modules.pyi new file mode 100644 index 0000000..628fb50 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/modules.pyi @@ -0,0 +1,51 @@ +import types +from typing import assert_type + +import numpy as np +from numpy import f2py + +assert_type(np, types.ModuleType) + +assert_type(np.char, types.ModuleType) +assert_type(np.ctypeslib, types.ModuleType) +assert_type(np.emath, types.ModuleType) +assert_type(np.fft, types.ModuleType) +assert_type(np.lib, types.ModuleType) +assert_type(np.linalg, types.ModuleType) +assert_type(np.ma, types.ModuleType) +assert_type(np.matrixlib, types.ModuleType) +assert_type(np.polynomial, types.ModuleType) +assert_type(np.random, types.ModuleType) +assert_type(np.rec, types.ModuleType) +assert_type(np.testing, types.ModuleType) +assert_type(np.version, types.ModuleType) +assert_type(np.exceptions, types.ModuleType) +assert_type(np.dtypes, types.ModuleType) + +assert_type(np.lib.format, types.ModuleType) +assert_type(np.lib.mixins, types.ModuleType) +assert_type(np.lib.scimath, types.ModuleType) +assert_type(np.lib.stride_tricks, types.ModuleType) +assert_type(np.ma.extras, types.ModuleType) +assert_type(np.polynomial.chebyshev, types.ModuleType) +assert_type(np.polynomial.hermite, types.ModuleType) +assert_type(np.polynomial.hermite_e, types.ModuleType) +assert_type(np.polynomial.laguerre, types.ModuleType) +assert_type(np.polynomial.legendre, types.ModuleType) +assert_type(np.polynomial.polynomial, types.ModuleType) + +assert_type(np.__path__, list[str]) +assert_type(np.__version__, str) +assert_type(np.test, np._pytesttester.PytestTester) +assert_type(np.test.module_name, str) + +assert_type(np.__all__, list[str]) +assert_type(np.char.__all__, list[str]) +assert_type(np.ctypeslib.__all__, list[str]) +assert_type(np.emath.__all__, list[str]) +assert_type(np.lib.__all__, list[str]) +assert_type(np.ma.__all__, list[str]) +assert_type(np.random.__all__, list[str]) +assert_type(np.rec.__all__, list[str]) +assert_type(np.testing.__all__, list[str]) +assert_type(f2py.__all__, list[str]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/multiarray.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/multiarray.pyi new file mode 100644 index 0000000..6ba3fcd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/multiarray.pyi @@ -0,0 +1,194 @@ +import datetime as dt +from typing import Any, Literal, TypeVar, assert_type + +import numpy as np +import numpy.typing as npt + +_ScalarT_co = TypeVar("_ScalarT_co", bound=np.generic, covariant=True) + +class SubClass(npt.NDArray[_ScalarT_co]): ... + +subclass: SubClass[np.float64] + +AR_f8: npt.NDArray[np.float64] +AR_i8: npt.NDArray[np.int64] +AR_u1: npt.NDArray[np.uint8] +AR_m: npt.NDArray[np.timedelta64] +AR_M: npt.NDArray[np.datetime64] + +AR_LIKE_f: list[float] +AR_LIKE_i: list[int] + +m: np.timedelta64 +M: np.datetime64 + +b_f8 = np.broadcast(AR_f8) +b_i8_f8_f8 = np.broadcast(AR_i8, AR_f8, AR_f8) + +nditer_obj: np.nditer + +date_scalar: dt.date +date_seq: list[dt.date] +timedelta_seq: list[dt.timedelta] + +n1: Literal[1] +n2: Literal[2] +n3: Literal[3] + +f8: np.float64 + +def func11(a: int) -> bool: ... +def func21(a: int, b: int) -> int: ... +def func12(a: int) -> tuple[complex, bool]: ... + +assert_type(next(b_f8), tuple[Any, ...]) +assert_type(b_f8.reset(), None) +assert_type(b_f8.index, int) +assert_type(b_f8.iters, tuple[np.flatiter[Any], ...]) +assert_type(b_f8.nd, int) +assert_type(b_f8.ndim, int) +assert_type(b_f8.numiter, int) +assert_type(b_f8.shape, tuple[Any, ...]) +assert_type(b_f8.size, int) + +assert_type(next(b_i8_f8_f8), tuple[Any, ...]) +assert_type(b_i8_f8_f8.reset(), None) +assert_type(b_i8_f8_f8.index, int) +assert_type(b_i8_f8_f8.iters, tuple[np.flatiter[Any], ...]) +assert_type(b_i8_f8_f8.nd, int) +assert_type(b_i8_f8_f8.ndim, int) +assert_type(b_i8_f8_f8.numiter, int) +assert_type(b_i8_f8_f8.shape, tuple[Any, ...]) +assert_type(b_i8_f8_f8.size, int) + +assert_type(np.inner(AR_f8, AR_i8), Any) + +assert_type(np.where([True, True, False]), tuple[npt.NDArray[np.intp], ...]) +assert_type(np.where([True, True, False], 1, 0), npt.NDArray[Any]) + +assert_type(np.lexsort([0, 1, 2]), Any) + +assert_type(np.can_cast(np.dtype("i8"), int), bool) +assert_type(np.can_cast(AR_f8, "f8"), bool) +assert_type(np.can_cast(AR_f8, np.complex128, casting="unsafe"), bool) + +assert_type(np.min_scalar_type([1]), np.dtype) +assert_type(np.min_scalar_type(AR_f8), np.dtype) + +assert_type(np.result_type(int, [1]), np.dtype) +assert_type(np.result_type(AR_f8, AR_u1), np.dtype) +assert_type(np.result_type(AR_f8, np.complex128), np.dtype) + +assert_type(np.dot(AR_LIKE_f, AR_i8), Any) +assert_type(np.dot(AR_u1, 1), Any) +assert_type(np.dot(1.5j, 1), Any) +assert_type(np.dot(AR_u1, 1, out=AR_f8), npt.NDArray[np.float64]) + +assert_type(np.vdot(AR_LIKE_f, AR_i8), np.floating) +assert_type(np.vdot(AR_u1, 1), np.signedinteger) +assert_type(np.vdot(1.5j, 1), np.complexfloating) + +assert_type(np.bincount(AR_i8), npt.NDArray[np.intp]) + +assert_type(np.copyto(AR_f8, [1., 1.5, 1.6]), None) + +assert_type(np.putmask(AR_f8, [True, True, False], 1.5), None) + +assert_type(np.packbits(AR_i8), npt.NDArray[np.uint8]) +assert_type(np.packbits(AR_u1), npt.NDArray[np.uint8]) + +assert_type(np.unpackbits(AR_u1), npt.NDArray[np.uint8]) + +assert_type(np.shares_memory(1, 2), bool) +assert_type(np.shares_memory(AR_f8, AR_f8, max_work=1), bool) + +assert_type(np.may_share_memory(1, 2), bool) +assert_type(np.may_share_memory(AR_f8, AR_f8, max_work=1), bool) + +assert_type(np.promote_types(np.int32, np.int64), np.dtype) +assert_type(np.promote_types("f4", float), np.dtype) + +assert_type(np.frompyfunc(func11, n1, n1).nin, Literal[1]) +assert_type(np.frompyfunc(func11, n1, n1).nout, Literal[1]) +assert_type(np.frompyfunc(func11, n1, n1).nargs, Literal[2]) +assert_type(np.frompyfunc(func11, n1, n1).ntypes, Literal[1]) +assert_type(np.frompyfunc(func11, n1, n1).identity, None) +assert_type(np.frompyfunc(func11, n1, n1).signature, None) +assert_type(np.frompyfunc(func11, n1, n1)(f8), bool) +assert_type(np.frompyfunc(func11, n1, n1)(AR_f8), bool | npt.NDArray[np.object_]) +assert_type(np.frompyfunc(func11, n1, n1).at(AR_f8, AR_i8), None) + +assert_type(np.frompyfunc(func21, n2, n1).nin, Literal[2]) +assert_type(np.frompyfunc(func21, n2, n1).nout, Literal[1]) +assert_type(np.frompyfunc(func21, n2, n1).nargs, Literal[3]) +assert_type(np.frompyfunc(func21, n2, n1).ntypes, Literal[1]) +assert_type(np.frompyfunc(func21, n2, n1).identity, None) +assert_type(np.frompyfunc(func21, n2, n1).signature, None) +assert_type(np.frompyfunc(func21, n2, n1)(f8, f8), int) +assert_type(np.frompyfunc(func21, n2, n1)(AR_f8, f8), int | npt.NDArray[np.object_]) +assert_type(np.frompyfunc(func21, n2, n1)(f8, AR_f8), int | npt.NDArray[np.object_]) +assert_type(np.frompyfunc(func21, n2, n1).reduce(AR_f8, axis=0), int | npt.NDArray[np.object_]) +assert_type(np.frompyfunc(func21, n2, n1).accumulate(AR_f8), npt.NDArray[np.object_]) +assert_type(np.frompyfunc(func21, n2, n1).reduceat(AR_f8, AR_i8), npt.NDArray[np.object_]) +assert_type(np.frompyfunc(func21, n2, n1).outer(f8, f8), int) +assert_type(np.frompyfunc(func21, n2, n1).outer(AR_f8, f8), int | npt.NDArray[np.object_]) + +assert_type(np.frompyfunc(func21, n2, n1, identity=0).nin, Literal[2]) +assert_type(np.frompyfunc(func21, n2, n1, identity=0).nout, Literal[1]) +assert_type(np.frompyfunc(func21, n2, n1, identity=0).nargs, Literal[3]) +assert_type(np.frompyfunc(func21, n2, n1, identity=0).ntypes, Literal[1]) +assert_type(np.frompyfunc(func21, n2, n1, identity=0).identity, int) +assert_type(np.frompyfunc(func21, n2, n1, identity=0).signature, None) + +assert_type(np.frompyfunc(func12, n1, n2).nin, Literal[1]) +assert_type(np.frompyfunc(func12, n1, n2).nout, Literal[2]) +assert_type(np.frompyfunc(func12, n1, n2).nargs, int) +assert_type(np.frompyfunc(func12, n1, n2).ntypes, Literal[1]) +assert_type(np.frompyfunc(func12, n1, n2).identity, None) +assert_type(np.frompyfunc(func12, n1, n2).signature, None) +assert_type( + np.frompyfunc(func12, n2, n2)(f8, f8), + tuple[complex, complex, *tuple[complex, ...]], +) +assert_type( + np.frompyfunc(func12, n2, n2)(AR_f8, f8), + tuple[ + complex | npt.NDArray[np.object_], + complex | npt.NDArray[np.object_], + *tuple[complex | npt.NDArray[np.object_], ...], + ], +) + +assert_type(np.datetime_data("m8[D]"), tuple[str, int]) +assert_type(np.datetime_data(np.datetime64), tuple[str, int]) +assert_type(np.datetime_data(np.dtype(np.timedelta64)), tuple[str, int]) + +assert_type(np.busday_count("2011-01", "2011-02"), np.int_) +assert_type(np.busday_count(["2011-01"], "2011-02"), npt.NDArray[np.int_]) +assert_type(np.busday_count(["2011-01"], date_scalar), npt.NDArray[np.int_]) + +assert_type(np.busday_offset(M, m), np.datetime64) +assert_type(np.busday_offset(date_scalar, m), np.datetime64) +assert_type(np.busday_offset(M, 5), np.datetime64) +assert_type(np.busday_offset(AR_M, m), npt.NDArray[np.datetime64]) +assert_type(np.busday_offset(M, timedelta_seq), npt.NDArray[np.datetime64]) +assert_type(np.busday_offset("2011-01", "2011-02", roll="forward"), np.datetime64) +assert_type(np.busday_offset(["2011-01"], "2011-02", roll="forward"), npt.NDArray[np.datetime64]) + +assert_type(np.is_busday("2012"), np.bool) +assert_type(np.is_busday(date_scalar), np.bool) +assert_type(np.is_busday(["2012"]), npt.NDArray[np.bool]) + +assert_type(np.datetime_as_string(M), np.str_) +assert_type(np.datetime_as_string(AR_M), npt.NDArray[np.str_]) + +assert_type(np.busdaycalendar(holidays=date_seq), np.busdaycalendar) +assert_type(np.busdaycalendar(holidays=[M]), np.busdaycalendar) + +assert_type(np.char.compare_chararrays("a", "b", "!=", rstrip=False), npt.NDArray[np.bool]) +assert_type(np.char.compare_chararrays(b"a", b"a", "==", True), npt.NDArray[np.bool]) + +assert_type(np.nested_iters([AR_i8, AR_i8], [[0], [1]], flags=["c_index"]), tuple[np.nditer, ...]) +assert_type(np.nested_iters([AR_i8, AR_i8], [[0], [1]], op_flags=[["readonly", "readonly"]]), tuple[np.nditer, ...]) +assert_type(np.nested_iters([AR_i8, AR_i8], [[0], [1]], op_dtypes=np.int_), tuple[np.nditer, ...]) +assert_type(np.nested_iters([AR_i8, AR_i8], [[0], [1]], order="C", casting="no"), tuple[np.nditer, ...]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/nbit_base_example.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/nbit_base_example.pyi new file mode 100644 index 0000000..3322966 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/nbit_base_example.pyi @@ -0,0 +1,21 @@ +from typing import TypeVar, assert_type + +import numpy as np +import numpy.typing as npt +from numpy._typing import _32Bit, _64Bit + +T1 = TypeVar("T1", bound=npt.NBitBase) # type: ignore[deprecated] # pyright: ignore[reportDeprecated] +T2 = TypeVar("T2", bound=npt.NBitBase) # type: ignore[deprecated] # pyright: ignore[reportDeprecated] + +def add(a: np.floating[T1], b: np.integer[T2]) -> np.floating[T1 | T2]: + return a + b + +i8: np.int64 +i4: np.int32 +f8: np.float64 +f4: np.float32 + +assert_type(add(f8, i8), np.floating[_64Bit]) +assert_type(add(f4, i8), np.floating[_32Bit | _64Bit]) +assert_type(add(f8, i4), np.floating[_32Bit | _64Bit]) +assert_type(add(f4, i4), np.floating[_32Bit]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ndarray_assignability.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ndarray_assignability.pyi new file mode 100644 index 0000000..d754a94 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ndarray_assignability.pyi @@ -0,0 +1,77 @@ +from typing import Protocol, TypeAlias, TypeVar, assert_type + +import numpy as np +from numpy._typing import _64Bit + +_T = TypeVar("_T") +_T_co = TypeVar("_T_co", covariant=True) + +class CanAbs(Protocol[_T_co]): + def __abs__(self, /) -> _T_co: ... + +class CanInvert(Protocol[_T_co]): + def __invert__(self, /) -> _T_co: ... + +class CanNeg(Protocol[_T_co]): + def __neg__(self, /) -> _T_co: ... + +class CanPos(Protocol[_T_co]): + def __pos__(self, /) -> _T_co: ... + +def do_abs(x: CanAbs[_T]) -> _T: ... +def do_invert(x: CanInvert[_T]) -> _T: ... +def do_neg(x: CanNeg[_T]) -> _T: ... +def do_pos(x: CanPos[_T]) -> _T: ... + +_Bool_1d: TypeAlias = np.ndarray[tuple[int], np.dtype[np.bool]] +_UInt8_1d: TypeAlias = np.ndarray[tuple[int], np.dtype[np.uint8]] +_Int16_1d: TypeAlias = np.ndarray[tuple[int], np.dtype[np.int16]] +_LongLong_1d: TypeAlias = np.ndarray[tuple[int], np.dtype[np.longlong]] +_Float32_1d: TypeAlias = np.ndarray[tuple[int], np.dtype[np.float32]] +_Float64_1d: TypeAlias = np.ndarray[tuple[int], np.dtype[np.float64]] +_LongDouble_1d: TypeAlias = np.ndarray[tuple[int], np.dtype[np.longdouble]] +_Complex64_1d: TypeAlias = np.ndarray[tuple[int], np.dtype[np.complex64]] +_Complex128_1d: TypeAlias = np.ndarray[tuple[int], np.dtype[np.complex128]] +_CLongDouble_1d: TypeAlias = np.ndarray[tuple[int], np.dtype[np.clongdouble]] + +b1_1d: _Bool_1d +u1_1d: _UInt8_1d +i2_1d: _Int16_1d +q_1d: _LongLong_1d +f4_1d: _Float32_1d +f8_1d: _Float64_1d +g_1d: _LongDouble_1d +c8_1d: _Complex64_1d +c16_1d: _Complex128_1d +G_1d: _CLongDouble_1d + +assert_type(do_abs(b1_1d), _Bool_1d) +assert_type(do_abs(u1_1d), _UInt8_1d) +assert_type(do_abs(i2_1d), _Int16_1d) +assert_type(do_abs(q_1d), _LongLong_1d) +assert_type(do_abs(f4_1d), _Float32_1d) +assert_type(do_abs(f8_1d), _Float64_1d) +assert_type(do_abs(g_1d), _LongDouble_1d) + +assert_type(do_abs(c8_1d), _Float32_1d) +# NOTE: Unfortunately it's not possible to have this return a `float64` sctype, see +# https://github.com/python/mypy/issues/14070 +assert_type(do_abs(c16_1d), np.ndarray[tuple[int], np.dtype[np.floating[_64Bit]]]) +assert_type(do_abs(G_1d), _LongDouble_1d) + +assert_type(do_invert(b1_1d), _Bool_1d) +assert_type(do_invert(u1_1d), _UInt8_1d) +assert_type(do_invert(i2_1d), _Int16_1d) +assert_type(do_invert(q_1d), _LongLong_1d) + +assert_type(do_neg(u1_1d), _UInt8_1d) +assert_type(do_neg(i2_1d), _Int16_1d) +assert_type(do_neg(q_1d), _LongLong_1d) +assert_type(do_neg(f4_1d), _Float32_1d) +assert_type(do_neg(c16_1d), _Complex128_1d) + +assert_type(do_pos(u1_1d), _UInt8_1d) +assert_type(do_pos(i2_1d), _Int16_1d) +assert_type(do_pos(q_1d), _LongLong_1d) +assert_type(do_pos(f4_1d), _Float32_1d) +assert_type(do_pos(c16_1d), _Complex128_1d) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ndarray_conversion.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ndarray_conversion.pyi new file mode 100644 index 0000000..bbd4257 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ndarray_conversion.pyi @@ -0,0 +1,85 @@ +from typing import Any, assert_type + +import numpy as np +import numpy.typing as npt + +b1_0d: np.ndarray[tuple[()], np.dtype[np.bool]] +u2_1d: np.ndarray[tuple[int], np.dtype[np.uint16]] +i4_2d: np.ndarray[tuple[int, int], np.dtype[np.int32]] +f8_3d: np.ndarray[tuple[int, int, int], np.dtype[np.float64]] +cG_4d: np.ndarray[tuple[int, int, int, int], np.dtype[np.clongdouble]] +i0_nd: npt.NDArray[np.int_] +uncertain_dtype: np.int32 | np.float64 | np.str_ + +# item +assert_type(i0_nd.item(), int) +assert_type(i0_nd.item(1), int) +assert_type(i0_nd.item(0, 1), int) +assert_type(i0_nd.item((0, 1)), int) + +assert_type(b1_0d.item(()), bool) +assert_type(u2_1d.item((0,)), int) +assert_type(i4_2d.item(-1, 2), int) +assert_type(f8_3d.item(2, 1, -1), float) +assert_type(cG_4d.item(-0xEd_fed_Deb_a_dead_bee), complex) # c'mon Ed, we talked about this... + +# tolist +assert_type(b1_0d.tolist(), bool) +assert_type(u2_1d.tolist(), list[int]) +assert_type(i4_2d.tolist(), list[list[int]]) +assert_type(f8_3d.tolist(), list[list[list[float]]]) +assert_type(cG_4d.tolist(), Any) +assert_type(i0_nd.tolist(), Any) + +# regression tests for numpy/numpy#27944 +any_dtype: np.ndarray[Any, Any] +any_sctype: np.ndarray[Any, Any] +assert_type(any_dtype.tolist(), Any) +assert_type(any_sctype.tolist(), Any) + + +# itemset does not return a value +# tobytes is pretty simple +# tofile does not return a value +# dump does not return a value +# dumps is pretty simple + +# astype +assert_type(i0_nd.astype("float"), npt.NDArray[Any]) +assert_type(i0_nd.astype(float), npt.NDArray[Any]) +assert_type(i0_nd.astype(np.float64), npt.NDArray[np.float64]) +assert_type(i0_nd.astype(np.float64, "K"), npt.NDArray[np.float64]) +assert_type(i0_nd.astype(np.float64, "K", "unsafe"), npt.NDArray[np.float64]) +assert_type(i0_nd.astype(np.float64, "K", "unsafe", True), npt.NDArray[np.float64]) +assert_type(i0_nd.astype(np.float64, "K", "unsafe", True, True), npt.NDArray[np.float64]) + +assert_type(np.astype(i0_nd, np.float64), npt.NDArray[np.float64]) + +assert_type(i4_2d.astype(np.uint16), np.ndarray[tuple[int, int], np.dtype[np.uint16]]) +assert_type(np.astype(i4_2d, np.uint16), np.ndarray[tuple[int, int], np.dtype[np.uint16]]) +assert_type(f8_3d.astype(np.int16), np.ndarray[tuple[int, int, int], np.dtype[np.int16]]) +assert_type(np.astype(f8_3d, np.int16), np.ndarray[tuple[int, int, int], np.dtype[np.int16]]) +assert_type(i4_2d.astype(uncertain_dtype), np.ndarray[tuple[int, int], np.dtype[np.generic]]) +assert_type(np.astype(i4_2d, uncertain_dtype), np.ndarray[tuple[int, int], np.dtype]) + +# byteswap +assert_type(i0_nd.byteswap(), npt.NDArray[np.int_]) +assert_type(i0_nd.byteswap(True), npt.NDArray[np.int_]) + +# copy +assert_type(i0_nd.copy(), npt.NDArray[np.int_]) +assert_type(i0_nd.copy("C"), npt.NDArray[np.int_]) + +assert_type(i0_nd.view(), npt.NDArray[np.int_]) +assert_type(i0_nd.view(np.float64), npt.NDArray[np.float64]) +assert_type(i0_nd.view(float), npt.NDArray[Any]) +assert_type(i0_nd.view(np.float64, np.matrix), np.matrix[tuple[int, int], Any]) + +# getfield +assert_type(i0_nd.getfield("float"), npt.NDArray[Any]) +assert_type(i0_nd.getfield(float), npt.NDArray[Any]) +assert_type(i0_nd.getfield(np.float64), npt.NDArray[np.float64]) +assert_type(i0_nd.getfield(np.float64, 8), npt.NDArray[np.float64]) + +# setflags does not return a value +# fill does not return a value diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ndarray_misc.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ndarray_misc.pyi new file mode 100644 index 0000000..4cbb906 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ndarray_misc.pyi @@ -0,0 +1,247 @@ +""" +Tests for miscellaneous (non-magic) ``np.ndarray``/``np.generic`` methods. + +More extensive tests are performed for the methods' +function-based counterpart in `../from_numeric.py`. + +""" + +from collections.abc import Iterator +import ctypes as ct +import operator +from types import ModuleType +from typing import Any, Literal, assert_type + +from typing_extensions import CapsuleType + +import numpy as np +import numpy.typing as npt + +class SubClass(npt.NDArray[np.object_]): ... + +f8: np.float64 +i8: np.int64 +B: SubClass +AR_f8: npt.NDArray[np.float64] +AR_i8: npt.NDArray[np.int64] +AR_u1: npt.NDArray[np.uint8] +AR_c8: npt.NDArray[np.complex64] +AR_m: npt.NDArray[np.timedelta64] +AR_U: npt.NDArray[np.str_] +AR_V: npt.NDArray[np.void] + +AR_f8_1d: np.ndarray[tuple[int], np.dtype[np.float64]] +AR_f8_2d: np.ndarray[tuple[int, int], np.dtype[np.float64]] +AR_f8_3d: np.ndarray[tuple[int, int, int], np.dtype[np.float64]] + +ctypes_obj = AR_f8.ctypes + +assert_type(AR_f8.__dlpack__(), CapsuleType) +assert_type(AR_f8.__dlpack_device__(), tuple[Literal[1], Literal[0]]) + +assert_type(ctypes_obj.data, int) +assert_type(ctypes_obj.shape, ct.Array[np.ctypeslib.c_intp]) +assert_type(ctypes_obj.strides, ct.Array[np.ctypeslib.c_intp]) +assert_type(ctypes_obj._as_parameter_, ct.c_void_p) + +assert_type(ctypes_obj.data_as(ct.c_void_p), ct.c_void_p) +assert_type(ctypes_obj.shape_as(ct.c_longlong), ct.Array[ct.c_longlong]) +assert_type(ctypes_obj.strides_as(ct.c_ubyte), ct.Array[ct.c_ubyte]) + +assert_type(f8.all(), np.bool) +assert_type(AR_f8.all(), np.bool) +assert_type(AR_f8.all(axis=0), np.bool | npt.NDArray[np.bool]) +assert_type(AR_f8.all(keepdims=True), np.bool | npt.NDArray[np.bool]) +assert_type(AR_f8.all(out=B), SubClass) + +assert_type(f8.any(), np.bool) +assert_type(AR_f8.any(), np.bool) +assert_type(AR_f8.any(axis=0), np.bool | npt.NDArray[np.bool]) +assert_type(AR_f8.any(keepdims=True), np.bool | npt.NDArray[np.bool]) +assert_type(AR_f8.any(out=B), SubClass) + +assert_type(f8.argmax(), np.intp) +assert_type(AR_f8.argmax(), np.intp) +assert_type(AR_f8.argmax(axis=0), Any) +assert_type(AR_f8.argmax(out=AR_i8), npt.NDArray[np.intp]) + +assert_type(f8.argmin(), np.intp) +assert_type(AR_f8.argmin(), np.intp) +assert_type(AR_f8.argmin(axis=0), Any) +assert_type(AR_f8.argmin(out=AR_i8), npt.NDArray[np.intp]) + +assert_type(f8.argsort(), npt.NDArray[Any]) +assert_type(AR_f8.argsort(), npt.NDArray[Any]) + +assert_type(f8.astype(np.int64).choose([()]), npt.NDArray[Any]) +assert_type(AR_f8.choose([0]), npt.NDArray[Any]) +assert_type(AR_f8.choose([0], out=B), SubClass) + +assert_type(f8.clip(1), npt.NDArray[Any]) +assert_type(AR_f8.clip(1), npt.NDArray[Any]) +assert_type(AR_f8.clip(None, 1), npt.NDArray[Any]) +assert_type(AR_f8.clip(1, out=B), SubClass) +assert_type(AR_f8.clip(None, 1, out=B), SubClass) + +assert_type(f8.compress([0]), npt.NDArray[Any]) +assert_type(AR_f8.compress([0]), npt.NDArray[Any]) +assert_type(AR_f8.compress([0], out=B), SubClass) + +assert_type(f8.conj(), np.float64) +assert_type(AR_f8.conj(), npt.NDArray[np.float64]) +assert_type(B.conj(), SubClass) + +assert_type(f8.conjugate(), np.float64) +assert_type(AR_f8.conjugate(), npt.NDArray[np.float64]) +assert_type(B.conjugate(), SubClass) + +assert_type(f8.cumprod(), npt.NDArray[Any]) +assert_type(AR_f8.cumprod(), npt.NDArray[Any]) +assert_type(AR_f8.cumprod(out=B), SubClass) + +assert_type(f8.cumsum(), npt.NDArray[Any]) +assert_type(AR_f8.cumsum(), npt.NDArray[Any]) +assert_type(AR_f8.cumsum(out=B), SubClass) + +assert_type(f8.max(), Any) +assert_type(AR_f8.max(), Any) +assert_type(AR_f8.max(axis=0), Any) +assert_type(AR_f8.max(keepdims=True), Any) +assert_type(AR_f8.max(out=B), SubClass) + +assert_type(f8.mean(), Any) +assert_type(AR_f8.mean(), Any) +assert_type(AR_f8.mean(axis=0), Any) +assert_type(AR_f8.mean(keepdims=True), Any) +assert_type(AR_f8.mean(out=B), SubClass) + +assert_type(f8.min(), Any) +assert_type(AR_f8.min(), Any) +assert_type(AR_f8.min(axis=0), Any) +assert_type(AR_f8.min(keepdims=True), Any) +assert_type(AR_f8.min(out=B), SubClass) + +assert_type(f8.prod(), Any) +assert_type(AR_f8.prod(), Any) +assert_type(AR_f8.prod(axis=0), Any) +assert_type(AR_f8.prod(keepdims=True), Any) +assert_type(AR_f8.prod(out=B), SubClass) + +assert_type(f8.round(), np.float64) +assert_type(AR_f8.round(), npt.NDArray[np.float64]) +assert_type(AR_f8.round(out=B), SubClass) + +assert_type(f8.repeat(1), np.ndarray[tuple[int], np.dtype[np.float64]]) +assert_type(f8.repeat(1, axis=0), np.ndarray[tuple[int], np.dtype[np.float64]]) +assert_type(AR_f8.repeat(1), np.ndarray[tuple[int], np.dtype[np.float64]]) +assert_type(AR_f8.repeat(1, axis=0), npt.NDArray[np.float64]) +assert_type(B.repeat(1), np.ndarray[tuple[int], np.dtype[np.object_]]) +assert_type(B.repeat(1, axis=0), npt.NDArray[np.object_]) + +assert_type(f8.std(), Any) +assert_type(AR_f8.std(), Any) +assert_type(AR_f8.std(axis=0), Any) +assert_type(AR_f8.std(keepdims=True), Any) +assert_type(AR_f8.std(out=B), SubClass) + +assert_type(f8.sum(), Any) +assert_type(AR_f8.sum(), Any) +assert_type(AR_f8.sum(axis=0), Any) +assert_type(AR_f8.sum(keepdims=True), Any) +assert_type(AR_f8.sum(out=B), SubClass) + +assert_type(f8.take(0), np.float64) +assert_type(AR_f8.take(0), np.float64) +assert_type(AR_f8.take([0]), npt.NDArray[np.float64]) +assert_type(AR_f8.take(0, out=B), SubClass) +assert_type(AR_f8.take([0], out=B), SubClass) + +assert_type(f8.var(), Any) +assert_type(AR_f8.var(), Any) +assert_type(AR_f8.var(axis=0), Any) +assert_type(AR_f8.var(keepdims=True), Any) +assert_type(AR_f8.var(out=B), SubClass) + +assert_type(AR_f8.argpartition([0]), npt.NDArray[np.intp]) + +assert_type(AR_f8.diagonal(), npt.NDArray[np.float64]) + +assert_type(AR_f8.dot(1), npt.NDArray[Any]) +assert_type(AR_f8.dot([1]), Any) +assert_type(AR_f8.dot(1, out=B), SubClass) + +assert_type(AR_f8.nonzero(), tuple[npt.NDArray[np.intp], ...]) + +assert_type(AR_f8.searchsorted(1), np.intp) +assert_type(AR_f8.searchsorted([1]), npt.NDArray[np.intp]) + +assert_type(AR_f8.trace(), Any) +assert_type(AR_f8.trace(out=B), SubClass) + +assert_type(AR_f8.item(), float) +assert_type(AR_U.item(), str) + +assert_type(AR_f8.ravel(), np.ndarray[tuple[int], np.dtype[np.float64]]) +assert_type(AR_U.ravel(), np.ndarray[tuple[int], np.dtype[np.str_]]) + +assert_type(AR_f8.flatten(), np.ndarray[tuple[int], np.dtype[np.float64]]) +assert_type(AR_U.flatten(), np.ndarray[tuple[int], np.dtype[np.str_]]) + +assert_type(AR_i8.reshape(None), npt.NDArray[np.int64]) +assert_type(AR_f8.reshape(-1), np.ndarray[tuple[int], np.dtype[np.float64]]) +assert_type(AR_c8.reshape(2, 3, 4, 5), np.ndarray[tuple[int, int, int, int], np.dtype[np.complex64]]) +assert_type(AR_m.reshape(()), np.ndarray[tuple[()], np.dtype[np.timedelta64]]) +assert_type(AR_U.reshape([]), np.ndarray[tuple[()], np.dtype[np.str_]]) +assert_type(AR_V.reshape((480, 720, 4)), np.ndarray[tuple[int, int, int], np.dtype[np.void]]) + +assert_type(int(AR_f8), int) +assert_type(int(AR_U), int) + +assert_type(float(AR_f8), float) +assert_type(float(AR_U), float) + +assert_type(complex(AR_f8), complex) + +assert_type(operator.index(AR_i8), int) + +assert_type(AR_f8.__array_wrap__(B), npt.NDArray[np.object_]) + +assert_type(AR_V[0], Any) +assert_type(AR_V[0, 0], Any) +assert_type(AR_V[AR_i8], npt.NDArray[np.void]) +assert_type(AR_V[AR_i8, AR_i8], npt.NDArray[np.void]) +assert_type(AR_V[AR_i8, None], npt.NDArray[np.void]) +assert_type(AR_V[0, ...], npt.NDArray[np.void]) +assert_type(AR_V[[0]], npt.NDArray[np.void]) +assert_type(AR_V[[0], [0]], npt.NDArray[np.void]) +assert_type(AR_V[:], npt.NDArray[np.void]) +assert_type(AR_V["a"], npt.NDArray[Any]) +assert_type(AR_V[["a", "b"]], npt.NDArray[np.void]) + +assert_type(AR_f8.dump("test_file"), None) +assert_type(AR_f8.dump(b"test_file"), None) +with open("test_file", "wb") as f: + assert_type(AR_f8.dump(f), None) + +assert_type(AR_f8.__array_finalize__(None), None) +assert_type(AR_f8.__array_finalize__(B), None) +assert_type(AR_f8.__array_finalize__(AR_f8), None) + +assert_type(f8.device, Literal["cpu"]) +assert_type(AR_f8.device, Literal["cpu"]) + +assert_type(f8.to_device("cpu"), np.float64) +assert_type(i8.to_device("cpu"), np.int64) +assert_type(AR_f8.to_device("cpu"), npt.NDArray[np.float64]) +assert_type(AR_i8.to_device("cpu"), npt.NDArray[np.int64]) +assert_type(AR_u1.to_device("cpu"), npt.NDArray[np.uint8]) +assert_type(AR_c8.to_device("cpu"), npt.NDArray[np.complex64]) +assert_type(AR_m.to_device("cpu"), npt.NDArray[np.timedelta64]) + +assert_type(f8.__array_namespace__(), ModuleType) +assert_type(AR_f8.__array_namespace__(), ModuleType) + +assert_type(iter(AR_f8), Iterator[Any]) # any-D +assert_type(iter(AR_f8_1d), Iterator[np.float64]) # 1-D +assert_type(iter(AR_f8_2d), Iterator[npt.NDArray[np.float64]]) # 2-D +assert_type(iter(AR_f8_3d), Iterator[npt.NDArray[np.float64]]) # 3-D diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi new file mode 100644 index 0000000..4447bb1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi @@ -0,0 +1,39 @@ +from typing import assert_type + +import numpy as np +import numpy.typing as npt + +nd: npt.NDArray[np.int64] + +# reshape +assert_type(nd.reshape(None), npt.NDArray[np.int64]) +assert_type(nd.reshape(4), np.ndarray[tuple[int], np.dtype[np.int64]]) +assert_type(nd.reshape((4,)), np.ndarray[tuple[int], np.dtype[np.int64]]) +assert_type(nd.reshape(2, 2), np.ndarray[tuple[int, int], np.dtype[np.int64]]) +assert_type(nd.reshape((2, 2)), np.ndarray[tuple[int, int], np.dtype[np.int64]]) + +assert_type(nd.reshape((2, 2), order="C"), np.ndarray[tuple[int, int], np.dtype[np.int64]]) +assert_type(nd.reshape(4, order="C"), np.ndarray[tuple[int], np.dtype[np.int64]]) + +# resize does not return a value + +# transpose +assert_type(nd.transpose(), npt.NDArray[np.int64]) +assert_type(nd.transpose(1, 0), npt.NDArray[np.int64]) +assert_type(nd.transpose((1, 0)), npt.NDArray[np.int64]) + +# swapaxes +assert_type(nd.swapaxes(0, 1), npt.NDArray[np.int64]) + +# flatten +assert_type(nd.flatten(), np.ndarray[tuple[int], np.dtype[np.int64]]) +assert_type(nd.flatten("C"), np.ndarray[tuple[int], np.dtype[np.int64]]) + +# ravel +assert_type(nd.ravel(), np.ndarray[tuple[int], np.dtype[np.int64]]) +assert_type(nd.ravel("C"), np.ndarray[tuple[int], np.dtype[np.int64]]) + +# squeeze +assert_type(nd.squeeze(), npt.NDArray[np.int64]) +assert_type(nd.squeeze(0), npt.NDArray[np.int64]) +assert_type(nd.squeeze((0, 2)), npt.NDArray[np.int64]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/nditer.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/nditer.pyi new file mode 100644 index 0000000..8965f3c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/nditer.pyi @@ -0,0 +1,49 @@ +from typing import Any, assert_type + +import numpy as np +import numpy.typing as npt + +nditer_obj: np.nditer + +assert_type(np.nditer([0, 1], flags=["c_index"]), np.nditer) +assert_type(np.nditer([0, 1], op_flags=[["readonly", "readonly"]]), np.nditer) +assert_type(np.nditer([0, 1], op_dtypes=np.int_), np.nditer) +assert_type(np.nditer([0, 1], order="C", casting="no"), np.nditer) + +assert_type(nditer_obj.dtypes, tuple[np.dtype, ...]) +assert_type(nditer_obj.finished, bool) +assert_type(nditer_obj.has_delayed_bufalloc, bool) +assert_type(nditer_obj.has_index, bool) +assert_type(nditer_obj.has_multi_index, bool) +assert_type(nditer_obj.index, int) +assert_type(nditer_obj.iterationneedsapi, bool) +assert_type(nditer_obj.iterindex, int) +assert_type(nditer_obj.iterrange, tuple[int, ...]) +assert_type(nditer_obj.itersize, int) +assert_type(nditer_obj.itviews, tuple[npt.NDArray[Any], ...]) +assert_type(nditer_obj.multi_index, tuple[int, ...]) +assert_type(nditer_obj.ndim, int) +assert_type(nditer_obj.nop, int) +assert_type(nditer_obj.operands, tuple[npt.NDArray[Any], ...]) +assert_type(nditer_obj.shape, tuple[int, ...]) +assert_type(nditer_obj.value, tuple[npt.NDArray[Any], ...]) + +assert_type(nditer_obj.close(), None) +assert_type(nditer_obj.copy(), np.nditer) +assert_type(nditer_obj.debug_print(), None) +assert_type(nditer_obj.enable_external_loop(), None) +assert_type(nditer_obj.iternext(), bool) +assert_type(nditer_obj.remove_axis(0), None) +assert_type(nditer_obj.remove_multi_index(), None) +assert_type(nditer_obj.reset(), None) + +assert_type(len(nditer_obj), int) +assert_type(iter(nditer_obj), np.nditer) +assert_type(next(nditer_obj), tuple[npt.NDArray[Any], ...]) +assert_type(nditer_obj.__copy__(), np.nditer) +with nditer_obj as f: + assert_type(f, np.nditer) +assert_type(nditer_obj[0], npt.NDArray[Any]) +assert_type(nditer_obj[:], tuple[npt.NDArray[Any], ...]) +nditer_obj[0] = 0 +nditer_obj[:] = [0, 1] diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/nested_sequence.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/nested_sequence.pyi new file mode 100644 index 0000000..b4f98b7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/nested_sequence.pyi @@ -0,0 +1,25 @@ +from collections.abc import Sequence +from typing import Any, assert_type + +from numpy._typing import _NestedSequence + +a: Sequence[int] +b: Sequence[Sequence[int]] +c: Sequence[Sequence[Sequence[int]]] +d: Sequence[Sequence[Sequence[Sequence[int]]]] +e: Sequence[bool] +f: tuple[int, ...] +g: list[int] +h: Sequence[Any] + +def func(a: _NestedSequence[int]) -> None: ... + +assert_type(func(a), None) +assert_type(func(b), None) +assert_type(func(c), None) +assert_type(func(d), None) +assert_type(func(e), None) +assert_type(func(f), None) +assert_type(func(g), None) +assert_type(func(h), None) +assert_type(func(range(15)), None) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/npyio.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/npyio.pyi new file mode 100644 index 0000000..40da72c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/npyio.pyi @@ -0,0 +1,83 @@ +import pathlib +import re +import zipfile +from collections.abc import Mapping +from typing import IO, Any, assert_type + +import numpy as np +import numpy.typing as npt +from numpy.lib._npyio_impl import BagObj + +str_path: str +pathlib_path: pathlib.Path +str_file: IO[str] +bytes_file: IO[bytes] + +npz_file: np.lib.npyio.NpzFile + +AR_i8: npt.NDArray[np.int64] +AR_LIKE_f8: list[float] + +class BytesWriter: + def write(self, data: bytes) -> None: ... + +class BytesReader: + def read(self, n: int = ...) -> bytes: ... + def seek(self, offset: int, whence: int = ...) -> int: ... + +bytes_writer: BytesWriter +bytes_reader: BytesReader + +assert_type(npz_file.zip, zipfile.ZipFile) +assert_type(npz_file.fid, IO[str] | None) +assert_type(npz_file.files, list[str]) +assert_type(npz_file.allow_pickle, bool) +assert_type(npz_file.pickle_kwargs, Mapping[str, Any] | None) +assert_type(npz_file.f, BagObj[np.lib.npyio.NpzFile]) +assert_type(npz_file["test"], npt.NDArray[Any]) +assert_type(len(npz_file), int) +with npz_file as f: + assert_type(f, np.lib.npyio.NpzFile) + +assert_type(np.load(bytes_file), Any) +assert_type(np.load(pathlib_path, allow_pickle=True), Any) +assert_type(np.load(str_path, encoding="bytes"), Any) +assert_type(np.load(bytes_reader), Any) + +assert_type(np.save(bytes_file, AR_LIKE_f8), None) +assert_type(np.save(pathlib_path, AR_i8, allow_pickle=True), None) +assert_type(np.save(str_path, AR_LIKE_f8), None) +assert_type(np.save(bytes_writer, AR_LIKE_f8), None) + +assert_type(np.savez(bytes_file, AR_LIKE_f8), None) +assert_type(np.savez(pathlib_path, ar1=AR_i8, ar2=AR_i8), None) +assert_type(np.savez(str_path, AR_LIKE_f8, ar1=AR_i8), None) +assert_type(np.savez(bytes_writer, AR_LIKE_f8, ar1=AR_i8), None) + +assert_type(np.savez_compressed(bytes_file, AR_LIKE_f8), None) +assert_type(np.savez_compressed(pathlib_path, ar1=AR_i8, ar2=AR_i8), None) +assert_type(np.savez_compressed(str_path, AR_LIKE_f8, ar1=AR_i8), None) +assert_type(np.savez_compressed(bytes_writer, AR_LIKE_f8, ar1=AR_i8), None) + +assert_type(np.loadtxt(bytes_file), npt.NDArray[np.float64]) +assert_type(np.loadtxt(pathlib_path, dtype=np.str_), npt.NDArray[np.str_]) +assert_type(np.loadtxt(str_path, dtype=str, skiprows=2), npt.NDArray[Any]) +assert_type(np.loadtxt(str_file, comments="test"), npt.NDArray[np.float64]) +assert_type(np.loadtxt(str_file, comments=None), npt.NDArray[np.float64]) +assert_type(np.loadtxt(str_path, delimiter="\n"), npt.NDArray[np.float64]) +assert_type(np.loadtxt(str_path, ndmin=2), npt.NDArray[np.float64]) +assert_type(np.loadtxt(["1", "2", "3"]), npt.NDArray[np.float64]) + +assert_type(np.fromregex(bytes_file, "test", np.float64), npt.NDArray[np.float64]) +assert_type(np.fromregex(str_file, b"test", dtype=float), npt.NDArray[Any]) +assert_type(np.fromregex(str_path, re.compile("test"), dtype=np.str_, encoding="utf8"), npt.NDArray[np.str_]) +assert_type(np.fromregex(pathlib_path, "test", np.float64), npt.NDArray[np.float64]) +assert_type(np.fromregex(bytes_reader, "test", np.float64), npt.NDArray[np.float64]) + +assert_type(np.genfromtxt(bytes_file), npt.NDArray[Any]) +assert_type(np.genfromtxt(pathlib_path, dtype=np.str_), npt.NDArray[np.str_]) +assert_type(np.genfromtxt(str_path, dtype=str, skip_header=2), npt.NDArray[Any]) +assert_type(np.genfromtxt(str_file, comments="test"), npt.NDArray[Any]) +assert_type(np.genfromtxt(str_path, delimiter="\n"), npt.NDArray[Any]) +assert_type(np.genfromtxt(str_path, ndmin=2), npt.NDArray[Any]) +assert_type(np.genfromtxt(["1", "2", "3"], ndmin=2), npt.NDArray[Any]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/numeric.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/numeric.pyi new file mode 100644 index 0000000..7c1ea89 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/numeric.pyi @@ -0,0 +1,134 @@ +""" +Tests for :mod:`_core.numeric`. + +Does not include tests which fall under ``array_constructors``. + +""" + +from typing import Any, assert_type + +import numpy as np +import numpy.typing as npt + +class SubClass(npt.NDArray[np.int64]): ... + +i8: np.int64 + +AR_b: npt.NDArray[np.bool] +AR_u8: npt.NDArray[np.uint64] +AR_i8: npt.NDArray[np.int64] +AR_f8: npt.NDArray[np.float64] +AR_c16: npt.NDArray[np.complex128] +AR_m: npt.NDArray[np.timedelta64] +AR_O: npt.NDArray[np.object_] + +B: list[int] +C: SubClass + +assert_type(np.count_nonzero(i8), np.intp) +assert_type(np.count_nonzero(AR_i8), np.intp) +assert_type(np.count_nonzero(B), np.intp) +assert_type(np.count_nonzero(AR_i8, keepdims=True), npt.NDArray[np.intp]) +assert_type(np.count_nonzero(AR_i8, axis=0), Any) + +assert_type(np.isfortran(i8), bool) +assert_type(np.isfortran(AR_i8), bool) + +assert_type(np.argwhere(i8), npt.NDArray[np.intp]) +assert_type(np.argwhere(AR_i8), npt.NDArray[np.intp]) + +assert_type(np.flatnonzero(i8), npt.NDArray[np.intp]) +assert_type(np.flatnonzero(AR_i8), npt.NDArray[np.intp]) + +assert_type(np.correlate(B, AR_i8, mode="valid"), npt.NDArray[np.signedinteger]) +assert_type(np.correlate(AR_i8, AR_i8, mode="same"), npt.NDArray[np.signedinteger]) +assert_type(np.correlate(AR_b, AR_b), npt.NDArray[np.bool]) +assert_type(np.correlate(AR_b, AR_u8), npt.NDArray[np.unsignedinteger]) +assert_type(np.correlate(AR_i8, AR_b), npt.NDArray[np.signedinteger]) +assert_type(np.correlate(AR_i8, AR_f8), npt.NDArray[np.floating]) +assert_type(np.correlate(AR_i8, AR_c16), npt.NDArray[np.complexfloating]) +assert_type(np.correlate(AR_i8, AR_m), npt.NDArray[np.timedelta64]) +assert_type(np.correlate(AR_O, AR_O), npt.NDArray[np.object_]) + +assert_type(np.convolve(B, AR_i8, mode="valid"), npt.NDArray[np.signedinteger]) +assert_type(np.convolve(AR_i8, AR_i8, mode="same"), npt.NDArray[np.signedinteger]) +assert_type(np.convolve(AR_b, AR_b), npt.NDArray[np.bool]) +assert_type(np.convolve(AR_b, AR_u8), npt.NDArray[np.unsignedinteger]) +assert_type(np.convolve(AR_i8, AR_b), npt.NDArray[np.signedinteger]) +assert_type(np.convolve(AR_i8, AR_f8), npt.NDArray[np.floating]) +assert_type(np.convolve(AR_i8, AR_c16), npt.NDArray[np.complexfloating]) +assert_type(np.convolve(AR_i8, AR_m), npt.NDArray[np.timedelta64]) +assert_type(np.convolve(AR_O, AR_O), npt.NDArray[np.object_]) + +assert_type(np.outer(i8, AR_i8), npt.NDArray[np.signedinteger]) +assert_type(np.outer(B, AR_i8), npt.NDArray[np.signedinteger]) +assert_type(np.outer(AR_i8, AR_i8), npt.NDArray[np.signedinteger]) +assert_type(np.outer(AR_i8, AR_i8, out=C), SubClass) +assert_type(np.outer(AR_b, AR_b), npt.NDArray[np.bool]) +assert_type(np.outer(AR_b, AR_u8), npt.NDArray[np.unsignedinteger]) +assert_type(np.outer(AR_i8, AR_b), npt.NDArray[np.signedinteger]) +assert_type(np.convolve(AR_i8, AR_f8), npt.NDArray[np.floating]) +assert_type(np.outer(AR_i8, AR_c16), npt.NDArray[np.complexfloating]) +assert_type(np.outer(AR_i8, AR_m), npt.NDArray[np.timedelta64]) +assert_type(np.outer(AR_O, AR_O), npt.NDArray[np.object_]) + +assert_type(np.tensordot(B, AR_i8), npt.NDArray[np.signedinteger]) +assert_type(np.tensordot(AR_i8, AR_i8), npt.NDArray[np.signedinteger]) +assert_type(np.tensordot(AR_i8, AR_i8, axes=0), npt.NDArray[np.signedinteger]) +assert_type(np.tensordot(AR_i8, AR_i8, axes=(0, 1)), npt.NDArray[np.signedinteger]) +assert_type(np.tensordot(AR_b, AR_b), npt.NDArray[np.bool]) +assert_type(np.tensordot(AR_b, AR_u8), npt.NDArray[np.unsignedinteger]) +assert_type(np.tensordot(AR_i8, AR_b), npt.NDArray[np.signedinteger]) +assert_type(np.tensordot(AR_i8, AR_f8), npt.NDArray[np.floating]) +assert_type(np.tensordot(AR_i8, AR_c16), npt.NDArray[np.complexfloating]) +assert_type(np.tensordot(AR_i8, AR_m), npt.NDArray[np.timedelta64]) +assert_type(np.tensordot(AR_O, AR_O), npt.NDArray[np.object_]) + +assert_type(np.isscalar(i8), bool) +assert_type(np.isscalar(AR_i8), bool) +assert_type(np.isscalar(B), bool) + +assert_type(np.roll(AR_i8, 1), npt.NDArray[np.int64]) +assert_type(np.roll(AR_i8, (1, 2)), npt.NDArray[np.int64]) +assert_type(np.roll(B, 1), npt.NDArray[Any]) + +assert_type(np.rollaxis(AR_i8, 0, 1), npt.NDArray[np.int64]) + +assert_type(np.moveaxis(AR_i8, 0, 1), npt.NDArray[np.int64]) +assert_type(np.moveaxis(AR_i8, (0, 1), (1, 2)), npt.NDArray[np.int64]) + +assert_type(np.cross(B, AR_i8), npt.NDArray[np.signedinteger]) +assert_type(np.cross(AR_i8, AR_i8), npt.NDArray[np.signedinteger]) +assert_type(np.cross(AR_b, AR_u8), npt.NDArray[np.unsignedinteger]) +assert_type(np.cross(AR_i8, AR_b), npt.NDArray[np.signedinteger]) +assert_type(np.cross(AR_i8, AR_f8), npt.NDArray[np.floating]) +assert_type(np.cross(AR_i8, AR_c16), npt.NDArray[np.complexfloating]) +assert_type(np.cross(AR_O, AR_O), npt.NDArray[np.object_]) + +assert_type(np.indices([0, 1, 2]), npt.NDArray[np.int_]) +assert_type(np.indices([0, 1, 2], sparse=True), tuple[npt.NDArray[np.int_], ...]) +assert_type(np.indices([0, 1, 2], dtype=np.float64), npt.NDArray[np.float64]) +assert_type(np.indices([0, 1, 2], sparse=True, dtype=np.float64), tuple[npt.NDArray[np.float64], ...]) +assert_type(np.indices([0, 1, 2], dtype=float), npt.NDArray[Any]) +assert_type(np.indices([0, 1, 2], sparse=True, dtype=float), tuple[npt.NDArray[Any], ...]) + +assert_type(np.binary_repr(1), str) + +assert_type(np.base_repr(1), str) + +assert_type(np.allclose(i8, AR_i8), bool) +assert_type(np.allclose(B, AR_i8), bool) +assert_type(np.allclose(AR_i8, AR_i8), bool) + +assert_type(np.isclose(i8, i8), np.bool) +assert_type(np.isclose(i8, AR_i8), npt.NDArray[np.bool]) +assert_type(np.isclose(B, AR_i8), npt.NDArray[np.bool]) +assert_type(np.isclose(AR_i8, AR_i8), npt.NDArray[np.bool]) + +assert_type(np.array_equal(i8, AR_i8), bool) +assert_type(np.array_equal(B, AR_i8), bool) +assert_type(np.array_equal(AR_i8, AR_i8), bool) + +assert_type(np.array_equiv(i8, AR_i8), bool) +assert_type(np.array_equiv(B, AR_i8), bool) +assert_type(np.array_equiv(AR_i8, AR_i8), bool) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/numerictypes.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/numerictypes.pyi new file mode 100644 index 0000000..4a3e02c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/numerictypes.pyi @@ -0,0 +1,51 @@ +from typing import Literal, assert_type + +import numpy as np + +assert_type( + np.ScalarType, + tuple[ + type[int], + type[float], + type[complex], + type[bool], + type[bytes], + type[str], + type[memoryview], + type[np.bool], + type[np.csingle], + type[np.cdouble], + type[np.clongdouble], + type[np.half], + type[np.single], + type[np.double], + type[np.longdouble], + type[np.byte], + type[np.short], + type[np.intc], + type[np.long], + type[np.longlong], + type[np.timedelta64], + type[np.datetime64], + type[np.object_], + type[np.bytes_], + type[np.str_], + type[np.ubyte], + type[np.ushort], + type[np.uintc], + type[np.ulong], + type[np.ulonglong], + type[np.void], + ], +) +assert_type(np.ScalarType[0], type[int]) +assert_type(np.ScalarType[3], type[bool]) +assert_type(np.ScalarType[8], type[np.csingle]) +assert_type(np.ScalarType[10], type[np.clongdouble]) +assert_type(np.bool_(object()), np.bool) + +assert_type(np.typecodes["Character"], Literal["c"]) +assert_type(np.typecodes["Complex"], Literal["FDG"]) +assert_type(np.typecodes["All"], Literal["?bhilqnpBHILQNPefdgFDGSUVOMm"]) + +assert_type(np.sctypeDict['uint8'], type[np.generic]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/polynomial_polybase.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/polynomial_polybase.pyi new file mode 100644 index 0000000..bb92703 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/polynomial_polybase.pyi @@ -0,0 +1,220 @@ +from collections.abc import Sequence +from decimal import Decimal +from fractions import Fraction +from typing import Any, LiteralString, TypeAlias, TypeVar, assert_type +from typing import Literal as L + +import numpy as np +import numpy.polynomial as npp +import numpy.typing as npt + +_Ar_x: TypeAlias = npt.NDArray[np.inexact | np.object_] +_Ar_f: TypeAlias = npt.NDArray[np.floating] +_Ar_c: TypeAlias = npt.NDArray[np.complexfloating] +_Ar_O: TypeAlias = npt.NDArray[np.object_] + +_Ar_x_n: TypeAlias = np.ndarray[tuple[int], np.dtype[np.inexact | np.object_]] +_Ar_f_n: TypeAlias = np.ndarray[tuple[int], np.dtype[np.floating]] +_Ar_c_n: TypeAlias = np.ndarray[tuple[int], np.dtype[np.complexfloating]] +_Ar_O_n: TypeAlias = np.ndarray[tuple[int], np.dtype[np.object_]] + +_Ar_x_2: TypeAlias = np.ndarray[tuple[L[2]], np.dtype[np.inexact | np.object_]] +_Ar_f_2: TypeAlias = np.ndarray[tuple[L[2]], np.dtype[np.floating]] +_Ar_c_2: TypeAlias = np.ndarray[tuple[L[2]], np.dtype[np.complexfloating]] +_Ar_O_2: TypeAlias = np.ndarray[tuple[L[2]], np.dtype[np.object_]] + +_ScalarT = TypeVar("_ScalarT", bound=np.generic) +_Ar_1d: TypeAlias = np.ndarray[tuple[int], np.dtype[_ScalarT]] + +_BasisName: TypeAlias = L["X"] + +SC_i: np.int_ +SC_i_co: int | np.int_ +SC_f: np.float64 +SC_f_co: float | np.float64 | np.int_ +SC_c: np.complex128 +SC_c_co: complex | np.complex128 +SC_O: Decimal + +AR_i: npt.NDArray[np.int_] +AR_f: npt.NDArray[np.float64] +AR_f_co: npt.NDArray[np.float64] | npt.NDArray[np.int_] +AR_c: npt.NDArray[np.complex128] +AR_c_co: npt.NDArray[np.complex128] | npt.NDArray[np.float64] | npt.NDArray[np.int_] +AR_O: npt.NDArray[np.object_] +AR_O_co: npt.NDArray[np.object_ | np.number] + +SQ_i: Sequence[int] +SQ_f: Sequence[float] +SQ_c: Sequence[complex] +SQ_O: Sequence[Decimal] + +PS_poly: npp.Polynomial +PS_cheb: npp.Chebyshev +PS_herm: npp.Hermite +PS_herme: npp.HermiteE +PS_lag: npp.Laguerre +PS_leg: npp.Legendre +PS_all: ( + npp.Polynomial + | npp.Chebyshev + | npp.Hermite + | npp.HermiteE + | npp.Laguerre + | npp.Legendre +) + +# static- and classmethods + +assert_type(type(PS_poly).basis_name, None) +assert_type(type(PS_cheb).basis_name, L['T']) +assert_type(type(PS_herm).basis_name, L['H']) +assert_type(type(PS_herme).basis_name, L['He']) +assert_type(type(PS_lag).basis_name, L['L']) +assert_type(type(PS_leg).basis_name, L['P']) + +assert_type(type(PS_all).__hash__, None) +assert_type(type(PS_all).__array_ufunc__, None) +assert_type(type(PS_all).maxpower, L[100]) + +assert_type(type(PS_poly).fromroots(SC_i), npp.Polynomial) +assert_type(type(PS_poly).fromroots(SQ_i), npp.Polynomial) +assert_type(type(PS_poly).fromroots(AR_i), npp.Polynomial) +assert_type(type(PS_cheb).fromroots(SC_f), npp.Chebyshev) +assert_type(type(PS_cheb).fromroots(SQ_f), npp.Chebyshev) +assert_type(type(PS_cheb).fromroots(AR_f_co), npp.Chebyshev) +assert_type(type(PS_herm).fromroots(SC_c), npp.Hermite) +assert_type(type(PS_herm).fromroots(SQ_c), npp.Hermite) +assert_type(type(PS_herm).fromroots(AR_c_co), npp.Hermite) +assert_type(type(PS_leg).fromroots(SC_O), npp.Legendre) +assert_type(type(PS_leg).fromroots(SQ_O), npp.Legendre) +assert_type(type(PS_leg).fromroots(AR_O_co), npp.Legendre) + +assert_type(type(PS_poly).identity(), npp.Polynomial) +assert_type(type(PS_cheb).identity(symbol='z'), npp.Chebyshev) + +assert_type(type(PS_lag).basis(SC_i), npp.Laguerre) +assert_type(type(PS_leg).basis(32, symbol='u'), npp.Legendre) + +assert_type(type(PS_herm).cast(PS_poly), npp.Hermite) +assert_type(type(PS_herme).cast(PS_leg), npp.HermiteE) + +# attributes / properties + +assert_type(PS_all.coef, _Ar_x_n) +assert_type(PS_all.domain, _Ar_x_2) +assert_type(PS_all.window, _Ar_x_2) +assert_type(PS_all.symbol, LiteralString) + +# instance methods + +assert_type(PS_all.has_samecoef(PS_all), bool) +assert_type(PS_all.has_samedomain(PS_all), bool) +assert_type(PS_all.has_samewindow(PS_all), bool) +assert_type(PS_all.has_sametype(PS_all), bool) +assert_type(PS_poly.has_sametype(PS_poly), bool) +assert_type(PS_poly.has_sametype(PS_leg), bool) +assert_type(PS_poly.has_sametype(NotADirectoryError), L[False]) + +assert_type(PS_poly.copy(), npp.Polynomial) +assert_type(PS_cheb.copy(), npp.Chebyshev) +assert_type(PS_herm.copy(), npp.Hermite) +assert_type(PS_herme.copy(), npp.HermiteE) +assert_type(PS_lag.copy(), npp.Laguerre) +assert_type(PS_leg.copy(), npp.Legendre) + +assert_type(PS_leg.cutdeg(), npp.Legendre) +assert_type(PS_leg.trim(), npp.Legendre) +assert_type(PS_leg.trim(tol=SC_f_co), npp.Legendre) +assert_type(PS_leg.truncate(SC_i_co), npp.Legendre) + +assert_type(PS_all.convert(None, npp.Chebyshev), npp.Chebyshev) +assert_type(PS_all.convert((0, 1), npp.Laguerre), npp.Laguerre) +assert_type(PS_all.convert([0, 1], npp.Hermite, [-1, 1]), npp.Hermite) + +assert_type(PS_all.degree(), int) +assert_type(PS_all.mapparms(), tuple[Any, Any]) + +assert_type(PS_poly.integ(), npp.Polynomial) +assert_type(PS_herme.integ(SC_i_co), npp.HermiteE) +assert_type(PS_lag.integ(SC_i_co, SC_f_co), npp.Laguerre) +assert_type(PS_poly.deriv(), npp.Polynomial) +assert_type(PS_herm.deriv(SC_i_co), npp.Hermite) + +assert_type(PS_poly.roots(), _Ar_x_n) + +assert_type( + PS_poly.linspace(), + tuple[_Ar_1d[np.float64 | np.complex128], _Ar_1d[np.float64 | np.complex128]], +) + +assert_type( + PS_poly.linspace(9), + tuple[_Ar_1d[np.float64 | np.complex128], _Ar_1d[np.float64 | np.complex128]], +) + +assert_type(PS_cheb.fit(AR_c_co, AR_c_co, SC_i_co), npp.Chebyshev) +assert_type(PS_leg.fit(AR_c_co, AR_c_co, AR_i), npp.Legendre) +assert_type(PS_herm.fit(AR_c_co, AR_c_co, SQ_i), npp.Hermite) +assert_type(PS_poly.fit(AR_c_co, SQ_c, SQ_i), npp.Polynomial) +assert_type(PS_lag.fit(SQ_c, SQ_c, SQ_i, full=False), npp.Laguerre) +assert_type( + PS_herme.fit(SQ_c, AR_c_co, SC_i_co, full=True), + tuple[npp.HermiteE, Sequence[np.inexact | np.int32]], +) + +# custom operations + +assert_type(PS_all.__hash__, None) +assert_type(PS_all.__array_ufunc__, None) + +assert_type(str(PS_all), str) +assert_type(repr(PS_all), str) +assert_type(format(PS_all), str) + +assert_type(len(PS_all), int) +assert_type(next(iter(PS_all)), np.inexact | object) + +assert_type(PS_all(SC_f_co), np.float64 | np.complex128) +assert_type(PS_all(SC_c_co), np.complex128) +assert_type(PS_all(Decimal()), np.float64 | np.complex128) +assert_type(PS_all(Fraction()), np.float64 | np.complex128) +assert_type(PS_poly(SQ_f), npt.NDArray[np.float64] | npt.NDArray[np.complex128] | npt.NDArray[np.object_]) +assert_type(PS_poly(SQ_c), npt.NDArray[np.complex128] | npt.NDArray[np.object_]) +assert_type(PS_poly(SQ_O), npt.NDArray[np.object_]) +assert_type(PS_poly(AR_f), npt.NDArray[np.float64] | npt.NDArray[np.complex128] | npt.NDArray[np.object_]) +assert_type(PS_poly(AR_c), npt.NDArray[np.complex128] | npt.NDArray[np.object_]) +assert_type(PS_poly(AR_O), npt.NDArray[np.object_]) +assert_type(PS_all(PS_poly), npp.Polynomial) + +assert_type(PS_poly == PS_poly, bool) +assert_type(PS_poly != PS_poly, bool) + +assert_type(-PS_poly, npp.Polynomial) +assert_type(+PS_poly, npp.Polynomial) + +assert_type(PS_poly + 5, npp.Polynomial) +assert_type(PS_poly - 5, npp.Polynomial) +assert_type(PS_poly * 5, npp.Polynomial) +assert_type(PS_poly / 5, npp.Polynomial) +assert_type(PS_poly // 5, npp.Polynomial) +assert_type(PS_poly % 5, npp.Polynomial) + +assert_type(PS_poly + PS_leg, npp.Polynomial) +assert_type(PS_poly - PS_leg, npp.Polynomial) +assert_type(PS_poly * PS_leg, npp.Polynomial) +assert_type(PS_poly / PS_leg, npp.Polynomial) +assert_type(PS_poly // PS_leg, npp.Polynomial) +assert_type(PS_poly % PS_leg, npp.Polynomial) + +assert_type(5 + PS_poly, npp.Polynomial) +assert_type(5 - PS_poly, npp.Polynomial) +assert_type(5 * PS_poly, npp.Polynomial) +assert_type(5 / PS_poly, npp.Polynomial) +assert_type(5 // PS_poly, npp.Polynomial) +assert_type(5 % PS_poly, npp.Polynomial) +assert_type(divmod(PS_poly, 5), tuple[npp.Polynomial, npp.Polynomial]) +assert_type(divmod(5, PS_poly), tuple[npp.Polynomial, npp.Polynomial]) + +assert_type(PS_poly**1, npp.Polynomial) +assert_type(PS_poly**1.0, npp.Polynomial) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/polynomial_polyutils.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/polynomial_polyutils.pyi new file mode 100644 index 0000000..45522e7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/polynomial_polyutils.pyi @@ -0,0 +1,219 @@ +from collections.abc import Sequence +from decimal import Decimal +from fractions import Fraction +from typing import Any, TypeAlias, assert_type +from typing import Literal as L + +import numpy as np +import numpy.polynomial.polyutils as pu +import numpy.typing as npt +from numpy.polynomial._polytypes import _Tuple2 + +_ArrFloat1D: TypeAlias = np.ndarray[tuple[int], np.dtype[np.floating]] +_ArrComplex1D: TypeAlias = np.ndarray[tuple[int], np.dtype[np.complexfloating]] +_ArrObject1D: TypeAlias = np.ndarray[tuple[int], np.dtype[np.object_]] + +_ArrFloat1D_2: TypeAlias = np.ndarray[tuple[L[2]], np.dtype[np.float64]] +_ArrComplex1D_2: TypeAlias = np.ndarray[tuple[L[2]], np.dtype[np.complex128]] +_ArrObject1D_2: TypeAlias = np.ndarray[tuple[L[2]], np.dtype[np.object_]] + +num_int: int +num_float: float +num_complex: complex +# will result in an `object_` dtype +num_object: Decimal | Fraction + +sct_int: np.int_ +sct_float: np.float64 +sct_complex: np.complex128 +sct_object: np.object_ # doesn't exist at runtime + +arr_int: npt.NDArray[np.int_] +arr_float: npt.NDArray[np.float64] +arr_complex: npt.NDArray[np.complex128] +arr_object: npt.NDArray[np.object_] + +seq_num_int: Sequence[int] +seq_num_float: Sequence[float] +seq_num_complex: Sequence[complex] +seq_num_object: Sequence[Decimal | Fraction] + +seq_sct_int: Sequence[np.int_] +seq_sct_float: Sequence[np.float64] +seq_sct_complex: Sequence[np.complex128] +seq_sct_object: Sequence[np.object_] + +seq_arr_int: Sequence[npt.NDArray[np.int_]] +seq_arr_float: Sequence[npt.NDArray[np.float64]] +seq_arr_complex: Sequence[npt.NDArray[np.complex128]] +seq_arr_object: Sequence[npt.NDArray[np.object_]] + +seq_seq_num_int: Sequence[Sequence[int]] +seq_seq_num_float: Sequence[Sequence[float]] +seq_seq_num_complex: Sequence[Sequence[complex]] +seq_seq_num_object: Sequence[Sequence[Decimal | Fraction]] + +seq_seq_sct_int: Sequence[Sequence[np.int_]] +seq_seq_sct_float: Sequence[Sequence[np.float64]] +seq_seq_sct_complex: Sequence[Sequence[np.complex128]] +seq_seq_sct_object: Sequence[Sequence[np.object_]] # doesn't exist at runtime + +# as_series + +assert_type(pu.as_series(arr_int), list[_ArrFloat1D]) +assert_type(pu.as_series(arr_float), list[_ArrFloat1D]) +assert_type(pu.as_series(arr_complex), list[_ArrComplex1D]) +assert_type(pu.as_series(arr_object), list[_ArrObject1D]) + +assert_type(pu.as_series(seq_num_int), list[_ArrFloat1D]) +assert_type(pu.as_series(seq_num_float), list[_ArrFloat1D]) +assert_type(pu.as_series(seq_num_complex), list[_ArrComplex1D]) +assert_type(pu.as_series(seq_num_object), list[_ArrObject1D]) + +assert_type(pu.as_series(seq_sct_int), list[_ArrFloat1D]) +assert_type(pu.as_series(seq_sct_float), list[_ArrFloat1D]) +assert_type(pu.as_series(seq_sct_complex), list[_ArrComplex1D]) +assert_type(pu.as_series(seq_sct_object), list[_ArrObject1D]) + +assert_type(pu.as_series(seq_arr_int), list[_ArrFloat1D]) +assert_type(pu.as_series(seq_arr_float), list[_ArrFloat1D]) +assert_type(pu.as_series(seq_arr_complex), list[_ArrComplex1D]) +assert_type(pu.as_series(seq_arr_object), list[_ArrObject1D]) + +assert_type(pu.as_series(seq_seq_num_int), list[_ArrFloat1D]) +assert_type(pu.as_series(seq_seq_num_float), list[_ArrFloat1D]) +assert_type(pu.as_series(seq_seq_num_complex), list[_ArrComplex1D]) +assert_type(pu.as_series(seq_seq_num_object), list[_ArrObject1D]) + +assert_type(pu.as_series(seq_seq_sct_int), list[_ArrFloat1D]) +assert_type(pu.as_series(seq_seq_sct_float), list[_ArrFloat1D]) +assert_type(pu.as_series(seq_seq_sct_complex), list[_ArrComplex1D]) +assert_type(pu.as_series(seq_seq_sct_object), list[_ArrObject1D]) + +# trimcoef + +assert_type(pu.trimcoef(num_int), _ArrFloat1D) +assert_type(pu.trimcoef(num_float), _ArrFloat1D) +assert_type(pu.trimcoef(num_complex), _ArrComplex1D) +assert_type(pu.trimcoef(num_object), _ArrObject1D) +assert_type(pu.trimcoef(num_object), _ArrObject1D) + +assert_type(pu.trimcoef(sct_int), _ArrFloat1D) +assert_type(pu.trimcoef(sct_float), _ArrFloat1D) +assert_type(pu.trimcoef(sct_complex), _ArrComplex1D) +assert_type(pu.trimcoef(sct_object), _ArrObject1D) + +assert_type(pu.trimcoef(arr_int), _ArrFloat1D) +assert_type(pu.trimcoef(arr_float), _ArrFloat1D) +assert_type(pu.trimcoef(arr_complex), _ArrComplex1D) +assert_type(pu.trimcoef(arr_object), _ArrObject1D) + +assert_type(pu.trimcoef(seq_num_int), _ArrFloat1D) +assert_type(pu.trimcoef(seq_num_float), _ArrFloat1D) +assert_type(pu.trimcoef(seq_num_complex), _ArrComplex1D) +assert_type(pu.trimcoef(seq_num_object), _ArrObject1D) + +assert_type(pu.trimcoef(seq_sct_int), _ArrFloat1D) +assert_type(pu.trimcoef(seq_sct_float), _ArrFloat1D) +assert_type(pu.trimcoef(seq_sct_complex), _ArrComplex1D) +assert_type(pu.trimcoef(seq_sct_object), _ArrObject1D) + +# getdomain + +assert_type(pu.getdomain(num_int), _ArrFloat1D_2) +assert_type(pu.getdomain(num_float), _ArrFloat1D_2) +assert_type(pu.getdomain(num_complex), _ArrComplex1D_2) +assert_type(pu.getdomain(num_object), _ArrObject1D_2) +assert_type(pu.getdomain(num_object), _ArrObject1D_2) + +assert_type(pu.getdomain(sct_int), _ArrFloat1D_2) +assert_type(pu.getdomain(sct_float), _ArrFloat1D_2) +assert_type(pu.getdomain(sct_complex), _ArrComplex1D_2) +assert_type(pu.getdomain(sct_object), _ArrObject1D_2) + +assert_type(pu.getdomain(arr_int), _ArrFloat1D_2) +assert_type(pu.getdomain(arr_float), _ArrFloat1D_2) +assert_type(pu.getdomain(arr_complex), _ArrComplex1D_2) +assert_type(pu.getdomain(arr_object), _ArrObject1D_2) + +assert_type(pu.getdomain(seq_num_int), _ArrFloat1D_2) +assert_type(pu.getdomain(seq_num_float), _ArrFloat1D_2) +assert_type(pu.getdomain(seq_num_complex), _ArrComplex1D_2) +assert_type(pu.getdomain(seq_num_object), _ArrObject1D_2) + +assert_type(pu.getdomain(seq_sct_int), _ArrFloat1D_2) +assert_type(pu.getdomain(seq_sct_float), _ArrFloat1D_2) +assert_type(pu.getdomain(seq_sct_complex), _ArrComplex1D_2) +assert_type(pu.getdomain(seq_sct_object), _ArrObject1D_2) + +# mapparms + +assert_type(pu.mapparms(seq_num_int, seq_num_int), _Tuple2[float]) +assert_type(pu.mapparms(seq_num_int, seq_num_float), _Tuple2[float]) +assert_type(pu.mapparms(seq_num_float, seq_num_float), _Tuple2[float]) +assert_type(pu.mapparms(seq_num_float, seq_num_complex), _Tuple2[complex]) +assert_type(pu.mapparms(seq_num_complex, seq_num_complex), _Tuple2[complex]) +assert_type(pu.mapparms(seq_num_complex, seq_num_object), _Tuple2[object]) +assert_type(pu.mapparms(seq_num_object, seq_num_object), _Tuple2[object]) + +assert_type(pu.mapparms(seq_sct_int, seq_sct_int), _Tuple2[np.floating]) +assert_type(pu.mapparms(seq_sct_int, seq_sct_float), _Tuple2[np.floating]) +assert_type(pu.mapparms(seq_sct_float, seq_sct_float), _Tuple2[float]) +assert_type(pu.mapparms(seq_sct_float, seq_sct_complex), _Tuple2[complex]) +assert_type(pu.mapparms(seq_sct_complex, seq_sct_complex), _Tuple2[complex]) +assert_type(pu.mapparms(seq_sct_complex, seq_sct_object), _Tuple2[object]) +assert_type(pu.mapparms(seq_sct_object, seq_sct_object), _Tuple2[object]) + +assert_type(pu.mapparms(arr_int, arr_int), _Tuple2[np.floating]) +assert_type(pu.mapparms(arr_int, arr_float), _Tuple2[np.floating]) +assert_type(pu.mapparms(arr_float, arr_float), _Tuple2[np.floating]) +assert_type(pu.mapparms(arr_float, arr_complex), _Tuple2[np.complexfloating]) +assert_type(pu.mapparms(arr_complex, arr_complex), _Tuple2[np.complexfloating]) +assert_type(pu.mapparms(arr_complex, arr_object), _Tuple2[object]) +assert_type(pu.mapparms(arr_object, arr_object), _Tuple2[object]) + +# mapdomain + +assert_type(pu.mapdomain(num_int, seq_num_int, seq_num_int), np.floating) +assert_type(pu.mapdomain(num_int, seq_num_int, seq_num_float), np.floating) +assert_type(pu.mapdomain(num_int, seq_num_float, seq_num_float), np.floating) +assert_type(pu.mapdomain(num_float, seq_num_float, seq_num_float), np.floating) +assert_type(pu.mapdomain(num_float, seq_num_float, seq_num_complex), np.complexfloating) +assert_type(pu.mapdomain(num_float, seq_num_complex, seq_num_complex), np.complexfloating) +assert_type(pu.mapdomain(num_complex, seq_num_complex, seq_num_complex), np.complexfloating) +assert_type(pu.mapdomain(num_complex, seq_num_complex, seq_num_object), object) +assert_type(pu.mapdomain(num_complex, seq_num_object, seq_num_object), object) +assert_type(pu.mapdomain(num_object, seq_num_object, seq_num_object), object) + +assert_type(pu.mapdomain(seq_num_int, seq_num_int, seq_num_int), _ArrFloat1D) +assert_type(pu.mapdomain(seq_num_int, seq_num_int, seq_num_float), _ArrFloat1D) +assert_type(pu.mapdomain(seq_num_int, seq_num_float, seq_num_float), _ArrFloat1D) +assert_type(pu.mapdomain(seq_num_float, seq_num_float, seq_num_float), _ArrFloat1D) +assert_type(pu.mapdomain(seq_num_float, seq_num_float, seq_num_complex), _ArrComplex1D) +assert_type(pu.mapdomain(seq_num_float, seq_num_complex, seq_num_complex), _ArrComplex1D) +assert_type(pu.mapdomain(seq_num_complex, seq_num_complex, seq_num_complex), _ArrComplex1D) +assert_type(pu.mapdomain(seq_num_complex, seq_num_complex, seq_num_object), _ArrObject1D) +assert_type(pu.mapdomain(seq_num_complex, seq_num_object, seq_num_object), _ArrObject1D) +assert_type(pu.mapdomain(seq_num_object, seq_num_object, seq_num_object), _ArrObject1D) + +assert_type(pu.mapdomain(seq_sct_int, seq_sct_int, seq_sct_int), _ArrFloat1D) +assert_type(pu.mapdomain(seq_sct_int, seq_sct_int, seq_sct_float), _ArrFloat1D) +assert_type(pu.mapdomain(seq_sct_int, seq_sct_float, seq_sct_float), _ArrFloat1D) +assert_type(pu.mapdomain(seq_sct_float, seq_sct_float, seq_sct_float), _ArrFloat1D) +assert_type(pu.mapdomain(seq_sct_float, seq_sct_float, seq_sct_complex), _ArrComplex1D) +assert_type(pu.mapdomain(seq_sct_float, seq_sct_complex, seq_sct_complex), _ArrComplex1D) +assert_type(pu.mapdomain(seq_sct_complex, seq_sct_complex, seq_sct_complex), _ArrComplex1D) +assert_type(pu.mapdomain(seq_sct_complex, seq_sct_complex, seq_sct_object), _ArrObject1D) +assert_type(pu.mapdomain(seq_sct_complex, seq_sct_object, seq_sct_object), _ArrObject1D) +assert_type(pu.mapdomain(seq_sct_object, seq_sct_object, seq_sct_object), _ArrObject1D) + +assert_type(pu.mapdomain(arr_int, arr_int, arr_int), _ArrFloat1D) +assert_type(pu.mapdomain(arr_int, arr_int, arr_float), _ArrFloat1D) +assert_type(pu.mapdomain(arr_int, arr_float, arr_float), _ArrFloat1D) +assert_type(pu.mapdomain(arr_float, arr_float, arr_float), _ArrFloat1D) +assert_type(pu.mapdomain(arr_float, arr_float, arr_complex), _ArrComplex1D) +assert_type(pu.mapdomain(arr_float, arr_complex, arr_complex), _ArrComplex1D) +assert_type(pu.mapdomain(arr_complex, arr_complex, arr_complex), _ArrComplex1D) +assert_type(pu.mapdomain(arr_complex, arr_complex, arr_object), _ArrObject1D) +assert_type(pu.mapdomain(arr_complex, arr_object, arr_object), _ArrObject1D) +assert_type(pu.mapdomain(arr_object, arr_object, arr_object), _ArrObject1D) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/polynomial_series.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/polynomial_series.pyi new file mode 100644 index 0000000..93f0799 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/polynomial_series.pyi @@ -0,0 +1,138 @@ +from collections.abc import Sequence +from typing import Any, TypeAlias, assert_type + +import numpy as np +import numpy.polynomial as npp +import numpy.typing as npt + +_ArrFloat1D: TypeAlias = np.ndarray[tuple[int], np.dtype[np.floating]] +_ArrFloat1D64: TypeAlias = np.ndarray[tuple[int], np.dtype[np.float64]] +_ArrComplex1D: TypeAlias = np.ndarray[tuple[int], np.dtype[np.complexfloating]] +_ArrComplex1D128: TypeAlias = np.ndarray[tuple[int], np.dtype[np.complex128]] +_ArrObject1D: TypeAlias = np.ndarray[tuple[int], np.dtype[np.object_]] + +AR_b: npt.NDArray[np.bool] +AR_u4: npt.NDArray[np.uint32] +AR_i8: npt.NDArray[np.int64] +AR_f8: npt.NDArray[np.float64] +AR_c16: npt.NDArray[np.complex128] +AR_O: npt.NDArray[np.object_] + +PS_poly: npp.Polynomial +PS_cheb: npp.Chebyshev + +assert_type(npp.polynomial.polyroots(AR_f8), _ArrFloat1D64) +assert_type(npp.polynomial.polyroots(AR_c16), _ArrComplex1D128) +assert_type(npp.polynomial.polyroots(AR_O), _ArrObject1D) + +assert_type(npp.polynomial.polyfromroots(AR_f8), _ArrFloat1D) +assert_type(npp.polynomial.polyfromroots(AR_c16), _ArrComplex1D) +assert_type(npp.polynomial.polyfromroots(AR_O), _ArrObject1D) + +# assert_type(npp.polynomial.polyadd(AR_b, AR_b), NoReturn) +assert_type(npp.polynomial.polyadd(AR_u4, AR_b), _ArrFloat1D) +assert_type(npp.polynomial.polyadd(AR_i8, AR_i8), _ArrFloat1D) +assert_type(npp.polynomial.polyadd(AR_f8, AR_i8), _ArrFloat1D) +assert_type(npp.polynomial.polyadd(AR_i8, AR_c16), _ArrComplex1D) +assert_type(npp.polynomial.polyadd(AR_O, AR_O), _ArrObject1D) + +assert_type(npp.polynomial.polymulx(AR_u4), _ArrFloat1D) +assert_type(npp.polynomial.polymulx(AR_i8), _ArrFloat1D) +assert_type(npp.polynomial.polymulx(AR_f8), _ArrFloat1D) +assert_type(npp.polynomial.polymulx(AR_c16), _ArrComplex1D) +assert_type(npp.polynomial.polymulx(AR_O), _ArrObject1D) + +assert_type(npp.polynomial.polypow(AR_u4, 2), _ArrFloat1D) +assert_type(npp.polynomial.polypow(AR_i8, 2), _ArrFloat1D) +assert_type(npp.polynomial.polypow(AR_f8, 2), _ArrFloat1D) +assert_type(npp.polynomial.polypow(AR_c16, 2), _ArrComplex1D) +assert_type(npp.polynomial.polypow(AR_O, 2), _ArrObject1D) + +# assert_type(npp.polynomial.polyder(PS_poly), npt.NDArray[np.object_]) +assert_type(npp.polynomial.polyder(AR_f8), npt.NDArray[np.floating]) +assert_type(npp.polynomial.polyder(AR_c16), npt.NDArray[np.complexfloating]) +assert_type(npp.polynomial.polyder(AR_O, m=2), npt.NDArray[np.object_]) + +# assert_type(npp.polynomial.polyint(PS_poly), npt.NDArray[np.object_]) +assert_type(npp.polynomial.polyint(AR_f8), npt.NDArray[np.floating]) +assert_type(npp.polynomial.polyint(AR_f8, k=AR_c16), npt.NDArray[np.complexfloating]) +assert_type(npp.polynomial.polyint(AR_O, m=2), npt.NDArray[np.object_]) + +assert_type(npp.polynomial.polyval(AR_b, AR_b), npt.NDArray[np.floating]) +assert_type(npp.polynomial.polyval(AR_u4, AR_b), npt.NDArray[np.floating]) +assert_type(npp.polynomial.polyval(AR_i8, AR_i8), npt.NDArray[np.floating]) +assert_type(npp.polynomial.polyval(AR_f8, AR_i8), npt.NDArray[np.floating]) +assert_type(npp.polynomial.polyval(AR_i8, AR_c16), npt.NDArray[np.complexfloating]) +assert_type(npp.polynomial.polyval(AR_O, AR_O), npt.NDArray[np.object_]) + +assert_type(npp.polynomial.polyval2d(AR_b, AR_b, AR_b), npt.NDArray[np.floating]) +assert_type(npp.polynomial.polyval2d(AR_u4, AR_u4, AR_b), npt.NDArray[np.floating]) +assert_type(npp.polynomial.polyval2d(AR_i8, AR_i8, AR_i8), npt.NDArray[np.floating]) +assert_type(npp.polynomial.polyval2d(AR_f8, AR_f8, AR_i8), npt.NDArray[np.floating]) +assert_type(npp.polynomial.polyval2d(AR_i8, AR_i8, AR_c16), npt.NDArray[np.complexfloating]) +assert_type(npp.polynomial.polyval2d(AR_O, AR_O, AR_O), npt.NDArray[np.object_]) + +assert_type(npp.polynomial.polyval3d(AR_b, AR_b, AR_b, AR_b), npt.NDArray[np.floating]) +assert_type(npp.polynomial.polyval3d(AR_u4, AR_u4, AR_u4, AR_b), npt.NDArray[np.floating]) +assert_type(npp.polynomial.polyval3d(AR_i8, AR_i8, AR_i8, AR_i8), npt.NDArray[np.floating]) +assert_type(npp.polynomial.polyval3d(AR_f8, AR_f8, AR_f8, AR_i8), npt.NDArray[np.floating]) +assert_type(npp.polynomial.polyval3d(AR_i8, AR_i8, AR_i8, AR_c16), npt.NDArray[np.complexfloating]) +assert_type(npp.polynomial.polyval3d(AR_O, AR_O, AR_O, AR_O), npt.NDArray[np.object_]) + +assert_type(npp.polynomial.polyvalfromroots(AR_b, AR_b), npt.NDArray[np.floating]) +assert_type(npp.polynomial.polyvalfromroots(AR_u4, AR_b), npt.NDArray[np.floating]) +assert_type(npp.polynomial.polyvalfromroots(AR_i8, AR_i8), npt.NDArray[np.floating]) +assert_type(npp.polynomial.polyvalfromroots(AR_f8, AR_i8), npt.NDArray[np.floating]) +assert_type(npp.polynomial.polyvalfromroots(AR_i8, AR_c16), npt.NDArray[np.complexfloating]) +assert_type(npp.polynomial.polyvalfromroots(AR_O, AR_O), npt.NDArray[np.object_]) + +assert_type(npp.polynomial.polyvander(AR_f8, 3), npt.NDArray[np.floating]) +assert_type(npp.polynomial.polyvander(AR_c16, 3), npt.NDArray[np.complexfloating]) +assert_type(npp.polynomial.polyvander(AR_O, 3), npt.NDArray[np.object_]) + +assert_type(npp.polynomial.polyvander2d(AR_f8, AR_f8, [4, 2]), npt.NDArray[np.floating]) +assert_type(npp.polynomial.polyvander2d(AR_c16, AR_c16, [4, 2]), npt.NDArray[np.complexfloating]) +assert_type(npp.polynomial.polyvander2d(AR_O, AR_O, [4, 2]), npt.NDArray[np.object_]) + +assert_type(npp.polynomial.polyvander3d(AR_f8, AR_f8, AR_f8, [4, 3, 2]), npt.NDArray[np.floating]) +assert_type(npp.polynomial.polyvander3d(AR_c16, AR_c16, AR_c16, [4, 3, 2]), npt.NDArray[np.complexfloating]) +assert_type(npp.polynomial.polyvander3d(AR_O, AR_O, AR_O, [4, 3, 2]), npt.NDArray[np.object_]) + +assert_type( + npp.polynomial.polyfit(AR_f8, AR_f8, 2), + npt.NDArray[np.floating], +) +assert_type( + npp.polynomial.polyfit(AR_f8, AR_i8, 1, full=True), + tuple[npt.NDArray[np.floating], Sequence[np.inexact | np.int32]], +) +assert_type( + npp.polynomial.polyfit(AR_c16, AR_f8, 2), + npt.NDArray[np.complexfloating], +) +assert_type( + npp.polynomial.polyfit(AR_f8, AR_c16, 1, full=True)[0], + npt.NDArray[np.complexfloating], +) + +assert_type(npp.chebyshev.chebgauss(2), tuple[_ArrFloat1D64, _ArrFloat1D64]) + +assert_type(npp.chebyshev.chebweight(AR_f8), npt.NDArray[np.float64]) +assert_type(npp.chebyshev.chebweight(AR_c16), npt.NDArray[np.complex128]) +assert_type(npp.chebyshev.chebweight(AR_O), npt.NDArray[np.object_]) + +assert_type(npp.chebyshev.poly2cheb(AR_f8), _ArrFloat1D) +assert_type(npp.chebyshev.poly2cheb(AR_c16), _ArrComplex1D) +assert_type(npp.chebyshev.poly2cheb(AR_O), _ArrObject1D) + +assert_type(npp.chebyshev.cheb2poly(AR_f8), _ArrFloat1D) +assert_type(npp.chebyshev.cheb2poly(AR_c16), _ArrComplex1D) +assert_type(npp.chebyshev.cheb2poly(AR_O), _ArrObject1D) + +assert_type(npp.chebyshev.chebpts1(6), _ArrFloat1D64) +assert_type(npp.chebyshev.chebpts2(6), _ArrFloat1D64) + +assert_type( + npp.chebyshev.chebinterpolate(np.tanh, 3), + npt.NDArray[np.float64 | np.complex128 | np.object_], +) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/random.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/random.pyi new file mode 100644 index 0000000..e188eb0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/random.pyi @@ -0,0 +1,1546 @@ +import threading +from collections.abc import Sequence +from typing import Any, assert_type + +import numpy as np +import numpy.typing as npt +from numpy.random._generator import Generator +from numpy.random._mt19937 import MT19937 +from numpy.random._pcg64 import PCG64 +from numpy.random._philox import Philox +from numpy.random._sfc64 import SFC64 +from numpy.random.bit_generator import SeedlessSeedSequence, SeedSequence + +def_rng = np.random.default_rng() +seed_seq = np.random.SeedSequence() +mt19937 = np.random.MT19937() +pcg64 = np.random.PCG64() +sfc64 = np.random.SFC64() +philox = np.random.Philox() +seedless_seq = SeedlessSeedSequence() + +assert_type(def_rng, Generator) +assert_type(mt19937, MT19937) +assert_type(pcg64, PCG64) +assert_type(sfc64, SFC64) +assert_type(philox, Philox) +assert_type(seed_seq, SeedSequence) +assert_type(seedless_seq, SeedlessSeedSequence) + +mt19937_jumped = mt19937.jumped() +mt19937_jumped3 = mt19937.jumped(3) +mt19937_raw = mt19937.random_raw() +mt19937_raw_arr = mt19937.random_raw(5) + +assert_type(mt19937_jumped, MT19937) +assert_type(mt19937_jumped3, MT19937) +assert_type(mt19937_raw, int) +assert_type(mt19937_raw_arr, npt.NDArray[np.uint64]) +assert_type(mt19937.lock, threading.Lock) + +pcg64_jumped = pcg64.jumped() +pcg64_jumped3 = pcg64.jumped(3) +pcg64_adv = pcg64.advance(3) +pcg64_raw = pcg64.random_raw() +pcg64_raw_arr = pcg64.random_raw(5) + +assert_type(pcg64_jumped, PCG64) +assert_type(pcg64_jumped3, PCG64) +assert_type(pcg64_adv, PCG64) +assert_type(pcg64_raw, int) +assert_type(pcg64_raw_arr, npt.NDArray[np.uint64]) +assert_type(pcg64.lock, threading.Lock) + +philox_jumped = philox.jumped() +philox_jumped3 = philox.jumped(3) +philox_adv = philox.advance(3) +philox_raw = philox.random_raw() +philox_raw_arr = philox.random_raw(5) + +assert_type(philox_jumped, Philox) +assert_type(philox_jumped3, Philox) +assert_type(philox_adv, Philox) +assert_type(philox_raw, int) +assert_type(philox_raw_arr, npt.NDArray[np.uint64]) +assert_type(philox.lock, threading.Lock) + +sfc64_raw = sfc64.random_raw() +sfc64_raw_arr = sfc64.random_raw(5) + +assert_type(sfc64_raw, int) +assert_type(sfc64_raw_arr, npt.NDArray[np.uint64]) +assert_type(sfc64.lock, threading.Lock) + +assert_type(seed_seq.pool, npt.NDArray[np.uint32]) +assert_type(seed_seq.entropy, int | Sequence[int] | None) +assert_type(seed_seq.spawn(1), list[np.random.SeedSequence]) +assert_type(seed_seq.generate_state(8, "uint32"), npt.NDArray[np.uint32 | np.uint64]) +assert_type(seed_seq.generate_state(8, "uint64"), npt.NDArray[np.uint32 | np.uint64]) + +def_gen: np.random.Generator = np.random.default_rng() + +D_arr_0p1: npt.NDArray[np.float64] = np.array([0.1]) +D_arr_0p5: npt.NDArray[np.float64] = np.array([0.5]) +D_arr_0p9: npt.NDArray[np.float64] = np.array([0.9]) +D_arr_1p5: npt.NDArray[np.float64] = np.array([1.5]) +I_arr_10: npt.NDArray[np.int_] = np.array([10], dtype=np.int_) +I_arr_20: npt.NDArray[np.int_] = np.array([20], dtype=np.int_) +D_arr_like_0p1: list[float] = [0.1] +D_arr_like_0p5: list[float] = [0.5] +D_arr_like_0p9: list[float] = [0.9] +D_arr_like_1p5: list[float] = [1.5] +I_arr_like_10: list[int] = [10] +I_arr_like_20: list[int] = [20] +D_2D_like: list[list[float]] = [[1, 2], [2, 3], [3, 4], [4, 5.1]] +D_2D: npt.NDArray[np.float64] = np.array(D_2D_like) +S_out: npt.NDArray[np.float32] = np.empty(1, dtype=np.float32) +D_out: npt.NDArray[np.float64] = np.empty(1) + +assert_type(def_gen.standard_normal(), float) +assert_type(def_gen.standard_normal(dtype=np.float32), float) +assert_type(def_gen.standard_normal(dtype="float32"), float) +assert_type(def_gen.standard_normal(dtype="double"), float) +assert_type(def_gen.standard_normal(dtype=np.float64), float) +assert_type(def_gen.standard_normal(size=None), float) +assert_type(def_gen.standard_normal(size=1), npt.NDArray[np.float64]) +assert_type(def_gen.standard_normal(size=1, dtype=np.float32), npt.NDArray[np.float32]) +assert_type(def_gen.standard_normal(size=1, dtype="f4"), npt.NDArray[np.float32]) +assert_type(def_gen.standard_normal(size=1, dtype="float32", out=S_out), npt.NDArray[np.float32]) +assert_type(def_gen.standard_normal(dtype=np.float32, out=S_out), npt.NDArray[np.float32]) +assert_type(def_gen.standard_normal(size=1, dtype=np.float64), npt.NDArray[np.float64]) +assert_type(def_gen.standard_normal(size=1, dtype="float64"), npt.NDArray[np.float64]) +assert_type(def_gen.standard_normal(size=1, dtype="f8"), npt.NDArray[np.float64]) +assert_type(def_gen.standard_normal(out=D_out), npt.NDArray[np.float64]) +assert_type(def_gen.standard_normal(size=1, dtype="float64"), npt.NDArray[np.float64]) +assert_type(def_gen.standard_normal(size=1, dtype="float64", out=D_out), npt.NDArray[np.float64]) + +assert_type(def_gen.random(), float) +assert_type(def_gen.random(dtype=np.float32), float) +assert_type(def_gen.random(dtype="float32"), float) +assert_type(def_gen.random(dtype="double"), float) +assert_type(def_gen.random(dtype=np.float64), float) +assert_type(def_gen.random(size=None), float) +assert_type(def_gen.random(size=1), npt.NDArray[np.float64]) +assert_type(def_gen.random(size=1, dtype=np.float32), npt.NDArray[np.float32]) +assert_type(def_gen.random(size=1, dtype="f4"), npt.NDArray[np.float32]) +assert_type(def_gen.random(size=1, dtype="float32", out=S_out), npt.NDArray[np.float32]) +assert_type(def_gen.random(dtype=np.float32, out=S_out), npt.NDArray[np.float32]) +assert_type(def_gen.random(size=1, dtype=np.float64), npt.NDArray[np.float64]) +assert_type(def_gen.random(size=1, dtype="float64"), npt.NDArray[np.float64]) +assert_type(def_gen.random(size=1, dtype="f8"), npt.NDArray[np.float64]) +assert_type(def_gen.random(out=D_out), npt.NDArray[np.float64]) +assert_type(def_gen.random(size=1, dtype="float64"), npt.NDArray[np.float64]) +assert_type(def_gen.random(size=1, dtype="float64", out=D_out), npt.NDArray[np.float64]) + +assert_type(def_gen.standard_cauchy(), float) +assert_type(def_gen.standard_cauchy(size=None), float) +assert_type(def_gen.standard_cauchy(size=1), npt.NDArray[np.float64]) + +assert_type(def_gen.standard_exponential(), float) +assert_type(def_gen.standard_exponential(method="inv"), float) +assert_type(def_gen.standard_exponential(dtype=np.float32), float) +assert_type(def_gen.standard_exponential(dtype="float32"), float) +assert_type(def_gen.standard_exponential(dtype="double"), float) +assert_type(def_gen.standard_exponential(dtype=np.float64), float) +assert_type(def_gen.standard_exponential(size=None), float) +assert_type(def_gen.standard_exponential(size=None, method="inv"), float) +assert_type(def_gen.standard_exponential(size=1, method="inv"), npt.NDArray[np.float64]) +assert_type(def_gen.standard_exponential(size=1, dtype=np.float32), npt.NDArray[np.float32]) +assert_type(def_gen.standard_exponential(size=1, dtype="f4", method="inv"), npt.NDArray[np.float32]) +assert_type(def_gen.standard_exponential(size=1, dtype="float32", out=S_out), npt.NDArray[np.float32]) +assert_type(def_gen.standard_exponential(dtype=np.float32, out=S_out), npt.NDArray[np.float32]) +assert_type(def_gen.standard_exponential(size=1, dtype=np.float64, method="inv"), npt.NDArray[np.float64]) +assert_type(def_gen.standard_exponential(size=1, dtype="float64"), npt.NDArray[np.float64]) +assert_type(def_gen.standard_exponential(size=1, dtype="f8"), npt.NDArray[np.float64]) +assert_type(def_gen.standard_exponential(out=D_out), npt.NDArray[np.float64]) +assert_type(def_gen.standard_exponential(size=1, dtype="float64"), npt.NDArray[np.float64]) +assert_type(def_gen.standard_exponential(size=1, dtype="float64", out=D_out), npt.NDArray[np.float64]) + +assert_type(def_gen.zipf(1.5), int) +assert_type(def_gen.zipf(1.5, size=None), int) +assert_type(def_gen.zipf(1.5, size=1), npt.NDArray[np.int64]) +assert_type(def_gen.zipf(D_arr_1p5), npt.NDArray[np.int64]) +assert_type(def_gen.zipf(D_arr_1p5, size=1), npt.NDArray[np.int64]) +assert_type(def_gen.zipf(D_arr_like_1p5), npt.NDArray[np.int64]) +assert_type(def_gen.zipf(D_arr_like_1p5, size=1), npt.NDArray[np.int64]) + +assert_type(def_gen.weibull(0.5), float) +assert_type(def_gen.weibull(0.5, size=None), float) +assert_type(def_gen.weibull(0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.weibull(D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.weibull(D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.weibull(D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.weibull(D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(def_gen.standard_t(0.5), float) +assert_type(def_gen.standard_t(0.5, size=None), float) +assert_type(def_gen.standard_t(0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.standard_t(D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.standard_t(D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.standard_t(D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.standard_t(D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(def_gen.poisson(0.5), int) +assert_type(def_gen.poisson(0.5, size=None), int) +assert_type(def_gen.poisson(0.5, size=1), npt.NDArray[np.int64]) +assert_type(def_gen.poisson(D_arr_0p5), npt.NDArray[np.int64]) +assert_type(def_gen.poisson(D_arr_0p5, size=1), npt.NDArray[np.int64]) +assert_type(def_gen.poisson(D_arr_like_0p5), npt.NDArray[np.int64]) +assert_type(def_gen.poisson(D_arr_like_0p5, size=1), npt.NDArray[np.int64]) + +assert_type(def_gen.power(0.5), float) +assert_type(def_gen.power(0.5, size=None), float) +assert_type(def_gen.power(0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.power(D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.power(D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.power(D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.power(D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(def_gen.pareto(0.5), float) +assert_type(def_gen.pareto(0.5, size=None), float) +assert_type(def_gen.pareto(0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.pareto(D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.pareto(D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.pareto(D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.pareto(D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(def_gen.chisquare(0.5), float) +assert_type(def_gen.chisquare(0.5, size=None), float) +assert_type(def_gen.chisquare(0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.chisquare(D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.chisquare(D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.chisquare(D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.chisquare(D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(def_gen.exponential(0.5), float) +assert_type(def_gen.exponential(0.5, size=None), float) +assert_type(def_gen.exponential(0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.exponential(D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.exponential(D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.exponential(D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.exponential(D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(def_gen.geometric(0.5), int) +assert_type(def_gen.geometric(0.5, size=None), int) +assert_type(def_gen.geometric(0.5, size=1), npt.NDArray[np.int64]) +assert_type(def_gen.geometric(D_arr_0p5), npt.NDArray[np.int64]) +assert_type(def_gen.geometric(D_arr_0p5, size=1), npt.NDArray[np.int64]) +assert_type(def_gen.geometric(D_arr_like_0p5), npt.NDArray[np.int64]) +assert_type(def_gen.geometric(D_arr_like_0p5, size=1), npt.NDArray[np.int64]) + +assert_type(def_gen.logseries(0.5), int) +assert_type(def_gen.logseries(0.5, size=None), int) +assert_type(def_gen.logseries(0.5, size=1), npt.NDArray[np.int64]) +assert_type(def_gen.logseries(D_arr_0p5), npt.NDArray[np.int64]) +assert_type(def_gen.logseries(D_arr_0p5, size=1), npt.NDArray[np.int64]) +assert_type(def_gen.logseries(D_arr_like_0p5), npt.NDArray[np.int64]) +assert_type(def_gen.logseries(D_arr_like_0p5, size=1), npt.NDArray[np.int64]) + +assert_type(def_gen.rayleigh(0.5), float) +assert_type(def_gen.rayleigh(0.5, size=None), float) +assert_type(def_gen.rayleigh(0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.rayleigh(D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.rayleigh(D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.rayleigh(D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.rayleigh(D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(def_gen.standard_gamma(0.5), float) +assert_type(def_gen.standard_gamma(0.5, size=None), float) +assert_type(def_gen.standard_gamma(0.5, dtype="float32"), float) +assert_type(def_gen.standard_gamma(0.5, size=None, dtype="float32"), float) +assert_type(def_gen.standard_gamma(0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.standard_gamma(D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.standard_gamma(D_arr_0p5, dtype="f4"), npt.NDArray[np.float32]) +assert_type(def_gen.standard_gamma(0.5, size=1, dtype="float32", out=S_out), npt.NDArray[np.float32]) +assert_type(def_gen.standard_gamma(D_arr_0p5, dtype=np.float32, out=S_out), npt.NDArray[np.float32]) +assert_type(def_gen.standard_gamma(D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.standard_gamma(D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.standard_gamma(D_arr_like_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.standard_gamma(0.5, out=D_out), npt.NDArray[np.float64]) +assert_type(def_gen.standard_gamma(D_arr_like_0p5, out=D_out), npt.NDArray[np.float64]) +assert_type(def_gen.standard_gamma(D_arr_like_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.standard_gamma(D_arr_like_0p5, size=1, out=D_out, dtype=np.float64), npt.NDArray[np.float64]) + +assert_type(def_gen.vonmises(0.5, 0.5), float) +assert_type(def_gen.vonmises(0.5, 0.5, size=None), float) +assert_type(def_gen.vonmises(0.5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.vonmises(D_arr_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(def_gen.vonmises(0.5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.vonmises(D_arr_0p5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.vonmises(0.5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.vonmises(D_arr_like_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(def_gen.vonmises(0.5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.vonmises(D_arr_0p5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.vonmises(D_arr_like_0p5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.vonmises(D_arr_0p5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.vonmises(D_arr_like_0p5, D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(def_gen.wald(0.5, 0.5), float) +assert_type(def_gen.wald(0.5, 0.5, size=None), float) +assert_type(def_gen.wald(0.5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.wald(D_arr_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(def_gen.wald(0.5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.wald(D_arr_0p5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.wald(0.5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.wald(D_arr_like_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(def_gen.wald(0.5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.wald(D_arr_0p5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.wald(D_arr_like_0p5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.wald(D_arr_0p5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.wald(D_arr_like_0p5, D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(def_gen.uniform(0.5, 0.5), float) +assert_type(def_gen.uniform(0.5, 0.5, size=None), float) +assert_type(def_gen.uniform(0.5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.uniform(D_arr_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(def_gen.uniform(0.5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.uniform(D_arr_0p5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.uniform(0.5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.uniform(D_arr_like_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(def_gen.uniform(0.5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.uniform(D_arr_0p5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.uniform(D_arr_like_0p5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.uniform(D_arr_0p5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.uniform(D_arr_like_0p5, D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(def_gen.beta(0.5, 0.5), float) +assert_type(def_gen.beta(0.5, 0.5, size=None), float) +assert_type(def_gen.beta(0.5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.beta(D_arr_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(def_gen.beta(0.5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.beta(D_arr_0p5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.beta(0.5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.beta(D_arr_like_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(def_gen.beta(0.5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.beta(D_arr_0p5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.beta(D_arr_like_0p5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.beta(D_arr_0p5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.beta(D_arr_like_0p5, D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(def_gen.f(0.5, 0.5), float) +assert_type(def_gen.f(0.5, 0.5, size=None), float) +assert_type(def_gen.f(0.5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.f(D_arr_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(def_gen.f(0.5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.f(D_arr_0p5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.f(0.5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.f(D_arr_like_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(def_gen.f(0.5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.f(D_arr_0p5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.f(D_arr_like_0p5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.f(D_arr_0p5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.f(D_arr_like_0p5, D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(def_gen.gamma(0.5, 0.5), float) +assert_type(def_gen.gamma(0.5, 0.5, size=None), float) +assert_type(def_gen.gamma(0.5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.gamma(D_arr_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(def_gen.gamma(0.5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.gamma(D_arr_0p5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.gamma(0.5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.gamma(D_arr_like_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(def_gen.gamma(0.5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.gamma(D_arr_0p5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.gamma(D_arr_like_0p5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.gamma(D_arr_0p5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.gamma(D_arr_like_0p5, D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(def_gen.gumbel(0.5, 0.5), float) +assert_type(def_gen.gumbel(0.5, 0.5, size=None), float) +assert_type(def_gen.gumbel(0.5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.gumbel(D_arr_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(def_gen.gumbel(0.5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.gumbel(D_arr_0p5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.gumbel(0.5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.gumbel(D_arr_like_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(def_gen.gumbel(0.5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.gumbel(D_arr_0p5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.gumbel(D_arr_like_0p5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.gumbel(D_arr_0p5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.gumbel(D_arr_like_0p5, D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(def_gen.laplace(0.5, 0.5), float) +assert_type(def_gen.laplace(0.5, 0.5, size=None), float) +assert_type(def_gen.laplace(0.5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.laplace(D_arr_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(def_gen.laplace(0.5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.laplace(D_arr_0p5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.laplace(0.5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.laplace(D_arr_like_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(def_gen.laplace(0.5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.laplace(D_arr_0p5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.laplace(D_arr_like_0p5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.laplace(D_arr_0p5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.laplace(D_arr_like_0p5, D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(def_gen.logistic(0.5, 0.5), float) +assert_type(def_gen.logistic(0.5, 0.5, size=None), float) +assert_type(def_gen.logistic(0.5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.logistic(D_arr_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(def_gen.logistic(0.5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.logistic(D_arr_0p5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.logistic(0.5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.logistic(D_arr_like_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(def_gen.logistic(0.5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.logistic(D_arr_0p5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.logistic(D_arr_like_0p5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.logistic(D_arr_0p5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.logistic(D_arr_like_0p5, D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(def_gen.lognormal(0.5, 0.5), float) +assert_type(def_gen.lognormal(0.5, 0.5, size=None), float) +assert_type(def_gen.lognormal(0.5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.lognormal(D_arr_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(def_gen.lognormal(0.5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.lognormal(D_arr_0p5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.lognormal(0.5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.lognormal(D_arr_like_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(def_gen.lognormal(0.5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.lognormal(D_arr_0p5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.lognormal(D_arr_like_0p5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.lognormal(D_arr_0p5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.lognormal(D_arr_like_0p5, D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(def_gen.noncentral_chisquare(0.5, 0.5), float) +assert_type(def_gen.noncentral_chisquare(0.5, 0.5, size=None), float) +assert_type(def_gen.noncentral_chisquare(0.5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.noncentral_chisquare(D_arr_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(def_gen.noncentral_chisquare(0.5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.noncentral_chisquare(D_arr_0p5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.noncentral_chisquare(0.5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.noncentral_chisquare(D_arr_like_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(def_gen.noncentral_chisquare(0.5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.noncentral_chisquare(D_arr_0p5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.noncentral_chisquare(D_arr_0p5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(def_gen.normal(0.5, 0.5), float) +assert_type(def_gen.normal(0.5, 0.5, size=None), float) +assert_type(def_gen.normal(0.5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.normal(D_arr_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(def_gen.normal(0.5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.normal(D_arr_0p5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.normal(0.5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.normal(D_arr_like_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(def_gen.normal(0.5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.normal(D_arr_0p5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.normal(D_arr_like_0p5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(def_gen.normal(D_arr_0p5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.normal(D_arr_like_0p5, D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(def_gen.triangular(0.1, 0.5, 0.9), float) +assert_type(def_gen.triangular(0.1, 0.5, 0.9, size=None), float) +assert_type(def_gen.triangular(0.1, 0.5, 0.9, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.triangular(D_arr_0p1, 0.5, 0.9), npt.NDArray[np.float64]) +assert_type(def_gen.triangular(0.1, D_arr_0p5, 0.9), npt.NDArray[np.float64]) +assert_type(def_gen.triangular(D_arr_0p1, 0.5, D_arr_like_0p9, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.triangular(0.1, D_arr_0p5, 0.9, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.triangular(D_arr_like_0p1, 0.5, D_arr_0p9), npt.NDArray[np.float64]) +assert_type(def_gen.triangular(0.5, D_arr_like_0p5, 0.9), npt.NDArray[np.float64]) +assert_type(def_gen.triangular(D_arr_0p1, D_arr_0p5, 0.9), npt.NDArray[np.float64]) +assert_type(def_gen.triangular(D_arr_like_0p1, D_arr_like_0p5, 0.9), npt.NDArray[np.float64]) +assert_type(def_gen.triangular(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.triangular(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1), npt.NDArray[np.float64]) + +assert_type(def_gen.noncentral_f(0.1, 0.5, 0.9), float) +assert_type(def_gen.noncentral_f(0.1, 0.5, 0.9, size=None), float) +assert_type(def_gen.noncentral_f(0.1, 0.5, 0.9, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.noncentral_f(D_arr_0p1, 0.5, 0.9), npt.NDArray[np.float64]) +assert_type(def_gen.noncentral_f(0.1, D_arr_0p5, 0.9), npt.NDArray[np.float64]) +assert_type(def_gen.noncentral_f(D_arr_0p1, 0.5, D_arr_like_0p9, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.noncentral_f(0.1, D_arr_0p5, 0.9, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.noncentral_f(D_arr_like_0p1, 0.5, D_arr_0p9), npt.NDArray[np.float64]) +assert_type(def_gen.noncentral_f(0.5, D_arr_like_0p5, 0.9), npt.NDArray[np.float64]) +assert_type(def_gen.noncentral_f(D_arr_0p1, D_arr_0p5, 0.9), npt.NDArray[np.float64]) +assert_type(def_gen.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, 0.9), npt.NDArray[np.float64]) +assert_type(def_gen.noncentral_f(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1), npt.NDArray[np.float64]) +assert_type(def_gen.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1), npt.NDArray[np.float64]) + +assert_type(def_gen.binomial(10, 0.5), int) +assert_type(def_gen.binomial(10, 0.5, size=None), int) +assert_type(def_gen.binomial(10, 0.5, size=1), npt.NDArray[np.int64]) +assert_type(def_gen.binomial(I_arr_10, 0.5), npt.NDArray[np.int64]) +assert_type(def_gen.binomial(10, D_arr_0p5), npt.NDArray[np.int64]) +assert_type(def_gen.binomial(I_arr_10, 0.5, size=1), npt.NDArray[np.int64]) +assert_type(def_gen.binomial(10, D_arr_0p5, size=1), npt.NDArray[np.int64]) +assert_type(def_gen.binomial(I_arr_like_10, 0.5), npt.NDArray[np.int64]) +assert_type(def_gen.binomial(10, D_arr_like_0p5), npt.NDArray[np.int64]) +assert_type(def_gen.binomial(I_arr_10, D_arr_0p5), npt.NDArray[np.int64]) +assert_type(def_gen.binomial(I_arr_like_10, D_arr_like_0p5), npt.NDArray[np.int64]) +assert_type(def_gen.binomial(I_arr_10, D_arr_0p5, size=1), npt.NDArray[np.int64]) +assert_type(def_gen.binomial(I_arr_like_10, D_arr_like_0p5, size=1), npt.NDArray[np.int64]) + +assert_type(def_gen.negative_binomial(10, 0.5), int) +assert_type(def_gen.negative_binomial(10, 0.5, size=None), int) +assert_type(def_gen.negative_binomial(10, 0.5, size=1), npt.NDArray[np.int64]) +assert_type(def_gen.negative_binomial(I_arr_10, 0.5), npt.NDArray[np.int64]) +assert_type(def_gen.negative_binomial(10, D_arr_0p5), npt.NDArray[np.int64]) +assert_type(def_gen.negative_binomial(I_arr_10, 0.5, size=1), npt.NDArray[np.int64]) +assert_type(def_gen.negative_binomial(10, D_arr_0p5, size=1), npt.NDArray[np.int64]) +assert_type(def_gen.negative_binomial(I_arr_like_10, 0.5), npt.NDArray[np.int64]) +assert_type(def_gen.negative_binomial(10, D_arr_like_0p5), npt.NDArray[np.int64]) +assert_type(def_gen.negative_binomial(I_arr_10, D_arr_0p5), npt.NDArray[np.int64]) +assert_type(def_gen.negative_binomial(I_arr_like_10, D_arr_like_0p5), npt.NDArray[np.int64]) +assert_type(def_gen.negative_binomial(I_arr_10, D_arr_0p5, size=1), npt.NDArray[np.int64]) +assert_type(def_gen.negative_binomial(I_arr_like_10, D_arr_like_0p5, size=1), npt.NDArray[np.int64]) + +assert_type(def_gen.hypergeometric(20, 20, 10), int) +assert_type(def_gen.hypergeometric(20, 20, 10, size=None), int) +assert_type(def_gen.hypergeometric(20, 20, 10, size=1), npt.NDArray[np.int64]) +assert_type(def_gen.hypergeometric(I_arr_20, 20, 10), npt.NDArray[np.int64]) +assert_type(def_gen.hypergeometric(20, I_arr_20, 10), npt.NDArray[np.int64]) +assert_type(def_gen.hypergeometric(I_arr_20, 20, I_arr_like_10, size=1), npt.NDArray[np.int64]) +assert_type(def_gen.hypergeometric(20, I_arr_20, 10, size=1), npt.NDArray[np.int64]) +assert_type(def_gen.hypergeometric(I_arr_like_20, 20, I_arr_10), npt.NDArray[np.int64]) +assert_type(def_gen.hypergeometric(20, I_arr_like_20, 10), npt.NDArray[np.int64]) +assert_type(def_gen.hypergeometric(I_arr_20, I_arr_20, 10), npt.NDArray[np.int64]) +assert_type(def_gen.hypergeometric(I_arr_like_20, I_arr_like_20, 10), npt.NDArray[np.int64]) +assert_type(def_gen.hypergeometric(I_arr_20, I_arr_20, I_arr_10, size=1), npt.NDArray[np.int64]) +assert_type(def_gen.hypergeometric(I_arr_like_20, I_arr_like_20, I_arr_like_10, size=1), npt.NDArray[np.int64]) + +I_int64_100: npt.NDArray[np.int64] = np.array([100], dtype=np.int64) + +assert_type(def_gen.integers(0, 100), np.int64) +assert_type(def_gen.integers(100), np.int64) +assert_type(def_gen.integers([100]), npt.NDArray[np.int64]) +assert_type(def_gen.integers(0, [100]), npt.NDArray[np.int64]) + +I_bool_low: npt.NDArray[np.bool] = np.array([0], dtype=np.bool) +I_bool_low_like: list[int] = [0] +I_bool_high_open: npt.NDArray[np.bool] = np.array([1], dtype=np.bool) +I_bool_high_closed: npt.NDArray[np.bool] = np.array([1], dtype=np.bool) + +assert_type(def_gen.integers(2, dtype=bool), bool) +assert_type(def_gen.integers(0, 2, dtype=bool), bool) +assert_type(def_gen.integers(1, dtype=bool, endpoint=True), bool) +assert_type(def_gen.integers(0, 1, dtype=bool, endpoint=True), bool) +assert_type(def_gen.integers(I_bool_low_like, 1, dtype=bool, endpoint=True), npt.NDArray[np.bool]) +assert_type(def_gen.integers(I_bool_high_open, dtype=bool), npt.NDArray[np.bool]) +assert_type(def_gen.integers(I_bool_low, I_bool_high_open, dtype=bool), npt.NDArray[np.bool]) +assert_type(def_gen.integers(0, I_bool_high_open, dtype=bool), npt.NDArray[np.bool]) +assert_type(def_gen.integers(I_bool_high_closed, dtype=bool, endpoint=True), npt.NDArray[np.bool]) +assert_type(def_gen.integers(I_bool_low, I_bool_high_closed, dtype=bool, endpoint=True), npt.NDArray[np.bool]) +assert_type(def_gen.integers(0, I_bool_high_closed, dtype=bool, endpoint=True), npt.NDArray[np.bool]) + +assert_type(def_gen.integers(2, dtype=np.bool), np.bool) +assert_type(def_gen.integers(0, 2, dtype=np.bool), np.bool) +assert_type(def_gen.integers(1, dtype=np.bool, endpoint=True), np.bool) +assert_type(def_gen.integers(0, 1, dtype=np.bool, endpoint=True), np.bool) +assert_type(def_gen.integers(I_bool_low_like, 1, dtype=np.bool, endpoint=True), npt.NDArray[np.bool]) +assert_type(def_gen.integers(I_bool_high_open, dtype=np.bool), npt.NDArray[np.bool]) +assert_type(def_gen.integers(I_bool_low, I_bool_high_open, dtype=np.bool), npt.NDArray[np.bool]) +assert_type(def_gen.integers(0, I_bool_high_open, dtype=np.bool), npt.NDArray[np.bool]) +assert_type(def_gen.integers(I_bool_high_closed, dtype=np.bool, endpoint=True), npt.NDArray[np.bool]) +assert_type(def_gen.integers(I_bool_low, I_bool_high_closed, dtype=np.bool, endpoint=True), npt.NDArray[np.bool]) +assert_type(def_gen.integers(0, I_bool_high_closed, dtype=np.bool, endpoint=True), npt.NDArray[np.bool]) + +I_u1_low: npt.NDArray[np.uint8] = np.array([0], dtype=np.uint8) +I_u1_low_like: list[int] = [0] +I_u1_high_open: npt.NDArray[np.uint8] = np.array([255], dtype=np.uint8) +I_u1_high_closed: npt.NDArray[np.uint8] = np.array([255], dtype=np.uint8) + +assert_type(def_gen.integers(256, dtype="u1"), np.uint8) +assert_type(def_gen.integers(0, 256, dtype="u1"), np.uint8) +assert_type(def_gen.integers(255, dtype="u1", endpoint=True), np.uint8) +assert_type(def_gen.integers(0, 255, dtype="u1", endpoint=True), np.uint8) +assert_type(def_gen.integers(I_u1_low_like, 255, dtype="u1", endpoint=True), npt.NDArray[np.uint8]) +assert_type(def_gen.integers(I_u1_high_open, dtype="u1"), npt.NDArray[np.uint8]) +assert_type(def_gen.integers(I_u1_low, I_u1_high_open, dtype="u1"), npt.NDArray[np.uint8]) +assert_type(def_gen.integers(0, I_u1_high_open, dtype="u1"), npt.NDArray[np.uint8]) +assert_type(def_gen.integers(I_u1_high_closed, dtype="u1", endpoint=True), npt.NDArray[np.uint8]) +assert_type(def_gen.integers(I_u1_low, I_u1_high_closed, dtype="u1", endpoint=True), npt.NDArray[np.uint8]) +assert_type(def_gen.integers(0, I_u1_high_closed, dtype="u1", endpoint=True), npt.NDArray[np.uint8]) + +assert_type(def_gen.integers(256, dtype="uint8"), np.uint8) +assert_type(def_gen.integers(0, 256, dtype="uint8"), np.uint8) +assert_type(def_gen.integers(255, dtype="uint8", endpoint=True), np.uint8) +assert_type(def_gen.integers(0, 255, dtype="uint8", endpoint=True), np.uint8) +assert_type(def_gen.integers(I_u1_low_like, 255, dtype="uint8", endpoint=True), npt.NDArray[np.uint8]) +assert_type(def_gen.integers(I_u1_high_open, dtype="uint8"), npt.NDArray[np.uint8]) +assert_type(def_gen.integers(I_u1_low, I_u1_high_open, dtype="uint8"), npt.NDArray[np.uint8]) +assert_type(def_gen.integers(0, I_u1_high_open, dtype="uint8"), npt.NDArray[np.uint8]) +assert_type(def_gen.integers(I_u1_high_closed, dtype="uint8", endpoint=True), npt.NDArray[np.uint8]) +assert_type(def_gen.integers(I_u1_low, I_u1_high_closed, dtype="uint8", endpoint=True), npt.NDArray[np.uint8]) +assert_type(def_gen.integers(0, I_u1_high_closed, dtype="uint8", endpoint=True), npt.NDArray[np.uint8]) + +assert_type(def_gen.integers(256, dtype=np.uint8), np.uint8) +assert_type(def_gen.integers(0, 256, dtype=np.uint8), np.uint8) +assert_type(def_gen.integers(255, dtype=np.uint8, endpoint=True), np.uint8) +assert_type(def_gen.integers(0, 255, dtype=np.uint8, endpoint=True), np.uint8) +assert_type(def_gen.integers(I_u1_low_like, 255, dtype=np.uint8, endpoint=True), npt.NDArray[np.uint8]) +assert_type(def_gen.integers(I_u1_high_open, dtype=np.uint8), npt.NDArray[np.uint8]) +assert_type(def_gen.integers(I_u1_low, I_u1_high_open, dtype=np.uint8), npt.NDArray[np.uint8]) +assert_type(def_gen.integers(0, I_u1_high_open, dtype=np.uint8), npt.NDArray[np.uint8]) +assert_type(def_gen.integers(I_u1_high_closed, dtype=np.uint8, endpoint=True), npt.NDArray[np.uint8]) +assert_type(def_gen.integers(I_u1_low, I_u1_high_closed, dtype=np.uint8, endpoint=True), npt.NDArray[np.uint8]) +assert_type(def_gen.integers(0, I_u1_high_closed, dtype=np.uint8, endpoint=True), npt.NDArray[np.uint8]) + +I_u2_low: npt.NDArray[np.uint16] = np.array([0], dtype=np.uint16) +I_u2_low_like: list[int] = [0] +I_u2_high_open: npt.NDArray[np.uint16] = np.array([65535], dtype=np.uint16) +I_u2_high_closed: npt.NDArray[np.uint16] = np.array([65535], dtype=np.uint16) + +assert_type(def_gen.integers(65536, dtype="u2"), np.uint16) +assert_type(def_gen.integers(0, 65536, dtype="u2"), np.uint16) +assert_type(def_gen.integers(65535, dtype="u2", endpoint=True), np.uint16) +assert_type(def_gen.integers(0, 65535, dtype="u2", endpoint=True), np.uint16) +assert_type(def_gen.integers(I_u2_low_like, 65535, dtype="u2", endpoint=True), npt.NDArray[np.uint16]) +assert_type(def_gen.integers(I_u2_high_open, dtype="u2"), npt.NDArray[np.uint16]) +assert_type(def_gen.integers(I_u2_low, I_u2_high_open, dtype="u2"), npt.NDArray[np.uint16]) +assert_type(def_gen.integers(0, I_u2_high_open, dtype="u2"), npt.NDArray[np.uint16]) +assert_type(def_gen.integers(I_u2_high_closed, dtype="u2", endpoint=True), npt.NDArray[np.uint16]) +assert_type(def_gen.integers(I_u2_low, I_u2_high_closed, dtype="u2", endpoint=True), npt.NDArray[np.uint16]) +assert_type(def_gen.integers(0, I_u2_high_closed, dtype="u2", endpoint=True), npt.NDArray[np.uint16]) + +assert_type(def_gen.integers(65536, dtype="uint16"), np.uint16) +assert_type(def_gen.integers(0, 65536, dtype="uint16"), np.uint16) +assert_type(def_gen.integers(65535, dtype="uint16", endpoint=True), np.uint16) +assert_type(def_gen.integers(0, 65535, dtype="uint16", endpoint=True), np.uint16) +assert_type(def_gen.integers(I_u2_low_like, 65535, dtype="uint16", endpoint=True), npt.NDArray[np.uint16]) +assert_type(def_gen.integers(I_u2_high_open, dtype="uint16"), npt.NDArray[np.uint16]) +assert_type(def_gen.integers(I_u2_low, I_u2_high_open, dtype="uint16"), npt.NDArray[np.uint16]) +assert_type(def_gen.integers(0, I_u2_high_open, dtype="uint16"), npt.NDArray[np.uint16]) +assert_type(def_gen.integers(I_u2_high_closed, dtype="uint16", endpoint=True), npt.NDArray[np.uint16]) +assert_type(def_gen.integers(I_u2_low, I_u2_high_closed, dtype="uint16", endpoint=True), npt.NDArray[np.uint16]) +assert_type(def_gen.integers(0, I_u2_high_closed, dtype="uint16", endpoint=True), npt.NDArray[np.uint16]) + +assert_type(def_gen.integers(65536, dtype=np.uint16), np.uint16) +assert_type(def_gen.integers(0, 65536, dtype=np.uint16), np.uint16) +assert_type(def_gen.integers(65535, dtype=np.uint16, endpoint=True), np.uint16) +assert_type(def_gen.integers(0, 65535, dtype=np.uint16, endpoint=True), np.uint16) +assert_type(def_gen.integers(I_u2_low_like, 65535, dtype=np.uint16, endpoint=True), npt.NDArray[np.uint16]) +assert_type(def_gen.integers(I_u2_high_open, dtype=np.uint16), npt.NDArray[np.uint16]) +assert_type(def_gen.integers(I_u2_low, I_u2_high_open, dtype=np.uint16), npt.NDArray[np.uint16]) +assert_type(def_gen.integers(0, I_u2_high_open, dtype=np.uint16), npt.NDArray[np.uint16]) +assert_type(def_gen.integers(I_u2_high_closed, dtype=np.uint16, endpoint=True), npt.NDArray[np.uint16]) +assert_type(def_gen.integers(I_u2_low, I_u2_high_closed, dtype=np.uint16, endpoint=True), npt.NDArray[np.uint16]) +assert_type(def_gen.integers(0, I_u2_high_closed, dtype=np.uint16, endpoint=True), npt.NDArray[np.uint16]) + +I_u4_low: npt.NDArray[np.uint32] = np.array([0], dtype=np.uint32) +I_u4_low_like: list[int] = [0] +I_u4_high_open: npt.NDArray[np.uint32] = np.array([4294967295], dtype=np.uint32) +I_u4_high_closed: npt.NDArray[np.uint32] = np.array([4294967295], dtype=np.uint32) + +assert_type(def_gen.integers(4294967296, dtype=np.int_), np.int_) +assert_type(def_gen.integers(0, 4294967296, dtype=np.int_), np.int_) +assert_type(def_gen.integers(4294967295, dtype=np.int_, endpoint=True), np.int_) +assert_type(def_gen.integers(0, 4294967295, dtype=np.int_, endpoint=True), np.int_) +assert_type(def_gen.integers(I_u4_low_like, 4294967295, dtype=np.int_, endpoint=True), npt.NDArray[np.int_]) +assert_type(def_gen.integers(I_u4_high_open, dtype=np.int_), npt.NDArray[np.int_]) +assert_type(def_gen.integers(I_u4_low, I_u4_high_open, dtype=np.int_), npt.NDArray[np.int_]) +assert_type(def_gen.integers(0, I_u4_high_open, dtype=np.int_), npt.NDArray[np.int_]) +assert_type(def_gen.integers(I_u4_high_closed, dtype=np.int_, endpoint=True), npt.NDArray[np.int_]) +assert_type(def_gen.integers(I_u4_low, I_u4_high_closed, dtype=np.int_, endpoint=True), npt.NDArray[np.int_]) +assert_type(def_gen.integers(0, I_u4_high_closed, dtype=np.int_, endpoint=True), npt.NDArray[np.int_]) + +assert_type(def_gen.integers(4294967296, dtype="u4"), np.uint32) +assert_type(def_gen.integers(0, 4294967296, dtype="u4"), np.uint32) +assert_type(def_gen.integers(4294967295, dtype="u4", endpoint=True), np.uint32) +assert_type(def_gen.integers(0, 4294967295, dtype="u4", endpoint=True), np.uint32) +assert_type(def_gen.integers(I_u4_low_like, 4294967295, dtype="u4", endpoint=True), npt.NDArray[np.uint32]) +assert_type(def_gen.integers(I_u4_high_open, dtype="u4"), npt.NDArray[np.uint32]) +assert_type(def_gen.integers(I_u4_low, I_u4_high_open, dtype="u4"), npt.NDArray[np.uint32]) +assert_type(def_gen.integers(0, I_u4_high_open, dtype="u4"), npt.NDArray[np.uint32]) +assert_type(def_gen.integers(I_u4_high_closed, dtype="u4", endpoint=True), npt.NDArray[np.uint32]) +assert_type(def_gen.integers(I_u4_low, I_u4_high_closed, dtype="u4", endpoint=True), npt.NDArray[np.uint32]) +assert_type(def_gen.integers(0, I_u4_high_closed, dtype="u4", endpoint=True), npt.NDArray[np.uint32]) + +assert_type(def_gen.integers(4294967296, dtype="uint32"), np.uint32) +assert_type(def_gen.integers(0, 4294967296, dtype="uint32"), np.uint32) +assert_type(def_gen.integers(4294967295, dtype="uint32", endpoint=True), np.uint32) +assert_type(def_gen.integers(0, 4294967295, dtype="uint32", endpoint=True), np.uint32) +assert_type(def_gen.integers(I_u4_low_like, 4294967295, dtype="uint32", endpoint=True), npt.NDArray[np.uint32]) +assert_type(def_gen.integers(I_u4_high_open, dtype="uint32"), npt.NDArray[np.uint32]) +assert_type(def_gen.integers(I_u4_low, I_u4_high_open, dtype="uint32"), npt.NDArray[np.uint32]) +assert_type(def_gen.integers(0, I_u4_high_open, dtype="uint32"), npt.NDArray[np.uint32]) +assert_type(def_gen.integers(I_u4_high_closed, dtype="uint32", endpoint=True), npt.NDArray[np.uint32]) +assert_type(def_gen.integers(I_u4_low, I_u4_high_closed, dtype="uint32", endpoint=True), npt.NDArray[np.uint32]) +assert_type(def_gen.integers(0, I_u4_high_closed, dtype="uint32", endpoint=True), npt.NDArray[np.uint32]) + +assert_type(def_gen.integers(4294967296, dtype=np.uint32), np.uint32) +assert_type(def_gen.integers(0, 4294967296, dtype=np.uint32), np.uint32) +assert_type(def_gen.integers(4294967295, dtype=np.uint32, endpoint=True), np.uint32) +assert_type(def_gen.integers(0, 4294967295, dtype=np.uint32, endpoint=True), np.uint32) +assert_type(def_gen.integers(I_u4_low_like, 4294967295, dtype=np.uint32, endpoint=True), npt.NDArray[np.uint32]) +assert_type(def_gen.integers(I_u4_high_open, dtype=np.uint32), npt.NDArray[np.uint32]) +assert_type(def_gen.integers(I_u4_low, I_u4_high_open, dtype=np.uint32), npt.NDArray[np.uint32]) +assert_type(def_gen.integers(0, I_u4_high_open, dtype=np.uint32), npt.NDArray[np.uint32]) +assert_type(def_gen.integers(I_u4_high_closed, dtype=np.uint32, endpoint=True), npt.NDArray[np.uint32]) +assert_type(def_gen.integers(I_u4_low, I_u4_high_closed, dtype=np.uint32, endpoint=True), npt.NDArray[np.uint32]) +assert_type(def_gen.integers(0, I_u4_high_closed, dtype=np.uint32, endpoint=True), npt.NDArray[np.uint32]) + +assert_type(def_gen.integers(4294967296, dtype=np.uint), np.uint) +assert_type(def_gen.integers(0, 4294967296, dtype=np.uint), np.uint) +assert_type(def_gen.integers(4294967295, dtype=np.uint, endpoint=True), np.uint) +assert_type(def_gen.integers(0, 4294967295, dtype=np.uint, endpoint=True), np.uint) +assert_type(def_gen.integers(I_u4_low_like, 4294967295, dtype=np.uint, endpoint=True), npt.NDArray[np.uint]) +assert_type(def_gen.integers(I_u4_high_open, dtype=np.uint), npt.NDArray[np.uint]) +assert_type(def_gen.integers(I_u4_low, I_u4_high_open, dtype=np.uint), npt.NDArray[np.uint]) +assert_type(def_gen.integers(0, I_u4_high_open, dtype=np.uint), npt.NDArray[np.uint]) +assert_type(def_gen.integers(I_u4_high_closed, dtype=np.uint, endpoint=True), npt.NDArray[np.uint]) +assert_type(def_gen.integers(I_u4_low, I_u4_high_closed, dtype=np.uint, endpoint=True), npt.NDArray[np.uint]) +assert_type(def_gen.integers(0, I_u4_high_closed, dtype=np.uint, endpoint=True), npt.NDArray[np.uint]) + +I_u8_low: npt.NDArray[np.uint64] = np.array([0], dtype=np.uint64) +I_u8_low_like: list[int] = [0] +I_u8_high_open: npt.NDArray[np.uint64] = np.array([18446744073709551615], dtype=np.uint64) +I_u8_high_closed: npt.NDArray[np.uint64] = np.array([18446744073709551615], dtype=np.uint64) + +assert_type(def_gen.integers(18446744073709551616, dtype="u8"), np.uint64) +assert_type(def_gen.integers(0, 18446744073709551616, dtype="u8"), np.uint64) +assert_type(def_gen.integers(18446744073709551615, dtype="u8", endpoint=True), np.uint64) +assert_type(def_gen.integers(0, 18446744073709551615, dtype="u8", endpoint=True), np.uint64) +assert_type(def_gen.integers(I_u8_low_like, 18446744073709551615, dtype="u8", endpoint=True), npt.NDArray[np.uint64]) +assert_type(def_gen.integers(I_u8_high_open, dtype="u8"), npt.NDArray[np.uint64]) +assert_type(def_gen.integers(I_u8_low, I_u8_high_open, dtype="u8"), npt.NDArray[np.uint64]) +assert_type(def_gen.integers(0, I_u8_high_open, dtype="u8"), npt.NDArray[np.uint64]) +assert_type(def_gen.integers(I_u8_high_closed, dtype="u8", endpoint=True), npt.NDArray[np.uint64]) +assert_type(def_gen.integers(I_u8_low, I_u8_high_closed, dtype="u8", endpoint=True), npt.NDArray[np.uint64]) +assert_type(def_gen.integers(0, I_u8_high_closed, dtype="u8", endpoint=True), npt.NDArray[np.uint64]) + +assert_type(def_gen.integers(18446744073709551616, dtype="uint64"), np.uint64) +assert_type(def_gen.integers(0, 18446744073709551616, dtype="uint64"), np.uint64) +assert_type(def_gen.integers(18446744073709551615, dtype="uint64", endpoint=True), np.uint64) +assert_type(def_gen.integers(0, 18446744073709551615, dtype="uint64", endpoint=True), np.uint64) +assert_type(def_gen.integers(I_u8_low_like, 18446744073709551615, dtype="uint64", endpoint=True), npt.NDArray[np.uint64]) +assert_type(def_gen.integers(I_u8_high_open, dtype="uint64"), npt.NDArray[np.uint64]) +assert_type(def_gen.integers(I_u8_low, I_u8_high_open, dtype="uint64"), npt.NDArray[np.uint64]) +assert_type(def_gen.integers(0, I_u8_high_open, dtype="uint64"), npt.NDArray[np.uint64]) +assert_type(def_gen.integers(I_u8_high_closed, dtype="uint64", endpoint=True), npt.NDArray[np.uint64]) +assert_type(def_gen.integers(I_u8_low, I_u8_high_closed, dtype="uint64", endpoint=True), npt.NDArray[np.uint64]) +assert_type(def_gen.integers(0, I_u8_high_closed, dtype="uint64", endpoint=True), npt.NDArray[np.uint64]) + +assert_type(def_gen.integers(18446744073709551616, dtype=np.uint64), np.uint64) +assert_type(def_gen.integers(0, 18446744073709551616, dtype=np.uint64), np.uint64) +assert_type(def_gen.integers(18446744073709551615, dtype=np.uint64, endpoint=True), np.uint64) +assert_type(def_gen.integers(0, 18446744073709551615, dtype=np.uint64, endpoint=True), np.uint64) +assert_type(def_gen.integers(I_u8_low_like, 18446744073709551615, dtype=np.uint64, endpoint=True), npt.NDArray[np.uint64]) +assert_type(def_gen.integers(I_u8_high_open, dtype=np.uint64), npt.NDArray[np.uint64]) +assert_type(def_gen.integers(I_u8_low, I_u8_high_open, dtype=np.uint64), npt.NDArray[np.uint64]) +assert_type(def_gen.integers(0, I_u8_high_open, dtype=np.uint64), npt.NDArray[np.uint64]) +assert_type(def_gen.integers(I_u8_high_closed, dtype=np.uint64, endpoint=True), npt.NDArray[np.uint64]) +assert_type(def_gen.integers(I_u8_low, I_u8_high_closed, dtype=np.uint64, endpoint=True), npt.NDArray[np.uint64]) +assert_type(def_gen.integers(0, I_u8_high_closed, dtype=np.uint64, endpoint=True), npt.NDArray[np.uint64]) + +I_i1_low: npt.NDArray[np.int8] = np.array([-128], dtype=np.int8) +I_i1_low_like: list[int] = [-128] +I_i1_high_open: npt.NDArray[np.int8] = np.array([127], dtype=np.int8) +I_i1_high_closed: npt.NDArray[np.int8] = np.array([127], dtype=np.int8) + +assert_type(def_gen.integers(128, dtype="i1"), np.int8) +assert_type(def_gen.integers(-128, 128, dtype="i1"), np.int8) +assert_type(def_gen.integers(127, dtype="i1", endpoint=True), np.int8) +assert_type(def_gen.integers(-128, 127, dtype="i1", endpoint=True), np.int8) +assert_type(def_gen.integers(I_i1_low_like, 127, dtype="i1", endpoint=True), npt.NDArray[np.int8]) +assert_type(def_gen.integers(I_i1_high_open, dtype="i1"), npt.NDArray[np.int8]) +assert_type(def_gen.integers(I_i1_low, I_i1_high_open, dtype="i1"), npt.NDArray[np.int8]) +assert_type(def_gen.integers(-128, I_i1_high_open, dtype="i1"), npt.NDArray[np.int8]) +assert_type(def_gen.integers(I_i1_high_closed, dtype="i1", endpoint=True), npt.NDArray[np.int8]) +assert_type(def_gen.integers(I_i1_low, I_i1_high_closed, dtype="i1", endpoint=True), npt.NDArray[np.int8]) +assert_type(def_gen.integers(-128, I_i1_high_closed, dtype="i1", endpoint=True), npt.NDArray[np.int8]) + +assert_type(def_gen.integers(128, dtype="int8"), np.int8) +assert_type(def_gen.integers(-128, 128, dtype="int8"), np.int8) +assert_type(def_gen.integers(127, dtype="int8", endpoint=True), np.int8) +assert_type(def_gen.integers(-128, 127, dtype="int8", endpoint=True), np.int8) +assert_type(def_gen.integers(I_i1_low_like, 127, dtype="int8", endpoint=True), npt.NDArray[np.int8]) +assert_type(def_gen.integers(I_i1_high_open, dtype="int8"), npt.NDArray[np.int8]) +assert_type(def_gen.integers(I_i1_low, I_i1_high_open, dtype="int8"), npt.NDArray[np.int8]) +assert_type(def_gen.integers(-128, I_i1_high_open, dtype="int8"), npt.NDArray[np.int8]) +assert_type(def_gen.integers(I_i1_high_closed, dtype="int8", endpoint=True), npt.NDArray[np.int8]) +assert_type(def_gen.integers(I_i1_low, I_i1_high_closed, dtype="int8", endpoint=True), npt.NDArray[np.int8]) +assert_type(def_gen.integers(-128, I_i1_high_closed, dtype="int8", endpoint=True), npt.NDArray[np.int8]) + +assert_type(def_gen.integers(128, dtype=np.int8), np.int8) +assert_type(def_gen.integers(-128, 128, dtype=np.int8), np.int8) +assert_type(def_gen.integers(127, dtype=np.int8, endpoint=True), np.int8) +assert_type(def_gen.integers(-128, 127, dtype=np.int8, endpoint=True), np.int8) +assert_type(def_gen.integers(I_i1_low_like, 127, dtype=np.int8, endpoint=True), npt.NDArray[np.int8]) +assert_type(def_gen.integers(I_i1_high_open, dtype=np.int8), npt.NDArray[np.int8]) +assert_type(def_gen.integers(I_i1_low, I_i1_high_open, dtype=np.int8), npt.NDArray[np.int8]) +assert_type(def_gen.integers(-128, I_i1_high_open, dtype=np.int8), npt.NDArray[np.int8]) +assert_type(def_gen.integers(I_i1_high_closed, dtype=np.int8, endpoint=True), npt.NDArray[np.int8]) +assert_type(def_gen.integers(I_i1_low, I_i1_high_closed, dtype=np.int8, endpoint=True), npt.NDArray[np.int8]) +assert_type(def_gen.integers(-128, I_i1_high_closed, dtype=np.int8, endpoint=True), npt.NDArray[np.int8]) + +I_i2_low: npt.NDArray[np.int16] = np.array([-32768], dtype=np.int16) +I_i2_low_like: list[int] = [-32768] +I_i2_high_open: npt.NDArray[np.int16] = np.array([32767], dtype=np.int16) +I_i2_high_closed: npt.NDArray[np.int16] = np.array([32767], dtype=np.int16) + +assert_type(def_gen.integers(32768, dtype="i2"), np.int16) +assert_type(def_gen.integers(-32768, 32768, dtype="i2"), np.int16) +assert_type(def_gen.integers(32767, dtype="i2", endpoint=True), np.int16) +assert_type(def_gen.integers(-32768, 32767, dtype="i2", endpoint=True), np.int16) +assert_type(def_gen.integers(I_i2_low_like, 32767, dtype="i2", endpoint=True), npt.NDArray[np.int16]) +assert_type(def_gen.integers(I_i2_high_open, dtype="i2"), npt.NDArray[np.int16]) +assert_type(def_gen.integers(I_i2_low, I_i2_high_open, dtype="i2"), npt.NDArray[np.int16]) +assert_type(def_gen.integers(-32768, I_i2_high_open, dtype="i2"), npt.NDArray[np.int16]) +assert_type(def_gen.integers(I_i2_high_closed, dtype="i2", endpoint=True), npt.NDArray[np.int16]) +assert_type(def_gen.integers(I_i2_low, I_i2_high_closed, dtype="i2", endpoint=True), npt.NDArray[np.int16]) +assert_type(def_gen.integers(-32768, I_i2_high_closed, dtype="i2", endpoint=True), npt.NDArray[np.int16]) + +assert_type(def_gen.integers(32768, dtype="int16"), np.int16) +assert_type(def_gen.integers(-32768, 32768, dtype="int16"), np.int16) +assert_type(def_gen.integers(32767, dtype="int16", endpoint=True), np.int16) +assert_type(def_gen.integers(-32768, 32767, dtype="int16", endpoint=True), np.int16) +assert_type(def_gen.integers(I_i2_low_like, 32767, dtype="int16", endpoint=True), npt.NDArray[np.int16]) +assert_type(def_gen.integers(I_i2_high_open, dtype="int16"), npt.NDArray[np.int16]) +assert_type(def_gen.integers(I_i2_low, I_i2_high_open, dtype="int16"), npt.NDArray[np.int16]) +assert_type(def_gen.integers(-32768, I_i2_high_open, dtype="int16"), npt.NDArray[np.int16]) +assert_type(def_gen.integers(I_i2_high_closed, dtype="int16", endpoint=True), npt.NDArray[np.int16]) +assert_type(def_gen.integers(I_i2_low, I_i2_high_closed, dtype="int16", endpoint=True), npt.NDArray[np.int16]) +assert_type(def_gen.integers(-32768, I_i2_high_closed, dtype="int16", endpoint=True), npt.NDArray[np.int16]) + +assert_type(def_gen.integers(32768, dtype=np.int16), np.int16) +assert_type(def_gen.integers(-32768, 32768, dtype=np.int16), np.int16) +assert_type(def_gen.integers(32767, dtype=np.int16, endpoint=True), np.int16) +assert_type(def_gen.integers(-32768, 32767, dtype=np.int16, endpoint=True), np.int16) +assert_type(def_gen.integers(I_i2_low_like, 32767, dtype=np.int16, endpoint=True), npt.NDArray[np.int16]) +assert_type(def_gen.integers(I_i2_high_open, dtype=np.int16), npt.NDArray[np.int16]) +assert_type(def_gen.integers(I_i2_low, I_i2_high_open, dtype=np.int16), npt.NDArray[np.int16]) +assert_type(def_gen.integers(-32768, I_i2_high_open, dtype=np.int16), npt.NDArray[np.int16]) +assert_type(def_gen.integers(I_i2_high_closed, dtype=np.int16, endpoint=True), npt.NDArray[np.int16]) +assert_type(def_gen.integers(I_i2_low, I_i2_high_closed, dtype=np.int16, endpoint=True), npt.NDArray[np.int16]) +assert_type(def_gen.integers(-32768, I_i2_high_closed, dtype=np.int16, endpoint=True), npt.NDArray[np.int16]) + +I_i4_low: npt.NDArray[np.int32] = np.array([-2147483648], dtype=np.int32) +I_i4_low_like: list[int] = [-2147483648] +I_i4_high_open: npt.NDArray[np.int32] = np.array([2147483647], dtype=np.int32) +I_i4_high_closed: npt.NDArray[np.int32] = np.array([2147483647], dtype=np.int32) + +assert_type(def_gen.integers(2147483648, dtype="i4"), np.int32) +assert_type(def_gen.integers(-2147483648, 2147483648, dtype="i4"), np.int32) +assert_type(def_gen.integers(2147483647, dtype="i4", endpoint=True), np.int32) +assert_type(def_gen.integers(-2147483648, 2147483647, dtype="i4", endpoint=True), np.int32) +assert_type(def_gen.integers(I_i4_low_like, 2147483647, dtype="i4", endpoint=True), npt.NDArray[np.int32]) +assert_type(def_gen.integers(I_i4_high_open, dtype="i4"), npt.NDArray[np.int32]) +assert_type(def_gen.integers(I_i4_low, I_i4_high_open, dtype="i4"), npt.NDArray[np.int32]) +assert_type(def_gen.integers(-2147483648, I_i4_high_open, dtype="i4"), npt.NDArray[np.int32]) +assert_type(def_gen.integers(I_i4_high_closed, dtype="i4", endpoint=True), npt.NDArray[np.int32]) +assert_type(def_gen.integers(I_i4_low, I_i4_high_closed, dtype="i4", endpoint=True), npt.NDArray[np.int32]) +assert_type(def_gen.integers(-2147483648, I_i4_high_closed, dtype="i4", endpoint=True), npt.NDArray[np.int32]) + +assert_type(def_gen.integers(2147483648, dtype="int32"), np.int32) +assert_type(def_gen.integers(-2147483648, 2147483648, dtype="int32"), np.int32) +assert_type(def_gen.integers(2147483647, dtype="int32", endpoint=True), np.int32) +assert_type(def_gen.integers(-2147483648, 2147483647, dtype="int32", endpoint=True), np.int32) +assert_type(def_gen.integers(I_i4_low_like, 2147483647, dtype="int32", endpoint=True), npt.NDArray[np.int32]) +assert_type(def_gen.integers(I_i4_high_open, dtype="int32"), npt.NDArray[np.int32]) +assert_type(def_gen.integers(I_i4_low, I_i4_high_open, dtype="int32"), npt.NDArray[np.int32]) +assert_type(def_gen.integers(-2147483648, I_i4_high_open, dtype="int32"), npt.NDArray[np.int32]) +assert_type(def_gen.integers(I_i4_high_closed, dtype="int32", endpoint=True), npt.NDArray[np.int32]) +assert_type(def_gen.integers(I_i4_low, I_i4_high_closed, dtype="int32", endpoint=True), npt.NDArray[np.int32]) +assert_type(def_gen.integers(-2147483648, I_i4_high_closed, dtype="int32", endpoint=True), npt.NDArray[np.int32]) + +assert_type(def_gen.integers(2147483648, dtype=np.int32), np.int32) +assert_type(def_gen.integers(-2147483648, 2147483648, dtype=np.int32), np.int32) +assert_type(def_gen.integers(2147483647, dtype=np.int32, endpoint=True), np.int32) +assert_type(def_gen.integers(-2147483648, 2147483647, dtype=np.int32, endpoint=True), np.int32) +assert_type(def_gen.integers(I_i4_low_like, 2147483647, dtype=np.int32, endpoint=True), npt.NDArray[np.int32]) +assert_type(def_gen.integers(I_i4_high_open, dtype=np.int32), npt.NDArray[np.int32]) +assert_type(def_gen.integers(I_i4_low, I_i4_high_open, dtype=np.int32), npt.NDArray[np.int32]) +assert_type(def_gen.integers(-2147483648, I_i4_high_open, dtype=np.int32), npt.NDArray[np.int32]) +assert_type(def_gen.integers(I_i4_high_closed, dtype=np.int32, endpoint=True), npt.NDArray[np.int32]) +assert_type(def_gen.integers(I_i4_low, I_i4_high_closed, dtype=np.int32, endpoint=True), npt.NDArray[np.int32]) +assert_type(def_gen.integers(-2147483648, I_i4_high_closed, dtype=np.int32, endpoint=True), npt.NDArray[np.int32]) + +I_i8_low: npt.NDArray[np.int64] = np.array([-9223372036854775808], dtype=np.int64) +I_i8_low_like: list[int] = [-9223372036854775808] +I_i8_high_open: npt.NDArray[np.int64] = np.array([9223372036854775807], dtype=np.int64) +I_i8_high_closed: npt.NDArray[np.int64] = np.array([9223372036854775807], dtype=np.int64) + +assert_type(def_gen.integers(9223372036854775808, dtype="i8"), np.int64) +assert_type(def_gen.integers(-9223372036854775808, 9223372036854775808, dtype="i8"), np.int64) +assert_type(def_gen.integers(9223372036854775807, dtype="i8", endpoint=True), np.int64) +assert_type(def_gen.integers(-9223372036854775808, 9223372036854775807, dtype="i8", endpoint=True), np.int64) +assert_type(def_gen.integers(I_i8_low_like, 9223372036854775807, dtype="i8", endpoint=True), npt.NDArray[np.int64]) +assert_type(def_gen.integers(I_i8_high_open, dtype="i8"), npt.NDArray[np.int64]) +assert_type(def_gen.integers(I_i8_low, I_i8_high_open, dtype="i8"), npt.NDArray[np.int64]) +assert_type(def_gen.integers(-9223372036854775808, I_i8_high_open, dtype="i8"), npt.NDArray[np.int64]) +assert_type(def_gen.integers(I_i8_high_closed, dtype="i8", endpoint=True), npt.NDArray[np.int64]) +assert_type(def_gen.integers(I_i8_low, I_i8_high_closed, dtype="i8", endpoint=True), npt.NDArray[np.int64]) +assert_type(def_gen.integers(-9223372036854775808, I_i8_high_closed, dtype="i8", endpoint=True), npt.NDArray[np.int64]) + +assert_type(def_gen.integers(9223372036854775808, dtype="int64"), np.int64) +assert_type(def_gen.integers(-9223372036854775808, 9223372036854775808, dtype="int64"), np.int64) +assert_type(def_gen.integers(9223372036854775807, dtype="int64", endpoint=True), np.int64) +assert_type(def_gen.integers(-9223372036854775808, 9223372036854775807, dtype="int64", endpoint=True), np.int64) +assert_type(def_gen.integers(I_i8_low_like, 9223372036854775807, dtype="int64", endpoint=True), npt.NDArray[np.int64]) +assert_type(def_gen.integers(I_i8_high_open, dtype="int64"), npt.NDArray[np.int64]) +assert_type(def_gen.integers(I_i8_low, I_i8_high_open, dtype="int64"), npt.NDArray[np.int64]) +assert_type(def_gen.integers(-9223372036854775808, I_i8_high_open, dtype="int64"), npt.NDArray[np.int64]) +assert_type(def_gen.integers(I_i8_high_closed, dtype="int64", endpoint=True), npt.NDArray[np.int64]) +assert_type(def_gen.integers(I_i8_low, I_i8_high_closed, dtype="int64", endpoint=True), npt.NDArray[np.int64]) +assert_type(def_gen.integers(-9223372036854775808, I_i8_high_closed, dtype="int64", endpoint=True), npt.NDArray[np.int64]) + +assert_type(def_gen.integers(9223372036854775808, dtype=np.int64), np.int64) +assert_type(def_gen.integers(-9223372036854775808, 9223372036854775808, dtype=np.int64), np.int64) +assert_type(def_gen.integers(9223372036854775807, dtype=np.int64, endpoint=True), np.int64) +assert_type(def_gen.integers(-9223372036854775808, 9223372036854775807, dtype=np.int64, endpoint=True), np.int64) +assert_type(def_gen.integers(I_i8_low_like, 9223372036854775807, dtype=np.int64, endpoint=True), npt.NDArray[np.int64]) +assert_type(def_gen.integers(I_i8_high_open, dtype=np.int64), npt.NDArray[np.int64]) +assert_type(def_gen.integers(I_i8_low, I_i8_high_open, dtype=np.int64), npt.NDArray[np.int64]) +assert_type(def_gen.integers(-9223372036854775808, I_i8_high_open, dtype=np.int64), npt.NDArray[np.int64]) +assert_type(def_gen.integers(I_i8_high_closed, dtype=np.int64, endpoint=True), npt.NDArray[np.int64]) +assert_type(def_gen.integers(I_i8_low, I_i8_high_closed, dtype=np.int64, endpoint=True), npt.NDArray[np.int64]) +assert_type(def_gen.integers(-9223372036854775808, I_i8_high_closed, dtype=np.int64, endpoint=True), npt.NDArray[np.int64]) + +assert_type(def_gen.bit_generator, np.random.BitGenerator) + +assert_type(def_gen.bytes(2), bytes) + +assert_type(def_gen.choice(5), int) +assert_type(def_gen.choice(5, 3), npt.NDArray[np.int64]) +assert_type(def_gen.choice(5, 3, replace=True), npt.NDArray[np.int64]) +assert_type(def_gen.choice(5, 3, p=[1 / 5] * 5), npt.NDArray[np.int64]) +assert_type(def_gen.choice(5, 3, p=[1 / 5] * 5, replace=False), npt.NDArray[np.int64]) + +assert_type(def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"]), Any) +assert_type(def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3), npt.NDArray[Any]) +assert_type(def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, p=[1 / 4] * 4), npt.NDArray[Any]) +assert_type(def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=True), npt.NDArray[Any]) +assert_type(def_gen.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=False, p=np.array([1 / 8, 1 / 8, 1 / 2, 1 / 4])), npt.NDArray[Any]) + +assert_type(def_gen.dirichlet([0.5, 0.5]), npt.NDArray[np.float64]) +assert_type(def_gen.dirichlet(np.array([0.5, 0.5])), npt.NDArray[np.float64]) +assert_type(def_gen.dirichlet(np.array([0.5, 0.5]), size=3), npt.NDArray[np.float64]) + +assert_type(def_gen.multinomial(20, [1 / 6.0] * 6), npt.NDArray[np.int64]) +assert_type(def_gen.multinomial(20, np.array([0.5, 0.5])), npt.NDArray[np.int64]) +assert_type(def_gen.multinomial(20, [1 / 6.0] * 6, size=2), npt.NDArray[np.int64]) +assert_type(def_gen.multinomial([[10], [20]], [1 / 6.0] * 6, size=(2, 2)), npt.NDArray[np.int64]) +assert_type(def_gen.multinomial(np.array([[10], [20]]), np.array([0.5, 0.5]), size=(2, 2)), npt.NDArray[np.int64]) + +assert_type(def_gen.multivariate_hypergeometric([3, 5, 7], 2), npt.NDArray[np.int64]) +assert_type(def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2), npt.NDArray[np.int64]) +assert_type(def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2, size=4), npt.NDArray[np.int64]) +assert_type(def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2, size=(4, 7)), npt.NDArray[np.int64]) +assert_type(def_gen.multivariate_hypergeometric([3, 5, 7], 2, method="count"), npt.NDArray[np.int64]) +assert_type(def_gen.multivariate_hypergeometric(np.array([3, 5, 7]), 2, method="marginals"), npt.NDArray[np.int64]) + +assert_type(def_gen.multivariate_normal([0.0], [[1.0]]), npt.NDArray[np.float64]) +assert_type(def_gen.multivariate_normal([0.0], np.array([[1.0]])), npt.NDArray[np.float64]) +assert_type(def_gen.multivariate_normal(np.array([0.0]), [[1.0]]), npt.NDArray[np.float64]) +assert_type(def_gen.multivariate_normal([0.0], np.array([[1.0]])), npt.NDArray[np.float64]) + +assert_type(def_gen.permutation(10), npt.NDArray[np.int64]) +assert_type(def_gen.permutation([1, 2, 3, 4]), npt.NDArray[Any]) +assert_type(def_gen.permutation(np.array([1, 2, 3, 4])), npt.NDArray[Any]) +assert_type(def_gen.permutation(D_2D, axis=1), npt.NDArray[Any]) +assert_type(def_gen.permuted(D_2D), npt.NDArray[Any]) +assert_type(def_gen.permuted(D_2D_like), npt.NDArray[Any]) +assert_type(def_gen.permuted(D_2D, axis=1), npt.NDArray[Any]) +assert_type(def_gen.permuted(D_2D, out=D_2D), npt.NDArray[Any]) +assert_type(def_gen.permuted(D_2D_like, out=D_2D), npt.NDArray[Any]) +assert_type(def_gen.permuted(D_2D_like, out=D_2D), npt.NDArray[Any]) +assert_type(def_gen.permuted(D_2D, axis=1, out=D_2D), npt.NDArray[Any]) + +assert_type(def_gen.shuffle(np.arange(10)), None) +assert_type(def_gen.shuffle([1, 2, 3, 4, 5]), None) +assert_type(def_gen.shuffle(D_2D, axis=1), None) + +assert_type(np.random.Generator(pcg64), np.random.Generator) +assert_type(def_gen.__str__(), str) +assert_type(def_gen.__repr__(), str) +assert_type(def_gen.__setstate__(dict(def_gen.bit_generator.state)), None) + +# RandomState +random_st: np.random.RandomState = np.random.RandomState() + +assert_type(random_st.standard_normal(), float) +assert_type(random_st.standard_normal(size=None), float) +assert_type(random_st.standard_normal(size=1), npt.NDArray[np.float64]) + +assert_type(random_st.random(), float) +assert_type(random_st.random(size=None), float) +assert_type(random_st.random(size=1), npt.NDArray[np.float64]) + +assert_type(random_st.standard_cauchy(), float) +assert_type(random_st.standard_cauchy(size=None), float) +assert_type(random_st.standard_cauchy(size=1), npt.NDArray[np.float64]) + +assert_type(random_st.standard_exponential(), float) +assert_type(random_st.standard_exponential(size=None), float) +assert_type(random_st.standard_exponential(size=1), npt.NDArray[np.float64]) + +assert_type(random_st.zipf(1.5), int) +assert_type(random_st.zipf(1.5, size=None), int) +assert_type(random_st.zipf(1.5, size=1), npt.NDArray[np.long]) +assert_type(random_st.zipf(D_arr_1p5), npt.NDArray[np.long]) +assert_type(random_st.zipf(D_arr_1p5, size=1), npt.NDArray[np.long]) +assert_type(random_st.zipf(D_arr_like_1p5), npt.NDArray[np.long]) +assert_type(random_st.zipf(D_arr_like_1p5, size=1), npt.NDArray[np.long]) + +assert_type(random_st.weibull(0.5), float) +assert_type(random_st.weibull(0.5, size=None), float) +assert_type(random_st.weibull(0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.weibull(D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.weibull(D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.weibull(D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.weibull(D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(random_st.standard_t(0.5), float) +assert_type(random_st.standard_t(0.5, size=None), float) +assert_type(random_st.standard_t(0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.standard_t(D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.standard_t(D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.standard_t(D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.standard_t(D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(random_st.poisson(0.5), int) +assert_type(random_st.poisson(0.5, size=None), int) +assert_type(random_st.poisson(0.5, size=1), npt.NDArray[np.long]) +assert_type(random_st.poisson(D_arr_0p5), npt.NDArray[np.long]) +assert_type(random_st.poisson(D_arr_0p5, size=1), npt.NDArray[np.long]) +assert_type(random_st.poisson(D_arr_like_0p5), npt.NDArray[np.long]) +assert_type(random_st.poisson(D_arr_like_0p5, size=1), npt.NDArray[np.long]) + +assert_type(random_st.power(0.5), float) +assert_type(random_st.power(0.5, size=None), float) +assert_type(random_st.power(0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.power(D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.power(D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.power(D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.power(D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(random_st.pareto(0.5), float) +assert_type(random_st.pareto(0.5, size=None), float) +assert_type(random_st.pareto(0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.pareto(D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.pareto(D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.pareto(D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.pareto(D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(random_st.chisquare(0.5), float) +assert_type(random_st.chisquare(0.5, size=None), float) +assert_type(random_st.chisquare(0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.chisquare(D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.chisquare(D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.chisquare(D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.chisquare(D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(random_st.exponential(0.5), float) +assert_type(random_st.exponential(0.5, size=None), float) +assert_type(random_st.exponential(0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.exponential(D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.exponential(D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.exponential(D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.exponential(D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(random_st.geometric(0.5), int) +assert_type(random_st.geometric(0.5, size=None), int) +assert_type(random_st.geometric(0.5, size=1), npt.NDArray[np.long]) +assert_type(random_st.geometric(D_arr_0p5), npt.NDArray[np.long]) +assert_type(random_st.geometric(D_arr_0p5, size=1), npt.NDArray[np.long]) +assert_type(random_st.geometric(D_arr_like_0p5), npt.NDArray[np.long]) +assert_type(random_st.geometric(D_arr_like_0p5, size=1), npt.NDArray[np.long]) + +assert_type(random_st.logseries(0.5), int) +assert_type(random_st.logseries(0.5, size=None), int) +assert_type(random_st.logseries(0.5, size=1), npt.NDArray[np.long]) +assert_type(random_st.logseries(D_arr_0p5), npt.NDArray[np.long]) +assert_type(random_st.logseries(D_arr_0p5, size=1), npt.NDArray[np.long]) +assert_type(random_st.logseries(D_arr_like_0p5), npt.NDArray[np.long]) +assert_type(random_st.logseries(D_arr_like_0p5, size=1), npt.NDArray[np.long]) + +assert_type(random_st.rayleigh(0.5), float) +assert_type(random_st.rayleigh(0.5, size=None), float) +assert_type(random_st.rayleigh(0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.rayleigh(D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.rayleigh(D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.rayleigh(D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.rayleigh(D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(random_st.standard_gamma(0.5), float) +assert_type(random_st.standard_gamma(0.5, size=None), float) +assert_type(random_st.standard_gamma(0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.standard_gamma(D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.standard_gamma(D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.standard_gamma(D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.standard_gamma(D_arr_like_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.standard_gamma(D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(random_st.vonmises(0.5, 0.5), float) +assert_type(random_st.vonmises(0.5, 0.5, size=None), float) +assert_type(random_st.vonmises(0.5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.vonmises(D_arr_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(random_st.vonmises(0.5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.vonmises(D_arr_0p5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.vonmises(0.5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.vonmises(D_arr_like_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(random_st.vonmises(0.5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.vonmises(D_arr_0p5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.vonmises(D_arr_like_0p5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.vonmises(D_arr_0p5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.vonmises(D_arr_like_0p5, D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(random_st.wald(0.5, 0.5), float) +assert_type(random_st.wald(0.5, 0.5, size=None), float) +assert_type(random_st.wald(0.5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.wald(D_arr_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(random_st.wald(0.5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.wald(D_arr_0p5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.wald(0.5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.wald(D_arr_like_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(random_st.wald(0.5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.wald(D_arr_0p5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.wald(D_arr_like_0p5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.wald(D_arr_0p5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.wald(D_arr_like_0p5, D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(random_st.uniform(0.5, 0.5), float) +assert_type(random_st.uniform(0.5, 0.5, size=None), float) +assert_type(random_st.uniform(0.5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.uniform(D_arr_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(random_st.uniform(0.5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.uniform(D_arr_0p5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.uniform(0.5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.uniform(D_arr_like_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(random_st.uniform(0.5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.uniform(D_arr_0p5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.uniform(D_arr_like_0p5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.uniform(D_arr_0p5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.uniform(D_arr_like_0p5, D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(random_st.beta(0.5, 0.5), float) +assert_type(random_st.beta(0.5, 0.5, size=None), float) +assert_type(random_st.beta(0.5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.beta(D_arr_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(random_st.beta(0.5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.beta(D_arr_0p5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.beta(0.5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.beta(D_arr_like_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(random_st.beta(0.5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.beta(D_arr_0p5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.beta(D_arr_like_0p5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.beta(D_arr_0p5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.beta(D_arr_like_0p5, D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(random_st.f(0.5, 0.5), float) +assert_type(random_st.f(0.5, 0.5, size=None), float) +assert_type(random_st.f(0.5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.f(D_arr_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(random_st.f(0.5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.f(D_arr_0p5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.f(0.5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.f(D_arr_like_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(random_st.f(0.5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.f(D_arr_0p5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.f(D_arr_like_0p5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.f(D_arr_0p5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.f(D_arr_like_0p5, D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(random_st.gamma(0.5, 0.5), float) +assert_type(random_st.gamma(0.5, 0.5, size=None), float) +assert_type(random_st.gamma(0.5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.gamma(D_arr_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(random_st.gamma(0.5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.gamma(D_arr_0p5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.gamma(0.5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.gamma(D_arr_like_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(random_st.gamma(0.5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.gamma(D_arr_0p5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.gamma(D_arr_like_0p5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.gamma(D_arr_0p5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.gamma(D_arr_like_0p5, D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(random_st.gumbel(0.5, 0.5), float) +assert_type(random_st.gumbel(0.5, 0.5, size=None), float) +assert_type(random_st.gumbel(0.5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.gumbel(D_arr_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(random_st.gumbel(0.5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.gumbel(D_arr_0p5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.gumbel(0.5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.gumbel(D_arr_like_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(random_st.gumbel(0.5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.gumbel(D_arr_0p5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.gumbel(D_arr_like_0p5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.gumbel(D_arr_0p5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.gumbel(D_arr_like_0p5, D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(random_st.laplace(0.5, 0.5), float) +assert_type(random_st.laplace(0.5, 0.5, size=None), float) +assert_type(random_st.laplace(0.5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.laplace(D_arr_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(random_st.laplace(0.5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.laplace(D_arr_0p5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.laplace(0.5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.laplace(D_arr_like_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(random_st.laplace(0.5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.laplace(D_arr_0p5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.laplace(D_arr_like_0p5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.laplace(D_arr_0p5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.laplace(D_arr_like_0p5, D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(random_st.logistic(0.5, 0.5), float) +assert_type(random_st.logistic(0.5, 0.5, size=None), float) +assert_type(random_st.logistic(0.5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.logistic(D_arr_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(random_st.logistic(0.5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.logistic(D_arr_0p5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.logistic(0.5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.logistic(D_arr_like_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(random_st.logistic(0.5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.logistic(D_arr_0p5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.logistic(D_arr_like_0p5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.logistic(D_arr_0p5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.logistic(D_arr_like_0p5, D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(random_st.lognormal(0.5, 0.5), float) +assert_type(random_st.lognormal(0.5, 0.5, size=None), float) +assert_type(random_st.lognormal(0.5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.lognormal(D_arr_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(random_st.lognormal(0.5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.lognormal(D_arr_0p5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.lognormal(0.5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.lognormal(D_arr_like_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(random_st.lognormal(0.5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.lognormal(D_arr_0p5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.lognormal(D_arr_like_0p5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.lognormal(D_arr_0p5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.lognormal(D_arr_like_0p5, D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(random_st.noncentral_chisquare(0.5, 0.5), float) +assert_type(random_st.noncentral_chisquare(0.5, 0.5, size=None), float) +assert_type(random_st.noncentral_chisquare(0.5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.noncentral_chisquare(D_arr_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(random_st.noncentral_chisquare(0.5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.noncentral_chisquare(D_arr_0p5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.noncentral_chisquare(0.5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.noncentral_chisquare(D_arr_like_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(random_st.noncentral_chisquare(0.5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.noncentral_chisquare(D_arr_0p5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.noncentral_chisquare(D_arr_0p5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.noncentral_chisquare(D_arr_like_0p5, D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(random_st.normal(0.5, 0.5), float) +assert_type(random_st.normal(0.5, 0.5, size=None), float) +assert_type(random_st.normal(0.5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.normal(D_arr_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(random_st.normal(0.5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.normal(D_arr_0p5, 0.5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.normal(0.5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.normal(D_arr_like_0p5, 0.5), npt.NDArray[np.float64]) +assert_type(random_st.normal(0.5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.normal(D_arr_0p5, D_arr_0p5), npt.NDArray[np.float64]) +assert_type(random_st.normal(D_arr_like_0p5, D_arr_like_0p5), npt.NDArray[np.float64]) +assert_type(random_st.normal(D_arr_0p5, D_arr_0p5, size=1), npt.NDArray[np.float64]) +assert_type(random_st.normal(D_arr_like_0p5, D_arr_like_0p5, size=1), npt.NDArray[np.float64]) + +assert_type(random_st.triangular(0.1, 0.5, 0.9), float) +assert_type(random_st.triangular(0.1, 0.5, 0.9, size=None), float) +assert_type(random_st.triangular(0.1, 0.5, 0.9, size=1), npt.NDArray[np.float64]) +assert_type(random_st.triangular(D_arr_0p1, 0.5, 0.9), npt.NDArray[np.float64]) +assert_type(random_st.triangular(0.1, D_arr_0p5, 0.9), npt.NDArray[np.float64]) +assert_type(random_st.triangular(D_arr_0p1, 0.5, D_arr_like_0p9, size=1), npt.NDArray[np.float64]) +assert_type(random_st.triangular(0.1, D_arr_0p5, 0.9, size=1), npt.NDArray[np.float64]) +assert_type(random_st.triangular(D_arr_like_0p1, 0.5, D_arr_0p9), npt.NDArray[np.float64]) +assert_type(random_st.triangular(0.5, D_arr_like_0p5, 0.9), npt.NDArray[np.float64]) +assert_type(random_st.triangular(D_arr_0p1, D_arr_0p5, 0.9), npt.NDArray[np.float64]) +assert_type(random_st.triangular(D_arr_like_0p1, D_arr_like_0p5, 0.9), npt.NDArray[np.float64]) +assert_type(random_st.triangular(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1), npt.NDArray[np.float64]) +assert_type(random_st.triangular(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1), npt.NDArray[np.float64]) + +assert_type(random_st.noncentral_f(0.1, 0.5, 0.9), float) +assert_type(random_st.noncentral_f(0.1, 0.5, 0.9, size=None), float) +assert_type(random_st.noncentral_f(0.1, 0.5, 0.9, size=1), npt.NDArray[np.float64]) +assert_type(random_st.noncentral_f(D_arr_0p1, 0.5, 0.9), npt.NDArray[np.float64]) +assert_type(random_st.noncentral_f(0.1, D_arr_0p5, 0.9), npt.NDArray[np.float64]) +assert_type(random_st.noncentral_f(D_arr_0p1, 0.5, D_arr_like_0p9, size=1), npt.NDArray[np.float64]) +assert_type(random_st.noncentral_f(0.1, D_arr_0p5, 0.9, size=1), npt.NDArray[np.float64]) +assert_type(random_st.noncentral_f(D_arr_like_0p1, 0.5, D_arr_0p9), npt.NDArray[np.float64]) +assert_type(random_st.noncentral_f(0.5, D_arr_like_0p5, 0.9), npt.NDArray[np.float64]) +assert_type(random_st.noncentral_f(D_arr_0p1, D_arr_0p5, 0.9), npt.NDArray[np.float64]) +assert_type(random_st.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, 0.9), npt.NDArray[np.float64]) +assert_type(random_st.noncentral_f(D_arr_0p1, D_arr_0p5, D_arr_0p9, size=1), npt.NDArray[np.float64]) +assert_type(random_st.noncentral_f(D_arr_like_0p1, D_arr_like_0p5, D_arr_like_0p9, size=1), npt.NDArray[np.float64]) + +assert_type(random_st.binomial(10, 0.5), int) +assert_type(random_st.binomial(10, 0.5, size=None), int) +assert_type(random_st.binomial(10, 0.5, size=1), npt.NDArray[np.long]) +assert_type(random_st.binomial(I_arr_10, 0.5), npt.NDArray[np.long]) +assert_type(random_st.binomial(10, D_arr_0p5), npt.NDArray[np.long]) +assert_type(random_st.binomial(I_arr_10, 0.5, size=1), npt.NDArray[np.long]) +assert_type(random_st.binomial(10, D_arr_0p5, size=1), npt.NDArray[np.long]) +assert_type(random_st.binomial(I_arr_like_10, 0.5), npt.NDArray[np.long]) +assert_type(random_st.binomial(10, D_arr_like_0p5), npt.NDArray[np.long]) +assert_type(random_st.binomial(I_arr_10, D_arr_0p5), npt.NDArray[np.long]) +assert_type(random_st.binomial(I_arr_like_10, D_arr_like_0p5), npt.NDArray[np.long]) +assert_type(random_st.binomial(I_arr_10, D_arr_0p5, size=1), npt.NDArray[np.long]) +assert_type(random_st.binomial(I_arr_like_10, D_arr_like_0p5, size=1), npt.NDArray[np.long]) + +assert_type(random_st.negative_binomial(10, 0.5), int) +assert_type(random_st.negative_binomial(10, 0.5, size=None), int) +assert_type(random_st.negative_binomial(10, 0.5, size=1), npt.NDArray[np.long]) +assert_type(random_st.negative_binomial(I_arr_10, 0.5), npt.NDArray[np.long]) +assert_type(random_st.negative_binomial(10, D_arr_0p5), npt.NDArray[np.long]) +assert_type(random_st.negative_binomial(I_arr_10, 0.5, size=1), npt.NDArray[np.long]) +assert_type(random_st.negative_binomial(10, D_arr_0p5, size=1), npt.NDArray[np.long]) +assert_type(random_st.negative_binomial(I_arr_like_10, 0.5), npt.NDArray[np.long]) +assert_type(random_st.negative_binomial(10, D_arr_like_0p5), npt.NDArray[np.long]) +assert_type(random_st.negative_binomial(I_arr_10, D_arr_0p5), npt.NDArray[np.long]) +assert_type(random_st.negative_binomial(I_arr_like_10, D_arr_like_0p5), npt.NDArray[np.long]) +assert_type(random_st.negative_binomial(I_arr_10, D_arr_0p5, size=1), npt.NDArray[np.long]) +assert_type(random_st.negative_binomial(I_arr_like_10, D_arr_like_0p5, size=1), npt.NDArray[np.long]) + +assert_type(random_st.hypergeometric(20, 20, 10), int) +assert_type(random_st.hypergeometric(20, 20, 10, size=None), int) +assert_type(random_st.hypergeometric(20, 20, 10, size=1), npt.NDArray[np.long]) +assert_type(random_st.hypergeometric(I_arr_20, 20, 10), npt.NDArray[np.long]) +assert_type(random_st.hypergeometric(20, I_arr_20, 10), npt.NDArray[np.long]) +assert_type(random_st.hypergeometric(I_arr_20, 20, I_arr_like_10, size=1), npt.NDArray[np.long]) +assert_type(random_st.hypergeometric(20, I_arr_20, 10, size=1), npt.NDArray[np.long]) +assert_type(random_st.hypergeometric(I_arr_like_20, 20, I_arr_10), npt.NDArray[np.long]) +assert_type(random_st.hypergeometric(20, I_arr_like_20, 10), npt.NDArray[np.long]) +assert_type(random_st.hypergeometric(I_arr_20, I_arr_20, 10), npt.NDArray[np.long]) +assert_type(random_st.hypergeometric(I_arr_like_20, I_arr_like_20, 10), npt.NDArray[np.long]) +assert_type(random_st.hypergeometric(I_arr_20, I_arr_20, I_arr_10, size=1), npt.NDArray[np.long]) +assert_type(random_st.hypergeometric(I_arr_like_20, I_arr_like_20, I_arr_like_10, size=1), npt.NDArray[np.long]) + +assert_type(random_st.randint(0, 100), int) +assert_type(random_st.randint(100), int) +assert_type(random_st.randint([100]), npt.NDArray[np.long]) +assert_type(random_st.randint(0, [100]), npt.NDArray[np.long]) + +assert_type(random_st.randint(2, dtype=bool), bool) +assert_type(random_st.randint(0, 2, dtype=bool), bool) +assert_type(random_st.randint(I_bool_high_open, dtype=bool), npt.NDArray[np.bool]) +assert_type(random_st.randint(I_bool_low, I_bool_high_open, dtype=bool), npt.NDArray[np.bool]) +assert_type(random_st.randint(0, I_bool_high_open, dtype=bool), npt.NDArray[np.bool]) + +assert_type(random_st.randint(2, dtype=np.bool), np.bool) +assert_type(random_st.randint(0, 2, dtype=np.bool), np.bool) +assert_type(random_st.randint(I_bool_high_open, dtype=np.bool), npt.NDArray[np.bool]) +assert_type(random_st.randint(I_bool_low, I_bool_high_open, dtype=np.bool), npt.NDArray[np.bool]) +assert_type(random_st.randint(0, I_bool_high_open, dtype=np.bool), npt.NDArray[np.bool]) + +assert_type(random_st.randint(256, dtype="u1"), np.uint8) +assert_type(random_st.randint(0, 256, dtype="u1"), np.uint8) +assert_type(random_st.randint(I_u1_high_open, dtype="u1"), npt.NDArray[np.uint8]) +assert_type(random_st.randint(I_u1_low, I_u1_high_open, dtype="u1"), npt.NDArray[np.uint8]) +assert_type(random_st.randint(0, I_u1_high_open, dtype="u1"), npt.NDArray[np.uint8]) + +assert_type(random_st.randint(256, dtype="uint8"), np.uint8) +assert_type(random_st.randint(0, 256, dtype="uint8"), np.uint8) +assert_type(random_st.randint(I_u1_high_open, dtype="uint8"), npt.NDArray[np.uint8]) +assert_type(random_st.randint(I_u1_low, I_u1_high_open, dtype="uint8"), npt.NDArray[np.uint8]) +assert_type(random_st.randint(0, I_u1_high_open, dtype="uint8"), npt.NDArray[np.uint8]) + +assert_type(random_st.randint(256, dtype=np.uint8), np.uint8) +assert_type(random_st.randint(0, 256, dtype=np.uint8), np.uint8) +assert_type(random_st.randint(I_u1_high_open, dtype=np.uint8), npt.NDArray[np.uint8]) +assert_type(random_st.randint(I_u1_low, I_u1_high_open, dtype=np.uint8), npt.NDArray[np.uint8]) +assert_type(random_st.randint(0, I_u1_high_open, dtype=np.uint8), npt.NDArray[np.uint8]) + +assert_type(random_st.randint(65536, dtype="u2"), np.uint16) +assert_type(random_st.randint(0, 65536, dtype="u2"), np.uint16) +assert_type(random_st.randint(I_u2_high_open, dtype="u2"), npt.NDArray[np.uint16]) +assert_type(random_st.randint(I_u2_low, I_u2_high_open, dtype="u2"), npt.NDArray[np.uint16]) +assert_type(random_st.randint(0, I_u2_high_open, dtype="u2"), npt.NDArray[np.uint16]) + +assert_type(random_st.randint(65536, dtype="uint16"), np.uint16) +assert_type(random_st.randint(0, 65536, dtype="uint16"), np.uint16) +assert_type(random_st.randint(I_u2_high_open, dtype="uint16"), npt.NDArray[np.uint16]) +assert_type(random_st.randint(I_u2_low, I_u2_high_open, dtype="uint16"), npt.NDArray[np.uint16]) +assert_type(random_st.randint(0, I_u2_high_open, dtype="uint16"), npt.NDArray[np.uint16]) + +assert_type(random_st.randint(65536, dtype=np.uint16), np.uint16) +assert_type(random_st.randint(0, 65536, dtype=np.uint16), np.uint16) +assert_type(random_st.randint(I_u2_high_open, dtype=np.uint16), npt.NDArray[np.uint16]) +assert_type(random_st.randint(I_u2_low, I_u2_high_open, dtype=np.uint16), npt.NDArray[np.uint16]) +assert_type(random_st.randint(0, I_u2_high_open, dtype=np.uint16), npt.NDArray[np.uint16]) + +assert_type(random_st.randint(4294967296, dtype="u4"), np.uint32) +assert_type(random_st.randint(0, 4294967296, dtype="u4"), np.uint32) +assert_type(random_st.randint(I_u4_high_open, dtype="u4"), npt.NDArray[np.uint32]) +assert_type(random_st.randint(I_u4_low, I_u4_high_open, dtype="u4"), npt.NDArray[np.uint32]) +assert_type(random_st.randint(0, I_u4_high_open, dtype="u4"), npt.NDArray[np.uint32]) + +assert_type(random_st.randint(4294967296, dtype="uint32"), np.uint32) +assert_type(random_st.randint(0, 4294967296, dtype="uint32"), np.uint32) +assert_type(random_st.randint(I_u4_high_open, dtype="uint32"), npt.NDArray[np.uint32]) +assert_type(random_st.randint(I_u4_low, I_u4_high_open, dtype="uint32"), npt.NDArray[np.uint32]) +assert_type(random_st.randint(0, I_u4_high_open, dtype="uint32"), npt.NDArray[np.uint32]) + +assert_type(random_st.randint(4294967296, dtype=np.uint32), np.uint32) +assert_type(random_st.randint(0, 4294967296, dtype=np.uint32), np.uint32) +assert_type(random_st.randint(I_u4_high_open, dtype=np.uint32), npt.NDArray[np.uint32]) +assert_type(random_st.randint(I_u4_low, I_u4_high_open, dtype=np.uint32), npt.NDArray[np.uint32]) +assert_type(random_st.randint(0, I_u4_high_open, dtype=np.uint32), npt.NDArray[np.uint32]) + +assert_type(random_st.randint(4294967296, dtype=np.uint), np.uint) +assert_type(random_st.randint(0, 4294967296, dtype=np.uint), np.uint) +assert_type(random_st.randint(I_u4_high_open, dtype=np.uint), npt.NDArray[np.uint]) +assert_type(random_st.randint(I_u4_low, I_u4_high_open, dtype=np.uint), npt.NDArray[np.uint]) +assert_type(random_st.randint(0, I_u4_high_open, dtype=np.uint), npt.NDArray[np.uint]) + +assert_type(random_st.randint(18446744073709551616, dtype="u8"), np.uint64) +assert_type(random_st.randint(0, 18446744073709551616, dtype="u8"), np.uint64) +assert_type(random_st.randint(I_u8_high_open, dtype="u8"), npt.NDArray[np.uint64]) +assert_type(random_st.randint(I_u8_low, I_u8_high_open, dtype="u8"), npt.NDArray[np.uint64]) +assert_type(random_st.randint(0, I_u8_high_open, dtype="u8"), npt.NDArray[np.uint64]) + +assert_type(random_st.randint(18446744073709551616, dtype="uint64"), np.uint64) +assert_type(random_st.randint(0, 18446744073709551616, dtype="uint64"), np.uint64) +assert_type(random_st.randint(I_u8_high_open, dtype="uint64"), npt.NDArray[np.uint64]) +assert_type(random_st.randint(I_u8_low, I_u8_high_open, dtype="uint64"), npt.NDArray[np.uint64]) +assert_type(random_st.randint(0, I_u8_high_open, dtype="uint64"), npt.NDArray[np.uint64]) + +assert_type(random_st.randint(18446744073709551616, dtype=np.uint64), np.uint64) +assert_type(random_st.randint(0, 18446744073709551616, dtype=np.uint64), np.uint64) +assert_type(random_st.randint(I_u8_high_open, dtype=np.uint64), npt.NDArray[np.uint64]) +assert_type(random_st.randint(I_u8_low, I_u8_high_open, dtype=np.uint64), npt.NDArray[np.uint64]) +assert_type(random_st.randint(0, I_u8_high_open, dtype=np.uint64), npt.NDArray[np.uint64]) + +assert_type(random_st.randint(128, dtype="i1"), np.int8) +assert_type(random_st.randint(-128, 128, dtype="i1"), np.int8) +assert_type(random_st.randint(I_i1_high_open, dtype="i1"), npt.NDArray[np.int8]) +assert_type(random_st.randint(I_i1_low, I_i1_high_open, dtype="i1"), npt.NDArray[np.int8]) +assert_type(random_st.randint(-128, I_i1_high_open, dtype="i1"), npt.NDArray[np.int8]) + +assert_type(random_st.randint(128, dtype="int8"), np.int8) +assert_type(random_st.randint(-128, 128, dtype="int8"), np.int8) +assert_type(random_st.randint(I_i1_high_open, dtype="int8"), npt.NDArray[np.int8]) +assert_type(random_st.randint(I_i1_low, I_i1_high_open, dtype="int8"), npt.NDArray[np.int8]) +assert_type(random_st.randint(-128, I_i1_high_open, dtype="int8"), npt.NDArray[np.int8]) + +assert_type(random_st.randint(128, dtype=np.int8), np.int8) +assert_type(random_st.randint(-128, 128, dtype=np.int8), np.int8) +assert_type(random_st.randint(I_i1_high_open, dtype=np.int8), npt.NDArray[np.int8]) +assert_type(random_st.randint(I_i1_low, I_i1_high_open, dtype=np.int8), npt.NDArray[np.int8]) +assert_type(random_st.randint(-128, I_i1_high_open, dtype=np.int8), npt.NDArray[np.int8]) + +assert_type(random_st.randint(32768, dtype="i2"), np.int16) +assert_type(random_st.randint(-32768, 32768, dtype="i2"), np.int16) +assert_type(random_st.randint(I_i2_high_open, dtype="i2"), npt.NDArray[np.int16]) +assert_type(random_st.randint(I_i2_low, I_i2_high_open, dtype="i2"), npt.NDArray[np.int16]) +assert_type(random_st.randint(-32768, I_i2_high_open, dtype="i2"), npt.NDArray[np.int16]) + +assert_type(random_st.randint(32768, dtype="int16"), np.int16) +assert_type(random_st.randint(-32768, 32768, dtype="int16"), np.int16) +assert_type(random_st.randint(I_i2_high_open, dtype="int16"), npt.NDArray[np.int16]) +assert_type(random_st.randint(I_i2_low, I_i2_high_open, dtype="int16"), npt.NDArray[np.int16]) +assert_type(random_st.randint(-32768, I_i2_high_open, dtype="int16"), npt.NDArray[np.int16]) + +assert_type(random_st.randint(32768, dtype=np.int16), np.int16) +assert_type(random_st.randint(-32768, 32768, dtype=np.int16), np.int16) +assert_type(random_st.randint(I_i2_high_open, dtype=np.int16), npt.NDArray[np.int16]) +assert_type(random_st.randint(I_i2_low, I_i2_high_open, dtype=np.int16), npt.NDArray[np.int16]) +assert_type(random_st.randint(-32768, I_i2_high_open, dtype=np.int16), npt.NDArray[np.int16]) + +assert_type(random_st.randint(2147483648, dtype="i4"), np.int32) +assert_type(random_st.randint(-2147483648, 2147483648, dtype="i4"), np.int32) +assert_type(random_st.randint(I_i4_high_open, dtype="i4"), npt.NDArray[np.int32]) +assert_type(random_st.randint(I_i4_low, I_i4_high_open, dtype="i4"), npt.NDArray[np.int32]) +assert_type(random_st.randint(-2147483648, I_i4_high_open, dtype="i4"), npt.NDArray[np.int32]) + +assert_type(random_st.randint(2147483648, dtype="int32"), np.int32) +assert_type(random_st.randint(-2147483648, 2147483648, dtype="int32"), np.int32) +assert_type(random_st.randint(I_i4_high_open, dtype="int32"), npt.NDArray[np.int32]) +assert_type(random_st.randint(I_i4_low, I_i4_high_open, dtype="int32"), npt.NDArray[np.int32]) +assert_type(random_st.randint(-2147483648, I_i4_high_open, dtype="int32"), npt.NDArray[np.int32]) + +assert_type(random_st.randint(2147483648, dtype=np.int32), np.int32) +assert_type(random_st.randint(-2147483648, 2147483648, dtype=np.int32), np.int32) +assert_type(random_st.randint(I_i4_high_open, dtype=np.int32), npt.NDArray[np.int32]) +assert_type(random_st.randint(I_i4_low, I_i4_high_open, dtype=np.int32), npt.NDArray[np.int32]) +assert_type(random_st.randint(-2147483648, I_i4_high_open, dtype=np.int32), npt.NDArray[np.int32]) + +assert_type(random_st.randint(2147483648, dtype=np.int_), np.int_) +assert_type(random_st.randint(-2147483648, 2147483648, dtype=np.int_), np.int_) +assert_type(random_st.randint(I_i4_high_open, dtype=np.int_), npt.NDArray[np.int_]) +assert_type(random_st.randint(I_i4_low, I_i4_high_open, dtype=np.int_), npt.NDArray[np.int_]) +assert_type(random_st.randint(-2147483648, I_i4_high_open, dtype=np.int_), npt.NDArray[np.int_]) + +assert_type(random_st.randint(9223372036854775808, dtype="i8"), np.int64) +assert_type(random_st.randint(-9223372036854775808, 9223372036854775808, dtype="i8"), np.int64) +assert_type(random_st.randint(I_i8_high_open, dtype="i8"), npt.NDArray[np.int64]) +assert_type(random_st.randint(I_i8_low, I_i8_high_open, dtype="i8"), npt.NDArray[np.int64]) +assert_type(random_st.randint(-9223372036854775808, I_i8_high_open, dtype="i8"), npt.NDArray[np.int64]) + +assert_type(random_st.randint(9223372036854775808, dtype="int64"), np.int64) +assert_type(random_st.randint(-9223372036854775808, 9223372036854775808, dtype="int64"), np.int64) +assert_type(random_st.randint(I_i8_high_open, dtype="int64"), npt.NDArray[np.int64]) +assert_type(random_st.randint(I_i8_low, I_i8_high_open, dtype="int64"), npt.NDArray[np.int64]) +assert_type(random_st.randint(-9223372036854775808, I_i8_high_open, dtype="int64"), npt.NDArray[np.int64]) + +assert_type(random_st.randint(9223372036854775808, dtype=np.int64), np.int64) +assert_type(random_st.randint(-9223372036854775808, 9223372036854775808, dtype=np.int64), np.int64) +assert_type(random_st.randint(I_i8_high_open, dtype=np.int64), npt.NDArray[np.int64]) +assert_type(random_st.randint(I_i8_low, I_i8_high_open, dtype=np.int64), npt.NDArray[np.int64]) +assert_type(random_st.randint(-9223372036854775808, I_i8_high_open, dtype=np.int64), npt.NDArray[np.int64]) + +assert_type(random_st._bit_generator, np.random.BitGenerator) + +assert_type(random_st.bytes(2), bytes) + +assert_type(random_st.choice(5), int) +assert_type(random_st.choice(5, 3), npt.NDArray[np.long]) +assert_type(random_st.choice(5, 3, replace=True), npt.NDArray[np.long]) +assert_type(random_st.choice(5, 3, p=[1 / 5] * 5), npt.NDArray[np.long]) +assert_type(random_st.choice(5, 3, p=[1 / 5] * 5, replace=False), npt.NDArray[np.long]) + +assert_type(random_st.choice(["pooh", "rabbit", "piglet", "Christopher"]), Any) +assert_type(random_st.choice(["pooh", "rabbit", "piglet", "Christopher"], 3), npt.NDArray[Any]) +assert_type(random_st.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, p=[1 / 4] * 4), npt.NDArray[Any]) +assert_type(random_st.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=True), npt.NDArray[Any]) +assert_type(random_st.choice(["pooh", "rabbit", "piglet", "Christopher"], 3, replace=False, p=np.array([1 / 8, 1 / 8, 1 / 2, 1 / 4])), npt.NDArray[Any]) + +assert_type(random_st.dirichlet([0.5, 0.5]), npt.NDArray[np.float64]) +assert_type(random_st.dirichlet(np.array([0.5, 0.5])), npt.NDArray[np.float64]) +assert_type(random_st.dirichlet(np.array([0.5, 0.5]), size=3), npt.NDArray[np.float64]) + +assert_type(random_st.multinomial(20, [1 / 6.0] * 6), npt.NDArray[np.long]) +assert_type(random_st.multinomial(20, np.array([0.5, 0.5])), npt.NDArray[np.long]) +assert_type(random_st.multinomial(20, [1 / 6.0] * 6, size=2), npt.NDArray[np.long]) + +assert_type(random_st.multivariate_normal([0.0], [[1.0]]), npt.NDArray[np.float64]) +assert_type(random_st.multivariate_normal([0.0], np.array([[1.0]])), npt.NDArray[np.float64]) +assert_type(random_st.multivariate_normal(np.array([0.0]), [[1.0]]), npt.NDArray[np.float64]) +assert_type(random_st.multivariate_normal([0.0], np.array([[1.0]])), npt.NDArray[np.float64]) + +assert_type(random_st.permutation(10), npt.NDArray[np.long]) +assert_type(random_st.permutation([1, 2, 3, 4]), npt.NDArray[Any]) +assert_type(random_st.permutation(np.array([1, 2, 3, 4])), npt.NDArray[Any]) +assert_type(random_st.permutation(D_2D), npt.NDArray[Any]) + +assert_type(random_st.shuffle(np.arange(10)), None) +assert_type(random_st.shuffle([1, 2, 3, 4, 5]), None) +assert_type(random_st.shuffle(D_2D), None) + +assert_type(np.random.RandomState(pcg64), np.random.RandomState) +assert_type(np.random.RandomState(0), np.random.RandomState) +assert_type(np.random.RandomState([0, 1, 2]), np.random.RandomState) +assert_type(random_st.__str__(), str) +assert_type(random_st.__repr__(), str) +random_st_state = random_st.__getstate__() +assert_type(random_st_state, dict[str, Any]) +assert_type(random_st.__setstate__(random_st_state), None) +assert_type(random_st.seed(), None) +assert_type(random_st.seed(1), None) +assert_type(random_st.seed([0, 1]), None) +random_st_get_state = random_st.get_state() +assert_type(random_st_state, dict[str, Any]) +random_st_get_state_legacy = random_st.get_state(legacy=True) +assert_type(random_st_get_state_legacy, dict[str, Any] | tuple[str, npt.NDArray[np.uint32], int, int, float]) +assert_type(random_st.set_state(random_st_get_state), None) + +assert_type(random_st.rand(), float) +assert_type(random_st.rand(1), npt.NDArray[np.float64]) +assert_type(random_st.rand(1, 2), npt.NDArray[np.float64]) +assert_type(random_st.randn(), float) +assert_type(random_st.randn(1), npt.NDArray[np.float64]) +assert_type(random_st.randn(1, 2), npt.NDArray[np.float64]) +assert_type(random_st.random_sample(), float) +assert_type(random_st.random_sample(1), npt.NDArray[np.float64]) +assert_type(random_st.random_sample(size=(1, 2)), npt.NDArray[np.float64]) + +assert_type(random_st.tomaxint(), int) +assert_type(random_st.tomaxint(1), npt.NDArray[np.int64]) +assert_type(random_st.tomaxint((1,)), npt.NDArray[np.int64]) + +assert_type(np.random.mtrand.set_bit_generator(pcg64), None) +assert_type(np.random.mtrand.get_bit_generator(), np.random.BitGenerator) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/rec.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/rec.pyi new file mode 100644 index 0000000..aacf217 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/rec.pyi @@ -0,0 +1,171 @@ +import io +from typing import Any, TypeAlias, assert_type + +import numpy as np +import numpy.typing as npt + +_RecArray: TypeAlias = np.recarray[tuple[Any, ...], np.dtype[np.record]] + +AR_i8: npt.NDArray[np.int64] +REC_AR_V: _RecArray +AR_LIST: list[npt.NDArray[np.int64]] + +record: np.record +file_obj: io.BufferedIOBase + +assert_type(np.rec.format_parser( + formats=[np.float64, np.int64, np.bool], + names=["f8", "i8", "?"], + titles=None, + aligned=True, +), np.rec.format_parser) +assert_type(np.rec.format_parser.dtype, np.dtype[np.void]) + +assert_type(record.field_a, Any) +assert_type(record.field_b, Any) +assert_type(record["field_a"], Any) +assert_type(record["field_b"], Any) +assert_type(record.pprint(), str) +record.field_c = 5 + +assert_type(REC_AR_V.field(0), Any) +assert_type(REC_AR_V.field("field_a"), Any) +assert_type(REC_AR_V.field(0, AR_i8), None) +assert_type(REC_AR_V.field("field_a", AR_i8), None) +assert_type(REC_AR_V["field_a"], npt.NDArray[Any]) +assert_type(REC_AR_V.field_a, Any) +assert_type(REC_AR_V.__array_finalize__(object()), None) + +assert_type( + np.recarray( + shape=(10, 5), + formats=[np.float64, np.int64, np.bool], + order="K", + byteorder="|", + ), + _RecArray, +) + +assert_type( + np.recarray( + shape=(10, 5), + dtype=[("f8", np.float64), ("i8", np.int64)], + strides=(5, 5), + ), + np.recarray, +) + +assert_type(np.rec.fromarrays(AR_LIST), np.recarray) +assert_type( + np.rec.fromarrays(AR_LIST, dtype=np.int64), + np.recarray, +) +assert_type( + np.rec.fromarrays( + AR_LIST, + formats=[np.int64, np.float64], + names=["i8", "f8"] + ), + _RecArray, +) + +assert_type( + np.rec.fromrecords((1, 1.5)), + _RecArray +) + +assert_type( + np.rec.fromrecords( + [(1, 1.5)], + dtype=[("i8", np.int64), ("f8", np.float64)], + ), + _RecArray, +) + +assert_type( + np.rec.fromrecords( + REC_AR_V, + formats=[np.int64, np.float64], + names=["i8", "f8"] + ), + _RecArray, +) + +assert_type( + np.rec.fromstring( + b"(1, 1.5)", + dtype=[("i8", np.int64), ("f8", np.float64)], + ), + _RecArray, +) + +assert_type( + np.rec.fromstring( + REC_AR_V, + formats=[np.int64, np.float64], + names=["i8", "f8"] + ), + _RecArray, +) + +assert_type( + np.rec.fromfile( + "test_file.txt", + dtype=[("i8", np.int64), ("f8", np.float64)], + ), + np.recarray, +) + +assert_type( + np.rec.fromfile( + file_obj, + formats=[np.int64, np.float64], + names=["i8", "f8"] + ), + _RecArray, +) + +assert_type(np.rec.array(AR_i8), np.recarray[tuple[Any, ...], np.dtype[np.int64]]) + +assert_type( + np.rec.array([(1, 1.5)], dtype=[("i8", np.int64), ("f8", np.float64)]), + np.recarray, +) + +assert_type( + np.rec.array( + [(1, 1.5)], + formats=[np.int64, np.float64], + names=["i8", "f8"] + ), + _RecArray, +) + +assert_type( + np.rec.array( + None, + dtype=np.float64, + shape=(10, 3), + ), + np.recarray, +) + +assert_type( + np.rec.array( + None, + formats=[np.int64, np.float64], + names=["i8", "f8"], + shape=(10, 3), + ), + _RecArray, +) + +assert_type( + np.rec.array(file_obj, dtype=np.float64), + np.recarray, +) + +assert_type( + np.rec.array(file_obj, formats=[np.int64, np.float64], names=["i8", "f8"]), + _RecArray, +) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/scalars.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/scalars.pyi new file mode 100644 index 0000000..d7b2777 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/scalars.pyi @@ -0,0 +1,191 @@ +from typing import Any, Literal, TypeAlias, assert_type + +import numpy as np + +_1: TypeAlias = Literal[1] + +b: np.bool +u8: np.uint64 +i8: np.int64 +f8: np.float64 +c8: np.complex64 +c16: np.complex128 +m: np.timedelta64 +U: np.str_ +S: np.bytes_ +V: np.void +O: np.object_ # cannot exists at runtime + +array_nd: np.ndarray[Any, Any] +array_0d: np.ndarray[tuple[()], Any] +array_2d_2x2: np.ndarray[tuple[Literal[2], Literal[2]], Any] + +assert_type(c8.real, np.float32) +assert_type(c8.imag, np.float32) + +assert_type(c8.real.real, np.float32) +assert_type(c8.real.imag, np.float32) + +assert_type(c8.itemsize, int) +assert_type(c8.shape, tuple[()]) +assert_type(c8.strides, tuple[()]) + +assert_type(c8.ndim, Literal[0]) +assert_type(c8.size, Literal[1]) + +assert_type(c8.squeeze(), np.complex64) +assert_type(c8.byteswap(), np.complex64) +assert_type(c8.transpose(), np.complex64) + +assert_type(c8.dtype, np.dtype[np.complex64]) + +assert_type(c8.real, np.float32) +assert_type(c16.imag, np.float64) + +assert_type(np.str_('foo'), np.str_) + +assert_type(V[0], Any) +assert_type(V["field1"], Any) +assert_type(V[["field1", "field2"]], np.void) +V[0] = 5 + +# Aliases +assert_type(np.bool_(), np.bool[Literal[False]]) +assert_type(np.byte(), np.byte) +assert_type(np.short(), np.short) +assert_type(np.intc(), np.intc) +assert_type(np.intp(), np.intp) +assert_type(np.int_(), np.int_) +assert_type(np.long(), np.long) +assert_type(np.longlong(), np.longlong) + +assert_type(np.ubyte(), np.ubyte) +assert_type(np.ushort(), np.ushort) +assert_type(np.uintc(), np.uintc) +assert_type(np.uintp(), np.uintp) +assert_type(np.uint(), np.uint) +assert_type(np.ulong(), np.ulong) +assert_type(np.ulonglong(), np.ulonglong) + +assert_type(np.half(), np.half) +assert_type(np.single(), np.single) +assert_type(np.double(), np.double) +assert_type(np.longdouble(), np.longdouble) + +assert_type(np.csingle(), np.csingle) +assert_type(np.cdouble(), np.cdouble) +assert_type(np.clongdouble(), np.clongdouble) + +assert_type(b.item(), bool) +assert_type(i8.item(), int) +assert_type(u8.item(), int) +assert_type(f8.item(), float) +assert_type(c16.item(), complex) +assert_type(U.item(), str) +assert_type(S.item(), bytes) + +assert_type(b.tolist(), bool) +assert_type(i8.tolist(), int) +assert_type(u8.tolist(), int) +assert_type(f8.tolist(), float) +assert_type(c16.tolist(), complex) +assert_type(U.tolist(), str) +assert_type(S.tolist(), bytes) + +assert_type(b.ravel(), np.ndarray[tuple[int], np.dtype[np.bool]]) +assert_type(i8.ravel(), np.ndarray[tuple[int], np.dtype[np.int64]]) +assert_type(u8.ravel(), np.ndarray[tuple[int], np.dtype[np.uint64]]) +assert_type(f8.ravel(), np.ndarray[tuple[int], np.dtype[np.float64]]) +assert_type(c16.ravel(), np.ndarray[tuple[int], np.dtype[np.complex128]]) +assert_type(U.ravel(), np.ndarray[tuple[int], np.dtype[np.str_]]) +assert_type(S.ravel(), np.ndarray[tuple[int], np.dtype[np.bytes_]]) + +assert_type(b.flatten(), np.ndarray[tuple[int], np.dtype[np.bool]]) +assert_type(i8.flatten(), np.ndarray[tuple[int], np.dtype[np.int64]]) +assert_type(u8.flatten(), np.ndarray[tuple[int], np.dtype[np.uint64]]) +assert_type(f8.flatten(), np.ndarray[tuple[int], np.dtype[np.float64]]) +assert_type(c16.flatten(), np.ndarray[tuple[int], np.dtype[np.complex128]]) +assert_type(U.flatten(), np.ndarray[tuple[int], np.dtype[np.str_]]) +assert_type(S.flatten(), np.ndarray[tuple[int], np.dtype[np.bytes_]]) + +assert_type(b.reshape(()), np.bool) +assert_type(i8.reshape([]), np.int64) +assert_type(b.reshape(1), np.ndarray[tuple[_1], np.dtype[np.bool]]) +assert_type(i8.reshape(-1), np.ndarray[tuple[_1], np.dtype[np.int64]]) +assert_type(u8.reshape(1, 1), np.ndarray[tuple[_1, _1], np.dtype[np.uint64]]) +assert_type(f8.reshape(1, -1), np.ndarray[tuple[_1, _1], np.dtype[np.float64]]) +assert_type(c16.reshape(1, 1, 1), np.ndarray[tuple[_1, _1, _1], np.dtype[np.complex128]]) +assert_type(U.reshape(1, 1, 1, 1), np.ndarray[tuple[_1, _1, _1, _1], np.dtype[np.str_]]) +assert_type( + S.reshape(1, 1, 1, 1, 1), + np.ndarray[ + # len(shape) >= 5 + tuple[_1, _1, _1, _1, _1, *tuple[_1, ...]], + np.dtype[np.bytes_], + ], +) + +assert_type(i8.astype(float), Any) +assert_type(i8.astype(np.float64), np.float64) + +assert_type(i8.view(), np.int64) +assert_type(i8.view(np.float64), np.float64) +assert_type(i8.view(float), Any) +assert_type(i8.view(np.float64, np.ndarray), np.float64) + +assert_type(i8.getfield(float), Any) +assert_type(i8.getfield(np.float64), np.float64) +assert_type(i8.getfield(np.float64, 8), np.float64) + +assert_type(f8.as_integer_ratio(), tuple[int, int]) +assert_type(f8.is_integer(), bool) +assert_type(f8.__trunc__(), int) +assert_type(f8.__getformat__("float"), str) +assert_type(f8.hex(), str) +assert_type(np.float64.fromhex("0x0.0p+0"), np.float64) + +assert_type(f8.__getnewargs__(), tuple[float]) +assert_type(c16.__getnewargs__(), tuple[float, float]) + +assert_type(i8.numerator, np.int64) +assert_type(i8.denominator, Literal[1]) +assert_type(u8.numerator, np.uint64) +assert_type(u8.denominator, Literal[1]) +assert_type(m.numerator, np.timedelta64) +assert_type(m.denominator, Literal[1]) + +assert_type(round(i8), int) +assert_type(round(i8, 3), np.int64) +assert_type(round(u8), int) +assert_type(round(u8, 3), np.uint64) +assert_type(round(f8), int) +assert_type(round(f8, 3), np.float64) + +assert_type(f8.__ceil__(), int) +assert_type(f8.__floor__(), int) + +assert_type(i8.is_integer(), Literal[True]) + +assert_type(O.real, np.object_) +assert_type(O.imag, np.object_) +assert_type(int(O), int) +assert_type(float(O), float) +assert_type(complex(O), complex) + +# These fail fail because of a mypy __new__ bug: +# https://github.com/python/mypy/issues/15182 +# According to the typing spec, the following statements are valid, see +# https://typing.readthedocs.io/en/latest/spec/constructors.html#new-method + +# assert_type(np.object_(), None) +# assert_type(np.object_(None), None) +# assert_type(np.object_(array_nd), np.ndarray[Any, np.dtype[np.object_]]) +# assert_type(np.object_([]), npt.NDArray[np.object_]) +# assert_type(np.object_(()), npt.NDArray[np.object_]) +# assert_type(np.object_(range(4)), npt.NDArray[np.object_]) +# assert_type(np.object_(+42), int) +# assert_type(np.object_(1 / 137), float) +# assert_type(np.object_('Developers! ' * (1 << 6)), str) +# assert_type(np.object_(object()), object) +# assert_type(np.object_({False, True, NotADirectoryError}), set[Any]) +# assert_type(np.object_({'spam': 'food', 'ham': 'food'}), dict[str, str]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/shape.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/shape.pyi new file mode 100644 index 0000000..2406a39 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/shape.pyi @@ -0,0 +1,13 @@ +from typing import Any, NamedTuple, assert_type + +import numpy as np + +# Subtype of tuple[int, int] +class XYGrid(NamedTuple): + x_axis: int + y_axis: int + +arr: np.ndarray[XYGrid, Any] + +# Test shape property matches shape typevar +assert_type(arr.shape, XYGrid) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/shape_base.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/shape_base.pyi new file mode 100644 index 0000000..e409a53 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/shape_base.pyi @@ -0,0 +1,52 @@ +from typing import Any, assert_type + +import numpy as np +import numpy.typing as npt + +i8: np.int64 +f8: np.float64 + +AR_b: npt.NDArray[np.bool] +AR_i8: npt.NDArray[np.int64] +AR_f8: npt.NDArray[np.float64] + +AR_LIKE_f8: list[float] + +assert_type(np.take_along_axis(AR_f8, AR_i8, axis=1), npt.NDArray[np.float64]) +assert_type(np.take_along_axis(f8, AR_i8, axis=None), npt.NDArray[np.float64]) + +assert_type(np.put_along_axis(AR_f8, AR_i8, "1.0", axis=1), None) + +assert_type(np.expand_dims(AR_i8, 2), npt.NDArray[np.int64]) +assert_type(np.expand_dims(AR_LIKE_f8, 2), npt.NDArray[Any]) + +assert_type(np.column_stack([AR_i8]), npt.NDArray[np.int64]) +assert_type(np.column_stack([AR_LIKE_f8]), npt.NDArray[Any]) + +assert_type(np.dstack([AR_i8]), npt.NDArray[np.int64]) +assert_type(np.dstack([AR_LIKE_f8]), npt.NDArray[Any]) + +assert_type(np.array_split(AR_i8, [3, 5, 6, 10]), list[npt.NDArray[np.int64]]) +assert_type(np.array_split(AR_LIKE_f8, [3, 5, 6, 10]), list[npt.NDArray[Any]]) + +assert_type(np.split(AR_i8, [3, 5, 6, 10]), list[npt.NDArray[np.int64]]) +assert_type(np.split(AR_LIKE_f8, [3, 5, 6, 10]), list[npt.NDArray[Any]]) + +assert_type(np.hsplit(AR_i8, [3, 5, 6, 10]), list[npt.NDArray[np.int64]]) +assert_type(np.hsplit(AR_LIKE_f8, [3, 5, 6, 10]), list[npt.NDArray[Any]]) + +assert_type(np.vsplit(AR_i8, [3, 5, 6, 10]), list[npt.NDArray[np.int64]]) +assert_type(np.vsplit(AR_LIKE_f8, [3, 5, 6, 10]), list[npt.NDArray[Any]]) + +assert_type(np.dsplit(AR_i8, [3, 5, 6, 10]), list[npt.NDArray[np.int64]]) +assert_type(np.dsplit(AR_LIKE_f8, [3, 5, 6, 10]), list[npt.NDArray[Any]]) + +assert_type(np.kron(AR_b, AR_b), npt.NDArray[np.bool]) +assert_type(np.kron(AR_b, AR_i8), npt.NDArray[np.signedinteger]) +assert_type(np.kron(AR_f8, AR_f8), npt.NDArray[np.floating]) + +assert_type(np.tile(AR_i8, 5), npt.NDArray[np.int64]) +assert_type(np.tile(AR_LIKE_f8, [2, 2]), npt.NDArray[Any]) + +assert_type(np.unstack(AR_i8, axis=0), tuple[npt.NDArray[np.int64], ...]) +assert_type(np.unstack(AR_LIKE_f8, axis=0), tuple[npt.NDArray[Any], ...]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/stride_tricks.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/stride_tricks.pyi new file mode 100644 index 0000000..8fde9b8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/stride_tricks.pyi @@ -0,0 +1,27 @@ +from typing import Any, assert_type + +import numpy as np +import numpy.typing as npt + +AR_f8: npt.NDArray[np.float64] +AR_LIKE_f: list[float] +interface_dict: dict[str, Any] + +assert_type(np.lib.stride_tricks.as_strided(AR_f8), npt.NDArray[np.float64]) +assert_type(np.lib.stride_tricks.as_strided(AR_LIKE_f), npt.NDArray[Any]) +assert_type(np.lib.stride_tricks.as_strided(AR_f8, strides=(1, 5)), npt.NDArray[np.float64]) +assert_type(np.lib.stride_tricks.as_strided(AR_f8, shape=[9, 20]), npt.NDArray[np.float64]) + +assert_type(np.lib.stride_tricks.sliding_window_view(AR_f8, 5), npt.NDArray[np.float64]) +assert_type(np.lib.stride_tricks.sliding_window_view(AR_LIKE_f, (1, 5)), npt.NDArray[Any]) +assert_type(np.lib.stride_tricks.sliding_window_view(AR_f8, [9], axis=1), npt.NDArray[np.float64]) + +assert_type(np.broadcast_to(AR_f8, 5), npt.NDArray[np.float64]) +assert_type(np.broadcast_to(AR_LIKE_f, (1, 5)), npt.NDArray[Any]) +assert_type(np.broadcast_to(AR_f8, [4, 6], subok=True), npt.NDArray[np.float64]) + +assert_type(np.broadcast_shapes((1, 2), [3, 1], (3, 2)), tuple[Any, ...]) +assert_type(np.broadcast_shapes((6, 7), (5, 6, 1), 7, (5, 1, 7)), tuple[Any, ...]) + +assert_type(np.broadcast_arrays(AR_f8, AR_f8), tuple[npt.NDArray[Any], ...]) +assert_type(np.broadcast_arrays(AR_f8, AR_LIKE_f), tuple[npt.NDArray[Any], ...]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/strings.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/strings.pyi new file mode 100644 index 0000000..18bd252 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/strings.pyi @@ -0,0 +1,196 @@ +from typing import TypeAlias, assert_type + +import numpy as np +import numpy._typing as np_t +import numpy.typing as npt + +AR_T_alias: TypeAlias = np.ndarray[np_t._AnyShape, np.dtypes.StringDType] +AR_TU_alias: TypeAlias = AR_T_alias | npt.NDArray[np.str_] + +AR_U: npt.NDArray[np.str_] +AR_S: npt.NDArray[np.bytes_] +AR_T: AR_T_alias + +assert_type(np.strings.equal(AR_U, AR_U), npt.NDArray[np.bool]) +assert_type(np.strings.equal(AR_S, AR_S), npt.NDArray[np.bool]) +assert_type(np.strings.equal(AR_T, AR_T), npt.NDArray[np.bool]) + +assert_type(np.strings.not_equal(AR_U, AR_U), npt.NDArray[np.bool]) +assert_type(np.strings.not_equal(AR_S, AR_S), npt.NDArray[np.bool]) +assert_type(np.strings.not_equal(AR_T, AR_T), npt.NDArray[np.bool]) + +assert_type(np.strings.greater_equal(AR_U, AR_U), npt.NDArray[np.bool]) +assert_type(np.strings.greater_equal(AR_S, AR_S), npt.NDArray[np.bool]) +assert_type(np.strings.greater_equal(AR_T, AR_T), npt.NDArray[np.bool]) + +assert_type(np.strings.less_equal(AR_U, AR_U), npt.NDArray[np.bool]) +assert_type(np.strings.less_equal(AR_S, AR_S), npt.NDArray[np.bool]) +assert_type(np.strings.less_equal(AR_T, AR_T), npt.NDArray[np.bool]) + +assert_type(np.strings.greater(AR_U, AR_U), npt.NDArray[np.bool]) +assert_type(np.strings.greater(AR_S, AR_S), npt.NDArray[np.bool]) +assert_type(np.strings.greater(AR_T, AR_T), npt.NDArray[np.bool]) + +assert_type(np.strings.less(AR_U, AR_U), npt.NDArray[np.bool]) +assert_type(np.strings.less(AR_S, AR_S), npt.NDArray[np.bool]) +assert_type(np.strings.less(AR_T, AR_T), npt.NDArray[np.bool]) + +assert_type(np.strings.add(AR_U, AR_U), npt.NDArray[np.str_]) +assert_type(np.strings.add(AR_S, AR_S), npt.NDArray[np.bytes_]) +assert_type(np.strings.add(AR_T, AR_T), AR_T_alias) + +assert_type(np.strings.multiply(AR_U, 5), npt.NDArray[np.str_]) +assert_type(np.strings.multiply(AR_S, [5, 4, 3]), npt.NDArray[np.bytes_]) +assert_type(np.strings.multiply(AR_T, 5), AR_T_alias) + +assert_type(np.strings.mod(AR_U, "test"), npt.NDArray[np.str_]) +assert_type(np.strings.mod(AR_S, "test"), npt.NDArray[np.bytes_]) +assert_type(np.strings.mod(AR_T, "test"), AR_T_alias) + +assert_type(np.strings.capitalize(AR_U), npt.NDArray[np.str_]) +assert_type(np.strings.capitalize(AR_S), npt.NDArray[np.bytes_]) +assert_type(np.strings.capitalize(AR_T), AR_T_alias) + +assert_type(np.strings.center(AR_U, 5), npt.NDArray[np.str_]) +assert_type(np.strings.center(AR_S, [2, 3, 4], b"a"), npt.NDArray[np.bytes_]) +assert_type(np.strings.center(AR_T, 5), AR_T_alias) + +assert_type(np.strings.encode(AR_U), npt.NDArray[np.bytes_]) +assert_type(np.strings.encode(AR_T), npt.NDArray[np.bytes_]) +assert_type(np.strings.decode(AR_S), npt.NDArray[np.str_]) + +assert_type(np.strings.expandtabs(AR_U), npt.NDArray[np.str_]) +assert_type(np.strings.expandtabs(AR_S, tabsize=4), npt.NDArray[np.bytes_]) +assert_type(np.strings.expandtabs(AR_T), AR_T_alias) + +assert_type(np.strings.ljust(AR_U, 5), npt.NDArray[np.str_]) +assert_type(np.strings.ljust(AR_S, [4, 3, 1], fillchar=[b"a", b"b", b"c"]), npt.NDArray[np.bytes_]) +assert_type(np.strings.ljust(AR_T, 5), AR_T_alias) +assert_type(np.strings.ljust(AR_T, [4, 2, 1], fillchar=["a", "b", "c"]), AR_T_alias) + +assert_type(np.strings.rjust(AR_U, 5), npt.NDArray[np.str_]) +assert_type(np.strings.rjust(AR_S, [4, 3, 1], fillchar=[b"a", b"b", b"c"]), npt.NDArray[np.bytes_]) +assert_type(np.strings.rjust(AR_T, 5), AR_T_alias) +assert_type(np.strings.rjust(AR_T, [4, 2, 1], fillchar=["a", "b", "c"]), AR_T_alias) + +assert_type(np.strings.lstrip(AR_U), npt.NDArray[np.str_]) +assert_type(np.strings.lstrip(AR_S, b"_"), npt.NDArray[np.bytes_]) +assert_type(np.strings.lstrip(AR_T), AR_T_alias) +assert_type(np.strings.lstrip(AR_T, "_"), AR_T_alias) + +assert_type(np.strings.rstrip(AR_U), npt.NDArray[np.str_]) +assert_type(np.strings.rstrip(AR_S, b"_"), npt.NDArray[np.bytes_]) +assert_type(np.strings.rstrip(AR_T), AR_T_alias) +assert_type(np.strings.rstrip(AR_T, "_"), AR_T_alias) + +assert_type(np.strings.strip(AR_U), npt.NDArray[np.str_]) +assert_type(np.strings.strip(AR_S, b"_"), npt.NDArray[np.bytes_]) +assert_type(np.strings.strip(AR_T), AR_T_alias) +assert_type(np.strings.strip(AR_T, "_"), AR_T_alias) + +assert_type(np.strings.count(AR_U, "a", start=[1, 2, 3]), npt.NDArray[np.int_]) +assert_type(np.strings.count(AR_S, [b"a", b"b", b"c"], end=9), npt.NDArray[np.int_]) +assert_type(np.strings.count(AR_T, "a", start=[1, 2, 3]), npt.NDArray[np.int_]) +assert_type(np.strings.count(AR_T, ["a", "b", "c"], end=9), npt.NDArray[np.int_]) + +assert_type(np.strings.partition(AR_U, "\n"), npt.NDArray[np.str_]) +assert_type(np.strings.partition(AR_S, [b"a", b"b", b"c"]), npt.NDArray[np.bytes_]) +assert_type(np.strings.partition(AR_T, "\n"), AR_TU_alias) + +assert_type(np.strings.rpartition(AR_U, "\n"), npt.NDArray[np.str_]) +assert_type(np.strings.rpartition(AR_S, [b"a", b"b", b"c"]), npt.NDArray[np.bytes_]) +assert_type(np.strings.rpartition(AR_T, "\n"), AR_TU_alias) + +assert_type(np.strings.replace(AR_U, "_", "-"), npt.NDArray[np.str_]) +assert_type(np.strings.replace(AR_S, [b"_", b""], [b"a", b"b"]), npt.NDArray[np.bytes_]) +assert_type(np.strings.replace(AR_T, "_", "_"), AR_TU_alias) + +assert_type(np.strings.lower(AR_U), npt.NDArray[np.str_]) +assert_type(np.strings.lower(AR_S), npt.NDArray[np.bytes_]) +assert_type(np.strings.lower(AR_T), AR_T_alias) + +assert_type(np.strings.upper(AR_U), npt.NDArray[np.str_]) +assert_type(np.strings.upper(AR_S), npt.NDArray[np.bytes_]) +assert_type(np.strings.upper(AR_T), AR_T_alias) + +assert_type(np.strings.swapcase(AR_U), npt.NDArray[np.str_]) +assert_type(np.strings.swapcase(AR_S), npt.NDArray[np.bytes_]) +assert_type(np.strings.swapcase(AR_T), AR_T_alias) + +assert_type(np.strings.title(AR_U), npt.NDArray[np.str_]) +assert_type(np.strings.title(AR_S), npt.NDArray[np.bytes_]) +assert_type(np.strings.title(AR_T), AR_T_alias) + +assert_type(np.strings.zfill(AR_U, 5), npt.NDArray[np.str_]) +assert_type(np.strings.zfill(AR_S, [2, 3, 4]), npt.NDArray[np.bytes_]) +assert_type(np.strings.zfill(AR_T, 5), AR_T_alias) + +assert_type(np.strings.endswith(AR_U, "a", start=[1, 2, 3]), npt.NDArray[np.bool]) +assert_type(np.strings.endswith(AR_S, [b"a", b"b", b"c"], end=9), npt.NDArray[np.bool]) +assert_type(np.strings.endswith(AR_T, "a", start=[1, 2, 3]), npt.NDArray[np.bool]) + +assert_type(np.strings.startswith(AR_U, "a", start=[1, 2, 3]), npt.NDArray[np.bool]) +assert_type(np.strings.startswith(AR_S, [b"a", b"b", b"c"], end=9), npt.NDArray[np.bool]) +assert_type(np.strings.startswith(AR_T, "a", start=[1, 2, 3]), npt.NDArray[np.bool]) + +assert_type(np.strings.find(AR_U, "a", start=[1, 2, 3]), npt.NDArray[np.int_]) +assert_type(np.strings.find(AR_S, [b"a", b"b", b"c"], end=9), npt.NDArray[np.int_]) +assert_type(np.strings.find(AR_T, "a", start=[1, 2, 3]), npt.NDArray[np.int_]) + +assert_type(np.strings.rfind(AR_U, "a", start=[1, 2, 3]), npt.NDArray[np.int_]) +assert_type(np.strings.rfind(AR_S, [b"a", b"b", b"c"], end=9), npt.NDArray[np.int_]) +assert_type(np.strings.rfind(AR_T, "a", start=[1, 2, 3]), npt.NDArray[np.int_]) + +assert_type(np.strings.index(AR_U, "a", start=[1, 2, 3]), npt.NDArray[np.int_]) +assert_type(np.strings.index(AR_S, [b"a", b"b", b"c"], end=9), npt.NDArray[np.int_]) +assert_type(np.strings.index(AR_T, "a", start=[1, 2, 3]), npt.NDArray[np.int_]) + +assert_type(np.strings.rindex(AR_U, "a", start=[1, 2, 3]), npt.NDArray[np.int_]) +assert_type(np.strings.rindex(AR_S, [b"a", b"b", b"c"], end=9), npt.NDArray[np.int_]) +assert_type(np.strings.rindex(AR_T, "a", start=[1, 2, 3]), npt.NDArray[np.int_]) + +assert_type(np.strings.isalpha(AR_U), npt.NDArray[np.bool]) +assert_type(np.strings.isalpha(AR_S), npt.NDArray[np.bool]) +assert_type(np.strings.isalpha(AR_T), npt.NDArray[np.bool]) + +assert_type(np.strings.isalnum(AR_U), npt.NDArray[np.bool]) +assert_type(np.strings.isalnum(AR_S), npt.NDArray[np.bool]) +assert_type(np.strings.isalnum(AR_T), npt.NDArray[np.bool]) + +assert_type(np.strings.isdecimal(AR_U), npt.NDArray[np.bool]) +assert_type(np.strings.isdecimal(AR_T), npt.NDArray[np.bool]) + +assert_type(np.strings.isdigit(AR_U), npt.NDArray[np.bool]) +assert_type(np.strings.isdigit(AR_S), npt.NDArray[np.bool]) +assert_type(np.strings.isdigit(AR_T), npt.NDArray[np.bool]) + +assert_type(np.strings.islower(AR_U), npt.NDArray[np.bool]) +assert_type(np.strings.islower(AR_S), npt.NDArray[np.bool]) +assert_type(np.strings.islower(AR_T), npt.NDArray[np.bool]) + +assert_type(np.strings.isnumeric(AR_U), npt.NDArray[np.bool]) +assert_type(np.strings.isnumeric(AR_T), npt.NDArray[np.bool]) + +assert_type(np.strings.isspace(AR_U), npt.NDArray[np.bool]) +assert_type(np.strings.isspace(AR_S), npt.NDArray[np.bool]) +assert_type(np.strings.isspace(AR_T), npt.NDArray[np.bool]) + +assert_type(np.strings.istitle(AR_U), npt.NDArray[np.bool]) +assert_type(np.strings.istitle(AR_S), npt.NDArray[np.bool]) +assert_type(np.strings.istitle(AR_T), npt.NDArray[np.bool]) + +assert_type(np.strings.isupper(AR_U), npt.NDArray[np.bool]) +assert_type(np.strings.isupper(AR_S), npt.NDArray[np.bool]) +assert_type(np.strings.isupper(AR_T), npt.NDArray[np.bool]) + +assert_type(np.strings.str_len(AR_U), npt.NDArray[np.int_]) +assert_type(np.strings.str_len(AR_S), npt.NDArray[np.int_]) +assert_type(np.strings.str_len(AR_T), npt.NDArray[np.int_]) + +assert_type(np.strings.translate(AR_U, ""), npt.NDArray[np.str_]) +assert_type(np.strings.translate(AR_S, ""), npt.NDArray[np.bytes_]) +assert_type(np.strings.translate(AR_T, ""), AR_T_alias) + +assert_type(np.strings.slice(AR_U, 1, 5, 2), npt.NDArray[np.str_]) +assert_type(np.strings.slice(AR_S, 1, 5, 2), npt.NDArray[np.bytes_]) +assert_type(np.strings.slice(AR_T, 1, 5, 2), AR_T_alias) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/testing.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/testing.pyi new file mode 100644 index 0000000..d70bc97 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/testing.pyi @@ -0,0 +1,198 @@ +import contextlib +import re +import sys +import types +import unittest +import warnings +from collections.abc import Callable +from pathlib import Path +from typing import Any, TypeVar, assert_type + +import numpy as np +import numpy.typing as npt + +AR_f8: npt.NDArray[np.float64] +AR_i8: npt.NDArray[np.int64] + +bool_obj: bool +suppress_obj: np.testing.suppress_warnings +FT = TypeVar("FT", bound=Callable[..., Any]) + +def func() -> int: ... + +def func2( + x: npt.NDArray[np.number], + y: npt.NDArray[np.number], +) -> npt.NDArray[np.bool]: ... + +assert_type(np.testing.KnownFailureException(), np.testing.KnownFailureException) +assert_type(np.testing.IgnoreException(), np.testing.IgnoreException) + +assert_type( + np.testing.clear_and_catch_warnings(modules=[np.testing]), + np.testing.clear_and_catch_warnings[None], +) +assert_type( + np.testing.clear_and_catch_warnings(True), + np.testing.clear_and_catch_warnings[list[warnings.WarningMessage]], +) +assert_type( + np.testing.clear_and_catch_warnings(False), + np.testing.clear_and_catch_warnings[None], +) +assert_type( + np.testing.clear_and_catch_warnings(bool_obj), + np.testing.clear_and_catch_warnings, +) +assert_type( + np.testing.clear_and_catch_warnings.class_modules, + tuple[types.ModuleType, ...], +) +assert_type( + np.testing.clear_and_catch_warnings.modules, + set[types.ModuleType], +) + +with np.testing.clear_and_catch_warnings(True) as c1: + assert_type(c1, list[warnings.WarningMessage]) +with np.testing.clear_and_catch_warnings() as c2: + assert_type(c2, None) + +assert_type(np.testing.suppress_warnings("once"), np.testing.suppress_warnings) +assert_type(np.testing.suppress_warnings()(func), Callable[[], int]) +assert_type(suppress_obj.filter(RuntimeWarning), None) +assert_type(suppress_obj.record(RuntimeWarning), list[warnings.WarningMessage]) +with suppress_obj as c3: + assert_type(c3, np.testing.suppress_warnings) + +assert_type(np.testing.verbose, int) +assert_type(np.testing.IS_PYPY, bool) +assert_type(np.testing.HAS_REFCOUNT, bool) +assert_type(np.testing.HAS_LAPACK64, bool) + +assert_type(np.testing.assert_(1, msg="test"), None) +assert_type(np.testing.assert_(2, msg=lambda: "test"), None) + +if sys.platform == "win32" or sys.platform == "cygwin": + assert_type(np.testing.memusage(), int) +elif sys.platform == "linux": + assert_type(np.testing.memusage(), int | None) + +assert_type(np.testing.jiffies(), int) + +assert_type(np.testing.build_err_msg([0, 1, 2], "test"), str) +assert_type(np.testing.build_err_msg(range(2), "test", header="header"), str) +assert_type(np.testing.build_err_msg(np.arange(9).reshape(3, 3), "test", verbose=False), str) +assert_type(np.testing.build_err_msg("abc", "test", names=["x", "y"]), str) +assert_type(np.testing.build_err_msg([1.0, 2.0], "test", precision=5), str) + +assert_type(np.testing.assert_equal({1}, {1}), None) +assert_type(np.testing.assert_equal([1, 2, 3], [1, 2, 3], err_msg="fail"), None) +assert_type(np.testing.assert_equal(1, 1.0, verbose=True), None) + +assert_type(np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 1]), None) + +assert_type(np.testing.assert_almost_equal(1.0, 1.1), None) +assert_type(np.testing.assert_almost_equal([1, 2, 3], [1, 2, 3], err_msg="fail"), None) +assert_type(np.testing.assert_almost_equal(1, 1.0, verbose=True), None) +assert_type(np.testing.assert_almost_equal(1, 1.0001, decimal=2), None) + +assert_type(np.testing.assert_approx_equal(1.0, 1.1), None) +assert_type(np.testing.assert_approx_equal("1", "2", err_msg="fail"), None) +assert_type(np.testing.assert_approx_equal(1, 1.0, verbose=True), None) +assert_type(np.testing.assert_approx_equal(1, 1.0001, significant=2), None) + +assert_type(np.testing.assert_array_compare(func2, AR_i8, AR_f8, err_msg="test"), None) +assert_type(np.testing.assert_array_compare(func2, AR_i8, AR_f8, verbose=True), None) +assert_type(np.testing.assert_array_compare(func2, AR_i8, AR_f8, header="header"), None) +assert_type(np.testing.assert_array_compare(func2, AR_i8, AR_f8, precision=np.int64()), None) +assert_type(np.testing.assert_array_compare(func2, AR_i8, AR_f8, equal_nan=False), None) +assert_type(np.testing.assert_array_compare(func2, AR_i8, AR_f8, equal_inf=True), None) + +assert_type(np.testing.assert_array_equal(AR_i8, AR_f8), None) +assert_type(np.testing.assert_array_equal(AR_i8, AR_f8, err_msg="test"), None) +assert_type(np.testing.assert_array_equal(AR_i8, AR_f8, verbose=True), None) + +assert_type(np.testing.assert_array_almost_equal(AR_i8, AR_f8), None) +assert_type(np.testing.assert_array_almost_equal(AR_i8, AR_f8, err_msg="test"), None) +assert_type(np.testing.assert_array_almost_equal(AR_i8, AR_f8, verbose=True), None) +assert_type(np.testing.assert_array_almost_equal(AR_i8, AR_f8, decimal=1), None) + +assert_type(np.testing.assert_array_less(AR_i8, AR_f8), None) +assert_type(np.testing.assert_array_less(AR_i8, AR_f8, err_msg="test"), None) +assert_type(np.testing.assert_array_less(AR_i8, AR_f8, verbose=True), None) + +assert_type(np.testing.runstring("1 + 1", {}), Any) +assert_type(np.testing.runstring("int64() + 1", {"int64": np.int64}), Any) + +assert_type(np.testing.assert_string_equal("1", "1"), None) + +assert_type(np.testing.rundocs(), None) +assert_type(np.testing.rundocs("test.py"), None) +assert_type(np.testing.rundocs(Path("test.py"), raise_on_error=True), None) + +def func3(a: int) -> bool: ... + +assert_type( + np.testing.assert_raises(RuntimeWarning), + unittest.case._AssertRaisesContext[RuntimeWarning], +) +assert_type(np.testing.assert_raises(RuntimeWarning, func3, 5), None) + +assert_type( + np.testing.assert_raises_regex(RuntimeWarning, r"test"), + unittest.case._AssertRaisesContext[RuntimeWarning], +) +assert_type(np.testing.assert_raises_regex(RuntimeWarning, b"test", func3, 5), None) +assert_type(np.testing.assert_raises_regex(RuntimeWarning, re.compile(b"test"), func3, 5), None) + +class Test: ... + +def decorate(a: FT) -> FT: + return a + +assert_type(np.testing.decorate_methods(Test, decorate), None) +assert_type(np.testing.decorate_methods(Test, decorate, None), None) +assert_type(np.testing.decorate_methods(Test, decorate, "test"), None) +assert_type(np.testing.decorate_methods(Test, decorate, b"test"), None) +assert_type(np.testing.decorate_methods(Test, decorate, re.compile("test")), None) + +assert_type(np.testing.measure("for i in range(1000): np.sqrt(i**2)"), float) +assert_type(np.testing.measure(b"for i in range(1000): np.sqrt(i**2)", times=5), float) + +assert_type(np.testing.assert_allclose(AR_i8, AR_f8), None) +assert_type(np.testing.assert_allclose(AR_i8, AR_f8, rtol=0.005), None) +assert_type(np.testing.assert_allclose(AR_i8, AR_f8, atol=1), None) +assert_type(np.testing.assert_allclose(AR_i8, AR_f8, equal_nan=True), None) +assert_type(np.testing.assert_allclose(AR_i8, AR_f8, err_msg="err"), None) +assert_type(np.testing.assert_allclose(AR_i8, AR_f8, verbose=False), None) + +assert_type(np.testing.assert_array_almost_equal_nulp(AR_i8, AR_f8, nulp=2), None) + +assert_type(np.testing.assert_array_max_ulp(AR_i8, AR_f8, maxulp=2), npt.NDArray[Any]) +assert_type(np.testing.assert_array_max_ulp(AR_i8, AR_f8, dtype=np.float32), npt.NDArray[Any]) + +assert_type(np.testing.assert_warns(RuntimeWarning), contextlib._GeneratorContextManager[None]) +assert_type(np.testing.assert_warns(RuntimeWarning, func3, 5), bool) + +def func4(a: int, b: str) -> bool: ... + +assert_type(np.testing.assert_no_warnings(), contextlib._GeneratorContextManager[None]) +assert_type(np.testing.assert_no_warnings(func3, 5), bool) +assert_type(np.testing.assert_no_warnings(func4, a=1, b="test"), bool) +assert_type(np.testing.assert_no_warnings(func4, 1, "test"), bool) + +assert_type(np.testing.tempdir("test_dir"), contextlib._GeneratorContextManager[str]) +assert_type(np.testing.tempdir(prefix=b"test"), contextlib._GeneratorContextManager[bytes]) +assert_type(np.testing.tempdir("test_dir", dir=Path("here")), contextlib._GeneratorContextManager[str]) + +assert_type(np.testing.temppath("test_dir", text=True), contextlib._GeneratorContextManager[str]) +assert_type(np.testing.temppath(prefix=b"test"), contextlib._GeneratorContextManager[bytes]) +assert_type(np.testing.temppath("test_dir", dir=Path("here")), contextlib._GeneratorContextManager[str]) + +assert_type(np.testing.assert_no_gc_cycles(), contextlib._GeneratorContextManager[None]) +assert_type(np.testing.assert_no_gc_cycles(func3, 5), None) + +assert_type(np.testing.break_cycles(), None) + +assert_type(np.testing.TestCase(), unittest.case.TestCase) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/twodim_base.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/twodim_base.pyi new file mode 100644 index 0000000..7e9563a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/twodim_base.pyi @@ -0,0 +1,145 @@ +from typing import Any, TypeVar, assert_type + +import numpy as np +import numpy.typing as npt + +_ScalarT = TypeVar("_ScalarT", bound=np.generic) + +def func1(ar: npt.NDArray[_ScalarT], a: int) -> npt.NDArray[_ScalarT]: ... + +def func2(ar: npt.NDArray[np.number], a: str) -> npt.NDArray[np.float64]: ... + +AR_b: npt.NDArray[np.bool] +AR_u: npt.NDArray[np.uint64] +AR_i: npt.NDArray[np.int64] +AR_f: npt.NDArray[np.float64] +AR_c: npt.NDArray[np.complex128] +AR_O: npt.NDArray[np.object_] + +AR_LIKE_b: list[bool] +AR_LIKE_c: list[complex] + +assert_type(np.fliplr(AR_b), npt.NDArray[np.bool]) +assert_type(np.fliplr(AR_LIKE_b), npt.NDArray[Any]) + +assert_type(np.flipud(AR_b), npt.NDArray[np.bool]) +assert_type(np.flipud(AR_LIKE_b), npt.NDArray[Any]) + +assert_type(np.eye(10), npt.NDArray[np.float64]) +assert_type(np.eye(10, M=20, dtype=np.int64), npt.NDArray[np.int64]) +assert_type(np.eye(10, k=2, dtype=int), npt.NDArray[Any]) + +assert_type(np.diag(AR_b), npt.NDArray[np.bool]) +assert_type(np.diag(AR_LIKE_b, k=0), npt.NDArray[Any]) + +assert_type(np.diagflat(AR_b), npt.NDArray[np.bool]) +assert_type(np.diagflat(AR_LIKE_b, k=0), npt.NDArray[Any]) + +assert_type(np.tri(10), npt.NDArray[np.float64]) +assert_type(np.tri(10, M=20, dtype=np.int64), npt.NDArray[np.int64]) +assert_type(np.tri(10, k=2, dtype=int), npt.NDArray[Any]) + +assert_type(np.tril(AR_b), npt.NDArray[np.bool]) +assert_type(np.tril(AR_LIKE_b, k=0), npt.NDArray[Any]) + +assert_type(np.triu(AR_b), npt.NDArray[np.bool]) +assert_type(np.triu(AR_LIKE_b, k=0), npt.NDArray[Any]) + +assert_type(np.vander(AR_b), npt.NDArray[np.signedinteger]) +assert_type(np.vander(AR_u), npt.NDArray[np.signedinteger]) +assert_type(np.vander(AR_i, N=2), npt.NDArray[np.signedinteger]) +assert_type(np.vander(AR_f, increasing=True), npt.NDArray[np.floating]) +assert_type(np.vander(AR_c), npt.NDArray[np.complexfloating]) +assert_type(np.vander(AR_O), npt.NDArray[np.object_]) + +assert_type( + np.histogram2d(AR_LIKE_c, AR_LIKE_c), + tuple[ + npt.NDArray[np.float64], + npt.NDArray[np.complex128 | np.float64], + npt.NDArray[np.complex128 | np.float64], + ], +) +assert_type( + np.histogram2d(AR_i, AR_b), + tuple[ + npt.NDArray[np.float64], + npt.NDArray[np.float64], + npt.NDArray[np.float64], + ], +) +assert_type( + np.histogram2d(AR_f, AR_i), + tuple[ + npt.NDArray[np.float64], + npt.NDArray[np.float64], + npt.NDArray[np.float64], + ], +) +assert_type( + np.histogram2d(AR_i, AR_f), + tuple[ + npt.NDArray[np.float64], + npt.NDArray[np.float64], + npt.NDArray[np.float64], + ], +) +assert_type( + np.histogram2d(AR_f, AR_c, weights=AR_LIKE_b), + tuple[ + npt.NDArray[np.float64], + npt.NDArray[np.complex128], + npt.NDArray[np.complex128], + ], +) +assert_type( + np.histogram2d(AR_f, AR_c, bins=8), + tuple[ + npt.NDArray[np.float64], + npt.NDArray[np.complex128], + npt.NDArray[np.complex128], + ], +) +assert_type( + np.histogram2d(AR_c, AR_f, bins=(8, 5)), + tuple[ + npt.NDArray[np.float64], + npt.NDArray[np.complex128], + npt.NDArray[np.complex128], + ], +) +assert_type( + np.histogram2d(AR_c, AR_i, bins=AR_u), + tuple[ + npt.NDArray[np.float64], + npt.NDArray[np.uint64], + npt.NDArray[np.uint64], + ], +) +assert_type( + np.histogram2d(AR_c, AR_c, bins=(AR_u, AR_u)), + tuple[ + npt.NDArray[np.float64], + npt.NDArray[np.uint64], + npt.NDArray[np.uint64], + ], +) +assert_type( + np.histogram2d(AR_c, AR_c, bins=(AR_b, 8)), + tuple[ + npt.NDArray[np.float64], + npt.NDArray[np.bool | np.complex128], + npt.NDArray[np.bool | np.complex128], + ], +) + +assert_type(np.mask_indices(10, func1), tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]) +assert_type(np.mask_indices(8, func2, "0"), tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]) + +assert_type(np.tril_indices(10), tuple[npt.NDArray[np.int_], npt.NDArray[np.int_]]) + +assert_type(np.tril_indices_from(AR_b), tuple[npt.NDArray[np.int_], npt.NDArray[np.int_]]) + +assert_type(np.triu_indices(10), tuple[npt.NDArray[np.int_], npt.NDArray[np.int_]]) + +assert_type(np.triu_indices_from(AR_b), tuple[npt.NDArray[np.int_], npt.NDArray[np.int_]]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/type_check.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/type_check.pyi new file mode 100644 index 0000000..df95da7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/type_check.pyi @@ -0,0 +1,67 @@ +from typing import Any, Literal, assert_type + +import numpy as np +import numpy.typing as npt + +f8: np.float64 +f: float + +# NOTE: Avoid importing the platform specific `np.float128` type +AR_i8: npt.NDArray[np.int64] +AR_i4: npt.NDArray[np.int32] +AR_f2: npt.NDArray[np.float16] +AR_f8: npt.NDArray[np.float64] +AR_f16: npt.NDArray[np.longdouble] +AR_c8: npt.NDArray[np.complex64] +AR_c16: npt.NDArray[np.complex128] + +AR_LIKE_f: list[float] + +class ComplexObj: + real: slice + imag: slice + +assert_type(np.mintypecode(["f8"], typeset="qfQF"), str) + +assert_type(np.real(ComplexObj()), slice) +assert_type(np.real(AR_f8), npt.NDArray[np.float64]) +assert_type(np.real(AR_c16), npt.NDArray[np.float64]) +assert_type(np.real(AR_LIKE_f), npt.NDArray[Any]) + +assert_type(np.imag(ComplexObj()), slice) +assert_type(np.imag(AR_f8), npt.NDArray[np.float64]) +assert_type(np.imag(AR_c16), npt.NDArray[np.float64]) +assert_type(np.imag(AR_LIKE_f), npt.NDArray[Any]) + +assert_type(np.iscomplex(f8), np.bool) +assert_type(np.iscomplex(AR_f8), npt.NDArray[np.bool]) +assert_type(np.iscomplex(AR_LIKE_f), npt.NDArray[np.bool]) + +assert_type(np.isreal(f8), np.bool) +assert_type(np.isreal(AR_f8), npt.NDArray[np.bool]) +assert_type(np.isreal(AR_LIKE_f), npt.NDArray[np.bool]) + +assert_type(np.iscomplexobj(f8), bool) +assert_type(np.isrealobj(f8), bool) + +assert_type(np.nan_to_num(f8), np.float64) +assert_type(np.nan_to_num(f, copy=True), Any) +assert_type(np.nan_to_num(AR_f8, nan=1.5), npt.NDArray[np.float64]) +assert_type(np.nan_to_num(AR_LIKE_f, posinf=9999), npt.NDArray[Any]) + +assert_type(np.real_if_close(AR_f8), npt.NDArray[np.float64]) +assert_type(np.real_if_close(AR_c16), npt.NDArray[np.float64 | np.complex128]) +assert_type(np.real_if_close(AR_c8), npt.NDArray[np.float32 | np.complex64]) +assert_type(np.real_if_close(AR_LIKE_f), npt.NDArray[Any]) + +assert_type(np.typename("h"), Literal["short"]) +assert_type(np.typename("B"), Literal["unsigned char"]) +assert_type(np.typename("V"), Literal["void"]) +assert_type(np.typename("S1"), Literal["character"]) + +assert_type(np.common_type(AR_i4), type[np.float64]) +assert_type(np.common_type(AR_f2), type[np.float16]) +assert_type(np.common_type(AR_f2, AR_i4), type[np.float64]) +assert_type(np.common_type(AR_f16, AR_i4), type[np.longdouble]) +assert_type(np.common_type(AR_c8, AR_f2), type[np.complex64]) +assert_type(np.common_type(AR_f2, AR_c8, AR_i4), type[np.complexfloating]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ufunc_config.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ufunc_config.pyi new file mode 100644 index 0000000..7485075 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ufunc_config.pyi @@ -0,0 +1,30 @@ +"""Typing tests for `_core._ufunc_config`.""" + +from collections.abc import Callable +from typing import Any, assert_type + +from _typeshed import SupportsWrite + +import numpy as np + +def func(a: str, b: int) -> None: ... + +class Write: + def write(self, value: str) -> None: ... + +assert_type(np.seterr(all=None), np._core._ufunc_config._ErrDict) +assert_type(np.seterr(divide="ignore"), np._core._ufunc_config._ErrDict) +assert_type(np.seterr(over="warn"), np._core._ufunc_config._ErrDict) +assert_type(np.seterr(under="call"), np._core._ufunc_config._ErrDict) +assert_type(np.seterr(invalid="raise"), np._core._ufunc_config._ErrDict) +assert_type(np.geterr(), np._core._ufunc_config._ErrDict) + +assert_type(np.setbufsize(4096), int) +assert_type(np.getbufsize(), int) + +assert_type(np.seterrcall(func), Callable[[str, int], Any] | SupportsWrite[str] | None) +assert_type(np.seterrcall(Write()), Callable[[str, int], Any] | SupportsWrite[str] | None) +assert_type(np.geterrcall(), Callable[[str, int], Any] | SupportsWrite[str] | None) + +assert_type(np.errstate(call=func, all="call"), np.errstate) +assert_type(np.errstate(call=Write(), divide="log", over="log"), np.errstate) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ufunclike.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ufunclike.pyi new file mode 100644 index 0000000..a0ede60 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ufunclike.pyi @@ -0,0 +1,31 @@ +from typing import Any, assert_type + +import numpy as np +import numpy.typing as npt + +AR_LIKE_b: list[bool] +AR_LIKE_u: list[np.uint32] +AR_LIKE_i: list[int] +AR_LIKE_f: list[float] +AR_LIKE_O: list[np.object_] + +AR_U: npt.NDArray[np.str_] + +assert_type(np.fix(AR_LIKE_b), npt.NDArray[np.floating]) +assert_type(np.fix(AR_LIKE_u), npt.NDArray[np.floating]) +assert_type(np.fix(AR_LIKE_i), npt.NDArray[np.floating]) +assert_type(np.fix(AR_LIKE_f), npt.NDArray[np.floating]) +assert_type(np.fix(AR_LIKE_O), npt.NDArray[np.object_]) +assert_type(np.fix(AR_LIKE_f, out=AR_U), npt.NDArray[np.str_]) + +assert_type(np.isposinf(AR_LIKE_b), npt.NDArray[np.bool]) +assert_type(np.isposinf(AR_LIKE_u), npt.NDArray[np.bool]) +assert_type(np.isposinf(AR_LIKE_i), npt.NDArray[np.bool]) +assert_type(np.isposinf(AR_LIKE_f), npt.NDArray[np.bool]) +assert_type(np.isposinf(AR_LIKE_f, out=AR_U), npt.NDArray[np.str_]) + +assert_type(np.isneginf(AR_LIKE_b), npt.NDArray[np.bool]) +assert_type(np.isneginf(AR_LIKE_u), npt.NDArray[np.bool]) +assert_type(np.isneginf(AR_LIKE_i), npt.NDArray[np.bool]) +assert_type(np.isneginf(AR_LIKE_f), npt.NDArray[np.bool]) +assert_type(np.isneginf(AR_LIKE_f, out=AR_U), npt.NDArray[np.str_]) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ufuncs.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ufuncs.pyi new file mode 100644 index 0000000..93a8bfb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/ufuncs.pyi @@ -0,0 +1,123 @@ +from typing import Any, Literal, NoReturn, assert_type + +import numpy as np +import numpy.typing as npt + +i8: np.int64 +f8: np.float64 +AR_f8: npt.NDArray[np.float64] +AR_i8: npt.NDArray[np.int64] + +assert_type(np.absolute.__doc__, str) +assert_type(np.absolute.types, list[str]) + +assert_type(np.absolute.__name__, Literal["absolute"]) +assert_type(np.absolute.__qualname__, Literal["absolute"]) +assert_type(np.absolute.ntypes, Literal[20]) +assert_type(np.absolute.identity, None) +assert_type(np.absolute.nin, Literal[1]) +assert_type(np.absolute.nin, Literal[1]) +assert_type(np.absolute.nout, Literal[1]) +assert_type(np.absolute.nargs, Literal[2]) +assert_type(np.absolute.signature, None) +assert_type(np.absolute(f8), Any) +assert_type(np.absolute(AR_f8), npt.NDArray[Any]) +assert_type(np.absolute.at(AR_f8, AR_i8), None) + +assert_type(np.add.__name__, Literal["add"]) +assert_type(np.add.__qualname__, Literal["add"]) +assert_type(np.add.ntypes, Literal[22]) +assert_type(np.add.identity, Literal[0]) +assert_type(np.add.nin, Literal[2]) +assert_type(np.add.nout, Literal[1]) +assert_type(np.add.nargs, Literal[3]) +assert_type(np.add.signature, None) +assert_type(np.add(f8, f8), Any) +assert_type(np.add(AR_f8, f8), npt.NDArray[Any]) +assert_type(np.add.at(AR_f8, AR_i8, f8), None) +assert_type(np.add.reduce(AR_f8, axis=0), Any) +assert_type(np.add.accumulate(AR_f8), npt.NDArray[Any]) +assert_type(np.add.reduceat(AR_f8, AR_i8), npt.NDArray[Any]) +assert_type(np.add.outer(f8, f8), Any) +assert_type(np.add.outer(AR_f8, f8), npt.NDArray[Any]) + +assert_type(np.frexp.__name__, Literal["frexp"]) +assert_type(np.frexp.__qualname__, Literal["frexp"]) +assert_type(np.frexp.ntypes, Literal[4]) +assert_type(np.frexp.identity, None) +assert_type(np.frexp.nin, Literal[1]) +assert_type(np.frexp.nout, Literal[2]) +assert_type(np.frexp.nargs, Literal[3]) +assert_type(np.frexp.signature, None) +assert_type(np.frexp(f8), tuple[Any, Any]) +assert_type(np.frexp(AR_f8), tuple[npt.NDArray[Any], npt.NDArray[Any]]) + +assert_type(np.divmod.__name__, Literal["divmod"]) +assert_type(np.divmod.__qualname__, Literal["divmod"]) +assert_type(np.divmod.ntypes, Literal[15]) +assert_type(np.divmod.identity, None) +assert_type(np.divmod.nin, Literal[2]) +assert_type(np.divmod.nout, Literal[2]) +assert_type(np.divmod.nargs, Literal[4]) +assert_type(np.divmod.signature, None) +assert_type(np.divmod(f8, f8), tuple[Any, Any]) +assert_type(np.divmod(AR_f8, f8), tuple[npt.NDArray[Any], npt.NDArray[Any]]) + +assert_type(np.matmul.__name__, Literal["matmul"]) +assert_type(np.matmul.__qualname__, Literal["matmul"]) +assert_type(np.matmul.ntypes, Literal[19]) +assert_type(np.matmul.identity, None) +assert_type(np.matmul.nin, Literal[2]) +assert_type(np.matmul.nout, Literal[1]) +assert_type(np.matmul.nargs, Literal[3]) +assert_type(np.matmul.signature, Literal["(n?,k),(k,m?)->(n?,m?)"]) +assert_type(np.matmul.identity, None) +assert_type(np.matmul(AR_f8, AR_f8), Any) +assert_type(np.matmul(AR_f8, AR_f8, axes=[(0, 1), (0, 1), (0, 1)]), Any) + +assert_type(np.vecdot.__name__, Literal["vecdot"]) +assert_type(np.vecdot.__qualname__, Literal["vecdot"]) +assert_type(np.vecdot.ntypes, Literal[19]) +assert_type(np.vecdot.identity, None) +assert_type(np.vecdot.nin, Literal[2]) +assert_type(np.vecdot.nout, Literal[1]) +assert_type(np.vecdot.nargs, Literal[3]) +assert_type(np.vecdot.signature, Literal["(n),(n)->()"]) +assert_type(np.vecdot.identity, None) +assert_type(np.vecdot(AR_f8, AR_f8), Any) + +assert_type(np.bitwise_count.__name__, Literal["bitwise_count"]) +assert_type(np.bitwise_count.__qualname__, Literal["bitwise_count"]) +assert_type(np.bitwise_count.ntypes, Literal[11]) +assert_type(np.bitwise_count.identity, None) +assert_type(np.bitwise_count.nin, Literal[1]) +assert_type(np.bitwise_count.nout, Literal[1]) +assert_type(np.bitwise_count.nargs, Literal[2]) +assert_type(np.bitwise_count.signature, None) +assert_type(np.bitwise_count.identity, None) +assert_type(np.bitwise_count(i8), Any) +assert_type(np.bitwise_count(AR_i8), npt.NDArray[Any]) + +assert_type(np.absolute.outer(), NoReturn) +assert_type(np.frexp.outer(), NoReturn) +assert_type(np.divmod.outer(), NoReturn) +assert_type(np.matmul.outer(), NoReturn) + +assert_type(np.absolute.reduceat(), NoReturn) +assert_type(np.frexp.reduceat(), NoReturn) +assert_type(np.divmod.reduceat(), NoReturn) +assert_type(np.matmul.reduceat(), NoReturn) + +assert_type(np.absolute.reduce(), NoReturn) +assert_type(np.frexp.reduce(), NoReturn) +assert_type(np.divmod.reduce(), NoReturn) +assert_type(np.matmul.reduce(), NoReturn) + +assert_type(np.absolute.accumulate(), NoReturn) +assert_type(np.frexp.accumulate(), NoReturn) +assert_type(np.divmod.accumulate(), NoReturn) +assert_type(np.matmul.accumulate(), NoReturn) + +assert_type(np.frexp.at(), NoReturn) +assert_type(np.divmod.at(), NoReturn) +assert_type(np.matmul.at(), NoReturn) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/warnings_and_errors.pyi b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/warnings_and_errors.pyi new file mode 100644 index 0000000..f756a8e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/data/reveal/warnings_and_errors.pyi @@ -0,0 +1,11 @@ +from typing import assert_type + +import numpy.exceptions as ex + +assert_type(ex.ModuleDeprecationWarning(), ex.ModuleDeprecationWarning) +assert_type(ex.VisibleDeprecationWarning(), ex.VisibleDeprecationWarning) +assert_type(ex.ComplexWarning(), ex.ComplexWarning) +assert_type(ex.RankWarning(), ex.RankWarning) +assert_type(ex.TooHardError(), ex.TooHardError) +assert_type(ex.AxisError("test"), ex.AxisError) +assert_type(ex.AxisError(5, 1), ex.AxisError) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/test_isfile.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/test_isfile.py new file mode 100644 index 0000000..f72122f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/test_isfile.py @@ -0,0 +1,32 @@ +import os +import sys +from pathlib import Path + +import numpy as np +from numpy.testing import assert_ + +ROOT = Path(np.__file__).parents[0] +FILES = [ + ROOT / "py.typed", + ROOT / "__init__.pyi", + ROOT / "ctypeslib" / "__init__.pyi", + ROOT / "_core" / "__init__.pyi", + ROOT / "f2py" / "__init__.pyi", + ROOT / "fft" / "__init__.pyi", + ROOT / "lib" / "__init__.pyi", + ROOT / "linalg" / "__init__.pyi", + ROOT / "ma" / "__init__.pyi", + ROOT / "matrixlib" / "__init__.pyi", + ROOT / "polynomial" / "__init__.pyi", + ROOT / "random" / "__init__.pyi", + ROOT / "testing" / "__init__.pyi", +] +if sys.version_info < (3, 12): + FILES += [ROOT / "distutils" / "__init__.pyi"] + + +class TestIsFile: + def test_isfile(self): + """Test if all ``.pyi`` files are properly installed.""" + for file in FILES: + assert_(os.path.isfile(file)) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/test_runtime.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/test_runtime.py new file mode 100644 index 0000000..2369521 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/test_runtime.py @@ -0,0 +1,102 @@ +"""Test the runtime usage of `numpy.typing`.""" + +from typing import ( + Any, + NamedTuple, + Union, # pyright: ignore[reportDeprecated] + get_args, + get_origin, + get_type_hints, +) + +import pytest + +import numpy as np +import numpy._typing as _npt +import numpy.typing as npt + + +class TypeTup(NamedTuple): + typ: type + args: tuple[type, ...] + origin: type | None + + +NDArrayTup = TypeTup(npt.NDArray, npt.NDArray.__args__, np.ndarray) + +TYPES = { + "ArrayLike": TypeTup(npt.ArrayLike, npt.ArrayLike.__args__, Union), + "DTypeLike": TypeTup(npt.DTypeLike, npt.DTypeLike.__args__, Union), + "NBitBase": TypeTup(npt.NBitBase, (), None), + "NDArray": NDArrayTup, +} + + +@pytest.mark.parametrize("name,tup", TYPES.items(), ids=TYPES.keys()) +def test_get_args(name: type, tup: TypeTup) -> None: + """Test `typing.get_args`.""" + typ, ref = tup.typ, tup.args + out = get_args(typ) + assert out == ref + + +@pytest.mark.parametrize("name,tup", TYPES.items(), ids=TYPES.keys()) +def test_get_origin(name: type, tup: TypeTup) -> None: + """Test `typing.get_origin`.""" + typ, ref = tup.typ, tup.origin + out = get_origin(typ) + assert out == ref + + +@pytest.mark.parametrize("name,tup", TYPES.items(), ids=TYPES.keys()) +def test_get_type_hints(name: type, tup: TypeTup) -> None: + """Test `typing.get_type_hints`.""" + typ = tup.typ + + def func(a: typ) -> None: pass + + out = get_type_hints(func) + ref = {"a": typ, "return": type(None)} + assert out == ref + + +@pytest.mark.parametrize("name,tup", TYPES.items(), ids=TYPES.keys()) +def test_get_type_hints_str(name: type, tup: TypeTup) -> None: + """Test `typing.get_type_hints` with string-representation of types.""" + typ_str, typ = f"npt.{name}", tup.typ + + def func(a: typ_str) -> None: pass + + out = get_type_hints(func) + ref = {"a": typ, "return": type(None)} + assert out == ref + + +def test_keys() -> None: + """Test that ``TYPES.keys()`` and ``numpy.typing.__all__`` are synced.""" + keys = TYPES.keys() + ref = set(npt.__all__) + assert keys == ref + + +PROTOCOLS: dict[str, tuple[type[Any], object]] = { + "_SupportsDType": (_npt._SupportsDType, np.int64(1)), + "_SupportsArray": (_npt._SupportsArray, np.arange(10)), + "_SupportsArrayFunc": (_npt._SupportsArrayFunc, np.arange(10)), + "_NestedSequence": (_npt._NestedSequence, [1]), +} + + +@pytest.mark.parametrize("cls,obj", PROTOCOLS.values(), ids=PROTOCOLS.keys()) +class TestRuntimeProtocol: + def test_isinstance(self, cls: type[Any], obj: object) -> None: + assert isinstance(obj, cls) + assert not isinstance(None, cls) + + def test_issubclass(self, cls: type[Any], obj: object) -> None: + if cls is _npt._SupportsDType: + pytest.xfail( + "Protocols with non-method members don't support issubclass()" + ) + assert issubclass(type(obj), cls) + assert not issubclass(type(None), cls) diff --git a/.venv/lib/python3.12/site-packages/numpy/typing/tests/test_typing.py b/.venv/lib/python3.12/site-packages/numpy/typing/tests/test_typing.py new file mode 100644 index 0000000..ca4cf37 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/typing/tests/test_typing.py @@ -0,0 +1,205 @@ +import importlib.util +import os +import re +import shutil +import textwrap +from collections import defaultdict +from typing import TYPE_CHECKING + +import pytest + +# Only trigger a full `mypy` run if this environment variable is set +# Note that these tests tend to take over a minute even on a macOS M1 CPU, +# and more than that in CI. +RUN_MYPY = "NPY_RUN_MYPY_IN_TESTSUITE" in os.environ +if RUN_MYPY and RUN_MYPY not in ('0', '', 'false'): + RUN_MYPY = True + +# Skips all functions in this file +pytestmark = pytest.mark.skipif( + not RUN_MYPY, + reason="`NPY_RUN_MYPY_IN_TESTSUITE` not set" +) + + +try: + from mypy import api +except ImportError: + NO_MYPY = True +else: + NO_MYPY = False + +if TYPE_CHECKING: + from collections.abc import Iterator + + # We need this as annotation, but it's located in a private namespace. + # As a compromise, do *not* import it during runtime + from _pytest.mark.structures import ParameterSet + +DATA_DIR = os.path.join(os.path.dirname(__file__), "data") +PASS_DIR = os.path.join(DATA_DIR, "pass") +FAIL_DIR = os.path.join(DATA_DIR, "fail") +REVEAL_DIR = os.path.join(DATA_DIR, "reveal") +MISC_DIR = os.path.join(DATA_DIR, "misc") +MYPY_INI = os.path.join(DATA_DIR, "mypy.ini") +CACHE_DIR = os.path.join(DATA_DIR, ".mypy_cache") + +#: A dictionary with file names as keys and lists of the mypy stdout as values. +#: To-be populated by `run_mypy`. +OUTPUT_MYPY: defaultdict[str, list[str]] = defaultdict(list) + + +def _key_func(key: str) -> str: + """Split at the first occurrence of the ``:`` character. + + Windows drive-letters (*e.g.* ``C:``) are ignored herein. + """ + drive, tail = os.path.splitdrive(key) + return os.path.join(drive, tail.split(":", 1)[0]) + + +def _strip_filename(msg: str) -> tuple[int, str]: + """Strip the filename and line number from a mypy message.""" + _, tail = os.path.splitdrive(msg) + _, lineno, msg = tail.split(":", 2) + return int(lineno), msg.strip() + + +def strip_func(match: re.Match[str]) -> str: + """`re.sub` helper function for stripping module names.""" + return match.groups()[1] + + +@pytest.fixture(scope="module", autouse=True) +def run_mypy() -> None: + """Clears the cache and run mypy before running any of the typing tests. + + The mypy results are cached in `OUTPUT_MYPY` for further use. + + The cache refresh can be skipped using + + NUMPY_TYPING_TEST_CLEAR_CACHE=0 pytest numpy/typing/tests + """ + if ( + os.path.isdir(CACHE_DIR) + and bool(os.environ.get("NUMPY_TYPING_TEST_CLEAR_CACHE", True)) # noqa: PLW1508 + ): + shutil.rmtree(CACHE_DIR) + + split_pattern = re.compile(r"(\s+)?\^(\~+)?") + for directory in (PASS_DIR, REVEAL_DIR, FAIL_DIR, MISC_DIR): + # Run mypy + stdout, stderr, exit_code = api.run([ + "--config-file", + MYPY_INI, + "--cache-dir", + CACHE_DIR, + directory, + ]) + if stderr: + pytest.fail(f"Unexpected mypy standard error\n\n{stderr}", False) + elif exit_code not in {0, 1}: + pytest.fail(f"Unexpected mypy exit code: {exit_code}\n\n{stdout}", False) + + str_concat = "" + filename: str | None = None + for i in stdout.split("\n"): + if "note:" in i: + continue + if filename is None: + filename = _key_func(i) + + str_concat += f"{i}\n" + if split_pattern.match(i) is not None: + OUTPUT_MYPY[filename].append(str_concat) + str_concat = "" + filename = None + + +def get_test_cases(*directories: str) -> "Iterator[ParameterSet]": + for directory in directories: + for root, _, files in os.walk(directory): + for fname in files: + short_fname, ext = os.path.splitext(fname) + if ext not in (".pyi", ".py"): + continue + + fullpath = os.path.join(root, fname) + yield pytest.param(fullpath, id=short_fname) + + +_FAIL_INDENT = " " * 4 +_FAIL_SEP = "\n" + "_" * 79 + "\n\n" + +_FAIL_MSG_REVEAL = """{}:{} - reveal mismatch: + +{}""" + + +@pytest.mark.slow +@pytest.mark.skipif(NO_MYPY, reason="Mypy is not installed") +@pytest.mark.parametrize("path", get_test_cases(PASS_DIR, FAIL_DIR)) +def test_pass(path) -> None: + # Alias `OUTPUT_MYPY` so that it appears in the local namespace + output_mypy = OUTPUT_MYPY + + if path not in output_mypy: + return + + relpath = os.path.relpath(path) + + # collect any reported errors, and clean up the output + messages = [] + for message in output_mypy[path]: + lineno, content = _strip_filename(message) + content = content.removeprefix("error:").lstrip() + messages.append(f"{relpath}:{lineno} - {content}") + + if messages: + pytest.fail("\n".join(messages), pytrace=False) + + +@pytest.mark.slow +@pytest.mark.skipif(NO_MYPY, reason="Mypy is not installed") +@pytest.mark.parametrize("path", get_test_cases(REVEAL_DIR)) +def test_reveal(path: str) -> None: + """Validate that mypy correctly infers the return-types of + the expressions in `path`. + """ + __tracebackhide__ = True + + output_mypy = OUTPUT_MYPY + if path not in output_mypy: + return + + relpath = os.path.relpath(path) + + # collect any reported errors, and clean up the output + failures = [] + for error_line in output_mypy[path]: + lineno, error_msg = _strip_filename(error_line) + error_msg = textwrap.indent(error_msg, _FAIL_INDENT) + reason = _FAIL_MSG_REVEAL.format(relpath, lineno, error_msg) + failures.append(reason) + + if failures: + reasons = _FAIL_SEP.join(failures) + pytest.fail(reasons, pytrace=False) + + +@pytest.mark.slow +@pytest.mark.skipif(NO_MYPY, reason="Mypy is not installed") +@pytest.mark.parametrize("path", get_test_cases(PASS_DIR)) +def test_code_runs(path: str) -> None: + """Validate that the code in `path` properly during runtime.""" + path_without_extension, _ = os.path.splitext(path) + dirname, filename = path.split(os.sep)[-2:] + + spec = importlib.util.spec_from_file_location( + f"{dirname}.{filename}", path + ) + assert spec is not None + assert spec.loader is not None + + test_module = importlib.util.module_from_spec(spec) + spec.loader.exec_module(test_module) diff --git a/.venv/lib/python3.12/site-packages/numpy/version.py b/.venv/lib/python3.12/site-packages/numpy/version.py new file mode 100644 index 0000000..07b7230 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/version.py @@ -0,0 +1,11 @@ + +""" +Module to expose more detailed version info for the installed `numpy` +""" +version = "2.3.2" +__version__ = version +full_version = version + +git_revision = "bc5e4f811db9487a9ea1618ffb77a33b3919bb8e" +release = 'dev' not in version and '+' not in version +short_version = version.split("+")[0] diff --git a/.venv/lib/python3.12/site-packages/numpy/version.pyi b/.venv/lib/python3.12/site-packages/numpy/version.pyi new file mode 100644 index 0000000..113cde3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/version.pyi @@ -0,0 +1,18 @@ +from typing import Final, LiteralString + +__all__ = ( + '__version__', + 'full_version', + 'git_revision', + 'release', + 'short_version', + 'version', +) + +version: Final[LiteralString] +__version__: Final[LiteralString] +full_version: Final[LiteralString] + +git_revision: Final[LiteralString] +release: Final[bool] +short_version: Final[LiteralString] -- cgit v1.2.3